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There are many applications of testing technology that require that

C:3
decisions be made as to whether a person is above or below a criterion

score. X.cepting a candidate into a program is an example of such a

decision. Criterion-referenced Wing and its special case, mastery

testing, are other areas that require similar classifications. In the

criterion-referenced testing application, it would be especially useful

if the decisions could be made quickly and conveniently for each student

in an individualized instruction program. The recently developed technology

of tailored testing (Lord, 1970) has the potential to fulfill the require-

ments of such a testing system. However, no generally accepted procedure

exists for making classification decisions using tailored testing, probably

because these testing techniques are still relatively new. The few proce-

dures that do exist are either based on randomly sampling items (Epstein,

1978; Sixth 1974), which does not take advantage of the power of tailored

Con testing, or on heuristic techniques (Weiss, 1978) that do not have a sound

theoretical base. The purpose of this paper is to present some decision

TgAm4 procedures that operate sequentially that can easily be applied to tailored

testing without losing any of the elegance and mathematical sophistication
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Tailored Testing. Procedures

Numerous tailored (adaptive, response contingent, sequential, etc.)

testing procedures now exist in the research literature ranging from simple

two-stage procedures (Betz and Weiss, 1973) to complex Bayesian procedures

(Owen, 1969). Weiss (1974) has written a good review of the tailored

testing procedures that have been developed up until 1974. Although many

procedures exist, for the.purposes of this paper only tailored testing

.procedures using item characteristic curve (ICC) theory and maximum-likelihood

ability estimation will be considered. It is also assumed that the tests

are administered to the examinees by computer using some type of computer

terminal, and thatitems are selected to maximize the value'of the-infor-

mation function at the previous ability estimate. Despite the narrow

definition of tailored testing used for this paper, the results should

generalize to any procedure based upon item characteriitic curve theory.

rn applying the decision procedures discussed in this paper, two

specific ICC models will be used; the one- and the three-parmeter logistic

models. These models were selected because of their frequent appearance

n the research literature and because of the existence of readily available

calibration (LOGIST, CALFIT) and tailored testing programs (Reckase, 1974).

Any other ICC model could ust as easily be used.

al Decision Procedures

A cursory review of.the statis cal literature quickly indicates

that much has been written about sequen ial estimation and classification -

procedures. While somewhat more obscure than ANOVA and regression procedures,
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most intermediate leyel mathematical statistics books include at least

one chapter on sequential analysis (see punk, 1966: Chapter 16 for example).

In n'ongoing review of the extensive literature tliat exists on this topic

.
(wIiich has.accumulated over 200 references), it has been found that most

Orocedures fall into one of three categories: sequential probability

ratio tests (SPRT) (Wald, 1947), Bayesian sequential procedures (eg. DeGroot,

1970), and curtaileesingle sampling plans (Dodge and Romig; 1929). Of

these procedures, only the SPRT is narrowly specified--the other two refer

.to families of procedures rather than'a single technique.

Although these statistical procedures are. widely applied for quality

control, little use hat been made of them in the area of mental testing,

'probably because operable sequential testing procedures did not exist

until recently. Since all references in the testing literature to sequential

' decisions discovered to date have used the SPRT (Sixtl, 1974; Epstein,

1978; Reckase, 1978), that procedure will be described first, followed

by the Bayesian procedure. The curtailed sampling plans will rot be dis-

cussed in this paper because they cannot be readily applied to the commonly

used tailored testing procedures.

The Sequential Probability Ratio Test/ (SPRT)

The sequential probability ratio test was initially developed by

Abraham Wald as a quality control device for use by the Armed Forces during

World War U. Since he has written an excellent book on the subject (Wald,

1947) and since this procedure was clearly described at the last meeting

of this conference (Epstein, 1978), the procedure will be only briefly ,

described here. It is not the purpose of this paper to duplicate the

el
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effoits of Epstein, but rather to generalize the procedure so *that it will

Mare directly apply to tailored testing. ..

Wald originally developed the SPRT its a statistical.test to decide

which of two simple hypotheses is mom correct. For example, it might

be interesting to determine whether a student can answer correctly tO%

or 80% ofthe items'in an item pool.' The basic philosophy behind the

-procedure used .to decide between these two alternative's wat to determine

the likelihood of an observed response to an item under the two alterna-

tive hypotheses. If the likelihodd were sufficiently larger for one

-hypothesis than the other, that hypothesis would be accepted. If the

two likelihoods were similar, another observation would be taken. Wald

(1947) has shown that one hypothesis wt11-always be selected over another

using a finite set of items.

