
'ItO 193 361 .

AUTHOR,
TITLE

INSTITUrION
S'PONS AGENCY
PUB DATE
GRANT
NOTE

0
0

r.DRS PRICE

'

etiv

--,-"N* ,,-.0

IDOCOIRNT prsunt

Fisher D. D.: And Others

$1 029 526

An, Int;oduc.tion, to Fortran Programming': An XPI
Approach:
Oklahoma Statv Univ*, Stillwater,

' National science Foundation, Washin-gton:
71

NSP-GY19310(EN)
'3B2p.

HF011PC16 Plus Postage.
DESCRIPTORS . Computer 'Oriented Programs; Computer Science;

*Compoter Science Education; Flow Charts; Higher
-FidmeatIen: *IwavidualizedInstrqcLionl Invut 0-u-tputt
.*Pacing; *Programing: Programing Languages;
Programing Problems -

IDENTIFIERS *FORTRI Programing.Language

111STRACT
This text.is 'desi'gned tb give individually paced

ins ion in Fortran Programing. The text contains fifteen units.
Unit :4tles Include: Flowcharts, Input and Output, Loops, and
Debugging. Also ingluded.is an extensive set of appendices. These
were designed to coritain a great deal of practical informatiOn
necessary to the codrse. These appendices include iristructions for
operating card readers, listers, printers:and terminals, as well as a
'omputer science glossary. (MK)

r

0

1.

4 ,ReproductiOns.lupplied by"EDPS are the1beSt thatgan be mada *
* fr9m the original document.

*****t*************************

". r

a

1NTR
ts

ORTRAN

r.. _ _.

AN INDIVI WALLY PACED
INSTRUC ION APPRO CH

' ,

A a,

ti % QC PAR TME NT OF Ha Al TH
* DU(ATION J. Nit lr ARE
NA TIONAl INSTVUTE OK

/1 f DUC AT ION

t.. N fIAS IU f Nt I f KA. v 141 I .v1 f (IAA..I u .oN .)14 ,f4t.ANI/ A (,{7....N
P (WI N Mg ti,Nit".N,

1, (Jo l.a NI N.,A41,1 141I l. . . , A NA)7.4 A; IN.,1 I o,I f
1 (1 A ,N ! 11N (IN 14.1l F.

laigoma Stare Un)versity.
anuary; 1972

6,9parlment of Computing and Information Scienoos

II HI\41'.',It I 'Hi 'H PI, , I tic ,
MA' t IIA t't I 4 ,AjIi 1.) HY

MGkry LCbckett,(5

10,1 ' ..)I I N1'. 1

)f,,, i;

&XL

GENERAL 17
FORTRAN PROGRAMS

ARITIRIM4
Cowers

14
,IEBUaGING COMTE&

CONCEPTS

FORMATS 11-

I/0 SURROGRAMS

LOQPS; 10
ITERATION

ARRAYS , 9
SUBSCRIPTED VARIABLES

CONDITIONAL
BRANCHES

READ
WRITE

IMPB4CRNG 5.
tROGRAM. DOCUMENTATION
MINING A SIMPLE ..TT

FLOWCHARTS

4

?it

of. ass. Kt.

S.

UNCONDITION-4
AL BRANCHES

STATEMENT
'NUMBERS

CONSTANFS 3
VARIABLES -
EXPRESSIONS
ASSIGNMENT

yr-

STATEMENTS ;

ve4ia 4.6431 .W4 "°. t" I

TERMINAL FAMIL-I.
IARIZATION
OMR CARDS

ammidiqte AUCOQS0 Wit)

S.

RTRAN PROGRAMING
HIRARCHY .

r \

er

N\

/VI Introduction 'to Fortran Programming
. An Approach

Copyright 1911

D. D. rishor
T. L. Bailey

D. H. Seeger

OklahoMa etate Univelity

All Rights Reserved ,

PrtnEed in the United.States of America

Composed and Brinted by the

Division of Engineering

Oklahoma 'State University

Stillwater, Oklahoma 74074

4

No part of th.4 material Wilay be used or reproduced

' in any manner Obatsoever without permission,.except in

.1t

-^,

the case of brief quotations'embodied in critical.articles

and reviews.

a

V4Revised December, 1971)

4

0%,

is,- -- za=.34,
,

PREFACE

The main objective of the Fortran pi2Ogramming units is to de-

velop the necessaty pkills to
;.

() translate a problem.statevent to a programming problem

statement;

(ii) develop a debugged progra'M that obtains a "workable"

t. solution for the original problem; ,

(iii) prepa e a description of the program so that others may

malcc; use of the program, or the author may use the pro-

gram at a later date with a minimum inVestment in time;

(iv) accomplish the-previous three skills with,reasoilable

degrees of efficiency..

To accomplish'0.5 and (ii) it is necessary tp learn a computer --,

programming language ond to practice the translation phase fô x. a

variety of problems. Preparing pkogram descriptions and develop-
\

ins efficiency will be emphasized at each step. Several programs .

will be written that may be used as problem salving tools in sub°.t'

sequent courses.

A programming language is a language used to describe an also-
.

rithm, that is, a procedure for solving a problem, in such a way
'

that a computer cian interpret the'algorithm and can carry,out each

' of the :s4ops prescribed by the algorithm. Programming languages

vary in complexity. In general the languages that are easiest for

.

*

7

the machine to uae require considerable knorledge of the computer

pn the programmer'll part. On the other hand, languages that are
.r

easiest for 0.11,1 prolerammer to use generally require the- computer

to translate Ole program from the-source language to. machine len-

: suage. The translation process'from source language to.machine or

object languae, is a task that computers do reasonabf well; con-.

sequently.,alost of the programs written today are_written ln so-

called "higher level" programming languages, which.invoke the com-.

puter to trawl-late as well as to oompute.

Fortran (an acronym obtained from formula translator) is an

example of a higher level programming language- It is the most

widely ubed programming langtage for scientific applications.

There are many variations or dialects of Fortran. Ydu should be

aware that different computer manufacturers support different

dialects, one manufacturer may support different diale.cts, and

users may crle their own dialeas. In order to be able to move

programs from one computer installation to another', it is necessary -

to hav \ sa et of standards. Appendix I gives comparisons between.

a
USA stalard Fortran'and,other available Fortrans. The U64S BASIC

Fortran is a subset bf USAS FULL Fortran. It is likely that you

will discover useful features bf some of the compilers-that are

not included in USAS Fortran. If you use those featureit, you do

included i USAS.Fktranso fl at your own risk. Someeatures not

are very desirable; consequently, if it is unlikely that the pro.:-

gram will haye to be run on different computers, it is wortfiWhilm

*

to make use of those featpres. On the other hand, if a prosram'i6

todbe run at several.different computer installations, oeilly those
' '

AtZ' 1.

features liseed in USAS Fortran should bq used.

7C,
Thils4is an. examiile of one of many possible choices yoU may

make while completing the computer science units:\ Other decisions

willlbe required to'get a program to "work," to transform a work-

ing program to an effici nt program, to "tune" a program, etc. :An

aspect of computinemany find challenging is that, in generalt.there
.

, _ .

is to best way to attack a new problem. You will find this to be'
true in some of the programs you attempt to develop.

Othelr higher level,progreTming languages in widgspread use-
,

are listed below..

Cobol a business language

RPG a report generator used primariLy for business
appliNtions

PL/I combines features of Algol, Fortran andGobol

Algol a scientific language

Basic a versiOn of Fortran used in cotpinction with.
typewriter like eerminals

APL .a mathematical language

Assembler a form-of machine language

a

everal dndergraduate and graduate courses make use of these and

t..

other programming languages.. Translator's of varying sophistica-.

tio4 are req9kre

1

to machine languege

convert programs l'rom these source languages

Take some time to examine the Organization of thp book.'

The 1:nstruaional materials are organized into units in the text..
4

Each unit contains a daacriptive title, a rationale explaining..the

purpose for including the maier l in the uniti'tha bihavioral
,e

7'

is

%

objective thaI.states what 5Tu will be able to perform after you

have mastered the material in the,unit,.prerequisites for the unit,
-

a series of activities desrgned to point you-in th,directiepn of

the objective and help you. attain it, some self evaluation matbri-:-

als sp that' you can assess for yourself wheth(4: you have attained.

the objective, assessment tasks with which you demonstrate to your.,

instructor alat'you.have:fattainag.theLohje"ctiveandpnally in',

structions telling you what to do next.

The book.also contains a rather extensive set of appendic-es.

- Read the titles of the'appendices in the-Table of Contents, and

thumb'through them. They contain a great deal pf practical infor-

mation that you Will need throughout the courses; ,Particularly at

this time'be aWare of the appendix containing tWe glossary of terniS.

If terms which you do not underssand appear in the text, look for

th'em in the glossary. If there are omitted terms Which,you think

should be included in the glossary, write them down and give them'
-

to your instructor.

The page numbers in the text are designed to be usedfor quick

referencing. The first number is the unit number, and the second

nuMbet liumbers the page in sequence in tfiat unit: For exabple,

page 8.3 is page 3 r Unit 8. Adpendices are'numbered similarly

except that Roman numerals are used. For,example, page V.2 is page

2 of Appendix V.

The cover of the book shows the sequence of units 'forthe

course in the fotm of a fldw chait (discutoi;ed further in Unit 2).

This flOW chart will help y.ou to assess your progress 'toward tilt

;\cterminal unit.

Aiv

1.

4r.

1.r

.eve

Unit 1 requires a card l'eader with optical mark read (OMR)

capability. If this feature is not available, then Unit I may be

omitted without disturbini the sequence of t1ie material.

se

soft)

ro

,9

1

4,s 1

It

-

. Unit

TABLE OP CONTENTS

1. Becoming Acquainted With the Computer

2. Flowcharts

3. Variables, Consta4ts, txpressions.and Assignment Statements

4. Statement thnlbers ancPUnconditional Branches

5 4 Preparing a ?iob for Running on the Computer

6. fnput and Output
!

8. Conditipnal Branching or Transfer Statements

9.: Arrays and Subscriptea Variables

10. Lobps)(

1Y. Input, Output, Formats

12. , Arithmetic Concepts

13, Subprograms

14. Debuggimg

16, Computer Concepts

17. General Forti:an Programs

Units 117 and #13 are omitted%

APPENDIX,J. Comparisons of Various Fortran Implemeritations

APPENDIX II: Computeer Science Closaary

APPENDIX III. Running a WATFIV ...lob on the IBM System/360 Model
65 User Terminal

'APPENDIX IV. Additional Instructions for Operating the IBM 2501
Card Reader

APPENDIX V. Instructions for Using the IBM 1403 Printer .

APPENDIX VI. How to.Get an 80/80 Listing With the *ystem/360
a User TermUal

vi

4

a

4

07i

APPENDIX VII. Running Fortran Jobs o the IBM 1130 Computer

APPENDIX VIII,

APPENDIX IX.

User Terminal WATFIV

Activities Tables

J.

I1

.ze

.

V1.

,UNIT 1/1 (b'OMSC)

TITLE: Becoming Acquainted With the Computer,-

RATIONALE: Lf you',re going to use-a computer, you must know

something about running jobs on the computer. Yo6
-

must familiarize yourqelf with,soma buttona and lights
_

_and.66144OrMilei .Overceme apy_fearlit:that'
....

0 ,4.....; - - 0 : - ,,,

4 , .

puter is'eut.tP_Ot ypu,or thaf ii-.,wiiii-,ha .yiNA ,:i.You
, .

must aldo.-get dome toondence dnd

I.

you will harm'the computer.

7 .1111.

not .be afiald;That.

But all thesexeasond are less impertani thinl the 07

real rationalp for this unit: We want you to 'lave some
-

fun playing with.the computer!

pushing the:buttons, seeing the

We want yog.to enjoy-

lights, and hearing

the noises! Relax, go through this unit, and belie a.

great.time!

Ac the end of this unit you will be able.to demonstrate.

that you can run a.

operating,the card

job through the computer, including

reader and line printer, using -tón-

txol cards correctly, and marking OMR cards.'

PREREQUISITES: A willingness to try, a soft joad pencil, and some

confidence.

10

the Optic,al-Mark Read fdatuAi aVklable on the computer
-

s '

ACTIVITIES:

-A. OMR, Cdrds

We'll bagin.with'OMR Computer carda. OMR stands for

ca'rd reader. The OMR Fortfan &trd is shown in Figure 1.1.

1.

aaaaa t1 0

ie

01 I 1 0 Co
1,L

g 1.1 g g
A filtrA

0

:AV

- - - --.-

Figure,1.1 OMR Fortran Card

The leftrhand sside of the card As enlarged and is shown

in Figure 1.2.

The card is designed so that most key words -- such;

as WRITE, FORMAT, STOP, and END -- can be obtained by a

sipgle pencil mark in the box associated with each word

in the lower left-hand Corner of the card. Statement.

numbers are marked in the upper left-hand corneX of the

a

1 .3
41,.0

w
1. 3

0

1

4g*

1.-21E

1000 100

E 1

egi.sownaki.

2

4.1k

8-I

r:41

04

f.f#

Lii

.loode...

.
11..

4=

..61....11164..

1
.......ef

A

*gyp

4

(-4

I WNW..

*FA yppra.=1;isr...
..1011.41161V

1,1*

10

.as

.10101.1.1.."

2

3

5

F

Nemes.1.117/

77.".0*
..1*.

1111.41..1111.0.

.salf

Figure'1.2 Enlargement of the left end of the ONR Fortran card

.1e

se

1.4.

P.

,card. Comments (not actually a part of.the Fortran pro-
. -

gram itself) may be inserted anywhere in the proqram by

marking the COMMENT boX and then marking the message on

,the tNest-of the card.'

The main pprtion of the card is used for yarious

Fortran statements. Here numerals and special characters

require bnly a sin.gle mark. 'die letters all require two,

_

marks, either'in positions abeve and below the letter or

on both sides of tlie letter. The catd is designed,so

that you may write in the boxes along the top of the card

the characters marked on the card, thus simplifying mark-
.

ing the card and proyiding the information marked for

later reyerence.

It should be emphasized that ordinarirY a single'

pencil mark in the box with a soft lead pencil (No: 2,
.rt

for example) is b cleat. It is not necessary,to black

in the box compretely. Sometimes marka that are too heavy

Will be misr.ead by the card reader. Ball point pen marks

are ignored, as are marks from most other writing instru-

meats. Pencil marks may be erased, provided that they

are erased very thoroughly without damaging the cai'd. Be

sute to brush the eraser f_Lumeiitis off the card; it must

r-be Cleanyelse it may clog up the card reader.

B. Examples,of marked OMR cards

Examine the card in Figure 1.3. Whin is marked in

the card is written along the top: Column 1 contains

tAs

414.

the character "X4c. co1umAl2 contains

tains '113";.etc.

..4

)1_1%.
ipmn 3 con-

1

(161066666666666666.6666166666
ij''''f'8583M5J158e118M888
n

X

k t?

0 tiOLIOUDUOuDUDUOUDUDUOUDUOvUOU.
hi [4

v
n
s.

f wpg
;3 1
ii Y

$0`81*
X

g 9 ;

2

',-, Ihi
.471

i

gL

tkl 11
v

.g.

:i r 0
41 Y

go
I
8

'el.

A
.

K

g

1(41

14
r _

Og

'-6 P fix
Y

81
W

---1.:.

A

L.

A

P 6
H Y

81
W

1
70--

-0

1

84
P 6

/1

RA

1

.

-..-ri

A

Q
,

ft

1
oi

t)

1
11N

C)

4
0

g

0

1

-115-A

L I

.

,

.

10

-0

L

.

.
4

ft,

1 11

e

Te I? 14

a. @ @

it);8.;..... .0.3 T 4il
LIn P n6 6.4

6611

-.3

0

a
.

h

n

A

1 1

. i
v

,

:

v

888

.

6

A

-0.

1
v

:

lid il} 80 11] ilia. .

10 go Ag ic ,ilo

.A.0 gli 50 EH.

.ii idn Iii il] M

1J 1-13 E ia II)

in'ilitril 11 10

4

.`

Figure 1.3 Example of-a marked OMR card

Examine thd card in Figure 1.4. Again, what is

. 1. 5

marked in the card is written along the top. Notice that
I

the keyword "WRITE" is marked in the lower.left corner.

Then column 1 contains

.3 contains ") ".) etc.
.

column 2 Contains H4n. column

1.6

tAbe.x- rg

10 0 NPAi
Q 9 9 Q

.04.1

t)

ti4.11

d

I .1111)

"Oi

L. 1 1

Lrij °21.i 8 1J tx

(, , . . _ . . .) A
I . , 3 4 0

1 11 Pi P} N 01 11

.u: u A kI t' ll .A I.1 A ir $ 6
A A A A A

,Iii , I !ii Y i 1 PI y el t I t I

.: 0 fl 0 t1
, 1 0 (1 :,..), A

,. , ; ... , II c

: ''' V'1'' Y., Y Q i r
,. f t, .'i r , , r ..I r , i

-0 !I.t., .10,1 1 0 -101000% t V (V 1 V

LA zri Kt0.0
6, , i w I W W t

l 11.40 ONOft 6 0

11

N 0 @ 0 @la?

g 818 8
A A A

n

xx
.9 9

4 H.OUOU 4
mg

N.

i8('U 8°0
.x Ifi Ns X

' I ;I r 61&I1
G X

R 1

8')

ri
: H \ Y

XI
8RA-i-.18RX 8F1X

Figure 1.4 Sample OMR card with keyword WRITE marked

V

SELF EVALUATION: Look at the card below and write in the boxes

at the top of the card what is marked in the card.

4 6

0 N 0 N 10

A A A

! rti W n 1 clUhO00
A A

ill 1 T

0 n
L, L. 'II °9 L

iii,(L'i Yin 1011W .v U 9
y 0 , n

1:! t(tr), ;1-1)1%
:,. ;I . . (I 6 Ku 0 K l,/
. I c; T I I I: T

ItI k. y

3',1 AY A'0:/1
q INor000
nunoDUDonuou

8uP 81 gm@
Ng,';1; irsit.,1

0
x ()°x

OPh n m

D Y 11PV

vg

g 84

El N

. The following statement ds marke4, on the card:

4 FORMid(lHO,F10.1)-
C

.11

The "4" is.marked in' 00 block of sta-tement'nmulbors in
A

:the upper-left-hand corner; it-is marked ip the "Unl%s"
)

41.

column, meaning that it is 4, rather than 40 (tens. 9plumn)

or 400 (hundreds colamn) or 4000 (thousands column). The

keywoyd FORMAT Is marked in ;he keyword block in the lower

left-hand corner of the card. The rest of the statement

is marked in columns 1-11 of the card: "(" in column 1,

column 2, "H" in'column 3, etc.

Nft

ASSESSMENT TASK: You are to mark a simple Fortran program on OMR

cards and run it on thecomputer. The prolgram

-1. 7

and directions are given in the UNIT #1 ACTIVITIES

.TABLE) APPEIFIX IX. Whdn you knish this task,

take youy-program dedk,and the printed output pro,

duced by your program deck to your instructor for
re

evaluation. You will.pot be allowed any errors on

the print d output. Don't worry about this seem-

ingly st requirement; you can meet it.
(oft

WHAT NEXT? You may proceed with either 01V:in or UNIT #3, or both.

st,

Bhp a

.UNIT #2 (00MSC)

TITLE: Flowcharts

A

RATIONALE: A flowchart (also spelled as two wordp, flow chart) is

a plan by which a particular problem is to be solved.

We stress the use of a flowchart to describe a plan

for organizing a computer based algorithm, or proce-
t

dure for solving a Rroblem, because

algorlthms there arWmany different ways'to accomplish

the necessary computations. A flowchart pins down one

of these many possibilitieS. A flov:khart gives us a

record of what we had plannet to do.' Befbre we decide

to yield to the temptation te make a change in the solu-

eion procedure, we Will be able to make a comparison of

i-the proposed modilication with the original. In some_

3./ ,-

cases a changewill be desirable, in other cases a

N) catastrophe. By spending moye time in the planning

stages, one usually reduces the debuggiog time and the

overall. project time.

OBjECTIVE: 'then you Anish this unit, you wil1,1?e able to conStruct'

a plan or procedure for solving problems of a'general °

type, using both a boxed frowchArt and'a line by line

flowchart.

PREREQUISITES: 'UNIT #1, if required.

2.1

.2.2

ACTIVITIES: We'll begin with a fa4rly detailed discussion of flow-

I.

charts, and then you can try your hand at constructing

0 some ypurself.
%

A. What, is a flowchart?

The concept of a flowchart is completely

.*"gbneral. A floWchaft is 6imply a step by step

plan)Or procedure, usually ilyen in some graphic

form,..for accomplishing a goal or set of goals.

A "treasure hunt" map is a flowchart. A game

board like the one used in Monopoly or Aggrava-

tion is a type of flowchart.. A set of directions

for assemblying 1 car or airplane is a flow-

chart. Even the rocedure that you fellow in your

early morning getting.up 'routine is a flowchart,

though you probably don't have a cdpy of it in-a

graphic form.

Do you get the idea? Any multistep procedure

can readily be generated from a flowchart, whether

ft be traveling from place'A to plaCe B (the flow-

chart might be a map), writing a paper for an Engs-

lish course (the flowchart might be called an out-

line in this asp"), carrying out a laboratory ex-
,

6riment (c led a procedure) or wri.ting a computer

}

program.

The level of detafl _required in a flowchart
\

varies with the_situation and procedure being flow-

charted. In some cases, it may be necessary to

present eyer'y step in detail: in othe'r cases,

many steps may be summarized in,a single line

or statem4nt;

Now that you have a gederal notion of flow-,

2.3

charn, lpt's go on to some specifics of ilowchart-

ing ap used in a simple example.

B Two types of flowcharts.

Although many notations exist for flowchart-

ing,'odt two will be used-heie. One method con-.

,
eists of placing the steps in various kinds of

_boxes; thero her consists of ia line by line repre-

sentation. e basic reason for using a flowchart

is to indicate the possible al* ternatives coneider-.

ed by the solution procedure and the conditions.

4

S.

. ,

1-under which these alternatives are pursued.

First, consider a Tether trivial, but practi-

*cal example -- the procvdure for putting on your

shoes and-socks (assuming, of course, that you do

wear shoes and socks). Examine Figure 2.1 'Where

two flowcharts are given which describe-a prOce-

dure for shoeing your feet.

You can probably read snd lterpret the "flow"

of the procedure without any troub You'll learn

about xhe meanings of. the symbols later, If you

are siire that you'understand how to read the two

sflawcharts and you understand what the-procedure

-Find shoes..

A

N A.

Begin where afrow comes into box on line by-litie.flow-*
chart Or at "Start" on boxed ffowchart. Find shoes..

.
. . . ,2,' Right ones? If they aren't the right ones, keep looking'until you

find the right ones.

4

Yes
Socks on?

Find socks.

5 Right onee?

6 Fegt clean'?

7

8

9

A

4

Wash and dry.feet.

Put. socks Oh.

Tut shoes on.

Yes

When 'you've found-the.,right ones, check your so ks.
If theyfee on, then Put your shoes on.-

If your socks aren'..t on, thee find them.

/If they aren't the right ones-, keep looking until you
find the right dnes.

'When you've found the right°ones, check your fedt. If
they're clean, put your socks on, then your Shoes:

If they'Te not clean, wash and dry'lour feet.

Put your socks on.

Put:your shoes on. 4"

Stop when arrow goes out pf the box on the line by line
flov6hart or with "Stop" onLthe boxed.flowchart.

Figure 2.1 *-A. line.by linegflowchart (left) and a boxed flowchart (right) describing
a procedure (center) foc putt,ing on shoes and socks.

1

00

23

. -

2.5

ge'

4
1

.

0.3 /
..

islor showil(e your feet as described by the flow-
....

. .

charts then proceed with Activity-C.

C. A numeric example.

Let'q take an example more n'early related to

computer programming --finding the sum and average

of N values, YI,'Y2, Y3, ...,YN.

/

The sum is defined by

YN

and the average-is defined by

4.
.AVE = SUM N.

A procedure for performing these calculations ig

described by the flowcharts in Figure 2.2 along

with an explanation of the operations represent-

ed by the flowcharts. After you have examined
a

the flowcharts, then we'll discuss each one in

greater. detail.

D. Discussion of the line by line flowchart.

o

a

In the nine by line" flowchart,'the flow of

computation is from one line to the next, unless

a branch occurs whith is indicated by au erroW

emanating fromthe line. An unconditional branch

is indic4ed by an eerrow without conditional indi-

cators. A conditional branch is'indicated by an

arrow or arrows with conditional indicators, such

24 4.

P..

2

3

6

7

8

"'"-..7

Read N,Y1, YN

1

SUM +

K

K : N

K + K+l

SUM + SUM + YK

AVE + SUM i

-Write SUM,AVE

7

Obtain the numbers that will be used\in,phO
. computations. ,

Set the summer to zero. (4- means "is replaced loy")
This is.analogous to clearing the dials on a desti

e
calculator, resetting them to zeros.

A counter K is set so that the N- values of Y can be
added one 41a time.

. .

K is compareä to N. If Kni, then all the values of.'
Y have been added, and the calculati'on of the ave age
is next.

,

When M,'then the counter is incremented,

'd.,,e

and the next value of Y is added, after which the
counter is checked again. As long as ON, repeticion
of the adding operation is continued;.01is is called'

When the answer to the question KaN? is yjes, then
the average is calculated.

The results of the calculations/arb recorded -for latr
use, and.that'sall there is to do!

Figure 2.2 Line by line.(left) and boxed .(right)poldcharts describing
a procedure (center) for calculating the average ors, set of N numbers.

.

4a'

as 0. , ,

of the form

z, emanating from a statement

expressionl : expression2

At line 4 the statement which follows the state-

ment

sts

K

as long as.K < N is on line 5, When K N, the

statement at line 7 follows the mat at line 4.

Entry to the routine fè indicated by the unattach-

ed arrow at line 1; exit from the routine is indi-

cated by the arrow at line 8.

E. 'Discussion-of boxed flowchart.

In the boxed type.flowchart, each statement

or idea is placed in one of six typeii of boxes.

The shape of the box identifies'a specific.func-

tion that is to be performed. Box types and their
a

functions follow.

"0 110X TYPE FUNCTION

gat

initiate or terminate-a program
segment or algorithm

execute a process or perform a.
calculation

.Pv

4.

2.g

BOX TYPF

initialize

increment

r

II

4

FUNCTION

perform loop process .

perform input or output

make a decision

connect to another sequence

"-\

The sequence of steps, or flow, in the flow-

chart is indicated.by arrows which connect boxes.

Unlabeled arrows are called unconditional branches.

Arrows with labels designate conditional branches,

allowing the flut4 to proceed along alternate path-

?
ways, the conditions being.stated by the labels

,

<

on-the arrows.

Now, let's take each block of the boxed flow-
.

chart separately.

Obviously, this tells you where to start in che

flowchart.

4

FP'

p.

Write

SUM,AVE

' It's also obvious that this box tells you

where to atop or terminate thd procedure.

This box must be at the logical end of the

flow through the elowchart.

This box indicates that we want the compuber

to get the value of N and all_the_r_s from

some device which can- supply the computer with

information or data. Our concern at this time

is not hOW this is accomplished by what kind

of device; rather the general nation of putting

information into the system from some exterpal

source is the main concern. (This is analogous

to a person's putting data into a calculator

through the keyboard, th9)person himself being

the external source.)

Similarly, this-block instructp the-computer

to write the results op some external output

device. As in the case of the read box, the

main confern now is not how this is done; just

the general notion that it is done is important.

(This is analogous to the printing of results

on paper tape by a desk cAlculator or cash reg-

ister.)

All of these boxes r present some process.,

including calculationb in two cases. The

9

2.9

2.10

FA-VE4-3SUM: N

first boi says, "Replace what is in SUM by

zero. The secend box says, "Replace SUM

with the current value of SUM added to I "
K.

The,third box says, "Replace-AVE with SUM

divided by N."

This box sets up and controls a loop process.

The suMming box is to be repeated N times.

The counter for the loop isgiven an initial

value of zero. The next statement in sequence

is K N? As long as the answer is "no,"

rhe next statement in sequence, K Ka, is

executed, followed by the summing process.

Then the yalue of K is compared to N again,

and the-process is repeated as long as K is

not N. But, when K is N, then the loop-

ing will be terminated and the next box in

sequence will-be executed -- in this case,

AVE SUM N.

Notice that the loop process box ha*

more than one arrow coming out of it; one,

the One labeled "yes," is a conditional

branch. Notice also that the box contains

three distinct steps: AiLLILIALLT, K, test-

K against N, and incremepting. K.

The loop process Could also be represented

by the symbols shown on the next, page with

30

4

the three steps --.initializing, ,tosting,

and incrementing -- shown .separately. Here

the decision box is used. Like the loop

process box, the decision box has more than

one exit from the box. Two conditional

branches occur in this case, one labeled

"yes" and one labeled "no." Sequences which

set an initial value and test and increment

the value occur so frequently, however, that

they are usually combined into one loop proc-

ess block. Generaly should expect.to

"use the loop process x for initialize-test-

increment sequences.

Some additional examples of boxed flowcharts.

Figure 2.3
Decision Box

n, The box shown in gure 2.3 may be used

to indicate branching alt rnatives such as

(i) less than zero (<0), equal to zero

(=..0), greater than zero (>0) (three

way branch)

(ii) less than or equal to zero

3.1

2,11

'"

greater than zero (>0) (two way

branch)

(i1i) etc.

1:21.

Figure 24
Decision Box Examples

In Figure 2.4 examples of two way

branches and three way branches are given.

If

AREA - 40.21 < 0

the next box in sequence is\the one indicated

by . Note that

I

and

are two different ways to state that the

quantity called AREA is less than'40.23:

The other conditions require additional

'tests before the next box in seqUence is

determined. These choices are illustrated

in Table 2.i.

----T-1
FIRST CONDItION SECOND CONDITION NEXT BOX

AREA - 40.23 < 0 , 7

AREA - 40.23 > 0 C - 21TR .. 0 3

AREA - 40'.23 > 0 C - 2iR 0 0 . '4

AREA - 40.23 w 0 L < 0 .

ePj

5

AREA - 4043 .. 0 L kl0 6

Table 2.1
Branching Alternatives for Figure 2.4

33

2.14
A411

It;

> 0

Figure 2.5
Alternate Repres,ntations of Two Way Branches

Figure 2.5 illustrates different ways to

represent the same alternatives.

For two way branches, it is possible to

state the question in terms of logical rale-
.

tions rather than arithmetic relations. Figure

2.6 illustrates-this slightly different note-

tion.

Figure 2,6
Logical Representation of Two Way Branches

2.15

Figure 2.7
A Branc41n8 Maze

Fill in Table 2.2 to correspond to the branching

alternatives foy Figure 2.7.

. 4r.1*.

2.16

FIRST

CONDITION

..

SECOND
CONDITION

THIRD
CONDITION

NEXT

BOX

,

,

tr

1
.

.

Table 2.2
Branching Alternatives for Figure 2.7

SELF ASSASSMENT:

G. Your text b ook ma have additional information

that la helpful. Do Aptivity 1 in the UNIT #2

ACTIVITIES TABIX.

A. Construct a line by 'line flowchart fo,r.t. Figure 2.4.

B. Construct a line,by Iine flowcWart for Figure 2.7.

C. Construct a boxed flowchart containing of at least three

decisions describing how you spend Mondays during the

current semester.

36

szo-

6

2.17

1

D. Construct a line by line flowchart containing at least

three decisions describing your enrollment in the Univer-

sity this sejesper.

o

E. Construct a boxed flowchart containing at leak two

decisions describing how to change a flat tire -- or

Wew to get help, if you dont know how to change it.

ConstrUct_a_line_by line flowchart_consipting_of_as fow_

operations as p6ssible to determine which of eight objects,

was of different weight if seven of the eight had identi--

cal weights and,the eighth was of differs weight, using

only a beam balance. Your solution must a so determine

whether the object was heavier ,br lighter than the other

seven.

G. If you are enrolled in the "PIPI Package," then construct

a line by line flowchart to describe the techniques of

preparing a report as described in Communications Unit 5.

See your instructor and show him some of your flowcharts.

will help you with any errors that have come up or with aaything

lila you don't understand.

ASSESSMENT TASKS: See your instructor. You will need pencil and

paper, and'you may use your books. You will be

quired to write.both boxed and line by line

flowcharts.

WHAT NEXT? You may proceed with UNIT #5 if you have done UNITS #3

and #4 already. If you haven't done 3 ahd 4, then go

37

41"

2.16

)\

to UNIT 1/3. If you have done 3, but not 4, then do

UNIT #4.

t.

a

a

j
tn.

UNIT #3 (COMSC)

TITLE: Variables, Constants,EXpressions and Assignment
Statements

RATIONALE: Fortran is a procedure-oriented language developed

Specifically to handle algebraic expressions. The

mOst basic elements of algebra and Fortran are vari-

abler; and constants and the expressions constructed

from them by connecting them with arithmeiic operators.

In order to program in Fortran you must have a thor7

ough grasp of these concepts in both plgebra and For-

tran. Your grasp of the algebra part is assumed; the'

Fortrdn part is contained An this unit.

OBJECTIVE: When you complete this unit, you will be able to

(i) i'dentify and construct integer and real

constants and variables;
a

(ii) identify, 'construct, and evaluate Fortran

expresdions;

(iii) identify and construct assignment statements,

'and describe the results when they are exe-

cuted.

PREREQUISITES: UNIT #1 'if required, and a working knoWledge of.

elementary algebra.

39
3.1

3.2

ACTIVITIES:

.to

Part I. Fortran variables and tens-tants,'
r-

#

1. The one most noticeable difference betwee1X- algebra and
. ,

arithmetic is the use in a4lgebro of alphabetiq'let.tere
. .

to represent unknown values. As in the case of algebra,

I

this is.a particularly important charactertetio isf.,P4r-4

tran. Just as in algebra we solve or,reduce elspressOns
f

*

in which unknowns (variables) appear,o we.will manipu-,

late expressions in Forman, even though at the time of,-*

writing the program the values of the variables are tin-

known.

2. Refer to UN/T #3, ACTIVITIES TABLE,.Activity 1.

3. In Fortran, the mode.or.type 4 the number being used

is.designated through the initial letter in the vari-

able name. You muat be very careful to insure that

the name you uae for a variable correctly reflects the

use that will be 'made of the variable. One.of the most

common errors made by new and old'Arogrammers alike is

to use an integei name for a value that is .not a whole

number, or to use It teal nathe for a value that is a

whole number. If we aitempt to place the value 3.4 '

in the location labeled IX, IX.would contain only the

value 3. The .4 would ba.dropped and lost.

SELF EVALUATIOIT FOR PART 1:

The anbwers to these exercises are given on the page .

following them.

1.. Identify the followilag'as variable names'or constants

4 0

v

4.

:

4,

4.

and as real or integer if they are valid. If they are

invalid, state why they are invalid.

a. AKTION

b. X-RAY

c. INTEREST

d: 5. 34

e. SUN3

f 10,000'

g. KING

h. 2AIJ

I. 5.78E6

j. 25

k. DISTANCE

1. 1*J

m. 10,365.

n. RATE

0. C

p. K8J3

. q. STOP'

1112. Take the number !6 and write it as an integer constant,

V

.a real constant,, and a real constant in exponential form.

4 3. Take the number 25.6 and write it'as an integer constant,

a'real constant, and a real constant in exponential form.

4. ',Write five'different integstr variable names.

5. Write five different real variable names.

3.3

3.4

Answers:

1. a. Valid real variable

b. Invalid: special chAracter -

c. Invalid: more than six characters

d. Valid real constant

e. Valid real yariable

f. Invalid: imbedded comma

g. Valid integer variable

h. Invalid: does not begin with alphabetic character

0
I. Valid real (exponential) constant

j Valid integer constant

k. Invalid: to more than six characters

1. Invalid: special character *'

m. Invalid: imbedded comma

n. Valid real variable

o. Valid real variable

p. . Valid integer variable

q. Valid-real variable

2. Integer, 256; real, 256. or 256.0; real exponential,

256.E0 or 256.0E0 'in 2.56E2 and other variations.

3. Integer, 25 (the .6.is truncated); real, 25.6; rear

exponential, 25.6E0 or 2.56E1 or 256.E-I and other varia-

tions. I.

4. Any combinations of up to and including six alphabetic

and numeric Characters, beginning with one of the letters
%

I-N, is acceptable.

5. Any combination of up to and including six alphabetic

and numeric characters,lbeginning with one of the letters.

A-H and 0-Z, is acceptabip.

Note: IBM 1130 Fortran allows a 4fimum of only five characters

in varizible names.

You must be sure that you can recognize the difference between

integer and ral constants and variables names; proceed wlth

Part II when you feel that you are ready.

Part II. Fortran Expressions.

1. Refer to UNIT #3 ACTIVITIES TABLE, Activity 2.

2. There are several very important points in this

section which need emphasizing. Reread the reference

cited in the ACTIVITIES TABLE with special emphasis on
6

a. the use of pareneeses in expressions;

1): the hierarchy of operations in an expression;

c. valid typh of exponentilation;

d. the mode or type of the value of,an expression;

e. problems of accuracy and pre;cision;
Li

f. and integer division.

3:- The expcinentiatien operator requires more discussion.

Either a real or an integer quantity may be raised to

an in ger power. For example, it is correct to use

or

A**K

.1**K

/13

3.5

3.6

A

Whe'n an integer exponent is used, the exponentiation

is actually performed by successive multiplications.

For example, A**4 is evaluated by the computer as

A*A*A*A. Thus, A may be positive, negative, or zero.
a

Furthermore, K may be negative or zero (if A00.0).

If K has a value of -4, for example, then A**K is

1 evaluated as

or

A A A

1.0
A*A*

In summary, there are no restrictions on A or K

the case A**K, that is, for a real guantity raised

to an Lia.tilos. powbr (except that A cannot be zero

0

ger the case J**K, there is one restriction,

however. Since by definition no fractional parts are

available-with integers, K cannot benegative. In

other words, J**K cannot be evaluated since 1113 con-

tains no fractional part. (Also 3 cannot be zero

when K is zero.)
b

Real exponents may be used. For example,

CP,.

A**E

is a valid-expression. When real exponents are used,

the expression is evaluated with logarithms:

L V.

3. 7

,antilog(e.logA)

or in Fortran,

EXP(E*ALOG(A))

Since the logarithm function is undefined fdr As0.0, A

must alwa,ya be gleater than zero.

The expression

j**E

is allowed with some compilers: -When itis allOwed,-J-16

converted to a real quantity befbre the expression is

evaluated; the result is real, not integer.

The results and restrictions of the types of expo-

nentiation are summarized in Table 3.1. Certain sugges-

tions become apparent upon examination of.the concepts

in the table.

(i) Usually, if the power to which you are raising

a number is a,small integer, it may be better

simply to multiply it out rather than to use

the exponentiation operator. *For example,

X**2 is better written X*X.

(ii) Since the Use of an integer power is lipss

restrictive,yse an integer,power whenever

possible, unless the power is large, in which

case the execution time can become excessive.

(iii) When the power is large, it is better to use

a real exponent for shprter execution time,

provided, of course, that .the number being

raised to the power is greater than zero.

A

V

Type of
exponentiation Restrictions Evaluation

procedure Result
.

.

J**1(
,

*K4
.

..1*J*...*..1 Integer

A**1. Generally none-
most general
case*,

A*A*...*A Real

.1**E

-

Not allowed
with-some com-
pliers; if
allowed, J>0

X.1 A-- ..I

EXP(E*ALOG(XJ))
or

antilog(eiogki)

Real
.

A**E- A>.0.0

. .

Exp(B*ALOG(A))
or

antilog(elogA)

_.........__

Real
.

* There are additional restrictions when 3 or A is zero. Thefollowing cases are undefined:

0**K, 1(50

0.0**K, KN9

Table 3.1. Results and restrictions on various types of
exponentiation. 3 and K represent integer quantities;

A, El and LI ,represent real quantities.

4. The hierarchy of operations can be summarized as follows:

(i) PArentheses, innerpost first, from left to right.

(ii) Junctions from left to right.

(iii) Exponentiation from left to right,

(iv) Multiplication and division from left to right.

(v) Addition and subtraction from left to right.

SELF EVALUATION FOR PART II:

Answers are on the page following the exercises.

1. identify the following expressions tis real or inte-

ger if they are valid. If they are Invalid, state

why they are invalid.

a.

b. A**4+2.0*B-C

c. 2.0(A+B)C

d. J**I/K**N

e. A/-13-R1

2. Construct Fortran expressions for the following.

a.

f t

a+b

c+d

c+10

C.

A a .,.. c.d
,

b e.f.g

a. [F, (E)

t-i.

3.9

Answers.

1. a. Invalid (generally) - mixed mode

b. Valid, yeal

c. Invalid miasing operator after 2.0

d. Valid, integer

e. Invalid - two operators (/ and -) together

2.

b. (A*B)/(C+10.0) or A*B/(C4.10.0)

c. (A413)/(C+D/E)

d. A/B+4C*D)1(E*F*C) or A/B+C*1)/(E*F*G)

e. (P*(R/S))**(T-1.0) or (P*R/S)**(T-1.0)

If P*R/S is negative, an error will result since the

exponent is rea4 and the expression is avaluated by

logarithms. This problem is overcome by writing the

expression with an integer exponent.

(P*R/S)**(IT-1)

Part III. Assignment Statements.

1. Refer to UNIT #3 ACTIVITIES TABLE, Activity 3.

2. In Fortran assignment statements, the "equals" symbol

does not .actually mean equality. Rather it should be

thought of as a storage operator or :replacement op-

erator. The value of .the expression/on the right 4of

".,." is stored in the storage location identified on

,the left of ".."; or saylig it another way, the value

on the left of ",,." is replaced by the value of the ex-

pression on the *ht.

4

3. Noticm that the value of an integer expression on

the right can be stored as a real.value on the left,

and vice versa. For example, J...2.6 gives an integer

value of 2 stored in J, (The fractional part is

truncated.) A=-2 gives a real value of 2.0 stored

, in

SELF EVALUAT1Q1 FOR POT RI..

Answers are on the psEie following the exercises.

1. Identify the foll,owing assignment statements as

valid or invalid.

a. J*1(..1

b. M.2.0*B

c. -13,..C/D+E

d. X.,.SIN(Y)

2. Construct Fortran assignment statements for the

following.

a. x cos(y) + x.sin(z)

b. a m "'"x+Y+27)

c. r (2.0+x2)14

3. State the numeric value of 3 that will be transferred

Co memory by the followin arithmetic assignment state-

ments.

a. J 5*5/7

V. J 5/7*5

3.11

3.12

c. J * 2.0/310 2.0/3.0

d. * 5*7/5

o. J 7/5;-5

4. Stdte,the numeric value.of X that will be transferred

to. memory by the following arithmetic assignment state-

ments.

a. X * 5*5/7 d.X'5. 0*4.0/2.0

b. X * 7/5*5 e. X * 4.0/2.0*5.0

d. X .2 4*3im2 f. X * 5.0/3.0+3.0/30+5.0/3.0

5. Refer to UNIT #3 ACTIVITIES TABLE, Activity 4.

Answers..

3.13

1. a. Invalid - single name must appear on left

b. Valid

c. Invalid - -13 incorrect

d. Valid

2. a. X COS(Y) + X*SIN(Z)

b. A (-((--X+Y+27.0)/Z**2W*4

or A (-(-X+Y+27.9)/Z*12)**4

c. R (2.0+X**2)**0.5-or R SQRT(2.0+X**2)

7

C. 5

4. a.

b. 5.0

;

c. 36.0

d. 10.0

e. 10.0.

f. Approximately 4.33333 or 13/3

5. Refer to UNIT #3 ACTIVITIES TABLE, Activity 4.

.37

3.14

ASSESSMENT TASK: Please see your instructor. You will bp require'd

to identify and construct correctly written constants,

variable names, expressions, and assignment.state--

ments. You will also be required to evaluate Fortran

expressipns ond to describe the results When Fortran

assignment statement are executed.

WHAT NEXT? You may go ahead with UNIT #2 or with. UNIT #4,.

52

`.

0

UNIT #4 (COMSC)

, TITLE: STATEMENT NUMBERS AND.UNCONDITIONAL.BRANCHES

.;

RATIONALE: One of the important characteristics of the modern

computer is its ability to execute repeatedly a series
-

of instructions automatically.' This unit is the first

of several Chat will help you learn to utilize this

ability.

OBJECTIVES: When you complete this unit, you will be able 6

construCt and identify statement numbers.and uncon-
,.

'ditional branches that will utilize the- statement

-
numbers.

PREREQUISITES: UNIT #3 (COMSC).

ACTIVITIES:

1. -Normally program steps are executed sequentially ln the

same order in which they appear% .In Figure 4.1 the first

statement executed would put 5.0 in the storage location

named A.

A u
B io A -I- 1.0

C B 4- A * 3.0

Figure 4.1. A sample progratii segment,

illustratin the normal order of execution from top to bo tom.

f

"..1

4.2

The next one executed would put a 6.0 tri location- B. The

A
last one would put-21.0 in location C. Normally this,order

of execution from top to lilottom 18 desirable, since usually

we do want the.statements eXecuted in the same order in

which they are written. There are, hvever, important ex-

ceptions. Frequently we may want.to repeat the execution

of some statements or group of statements. Without tfle
.

abiliv to repeat the execution of a seri?s of program

4

steps, the.pro'grams we write would.be too long to be

practical;

CI

St%

I.

a

ar
,v

loor example, suppose we
.

want to compute the volume of

25 boxes. The first box,has dimensions of I unit, 4 units,

and 5 units., pleb .succeeding box has dimensions each 1

unit larger than the preceding box. For such a job we

might Write the, program shop in Figure 4.2.

4ks

Figure 4.2. Sample program qegment for calculating
the volume of 25 box a with dimensions incremented by one each .time.

'51

A E 1.0
B E 4.0
C E 5.0.
VOL E A * B * C /

A E 2.0
B E 5.0
C 6.0

VOL EA*B* C
A E 3.0
B .2 6.0 .

C = 7.0
VOL = A * B * C

etc.

A

This series would continue until we had computed the

volume of 25 boxe. How many statements would we have

written? Notice-that there are 4 statements.for

the computation of VOL fqr each box.

If we take advantage of theperative capability ef a'

computer, we can write the program in a much shorter way,

f shown in Figure 4.3. The next to the lest line is not a

__-
valid Fottran-stateMent: it is a substitution for a Fortran

statement that will' be covered later.

A ai 1.0

B - 4.0
C E, 5.0

VOL ,.,A.*B* C
A A + 1.0
B B + 1.0
C C + 1.0
if A is equal 26 stop
GO TO 5

Figure 4.3. Shortened program segmAt for calculating the
volume of 25 boxes with"dimensions incremented by one each time

There.are seme things in this series that.need explain-
.

ing, but one-thing should be clear: From a series of 100

. 11-

.statements, we have cut down to only 9 statements.

Take a look at the.four6 statement in Figure 4.3.

,There is a number that appears in front Of the statement.

This 'number is referred to as a statement number. 'the

sole purpose of a statement number is to identify the
.

stateMent for later reference. We give it a latgat number

ft/

4. 3

0

41

44

so that we can refer to that statement from other parts

of the program. (Note that this is not a sequence number.

Statement number 5 iS not necessarily the fifth statement.

If you have a hangup for numbers, you might name three

children "'rep," "Two," and "Twenty." These Are valid

names an0 do not necesserify imply "that, you have twenty

children, nor are they necessarily named in Aumerical

order-.)-

The statement numbers in Figure 4.4 are perfectly

valid.

77 A B
105 A B + 15.0 + fic,0,4.

6-

1999 BPB+ B

1.-

Figure 4.4. Exavples of statements-with statement numbers.

3

Staiement numbers must bwpositive integers from 1

to 99999, though the maximum number allowed may be less

for some computer systems.

2. Refer to UNIT #4 ACTIVITIES TABLE, Activity 1. An example

of a Fortran coding form, which is available in the book-

store, is shown on page 4.5. You are encouraged to use

coding forms for writing programs to be punched on com-

puter cards, which you'll take up in UNIT #5, since the

format of the coding \form is the same as the format of the
) .

Fortran computer card.

Notice 'mite more that statement numbers are placed

anywhere in columns 1-5 and Fortran statements are placed

56

0 .
4

oplangoolosso g. j: g II
1.1.= I

1111111 11 11111
1111111 PI 1111
111 i ilia

IMMO MIMI II '
IIIIIII 11111
MIT 11111
Mg MMIllMU UW
IIIIIIIIIIIMIIIII

1 1
IIMMEN MIN 1
IMUMIli HMO H I
IIIIMIIM111101 HI I
1111111111111111111111 Mb
111111111111111110 I
1 IIIII Ill

III I 11111
11111111111111111

Pi" I iiiiPM111111 Iiiiiiiiirri
I

111111 111121 II I'1 r i 1 In
II 19 Imilpill 11111111111111

i ill ill" Iii 111111111111111111111w

Imop
1 1 tullimi i nom 1

immil Ha 1 Ho 1 n ilow MIMI 1 1 II IMO MI MINIM!lib I MINI IIIIII 111111111i 1
1111111 MEI 111111111111

IIIII 1111111111111 11111111INE I
I 111111111111111111111111111 11111111111 11111 I
I IMO

II
ION 11111111111111111111111

I 1111111 EMMEN 111111111111 1

911 gm mop iI i
_4

...........,,.,.L...

4.6

anywhere in columns 6.-72.

3. The last statement in Figure 4.3 ls called an unconditional

branch. Up to this point, each statement ties been executed

sequentially. This last statement, however, changes the

order of execution. It tells the computer to execute next

the statement identified by atatement number "5" and continue

sequentially from that paint. The next statement executed

after statement numbr 5 is the statement

O.)

A A + 1.0

In an unconditional GO TO statement, the tO TO is always
.0014 .

followed by an integer constant which is' the unique state-

ment number of the statemenCto which transfer is to take

place. A_

4. Refer to 1.1,NIT bt's ACTIVITIES TABLE, Activity 2.

SELF EVALUATION:

1. Which of the following are legal stateMent numbers?

a. 13 d. 123456

b. 98 e. 2/3

c. .3456 f. 2-1

2. Write a statement'that will cause a branch from the last

statement of the-following routine to the second statemeilt.

Add statement nuMbers4f necessary.

3 A = 1.0
B = A + 3.0

-6.A=A+A
= 0.5 *.A ** 2

,

3. Write a set of Fortran statements (a uparinilaBED.L0 that

will count by fives. Set the counter to zero; use integers.

Then add five to tA counter, and go back io the statement

that adds five, etc. (Refer to UNIT 114 ACTIVITIES TABLE,

Activity 3, for help..)

Answers:

1. Legal statement numbers are a and c.- The,number in d has

more than S digits. 'The ones contained in b, e, and f

3.

contain characters that are 'hot numerals.

3

, 50

....,,-

A 1.0 -

B .4 A + 3.0
A ,.. A + A

H 0.5 * A ** 2 ,

GO TO SO

N

N = N 4- 5

GO TO 10
r.

. ASSESSMENT TASK: Please see your instructor. You will be required

41

to identify valid statement numbers and to con-

stritct one or more short prdgram segments using

unconditional GO TO statements and the material

in UNIT.#3.

4.7

-a

4.8

-

WHAT NEXT? If you have completed UNIT 112, you are ready to

proceed with UNIT 1/5. If you have not done UNIT 112,

then do it, after which you may go to UNIT 115.

-4

UNIT 1/5 (COMSC)

TITLE: Preparing a Job for Running on the Computer

RATIONALE: In the next unit, UNIT #6, you will be writing your

first Fortran program. Before you can run your pro-

gram on the computer, you must know about keypunch

machines and punched cards; you must know how to run

jobs'on the computer; and you need to know how to'

document a program.

The first part of this unit deals with punched

cards. Since the punched card is still one of the

prime means of input to-the computer, you need to

know how to punch and interpret computer cards. In

order to punch cards, you make use of a card punch

or keypench machine, which you will find out how to

use.

The second part of the unit describes documents-

tion of programs and why it is 1mportant.

The third part tells you how to run a job on the

computer. If you were.required to do UNIT #1, then

most of thip procedure will be A review.

OBJECTIVE: When you have completed this unit, you will be able

to demonstrate that you can punch computer cards and

interpret them, document and punch a Fortran prpgram

5..1

5.2

4 that is giVen to you, and run the program on the
w

4
computer.

PREREQUISITES: UNITS #2 and 1/4.

ACTIVITIES:

PART I. Punching and interpreting computer cards.

A. "Do not fold, mutilate, or spindle." "The punched

'hole will add it-self to something else, subtract it-

self from something else, multiply itself by some-
_

thing else, divide itself by something else, list

itself, reproduce itself, classify itself, select

itself, print itself on a card, produce an automatic'

balance forward, file itself, post itself, cause a

total to be printed, compare itself to something else,

reproduce and printAtself dn the end of a card, cause ,

a form to feed to a predete mined-position,'or to be

rejected automatically, or t -space thp form from one

position to another."

How can something that is nothing do all of.this?

Simply by punching rectangular shaped holes into an

IBM card (punched card-) as codes for letters and num-

bers, we can use the card as input to data processing

equipment yhich in turn performs these functions.

A standard IBM punched card measures 7 3/8 by

3 1/4 inches, is 0.007 inches thick, and is made of

Punched Cards, Donald A. C. McGill, McGraw-Hill Bgok
Company, page 30.

63

AM

special paper which withstands the effects of handling

by man an'd machine. A larger card punched with round

holes is used on Sperry Rand Corporation (UNIVAC) equip-

ment; however we will consider only the IBM card, ince

it is the most common, being used on most moder equip-

ment, even by. UNIVAC since 1966.

r

4

5.3-

An example.of an IBM computer card is shown in

Figure 5.1. Usually the upper corner is cut at a 60°

angle with the long edge of the card, although cards

will be found with uncut corners. The corner cut has

no effect on the operation of the computer and is only

to enable the operatolpto make a quick visual check

that all the cards are facing the same way and are

right-side up. Mixed corner cuts and mixed colors

can be used if it is important to be,able to distinguish

different card types 'visually.

'The card is dividecrinto 80 columns numbered

thru 80i, from left to right, and into 12 rows numbered

12, 11, 0, 1, 2, 3, 4, 5, 6; 7, 8, 9, from the top of

the card to the bottom.

B. The Hollerith code used for punched cards.

The code used in punching dItta into these cards

was patentee by_Berman Bollerith, a statistician -for

the Bureau of The Census. This code enabled the

Census of 1890 to be processed by.automated equipment.

t,

Row

Rowe 11 1-
_

Row 0

Row 9-4-

"+.

