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— There are many applications of testing technology that require that

Q : .

(Y] decisions be made as to whether a person is above or below a criterion o
/

score, A.cepting a candidate into a program is an example of such a
‘ decisioﬁ. ;riterion-referenced taating and its special case, mastery |

testing, are other areas.that require similar classifications. In the - =

criterion-referenced testing application, it would be especially useful

if the decisions could be made quickly and'conveniently for each student .

in an individualized instruction program. The recently developéd technology

of tailored testing (Lord, 1970) has the potential to fulfill the requjre?

ments of such a testing system. However, no generally accepted procedure

exists for making classification decisions using tailored testing, probably

because these testing techniques are still relatively new. The few proce-

dures that do exist are either based on randomly sampling items (Epstein,

1978; Sixtl, 1974), which does not take advantage of the power of tailored

testing, or on heuristic techniques (Weiss, 1978) that do not have a sound

theoretical base. The purpose of this paper is to present some decision

procedures that operate sequentially that can easily be applied to tailored

testing without losing any of the elegance and mathematical sophistication

of the examination procedures.

Paper presented at the meeting of Computer Assisted Testing '79, Minneapolis,
June, 1979. This research was supported by Contract Number NO0O14-77-C0097
from the Personnel and Training Research Programs of the Office of Naval
Research.
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Tailored Testing Procedures - o

Numerous tailored (adaptive, response contingent, sequential, et&;) " :
testing procedurés now exist in the reggarch literature ranging from simple
two-stage procedures (Betz and Heiss; 1973) to comb]ex Bayesian procedures
" (Owen, 1969); ‘Weiss (1974) has written a good review of the tailored
testing procedures that have'been developed up'hntil 1974. Altiough many
procedures exist, for the purposes of this paper qnly tailored testing

procedures using item characteristic curve (1CC) theory and maximum-1ikelihood

ability'estimation will be considered. It is also assumed that the tests -/
are administered to the examinees by computer using some type of computer | //
terminal, and that items are selected to maximize the value of the .infor- /'.
mation function at the previous ability estimate. Despite the narrow . //

definition of tailored testing used for this paper, the results should
generalize to any procedure based upon item characteristic curve theory.

In applying the decision procedures discussed in this paper, two
specific ICC models will be used; the one- and the three-parameter logistic
models. These models were selected because of their frequent appearance
in the reseaich literature and because of the exisience of readily available
calibration (LOGIST, CALFIT) and tailored testing programs (Reckase, 1974).

Any other ICC model could\just as easily be used.

Sequen®jal Decision Procedures

A cursory review of the statiskjcal literature quickly indicates
that much has been written about sequenyjal estimation and classification

procedures. While somewhat more obscure/than ANOVA and regression procedures,
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most intermediate level mathematical statistics boaks nclude at Ieast
| one chapter on sequential anslysis (see Brunk, 1965: Chapter 16 for example).
L " In gn ongoing réview of the extensive 1iterature that exists on this tOpic
(wﬁtch has -accumulated over 200 references), it has been found that most
-~ Procedures fall into one of three categories: sequential probability
ratio tests (SPRT) (Wald, 1947), quesian sequential procedures (eg. DeGroot,
1970), and curtailed: single sampling plans (Dodge and Romig; 1929). Of
- these procedures, only the SPRT is narrowly specified--the other two refer
‘to families of procedures rather than a sin§1e technique,

Although thése statistica] procedures are widely applied for quality
'control. little use has been made of them in the area of mental testing.
;probably because operable sequential testing procedures did not exist
. until recently. Since all references in the testing literature to sequential
* decisions discovered to date have us;d the SPRT (Sixtl, 1974; Epstein,

1978; Reckase, 1978), that procedure will be described first, followed
by the Bayesian procedure. The curtailed sampling plans will not be dis-

cussed in this paper because they cannot be readily applied to the commonly

used tailored testing procedures.

The Sequential Probability Ratio Test/ (SPRT)

The sequential probability ratio test was initially developed by
Abraham Wald as a quality control device for use by the Armed Forces during
World War II. Since he has_Qritten an excellent book on the subject (Wald,
1947) and since this procedure was clearly described at the last meeting
of this conference (Epstein, 1978), the procedure will be only briefly N
described here. It is not the purpose of this paper to duplicate the
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- efforts of Epstein, but rather to generalize the procedure sO that 1t will
more directly apply to tailored testing., - ' .
Wald originally developed the SPRT as a statistical. test to decide
which of two simple hypotheses is more correct. For example, 1t might
be 1nteresting to determine whether a student can answer correctly 60%
or 80% of the items in an item pool . The basic philosophy behind the
‘procedure used to decida between these two alternatives was to determine
the 1ikelihood of an observed response to an item under the two alterna-
'tive hypotheses. If the likelihood were sufficiently larger for one
- ";hypothesis than the other, that hypothésis would be accepted. If the : . .
two likelihoods'were'similar, another'obse;vation would be taken. Wald .
(i947) has shown that one hypothesié !ﬁji/qlwhys be selected over another
using a finite set of items. -
" To demdnstrate this procedure, suppose an item is randomly selected
from an item pool and-administered.to a student. If a correct response -
were obtained, the 1ikelihood under H] (80% knowledée) would be .80,.and
the likelihood under Hy (60% knowledge) would be .60. To evaluate these
likelihoods, Wald takes the ratio of the two |