To denibnstrate this procedure, suppose an item is randomly selected

from an item pool and administered to a student. If a correct response .

were obtained, the likelihood under H1 (80% knowledge) would be .80,.and

the likelihood under H
o

(60% knowledge) would be .60. To evaluate these

likelihoods, Wald takes the ratio of the two

L0( s 11H1!
= 1.67

1.0( = 14H0) ovio
(1)

If the ratio is sufficiently large, H1 is accepted; if it is sufficiently

small, Ho is accepted; and if it is near 1.0 another observation is taken.

The values of this ratio that are considered sufficiently large or small

depend upon what is considered acceptable for the two possible decision

errors: (a) accepting H1 when Ho is true (a error); and (b) accepting

uli,....i..,........:.....:,
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Ho when H1 is, true (0 error). _Although Wald (1947) has developed a Proce-
.

dure for determining the.exact values of.these decision poils, ihe_procedure

'is very complex and is seldom used. Instead, good approximations can be

determined using the following formulas:

lower decision point B P

upper decision pOint se A 0.44

(2)

(3)

Thus, if the likelihood ratio is less than'or equal to B, Ho is accepted

with error probability approximately 8. If ,the likelihood ratio is greater

than or equal to A, H1 is accepted with error probability approximately

I. a. If the ratio is between B and A, another item should be randomly

sampled and administered, and the decision rule implemented again. If

.05 and = .10, for example, the decision poilits would be at B = .105

and A = 18. Since the likelihood ratio (1.67) is between these two values,

no decision would be made, and another item would be selected and adminis-

tered.

Since the responses to the items follow a binomial distribution in

this example, a general expression for the likelihood ratio can be developed

for the administration.of n items:

EX; n-EX4
L(X1, X2, ..., Xn1H1) pl 1(1-p1) '

U(T1, -12, Xn1141) EX
i

n-Ex.

Po (1-Po) 1

EXi n- .zxl

P1 1-P1
= (5) (11-5--)

(4)
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where xt is the score on Ito i (0 or 1), pl is the proportion of items

known by the student in ihe item pool under H1, and 00 is the Proportion

known in the item pool under Ho. If

..., x111111)

! A, accept H1. (5)xoTho)

If L(xl,
" 'NI%) B, accept Ho. (6)..., --

Otherwise, continue administering items.

Although this procedure was originally developed to test simple hypo-

theses, Wald (1947) has shown that the procedure operates in the same

way for composite hypotheses. For example, suppose it was desirable to

know whether a student knew more than some proportion, pl, of the items
_

in an item pool. In order to use the SPRT to make this decision, a region

must first be selected around p for which it does not matter which decision

is made7say po<p<pl. If po As close to pl, a very precise decision is

required. If po and pl define a wide indifference region around p, a

rather gross decision rule is all that is needed. The SPRT is then carried

out in exactly the same fashion as above, using po and pl as the values

for hypotheses Ho and H1 respectively. When the decision points A and

8 are computed as above, the error rates, a and 14, hold for true values

of p at pc) and pl. For true values of p more extreme than pi) or pl, the

error rates are lower.

In order to evaluate the properties of the SPRT, two functions have

been derived; the operating characteristic (OC) function and the average

sample number (ASN) function. The OC function is defined as the probability

a
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of accepting hypOtHesis H
o
as a function-of the true proportion of the

item pool known.by the student. Althdugh the derivation .of the OC func-

tion is somewhat Complex, thi funCiion can be approxlmated by the folloiting

two formulas.

,'7
, ' 1'

(1.14 1

L(p)

(4) -

k.

(7)

(8)

These equations are used by substituting in various arbitrary values of

h and solving for p and L(p). 1(p), the probability of accepting Ho,

is then plotted against p to describe the OC function. Figure 1 shows

an OC function for a = .05, 0 = .10, po = .6, and p1 = .8./ Note that

at p = po the height of the curve is equal to 1-a, and at p = p1 the

height of the curve is equal to B. Note that the.00 function is only

dependent upon a, po and pl. Also, the steeper the curve, the more

accurate is the SPRT decision rule.

Insert Fi9ure Tabout here

The ASN function is defined as the expected number of items required

to make a decision at the various values of the true proportion of known

items, E(nlp). The formula for the ASN function for the binomial case

described above is

S.