Column 1

12-edge

Column 80

tIC

tn

1 4 1 S I 4 I .0 4 ! to '4 21 10 19 10 It 12 11 14 IS 9 II IS is 40 U 41,43 44 4' P. 4: 44 .1.0 5. 1? 51 14 5, 51 40 900 I 61 61 64 63 II 61 03 64 01 !I 1 1, '5 " 11 11 8)

80060001380800000000poop, $AMENE 00000000000000800800000
ilimiliiIiiiimmilliiiilimilitifili11111111111111111111111111111111111111,
2 2 2 2,2 2 2 N 22272222222 2222 222 272222222222222222222222222222222 2222 2222 222 222222222
3 3 3 3 3 3 3 3 1 3 .3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 33 333333333333 33333 3 3 3 3 3 33333333333333 333333333'3333333
444444 444 4 4 4 4 44 44 4 44 4 444 444 4 44444444 4444444444444 44444444444444411444 4441 4444 44444

55 555555555555555541z

sTee 66 60 66666666 666666666 6666 666666666666666666666666666666666666566666566666t5566666
1 / 77 773 7 7 7 7 7 7 7 7 7 117 77 7777 77 77 7 717777777 7777 777771777777777777,77777 7 1 111111
88888888888 838888888 8888 8888 8880 8888888888888 8888888888888888 88888888 888 888 88 88

99999999999,93999999399999939999999999999339399-99939993993999999999999399 399I 2 1 4 5 I I 10 11 12 13 14 1$ 4 12 11 II 20 21 22 2324 T3 ?I /1 IS 79 9 11 32 35 14 35 11 55 35 40 41 45 43 44 45 44 47 IS 41 50 51 52 53 Si SS 5$ 51 51 59 60 67 52 13 Si 65 OP la 69 10 /141 /3 14 /3 16 11 lb 10 50MOO I to

9-edge

Figure 5.1. An example of an IBM computer card. The 80 columns are numbered by small numbers at
the top and at the bottom. The card also contains 12.rows, 10 of which are numbered 0-9 and
two of.which are not numbered on the card. Row 12 is at the top of the card, and row 11 is
between row 12 and row 0. The top edge of the card is called the 12-edge, while the bottom
edge is called the 9-edge.

65

Dr. Hollerith in 1903 left the Bureau of the Census

to found the Computing Tabulating Recording Company,

which later was the nucleus of the Ihternational

Business MachOV Corporation..

An example of a punched computer card is shown

in Fiiure 52. Careful examination of the card will

,te reveal that the Hollerith Coda uses a single punch tn

--rows 0 through 9 te repreaent the digits 0 through 9,

respectively. A punch in these rows ia called a citait
gulls121_, or a numeric punch. Alphabetic characters or

letters are represented by two punches in the same

column. One of these punches is im one of the rows

12, 11, or 0 and is called a zone' punch, and the other

is a digit punch.in one of the rows 1 thru 9. Note

that.rOw 0 is called a zone punch for alphabetic

characters and,is called a digit punch for nuMbers.
.4

The codes-for the alphabetic and numeric characters

are depicted in Table 5.1.

v Note that the zone 0 digit 1 punch is not used

for the letter S as you might expect but it is used

as the special character'/ or slash. S is zone 0

digit 2.

There are also codes for special characters and/

or punctuation marks. These consist of two digit

punches, a single zone punch or a zone punclkand one

or two digit punches. The special characters that

are used in Fortran IV are given in Table 5.2.

66 S.

5.5

Zone punches

Numeric or digit
punches

" v1/44,

ss,

A, A A..v -
y.4.,*c.s

,

, °

0.

Numeric Specialc.
characters °-A.1 habetic characters cha_acte s
0121456789 . ABCDEFGH I JKLMMOPOR, TUVWXYZ 2g03.../..t.. o

12454109MHU7314mmumn411111011143132331439313111120042044*000499C,Sp333 P,151514110111464004113811924 At'1141516)129140

E 11 1 i uun 4 4 nom FORIEDOI a
1-.0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 M a i N E D D R I M I E U K E K O M M 410 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2222222122222i22222221222222220222222122)22222222222222222222/ 22222222222222222
tzt 3333333313 3333 3 3 3 3 33 3 313 3 3 3 3 3 3 313 3 33 3 313 33 3 3 3 3 3 3 3333333133311333333333333 333133

44444444414444444444a4144444444114444444144444 44444444 41444444444444444444444444

55 5 5555 5 551595 555 555 5 5551155 555 5 551555 55 5 51555 5 55 5 5 5151455 5 55 5 55 5 5 55 5 5555 5 5 5 5 5 5 5 5

3,e1 66 66664.66661166666666666661666666461166 66666116666666661166666166666666666 66t666666

111777171177117171777771111177717711117 71171111171711171177711771771777777771177 77

88,8118888888118888888888888118$89888118880888.1168888811111M881111888888888888080888

9 999999199999999999991199999999119999999119999999999999999i99999999999999999
34547eolonunntsmuommnnm4257$2721:930mulniunpUnooquoonociTiomsmumUSI4OMOM0204400000410/Onnnmnionnno0

tommoolvo

Figure 5.2. A punched computer cards showing punches for numeric; alphabetic, and some special
'characters used in Fortran.

68

5.7,

CHARACTER
ZONE

PUNCH
DIGIT
PUNCH CHARACTER

ZONE
PUNCH

DICIT4 .

PUNCR.

0 0
,

1 1 J 11 1
2 2 K 11 2
3 3- L 11 3
4 4 M 11 4
5

.

5 N 11 5
6 6 0

. .

11 6
7 , 7 P - 11 7
8.

, .
8 0 11 8

9 9' R li 9
. _. S..0

A 12 1 T 0 3
B 12 2 U. 0- 4
C . 12 3 V Q (5
D , 12 4 W - 0 6
E 12 5 X 0 7
F 12 , 6 , Y 0 8
G 12 7 Z ,0 9
H. 12 .8

.

I 12 9

,

.

Table 5.1
Punched card codes

,

CHARACTER
ZONE .

PUNCH
DIGIT
PUNCR(ES)

-.

.

u

(
.

-I-

-

- *

)

/

A

.

..
.

. Period or Decimal Point
.

Left Parenthesis

Plua .

Minus or Dash ,

.. .

DollaT

. .

, Asterisk °

Right. i)arenthesis

°Virgule or Slash

Comma

Equal .

.

4

.

. .

12

12

12
,

11

11
,

11

11

0 .

5

0

.

,

,

.

.4

8

5 - 8

8

3 - 8

4 - 8

5-- 8

.

1

3 - 8

6 04-8

t

.

.

Table 5.2
Punched card codes

69

5.8

The special characters in Table 5.3.are used in other pro-

graiming languageg.

, CHARACTER

& Ampersand

Cent

, Less.Than

1

Vertical Line,

! Exclamation

SeMicolon

Not,

Percent

Break or Underscore

Greater Than

2 Question Mark

: Colon

Number or Pound

@ Commercial At Sign

Single Quote or Apostrophe

Double Quote

ZONE
PUNCH

DIGIT
PUNCHES

12

12

12

12

4 11

11

11

0

0

0

0

4 - 8

7 - 8

8

6 - 8

7 - 8

4 - 8

5 - 8

§ 8

7 - 8

2 - 8

5 - 8

7 - 8

Table 4.3
Punched card codes

C. A pause for self evaluation.

Take a short "time out" and see how you're doing so

far. .

70

1. Interpret the punched card shown in Figure 5.3.

5.9

__1_1111111,111111140%1D1 NWINUMbnIMM631111$041_R4344 0400005051021.1PHO06UM4656861W7MnlMnkIlIO10 O_

ciairrantrmaniriffiki Intl 3:13 al IM FIR el . mammafl unman m
10100000000.41)060010004 iu wuuJwtnwLLlwwLauiuulululw OHO 0 0 0 0 (113-0 0 0 0 o

I111111111111111111111i11111111111111111111111111111111111i111111111ill1111111111

2222222222222222221222

433333333333333333,33343333333131333333333333333333333333333333333333a3333313333

4414444I44
15551515555155551555551555555555551155555555 55555555555555555555555555555555555555

6166666616U66666666666666116666666'66.5660
11170711711111711771717177711711111777777771171111717717771771117171471711117

18818888888888818881881188188888181388888888888828888888888888888888888888888-88888

99991199891199991199999994998911989999999899999999999999999999999999199999999999999
1734wiessom77 77 74 75 70 nanm77 2') 3'S 74 7526 7) 211076 77 n33 743536 7736304041 44344454647 40405007 07630-46308 6706516001ev64

5566676051 70 17727374 75 76 7? 76 70 e0

F4gure 5.3. Interpret 'the punched card.

,

2. Using the blank card shown in Figure 5.4 and a

pencil, mark the punched card codes for the lettere

of your name and the characters of your Social

. Security number (including the dashes).

5.10

1 7 7 .4 5 6 7 i 9 10 11 13 17 14 41 16 11 Ilk II O h 1, :4)17 11 17 is 24 30 41 U H 34 77 70 IP 70 3340 44 47 41 44 44 441 42 9473051 319314 14 37 51 960 11 IT 11.3 64 10 11 /0 n 1118 n Hi 1110

raiTi1laDITI1!MEtTk4llf111 'hi 1luh1i9rLoh!iiln32IJnu1
)-
r..7 00000000000000000000009 CirliqlildiroPiTCYPITOPtlinriFirliffrilirgENE 0

43 1 1 1 1 1 I A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1 1 1 1 1 1 1 1 1 1 111
g 22222222222222222222122222222222222222 2 2 7 22222222222.222222222222222222222222732

ta 33 333333333333 33 3333 313 33 3 333 3 333333333.133333 3333 3333)33 3333 33333333333333333333
t-
o

4 4 444444444444444444 444444444 4 44 44 4 4 444 4 4 4 444 4444 4444444 4444444444 4444 4444444444

5 5 4 5 5 5 5 5 5 5 5 5 5 h 5 5 5 5 SS5S5SS555555555555S55A

;115G666666&66666666Gbli6668866686666b6666G66666&666466666666666G666666666616G66686
"

71771717771111111717,1111117711111711111711111117171711 71 7717771777171711717171

8 8 8 8 8 8 8 8 8 8 8 8 8 3 8 8 3 88888888988888988888888888808 8 8 8888 8888888888888 8 8 8 8 8 8 8 8 8 8 8 8 8

9999999999999999 9 9 9 9 9 9 9 9 9 9 9999999999999999999999999 999999999999999999991999997 1 4 7 8 I 3 7 40 414144 14 47 .1 I. 4 4 11 4 :4 75 73 , :1 29 :44 19 11 U 1. 14 lb 1/ U 11 40 41 42 4144 45 49 47 43 49 30 31 53 84 779 7) 5179 60 61 67 33 14 15E6 61 9 61 70 n n 11 15 N 17 TA 9 901s1.941941 I V S

Figure 5.4
Blank card for marking your name and Social Security number

4.

If you feel that yotere ready, then go ahead. If not,
4'

then back up and review the material.

D. The Fortran statement card.

There Is a card printed especially for Fortran shown in.

1.'igure 5.5. -(Of course, the computer doebn't know one

o'card from another; the various typ4s and colors of cards

(re of consequence Only to the riser for his convenience.)

The card has various blocks of columAs labeled to aid

:you in punching Foreran programs properl.. Column I must

hame a "C" punched in it for comments. Statedent numbers

le placed anywhere in colUmns l-S. Portran statements

5.11

PON

tour tmtN
Nwaum ft

OÔThii1 000 00Co00 n0000 um oonaboO Wel 0000
4 I 1 10 11 1/ 1114 14 it II la 9 70 71 Tlf IQ)9 30 11 HD 14 1$ In NIS 40 4143 4144 454(1 41 40417f403t

$134115431011210814.11494 49616/11111 r0 TT

/11111111111111111111111IIIIIIIIIIIIIIIIIIII411111111111111111111111111111
21217222221222'2211221117122222222221222221222222222222?22222222222222222
4:3333333333333333333 333333333333333333333 3 3333333333333.33333333333333333

4 1 4 .1 4

, I

- ,Stifift s5.a555 5555555555 555 5555 55555.5555555555555556555555555555555555555555

OR TRAN S T A T-E MENT

11866666.666
7:177111777717/17/71/1/11/1/771/11/// 7141717 7 7 7 717171771i7711777777717777

818888888888888888888 8 8 8 388 888888 8 88888 88 888 88 888888888888888 888888888888

9:9 959 9 999 9 9.99 9 999999 999999999999 999 9999 999 9 99 9 9959999 9999999 999S99J99999
; 4 S 0 I 9 10 111313 4 19 4 `: 4. !I '.1 " '1 34 TS 77 :1 111 T) 1114 I) 31 31 IS 3140 41 42 4444 44 44 41 49 4154101 WM* VS SO 01 SS 99006162 63 44 62 OS IT IS 5910 71 n

lommonor

N

Figure 5.5. A Fortran statement card

MITinSICATIGH

000.0000
umNnmm
111111)1

22222222

33333333

44444444

55555555

66666666

11717111

88888888

99999999
1741sKunno

are placed anywhere in columns 7-72. Columns 73-80 may be

used in any way for purposes of identification, such as pro-..

gram name, programmer's name or initials, or sequence num-

bers. Column 6 is used for indicating that a card is a

-continuation of the previous card.
+0,

You will get some practice using-Fortran cards later,

but' now you should be ready to talm on the keypunch machine.

J. Punching computer 'cards.

The following instructions will introduce you to the IBM

mode1,29 keypunch machine. Go through the instructions

carefully until you can load cards,,putich something into

some cards (for example, your name, the datp,.your social

security nuseer, etc.) duplicate a card, ameclear the

,-. ,.

,
3i k

1 5.12
a

1

/1

t-

machine.

.Notkce: Sometimes pressing certain keys will C81.1610 the
mnaine to "loc up." When this happens, press the REL
key tp 'release le machine.

1. Keypunches are located in MS 04, are a light

grey color, and are idgmtified by a 29 on the

name plate. on th6 upper eight-hand fro t of the

machine. r s are located in bine placed among

the machines.

2. Turn on the maln.switch located in front of

y'our right knee as you sit at the keyboard.'

3. Behind the name plate on 'the upper right is the

'card hoppet. The cards are held in place by a

-spring-loaded plate.. Place cards neatly and

securely into the hopper in the upright posi-

tion.

4. Three buttons or keys on the right side of.the

keyboard, -Rgt, (release), FEED arid REG (register),

and one switch on the left-center of the panel

of switches lust above the keyboard, AUTO FEED,

control the feeding of cards into the card t

There are two ways-to uae these controls:

a. AUTO FEED switch "OFF." Depress the *,

REL, .FEED, and RE keys in that order.

This procedure allows the passilge of

one card at a time through the machine

7

_,

5.13

and is useful for beginning users of

the.keypunch.

b. AUTO FEED switch "ON." Depress REL

key twice just after you have loaded

the card hopper, once thereafter. Use

only the REL key for automatic operation.

5, When a eard is in place and is ready to be punch.;;°-

ed, characters may be placed in the card by Use

of the keyboard, which is similar to a standard

typewriter keyboard. The column on the card

currently being punched is indicated by a pointer

and a scale on a drum directly in front of the

operator, upper center behind the window. In

order to punch alphabetic characters and other

characters on the lower portion of the keys,

simply depress the proper key. In order to

punch numbers and other characters on the upper

portion of the keys, attpress and hold the NUM

(numeric shift) key, :Cower left of keyboard, and

then depress the proper key. .

6. When a card is being punched, it ikin place at

the Rmps_h_ station. When that card is released

by pressing the release button (EEL), it moves

from thp punch station to the read or 5.12ELL

station to the left of the' punch station. When.

the DUP.(duplicate) key, located in the middle

5.14

a

of tetop row, is depressed and held, theAnfor-

mation punched in the card in the read position

is transferred to the card in the punch position.

An entire card may be duplicated; or part of it

may be duplicated by releasing the DUP buttonA

allowing corrections to be made.

A card also may be inserted by hand into

the card track at the read station. There are

two slots in the middle of the card track through
0

which a card may be pushed until it is against

the stop of the read station. Both the card to

be duplicated and the blank card to be punched

may Jpe moved into position simultaneously with

-the REG button. The easiest way to do this is to

have the cord track empty, insert the card to be

duplicated, depress the FEED button to feed a

blank card into the punch station, depress the'

R* button', and then duplicate.

7. At the completion of the job, CLEAR ALL.CARDS

FROM THEMACHINE AND THE DESK TOP and turn the

main swit'ch to "OFF." (The card track may be

cleared automatically by flipping the CLEAR

switch located at the exyeMe right on the panel

of switches above the keyboard to ON.") .

Using 'tliese instruptions, practice punching cards-, duplicating

dards, and correcting errors.

SELF EVALUATION FOR PART I.

i

1. Punch your name and social security number into a card.

Begin your name in column 5 of the card and begin your

social security number in column 50.

2. Duplicate exactly the card you just punched.

3. Punch OKLAHONA VATE.UNIVERSITY in columns 11-35. Then

correct the error punched In column 17 by duplicating the

that-is correct and repunching column 17.

4. Find some Fortran statement cards in the bins beside some

oi the keypunches. Punch the Fortran statement

1-4 XTAP.2.3*AVG/ (21.0B)

in .the proper columns of the card. The statement number

4 goes anywhere in columns 1-5; the Fortran statement goes

anywhere in columns 7-72.

5. Punch the Fortran program shown)below exactly as it appears,

puttlng one line per card And punching the characters in

(-- the columns as shown. Do not expect to understand the pro-

gram;.just punch it for now. The two lines of numbers

1above the program are the column numbers. For example, 4

indicates column 14 of the punched card; an "R" is punch-

ed in this column of the first card. The "O's" in the

program are slashed (0) in order to distinguish them from

zeros. Be sure to punch zero when you mean zero aad

when you mean "0."
U.

5.15

5.16,

12345

COMP

4

' 10111111122222.2222k1139i3i'hi.4440444445555555555666666666677777777778
78601234567890123456789n2434567890i234567890123456789012345678901234567890
ER,PROGRXM WRITTEN IN FORTRAN.I.V.-
TRY1.4.1

-
TRY2.*2.6

ANS43.4*TRY14:TRY2/(TRYI-TRY3)
1ltITE(6,A)AM.3

'ORMAT(IHO,F1010
tTOP
END

I

Chuck tho car4a cakInl-IN- for errors-and make eerrections

as necesOry. Say.t the corde; you'll be 1,1.plas. them:soon.
_

PART. II. Documentation sof '.1,p(.6Kram.
' 8

The'purpolie of documentatiOn aumfekd up in the following

limerie:
r

1,1

,Johnny fould i progratli.,
ft

One. Ner uselbs-3, day'.

Exactly wha thiit. progrkitvdla \
.

ft simply ilidn't aayI

order for a program to berof :Ise to any user, includine

the 01-ogralwer lt It must be accompanied'by a fairly detail-7
, 4.

ed.description. ome of the 'Short pnwams that you will write

for this Course will ' e rtAkt t.) require any documento,tion; but

you need tQAevelop good habIta arly, so documentation .of aii

prograes vi11 be re4uired:

F. what oloui& he included in.docu entation?

Program documentation consis f two pares:
4 .

A h

program comments

. 0 . A

(ii) ptogiam descripti6n
. .

...
.

. '.

.

- -

,

Comments in a program should convey to the reader_the

essential facts of the program and should include at

the beginning of the program

(a) the student's name, problem title, and date

submitted; 4
±

(b) a description of the Oroblem;

.(e) a description of the program;

P.

(d) special or exce ttOnal conditions;

k(e) definitions andormats of input variables;
1

(f) definitions and'formats of output variables;

(g) definitions of other key variables;

4(h) error messages;

(i) key comments interspersed throughout the

program.

The accompanying program description should include,

when appropriate,

4*

(a) the problem:title, the student's name, the

.date submitted, the unit number;

(b)' a brief description of the problem and the.f"

solution Methods employed;

c) a description of the limitations of the pro-
,.

gram;

(d) a description of major variables and of all

dimensional variables;

(e) a description of possible errors and associat-

ed error messages;

9

5.17

z

ce:

(f) a complete program listing Tuding control

cards, input and output;
0

(g) operating instructions;

(h) a flowchart at a level of detail necessary

to convey the' essential information about

Elle program;

(L) a_description-of-key-points-in-the-flow-

diagram.

The sampte program on pages 5.20 to 5.22 illus-

trates many" of the points described. Notice that one

line in the program listing corresponds to one punch-

ed card. The C which appears to the left o1 the first

several lines is punched in column 1 of a Fortran

statement card. Such cards are ccilled CONNENT cards.

COMMENT cards are printed on the program output list-

ing, but are ignored by the compiler. Fortran state-

ments start in any colUmn after column 7 of.a state-

ment card and may be punched from columns 7 to,72.

Statement numbers are punched in columns 1 to 5;

column 6, the continuation indicator column, is punch-

ed if the statement iy-too long for the previous

card and has to be continued on the curtent card.

Sequential line numbers appear on the'far left

of the printed listing. Comments do not have a line

number. For e-xampie, line number 0006 is associated.'

with the statement

INDX 1

Aer

9

4

5.19

which places the value 1 in the location assigned to

variable called INDX.

Mote that the comments at the beginning consist

of the author's name, the date, a brief description

of the program, input card i:Scription, output card

description, special operating instructions, and a

description of t)ie principal vari les.

4

the comment cards interspersed throughout the

program gives an indication of what the program is

supposed to do. This program generates the glossary

listing that appears in Appendix II. The comment

cards at the beginning of the program would have been

easier to read if they haa been set up like the terms

and the definitions of the terms in the glossary.

Comment cards with a seeies of special characters

such as * and blank comment cards may be used to

adVantage. Foy example, one might have punched the

comment cards in the following format.

INPUT
CARDS ARE PUNCHED AS FOLLOWS:
000LUMNS CONTENTS
1-11 KEY

13-14 SEQUENCE NUMBERS
16-80 DEFINITION LINE

- ONE DEFINITION IS LIMITED TO 50 CARDS.
C ***** ***** ***** *****

oi)Comments may be punched anywhere in c lumns 2-72.

(Actually, columns 73-80 may also be'used, but generally

//

(

I

(
i

5.20

C AUTHOR: CHARLE S ELL I S
C CLASS: COMSC NEW STUDENTS
C DATE: 18 AUG 1971
C- BRIEF DE SCR I PT ION: THI S PROGRAM USES CARD INPUT CONSISTING
C OF L INES IN A DEE IN ii IoN Of A WORO.4 THE CARDS ARE KEYED AND
C SEQUENCED. THE CARDS ARE CHECKED FOR KEY AND SEQUENCE AND STOREp.n
C IN AN ARRAY. WHEN OE KIY CHA-NGES THE WORD DEF I NIT ION IS PR INTED v
C AND THE PROCESS TS RFPf-Al ED UNT !I Alt GLOSSAR Y ENTRIES HAVE BEEN
C WRI TTEN. OUT OF SEQUENCE ENTRIES ARE REPORTED BY KEY ON AN ERROR
C LISTING AND FLUSHED FROM THE I NPUT, .NOT. APPEARING IN THE GIOSSARY.
C INPUT: CARDS OF THE FORM;
C COL 1-11 KF Y

VC COL 13-14 SFAJOENCI- NumBe R
C COE 16-80 OEF INIY ION L. INF
C ONE DEF INI T ON IS LI mI TED vH) ,10 CARDS
C OUTPUT: TWO .811 INCH t I ST INGS. THE FIRST IS THE GLOSSARY,-
C EACH PAGP TITE ED AND NUmBIRF I)Ø 1H SECOND I S AN ERI1OR REPORT.
C OPERAT IN% INSTRUCTIONS: STANDARD BATCH FORTRAN G LEVEL DECK .

C SET-UP AND RuN PROtEDURES AR E USED W I TH THE ADDITION OF THE CARD; .
C //GO.F 1041001 00 SYSOUT- A FOR THE. E t, OR L 1ST ING.
C PRINCIPAL vAR [ABE US:
C KEY 11 CtiAP ACT ER ARRAY NIR VHF: CURTNh KEY
C KEYSV 11 CHARAC TER AKRAY f OR THE PREVIOUS WO'
C L INE 65 CHARAC TER FOR THE CURRENT \5FFINI TION LINE.
C LINES A 50 BY 65 ARRAY FOP THE COM tETE tIAFINIfION
C LNICNT COUNTER FOR' JHU NoMbER of LINES PRINTED PER PAGE
C IBLK A BLANK CHARACT CONS 1 ANT
C 1ST FLAG FOR END Of DAT A
C thox . THE CURRP NT SEUL* NCI NUMBER

. C IND)iSV SEQUEN.L.E NUMBER Of THE PREV IOUS L INE
C' DEE I NE AR-RAYS

0001 DIMENSION KEY(11 hKEYsV11 1).1INEI 65/
00O2 COMMON L I NES 150.65

C INITIALIZE CONSTANT S AND COUNTERS
.0003 DATA LNCNT/5/.1111K/ tH /41_ ST/0/

C INI TI ALI ZAT I ON READ
0004 READ (5,1) KEYAINDX,ACINTAJ)1,17=1.e65)
0005 1 FORMAT (11A1,1Xt,12,1XttSSAI)
C006 I NOX--.1
0007 GO TO 11

C MAI N DAyA RFAO
0008 L 3 READ (5,, 1 vEND.99). YvINQXy(LINE(AcJul.',65)

C CHECK FOR BL ANK CARO, ?ES, RtJF.0 T IT
CCC9 IF _IKE-YU/J(3.181K) CO 0 I

C CHECK OOR FNI) OF DEF INI n ON
0010 00 5 1=1.11
0011 IF KEYSVI I .NE;KEY(I Gt) TO 6
0012 5 CONY INUE

0d13
C

0014
0015.N

C.

CC16,
,0017
SOIR

SEQUENCE CHECK
IF, INDXSV+1-INOX). .0.0H. INDX .EQ.0 / GO TO 4

STORE CURRENT 1, INF IN DEFINItION ARRAY
11 00 17 1=1165

7 LINES; INDX0)2211-NE(I)
4r.

STORE CURRENT KEY AND INDX \IN SAVE AREAS
DO 12 I t11

12 KEYSV()usKEY(
I NM(Skim I NDX
GO TO 3

4

1

5 2 1

C CHECK FOR ENO OF PAGE. IF "SO WRITE NEW HEADING
0020 6 CALL PAGE t INDXSVIANCNI, ISTR T1.

C WRITE DEFINIT ION ON L !STING
11021 DO 8 14 STRT ,INDXSV
10022 WRITE (6,9) (LINESIIVJI,J1,65)
10023 'FORMAT (8)(v65 AI)
9024 8 CONTINUE

C *CHECK OR END OF DAT A
002'3 IF I.ST.EQ.1) GO TO 100

C KEEP 1. INE COUNT STRAIGHT, DON'T ALLOW PNGE OVERFLOW
=0026 IF ((LNCNT+!NOXSV+2)GT.55P GO TO 18

C SPACE GLOSSARY L I STING SO I TS iklETTY
0027

_ 0C2'e

0029
C030

7 0031

0032
0031

0034
0035

0036
0037
(:(08
0039,
CC4C
0041
0042
0043

0044
0045
004o
0047.

WRITE 6, 1(1)
10 -FORMAT II tid)
'INCREASE L INE- COUNT

LNCNT1NCNT+IN0XSV+2
GO Tp 17

10 1NCNT,.55
C SEQUENCE CHECK

17 IF !MN aNE.1) GO TO 4
GO, Tc) 11

C ERROR, REPORT ft

,4 WRILTE (4, 113) KEY
13 FORMAT I 1H ;.THE GOSSARY ENTRY WI TH KEY ,11A1,6 IS OUT OF SEQUEN

I(E°
FLUSH BAP DEFINI TION

200 14 I1, 11 .

14 KEYSV,I I)....KEY (I)
READ 15,1,END=.100 KEY,INDX,(LINEIJ/ ,J=1,65)
IF ,IKEYI /-.EQ.IBLK) GO TO 16
00 .15 °I "911
IF (KEY It/ aNEaKEYi 1,1 GC TO 1.7

1`5 CONT 'NUE'
GO TO 16

SET END OF, DA TA FLAG
99 LST=1

GO TO 6 a

100 STOP 7.

END

4 q'

a

r

.A

5.22
. 0001 . SUBROUTINE PAGEIINOX,LNCNT,WIRT)

C THIS SUBROUTINE WRITES PAGE HEADINGS AND KEEPS LINE COUNT STRAIGHT
0002 COMM% LINES(50,65)
0003 DATA IPAGE/1/
0004 ISTRTm1

C IS THERE ROOM FOR ALL OF THE DEFINITION ON THIS PAGE
0005 IF((INDX+LNCNT) ,LE.55) RETURN

C YES, RETURN AND PRINT IT
C NO,PRINT AS MUCH-AS YOU CAN

0006 LNPOSSm55-LNCN1i
0001 IF (LNPOSS.LE.2) GO TO 1
0006 DO 2 ImIILNPOSS
000'4 WW1TE 670 (LINES(1,J),J=1,65)
0010 34-F0RMAT (8X,65A1)
-10011 2 CONT/NUE

C SET STARING poINT FOR REST,OF DEFINITION
0012 ISTRTmLNPOSS+1

C WRITE NEW HEADINGS
0013 1 WRITE (6,4) IPAGE
0014 4 FORMAT (IH1,33X000MSC GLCSSARY'/,37X0PAGE 6,13//)

C GET LINE COUNT STRAIGHT
0015 LNCNTm0
0016 IF(LNPOSS.T12) LNCNTm-LNPOSS

C .UPDATE PAGE NUMBER
C017 IPAGE=IPAGE+1

.47 C GO BACK
6.0018 RETURN w

0019 ENO
r

tn.

'14

it is best to leave these celumns for other uses.)

With this in mind, you may want to make your comments

stand Out on the output 14.at1ng. All kinds of varia-
.

tions may be used.to accomplish this, limited only by

your imagination and creativity. (You ma); even wish

to put graphic illustrations in your program with

comment cards.) Two examples are shown below..

_

COMMENT ***** ***** *****

C

PLACE YOUR MESSAGE
FOR VOSTERITY HERE.

C

*
***** ***** ***** *0**

cccmccccuccdcacaccuccacccccccccmccmcccccacccaccacecccmcmc
c********A**t
c* *c
c* THE OUTPUT FORMAT FOR THE CORRECT ANSWERS IS CHANdED FOR EXACTLY *C
C* TWENTY QUESTIONS PER 7EST. *C
C* - *C
c************************#***********************************#*********c

macaccuccx,c6cuccucccacalccaCceccacccaccacaccacaccaccacu,

SELF EVALUATION FOR PART 11.

, 1. Describe a method of punching the first few comment cards
. il ,

,

of the.program on page'5.20 so that each cAtegory stands

out on the.page.

2. Write a set,of comment cards giving your name, this course

number, the date, and the'objective' of,this unit.

3. -Punch the comment cards that you wr te in 2., Place,them
. .

a

5.23

1

5.24

with the Fortran program that you punched for Part I,

Save all these &irds. You are gradually producing a

job that you can run on the computer.

0

PAAT III. Running the Job on_ the Computer.

If you have conrectly performed the activities and Self

evaluations in Parts .1 and II of this unit; then you*have a

documented Fortran program ready to be run on a computer.

Refer to the ACTIVITIES T E for UNIT #5 for thl procedur6
A

for doing this.

JP'

ASSESSMENT.TASK:-

Actually, you have already completed the assessment,task by

A
running your program on the computer. The documentation must be

correct, the computer output must be correct, and you must have an

80/80 listing of your program. Take the program deck (less control

cards), the printer output, and the listlng to your.instructor for

his 'approval.

WHAT NEXT? You're nearly ready now eo write your first program,

°

but first you must learn how to read and,write with the

computer, that is. UNIT #6 tells you about that.

0

a .

a.*

7,

-d

. .

UNIT #6 (COMS(0,

TITE: INPUT AND OUTPUT

RATIONALE: in order for a *computer to,perform useiul work on data,
4

o

it is necessary to-"read" those data ip.to the. computer..

Similarly, in order to obtain the results, it is neces-

. sarv for the computer to 'write" those results n Siiine

fogm of output medium. In this Lnlit, yotrWil1 disdover

how to construct rather Simple input/mitput commandb in.

Fortran.

OBJECTIVES: When you ifnish this,,unit, you will be able to construct

input/output. Fortran statements to

(i) read data from data..cards,

t (ii) write results'on the output printer,

(iii) carry out (1) and (ii) by means of FORMAT

statements.

You%will also demonstrate yourability to construct a

Fortran program with documehtation,and run it on a

computer.

PREREQUISIThS: UNIT #5

ACTIVITIES: The term input/output will be used .throughout this

. unit and- will'often be abbreviated I/O. Abe term is

Applied to anr and all instructioilp and processes,
o.

or.4:4

6.2

related.to putting information into a eomputer and

getting information out ora coMputer.,

IntrOduction

In this unit youvill learn to

READ, WRITE, and FORMITstatements.
s -

are implied by the following questions.

construct

The ideas

What to do?
Where to do it?
How to do it?

Fortran

covered

(READ, WRITE)
(on an I/0 device)
(by an appropriate FORMAT)

For aiven computer configuration, it may be

possible to obtain inpa from several different media,

such as cards,.magnetic tape magnetic-disk, a typewriter,
.

another computer, paper t'pe 9.t.oe Similarly, it 'may be
, 9,,

possible to place.the results 6.n.sevefa,1 diffeTent

such as paper,:cards, papqr'tape, :magnetic tape, magnetit

disk, typewriter, another eoMputer, etc. For Ok prefkotit

we will make use of only one type of input me:dil-um and one..

-type of output medium, namely

and

punchedcards for input

P

the printed page for output., .

-Figure 6..1 illustrates a computer with a card reader:41er

4

input and a printer,fOr. output.

..

AZI
.A!

s
P.

.s

.v

s.

6 . 3

Figure 6.1. Schematic representation of a computer
with its I/0 units.

2. READ and WRITE statements. ...

To read a data card, Fortran statements of the form

READ(u,f) lin

A'S

.- .
.- . ?,.

are-used. To write a line on the line printer, Fortran

statements.of the form

and

WRITE-(u,f)

i4RITEcu,f) list

are used. The parameter u designates an I/0 univntimber

or an integer'variable name which'takes-on the valUe.of

the I/0 unit numbar.. The parameter f is the statement

.
'nuMber of the corresi;Onding-FORMAT statement, and list
9

refers to a variable name..or to several variable names

separated.by commas. ...Each of these parameters will be

diseussed'in-detit the following paragraphs.
.

The IN-unl,t,number u is 6term1ned bir the computer

4

.- -

6.4

system being used. Table 6:1 identifies the (mit numbers

that you will need for running programs.

u
WATF1V
FORTRAN

360
FORTRAN IV

1130

FORTRAN IV

READ
(card reader) A5

.

5 t

.

WRITE
(line printer) 6

_
.

,. 6 1

Table 6.k. lAbrtran I/0 Unit Numbers

*

Examples of WATFIV Fortran READ and WRITE statements

aro shown in Figure 6.2.

READ(5,123) A,B,C
WRITE(5,321) A,B,C,D,INO.
WRITE(6,1971)

...., IR 1971 FORMAT(you wilI find out what goes here in the pages ahead)
123 FORMAT(you will fing Out what goes here in the pageA4ahead)
321 FORMF(you will: find:out what goes here in the pages ahead).

%

Ylgure 6.2. Examples Of WATFIV READ and WRITE statements.'

Examples of, 1140 Fortran READ and WRITE statements

.,are 'shown in Figure 6.3.-

sr:

41.

'it

A'

READ(2,444) I,A,Y
WRITE(l,13) A,B

44.4 FORMAT(you will- find out what goes here in the pages ahead)
13 FORMAT(you will find out what goes here in the pages ahead)

Figure 6.3. Examples of 1130 Fortran READ and WRITE statements.

ti

By using the valiable I/0 unit number in the READ and

WRITE statements, conversion from one comAter system to

.

another is effected with,minima1 effort. In Figure 6.4 is

shown the program segment taken from FigNe 6.3 in a form

v-

that can be used on either WATFIV or 1130 Fortran simply

by changing the first two assignment statements.

0 FORTRAN C W FIV
IN=2 . IN=.5

IOUT6-tro

READ(JA,444)1,A,Y REA6(IN,444)I,A,Y
WRITE(I013T,13)A,B WRITUIOUT,13)A,B

.
Figure 6.4. Use of variable I/0 unit numbers to

facilitate2changing from one computer system to ariother.

4.

An even better way,ris shlowil in FiOre 65, using the

DATA initialize on statement, a nondkecutable statement

that Initializes variables at the time the program is com-

The IA %Statement generally reduces executioh and
,

compile time.aRd akso-eonserves stoiage in the computer,

0-

6..4r

,A

6.0

since machine instructions for IN..32 and IOUTwal do not have

to be set tkp,, stored, and executed. _Use' the DATA statement

for initializing constants in a program whenever'poseible.
4

0 FORTRAN
ATA IN,IOUT/2,1/
READ(IN,444)I,A,Y

ITE(IOUT,13)A,B

C W FIV

DATA IN,IOUT/5,0.
READ(IN,444)I,A,Y.

Figure 6.5: Using the DATA initialization statement
for initializing variable I/0 unit numbers.

The DATA statement can be written in other ways. For

example,

DATA IN/2/,IOUT/1/

is equally acceptable. Notice that in both mays of writing

the statement the constants are always'to, the right of their

respective variable names and are contained within slash

.There must bo a one-to-one correspondence between varldble

names and'constants.
-1

The. list of a READ or -WRITE ,statement is of arbitrary

.tength; however, ivuanally is easier:for the novice pro-

grammer to manage A-program

statements with short lists

ments, rather than one READ

4 complex FORMAT statement.

that has several READ or WRITE

and several simple FORMAT'state-

or WRITE WitIva long list and
0

For this reason, several READ

WRITE statements with short lists may be'preferred to

one READ or WRITE Statement with a long list. With addi-

.9

t.

t-

to.

5-

. tional experience in writing end debugging (correcting,

- finding the errors in) input/output statements, you will

develop a style that is effective for you.

The parameter I refers to a FORMAT statement which

gives the form of the I/0 record. For our purposes, an

input record is a computer card, and an output record is, _

a line of print on the line printer. In other words, the

FORMAT stkemett describes the format or layout of a record.

3. FORMAT Statement's

The FORMAT statement describes the detailed layout of

.either data on data cards or the output on the lineyrinter.

When reading data, it indicates

(1) when,to get a,new data card,

.4('t) which columns of the data card are associatied

with each variable,

(iii) which columns of the data card are to be skipped,

and

(1v) the field descriptor-to be associated with the

data field.

When printing on the line printer, the FORMAT statement

indicates

(i) when to begin printing on a new page,

(ii) when to double space before printing,

(iii) when to single spaee before' printing,

(iv) when to print headings and what headings to

S.

5.

6.7

C.

6.8

(v). where to print the valuesson a line,

(vi), the field descriptor to be associated with the

values, and

(vii) the number of print positions to use to print

a value.

The ,fielcrdeScri.p.tur is usild as a template or mapping--

to translate between an internal machine respresentation of

the data (usually in yie binary number system) to an exter-

t_nal "people compatiule" Tepresentation -of the data (usually,

in terms of alphabetic cha>acters and the base ten nutiaber

system). The field descriptIrs and their corresponding

C,\lactions used in this unit are given in Table 1.2

Field

Descriptor Action

+

Fw.d

nX

nil

Perform integer conversion from or to a
field whose midth is-w columns.

Perform real conversion from or to a
field ,whose width is w columns with A
places to the right of the decimal
point.

Same as FA except for exponential,
form.

Omit next n columns from a dilta.card Or
insert n' blank characlers in'to.an out-
put line.

Print the n characters (including klanks)

immediately following the. 11 in the next
n positions on the output line.

\

Table 6.. Field Descriptors and Actions.

94

A

EXARPLES

Pe

Given the input data card (where V represents a

blank),

card columns:
punched values:

11111111112222
12345678901234567890123

16144920N30.72$1612345678

the REA) statement and its associated FORMAT stateMent

1

READ(5,I31) 1A:44K,'Y ft,

FORMAT(I5,F8.2,F5.1,I2,F3.0)
'Mg

.set tHe variables in the READ statement to the respective

values

r,

I: 492

A: 30.72 col. 6-13r

B: '12.3 col. 14-18

K: col. 19-20

Y: 678. col. 21-23 ,

a

MS.

For the same data card the READ statement aiV.,its associated
4

..FORMAT statement

11.

6.9

.1

.

READ(5,11) I,A,13,K,Y
FORKAT(12,F3.1,3X,F5'.1,2X,12 2X 173'.0)

set the variables-to the respective values

1: 00 col. 1-2 iO4nlIc data columns

,ar4.converted as
zeros

9,5

"

e>

ii

6.10

e

a.

'ZN

.r>

v."

Al 49.2

II: 30.72

K: 12

Y: 56.

col. 3-5

col. 9-13 a decimal point
punehed An'a gate
card takes preCe-
dance over-that in-..
dicated in the
FORMAT

c61. 16-17

col. 20-21

the rem;13clof
the card is ignored

The WRITE statement with its .associated FORMAT stow°

ment means blank)

976

tr

644

WRITW,987,6),

FORMAT(1H1,5X,2511IDENTIFICATIONVORIWEADING)

prints

1)

IDENTIFItATION.OR HEADING
.

in rint positions 6 throngh,30'at the top of.a new page.

. The same may be ifeeemplishéd by the statements

FORMAX(3111iMOVIDENTIFIaATIONVOR$READING)

'The leftmost cj..aL49s...ta ift a ftint line is not.actually

printed,

printing?

4.

but controls the spaefhg bepween liues of prin1; if..

is on a line printer, (This statement 1; notNible"

ler the typewriter/printex Used on the 11304

4

(0.

6.11A

You must designape into that character; other-

wise, cli!aoi3 may result.;1 The first field descriptor type

encounteied in a FORMA' stateMent, scanning from left to

right, must be an H. tThe first character to the.right of

the first H-.eontrols.the spacing between lines of p*int.

Table 6.3 gives they vemmon1y used control character4.

x.-
.

CARRIACt .CONTROL-

CHARACTER ACTIdN

1

0

blank

+ '

Skip to the top of the next
'page before printing.

Double space before printing.

Single space before printing.

Print on the current line.

4
Table 6.3. Carriage control characters for the line printer.

a

en the FORMAT Otatements

p."10..

121 FORMAT(1H1,20X,21HCAVENDAROFORVTHEMMOkTH;
123 FORMAT(1H0,26X,9HSEPTEN13ER)
125 FORMAT(1H ,21X,1HS.,210iHR,2X,1HT,2X,1HW,2X,1HT,

2X,1HF,2i0.0.,/)

the WRITE instructions

6.12

k

WRITE(6,121.)

WRITE(6,123).
WRITIt(6,12I)'

-r-.4p.. -:.

instruct the line printer to print the following headings

at'the,top of the next page. (NOTE: FORMAT statement 125.

/. d of a previous cgrd, a punch is placed

k .

T

s piinched on more than one card. To signal that a card is

/// l to be continUation

/ / .

/ / in column 6, called the continuation coltimn. Although any

punch except zero in column 6 signifies continuation, the

digit punches 1, 2, 3, simplify keeping track of the

number of continuation"cards. APPENDIX I gives the number

of continuation cards allowed.)
AP

4,-20 blanks ---L-P.CAENDAR FOR THEMONTH

SEPTEMBER

SMTWTFS

47leftmost print position-

S.

Let's look in detail at tliese three statements.

4

WRITE(6,121)

1E1: carriage'eontrol positions ihe paper so that priliting
wit1 start at the top of the next page.,

20)4 places _?0 blank characters in the next 20 print
positions.

2211: places the ilharacters following the H into the
next 22 print ositions.

De sure the character count preceding the H is correct.
In this example the 2211 indicates that the 22 charac-
ters immediately foLlowkng the H are to be printed. If
the character count is tleo.small; the compiler doesn't
approve; and if the charactek count.is too large, the
next-field descrip4or or a right parenthesis might.get
sisallowed. Count carefully!

6.13

In FORMAT 121, if 2011 had been used instead of 2211,
the compiler would not know how to interpret the char-
acters TH (in MaITH) and would indicate an error. Also,
if 2611 had been used, the right parenthesis, would have
been included in the string of characters to be printed.
Then; as the compiler continued to scan 6 the right, -it

. would not f.ind a rig4t parenthesis and would"signal that
an error had been committed.

WRITE(6,123)

1110: carriage
printing

26X: places 26
positions

control spaces the paper up tr...to lines for

(deuble-space printing).

blank characters in the next 265print

911: plqces the next 9 characters following the H int
the next 9 print positions.

WRITE(6,125)

10: carriage Control spaces the paper.up one line for
. printing (single-space printing).

21,Xc places 21 blank characters into the 4Xt 21 print
positions. . .

. ,
.

. , .

MS: places S inteAdie next pUnt position.

a

9

,

4

6.14

2X: places 2 blank characters into the next 2 print
positions.

etc.

INS: places S into the next-,print position.

/: inserts A blank lined,

, -

A slash.pr end of'reckd indlcator, tell)3 the'printer to skip to

the next record indicated by the carii4e.controlfollowthgit.

A slash followed b);'a right-hand parenthesis .5ctually defines

a blank record. Since a blank record contains a blank carriage.4*.s..

control, then single spacins results, producing one blank line.

A FORMAT of the general form

n FORMAT(/iHS,
.)

introduces a blank line before printing (double'spacing), while.

n FORMAT(/1110, . . .)

introduces two blankAines before printing (triple sliacing)-,

which can albo be accomplished by

n.FORMAT(//1146, .)

Notice tha t in an output FORMAT a carriage control is required

after a slash, unlesé there is a right parenthesis-or another

slash (both of which Indicatela blank record or line) immedietely

'following the slash..

Similarly,

n FORMAT(1NS, . . . /)

introduces a blank line after printing, and

n FORMAT(14,/.,. . //)
.

inttoduces two blaink linedkaft9r'printing.

n'FORMAT(ia, . . /IHS, . .)

a
4

0

4

o
*.

6.15

introduces no blank lines,.simp y skipping sto the next single

spaced record.

n FORMAT(1:106,
. . /MIL)

and

n FORMAT(11114,
. /1110, . . .)

both introduce a blank line (double spacing) between the two

printed lines,

n FORMAT(10, . . . /MHO, .

and

n FORMAT(lai
. . 1/1110, . . .)

1,13th introduce two bldan lines oetriple spacing.

Vertical spacing on the-page with vatious combinatio-ns

of slashes and carriage controls is 1imit9d only by your

tngequity and yovr needs.

Slashes may also be used in input FORMAT Stateinents,

meaning to skip to the next card.
;.

. r

* A systematic way of numbering FORMAT statements'Is
desirable;

By placing all FORMAT statementa at the-beginning or end bf a pro-

gram and setting aside, a set of.statement numbers .for FORMAT state-,

4.9. .

ments,'it is easy to add, delete, or use a previous FORMAT state-

. went. Such a conVention is extremely useful for debugging pur-
-

poS'62')

More discussion of I/0 Ctatements is contained in UNIT W11,

but yqu know enong poi to construct and uselsimple.IN instruc-

tions.

4. Refer to UNIT #6 AftIVITIES TABLE,. Attivity 1,
. .

i 101-
-4,

.:

V1

6.16

ii

k

5. Before you can-construct a complete Fortran program, you must

be able to tell the coimputer 'when to stop compiling the program

and when to stop the execution of the vrogram.

-The END statement t,rminatee the end of the compile or
, .translation pha se and must go at the phzsical, end of your pro-

.,

gram. The END atatement tells the compiler program .that therp

ate no more Fortran statements to compile or translate.

The S TOP or CALL EXIT statement terminates ,the execution

phase an4 must be at the logical end of your prOgram thit ia,

at the end of the flow through the flowchart of the program.

It is the last Fortran.statement executed.

While the statements CALL EXIT and STOP both terMinate the

;

execution of-the program, their functions may differ sliglItly on .

*, different machines.

Basically the intent of the CALL EXIT statpMent is to termi-
__/'

hate execution of the program ahd to Illturn control of,the computer

back to the monitor program that is 9:6 charge" of the overall opera-

tion, allowing the cemputer to receive another job. STOP, on'the
.

other hand, not only termin tee the execution of the Program4-but '

may also arrest the total operation of the computer so that it

muet be restarted with the START button before another job can be

processed.

On the 2314'1130 computer (MS 214) you should preferOly use..\

the CALL EXIT statementf otherwise, axe omput!ir must be lestarted.

On the IBM System 360, you.may use,eiti4r CALL EXIT or STOP,

since the compiler As programme# to interpret both satements as

retirning controlback tp the monitor program. On VATFIV, kwaever,

102

it is possible td receiVe a diagnostic warning if the CALL EXIT

statement is .immediately followed by END. (The reasons for this

are probably too sophisticated for you right now. If you really

want to know) ask an instructor.) Your program is rypt.incorrect

if this warning message appears.

Id summary,, use STOP or CALL EXIT (warning Possible)

360; preferably use CALL EXIT on the 1130.

SELF EVALUATION: You should noi4 be ready to construct Fortran

on the

programs using I/0 statements and run them on

a computer. gefer to UNIT #6 ACTIVITIES TABLE,

Activities 2 and 3 . ;\

ASSESSMENT TAU.: Please see your instructor. You will.be required

to construct a Fortran program using I/0 state-

ments and run it on both the 36PLand the 110.

WBAT NEXT? You are now ready to tackle serious programming.,,making
as

. use Of the computer's decision making capability. Continue with

Unit 8.

1

`1.

.1.03
V

s.

6.17

,UNIT #8 (COMSC)

TITLE: CONDITIONAL BRANCHING OR TRANSFER STATEMENTS

RATIONALE: One of the powerful capabilities of a computer is its

.

agility to make certain logical

its ability to do a certain set

certain condition

"decisions" - that is,

of operations under a

and to do Some alternate Set of opera-

tions if some alternate

unit you will learn how

making.-

condition prevails. In this

to use Fortran for decision-

,.

OBJECTIVE: At tfie end of this unit you will ,be able to construct

the four conditional transfer statements in Fortran -

the computed GO TO, the assigned GO TO, the aiithmetic

IF, and thd logical IF - and to construct.and follow

the logic of program segmdnts that make use of these

statements.

PREREQUISITES: UNIT #6 1

ACTIVITIES: The first set of activities (A-11) is intended to

acquaint you with the forMs of the four types of

con4tional,tranefer stat,mentd and how these stater

manta operate.. Activities -E-G are intended to show

you how and wten tivl four statements uay be used in

actual'problem solving situations; A Sample problem .

are .

.1

4

;

11

is given, and five sample programs are used to illus-

trate the statements.

A. ComputeciG0 TO.

Already you have been introduced to the unconditional

0 TO statement, In this unit you will learn about two

more GO TO statements in which the transfer is conditional,

rather than unconditional. The first`of these is the corce-..

Outed GO TO, and.the second is the assigned GO,TO.

Reier to the UNIT #8 ACTIVITIES TABU, Activity 1.

Several things about computed GO TO stateMents need

special emphasis:

; 1. In }the general form of the computed GO TO.,

GO TO (111, n2, ..., nk)

i is called the index and must be an Itielgsr_ name.

It must also be p...Le.s.,9ttst hy. a comma.

2. The relationship between the index and the state-
,

pent numbers in the list, nl, n2, ..., nk, is

22tlitional. That is, when the index is one, the

first statement number iskised; when the index is

A
two, theesecond staOment number is used; etc.

3. Normalli the value of the index ghould not be

allowed to exceed the number of statement numbers

in Ulla list. (lk) In IBM Sy8tem/360 FORTIAN,

hadever, if the value of the index does exceed the

number of statement numbers in the list, then the .

,
411

_A

Yr

s'.

first executaby,statement following the comepted GO

TO is executed.

4: The value of the index is never allowed to be zero or

negative.

B. Assigned GO v.

The assigned GO TO is

the compute'd GO TO, and it

probably less often used then

is not available on all com-

pilers. (The assigned GO TO is not available in 1130 0

Fortran.)

Refe4i. to UNIT #8 ACTIVITIES TABLE, Activity 2).

Wen the assigned GO TO is used, the index, which is

i in the general form

Ain 4 (n1, n2, L. n3)

must have previously been assigned one of the statement
4

numbers contained irlithe list,by use of an ASSIGN state-
*

mept. The index.is not related o the positions of the

staten;ent numbers, as in'the case of the computed GO TO;

but transfer is to the statement number in the list which

has been assigned to the index.

In generals the computed GO TO can be used to accomplish.

anything that the assigned GO TO can.do, as you'll see in

the example later in this unit.

C. Arithmetic IF..

The arithmetic IF is an especially important condi-

tional transfer statement. While-the comppted GO TO and,

4 106

8.3

8.4

10

et

--e.

.1

the assigned GO TO allow any number 6f possible transarst

7.

the arithmdtic IF provides branching only for the conditions

of negative, zero, and positive.

Refer'to UNIT #8 ACTIVITIES TAB

\10,

The arithmetic expression e in the general form

IF ,.(e) nl

can be any valid integer or real arithmetic expression. For

example, 41,

(X**4#3.0/X) 5,6,20

is a valid IF statement, as is

IF(N)10,30,5

Two of the conMitions may cause transfer to the same

.statemenx. In other words, a statement number may.be used

/e--mice. For example,

IF(4)5,5,10

causes transfer to statement number 5 if the argument is

negative or zero and to statement number 10 if the argu-

ment is positiVe.

D. Logical IF

:Another type of ILstatement, the logic IF, is

available with many pmputer aysgtems. (T14.2.0., IF is

(
available in IBM 1130 Vertran.). The logical'IF branches

on one of two conditio3v, depending upon whether the argu-
,

ment is true or falses
.0.3.APRao.

Refer to 'UNIT #8 ACTIVITIES T4BL1,, Activity 4.

197

4.

,
to ,

';4

. .-1--

.10.

.
S.

There.Are three..main pitfalls ieusing_the logieal
J.'

,

a

1. If the argument caAnot be determined to be true

Ale

or false, an error will result. Whenever you

write a logital IF, aek yourself.the question,

"Is the argument tve or fal,se?",

. For example.

IF(5*N)G0 TO'6
7 .

is nbt soreect.-1. Is !-5* N true 0.r is.-it false'r
.

a

-
it'S nonsense ei761.te-WM.the questilonr'''

V

On the other hand,

IF(5.GT.N)G0 TO 6

is coriect. 'Whether 5 is greater than N (the "true"

41.1[1f1,

case), or hot. (the "false" case), can .bedetermined

immediately when the value of N is known.

