
-sss
TITLE

INSTITOTIDN

SPONS A;ENCY

MMUS? RISME

CB 024 525

Military Curricula for Vocational & Technical
Education. Communications Computer Programmer,
4-2.
Air Force Training Command, Kessler AIM, Miss.; 3hio
State Univ., Columbus. National Center for Research
in Vocational Education.
Bureau al Occupational and Adult Education (DHEW/OE1.
Washington, D.C.

PUB DATE Aug 78
NDTE 689p.; Not available in paper copy due to small

type.

EDRS PRICE 1004 Plus Postage. PC Not Available.from EDRS.,
DESCRIPT3RS Autoinstructional Ails: Behaviora' lbjectives;

*Ct.mputer Science: *Computer Scie Education:
Zourse Descriptions; Curriculum Gniges; Data.
Processing; High Schools: Learning Activities;
Postsecondary Education: Problem Solviag: Prograaed
Instructional Materials; *Programing: *Programing
Languages: Study Guiles: Technical Mathematics:
Workbooks

IDENTIFIERS FORTRAN Programing Language: Military Curriculum
Project

ASSTRAqT
These Auden+. materialsstudy guides, handouts (some

are mahuals), a workbook, and programmed texts--for a
secondary-postsecondary-level course for communications compute:
programmer are one of a number of military-developed curriculum
packages selected for adaptation to vocational instruction and
curriculum develppment in a civilian setting. A plan of instruction,
which suggests number of hours of class time devoted to each coa:se
objective and support material and guidance, covers these topics:
computer mathematics, data representation, computer logic functions,
and logLcal development of problem solving. :ontents of the unit,

Computer r-ogramming Principles, 'include a handout with student
notes, a study guide with learning materials, and a workbook with
classroom and homewuric exercises. A programmed text is provided for
the unit, Computer Y.,clic Functions. The,unit, Tcp Down Structural
Programming, is a self-instruction taxt. The unit on Programming
Principles is a study guide with learning materials. Student manuals
(handouts) comprise the,units, Fortran Language and Examples of
Structured Code. (!LB)

********************* ***** ***
Reproductions su by !DRS are the best that can be male

om the original document.
****************** *** ***

Military Curricula
for Vocational &
Technical Education

ICA; I I II

THE NATIONAL CL4TER

FOR RESEARCH IN VOCATIONC EDUCATION

4,

%ow'.

This military technical training course has been selected and adapted by

The Center for Vocational Educaticn for "Trial Implementation of a Model System

to Provide Military Curriculum Materials for Oise in Vocational and Technical

Educa4on," a project sponsored by the Bureau of Occupational and Adult Education,

U.S: Department qf Health, Education, =Id Welfare.

MILITAItt CJPRICULUM MMERIALS

The nilitary-developed curriculum materials in this course

package were selected by the National (_nter for Research in

Voctional Education Military Curriculum Project for dissent-

indtion to the six regional Curriculum Coordination Centers and

other instructicmal materials agencies. The,purpose of

disseninating these courses was to nake currimUmamste7ials

ceveloped by the military more accessible to vocatimal
educators in the civilian setting,

The course materials 'were aoguired, evaluated by project

staff and practitioners in the field, and prepared for

dissemination. Materials which were specific to the military

were deleted, qppyrighted materials were either matted or appro-

val for their tige was obtained. These course packages contain

curriculum resource materials which can be adapted to support

vocational instruction and cUrriculum development.

f

The National Center
Mission Statement

4.7!

The National Center for Research in
Vocational Education's mission is to increase
the ability of diverse agencies, institutions,
and organizations to solve educational prob-
lems relating to individual career planning,
preparation, and progression. The National
Center fulfills its mission by:

Generating knowledge through research

Developing educational programs and
products

Evaluating individual program needs
and outcomes

Installing educational programs and
products

Operating information systems and
services

Conducting leadership development and
training programs

FOR FURTHER INFORMATION ABOUT
Military Curriculum Materials

. WRITE OR CALL.
Program iriformation Office
The National Center for Research in Vocational

Education
The Ohio State University
1960 Kenny Road, Columbus, Ohio 43210
Telephone: 614/486-3655 or Toll Free 800/

5 948-4815.within the continental U.S.
(except Ohio)

p.

Military Curriculum
Materials for

Vocational and
Technical Education

informltion and Field
Ser vices Division

The Nationli Center for Research
in Vocr:Iicrili Education

Military"
Curriculum Materials
Disseminatiob Is

'.1

an activiiy to increase the accessibility of
military-developed curricuium materials to
vocational and technical educators.

This project, funded by the U.S. Office of
Education, includes the identification and
acquisition of curriculum materials in print
form from the Coast Guard, Air Force,
Army, Marine Corps and Navy.

Access to military curriculum materials is
movided througha "Joint Memorandum of
Understanding" between the U.S. Office of
Education and the Department of Defense.

The acquired materials are reviewed by staff
and subject matter specialists, and courses
deemed applicable to vocational and tech-
nical education are selected for dissemination.

The National Center for Research in
Vocational Education is the U.S. Office of
Education's designated representative to
acquire the materials and conduct the project
activities.

Project Staff:

Wesley E. Budke, Ph.D., Director
National Center Clearinghouse

Shirley A. Chase, Ph.D.
Project Director

What Materials
Are Available?

One hundred twenty courses on microfiche
(thirteen in paper form) and descriptions of
e2ch have been:provided to the vocal.. Inal
Curriculum Coordination Centers and other
instructional materials agencies for dissemi-
nation.

Courso materials include programmed
instruction, curriculum outlines, instructor
guides, student workbooks and technical
manuals.

The 120 courses represent the following
sixteen vocational subject areas:

.Agriculture
Aviation
Building &
Construction
Trades

Clerical
Occupations

Communications
Drafting
Electronics
Engine Mechanics

Food Service
Health
Heating & Air

Cond itioning
Machine Shop
Management &

Supervision
Meteorology &

Navigation
Photography
Public Service

The number of courses and the subject areas
represented will expand as additional mate.
rials with application to vocational and
technical education are identified and selected
for dissem inat ion

How. Can These
Materials Be Obtained?

Contact the Curriculum Coordination Center
in your region for information on obtaining
materials (e.g., availability and cost). They
will respond to your request directly or refer
you to an instructional materials agency
closer to you.

CURRICULUM COORDIN.AnION CE.N 1E13S

EAST CENTRAL
Rebecca S. Douglass

Director
100 North First Street
Springfield, IL 62777.
217/782-0759

MIDW EST

Robert Patton
Director
1515 West Sixth Ave.
Stillwater, OK 74704
405/377-2000

NORTHEAST
Joseph.F. Kelly, Ph.D.
Director
225 West State Strett
Trenton, NJ 08625
609/292-6562

NORTHWEST
William Daniels
Director
Building 17
Airdustrial Park
Olympia, WA 98504
206/753-0879

SOUTHEAST
James F. Shill, Ph.D.
Director
Mississippi State University

Drawer DX
Mississippi State, MS 39762

501/325-2510

WESTERN
Lawrence F. H. Zane, Ph.D.

Director
1776 University Ave.
Honolulu, HI 96822
808/948-7834

COMMUNICATIONS C(MPUTER PROGRAMMER
I.

lABR51131

Claurooin Course 4-2

velaped .by Mooradian') Arms

United States Air Force

Devaieement and
Revirn,v Claw:

Target Audietetei:

11 - AdultAugust 1978

Coments:

PrinciOes

0
a
m

1

1

tn.!

0
LS

at i1
.

1

&

g

>.

.2

_

0 0 0 x

X Materials are recommended but not Provided.

THE NATIONAL CENTER

fall RESEARCH IN VOCATIONAL EDUCATION

CI

Print Pages. 695

Microfiche: 12

Availability:

Vocational Curricuhm
Coordination Cente447

Teo Oo SUIV Uftenlity

nr=0.....*

1960 Ktiany Reed
Cc. gbiak, Ohio dtt
1614/ 41116.31014

3ABR51
4.

COutss Qua i pion;

01 ,

This course includes the following topics:

Zomputer Mathematics (12.5 hours)
Data Representatioa (5 hours)
Computer Logic Functions (5 hows)
Logical Development of ytoblem Solutions (65 hours)

Student.materials include handouts, study guides, a workbook, and programmed
texts.

Instruction materials include a Plan of Instruction and transparency masters.

UR.

Ji

Classroom Course. 472

COMMUNICATIONS COMPUTER PROGRAMMER

Table of Contents

Plan of Instruction

Computer Programming Principles:

Page

2

Student Handout
j

30

Study Guide 97
-a-

Workbook 190

Computer Logic Functions - Programmed Text 306

Top Down Structured Programming - Self Instruction 358

P7mgramming Principles - Study Guide 51.9

Fortran Language - Student Handout 589

Examples of Structured Code - Student Handout 665

MODOTCATIONS
j

of this puhlication has (have) been deleted in

adapting this material for use in Vocational and Technical Education. Deleted

material involves extensive use of military forms, procedures, systems, etc.

and was not considered appropriate for use in vocational and technical educe

tion.

1
c.

PLAN F IN TAUCTIOWLISSON PLAN PANT I
imille."

t'
.....-...-. . Colaikantaations Ccmputtr Premrammer

Awerso..0

4

L IC NUN

e

6. Project Menagement

a, Given a completed Program Evaluation

network and a two column listing, match

the most appropriate item in column ono

Each item ir column two may be used once,

all,
CTS: la Mess: W

(1) History of PERT

(2) Concepts of PERT

SUPPORT MATERIALS
,

Stutnt Imttyptimiel Materials

Review Technique (PERT)

the items in column two with
to an accuracy of at least 75%

more than once, or not at

AND GUIDANCE

.

.

,

HO KDh.472, Project Management (PERT)

Izalainalitthgeda
Lecture/Discussion

SUPERVISOR APPROVAL OF L ESSON PLAN (PART II)

. SIGNATU E AND ATE
SICNATURE Amp DATE_

FIACTE

1. . t 1 8

El- Ali

L. AN OE INSTRUCT ON NUMPr a

At' I is . P V+
ATC "'" 133 PREIOEWS E Dt 11 MI IS 01144IL E rr

13
ft fier* 11-104.

Imawowinall

6----
l at..,M.t
7. Computer

-rca-erlITET

Comunioations Computer -Programer

P4414{PaiglattiEPVTItPENT

hematics

a. Give a series of numbers; understand the procedures and per-

form oonvers1çns, including all combinations; and addition, subtrac-

tion, and comPlementation or binary, octal, decimal, and hexadecimal

numbers.
CTS: Mese: Wp PT

(I) Rules of algebra

(2) Number systems

(a) Decimal

(b) Octal

(c) Binary

(d) Hexadecimal

(3) Addition, subtraction, and complements

(a) Decimal

(b) Octal

(c) Binary

(d) Hexadecimal

SUPERVISOR APPROVAL OF L ESSON PLAN (PART 11)

SIGNATURE AND DATE
SIGNATURE AND DATE

0(1 7S 33 PRES/10155 f T1Ohl IS 01/543Lt TF

IP ACIF NO

16 August 1978 15

I RorrOgr IV 1114

SUPPORT MATERIALS AND GUIDANCE

Studen.4 piptrmptioN1 Mider14,0
HO XDA469, Computer Programming Principles Student Notes
ST KDA470, Computer Programming Principles
WB KDA471, Computer Programming Principles

Audio Visgal Aids
Transparencies, Math

Training Metbqd4
Discussion
Performance

POI 00ZR3024D 000

4

16 August 1978 16

.0

-71L-671iNumaIR

00.0 fle.e a 14. flS .

Communications Computer rogrenter

TENT

Data Representation

a. Given a group of definitions, identify the appropriate terms.
CTS; la Maas: W

(1) External

(a) Bit

(b) Byte

(c) Character

(d) Word

(e) Field

(f) Record

(g)

(2) Internal

(a) ACII

(b) BCD

(c) Integer

(d) Floating point

b. Given all applioable references, the contents (in Octal) of
several computer locations, and the mode the information is stored in,
select the value that correctly represents the stored data.
CTS: la Mess: W

(1) Numeric data

(2) Alpha-numeric data

SUPERVISOR APPROVAL OF LESSON PLAN (PART H)
SIGNATURE AND DATE SIGNATURE AND DAT

r'L AN OF INSTRUCTION NUMIlkii

ATC 133T /4

.14/6...1. ekre

PREVIOUS ED/ 11ON IS WSW& E TE

PA AGE NO,

16 J3t 1 17
i(Pm** a-IIISA

SUPPORT MATERIAL; AND GUIDANCE

StmAigit Inetpue4pnall MOtriala
HO RDA-469
ST KDA-470
WB KDA-471

Audio Vtsuftj Aide
Transparencies, Data Respresentation

TraWne Methods
Discussion/Demonstration

POI E3OZR3024D 000 16 August 197 8 18

,v-aWITMT T1 Mont Tiny

.11

Computer Logic Functions

cations Computer Proxrammer

a. Given a aeries of problems and a truth table of logic function p

name the logic function and determine the logic function resulte using

binary numbers.
CTS: 14 Maas: W, Pr

(1) Logic runctions

(a) OR/AND

(b) Exclusive OR

(c) NAND/NOR

(d) NOT

SUPPORT MATERIALS AND GUIDANCE

4u4ant Instructional Materials
FT KDA-305, Computer Logic Functions

Audio Visual AAA
Transparencies, Logic

lesialualitthodo
Discussim

hultructignal GuitOance
Guide atudent performance using KDA-305.

SUP4RVISOR A PROVAL OF LESSON PLAN (PART II)

SIGNATURE AND DATE

PLAN 01- INSTRUCTION ROMPER

-I I
ATC '"" 1330(T Te

SIGNATURE AND DATE

OATF 1PAGE ROL

16 A st 1 78 19

PREVIOuS EptlION II OssoLE TE

18

4 ANNIN 111-11114

10:1wical Development of Problem Solutions

a. Given a narrative description of problems requiring straight

line, branching, and loopivg flowyharts, analyze and construct flow-

charts to show required operations,
CTS: 10.1g(1),(2),(3),(4) MOM PT

(1) Purpose of flowcharts

(a') -Aid in coding

(b) Debugging

(c) Documentation

(2) Flowchart symbols and logical operators

(a) Terminal

(b) Processing

(c) Decision

(d) Input/output

(e) Subroutines

(f) Connectors

b. Given all available reference materials and a set of problem

specifications; use the Top Down concept or problem solving to draw

block diagram, write a narrative description of the block diagram, and

draw a stoactured flow chart showing the steps necessary to solve the

problem.
CTS: le,lf,1g(1),(2),(3),(4) Maas; W, PT

(TDSP)

(1) Introduction to Top Down Design and ntructured Programming

(a) Purpose of TDSP

surrimsoR APP NovAL OF L tSSON-PL AN (PART 11)

SIGNATUDE AND DATE
SIGNATUNI AND DATE

F INSTMUCTION NI/PAPER
Al F

000
1 August 1278

ATC 133OC T fl
PRFV1011% rornew 1% CIVISMF I

-4. 9
t it Kett* I1,1

(b) Governing directives

(e) Top Down Design

(d) Top Down Doaumantation

(e) Structured walkthrt aghs

(f) Top Down implementation

(g) Programming teams

(i) Program De3ign Language (PDL)

(2) Define the problem (HUD)

(A),Use of Hierarchy Block,Diagram

(b) Narrative description of input, process, and output

(c) Identification of needed information

(3) Methods of problem solving

(a) Direct

(b) Enumerating

(c) Scientific trial and error

(d) Simulation

C. Given all available referenco materials Ind a set of problem

specifications; use the Top Down concept of problem solving to draw

a bloak diagram, write a narrative description of the block diagram,

and iiraw a structured flow ehart showing the steps necessary to solve

the problem.
CTS: 10,1f,1g(1),(2),(3),(4) Meas: W, PT

(1) Flowchart the solution

(a) Definition of a fUnction

(b) Flowchart hightost level functions first

(c) Flowchart symbols

1 Sequence

2 If then ... else ...

I Do while

DOI E30a13020 000 16 August 1978 22

A Do until

1 Case, select, switch

6 Loop, exitif, endloop

d. Given all available reference materials and ft set of problem

specifications, construct a HIPO/flowohart to solve the problem(s).

CTS: le,lf,1g(1),(2),(3),(4) Maas: W PT

(1) Search

(2) Sort

(3) Insertion

(4) Deletion

(5) Merge

e. Given a flowchart and a description of data with preassigned

valves, analyze the flowchart and determine the values of various items

at selected points within the flowchart.
CTS: 12.1g(1).(2).(3),(4) Meas: PT

f. Conduct a structured walkthrough utilizing a flowchart and

IMO documentation. CTS: j Maas: VT

SURAT MATERIALS AND GUIDANCE

AusisiLiaLlassidsmiUtStailla
ST KDA-295, Top Down Structurid Programming
HO KDA,469
ST MDA.470
WH KDA,471

KDA-478, Programming Principles

Aa.42-112it1 Aid3
Tranaparencieel Flowchart Structure
Transparencies, Flowchart Symbols

rri4pk MeIhP44
Lecture I U iacwa aion

Performance

PCI 000:414.3024D 000 16 Aupajt 1978

1.11111.. 11111....10

MODIFICATIONS

Pages 13 - 29 of this course have been deleted due to copyrighted

material.

\)

Technical Training

Programing Specialist (13cueyvell)

OW= PROGRAM14331G PRINCIPIZS
STUMM NOUS

July 1976

USAF SCHOOL OF APPLIED AEROSPACE SCIENCES
3390th Technical Training Group
Kessler Air Force Base, Mississippi

Designed For ATC Course Use

oo NOT USE ON THE 101

30

INTRODUCTION Pg 1-4

DIGITAL COMPUTER ELEMENTS 5-11

LANGUAGE LEVELS 12-14

HISTORY 15-30

COMPUTER GENERATIONS 31-40

H6000 HARDWARE 41-47

MATH 48-55

LOGIC 56-58

STRUCTURED FLOWCHART 59-61

FLOWCHART TYPES 62-65

32,

DEFINITION

A COMPUTER IS ACTUALLY A DATA PROCESSING

DEVICE THAT PERFORMS MATHEMATICAL AND

LOGICAL OPERATIONS ON DATA IN A PREARRANGED

AND CONTROLLED MANNER.

COMPUTER FUNCTIONS

ARITHMETIC

A +13 = C

12) (3) (5)

'LOGICAL

A > B

(1) (2)

STATUS INDICATOR

0 (NO)

TERMINOLOGY

BYTE

BIT

PROGRAM

INSTRUCTION

ADDRESS

RECORD

RADIX

FILE

I/0
TAPE

DISK

REGISTER

SUBROUTINE

COMPUTER CLASSIFICATION

ANALOG COMPUTER

DIGITAL COMPUTER

HYBRID COMPUTER

SPECIAL PURPOSE COMPUTER

GENERAL PURPOSE COMPUTER

INPUT/OUTPUT MULTIPLEXER

INPUT

ELEMENT

41141R . .1=11111111! .101011M

OUTPUT I

ELEMENT i

MEMORY

ELEMENT

CONTROL ARITHMETIC

ELEMENT ELEMENT

PRISCiStoli
BASIC DIGITAL COMPUTER ELEMENTS

5
3 ()

BASIC DIGITAL COMPUTER ELEMENTS

INPUT ELEMENT

Buffer between external input devices and internal

computer elements. It converts symbolic source

language code into machine usable binary code.

6

MEMORY ELEMENT

A large storage area within the computer

where data (both program instructions and

program data) can be stored and accessed.

3 '

CONTROL ELEMENT

interprets and carries out the instructions of a

program. This includes fetching instructions from

memory, decoding each instruction, and applying the

proper signals to the arithmetic element and other

registers.

ARITHMETIC ELEMENT

A series of buffers [accumulators] and registers use

to hold data while it is being acted on by the logic

and/or arithmetic circuits.

33

8

OUTPUT ELEMENT

Functions to compensate for the

different rate in data transfer of

the external output devices and

the internal computer elements.

3 4

INPUT DEVICES

Card Reader

Paper Tape

Magnetic Tape

Disk. Drum

Console/Terminal

Another Computer

Communications Line

Optical Scanner
10

35

OUTPUT DEVICES

Line Printer

Card Punch

Plotter

Console/Terminal

Another Computer

Paper Tape

Magnetic Tape

Disk Drum
11

3

LEVELS OF PROGRAMMING

LANGUAGES

MACHINE LANSUAGE

ASSEMBLY LANGUAGE

COMPILER LANGUAGE

1 2

MACHINE LANGUAGE

Is basically the lowest level of languages that can

be programmed. Each machine language instruction

has an equivalent hardware circuit to perform the

specified operation

ASSEMBLY LANGUAGE

Converts a program, written in mnemonic symbols,

into a machine language program. One assembler

instruction translates to one machine language

instruction.
1 3

44

COMPILER LANGUAGE

Converts a program, written in symbolic coding,

into a machine language program. One compiler

instruction translates to several machine

language instructions.
1 4

ERAS

MANUAL

MECHANICAL

o PCAM

ELECTRONIC
15

411

44,

C-N

7L)
MANUAL ERA

"REMINDERS"

- STICKS

- STONES

RIGERS

ABACUS

3000 BC
1 6

4 1

MECHANICAL ERA

PASCAL

LEIBNITZ

JACQUARD

BABBAGE
1 7

0

BLAISE PASCAL

FRENCH MATHEMATICIAN

1st ADDING MACHINE - 1642

- SERIES OF WHEELS : 0 to 9

"CARRY" LEVER AT 9 + 1 (10)

LIMITED TO ADD OR SUBTRACT
1 8

1 :3

GOTTFRIED WILHELM VON LEIBNITZ

GERMAN MATHEMATICIAN

"FOUR FUNCTION" MACHINE - 1673

+ STEPPED

UNSTEPPED

x SERIES OF ADDS

SERIES OF SUBTRACTS
19

JACQUARD

CONTROLLED WEAVING ON LOOM - 1801

- USED A NOTCHED CARD

- PUBLIC FEAR OF MACHINES LIMITED

ITS USE
2 0

51

CHARLES BABBAGE

:NGLISH MATHEMATICIAN

'DIFFERENCE" MACHINE - 1822

CONTROLLED BY PUNCHED CARDS

- CAPABLE OF MAKING LOGICAL DECISIONS

'ANALYTICAL ENGINE" - 1833

- TOO ADVANCED FOR CURRENT TECHNOLOGY
- 100 YEARS WHEN HIS PRINCIPLES DEVELOPED

21

PCAM ERA

1880 CENSUS - 71/2 YEARS

DR. HERMAN HOLLERITH INVENTED:

- 3" BY 5" CARD

- CODE

1890 CENSUS - 2% YEARS
2 2

ZONE

NUMERIC

)

HOLLERITH CODE

)

54.,

A-el 12 + 1-09
JAI : 11 + 11
S-4:0+21

I S

2 3

DR HOLLERITH

FORMED:

1896 - TABULATMG MACHINE COMPANY

1911 - MERGED WITH

INT1 TIME RECORDING CO., AND

DAYTON SCALE CO., TO FORM

COMPUTING - TABULATING - RECORDING CO.

1924 - CHANGED NAME TO "IBM"
2 4

PCAM EQUIPMENT

KEYPUNCH

REPRODUCER

INTERPRETER

SORTER

COLLATOR

ACCOUITING MACHINES

sca

2 5

ELECTRONIC ERA

AIKEN

MAUCHLY

ECKERT
2 6

MARK I 1944

PROF AIKEN - HARVARD

AUTOMATIC SEQUENCE CONTROLLED

CALCULATOR

USED RELAYS AND SWITCHES
2 7

CK 4

ENIAC 1945

MAUCHLY AND ECKERT

ELECTROFIIC NUMERICAL INTEGRATOR

AND CALCULATOR

18000 VACUUM TUBES

CALCULATE BALLISTICS AND

AERONAUTICS

1st TRULY ELECTRONIC COMPUTER
2 8

EVAC do 1952

MARRY AND

ELECTRONIC 'DISCRETE VARIABLE AUTOMATIC

COMPUTER

*ONLY 3500 VACIMM TUBES

*STORED PROGRAM

54

2 9

.14

,.

MAUCHLY AND ECKERT

1946 - ELECTRONIC CONTROL COMPANY

1951 - UNIVERSAL AUTOMATIC COMPUTER

(UNIVAC I)

*1951 - BUREAU OF CENSUS
3 0

CONCEPTS

\ 1 1 / /
THIRD GENERATION

\ 1 1 / /
SECOND GENERATION

\\\ Ill/I
FIRST GENERATION

\\\ 1///
PCAM

31

56

CaZ,

GENERATIONS OF COMPUTERS

1st

2nd

3rd

4th

1946 -go. 1958

1958 -6. 1965

1965 -0- 1973???

1970 - ????

3 2

1ST GENERATION 1946-4958
VACUUM TUBES

FEATURES:

HIGH HEAT
HUGE TUBES (16" LONG)
SMALL MEMORIES
PAPER TAPE/PUNCHED CARD INPUT

a SLOW
MACHINE LANGUAGE
EXPENSIVE
NO O.S. 3 3

674

2ND GENERATION 1958-1965
TRANSISTORS

MAGNETiC TAPE
FEATURES:

LESS HEAT
SMALLER
FASTER
MORE RELIABLE
LESS POWER REQUIRED
"SYMBOLIC" LANGUAGE
OFF-LINE STORAGE
STILL SEQUENTIAL
MAGNETIC CORE
SIMPLE O.S.

3 4

3RD GENERATION an 1965-4973 ???
INTEGRATED CIRCUITS

FEATURES

SOLID STATE
LOWER COST
SMALLER SIZE
LARGE MEMORY
INTERRUPT CAPABILITY
REMOTE PROCESSING
DATA BASE TECHNOLOGY IDS, ISP, OMS
MULT1PROCESSING/MULTIPROGRAMMING
MASS STORAGE VS TAPE
FASTER MORE RELIABLE

6 ()
3 5

3rd GENERATION - REMOTE PROCESSING -

THIRD GENERATION ADVANCES HAVE INITIATED

CAPABILITY FOR TERMINAL AND REMOTE SITE

PROCESSING

*41341"61d***SOFTWARE SUPPORT :41441)444 18/40

/et ibiftRoe,

04°46 t°"4 41,4.

\
REMOTE USERS \

3 6

(08

3RD GENERATION SCHEDULING

K PROGRAM

:PUTS SCHEDULING

DECISIONS

TASK

PROGRAM

INPUT

SUFFER

PRIORITIES AND

SYSTEM RESOURCE

UTILIZATION

CORE STORAGE

TASK

PROGRAMS

IN

EXECUTION

3 7

MULTIPROGRAMMING
3RD GENERATION CONCEPT

JOB

QUEUE

STORAGE

PROGRAM A,

PROGRAM 13_..

PROGRAM C

PROGRAM D

PROCESSOR

PROGRAM E

EXECUTIVE I

1/0 DEVICES

TIMER

3 8

MULTIPROCESSING CONCEPT

PROCESSOR

PROGRAM A MEMORY

GCOS

PROGRAM A

PROGRAM B

PROGRAM C

PROGRAM 0

PROGRAM E

1'
4

PROCESSOR

PROGRAM

3 9

4TH GENERATION 1910-4???
IN RETROSPECT

NOMINEES:

SPEED 10-9 & UP

ROM

FILM FOR MEMORY

I/0 DEVIC ES OCR, AUDIO, SCAN

HANDWRITING

SIZE VS CAPABILITY 4 0

PROCESSOR

MEMORY

IOM

71

CENTRAL UNIT OF H6000
[ASYNCHRONOUS I/O)

P ;

41

Processor Processor

Memory Memory

I_ in IOM

a

tOM

FUNCTIONAL MODULARITY

Processor

4
Memor

3

Processor

El
Memory

A Bi CID
IOM

B
IOM

PORT CONNECTIONS
4 3'

Store A

0,1
4,5
8,9

MEMORY MODULE

Store B

2,3
6,7

10, 11

Each store can have 128K - which means a fully
configured H6000 can ha ve a maximum of 1024k

or 1,048,576 words of storage.
4 4

EIS (Decimal) Unit
smo 4. NNW =11, omit anit + own

Operations Unit

PROCESSOR MODULE

H6060

H6080

Processor

4 5

BCD 101112131451 36 bits

6 BCD characters per word

ASCII 1
0 1 2 i3J36bits

4 ASCII characters per word

PACKED DECIMAL

1 3 7 36 bits

8 characters per word

CODES FOR DATA REPRESENTATION

IOM MODULE

Card
Reader

7

7q

RADIX- The number of symbols that can occupy a digit

(counting) position.

POSITIONAL VALUE The power to which a symbol

is placed to the left or right of the radix point.

SYMBOLIC VALUE- A value represented by a unique

digit symbol of a numbering system.

EXPANDED SCIENTIFIC NOTATION-The expansion

of a number showing its positional value times

its symbolic value. 4 8

Most significant digit)- The left-most non-zero
digit. Positive powers: farthest from the radix point.
Negative powers closest to the radix point.

a

LSD (Least significant digit).- The right-most
non-zero digit.

RECIPROCAL POWER -Negative powers.

(1/10'10-'=.1 ; 1/101104=.01)

4 9

DECIMAL TO BINARY BY EXPANSION

STARTING AT THE MSD, SUBTRACT THE BINARY

POSITIONAL VALUE FROM THE DECIMAL NUMBER,

ACCOUNT FOR THE SUBTRACTION WITH THE BINARY

DIGIT, AND CHECK THE NEXT DIGIT TO THE RIGHT TO

SEE IF AN APPROPRIATE VALUE MAY AGAIN BE

SUBTRACTED. REPEAT UNTIL THE DIFFERENCE IS EQUAL

TO ZERO.

BINARY TO DECIMAL BY SUMMING
SUM THE DECIMAL EQUIVALENT OF EACH NON-ZERO

BINARY POSITIONAL VALUE.
5 0

t

DECIMAL TO BINARY CONVERSIONS

82.

(INTEGERS) DIVIDE BY THE RADIX (2) AND SAVE

REMAINDERS, LSO FIRST.

(FRACTIONS) MULTIPLY BY THE RADIX (2) AND

SAVE OVERFLOW, MSD FIRST.
51

BINARY TO DECIMAL CONVERSIONS

(INTEGERS) MULTIPLY BY THE RADIX (2) AND

ADD NEXT DIGIT TO THE RIGHT TO THE PRODUCT

REPEAT UNTIL ALL DIGITS ARE USED UP.

5 2

BINARY TO OCTAL CONVERSIONS

STARTING WITH THE RADIX POINT, GROUP THE
BINARY DIGITS IN THREES AND EXPRESS AS
OCTAL.

OCTAL TO BINARY CONVERSION

KEEP THE RADIX POINT AND EXPRESS EACH
OCTAL DIGIT AS ITS EQUIVALENT THREE

BINARY DIGITS.
5 3

84-

COMPLEMENT ----

The inversion of a numeric value derived by subtracting

that numeric value from the number of counting

combinations possible by the value's positional power.

For example a 3 digit decimal number has 1000

counting combinations, so any 3 digit decimal value

subtracted from 1000 will give the value's complement.
5 4

8(0

ADDITION AND SUBTRACTION

ADDITION

a When adding like signs perform a straigbt addition and

retain the sign.

b. When adding unlike signs, subtract the smaller value from

the larger and rd.& the sign of the larger value.

SUBTRACTION:

When subtracting like or unlike signs, chanje the sign

af the subtrahend then proceed according to the rules of

addition. Sn
5 5

OR- -F,V,
0011
0101
0111

AND ,

6611
0101
0001

EXCLUSIVE OR
0011
0101
0110 A BH-13A

40e

, I .--

-, Ic.
NOR A + = C

\ f /
41.1,...

NAND-AB=C

e

C "

5 7

)

86

r\\\

co cm
 yea-

ice
gem

 em
s

C

SEQUENCE

!MENEM
5 9

go

*

DOWRILE
DOUNTIL

6 0

CASE
6 1

SEQUENCE FLOWCHART

A SEQUENCE FLOWCHART IS SIMPLY A LOGICAL

SEQUENCE OF OPERATIONS TO BE PERFORMED

ONLY ONE TIME.
6 2

BRANCHING FLOWCHART

A BRANCHING FLOWCHART IS SIMPLY A SEQUENCE

FLOWCHART WITH THE ADDED DIMENSION OF

MAKING ONE OR MORE DECISIONS IN THE

SEQUENCE OF OPERATIONS TO BE PERFORMED.

6 3

LOOP FLOWCHART

A loop flowchart is a branching flowchart with the addition

of a loop. The four parts of a loop are:

1. lnitIabze set the counter to zero [performed outside

the loop);

2. Test make a decision to see if the number in the

counter is equal to the total number of times

the operation is to be performed;

3. Perform this includes the part of the flowchart that

shows the operations to be performed; and

4. Modify - change the counter to show the number of

times the operation has been performed,

C.;

SEARCH FLOWCHART

A SEARCH FLOWCHART IS ONE WHICH LOOKS FOR A

SPECIFIC RECORD WITHIN A DATA FiLE, BASED UPON

SOME KEY FIELD. THE METHOD USED TO SEARCH FOR

DATA WITHIN A FILE IS BASIC TO ALL OTHER

.1:ANIMATIONS OF RECORDS WITHIN A FILE, SINCE

'OU MUST LOCATE THE DESIRED MORD BEFORE

"OU CAN OPERATE ON IT.

/MOW

Technical Training

Programming Specialist (Honeywell)

COMPUTER PROGRAMMING PRINCIPLES

June 1976

USAF TECHNICAL TRAINING SCHOOL
3390th Technical Training Group

)(Tesler Air Force Base, Mississippi

AI(Itt*** b

Designed For ATC Course Use

DO MOT USE ON THE JOIN

STUDY GUIX
E3ABR51131B COO

KDA-470

gri

SG S3ABR511,111.400
KM 470

June 1976

COMPUTER PROGRAMING PRINCIPLES

CONTENTS

CHAPTER I -

CHAPTER 2 -

CHAPTER 3 -

CHAPTER 4 -

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

ZEW

Introduction to Computers 1-1 through 1.L26

Computer Mathematics 2-1 through 2-17

Concepts of Data Descripti.on 3-1 through 1-3

Problem Solving and Flowcharting 4-1 through 4-31

- Flowchart Symbols for Data Processing A-1 through A-5

- Stored Program Instructions B-1 through B-5

- Segmenting Structured Programs C-1 thiough C-2

- Steps in Program Problem Solving -1)-1 through D-3

- Standard Character Set F-1

- Powers of 2 . .
F-1 through 1?-7

41

CHAPTER 1

INTRODUCTION TO COMPUTERS

88.1gerIVES.

1. Identify the major Ideas of computer development in the four eras of data

prOcessing history and In the three generations of computer systems.

2. Identify the basic differences of digital, analog, andihybrid compUters.

3. List and briefly explain the functions of the elements of a digital computer.

4. Identify the characteristics of machine, assetbler, and compiler languages.

INTRO DucrION

The term "data processing" is relatively recent in origin; however, this does not

mean that the.activity itself is new. There is evidence that the need to process data

originated at the beglnning of recorded history when man's activities first exceeded his

ability to remember. Through the years, commercial and government agencies have created

thc need for keeping record', of some ripe.

Data processing refers to the recording and handling that are required to convert

data into a more refined or useful 'orm. TheRe tasks have been referred to as record-

keeping or paperwork...They have always been accepted as routine clerical activity.

With the introduction of more sophisticated electromechanical and electronic business

machines ia recent times, the terms "paperwork" and "recordkeeping" have been replaced

by the phrase "data processing."

To fully.understand and appreciate the significance of data processing as we know .

it today, we must examine the history of data processing.

INFORMATION

HISTDRY OF DATA PROCESSING

Manual Era

The very earliest.type of data pro:essing known to man was the wa. of fingers,

sliks, and stones as "indicating" devices. These devices actually did nothing more

than serve as reminders of a particular luan itv. Ali of the actum calculations in

tLia case were done mentally. ln 3000BC a more sophisticated "indic4tting" device was

de4elciped. The abacus, as it was called, Lonsisted of rows of heads on n wire frame

representing units, ;ens, hundreds, etc. This ancient device is still used to a cer-

tain extent 'today.

Mechanical (Key-Driven) Era

In 1642, Pascal, a Yrench mathematician, invented a hand-operated, gear-driven

adding machine. It registered decimal values hv rotating a wheel from l to 9 steps

with a carry laver to operate the next higher digit wheel when the first reached 10

units,

Leibnitz, a German mathematician, advanced the.idea of a machine that could multi-

ply as well as add in 1673. Ln practice,, however, it was not very accurate.

93

100
In 1801, a Frenchaan named Jacquard mud a notcba7d card to control the weaving of a

fabric on a loom. Public acceptance of his device W499 however, limited becnune of a

(fear of machines.

A major advancement was made in 1833 by Babkage, an English mathematician. He

advanced the idea of a machine controlled by punched cards and capable of making logical

decisions. He called it the difference machine. It was never built in a large number

because the technology of the dav lagged far behind the concepts involved.

4

Punched Card Accounting Machines (PCAM) Era

The 1880 census took 7-1/2 years to complOte by hand. Hollerith, an American wqrk-

lag for the Census Bureau, proposed recordinii tabulating, and analyzing facts bv

albchine. Tor the first time, 'data was punclied into 3" x 5" cards according to a rode

invented by Hollerith, and punched card machines were designed which could handle this

new medium. The 1890 census took only 2-1/2 years despite a population increase. In

1896, Dr. Hollerith formed the Tabulating Machine Company to promote hie invention com-

mercially. In 1911, his company merged with the,InternatTonal Time Recording Companv

and the Dayton Scale Cpmpany to form the Computing-Tabulating-Recording Company. In

1924, the name was changed to fhe International Business Machines Corporation (IBM).

Through the succeeding yearq,,NIBM became the malor manufacturer of PCAM machines.

There arP six classifications of PCAM machines used today.

I. Keypunch - Used to punch the Hollerith code Into cards.

2. Reproducer - Used to duplicate decks of punched cnrds,

3. Interpreter - Prints on cards, the information punehrd into those cards.

4. Sorter - Remennences punched decks.

Collator - Merges punched decks together.

6. Accountinr MachineN - Produce printed listings 4ecks of cards.

Although rcAr machines were vw:t improvement over earlier itethods and deyits,

they :;t111 had several maior disadvantares. The eqnipment ww4 mechanically too slow,

Proccssiug was dlne In stages from one machine to another. Processing on PCAM

also required close human supervision.

Electronic Era

In 1944, Aiken built a machine at Harvard nniarersit;. ;1 was called the Automatic

Sequence Controlled Calculator (Marka/and could perform long series of arithmetic and

logical problem. It was designed for use hr engineers, physicists, and mathematicians.

This machine was an outgrowth of Babbage's ideas and blueprints. Tr was not strictly

electronic because it made decimal calculations through electromechanical means (relays,

and switches).

In 1945, Mauchly and Eckert Punt the first truly elecoroeic covivuter, with no

moving parts. It Was called the "MAC" (Electronic Numerical, Integrator and Calculator)

and contained 18,0W) vacuum tubes. It Was developed to perform great quantities of Ftn-

tistical calcularicals for weather darn. The KNTAC performed SMO trn-decisal-digif

caleulations per 'Trend and had a-multiplication speed yf p ro Inn calculations per

second. The addition of rwo numbers which took 100 millisrcoi.ds on Hark 1 could he done

in .2 milliseconds on FN1Ac.

,1

1-2

94

Mliggati 1 0 1
The next major development in the electronic era came in 1952. Eckert and Mauchly

developed FmAc (Electronic Discrete Variable Automatic Corouter). It consisted of only

3500 vacuum tuhes, and was the prototype of serial computers. One of the major advance-

ments of the EDVAC was.that operations were performed entirely by a stored program rather
than prowirtng. With.the development of .EDVAC it was realized that computeis could 14:
useful in areas other than those of a scientific nature.

In 1946, Mauchly and Eckert had organized their own company the Electronic Control

Company. In 1Q51, they produced the first truly commercial computer. The UNIVAC I
(Universal Automatic Computer) was installed in 1951 at the U.S. Bureau'of Census. The

first business use of computers was in 1954 when UNIVAC I was installed aiOCE ApPliance

Park, Louisville, Kentucky. The Electronic Control Company was later acquired by the
Remington Rand Corporation, which became the UNIVtC Division of Sperry Rand eorporation.

The second commercial computer was the.CRC 102 that was produced in 1952 by the

Computer Reaearch Corporation. Closely following this comOuter in 1952.was the IBM 701.

The first computer developed for both scientific and business applications was the
IBM 650, which was first uaed in'1954 in Boston, Massachusetts.

COMPUTER GENERATIONS

In the discussion of the history of data processing, we will discuss the first,

seCond, and third generation computers. The following text explains these areas of
computer development and describes certain possible characteristics of fourth genera-
tion systems.

First Generation (1946 7 1958)

First generation computers are characterized by the use of vacuum tubes, which

made theft mucb faster than electromechanical data processing machines. Most first gen-

.eration computers used internally stored programs, adding to ,their flexibility and

ieducing setup time, although virtually all programming was done in machine language.
Main memory began its advancement from vacuum tubes to magnetic drum and magnetic core.

The computers were huge, and required strict air-conditioning standards because of

the heat produced by the vacuum tubes. Input was restricted primarily to punched card
and paper-tape, although magnetic tape was beginning to be used.

Second Generation (1958 -119E5)

The second generation marked the advent of large-scale computers. These computers

had large memories and microsecond access ti e.

The main reason for these improvements was the rep7acement of the vacyium tube by

the transistor (1958). This resu1te0 in'reduced physical size of the computer, improved
speed and reliability, loweree cost, less power, and less air conditioning required.

Storage was usually magnetic core, although some small systems st111 used magnetic

drum. Thin film was introduced in 1960.

A greater range of peripherals was introduce4 incleding dtsplay devices, faster

pxinters, and data transmission devices for long-range Communication between the con-

palter and remote terminals. The latter made on-line data processing possible.

*Po'

1-3

114

.413,4

Third Generation (1965 -e1970)

1 It,became'innraasingAy evident that farther increaaas in speed were dependent upon

the speed at which eleqtricity can travel.' To cope with this problem and to maintain a

high degree of reliabifity, integrated circuits were developed. They are considered the

main characteristic of third generation computers. These circuits were imriemented in

late 1964 with the announcement of whole new families of computers. These included the

IBM Systen 360, RCA Spectra 70, Burroughs B3500, and others. With this decreased cir-

cui; si2e, itwas possible to operate in the nanosecond range (one nanosecond equals

10- second).

The integrated circuit concept involves the synthesizing of electrical components

/ such as transistors, resistors, and capacitors, into a single tiny block io form a cour

plete circuit function. An example is shown in figure 1-1. The left-hand portion

illustrates 15 transistors and 13 res.1:.cors of the type replaced by the integrated cir-

cuit on the right.

Figure 1-1

RDA124-1

Greater emp..asis WaS placed on hardware modularlty, oterating systems, and increased

inpvt-output capaoilities, including optical scanning and Magnetic Ink Charaeter Recogni-

tivn (MICR): This has produced computer syitems which possess increased capabilities

o,er previous generations. One significant advantage is the ability of third generation

Computers to process more than one iob simultaneously. Tncreased speed and the'use 0:-

sophisticated software made time-sharing terminals, multiprogramming, multiprocessing,

and real-time processing practical. The third generation computers are more flexible

than earlier.systems, suited to both scientific and business data processing.

Future Generations

While definite characteristics of fourth generation computers are not yet known,

certain tendencies are known. These tendencies are:

1. Faster 7 Most engineers are predicting a five- old increase in circuit speeds

over the next five years. There seems to be no question that significant incr,ased in

central processor speeds will continue to occur fox many years to come.

1-4

3)(

102.

/03
Imme expvnater - In NCO a traesistor (the size oi is pnvil ('raser) col. an

average of $1 mach. In 147O large-Await- integrated circulta were used, containing mont

thee ZOO translators' Onatina no more than one cent pea. By the early 1913011 the use of

MLIS technelegy (taatatexideaemieomduetas-eircuits eaUtatulhg a.malion twaR0.000) La

expected to reduce the cost of components to .003"cint.

1. More Reliable - Since the production costs of circuits will be significantly

reduced and beCauRe standardization in circuit design will be increased, systems will

have the ability to choose alternate circuits if failure occurs. This abiliry to con

tinue functioning, even though one or more failures have occurred in the hardware, is

called "se1f4ea1ing."

4. Better Input-Output Devices - Speed and reliability of input-output devices

will increase. Mese devices will be located near the source of data and will reflect

a trend toward media that ran be understood by both man and machine. Examples of this

cw type of media are printer devices that will accept typed data and can also respond on

the sane device with typed information, visual display devices such as CRT (cathode-

ray tube) and standard TV nets, audio devices, and OCR (Optical Character Recognition)

devices that can read printed data of a variety character fonts.

.-

e

TYPES OF COMPOTERS

One method of classification divides computers into three general types--analog,

digital, and hybrid--and into two categories of applicatiou--special-purpose and

general-purpose.

The Analog Computer

The analog data processing machine, as the nano implies, processes work electronic-

ally by analogy. It takes measured amounts ol information, perforns a set routine of

proceising, and presents thim information in measurable form.

An example is a speedometer on th dash of a car. The rotations of the car wheels

are transferred through a flexible cable to the inertial-governor device under the dash-

board. This device then interprets the rate of speed of the car in terms of a dial

reading.

The analog computer can perform only that function for which it was designed, and

it is not as accurate as the digital computer. It is often compared to a slide rule

which la only as accurate as the exactness of the measurement cf its scale. It is

ideally suited for certain engineering applications, but unsuitable for calculations

where accuracy is required to the exact digit as in payroll calculations.

Digital Computers

The digital computer accepts information in the form of coded alphabetic and numeric

characters. It then processes this information in accordance with a predetermined in-

struction sequence that can be varied as required. We are dealing with a discrete var-

iable; one that represents exactly what it stands for. In an analog machine we are

dealing with an indiscrete variable; one that represents an approximation of a quantity.

Digital computers can be split into groups according to the internal memory system

of the computer and its coding structure. The divisions are based on the type of coding

system prevalent in the machines' operations. Two major coding systems are binary and

decimal. Other coding systems exist, but they are merely variations of these two.

1-5

Hybrid Computers

Some computers are designed with both analog anal digital capabilities. These sys-

tems are hybrids. An example of this type of computer'system is the SACE.system which

Is an early warning system against surprise air,attacks. Process control sybtems such

as the computer systems used In controlling the refini4 of petroleum products are also

exapplea of hybrid computer systems.

Special-Purpose Computers

Another widely used method of classifying machines is to cstegorixe then as sprcial-
purposp and general-purpose machines. Special-purpose computers are designed for a

specific operation.' The SAGE computer illustrates this scheme of classification. The

SAGE system was specially designed and built as an early warning network against enenv

attacks. In the Air Force, this type of machine is usually limited to applications in

the weapons system area.

General-Purpose Computers

General-purpose machines are not specifically designed for any applications and,

hence, adept to a variety of jobs. Although they are'adaptable, certain machines aie

better suited to do scientific applications and others to business-logistical applicae

tions.

The scientific computer takes in.small quantities ef input, which may be drawn'

from business files or from facts about current °seriatim's. lt performs vast amounts

of mathematical and logical operations and provides a small ionsunt of output. The most

important consideration is a higl)sspt.ed processise enpnbilitv. The IBM 7090, used in

tracking earth satellites, and 14.mington Rand's !ARC, used at the LOR Alamos Research

Center for calculation of trajectories, are examples of scientific computers.

The business-logistics computer takes in vast quantities of data, performs a rela-

tively small amount nf processing, and puts out large quantities of sutput. Fileiven-

tents are analyzed to find relationships and answer simple inquiries. It is essentially

a scientific romputer with the additional capability for large volume data input and

outpst at a relatively high speed. In this type of marhine, isput nn4 output speeds are

more important than proc('ssing speed.

Whoa determining the type of hardware to he used, the method of processing desired

must also be considered. Many varieties of methods for processing data are available

today. The major consideration in deciding which methsd to use IR thr economic factor.

The more powerful the processing desired, the more mones thst must be spent.

!MITA!, COMPUTER ELEMENTS'

For a digital computer to operate, certain elements are required for the proper

handling aritt manipulation of4lata, luat 4a a man needs eertain tools to perform arith-

metic tasks# This comparison is easily supported by descrihing the elements of the

computer that correspond tcria man working at a desk. Letts assume that the man is a

clerk worki4 In a payroll' office and is computing the net pay sf various individuals.

The IN box I* his desk ntaIns the pay rates of the sermon's') involved plus miscel-

laneous datasuch as Initiation of bond deductions, etc. A digital .sanputer has an

INPtTt FLEMFW which is cle of accepting various types of lsta and presenting ft to

the ecaputinj portion oç the equipment. The clerk hos several tables to which he refers

Duch iga taX deduct ion t ics, !oandard weet,lv deflurtinns, etr. IP addition, he hat; 0

I
9 5

/45-
pad and paper on which ha notes the deductions applicable to each employee. In a digi-

tal computer, tho MEMORY ELEMENT would serve as the temporary storage device for ell

thus facts. The *teal cosputation of an individual'a salary is done with a desk cal-

culator: -This-funation is the muse am that porfoniedAY the Annowne WWI of*
digital computer. iOnce the net pay of each person haa been calculated, the clerk fills

out a standard fork for each employee which contains the employee's wee and the amount

due. He then places all their forms in the OUT box on his desk, thus completing his

job. The OUTPUT ELEMENT of a digital computer accepts the results of-comutation by

the arithmetic element and presents the results in form recognizable by the user. Of

course, all the,actions of the payroll clerk are controlled and coordinated by his ner-

vous system. The CONTROL ELEMENT coordinates the actions of a digital computer and is

connected to all the other elements. From this discussion, we see that a digital cour

puter is essentially composed of the following elements:

1. Input.

2. Memory.

3. Arithmetic.

4. Output.

5. Control.

The operational elements listed above are the elements required by typical digital

computers. The following paragraphs describe these elements in more detail and explain

the tasks performed by each.

Input Element

The input element is capable of accepting data in a variety of forms and converting

it to a standard format which the othet computer elements can use. For example, in

figure 1-2, a typewriter input device might he used; accordingly, the operator-would

type out the data and instructions. The typewriter would have switches connected to

each key which would convert the hitting of a key into an electrical impulse. The elec-

trical impulse might then be converted to a binary code so that the Computer could work

with it. Other common types of input devicw; are punched card readers, magnetic tape

readers, paper tape readers, and such iutomatic input units as telephone links which

transmit data from remote locations, Tt input element provides ane-way communication

berween'the external input devices and t L other computing elements. Data and instruc

tions are fed to a computer through an input element.

IJI

iNPUT
DATA

TY wRITER INPUT

NFORMATION
CONVERTED TO
UITABLE FORM

RDA124-2

Figure 7-2. Input Element - Receives Information
and Converts it. into Usable Form

I- 7

99

Memory Element

A. explained previously, oPereOgns in a digital compotir are carried oat is step-

by-step fashion. For this reason, some of the Information fed into a computer suit be

stored prior to actual usage. The facilities required for stories information in a com-

puter ire included In the memory (sometimes called.main storage) element.

Information fed into a computer includes:

1. Particular items-of data to be processed.

2. Instructions (kown as the program) for performing the particular data

processing operations required.

3. Reference data.

11'
The memory element comprises a large nusiber of storage locatiois in whiles informa.

tion can be stored until it is needed by ane.of the other elements. liadh of these loca-

tions has an absolute address assigned so4hat it may be selected by the computer for

insertion or extraction of data. -For instance, a typical camputer instruction might be

to "add the quantity which is stored in location 1009." Tha instruction which stated

that address 1000 contained the desired OPERAND is also stored in ihe memory element.

Many types of storage devices such as magnetic cores, magnetic tapas, mmsnetic

drums, acoustic delay lines, and cathode-ray tubes are used in memory alementa. At

present, magnetic cores are the most popular deel*,w4marily because of their high

speed and stability.

Arithmetir Element

Since the purpose of a digital computer requires tiiit the madhine perform arith-

metic operations on the input data, obvioualy a digital computer must conte.n an element

that can accomilish these operations. This is the arithmetic element. All data to be

operated on arithmetically must enter this part of the computer. Likewise, =St instruc-

tions determining what computations are to be performed must control the arithmetic

clement (see figure 1-3).

DATA TO SE OPE RATED
ON ARITHME TICAL LY

CONTROL TELLING WHAT
TYPE OF ARITHME TIC
TO PERFORM

SOLUTIONS TO
- -04 ARITHME TIC

PROBIL EMS

Figure 1-3, Arithmetic Element - Data Enters

and is Froc'essed by thin Element

1 -14

RDAI24 -3

.0041

s.

Id
Theoretically, it would be possibirto build In arithmetic element which could per-

form east mathematical operation, directly, jun 4114 a man perform them. This, however.,

,vauld.migidalvikmeo, IggipLand-somplicatad icithdettg *mite; conftqufntly, It 10 "war

dons. Instead, the arithmetic element in usually designed to perform'only a few foul*.

mental operatlons such as addition, subtraction, multiplication, and division. It can

be made to perform almost any complex mathematical operation by simply breaking the

operation down into these fundamental stem

Output Element

The results of a digital computer's operations meet be delivered to the user Of the

mhchine in an appropriate form.' The element that accomplishes this transfer is the out-

put element. The results of a cemputer'eoperations, however, are not necessarily in

the form hest suited for use outside the machine. Hence, an output'element may include

f.,cilities for converting the results of the computer's operations into the forviof out-

put data best suited to the user of the machine. For example4 in figure 1-4, the answer

to the problem might enter the output element in the form of binary electrical pulse's.

The output element may then convert these pulses to voltages that operate either an

electrically operated typewriter or a printing machine to print the final answer..

VOLTAGESFROm
OTHERELEMENTS

OFCOmPUTER

yPICAL FORM
OF SOLUTION
TO PROBLEM

PRINTING
MACHINE

TO OTHbR OUTPUT
DEVICES

RDA124-4

Figure 1-14-. Output Element - Converts Computer's Answers

into Form Usable by External Output Devices

Common types of output devices dre line printers, card punches, magnetic tapes, and

vijoual indicators.

The ofitput element provides a one-way communication between the other elements of

the computer and the external output devices.

Control Element

The entire sequence of oPerations by the computer is predetermined by the program

and the construction of the computer. The program, coded in the digital language, is

inserted through the input element and stored at specific addresses in the memory ele-

mEnt. The element for interpreting and carrying out instructions contained in the

.program is the control element.

1-9

_r

*A

0

.

There must be adefinite sequence for the flow of data during processing by a

digital amputee. All ofAbese operations ere doer at the commend of the control ele-

ment. For example:

1. Date must be inserted ISto particular storage locations and then used in cor-

rect sequence at appropriate tines.

2. The arIthmet* element suet also be "told" what operations ro perform on the

data and in what order to perform, them.

3. The results of the arithmeiic operations meet be routed to the appeopriate

storage of output locations.

4. The transfer of all output data to the output.elesent must be properly con-

trolled to insure the required sequence of information.

Figure 1-5 is the Honeywell 6000 series configuration of digital computer elements.

Notice that the ,:rocessor and ION access memory separately. Thin is a major third gen -

eraticm concept, called asynchronous I/O.

st

INPUT
ELEMENT

OUTPUT
ELEMENTt.....me

MEMORY
ECEMENT

a

ICONTROL
ELEMENT

ARITHNEw
ELEMEN I

INPUT-OUTPUT
MULTIPLEXER

4111

MEMORY

P,pocEswv

PIA /

,Figure 1-5. Honeywell 6000 Series Conflguration

of Digital Computer Elements

PROGRAM FLOW IN COMPUTER SYSTEMS

The various aiemen:a of a digital computer have just been covered. But what

actually happens CO a program from input to a computer to output? Thin section will

°answer that question after short discussion of n simple mystem and related terra,

Figure 1-6 is a block diagram of a digital computer.

192

INSTRUCTILMS
AND RAM DATA

INPUT
ELEMENT

RESULTS

.

OUTPUT -
ELEMENT

MEMORY
ELEMENT

CONTRe
ELEMENT

ARITHMETIC
ELEMENT

Figure 1-6. Digital Computer, BlockTiagram

1N FORMA TION

RDA124 -6

Basically, any computer may he thought of as a simi.le system (see figure 1-7).

Data is input into this svstvm, manipulated by a process, and output as information.

A close look at the last sentence will reyval a subtle difference, berween data and

information. Data is rImre or less a set ot Acts about something, which have little

meAning by themselves. Information, on the other hand,- is dnta which has been trans-

formed by some process into a meaningful form. In short, information is data which

ammo something, not just a lot a tacts. The simple system in figure 1-7 is con-

trolled by a programmer (to use a computer-related term).

INPUT PROCESS

tEEORACK CON1R01

OUTPUT

RDA124 -7

Figure 1-7. A Simple System

The point of this discussion is that any system, whether it be simple or complex,

is only oa good as the individual that controls and directs its operation--the programmer.

Translating this to tomputers--a computer is really just a nonthinking-machine. It will

do exact11 what it is instructed zo do and nothing more. The programmer must tell this

"i(117""Lhat to do by means of t program. Note that a program is the complete sequence

cf coded instructions necessary to process data into information.

o 3

-

no
;Now back to the question on what happenn to a program in, the computousystem. To

answer this question, trace the flow of a program thrrough a digital computer ilex. Mute
1-6). This example is based on the assumption that the program will be a deck of cards
and will yield a printer output.

The program la first read by the card reader and sent to the4issput elemeet. The
input element converts the characters/symbols from program card deck into a urchine
usable code (i.e., BCD, ASCII, etc.) and sends this coded program to the memory element.
The memory element L:cepts this code at specific intervols and stores it at address

locations within memory.

, Note that two peths lead out of the memory element--one to the arithmetic element
and one to the control element. This is because a program consists of both instructions
and data (to be operated on by instructions). Therefore, the proven instructions go to
the control element and the program data goes to the arithmetic elenent. Fitogram execu-

tion is, simply put, a process of performing each program instruction by the control
element. This execution involves calculating quantitietain the arithmetic element and
storing quantities of data in the memory element.

Upon completion of the internal processing of the program, the resulting informa-
tion is sent to the output element. The output element then reconverts the information
from machine code to characters/symbols for output by the printer.

This cmnpletes the flow of a program through a digital computer as seen in figure.

1-.7. Although the exanple was oversimplified, it does give some idea of whet happens

to your program in 'Cie machine.

PROGRAMMING LANGUAGES

Before the physical components of an electronic: data processing system can aolve
any problem, the programmer must.he able to commonicate the instructions ot his program

to the hardware. Both the data and the instructions are stored in the computer in con-

figurations of 1 bits and 0 bits. The characters these bits represent mako up the

language of the coNOUter (called machine language or absolute language). Though pro-

grammers can, and sometimes do, communicate with the comnuter in machine language, the

process of writing computer instructions in binary repremeotntion is cumher!4(mte and

time-constiming. For instance, if you wanted a computer to add something, you might
have to write an instruction like this: lollolnIlloluom.

Because of the abstract nature of machine language and the great difficulty In
writing programs in this language, program languages, structured In either a near-
English format or mathematical format, have been developed. Programming languages

constitute part of the various programming aids (called software) that a manufacturer
provides with the computer's hardware.

Machine Language

Machine language is the most elementary form of coding. It is the lowest level

language in which we can program. Tt in the only language a computer cnn "understand"
without any translation. Each machine language instruction has nn equivalent hardware

circuit to perform the specified operation.

Machine language programming is the most difficult for the programmer, simply
because he must give the computer instructions it can understand without further
translation,

Long programa written in machine language involve a tediess amount of clericallmerk.

The-programMer must develop a list of Aaronson and their associated data variabl=ss

keep track of atOriem allocations for data, define fields and records properly, p

the.program instruction from overlepping data, worry about a.leader propel to get his....

main program into meaty and execufinge'and many other things.. garly computers were .

programed in this way because there was no alternative.

A programer writing in the basic language of the computer can stay close mot* to
the elemental operating procedures of the conputer to tske advantage of sons specialised

teChniques, but he his to contend with several major disadvantages:

1. All operation codes and opermOaddresses mot be written in sonenumsric code.

2. All addresses in this code must be absolutely defined.

3. Sinie mere coding does not solve the original proplem, the programmer is also
faced with the todk of transferring the coding into machine-readable form, proofreading

the transf&mation, and loading the code into the memory of the computer.

Figurr 1-8 on the following page shows a small portion of the machine language

coding for a problem being run on the Honeywell 6060 computer.

Ilecause of the knowledge and skill regnired to code even simple probleea in macbin4

language, programing languages were developed that were easier for erhunmn to work with.

To bridge the gap between the Machine language and the program language, a special

type of conversion program is used. It tells the computer how to Change the operations

from the pfogram language (the source program) to actual mehiss. language instructions

(the object program).

Several types of.these conversion programm are available. The programming language

that is used for a problem depends upon the particular problem to be solved and upon the

hardWare.avallable. We will discuss two types of conversion programs --assemblers and

compilers,

ASSEMBLY PROGRAM. An assembly program (or an assembler) converts a program written

in symbolic form into a machine language program. An assembler translates item for item,

i.e., it produces an object program with the name nuMber of instructions and constants

as the source program.

An assembler-level projramming language generally has almost the same flexibility

for interval data manipulation 49 machine language itself. However, an assembler-level

program it usually long and tedious to write, and is machine-dependent. That is, an

assembler-level program written.for the IBM 360/65 would need tcrhe completely rewritten

before it could be run on the B3500 or Honeywell 6060.

COMPILER PROGRAM. A compiling program (called a compiler) converts a program

written in a program language that consists of relative or symbolic coding into a

machine language program. A compiler differs from an assembler in that the compiler

may generate a series of machine language instructions from one instructiJn written in

compiler progran kanguage. Thus, a compiler is a machine language program that can
expand and translate the original program instructions from the compiler language for-

mat into the machine language format.

Compiler Language

A compiler language, like an assembly' language, allows the programmer to write in

recagnizeble codes. Unlike in the assembly language, the programmer does not have

1-13

105

4 III
3141417 01 4a04.141 111.7141

OCIGIN PATE *MLA Emmy LOcATIOss toTer ',ACM N ENTOY LOCATION ONTOY 1:0CATION

Su0111004244$ INCLUDED IN Ms.

03/70, 041,00,/0 .011m .410,401 031741 OCOONY 6371417

4U07000444$'40TAINt0.11004 SYSTgo L1011188

.

MAO/ 081141171 Ailly .1111u. 031001

ALLOCATED COOS 000000 TNAu 031771 00000
RELOCATAILI ' 03101141 TOIU OMIT 0001841

ix. 11 TN(81014810 414001, 001000 TO LOAO TAM ACTIVITY 149410 110
000618 LOCATIOas 4f00I010 1140.1410 TAW,
EXECUTION 11004410 !AMID AT 031701 TA004041 41167U.

II 80o0.8830001 Os
10 000000 xi 000000

dross 0001178111.

000000 000000080000.
000030 006000000000

000010001000
81 000000

000000000000
000000000000

IC 037700 le 006001 3180410 tit pee

83 000080 84 000000 AO 000000 *0 000000

000000000800 000000000000 000000000000
000000000000 000000000000 000000000000

0000081 000000000000 000000000000 000000000000 imam:mum, 000000000000

600010 000000000000 000000000000 000000000000 031104010ee1 000000000000

000080 000000000000 000000000000 031701001008 emmeammeo 037761000000

000010 000000000000 000000000000 000000000000 000000000000 000000000000

000000 0083.800/080 001340333103 M81E336000 0047010000000 U18108800800

.000000 040000000000 000000000000 000000000000 000000000000 004000000000

40000 000000000000 000000000000 000600000000 0000041000000 000000000000
:40070 7$03,80101413 110110310t1380 1080801108080 108080801010 008020801068

40100 000000000000 000000000000 000000000004_ 000000000000 000000000040

;13,0000 000000000000 eoleoespoelsoe 000000000000 000000000000 000101031003

Ossothe 03T111000000 0000031000041 777778888000 000837?411000 320040030000

27070 7777$478;0041 03177f101003 00000100800* 00e000481014 pcommcmee
03719, 80000s070011 000011711000 17779011310041 000001101003 00000600000o

41//10 00001800000. 0000000E0040 001000130007 80000041300E 7/114,131300041

empo
eersso

000000011000
771791001000

177110000001
111781130008

000001110000
rirritssemN

0041000E1000
000010011000

000001011000
000,90081000

'"677410 04100014160013. 0004100073000 000031100000 177715710000 037178111000

'67860 031171720000 037110371000 031710831000 1037110761000 000000130007

;67/00 037/0010008 031101007090 0000.4731440 1000088107 0000100014140

767170 000000010803 000100071d1 000000002000 311718000170 47171,171711
g 66,1601 ISA

MINOS pseeeemroo 333030000180 017706002001 00,010000060 01101100000
,ftese 00834.00/010 oo130.4333713 177218320000 600010600000 0311.0800000

.71010 008000000008 1.10toelem 777rasumpoo 00006000000 OiT3871100000

731030 000900000000 000000000000 0000080001100 000000002000 410011011081

;110160 4100011000100 7777777777741 000104000008 000006000000 000000000004

-11000 338001411I111 231:01011M 3310010:IA01 334040380311 334000330000

,1110410 000000000000 0000000711001 0047890iro 01/7,18180811' 000000300010

60'1,

1001

110101 LOCATION

;

1

AO 000710740010 ON 000000100011 TO 00000000
AY 000000

000000000000
000000000000

000000000000
000000010711
000000000000
eeeecieutoese
000170000001
000000000400
0004144000000
801081008010
000000000000
000000004000
0000117344100
777703710000
000000110018
000000180801
Tryrrereseee
0312001110001
931171100000
0371414134400
037/71000000
171711371111

01111/214/201
040171000001
000001000008
0000008040418
332000011110
000000000000
180008000048

Figure 1.a. Machine Language Code

eeocoeocreeoto
0000000000110

0004100000000
000000094000
0000000000003
0803010004102
770000000100
000000040000
8080101104107
800080808010
000000000000
03r000000000
171117000001
0000141000000
000401018011
00041001101018
17773oeso0e
eedoee.seels
01778:7 1e0*0
031100701000
0311111001108
000000080103

170000000000
000000000000
000000000000
33E000011110
0000008004 Ye
113501101184

000000000000
000000000040

000004000000
000000044004
040400000000
000101027002
000070030001
000000404000
0000241110101
80201021120110
000400000000
000000000000
000002704000
71770012100s
001040170007
000001182002
Trrreeileeeee
es.goosselos
0371117014144
00001000M4?
004000011001
000000071011

'3,181100800
000019810000
000070871400
00041411041000
338000011001
W117111301
010000000000

41!

,

miry command found to machins.lenguaie a Wile to him in the compiler language.

-However, he does have a,langusge which gen etas a-whole set of machine language in..

StrUettene for eich oompiler cammend. In 5dditfen, meet *emptier lemmas* use familiar

ragittok tonsongs Oa* -444 1114thalitic symbols: to seneratir Inotroctionot Mit ticertan.t7
ly, since most.compiler languages have been standardised, 'programs cants run on many

different computers with littO or no modification.

The first time an-assembler-level or.compiler-level program is run Oa a roonutorg
chit program passes through'the computer-netts; first lath the assesblor (or compiler)

to produce ths object program, then the Object program version is used to process the

data (sea figure 1-9).6,0ft most systems the object program can be stored on dia or iht

tavelkso th,t it need only be compiled Ace.

SOURCE
PROGRAM

RESULTS

, COMPILER
PROGRAM (CARDS OR DISK)

COMPUTER

N
SOURCt
PRO4RAm

IS TING

cOmPuTER

OBJECT
PROGRAM

Figure 1-4

1-15

107

TRANSLATKO4
PHASE

1

EXECUTION
PHASE

RDA1.74 -50

04-

1

14
.o

Assembler Language

In machine leaguage, vach machine code bee a en;rreepondlne-hardware circuit.

. Might= code, therefore, is the lowest level language which can be programmed.

All computers have some form of machine cods, end nearly all machine, have some

form of assembler lamguage. Assembler language is an extension of machine language In

most cases.

Assenbler language (sometimes called aysbolic languaRe) uses instructions that are

written in nonmachine.language, with'hoth operators and operands expressed Of symbols.

They are usually mnemonic syebols; that is, symbols that represent an original word and

are easy to remember. In assembler language for the IBM 1620, for instance, "A" in the

mnemonic code for addition and "MrY" is a mnemonic code for multiplication. Theme nymr

belie operators represent couputer operations and machine language codos. "A" stands

for machine language code 21 an4 "S" for code 22 "NN" symbolirea the "read numeric

information" in place of coOe 36, and "H" it axymbolit code for "halt." The operands

are symbolic names for dataliariahlett, end Rtand ior the actual memory addresses of their

values.

I." a programmer wanted to add the conteeta of memory location 12041 to location

17060 (on/the IBM lfi20), In machine language the inetruction vpuld be:

21 12070 12060

while in assembler coding the programmer could write:

A I

where I and N had been defined as representing the 4torage location.

During the translation phase of an assembler program (tiee figure 1-9), the assembler

instructions are printed, the source program listing to provide documentation. On nany

computers, this listing will also contain the corresponding machine language iuntructione

as a debugging aid for the programmer. Figure 1-10 ahows an assembler program as written

for the Honeywell 6060 computer.

The programmer is now once removed from the computer. He writes his program in a

sequence of instructions that are symbolic with respect to his problem. He'Ll1104 over

the translation into machine language to the assembler, including the exact essignmentn

of storage. He exempts himself frnm a large part of the tedious bookkeeping, miendink

his time on more valuable activities.

Advantr.ges of Compilers

While they usually don't have the flexibility of assembler-level languages, compiler-

level languages have important .Avantages over aesembler-level and machine languages:

4. They have applicability to wre'than.one computer. Although the Inngriage

specifications are not identical far each computer, the general characteriatics are

similar enough that usually only minor changes are needed to make n source program roP,-

'pile on different computers.

2. They are eamier to learn.than machine or assembler language, especially the

machine language of Very Inrge computer syatema,

3. The programming process is speeded up for the pregrammer awe he hes learned

fYSIthe syntax of the language.

11441 01 04..00..70 se.727 lCD ve 1410117 .4111111M° 0 ascpsevo

1 LILL .61114111

TTL 0E0 70 OINART .&1007 A oscsewym

3 BUM* 4111011.00011111

000000 000020 1410 SO 010 0 .0014111 117111 .E.2...

000001 000026 71540 00 010 011

000001 '000000 7100 00 010 7 TRA STMAIN
I

000003 000010 7410 00 010 COONY ST" 0164..

000004 000010 7540 00 010 10 STI

000005 000030 3770 00 DID 11 411771

12

000000 000032 2310 00 010 13 9TRA1 DA0 111400011346709

00000? 000014 7570 00 OID 14 97A0 1101003

000010 000000 2360 OT 000 13 2.041 0.0L

000011 000072 2350 00 010 16 1.04 ONY001

000012 000023 7550 00 010 17 STA 0111001

SO

000013 000012 4010 07 000 19 0017010 MIPT

000010 00001 0760 52 010 20 ADO ON11101.0C

200015 000013 6070 00 012 21 7Yr 1147010

28

000010 000044 7310 00 000 73 LLS 36

000017 104647 2360 07 000 2 LOO 430 04.01.

000020 000010 0010 00 000 fO **E MOOT
26
77 mos NORKIN6 STORAGE
ZO

000021 29 001001 1114 1

000021 000075 0011 02 OLO 30 007002 TALL2 11141003.10,2

000023 000000011007 000
000014 31 EVEN

000024 32 302003 OSS

110000 LINKAGE

000010 000000000000 000
000027 332712453170 000

LITERALS

000030 173117171717 000

000031 171717171717' 000
oesois cloommemos soo
mom 40500071011 000

33 END

01140 VfeSIONIASSEMBLY OATES j017,4 140101/021471

34 IS THE NEXT AvAILABLE LOCATION.

THOME IMRE ND YARNING FLAGS IN THE ABOVE ASSEPOLY

t3.

J1170 750210,042373 J111C 730810f0417573

Figure .1-10. Assembler Language Code

19q

M

4.71'

Rage

.11

I go
4. Communication with others interested In the same problem is much easier with

progrsmming statements that read as the problem would commonly be expressed.

5. Because of the standardization, personnel frnm one installation are able,
with little or no retraining, to program for computers at another inatallation.

COBOL

COBOL (COmmon Business Oriented Language) in the result of an effort to eatahlish
a standard language for programming computers to do businesg-oriented data processing.
COBOL is designed for producing source programs that are:

1. Standardized, using standard language elements in standard entry formats

within a standard program strueture. COBOL endeavors tn provide one common languayo

for all camputers, regatpless of make or model.

2. Easy to understand, because they' are written in English. The ',elk of every

COBOL program is made up of English words in entries that resemble Fnglish sentences.
Good COBOL programs are eany to read and comprehend for nonprogrameers as well as for
programmers.

3. Oriented to business procedures, not to the tec1no19gy of computing machinery.
This makes it possible for business people who are not computer experts to use C0801.

COBOL uieg English language statementa as its program instructions. Since these

statements can be easily read and understood by people, they provide excellent documen-

tation of the program. For example, the following fa a valid cram inStruttion:

MULTIPLY HOURS BY HOURLY-WAcE CIVING TOTAL PAY.

Verbs such am APO, MOLTIPLY, and PFAFORM indicate the action to be taken. Nouns

refer to data fields, e.g., in the COBOL statement, ADO AM0PNT TO BALANCE, "AMOONT" and

"BALANCE" are data fields. The COBOL words IF, NNO, and olt are used to indicate the

testing for specific conditions, e.g.,

IF BALANCE EQUALS ZERO OR COM GREATER THAN 123,

THEN GO TO ROUTINE-2,

ElSE ADO 100 TO BALANCE.

Some of the advantages of the COBOL language are the following:

1. Reduces Programming Time. Since.the COBOL compiler takes over manv of the
programmer's duties, the programmer dot's not make as many clerical errors. Usuallv his

errors are in logic or In the use of the C01101. format. In addition, the compiler also

provides debugging aids, such as the TRACE, Mo41TOR, and Orr commands.

2. Simplifies Change. COBOL's easy-to-read language and standardized format

make the programs almost self-documenting. This makes it easier for one programmer to
understand and complete or modify another programmer's work, thereby softening the
effects of personnel turnover. Equipment changes are also Film, to ban lie. With only

minor changes a 1:0BO1. program My he reromel led and run Ttl 11 +lei.; coment or ovstem.

3. Produces Efficient Object Programs. The COBOL compiler produces ,!lect pro-

grama that are nearly equal in efficiency tn above-average hand-coded programs. The

resultant object programs are usually larger and slower than a hand-coded program, hut
the difference in programming speed and,ease of writing more filar, compensate tor this.

11 7
All assemblers and iompilers must have certain information before they can generate

an object program. This in:, .rmation includes a name for the program to he generated,

data file locations (and appropriate hardware names), descriptions of the files and

records, sr-Mlle constants and editing characters, and the particular set of instruc-

tions, in pioper sequence, needed to process the data.

Unlike moat computer languages, ale moot. language divides these various functions

into specific categories and allows the programmer to program these functions in four

distinct divisions: Identification, Environment, Data, and Procedure.

Identification Division

The Identification Division is for documentation purposes. It contains program

name, programmer name, date written, purpose of program, security classification, etc.

Environment Division

The Environment Division is ubed to furnish the COBOL compiler with information

concerning the hardware devices required to produce input-output files.

Data Division

The Data MN/talon AN used to describe in detail the input-output formats. It

defines data input and output areas, print aloes, constants, etc.

Procedure Division

The Procedure Division contains the actual stp-by,step instructions of the program.

Each statement contains tiny or more commands, telling the compiler which type of opera-

tion is to he performed hv the object program. This division is usually written without

reference to machine characteristics. Thus, the Procedure Division, if properly written,

can be run on any computer which uses the CoROL system.

Figure 1-11 shows a sample COBOL program for the Honeywell 6060 computer system.

FORTRAN (F)Rmula TRANslation) is
moat United States computing intitallat

in existence.

OlfaltAN is a mathematics-oriented
that indicate the actions to he taken.
metic conventions to formolate a progr

+ Addition

Subtraction

Multiplication

/ Division

** Exponentiation

FORTRAN

the malor t.omputational programming language for

Ions. It is the most widely used compiler system

language characterized by mathematical stateuents
It permits the programmer to use familiar arith-

nm, thu luding such symbols as:

..x.imm---- ---- ' SSISSIIIIi

.:.:.

11060001100811212023113 MCIMM MCMCMCMCOMMCOMMM: OMMOM CMCM:=1:2:15MMMMCCOMP

MI rig-.1. Aiiiirf-fraffil.'1,,,Trirt1/67: ./. _

NW 7.7,Til:731 OEF.1811L-;!:Tad7P71---11' _
1111111!..7_ 17._:_-* Or 'AGATOIIIVT:Tirril., . rsignrf
IMO Yir,:n.U.rMillrari:7-, 471/41k1:7.77.7.T.711VIVZ.Trrillr411r7.7.W
1114115(Tairr777 , . .

----_____
unswv,rntrilr
overwrrammr:-,,.. -_, ..,_ ___.... , ._.. _
Imo '.7:177X-ArtrErrATIPPOTIR4r7
MI OrrIrArm:...

'327filell771 ,

1111111111111111111INNIETAnW1147147727.4.
Priellrlr.r_ . _ .

Fillrxrdnuoron ,

asawrvargriz._._ _
Mw.....

IIISINSOS171111. , ---77718r.7-127.71rW,,,-fAsto-..,-_,..,,,,,..77:::77,.....--7.-vrxrrm.
nr.-7-4--Airi

17now4irrerv.-rriremg..A7.4rairmr.lo
17-marre*" __ _. . ,., -, . : . is-x-r-ivr:rcrw,_ ,___ __

wasmogrrr_ __ . _
orrA

omen wrrAorrrarwrr-irrAF.,r4r.ilif... ____

V III IMO CSINIFT.2_11111
41r111111Ur4z. . tollt-ki.--

amisanrevatrri-;.7". !
,f.... _... . .__.,

;._

Messaseirmarrirr,I - . ,qii
u a ououuou comm. occca, oct occioc = ccGcnot- efitit a= 0 G1C C C ZO CC C CO C C 1.10 OCCG 0 C CC

,... .-- .-

MN =FL +=EMI%

1

1

=3;77nrEFFE=753==="'3=a8-omimocince:Q=vommmomomomommmmatmacionnanuo
1111

- NMI II MIS
atla :La /AVIZEIW. Efel,;.., MOO Xi 11111MI

-112CtiliditAft.2-11MISIMMI
--- " - ' ti..41L MI IMMO'

411/4103Ce4 0/2.711,--/A24,1*.e.L.4KLit- ria'At ISM I ad MO
ELeA I UMW

7 * f ' - .14WIEllti-111M1111111111111111

I illgriA411111111.11111111MMI
Ar.a..1.:144A111111111111111111
aZiGazt,1111111111

4c- , - re.
!AggEti.:1. II ill MIMI

AudiAZAVIIIr -FluidAllitit',111111111111MISININ
afiL-Amewm maw 9,24-". ?..-, Mu OM : IMO

7
IIILIA11011111111611112

111111110211Lciati1A liar NUL NMI Mil NMI

--------AtLAWSW-41111111MOOMOMEM
filk INN I III UM -diadaremessorim

am a::=0:accardma:
atlalmcgammatammaciamciamamammomaccemme

8

110 e-
FORTRAN offerk two main advantages to the scientific/engineering computer installa-

tion: improved communications and greater programming-speed.

The FORTRAN programming language is expressed much like mathematical formulae, and

is therefore easily leafned by most scientists and engineers. These people are able to

write theft own programs to sorve computations, rather than having regular programmers

do the work for them. The engineer can be assured of getting the exact results he wants,

rather than trying to communicate his needs to a third party. On more complicated prob-

lems, the engineer can work closely with the programming staff.

The second advantage, speed, results frmn FKIRTRAN's simplified condensed nature.

FORTRAN, in effect, is a kind of programming shorthand. This results in shorter, more

straightforward programadng.

For program that do not have a large amount of input-output but do have a con-

siderable amount of calculations to be performed, FORTUN is usually the most efficient

programming language. ,For problems Involving calcolations, FORTRAN involves less time

and cost. A

The standardization inherent in FORTRAN programmir; hau several major advantageo.

A program dces not have to be returned to the author fur revision, since any programmer

with FORTRAN training can understand another programmer's PDRTRAN program and expand,

revise, or adapt it to another computer system. This flexibility can cut ccrits during

normal operating conditions and offers even greater savings when a new system As in-

stalled and software conversions must be made.

Figure 1-12 is an examrle of a FORTRAN program. .

ALGOL

ALGOL (ALGOrithmetic Language) igpthe result of an international effort, parallel

to the development of FORTRAN in the United States. It is a science and mathematicslly

oriented program language, characterized by the one of algorithms (an algorithm As a

fixed, step-by-step procedure that accomplishes a given result).

ALGOL is made up of mathematical statements which express actions to he taken. It

permits the programmer to use familiar arithmetic conventions to formulate a program:

4. addition; - subtraction; X multiplication; / division; * exponentiati2n.

Like FORTRAN, ALGOL allows the mathematician or scientist to concentrate on thf

problem and not he overly concerned,with the computer's machine language.

PL/1

In thy past, throughout the data processing field, rtnin computers were generally

identified with a particular field of activit either a ientific or commercial. Fro-

-gramming languages were specialized in the same ay: RTRAN was developed for scien-

tific programming and COBOL for commercial prpgra

Now, however, computing sVstens are designed for a broader range of activity. The

new computers are faster and more powerful., They serve the grientific and commercial

programmer equally well, and they provide facilities for many new programming techniques.

None of the older languages can take advantage oi all the power of the new computers, and

more and more computer installations are handling both scientific and commercial prograefr'

ming.

) -22 1

-7"

rL _rasa
Coded
ardmd Or

g CONAriggir

FORTRAN CODING POIM

. -

FORTRAN STATEMENT

a -

10

_Lot

- - -

oo
/a* F t 14_ not 11/42,. _

0

iturr, 1VA,, VA
. a A. - IL

iggitr,a A_ a a _ I a a Al a a._ I _a- I _a_
L A- a a- AL_

4-0 - - -

.11_ . _ It

- $ - a.
2 ai . _ . ALA- - -

lir mi 1..14. aa a

1

-/Y11111

-41 I g -

_

/LT

Figure 1-12. Example of a FORTRAN Program

115

RDA124-14

%b.

FORTRAN COCI1NO MISR

(01C00100
VONTRAN STATESAINI

=aM=mJ 0

DO* LI#NX/'
Page el

4

1111""E6V7 -4-.-0--&--.1----4-----1--*.4.
570

i 4&,4,-.4.1..4.4.
"..a .4.NR4.41-14

/. 1 A- gra e.14.4,=iimaMabmW1.MILFa Abet .6-4 L. 4 ..-4,- -,....6LArml=riamO.
4.-

Figure 1-12. Example of a FORTRAN Program (Continued)

116

ROR124-15

PL/I (Programing Language/1) is a multipurpose programming language that can be

used by both coamercial end scientific programmers to handle all of their programming

and to give them the widest ramp of control °Mar the,empuber.

PL/1 has been designed so that my programmer, no matter how brief or extensive hii

experiences can uee it easily at his awn level. It is stmplb for the beginning program-

mer; it is powerful for the experienced one. A programmer need not know everything

about PL/1 to be able to use it. An experienced programer can use PL/1 to specify

almost every detail of every step of a highly Complicated program. A, beginner can take

advantage of the many automatic features of the leagues, to do much of his work for him.

REPORT PROGRAM GENERATOR

The purpose of the Report Program Generator (RPG) and its resultant object program

in to enable the user to obtain comprehensive reports from existing files with a minimum

of time involved in.source coding.

The object program, which is produied by the Report Program Generator from source

coding on appropriate forme, is more efficient than most programs created using the'

asseMbler and compiler languages alone.

Source coding for the Report Progrms Generator is on six types of punched cards,

divided into three divisions:

1. The Environment Division - Contains program ID, options, file and record

description, printer control, and accumulator descriptions.

2. The Data Division - Contains details on constants, working storage, etc.

3. The Procedure Division - Contains the step-by-step procedures for solving

the problem.

SIMSCRIPT

S1MSCRIPT (SIMUlation) is used to simulate, in a computer, the operation of a

physical system, such as manufacturing, logistics, transportation, or economics.

Simulation is essentially a technique that involves setting up a model of a real

situation and then performing results on the model.

The program is used to test the performance of alternate physical systeus Obtained

when different sets of decisions are used under various conditions.

For example, when a transporta0on system is simulated, the computer is told the

physical structure of the system, e.g., the number of trucks, number of drivers. The

computer is *leo told the rules that determine how the system will operate, e.g., the

deliveriea to be made, the hours a driver can work, destinations.

With Ruth information, the compUter simulates the deliveries to be made by each

truck and driver. Performance of the system is based on factors such as truck utilisa-

tion, labor utilization, promptness of delivery.

The simulated system can be operated Any number of times, varying the quantity of

goods to be delivered, the decision rules to be followed, or the configuration of the

yetem icself (the number of trucks and drivers). By simulating alternate systeus under

various conditions, management can devise the system best sudted for their needs.

1-25

3

12#
JOVIAL

JOVIAL (Julius Own Version of an International Algebraic Language) is a machine-
independent, general-purpose programming language, answering the need for a common
standard of communications between users of many different computers. As a common
programming language, JOVIAL serves both as a means of cosmunicating information
processing methods between people and as a means of realising a stated process on a

number of different computers. JOVIA, is considered a standard language for command

control applications.

MIJECTIVES

CHAPTER 2

(MUTER MATHEMATICS

When you have completed this chapter, you should be stile tot

1. Identify the distinguishing features of nvmbering systems using base 2,

and 10.

/.25

2. Convert any number expressed in one of these three nuAbering systems to its

equivalent in any of the other two.

3. Add and subtract numbers in binary and octal numbering systems.

4. Complement binary and octal numbetm.

INFORMATIM

Befon: beginning the study of digital computer programming, it is necessary to

study the numbering system on which the language of the computer is based. This basic

numbering system is the binary system. Easever, the binary system will not be the only

numbering system discussed in,this chapter; octal and decimal systems will also be

studied. The octal system will be studied because binary numbers can be expressed and

manipulated more conveniently in equivalent octal form. The decimal systemsrIll be

studied so that the fundamentals that apply to all numbering system can be learned

in the content of a familiar system.

NUMBER SYSTEMS

Decimal iystem (Positional
and Symbolic Values of Digits)

Tht number of different symbols used in our numbering system determines the base

of that system. The base of the decimal system is 10, hince it uses as symbols the 10

Arabic tiumerals--0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 These 10 symbols have a commonly

known order or sequence which enables us to count and to indicate quantity with them.

They may be used alone or in combination to express quantities or identities.

By using 10 symbols and given significance to their relative position with reppect

to a deeimal point, we can combine the symbols in a nuaber of ways to describe any value

we choote, Considering a whole number (i.e., no decimal fraction), the extrema right

digit it, multiplied by one and is called the Least Significant Digit (LSD). The next

digit t4. the left of the LSD is multiplied by 10, and the next left one is multiplied

by 100. In decimal notation, adjacett digits haye a 10-to-1 ratio, increasing from the

LSD to the Most Significant Digit (MSD). Examinatioe of an exaMOle from the '&cimal

system ieveala that the positions have the following significance: The number 4358 means

four thins:ands plus three hundreds plus five tens plus eight ones, or:

or

,(4 X 1000) + (3 X 100) + (5 X 10) + (8 X 1)

(4 X 10
3
) + (3 X 10

2
) + (5 X 10

1
) + (8 X 10)

2-

119

alp
The following Chart (chart 2-1) should he studied to firmly establish in your mind

the value of each digit in thi decimal systeu6

Chart 2-1

Hundred thousands Tien thousands Thousands Hundred* Tens

10
5
X (100000) I 10

4
X (loom) I io

3
X (1000) 102 X (100) 101 X (10) t1:0 X (1)

Each position to the left .of the decimal yolut represents a positive pmer of 10,

with the power increasing from each position to the nvxt left position. Positions to

,the right of the decimal point represent negative powers of 10, with tht power inereaying

ib a negative direction from each positionto the next right position. The negative

power of a number is the number of tines the reciprocal of the number is multiplied by

itself. Examine the decimal number 65.421. The expression in equivslent tot

(6 X 10/) +" (5 X 100) + (4 X lel) 1 (2 X 10-2) + (1 X 10-3)

or 6(10) + 5(1) + 4(0.1) + 2(.01) + 1(.001)

Binary System

As indicated by the prefix B1, this system utilizes only two symbols, "0" and "1."

Therefore, the binary Rystem has a base of 2, and all numbers in this wystem pre combi-

nations of the various powers of 2. The general rules and mathematical functions of

the decimal system apply in the binary or base two system although the colts/ant in binary

are valued at base two significance. The follnwinx chart (chart 2-2) shows the decimal

equivalent for each position of a binary number.

Chart 2-2

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

256 128 64 32 16 4 2 1

Comparing the decimal system to the binary system will clarify the idea. See

ehart 2-3 on tha following page.

Notice that in binary each progressing column is exactly double the value of the

preceding column. The base of the binary system ia 2; consequently, any binary number

can be expressed as a sum of the powers of 2. The value of a binary digit (bit) is

determined by-its position in relation to the binary point (similar to a decimal point).

120

241171

1

10

100

1000

loom

00,

-Few
of lin

10
0.-

Chat 2-3

Binary
No.