*Mk
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1(p) ln B + -LW) ln A
.P1

(1-p) l
11

n
pc,

.-7;&.-P7,747,;,....71:'..1,7,ii.7-4.TTia-

(9)

where all of the symbols are as.described above and the.logrithms are to

the base e. Figure 1 also shows the ASN function for the 'example Presented

above. Note that the ASN function is highest between the points pc, and

and the closer together the values of 00 ant 01 are, the,higher the

curve in that region. In general, the lower the ASA curve, the more

efficient-the decision rule.

Although the SPRT as defined above is a valuable procedure for decjsion

making in many situations, it makes an implicit assumption that limits

its usefulness for tailored testing. The model as presented assumes that

the probability of a correct response is the same for all items in the

pool. This assumption is reasonable if items are randomly selected and

p is the proportion of the items that a student can answer correctly,

but it is not reasonable if items are selected to maximize information

at an ability level. Under the tailored testing model assumed by this

paper, the probability of a correct response changes with each item,

requiring a modification of the model.

Fortunately, a detailed analysis of Wald's (1947) work indicates

that the sequential random sample assumption is not necessary for the

application of the SPRT, but is needed only for the derivation of the

OC and ASN functions. The SPRT can then be directly applied to tailored

testing, but the OC and ASN functions must be determined in a different

manner. One approach to determining these functions will be presented

later.

)
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To deMonstrate the application of the SPRT to tailored.testing as

defined by this paper, sulipose that a tailored test is being used to deter-

mine whether a student has exceeded the criterion specified foi a criterion-

referenced testi Although the method for selecting this criterion is

turrently not well specified, assume that a value, ec, has been determined

and that students above'thli value on the latent-achievement scale pass

the unit, while those ,below ec are given more insiruction.

In order to use the-SIMRT, a region Must be .specified around ec for

which it does not matter whether a pass or a fail decision is made. If

high accuracy is desired for the decision rules, a narrow' indifference
.

region must be specifiedi but more items will be required to.make the

decision. As the regioni geti wider, the decision accuracy declines, but

fewer items are requir4 Values of e, eo and el, mark the boundaries

of this indifference resiion (0.0<ec<01). Once these values have been

selected, the likelihood ratio can be defined as

xi 1-xi

L(x1 ...; xolei) Q1(e1)

xoreo) n
1-xi

1111Pi(eo)

x

iCli(eo)

where L(xl, xnlok), k = 0, 1, is the likelihood of the student's

response string for the n-items'administered so far, xi is the 0, 1 score

on Item i, yek) is the probability of a correct response to Item i assum-

ing ability el( determined from the appropriate ICC model, and yek) =

If the one-parameter logistic model is used as a basis for the tat3ored

testing procedure, Equation 10 becomes

. .
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exi(oi-bi)

it

xn101) isl 1 *nil
xnled.4 n

L011

n
. .1=1 0

where b is the difficulty parameter for.Item i. Equation 11 can be

simplified io

L(xl, xnloi)
ial

r x
i
(o -o

o) n 4,
(0
o
-b )

e
r r--1, 71- -11v jai

1 + e

. (12)

The values of this likelihood ratio can then be used to test whether the

student is above or below o
c

using the same method presented earlier.

If the ratio is greater than A = (1-1), the student is classified as being

above oc; if it is below B = 40,.the student is classified below the

criterion; otherwise another item is administered. If the three-parameter

logistic model is the basis for ihe tailored testing procedure, the SPRT

procedure is applied in exactly the same manner as above, except

Pi(ek) ci (1-c1) e

Da
i
(o

k
-b

i
)

Da le b 1
k

1 + e

(13)

is used in Equation 10 instead of the simple logistic form.

The evaluation of the OC and ASN functions cannot be performed as

easily as for the simple binomial model due to the presence of the item

parameters in the formula for computing the probability of a correct response.

4
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Since the item parameters for the next item:to.be'administered are dependent

.-on the itemiPool used and the'responses to the previous items, the deriva-

tion of these functions depends.oh-o-complex string of conditional expectations.

The conditional probabilities involved Make the derivation of these functions,

for all practical purposes, impossible. Therefore the OC and/ASN functions

can only be approximated using simulation techniques, but these approxima-

tions should be adequate for most purposes. Some OC and ASN functions

'for tailored tests based on the one- and three-parameter logistic models

will be presented later in this paper. Atte, however, that although the

1 full OC function cannot be derived, the value of the function is equal

1 to l'*4 at tic) and $ at el, assuming that the Item parameters are known'.

Since in all cases except simulations the item parameters are only estimated,

in reality these two points are not knoWn either.