2. Lack oflunderstanding of the operation of the logi-.

calIF can cause incorrect results in a progralu. Fix

in mind firmly'the paths of execution in the logical_

Suppose Sl.and S2 represent two executable
.

Fortpen statements. Here is a flowchart for the

general form of the logical IF

IF(e)S1

S
2

skirt,

provided that SI is not a transfer statement:,

Jo.

.

MI

.Nbtice that only 52 Is executed if the argument is

'false tut that both S, and S
2

(in that order) are

executed if the argument is true.

Of course,.if Sl'is av.ttansfer statement, then

only S2 will be executed if the argument iskjalse,

and only SI will be executed if tWatgumot

Here is a.flowchert for the general.form.

111 IF(e)G0 T(} 5

skiotrue.

42,

'?''A

t.

3. Do you see anything wrong with the following ,

. satements?

coo

IF(N.GT.5)G0 TO 2
2 14.414-1.

8. 7

You should! Look ai a flowchart for the state-

. menta.

The stateMent)1..N+l is execaed if the'argument is

true; it is also executed if the drgument is false!

Nonsense! The IF statement might as well have been

left out!

E. Puttinrit all together.

How do you decide what type of conditional transfer

statement to use? The answer to that questiOn is deter-

mined by the.pfbbletp itselk and in part by your prefer-
.

puce.

o

8.8

In geneial assuming that the logical IF is avail-

able on the computer yOu are iaing, logicql IF's and

arithmetic IF's can be used interchafigeably. This is

particularly true if only two brandies from the 'arith-
.

metic IF are beina tyeed. .For example,,

IF(X) ,5,7

r

could be used in erchangeably with

TO.0)G0 T
eMent #5 goes here.

If all th

used, how

required.

4..E.0.0)G0 TO 5
tement #7 goes here.

branches of the arithmetic IF are being -

then two'logical IF statements are

r example,

IF005,6,7

and ,-

IF(X.GT.0.0)G0 TO 7
\IF(X.EQ.0.0)G0 TO 6
Statement #5 goes here.

could be used interchangeably.

The computed GO TO Is particularly useful when

several branches are needed, especially-if the condi-

tion of transfer is based on consecutive integers. For

Th

example, suppose that you wish to make a count of_stu-

- dents who axe freshmen (coded 1), sophomores (coded 2) ,

-112

4

8.9

juniors (coded 3), and seniors (coied 4). One computed

GO-TO can teSt for all four cases and tranafer to the

proper countes. This is much simpler tan using three

logical IF's or.two arithmetic IF's which w nld be re-

quired to accomplish the sami task.

The assigned GO TO is very general, since state-

1 2
ment number assignments are determined by whatever con-

.

ditions the progrSmmer wishes. It does Aot depend upon

consecutive integers as the computed GO TO does; it does

not check just for positive, negative, or zero or just

for true or false. Any set of predetermined conditions

may be used for statement number assignments for the

index of the assigned GO TO. As already pointed out,

however, the same thing can be accomplished by assign-

ing values to the index of the computed GO TO.

F.' Simple counters.

In a moment we'll look at an example that illus- '

trates the conditional transfer statementb. But before

we do that, you need to know about simple integer counters.

Refer to UNIT"#8 ACTIVITIES TABLE, Activity 5.

G. A sample program.

Now let's look at some programs Which make use of

IF, computed GO TO, and assigned GO TO statements. These

programs-will also illustrate the use of a simple integer

-`\ counter. Here is a statement of the problem:

Suppo we have A set of data cards, each,of which

0."

e

has a student's name 4nd JD nuclibt3r, and his age,
_

sex, and classiffeation punched in the columns

' shown below.

Columns 1 - 20r. Name

Columns 22 - 25: ID number

Columns 26 - 27: Age

Column 28: 1 for st!man

2 for sophomore

.\-It 3 for junior

AlLf sehior

Column 29: 1 for female

2 for male

3 for last card

We want a list of ID numbers and a head count of

male students whba°ale freshmen or sophomores or

who are under 21.

I.

There area number of wayb te program the solution

of this problem; we will examil; five programs with

their flowcharts. FigUre 8.1 shows a solution that

uses only arithm4tic IF statements for decisions, and

Five 8.2 cOntains the statue program using only logical

IF statemenia. Figure 8.3 shows a program using arith"

metic IF and computed GO TO statements for decisions,

while Figure 8.4 shows a program using lOgical IF and

comPuted GO TO statements for decisions. Finally, in

, Figure 83 decisions are made with logical IF, computed

GO TO, atl# assigned GO TO statements.

113

,

4.

DATA INJOUT/5 ,6/ /0/
10. READ (IN,1) IAGE,

IF (JSEX-2)10,117,12
12_STOF
11 IF(KI,ASS-2)8,81,13

IF(IAGE-2148,10,10
8 _K0UNTw.KO1JNI14-1

WRITE(IOUT,2)1(OUNT,ID
CO TO 10

1 FORMAT(21X,14,12,2I1)
2 FORMAT(111 ,I5,1H.,2X,14)

END

a

e,

. Figure 8.1: Program using only arithmetic IF statement for decisions.

114

ROI

115

f\2

^
1

Initialize counter

./1

Read ID,IAGE,.

KLASS ISEX

A-

A

Yes

.11

4

C.

No

'Yes

Yes

Yes

ggiengso.eagg44444.1444*.a.

Increment counter......_ _....._._
"44444.441g

Writd count
and ID

.4

g

DATA INIIOUT/516/:KOUNT/0/
10 READ(IN,1)ID,IAGE,KLASS,ISEX

IF(ISEX.EQ.3)STOP
IF(ISEX.NEGO TO 10'
IF(KLASS.U.2)G0 TO 8
IF(IAGE.GE.21)G0 TO 10

8 KOUNT-.KOUNT+1
WRITE(IOUT,2)KOUNT,ID
GO TO 10

1 1 FORMAT(21X,I4II2,2I1)
2 FORMT(111 ,I5,111.,2X,IA)

END

The program can also be written with only two IF
statements.

DATA INJOUT/5,6/1KOUNT/0/
10 READ(INMID,IAGE,KLASSIISEX

4 IF(ISEX.EQ:3)STOP
IF(ISEX.NE.2.0R.KLASS.GT.2.A)D.IAq.GE.21)

$, GO TO 10
KOUNT*OUNT+1-
WRITE(IOUT,2)KOUNT,ID
GO TO 10

1 F04/1AT(21X,14,12,211)
2 FORNAT(111 ,I5,111.,2X914)

END

Figure 8.2. Programs using only logical IF

decisions. (These programs cannot be rpn

computer because of the logical IF stateme

*statements for
n the IBM 1130
s.)

O.

116

t.

soP

Start) p.

--]Initialize counter

Read ID,IAGE,
KLASS ISEX

1

ISEX

Stop

2

1

Increment counter

--.....,nma.,oraw......namoparomme......

Write count,

4%.

1

ea.

'DATA IN,IOUT/50/,KOUNT/0/
10 READ(IN,1)ID,IAGE,KLASS,ISEX

GO TO (10,11,12),ISEX
12 STOP
11 IF(KLASS-2)8,8,13
13 IF(IAGZ,-21)8,10,10
8 KOU1T.1OUNT+1

WRITE(IOUT,2)KOUNT,ID
GO TO 10 AtPe

1 FORMAT(21X,I4,12,211)
2 FORMAT(111 ,I5,1H.,2X,14)

END

.

0

Figure 8.3. Program using,coMputed GO TO and .

arithmetic IF.statementa for decisions.
co

1. 1 8

fe*

Start

Initialize counter.. I

INDEX..1
r

7.4>

Idcrement counter

Write count) ID .

V

(

DATA INJOUT/5,6/,KOUNT/0/
10 INDEX=1
9 READ(IN,1)ID,IAGE,KLASS,ISEX

. GO TO (90.1)12),ISEX
12 STOP
11 IF(KLASS.LE.2)INDEX2

IF(IAGE.LT.21)INDEX=,.2
GO TO (9,8),INDEX

8 KOUNT-KOUNT+1
WRITE(IOUT)2)KoUNT,ID
GO TO 10 .

1 FORMAT(21X,I4,I2,2I1)
2 FORMAT(111 ,15,111.,2X,14)

END

Figure 8.4. Program* using computed GO TO and
logital IF statements for decisions. (This
program cannot be run on the IBM 1130 computer
because of the logical IF statements.)

.1.20

Initialize countep

ASSIGN 9 TO INDEX

ASSIGN 8 TO INDEX

ASSIGN 8 TO INDEX

. INDEX

Increment counter

Write count, ID

DATA IN OUT,KOUNT/516,0/
10 ASSIGN 9 TO INDEX
9 READ(INMID,IAGOCLASS,ISEX
GO TO(9,11,12i,ISEX

12 STOP

11 IF(KLASS.LE.2)ASSIGN 8 TO INDEX
IF(IAGE.LT.2)ASSIGN 8 TO INDEX
GO TO INDEX,(9,8)

8 KOUNTKOUNT+1
WRITE (IOUT ,2)KOUNT , ID

GO TO 10
1 FORMAT(21X,14,12,211)
2 FORMAT(1H
END

Figure 8.5. Program using computed GO TOasSigfied -

GO TO, and'logical IF sta,tewents. (This program
cannot be run on the IBM 1130 computer because of
the logical ip 'and assigned GO TO statements.)

rf

ct 1,2,2 ,

, .

8.16

1'

Which of these programa cannot be run on the 1130

computer and why?

sato

SELF EVALU ION: Write a Fortran program for pr/inting the Dean's

4

List. The data input will consist of a set of

data cards, dach containing a student's ID nuM-
r--;

(columns 1-5), the student's classification

code (column 6, explained in the table below),

the number of hours in which he is enfolled

(columns 7 and 8), and his.eade point average

(column -9-13, decimal point punched witft three

digits to t e right of the decimal point).

Freshman

Sophomore

Junior

Code.

1

2

3

Sedior 4

Special. 5

123

4

469

In der to qualify for the Deanls List,.suppose

that a student must'be a freshman, sophbmore,

)
junior, or senior; must be enrolled in twelve or

more hours; and must have a grade point average

of 3.50 or better.

The last card'will haAonly a 6 punched.in

' column.6 where the classification code is punched.

The program is to Take a list of ID numbers

and grade point averages of students who qualify

for the Dean's List. Terminate execution 'when the

_last card is encountered.

Use at least one computed GO TO, at least

one logical IF, and at least one arithmetie IF. -

in your program.

.B,un your program on the 360 computer until

it ii correct. Punch the set of test data shown

below for trying out your program.

11111111112.
12345678901234567890

111114163.678
222221152.678
333332123.500
4444431b4.000
555555163.S50
666663181.015-
777772133.750

6

IC

ASSESSMENT TASK: Turn in to your instructor the printer output and

the program deck'for the problem you worked in. the

Self evaluation section.

124

8.17

8.18

Your instructor will give you additional

assessment tasks. You will be required to con-
,

struct ant or more Fortran programs and/or pro-

gram segments making use of conditional ansfer

7statements.

WHAT NEXT? Go ahead to UNIT 1/9.

s.

UNIT #9 (COMSC)

t4TITLE: ARRAYS AND SUBSCRIPTED VARIABLES

RATIONALE: In order to handle large groupsdof data which share

some common characteristic, such as points on a curve

or grade point averages of students enrolled in a uni-

versity, some means of grouping these data together under

a single variable name, recognizing that the data share

a common Characteristic, and some means of referring to

specific data items, recognizing ale uniqueness of each

data item, are needed. In Fortran, arrayg and subscripts

are used for thip purpoSe.

OBJECTIVE: At the end of this lesson you will be able to construct

0:00° a Fortran program that makes use of one-dimensional and/

or two-dimensional arrays.

PREREQUISITES: um #8.

ACTIVITIES: Activities A, B, and C are designed for students who

cannot identify the terms pip?s,c_rAt.. and element as used

in a set (or an ,.al.s..119 of items. If a set of .values of

A containing n elements in the notation

xl* x2, x3, . xn

and if a set of values of x containing n rows and m

9.2
('

columns in the notation

X X
2,1 2,2

.X3,1 9,2

411,1 X11,2

x X
1,3 11M

X X
2,3 22M

K3,3 4 4 X3,111

Xi1,3 4

are meaningful to you, then skip to Activity D, page 9,6

If these notations are not meaningful to you, then go

through Activities A-C. Activity A describes arrays;

Activity D describes subscripts for arrays of one dimen.4-

sion; and A vity C describes arrays of two and three

dimensions.

A. What is an array.? An rray is sim ly a group of itmes with

some common property. A dozen egks is an array of eggs,

sharing the common property of "eggness." A group of red

things is an array if red things, sharing the common property

of "redness." People cati be grouped into arrays in many

ways: an array ,eif malis and an array of females; an array

of tall people and an array of short people, provided that

tall and short are properly defined; an array of blue-eyed

people and an array of brown-eyed people; an array of red-

halted people, an array of blond-haired people, and an array

of all the rest; or simply an array of people.

In Poruran, arrays are usually composed of numbers;

but they may also be c6mposed of alphameric data, alphaL

I.

I tL k.t!

4

41..1 (it virt.;; d,it For

exnwpic, I)../C WY, . tr I Ii AI (ont a ining the grade

pi) !:;t.'11,:ir(t.r. We '44.,L) ti 11:1V4,. .111 I lily Of real

InC. t.i11 ii d it in an ,t)r.ry it e ti.!lerred to.

.1. 4- 1 't I I I .;.1 1 ,

t '.v.i-;1' . \ iW i I uumner t 11.1t

t- ;r. .,t1.1,,t1 in the artay ot nu individual

t':h hit onlizicript is a

!, '.v.111(1 I hi' A. 11 .1 .3 S111.):1. I I pt

I (41 t

i:011 111 (. repre--

(.11114. .1+.' I

. i

I ti,j1 .1

manlier; but.

Ind ictILed in the

convt..!nient..

r) , po I trt I t, number 3.

you ti.t11 I-. di)i 116 that do you? Egg

nUIfI)'I 3 I:, (plc 1 Z.,y 'twine, in the third pos

t t00,c0 point that was nrhi-

tuartlY dr-ise0). lti1 Al the other eggs-aro uniquely

1.28

9.3

9.4

speciped by thequmber ofAhe position in which-each egg

is located.

.o
Considering thepe eggs as an Ars_sy. of eggs, We can re-

fer to the positional\numbers as clul.21s12.1p1s_. We could refer

to the egg in the ttion as egg3, read as egg sub-

three.

Example 2. .Consider the days of the year.. They too

form An array, and each day is uniquely specified by a num-

ber. For example, the birthday of Abraham Lincoln is the

43rd day of the year. (It's also February 12, of course;

we'll consider that notation later.) In array jargon, we

could say that Abe was born on dans or day-sub7forty-three.

Example 3. Consider the seats in an auditorium as an

'array of seats. Suppose that you taxa assigned seat number

108, or Seat-sub-one-hundred-eight. That seat number defines

uniquely a position in the auditorium in which you may sit.

Do you new have a firm grirsp on the noti"on oisubscripts

as positional numbers? If ot, ponder th amples again.

If so, then consider this quo tion: es it mak sense to

speak of position 5 1/2 in the egg carton or seat .32 in

the auditorium? Hopefully you answered, "Certainly not!"
.

In thb definition of subscripts at the beginning of Activity

2, a stib-script was said to be lataslj that restriction should

make sense to you now.

The, arrays considered in this section are said to be

one-dimensional arrays because they have one subscript or

one positional numbergassociated with each position in the

4.

arrays. There are other ways of looking at the positions

in arrays, however; one of these will be considered in the

next section.

C, Let's go back,to the eggs .and number them in awdifferent

way.

Row 2

Row 1

Clearly, there.are two row's of eggs, each containing six

eggs. We can eTecify uniquely any egg in the carton now by

stating two positional numbers; for example, the third egg

-on row one is,egg1,3 or egg-sub-one-three. (The row number

is arbitrarily.. stated first.)

sider again the year as an array of days. The year

can also be thought of as being diviaed into groups of days,

or months. Thus,'the 43rd day of the,. year may also be re-

ferred to by saying "the 12th day of the 2nd month," or day2,12,

.9.5

,
having two positional numbers.

i.
.Or consider the seats of an auditorium. They may.be

numbered' by row and by seat - row 5, seat 4, for-example,

or seat 5,4* .

V

In these examples, two positionarnumbers or subscripts

were used in order to identify uniquely each position in the

array. Such a system of numbering is said to be two-dimen-

sional? and the arrays are two-dimensional arms..

13o

, 9,6
-7--

Whether an array is one-dimensional or two-dithensional

-is'really a matter of preference. Certai types of problems
%

may, however, be more easily accommodated by a one-dimensional

drray, while for others a two-dimensional array may be better

One-dimensional arrays do require less execution time in the

'computer.

What about the eggs in-the carton? Both ene- and two-

ettrt

_a

dimensional arrays can conveniently be used. In other words,

to think of the eggs as twelve eggs or as two rows of six

,eggi each makes little difference probably. But with the

year considered as an array of days, we usually prefer to

think in terms of a two-dimensional array - that is, months

and days.

. In the case of the seats ig an auditofium,-it's definite-

ly easier to find a seat if you are given the rout and the,

seat number; rather than just waingle number for the seat.

There are also arrays of more than two dimensions. For

example, we could think of the year in terms of months, weeks,

and days. The third clay of the second weak of the sixth month

would be designated day62, having three subscripts. Or the

seats of the auditorium might be.divided into sections, rows,

and seats. We might have section 1, row 5, seat 3, designated

seat1:60. These a.re ex9mples of three-dimensional

D. Refer to UNIT #9 ACTIVITIES TABLE, Activity 1.

SELF EVALUATIONS Refer to-UNIT #9 ACTIVITIES TABLE, Activities 2 and

3.

131

ASSESSMENT TASK: Please see your instructor. You will be required

to write a Fortran progriam making use of arms'
a

and run it on a computer.

WHAT NEXT? Handling arrays in the problems in this unit has boon

rather cumbersome. In UNIT 1/10 you will learn a simpler way of

handling arrays.

UNIT 1110 (COMSC)

TITLE: LOOPS

RATIONALE: One of the great assetS of a computer is the ability to

repeat a set of oPerations time and time again. Many

applications in data processing and problem solving re-

quire iterative procedures,.that is, procedures requir-.

ing repetition of all or parts of a program. The term

usually applied to such repetitive operatirs is loo ing

or loops. In this unit you will learn more about loop-

ing in Fortran. You will also get a better handle on

making use of arrays in programs.

OBJECTIVE: 'At the end of this unit you will be able to construct

Fortran program loops, using the po statement.

PREREQUISITES: UNIT #9

ACTIVITIES:

'

A. Su4ppose that you were given the task of writing a program

segment that would find the sum of the elements of a one-

dimensional array. One solution to the problem is shown in

Figure 10.1. A flowchart is shown in Figure 10.2.

Notice that a logical IF might be used.instead of the

arithmetic IF in li,ne 5. Nhat logical IF would you use?

10 .1 1 33

10.2

a

C***** PROGRAM SEGMENT FOR SUMMING *****
c***** THE N ELEMENTS OF T Y A, *****
c***** USING K FOR THE COUN . *****
c**

C***** INITIALIZE SUM AND COUNTER.
1

2

C***** PERFORM THE SUMMING.
2 SUM,..SUM+A(K)

C***** INCREMENT COUNTER AND TEST IT.
4 K-K+1
5 IF(K-N)2,2,3

C***** SUMMING COMPLETED. WRITE liESULTS.
6 3 WRITE(6,10)SUM

Figure 10.1.

,

Program for summing elements of an arra .

Initialize
counter
and SUM

Figure 10.2. Flowchart for summing elements of an array
showing loop,

134

10.3

Let's analyze the program segment carefully, using the

line numbers in the left margin.. Lines 3 - 5 form a program

loop, that isja set of statements that are repeated. In thsts.

'

case, the loop is to be executed N times, since there are N

elements in the array to be added into the sum. After the N

elements have been added, the looping in discontinued; and;

in this particular program segment, the WRITE 4statement at

nee 6 is exeCuted.

There Are three statements altogether that control the

, looping: lines 2, 4, and 5 of the program segment. The

three statements initialize, increment, and test the counter.

There are three keywords here:

and test. Don't fOrget them, because you will use them later.-
Initialize, increment, test.

Fortran provides a special statement for looping that

handles the detaile of .loop control fpr the programer. -This

'statement is the DO statement. The three.control statements'

in the program segment (1inetk2,_4, and 5) that initialize, .

increment, and test the counter can be-replacea with a single
6-

It. DO statement illustrated in Pigure 10.3. A flowchart is ahqwn

in Fi,gure 10.4. In the DO statement', "Km1,N,1".contains the

three control functions: :It...1" initializqs the counter to 1;

"N" serves as the test value (that is, as-long as WI, looping

will continue); the last'"1" serves as ihwincrement value

135.
r

10.4

C P GRAM SEGMENT FOR SUMMING
HE N ELEMENTS OF AN ARRAY,
SING A DO STATEMENT-.
SUM..0.0

DO 2 K..1,N,1
SUM..SUN+A(K)

CONTINUE
ITE(6,10)SUM

v

Figure 10.3. Program segment with DO
statement for looping.

Figure 10.4. Flowchart for summing N
qlements of an array, using-a DO loop.

136

A

es

(that is, K is incremented by one each time). The first

part of the DO statement, "D0'2," defines the I...Iasi' of the

loop, consisting of the statements immediately following

the DO statement down to and 142114(licia statement number 2.

In this'particular case, the range consists of two state-

ments. (The CONTINUE statement is actually optional in

this case; we could have placed the sta ement number 2 on

SUPP.SUM+A(K) and omitted the CONTINUE statement. The pur-

pose of CONTINUE will be discussed later.)

When the loOping is completed, that is, when K.is no

longer less than or equal to N (K is greater than N, in

other words), then the first executable statement following

the.last statement JAI the range of the DO is executed. In

the example, the 'WRITE statement would be executed.

The CONTINUE statement is'a'useful way to delimit the

range of a-DO. It also provides a way of visually delimit-

ing DO ranges by allowing the "body" of a DO range to be in-

dented from the DO and the CONTINUE statements.

,Place the following program s

NU

ent in parenthetized.or

I'indented format. Place a CONTIE tatement at the-end pf

each DO loop. (See the last page of this unit for the .solus:-

tion.)(

DO 17 I=1,N
DO 13 1041,N

SUMY..0.

DO 15 .1.$1.,N

15 SUM.xSUMM(I,J)*B(J,K)
13 C(10..7).i.SUM

17 CONUNUE

137

10.5

B. Refer to Activity 1 of UNIT #10 ACTpITIES TABLE."

C. -Loopin6 can be accomplithed in other ways besides that of

using the DO statement. You have Seen one way already in

the saMple program in Eigure 10.1,4n which a counter and

an IF $tatement were used.

me loops are handled more easily with DO statements,

such aS in the program segment in Figure 10.3. But some

loops 4re handled more easily by-using a single conditional
,

transfer statement6-- an IF statement or

statemeInt for example. Let us consider

trating looping without a DO statement

a computed GO TO

a problem illusr

Suilpose that we are to use a 'computer for compiling

the D s List, and suipose that a student must have a

grade point average of 3.0 or better in order to be on the

Dean'p 4at. Also suppose that there is one data card per

138

10.7

student, each of which contains a five-digit ID number in

columns 1-5, the student's classification in column 6 (1

- for freshman, 2 for sophomore, 3 for junior, and 4 for

senior), and the gmide point av rage in columns 7-11 (deci-

mal point punched). if the enrollment is very large, it

would be inconvenient to count the cards so that the exact .ith

number would be known; iO4oulilbe More convenient to pledg

a "sentinel" card or a "trailer" card at the -end of 'the data

cards and program th.e computer to recognize that card as the

\last rd. One way to do this would be to place a card with

a 5 puncfled in column 6, the classification column, at the

end of the data. Since only 1, 2, 3, and 4 are legitimate

classification codes, a 5 can be used to terminate the loop.

A computed GO TO is very useful for this purpose.

A program to prepare the Dean's List is shown in Figure

10.5. The flowchart is shown in Figure 10.6. This example

is similar td the problervfor self evaluation in UNIT #8.

C P GRAM FOR COMPILING THE DEAN'S LIST
21 READ(5,1)ID,KLASS,GPA
1 FORMAT(I5,I1,F5.3)

GO T0(10,10,10,10,11),KLASS
11 STOP
10 1F(GPA-3.0)20,21,21
21 RLTE(6,2)ID,GPA
2 FORMAT(1H ,15,2X,F5.3)

GO TO 20
ENb

10.5. Program looping controlled by a computed GO TO.

1 3

10.8

Figure 10.6. Flowchart for Dean's list pxoblem.

Notice in the computed GO TO that,execution is termi-

nated whenever the classifisation is.5,

continues as 3;ong as the classification

but that looping

is 1, 2, 1, or 4.

The computed GO-TO could, of course, be replaced With

.14 Q

an IF atatelnt. For example, the arithmetic IF

IF(KLASS-5)10,11,11

or the logical IF

IF(KLASS.GT.4)STOP

could be used.

ThE're-are-uome alternate ways of .Checking for the last

card In this example. We could have used a blank card for

the trailer card and checked for a classification of zero or

for an ID number of zero. (Remember that blank numeric fields

are read as zeros when the computer reads the data cards.)

Another wa would be to place a "nonsense" number, such aa

9.0, in the field containing the grade point average and

check for that.

The point of this example ia simply this: looping may-

be accomplished more easily tn some cases without the use of

DO statements.

How de you decide whether to loop with a DO or tO use

some other means of looping? Here is a "simple rule of

thumb" to help you decide:

If the loop makes use of a counter, then probably you

should use a DO.

If the looping is controlled by some condition based

on thelnput,data or some condition set lay the pro-

gram, usually tested by some conditional transfer

statement,.then probably you should not use-a DO.

10.9

_

10.10

This rule is certainlyknot absolute, however,ond should

be applied only as -a kind of starting point.

SELF EVALUATISN:

A. Refer to UNIT #10 ACTIVITIES TABLE, Activity 2.

B. Refer to UNIT #10 ACTIVITIES TABLE, Activity 3.

C. Write a program segment that will find the sum of the ele-

ments of a 0,10-diensional array containing N rows and M
,

columns. (Answer on next page.)

ASSESSMENT TASKS: Please see your instructor. You will be given

a problem-for which you are to,construct a For-

tran program, makinvuiva-of one or moresDO loops,

and run it on a computer.

WHAT NEXT? You may go to UNIT 1/11 or to UNIT #13.

112

4".

(

Answers to problems in the text of UNIT #10

C INDEVTING THE "BODY" OF
C THE RANGE OF A DO LOOP.
c

'DO 17 Ifl.1,N

DO 13

SUMO.
DO 15 J.:T1,N

SUM..SUM+A(I,J)*B(J,K)
15 CONTINUE

C(1.41).,SUb.
13 CONTINUE
17 CONTINUE

C SELF EVALUATION C.
C ASSUMV'eTHAT N<11 AND THAT 11<21.

c

DIMENSION A(10,20)
C SUMMING CAN BE DONE BY ROWS OR BY COLUMNS.
C EXAMPLE OF SUMMING ACROSS ROWS.

SUM..0.0

, DO 10
DO 11

SUM.T.SUM+A(I,J)

14 CONTINUE
lb CONTINUE

C EXAMPLE OF SUMIIING DOWN COLUMNS.
SUM..0.0

DO 12 Ji.1,M

DO.13
SUMuSUWA(I,J)

13 CONTINUE
12 CONTINUE

UNIT 1111 (COMSC)

TITLE: INPUT, OUTPUT, FORMATS

RATIONALE: Although the input/output discussions in UNIT #6 oamso

-7should-provide the-essentials-fur-readidg ddtd and. print--

ing results on the line printer, there are additional

features that provide simplifications or capabilities

that are useful. As in UNIT #6 (COMSC), the card reader

will be used for input and the line printer will be used

for output.

When you complete this unit you are well on your

way toward being able to use Fortran da an effective

computational tool. Many of the programs which you

develop in the remainder of this course should be use-

ful to you throughout your college career. We feel that

being able to understand and write computer programs is

one of the most important skills that you can learn. It

is almost of the same level of importance as.the ability

to communicate effectively both in oral and written form.

There: is an appendix that sUmmarizes FORMAT state- 11!

manta at the end of this Unit.

OBJECTIVES; When you finish this unit, you will be able-to construct

iortran IV READ and WRtTE statements egg their associat--

ed.FORMAT statements to handle a verify of input/output

f4

11.2

situations.

PREREQUISITES: UNIT 1/10 (COMSC).

ACTIVITIES: You should make use of a variety of READ, WRITE, and

.FORMAT statemehts in the programs required by the other

COMSC unitn. This will help you to become proficient

in performing the tasks of reading and writing. It also

141.11 -help you to organike ahd present results in a read-,

'able form. .Furthermore, by inserting temporary WRITE

statements at key points in your program, you should

be able to debug the program much faster than by trust-

ing to luck. 4,4k,

Form4t field descriptors covered in UNIT #6 (COMSC)

were .

F, H, I, X,

Additional format field descriptors covered in this unit

are

A, D, E, G.

Other format field descriptors (L, T, 7.) exist, but will

not be covered in this IPI sequence. Also covered in

this unit are inputand output of array data.

NOTE: THE MOST.SIGNIFICANT DIFFERENCES IN FORTRAN

IMPLEMETATIONS FOR VARIOUS MACHINES ARE MOST LIKELY

TO OCCUR IN INPUT/OUTPUT PROVISIONS. In other words,

.

FORMAT statements that work on one compiler may not

necessarily work on another.

Recall that input/output statements are of the

1 15

form

11.3

{READWRITE
(u,f) list

/

where "u" is an I/0 unit number, "f" is a format state-

ment number, and "lisi" 'ma/ be empty or ,contain a list

of variable-names. Each variable name in the list re-.

quires an associated'field descript6r of type A, I, D,

G to b p.reaent_ in the__FORMAT statement -speci-

fled by "f." Literal, H, and X field descriptors are

not associated with variable names in the list.

How are the field descriptors and the items in the

I/0 list coordinated? Each action of format control

depends On information jointly 'provided by the neiet ele-

ment of the input/output list, if one exists, and the

next field descriptor obtained from the FORMAT statement.

If there)is an input/output list, at least one field.

descriptor other than 'literal', H; er .1(must exist.

Stated more simply, if you tell the computer to write

or read the value associated with a variable9name, then

you muat provide a field descriptor for that value in

the FORMAT statement. As an example, consider the

statements written in symbolic form in the following

example.

READ(5,111)elc2,x3,e4c5,e6 '\
liii FORMAT(.61.05X,62-,63/64,4(10X05s))'

WRITE(6,113)A0X2,A80X0ApAGIA7
113 FORMAT(111014k,2HA..,61,//20203))

.11.6

11.4

Assume

ci represents a list element,

Xi represents a list element,

di represents a field descriptor.

Once the tead statement is invoked, the pint action

proceeds as follows:.

-action /2.2utLanat

1

2

.4

5

6

8

-list element

. E 4

.0 5

field

di

.5X (5 columns
skipped)

*tS

.6 3

(read next
card)

IS 4

10X (IO columns
skip-ped)

9 10X

10 E 6 65

11 input list exhausted

Similarly, when the write statement is invoked, the

action proceeds as follows:

action sequence

1

2

4

5

6

list element field ASESEiata...c.

1110 (double space
before print)

X
2

4X (blahka placed
in next 4
print posi-

. tions)

.211A... (inserts A...

r in next two
print posi-.

tions)

61

-// (douille space

before print)

61 (watch thia;
the left most
character to
be printed is
a carriage con-
trol charac'ter
and must be a
blank)

7

I.

.X3"

8 -A4 62.
4

9 A 68
0

10 AG 62

11 X7 63

12 list exhausted

cJ

NOTE: A field desgeiptor must agiee wall the data type

of.its associated variable in'the I/0 list. For example,

41'
the descriptor I musp be used wiih an integer variable

name.

*To be more specific, consider the statements

4.

11.6
.

121

READ(5,121) W,Y,K,1,A
FORMAT(F10.3,4)ç,F6.4,2(3X,15)/F10.6,F6.3,14)

*

The corresponding action sequence .follows:

acti/ sequence

1

list element iield*AnallaRE

F10.3

2 4X

Y F6.43

4'

5 15

6 3X

7

8 / (advance to
next data
card) ' .

.9

10.

A F10.6

list'exhafifed (the rest of
- 1

the field
descriptors
'are, ignored)

NOTE: The field ,descrtptors

2(3X,15)1

, may also be written hs

3X,15,3X,15

Complete the action sequence for the following

Fortran-statements.

4 ft

Oa,

tTE(b,196)I,J,k,X,P
19 FORMAT(1111)39X,16UQUARTERLY REPORT/

13110INCREMENT ,I5,3X,811INDEX u 914,
11HAMT4. EXT,u 02F10.2,5X19HPROFIT 1-

F12.2)

action !Nuance

1

2

3

4

5

6

7

14,

15

4

list element field ritor

,

a

A simplified flow diagram of the interactioe se-

quence ttetween the jrmat descriptors and the I/0 list

appears iii Figure 11 1. Refer tp ihe flow diagram and

trace rough the ion sequences for some I/0 state-
,

''\ ments."4Notice that the taigas in the diagram are num-
tot,.

150

4.

a

11.7

11.8

10. Start I/0
11. A

next element
from I/0
list

12. 0 next
field descrip-
tor from FOR-
MAT statement*

71-

14.. Terminate process-
ingof current record
and initiate processing
of pew record.

Yes

No

16. Perf

specified

rm the action

by the field

criptor.

Yes

*Left parentheses and
commas are ignored as
field descriptors.

Yes

A

No

18. Finished

17.

Is A
empty?

21. Scan the FOR-
MAT statement from
right to left to
the first left
parenthesis. In-
elude the repeti-
tion factor, if
one is present.

Yes

20.

Is 0
the final

right paren-
thesis of the

FORMAT
state-

ent.

Yes 19.

Is 0 d
11)11?

No

23; Perform the
I/0 conversion as
specified by the
field descriptor.

Figure 11.1. Flow diagram of the
interaction sequence between the
'format descriptors and the I/0
list.

tiv 4

Yes

24. Something's wrong!
You're not supposed to
get to here from there!

bered, oo you can indicate an action sequence.with a

series Of numbers. Here's an example:

WRITE(6,5)A
FORMAT(1110,F5.1)

The action sequence is

10 i 12

11 13
12 15

11

12-

13
13 ' 17 15
15 19 17
16 22 18

23

Here's another example:

(41$1,

WRITE(6,6) Ad3
6 FORMAT(' 1TABLE 5'/(1HO,F5.1))

The action sequence is

10 32 12 12 11 12 12 12 11
11 '13 13 13 12 13 13 13 12
12 14 15 15 13 15 15 15 13
13 16 17 15 17 16 17 15
15 19 17 19 19 f7
16 22 19 20 22 18

23 20 21 23

Now,'you try some. Complete the action sequence

for each of.che following three examples,.using the

flow diagtam in Figure 11.1.

t")

11.9

11.10

1.

------i
aITE(6,7) A

7 FORMAT(1110,F5.1,1K)

2.

8

<

WRITE(618) A

FORMAT(1HO,F5.1/POTHAT IS ALL')

3.

9

IREAD(5,9)A,B,C,D
FORMAT(2(5X,F5.1),F11.4)

Correct action sequences are shown below:

1. 10 12 11 12

11 13 12 13

12 15 13 15

11 17 15 17

15 19 16 18

16 22

23

2. 10 12 11 12 12 12

11 13 12 13 13 13

12 15 13 14 15 15

13 17 14 16 17

15 19 18

16 22

23

3. 10 12 11 12 11 11 12 12 11 12

11 13 12 13 12 12 13 13 12 11

12 15 13 15 13 13 15 15 '13 15

13 17 15. 17 15 15 16 17 15 17

15 19 16 19 17 17 19 16 18

16 22 22 19 19 22

23 23 22 20 23

23 21

11.12

-1

NOTE: In this case, the 2(5X,F5.1) in the FORMAT was

treated simply as 5X,F5.1,5X,F5.1, thus deleting the

inner parentheses.

Array input/output is handled in much the same way.as

nonarray input/output. It is possfble to reduce the number

of entries in thet input/output list by using "implied DOes";

however, this can ITO time consuming'so that simplifications

in writing the I/0 statement must be weighed against the

accompanying increase in computer execution time. A example

of a list with an imp1i4d DO follows.
ft)

READ(5,111)K,LMA(I,J),Irxl,K,2),M(J,3),J..1,L)

In this example the elements updated by the READ are

K,L, A(1,1),A(3,1),A(591), vos, A(k1,1)1114(1,3),

A(1,2),A(3,2),A(5,2), A(k,2),M(2,3),

A(1,L),A(3,L),A(5,1,), A(k,I,),M(L,3)

where k is either K or K-1, whichever :Cs odd. The FORMAT

statement associated with this READ statement must bd such

that the field descriptors agxee with-the data type of

corresponding Variables in the I/0 list.

NOTE: Index variables for implied DOes (I & J in the

example above) are modlped just as index variables of DO

statements. Consequently the'value appearing in an implied

DO index variable will be different after the I/0 statement

is executed from what it was before the statemelit was execut-

ed.

155

99.

12365
20

0.3
-17.0

r=-r-r--
,

V.

qUESTION: What is an appropriate FORMAT statement for

0

the above READ statement if K, L, M are of

integer type and A is real type? Assume that

K.-5 and L...3.

0-

One ipporrect FORMAT using arbitrary field widths is

shown beltm:

11111 FORMAT(215/(3F5.1,I6))

In this FORMAT, the values of K apd L Must be *inched on the

first data card; and three values of the array A and one value

of the.array M are placed On each of the subbequent data cards.

Refer.to Activity f, UNIT #11 ACTIVITIES TABLE.

SELF EVALUATION: '

A. Write a program segment that will read in the array punched

on these data cards, using only one READ statement end one

_FORMAT statement. .(See pages 11.16 and 11.17 for solutions.)

111111U12f2222222
18901l234567890tL2346789

1.2
18.0

3.6
0.

51.

20
81.

33331333 3 4444

234$ 789 1,A34

20. 49. 5,

156

4445

f

-555 5555 6666 666
7$9' 234 6789 1234 789

21. 78. 31. 30.5l9.

11.13

7777P7778
23450890

-4.Y 16.0

"1

e

B. Write a program segment that will write out the array

described in 1 above fiVe elements per linb on every other

line (double-spaced).

C. Write a program segment that will write out the array in

1 above one.element per line single-spaced in reverse order
r.

in which they were read in.

D. The students in a particular course took an examination on

which the scores were based on 100 points. Write a Fortran

program that can handle up to 1000 scores and will count the

number of students who made scores greater than the average.

(The average is found by dividing the total of the scores by

the number of scores.)

kP

The scores are punched in 16 fields of five columns each

with decimal points pUnched. The first data card contains

.only the number of students who took the test, right-justi-,

fled in columns 1-5. Use 21.-Lial one READ statement in the

program.

Use a DATA initialization statement for.initializing running

sums and counters.

The output is to be placed at'the top of a newpage, must

look ctl like that shown below, and must be produced

with,2Ely. one WRITE statement.

(Small x's indicate numeric fields.)

5 7

1

11111111112222222222333333333344444444445
123456789012345678901234567a9012345678901234567890
AVERAGE SCORE IS xxxot

NUMBER OF SCORES ABOVE AVERAGE IS xxxx

E. Kt:jet to Activity 2, UNIT #11 ACTIVITIES TABLE.

ASSESSMENT TASK: You will be asked to construct, debug, and document

a Fortran program. Contact the instructor when you

fe'el ready.

WHAT NEXT? It y.du haven't completed UNIT #13 (COMSC), you shoUld

do so. You should start UNIT 1/14 (COMSC) as soon as you

feel that you have a good grasp of UNITS #11 and 13. You

may want to try UNIT 1/12 or 16 (COMSC) concurrently with

UNIT #14,

When you have completed UNITS #11 and 1/13, You may

elect to stop, in which case you ariyAot eligible for a

grade higher than "B." If you wish to try for an

then you must ;Complete the remaining pnits. Discuss

this with your instructor if you wish.

15,9

11.15

11.16

SOlutions to problems:

A.

B.

C.

1UEAD(5,1)N,.(A(I),D..1,N)

FORMAT(I2/(16F5.1))

WRITE(6,2)(A(I),I..1,N)
FORMAT(1110,5F6.1)

3

5

DO 3 I...1,N

irie

WRITE(6,5)A L)
CONTINUE
FORMAT(111 ,F6.1)

On some computer systems the following program segment will
work, but notice that the form of the subscript is nonstandard:

3

DO 3 Ismi,N

WRITE(6,5)A(N-I+l)
CONTINUE

*4)

C K iS THE QOUNTER FOR THE SCORES ABOVE THE AVERAGE.
C SU IS THE CUMULATIVE SUM OF THE SCORES.

C S fs THE ARRAY OF SCORES.
IMENSION S(1000)
ATA SUM,K/0.0, /
T SECTION
EAD(5,1)N,(S(J)
'ORMAT(I5/(16F5.1

C F THE AVERAGE.
0 2
SUM...SUM+S(J)

-CONTINUE
VGSUM/N

C C UT THE SCORES GREATER THAN THE AVERAGE.
0 3 .1..1,N

IF(S(J)AVG)3,3,10
10 K.0K+1,

3 CONTINUE
C 0 rU1 SECTION

RITE(6,4)AVG,K,(5(3),J.,,1,N)
FORMAT(18H1AVERAGE SCORE IS ,F5.1/

35HONUMBER OF SCORES ABOVE AVERAGE IS ,I4/
7HOSCORES/(2X,F4.0))

CALL EXIT
END

-

160

11

11.18

7.

4-

UNIT #11 (COMSC) APPENDIX

OR1AS

GENERAL FORM: =Inn FOIMAT (iS1,621 .-.4)

where nnnnn is a statement number
(1 through 4 or 5 digits)

dk are field descriptors

THE FIELD DESCRIPTORS AND DATA TYPES TO WHICH THEY APPLY ARE:

rAw character data fields

rIw integer data fields

prDw.d real data fields

prEw.d real data fields

prFw.d real data fields

prGw.s Anteger, real, logical or complex data fields

'literal' transmits literal data (output)

wH transmitS literal data (output)

wX field skip on input or insert blanks on output

r(...) group,fok.mat specification

where

d is an unsigned integer constant specifying the number of

decimal places to the right of t decimal point, i.e.,

the fractional portion. 'The d m st be specified in D,-E,

and F field descriptors even if it is zero: Furthermore

162

w must be greater than d. For E type format w ;1! d+7.

In thiu case the field width w must include in addi-

tion to d, a position for a sign, a digit, a period,

an Ei an exponent sign, and a two digit exponent such

as
10.xxxxxxEtee

p is optional and represents a scale factor designator

of the form nP where n is an unsigned or negatively

signed integer constant.

1

r is optional and is an unsigned integer constant.Used

to denote the number of times the format field descrip-

tor is to be used. If'r is omitted, the field descrip-

tor is used only once.

s is-an unsigned integer constant specifying the number

of significant digits.

w is an uhsigned nonzero integpr constant that specifies

the width of the field:

11.:19

UNIT #I2 (COMSC)

TITLE: ARITHMETIC CONCEPTS .

' -.==-,...."-

.
w

^

I>

fe

RATIONALE: It is safe to say that more'arithmetic is done iaian

hour on the installed computers today than has been

done by all of mankind since man began to count. YeN

the type of arithmetic that we study in school satisfies

2

quite different properties from the type of arithmetic

performed by computers. The results of a computer com-

putation are usually close toNthose of a hand computa-

tion; however, in a specific case in whith an author

reported, "The numerical,ineegration in this study

took about one-snd one half years with twenty working

hours every week with a considerable amount of work, and

endurances," the resulting hand calculation turned out

to be totally incorrect! In this unit different types

of arithmetic computAtion will be investigated.

OBJECTIVES: Determine the number of significant digits in an

expression, given the number of significant digits

in each element of the expression.

Describe intege.i-arithmetic, floating point

. 12.1

163

N.4

be

12.2

arithmetic, and fixed point arithmetic as imple-

mented on digital computers.

Describe the associative, commutative, and

distributive laws of arithmetic and their rela-.A

tionships to arithmAtic performed on digital com-

puters.
1

DeScribe e n arithmetic due to rounding,_ _

truncation, loss.of significant digits, cOnversion

from decimal to binary, and conversion from binary

to,decimal.

PREREQUISITES: UNITS 11 and 13, Math units on

f

tiVe, and distributive laws of

associative, dommuta-

arithmetic.

ACTIVITIES: -Mad the following material and perform the taska

indicated. Answers are at the end of the unit.

Accuracy is measured in terms of the number of

signifiant digits which a number contains. Any one

of the digits 1,.go 3, 4, 5, 6, 7, 8, 9 is A signifi-

cant digit. The digit 0 is sometimes, but net always

significant. Three cases are possible for the digit

.0.
,

(a) Zeros are to the left of all.other non-zero

digits. Here the zero is used.to indicate
.

the decimal point and is noi,:signifiwt.

For example, in .00123, the leftmost two

zeros are not significant; rather they serve

Ato.

^

I .1

4,

12.3

as position holders for the decimal point.

(b) Zeros _are between significant digits. In

;.P

this case the zeres are Considered to bb

significant. In the number 1002, the two

zeros are significant.

(c) Zeros lie to the'right of non-zero-digits

of a number as, for.,.example, in the number

123400. The zeros may or may not be signi-

ficant. The recommended notation if the

Oigits are not significant is to write the

number as

1234 x 102.

If the first zero were significant this

should be written as

12340 x 101.

The number of'significant digits in each of the follow-

ing numbers is four: 1234 1002, .01234,.3.210 x

k 1000 X 104.
ki&

Row many.significant digits are,in each pf the

following numbeis?

(12.1) a. 1.234 . 123400 x 106

b. 1.005 t. 1000 .5(10"

c. 0200 0

4400012

e..000100

1stj

12.4-

A

A number is said to be correct to j significant digitg if

its value is correct to within one half unit (of the given base)

in the least significant position. For example, if the number

1234 is correct to four significant digits, it is understood

'that the number lies between 1233.5 and 1234.5. An alternate

expression for this is 1234 ± 0.5. If 780 X 105 is correct to

three sigpificant digits,_it lies between 77950000-an4 18050000.

Frequently numbers which are known to many significant

digits must be reduced to a suitable length for computational

E 4purposes. A process called usating_Js used to reduce such a

number to A significant digits. On a .computer this operation

is performed by adding (subtracting) one half of the base in

the'position (n+1) if the number is positive (negative) and then

retaining the resultant Asignificant digits. The following

examples illustrate this procedure for base 10 numbers rounded

to 4 significant digits.

1 2 3 4 5 6
+ 0 0 . 0 0 5

71-:-5767 E 12.35 correct to faur significant
digits

. 9 8 7 6 4

. 0 0 0 0 5

9ir7 9 7.- .9876 correct to four significant
digits

LS6

12.5

- I 2 . 3 4 5 6

- 0 . 0 0 5

- I 2 . 3 5 0 6 -12.35 correct to four signif-
icant digits

. 9 8 7 6 4

. 0 0 0 0 5

8 7 9 -.9876 correct to four signif-
icant digits

This procedure produces slightly different distribution

*of resulta relative to the manual procedure of rounding.

The manual procedure does not round if the digit in the

nth.significant position is even and the digit in the

position (n+1) is a 5.

Eltamples.of the manual procedure are

(12.2)

12.345
.7:-. 12.34 correct to four significant

digits

12.355 = 12.36 correct to four significant
_digits

Round by both the mapual and computer based methods

each of the following niimbers to 5 significant digits.

a. 3.1415926

b. 2.71828

C. 4679.25

d. 4679.35

e. -4679.25

f. -4679.35

mhnual computer based

.to

12.6

To determine the number oi significant digits resulting

from the evaluation Of an arithmetic expreision, given the num-

ber of significant digits in each element of the expression, it

a

is necessary to establish some rules governing significant digit

arithmetic. Thege are given under the headings addition, sub-

traction, multiplication, and division below.

Addition. When adding two positive or two negative

4

numbers, there is no low of significance

when unrounded operands are used. In some

cases the result may have one more sig fi-

cant digit than either of the operands.

For example, suppose 1536.2 and 7428.9

were rounded to 1536 and 7429 respective-

ly. The additions of the rounded and un-

rounded numbers are

rounded unrounded

4536 4536.2
7429 7428.9

11965 11965.1

both of which are correct to 5 signi-

ficant digits. The following case

illUstrates q loss of significance

when rounded operands are used;
0 0

,

(12.3)

a,

12.7

rounded unrounded

1232 1231.5
6746 6745.5
7978 * 7977.0

since the rbsult is cOrrect to.three significant

-digits instead-of-four -significant digits which

each operand, contained.

How frequently is such a loss likely to ocelar?

When one of the operands contains fewer signif-

icant digits than the other, the operand with the

greater number of places to the right of the decimal

'must be rounded to conform to the other operand.
\

For example, in order to add the two numbers

,
12.345 and 2345.6, it is meaningless to -retain more

than one digit to the 'right of the decimal point

because the seconO.number is aecurate only one place

to the right of the decimal point, 'The sum.is gi,yen

by

12.3
?345.6
2357.9

1 69

12.8

4

. /Jr (/
1

.0 .

Subtraction. When a subtraction occur, (by either
-J

adding a posi,tive number te; negative number
T

or by subtracting a positive number from a

positive number), a complete loss of signifi-
.

canes may occur. Usually each case must be

considered indep dent13,-... An-an exAmple

,4:4;
consider the num ers 12345.6 and 12345.4

wtiich are rounded to 12346 and 12345. The

results ofsrouna'ed and unrounded subtraction

are

rounded unrounded

12346 12345.6
- 12345 - 12345.4

00001 00000.2

Although the two are rounded correctly to

5 significant digits, the result has no

significant 'digits, i.e., the 1 is off by

a full unit. It is more likely that a loss

of significance occurs, but not a complete

loss of significance. The best strategy

is to try to arrange the computation so

that subtractions do not ocCur. As discuss-

ed earlier in UNIT #11 (COMSC), one real

root of the quadratic equation should be

constructed as

1 70

k

or as

xl

xl

-b + V7b2
2a

-b 4.a.c
2a

12.9

if -b is positive

if -b is negative.

The other root is determined by recognizing that

and hence

1 2
go c/a

= C
2 a.x1

Thus there is no subtraction in determining the

root. If both a and c are positive, a loss of

eignificance definitely will occur in the compu-

tation of the discriminant. This loss may be,

reduced if b2 4ac is computed to as high a

number of significant digits as possible. This

is called double or multiple precision and will

be discussed subsequently. Double precision is

another strategy for reducing the.loss of signif-,

icance.

12.10

4

Multication. Up to two dtnificant digits may be lost

in a multiplication. The product of

921.2 and 102.4 each rounded lo three

significant digits compared with the un-

rounded numbers provides an example.

rounded) unrounded

921 921.2
102 102.4

1842 36848
9210 18414

A 92120
94329.88

Although the multiplier and multiplicand

are correct to three signikicant digits,

the product differs by 6 in the:third

position from the left or by 0f6 in the

second position from the left That is,

there is only one significant/digit in

the product, even though both the multi-

plier and multiplicand were' correL to

three significant digits.

Division. Up to two significant,digits may be lost in

a division. Consider the quotient øf 1763.4

(12.4)

by 1761.6 with both dividend slid divisor

rounded to four significant digits each.

How many digits are significant in the

rounded quotient?

,

How many signifilnt digits result if each

operand in the expression

R (A-1130-C)*D*E

is rounded to 3 significant digits if-

A 1432.7

B 432.4

C 341.62.

D 123.4

E .., 987.6

12.11

R
rounded

R
unrounded

number of significant digits .

173

.1%

,

12.12

Integer arithmetic as implemented on digital computers

assumes that the radix (decimal, binary, octal, hexadecimal,

etc.) point is on the right of a fixed size number. The fix-

ed number is called a word and might be 10 decimal digits or

32 binary digits or 36 binary digits or some other size.

Addition and subtraction are performed_using_one word. Mulii-

plication and division require two words, but are subsequently

'reduced to one word. Consider a decimal\machine in which a

word consists of two digits.

0

1 0 8

0 1 6 9

The sum or,difference is
generated in one wrd.

The product requires two
words.

i 7,1

-

/ remainder
quotient

fut.

The dividend
requires two
words, the
divisor re-
quires one
word. The
quotient is
in the left-
most word,
the remainder
is in the
rightmost word
afte'r division.-

12.13

The result after division is not rounded. The remainder occurs

in on of the words and requires special manipulation if it is to be

utilized further in the representation of the quotient. Instructions

on the computer make.it easy to select the rightmost word or the left-

most word of such a pair of words.

In floating point arithmetic, part of the word refers to the

exponent (or power of the base) and the rest ef,the word cotisistS

of significant digits. Suppose our computer has 4-digit desimal

words with a plus or minus sign. Suppose floating point numbers

have the Dorm

114

k,± d i

where e stands for the exponent and the numbers in dl, d2, and ds

make up the mantissa or the actual digits of the number. Exponents

may range between 0 and 9 in a one digit field. If the number 5 is

u4ed to represent an exponent of 0, a one digit field can be used to

represent exponents between -5 and 4. Such a representation is

termed an 'excess 5' representation. It allows positive numbers
4*

to represent negative exponents. The location of the decimal point

relative to the digits ddd (the subscript has been dropped temporarily)

is gijoen by the following table.

.

9 4 ddd0.
8 3 ddd.
7 2 dd.d
6 1 d.dd'
5 0 .ddd
4 -1 0ddd
3 -2 .00ddd
2 .000ddd

-4 0000ddd
0 , .00000ddd

175

'.4.+1.." - 1..."

We require that after all floating point cothputations

d
1

is non-zero, unless e, d
1

, d 2- d
3
are all zero.

The exponent e is a por`der of'10. To multiply

two numbers, one multiplies the mantissas, and sub-

tracts 5 frem the4sum of th9 two exponents, perhaps

making-a correction to force d1 of the result to he

-
non-zero. For example, the computatiOn of 3 x'2 in

this floating point format is carried out as

e 646 -5

Ili 0 1311
0 6 6 0

In this example, d-1 is zero; consequently, an automatic

left shift of 1 occurs. 'A left phift of 1 is equiva-

lent to multiplying by 10; thus, the.exponent must be

reduced by 1 to retain the proper vs

The computation of 8 x 7 does not require a fixup

shtft to place's non-zero digit into Ole dl-position.