1

Foust
efts

2°

-ancimil
Equivalent

dl
10

1
10 2

1
2

10
2

100 2
2

4

10
3

1000 2
S

- 10
4 10000 2

4
16

It is simple enough to relate binary numbers to their decimal equivalents. For

cxample, in order to relate the binary number 10011 to its decimal equivalent, vritl

down the pavers of two and set the binary number under them (see chart 2-4 below),

Chart 2.4

Powers of Two:

Binary Number:

Decimal Equivalent:

2
4

1

16

2
3

0

+ 0

2
2

0

+ 0

2
1

1

+ 2

2
0

1

+ 1 19

The decimal equ, of this number is shown in the following equation:

(1 X 2
4) + (0 X 2) + (0 X'2

2
) + (1 X 2

1
) + (1 X 2°)

In other words," the binary number 10011 is equal to the decimal number 19.

The following chart (chart 2-5) is a listing of some binary numbers and their

decimal equivalents.

Binary

0000

owl

0010

0011

0100

0101

0110

0111

Chart 2-5

Decimal

0

1

Binary

1000

1001

Decimal

8

9

2 1010 10

3 1011 11

4 1100 12

5 1101 13

6 1110 14

7 1111 IS

S.

2-3

\28
Rach position to the left of the binarY Point _represents a positive power of 2.,

with the power increasing from each rwition to th next left position. Positions to

the right of the binarY point represent negative powers of 2, with the power increasing

in a negative/direction from each position to the next right position. Examine the

binary numbat 101.1111. The expression is equivalent to:

(1 X 2
2
) + 0 X 2

1
) + (1 X 20) + (1 X 2

-
+(1 X 2

-2
) + (1 X 2

-3
) + (1 X 2

-4

or 4 + 0 + 1 + 1/2 + 1/4 + 1/8 + 1/16

Octal System

The octal nuSber system is similar to the decimal end binary system. mi only
difference in the three systems in caused by the differences in belie. Whereas the bsse

for the decimal system is "10" snd the base for the binary system is "2," the 1.ase of

the octal system is "8." Therefore, the only permissible symbols in the octal system

are 0, 1, 2, 3, 4, 5, 6, and 7. Notice that the decimal syibols "8" and "9" are NDT

used.

In the octal system the value of atilt is determined by its position relative to

an octal point (similar to a binary or decimal point). You recall that the octal system

is based on powers of 8 and, just as we have seen in the other systems, we can think of

the digits in an octal number as the coefficients of the power* of 8. These coefficients

determine how many times each power of the base nunber 8 is to be +sided to the sum. The

following chart (chart 2-6) ihows the decimal equivalent for each positiOn of an octal

number.

Chart 2-6

86 3
5 4 3

8
1

8
0

262144 32768 4096 512 64 8 1

The decimal equivalent of octs1 number 14025 is shown helm in chart 2-7.

Chart , -7

Powers of Eight: 8
4 3

m
2

8
1

8
0

Octal Number: 1 2

Decimal Equivalent: 4096 + 7048 + 0 + 16 + 5 6165
(10)

Each position te the left of the octal point represents a positive power of R with

the power increasing from each.position to the next left position. Positions to the
rtght of the octal point represent negative powers or 8 with the power increasing in a

negative direction from each position to the next right position. Examine the octal

number 76.345. The expression is equivalent to:

or

17 X 81) + (fi x 13°) + (3 X 8-1) + (4 X 8-7) + X, 8-3)

7(8) + 6(1) + 3(1/8) + 4(1/114) + 5(1/517)

.

the octal number system is ussf41 as a form of shorthand for the binary system.

The relationship between the two systeis can bs stated ss follows: Since "8" is the

third power of "2," three places in binary notation correspond teams place in octal

notationi.censequentiy, three binary disits can bs represented by one octal digit.'

The corn:spends:me can be summarised as foliate (Chart 24):

Chart 2-8

BINARY is equivalent to OCTAL

000 0

4 00 1 1

010 411F

011 3

100 '4 ,

101 5

110 6

111 7.

A

The followins diagram illuatrates the value of the ottallsystem as a form of binary

shorthand. 110101011111,110 101 011 111

b 5 3 7

The use of eight symbols (octonary), rather than

bered language which is easier to read and write

likelihood of a programmer error. It Is Obvious

system for progranmers because octal notation is

conversion between the two systems is relatively

two symbols (binary), provides a num-
than binary; thus, it.decreasem the

1=
the octal system is a good working
shorter than binary and because

simple.

By simple inspection, there is no way of knowing

octal, a decimal, or a binary number. Subscripts are

type of number system. For example, 10118 or-4011(8)

written in octal; accordingly, the subscripts "2" and

written in binary and decimal, respectively.

NUMBER CONVERSION

whether the-number 1011 is an
normally used to designate the
indicates that the'number 1s-

":0ft indicate that the number is

The preparation of information for digital computers involves the use of the deci-

mal, octal, and binary numbering systems. Consequently, conversion from one numbering

system to another is often necessary.

Decimal te Binary Conversion

The division method is wed to convert whole decimal nunbers to binary nunbers.

Ts) converr the/decimal nuaber to binary, divide by two. The quotient obtained is again

divided by two, and so an. The binary coefficients are indicated by a "1" each time

the division results in a reiiinder ef 2 and by a "0" eaCh time no remainder is Obtained.

2-5

3 10

The first binary bit obtained is the least significant bit (L8B), and the last bit. oh-

tufted is the most significant bit
conversion of 123

(10)
to N

(2)
:

lst division ---02)123

2nd division

(MSB) of the binary expression. Study the followitu:

1.01---lst remainder (LSB)2) 61

3rd division 2) 30 1 2nd remainder

4th division 2) 15 0 3rd remainder

5th division 2) 7 1 4th remainder

6th division 2) 3 1 5th remainder

7th division ---02) 1 1 6th remainder .

0 14s final remainder (MSB)

123
(10)

equals 1111011
(2)

The following method is used to convert a decimal fraction to its binary equivalent.

The fraction is repeatedly multiplied by 2. Each time that the multiplication generates

a product having the whole number 1, a 1 is entered as a coefficient of the equivalent

binary expression. (The 1 is then dropped.) Each time that the product of the multipli-

cation is a fraction, the 0 is entered into the binary sequence.of coefficients. This

process is continued until a product of 1.0 is obtained, or until the desired nuMber of

bits have been obtained. The first bit obtained is the MSB of the binary fraction.

Study the following conversions to the equivalent binary numbers:

.875 .75 .5

X 2 X 2 X 2

i.75D TNT
+

1.0

1 1 t u,.111

(MSB) (LSB)

.875
(10)

.111
(2)

.0625 .125 .25

X 2 X 2 X 2

0.1250

t

.5

X 2
1.0

It

0 0 0 1 .0001

oisB) (LSB)

Binary to Decimal Conversion

The conversion of an expression in binary form to its decimal equivalent la per-

formed by using the expansion method. The number 101101
(2)

is a representation of:

a

/3
(1 X 2

s
) + (0 X 2

4
) + (1 X 2

3
) + (1 X 2

2
) + (0 X 21) + (1 X 2°

which la equal to

(1 X 32) + (0 X 16) + (1 X 8) + (1 X 4) + (0 X 2) + (1 X 1)

Which is equal to

or

32 + 0 + 8 + 4 + 0 + 1

45
(10)

The binary fraction .1101 is actually a representation of

(1 X 2
-1

) + (1 X 2- 2) + (0 X 2
-3

) + (1 X 2
-4

which is equal to

(1 X .5) + (1 X .25) + (0 X .125) + (1 X .0625)

which is equal to

.5 + .25 + 0 + .0625 or .8125
(10).

Study the following exampie of a conversion of 1001101
(2)

to N
(10)

(chart 2-9).

Chart 2-9

Powers of Two:

Binary Number:

Decimal Equivalent:

2
4

1

16

2
3

0

+ 0

2
2

0

+ 0

2
1

1

+ 2

2
0

1

+ 1

.0

+ .0

2
-2

1

+ .25 in, 19.25

Another method of converting a binary number is by multiplying the binary digits by

2 starting from the MSD first, then adding the next digit to the right to the product.

Repeat this process until all digits have been added. (Note that the MSD is never added.)

1

X 2
2

+ 1
3

X 2
6

+ 0
6

X 2
12

+ 1
13 1101

(2)
* 13

(10)

1 0 1
(2)

This method is to be used on integer digits only; use direct look-up on power of 2

chart for fractional digits.

2-7

Decimal to Octal Conversion

The division method is used to convert Whole decimal nulbers to octal numbers. To

convert a decimal dumber to octal, divide by 8, then divide the quotient by 8; continue

the division until the quotient is zero. The remainder Obtained by the repeated divi-

sions will be the coefficient to the octal number. The first remainder is the octal

LSD, and the final remainder is the MSD. Study the following conversion of 3844(l0) to

N
(8)

.

lst diviiion ---0.8)3844

2nd division 8) 480 44*----lst remainder (LSD)

3rd division 81 60 0 2nd remainder

4th division----0.49 7 4 3rd remainder

0 740.---final remainder (MSD)

is equivalent to 7404
(8)3844

(10)

To convert a decimal fraction to an octal fractico, multiply the decimal fraction

by 8. The whole nunber portion of the product thus obtained is the MSD of the octal

fraction. The fractional portion.of the product is multiplied by 8 and the whole number

of the product is zero, or until the desired number of octal digits have heen obtained.

Study the following conversion of .384
(10)

to its octal equivalent (5 octal places).

.384 .072 .576 .608 .864
X 8 X8 X8 X8 X8
3.072 0.576 4.608 4.864 6.912

3 0 4 4 6

(MSD)
(LSD)

,

.384
(10)

is equivalent to .30446
(8)

.

Octal to Decimal Conversion

The conversion of an octal number to its decimal equivalent is performed by using

the expansion method. The number 10247.2
(8)

is a representation of:

(1 X 8
4
)

which is equal to-

(1 X 4096)

which is equal to

or

+ (0 X 8
3
)

+ (0 X 512)

4096

+ (2 X 8
2
)

+ (2 X 64)

+ 0 + 128+

+ (40(81)

+ (4 x 8)

32 + 7.1+

+ (7 X 80)

+ (7 x 1)

.250

+ (2

+ (2 X

-
X 8

1
)

.125)

4763.25
(10)

.

2-8

1?6

The multiplication method of converting octal to decimal is performed by multiplY-
/13

Ins the ocilodigits by 8 starting with the MSD first, then add the next digit to Che

right to the product unit until all digita have been added.

7 4

X

3
(8)

(8)
3811

(10)

+ 3

8
472

+ 4

476
X 8

3808
+ 3

3811 7343

This method is to be used on integer digits only; use direct look-up power of 8

chart for fractional digits.

Octal to Binary Conversion

Conversion from octal to hinary.is accomplished by the inspection method. By re-

placing each digit in the octal number with a group of three binary digits (bits), octal

number 3752.01 is converted as follows:

3 7 5 2 . 0 1

011 111 101 010 . 000 001

Therefore, 3752.01(8) is equivalent to 011 111 101 010.000 DOI
. (2)

.

Binary to Octal Conversion

The method of conversion from binary to octal is "conversion by inspection." To

make this conversion, arrange the binary bits in groups of three, beginning at the binary

point and proceeding to the left (for whole numbers) and to thy right (for fractions).

If either the extreme left or right groups contain fewer than three bits, fill out the

groups with "O's." Study the following conversion of 11010111110.000101(2) to

011 010 111 lie . 000 101

3 2 7 6 . 0 5

11010111110,000101
(2)

is equivalent to 3276.05
(8)

.

Summary of Conversions

Decimal to Binary (INTEGERS). Divide by 2 and save remainders (LSD first).

Decimal to Binary (FRA(TIONS). Multiply by 2 and save overflow (MSD first).

2-q

134-

Binary to Decimal (INTE(ERS).)atiply NSrlb 2 and add next digit to the right to

product; repeat until ell digit, are used up.'

Binary to Decimal (PRACTIONS). Look up on a negative power of 2 table.

When converting from =MAL to OCTAL and OCTAL to mom, use the same sequence as

used in binary, except for octal use 8 as the underlined number.

Binary to Octal. Starting with the radix point, group the binary digits in three's

and exprees as octal.

---sprucrIams

Octal to Binary. Keep the radix point and express each octal digit as its equiva-

, lent three binary digits.

ARITHMETIC OPERATICOS

The basic rules for addition and subtraction are the same for any numbering system--

decimal, octal, or binary. The rules are as follows:

Addition

1. When adding like signs, perform a straight addition and retain the sign.

2. When adding unlike signs, subtract the smaller from the larger and retain

the sign of the larger value.

Subtraction

When subtracting (either like or unlike signs), change the sign of the subtra-

hend and proceed according to the rules for addition.

Decimal Addition

Decimal Subtraction

9 -16 54

4 -37 -32

13 -53 22

9 -76 61

(-) -2 (-) -42 (-) 34

11 -34 27

When a carry of 1 is required to complete decimal addition, or when a borrow of 1

is required to complete decimal subtraction, notice what value this 1 represents in the

decimal nuMbering system. It represents one times the radix of the-decimal system

(i.e 1 X 10 or 10). This fact, often overlooked in familiar decimal addition and eub-

traction, must be understoodcln order to correctly perform addition and subtraction in

the octal or binary numbering systems.

The 1 which may be carried or borrowed in octal addition and subtraction represents

one times the radix of the octal numbering system (i.e., 1 X 8 or 8). Likewise, the 1

which may be carried or borrowed in binary addit!on and subtraction represents one times

the radix of the binary system (i.e., 1 X 2 Or 2). Keep these facts in mind for correct

octal or binary addition and subtraction. (See Appendix F for octal and binary tables.)

2-10

Octal Addition

16(10 -47(8) 7
(8)

-471
(8)

211 16-, on 21.§.
-2340),

16
(8)

-725(8)

Octal Subtraction

Binary Addition

Binary Subtraction

Radix Complement

(-)

. .26
(8)

7
(8),

-6
543

(8)

(-) -4672 (-)

65
(8)

16

-17
(8)

-1651
(8)

47
(8)

1
(2)

110
(2)

-11
(2)

1(2), -01112), -10(2).

10
(2)

11
(2)

-101
(2)

110
(2)

-111
(2)

-1001
(2)

(-) 111
(2)

110(2) (-) :0111(2)

- 1
(2)

- 10
(2)

The radix complement of a number is the inversion of a numeric value, derived by

subtracting the numeric value from the number of counting combinations possible by the

numeric value's positional power. This definition of radix complement is not as diffi-

cult as it sounds, as examples will show.

Eight's Complement (Radix Complement of Octal Numbers)

562
(8)

63
(8)

(-)

(-)

1000
(8)

562

216
(8)

100
(8)-

63
(8)

Eight's Complement

Eight's Complement15
(8)

2-11

1 ?9

4162
(8)

1000
0(8)

(-) 4162

36
16

(8)
Eight's Complement

Two's Complement (Radix Complement of Binary NuMbers)

101
(2)

10
00(2)

(-) 101(2)

011
(2)

Two's Complement

110101
(2)

1000000
(2)

(-) 110101

001011
(2)

Twv's Complement

1310

Note that the Honeywell 6000 series computers use the radix complement of binary

numbers to perform subtraction operationn innide the maehine.

1311

CHAPTER 3

CONCEPTS OF DATA DESCRIPTION

canzerzrz

/3 7

After completion of this chapter, you should be able to demonstrate an understand-

ing of data representation and organization by defining the following terms: bit,

tharacter, word, field, logical record, physical record, and file.

INTRODUCPICN

This chapter will give you a general idea of how data can be reoresented and

eerganized by a computer.. This idea will be utilized in the flowchart problems in

both Chapter 4 and your workbook.

INFORMATION

In any application, related data ts grouped in certain ways. Even the largest

mass of date CAM he treated as a single item. Thus, a dictionary can be considered a

book (single item) or it can be considered a series of ehapters (series of,single items)

or a series of definitions, words, or Characters (another series of single items). In

each case, there 19 90111C pattern by which the items are grouped. Likewise, bodies of

related information arp grouped at all levels of computer usage.

Mnny terms will be defined in this section so that data representation and organi-

ration may be explained. These terms are as follows:

1. Bit - A binary digit Which has either a 0 or I value.

2. Character - One symbol of a set of elementary sysibols, such as those corre-

sponding to the keys of a typewriter.

3. Word - The number of characters which occupy one storage location in the

armory element of a computer (treated as one unit of transfer).

4. Field - A group of characters which are related (specified bv the programmer).

5. ,Logical record (record) - A group of related fields whieh ari! treated as a

mit by the programmer.

6. Physical record - The nueber of logical records that are read at one memory

access of a computer (makes I/0 more efficient).

7. Pile - A number of logical records (which normally have the same format).

Now, to add meaning to the terns defined Above, look at sone of them from a pro-

grammer's viewpoint. A programmer's file may be one of many files on some mass storage

device (i.e., magnetic tape or disk). This file is made up of a specified number of

records which, for simple explanation, will be formatte4: the sans. Each record is

;77F-1nup into lielde, which, as you recall, are simply groups of eharacters/symbols

(i.e., DOG, NAME,, 1245, etc.).

Graphically, a sample 90-eharacter logical record might look like figure 3-1 on

the following page.

3-1

131

1 910 40 41 62 63 67 70 78 BO

13 8

241868826D0E JOHN L. JACRSDNVILLE, FLORIDA 54391 ACTIVB AF

\1Nra0(414k...V.=.19 IMIIMMVif

SSAN NAME CTTET ZIP STATUS

Figure 3-1. Sample Logical Record

ADA124-16

Notice that the fields in the sample record have symbolic naves associated with

them. Host compiler languages (i.e., FORTRAN, COBOL, etc.) allow the programmer to

reference fields by using the name of that field. Incidentally, the kind of characters/

symbols allowed in a particular field would be specified by the programmer setting up

the record format for a file. A file with records formatted like figure 3-1 might look

graphically like figure 3-2.

ADDR F E

RDA124 -17

Figure 3-2. sample Card File

The file represented in figure 3-2 might be an address file for e atudent squadron.

This file might have the syMbolic name ADDR and wvuld be one of many files in a computer.

For records of a file to be ordered, one of its fields is used an a laz field.

This would be the SSAN (Social Security Number) field for the records in ADDS. ADDR

could be sorted in ascending or descending order based en its key field SSAN.

Now look at sone of the previously defined terms from a machine viewpoint. Com-

puters read and transfer data in units called words, which you remenber are the nunber

of characters which occupy one storage location,in the memory element of a computer.

The Honeywell 6000 series computers We a word Which is 36 bits wide. The nueber of

Characters/symbols that can be represented dependm en Which =thine code (1.c., BCD,

ASCII, etc.) is used to represent an individual character/symbol. If Binary Coded

Decimal (BCD) is used, thb Honeywell 36-hit word can represent six BCD characters. This

is because each character/symbol in BCD can be represented by six binary nunbers (see

figure 1-3 and refer to Appendix E).

1 31
3-2

/31
5 6 11 12 17 18 23 24 19 30 35

000010 000100 000001 001000 000110 001000'

A I A -A
11138124-18

Figure 3-3. Honeywell 6000-Vord

The binary withers (0 or 1) in the fipure 3-3 word represent six decimal digits

(241868). It follows that BO Honeyw'ell words would be needed to store each'80-character

record of th ADOR file in figure 3-2.

To facilitate mare efficient input, a computer may retrieve more than one logical

record in a read to a file in memory. The nuMber of logical records read at'one time

ifi called a zbui6cji1 record. In the sample card file of figure 3-2, a physical record

might be opal to ten logical records.

So far this section has emphasized how related data can be grouped, specifically

ea records in files. Data may also be used as single items. Essentiallyoa tangle item

of data would be a field of characters/sythols in memory which is not a field within a

record of some file:--A-Sse single fields are also normally referred to in provamming

languages by using a symbolic name associated with them. ENDO might be the symbolic

name of a single item of data which indicates the number of records in a particular

file in memory. KHT might he the symbolic name for a single item used as a counter to

keep up with the nudber of records read. The symbolic names of data fields (single or

part of record) are often called variables by many programming languages.

This section has defined some basic terms of data representatior .;;nd organization

that give you a general idea of hoo data looks to a progranmer and the machine itself.

Keep this information in mind when' you are solving the flow-charting problems in

Chapter 4.

3-3

currn 4

PROBLEM SOLVING AND FLOWCHARTING

counnvEs

1 40

After completion of this Chapter, you should be able to:

1. Identify the four methoda of solving problem.

2. Identify what is a problem, and define the problem in terms of an algoritbms

3. Define structured progremmdng and list its four objectives.

4. Identify the five control logic structures.

S. Analyze a given problem and use the cortect format and technigUe in writing

the olution to that problem in terms of a flowchart.

INFORMATI ON

PROBLEM SOLVING

This section will concentrate on problem-soleing methods and program design.

Remember, a correct program design is really an ordered list of all processee you would 410

have to perform if you were the computer. If a design does not contain enough informa-

tion for you to solve the problem, it is certainly not detailed enough for you to tell

an "idiot with the speed of light" (the computer) how to solve the problem.

Problem Solution Methods

Selecting and analyzing'prOblem solution methods is important throughout the

prdblem definition phase of computer programming. Although a person mmv solve differ-

ent problems in what appears to him to be the same way, he in fact gets to the solutioi

in one of (or a coabination of) the following four methods:

1. Direct.

2, Enumerating.

3. Scientific trial and error.

4. Simulation.

The first thing to be done in all of these methods is to put the problem into a

proper framework. This framework consists of three parts:

1. Identify the known parts and their relationship to the solution.

2. Identify the solution.

3. Identify the unknown or variable parts.

Moving done this, it becomes a matter of building a string of relationships between the

known parts of the proiblem and the solution to the problem. Unfortunately, it is diffi-

cult to know Which relationships will lead to the most direct solution to the problem.

131
4-1

I

If a person moves efficiently from known parts to solutions, be probsbly has more "feel"

for the problem than someone who stumbles about before finding the right path.

Dina MUM The direct method Se probably the mast widely used of ell preblew

stating methods end, refers, it is so ingrained and habitual that it appears tO be

purely intuitive. For tb1s reason it is extremely difficult to explain or to analyse

it scientifically. If consida; being thirsty a problmme then the solution to the

problem would be "go to t4. water fountain, and get a drink of water." This would be

an example of a direct so intim method.

ENUNERATTIO METNOD. This method la also widely used and,le so simple it might seem

thet there is little reason for even listing it. It conalets of checking every possible

entity that'could s4lve the problem. in other words, If one wished to find the heaviest

book in a library, he would weigh each one, check each weight, and select.ths book with

the largest, weight.

There.are two requirement. for using this method:

1. AlPof the possible solutions must be known.

There must be some criterion against whieh to metch.the possibilities.

SCIENTSVIC TRIAL AND ERROR METHOD. Similar to the enumerating method, scientific

trial ano error is used where the number of possible solutions is very large. A guess

is made ai the answer, attempting to,coma as close as possible to the solution. Then

the guess is exasdned for what it has done for the problem. Based pn the results of

this examination another guess is made., hopefully even closer to the solution than the

previous guess. These ewe are repeated until the solution is found. This 'my at

first appear to be a very primitive approach, but it is very versatile and useful. It

is also wall suited to computers, 48 it la bisically an iterative process emthod.

An excellent use of Scientific Trial and Error would be a common method for taking

the.square root of a number, using a basic four function calculator. Call 'X" the

numb r we want to take the square root of. Then let "G" (the initial guess) be equal

to divided by 2 (i.e., G X/2). Now, using algebraic notation:

SQR f(X/G) + 0/2

If QR and G are equal (or very close) stop calculating; otherwise, qual SQR and

reivaluate the equation.

1 SIMULATION METHOD. The wInulation method of-problem 'solving goes a-step beyond the

sa0ematical model of swalgorithm. This method attempts to make an actual working model

ofl the real world. The working model is set in motion to see what possible outcomes
Might actually occur for a given set of data.

For example, assume the town of Loannisport has a traffic problem. Every day at

5130 P.M. traffic seems to be tiedlup at the main intersection of the town for more than

an hour. The town.council hal decide4 that a more modern traffic signal will get things

moving More quickly. Therefore, the pioblem to be resolved is the timing and display

Sequence of the light. The simulation method seem to be in order here.

Data on traffic flaw is gathered, along with other data that may influence the

problem, such as the nunber of pedestrians using the intersection, schools in the area,

maximum speed limits consistent with safety, etc. A mathematical algorithm is built with

this data and a verlahle. The visriable le the various tilling and display sequences of

the traffii.light. The solution to the problem is a timing and dtsplay sequence which

causes the leaat congestion at the intersectioi."TNE-w4orithm is written for the

4-2

Wm"'

t

computer, and the program is run using different values which yield variowm mem. An

anawer and a solution are two different entities.

Note that an anywer relates to a set of problem specifications where a variable has

been given a specific value, end that value is used in computation. Every tine a differ-

ent sequence for the light was used in the mathematical algorithm, the computer came up

with a different answer. Only one, or at mat a few answers, can he-a satisfactory prob-

lem solution.

The solution to the traffic problem at Loannisport W40 the installation ofm proper-

ly sequenced light at the main intersection. The answer (satisfactory problem solution)

was the specific light sequence which produced a minimum amount of congestion at the

intersection.

The Algorithmic Statement of Problem Solutions

An algorithm is the set specifications or instructions for solving problem. A

mathematical algorithm might be expressed as follows: take a number, multiply it by

itself, add to it twice Itself, subtract one, and call this the result. In algebra this

algorithm can be stated:

R X
2
+ 2X - 1

Note that an algorithm need not be methematical.

A good algorithm ham two properties. First it must be clear. Each step must have

one--snd only oneinterpretation. Everyone reading the'step must be able to accomplish

it in the same way, arriving at the same result. Second, the algorithm mast stop.

To demonstrate the importance of these two properties, consider the fifth step of

an algorithm for making P iood cup of coffee, written: "Add 1 teaspoon of sugar until

the coffee is tweet enough." Note that the concept of eweetness may vary from person to

person, in therefore unclear, and violotes property one. Also, a person with a deformed

sense of taste may never stop adding sugar to the cup, which violates property two. A

better fifth step would be, "Add one teaspooe of sugar," followed by step six, "Taste

the coffee," step seven, "If it is not sweet enough, add another teaapoon of sugar," and

step eight, "Repeat steps nix and tteven until the coffee is sweet enough or ten teaspoons

ot sugar have been added." This moolified algorithm IR clearly stated and will stop.

For the majority of your work we are interested in algorithem that solve the prob-

lem. However, a word of caution is in ordtr. Secause your algorithm spine the problem

does not mean it is a good solution to the problem. An algorithm must only be clear and

terminate. For example, an algorithm to empty the water in a pond might he:

1. "Remove the water from a pond with an 8-ounce glass."

2. "Stop when the pond is empty."

This is a straight-forward unambiguous task that will eventually stop, but it in not a

good solution to the problem.

DIRECT ALGORITHM. A direct algorithm is one that is made up uf2a number of known

steps, and a result is determined by theme steps. The example It X 4 2X - 1 is a

direct algorithm. You can tell lust by looking at the algebraic notation)ust what and

how much is involved in obtaining a result.

4-3

REPETITIVE ALGORITHM. Asepetitive (or iterative) algorithm is one in which some

or all of the stepe of the process are repeated. An example of an iterative algorith;r""

was given In theeiample About making a Lup of coffee. Step six and step seven were

peated until the coffee was sweet enough or tan teaspoons of sugar had been added.

INDIRECT ALGORITHM. Very simple, an ImAirect algorithm is ene that is not direct.

Remember that a.direct algorithm has a number of known steps, and indicates how much

work must be done by looking at it. Consider the previous example which specified the

removal of all water from a pond with an B-ounee glass. It (like the coffee algorithm)

I. iterative, but how many times the process of dumping one glass of water must be re-

posted ia unknown at the beginning.

PrOblem Definition

Quite often when a problem is defined in detail, the problem solution becomes

evident. Ask yourself some questions about this statement, such as: What do we mean

by define in detail? Haw can we define a complex problem in detail? Or, even, why net

just do the job and define the problem as we go? These are all valid questions that

will be answered as we progress through this section.

First, why even worry about defining the problem? To illustrate the need for a

complete problem definition, suppose you were given scale Air Peirce orders sending you

on temporary duty. The orders stated only:

Report to Colonel Arnold Flakbait
123 S. Main St, Rm 461
Washington

at 0800 hours 3 days from today.

Do you have the information you will need to perform the job you have been given?

NO? You're right. How are you going to get there? Plane? Car? Train? Stagecoach?

What do we mean by.today? Now? The day the orders were printed? The day Colonel

Flakbait aaid "Send C.I. Joe to Washington"? For that matter, Washington where? D.C.?

State? Arkansas? Now, suppose you get the dates straightened out, discover you are to

drive, and Washington is in the Northeast U.S. What do you do? Sit down and decide

which highways you have to take to get to Washington, D.C.? I hope you don't go to

D. C. because Colonel Flakbait is expecting to meet you in Washington, Connecticut.

What? You say the Air Force would not issue any orders like the one above? True!

However, you may rest assured that as long as you are a computer ro rammer eo le will

bring you problems that are nor even as well de ined as ourinoposed TIN orders.

Consider, for example, the businessman Who wanted to write a program to computerize

his stock inventory. His program consisted of:

"Dear Computer,

Please take the following information and save it so that you can give

it back ro me in the way I want it when I wart it."

Our businessman followed this statement with his store's inventory list. He was

quite serious and felt he had given the computer all the information it needed to do what

he wanted done. Do you know what he wanted?

Before we jump into writing a program to solve a given problem, there are a number

of things that must.be done. One of the things to be done at the beginning is tc elimi-

nate as many assumptions as possible. Assumptions will probably get you into more

4-4

137

144
trouble than anything else. Do not assune that you know what the prablam is on the firet

telling or reading. Unfortunately, the language used to relate the problem to the pro-

grammer is usually'English. English can have infinite shades of meaning to different

people, which is bad enough, but add a smattering of teehnical jargon, and who can be

sure what is meant. Remember the note from the boss to his euployees? "I'm sure that

you think you understand what you thought I said, but what I meant to say is nor what I

think you have assumed I meant."

Now that you ate well aware of the pitfalls that can be found in the'realm of prob-

lem solving, here are some rules that will help you steer around these pitfalls.

The first rule is to write everything down! 7Don't rely on your memory because

little things will slip by you, or be forgottmt If you don't believe me, what room

number is Colonel Flakbait going tg be in? N6 eatr peeking! The reason you had trouble

remembering the room remitter is beciuse it didn't seem important when you read it. Very

often, facts that seem insignificant or unimportant when the problem is first presented

to you can turn out to be the vital key to the successful solution of the problem.

The second rule is to solve only simple problems. But you know that people are not

going to bring you simple problems to solve. They will solve those themselves. You are

going to be given some problems that will put you into the menble mode. You nest sum-

how make the complex problem simple, which Is easier said than done. But if you were to

examine a complex problem closely, you would discover that it is made up of smaller sub-

problems--each of which is simpler than the whole problem by Itself. Each sub-problem

only contains a part of the problem, much like breaking a pencil in ha/f. Each piece is

smaller than the whole, but together they make up the whole.

THE IDEA OF STRUCTURED PROM1414NC

It has been discovered recently that computer prograna can he written with a high

degree of structure, which permits them to be more easily understood for testing, main-

tenance, and modification. With Structured Programming, control branching in entirely

standardized so that code can be read from top to bottom, without having to trace the

branching logic as is typical for code generated in the past. Structured Programing

represents a new technical standard which permits better enforcement of design quality

for programs. It corresponds to principles in hardware design, where it is known that

all possible logic circuits can be formed out of a suall collection--ANV, OR, NeT--of

standard component circuits.

In Structured Programming, programmers must think deeper, but the end result is

easier to read, understand, and maintain. The standards of Structured Programming are

based on new mathematical theorems and do not require cane-by-case justification. Just

as it is the burden of a professional engineer to be able to design logic circuits out

of certain basic components, so it is the burden of a professional programmer te write

prograns in a structured wav, using only recently standardized branching conventions.

Top Down Programming

Structured Programing also enhances the development of program in a "top down"

form, in which major programa can be broken into smaller programs through a coMbination

of code and the designation of dummy programs called program stubs, which are referenced

or called by that code. By writing the code which calls the program stubs before the

stubs themselves are developed, the interfaces between the calling and the called pro-

grans are defined completely so that no interface problem will be encountered later.

The result of the systematic, disciplined approach of Structured Programming is

higher precision programming than was accomplished before. The testing of such programs

is accomplished more r ly, and the final results are programs which can be read,

illkmaintained, and eodijftbd by other programmers with much greater facility.

Structured Programming Theory

Any program, no matter how large or complex, can be represented as a set of flow-

charts. Structured Programming theory deals with converting large and complex flowcharts

into standard forma so that they can be represented by iterating and nesting a small

number of basic and standard control logic structures. A sufficient set of basic control

logic etructureftconsists of three members (see figure 4-1):

1. A sequence of ewo or more operations (SEQUENCE).

2. A branch to one operation if the condition is True and a branch to another

operation if the condition is False (IFTHENELSE).

3. Perform some peration while some condition la true (DOWHILE).

The baud tructure theorem, due in original form to Bohm and Jacopini*, is that

any flowchart ca be represented in an equivalent form as an iterated and nested struc-

ture in these three basic and standard figures.

Note that each structure has only one input and one output, and can be substituted

for 1st box in a structure, so that complex flowcharts can result. :The key point is

that an arbitrary flowchert has an equivalent representative in the class so built up.

The structure theorem demonstrates that programs can be written in terms of

IFTHENELSE and DOWAILE statements. The idea of an unconditional branch and correspond-

ing statement label is never introduced in these basic structures, and is thus never

required in a representation.

There is no compelling reason in programming to use such a minimal set of basic

figures, and it appears practical to augment the basic set with two variations in order

to provide more floxibility. The variations are: (See figure 4-1.)

1. Perform some operation until ewe condition is False (DOUNTIL).

2. Branch to more than two operations depending on the value of some condition

(CASE).

DOWAILE provides an alternative form of looping strLacture, while CASE is a multi-

branch, multi-join control structure in which it is convenient to express ehe processing

of one of many possible unique occurrences.

A major characteristic of prograns written in these structures is that they may be

literally read from top to bottom; there is never any "jumping around" as is so typical

in trying to read code which contains unconditional branches. This property of read-

ability is a major advantage in developing, testing, maintaining, or otherwise refer-

encing code at later times.

*Bohm, C. and Jacopini, G., "Flow Diagrams, Turing Machines and Languages with Only Two

Formation Rules," Communications of the Association for Computing Machinery, Volume 9,

No. 4, May 1966.

4-6

/445
nor

,

SEQUENCE

V0Y11-111. E

IFTNENELSE

NTR

CAS(

Figure 4-1. Controlled Logic Figures

tit)

Another advantage, of possibly even greater benefit, is the additional program

design work that is required to produce such structured coda. The programmer must think

througb the processing problem, not only writing doom everything that needs to be done,

hoc writing it down in such a way that there are no-afterthoughts with sUbsequent jump-

outs and jump...MA:so no
indiscriminate use of it section of code from several locations

because It "just happens" to do something at the time of the coding. it:steed, the

programmer must think through the control logic of the module complete at one time in

order to provide the proper structural framework for the control. This Jesus that pro-

grams will be written in a much more uniformway because there is less freedom for

arbitrary variety.

Such a program is much easier to understand than an unstructured logical juMble;

readability has been improved. Because of its simplicity and clear logic, it minimizes

the danger of the programmer's overlooking logical errors during implementation; relia-

bility has been improved. And improved readability, in combination with the vest

simplicity obtained by Structured Programming, naturally leads to improved maintain-

ability. 3Purther, because structured code is simple, a programmer can control and

understand a much larger amount of cods. With increased productivity, programming coats

can be reduced.

In conclusion, Structured Programming may be defined as en application of standards

and/or guidelines to computer programming with certain ,oblpc-vce in mind. The objec,-

times are:

1. Readable code.

2. Reliable code.

3. Maintainable code.

4. Increased programmer productivity.

Table 4-1 shows common syibols and their descriptions.

AMIM.MNI.mIMMMmwmmr

Function

Table 4-1

COMMON SYMBOLS AND THEIR DESCRIPTIONS 4111P

Symbol

Ashignment

Addition

Suiltraction

MVitiplication

Division

Exponentletion
* *

Description

Set the left item equal to the contents

(value) of the right expression.

Add the values or contents of the two

adjacent terms.

Subtract the value of the right term from

the value of the left term.

Multiply the values of the two adjacent

terms.

Divide the value of the left term by the

value of the right term.

Raise the value of the left term to the

power indicated.by the valve of the right

term.

4-8

lii

"re

1 4-8

in MN:HARTZ NG

The flowdhart problems in this text are designed to teach students flowcharting

teehniques from a general prohlmar-solving viewpoint, not from a specific compiler lan-

guage viewpoint. With a good foundation in flowcharting techniques, the student hould

be able to readily apply them to the language he'is using (i.e., PDRTRAN, GRAF, or

00BOL).

The following conventions will apply to the flowchart examples in this text:

Some problems may reference files in memory, which for the ogee of thitejit

will be treated as tables in core sneer! (similar to the way cam treats tabular data).

The records of these files (snd the fields within these records) may be accessed by

referencing the file's syobolic name (or the field's symbolic name) with an integer

constant or variable subscript. For example, consider the file named STOPIL with

record format:

NAME

1 - 20

ADDR

21 - 45

COURSE

46 -,69

GD

70

Record five of STIRTIL could be accessed by writing STUVIL(5). Likewise, the NAME field

of record 44 could be accessed by writing NAME(44), the commit field of record 15 could

be accessed by writing MURSE(15), or the CD field of record N could be accessed by

writing GD(N), where N equals an integer constant. Remember this method of accessing

records and fields within records is for problem En this text, and say not work in sooe

compiler languages (i.e., FORTRAN).

Refer to Appendix A for a description of standard flowchart syabole.

Sequence Flowchart

A sequence flowchart is simply a logical sequence of operations to be performed

exactly one time.

Problem 1

A farmer has three ferns (FARMA, FARMS, and FARMC). The dimensions; (In feet) of

these farms are called LCTNA, WDTRA, LCIRB, WDTHB, LGTHC, end WDTHC. Find how tong it

will take to plow, disc, and plant all three farms.

The farmer can plow 1.5 acres an hour, disc 2 acres an hour, and plant 2.5 acres

an hour. Also, find how many feet of fencine it will take to fence each farm and how

many acres are in each farm. The following variables will he used to represent the

answers: FLOW - the time needed to plow all three farm; DISC - the title needed to dive

all three farms; PLANT - the tine needed to plant all three farms; PWCA - the amount of

fencing needed for FARMA: FNCB - the amount of fencing needed for FARMH; FMCC - the

amount of fencing needed for FARMC; PARMA - the number of acres in PARMA: FARMB - the

number of acres in FARMB: FARMC - the nuMher of acres in FARMC; and ACRES - the nuMher

of acres in all three farms.

4-9 11,4w

STEP ONE (List ths operations to bs
pariormad)

RICA (LCIIMA + WDTRA) * 2

STEP TWO (NuUber the
sequence of operations)

MCI (WTMB + WDTRB) * 2 9

FMCC 0 (LCISC + WDTRC) * 2 10

PARMA LGTRA * WDTRA / 63,560 1

FARMS 0 LOMB * MRS / 43,560 2

FARMC LOTRC * WMTRC / 43,560 3

ACRES EMMA + FARMS + FARMC 4

PLOW ACRES / 1.5 5

DISC ACRES / 2 6

PLANT 116 ACRES / 2.5 7

STEP THREE (Flowchart ths sequence of operations) (See figure 4-2.)

START)

FARMA LOMA * WDTRA / 43,560

FARMS LOMB * WIMHB / 43,560

FARMC LOTRC * WDTRC / 43,560

ACRES mi VARNA + FARMS + FARMC

PLOW ACRES / 1.

DISC ACRES / 2

PLANT ACRES / 2.5

nol,
FNCA (LOTRA + WDTRA) * 2

MICB (LGTRB + WDTRB) * 2

MCC marn winvo * 2

STOP)
RDA224-19

Figure 4-2. Sequence Floichart

4-10

1 3

Branching Flowchart

A branching flowchart is sisply a mequence flowchart which allows one or more of its
operations to be decisions, providing a break in the sequence of operatiens performed.

Problem 2

If CAR contains the status of an auto (new or used) and NPMTS contains the number of
months the auto is to be financed, then set KFCU and BANK to the appropriate interest rate
based on Chart 4-1 and compare them to determine where to finance the auto (for the lowest

interest rate). The following variables are given: CAR - status of the auto (1 New or

2 Used); srmrs - the number of months auto is to be financed; KFCU - the interest rate
the credit union will finance an auto; and BANK - the interest rate the bank will finance

an auto.

Solution 2

STEP ONE (list the operations to be performed)

I. auto new (CAR =. 1)4
Yes, go to 2.
No, go to 4.

Is new auto NPMTS 367

Yes, go to 6.
No, go to 3.

Is new auto NPMTS 247

Yea, go.to 8.
No, go to 10.

(Since NPMTS 0 36 or 24, then WPMTS is 12)
Is used auto NPMTS = 247

Yes, go to 12.
No, go to 5.

Is used auto NPMTS 147

Yes, go to 14.
No, go to 16.

(Since NP)!TS 0 24 or 18, then NPMTS 1. 12)

Compare BANK to KFCU
CT, go to 20.
EQ, go to 21.
LT, go to 19.

BANK + 12.0
KFCIT 0.5
Co to 18.
BANK + 8.0
KFCU - 8.0
Go to 18.
BANK 4.0
KYCU .N 5.0

Go to 18.
BANK 12.0

KYCU 10.0
Go to 18.
BANK 9.0
KPCU 8.75
Go to 18.
BANK = 6.0
!MU 6.5
Co to 18.
Write "BANK"
Write "KFCU"
Write "EQUAL"
Stop processing

STEP TWO (nunber the
sequence of operations)

1

2

3

4

18

6
1

8
9

10

11

12

13

14

15 '

16

17

19

20
25

STEP THREE (Flowchart the sequence of operations.) (See figure 4-3.)

4-11
11 1

ho

115

C, START)
NOWSEDI YES NM

NPNIS = 24
BANK = .12
KFCL1= .10

Y S BANK = .12
KFCLY= .105

BANK = 04
K Fcu 065

NPNTS =
BANK = 09
K FCu= 0B75

BANK = .04
K FCLI = ,05

NFNATS ---- 24
YESNO BANK =

KFCu = .09

WRITE
"BANK"

BANK KFCU
WRITE

"K FCU"

wRITE
"EQUAL-

STOP

Figura 4-3. Branching Flowchart (Multiple Decision)

RDA124-2!

2.-

WRITE
-K FCU"

W RITE
BANK"

STOP

Figure 4-4. Alternate Compare Operation

Loop Flowchart

RDA124 -26

A loop flowchart is a branching flowchart with the addition of a loop. The four

parts of a loop are:

1. Initialize - set the counter to zero (performed outside the loop).

2. Test - make a decision to see if the number in the counter is equal to the

total number of times the operation is to be performed.

3. Perform - this Includes the part of the flowchart that shows the operations

to be performed.

4. Modify - change the counter to shot., the number of times the operation ham

been performed.

A variation on the above routine is to initialize the counter'to the nurbet of

times the operation Is to be performed, test for zero, and modify the counter by

decrementing the counter by one each time the operation im performed.

Problem 3

Continue with the problem solved in the Branching Flowchart section, This process,

depicted in figure 4-3 (refer to this predefined process as the symbolic name FINANCE),

determines where one car can be financed econnmically. Show hnw ihiS rtrOe?04 might he

used to process a file which contains purchase informatioe on lOO automebiles. Refer

to Problem 2 for the variables used in this orohlem.

4

L7, fill)

*elution 3,

STEP ONE (Liartha operations to be performed) STEP TWO (Number the
soquense of operations)

is COUNT 100?
Yes, go to 7.
No, go to 3.

Read cord from file

Call predefined process FINANCE

COUNT COUNT + 1

Co to 2.

Stop processing

2

3

4

5

6

7

STEP THREE (Flo/Chart the sequence of operations.) (See figure 4-5.)

Search Flowchsrt

A search flowchart is one which lookm for m specific record within a file, baaed

on some key field. The method used to search for a record within a file is basic to

ell other m4n1Ru1ationa of records within the file, since you must first locate the

desired record before you can Change or delete it.

Preblem 4

A large car rental company has data pertaining to its cars in,a conputer file.

CAR is a file in, memory with up to 500 records, eadh containing the following variables:

SERE - car serial number; WE - car mileege; MNDS - mileage next service is due; and

VRH - vehicle retirement mileage. ENDD is another variable which indicates the nuMber

of records in CAR. There is a stack of 50 cards in the card reader, each containing the

following variables; SERNO - car serial nusiber and PMLGE - present mileage of car. For

each eaid read, use SERNO to locate the record in CAR with the sane serial nunber.

Replaee the old mileage with the new mileage figure (PHILE) and check to see if the

mileage has reached or exceeded the vehicle retirement mileage or the next service due

mileage. If so, print out "RETIRE" or "SERVICE" as applicable, and also pr4st the

serial number, mileage, mileage next service due, and vehicle retirement miiiage. If

the serial nuMber from any card read does not have a matching serial number in CAR,

print an error message.

_

SERN

1-8
,

MILE

9-14

MNSD

15-26

VRM

21-26
.

SERNO

1-8

PMLGE

9-14

dr 414

1 S

.0s4,

Ti

*

START

COUNT 7

/ READ A
R ECORD

FINANCE
(F IGURE

4-3)

COUNT
COLIN T +

Figure 4-5. Loop Flowchart

4-15

RDA12d-i7

!glutton

STEP ONE (List the operations to be performed) STEP TWO (*umber ths
esiusnce of operations)

Read a card 3

K 1 2

Is card reader empty?
Yes, go to 17.
No, go to 2.

Is SENO SERN(K)?
Yes, go to 9.
No, go to 5.

1

4

MI.GE(K) PNLGE

K K 4. 1 5

K GE ENDD? 6

Yes, go co 7.
No, go to 6.

Write error esssage. 7

Go to 1. 8

Is MICE(K) GE VRM(E)7 10

Yes, go to 12.
No, go to 11.

Is NLGE(K) GE MNSD(K)?
Yes, go to 13.
No, go to 1.

Write "RETIRE"

Go to 15.

Write "SERVICE"

Witte SERN(K), KLGE(K), MNSD(K), VAM(E)

Go to 1.

Stap processing

STEP THREE (Flowchart the sequence of operations.)

See figure 4-6.

,16

11

12

13

14

15

16

17

%E."

= 1

READ A CARD

15(o

START

K K

YES ML GEM)
PIALG

STOP

YES WRITE
"RE TIRE

NO YES Iv RITE
SERVICE"

ERNW)
WRITE

S, PALGEM),
MNSOW). V MK)

Figure 4-6, Search Flowchart

4-17

-1 5 I

Ur iA I 74- q

Sort Flaochart

A sort flowchart is actually a modified search flowchert which arranges file records

in ither ascending or descending order. One or more key fields within a record are used

to sort a file. The sort procaas utilises 4 key field to search through a file, comparing

the key field of one record with the key field of the next aeoueatial record until two

recoids are found to be out of order. These records must then swap places in the file.

Next, go back to the beginning of the file and repeat this process of searching and swap-

ping until you reach an end of file. This process is a Simple Exchange Sort. Variatioua

of this sort and alternate sort routines may be presented by your instructor in this block.

Problem 5

STU is a file in memory with up to 100 records, eaCh containing the following earl-

ibles: NAME - name of student and PCC - percentage grade of student. NENT is another

vuriable which indicates the number of records in sru. STU is sorted in alphabetical

order. Sort the file In descending order, based on key field FCC. BUFF is a temporary

storage location.

NAME PCG

1-17 18-20

Solution 5

BUFF
1-20

STEP ONE (List the operations to be performed)

J 1

K* 2

Is K _GT NENT?
Yes, go to 10.
No, go to 1.

Swap STU(J) with sru(K).

Go to 1.

Is PCG(.1) CE PCG(K)?
Yea, go to 5.
No, go to 8.

K K + 1

It .1 NEW?
Yes, go co 10.
No, go to 4.

STEP TWO (Number the
sequence of operations)

1

2

3

8

9

4

6

7

Stop processing 10

STEP THREE (Flowchart the sequence of operatious)

See figure 4-7.

4-18

15.)

1

158

BUF F STU(J)
STU(J) STU(K)
STU(K) BUFF

RP111.74-71?

Figure 4-7. Sort Flowchart

4-19 I 53

Insrtion Plowchsrt

An insertion flowchart is also a modified search flowchart, which inserts one or

more records into a file at a specified location. It the file is in random order,

records are inserted at the end of the file (if there is room), If the file is in

ascending or descending order, records are inserted at the proper location within the

file (if there ts room). This typo of insertion consists of the basic search to find

the proper location for the new record, exchanging the new record for the old, moving

the old record to the next location, and moving that record to the next 7 cation, and

no on until the last meaningful location in the file is reached. After inserting the

last record, a counter must he incremented to reflect the new file entry. This com-

plates the process for single insertion. Repeat the process for multiple insertion of

records.

Records can be inserted only into a variable-length file, not into a fixed-length

file. When it is necessary to add records to a fixed-length file, a new file must be

built of sufficient size to hold all old and new records.

Problem 6

AUTO is a file in memory with up to 300 records, each containing the folloWing

variables: SERN - car serial number; MLGE - present car mileage; CST - car cost; and

GAS - miles per Fallon rating. LAST is another variable which indicates the current

number of records in AUTO. AUTO is arranged in random order. Insert a single record

NEW into AUTO (it there is room).

----,
SERN
1-6

MLGE
7-12

CST
13-18

CAS
19-20

NSERN
1-6

NMLGE
7-12

NCST
13,-18

NGAS
19-20

Solution 6

STEP ONE (Liat the operations to he performed) STEP TWO (Number the-
sequence,of operations)

Is LAST GT 300?

Yes, go to 2.
No, go to 4.

Write error message.

Go to 7.
3

M = LAST + 1
4

AUTO(M) NEw
5

LAST = LAST + I
6

Stop processing.
7

STEP THREE (Flowchart the sequence of operations.)

See figure 4-8.

4-20

/677

* A

LAST + I

ALITO(M)
SEW

LAST=
LAST+I

START

ES
WRITE
ERROR

MESSAGE

Figure 4-8. Insertion Flowchart
(Random Single Insertion)

STOP)

RD4124 -30

PrOblem 7

NYFD is a file in memory with up to 2,000 records, each containing the following

vyriables: NAM - employee name and SSN - employee social security number. ENDD in

another variable which indicates the number of records in NYPD. NEW is a file in memory

with up to 50 records, each containing the following variables: KRANZ - new employee

and ESSN - new employee social security number. STOPP is another variable which indi-

cates the number of records in NEW. Both ftles are in descending order, based on social

security number. Insert all records of NEW into the proper location within NYPD (if

there is room).

I WANE
1-20

SSN
21-29

4-21

MANE ESSN

1-20 21-29

i=±_,

Stlution 7

STEP ONE (List the operations to be performed)

Is ENDD + STOPP QT. 2,0007
Yes, go to 4.
NO, go to 2.

STEP TWO (Number the
sequence of operations)

1

Write error message.
4

Go to 20.
5

N 1
2

Is N GT STOP? 3

Yes, go to 20.
No, go to 6.

= 1
6

Is KSSN(N) CT SSN(M)? 7

Yes, go to 10.
No, go to 8,

)1 M + 1 8

Is Pi CT MDDY 9

Yes, go to 16.
No, go to 7.

Is M GT ENDD?
Yes, go to 16.
No, go to 11.

10

NYPD(M) NEW(N) 16

ENDD = MOD + 1
17

N = N.+ 1 18

Go to 3.
19

BUFF = NYPD(M)
11

NYPD(M) NEW(N) 12

NEW(N) BUFF 13

M M + 1 14

Go to 10. 15

Stop processing.
20

STEP THREE (Flowehart the sequence of operations.)

Sea figure 4-9.

4-.2)

a

SURT

wwwww.1....r.....memmar

SSN(N)

sS.046)

Y S

YES

WRIT E
ERROR

NEW OE

BUF F NYPO(M)
N YPINM) WY(N)
NE WOO - BUFF
M M41

16/

1,(STOP)

HYPO(MI NE WiNt
E NOD E NOD I
N-N#t

Figure 4-9. insertion Flowchart (Ordered Multiple insertion)

4-23 157

DA124-11

Deletion Flowchart

A daletion flowchart is also a modified earch flowchart, which deletes one or more

records from a file at a specified location. Deletion of a single record consists of a

haste siwrch to find the record to be deleted, decrementing the file counter to reflect

the deletion, and paching:the file to eliminate empty locatialis caused by.the deletion.

Repeat this process for multiple deletions. Records may be deleted from both fixed-

length and variable-length files.

Problem 8

NYPD is a file in memory with up to 2,000 records, each containing ihe following

variables: NAME - employee name and SSN - employee social security number. ODD is

another variable which indicates the number of records in NYPD. GONE is a file in mem..

ory with up to 50 records, each containing the following variables: KNAME - retired

employee and KSSN retired employee social security number. STOPP is another variable

which indicates the number of records in GONE. Both files are in ascending order, based

on social security number. Delete all records for retired employees from NYPD.

NAME
1-20

SSN
21-29

Solution 8

STEP ONE (List the operations to be performed)

X 1

Is X CT STOPP?
Yes, go to 16.
No, go to 3.

Y 1

Is KSSN(X) SSN(Y)?
Yes, go to 5.
No, go to 11.

Y Y + 1

Is Y CT ENDA?
Yes, go to 13.
No, go to 4.

X X + 1

Co to 2.

STE TWO (Number the
sequence of operations)

1

2

3

4

11

12

13

14

Is Y ENDA?
5

Yes, go to 6.
No, go to 7.

ENDA ENDA + I
6

Co to 13.
15

Y
7

Y Y +
8

NYPD(Z) w NYPD(Y)
9

Co to S.
10

Stop processing.
16

4-24

15

/43
%we

STEP VI108 (Vlatchart the sequence of operations.)

ke figure 4-10.

4

(START

X = 1

Y

f I

NYPDIZ)
NYPD(Y1

NO

40.144.44--=4.4.44,4.444=4-

STOP

ENDO

Figure 4-10. Deletion Flmichart (Multiple Deletion)

4-25

59

101,-

E NOV
f NOV - I

vflAY'.1-77

Marge Flowchart

'A merge flowchart in essentially a modified insertion flowchart, which combines two

ordered files into a third ordered file. Simply search through both files sequentially,

building the new file in the &elm! order. The Renner of search depends on the organi-

zation of both original files and the desired organiaatien of the new file. The.,organi

ration of the three ,files will determine ths original setting of your counters, end thd

test values used. For example, if all three files nre In ascending order, set the

counters equal to 1 and test for the last record of a file (for all three files). If

you have one file ascending, one descending, and want to produce an ascending new file,

.set the descending file counter equal to the total number of records in that file (test-

ing for equalto zero), and set the other two ascending file counters equal to one

(testing for the last record in the file).

Problem 9

MAIN in a file in memory with up to 1,800 records, each containing the following

variables: NAKA - customer name and BAL - the customer account balance. TOT1 is

another variable which indicates the number of records in mArN. NNANcs is a file in

memory with up to 400 records, each containing the following variables: BNAME -

customer name and BBAL customer account balance. TOT2 iN another variable which

indicates the number of records in BRANCH. NUBANK is a new file in memory with up to

2,200 record', each containing tha following variables: NUNAME and NUBAL. TTOT is

another variable which indicates the nanber of records in NUBANK.

1-20

HAL
21-28

BNAME
1-20

BBAL
21-28

NUNAME
1-20

NUB&
21-28

This problem concerns a main hank and branch bank which maintain separate small

computefs and bookkeeping sections. They decide to install one large computer at the

main bank and an inquiry station at the branch. The separate files of the two banks

must be merged into a new file in descending order baaed on key fields BAL and BBAL. At

present, MAIN is in descending order and BRANCH is in ascending order.

Solution 9

STEP ONE (List the operations to be perforned) STEP TWO (Number the
sequence of operations)

1

2

3

4

TTOT TOT1 TOT2

A 1

C 1

B TOT2

Is C CT TTOT?
Yes, go to 17.
No, go to 6.

5

Is A CT TOT1?
6

Yee, go to 8.
No, go to 7.

Is B 0?
7

Yes, go to 13.
No, go to 12.

Is BAL(A) CT BBAL(B)?
12

Yes, go to 13.
No, go to 8.

4-26

/4 5

.74-

NUBANR(C) MAIN(A) 13

A A + 1 14

C C + 1 25

Go to 5. 16

NUBANK(C) BRANCH(B) 8

.3013- 1 9

C C + 1 10

Go to 5. 11

Stop processing. 17

STEP THREE (Plmochart the sequence of operations.) (See figure 4-110

Figure 4-11, Merge Fluwchartt

4-27
Gj

Uct(t)

FLOWCHART ANALYSIS

Tbe analyst* of,* flowchart should yield three thingst.

1. A description of thaoperation sham in each black.

2. The purpose or what is accomplished by the flowchart.

3. The form of the data at any specified point and what form of data will result

in branching to ach output from a deciniun block. Since you have already dram several

flowchurtn, you may be able to analyse the following flowcharts with little difficulty.

In ordtr to obtain the most help from thin ection, you should NOT read the explanations

until after you have studied the flowchart and made 4 decision on how you would explain

it. Therloyou should read the explanation and see if your explanation agrees. An axr

planatiaeWill also be given for the general purpose of that flowchart. .Note that each

block of the flow is identified with a letter; these letters are used to reference the

explanations.

STU is a file in memory with up to 100 records, each containing the following

variables: NAME and PM ENDO is another variable which indicates the number of records

in STU. (See Figure 4-12 below.)

(STAR7)

t40 YES

(E)

[TEMP STUiC (II
STUIC I I) : STUIC T1)
STIPCT71 7 TEMP

YES

C

YE

Figure 4-12. Flowchart 1

4-28

RDA124-35

/4 7

%mine

ito8

Analysis of Flowchart 1

Block (A) prevents attempting to sort a file with fewer than two records. If Di=

is equal to 0 or 1 the flow will stop. If ENDD is equal to 2 through 100, it will br

to Block (B). 4*

0
Block (B) initializes the counters on eadh exchange loop. CT1 and CTZ are initia

ized to 1 and 2, respectively.

Block (C) tests the value of the counter each time two consecutive records are foun

to be in the desired order. It branches to sTOP after the next to the last record ham

been compared to the laat record and found to be in the desired ordei. If ENDI1 is equal

to 100 and CTI is equal to 1 through 99, it will branebto Block (E) and compere the next

ewo records. If ERDD and CT1 are both equal to 100, it will stop.

Block (D) exchanges the values of two consecutive records to obtain the desired

order.

Block (E) compares the value of PCG in ea h record gainst the value of PCG in the

next sequential record. If the lower numbered record has a lower value, it will branch

to Block (D). If the lower numbered record hall an equal or higher value, it will branch

to Block (F).

Block (F) increments the counters when two records are found to be in the'desired

order.

The overall purpose uf Flowchart I is to sort file STU into descending order, based

on values in key field PCG.

Analysis of Flowchart 2

Block (A) prevents attempting to insert a new record-into a full file. If STOPP is

equal to 300, it will branch to Block (B). lf STOPP is equal to 1 through 29q, it will

branch to Block (C).

Block (B) writes "File Full" on the line printer to inform the operator that CAR

already contains its maximum number of records.

Block (C) initializes the counter.

Block (D) compares the counter (which counts the loops) with STOPP to insure that

we do not continue exchanging records after we reach the end of CAR.

(E) compares the values of NSERN and SERN. it branches to Block (H) if'

NSERN is smaller than SERN and branches to Block (F) if NMERN is equal to or greater

than SERN.

Block (F) increments the counter.

Block (G) inserts the record into the first slot in the file that contains no

meaningful data and updates STOP? to reflect the new last record In CAR. Since golv

one record is to be inserted, the flowchart stops.

The overall purpose of this flowchart in to insert the record NUCAR into file CAR

at its proper location.

4-29
1.)3

(C)

z 1

(F)

Szsl

START

CAWS) =
NUCAR

G)

SWAP z CAWS)
CAR(S)= NUCAR
NUCAR% SWAP

Figur. 4-13, FlavOart 2

4-30

.1 64

STOP)

RDA1g4V

\ 70
FLOWCHART CORRECTION

Due to the transfer of personnel, one programmer may start on the solution to a

problem and another be assigned to complete the program. Also, it is common practice

to ask for help in debugging a program because familiarity with the solution sometimes

causesthe originator to ovurlook errors another person can readily see. For whatever

reason, there will be times when you are required to analyze a flowchart that someone

else constructed and find one or more errors.

Many times errors are easily 'spotted, but if they cannot be locatud, the following

procedure should be of. value.

1, Analyze the problem as if you were going to construct a flowchart- and a

program.

2. Analyze the flowchart that sena designed to solve the problem.

3. Compare the problem analysis with the flowchart analysis and check off each

operation (make your checkmarks on the problem analysis). During this comparison, look

for index registers being incremented instead of decremented or vice versa, incorrect

value being used for testing a loop, index register not being initialized at the proper

time, yes and no legs reversed, exchanging on equal (EQ. (Q, LQ), etc.

4. Determine if the problem analysis contains one or more operations not shown in

the flowchart analysis, thus indicating omission from the flowchart and the program.

(This will be revealed by the absence of a checkmark beside the operation.)

Flowchart analysis and flowchart corrections are done concurrently in most instances.

In fact, you cannot expect to correct logic unless you fully understand the problem being

solved. In conclusion to this discussion, one point must be restated--there are always

two or more correct solutions to a problem. That is why, when you correct someone else's

work, comparing his flowchart with your problem analysis offers the best chance of com-

hining your efforts to produce a successful program.

4-31

0

APPENDIX A
(Extract from Chapter 6 of AFM 171-10. Vol I)

Chapter 6
FLOWCHART SYMBOLS FOR DATA PROCESSING

/ 7/

020601. General. The purpose of this chapter is to establish -flowchart symbols for-use

in the preparation of flowcharts for automatic data processing.systems and applications.
These symbols are the American Standard Flowchart Symbols which were approved by

the Department of Defense.

020602, Responsibility. It I. mandatory that the American Standards Association sym-
bols be used by the Air Force in the preparation of all new and revised ADPS flowcharts.
Existing flowcharts tteed not be reaccomplished for the sole purpose of converting to the

American Standards Arsociation symbols.

020603. Flowchart Symbols.

a. Symbols Represent Functions. Symbols are used on a flowchart to represent
the tunctions of a data processing system. These functions are INPUT/OUTPUT.

PROCESSING, FLOW DIRECTION, and ANNOTATION.

A basic symbol is established for each function and can always be used to
represent that func tion. Specialized symbols are established which may be used in place

of a basic symbol to give additional information.

The size and the dimensional ratio of each symbol may vary depending on its

specitiL use but not to the point of losing its identity.

b. it...q.s.._§.02.b.2.12.,

SyMbols

=7
Desc riztions

Input/Output Symbol, The symbol shown represents
the input/output function (1/0); i.e. , the making
available of information for proce ssing (input) or
the recording of processed information (output).

Processing Symbol. The symbol shown reprefients
the processing function; i.e. , the ptocess of exe
cuting a defined operation or group of oiwrations
resulting in a change in value, form, or location of

information, or in the determination of which of
several flow oirections are to be followed.

Flow Direttion Symbol. The symbols shown repre-
sent the flow direction function; i. . , the indic.tion
of the sequence of available information and execu-
tie%. operatiGns. Flow direction is represented by

lines drawn between symbols. Normal direction
flow is from top to bottom and-left to right. When
the flow direction 4s not top to bottom and left to
right, open arrowheads shall be placed on reverse

A- I

1 Sr;

AMR Ihme.

Sym ls Descriptions,

VIZ

direction Bowlines. When increased clarity I.
desired, open arrowheads can be placed on normal
direction Bowlines. When Bowlines are kyroken due
to page limitation, connector symbols shall be used
to indicate the break. When flow is bidirectional, it
can be shown by either single or double lines but
open arrowhead. shall be used to indicate both nor-
mal direction flow and reverse direction flow.

Annotation Symbol. The symbol shown represents
the annotation function; i.e., the addition of descrip-
tive comments or explanatory notes" as clarifica-
tion. The broken line may be drawn either on the
left as shown or on the right. It is connected to the
Bowline at a point where the annotation is meaning-
ful by extending the broken line in whatever fashion
is appropriate.

C. Specialized Input/Output Symbols. Specialised I/0 symbols may represent the
I/0 function and, in addition, denote the medium on which the information is recorded or
the manner of handling the information or both. If no specialized symbol exists, the
basic I10 symbol is used. These specialised symbols are:

Symbols I2.1=1A2.1.,Le

Punched Card Symbol. The symbol shown repre-
sents an I10 function in w hi c h the medium is
punched cards, including mark sense cards, partial
cards, stub cards, etc.

E

Appendix A

Magnetic Tape Symbol. The symbol shiiwn repre-
sents an I/0 function in which the medium is mag-
netic taw..

Punched Tape Symbol. The symbol shown repre-
sents an I/0 function in w hit. h the mei:limn fit

punched tape.

Document Symbol. The syrnbo) shown tepresents
an I/0 function in which the medium is a .document.

Manual Input Symbol. The symbol shown represents
an I/0 function in which the intormation.is entered
manually at the time for isr(mvssing. b means cit
unline keyboards, swit, It settings, pushhuttt ins. rd
T end(' r

A-Z

*
Symbols. Descriptions,

C C

/
Display Symbol. The symbol shown represents an
ITO function in which the information is displayed
for barnan use at the time of processing, by means
of online indicators, video devices,, console print-
ers, plotters, etc.

CommUnication Link Symbol. The simbol shown
represents an I/O function in which information is
transmitted automatically f r om one location to
another. To denote the direction of data flow, the
symbol is always drawn with superimposed arrow-
heads.

Online Storage Symbol. The symbol shown repre-
sents an I/O function utilizing auxiliary mass stor-
age of information that can be accessed online;
e. g. , magnetic drums, magnetic disks, magnetic
tape strips, automatic magnetic card systems or
automatic microfilm chip or strip systems.

pff#ne Storage Symbol. The symbol shown repre-
sents any offline storage of information, regardless
of the medium on Which the information is recorded.

d. Specialized Processins Szmbols. Specialized processing symbols may repre-
sent the processing function and, in addition, identify the specific type of operation to be
performed on the information. If no specialized- symbol exists, the basic processing
symbol is used. These specialised symbols are:

Symbols De s c riktions

pecision Simbols, The symbol shown represents a
decision or switching type operation that deter-
mines which of a number of alternate paths is tO be
followed.

Predefined Process Symbol. The symbol shown
represents a named process consisting of one or
more operations or program steps that are speci-
fied elsewhere; e g. , subroutine or logical unit.

Manual Oyeration Symbol. The symbol shown
-.represents any offline process geared to the speed

Xa human being.

A-3 Appendix A

Symbols Descriptions,

C

1 1 4-

Auxiliary Operation Symbol. The symbol shown
represents an offline operation performed on equip-
ment nOt under direct control of the central proc-
essing unit.

Connector Symbol. The symbol shown represents a
junction in a line of flow. A set of two connectors
is used to represent a continued flow direction when
the flow is broken by any limitation of the nowt hart.
A set of two or more I" onntetors is used to repre-
sent the function of several flowlipes with one flow-
line or the junction of one flowline with one of
several alternate flowlines.

Terminal Symbol. The ymbul shown represents a
terminal point in a system or communic ation net-
work at which data tan enter or leave; e, g., start,
stop, halt, delay, or interrupt.

1. Existing flowchart templates, i.e. , those provided by the manufacturers, en.ty
be utilized to form the flowchart symbols above.

020604. Summary of American Standard Flowchart Symbols.

A summary of flow(ha rt symbols is illus!rated the foll,/wing page.

Appendix A A-4

c' 9

SUMMARY OF FLOWCHART SYMBOLS

BASIC SYMBOLS

1NPUT/OUTPUT PROCESSING iLOW DIRECTION ANNOTATION

PUNCHED
CARD

MAGNETIC
TA4PE

PUNCHED
TAPE

DOCUMENT

DE CISION

PREDEFINED
PROCESS

CONNECTOR

ausimallazz
demPII=1lp

MANUAL
INPUT

DISPLAY

COMMUNICATION
LINK

ONLINE
STORAGE

OFFLINE
STORAGE

SPECIALIZ&D PROCESSING SYMBOLS

AUXILIARY
OPERATION

MANUAL
OPERATION

ADDITIONAL SYMBOLS

TERMINAL

/ 75

MR WMOR =
E:=1

A- 5 Appendix A

1 (0

APPENDIX

STOIREI MOAN marmacrwas

Every problem a computer handles, from adding a column of figures to analysing cos-

mic rays, must- first be broken down by a humin programmer into simple steps thai the

computer can solve with its yes-no language of binary notation.

With early computers, the programmer had to set up these steps by plugging wires

into holes in the computer's problem board, in a manner Similar to the wiring of the

ra)1 557 Interpreter. These wires established "route of reaeoning" along which the

problem traveled through the interpreter. By manipulating the wirei, the programmers

were able to choose different routes for different problems. However, even simple

problems frequently required hours of painstaking setup t4me-for each program tv be run.

With the advent of practical, main-storage devices, however, the picture changed

radically. It'became possible to write instructions for the computer and to store these

instructions in the main storage unit. This set of instructions was called a proaram.

Since these instructions could be keypunched on cards and then loaded quickly into

core, converting the computer workload from one problem to another became a quick and

easy procedure. This gave the computer an almost unlindted flexibility. it allowed the

computer to be applied to a great number of different procedures by simply reading in,

or loading, the proper program into memory.

The Stored Program

A program le the complete plan for the solution of a problem by a computer, in-

cluding the complete sequence of machine instructions necessary to-solve the problem.

A stored program is this series of instructions stored internally in the computer,

directing the step-by-step operations of the machine. These groups of instructions

taken as a whole are a program and will produce the desired output from the machine.

The program is loaded into memory, and once loaded the computer turns control over

to the program. By using thf. various instructions, the program calls in data from the

input devices, processes it, and sends the results to output devices. The progtam re-

sides in memory nlong with the data. Figure RI shows the memory layout.

FREE
SPACE

*ereimmnr...11...m.

PROGRAM

FREE
SPACE

-

PROGRAM

DATA

_FREE SPACE
A

4

tippory Retore Load

Memory After Load

Memory During Execution

4 4.6

Types of Instructions

Each computer has its own set of instructions Which the machine is capable of per-

forming. The instruction set differs from manufacturer to manufacturer and even between

machines by 'Owl same !anufacturer. Despite theme differences, ell computer instructions

fall into one of five basic divisional srichmmtic, move, tempera, breneh, and input..

output.

Arithmetic Instructions

An arithmetic.inetructiam Causes the computer to perform specified mathematical

operation ouch 44 add, subtract, multiply, or divide on the data at the locations given

in tile instructions.

Move Instructions

The move instruction causes the computer to transfer data from one location to

another in memory. Upon execution of a move instruction, the contents of the location

in memory from which the data is moved remains unchanged, nuring the move, the contents

of the receiving memory location ix destroyed and replaced by the contents of the send-

ing location. This is known 40 "destructive read-in" and,"nondeatructive read..out."

Compare Instructions

The compare instructions cause the computer to compare the data stored in one core

location with the data etcrod in a second core location. This comparison causes an

internal compare indicato- to be set to the results'of the compare. If the first loca-

tion were high and the second low, the compare indicator would be set to high. If the

first location and second location were equal, the compare indicator would be set to

equal. But, if the firet location were low and the second location high, the compare

indicator would be set to low. Thum, the compare indicator can show three results of a

compare inetructiens high, equal, or law.

Branch Instruction

In normal operations the computer performs groups of instructi_ms sequentially, one

after another. Occasionally it may become necessary to alter this normal sequence and

execute some other sequence of special instructions. Or it nay be necessary to repeat a

group of instructions several times. To de this it is necessary for the computer to

execute a branch instruction telling it to go ro another location in memory for its next

instruction.

There are two types of branches: unconditional and conditional branches, The un-

conditional branch simply tells the computer to go automatically to another group of

instructions end begin executing them. The conditional branches allow the computer to

make decisions whether to execute another group of instructions or to continue executing,

in sequence, the instructions immediately following. The machine makes decisions by

interrogating the compare indicator far specific conditions. There'are several types of

conditional branches which includ branch or compare indicator high (refer bank to corn,.

pare instruction.), branch or compare indicator equal, and branch or compare indicator

low. These brioche. are very important for they allow,the computer to execute groups of

instructions repetitively and to make legical. decisions as to courses of action for the

computer to take.

1

rg

input-OutBut instruction

In order for the machine to process data it must be able, on instruction or command,

to obtain this data from external sources. This is done through input instructions to

various peripheral devices such as card readers. These instructions bring data into

Oimary storage for processing. To relay its data on to us the machine must make use of

output instructions." Typical output instructions may print the results of calculations

on a printer, punth them on a Hollerith card, or write them to magnetic tape.

Instruction Formats

Instruction,formats of any computer may be divided into two distinct parts. The

first part of the instruction will consist of the commend to be performed. This is the

operation of the instruction. This operation is usually coded in some way to make it

legible to the computer and to the programmer. Since it is an operation, and it is

coded, it is usually referred to as the operation code or, in abbreviated form, the op

code.

Almost all operation codes require that sone action be performed on data in internal

storage. The op code therefore requires an object on which to operate. This object will

generally be data Which will have an address giving its exact location internal stor-

age. Thus, the second part of the instruction is known as the operand 01 address and

usually contains the address of the data that is to he accessed. The banic instruction

format of a computer is the op code and operand (address).

Single Address Format

There are many variations of the basic instruction format. Starting with as

simplest and working up to the more complex, the first format is the single addrris

format.

OF CODE ADDRESS

RDA124-21

Figure B2. Single Address Format

With the single address format, an operation will be performed in one location in

storage. This presents a wide variety of probleme. For example, to transfer data to a

location in storage, the data must be moved from one location in storage to another.

How can this he accomplished when only using one address7 If one location in storage

is to be added to another, how can the two locations he indicated with only one address?

,To solve these problems, registers and accumulators must be used. The regiater.is

a special-purpose storage location or a part of the machine circuitry itself. The word

"register" applies to a broad group of devices which have many purposes. Specific reg-

isters are given names depending upon their use. An instruction-register holds the pro-

gram instruction that the processor is currently executing. An address register holds

the address of the operand specified by the instruction. An accumulator is a register

to form suns and other arithmetic results for single-address computers that handle one

operand at a time.

These accumulatprs and registers provide the intermediate step necessary to perform

move and arithmetic operations with rhe mingle-addreas format. A disadvantage 4 this

method ito that two instructions arc required to perform one operation.

0-3

ilVo.Adinsts Format

To cope with the objection of usiag-two instructions when only one is really'neces-

'Joey. some machines use a two-address, Instruction format. With this format, the need for

tstsssolisss solOsSitss Is siSsisssed. end, the paver of es& inetrootioso is almost doubled.

The general format for this type of iestemetlon U sheen is figure 516

OP OM A-Appitss 11.ADDIMSS

REN124 -22

Figure 13. TwoAddreas Format

For ease of programming, it seems much more logical to use the two-address machine

since ths computer is now performing one action on two things, i.e., move this to that,

add this to that, etc. .This eliminates the need for intermediatecteps ming registers

and thereby cuts down on the number of steps that must be written. However, here the

programmer is dealing with two aress of storage and this may be difficult at debugging

time when attempting to trace through the written program. Also, the data in one address

is destroyed by the storage of the rese4t of the operation.

These-Address Format

The lest fawner, presented is ctually takeoff to all other variations of instruc-

tion formats. The final format is that of a three-address machine. The real versatility

of this type madhine is demonstrated in the arithmetic operations. In a normal add in-

struction, the A-field is added to the 1-tield and the result is placed in the C-field.

This tikes care of the Objection raised in tha previous sections where the contents of

one of the operands was destroyed by the reselt of the operation.

tit" CODE A-Amaiss 3-ADDRESS C-ADDRESS

RAA124 -23

Figure 14. Three-Address Format

Obviously the formats presented ars net the only ones used by all manufacturers,

but the formats mad will be variations ef the these basic ones shown.

The lisitations and advantages of each instruction format are the important points

hers. When looking at any machine, one immediate question should be: What is the format

of the instruction? This will indicate the'enswer to several questions Aid' the pro-

grammer must know. Now difficult lo the machine to program? What can be accomplished

with s.h instruction? How many steps weld be necessary to program a problem/ While

the format itself does not answer these questions definitely, it does indicate generally

What the anewers may be.

The power and function, of an instruction can rarely be evaluated merely by deter-
mining the normal instructioa format. This con only be don't after a programmer has pro-

grammed machines using various formate.

3-4

a

Fixed and Variable Word Length

We have discussed different methods used In addressing data and instruction, end we

know that an instruction has two basic parts called the op code and operand. It is

obvious that both instructions and data consume a certain.quanfIty of storage. What are

sore of the factors that defermine the size of instructions and date in internal storage?

To answer this question, it ie necessary to define the terms fixed word nnd variable word

length computers.

Fixed,Word Length Computers

If a machine is a fixed werd length computek, it will autonatically meAipulate the

sane Teacher of locatives for every operation. Thum Oben adding two fields in a 6-digit

fixed length computer, the machine will add two 6-position fields of data together. If

one data field is moved to another, six digits,will be moved to replace uix other digit..

If one field of data is compared to another, one 6-positiondield of datn will be comp-

pared to another 6-position field.

Most computers Which have fixed length data fields can mually manipulate multiple.

of the fixed length. Thus in the example. given, the madhine could be moving, adding

and comparing 12. 18, 24, etc., positions of storage. This would also require a method

of telling the machine the nueber of words being operated on at one time.

0
If the data fields do not correspond to the fixed format of the machine, it is

wasting valuable storage positions. Thus, if the data field is 14 positions and the

fixed word length is 6, four positions of the third word used would be wasted.

If a machine has fixed data length, it may also have fixed instruction length.

These computers usually have a few instructions that do-ttot require the WS of an operand.

It is obvious that these positions are going to waate when nsed in an operation which

does not utilize all of the instruction format. This is one of the disadvantages of a

fixed length machine. However, most machines have methods that enable the unused portion

of an instruction or data storage location to be "packed" with other data In order to

reduce the amount of wasted storage.

What then are the advantages of using a fixed word machine? First, it is easier to

keep track of the address of certain instructions in storage and also of data fields since

everything will be in multiples of the fixed length. In an 8-position fixed length in-

struction wore, each instruction will take 8 positions of storage. Thus, if the first

instruction is in positiCES 6-13, the fifth instruction would he in locations 38-45 and

its address would be location 38. Remember that instructions are addressed by the high

order position.

The second, and most important, advantage of the fixed word computer is its ability

to transmit data in parallel lines. This is the Ability of the computer to send or manip-

ulate data in fixed groups of digits. For example, if five positions of storage were

moved from one location to another on a fixed word madhine, all five would move at one

time rather then one digit at a time. This occurs because the manufacturer provides

enough transmission paths to transmit one complete computer word of storage st a time.

Variable Word Length Computers

'Not all machines are fixed length computers. The other major breakdown to be con-

sidered is variable length machines. In this type of =thine, there I. nc limit to the

amount of data which may be contained on one data worn or in one instruction in storage.

This does not mean that the words or instructions are unlimited in size, but dyes mean

that the word can contain as little as one di it and increnee in size until the limits

of the circuitry are reached.

Br 5

4

APPENDIX C

Segmenting Structured Programs

ImoginP a 100-PW ProAraM lifIttert in etiuctur code. Although it is highly /*rue&

tured, such a program is still not very readable. The Amtent of a major DO loop may be

50 or 60 pages, or an IFELSE statement may take 10 or 15 pages. This is simply more than

the eye can comfortably take in er the-sdnd retain- for- the purpose of programming.

However, with our program in structured form, we can begin a process, which we can

repeat over and ever tunny-a get.the whole program defined. This process is to formu-

late a 1-page skeleton program which represents that 100-page program.

We do this by selecting some of the most important lines of code in the original

program and then filling in what lies between those lines by names. Each new name will

refer to a new segment to be stored in a library and called by a macro facility insert.

In this way, we produce a program segment with something under SO lines, so that it will

fit on one page. This program segment will be a mixture of,control statements and macro

calls with passably a few initialising, file, or assignment stateaents as well.

The programmer must use a sense el proportion and importance in identifying what is

the forest and what are the trees (set of this 100-page program. It corresponds to writing

tho "high level flowchart" for the whole program, except that i completely rigorous pro-

gram segment is written. A key aspect of Structured Programming la that any segment

referred to by name, control enters al the too and exits at the tettom, and has no other

means of entry or exit from other parts of the program. Thus, when reading a segment

name, at any point, the reader can be assurvd that control will pass through that segment

alf not otherwise affect the control logic on the page he is reading.

In order to satisfy the segment entry/oxit requirement, we need only be sure they

include all matching control logic statements on a page. For example, the ENDO to any

DO, and the ELSE to any IF should be put in the same segment.
,1W

For the like of illustration, this first segment may consist of some 30 control

logic statements, such as DDWNILS'a, IFELSE's, perhaps another 10 key initializing state-

ments, and some 10 macro calls. These 10 macro calls may involve soaething like 10 pages

of programming each for the original 100 pages, although there may be considerable variety

among their sizes.

Now we can repeat Ode process for each of these 10 segments. Our end result is a

proAram which has been orgaelsed into a set of named member segments; each of which can

he read from top to hottom without any side effects in control logic, other than what is

on that partimular page. A ptearaMMar can access any level of information about the pro-

gram, from highly summarisd at the upper level segments to complete details in the lower

lvels.

In the preceding paragraphs, 4-.Assumed that a large structured program somehow

exi-ted, already written with structorbd control logic, and discussed how we could con-

ceptually reorganize the identical program in a set of more readable segments. In this

following text,\we observe hew we can create such structured programs a segoent at a time

in a natuial way.

creating a Structured Program

We suppose.that progrdin hes been well designed and that we are ready to begin

coding. We also note a common pitfall in programming is to "lose our cool"--i.e., begin

41;10

82.

coding before the design prnblems have been thought through well enough. In this cruise

it is easy to compromise a design because code already exists which isn't quite right,

but "seems to be running correctly"; the result is that the program gets warped around

code produced on the spur of the moment.

Out main point is to observe that the process of coding can take place in prac-

tically the same order as the process of extractfng code from our imaginary large program

in the previous section. That is, armed with a program design, one can Wtite the first

segment which serves as a skeleton for the whole program, using'segment namee, where

appropriate, to refer to code that will be written later. In fact, be simple taking the

precaution of inserting eummy members into a library with those segment names, one can

compile or assemble, and even possibly execute this skeleton program, while the remaining

coding is continued. Very often, it makes sense to put a tenporarv statlent "got to

here OK" as a single executable statement in such a dump? meeber.

Now, the segments at the next level can be written in the same way, referring as

appropriate to segments to be later written and setting up dummy segments as they are

named in the Library. As each dummy segment becomes filled in with its code in the

library, the recompilation of the segment that includes It will automatically produce

updated, expanded versioas of the developing program. Problems of syntax and cur(rol

logic will usually be isolated within the new segments so that debuggingliftechecl,out

goes correspondingly well with such problems so isolated.

It is clear that the programmer's creativity and sense of proportion play a large

factor in the efficiency of this programming process. The code that goes into earlier

sections should be.dictated, to sone extent, not only by general matters of importance,

but also questions of getting executable segments reasonably early in the coding process.

For example, if the control logic of a skeleton module depends nn certain coetrol var-

iables, their declarations and manipulations may want to be!crented at fairly high levels

in the hierarchy. In this way, the control logic of the slyleton rnn he executed and

debugged, even in the still skeleton program. ik

Note that several programmers may be engaged in the foregoing activity concurrtntly.

Once the initial skeleton prngram is written, each programmer could take on a separate

segment and work somewhat independently within the structure of an overall program

design. The hierarchical structure of the programs contribute to a clean interface be-

tween programmers. At any point in the programming, the segments already in existence

give a concise framework for fitting in the rest of the work.

C-2

.110.

/13
WINO= D

STEPS IN APOGEAN PROBLEN SOLVING

To successfully handle data proceeeing problem, rbe%problem must be ttacked in
an orderly, step-by-step fashion. This cycle includes ell the procedures necessary to

coiplete computer program. These steps ars adhered to le developing every success-

ful computer system because this leeicel sequence of operations assures that each program

is crested la the shortest-assent ef time, with the fewest.Oossible errors. A.descripu

tian ef the stips felleive (see lige Ill).

STEPS

) ANALYSiS OF A PRO EM

3 DESIGN OF SYSTEM TO
PROVIDE THE INFORKATION

3 *PLANNING THE COMPUTER
LOGIC

4 PROGRAM PREPARATION

5 INPUT DATA PRE PARA PON

RUNNING OF PROGRAM

7 USE Of THE QUINT

READ DATA,
ADD A AND

GIVING C

COmmENT1

COLLECT INFORMATION AND
DECIDE WHAT INFORMATION
IsNEEDED, FREQUENCY OF
PROCESSING, E T C

PLAN THE SYSTEM OP
PROCESSING USING. A
SYSTEM FLOWCHART PLUS
LAYOUTS OF REPORTS.
DOCUMENTS, RECORDS.
FILES, ETC.

PLAN THE PROGRAM LOGIC
USING A PROGRAM FLOwCHART
Oa DECISION TABLE.

WRITE THE PROGRAM OF
INSTRUCTIONS ANDDEBUG IT
TO REMOVE ALL TEXTUAL OR
LOGICAL ERRORS. TRANSLATE
IT INTO MACHINE LANGUAGE.
PREPARE DOCUMENTATION.

PREPARE INPUT DATA By
COLLECTING OR TRANSCRIBING
DATA INTO mACNINEREADA OLE
FORM SUCH AS PUNCHED CARDS.

PUT PROGRAM INTO COmPuTtl...,
MEMORY. COMPUTEMPROGR M

READS DATA, PROCESSES IT,
AND OUTPUTS THE RESULT.

Figure Di. Steps le Problem Solving

D-1

RDAI24 -9

184- 4v,
1. -Analysis of the Problem

Obviously, the first step must be to determine exactly what must be accomplished.
Completing the problem definition in often the most time-consuming step. Also, it moat

be decided what type of data will be used, what operationo must be performed vn the cilia,

and what type of result Is required.

Design of System Flowchart

The processing system must be laid out. Usually a system flowchart fa used to
describe the interrelationship of the individual programs, and to show the origins and

destinations of data. Report layouts are usually determined at this point.

3. Detail Flowchart

Once the problem has been thoroughly defined and then broken dowo into subsections

(System Flowchart), the process the computer will use in solving the problems !Mould be

determined. The most effective method for doing this is to diagram the legical, step-

by-step solution using the operations the computer in capable of performing.

4. Program Preparation

Naturally, the,program must be in a form acceptable by the computer. Translating

the data formats and the flowchart procedures into'an acceptable compoter language is

called coding. Although every program must be coded, the language used may vary frew

computer to computer, and application to application.

The coded program ghould be checked over carefully before it is run on the computer

(desk-check,ing) to eliminate errors. These errors mav be the programmer's own, legit er

coding errors or keypunch errors by the keyponci op-rater. Since comouter time is

pmited and extre civ expensive, it is advantageous to keep to a minimum the amount ot

time spent tesritig and rorunning the program. By reducing the amount (0 cedf!: error!,

the amount4.411;(4me needed for testing and rerunning can also be redu-c0.

After the program has had a thorough desk-check, it ls ready to hi translated frem

the programming langnage to the machine language. This translatf.en 1,: riade by t

pucer, using special programs which will be covered later in this chapter.

After the program has heen written, desk-checlool, and translated into machine lati-

guage, it is ready for testing. Testing is necessary because miner error,. in flpw-

charling and coding may not have been detected. The first test should be made with

prepare-I test data that will force the execution pf every program instruction, This

will not normally happen if actual live data is used, The test data should (Alatain

every possible condition, whether or not the condiCon represents a legitimate occur-

rence. The test data should he included with the final program dorumentation. The

testing, or program checkout, of a new or revised program is referred to an debug:41ns.

The purpose of the test is to detect and correct any errors made dbring programming.

Documentation is a continuous part of programming. While developing a program,

precise records should be kept on all information pPrtaining to the program. These

records include nmcord layouts, flowcharts, coding, and all modifications.

Included in the documentation should be a general description of the program,

written in layman terms. This will enable fusers of a program and management to under-

stand the essentials about the program. lt should present the function of each pregtam,

aff
any option the program features, types of input-output, the language the program was

written in, and the machine for which it ir written. If the program is a scientific

or an engineering oriented program, sone information should be given about the method

used in solving the,problam.

Instructions should always be included for the operations section. if the program

needs some special console switch settings, these must be provided to the operator.

Instructions regarding special input.output setup procedures. are needed. Such items as

special carriage control tapes, printer forms, special cards, and tape names are just

some of the information operators need about each jeb. Docunentation about exceptions

as well as normal operations should be glimn, so thet anything the program might do will

not come as a surprise to the operators.

Flowcharting is the main form of program documentation; however, there are other

pieces of documentation used with programs. Good documentation on input-output formats

is required, especially for record and file layouts of disk and tape. Included in any

documentation package should be any modifications or changes.to the program. Also, a

complete listing of the program instructions is mandatory for use when further modifi-

cations to the program ars required,

In the Air Force environment, documentation is extremely important because of the

inevitable turnover of peisonnel. Good documentation will insure that no one person is

indispeneable.