L(x = llH]) .80
=R = 80 1.67 (1)

[f the ratio is sufficiently large, H] is accepted; if it is sufficiently
small, H0 is accepted; and if it is near 1.0 another observation is taken.
The values of this ratio that are considered sufficiently large or small
depend upon what is considered acceptable for the two possible decision

errors: (a) accepting Hy when H_ is true (a error); and (b) accepting

ERk(I
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*"H;'Qhen Hy is true (8 error).'tklthougﬁhﬁaid-ii§47) h;s-devéiﬁpédma b}écé;m"---mmh
. dure for determining the exact values of .these decision points, the procedure

eag

~ determined using the following formulas:

B

lower decision point = B » y—— (2)
upper decision point = A =.J-{}Ji | (3)

Thus, 1f the Tikelihood ratio is less than or equal to B, H_ s accepted
with error probability approximately s. If the likelihood ratio is greater
than or equal to A, H, is accepted with error probability approximately

a, If the ratio is between B and A, anothe;litem should,bé raﬁdumiy

sampled and administered, and the decision rule implemented again, If

T ¥ .05 and 8 = .10, for example, the decision points would be at B = ,105

©
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“"and A = 18. Since the 1ikelihood ratio (1.67) is between these two values,

no decision would be made, and another item would be selected and adminis-
tered.

Since the responses to the items follow a binomial distribution in

this example, a general expression for the 1ikelihood ratio can be developed

for the administration of n items:

L(X]. x2’ eo e g anH]) - p" (]‘p]) (4)
LXys X508 «uey Xn 1Ay - zxi(]- )n-zxi :
0 pO
X n-:x
p] 1 ]°P] 1
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where x;. is the score on Item 1 (0 or 1), p, s the proportion of 1tems

known by the student in the {tem pool under H]. and po is the proportion
* known in the item pool under Hy. 1If - . o
.L(x]. cees X l"] :
[Txs ~oes %,[R,) 2 A accept Hy. -8
If . L(XI’ L X IHI) . . f...'-- i
| Ry e X H,) < B, accept H,. (6)

Otherwise, continue administering ftems.
| Although this procedure was originally developed Ep test simple hypo-
theses, Wald (1947) has shown that tﬁé procedure operates in the same
way for cqmposite hypotheses. For example, suppése it was desir;ble to -
know whether a student knew more than some proportion, p,, of the items
~in an item pool. In order to use the SPRT to make this decision, a region
must first be selected around p for which it does not matter which decision
is made-fsay Po<P<Py - If Po is close to Pys a very precise decision 1is u
required. If Po and p]‘define a wide indifference region around p, a
rather gross decision rule is all that is needed. The SPRT is then carried
out in exactly the same fashion as above, uéing Po and Py as the values
for hypotheses Ho and H] respectively. When the decision paints A and
B are computed as above, tﬁe error rates, « and R, hold for true values
of p at Po and Py For true values of p more extreme than Po or py, the
error rates are lower, |
In order to evaluate the properties of the SPRT, two functions have
been derived; the operating characteris§1c (0C) function and the average

sample number (ASN) function. The OC function is defined as the probability

7
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'+ of accepting hypothesis H, @s a function.of the true proportion of the ' "
item pool known by the student. Although the derivation of the OC func- S
- tion is somewhat complex, the function can be approximated by the follawing - -
” i : two formulas. ' . ' o L
. ‘ N )
g b
TT-T:;' _ -
o P* —mH R : (7)
p] (]"p]) .
Po _ -Po

- Lp) =~ o (8)
‘ | T o

These équations are used by substituting in various arbitrary valués of
h and solving for p and L(p). L(ﬁ). the probability.ofipcceptiﬁg Hos
is then plotted against p to describe the OC function, Figure 1 shows
an 0C function for'a = .05, 8 = .10, Po * .6, and P .8f( Note'that
at p = pb the height of the curve is equal to 1-a, and at p = P the
height of the curve is equal to 8. Note that the.OC function is only
dependent upon a, 8, Po and P Also, the steeper the curve, the more

accurate is the SPRT decision rule.