6' 8 0 0 X 6 0 0 -+

Since two three digit operands can generate a. six

digit product either two or three of the six digits are

lost in a single precision multiply'.. No rounding occurs.

In a double pre4sion multiply, all six digits would be

retained.

1 716

Fir

(12.6)

. Write each of the following numbers as a floating

point number in the format just' described.

a. 4.67 d. -36.2

b. .000987 .

a. .02

c. 104000 t. -.0000763
,.

Indicate what the results would be in single precision

floating point format for

(12.7) a. 4.67 x (-36.2)

b. 04000 x (-.0000763)

c. -36.2 + 4.67

d. .02 + .000987

e. 1040.00 + .02

f. .000987 x (-.0000763)

On the 360/65, floating point arithmetic.is used for

arithmetic of type REAL. Two formats exist, single

precision and double precision. A single precision

floating point number is 32 bits in length and con-
,

sists of a sign bit, 7 bits for ttie exponent, and 24.

bite for the fraction.

31

0 1

Single precision floating point representation

1 7'7

12.15

4

12.16

4

The fraction is in binary6the exponent represents

powers of 16. A bias of 64 serves the game pur-.
10

pose as the bias of 5 in the discussions above.

"Excess 64" is another designation for the bias of

64. The binary representation of 64 is

10000002 = 6410 77 4016

An exponent of 65Io

10000012 6510 4116

indicates that the fractional part is to be multiplied

by 161. An%xponent of 62 indicates, that the fractional

part is to bemultylied by 16-3, etc. Double precision

floating point numbers on the 360/65 use 0.40 words with

the.fraction part being 56 bits in length.

exp
1 -8 32

Double precision floating point representation -

Although ital is not difficult., we shall forego calculating

in floating point arithmetic for the 360.

A

et,

4.

0

in mathematics a great deal of time is spent

discussing associative, commutative,-and distributive

propertiea of arithmetic. To remind you of these

properties we list them below.

'

Associative property (grouping property)

Addition (a+b)+c a+(b+c)

Multiplication (ab)-c a-(b-c)

Commutative property (orderilig property)

Addition 4a+b b+a

Multiplica(lion ab b-a

, 'llistributiye pioperty

4 6

(d+13).c = a-c

a-(4) ab + a.c
4

On a digital compute, the commutative property

holds (any truncation that.occurs will occur independent

of the order of tbe operands); however, the associative

and' distributive properties .need not hold. Th6 three,

digit%,floating point representationused earlier.illus-,

'trates this well:

9

Vt

A0A es :Ca ...,xlmeas Lia. e a de 1.

dld 2d

'Singld preasion floating point format
4

".1),1*(
,

1.

4,.1

4.

12.17

12.18

4

If the values a, b, and c were

then

and

Thus

a 5670.

b 5670.

.000987

(a+b)4-c .000987 H

a+(b+c) 000 :

(a-t-b)+c a-F(b+c).

Et

11

Determine numbers a, b, and c for which

.41

(a+b)c bc

if the arithmetic is dc;11F-1-trour digit floating

point representation.

(12.8) a. a d. (a+b)'c

b. b e. a-c bc

c, C

a

Q.

0.0 0,0 0 0 0111. 011 0100010.00010 by MO Oa.

(12.9)

12.19

brt

Determine-numbers a, b, and c for which

a-(b-c) 0 (a.b)-c

d. a-(b.c)

e. (a-b)-e

if the arithmetic is done in the 3 digit floating point

representation.

NOTE: 99.999% OF THE ARITHMETIC DONE TODAY DOES

NOT SATISFY THE ASSOCIATIVE OR DISTRIBUTIVE

PROPERTIES.

It should be obvious from these examples that the drder

of operands may produce some error in a computation.

Before you get the idea that things are really

bad, the computers are almost associative (aa) and

almost distributive (ad) enough SO that reasonable

results occur. It is unlikely that computers ever

will be associative or distributive. (Why?) Conse-

cittently, in order to establish a degree.of harmony with

mathematics an aa-ad system must be defined mathemat4Alty.

Who, knows , you just might getoinvoived. in-such a project. ,

SI

0"- .0"

12.20

10.

.r

Minor numerical discrepancies may take place

during input/output. Numbera represe ted in base

10 must be convertgd to binary befor computations

occur.and results mpst be converted from binary to

decimal for printing. Exact fractional represen-
_

tations in decimal do not necessarily have exact

frAtional representations in binary; consequently,

an error occurs when a converted value is truyated

to-the word.size of the machine. For examplg,

(.1)
t'

n (.000100010001000100010001)
I

That is, 1/10 does not have a terminating binary

fraction expansion and hence has to be truncated to

the number of bits in a word. The fraction 1/2, on

the other hand, hai an exact binary representation,

namely, (.1)2k The fraction 1/3 has both a non-ter-
.

minating decimal expansion and a non-terminating

binary expansion. Errors which occur becauee of the

requirement for different bases are usually not

significant. Infrequently special programming may.

be required to avoid- a truncatión problem in the

conversion from one base to another - but only in-

frequently.

.d

Na.

sco

l.

Conclpsion. In the precedlng discussion we have avoided actual

details.oi how various computers handle arithmetic operations.
4

Computers may differ markedly th this regard. The same program

run on different computers may possibly produce slightly different

numeric resultsOspecially if several signifticant figures are

requirod tn the 'results.

The,exer&i:ses.in thts unit are intended to demonstrate'to you

that-numbers are not necessarily what they appear to be and that

whether numbers are or.are not ,rounded before calculations generally
.

affects results.

,
GenerAlly computers.do not round restats of arithmetiC opera-

.

tions, tut rather truncate the results to the specified number of

digits that the computer is designed to handle. An-example of how
4'

this-might aftect resulta is fougd in a calculation dot involves

several division step6, in which the Wmainder is'lost each time.
-

. The absolute Value of the final result will be expected -to-be

smaller than Ii rounding based on the magnityde of--the remainder

could have-been performed. For example, suppose we wanted to

evaluate

25.3 36.5 4.01 4 8.42
3 -.Tr

to three significant digits with truncation of digits beyond three. .

-

' The result ,is-
.4

8;43 + 5.21 + 1.54 1-'2.27 N., 17.4 - 17.4 .

tit*

1 S3

4

/0

12.22

, "-"1",,1

44,

Rounding gives

'f&

8.43 4 5.21 + 1.54 + 2.28 17.46 4 17.5...

If the fyae-tioas containing the remainders are included, then the

result la

17.47 17.5.

You'can see thatjho-error accumulates as morF operationq are
--_

performed.

What 'Conclusions can we draw? There are many possible; here

are a few;
0

- a. In general, you should organize calculations in'a program

so that the Lber o- rithMetic operations that are per-

formed is minimized.

b. Avoid situations in aprogramAn which two quantitLa of
A

1:
similar magnitude are subtracted, resultAngiv.rOss,o,f

significant digits%

p.

c. In general, you should artanie.operationShat'atélespecially

pron6 to loss of signOrcant digits (subtraction and divisionj

so that they occur last or neag the end of a series of cal

culations.

d. Be sure that results given by the cdMputer are reasonable:.

Check them by hand,-if possible, with several sets of trial

data. , Additional care-..-is also required because a program

will not nectisiiarily produce correct results with all dace

just because:it does for some data.

'

^ 0

0,

12.23

SELF ASSESSMENT: It you have worked through the examples in the

material, then you should have assessed your

progress alfeady. Check your answers with those

. given on the next page.

ASSESSMENT TASK: Please see your instructor. You will be required

to aPplY the !=tiles 9n .
rkwo01-0g, the type 0 f

tirithmetic, etc., As specified in the objectives.

WHAT NEXT? Y6u should complete UNITS 14 and 16 before you can begin'

a

0

UNIT 17.

o

r.

12.24

co

Solutions to problems in UNIT 1/12:

(12.1) a. 4

b. 4

C. 5

(12.2)

d. 2

e.

nuinual

a. 3.1416

b. 2.7183

r. 4679.2

d. 4679.4

-4679.2

f. -4679.4

1. 6

g. 4

h. 1

A

computer based

3.1416

2.7183

4679.3

4679.4

-4679.4

A

(12.3) The digit in the position involved in the Younding lipst
contain 5 for each operand. Assuming that the digits 0
to 9 are equa.11y likebtcandidates for this digit posi-
tion, there is 1 chance. in 10 for each operand or 1 chapfe
in 100 that such a loss will occur.

(12.4) 3

41682732 41669735.692$(12.5) R
rounded unrdbndee

number of significant digits r4.2

(12.6) a:

-'b.

4 467 d. 4-7362

ee +4200

c1 cannot be represented f. -1763.

(12.,7) a.. -8169

b. cannot be represented

c. -7315

d. +4210

e. +9104

f. cannot be.represented

(12.8) a. 1000:

b. .-999.

C. 10.

6 (12.9) a. 100.

b. 100.

c. .01

)7, 4.-te.

4.

s

\\\

d. 10

e. cannot be represented since
a.c is too large

d. 100 (1) .., 100

e. cannot be represented since
al) is too large

k

-A

711t . ,

e

e

,

12.25

I.

roS

UNIT #I3 (cpmsc)

TITLE: SUBPROGRAMS

RATIONALE: The writing and debugging of long programs may

become quite frustrating. But, if the programs

can be divided into shorter, simpler parts, then

both the writing and debugging can be simplified.

By using subprogratiffi in Fortran, you qpn divide
.

programs into shorter and simpler segments," write

them, and debug them quite easily. This capability

NR alone Provides an important rationale for learning

to use sublirograms.

. Another useful feature of subprograms is that

-

they may be saved for future use with other proirams.

A subprogram is an independent unit Which can be

placed With.any otherprogram (or subprogram) and can

be used with that program;- provid.ed it is properly

called. This obviates your having Co write more than

one time a program that handles a particular type of
)

task.

Subprograms are a very powerful part of Fortran

and are used widelY. .Certainly your skills in the 'Ube

of Fort an would be incomplete wifbout At abilIty to

write and se subprograms.

13.11. 98.
41.

I.

1.4

13.2

OBJECTIVE: At the end of this unit you will be able to construct

any.type of subprogram and its covesponding calling

statement and to construct.a program using any type

of subprogram.

PREREQUISITES: UNIT 1/10 (COMSC).

SUBOBJECTIVE I: Identify the four elements of the concept of

ACTIVITIES:

t

1

subprograms.

A. Here are six numbers: 2.5, 8.1, -5.2, 0.0, 4.3,

Find the allerage of these numbers and

write it in this blank:. . In order

to work the problem you had to go aside to the

margin.er to scratch paper for .a work area. You,

in effect, transferred the numbers to thb'Work

area, performed the calculations that were re-
,

quired, and then transferred the anixwer back to

the blank °line where you were told to place the

answer. What you just did is analogous to what

happens when a stibprognam is Ilf!ed in Fort4n:

Let's investigate further what you did.

in the problem given to you above, "Here

are six numbers Find the Ay_22._:aat ." the

.key word is aVerua."This word tells you which

1 s 9

a..

a
0

-

13. 3

proeedure to pull from the stored information

in your mind. In othei- words, the word average

elicits the procedure that says to add the num-

))ere together and divide by the number of items.

The procedure has a .name.. Fertr44_sub.programa

also have names. In order to use a subprogram,

you must refer to it by its name in a ealli*

'statement, about which you wil\i,,learn more short-

ly.

The name average tells you wbeomputational

procedure to follow, but you .cannot find the aver-

age of some nuMbers unless you have those numbers.

-
So tioe second thing you did was to transfer the

numbers whose average you were to find to a work4

-

area.
r. Similarly, a Fortran calling statement sends

the data Items specified-in,the calling statament
4

to the subprogram (analogous to the work area).

The items sent are called argumerits.

Once the.numbers were ii the work areal then

you cOuld actually execute the "average" procedure

aad find the average'. In'the-same vay,-a Fortran'
no

pApragtag.is executed, performing whatever task

it is prOgre9ftmed to do.

Finally, when you had calculated the average' a

a

13.4

in th9 work area, thea you transferred the result

to the place where you were instructed to put it.

TMrn yOu proceeded through the materfal. Similar-

ly, a Fortran subprogram sends the result (or
r,

results) tb the main ptogtaitianurna -control

-to the main program, which allows the comput,er to

proceed thiough.lhe rest of the piogram.

Let's review_the tour elements oP' the concept.

of subprograms and the corresponding elements of. .$)

A

.solving the problem to find the avrage of six

numbers.'

Avp-age Problem

1. The name "average" tells the

student which of his mental
procedures to use. Invoking

the name calls for the pro-

cedure.'

2. The student transfers the six
Aumbers to the.Work area

,; (scratch paper or margin) so
that Ze will have numbers for

calculating.

3. Th'e actual calculation of .

the average'is performed.

4. The results of thb calcu-
lation are transferred
back to the blank line on

the pagd.

_Fortran qtibprogrlams

1. The name of the subpro-
gram telle the computer
.which subprogram to use.
Invoking th9 name calls

the subprogfam.

4; The-data to be,used in'

the subprogtam are,sent
to the subprogram through
the argument list.

3. "The instructions in the
subprogram are executed.

4. The results of the subpro-
gram that has been .exe-
cuted.are returned to
tOe inain prograni.

d4,

mk

at.

B. Refer to UNIT #13.ACTIVITIES TABLE, Activity 1.

SELF EVALUATION:

A. Identify/the four elements of the concept of subpro-

grams in the following analogy.

A student is working a'problem and comps to'a

step in which he must take the'sguare root of a -num-'

bet. He refets to a square root table in a mathemat--
^

ical .handbobk, writes the slitters root, of the numb*

an the paper, tind proceeds with the problem.
N

The'Fortran comp4er,has a "built-in" subprogram for

,cralculating the 'square-root; the name of the subpro-

, AiNV
grael:p SqRT. Suppose that the statement YrnSQRT(X)

occurs in ogram. Identify.the four ele-
.

ments of the ncep-t of ubprograms when that state-

ment is executed.

'AVBOBJECTIVE XI; ConsUlruct single etatement functions and call-

ing statements Ifor them; construct cotpAte a

program using,them. 9

"-ACTIVITIES;

'et

Refer to UN:IT #13 ACTIVITIES TABLE, Activity 2..

The quadratic formula for finding the roots of a.

#1;

1 1.0

V.

13.5

,i

a

.P

13.6

/1

z

quadratic equation of the form

ax2 bx ... 0

is

r
-131A/b2 4ac

2A

A simple program for 'finding the roots,of a

quadratic equatidn ia shown below; the ,pDogram

aspumes thAt b,2,4ac 0; that is, that he

equation has two real roots.

7

I s.

REAp(5,1)A,B,C
FOR4T(3F10.1)
RO6T(-B-1-SQRT(B*-4. A*C))/(2-0*A)
ROOT2 t(-B-SQRT(B*B-4.0 AtC))/(240*A).
wRITg(,2)A,B,C,ROOT1,ROOT2
FORMAT alip,51710.2). ,

STOP 41

END i

9

-)This program can b ithproved 'h waver, in the

accuracy of the calculation.. I NIT "ill2 .(COMSC) yot\

learn. ,something about the loss of significant digits
,

b a

1.,

'In arialmetic operations. An examplo. given in UNIT MIA
1 1

illustrating-this condition is found in the quadratic.

formula. If it turns out .ihat the absolute value\k)f b

and thsAuantity \AI-1-7tTc are of nearly equal magni-.

.

a

193.

b.

a.°

1

;t.

1..

p

tude and ttie two are subtracted, significant,digits

may be lost. In order,.to. prevent the occurrence of

this possibility, we can find.the roots using a

slightly different approach.

Use

\and use

r.I

2a

--1-17)27-7:c
2a

The second root can be found from

2 -
ar

since it is/true that-

r
1
r

2
og

a
A

(Try ittf if you don't believe iti)

The program can be.rewritten aq follows:

when -b>0

when -b<0.

13. 7

READ(5,1)A,BNC
1 1 FORMAT(3F10.1)

IF(-B)10,11,11
'10 ROQT1t*(-B-$QRT(B*B-4.0*A*C))/(i.0*A)

CO TO 12 .

11 I R00T1..(-111-WAT(B*B-4.0*A*C))/(2.0*A)
12 1 R0OT2,4/(ANW0T1)

WRITE(6;2)A;B,C,ROOT1,ROOT2
2 F0RMAT(1110,5110.2)

CALL EXIT
END

1 4
.galr

v

13.8
qhr

NOtUAIn the arithmetic 11: statement, transfer can

be either to statement number 10 or to statement Aum-

her 11 when (-B) i zero. The results are the same .

#

either way.

Construct three single statement functions for

finding the

will be for

program.)

roots of a quadratic equation. .(These

statements 10, 11, and 12 of the previous

1/4

There are many ways to constrUct the functi6lis

correctly. One set\of torrect functions is shown

below:

R1VEG(A,B,C)(-B-SQRT(BviB,-4.0*A*C))/(210*A)
.R1POS'(A,B,C)m(rBi-WT(MNBI-74.0*,00)/(2.0*A)
R2(X,X,R)*Z/(X*R)

(Noiice that the names chosen for thefunctions.

must be rea): in this.a'ase, since'the results aro'.

'P I'
returned to the calling statements as the names

.

Real names return real results;

integer results.)

of the subprograms.

13.9

_integer names returR

E.'_ Now construct three calling statemints for the7

functions you have written.

s.

Again there are many possible correct calling
st

statements.

I.

For the statements above, the calling.

statements cguld be

The

Roo iTuNE(A,B,C)
,upo 41UPOS(A,B,C)
ROOT2mR2(A,C,ROOT1)

filnetion'names must match exactly; the arguments

196

13.10

in the corresponding calling and function statements

must match in number (three in this case), type (real

to real and integer to integer)and order (first

argument in calling statement to firSt argument in,

function statement, second to second; etc.).

SELF EVALUATION:

c. Reconstruct the entire program that tinds the roots

of a quadrattc equation, making use of the functions

that you have constructed.

at /

19

II

4

A 1.0'd

4.

a.

there are many ways to construct the;program

correctly.. One-s:olution is shown below.

13.11

111NEG(A01,C)..(-B-SORT(B*0-4.0*A*C) /(2.0*A)
R1110S(A,B,C)0.(_1B+SQRT(B*8)-4.0*A*C) (2.0*A)
R2(XsZ,R)vaZi(X*11)
READ(5,1)A,B,C

1 I FORMAT(3F10.1)
Iy(-B)lo,11,11

10 1 RO0T1...41NECCA,B,C)
GO TO 12 r11 R0OT1R1P0S(A,B,C)

12 R00T2...R2(A,C,ROOT1).

WRITE(6,2)A,II,C4ROOT1,ROOT2
2 FORMAT(1H00SF10.2)

CALL EXIT
END

Notice that the argumente in the function statements

are dummy arguments-and need not' be amed ehe same

ae they are in the calling statement. _gtvalid

names-of.theQproper typed may ,bp.used as arguments

in the.functiOn statement -- provided that the same

names axe used on the right side of the of course.

D. Identify the four elementq.of the concept of subpro-
&.,

grams for tlfel program you have written.

SUBOBJECTIVE III: Construet a FUNCTIOt subprogram 4nd'ealing

statements; construct a mail:program that calls

-

the subprogram.

-

r

t

111

4.

-13.12 ,

ACTIVITIES:

F. Refer to UNIT #13 ACTIVITIES .ABLE,'Activity 3.

7=1

5 4

'G. Below is a simple program for finding the maximum

-

element in an array of real numbers.

1

11

10

2

DIMENSION T(31)
READ(5,1)N,(T(J),J1,N)
FORMAT(I3 -(10F8.1))
H1GH..,T(

DO 10 .31,N
IF(HIGH-T(J))11,10,10
HIGH.,T(J)

CONTINUE
WRITE(6,thlIGH
FORMAT(1HO;F5.2)
STOP

END

Take the algorithm for finding the ma3cimum and

construct A.FUNCTION subprogram that will find -*

the maximum.

) ri

13.13

One correct.way to construct the subprogram is

shown below.

11
10

FUNCTION HICH(T,N)
DIMENSION T(31)
HIGH-T(1)
DO 10 .J?4,11

IF(HIGH-T(J))11,10,10
HIGH.4*(J)

CONTINUE
HETUliN

END

Notice that the nameo.of the subprogram is real,

4

since we have an array of reL numbers and.will

&

want a real number r'eturned to the main program.

Notice also that the name of the subprovam

.appears (awl musappear) at least.once to the

left of. this is done so that-the result obtain-

ed by the subprogram (the maximum element in this

case) can be transferred back to the main program

as the name of the subprogram in the calling state-

-

It is also correct -- and actually preferable

to.write the.DIMENSION statement.DIMENSION T(N)

(except on the IBM 1130). More will be said of this

later*

A -

H. Now construct a caging statement that cou.ld be used,

a

2 0

aV

13.
7.

4

for calling the subprogiam. Any correct calling

statement will do.

c

Several examples of correet calling tatements

mare shown below.

X-TIGH(X.,J)

BIG.AHIGH(T,N)

ZJO.ABS(HIGH(T,N))+5.0
Ym4IIGH(T,l0)

11,41IGH(T,J-l)

I. Now construct a main program from the simple program

given earner that will call the subprogram that you

'wrote.

V.

3.

One ,p:)rrect way to pilstru9t the main 'program is shown

f 20:1 9

13.15

below.

C MA PROGRAM
IMENSION 4(33)
EAD(511)Ni(A(.1),J..1,N)

ORMAT(I3/(10F8.1))
v--

ITE(6,2)BIG
FORMAT(1HO,F5.2)
St Op

END

SELF EVALUATION
,*

, Refer eo mu #13 ACTIVITIES TABLe, Activity 4.

S4)11J1OTIVE IV: Cons ruct a SUBROUTINE subprogram and CALL

stat tants; construct,a7main program that

\ calls the subprogram.

ACTIV TIES:

J. Refer t UNI #13 ACTIVITIES TABLE, Activity,.5.

K. nstrugt S BROUTINE subprogram that will find

th max*mum el ment of an array% (You may USO

the anWalgo I hm used in the previous, section)

2n.)

-

;6

A
13.16

rjr

.144-

46

_

One .correct way to construct a SUBROUTINE

stibprogram to find the maximum element of an

array is shown below.

10

SUBROUTINE HIC11(T,N,BIG).
DIMENSION T(31)
BIG.,T(1)

DO 1 J...1,N

IF(BIG-T(3))11,10,10
BIG..T(J)

CONTINUE
RETURN
END

L. Construct a CALL statement that may be used to call the

SUBROUTINE subprogram.

Some examples of correct CALL.statements are given

below.

CALL HIGH(T,N,BIG)
CALL HIGH(A,M,X)
CALL HIGH(A,15,X)

11. Write a main program that will read an array of N elements

.from data cards, will call a.SOBROUTINE subprogram to find

4.

4

A

it)
". ,31

4.

the largest element in the array, and will: write the

largest element.

. 4 sz

4

-

7 I

7

One solution to the problem follows:

13.17

4.

...F.'

44.*..72:
**a

4

DIMEVSION A(31)

READ(5,1)N,(A(J),,P.1,N)
FORMAT(13/(10178.1))
CALL HIGH(A,N,BIG)

WRINE(6,2)BIG
FORMAT(1HO,F10.2)
STOP
END

4

4-1

,

S.

-4

A

I

0.0

I.

NOTE: Th4 DIMENSION,statement in the subprogram could

--, in generAl, should bi5C-- written DIMit1/418):ON T(10,

except bn the-IBM Ili). You will learn more about\
this in the 'next actitvity..

N. Refer to UNIT #13 ACTIVITIES TABLE, Activityj..

SELF EVALUATION: -tt

F. Refer xo.UNIT #13 ACTIVITIES TABLE

ASSESSMENT TASK:

Activity 7.

Please your instructor. You will be g n

problem for which you are to construct a pragram

and run it on_a computer. Then you will be :re-'

quired to construct some shor4 programs or pro-
..

gram segments that make use of the various kinds

of subprograms.

WHAT NEiT? If you haven't completed UNIT #11, you shOuld do so.4
,

IIP

You 'should'start IsIT #14 as soon es you
.

have a goodsrasp of tifTS #11 and 1/13.

feel that yom

You may want

to try UNIt #12 or 1/16 concurrently with UNIT #14.

1When ;79u have couipleted UNITS #11 and #13, you_

may elect ,t0 stop, in whith,case.you are not eligible

for a grade higher.than "B." If ypu wish to try for

'an "A," then you must complete the remaining units.

Discuss this with your instructor if you wish.

205
70"

*

8

4

UNIT #14 (COMSC)

TITLE: .DIGGING

RATIONALE: If yal haven't discovered by now that it is

rattler easy to make aTrb_grammingNerror, then_

either you'are an exceptional programmer or

you havgn't been doing the programs. (Which

do you think is the more likely?). People

inVolved in ge rating computer programs

usually admit to making programming errors.

They also have developed debugging techniques

which help them to keep the errors to mini-

mum. In this unit you will be exposed to

methods that otherti have found useful. You

will alse have an opportunity to help those

behind you Am the Fortran programming hier-
.

archy with, their programming and debugging

problems. You should strive to prevent pro.;.-

gramming ehors, but you alsa should be able

. to correct errors once; they occur.

OBJEcTIVES: TePrevent programing and logical errors.

To diagnose and correct errors, irthey do

8

:14.1206

s.

p.

. .

14. 2

IM

OCCUI:11 .

a

PREREQUISITES: UNITS #11 and 13 #(CON.S.C).

.At this point yo4 should carry out the activitties in the

UNft #14 (COMSC) ACTIVITIES TABLE.

Now you are on your way to becominvw +WE or

MASTER BUG E*RADICATOi

Several levels of debugging exist. Some a eeasir to

use than others; some are used under one syste but ot

another; and so-on. What;one looks for is an effective method

fbr the particular system tht is to be used;

Here are,some.general suggestions that owshould use for

preventing errors when you are cofistrusting rograms so thzit

debugging will be simplified:

1. Plan your program carefullY. . Is t e logic correct?

Does it handle all possible cases? Draw a flowchart

in enough dePal to handle the sti ky parts of the

program-before you actually start o write the pro..

-gram. If necessary, break up.the rogram into b-

routines. Include check point'and diagnostic print-

outs in the planning stages, rather than after the

2067-4

7

'

14.3

errors occur. Ch ck your logic one more Xime.

2: You should be in tlid habit of writing act initial comments

section at thb beginning of the program. This comments

section should include your name, date, problei name or ,

title', a briefs description of the problem, a Hat of

variablep, definitions and formats of both inp;ut and

output variables, their function in the program and their

dimensions, a descriptioa of special or exceptional 63n-

ditions, and possible error conditions.

3. Place all of the type declaration statements at the

A beginning of the program immediately afterthe initial

%.

comments section. These declarationsttnclu0 comigp,

DIMENSION, INTEGER,-REAL, DATA, etc.

Reseive a block of statement nutitbers for FORMAT statement

numbers - for example, 200-299. Fliice all FORMAT etate-

ments immediately after the type declaration statements.

In this way it-is possible to check easily the existing

FORMAT statements to determine whether it is necessary

to add anothex FORMAT statement or whether a current *one

will do. *As a rule you will be adding and deleeing write

statements during the debugging phase. A block of reseri'red

FORMAT statement numbers will simplify the process. 46,

5. Reserve another block of statement-numbers as FORMAT

statement numbers for temporary diaihostic type printouts.

Place the FORMAT statrithent right next to the WRITE state- -

298 '

14.4,

A

ment. If both are Seinched on opposite cut cards from the

rest.of the program (on the back side of a FORTRAN card;

1

for example),"it ig easy to remove both when you are

(

'finished with them.

Keep your READ, WRITE, and FORMAT statements as simple

as possible. The more you try to,include in these state-

ments, the more'likely you are to.have trouble.

7. Usela,.,CONTINUE statement as the'last statement in the .

range of a DO. Use peparate CONTINUE-statements for the

ranges of nested DO's. Use a CONVINUE statement as a

rilference point for GO TO statements. Then it is.easy

to insert.or delet other statements without having

to repunch the st tement number and shufflp the cards.

8. Parenthesize your program by* indenting parts of the pro-
?

. gram that are tn the same logical,bqock. In particular

parenthesize the statements that are in the range of a

DO statement.

Example

DO 37 I 1,N
T B*A-4.00=A*C

DO 35 J 1,M
s(I,J) T*X(I)
R(I,J) T*FLOAT(J)*Y(I,J)

35 CONTINUE
37 CONTINUE

9. Use variables rather than .constants if there is a remote

chance of having to make .a change in the Value of the.con-

14.5 -

stmt. .For example, ql.you have several stet manta of

the form

DO 1 ...1,10

- .. i_

, ,.. .**0-
.

.

it is easier tó make a single Change of thk form

IUP 15

provided all the DO's originally were punched as

DO -- I -.I,IUP

than to chapge each DOdindividually.

After you have tried4the program on the computer and

found that'it contains 4rrors, then you shOuld begin by

correcting compil errors, that is, errors which preyenv-

ed the comptler from making sense out of what you wrote.
,

Generally the 'compiler will list su h errors. Some cam-
.,

pliers (WATFIy, for example) list mJet of the error diag-

nostic messages immerdnteli following the statements con-

.-

taining the errors; some (1130, for example) list all of ,

,

the diagnostic,messages at the end,of the program listing.

Often,one error may produce several diagnostic messages,

some of which may not appear to be relateU to the error.a
Usually, in such cases, howtaver, At least one of the

messaged will.be meaningful.

When there are no compile errors, the program may

still contain executidh.errors4 errors which make it

impossible for the computer to perform the fristructions

21.0

4

given to it, pme compilers (WATFIV, for

diagnostic mess4es for execution errars;

for example) give no error diagnostics.

example) give

\-
some (1130,

Here are some general suggestions for removing

compile and execution errors:

- 10. Check the punched deck.for mispunched charactera,

words spelled incorre'ctly, interchanged letters,

etc. Also check to see that the correct columns

are used -- statement-number in 1 to 5, continua-
:

tion in 6, Fortran statement.in 7 to 72. Make

.sure that all comment cards have a "C" punched

- in column 1.

U. Check control cards to see that they are in the

proper order and are correTtly punched.

ilkt-

Ude the error messages to see which lines cause

ooMpile errors. Remember that the error messages

12.

may not always diagnose the error clearly, but

they de irdorm you which line is.in error. Check

the correct form of the statement with the text--

book for commas parentheses, mandatory use of

integer.nuMbers,- etc.

13. Use the WATFIV diagnostic. messages.to find exe-

cution errors. The messages tell in which lines

the errors are. Again be aware that the error

Message ma4,dot always diagnose the fault exactly.

Check the form of the statement; check to be sure

221,

that the tYpe of the variables is consistent -

14.7

teal numbers read with-F-type formats, charac-

ters compared with characters in ah IF statement,A

etc. iCheck.for keypunch errors involving mis-
J

spelling in variable,names. Also check for

reversal of row and column subscripts.

14. If there aTe no error messages, but the answers

are wrong, three main methods are used:

a) Intermediate results should be printed out

if any long calculations Ire performed,;

write statements may be inserted to check

on the otder of execution of the stateatnts.

(Unformated I/0 in WATFIV is useful here.

See "Format-free I/0" under "Language Exten-
,

.sions," page VIII.7 of Appendix MI.)

b) Go thrU the program statement by statement,

performing all operations by hand and keeping

track of the current value of the.yariables.

c). Break up the program into-segments or sub-

programs, runangseach individually to pin-

point,where the error occurs.

There is additional information in Appendix VIII for

debugging using the WATFIV compiler. See particularly,pages

. SELF EVALUATION:" You haVe already been debugging programs now for

some time. You probably have d?me notion Of yo

.21 ')

gl

14.8

success or lack of it in debugging yoursown programs.

What's it like to debug sordeone elsit's program--

one you didn't write? Your success at this task is

1a real measure of your debugging a 15 ility. Report.

to your instructor; he will giVb you a program list-
_

ing that-contains errors- for you to debug.

ASSESSMENT TASK: Now that you are satu4ted with "bug killer f. techniques,

you are ready for the acid test. It is now your turn

to climb over to the other side and help those rarther,

down the ladder with their aebUgging problems. Be

gentle, be tactful, ask penArattng questions, try tO

ip the neophytes learn'how,to debug. It all lse

fails and you are in dire need to convince,the neophytd

that he can.improve his technique,,you may ask in a

controlled manner,"Why in thunderation did you do that,

stupid?"

-When you are ready, report.to your instructor and

he will set up a schedule tor you to be'in diEignostic

lab for se75sl hours in the next.2-3 weeks. Keep

detailed log of your-activities by filling out the

form on the next page. You will be supervised_by

the diagnosticiX regularly Assigned to thg diagnostic

. .

lab. Be sure to get his signaxure and his evaluation

wherreither you or he must leave the lab. When you

have 'served your time," then take your log sheet to

your instructor for his.approval.

21:3

Your name.

a

-

Log fa Diaggostic Lab

4

10

S.

Date
Time

- in
Time
oUt

Time
sppnt

Supervisoes
Name Evaluation*

Total
helped Tally of visitors helped'

.

-,

1

,
..

4
.. .)

- _.--_
, -

.

. ,

r
. .

,

- /

--,----..........---
.

- -
.

0
1

.

1
o , . ..

.
.

...abo
e

.

.,

t:...........................

:L

* It

21 et-?

t I for satisfactory; "U" for unsatisfactory. Place remarks° belov or on back.

215

4

4

WHAT NEXT? At this poir*Ithe rema ning units probably are 12 and

16. 19u marelect eiIher one of these. If you have

completed them, then you are ready to do UNIT 17, whia-

is the last one.

Altio

14.10

UNIT p15 (Como . .

I ,
v

This unit has Veen onjted frbm this manual.

s

15.1 2..1

'

imp

7

.2;

-

UNIT 1116 (COMSC)

TITLE: COMPUTER CONCEPTS

RATIONALE: After proceeding this far inhe. COMSC sequence you

shoUld-be wondering-what it really going on'in72that

compuT._ How does it put programs, subprograms,

instructions, and data together in a way that mean-

1ngful results occur? This unit should give you,

Some insight into basic htirdware elements of a

computer and a feeling for the relationships that

exist betwe4 hardware-and programs.

OBJECTIVES: Describe hardware features of MO different

machines. Describe the interrelationships

between hardware features and various features

used in setting up a Fortran.progiam.

PREREQUISITESi- UNITS 1/11, 13 (COMk)

ACTIVITIES: We shall take some time out here to describe

hardware aspects of several different computers.

A spectrum of references exists on different ma-

chines. The most comprehensive.'to date is the
. %

book by Bell and Newell which discusses in detail

16.'1

_

stst

16.2

aa

many existing compuers. The bbok by Flores

.discusses briefly the organization of several '

diffeient computers, while the:book by Iverson

. 'introduces an-elegant language that can be used,,,

1: .

to describe computer instruction sets concisely.

The book by Struble_refers specifieally_to the,

IBM/360 series and the 600k by Louden refers to

the IBM 1800 anci 1130 machines. BOth of these

books dealrith assembly language programming

for thp respective machines.

G. G..Bell and A. Newell, calk2L211 Structures; Readings
and Examples, McGraw-Hill, 1971.

I. Flores, Computer Organization, Prentice Hall, 1969.

K. Iverson, A Programming Lapguage, Wiley, 1962.
s

R. K. Louden, Programming the IBM 1130 and 1800, Prentice
Hall, 1967.

G. Struble, Assembler Lan ua e Programmin$ thd IBM System/
360, Addison Wesley, 19 I.

Experience with assemblerlanguage erogramming

is necessary to get a real feeling for computer hard- .

'ware and its relationship to higher 101;e1 programming.

If you find the cöncepts described here and in the

21 9

ibst

le

6

- - -

readings of interest, you might want to get some

experience with assembler language programming

followed by additional experience with compiler

writing and studies in computer'organization.

One of the bese ways to get an understanding of
4

Computer hardware concepts is.to get hands on

experience on a small computer such as an IBM

1130, a Digital Equipment Corporation PDP-8 or

P1W-11, a Hewlett Packard hp.2100, or some

similar machine. ,

Computers can be described in terms of

processors (P), memory (M)., switches (S),, control

lines (K), end input/output devices. W1 and
cit

Newell refer to puch a description as a PMS descrip-

tidn and have created a.,special language to filial-

ieate the discussion of a Mg description. Com-

puters can be described also in term; of instiuc-'

c--tion sets, data rep'resentations and registers...

Iverson created an elegant language for the de-
,

scription of instruction sets. Bell and' Newell
k.

created a different language for'the description

of instruction sets. Although these languages

'aremell designed 0 describe machine'charaCteris-

220

.-. 16.3

16 . 4

ties,' we shall not use them in this-unit since

it takes soma study to become proficient with

their use.

Thd memory of a computer stores data and

instructions. Just as Fortran statements are

-ar-ranged-in-cards-in-sequence-i-mathine instruc,,--

tions are arranged in memory iirsequence. Data

also are arranged-in mamory in sequence. The .

only distinction between data and instructions

is that instructions are interpreted and. exeut-
do

ed by the computer whereas data are not. 4t

times, instructions may be operated on as data.

Present day c uter memories are made of magnet-

ic cores. New technologies are under investiga-

tion for faster cheaper memories. Most of the

memories operate in a two state or binary mode,

that is in an '"on-off" or "0 - 1" mode,. Two

state devices a

reasonably cheap.

currently lack one

characteristics.

fast, reliable, stable and

Devices with more states

or more of these required

Because of the use of two state technology,

computers' normally operate ih.a binary arith-

.:

.7

metic mode.. We shall discuss binary, octal, and

hexadecimal arithmetic later. Memory is organized

in a hierarchy of bit'patterns. Two of the funda-

mental bit patterns pre used to represent charac-

ters and groups of niler. Some computers use

6 bits to represent a charaCter resulting in 2G
S.

16,5

or- 64 different---unique-characters. Recent -couiputers-----

477

use 8 bits to represent a.character. How many .

unique char4cters are possible with an 8 bit repre-

sentation?

Sample character codes are shown in'Table 16.1..

a

16.6
PC

....abmplywa..apro

ASCII

character 8-bit 6-bit (TTY)

IBM

8-bit

blank 1000 0000 10 0000 0100 0000

A .1010 0001 00 0001 1100 0001

3 1010 0010 00 0010 1100 0010
N.

1010- 1001-- 00-1001- -1100 1001

1010 1010 1010 1101 0001

If& K 1010 1011' 00 1011 1101 0016

1011 0010 01 0010 1101 1001

1011 0011 01 0011 1110 0010

1011 0100 01 Q100 1110 0011

1011 1010 01'1010 1110 1001

0101 0000 11 0000 1111 0000

0101 0001 11'0001 1111 0001

9 0101 1001 11 1001 1111 1001

(''0100 1000 10 1000 0100 1101

0100 1001 10 104 0101 1101

010, 1011 10 1011 0100 1110

0100 1101 10 1101 0110 0000

0100 1110 10 1110 0100 1011,

0101 1101 11 1101 0111 1110

TABLE 16.1
SEVERAL DIFFERENT CHARACTER CODES.

2-23

6-bit

11 0002

01 0001

01 0010

01 1001

10 0001

10 0010

10 1001

11 0010

11 0011

11 1001

00 0000

00 0001

00 1001

11 1100

01 1100

01 0000

10 0000

01 101i

00 1011

16.7

These character codes are recognized by

different organiz;Itions and difi;rent computers.

The ASCII code (.Nmerican Standard Code for lnfor-

Mation Interchange) is the result of aa att opt

to standardize character codes. The codes imple-.

mented byomputer manufacturers differed consid-

erably from the codes used by the common carriers

(telephoner, telegraph). Ptoblems arose When cpm-

puters were attached to common carrier lines. The

. ASCII code helps to provide standards for two pre-
,

viously independent industries.

The extended binary coded decimal interchange
,

code (EBCDIC) is used by IBM 360 and 370 computers.

By replacing a.sing19 bit under program control'in .

a 360 or 370, that machine will rf-lcognize ASCII

code. However, IBM, at present, does not:support

software to use the ASCII code.

There are two placip where the character

codes play ilpqrtant functions.. One-of these

. has been discussed earlier, namely the number
.4.11

of bits nsed to represent characters. Thoi more

biti per character, the greater the number of

unique characters that can be rep#esented.by

the code. The Choice of the bit codes to repre-

4

16.8

e

_di

sent characters Is of lasting imporeance to the

programmers. Since a character Is represented

by a string of bits, that charaCter code also

can be thought of as a number. When all the

_tharacters-are-arranged-in-sequence-by-their

numeric,codes'the resulting sequence is called

the collating bequence. Arrange the characters

presented in the previous table in increasing

sequence according to their. 8 bit codes:

IBM code: blank

ASCII code:

Q

a
Are these seqnfnces the same?

If a list of peoples' names were placed in increasing

alphabetic sequence according to the ASCII 8 bit code,

wonld that list also be in increasing alphabetic se-

quence according to ihe DM 8 bit code?

What do you think the 8 bit-IBM code and 8 bit ASCII

for C, h L, Q and V should be?

8 bit IBM

-1

ar

8 bit ASCII

a

nay -,- i-, ,

I.

8 bit' IBN

4;

V
,

8 bit ASCII

16.9

Both character codes arrange the alphabet in

lacreasi ng ...sequence. character code-has

'hcles' in it between I and J and between R and S

whereas the ASCII code assigns 26 consecutive

numbers to the 26 characters Of the alphabet. If

a file.is placed in ascending sequence according

to the ASCII code and then printed, would the list-

ing be the same as if the file were placed in ,

ascending sequence according to IBM code and then

listed? The answer depends on wh4 was in the

file as follows:

characters in file

alphabetic only,

numeric only

alphabetic and
numeric

alphabetic and,
special cIaracra ?

ki

numeric and
special characters ?

yes

yes

no . .Why?

L . Why?

1 Why?

The fact that differenit character codls exist can

be of concern to you in applications where the inter-

226

-;

'go

16.10

I

(

pretation.of the code is edendent on the specific

code used.

Since any group of bits could be called a

character, if one is interested in processing char-

acters, the computer should have an easy way to

manipulate characters. Such machines are referred

to as data..processing machines.. Other applications .

.

require the computer to perform a large number of

collputations quickly. nachines are called

scientific computprs or ber c nchers." Seval

computers bridge the gap and pro id4, both character

manipulation and scientific computing capability so

that the dichotomy no longer exists for thos'e con.v.<'

puters.

r.,

The arithmetic data'representations also are

important'.in describing a computer. Binary is

'usually the base.' Integers, are representedAm

terms of'binary integers. Real numbers are repre-

gentea in terms of "floating point" numbers. A

floating point number consists of three parts: a

sign, an exponent and a mantissa. The exponent

-may be in terms of base 2 or base 16 on a binary

machine. In order to represent both positive and

, negative exponents and positive and negative values

with a single.sign position* the sign of the expo-
,

nent part is determined by ita magnitude compared

2c7P

with the largest magnitude allowed for an exponent.

For example on the 360, 7 bits represent the expo-

nent (a total of 128 different exponent values).

Those exponent valUes that are greater-than 64 arp

consideripd as positive exponent values, whereas

those exponent values that are less than 64 are

considered as neative exponent valuds. Such

notatipn is given the name If excess.64" represen-

tation. On the 360 the base for the exponent is

lferatber than 2, while the'base for the value is

2. Given the numbers

exponent

65

68

where xxxxxxx stands for the same mantissa in

both cases, the s'econd number is

212

larger in magnitude than the first number.

Numenic data arp said to occupy a "word" or-

.

group of words on a computer. Examples-of word

sizes are

4

r)r)i

16.12

4.

"*Nr.

computer

PDP-8

HP-2115
,a)

IBM-1130

IBM 360

IBM 7090

CDC 3600

CDC 6600

, word size

12 bits

16 bits

16 bits

32 bits

36 bits.

48 bits

60 bits

Other numeric representatins are Ossible. Half

word or double word representations provide for

more economic use of storage space in the first

instance and for'more accuracy in the second.

What Other features should :a computer have?

(Your expqrience with Fortran should help you with

thi? one.)

.A/computer should be able to perform calculations

and teats. It should be able to initiate an input

and an output. Furthermore, it must be able to,exert

control over all of these functions.

Calculations are'performed in registers on most

.of.the scientific machines. A register c'ontains the

same numbei of bits as a word.. Registers in whiph

computations are perforMed usually are called the

0. 4'

01:

4,,

St.

16.13

accumulator and the accumulator extension. The

11
extension is the least

4CC ace extension

sigrdficant part of the_ accumulator,aecumulator

extension pair. Addition and subtraction take

place in the aceumulata, teas multiplication

and division take place in the pair of registers.

Tests Can be performed to determine Whether .the

'prey ous result were zero, negative or positive:

t Fortran statement performs this test?

Suppose the Fortran etatement

IF (A - 7.2) 12,6,29

were executed and A bad the value 7.19. Atm would

be the neit statement to be Sxecuted?

The computer might translate this Fortran statement

to a series of machine instructions similar to.the

following:

load the accumulator
subtract 7.2
branch if act < 0 to
branch if ace m 0 to
branch if ace > 0 to

23o

with A

statement 12
statement 6
siatement 29

;

-

0

t

116.14

et.

4.

C.

1.

The IBM/360 has 16 general purpose registers for

performing integer arithmetic instead of a single

accumulator and a single'extension. It also. has

4 floating point registers for performing float-

)
ing point arithmetic. The IBM 1130.has an accumu-

lator and extension for integer arithmetic. Float-

ing point arithmetic is' simulated by software rather

than hardware.

The machine instructions are,executed sequen-

tially similar to Fortran statements. The sequence

is altered if a branch condition occurs.

Input/output occurs between memory and some

external device. The list of different external

aevices that Can be attached eo a computer is an

ever expanding:one. Examples of such.devices are

Jmagnetic disk

magnetic drum

magnetic tape

magnetic strip

punched Card teader

magnetic card reader

optical cat:d reader .

punched paper. tape
reader

* .card punch

231

telet:ype keyboard

typewriter keyboard

Characier display

vector display

incremental plotter

line printei

character printer

analog interface

commuqications inter-
face

4

4

paper tape pUnch ,another computer

FrequentlY a small computerA.s used to control

the input/output. Such a device is called awl/0

processor. Xhe CDC 6600 has 10 peripfieral processors

attached to the Main processor,- Each of these periph-

eral processors is giveil a-specific type of task to

perform. .0ther'computers have,special purpose comL

puters which control input/output ciperations for the

Np
faster dev ces. Such special purpose computers, or

control units, have a limited instruction set which

specifically relates to input/output.

4111p
-

A simplified diagram of a computer appears in

FIGURE 16.1.

16.15

,FIGDRE 16.1
THE MAiN COMPUTER COMPONENTS.

In this example data paths are solid lines, cont

paths are broken :lines.

232

16.16

5

5

S.

Draw a sipp ified-diagram of a computer

which, includes a secondary memory such as disk

which has 4i data path to memory and a'control

path.to.the control unit.

- 0

Consider-the Fortran expression

of

A -1- B * C,

What componenAlOof the computer desetlibed in the

previous diagram .are activated at each 'stage of

this computation?

.5)

1. load' B

2., multiply
by C

add A

store
result In

control,

control,

control,

control,

233

memory, arithmetic unit

memory, arithmetic unit

memory, arithmetic unit

arithmetic unit, memory

5

J

./

v

What componefits bf the computer described.in the

diagram are activated by the instruction

READ(5,111) A,B ?,

1. format 111

2. read

3. format 111

4. read B $

5. format 111

16.17

What components are activated by the instruction

WRITE(6,113).C,D

.5.

What components are activated by the instructi

IF (A-B) 12,13 1i

1. load A

2. subtract B

. 3. branch

23$

J.

,

Refer to UNIT 1116 ACTIVITIES TABE for more

information.

UNIT #10 (COMSC) was concerned with loops and

methods for executing loops in Foriran. The example

17

sumic-a
DO 17

SUMmSUM+X(I)
CONTINUE

Afa,,

illustrates a loop in which the addresses,associated

with the.array vari;t4e X are modified successively.

Recall that X(1).is the addreas of the first element.

Of the X array, X(2) is the addreSs.of the second

element of the X array, etc. A computer must have

the abilitY to compuladdresses of array elements

easily.. One method of calculating addresses is to

make use of a special register (or set of registers)

called an index register:. The address of the array

X is held in the instruction; the index is held in

the index registpr; the address of X and the value in,

the index register ar"e added to produce an "effective

address" that is used to reference the-location X(I)

in memory. -If a meWory reference instruction is,to

use an index.register, an indicator must be set in the

instruction to that effect sometime prior to the OX13',

cution of the instruction. For the statement

233

16.19

SUWASUM+X(I)

a schematic of effective address calculation, assuming index

register 3 contains the index, appears as followsf

.

instruction
instruction
address

index
register 3

effective
address .

load accumulator from SUM

add to accumulator from X
modified by index regisfer

3

store accumulator into SUM

SUM

X'

SUM

i

i.

,

i.

SUM

X41-

, SUM

1

The increment step of the DO,loop modifies index register 3 and
%

also tests index register 3 Lo determine whether the loop has

been completed. Symbolically the effective address computation

can be represented as follows:.

where

AR i; the address register,
IR is the index register,
RA is the effee.tive address.

236

EA 1

,1-4

16.20 .

The EA is enclosed in a dashed box to indicate that it does not

appear in storage; rather it is created, used, and discarded un-

ceremoniously in fractions of a microsecond.

The Fortran statements

57

DO 57 Jimil,N

x(J) Y(J)+A(J)
CONTINUE

illustrate more graphically the usefulness of an index register

in effect..ive address computation. Suppose index register 2 cOn-

tains.the index J. Fill in the following table that simulates

effective address calculation..

instruction
'address

indek
register 2

effective
address

Y

A

x

,

.

,.

J
,

.

.

,

.

In this case index register 2 is used in three effective address.

computations.

. How many index registers does a computer have? ihat depends
4.,

on the sprific computer. Some computers'do not have index registers;

others have three, others have eight, still oihers have fifteen.

2 3 r'Al

The 1130 has 3 index registers; the 360 has 15 registers

that may be used as index registers. One must be ablate

scst an index register to an iniiial value, increment (or

decrement) an index register, test an index register,

branch based on the test', and store an index register.

Such capabilities are implamented differently en different

machines.

Other hardware features include base registers, in-

direct addressing, floating point registers, interrupt

facilities, input/output channels, multiplexor channels,

control units, peripheral piocessors, memory locks and

keys (also called memory protect), and relocatability.
;

Many of these topics are col:Fired in a course in assembly

language programming; otheTs are covered in topics in

computer or.ganization.

The types of data a computer allows are an important

key to its character. The set of operations which a comr

puter performs is another basic indication of its charac-

ter. The IBM 1110 has 4 basic instruction set of 29 in-

structions, while the IBM 360/65 has over 140 instruct:kens

and the IBM 37 5 has over 160 instructions'. Subsets

of the instruction set ptrtain to specific hardware func-

tions. Several Of these functions are listed below.

238

16.21

(2,

16.22

,

Ns

function instructinamt

arAhmotic loading a register, storing a
register, addition, subtrac-
tion, multiplication, division

, in binary inteiger, floating
point, and decimal, round, com-
pare

I

index register load index, modify indek, store
Jmdex, test index, branch on
iddex

bit manipulation

character manipu-
lation

input/output

miscellaneous

test bit, insert bit, shift
register left, shift register
right, rotate register, store
bit, and, or, exclusive or,
mask, test

move character, insert charac-
ter, test character, translate
character, edit character

initiate I/O, test I/0,,test
channel, stop I/0

interrupt processing, storage'
protect, error recovery

Since computer instruction sets vary widely, not all com-

puters will contain all of these functions. If a computer does

not have floating point hardware, floating point arithmetic may

be simulated by a program. The resulting simulation is a great

deal slOwer in execution speed than hardware would be, however.

Most of the functions listed above may be simulated by programs

if they.do not exist on the particular computer. Exceptions .L

are input/output and interrupt processing. These may be quite

difficult or impossible to simulate'if the hardware does not

exist on the machine. ,Many of the hardware features on today's

computers were simulated by programs on earlier computers. /n

239

16.23

fact, multiply and divide are simulated to this day on some

'computers by making use of repeated additions and shifts in

the first case and by repeated subtractions, tests, and shifts

in the second case! Those software simulated features that

proved useful were incorporated into the hardware of later

machines. Floating point, index registers, character manipu-

lation, storage protect, and interrupt processing are a few

examples of software simulated features that have been incor-

porated into hardware.

SELF EVALUATION: Supposea_computer as a 4 bit accumulator and a

four bit accumulator extension. .Suppose

EP, DiE LICI:MACACCEXT

the contents of both ACC and ACC EXT can be ehifted

left by 1. Suppose the leftmost bit.of ACC replaces

the bit in L after the shift. Suppose the L bit can

be tested for 0 or 1. Draw a flowchart to simulate

multiplication'by addition by loading the multipli-

cand in ACC, shifting left the ACC and ACC EXT one

li

position, testing the L bit. If the L bit i I., tfe

!

multiplier should be added into ACC EXT. The'product

appears in ACC and ACC EXT.
J

16.24

Answer:

.000000,6.i0000

v'

Load multiplicand into ACC.

Shift left one.

10.*K+1

Is L bit 1?

.Atid multiplier to ACC EXT.

Is 10..4?

Store product

'ASSESSMENT TASKS: Report .your instruct& .and discuss the

assessment tasks with him.

_WHAT NEXT? You may do either UNIT #12 or UNIT #14. If ;ou have

completed 12 and 14, then you should be ready for

UNIT #17, the last one.

2.12
a

-so

.UNIT 1/17 (COMSC)s.

TITIA4 General Fortran Programs

RATIONALE: Constructing general, efficient., accurate and skillfully

done computer programs for,solving problems is a worth-

while goal for any programmer. That goal also happens

to be the overall objective of this colirse..

You should by this time have developed consiaerable

expertise in coustructi4 Fortran programs and running

theln on the compuW. Now you should put that skill to

use in a fairly sophisticated problem sdiving situation.

OBJECTIVES: At the en4 of this unit you will demonstrate your

ability to solve ,problems efficiently and'accurately

using Fortran programs that you construct and a com-

puter.

.PEEREQUISITES: If you have Chosen the option of qying for an-"A,"

then UNITS 12, 14, and.16 are required. If you have

chosen to try for a "B," then only UNIT 12 is re-

quired

ACTIVITIES:

A. . Some general considerations

A Fortran program of optimum wOrth is one that is

accurate and efficient. Some of the considerations regard-

ing accuracy were discussed in UNIT 12 and will be

discussed again in this unit. Rather we will focus on

17.1

2A r)4,

17.2

efficiency.