5. Inpot Data Preparation

The conversion of source documents into a suitable input medium is normally the

responsibility of the individual user agency. Using the formats provided in the system

documentation, they will keypunch the infermation onto cards and then turn the decks

into the data processing installation (DPI) at the proper times.

It is the responsibility of the DPI to integrate the program into its production

schedule and see to it that the program is processed on time.

6. Running of the Program

Once the program hae been properly translated, and the data has been keypunched on

cards (or converted tn magnetic tape), the program is entered into core. It calls in

the e processes it; nd, unless a malfunction oceurs, produces the final report.

It is the responsibilitr of the operator to ensure that the program runs correctly.

He will be required to handle minor problems as they occur and keep the computer running

preperly by using standard recovery procedures and program documentation.

7. Use of the Output

The output is, of course, the purpose of running the program ir the first place.

Any printer output should be inspected by the operator for completeness or obvious errors

.

before being turned over to the user agencies. Newly created tapes should be properly

labeled and stored in the tape library. Thes and additional procedures are the respun-

sibility of the DPI's Production Centrol Section.

P-3

I

41184,,

AP11010I X F

Standard
Character

Set
8CD

(lfinary)

.
BCD

Zeta!!

41/11AR10 CHARA1 FA- SFT

OM Irrith
Card
Code

ASCII
rode

0ASC1
(rode

F8C1,11:

_Ctidt

0 000000 00 0 060 160

1 (mom 01 1 061 ro61 161

2 000010 07 2 062 1162 162

3 000011 03 1 063 1%1 161

4 000100 04 4 064 1144 164

5 000101 05 s 045 165

6 000110 06 6 066 046 164.

7 000111 07 7 067 067 167

8 WIMP() In 8 070 010 170

9 001001 11 q 071 074 171

I 111110111 12 2-8 111 111

0 0111011 13 1-11 043 1141 111

m 0,11100 14 4-8 1040 100 I V.

- 011101 15 077 077 17:

> 0141101 16 I,- 5, 076 076

? 0o1111 17 1-8 1177 011 1.,

(111 ION) 20 (1.1anli) woo (141i Ito!

A 010001 21 12- 1 161 In 1 al1

11
11190111 22 12-2 142 10,7

C (hoot I 23 17- .4 141 10 401

1) 0101())) 24 12-4 144 104 104

1r, 010101 25 12- 145 yr,
F 010110 26 17-h 146 106 1(16

c 01011.1 27 17-7 167 107 517

li 011000 30 17-8 11+0 110 110

1 011001 31 12-0 .3 I 1 111

6 14 , 011010 12 17 wth 114/,

011 ,Il 11 12-1-11 I 1 I

1 011100 14 I2-4-11 I IS

(01 1 1(11 (101 HY)

< 011110 16 1...-6-14 II/4 1174

is (111111 47 1 14 I 44

f 11/41/1011 411 11-11 146 1 If.

100001 41 II-- I I I,'

41 100011, I.": I 1-," 1./ I II 4 1!;

1. 11m1 1 41 I I- 3 I 4 II la (11

tit
.1 1001011 44 11-4 1:4

N . T00101 4, I 1-', 0.6 10.

I r 10,0110 46 II- I. II /

I Mo I 1 1 47 I I - 7 1..ir r

0 111111(1U ',II I 1-14 11.1 171 I In

It. 71)1601 ',1 It- (I 16; 17; 111

1(11011, ',.., I 1 (11. !,01

,. 101011 '1,4 1 1- 4- M 044 0'.44 I I I

* 'MI TIM 54 11-4-k 4',

4
101101 ',5 11 --',7-1 11.'1

Pit

; 1111111' .".f, II 1.-M (171 j
101111 57 11-7-8 fa, 1 04; 1 r.

4. !Nou() 4,0 f, I II', I 111,

/ 110001 61 It.- I 11%1 (rfl) 41

ilbolo 62 0-7 161 12. 1

'1 110011 63 11-1 14.4 174 4.., :

11 170100 64 0-4 16', 4.", 0,4

V 110101 65 IFS, 1,,at (4',

W 110110 66 0-6 16/ I:' / 166

X 110111 67 11-7 170 flu 347

V 111000 70 0-8 1/ 1 111 Vdi

Z 111001 71 0-4 I /: If; i',I

* I I (001 72 414-.1-K I 17 I I/

. It 111 1 1 71 0%4 WO I', 4

7
.

111100
111101

74 0-4.8 1145

075
(14%

0/%
1'.4
1 if,

1,1 t I 1.1 01 76 It- 4-44 f0, I r 1 f, -. 477

4 111.111 I T 11-1 14 II:, I I. ,1 i I '

/'

7".

. APPENDIX F

POWERS OF 2

I

0

2-n

1.0

it

4
8

TM"
2

3

0.25
0.125

16

32

64
5

0.062 5
0.031 25
0 015 625
e007112

0.003 906 25

128

256 8

1. 024-1(1-0:000976-5625
2 048 11 0.000 488 281 25

4 096 12 0.000 244 140 625

8 192 13 0.000 122 070 312 5

16 384 14 0.000 061 035 156 25

32 768 15 0.000 030 517 578 125

65 536 16 0.000 OiS 258 789 062 5

131 072 17 0.000 007 629 394 531 25

262 144 18 0.000 003 814 697 265 625

524 288 19 0.000 001 907 348 632 812 5

1 048 576 0.000 000 953 674 316 406 25

2 097 152 2 0.000 000 476 837 158 203 125

4 194 304 22 0.000 000 238 418 579 101 562 5

8 384 608 23 0.000 000 119 209 289 550 781 25

16 777 216 24 0.000 000 059 604 644 775 390 625

33 554 432 25 0,000 000 029 802 322 287 695 312 5

67 108 864 2h 0.000 000 034 901 161 193 847 656 25

134 217 728 27 0.000 000 007 450 580 596 923 828 125

268 435 456 28t 0.000 000 003 725 290 298 461 914 062-5

536 870 912 29 0.000 000 001 862 645 149 230 957 031 25

1 073 741 824 30 0.000 10 000 931 322 574 615 478 515 625

48 31 0 000 03 000 465 661 287 307 739 297 812 5

4 294 967 296 32 0.000 000 000 232 830 643 653 869 628 906 25

8 589 934 592 3 0.000 000 000 116 415 321 826 934 814 453 125

17 1 9 869 184 34 0.000 GOO 000 058 207 660 913 467 407 226 562 5

34 359 738 368 '35 0,000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 36.. 0.000 000 000 014 551 915 228 366 851 806 640 625

137 438 953 472 37 0,000 000 000 007 275 957 614 183 425 96 320 312 5

274 87, 906 944 38 0.000 GOO 000 003 637 978 807 091 712 951 660 156 25

549.755 813 888 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

F-1

RDA124-38

BINARY NUMBER SYSTEM (BASE 2)

S 3 +10 1 +9 1 +8 1 +7 +6 1 +5 +4 +3 1 +2 3 +1 3 +0 B -1 -2 1-3 -4 -5

1 1024 512 256 128 64 32 16 8 4 2 1 .500 .250 .125 .0625 .03125

S 1 +5 1 +4 0 +3 0 +2

1 32768 4096 512 64

2 65536 . 8192 1024 128

3 355:,.:. 1 J288 1536 192

4 131072 16384 2048 256

5 163840 20480 2560 320
w

6 196608 24576 3072 384

7 229376 28672 3584 448

ocra mom SYSTEm (BASE 8)

B +1

a

16

24

32

40

48

56

1 +0 1-1 -2 B -4 -5

1 .125000 .015625 .001953 .0002441 .0000305

2 .25000; 031250 003906 .0004882 .0000610

3 .275000 .046875 .005859 .0007324 .0000915

4 .500000 .062500 .007812 .0009765 .0001220

5 .625000 .078125 .009765 .0012207 .0001525

6 .750000 .093750 .011718 .0014648 .0001831

7 .875000 .109375 .013671 .0017089' .0002116

RDA1 24-

k

Technical Training

ProgTanming Specialist (lk meywe l)

amPtirm PROGRAMMING PRINCIPLES WOW(

April 1976

*
il.Nirkg4firv

Ak *
1,3

1%400-

USAF TECHNICAL TRAINING SCHOOL
3390th Technics! Training GroUp

Kecaler Air Force Base,

C Itaxist 94131

Desip ol For ATC Course Use

111117 I151 OW THE JOS

mugrac194
E3A11115113111 0(0

1(1)A-471

-4

CoMPIITER PROCRAMINC PR INCI PLES Uttio, mitW.

TAKE OF rAwrwm.

IR

1111 WKS 1 1 tin
E I IA- 1

Apt I I VI

a

pkurr 43.ASSNO4N SE.S

PAGE

Dean's] binary number cimver i in 1

becimal Octal Number Cituversion 3

Octal Binary Number Cmiverai on 4

Add t i on arta Subt raet I In 5

Preface t u FlOWellart Prot' I einf4 7

sequence Inwcharts 8

li eant lo I ug Flowchart ii
I FLA,. harts
!:ear..11 10% 'chart 18

:lort 1 low. harts 20

rt I on Flom-hart t 22

ti 11 t I on' 1;14iv..11,1 .

Merge Is.srtri
Flaucts.trt Ana 1Vti

log/Chau Lorrect I .111 'IS

enter t i -- 1111141.1:. 40:)(1-:11e1

Ti.f
PAC!:

Itt-4-ttna 1 !titian- ritoullvt I .,io ..I., I.,tt $7

11Arinsa i I ICI l %milli,' 1 roil,s I .i.iii is
,

P Ea i -- tsi nary N Antal, I CIttiv ., I , 19

A.141.11 i n1 :mil';uist tr,bI too 42
.-

'AL-smeller. I I.11,..hart .; 2,1

ts n811.11110; I. 1 itc,..thl a t

I..tot I hoc,. h li I*,
5 i

%.ara. I. I 1..004.ort -, . fitt

,tt t I otiehart s
.. ht%

1 is-,- I I 101 1: lout IiHrts . J
1,1

Pi- l..t l dm r I Ifigialitt ri '4
Hit

"a fp, I hn . hart ...
.11

I i IOW. hair i Alia iveti I!.
1 h.% hat 1 I ort vet 1 4111

1

Iris

0

rOMPITTFR PRNIRAMI TIC PRINCI PUS tinfiKlimr:

OBJECTIVES

When you have COM' !Pi ed t exerci Sea I II 1,4 vf.t. v I 1 I be 11.1e t

I. Solve mathematical problems involvfor both toneersfoo of and computation with

binary, octal, and decimal numbers.

Analyze given prolllems and constrnct flowcharts .thieh shoo solutions to the

given problems.

3. Analyze given flowcharts and correct anv errors In them.

PpocEnURES

This,workhook contains exercises to give von practice in worl'Ing computer math and

flowcharting problems. It is divided Into two patts. Part 1 contains ,.xerrises for von

to work during class. Your Instructor will assipn each of these ptehloms after he pre-

sents the information pertaining to th3t pnrtieular subject. Part TT vinitaim; qimllat

problems which will he assigned as homework.

The Table of Contents gronps the exercises bv fart-11,14,M types. Thefi.e titles can be

used riN a cross-reference to snhiect matter boadiugs in the student text for asslctance

in solvin7 rhe problems.

IMA1 r.INAn't 1 I I r. 1 tr1

NHS the* toll 14./Iliv dry. I mai m44,114#.4-N Istwel'14 14 ID.

214.1119 --
1/1111)1t-ta. tI. I/sikret . ##1 #.11ari II+. Insert Rig I be ;4191ronri e kt'iui1 equi valents

, il I
._.....- . SINE

11
..

_.....
..0 2-1

.. 2-4

I #iivs- rt he 1%/11 ow tow dec I ini I mingle. rt I t# ego I va lent hi noir/ numbers.

17

1.111
111

7. /11

M. 102410

9.

10. .12''
10

14.

.111.2'110

."7. i1251(1

:I

..
---..-2

.
t.... ..-

/93

15. 136.5625
10

16. 11,t.81510

17. 207
10

18. 1052
10

19,

20. 18.75
10

21. Pt.312510

22. 163.6875
10

*IN

7

2

Convert the following hinnrv outtiwrit to ofollvalent deetmill inuMwrn;

23. 1110.01

/4. 10101.101,

25. 10001.0101
2

10

26.

' 27.,

28.

79.

30.

11111.111

1110

110101
2

10101107

1011001
2

2
-to

(1111 ,..././,1-,...

10

10

icc

1 q4-

U.

32.

34.

is.

it,.

17.

3M.

19.

40.

41.

42 .

41.

44.

41i.

1*.e1M1.-ficrou. Nuttsrit comiritsitiN

convert the fol lowing decimal numbers to equivalent octal numbers.

4210

28510

8

.112.

a

10

12812510

23(4(187%10 -

426.7112510 mo.

41)410

.09 J7S

14

mamimmm.....- agm...............10

121.10937510.

8

613.2578125
10 8

coivert the 101 low I ng °CAA numbra to equivalent decimal numbers.

1/58

14)2

.778

1 0

.08

10

12.52

10

10

__-----

1S72.68

I,
1 S

*

19.6'

ea!

66

r

47. 253

46. 4064
a

49. 3216
8

50. 2222
s

10

10

to

10

OCTAL-BINARY NUMBER CONVERSION

Convert the following octal nunbers to e4uivalent binary numbers.

57, 278

53. .45
8

2

54.
.33 2

8

55. 126.618 2

5(1. 344.78

Convert the 'ollowint., binary numbers to equivalent octal numbers.

57. 11111
2

58. 101010
7

59. .11101
2

61). .1001
2

61. 1110.10101 2

62, /1iI010al2 '

8

4

-

ADDITION AND SUBTRACTION

Add the fo11awimmAtidary numbers, exprimoing tbe ann.'s a binary avabier.

63. 101101 64. 110110 65. 101011 66 10011110
+ 10110 + 10110 + 10101 +10110110
1!..111111. asMIMMEMM.M.... M.11+.111=IMM.MIR .1.1mMI.Ot....11.011

Find the difference between the following binary numbers, expressing your answer
ea a binary number.

67. 101101 68. 10111 69. 100101 70. '111111
- 10101 -10001 - 10110 - 11111
=m1/MgmfflalWO me,,1=111MIMn

Perform the specified arithmetic operation on the following unsigned octal numbers.

71. 3731 72. 2235 71. 4046 74. 12345
+4720 +4073 -5665 - 7654

Add the following binary numbers. Use the rules for signed number addition and
express eact answer as a signed binary number.

75. (+1010101)
+(+ 101101)

76. (+1010111) 77. (-10011110) 78 (-10101)
+(- 101101) 4(- 1100101) 4(+11011)

riarneZw.a-0.01... -emuw...meentwa+e

Subtract the f-llowing binary numbers. Expre:is each answer as a signed binary
numbvr.

761 (+101011) 80. (+101110) 81. (-110001)
-(+101101) -(-100100) -(-101101)

1 91

82. (-10101)

-(- 1110)

t*

r't

#441 t I 1 ht. 16,1 I mr hip 11 I tint r nunaterm EMI(' navh anqwlr $1,4 '4I1Med

nimbi r .

/ 81. (t4 11101)
-(+100011)

87. (-1(1101)

144 (4 Mr lin) Rif. (f 1111111)

(10110)

Kft. (- WO I 1 In) WU.

- (- 10101) .1111 inio)
(-11110111

7

106. (4.111f111)

-(-101 11)

1H1 (.4 1)0111)
111)1(110) -(41(10111)

t fii (0(144411w iii (4 I 11.11111" t`4 Fititrt-;f4 e,:tt It aronwr of, .1 r. I gno1 414" to 1 iitnniu r

+(
14?)
1:01)

9 I. (Vt's.)

+4S41

Stile(act t ht. fir I glitml.s.t ..:1(Ai,. 1,..

11(! I. I .

I (414)
-(4 426)

116)
(

117 -6111
-(-1'16)

1+4. (-3(:;'1

of! .i rin'ti Its liii

wt. (- 171)
(4 1311

Slitit r:te-(
itierthet"

t he 1 ed lee; reel 1 tet114,..rtle ExItrt";.. 1-11.11 a.. 4i '; 1 vile"! "e I

(II 44,7'0-(
1(1(1, (+ 1161

-('1)
r

1(11. (+Yr y 107, 14200
-(4(9;,(11

10 1. t-f.(n) ri14. C 100) 105. 1-1.01s) 11)4e (.1.7;.)

-(-504)
-t 00) (40 //a

e-Pe-tar

-1 92

4,

Pm 1 Ay! ss iA0911Ary

The flowChart problems isi this wori.hool. ate 4iesigile4 to teach sistmiZsts.iliseelt;cting
techniques from a gaaeral prubleM-solviug viewpoint 9 not from a spectfic'cumptler tan-
guage viewpoint, ilith is good foondat ion in flowchart iectinIstoes, the student should
he able to tradi lv amply 116:141 to tio. language he is using l'OlfrRAN (24AP, or
(01101.)

The following convent Ions will apply to the I liarris.srt problems in this workbook:

1, !home problems mot. rel.n.66... Ile!. In memory, obiell for the u sses .f.pf this
worthook will 4. treated us tables in Ore fileMery Int' to the wav COM . treats
taburar data . , The record.. of obese t Iles (and she richt,: within these records) may .be
secesseti by referencing the file's two:Indic name (ssr II.. I hld's avs*volic name) with an
integer cimatant or variable subscript. ror example, 4 oonider the file named MM.

,with record formats

ADM
.h1-44 4b-6

Rc..rsi five snam. could be ccessed Ir.. writing STIIVII (5). Liketri::,-, ibe NAME field
ot record 44 could be accessed by wris Ing "IMIF.(44), the !eh! rc..:-.4 IS could
be aciesoeil by writing Coult5Et re) , or th. 1:11 I livid of rocord U could be neces:wd Ly
writing Cn(N), where :I ell fil au I Ili cgor vi t /int Remember, this method id ajin
records and fields within recto-alp; ts only lor Problems in this workbook and mari not work

_

in some compiler languages (i.e., FoRTNAN).

2. If temporary storage lociat Ione are used in a problem, they trill lie large
enough to store an" record la that problem.

E. The words "dirt*, .1 II oi!chart" wi 1 I be abbreviated "DM."

4. Same proh lem-4 ow: not include al I the variab (es wt.*. unary for tbe solution of
the problem or may rya in, I tide reeorei I omit tor records lir a fl I e,, In these 4 :ifies the
-:tudent should varfidell. iitangs; .11111 ord dencript I ow: I v.. rtie

problem.

1 93

.,.:-.7,"'.;e''",":"':- "-,-.''''',°":"-.''''',''""'-'''-'"r--r ' "1".'7'-'".--`-',6'rhs":".,;-,it..;',- -.----.!,-:---..-r,i9,--,-.-' ,r.,.-:-,. -,,,,,,-,.., a -,-, ,.-- ,; --,.,...,:, ,,-7-4......,....,,,,---.,,..,;=%...,.., -.4,- ..,,:.-......,,,,, ,,..........t,.4...,,..,.....;:-..-,..-......t..., ...0, ..'.... mt.., . .,..t. tat......,.....a.-.....,..,.

'",-:1`,7'f-- -.=,-1 _ -'--t --.',- l'...-,..-F-- ._ ,1_ , . ,, . __. -.,-,i: .' '`,;.'4.,' -k- ;.,i'. - ..!""z7-1,;..rt : f-'--;-77--7.- .. 7 ., 7 7,-1' - .

.. fs.5 . . .

-$4,..,,,,7.,...- ,, .-' . '

,szquon PLOIICRAllTS

I. The following variables are given:

UTIL - amount of utility bills &for a month.
LOAN - installment loan payment.
HOUSE mortgage payuent on house.
CAR - car payment.
CRO - amount budgeted for groceries.
MISC - amount budgeted for miscellaneous.
PAT - income for the month.

DAP to show the operations required to compute the following values:

ToTAL - total expenses for the month.
SAVE - difference between TOTAL and PAY.

8

94

The computer relers to the base and height of a ttiangle by symbolic names liA4E

and WIT, the length and width of a rectangle by UINC and WIDE, and the leneh of
one side of a square by sm. DAP that will show the operations required to:

(1) compute the area of the triangle and store the result in TRI; (2) compute the

area of the rectangle and store the result in RECT; (3) conpute the area of the

square end store the result in Sql1; (4) compute the pvrimeter of the rectangle

and store the result in PER; and (5) compute the perimeter of the square and store
the result in PERSQ.

The formulas needed to solve this problem are listed below.

Area of triangle (base * height)
Area of rectangle length * width
Area of square length.** 2
Perimeter of rectangle 2 * length + 2 * width

Perimeter of square 4 * length

195

cPie/

1:1" leise7 rtocy.,4,
.e-e 7--d;t1

i3. DAY to shoe the ope ationarequired to accomplish the following:

(1) Read a card ahaining the variables LAME and WWI (2)...41 LARGE to SMALL
end stets the 14111 lute SUN; (3) subtract Mil. from LARGE and store the difference
into DIM (4) iU1tip1y LARGE times SMALL and storibthe product into PROD' (5)
divide LARGE byADIALL and store the quotient Into Q410T, and (6) Urrite set SUN
PROD. DIFF, andAtiff.

"Y.

96

' r '

IIKANCHLIK1 HctLà 412403

4, CIV contatnu the height of a potential recruit. ANN clotaine the minium height
required. Compare Cilf to AMP to sett II the civtltan can be recruited. If be CAD
be recruited, eat WC equal to 1. if he cannot be recruited, set LOC equal to 2.
OAF.

11

1 97

uric contains the status of a traffic light (1 Sad, 2 Cram). Set CAR equal
to 7 if the light is green and ta 6 if the light is red. IMF.

12

ek-,

h. Select the proper key to open a door and store Its 'winker in SAVE. The serial. 114451.
numbers of the three keys are stored 1%KI1IE, KTWO, and KTHRKE. The key with the
largest serial number will apes the deer. Serial ambers are opaque. OAF.

1 3

1 99

7. Chock the values of BEM and NOG. If both valuen are zero, net SMITH equal to P.
If both values are ones, set MTH equal to I. If one value is zero and the other
In one, net SMITH equal to 2. OAF.

14

C.

N. AM., MI, and Zan :Are intgern greater than zero. 11 AXE aunts YIII4 and in lean
then net MI equal to the "slue of Ylettli*SMXF.0*3 and stop. If AXE Is greater
dots NM and equal to Vv. Net KA equal to the value of fUN + AXE * (AIR YlII0
and letup. I f AXE I 14 IeNti than 111,1 and greater than Zan nt POI equal to the value
of AXX**2/Y11P1**4 nml stop. !For Al other conditions. net PO equel to the value of
AXE + Yll4 + WO and stop. DAY.

15

los
100P 11AUCHARI'S

9. Count the number of Air Force, Army, Navy, Comet Guard, snd 'Wine pommel in a
group of military being processed through an Air Terminal Processing Center. Theme
personnel are precessed one at a time, nod the data pertaining to branch of serviee
ts recorded as status information an the cord is punched. After 1,000 personnel
have been processed, write out the title and nuMber for each branch of service.
AAP.

v

10. A manufacturer in producing 40 pops for military use. Silas, of the jeeps are to bo

supplied to the Air Force and some to the Army. The Air Force jeeps are to be
paInted blue, and the Army jeeps end to be polluted olive drab. Bead cards contain-
ing MOOR and SESNO.' Cheek WHOM to gee If the jeep la for the Alr Force or the
Army. Write out the immiel number and appropriate color. When all cards have been'
read and Chstked, write out the number of jeeps processed for the Air Force and the

Army,

7

2 0.1

d?

SEARCH FLOWCHARTS

11. KAM Is a file in memory with 10 recorda, each containing the following variable-4s
NAME - brand of car; PRICE - car base price; Arc, AC, AVT0 nricea for car
optional equipment. VALUE is another variable, which indirates the maximum pric.,
we wiidt to pay for a car. OAF to accomplialt the followinal

(I) Compare the price we wish to pay with the price or ern+ car fully equipp-d.
(2) If more than one car is found at rho &wired price or lower, deduct $25 trout

the price we witth to pay and search the file again.
(3) If no car fits the requirements, nad $25 to the price WV wish to pay and

search the file.again.
(4) When the desired car is found, write out the brand name and price. only one

car will meet the requirements.

NAM
1-20

PRICY.

21-27
ACC

28-32
AC
31-3

Aurn
3R- 2

2111

I V,

AAP

I:. nescrihe the record format for a file qf records which could contain the namea,
agesvanil marital statuses of all your Oaf's menbera. Alrm (Wine a variable
which caa De used to storethe average age of your class members, pa to coupute
and writs out the average /Age of your class members.

19

4/,

SORT FLOWCHARTS

13. KLASS is a file in memory with 100 records, each containing the following variables:

STURR - student identification number and GRAPE - class grade average. (STOR is s

temporary location in memory.

ISTUNR !GRADE

1-9 10

DAF to sort the records of KLASS into descending order based on kev field GRAM.

296

zo

14. WATER is a filo in mymorv with 50 records, eaca cuntainiag the tollowing

variables: IMP - water impurities and SoURCI - source of impurities.

SOURCE
1-4 5..19

DAF to sort 010 records of WATER into ascending order based on key field rmP, so
that the water source with the smallest 4MOUOt of impurities is listed first.

21

20 7

.213

INSERTION FLOWCHARTS

15. EMPLOT Is a file in memory with up to 200 records, each Containing the following

variablest NAME - employee name; SUN - employee wo is security number; and

JOB - JOH title. NUMB is another variable which ind crates the nulher of records

in EMPLOY. NUE= is a single recnrd to he inserted Ikitu EMPLOY, and has the

following variables: MANE, NPSSAN, and MM. J1AJ to Insert this new employeo

into EMPLOY.

NAME -IMO
1-20 27-29

.1015

10-45

MUNE "SAN MOB
1-20 21+29 30-45

EMPLOY is sorted in ascending order based on Feyfield SSAN.

299

22

N ,.

S.

16. PANTS is n file in memOry with up lo 258 records, each containing the following

variables: MUM --pArt numbnr and grY - quantity of part. NENT is nnOther var-

iable which indicates the number of.retvrda in PARTS. NPARTS is a file in memory

with up to SO records, esch containing the following variables: *num and MT.
LST is another variable which indicates the number of records in NPARTS. nu is
a temporary storage location in mmnory.

PNUN
1-5

()TY

6-8

11011014 1 taTIT

1-5 6-8

RAF to shaw the operations required to insert NPARTS records in PARTS. PARTS is

sorted in ascending order based an key field MUM.

2

2 9 9

"C,

DELETION FMAJCIIARTS

17. TEAM is a file in memory Lh up tr 75 recordq, esei contsiuing fallowing varinhles:

PLAYER -*football team membe number and POSITION - team position. There is a
stack of cards in the card rea4er, each containing the variable DELETE - football
team member number to he cut froi\aquad. ENDO is another variable which indicates-ehe
number of records in TEAM.

PLAYER POSITION
1-2 3-17

11//./IMMNI

DAP to read the cards in the card reader and delete the indicated players from die
football squad.

eio

74

a.

16. TEXT is a file in memory with up to WO records, each containing the following
variablen EITN - year text was printed; SUBJ - text subject; and NEN - number

tette on band, NUMB is.anotber variable which indicates the number of records
in Tom A school systole steeds a prom' to cheek for'ontdeted tents. BAP to
cheek TEXT for books printed before 1960 and write out the edition, subject, and
number on hand. Then delete the record from TEXT.

FEDTN
1-4

I SUB.1

5-12
1 NEM

13-16

25

21

7 s
19. Brus is a file in memory eith up to 700 records, eaCh containing the following

variables: NAME - customer name and AMt . amount of custoveres bill. NUMB is
another variable which indicates the number of records in BILLN. trim ts a file

in memory with up to 150 records, each containing the names of all performs whose
bills are paid in full. MUMS is another variable which indicates the number of ,
records in RCM

RCVDNAME
1-20

DAF to delete from the file BILLS, all records whose accounts are 'paid in full.

2.,

+Mb.

4/7
MERGE FLOWCIIMUS

20. ELEC lx a file in memory udth 50 records, each containing the following variables:
EMP electrician badge number and NAM - electrician name. MECH is 4 file in
memory with 75 records eaCh containing the following variables: MEMP - mechanic
badge number and MNAME - mechanic name.

EMP 1 NW
1-6 I 7-24

[Wilq
1-6

--M7A;77
7-24

A company has ita empinyevn in two separate filen. Both files are in ascending
order. DAF to merge the two files into one new file using hedge number as the
key field, maintaining ascending order.

2! 3

0'4

Z20
21. LIST ia. a file in memory with up to 1,000 records, eath containing the following

variables: ZIP - zip code; NAME - name of person; and ADIS - person's addrepn.
LNUM is another variable which indicates thr number of records in LIST. °LIST is
a file in memory with up to 750 records, each containing the following variables:
°ZIP, MAME, and OADRB. MUM is another variable which indicates the number of
records in OUST.

IZIP

1-5 6-22 -1

APRS
23-35

.

OZIPI

1-5

ONAME
6-22 1 (11!1;]

A company has purchased another mailing list (MIST) and wishes to merge it with
their present mailing lint (LIST). Both files are in ascending order. DAY te
merge the two filen using zip code an the key field.

28
OW.

22. PASTS is a file in nanory with up to 258 mord', each containing the following
veriebless STNR - part mother and QTY - quantity of part. PINUN is another
variable which indicates the noshes of records in PARTS. MAASS is a file in
oseney with SO records, sash containing the following vertoileos NOM end 11QTT.

Both files are in ascending ordrr. DAF to merge the two files into one new file,
using part number 88 the key field. The new file is to be in descending order.
If NSTNI ie equal STNR, add NQTY to QTY and prone entry into the new file.

2E)

215

gRa2

PIAINCBART ANALYSIS

For matdeingrtype items, write the letter used to identify blocks uf the flowchart
imto the appropriate blanks neat to the descriptions of the operations. Por multiple-
Choice items, circle the letter that identifies the correct answer.

23. ACCT in a file in memory with up to 1,000 records, each containing the following
variables: BALANCE, NAME, and Am. NENT is another variable Which indtcaten the
number of records in ACCT.

l!!!!!!1-9 10-10
IACTV I

31-33

: 1

4.

INMEINIMIM

111.1MINIMIMOM

IPRMINNO

IIMI..1.11.11

cAl

Houtiel,eeps NENT.

Outputs the number of active accounts.

Initializes an index register.

Increments an index register.

Increments the index registers.

Branches out of the loorwhen all entries have been updated.

Sets en entry to the value of the next sequential ant*.

Uhat is accomplished by the flowchart for this item?

(1) Sorts the file into ascending order.

(2) Sorts the file into descending order.

(I) Inserts entries into the file.

(4) buietes unwantd from the file.

31

224.
lam

24. 0141115 is a file in memory with up to 2s0 records, each containing tha following
variables: SN, NAME, and MANY. MKT if* another variable which indicates the num.
ber of variables in MYERS. PM is a temporary storage location in memory.

SN
1-9

NAM
10-30 3173-11

a.

C.

d.

e. 1111

P1411,14-vi
Prevents entering the file if there is one or fewer entries.

Conpares the value of key items in two adjacent entries.

Reverses the order of the'Vuluos in two adjacent entries.

Checks to see if the last entry of the file has !leen ehecked.

Increments the index registers.

What is accomplished by the flowchart for this item./

(1) Sorts the file into ascending order.

(2) Sorts the file into descending order.

(3) Inserts entries into the file.

(4) Deletes entries from the file. 2! 5/

32

4015
25, 1.11 la 4 file in memory with up te SO records, each containing the variable SOFA.

MENTLR is another variable which indicatee the nuMber of records in LR. DR Is a

file in memory with up to 75 records, each containing the variable CRAIR. ITT is a

file id ammory with up to 125 records, each containing the variable 97001. MISR
end-NENTRIT. are other variables which indicate the number of records in DRAnd KrT
respectively.

33

21 9

RDA124-43

22&

25. NOTR: Files la and DR are in ascending order.

a. Sete MINT of file KIT.

b. Branches ant "YES" leg 'to put entries from fill LR into file KIT

when file DR is empty.

C. Branches to put the smallest value in file KIT first.

d. Sets 4.he appropriate entry into file KIT and modifies the index
registers for files KIT and DR.

e. What will be the order of the file KIT after operation of the flowchart for this

item?

(1) Random.

(2) Ascending.

(3) Descending.

What is accomplished by the flowchart for Ihis it,em?

(1) Deletes entries from file KIT if they are equal to an entry found in

file KIT.

(2) Inserts entries from file KIT into files IA and DR.

(3) Sorts files 1.R and PR into descending order.

(4) Merges files LK and DR into file KIT.

14

&MN

N

mummy imam ma

Th. foilowing flowcharts containjam or nor* errors. Analyie the flowcharts, locate
all amine and draw corrections. If it-is necessary to add a block, show its position
in Lhe flyachart.

26. BLOOD in a file in memory with up to 111 records, eath containing the variablePRESS. WENT ie another.variable which indicates the number of records in maw.

35

221

PDA124-44

AmodiumzEID - A Ix. alordiP AUSSMilt.

229
27. This flowchart was designed to deleti, from file MN, the iecords pertaining to

personnel who have been transferred. File TRANS contains t variable SENN - serial

number of transferred personnel. AFSN is the variable in records which contains

the serial numbers of personnel in the squadron. NENTS and NELT are other varfobles

Which indicate the number of recordn in SigIN and SERN, respecti v.

"l6

PART 11

\V*01WIN EURCISES
\ \,

RECIMALRIWY NUMMI CONVERSION

Convert each decimal number to its equivalent binary value.

35
10

2. 61
10

3. 105
10

5. 226
10

7. 0.125
10

8. 0.62510

9. 0.1875
10

10. 0.875
10

\,

2

2

2

2

2

2

Convert each binary number to its equivalent decimal value.

110
2 10

10101
2 10

110101
2 10

1010110
2 10

37

2?3

15. 10110012

16. 0.012

17. 0.0112

18. 0.0101
2

119. 0.1001,

20. 0.1101, 10

DErit1/41.OCTAT, N111111Elt CONIFERS TON

Convert each decimal number to its equivalent vetal value.

21. 4210

22. 510

23. 11010

24. 23110

8

25. 42h
in

26. 0.625
10

27. 0.687510

28. 0.32812510 -------------

29, 0.18359375
10 a

30. 0.1015625 10

38

2?4

2.3 1

llt

31.

32.

33.

34.

35.

36.

37.

.18.

39.

40.

4732.
Convert edch octal Humber to ith squivalent decimal value.

17 .s %111

54

10

100

10

8

151

10

8

2308

10

O. 68

10.

0.31

10

s

0.43

10

0.62a

10

0.035

10

10

41.

42.

43.

44.

45.

Convert each octal

468

5
8

261
8

0.34
'8

0.44
8

OCTAL-BINARY NUMBER CONVERSION

number to its equivalent binary value.

2

2

2

39

46.

47.

48.

49.

50.

51.

52,

53.

54.

55.

56.

57.

58.

59.

60.

0.56
s 2

35.23
8

75.436
2

5603.72
a 2

432.151
a

Convert each binary number to its equivalent octal value.

1011011
2

10101100
2 8

11011010101
2 8

0.101011
2 8

0.1011010111
2

0.11110001
2 8

1010110.10110110011
2

10101111.101110101
2

lo1110.101111mol,

11100111.101110101101,

ADDITWN MD SUBTRACTION

Add the fellow*es bleary numbers.

61. 101101
10110

62. 110110
10110

Subtract the following binary lumbers.

65. 1010111
101101

EMIrve...

66. 110011110
10110110

63. 101011 64. 100101
10101 10110

67. 101101 68. 101011
10103 11101

a11.!..1*

Add the follading binary numbers. Use the rules for signed number addition and
express each answer as a signed binary number.

69. (+110110) 70. (-10001) 71. (+1010110) 72. (-1111111)
+(+ 11111) +(-10111) +(- 111111) +(+1111111)

Subtract the following binary numbers.

73. (+101101) 74. (+101101) 75. (+1110110) 76. (-101101)
- (+ 10101) -(+ 10110)

77. (-11010)
- (+ 1101)Welno

-(- 110111) -(- 11010)

Subtract the following binary nualhera. Show your work.

78. (+110011) 79. (+1110110)

- (+ 10010) -(+1111000)

41

Add the following octal numbers.

(-1010110)
-(-.101101)

81. -(+100101)
-(-110100)

82. (-110110) 83. (+177052)
-(+ 11101)ma...... +(+436511)

MINIIIIII11111P.O

84. (-534267) 85. (-630275)
+(-425037) +(+)64153)

86. (+57034)
+(4622)

Subtract the following octal numbers. Shaw your work.

87. (+143075) 88. (+542674)
-(+ 36342) -(+731462)

89. (-356716) 90. (-437562)
-(-143522) -(+216452)

91. (+627535)

-(-475426)

2?5

Z35 .
41.01k

deab
Ftill/CJIART PRunLEAS

See earlier "PREFACE TO FLOWCHART FROBLZHe for the conventions which these flow-
Charts follow.

SEIHJENCH FLOWCHARTS

1. Variables AA, BR, CC, and OD refer to values between 0 and S. DAT to compute the
.sum of these values and store that um in TOTAL and then stop.

43

2?9

2.37
2. Variables ONE, TWO, and MEE refer to values between 1 and 10. OAF to place the

product of ONE tines THREE plus the sun of ONE and TWO into ANSW and atm,.
%

44

i, Variables PRICE-1, PRICE-2, PRICC-3, and PRICE41 refer to the cost of motels for a
4-dam, vacation trip. DAP to obtain the total coot and the average cast for motels,
Store the results in SUM =CAW.

45

231

231
4. The computer contains the following variables:

NAME - employee's name.
ITP - percentage to use in computing the income tax deduction.
SSP - percentage to use in computing the social security dedUction.
RHP employee's regular hourly pay.
OHP - employee's overtime hourly Pay.

HAT to show the operations required to: (1) read a card containing RPH (regular
pay hours) and OPH (overtiee pay hours); (2) compute employee's gross pay into GRP,
his income tax deduction into rrn, his social security deduetion'into SSD, end the
amount left after deductions (take-home pay) into THP; mei (1) write out the amount
of the employee's gross pay, his income tax deduction, his uociai security deduc-
tion, end his take-home pay.

46

S. OAF to compute the taxable incomes social security, income tax, gross pay, and net
pay for an airman, Nis base pay, flying pay, overseas pay, hasardous duty pay,
pro.pay, quarters allowance, subsistence allowance, clothing llowance, social
security factor and income tax factor are available for use. Quarters, subsist-
ence, and clothing allowance atonal taxable. If say of the item &loot 4PPIY,
their values will be zero. Write Out thi values of gross pay, net pay, income tau,
and social security.

The formulas needed to solvelhis 'males are listed below.

Gross Pay base pay + flight pay + pro-pay + quarters + subsistence + clothing
Tamable Income Gross pay . (quarters + subsistence + clothing)
Social Security Taxable income * social security factor
Tax Taxable income * Income tax factor
Net Pay Cross Pay - (Tat Social Security)

47

2 3

2.41

6. DAT to find a student's average grade for each block and his course average. The
average is based on *written and a performsnce grade for each block, with all
grades having equal weight. CFades are stored in the computer as WI, Pl, W2, P2,
W3, and P3. Averages should be stored as ;mu, BM, BIA3, and A. Write out
these averages.

23

BRANCHING FLOWCHARTS
494,42,

1, Musa the variables AA, Ms sad ANS. If AA Ss loss than R9S set ANS equal to

AA + $S,and stop. If AA BB, set ANS equal to 2**AA + 2*311 and stop. -If AA Is

greater than BB, set ANS equal to AA - BB and stop. nAF.

49

O. Given the variables EE, (C, and BAB. If EE I and GG 1, net BAB equal to
F2**2 * GG / W**2 * RE. If EE Is greater than 30 and GG is greater than EE,
set BAB equal to RE * (GG + 3). For all other conditions stop. nom

236

50

143

tawn the variablen NH, JJ, ANSI, and ANS2, If KN/JJ is greater than zero,
equal to 4 * NH + 5 * XI and atop, If JJ - NH IR lens than 99, set ANS2 equal to
(I13) * RH + 1/12 and stop. DAP.

51

245
10. Given the variables ATE, BAD, and YALU. If ATE + BAD iS less than 10, set VALI'

equal to 1 and stop. If ATE + BAD 10, set YALU equal to 2 and stop. If

Ars + BAD in greater than 10, just stop. ray.

239

'12

II, Given the vartables gill RR,
less than RR, oat ANSL equal to
equal to 2*PAA - 2**BR If (PP
sot Min *qua to Akbit21a**2.
stop. pm.

ANSl ANS2, ANS3, and En. It PP QQ and (IQ is
AA**2 AR**2. If PP end QQ RR, set ANS?
is less than QQ or RR is less than Qq) and 41 30,
For ell other conditions, set ERR equal to 1 and

47

12. nAP to examine the three values atored in variablen JONS, JANK, and Deter-

mine which in the middle value and ntore that value in WM Al/ viluee nre
positive (between 0 and 50) and none are equal.

13. Civen the variables AA, NS,
than zero. If AA equ4la UN
CC squared and stop. If AA
ths Vails of Ah squared and
sere sad stop.

to

CC, and CtIND. AA, ItH, and CC iontain values grs.ater
hut is less than CC, set ()441) ,oual to the value of
equals CC hut La greater than ha, set COND equal to
step. For all other eonditioft, set COND equal to

5r.

211

WI.

19

14. Given the variablen Al, A2, A3, A4, and ANSW. If the sum of Al, AZ, A3, and A4
10 less than 100 and their product Is greater thin 2,000, set AM/ equal tn sero
and stop. If the sum In ;venter than 100 and the product minus th.. gum 10 leps
than 500, set ANSW equal to 1 and atvp. For all other calif:Woos, (+rite out
"ERROR" and stop. TAF.

1 -)

-

LOUP FLOWCHARTS .0S0
154 DAP to read 10 cards from the card reader, each of which contains the following

variables: NMI, SCORE, and PAA. Atter reading a cardocompute the handicap and
print out NAME and 1WCP. The handicap le 3/4 the differenct between the golfer's
score end par.

57

213

16. OAF to compute the cost of luMber to build a barn. The bill of materials is con-
tained on six different cards in the card reader. Bach card contains information
about one sire of lumber: NB - nuaber of boards; LCTH - length in feet; WMTH
'width in inehes; and THK thitkness In inches. The price to 615040 per 1,000
board feet. A formula for computing hoar.: feet is Board Feet P vidth/12*thickness*
length. This gives you the nunber of board feet in each hoard. Write "tit the
total cost of limber. Store the cost in CnST and the count in CT.

11, The Air Force Academy desires to e1Pct 10 candidates whose characteristics are
on caida in the card reader. Each oust be from 18 to 24 years of age, have at
least a 3.5 high school everaga, weigh from 2 to 2.5 tines hie or her height In
inchsho and ba unmarried. The information about each candidate IA on a card.
Each eard contains rho following variables: NAME, ACE, AVG, TALL, WT, and WED
(1 if married, 2 If unmarried). Stop when 30 have been selected or when all
cards have boon procassed.

59

2 4 1

.75.2

253
MARCH FIANICHARTS

lb. TRIP is a file in memory with up to 25 records, each containing the following
variables: HILES - miles to destination ind DEST destination. ENDO is another
variable which refers to the number of records in TRIP.

MILES' MST
1-4 5-21

DAF that will compare e1r4 TITLES value lith Lc value Jf a single ..,ariable
DIST, compute the sus of thou.: values of PTLES which are greater than the value of
DIST9 and store the sum into glIMM.

dig
14. A magnetic tape tentaini'all the messave headers that were received by a wmitthing

center for th, last 6 hours, E#gb header Is a sep.itrate block or entry on the tape.
DAP to reed tbi headers tnzi4 keep a count of the nunher of headers for each of
the precedences Z, 0, P, end,R. There are less than 5,000 headers and the tape la
terminated bye block containing the letiern "ETV." Write out the counter vaiuee
before itappini.

Nam.

hl

2.0

255
VALU 1.14 a file in memory with 12 recordn each containing the variable NUN, a number.
KON la another variable which contains a number to be compared to. OAF VI sum the

numbers which are less than KON and store Vle sum into ARELES, sum the numbers which
are equal to KON and store the num into ANNUAL. sum the numbers which are greater) -

than KON and store the sum into rAEAT.

21 9

11

clp

21. US is file in ommory with 54 records, each containing the following variables:
STATE a state of ths United St4tos; AREA - an area of a state; and POP - the

(,population nf a state.

OAF to sum the number at states bring a population greater than 3*10**6 and store
the mum into MORT, Waite omt COUNT before stopping.

63

219

2_ 1
22. CIGARET is a file in memory with 100 records, eaeN containint, the following var-

iables: FILT - (1 for filter, 2 for no filter); KING - (3 for king size, 4 for
not king size); and MENT - (5 for menthol, 6 tor not menthol).

IFILT

I

KING
2

I TIENT 1

3

BRAND
4-25

OAF to find all cigarettes which are filter tipped, king size, and non-venthol.
Write out the brand nave of those brands meeting these criteria.

fl

2S. TAIL la a file in mown with up to 512 records, each containing the variable
NUNS - unique number. NEM I. another variable which indicates the number of

rafted. Su TAAL. Other siugia variables which are used in this problem are:

MIST 0 0 eenotom$ meihor 000i ANS error status indicator. DAP te search TABL

for she value equal to KOUT ff the valu in found, set ENTNO equal to the
netiber oi that file reteled eat ERR equal to 2 (meaning no error) and stop. lf

tha wells is not found. got SIB mail is 1 (meaning no nuMber found) and stop.

6 5

2. 9
24. There are 40 numbers siored.in the file FORTY: They soy be positive or negottVe_

numbers. DAF to compute two totals: (1) the sum of the positive value, and (2)
the sum of the negative values. Store these totals in POSIT and NEM?, respectivv1v.

250, ACCOUNTS fig, file in memems mdth up to 5,000 records, each containing the follow-
ins vessiablest ACTMO account samb s and PANMENT - amount of monthly payment.
TARDY la a file in mem with UP to 2.non records, each containing the variable
ACCTeemamma numbs, of ladAt4Ileala who are late in their monthly payments. NN1
Ind 11110..s. settas vgaisilassi MIAs. haelcate the number of records in ACCOUNTS and
TAM aimilmettweiy. eth fiLIP w in ascending order based on account number.

Apin
1-9

DAF to aat SHOW aciaal a the immune sf money not vet received and write SHORT
oat behave stoaaialt.

deb

êY

)

bo I

SORT FLOWCHARTS

26. SENIOR is a file in memory with up to MO records, each containing the f.111owing
variables: NAME - senior student name and AVERAGE - grade average. ENO, is
another variable which indicates the number of records in SENIOR. OAF to sort
the file into ascending order, based ou key field AVERAGE.

Or-

!I, Mery aro 1411 5-dis t numbvrh (sell-run ve4 hV Lhe variable NUM) ntured in is tile
eolled NOS, 1411 Lo Nort thee. niimLorto In dericvnding order.

479

2(03

28. DECK is a file in memory which contains positive nonduplicate numbers in random

sequence. DAF to sort DECK into descending order, based en kev field KEYCRD.

There are 586 records in DECK.

11

a V
29 Positive numbers see stewed in sandal sequence in a file called POS. DAF to sort

these numbers in ascending pellet based on key field NUMB.

71

26,5
30. BAT in a file in memory with up o sno recor& each containing the fnflowing

variablen: ROB, RAY, and ALPHA.

RD RAY .ALPHA
1-5 6--1,0 11-1H

OAF to sort BAT into desrending order, bawd n key lig-td Roll After BAT hag
been sorted, roll in sothrimi PYTHACImiK'f: TflEttREM., BP Ion using the nuht-oot foe,
qet SlflE1 equal to RIM and SIIW.7 equal te RAY. The resulto ot the computation
will he placed fn S I Jill. ore thfq re..ftll AU'llA. rvele through the it lie
file, performing this comnntat Ion lot i.14-11

2 9

7?

II. PIIPEXE fa a Iiip in mplunrv with n tw !JOH recur4u, earl. efimaInIng the IolloaIng

varishleet CITY - GIty; STATE Ntitk; and POP - pupnlatIun nI city, NEST in

snother variabl which indicates the nunher of re.nrdn in 14113EXP.

nAF to sort POPEXP in ascendina'srder based on key field POP. When the sort is

finished, set PC1TY am, PSTATE STATE, and PPnP POP and call in subroutine

LPRINT co print each entry. Write out the entire table.

73

0
f1

32. There are 100 cards in the card reader. Each card has the name andpopulation or
an American city. nitx to read these cards into a file CITY. Meek each record
and if the population is 500,000 or more, set SIZE equal to "LAM" for that record.
lf,the population is greater than 50,000 but less than 900,000, set SIZE equal co ,

",pm." If the population is 50,000 or less, set :mu equal to "SMALL." When alI
cities have been checked, sort the file foto descending order based an populatios.

74

33, ran is a file in emery which cantatas up to 100 series card message headers for

given card terminal which constitutes its message traffic for one Julian day.

DAY to sort tha random headers into ascending sequence, based an file tine in

headers. ,;Oecribe record fosmat as necessary to solve this problem.

75

2qj

34, TBL is a file in memory with up to 1,000 records, each containing the following
varlibles: KEE and INTEOER. KENT is another variable which indicaten the number
of records in TBL.

KEE
1-3

INTEGER
4-10

TBL iR in random order. If SOSO equals any item KEE, sort TRL into descending
order. If none are equal, stop. KEE is the key field. RAF.

11)

deP

)5. PRES is a file in memory with up to SO records, eaCh containing the following

variables: STATE, YEAR, and PARTY (1 for Democrat, 2 for RepUblicanIr and 3 for

other). RENT is another variable which indicates the nuaber of records in VMS.

STATE 1 YEAR
1-8 9-12

'PARTY
13

PRES is in random order. Sort the file into ascending order based on key field

YEAR, then determine if any record has the year 1838 and PARTY equals Democrat.

if so, write out the state Which that president cane from. If this condition

does not exist, write out error message. The year 1838 and Democratic party

may exist more than once. . 4

77

2

DECRE I
5-6

291
36. BELO is & file in memory with up to 100 records, each containing the following

variables: DIGIT - number and DECRE anothei number. ENDD is another variable
which indicates the number of records in BELO. BELO is in random order.

DIerr
1-4

DAF to sort the file into ascending order, based on key field DIGIT. If duplicate
numbers exist in digit, use DECRE an the secondary key field.

78

INSERTIm Fun lamas
47.2.

37. DATA Is a file in =enemy wittl up to 365 records, each containing the variable INFO.
NFNT is another variable whico f-licates the numher of records in DATA, werA is in

descending order. DAP to Insori :bp value FACT into the file DATA in the proper

location. If there is not sufficient space for a new entry, write out an error

message.

79

38. BONL is a file in memory with up to 88 records, each containing the follewing
variables: NAPF and NTICAP - bowler's handicap. NENT is anoiher variable whit+
indicates the noMber of records in RIM.. hAF to read ten earls eontaining the
variables NNAPE and NHIICAF, one 41t a Elmo. Insert these records into the proper
location of BM.. BOK is in ascending order based on key field RDEAF.

tt

2.1

39. ANUM is a file in memory with up to 100 records, each containing the variable

PIC - a number. ENDA in another variable which indicaued the maker of records

in ANUM. NNW la a file in memory with up to 50 records, each containing the

1 variable VAL - a number. NNINI in another variahlewhich indicates the nunber

of records in RPIUM. Both files are in ascending order, DAV to invert all the

records of BNUM into their proper location in ANUM.

81

40. RINGO la a file in memory
variables: HIP and SHOW.
records in RINGO. DAP to
and NSHOW tnto the proper
on key field HIP.

with up to 61 records, each containing the following
RENT is another variable which indicates the nouber of
insert a single record containing the variables MIT
location in RINGO. RINGO is in descending order based

2:15

41. ERN is a file in memory with up to 150 records, each containing the following
variables: PEA and PiCKER. KNOD is another variable which indicates the number
of records in E. DAY to insert a single record containing the variables COTTON
and PICK into the,proper location uf ERN. SRN is in descending order based es
key field Piki6

83

a 74

42. BIB is a file in memory with up to 200 records, each containing the variable Jrm.
ENDA is another variable which indicates the number of recorde in BIB. RAY is a

file in nemory witkup to IOD records, each containing the variable BOB. ENDB is

another variable which indicates the number of records in RAY. Both files are in
ascending order.. DAY to insert all of the records of RAY into their proper loca-
tion in BIB. If there isnot enough space in BTB, write out an error meqsage.

84

29 1 *

47,
41. ThLO is a fill.. in memory with up to I,Oolt cv,!ords, ouch contnincng the folloving

vuriahlen; ITTI end hTM. LAST in another vnriuhle which indicaten the number of
recordn.in Tau. nAg ip Bort TBLO into dont:ending order based an kev field rrm.
Also iniett a single record containing the variables NTAB and ISTAB into the
appropriate slot of TB40. If TRW is full, complete the sort and go to stop.

85

219
DELETION FLOWCHARTS

44, TBL is a file in memory with up to 1,000 record?, each containing the following
variables: ITM and BTM. NENT in another variable which indicates the number of

records In TBL. DAP to sort TBL into asuendinK order based on Fey field TTM,
then delete the last two records of TU.

8fe

4%. *04: is a file in memory with up to 237 records, each containing the variable TWO.

NENT is another variable which indicates the number of records in ONE. ONE is in

random order. MAY to delete from ONE all the records with a value of 17 or 46 for

TWO.

87

2" 3

RdPO

46, RESULTS is a file in memory with up to WOO+) terindlio eau!, cliitroning the fel luw-
ing variables: SERTAL - neridt number, AGE, and T. NErr tm -ol-ther variable
which indicates the aurlivr of records in RESULTS. RESM:17; rc,,4 01,1.. the ti erial
ember, age, and II) tor op to 10,mo anyrd sorvicc personot l. to delete thi.
reciprds with an IQ of 1em4 that, 'Hi mod reptirk the frt.,.

47. WAGES la a file in memory with up to i0,000 records, each containing the following

variabless EMPNO - employee number and SALARY. ENDA is another variable which

Indicates the number of records In WAGES. RETIRED is a file in memory with up to

SO records, each containing the variable NUM - employee number of;retired employees.

ENDS in another verihhie which Indicates Cie nurher a recorel in WAGES. DAF.to

4e1ere ail retired personnel from WAGES.

89

2.83
48. SUNK is a file in memory with up to 1000 recorda, each containing the variable

SWUM. NEWT is another variable which indicates the number of records in SUNK.
SUNK is in random order. DAP to delete all records of SUNK that nre equal to
the value of NVAL. Note all numbers are not unique.

90

49. THINK Is a file in memory with up to lon records, each containing the variable VAL.
NENT is another variable Which indicates the number of records in THINK. THrNK is
in random order with duplicate numbers. DAP to sor'. THINK into descending order.
Whin finished.. delete ach entre that has a value equal to the single Narlahle KAY.

91

4

N

50. SUM in a file in memory with up to 200 records, each containing the variable
XRAY. RENT is another variable which indicates the number of records in SUM
SINN is in random sequence. DAY to delete all entries where XRAY has a value
between 100 and 150, inclusive.

91

2.8 5

4,4
TIERCE FLOWCIiAltrS

1. Civen variable length files UNO and DOS. The key field for UNO is EIN. The key
field for DOS is AWEI. Both files are in descendinworder. Each has positive and
duplicate numbers. OAF to merge 1210,and DOS into a third file TRES, which will be
in ascending order. Describe files as necessary to solve the problem.

52. PERS is a file in memory with up to soon records, each containing the following
variables: SERIAL - social security-number; RANK-- rank of individual; and NAM.
NENT is another variable Which indicates the number of records in PERS. PERSX is
a file in memory with up to 50 records, each containing the following variables:-
SERIALX, RANKX, and NAMEX. NENTX is another variable which indicates the number
of records in PERSX. loth files are in ascending order with SERIAL and SERIALX
as the key fields. DAF to merge the two files, maintaining asceniing order.

SERIAL
1-9

RANK
10-11

NAM: -1
12-32 1-9

1 RANKX
W-Il

NAMEX]
12-32

ri

53. CUSTOMER is a file in Memory with up to 1,000 records, each containing variables

ACCT and NAME. UINTA is another variable which indicates the number of records in

CUSTOMER. NUCUST is a file ip memory with up to 1,000 records, each containing

variables NRACCT and MAME. NUTS is another variable which. Indicates the number

of records in NUCUST.

[itEcr I NAME

1-5 1 6-26

NuAccr 1 MANE
1-5 1 6-26

CUSTOMER is in ascending order and NUCUST is in descer ling order. DAP to merge

the two files in ascending order. ACCT and NUACCf are the key fields. All values

are unique.

A

9 5

54. FUT is a file in memory with up to 100 records, each ntaining the following
variables: TYPEF - type of ship; NUM - number of ship, RANCE - range of ship;
and SPEED - speed of ship. ENDD is another variable whicTh indicates the number
of records in PLOT. PAT is another file in memory with 10 records, each containa-
ing the following variables: TYPEP, NUNP, RAW', and SPEEN'. PLOT is in ascendityg
order and contains information on the Ships in a Navy unit, rdered by nuMber. PAT
is in descending order and contains information on new ships being assigned,
ordered by aumber. Merge the two files RO the resulting file in in ascending order.

FI.trICHART ANALYSIE

=LP a-ftie th tovoaory with up-to IS* raeords, -oath eantartning tito fallowing
variables: DIST, PO$ (.0 for fairway, I for graen.), and CLUB (2 for wood, 3 for
iron, and 4 for nuttier). ENDO is another variable which indicates the.nunher of
records in GOLF.:

4_tiO1 541C1

DIS-T Ps
Ik I

L UB IP I 3

V # I

SOAR I

IR

PUT 0
f

SHOT 0

PUT PU1 I 1

UR 'VI 4

IlI If E
D)1 P

Oli) 'VD '
P

97

2S3

if f If I ND
itiU 1 Stit) T

STOP

3--

0
55. a. If nIsT in entry number 35 is 180, what items will be set during that pass7

(1) CLUB (35), NFST (GOLF).

(2) IR, SHOT, CLUB (35).

(3) IR, SHOT, DIST (35).

(4) DIST (35), ros (35), Cum (35).

b. Suppose this file has 80 entries. What will he the final count in K7

(1) Indeterminate.

(2) 79.

(3) 80.

(4) 350.

c. When is item CLUB set to WOOD?

(1) WD is set to 0.

(2) Distance of shot greater than 200 feet.

(3) Distance of shot equal to or less than 200 lect.

(4) Hall positioned on fAinfav.

d. What information is contained in item rui when the flow is comrlett"?

(1) Number of strokes made on green.

(2) Number of strokes hit less than 200 i'ept.

(3) Average distance eovered hv putts.

(4) Total distance ,covered by putts.

C. What is the maximum value item SHOT might possibly contain in any time darin4
this flow?

(1) 150.

(2) 199.

(3) 29650.

(4) 30000.

START

EASY
EAY CHAR

ADD'I TO CHAR

BAKER GR
DOG ALFA SuBTRACT 90

FROm BAKER

ADD CYR TO CHAR
ALFA=

L f A DOG - CHAR) EASY
GR

ALFA

ADD 2 TO (TR
SUBTRACT 12
FROM ALFA

ADD 1 TO CIR
CHAR

CHAR - 5

SUBTRACT CHAR
FROm CTR

ADO 2 TO DOG
ADD 50 TO BAKER

99

RAC 24 - !)t.,

2 (13

56. List the value contained in the following variables whens

CTR CTR 3 CTR 4 CTR 5 The program
STOPS

a.

4,

ALFA

,

h. BAKER

c. CHAR

...._ ,

,

d. DOC

-.....,

e. EASY

. .

CTR

.

3 4 5

, 4

Initial Valuen:

ALFA 15

BAKER 76

CHAR to 7

Dric 5

EASY 12

CTR

2.911
57. EVEN is a fils in memory with up to 500 records, each containing the variable ODD.

NENT1 la another variable which indicates the number of records in EVEN. MORE is a
file in minor, with up to 50 records, each containing the variable DIFF. NENT2 is
another-teriable which indicates the number of records in MORE. BUFF is a temporary
storage location in memory.

START

IA1

NENT1
NENT2

SOO

ID)

IL RUFF = EVEN (CT)I

OCID(CTfl

DIF (C12)
E vEN (CT))

MORE (CT?)

iE

ADO 1 TO CT1

(F

CT1
NENTI

EVEN ICTI)
MORE (CT?)

NENT1- CTI
ADO 1 TO CT?

CT?
NENT?

101
RDA124 -54

0

L 5"
5/. a. !Mich block inuures that NENT1 contnlns the number of entries in file EVEN?

(1) (A)

(2) (F)

(3) (G)

(4) (II)

h. Block (A) insures that

(I) file EVEN is tint sorted It thele are more than MID entries.

(2) no entity' Atv dcleted If the ' ate Irmo than 50I ent.rieu.

(3) the file!: Oro not mergvd fl theoe Are lesu than ')Ol entiles.

(4) no entries ate Inset-Lye. Info II I IVEN unless there is rum fot all.

c. What is accomplished by the flotarhait7

(1) Sorts Me EVFN in ascending dullvr.

(2) inserts file !ME into mi. rm.

(3) mvrges filen foNF nd UVF.N.

(4) Deletes dll Intries trim file 1A/KN that rentain A VAIM. less than thr

entry in tile MORE.

d Whit is tm. u;d r id file !NEW at thy end ut the assuming thit It wit

utch-,red to stdt.twlth7

(1) Asuenitny..

(2) Dvseondlisn.

(3) itin&m.

102

-

.

IAPI

MAN
, PAN CAN

NN6S4.0"..

N.)

NAN PAN

-..--1

MAN..;
DAN"2

.

YES

CAW' I

NO ..rof RAN
4. AN . AN

........

L.
RAN

RAN I CAN i
..

.C. S TOP

4

P13.

RDAZ:4

s()

v

77-7.

211
SS. Analyse the flowchart on'the preced page und determine the finul values of At

C, and n for each variable tiling e initial values givun.

VARIABLE

a. RAN

b. CAN

c. DAN

d. MAN

e. PAN

11,

1N1

5

AL VALUE

C

11 19

ARC!)
FINAL VALUE

7 3 22

..-

2 9 8

3 15 0 21

=a.m.. a. me....D.IN 0.1111.EM1 ,F,

4 I 13

290
A

no

411a

105
MAJ24-49

29

7

.e

a

e
a!

59, Analyse the flowchart on the, preceding page and determine the final valnea oCt and D for each variahle using the initial values given.

s,

VARIABLE

a. RAN

h. CAN

C. DAN

d. MAN

e. PAN

-

INITIAL VALUE FINAL VALUE

A B c U A R D

0 5 11 lq

1 7 3 22

2 q 8

4

15
1'

4

1 13 h-

106

0

292

szb

.wafe

0

2 9

Ag Bo

..

#

11P

a

*O. Determine the contents of eenb of-the following variables.ntan "Atop" is exsonteds

0

J

a

-

%MAWS

A

I I

. ,

a.

liam. alms

IP

a

'TART

.C=D

A= Es5

YES

E C "7

5' 0
D 54C
E: Ato

STOP

a

107

2 93

RDA124-51

60 FLANCHANT CORRECTiON

61. Correct the errors in the following flow. Thls flow should multiply items MU end
NMI, print out the product, and, if the product is zero, print out NV CO." .

1)

Nti

nt

0

108

RAW4-41.

291,

AMIN

1.;

%awe

.V*
NEorrozi the errorfx) 'tn Om following flow. AF in a file in rIgnorv with op'en
4,0041 racnrdm, each containing the fallowing variablen: slOON,-, PERS, BASE, end LOC.

NENT to =ethor variable which indica-ten the pusher of records in AP., Th* flow
should print out th-aquadron and hosa of all squadrons having more ellen 1,000
personnel assigned. AF le in random order.

f

w RI TE 'BASE

1.41 1 - .1

109

2 95

se

63. CARS is a file In memory with up to 300 recordo cach containing the following
variables: COST and PWISTR (1 for yes, 2 for eo). NEST is another variable which.
indicates the number of retords in CARS. The flow should delete the record.; pet:-

Joining to all cars -hat do not have power steering (PWRSTR).

2961

.

e.b

4111

(It rARrgA ii. d WO In alrrv Wit14 up CAI .!r41 recurtia, each containing the Milt:Ling
vdriabires gTHA dnd grYA. NEWil ig another variable which indicateVthe number
of records in PARISAY PAKI'Sli is a My in memory with 4 co 50 records, oath conr
coining the following variab)es: STNN and ms. MENTZ is another variable which
indicates the mashr of iecordn in PARTSH. The flow should insert PARTSB retina
into PARTSA. The key fields nil. KTWA anii ma. .PARTSA in in ascending vita and
PARTSB'is in random order. When finished, PARTNA should still;bs in ascandins
.order.

HOLD PAR11,A1
PANTS (A!
PARIS'S!

111

2 9 .4

RDA124-481

of

56

.

41It

65. RADIO is a ,file in Emory wfth up,to SOO recsrde, each rontaining the folievi.
variables: PNR and mtyrir.- mtmmrR is another variable which indicate, the nuabe
of records in mAnto. TV is a file in memory with up to 700 records, Pach con -
taining.the following variables: PPT and TTY. NENTT in anothei variable which '
indicate, the nupher of records in TV. KLEC Ca a file in memory with up to 1,200
records, each containing the following variablen% PNE ana RqTY. NENTE'in another
variable which indicates the numhey of records in ELEC. The flow should merge
RADIO and TV into ELEC. The original filen were in ascending order, haaecf on PNT
and PNR. The new file should also. he in ascending order, based on PNE.

e A

(HI

a

11Z
r2

itt

iE L Fr li I RADIO
f t 4 I
R R 1

RPAJ14 -47

a

,
4

MR%

14

t.

T

immenswommy
-.4 loft NM

I.

0..

Technics' Tu.InIfl

Commatustleas Computer Pregr.ammer

v

.

USAF TECINICAL TRAINING SCHOOL
33941th Technical Training Group

*eider Air .Furce Base, Misahalffi

Des *ad Flu ATC Com Use

e HT USE ON ME JE

ta.

a II

TITU

Foreword

r

COMPUTER LOGIC FUNCTIONS

C 0 NTI N S

V.

301
KIK- 305

PAO:.

Contents
Li

instruclions to the Student iff

Truth Table iv

AND-Logic Function

OR-Logic Function 11

NOT-Logic Function 21

EXCLUSIVE OR-Logic !unction . . . 37

OBJECTIVES

.
..

,

Civea a series of problems.and n'Truth Tatrle rentnInIng the requ rvd
combinations of AND, OR, and NOT lnic ianctions, name the logir. funclion
'ant) determine the result of performing ihe logtc functions on fivedirit
dhinary values. -7n7. of theanswers mmat he correct.

el, .

.
.,1

. .

tr°

301)

r .0

,011,11.

mt

INSTRUcT.IONS TO THE STUDENT

1. This programmed text is designed to present all the information
and practice you need in thim course in relation to Computer (Boolean) Logic
Functions. It is designud fur yol, to complete during home study but could
be used during class time if desired.

2. This programmed text is designed to serve as a review for persons
who have ireviously studied Computer Logic Functions or as a complete lesson
for persons who are just beginning to study Computer Programming Principles.

3. Specific instructions are presented as you progress through this
text. You must follow these instructions ip order to gain access to ap-
propriate information and practice problems'4t the proper time. Some gen-

,eral instruttiors are listed below..

. a. The first thing you must do au you start each subsection is
to elect whether of not to take,the pretest. If youtake the pretest end
make the required passing grade, you will be eallowed to bypass.the instruc-
.tional and practice frames (exerciseS) designed to help you learn that
sub]ect matter. .

b. If you elect to.bypass the 'protest or do not attain a passing
. gracile on it, you will be given an explanation of a basic conce0t,.then re-
quired to apply this concept iu the solutioh to some problems.

c. After you have completed all of the instructional and prac-
tice frames for a subsection youvilt be given a test on that sUbject and
then directed to-continue with the next subsection.

. d. As you progress through this prograimmed text, read the eX-
spianations,.complete the problems and then check your answers. If you
ausPer' incorrectly any pratice problem, turn back and reread the
e%planat,ion to determine the reason for your error.

e. 'You van obtain additional practice tor each section by turn-
iug back tothe pretest and completing it. Specific instructions for this
procedure will be given at appropriate points.

TURN TO PRETEST I ON PAGE rT AND BEGIN

391

TRUTH TABLE
309

Operand
AB
0 0

bit
AB
0 1

combinptions
AB
1'

011111111MMIIIII
0

AB
1 1

0

Symbolic
representation of
Agicaispnction

IMMEMININI
Result, 0 0

11111Bit

Each 0 1

IMMIONEMEMEM
MI

1

Combination 1

in0
0

1

A...,

6 A(Exclusive OR)B

1 0 0 NOR

1 1 0 RAM

1 A1+0'
L',..._

LOGIC DIAGRAM,

CONTROL 22

GATES

(I REX DIGIT) p

iv 3

PRETEST 1 el/61
INSTRUCTIONS: If you undersuind and believe you can solve problems using

the AND logic fuuctiou, continue below. If not, turn to

frame 01 on page 3.

1. Place a eheckmark beside each of the following symbo.s that indicate

the AND functions.

a. A+11C

b . A A BC

c . AltC

d . A V ligIC

e . A.BsC h.

BAM D-c
2. Perform the AND function lor each of the following problems. You may

upe the Truth Table on page iv.

a. 110 b. 111 c. 11111 d. 10101

101 101 10000 10011

3. Place a checkmark beside the correct definition of the AND function.

a. All inputs must be zeros to have a zero output..

b. All inputs must be ones to have a one-output.

c. A one at any or all inputs will produce a one output.

d. A one input with all other inputs zeros will produce a one
output.

1

3 93

MiSWERS TO PR :11T

1. a. v..0.1...a1111

b. V'

C.
R.

d. h.

2. a. 100

3. b.

h. 101 r. 10000 d. Innot

INSTRUCTIONS; The maximum error allowed for satisfactory oompletion of
PRETEST I is one incorrect answer in part 1, 2, oi 3, or tw.s.
incorrect answers on the entirv test. If ynuAmet this re-.

quirement, turp to piige 11 and continoe: otherwise turn to
page 3 and continue.

3142-
irame 1

The logic used by a computer in solving a problem consists of a set of
'rules. In order to write programs to cause the computer to solve specific
problems, the programmer must be able to use the computer logic rules to
solve saWple problems.

There are three basic logic circuits in a'somputer; therefore, three
basic logic functions the computer can perform..\ The three logic functions
are called AND, OR, and NOT.

Each of these logic tunctions has one or more uniquPsymbols used in
an equation to denote that specific function.

The symbols used in a logic equation to denote the AND function are the
same as those used to denote multiplication in an arithmetic equation with
oneeadditioaal symbol used by some wfiters. This symbol is an inverted V(A).

Place a checkmark beside each of the following equations that denote
the AND function.

a. X+Y.-Z e. XYZ=A

b. R1.1..N f. RAS0T

C. ABaC g. DVE,=F

d. h. X4N+ZA

Check your answers against those at the top of the following page.

Ans4ers to.Frale I

a. .

4

V

1.

3 6

A writer-wilt hormally use. tally uut . symbol tit demi.. a particular func-
tion. However, you will be reading technical literature written by. many .

different writers; therefore, you should be able to recognize the symbol in
all ot its usual form.

lo Your lob as a programmer, you may also be exposed to some logic
diagrams. The symbol for the AND function in a logic diagram appears like
an elongated D (0) with two Or more inputs and one output
(.

Place a checkmark beSide each of the following that correctly denotes
the AND function.

I t

1

h.

e

/01;miC

. AV 1S=C

h. A A Poi C

I. Al3.0C

j
A

C.

Check your answois at the top of the followinp pope.

5

397

An..wers to Frame

a.

b.

C

d

3t5-

Frame 1

The purpose Of a logic circuit in the .cOmputer ts to combine values
within the computer according to the rules of the logic function being
performed. The values to be-combined are stored in registers and are com-
bined one digit at a time. Since the computer uses binary numbers, the
only values it has are ones and zeros.

The rule for the AND functiou is "an output is produced when and only
when all inputs are present..': This rult. can be converted to a Truth Table

as follows:

A XB C

t) X 0 -
0 X I
1 X 0 0
1X1.1

This Truth Table demonstrates the rule or, stated in reverse, if a
z.ero is present at any or all inputs there is a zero or no output.

Use the Truth Table above to help you solve the following number com-
binations using AND logic. Remember to combine the digits An corresponding
positions one at a time.

0

. 101

100

Check your answers..

C.

g. 001

110

7

d.

h. 10101

11001

Answers to Frame 3

a. 0 b. 0

e. 10 E. 100

c. 1 d. 0

g 000 h. 10001

3io

,94,
Yrane 4

a. Place a checkmark beside the correct definition of the AND

function.

(I) A one at any or all inputs will produce a one output.

(2) A one input with all other inputi of zero will produce

a one Output.

(3) All inpuzs must be zeros to have a zero output.

(4) All inputs must be ohes to have a one output.

b. Solve the following problems using the AND function.

(1) 101 (2) 101 (3) 10000 (4) 10011

110 111 11111 10101

v. Place a checkmark best& each of thifollowing symbols that indi-

cates the AND function.

(1)

(2) AV

(3), AlPsC

(4)

.D4

9

,(5) A+B.PC

(6) AA BuiC

(7)

(8)

ABeC411

OP Answers to Frame 4

a. (4)

(1) 1430

(1)

(2)

(3)

. (4)

(2) 101

(7)

(8)

31ct

(4) moo'

INSTRUCTIONS: If you need or want additioua1 practice on this section,
iurn back to ,page 1 and so1r the problems in PRETEST T. It
not, turn to pAge 11 aud clintinue.

312

PRETEST 11

INWIRUCTtONS: If you understand and believe you can solve problems,taing'
the OR logic funct4on, continue below. If not, turn to
Frame 5 on page 13.

I. Place a checkmark beside each of the following symbols that indicates
the OR functon.

a. A+1110C

A A 11.0

C. ABIDC

d. AVR.0

e . A . 11,-C h.

Perform the i tion for each of the following pro1erns. You may
use the Triith A.so!e on page iv.

a. 110 b. 111 c. .11111
101 101 10000

10101

1. Prace a checkmark beside the correct definition ot the OR function.

All Inputs must be ones to have a one.output. #

b.- All inputs mOst be zeros to have a one output.

c. A one_ output will be produced only when there ia a one at
one input_ xld all other inputs are zeros.

d. A one at any or all inputs will produce a one output.

a

11

313

1

Z.

a.

b.)

c .

ANSWERS TO PRFTEf II

g
d. h.

a. 111

3. d.

9
h. 111 v. 11111 d. ; 11101

321

INSTRUCTIONS; The maximum error allowed foi MIttisfactory completion ot
RRETEST ll'im one incorrect anwer in part t, 2, or 3. or !

% tUto invoriect answers on the entire test. If you met this
requirement, turn to pug' 21 and continue; otherwime turn to
page 13 and continue.

A

9

4.

0

444

4o

C

Vt

a

4
#

41.41.20

, The next logic function we will study is the OR function. The OR func-
tion is indicated in logical eqUations iy the same symbols used for addition
in mathematical equations. However, some writers use a symbol that looks
similar to a V.

Write OR beside each of the following Inations th dicates the OR;L.-4)n

function and AND to Identify equations that indicate the AND functibn.

a. e. A-141+0.D

INKPF AB=C

C . R A S.LT R.4
h.. X+YiZ

11'

13

1 3 2.3
An avers to Frame S

I,
a . OR e . OR

b .) OR f . AND

c . < AND . g . ANI)

cl . AND

fi.

14

. OR

I.

a

2

Frame'fi

The logic cirruli symbol fur thP OR function is similar to the AND
logic circuit symbol except that the input end of the symbol is concave.
The OR logic may have two or more inputs and one output.

Place a chespeark beside each of the following that correctly denotes
the OR logic function. .

a.

b.

AV B...0

c . A A 119.0

d.

C.

AEC

A

a

a

a

15

f.
A

A+B=C

h. A B

.....

Answers tq Frame 6

a.

b.

d.

C.

1 6

-

319

t

325

.9.2
Frame 7

When we combined values uaIng ANO logic, we found that a zero at any or
all inputs would produce zero output. When using OR logic to combine Values,
a one at Any or all inputs will produce a one output.

This rule can he Converted to a Truth Table as follows:

A + B C

O + 0 0
1 + 0 P. 1

O + 1 I. 1

1 + 1 1

Use the,Truth Table above to help you solve the following number com-
binations using OR logic. Remember to combine the digits in corresponding
positions one at a time.

a. 1

0

b. 0

0

d.

f. 101 g. 001 h. 10101

100 110 11001

17

319

Answers to Frame 7

-a. 1 b. 0

C. 11 f ; 101

41%

18

c

g. 111 It. 11101

32,)

52:1

Frame b

a. Place a checkmark beside the correct definition of the OR function.

A o v output will be produced only when there is a one
at or_ ut and all other inputs are zeros.

(2) A one at any or all inputs will produce a one output.

(3) All inputs must be ones to have a one output.

(4) All inputs must be zeros to have a one output.

b. Solve the following problems using the OR function.

(1)

(1) 101 (2) 101 (3) moo (4) 10011
110 111 11111 10101

c. Place a checkmark beside each of the followin! symbols that indi-
cates the OR function.

(I) (5)

(2) (6)AV liC

(3) AB..0 (7)

(4) (8)

a

19

A4.11..0

A.11C

Answers to Frame 8

a. (2)

b. (1) 111 (2) 111 (3) 11111

c. (1) V (5) V
(2) 17 (6)

(3)
a

(7)

(4).
(8)

'W..1111

(4) 10111

329

INSTRUCTIONS: if you need or want additional practice on this section,
turn back to page 11 and solve the problems in PRKTEST II.
If not, turn to page 21 and continue.

300)

20

mauler'

PRETEST 111

..e
tUyou understand dnd believe you ran-solve probltat us
the NOT logic function, continue below. If not,,turn to
Frame 9 on page

1. Place a checkmark beside each of the following symbols that contains a
gOT function.

a. 4 A4-34:

b. AAll'isC

C. AB-E

d.

e.: A.BaC

f.

h.

2. Perform the logic functions indicated for each of the following
problems. You may use 'the Truth Table on page iv.

d. /041ffloc c. AWIPPC As11100
B110001 3s10110
Cs Cs

b. ABC' - A-11001 d . A A An10011
111.10101
C.

21

1.

2.

a,.

b.

C.

d.

a.

b.

ANSWERS Tn PRETKST It,

C.

f.

h.

C.

d .

il=.11

, !plea!

11111

01,110

.!
10111

00010

INSTRUCTIONS: The maximum error allowed for satisfactory completion of
PRETEST III is one error in part 1 and one error in part 2.
If you met this requirement, turn to pare 37 and continue;
otherwise, turn to page 23 and cnntinue.

22

324

Prase 9

The Oka bosig.1941c fungtion Pertorned icaMpster ite NOT /net
'Mu is qtten called AR inverter because it-Inverts the iignal; 1.e., if
the input is 1,, the output is 0.

NOT logic is used in conjunction with AND and OR logic in most compUter
circuits. The NOT functiod can be placod in either the input.orsthe output
to the AND or OR logic device and is performed in addition to the-AND or OR
function; i.e., if the output.from an AND function based on the inputs would
normally be a 1, an inversion (NOTing) of this output would make it a zero.

The NOT function in an equation is shown by a line above the expression
or a prime beside it.

Place a'checkmark beside each of the following equations that containa
a NOT function.

a. 7411.0 e. AR=C

b. ----- A.BC f. AliCaii

c. AVB'...c g. A+341C

d.
-,-..---.... A A B-C ' h. A+11+06D

.0%

v.

%W.

23

Answers to Wanly 9

d.

r

J

24

g

h.

Frame 10 #

Tho NOT function is ..indicated in...logic circuits by a smallecirele
interrupting Ow film used to ithav an input or output of an AND or an int
logic symbol. a

Place a checkmark beside each of thejollowing diagrams that contains
a NoT symbol.

a.

b.

C.

d. A-
4

25

e.

f.

h.

A

8

A
a

a -c

10

Anivera to Frame 10

a. 4rar

b. V
C.

d. 0Mme

.

IV

a

--

4-

r

m..

V

V

V

'a

3.024
Frame'll

The logic diagrtilms can 'be matched to the equations by matching the

basic symbols (*a [2)) (+ ne), and then matching the circle at the

input oroutput with the line above oi prime beaide one of tbe factori or

the result shown in the equation.

- Match the logic diagrams to the equations by writing the letter that

identifies each diagram into the space beside the appropriate equation.

a.

b.

C.

27-

3 9

w...ormffile

mmla110=1.41

11!

ARZ

A+13..C'

-K4-B*PC

$.$

4

t

Answers to !raw 11

(1)

(2) a

(3)

(4)

A

#:#

e,

33'1

Frame 12

When we combine logic functions AND and NOT in that order we produce
what is caned a NAND (NOT-AND) function. We can produce a NOi function
using the same principle.

Do not be confutied by inverted inputs because the results are not Me-
same; i.e., using the values 110 and 101, observe the results below:,

A.BC'
or

110

101

100 Invert 011

A'.11'sC

or
110 Invert 091.

101 Invert 010
000

A simple. proo!dure for solving problems calling for NAND logic or NOR
logic.is - solve f,,r the basic function, AND or OR; then invert the result.
Note the left-hand example above. If you use'the truth table it gives you
the correct result without inversion.

Write AND, OR, NAND, and NOR beside each of the following, as appro-
priiite, for identification.

a.

b. A'.11'..0

,..11

d. A-f-R=C

29

e.

f. A+BZ

h. AAB=PC'

331
(

Answers to France 12

a. AND

tiv. AND

c. NOR

d.. OR

^4,

30

P

4"4

ft . OR

. NOR

p. NAND

NAND

. 39

Prow 13

The Truth Table shown below in a combination of AND, OR, NAND, and NOR.
Inputs (values of A and R) are shown at the top of eath column and the out-
put (value of C) in the box at the intersection of the appropriate line and
column. The equation is shown at the left of each line.

Label the lines AND, OR, NAND, and NOR to identify the line shoving the
Truth Table for each of these logic funitions.

.

0-0 *0-1 1-0
,

1-1

A.B.C' 1 1

,
. .

1 0

A-4-5-0 1. 0 0 0

AtRI.0 0 1
_

1 1
_

A-BC
e

0 0 0

,

1

v

4IP

31.

333

a .

b.

C.

d .

Logic Function

Ansvirs to Frame 13

NAND

b. NOR

C. OR

d. AND

T

v

:

37

3.14

3i.

1r

40.

Flame 14

Now let's try using the combination Truth Table to solve problems.
861ve eseh problemhusing AND, OR, NAND, and NOR logie_funetions.

a. 10101
11001

AND

b. 11111
10101

AND

0-0 0-1 1-0 1-1

AsliglIC 0 -6 0 1

A-I.R.IC 0 1 1 1

A+RsC' 1 0 0 0

A.R...C1

0

, 1
A

1 1 1 0

10101
11001

OR NAND

10101 10101 .

11001 11001
NOP

11111 11111 11111
10101 10101 10101

OR . NAND NOR

33

Answers to Frame 14

a. AND 10001

b. .AND 10101

f

OR 11101

OR 11111

34

1

34-3

wito 01110 NOR mom

NAND 01010 NOR (mon

Frame 15

a. 4 Place a checkmark beside. each of the following symbols that con-
tains a NOT function.

(1) PBPC

(2)

(3) -Mac

(4) ABIDE

(5)

(6) AAIV-C.

(7) A+BC

(8) IN. =W

h. Perform the logic function indicated by the equation for each of
the following problemh. Use the Truth Table on page iv.

(1) /0.11.C' - A.10101 (3) A Al-i=C A10101
11.11001 8-10011

A C. C.

(2) A+14.t A10001 (4) A'\/13.0 - A.10110
8-10101 11.11100

C.

35

337

Answers to Frame 15

a. (1)

(2)

mw
ve

(3) _Ae_

(4)
11 lem

b. (1) 60010

(2) 11011

(3) 00100

(4) 11101

3457

INSTRUCTIONS: If you need or want a4dit1.ma1 practice on this section,
.turn hack to page 21 nnd s..1.ve the problems In PRETEST III.
If not, iurn to page 37 and continue.

36

I

339

4

PRETEST TV

INSTRUCTIONS& If you understand and boIleve you can solve problems Wang
the EXCLUSIVE OR taste function, continue below. If not,
turn to frame 16 on page 39.

. Place a checkmark beside each of the following symbols that indicates
an EXCLUSIVE OR function.

2.

ii4A8=C f.

b. A.11'+A'.1141,C

c. A11.1.A.SC g.

d. i.11+A.1.0C

e. AN-11-A+1I'C h.

A

Perform the EXCLUSIVE OR function for each of the following problems.
You may use the Truth Table on page iv.

a. L0101 b. 111 c. 10001 d. 11111

11001 101 10000 10101

3. Place a Checkmark besidelthe correct definition of the EXCLUSIVE OR

fdnction.

a. A one output is produced only when there is a one at one

input and zeros on alrothers.

b. All inputs must be onvs to have a one output.

.

d.

A one avone or more inputs will produce a one output.

All inputs must be zeros to have a zero output.

37

339

a.

b.

C.

d.

e.

2. a. 01100

3. a.

ANSWERS TO PRETEST TV

1.
111..111=111M.m.....

h.

b. 010 c. 00001

T.NSTRUCTIONSf The maximum error allowed for satisfactory
PRETEST IV is one incorrect answer in part
two incorrect answers on the entire test.
requirement, turn to page 45 and continue;
to pa.:_e 39 and continue..

340

38

0

(1: 01010

completion of
1, 2, or 3, o-
f you met this

otherwise, turn

Frame 16
.7

The eitCLUSIVE.014uicacil pr.odosei.s-4 -04.43---004Wt. w,b, one input is one

and 411 others pre serge. It oats coAbinationaf two AND functions with

alternate inputs inviirtmd4n4 an OR function at the oitput of the two AND

furtctions.. In addition to the combination cif AAD and OR.functions symbols,

the ymbol is sometimes USed to indicate the

EXCLUSIVF OR function.

Place a chgFkmark beside each of the following that indicates the

EXCLUSIVE OR function.

a.

b.

NompplOMMENNII

MMI.MMINNIMI
A'+11.A4111C

c. A.14i.SIDC

d.

3 9

e.

1. AMADEC

g.

b

j

0

D-c

.

ra.

Answers to Frame lb

a.

b. op,

of

C.

d.

=0.10141111.me

9

f'

312

.1.6=-.10.

4

mir

a

Frame 17

The Truth Table for the EXCLUSIVE OR function is shown in the combined

Iruth 'rotation page iv of thislook. Observe Oat 0.000, 00101, 1-001,

-and 14.0.

A simple procedure.for solving problems calling for EXCLUSIVE OR logic
is - observe the operands that are to he combined. If there is a 1 in any
position and all other positions are 0, the 4psu1t will be 1. Any other

combinat.iou will produce a 0 result. If you use the trith table it gives

you the correct result for each bit combination.

Use the Truth Table on page iv of this book to help you combine the
following values Using the EXCLUSIVE OR function.

a. 11001
10101

, b. 101

111

v. 10000
101)11

d. 11111 e. 10101 f. 10101

11111 01010 11111

41

313

a lo

Answers t o Frame 17

a. 01100

00000

3S-

01 0 1.1001

v. HIM I. (11(110

t.

.35 20
Fram IM

a. l ace it Ow. kma rk tws I t It.. in rrect de f in II tun t he EXCI.LIti I VE

OR 1nte funct ion .

(1)
.......

All Inputs must he ones to have a one output.
.

(2) A one output Is produved only when there is a one at
one input nnd all other Inputs are zeros.

(1) Ail Inputs must he zeros to havo a zero output.

(4) A one at one or more inputs will produce a one outOut.

h. Plae:v a checkMark beside. vach of the following that indicates an
rxcLw;ivE OR !unction.

A+R*.A't1V-C

AP#AB'-c

A

Li

3 r

(5)

A'.11+A.10t---C

A A 'vA ' A R=C

Answers to Frame 18

a. (2)

b. (1) (5)

(2) (6)

(3), (1)

(4) V (8)

44

3 6

353

N,

r.sii. I 41

ThiN I # Ihe I 1 excluItic Ih 1111!,. Iessoh. It w111 tevIvw the vutire

lemuon and allow you to cheek your attafument of the ob)ective.

a. Pet-tom the loyle Iunctlow4 Indicated for each of the following

problem3. 11i the Truth Table on page Iv.

(I) AB=ii - A=1010 (2) A-B+AB=C A-1001

B=1100 B=1100

C=

() Ai\B-C - A-11001
11,10001

C=

(5) A4-f1=c - A=1011

B=1110
C=

(7) .litA.10=C - A-11100
11.10010

(4) AB=C A=10111
B.11100
c=

(6) '=C A=11001
B=10101
C-

(8) A.13'-=C A-A0111
W,.10101

C=

(4) A.--=-00111 (10) - A=1o10

W.10100 11=1100

C= C=

(11) A+13=,C - A=11100 (12) A4-11='1E A=1111

B=10110 B=1010

c= c=

(11) A'.11-4: A=IIII (14) - A=10101
B=10011

C= C=

45

h. WrIto the lettere; w:ed to (doriN..,
below rivlit, Into the spare bvstAe edob'vfloot

(I) A84:

(2) AtAll=c

(3) AVIO (

(4) X.R=C

(5) A+H=C

((,) AH=ii-

(7) A4.8-C'

(8) A' JIA.R'- C

F

bh

dd:

gr

lib .