Bayesian Sequential Decision Procedure

The Bayesian decision procedure is an alternative to the SPRT for

decidtng whether or not a student has exceeded the criterion, ec. Although

this procedure is much more complicated than the SPRT, it has the capability

of using additional information in making the decision. This added inform-
,

ation may improve the decision process. In ordeeto describe this procedure,

some basic concepts will first be defined.

Initially, it is assumed that a population of students exists such

that each student has some definable achievement level, o. Individual

achievement levels are labeled ei. Each person is to be tested and a

decision is to be made concerning placement above or below the criterion.

The decisicn to placelabove the criterion score is labelled dl, and 7t

decision to place below the criterion score is d2.
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In order to decide upon a.decision rule using Bayesian methodology,

three pieces of information are required.ir advance. These are (a) a

prior distributiOn of el (b), a loss fupction relating'the achievement

levels to the decisions, and .(c) the cost.of each observation. Using

these three types of information, a decision rule.(technique for select-.

ing a decision) and a stopping rule (techniquelor deciding when a decision

should be made) can be determined.'

The basic concept used in chooifng a decision, rule is the concept

of risk. Risk is defined as the expected loss given a decision. Obviously,

the decision that mlnimizes the risk is the desired one: When a Bayetian .

prior is used, this minimum risk is called the Wes risk.

,

The stopping rule used with the Bayesian sequential decision proce-

dure is also based upon the Wes risk concept. If the expected risk..

after taking another observation plus the cost of the 'observation is less

than the risk before the observation is taken, the sampling should go on.

However, if the expected risk plus cost of a new observation'is greater

than the risk without the observation, then sampling should cease. In

some cases, it is best not to take any observations at all because the

expected risk plus the cost of an observation is greater than the initial

risk of a guess based on the prior distribution of achievement.

Based on this framework, theorems have been proven that show that

an optimal procedure exists, and that the optimal procedure will reach

a decision after some finite number of observations (DeGroOt, 1977). If

the risk decreases with each observation, the procedure is called a regular

sequential decision procedure. Only regular procedures will be considered

here since it is assumed that each item administered yields some positive

information rather than providing some misinformation.

3



In order to make the 'description of this procedure easier to follow,

a simplified example will now be presented. Although this example is not

reilistic,"it demonstrates thebasic concepts without requiring complicated
.

matheMatical expressions. The extension of the procedure to realistic

situations is direct, but thesmathematics is cumbersome. Suppose that

two types of individuals exist.in the population of interest, those with

ei = -.8 and those with ei.= +.8 on a latent achievement dimension. A

/1
tailored test is to be-used to classify the individuals into two groups--

those above and those below the criterion score 0.0. ThAs, two decisions

are possible), classify as dr above the criterion; and d2, below the

criterion/

If 'persons with ability -.8 are classified above the criterion, a

loss of 25 is incurred(in-each case. If they are classified below the

criterion, there is no loss. If persons with ability .8 is classified

above the criterion, there is no loss, while &loss of 15 is incurred

for eaCh person.classified balow ihe criterion. This loss function is

summarized'below.. It should be noted that these loss function values are

totally arbitrary.

Loss Function

d
1

d
2

.8

-.8

0 15

25 0

Suppose that ,the prior beliet that a randOmly selected person has

ability .8 is .6 and that he/she:has ability -.8 is .4. Then the first

step in using a Bayesian sequential decision process is to determine the

'1
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risk associated with d
1

and d
2
when no observations are taken. The expected

loss (risk) if decision d1 is picked is

E(loss1d1) = 11(e1)1(d1101) + P(02),.(d1192)

= 4 x 25 + .6 x 0

= 10,

where P(e) is the prior probability of ei anC Ildjled is the loss from'

picking decision dj when ei is true. The expected loss (risk) if d2 is

picked is

E(lossId2) = P(e1)1(d21e1) + P(e2)1(d2le2)

= .4 x 0 + .6 x 15

Thus the Bayes decision when no observation is taken is d2, and the Bayes

risk is 9. The decision d
2

is obviously chosen because it has the lower

risk.

Although the proper decision has been determined for the case when

no observations have been taken, it has not been determined whether or

not an observation should be taken. To do'that, the expected risk after

one observation plus cost must be compared to the Bayes risk without an .

observation. Determining the expected risk after an observation requires

several steps, the first of which is determining the posterior distri-

bution of ability after an observation.

