e DECUBENT RESUNE
'ED 183 361 |

. 58 029 526
" AUTHOR, - . Fisher. D. D.t: And Others - ’ '
TITLE) An: Introduction to Fortran Praqramminga An IPT
' Approach.
INSTITOYTON Oklahoma State Unive, Stillwater. X
SpONS BGENCY ' Wational Sclence Foundation, ﬁashingten, D. C . . S
PUB DATE 71 . _ ’ L
GRANT NSF =G Y-9310 (EN) : v
NOT B S '382p.
Y .) . - \) . . LY
.° EDRS PRICE . HF01)PC16 Plus Pbstaqe. | .
DESCRIPTORS . Computer Orlented Progranss Computer Sclence; \ .
| . *Computer Sclence Education: Flow Chaxts; Higher \- &
e e e Rdueatieons Individuwalized-Instraction:- Input—eutput* IR
ot - *Pacing: *Proqgraming: Proqramind Languages-
Programing Problens N
IDENTIFIERS *FORTP&gIPrograming Langua ge *
adsTracr | | . ‘
- This text 1s desi ned tb give individually pacad

ins@%gytion in Portran Proqraming. The text contains fifteen units.
Unit ¥itles include: Plowcharts, Input and Output, Loops, and :
‘Dabugging. Also iicluded. is an extensive set of appendices. These
vere designed to costain a great deal of practical information .
necessary to the eodrse. These appendices include ilnstructions for
gperating card readers, 1ister3, printers.and terminals, as well as a
@@mputer science glossary. (MK)

-
4

-
o'- . -

- . . L]

. v
e

: ‘ -/
ﬁi&:‘ . \NJ | .<
S S
3) . W ¢ .
3
g Y x ,:!
Y j‘ :
¢ o . ‘ » . , _‘?..
' .7' L . . Xl ' . ” -
- ! ' ’ N A . ! ’ J
. - : Yo : AR T
m********w****************w*********#******%g****************mw**** .
* Reproductiens gupplied by BDRS are the best that gan be mada - *
LK from the original document, kT

‘}'a********x***w*m*****$***********************f****a******************** .

’ : . _ P
v . ¥ Cor- ¢ . o .

1 ¢ . . Al

. h
-~ o . A
. t : ') - FEMECICR T REPSIOOL, L T, _
ah . U DEPARTMENT OF u”.m‘ AATEFUAY HIA-. pu HANIE D _ . - C
) r" COUCATION 8 we s ang Ie MATEHIAY A 1 LR G dTED BY B . . o
; NATIONAL INSTIJUTE OF . v M L\ Qh ‘) oL o
; . f EDUCATION (M‘)/ . Qr w _ st
) . . .)

CHGANIZA YN R Ly I .
AN Y g VIR W OIR (MINITEIN, - g

v ODCMENT HAS BEEN REDRO ’ '
N . . a e
!) !' PV B T v AS RECEIVE O F ROAA .
SRR XY BN AE N ANRT VIRV _&’ . N

. \ &
‘ DTACED DO ONOY NECENLARG Y KE sy . . . » . .
N A NATIONAT INY LT bl b Ao NS IR,) s
Fir Qs 0N St N GO by 1o N 'Hi’.‘HMA\'I\)N RELAR BN T : - R
. . o

"

lamoma State Unjversity . -
anuary, 1972 "o T el
~+ Department of Computing and Information Sciences . .

W
FRIC..

Full Tt Provided by ERIC.
Ly

BEE Y

3

GENERAL 17
FORTRAN PROGRAMS .

‘T s 4

Y
ARTTHMEENG.
CONGEPTS

1.

ot ;«?aauéemc
—

-

14

T

_FORMATS 11
¥/0

& [S,

R NSRS S

[V S

SUSPROGRAMS 13
' %

T
LOQPS, 10
| ITERATION

R

© ARRAYS, ¢ 9
SUBSCRIPTED VARIABLES

- i

o 1
|conpITIONAL 8
BRANCHES

.peap 6| |
WRITE

I

KEYPUNCHING 5
PROGRAM DOCUMENTATION
RUNNING .A SIMPLE JQB

2
FLOWCHARTS

—
) |

: [\

: <

UNCONDITEON-
AL BRANCHES -
STATEMENT _
 NUMBERS

CONSTANKS 3
+ | variABLES
EXPRESSIONS
‘| ASSIONMENT
| STATEMENTS ¢ |

-
o

i
LI

pales L NP

Ll

TERMINAL FAMIL~/
© LARIZATION
COMR CARDS -

(Immadigte auceoss undt)

LI

N

.

s . n F i
ORTRAN PROGRAMMING
HIERARCHY .

.
Ry
~
-
e
. .
l.
»~ [
1
il N
A
] .
y
.
"
AN
- “
v *
\ - N
Y i
a . .
‘e
. Lt
Cod
.- g
.-
{
1
oy
#
&
. \
~
-
4
g
. \
T
.~
o .
- . i
i
Y T
7
b
-
' o
o>
Y
i .
. .
Al
-‘

T e e A e I bl T i] et . sl e L T TR T ~rs s = £ Bt b e ey [T, .
T

and reviewa. - st ' B - \
. -

) _ ,
N\
An Introduction Yo Fortran Programming

An gPI Approach \ ‘

’

o4 Gepyrighe () 1970 .