355\
the. ipproprliao loglr svmhul,

Jun. below loft.

A

It

3_

c. Write t he let t ivied Wein I ly I he appropr (at e logie symbo I

dh Illuntrated on page 46, into the Nimes. beside each title hvlow.

(I) NAND

(2) NOR

(3) EXCLUSIVE oR . . e

....
(4) Other diagramh with.NOr logle

(5) AND

(6) 014

d. Write the letters used to jdentify the appropriate definition
into the spate hesido each'term below.

(1) NoT

(2) 01(

(I) AND

(4) EXCLW:IVE OR

47

310

aa. An input of one on one leg
will produce an output of
one If all other inputs are
zerni.

hh. A ono Input on any or all
legs will produce a onc out
put.

cc. Changes a one to a zero or
a zero to a one.

dd. All Inputs must he ones to
produce.a one output.

S.

Answero to Frame, 19
;

1-NSTRUCTI11NS: Cheek Win" answers againnt the correct \.inswerg be I re4 . If
you nns.wered incorrect Iv -to two or more\ pnihlemn in inv
section you should go hrt(and my ley tle framos 1 hat
present 'the principle:: concerned. Your \lust victor 1/I.! I
administer a test during clm:!; which requires 707 of 111.

A iM sw r s for sal I.:I n oetrv compfel (\von.correct

(4)

(5)

(4

iffo (S) ft

01110 (6) Idi

01110 (1) el:

00010 (8) cr & f

01000

1011

11110

0000

0000

101,11

hh 11. (1) f

ce (:7)

cc46 I 01111 (3) thl

aa, dd & (4) an

hh

(6) f 350
68

te.

4

Technical Training

TOP DOWN STRUCTURED PROGRAMMING

January 1978

.11:111.414416'

USAF TECHNICAL TRAIMNG SCHOOL
33901h Technical Training Group

Kees ler Air Force Base, MissisOppi

Desigfted For ATC Course Us*

DO NOT uSE OH THE JOS

351

3 59
I I

TAal,ti OP CONTENTS f

sEcncesi I - TOP DOWN STEUITIIRED PROGRAMING CRGANIZATU81

CHAFFER
PAt7,

1 Chief Programming Team 1-1

Development Support Library (DSO ;"

3 Structured Walk-Thrtiughet A-1

SECTION II - TDSP DESIGN TOOLS AND TE(11N1qUESPOCUMFNTATION

CHAPTER
PACE

4 Data Flow Graphs 4-1

5 Structure thart 5-1

6 HIPOs 6-1

7 Structured Flowcharts 7-1

8 Design Techni quell ... -I

SECTION Iii - TOP DOWN IMPLEMENTATION

CHAPTER
PA17,

9 Top 414111 Deli I Implement at I (.)n rill vgy , 9-1

Program Design Language 14- 1

Li Structured Code 11 -1

APPENUIX A - Glossary at TDSP Terms
A :1

3 J,

INTROD1JCTTC44

Huring the loot few years th4e has been a quiet, revolution developing Within the
software professten. It inaa hot been a revolutioefOunded in Violence or bent upon the
extension of national boundaries. It has been a revolution to istAblish a new scientific
dieriplin within an _stating science.

But Ant ip this-revolution? Perhaps More fundamental question would be 46 any a
re,olutioll Let's discuma these quentions separately.

Revolution I. defined an a complete ehange of any kind. So to define this revolw-
Eton we are talking about, we must define what is being dbanged. The object of change is
the methodology we ase to create vomputer programs. It focuses upon-the program devel-
opment process and thellature of the produrt resulting from our programing, effort:

Top-down design and atructured programming cuncepts are aedicated to the production
gilod program. Whet is a good program? Since there are so many possible answers,

we will list only seven desirable qualities of a program.

L. The program works --this in the most important quality of any program. It'Ls.
truly incredible to see the number of times that two programners with similar programs

'will debate the following: "My program is nine times faster than yours - and it requires
tout times less memory!". to which the other programmer replies, "Yee, but your pro-
gram doesn't work, and mine doesl" in the book The Element of Proitramming Style\by
Ke*nighan and Plauget, three rules are cited AB follows:

Make St right before you make it faster.

Make it failsafe before you mal,e it faster.

Make it clear before you make It faster. 9

DdrIOD D. Mills substantiates these rnles in his book, How to_Write Correct Programs and
Kuuw Its

"There is no foulprosof wily to ever knmd that you have found the last errar in a pro-
gram. F.0 the _hest way to aequire_the confidence that a program has no errors is never to
find the Urea one, no.matter bow much it is, tested.and used. It is aniola myth that
yrogiamming must be an rrror-prone, eut-and-try process of frustration and anxiety. But
thesr jh a new reality that you can learn to consis tently write prograym which are error-
liee In their dehugging and subsequent use. This new reality is founded in the ideas of
acrn,toied programming mid program correctnems; which not only provide a systematic
mvp104.11 to programming but also motivate a high degree of concentration and precision in
the .41ng aubNticesti,"

2. Lower !rating costs - Thirty to fifty percent ul the total project time is
cgVuid go testing and debugging computer prqgrams.

I. Lower waintenan..e costs - Surveys show that the average organization spends at
least '10 percent of its entire EDP budget on the maintenance of existing systems. In one
Ali Foree Command, seventy pert, ent of its software costs is required for maintenance. The
high 'list of maintenance limits the development of new software.

4. Lase ot modification - Regardless of the amount of preparation and planning,
thirty will always be required changes and modifications for programs'. Every segment or
module ol rt program should be designed with an eye toward its eventual revision or
inodti I $ a ion.

4

353

S. Lower development cOsts In TOSP, the modnles of a program are tested and
implemented as they are developed. This greatly redures the t.ois u development sinus.
the rime normally requi red fOr Imp lement of Ion la el imi not ed.

h. Uncomplicated design - Programa need not he rumples to work plopetly. lo fait,
'the most logical way, and In Home cases, the truly way re mike a prose/0 entry fit real ,
maintain, and modify Is to lowp It simple. to olheo words. alwsvn Jesign n plostrim no
I hat HISTWOne VI Mt* Call Mai Ili ill Ln I I eal I lin/ it It I 1g p am I A IMI114rained by' ten at t relent programmers

7. Efficiency - Er f 'sow vonn I de rat !min are nnaert akerr when 1 hey are not even
needed. A recent tit tidy revealed that in n typical nutTRAN program, 1 i fty percent ol
the execution time wan used hi, only three polcrld oil 1 h Instinct Iona. These findings
indicate that the following progrommine methodology ghould he adopted:

m. Write the modufejprogram fo a otraightioward manovt. emphonflfog simplicity
ani re li aid i ty.

b. Af ter the module/program in wort Ing. rewrite and npt I4v time-
consuming code.

. Doting this metbk;: the programmer' will Invest his time in opt imi r.iog only those
Instructions which will maw 'an apprecinb le amnont nt execu fon t Lt4e.

Now let's -discuss the serond question:

What caused thts revolution? Thr mintier is money. Today. the ei;at of software IN
about three times the cost ol hardware. The Alt Fro,e is npending approximately live
percent of 1 ts 444411 annual 441414 for ant twate 1 t nnfLwafe unpin ilintinnr to IT/vv./oar.
the Air Farce will bc spending nt leas t ni net y pel c, al nf t I a_ HIP dot fain for Rol flint
in 198.

Maintename costs, fuvindfag toodiffuat inns, normally yang.' an high as SP to 100
percent of the initial system development cont. 'To decrease the.dont a fiat-wow, wr
must reduce OW COM IN Of lull I JI 1 'kyr IiIpMent Jind erne toning Ins liii 'MilIre Mid liii, entiVIOrr
the re I Iii lity bf a system, wau developed Its ls el Mist a ii Wit I iy I tirtr.$114
ng sof tware re l 1 41 iity.

Top-Down Structured Programmlni; (TIe) technlqnco constitute a methodology whith
provide a systematic app fly/gull to problem solving In mot twat... deve I opment. Iii in tef h
nology is applicable to many vurrent und fuioro Afr Force progromal. The TICI' mr1hotl.
ology utilizes a combinat too ot tools avid techolques which are /let ined by the Alt Force
to include:

Top-Down Design

Top-Down Documental ion

Top-Down Implement at Ina

Structured Coding

Ifevelopment Support IA h ars,

::Ituotured Wolk-thronghri

6 Prigrnm Design 1,angunge

Chief rrogramming Tenm

35j

these I rt1si,iqssri,ft eu.is 0.11*. defined dh 141 Noss

I. tsirlitatittexter. 'f'op-dowritsieu Igo itst (he plueerm ut deeompott it% it bitttl4te COW'

..tvuct_tatt, 4,11WIti Mr Eat silica/7 i*VIOtti .0440077 .ftstrttonit* ThLvvvkPi Ook'hirOrgtel
curl...41.11w to the coati rat 1 leth. in of tile tosicc. performed by the SYSteat ComPenents. tacit
lvel ot the software 'Whig!' shall be logtcally complete in itself. The top levnl con- .

taint the highest level g.1 ..astral logic and decisions within *the software design.. Rich

nublevel fa a elf-contained, component whose operation is sUbordinits to ths'nxt higher
.

Tuz-llown.pocejittep.at ;poi. Top-down doeument at ion ilhotrates the top-down design
And IN delivered in inerequeut s Hs the system fs'' developed. It records topdown design

ii.. Ii loun insures that those droisions are mad prior to coding, and serves as the

o-w /approval statement that sutisurl 7.es soiling. I t includes detocriptions, spacifica-

114041, mraphical representations, manuals, plans, reports, listings, and other technical

uteents. Nome a eels nig awn ut do tetaunt at iota current iy avail table are: hierarchical plus

g espial- posts ls snit put (111111) eliss ri s t rust Ori d design chart a, program design languages'
ood rot I as.. I urpd I low chart s.

I. law lauw.is .intleme,okatkoo. .Top-allown implementer ion is the coding, verification,
sod fluid rascal 41t u.n ot higher levels sti the system I sigi t . prior to the coding of any sub-
ooloitolootr Moths les . Lowe; level Isodu I ers , Heeds al for au are, airy coded BS dutany code
Pi Wirt) wi. I. Is he'Vel Unt. ,perfsi rus any us ant ngt ul esittipilt tit icing . For' example, the

r oga sms r. tub ashy stioal tt weasugr for debugging plirpiltie.i sir perhaps simulate the ex-
pi-s rut out put yti. II I I dit I I Iti vitrellt dainnl the uppl.r 11.116,1 uu itog has been verif ied,
as I um I1111g Its risIol I It oil val loot progravi stubs sit sue, .os I vely larder levels of logic

iiiit I I. rut I re rV is ten, It.e. been implemented and ye rit I ed. The important point is that
pi filas umiiti j es tit each ils. Sul ly Integrated and vs. ri t ied ji th their predecessors
bef..ra- s uSI I nç lu.v.int, oll I bp next lower level :

. Foetus est 'mil lab. Si! ou't Calsling Is tile wri.t 1 ug of programs by repeated
use .11 p retie t toed snut ro I ugh e prtadt Ives: SeqUence, 11111ENEISE4,- DOWRILE DOUNTIL, and

lush of thefts. tail 1 he explained-later in Ms publication.

OVVIAWts itt Snip ta.t., I. thimt 'rho development support library serves as, a

.entlid yepositoly 01 dll dais relevans to the project, in both huMan-readable and

statist ate- recognizultle loam. As such, 11 IN wivel tit aid in the organization and tont rol
411 tI.. developing sot twine. it is Eby focal point of I of ormat ion exchange - both
usloagemeol and t ethnical tor the lily ol prolect.

!.1 rass_, IS I 41 WU js I lsrutLhjitifs. :it I Us' I tired walk-throughs are techni cal examinat ions
a tt t he 'lest gas., .11111, I vimClit al loll, sod olocoutent at Ion 'to provide posit ivy feedback to the

stg I disuse S . Merit- wolkthroughs are sehestalled by the programor and attended by his
peels.

I. erovam orpOlin vanajigkie. VioKram de.Agn inngname IN a language for dessrlhIng

1 lir suE i G,1 s I rus I my anal generat 0:Komi:rot fon of a computer program. 1 t Is an Engi isli-
1 I e ley' rfocIll PI I..Is tit M Troredm e wh. leb f a. essay to read mid comprehend. I t is atruc-
toted to the rummy I lint II ut ill zes the 1114AI-tined control -logic primitives. Indenta-
t ion In used to awl's. the l'1)1. easier to, read. This technique fa ci l I tat es the translation
oft too. Us .liu l spsu- liii st ions into cymput .1 1 um ructions using I op-doun design and atruc-.

ed iSSI 11114

h. thief l'r.slootzinii:yetssa. The ehiel programming team IS minimally defined U.
:'swo sit Fame progratauseibunalvsta assigned to a project who possess a combined respon-
sibility tor the quell ty of the delivered product."

355

p 'VT

S.

410. 3(03
This introduction has munstorfeed the I eehntres TIINP and gmt lined the togget

qualities of a good program. In the following duipters, do ant innif ahnnime, cot)
Crete statements on the right or wrfIng way to utiltrr n 11.filorgler, Inge/tsar

these concepts with yntsr own, nt III /ASV individual expert t co give II iggser n pt 191.1 urn

that workitt works everyt iisvt dur s what it in nuppoged t gial Ii ennilv ?anglified smut g-nn
be maintained eastty.

ger

,

-

1 9 .

I-iv

4.

a

""4,

3451
SECTION 1

TOP-DOWN :altUCTUKED PKOCKAMMING ORCANIZATION

CHAPTER 1

ChlfF PROCKAMMINO TEAM

While tudying this chaptes you should learn:

I. Purpose of Chiet Programming Team, (CPT).

2. Three main members of the CPT.

S. Duties of the chief programmer.

4. Purpose of the backup programmer.

kunction of the programming librarian.

I. Duties ol short term support members.

/. function of the project administrator.

b. qualifications required for memberwor the

CHIEF PROCKAMMER TEAMS

Abt Pit,gtaummtt team tin) introduced in 19b9 is a ditletent technique for
wanaging the soltware development polls-nil. its baste idea Is to organize a small number
,4 highly tompeteot people atcolding to their special and complemenLary skills. The
oewly developing stro.tuled progiammIne technology provides the vehicle by which team.
memhers communicate and taoctfun. With this ::orlibination ol.people and technology, com-
prehension nt a fairly ..omptrx design and Implementation can reside in one person.

4dvantages ate sepolted as a result of the simplifications and unified
structure which can ht nuhleved by one mind in designing an entire system. These advan-
tages ate wanitest primarily in improved system reliability, and the team envirInment
has also sinwn an imirtior It, productivity as measured by the number of lines of code
plocuted per programme! day.

lndproVamenia have beet, noted usiag the team In development efforts where tbe
dclitleird product was les?, than 100,000 lines ol high level code. Ou such jobs .3ne team,

ot from three to eight proplr, wag adequate. Team member experience 1evel
ban tiren varied to match lob complexiLY"with considerable success. An extension uf the
tram iontept is the bieral.hy ol teams. its purpose is to organize the work force
nreded it, produce a large, complex soltwarr system (over lOU,O(O lines uf ,:%1,e) and still
obtain the improvements diaractriiiiiic of the team technique. Testing t) .ae hieearchy
ii Om trams is in progErss, bus the results will not be known for several years.

the CPT is pail:44.11,1y a management organization'. Au su'h, it exercises control ever
people by defining their tom:Ilona and the ways in which they IncerrelaLe. It also pre-
stlibra thr minimal set ot too ls necrasary to priorm the tcales work. The princtples
and procedures ol the CP1 wrrr otiginally described by Harlan b. Mills in June 19/1.
law 01 the first practical applications of this organization was undertaken and later
dost.ribed by F. T. Baker lu his article, "Chief Prusrammer Team Management of Production
Programming." '*

3G 5
The CPT has, at its core, three members; the chief proarammer, the backup pro-

grammer, and the programming librarian. These three pennons perform different facets of

the one job system development. They do not act independently but rather in concert on

jobs Chat support aacomplement each other. The chief programmer's role is the resiat

of recognizing-that cMiplex system and in-depth prograiming kmowledge are necessary

combination. The pouition of the backup programmer recognize* the need for idea refine-
ment through peer review, and also continuity in supervision and decision making in the

absence of the chief programmer. The programming librarian role is the result of

epaeating to a great degree the clerical and technical activities in the programming
process.

The chief programmer is a manager and all other =ere of the team report directly

to him. However, his principal job is to design, code, and test programming systems. If

the chief programmer does not manage the team he will lose control of the production of

the system. If he does not actively program and provide technical leadership, he will
certainly lose control of the programming activity itself. The chief programmer func-

tions as the technical, but not necessarily the adeinistrative, manager for the team

meebers. As technical leader, he is personally responsible for the complete design of a

substantial oftware:system. He also writes the critical code of the system and dirwitly
supervises implementation of the remaining portions by team menbers. The chief pro-

grammer reads and constructively criticizes,all of the program code developed by the

team. The chief programmer always directs, an organization at the first line of manage-

ment. He is concerned primarily with, and contributes to, the production of the software

system.

The chief programmer is responsible for the direction ant' supervision of team mem-

bers. The chief programmer identifies and apportions assigns:en:a, constructively

. criticises progress on design and cnding.1 Because of the chief programmer's clone work-
ing relationship with team members, he is well quulified to fulfill these dutiee. lie

management task of the chief programmer ie a great deal simpler than managing a con-

temporary project.

Structured programming standards permit the chief programmer to read, understand,

validate, evaluate, end appraise all program data developed by the team. This visibility

of the manager motivates better programming throughout the team.

The chief programmer position is designed to center performance responsibilities

on the most hiehly qualified persons. Responsibility is clearly,identiffEd; authorily,

through the management title, is also clearly identified and permits timely derision

making by the most well informed person. The\individual duties id the chief programer

are highly structured, but the broad scope of \activity provides; flexibility in carrying

out the work of software development. Structure increases higher level management con-

trol by increasing the visibiltty of the work Of the responsible person. The flexibility

fnvolved offers a challenge for the exceptionally competent technical-person worthy of

his abilities.

The backup programer functions in almost ail critical a role as the chief program-

mer. He is an alter ego to. the,chief programmer. The backup programmer becomes totally

femiliar with the devetoping project and its rationale. He is a sousdineboard for the

chief programmer and also contributes to design soptions and implementation techniques.

He mmy provide independent test planning and perform as a research assistant for the

chief programmer in areas of programming strategy d tactics. He moat probably will

contribute significant portions of the programming ffort and, along with the chief

prosrammer, reads and critiques 'the code of other tam members.

The beckup programmer also limits the management expoeure btought about by the

concentration of technical systems knowledge In the Obief programmer. He Car subetitute

fsr the chief programmer in an emergency. Because of,the close working relationahip and

code review practices, beth enderstand ell the code ptpduced by the team.

I-Z
c),)

Techaically, the backup programmer Is s peer,of the chief programmer. He is
capab e of assuming project responsibility and maintaiming continuity of the development
effort hould the chief programmer become unavailable. Administratively, the backup
progrr bear* no responsibility other than thost planning and review activities which
the chief piegrammer designates. In the event the backup programder,must talks over the
chief programmer role, brevet be ready to assume th full edministrative load of the
position. The transition is mood considerably by his regular participation in the
dee/dime-asking processesw As with the chief programmer nil*, the backup programmer
position is highly structured but flexible. The result is a forsidable, motivating
challenge to e competent technical performer.

The programming librarian is an integral member of the team. Harlan Mills points
out. "The main function of a programming librarian is not to save programmers clerical
work, but to maintain-the status of program and test data in such a form that programmers
can work more effectively..." However, the advantages of cost and accuracy of having
the clerical tasks performed by clerically trained individuals instead of progranmers is
obvious. Programmers construct the software.system by coding new programs end data on
coding chests or by altering the listings of programs in some state of completion. These
external, hard copy records are transferred to internal machine readible forms by the
librarian following a set of interlocking office and machine procedures. The librarian
is also depended upon forsall assembly, compilation, linkage editing, and test runs
required on the project. The results of these runs are filed by the librarian in note-
books and archival journals which represent the current status and previous history of
the project.

A software development pro3ect's records also include the volumes of system docu-
mentation. The librarian's workload is well balanced over the life of the project and
requires the full range of secretarial skills plus those additional ones for maintaining
machine readable files. Preserving the project's records according to specific pro-
cedure* is a management defined responsibility; Therefore, the librarian, while report-

.- ing to a chief programmer, has overriding professional accountabilities as well, just as
a comptroller has financiel recordkeeping accountabilities that override any specific
reporting relationship.

On a complex system development job, the chief programmer team core members may
well require additional support for the programming and project management activities.
Such requirements are recognised and pleaded for by the chief programmer. People who

serve on the team in a support role are chosen for their special skills and perform a
specific job as defined by the chief programmer. Their period of service may range from
a few month* to something just undei-the length cf the project. Not all support members
of the team vill have the chief.programmer as a managr. Those who serve for *hurt

periods of time or who act primarily as consultants report to the chief programmer
technically, but not necessarily administratively. Nevertheless, conmunication and
discipline are fostered through clear definition ef responsibilities and strict adherence
to the use of project standards and tools.

Typical among the short term, part-time support members of a team are finamtt and
contract specialists. A programmer with detailed knowledge in a specific area, for
example I/0 terminal communications, might,also be a short term support specialist.
Long term members would include a project manager or administrative assistant to the
chief progreamer, analyst, and two or three programmers.

The programmer. are expected to be technically competent and capable of producing
one or more of the ubsystems or major components identified as a result of the chief
programmer's work. Their major function is one of implementation. They are obliged to
use the structured programming technology in their work and to incorporate their work
product into the developing system under the supervision of the chief programmer.. Con-

tinuing dialog with the chief programmer and cther team nmmbers as appropriate speeds
the timely transfer of information. Despite the close working conditions and

1-3

3(17
014.1*'

interdtpendeocies, wide latitude in program devise and development are afforded the
programmers within the team effort. By a delicate balance of informed awareness, dele-
gation of tasks and attention to discipline, the chief programmer through the team
environment can provide a challenging and professional work climate for these team
members.

A coepetent analyst Offers special skills to the Chief programmer in the first
phase of developaent. In some instances analytical services may be required over the
life of a complex project., It can be expected that requirements will change and possibly
new ones added as the user and developer better understand the nature of the task. Tne
analyst functions to prepare the groundwork for the system design. At the beginning
the project he works with the chief programmer. After development starts, the analyst.
will most probably evaluate requirement changes and their system implications for the
chief programmer, keeping him advised and assisting with change planning. At the point
where the rystem design is not susceptible to further change, the anelyst's job may turn
to preparing user manuals and planning for system turnover training and initial opera-
tions.

Project administration requires more time than the chief programmer has to give on
a large development effort. A project administrator who works with the chief, programer
can bast supply theee needs. The administrator may be project manager to whom the
chief programmer is responsible or he may be an administrative assistant to the chief
programmer. The amount of work will vary with the size of the project and the critical
nature of the scheduling with the administration full or part time to meet the work
requirements.

The administrator's prime function is to monitor the nontechnical transactions of
the project. It is his responsibility to prepare and oversee the budget, track labor
and other charges, and audit project performance against planned schedule. He also pro-
duces the necessary reports both written and verbal for his management as well as the
project's customer. Additionally, an administrator will perform some of the personnel
work for the team. -For example, when the team travels, the administrator will pi-ocean
expense accounts and coordinate relocations. The admdnistrator must work closely with
the chief programmer keeping him informed of the project's financial status and provide
much of the administrative managenent of thr project.

The CPT operation presents new challenges to the traditional management structure,
as team requirements alter external as well as internal relationships. To a great
extent, a team's proper functioning dependa upon an agreeable accommodation by its parent
organization to relax certain managerial constraints.

Instead of being a well-integrated member of a pyramidal organisation, the CPT
operates in a more independent fashion. Decision making, formerly decentralized ovet
several people, is now concentrated in the chief programmer who is technical leader and
project maneger. While greater control'within the team implies lees from without, it
does not mean no external control at all. The parent organization regulates the use of
resources and the chief programmer is accountable to it for performance.

The CPT has some different implications for personnel management than the tradi-
tional organization. The team has a slow buildup of people at the beginning of a project
and a relatively low requirement for numbers of people over ita life. Because of its
small sise, it must have reliable sources from which to obtain people with the right
qualifications at the tight time. It would be appropriate perhaps for the team to work
within a much larger and more functionally organized structure, one which could provide
for the overlapping of work assignments. Larger organizations are also suited to pro-
viding a sufficient diversity of work assignments so that new programmers to the field
are able to ;sin experience and expertise.

1-4 36i)

is
The title of chief programmer is a transient one. To qualify for the title oae not

unly has to have the right skills but also an actual project. When the project is
finished, the position of chief programmer disappears with it. There may not be new

won t. which requires a CPT. The problems of reassienieg a former chief programmer eo
other work ere net yet fully understood end.certainly net yet resolved. Muth more
experience wieh theie teams-will have to provide answers to these questions and also to
those.of organizatioteand personnel management.

.
The CPT organization, then, challenges traditional hierarthical software develop.-

ment organizations but at the same time offers the potential of significant advantages.

The core members of the chief provameer team are exceptional people. The depth

and breadth of the technical background required ol the core programmers are seldom
found outside the senior ranks of the profession. Even among this group few retain their

techaical skills and desire to mix technical and administrative work. Some observations

on qualifications of core members are presented below.

The chief programmer team relationships are continuouuly being tested throughout
the Department of Defense with satisfactory results. These preatructured CPT relation-
ships allow the chief programmer and other team members to look outward to user needs
and technical possibilities, rather than inward. This freedom to concentrate on a
user's requirements is a major &met of a chief programmer team.

The chief programmer's responsibilities are successfully discharged by a person
whose qualifications cover a broad spectrum of technical and managerial competence.
Qualifications can be described in terms of previous experiences and demonstrations of

ability. Same chn be translated into job descriptions with relative ease. Other quali-

fications are personal attributes that are evaluated on a subjective basis, such as

creative ability. These personal qualities are every hit as important to a chief pro-
grammer's success as his technical expertise, and while they do not subscribe easily to
measurement, they can be recognized in the excellence of past performance.

Since the chief programmer is the technical leader of the team, he must have prac-
tical experience as a programmer and have acquired a substantial knowledge in several

programming languages, operating systems, and hardwaro lines. To be active in system

and program design au well as implementation techniques implies the need to be current
in the latest developments in computer science and programming technology-. Currency

may be achieved through formal education, self-study, or a combination of the two. Host

successful thief programmers rely on the latter. The team's dependency on top-down
structured programming and the develnpment support library makes knowledge of these

techniques and skill in their application a necessity.

A chief programmer must be a participant in the managerial structure with suffi-

cieat experience to understand the software development eycle and its requiremente.
Proposal and project management assignments with a variety of systems and customers
create the environment to acquire the.proper background for learning the activities

involved in software development and for learning and improving management skills.

A number of personscharacteristice set chief programmers apart from their peers.

Successful chief prograemers are significantly more capable in judgment and decision

making both technically aud managerially. There is also- evidence that the complexities

of technical problems stimulate the chief programmer to solutions that.reflect analytic

and creative abilities far above average. The number of personal interact!.ons both with
the team-and.outside the team requires the chief programmer be especially sensitive to

the intent and understandings of others as well as articulate in conveying his position

to those with whom he deals. The thief programmer combines these qualities with a

eatable ambition to (IXOrcille the leadership .role within a team. This last quality is

1-5

significant, for without it ths thief programmer-on a complex system project stands
little thence of =demo.

The backup programmer oust share essentially the same technical and managerial
invariance and personal characteristics as the chief programmer mince the backup pro-
grammer must be able to replace the chief programer if necessary. If there Le a Jis-
Unction in knowledge and experience between the two, it may be only that the backup
programmer has not the breadth found in the chief programmer. Although the backup pro-
grammer as a member of a CPT does not manage, he should have had first-line managerial
experience and typically will have seen aseignments ie two or three technical areas as
a group leader. On the personal side, he must be able to work closely, intently, and
compatibly with the chief ppogrammer while at the same time cultivating those leadership
qualitiee that will enable him to perform eventually as a chief programmer- Thus, the
chief programmer must play a dominant role-in the selection of his backup.

The programming librarian needs a set of skills which cronies clerical and technical
boundaries and a sat of personal qualifications which enables the librarian to contend
with the high rate of activity characteristic of a team. Through the life of the devel-
opment there will be a need for the clerical services of typing, filing, apd other busi-
ness practices normal to an office environment. The demand for such services is heaviest
at project beginning and end, and light in the middle. Between the start and end,
different clerical skills which permit the librarian to maintain a set of computer Illes
are required. To perform this service, the librarian needs to be skilled in the usv of
a keypunch or computer termlial and understand the procedures for preparing compute, jobs
to update machine readable files, for submitting those jobe for execution, and for
assigning the results to their proper place.

To respond io the changing requirements over the life of a project, the programming
librarian needs to be adaptive to dhange with emphasis on quick learning. Procedures
are learned an the job. They need to be followed accurately and precisely, but they also
need to be understood in relation to the major responsibility of recordkeeping. The
librarian must be alert and responsive to the needs of the programmers especially since
this position is the channel through which all development work flows. This job fre-
quently requires physical activity and the librarian must be free of disabilities that
preclude walking. This is especially true in a batch environment, less so in a terminal
environment.

Corresponding to the chief programier's leadership there is a characteristic fqature
of librarians that isAmportant to the sweet's of the team. That feature la s very post-
Iive attitude ward the job to be done. As with other team members, the librarian's
personal ch. sristics reflect 4 stable personality willing and able to perform a
challenging .

3(32
1-6

EXERCISES

Explain the purpose of the CPT.

476

2. Mame the three main marbers of the CPT.

3. List foui duties required of the chif programmer.

4. Explain why the backup programmer position is necossery.

5. Explain the main function of the programming librarian.

Nary.

6. Explain the importance of the programming librarian to the CPT.

7. Give an example of the duties of short term support members.

S. Explain the function of the project administrator.

9. List the qualifications ofs,

a. Chief Programmer

1-7

3(33

h. Backup Programmer

c. Programming Librarian

10. What is the major concern of management in utilising chief programmers?

1-8

311

CIIAPTER 2

DEVILMENT SUPPORT LIBRARY

After studying thia chapter, you should be Abl to:

1. State the purpose of a Development Support Library (DSL).

, Give the principal objective of a DSL.

3, Explain why the D8L is composed of an internal library and an external library.

4. Explain the difference between a production library and a development library

ea hey exist in a nn.

S. Explain whet is meant by the term "program stub."

6. Give the term for the automatic function of the DBL.

7. What member of the CPT works extensively-with the DSL?

S. Explain how a program stub and a timing loop relate during the developing cycle.

DEVELOPMENT SUPPORT LIBRARY

The Devolopment Support Library (11SL) serves as a central repository of all data

relevant to che project, in both human readable and machine recognizable form. As such,

it is used to organize end control the software development and is the focal point of

information exchange - both management and technical - for the life of the project.

The principal objective of the library is to provide constantly up-to-date repre-%

sentationa of the programa and test data in both computer and hunan readable forms. The

DSL concept is designed to separate the clerical and developmental talks of programming.

In addition, the DSL makes the codi produced more visible to the team:Members.

The components of a DEL, as an information base-, are comprised ofthe internal and

xternal libraries. The internal library consists of machine readable source programs,

rsiacetable modules, object modules, linkage-editing statements, test datavor job control

statements. The external library consists of all current listings of programs, as well as

Iihtings of recent-versions of the programs.

In many projects a-development support library is maintained by a librarian who

interfaces directly with the computer. Programmers interface directly with the computer

only on an w2eption basis. In order to permit this, a standard set of prodedures (the

computer or machine procedures) for performing all eachine operations is require These-

procedures contain all the necessary information for updating libraries, link-editing jobs

and test runs, compiling modules and storing the object codejand backilg up the libraries.

By using these procedures, the librarian is able to perform any of thelibrary operations

without direct assistance. .0ther team membets communicate %with the librarian in uch

ways as submitting original coding sheets, making notations on directories, and Indi-

cating changes on source listings. (See figure 2-1.)

2-1

35'5

I.E. ,MgEn ale =Fp ..INO !NEW ...re alp.

1.
AlmommIr
=//1/

COOING SHE E TS
MARK EQUP
NOTEBOOKS

RUN REQUESTS

4313

PROGRAMMER

PROJECT
MOTFROOW".
STATUS.,

ARCWAES
REIM

COMPUTE R
INPUT

PROGRAMMINO
IBR ARI AN

cONTR61
eROS.
OFFICE

PROCEDURE

COMPUTE P
PRINTOUT

LPM! MIalp gffa. wnra =PT OM. MOP. Ma.n AMP

0

COMPUTER

Figure-2-17 Graphio Representation of DSL

The IrSL provides a significant aid fir testing and evaluation in that the code Is

centralized to avoid ambiguity qf what is, and what is not, valid software. A develop-
ment support library will normally consist of a production library which contains code

that has been tested and one ur more development libraries for nwr code. At any point

of the projezt, the overall production library constitutes the current operitional sye-

tdh. Therefore considerable care Lm taken to see that new segments and data item defi-

nitions have been properly.tested before they are added. This testing I. performed in
the development libraren where segments are created as needed and exist until the units
hale been tested and added to the prodsittiori library. When a segment is added to the

prnuction library, it is removed from the development library. More leniency is allowed

in adding to a development library than in adding to the :.roduction library. Fpr

example, if a egment references a data item for which it is not authorised, it cannot

be added to the production library. Unauthorised acces6 is permitted in a development
library, although the user wduld be warned that he has committed an apparent error.

Control is obtained by requiring that an updake to the produciion library be conditiOned

on proof of successful testing in a development library. This will reduce the likelihood

of errors getting ihto the systns. The verification procedure, are reviewed by the

manager whose approval should be required for update to the production library.

The development support library provides the necessary control for programming of a

system in a top-down manner. .(See figure 2-2.) Testing and integration will start with

the highest level system segment as soon ae it is coded. Since this segment will nor-

mally invoke or include lower level segments, code east exist for the next lower level.

segment. This code, called a programotub, mey' immediately return control, may output a
sessage for debugging purposes eseh time it is executed, or my provide a minimal sub-

set of the functions required. These program etubs are later expanded into full

2-2 3

a

functional segments, whl,b in turn require lower level segments. Integration la,
therytore, continuous activity throughout the development process. During testing,
'Ole system executed thy segmenta from thy lfhrary that have been completed and =es the
stubs where they have not. It is this characteristic of continuous integration that
rduees the need for speviel test data drivere. The developing system itself can support
tasting becaOse the code that interfaces with the newly added segments .has previously
been integrated and tested and can be used to feed test amta to the new segments.

REL
MOVIE 1ABL E
SO(TWARE

Figure 2-2. _T

Vr011/4M etu3s can often be created as an automatic function of the development sup-
port libra,y. This automatic function is provided by the programming support library
epA). Th PSI. is it sottware system which provides the.tools to organize, implement, and
coutiol computes ptogram development. The system is designed specifically to support
top-down Jevelopmynt and structured programming. Different implementations of a PSL exist
for various computer and operating system envitronmentx used in system development. The.
fundamental 'Correspondence between the internal and external librarlea in each environ-
ment is established by the PSL office and computer procedures. The office procedures
are specified at A detailed level so that the format of the external libraries will be
standard &rood programming projects, and the maintenance a(both internal and external
libraries mn ht. accomplished as clerical functions. The PSL computer procedures fer
emh are etpresulv designed for easy invocation by librarian personnel so that their use
is nearly.fail-maty.

The oils of the top-down approach with a library provides a basis for capturing per-
fc.rmanre data during the development cycle. by replacing ea 1, stub with a timing loop
tbat utilises the estimated run time for that function, the developing system becomes

.,_3

315
model. As dummy routine's are replaced with working code, the performance renulte can

be ippreised asainst the performance dbjertfves. In stadia, manner, nternge allocation

cm be modeled.

The use of a development aupport lihraryoombinad with ntructnred programming, top-
down development, and documentation mignificantly improves management control of thr sat
ware ftvelopment effort by providing continuous product visibility. Since the developing
system la underloing continuous integration, the system atmfun le accurately reflfrfPfl
through the contents of the library; i.e., completenemn in mennined 6blectively In terse.

of how much of the system in operational. The completed code enn be reviewed to vprifv.

status and appraise the quality of the software product.

EXERC1W

\ 1. State the purpose of a Development Support lAbrarY

2. Give the principal purpose of a DM.

cn,

3;i Explain why the DEL in composed 6-f an lnternnl library and an external libtary.

4

4. 'Explain the difference between a produrtfon library and n development llbtntv nn

they exist in a DSL.

S. Explain what is meant by the texm "propram atnb."

6. Give the term for the nutomatir functiengof the INT-

a
7. What member of the CFT works exte Alvely with the nst?

R. Explain hew a program stub and a timing looe,relate rhtr!ng the developing cycle.

7-4

illAPTER

STRUCTURED WALK-THROUGHS

Upon completion of this ehapter, you should be able to;

I. _State why thr structueiWwnik-through enncept wee develeped.

2. Discus ,llow structured walk-throughe will relate to the Chief progr..mmer team
dud it.'velupnwn5tupport library concepte.

I. Explain how the structured walk-through will operate.

4. Give the main argument against structured walk-througha.-

1. Describe management's role in the structured walk-thiough.

Mnnagement realized that the chief Programmer Tema needed some form of scheduled
reviewe to determine proiect stattei at any given point. The 05.1. as discuased in the
previous chaptet would greatly ehhance these reviews by providing "constantly urte-40Str----
reorekentations of the programa and test data." Recogelzing this need, IBM developed the
con.ept of atructured walk-throughe as pnrt ef its chief progrommer team approaell to
prelelt organirat ion. Other ergeeiegtions helve referredto the same concept as "eeam
debegging" and A Variety .0 ether terma. Structured walk-throughs can be thought of.am
met ot formal procedures for reviews - by the entire programming team - of program speci-
ficatioee, progsnm design, actudil code, and adequacy of testing. If implemeate'kproperky,
stre.tured walk-throughe ge hand in hand with the concepts discussed in the predous CO0
chi/ors/1 de well as the coucepts to he introduced in Sittion IT.

Since the advent t the ilimputet age, erogrammers have been urged to perfor. exten-
sive desk-checking betel.. running their preerama on the computer; hoeever,-desk-checking
begets te ba enforced less and less am acarre computer time became cure and more plentiful
in th late ell's. In NOW organizations, the advent qf time-sharing virtually eliminated
the ,oncept of desk-checkiolg altogether. Structuted walk-throughs are, in a sense, a
return to the 01d philonophy ef desk-eheeking, but with an important difference. Now we
ate eugeesting that a group of progremmers should review the design.and coding of ah
individual pregrammer.

The veal importatue of the structured walk-throegh cencept lier in its connection to
top-down design and coding.- At a very early atage in.0 programming project, the program-
Mrl mingUld be 41M fo HIlsW tu ether members of tirii team the design of the entire Program.
Much of the program will be 'in the fOrm of e1:6gram etuhs (dummy modules) but the overall
logic and structure tiuuld be preseel. \The goal of the team revieW is to insure that dhe
oveiall logic of the plogram IR CorrOct. Rather Ibisn worrying about thejletails of low-
level modules, the tenm concentrates its efforts, at the beginning of the project, on a
seview of the high-level structure co the program, thus fidentifying any major flaws that
the programmer may have ovrlooked. Structured walk-throughs ari4echpically sound btit
the human element will generate some "resistance to change."

.

7 IPBSfit,
being introdueed to the concept or struetered walk-throughs, many programmeri

react negatively. Thev feel that it wiii be too expensive to have four or five program-
mere eeviewing the wed, of one programmer and thht the project will be,greetly_impeded
b work stoppages to ceuluef the walk-through. Once ming the structured walk-through
niprosch, programmers witl realiziodhat it saves a considerable amount of time. First of ,.
a I the walk-through may requires a couple of hours to review a week's work. Second,
b hewing four ur five,programmers look at your design, with varied viewpoints, the
ckances are very good that a majority of the-bugs will he eliminated before the program
l ever rust.

1-1

4

3-1 iv
Edward Yourdon in his fictok, "Tifir-Down Program Design," states thnt it /geese thet the

veal objection that miny'programmere have to.the strerturrd'welk-throagh approach is that
they prefer not to have, other people looking 4ir their rode. Many programmers find the .

structured walk-through an eg+hruising-experience. %But thin should not he the case.
as Gerald Weinberg explained the "egOless programming" philesophy in Ilia hook, "The
Psychologylof Computer Programming." Personality conflicts can completely destroy the
entire.project. These conflicts must be eliminaied or at least minimized fer the otrec-
,tured walk-throuth to be successfula..

Within IBM the structured,walk-through is:

1. A positive motivation for the project team.

'N 1.!

! 2. A l'ait;ing experience for theeteam.

. ktool for analyzing the functional design of a evstem.

4. A tool for uncovering logic errorm in program design.

A tool for elimdo.ting cod:leg err:or, before they enter the system.

. -

6. A framework far implementifig a testing strategy in parnliel with development.

7. A measure of completeness. 1(

. 4

Also within IBM the basic characteristic4 of the ytructured walk-through are:

1. It is arranged and scheduled by the develpper (reviewer) of the work product
being reviewed.

2. Management does not.attend the walk-through nnd it is uot used ns a l.asfs for
employee evaluation.

3. The participants (reviewers) are 'given the revirw mntetiain prier to the walk-
through and are expected to be familiar with them.

-

4. 'The wa)k-throegh is structured in tht. sense that all attendees know what is to
be accomplished anitrwhnt nlle limy ore to piny.

S. The emphas04 is on error detection rether than errot c,,rfecttos.

b. All technical members of the prriect team, from meat senior to most junlnr,
have their work product reviewed.

t
Experience with structured walk-throughs has been tont enenoraging Undoubtedly,

dhere are a nailer of ways they could be eodified to fit other organist/Mons. The central

idea, however, should remain the sane; i.e., to convert the clasmical prelect review into
a.productiye vorkfhg session which not only tracks progress het which makes a wall lye

contributiom to that progress. Outwardly, management !ninth/mem appear!: low, hest ht

reality structured walk-throughs provide management with a vehicle OM catching error', In

the gyitem at the earliest possible time when the vest et enrer4ting thou is lewest Ind

their impart. isomallest.

31E3

EXERCISES

le State why the structured walk-through concept wes dcJeloped.

2. Discuss how structured walk-throughs will relate to the chief progranmer teams and
development support library concepts.

3. Explain how the structured walk-through wiil operate.

Give the main argument against structured walk-throughs.

5. Describe management's role in the structured walk-through.

3-3

SECTION II

TDSP DESIGN TOOLS AND TECHNIQUES/DOCUKETIATION

INTRODUCTION

Section II discusses the various design aids and design techniques used in Top-Down
StruCtured Programming. The documentation tools are presented first, beginning with
Data Flow Craphs (Chapter 4). Chapter 5 explains the many facets;of struculre charts.
HIPOs (Hierarchy plus Input-Process-Output) are taken up in Chapter 6. Structured flow-
charting (Nassi-Schneiderman diagrams) is the topic of Chapter 7. The various techniques
of structural design are described in Chapter 8. Chapter 8 begins with Transform
Analysis, with module coupling and module cohesion following. Transaction Analysts con-

cludes the chapter. Each technique explores the problem from a different avenue and
provides a different graphical representation of the problem. There is ue best tool or
technique, since they all provide valuable information to the design process.

To gain a full understanding of the material in this dection, it may require reading
the Section twice; first for familiarity, then secondly for comprehension.

<.?

lb

v, I

CHAPTER 4

DATA FLOW GRAPHS

Study of this chapter should enable the student to:

1. t'efine the function of the data flow graph.

MN.

2. Explain at least three of the benefits that may be derived from use of the
data flow graph.

3. Construct a data flow graph as specified in a simple problem statement.

The Data Flow Graph (DFG) is a simple yet effective method of organizing and record-
ing the initial ideas for the solution to a problem. Like a "system flawdhart," the
emphasis is on the flow of data through the problem. The solution should correspond to
this data flow; that is, for each piece of the problem, there is a corresponding piece of
the solution.

There are several benefits dbtained by taking the time to construct the data flow
graph(s):

1. A data flow graph becomes a starting point in the solution process. Rather than
getting tangled in details, it is easier to provide an overview of the problem to lead
to the design of the solution.

2. There also leas of a dhance that time will be wasted in solving the wrong
problem. How does this happen? By ambiguaus specifications or invalid assumptions.
Often the user is noti/sure of what he wants. By providing a data flow graph early in the
design stage, the problem stands a better chance of being understood by everyone involved.

j. Then the data flow graph becomes a communication document for walk-throughs by
managers and users, or by otheriprogrammers. Even if there is not a formal walk-thrvugh,
a data flow graph can be a pointlbf discussion to anyone related'with tha problem.

4. As a form of documentation, a ilata flow graph provides the maintenance program-
mer with a simple overview of the problem. A data flow graph is mudh easier to under-
stand and relate to the overall orgnaization of the solution, than deciphering codeto
obtain the same picture.

The data flaw graph useu simple graphic elements to show the progression of data
items from input'to output. Decisions and control logic are not shown, only the major
data items and their processes.

The elements of the data flow graph are:

4

The arrow shows the flow of data through the graph. Tlie arrow will be
labeled with the associated data item identifier.

A

The circle indicates a process being performed. A name, descriptive of this
process, would be written in the circle (it is often easier, for.size con-
sidergtions, to name the process and tilen draw the circle). Due to tne
graphics, a data flow graph is sometimes referred to as a bubble dhart.

Figure 4-1 shows that Data A is used by process B producing Data C. Data C is used

by process D which then produces Data E. In this example, A is the initial input and E

is the final output. C is an intermediate data item.

It is important to correctly describe the data as it is processed in a data flow

graph.

Figure 4-1

Figure 4-2 shows the use of abstract data items and the general processes necessary

to change the data from one form to the-next.

EDITED

TRANSACTION TRANSACTIGN TRANSACTION
RECORDFILE RECORD

Figure 4-2

Suppose the problem statement said: "Provide edited records from the transaction file."

The statement is ambiguous, to say the least. Still, figure 4-2 represents the

way one person interpreted the problem. An assumption was made that a par: of the prob-

lem is to obtain a record from the transaction file. The problem could hE :umber

interpreted into more detail by making more assumptions. However, this c..1d be a

wasted effort.

Consider this problem; Update the master tape file.

The solution:

MASTER
FILE

UPDATED
MASTER

FILE

Figure 4-3

4-2

And it soles assumptions are made:

RANSAC tiON 1RANSALTION
Fit t RECORD

uPUAIFD
MAS1ER
RECORD

UPDATED
MASTER

FILE

mAsttoi
FILE

Figure 4-4

..f

It its obvious that most. intormation is needed or a great deal of time could easily
hr wasted solving the wrong problem. Rather than complain that the problem is ambig7
uous, a data flow graph can be presented for tqaboration and constructive comment. The
user can get an idea of what the programmer I doing. Huth can effectively communicate.

lhe data items ot th data flow grap1 ! ar

leilUb and depend on the luterpretation of thr
dvr carefully labeled to show each step

inability to visualize Ow dati flow indicate

It the problem for !twice.: 4-3 mud 4-4 w
iurcktog, the various transaction edits, and
Lion for a particular record, then the next all
like figure40-5.

not computer oriented. They are in human
problem for their description. The data
in the transformation process. The.

. a lack of understanding of the iiroblem.

is further described to include sequence .

he requirement to proceNs all the informa-
're detailed data flow graph might look

I HANSAt ION I RAI40At f ION
f It t RI t iIRU

st 14111. NCE
I PANIACT ION

RECORD

EDITED
SEQUENCED

T RANSACTION
RE CORO

MASItS

10TAL
VALID

TRANSACIION
RECOR;,

Si UM NCED
MASI IR
REi ORD

UPDATED
MASTER
RECORD

UPDATED
MASTER

FILE

Figure 4-5

4- 3

cif

The data flow graph in figure 4-5 doei not show the control logic and decisions.
It is not the purpose of the data flow graph to nolve the problem - only to define it.
Notice that the size of the "bubble" dorm not correspond to the size or complexity of
that particular part of the problem. The graph is not concerned with how the data flow
is initialized or terminated nor how ubsequent records are processed. There me no
flag, switches, or extraneous data item which will probably be requited in the solu-
tion. There are no error paths, although it can he assumed that there could he eliovs,
since the problem requires sequence checks and edits.

All of these details are left to the lower levela of design where the question of
how to olve the problem is answered. The data flow graph in felting what the problem
is.

Examples have been shown using a date flow graph with vague :Ind brief problem
statements. If the probl..m specifications run into Ham" numbel 10 pages or evrn n
.a data flow graph i still a valid tool to organize the thougbi piocess for visualizing
the overall problem. If the problem la very complex, it may bp easier to understand if

it is examined with several levels of data flow grapha.

In constructing a data flow graph, it.

work back toward the inputs. There are no
graphs, but some guidelin;.s may be helpful.

may he easier to stari with the outputis) 'and

absolute rules for cnnstructing data flUw

1. Do not show control logic or decisions.
%

2. Ignore initialization and terminatlod. Pretend that it all "runs" at oncP and

stays running.

3. Label transifions very carefully am to data passed.

4. Make sure tbat data flow is correct kir the level of detail being shown.'

5. D., ..ct

possible.
P overly imaginative. Express the problem aa clearly an0 simply FIR

4

, 6. Identify assumptions for further clarification before further desir.o.

p 7 Omit SiMple error paths from each "bubble" to the outside.

8. Work from input to output, or Ore verbs, until mufti' then witch.

9. Pon't flowchart.

A data flow graph does not produce a program. It nnly illustrates the way an
individual interprets the problem. The data flow graph is used for further design
strategy to provide clues to a good design organization. These attateglea will hi,

discuised in Chapter 8.

EXEI el SYS

1. What to che purpache of the data flaw graph?

Give three benefits of data flow graphs.

Construet a dara flow graph for the following problem:

"Fdit the master file to delete records which are outdated. Themew file
will be sorted."

c

3 itd/

OIAPTER 5

-..STRUCTURE CHARTS .

Upon completion of this chapter, the student will be able to:

1. Identify and explain the use of the graphic elements of structure charts.

2. Explain basic fucts relating to the use of structure charts.

The utructure chart is a design tool which is noted for ita simplicity'and flaxi-

hility. It la used to organise and document the thought process leading to the solution

of i problem. The structure chart -.can be used a ny level of design to break the en4m-

Lion into simpler components. Simple graphic el nts allow several design concepts to

be evaluated with minimum effort.

A MODULE

0

Figur; 5-1
-

3

fitsure 5-1 represents a functional part of ;he solution. For convention, this

iunctional part will be referred to as a module, since it will be considered "an

msseaday, functiooing ds a component of a larger part." A brief description (usuall).

one or two words) of tIi e. tunction of the module is placed witoin the figure.

Fisure-5.-1 is used lor modules which are yet to be developei. To illustrate a

wodar which is pledefined (such"as a library subroutine), figure 5-2 is used.

A PREDEI INE D MODULE

Figure 5-2

The deolgn, opine a structure chart, is composed of these modules, interconnected

to show their relationship or hierarchy to one another.

5-1

9

Figuie 5-3

An example of this relationship is shown In lisure 5-3, where module A centrols B
and C (B and C are subordinate to A). In other words, for A to perform Its-functlon, it
must.perform B and/or C in some combination. The rontrol of 4 and C is in module A.
Somewhere in A, a normal transfer la made to execute B. After B has performed its func-
tion, control is returned to the point in A where the transfer uriginated and the neyt
statement is executed. This is deseribed au a normal connection and is read as "A rslis
B." Also somewhere in A is a referencq to module C which is predefined module.

This structure chart does not show logic. There are nu clues as to the order ef
execution of modules B and C, the number of times they are called, or it one or both
emodules are required each time A pro esses.data. :;uppose module C was a lihrary sort
routine and module B was an error t4ndling function. Most of the time module B would
not be needed, but the error possaility does exist in thr problem, so B is there when
it is needed. Module A determines when this need OCCUTO.

The rules of structure charts allow wide variations in the graphic arrangement pi
modules, as shown in figure 5-4. Fur this reason, the lines between modules have an
arrowth.ad to show control. Both examples Illustrate the same voocept. Module A conticils
modules B and C.

Figure

'1-2

af
Sio lot, All the relesoncen btsttliweu module, huvu been dune directly Using normal.con-

neetiuus ss id tigure S-5. Motive that the line for this nurmal connection does not enter

A ur b since tho lino would thou indicate internal referencing which is explained later

in this chspter. 'Therp is oily one line from A to B, even though there nay be amend
distinct calls to B from A.

A

Figure 5-5

the structure chart allow the structure or organization of the design to be easily

shown. Figure 5-,6 illustrates a basic structure chart. Module E is invoked by two

modules. This structure may.ceoss modification problems since a change in might now

impoct both B and C.

Lummarmorimmtm

Figure 54

5-3

381)
4

reZt^

ei:000000.7: 388
If this is considered to be a problem, then the design can b reorganised so that

and C can control separate modules as in figure 5-7. Ths point to be made is that
although .figure 5-6 appears to be more efficient and requires tens work, it is also more
complex, making it more difficult to debug and modify. Efficienry is two-sided cofo.
The time spent considering the design will,be more than repaid over the life of the
software product. Deciding the beat way to organize the solution ls the real work ol
design.

Figure 5-7

Structure charts seldom show logic. Major decisions snd iterations may be shown,
but the$, are,00t widely used because they clutter up the des;go and have little meaning.

- Figure 5-8 shows the limited logic symbols for structure charts. Module A invokes
module B based upon some decision. Module A also contnins sloop vhich. calla fot
module C to extcute some number of Utica.

4

Figure 5-8

5-4

gq,a

07

a

S.

Figure 5-9 shows soma examples of structure chart logic at the program level and
the coding that might be impacted im each of the A modules.

a

DO I 6 hN PERiONM 2 N TIMES
,CALL B

5 CONTINUE

DO i0 I 1.M .

CALL C
lt CONTINUE

DO SI
CALL B
CALL C

5 CONTINUE .

DO i I . 1,N
DO lb I = 1,M
Call B
Call C

lOrniIRUE
5 CONTINUE

Figul op .5.9

ape

41.

PERioRM C M TIMES

I.

PERi'ORM B THRU

N TIMES

390.
All discussion thus far boa centered around the normal convection between modules.

There may be a situation requiring another type of control organisation in a structure
Chart. Figure 5-10 illustrates the graphics of this "pathological control" connection.
'All modules up to thkp point have maintained a ove-in one-out concept. That is, if a
module was initiated/ it did so at a single entry point and terminated et single exit
point. Thia was done regardless of references or calls to other modules. The conttol
always-returnedjo the point Where a module was invoked. The pathological control
nectiOn is an abnormal exit from or entrance_to a module. An example can gi made from
figure 5-10. ,Suppose a requ/rement existed to edit a field, checking', for a specific
range. If the field was above the caw, module A would do.one thing% if.it were belvw,
A would do something else. although thin could be handled with a normal rottnrction by
checking the results of B upon the return to A, ,oppose B returned control go the vet-

respondimpart in A,thua eliminating tile check in A.

'

I. A PATHOLOGICAI
CONTROL CONNECTIONF
FROM II Tg A

'a
Figure 5-10

MO

, .

' '
,

1
r .

. .

The pathologidal control connection ls u d if the'cost of, normal conne.tion fi

too hist. The assdclated cost fLctors ahould igFlude programmer Cficiency as well ar. .

machine'bificiency: The latter has unfortunately been given too much hasis.rfsrating
in software produc s which are difficult to'develop; document., debug, d modify. The

pathological contr 1 connection generally increases the cyTplexity of solution to

such a degree at many authoritieo on the nullicct stronily advocate not using tirla il

abnormal connectio . -

Besides ?hod g the control etructure vir hierarchy of modules, a structure chart
also shoulethe communication between modufes by indicating date flow. Just like egyn-

nections, there ari two general categofies of Ota 116w, normal (direct) and patho17g1cal
(indirect). 'The d atinEtion'between the two cilp be labeled direct and indirgct.

-The normal da a /low (direct) is.illustrated in figure 5-11. Module'kpassesidats

'

infermatpcm "X" to.ieodule B,.and B returns tontrol informat on named "T" to A. N tico

'that0----0. is used for daca-ande---0.meani soutral. -The di inction between "d if a"

and "control" typelinformseion is determintd by-tm primary pu pave of tile info titre

item. To add clarity to the software effort, each information:4tem ahould bt ue4 lo;

a specific porpose This rule is often violated when tly need)or a control rir.os

and an "empty" infikrimatind item,(one which has served its puff:a:me sq0 Jo no l ')

needed) is used for thi 'additional duty. Again the question-of efficiency must be

anemered. Is the spec (core) which is saved worth the inerea4m in ramplexti* which

results in doctaentatióu debuggir,Orand modification problems?
.. '

.-: :si .

3 s3 /,
IN

a

6ATA
INf 0104117 ION

xl

NORMAL CIA:1 A FLOW

CONTROL
INFORMA TION (FLAG)

Figure 5-11

The conoept of data tloi between modules is difficult to define, but it is toper-
ta44. This concept should not be thought of as being implemented by.a partiAlar Lan-
guase. It exists at the more abstract design level find once data flow has been deeigned
tnto the system, the programming follows with the moue data flow complexity as, the
desish. la COBOL, the-data flow between modules (p.iragraphs)! must be controlled by the
desish since all.date itsma are declared and are accresible by ell the modules (para-':
graphs) in the program. The ideal condition would bv to give a module (Aty those tnfor-
mation items which it requires to perform its function.. Thia is a management and security
concept of limiting intormation to a need-to-know bents.

FORTRAN subroutines allow restricted access to data onla need-to-know basis_since
the data items are pashvd UN parametere'to and from the subroutine. Although there is no
diatinction between parameter:0 which are input or output by the calling stetement to a.
Aubroutine, thy data fluw is still Istablished by the design and reflected by the pro-
gram. Some programmers feel that data flow is easier to handle if all modules have
access to all data items. Every data item la passed to each module either through the
yell or vla named or blank common. The results can be disastrous over the life of the
system or.-program when tht organization of the-data Is misunderstood and Changed for a
modification or for efficiency.

A structure chart which passes a large number of data items may indicat4a poor
design and, therefore, require a redesign of the syntax or program. If it,is determined
that the design isugood,, then a c7os, -referencing scheme (using the same or.separate
pages) ten be used'to alleviate Ch. clutter caused by using meaningful data names within
ths coofines of a structure chart.

The other Latelory of.data flow is the pathological data connection shown in
figure 5-12. The sraplrics dviate to illustrate thin concept in a structure chart since
the data "flow" is agalhat the arrow. Module A has a normal control connection toB and
there is also an indire,t reference to data item X which exists in B. The reference is
from A to B, but the-data flows against the rum,/ from B to A. The best example of this
type of connection la the COMMON declaration in FORTRAN. If the main program antrsub-
rouzines arc though; of as modules, then data pessage can be done direatly by listing

parametm to be passed, ut indirectly by referencing data in COMMON. Although the
latter seems easier and more efficient, it would be wise to consider the problems of
debugging and mOdifying such a connection es comparecito explicitly listing ttue.data
ftwma,pasedd.

5-7

4.7

Figure 5-12

PAT -MI tw,Ir AI
OAT Fl I1W

3oct

The mechanics of structure charts are simple and flexible. Several design& can be

considered with minimum effort. The initial organization of the structule chart is
important since it is the basis f9r all the design work to follow, so pomp extra time
should be spent analysing this initial design to achieve the best possible system.
Chapter 8 discusses several design considerations to provide clues au tli how to oreavize
a good structure chart. A programmer must Use structure charts iieveral timus More
gaining the deairiod proficiency and the full appreciation of same.

STRUCTURE CHARTS

1. What is a.module?

2. What is represented by and' IET?

3. How is a norual connection between modules represented?

4. What is the purpose of a structure chart?

4,e

^

.R93
What is the difference between

b. What 410 and represent?

7. What is a pethological control connection? Why should it be avoided?

8. What bymbol its used to represent peeving data information? Control information?

4. Wisdt tan be done to reduce dsta items bting passed?

10. Why iu the initial atructurs chart important?

3941-

CURTER 6

ilon completion of this nhapter, thestudent should be able to:

1. Wine the acronym "HIPo."

2. List the three diagrams used in the HIPO package and explain the une of eacb
diagram.

3. Explain the purpose of graphics in HIPO construction.

4. Explatn when HIPOs are'initiated in the-system Clevelojiment.

S. Explain how MIMI are used at each stage in the development.

NTRODU CT ION

tam developed a design and documentatin tooA to complement the top-down design,
structured programming, and Chief programmer team methodologies. The tool designed war
hierarchy plus input-process-output (HIP0). HIPO aids in.system development hy pro-
viding a graphical representation from the initial design theough the life of the sys-
tem. The HIPO package consists of three diagram wtich providr; a complete pictorial and
verbal representation of the project. The Biro epproach to system design is from the
general to the specific, as the top-down design philosophy te to system devetopment.
Flowchazting Is a useful tool but is aimed nt the logical structure oi a prilgrtm.
HIM', on the other hand, are concerned with the functional development of the nystem.
HIPO allows for a formalisation of the designer's thoughts at an early stage of the
development. It is a formal guide to progranmers during the coding phase. HIPfis con-
tinue to be'used during system maintenance. HIPOs are used by menagement and ur.er groups
during system reviews. It provides a documentation and design tool for all corporate
levels from management to the programmer/coder. The following sections include the
diagrame wfiich compose the HIPO package, the use of graphic in HIP0s, end hew won
should be used.

HIP° DESCRIPTION

The HIPO package consists of overview diagrams, detail diagrams, and Visual Table
of Contents (VTOC) also known as hierarchy chart. Each diagram provides a level of
definition inrhe design of the system. The VTDC and overview diagrams, which aid the
early design, can both be worked on simultaneously aad usually complement each other.
The detail diagram Wines ehe system design with specific details for particular func-
tions.

The impr represents the design in a hierarchal struCture am shown in figure 6-1.

331

4-1

e
e

egma'

PROJECT
FUNCTION

MAADR
FUNCTION

...MIONW

I UNt TION
Al

UNCTION
A2

1NE PROJECT PLAN

VsNM111.MIS

FUNCTION
A3

-
FUNCTION

A4

MAJOR
FUNCTION

tr
mmj.SINIIIM*MNIIsap Nm=m111mtmm.mor 1

FUNCTION
HI

Figure 6-1

FUNCTION
52

FUNCTION
53

FUNCTION
54

'The lames and ilentifivation ot all oyrrytew and detail diagrams appear in the

VW. The imeo refer ro a'verhal dee;criprion of each hnx in the miructtire. The iden-

tification 1 s uitable numbering system for the hierarchy chart which is used as a

4ross reference with the other diagrams in the HIFO package. There are many numbering

ayotams that can be used. Figure 6-2 demonstrates one possible system.

It tay be neceesary to continue the hierarchy ehart on other pages depending on

the late of the system and the design. It is only necessary to copy the block.of the

diagram io be continued as shown in figure 6-3.

Although 'trophies will be discussed later, it ii important to note that the first

pas* of che VTOC hould provide s legend of eyehole used in the HIPOpackage. This

provides a common ground for those individuals using the package.

3S si

les

Mo"

FUNCTION
A1

I .1

FUNCTION ,
A7

THE PROACT Pt AN

tuuu TOW
AY

1 3 I .4

Vignre 6-2

The overview and eetail (Migrants nre compoaed e three sections which aupply the
inputs required, the processes nveded, and the outputs produced for the function heing
described. Each diagrlm has aty extended description mection for fulther explanation
when clarity of the diagram JR necessary.

The overview diagram presents a general description of a function and usually
upplements the hierarchy chart (also known an the woo in the eerily stage of the
design. Jt refers to all detail diagram which add definition to the problem be.ng
discussed. Overview diagrams list inputs, proceases, and cutouts lu s general fishier)
and make no attempt to relate them to each other. Figure 6-4 is an example cif au
overview diagram.

3

+7'

00.
E

cSth
THE GROUP PLAN

FUNCTION
111

.t

imisi
SUBF UNCTION SUISFUNt T1ON SU BFUNCT1ONI 1,15FUNC T1014

51 .1 al .3 51 .3 52 .1
I,

2.1.1 2 .1 -3 3.1 .3 .

k

Pee,

Figure 6-3

FUNCTION
02

3 .2

, 1- ...1....L__
SU BPUNCTION SUBFUNCTION SUISFUNCTION

52 .1 52 .3 52.4

1 2.2.2 2 .2.3 2 .2.4

The detail diagrams provide specific information at the lower levels of the
hierarchy dhart. The complexity of material, the nudber of function subprocesses,
and the amount of documentation determine the level'of detail Aa a first
step An the detail diagrams, it is possible to take the overview diagram and CONDI=
the tnputs and outputs to the appropriate processes an shown in figure 6-5.

?It is also helpful to combine and consolidate ateps in the diagram, thus reducing
the number of connections. Rearranging the inputs, proeesses; ancioutputs can *leo
alleviate the amount of line crossing in the diagrad. Figure 6.4 demonstrates combining,
consolidating, snd rearranging steps.. It I. important to note the use of grayling.

6.4

390

0

POPO DESIGN AID AND DOCUMENTATION 1001
APIW

DRAWING MPG DIAGRAMS

INPUT PRO(rss

Figure 6-4

0

398

OU1PU I

Figure 6-7 illustrates the drtall diegrnm with the use of 'he ymenaed den(riptien

and a complete set of graphics.

Graphics

In the original conception of HIPD, the IBM organization developed an extensive

set of graphic sytbala to aid in the clarity of the 'UFO diagrams. The degree to

which graphics are used is dependent an the'usine orKantzation. Graphica should com-

plement the diagrams no far as to remove ambiguity. Graphic ntendnrdfitation, within

the organisation, in necessary to eliminate user misconcyptiona. It is recommended

that a reasonable subset oi the graphic symbeis b.', incorporated to prnvicie a clear,

concise, and complete HIPO package. Thy rolluwing figuren nerve to illustrate some

preferred methods of graphic use.

39/
6,5

mAIING A HIP0 DIADRAAt.ii

DRAW 3 OPEN-ENDED OWES

LIST INPUTS, 2ROCESSES, OUTPUTS

CONNECT THEM

BUT DON'T OftitY ABOUT GRAPN1C5

Fisure 6-5

ev-6

J

A

SIMPLIFIED
WITH STEPS
COMBINE D
AHD
CONS01 IDA 'If D

a -

2

Is

400.

Figure 6-6

Grouping with hoses normally hows relstionabips while Arrows normally ohow movement.

It might bs necessary to distinguish between ;lets end control novdment. Arrow grophics

ass be a time-consuming process. Pigurs 6-8 depicts me methed of representing Arrows,

but ft should bs noted that single lines will necearlich the same results.

6. 7

393

p

KADDR

KTYP KE1wD

KEY vAL

CHECK KEYWORD purr roi
iSEE pli4GR Aki 3 .4 .2 FOR DETAILS)

cOiIVTAB
0 ENCODE VALUE VALUE

391(

LEGEND

ENTRY TO DIAGRAM
E XIT FROM DIAGRAM

DATA MOVEMENT

.--140 POINTERS

REFERENCES

STEP DESeRIPTION
CROSS

*REFIRENCES

0 .
LimIT OF 15 SEEN'S REASONABLE . PUT TING A COUNT
SOmEWHERE WOULD BE HELPFUL - KEYTAB- .

SEE DES.OEU.PP 37-47
WE PLM PP 104-n7-----,

0 USE EXISTING SYNTAX CHECKER AE04107A BUT
MODIFY TO USE/AS DELIMITER .

SEE PLI1 PP 15-20
F.C, NO. 12

0 PERFORM BINARY SEA*Q1 OF CONTAB TO FIND
' CONVERSION ALGORITh CRNVERT VALUE ANP

STORE IN NEXT AVA1LAB E FIELD OF VIABLE .

MTH TYPE INONATOR . .

MODULE 4EP3204B
SPEC PP 37, 13, 62

395

a.

.ors

ARROWS

BROKEN

ANGULAR

4-0 2-

?Laura 8

lilies. es legit is 'edified then it should be shows as 110 Output (ue figure 644)!

96

4.7`?-e.44,ff=,Ynr=,..!',77.= 15_

4

DR B 0 MIMEGIMENS Si=nmes
INIIINSENNIMISNINE!
ISM MIS SPININIMPUR

(IDINFIMIM M! MEI!
M. OIMMIMISSMNI011.

HOw IO SHOw THAT
.A BLOCK IS uPZATED

RIGHT

illmssers.

ORB

401

WRONG

IMMSMISMIS RSVIeN!

=1. 06110.1SMINIs
...=1161.11.011110 MOM

011MIIIIM=.1MVS
VEIN IMMISIMOssMi

ORB

Figure 6-9

Sonetimes it is useful to do soNe rearraoging of the diagram, known as tuning,'
to proVide a'ditionai clarity. Figure 6-10 illusrotes this tuning process.

N4

6-10

9 '7
a

1

a'

I. COARSE TUNING

MOVE INPUTS AND OUTPUTS TO ALIGN T M WITH THE
AREA OF MAJOR ACTIVITY RI*

40#

2.FINE TUNING

ELIMINATE ammo LINES BY MOVING INPUTS OR OUTPUTS
TO ALIGN THEM HORIZONTALLY

Figure 6-10

RIPO and System Development

HIM. should be used throughout the development of the system. The initial design
package provides an overall functional design of the Fitton and is used by system
designers to express their ideas. The initial design package is used by management in
the preliminary reviews and by the designer/analyst to refine the initiei lesige into a
detail system design. The detail demise package is used and supplemented by the analysts
and programmers.' During system implementation, the detail design package is ueed as a
formal guide for coding. As sections are coded, the extended description way be enhanced
with.program labels and other important information to provide completenrse. At'the
completiowof the system implementation, the has n complete documentation package.

deThe tail design package can be used during "vaintennnce, hut estanaive system

444-,

6-11

,.

I

modification vill require the use of a maintenance package. The maintenance packase

normally consists of the information in the detail design package minus the low level

details used during implementation. Because HIPOs provide valuable system sommentation,

it is important to keep them current through the life of the system.

EXERCISES

1. Define HIPO.

2. What three diagrams make up the HIPO package?

3.11 Explain the purpose of each diagram In the HIPO package.

4. Explain the purpome of graphics in a HIPO package.

S. At what poinvin system development should HIPOF be used?

6. Haw long should the HIPOs used in y3trm development be retained?

6-12

399

4103
gat.

. CHAPTIR 7

STRUCTURRO FUNCHARTS

0

Upon completion of this chapter, you should be able to:

1. Nem three of the five control primitives required for structured programming.

2. .Name th two methods of flowcharting.

3. Draw the structured flowcharting symbol which represents:

a. Sequence

b. DO-WHILE

c. IF-THEN-ILSE

num= FLOWCHARTS

For years, flowcharts have bean the primmy method of describing procedural losic
within a subprogram, module, program, or system. Flowcharting will continue to be used
by ems organisations although emphasis le now an structured flowcharts Alia use only
well-defined control logic primitives.

Corrado Nam and Giuseppe Jacopini in their article, rFlow Diasrams, Turin* Machines,
and languages wtth Clay Two Formation Rules," proved that all programs can be written
using only three basic'cootral primitives. Using theme primitives, a new method of flow
charting, known as Nassi-Schnelderman (N-S) diegrams, Chapin charts, or structured flow-
charts was designed. The flowcharting method used is immaterial, but what is isportant
is.structured design. This chapter discueses the basic control primitives needed for
structured progremming. In explaining control prisitives, we will use the traditional
flowcharting symbols and a Program Design Language (PDL). FDL will be discussed sore
extensivelyrin & later chapter. In this chaptel, FUL provides a common basis for under-
standing end thould not present any problem for the reader. Our discussion on struc-
tured flowcharting shows the Nassi-Schnelderean diagrams, _named for the two sen who
were the first to publish material on the subject. The chapter is completed by cow-
paring this new flowcharting method with the traditional method.

The basic contra primitives, tea described by lehm and Jut/pia, consisted of
sequential proceseins, a gooscs1 looping mechanism, and a twit-state decision mechanism.

Sequential processintis the execution of the next logical: instruction in the pro-
gram as shown in figure 7-1.

411=0.,

`.1 Of)
Figure 7-1-

, Iterative execution allows for repetitively executing A sequence of one or more

411
instructions as shown in figare 7.4.. It le normally stated in PDL as the DO-WHII,E mith

the test for-loop termination first.

Figure 7-2

S.

The two-state decision mechanism, or conditionel execution, is typically known as

the IF-THEN or IF-THEN-ELSE (IFTHENELSE) primitive. Figure 7-3 shows this primitive

graphically.

Figtrre 7-3

Whiie it has been shown that these three primitives (also called constructs) are

ihe only ones required for logical control of a program, two other constructs provide

some additional flexibility in structured programming.

7-2

4 0 1

..
The ErUNTIL const4wt is another looping methanismwhich allows for the loop

termination to be last inShown in figure 7-4.

Figure 7-4

Program design sometimes requires 4 decision to be made from many possible states.

In POL, this conetruct is known ea the CASE statement. It allows foe Cut execution of

one condition from a group of possible ininstivess's Conceptually, the CASE statement

is a series of 11-1Ustma nutmeats. Figure 7-5 expresses' the case statement con-
.,

struct graphically.

Figure 7-5

7-3

4 90

Ali ol these well-formed primitives have been described graphically with traditiomal

.flowdbarting symbols. While treditional flowcharting is one method of graphically repre-

senting * logical previa*, the Nissi-Schnaiderman diagram (elso called Chapiu charr.or

structured flowchart) is another. The basic symbol in an lis4 diegram li the box, which

cap be opens' or closed. (See figure 7.4.)

Figure 7-6

As the program Is constructed, the box is dissected into the basic control

primitives. -

The sequential execution
primitive is a horizontal line in the box with the verbal

explanation of the proceis (see figure 7-7).

Figure 7-7

7-4

4 3

4 t
The looping mechanism is shown pictorially in figure 7-8. The test normally

appears at the top.with the instructions below the test (figure 7 -88). It is pcmsible
to hove the test following the instructions as shown In figure 7-811.

DO WHILE

LOOP
CONDITION

INSTRUCTION

(A)

10

Figure 7-8

DO UNTIL

INSTRUCTION

LOOP
CONDITION

(8)

The decision, or IF-THEN-ELSE, which is difficult to explain verbally, is shown in
figura 7-9..

TEST

Figure 7-9

The CASE statement does not allow for easy graphical representation and has not
been fotua7ried.

4 t
Logical construction of s program often requires one basic primitive to be used in

filoconjunction with soother (commonly rammed to 44 nesting). The following example'

illustrates how nested control structures ere handled la the WS diagram* (figure Mtn.

IF (cond p) then

Do Will. (cond r)

END DO

ELSE

IF (cond) then

DO UNTIL (cond t)

END DO

ELSE

END IF

END IF

N, Figure 7-10

7-6, %re

41 2.

The word frequency analysis prok:am is shown by both methods of flowcharting. Both

methods are well-formed and it should be programmer discretion as to which to use.
Figure 7-11 illustrates the conventional flowcharting method while figure 7-12 hows the
same logic in a stiuctured flowchart (N -5 diagram).

WIRE
TENT

IF CORI o

titiAci raEllE
TENT

St ARCN W1ID.
TAMA I OR
timid, t D

NORD

EXTRA tIO
*ORD

WERT
EXTRACTED
NORD MID

WORD- T 1

INCREMENT
WeRus.

PROV s SI D
Calm T

RE AD NI Tflit 111(0.9

STIED

Figure 7-1;

7-7

4 96

WORD FREQUENCY ANALYSIS PROGRAM

INITIALIZE TmE PROGRAm
.

READ THE FIRST TEXT RECORD

DO WHILE (THERE ARE MORE TE xT IlEcoRDs)

DO WHILE (mORE WORDS IN TExT RECORD)
,

EXTRACT NEXT WORD IN TEXT RI:CORD

SEARCH WORD-TABLE TOR EXTRAC rED WORD

T

WORD IS
FOUND . F

INCREMENT
WORD'S OCCURRENCE

COUNT

INSERT THE
EXTRACTED WORD
INTO THE 1ABLE

INCREMENT THE WORD-PROCESSED COUNT

READ THe NEXT TEXT RECORD

PRINT THE TABLE AND SUMMARY INFO

TEINAINATE THE MORA* 'sr? .
...'

rigur e 1-12

'1-8

4 9,7

.4 1 3

40-
The structured flowcharting method appeals to many people beceuse of its simple

approach to logical program development. An opposing viewpoint to N-S diagrame,in that
it resembles a program design language enclosed in boness'ao why not writs the program
design language and forget the diagrams. Doth'viewpoints are valid and it remains up to
each oreenisation to decide upon which approach to follow.

EXERCISES

1. List three of the five control primitives used in structured programming.

.2. List two nethods of flowcharting.

Draw the graphical representation for sequential processing, the DO-WHILE looping
mechanism, and the two-state decision.

7-9

Chapter 8

pEsIGN TECHNIQUSS

INTRODUCTION

The previous chapters in ths design section explored the various graphical repre-
sentations for data Ilow graphs, structure charts, HIPOs, and 'Wei -Sihnsiderman dia.-
grams. Becoming familiar with the mechanics of these tools providei for soma standar&
isation, thus eliminating interpretation prebleme within an organisation. While it S.
important to have consistent interpretation by organisation members, thS tools, them-
selves,.provide little toward a good design. A good design in the result of applying 4
good design strategy. There is a brother-sister relationship between the virious tools
and strategies, in that, the tools help formulate the design strategies visually. There
are many schools of thought In existence, each of wbich provide a different avenue of
attacking the problem. The greatest benefit comas when they are taken together to
represent a complete design solution.

\it
Mimi chapter discusses some strategies which aid in the design p sae. Transform

'analysis studies the data flow through the system 'ma is represented vi the data flow
graph discussed iv, -2r 4. Coupling-and cohesion address the relationship between
modules and withi e, respectively. Structure charts are uped to deconpose
Problem into seallet and simpler procemses and as a result, the coupling and cohesion
analysis it. usually performed from the structure charts. Finally, transacticm analysis,.
which attacks the design from a decisions up - detail down approach, can utilise either
UFOs or stracture charts.

Upon completion of this chapter, the student will be able to:

1. Define module coupliug.

2. Explain what influences module coupling.

.1.-eExplain the difference btween local and global parameters.

4. Apply the complexity formula and interpret the results.

5. Define normal and petholdgical connections.

6. Explain the best type of module communication.

7. ,Define module cohesion.

8. Explain the six levels of module cohesion.

9. State the philoeophy behind transaction analysis.

10. Draw the basic structure charts for transection snalysim.

11. Define transform analysis.

12. Explain the general organisational structures produced by tranmfono analysis.
4

13. List the four stove of transform anal3sis.

8-3.

4 9
I.

a

4 1

14. Apply transform analysis to sAmple problems.

15. Define festoring.

16. List the four guidelines for organizing solutions.

TRANSFORM ANALYSIS

Transform anslyels is strategy for declaring highly modular prostins and systems
by studying the data flow through the problem. The basic idea of transiikm analysis is

._ro design a ptigram ad that a csatral module calls for highly processed logieal date.0
Eventually it will generate logical output data. Other related stidules.transfore physi-
cal input to.logics1 input and logical output to physical output.

This generally leads to a solution organized as in figure 8-1 where tbs.-INPUT module
is in charge of transforming the physical input data into logical input data (X). The
PR)CESS module has the responsibility of transforming the logical'input (X) into logical
output (Y). The duti of the OUTPUT module is to take the logical output (Y) and produce

Nft the required physical butput.

Figure 8-1

Problems which ban be described as inputting data, processing it, and mtputting the
results consistently generate a solution organized as xn figure 6-1. Regardless of the
type of problem, traosfoxpi snalysis will provide some clues and steps to follow for
developing an effective yet flexible solution organization.

Transform analysis starts with a data flow graph of the prolem.. The data flow
graph should be detailed enough to whom the major parts of the problei, but not so
detailed that the graph becomes cluttered and difficult to use. About 5 to 15 bubbles
is a ballpark figure, although there are problem, which have been satisfactorily illus-

. tratad pistil& of this range. The Hoses are offered only am a guide to the novice et
transform analysis.

Remember that a dpta flow graph is am incerpretaiionAof the problem. A general 1

understsaling of the problem is needed before details ars added. Experience wdll dictate
the meaahs of "sufficient detail" in d data flow graph.

The second step in transform analysis is to identify the streams of input and out-
put data. An input stream is identified by following the input data into the data flow

8-2 41 o

4

NM,

41
graph until the date item is no longer viewed as input. ihe output stream is identified

by 'martins at eh* end of the date flow graph and fo4lowing the data backwards to the

point whore the resulting dots ere no longer viewed es output. The List dote item on an

Input "leg" which As the most abstraci item still associated with the input, marke'the

And of an input stream. The first dati item to be viewed as output ip its most abstract

form Is-the tit4gt of.the output stream.

.Far example, figure 8-2 is a bubble chart for a particulir problem which has an

input requirine various transformations to obtain the required output. Analyze the data

flow graph and mark the input stream and the output stream.

iTOCIC
FILE

STOCK
RCORO

EDITED
STOCK
RECORD

PROCESSED
STOCK
RECORD

4

PROCESSED
STOCK
FILE

PROCESSED
SORTED
STOCK
FILE

COMPLETED
FILE

WRITE

STOCK
REPO!T

Figure 8-2

The general opinion is that the "edited stock record" is the last data item which

can be viewed as input. This, then, would mark the end of the input stream. The con-

sensus is that "proces.ied stock file" is 5he first data item which is viewed as output

for the overall problem, so this would mark the start of the output stream.

The preceding paragraph presents scam debatable opinions on a wubjective exerci .

This example is preseuted Ida guide. Since people (even programmers) think differently,

there will be differing opinions on the identification of input and output streams. The

transform analysis strategy is sufficiently simple and flexible to allow different ideas

to be evaluated.

A.

8-3

44B
Once the divisions have been made identitying the input stremm(s) and output

stremm(s), the remaining bubbles are the central transform. (See figure 5-3.) This is
where the abstract input data la crania-armed into the abstract output data.

INPUT
STREAM

CENTRAL
TRANSFORM

a

OUTPUT
STREAM

a

Figure 8-3

At this point, there are three main divisions in the prokleml input, transfcrm,
and output (similar to HIM). Multiple input strvams and/or output streaus may exist
as in figure 8-4. These can be organized by maintaining the three major divisions,
input, output, and transform, or by having multiple input and output divisions in the
organization.

4 1 .

Figure 8-4

8-4

Constructing the solution organisation is the third step in transform analysis.
This is normally sccomOlished with a structure chart, but more recent applications show
that this is effectively accomplished with HIPOs as well.

le start the desi,91 organization, there will hi one =dile responsible for the
overalleperation of the solution. In matching the design to the problem, this main
module is THE solution at the highest level of detail. The function of this mmdule is
the same as the description of the problem.at the highest level. Terms to describe this
module ere simple and encompassing such as EMPLOYEE PAYROLL or FILE UPDATE. If a data
flow graph of the problem were constructed at such a high level that there was only one
bubble, then the function of the bubble would be the sane as the functional description
of the main module as in figure 8-5.

PRODUCE
STOCK
REPORT

DA TA FLOW GRAH SOLUTION OR GANIZA TION

Figure 8-5.

This main module will exist as the boss fur all subsequent, more detailed, designs.
Perhaps a 1-bubble data flow graph is a good way to establish and reaffirm the averall
objective o! the probl4m. This can provide a starting point for more detailed analysis.
Before goin4 on a trip, it is good to know the starting point and destination. Pro-
grammers sometime become detail oriented and lose sight of the objective, and either
solve the wrong problem or reach a programming impasse.

Unfortunately, most programs do nut end with the main modulel that is, the problem
la too complex to solve with one module that is small enough to be manageable. 'Then,
the next level of design is required to separate the major functions necessary to solve
the overall problem. This means that the main module will be directing a few sUbordinate
modules to carry out the required work. This separation of functions is called
functional decomposition, or more simply factoring. Factoring is now less an art ince
the emphasis on design tools and techniques, but there are still usually several good
designs from the same problem, each vith their own merits. Transform analysis is a
procedural method to use to obtain a "good" design. The organisational process is based
on the analysis of the data flow graph. For ',tamers, each input tream and each output

8-5

41 3

420
stream has do correspondingsodule which cospleteli 6ndles ths associated data. There
is also a module in chars* of that central transformation. Then, the resulting struc-
tur at the second level of detail has the nunbar of modules equal to the input streams,
plus the output streams, plus one (the central tranzfore). Flgure 8-6 shoes the solu-
tion to a problem with one input stream and one output stream.

STOCK STOcK
fiLE

EDITED
STOCK
RECORD

mAKE
STOCK
REPORT

1NRUT
RECORD

PRODUCE
NEW FILE

OUTPUT
REPORT

PROCESSED
STOCK
RECORD

PROCESSED
srocK
FILE

Figure 8-6

PROCESSED
SORTED
STOCK
FILE

COMPLETED
FILE

STOCK
REPORT

At eadh step in the design process, ties should be spent in reflection, looking
Vack to see if the organization is complete at each level. Only then cot the final step
in the transform analysis tratesy take place. This is the process of repeatedly
factoring mOdules until they are fully decomposed into sines indivisible functions.

aMI%

8-6

42
Each subordinate module in figure 8-6 can be further factored into its subordinate

functions. This next level of factoring can be visualized as a trensfors analysis of
the INPUT RECORD, PRODUCE NEW PILE, and OUTPUT REPORT modules. Indeed, each of these

can be thought of as individual probless requiring a solution. If the date flow graph

In figure 8-6 is correct and sufficiently detailed, than the continuation of the organi-
sational solution would look like filiUre 8-7 at the third level.

MAKE
STOCK
REPORT

INPUT
RECORD

PRODUCE
NEW
F ILE

OUTPUT
REPORT

READ
RECORD

EMT
RE CORD

PROCESS
RECORD

COLLECT
RECORDS

SORT
FI LE

Figure 8-7

8-7

41 5

FORMAT WRITE

1. =gawn!

4-21_

Problemi which have multiple input sad output streams can be organised with an
equal number of meneging modules as input and output streams. Another way of organising
a solution is shown in figure 8-8 where two new manager modules have keen introduced to
alleviate sons of the work from the mein module. This is a good w4y to reduce the work-
load and complexity of the main -module. If, at a later date, it le decided that thew!
modules Ire really not needed, they can be compressed into the main module. Notice that
the position will be eliminated but their work must be done elsewhere.

Figure 8-8

This I. the concept of factoring, taking each module and dividing the functions
into smaller, easier to handle problems. The problem of overfactpring is a rare excep-
tion. Usually the functions are not sufficiently detailed. It is easier to combine
modules later in the development process, if modules are too simple, than,to decide
thet a module is more complex than originally thought and then decide to factor further.

8-8

4-2 3

Simply stated then, the steps in the transform analysis strategy are:

1. Construct a data flow graph of the problem.

2. Identify the input and output streams, and tha transform center.

.3. Construct the corresponding organizational structure,

4. Repeatedly review the organization while subdividing the modules to produce a
fully factored design.

The end result of the transform analysis is an organization which can coordinate
the many activities involved in the problem solution. This organization is siallar to

management organizations where soma management practices provide these useful guide -

lxnee for managing modules:

1. A manager should not have more than 7 t 2 immediate subordinates.

RRORS

PIECES OF INFORMATION

Figure 8-9

The average person can handle problems involving various numbers of pieces of
information and naturally, the more complex the problem, the greater the number of

errors, as expected. However, as illustrated in figure 8-9, the errors skyrocket when

involving more than seven pieces of information. For some people, this upper limit on

complexity is as low as five, for others as high as nine.

8-9

4 7

4-Z4- S.
. What then should be done with solutions organised as in figure 8-107

Figure 6-10

The easiest thing to do would be - nothing. Indeed, this mmy be the correct action.
Module A may be simple end efficient as it is. Rememper, 7 ± 2 le only a guideline.

Consider some other alternatives. If several modules have some common bond, then
there may be one or more submanagers introduced as in figure 8-11.

Figure 8-11

an most problems involving a large number of pieces' of information, there are
Usually natural groupings creating submanager positions which prevent this complexity
problem.

2. Maintain communication in the chain of coomend. A module should "communicate"
only with its immediate superordinate(s) and its immediate subordinates. This adds
clarity to the solution mad prevents the harmful side effects of changlne a module and

8-10

4

.,

415
discovering two weeks later that the change also had same hidden far-.Tartar/as effects On

other parts of the program. A violation of this principle is the pathelosical connec-
tion discussed in Chapter 5.

3. Managers should make decisions which affect only their subordinates. Siallarly,

modules which are affected by a decision should be subordinate to the module which makes

the decision. This design coosideration has a tendency to move decisions up in the

organisation to resolve this "effect 11. control" conflict. This also results in the

upper level sodules making decisions while lower level modules do the work. Good! After

all, this is the way an organization should operate.

4. This management parallel is the somewhat controversial "mashrocm theory" where
a subordinate la only given the information necessary to do his task.

This concept is applicable to design organization-since it is important to main-
tain complete control of information or data,flow throughout the problem solution.
Violators of this principle run the risk of mysterious appearance or disappearance of

-data, causing unexpected results. Programmers-that soy they have not experienced this

situation ptobably lie about other things also.