Suppose that an item of 0.0 difficulty is administered to a person

with ability .8 or -.8. Depending upon whether the response is correct

or incorrect, a Bayesian posterior can be determined using Bayes theorem.



P(xledP(ei)
P(911x) =

EP(xlei)P(ei)

(16)

:

% '''If a correct response is obtained to the item, the posterior probability

of a .8 ability is given by

P(11.8)11(.8)
P(.8Ix 1) a PM SIPCO P(11-.81P(-.8)

(17)

The probabilities of an ability of .8 or -.8 were given in the.prior dis-

tribution as .6 and .4 respectively. The probability of a correct response,

given the known ability, can be determined.from the appropriate ICC model.

For example, using the one-parameter logistic model

P(1I.8) = e(.84)
e(.8-0) .69

(18)

while P(1I-.8) = .31.. The posterior probability of .8 is then P(.8I1) =

.77. Similarly, the posterior probability of -.8 is P(-.8I1) K .23. Thee

posterior prObability of the .8 and -.8 abilities given an incorrect response

can likewise be determined using Equation 16. The posterior probabilities'

given an fncorrect response are P(.810) = .37 and P(-.810) = .63.

The next step is to determine the risk using the posterior distribu-

tions just computed. If a correct response is obtained, the expected -

loss for d1 is .23 x 25 + .7/ x 0 = 5.75. The expected loss;for d2 is

.77 x 15 + .23 x 0 - 11.55. Thus if a correct response is obtained, the 1

Bayes decision is d1 with a Bayes risk of 5.75. If an incoiTect response

is obtained, the expected loss for d1 is .63 x 25 + .37 x = 15.75, while



the expected loss for d2 is .37 x 15 + .63 x 0 = 5.55. Thus, after an

incorrect response, d2 is the Bayes decision with a Wes risk of 5.55.

Since it is not known whether a correct or incorrect response will

be given, the expected risk regardless of the response must be computed.

To compute the overall expected risk, the probability of a correct and

an incorrect response is needed. The pro0abi11ty can be obtained using

the following formula:

P(1) = P(11.8)P(.8) + P(11-.8)P(-.8)

= .69 x .6 + .31 x 4

= .538

P(0) = 1 - P(1) as .462.

The expected risk after a response can now be determined from

l(risk(response) = E(loss11)P(1) + E(lossIO)P(0)

= 5.75 x .538 + 5.55 x .462

= 5.66.

At this point, whether or not another observation should be taken

can be determined. If the expected loss after an observation plus cost

is greater.than the risk before an-observation, than administration of

items should cease. If the risk before an observation is taken is greater,

than another item should be administered. In the example given here,
4

assume the cost of a response is I unit. The expected loss after a response

plus cost is then 5.66 + 1 = 6.66. Since the Bayes risk with no items

administered was 9, another item should be administered. Depending on

the response to the item, decision d1 or d2 could be selected. After

1"
... I
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the item is administered, the aporopriate posterior becomes the new prior

and the process continues as above. A flowchart of the entire decision

process is presented in Figure 2 so that a more global picture of the

steps involved can be obtained.

Insert Figure 2 about here

Although there are many postitive factors in the use of the Bayesian

procedure, the very information that makes the control of the testing

Nsftuation more precise also makes it difficult to initially implement.

For example, specifying reasonable loss functiops on the same metric as

the cost of an observation is difficult for most educational applications.

What is the cost of misclassifying persons below the criterion score when

they really should be classified above it? Some attempts have been made

by this author to specify loss functions for tailored testing applications,

but no satisfactory results have been obtained so far.

A second difficulty in the application of this procedure is in spec-

ifying the prior diWibution of achievement for a group. This is not

as serious a problem as determining loss functions since performance data

are usually available from preyious groups. But of course, the more

accurate the prior distribution, the more accurate the decision based

on the procedure.

It should be realized that the procedure presented here is a simpli-

ficetion of a procedure that would be used for actual tailored testing

applications. Achievement levels are usually continuous, rather than

discrete as presented here, and the loss due to an incorrect decision

is d function of the person's distance from the criterion score.rather

'

t.
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than a constant value. Theiprocedure can also be modified by changing

the cost of observations with'increasing test length to allow for fatiptie

effects. Unfortunately, the Bayesian decision procedure as described

here has not yet been implemented in conjunction with an operating tailored

testing procedure. However, plans are' being developed to evaluate an

operational version at the Tailored Testing Research Laboratory at the

University of Missouri.