An.efficient program is one that uses the computer's

capabilities to the greatest advantage. Efficiency suggests

in perticular that the best Possible use be made of the com-

puter's storageuad time. Execution time, compile time, and

required storage should all be minimized with respect to each

other. Sin.ce these variables are all interdependent, minimiz-

-
ing one may increase another; some compromises will be necessary.

Let'e.,notice some of the factors involved in efficient program-

ming.

1. Length of program. A program that is longer than

necessary will pr1óably require more compile time,

more execution ime, and more storage for the object

code. Az the program ia.shortened, these variables

will tend to decrease. If, however, the program is

made much shorter by combining statements and.opera-
46.

tionw as much as possible, the compile time will

tend to,increase -- in some caseS, drastically; the

required storage and execution time may also be

increased. It is important to realize'then that

the shortest program is not necessarily the best.

2. Sequence..of operations. In general, the more

operations the computer has to perform, th(gieater

will be the execution'time. Unnecessary operations--

:ouch as'transfer to another transfei statemet4 and

then to apother statement,' rather than a direet

transfer to the last statement mentioned -- should:

213

4.

I.

17.3
I

always be avoided. -Arithmetrc expressions should,

in general, be arranged so that Unnecessary opera-

tions are not performed. (Not milly do' unnecessary

ovorations require extra exevition time, but also

accuracy ia reduced, as discus-sed in UNIT 12.)
. .

,

The same is true for assignment statements. (For

A

.exampl , Xe.0 requires integer zero to be converted

to real zero before it is stored into X. X,..0.0

requires no unnecessary operations.)

3: input and ou'tput. In general: any kind of I/0

requires more execution time Chan.internal machine
-

operations.)5, prdgram may.beceme "I/0 bound:

that is, the computer lb having to use much of its

execution time for I/0 to occur. It is very easy,

for exa,ple, to eeuse the.1130,with a typewriter,-

ptinter to be I/0 bound, since the printing is very

slow, The 360 handles' I/0 much more efficiently lry

tl process in which I/0 is performed throUgh inter-

mediate magnetic,disc storage which has a very small

access time. Therefore, I/0 does not slow.the 360

very much at.all. hven so, excessive I/0 shou

avoided.

4. Storage for variables-and arrays. When reserving

storage for arrays, you'should use only es much

space.as necessary. If iou can avoid the use pf

arrays, that may be-even better. Us% as fe/

variables'as possible in a program. Por example','

4,14

CI

es

17:4'.

ka,

-r

uae one variable for the index of all Utnested DO

loops. For another example, consider the program

segments in Figure'17.1, which find the average o6

all array of numbers. .The one on the right makes

better use of storage by- 'having less variables than

the one on the left. ,Reuse variables whenever

possible.

DO 1
SUM...SUM+A(J)

1 CONTINUE

AVWUM/XN

D0.1 J...1,N

AVG....AV04-A(J)

l'CONTINUE
XN..N

AVCA.AVG/XN

Figure 17.1.- A program.sument. for calculating -

the average of a set of numbeNs, 1.11ustrating
hew variables may bb reused.

5.. Mixed mode. If mixed mode arithmetip

/
usually it is slower that arithmetic on a single

mode. Since mixed mode.Urithmetic requires extra

.

'opetations for changing all operands to the same

type, in generallit should be avoided, especially-

if the expression is in a loop. Examine the pro-
.

gram segment in Figure 17.2, which generates a

table of x 'and y values for the equation

Since the calculation of y occurs in a loop, the

S.

VI

17.5

integer constants in the polynomial must be convigt-

,ed to real constants.with eachlteration, increasing

iixecution time. Mixed mode should not be 'used in this

expression, ln fact; there is never any Teason to'

use mixed mode operations in which one or more,of the

.operands is a constant written in a different mode from

that of the rest of thb expression.

DO 2 ,Ji,50
READ(5,10)X
Y 3 * X**3 - 2 * X**2 4- 5 * X - 2

C THE EXPRESSION SHOU119 BE WRITTEN
C 3.* X**3 2:* X**2 4- 5.* X - 2.

WRITE(6,10)X,Y
2 CONTINUE

10 FORMATO1Xi2F10.2)

Figure 17.2. Program'segment illustrating an
inefficient mixed mode expression, (Notice that

X**3 is not mixed mode.)

.r

Where are cases in which mixed mode is definite-.

ly advantageous. Refer to, the program segment in

Figure 17.1. In the calculaMn of the average where

" AVG/XN is'evaluated, cEopile time execution time,

and storage requirements for variables and the object

code npuld probably be reduced by using the mixed

mode expression AWN, since the statement'W.N is

Xabsent a44oes not have to be cqmpiledp stiked,

auilexecuted. Besides that, storage for one less

r-

17.6

_ _ _ _ . _ . _ _ _ _ . _

variable (XN) is required. Mixed mode may be

useful, then, when both operands are variab1e6

and the expression is evaluated only,once (or

very few times) in the program. If, however,

N, for example, were to be used several times

as an arithmetic operand in one or several mixed

.mode expressions thenlprobably addition of the state-

ment XNi..N and-subsequent use of XN would'be better.
.10

Mixed mode is useful when used'with discretion..

6. Integer arithmetic. Integer (fixed point) arithme-
.

tic is considerably faster than real (floating

point) arithmetic, since-there is no decimal point

to keep track of. Integer arithmetic should be

used whenever possible, and especially all counters

should be. in integer mode.

7. DO loopti. DO loops may or may not require extra

compile time and execution time, depending on the

compiler. But, as a general rule, as few DO state-

ments as possible should be used i a program. For

example, instead of using two short DO loops, com-

bine the two into aingle loop, if possible. In

Figure 17.3 there aie two progralp segments for

finding.the sUm and the sum ,of the squares ot the

elements of.an array. The one on the left uses,

two DO loops, making two passes through the array,

while the one on the right uses only one loop and

makes one pasq through the array. The efficiency

2 4 l'eYA /

17.7

has also been improved slightly by using the

multiplication operator instad of the'exponen-

tiation operator and by eliminatingthe CONTINUE.

statement.

C INEFFICIENT PROGRAM
,

DO 3 1C.=1,N.

S..S+A(K)

3 CONTINUE
SSQm0.0
DO 4.K..1,N

SSQSSQ+A(K)**2
4 CONTINUE

le

C MORE EFFICIENT PROGRAM

SW,P0.0
DO 3 K..1,N

SP.S+A(K)

3 SSCKSOKA(K)*A(K)

OWN

Figure 17.3. 'Program segments for finding the sum and
the sum of the squares of the elements of an array.

Another important.rule is that you should

never put unnecessary operations inside loops.

Figure 17.4 i.11ustrates an unecessary step,

XN...N, that must be performed needlessly N-1 times,

having-A need to be performed only once.

V

17.8 \

UNNECESSARY STEP
INSIDE A DO LOOP

60 6 K.R1,N

X14..N

S..S.+A(K)

6 CONTINUE
AV..S/X14

4 '

Figure 17.4. Program segment _for finding the
average of the elements of an array.

8. Storage of character data.- Character strings.should

be stored so chat the maximum number of characters

is placedjnto the storage locations... For the 360,

in single precision a maximum of four characters is

allowed (eight in double.precision), while on the

1130 it may be four or two,,depending upon whether

the storage location is associated wlth a real type

or an integer type, respectively. If you wish,

hoWever, to make use of single character data ln

a program,. then you will have to store just one

character per storage location. (There are ways

around this problem, but they are beyond the scope

of this course.)

There are many other factors to be 'considered in various

situations. But our main purpose here is just to gi-ve you

a.feel for some of the problems involved. Be aware of theSe

problems as you eonstrdct programs; try to minimize all three

variables -- compile time, execution time, and reciuirtd

2,19

PV*

-

17.9

storage -- simultaneously, realizing that compromises will

be necessary.

The intended uses to which a program will be put also

dictate what additional compromises may be nepessary, For

example, a program that is desigped to be run on any computer

cannot make use of "short cut" options available on some

computers. Unless a program is definitely intended to do a,

specific "one shot° kind of task, it ahould be constructed

to handle general cases rather than specific cases. General

programs-probably wil.1 be longer than specific programs, r
0

however; and they usually become longer as they become more

general. Several compromises will be necessary, therefore,

as a program is generalized for broader application to a

wide range of.computers and gtimilar problems. FuriheFm6re,

compile and execution times as well as storage requirements

for a given program may vary markedly with diffeient Romputer

systems and with different compilers used on the same computer.

B. Some specifics.

.Refer to UNIT 17 ACTIVITIES TABLE.

C. Someone else's ideas.

The following material 1.6 reprinted from the Waterloo

urilyimaz Newsletter, September, 1970.

The following'is a list of hir4s on how to optimize

FORTRAN coding in order to achieve betteeaccuracy in

calculations and to increase the speed of execution of

250

17.10

6

programs in general.,

1. ,Think carefully about the problem before

programming. Ifirqu are unsure of.tlie

techniques involved, Make a point of see-

ing someone at the Information Desk. In

particular, make sure your program checks

out dh the following points:

a) The program doe6 exactly the job

you want it to do.

b) Input and out t are in the most

convenient format.

c) Today's results will be understand-

able in six months' time without

having to re-run ,the progrant

d) The program structure naturally
\

reflects the problem structure,

thereby being easier to coda mid

debug..

e) The program can easily be extend-

ed to cope with an extended version

of the problem.

.1

17.11
.t.

2. Use DOUBLE PRECISIgN arithmetic in critical calculations

wherever

3. Use' a minimum of mixed-mode arithmetic. The extra coding

generated can41n some cases take more time to execute

than the arithmetic itself.

4. -Avoiluting SUBROUTINES-and FUNCTIONS for small repeated

tasks.

5. Arrange phe programologic to avoid branches whenever

6. Make the most probable result of all LOGICAL IF statements

a simple drop through instead of a branch.

7. Use LOGICAL IF's instead of ARITHMETIC IF's.
a

B. Choose variable types to a;roid conversions (i.e. mixed

modes) whenever possible.

9. Reduce input-output to' the,minimum necessary.

10. Avoid'implied DO's in input-output where possible.

11.. Align all COMMON, and EQUIVALENCE statements with variables

in decreasing order of%torage space (Le. LCMPLEX*16

before REAL*8 beford v.. LOGICAL*1).

12. Calculate all quantities which are constant through a

program at the beginning, and calculate all quantities

constant through a loop outside the looP.

DO 20 IR.1,450

C1(l41;2*I-1-1)ftD(I-1-2,2*1()-1-.E(2*L4-1)

20 CONTINUE°.

252

6

\
17.12

. 'MR .e.,--..,Tj

should be written:

t12*L-1-1

DO 20 4.13,452

C(J+1,2*J-3)*.D(.1,M)+E(N)
20 CONTINUE

-

This modification saves 898 multiplications and 899 additions.

13. Store any ARRAY element used more than once, in a loop in a

temporary SCALAR variable.

14. Use as few subscripts as possible on arrays (i.e. use A(720)

instead of A(12,6,10)).

15. a) Make all on-off sWitches, flags, etc. LOGICAL*1.

e.g. DIMENSION X (500)
LOGICAL*1 OUTPUT
READ3,OUTPUT,N

3 FORMAT(L1,I5)

ad.

A

IF(OUTPUT)PRINT9,(X(I),D*1,N)

GAZ)

'b) Make all test varrables (3-way or more) INTEGER*2.

Ja.g. INTE R*2 BRANCH
READ3,BRANCH

3 FORMAT(I3)

F(BRANCH)7,304,82

c.

Or-
A- J3

Here, only 16 bits are tested in the IF statement,

whereas the use of a 4-byte integer variable would

necessitate the testing of 32 bits.

16. Use assigned GO TO's instead of computed go TO's.

.17. a) Use LOGICAL IF's instead of 2-dway GO TO's.

IF(DOG)14,23,14
14 10.0C+1

AIM

PIG

23 XwX-1

Efficient
A

17.13

IF(DOG.EQ.0)Q0 TO 23
X.1+1

WO,

23 X.EX -1

Using a logical IF here is more efficient because it

generates-less coding and'executes faster than the

Arithmetic IF.

1

by Use ARITHMETIC IF's instead of 3-way GO TO's.

e.g. Inefficient

IF(TEST.EQ.0)G0 TO 1
IF(TEST.GT.0)G0 TO 5
STOP

1 X.*X+1

5 PRINT2,X
2 FORMAT(F10.3)

4.31.

pp.

Efficient

IF(TEST)3,1,5
3 STOP
1 X.14-1

5 PRINT2,X
2 FORMAT(F10.3)

For the same reasone as in (a), it is more efficient

to use an arithmetic IF here.

17.14

18. Using IF statements to determine conditional branches

10 1000 efficient than using assigne0 or computed GO

TO's. The 'computed GO TO uses more overhead time and

space than the assigned GO but it still is better than

an IF statement.

19. Where possible, pass variables to SUBROUTINES through

COMMON instead of using parameter lists; this saves

much time because addresses do not have to be paised

down to the subroutine for the variables in the call-

.

ing sequence..

20. Do not test for equali-y using floating-point variables,

because of roundoff error in low-order bits. Use .GE.

or .1.E.

21. Use SQRT instead of **.5, since the SQRT-routine is

faster than the logarithms routine used to evaluate'

expressions of the form X**R.

22. For small powers, use A*AAA ... or A**I with Dull instead

of. A**R, where R is a floating point integer; values

raised to integer powers are computed by repetitive multi-

plicat1ons, whereas values raised to real powers are

computed by using logarithms.

23. Use unformatted I/0 for scratch units; FORMATs waste time

and space.

24. Alwaysidebug programs under WATFIV; the compilation time

5

4
17.15

Antelib

is faster and the orror-messages are useful.

25. Production-type jobs (i.e. those large-Core and time-

consuming jobs which ar run frequently without chang-

ing the source program r perhaps with changing only

one subroutine) should not be run under WATFIV. Any

unchanging routines in such programs should be cempiled

into object decks under FORTRAN H. Runnfig under FOR-

TRAN H will decrease the execution tim

_SELF EVALUATION: Pages 17.18 - 17.21 contain programs that produce

the same end results, but they'vary considerably

in how they obtain the results.

, Here is the problem to be solved: make a

list of the names and ages of all people who are

between the ages of 17 and 21 and find their

average age. Assume that you have a set of data

cards with the following information punched in

each card:

Name, columris 1-20

Social sedurity number columns 21-,-31

Age, columns 32-34, right justified

Place a blank card at the end of the punched cards

as a signal that all the data have been processed.

Examine both programs very careOully and

determine what advantages and disadvantages may

'exist regarding the efficiency of each program.

256

17.16

Record your observations in the spaces provided.

On the pages following the programs some possible

observations are reCorded so that you can check-

yourself. ff you made observations that are'not

listed, then discuss them with your instructor

to see whether you are cgrrect.

The_..programs__we.re__run__on 360 WATFIV. Oomp'are

the execution and compile times and the storage

requirements of the two progFams and harmonize

them with your observations, if possible. (Your

observations may be correct regardless.)

Notice in particular that these programs
4.

were executed with just a few data cards (actually

10, 5 of idlich did nc4 qualify for 'listing). If

the programs were used with 500 cards, or 50,000

cards, would your obsetvaxions still hold? Does

the number of data tards, in fact, make any dif-

ference in compile time? In'execution time? In

storage requirements?

What about the compatability of the two

programA with the 1130? Just how general are

the two programs?

These are some of
)
the questions that you

need to answer ap you make your observations.

/

1P71

Pee

, .

a,

V

The following pages contain the programs for the SELF

EVALUATION section.

a

A.

CD

17.17

17.184

"/A,, "Ny

C
)JUB .

.,

A

t.:2:i

.. ..

.

C __-__ PRuGHAM 1 -----
.-

',C

C IHIS PkUGRAM MAKES A LISTINk; OF PEOPLE wHOSE AGES ARE Iti-eo
C AND ALSO CALCULATES THEIR AVtRAGE AGE.
C 4

*******************************44***************
C * * 6

C *. LIST OF vARIAdLES *
UATA - AKRAY CONTAINING NAMES IN FIRST *

L. * FIVE COLUMNS AND AGES IN COLUMN *
C * SIX ,.

C .
/* KSUM - USED FUR SUMMING ANU CALCULATING *

C I, AVERAGE
%id.

*
C * SUM - REAL EWUIVALENT uFICSUM *
C - * N - CWUNTER FOR NOMdER UF CARDS READ *
C * K - CULNTER FOk NUMLIER OF NAMtS,.ON *
C * THE-LIST- *
C * IN - CARD ithAOER LOGICAL Ul'IIT NUMOER *

t....

C o LP - LINE PRINTER LJGIGAL UNIT NUMBER *
C' * .

*
C ******!o***
C

1 INTEGER OAT/1000,6i
2 uATA IN.LP/to/
3. CATA N.KIxsUM/34,0/

wRITE HEADINGS. N. -

4 wWITE(LP11) t

C 'PLACE DATA INTO ARRAY.
i5 DO 4n. 1=1:5J0

6 REAutIN#2)(DATA(17A,Jv,1,6/
C-- --- LHEC& FOR LAST CARD.

7 11-(OATAIII0).EQ00)GO TU 10
8

c 90 CONTINLJE
c ScAN ARKAY POR AGLS IN THE RANGE18-20.

10 10 DJ 91 Im1IN
11 IF(ATA(116).0.2U.UR.OATA(1,6).LT.1B)GO YU 91

C sum ANU COUNT FOR FINDING THE AVERAGE.
14 -lczK+1

RSuMmRSUMI-uATAtifb)
14 wkItE(I.Prit(UA1AII,,W,J=1,6)
15 91 CCNTINuE ,

C CHANGE INTEGER SUM Tu REAL FUR CALCULATING AVERAGE.
.0 tHtN CALcuLAIE AVERAGE AND ROUND TO NEAREST INTEGER.

lo SuMAKSuM
17 j(SUM=SuM/K+0.5

c voRITE AVERAGE A(E.
18 dRITEILP,4)K0,SUM
IS SIDP

,c...0OO.0446ftwOftmWW.wqmovoftWqmom.m..
C 4 FORMAT STATEMENTS.

20 I 0 FORMAI(/' LIST OF PEOPLE WHLSE AGES ARE 184.=20°41/
1 NAME AGE.

21 4 I-URMATI5A4,11X,I3)
.22 3 FURMATI6X0A4,3X,I2/

16ani43 4 FORMAT(/' THE AVERAGE AGE OU ',150. PEOPLE IS ',1211.'

/24 END 4 0,9

SENTRY

LIST UF PEUPLE wHUSE AGES AKE 187Z0

NAML AGE

Emoce6p4xuuthwAmaim, 20
FFFFIWFFFFFFFFFFfFF 18
liGGGkki,GGGGvuGGGGGGGG L9
hi.hhhHHOHHHHHHHHHHHH le

20

THE AVERAGE AGE & 5 PEUPLE IS 19.

17.19

LURE USAGE, UbJECT CUOEN. / 5/36 dYTES,AARAY, MEAN 12000
A

GOMPILE TIMEN Oodi Stt..,EAECUTION T1MEN ,0014 SEC, WATFIV

Possible ood oints Possile bad oints

260

17.20

PRLit..RAM 2

L THIS PkUURAP MAKt A L IST INt.. OF PEOPLE bt,'HUSE .AG-ES AKE I.8-20
L. ANU AL SU LALCULA TES THEIR AVERAGt. AGE
C

**

* LI OF VARI AtiLE S
* NAME. PERSON'S NAME '*t * SSN PERSON° S SOCIAL SECURITY NUMBER *

c * AGE PERSUNII S AGE (INTEGER) *
C N COUNT ER FUR NAMES ON THE L IS I *9

..

C. XII THE REAL EQUI VALENT ClF N *
' C . * IN CARO READER LOGICAL UNI T NUMBER *

Cro * i_P LI NE PRINTER LOGICAL UN IT NUMBER *
C_ * AVG 1 _USED__ FOR _SUMMING ANO -GALCULAT 1NG -*-
(. * AV ERAGE . *
C * 1 *

,

C **44**

I %, IN TEut k AGE
2 -' , ULMENSJUIV, NAME(101 . SSN(II)
3 OATA INILP/516/ t AV C/0.0/0.10/C-------- PUT OUT HEADINGS.
4 GU TO 190

C RtAti DATA (,ARC.
10(READ(IN,2)NAM6,SSNIAGE,.

t.. CHECK Fo:(L AST CARD. AGE I S LERO UN LAST CARD.
6 IF IAGE),2Q,20,1.1

C UN E GUyNTERI NG 'LAST CARD. CALCULATE AVERAGE.
7 20 .t AV.G= AV UN .

C ND AyettAGE IL NEARESI INTEGER.
6 , AGE=A fpi-0. 5 '

GC To io?
.

PRUCESS CARD. CHECK f tiR AGES IN THE RANGE 18-20./0 13,> (AGE72.1r11,10, 10
11 LI IF (AGEr.17/10 v10,12

C. SUM FOR A VERAGE AND COUNT.;
12 12 AVG=AVG+ AGE

N7-N+ 1
14 Ge) /01

OUTPUT STATEMENTS.

hCALINGS -

15 100
1.6 GuTU 10

C LINE OF LIST.
17 101 wki TEA LP OINAME rAGL

GU TO 10 \Ic-
C AVERAGE AGE.

19 102 mu, TEL 0141 atAGE
29 STOP

C......""""..".""""*.""*""..""4.r. "
C FUAMAT SrATEMLNISs.
C IKPUts

FURMATIOA2111A1013)
00IPUT.

22 I 0 FORMAT(/' LIST Ok PEOPLE WHOSE AGES ARE 18-20W 17.21,

1 $
, NAME AGE' f)

,

23 3 FORMATIbAtI0A2,3X.I21
24 4 FORMAT(/' THE AVERAGE AGE OF ',150 PEOPLE IS 't12006)

25 ENO

SENTRY

'US) CF PEUPLE WHOSE AGES ARE Au-20

NAML AGE

00J0J00.00001.WOU0OU0 20
.FFFFFFF1J-I-FFFFFFFFFF 18
GGGGGGGGGGGGGGGGGGGG 19
HHAHNNHHHHHHHHOhHHHH 18
14111111111111111111 20

THE AVERAGE AGt OF 5 P,EOPLE IS 19.

CURL USAti Uti.JtCT 5560 8YILStARRAY AKEkw

CUHPILL fIML= 0./.4 SEC,EXECUTION TIME= 0014 SEI.;,

1. I

84 8YIESIVOIAL AR

wATFIV VLRS1ON 1

Possible ood oints Possible bad soiflt8

or

17.22

Some Observations on Program 1

Good points.

Line 8: Integei counter-used.

Lines 2 and 3: DATA used for initializing constants rather

than assignment stateMents.

Line 7: Logical- IF is faster than arithr4tic IF.

Line 13: Integer arithmetic used for summing.

Lines 13 and 17: Previously used variable KSUM reused, Conserv-

ing storage.

Line 21: Maximum number of characters stored per storage location

by using A4 fields.

Line 17: Good use of mixed mode.

Bad points.

Line 1: sing a two-dimensional array makes program less general

and uses a great deal of storiT3. A large number of

cards could not be processed using this program.

Lines 5 and 10: The two DO loops could be Combined into one,

making the use of a two dimensional array

unnecessary.

Line 11: Compound argument in .logical IF may be SleWer than

two simple logical IF's.

Lines 11 and 13: A new nonsubscripted variable should be set

up to replace DATA(I,6) in these statemente

since referencing the subscripted variable

tilree times is tiMe consuming.

Lines 9 and 15: Removal of CONTINUE's would reduEe the number

25'3.

of executable statements.
1

Program ds not\compatable with 1130, if that

matters.
,

Line 8: Counter not needed; index of DO should be used rather

than separate counter.

4.

0

17:23

f

17.24

Some Pbservations on Program 2

Good points.

- - -

Organization of program is convenient, having all output state-
*

mentsstogether.

Program can handle an unlimited number of data cards.

Can be used oq the 1130 by changing I/0 unit numbers in DATA

statement.

Lines 7 and 12: Uses-AVG for storing both the sum and the average,

reducing the number of variables.

Line 7: Mixed mode is biater than using

ZNN
AVG...AVG/XN

assuming mixed mode capability, of course.

Lines 5 and 17: Program requires a.great deal of I/0 in the

loop and will probaly be I/0,b-eund on the

1130. This may not be bad on the 360, however.

The alternative, placing the data into an array,

may require large amounts+of storage.

Line 3: DATA 'statements used for initializing constants.

Bad points._

4 Novel organization requires exceasive number of transfer state--

ments.

4

Line 12: Mixed mode expression in sum is inefficient. 'Besides,

17.25
4r

the summing should be in integer mode.

Line 5: The social security number is never used and shouldn't

be read.

0

Lines 2 and 21: Storage of characters is not efficient since

only two characters.per storage location are

used for NAME and only one for SSN. Since,

however,_NAME_is integer and a maximum of two

characters is allowed on the 1130, this makes

A the program compatable with the 1130. It

would be better to use REAL MAMB(S) and 5A4

on both machines.

Lines 6, 10, and 11: Arithmetic IF stralents are slaver than

logical IF's for two-way branching; but,

if compatability with the 1130 is important,

then that is a necessary compromise.

266

0

17.26

ASSESSMENT TASKS: If you are trying for a "13" in the course, then

you will be required to construct a Fortran pro-
.

gram to solVe one problem given to you by your

instructor.

If you are trying for an "A," then you wIll

be required to construct programs to solve two

problems given-to-you-by-your-Instructor,

In either case, see your instructor,

WHAT NEXT? You're on your own!

ENRICHMENT OPPORTUNITIES: If you are so excited about UNIT 17 that

you would like to work on additional problems, see your iptruc-

tor. You may wish to work on a project of y ,:sewn,,but 'get

14.

the instructor's approval before Y6u do.

There are more advanced courses which you may wislk to take.

A partial list with a brief description of each course is given

below:

.COMSC 2123: Intermediate Programming. .More on algorithmic

problem solving with.the computer. Use of

files. IBM System/360 Fortranlanguage exten-

sions and Job Control Language (JCL).

COMSC 32.23: Digital Computer Methods. Digital computer

approximate solutions of algebralc and trans-

cendental equations, solutions of linear and

non-linear equations, functional, approxima-

tions, least squares eurVe-fitting and allied
e

topics. Pracitcal programming experience in

the applications of these techniques.

COMSC 3333: Procedures and Algorithmic Processes. The

description and programming of numeric and

non-numeric problems. The concept of an

algoriihm. PIJI language.

Seeyour instructer if you want additional information.

a

2Ss

S.

17.27

- - - - -r .

APPENDIX I

COMPARISONS OF VARIOUS FORTRAN IMPLEMENTATIONS

E Yee
n E no

Nit F.. no ruling

__character-set
A...Z 0...9 blank..+-*/(),
'(apostrophe)

statement continuation
lines

nmmeric statement label
.(dectmtal digits)

variable name (characters)

data types
integer
real
double precision
complex
logidal
Hollerith

integer range

real constant
basic real constant
real exponent range
real single precision

(# of digits)
integer constant followed
by a decimal exponent

double precision constant
real double precision

(# of digits)
. real constant with 'D'

in place of 'E'

nmmber of array dimensions

Subscript form given by
(integer) conetant*variable
iconstant

Ti

n

±7

7

2 I 7

I.1

tti

-,

Y

..._

y .

Y Y Y

19 19 5

) 5 1 to 5 1 to 5 1 to 5

) 6 1 to 6 1 to 6 1 to 5

Y y y

Y Y 3,

Y Y n

Y n n

Y n n
Y y n

1-1) -1(281-1) 1,(231-1)±(215-1)

y y Y
±75 i75 39 to +38

7 7 7

Y n n

i 16 16 10

Y n n

7

Y Y
,

.Y

9 .

, ..

4,1111ft

A format maximum field-width

format (parens levels)

scale factor
es

blanks in numeric conversions
.high-order
within the field

real conversions
integer plus exponent
E type exponent
D type exponent

format during execution

statement functions must
Orscede the 1st executable
statement and follow the
specification statements

type specification in a
function statement

function may define or
redefine its arguments

transmit in a CALL
Holaerith arguments
external subprogram names

block data subprograms

specification statements
precede lst executabld
statement

DIMENSION, COMMON, EQUIVALENCE
must be ordered

external function may alter
variable in cOMMON

'Mixed mode arithmetic

,

NR

2

zero
zero

a

Nit

n

zero
error

1.2

y y y Y

y y y y

y y y y
y y a a

Y y y n
3' Y y Y

y n n

Y

zero zero zero zero
zero zero error zero

_

n,

y

relational expressions

logical operators

assigned GO TO

logical IF

DO extended range

READ and WRITE
formatted
unformatted

REWIND

RACKSPACE

EUDFILE

formadted records
1st character printed
space before printing
blank 1 line
0 2 .lines

1 1st line, new page
+ suppress space

adjustable dimension

common
blank 4*

named
array size declared

external statement

type statement

dimension information

data statement '

format types
A

G

*Applies' to line printer
not console typo/Titer

7.

7

ii

_

0 CI)

7''y
Y

n*

7.

6i*

APrENDIX II

COMPUTER SCIENCE GLOSSARY

r-

r-

1.

1",.

4.

COMSC GLOSSARY
PAGE I-

ABEND
ABNORMAL ENO.

ABSOLUTE ADDRESS
AN ADDRESS THAT 1S PERMANENTLY ASSIGNED BY THE MACHINE

DESIGNER TO'A STORAGE LOCATION.
41.4% r

- ACCESS TIM'E

THE PERIOD OF TIME NECESSARY TO LOCATE AND TRANSFER THE

OR, CONVERSELY, TO TRANSFER THE CONTENTS OF A RAI,NG REGISTER
CONTENTS OF A SPECIFIED MEMORY LOCATION INTO WORKING REGISTER

----- TO-A-SPECIFIED-MEMORY-LOCATION,

9

J.
ACCUMULATOR

A REGISTER IN WHICH THE RESULT OF AN ARITHMETIC DR LOGIC
OPERATION IS STORED.

A C M

%

ASSOCIATION.FOR COMPUTING MACHINERY.

ACRCNYM
A WORD FORMED FROM THE FIRST LETTER OR LETTERS OF THE

SUCCESSIVE WORDS OF 4 MULTIPLE WORD TERM,'

ADAPTIVE.SYSTEMS
sysrems DISPLAYING THE ABILITY TO LEARN, CHANGE THEIR STATE,

OR OTHERWISE REACT TO A STIMULUS. ANY SYSTEM CAPABLE OF
ADAPTING ITSELF TO CHANGES IN ITS.ENVIRONMENT.

ADORESS
A LABEL SUCH AS AN INTEGER OR OTHER SET OF CHARACTERS

WHICH IDENTIFIES A LOCATION IN WHICH INFORMATION IS.STORED.

ADDRESS.ENDEXING
'THE PROCESS OF CHANGING AN ADDReSS IN A MACHINELANGUAGE

: COMPUTER INSTRUCTION BY ADDITION OF A PUANTITY HeLD IN' 'A
SeECIAL REGISTER (INOE1 REGISTER) THIS.CHANGE IS 001411E -

AUTCMATICALLY IN.THE EXECUTION OF AN.INSTRUCIION.

AL Gm.
ALGORITHMIC LAGUAGE, A DATA PROCESSING LANGUA6E 6TILIZING

ALGEBRAIC SYMBOLS TO EXPRESS PROBLEM-SOLVING FORMULAE FOR MACHINE

9
A

fsk

2 73

COMk GLOSSARY
PAGE 2

ALGCRITHM
A DEFINITSTEP-BY-STEP RULE FOR CONSTRUCTING THE SOI.UTION

TO A PROIWEM OR FOR EVALUATING A FUNCTION. ALGORITHMS USUALLY
LEAD TO APSOLUTION IF'ONE IS POSSIftE, ALTHOUGH TIME REQUIRED,
MAV BE LONG OR SHORT. SEE "HEURISTIC."

ALPHAMERIC
ALSO ALPHANUMERIC PERTAINING TO A CHARACTER SET TWAT .

CONTAINS BOTH LETTERS AND NUMERALS, AND USUALLY OTHER CHARACTERS.

ALPHABETICALLY CRIENTED MACHINES,
COMPUTERS HAVING INSTRUCTIONS AND MEPORIES.ORGANIZED

ESPECIALLY fn MANI,PULATE ALPHABETIC CHARACTERS (INCLUOING
NUMERALS/.

A
ANALOGUE

THE USE OF PHYSICAL VARIABLES, SUCH AS DISTANCE OR ROTATION
OR VOLTAGE, TO REPRESENT AND CORRESPOND WITH NUMERICAL VARIABLES
'THAT OCCUR IN. A COMPUTATION; CONTRASTED WITP "DIGITAL."'

ANALOG COMPUTER
A COMPUTER WHICH REPRESENTS NUMERICAL QUANTITIES AS

ELECTRICAL AND PHYSICAL, VARIABLES.

</2-...\ANALYSIS

4-

A SEPARATING OR BREAKING-UP OF A WHOLE INTO ITS PARTS°S0 AS
TO FIND OUT THEIR NATURE, PROPORTION, FUNCTION, RELATIONSHIP
ETC.

APPLICATIONS PROGRAMMING
THE PREPAAATION OF PROGRAMS FOR APPLICATIWN TO SPECIFIC

PRCBLEmS,, IN ORDER TO FIND SOLUTIONS; CONTRASTED WITH "SYSTEMS
PROGRAMMING."

Oro

ARRAY
' A SERIES OF ITEMS ARRANGED IN AN ORDERED, MEANINGFUL

PA I TEAN.

ARITHMETIC UNIT ,

THE UNIT OF ik,COMPUTING SYSTEM THAT CONTAIN5 THE CIRCUITS
THAT PERFORM ARITHMETIC OPERATIONS.

ARTIFICIAL INTELLIGENCE
REFERS TO THE PERFORMANCE BY A COMPUTtR OF TASKS 'THAT HAVE

WHERTO'REQUIREO THE APPLICATION OF HUMAN INTELLIGENCE.

COMSC GLQSSARY
PAGE 3

ASSEMBLE
TO PREPARE A MACK NiEs't ANGUAGE PROGRAM FROM A SYMBOL ,

PROGRAM BY SUBSTITUTING MACHINE _copes FOR symeouc CODES.--

ASSEMBIER
ALSO ASSEMGLY PROGRAM A COMPUTER PROGRAM THAT OPERATES ON A

SYMBOLIC L ANGUME 'AS INPUT DATA TO PRODUCE 'MACHINE LANGUAGE
INSTRUCTIONS WHICti CAN BE PROCESSED DIR ECTLY BY THE COMPUTER.

A$ SEMBLAS

- s

COLLECTIONS OF PARTS INTO UNITS BY RELAY NG EACH PART TO' ALL
OTHERS IN THE UNIT ACCORDING TO' SOME: P-LAN. -

. ASSEMBLER LANGUAGE-
SEE ASSEMBLY LANGUAGE.

ASSEMBLY LANGUAGE
,THE SYMBOLIC LANGUAGE WHICH I S THE INPUT TO kN ASSEMBLY

. PROGRAM. .

'ASSOCIATIVE MEMORY
, .4 COMPLiTER 'MEMORY IN WHICH, INFORMAT ION IS LOCATED BY THE

CONTENT OF SOME PART DF THE MEMORY. A "TAG" MIGHT BE ATTACHED
TO EACH ITEM OF INFOI1ATION TEl IDENTIFY IT. SYNONOMOUS WITH
"CONTENTADDRESSABLE EMORY."

AUTOMAT IC COMPUTER
SEE "COMPUTER."

AUX ILIARY (PER IPHERAL) EQUIPMENT
° EQUIPMENT NDT ACT IVELY INVOLVED DURING THE PROCESSING, OF

DATA, SUCH AS INPUT/OUT:PUT. EQUIPMENT AND .AUXI LI ART STPRAGE
UT IL IZ ING PUNCHED CARDS/ MAGNETIC TAPES OI SKS OR DRUMS.

()co

,SEE QINAR COOED DECIMAL.

. o

,

BUG
ANY MECHANICAL', ELECTRICAL, ELECTRONIC, OR PROGRAMMING

.DEFECT14AT'INTERFERES WITH THE,OPERATION (TF THE COMPUTER OR THE
r

SUCCESSFA
,

tRUNNING OF A.PROGRAM. USED SYNONYMOUSFLY W4TH ERRCR AND
PAL ,UNCT ION.

4
S.:

0

c.
.

si

A

St"f
c ,

1.7

COMSC GLOSSARY
P AGE 4

BLPCK
A COLLECTION OR GROUP OF WORDS, RECORDS, OR CHARACTERS WHICH

ARE HANDLED AS A SINGLE UNIT, ESPECIALLY WITH REFERENCE TO INPUT
AND OUTPUT. A FILE STORAGE BLOCK IS OFTEN CALLED A PHYSICAL
-RECORD. ALSO, THE SET OF LOCATIONS OR TAPE POSITIONS IN WHICH A
BLOCK OF WORDS, AS DEFINED ABOVE, IS STORED OR RECORDED.

BLOCK DIAGRAM
A DIAGRAM OF A;SYSTEM, INSTRUMEMT, COMPUTER OR PROGRAM

'IN WHICH SELECTED PORTIONS ARE REPRESENTEC BY ANNOTATED BOXES
AND INTERCONNECTING LINES.,

BOOLEAN ALGEBRA
THE SCIENCE. OF SYMBOLS DENOTING LOGICAL PROPOSITIONS AND

YHEIR COMBINATIONS ACCORDING TO CERTAIN RULES WHICH CORRESPOND
TO THE CAWS OF LOGIC. NAMED AFTER THE ENGLISH MATHEMATICIAN
GEORGE BOOLE (1815-.1864).

BRANCH (NOUN) .

A SEQUENCE OF INSTWUCTIONS EXECUTED AS A RESUI:T OF A
DECISION INSTRUCTION.
BRANCH (VERB)

TO DEPART FROM- THE USUAL SEQUENCE OF EXECUTING INSTRUCTIONS
IN A COMPUTER; SYNONYMOUS WITH JUMP OR TRANSfER.

BINARY
I. THE NUMBER REPRESENTATION SYSTEM WITH BASE OF TWO.

.2. A CHARACTEAISTIC OR PROPEFY INVOLVING.A SXLECTION,
CHCICE OR CONDITION IN,WHICHZTHERE ARE ONLY TWO.PO4SIBI1ITIES.

BINARY MACHINES
DI GIT AL COMPUT ERS IN WHICI-rhinieERS ARE REPRE SEN TED IN THE

BINARY (BASE 2) NUMBER SYSTEM. INFORMATION OTHER THAN NUMERIC
IS ALSO REPRESENTED AS COMBINATIONS OF "BITS."

BINARY CODED DECIMAL
A TYPE OF NOTATION IN WHLCH EACH DECIMAL 016IT IS IOENTIFIED

BY A GROUP OF BINARY ONES AND ZEROS.

--BIRANCHING

THE ACT OF EXECUTING A CONDITIONAL CHANGE OF ADDRESS.

0

13ASE ADDRESS
A GIVEN ADORdS FROM WHICH AN ABSOLUTE ADDRESS IS DERIVE6 BY

COMBONATION WITH A kELATIVE ADDRESS. 1

I.

tz,

COMSC GLOSSARY
PAGE 5

BATCH PROCESSING
A SYSTEM APPROACH-10 PROCESSING WHERE SIMILAR INPUT ITEMS

ARE GROUPED FOR PROCESSING DURING THE MACHINE RUN.

BOOTSTRAP
A TECHNIQUA OR DEVICE DESIGNED TO BRING ITSELF INTO A

DESIRED STATE 6Y MEANS OF ITS OWN ACTION, E.G., A MACHINE
ROUTINE WHOSE FIRST FEW INSTRUCTIONS ARE SUFFICIENT TO BRING THE
REST OF ITSELF INTO THE COMPUTER FROM AN INPUT DEVICE.

BIT
THE MOST BASIC UNIT OF INFORMATICNI REPRESENTING A CHOICE

BETWEEN TWO ALTERNATIVES, THAT CAN BE STOREO OR HANDLED. A
BINARY DIGIT; A ONE (I) OR ZERO(0), OR THE ELECTRICAL, MECHANICAL
MAGNETIC, OR CHEMICAL REPRESENTATION OF EITHER IN AN AUTOMATIC
COMPUTER.

BUFFER
A TEMPORARY STORAGE DEVICE USED TO COMPENSATE FOR

DIFFERENCE IN THE SP1M) OF DATA FLOW OR THE OCCURRENCE11F EVENTS.
WHEN DATA IS BEING MOVED FROM ONE DEVICE TO.ANOTHER.

BYTE

CACM

CALI

s

A CONTIGUOUS SET OF BINARY DIGITS OPERAiED UPON. S A UNIT.

COMMUNICATIONS OF'THE ASSOCIATION FOR COMPUTING MACHINERY.

THE TRANSFERRING OF CONTROL ro A S))ECIFIED CLOSED
SUBROUTINE.

CARD HOPPER
.A DEVICE THAT HOLDS CARDS AND MAKES THEM AVAILABLE TO A CARD

FEED MECHOWISM. SYNONYMOUS WITH INPUT MAGAZINE. CONTRAST WITH
CARD STACKE44,

ft

,

CARD IMAGE
ONE--TO---ONE'REPRESENTATION Ot THE CONTENTS 9F:A PUNCHED

CARD, A CARD IMAGE ON MAGNETIC TAPE.

-
CARD READER

,x A DEVIC,F WHICH SENSES ANDJRANSLATES INTO T&RNAL FORM THE
.HOLES IN PUNCHED CARDS.

0 27f

COMSC GLOSSARY
PAGE 6

CARD-STACKER
AN OUTPUT DEVICE THAT ACCUMOLATES C.ARDS IN A DECK. CONTRAST

WITH CARD,HOPPER.

CARDS TO TAPE
PERTAINING TO EQUIPMENT OR METHODS THAT TRANSMIT DATA FROM

PUNCHED CARDS TO MAGNETIC TAPE..

CARRIAGE RETURN
THE...OPERATION -IiiAT-CAUSES-Tilf-NEXT-CHARACTER-TO-aE,PRINTED

AT THE LEFT MARGIN.

CATALOG
THE DATA SET CONTAINING THE NAMES AND VOLUME IDENTIFICATION

OF SELECTED DATA SETS, USED BY THE SYSTEM TO LOCAIT DATA SETS
SPECIFIED BY NAME ONLY.

CELL .

A STORAGE CELL OF V BINARY DIGIT-CAPACITYI-E.G;,
BIT REGISTER.

SINGLE
.44*

CHANNEL j

A PATH ALONG WHICH SIGNALS.CAN,BE SENT, E.G., DATA CHA.NNEL,
OUTPUT CHANNEL.

CHARACTER SET
A LIST OF CHARACTERS ACCEPTABLE FOR CODING TO A.SPECIFJC.

COMPUTER OR INPUT/OUTPUT DEVICE.-

CHECK BIT
A OINARY CHECK DIGITIF.OFTEN A PARITY BIT.

CHECK DIGIT
ONE OR MORE DIGITS CARRIED IN A SYMBOL OR A WORD.DEPENDENT

UPON THE REMAINING DIGITS IN SUCH A FASHION THAT IF A SINGLE
ERROR MORS EXCLUDING COMPENSATING ERRORS, THE ERROR'WILL BE
REPORTED.

° CLCSE0 SUBROUTINE . . 0

'3" "A-SUBROUTINE THAT CAN BE STORED ATICNE PLACE AND CAN BE
CONNECTED TO A ROUTINE BY LINICAGES.AT ONE OF.MORE LOCATIONS.
CONTRAST WITH OPEN SUBROUTINE,

COMSC. GLOSSARY
PAGE

A-7/
CODE ;

/I A SYSTEM OF SYMBOLS FOR REPRESENTtNG DATA OR INSTRUCTIONS
'IN A COMPUTER OR A TABULATING MACHINE OR, 2 TO WRITE A PROGRAM OR
PART or A PROGRAM FOR rHe SPLUTION-OF A PROBLEM BY A COMPUTER.

COLD START
NO PROGRAMS STORED ON-SPOOL PACK.

1.

COLLATING SEQUENCE
.THE SEQUENCE INTO WHICH.THE.ALtOWABI7E-CHARACTERS OF A

COMPUTER ARE RANKED OR ORDERED,

A .COL6MN

, .

' I A VERTICAL ARRANGEMENT OF CHARACTERS OR OTHER EXPRESSIONS,
OR 2 LOOSEIY, A DIGIT PLACE.

cpumN BINARY
PERTAINING TO THE BINARY REPRESENTATION -OF DATA ON PCINCHEO.

CARDS JN WHICH AgJACENT POSITIONS.IN A COLUMN COkRESPOND TO
ADJACENT BITS,OF DATA, E.G., EACH COLUMN LN A 12-ROW CARD.MAY BE
USED TO REPRESENT.I2 CONSEcUTIVE'BITS OF A -36-6IT-WORO.

COMMAND
A CONTROL SIGNAL...

COMPILE-
40 PREPARE A MACHINE LANGUAGE PROGRAM.FROM A OMPUTER

PROGRAM-WRITTEN iN ANOTHER PROGRAMMING LANGUAGE.

.CCKTROL CHARAtTER
A CHARACTER WHOSE-OCCURRENCE IN A'PARTICULAR CONTEXT

. INITIATES, MODIFIES, OR:STOPS A CONTROL OPERATION, E.G., A
CHARACTER,TO CONTROL CARRIAGE RETURN.

4

CONTROL FIELD
'A CONSTANT LOCATION WHERE INFORMATION FOR CONTROL PURPOSES

'IS PLACEDi.

AIINTROLnUNIi.
PORTION OF A COMPUTER WHICH DIRECTS THE SEQUENCE OF

OPERATIPNS, INTERPRETS THE .CODED INSTRUCTIONS', AND INITIATES THE
OROPER.COMMANDS TO'THE COMPUTER'CIRCUITS PREPARATORY 1.91.
EXE.CUTION.

a

COMSC GLOSSARY
PAGE 0

CONV ER SAT IONAL 'MODE

A MODE OF COMPUTER OPERAT ION WHERE TWO-WAY COMMUNI CATION I S
MAINTAINED BETWEEN THE USER AND THE MACHINE7 AS OPPOSED TO A TYPE
OF PROCESSING WHERE THE COMPUTER I S TOLD I N ADVANCE PREC I SEL Y
WHA T IS TO BE DONE.

CPNVERT .

tO CHANGE THE REPRESENT AT ION OF DATA FROM ONE FORMHTO
ANOTHER, E.G. 1 TO CHANGE NUMER ICAL DATA FROM RI NARY TO DECIMAL OR
TRANSE-ER I NFORMAT ION.,FROA CARDS TO TAPE .

. a

CENTRAL PROCESSING ,UNI T (CPU)
THE UNIT OF A COMPUT ING S'YSTEM THAT CONTA INS THE C IRCUI TS

THAT CA LCULA TE AND PERFORM LOGIC DEC IS I CMS BAS E0' OM A MAW-MADE
. PROpRAM OE PPERAY ING UNSMUCTIONS.

--CHARAC TER
ONE OF 'A $,ET OF ELEMENTARY_SYMBOL S ACCEPTABLE TO A DATA

RODCESSING SYSTEM FOR READ INO,OR IT ING, OR STOR IUG.

CHARACT ER RECOGN T ION
THE TECHNI QUE OF READING, IOENT IFY ING AND' EN0'0ING, A

PR INTED CHARACTER BY "OPTICAL MEANS. .

..
. .
.

CI TATION I NDEX
AN INDE X USING FOOTNOTE REFERENCES I N D0OCiit4E0S -AS COUPI, ING

MECHANIMS AMONG REL AT ED PAP ER S . USED PART ICA.ARLY IN. -LAW,
SHEPARD'S CI TATIONS.

.. : ...-

.-

:.

a *s.

CLEAR ,

TO PU T A STORAGE 0 . MEMORY DEVICE INTO A ST AT E DENOT ING'
ZERO OR BLANK .

CLOSED- SHOP OPERA TI ON
T HAT MODE OF OPER AT ING A COMP UT ING CENTER IN -WHICH ALL

MACHINE ,OPERAT IPN I S DONE BY AEMBERS OF A SPEC IAL It ED GROUP .

WHOSE ONL Y PROFESSIONAL, CONCERN I S THE CONTROL AND MANI PUL AT ION
'OF COMPUTERS. sEt' "OP EN-S HOP PROGRAMMI NG."

COBOL°
COMMON BUS (NESS OR 1 ENT ED LANGUAGE . A DATA PROCESSING

LANGUAGq, THAT RESEMBLES BUS 1 NESS ENGLISH.
.

dOD I NG .
.

- .
,

THE ACT-OF S:PECIFYING A PROBLEMSOLVING PROCFOURE.BY A
!SEQUENCE OF:INSTRUCTIONS FOR rHE OP RATIONS TO 6E PERFORMED By ,

SO .

.k

COMS C GL OS S AR Y
'PAGE 9

411
THE COMPUTER, SUCH INSTRUCTIONS MAY OE IN MACHINE LANGUAGE
OR MAY BE COMP IL ED INTO MACHINE LANGUAGE. SEE "PROGRAMMING."

COLLATOR
A DEV ICE TO tOLLATE OR MERGE SETS' OF CARDS INTO A NEW

SEQUENCE.

COMMAND L ANGUAGE
A LANGUAGE BY MEANS OF WHICH CONTROL IS EXERC I 5E0 OVER A

COMP-LEX -SY STEM OF -E-OUI -PAENT -A ND -RR OGRAMS -S !!!EX ECUT I V E_

SYSTEMS 0ft, '

a

COMPILER
A PROGRAM ENABL ING THE COMPUTER FOR WHICH IT IS

DE S I GNED TO ACCEPT PROGRAMS-IN PAOCEDUR E-OR I EN TED OR PROEM EM-
OR I ENT ED LANGUAGE AND TO TRANSFORM THEM I NTO MACHI NE-LANGUAGE
PROGRAMS .

COMPIL ING _

THE P.ROCESS OF TRANS-FORMING 'A PRO6RAM IN A SOURCE
LANGUXGE INTO A PROGRAM tN -MACH INE L ANGUAGE

,

411
tl,

COMPUTER

-.

_ . 'MEE
ANY MACHINE CAPABLE OF .ACCEPT ING. INF.ORKAT ION, PERFORMING AM

NUMER 1 CAL AND LOGICAL MANI PULA TEONS . AND 0 I SPLAY! NG THE RESULTS:-
AN -AUTOM16 IC COMPUT ER IS ONE WHI4CH "PERFORMS SEQUENCE S "OF OPERA- ,

e TI ONS -ON THE BASIS OE MIT I ALLY STORED INSTRUCT IONS . THROUGHOUT
TH I S REPORT, flCOMPUTO" I S ALWAYS -USED IN THE SPECIAL SENSE OF
"DIGITAL COMPUTER.," SEE "DIGITAL COMPUTER."

..

41,

s.

-

CONSOL E
THE UNIT OF EQUIPMENT USED" FbIrR COMMUN ICAT ION BETWEEN THE

OPERATOR OR SERVICE ENG! NEER AND THE COMPUTER .
-

'COI\ T ENT -ADOR ESS ABLE MEMORY,
A COMOUTER. MEMORY IN WHICH INFORMATION IS LOC Al ED `BY .T HE

CONTENT OP 'SOME PART OF THE MEMORY; FOR EXAMPLE, UCH" A

ME MORY MIGHT. CONT AI N. A T ABLE_ OF THE NAM ES, OF QU ANT IT IES TOGETHER
WI TH ADDRESSES. SPECIFYING WHERE THE VALUES OF THESE QU APT I T I ES

ARE TO -St _FOUND. S,EE " ASSOC IA ve MEMORY..."
.

'

--CORESTORAAE- - .

A fORM.OF MAGWICSTO:-GE THAT PERMITS HIGEP-SPEED ACCESS .

TO INFOAMATION OTHWTHE.COMVIER.* -SEE MAGNETIC CORE.

. ,'

. t., ; .
cl

---.
. i

4
"r"41° 1. `-- 4 . '.; e.f.' ,:!, I -,.- ...,_. ,,...71, ..

,

/

4,

'S.

4.441,

COMSC. GLOSSARY
PAGE 10

COUPLING
AN INTERACT ION BETWEEN SYSTEMS 'OK 'BETWEEN PROPERTIES OF A

SYSTEM.

'CR IT ICAL PATH METHOD
A MAN A GEMENT-CONTR TOOL FOR .EVALUAT I NG A SEQUENCED PLAN

FOR AC HIEV I
OL

AN OBJECTI VE. EMPHASIS IS PLACED ON THE "CR IT ICAL
PATH" WHICH S THAT SEQUENCE WHICH ACTS AS A BOTTLENVK AND
OEL IMITS THE OPPORTUNITY TO ACHIEV E THE OBJECT IVE. SEE "PERT*"

%
ACRYOGEN IC DEV ICE

ANY DEVICE CAPABLE OF HIGH-SP EED SW ITC HINGt BY VIRTUE OF
SUPERCONDUCTI VI TY AND VERY LOW THERMAL NOI SE AT TEMPERATURES -NEAR
ABSOLUTE ZERO.

CR YO.TRON

AN EL ECTR IC-SW ITCHING AND BINARY MEMORY-STORAGE oqvicE
UT I LI Z I NG . THE FACT THAT A MAGNET IC FIELD CAN CAUSE A SOP ERCON-
DUCT !NCI ELEMENT TO BE IN E I THER A STATE OF LOW OR HIGH
RES 1ST ANCE.

CYBERNETICS
THE THEORY OF CONTROL AND COMMUNICATION I N THE MACHINE

AND THE ANI MAL.

DACi
DI RECT ACCESS DEVICE INIT AT ION.

DAT A CELL
THE STORAGE FOR ONE UNIT OF INFORMAT ION. 'USUALLY ONE

CHARACTER OR ONE WORD.

DATA DEF I NI TI ON
A JOB CONTROL STA TEMENT THA T OE SCR IB S A DATA SET' ASSOCIATED

W I TH A PART [CUL AR JOB STEP ,9

DCB 0
_

DATA CONTROL BLOCK, A SYSTEM CONT
NFORMATI ON REQUIRE() ECK ACCESS OUTflJ

IS COMMUNECATED TO THEM.
' .0

ROL BLOC t< THUGH.:1.1-iH I Ct-r-°-.4HE
ES TO _STOR DATA

°

r.

pA TA EXTENDED BIN'ARy ciiDED DEpTMAL I NTERCH14di'Ll. COO'E

f
e 'I'A

'
iF

2 4,

DECK

COMSC GLOSSARY
PAGE 11

A COLLECT ION OF PUNCHED CARDS.

DECOLL ATOR
A DEV ICE USED FOR THE AUTOMAT IC REMOVAL OF CARBON PAPER FROM

PRINTED FORMS.