The transform analysis stratugy is stressed as a method for obtaining a fUnctional
design which reflects the problem. If the problem changes (there le always that remote
possibility), then the solution will change accordingly, with a adnimum effect on the
parts of the solution which are not altered. This means that a change has less chance

of causing a major rewrite.

The organizational design should be developed with the thought of change in mind.
One of the major items of concern should be to strive for modules which are highly func-
tional; that le, they do a specific task the same way every time. Another desirable
quality is for modules to be as independent ma possible. The module which can "stand

.alons" will probably not be affected by changes in other modules.

The concepts of modules being independent and functional will be discussed in detail
to explain how to arrive at the most cost-effective system possible.

COUPLING

111's.e relationship between modules and within modules provides valuable information

for the designer. This inforsation is used to determine how complex the system is
becoming. If the designer makes a sincere effort to keep the system as simple as
possible, then a chanse to the system will require less effort to accomplish. W. P.

Stevens, G. J. Meyers, and L. L. Constantine are credited with much of the research in
this area. They termed intermodule relationships "coupling" end intramodule relation-

ships "cohesion." Any system designing process should strive for as much independence

between modules as possible and modules that are as functional as possible. What is

desired theners modules that perform a specific function and rely very little on other
modules in the systems, thus producing Reliable Modifiable Software.

Coupling is defined as the measure of strength of association between one module
end another. Module interfacing, type of module connection, and type of comemnication
need to be studied to determine module coupling.

Module interface is concerned with how sit:Mules retrieve their data for processing.
Modules receive data basIcally by ewo means, local and global parameters. Local param-

eters are passed directly to the smdule that needs them from the supplying module and

thus are localized within the two modulsb. It is desired that parameters be passed by

8-11

4 1 9

the parameter passing mechanists which best localizes the data. An example of this is
the Fortran call statement usine the parameter passing capability. (See figure 8-12.)

Call Poo (A, B, C)

Figure 8-12

Global parameters are normally supplied et a system level. The access restrictions can
vary from complete availability to very limited availability. Cobol's data division Is
a global parameter passing scheme where variables are available to all subprocesses in
the system. The use of the Fortran common statement is another way of providing global
parameters. By using the named common convention in Fortran, the programmer can reduce
the availability of data to it small subset of the system. While local variables are
considered looaely coupled (which is good), global parameters are considered highly
coupled (not so good). The prieary reason is that as data elenents become more available
to modules in the system, the interface between those modules becomes more complex. when
a data item is changed, all modules using the data item must be considered in determining
the effects of change. The interface complexity can be summarized by the formula:

C0EXMX(4 - 1)

C Complexity

E the of elements in the common region

M the f of modules utilizing the common region

For example, suppose that two modules, A and B, access a common data region with
two variables, X and Y, the total number of paths (complexity) is four. Module A can
affect X and Y as can module B. This doss not Lppear to be very complex, but suppose
the common data region has 25 variables in it and is shared by three eodules. It is
important to make modul interfaciog es obvious as possible. As module interfaces ba-
con, obscured, 'the coupling ie hilkher and system change is harder to make.

Normal and pathological connections are the major module connections. Normal
connections are defined as references to modules by name with oo direct reference to
that nodule internally; that is, internal'elements and processes are irrelevant to the
normal connection. If module A cells modulesil to perform a function, whether or not
module A passes parameters to module B, the connection between then is considered nor-
mal. Normal connections tend to yield lower module coupling. Even though normal con-
nections ars considered the best, as the number of *parameters increases so does the
coupling. It is important, then, to pass only those parameters needed for the perforw.
ance of the task. Do not degrade an otherwise good connection with extraneous informa-
tion.

Pathological connectioms make internal references to a module. Simply stated, this
means that module A makes reference to a program element (either data or control) in
module B. Pathological connections produce highly coupled modules because any change
eade to one module may affect the pathologically connected eodule which will also need
to be Changed. Pathological connections Mould be avoided if possible.

8-12

AR.%

42. 7
1

Nodule communication li concerned with the type of data being passed. If a module
does not pass or receive data within a system, then it is not n.functional patt of the
system. The best type of parameter to pass is strictly a data parameter. DoWn the line
comes neural variables and at the bottom of the spectrum la hybrid variables. Data
coupled modules are xtremely good module. due to the lack of control of one module by
the other. Nodule A calls module Be Width performs a function and returns. This is a
very simple and obvious type.of coupling which le easy to visualise. Both module; are
very independent; that is, a Change to either module will have little'likellhood uf
affecting the other. Control parameters, such es flags and switches, result in higher
coupling. Any time one module controls the execution of another, the coupling is
increased. Why? Because change I. ths calling module has a greater chance of impacting
the called modl.le. It is necessary to realise that control coupling adds another degree
of complexity to de system. It is possible, in most systems, to avoid control cvupling
by rethinking the design of the problem. Hybrid coupling occurs two different wars. It
occurs when program instructions are changed during execution (i.e., the Cobol tiler
statemunt).. Changing program instructions during program execution produces a very
volatile system which is hard tO understand, debug and maintain. The other type of
hybrid coupling occurs when a parameter la used for both data and control. While this
is not obvious, it happens quite frequently In program design. A h A rid parameter, when
aspsed to a module, is used for decisionmaking and also for calculati g a result. The

danger of this type of coupling should be apparent and therefore wool ed.

COHESION

Another valuable relationship to consider, when designing a system, is the ihternal
attength of a module. L. L. Constantine has termed this characteristic as cohesion. It
is also known as module strength and module binding.

The designer should titrive for functional modules whIch peiform only one task.
Modules tend to be more complex as more and more tasks are performed in them. There are
varying degrees of cohesion ranging from weak module strength to strong module strength.
If the cohesiveness of modules is low, there is a good chance that major problems will
arise throughout the life of the system. This is not to say that problems won't occur
in a functiponally strong system, but the problems tend to be very minor. The following
discussion le designed to give the retWer a basic knawledge of the various levels of
cohesion as nn aid in deciding the strength of a module. They are not to be considered
formal rules which clearly place module into a specific category, rather, they nhould
be used as rlidelines to narrow the realm of possibilities. It is not always possible
tu precisely define the strength of a module, but being in the ballpark does provide
valuable information as to the type of modules being designed, which Itimately indicates
how well the system is being designed.

"Structured Design," an article written by W. P. §tevens, C. J. Meyers, and L. L.
Constantine, defines the six levels of cohealveness, in order from bad to good, as
'coincidental, logical, temporal, communication, sequential, and functional.

A coincidental module is just what the term implies. The module is a hodgepodge of
instructions which have absolutely no relationship to each other. This type of module

8-13

is considered very weak and extremely unstable and usually very easy to spot. It occurs
primarily when tryine to save memory or when making an artificial attempt at modulisation.
roc exesOle, wOOP0sx the following instructions, appeared individually several times in
a program (figure 11-13).

Bead (G. J) A, B. C

I I 4. 5

DO 1 J 1,5

GLOP (g) FLOP (X)

Figure 8-13

If grouped into a module to reduce the number of eeparataoccurrences, then the
module would be considered coincidental as there doss not seem to be any apparent
relationship SMOUS the instructions. Coincidental modules can and should be avoided in
a structured programmine environment.

Logically bound modules are one step removed from coincidental modules and imply a
logical relationship among module elements. Suppose that module X edits all data and
furthermore the types of edits include master edit, updets edit, addition edit, anddeletion edit. Including these edits in one module will require not only theedata to be
edited, but a flag to specify which edit to perform. DOCAMOO the entire module deals
with en editing function, it is coneidered logically cohesive. Normally, a logically
cohesive module will execute only a portion of the module each time it is called. If
at all possible, it is better design to break a logical module into functional units.

Temporally bound modules have time-related elements. Typical nodules in this
category are initialisation and termination routines. Nodules that are temporally bound
tend to be less complicated than logically bound modules because of the absence of con-
trol variables. When called, the entire module is usually executed.

Nodules with communicational cohesion are characterised by referencing the same setof data. For example, "print and punch the master file" referenies the same output file
for printing and punching and is, therefore, cosmunicationally bound. Referencing thesame data structure produces strong bond between nodule elements.

Occasionally, the output fron one module element is input to the next module ele-
ment. The binding for such a module is termed sequential. A sequentially cohesive
module may perform either some part of a function or several cubfunctiona. Because of
this characteristic, a sequentially bound module is still far removed from the more
desirable functional eodule. Th utility of sequential nodules le other parts of the
system is usually somewhat low. However, the module, itself, is still considered
cohesively strong.

The strongest type of module strength le the functional module. Nodules which
perform only one task are considered functional in nature. These modules are very
stable, esay to-maintain, and usually integrate into the system with very few problems.
The major decision is how far to divide functionally bound modules. A good criterion
to use is when each module COUtAini no subset of *imitate that could be useful alone and
is small enough that its implementation can be dealt with at one time.

8-14

421
A woeful technique sor determining the strength of modules is LO describe the pur-

pose 64 the module in a sentence.

1. If the entence is compound sentence, then the module is probably sequential

or communicational.

2. If the sentence contains words relating to time, such se first, next, or after,

-the module could have sequential or temporal cohesion.

3. If the sentefice is missing a specific object to describe the module, the module

is probably logically bound.

4. Words .uch as initialize and cleanup imply temporal binding.

Module coupling and cohesion should be considered during system design. Even thoygh

the techniques have been discussed as an after system design process, the analyst should

be aware of the type of modules being designed as the system is built and should strive

for a functional design.

TRANSACTION ANALYSIS

Transaction analysia is a particularly useful design technique for various data

processing application.. The strategy promotes a decisions up, work down philosophy.

Just its name implies that it would be extremely useful in the business data processing

community because most f those problems deal with some form of transaction. By

extending the definition of a transaction, the technique provides design support in

other data processing areas. In particular, a transaction is any type of-program ele-

ment which causes specific sequence of actions to be performed. An element of data

or control which flows into a process and then proceeds to one of a set of action

sequences is a candidate for tronsaction analysis. This situation is illustrated with

III/

the use ofm data flow graph in figure 8-14.

PROGRAM
ELEMEN,

Figure 8-14

The PROCESS in.figure 8-14 analyze. the PROGRAM ELEMENT to detsrmline which actiou

sequence path to follow (tete ehi OR symbols used in the data flow graph).

8-15

11.

4-3 0
It

Once it is determined that transaction analysis is to bo used,'the appropriate
structure chart to usi is shown in figure 8-15.

0

LEVEL I
(PROGRAM)

LEVEL 2
(TRANSAC TIM

LEVEL 3
(ACTIN

LEVEL
(DETAIL)

TRANSACTION
CENTER

Figure 8-15

01,

The acronym SAFTAD (System, Arlalysis, Program, Transaction, Action, Detail)
expresses the original philleophy of Transaction Analysis. The first step is system
analysis followed immediately by creation of the Program, Transaction,'Action, ens!
Detail. Each level in the chart represents andbdditional level of Oetail beginning
with the program. The first level (program module) is the transi-tion or decision
center. This module usually does the dispatching of transaction.. The second level
receivea an appropriate transaction and processes the specific actions (third leve0
necessary for that tiansaction. Each action module uses detail modules whia do most
of the work.

The structure is derived from the original concept of transaction analysis as
envisioned by Sell telephone of Canada. They were very religious in the use of the
structure as a distinct four -level structure with no exceptions. This unnecessary
restriction caused thi philosophy to.breek down to the point of beins unworkable. It
is believed that the basic tructdre is a valuable starting point, but it is iimportant
to realise that consolidation of tbs structure may be possible. Consolidation in this
context moons that a module may be trivial enough to fit in its uperordinate. Do oft
be afraid to modify the structure.

As tbis point, the obvious question is.11ut hasn't this design strategy created an
"uncdiesive module at the toe° The answer would have to be yes most of-the time.
Before trying to increase the streegth of the module though, cousider the fact that the
design represents the problem. If the &amigo dose represent the problem, then why
obscure the problem in an attempt to increase nodule strength. If the solution Le a
good interpretation of the problem, then it may be best to accept a weak module. Mit
ieportent, the design harbors: carefully.sualysed and it Can now be defended as a true
representation of the problem.

IS
8-16 4 ?fif

mrlibao.

QUbSTIGNS/EXERCISES

I. State In your own words what transform analysis is.

I. What is the function of the ce,tral transform?

3. The data identifying tha terminatIon point of an input.atream is known as the
most abstract form of the input: Haw le the output stream identified?

4. What is the primacy design teal used in transform analysis? What other deiign
tools are used?

CI

5.. List the four stsploof transform analysis.

6. List the four management parallels used as guidelines for organizing the
solution.

7. Explain the concept of factoring. When is fectoring complete? Why is it better
to overfactor than underfactor?

8. Apply transform analysis to a problem with which you are thoroughly familiar.
Remember to take time to look back at the original problem at each step ln the
factoring process.

..

9. Define module coupling.

10. List the characteristics which aid in determining module coupling and give a brief

explanation of each.

11. Explain the difference between local and global paramsters.

12. Using the complAxity formula, colculate the complexity of interface for a common

data region containing 25 variables and being used by three modules.

8-19

-;

13. Define normal and pathological connections.

14. What is the best type of module communication? Why?
6

15. What is meant by module cohesion?

16. Briefly explain the six levels of cohesion.

at- 34.

=.,

Nem,

A

4-3 5-

17. What is thy cohesion ol "edit all data" and "calculate square root"?

18. What is the basic philosophy of transaction analysis?

19. Sketch the basic structure chart used in trepaction analysis and label the
transaction center as well as each level.

8-21

SECTION III

TOP-DOWN DESIGN INPLENENTATICM

znacoucrIas

In the previous section, the various design tools that av available for your use
wer discussed. This section covers the techniques for impl;Aenting the top-down design:
Top-Down Implementation, Program_Gesign Language (PDL), aoe Structured Code. Top-down
implsmentation is an approach to the design, coding, and 'eating of the syetem. Program
Design Language will facilitate the translation of the design into Structured Code which
is the final step in the translation.

+31
CHAPTER 9

TOP-DOWN IMPLEMENTATION STRATEGY

When yam have completed this chapter, you will understand the steps required for
top-down implemeutation and be able to identify the associated terminology.

INTRODUCTION

First, let's talk about what the term implementation means. Some confusion is
inherent since there are different levels of implementation. The implementation process
begins when the system analyst developsee rudimentary design and Amalgam the problem to
Inalviduals/team. The second level of implementation is the detailed design, coding,
ane testing by the individuals/team, while the third level is the user's implementation
of Ihe program on his system. The Air Force definition of Top-Down Implementation refers
to the second level which is often called the programmer's level. Then top-down imple-
mentation of modules will include coding and verification as well as implementation in a
top-down fashion. That is, the hisher levels of system logic are emplated prior to sub-
ordinate modules.

The upper level modules are completelv coded, tested, and all interfaces are fully
identified before the coding of suberdinste level modules lestarted. This is considered
to be the best approach to coding implementation.

The other aspect of top-down implementation that this chapter will addrees is
"packaging" the system prior to beginning the detailed design.

PACKAGING

Packaging (which is also called "Builds," "Incremental Delivery," aud "Delivery by
Parts") is A tool that is used to determine wnere to divide the problem for development.
It is the "art" of subdividing a skeletal design into several parts or packases and is
usually accomplished by the chief programmer or his equivalent. A system can be sub-
divided for assignment tojeams for detailed development; a package can show which group
of modules to code first; rr a package can be the parts of a system that will be
delivered together if the user wants a delivery in increments. In any case, packaging
should be delayed until the skeletal structure is as detailed as possible. (This is
partly because it obscures the basic nature af the problem, and partly because it leads
to gross inefficiencies if accomplished too early.) This will help you to more accu-
rately choose the parts of the project thatt should be developed together.

Hers a: owe suggestions for packaging for additional program efficiency. Modules
that should be grouped together can be identified by looking for iterations (looping),
communication, interval, and fan-in. Note that packaging is used to determine which
modules will be grouped together for development. It does not daternine the priority
for which modules will be developed first.

The faits that were considered when packasing the program in figure 9-14 listed
as noted in figure 9-1. The reasons for this specific packaging is included in figure
9-2.

Within each package, the top module mill be developed firsttop-Down!

In the case of iterations, put the module containing the loop and the subordinate
modules that are called within the loop into the same physical package. Keerin mind
that inner loops should.take priority over outer loops, and nested loops should take
priority over imbedded loops. (See figure 9-1.)

9-1

4 31

NESTED
LOOP

IMBEDDED A
LOOP

NOTES:

\

1. Module C called only on hardware failure.
2. Module T called 15 mscc after Module S; all other modulus called atintervals of 45 msec to 1 Hvc.

3. Module Z input: XYLIST,, Mine, EOF, XcooRD, y,r-rnr.
output: Error, IFLAG, MIMI), Angle

432
igure 9-1

9-2

4-3a

4-9

MN! MIIIIn .11110 my/. 10

I INNER LOOP

2 OjTER LOOP
3 imEAEDDED LOOP

4 SHUR T -TIME IN1 ERVAL
5 FAN-IN 1

6 FAN-IN SMALL
7 SMALL CHANCE CIF EXECUTION
8 USED ONLY ONCE

NOTE: MODULES A AND Z ARE NOT PACKAGE.' TOGETHER
BECAUSE THE IMBEDDED LOOP CALLS 8.

Figure 9-2

4 '33

A high volumm of intercommunication between two modules would make those
modules logical candidate for incorporation into a single package. Communication
volume is determined by the nueber of data items or control flags being passed between
modules.

Atter looking at iterations and communication volume when packagii, time interval
should be considered nest. When you expect the time interval between use of two
sodules to be shortf place them in the same package. A short interval implies that the
function of the two modules is either similar or at least closely related.

The fourth thing to check when packaging is module fan-in. This is the number of
higher level modules calling the same module. If ell the modules of a fan-in are not
packaged into one group (see figure 9-3), then drivers are necessary to simulate the
function of some of the superordinate modules. Wten a module calls only one subordinate
module, the two may be combined into a single module rather than being left separate and
grouped into a package. A module with a small fan-in can be compressed into the calling
modules by duplicating in-line code.

8

A

Figure 9-3

9-4

FAN-IN FOR MODUL E
G IS 4.

DRIVERS NEEDED TO SiMULATE
FUNCTIONS OF D, E. AND F.

4 31

4a#i I

Some modulee may be isolated into eparate packages. A module that has only a small
probability of being executed may be put into a separate package for developeent at a

. later time. A module used only once (such as initialisation or termination) may be

isolated. Two modules aspirated by a long processing interval could be placid in two
separate packsges.

A system analyst often begins by packaging a system (or program), followed by the
flowchart* and then the design (hopefully st:uctured design). This approach can cause

problems for the programmer and can waste machine time and core. The proper approach
would be to do a skeletal structured design, use the design to divide the systole into
packages, and then finish the packages using the tools available to him (flowcharts,
HIM, etc.). If the CPT concept is being used, the packages would be assigned to teems
for individual development.

Again, packaging is just a way of grouping parts of a system into logical subparts
for detailed development. The forming of these packages is still an "art." It is not as
important to remember the different terms aa it is to remember the concept and to use it
to your advantage on the job.

Once the system is packaged, the next stip is coding implementation which is nor-
mally accomplished by the programmer. In talking about coding implementation, regardless
of whether you ars responsible for a.1 entire program or only one package, the same
principle will apply.

4.

CODING INPLEMOTATION

While traditional software design may have been accomplished in a top-down manner,
the actual software coding and testing has normally been done in a bottom-up fashion.
When using the bottom-up approach, the lowest level processing modules nre coded
and unit tested first. Throwaway cods, in the form of driver modules, is usually needed
to perform the testing of the lower modules and these lower level modules cannot be
integrated into the system since the higher-level, more-important, modules have not been
coded.

Another problem is that data definitions and interfaces tend to be interpreted
differently by each programmer involved and the differences are not discovered until the
system test and evaluation phase. The system test must be delayed until the problems

are resolved. Then, the problem solution usually requires modification of some, if not
all, of the individu4I modules. Any individual module that is changed must be unit
tested again before Lc can be integrated into the system.

Remember, all this modifying, redefining, and retesting is done during the system
tests when you are desperately trying to meet your delivery date. Top-down coding

implementation will eliminate most - if not all - of these problems.

In top-down, the highest level module is coded first and in complete form. Amy

CALLS, etc., that ere required ars left unresolved. All interfaces to the next lower

level code are defined in complete detail. When the high-level module is coded, it is

then tested. To meet the requirement for those lower level modules that would be
Calm!, dummy code (called program stubs) is written. This throwaway code may involve
nothing more than s message to a printer data set that °MODULE (name) HAS BEEN ENTERED."
In other worda, this module was successfully reached during execution. If necessary

the stub cm return a hard-coded parameter list,' condition/completion code, or table of
date - depending on whet the higheat level module interface wooldnormally expect. If

several stubs are necessary, frequently the same stub with several aliases will suffice.

9-5

4.4-2.
Figure 9-4 shows the progress, top-down, which tskes place when tap-down devqopment

and implementation caucepte art followed.

(A)

(CI

(a) Start of coding. Coding begineAtith
the highest level, of mike in the pro-
gram. Wbat is the task of the pro-
gram as a whole? It is defined in
this section of coding. Tbis highest
level may only list the ubtasks to
be performed in each suhfidiary sec-
tion on lower levels.

(b) Middle of ceding. Subteeks are now
being coded, aad they may also be
tested and integrated into the part of
the program which is already complete,
using the lower level "stubs" to test
the logic in the completed portions.
The stubs are used to indicate wletn a

particular subtaek section (to be
coded) has been reached successfully.
Reaching that ection indicates that
subtask has been done, checking out
all of the logical paths in the cow-
pleted postions.

AM,

(c) Completed coding. The program ih cost-
plate and ready now for final testing,
if tests have already been done at
all of the higher levels. Tests for
the last level coded can, in fact,
be that part of the final acceptance
tests.

Figure 9-4

There ars three ballimpproachss -to implementing top-down coding. Each of the three
can be a valid approach under certain circumstances.

The preferred approach to top-down coding implementation is as follows: Start with
a rough &mien of the Whole system, complete the top-level detailed design, code and
test that level. Next, deSigu one module on the next lower level, code it, and test it
with the previous uodule. As a now module is completed, integrate it with all previous
modulaa, testing all modules each time until you finish the entire project. (See figure
9-5.)

Nest isportant, the program modules et each level are fully verified and integrated
with their predecessors before coding begins on the next lower level.

9-fp 436

,4*

ROuGH DESIGN

:ESIGN, CODE, TEST & INTEGRATE ONE STUB

443

DESIGN, CODE, TEST 151 LEVEL

DESIGN, CODE, TEST & INTEGRATE ANOTHER STUB

1.igurs 9-5

9-7

437

444-
An alternative approAch that might with best for a very small project la to design

the whole spies top-down, code all of it,top-down, and then test the completa4 system.

The third appromb is to finish the entire design and then code and test the modules
one at a time, topadewn. This method could also apply to small systems and is actually
preferred over the eethod that doss all testing after eoding the entire system.

Regardless of which one of these approaches you'use, you will produce a much better
program.

ADVARTAOR8 el Tali-DOM INFLINENTAT/ON "...11

You have sees packaging and top-down coding described as tools for isplemeeting
programa and you mmy be wondeflii how all of this c)ph help-you. There are several ways
that top-down implementation can help.

There is continual testins of the interface between modules; As each module is
completed, it is tested with all previously written Sodules. This checks the interface
between the new module and the previous modules. If there are any interface irrors,
they ars discovered and corrested early. Once the module has been integrated into the
structure, it is not likely that interface probleas will occur in the upperlevels of
the.prcgram as the development progresses.

-

Another time-saving feacure of top-down implesentation is that system integration
i taking place as each module is tested and debugged. Mil has the effect of elimina-
ting the systes test and integration phsse at the end of the project. Traditionally,
test and integration have consumed au unreasonable amount of machine time and often the
programmer hal found it lepossible to shoehorn his modules Into,a workable program.
Figure 9-6 depicts the.differance between the integration of a top-down program and a
traditional program.

Along the lines of testins, the most important things are tested first. The higher
level logic which contalni the overall prosram logic is coded and tested prior to the
details in the lower level modules being coded. 'This type of testing !reds to a
smoother evolution of the program with fewer surprises and less rewriting. Coding and
testing the upper level modules first eXiminates the need for special modules (drivers)
to test the lower level modules.

It *may seem at this point that all of the advantages of top-Alown implementation are
related to integration and testing. Not true. Top-down implementation gives us a
usabp skeleton early. Am succeeding lower levels are coded, tested, and integrated,
we can decide to complete some parts of the system before other parte; thereby, making
a portion of the system available to the user early. If the user should detide that he
wants a partial delivery, he must be willing to acceptthie version and its associated
restrictions.

The final advantage to top-down implementation is actually a side effect of all of
the top-down tools end methods. Documentation is no lonser an after-the-fact job. A.
the new modules are intesrated, theodocuientation for sach new moduli is added to the
documentation package. This continual updatins of the documentation reduces the time
required to finish the documentation package st the end of the project. Plus, there
is an added benefit. If someone must be replaced in an emergency, the replacement can
readily see what has been done and what still needs to be done.

9-8 eirlv

4

MACHINE
TIME

TESTING ANC INTEGRATION

Fisure 9-6

9-9

TOP-DOWN

5-

4-4--(47
DISADVANTAGES OP TOP-DOWN IMPLEMENTATION

Top-down implementstion offers the programmer, the manager, and the user many
advantages. But, all is not so good in the land of top-down. The old saying "nothing
is perfect" can also apply to top-down implementation. Some probtems ;rill appear.

First, tha program design must allow top-down implementation. That is to say, the pro-
gram nest be designed in a top-down manner before top-down implementation can be employed.

Secoud, top-down requires the use of stubs and they maF be throwaway code. You
learned that drivers were throwaway code and should be avoided. The differeece between
drivers and stubs is that tubs may be written more easily and may be written in a way
that sakes them usable when the stub is coded. This is done by making the stub a
simplified version of the function that it simulates and then using the same code in the
final version.

Another problem arises when there are complex or critical lower level modules that
need to be coded and tested immediately. When this happens, you should code only those
lower level modules that are absolutely necessary and then return to the top-down
development as soon as possible.

Other problem areas are: programs that are too small for top-down development;
imme problemi do mot lend themselves to top-down design/implementation (mathematical
routines or I/0 routines). Finally, when trouble is encountered in upper level routines,
lower level design, coding, and testing is delnyed.

Figure 9-7 summarixes the advantages and disadvantages of top-down implementation.
Examiae the figure carefully before reading the explanation on bottom-up implementation.

TOP-DOWN IMPLEMENTATION
Advantages

(1) Covtinual testing of interfaces between modules
(2) Earlier syptem integration

(3) Most important things tested first
(4) Usable skeleton early

(5) Documentation developed systematically

Disadvantages

(1) Design must allow top-down implementation
(2) Requires the use of stubs
(3) Complex or critical lower level modules may need early attention
(4) Programs too small for top-down
(5) Some problems do not lend themselves to top-down
(6) Lower level work may be delayed

BOTTOM-UP IMPLEMENTATION

Advantages

(1) Independent module testing
(2) Errors easily localized

Disadvantages

(I) Large ares of unknown interfaces
(2) lnabilityto package bottom-up systems

Figure 9-7

9- 10

(4--

Borrom-up IMPLEMENTATION

Deviation from top-down normally occurs when an EXECUTE or WI is encountered. The

natural tendency when one writes thie type of statement is to code the entire subordinate

task before continuing tha coding of the top-level module. When coding la done in

execution sequence, it is called the "Bottom-Up" approach. The lowest level module is

coded and completed before the intermediate level modules and the last module to be

completed la the highest level module. "Driver" modules are often required because the

upper level modules needed to supply data items to the lower level modules have not been

coded. Frequently an entirely different driver is required for each unique module and

the coding of drivers is time-coneuming. Figure 9-8 is a graphic representation of a

tygical bottom-up development.

BOTTOM-UP DEVELOPMENT

IIIGri-LEVEL CODE

Figure 9-8

Disadvantages

DRIVERS OR PARTL Y
DEFINED CODE

) LOW-LEVEL DETAILED
CODE

There are two major disadvantages to the bottom-up approach. First, coding only

part of the high-level modules and all of the lowtr level modules leave a large area in

which many unknown interfaces exist. Since different programmers approach problems from

different directions, even small decisions may have a large impact on how well the

various modules fit together during integration. Because of programmer inconsistencies,

a large amount of debugging time is consumed at integration time.

The second disadvantage of bottom-up is actually the reverse of one of the advan-

tages of top-down. For years, software developers have searched for a way to deliver

systems to users in a shorter period of time. When the top-down approach la followed,

the system can be packaged and, therefore, delivered at an earlier date. With the

bottom-up approach, the program is developed linearly. Obviously, linear development

precludes packaging for parallel development of parts of the system.

9-1.1

Advantages

At the same time, there are two advantasse to bottom-up impleeentation. The modules
can he tested independently of the rest of the system - this aptows a programmer to work
autonomously and to avoid waiting for the rest of the system tTbe completed before he
can test his module - and errors in logic within a module are easily localized. These
two advantages seldom save enough to offset the accompanying problems when the system is
integrated.

You have seen some of the advantiges and disadvantages of bottom-up implementation.
Compare these advantages and disadvantages with those for top-down implementation in
figure 9-7.

Figure 9-9 shows the savings that can occur using top-down. The bottom-up approach
allows very little overlap in the completion of project milestones. Design Must be very
near complete before work can begin on coding. Similarly, coding has to be quite com-
plate before tasting and integration of allof the program parts can begin. Only after
all of the parts of the program are integrated can final testing begin. However, using
the top-down approach, there is much more overlap. While the detailed, lower level sub-
teaks are being designed, coding can begin on the higher level tasks of the program, as
these task definitions will be unaffected by the lower level tasks. Also, while coding
is being completed on the lower level sections, testing and integration can begin on the
higher level code already completed, using "stubs" to represent the lower levels.
Similarly, final twain& will have already begun when testing is begen on the lowest
level coding In the program, because every level above that will already have been tested.
Also, the final testing phase will surely be shortened because of the previous testing
at higher levels.

The next two chapters in this section will provide you with the final two tools you
will need to complete the top-down implementation of the system. Program Design Language
and Structured Code are the tools that will convert the design into a machine rendable
language.

TOP-00111N DEVELOPMENT

PROJECT DESIGN

CODING

INTEGRATION

PROJECT DESIGN
4

CODING

. FINAL TESTING

INTEGRATION

BOTTOM-UP DEVELOPMENT

Figure 9-9

REVIEW QUESTIONS

Read and answer the review questions below.

1. Match the listed Items.

4
FINAL TESTING

Stub
a. The lowest level modules are coded

first.

Bottom-up
b. An overall strategy for system

Top-down
development.

Driver

9-13

c. Used when required higher level modules

are incomplete.

d. Used to indicate attempted use of a

lower level module.

3

5-0
2. WU_ of the following is/are advantages of the top-down 'method?

a. Interface* ore resolved at the highest level.

b. Integration takes place concurrently with testing.

c. Drivers need not be written.

d. It does not take"s long to design a system.

e. Undefined or hypothetical interfaces exist.

f. Stubs may be general and reusable.

3. One advantage of bottom-up implementation is that

a. interface problems do not have to be considered until later, thus allowing
more time to concentrate on lower level,modules.

b. one driver can be used to test all aspects of a module in a single run, thus
checking out the module's interface.

c. rewrites of higher level module* nay be necessary after interfacing of modules.

d. None of the above.

4. The following phrases are advantages of either top-down or bottom-up implementation.
Enter the correct method in the spaces providvd.

a. Independent module testi:is

b. Earlier system integration

C. Most important things tested first

d. Documentation develnped systematically

e. Errors easily localized

-a.

f. Usable skeleton early

g. Continual testing of intercace between modules

5. The Air Force definition of top-down implementation is directed at

a. assignment of tasks at the beginning of the project.

b. the method for actually developing the program.

c. implementation of the completed system by the user.

d. All of the above.

6. The important point about top-down implementation ', that

program modules are fully integrated and verified with ht-e.r predecessors
before coding begins on the next lower level.

b. program modules are tested independently of eactiother.

c. stubs are throwaway code also.

d. It is new and therefore must be good.

9-14

CHAPTER 10

PROGRAM DESIGN LANGUAGE

Upon completion of this chapter, you should know:

1. The purpose of Program Design Language (PDL).

2. The advantages and disadvantages of PDL.

3. The difference between freeform and formalized PDL.

4. The recommended language structures.

S. Now to determine the level of PDL required in given situations.

INTRODUCTION

The use of structured programming technology has created a need to assess and im-

prove the design tools which are used to prepare top-down structured programs. Aa you

know, the flowchart hes traditionally been the primary program design document. They

have been used to graphically document, partially or totally, the design of a program

before it is written in the target programming language. In May cases, however, flow-

charts were produced after the fact in order tO satisfy a documentation requirement.

Top-down structured programming has created the need for new techniques to support the

development,process. This chapter defines and describes one such technique - a program

design language.

DECINITION

A Program Design Langugage (PDL) is a language for describing the control structure

and general organization of a computer program. It is an English-like representation of

a procedure which is easy to read and comprehend. It is structured in the sense that it

utilizes the predefined control logic primitives. Indentation is used to make the PDL

easier to read. This technique facilitates the translation of functional specifications
into computer instructions using top-down design and structured, coding. Figure 10-1 is

an example of a PDL using structured control figures and indentation to represent

hierarchical levels.

WORD FREQUENCY ANALYSIS PROGRAM

INITIALIZE THE PROGRAM

READ THE FIRST TEXT RECORD

DO WHILE THERE ARE MORE TEX1 RECORDS

DO WHILE THERE ARE MORE WORDS IN.THE TEXT RECORD

EXTRACT THE NEXT TEXT WORD

. SEARCH THE WORD-TABLE 70R THE EXTRACTED WORD

. IF THE EXTRACTED WORD IS FOUND

INCREMENT THE WORD'S OCCURRENCE COUNT

. . ELSE

INSERT THE EXTRACTED WORD INTO TUE TABLE

ElVD IT

. INCREMENT THE WORDS-PROCEWED COUNT

END DO AT THE END OF THE TEXT RECORD

END DO WHEN ALL TEXT RECORDS HAVE SEEN READ

PRINT THE TABLE AND SUMMARY INFORMATION

TERMNATE TUE PROGRAM

Figure 10-1. Program Design Language (PDL) Example

453
PUKPOSE

The primary purpose of this technique is to help the programmer translate the func-
tional specifications into computer instructicens using top-down structured programming.
The PD1. is a multipurpose design tool, which has been use in the design, development,
documentation, and maintenance of structured programs.

A PDL assists the design process because it can be us'ed to develop and study alter-
nate control structures and general program organizations easily and at a relatively low
cost. Most designs require review and rework either to correct errors or to improve
efficiency. A PDL is also an excellent medium to implement a review of design alter-
natives. The use of PDL for design verification and-code verification is discussed in
"Validation and Verification Study," Volume XV of the RADC Structured Programming Series.

ws.

The use of PDL for documentation is discussed in "Documentation Standards," Volume
VII ut the KADC Structured Programming Series. In the past, flowcharts have been
required as part of the documentation accompanying program specifications. This practice
should be discouraged because structured programming technology eliMinates the need for
a solution to be depicted in the programming specifications before coding begins.. In
top-down programming, there should be an overlap of design and implementation activities;
hence, there is no requirement to show the proposed solution in the specification in
either flowchart or PDL form.

A PDL assists program maintenance (both corrections and modifications) JR"en it is
used to express cimplicated algoiithms, algorithms critical to performance, and programs
which are difficult to read. In some instances, PDL has been used as documentation for
assembly language programs. If a structured Rource code listing of a high level lan-
guage is available, then the PDL representation is redundant and should not be required.
Volume VII of the RADC Structured Programming Series discusses this point in more detail.

ADVANTAGES OF USING PDL

Some of the reasons for using PDI. are:

1. PDL is easier tu prepare when compared with graphical methods such as
detailed design flowcharts.

2. It is easier to read and comprehend as compared to flowcharts or long involved
prose descriptions.

3. It facilitates the translation of design into a top-down structured program.

Preparation

The preparation and publication of PDL representations are himpler processes than
the preparation and production of flowcharts. Since PDL does not use special symbols,
it can be developed and produced without the use of templates. Therefore, it can make
effective use of all the technology which has been developed for the production of written
material (e.g., typewriters, computer-based text editing systems). The PDL source text
can (and should) be stored and maint..ined using the same programming support library sys-
tem used for the structured programa. The machine readable form of PDL would be avail-
able for efficient transmission over communication facilities. The ease of preparation
makes the generation of PAL by programmers both fast and relatively inexpensive.

1 0 -3

4-54-

In eddition to the ease of inlaid production, the ease of maintenance of PDL makes
PDL representations more useful than flowcharts. It is easier, less time-tonsuming, and
leas tedious to change a PUL representation than to redraw a flowchart. roe lostenel,
It is not =COMO* during program development to be faced with the requirement of having
to add one more block to an altos* prepared flowchart. If the additioa cannot be cosily
added to the flowchart, one of the following alternatives is taken:

1. The flowchart is not updated.

2. The flowchairt is redrawn to add the additional logic.

3. The flowchart is patched with off-page connectors and a separate page contain-
1.4 the new logic is added.

The acceptance of the first choice will result in an incomplete, obsolete, and often
erroneous document which loses its creditability and utility. The contrast la the esqy
update of a PDL segment.

Usability

PDL representations have been found to be vary readable and coeprehendable. The
absence of graphic symbols makes it such easier to use neaningful naming conventiors
ines tho programmer is no longer coustrained by graphic symbols.

The characters 'FICA LT' fit in the etendard decision block but 'IF PICA LIMIT
VALUE', which is much more meaningful, w I not. A PDL writet can choose names which
precisely represent the action or device he wishes to describe ,(e.g., CARD, DRUM,
DISK).

A program design in FAL is a precise image of the program isplementation In a top-
down structured programming environment. The top-level segment summarises the general
program organisation. Detailed decisions in lower level segments are not represented
until the savant itself is expressed in PDL. Figure 10-2 contains a ra representation
of a top-level code segmeit.

k
BEGIN PROGRAM

DO WHILE INPUT CARDS EXIST
IF TRANSACTIM CODE 0 TYPE I. THEN

INCLUDE A
ELSE

INCLUDE 3
ENDIF

ENDDO
END PROGRAM

Figure Top-Level Code Sewe'tnt

This simple PDL representation of a top-level segment shows that two subordinate
segments will be utilised to handle the different transaction types. What is important
is that this doom show the precise organisation of the program. The two subsegments are
in fact segments in the final code. Low-level decisions which are in either "A" or "3"
will only be shown in the expansion of "A" or 91." Thiel example also illustrates that
PDL utilises the indentation scheme used in structured programainx to shoo nested logic
enhancing PDL readability. The PDL keywords (e.g., IF, DO WHILE, INCLUDE, can eithel be
chosen by the writer or can be predefined in the PDL language specification itself.

10-4 4 4 9

vromotion of Top-Down Structured Programming

The troullation from design to structured programs is relatively simple with PDL.
Since P01. uses the structured programming figures *long with indentation conventions, it
does not require the programmer to first interpret graphical flowcharting symbol. and
translate them into uode. Figure 10-3 provides an example. It contains two representa-
tions of the same procedure: a flowchart sod a PDL.

S riBO!

3

4

FLOW CHART PDL

A

DO WHILE P TRUE

END00

IF D IS TRUE

ENDIF

Figura 10-3, Two Kepresentations of the Same Procedure

10-s

4111

Using the flawchatt requires the programmer to correctly interpret that symbols 2
and 3 are grouped together to form the DO WILE and that symbol, 4 and 5 form an
IFTSZNELSE. In a large problme, this type of interpretation can be difficult and often
leads to invalid programa. Am shown, the PDL is Already in the proper form. No inter-
pretation le needed; however, translation of PDL to the target code la still required.
PDL should be used in conjunction with structured programming because of the indescrim-
inate breaching in unstructured cods.

The promotion of top-down structured programming is the most important advantage of
PDL. This is due to the following:

1. PDL utilises the same structured programming logic control figures coding basis
as does top-down structured programming. (Refer to "Programming Language Standards,"
Volume I of the RADC Structured Programming Series.)

2. PDL uses indentation to facilitate readability, a major attribute of !structured
programs.

DISADVANTAGES OP PDL

Program design languages have disadvantages which include:

1. An attempt to replace an established:and accepted design and document technique.
Flowcharts ars well-liked and used by many programmers. The transition from flowcharts
to PDL is difficult as is any change.

2. Rules concerning the use of PDL. The rules must be followed or the advantages
of PDL will act be realised.

3. The elimination of graphics. Graphic symbols contribute to the comprehension
of the program design.

4. Will require time to learn the une and form of s PDL.

: PROGRAM DESIGN LANGUAcE FORMS

Program design languages have been implemented and used with varying degrees of
formality. Two forma, at each end of the spectrum, are discussed. The two forms arc
arbitrarily called Freeform and Formal.

Freeform PDL

DESCRIPTION: A freeform PAL is one which contains a minimal number of symta.1/4.4cal
and semantic rules. A freeform PDI. incorporates features structured programming, where
the user uses natural language, control figures, indentation, and rules of segmentation
in a structured English narrative. (See figure 10-4.)

The statement READ =CONE TAX RECORD is an example of s freeform PDL statement. In
this example, READ is not a keyword of a specific PDL but an action verb chosen by the
writer to indicate a general process of performing an input operation. The PDL writer
could have expressed the same idea by writing MOVE INCOME TAX RECORD or TRANSFER INCOME
TAX RECORD.

0-

V

4

,/

A

PRINT FICA REPORT NEMER
DETAIN FICA PERCENT AND FICA LIMIT FROM CONSTRAINTS FILE
SET FICA TOTAL TO 21110
DO FOR EACH MOOD IN SALARY FILE

MAIN EMPLOYES NUMBER AND TOTAL SALARY TO DATE
IF TOTAL SALM IS LESS TRAM FICA LIMIT THEN

SET FICA VALVE TO TOTAL SALARY TIMES FICA PERCENT
ELSE

SET FICA VALUE TO FICA umn TIMES iICA PERCENT'
INDIF
PRINT EMPLOYEE AND FICA VALUE
ADD FICA VALUE TrgA TOTAL

KNADO
PRINT FICA TOTAL

Figure 10-4. Freeform Program Design Language (PDL) Example

Another example of a freeform PDL capability follows.

IF condition is valid TEEN perform actions as shown in decisiovable 1.

ELSE perform actions as shown In decision table 2.

IND IF

9

.Thie example shows how decIsion tables could be referenced in the freeform PAL by writing
en action.statement.

A treeform PDL is easy to learn and use. The absence of rigid syntax and semantic
definition eliminates the necessity of learning a precise syntax, the equivalent of '

loosening another programming language. This absence facilitates the writing by pro-
gramers and tha understanding by nenprogramming personnel (e.g., managers end analysts).
A freeform FDL is versatile and can be used as a design aid to (moist a programmer in
Aseigning a program in any programming language. Since the syntax and semantic defini-
tions will be defined by individual FDL users, the consistency among various FAL users
will vary; but, as long as all the users adhere to the principles of top-down structured
programmint, the logic represented by the PDL will be consistent even though the form
may vary lightly.

Formal PAL

A formal PDL is one which contains precise syntactical and semantic definitions. It

incorporates the principles of structurdd pro:ramming, by defining rigid keywords (e.g.,
DO WILE, IF, THEN, ELSE) and additional keywords for other operations (e.g., READ,
WRITE, SET). Rules for,correct syntactical constructions are also included. An example
of a formal PDL etatement ie:

me (MOM-TAX-RECORD) MR AREA

In this 'example, READ and INTO ere specific keywords of the leagues*. The syntactical
requirement is that they ars underlined, that the record name be iu parenthefis, and
that the record name be a contiguous set of characters.

10f-7

45-8
Aneithier alcampla of s forial PDL is!

dile CONDITION A, THEN
DO

RIMENCX EISJAMILJUNNA (*me)
P1111114ACTIMISITeSAIPBCITIED

EKDDO
ENDIF

REFERENCE, DECISION TABLE, and PERNIK, as specified, are keywords in the PDL. The
decision table would probably have a specgic format and structure. Thin approach
requires that's' set of keywords be chosen and defined in the PDL. All users of the PDL
would be required to use the same conventions.

The degree of formality of a PDL is not rigid; rather, it is variable depending on
the developer of ehe PDL. As en example, additional iteea that could be included in a
formal VOL description include:

1. Data dascriptiopa - The type of data allowable by this program (e.g., character,
integer).

2. Computational descriptions - The precise definition and order of algebraic
/, C).

)Vformal PDL is more precise than a freeform PDL. Thi standardization and addition
of syntactical and semantic definitlons would assure that all users of tha PDL be more
consistent in improving ehe readability and understandability of each other's PDL
-representations. The argument for the sore precise syntax (e.g., READ, CET, PROCESS)
and semantics is that the preciseness provides better communications between the various
users of theorDL (e.g., the deaigners and coders) since there are fewer ambiguities.
Whether not the amount of improvement would be worth the time and effort i not known
at this time.

A formal FDL.ts more difficult to learn and use than a freeform PDL. The syntacti-
cal and semantic definitions must be learned, a process which could be equivalent to
learning another programming language. This difficulty of learning a formal PDL might
hinder its use. Another concern is that the meaning of what is to lie represented in
the PDL might be lost in the rules of the language which attempt to describe it.

A formally defined PDL could be processed by a computer. The PDL has syntax and
semantic rules which could be analyzed by computer analysig prosras. This computer
analysis process coule critique the designiprocess. Possible errors, such as unused
Oats items, data received too late for use, incohaistent use of data, are the types vf
iimbless that an analysis programisight he able to ijentify.

summary

The degree of formality of a FDL should depend on its use in vc-ioua situations.
A program Assign language used primarily as an aid to designers should probably be fret- .

form while a program design language used primarily in formal documentation should be
smie formalised.

452
10-8

459
MELUMMENUEo

'A:m recommended PUL has a lew degree of tormalit)i and is based on the structured
programming precompiler standards es established in "Programming Language Standards,"
Volume I of the KAM Structured Programming Series. This document which contains com-
plete descriptions of the language structures should be used as the basic reference
document,

lhr following are the recommended language structures with keywords capitalized and
underlined.

SeqUenCe

Sequential staLements, the most basic form of control flow, would have the follow-
ing language text representation:

English Language
English Language

lETHENELSE Figure

The IFTHENELSE figure causes control to be transferred to one o1 two functional
blocks ot code based uu the evaluation of the truth of a ::onditional statement (p)
acceptable to the source language. The tlowchart for the IFTHENELSE figure is:

IF TriLNFL5&

mud the language text to be used to represent the 1FT3EVELSE is:

IF (p) lhEN

English Language for A
ELsE

Lnglish Language ior B
EN14,7

1L)-9

The ELSE in the IFTHEKELSE figuxs Is regarded as optional; if the ELSE ts omitted,the flowchart for this figure becomes:

and the language text to:

1FTHEN

IF 4) THEN
English Language for A

ENDIF

The THEN is optional in both cases and if present is treated as a comment.

DOWHILE Figure

The DOWHILE figure allows execution of functional block of code A while a condition(p) is true. The flowchart for the DO WHILE figure is:

10-10

\
Mnd th lisugungr text t i hV Wiled lb':

DO WHILE. (p)

English Language for A,

11922

DOUNTIL Figure

The DOUNTIL figure allows execution of a functional block of code A until a condi-

tiun (p) becomes true. The functional block of code A is executed at least once. The

flowchart for the DOUNIIL figure is:

aud the lallgaage text to use is:

DO UNTIL (p) .DO English Language for A
English Language for A or UNTIL (P)

ENDDO ENDDO

CASE Figure

lhr CASE figure cdiuses control to be passed to one of a set of functional blocks of

Ludy (A,B,...a) based on the value of an integer variable (i) The flow

chart and language text for the CASE figure is:

CASE I

1

1

1

1

1
ELSECASE EL St (A' E

OM.. 4.1
.......

L 4.4 M. 01
%L.... ... E NGI ISH I.

ANGUAGE
ANGUAGEENGL ISH

% /
...... ...J

CASE n

ENGLISH
LANGUAGE

CASENT RV 61

CASE I

NGI ISM LANGUAGE

CASE 2

itlfd 194 LANGUAGE

CASE r,

L NG1 ISE4 LANGUAGE

1.
END(ASI

The default code (ELSEGASE) iS code which is to be executed if the value of I is
outside of the limiting range of values of the indicated case nuspbers. This code (and
its associated keyword) is optional and may be omitted. This action is different from
the one where the number is,within the indicated range of case numbers but no case exists
for it. In this instance, control passes to the end of the CASE figure.

Summary

One generalized PDL based on the structured programming standards will stimulate
the adherence to the standards and will make it useful lor all the programming languages.

.456
10-l2

ALVLLOPIN6 LLVELS

You have seen the recommended Program Design Language (PAL) and are probably

wondering how to do it. Like top-down design and implementation, PAL is developed one

level at a time. When the wurd "level" 1,1, used, it not only refers to levels of modules

(in design) but, also, to how "close" the PAL resenibles the target languages. When

writing, each step (or level) gets closer to actual code.

In starting the PAL (level 1), use simple English language statements. (Notef This

process is done module by module if yeu are working from a structure chart er HIP0.)

List the processes or functions that will be done in the order they are to be performed

(see figure 10-5). Next, replace the functions with more descriptive primitives (level

2--see figure 10-6). After the level is written, analyze it to see if the functions will

accomplish what is to be done. Then, repeat the last two steps as much as necessary

(levels i and on--see figure 10-7). (The question as to how far to take this process is

answered later. Let's first see how to do it.)

The following example will show the development of a PAL. Ihe problem is convert-

ing a tim-digit data item which represents the year of an unknown century to a four-

digit data item for easier determination of when to downgrade classified material.

Level One - English Language Statements

1 FOUR-DIGIT-YEAR
2 INITIALIZE VARIABLES
3 CHECK INPUT DATA
4 CONVERT YEAR
5 END

Figure 10-5

Level Two Nearer to Code

1 FOUR-UIGIT-YEAR

2 CA1L INIII;LIZE-VARIABLES
3 CALL CHECK-INPUT-DATA
4 CALL CONVERT-YEAR
5 END

1 INITIALIZE-VARIABLES ROUTINE
INITIALMIARIABLES AS NEEDED

3 IND

1 CHECK-INPUT-DATA ROUTINE

2 NECK 70 SEE 1F VARIABLES ARE WITHIN RANGE
3 END

1 CONVERT-YEAR ROUTINE
2 DETERMINE OUTPUT YEAR USING YEAR TAKEN

FROM COMPUTER AND YEAR RECEIVED FROM
FILE

3 END

figure lo-6

10-13

4(04
Level Three - Still Nearer

1 FOUR,DIGIT-YEAR
2 CALL MITIALI2E-VARIABLES
3 CALL CHECK-INPUT-DATA
4 CALL CHECK-FOR-ERROR
5 CALL CONVERT-YEAR
6 END

1 INITIALIZE-VARIABLES ROUTINE
2 ACCEPT YEAR FROM COMPUTER SYSTEM
3 MOVE THAT YEAR TO A VARIABLE, CURRENT-YEAR
4 ACCEPT FROM FILE A VALUE FOR A VARIABLE, INPUT-YEAR
5 MOVE ZERO TO A VARIABLE, ERROR-TOE
6 MOVE ZERO TO A VARIABLE, OUTPUT-YEAR
7 END

1 CHECK-INPUT-DATA ROUTINE
2 IF (CUARENT-YEAR NOT EQUAL TO THE ACTUAL YEAR)
3 THEN

: Id
MOVE 1 TO ERROR-TYPE
CALL ERROR

6 ELSE
7 1 IF (INPUT-YEAR NOT NUMERIC)
8 1 THEN
9 2 MOVE 2 TO ERROR-TYPE

10 2 CALL ERROR
11 1 ENDIF
12 ENDIF
13 END

1 CHECK-FOR-ERROR ROUTINE
2 Tr-(TAADR:TYPt-NOT . 0)
3 THEN
4 (1) TRANSFER CONTROL TO PROGRAMMER

ENDIF
6 END

1 CONVERT-YEAR ROUTINE
2 vr (INPUT-YEAR < 17)
3 THEN
4 (1) COMPUTE OUTPUT-YEAR INPUT-YEAR + 2000
5 ELSE
6 1

7 1 THEN
8 2

IF (INPUT-YEAR - (CURRENT-YEAR - 60) > OR = 0)

COMPUTE CUTPUT-YEAR = INPUT-YEAR + 1900

10 2

11 2

9 1 ELSE

THEN
12 3

IF (INPUT-YEAR - (CURRENT-YEAR - 60) < 0)

COMPUTE OUTPUT-YEAR = INPUT-YEAR + 2000

Figura, 10-7

10-16

45S

13 (2) ENDIF

14 (1) ENUIF

15 ENDIF . .

16 IF (OUTPUT-YEAR . 1917 OR OUTPUT-YEAR > 2039)

17 THEN

1: i

MOVE 3 to ERROR-TYPE
CALL ERROR

20 ENDIF

21 END

1 ERROR ROUTINE

2 CASENTRY (ERROR-1YPE)

3 CASE (1)

4 (1) DISPLAY "CURRENT-YEAR IS INCORRECT"

5 CASE (2)

6 (1) DISPLAY "INPUT-YEAR NOT NUMERIC"

7 CASE (3)
8 (1) DISPLAY "OUTPUT-YEAR NOT WITHIN RANGE 1917 - 2039"

9 ELSECASE
10 (1) DISPLAY "UNKNOWN ERROR"

11 ENDCASE

12 END

Figure 10-7 (continued)

You are now wondering "just how far do I take the PAL?" It depends upon just what

the PAL is to be used for--overall design, detail design for coding, maintenance docu-

mentation, etc. An overall design PAL may only need to be done to the 2nd or 3rd level.

The "coding level" should be that level which can easily be translated into code. (This

level will vary somewhat from programmer to programmer.) If it is to be used for docu-

mentation (e.g., progiam description in a programmer's maintenance manual), perhaps 1 or

2 steps "back" from a "coding level." The main point is still, "What is the intended

use of the PAL?"

If the above paragraph sounds like it is uncommitted, you are rightl There is a

definite reason for that. Determining the number of levels and deciding how to write

PAL is going to come irom practice and experience. It is just like starting 4 program-

ming career. For the moat part, a person is not "born" a progrsmmer overnight. Like-

wise, a person is not "born" a PDL'er. Learning how to use PAL will take time.

A relommendation: Take a simple problem (or a module from a completed hierarchy

chart, structure chart, or what have you) and use a 114 to complete a "solution." Start

at the 1st level and work through the PAL until you feel that you can easily code from it

(i.e you fool that there la no ambiguity as to whzt code will be used to translate the

PAL).

SUMMARY

A program design language ham been defined as a language for describing the control

structure and general organization of a computer program. Its primary purpose is to

help the programmer in translating functional spacificitions into computer instructions.

Using a PAL has both advantages o i disadvantages. Among the advantages are:

(1) PAL is easier to prepare when .ompared with graphical methods; (2) it is easier to

410

10.-15

read and comprehend; and (3) it facilitates the translation of design into a top-downstructured program. The disadvantages include: An attempt to replace an established andacCepted design and document technique, rules concerning the use of PDL, the elimination
of graphics, and has a learning curve.

The recommended PDL has a low degree of formality. The five basic languagi sttuc-ture keywords are capitalized and underlined. The sequence, IFTHENELSE, DOWHILE,.DOUNTIL, and CASE figures comprise the basic language
structures recommended in theRADC Structured Programming Series.

The number of PDL levels that it takes to develop a program depends upon theintended purpose of the PDL.

STUDY QUESTIONS

1. A program design language is used

a. to help translate
functional specifications into computer code.

b. to assiut the design process.

c. for describing the control structure and general organization of a computerprogram.

d. All cf the above.

2. The primary purpose of using PDL is

a. to get rid of the "GO TO's."

b. to help the programmer to translate the functional specifications into rom-puter instructions.

3. Label the following as either an advantage
or disadvantage tor using a PDL:

a. Easier to read and comprehend as compared to flowchartsinvolved prose descriptions.

. The rules concerning the use of PDL must be followed.

c. Graphics are eliminated.

or long

d. It facilitates the translation of design into a top-down struc-tured program.

4. The recommended PDL has a low degree of formality and

a. the rules concerning its use should be followed so that the advantages can berealized.

b. hes the keywords capitaliied
and underlined.

c. is based on the structured programming standards as established in Volume I ofthe F.ADC Structured
Programming Series.

d. All of the above.

46i)

'..111111111.

5. ihe recommended Litibuilgt: hiaLutures include:

a. sequence, irfUNELSE, DO FOMVEK.

b. sequence, 11.7HLN.LSE, DOWHILE.

t. DUUN'ill, CASE. hEQUENCE.

d. b and c above.

b. How many levels is a PM. written to?

a.

b. As many as needed depending upon its intended use.

c. Until it it. "tlose" enough to easily write code from.

d. None ot the above.

CO-17

"we

441,1

Chapter 11

STRUCTUDID CODING

INTRODUCTION

!
Structured programming, which includea structured coding, is often erronsuusly called

"goto-lems" programming. Althouah the use of OOTOs is minimized, some GOTOs are needed.
A GOTO is only used to implement a specific control structura and then control should be
transferred to another point within the same module. Soma programers object to struc-
tured programming because "lt is difficult to do" or "it is too hard to understand."
Actually, structured coding Is not too difficult to do or to understaga. There is a
certain amount of learning associated with this new concept. Resiptance to change andior
a lack of understanding Of just what structured code is and what it can and cannot do

causes the greatest problems.

Resistance to change must be overcome by each individual organization. The ladk of
understanding can be eliminated by educating the individual programmer. Thin Chapter

focuses on the latter aspect.,

Upon completion of this chapter, you should be able to:

1. Define "structured coding."

2. Name the five basic control logic primitives and their related compiler language
representations.

3. Define "precompiler."

4. Explain how a precompiler is utilized in structured programming.

!ou will also gain insight int() possible problems encountered when using structured
code and some solutions to these problems.

0 A comparison of "traditional code" and struCtured cote is also presented Ln this
chapter.

DEFINITION

Structured coding is defined aa,the coding of programs by repeated use of a selected
number of predefined control logic primitives. These primitives (also called constructs)'
can be combined to implement a program design. .The use of tkese primitives demands that
simple coda be written, thus incresaing the readability and comprehension of program
logic.

The control logic primitives are divided into three classical categories: sequen-
tial execution, conditional execution, and iterative execution. Each of these constitute
muat have only one entry point and one exit point. Usage of other primitives should be
restricted to small,. well-documantid, and sperialized functions which have bean approved
by management.' Each of the three categories will be explained in this chapter.

Structured coding includes conventioos for organizing code. For example:.

1. Modules should be a "reasonable" size -- i.e.,

a. less than 100 lines of coding.

b. one printA page.

c. two codinn sheets.

2. Indent all code to clearly denote the logical.levels of constructs.

3. Include embedded annotations to explain items not obvious in the code.

4. Croup all format statements in one area to simplify maintenance and debugging.

5. Wrange all data in a meaningful order in contiguous areas.

CONTROL LOGIC PRIMITIVES

As stated earlier, there are three categories of primitives. The "sequential
execution" is the execution of statements in straight-line fashion with no branching
or looping. The "conditional execution" is the saw. as the traditional branching state-
ment. "Iterative execution" is, another nom. for the! looping proem... Thesejhree
categories of primitives form the basis for Otructured coding.

From these categcries.come the control logic primitives: sequence, IFTRENELSE, and
DOWRILE. Two extensicza of the categories are the DOUNTIL (iterative process) and
CASENTRY (conditional branching).

The format, flow chart, actions taken, and compiler language code for each of the
five prititivas are illustrated. 'ANS COBOL, ANS FORTRAN, and .13 JOVIAL ere used as
rapreseniativeNcompiler languages. Volumes I and II of the RADC Series contain more
detained inforciaelon on these compiler languages and brief references to other languagss
(assembler, etc.).

Lich prlialtiva la Illustrated In the lollowing order ln flore 11-1.

FORMAT OF FIGURE

FL OW CHAR1 REPRESENTATION

ACTIONS TAICEN WITHIN
PRIMITIVE

COtiOt EXAMPLE(S)

CORTRAN X AMPL EtS1

mown.*

JOVIAl EXAKPL E(S)

I'igui. 11-1

.11-3

47o

ran

IFTHENELSE/IFTHEN Primitive

FORMAT

F MERE LSE . IF THEN

CONDITIONIS TRjE

CODE A

ELSE

CODE B

ENDIF

CODE

CONDITIONIsTRUE

CODE*

%JR ENDIF

Figure 11-2A

CODED

Flgoie 41-28

.ov
Wbek an IFTNENEUE is executed, the following actions are taken:

1. If condition p is true (figure 11-2A), code A is executed and control is passed
to the statement follcving tht ENDIF (code C in figure 11-2A and code 11 in figure 11-2b).

,2. If canditialp is false, code A following ELSE (figure 11-2A) .1.81 executed. When

the ELSE option is omitted is in figure 11-28, the tatement following the ENDIF is
executed.

Code A and code k in the IFTHENELSE control struceure figure may be comprised of one
or more tatements and/or control structure figures.

11-4

41,

4
IFTHENLLSE

,

IstiS& CACk

PROC,Rmokil R

OM= 10 IIEMBECIMIDO 20 EMBIBIMMECI
1100011111111111111111111111111111111

1:10

111111111111
ER1111^111111

30

Figure 11-3

Problems arise when nested IF statements ere required in COBOL. Figure 11-5 illUs--

traces three possible options to overcome the nesting limitations resulting,from the
. following flaw chart.

Figure 11-4

11-5

IFTHENELSE (Con't)

14 fr 714,1011 iz lick 1, ,

k - #--
I

4.
I

'I

-1.--

4.

...-
!

...-

i

-4

-1

-4,

I

- -1t,
I

,

1

1

'i

... 4-Ow-
. 4 ---..-_

1

E

Fli
I/
11

-4-

c

0 4

0 4

3

-f-

e

+

----.4.' - 4--44-44 t

L_ ._ . _A___, .._.11_, c
o ci a

bJ

(A) Duplic.ite cod. n

11 14 H tq 70

APTb
A

(p)
4 t

L S

c c
c D

DuplicAtu thu

(4.) orm I ht. nk. ; cd I I A I utru'Ilt

Figlire 11-5

r1-6

473 *

INN*,

lik71:::,..,

iFTlitNELSE (Cun't)

NIORTVN

fticl 11.0 1

1 1 t i 4 , o) r 0, 1 1-17 IV
4-

r i

, ,

i
7 -

1

1 1 1

" T-,

t..1-

1

IU II ,717,4 , mIt is

.

MC:WM
Vann

?II 751Jot 17'11 0 30 376311CM

.c...

I It,
,..... t 1.

,

.

-i.

1

T
-1--

E

e

Eltd.ipti

F

c..4
. ht0

NUE

G 01
-7-

"TIO 0 gar=
1

4

11
0111

1; T 111111
' 41

I L.+S

_i.5.

'Com

0

a
4

7'

t
o

7- -4-- 1
I 1 !

-Ili
NI4

,-t--1-

I I
'rff-1--,4 , I

1: 1--
I .'

i

111111 i Eli
OR

' 17 '. T TH 7.. i'VXMINIMICHIEWEIZO /6 1, /. --, - 31 37 33130

rvirma1 mommonnomenr01 0
,

111111111M111110210
EVEI1E1111 MI imernormi

H M.
0 01,

E NEMI3 11111111111
Figure 11-6

J3 JOVIAL

(tic+ 11.'ci

Oft

t : i I 't 4 Tr i , 11-77,0177-1, 171 IL-1') il, II ,

- I- 1, r T f----4---t- -0---i ---,--
11 F 1(4) 1

,

... ', .-- t 4 4.- i
c

G 14N1

. 0 t f

, 0 « « r -I't -+-c).°Icitti f :-/--+- i
1

i. ' i. « . hi4CI, i + 4. f T 4-_,.....
, , ,

....T.-,,..ii.e.,_14ipitfi..../., ,
_.__Li L :40,1Lal ,I.,, 1

.i._ - 1.._÷._,..._..-.:.
,

1

'111211-7/1231:74 lb 17 2B i'St 3U

Figure 11-7

11-7

4

411-.

41 se-
DO Figures

The,DO figures allow iterative execution of a functional block of code (A) based
on a logical expression (p). If the test is made prior to the execution of code A, it
is a DOWHILE figure. If it is made after execution of code A, it is a DOUNTIL figure.

DOWHILE Primitive

FORMAT

,DOANftE CONDITION-IS-TRUE

ENDDO

(OOF A

CODE B

4
Figure 11-8

When a DOWHILL is executed, the following actions are taken:

1. A. long as the condition is true, Lode A is executed.

2. When the condition is false, the statement following the ENDDO (code B) is
executed.

Code A in the DOWHILE control structure may be,comprised of one or more miatements
and/or control structure figures.

li-s

4%
UOWNILL (Cun't)

Atij COBOL

All ut the loupe which are initiated by the PERFORM ure of the structured program-.
ming DOWNILE format and consequently no simulation is needed. The statement is written
as:

r-

,.........
....,. , I , , ,A , ,a, ,e 4.1

-.. -4. .-..-.....-0.- ..----0 I. .. .--.9.-.. , 4,, .10

...,....
- 4 +r/01 4. / - t41- , - - #

iii . 4 lt Jb' J # MI JO 3 3 34 341 J 7 la' 49140 6 I 62 avaaiat,46,4, as

Ill' E RiF 01011 _P etiA PIGIAiA111114,- liv_AirilEi u:ifte,1 11$.1 C lAtiolt

Figure 11-9

The conditional logic of the DOWHILE requires that the loop be terminated on a
"Seise" coAditioo. (Set figure 11-8.) Since the PERFORM. . .UNTIL terminates on a
"true" vondirion, "NOT" logic is used in the UtTIL condition.

ANS FUR1KAN

---7-7-3T,-T-17.77,/TuT,4,02,4mmamemm
-°-7-'7.---' bO' MS MO 1ME111111111111110

GoIOMMOMIIIIIIIIIONOMON

MOONIC010MOMIONNION
II NMI

ONOMMOOMONOINIMMIMIONOIE

MOOMOONIMMITIGIIIIIIIIIIII
OONOOF

J3 JOVIAL

iigure 11-10

1, 7, 77 7 79ffaszaammuzimmeco 34 3 38 3 8

It
1

T-

eND60

0
CeOTO

ti 1! 1 1-+.

NikrAiqA

Pc

.)

kIL.)

6010

1,..! MOO

--,
Qr" --I-

II
ce411.

I F AAEZ $11
1ii

kf.

Figurc 11-11

'11-9

%MD

61----n

DOUNTIL

4

FORMAT

DOUNTIL

CODE A

ENDO()

CONDITION-IS -T RUE

Figure 11-12

When a DOUNTIL is executed, the following action is taken after code A is
executed.

1. As long as the condition is false, code A will be executed.

2. When the condition is true, the statement following the ENDDO (code B) will be
executed. -

Code A in the ,DOUNTIL control structure figure may include one or more statements
and/or control structure figures.

4 "4:

.11-10

p

TT-TT

5T-TT oloSTA

11111111111
111001100a
mum MONOSSON
23531:313211et.

ti

tr

0
Ol'

1111111111111111DM
e ILIIIIUMENElls

N I

W

-

W4ftl

1

N

'

4 t7
: V

or

' t roneotoup ° *5

1 III
a 9: "r V

/ : ilkimilla A "1 1

" 9: E: 1: I a: anal i Ct rt t " °L b a 1 ''' 1 I

lvlAor rr

hT -TT oloSTA

M 111111111111111111111111111111M LIGILMEN111111115
11111M 11112110

1111111111N11111111111111111101MINIIIIIIGUM
111111111111111111111111113MIN31IC 1111111111111E

211031203131135322113CEMIMMIMICIMMISMIMIXIIIIMICIIIIIM

6

mum; sw

ET-TT aloITA

111110101111110MQUIGNAMOMIQUOM011111211111

MOQMM/1222MQMQM20511MQ026MOOMMMWMOMMMMODOOMMO.

VO

ISIONOWNUMNIMMIGNAULOIMINLAVANIIIIIIIOBIB
INISIMIIIMOIONWIUMWWWWWW4=100111118111111
MMMMMMUNIMMQMOOMMONMIMMMWMINIMMOMOMMOMOOnia.mee

:Immo GT virmao; propuommo,s2 SqL
TaWftinTs 04 loom umnpa otill

'3010T
To23o03 ITERM0a oql Jo ant oRMOIni Tro WITS

(1,ue) Immon

41 9 10
CASE or CASENTRY Figure

The CASE structure J. a multibranch, multijoin contml structure uved to exprevv thuprocessing of one of many possible cases.

FORMAT

CASENTRY d

CASE 1

CODE A

CASE 2

CODE

f

CASE

CODE m

EL sE CASE

ECSE CODE

kNDCASE

do

CASFNTRY

Figure 11-16

When the CASE is executed, control
(c ds A, B...n) based on the value of an
value of 1, control is passed to code,A;
code B. If the value c.f the variable is
is passed to the KLSE code, if present.
sent following the ENDCASE.

in passed to one of a set of functional modules
integer variable. If the variable contains a
a value of 2 causes cuntrol to be passed to
not equal to one of the case numbers, control
Otherwise control is tranaferred to the state-

11-12

488
I.AtiE (L040L)

ANS 61101..

4.

4.

444- 14

135

4.

al Et CeetZET3

11 11
c.

A r AO AP

31

4

ASe-PA AG1AP S

44. ; I-1-

* 4. 4 4

4. 4. 4 . t
IS1E: 4114- 4. 4- r

c..444hv441-4 4144-44-- - f +-
cAse-10114f0tAnkiltiVWey 14-4.-

E . II L

CID 311 40111 COCCEDEDCM

4.-
111111.1111

J.DCPiIND IN OMEN
4, t IMOMOVII

11,.!

11111111111I

:71)47:

r
,

1

The above cede must be placed out-of-line and is invoked by an in-1ine PERF(0.1

statement as show below:

.
R'F'0,11t PI

, e e

. 1 .44: I
* r 1-* _4

C.A.$ is j- iPIA'Alt1A,,6!PiAiP,44; (Ji

Figure 11-17

4J-41%

CjAi5

S FURTRAN

III

.,

N

;

1

(I

A

PflOOMSI

4

1"

5 c

''
S :

c. ir

, l

0
i l_e.

7-0
5,

dol' C,

II

U
0.

4

i

, , it 1 V .40... .1., 1 1 :II 1_4V
I. "' 1 I I 1 1

, . / ._ # 4 1, -444--14

i A t#01,

3 4 ' 2

I

1-

I . 4.1, 4 ...111......1 4 4 41

H 1
,_

;014404

41:4

Alitilll

to=
'ISO

s-,

cc. iti,e

Ofi.4/, .

A/44p, 3,
o r C al.....
.

,

, ,

,
5 i

.1-

,

/
4.. 01

. - 4- 4-- 4.

- ...
4,..-4........4 I,' Ir. II g

t t

III

ill 1)

co.
6, 0

r I

AdiiNV

4't
I .
it

..

-

,
c

11!.

t.

.+,.......,_....

41 ,Cio,
, . #

0 ,01,t4 I

.

.

i f 4
+ I

* 4

0 #

4

1

i
f t /

. ;

--4----44- 4,..r+ -4 f -...;4

f "'"?" t' '4,' -I- t--

.....,......, t_ -.1

t 7 ,
1

4.

t-

.

Figure 11-18

11-13

4-8
CASE (Can't)

J3 JOVIAL

nommanaugnmegrigul
113111111111monrin1al
egolainannoinuign
uniunnommaincemnumunirrinnn ii

Iivounli minima 1111Minn 0 R 111inuounintrois ii
11111111111111111111N0R,
11111111111111111M1111 I II
111111111111111111111131111111111 3 III
IIIMINIMMINIMI 1 11111

11111111111111111111 III I 11111

uuuuiuuarR

UN 1111111111111111EIM
MIS 11111111111111110liii 11111111113M1

1-1 KnaA ri

rigurt 11-19

=Mt CCM=
NOM MINIM
IIIIIIIIIIM111111
111111111110111111111111111

11111111111111111111
11111111111011111111111111

MIINIIIIIIIIIIMIIIMImonsinnasummanumn
MIME 111111111MOM MIMI
1111111111111111111111111
111111111111111111111111
MUM 111111111

II II
1111 1111 milEmu I LUIS

II I III
NOTICE Each of the control logic primitives hss only one entry and one

exist from each of the logic structures.

Sequence

The Sequence primitive ix nothing more than 'one statement (which does not breakfrom Os program flow) followed by another. Examples Inas/4e arithmetic tatement,input/output tatement (without error contingencrbranches),
assignment statements,logical statements, etc.

140 9r CODE

Figure. 11-20'

11-14 4'75

PRECOMPILEKS

eke2.

In languages which du not contain basic structured programming control figures, .
two options exist fur writing structured code. Ons la Lo simulate them with existing
facilities of the language as previously discussed, while the second is to use a progrem
which cat translate figures written in a structured source code format into an output
...rust which Is compatible with the target language aseembler or compiler. One type of
program which can perform this function i a precompiler which is invoked prior to the
compiler and "precompiles" those xtensions of the source language which support struc-.
cured programming into acceptable source langua$e code. Thus, the purpose of a struc-tured programming precompiler is to allow a set of structured programmin$ figures to beused in a language that does not support the figuies. This i accomplished by producing,
as precompiler output, simulations 4: the figures in the source language which are thenused as input to the language compiler.

The primary purpose of the precompiler is to provide the programmer with the capa-
bility to write structured cadt while requiring as little change in the source language
as practical, and to do'so in a consistent way in several languages. It is not a func-tion of the precompiler to limit coding by preventing the uue of language tatements
which violate structured programming conventions. Thus, monitoring of the use of ex-
plicit branches and otner top-down structured programming deviations are not intended tobe detected by a precompiler. In sddition, any ambiguities between the source languageand structured programming statements ars presumed to have been remove. from the pte-compiler input. Thus an IF statement is presumed to have a corresponding WOLF in allmuch source code.

The precompiler's basic function is to support the use of four standard structuredprogramming figures.

1. IFTNENELSE

2. DOWNILE

3. DOUNTIL

4. CASE

The relationship between the precompller end its inputs and its inputs and outputs
.ie graphically displayed by the following:

Precompiler Input

A precompiler accepts the code needed to implement the primitives described earlier,plus all statements native to the lanuage being used. Lrror dete,ction by the precom-pilor la limited to the precompiler coda. Any errors in the native language statementsare detected by the compiler or assembler. The programmer muet insure that all verbscommon to both the native languags and the precompiler code are in the preconipiler
format - i.e., the IF statement. The precompiler adds the capability of structured code
to an existing language without changing the features of that,language.

Shoold it be desired to mix bath ittructured and unstructured code, this may be doneby placing the unstructured code in the library and then bringing it into the program .bymeane of the include function. The INCLUDE statement which may be processed by either
the library system or the precompiler, will have, in addition to the name of the code
segment which is to be placed in-line, an additional indication Chat the Cede to beproceesed ie unstructured. The implication.of the above is tbat the top mast segment in

4-831
-the tree structure is presumed to be in the required structured program format and from
then on, the format of the nested modules is identified by the programmet. The ptecise
formats for these indicators will be outlined in "Precompilcr Specifications," Volume 11
of the Structured Programming Series which covers the various languages in Section 4.

1SO
LI YBRARURCE

INPUT

I

LIBRARy ST RuC WW1) 5:0mPa 1 IaLE
SOURCE , MANI f RSYSTEM CODE SOU R(1
MODULE LOOFe INro T \

i inRARy

1

'Rt CIMPII I- I%

[.

L 'STING Of
mODuLE foR
F x IT RNAL
L qi R...A.:Y.e---

Indentation

Figure 11-21

LANOUAuf
Crudirit F

OBJEC T
MOM F

(05111 IR
I hYINC.

Strict attention should be paid-to the indentution of the logic structures on the
printed page so that logical zelatiodMhips in the coding coTre.spond to phyalcal position
on the listing, and a pilotorial representation of the logic can he gained from the
indentation.

i Automatic indentatlon 0 not a function of the precdmpiler, but is a 'desirable
fixture of a library system. _This feature wiles the burden of modifying code mitice
alignment is handled automatically.whena source module limting is produced. 1t also .4

corrects any manually produced erroneous indrntation cyld standardizes listing formats.
However, when 4new modules are being produced for the first time, the vogrammee should
continue to write indected source code as an aid in the coding process.

.)11

Precompiler Output

Compiler Input - The precompiler produceo and places in a library file (when the
facility exists) An OUtput source-mudule lo'be used ns input to,the upftropriste compiler.
All standard program figure usage will 'have hero resolved into valid source language
statemedts as part of the precompilet's output. The programmer-wTitten source couch.

11-16 el ; I

.-P11%,

e

Narro.

494-

listing represeuting input to the precompiler ehould be used !'er,debuggins purposes
instead of the compiler output listieg.

Simulated Structured Code - The precumpiler output will, where practical, be simu-
le.ted structured code iollowing the conventions specified in.the RAUL Stiuctured Programm
ming Lauguage Standards section (Section 4). This assists the programmer in relating
diagnostic messaees on the compiler listing to the corresponding module in the ptecompiler
Source input. In addition, if it becomes uecessary to use a compiler source lilting, the
code layout closely resembles the programmer's wdn source program.

Eunguage'Coosiderations

This subsectien discusses language considerations when a precompiler implementation
approach is used for a higher level language.

JOVIAL J3

It is suggested that the precumpiler IVTHENELSE standard program figure be used in
pleilao an the combinatiun of an IFEITH and ORIF conditional statement, and the IF condi-
tional statement where the ELSE clause la omitted. Although the IFEITH/ORIF combination
(multiple ORIFili are permitted) provides more capability than the IFTHENELSE standard pro-
gram figure, an attempt is being made to provide a near uniform structuring facility via
a precompiler. In tact, a precompiler would translate the IFTHENELSE into an 1FEITH/ORIF
combination. Anpther reason for the selection and use of the structured program figure
is the addition'of the ENDIF delimiter which adds to the readability.

Am with FORTRAN, JOVIAL J3 does not provide a DOWH1LE or DOUNTIL capability; i.e.,
repeated execution ol a aeries of statements will a lecding loop trait (DOWHILE) or a

: trailing loop test (DOUNT1L). JOVIAL Ji only provides an indexed looping capbility.
Thus, the DOWH1LE and DOUNTIL figurea should be used where appropriate.

The CASE atandard figure should be used in place of the in-line JOVIAL J3 simula-
tion of the CASE presented in figure 11-19.

In general, any JOVIAL Ji statement which violates structure&programming'concepts
skould 0 avoided. For the most parr, an attempt should be made to avoid branc4pg.
For 4 discussion oi revammonded JOVIAL '3 toding conventions, refer to the Section on
coding conventione.

ANS FoRTRAN

The precompiler IFTHENELSE stundard program figure should be used in place of the
FORTRAN logical IF and arithmetic IF statepents. It provides more capabilay than rhe
BMW logical IF because of its EL!,E. clause. The IMENELSE figure, withicriesting
ometimes required, will also providu more capability than the FORTRAN irithmetic IF

and allows a clearer statement of thu condition tested.

The capabilities oi the DOWH1LE and MOTU, i.e., yeated executicin of a series
oi statements with a leading loop teht (DOWHILE) or Lra ling loop test (DOUNTR) are
not provided by t" FORTRAN DU. The FORTRAN DO, a speciallzed DOUNTID, only provides
iteration based on the range of an lodex. Thus, the DOWHILE and DOUNT1L shoad be used
where 'appropriate. The,FORTRAN DO mly, however, be used for its specialized indexing
capability. The code structure previously recommOnded whet, using the FORTRAN DO state-
ment would be.;

ok.

,r

4-85"

unnumummummmto
impulinormsmi
ImallollItAMMIA

111..AMOMIllicIMOINvE
.L gi ONbboll

miamommm memo
1111011111111WO IMMO

mxtrimaastacom
il

1111m IS

Figure 11-22,

rhe CASE etaidard program figure would be used in place of the FORTRAN simulation
91 the CASE figure using a computed GOTO utatement and GOTO tatements.

In general, any FORTRAN statement which violates structured4programming concepts
ihould-be avoided. For the most part, an attempt*should be made to svoid unconditional
branching as providea by COTO, computed GOTO, arithmetic IF, ASSIGN and ASSIGNED COTO,
and ENTRY and RETURN I. The use of programmer generated statement numbers and null
statements (CONTINUE) should be avoided wherever possible. For a complete discussion of
recommended FORXRAN conventions, refer to the section on Coding Conventions.

ANS COBOL

. ,TbeprecompOler IFTHENELSE standard program figure should be used in place of the
COBOL IF siatement since the COBOL IF statement does not provide a proper nesting capa-
bility (refer to the nested IFTHENELSE diseusaps in the previous section).

The COBOL PERFORM statement with the UNTIL option, where the looping condition is
tested prior to eaecution of the code within the loopk, provides a capability similar to
that of the DOWHI4 standardiprogrma figure. .Thi difference lies in the fact that the
test condition is,Inverted between the two and the PERFORM passes cRntrol to an out-of-
line procedure. Inverting the condition along with use of the word'UNTIL would tend to
obscure the..intent of the test coddition. Thus, the DOWHILE standard program figure
should be-used.

Using a PERFORM statement followed by another PERFORM statement with the IL
option, wher both refer to the same procedure name, provides the same capability ii the

i

DOUNTIL standard rogram figure. The DOUNTIL standard program figure should, however,
be used forsake f clarity.

,

The CASE Iota

place of the COBO
DEPENDING ON opti

Statements *di

the most part, an
recommended COBOL

I

iard program figure, which is not part of ANS COBOL, should be uSed in,
Jimulation which is accomplished by using a GOTO statement witI7 the
a and clim statements.

,

/ich violate structured programming concepts should be avoided. For
attempt hould be made to preclude branching. For a dS.acuasi)Dn of
cdding conventions, refer to the section on Coding'Conventio s.

RI*

of

11-18

CODING CONVENTIONS

Additional Iscommendad ANL COOL;
Coding Convintions

Restricted, ANS COBOL Statement Usage

In order to preserve the concept of structured.programming, it is recommended that
Om general usage of those ststemants in COBOL which permit-changes of sequential control
be restricted to an exception\basis only. Thus, In addition to the GOTO, the ALTER state-
ment should also b lipited id its usage.

Prolram Oraanisation

; The structure'of a COBOL program is such that many of the rules for Program organi-
xittfon have been predefined. For instmo,ce, all data must be specified in the DATA
DBISION. Furthermore, within this section, the formal rules which define the permissible

.

hlieterchical dots structures are sufficient to preserve the ladability requirements of
ete4ctored programming. However, within the PROC6URE DIVISI N (with the exception of
the DECLAAATIVE SECTION), the rules of COBOL permit the ordering of the PERFDAMed code
blocks to ba completely flexible.

It ths program is being devslopI with the aid of library system, the order in
this division is less critical since all that appears after the top most segment are
COPY statements. The functions whieh exist in the copied cede add the functions which
ore nested within them are determined by examining the smala code segments which are
prese-t as printed listings of members In the source code library rather than on the
compiler o4tput listing even though it is still true that the resolution of the COPY
statements by the compiler will produce a complete source program as one of the compiler
outputs.

However, for a development process in which no random access library exists, the
ordering of the segments of,PERFORMed LOBOL paragraphs.in the procedute division is more
critiLal. This is because the source listing under this condition is a single sequential
data set. At present, the suggested sequence is initially by nested level for 2 or 3
levels (depending on ,the program's complexity) and alphabetically thereafter.

PERFOHMed paragraphe should te pepArated frOm the main boay of code, and from other
PERFUHNed paragraphs, by at least two blank lines. Logically noncontiguous paragraphs

(other them those used.in the CASE figore) ehould be separated by at least one blank ll e.

Comments

.0ne of the primary intents of tht developers of the COBOL language was to produce
self-ducumenting lenguage. When thil, is coupled with the discipline of structured pro-

gramising the resulting programs should be even more readable. Therefore, it is recomr
mended-that.the use of tomcats in the form of NOTE sentences and NOTE paragraphs be
held to a minimum. When they.ers weed, they should not interfere with the'readability
of the program itself. This may be dims by ,using blank lines to insure that the NOTE
text stands apart from the program proper and by indenting the textual commentary to
Column 35 or 40.

11-19

4-8

Indentation and Formatting Conventions

Variables and structures defined in the DATA DIVISION sh be arranged in a

seaningful order. This order could be slphabetic, by class st. s the days of the

week, or any other class format. A suggested set of indentatlen roles for data items

is as follows:

1. General Format. All level 77 and 01 variables should have their level numbers
in columns 10-11 and names starting in column 14. The PICTURE clause should be between

columns 32-45, depending OD the length of the longest variable name. All other clauses

used Should follow the PICTURE clause with normal spacing. If more than one line is

needed for a variable's definition, the escond and succeeding lines should be indented
from the PICTURE clause as follows:

11 j131 INT11:77 4441..1 Pi*

4 P I CTjJRE t41-4*(
_

cq SYNC..;

Figure 11-23

1

2. Structures. Each Alccessively lower level in a.etructure should be indented

four columns from the aext higher level. Level nuebets should precede each variable

name in the structure on the same line and tw columns before it as follows:

9 Clnan la 'S CD " . ZerietD CCM

.

:

L

+ .
:i

i

4_1._.

_1 H

-i

,). it),

I, I

I
1

T, 1 .191.7.-1

: i 1

LOY

! ! T013

N

0

0
2

AAL,E

3
P b V

-

.

FIRST

s

Cc()

LI)

.

LE
1

i

b

Figure 11-24

When condition-names (level 88 items) are used, they should be indented and written

with single spacing between words.

0 DiE
I i

P C 'V I A4L.

DI 1: Y.r...E.. Iti1RIL

Figure 11-25

11-20

4 31
-"N

498
The indentation recouttendatiune tur the otructured p;ogramming figure* which appear

in the PROCEOURE DIVISION warepreviously apecified in the section where they were
described. When programming the cods blocks which represent the SEQUENCE in structured
programming, each COBOL statement should start a new line. Any statement not-subject to
indentation rules starts in the some column in which the statement above it started. Only
une statement per line is permitted. 'If any statement must be continued on the next
line, the continued portion should be indented 4 to 6 columns so ea not to obscure the
COOL verb as follows.

wilt .".; I ' 0, . :2 2 1, d44 Of' I Ili r 21
- f

f- r .4f
;m.ttivil41 T PJO

;TICY,

; ,r10111.T.I;P;Lit`C u Plitt A!f ".T:GO ell' I) Ls IA 1...

1.1 es AtkriEj 114

Additional Recommended ANS FORTRAN
Coding Conventions

keetriLced FORTRAN Statement Usage

IT HI 111 2-171,.111i4-41:4 ti;;Y:011

"
4 t teti)14 Ifeit` sEktf,47' Ete,1_

cit.% Vt.:7

7 4c-.1°,4Y1 LI I I: TIL

W.L.-"%5IS41:11-6;

! !

7

DEcAY

Figure 11-26

In order to maintain structured prograwming concepts, it is recommended thnt cer-
tain allowable ANS FORTRAN statements generidly nut be used except as required in the
previous definition of the standard program figures and summarized below. For the most
part, an attempt is made to preclude unconditional branching not necessitated by standard
program figure definition.

cUlt) statewent im used in the defi4ition ot the following standard program
tigures: IFTHENELSE, DUWHILE, DUeNTIL, and CASE. The computed GOTO ststement is used
in the definition uf the LASE standard program figure. It should be an objective not
to Use these statements excluot in those tisurem.

The ASSICN and ASSIGNED CUTO statements provide an unconditional branching capa-
bility. The arithuictic IF statement is not necessary because the IFTHENELSE standard
prOsram figure, with nesting SOMIttiWvis required, will provide the same capability. Use
of these FORTRAN statements should be avoided.

The recommended use of the DO statement as a specialized DOUNTIL is covered in a
previous subsection. Uther usage of the DO is not recommended.

lhe CONTINUL statement is used in the delinition of the IFTHENELSE and CASE qtandard
program figures. In addition, it is hometimies required by a DO (specialized DOUNTIL)
statement. No other use of the CONTINUE should be necessary.

4-89
Ptcpsa Organisation

These conventions provide for the organization of a FORTRAN source program-into a
set of segments for compilation. Any FORTRAN program requires a certain ordering of the
statements within the program. A suggested further restriction to that ordering for the
adike of readability, clarity, and consistency appears below.

1. If this is a saprogram, the first tard oust be a FUNCTION, SUBROUTINE, or BLOCK
DArA statement.

2. Any COMMON statements, each followed by all type, DOUBLE PRECISION, and EQUIV-
ALENCE stmitements related to it follow. No disension information is to appear on a
COMMON statement. The COMMON statement will be used only to declare the order of arrays
and variab/es within the,COMMON. Blank COMMON is to be declared first,_followed by all
labeled COMMONs in alphabetical order.

Any explicit ipecification (type) statements and DOUBLE PRECISION statements will be
arranged in alphabetical order of the variable* or arrays within each of the types. They
will be defined in the following order: COMPLEX, DOUBLE PRECISION, REAL, INTECER,-and
LOGICAL. All dimensioning information should be included on the type or DOUBLE PRE-
CISICN cards. All variables or arrays should.be explicitly declared, and the DIKENSpN
statement should not be used in place of a type statement..

-Following each type or DOUBLE PRECISION statement, any EQUIVALENCE statements
required for that type statement ars included. A blank comment card should be used
before and after the EQUIVALENCE statements to set them off from the surrounding defini-
tions.