Some Simulation Results for the SPRT
.e

\

%e
Before implementing the. SPRT procedure desCribed earlier in his. paper,

information was desired on how the procedure functioned when items re .-

not randomly sampled from the item pool. Also, some experience was needed

in selecting the bounds of the indifference
1

region, 00 and el. The effects

of guessing on the accurac of classification when the one-parameter logis-

tic model was used was another area of interest.

To determine the effects of these variables, the computation of the

SPRT was prograMmed into both the one- and three-parameter logistic tailored

testing procedures, that were operational at the University of Missouri- ,

Columbia. These procedures have been described in detail previously (Koch.

and Reckase, 1978) so they will lie merey summarized here. The programs

implementing both models used a fixed s epsize method for branching through

. an item pool until both a correct and an.incorrect response had been given.

i

After that point, all ability estimateS were obtained using an empirical

maximum likelihood estimation procedure. Items were selected for both

models to maximize the item information at the previous ability estimate.

9
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A
. bl

'To evaluate the decision miking power of the SPRT, subjectsiWith known
A

ability were needed. Therefore, a simulation routine was built into the

tailored testing program in.place of the responding live examinee. At

the beginning of e6ch simulation run, the-true ability of the simulated

examinee was input into the program.' This value was used to.determine

the true probability of a correct response to the administered items based

on the model. used, (one- or three-parameter logistiOand the estimated

item parameters. A number was then randomly selected from a uniform dis-

tribution an the range from 0 to 1. If the randomly selected-number was

less than or equal to the probability of a correct response, the item .

'was scored as.correct. If the randomly Selected number was greeter than

the probtbility of a correct response, the item was scored as incorrect.

This procedure- continued for each item in the 1ailored test.

Besearct_j_DeLlzi

Tailored tests were simulated twenty-five times at .each true ability

using different seed numbers for the random number generator. True abilities

from -3 to +3 at .25 intervals were used for both the one- and three-

parameter models to evaluate the performance of the SORT. In addition,

simulations were run on a composite procedure in which tailored test proce-

dure and the probability ratio calculations (Equation 11) were based using

the one-parameter model, but the item responses were determined using the

three-parameter model. This was done to determine the effects of guessing

on correct classification using the one-parameter logistic model.

In computing the probability ratios, three sets of limits of the

indifference regions were used: +.3, +.8, +1. A criterion of ec = 0
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400 ..r

was assumed in all cases. The ratios were computed after* each item was

administered and the results_were compared to an A value of 45 and a B

Value of .102*. These were.deterened based ogim = .02 and '0 = .10. A

classification was made the first time these limits were exceeded. If

the limits were not exceeded before twenty items had been administered

(an arbitrary upper limit on test length), values above 10 were class-

ified as above e and the values below 1.0-were classified as below e
c.

This is called a truncated tPRT. At each true ability used for the simula-

tion, the proportion of the 25 administrations.classified below ec and

the average number of iteas administered were computed. Plots of these

values against the true abilities approximate the OC and ASN functions,

respectively. These plots were made for:each 'combination of indifference

region and tailored testing method, yielding nine plots of the OC and

ASN functions.

Two different item pools were used for this study. For the Analyses

using just the one-parameter or the three-parameter model, an existing

pool of 72-vocabulary items were used. This item pool bad an approximately

normal distribution of difficulty parameters. For the one-parameter tailored

test using three-parameter responses, an item pool with 181 items, rectan-

gularly distributed between -3 and +3 on difficulty was used. These

simulated items had constant discrimination parameters of .588 (this value

yields a 1.0 when multipled by 0 = 1.7) and psuedo-guessing parameter of

.12. This simulated item pool was selected over the real vocabulary pool

to have better control over the guessing parameters. The one-parameter

procedure used only the b-values from the pool.

2 1
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Results

ii

; The resolts of the simulation studies will be presented in three

iiarts; first the one-parameter SPRT, then the three-parameter SPRT, and

finally the results of the combined simulationt. Plots of the OC and .

ASN functions are presented to summarize the results of the SPRT for these

models.

One-parameter mod 1

Figure 3 ihows the OC functions for the one-parameter logistic model ,

based on the vocabulary item pool. The figure shows three griphs, one

for each of the +.3, +.8, and +1 indifference rogions. Note that the

curves are reasonably similar regardless of the indifference region.

The siMilarity indicates that in all three eases the classification accur-

acy is nearly the same.