DEL !MITER
A FLAG THAT SE' PARATES AND ORGANIZES ITEMS OF DATA.

SYNONYMOUS W SEPARA TOR.

6IGIT
A CHARACTER USED TO REPRE SENT ONE OF THE NON-NEQA TI VE

INTEGERS SMALLER THAN THE RADIX, E.G., IN DEC IMAL NOTATION, ONE
OF THE CHARACTERS 0 TO 9.

DI SPLAY
A VI SUAL PRESENTA TION OF DA TA.

7-*

DUMMY
PE$ TA INI NG TO THE CHARACTER I ST,I C OF HAV I NG THE APPEARANCE OF

\ A SPECItIED THING BUT NOT HAVING THE CAPACITY TO FUNCT1ON.AS
SUCH.

- -DATA P.ROCESS ING SYSTEM
A NETWORK OF MACHWECOMPONENTS CAPABLE OF ACCEPT ING

INFORMA TION, :PROCE.SSI NG IT ACCORDING TO MAN-MADF INSTRUCTIONS t .
, ANO PRODUC ING T HE COMPUTED RE-SUL TS.

.c

la,
DEBUGGJN t

.. T HE PROCESS OF I SOL AT ING AND. REMOVING .MALFbNC TI 6NS FROM A
COMPUT OR FiLOM A COMPUTE0 PROGRAM; , A PROCEDURE TO EST ABL I SH
PROG M ACCURAC Y BY RUNNING THE PROGRAM WI TH SELECT I VE DAT A TO -'
;F.I ND .LOGICAL OR C,LER !CAL TBUGS" OR. ERRORS.

.3
.?.

....- e

. fpEBOGGING SYSTEMS ,
0 ; .. : RR 0 G ft A M $ OR OT HER SYSTEMS WHI.CH. ASSIST. THE PROGRAMMER IN

. ,.

./.0ETECTI".NG 'AND CORRECTI NG ERRORS'. SEE "DEBUGGING*". . .

040STEC)"PtikANBAk
e0APPTERYPRAARAMUSED IN THE DETECTION AND ISOLATION OF)

10tR HARDWARE Olii0VNARE DUPFICUL,TIE$.

e

a-

'4"''

k

's

COMSC GLOSSARY
PAGE 12

DIGITAL
THE QUALITY OF USING NUMBERS EXPitESSED IN DIGITS AND IN-A

SCALE OF NOTATION.

DIGITAL COMPUTER 4,

A COMPUTER TH T PERFORMS MATHEMATICAL AND LOGICAL OPERATI ONS
WI TH I NFORMAT I ON, N ER ICAL OR OTHERW IS Ev R EPRESENTED IN DI GI TAL
FORM.

-DIG I-TAL-DATA
NEMMATI ON EXPRE SSED IN DI SCRETE SYMBOLS .

OkGITIZER
A DEVICE TO CONVERT. I NFORMATI ON FROM ANALOGUE FORM TO

DIGITAL FORM.
.;

DIODE
AN ELECTRONIC DEVICE USiD TO PERMIT CURRENT FLOW IN ONE ,

DIRECTION AND TO INHIBIT CURRENT FLOW IN THE OPPOSITE DIRECTION.

DIRECT ACCESS
SEE RANDOM ACCESS .

DISK STORAGE

/tt

A METHOD OF STORI NG INFORMAT ION IN CODE, MAGNET ICALLY, IN
QUICKLY ACcESSIBLE,SEGMENTS ON FIAT ROTATING DISKS.

DOWNTIMt
THE ELAPSED TIME

BECAUSE OF- MACHINE OR
EN A C9MPOTER I S NOT OPERATI NG CORRECTLY
ROGRAM MALFUNCTIONA

DROM STORAGE
A METHOD' OF STORLW, INFORM AT ION IN CODE, MAGNET\ICALLY* ON

THE' SURFACE OF A ROTATI NG CYO NDER.
to

DU P64 P
. TO CORN THE CONTENTS. OF. ALL OR. PART Of A STORAdEt USUALLY

FROM A CENTRAL PROCESS I NG UNIT INTO AN E XTERNAL STORAGE.

EBCDIC .
,.,

/-

EXTENDED BCD INTE CIYOGE CODE, THE PRIMARY CHARACTWST
USED J'BY THE 360* .

it

COMSC GLOSSARY
PAGE 13.

EDI T

TO MODIFY THE FORM OR FORMAT OF DATA, E.G., TO INSERT OR
DELETE CHARACTERS SUCH AS POE NUMBERS OR DECTMAL POINTS,

ENTRY POINT
IN A ROUTINE, ANY PLACE TO WHICH CONTROL CAN BE PASSED..

ELECTRONIC RECORDING AND MACHINE ACCOUNTING'
A SYSTEM DEVELCWED AT STANFORD RESEARCH INSTITUTE WHICH

ESTABLISHED THE- FEASIBILITY-OF-MAGNETIC---INK-CHARACTER-RECOGNITION
-AND THE USE OF COMPUTERS IN BANKING INSTITUTIONS WHERE THEY ,

PERFORM ALL ROUTINE BOOKKEEPING FUNCTIONS FOR CHECKING ACCOUNTS.

EXECUTE
TO PERFORM A DATA PROCESSING ROUTINE OR PROGRAM, BASED

ON MACHINE-4ANGUAGE INSTRUCTIONS.

EXECUTIVE SYSTEMS-
SYSTEMS OF COMPUTa PROGRAMS DESIGNED TO PROCESS AND TO

CONTROL THE EXECUTION OF 1THER PROGRAMS.

gyp*"

EXTRAPOLATION'
AN ESTIMATE OR INFERNCE OF A VALUE BEYOND THE KNOWN RAN E

FROM WHICHOTHE ESTIMATED VALUE IS ASSUMED3TO FOLLOW. 0.09.

FIELD
IN A RECORD,A SPECIFIED AREA USED FOR A PARTICULAR CATEGORY

OF DATA, E.G., A..GROUP OF CARO COLUMNS OR A SET OF BIT LOCATIONS
IN A COMPUTER WORD.

FIXED POINT
PERTAINING TO A NUMERATION SYSTEM IN. WHICH THE POSITION OF

THE POINT IS FIXED WITH RESPECT TO°ONE END'OF THE .NUMERALS,
ACCORDING TO SOME CONVENTION.

FLAG
1 ANY OF VARIOUS TYPES OF INDICATORS USeD FOR

IDENTIFICATION, OR 2 A CHARACTER THAT SIGNALS THE OCCURRENCE OF
SOM CONDITION.

FORMAT
FORM, USUALLY REFERRING40 THE ARRANGEMENT OFANPUT OR4

'OUTPUT DATA OP LINES OF PRINTsSEE FORMAT4'STATEMENTS IN LANGUAGE
MANUALS. t

:

2 S 5
a

1Sa

COMSC GLOSSARY
PAGE 14"

FERRITES
A CLASS OF NON-4.IE-TALLIC SUBSTANCES CONTAINING IRON, OXYGEN,

-AND'OTHER METALS. THESE MATERIAL& HAVE FliRROMAGNETIC PROPERTIES-.
AWARE POOR CONDUCTORS OF ELECTRICITY. THIS-'MAKES THEM USEFUL
IN MANY APPLICATIONS WHERE ORDINARY FERROMAGNETICMATERIALS
(WHICH ARE GOOD ELECTRICAL CONDUCTORS) 4 Oiifl CAUSE I00 MUCH-LOSS\.
OF ELECTRICAL ENERGY.

FILE
A COLLECTION OF RELATED RECORDS; E.G., IN INVENTORY

CONTROL, ONE LINE OF AN INVOICE FORMS AN ITEM, A COMPLETE
INVOICE FORMS A RECORD, AND.THE COMPLETE SET OF SUCH RECORDS
FORVS A FILE. ;

FILE MAINTENANCE .\

THE PROCESSING OF IN6RMATION IN A FILE TO KEEP IT UP TO
DATE.

FLIPFLOP
A

A CIRCUIT OR.DEVICE CONTAINING ACTIVE ELEMENTS CAPABLEiPF.
ASSUMING EITHER ONE OOTWO STABLEzSTATES.AT A GIVEN TIME.

\

:\

FLCATINGPOINT ARITHMETIC, -

A TECHNIQUE PERMITTING ARITHMETIC OPERATION ON NUMBERS IN
WHICH THE LOCATIONS OF THE DECIMAL POINTS ARE NOT UNIFORM.

FLOW CHART
. A DIAGRAMMATIC REPRESENTATION OF THE SECWENCE. OF' CHOICES

AND ACTIONS IN A COMPLICATED ACTIVITY.

FORFL
MECHANICAL,. METHODICAL, OR DETERMINISTIC IN CHARACTER.

FCIPAL LANGUAGE
..

I A SYSTEM CONSISTING OF A WELL*DEFINED,AS ALLY FINITE, SET
OFICHARACTERS AND RULE,S FOR COMBINING CHARACTL WITH ONE ANOTHER-
TOIFORM-WORDS OR OTHER4XPRESSIONS BUT WITHOUT ASSI-GNMENT OF,
pMANENT MEANING TO SUCH WORDS OR EXPRESSIONS.

,

rJRTPAN
,

...

, .
.

1 FOIiMULA TRANSLATING SYSTEM. A DATA PROCESSING LANGUAGE
THAT CLOSELY RESEMBLES ALQEBRAJC NOTATION.. e

J . o

,--- -.
,

.1

,.

GIENERATE
,

TO PRODUCE A PROGRAM BY SELECTIPN OF SUBSETS' *ROM A SET OF
KELETAL CODING UNDER THE CONTROL Of PARAMETERS.

.4.

.,

A

of

COMSC GL OSSAR Y
PAGE 15

GENERALPURPOSE,
BEING APPLICABLE TO A 'W IDE VAR IETY OF USES W ITHOUT

ESSENT IAL MODIF ICAT ION. CONTRASTED WI TH "SPEC I AL.---PURPOSEW"

41.

HA S'P

HOu:STON AUXILAR'Y SPOOLING PRIORI TY, A JOB SCHEDULING
PROGRAM.

*HOLLER I TH CODE
AN AL PHANUMER IC PUNCHEDCARD CODE 6vewrgo BY DR. HERMAN_ _ .

AOL LER I TH IN 1889 IN WHICH: tHE TOP THREE' POS IT IONS IN A COLUMN
ARE CALeED ZONE PUNCHE S 12, 11, AND 0 FROM THE TOP DOWNWARD, AND
,ARE COMBINED WITH THE REMAINtNG DIGIT PUNCHES 1-THROUGH 9 TO
REPRE SENT ALPHABETIC NUMERIC,' AND SPEC 1 AL CHAR ACT FRS .

411.

HXRC COPY
.er PRINTED COPY OF MACHINE OUTPUT, E.G., PRINTED.REPORTS,

L IST fl4GS, DOCUMENT*, ETC. A

,.'HARDWAAI 4 °

'THE i4ECHANICAL, M4GNETIC4 ELECTRICALIAND ELECTRONIC DEVICES
FROi'l'WH-/CH A (OMPUTER IS CONSTAUCTEO.

.

-!

1HEUR IS T IC

h TECHNt QUE BY. MEANS .OF WHICH AN.IND IV IDUAL (OR MACHINE)
CAN CBE ORGANI ZED TO SOLVE PROBLEMS. WHEN APPL I CABLE IT MAY
,pROV4DE. A SHORTCUT TO THE GOAL BUT CANNOT GUARANTEE A SOLUT ION
OR AN OPTI MAL WWII 04. SEE '"ALGOR I THM.u.

HOUSEKEEPING
OPERATIONS IN A ROUT INE WHICH' OCt NCT CONT R I BUTE DIR ECTLY

TO THE SOLUTION OF. A PROBLEM BO' DO CoNTRI BUTE DI AEC TOP '40 THE
IXECUTION OF A PROGRAM BY .T HE CTOUT ER .

4-
%

I DENT IF IER

A SYMBOL WHOSE PURPOSE IS TO IDENTIFYr.INOICATE, OR NAME A
pow" OF. DATA.

4INPEX

.

AN ORDERED REFERENCE LI ST OF THE CONT ENTS OF A FfL E 05
DOCUMENT, TOGETHER WITH 'KEYS OR REFERENCE NOTATIONS FOR
IIIDENTIFICAT I ON OR LOCAT ION OF THUS t CONTENTS, OR 2 A SYMBOL, OR A o

NUMBER USED TO IDENTIF Y A PAR TIC ULAR QUANT I TY t N AN ARRAY OF
SIMILAR QUANTITIES..

287

V.

COMSC- GLOSSARY
PAGE 16

INDEXED SEQUENTIAL .

A DATA SET WHOSE RECORDS AKE ORG'ANIZED ON THE DAIS OF A
COLLATING SEQUENCE DETERMINED BY KEYS THAT PRECEDE EACH BLOCK OF

. OAT A.

INITIALIZE
TO SET COUNTERS,

START! NG 'VALUES AT THE BEGI
A CCMPUTER ROUT INE.

INTERFACE
.4,---frHARED BOUNDARY,

1

ES,.'AND ADDRE'SSES TO ZERO 4A' ONER ..
NG OF, OR AT. PRESCRTBED.-POINTS IN", ;

. . ..
4,- .

...i. ...
. 1.,

e
.. e . .

.. 4 <t
tt : .. 0.$ i' f

,
,. 4 .r..

E. . .. fiO.

4 a
8%.

-:i.. 7.

A DEVICE THAT PRINTS ON te. PONCMEU..CART41, T 6 De.T.A.--4READY

,vi :'",.: 144 49. 0
CI.

0 ..
.0

I It' i'''''-*:-
. ../

1

1,, 9

* e. _ .* 404 . .& A .

INTERPRETER

PUNCHED IN THE CARD.

--i....

INTERRUPT ROUT INE
A SECONDARY PROGRAM ti4r. .4.AK est Atz fow -FOILLINING A TRANSFER .."'.

FROM'IH,E, MAIN PROGRAM. ./..
A es ' . !

dr -

. a"
-, -

:, dc: . . ,
...., 4, ...S. 4 ,,.' 4' a id 0 4

.'G. t ' . t "'". .17: 410 s E v
/.,,, . 41-r i:. :

. . .
, t ,

ITE PO- :, . . .3.. .N., . .I. -r .0
A COLI4C T I IA Of RELAJ04, (i.tiAQ.AC TER S , TREKED 1.S A. 4UNLT id v. ,

0 IS.

80

ONTRAS,T WITH F

IDLE TiME .

THE TIME THAT A COMP
IN OPERATI.ON.

"-.

..4.1t ',8 t.`:' 0, .. , . t . 7 , . .

. *s 1 'Ct 41 s 1 :
d

A z. -.:
d-

TERI.I.S,AVAI:LABLE FOR ...6.1E,,..BUT° IS 1411)T,-1.
.:. '' A' 0 ..O. ..%

g

SN

Ayst

.,.. 0 I
.4i.° -0

.
si v,

4
' tk 6 .9

% P -, -
. i.

(4! dp P

4t: t a'4
az ell

4 4A ' A 4. (4 4 ° s , k,) ,N , ,INDE, REGISTtR .aJ .; . , i, .. I- it
' A REGISTER CONTAININ :.4),V sli`TY-....A.1-tic.H., MAY,/ 41/2E.t4E(1.. .

r. .,

FOR MODIFYING THE.ADDItESS itT OE, N...INSTII'UcTPOrilt.FOR:d.C.Qt,V1-ING.,, ..-

OR .F.CR.OTHER PURPOSES 'AS D.I.StEcTt) ,.By .114E PROGRAM...". ..."'I *--b .,..... - 4

V

0 % 1 i V fdl'S 14 .." 6.,a
W

N 64. . t
,g 0,,,

,_ p A , .

.4 f . '. . 6

.4 N.% .i.Z. , . .

'4 I.

1%

INFORMATION PROCESSING . ,.. ,.- . 01- ala
. a '. . .+4 *

THE STORAGE, .R ETR IEVALT. -ARIrttN6EMENTL. ClION,J/R-
. J..' '''.' ''. 44

$ 1 ,,7

TRANSFORtiATIONOF INFORMAT PON. GENERAIrl_Y- AP ItiO 1.0,b41C.ARRYIN6
,OUT SUCH OPERA T IONS WI TH iHE 4 tjr, 6f. :,..A..;.)1130 c fleN., 9!G'I TA. XDOPI4Yeti......,._.

. i.
,,, f , .., ., 4 .,...

0 a
' 1,... 4 .4 9

tt ,464. '.°,.
, . .,r--.t.. , k . , 18 '''''

INFORMATION RETRIEVAL --
*,..

'.?'.. 7; 2%._41"-'- ..,'s-\,,-:,.!
09

THE LOCATION ,AND SELETION'''ON'afMA '.''CiffJIBrAti-M14TATION;,,
- OR GRAIIHIC RECORDS RELEVANT TO A GIVEN IN-FORMATION ReIVIRIE#Prt , '''N'41 .:.4.

* la ;. \

g

. ,

*!' -

4

FROM A FILE OF SUCH 'MATERIAL.
441-44 r

.0 aa

e 4 9 foI. :1 40,,/ .0

4

COM&C GLOSSARY
PAGE IT,

INOORMATION-STDRAGE AND RETRIEVAL
TmE ARRANGEMENT OF'DOCUMENTATION OR RECORDS IN A

SYSTEMATIC WAY TOGETHER WITH THEIR SUBSEQUENT LOCATION AND
SELECTION ON DEMAND. SEE:"INFORMATION RETRIEVAL."

INPUT-,OUTPUT
INPUT: INFORMATION READ INTO THE COMPUTER FROM THE "OUTSIDE

WORLD." OUTPUT: INFORMATION TRANSFERRED FROM THE COMPUTER TO
THE "OUTSIDE WORM". AN ADJECTIVE,,"INPUT" PERTAI.NS TOJHE A
DOICES WHICM BRING INF RMATION INTO THE COMPUTER, AND "OUTPUTm,':,
ANALOGOUSLY.

INQU IRY
1

A REQUEST FOR INFOiRmATION FROM STORAGE, E.G., A REQUEST
- FOR .THE NUMBE* OF AVAILABLE AIRLINE SEATS.

INST TION
TATEMENT THAT CALLS FOR A.SPECIFIC COMPUTER 'OPERATION.

INTERLEAVE A

TO INSERT SEGMENTS Of ONE PROGRAM'INTO ANOTHER pROGRAM SO .

THAT puRIG PROCESSING OPLAYS IN ONE PROGRAM,JROCESSING CAN
CONTINUE ON SEGMENTS OF ANOTHER PWOGRAMI A TECHNIQUE-USED IN
MULTIPROGRAMMING*

.

n

INTERRUPT
A BREAK' IN rHE NORMAL FLOW OF PROCESSING. THE.;NORMAL:JOB

FLOW-CAN Bk RESUMED FROM THAT POINT-AT A LATER TIME.' AN
INTERRUPT IS USUALLY, cAusEn_py A SIGNAL FROM AN FXTERNAL'SipURCE,
E.G., A TERMINAI.: UNIT.

el

ITERATE .

(-TO REPEAT-, AUTOMATICALLY, UNDEll 'PROGRAM CO.VROL, THE SAME
SERIES'OF"PROCESSOG STEPS 'ANIL A PRE.DETERMU.66 STOP OR,
BRANCH CONDITiON IS REACHED; Tb,LOOP*

' JACM
JOURNAL'OF THE ASSOCIATIbN FOR COMPUTING MACHINERY*

len

JOB
,

A UNIT OF COMPUTER DATA-PROCES5ING WORK. USUALLY D,iFINED AS
'THE PROCESSING OF A SINGLNF ysER S PROGRAM.

(.

40B CONTROL kANGUAGE
STATEMENTS OF A SPfCrFICFCiRMA.T'WHICH AFFECT PROCESSING

USUA11 4' IN THE FORM'OF PROGRAM.CONsTROL CARDS. 4

COMSC GL OSSAR Yr
PAGE 18

KEYPUNCH
./ A KEYBOARD,ACTUAtED .DEVICC HAT PONCHES- HOLES IN A CARD TO-. .REPRESENT DATA. V t

-

KI LOMEGACYCLE 1-,,

A B11C ION .CYCLES ER SE NO. A REPETI T1ON' RATE IN WHICH
AN EVENT IS REPEAT E A BIL ON T IMES ,PER SECONO.

K INET ICS
THE SCIE E E RATE .O.F CHEMICAL REACT IONS1 THE BRAIkH

-OF DYNAMICS EAL /N WI irt-t Ttit. CHANGE S OF . MOT I ON PRODUCED BY
FCRCES.

LABEL
A KEY Ty ACHEb TO THE ITEM OF DATA filAT I T IDENTIF I ES.

/
. ,

CS t

ARGE 6RE. STORAGE. A LOW COST AUXILIARY BULK STORAGE UNIT
DES1 NED FOR USE WITH THE IBM SYSTEM/360. i /

.

I BRARY
A COLLECTION OF ORGANLItO I NFORMAT ION USED FOR STUDY °AND

REFERENCE. SEE PROGRAM- LI'BRARY.

L /NKAGE
/ THE -MEANS BY WHICH COMMUNICATION IS EFFEC TEb BE TWEE N "TWO

fiOUTI NES OR CONTROL SECT IONS .

LANGUAGE
-A MEA-NS OF COMMUN /CAT ION BY MEANS OF EXPRESSIONS.

SPECIFICALLY* ANY MEANS OF COMMUNKA TING INSTRUCT! ORS AND DATA
JO AND FROM A COMPUTER USING SYMBOLS 'OR PATTERNS PERCEPTIBLE TO
BOTH THE HUMAN AND THE MACHINE.

L I BRARY ROUT INE
A SPEC1ALPURPOSE PROGRAM WHICH MAY BE MA IiNTA INED IN

STORAGE FOft USE WHEN NEEDED.

01.

LIST PROCESSING
THE PROCESSING OF INFORMATION ORGANTZED IN LISTS

- ORGANIZATIONS IN WHICH EiACH ELEMENT IDENTIFIES ONE.OR MORE
SUCCEEDING ELEMENTS).* 6

29)

a

-

Lb

coksc GLOSSARY
PAGE 19 - /I

LIST STRUCTURES
AN EL EMENT OF A L 1ST MAY, ITSELF, BE ME NAME OF A LI ST.

THE MORE cptinex OR ZATIONS THAT CAN BE CONSTRUCTED BY
JIAVING THE.NAMES OF TS AS ELEMENTS.OF OTHER LISTS ARE
-CALLED LIST STRUCTURES. SEE "1I1T PROCESSING."

LOAD
odr TO -PL ACE DATA `INTO MA IN CORE STORAGE.

LOOP
-SEE ITERATE. /

, .

MACHINE INSTRTiC TI ON
. AN INSTRUCT ION THAT AmMACHINE CAN ..RECOGNI ZE AND EXECUTE.

LI

MA TRAN
MATR IX TRANSLATION. A oTYPE d MATHEMATICAL PROGRAMMING

L,ANGUAGE. .

4

MATR IX 1/4

A RECTANGULAR , ARRAY OF NUSBERS SUBJECT TO MATHEMAT ICAL
OPERATIONS, SUCH AS, ADDI TT ON, MULTI PLICATI ON, AND 1 NVERS ION,
ACCORDING' TO. SPECIFIED RULES. BY EXTENSION, AN ARRAY OF ANY
NUMBER Or DIMENSIONS.

MEMBER
AN ENTITY WITHIN A DIRECTORI-EC QAT A SET, INDEXED IN THE EfATA

SET S DIRECTORY AND HAVING DATA CONTENT.

ME T
MULTI PROGRAMMI NG WITH FIXED NUMBER OF TASKS.

)

MODULE
I A SEGMENT 'OF CORE STORAGE, OR 2 A PI ECC:OF PERIPHERAL

EQU IPMENT WITH A SPECIFIC STORAGE CAPAg TY, E.G.,- A DI SK MODULE.

MULT IPLEX
TO INTERLEAVE OR S IAULTANEOUSLY TRANSMIT TWO. OR MORE

ME SSA*GE t ON A SI NGLE CHANNEt.)

.
)

MVT
11,

p

MULTI PilOPMMIiiiG WITH VARI ABLE NUMBER OF T'ASKS

4.

°/
291

if

A

c0MSC GLOSSARY
PAGE 20.

S.

MACHINE-INDEPENDENT
,

HAVING A FORM WHICH DOES NOT DEPEND ON THE PECULIARITI S
OF ANY COMPUTER OR CLASS OF COMPUTERS..A

MACHINE LANGUAGE .
A - .1

A A VOCABULARY OF "WORDS" MEANINGFUL TO A COMPUTER; A SIRING.
OF DIGITS ACCEPTABLE TO .AND MAIPULATABLE BY MACHINE CIRCUITS;
TRAINS OF ELECTRICAL PULSE& SETTING AND RESETTING_COMPUTER:CIRCUITS OR MEMORY.

MACHINE-READABLE FORM
A FORM IN WHICH INFORMATION IS ACCEPTABLE TO A MACHINE.

FOR EXAMPLE, PUNCHED 6ARDS OR MAGNETIC TAPE CAN CONTAIN INFORMA-
TICN TN MACHIN.E'-.REACABLE FORM, WHEI4AS HANDWRITING USUALLY DOES
NOT.

MA610 INSTRUCTION
A SINGLE INs"TRUCTION THAT CAUSTS THE COMPUTER 40 EXECUTE A

PREDETERMINED SEOUENCE'OF MACHINE INSTRUCTIONS.

MAGNETIC
OF, PRODUCING, '. C-ikUSED BY,, OR OPERATED BY MAG.NETISM.-

MAGNETIt CORE
A DOOGHNUT-SHAPED PIECE OF_FERRITE WHICH CAN BE MAGNETIZED

IN EIMER A POSITIVE (CLOCKWISE) OR'NEGATIVE (COUNTER-CLOCNeISE)
SENSE AND SO CAN RECORD A "BIT." RECTANGULAR ARRAYS OF MAGNETIC
CORES SITUATED ON THE INTERSECTIONS OF HORIZONTAL AND VERTICAL
SETS .0f WIRES fORM A "CORE PLANE." THE MAGNETIC STATE OF AN
INDIVIDUALCORE CAN BE CONTROLLED AND TESTED BY SELECTING THE
HORIZONTAL WIRE AND'THE VERTICAL WIRE THAT INTERSECT AT THAT
CORE.

MAGNETIC DISKS'
THrN, FLAT, cIRGULAR.OBJECTS COATED WITH MAGNETIZABLE

MATERIAL SO THAT.DIGITAL RFC,ORDINGS-CAN BE,MAQE THEREON.
'CHARACTERISTICALLY SUCH DISK'S PAOVIDE HIGH DENSITY 9IF RECORDING,

- PER UNIT VOLUME WITH RFLOJIVELY SHORT ACCESS TIMES TO,THE,
INFORMATION RECORDED. -

. la_ .
ki

\
MAGNETIC-INK CHARACTER WOGNITION

THE PVOCESS OF MECHANICALLY RECOGNIZING CHARACTERS WHICH
ARE RECOR6ED IN MAGNETIZABLE INK. PRINTED.CHARACTERS, WHEN
MAGNETIZED, CANAE RECOGNIZED BY T'HE UNIQUE PATTERNS OF MAGNETIC
INDUCTION CREATED AS THE PRINTED PATTERNS PASS A MAGNETIC-READ-
ING HEAD.

V. 292;

A

COMSC GLOSSARY
PAGE 21

fkiAGNE T I C.-.RIE .ADI NG HE AD
AN EL EC TROMAGNET USED FOR CONVERiI NG ELECTRI-CAL SI GNAL S I NTO

A MAGRET IC . RECORDING, CONVERT ING A MAGNET IC RECORDING I NTO
ELEC ICAL SIGNALS # .OR 'ERAS I NG tA 'MAGNET IC RECORDING; FOR. INSTANC6
ON A MAGNET IC ISK

MAGNE t IC RE SONANCE
THE PHENOMENON IN WHICH A MOVEMENT OF A PARTICLE OR SYSTEM

OF PART I CL ES IS COUPL ED RESONANTV TO AN EXTERNAL MAGNE TIC FIELD.

1

MAGNET IC TAPE
A PL AST IC T E W IT 04 MAGNET IC SUR FACE-10N WH I CH DA TA CAN OE

STORED IN A CODE OF MAGNIET I ZED SPOTS.
t

MAGNET IC THIN-F ILM
A- LOGIC OR STORAGE ELE)MENT COATED WITH AN. EXTREMELY THIN

CiYER OF MAGNET IC M TER I AL, USUNLL Y LE SS THAN ONF MICRON THICK
(ABOUT FOUR HUNDRED NOUS ANDTHS OF AN INCH)

(--MARK-SENSE
TO 'MARK A POS IT ION ON A CARD OR PAPER FORM WITH A PENC IL.

THE MARK S ARE THEN I NTERPRE TED ELECTRICALLY FOR MACHINE
PROCESSING.

MA THEMA TIC A L MODEL
A SET 00 MXTHEMAT ICAL EXPRE SSIONS' THA T bE SCR I BE S SYMBOL!-! CA\LLY THE OPER AT ION OF A PROCES6 DEV ICE OR CONCH? T .

MEK/R1
THE TERM "STORAGE" IS PREF ERR ED BY ALL ANT I ANTHROPOMORPHI STS

OUT "MEMORY" PER S STS. IT REF ER S TO THE CA PAC I TY OF A CO PUTER'
TO STORE INFORM AT ION SUB4ECT TO RECALL e OR TO THE COMP NT/ OF
THE COMPUTER SY STE M I N WHICH SUCH I NEORMAT ION IS STORED.

MEMCRY PROT ECT ION
A SYSTEM OR DE VICE WaI CH ASSURES T HAT INFORMAT ION RECORDED

CANNOT BE R EPL ACED, E I THER' I NA DYER TENTL Y OR I N TE NTT ONAL LY BY
NFORMAT ION OT HER T HAN THAT INT ENDED BY AN EXECUT VE SYSTEM.

M ICROEL ECTRON ICS

S.

THAT F ELD OF ELECTRON I.CS DEAL ING W IT H THE M IN I ATUR IZ A TION
bE IRCUI TS BY THE COMB I NA T ON OF A PUMBER OF ELEMENIARY C I RCU ITS
I NT 0 A COMPOS IT.E

MICROSECOND
A MILL IONTH P ART OF A SECOND.

l

COMSC GLOSSARY
PAGE 22

MILLISECOND
A THOUSANDTH PARf OF A SECOND.

f

MNEMONIC CODE .

ASSEMBLY LANGUAGE CODE WHICHIS EASY FOR THE PROGRAMMER TO
REMEMBER BECAUSE OF ITS MNEMONIC NATURE, E.G., MPY FOR MULTIPLY
AND ACC. FOR ACCpMULATOR.

3

moNtiaR /4

A SYSTEM THAT REMINDS, CAUTIONS, OR WARNS ONE OF,SITUATIONS
THAT CAN INTERFERE WITH THE PROPER EXECUTION. OFi INTERDEOL_
ACTIVITIES. ,

MONTE CARLO meTHoos
METHODS OF COMPUTATION BASED ON PROB4BILITY THEORY THAT

USERANDOM .NUMBERS AND STAT,ISTICAL METHODS TO FIND SOLUTIONS TO
VARAPS TYPES OF PROBLEMS.

MULTI-PROCESSING
ro PROCESS MULTIPLE REQUIREMENTS CONCURRENTLY ON A SYSTEM

SO THAT EACH REQUIREMENT IS SATtSFIED SEPARATELY.

MULTIPROCESSOR
, A NAO.-UNE WITH MULTIPLE ARITHMETIC, LOGIC AND ,MAIN STORAGE

UNITS THAT CAN BE USED SIMULTANEOUSLY ON MORE THAN ONE PROBLEM.

MULT IPROGRAMMENG
SEE INTERLEAVE.

NO4DESTRUCTIVE READ
A READ PROCESS' Tlikr DOES NOT ERASE THE DATA IN THE SOURCE.

Numaw SYSTEM
A SYSTEM FOR THE REPRESENTATION OF NUMBERS, E.G., THE

DECIMAL SYSTEM, THE ROMAN NUMERAL SYSTEM, THE BINARY SYSTEM.

NANCSECONO
A BILLIONTH'. ART OF A SECOND.

se"
%

NETS
SYSTEMS OF INTERCONNECTED POINTS TO WHICH FORMAL RELATION-

SHIPS CAN BE APPLIED.

I.

COMSC GLOSSARY
fAGE 23:

NUMERICAL ANALYSIS
THAT BRANCH OF MATHEMATICAL ANALYSIS.WHICH DEALS WITH TET

CONVERSION OF MATHEMATICAL ITOCESSES INTO OPERATIONS.TH.
NUMBERS.

t.

A .,

OBJECT LANGUAGE
THE RESULT OF\A TRANSLATION PROCESS STARTING WITH A SOURCE

LANGUAGE. USUALLY, SYNONYMOUS WITH MACHINE LANGUAGE.'

OCTAL
PERTAINING TO THE NUMBER SYSTEM WITH A CASE OF. EJGHT,

OFF-LINE
PERTAINING TO EQUIPMENT OR DEVICEi NOT UNDER DIRECT CONTROL

OF THE CENTRAL PROCESSING UNIT.

OP CODE
OPERATION CO0E:I-COMPUTER INSTRUCTION CODE.

\

OPEN 'SUBROUTINE
A SUBROUTICiE THAT MUST BE RELOCATED AND INSERTED INTO A

ROUTINE AT EACH PLACE IT IS USED. SYNaNYMOUS WITH DIRECT INSERT
SUBROUTINE,. CONTRAST WITH,CLOSED SUBROUTINE.

OPERATOR
A PERSON MHO OPERATES A MACHINE.

OS/360
OPERATINGYSTEM/360. SUP'ERVISOR FOR NON TIMESHARED 360

SYSTEKS4

OVERLAP
PROCESSING AND INPVT/OUTPUT TO DO SOMETHING AT THE SAKE

TIME SOAETHtNG LSE IS BEING DONE; FOR EXAMPLE, TO PERFORM
INPPT/OUTPUT OPERATIONS WHILE INSTRUCTIONS ARE BEING EXECUTED BY
THE CENTRAID,PROCESSING UNIT.

OVERLAY
TH119 TECHNIQUE OF:REP'EATERLY USING THE SAME-BLOCKS OF

INTERNAY STORAGE'DURING DIFFERENT'STAGES OF A PROBLEM., WHEN ONF
° ROUTINE,. IS .NO LONGER NEEDEDIN STORAGE, ANOTHER ROUTINE CAN
REPLACE ALL OR PART OF tr.

295

COMSC GLOSSARY
PAGE 24

OBJECT PROGRAM .

THE RESULT OF T ANSLAT ING, A PROGRAM FROM ITS OR IGINAL FORM
INTO A MACHINE-READABLE FORM; THE ACT-UAL RUNNING PROGRAM.

ON-LINE
OPERATION UNDER DIREb. CONTROL OF THE COMPUTER; TASKS

PERFORMED UNDER DIRECT COMPUTER CONTROL.

OPEN--SHOP PROGRAMMING
A BAS IS FOR ORGAN IZ ING WORK IN A COMPUTING CENTEA IN WHICH

_THE PERSON WI TH THE PROBLEM TO SOLVE DOES' HIS OWN PROGRAMMING
W TH OR WITHOUT ,HELP EKON PERSONNEL ATTACHED TO THE CENTER.

OPERATING SYSTEM
AN INTEGRATED COLLECTION Or COMPUTER I NSTRUCTIONS THAT

HANDLE SELECT ION, MOVEMENT AND PROCESSING OF PROGRAMS AND DATA
NEEDED TO SOLVE PROBLEMS. -

..

CPT ICAL READER
' A DEVICE USED FOR MACHINE RECOGNIT ION OF CHARACTERS BY

IOENTLF ICAT ION OF THEIR SHAPES . .

OPTICAL SCANNING
A PROCESS IN WHICH A L IGHT BEAM REFLEC TED FROM (OR

TRANSMI TTED .THROUGH) A SOURCE DOCUMENT IS ANALY ZED TO IDENTIFY
THE SYMBOL S ON THAT DOCUMENT. THE LIGHT BEAM IS CONTROLLED TO
SCAN THE DOCUMENT 'IN SOME PREDETERM INED WAY. ,

OUTPUT
I. THE FINAL RESULTS AFTER DATA IS PROCESSED IN A COMPUTER.
2. THE DEVICE OR SET 'OF DEVICES USED FOR T AK ING DATA OUT

Ot: A COMPUTER SYSTEM AND PRESENTING THE M TO THE USER IN THE FORM
HE DESIRES .

PAgALL EL
POTAINING fb THE S IMULTANEITY f3F TWO OR MORE PROCESSES: OR

2 PERTAINING TO THE SI MULTANEI TY*OF TWO OR MORE SIMILAR OR
IDENT ICAL PROCESSES

PARAME TER \
.A VAR IABLE THAT "}S GI VEN A CONSTANT VALUE FOR A SPECIFIC

OURPOSE OR PROCESS. 4

PAR ITY
'AN ERROR OETECTING TECHNIQUE/IN WHICH A REDUNDANT BIT \IS

USED WI TH AN ARRAY OF am SO THAT THE sr OF EACH GROUP OF BITS

2,96

cpmsc GLOSSARY
PAGE 25

IS ALWAYS ODD OR_ALWAYS EVEN.

PARITY BIT
A...BINARY.01441T APPENDED TO AN ARRAY OF BITS TO MAKE THE SUM

OF ALL THE BITS ALWAYS ODD OR ALWAYS EVEN.

'PARITY CHECK
.A CHECK THAT TESTS WHETHER THE NUMBER OF ONES OR ZEROS IN AN

ARRAY OF BINARY DIGITS IS ODD OR EVEN.

PATCH
TO MODIFY A"ROUTINE IN A ROUGH OR EXPEDIENT-WAY.

PCP ENVIRONMENT
.PKIMARY CONTROL PROGRAM.

PDS 11

PARTITIONED DATA SET.

PL/I
PROGRAMMING LANGUAGE, LEVEL I

;

?RESET
TO ESTABLISH AN INITIAL CONDITION.

PROBLEM .PROGRAM
ANY OF THF CLKSS OF ROUTINES THAT PERFORMS PROCESSING OF THE

TYPE FOR'WHICH.A COMPUTING SYSTEM IS INTENOED.

PROC
'PROCEDURE.

PROCESS CONT.R01. BY.COAPUTERS
PERTAINING TO SYSTEMS WHOSE PURPOSE IS TO PROVIDE AUTOMATION

oF CONTINUOUS OPERATIONS. THIS IS CONTRASTED WITH NUMERICAL
CONTROL WHICH PROVIDES AUTOMATION OF DICRETE OPERATIONS.'

PRPCLIB
PROCEDURi LIBWARYI.A LIBRARY OF JCL STATEMENTS CALLABLE BY

PROGRAMMERS.

0

PROGRAM LIBPARY
A COLLECTION.OF AVAILABLt COMPUTER PROGRAMS AND ROUTINES.

2974

) COMSC GLOSSARY
PAGE 26

PAPEW-TAPE READER
A DEVICE WHICH S6NSE-S AND TRANSLATES THE HOCES IN A ROLL !IF

PERFORATED PAPER TAPE INTO MACHINE-PROCESSABLE FORM.

PIARALPEL PROCESSING
TO PROCESS SIMULTANEOUSLY WITH SEPARATE EQUIPMENT«

PATTERN,RECOGNITION
/THE PROCESS OF LOCATING AND IDENTIFYRNP A PATTERN SUCH AS

THOSE MADE BY PRINTED LETTERS, BUBBLE-CHAMBER PHOTOGRAPHS,
ASTRONOMICAL PHOTOGRAPHS AND SPECTRA, X.-RAY.PHOTOGRAPHS, AND
-CLCUD-COVER PHOTOGRAPHS.

4
ITINTER .

A DEVJCE WHICH PRINTS RESULTS FROM A COMPUTER ON PAPER.

6

PROBLEM-ORIENTED PROGRAMMING 1AN9UAGE
AN ARTIFICIAL LANGUAGE IVOCABULARY AND RULES/ CONVENIENTLY

EXPRESSING RELATIONSHIPS BETWEEN A PARTICULAR PRoftem OR CLASS -

. DF PROBLEMS AND THE METHOD OF SOLUTION. SEE ALSO "FORMAL
LANGUAGE," "PROCEDURE-ORIENTED LANGUAGE," "MACHINE LANGUAGE:"
4N0 "LANGWAGE."

PRCC(DURE-ORIENTED PROGRAM,MING LANGUAGE
A LANGUAGE FOR WRITING COMPUTER PRO4RAMS THAT CONVENIENTLY '

EXPRESSES CERTAIN\PROBLEM-SOLVING PROCEDURE'S. SUCH LANGUAGES
S.HOULD BE DISTINGUISHED FROM PROBLEM-ORIENTED PROGRs'AMMING.
LANGUAGES'NHICH ARE DESIGNED TO FACILITATE TH'E SOLUTION OF A
TYPE OF PROBLEM,

PROCESSOR
A GENERIC TERM WHICH INCLUDES ASSEMBLY, COMPILING,

GENERATION, ETC.

pRowlAm (Nom
A PLAN FOR THE SOLUTIONOF A PROBLEM. OFTEh USED INTER-..

'CHANGEABLY WITH "ROUTINE" TO SPECIFY THE PRECISE SEQUENCE OF
INSTRUCTIONS ENABLING A COMPUTER TO .SOLVE A PROBLEM.
PROGRAM IVERO)

TO MAKE A PROGRAM, INCLUDING INVESTFGATIONS OF SOLUTION
METH06, NUMERICAL ANALYSIS, APPROPRIATE PARAMETER CHOICES, AND
SO ON." THE WRITING OF A SEQUENCE OF INSTRUCTIONS IS ONLY PART

; OF PROGRAMMING ALTHOUGH OFTEN THE TERMS ARE USED INTfRCHANGEWY.

PROGRAM DECK
A SET OF PUNCHED.CARDS (DECK! CONTAINING I S iIONS

THAT MAKE UP A COMPUTER PROGRAM.

I or

2 8

01.

COMSC GLOSSARY
PAGE 27 .

PROGRAM INTERRUPT
A SIGNAL CAUSING A COMPUTER TO STOP EXECUTION OF THE CURRENT

. PROGRAM BUT TO. SAVE THE STATUS OF TH?MACHINE SO THAT THAT
PROGRAM WILL BE ABLE TO CONTINUE AFTER THE INTERRUPTING PROGRAM
IS FINISHED. ALSO THE CORRESPONDING ACTION.:

PROGRAM MAINTENANCE
COMPUTER PROGRAMS REQUIRE PERIODIC MAINTENANCE TO REMOVE

ERRORS AND DISCREPANCIES WHICH MAY BE DISCOVERED AFTER LONG
.PERIODS OF USE, Tb CORRECT ADDITIONS OR DELETIONS WHICH MAY HAVE -
BEEN INADVERTENTLY. MADE,'TO IMPROVE AND MODERNIZE THE PROCEDURES
USED/ AND TO ADAPT THEM TO USE NEW UNITS OF MIPMENT
MAY BE ADDED TO THE COMPUTER.

ii

PRCGRAMMING
THE PROCEDURES CONTRIBUTING TO THE DEVELOPMENT-OF A SEQUENCE

OF INSTRUCTIONS FOR COMPUTER SOLUTION OF A PROBLEM; INCLUDES
PROBtEM ANALYSIS, PROGRAM -DESIGN, CODING/ alb TESTING'.

PRO,GRAMMING LANGUAGES
THOSE LANGUAGES DEFINED AND USED FOR THE PROGRAMMING OF

.DIGITAL COMPUTERS.

F°11CGRAMMING SYSTEMS
PROGRAMS AND PROCEDURES DESIGNED ANO,OSED TO ASSIST IN THE

PREPARATION OF DIGITAL-COMPUTER PROGRAMS. AMONG SUCH AIDS.ARE
COMPILERS, DIAGNOSTIC PROGRAMS, AND PROGRAMS Tb PRODUCE FLOW
CHARTS.

PRCJECT EVALUATION AND REVIEW TECHNIQUE
,

A MANAGEMENT-CONTROL TOOL FOR DEFININGt INTEGRATING/ AND
INTERRELATING WHAT MUST BE'DONE TO ACCOMPLISH DESIRED OBJECTIVES
ON TIME. A COMPUTER IS USED TO COMPARE CURRENT PROGRESS AGAINST'
AZANNEO OBJECTIVES AND TO GIVE MANAGEMENT INFORMATION FOR PLAN-
NING AND DECISION-MAKING. .SEE "CPM."

PUNCHED CARD '
1. "A CARD PUNCHED' WITH A PATTERN OF HOLES TO REPRESENT

(WA.
2. A CARD AS IN 1/ BEFORE BEING PUNC4ED ISLANGi.

QUANtETATE
. J'a MEASURE.OR ESTIMATE THE QUANSITY OF; T6 EXPRESS-IN

'QUANTITATIVEAERMS .

COMSC GLOSSARY'
PAGE 28

QUANTUA CHEM; STRY
. THAT PORTION OF*CHEMI STRI BASED Off THE THEORY THAT ENERGY IS

, NOT. ABSORBED OR RAMAT EQ. CONTINUOUSLY BUT DISCONTINUOUSLY/ ..IN
gEFINI TE UNI TS CALLED QUANTA.

. .,

4RADIX ,

THE BASE OF A NUMBER ,SYST EM T EN FOR THE DtcjMAL, ..TWO. FOR
THE BINARY, EIGHT FOR" THE OCTAL t. ETC.

e

itANGE
THE sET-pr VAkUES.TRAT. A. QUANTITY OR .FUNCTIPN MAY. ASSYME.

READ
TO ACQUIRIE DATA:FROM 'A SOUReE-4

RECORD .

A seT OF DATA.
/-"t-ar

I.

I..

,

REL ATI VE ADDRESS .. 4.-

, .,

THE NUMBER THAT SPECIFIES THE DIFERENCE BE TWEEN iHE
. iABSOLUTE ADDRESS AND' THE BASE ADDRESS.

. .

laf "';;; ^^"

iff

REMOTE TERMINAL
ANY. DEV,IcE CAPABLE OF SENDING AND/OR RECEIVING INFORMATION

AT A DI1TANT LOCATI ON OVER A CO_MNIUNICAT ION tHANNEL. 'c

RE SET
TO .RESTDRE A 'STORAGE DEVICE TO A PRESCRIBED INITIAL STATE,

NOf NECESSARILY THAT IIENOT ING ZERO.

RESfART
TO RETURN TO A PREV IOUS POINT iN A PROG1$AM AND , RESUME

OPERATION FROM THAT POTNT.

RJE

RPG,

REMOTE JOB,ANTRY.

REPORT PROGRAM GENERATOR« A HIGH tEVEL. OUSINESS-ORIENTED
PROGRAMMOG 'LANGUAGE FOR CREATING REPORTS..

RUN -

A SINGLE, CONTINUOUS PERFORMANCE OF A %COMPUTER R
4

. UTINE.

S.N740.

.11. 4 .

41

I.

COMSC GLOSSARY
PAGE '29 .

ROiDOM-ACaSS MEMORIES
COMPUTER MEMORIES IN'WHICH THE TIME REQUIRED TO LOCATE

TINE NEXT ROSITION FROM:WHICH- INFORMATIONAS TO..BE OBTAINED iS iN
. NO WAY DEPENDENT. ON 'THE rOSITION:LAST LOCATED,

...REACTION.TiME ,N

-THE TIME FROM THE:APPLICATION Of A STIMUOS TO .THE RESPONSE
.TO THAT STIMULUS. THE TIME FROM THE SUBMISSION 'Or A JOB BY AN
.INVESTIGATOR TO ATS RETURN TO THE INVESTIGATOR.

*
REAL TIME

THE TECHNIQUE OF COMPUYING WHIE A PROCESS AKES PLACE SO
THAT RESULTS CAN BE USED'TO GUIDE OPERATION OF T E PROCESS.

REGISTER
.

A SPECIAL DEVICE THAT HSILDS INFORMATION READY FOR
MANIPULATION. IT HOLDS ONLY A PART (SUCH AS A.WORO) OF 1HE 4

TOTAL, INFORMATION,IN A DIGITAL COMPUTER.

RELCCATABLE PROGRAM
A DIGITALICOMPUTER PROGRAM WHICH CAN BE PLACED kN ANY

PORTION* THE COMPUTER MEMORY. THUS A PROGRAM INDEPENDENT OF
LOCATfON.

RESONANCE te
THE REINFORCED VIBRATION OF A BODY EXPOSED TO THE VIBRATION:

AT ABOUT THE /SAME FREQUENCY, OF ANOTHER BODY OR PHYSICAL
MAGNITUDE.

ROUTINE
A SEQUENCE OF MACHINE INSTRUCTIONS VHICH'CARRY OUT A

SPECIFIC PROCESSING FUNCTION.

SCAN
TO EXAMINE SEQUENTIALLY, PART BY PART.

SEMANTICS
THE RELAWONSHIRS BETWEEN SYMBOLS AND THEIR MEANINGS'.

,

SE(WeNTIAL ACCESS 0

' OBTAINING :QATA FROM AN INPUT/OUTPUT DEVICE IN A SERIAL
MANNER ONLY.

.01

0

COHSC GLOSSARY
PAGE 304

8

..SEqUENTIAL CONTROL
A MODE OF COMPUTEB OPERATION WWHICH INSTRUCTIONS ARE

EXECUTED CONSECUTIVELY UNLESS SPEC,IFIED*OTHERWISE BY A TRANSFER
ef CCNT ROL .

S.

S.

SEQUENTIAL OPERATION
PERTAINING TO A PERfORMANCE OF'OPERATIONS ONE AFTER THE

OTHER.

SNAPSHOT
SNAP A purr) USUALLY_OF A SELECTED AREA OF STORAGE iTAKEN

DURING PROCESSING-AT-SPECIFIfD TIMES PROVIDING A TIAE HISTORY OF
THE SPECIFIED STORAGE AREA FOR DEBUGGING PURPOSES.

S'bR TER
A DEVICE OR COMPUTER OUTINE TH'AT SORTS.

SPECIAL CHARACTER
est,

): A BLANN E.G., ASTERISK, DOLLAR SIGN, QL/ALS SIGN,'
A CHARACTER SET, A,CHARACTER THAT IS NETTHERA NUMERAL.

A LETR, NOR
COMMA, PERIOD.

/ SPOOL\
(0)

SIMULTANEOUS FTRIPHERAL OPERATION, ONAINE.

N,
STAXEMENT

IN COMPUTER PROGRAMMING, A MEANINGFUL EXPRESSION
GENERALIZED INSTRUCTION IN A SOURCE LANGUAGE,

STEP
. ONE OPERATION IN A COMPUTER ROUTINE.

STORAGE CAPACITY
THE AMOUNT OF DATA THAT CAN BE CONTAINED IN A STORAGE

DEVICE.

SUBPROGRAM .

A PROGRAM THAT IS A.PART OF ANOTHER PROGRAM.. USUALLY
SYNONYMOUS WITH SUBROUTINE..

SYPBOL
A REPRE.SEN1ATION OF SOMETHING BY MEANS OF RELATIONSHIP,

ASSOCIATION, OR CONVENTION.

II

1

SYNTAX

.cdMSq GLOSSARY
PAIGE 31

THE STRUCTURE OF EXPRESSIONS IN A LANGUAGE74, OR 2/ THE
RULES GOVERNING THE.STRIXTURE OF A LANGUAGE.' (

t

SYSGEN a

SYSTEM GENERATION', tive PROCESS BY ImIcH A NEW OPEWIN
SYSTEM AND SUPPORTING SOFTWARE E.G.'COMPILERS AND-UT1LtTY
PROGRAMS IS CREATED. IN'A

r

THAT
!

-7

SELFORGANIZING ADAPTIA SYSTEMS
_ANY SYSTEM WHICH CAN CONTROL ITS OWN STRUCTURE S

IT CAN ADAPT TO-CHANGES-IN ITS ENVIRONMENT.

.1

SORT' .

SELF--ORGANiZING SYSTEMS
SAME,AS SELF-.-ORQANIZING ADAPIVE SYSTEMS.

SENSORS
DEVICES Ya DETECT AND MEASURE-PHYSICAL PHENOOENA, SUCWAS

TEMPERWURE, ST.RESS44 HEARTBEAT, AND ACCELERATION.:

I

SIMULATION
REPRESfNTATION OF THE ESSENTIAL ELEMENTS OF. SOME OBjECT,

PHENOMENON, SYSTEM,'OR ENVIRONMENT THAT FACILITATES ITS CONTROL
AND STUDY (OFTEN BY OR INVOLVING AN AUTOMATIC COMPUTER).

SLOW POTENTIAL
A LOW..FRECiUENCY C MPONENT (APPROXIMATELY 4-5 CYCLES/SEC)

or THE ELECTROENCEPHALO RAPH.

Is

SOFTWARE
COMPUTER PROGRAMS AND COLLECTIONS THEREOF, INCLUDING

COMPILERS AND ASSEMBLERS WHICH CAN BE USED TO GENTIATE OTHER
PROGRAMS. ALSO INCLUDES EXECUTIVE AND DIAGNOSfICPROG,RAMS
WHICH CAN BE USED TO SCHEDULE AND TEST OTHER PRO4AMS.

SOLIDSTATE
REFERS TO THOSt DEVICES WH1CH-UTILIZE THE ELECTRIC,

MAGNETIC, OR f?HOTIC PROPERTIES OESOLID MATERIAL TRANS
ISTORS, MAGNETIC CCRES, ETC.

TO ARRANGE DATA iN AN ORDERED SEQUENCE.

303

'a

COMSC GLOSSARY
PAGE 3?

9.

SOURCE LANGUAGE
THE LANGUAGE IN WHICH A PROGRAM JS ORIGINALLY WRITTEN.

USED TOINDICATE THAT CONVERSION TO AIMACHINE LANGUAGE-A.S.
REQUIRED.

rt

-N

SOURCE-LANGUAGE DEBUGGING
THE DETECTION AND CORRECTION OF ERRORS (BUGS/ USING ONLY

THE SO(JRCE LANGUAGE.

SOURCE PROaAAM
APRO6RAM IN ITS ORIGINAL FORM BEFORE BEING PROCESSED BY A

-)I COMPUTER. USUALLY REFERS TO-PROGRAMS-WRITTEN-IN A PROCEDURE'
ORIENt;ED LANGUAGE AS OPPOSED TO MACHINE LANGUAGE. .

SPECIAL-PURPOSE
BEING APPLICABLE TO A LIMITED CLASS OF USES WITHOUT

ESSENTIAL MODIFICATION. CONSTRASTED WITH "GENERAL-PURPOSE."