Insert Figure | about here

The ASN function is defined as the expected number of items required
to make a decision at the various values of the true proportion of known
items, E{n|p). The formula for the ASN function for the binomial case

described above is

ERIC -

Aruitoxt provided by Eic:



DU e R .,-I“:"L‘l’ﬂo-:c:ﬁﬂm %epm»moax mmmw mm h s i”" v'ar‘ vhet ¢

£ g

| E(ﬂ'p) = ]n B +. ]"L In A .‘ ) : (9) -

A,

where all of the symbols are as described above and the_logrithms are to
_the base—e:l Figure 1 also shows the‘ASh function for the'eXample bresented
above. Note that the ASN function is highest between the points Po and
Pyo and the closer together the values of po anc o, are, the, higher the
curve in that regiona In general, the lower the ASN curve, the more
~efficient the decision rule. | | " , o S
Although the SPRT as defined above is a valuable procedure for decision
making in many situations 1t makes an implicit assumption that 1imits
its usefulness for tailored testing The model as presented assumes that
L the probability of a correct response is the same for all items in the
* pocl. This assumption is.reasonable if items are randomly selected and
p is the proportion of the items that a etudent can answer correctly,
but it is not reasonable if items are selected to maximize information .
at en ability level. Under the teilored testing model assumed by this | |
paper, the.probability of a correct response changes with each item,
requiring a modification of the model. |
Fortunately, a detailed analysis of Wald's (1947) work indicates
that the sequential random sample assumption is not necessary for the
application of the SPRT, but is needed only for the derivation of the
OC and ASN functions. The SPRT can then be directly anplied to tailored
testing, but the OC and ASN fuhctions myst be determined in a different
manner. One approach to determining these functions will be presented

later.,

9
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: .. - To demonstrate the application of the SPRT to tailored testing as

- defined by this paper, suppose that a tailored test is being used to deter-
- mine whether a student has exceeded the criterion specified for a criterion-
referenced test;. Although the methoo for selecting this criterion is
Turrently not well specified, assume that a volue.'ec, has been determined
and that students obove'th1§ value on the latent-achievement scale poss
the unit, while those below 6. are given more instruction. |
In order to use the SPRT, a region must be,speoified around o, for
which it doesﬂnot matter whether a pass or-a fail decision is made, If
high accuracy.is.desired for the decision rule, a narrow'indifference_
region must be speci‘ied, but more items will be required to make the
decision As the regioJ gets wider, the decision accuracy declines, but
fewer items are required. Values of o, 8 and 0ys mark the boundaries
of this indifference reéion (°o<°c<°1)° Once these values have been

selected, the likeiihood ratio can be defined as

. - 1 X, I-xih
Lixgs voed x07) (TP(8) T, (ey)
LQI,.",x&Md)g n

pyGe,) To (s,)

(10) .
I'Xi

where L(x], cees xnlek), k =0, 1, is the 1ikelihood of the student's
response string for the n-items ‘administered so far, x; is the 0, 1 score
on [tem i, Pi(ek) is the probability of a correct response to Item i assum-
ing ability o) determined from the appropriate ICC model, and Qi(ek) =

1-P. (v

L
[f the one-parameter logistic model is used as a basis for the tailored

testing procedure, Equation 10 becomes

ERIC {1
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where by is the difficulty paramater for Item i. Equation 11 can be
simplified to L i

n
0y-0 ,-b
LCTRIEN LY i‘ 17%) 0, (8-b¢)

n - (12)
Hﬁ..”.xﬂﬂp. S, |

The valﬁes of t;is likelihood-ratio can then be used to test whether the

student is above or below 6¢ using the same method presented earlier.

If the ratio is greater than A = (léﬁ);.the student is classified as being

above 0.3 if it is below B = (Tga).-the student is classified below the .
criterion; otherwise another item is administered, If the three-parameter I
logistic model is the basis for the tailored testing procedure, the SPRT

procedure is applied in exactly the same manner as above, except

Da (ek'bi)
e
Pi(ek) = + (]‘ci) ] “Da (ék_ {) (]3)

is used in Equation 10 instead of the simple logistic form.
The evaluation of the OC and ASN functions cannot be performed as
easily as for the simple binomial model due to the presence of the item

parameters in the formula for computing the probability of a correct response.

11
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Since the item parameters for the next item to be administered are dependent R
| ~on the item pool used and the responses to the previous items, the deriva-
- tion of these functions depends: or-a- complex string of conditional expectations. B

The conditional probabilities involved make the derivation of these functions,
for all practical purposes, impossible. Therefore the OC and ASN functions
can only be approximated using simulation techniques, but these appeexima-
“tions should be adequete for most purposes. Some 66 and ASN functions
| ’for tailored tests based on the one- and three-parameter 1ogistic models
will be presented later in this paper. Note. however, that although the
\ full OC function cannot be derived, the-value of the function 1s equal
't to ]~a at o and 6 at 6., assuming that the item parameters are known.
Since in all cases except simu‘ations the item parameters are only estimated.

in reality these two points are npt known either.