3. Once all COMMON declarations are made, the program local declarations/Are made
using the same conventions.

made.

4. Following all program local declarations, all EXTERNAL dee/Au:scions will be

5. Any DATA statements for program local array, and variables follow.
4

6. All FORMAT statements follow.

7. Any statement function definitions cote next and complete the nonexecutsble
code.

B. Segments containing executable code follow in order. The last segment must

contain an END card.

9. if desired, subprograms may follow as part of a multiple compilation. The

organization of each subprogram should follow the rules given,above.

Comments

CosMents shordd be used,to emhance the readability and understanding of a program

(e.g., to define variables or their special settings). In general, when Ihey are used,

they should be grouped together se,a prologue to the code segment. If they must.be

interspersed within the tads, they should be inserted as a bloCk wlich begine In a column

near the middle of the pase (e.g., column 35 or 40) so as not to interfere with the

'indentation and readability of the program proper which may be canned near the left

margin. Blank comment cards should be used when they enbance readability.

,r1S3

Seatemvut Numbering

Au much as poseible, statement numbets iii to proceed irum loweat to highest s a

progrse is read. It is recvmmended that statement numbets be four digitslong, be placed

in columns 2-5, and be incremented by 10 rather than be consecutive.

Continuation Cardu

ANS FORTMAN pernata up to 19 succesaive continuation cards per statement. The con-

tinuatiun column should by used tu indicate the order of the cards. This may be done by

placing,a numeric character in column 6 (the Lontinuation indication column) in ascending

ssquence (i.e., 1-9) and if additional characters are necessary, using in order the

alphabetic characters A-J.

The body of the continuation card should be coded eo as xo enhance the readability

et !he program unit.. In the to/lowing nubsections are some utiggestions in regard to

spesial cards, but, le general, no continuation card shou1d contain information to the

left ill the statement identifier on the first card.

statvwrots

Itach statemept ahould beglirrin:*an even-numbered column. Nonexecutable statemehts

,fthou.',d begin in voltam% S. Li the program is a eubprogram. the FUNCTION, SUBROUTINE, or

aLOCK UATA statement should begin in columq_0, and the corresponding END statement should

altaehegin in column 8; in these caSes, t14 fivit executable statement will begin in

culunm.10. Othervise, tile first executable eta-ement of a program should begin in column

II, as should the END card. -Succeeding executable statements are indented according to

the coding examples in the staedard pregram sigures gectien,and the rules given :elow.

Aualgement Statements

Li a etatement is cuntinued, the second and tollowing lines should be indented by

ota Loiumlim. For example:

r- 4 , r,,,,T1f.;17i:4.1,"_,II.

C101.-144V1Z;(..

' 11. s

1 r111111F4-171,1

ShfOal

) r 7 n /l'i ''
$4x1,
shiA

' i,-
A
*

a Arlul o,1 ..? J4'
p4CF,I,)111.F

ottrift,r,"#it

r o II
! 4.1'

6,0%i

RAI'

a Ills
T.

tlo!)

4 47743144.6S
'4^., 1

. _..1 i i

Figure 11-27

In a continued assioment utatemilit, tbejfirut card (and each card which will be

tollowed by another continuation card) should have an operator as the last character.

Aa much am possible, all parenthetical expressions should be on a single card. In no

cam should a left parantheeis be the last character on a card which is to be continued.

COMMON Statements

The COMMON card will begin in celumn h with the identifier followed by a blank in

column 14 and a "/" in column 15. The next six columns sre reserved for the label which

will be left justified in this field. Column 22 will contain another "/" and column 23

.1J-23

4 SI

4-91 II
vill contain a blink. If blank COMMON is desired,-tirde the slashes but leave the label
field blank. Columms 24 through 501411 contain the names separated by commas. Commas
will appear in columns 30, 37, and 44. If a continuation cord is necessary, a comma will
appear in colman 23 on that card. The names will be left justified within each field.

Type Statements

Dimension iniormation for each array is to by contained on a single type card. A
card will contain one and only one name. A type statement may be continued, thus Allow-
ing 20 names to be declared for mich statement.

Tbe type statement will be ended beginning in colnan 8. The name should begin in
column 16. tf it ie a continuation card, a comae should be inserted into column 15.
When using a DOUBLE PRECISION statement,.the name should begin in column 25. If a con-
tinuation card is required, comma should kt inserted,into column 24.

FORMAT Statements

The FORMAT identifier wil& be coded begiiling in column 8. The first parenthesis
will appear in column 16, and the format information iteelfokegine in column 18. An much
as pessible, a position code end its asiociated format code should stand alone on a crrd.
Continuation cards should be used liberally. For. example:

00,0 ...0mmccc00 4, .4^occcmciu
MO t

A

omocc

Al
nil

In
-

20x
x
x

:_.Foiliormomf,,

il
I I 1111'
m m ION

01=T/Moms

Figure 11-28

READ or WRITE Statements

In all cases a READ or WRITE statesmnt should have it. aubjeci data set reference
number (DSIN) contained in a variable. The use of hard coded DSRMs is discouraged from
the standpoint of visibility and parameterized coding. The DSRN variables say be loaded
with a DATA statement.

The list portion of the READ ?r WRITE statement must be expressed in so simple terms
es possible. Liberal use of blanks and continuation cards is encouraged in order to
iocrease readability.

II Statements

Multiple conditians in the predicate of an IF statement should occur on separate
cards, with an operator occurring as the final item in esch card to be continued.
For exempla:

11-24

S 5

aP11%

492.

onnationoomanmem MED= EITMEMCGOCC
unnumennonnsoolcin oDili 111111

11111111111MUMEN D 1111M
1111011111111111111111M enemolluou
nmummarrion 0 ariN7111111111111

Figure 11-29

Notice also that the GOTO statement follows the closing parenthesis.

DATA Statements

Only one variable may be specified on a DAT4 statement card. Tte DATA identifier
will be coded beginning in column S. The variable name will be coded beginning in
cr,lumn 14. The slash indicating the beginning of the data will he coded in column 20.
For example;

01111313011 mom
MIMI D AIIC

IS IS

Additional Recommended JOVIAL J3
Coding Conventions

Restricted JOVIAL J3 Statement Usage

44.

IDCOMMIZIEDIMIZIMUZIM

Figure 11-30

In order to maintain tt.e concept oi structured programming, it is recommended that
certain statemeets which sLe part of thv JOVIAL J3 language be used on an exception basis
only. These ststements all involve the language calmbility which effects change of con-
trol whether on al explicit or implicit basis. Thus, in the JOVIAL J3 language the usage
of the COTO, TEST, and special compound statements should be limited as much as possible
to the simulation of the DO and CASE figures in the manner indicated in the previous
section. The limitations placed on the special compound'satemert also result in a
limAted usage of the incomplete FOR statement. This is also In agreement with the dis-
cussion of the DO figure simulations. Finally, the use of SWITCH declaratione to invoke
SWITCH declarations is also a transfer of control.mechaniam and should be minimized.

Program Organization

The data and executable statements which comprise-a program should be in a meaning-
ful order and in a format that can be easily unestood by anyone who wirhes to read and
code. More important than a single set of rigorous rules covering all projects is a
consistent set of convention* for a single project.. The following is a suggested ordering
of the various components which comprise a JOVIAL J3 program.

11-25

4 Qt;

493
1. The START and TERN billeckets (if they appear in a stement) should start in

column 1. Except for these, each code segeent should start to the right of column, 1 ina consistent manner. Indentation for figures within code segmentyahould be cumulative
within the segment.

2. The uggested sequence of program segments which follows la based upon the
assumption that no.INCLUDE capability mallets.

a. START bracket.

b. All data dederstions (ITEM, ARRAY, TABLE, SWITCH, etc.) used in the firstsegment or by.more than one lower level segment. The data declarations should be.
arranged in a meaningful otder, including table ;tem in 411 ordinary table. This is not
necessarily true for defined table items or for table items in an input or-output buffer
where the order of the items is defined by the.arrangement of data within the record.

c. Hain line code.

d. Lowur level segments. The segments (procedures, functions, CLOSE declara-
tions) should be arranged in a meaningful order by level, with the lowest level segments
appearing Lest. All data declarations within a segment should appear first within a seg
ment and follow the same rules as the data declarations in the main segment.

Comments

TEEM bracket (and FINIS or ST9P statement).

Comments shoOld be used.where necessary to enhance the readability and understaitding
of a program. In general, when they are used they should be grouped together as a pro-
logue to the code strent. If they must be interspersed within the code, they should be
insertecias a block which begin, in a co:umm near the middle ni the page (e.g., column 35
or 40) so O not to interfere with the indentatioo and readability of the program which
may be scanned near the left margin.

Indentation and Formatting Conventions

As with the program organization recommendations, the formatting guidelines should
also be flexible enough to be easily adapted to any project. The data dediration rules
which follow should be taken as an example of how a given project may wish to achieve
consistency in formatting.

1. Tables and arrays should be in a meaningful order by talaitarray name.

2. No single items should b declared except parameter items. TempeFary working
storage items should be declared in one or more compiler-allocated tables.

3. Items within $ programmer-allocated table may be in alphabetical order. Acme
within a cempiler-ellocated table must be in alphabetical order.

4. Preset values for its= should occupy one or more additional lines following
the item declaration'.

5. Table names should have two character names. All Items within a table should
start with those sone rwo characters.

11-26

6. Internal tables (nitticompool) ehould'he named by A letter-numeric.

7. "Like" internal tables dnplicatipg a CoMfool table should be named letter-letter
numeric, where the first two ch:eacters define the conpool table name and the numeric

indicates an internal. Equated internal tables used to define temporary commool table

items should also use tt's same namins scheme.

B. Item names should normally be five characters in length.

The indentation of the cods comprising the simniated structured programming figures

should be as indicated in the previous section. In genera4, any statement not subject to

the indicated indentation formats starts in the same column as the statement above it.

Only one stAtOMAAt per line is permitted except where used in the certain of the control

logic structure simulations. The continued portions of statements requiring more than

one line are all indented in a blocklmeath the first line of that statement.' This is
particularly true of the conditionals wbich follow the IFEITR, ORIF, and IF primitives
to clarify the range of statements delimited by theme primitives.

POSSIBLE STRUCTURED CODING PROBLEMS

Like top-dawn implementation and program design langeages, structured coding can
also have its problems. 4n this subsection, some of the problems and possible solutions

are discussed.

One problem that his been reported by many progrommers is that t is difficult to

implement" a program design in structured coding. It can be a real.problem especially if

programmer has been trained in a traditional manner of coding. irhe solution lies

within the programmer. There will be a learning curve'involved in using structured

coding. And, the programmer must want to learn. It will take time and pract.ce.

Another problem is programme ego. There is a certain amount of pride of author-

ship in Just about every progr. er. however, much emphasis has been placed on the

"triiky cods." This can hurt the maintenance programmer in the end. Ptdda can be

re4li4ed from writing code that is easily maintained and understood both by thc author

and his fellow workers and successors. Thus, the old "ego" is still saved.

Lloaely related to the ego problem is the resistance to change. (Sound femiliar?)

hr obvious reasons, sone programmers do not want to change their programming habits -.-

even when some are bad habits! Excuses include: the "if it was good enough for dad, it

is good enough for me" attitude, laziness, ego, the "I don't understand it and therefore

it can't be any good" attitude, and the list goes on. Solution? It will depend largely

on the programmer who has this problem. Is he (or she) willing to sive a "new" thing a

trial period? Is he willing to look at structured code (or anything for that matter)

with complete objectiveness? Only the programmer can answer these questions.

Inefficient machine usage has also been said to be a problem; structured code

requires more core and time, and indeed this could very well be true. To set what can

be done about it, let's look at two things. First, look at the overall time efficiency.

A valid question that might be asked "is saving 1 millisecond of execution time worth

five Or more hours additional programming time, plus testing and debugging time?" *The

answer will depend upon program usage and other factors. The second thing to look st is

core ttficiency. This solution (7) is discussed later In this chapter.

one of the best ways to nake a mountain out of a molehill is to develop the struc-

lure for a program umihg only structured coding. Don't do itl First, the structures are

11-27

45c'

variable is form and quality (due,te a lack of guidelines and discipliee). Second, the
structures sss not available in advises; the structure emergee hem the code. Third, thttructures tend to be input-driven rather than transform-Centered, transaction-centered,
pathologically connected, amd sequential in nature (as apposed to being functional).Solutipn: Develop the structure first using design aid tools -- 14e., Nine, structure
charts, data flow graphs, etc. Then, use structured code ti Implement the design. If
a prostate design languese (ese FDLe in chapter 10) is used prior to using structuredcode, the coding hecomes en easy process since the same primitives are weed in Ft01. and
structured cods. Last, detelop guidelines for *plow:tine the coetrol logic figures
and stickvith the guidelines. Don't try to take short cuts with "tricky code."

CODING EFFICIENCY CONSIDERATIONS

INTRODUCTION `sw

One of the moat frequilet complaints against structured programming is that it
results in insfficient code. When programmere speak of ouch inefficiencies, they are
referring to the executable co4e which either tens too slowly (has an excessive path
length) or occupies too much core, or both. nixie Cho, majority of the longues's addressed
in,this report are high level ones, the efficisecy questioes which are addressed in this
&active should be evaluated with this fact in mind. It also should be tecallid that
structured pitogramming is only-seother way of writing branch instructions and therefore
the of inefficiency must address therbanic problem of conditional branching and'
not t mote voluminous statements which perform the bapic sequence block proceselft..

It is obvious that if a compiler apostates inefficient coda, then regardless of
%tither or eat the source program is structured, the result is still inefficient code.
Therefore, the question of efficiency la higher level languages I. one of whether struc-
turing; has added ea excessive mount of inefficiency. This question is addressed from
the following four points of view.

1. Compiler code operation.

2. Simulation of structure figures and top-down requiiihents.

3. Improper use of the source language.

4. The virtual storage environaent.

Compiler Code Generation Inefficiamcies.

The prtOblem of inefficiencies which arise from a failure to take advantage of the
hardware architecture is me which camnot be cootroIled for Maher level languages siece
this is function of the compiler code separation amd is umaffected by structuring. For
lmsteece, consider the CASE coattail logic structure. If the target computer has en
indexed breech capability amd the compfler has s CASE statement, thircompiler could take-
aikentage of this fact in its cods semeration. This is evident when coloperill the
following cods:

4 S9
II-25

r
CASENTRY (Registet helding case nuMber)

CASE 1
*

Code A
CASE 2
Code B

CASE n
Code n

ENDCASE

and the compiler generated code:

SHIFT to adjust number to computer word length
BRANCH TO LAREL1 INDEXED by shifted number

LABEL3: Code A
BRANCH LABEL2

LABEL4: Code B
BRANCH LABEL2.

LABELn: Code n

.LASELl: BRANCH LA)EL2
BRANCH LAREL3

4 BRANCO LAREL4

BRANCH LABELn
LASEL2: 0 skit point

%Am.'

From the gantrated code, it can be seen that to select the correct CASE number

requires that the number first be adjusted in order to make it compatible with the tar-

get computer word length (prObably a SHIFT instruction). This is followed by an indexed

BRANCH to the correct unconditional BRANCH in i branch vector list (a sequence of branch

instructions), a total of three instructions.

If the language does not contain ti specific CASE verb, than this particular

architectural feature of the target cowputer cannot be used and a corresponding loss of

efficiency results in simulating this control logic structure. For instance, if the

language I. FORTRAN and the CASE is simulated by the FORTRAN computedGOTO statement,

the code efficiency is a function of what the FORTRAN compiler generates for th&s verb .

and not structured programming. In the extreme, the CASE can", simulsted by a series of

IFTHINELSEs such as with the JOVIAL J3 =TR statement (one DIRIF fnr each case number

which say be present). This implementation would probably be the most inefficient since

code must be present to test for each possible CASE value.

Another example which illustrates that efficiency in hi h level languegis is depend-

ent upon the compiler can be shown using COBOL as an example. The looping capability in

this lenguege is Invoked with a PERFORM verb. If a precompilar were used. the DOUNTIL

loops

11-29

4)

a

WIW

a

'

J
17

ananOOMMIMMMMum"mCC1C

!
i

._,

4 4

.

t
ANtiba

co
wP41

de
T

4-

s.

CC0

would result in the ollowing generated code:

0

1111M111111IIII -1112121 S.: 01:128,, :Dm ENTIMINIMIETCO.,..i. Mt .

PAill l'e

t 0

::::eri;-

II LeLli(1171)ii.

l'ill. : 1 1

;e'er fivii p olif

I

Filgure 11-31

If this control logic is simulated by the code shown earlier in this chapter, the
question which hould be addressed i Whether the fficlknry ul the loop it s function of

what the COBOL compiler generates for a PERFORM vcians'what it generates fur an IF and

COTO statement.

From the examples in this ection, it Is evident that efficiency is dependent upon
the coda getierated by the compiler. Not only can efficiency vary from one machine to
another, but diffevent versions of a compiler for th n. same comialtor can also affect thr

efficiency.'

Simulation :infficiencies

A second source of ineificient code arises when it La nicesekry to simulate a atruc-
turing or top-down capability because it does not raise in the sunire language. For

example simulating a DOUNTIL:

unommoolggloggpm

III IIIMEMI I I eC

19

, Figure 11-32

in a language which only has a DOWN/LE. The DOUNT1L control ntfUcture requires that

cede A be executed at least once. This can be insured in at leapt one way and possibly

tvo. Both simulations use a DOWHILE and neeate thy condition. The first method is to

duplicate code A before a IMMIX entement:

11-30

4r)i "0%

!411

ILl

4 s IN 1 12 Li fi P

A

i I

14

!
Ili
lin II 1

_

*
r-
di t

14

Nbb0

rkl

C-,0.4e. I 1 i
111111111111111111111

Figure 11-33

49 8

lhe second simulation (which nay not always be possible) is to insure that condition

tp) is false so that code A is always executed at least ohce afollows:

y I... I 142

0 0 0 '0114 I (11
'

I

I

PO *1 1/4E1 114!elit. ictiO I ;

-..ff--.1/{//I

1.; I

Figure 11-34

,

Ili these simulationh there is di least one and possibly two sources of inefficiency.

..., lhe HINE involves the negation of the condition (p) and, as with the examples in this

section, is depIndent upon how the compiler evaluates the looping condition to determine

whether it i. true or false. This can be illustritsp by the following' simple example.'

\II the co

4
nditional atement is of Ole form p AND q, and if a test determ thines at p is

FALSE, then the entir expression is FALSE and it is not necessary to execute the code

which tests q. However, if this expression is negated by placing it inside of paren-

theses and preceding it with NOT am loilows:

NiVI (I) AND q)

theu hecomes uecessury to evalunto both p clucl q befor.e testing the truth of its nega-

tiVr. In this ease, more code' must he exeLuted. However, if the compiler is sophisti-

cated .hough to manipulote the negated expression, it can still generate code such that

there is no increase in the amount of code xecuted when the expression is negated and no

Lorresponding eiticiency loss in' execution. The second source of.inefficiency, however,

hns oothing to do with the code generAlted by the compiler. It is-simply that in the

iiisi stimulation, code A'must either be dup;icated, in which case more core splice is

reqhired, or else code A is made a subroutine in which case space and execution time are

tequired tor the linkages. In the vecond simulation, condiOon (p) must be set to

FALSE which involves both space and execution time.

Improper Source Lpnguage Usage

Th example shown in this section IN an illustration of poor programming and as a

..onbequenre can okcur whether the rode Is structured or not. Hdwever, it has been

included in order to sliew how much touter tt is tn detect pour code when it is struc-

Lured., consider the allowing code;

11-31

410

10000000MOMMMMOOMOCOMTACCEMOECOOCCOM
musiminimmmonmnomenormonomm
mummumnememammempumilimmomsimmuommecommolon moms
monnamminemmommommumes moms
IIIIIIIMMBEIMINIMMIIIIIMUM
tE55001111MOINTICOONIEIMMUUM111111

and its structured'squivalent:

10ODEUDOOOD
111111111100ORMOII III
IIIIIIIIIIIVEMM Mel Mpg MUMMal OMNI
IIIIIIIIIIIIDDIBME II IIIIIIIIIIMI
IIIIIIIIIIIIIIMMO BO 131111111111i

I
I11111111111EM011 NI IIIIIIIMIllol

IMOOMOOMMODOSIMI OBINIVOIONOINIMO

Figure 11-35

(1-99

-
The branching that is generated by a translatiln of the structured code in the

above example is the same as that which in shown for the unstructured code in the ex-
ample whieh immediately precedes it. The code is inefficient in both cases but it is
not easily spotted in the unstructured version. In the structured version, however, it
is very evident.

Thus, the following code is functionally equivalent;

onompoccummememammememmmemanomm

1111111110=011111111111111111111,211

and its tranal.tionowould he:

OM OM UM11,,,,50MIUMMOMMCCOMCCOCOMMO

1199111
i

LACO

III
3 I

MOM ININcEIPMAICOMONOS

MIN I
I also 6100 Vw d I i 1 I osi

Figure 11-36

11-32

A comparison ui the trauslation with the unstructured code shows first that the two

cells ut cods A have been reduced to une and second, the unconditional branch to LABEL2

has disappeared. Furthermore, if this is the only place that code A is called, it is

possible to INCLUDE code A in-line rather than calling it and thus save the subroutine

linkages as well. The inefficiency obviously arose because b: the-failure to use the

boolean capability of the source language and in this respect, the source language was

used improperly.

Virtual Storage

The problems which are enco ntered usini structured programming in a virtual storage

environmect are no different thak those using unstructured code. In both cases, it is

necessary to recognize that to miiiiiize paging and "thrashing," it is necessary to control

the placement of both data and code, so that the Mbst frequently accessed portions of the

program are concentrated in contiguous locations. Since structured programmins does not

restrict where code may be placed (it may be included in-line or placed out-of-line and

invoked an a subroutine), the control of code placement is unaffected.

However, it should be Pointed out that the guidelines as to data placement which are

specified in the various languages standards may have to be modified in a virtual storage

environment. For instance, in the FORTRAN standards, a suggested ordering of a code

module in terms of COMMON, NAMELIST, DATA, FORMAT and code statements is specified. In a

virtual storage environment, the recommended sequence may not be optional and should

therefore be modified. A similar situation exists wfth COBOL. The flexibility which

exists with regard to the placement of data is limited by the COBOL language itself since

all data specifications must be restricted to the DATA DIVISION. However, the guidelines

given in the previous fection with resard to the placement of FERFORMed paragraphs may

not be optional in a virtual storage environment. Rather than ordering such paragraphs

by level or alphabetically, they ere better grouped by expected frequency of execution.

(See Chapter 9,yackaging.)

Efficiency Summary

In summary, programming inefficiencies introduced with structured code include Chose

caused by either having to simulate one of the capabilities required because it does not

exist in the source language or because the true control logic which the programmer wishes

to execute does,not exist se a primitive control structure in the language. When these

are weighed against the inefficiencies resulting from compiler code generation or poor

programming, they are probably negligible in comparison.

As previously stated, structured programming does not guarantee good programming.

It is still a furctipn of the programmer. However, because of the structuring, it is

far easier to detect and.correct problem code.

It has been demonstrated many times, that as a result of program maintenance or

enhancements, blocks of code become isolated and cannot be reached from any part of the

program. In fact, in order to guard against this, some assetblers and compilers contain

flow trace analysis in order to slert the programmer when this occurs. lath structured

programming, a path exists to all blocks of code and such traces are not required.

Whether all such blocks will be executed depends on the conditional logic specifiA by

the programmer, a factor which is not only beyond the control of structured programming

but is also not detectable by a flow trace analysis.

11-33

4 91

501

Examples of Structured Coding

Figure 11-37 illustrates the difference between "traditionee COM and struetured
COBOL for the same section of code. Two differences thil are immediately evident are the
indentation and lack of COTOe in the tructured code. Upon further examination. you will
notice the conditions of the IF statements are difterent.

At first, programming without using GOTO statements takes concentrated effott since
it requires a change in your thinking process. With experience, structured codlng hecomps
easier. Indentation of the code will be beneficial for programmers writing structuted
code.

TRADITIONAL COBOL STRUCTURED COBOL

PARA - 1.

IF NUMBER 20; GO TO PARA - 3.

IF NUMBER > 10; GO TO PARA - 2.

MOVE A TO B.

SET IND TO 1.

GO TO PARA - 4.

PARA -2.

MOVE A TO C.

SET IND TO 3.

GO TO PARA - 4.

PARA - 3.

MOVE A TO 0.

SET IND TO 5.

PARA - 4.

PARA - 1.

IF NUMBER 4 20;

IF NUMBER > 10;

MOVE A JO C

SET IND TO 3;

ELSE

MOVE A TO B

SET IND TO 1;

ELSE

MOVE A TO D

SET IND TO 5.

PARA - 4.

4411, umat exampit_apelles ltibr cancepti. Ls, bolve LW: "Cii4tibiL" pay prublem -.- read

a pay secard., umpurse the p4,'and print reptat.- One ad:U.414/141 i. ria hau been
added LW the prublem; the ewployae's grade/rank must be between I and 30, inclusive.

lbc utruuture chaLt wau used ark an aid in designing the uolution. However, any of
the other aids could have been used equally well.

rIt .1 MWI OOM 4M11. , te.

1
t)f D.

PRI

GET
- Poo,
k CORD

PAy
REPORT

Iseeee:M=1
PROCESS

PAy
RECORD

1NP

LomPuIt
NET
PAy

PR

eme:

TERMINATION

PRINT
PAY

REPORT

Figure 11-38

IPRINI GRADE
ERROR Ad& P

PR - PAY RECORD
NP -NET PAY

DEO - DEDUCTION

ihe next 1..441 ligures (11-39 thluugh 11-42) illustrate a possible solution to the
VuY pFubiem in difierent languages. Figure 11-39 is a solution in PIM using the
sequence, IMENELSL, and DOWHILE primitives. In each of the examples, it is assumed
that all'data items were previously defined.

4 9

POI.

open files

READ 1st pay record

DONNILE there are pay records

IF 1 4 grade 4 30 THEN

Compute net my.

Print pay report line.

ELSE

Print error message.

ENDJF

READ next pay record.

ENODO

close files

Figure 11-39

11-36

497

50 '5

111

O

a'4

,
,

A

al

r

1

IP

54
":

4

a.

0

A
1

a

4

a'

frow
**

a a
IN

M
I O

M
 I a

O
H

M
 101011111111111.11,

g I

iallarrzirWrire1511P7MCMPTINEIrietnrirIVM17774Pr-
muniummanammousenalso 200111

0 I . rnlIn Ammo! Itontimumlnomoso

=11111111111111111 MEM
=11111111111111111111 111111111111'

.1:_Ty I

W
0tOh;

*N.M.
14tm0

M_: I
I n

a

MOM
G 0
1 1I II I
Pmemernc6temo-
1 r.rrnic rirra

Imam
Iun0000

CINIIMIIIEVE111111 111111111111111111111 SIMON
111111111

IMO SIM MOOS MON 111111 SOMISOIS
CT

mom
_ moomoommomoommosoo moolommoomooloomom

Ammormisommosoussommn 1112111112212222112111111211121111111111105

mom Anumnpmenmournmtrnnt . no 1111111111111MIIMSImmilmommumm.

isimommommon "insivitio IIIIi1i11111111111
1111111111811111111 SOU0111121111111 iiuiiiiiiiiusieiiiu
IMMOMMUMMOSI 111115111111111111211111611MIMINDI

1111111111111MONOMOMMIMIOOMOWNIMMOSOMMIIMMMM. NOMMin
AtamigaMMCIMmOun

411

parmanuacoannoco CICICM=CIOCOCCEMCIC C=G7.7.C.T.COCCE2CCCCCOC=:=M7===',M=snamorrirnannaactirin Entmasanaisainsuonrir onriraurrirntrIrmiaanaseausissigelisamimnivisainrnssainiusurroriovnrins suriusiasinanamagusismaisnusuusuniumusitIrljt7481111h1111111111111111111111111111M
111111118111111iiiii1111211111111111111111111111111111111MINICIMUMINIIIMMIMassimisaiannnancannnn ,nenrionsinuaiinaisanausasaisesivessevmunassmasousneseasseassiasernrarrcstrinnomanassmangennanonmrstrarnnirrninsnanumanturrinnamisuniumnrAnnisamusinuanumanuonarirremaesamacaaeceecaeacceameongusiusaanausarinracrinarsorminnnniinunsioarmarmimarmargirnmmtarimmrriunigg

moineamigninuanacennwnwrinnuassuciansassicsrmsrurtrymnnnnesuspausinua
1111111111111111111111111111111111111110eturxrairpriammuusausammanausismarililllallilltall.111111111annti

aufausunissunevaassianennamminunausimmisannanvancicorirmunanunisuumirsoulanantum . CletTlfrIvernrontwasnutonnmnanntnimtwirmotvrrinsausessaissium1111nusainuninuaniessaanamanausaranummeassasinumensuanneasausi=mem DINVIIIIIIIIIIIMM11111111111MOIMOINIIIIIIIIIIIIIIIIIIIIMINIUSIMIIMMIIIIIMIMIN

5o 8
SUMMARY

'Structured progreeminskodinchas,often been celled "gotolesa" prosraming because
an sttempt is maid, to evold the "COTO." Structured coding is defined as the coting of
programs by repeated use of a *elected number of predefined control losic primitives,
each with one entry point end one asit. Combinations of the primitives can4be used in
implementing a program design.

There are three categories of thee. primitiVess the sequential, conditional
(ITTNINME), and iterative (D(WHILK). Two extensions of thole catisories are the
DOUNTIL (iterative) and the CALC1TIV(conditioos1) figures. These five Control logic
primitives peOvide the basis of structured coding. However, there are problems in
implementing these primitives.

There are computer leagues., which do opt contain the structured coding control
logic figures. Two options for implementing the structured primitives ezist. One is to
imulate them manually and the other la by usinc.a precompilsr. The precompiler accepts
the control figures mrszmiug, DOWHIIE, etc.) And generates compatible source code for
the target language. Evan with precompilers, there are problems in structured prosrammingi
coding.

The problems in structured coding CAM fall into two classes: those dealing mainly
with the programmer and those with compiler languages. Some of the problems include:
.difficulty in using structured code to.isplesent a program design, resistance to change,
programmer's ego, inefficient machine usage, and using structured code to develop a pro-
gram design lt takes both the programmer's initiettve and abilities to wtmk out solu-
tions to these problem..

In comparing Ptraditional" coding with structured coding, two thiuge *serge. First,
the explicit eat nf GOTOs has been eliminated for the most part. Secondt.indentation is
used to "block off" functional groups of cods. The writing of good structured coda will
take time.

QUESTIONS

1. Define structured coding.

2. List ths categories of primitives.

3. Whet ore the 5 basic control logic primitives? Draw their corresponding flow
chart representations.

il-41

4

4. What io precompilerf In what WWI is it usedl

5. (A) Poosibls problem(*) in using structursd codina include(*)

a. difficult to implement.

.m b. inefficient machine usage.

c. !lamely related to FDL.

d. .,has only 5 control logic primitivso.

s. has tendency toward pathological data coonections.

wompa.rp

IM1111!

wp.s..Inwm

=1Ime

5.09

6. A,characteristic of e. 4 coding includes:

a. There is a limated amount of indiscriminate broaching in structured coding.

b. Coding is indented for clarification.

c. If a precompiler is available, structured code can be translated into a form
that can ba compiled.

d. Any of the above.

4

e

5 1

mossAgy Olt TmP TUNS

Abstract Input Data - The:data at a point within a problem or its solution which is

related to the initial input data and can be viewed as still entering the

problem or'solution. This data identification is done with a data flow graph

for use in the transform analysis strategy. 4

\ .

Abstract Output Data - The data at point within a problem or its solution which is

related to the final output data and can be considered on its way out of the

problem or eolution. This data identification is done with a data flov graph

for use in the transform analysis strategy.

Administrator - See Project Administrator..

backupsProgrammer - A peer of the chief magrammer who is capable of assuming projtct

responsibility and maintaining continuity of the.development effort should the

chisf programmer become unavailable.
40

Bottom-up Approach - A technique for coding and implementing a modular.disign where the

lowest level processing modules ars completed and tested firit.

Bubble chart - Another name for Data Flow Graphs.

Builds - see Packaging.

CASE - One of the cohtrol primitives used in structured programming; PDL term which

allows for the execution of one condition from a group of possible conditions.

Central Transform - Those elements of a data flow graph which change abstract input data .

into abstract output data. The central transform is identified for organiiing

a nodular solution using.the transform analysis strategy.

Chapin Charts - See Structured Flowcharts.

chief Programmer - Technical manager of the Chief ProgramMing Team (CPT), who is respon-

sible for the direction and supervision of teem meMbers. Responsible for the

complete design of a software system.

Chief Programming Team - Two or more programmers/analysts assigned to a project who

possess a combined responeibIlity for the quality of the delivered project.

coars Tuning - The initial step used to avoid network of crossed lines on an IPO

chart. Usually accomplished by resequencing or duplicating items in the input .

or output.

Cohesion - A measure of toe strength of association of elements within module. Also

known am module strength or binding.

Coincidental Cohesion - A module comprised of instructions which have no apparent

relationship to each ether.

communicational Cohesion - A module whose elements reference the ame data.

Comection - A reference in one module to ati ideotifier defined, declared, described, or

otherwise caused to enlist in another nodule. , Also knogh as 4 (lets or logical

interface.

A-I

b

A

Construct - A o3ntrol structure contsining one entry snd one emit used in s preprocessor
programa:* language to allow ths application of structured coding principle,
la a higher level langUage. Also known as primitives;

Control Coupling - 'An association between two modulse where flags or switches from one
module "reused to influence the execution of the other module.

Control Logic Perimitives Ildilding blocks used to construct structured program.
Sequence, IFTHENELSE. DOWNILE, =NUL. CASE.

pr,

Coupling - A Nemours of the strength of association between two modulso; lutermodule
relatietsh.b. #

CPT -.Chief Programing Team.

Data Coupling - An associatiOn between'two modules !here information from one module is
used to provide input.for execution by the other,module.

Date Flow Graph - A graphical method of organizing and recording the initial ideas for
the solution of a problem which emphaalzeo the flowvof data through the
problim.

Decompose - To separate into parts or.olementsCparticularly to divide a task or function
Into its subfunctions.

Delivory by Farts - See Packaging.

Detail Design Package - Tte *caution to a problem sufficiently specific so that the
coding Is simple almost mechanical step in sofewaredevelopsent..

Detail Diagra Provides specific inforwetiao atirhe lower levels of the hierarchy
chart.

Development Support library - A ceotral repository of all data revelant to*the project,
in 'bath human-readable and oschine-recognizable form.

DIG - Data Flow Graph.
)

Direct Data Flow. - See NoFmal Data Flow.

DOUNTIL One of tho control primitives used In
ite-ativo execution with the test for

DONN= - One of the control primitively used in
. iterative axecution with the test for

structured programming; FOL term for
loop termination loot.

structured programming; PDL term for
loop termination first.

COL Devolopemot Support Library.

Dummy Nodule - A temporary unit of "ouzo* code Which is part of an incomplete structured
program mad will be replaced by th* actue unit of cods when it is cospleted.

'Vectoring - Separating a function into "seller function'. Also calledIrUnctional
Decomposition.

PAN-0 -.The number of hisher:4sWel =dupe calling the same subordinate module.

Tine Tuning - The final graphic stop in HIPoe Where crossed lines on the IPO charts are
eliminated.

,A-2

..1

512.
Functiopal Cohesion - A module whith performs only one tAik. See cdhesion.

Functional Decomposition - See Factoring.

Global Parameters - Any type of infOrmation which ix acclmsible by all parts of a

program or system.

Hierarchy Chart - A greplhIc tool developed during the software design process to

illustrate the organization of functions and provide a quick reference for

IPO Charts. Also called Visual Table of Cdntents (WTOC).

Hierarchy plua Input-Process-Output - A tool designedto aid in system development by

providing a graphical representation.from the initial design through the life

of the system. a

HIPO - Acronym for Hierarchy plus Input-Process-Output.

HIPO Diagrams - S. Hierarchy Chart and 7110 Chart.

tr
HOO Package - Consists of overview diagrams, detail diagrams, and Visual Table of

Contents (VTOC).

Hybrid Coupling - A cothinstion of data end control coupling where a variable is used

for both data and control by the receiving module; also refers to ehe

modification of instructions during program execution (i.e., COBOL ALTER

StAtement).

Hybrid Parameter - A variible used in Hybrid Coupling.

IPTHFN - A variation of the IFTANELSE°primitive where the,ELSE cOndition is.a null

function.

IPTHENELSF - One of Lhe control logic primitives weed in structured programming; PDL

term for a two-state decision mechanism or conditional execution.

Incremental Delivery - See Packaging.

Indirect Data Flow - Information exchange in a modulsr piogram or system witLout being

explicit and obvious. Examples are FORTRAN COMMON, CO Bki data division, other

global variable uses.

Initial Design Package - The first major attempt to develop a software product, therein

producing documentetio for walks-throughe and for more detailed development.

Interface Complexity - See Coupling.

IPO Chart - A graphic tool used in the software design process to describe and decompose

a function in term of the Input(s), the Process(es), and the Output(s).

Librarian See Programing Librarian. .

Local Parameter - A variable or information.item which is created and used only within a

pecific module.

Logical Cohesion All elements in the module are involved in 'similar tasks --such as a

general editing routine. See Coheeion.

4'qf

A-3

clk

s-13
Maintenance - The effort expended to debug or modify a program which is no longer in the

development phase.

Maintenance Package - Any documentation which is deemed ueeful'when modifying or
debugging production software.

Module - TUnctional part of a solution; an assembly, functioning as a component of alarger part.

,Nassi-!chneiderman Diagrams - See Structured Flowcharts.

Normal Connection - A imoduie I* 'always initiated at a single entry point and terminated
at a single exit point. Control always returns to the point where a modulewas invoked. Refers to modules by name with no direct reference to that moduleinternally.

Normail'Data Flow - Passing data from one module to another by explicitly stating the
variables in conjunction with a normal connection.

Normal, Transfer-- See Normal Connection.

N7-S Diagraa - See Nessi-Schneiderman Diagram'.

Overview Diagram - Presents a general description of a function; usually supplements the
hierarehy chart (VTOC). Lists general inputs, processes, and outputs without
showing relationships.

Pickaging - A tool used to determine where to divide the problem for development; the
art of subdividing a skeletal design int(' several parts or packages. (Alsocalled Builds, Incremental Delivery, or Delivery by Parts.)

Pathological Connection - A Todule reference to an internal program element (either data
or cantrol) in another module; an abnormal exit from, or entrance to, a module.

Pathological Data Flow - See Indirect Data Flow.

PDL - Program Design Language.

Physical Data - The information available prior to and after system or program
execution. Generally thought of but not limited to punched cards, printer
output, magnetic tape, disk, etc.

Precompiler - A program which is invoked before the compiler to convert thooe extensions
of the source language, uhfch support structured programming, into acceptable
source language code.

Primitives - Ree'Control Logic Primitives,

Production Library - Central repositovy for all codes ttat have been tested, and
integrated with sll higher level codes; constitutes the current operational
*rotes. .

Program - Logically the seat as a 'viten or module, but generally, s system consists ofprogram.

Program Design Language - An English-like language for deacribing the control structure
and general organization of a computer program.

5 9
A-4

Program Stubs Segments of code which substitute for mmdules not yet developed so that a
higher level completed module ean be.tested using the state in place of the
incomplete lover level called modules.

Programming Librarian - An integral mentier -of :the Chief Programming Team (CPT) who
develops And maintains the Development Support Library (DSL) and Programming
Support Library (PSL).

Irogresmang Support Library - A software sysiem which provides the tools to organize,
implement, and control computer program development.

Project Aftinietrator - A support function for the nontechnical requirements of a Chief
Programming Team such am scheduling, budgeting, and personnel requirements.

Project Manager - The individual ultimately responsible for the development effort. .The
supervisor of the chief programmer, often performing the function of project
administrator. 4

PSL - Programming SUpport Library.

SAPTAD - Acronym for System Analysis, Program, Transaction, Action, Detail. Associated
with transaction analysis.

Sequence - A basic control logic primitive tohich is recognized,as the execution of one
statement after the other, in order.

_

Sequential Cohesion - Module in'which the input for one module element is output from
a previous-module eliment. See Coheston.

Structure Chart - A simple, flexible design tool which is used to organize and document
the thought process leading to a problem solution.

Structured Coding - The writing of programs by repeated use of predefined control logic
primitives: Sequence, IFTIWNELSE, DOWHILE, DOUNTIL, and CASE.

Structured Design - An approach to software development with tools and techniques
intended to reduce complexity and facilitate maintenance.

Structured Flowcharts - A detailed design tool used to specify the steps required to
perform a funct,ion in term of specific primitives.

Structured Programming - The process of developing structured programs; associated with
structured programming are certain practices such as indentations of source
codes to represent logic levels, the use of intelligent data names, and
desOriptive commentary.

Structured Walk-Throughs - Technical examinations of the design, implementation, and
documentation to provide positive feedback to the programmer. (Or a set of
formal procedures for reviewsby the entire programming teant--of programming
specifics, programming design, actual code, and adequacy of testing.)

Supeyordinate - Opposite of subordinate; boss or superior; with mndules, the calling
module is a superordinate of the called module.

SupOrt Members - Individuals required by the Chief Programming Team to provide
knowledge and expertise in a specific area; i.e., other programmer, contract
officer, accountant, project administrator, consultant, etc.

A-5

a

5)5"

TDSP - Arrows for Top Down Design and Structured Programmdng.

Temporal Wheaton Module containtne time related elements, sUch ae initialization
and termination routines. See Cohesion.

Top Down Design -,The technique of developing the framework for the solution to a problem
by repetitively factoring the prOblem into an organization of small problemm
which cao be more effectively solved.t

fop Down Documentation - Illustrates the top down design and is delivered in increments
as the dystem is developed. Includes descriptions, specifications, graphical
representations, manuals, plans, reports, listings, etc.

Top Down Implementation - The coding, verification, and ieplementation of higher levels
of the systeu logic prior to the coding of any subordinate sodulee; an approach
to the design, coding, and tasting of the system.,

Top Down Structured Program - A structured program'with the additional characteristics of
the source code being logically segsented in a hierarchical manner and only
dependent on codes already written.

Trans's tion Analysis - A strategy for designing highly moduler programa end system by
organizing all the combinations of eventn which are possible in processing
a particular data item.

Transform Analysis - A strategy for designing highly modular prograwo and systems by
studying the data flow through the problem.

Tuning - The process of avoiding crossed lines in the graphics of an IPO chart. See

Coarse Tuning and Fine Tuning.

PTOC - Visuallable of Contents - See Hierarchy chart.

TRAINEE'S UlttiENT FORM

TOSP Student Text

Please help um improve our training literature by sanding us your opinions,
suggestionx, ac. We are especially interested in receiving your comments
on the readability of this text, recommended additions and deletions, and
identification of any errors.

Coteens

Fold Fold

FolJ Fold

FOLD ON TWO LINES, STAPLE AND MAIL

MEMO mM,

*Fold

tiang WM.

Fold

3390 Technical Training CroupirTMKP
Keesler Air Force Base, MS 39534

Attn: Curricula Development Unit

0/484e4.0- ai eV/ Miss /01/"C.,..

Fo)d

Mew

Fold

,

Technical Training

Cceroutor System; ?rooming Officer

PROGRAMMING PRDICIPLES

,D\

February 197?

USAF TECHNICAL TRAINING SCHOOL
3390th Technical Training Group

Keesler Forq Base, Mississippi-

l Ikals Mil it
Designed For ATC Course Use

DO NOT USX ON TNIE JON

+5.41
GUM

E303M5 41 002
PDA-478

4

520

PROGRAMMING PRINCIPLES

SG E308R5141.-002

1(064,-.478

February 1177

CONTENTS

TITLE PAGE
INTRODUCTION-

1
PROBLEM SOLUTION METHODS 2

Direct Method 2
Enumerating Method

3
Scientific Trial and Error Method 3
The Simulation Method

3
THE ALGORITHMIC STAMMENT OF PROBLEM SOLUTtONS 4

The Direct Algorithm
5

The Repetitive Algorithm
5

The Indirect Algorithm
5

PROBLEM DEFINITION
5

The Input-Process-Output (IP0) Chart
7

The Hierarchy Chart 11
FLOWCHARTING THE PROBLEM SOIP111X+i 15

The Sequence Primitive 16
The IF...THEN...FLSV... Primitive 17
The Case or Switch Primitive 20
The PO uNTIL Primitive
The Do coilLE Primitive 27
The LOOP EXIT IF Primit ve 2q
Miscellaneous Flowchart Symbols 30
'General Guidelines for Flowchart Preparation 30

FLOWCHART DEVELOPMENT 31
Arrays and Subscripting 36
Sequential Search Algorithm, 36
The Bobble Sort Algorithm 44

DEVELOPMENT SUPPORT LIBRARY 48
TEAM OPERATIONS 50
STRUCTORED.WALX-THROUGHS 53

Mechanics 54
As Part of New Technologies 55
Parallel Testing 57
Psychology 58

THE IDEA OF STRUCTURED PROGRAMMING
, 59

Top. Down Programemg 59
Structured Programming Theory 59
Segmenting Structured P.rograma 61
Creating a Strurtured Program 62

PROGRAMING 13144N Clel.ES

INTRODUCT UM;

2.1

SG 00110141402
KDA-478

February 1977

Computer programming may he defioed as the specification of a set of instructions,
Oa form acceptable to A conputer, prepared in order to achieve a certain result. This

statement soon& just like a high school definition that will purely shog up on a test
at mome time, but it will not he on anv test in rhtm course. We are going to break that
definition into three parts, define aireaning for each part, and look at them separately.

The first part we will describe is . . . "The specification of a set of instruc-

tions . ." We will call this-the Problem Definition or solving the problem. Quite
often when a problem is defined in detail, the ftroblem solution becomes evident. The,

problem's definition may be opecified in Ira language, e.g., algebra, set notation,

English, MINX, FORTRAN, or Swahili. A problem definition may be thought of as an out-
line of a hookall the important points are listed in the order they are encountered.
In programming circles this may also be refetred to as a "program design."

The second part f tne description we will discuss is ". . . in a form acceptable
to the . " lhim is the actual written computer program. It must be written

In a machine acceptable languag, e.g., machine, BM, GtditYL, latirrtaAN, or RALF,

etc. Flits it the step in which you teaftmlate the problem Zmfinitlon into a language
the computer tan understand.

The last part ot th definition, and by many standar& the most important, Is

. . In order to achieve a certain result." This is the problem scant fon. It is the

result of the design of 0 computer program. Without getting a solution to the original
prutdeto. we chn in effect may that nothing has been done in the hours. days. or months
it has talen to design and code a program. If our program does not achieve Its desired
result, there can only be two causes. Either the program design aid not correctly solve

the problem, r the problem demign was not correctly translated (coded) into the machine
acceptAble lahltuage.

Ihe first step in wrijing a computer ptogram is considered by many to be the most
dtt11cult part of programmiag. In tact, this is the step that .leviscates the "coders"

from the "programmers." A pr'ogrammier Is a persoo capable of prorwrly defining a prob-
lem, designing a program'to solve the problem, and coding that program. A coder can
only code a program in a machine acceptable language from someone elmels design. When
you finish this course, each ot you will have the knowledge necessary to become computer
yrogrammers. What you do with that hutwIedge will determine your capabilities and
growth ma A computer programmer.

In'thfs study guide we wfr concentrate Oh problem molving techniques and program
Remember. A correet program design is really an ordered list of sil processes

you would have to perform If von were the computer, If a &affirm does not contain enough
information for you to solve the problem, It is certainly not detailed enough for you I.
tell an "idiot with the speed of light" (the computer) how to solve the problem.

1

e

f410111,EM souulnN Hvimors

Selecting and analyzing problem solution methods are used throughout the problemdefinition phase of computer programming. It would be helpful at thin point to discusuthese two arees of problem solving before we begin examining wilVs to defire problemo indetail.

Solving problem is the process a person goes through to define a process whichwill give a desired unknowo result by usiny known information nr equipment. Unfortu-nately, there in no basic technical school wherein one.can he taught how to solve prole-lema. Some people are better at it than Oihers. This leads to the idea that problemsolving is an intuitive, or unconscious, proress.

If this is true, then a persoo cannot he taught how to "solve a problem," hut hecan he shown some of the methods used bv tho good problem solver. He then nay leable to consciously apply these methods to his detined problem in order to arrive at asolution.

It can be shown that even though a pe7.son may solve different prObleys in whatappears to him to be the sane way, he in fact gets to the solution in one of, or acombination of, the following different methods.

DIRECT.

ENUMERATING.

SCI IFIG TRIAL AND ERROR.

STPV1)I.UN.

In all the methods we will examine, the first thing to he done is to put the prob-
lem into a proper framework. This framework consists of three parts.

I. identify the knc;wn parts and their relationship to the solutic#

2. Identify the solotion.

3. Identify the unknown or variable parts.

Having done this, it becomes a matter c;f building a string of relationships berweepthe known parte of the problem and the solution to the problem.

Unfortunately, it is difficult to know which relationships will lead most directlyto the solution. If s.person moves efficiently from known parts in solution, he proba-bly has move "feel" for the prohle'M than one who stumble, about before finding the rightpath.

Mullet Method

The direct method is proiably the most widely used of all problem solving methods
snd, therefore, it is so ingrained and habitual that it appeara to he purely intuitive.
For this reason, it la extremely difficult to explain or to analyze it scientifically.If you consider being thirsty a problem, then the solution to the problem would be "go
to the water fountain and get a drink." This would be an example of a dirett solution
method,

Enumerating Method

.41

Ilas method is also widely umed and is so wimple that it might seem that there is
littlo reason tor even ItNitIng it. It consists of checking every possible entity that
could be a solution.

In other words, it one wished to find the heavivut book in a library, he would
weigh each one, check each weight. and select the book with the largest number. There
are IWO retplinnlvntH for using this method.

1. All of she solution possihilities must he known.

2. Thiry Malt 'IV scriii-e criterion against which to match the possibilities.

ielentific Tlial and Error Method

Similar to the enumerating method, the scientific trial and error method is used
where the number of possible solutions is very great. In practice, it works this way.

A guess'is made at the answer. ,We try to come as close to the solution as possi-
ble, tout it is nut necessary to be close. Then the guess is examined for wilat it has
dooe lor the problem. 'Rimed on the results of this examination, another guess is made.
lio.,tuliv this ih a hetter gueswl, and we come even closer to the solution. These steps
ii. lepeoted until the solution is found. This may at first appear to be Q very prim-
lt,ve approach, but it ts a very versatile and useful method of attacking a problem;
it is well suited to computers an it is hasi..allv a reiterative method.

An excellent use of scientific trial and error would be a common method for taking
the square root of 4 number using a basic 4 function calculator. Let's call the number
we want to take the square root of "X." Then we will let our initial guess called "C"
he X divided by 2 (C X/2). Naw, using the language of algebra:

Y - (X/c + 0/2
0.

Nou if Y and G are equal, or very close toge.ther, we are through; otherwise, we let C
eqhal Y ,and then reevälud'te'the equation.

The SimuFat ion Merhod

The simulation.method of problem solving goes a step beyond the mathematical model
of our algorithm. With this method we attompt /In actual working model of the real
world. The'working modjr is aet in Motion and, we sit back to see What actually- happens.

As an example, . let us help the town oi lmannisport with a traffic problem. The
main intersection of the town has- a deastir_problem every day at 5:30 P. M. Traffic
seems to be tied up in all directiens for more than an hour.

file town council has decided thatP e,tnore moaern tre.tric signal will get things
moving quicker, and the problemio tie resolved ts the timing andAdisplay sequence of
the light.

Using the simulation method here seems to be in order. Data on traffic flow is
gathered, along with other data tlint may iniluenc6i'vete problemsuch as the number of
Pedostrians using the intersection, tohools in the area, maximum speed limita400maia-
tent with safety, etc. A mathematical algorithm is built with this date and a variable.

524
The variable im the'various timing and diuplay 'wilt:came which cauaem the least cengea-
tion at the intersection. The algorithm is written for the computer, and the program
is run using different values foe the computer to give um the nnswers.

The last problem gives us the opportunity to make a very important point. A solu-
tion and answer are two different entities. Note that In Lnannispert the solution
the traffic problem was the installation of a properly sequenced traffie light nt the
main intersection.

I

An answer relates to a specific met of problem specifications where a variable has
been given a value, and that value IN omid in cemputation. Every time a different
sequence for the light was used in the mathematical algorithm, the vomputer came ett
with an answer. only one, or at most only a few answers, satisfied the specifications
of the solution, which was a minimum amount tif congestion at the intersection.

one other thing we should point out here 14 that it is very diffivult to pin a
label on the method of attack for a particular problem. Anv one problem may involve
all of these methods to some degree, even if the solution comes so quickly as to Aefy
naming the process. If we AO back to the problem of quenching a thiret, we said the
solution used the direct method; however, the proves% of going to the water coeler was
a repetitive process of putting one foot in front of the other. This could be consid-
ered to he scientific trial and error, hecaese each time you tal,e a step you reevaluate
your direction of travel based on your presynt po,,ltlon with respect to the water cooler.

4^. THE ALGORITHMIC STATEMENT OF PROBLEM SOLOTIoNt:

An algorithm is the set specifications or instructions for doing something. !Ini-
tially that something is solving a problem. AN such, an algorithm need not he mathematical.

,

A mathematical algorithm might he 414 follows:, Take a number, multiply it by itself, add
to it mice itself, then subtract one and call this the reeult. Thia English algorithm
can he stated in another language called algebra.

R e X
2

2X - I

A good algorithm ham two properties. First, it must he clear. Each itep must haveN)one, and only one, interpretation. Everyone reading the step must be able to accomplish
it in the same wxy. arriving at the same result. Second, an algorithm must stop.

To demonstrate the importance nf these two properties, take am an example en algo-
rithm for making a good cun of coffee, in whictr the fifth step iN written: "Add 1

teaspoon of sugar until the coffee is sweet enough." We have said that the algorithm

r,

must he cle and must stop, hut the concept of %wetness varies from person to person;
thua, a pa on reading these instructions who has a deformed owns,' of taste MOV never
stop addin sugar to the cup. A better fifth step weuld be "hdd one teaspoon of ougar
followed by step six, "Taste coffee"; step seven, "if it is not.sweet enough, add

.

another teaspoon of sugar"; and step eight, "Repent steps six and seven until the' coffer
is sweet enough or ten teaspoons of'augar have been added." Note that this modified
algorithm is clearly stated end will stop, hut it mav not sNlve the problem of making a
goad_pop of coffee for the person with a deformed sonne of taste.

FOr the majority'of our work we, of course, are Interested in elgorithms that solve.
our problem. However, not solving the problem does not invalidate the algorithm; it
must only be elementary, clear, and terminating.

4

5 1, 9

-

. 52.5'

Another algorithm might bet

1. Remove thr Weilcr IrOm d 1100d with an 8-ounce glass.

2. Stop when the pond IN empty,

Thin I. a straight-forWard, unambiguous task. We canOsure also that it will
eventually stop, even though we do not know how long it might take.

The Direct Algoylthm

A dtrvei algorithv i 'ne that IN made up of a number of known steps and.a result
. determind by these steps. The firnt example we gave yon in the previous section is a
direct algorithm. We can tell just br looking at the wording or the algebraic notation,

X' + - 1, lust what and how much ip obtaining a result.

rhe Repetitive Algorithm

A repetitive, or it.rrative, algorithm IN one in which some or all of the Steps of
thr process arv repeated. An xample of an iteratiVe algorithm was given in the exam-
p1r of making a good Cup t cotfee in which step 6, "Taste the. coffee," and step 7,
"I, not siwel enough. add another teahpoon of sugar," were repeated until the coffee
was sweet enough or ten teaspoonh or sugar had heen added.

rhe Indirect Algorithm

Very simply, an indirect algorithm is ane that is not dtrect. We have said that
a direct.alerithm has a number of keown mteps, and we could tell how much work had to
he done hy rooking at it..4111

Note the second example where we referred to removing water from a pond with bn
8-ounce Oahe. lt, like the coffee algorithm, is iterative but it lp unknown at the
beginning how many times the process of dumping one glass of water Must be repeated.
It will he seen that the indirect aleorithm can he put to great advantage in solving
proilems with the computer.

#

PittMLEM DEFINITION

In the introducCion to this study guide, e stated that "Quite often when a
problem is defined in detail, the problem solution becomes evident." You have prob-
ably already asked Yourself some'questtons about this statement, such as: What do we
mean bv dbfime In detail? How can we define abcomplex,problem in detain.- .Why not
just do the Joh and define thekprohlem as we go? These are all 4#1lid questions that
will he answered NN we progress through thih sbction.

First, why even worrif about d ining the problem? 7o illustrate the need for a
complete problem definition', tyt suppose you were Aiven some Air Force orders.send4-.
.ing YOU on tenporao duty. The o ders stated only:

Report tot ColonelAArnold Fiak4it
123 S. Main St., Rm-t61.
Washington

at 0800 houlq 3 (lava from today.

5210

Do you have the 'information you will need to perform the jOb you have beer given?
No? You are right. How are you going to get there? Plane? Car? Train? Stagecoach?
What do we mean by today? Now? The day the orders were printed? The day Colonel
Flikbait said "Send C.I. Joe to Washington?" For that matter, Washington where? DC?
State? Arkansas? Suppose you get the dates straightened out, discover you are to drive,
and Washington is in the Northeast United'States. What do you do? Sit down and decide .

which highways you have to take to get to Washington, DC? (You.read the Air Force Times
and know Col Flakbait can ueually be found hanging arotAd the Pentagon.) 1 hope you
don't go to DC because Col Flakbait is expecting to meet you in Washington, Conn.

What? You say the Air Force wield not issue any orders like the one abqve? True!
However, you may rest assured that as long as you are a cooputer programmer, people will

' bring you problem* that are not even as well defined as our proposed TDY orders. '

Consider, for example, the businessman who wanted to WTite a program to computerize
his stock inventory. His program consisted of;. .

"Dear Computer,

Please take the following information and save it so that
you can give it hack to me in the way I want it when I want it."

Our businessman followed this statement with his store's inventory list. He was
quite serious and felt belled given the computer all the information it needed to do
what he wanted done. Do you know what he wanted? I don't!

We, will resort once more to a definition here--not to be memorized but to he sure
that each ef us is talking about the same thing. Webster defines PROBLEM this way: A
question proposed for solution or consideration. If we do not take too much notice of
the last two words for the present, we have a working definition of our purpose as
computer programmersto propose solutions to a question. The question, therefore,
becones the p:oblem.

6

.F0

uwdever, briorm we lump.tntu writing a program to solve a given problem, there aresumbei of thinge that must be done. One of the things to he done at the beginning is
to eliminate as many assumption's as possible. Assumptions will probably get you into
more trouble than anything else. Du not assume that you know what the problem is on the
lirst.telling or reading. Unfortunately, the language used to relate the problem to the
programmer is usually English (which can have infinite (shades of meaning to different
people). This is had enuugh, but add a smattering of technical jargon and who can besure wtat is meant. Remember the note from the boos to his employees? "I'm sure that
you think you understand what.you thought I eaid, but what I meant to soy is not what
I think you have assumed I meant."

Now that we are well aware of the pitfalls that.can he found in the realm of prob-
lem solving, let's see If we can find a method that will help us to steer around these
pitcllle.

The first rule,is to write everythiLg down! Don't rely on your memory because
little things will slip bv you, or be forgotten. If you don't believe me, what room
number in Colonel Flakhait going to be in? No fair peeking! The.reason you had trouble,
remembering the room number is because it didn't seen important when you read it. Veryoften, facts that seem insignificant or unimportant when the problem is first presented
to you can turn out to he the vital key to the successful solution of the problem.

The second rule is to solve only simple problems. However, you and I both knew
that people are not going to bring you simple problem to solve--they will solve thosethemselves. You are going to he given some prohlema that will put you into the "munble
mode." If we are given complex prattlers and all we can solve are simple problems, whatdo we do? Obviously we must somehow make the complex problem simple. Easier said than
done, you say? Agreed, but if we were to examine a complex problem closely, we would
discover that it is made of many simple problems'. It is not likely, however, that we
Oil be able to use the direct method and just write down all the simple problens that
make up our complex prOhlem. A Scientific Trial and Error method might be appropriate.
We -.teeth by breaking our complex problem into a few simpler problems. If you divide a
complex problem into smaller subproblems', each subproblem must be simpler than the whole
problem. Each subproblem only contain:4 a part of the probletamuch like breaking a
pencil in half, each piece is smaller than the whole but, together the nakeup is whole.

As you are reading the next few pages, you may get the feeling "This l& ridiculous.
Anyone in his right mind would just start getting the answer to the problem and making
any decisions as he comes to them." True! That will work fine for you because you
have the uniqUe ability to reason. Howver, the computer does not have tItis ability.
You, as a programmer, are required to find and solve all possible alternative solutions
to any problem for which you wish the computer to calculate an answer.

The input-Erocess-output (IPO) Chart

Consider now a workable metKod for subdividing a complex problem and for writing
everything down. Take a piece of paper, briefly state what has to be done at the tep,and then divide the remaining part of the page into three columns. In the right-hand
column, state the specific result or results of the solved prOblem. This is known as
the oulput of the problem solution. In the left-hand column, write down all the infor-
mation you have pertaining to the problem. This Is called the input to the problem
solution, In the middle column list all of the things that have to be done to get from
the basic known imformation in the left-hand colunn to the desired result(s) in the
rightiand column. We will call this column the process column.

7

5is
AO an xample, let'. go))ack to our original set of vague orders to go TAY. That

is a problem! What hae to be don? Go TAY? Right. But What specific result do we

need? Of course- -"Report to Colonel Flakbait. In the process column, list the major

tasks that must be performed to produce the result(s) listed in the output column. .

INPUT

CO TDY

PROcESS OUTPUT

Col Arnold Flakbait
123 S. Stain St, Rm 461

Washington?

Need to go TDY

Base Peracinnel Office

Base Transportation
Office

'lather needed information

Plan trip

Travel

Report to Col Flekbait

RDA126 -2

You will.pote that some items other than the ififormation on your orders are listed in

the input-hilumn. This is because it in always better to have too much information than

not enough. If something is listed in the input section that was not used to'solve the

problem, it can merely be crossed off. Net so with information omitted. It is neeemsary

at this point to emphasize that the tasks listed in the prcicess column, when performed,

must proeuce the resu14 listed in the dUtput column. Don't worry now about how you are

going to perform each rocess--that will come later.

We now have a copplex problem that has been subdivided into three simpler problems.

If you can easily see how to solve any of the tasks listed in the process column, then

they are simple problems. Solve them! Treat each of the remaining tasks as a complex

problensubdividing them using the IPO chart is discussed above.

In the text where we discussed solution methods, we stated that sometimes it ix

helpful to work backward from desired result to known information. This is an appro-

priate method of attack for this problem. We will begin with the travel process.

Whet is the desired result of our travel? To be at the appointed place at the

appointed time? Right. Okgy, what information do we need to perform the travel function

or process? We need to know the mode of travel and have a trip plan. (We immune the

trip plan will be valid to get us to the right place at the right time.) Our process for

the travel function then would be to either travel by car, or travel by plane. (The

Government doesn't use stagecoaches much anymore.) But if we travel by plane, we will

need a ticket, so let's add that to our inpurcolumn. Our IPO chart for the travel func-

tion now looks like this:

I NPUT

TRAVEL

PROCESS OUTPUT

Mode of Travel

Trip Plan

Airplane Tieket

Travel hY Plane

Travel by Car

8

0

Be at the appointed place at
the appointed time.

ROA126 -1

111

Notice. the addition of the arrows. In this situation, it is relativelyreasy to see
which inputs are used by which procese and whieh process results il,which Output. We

draw the arrows so that the next tithe we look at the IPO chart we viOn't have to waste
time analyzing and making a decision that has already been made. Write everything down,
remember? We will continue the process with the trip.plan task.

INPUT

TRIP PI AN

PROCESS OUTPUT

Mode ot travel

Place and date to
- report to Col Elakbait---00,

Plan an automobile
trip

Plan trawl by plane
and get ticket

Trip plan for car

Trip plan for plane

Airplane ticket

RDA126-4

a Notice here that two different results are listed in the output column, and that
each output was the result of performing a separate process. This fact will be used
later.

Now we will repeat the process for the "gather needed information" task.

INPUT

GATHER NEEDED INFORMATION

PROCESS

Vague TDY Orders --ea. Locate an individual

ft who can supply infor-
mation about location
and date of meetyg

Base Personnel office Cet location and date
of meeting

Base Tranaportatipn SP

Office
et mode of travel OP

OUTPUT

Someone to contact for
locatinn and date of
meeting

Location of meeting
Datebf meeting
Time of meeting

Mode of travel

RDA126-5

SOmething new has been added. An output from one process has been used as an input
to another-process within the same general problem area or module. This is perfectly

all right. The arrows indicating this will he a big help later when we are deciding
the order in which the processes (functions) are to be performed.

We have now complete4 subdividing our complex problem one level. We have also
defined each of the subproblem as a module whivh contains one or more functions to be
performed. This May or mav not be suiliciew to determine -a soldtion method for each
subproblem. In most cases it will not. However, before we go on with the subdividing
process, let's take a close look at what we already have. Several places we used dif-
ferent words to ,express the same meaning (shame on us). This is not a good idea because
it could cause confusion later.on. We should go back and rewrite our IPO charts, using

the name words to express the same meaning. Before we do that; however, are there any
IPO charts that list two or more seemingly independent processes? Sure, the,"trip plan"
and the "travel" IPOs seem to have independent processes. Let's separate those and make
each fil'ocess a separate module or subproblem of our main problem.

9

Our Pt, ellarts now look l.lke t h

INPUT

Vagua Thy orslerts
Rase
!Lute Pr rsoniu I 01 f

qt. nw

PRI ItISS
1111m.....11.1.1....!...

cat hr need(4 Int of mat fon

Mot into It ip

bane Transport at it It tivel liv ant toanhi
otfice

I

v.igue lily

l'ersoima- I u/

11:Ne. Tr.sti'-0,-rtat I -00
' t

1011....1.141,

P Ian p1atit I rip

Vel by plane

530

()arm

!OTHER_ SEEDED INFORMATION

r :r,!;s 4IP ouTpirr

Coca t e mi insll vidiitil
rout .sut who ram

:ittpp Iv in format ion

slt e f eet lu
.ifteifif !cleat f and

a o m it

Gt I I Is' at I on and elle --SY I neat ion of meet ng
ulf meet frig

Gut mode vf ravel .4.1,11--4.c..--1," Dai e Of meet fng

Time of meet fug

Mode of. t ravel

t.

Somvone to contact I Ir
'i it f on and slate of

meeting.

PLAN Al101.10511.1. TRH'

PROCESS filiTPPT

Mode of travel is----00 Plan automobile t rf p RP I Trip plan for travel by
by aut omob le

I at ion ta meet i

Date ut trivet i

tole Nee/ bn .r,

.1111., Wier

ant ornshi

TRAVF.I. By Auntrusirx

PROCESS OUTPur

Trip plan tar I ravel Travv I itv aut small i le
by autsmosisi Ith

lie at iii. appointed
loention on the proper
date at the proper time

NIA 1 26 -6-

INPUT

PLAN PLANE TRIP

PROCESS otrtrv r

Nude of travel IS Plan a plane trip Trip plan for travel by
by plane

Location of mreting

Date tot sore t ng

Time f meeting

INPUT

TRAVEL PLANE

PRMTSS

Trtp plan for travel -0.
by plane

plane .

Travel by plane Re at the appointed loca-
tion on the proper date.
at the proper time

OUTPUT

Rall26-7
1/ I c

You man have noticed that the previous four fro charts 'Hated tho same process that
was tinted as a subproblem of our overall complex problem. Thin should wnl v be done i r
a solution method is readily apparent to anyone who might be ntudving the I iii charts.
Thin ia 4;bviounly not the case. You gur.ised ILI Subdividing these lour problems will
be lett 3.4 an exercise tor you to do. luu may find that some requi:ed items have not
been listed. If so, fad thee to the iliput coium of the. appropriate Tro, chart. For
example, you would probably need an automobile before you could drive to you:: destina-
tion. For that matter, %mild you want to plan an automobile trip it you didn't have a
car available? Keep in mind, however, that krtwnever an item 1 added to the input
column ot one module, then soar cOrrespooding ntry or entries must be made elsewhere
In your problem description to insure the new tequired input Item will be available when
needed.

Did you notice that every time we toaldivided n problom, more If tlef4C I ,'lls sOmd to
appear? This is normal. rhe question.. were Awavn there, we Iurt were nct aware of
them. A problem is not completely def toed an long as some plestion remain!: tatooxwered,
or some assumption ham not been accounted for. By thin definition, noise of our sub-
problems have been completely defined. Thov.have, .however, sr their purpose of
showing need for, .sspii a mthod of, dividing a problem into les, ,omplev subproblem
to enable the development of a solution.

The Hie inlay Chart

You can remit lv see that as vs. I' I nut. this subdividing pro,:o4 w are going to
produce Iot of papers, 'each with an IVO clialt on fr. We AircAv, Isiso Nix dnd
nowhere near complete with our description. I i might be helpiol I,. sle!I le is filef.totA sr;
indexing our 1110 charts no that we can keep sosse order to our "doeumentat ion" of the
problem solution. Have you ever heard.the statement, "A picture is worth a thousand
words"? We believe that statement, so we an going to drra, a pieture of our problem
-solution. We will call this picture a hierarchy chort. It will bo used to show whilit
simple problems are parts, or components, of more complex problems. It in very similar
to an organisational chart yhich shows which office is responsible to which office. We

ii

532.

will start by listing the main problem statement in a box at the top center of the page.
Each process listed in the IPO chart for the main problem statement will he listed in a

.-.......peparate box in a horizontal line below the top box. If the second level IPO char/ for
a particular subproblem contains more thnn one task or process, then each process is
listed in a box below and connected to the box that contains a description of the sob-
problem we are working with. If that memo a bit confusing, ft in because we used words
to describe a picture. The example below should help clarify things.

GATHER
NEEDED

INFORMATION

PLAN
AUTOMOBILE

TRIP

GO TOY

TRAVEL
BY

AUTOMOSILE

FIND 2A
KNOWLEDGEABLE

PERSONmea.0

GET DATE,28
TIME, AND
LOCATION

PLAN
PLANE1
TRIP

GET MODE 2C
OF

TRAVEL

TRAVEL _:1

PLANE
,

BY

RDA126-8

;Mat? You wonder what to do if you have too many processes to fit on a page? Well,
take the subproblem "Plan Automobile Trip," for example. Obviously, if that subproblem
had several processes listed, the chart could get very messy and hard to read. We sits-
ply draw another hierarchy chart with "Plan Automobile Trip" listed in the top box and
its processes listed on the second.level of that hierarchr chart. This type of repeti-
tion may be continued as often as necessary. Our hierarchy chart gives us a bird's eye
view of out complex problem and its component subproblems. But, how will that 440"

uskeep out IPO charts in some kind of order?

Did you notice the numbers and letters in thP upper right-band corner of each box?
These numbers and letters are a "key" to a verbal index that sill be developed in a
moment. First, we want to see how these nurbets are assigned.

The top center box is numbered 1 cm the hierarchy chart that shows the breakdown
ef the overall problem. The second level is numbered from left to right starting with
2. On the third level, each box is given the number of its asaociated second level
subproblem, and then a letter is attached to ehe number, giving a unique designation to
that particular module. Thp snme letter may be used to designate different modules on
the same level if, and only if, they are processeS of different higher level modules.'
For example, if.the module "Travel by Plane" had contained three separate processes,
.the boxes in the hierarchy chart showing these processea could have been numbered 6A,
6, and 6C. On the fourth level, another number would be added; on the fifth level,
another letteff and-so on. -See the chart which follows.

12

5#3

2A1

2A2

2A2A

2A28

1

C2

RDA126-9

If more hierarchy dharts are needed to show-the division of the overall problem,

then the top box of these subsequent hierardhy Charts will be given the same number that

was assigned to this subprailem or module on the earlier hierarchy chart. The numbering

system then continues on (and on and on). In this way, we insure that no two subproblem

statements will ever be assigned the same key number.

Now that we know how to draw a hierarchy chart, let's look at a plausible means of

linking that hierarchy dhart to our many IPO charts. A verbal index should do the trick.

What ywo things should an index contain? Right! A short-description of an item and the

location of the *tem. The index for our hierarchy input-process-output (HIPO) package

may he either on the same page as our hierarchy chart, or it may be on the page immedi-

ately behind the hierarchy chart. The index would be easier te use if it were on the

same page as the hierarchy chart because you could see everything at one glance.

We will use The "key" number and the verbal description from the hierarchy Chart

as the description for our index. Besides this, we will list the page number in the

HIP') package where the appropriate IPO dhart or the more detailed hierarchy dkart can

be found. Since our key values are unique for any module, it would seem logical to use

.hese "key" numbers as page numbers for our HIPO package. This will work out fine

except for one little "fly in the ointment." The page number of our first hierardhy

chart could be 1-1, the page number for the index for the hierarchy dhart could be 1-2,

and the page number for the IPO chart described in the first block of the hierarchy

churt could be 1-2 (see Figure 1). Let's add one more item to our index. That item is

"module name," and is merely a short name (preferably 1 to 6 letters) that will be wed

to identify a given section of "code" when our program is written.

3

9 8

INDEX P 1

IPO P

HC SP 2 & INDEX SP 2'

IPO SP 2

1-2

1-3

2-1

2-2

IPO SP 3

IPO SP 3A 3A

IPO SP 313 38

IPO SP 3B1 381

ABBREVIATIONS USED:

IPO SP 382 382

HC 11 INDEX FOR SP 4 4-1

IPO SP 4 4-2

IPO SP 4A 4A

IPO SP SB

"HC" - Hierarchy Chart
"IMP - Input, Process, Output Chart
"Ps - Problem
"SP" - Subproblem

Figure 1. Hierarchy Chart
.

5 9
14

534-

RD4126 -10

1.110 ond select 4 module pony that will have stair meaning. One WaV Of doing this .

is to oeteset key Letter.' from the.4escriptIon at the process performed by the module.
The example below shows rhe.completed index far the "(41 TDY" problem, as far as it has
been solved. Study the module names to see how they were derived.

NOTE: This index refers to the hierarChy,chart an page 12.

ISa. Oescriotion 12me..1 . Module Name

I Go TOY 1"3 "Ty

2 Gather needed information 2 GNINPO

2A Find knowledgeable person 2A FKPRSN

2B Get date, time, and location 2B GOTLOC

2C Get mode of travel 2C CTMODE

3 Plan automobile trip 1-3 PCTRIP.

4 Travel by car 4-3 TBYCAR

5 Plan plane trip 5 PPTRIP

6 Travel by plane 6 TBYPLN

If we examine th. above index, knowing our page numbering system, it is rather
obvious that key itema 1, 3, and 4 have separate hierarchy charts and indexes. Note
also that the index always specifies the number and IPO chart. Be consistent! You
Sre right. We haven't developed the hierarchy charts for key items 3 and 4. That's
your lob.

Using this type i,f key and page numbering system will allow our HIPO package to
gr.*/ without destroying our index system each time something new is added. This state-
ment implies that we expect our NIPO package to grow as we solve the problem. It will,
won't it? This should probably tell UR that it would be a good idea to keep our devel-
oping HIPO "documentation" package io a loomeleaf notebook so we can add pages as emy
are needed.

FLOWCHARTING THE PROBLF31 SOLUTION

After we have completed the subdividing process and have a 'complete HIPO documen-
tation package at our disposal, we have available a set of specifications which tell
us what has to be done and to some extent when it has to be done. We now need some
means of describing haw something is to be done and when it should be done. This is
called the "program logic" or "Contrga logic" and may be shown'using something called
a flowchart. A flowehart is a picture that shows all functions or processes that must
be performed and all decisions that must be made. Before we get into the process of
showing how to draw a flowchart, we would like to define some figures we will be using.

5 3

I 5

Sd5

RDA126 -11

The Sequence Primitive

51(.9

A line shown "control flow" oitshich oper-
tion is to be Performed next.\ If an
arrowhead I. present, the arrow\pointa to
the next operation. If no rr,ead is
present, the next operation is either
"down"-or to the "rieht.".

Terminal Symbol. Either start control
flow here or, when control flow reaches
here, the job is done.

A procoss, or function. box. Only one
control flow line may enter this box, and
only one control flow line way exit this
box. A text written inside the box
describes what function or process muat
he performed.

A very simple type of flowchart is called a sequence flowchart. It pictures a
series of processes that must be performed, one after another, in order. Let us
assume for a moment that we are going TDY to Washington (again?), and that we will
be traveling by plane. Our flmdchart would look like this:

START

GATHER NEEDED .

INFORMATION

PLAN
PLANE TRIP

MIAE
1

L BY
R

STOP

OR

NEUED
. INFORMATION

TRAVEL BY

PLANE TRIP

PLANE

PLAN

531
16

tithsr of the preceding exampleu iu correct. Any time we have a sequence of func-
iions-or procommes,to perform, they may be shown with each process liste4 in a'sepatsce
function bop: or all proceesee Listed in the saw function box. Any combination in
between those two extrmes to also arceptable. In other words any sequence of fune..

tions is itself Ounction. A sequence of functions is also dialed a "contror lqgie*
primitive." Ageontrol logic primitive Im merely a predefined arrangement of flowchart
symbols.

The IP...THEN...ELSE... Primitive

.

There are many places where a sequence orfunctions can be used in a flowchart,
but,very few problems where the-entire solution method cap be represented as a sequence
of functions. Other types of control logic primitives will be needed. These other
control logic primitives make use of a-test for sone condition, and then performance of
a function based on the result of the teat. Eitel control logic primitive is itself a

function. The iyMbol, used to indicate a test is diamond, and is ihown below:

Test of IF symbol. Okay one control flow
line may enter this symbol, but two or
more must exit. The condition being tested
for is stated inside the diamond.

The first control logic primitive we will discuss is known in programming circles
as the "IF...THEN...FLSE..." primitive. The name of this function may sound strange at

first, but it is a very descriptive term. IF (a condition is true) THEN (perform some
process) ELSE, or ,Oerwise (perform sone other process). As a pictorial example, we
will go back fo our TAY problem.

PLAN PLANE
TRIP

AISAVEL BY
W.- PLANE.

STOP

532

17

RDA126 -11

Did you notice the lettere 'Dr" and "F" beside the decision box? They stend for"True" or "False" sad indicate which,path to take based on the result of the test. IfTravel Mode W49 equal to Auto, we would follow the control flow line out the -r" sideof the decision box and then Plan Auto Trip, atc. The letters "Y" for ves tad "N" forno may be substituted for the T end F.

It insy be helpful et this point to define some shorthand
the conditions we wish to test inside en IF diamond. We will
out the renainder of the course with no furthrr exelonatiOn.
the "left term" is defined to be the value to the left of the
"right term" is the value to rhe ripht of the notation, e.g.,or L GT 4, etc.

NOTATION

EQ or IP

NE or 0

LT or <

OT or >

LE or <

GE or >

notatien to use to describe
uee these symbols through-
lo.the descriptions below,
notation. Similarly,-the
Left FO Right, or X .1, 27,

DESCRIPTION

the left term equal to the rigbt term?

is the left term not equal to the right term?

Is the lefr tern lens than the right term7

Is the left term greater than tbe right term?

Is the left term less than or'equal to the right term?

Ts the left term greater than or eqeal to the right term?

Whenever any of the above terms are used in 4 test, the exits from the test diamondmust be labeled either T and F or Y and W. One other notation is timed. It im a colon(:) and is used to compare the left term to the right term. The Pleits from a test dia-mond which uses a colon must be labeled with the notation described Arm. to Indicatethe results of the comparison am shown below:

In general, the IF...THEN....JF primitive may he repremented as follows:

Is 533
ROA12644

4

.444.

-11

6c,

Function 1 and Function 2re any processes, or control Wide primitives. In

addition. either Function 1 or Function 2 could be whet le called a "null function." It
The null functlan I. ne*ely the &Renee of a function, as aliaao balain

AD4124-15

In the above example, Function 1 is a null function a;Ad is not shown. Why can
onlv one of the functions in an IF...THEN...ELSE primitive be a null function?',

We said earlier that control logic primitives were themselves functions. This
implies that we can substitute an entire control logic primitive for any functien box
anywhere in a flowchart. Asan example, let's assume that there are three modes of
travel for our TOY prOblem--suto, plane, andsstagecoach. If the mode of travel is not
auto, we would exit the decision box of the previous example on the false "leg." At
that point we would now have to determine if the mode of travel was by plane or stage-
coach as shown below:

START

PLAN STAGECOACH
TRIP

TRAVEL BY
STAGECOACH

19

PLAN .411TO

TRAVEL BY AUTO

RDA126-26

40
When we substitute a control logic primitive for a function box inside another

control logic primitive, it is called "nesting." In the preceding sample we have
nested an IF...THEN...WE primitive inside another IF....TNEN...ELSE primitive. This'is one method of nesting; however, nestiii can be carried to anv level necessary tocalve the problem.

The Case or Switch Primitive

If your particular problem requires you to nest several levels of IF...THEN...ELSE
primitives, you may want to use the "case" or switch6primit1ve. The case primitive uses
the test diamond with one input control line, hut the diarond has three or more output
control lines. The previous example would look like the following if the case primitivewere usefi:

AUTR

PLANE

PLAN AUTO
TRIP

TRAVEL BY
AUTO

STAGECOACH

PLAN PLANE 1

TRIP

TRAVEL BY
PLANE

1

PLAR STAGECOACH 1

TRIP

TRAVEL BY
STAGECOACH I

REALM -17

Notice that the case primitive has one control flow line entry and one control
flow ltne,exit and, as such, it also is a proper function. It may have as many func-
tion boxes as necessary to show the problem solution method.

To help clarify what we have just said, let's see how we might go about drawing a
flowchart of a little more complicated problem. Our problem is to stibmit loan appli-
cation to the institution with the most favorable interest rate to finance a car we
want to purchase. The IPO chart for this subproblem looks like the one on the follow-
ing page.

.20

MINIMINOPmIINEW

INPUT

SUBMIT APP .1CAT ON Ft R AUTO FINANCING

PRoass pUTPUT

Year of car we wish-me
to purchase (CAR)

Number of payments
we wish to make
(NOPAY)

Interest Rate Chart
(see below)

Determine most favorable
tnterest rate

Submit loan application

INTEREST RAFE CHART

Loan application completed

RDA126-28

1122-E1-KAE !evil of Loan KFCU Interest Rate BANK Interest Rate

New 36 months 10.5 12.0

New 24 months 8.0 8.0

New 12 months 5.0 4.0

Used 24 months 10.0 12.0

Used 18 months 8.7 9.0

Used 12 months 6.5 6.0

KFC11 refers to the Keesler Federal Credit Union of which you are a part and, there-

by, part owner. If the interest rates between the bank and KFCU are the same, you will

use the kFCU. In the flowchart, when we refer to the word "car," we are referring to

the type of car (new or used); "NCPAY" will be the number of payments we wish to make,

and "KFCUI" and "SANKT" will refer to the interest Tates dharged by the KFCU and the

bank.

We will tackle the problem of drawing a flowchart in much the same way as we devel-

oped our IPO charts--one step at a time. We will draw several flowcharts to describe

different parts of the problem; then we will draw a finished product whith will show

rhe whole sqlution in one flowchart. We can use scratch paper for our development of

the flowehart. The final form, however, should be on paper that can be put in our HIPO

documentation package.

Fnough of details. Let's press ont Remember that we have to describe how we are

going to perform the processes listed in the IPO Chart. As we look at the processes,

we can see that "Submit Loan Application" mmst be performed last. Look at the first

process. The words "moat favorable" jump out at you and say DECISION. If we take the

decision out'of that processi we are left with "determine interest rate." In order to

make a decieion, we need two br more pieces of information and, of course, we have the

KFCU interest rate and the MI: interest rate. Our first attempt st a flowahart would

look like the one shown at the\top of the next page.

21

SUBMIT LOAN
APPLICATION
TO BANK

SUBMIT LOAN
APPLICATION-
TO KFCU

RZA126-19
The function hox that says "Determine KFC11 and BANK Interest Rates" doesn't tell

us very much, does it? OK! How do We determine what the interest rates are? We have
to know if it is a new or used car, right? Put it down en paper.

5 4- 2.

START.

DETERMINE KFCU
AND BANKI FOR

USED CARS

DETERMIK KFCU
AND-BARK

INTEREST RATES

DETERMINE KFCUI
MD BM FOR

KEW CARSL1.1.1.11j."'''
22

r- ROA126 -70

that mimplitied thlogs somwhat-, eaveld I the tw!1 flew item I
toowheti.. The dtten-ended box connected to the ilowchart with a brolivn
describe or "annotate" what this flowchart does. The curved line at
to remind us that this is only part a flowchart.

flack to the problem at hand. Wilat else do we need to determine
Di course! The length of the loan, or NOPAY.

24

18

12

DETERMINE KFCUI
AND BANKI FOR

USED CARS

KFCUI "
BANKI . 12.0

KFCUI 8.7"

BANKI 9.0
41111,

KFCUI * 6.5 11
BANKI 6.0

36

24

DETERMINE KFCUI
AND BANK! FOR

NEW CARS

KFCUI 10.5 1_,\
BANKI 12.0

KFCUI 8.0 H
BANKI 8.0

KFCUI * 5.0 I.
BANKI 4.0

23
RDA126 -21

511-3

hat showed op from
line serves to

the end just serves

the interest rates?

544
OK, we are almost done. All we have to do now is to put all the pieces together.

See the flowdhart below.

24 KFCUI 10.5

fl BANKI 12.0

<11_1(FCUI 8.0
BIVIKI ,w 8.0

12 LFCUI 6.5
BANKI 6.0

4E1KFCUI 5.0
BANKI 4.0

SUBMIT APPLICATION
TO BANK

-"N

SUBMIT APPLICATION
TO KFCU

C STOP)

24

RDA126-22

54- 5.

There! And you thought this was going to he hard. Remember the old saying that
"even the lonaest journey begins with one small step"? Make gee of that insight into\
problem solving. Draw'your flowcharts a little at a time and you will be surprised
ha. .asily everything will usually fall into place.

You may be asking yourpelf, "Why didn't we continue breaking down the problem
tieing an IPO dhart?" Well, there is no convenient way we can show any decisions in
an IPO chart. In fact, when a specific problem has been subdivided to the point where
any further division would force you to show a decision that must be made, then it is
time to stop the subdividing process.

The remaining control logic primitives we will discuss have one thing in common.
The visually represent a repetitive algorithm, or a "logic loop." A logic loop is
ree.ly the repetitive performance of one or more processes or functions. The number
Lf times a loop is performed may vary from zero up.

The DO UNTIL Primitive

The first repetitive primitive we will examine is called the "no uNTIL" primd-
tive, and standa for the phrase "DO (perform a function) UNTIL (some condition is
true) ." When we perform a DO UNTIL loop, we enter the loop; perform a function; test
a condition; IF the condition is true, we exit the loop; otherwise (ELSE) we go back
and perform the function again.

RDA126-23

Let's look at the example we discussed hack in the section on "The Scientific
Trial and Error Method." We said to "Take the square root of a number using a 4
function calculator The value we want is Y which.is the A. RemeMber, we said
to start out with soa number (C) which is equal to X/2. Next, perform the calcula-
tion Y (X/G G)/2. Then we test to see if Y is sufficiently close to G. If not,
we set G Y and perform the calculation again.

This problem might take some thoukht. First, we have to set G Xi2 outside the
loop. (lily?) Then we perform our calculation t .. then the test. See the example
at the top of the next psee.

25

RDA126-24.

Wait a minute! Will that work? NO! We didn't set C m V alter the test. Let'a
try adding another equation just hefoie mit calculation.

le out flowchart correct ow? No. The fitat thing we do Is !;rt C X12, but theu
wv turn right arerund and met C Y. What &tem Y equal? We haven't maid, 90 we don't
know. It could be aflything--evon zero. can von divide X by zero? So, we ntill have
A prohlem. Now can we golve W We ronld net Y X/2 before we get Into the leer,
conldn't we? Good.

5

'it'

;;,

Mat looks pretty gooil .

ihe equation Y O./fa-00 r
it is .orrect. Therefore, I

..rre.t. thr answer must lw
th other way around?

an..0 OPP WE*

Xf2

y

(X/G+0/2

S G
CLOSEENOM

TO T

ADA126 -26

The ietter c 4tarts out representing the right Value.-
&NW fill11. 411 ii !Ilk& 4111 mathymat les, so we will assume that
f the value start inn correct, and the calculations are
correct. Tiro rights done't make a wrong???? or is that

The function Y x12 wnH put in onr flowtharr to insure tnat "c" had a proper/
initial value'when we started performing the loop. This proresf: is called initializ-
ing the loop. It is lust as important to insure that all loops dre properly initialized
as it is to insure that.the functions performed within the loop toe correct.

W used the Sclentitic-Trial and rrror rw.thod to develop theAfrevious flowchart.
That is perfectly acceptable. In time, ms von become-more familiar with Itlops, this
method will become more folentlfic and less trial nnd error. Regardless of how .you
develop a flowchart, the finished product mUSt h analyzed to doubly insure our flow-
chart tells us to do wh4t we really want it to. it will usually be sufficient to
show that our initial values are correct, the,functions performed Correctly thy first
time through thr loop and the la. st time through the:loop. and that our loopwill even-
tually end.