SPECTRAL ANALYSIS
SEPARATION OF A SERIES OF VALUES TO IDENTIFY THEIR

SIGNIFICANCE To THE PROBLEM IN QUESTION.

STORAGE
PERTAINING TO A DEVICE IN.WHICH DATA CAN BE ENTERED AND

STORED AND .FROM WHICH IT CAN BE RETRIEVED AT A LATER TIME.

STORAGE. ALLOCATION
fHE ASSIGNMENT OF STORAGE LOCATIONS TO MAIN ROUTINES ANO,

SUBROUTINES THEREBY FIXING THE OPERATING VALUES OF ADDRESSES IN
RELCCATABLE PROGRAMS.

STORED)PROGRAM
A RROGAAM IN THE INTERNAL STORAGE SECTION WHICH CONTROLS 1r

THE BE,RAVIOR OP A COMPUTER OR OTHER DEVICE. THE COMPUTER IHUS
HAS ACCESS TO AND CAN CHANGE ITS OWN PROGRAM.

STOREO-PROGRAM COMPUT R
A OfGA.TAL COMPUt THAT STORE.S INSTRUCTIONS IN MAIN CORE

ANO CAN BE PROGRAMM 0 0 ALTER ITS OWN INSTRUCTIONS AS THOUGH
THEY WERE DATA AND.CAN SUBSEQUENTLY EXECUTE THESE ALTERED
IMSTRUCTSONS.

SUBIOUTINE'
A PROGRAM SO ARRANGED THAT CONTROL MAY BE TRANSFERRED TO IT

FROM A MAIN PROGRAM, AND, AT THE CONCLUSION OF THE SUBROUTINE, -

CONTROL REVERTS TO THE APPROPRIATE POIr IN THE MAIN PROGRAM.

3 9 4

.COMSC GLOSSARY
PAGEC 33

THIS AVOIDS-REPEATING THE SAMf SEQUENCE OF INSTRUCTIONS AT DIF-
FERENT PLACES/IN THE PRINCIpM. PROGRAMS.

. L

SUPERCONDUCTIVITY
SOME METALS AND A GRE/CT NUMBER Of ALLOYS LOSE ALL THEIR (

ELECTRICAL RESISTANCE AT VERY LOW TEMPERATURES. THE:TEMPERATURE
At WHICH THIS OCCURS MAY VARY FROM AARACTION OF A.DEGREE TO A-- .

HIGH OF APPROXIMATELY 9 K FOR NIOBIUM. -THESE METALS ARf CALLED
SUPERCONDUCTORS, AND THE TEMPERATURE AT -WHICH THE TRANSITION TO 4;

.
. SUPERCONDUCTIVITY TAKES PLACE IS KNOWN AS THE CRITICAL TEMPERA-
(TIME. VERY HIGH MAGNETIC-FIELDS WILL CAUSE A-SUPERCONDUCTING :

MATERIAL TO TRANSFORM TO THE NORMAL STATE. THUS FAR, APPROX- t.

IMATELY 23 ELEMENTS HAVE-BEEN faUND -TO BECOME SUPERCONDUCTORS IF -A .

TAKEN TO SUFFICIENTLY LO TEMPERATUWES. ,
/

)

SWITCHING
THE CONNECTION' OF TWO POINTS OF A NETWORK AT CONTROLLABLE

'INSTANTS OF TIME..

SYMBOLIC LANGUAGE
SEE MNEMONIC CODE.

SYSTEM
A.N 4SSEMBLYç1F UNITS, DEVICES, OR MACHINES UNITED BY SOME

FORM OF REGULAT INEVERACTION TO FORM AN ORGANIZED WHOLE. OR: A
COLLECTION OF 0 ERATIONS ANO PROCEDURES, MEN AND MACHINES, BY
WHICH AN ACTIVITY IS CA RIED ON.

SYSTEMS ANALIS 1
THE STUDY OF'ARRANGEMENT5 OF TERMS OR ENTITIES MAKING UP A'

SYSTEM, ESPECIALLY ARRANGEMENTS THAT COMPOSE A LARGER AGGREGATE.

)SYSTEMS PROGRAMMING
THE DEVELOPMENT OF PROGRAMS WHICH FORM OPERATING SYSTEMS'FOR

. COAPUTERS. 'SUCH PROGRAMS INCLUDE COMPILERS, T'RANSLATORSm MONI-
TORS, GENERATORS, ETC.

TABLt
A COLL

EITHER B

TABU TE
I TO FORM DATA INTO A. TABLE, OR 2 TO PRINT TOTALS.

TION OF DATA, EACH ITEM BEING UNIQUELY IDENTIFIED
OME LABEL OR BY ITS RELATIVE POSITION.

TAPE
'SEE MAGNETIC.TAPE.

V

COMSC GLOSSARY
PAGE 14
A

TAU TO CARDS
PEIATAINtNG TO EQUIPMENT -OR METHODS THAi TRANSMI T DATA FROM

EI THER MAGNETIC TAPE OR PUNCHED TAPE TO PUNCHED CARDS.

TAPE UNIT ,
A DEVICE CONTAINING A TAPE DRIVE, TOGETHER WITH. READING A.ND

"WR IT ING HEADS AND. ASSOC [ATP() CONTROLS.

-TELEPROCESSING .

A FORM OF INFORMATON HANDL ING IN WHICH A DA TA PR,OCESSI'Ne*
SYSTEM UT ILI ZES COMMUNICAT ION FACIL IT IES.

TEMPORARY STORAGE
N PROGRAMMI NG,WSIORAGE LOCAT IONS RES ERVED FOR INTERMEDkATE

RE SULTS-." SYNONYMOUS' WI TH WORK! NG STORAGE.

TERMINAL
A POINT IN A sysTr OR COMMUNICATI ON -NETWORK AT WHICH DAT A

CAN EIT HER ENTER OR L EAVE.

TEST ING
THE PROCESS FOLLOW ING liEBUGGI NG OF A COMPUTER ROUT I NE 1(k. TO

VERIFY THA T THE SOFTWARE AND/OR THE HARDWARE IS FUNCT ION ING
PROPERL Y.

TRANSCE VI NG
PROCEDVRE INVOLVING THE SEN6I Nk-ANO/OR RECEIVING OF DATA

V4I A A REMOTE T ERM INAL

TRANSL ATE
TO, CONVERT FROM ONE LANGUAGE TO ANOTHE'R LANGUAGE, EG.', FROM

FOR TRAN. TO MACHINE LANGUAGE.

TEL EMET ERED EXPER I*MENT AL DATA
INFORMATION' WHICH HAS BEEN MEASURED AT -A DIST ANCE BY THE

TRANSMISSION OF A SUI TABLE SIGNAL BY TELEGRAPH, TELEPHONE, OR
RADIO.

TERMINAL UN I T
A DEV ICE, SUCH AS A KEY-DR,IVEN OR VISUAL DI SPLAY TERMINAL .

-WHICH CAN BE CONNECTED TO A COMPUTER OV-ER A COMMUN ICAT IONS
CIRCUIT AND WHICH MAY BE USED FOR E I THER I NPUT OR OUTPUT FROM. A
LOCATION E ITHER NEAR OR FAR REMOVED FROM THE COMPUTER

IS 306'

COMSC GLOSSARY
PAGE 15

THIN-FILM MEMORY
A MEMORY ELEMENT MADE'13Y DEPOSITING'MAGNETIC ALLOYS IN

LAYERS SO THIN ,THAT DIWECTION OF MAGNETIZATION CAN BE SW4TCHED
EXTREMELY .RAPIDLY.

TIME SHARING .

A TECHNIQUE ALLOWING/ EXECUTION OF TWO OR MORE FUNCTIQNS
:ESSENTIALCY AT THE SAMI.TIME, BY ALLOCATING (IN ROTATION; FOR
.INSTANCE) SMALL DIVISIONS OF THE TOTAL TIME E.OR THEPEIAFORMANCE
'OF EACH FUNCTION. A SYSTEM BY WHICH SEVERAL'CONSOLES ARE CON-
.NECTED Td A LARGE CENTRAL COMPUAER WHICH IS PROGRAMMED O THAT,
ON CALL, IT CAN GIVE SNORT BURSTS OF TIME INTERMITTENTLY T0 EACH
CONSOLE.

TOPOLOGY o -

A BRANCH OF MATHEMATICS CONCERNED WITH THE RELA.TIONS OF
GECMETRIC FORMS WITHOUT REGARD TO THEIR SIZE OR MEASURE;

A

TRANSDUCER
A DEVICE WHICH CONVERTS ENERGY FROM ONE FORM TO ANOTHER,

AS A HI-FI PICKUP CARTRIDGE COWERTS MECHANICAL TO ELECTRICAL
ENERGY.

TUNNEL DIODE"
tUNNEL DIODE IS A SPECIAL TYPE OF P.-N JUNCTION DIODE..

AS ONE INCREASES THE VOLTAGE ACROSS THIS DIODE, THE CURRENT FIRST
INCREASES AND THEN DECREASES, AND THEN INCREASES AGAIN. THE
REGION WHERE THE CURRENT FALLS AS THE VOLTAGE RISES IS CALLED A
"NEGATIVE-RESISTANCE" REGION. THIS NEGATIVE-RESISTANCE REGION

- GIVES THE °DIODE MAN? PRACTICAL USES. THE NAME "TUNNEL DIODE" -

COMES FROM A QUANTUM MECHANICAL EFFECT ON WHICH THE DEVICfm IS
BASED. IN TOE TUNNEL EFFECT-IT,IS.FOUNO THAT THF WAVE NATURE OF

--ATOMIC PARTICLES SOMETIMtS ENABLES THEM TO GET.TO THE OTHER SIDE
OF A BARRIER. DESPITE THE EAC4 THAT THEY 00 NOT EI41,VE ENOUGH ,

ENERGY TO GET OYER THE TOP OF THE BARRLER. THE PROCESS IS ONE
OF PENETRA-TION or THE BARRIER AND HENCE THE NAME "TUNNEL EFFECT."

TRANSISTOR
A TRANSISTOR IS BASICALLY A DEVICE MADE BY ATTACHING THREC

WIRES TO A'SMALL WAFER OF-SEMICONDUCTING MATERIAL. THE SEMI-
CONDUCTING.MATERJAL IS A SIGLE CRYSTAL WHICH HAS BEEN SPECIALLY
TREI(TED SO THAT'ITS PROPERTIES ARE DIFF.ERENT AT T.HE POINTT
WHERE EACH OF THE WIRES IS ATTACHED.- THE THREE WIRES'ARE USUALLY

'\ CALLED .THE'EMITTER, BASE, AND COLLECTOR, AND THEY PERFORM FUNC*-
ITIONS SIMILAR TO THOSE OF THE CATHODE, GRID, AND'PLATE OF A-
VACUUM TUBE (IN THE SA$E OROER)o THE TRANSISTO IS USUALLY
WIRED INTO A CIRCUIT IN SUCH A NAY THAT A SMALL CURRENT TO BE
AMPLIFIED IS. SENT INTO THE 'BASE AND PRODUCES A CORRESPONDINGLY
LARGER CURRENT IN THE COLLECTOR.

3 i7

'IL

COMSC GLOSSARY
PAGE 36

TURNAROUND TIME
THE TIME ELAPSED BETWEEN THE SUBMISSION OF A COMPUTER RUNBY AN INVE.SfIGATOR AND THE RETURN TO HIM OF THE\RESULTS OF THERUN. WITH THE CLOSEDSHOP OPERATIM OF A LARGE COMPUTER, THIS°INTERVAL 'MAY BE FROI AN HOUR TO MORE THAN A DAY. TWO OR THREEmguRs IS USUALLY CONSIDERED to BE A SHORT TURNAROUND TIME.

,

TRUTH'TA6LE
A TABLE THAT DESCRIBES A LOGIC FUNCTION BY LISTING ALLROSSIBLE COMNINATIONS OF INPUT ViALUES#AND INDICATING ALL TAELOGICALLY TRUE OUTPUT VALUES.' e

s

f
UNDERFLOW\

PERTAINING TO THE CONDITION THAT ARISES WHEN A MACHINE
nCOMPUTATION YIELDS A NONZERO RESULT THAT IS SMALLER THAN THESMALLEST NONZERO QUANTITY THAT THE INTENDED UNIT OF STORAGE.ISCAPABLE OF STORING.

UNIT
1 A DEVICE HAVING A SPECIAL FUNCTION, OR 2 A BASICELEMENT.

,

%

UNIT RECORD EQUIPMENT
ELECTROMECHANICAL MACHINES USED TO.,PROCESS DATA RECORDEDON PUNCHED CARDS., OFTEN USED AS INPUT/OUTPUT,DEVICES CONNECTED.TO AN ELECTRONIC STOREDPROGRAM COMPUTER.

VARIABLE
A QUANTITY THAT CAN ASSUME ANY OF A GIVEN SET OF VALUES.

a

VERIFIER
A DEVICE-SIMILAR TO A CARD PUNCH, TO CHECK !HE INSCRIBING OFDATA BY REKEYING.

VERIFY
TO CHECK THE RESULTS OF KEYPUNCHING:

VARIABLECAPACITY DIODE
A SILICON SEMICONDUCTOR DIODE IN WHICH THE CAPACITANCE,VARYING AS A FUNCTION Of THE BIAS VOLTAGE, IS USED)AS A CHICUIT

ELEMENT, ALLOWING THE DEVICE.TO BE psEo AS A VARIABLEREACTANCE .CONTROL DEVICE OR AMPLIFIER.

WARM -START
ONE OR MORE PROGRAMS STORED ON SPOOL PACK. .4

4COMSC MOSSARY
PAGE 37

4
WRtTE

TO DELIVER DATA TO A MEDIUMSUCH AS STORAGE.

WORD
A SET OF CHARACTERS WHICH HAVE ONE ODDRESSABLE,LOCATION

AND ARE TREATED AS ONE UNiT,

a

WORD SIZE .

THE NUMBER OF CHARACTERS.IN A "WORD. SYNONOMOU$ WITH "WORD
LENGTH."

f

a.

a

114

°ft

a

APPENDIX III

Running a t1ATFIV Job on the 'IB14 System/360

Model 65 User Termipal

Section'A of this appendix contains a self-guided tour of

the UniversIty Computer Center facilities. Section B describes

140 0
the control cards that are used for'running WATFIV jobs. A pro-

cedure for actually running a job is tiven in Section C.

O.

ma 310

V- I Section A

The University Computer Center-Facilititt

You 'need to know your way around the University Computer

Center before you attempt to run any jobs on the computer. The

following pages cerlIain.a map and a guide to .the user area of tbe

Computer Cenxer'in the basement of tbe Matheinatical Sciences Build-

ing. Take the self-guideetour, referring to the map and the guide

following the map.

41.

YVAN

4.

Map.of the University Computer Center, MS Basement

a

NS 011
Computer Room'

cpu

1 2

Elevators

14-1--
'16

MS 04

17 15

:c11.312

.Guide to the Mal, of the University Computer Center, MS Beam

The numbers below correspond to the nuMbers on the map of the MS
basement. Start at "1" and check off each item as you go.

1.

2.

This is the superviaor's offite. Report any malfunctions
or difficulties with any equipment (keypunch machines,
card reader, line Printer, etc.) to the supervisor.

The console with the blinking lights is part of the cen-
tral processing unit-Wu) of.the JBM,Syatem/360.Model
65 computer. This unftis the heart of the computing
system. Behind the console is the memory unit, contain-
ing 1,572,864 addressable storage locations (or

In the foreground along the wall to your left and to
your iight.is a'linj of disc drive units (du) for storing
and retrieving information using magneti9 discs. (You
will probably see some4disc pack covers sitting around
the area. They look.like plastic cake containers.)

To:the right and in front ofthe entral processing unit
is a line of magnetic tape drivownits (tu) Aor storidg
and retrieving information. (Data transfer with magnetic
tape units is slower than with disc units by several or-
ders of magnitude.)

tlifil%1104111 Mesx of the other units in the room are contrbl.units
for the various input/output devices. H.

3.- this room contains the uset terminal of the-Computer.

: t

.11

This area, like all other areas, must be kept clean,
Count the number of waste containers in this room.

thesname of this unit on the nameplate.

Acquaint yourslf,with any signs and instructions taped
to the,pachine.. You yill need them later.

Find two sets of "START" and 'Intle buttons.

Please read.and observe the "No Smoking" signpn,the wall.

Find the name of thia'unit on the nameplate.

_

A

4'

7.

Acquaint yourself wi.th any signs and instructions taped
to this =chine. .You will need them later.

Locate the "END. OF FILE" and "START" Luttons.
.

On Ow wall are the instructions for usidg the card
feeder. At the timelwhen yeu are ready tO'use the
card reader, .read these directions carefully.

13), Along this wall is the input/output area for jobs that
are run."inSide on the computer by an operator. Jae
aresubmitted at:the window to your left and are pick-

,

ed up from the bins. You will not:be using this service .
in this coerse.

9.

41

In the window.where jobs are submitted is a tray.con-
faining coatrol earth; for running jobs on the computer.
The only control cards you Fill need for this course
are $JOB, SENTRY, and $1BSYS, some:of which-should be
available in the tray... (You don't need to take the
cards now.)

At the back.of the tray is a supply of rubber bands
for putting around deckk 6f computer cards.

/-

Just to the right andlbabove the. window is a button for
calling an operator whenever you need to report diffi-
culties witti equipment.

10, This is a cathode ray tube (CRT) display unit,that shows
the status of jobs being run ip the computer. You Will
not need to nSe t is unit in this course, but it's sort
of fun'to wat

/
11.' BesideAo CRT unit is a bin of OMR cards (computer cards

that can be marked with a pencil)..

12. These are work areas-for your,conVenience. PLEASE! KEEP
THESE AREAS CLEAN!

13. A diagnostic lab is operated in thip area for students
enrolled in basic computer mcience'programming courses.
This Service provides help for you when you_do not under-
stand diagnostic messages on your computer output. -

14. This is the user keypunch areas How many waste containers
can you find in this room? PLEASE USE THEM! KEEP
THIS AREA CLEAN!

15. .Please feed and observe the "NdSmoking, No Drinke eign.

16. The dark grey keypunch machines are model 26 machines.
Theyargi used primarily by students'enrolled in COMSC 2112.

4

17. The light grey keypunches are model 29 machines.

Please read and observe the instructions taped to
some of the desk tops of the machines. PLEASE CLEAN'

UP YOUR MESS!

Notice the card bins containi4 blank (unpunched) com-
puter cards placed among the-keypunch machines.

18. ,; This room contains unit record equipmerit, which you
will not need for 'this course.

19. There are keypUncheS for making corrections only located
here for your convenience.

Notice that there is a time limit on the use of these
machines, which must be observed.

20. You're on your own to'find yobr way out.

41)

4,-

111.6

31 5t f

,00

4,"

6

Section B

WATFIV Control Cards

'Three control cards are ref:tared for,all WATViVilas:

$ENTRY, pad sIBSYS.

Tht OM card initiates the accounting routine7used by the

Computer Center for charges and records; it also,initiates the

compile phaseduring which timeithe Fortran program is compiled

or translated.

The general form for the $JoB. catd that you need for this

course is thown below:

$JOB vvvvv,xxx-yy-zzzz Your rime

-vvvvv 4 the project number assigned to this course by the

Computer Centervpsed for accounting purposes.

xxx-yy7zzzz - an assigned identification nUmber used for
.1

the keeping of recórds in the course.
,

Your name must be preceded by. at least one blank.

The $.103 card shown above is used with jobs that are punched

on model 29 keypunth machines. If you use a model 26 keypunch,

.then the general form of the $JOB card includes a 0 parameter:

$30B vvvvv,xxx-yy-zzzz,KRe026 Your name
NN.

The $810B card may contain additional parameters and options

thitt are bayoldthe scope if this course. Refer to the section,

titled,(TFIV Job Card" in APPENDIX VIII if you need more infor-

mation.

I

The 8ENTRY card initiates the vecution phase of the job

during which time the instructions generated by the compiler are'

executed. The control information, ONTRY, is punchfld in columns

l-6,of the card.

The $IBSYS card terminates the job, reCording the necessary

accounting infermation. Th9 control information, 8IBSYS, is

punched in columnsm1-6 of the card.

Place your cards in the following order when you run a job:

83013

$ENTRY

$IBSYS

Program deck

Data cards, if any

111.8

3 i 1..1

4M-

;414

Section C

Running a WATFIV Rib

Now that you know your way around, try running a job oft the

user terminal in room 010.

1. lake your punched program deck and place the proper con-

trol cards with the program deck as described in Section

B.

2. Read the sign "Astructions for Using Card Ileader" on the

wall iu room 010.

3. Read the instructions attached to the card reader.-

4. in your mind go through a dry run of putting your cards

onto the card reader and starting it, but don't do an

actual run yet.

5. Read "Additional Idstructions for Operating the-IBM 2501'

Card Reader" contained in APPENDIX IV.

6. Read "Instructions for Using the IBM 1403 Printer" con-

;ained in APPENpIX V.

7. Oncamore referring to the sign on the wall, try running

your job al the card reader, and set your output from the

line printer.

8. Be sure that you pick up your deck (Careful! Not someone

else's!) from the card reader.

9. Move out! Don't loiter in the terminal reom.

111.9
318.

1

APPENDIX IV

Additional Instructions for Operating the IBM 2501 Card Reader

' The control panel of the card reader contains several lights and.-
buttons. The top row contains signal lights and the bottom row
contains push buttons.

VAIDITY
CHECK .

(yellow)

END OF
FILE

(yellow)

OMR CHECK
(yellow)

UNDEFINED

READ READY FEED POWER

CHECK (green) CHECK ON

(yellow) (yellow) (white)

armealeaseWwwleaneer....iwww......

- Nov'

END-OF
FILE START NPRO STOP

(blue) (green) (blue) (red).

The following three lights indicate normal operating conditions.

X. The white POWER ON light indicates that the machine is on.,

2. The green READY light will be on when the reader is reading
cards and everything is "ge," Even though the reader may
stop, as long as the READY light is on, it is still "go."
The reader is probably waiting for the computer or the line

*printer if it stops in the READY condition.

3. The yellow ENWOF FILE light comes on whenever the END OF FILE
button is pushed and goes off whenever'the READY light goes
off. This light signals that the last cardrthrough the reader --

will be put into the stacker; otherwise, the last card will
remain inside the reader.

tfie following four lights indicate abnormal conditions which cause
card reader to stop.

C17. The yellow V HECK-light signals that a card contains
an 'invalid pu ch. There are at toast thiee common .causes:

a. one âr "mor cards placed upside Awn or backward in the
feed hopper;

b., a card with more than one tharacter punched in a column
of the card;

9

c. a card punched off center.

2. The yellow READ CHECK light indicates that the card was mis-
read. Each card is read)twice by the card reader, and the
two readings are compared. If they are not identical, a "read
check" stoppage occurs. Usually this condition is caused by
foreign matter inside the holes of the card or inside the
machine 'itself, but may also be cauried by a defective card.

3. The yellow FEED CHECK light indicates a problem in the card
handling mechanism. Usually this condition is caused by a
bad card, especially a card with a blunted bottomodge (the
9-edge) or a card that is not flat.

4. The yellow OM11 CHECK light indicates an invalid OMR card.
This tondition should not occur if you use the OMR cards pro-
vide0 by the Computer Center, but it could occur if the OMR
fimture is not functioning properly. The UNDEFINED light is
disconnected and should never come on.

The buttons on the bottom row of the control,panel control the
operation of the card reader.

1. END OF FILE (blue) must be pus4ed in order for the last card
processed by the reader to be ejected into the stacker. Other-
wise, the last card remains inside the reader.Always push
this button whenever you are using the card,reader. (If you
"lose" your SIBSYS card in the'card reader, you forgot to
push the END OF FILE button4)

2. ST ,(green) must be pushed in order for the reader to operate.
ushing this button causes the READY light to come on, assuming
that operation is normal.

3, NPRO (blue) is used for ejecting cards from inside the reader
without .precessing them. This button is used primarily when-
ever ah Abnormal stoppage occurs (indicated by a FEED CHECK, OMR CHECK
READ CHECK, or VALIDITY cilftg_ light) for getting cards out of
the reader and into the stacktt. This button ls not functional
if cards are in the feed hopper or if the STOP button has not
been pushed.

\--
4. STOP (red) is used for stoppingthe operatio of the card reader

and for releasing the reader from the contro of the computer.

-r

3,21)

MAT TO DO IN CASE OF STOPPADE OF CARD READER

1-ht

BIADY

Procedure a.

Check the PRINT Rpla light on the line printer. If the light is off,

push the line printer START button.

Waie. Operattpn should resume momentarily.

If Operation does not resume, then there may be a problem in the

computer system. You may wish to remove your deck and return

later.

Row to-remove y2RE deck from the reader
_

Push STOP.

Remove circle from the feed hopper (or just lift up on the
cards and hold them above the bottom of the hopper).

Push and hold NPRO momentarily until all cards have bean

ejected into the stacker. \

Remove your cards from the stacker (and from the feed'hopper,

if you have not done so).

VALIDITY
CHEM

The lait card ejected into the stacker t4före stoppage is the

offending card.

Is the offending card backward or upside down?

NO. Remove yourdeck from the reader using the instructions
above under "READY." Check the card for-an invalid plieeh
cusually more than one character punched in a column of
the card) 'and for off center punches. Repunch the caFd

and try agein.

114hIMISIIM

YES. You can recycle the card threugh the reader as follows:

\\, Push STOP. .

Lift up and hold the cards in the feed hopper.

Push eild hold NPRO momentarily until all cards have been

ejected into the stacker.

Take the offending card and the ejected cards and place
them properly in the feed hopper under the catds you

are holding up.

Be sure that the cards in the hopper ere straight and

neatly stacked; then p4sh START.

IV.3

.321
rs

Li ht on Procedure

READ The laet card ejected into the stacker before stoppage is the
CHECK offending card. Recycle the card through the readey as follows:0

FEED
CHECK

Push STOP.

Lift up and hold the cards An the feed hopper.

Push and hold NPRO momentarifY until all cards have been ejected ,

into the stacker. .

Take the offending card and the ejected cards and.place them
properly in the feed hopper'under the cards you are holding
up.

Be sure that the carAs ln the hopper are,straight and neatly
stacked; then push START.

If read check occurs again, remove your ade using the instructiona
under lt-READYlf above, repunch the offend ng card, and try again.

The bottom card in the feed .hopper is probably the offending card.

Is the weight on the cards in thvfeed hopper?

NO. Inspect your cards in the hopper for damage. If they are
OK, place cards and weight properly into the feed hopper,
and push START.

YES. Probably one or more of your cards in the feed hopper have
blunt bottom edges Or are not flat. Remove _your cards from
the reader using thek instructions under "READY" above. Re-
punch damaged cards.'. (Sometimes you can repair blunt edges
by placing the card on a flat surface and running the flat
side of your thumbnail along the edges; the repair job is
only temporary, however.)

Silmetimes a feed check means a "card jam" inside the reader. In
such cases, secure the help of the Operçions Supervisor (MS l2A).
or an operator from the Computer Room.--

OMR Proceed exactly as in the case of a READ CHECK, replace the offend-
"CHECK ins OMR card with a new one. If the condition prevails, report

it to an operator or to the supervisor.

A
When all else fails, secure help froWthe Operationq Supervisor
(MS 12A) or an operator from the Computer Room. DO NOT ATTEMPT
TO REPAIR)4AtrUNCTIONING Watley,

IV4%
32,2

APPEND IX V

_Instructions for Using the IRK 1403 Printer

The control panel for the 1403 Printer is on the front side'in the upper lefl:

hand corner. Thire are seven push buttons and five signal lights.

START
(green)

CHECK
.,RESET

STOP'

CARRIAGE
SPACE

(blue)

CARRIAGE
RESTORE
(blue) .

SINGLE
CYCLE

(blue)

e

PRINT
_READY PRINT

NIR4F
CHECK

-FORMS SYNC

CHECK CHECK

CARRIAGE
STOP
(red)

The only buttons with which you will be concerned are START, STOP, and CARRIAGE

RESTORE.

The green START button (there is also one on the back side in the upper ,right-

hand corner) puts the printer in che "ready" state and turns on the white PRINT

READY light. The line printer must 1)4N:treacly" in order for it to operate and

in order for the card reader to function.

The red STOP button (there is also one on the back side in the upper right-hand

earner) stops the operation of.the printer add releases it from the control of

the computer. (Pushing the STOP button will usually also cause a normal, tem-
porary stoppage of the card reader.)

The blue CARRIAGE RESTORE button causes the top of a new page of paper to be

positioned in the print position, pie button is not functional until the

STOP button Is pushed.

The END OF.FORMS, FORMS CHECK, PRINT CHECK, and SYNC CHECK lights indicate ab-
normaLconditions and cause stoppage of the printer.- Secure the help of the

. Operations Supervisor (MS 12A) or an operator in the computer'room if one of.
%these lights comae on: DO NOT ATTkMPT TO "1411" THE EQUIPMENT. ,

1.

How To Use The Line Printer-

1. Check the PRINT READY light. It it is not on, push the START button.

2. aimbatIMILfipAshAd Ytal YomY isatmOilf,00e; nads. are 11.111018.
ihind purl,, wait until your output comeS into view at the top on the .

AC side of the printer. Start a tear on one end of the perioration at the I

bottom of your lest pagep end then pull down on the paper sharply at a slight
angle. The paper stkould tear cleanly if you do this quickW.

4

When sal Ellster ie fnj with your job and no other presalA,are Lujanku,
obs behind mgs, then push STOP, push CARRIAGE RESTORE three Omen only
more times just waste paper unnecessarily), and msn START. The last page
of your output will then be near the top on the back side of the printer.
Then start a tear.on one and of the perforation at bottom of your lest page*
and then pull down on the paper sharply at a slight angle, The paper ehould
tear cleanly if you do this smiskly..

3. It is always much eaeier to tear the paper when it is near the .tok. of the'
2...._rists on the back sid. You can also do it more quickly near the top.
Sometimes however, circumstances beyond your control require that you tear
it off at_the bottom of the printer; but ordinarily you can tear the paper
near the top even though the printer is running.

4. If it becomes necessary to stop the printer while you are tearing off $our
output or for Some other reason, then push the STOP button, corre,ct the-
difficulty, and then push START.

APPENDIX VI

How to Get an 80/80 Listing With the
System/360 User Terminal

The 80/80 listing f.ature of the User Terminal produces a
41,

Listing_of punchegLor carde_ on the _line_ printer. Thluile a

convenient way of checking cards for errors or fof just reading

what is punched or marked.

e-s

Two control cards are required:

123456789.
$L1ST
$ENDL1ST

t,

Place the $L1ST card'in front'of the cards to be listed, and place

the $ENDLIST card behind the cards to be lis ed. Be sure to include

the $ENDL1ST card; if you omit it, the termi I will remain in the

list mode.

Usually there tlre $L1ST and $ENDL1ST ca ds -in the card box

beside the card reader.or in the tray of contr 1 cards in the window

where jobs are submitted. Replace the cards w en you finish with

them. If they are not available, then punch your own. It's better

to-punch them on the back side of the cards so that you can more

easily identify your deck after it goes through the card reader by

the top left corger of the two cards, since the top left corner is."

cut off the rest of the cards.

V1.1

-4

IP'

'.

!MIST

1/4

I4

Back-of card. Cut corner

4

c.

.11

APPENDLX VU

Running Fortran Jobs on the IBM 1130 Computer

Pectioil A of ehis appendix deseribes the control cards needed

for 1130 Fortran jobs without user supplied subprograms. Use of

FUNCTION and SUBROUTINE subprogramn requires additional control cards

which are described in Section B.

,The 1130 computer is located in room MS 214. Normally the

machine will be on:, but 6ccasiona11y you may find it off. If the

machine is off, then you must' "power up" and perform a "coUrstart."
,

Section C tells you how to do this. If the machine is already on,

th4;1 refer to Section D for instructions.

Sectipn E outlines some major differences between 1130 Fortran

ana WATFIV.

Section F gives the error codes used with the 1130 Fortran

compiler.

FL

4

p.

<1.

Section A

Control Carda

In order to run a Fortran job on the IBM 1130, the following
control card setup is used.

111ill1l1122222222223333333333444444044555555555566666664677777777778
12345678903.2345670012345678901234567890123067890123456789012345678901234567890
// JOB (or a '"cold start" .card, if doing a cold start)
// FOR
*IOCS(CARD,TYPEWRITEE)
*LIST SOURCE PROGRAM-

1/ XEQ

One or two blank cards

Fortran.source deck

Data cards, if any

The // JOE card preparaa the'computer for receiving and running
a job. (It may be replaced by a "cold start" card when the cold.start

. procedure is performed.)

The,// FOR card loads the Fortran compiler and initiates the com-
pile phase.

414

The *IOCS and *LIST SOURCE PROGRAM cards are control cards for
the Fortran compiler. The *IOC& card preparee the computer to receive
input from the card reader (logical unit. number 2) and to put output
on the typewriter/printer (logical uAit number 1). The *LIST SOURCE
.PROGRAM card produces a listing of the program as it is compiled on
the typewriter/printer. If you choose not to have a listing, this card
.may be omitted, greatly speeding up the compile phase.

The // XEQ card initiates the execution phase.

Since the card reader does not have an END OF nix feature for
r riding the last card of the, deck and ejecting it into the receiving
hopper, one blank card insures that the last card of the deek will be
read, but it will remain'insida the card reader. Two blank dards will
insure that the last card will be ejected into the hopper.

See Section B for information on control cards for running jobs
with SUBROUTINE or FUNCTION subprograms. .

ma 328

Section it

Using Subpregrame

On the 1130, subprograms must be compiled and storad on the disc
before'they can be called and used in the-main-program. For that rea-
son, FUNCTION and SUBROUTINE subprograms muet be placed before the main
program in the program deck. Special control cards are also required.
Thd setup of control cards and source decks is s4own below.

40/
13.3.1111113.22222222223333333333444444444455,555555556666666667.7777777778

*LIST,SOURCE PROGRAM
// FOR

// DUP
*STORE WS UA Name
// FOR

"*IOCS(CARD,TYPEWRITER)
*LIST SOURCE PROGRAM

a

// XEQ

One or two blank cards

1 SubprograurSource deck

} Main program source deck

1 Data.cards,
if any

1/11
The "T" on the // JOB card is necessary so that the storing of

the subprograms on the disc will be temporary. If the "T" is omitted,
then the subprograms will be stored permanently on the disc.

*. The *STORE card moves the eompiled program from the work storage
area (WS) of the disc to the user area (UA). The name of the subpro-
gram must be punched beginning in column 21. (This is the save name
used in the FUNCTION or SUBROUTINE statement, of course, and is net
necessarily "Name" as shown on the card.)

If you have more than one subpregiam, then, set tip,control cards
for each subprogram separately, as shown On the next page.

VII.3

eft

// FOR

*LIST SOURC1 4MOGRAM

// DUP
*STORE WS UA Name.

} Subprogr:am source deck

Remember to place all subprograms before .the main program.

RUn jobs in the usual way, using instructions in Section C or Sec-
tion D.

For additional information orvontrol cards,.see Section A.

49.

Ya 21/

330

a Y;

Section C

d Power Up ind Cold Start

This procedure la
the unkin 'POWER switch

sLic7alTriader

1. Power up.

ka be used toi, if tilLe aouter At--that Afb
kstAcias i4. ILLIe POWER RE Li Islt_

a. The POWER switch is on the operator's console in the
upper right-hand corner. Position the switch to ON.
The POWER ON light on the card reader should now be
on.

b. Open the door on the disc drive unit below and to the
right of the.console. (The entirerfront of the cabinet
opens.) Fin.d a switch labeled FILE. Move the switch
to ON. .0?

c. mr.941 about 2 minutes, or until you hear a loud click.
The computer should be ready for the start-up procedure
then.

d. Check the green FILE READY light above and to the left
oi the console keyboard. It should 'Enron. If it isn't,
get help.

2. Ready the card.reAder.

a. Make sure that the card feed hopper on the card reader
is empty.

b. Push and hold momentarily the NPRO button on the reader;
this will remove any cards that may be inside the reader.

c. Place the proper control cards with yeur program (see
Section A), and place a "cold 'start" card in place of
the // JOB card; (There should be a cold,start card in
the box sitting on the card reader. If you are using a
// JOB T card, place the cold start card to frolt of it.)

d. Put your card deck into the eard'feed hopper, 9-edge
sway from you, face down, and push the;START button on
the c4rd reader. The green READY light on the card
reader should now be on.

V
3. Run the job.

a. Push the PROGRAM STOP bytton on the console.'

vir

b. Push the IMM STOP button on the console.

c. Push the RESET button on the console.

d. Push the PROGRAM LOAD button on the console.

e. Check the green RUN light on the console; it should
be on, and the computer should be operating. If it
isn't, find help.

At the conclusion of the run, clear the card reader.-
Clear the feed hopper and press and hold momentarily
the NPRO button to eject the last two cards t!!at are
inside the reader.'

0

k

Section D

Running Jobs When the Computer is ON

This uocedure is to be used cor lhat.

is, the main POWER switch is in the ON ,k_s_lon_osj, the POWER ON Alatt

on the card 'reader is on, and the FILE READY lAshs on the console is

ell 44

,

1. Check the KB SELECT light on the left side of the conside
keyboard. If the light is on, then you must do the follow-
ing before you can entey a job through the card reader:

a. Using the keyboard, sOrting at the left margin, type

//bJOB

'where "b" represents a blank.

b. Push the HOF (end of file),button on the keybo'ard.

c. .Then type, starting at the left margin,-

//bTEND

where "b" represents a blank.

d. Push the EOF' button on the keyboard again.

a. Check the KB SELECT light. It should be off. If net,
. you probably didntt type the instructions correctly.
Go back to step a and repeat the instructions carefully.

2. Ready the card reeder.

a. Be sure that the card feed hopper is empty.

b. Push and hol0 momentarily the NPRO button on the card
reader to remove any cards that may be left inside the
reader.

c. Place tbie proper control cards wlth your program deck
(see pection A).

d. Place your cards into the card feed hopper, 9-edge away
from you, fle down.

VII.7 333

-

e. Push START on the card reader.

f, Check the READY light on the reader,. It should be on.
If not, try again or ask for help.

3. Run the job.

a. Push PROGRAM SiART on the console.

b. Check the green RUN light on'the console. It should be
on. If it is not, then either your control cards are in-
correct or else you need to use a "cold start" card. Re-
move your cards from the feed hopper, and press and hold
momentarily the NPRO button to eject the cards that are
inside-the reader. -Check your control cards. If they
are correct,,then go to Section C, step 2c, and proceed
to the.end of Section C.

c.. At the conclusion of tbe run, clear the card reader.
Clear the feed hopper and push and hold momentarily the
NPRO button to eject the last two cards that are inside
the card reader.

,vn..8 :334

Section R

1130 Fortran Compared to WATFIV

This list is far from exhaustive, being intended only to help

,you over some major hurdles.

11 Length of variable names.

WATFIV: Maximum 6 characters.
1130: Maximum 5 characters.

2. Logical IF and logical data.

WATFIV: Logical capability available.
1130: ,No logical capability available.

3. Alphameric or character data (single precision).

WATFIV: Maximum of 4 characters associated with a variable
name.

1130: Maximum of 4 characters associated with a.real
variable name; maximum of 2 characters associated with
an integer variable name.

4. Input/output unit numbers.

WATFIV: Line printer, 6; card reader,
1130: Typewriter/printer, card reader 2.

For compatibility between WATFIV and 1130 Fortran, use of

variable I/0 unit numbers is especially canvenient. The program

segments below illustrate this.

C RUN ON WATFIV
'IN4a5

IOUTm6
READ(IN,4)A
WRITE(IOUTO)A

C .RUN ON 1130
X110.2

READ(IN04)A
WRITE(IOUT,5)A

A Single DATA initialization: statement may be used for initialim-

tug both.unit numbers.

V11.9 335

C RUN ON WATFIV C RUN ON 1130
. DATA INJOUT/516/ DATA IN,IOUT/2,1/

REA6(IN,4)A READ(IN,4)A
WRITE(I UT5)A WRITE(IOUTO)A.

5. Carriage controls.

WATFIV: Blank, zero, 4-, 1, and I.
1.130: No carAage controls except I. Other carriage

controls, if present, are simply printed, as any
other character fields would be.

.For example, below are two program segments illustrating what

output is produced by each system.

C WATFIV C 1130

4F

WRITE(6,1) WRITE(1,1)
. 1 FORMAT(7HOOUTPUT) 1 FORMAT(7HOOUTPUT)

$ENTRY

OUTPUT

// mitt
OOUTPUT

.*

Compatability between the two systems in the examples above can

be achieved by'using a / to get double spacing, as shown bel*t.

C WATF1V

WRITE(6,1)
1 FORMAT(/7H OUTPUT)

$ENTRY

OUTPUT

C 1130

WRITE(1,1)
1 FORMAT(/711 OUTPUT)(J

,

// XBQ

OUTPUT

Notice that te blank,carriage control is "printed" on

6. Variable

WATFIVI
1130:

113e.

dimensiàns in subprograms..

Variable dimensions are permitted and recommende4.
No variable dimensions are permitted. In general,
using the same dimension in the main program and
the subprogram is recommended..

VII. 10

4IP

33tf

.1

.\/

7. Rounding

Tito

WATF1V:

1130:

of output.

Real aumbera are rounded on output.
Real numbera are not rounded, but are truncated on
output.

program segments below illustrate this.

C WATF1V

X3.6789
WR1TE(6,1)X

-1 FORMAT(111 ,F4.2)

$ENTRY
3.68

C 1130
X...3.6789

WRITE(1,1)X
,1 FORMAT(1H ,F4.2)

// XEQ
3.67

VII.11

337

f

r-1

$ection F

Brior Codes

a

VII.12 338

vs-

aa

rho errorebdes listed below are for the 1130
Misk Monitor System, Version 2, the 1800
_iluitiprogramming Executive Operating System

and the 1800 Time-Sharing Executive
)perating System (TSX). Most of the error codes
wo the some fur all three systms; where they
iiffor in meaning, a separatt definition is supplied

_.or the system that is different from the othel-s.
-fn the table below, DM2 stands for the

-Error
Codd

CO1

CO2

;
Cause of Error -

Non-numeric character in statement number.

More than five continran cards, or continuation card out of
lequence.

CO3 Syntax orror in CALL LINK or CAL L EXIT statwnent, or. in
TSA. CALL LINK or CALL E XIT in pi ocest program.

CO4 Undeterminable. misspelled, or incor rectly formed statement.

COS Statement out of sequence.

\36 Statement followIrg STOP. RETURN, CALL LINK, CALL
EXIT, GO TO, or IF staterm.nt does rot have a statement
number, or, In MPX or TSX, an MPX or 4SX CALL statement

dews not have a statement numb2r.

CO7 Name longer than fiqe characters, or name not starting with
art alphabetic charazter.

-54#

COS Incorrect or missing subscript within dimension inforrnation
(DIMENSION. COMMON, REAL, or INTEGER).

CO9 Duplicate statement numb.o.

cep Syntax error in COMMON sta*.ement.

C11 Duplicate name in COMMON statement.

C12 Syntex errOr .in FUNCTION or SUBROUTINE statement.

C3 Parameter (dummy at gumend appears in COMyON statement.

C14 N3Yile appears tv:ke as a parameter in SUBROUTINE or
FUNCTION statement,

C16 DM2 and TSX: IOCS control statement in a subprogram.

C16 Syntax error in DIMENSION statement.

C17 Subprogram name in DIMENSION statement.

C18 Norma dimensioned mere than_once, or not cqmensioned on
first appearance of name.

CIO Syntax error in REAL INTEGER, or EXYEP.NAL statemInt.
P

C20 Subprogram name in REAL or INTEGER statement, or, In
DA42, a FUNCTION subprogram comaining its own name in
an EXTERNAL statement,

C21 Nome in EXTERNAL .thit is :the in a COAIMON "or
DIMENSION stauntent.

,

1130 Disk Monitor System, MPX for the 1800
MultiprOgramming Executive. system, and .TSX
for the 1800 Time-Sharing Executive sy5tc1.-.
Some of th6 errors are caused by errors i.1.:oltrol
statements. For an explanation of these
statements, refer to the appropriate manual: for
DM2 -- Programming and Operator's Guide, Form
C26-3717; for MPX -- Programmer's Guide, Form
C26-3720; for TSX-Concepts and Techniques, Form
C26-3703.

Error
Code

C22

C23

C24

C25

C20

C27

C2e

C29

C30

C31

C37

C33

C34

C35

C36

C37

C38

C39,

42

Quse of Error

IF I X or FLOAT in EXTERNAL statement.

Invalid real constant.

Invalid integer constant.

More than)5 dummy arguments, or duplicate dummy
argument in statement function argument list.

Right parenthesis missing from a subscript expressiap.

Syntax error in FORMAT st.atemenf.

FORMAT statement without statement number.

DM2 and TSX: Field width specification greater than 145
columns. MPX: Field width specification greater than 1.53

columns.

In a 'FORMAT statement specifying E or F.conversion, w
greater than 127, cl greater than 31, or d giealer th3n w. Oleo
itir Is an unsigned Integer constant specifying the total field'

length of the data, and d is an unsigned inteaer constant
specifying the number of decimal places to the rioht of the

decimal point.

Subscdpt .error in EOUIVALENCE statement.

Subscripted variable in a statement funetion.

Incorrectly formed subtcript expression.

Undefined variable in subscript expression.

DM2: Number of subscripts Inn subscript expression, andfor

the range of the subscript(s) does not agree with the dimension
information. MPX and TSX: Number of sub4icripts in a
subscript expres.Oon does not agree with the dimension

information.

Inveliel arithmetic statement or variable; or, in a FUNCTION
subprogram, the left side of an arithmetie statement is a
dummy argument, or, in DM2 and 7SX. is in COM:40N.

Syntax error in IF statement.

Invalid expression In IF statement.

Syntox error or invalid simpie argument in CALI. stet emani.

extressi,n in CALL stetunent.

M.13,

vv.kv*ivrAvVAPAVe. varVVVVelviv,I,vparvv. ...11 I..,

_ Error
)0de Cause of Error

c..41 Invalid expression to the left of an equals sign in a statement
function.

C42 Invalid expression to the right of an equals sign in a statement
function.

C43 In an IF, GO 10, or DO stateme-stra statement number is
missile), Invalid, or Incorrectly pld, or Is the number of a
FORMAT statement.

014 Syntax error in READ, WR I 1 E. or F IND statement.

C,4b 'IOCS record missing with a READ or WRITE statement
(In DM2 and TSX mainline programs only).

C46 'FORMAT statement number missing or incorrect in a READ
or WRITE statement. .

C47 SYlibtX Orreir In'input/output or ail Invalid list Woman or,
In a FUNCTION subprogram. the input list element Is a dummy
argument or is In COMMON.

C48 Syntax error In GO TO statement.

C49 Index of a computed GO TO is misseig. invalid, or not preceded
by atomma.

C6O "TRANSFE R TRACE or 'AR! T HME TIC TRACE control
record present, with no "IOCS control record in a mainline
program.

C51 DO stattenents are incorrectly nested. or the terminal statement
of the associeted DO statement is a GO TO, IF, RETURN,
FORMAT, STOP, PAUSE. or DO stat,..rnent, or, In MPX or
TSX, an MPX or 1SX CALL statement.

C62 More than 25 nested DO statements.

C63 Syntex error in DO statement.

C64 Initial value in DO statement is zero.

lo a FUNCTION subprogram the index of 60 Is a dummy
argument or is in COMMON

CO6 Syntak error in BACKSPACE statement.

,,C57 Syntax error in REWIND statement.

C68 Syntax error In END FILE statemenz.

C69 .Syntax error In STOP statement. MPX and TSX:
' a Syntax error In STOP statement or STOP statement in process

program.

COO Syntax error in PAUSE statenient.

C61 'Integer constant in TOP or PALIS.E statement is greater than
9999.

C62 Last executable statement before END statement Is not a STOP,
GO TO, IF, CALL LINK, CALL EXIT, or RETURN statement,
Or, in MF?X or TSX, an IVIPX or TSX CALL itatement.

Error-

Code Come of Error

C63 Siatement contains more than 16 different subscript
expressions.

C64 Statement too long to beicanned, because of Compiler
expansion of subscript expressions or Compiler achlition ..

generated temporary storage locations.

C6G" All variables.,In an EQUIVALENCE list are undefined,

C66" Variable made equivalent to an element of an array in .44ah a
manner as to cause the array to extend beyond the origin of
the COMMON area. ..

C67" Two variables or array elements in COMMON are equated, or
tho relative locations of two variables Or array elements are
assigned more Itten.sznee (directly or indirecth)- _

C68 Syntax error in an EQUIVALENCE statement; or an illegal
variable name in en EQUIVALENCE list. .

C69 Subprogram does not contain a RETURN stetement, or, In
ISX, a TSX CALL statement, or a mainline program contains
a RETURN statement. I

C7O No DEFINE FILE statement in a mainliny program that has
disk READ. WRITE, or FIND statements.

C71 Syntax error In DEFINE FILE statement.

C72 Duplicate DEFINE FILE statentent, more than 75 DEFINE
FILE% or DEFI-NE FILE statement in subprogram.

C73' Syntax error In record number of disk READ, WRITE, or

C74

FIND statement. ..0,

DM2: Defined file exceeds disk storage size. ISIPX and'TSX:
INSKEL COMMON referenced with twoword integer.

C76 SYntax Crror In DATA statement.

C76 Names and constants in a DATA statement not in a one to one
correspbndence.

C77 Mixed mode in DATA statement.

C78 Invalid Hollerith constant in a DATA statement. .

C79 invalid hexadecimal specificetlon in a DATA statement.

COO Variable in a DATA statement not used elsewhere in the')
program, or, in DM2, a dummy v.ariable in DATA stotement.

C81 COMMON variable loaded with a DATA specification.

C82, DATA statement too long to compile, because of internal
buffering.

..

C83 TSX: TSX CALL statement appearing illegally.

"The detection of a code 65, 66, or 67 error prevents any subsequent
detection of any of these three errors.

a.

.a.

APPENDIX VIII '

This appendix contains the "User Terminal wAirv" section

of the University Computer Center's §111Uper's Manual.

sIC

10:

e"

341

f

Revised 8/9/71

USER TERMINAL WATFIV

0

The present version of WATFTV which is being executed on the User's Terminal
in MS 010, has the following capabilities and requirements:

=Features

(a) Compile time is unlimited.
(b) Executior time is limited to a'maximum of 30 seconds, but can be

cut down by use of the 'TIME' parameter on the $JOB card.
(c) Exception output pages ie limited to 20.
(d) Core size is limited only by the amount of free low speed cori

available at any given time. This information can be obtained 46

from the users display station.

1. NAMELIST1
2. Direct:Access I/01
3. CHARACTER variables
4. Debugging:

-fulj sentence diagnctstic messages instead of dedes.
-undefined array elements identified explicitly rather than
by array hame only.
-more explicit error diagnostics.
-other aids for localizinkerrOrs.

5. Compatibility with IBM's G, itfan compilerS is increased:
-computed GO TO's werk as specified in C28-65I5 when,G0 TO
.index is outside the'allowable range.
-array elements as arguments may be paseeoLto subprograth
parameters which are array names (see C28e6515 for rules).

,-variable diniensions work as specified by.C284515.
-character set eonventions are compatible with d and H,
treatment of $, @.

--treatment of ENTRY points in function subprograms is as
specified in-C28-6515.

-statement ordering conventions ari-followed4 specification,.
statement functiod definitions, executable statements.
-real constants of the form 1E2, without explicit decimal
point, are now recognized.

6. A few more language extensions, a.g., multiple statemehta per card,
are implemented.

WATFTV Control Cards

Three control cards - $JOB, $ENTRY, and $IBSYS - are required to run a program
under WATFIV. The order of the cards 0.shown below which defines a WATFIV job.:

41 $JOB - project numberleocial security. numberoarateters llama

1

FORTRAN.program consisting of a main.program and any number of

:subprogram).
$ENTRY

(any data required by the program
SIMS

4ele XBM $ystem/360 rortran IV Language, Form C28 015 for rules.

.VIII.2 312

:Revised 8 9/71

The control field $JOB is punched in columns 1 to 4 of the card, SENTRY and
$IBSYS in columns 1 to b; Column 5 and 7, respectiGely, must be blank. Accounting
information and job parameters appear on the remainder of the $..JOB card. Columns
8 to 80 of the SENTRY and $IBSYS cards ate ignored. The $ENTRY card is required
to initiate execution of the aompiled program even if no data is required.

General Form:

$.1011 XXXXX,SSS-SS-SSSS,TIME..t,PAGES.T,LINES.gk,REGIONsmK,

RP
t21 LIST 1 tOLIBLIST ,iWARN-
029

FREE
OCHECli

NOLIST , NOWARN ,
NOSUBCHK name

where:

XXXXX - a valid project number for the run

HECK

0

A

SSS-SS-SSSS - your Social Security number'

- an integer number representing the maximum nuMber of ._sjisol_s tg allow for
execution of the program. Default is TIME,..5.

811.
p an integer number representing the maximum number of pages to allow the

program to produce at execution time. Default is PAGES.(20.

k - an integer number repreienting the number of lines printed per page. (The
compiler uses. 'k' to provide automatic page skipping at both compile and
execution time.) Default is LINES.m60.

n - an integer number representing the emount.of working storage requested for
the job. Default is REGI0N..20K.

29 - Chooae 026 if the source prOgram is punched on a model 026 (BCD) keypunch;
bbose 029 if punched on a model 029 (EBCDIC) keypunch.

l:K

OCHECK - The compiler whl che5k, at exetution.time, for attempted-uses of
REE variable& which have not been assigned a value (undefined variables)
if CHECK . Use of NOCHECK suppresses the check, resulting .in a
somewhat reduced.execution time. Also, somewhat less object code is produced.
RUWREE is the.same as CHECK, but the compiler will initiate execution of the
program even if-it contains serious source errors. If an executable litatement
which cbntained a sniArCe error is subsequently encountered, executioh is
terminate4.

"figYS - Choose LI$T if the compiler is to produce a source listidg of the
pr gram; NOLIST aupprespea the listing,. ;

VIII. 3 3i3

PP'

Revised 8/9/71

)
LIBLI T -

LIBLIST - Choose LIBLIST if the compiler is to produce'a source listing
of the subprograms automatically retrieved from a library; NOLIBLIST

. suppresses the listing of library routines. Nop that the LIST/NOLIST

and LIBLIST/NOLIBLIST parameters are indepindent.