Bayesian Sequential Decision Procedure

The Bayesian decision procedure is an alternative to the SPRT for
deciding whether or not a student has exceeded the criterion, 0 Although
this procedure is much more complicated than the SPRT, it has the capabi]ity
of using additional information in making the decision. This added inform-
ation may improve the decision process. In orde?‘to describe this procedure,
some basic concepts will first be defined.

Initially, it is assumed that a popuiation of students exists such
that each student has some definable achievement level, ©. Individual
achievement levels are labeled 8. Each person is to be tested and a
decision is to be made concerning placement above or below the criterion.
The decisicn to place’above the criterion score is labelled d,, and t;p

decision to place below the criterion score is d2'

EKC a Ay
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In order to decide upon.o;decision,rule.using'Bayesian methodology,
=7: . three pieces of information are required in advance. These are (a) a ,
| , prior distributidn of s, (b), a loss function relating‘the achievement
levels to the decisions and :(c) the cost ‘of each observation. Using
these three types of information. a decision rule,(tecnnique for selectb:
%ng a decision) and a stopping rule (technioog.for'deciding when a decision
should be made) can be determined. u
The basic concept used in choosing a.decision rule is the concept
of risk. Risk is defined as the expected loss given a decision Obviously.
the decision that minimizes the risk is the desired ane. When a Bayesion
prior is used, this minimum risk is called the Bayes risk i o
The stopping rule used with the Bayesian sequential decision proce-
dure is also based upon the Bayes risk concept. If the exoected’nisk3 . . .
after taking another observation plus the cost of the'obsecvation'is léss |
than the risk before the observation is taken, the sonpling should go on.
However, if the expected risk plus cost of a new observation is greater
than the risk without the observation, then sampling -should cease. In
some cases. it is best not to take any observations at all because the
expected risk plus the cost of an observation is greater than the initial
risk of a guess based on the prior distribution of achievement.
Based on this framework, theorems have been proven that show that
an optimal procedure exists, and that the optimal procedure will reach
a decision after some finite number of observations (DeGroot, 1977). If
the risk decreases with each observaticen, tne procedure is called a regular
sequential decision procedure. Only regular procedures will be considered

here since it is assumed that each item administered yields some positive

“information rather than providing some misinformation.

13
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" In order to make the'dssériﬁtion of th;sﬁbrscsﬂhre easier to folidﬁ;
a simplified example will .now be ﬁresented. Although this examble is not
re.listic. it demonstrates the basic copcepts without requiring complicated o
v mathematical expressions. The extension of the procedure to realistic
.++ - situations is direct, but the mathematics is cumbersome. Suppose that
two types of individuals exist in the p0pu1ation of interest, those with
9; = -.8 and those with ;= +.8 0n a jatent achievement dimsnsion. A . ' //
tailored test is to be used to classify the individuals into two groups--
those above and those below the criterion score 0.0. Thus, two decisions
' are possible,' classify as dl’ above the criterion; and d2' below the
crlterioq/’
If persons with ability -.8 are classified above the criterion, a
loss of 25 is incurred “in-each case. . If they are classified below the
criterion, there is no loss. If persons with ability .8 1s classified
above the criterion, there is no loss, while a loss of 15 is 1ncurred
-for each person classified b2low ;he criterion. This loss function is ‘
summarized below. It should bs noted that these loss function values are

-

| totally arbitrary.

Loss Function

$4 % .
.8 0 ]5 ¢ I
-08 25 0

I
]

Suppose that the prior belief that a randomly selected person has
ability .8 is .6 and that he/she has ability -.8 is 4 Then the first

step in using a Bayesian sequential decision process is to determine the

ERk(I
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risk-associated with d] and d2 when no observations are taken. The expected

loss (risk) if decision d, 1s picked is

E(loss{d;) = P(9,)2(d;|e)) + P(6,)1(d]e,)
= 4x25+.6x0
= 10,

where P(ei) is the prior probability of 6; anc z(djlei) is the loss from
picking decision dj when 0 is true. The expected loss (risk) if d2 s

picked is

E(loss[dz) = P(el)z(d2|el) + P(ez)z(dzlez)
= 4 x0+ .6 x15
=9,

Thus the Bayes deéision when no observation is taken is.dz. and the Bayes
risk is 9. The decision d2 is obviously chosen because it has the lower
risk.

Although the proper decision has been determined for the case when
no observations have been taken, it has not been determined whéther or
not an observation should be taken. To do that, the expected risk after
one observation plus cost must be compared to the Bayes risk without an .
observation. Determining the expected risk after an observation requires
several steps, the first of which is determining the posterior distri-
bution of ability after an observation.