Insert Figure 3 about here

The values of the curves at the limits of the indifference region
0 0

give further evaluative information. At the lower point, the OC function

should pass through 1 - 12. At the -.3 value, the curve is in fact .85

when it should be .98:showing the degrading effects of restrictive stop-

ping rules used by the tailored testing procedure. At the -.8 and -1

points for the corresponding curves, the results are about as expected,

being .94 and 1.00 rather than .98.

At the upper limit of the indifference region the OC function should

have a value of .1. For the .3 case it is in fact .5 rather than .1,



again showing the effects of cruncating tNe procedure. At the.values of

.8 and 1, the values of the OC function.were near or better than what they

should have been based on the theoretically expected results.-

The ASN functions for the one-parameter model are givevin Figure

4. The curves plotted correspond to.the ASN.functions44Ing indifference

regions for +.3, +.8, ird +1. It can immediyel,y be seen from the graph.

that there is a substantial difference in the average number of items

needed to reach a decision, with the greatest number required when the'

indifference region_is-narrowest. It can also be seen that the largest

expected number of items is near the criterion score of 0.0 and thlt-the

average number drops off at the extreme abilities. The slight lack.of

symmetny in the curves is due to the fact that a was not equal to O.

For abilities beyond +1, an average of onli about 3 to 5 Rot was niededi

for classification for the wider regions, while 6 to 11 were needed for

the +.3 indifference region. Ncte that the +.3 curve is approaching the

arbitrary twenty item limit for the tailored tests.

Insert Figure 4 about here

Figure 5 shows the theoretical curves for the'ASN and OC functions

based on the +.3 indifference region for comparison purposes. An infinite

number of items. with difficulty 0.0 was assumed for the theoretical func-

tions, and the tests were assumed to have no upper limit on the number

of items administered. A comparison of Figures 3 and 4 with Figure 5

shows that the OC curve for the theoretical fuhction is steeper at the
.

cutting paint than the simulated curves, and the ASN functiod is substan-

tially higher: The difference in the theoretical and simulated OC curves

23
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shows the effect ofrthe 20 item stopping rule and the selection of items

of differing difficuliy.

Insert Fijure 5 about here'

Three-paraMeter: model

__-

The results of the simulation .of the.three-parameter logistic tailored

test are given in Figures 6 and 7. Figure 5 presents th'e OC functions

for the three-parimeter model, again using the indifference regions of

+.3, +.8, and +T. Notice that, as with the one-parameter model, the OC

curves are fairly similar.for. the three indifference regions throughout

most of the range of ability. However, there are discrepancies for the

+1.0 indifference range curve near the +1 and -1.points, indicating a

decline in decision precision for that region. At the -.3 value for the

+.3 indifference range, the value of the curve is .96, fairly close to

.the .98 theoretical value. At the upper end (.3), howeverl*the value is

.2 :instead of the .1 value that it should be. This may show the effects

of guessing on the decision process. The +.8 and +1 indifference regions

again yield better error probabilities than would be expected from the

theory..

The ASN function for the three-parameter model (Figure 6) also shows

similar results to*those obtained from the one-parameter model. The +.3

indifference region required the greatestbnumber of items, while +.8 and

+1.0 i.equired about the same number. As before, the largest number was

required near the criterion score. However, with the three-parameter

model, far feweP1441tems on the average were required to make a decision

9



-24-

. ;

than for the one-parameter model. of sPecial note is the ASN value of
. )

4/about 1.0 in the -1 to -3 range.on Oe ability scale. Decisions seem

to be possible with very few items in that range.

Insert Figures 5 and 7 about .here

Because of the guessing component of the three-parameter logistic

model, the ASN function tended to yield tore asymmetric results than the

'Idone-parameter model. More items were required when classifying high than

for classifying low to compensate for the non-zero probability of a correct

response. Also, the ASN curve for the +.3 indifference region was much'

more peaked thartits one-parameter counterpart. If the simulated curves

for the three-parameter model are compared to the theoretical curves pre-

sented in figure. 5, the OC functions can be seen to match*the theoretical

functioni fairly closely, while the ASN functions show that substantially

fewer items were required. Over mUch of the ability range, as many as

ten times more items were specified by the theoretical ASN curve when

unlimited identical items were assumed. However, it should be,noied that

the .theoretical curves are based on the one-parameter model.
,

Effect of smessiu on the one-parameter mod 1
I.