WARN
NOWARN - Choose NOWARN if the compiler is to suppress all diagnostics of a

severity less than a fatal error. (Error severities are discussed in the

section on DiagnOstics.) Choose WARN if the diagnost*s are to appear in
the source listing.

Fmtnunoi - Allows substripts-to take-on any form as long as they do not
exceed the space of the actual array. This will allow progkams like tlie

following to-run. The SSP programs can be run in this manner.

REAL A(10)

CALL ANY(A)

SUBROUTINE AMMO
REAL B(I)
DO 100 I=10.0

100 B(I)As0.

RETURN
END

NOTES:

1. The $JOB.card should be punched on an orange card. The project number
can begin in any column after column 5. The first blank encountered
thereafter will terminate the card sdan. One or more blaqs must
separate the user's name from the WATFIV parameters.

07,

.2. The parameters may be punched in any order, e.g.

$JOB XXXXXOSS-SS*-SSSS,KP=026,TEME..10,NOLIST,PAGESe.15 name

Parameters may'extend to column 80.

3. Default values (underlined) will be assumed for all parameters that
are omitted from the $JOB Card.

4. If a parameter is mispunched, the scan for any remaining parameters is
stopped, and default values will be assumed, e.g.,

$3011 XXXXX,SSS-SS-SSSS,iAGES-.10,NOWARN,TAME.420,M0026,RUN'aNOCHECK name

The PAGESm10 and NOWARN parameters ate recognized and'used by the compiler,
but defaults sre assumed for all other parameters because of the mis-
spelling of TIME.

VIII.4 3 4

Revised 8/9/71
-N

N\

5. If any parameter is specified more than
is used, e.g.,

A"10B XXXXX,SSS-SS-SSSS,KFe026,TIMEeILL LIST,K1'm029 name

KP10029 parameter is recognized and used by the compiler.

the rightmost value

Source Code Libraries for WATFIV

The capability for WATFIV to use a "source code" library for "unresolved"
references is Lwailable on the terminal version of WATFIV. This imam; that
users can put source code subroutines or function subprograms into this library
./m14 "CALL" them from WATFIV. It is optional tb_cither pxint or not print thig
source code by using the LIBLIST/NOLIBLIST parameters en the $.10B Card. Shol.ild

any user desire to put often used routines into this library and "CALL" them, he
should contact -.he UCC librarian. A savings will result if FIVPAK comeressed
decks are stored rather than "one statement per card" Fortran source decks. See
the subsection of F1VPAK and UNPACK.

Source, StatemenL Comin ass and UltRACk ROp tine8 (FVM-UNFACK)

Purpose:

FINWAK compresses "one statement per card" FORTRAN source decks into
"multi-statements per card" decks'useable in WATFIV. (UNPACK reverses the
process).

This form 6f source input is efficient if programs are
source "forAin data sets on disks, since the results ar0:

fg%..ter compile-timet
1 !more cards in the shme amount of disk space. '

(a)

(b)

Method: fr

to be stored in

Blanks are removed from all Fortran statements (inciuding literal data using the
H format code), except where they are imbedded with aposerophies. Therefore, a
source deck written with the H format code should not be!compressed. Comment cards

are reproduced ts read in.
DATA A,B/211 *,'

Xe5.0
3 6 GO TO (3,8)4

is compressed into,
4 DATAA,B/2H*,' *'/;:P.5.00:GOTO(3,8),I

*1/

The cards produced are sequence-numbered in increments of 10:
;

How to Use:

CALL FIVPAKOREAD,NPUNCH), or CALL UNFACK(NREAD,N7NCH)
where NREAD .0, unit nUmber for inpuf data

NPUNCH m unit number for output data
Both programs must be called from a piogram run under WATFIV

2
.

1. Approximate saving of 60% (typical example, 281 cards compresased to 111).

2. FIVPAK and UNPACK reside in WATFIV's source 114tary OATFIVORATLIB.

VIII.5

Revised 8/9/71

since they use (HARACTER variables; for example, to read cards from the reader
add punch a new deck. k

//JOBNAME JOB (XXXXX,SSS-SS-SSSS,time),'user-name'

// EXEC WkIFIV

//WATF1V.SYSPUNCH DD SYSOUT..8

//WATFIV.SYSIN DD *
KA

NOWARN name

CALL FIVPAK(5,7); STOP; END

$ENTRY
onestatement-percard deck tO be.totnprtibeitld.

$IBSYS

NOTE:

More than one program deck can be compressed using F1VPAK by placing a
card with an asterisk (*) in column 1 between each complete deck.. UNPACK does
not require snch a "separator" card. A 360 Special Rup Submittal card indicating
punched output must be included wit the above job.

Control Cards to Edit Source Listin s

Four new control cards have been evaded to WATFIV to be used for controlling
the printing of compile-time listings. These are $PRINTON, *$PRINTOFF, $SPACE
'and,$EJECT.

When a $PRINTOFF card is placed in the source deck, the listing will
terminate at that pointt The $PRINTOFF card itself is not printed.

A $PRINTON card will allow the listing to be restarted if a previous
$PRINTOFF card was used or a NOLIST option was punched on the job card. The
$PRINTON card is printed.

The.$EJECT and $SPACE cards cause the printer to skip to a new page and a
new line respectively.

A source deck using these cards' might be as follows:

$JOB XXXXX,SSS-SS-SSSS,NOLIST name

cards not to be listed

$PRINTON
cards to be listed

: $EJECT ?11)

subprograms
$SPACE

END
$ENTRY

(late Cara
PINY'S

V111.6
.

43 e}

NO.

tit
::evised 8/9/71

These contrA :srds can be used to advantage when a large program is being
tested. By suppressing print in areas where code has not been changed, the user
can save .on machine wintout time.and thus have the job run more economically.
Also, the $EJECT and $SPACE cards can be used for the final "production run" to
make the output look more presentable.

e OS Job Stream

When'EXECuting WATFIV the following procedure should be followed:

1. Set up the deck as shwn below and submit iri-MS 010.

1 The OS JOB (// JOB) card must be punched on an.orange card, but the
WATF1V $.103 card shoup not be on an orange card. Donot include the
project nunber or Social Security number on the $JOB card.

3. .A region o- 110K plus the amount of working storage for the WATF1V job
is requiresl. For instance, if the user needs 40K for his job, thk.1 15,01(
would be snecified in the region parameter. CLASS..43 is required for

region siz.as greater than 127K. An example follows:

HJOBNAME JOB (XXXXX sSs--ss"-ssss12) , user -name' ,REGI0Ne150K,CLASS..,B

// EXEC WATFIV

//WATF441-.SYSIN Di) *

$JOB TIME..20,1('..026,N0WARN,NOUBCHK name

WATFIV ;ource deck

input d.ità

$ENTRY

$1BSYS

//

.1.12.2.82222_kl2naka§..

WATFIV attempt.; to support the language descriDed in the IBM publication
"IBM System/360 FOMAN IV Language", form C28-6515, subject to the subsection
on "RESTRICTIONS". addition, WATFIV supports a number of extensions to thei
language, which are .lescribed below. Uses of the language extensions, ex6opt
for 1, 2, 12, and 13 ore flagged with *EXTENSIONS* messages. These mean that
the program is accepcable to WATFIV but will not likely compile on other compilers.
The messages can be suppressed by use of the NOWARN parameter on the $JOB card.

1. F6rmat-free I/O. This allows the programmer to do I/0 without reference
to a FORMAT statement. For example, the Sliatement PRINT, A,B will'cause
the values of A and B to be printed with a standard format. Format-free .

I10 statements may have one of the following former

READ, list
PRINT', list

READ(unit,*,ENDm1,ERRm2) list

WRITE(unit,*) list

ynx .7
3 J.

4 "1

Revised 8/9/71 40,

The 1/0 for thu tirst two forms in done oi the staddard reader and printer

units, i.e., 5 and 6 respectively. The asterisks in the last two forms imply format-
free I/O, add ''unit" may be a constant or variable unit number. The.END and ERR

returns are optional, as with the conventional READ statement.

Note that the two statements

READ,Iist.

READ(5,*)lisC

are equivalent, as are

PRINT,list
WRITE((,*)list

--Some examples follow:

READ,A,B, (X(I),I-1,N)
PRINT,(J ,Z(J)

99 WRITE(6.,*)'DEBUG OUTPUT',99,X,Y,Z43.-5
READ(I,*,END..27) (X(J),J1,N)

0%

Free input data items may be punched one per clrd, or many per card; in the
latter case, the data items must'be separated by a comma and/or one or mote blanks.
The first data item on a card need-not start in column 1. A data item may not be

continued across two' cards, the end of a card acts as a delimiter.

Successive cardS are rea4 until edough items have been found to satisfy the

requirements of the "1ist7part.of the statement: °Any items remaining on the.last
card read for a particular READ statement will be ignored since the next READ
statement executed will cause a new card to be read.

It is perfectly'valid to use format-free READ statements.and conventional
READ statements in the same program.

The forms of data items which may be used for the various types of FORTRAN
variables are:

Integer - signed or unsigned integer constant
. ,

-.

Real" - signed.or unsigned,real "constant in F,E or D forms

Complex - 2 real numbers enclosed ln parentheses and separated.by a comma,
e.g., (1.2,-3.8).

Logical - a string of characters containing at least one T or F. The fiest...

T or F incountered determines the logical value.

Character - a string of charactera enclosed by quotes. .If a quote is required

as input, two successive quotes should be punched.

The type of a data item must match Uhe type of the variable it is being read into.

A duplication -factor may be given to avoid punching the same tonstant many times.

For example, if we have

DtMENSION.A(25)
READ,A

the data for the READ statement could be punched as

15*0"10*-3.8

Examples:

(1) source statement

typical data

(ii) source statements

typical data

(lii) source statements

typical data ,

(iv) source statements

Revised 8/9/71

READ,X,I,Y,J

2.5 3,-7.9,-41

COMPLEX Z(5)
READ, (Z(I),I*01,3)
(5.2,-16.0) 2*(0.,.5E-3)

LOGICAL L1,1.2,L3
READ,L1,1.2,L3
T .FALSE. , CAT'

CHARACTER AA1, B*3
READ,A,B

For free output data item; the compiler supplies formatting for list items output
by format-free statements. Line overflow is automatically accounted for, i.e., several
records may result from one output statement.

The formats used are:

Integer -112

Real*4 -E16.7

Real*8 -D28.16

Complex*8 '(' E16.7

Complex*16 '(' 1)28.16

,E16.7

1)28.I6 ')

Logical -L8

Character*n. -An

2. _CHARACTER Variable. This is a new type of variable which allows the manipulation
of data in the form of character strings. A simple example of the use of a
CHARACTER variable follows:

CHARACTER A*7 ,

Am'FINALLY'

. The standard and optional length specifications which determine the
number of characters that are reserved for each character variable are:

Xalthalitt
GBARCbR

Standard

1

VI11.9

ShWala.
l<n255

1/1114

Revised 8/9/71

A programmer may declare a variable to be of the character type by use of the:

(i) IMPLICIT specification statement.
(ii) Form of the explicit specification statement: CHARACTER

IMPLICIT Statement:

The type CHARACTER is permitted in the IMPLICIT statament with a specified

length. If length is omitted, the standard length of las assumed.

Example:

IMPLICIT CHARACTE180 (A-D),CHARACTER ($,Z)

Explanatpn:

All variables beginning with the charactersA through D are decla 'd as
CHARACTER type, each variable or array element 80 characters in size. All vs lables
beginning with the characters $ and 7. are declared as CHARACTER. Since no length

specification was explicitly given, 1 character (the standard length for CHARACTER)

is allocated for each.variable.

Pr

CHARACTER Statement:

GENERAL FORM

CHARACTER*2.1,51W/2!,4/022.2(k2)//,...,211(1Sn)434/

Where: *s,*s
),*s

...,*s are optional. Each a-represents one
1'

of the permissible length specifications.

a,b,...,z represent variable or array names

(k),(k),...,(k) are optional. Each k is camposed of

of 1 through 7 unsigned integer constants separated

by commas, representing the maximum value of each

subscript in the array. Each k may be.,an unsigned

integer variable only when the CHARACTER statement

in which it appears is in a subprogram.

are optional and r.epresent initial data

values.

The ii4mation nec sary to allocate storage for arptys (dimension
information) maY be incl ded within the statement. However, if this information
does not appear in a C1IARTER statement, it must appear in a DIMENSION or COMMON
statement.

Initial data values may be assigned to variables or arrays by use of
/x t' where x is a constant or list of constants'separoted by commas.

-111 tib
.VIII.10

Revised 8/9/71

This set of consi-kntra may be in the form "r* constant", where r is an unsigned

integer, called the repeat constant. The initial data values may only be literal
constants and must he the same length as or shorter than the cerreeponding variable

or array element. Initial data values will be truncated from the right and diagnosed
if too long, aed they,will be padded with blanks on the right if too short (see
"Example 2" below).

An initially defined variable or a variable of an array may not be in .lak
common. In a labeled common block they may be initially defined only in a BLOCK
DATA subprogram.

The CHARACTER statement .overrides the IMPLICIT statement. If the length

specification is omitted (i.e., *s), the standard length of 1 is assumed. If n
array is used in a subprogram and is not in a COMMON, the size of this array may be

-specified implicitly he an integer- variable of length 4 which can appear explicitly
in the SUBROUTINE statement or implicitly in COMMPN .(adjustable dimensions).

Example 1:

CHARACTER*80 CARDS (10), L1NES*132(56,2),TCARD

nation:\Extla...., .

This statement declares that the variable TCARD and the arrays named CARDS
and LINES are Of type CHARACTER. In addition, it declares the size of the array
CARDS to be 10 and array LINES to be 1,I2 (2 groups of 56 each). Each element of

the array LINES is assigned 132 characters hpr a total of 14,784 (112 times 132) for
the array.

Each element of the array CARDS and the variable TCARD is assigned 80 characters
(the length associated with the type). The array CARDS is assigned a total of 800
characters.

Example 2:

CHARACTER X*1(4)PABC','DEFG','HI','JKL'/

Explanation:

This statement declares that the array of four elements of three characters
each named X has initial values:

X(I) ABC
X(2) DEF

e X(3) HI

X(4) JKL

The statement Ys ipcorrectly written, And the value specified for X(2) has
been altered by truncation.

Multiple Assignment. Statements.

Statements of the form

v
1

v
2

e vn e expression
.

VIII.I1 351

Revised 8/9/71

(ktt

are allowed9 where v
1'

41, etc-., represent variable names or array elements. The

effect is that of the aepence of statements

v
n

(w, expression

v
n-1

v

9

v
1

v
2

E.g., A B(S) C 1.5

.40

Expressions in Output Lists.

Expressions may be placed in output statements, e.g. ,

WRITE(6,2) SIN(X)**2,A*X+(B-C)/2

The expression may ndt however, start with a left parenthesis becau .he

compiler uhes this as a signal that an tmplied DO follows in the list. For example:

PRINT, (A-1-13)12 /

would result in an error message. However, the equivalent

PRINT, +(A÷B)/2

is acceptable.

Note that CHARACTER constants are forms of Tessions acceptable in output
statements, e.g.,

PRINT,'VALNE OF X-',X

Initializing of Blank Common.

Variables in blank common may be initialized in DATA or type statements, e.g.,

COMMON X
INTEGER X/3/

Initializing Common Blocks.

Common blocks may be initialized in other than BLOCK DATA subprograms.

Implied DO's in DATA Statements

Implied DO's are allowed in DATA statements, i.e., a statement of the form

DATA (C(I), l..1,5,2)/3*.25/

ris valid.
In fact,

DATA (A(I), P4,,M,11)/ constant list/

is acceptable if L,M,N have been previously ilAtialized and at least+ 1 constants
are preaent_in the cpastaut.list..

Subscripts in Sta4cement Function Definitions.

Subscripts may be used on the right-hand side of statement function definitions,

F(X) A(I)+X +.11(1)

Subscripts may be logical, complex, or character values.

The re4a part of a complex value is converted to an integer, and this value

VI11.12
r

Revised 8/9/71

is used for indexing .into the array. For example, if Z is complex, and A is an
array, then A(Z) is equivalent to A(INT(REAL(Z))).

Transfer statements as object of a DO.

A logical IF statement used as the last statement (object) of a DO loop may
contain a COTO of any fofM, a PAUSE, STOP, RETURN, or arithmetic IF statement. E.g..

DO 25 I-1,N

25 IF (X.EQ.A(I)) RETURN

Exceeding the continuation card limit.

A statement may be continued on 10 cOntinuation cards.

Multiple statements per card.

WATFIV allows the programmer to punch more than one statement on a single card.
This is particularly suitable for programs that are to be stored on librarles since
less direct-sweep storage space is required, and fewer input operations at,.: necessary
to retrieve a subprogram.

The rules _for this feature aee:

.(a) Only icolumns7-72 may be used for statpments.
(b) A sedicolon is used to indicate the end of a statement.
(c) The normal continuation.card rules are used for a'statement which is to

be continued beyond column 72.
(d) Statement numbers appear in columns 1-5, as usual, or following a

semicolon and followed by a colon. They may not be split onto a
a continuation card.

(e) Comment cards and FORMAT statements must be punched in the conventional
manner.

Column 6

E.g., 25 A-13;CeD09:PRINT, A,B,
* C,D;XiNA-1-B*C+D

PRINT, X;' 99: STOP;END

This could be punched in the conventional manner as

25 AciB

39 PRINT,A,B,C,D
X-A+B*C+D
PRINT,X.

99 STOP
END

Comments on FORTRAN statements.

The compiler terminates the left-to-right scan of a particular card wheg
11 (pronounced 'zigamorph', and punched as a 12-11-0-7-8-9)multi-punch) isA

encountered. Effectivply, this means commepte may follow a FORTRAN statement
on, ehe same card if a lf is used to terminEte the FORTRAN-statement.

Note 'that a is unprintable, as well as being almost unpunchable.

E:g., X.,A+SIN(Y) EVALUATE X

- T'he DUMPLIST and ON ERROR Q0 TO statements have been implemented WATF1V as

Debugging aids.

353

..Revised 8/9/71

Restrictions

The user of WAFFIV should take note 01 the fo.lowing restrictions in
language and facilities provided by the compiler.

1. The name of a common block must be unique, i.e., it may not also be used
as the name of a variable, array, or statement function. This is in
violation of C28-6515.

2. The concept of the extended range of a DO loop defined in C28-65I5 is
not supported.

3. The service subprogxams DUMP add PDUMP defined in Appendix C of
C28-65,15 are not supported.

4. The Debug Facility described in Appendix E of C28-6515 is not supported.
5. There are no faeiVties in WATFIV which corresponds to the FORTRAN

G/H options-MAP, gbIT, XREF, OPT-, DECK, LOAD, NAME, LIST.
6. The Extended Error Message facility is not supported.
7. No overlay facility is available; no 'module map' is produced.
8. The number of continuation cards, as well as the use of operator

messages with STOP and PAUSE statements, are installation optionb
9. No more than 255 DO statements are allowed in a program segment.

10. FORMAT(is a reserved character sequence when used as the first 7 .

characters of a statement. lt is the only reserved character sequence.
For example,

FoRMAT (I) '2 3.5

will result in FORMAT error messages, whereas
X..TORMAT (I)

it

is legal, assuming FORMAT to be an array or fUnction name.
11. WATPIV is a 'one-pass'compiler, and requires several reslrictions on

statement ordering. These are:
(a) Specification statements referring to variables used in NAMELIST'

or DEFINE FILE statements must preteed the NAMELIST or DEFINE FILE
statenents. *

(b). COMMON or EQUIVALENCE statements referring to variables used in DATA
or initializing tybe%statements must preceed ,the DATA or initializing
type statements.

E.g., REAL 1/5.2/
COMMON I

will prOduce error messages, whereas,
COMMON I
REAL 1/5.2/

is acceptable.
(c) A variable may appear in an EQUIVALENCE statement and then in a

subsequent explicit type statement only if the type statement does
not declare the length of the variable to be different than could
be assumed for it, based on the first letter of 'the variable name,
at the timejof its appearance in the EQUIVALENCE statement.

For example,

EQUIVALENCE (A,B)

REAL*8 B

will produce an error message, wherega

REAL*8 B
EQUIVALENCE (4,B)

will not. Note that

EQUIVALENCE (A,B)
INTEGER B

is acceptable since the.iength of B ist changed by the type
statement.

Revised 80/71(

IncomPatibilities with WATFOR

,,As , sA
.

e

a

The most dikely cause.)T difficulty is the use of arrays as.subprogram
arguments; this will be discussed last. Let's take care of the easy ones first.

NAMELIST,_Direct Access I/O, CHARACTrkI. WATFOR qoes not support the
variable language features.

2. WATFOR does not suppbrt the LIST/NOLIST, LIBLIST/NOLIBLIST,
WARN/NOWARN job options.

3. WATFIV issues warnings if the proper.ordering too3tatements is
followed. The proper order is specification statements before
function definitions before executable statements.

4. With WATFIV, DO-loops may be nested to any depth. 4
5. A half-word integer variable. may not be used as a unit number in an

I/0 statement with WATFIV.

not
statement

6. WATFOR does not accept source statements in compressed
more than one statement per card.

7. If the index of a computed GOTO is negative or zerg control trar.frs
tO the next executable statement with WATFIV; this follows the
specifications(;2876515. Under WATFOR, a terminating error message

form, i.d.,

its given.

8. WATFOR gives
assumes it f

C28-6515.
9. If a fonctiol

'equivalence'

4

peclal treatment to the $ in IMPLICIT statements. WATFIV
llows Z in alphabetical order;.,thls is the convention of

subprogram has addiNonal entry points, WATFO1t does not
the variables which are the names orthe function and

its entry points. WATFIV does this, as prescribed by C28-6515.
10. The conventions, used by WATFIV, for intermixing.EBCDIC and BCDIC

characters in Source programs are slightly different than those used
by WATFOR.
(a) WATF1V clops not allow intermfting of the two quote marks in a program.
(b) If ,IC.P..26 is specified; WATFIV uses '$' to denote a statement number

argument; WATFOR uses a 12-8-6 multipunch (EBGDIC'+') for this.
II. WATFIV treats arguments passed to subprogram parameters which are arrays

,differently than does WATFOR. .

(a) WATFIV allows the,actual argument to be anarray element or a simple
varieble.

(b) WATFIV uses,thc dimensions declared for the dummy array'in the
called-subprograM. .This ensures compatibility with FORTRAN G/H,
and object timeimensions work as specified by C28-6515.

Under WATFOR, the dimensions for a dummy array are ignored at execUtion
time. When an array is passed from subprogram to Subprogram, the dimensions
that are declared for it in'the program segment in which it is actually
allocated st age are bmplicitly passe"d as well. These dimensions are then
used for ; script calculations.

Pain- 0)..implies that the results will be-different under WATFOR
and WATFIV. if the dimensions of the dummy array differ from those of the
actual array passed.

Note.that the differences listed below do not inc.lude the language extensions
and restrictions. Nor do they include differences which arise either because
object programs compiled under G/H are freely allowed to violate the language roles
&dined by C28-6515 (e.g., passing an argument of type INTEGER to the SQRT subroutine),
or because the G/H compilers accept syntax not defined in C28-6515, e.g.,

WRITE(6,2) (h(I), A(2))

VIII.15

R4frised 8/9/71

The major causes of differences between WATF1V and FORTRAN's G/11 are likely to
_oe the treatment of FORTRAN-supplied functions and number conversions.

1. WATFIV provideu execution-time page skipping, controlled by the LINES..
job-pat'ametor.

2. WATFIV allows any number of contiguous comments cards; comments cards may
precede a continuation card.

3. WATFIV uses only the high-order byte of a'togical.quantity in logical
operations. For example, if A zind B are of type LOGICAL *4, cxecution_of
the statement

A B

cat only (no byte ep'he moved.
4. DO-1 ops ma be nested to any depth in WATFIV.
5; WATF V suppoits both EBCDIC and BC1)1C as a carriage control character.

WATF considers the program to be in error if it executes a RETURNi state-
ment in which the value"of '1' is zero,-negative, undefined, or greater
th),1 the number of statement number arguments which appeared in the. ..igument
list of the CALL statement which invoked the subprogram from which the
return is,heing made,'

7. WATFIVvtazeints no message equivalent to lihe 1HC2101 ("old PSW is ...")
message when interrupts occur.

8. With WATF1V, a use of 1 format which does ii 'backward' tab in an outtnl
buffer does cot cause existing character0 inAlthe buffer to be blanked out
For example, consider.-the statements:

K.. 9

1

WRITE ((',7)K,J
7 FORMAT (' $$$.00',T3,12,T6,12)

With WATFIV, the line appears as:

$$9.01

With G/H, it appear as:

$ 9. 1

Actually, this is a consequence of the fact that WATFIV's formatting routine;
Assume the buffer to be blanked before any filling of it occurs, i.e., only
significant characters are moved into the buffer.

9. REAL*4 values are printed with a maximum of 7 dignificant digits. If the
output format specification calls for more, i.e.., E20.10, zeroes are supplied
on the right.

10. WATFIV treats FORTRAN-supplied functions differently than G/H as follows:
(a) The function's type must be explicitly declared if it is different than

can be assumed from the implicit rules:7'
(h) WATFIV makes no distinction between 'in-line' and 'out-of-line' function

all functions are out-of-line.
. _ .

(c) WATFIV eveluates all funetions that require complicated approximatie
formulae in,douhle precision, i.e.,

SQRT(X)

is calculated as, essentially,

SNGLOSQRT(DBLE(X))) .

"4
,r1

VI11.16

356

Revised 8/9/71

11. WATFTY handles FORMAT statements differiultly than G and H as follows:
(a) Commas are not requited between format codes in WATFIV.
(b) WATF1V allows more than the maximum number of continuation cards for

FORMAT statements.
(e) WATFIV does not allow group or'field counts to be zero. ,

12. Execution-time'data cards read on the standard tard reader-unit by WATFIV-
compiled programs may not contain a $ in column 1.

13, With WATFIV a particular labeled .COMMON block can be initialized in. -lox.

than one BLOCK DATA subprogram.- This al4ows undetected violations of ruA,
specified in C28-6515.

DIAGNOSTICS

WATFIV issudb compile-time diagnostics at three levels-of severity - EXTENSION,
WARRINc_and. ERROR. A diagnostic is generated .in-line in.the_source_listing,_

- imtediately below the statement in which the condition was detected.

Ari.,EXTENSION message results if.you used an extension of the FORTRAN languitge
allowed by WATFIV. The diagnostic is issued so that you can eliminate the pl.olem
should you ever wish to re-compile with IBM's G or H compilers.

A WARNING is issued for language violations for which the compiler can take
some refOonable corrective action, e.g., truacating a name of more-than 6 characters.

An .ERROR is issued when a language violation severe enough to prevent executiod
is encountered.. In this case, the compkler will normally inhibit execution of the

,program, unless you have specified RUN...FREE.

,
At execution 'time, all errors are feta kn the sense that the compiler will

terminate the current job and proceed to the next job in the batch. For execution-
time errors, the compiler generates a.diagnostic and a Subprogram .traceback in the
printedoutput. This gives the line number of the statement in which the-error
occurt.ed, Ole name of the subprogram in which the error occurred, the name of the
subprogram which called it, etc,, all t.he wa S? back to the main program which is
referred'to as M/PROG. (The line number of eacb statement appears to the left of it
n the source listing. This line number is compiler generated, and is distinct from
and should not be confused with any FORTRAN statement number the programmer may hay-,
absigned to a statement.)

ewr'

As. Exception: .If an I/0 error occurs and the proOtmmer has specified.an ERR... return
in the afected. IN.statement4 an error message is given and execution proceeds,at
.thecstatemeot epecified by the ERR...

, V111.17 357

Revised 8/9/71

- Control Cards for Ceruain Diagnostics

Four Control cards have been added-in the VIL2 WATFIV ampiler. The $WARN and $NOWARN-
cards contftlthe printing of compiler generated warning and extension messages; the

A $CHECK and $WCHECK eards control the compiler's cheating of undefined variables.

When a $NOWARN card is placed in the source deck, all warning and extertsion
messages will be suppressed from that point on. A WARN card will allow the warnmg
and extension messages to be restarted if a $NOWARN card was used or the NOWARN
option was punched on the job card.

1. When a $NOCHECk card is placed in the source deck, from that point on, the
compiler bypasses the generation of object code to check for undefined variables at
_executidn tine. A $CHECK card causes the compiler to generate the -checking code if
a $NOCHECK card appeared previously, or NOCHECK was specified (or defaulted) on the
$.1013 card.

The source deck using these new cards might be as follows:

$J68 XXXXX,S.SS-SS-SSSS,NOWARN name
compile with "CHECK"
no warrO_ng and extension messages

$WARN

warning and extension rdessages may be printed
$NOCHECK

compile with "NOCHECK"
END

$CHECK
sublirograms
compile with "CHECK"
END

SENTRY
data cards.

$IBSYS

4

2. The $WARN/$NOWARN and $CHECK/$NOCHECK cards allow local control of their
functions. This can be useful if a program is being debngged in stages, with routines
being added or changed over a sequence of runs. If a $NOCHECK card (or the NOCHECK
job option) can be used because a segment of a program is known to be free of
undefined variables, several advantages can result:

-less object code is generated; thus, a somewhat larger program can be compiled
for a given amount of available memory .

the program will run somewhat faster since the checking coae *is not executed.

Debugging

Some new debugging aids lylve been added in the VIL2 version of WATFIV. They are
the =MIST statement, the ON ERROR GOTO statement, and a statement trace facility.

1) The DUMPLIST statement is designed especially as a program debugging aid; it is
\used as follows:

(i) A DUMPLIST statement is essentially a NAMELIST statement, except that the
work DUMPLIST replaces the word NAMELIST. The usual rules for NAMELIST
statements apply. Sample statements are:

DUMPLIST /XXX/A,XYZIAPE/01C/XX,NEXT
DUMPLISt\LTHIS/N,TWO,SIX,OLD 358

Revised 8/9/71

(ii) A DUMPLIST list name need never appear in% READ or WRITE statement.

(iii) A bUMPLIST statement has no effect unless the program in which it appears
is terminated because of an error condition; then WATFIV will automatically
generate NAMELIST like output of all DUMPLIST lists appearing in program
segmpnts which have been entered. The values printed are those which the
variables had when the program was terminated.

to evold producing too much output, only a few key variables should be placed
in DUMPLIST statements.

2) The ON ERROR GOTO statement allows a program which,has an error to recover and
take some alternate and possi y corrective.action, such as giving diagnosis. This
feature can only be executed hee in a program (to prevent infinite loops) however,

--any AUMber of ON ERROR GOTO tatemerit May appear-In the source. program. The last 'ON
ERROR GOTO statement encountered bgeore an error occurs is the one which is executed.

A.program using thisiteature might be as follows:

Ps

$JOB KXXXX,SSS-SS-SSS me
ON ERROR GOT0.50
IO

5 READ(5,*,ENDe40)A

TRINT,A
GO TO 5

50 PRINT,'CARD NUMBER', I, 'IS INVALID'
40 STOP

END

$ ENTRY

SIBSYS

The ON ERROR GOTO statement is not an executable statement; however, it can be
placed anywhere in the program. It is not advisable to place an ON ERROR GOTO
statement within the range of a DO-loop as no checking is performed to determine if tte
transfer at execution time will be valid (i.e.1, infinite looping may result).

3) An execution time statement trace of "ISN trace" feature is now available. The
trace is turned on using a SISNON card and is turned off using a SISNOFF card. At

least one executable statement must precede a ISNON. A sample program follows:

XXXXX,SSS-SS-SSSS name
Ael
Je.3

SISNON
(statements to be traced)

$ISNOFF
STOP
END

$ENTRY
$IBSYS

VIII.19 3 5 9

Revised 8/9/71.

INTERRUPTS

MP"

This aeption provides information bn the treatpient of interrupts that may occur
during the execution of a/FORTRAN program.

Normally, WATFIV terminates execution of the rogram at the first occurrence
an exponent overflow, exponene underflow, fixed divide, or floating divide interrup..
However, a library subroutine, TRAPS, is provided to allow the programmer to accept
more interrupts of the types just mentioned. Thus, with appropriate uses of subroutine
DVOIK and OVERFL, a program-11er may proVide, to some extent, hie own treatment of
interrupts.

A call to TRAPS may have up to five integer valued arguments, and these correspond
-to the number of fixed overflows, exponent-overflows, eXponent underflows; fixed divide,
and floating divide interrupts the programmer wishes. The arguments of TRAPS set up
internal counters used by the compiler's interrupt ributIne. The latter routine
decrements the appropriate Counter-by 1 when an interrupt occurs; when any)c,unter
reaches zero, the program is terminated.

TRAPS 1141), be called (and subsequently recalled) at any point in the main program
or a subprogram to set (or reset) the interrupt counters. Arguments of TRAPS are.
screened so that the bsolute value of any negative argument is used as a positive
count, and a zero value is taken to mean that the current value of the corresponding
interrupt counter should be left unchanged.

EXAMPLES:

1. CALL TRAPS (0,5,7,-3,1)

sets the interrupt cowters so that the program will be kiCked off on the
occurrence of the first of the:

-5th exponervt overflow, or
-7th exponent underflow, or
-3rd fixed dwide, or -

-1st floating divide exception following the execution of this call to TRAPS.

The statement CALL TRAPS.(0+7,3)'has the same effect.

-2. LUNFLO 100
LOVFL9 LUNFLO
CALL TRAPS (0,. LUNFLO, LOVFLO)

sets the counts to kiC'k off the program on the occurrence of the first of the:

-100th exponent overflow, or
-100th exponent underflow or
-1st fixed divide., or
-1st flo4ting divide exception following the execution of this call.

3. CALL TRAPS (14)

sets the fixed overflow counter to 14. Kickoff would occur at the 1st exponent
overflow, underflow or divide exception or the 14th fixed overflow iT the
installation has actiAgXed this interrupt. NOTE that the distributed version
of WATFIV operated Oith this interrupt masked off, and furthermore, that this
ie the normal mode of operation of FORT G/H.

VIII.20 3 ()

Revised 8/9/71

OVERFL, DVCHK

These routines function as follows:

CALL DVCHK (j)

j is an integer variable that is set to 1 if the (pseudo-) divide-check
indicator As on, or to 2 if off. After testing, the indicator is turned off.

The indicator is set on-when a fixed or floating divide exception occurs.

) CALL OVERFL (j)

is an integer variable that is set to reflect the mosp recent getting of
a pseudo--indicator . The variable j is set to 1 if an exponent Oprflow was last to
occur, to 2 if no exponent overflow or underflow condition exists, or to 3 if an
exponent underflow was last to occur. After testing, the indicator is set for no
'condition, i.e., to 2.

NOTES:

1. The compiler interrupt routine loads the affected machine floating-point
register with zero or the properly:sign largest floating-point number
for exponent underflow or.overflow, resp ctively.

2. The five interrupt counterS are initiali ed by the compiler to 1 at the start
of each program. The divide-check and overflow kndieator are not
initialized; it is the programmer's reponsibility to do this, e.g., by
dummy calls.

3. The terminating message is the only indication given by the compiler that
interrupts Save occurred. It is the programmer'a responsibility to
monitor the6A1 using OVERFL and DVCHK.

4. WATFIV operates with the fixed overflow and significance interrupts masked
off efiltirely.

5. WATFIV automatically corrects for boundary alignmenterfors at execution
time, but this is done with some overhead. Thus,progreamers are
advised to ensure_lbat operands are aligned properly, where possible,
by steps taken at the source level.

361
VIII.2l

4%

V

e

UNIT #1 ACTIVITIES TABLE

qt.

Assessment Tfilsk

1. Obtain about a dozen OMR cards. There is a bin with a sign

"OMR Cards" above it in room MS 09 in the basement.

2. Mark OMR cards as directed below, one card per direction. The

letter "0" is indicated by "0" to distinguish it from zero,

which is just "O."

Card 1: Mark the "COMMENT" box on the card, and mark

,SAMPLE PROGRAM beginning in column 1 of the

card.

Card 2: Mark the "COMMENT" box, and mark your name

beginning in column 1.

Card 3: Mark A...2.1 beginning in column 1.

Gard 4: Mark M.2.6 beginning in column 1.

Card 5: Mark Ok.0.6 beginning in column 1.

Card 6: Mark AN=.3.0*A-1-13/(A-C) beginning in column 1.

Card 7: Mark WRITE in the keyword block of the card,

and then mark (6,4)AN starting in column 1.

Card 8: Mark a 4 in the "unit" column of the statement

numbers block of the card; mark FORMAT in the

keyword block; and then mark (180,F10.1) start-

ins in coluMn 1.

Card 9: Mark STOP in the keyword block.
4

Card 10: Mark END in the keyword block.

IX. 2 362

3,, You will need three control cards for running your job on the

computer: '$JOB, SENTRY, and SIBSYS. The SJOB card is an

orange coloi and will be given to you by your instruc or%
I.

(APPENDIX III, Section B, contains a detailed discussion of

the control cards, but probably you should save that till

later.) Make your own SENTRY and SIBSYS cards by marking

the SENTRY box on 'one card and the SIBSYS box on another .

k
card. These boxes are located in the upper left center of

the OMR card.

4. Arrange your cards in the following order:

SJOB

COMMENT SAMPLE PROGkAM

COMMENT Your name

AN.-.3.0*A+BRA-C)

WRITE(6,4)AN

4 FORMAT(1110,FlO.l)

STOP

END

SENTRY

SIBSYS

5. Go to APPENDIX III, Section.A, and take a self-guided tour of

the Computer Center facilities.

Go to APPENDIX III, Sectioli C, and follow the' directions for

running a job very carefully.

_4
IX.3 Js

7. Now that you have m;Istered the User Terminal and have your

printed output in hand, check the output for error or warning

messages. If you have either or both, then probably you have

marked your cards incorrectly or your cards are not in the

proper order. Check the cards carefully, make corrections,

and try again. If you need help, see your instructor.

8. Mien your computer output contains no errors an s 8.0iTl

Printed au the "answer" (after SENTRY), then take it and

your program deck (remove the control cards first) o your

instructor. If he approves your work, then you have passed

,the first hurdle! 4

IX.4 3,64

-4P

UNIT 1)2 ACTIVITIES TABLE

1. Read SectOn 4-1, pages 51-60, of Fortran IV ilaallnnirla for

ineer andcientists by Murrill and Smith.

UNIT 113 ACTIVITIES TABLE

All references are to FORTRAN IV Pyo_BLnming for.EnAineers an0

Scientists by Murrill and Smith.

1. Read the introduction to Chapter 2 and Sections 2-1 and

pages 17-21.

2. Read Sections 2-3, 2-4, and 2-5, pagefi'21-26..

3. Read Section 2-6, pages 26-28, and 2-8, pages 30-31.

4. Work as many of the Exercises, pages 31-35, as you feel A need

for. (Solutions to Exercises marked with a dagger't are given

in Appendix E,Ipage 252.) If you need ipsistance, see your

instructor.

tit

IL 6

a

JP.

UNIT #4 ACTIVITIES TABLE

References are to Fortran rv fsoiraLL_I.An_ain for Eiii_a_.:RstsEa and

Scientists by Murrill and Smith.

1. Read Section 2-7, pages 28-30.

2. Rend Section 4-2, pages 60-63.

3. Section 2-6, pages 26-28 discusses statements of the

form

N N 4. 1

which is an example of a counter that counts by ones.
#

4

IX. 7,,

UNIT 15 ACTIVITIES TABLE

1. Read Chapter 1, pages 1-16, of Fortran IV Ex2gEssatla for

Engineerp and Scientists. Yourdon't nee4 to bother too much

with all tfie details; try to get the general ideas. Pay

particular attention, however, to the disussion and italicized

terms in Sections 1-5 and 1-6,-. The concepts of 5.921:T41iat/ and

execution are of great importance.

2. You will need threci control carchi for running your job on the

computer: $JOB, $ENTRY, and SIBSYS. The $30B card is an orange

color and will be given to you by your instructor.

Read Appendix III, Section B, which tells you more'about th

control cards.

The simplest procedure at this point is foy you to punch your

own $EN,ff and SIBSYS cards, as described in Appendix IIP,"

Section B.

3. Arrange your cards iq the following order:

so

$,JOB

Comment cards

TRYD.=2.1'

TRY2*2.6
TRY3.1.0.6

ANS.03.0*TRY1+TiY2/(TRY1-TRY3)
URITE(6,4)4NS

4 POIDIAT(1H0,/a0a)
STOP
.END'

SENTRY

SIBSYS

IX.83438

4. Next get an "80/80 listing" of your program. This listing pro-

vides a convenient Nlay of checking your program and control cards

to make sure that e cards are in the proper order and that there

are no keypunchin, errors. Read Appendix VI, which tells you how

uo get an 80/80 I sting with the user termina.

Since you have already used the card reader and the lcne printer

in UNIT 1/1, you shguld-Wt have any trouble, if you read the in-

structions on the wall and do what they say. If you do run into

problems, 'read Appendix IV on the card reader and Appendix, V on

using the line printer.

Once you get the 80/80 listing, check it for errors.. If there

-are errors, then make the necessary corrections and get a new

listing.

Keep the listing of the correct program, -since you will need it

later.

5. Since you have already run a job on the user terminal in UNIT #1,

then you may be able to go ahead and run your job withbUt further

ado. But, if you're not sure what to do, then do a and b below.

a. Do you need to take the self-guided tour again? If so,

then go to Appendix III, Section A.

b. Go to AppendimIII, Section C, and vry carefully follow

the directions for running a job.

6. When you have the printer output in hand, examine it for errors.

If you have either error or warning messages, then you probably

have not punched your cards correctly or' else one or more cards

IX.9 3 S

a

A

are out of order. Check the cards carefullys make corrections,
c"

11° and try again. If you ne44 161p, dee your instructor.

7. When your computer output contains -no erroKoand haa 8.0 print-

ed ea the "answer" (after $ENTRY), then you are fini,ked,,t1 you

have an 80/80 listing of the correct program. Keep the printed

output, the listing, and your program deck for the adtpassment

task.

3 "in)

Vas

Ne"

-

UNIT #6 (COMS6 ACTIVITIES TABLE

, ,
Unless otherwise indicateo, all text references are to Fortran

IV 4.rogra1mmin& for Engineers and Scientists by Murrill and Smith.

.1

4

1. Read carefully chapter 3. Study,the examples in Figves

3-2 and 3-3.

2. Complete as many of the exercises t tho....ewl of Chapter 3

(pages 55-58) as you feel are necessary to learn about "in-

put/outplit using I, P, X, H and 'liieral' type conversions.

In particular do exercises 3-15 and 3-18 so yon can check

your results. Be-sure to include trial data cards as

;stressed n the italics on page 56.

To be certain that y6u understand the materials properly,

qnulal.up a complete prograin deck including control cards and

data for either excise 3-15 or.3-18 and run it on the com-

puter.
a

3. 'Wine fieldt; Of varieus widths ase punched on'4the%ccpmpany-
v,

ing data cad. These fiefds are indicated by the numbers

2, 3, etc. Decimal points-are punched in all-fields'

which contain numbers of type REAL. Fields yhiCh a're to be

regatded as integer fields do not contain-a decimalpoint.

. Prepare 'a Po4ran program (include documentiation) to read

and print the data. -Utite all the integer numbers first
,

0 A%
, A

!

t

3 71

under the heading THE INTEGER NUMBERS. Triple space and

write the heading THE REAL NUMBERS and the real numbers

under that heading. Separate all fields by two blank columns

when printing. Punch a data card exactly like the one shown,

and punch your program. Run the program first on the 360.
11

When the output is correct, then run your program on the IBM

1130, rferring to Appendix VII for instructions. Show the

printed outputs of both computers to your instructor prior

to requesting the assessment task.

8320.8
1 1 2 4 SI 1

III

18
2 12 14

45,
12 ti 11 Is 19 31 11 22 2.4/4

12
nn 2

457
i

31:1 11 31

11.1
13 34 n 36 n 31

.37
1 44 41

24
i4/ 40 4

___., ____.... ._.. _....._._. _.....,

51 32 33 34 34 3 3/ 34 30 40 el 42 61 34 43 36 6/ GS 69 10 11 /' 1 11 15 /4 14 11 /4 43

DIAUTWI. MI ilign1 a Pat6j1/11) 10 1 111111E1 DM MET13 I FilE161113r3 IFII M I 4(fl44 4 4 41 gri .4 -1-1511Togil-firteTigupectiA

000050000U0000000000000 ta I um i al(311101/111111ItiliaLWILLIIM 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0

111111111111111111111111111 11111111111_ 11111 1111111111111111111111111111111111
222122222$2 21222222222221 222222222222 22222122222222222222222222222-222222222
33133133333333333331333333 3333.3333311 3111333 3 33 3 33 3 3,3 3 33e33 3 3 3 33 33 3 3 3.3 3 3 3 3333

44444444444 444441444444444 41444)444444 444444414444444444444444444444444444444
55555555555 555.55515 5555 551555555555 5544555555555555555555555555555555555555

4 4 6 916666666, 6665666% 6666 6%6666666666666666.6666666666666666666666666666666666-
71777711711711771.1114111177 11111711137177771777777777711711177771.11777717777177.
8108811688808088888888888.88 8888888801888188888088888$80818888808068888888118888
9999.9939 ' 999999999999991999 9999998999999999998 ' $99 9999 999 99999999909(30999050 995
1334$11/111,407131413411mm7t77i7733m3s757 ,30 m33333-43343l3l3l4I 24.34444147 51523254$3535/5059110C421244430411/4141110)1722/AMMn1/040

Mm IR/ 4 .

4

cf1

UNIT 1)8 ACTIVITIES TAW

/-
All references are to FORTRAN IV Esoglimaallig. for Engineers and

Scientists by Murrill and Smith.

1. Read Section 4-3, pages 63-66.

2. Read Section 4-4, page 66.

3. Read Sect,ion 4-5, pages 66-70.

4. Read Section 4-6, pages 70-72.

5. Read Section's 4-7 and 4-8, pages 73-77.

ore

XX.13

,

UNIT #9 ACTIVITIES TABLE
tt

All references are to FORTRAN IV II2gramillAag for Mglneers and

Scientists by Murrill and Smith, unless stated otherwise.

1. Read Chapter 5, pages 80-97.

2. Work.problem 5-2, page 98, and check your.program by the

one given on pages 264-265. RUn it on the dbmputer if you

wish.

3. Workyroblem 5-.6 page 98, and check your program by the
. .

one given on page 266. Run it on the computer if you wish.

on
a

Al

"

saV

UNIT 1/10 ACTIVITIES TABLE

,7

'All references are to Portran IV IL-9131-.4mk% for Engineers and

-Scientists by Miran and Smit.h:

1. Read Chapter 6..pages,102-118. Pay particular attention to' the

rules siated in Sections 6-3 and 6-4.

2. Work problem.6-1, page 118. Run your program on the.compgter.

z

(One solution is shown on the next page.).

Work problem 6-2, page 118. In addition to printing b and f(b),

prinE the.coefficients in a cleaily labeled format. Use fhe
..

factored form of a polynoMial for the-calculation. The program

must be general: Run your,program on a computer and show youtr

printer output to your instructor before you take the assessment

Yeask::

I.

II
.Ierg

a

. 5.

a

,-,1,,,.....,,-5....i,-4-04,-)oro On-rf, - 4.

S.

-

$ JOB ***************** COMSC 2112

C SELF EVALUATION, ACTIVITY 2.
C CALCULATE N FACTORIAL.

IBM 360 MATFIV.

1 DATA IN1L11/56/
2 READ(IN,1)N

a, 1 FORMAT(I3)
4 IF(N)10,11,12

C******* ERROR, N IS NE9ATIVE.
5 10 WRITE(LP,2)N
6 2 FORMAT(' N IS NEGATIVE. ,N
7 STOP

C******* N IS ZERO.
8 11 N14.1

9 GO TO 20
C******* N > hERO.

10 12 NF..1

11 DO 13 J.6.1,N

12 NF...NIANJ

13 13 CONTINUE
14 20 14RITE(LP13)N,NF
15 3 FORMAT('- N ',I3/'

N FACTORIAL

',I3)

IS I.

'CALCULAtE N FACTORIAL.

16 STOP
17 END

,
SENTRY

N 8
N FACTORIAL 40320

CORE USAGE OBJECT CODE..

COMPILE TIME..

ct

ITFACTORIAL

,

5152 BYTES,ARRAY AREA.,

:;'

0

0.73 SEC EXECUTION TIME.. 0.01 SEC, WATUV

:

S.

IX.16

. a
.A,.. 6'a

f

b..
1

I.

et

a

UNIT #11 ACTIV1tiES TABLE

References are to Fortran IV Programmina for pmiaisa and Scientists

by Murrill and Smlth.

I. R ad Chapter 7, Sections 1-10, pages 137-155.

2. Work 'problem 7-3, pages 160-161. kun the program on the compUter.

.

One solption to the program is Oven on pages 284-205.

a

..
.

. 17
e ,

-
. . - '--.

.

. .

ea.

I.

4

UNIT ii13 ACTIVITIES l'ABLE

\,
Unless -specified otherwise, all text references are to 'FORTRAN

1VROGRAMMING FOR DNGINEERS AND SCIENTISTS.by MurrIll and Smith,.

11

Activity 1:

Activity 2:

Actlyity 3:

:Nctivity 4:

Activity 5:

Activity 6:

Act/Ariel:4 7:

°L.

Read AGfiction 2 5, pages 25-26.

Read the introduction to Chapter 9 and
Section 9-1, pages 188-190.

Read_ Section 9-2, pages 19Q-194.

Work prOlem 9-14, page 213. Check your
resultd against the solution given on
page 303.

Read Section 9-3, pages 194-195.-
Read Section 9-4, pages 195-197.

Read Section a-5, pages 197-202.

Work the first part of 943, page 214.
che4 your results against the solution
'givenon page 306.... (A ir.§_stat is simply

10.9g317dimitnsional 'array of numbers;
multiply each element of the array by
a single number, .a 2...qatax quiintity%)

'k

se.41 , flit ,1

.O. 4
it

.

\ -.

,..!11,-N
,

-

7,

8

1.

. a

.e .

- o

a
.

s
.

. .5.e.;.,,,,....-4.-ixs, °,t40 , .
1.".";5-

'

'
t AYr

5, :

, .

.
r^,

a

...II. .1'

'
4 Sv -

.

;
o

,
,-.-

0 a4.4;-` ."
q

_

.

.1

4 V,
I ;1!

4' ----,*,
4,

. ':. 46 .71 i .47' 1, - .61...;;ir :' a . s At ;... ' ...

."''''"A l' : ; .: ... ;c, 4 4- .-. .,..4,

° x , 021 , - ., ...' 4 .
4(`.., .11 ,i

.V., . \: .0

- .,.,1.,.,.... ./ ,
4.

. .5%004 . :.. l ' t. i . , e o r ". . .
If VI ,..." ' .41,..x:1-1,(,.., , ,y ..:Lio

., i,ter,t . d -*I .,,_ ..!,.. ..._
1 ;....'..o.,,*4. ,:..,*.

* "J 4..^.4: e' :1 .: I !'4 V. F ;;;-" ic,..4, .,,.....,.......v4 ,

-:--- otik.:.'iii.-- .":- , 1-.r.'l 4,; - rr-
., .. ,.. :

to'

,..., 2.- t.' ", , . ' '." (IN ' .
:

wi . 4 ii, 2 k ...

; 4.
., , : %lb :', -:;.' ...f : :..-..,-/irl'..-.,,,,.,;:,..:..,;-: ,..::.; t...,,,,,t... 4 ,4' .*),I S. ^

... r..',A. 1..'.
4

. .0.."."
. ; '', . 4.:.:. ...` 4, Z 4 . .< . ,/ 1 V6VI -'4".* 4

.", -.-0 t''' -. - ``. ,!.:- .;i; 1.:1.1.1....- 67.

., ...A. . .. al. .,' ., t .7....:' !' it. 0% ...' ..

Z*.1 7 f,P44,(;"k '/' ;?:'::-4. .5;0 .1:4" 1 .. : ° t 4 V'
e.

A'a'' ..' 4 :' '. ep VIA" 9a . 1,.., .,.., ' 9:. '...,;..! , it . 14 '. ., .
.k

re-% 4 .,,** c ..o . 4 ,, ..,
% ,t

,, ,. 4 . 4a s. ,-. ,.. '' ' 4 ,, * '
.:t. .4.'

...v.

,p1,1

. os -7-

01:: i i
' 1 b

, ,p ' A' ''. : .

51. ., ..I , e '

il ' 4 ,

Ota.

:

UNIT 1114 ACTIVITIES TABLE

Read the following references in Fortran IV .taaramminik for kkineers

and Scientists by Murrill and Smith:

A

., t "

0 %s*

7

1. First paragraph of Section 3-5,;page 49.

2. Sect

e

1bm-1-47-17gges 52-54.

to

.,. a to,. \," . .f- tt-' g : nt 'et " .or

. .
.Nt;:t.!

:"':,

2
I '

. ,

,

P,.,11

0

es

.

a

I.

.

0

O

,,,

.a

. 1

. 4

UNIT 1)16 (COMSC) ACTIVITIES TABLE

.1. Read pages 117 to 150 of the book Introduction to Computer

Science by JQhg K. gUe a40 John R. Rice, published by. Holt

Rinehart and Winston.
./

2. Reread Chapter 1, pages 1-16, of Fortran IV Proarammins for

Enaineere and Ssisals,ts.

380

IX.20

a;t

,

IL

UNIT,17 ACTIVITIES TABLE

Read ChaPter 10, pages 216-225, in Fortran IV Programming for

Engineers and .Selentists by Murrill and Smith.

9.1
V

4

'Tql
IX.21

A

eft

141 -9'i , ..,7 ; ,

i a 'le* ' A A""934-1' `.= ,

0 A3i; 041146 0 t
. . IOW MOTO TiN 5011240

ATP/AM/Mit*
,

"trgrotty-ot.. .
. UM VATIONAll SentiCS FOUMATION,

ARITHMETIC .
12

CONCEPTS

FORMATS 11
I/O

GENERAL \- 11
Fano Pidoltms "

14

DEBUGGING
COMPUTER
CONCEPTS

st,

LOOPS, 10
ITERATION

ARRAYS, 9
SUBSCRIPTED .VARIABLES

KEYPUNCHING 5
PROGRAM DOCUMENTATION

RUNNING A HOLE JOB

N.F0.191Mili.2aiA:10er,em/ka,..

.UNCPNDITION-4
AL BRANOHES

STATEMENT

CONSTANTS
VARABLES
EXPRESSIONS
ASSIGNMENT

STATEMENTS
.1

SUBPROGRAM

.41

13

PO61161 MOO:AMINO
'HIERARCHY

11