Suppose that an item of 0.0 difficulty is administered to a person
with ability .8 or -.8. Depending upon whetﬁer the response is correct

or incorrect, @ Bayesian posterior can be determined using Bayes theorem.

15
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- P(xle,)P(s, )
P(eilx) a { . 1 i .

b L (16)
-1§$(xl91)P(9.].)

14
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‘-‘;{filf a correct response is obtained to the item, the posterior probability

b X+
.

. of a .8 ability'is given by

g
3 "I

- -

s

P(1!.8)P(.8
8) +

P(.8]x = 1) . (17)

) The probabilities of én ability of .8 or -.8 were given in the.prior dis-
y tribution as .6 and .4 respectively. The probability of a correct response,
. " given the known ability, can be determined from the appropriate ICC model. -

For example, using the one-parameter logistic model

| .(.8-0) |
P(l|.8) = m = .69 . . (]8)

while P(1|-.8) = .31.. The posterior probability of .8 is then P(.all) =
.77. Similarly, the posterior probability of -.8 is P(-.8|l) = .23. The.
posterior prbbability of the .8 and -.8 abilities given anincorréct response
can likewise be determined using Equation 16. The pogterior probabilities‘
given an incorrect response are P(.8/0) = .37 and P(-.8|0) = .63.

The nekt step is to determine the risk using the posterior distribu-
tions just computed. If a correct response is obtained, the expected
loss for dl s .23 x 25 + .75 x 0 = 5.75. The expected lossifor d2 is
J7 x 15 + .25 x 0 =11.55. Thus if a correct response is oétained, the
Bayes decision is d1 with a Bayes risk of 5.75. If an inco;rect résponse

is obtained, the expectéd loss for d] is .63 x 25 + .37 x 6 = 15.75, while

ERIC 16
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the expected loss for d, 15 .37 x 15 + .63 x 0 = 5.55. Thus, after an

- incorrect resbons'e_.'d2 is the Bayes decision with a Bayes risk of 5.55.
Since it is not known'whethef a correct or incorrect response will

. be given, the expected risk regardless of the response must'be computed.
, fo compute the overall expected risk, the probability of a correct and

an incorrect response is needed. The probability can be obtained using

the following formula:

S P(1) = P(1].8)P(.8) + P(1]-.8)P(-.8)
= .69 x .6 + .31 x 4
= .538
P(O) = 1 - P(1) = .462.

The expected risk after a response can now be determined from

‘E(risk|response) = E(Toss|1)P(1) + E(losle)P(O)
=575 x .538 + 5,55 x .462
= 5.,66. ’

At this point, whether or not another observation should be taken
can be determined. If the expected loss after an observation plus cost
is greater than the risk Sefore an .observation, than administration of
items should cease. If the risk before an observation is taken is greater,
than another item should be administered. In the example given here,
assume the cost of a response is i'unit. The expected loss after a response
plus cost is then 5.66 + 1 = 6.66. Since the Bayes risk with no items

administered was 9, another item should be administered. Depending on

the response to the item, decision d] or d2 could be selected. After

boy
1 {
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the item is administéred, the aporopriate posterior becomes the new prior
and the process continues as above. A flowchart of the entire decision
process is presented in Figure 2 so that a more global picture of the

steps involved can be obtained.

Insert Figure 2 about here

Although there are many postitive factors in the use of the Bayesian

procedure, the very information that makes.the control of the testing

‘\\<sftuation more precise also makes i+ difficult to initially.implement.‘

For example, specifying reasonable loss functions on the same metric as
the cost of an observation is difficult for most educational applications.
What is the cost of misclassifying persons below the criterion score when

they really should be classified above it? Some attempts have been qade

by this author to specify loss functions for tailored testing applications,

but no satisfactory results have been obtained so far.
A second difficulty in the application of this procedure is in spec-

ifying the prior digtribution of achievement for a group. This is not

as serious a problem as determining los§ functions since performance data

are usually available from previous groups. But of course, the more
accurate the prior aistribution, the more accurate the decision based
on the procedure. - i )

It should be realized that the procedure presented here is a simpli-
ficetion of a procedure that would be used for actual tailored testing
applications. Achievement levels are usually continuous, rathe} than
discrete as presented here, and the'loss due to an incorrect decision

is a function of the person's distance from the criterion score rather

1y
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than a constant value. The procedure can also be modified by changing
fthe cost of observations with’ 1ncreasing test length to allow for fatigue
' effects._ Unfortunately, the Bayesian decision procedure as described
here has not vet been implemented in conjunction with an operating tailored
testing pocedure. However, plans are being developed to evaluate an -
' operat1ona1 version at the Tailored Testing Research Laboratory at the

Universit& of Missouri.