You probably uoticod that the fun.
,tormed at least nce rer.ardlete. of Ihr
may not be the ;yoga advontdgeous way us
ro solve this, we wi I introduce a new

The WHILE Primitive

lion Inside a iNt MTH. loop will always he per-
qtute of the condition we will test for4 iiiis

perlorming every repetitive type of algorithm.

The lilt (perform n tunetion) WHILF (some condition la true) primit ye checks looR
terminating condition fir4t. Then, If the condition in true, tire loop function is per-
Jormed and conditions cheyked again,.e*,!. The general case of the DO WkIILE primitive
looks like the example at the top of the following page.

5

27

A-

,

5 4-8

RDAl26 -27

Like other loops, the DO WHILE loop must hv initialised. However, it is donedifferently than the DO UNTIL because the fest comes at a different place. Oursquareroot algorithm trould look like the following if wo used the DO WHILE primitive:

RDA126-29
There are two things worth noting in the above flowehart. Firs!, lank at the word"NOT" in the test condition statement. ThIN effevtively changed the result of the cow-OstOson so that a test that would have ordinatily given a. True result now gives a Falseresult, and vice versa. Second, the loop function has the central line flow maimingthrough it from bottom to top. To avoid any confusion, we have numbered the functionsin the order in which they are to be performed.

28

The LOOP EXIT IF Primitive

This is tht last control logic primitive we will discuss. It is not really a
unique primitive, hut a combination of the no UNTIL and DO WHILE primitives.

RDA126-29

Our square rovt elgot=ithm would look like the following if the LOOP EXIT IF
primitive were used.

29

5-50
Miseellaneova Flowchart Symbols

Any problem solution can be flowcharted using only nested and sequential combina-tions of the control logic primitives we have previously discussed. As you are buildinga flowchart Using these primitives, none of the following symbola may he uf use.

RDA126 -31

%The connerter aymbol in used in place of a control flow
line to show control flow that passes from one page ro
another, or where a line would add confusion to the
flowchart. Conneetors are wed in sets of two or more
when used for th(o purpose. A label is given to each
set of conoectoro, usually a letter and one or morenumbers, bsa any logical label system will do. Ore
connector (the starting connector) will have a control
flow line entering it, while its pair (the terminating
connector) will hove a control flow line leaving it.
Any terminating connector may be paired with more than
one stnrting connector; howeve Y starting connec-
tors must contain the same lahe s their associated
terminatIng label.

The predefined process symbol car he used to indicate
a process, function, or sunproblom solution that is
described by another flowchart. ,The text Inside thin
symbol refers to the "MIME NAMF" ofthe process or
subprobled to be performed. The module name is ex-
trotted from the verbal index to the hierarchy chartand is discussed on page 11. A predefined process is
generally called n "subrootine" in programming circles.

The input-output symbol ia used to show s process which
makes available information far processing (input) orwhich records the results of the processed input infor-
mation (output).

ceneral Cuidelines for Flowchart Preparation

Always draw flowcharts of the highest level module first. In general, a module, orsubproblem, should not be flowcharted until all other modules that refer to that sub-problem as a predefined process have been flowcharted. You can hardly go wrong if voudraw the flowchart of the highest level modole (the executive) tirot. Then flowchartall modules on the second level of the hierarchy chart, then the third level, etc. This"Top Down" method is highly desirable, hut it may not always be potaible to flowchart..all modules on one level before flowcharting some modules on a lower level. You mav,for example, select one portioa(or branch) of a hierarchy chart aod flowehart all mod-ules in that branch before: going on to another branch, providing you me the top downmethod within tnat branch.

After you have drawn a flowchart of a module, you must analyze that flowchart.Every effort must be made to insure that the flowchart shows exactly what we want. Ifa flowchart montains some "logic error," any computer program written from that flow-chart will contain the same logic error, and our program may do weird things (.called a"bug"). While it is possible to remove logic errors from programs after they have been

t.

written, it le fat better never to write a "bug" into a progrO. It has been reason..
ably stated ihmc "If dehugg/ng le the art of removing huge from computer program', then
writing secretes' ptegroms eget incolvi putting bugs into thes.!'

After moduli has been flowcharted, end that flowchart has been scrupulously
analysed, it is filed in the NIPO documentation package immediately behind the Input-
Process-Output chart for that modal*. The stem of any particular module has a let to
do with how effectively it can be analysed. Each module should be considered in its
own right, but generally speaking:

1. If a module involves less than four or five functions and tests, maybe it is
too small to he a separate module. If this is the Case, those processes performed by
that module should he included in the next higher nodule in the problem hierarchy.

2. If a module involves many more than 40 functions and tests, perhaps our
module is too complex for effective analysis. In this case, you should consider break-
ing the large module into two or more smaller modules that together will perform the
sass functions as the original module.

FLOWCEART DEVELOPMENT

We now have, all the tools necasary to develop a flowchart from an IPO chart. Let
us see if we can bring it all together and drew m flowchart Which we can use later as a
guide for developing any flowchart. W will assume that the problem definition phase
has been completed and that we have an IPO chart at our.disposal. The IPO chart would
look like this.

INPIrf

DRAW F1,04104kRT

PRocrss OUTPUT

IPO Chart' Flowchart the module shown
on the IPo Chart

Flowchart of the nodule
logic

.10 begin with, we start and end the flowchart with the terminal synbols. Between
the terminal symbols, we insert the processes listed in the 1PO ehart, using a simple

quence of functions.

START)
1 .

I.,FLOWCHART THE

MODULE SHOWN
ON THE PO

CHART

1

(RETURN)
PA11126-32

11

5 $2.

NOTE: The word "RETUM" has been used instead of STOP in the terminating symbol.
This Is used in a submodule or subroutine to indicate that the fuilion performed
by this module is complete. The eontrol flow should return, or go ack, to the
module that originally referred to this module ae predefined process (calling
module).

Now, if memory serves us correctly, we have to repetitivelyieeplace the functions,

of our flowchart with more descriptive control logic primitives.

(START)

LIST IP0
PROCESSES IN

ORDER THEY ARE
TO BE PERFORMED

REPETITIVELY REPLACE
FUNCTIONS 1.4ITH MORE

DESCRIPTIVE CONTROL
cOGIC PRIMITIVES

7

RDA126-33

The function "List IPO processes. . ." seems complete and descriptive.)iturever,
the second functiol is vague, to may the least, .and deinitely needS to be refined and
listed in more desriptive terms. Before we go on with the refining process, we must
consider the new functions together and insure they describe the single original fulic-
tion. They do, in fact, describe the sans process, so'we can move.oml.

The word repetitively in the second function implies a process that should be per-
formed in a loop. All three loop primitives should he considered lind one selected that

feel will beet serve your immediate needs. We will opt for the'"110 WRILE" Trimitive,
hut the,"111, UNTIL" primitive would probably also get the lot, done.

REPLACE FUNCTIONS
WITH 03RE ECSCRIPTIVE

CONTROL LOGIC,
PRIMITIVES

3

RD4120,34

16

-

.4
The avbstitutioa a the "Du WHILE" primitive has not changed since our original

function description. The loop will eventually end. When? Everything seems to be in

order, se Let se pees* on.

It would be very Aifficult to attempt to replace all functions at once, so maybe
our next step should be to select one function and replace that function with a more

descriptive control lugic primiti 1.

1

REPLACE "F"
WITH A MORE
DESCRIPTIVE

CONTROL LOGIC
PRIMITIVE

SELECT AN .

UNDESCRIBED
FUNCTION-

. CALL IT "F"

RDA126 -35

The next step is to refine "F" using a control logic primitive and then replace
"F" with the new refined function.

REPLACE
"F" WITH "NFU

/441C.
REFINE "F"

USING A CONTROL
LOGIC PRIMITIVE

GIVING "NF'

1=126-36

. 33

-

If we analyze what we have, we see Something has been forgotten. What is it!
We made no provisions to insure that function 'INF" is the same as function "F." We hAd
better test NF F before wr rcplaco F with NF. What do we want to do with NF It it
is not equal to FT We probably want to refine NF and test again, right? That myan
we need to insert another '410 WHILF" primitive bofore we replace F with NF. Wo now
have the following:

REPLACE
IT" WITH "NF"

REFINE 1

GIVING NEW "NF"

. REFINE "F"
USING A CONTROL
LOGIC PRIMITIVE
GIVING "NF"

J

RDA126-37

We now have all functions described. The only thing left Is to put all the parts
together into ono flowchart showing all functions. Rut wait! We haven't shown that
step at all in our flowchart. When should that function be performed? After all func-
tions have heen described and before we return to thy railing module.

.After the flowchart has been completed, the entire flowchart must he analyzed to
insure that the flowchart in fact describes the problem definition. If a problem is
discovered, refine the problem arra and check the flowchart again. This is the last
process performed before returning to the calling module.

..0 ...A 3'55

()ur overall fltwidcllisrl t 'r this module will now look like the one helow.

START

LIST I PO
PROCESSES IN

DK ORDER MEV
ARE TO BE
PE *FORME D

ANY

FUNCT ION< NOT DESCRIBED

CET AI L

PUT ALL FUNCTIONS
INTO A S INGLE

FLOWNART

REPLACE " F"
WITH "NF"

REFINE NF
GIVING NEW

atir

REFINE "F"
US I NG A aNTROL
LOGI C PRIMIT VE

GIVING "NF"

. SE LE CT AN

UNCES CRI BE
FUNCTION

2. CALL IT " F"

DOES
FLOWCHART

OE SCRIDE ME PROBLEM

INFINITION

RE FINE
PROBLEM AREA

ETU

RA4176-38

55(v

Arrays and Subscripting

We will now take what we have learned and apple it to some problems that are more
closely related to computer programming. Obviously, we cannot show you flowcharts that
describe every possible problem you may be given to solve. If we could do that, there
wouldn't be any need for your job. What we can do is show you the thought process that
goes into solving a few select computer-related problem types. You may be able to use
the solution to these problem types from time to time. Generally speaking, however,
you will have to develop your own solution method to a unique problem. With this in
mind, it would behoove you to strive for an understanding of not only what we are doing,
but HOW we go about developing a solution method. In this case, the result is not
nearly as important as the method of arriving at that result.

Computer programmers talk about manipulating, or working with, "tables," "arroyo,"
"mpemory locations," and other such abstract stuff. For our purposes, think of a mcoory
location as a small box in whichAie can put information, or can get information out of.
A "table" (not the four-legged kind yin. eat from) and an "array" refer basically to a
group of memory locations, or boxes, placed next te each nther.

An array of boxes placed side by side on a shelf could be given une name such as
'TRAY." The name "TRAY" would refer to the entire group of boxes on the shelf. Each
box could then be given a nuriber, starting with 1 for the box farthest to the left, the
number 2 would be given to the.box immediately to the right of box nunber 1, box number
3 would be immediately to the right df box nuMber 2, etc. To r-t-r to the contents of
a specific box, wr would then enclose the box number inside parentheses () immediately
following the array name. For example, if we wanted to refer to the contents of box
number 4 in an array called "TRAY," we would write TRAY(4).

A common real life array you are probably familiar with ls a tray that holds 35mm
color slides to be used with a slide projector. A slide tray has anywhere from 20 to
120 different slots.in which you can place a slide. Each slot is numbered starting from
1. If you want to get the slide that is in the 20th position of the tray, you write
SLIDE(20). SLIDE is the name of the array.

In programming terms, what we have just described is called "ubscripting." The
name of the array is called the "subscripted iarLible," and the number inside the paren-
thesis is called the subscript. In our example above, SLIDE Is a nubscripted variable,
and 20 is the subscript.

There is no rule that jays that a subscript has to be a number. It could be a
letter, or even a name, that represents a nunber (called a variable). For eaample, if
we set 20 and then write SLIDE(1), we would be referring tf, the same slide as if
we wrote SLIDE(20). Using a variable as a subscript has'a big advantage when we want
to refer to different elements or boxes in an array while we are performing a loop. We
can change the value that a varidble represents, but we can't change the value a number
represents. If this concept Beene a little hazy to you new, don't worry too much about
it. AS we go through the examples in the sections that follow, it should become clearer.

Sequential Search Algorithm

Assume for a moment that you are a stock
shelf with 50 bins on it. Each bin contains
someone comes to you wanting a certain length
tains the right bolt? The solutipn method 61
describes. The jP0 chart for a search module
the top of the next page.

-16

de
clerk. In your stock room you have a
a different length 1/4-inch bolt. If

holt, how do you find the bin that con-
this problem is what a search algorithm
woeld probably look like the chart at

.r--

INPUT

B1N(50)

LENGTH

.016ALLiggalligaLutool

PROCESS

LOCATE BIN containing
proper HLINCTII" bolt

Extract proper length
bolt

ouTpuT

Subscript of BIN con-
taining proper length
bolt

Proper length bolt not
in stock (BOLT e 0)

BOLT
RA1126-55

The input coluin tells us we have an array of 50 bins, and LENGTH is a variable

which represents the length of the bolt we wish to find. When we perform the first

process listed, one of two thingu will happen. Either we will find the right length

bolt, or we won't. If we find the holt, we have no problem; however, if we don't have

that length available, we need some way of telling that to the calling module. ,We can

do that by returning a bolt of length zero (or no bolt) by using the algebraic .equation

BOLT O.

This looks like a problem we sight solve using a loop andS subscript to check the

different bins for LENGTH. Remember, we said we could use a variable as a subscript.

We will use the variable I. We will do this the easy way and check BIN(1) first. If

BIN(1) doesn't contain the proper length bolt, then we will check BIN(2), etc., until

we have checked BIN(50). If we have checked BIN(50) and still haven't found the length

bolt we want, we will assume we do not have the bolt ia stock. However, we won't worry

about this problem just yet. Since we want to check M(l) first, we will want to ini-

tialize our ubscript to I. Then, inside a loop we want to check to see if BIN(I)

LENGTH. Wien BIN(I) LENGTH, we have found what we are looking for, so we want to

branch out of the loop and et BOLT BIN(I).

Ay

14=126-39
Now, go back and analyze what w have. Will it work? Why not? Will we ever, check

any bin except BIN(I)? No, we won't, because we never changed 1. We need a function

inside the loop that will add 1 to ihe variable I, (called incrementing 1) each time the

37

5 s
loop is performed. What algebraic expressions will du that? Will the expressions

I + I followed by I e J do the job? They sure will. We could simplify this func-
tion by just saying I e I + 1, which reads "let the new value for I equal the current
value of I plus 1." Our loop now looks like this:

RDA126-40

If we take this refined loop, put it in our original flowchart,
result, we find that we will check to see if LENGTH is equal to BIN(
then BIN(3) . . then BIN(50), then BIN(51), etc., until we find a
right length. But, wait! How can we check B1N(51) if wr only have
so we must include some means of stoppinK the loop if we don't find
are after.

What is the only way we can tell that we do not have the Tight
stock? If the variable I ever gets to he 51, what has happened? We
bins and didn't find the bolt. W could change our loop terminating
we would exit the loop if either B1N(I) e LENGTH, or I > O.

and analyze the
1), then BIN(2),
holt that is the
50 bins? We can't,
the length holt we

length bolt in
searched all 50
condition so that

551

Sometimes it becomem very ditticult to tollow the logic Li imIre than one condition
is tested at a time. It would he simpler if we could show complex testd an a series of
IF diamond*, Tau must be vent careful when using a series of IF diamonds to insure that
you a. 00t destroy the structured format of Amur flowchart. There.must he only one
votrance to a sequence of IF diamond:., and two exitsone for True and one for False.
No prtwess or function boxes may he shown within the sequence of IF diamonds. In short,
you must be able tn draw a large diamond around yoUr sequence of IF diamonds, and have
one entrance and two exits as shown in the following example.

a

39

RDA126 -42

We may now take this concept and ume it for our own purporiee in our search for the
proper length bolt. We now have two conditions that could cause us to exit our loop:
One for the normal condition of BIN(1) LENC'Ill and the other exit for thy abnormal
condition of I > 50.

BOLT s BIN(l)

RETURN)

RA.01126-43

Is the above flowthart segment correct? Do we want-reSit Bnu IN(I) if I > 507

No. We need to add another test outside the loop to see if we took the normal or abnor-

mal exit. How can we find out which exit was taken! If 50, we slust have taken the

abnormal exit. If we take the abnormal exit, we went to set BULT g, O. The complete

flowthart now imoks like the one.on the following page.

.)

r- r- -

t)

40

START

SOLT 0 BOLT * BIN(I)

L

RETURN

RAA126 -44

When we go back and analyze the completed flowchart, we see that the loop starts
out correctly (I 1 the first time I IS USed AS A subscript); that the loop will
eventually end (before I 51 is used es a subscript or when we have found the bolt we
want); and after we exit the loop, we see we will set BOLT equal to the proper value
00 or SIN(I) depending on the value of I). fhat is exactly what we wanted it to do--
so we can say our flowcpart la correct.

4 1

t

We can now take this subecripting concept another step further. Assume you arehack In your 'stock 'room but, inatead uf haying one shelf with SO different bins', eachcontaining a different length bolt, You now have 10 different shelves, and each ehelfhas 50 different bins. The bine on each obeli .ontain all bolts of a specific diameter.We have CD shelves, se we haVr bolts in 10 different diametets. We would indicate thinsituation by adding :mother subscript to nur array BIN. B111(l0,50) ,would tell us wehave a 10 by 50 array. To reference the first hos on the ercend shelf, we-would write.11411(2,1) because the firstcsubscript used refere to the ehelf 'mother, while the secondsubscript refel4 to the specifie hin en that shelf. If ve reveree the ordeA of thesubscripts and write B1N(l,2), we would be referring to the second bin on the firstshelf. As Yen Valt Are, it is very important to keep straight which subscript in usedfor whldh purees. when more than one subecript is used te reference an item in an array.

The plumber subscript, used 'to relFenee an item in an array is also referredto as O. dimension ot an oirrav. For example, an array with one subscript is calledslugle-dimensienal array, an array with twe eubseripts is called n double- or two-dimensional array, et4 .

weuld we lo about searching lor an item contained in a double.-dimensionalartAv! Let'N hael, to our 10 shelyos vtth hinn per shelf and see. Fer flitsproblem, oer IP° chart would look like filk:

!NMI

IANATE AND EXTRACT Pl'ER SIZE MILT

Plitt(7ESS ntrrPirr
IIIN00,40) Locate shell with ploper Subscript of shelf withas first euh...t:p diameter holt .

proper diameter boltschanvs Ifot't tr
changes nd .,ocate Ii IN w I th .prnper
subscript rhangt". length BOIT

Pruner diameter holtlength rhanges.
nor in mtock (WILT * (I)All holrs

Extract proper site
.nac All: I I 11.1ve !Mit

Subncripts of bln withthe SAM" ailktut
proper size bolts

01A41

I

Proper size holt
wt. In oitock

(WIT 0)

BOLT

NAM. -56

Thu 11'0 chart IlmicH a litt Ii. c4vmplicat ed. doesn't it? ilvvor,frair, if We: tackletiec prohlvm ome !,tep at a this. as we have in the past, everything will lust seem totall into ftlave.

Ind you vette'. the description of what happen,' as the Rtiblwripts in arra', BINchange? This type of information is yery helpful to have in the Input column nt the1110 chart. this way we have all the information we need right nt nor fingertips.

The fIrs(thing w will have to do Is initialise some variables to he need assubscripts. Wow mane, and why? We will nerd two variables herminv array BIN has twosubscripts. let'oettee variable names 1 end AP our subscript. Variable I will beneed tp indicate which shelf we are en, 'led variable .7 will be limed te indirate whichhin on shelf I we mt. %perking with.

r-j

.11/11a.

AM*

t#4 $63

Du we want co tind the right diameter or chv right length buit first? Wril, we

know4hat all bolts on a shelf havaethe mane diameter (from the INPUT column of the UT
ehart), but we do not know that the Base j'in number on different ahelves cantatas the
same length bolts. Therelore. It would he n good idea III locate the shelf that con-

tain the proper diameter bolts (trim.

After we have exited the loop that performed the search for the proper diameter
holt. we awit determine if we terminated our search normally or abnormally. How wtll
we knoO If we terminate abnormally, the variable I will he greater than what?
Right! The I will be greater than 10.

It we terminate our search abnormally, we will met HOLT 0 and exit this module%
otherwise, we will have to search shelf I for the proper lngth bolt.

START

BOLT 0 LOCATE PROPER
LENGTH BOLT

EXTRACT

CRETURN

41

You will note that the preceding flowchart in not complete. That portion of the
flowchart that locates and extracts the proper length bolt frnm bin J en shelf I has not
been expanded. That is your assignment for tomorrow.

After you have completed your flowcharting assignment, examine it carefully. What
is the largest 'lumber of boxes you would ever have to check to find any given size bolt?
You will note that You have to Check less than 21) percent ot\the tetal number of bins to
find any size bolt contained in your stock. That will save you a lot of ttme, won't, it?
Why don!t you have to look in every bin? Ceuld it be because the bolts were etorgd inorder, by diameter? That is an important point to remember when you are designing a
'Meta base" for a computer program. A program data-base is really a lot of related, or
even unrelated, infot:mation stored in a computer'f4 memory. RemeMber, a computer's mem-
ory is made up.of a whole lot of words, or little boxes, into which the computer can
store information oefrom which It can extrqct information. Oemign your data base with
some kind of order, and the computer will be able to locate any.eiven piece of Informa-
tion much faster than if there was no order at all. Row many bins would you have to
Laid(to find a holt it none of the bolts were ',toyed In order About 500.

Assumy that each bin has owo sections in it. The front section contains bolts
with a hex head, and the back section contains bolts of the same length and diameter as
the front section, but yith a square head. Arrnv BIN is new sebscripted as follows:
BIN(10,50,2). As an exerciRe tn elementary non--trivia, you are to develop an IPO chart
to describe the problem of locating a certain length, diameter, and head type. In
addition, you are to draw a flowchart which will show all the steps necessary,te relive
the problem.

The sequential search algorithm Wt. have just discussed _is the simplest search
technique of them all. It will work on information stored in a single dimension array,
without any specific order. its main drawback is that it requires more time to perform
than some of the other more sophisticated techniques.

The Bubble Sort Algorithm

one of the more sophisticated search techniques, called the binary search, re-
quires that infoeMation he stnr4n1 in some ascending or descending order, i.e., alpha-
betical, numeriral i'riler with smallest first, numefical order with largest first, etc.
Nou use a modified version of this technique every time you look a word up in a diction-
ary or look up iomeontos phone numhet. You certainly don't stiOrt looking on the fitst
page of a dictionary for the word "ZYMURGY.," do You? Of course not. A dictionary is
in alphabetical order, so that technique works very well.

Assume that You have lust become a Rtock clerk. You arc replacing someone who was
fired because he took a long time to find a certain site bolt. When You walk into the
stock room, you notice a shelf that contains 5in bins. Each hin contains bolts of a
certain size. All bolts on the shelf are the same diameter. Hnwever, the bins seem to
he mixed up. There is no particular order, by length, to the laor .he halts are stored
on the shelf. You know that If the bolts were stored in order b% length, yod would be
able to aind any site holt much faster than by doing a eequential search on a disorgan-
ized mess. Your problem,- then, is tO figurP nut how to- sort the holts and store them
on the shelf in the order of their length,

The simplest, but by no means the faRtest, wav Would he to use a flubble sort
method. You look at the first hin and the second hin. Are the holts in the second bin
shorter than the butte in the firat bin? If they are, you simply exchange the bolts in
the first bin with the bolts in the second bin. Then you move on and ("ampere the bolts
in the second bin with the boas lit' tfie third bin. If tho bolts in the third bin are

55 9
44

...

I.

shorter than the bolts ill
You continua this process

. the contents of the next
of what we have described

the second bin,
until you have
to'the last bin
looku like the

you exchange the contents of the two bins.
compared the contents of the.last bin with
and exchanged them If necessary. A flowchart
following:

Why did the expret.sion TEMP a BIN(I) appear in the function box of the IF...THEN...
ELSE control logic. primitive? What would happen if we dumped the bolts from BIN(;) into ,

BIN(l) before we removd the bolts that were originally in BIN(l)? They would get mixed
together and we would really havla mess. In a computer, you put some information
into a specific memory location, the original contents of that location will be 4estroyed,
nevermore to be seen. We have to remove information we want to keep from one meiory loca-
tion beer we put other information in that same location.

4S

4 lit

When we go hack and examine the flowlitart on the prvyinus mime, wy see thlt i doi.mlust what we sald it would 1 . But, will that omeration put all ot the holts in ;roperorder? If the ghortemt lull on the shull were in RIMS()) when we atarted, where/vouldthey he when we tinitilled verforming all the operations shmdn he the flowchart? The

9/

.shorteat holt would he in 81N(48). We would have to perfo'm all the operation, shownon our flowchart 48 more times. W Could rwr up nn (tuter loop which wonld he riertormedA total of 4') times. .

START

4e,

R4412047

1

Will that do the trick? \'. I J id I 1.. llowever, what if thu bolts were nll sorted
after g IP We would continue to go through the loop until K. do 50, aild accomplish
ahNolutely nothing. It would he far more etftelent if we could ttil nl of'a wav to stop
our outer loop soon atter the KIN array wmf completely sorted.

Hui can we tell when the entire array Kim been pu.rted? li we perform the inner
loop Sfl tiMee and never exchAnge holr4 in two adjaeent hins, the sort process has been
completed. We eoula use a memory variable set' to some value, say zero, just before we
'enter the inner 140p.. Aay Lime we exchange the tomtents of two hins, we could set that
variable to some other valar, NAV one. I Then, after we exit the inner loop, we could
check to see II thu memory variable was chonged. If it was, we go hack and repeat the
outer loop. It tr to/DWI, we nre through.

I.

47

r-4,,,

4

Oto

5t08

DEVELOPMENT SUPPORT LIBRARY

The Development Support 1.4brary (DSO serves as a central repository of all data
relevant to the project, in both human readable and machine recognizable form. Am such,
it is used to organize and control the software development and is the focal point of
information exchange - both management and technical - for the life of the project.

The principal objective of the library is to provide constantly up-to-date repre-
sentations of the programs and test data in both computer and human readable forms. The
DSL concept is designed to separate the clerical and developmental tasks of programming.
In addition, the OSL makes the code produced more visible to the team members.

The components of a OSL, as an information base, are comprised of the internal and
external libraries. The internal library consists of machine readable source programs,
relocatable modules, object modules, linkage-editing statements, test data or fob control
statemonts. The external library consists ol all current listings of programs, Us well
as listings of recent versionS of the programs.

In, many projects a development support library is maintained by a librarian who
interfaces directly with the computer. Programmers interface directly with the computer
only on an exception basis. In order to permit thi!:, -a standard set of procedures (the
computer or machine procedures) for performing all machin. operations is required. These
procechlres contain all the Ocessary Lnformation.for updattng libraries, link-editing
jobs, and test runs, compiling modules and storing !he object code and backing up the
libraries. By using these procedures, the librarlau is able to perform any of the libtary
ope ations without eirect assistance. Other. team members communiCate with the librarion
IL *Itch ways as submitting original coding sheets, making'notations on directories, and
indicating changes on'source listings.

ODINC, SHEETS
mARKED-UP
NOTEBOOKS

RuN REO0E3TS

PROGRAmMER

I

L.......

PROJECT
NOTEBOOKS
STATUS.

ARCHIVES
RUN

OP

COMPUTER
INPUT

CONTROL
CARDS, OSt

OFFICE
PROCEDURES

COMPUTER.
PRINTOUT

' COMPUTE R

.411

PROJECT
IIRRARY

v

547

The DSL provides a aigniiicsat aid fur jeating and evaluation in Chat the code is
.

centralised to avoid ambiguity of what is, and what is not, valid software. A develop-
ment support library will normally consist of e production library Whith contains code
that has been tested and one or more development libraries for new code. At any point
of the project, the overall production library constitutes the current opetational
systole. Therefore cLnsiderable core is taken to see that new segments and data item
definitions have been properly tested before they are added. This testing JR performed
in the development libraries where eegments are created as needed and exist until the
units have beeh tested and added to the produetion library. When a segment is added to
the production library, it Is removed from the development library. Mere leniency is
allowed in adding to a development library than in rdding to the production libr
For example, if a segment references.a data item for Which it is not authorized,.
cannot be added to the production library. Unauthorized access is permitted in a evel-
opment library, although the user would be warned that he has committed an appareLt
error. Control is obtained by requiring that an update to the production library be
conditioned on prooi ot succeSsful testing in a development library, This will reduce
thr likelihood of errors getting into the system. The verification procedures ere
reviewed by the manager whose approval should be required for update to the production
library.

The development support libyary provides the necessary control for programming of
4 system in a top-lown manner. Testing and integration will start with
the highest level system segment as soon am it is coded. Since this segment will nor-
molly,invoke or include lower level segments, code must exist for the next lower level
segment. This code, calj.ed:st OrOgram stub, may immediately return control, may output a
message tor debugging purposes each time it is executed, or may provide a minimal sdbset
ot thejunctions r,equired. These 'program stubs are later expanded into full functional

1

*a.

RE t (ABLE
MODIFIABLE
SOFTWARE

49

0 r's

510

segments, which in tura requirejower level segments'. Integration is, thereon.,
continuous activity throughout the developpent process. During testing; fhe symtem
executes the segments from the library that have been complete.d and uses the stubs
Where they have not. It is 'this characteristre of continuous integration that reduces
the need for special test data drivers. The developing system itself can support test-
ing because the code that interfaces with the newly addecLsegments has previously been
integrated and te!;ted and can be 'sled to feed trot data, to the new aegments.

Program stub.4 can often be created am an automatic function of the development aup-.
port library. This automatic function is previded by the programming aupport library
(PBL). The PSi. is a software system which provides the tools to orfanize, implement,
and control computer program development. The syatem is deaigned apecifically to support
top-down development and structured programming. Dillerent implemeOtations of a PSL
exist lor various computer and operating system environmentn used in system development.
The fundamental correspondence between the internal and extesmal libraries in each en-
vironment is established by the rm. office aod computer ptocedorcs. The office procv-.
dures are specified at a detailed level so that the format of the external libraries will
be standardiacross programming projects. anethe maintenance of both internal and external
libraries can he aecomplished as clerf .al tonetions. The PSI, computer proceriures tor ach
are expressly de,igned for easy invocation by librarian per oonne I so that their use is
nearly tail-safe.

The use of the top-down approach with a library provides a basis for capturing per-
formance data during the development cycle. By replacing each stub with alining loop
that utilizes the estimated run time for that'lunction, the developing 'wattle becoms a
model. AS dummy routines Are replaced with working code, the'petformance resulta can he
appraised against the performance obfectives. In a similar manner. storage allocation
can be modeled.

The use ot a development suppo-rt library combined with structured programming. (op-
down development, and HIPO diagrams mignIficantly improves ninnagvment vontrol of the Kett-

, ware development effort by providing iontinuous product visibility. Since ttre-developing
system is undergoing continuous integration, the system status in aecurately. reflected
through the contents of the library; i.e., coMpleteness is measured Obfectively in terms
of how much otb the system is operational. The completed code vale he reviewed to verify
status and apprati the quality of the softwate product.

TEAM 011XATItnic;

team opelations represents a chanpe in apProach from n loosely attuctured group of
prognummers fe 4 highiy structured teatil of ntogrommitT specialiata who work under mrrict
operational discipline. Teams organized In this fashion have domonstrated that thov (an
produce quality code In a yery efficient manner. The techniques of structured program-
ming, top-down development, and levelopment 'Airport librariea are always used. A team
consists of the following positions:

I. Chief P.ogrammer - A Anior level programmor and analyst 'who Is responsible, tor
the development o' the prograssang system iw all"%rospeets.- This person carries technical
responsibility for the preject including higher echelon coordination. lie produres the
critical core of the programming system in detailed rode hims101, diroutly specifies fill
other code required for svstem.implementation, and revivws and oversees the Integration'
of that code.

2. Backup Programmer - A senior kevel progrAtmer and analyst who functioon in full
spectrum support of the chief programmer at a detatiOD task level so that lir lo renutently
in position to assuse the chief programmer'a rempounibility temporar117 or permaneotly.
He may be-called upon. to explore alternativi. desigo appr,..a'hes. Independent teat'planning,or Ith/ spot- e milts lott servos normal ly .:o le I yo art tv I past Ili I erten Ira! design,
Inter-1,AI ?;slyserv I 41, 410 ,XI ar u.,t Milf/0110'1110111 I 1/11# f I ..rtas

I

1. 1.ibrarlaa - A 1,resk.umber te.habian ea secretory who haft received additional
ttaloing. Altheagh he aw'embles, compiles, lialiAge-edits, and teat-runs programs as

-fegiwbted by protect plegrammyrs, the librarian is not simply ti pooled assistant but a

full-fledged membes, with direct reaponsibility tor the project-critical task of main-
taining th library.

4. leas Members - Each t.willM Is a flexible module that can be supplemented with
additional prograasmem, analysts, or Technicians commensurate with the workscope. Depend-
ing en the size and nature ot the programming project, either additional programmers can
be added to a given tram to write the programs specified by the chief programmer, or com-
ponents of the overall design can flow to other teams for more detailed design and coding.

mt. term 'sspiiir level programmer" is,'of course, relative; but within any program-
ming productien environmeat er.agency, it can be applied to dhese assigned professionals
whotre technical comPelence. not only in programming details and techniques but also in
broad system analysitynal design, has distinguished them as programming problem-solvers.
technically. the Alio. programmer and the backup programmer should have such intimate
tamiliarity with the resources and tools ot the programming system and language with.
whith they are working an to exploit. them tor specific program design purposes at the
detailed coding level. on the management side, they must be capable of interfacing with
the system proieer manager and translating his directives into programming production
desitos and plena that meet budget, time, and capability requirements. On some teams,
the chief programmer on the first-line mapager, while on other teams he is dhe technical
leader who works it, chme liaison with the first-line manager.

Keintrodacing seaies people such as the ehlet and backup pregrammers into ch;tailed
ptegfam & aiding recegnie.es a new set oh cercumstances in today's operating system environ-
ment. rhe it+ contr.s1 Linguage, ddtl mattaxement access methods, utility facilities, and
high-level source lan_tuagett dre so rich Chat there is. both a need and an opportunity for
erring senior personnel at the detailedsoding level. The need in'to make the best pos-
sible use of a very eitnstve set of facilities. The functions of the operating systems
are impressive, but taws, are ealled,into play by language forms that require a good deal
ot scatty and experienee to utilize in the nkmt effective manner% Likewise, the opportu-
nity exists IOU a good deal ot work 'eduction and simplificaLion in the application being
writt.in, in both original programminr and Liter maintenance. For example, the incel.ti-
gent Me of high-level data management eapability may eliminate the need to develop a
private til procesaiog system. Flading sueh an intelligent use is not an easy task, but
it van bring substantial rednction In code required and easier wystem maintenance.

The lob strueturing in Aeam opetations Italates functional responsibilities between
aata detinition, ptogram dealgn, clnrical operations, etc., 40 thatsaccountabilitiee are
better detint.d. leasequently, communicatiou among team members is sharpened and more
ire ise.. The velv pa-pa:Alm, of skills tutees a high degree of public practice. For
example, the libtallan is responsible ror picking up all computer output, good or bad,
and tiling tt In the notebts4. and archivs of the-development support library where it
becomes part ot the public record. My contrast, in traditional programming,operotions
the bad tans go into the wastebasket, vito destreying idformation of latent value, but
certainly deNtr./fisig iolorMation shout rnorm ot carelessness. This identification of
all program Jata asd computer runs as public atisetS not private property, is a key
,rineiple in team apetatlons.

teem operatlatts al limps for professional growth and technical excellence in program-
ming. Since delegored clerical procedures are used co maintain programming system de-,
velopmenr in a highly structured and form, mete time and energ7 can be allocated
to developine key us:antral skills aad building the dehirable softliare syptem. This
creative environment praviden gond tiiininv for other programmers associated with a team,
preparing them tor leadership in future team. Inefficient coding habita,ahd techniques

%can easily be identified and corrected. .

et

512.
SUMMARY

The techniques described In this document reoresenc a disciplined approach to
application development which can have a dramatic impact on the datdprocessing
partment's ability to nespond to its users. The use of this improved technology
should result in improvements in manageability, productivity, nnd program quality
and maintainability.

The use of strurtured programming
programming than ever before. It resit
and modified by other programmers. T
discipline which reduces the ttaumas o

briags a higher precision and reliability to
ts in programs which can be read, maintained,
p &nen development imposes an architectural
integration testing, and promotes a more

orderly system development. HIPO support top ,down development and provides mean-
ingful documentation that keys on function. The job structuring within team opera-
tions isolates functional responsibilities between data definition, clerical
operations, program design, etc RO that accountabilitlea are better defined. As
a result, all team members are motivated to think and communicate more accurately
and consistently about their specific jobs. Structured walk-throughs locate deRign
and coding errors much earlier in the process and enable management to convert
project rittriews into meaningful milestones which contribute in themselves to team
productivity. Finally, a development support library provides the visibility needed
to measure and lonttol the development process and helps the data processing depart-
ment, like its users, take advantage of the computer's timr and labor saving powers.

REFERENCES

Baker, F. ". "Chief Programmer Team Management of Production Programming."
IBM Systems Journal, Volume 11, No. 1, 1972.

Baker, F. T. "System Quality Through Structured Programming." In AFIPS
Conference Proceedings, Volume 41, Part I, 1972.

Bohm, C., and Jacopini, b. "Flow niagramm, Turing,Machines and Languages with
Only Two Formation Rules." Commnications of the Acr 9, No. 3 (May 19(i6),
366-311.

Dijkstra, E. W. "Poies on Structured Programming."' THE (Technische Hogeschonl
Eindhoven), Netherlands, Second Editi9n, 1910.

Mills, h. n. Chief _Programmer Teann: Principles and Procedures. International
Business Machines Corporation, FSC 71-5108, June 1971.

Mills. H. D. Mathemati al Foundation.' for _Etructurtallummemipl. International
Business Machines Corporation, FSC 7k-6012, February 1972.

Mille, H. D. '"Ton-Dawn Programmink in Large Systems." Courant Covuter Sciences
Szmuliml, New York University, June 1971, edited by Randall Rustin,
Prentice-Hall (1971), 41-55.

,

Weinberg, C. M. ilmitych2111x_d_Emitter_lamamtLal. Now York: Van Nnstrand
' Reinhold, 1971.

'04

r,fs

STiineTintrn WALK-THROUMS

Project management ham long recognized the need for periodic reviews as a vehicle
for determining where the project stands le relation to its schedule, and for identify-
ing areas that require special attention. Cenerally, however, these exercises have
been looked upon with misgivings by thoev*who must submit themselves to the review.

The situation which classically arises during the review is one of cOnflicr and
hostility. The review takes on the appearance of a witch hunt, and the reviewer finds
himself in the position of inquisitor. At best, the reviewees feel they have little to
gain from this encounter and most probabtv feel that they will come out of the review
with a list of "to-dos" which will only serve to put them farther behind in their
development schedules. Morr damaging still is their belief that the longer the listo
the longer the indictment against them. They feel that they will learn nothing in the
review which will help them attack their unique problems; moreover, they feel that they
will spend a large and unproductive portion of the meeting just bringing the reviewer
up from ground zero.

The structured walk-through described here increases the value of these reviews
beyond a determination of srhedule vAriance and problem identification, and eliminates

. many of the negative ispectn. Wth1,i IbM tfie structured walk-through is:

1. A positive motivator for the project team.

2. A learning exPerience for the team.

3. A tool for snalvzing the functional design of a system.

4. A tool for encovering logie errors in program design.

A tool for eliminatink coding errors before they enter the system.

6. A framework for implementing a testing strategy in parallel with development.

7. A measure of completeness.

A-structured walk-through is a generic name gi'ven to a se-ries of reviews, each
with different objectives and each occurring at different times In the application
development cycle. The basic characteristics of the walk-through are:

1. It is arranged and scheduled-by the developer (reviewee) of the work product
being reviewPd,

2. Management does not attend the walk-shrough and it is not used as a basis for
employee evaluation.

3. The participants (reviewer0 ar given the review materials prior to the walk-
through and are expected to he familiar with them.

4. The walk-through is structured in the sense that all attendees know what is
to be accomplished and what role the,/ are to play.

5. , The empharis is on error detection rather than error correction.

6. All technical members of the project teem, from most senior to moett junior,
have theit dOrK product leviftled.

51'14-

Mechanics

The objectives of the .:tructured walk-through will be different at different steges
ot the project. The basic mechanics will, however, remain the same. The reviewee, the
person whose work product is being reviewed, is reaponeihle for arranging the meeting.
Several days prior to the meeting, the reviewee selects the attendees he feels'are
required, distributes his work produet to them, states what the oblectives of the walk-
through will be, and specifies what roles the reviewers are to plev.

Although there are no hard and fant rules as to who the reviewers should be, the
idea is for the reviewee to pick those interested parties who can detect deviations,
inconsistencies, and violations within the work product or in the way that it interacts
with its environnent. .Typically, hut net necessarily, the reviewere will be project
teammafes of the reviewee. For example, early in the project, when a major objective
io to insure that the system is functionally complete, the review/gm might want,user
representatives. or, if programmers and analysts are functionally separated, and
the objective of the walk-through is to insure that the programmer's internal epecifi-
cations match the analyst's external specificatinns, then the programmer wnuld want the
analyst to attend. Within IBM, it is-not uncommon for a programner to reschedule a
walk-through several tines in order to insure that a particular reviewer will be avail-

A typical walk-through will include four to Nix people and will last for a pre-
specified time, usually one or rwo hours. If at the end of that time the objectives
have not been met, another'walk-through is seheduled for the next convenient time.
Someone js designated as the:recording secretary. This person-records all the errors,
liscrepancies, exposures, and inconsistencies that are uncovered during the, walk-
through. This record becomes an action list for thy reviewee and a communication
vehicle with the reviewers.

In addition to the substantive questions which will hopefully arIse in the re-
viewer's mind prior to the walk-through, he will undouhixdly detect minor mistakes euch
as typographical, spelling, grammatical, and coding syntax errors. These can he handle°
several ways. One way is tov instruct each reviewer to make an error list and pass it
to the recording secrctarv at the beginning of thr walk-through. Another. way is tor
each reviewer to cover these errors with the reviewee offline. or, the reviewers can
annotate their copies of the work product and return itp. the reviewer at the end of
the wark-through. The impertant point is that the walk-through should be concerned with
problems of greater substance (i.e., ambiguous speeifications, basic design flaws, poor
logic, inappropriate or inefficient coding technicines).

Mechanically, what takes place during the structured walk-through? First, the
reviewers are requested to comment on the completeneas, accuracy, and general quality
of the work pmduct. Maier concerns arc expressed and identified as areas for poten-
tfal follow-up. The reviewee then gives a brief tetorial overview oi the-work product.
lie next "walks" the reviewers through the work product in a step-hy-step fashion which
simulates the function under investUation. He attempts to take the reviewers through
the material in enough detail so that the nutior conrerna which were expressed earlier
in the meeting will either he explained,away or brought {nee focua. New thoughts and
concerns will arise during this, "manual executine of the function, and the ensuing
discussion of these points will crystallise everyone's thinking. Significant faeiors
that require action are recorded At: they emerge.

A key element regarding the structuredwalk-through is its relationship to the
project test strategy. Within IBM, the structured walk-through is part and parcel of
a parallel test strategy and, in fart, the "mapuel execution" is often driven by
formalized test caeee.,

5 (3

ei
A.

lmmeorately after the meeting, thr recording secretary dietributes copies of the
handwritten action list to all the attendees. It is the responsibility of the reviewee
Lo !moire that the points of concern on the action list are successfully resolved, and
that the reviewers are notified of the actions taken and/or the corrections that have
been made. (This latter point is impprtant because many of the revelations which arise
impact the reviewers, particularly if they and the reviewee are teammates.) Management
does not double-cheek the action list to insure that the outstanding problems have been
resolved, nor doss it use this list as a bawls for employee evaluation. Rather, , the
action list is coneidered to be a tool used to improve the.product..

As Fart of New Technologies

Structured walk-throughs have been implemented within IBM programming groups which
are liming structured programming, top down development, development support libraries,and team operations. In fact, the use of walk-throughs as described in this text has
evolved to its present position because of these new technologies.

the visibility inherent in titructured programming, the idea that code is meant tohe read hy others, the enforced programming conventions, and the simplified program
logic make it easy for the reviewer to be "walked through" rode segeents.

Thu use ot HIP0 as a top down desiga and documentation tool lends iteelf well to
the structured walk7through. HIPO'q graphical representation of functivn gives the
reviewee the luxury col something concrete and tangible through which he can take the
reviewers in a step-by-atep'fasnton at increasing levels of detail.

A development support library organises and structures the emerging system so
that the details can be easily reviewed. In addition, the lib rian can &Also serve as

"the recording secretary for the walk-throughs.
1
1

The toncept ot a tightly knit team, whose members possess unique skills and who
are in close communication with each other, is logically supported by the idea of a
structured walk-through. ilice the chief programmer and the hatkup programmer already
read code, the extension to everyone teariinp, ode is not a major jump. Additionally,
there is value in the walk-through as an educational tool. Because the chief program-
mer snd the backup programmer design and code the top of the system first, their initial
walk-throughs serv citi important learning experiences for die other team membere--both
in terve of design and coding techniques and se an introduction to the sy3tcm.

Withie an application developnent cycle, dtere are SV.eral major milestones and
manv minor milestones where the walk-through technique can lo used, AA an example,
a manning curve tor an applicatioo development ..vcle in which,the new technologies arc
being used might look as shown in Figure 4. The management of this project could decide
that one condltion for successfully reaching Ow milestones, listed tn the left-hand
column of Figure ih that the items in the rieht-hsnd column must have been reviewed
in a structured walk-through. In this sense, the wall.-through tracks progress and
serves as a meaningful measure of completeness.

41,

5

MAJOR
PROJECT

RE VIEW

SYSTEM
PLANNING

51(.0

ACCEPTANCE
TEST

SYSTEM
TEST

SYSTEM
DESIGN

UmoLTAMEOut

DETAILED DESIGN
CODING
UNI T TESTING
INTEGRA TION
TESTING
DOCUMEN TA TION

RAILW-51
Figure 4. A Typical Manning Curve for an Application Development Cycle.

Major Milestones Where Structured Walk-Thruughs Might Be Employed Include
End of System Planning, End of System Design and End of Development.

PROJECT MILESTAES

End of System Planning

ITEMS TO BE REVIEWED VIA
A STRUCTURED WALK-THROUGH

Project Plans

System Definition

Task Identification

Major Project Review Functional Specifications

"Technical" Work Assionments

3E '

c Schedules

v Di.tailed Desinn Internal Specifications

HIPO Package

r- 3E
Coding Uncompiled Source Listings

1

Documentation

ind. of De vilopment

User Guides

Programmer Maintenance Manuals
Internal Specifications

HIP° Package 4' -

Deliverable Product

Code

Documentation

cri

al4226-52
im

Figure15. The Table Shows jtetak Which Maght Be Reviewqd
Structured Walk-Throughs at Various Times During a Project.
The Minor Milesttinew Would Be Repeated an the System Grrw.

Parallel Testing

ihe structured walk-throun.
Ins. Para4lel-testing implies:
in parallel with the development
responsible for implementing the

When mins team operations,
In large, functionally separated
pendent group.

can serve to eetablish a framework for parallel te4t-
(1) the devlopment of test cases and testing procedures
of tilt system, and (2) an independent tester who is
test strategy.

the tester wg logically be the backup programmer.
organisations, the tester(s) might come from an inde-

..

The tester buflds a product in much the same masmer as the developer does. They
both start at the same place with a set of functional specifications. The developer,
however, looks at thv speys ae a buil:er might look at blueprints, while the tester
looks at those specs in thv way a building inspector might look at blueprints. The
tester, like ,the inspector, attempts to tneure that the specifications meet certain
standards, and that the product matches the specifications.

A functional,prugiam specification can he boiled down to a set of cause and effect
relationships:

"If the accinialated FICA deduction is equal to or greater than $10,800, then'
return the difference to net pay."

O "When the on-hand balance falls below the reorder point, transfer control to
the E0Q routine."

"Set the transmission line to inoperative and notify the network control oper-
.

ator if the retry procedure fails."

Initially, the tester takes the functional specifications and breaks them down
into a seriee of cause and effect statements. Rigorous testing means that each of
these cause and effect relationships must be tested. That is to. say, the tester,
using some form of tabular or qraphical aasistance, must determine whether each cause
has its desired effect. Unfortunately, this is not always easy to do. If it were,
testing would not be a-preblem and systems would be more error-free. Cause and effect
relationships tend to string together in complex logical chains. Therefore, it if not
always obvious what is a cause and what is an effect. In addition, analysts and
-designers do not apply the save discipline to their specifications that the progiammer
must apply to his co4e. Rather, they tend toward free-flowilig prose, resplendent with
_Inconsistencies.* Nevertheless, the pruduct whAch the tester'is creating will evolve

. into formalised set of machine-readable test cahes, residing in a test library which,
based on the quality of his efforts and the thorenghness with which he breaks down the
functional specifications, will test the code.

Within 1RM, the tester plays-a key rol s. in those structurc4 walk-throughs which
relate to detailed design and programming. The testes views the walk-through as the
vehicle which formally brings him together with the developer. After the reviewee
walks the reviewers through the work product to bring everyone to a common level of
enderstanding, he pasees control of the meeting to the rester. The tester presents
him test cases, one by one, to the reviewer. All participanti observe aa the reyiewee
walks each test case through thtrork product. Inconsistencie and errors are spotted

14 English,language is not noted for its,abil Ity te...ev1reas Camille% relationshipe 1

wiih priaiioft, Perhaps the future.will see us evolIe Chtio structured speclfication
languages. A step in that direction would be pseudo code narrative aahociated with
structured programmink.

57;)
t._

51 B

1ii the work produs I and altio in the Leta Iltes rtvoirding secretary to reoponofh le
s4 recording problems that relate to the profiler!. :mil the tenter in reriporatillle for

IVA eircling and (011'44 I I Ii P. prohlems that relate to hi 4 I el4t 11te fenter's Kopf
to, produce a comolete :toff non-overlapping library of trr.. f-aeu which will validate the

fo:II iirodoet,

. Thy* vil I ut ion ot ihe test I lerarv prof-roan lit parallel with the el YR Win. WM le tile
ofn deve lops I , ii9 tutu t 114141 spur It f eat Impe tit f uteroa I pt, 'try ipi sport f I rat mos and

HIPIt fliagranti, . Simi I I Hid t inal IV cs.Iinel Ira coif., fire tester ter Indeoend-
cut t sIVANVItoping she Ie.! I Ilif I ram the Imo, :411.1 II II ;II toms . cameos isusil
ef 1,.. t I at I froth' i p,4 manual t CNC caner, and I Inn l ly to, marl, I me-readable t eest elleiteN
My ihe t (me snleet ..1 the eiystem read.' fo It. riimp I led. the tlen.t eases will Isei
j Ile I ilde.1 In the te:-t library awl can he drIver, At II fti; lea e o

fits parallel evo I la a 1111 1,1 tie, app it eat Ifni oaf! it ee I e7. f i :01.M synch fon I ...eft at
development -it ei, h. a sir .e..t in fed walk -through , Ink:fires . I Ili If is1101 flow+ SIMI la diN-

I' I ' if no which camps t tic oil si ii when t tent Ing In fistful hid folioedfen to devo lopfnemt

i'1141111,14V

Thr inter.stefl reader may wonder why management cifeenn't talc a more act tve part ,

i n I !et* walls-tlyrmegh slatN*11 fenny wliv management fleeeemat se the action list
as .1 measure of employe., !motor/maitre. Th ammeter In t management coil' , lint only at

eyoentie of losing ;oome of the value,: ot the wallt-thiffugh,

fessent oat ingredient lot a eniccesiffid walk-through 1.4 .ni open and non-delenAve
atf 'mile on ill part ef the 1,,u1 Icipasitti. P. product lye atifiesphere lei Otte in which the
rcvi..weie makes it eds... tor II. reviewers t is f nd pilot/Item Ile 'Awl, ld Welcome their
teed1,44 .md ..d.footd ncourage their f tankitenn. If , hOw,1:or, he tefIn t hat he Is being
evaluated tev wolat NcesIrti II/ the walk through, and Ify the mfze of One action list he
will naturally tend to soppr ns crif hiiR4. He will he defensive and unrecept ive to
new I do'0 It s egt, wi It IN' staked to the work .1.t oallict and he will have ffetle tootl-evat son to row It sessoon .ss .1 I varning exteerf epee, A :otter-m.1410 walk-through. by
iimpagq sits; it one in whi eh MAW errortieund inconaist este tem tire ivienvered.

Thr role ot the reviewers ors one of preparaf fon, non-mal tritium probing, and
411' ffiftlon. I f.theY are teammates of the reviewee, I f whit Itot.he unennmon

for them to Jt wow thaf hidden re lat tom:hips' VI.rwetott what fiery ate developing
and wit.ot Is reviewed. Amb I go iii em will NNW to If Oft which wi 1 1 rrvidtt-v. otrther.
clarif t cat ion and del foie ion. If for nif other rennon, management should. valve the\ walk-through f or its coentriheit ion am. a comment ratian f..,0 among the-developerm.

e

Setting the proper psvelrologlo:a l atmosphere tor farm:tuned walk-through i R the
Ilex. An organization tot it fr.ing te.e* operof tons, top-disin development, and structured
programmeing con do it rather naturally. Since the chief programmer and the backup
roar:Ramer will pnulare the initial design and the Menet code in the ravines,

tr workprishic to lent Ins t first under review. livennav Iltelf.ate firfere senint.aort
e closely "or t t un e d-J r I management's desires (the chief pnuigs 1it erfw in tact he thn .

manager), they are in a pimit Ion to vstah fish the proper frapiew and attitude sur-
rounding the walk-throngli. in addlt Ion, !hem. iii ii al walk. Ili oughn will nerve 04 a
learnirig experience I or I f as, not onlit am to the walk-Oita ongh MstItan I eNi th
respect to the system Ifs:eft.

1.P,MAILY

4

tout experience with !il000 tailed hall -thtoughis 1141., mutit eueouragibe. Undoubt-
ediv, theta. are inaoh4..4 thvy timid he malt led to lit iher organIzai Ions.
The central idea. flowevet should remain the same; tp s'ouvert tb. Intesip,31
protect. review Int i prOffInfiliv WOrisIng 41NsiOn WhiCh tisil Offi,V tracks progress, but
which positive contrihut ton to that progreqs. Outwardly, trtanneem.mt itsvolve-
ment tippst S I , but In teal it. t ruci owed walk-throughs provide mannossn-nt
vehicle tot catehing error In ito system at th earliest poIsible time was, tbc cost
ot cot reef ling them Is lowest an'd t het r Impart Is sItia I I atm I

'CHF 1111A OF q'ffilli71111.1111 Piiiit:11AM1411Ji

It tuts been .11,...ve toil re et osillmit er prowl .100. an wri tt en w I tit i hi gh
egree ot structure, wh I eh t t hem so he more eati i i' nod, .rs t ond for teNt Ing,
enance, and =Ali i cat I. n . Wi th si ri, t.fred rol branching is eta (rely

standardized 44.1 iheilf Cattle* tan Itv read 1..01..11, without having to trace the
branching logiC JP; IV111.:11 tor Code yenerated In iIa. I I ructured prnmramming
reptegents a 1040 tr. huh al standard which permit's butter eillor.essent of design quality
for programs. ft corresponds I. principles In hardwnr design where It in known that
all possible logic citcell-. cats he formad out of a small coIlectit41--AND, 01,t, NOT--of
standard component I a cut i a

In structured pt. ,e1 , presgr:4141110rN 0111iI dca.pl.r but the end result is
to read, undeisland, mid maiutalo. The ii t4hndaiib si st IaJi ured pr tgramming itre

based on t11.90 IlliathastiIf 14.11 iheorems, nal di) not respil re case hv ca t I 1,1 car ion.
Pe

asti t. as I I I Pa the buiden a professional engineer fp he Ado f.1 deqlmu logic circuits
Ce rtain basic canspouents, 40 It IS ilia' 10111'404i . prof ;: progrnrimer

write- programs in co structured way, tr.Ing only recent h. .at andardI zed loranehium eunr
vent ions.

1

lop nown rragrasininm

1 a uc Lured prograntml tie, if I ',I, c1111,ang s I lie di'yrIoplievIII ram; o ,71,.p dowil"
lorm, In lartaitil Major progiams can he he..1.ell ii.to smaller proKrams throuvh comilinat ion
ot t .11v na the desIggation of oolim proe.rams calird proryam tiffltbS a4o referenced
tor t Iffed'hy that code. liv wrilIng i .:ode which calls the program hvfore the
stubs Aliviuselves ar developed, the leterlaces betwen th calling and the capiad pro-
grams are del tried compPete IV so that lb intertart militant.; will, Iry encountered later.

floe, lesult of ille ...vA nlist lo di,- 1,,I hied pproach 1.-)tt Neructured 1ra1gr.Ia1 lig is\Clealler p ecision prow:1=11K thin was 1,..ssliole heloore 'Ole tesjing oil qui I programs
1 .. au. omp i shed more rapt 4 lig, ,,,iii-i. Ifni I Ina I- refry I t s .tra prograPP: Which .1-ain he .rend,
r-aIntainvd, and modilled bv other ptogt.omwrs with moil greofvr fAcilitv.

Structured Programming Thooty.'
.

.Any program, .. nausi Vs .lassui lilVga' *IT rintlialex, 14411 I) rvprv:Ivilte'd ;rr of
...fiOduhlitts. Strut:toted plogiamming thepry deals with convortiup Jarge and t.omples

flail/charts intm standard forms bn that rhey can be represetiled b% htetating and nest-
ing a small nOMber of bash- and standard contlel logic struceurs.

;4-

519

A sufficient set of basic control loy.le stroctures consists el Hiroo webers (see.
Figure 6):

1. A sequence of two operations omtT, Anp,
. . .).

2. .A conditional branch to one of two opetations and return (an IFUSE stiatement).

Repeating an operation wheLe som condition is true in imilOtILE statem(nt).

t. SEQUENCE 2. IFELSP

Figur-v.6. Basil. Con.,!trel Lovic Seructurem

3. DOIMILE

RDA126-53

The baOic structure thin/rem, due in original form to BohM and Jacopini*, is
that any flisochart can he represented in in equivalent.form iterated and nested
structure ir these three basic and standard figures.

Note that each structure has only one input and chE outpot, and
for gabox!in a structure, Ho that complei flowcharts can result.
that an arbitrary flowchart has,an equivalent representative in t

an be substitated
The key point is
RH Ho built up.

The At cture theorem demonstrates that programs oqn he written in terms of IFELSE
and DOWHILF statements. The idea of an unconditional branch and corresponding state-.

ment label s neve introduced in these basic structures, and is thus never required in
a representation.

There
figufes, an
to provide

POUNTIII provid
branch, mutti-join
ing of one cif many

lling reason In programming to use auch a minimal set of basic
practical to augment the basic set wish two variations in order
lity. The variations, MOTU and CASF, are nhown /in Figure 7.

an alternaarjorm of looping structure, While CASfl la a multi-
control strut-lure in which it is convenient to vxpres the process-

mulftlie unique orrorryucei4.

* Bohm, C. and Jacupinl, Q "Flew Megrims. Turing Machinis and Languages with Only
Two Formation/Imes," cammloicatfons of the Assaciatfon forocomputiOg NachinerY.
Volume 9, No. 4, Mali- 1966.

#

S. CASE

RZA126 -54

Figure 7. Variationa of Basic Control Logic Structures

A major characteristic of 06grams written in these structures is that'they may be
literally read from top to tit-um; there is never any "jumping around" as is so typical°

,in trying to iread.code which c1,nrains unconditional branches. This property of reid-
ability is a major advantage in developing, testing, .maintaining, or otherwise refer-
encing-code at later $imes. -

inother advantage, of.possibly even greater,benefit, is the additional program
design work that is required to produce such structured code, The programmer must
thin, through the processing problem, not'only writinOlown everything that needs to be
done, but writing it down in ouch a way that there are no afterthoughts with skibsequent
iump-outs and jump-backe,and no indiscriminate use of a. section of code from several
locations because ft "just happens" tp do.somerhing at the time of the coding. Instead,

.the programmer must thirk through the control logic of the module completely at or.e
tine to provide the prqper structural (ramew)rk for the control. :This means thet pro-
grama will be written in a much more uniform way because there is less freedoerfor

arbitrary variety.

. Such a program is.much easier to understand than an unstructured logical jumble:
readability has been improved. Because of its simpliciq and clear logic, it mini-
misea the (tenger of rhe programmer's overlooking logical errors turing implementatiOi;
reliability has been imp'roved. Improved reliability, in conbination with the great,
simplicity obtained by structured programming, naturally leads to improved maintain-
ability. Further, because structured code is simple, a programmer can control and
understand a much larger amoUnt of code. With increased productivity, programming
casts can be redueed.

Segmenting Structured Programs

A

Imagine a 100-page aleogram written fn structured code. Although it is higbly
structUred, sisal a program ts still not veiv readabLe. The extent of a major DO loop
may be 50 or 60 pages, or an IFELSE statement may.take 10 or 15 page'. ,This ia simply
more than the eye can comfortably take in or the mind retain for th purpose of ,

programming.

fi ... 61

581
However, with our program in structured form, we can begin a pnlve4:: which we canrepeat over and over until we-get the ehole prorwsm defined. This process is to for-mulate a 1-page skeleton program which represent st'100-page erogram.

%-

We do this by selecting some of the most impertaat lines of code'lln the original
program and then filling in what lies between 01~ lines hy names. Each new name will
refer to a new segment to be stored in a library nnd c.;Iloti by a macro facility insert.
In this way, we produce a program segment with qemething under 5n lines, on that itwill fit on one page. Thie program segment will he a mixture of control statemonts and
macro calls with possibly a few initializing, file, or aesignment statements as well.

The programmer must ume a menace of proportion and importance in identifying whatis the forest and what are the trees out of thls 100-page program. It corresponds 14.writing the "high level flowOhart" for the whole program, except that a completely
r!gorous program segment Is written. A key aspect of stractured programming fs that In
any segment referred to by natilw, control enters nt the fop and exits at the bottom, and
has no other means of entry or exit from other volt; of the program. Thus, wheo reading
a segment name, at any point, the reader u.in be assured that control will pass throughthat segment and not otherwise affect the control logic on the pnre hr is reading.

To satisfy the segment entry/exit requiremests, we need only he sure they include
all matching control logic statements on a page. For example, the ENW to any pn andthe ELSE to any IF should be put in the same segment.

For the sake of illustration, this first segment may consist of some 30 control
logic statements, such as DOWHILEs, IFEISEPt, perhaps another 10 key initializing
statements, and some 10 macro cane. These 10 macro calls may involve something like10 pages of programming each for the original 100 pagea, although there may be consid-
erable variety among their sizes.

Now we can repeat this process for each of these 10 segments. Our end result is
a Program which has been organized into a set of named member segments, each of which
can be read from top to bottom without ady side effects in control logic other than
what ts an that particular page. A programmer can access any level of information
about the program., from highly sumaarized.at the upper level segments, to complete
details in the lower-levels.

In the preceding paragraphs, we anaumed that a large structured program somehow
existed, already written with structured control logic, and discussed how we could
concerqually reorganize the identical programs- in a set of more readable segments. In
the following text, we observe how we can create such structured programs a segment az
4 time in a natural way.

Creating a Structured Program

Suppose that a program has been well designed, and thaf we are ready to begin
coding. Also note that a common pitfall in programming in to "lose our cool"
begin coding before the design problems have been thou.,:tt through well enough. In
this case, it le easy to compromise a design beraume code already exists which isn't
quite right, but "seems to be running correctly." The result Is that theprogram
gets warped arourd code produced on the spur of the moment.

Our main point is to observe that the process of coding ran take place in practic-
ally the same order an the procese of extracting code from our imaginary large program
in the previous section. That is, armed with a program denim, one can write the first

a "'y *,
t)

'44

1

segment whieh genrs am e mkeletun tor the whole program, artimg eegment name*, wbere
appuipelace, to refer te eode that will he written later. In fact, by pimply taking
the precaution et Inserting dunmy memhers into a library with these segment names, one
can compile or assmble, and even possibly execute, this skeleton program while the
remaining coding is continued. Very ffeen, it makes sense ,to pUt a tempor4ry state-
ment "Cot to here (NI" an a single executable statement in,such a dummy member.

Now, the aegatenta at the nesi level can be written in the sane way, referring as
apprupriate to segments to be later written and setting up dummy segments as they are
named in the library. As each'cluamy segment becoees filled in with its code in the
library, the recompilation of the segment that includes it will automatically ptoduce
updated, expanded versions of the developing program. Problees of syntax and control
logic will usually be Isolated within the new segments so that debdgginl and dheckout
goes correspondingly well tith such probleum so isolated.

It is cleat that the programmer's creativity and sense of proportion play a large
factor in the etti.lencv of this programming process. The code that goes into earlier
sections should he dictated, to sow extent, not only by general matters of importance,
'but also guestihns of getting executable segments reasonably early in Ow coding proc.7.
CH.:: For example, if the control logic of a skeleton module depends on certain control
variables, their declarations end manipulations may want to be created fit fairly hlgb
levels in the hierarchy. In this way, the control logic of the skeleton can be exem-
cuted and debugged, even in the still skeleton program.

Mute that several programmers may be engaged in the foregoing a:tivity concur-
rently. (ince the initial skeleton program in written, each programmer could take on
a separate segment and work somewhat independently within the structure of an overall.
program design. Tl4i hierarchical structure of the programs contribute to's clean linter-1
face between progiaavir4. 'At any point in the programming, the segments already in
exietence give a concise framework for fitting in the rest of the work.

5

I

a

APPENDIX A
(Estrat from Cliapter 6 ofAFM 171-10. Vol I)

Chapter 6
FLOWCI1ART SYMBOLS FOR DATA PROcESSING

020601. General. The latelgse of this chapter is to establish flowchart symbols for usein the preparation of flowi harts tor automatic data processing-systems and applications.
These symbols are the Amerikan Standard Flowchart Symbols which were approved by
the Department ot Defense.

020602. Responsibility: It is mandatory that the American Standards Association sym-
bole be used by the Air Force in the preparation of all new and revised ADPS flowcharts.
Existing flowcharts ned not be reaceomplished for the sole purpose of converting to the
American Standards Association symbols.

020603. Flowchsrt Symbols.
a, Ssmbols Represent Functions. Symbols are used on a flowchart to representthe tunctions of a data processing system. These functions are INPUT/OUTPUT.

PROCESSING, .FLOW DIRECTION, and ANNOTATION.

A .basic symbol is established for each function and can always be used to
reercsent that fun, tion. Spe4 ialized symbols are established which may be used in place
of a basic symbol to give additional information.

Thr size and the dimensional ratio of ea4 h symbol may vary depending on its
specific use but not to the puint ut losing its identity.

b. Basic Symbols.

Symbols Descriptions

/

eI.
a

Input/Output Symbol. The symbol shown represents
the input /outpin tun. tion (I/O); i.e., the making
available of informa.tion for processing (input) or
the recording of pro, essed information (output).

Pro(ssing Symbol. The symhoi shown represents
the processing funt lion; 1. e.. the process of eke-
. uting a defined overation or group of operations
resulting in a change in value form, or location of
information', or .in the determination of which of
several flow dire, tions arc to be followed.

Flow Direction Symbol. The symbols shown repre-
sent the flow direction function. i. e. , the indication
of the sequen. i of available information and execu-
table operations. Flow direction is represented by
lines drawn between symbols. Normal direction
tlow is from top to bottom and left to right. When
the flow direction -is not top to bottom and left to
right open arrowheads shall be placed on reverse

A

Symbols, Descriptions,

direction flowlines. When increased clarity is
desired open airowheads cati bl placed on normal
direction flowlines. When floarlines are broken due
to page limitation, connector eymbels shall be'used
t2 indicate the break. When flow is bidirectional, it
can be shown by either single or double lines but
open arrowheads shall be used to indicate both nor-
mal direction slow and -reverse direction flow.

5.S5a

Annotation Symbol.. The symbol shown repeeent,.
the annotation function; i.e.. the addition at desc:ip.
live comment" or explanatory notes as claritica-
domArtle-breken line may be drawn either on the
left '14 shown or on the right. It is connected to thr
flowline at a point where the annotation is meaning-
ful by extending the broken line in whatever fashion
is appropriate.

Specialised Input/Outetbrmhols. Specialised I/0 symbols may represent thr
I10 function and, in addition, denote the medium on which the information I. r^corded.to
the Manner of handling the information or both. U no specialized symbol exists, the
basic 110.symbol is used. These specialized symbols are:

SymbOis, Description..

Appendix A

Punched Card Symbol. The symbol shown repre-
sents an I/0 function in vihich the medium is
punched cards, Including mark sense cards, Partial
cards, stub cards. etc.

ta.

Magnetic Tape Synbol. The symbol shown repre-
sents an I/0 function in which the medium is mag-
netic tape.

Tape ol. The symbol shown repro
gents an I/0 function in which the medinm in
punched tape,

Document Symbol. The symbol shown represents
an I/0 function in which the medium in a din mnem.

Manual Ineut The symbol shown rept...twins
an I/O function in whic h the information is entered
manually at the time for processing. by means of
online keyboards, switch settings, pushbuttons card
reader... et%

A.z 5 3

7lyintna Is

4

Dem nisi 111111

Di flay Symbol. Th symbol shown represents an
1/0 function in which the informatioi is displayed
tor human use at the time of processing, by meliUSIS
oaf online indicators% video devices, console print-
ere, plottener'etc.

Communication Link Symbol. The symbol shown
represents an I/0 function in which information is
transmitted automatically f rom one location to
another. To denote the direction of datga flow, the
symbol is always drawn with superimposed arrow-
heads.

Online Storage SyMbol. The symbol shown repre-
sents an 1/0 function utilisiing auxiliary mass Stor-
age of information that can be accessed online;

g. magnetic drums, magnetic disks, magnetic
tape strips, automatic magnetic card systems or
automatic microfilm chip or strip systemi.

Offline tIftorage .Symbol. The symbol shown repie-- %entb any offline storage of information, regardless
sit the medium on Which the information is recorded..,

d. Specializd Pro. eNhinK Symbols. Specialized processing symbols may repre-
sem the processing function and, in addition, identify the specific type of operation to be-
performed on the information. If no sped iatized symbol tAists, -the basic processing
symbol is used. These Npecialized symbol% are:

PesCriptiCat

iseon Symbol. The symbol shown. represents a
des ision or swiss tang type operiniun that deter:.
inilmek, 'which of a number al_alternate paths is to he
followed.

Pr vac fined Pro. Symbol: Tile symbol shown .

represents .s named process s ol.sisting ot one or
mole opratioms dr program steps that are spaCi.
tied (.1%4.M/hurt'. r. g. , subroutine r logical unit.

1.14anits_o I. 'The symbol shown
reprehenta any otflin process geared to the speed
in a !Ionian bing.

A-3 Appetidix A

r

bol

r

B 1

awns

Auxiliary Owrattoss Symte.l. 41.1twu
represents an offline operation purfortne.1 en equip-
lure! not under dire', the .:ole.ti
resting unit.

Connector Symbol: The symbol shown represents ajunt non in a line of flow. A set of two luonn i tors
is used to represent a contin;.e0 glow direction when
the flow i broken by any limitation of the flow. ki rt.A set lf two or more tonnectors is used to
sent the tunction ctf several Ilowlines with one flow-line or the jumtion of onf flow! e with 'ell or
several alternate flowlines.

Terminal Symbol. The symbol shown represe.nts.
terminal point in a system or communication t3.t
work at which data can 'inter or leave; e.g., start.
stop, holt. delay, or interrupt.

1. Existing flowchart templates, i.e. , those provided by the manufacturers, maybe utilized to form the flowchart symbols above.

020604. Summary of Ame:ic in Standard Flowchart Symbols.

AFsummari (low.'iart 'symbols is illustrated on the :ollowing page.

Appendix A A-4

.5

SUMMARY OF FLOyCHART SYMB9LS
BASIC SYMBOLS

INPUT /OUTPUT PROCESSING . FLOW. DIRECTION ANNOTATION

E.=
PUNCHED
CARD

MAGNETIC
TAPE

PUNCHED
TAPE

DOCUMENT

DE CISION

PR E DE FINE D
PROCESS

CONNECTOR

SPECIALIZED INRUT/OUTPUT SYMBOLS

MANUAL
INPUT

DISPLAY

COMMUNICATION
LINK

ONLINE 17

STORAGE

OFFLINE
STORAGE

SPECIALIZED PROCESSING SYMBOLS
irr

AUXILIARY
OPERATION

MANUAL
OPERATION

ADDITIONAL SYMBOLS

TERMINAL

IND M NIP

CIC

'go

A.S -Appendix A

533

MIMI?

.

Technical Training

Programing Specialist (Soneywall)

FORTRAN LiNGUAGE

January 1976

USAF SCHOOL OF APPLIED AEROSPACE SCIENCES
3390th Technical Training Group
Kees ler Air Force Base, Mississippi

Designed For ATC Course Use
ri e.tr

DO Nor USE ON THE JOS

4aC

IDA-781

5:#7

I Th

Table of Contents

Section 1 bntroduction

Character Set

Programming Form

Comments

Continuations

Labels

END

Blanks
a

510

1-1

Section 2 Constants, (etc.)

Constants 2-1

Variables 2-2

Arrays 2-3

Subscripts 2-4

Section 3 Specification Statements

Dimension 3-2

Common 3-4

Equivalence 3-7

External 3-9
Type Statements 3-10

Data 3-11

Section 4 Arithmetic Assignment Statements

Operators 4-1

Mixed Mode 4-4

Parentheses 4-2

"MS

S.

.a

Section 5 Logic's]. Assignment Statements
,

Relational Operators 5-4

Logical Ovvrators

Evaluation ,of expressions 5-6

Sect,on 6 Contrcil StateMents

Gc To 6-2

Adsigned Go To

Computed Go To 6-4-

4ritilnetic If b-5

Logical If 6-6

Call 6-7

Return' . 8

continue

;top 6-10

Pause

Do

Section 7 Inpit-Output

non-Formatted Rqad l-f

Formatted Rend

non-Formatted Write

7-2

Formatted Write y
f e.

Format Statement I.-,3

Integer Descriptor ,

Real Descriptors

Double Precision DescrLptots 7-6

Complex Conversion 7-7

bogical Descriptors 7-7

_

Li

ziitinx Descriptor 7-7

Hollerith Descriptor 7-7

Alphanumeric Descriptor 7-8

Scaling 7-8

Repetition Constant 7-9

:;cann,ing' '7-10

Printer

Multiple Records

3hort 1i.t

7-10

7-11

7-11

Format at Execution 7-12

Implied.Do 7-12

Rewind 7-14

3ackspace 7-14

Endfile 7-14

Section 8 Statement Functions

Naming 8-1

Dummy Arguments 8-1

Executing 8-2
-

3ection 9 Subprograms

Block Data 9-2

Function Subprograms 9-3

Subroutine Subprograms 9-5

Section 10 Predefined Functions

Intrinsic FunctiOns 10-1

Basic External Functions 10-1

index

5 c

iii

SI

introdudtion:

613

FORTRAN is a programming language sinilar to the language
of mathematics. It is used primarily in mathematical and scientific
applications.

ThiLmanual deals with standard FORTRAN IV as defined by the
United States of America Standards Lnstitute. There are many'
versions of FORTRAN, written axprestly for particular computers.
These FORTRAN's differ, more or less, from'esch other and from
standard FORTRAN. This manual does not deal with the peculiarities
of any FORTRAN system.

The term'FORTRAN is also .pplied to the compiler program, or
programs, which translates the FORTRAN source languar into
machine language.

The FORTRAN character set consists of 47 characters:

-

The alphabetics A - A
The numerics 0 - 9

blank
equals m

plus +

minus -

asterisk
slash . /
left parenthesis (

right parenthesis)

comme ,

decimal point ,

dolla:4 sign i

This order does.not imply a collating sequence.

Programming form

FORTRAN STATEMENT

35 40 45 SS

2. i:041-AILTfik 0, a ...41,4 /ALS. I I I A 1 .$ I I I LA_ I I I

jt _Two S r remeimrs r kie(941) '3-alittLigitrA

Orilinarily FORTRAN statements are coded on a for silar
to the above., Each line is the equivalent of one punI card.
Only columns I to 72 are uaed for FORTRAN coding.

Commnt

A C in column oa* indicates that the line is a comment;
the compiler is not-to prO0033.it. A comment does not affect
the program in any way.

1-1

59 4-

FORTRAWstatements may continue from one line to the nmxt.
The first line of a statement is termed the initial line. The
following lines of this statement are termed continuation lines.

Column 6 of the coding form is used to distinguish between
initial and continuation lines. An initial line contains*Mither
a 0 or a blank in column 6. A continuation lihe contains any
character but a 0 or blank in column 6, Any one Statement may
be composed of one initial line and up to 19 Continuation lines.

Statement Labels
I

Columns 1 to 5 of an initial. linv may contain a numeric stato
ment label so that the statement may he referenced by other statu-
ments. The label may consist of from I to 5 digits. The label may
:be placed anywhere in columns I to 5. The same label may riot be
given to two of more statements. 0 1. not a' valid statement 'label.

End line

Each program unit coded, a main subprogram or dependent sub-
program, must have one end line. This is the last line of the
prbgram unit.

-An end line contains only the characters E, N Elnd D Lxi that
order and blank:, somewhere in columns 7 to 72.

Blanks

Blanks have no significance in most FORMAN statements.
Tho3 X.A+B and X B are equivalent. The few ex(eptions
are noted in the relevant discussions.

5

1.2

41P

Vonstents, %lullabies, Arrays and Subscripts

Ail constants and variables fall into one of the felowing
types: integer, real, double precision, complex, logical or
Hollerith.

-

A constant is a datum which does not change during the execution
of a program.

An Integer constant is written a s a string of deeimal digits,
optionally preceded by a plus o minus sign. If the sign is
omitted plus is assumed.

Examples +5, 17681 -324 .

A.real constant may be written in one of two ways.

1. An integer part, a decimal point and a fraètional part.
Both the integer.and fractional part ar=e strings of
decimal digits. One of the strings may be omitted but
nut both. A sign may precede the constant, if it is
omitted plus is assumed.

Examples 5.4, 25., -.37, +72

2. The basic constant above or an integer constant may
be followed by the "E" and an optionally signed integer
constant. This exponent means that the basic constant
is to be raised to that power of 10 represented by
the integer constant following the "E".

I)

q67

Examples 1.5E2 means 1.5X10
2

-32E5 -

.54E-7
-32.X105
.54X 1/107

A double precision constant is written similar to the type
2 real constant above except that the letter "D" is
used instead of the letter "E". This indicates that the
constant is to be stored in two storage units rather than
-one.

Examples 174.376D2 means 174.376X102

-5.9. D-3 -5.9X 1/103

A complex constant is written'as two optionally signed
real constants, separated by a comma and enclosed within
parentheses.

This value is stored in two storage units.

Examples (6.5, 3.4) means

(-7.E2, .370

(.4E-2,.17)

6.5X101+3.4iX101

-7.100
2

-37.iX10
1

.4X1/1e + .17iX101

There are only two logicsal constants writteL.TRUE. and
.FALSE.

2-1

51()

5--(1(0
4 hollerith constant is written as an integer constant (n), the letter"H" and exactly n characters. The ri characters are the constant
value. Any character legal in the particular processor being
used may appear in a hollerith constant. Note that a blank is alegal character in such a constant.

5HABCDE
41112 3
6HAB-468

A variable is a datum which may be changed during execution of aprogram. There are five types of variables integer, real, double
precision logical and complex. Each variable used in a program muAtbe assigned a name.

A variable name is composed of from one to six alphanumeric charac--ters. The first character must be alphabetic; it implicitly definesthe type of a variable: A-H and 0-Z inp7les real type I-N impliesinteger.

Fxamples Name Iiplied Type
A real
I integer
ALT ,, real
N52 integer

This implied typing can be overriden for integer and real variables
and it, must be overriden to define complex, logical and double
preciiion variables. This is done with the data type statements
(page 3-10)

An integer variable may contain only integral values. Its sizeis one storage unit.

A real variable may contain real values.
Its sige is one storage unit. 'It consists of a mantissa and an
exponent. When a value is stored in a real variable the decimal
point is floated to.the left of the first digit and the exponentis adjusted to reflect this shift. Thus real is also termed
floating point.

Examples 1.5 is stored as .15)(10
2

32.76E2 is stored.as 4276X104
.012 is stored as .2X10-1

A double precision variable may contain real values. Its size
is two storage units. It consists of a mantissa and exponent.
The eTtra storage unit is dedicated to the mantissa. Thus while
a douole precision variable does not store larger values than a
real variable, it is capable of greater precision.

2-2

541
A logical variable may contain only the value true or false.

Its size is ono storage unit.-

A complex variable may,contain only complex values. Ita
size is two storage units, each with a mantissa part and an exponent
part. In fact two real values are stored in a complex variable.
The leftmost unit represents the real part of the value and the right-
most unit represents the imaginary part.

Example 3.5.7.4i is Atored as.

. .353E102 and ,74X102

An array is an ordered set of contiguous variables. An array
may be any of the five types: logical, integer, real, double
precision or complex. All of the entities in the array are of the
same type.

^

Arrays are named and typed in the same way that Lon-contiguoUs
variables are named and typed. The individual entities making
up the table are termed elements.''

The name assigned to an array is also applied to\all of the
elements in that arm, thus a subscript (see below) must be
used to indicate which element is'being referenced in executable
statements.

. An array may be one, twp or three dimensions. The number-
of dimensions and the size dlveach dimension in an array must
be declared with a DIMENSION, COMMON or type statement (Section 3)

110
prior to use in the program.

each.

A one dimension array consists Gf one raw of n elements

A(1), A(2),...,A(n-1), A(n)

A 'two dimension array consists of m rows of n elements each

A(2,1),A(2,2),.. .,A(2,n-1),A 2,n

A(m,1),A(m12),...,A(m,n-1),.A(m,n)

A three dimension array consists of k planes of an elements

A(1,1,1),...,A(1,n,1)

A(m41,1),.:.,A(m,n,1) .

A(1 ,1,k), ,A(1-,n,k)

2-3

sat B

A subscript is the pointer used to make a reference to
an array element unique.

It consists of one, two or three subscript expressions depending
upon whether the array has one, two or three dimensions. ihe
entire subscript is enclosed within parenthesis. Earh subscript
expression is separated from its succeisor by a comma.

,A subscript expression may be an integer constant, an integer
variable 9r a combination of these. The legal combinations are

v-k
v+k
c*v
c*v-k
c*v+k

Where v is a variable and c and k are constants

vin

In a two expression subscript, the major expression defines
row the minor expression defines column.

Example A(2,1) refers to that
element at the intersection of row 2 and column 1.

In a three expression subscript, the major expression defines row,
the middle expression defines column and the minor expression definesJOane.

Example 4(3,214) refers to that element
at the intersection of,row 3 and column'
2 in the. fourth plane.

o 93

a 59
1:41.1.7IFICATION STATEMENTS

. Specification statements give information aboUt storage
requirements and about variables and constants used in a pro-
gram. Specification statements must precede executable state-
ments in a program unit.

The following statements %dll be discussed here

DIMENSION

COMMON

EQUIVALENCE

EXTERNAL

Type statements

DATA *

Properly speaking, the° DATA
a specification statement, but is
included here berause it fits the

3-1

statement is not classed as
a type unto itself. It is
above definition.

5 9i

DD1ENSION.

Gbo

), v2 (i2),..., vn (i)

where each v is an array name and
each i is a declarator subscript
of one, two or three expressions,
separated by commas.

Dimension statements declare the names of arrays (page 2-3)
..seo in the program unit and define the number of dimensions and
size of each dimension. Arrays may have one, two or three dimensionE.

Examples

Sinele Dimension Arrays

DIMENAION A(6), B (100)

defines two arrays A and B. A has six elements A (1)
through A (6). B has 100 elements B (1) through B (100).

No dimension arrays

DIMENSION C(2,3), D(10, 10)

Oefines two arrays C and D. C has six elements C(1
through C(2,3). D has 100 elements D(1,1) through 1)
(10,10)

Three dimension array

DIMENSION E(3,4,5)

defines an array E with 60 elements E(1,111) through
E(3,415)

Note that arrays may be declared in a COMMON statement
and dxplicit data tyr9 statements. Such arrays may not
also be declared in a DIMENSION statement.

An array name and its dimensions may be passed to a function
,r subroutine subprogram (section 9) in the list of arguments. in
this Case a dummy array must be declared in the subprogram,and its
timension declarators be given as integer variable rather than con-
stants. The following.example illustrates such adjustable dimensions.

in main subprogram
DIMENSION ARAY (10, 10).

CALL SUBSP (..., ARAY, 10, 10...)

-60/
In Subroutine subprogrez

-811BROUTIME MEP (....ZRAY.I01...)

DIPIENSION XRAY(I;J)

Array with adjustable dimensions may not be defined in main
subprograms.

3-3

COMMON

There are two types of cominon storege,blank 'cosiMon
and labelotd common. Each is defined by its own form of
the COMMON statement.

Blank common

COMMON a1,a2,. . . an

each a is a variable name, array name, or
array name with subscript dec3arators.

the order in which storage is assigned to entities
in blank common Is determined by the sequence of the
list or lists in the COMMON statement or statements.

Examples

1, COMMON A,B(5),R,I

2. COMMON A,B(5)

COMMON R,I

1 and 2 are equivalent.

Labeled common.

COMMON

each a is as defined for blank
common. Each X Is the name to
be assigned to a block of common

These named blocks of common are'collectively
referred to as labeled common.

The order in which storage is assigned to entities
in a block of labeled common is determined by the

`equence of the list or-lists in the COMMON statement
dr statements.

the order within

tOMMON /A/ A,B,C/32/I,J

COMkON/A/ D

ck A is Ai,B,C,D

Both types of C on may be defined with the smile
COMMON statement as shown in s example.

COMMON A B1/X(5,4),WC/B2/I.J4
3-4

64:03

this defines in blank common AlBIC

in labeled common block,B1 X(5,4),Y

in labeled common block 82 I,M

the purpose of common storage is to allow
refers= s to the same variables and arrays by a
main subprogram and its dependent function
subprograms and subroutine subprograms (Section 9)
To share common storage two subprograms must both
define common with a COMMON statement.
A variable or array need not be given the same
name in the two definitions because the
correspondence is by relative position, not by
name. If labeled common is being defined the block
names in the two definitions must be the same.

example

in main subprogram

COMMON A0X(4),B

in dependent subprogram

COMMON A,B,C,DIE,F

A. =A
=B

X 2 =C
X 3 =ID

X 4 =E
B raF

one use of labeled common is to makp smaller the
size of common any one dependent sdbprogram must
define.

Suppose the main subprogram and its two dependent
suoprogramirequire six real variables incommon,
three for each of the dependent subprograms. Using
blank common lt could be written

in main subprogram

COMMON A,B,C,D,E,F

in dependent subprogram one

COMMON U,V,W,X,Yla

in dependent subprogram two

COMMON P,O,R,S,T,U

3-5

5?S

But using labeled common

in main subprogram

COMMON /BLKVA.B.C/BLIM/DAti

in dependent subprogram one

COMMON /BLIO/U,V,W

In dependent subprogram two

COMMON /BLK2/SofetV

(004-

4

WIIIVALME rki1UIVALENCE

Lch a and b is a variable or

It is the purpose of the EQUIVALENCE statement to assign two
or more entity to the same storage unit. The EQUIVALENCE
statement can not be used to mathematically equate two entities
(A=13).

If a two storaie unit entity (complex or double precision) is
equimalenced with a one storage unit entity (integer, real or
logical), the latter will share space with the first storage
unit of the former.

example, not in cormuon storage

DIMENSION x(4), Y(8)

EQUIVALENCE (X(3), Y(2))

yields X(1) X(2) X(3) X(4)
.11(1) Y(2) Y(3) Y(4) Y(5) Y(6) Y(7) Y(8)

entitics defined in common storage may be ,Auivalenced,
but thir. may not be done in such a way that it would require
extending common beyond the first entity defined

if two entities are directly defined into common they may not
be equivalenced.

exdmple of proper usage.

COMMON X(?)

DI1IEN:;1014 y(II))

EOUIVALENCE (X(4), Y(2))

:cluoll storage must be extendk.d bvyonc X(5) to include
1:(4) and Y(5); thin is all right.

,xdmples of Improper tisagR.

1. cOMMON X(5)

DIMEW10N Y(5)

EQUIVALENCE (X(2), Y(4)

this yould reqi4ire extending common in front of
X(1) to include y(1) and Y(2).

3-7 6j

i

2. COMMON Ad:1,r

EOUIVALENCF Ay('

two entities in common May not be equivalence&

3.8
601

(00(p

EXTERNAL

.4 EXTERNAL

jgewp is a procedure name

a an argument to a call for a function or subroutine sub-
program (Section 9) is the name of another function or
subroutine subprogram, this subprogeam must be:declared
as external to the calling eisbprogram.

example EXTE1i1AL MBA

CALL SUBS (XoYISUBA)

3-9

t 6912

*.

*

Type statements .

There are five statements which maybe used to explicitly declare'
thetype of data.