Figure 8 shows the OC functions for the one-parameter model when

the three-parameter model was used to determine the respOnses. The figure

shows three graphs, one for each of the +.3, t.8, and +1 indifference

regions. Note that the curves are fairly similar regardless of the indiff-

erence region, but that they are shifted substantially to the left compared

to the previous OC curves. This indicates that the probability of classifying

25
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a person below ec has dropped off substantially until an ability of abbut

-2 has been reached. In other words, it is much easier to be classified

above the criterion score uiing this procedure than when guessing does

not enter into the decision.. The effective criterion has been shifted

down to -1.5 instead of being at zero.. Clearly the values of the OC func-

tion at the limits.of the indifference region are entirely different from

the theoretical values.

Insert figure 8 about here

The ASN functions for the three indifference regions, +.3, +.8, and

+1, are shown in Figure 9. The difference between these graphs and those

presented in Ffgure 4 are that the curves are higher (more items are

required) and the highest point of the curve is shifted over to the
,

steepest part of the OC curve. The relationship between the.height of

the ASN function and the width os the indifference region still holds;
. ,

however, as the rigion gets wider, the average number of items decteases..

Insert figure 9 about here

Summary and Conclusions

The purpose'of this paper has been to describe two procedures for making

binary classification decisions using tailored testing, the sequential

probability ratio test (SPRT) and a Bayesian decision procedure, and to

present some simulation data showing the characteristics of the operation

of the SPRT for two item characteristic curve models. The first proce-

dure described, the SPRT, was developed by Wald for quality control work.
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It hail not been widely, applied for testing applicatiohs because the assump-

tion of an equal probability of a correct response was made to facilitate

the derivation of the operating characteristic (0C) and average 'sample

number (ASN) functions. Since this assumption can only be,met for testing

applications by randomly sampling items for administration, the procedure .

has not been used with tailored testing. In this paper, the probability

of a correct response was allowed to vary from item to item, although it

made the derivation of the OC and ASN functions impossible. Simulation

procedures were then used to estimate these functions.

The SPRT procedure described is operational at the Tailored Testing

Research Laboratory of the University of Missouri-ColuMbia in two forms:

a Uwe tailored testing procedure, and a simulated procedure. The results

of the'application of.the simulation procedure.to three studies were

des.cribed in this paper. The first study estimated the OC and ASN func-

tions for a one-parameter logistic based tailored testing procedure in

which the size (PFthe indifference region around ithe criterion-score was

varied. The results of the study showed that the average number of items

needed for classification was quite low when ihe true ability of a simula-

ted person was not too close to the criterion socre, ap0 that the width
ff

of the indifference region did not greatly affect the OC function. The

width of the indifference region did have a substantial...effect on the ASN

function. The accuracy of classification of the simulated tailored test

Was not quite as good as adals,tering a large number of items with diffi-
,

culty values equal to the criterion score. This result was explained by

the arbitrary 20--item limit imposect on the tailored test and the variation

in4the difficulty parameters:Of the items administered.



The second study estimated the OC ind ASN functions for a three-parameter

logistic tailored testing procedure, also varying the size of the indifference

region. The results were similar to those for the one-parameter model,

but even fewer items were generally needed for classification. The results

of these first two studies both indicated that the SPRT could be success-

fully applied to tailored testing.

The third simulation study estimated the OC and'ASN functions for

the one-parameter model when guessing was allowed to enter into the'responses

to the items administered. The results showed that guessing in effect

lowered the criterion score, making it easier to classify an,examinee iboye

the criterion, and raising the average number of items needed for class-

ification. This spurious shift in the criterion greatly increased the

error rates in classification. The effect is strong enough to preclude

the use of the one-parameter model for classification decisions when guessing

is a factor.

The second decision procedure described in this paper allows the use

of a greater amount of information in making a decision than the SPRT.

The Bayesian procedure includes a prior distribution of student achieve-

ment, a loss function for incorrect decisions, and the cost of observations

in the development of the decision rule. The basic.philosophy of this

procedure is to administer items until the expected loss incurred in making

a decision is less than the expected loss after the next item is adminis-

tered plus the cost of administration. At that point a de6sion is made

that minimizes the expected loss. The BayesUn procedure is described

in detail and a simple example is given of its use. The Bayesian prOce-

dure is not yet operational for making decision's under tailored testing
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because appropriate loss functions for educational decisions have not been

determined. However, simulation studies of the procedure will comence

in the near future.

Both of the decision procedures described in this paper show promise

for use in tailored testing. Both also require substantial iisearch effort

before they can.be applied. with confidence. It is hoped that this Paper

will help to stimulate that research.

(2'4
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FIGURE 3
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FIGURE 4
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