Some Simglation Results for the SPRT

Before implementing the.SPRT procedure described gar]ier i;\ his paper,
information was desired.on how the procedure functioned when 1tem:\§efe
not rghdom1y sampled from the item ﬁool. A1§o. some experience was needed
in selecting the bounds of the 1nd1fferencéj§egion. e and e;. 'The effects
of guessing on the accuracy of classification when the one-parameter logis-
tic model was used was another area of interest.
To determine the effects of these variables, the computation of the
. : SPRT was programmed into both the one- and three;parameter-logistic tailored
testing procedures that were operational at the University of Missouri-
Cblumbia._.These procedures haVe been described in detail previously (Koch .
' and Reckase, 1978) so they will be mereay summarized here. The progréms
* ' implementing both models used a fixed stepsize method for branching through
.-an item pool until both a correct and af\incorrect response had been glven.
After that point, all ability estimates were obtained using an empirwcal

maximum 1ikelihood estimation procedure. Items were selected for both

models to maximize the item information at the previous ability estimate.

19
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' To evaluate the decision making power of fﬁe SPRT, subjectg}?i;% knb&n'
ability were needed. Thereforé. a simulation routihé was built i;t;’the
tailored testing ptogra@ in place of the responding live examinee. At
the beginning of edch simulation run, the-true‘ability of the simulated
examinee was input into the program. This valué was used.to determine
" the true probability of a correct response to the adnnnistered items based
on the model used, (one- or three-parameter logistic) and the estimated
item parameters. A number was then randomly selected from a uniform dis-

tribution on the range from 0 to 1. If the randomﬂy selected number was

less than or equal to the probabi}ity of a correct response, the item .

'was scored as . correct. If the randomly selected number was gre2ter than

the probability of a correct response, the item was scored as incorrect.

This procedure continued for each item in the tailored test.

Research Design

Tailored tests were simulated twenty-five times at ‘each true ability

. using different seed numbers for the random number generator. True abilities

from -3 to +3 at .25 intervals were used for both the one- and three-

' parameter models to evaluate the performance of the SPRT. In addition,

simulations were run on a composite procedure in which tailored test proce-
dure and the probability ratio calculations (Equation 11} were based using
the one-parameter model, but the item responses were determined using the
three-parameter model. This was done to determine the effects of guessing
on correct classification using the one-parameter logistic model.

In computing the probability ratios, three sets of limits of the

indifference regions were used: +.3, +.8, +1. A criterion of 6, = 0

A
<’
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‘was assumed in all cases. The rigios were computed after each item was

administered and the results were compared to an A value of 45 and a B

value of .102. These wgre:detérmfheg based of o = .02 and B = ,10. A

" classification was made the first time these limits were exceeded. If

the 1imits were not exceeded before twenty 1t§ms had been administered
(an arbitrary upper limit on test length), values above 170 were class-
ified as above 8 and the values below 1.0-were classified as below P
This is called a truncated SPRT. At each true ability used for the simula-
tion, the proportion of the 25 administrations.classified below 6, and
the average number of items admipistered were computed. Plots of these
values against the true abilitiés approximate the OC and ASN functions,
respectively. These plots were made for.éach'édmbination of indifference
region and tailored testing method, yielding nine plots of the OC and
ASN functions. L

Two different item pools were used for this study. For the analyses
using just the one-parameter or the three-pafameter model, an existing
pool of 72-vocabulary items were useq. This item pool had an approximately

normal distribution of difficulty parameters. For the one-parameter tailored

test using three-parameter responses, an item pool with 181 items, rectan-

'gularly distributed between -3 and +3 on difficulty was used. These

simu]atgd items had constant discrimination parameters of .588 (this value
yields a 1.0 when multipled by D = 1.7) and psuedo-guessing parameter of
.12. This simulated 1tem pool was selected over the real.vocabulary pool
to have better control over the guessing parameters. The one-parameter
procedure used only the b-values from the pool.

21
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. Results
i '
} The results of the simulation studies will be presented in three
narts first the one-parameter SPRT, then the three-paramater SPRT, and
finally the results of the combined simulations. Plots of the OC and .
ASN functions are presented to summarize the results of the SPRT for these

models.

One-parameter model

Figure 3 shows the 0C functions for the one-parameter logistic model -
based on the vocabulary item pool. The figure shows three grﬁphs. one
for each of the 1.3, +.8, and H indifferen;e résions.. Note that the
curues are reasonably similar regardless of tn; ind{fference region.
The similarity indicates that in j]] three cases the classification accur-

acy is nearly the same.