REAL a1,b1,c1

INTEGER a2,b2,c2

DOUBLE PRECISION a b c3. 3. 3
COMPLEX a04,c4

LOGICAL a b c5. 5. 5

each a, b and c is a
variable name or an -array
hame, optionally, including
dimension information

These statements are used to override the type LiOlied in the first
character of a data name (41-44, O4 REAL; I-N =H(ER)

Arrays emaY be dimensioned in a type statement or declared
gs to type in a type statement and dimensoned in a dimension
statement.

examples REAL TMAGE %TAX
COMPLEX C(0), CA
DOUBLE PRECISION DP
DIMENSION DP(5,5)

3410 69.3

.1:1ATA

TA V
1
/k

1
/

'
V2/I2/ '

Vn/kn/

each V is a list of variables
and array elemedes, each
k is a list of constants
to be associatedwith the
preceding variables

It is the purpose of the DATA statement to assign initial
values to variables and array elements. These values may be
altered during execution.

Any constant may be preceded by a repeat factor in the form n*
where n is tOe number of .repetitions and * indicates repeat.

The constant list must agree in type and number with the
variable list. -

-examples

DATA A,B4/5.40.72.4/fX/92.7/

DATA CID,E,F/39.5,2*0.00.36/

A Hollerith constant may be assigned to a variaiole.

DATA AM/6HABCDEF/

this example supposes one storage unit can contain
six characters

The DATA statement by itself may not be used to initialize
entities in Common storage (page 34) -Blank Common may not
be initialized; labeled common must be inkVialized in a BLOCK
DATA subprogram. (Section 9)

3-11

Ine

.r

4/6
Arithmetic Assignment Statements

The general form of an arithmetic assignment statement
is v=e, where v is a variable and e is an arithmetic
expression.

Execution of the arithmetic assignment statement consists of:

1. evaluate the expression e.

2. Place the result in variable v.

Arithmetic expressions consist of arithmetic elements
(variables and constants) and the arithmetic operators:

Operator
,

...

,

Meaning

+ addition

- subtraction

* multiplication

/ division

** exponentiation

examples X+Y
X+Y/Z+5.4
E**Z-B

Mixed mode expressions nre not allowed:that is, one
may not attempt to include varidus of the data types in one
expression. Thus,-

X+I
6 is not allowed as X is Real and I is

integer. There are certain exceptions to this general rule how-
ever:

rules.

1. Any arithmetic type may be exponentiated by ah
integer and it retains its type, thus

X**2 or X**I is allowed.

2. A real element may be combined with a double
precision or complex element, the result is
double precision or complex.

3. A real element may be exponentiated by a double
precision element, the result is double precision

4. A double precision element may be exponentiated
by a real element the result is double precision.

The evaluation of arithmetic expressions folloWS set

4-1

Co

1. The expression is scanned left to right and all
exponentiation is resolved.

The exuression is scanned 'again and all multi-
plication and division is resolved.

3. The expression is scanned a third.time and all
addition anc subtraction is resolved.

examples a

x+Y/3
means

not XtY

X+Y**2+2

means x442.12

not

nor X4-1124 Z

nor (x+Y)2+ Z

I.

Parentheses may be included in aq arithmetic expression to
4(AnAment or to change the order of evaluation.. Everything
within parentheses is completely resolved before any part of
the remainder of the expression is resolved.

examples

x+Y
itT2

could be written

(X-rY)/(W+0

(X+Y)2

could be written

(x+Y) **2

Once the expression has been evaluated the resultant Value is

placed in V.
The = meansthen "is replaced by" not "equals". V need not oe of
tne same aata type as the expression: if it is not the result
will be adjusted according to the following table.

4-2

6 t;

Typ:: Typ:mmznal=='E amact,====cobeon en

DP

DP

DV

C

V=====

DP

DP

Evaluateltruncate fraction,

convert to integer format

and asiign.

evaluateptruncate frabtion,

convert to integer format

and assign.

not allowed.

evaluate, convert to-real

format and assign

assign undhanged

evaluate, truncate if

necessary and assign

not allowed.

evaluaie, convert to

DP format end assign

convert to DP format,

evaluate and assign

assign unchanged

DP

not allowed

not allowed

not allowed

assign unchanged

4-3

697

41 3

Logical Assignment Statements

The general form of a logical assignment statement is v = e,
where v is a logical variable or array element and e is a logical
expression.

Execution of the statement consiits of:

1. Evaluation of the expression

2. Placement of the result (TRUE or FALSE) in v.

Logical Expressions

A logical expression may only have the value TRUE or FALSE.
It is formedwith logical operators and logical elements.

A logical element may be a:

logical constant
logical variable
logical array element
logical function reference
or it may be more complex, a relational expression

Relational Expressions.

A relational expression consists of two arithmetic
expressions (Section 4) and a relational operator.

The relational operators are:

...operator meaning

.LT.

.LE.

.EQ.

.NE.

.GT.

.GE.

'

,

less than .

less than or equal to

equal to

not-equal to
.

greater than

greater than or equal to.

Arithmetic expressions of the type complex may not be used
in relational expressions.

Both arithmetic expressions may be integer! real or double
precision or one may be real and, the other double precision.

Examples of relational expressions
X AO. Y
I ,GE. 5
X+Y .LT. SORT(W)+5.4

5-1

609

In all ca3es TRUE or FALSE is determined.

The logical operators are:

operator meaning

.NOT.

.AND.

.OR

logical negation

logical conjunction

logical disjunction.

It is the function of these operators to build more complex
expressions out of the elements (constant, relational expressions
etc).

.AND. and .0R. join the expressions preceding and succeeding
them. .NOT. however is unary; it applies only to the element
immediately succeeding it. If .NOT. is to apply to two or more
elements they must be enclosed within parentheses.

Examples

LI .AND. 12

X .E0. Y .0R. Ll

.NOT. Ll .AND. 12

if both 1M and 12 are
TRUE result is TRUE, else FAI E

if X is equal to Y or if
LI is TRUE result is TRUE,
else FALSE

if L1 is FALSE and L2 if.
TRUEresult is TRUE, else FALE

Evaluation of logical Expressions.

The evaluation of logical expressions proceeds according
to the following steps, left to right:

1. Within parentheses according to fo3lowirig steps
then outside of parentheses

2. Arithmetic expressions according to rules for
arithmetic evalUstion (page 4- 2)

3. Relational operators

4. Logical function references

5. NOT.

6. .AND.

7. .011.

GO9
5-2

Examples

X .LT. Z .AND. .NOT. Li .0R. Q .EQ. MT(W)
the order of evaluation is

1. MT(W)

2. X .LT. Z

3. Q .EQ. SORT(W)

4. .NOT. L1,

5. X .LT. Z SAND. .NOT. L1

6. X .LT. Z .AND: .NOT. Ll .0R. Q .EQ. SORT(W)

5-3

611)

CONTROL STATEMENTS

There are eleven control statements discussed in this
section:

assigned
computed
arithmetic
logical

GO TO
GO TO
GO, TO
IF
IF
CALL
RETURN
CONTINUE
PAUSE
STOP
DO

The ASSIGN statement will also be considered in this
section because of its relationship with the assigned GO TO
statement.

Control statements allow the programmer to control
the exectution sequence of the program.

'All statements referenced by control statements must be
executable statements.

6-1

61

1

GG TO n
n is a statement label 1

GO TO

Control is transferred
execution continues at

example

35

to the named atatment andthat point.

GO TO 35

6 1 r)

ti

#141"

014 $

s". 00

vosiv too so

- 01*

0 4,0
*el

:so-

oss'

tomputed GO TO

4

GO TO (Kit.... ;lift)

i is an integer variable, each
A is a atatament label

Prior to executing a computed GO TO a legè. value must be
assigned to i. This may be done with an afthmetic assignment
statepent (Section'4). At the time,of execution of the
computed GO TO statement i must be greater than zero and less
than or equai to n. Execution of the computed GO TO causes
transfer to the stdtement whose la 2 is.the i'th in the)ist.

F.xample:

= 2

GO TO .(415.10.20).J

1
5 J= 4

6-4

4

a

v

ArithOtic IF

xr(firkormetk3

is an arithmetic expression
of any type, each k is a
statement label.

Execution of the arithmetic IF will.cause a transfer
to 1E4,1141 or km depending upon the arithmetic expression
(Sectioft 10aaccording to the following:

xample IF (X-Y) 5,10,15

IF X-Y less than zero transfer to statement 5

/ az- X-Y equal to zero transfer to statement 10

IF X-Y greater than zero transfer to statement 15

Ail throe k's must be written even in those cases
programmr wishes to make the computed GO TO a one-way or too-way
branch.

examples IF(X+4) 20,20,30

or

10=mimmomIINIml..

IF (1+4) 20,20,30

6-5

615

. Logical IF

IF bp) S
e if. a logical expression,
$ is true path

Execution of the logical IF causes the logical expression
e (Secion 5) to be evaluated for True or False. If e. is
True, S is executed. -If Eris False S is bypassed and
the next sequential statement is executed.

S may be any executable statement 6xcept a DO sfatement
(page 6-12) or another logical IF,

examples

a

IF(L) GO TO 25
if the logical variable L is True transfer to'
statement 25.

IF (X.GE.Y.OR.SQRT(A).EQ.B) Z=2+1.0
add one to 2 only if either X is greater than It
or the Square Root of A equals B.

4IP

CALL

C'

(62.2.

1CALL 8(E40..11)
is the name of a subroutine

isubprogrampeach a is an actual
argument

the CALL causes execution of the named subroutine subprogram
(Section 9).

The arguments are passed to the sutroutine for its use.
The arguments must be of the proper numberiorder, and

-\ type as required by the subroutine being called. '

example

CALL SUB) (X a 5. 4)

6-7

61-7

Noske.'

RETURN

Co 3

[RETURN
The RETURN statement may only appear in function sub-

programs and subroutine subprograms (Section 9)

Execution of the RETURN in a subroutine causes control
to be rEturned to the calling subprogram.

Execution of the RETURN in a functioncauses control to be
returned to the calling subprogram and makes the value of the
function avallable to it.

The RETURN is the only means by which control can be
returned to the calling subprogram.

For example of usage see Section 9

coNPINUE

Execution of the CONTINUE causes no action; it is
a means by which the programmer may'insert a handy
refprence'point where needed.

example

DO 10 I = 1,20,1

IF (xLGT;Y) GO TO 10

10 MMTINUE

See DO statement (page 6-12)

6-9

9

STOP

(02.5-

STOP n
n is blank or a string of
one to five octal digits

Execution of the STOP causes program termination

The STOP may be coded Wherever logically proper in a program. Morethan one STOP may be in a program, but only one will bp executed in
any one running of the program.

6-10

6,20

PAU3E

MUSE n
le blank or a

atring of one to five
,00tal digits

Zio

Execution of al3AUSE causes the program to be temporarily
mispended. Resumption of execution is not under prograth control. %ten
the program is resumed the next sequential statement is
executed with all values undisturbed by the suspension.

11,

6-11

DO

sfte

DO n i = m m. m-1,
nis a statement label, i is
an integer variable, each
m is an integer constant
or variable.

The DO statement controls a loop which consists ofall statements beginning with the next sequential state-ment after the DO and ending with statement n.

Statement n must physigally follow the DO statement andin the same subprogram.

i controls the number of times the loop is executedm
1
is the initial value of it it must be sreater than zerom

2 is the limiting value of it must be greater than zerom2 is the incremental value of it must be greater than zero) if omitted, one is assumed.

SET 1= m DO LOOP
increment i
by m3

i is available to instructions within the loop but may
not be altered. N, after

may not be a GO TO, arithmetic IF, RETURN, STOP, PPUSh, DC
or a Pogital IF which includes any of theue.

example

X.
DO 20 1=1,10,1

20 X X + 1.0
at termination of this loup X will have 10.0 fol. Its
value.

One DO loop may have otherloopz; within it, if they arecompletely nested

example

DIMENSION X(10,10), Y(10,10)

DO 50 I 1,10,1
DO 40 J . 1,10,1
X(J,I) = X(J,I) -Y(J,1)
40 CONTINUE
50:CONTINUE

6-12

42.8
It is also permissible to have both DO loops terminate on

the same instruction; thus the above could also be written

DO 50 I= 1,10,1
DO 50 J= 1,10,1

50 X(J,I) = X(J,I) Y(J-I)

In a nest of DOloops, the innermost loop may have an
extended range. This innermost loop may transfer out of
the entire nest of DO loops with a GO TO or arithmetic
IF. To continue execution as if the transfer had not occurred,
a transfer is made back into the innermost loop with a GO TO
or Arithmetic IF

example

3C

M = 0
DO 10 I=JK,L
DO 20 II =JJAKILL

GO TO 50

20 CONTINUE
10 CONTINUE

A = 1

50-

IF (M-1) 30,60,60

6-13

extended
range.

Input-Output Statements

There are two groups of Input-Output statements. The first
group consists of the READ and WRITE; the statements which cause
transmission of data between a central processor and peripheral
devices.

The other group includes the ENDFILB, BACKSPACE and REKIND
statements; the statements which manipulate data filep.

Additionally the non-executable FORMAT statement can be
used in conjunction with the READ and WRITE statements to
control data format on the external medium.

There are two versions of the READ and WRITE statements,
depending whether or not a FORMAT statement is used. Each will
be discussed separately.

A READ or WRITE action in FORTRAN is not directed to a parti-
cular device such as a card-reader or printer. Rather it is
dirdcted to a FORTRAN unit number. Whirl' numbers may be used as
FORTRAN units is specific to a particular FORTRAN sYstem. Also,
how the relationship between a unit number and an actual hardware
device ii established is specific to a particular FORTRAN system.
One example of how this might be done is one number is always
associated with a particular device; for example the card-reader
is unit 3 etc. Another way it might be handled is through Job
Control Language. Each time a FORTRAN program is executed, unit
numbers used in that program must be equated to devices. This
meth04.gives_device independence to the programmer. In any case,
the programmer must learn the method used by the FORTRAN system
under which he is operating.

Non-formatted READ

Rai) (1)
u is the unit number and
is the I/0 list

u may be an integer variable or constant.
k is a list of variables and array elements. Data read is

placed in these list elements in the order specified by the list.
The non-formatted READ rquires that the data appear on the
external medium exactly as it is to appear in memory as no
conversion will be performed.

The number of variables in the list may n)t be g;eater than the
number which can be satisfied by one record. The unformatted
READ will only read one record each time it is executed. If the
list is absent from the READ a record will be read but will not be
made available to the program. This, then, could be used to skip
over selected records in a file.

7-1

Formatted READ

READ (u9f)k
-

u is the unit number, f is
a statement label or array
name and k is the I/0 list

(030 0

J
u may be an integer constant or vhriable.
f is either the label of a FORMAT statement or an array nnme.This controls the conversion necessary to accoMplish theREAD.
k is the list of variables and array elements into whichthe data is to be rend.

The formatted-READ requires that the data appear on the
external medium in BCD format. The FORMAT statement controlsthe conversion of the data into the internal code of the pro-cessor.

The formatted-READ will read multiple records if necessaryto satisfy tt, list.
If the list is omitted a record will be rend into memorybut will not be made available to the program.

Non-formatted WRITE

WRITE (u)K
u is a unit number and
k is an I/0 list

u is an integer variable or c9nstant.
k is a list of variables and array elements to be written

to the external medium.
Data in the output record is not converted, it appears

exactly as in memory.

Formatted-WRITE

WRITE (u,f)k
u ia a unit numberv-if a
statement label or array name
and k is an I/0 list

u may be an integer constant or variable
f is either the label of a format statemPnt or an array

name. This controls the conversion necessary to It":complish
the WRITE.

7-2

k is ihe list of vuriftbles and array elements to be written
to the external medium.

The data will be converted to BCD format on the output medium.

FORMAT statement

The FORMAT statement is used with the READ and WRITE state-
ments to provide conversion and editing information between the
internal data representation and external BCD.

The FORMAT statement has the basic ferm:

FORMAT (fd1,...adn)

n Is the statement label
and each fd is a field
descriptor

each field descriptor defines one data field in the external
medium, it defines the fieid's width and the type of datum in the

The record is described left to right starting with the first
position.

There are nine field descriptors: integer, real, real with
exponent, double precision, general, logical, alphanumeric ?

hollerith and blank.

The general forms of the field descriptors are:

Iw integer
Fw.d real
Ew.d real with exponent
Dw.d double precision
Gw.d general
Lw logical
Aw alphanumeric
nH hollerith
nX blank

1,F,E,D,G,L,A,H and X define the descriptor type.
W defines the number of positions in the field.
.(1 gives an assumed decimal point for input, it is over-
ridden by an actual decimal point in the data. In output
it defines the number of fractional positions wanted.

7-3

C?a

Intlger descriptor lw

Legal data characters are the numerics (0-9) and a sign(+ or
Input data must be rignt justified as imbedded and trailing

blanks will be treated as zeros. When integer data are writtenthe data will be right justified with blanks replacing leadingzeros. A position must be allowed for a sign.

Example read two integer values.

15+ 1 3 5 7
3

11 .2 a 01
. I 1tt I

1 78 23

READ(2,12) J,K
13 FORMAT (17,15)

The value +13,570 is read into J under control of the 17
descriptor. The value-23 is read into K under control of the
15 descriptor.

The remainder of the record is not made available to the
program.

Real descriptors Fw.de Ew.d, Gw.d

These three descriptors may be used to convert single
precision real data.

In input these three descriptors are equivalent and any one
may be used at the programmers discretion. Legal input consists
of a basir value and an optional exponent.

Legal characters in the basic value are the numerics (0),
a sign (+or-) and a decimal point.

The optional exponent may be of one of the following forms:

signed integer constant
E followed by an optionally signed integer constant.
D followed by an optionally signed integer constant.

Note that D in this case is overridden and the value is
stored in one computer storage unit.

a

62

Example: read four real.valuea

READ (31 13) X,4,3,A .-
13 FORMAT (F11.0,F7.0,F10.0,F7.2)

3 3

11All of these values could have also been converted using
an E or G descriptor.

114Cause the first three values contain actual decimal:points,
the size given to d in the first three descriptors irt ignored.
The fourth value is read as +2345.67

There are differencel; between the F. D and G descriptors in output.

The F descriptor givos a righi, justified value witii leadirig blanks,
and a minus sign if negative. The fractional 'part of the value
will he rounded to 4 places. The W in the descriptor should allow
for a sign and must allow for a decimal point position.

Example:

internal valui of X = .123456.X102

WRITE (5,16)X
16 FORMAT (F7.5)
gives output value 12.345

The E descriptor gives a general output form of sOnl...nd exp
where:
s" is a.- if negative or no position if posAive
ni...n are the d significant digits of the value
Op isdeither E+nn .r +nnn depending on the size of the

exponent value ,

0 may be no position in some FORTFAN systems

'Example:

internal value of X ..123456...X102

WRITE (5,15)X
15 FORMAT (E10.5)
gives output value .12345E+02

7-5

(034-
The G descriptor in output can result in either a F or E

type conversion. The determining factor as to which is used
is the absolute magnatude of the value being written. Let M
represent the magnatude of the value: if M is less than 10d
an F conversion will be used, if M is-equal to or greater than 10d
an E conversion will be used.

10d tMe.10
10 tic

Converir used

Pw-4.d,4X
Fw-4.d -1, 4X
Fw -4.d -2, 4X

Fw -4.0, 4X
sEw.d

s is a scal.e factor to be discussed on page 7.

Example WRITE (6,60) X
60 FORMAT (C9.3)

if X = .234
which gives

if X = 2.34
which gives

if X = 23.4
which gives-

if X = 234.,
which gives

if X = 2340.
which gives

the conversion
.234 au.

the converliion
62. 34 dloa,

the conversion
23.464a.

the conversion
6234.....

the conversion
.2340+E04

is F5.3,4X

is F5.2,4X

is F5.1,4X

is F5.0,4X

is E9.3

'Double precisior iescriptor Dw.d

Tbis descriptor allows real values to be stored into two
storage units rather than one and thus achieve greater precision.
Legal input is-the same as for the single precision descriptors
E,F and G. Output is the same as for the single precision E
descriptor except that D replaces E.

7-6

. Complex conversions

65'
There la no complex field descriptor; rather, because a

complex datum la in fact two.real data, a pair of real des-
criptor, la used to effect converdion. The first of this
pair defines the real part and the second defines the imaginary
part.

Example:

READ(3,32) C
32 FORMAT (F7.2, F6.3)

Logical Descriptor Lw

For a value of True to be read into a logical,variable
the first non-blank character in the inPut fieldsmust be a
T. For false the first non-blank character in the field must
be an F. The contents of the remainder of the field are ignorede,
On output, the field will consist of 1,1-1 blanks followed by a
T or F depending won the value of the logical variable.

Blank descriptor nX

On input n characters of the record will be skipped, they
will not be stored into a variable. On output n blanks will
be inserted into the record.

Hollerith descriptor nHc1" .cn

This descriOtor is of use on outpui to define constant
values which are to be placed.in the record.
This descriptor is not associated with a variable in the I/0
list, rather the n characters are transmitted.

Example:

suppose X = 7.25

WRITE (5,50) X
50 FORMAT (14HTOTAL VALUE: ,F6.2)

givekr, TOTAL VALUE: 7.25

7-7*

631)

6

r-

a

,

Rad%

63(40 S.
Alphanumeric descriptor Aw

This descriptor causes w characters to be read into orwritten from ene of the I/0 list elements, which may be oranydata type as there is no alphanumeric type variable. To achievea proper conversion the programmer must know the number of characterswhich can be stored.in one storage 'unit.

Suppose this number is C. On input if w is greater than cthe rightmost c characters of the input field will be stored
'and thF, leftmost w-c characters will be lost to the program.

If w is less than c the w characters will be otored left
justified with trailing blanks.

On output if 4 is greater than c the output field will
consist ofv-c blaMs followed by the c characters. If w is lessthan c only the leftmost w characters will be written.

Scaling

A scale factor is defined for all F,E,O and D descriptors
when format control begins a scale factor of zero is assigned.
This can be altered at any point in the format statement by
coding a scale factor with a field descriptor. It has the form
nP where n is an unsigned or minus integer constant.

Example 3PF7.2

This new scale factor does not apply only to this descriptor
hut also to all F,E,O and D descriptors following, in this
FORMAT statement, until another scale factor is defined.

The effect of tne scale factor varies between the different
descriptors,and between input and output.

For input FIE,G and D descriptors, if the input dats have
no expressed exponents, the external value equals the internal
value times10 to the n power.

Ve. X1On

Example

external value descriptor
44.566 1PF7.3

internal value
4.4566

Thus a positive stale factor shifts the decimal point
left n places, a negative scale factor shifts the decimal
point right n places.

7-8

63 7
If the input data have expressed exponents the effect of the

scale factor is negated fur that data.

For F descriptors on output, again, the external value equals
the internal value times 10 to the n power

Ve = V1X10n

This however gives an effect opposite to that for input.

Example:

Internal Value Descriptor External value

4.4566 1PF7.3 44.566

A positive scale factor shifts the decimal point right n
places, a negetive scale factor shifts the exponent left n
places.

For E and D output the basic value is multiplied by 10n
and the exponent is reduced by n.

For G output, if the magnatuae of the datum allows use of
an F.conversion the scale factor has no effect.

If an E conversion is used the effect is the same as for
an E descriptor.

Repitition Constants

If a series of field aescriptors are the same, instead of
coding n separate descriptors, one description preceeded by the
integer n may be coded.

'Examples F7.2, F7.2,17.2
may be written 3F7.2

13, 13, 14, 14, 14
may be written 213, 314

Additionally a repitition constant may be applied to like
groups of descriptors. The group is coded one Uwe within
parentheses with the repitition constant preceding the parenthesis.

Example 13, 14, 13, 14
could be. written 2 (13, 14)

One group may be imbedded within another.

Example

F7.2, F6.11 F8.2, F6.1, F8.2, F7.2, F6.1,
F8.2, F6.1, F8.2.

could be written 2(F7.2,2(F6.1, F8.2))

7-9

6)

C038
Scanning.the FORMAT Statement.

The FORMAT statement is scanned left to right. The nextfield descriptor is associated with the next list element,except that two descriptors are associated with a complexelement and no element is associated with a blank (a) or hollerithdescriptor (rdicl...cn).

The scan must continue until, the I/0 list is exhausted. If theend of the list is reached before the end of the FORMAT statement,the rest of the FORMAT statement is ignored. If the end of theFORMAT statement is encountered first however, a rescan of theFORMAT is begun. Anytime a rescan is necessary a new record isbegun both on input and output.

With the simple FORMAT statement (no internal parentheses)the rescan starts at the first descriptor of the statement.
If there are internal parentheses however the rescan isstarted at that left parenthesis associated with tb. last inter-nal right parenthesis in the statement.

Examples

FORMAT (13, F15.50 F12.6, 17)

rescan point

FORMAT (15, 2(F15.5, F12.6, 17))

rescan point

FORMAT (14, 2(F15.2,3(I7,15); F9.3))1
rescan point

FORMAT (2(F7.2),2(I6,3(17)).(F9.3))

rescan point

Print formatting.

When writing to the printer, the output record must containprinter vertical format control. Thi:; is supplied in the firstposition of the record. This position will be blanked out whenthe record is printed.

7-10

(e) 3 61

Legal vertical spacing characters are shown below.

Character Slace before Printinx

Blank One line
0 TWo lines
1 Head of form

Do not advance

One method of inserting an advancing character into the
print line would be to code a hollerith constant.

Example

WRITE (3,45) X, Y,
45 FORMAT OH'', 4HX4=A,F9.3,4HYA=AfF9.3,4H24=A,F9.3)

Multiple record format

As stated previously, anytime a rescan of a FORMAT statement
is necessary a new record is begun. The-programer can also
force a new record at any point in the READ or WRITE operation by
including the slash(/) character-in the format statement.

Examples READ(2,12) X,Y13
12 FORMAT (F12.4, F10.3/F11.5)

X and Y would be read from the first record and a from tile
second.

READ (2,13) X,Y,Z
13 FORMAT (F12.4,F10.3//F11.5)

X and Y would be read fram the first record, from the third
record. Record two would be skipped.

Short list notations

If an array name appear:i in an I/0 list without subscript,
this is taken to mean that every element of that array is to
have a value read into or written from it.

Example DIMENSION A(4)

READ (3,53) X,A,Y
33 FORMAT (F7.1, 4F10.2, F9.2)

The order in which the list is satisfied is

X,A(1), A(2), A(3), A(4), Y

7-11

G40
Formatting at execution time.

A READ or WRITE need not getcits formatting information from
a FORMAT Statement. This information can be in an array.

Example READ (3,ARRAY1) A,13,C,D

Tbe information can he placed into the array by one of two
ways. The array can be initialized with a DATA statement. The
alternative is to read the format information into the array
using an alphanumeric descriptor. The input record or records
must contain everythylg just as it would be coded in a FORMAT
statement with the exception that the word FORRAT is not included.

Example
51ippose one storage unit can contain eight
characters

DIMENSION A(2)

5 READ (200) A
10 FORMAT (2A8)
15 REAL (2,A) xtyva

The data read by statement 5 could be:

6

Thus,this format information would control rtatement
15 which woul,1 data. An example of such data _Lc,:

i irt.,.6g1.43(7_.04,52. 7. . . .

11 -.7(2

5b

DO implied lists

In addition to tne simple I/0 list and the short list
discussed previously, a Ri..c1 or WRITE statement may also contain
a DO implied list.

7-12

The form of a DO implied list is:

(V1011.4bOiNntintlilii2,M3)
each V is an array name subscripted
by i or a variable

The order in which the array elements are processed is
controlled by the DO loop.

Examples: DIMENSION A(20)

READ (3,37)(A(J),J=1,10)
37 FORMAT (1077.2) .

Values are read into the first 10 elements of array A.

DIMENSION X(10)

WRITE (5,50)Y(311X(K),K=1,10)
50 FORMAT (F15.5,(F12.2,F9.3))

The order in which the elements are written is

YIZIX(1),30X(2)03,X(3),Z,X(4),3,X(5),;,X(6)1a,
X(7), ag X(8), gpx(9)patx(10)

111 One DO implied list may be imbedded within another.

Examples:

DIMENSION X(5,4)

READ (3,90)((X(I,J),I=1,5),J=1,4)
90 FORMAT (20F7.2,

The order in which the elements are processed is:

X(1,1), X(2,1), X(3,1), X(4,1j, X(5,1), X(1,2),...,X(5,4)

f`

7-13

04
Auxiliary Input-Output Statements

The three statements REWIND, BACKSPACE and ENDFILE are used
to manipulate data files.

REWIND

The REWIND statement has the form

REWIND u

This statement causes unit u to beipositioned at its
starting point.

BACKSPACE

The BACKSPACE statement has the form

BACKSPACE u

This statement causes unit u to be repositioned such that
the last record referenced will also be the next record refer-
enced when a READ or WRITE is issued. This statement has no
effect if u is at its initial point.

ENDFILE

'The ENDFILE statement has the form

ENDFILE u

This statement causes a unique end of file record to be
written on file u. Action is not defined if an end-of-file
record is encountered during a read operation.

7-14'

&41-3
STATEMENT FUNCTIONS

The purpose of statement functions is to eliminate repetitive
coding of the same expression in a subprogram.

For example if an expression of the form V1 + V2 / V3 appears
in ten statements in a subprogram, it might be advantageous to
code the expression one time as a statement function and include
a reference to it in the ten statements.

The general form of a statement function is:

f(a1,. . "an) = e

f is the fUnction name each a
is a dummy argument to the fUnction
and e is an arithmetic orlogical
expression

The name assigned to the statement function must be uniqUe
in the subprogram in which it is coded.

The rules for naming statement functions all the same as for
variables and arrays

1. one to six alphanumeric characters.

2. the first must be -alphabetic or it implies
real, (A - H, 0 - Z) or integer (I-N) type

3. to override 2 a type statement must be included
in the subprogram to explicitly type the statement
function.

The dummy arguments to tne statement function need not have
names unique in the subprogram as they do not define actual entities.

The expression must agree in type with the name assigned to the
function (e.g. if the function is typed logical, the expression
must be logical).

The expression may contain

the dummy arguments
non-hollerith constants
variable references
references to other statement functions defined previously
Intrinsic and external function references (Section 9)

All statement functions in a subprogram must be coded prior
to all executable statements.

A statement function can be used only in the subprogram in
which it is coded.

8-1

63 5

G4-4-
Thus if the various subprogramof a program all require a
particular statement function, it would have to be coded in each.

A statement function is executed by including a reference
to it in an executable statement,including real arguments of
the proper type, order and number.

examrles of usage

SFUN (A,B) = SQRT (A**2+B**2)

10 X = Y + SFUN (Q,R)/2

1
20 B = SFUN (con) * E+F

8-2

Subprograms

There are three types of dependent subprograms which the
programmer may code to use in conjunction with the main subprogram:
the FUnction Subprogram, the Subroutine Subprogram and the Block
Data Subprogram.

The first two of these would contain commonly used routines.
Their usefulness is that a routine could be written one time
and included in each program as required, unaltered, thus savingsome amount of coding.

The block data subprogram does not contain executable code;
its function is to initialize blocks of labeled common.

9-1

(044,
Block Data Subprogram

Blocks of labeled common (page 3-4) may only be initializedthrough a block data subprogram.

The first statement in a block data subprogram must beBLOCK DATA.

The last statement must be END.

The only statements which may appear within a blockdata subprogram are: the data type statements,
EQUIVALENCE, DATA, DIMENSION, and COMAION

If one entity in a block of labeled common is initialized,the entire block must be described.

Example

in main subpiogram

COMMON /BLK1/ A,B,C

BLOCK DATA

COMMON /BLK1/ X,YoZ

DATA X,Z/6.97, 17.64/

END

Note that variable Y(Which is also variable B) is notinitialized. It would be incorrect however to have a commonstatement such a:;
COMMON /BLK1/ X,Z

The entire block must be defined.

The block data subprogram may not be used to initialize blank
common.

9.2

(0 4:1
Function Subprograms

The first statement of a function subprogram id of the
form:

t FUNCTION f (al,...ran)

t is the function type, f is
the fUnction name anct each a
is-a dummy argument

Function subprograms are given a type (e.g. INTEGER) or ifomitted, the type is implied in the first character of the function
name: 'A-H and O-Z real; I-N integen The name must be one to six
alphanumeric .Characters with the first character being alphabetic.

The dummy arguments may not appear in an
EQUIVALENCE, DATA or COMMON statement.

The last statament of the fUnction subprogram must be anEND statement.

A function subprogram may return any number of values to thecalling subprogram. This is done in two ways.

The name of the function itself must appear in at least one
executable statement, to the left of the "=".

Also the function subprogram may redefine any of the dummy
arguments and thereby redefine the true arguments of the call tothe function.

Returil to the calling subprogram is made by-a RETURN state-ment (page 6-8). Return is made to the statement which issued thecall to the function.

Calling function subprograms. A function subprogram is executed by in-
cluding its name in an arithmetic or logical assignment stater
ment. The true arguments must agree with the dummy arguments in
type,_ number and order.

True arguments may be one of the following:

variable

array

array element

an external procedure (see EATERNAL page 3-9)

an expression

9-3

. Example

in main subprogram
AREA=FIGR(wDTM,MGHT,J)

IF (J.GT.0) GO TO . . .

FUNCTION FIGR(A,B,I)

IF (A. LE. 0.0) GO TO 42

IF (B. LE. 0.0) GO TO 44

I = 0

FIGR = A*B

RETURN

13 FORMAT (1H0, 11H NEG F7.2)

42 WRITE (5, 13) A

I.= 1

FIGR = 0.0

RETURN

44 WRITE (5,14) B

N4,14 FORMAT (1HO, 1211 NEG HEIGHT:, F7.2)

I = 2

FIGR = 0.0
's

RETURN

END

9-4

6 !

Suipromtine Subprograms

. The first stitement of a subroutine subprogram is of the form:

r

UBROUTINE s (al,,..,an)

s is the subroutine name
and each a is a dummy
argument.

The last statement af the subroutine subprogram muit be an END
6tetement.

The dummy argumenst may represent variablernamei, array names
or external procedures. These dummy arguments may not appear in
DATA, COMMON or-EQUIVALENCE statements.

A subroutine subprogram returns values back to the calling
subprogram by redefining the dummy arguments and thereby the
associated true arguments.

Return is made to the calligg subprogram by a RETURN statement
(page 6-7)

The true arguments to the call may be:

hollerith constant

variable

array

array 3lement

an expression

external procedure

Example (same as for Function subprogram to show siiilarities ind
differences)

in main subprogram

CALL FIGR (WDTH, HGHT, J, AREA)

IF (J .GT. 0) GO TO.

END

SUBROUTINE FIGR (A,B,I,C)

IF (A. I.E. 0.0),GO TO 42

IF (B. LE. 0.0) GO TO 44

9-.5

I = 0

C = A*B

RETURN

13 FORMAT (11 11H NEG WIDTH:0F7.2)

42 WRITE (5,13) A

I = 1

C = 0.0

RETURN

44 WRITE (5,14) B

14 FORMAT (1H0, 1211 NEG HEIGHT:1F7.2)

I = 2

C = 0.0

RETURN

END

9-6

(0-51
Predefined Functions.

There are two groups of functions, Intrinsic and Basic
External, which must be supplied with the Fortran compiler.

ie tablqp beial
igt:tallUgrit

Function Meaning._ Name

of functions

Type of
Ar4HILT.V.,...11%21101

Exponential e
a EXP Real real

DEXP d.p. d.p.
CEXP 'complex complex

Natural Logarithm loge(a) ALOG real real
DLOG d.p. d.p.
CLOG complex complex

Common Logarithm loglo(a) ALOG10 real real
DLOG10 d.p. d.p.

Trigonometric Sine sin(a) SIN real real
DSIN d.p. d.p.
CSIN complex complex

Trigonometric Cosine COS(a) COS real real
MOS d.p. d.p.
CCOS complex complex

Hyperbolic Tangent tahh (a) TANH real real

Square Root (a)1/2 SQRT real real
DSQRT d.p. d.p.
CSQRT complex complex

Arctangent arctan(a) ATAN real real
DATAN d.p. d.p.

arctan(al/a0)ATAN2 real real
' DATAN2 d.p. d.p.

Remaindering al(mod a2) DMOD d.p. d.p.

Modulus CABS complex real

10-1

Function

Absolute Value

Truncation

Remaindering

Largest Value

Smallest
Value

Float

Fix

Sign
Transfer

Positive
Difference

Intrinsic Functions

Meaning

la l

Name'

sign of a
times larg-
est integer

la I

a(mod a
2

)

max(a1,--411)

min(a1,--a)

Most significant
part of d.p. argument

Real part of
complex argument

Imaginary part of
complex argument

Single to dotible
precision

convert
integer to
Real

convert
real to
integer

sign of
times/a1r-

ABS
'ABS
DAIK;

Type
Argpment

real
integer
d.p.

AINT real
INT real
IDINT d.p.

AMOD real
MOD integer

AMAXO integer
AMAX1 real
MAXO integer
MAX1 real
DMAX1 d.p.

AMINO integer
AMIN1 real
MINO integer
MINI real
DMINI d.p.
FLOAT integer

IFIX real

SIGN
ISIGN
DSIGN

al-MIN(ava2)I0

SNGL

REAL

AIMAG

DBLE

10-2 6_

real
integer
d.p.

real
integer

d.p.

complex

complex

real

(05L

of
Functioja

real
integer
d.p.

real
integer
integer

real
integer

real
real
integer
integer
d.p,

real
real
integer
integer
d.p.
real

integer

real
integer .
d.p.

real
integer

real

real

real

d.p.

Intrinsic Functions

1ress retie al14.:1:51 ree2 comp ex

arguments in
complex form

Type of

ction me

conjugate of
complex

CCSJG complex cCmplex

Both the basic external functions and the intrinsic functions
are executed by including a reference in an executable statement.

The various functions will be discussed individually below.

Absolute value

ABS returns the absolute value 'of the real argument.

example X = ABS(Y)
if Y = -5.4, X = 5.4

IABS and DABS for integer and double precision value.

Truncation

AINT truncates fractional part of real argument and
return this value in real format.

example X = AINT(Y)
if Y = 5.4, X = 5.0

INT similar to AINT except value returned is in integer format

example I = INT(Y)
if Y = 5.4, I = 5

IDINT same as INT for double precision arguments.

example I = IDINT(D)
if D = 5.40 I = 5

Remaindering

AMOD first real argument is divided by second real
argument. True remainder is returned with sign of

first argument.

example Y = AMOD(Y,Z)
if y = 7.2 and Z = 1.4, X = 2.0

MOD same as AMOD for integer values

DMOD same as AMOD for double precision values.

10-3

453

Choosing Largest Value

AMAX1 determines which of the two or more real arguments
greatest and returns this value in real format.

Example X= AMAX1(A,B,C)
if A = 1.5, B -9,4 and C=7.3; X=7.3

MAX1 determines which of the real arguments is greatest
and returns the value in integer format.

AMAXO determines which of the intefer arguments is greatest
as returns this value in real forma .

Example X = AMAXO (I,J,K)
if Iv=3, 3 = -5, X=4; X =4,0

MAXO determines which of the integer arguments is greatest
and returns this value in integer format.

DMAX1 determines which of the double precision arguments
is greatest and returns this value in double precision
format.

is

Choosing Smallest Value

AMIN1 AMINO etc similar to the corresponding max fUnction,
except that the smallest value is returned.

Example

4=AMIN1 (A,B,C)
if A=1., B=5.4 and C=.9; X= .9

Conversion from integer to real

FLOAT converts an integer urgument to real format, it
is of use within expression which would otherwise be
mixed mode.

Example
X n A+FLOAT(I)
X = A+I is illegal

Conversion from real to integer

IFTX converts a real argument to integer format. It is of
use within expressions which would otherwise be mixed
mode.

Example
I = J+IFIX(X)
I = J+X is illegal

ign transfer

SIGN combines the sign of the second real argument and
the absolute values of the first real argument and returps
this value

Example
X = SIGN(Y,Z)

if Y=7.9 and Z = -1.23; X = -7.9

IsIGN similar for integer arguments

[OLIN similar for double precision arguments

PositIve difference

I'M subtracts the second real argument from the first
If result is zero or positive this value is returned,
if negative zero is returned.

Examples X = 0IM(Y,Z)
if Y = 5.0 and Z =3.7; X =1.3
if Y = 3.7 and Z = 5.0; X = 0.0
if Y =-5 and Z = -6.3; X = 1.3

IDIM similar for integer arguments.

Obtain most significant part of d.p. argument
::NGL truncates those low order digitsof the double precision
argument which would not fit in one storage unit.

Obtain real part of Complex argument

REAL extracts the real half of a complex number

example X=REAL(C)
if C = 5.4+3.71; x=5.4

Obtain imaginary part of complex argument
AIMAG extracts the imaginary part of a complex number
and returns this value as a real number.

example X=AIMAG(C
if C=5.44-3.7i; X=3.7

Convert to double precision format

DBLE converts a real argument to double precision
format

Convert to complex format
CMPLX returns the first real argument as the real part and
the seclnd real argument as the imaginary part of a complex
number

% example C = CMFLX (A,F)
if A .2 79.5 and B = 34.62; C =79.5 34.62i

10-5

650

S5

Conjugate complex

CONJU converts a

Example

complex argument to

Cl = CONJG(C2)
if C2 = 5.9 + 2.71.1

5."0

its conjugate form.

C1=5.9 -2.7i

Exponentiation

EXP raises the value e (2.71828..0 to the power indicated
by the real argument.

example X=EXP(Y)
if Y =2.0; X =e2 or

DEXP for double precision arguments

CEXP for complex arguments

Natural Logarithm

ALOG returns the logarithm to the base e of the real
argument

example x = ALOG(Y)
if y = 3.7; X = 1.30833

DLOG for double precision arguments

CLOG for complex arguments

Common logarithm

ALOG10 returnS the loiptrithm to the base 10 of the real
argument

example

7.389. .

X=ALOG10 (Y)
if Y = 3.7; X =0.5682

DLOG10 for double precision arguments.

Trigonometric Sine°

SIN returns the sine of the real argument. The argument
must be expressed in radians.

10:S.01745 radian, 1 radianW57° 44,
example X = SIN,(Y)

if y = Z (45°) X = .70718
DSIN for double precision arguments

radians = 900

CSIN for complex arguments

j)

1 Ot1P-

"OM..

(05
Trigonometric cosine

COS returns the cosine of the real argument expressed in radians.

Example X=COS(Y)
if Y = .59 (340), a A29

DCOS for double precision arguments

CCOS for complex arguments

Hyperbolic Tangent

TANH retwns the hyperbolic tangent of the real argument in

radians.

Square root

SQRT returns the square root of the real argument

Example: X = =MY)
if Y = 8.75; X = 2.958.

DSCIRT for double precision arguments

CSORT for complex arguments

Complex absolute value

CABS returns the absolut! value in real format of the complex

argument using the formuls

(r2+i2)1/2

Example X = CABO)
if C = .7i. X=6.5448

Arctangent

ATAN returns the Arctangent of a real argument

DATAN similar for double precision arguments

ATAN2 commtes arctangent for two real arguments using

formula A1/A2

DATAN2 similar for double precision arguments

ese
INDEX

Adjustable dimensions 3-2

Alphanumeric field desci,iptor 7-13

Argument, Dummy 8-1, 9.3, 9.5

Arithmetic Assignment Statement 4-1

Arithmetic expresaion 4-1

Arithmetic IF 6-5

Arithmetic Operator 4-1

Array 2-3

Array names in I/0 lists 7-11

ASSIGN 6-3

Assigned GO TO 6-3

Assignment statements

Arithmetic 4-1

Logical 5-1

HAcKSPACE 7-14

Rosie external function 10-1

Blank Common 3-4

Blank descriptor 7-7

Blanks in stetement 1-2

BLOCK DATA subprogram 9-2

Block 'of labeled common 9-2

653

(f)

CALL 6-7

Character set 1-1

Coding form 1-2

Comments 1-2

COIMON

Blank 3-4

Labeled 3-4

COMPLEX 3-10

Complex Constant 2-1

Complex variable 2-3

Computed GO TO 6-4

Coiistant 2-1

CONTINUE 6-9

Continuation of a statement 1-2

Control statement 6-1

DATA 3.11

Data type statements 3-10

Descriptors

Aw 7-8

Dw.d 7-6
Ew.d 7-4

Fw.d 7-4

Gw.d 7-4

nH 1-7

Iw 7-4

Lw 7-7

nX 7-7

1260
DIMENSION 3-2

DO 6-12

DO loop, nested 6-13

DOUBLE PRECISION 3-10

Double precision Constant 2-1

Double precision variable 2-2

END 1-2

ENDFILE 7-14

EQUIVALENCE 3-7

Expression

Arithmetic 4-1

Logical 5-1

Relational 5-1

Extended range of do loop 6-13

EXTERNAL 3-9

Floating point 2-2

FORMAT

Multiple Record 7-11

Read in at execution 7-12

FORTRAN unit numbers 7-1

Function, basic external 10-1

Function, Intrinsic 10-1

Functon, statement 8-1

Funotion'Subprogram 9-3

GO TO

GO TO, Arithmetic

GO TO, Computed

Group repetition constant

6.2

6-3

6-4

7-9

Hollerith Constant 2-2

Hollerith Field descriptor 7-7

IF, Arithmetic

IF, logical

Imaginary part of complex number

Implied DO

Input

Formatted READ

Non-Formatted READ

II,TTEGER

Integer Constant

Integer variable

Intrinsic function

Label, statement

Labeled common

LOGICAL

Logical Assignment statement

Logical Conatent

t.

65f3

r)

6-5

6-6

2-3

7-12

7-2

7-1

3-10

2-1

2-2

10-1

1-2

3-4

3-10

5.1

2-1

&tat.

Logical IF
6-6

Logical operutor 5-1

Logical variable 2-3

Mixod mode Arithmetic 4-1

Names of

Arrays 2-3

Iibprograms 9-3

Variables 2-2

operators

0

Arithmetic 4-1

Logical 5-2

Relationa) 5-1

Output

Formatted WRITE

non-Formatted WRITE 7-2

Parentheee:)'

in Arithmetic axpressions 4-2

in FORMAT statements 7-10

PAUSE 6-11

Printer vertical formatting 7-10

67--1.),

REAL 3-10

Real Constant 2-1

Real part of CoMplex number 2-3
,

Real variable 2-2

Relitional dicpripssion 5-1

Relational'operator 5-1

Repitition Constant 7-9

RETURN 6-8

REWIND 7-14

4pecification Statements 3-1

COMMON 3-4

daia type 3-10

DIMENSION 3-2

iOUIVALENCE 3-7

EXTERNAL 3-9

'Statement function 8-1

STOP 6.1p

Subprograms

BLOCK.DATA 9-2

Function 9-3

Subroutine 0-5

Subscript, 2-4

01=.

659

44

Type Statements 3-10

Unit numbers, FORTRAN 7-1

V

Vbriables 2-2

Vertical formatting, Printer 7-10.

Technical Training

Programing Specialist

=ANUS OF STRUCTURED CODE

April 1978

USAF TECHNICAL TRAINING SCHOOL
3390th Technical Training Group

Kees ler Air Force Base, Mhoissippi

Designed For ATC Coors. Use

DO NOT USE ON TNE JOE

660i

toLo5-1

IDABR51131 001
int=-292

me,

ANS FORTRAN

General Comments

Although ANS FORMAI does not support the basic structured programming
figures, it accommodate. simmlation of these figures. However, problems will

be encountered in simulating the structured figures. First, there is no

automated *verification of the correcteses of the sinulated figures, and sec-
ond, the branchleg which suet be used in these figures adds complexity during

the program coding and checkout phases. In addition, the lack of an INCLUDE

capability, and TORTRAN's lack of a block structure, hamper top down program-
ming.

Tha logical IF-(as distinguished from the arithmetic IF) tatement in FORTRAN

does not provide the IFTHENELSE capability, i.e., two possible paths, but

rather allows comditional execution of only one statement provided the

logical expreeeise tested is true. The mums= figure thus must be simu-
lated with a logical Irand one oemore COTO state:manta.

The DO statement in FORTRAN is au indexing type of looping statement which

la of the DCONTIL formLaince the,test occurs at the end of the loop. The

capability of iteration based on whether a condition is true or false does

not exist. Therefore the DOUNTIL and DOM= control figures must be slur-

lated with a logical II and.COTO statements.

FORTRAN has no implementation of the CASE figure as such. However, use of

the computed 00T0 along with the unconditional COTO statements provides a

40
functional basis for the ieulation of the CASE figure.

, The following subsections detail imulation of the basic'structured pro-

grammeing figures and provide a set.of suggested language coding conventions

which 'ars intended to have a minimal impact on the ANS FORTRAN user. They

are all intended to achieve basic goals: to produce programs which are easy

to write and debug, easy to read and understahd, and easy to maintain and

modify.

In summary tha deficiencies In FORTRAN Ohich affect its top down structured

programming capability ars: 1

a. The lack of an INCLUDE caiability.

b. The Lack of both the DONNAS and DOUNTIL control structures.

c. "The lack of the MUSEUM control structure.

d. The lack of any delimiters to facilitate block structuring.

6

Top Down Structured Programming in ANS FORTRAN

A. mentioned previously, a basic problem in simulating the structured'pro-
gramming figures using the features of.ANS FORTRAN Xisivin tha-fect that
there is no automated verification of the structurei figure's integrity.

Thus, an incorrectly coded structural figure might appear correct in form.

No nolution to this problim is proposed for ANS FOHTRAN figure simulation.

A precompiler can eliminate this problem.

In defining each standard figure in this section; the goal has not been to

att.Empt to minimise the number of linei written; ret,her it has been to

strive for clarity eo that the identity of each figure can be understood

without any doubt. As an example of the emphasis on clarity stressed in

these recommendations, the DOWRILE as suggested in the "IIPITSD Structured

Progremmtng Guide" (8):

sl CONTINUE
IF (.NOT.(logical expression)) OU TO s2

statelents to execute
GO TO el

s2 CONTINUE

may be compared to the proposed DOWHILE

po WHILE
GO TO e2

sl statements to execute

s2 IF (logical expression) 00 TO sl

SNOW

ri

Note that comiients are used to explicitly name,the beginning and end of the

nOWATLE 'in the latter.

IFTUFNELSF Figure

The ITTMENELSE figure causes control to be transferred to one of twe func-

tional blocks of code (A or 11) based on the evaluation of a logical expres-

sion (p). Since the logical0IF statement In rORTRAN allows conditional

execution of a single statement, provided the logical expressioi tested is

strue, the IFTHINELSE figure is simulated in FORTRAN using both a logical IF

statement and COTO statements. The flowchart for the IFTNINILSZ figure i:

rf TNENELSE

The !MENEM figure should be constructed so that the "true" conditional

code (A) Immediately follows the IF statement. In order to tmplement this

to FORTRAN. it is more desirable to test for the negative of the condition

desired by using a ".NOT." (a positive test would necessitate the use of an

additional COTO statement). The code structure recommended to represent the

TFTNENELSE figure is:

i_HOODO
_ IIIIIMORINAIR

MINI

sommmmmmtmm mnalaccmccememmo
)1113
1111

100100no
NMI

M
=MIMI III

MINI11111116010010n M MI
01111CONIIIIII 111111 II

I

NINO
er 111111005MIC

III
I

coMCOMMM
01011111

MINIM
llIIflhlIllIlIR
MINIM

II.

NOM IImen
.

6

;441,exonte within the two el.:uses including.the 00TO terminating the first

us.: and the CONTINUE ste.emeitt t7minator for the figufe should be

2.,anted two columns. The ELSE and EXDIF comment lines which aid-in loce-

tils, the ono cf fundtional.blocks of code should be aligned wIth the rr.

he leS L . , le WidEMELSE figure Is optional and if not used, the flowchart

figure vould be reduced to:

OMEN

63

and the ccde structure recommended to represent this 19:

I F

(0(e19

If code A consists of a sin;le statement the logical IF statement, which is
a part of the FORTRAN language, may be used. The recommended format is as
follows:

77771175
-r

4- /--

6 7 8 9 OCOMECOCO

Mt_

61 18,1920 1020

11111111Ma
MINI

El
L .F.--t-- EN

DO Figures

The DO figures allow iterative execution of a functional bloc% of code (A)
based on a logical expression (p). If the test is made prior to the execu-
tion of code A it is a DOWEILE figure. If it is made after code A it is a
nouNTIL figure. The FORTRAN DO is essentially a specialized mum and its
use to simulate the Do figures is very clumsy. With the FORTRAN DO, execu-
tion continues as long as an index is not incremented past a test value;
however, the DO statement is a coemand to execute, at least once, the state-

ments within its range. The DO figures can easily and mord understandably be
simulated'tnjORTRAN using a logical IF statement and 00TO statements.

'AWHILE

It is recommenied that the DOWHILE figure be simulated in FORTRAN using a

logical IF statemenrand OOTO.statements. The flowchart for the DOWRILE

f gure is:

43

S.

Nuts th4,t the logical expression (p) is tested prior to each execution of

the funitional block of code. (A) including the first.

Aichousi, this figure can be coded using either positive conditional test or

negative conditional test, the positive conditional test approach is recce-

mended for POLTRAN.isplemantation. The code structure recommended to repre-

sent the DOVRILE figure is:

moo sommmatmoummionmemccemcmcmcc
MIME ()UuIIIIItIIII111111b0

1111111 IM0130140111
B0410111
ID PMMINIGoinnan

I IIIIIII
111111111111

MI II
_WWII
Ir IN 1

I E bbOII IflullIllIl III

Tht logical expression (p) on the DOWHILE comment line is recommended but
could be deleted at the user's option.

tatements withIn the figure should be indented two columns from the DOWHILE
ond ENDDO comment lines which aid in locating the beginning and end of the
tigure.

buUNT1L

lc la recommended that the' DOUNTLL figure also be simulated in FORTRAN using

logical IF statement and a GOTO statement. When looping under control of
11 index, however, a FORTRAN DO might be an appropriate Choice (refer to the

next subsection).. The flowchart for the DOUNTIL ligure is:

000111 T I L

te th,at the logical mpression (p) is tested oftet. each execution of the
t uit tonal block cf codu, so that code (A) is always executed at least once.

!he ivi ommended simulation of this figure requires that the conditional test
on the looping variable be negated as indicated in the example below. The

negativs condition is achieved loy applying a ".NOT." co the desired logical
expression. The coda structure recommended to represent the DOUNTIL figure
fq:

5 (3(13

.e

Th ae logical expression (p) on the DOU /L comment line is recommended hut
could be deleted at the user's option.

311

Statement within the figure should be.indented two colunnv from the DOUNTIL
and ENDDO comment lines which aid in locating the beginning and end of the
figure.

Tbe FoRTRAN Do

The FORTRAN DO statement is a command to execute, at least once, the state-
ments that physically follow it, up to and including the numbered statement
indicating the end of the DO's rahRe. Since the PORTRAN TO(is evaentiallv
specialised DOUNTIL figure, it in desirable that specific guidelines he

stated for using this FORTRAN capability. The code tructure recommended
when using the FORTRAN DO statement is:

When appropriate, the CONTINUE can be omitted with the statement lumber
defining the end of the range of the DO placed on the last executible state-

ment it the range of the DO.

Thp statements within thir specialized DOUNTIL figur, should be indented twn
columns from the DO statement and the KMDDO comment line which aids in

determining the end of the figure.

CASE Figure

14, The CASE figure causes
blocks of code (Mc...
to It fx

control to be passed t.: one of a set of functional -
,Z) based con the value of an integer variable i, equal
recommended that the CASE figure be simulated in

FORTRAN using computed GOTO statement, GOTO statements and a single col-

lector (CONTI= statement) at the end of the figura. The flowchart for the

CASS figure is:

A

CASs

So ,es FORTRAN compilers provide that if the value of 1 is outside the range

the next statement is executed. However with ASS FORTRAN the coo-

pL.ked GOTO statement ls undefined if it is not within the range. Therefore

ill ANS FURMAN, 1 should be tested prior to entering the CASE control logic

structurg. Out of range values should result in corttrol being tranefered to

the defmat code.

48.

4- I

a

(0-1 3
The defau:t code anu tti. "C1TO WO" immediately following the computed I..
statement are providtd for use with compilers that provide for execution 0.
the next nequent-' wotement when i tu not within the roue of the complied

Statements within the ttgure are indented two columns irom the CASENTRY
'ENDCASE comment lines whIch ntd in detvrnining the begineing and end of the
figure. Statements wit!ife each (ase are indented two columns from each cok.T
comment line.

If the functional blotks t code are identical tor more than one cane, the
,ivropriate entries in the computed COTO statement should contain the same
number. Further, if no action in to be performed.tor specific velues of I,

the appropriate entries shoald point tit tht end of the fignie. Conaider the
following example:

I ? " V ' '1,4' II ?I' I I, 4 /a. '' ..61 14. I 1 11 .

' t a 6 4, 1r 41 f

CASEN IR f...... ., + 111. f

. . .

..0.0.2-0

. . .

0.0.3.0

110

4 ;(.41101illati 0*11 10;

4 .6 t er afaMIts;ii it 'C't() ;e 4 I a

. ec, 0 r'ef
. e

S.E S 'L APON.D,
, 6r T

(04c Smses 411,1
. 41 1 &

" T *04.4.0
CA'.

.
'0104

t ,

c
,

. i
41 c,or oLL e

" . . .

fseo t.PJ U it'

N N.0 A

1141,1' as. #0,0111Ca ea a a #14

4

6

to

r

a

+ ;

T

. .

t,

,..ili;
I

f

f e

4.. P

I

al

and PO, the Name !motional block ot code will be executed end for
processipg wI 1 o pertormed.:.

INC1 apAh Ii ft '

;.

The capatilify of nesting tlocks of code within other code blocks'is s'neces-

sity for top a0WM programming. This,la most easily achieved if the language
tlas a coppiler directing instruction Nut_h as INCLUDE or COPY. In ti,e case of

ANS FultTIAN this type of statement does,not ex1Land therefore the .c.ffect of
nesting may be simulated by the use of nested s of subrgootines. However,
since the.linkages generated by CALL statements may be. costly4n telms'of
ovefhead, two uther standard alternative simulations of*the nested INCLUDE
-zapabiliti are presented. The first may be used if the in6luded code segment

appears 11 only one place in the pFogram. It is written as follows:.

e-

11 12 13 14 1

NCLVD
GO T

N
b I

/ M " nMC 25 40 arr "OE 3422

M EMOBOOMTIONI
MLMIIIIIII IMO

NEM IONIAN MOON
the IOU

The function name on the INCLUDE comment should be meaningful enough to in-

dicate the processing performed by the out-of-line code. The out-of-line

code then terminates with an explicit 00TO to the CONTINUE statement. If

the same functional process la to be simulated as ati-INCLUDE in more than

one place In the program, the assigned COTO may be used to return control

from the out-of-line code as follows:

111114

ocoup
N
51134i001:51:111
minim II NI

e 1
c NreNsmormun

nOMM 1 elmum
. I

:27

N C.!. ON
ill

MINI 1 III

v

c

COyrIeplUE
a

Iasi 1 II O
1 IOU NO 1111

MINION III
Lu4p

1

5

.f_

I 6
onMOOM31 M515 III

N
Ito

v

IMMMIEM

D

mom
1 IR
MINIM

mim
mu
INN
MUM
IMO

um

'TA

1

.__

teiji

il

1
ONO

.. _4.4.

__..

IMO
milrommou
mo

III

i
11.

'Mr coif. which begins mt statelent

Aisigned GOTO statecont`,

1i

1000 When terminated with the-following

lb

4.

M OMUMCMIBME COMM=
MiMROMOMANO le

74Z

then returns control to the correct point to complete the simulation of the
meted INCLUDE.

The maior problem encountered with the lack of\an INCLUDE directive is rela-
ted Ito the adverse effect this has on both the debugging procedures and thift
office and machtne procedures in the program support library. tho

most (-urrent listing ot a block of source code"is filed ,in i neteheol, wh,te

"it M.r; 'ye examined by any person who wishes tOA0 Mo. This Implies a
mechanism %or storim: blo km ar: individual entities in .1Ata qPt

has a uirettoty of.naile., that permit.: selective access of these cuff.

,tfes. A chnty4e can he mtde to any block without the necessity oi pAmsior

all existing code through the editing routine and the filing of the revi.:041
listitiF in the library does glat require replacement of other nubile listings.
Howevet, the input t the FO*TRAN compiler requires that all of theme indl-.
yidual ,uhr'ut tni it hp gathered Into n single sequential data met before

being fed lito the romcfler. It im tliln capability whiih is supplied with
the aested INCIATDE.,,, COPY and rht lark of it means that the piw.ram munr
devfioled ..-1; a sing*. .4equential data set: An order to handle this probrem
variour solutions outside the scope of the language have'-been imp4emented,
such as pre;ompilers, linkage ed,itot INCLUDEN, or a data get conc;.tenation

capahilftv within the operating sylotem.

a

Add It I oha I liet.ommendotl Cod 1 ng Convent Ionil

Hestrited 1111ahAN !;tatelent U3lge

a(' -\\\

tn.-order to main

that certain all
as required in
suemaitsed bel
difio

able
pre

ing

grooming concepts, it is.rec ed-

inItion of the standard ptogram figures and
statements generally not be sled except

r the part, an attempf is mode to priclude uncon-

not ftecessitated by stendard program figure definition.

e COTO statement tklusse the deftnitio of the following standard pro-

gtam figures: ITT)IEMSP. ILE, DOUNTIL and CASE. The computed COTO

statement is used in the definition of the CASE standard prograni figure. it

ehould be an objective on to uee these statements exceft in thane f.N4ures.

The ASSIGN and ASSIOIED :=0,statements provide an uncoaditionsl branching"

caiiability. The arithmetic IF statement is not neceseary because the TFTREN-

ELSE standard program figUre, with nentiag sometimes frequirsd, will provide

the same capability. Use of these FORTRAN .tatusentik should be avoided.

The recommended use of the DO statement as a spec/ mid,DOUNTIL, is'coVered
-

in'a previous subsection. Other usage of the DO norrecommended.

147

n
the CoNT[Nut htatement Is used in the definition of the IFTNENELSE and CASE

standard program figutes. In addition, it is sometimes required by a DO

(specialised DOUNTIL) statement. No other use of the CONTINUE should be

necessary.

Program Organization

These conventions provide for the organization of a FORTRAN source program

Into a set of egments for compilation. Any FORTRAN program requires a cer-

tain ordering of the statements within the program. A suggested fttrther re-

striction to that ordering for the sake of readability, clarity, and consis-

tency appeara below.

a. If this is subprogram, the first card must be a FUNCTION,

SUBROUTINE, or BLOCK DATA stateuent.

b. Any COMMON statements, each followed by ell type, DOUBLE
PRECISION, and EQUIVALENCE statements related to it follow.
No dimetsion information is to appear on a COMMON statement.
The eOMMON statement will be used only to declare the order

of arrays and variables within the COMMON. Blank COMMON is

to be declared first, followed by all labeled COMMONs in

alphabetical order.

C.

Any elm licit specification (tyre) statements and DOUBLE

PRECISION statements will be arranged in alphabetical order

of ihe variables or arTays within each ofithe types. They

will be defined in the following order: OMER, DOUBLE
PRECISION, REV., IKEGER, and LOGICAL. A4 dimensioning
inftirmation should be included on the type or DOUBLE

PRECISA1N cards-. All variables or arrays should be
expl'cltly declared, and the DIMENSION statement should

not be used in place of a type, statement.

llowing each type or DOUBLE PRECISION statement, any
LQuIVAL6NCE statements required for that type statement are

included. A blank comment curd should be used before tnd

after the FoUIVALENCE statements to sat them off from tne

surrounding definitions.

ecm all 'OMMON declarations are made, the program local
decarations ars made using the same conventions.

d. folowing all program local declarations, all EXTERNAL

declarations will be made.

0

e. Any nATA tatementa for program loco! arrays and variables

fcllow.

f. All FORMAT statements follow.

g. Any statement functiln definition. ,:oome next and complete

the non-executable cult'.

h. Segments containing executable code follow in order. The

lain segment must captain an END card.

If desired, ubprograms may follow as pert of m multiple

compilation. The organisation of each ubprogram ahould

follow the rules given above.

Commints enolld be used to enhance the readability and understanding of a

program (e.g , to.define variables or their special settings). In general,

when they arf used- they should be grouped together as a prologue to the code

segment. If they must be interspersed within the code, they should he

inserted as r block whioh begins in a column near the middle of the page

(e.g.. collier 15 or 40) so as not to interfere with the indentation and

readability at the program proper which may he scanned near the left marRin.

Rlsnk comment cards should be used When they enhance readability.

NurillerInW

A, mJch an posetble, statement numbers are to proceed from logien to hieheut

ss a program te read. It is recommended that statement numbrs be four

digits long, be placed in columns 7-5, sod be incremented by 10 rather than

be consecutive.

f on (.trtl

kNS FORTRAN permits up to 19 successive continuation cards per statement.

The continuation column should be used to indicate the order of the cards.

rts malf he done by placing a numeric character in column 6 (the continu-

ation indication column) in ascnuding aequence (i.e., 1-9) and if ciditionel

Claracters are necessary, using in order the alphabetic characters A-J.

The body of the continuation card should be coded so as to enhan *10 read-

ability of the program unit. In the following subsections are some sugges-

tions in regard to special cards, but, in general, no continuation card

should contain information to the left of the statement identifier nn the

first card. f7

17

411W111 h 6 7er
Each statement should begin in an even-numbered column. Non-executable

statements should begin in column 8. If the program is a subprogram. the
MOTU*, SUBROUTINE, or BLOCK MATA,stetement should begin in column 8, and

the corresponding END statement should also begin in column 8; in these

cases, the first executable statement will begin in column 10. Otherwise,

the first executable statement of a program should begin in column 8, as

should the END card. Succeeding xecutable statements are indented accord-

ing to the coding examples in the standard program figures section and the

rules given below.

Aristgnment StAtements

If a statement is continued, the second and follcming linea should be in-

dented by six columns. For example:

: .. I # # 1,11T-474W t t

; IC Q

. H

v-ii.. it. 1,, r te r ill 11 11 14
4-

6.5 F T *F

R E *

3 36

(I A I

nATIO El II II
In a continued assignment statement, the first card (and each card which will

be fbIlowed by another continuation card) should have an operstor as the last

character. As much as possible, all parenthetical expressions should be on a

single card. In no case should a left parecthesis be the last character an a

card which is to be continued.

«IMMoN L4IttmeIItM

Tt rommoN card will begin in column 8 with the identifier followed by a

blank n column 14 and a "/" in column 15. The next six columns are reserved
for th.. label which will be left justified in this field. Column 22 will

,ontain another "I" and column 23 will contain a blank. If blank COMMON is

4esired1 code the slashes but leave the label field blank. Columns 24

through 50 will contain the names separated by commas. Commas will appeer in

columns 30, 37, and 44. If a continuation card is necessary, a comma will

Appear in column 23 on that card. The names will be left justified within

each field.

I VI#1 1 .11 01111111.h

ot.aenaion information for each array is

,ard. A card will contain one and only
continued, thus allowing 20 names to be

to he contained on a single type
one name. A type statement mey be
declared for each statement.

13

The type statement will he roded t.eginning in colustv 8. The nems'should
begin ir column 16. It It to a continnstion card, A claims should,be in-

serted into tolumn 15. When using a DOUBLF PRECISION statement, the name
should begin in column 2S. If a continuation card is required, a comae

should be irserted into column 24.

The FORMAT identifier will be coded begtnntnp in voinmn R. The first listen-

thesis wilt appear In rotumn lb, awl the format Informstion itself hog no in

column 14. As much as possthlc, a position code and its annociated format
cods sholld stand alone on a card. Continuation cards should be used liber-

ally. FA- exaumplf.

-., ,. , , ,. - ; t , i, a 11..1 so, I Ili tf Iti vii... :; ,41.1'.1t.0, I ?lin: t q t4.7 .21i 1 li Ii3.12.13, 18,114i

.. 4.13:0744.9: :f .:TI. 1, 1L i.CH Oi is7.,alt!)(.08i WiMiCii4N 1 Ili 1: li I 2

,

I f 4 1 .

.
I

. ,

. I 1

I i ,4.K (..,H D1AY -

I Li : 1 1 i kiX J illH.4.1v1fiAkt l'i 1.11..1114)]

1:AO or WMT!..

In all cases a AUX or WRITE statement should have its subject data set
reference nisobeir fDSRM) contstned In a variable. The use of hard codd
DSRNs Is discouraged from the standpoint of visibility and parameterized

coding. Thq nSRN variables mav be loadel with a DATA statement.

The list pv:tfor of the READ or WRIrE statement must bs expressed in as
simple tem ifs posell,1*. Liberal use of blanks and continuation cards I.
encouraged in order tc increase readability.

U. St:ttLmen'.

Multiple colditicns in the predicate of au IF statement should occur ou
separate cards, with an operator occuring as the final item in each card to
he continued. For example:

Notice also that the COTO statement folloum the closing parenthsis.

1/,

UATA Staterkents

nnly one variable may be specified on a DATA statement card. The DATA

Identifier will be coded besinnins in column S. The variable name will be

coded beginning in.celumn 14. Tha slash indicating the beginning of the

data will be coded in coital% 20. For exampl:

000D0000a ammocommmcornmetoes=
1111111 Dnenearrimunnononoun

2

AW; COBOL

General Cemments

Cci 1

The two statement IF....ELSE and ?WORM. which are part of tha ANS COBOL
supply the basic structuring capability -f the language. 111(0 firot repre-

sents the IFTNENELSE control figure titans the PERFORM peraits (he looping
required by the DOWMILE/DOONTIL construct.. .In addition, the GO TO....DEPEND-
ING ON is readily adapted to the stmulation of the CASE statement, the COPY
assists it top down programming, and the language's SEARCH tatement recog-
nizes the potential utlIlty of such n control Ingle structure. however, von
with all cl= the teatures, the language does have certain deffclonvies In
the implementation of top down structured prorramming terhnology.

For instance, because of the way the period delimiter affertg the eyntax of
the language, it is not poptikle-to Implement the following flowchart ustng
only the COBOL IF statement .4(ithout duplicating the sequence of statements in

code B or duplicating the test on (p):

witc the use of a !-Tecific delimiter such as an ENDIF, the problems encoon-

tered in implementine 4he ilowohArt ronld ho overcome.

The looping capability is achieved in COBOL with the PERFORM tatement. All

such loops are of the DOW1IIL2 type since the looping condition is tested

prior to execution of the code within the loop. This statesent permits re-

petitive cede execution under the following conditions. First, the program-

mer can indicate that the loop is to be executed a specified number of times.

Second, an indexing type of loop can be requested with the PERFORM...VARYING

option and finally the PERFORK....UNTTL option exists Which is equivalent to

the structured programming DOWRILE control figure. The selsrtion of the word

UNTIL to indicate loop termination conditions in COBOL is an unfortunate one

since in structured programming terminology not only doss it imply a differ-

ent flowThart but the semantics of the looping tontrol is the negative of the

structured programming DOWNILE. Thus (ignoring tmporarily the flowchart

differences between WHILE and UNTIL), the statement "perform loop WHILE

something is true" translates semantically to "perform loop UNTIL something

is not true." Two options are open to the COBOL programmer. One is to simu-

late the DOWHILE by negating the conditional lOsic as follows:

FERFORM....UNTIL (NOT p).

The econd is' to continue to think of the looping condition in the UNTIL

logic to which the COBOL-programmer iw accustomed but to insure that it is

understood that the use of the word "UNTIL" doss not guarantee execution of

/the FERPORHed code at least once. For the experienced COBOL programmer it

is probable that the latter course is the one which is less error prone.

The possibility of simulating DO loops through use of the IF and CO TOrstate-

manta as was done for FORTRAN is not ie.!ommonded for ANS COBOL because of the

mechanism which this language uses to implement comments. An example of what

the DOWHILE would look like, if implemented in this manner ts as follows:

,

6 ;111-11'13

Winn D°
ing Co
GMT

19 20.2L2

uNTINWPON
IF

MEM 61728

IEMAGMO
011 1

111111
H.

111111111
111

111

11111

1
1
1

i

RET",14

F.!
,,

AR4Maa..
r

INI

4G0

0

4104
A

[T.

F

_g_l_

N 0 T

III
1 Re 111 11111

MIMI
111111111

1
1)11 1 111111111

11111
TO
E PJ

ji,ASUOIM

kp_p_ . I
POINOMI

Am may be observed, the readability of the code is diminished by the para-

graph names and the span of the loop is obscured by the ward "NOTE". In

addition, if a paragraph name immediately precedes the first NOTE statement,

Cie code following it becomes a NOTE paragraph rather than a NOTE state-

ment. Thus, the sentence "GO TO IF-PARAGRAPN."-is treated as a comment

tather than an imperative statement and the control figure becomes a DOUNTIL

rather than a DOWNII.E. An extension to ANS COBOL allows comments to be in-

troduced by identifying Ruch statements with an asterisk in column 7 of the

card. should this convention ever be adopted as a part of ANS COBOL it

would be worthWhile reexamining the possibility of simulating DO loops and

delimiting them with comments.

Cog 3
The COBOL DECLARATTVFS SECTION, if preSent, must appear at ihe start of the
PAOCEDURE mrsum. The code in this section is invaked synchronnuslv hy
c.rtain conditions which cannot normally be tested by the proerammer. Mesa
c(nditions include input/output Label handling proceduree, input/output error
ctecking procedures, and report writing procedures. Since these blocks of
code are out-of-line, they involve a transfer of con ol which is It-et:liable
to the programmer. such interruptions nt Aequeot431 co ars usually
undersirable in structured programming. However, because of the utility of
the DECLARATIVES SECTION, no attempt has been made to restrict Its usase,
ptrticularly since ANS Conn requires that control automatically return tovie claimant: following the one which caused the asynchronous interrupt.

The COPY and PERFORM statements, in spite of their limitations, are helpful
ia implementing top down programming. It is ssential in top down program-
ming to have the capability of nesting relatively small blocks of code with-
in other such blocks. However, the COPY compiler directive cannot fulfill
tole function because it is limited to-a single level (i.e., code ehich is
copied cannot have a COPY statement within it). Therafore, it is necessary
Lc simulate this requirement with PERFORM statemente'llince these can be
nested. One method of simulating the required nesting is not to.permit a
COPT statement in any segment which is invoked by the PERFORM statement.
Then, after the top module is coded, COPY statements may be used to Oixect
the compiler to include in its compilation ehe various PERPORMed paragraphs
and thue overcome the limitations on the nesting of am statements. It
should be noted that this type pi organization implies that ..Ite modules
which are copied, are located in a library *rap of some sort.

Finally ANS COBOL an wigt many higher level languages, has r free format
syntax. This n..liscs the programmer to write statements in a continuous
prose format inm'oxi tAt r0quiring the more desirable format of each new
statement startiog new line of code and thus enhancing the readability of
the stisctured code. Finally, In the examples which follow, the parentheses
which enclose the -onr41 tional expressions are optional.

lo summary, ttia deficiencies of ANS mem which affect structure0 program-
ming are:

a The limitctior of the statement which restricts
the nesting capability.

b. The opposite manias of PERFORM...UNTIL in ANS COBOL as
opposed to the btructured programming DOUNTIL.

c. The lack of a DOUNTIL capability.

d. The free form of the language.

e. The lack of specific delimiters such as MDT!.

1. The inability to place the repetitive code of a looping
operation in-line.

C-
18

S. The limitation ot the COPY statement to a single level and
also to'the types of COBOL constructs which may be copied.

h. The format of the commenting methanimm Which precludes a
readable simulation of the looping opexstion with the IP
and GOTO statements.

Top Down Structured Programing in ANS coR01,

IrTHENit,,E Ftgurv

The IFTHENELSE tligure causes control to be transferred to one of two func-
tional Hocks of code (A or B) based on the evaluation of a logical expres-
sion (p). Thts'is identical to the manner in which the COBOL conditional
tatement operates GO this control logic structure does not have to be simu-
lated. The flowchart for 'the IFTHEMILBE figure is:

N

Thr implementation of this control structure using the conditional state-
ment is as follows:

ISM 1 14 IS lb TI

oE1e

mzoorammeocce

11111111111 1

111111111111
111111111111111111111

30

Th* ELSE in the IPTBEN/LSE figure is optional and if not used, tit, flowchart
reduces to:

19

1

W:4.9

61,/

IF 1141 Fi

(.0135-*

Since the ELSE ie also optional in the COBOL conditional etatanent, the code
becomes:

in on er to oJvrcIlie the ni-it(ly, limItAtion resui,ting 'item the flowAirt
diseu;sed earlJo., the 1,)11wing .iptinns Av4ilahle:

(a) Duplicate cads B

20

1

4/6
manamomfmmmenciom mama mmmme

111111111110Migiiiiiiiii1111111

I 111111 icalilli111111 11111
11104014 NINO

2

k

(b) _Duplicate the outermost test on (p)

opelommmm mmalennmaccesecemmec

911111M9millininiii
Ilmo II EIMMID1111111111111111111

1111 IlmoMmIMNIIIIIIIIIIIIIMI
111103g01111111111111111111

1111111 11911111111111111I

IIIIIMO3001m11111111111101u
111101 M011111111111111MIN

1 1 OMMI0111111111111111111
(c) Perform the nested IF statement

The decision as to which option should be adopted us a standard is not a
clear cut one and therefore ne one form is recommended over any of the others.
In the case of the simple flowchart used in the above examples the decision
may be based on considerations of space and program execution time. Thus, the

duplication of code is better in terms of time since it is not necessary
to execute the compiler generated linkage code of a PERFORM statement or the

duplicate test but may be worse in terve of space requirenente because of the
duplication of code B. However, the above example is an extremely simple

one. When thesis types of control structures occur more than once in port
deeply nested code, none of the options avoid the difficulty of becosimg

GS -7
considerably more complex. TAsrefore, each case must be evaluated on Ito ovn
and the one selected should be the one which is the most readable ind under-
standable. Indentation should be as indicated In the examples. A. may be
noted, code Is indented beneath the IF and ELSE in order to emphasise the
even of eontrol of xhase verbs. Since no unique terminator is available, the
end of the figure is indicated by the start of a new code block in the same
colitart as the IF and ELSE.

DO rigores

DOWH1LE

The flowchart for the DOW= control structure, which is a looping operatton
in which the test for loop termination precedes the code block, is as follow.:

DOWMI1

All of the loops which are initiated by the PERFORM are of the structured
programming DOWHILE format and consequently no simulation is needed. The
statement le written as:

'11:1I .1"1"1---H
T
A-

R

10 i I

A

/ ;I 7 it/
4

RIAIO.

Mith.
-.11.

R,A
- I l';111

-...

P4M

/M10
-.
- hl

1 et

AIM

1,7 7-4.1iT 1%

El Iv sir l'

The conditional logic of the nommE requires that the loop be terminated 01
m "false" :ondition so that in order to be compatablIrwith structured pro-
gramming definition, the test should read UNTIL (NOVO. However, since the
flowchart of the PERFORM statement is that of a DOWHILE, the irtificial nega-
tion of the termination logic in order to override the semantics of the word
UNTIL is rot necessary and'if (p) were a complex condition, this negation
could, in fact, be confusing.

The DOWHILE with indexing is also a part of the language and In written as:

22,

.1

Note that while the indexing is-aried automatically, the decisiat se to when
to terminatt theloop is still under control of the UNTIL rathet: Ilan whether
the indexing hes reached some limit.

Finally, the option astute to .1) IN a block of code a specified number of
assts. This is written as:

1 r t, t etTo--- -yr -1' 1-1--

: 611141. ig' Fl4AM
TT =nee=

AOM MMM a

3S/41605040 41 £2

T 1

Since, for a31 PERFORMS, the repetitive code must be placed out-of-line,
there are no,indentatiou requirements for these statements. However, for the
indexed PERFORM (which con be yritten with up to three indexing variables),
it is ',unwed that the format of the example shown in this subsection be
adopted where words which control the indIrcipg are indented.further to the
right than the UNTIL eo that the conditions for loop tetimination are empha-
sised.

NJONTil

The DOUNTIL control structure is one in which the looping criteria ars tented
et the nd of the loop and.thus the code block is always executed at least
once. The flowchart is as follows:

000011

since all PERFORM& are of the DOWHILE control logic, the DOUNTIL must be
simulatee. The recommended format is ither:

4

l'IT T la . t. r i.? 4i111114i iv.14."7.161 I 11

I P if Lflo M Ai#14:1:.:4-AAtt;P:441

.

*
I 'PIE 1(11 A M P A G.t' It- 4-

4 t ,

;

-1

"I'.ot)ttt 14! fo

I

1.11c_IR.F C14.

44. it YIN_

or

',frit)
I r

4# :1 '1 id 4.. "141
r

Till!,

IF],
t t

l"
-1

&-

Oi P -

it!AIG
1

aAP

/I

10 31 -1- v-1-11 1 14

N OM EN
MI tila

N

30 31

37

370134 35 3413 311 3 4 41 MT La AS 4.0

6E1
The latter case is most useful with a PERFORM that uses the VARYING option.

CASE Figure

The CASE figure causes control to be passed to one of a set of functional
blocks of code (A.B.....Z) based on the value of an fnteeer variable. The
flowchart for this flRure in:

1

CASF

The CASE-statement is not part of conventional COBOL and must therefore be
simulattd psing the GO TO...DBPENDING ON statement. This verb permits the
proldrammer to select one of a eet of procedures depending upon the value of

-an integer whose range is from l to the number of procedure names listed in
the stetement. For Anylinteger outside these limits the GO TO statement is
igocred and co9trol passes to the statement uhicti follows it. This means
that default code, if required, should immediately follow the GO TO...DEPEND-

04C .ON statement. At least one paragraph name'is required. The simulation
is as fallow.:

1

;14

494

41
Pirtallmn!!!!!!!!'

FRAORAPh.
nle:SE

1011

17"
A

112111

iiiiii 41%4I
se il

la

im

mar

II'
I 1

lib'

crag
I I

1.

nes

"I

mill

III,

I

DI Or=

111111111

Inir
11111

TN
I
ME!
1111111.11

MI1111111
PIM! IN

.

Lt

411.

"eiAnt!'

1 1111

I
NKr rum
1111111 111111

I I MI
1.1.

A 1!!Pli Pli 91! 111111 I
EX IT 11111111 IMMO AO

The above code must be placed out-of-line and is invoked by an in-line

trieroam statement as shown below:

igirjo Rm

19

,f9E

te

C.

1 7 1 2

n
35 s 31 33E S

AA A P

"CI 2MET 4 Emi 41e 46 4 I$J0CI 2

@TIMIDMOM31710

3 SI

Note that the PERFORM...THRU option_of the PERFORM statement most be used

because of the presence of the parasrash names which are used to identify

the various case tatements.

1W1.ODE CApithiliry

Mr capability of neating blocks of code within other code blocks is a neces-

sity for top down programming. This is best done when such blocks of code

are stored and can be accessed by the ANS COBOL COPY verb as separate members

on a direct access device in a library system. However, it should be noted

that this requiresent is a compiler dependency and sitiy.not be possible for

11,0411 ANS compilers. 'The COPY verb may be used in aIl divisions except the

IOENTIFICAT/ON DTVISCON. The discussion which follows is directed toward its

use in the PROCEDURE DIVISION.' Since the COPY doe. not permit nesting, it is

necessary to simulate this requirement with the use of nested PERFORM state-

ments. Tha blocks of code which are P21101Mod are presumably stiered as sepa-

rate members which are easily accessed on a direct access device and are

referenced f r thr COBOL compiler by means of COPY statements. This means

that no COPY cey appear in any block of code which Is invoked by a copied

PERFORM. With this CiOchniquP the top level of the PROCEDURE DIVISION looks

as follows:

25

17. -47-...1-6-
IT 1

1

4- h 4
C E

i --., 4-+ -p-
, ;

P

c o
L--0.-.0" + -+ * 4- -t -t-

I P F
r- 4.--4- .4. 4 t-i-- "I-I- t

LL +0
1

; isrr
. .4 ... 4_ .

1_' ;.

; ;-4_t-N e11.-r

i
r o,P vl,

+ , , .

i
ii ,,' ,14?H, I.; T.-1.E at-

- + 1

: 4 olf:r[Y4

Note that the COPY statement references library names, not paragraph names.

"NESTED-PARAGRAPH-1" is a separate block of cole whia the COPY statement

can ccess and may take the following form:

171.1- I 1-P17 4 1-n I /Ts 771 ?, ,PIPM 111111' 11 3",'
" T

r- 1-- r t t- +'11-11 !

-HJ
11 I

code; !C. ,

/ .

IPI

E 134:- P

1

134"
A-

"NESTED-PARAGRAPH-,2" is a sequence of statements similar to those contained

in the above paragraph within which it was invoked and it may contain other

PERFORMs for deeper nesting. The COPY statements following the top pare-

glaph insure...that the .ompiler la aware of all the segments of code which

comprise the total program. Furthermote, Rifler no PERFORMed paragraph may

contain a COPY, there is no danhet oi vtolating the nesting limitatiou of

this verb.

Additional Recommended Coding ConveotIons

P striVed ANS COBOl. Statement Usage

In order to preserve the concept of structured programming, it in recommended

that the gqneral usage of those statements in CO1161, which permit change., of

sequential control be restricted to an exception basis only, unless such

statements ars indicated in the standards as a simulation retiuirement for the

basic control logic figures. Thum, in 4dition to the co To, the ALTFA state-

ment sholalfi also he limited io itq usago. 1

Plogram (organization

The structur4 of a COBOL program is such that many of the rults for program
organisation have been predefined. For instances all data must be specified
in the DATA DIVISION. Furthermore, within this section, the forma/ rules
which define the permissible hierarchical dits structures are sufficient to
preserve the readability requirements of structured programming. However,

within the PROCIDURE DLVISION, (with.the 'exception of the DECLARATIVE SECTION)
the rules of COBOL perMit the ordering of the PERYORMed code blocks to be com-
pletely flexible.

If the program is being developed with the aid of a library system, the order

in this division is less critical since all that appears after the top most
egment are COPT statements. The functions which exist in the copied code
anti the functions which are nested within them are determined by examining the

small code segments which are present as printed listings of members in the

source code library rather than on the compiler output listing even though it

I. still true that the resolution of the COPT statements by the compiler will

produce complete source program as one of the compiler outputs.

However, for a development process in which no random access library exists,

the ordering of the segments of PERFORMed COBOL paragraphs in the procedure

division is more critical. This is because the source listing under this con-

attion is a single sequential data set. At present, the suggested sequence

le initially by nested level for 2 or 3 levels (depending an the program's

complexity) and alphabetically thereafter.

vERFORMed paragraphs should be separated from the main body of code, and from
other PERFORMO paragraphs, by at least two blank lines. Logically non-
eontiguous parasraphs (other than those used in the CASE figure) should be
separated by at least one blank line.

fr,rnment8

o/,e of the primary intents of the developers of the COBOL language was to

orotioce a solf-documenting language. When this is coupled with the disci-
pline of structured programming the resulting programs should be even more
readable. Experience has indicated that well written COBOL programs con-

tribute toward meeting this objective. Therefore, it is recommended that
the use of comments in the form of NOTE sentences and NOTE paragraphs be

held to a minimum. When they are used, they should be organized in such a

manner as not to interfere with the readability of the program itself. This

may be done by such devices as using blank lines to insure that the NOTE
text stands apart from the program proper and starting and concentrating the
textual commentary In the middle of the pages beginning in Column 35 or 40.

00.-4
, (

27

indentation and Formattinv. Convention:4

Variables and structures defined in the DATA DIVISION should be arranged in

a meaningful order. This order could be alphabetic, by clams such as the
days of the week, or any other class fnrmat. A suggested set of indentution
rules for data items Is as follows:

General Format. All level 77 and 01 variables should have
their level numbers-in columns 10-11 and names starting in
column 14. The PICTURE clause should between columns 32-
45, depending on the langth of th longest vatiable name.
All other clauses used should follow the PTCTUVE clause with
normal spacing. If Jore than one line is needed for a vari-
able's definition, the second and succeeding lines should
be indented from the PICTURE clause as follows:

4f- - 4 4 -4 -

4R1 E1.C10 (719;u: ran:

1

311;;,..1

Mr

iE

Structures. Each successively lower level in structure

shouId be indented four columns from the next higher level.
Level numbers should precede each variable name in the
structure on the same line and two columns before it

follows:

Tel.Tioltv,ii. Is ,r r .111111;rJ
4 4 r---4

4OtI IfiM P

jolz tN A
4

-4

-4 4 * 4 ; (1:3

10131#1H
4 f ItO!3o i 4

;

F

MI
Lc-.t

4
tAID!fi. E04$

10131 - is1171

4)

tr 1 1

P !IC) E

I IC E*

IP icirJAE
t

4 .4

1P11 tC1T LtiktS!

140

(tZCI)

When condition-namas (level 88 items) are used they should
be indented and written with single spacing between words:

,;;;7117 io'r4ro
rt--

31 T

I 1
IL

!VI T U0 Dy.

IN-

Elvd

TY lE

y1A;Ly.).1E4

I Pl- vi

f;'

28

%is indentation recommendations for the structured programming figures which

ppeer in ths MUM= DIV/SlON were previously specified in the section

where they were described. When.prosranning the code blocks which represent

4Whe MUSICS in-structured proerammift, each COBOL statement should atart a

nem line. Any statement OOt Subject tO indentation rules starts in the sane

column in which the statement above it started. Only one statement per line
is permitted. It any tatement suet be continued on the next line, the con-

hosed petition should be indented 4 VD 6 columns so es not to obscure the

COBOL verb as follewet

=1.

COMMODO,O=MOOM
monommommni

ormnnommilmnmmtomm
rommegmblecomm
sammonmer AI

OCCCMCCenuriaMCOM
onalmomme

Intiou
MOUA

ormarf-bo

Sil
_

II
il

Is

(3 9

29 I 1 7

A."