Insert Flgure,Elabout here

The values of the curves at the limits of the indifference region .
give further evaluative information. ‘At the lower point the OC function
should pass through 1 - a. At the -.3 value, the curve is in fact .85
when it should be .98, showing the degrading effects of restrictive stop-
ping rules used by the tailored testing procedure. At the -.8 and -1
points for the conresponding curves, the.resuits are about as expected,
being .94 and 1.00 rather than .98. |

At the upper limit of the indifference region the 0C function should

have a value of .1. For the .3 case it is in fact .5 rather than .1,
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again showing the effects of ‘ryncating tie procedure. Af the values of
.8 and 1, the values of_;he oc fyncﬁion,uere near or better than qhqt they
' §hould have beén based on the theoreticall& expected results.- '
* The ASN functions for the one-parameter model are given 4n Figure
4. The curvés plotted corresporid to'the ASN function§ using 1hdiffenence
regions for +.3, +.8, and #1. It can 1mme§v/;ely be seen from the graph
_ that there is a substantial difference in the average number of items
needed to reach a decision, with the greatest number required when the
indifference region.is.-narrowest. It can also be seen that the largest
expected number of ‘items is near the criterion score of 0.0 and that-the
: avérage numﬁer.drops off at the extreme abilities. The slight lack.of ;
symetry in the curves is due to the fact that « was not equal to s.
' _-For_abiltties beyond +1, an average of only abput 3 to 5 items was neededi
for classification for the wider regions, while 6 to 11 were ngeded for .
the +.3 indffference region. Ncte that the +.3 curve is approaching the

arbitrary twenty 1téh limit for the tailored‘tests. ‘.

’

Tnsert Figure 4 about here

. Figure 5 shows the theoretical curves for the ASN and OC functions
based on the +.3 indifference region'for'comparison purposes. An infinite
number of ifems.with difficulty 0.0 was assumed for the theoretical func-
tions, and the tests were assumed to have no upper limit on the number
of items administered. A comparison of Figures 3 and 4 with Figure 5
shows that the 0C curve for the theoretical function is steeper at the
cutting point than the simulated curves, and the ASN functiof is substan-

tially higher. The difference in the theoretical and simulated OC curves

23
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shows the effeci.of'the 20 item stoﬁping rule and the ;élecfiontof items
of differing difficulty. . |

e . ° .
av .

Tnsert Tigure 5 about ere'

4

Three-parameter. model

The results ;% the simulation -of fhe-three-parameéer légjsti& tai%bred
test are given in Figures 6 and 7. Figure 5 presents the OC functions
. for the three-pardmeter“model. again using the indifference regions of
- ;Z'. +.3, +.8, and :jﬂ Notice that, as with the one-parameter model, the OC I
curves are faiély similar. for the three indifference ;ggions th(oughout '
most of the range of ability. Howevéf. there are discrepanéies for the.
1]10 indifference range curve near the +1 and -1 points, indicating a.
decline in decision precision for that regiop. At the -.3 value for the
+.3 1nd1fferenge range, the value of tﬁg curve isl.96; fairly close to
the .98 theoretfca1 value. At the upper end (.3), however; the value is
'.2 jnstéqqqof the .] value that it should be. This may show the effects
of gués#f;éjoh the decision pfocess. The +.8 and #1 indifference regféns
again yield better error probabilities than would be expecéed from the
theory. | |
| The ASN function for the three-parameter model (Figure 6) also showsx
simi]ar‘results to those obt§ined from the one-parameter model. The *.3
indifference region required the greatestnumber of items, while +.8 and
+1.0 required about the same number. As before, the laﬂgest nﬁmber was
required neér the criterion score. However, with the three-parameter

@odel. far fewe™sems on the aQerage were required to make a decision
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than for the one-parameter model. - df special note {s the ASN value of 42

about 1.0 in the -1 to -3 range on the ability scale; Decisions seem
to be possible with very few items in that range. '

.. Insert Figures & and 7 about here

Because_of the guessino component of the three-parameter logistic

" model, ohe ASN function tended to yielo’mpre asymmetric results than the
;q?elparameter model. More items were required when classifying high than
for classifying low to compensate for the non-zero probability of a correct
response. Also, the ASN curve for the +.3 indifference region was much’

- more peaked than' its one-perameter counterpart. If the simulated curves -

_ for the three-parameter model are compared to the theoretical curves pre-
sented in Figure 5, the OC functions can be seen to match'the theoretical
functions fairly closely. while the ASN functions show that substantially
fewer items were required. Over much of the ability range, as many as
ten times hore items‘were specified by the theoretical ASN curve when '
ualimited identical items were assumed. However, it should be .noted that

the theoretical curves are based on the one-parameter modei,

Effect of guessing on_the one-parameter model

Figure 8 shows the OC functions for the one-parameter model when .
the three-parameter model was used to determine the responses The figure
shows three graphs, one for each of the +.3, + .8, and +1 indifference
regions. Note that the curves are fairly similar regardless of the indiff-
erence region, but that they are shifted substantially to the left compared
to the previous OC curves. This indicates that the probability of classifying

25
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a person belon_ec has dropped off substantially until an ability of about
-2 has been reached. In other words, it is much easier to be classified

above the criterion score using this procedure than when guessing does

- not enter into the decision. The effective criterion has been shifted

down to -1.5 instead of being at zero. Clearly the values of the OC func-
tion at the limits of the indifference region are entirely different from

the theoretical values.

Insert Figure 8 about here

The ASN functions for the three 1ndjfference regions, :33. £,8. and
+, are shown in Figure 9. The difference between these graphs and those
presented in Figure 4 are that the curves are higher (more items are
required) and the highest point of the curve is shifted_over to the
steepest part of the OC curve.. The relationship betﬁeén thé‘ﬁeibﬁt of

the ASN function and the width of the indifference region still holdg;

however, as the region gets wider, the averqge‘gymber of items decreasgsl'

Insert Figure 9 about here

Sbmmqu and Conclusions

LY

The purpose of this paper has been to describe two procedures for making

binary classification decisions using tailored testing, the sequentiaf
probability ratio test (SPRT) and a Bayesian decision procedure, and to
present some simulation data showing the characteristics of the operation_
of the SPRT for two item characteristic curve models. The first proce-

dure described, the SPRT, was developed by Wald for quality control wqu.
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It hay not been widely applied for.tegting applications becauée the assump-
tion of an equal probaﬁility of a correct response was made to f@cilitate
the derivation of the operating characteristic (0C) and average sample
humber (ASN) functions. Since this assumption can only be met for te;ting
.applications by randomly sampling items for adminisﬁrationm the procedure
has not been used with tailored testing. In this paber. the probability
of a correct response was allowed to vary from item to item, although it
made the derivation of the OC and ASN‘functions impossible. Simulation
"procedures were then used to estimate these fuhcpidns. '
The SPRT procedure described is operational at the Tailored Testing
‘ Research Laﬁbratory of the University of Missouri-Columbia in two forms:
a live tailored testing procedure and a simulated procedure. The results ‘
of ;he'application of°the'sihulation ﬁrocedﬁre-to ihree studiés were
described in this paper. The first study estimated the OC and ASN func-
tions for a'one-parameter logistic based tai1ored testing procedure in )
which the size df .the indifference region around ;he criterion-score was
varied. The results of the study showed that the average number of items
needed for classifiéation was quite low when the true ability of a simula-
ted person was qpt too close to the criterion socré; an th?g the width‘
of the indifference region did not greatly affect the OC function. The
yidth of the indifference region did have a substantialféffgct on the ASN
function. The accuracy of ciéssification of the simulated tailored test
was not quite as good as 9dﬁ?ﬁigter1ng a large number of items with diffi-
cu}ty values equal to the c}it;rién sco;e. This result was explained by
' the ;rbitrary 20 item limit imposed on the tailored test ard the variation
in"the difficulty parametérs of the items administered.
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. The §ecoﬁ§ stud& estimated the 0C and ASN functions for a three-parameter

logistic tailored testing prdcedure.'also.vanyinﬁ the size of the indifference
region. The results were similar to those for the one-parameter model, . |
but even fewer {tems were generally needed for classification. The results
of these first two studies both indicated that the SPRT could be success-
fully applied to tailored testing. ‘

The third éimulation study estimated the OC and ASN functions for
the one-parameter model when guessing was allowed to enter into the responses .
to the items administered. Thejpesults showed that guessing in effect
lowered the criterion score; making it easier to classify an examinee above
the criterion, and raising the average number of items needed for class-
ification. This spurious shift in the criterion greatly increased the
error rates in classification. The effect is strong enough to preclude
the use of the one-parameter mode] for classification decisions when guessin§
is a factor.

The second decision procedure described in this paper allows the use
of a greater amounp of information in making a decision than tpe SPRT.
The Bayesian procedure includes a prior distribution of studeﬁf achieve-
meént, a loss funhtion for incorrect decisions, and the cost of observations
in fhe development of the decision rule. The basic’philosophy of this
procedure is to administer items until the expected loss incurred in making
a decision is less thin the expected loss after the next item is adminis-
tered plus the cost of administration. At that point a defision is made
that minimizes the expected loss. The Bayesian procedure is &escribed'
in detail and a simple example is given of its use. The Bayesian proce-

- dure is not yet operational for making decisions under tailored testing

Q-l
Y
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because appropriate loss functions for educational decisions have not been
determined. However, simulation studies of the procedure will commence
in the near future. |

Both ot ihe decision procedures described in this paper show promise

‘for use in tajlored testing. Both also require substantial research effort

before they can .be applied with confidence. It is hoped that this paper
will help to stimulate that research.
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