D. D. Fisher .
T. E. Bailey

D. H. Secper /fi '

) L ’ 1

Oklahoma State Univeghity

~

A1l Rights Reserved .) o
Printed in the United States of America

Composed and Printed by the

L]

Division of Engilneering . .

r

Oklahoma State University . ,

Stillwater, Oklahoma 74074 : 4§

A B . . /) . *

(/ No part of this material may be used or reproduced . ’ .%

" in any manner whatsoever without permission, "except in

-

the case of brief quotations' embodied in critical'articies , :

1 (] .
.
: L]
7 ' '
. >
L . . 2 . '
-Y.; .]
. -

1

by o .

T e A e Bk i * = FA s i AL S TR AT Rl e B B B b b e TSR R TR A e ey kGt (v ey g 5

e
o v, . ! - .
[y . . * ‘;%
. \ - N :
vt . .
- » .
'

PREFACE \ . " R _ '
The main dbjectiva of the Fortran p?%gramming units is to ﬂe* y .
velop the neceasaty gkills to . | ‘
N ¢ O 2 'translat; a probléfu{“éiﬁammem to a pmgr;,'mmg problem B B
N statement; ! A
(11) develop a deb&gged péégréh thét obtains a ;workable"
. solution for the original problem; . ,
(i11) éﬁrepa e a'daa;ript}on of fhe proéram se that othera nay ‘ \
) maﬂgiuse of the program, or the aughor may use the pro-
N gram at a later date Qﬁch a mininum investment in ;ime;
(iv) accomplish tﬁévpreviogé thfee_skills with,xaagoﬁable \ %
: dégrees of efficieney.« ’ _ LT - _ ' L
. - A - . ,
L { _ fo accomplisﬂ;(ii and (11) it is hecessary to learm g coépute; ax\f
. MU programming language gnd to pfactice/fhe translation pﬁas; foy a , ./;
;) _ variei? of problems. Praparing progxam dascriptions and develop* ” _ .-y*-

ing efficiency will be emphasized at each step. Several programs S
. .

o will be written that may be used as problem solving tools in sub=*

sequent courses.

. . (]
- “ 4 *

e 5

RN ' A programming language is a language used to describa an algo-

rithm, that 18, a procedure for solving a problem, in auch a way

Y

that a computer ﬁan interpret the "algorithm and can carry out eaach

L)

, ' of the anapa prescribed by the algorithm. Programm;ng languages =
s vary ia ccmplexity. In general the languages that are easiest for L
P .' . . N) . hd &

"

maankl b A R o T A e PR - R Y _Cn L PR e, - B T S U P OO S TP R

. 7
the machine to use require considerable knopledge of the computer
on the programmer‘s part. On g&e other hand languages that are .. .

easiest for the profgrammer to uge generally require the computer

‘to translate the program from the -source language to machine lan-

) guage., The translation process from source language to machine or

AN

, gram will have to be run on differant computerg, it is worthwhi}a

.Fortran 1s a subset bf USAS FULL Fortran. It is likely that you

object language is a task that computers do reasonably well; con-
, N . . .
sequéntly, most of the programs written.today are written dn so- e

called "higher level" programming languages which: invoke the com= .

/ . N

puter to tranélate as well as to compute.

Fortran (an acronym obtained from formula translator) is an

example of a highet level programming language.. It is the most -

widgly uéed programming language for scientific applications.

There are many variaéions or dialects of Fortran. Ydu should be o

aware that different computer manufacturers support d%ff@rant

dialects, one manufacturer may support different-dialeéts, and v

users may credte their own dialects. In order to be able to move

@,

programs from one computer installation to andtheri it 1s pecessary

®

to have:; set of standards. Appendix I gives comparisons becween_

9 ; .
USA stanMard Fortran‘and .other avallable Fortrans. The USAS BASIC

will discover useful features of some of the cqmpllers'that'are .
not included {n USAS Fortran. 1f you usge those features, you do Lo

“so "at your own risk." Some\features got included ip USAS. F@rtran / - .

are very dasirable' consequently, if it is unlikely that the pr0n
1 ~t

to make use of those feagprea. On the other hand, if a prQ§ram 18 . .
' . ‘ N
td’be run at sevexal different computer installaQ}ons, only those

- . . T~
.]

SoRTMR Tt e TR YT TN YRR A AT e NI e s SR e ST RS S wvdn s B T e T B T s ¢ B L L o LB L T Sy ol l,_‘_ e L S T D R T T T ——

- . features listed in USAS Fortran should bg used.
) A

T Thib is an axample of one of many possible choicas you may

make while completing the Lomputer sclence unita, \ Qther decisions

3

- will be requizcd to ‘get a program to "work," to transform a work-
ing program to an efficient program, to "tune" a program, etc. “An
- aspect of computing’many find challenging is that, in general,. there

. ' : L .
e . 1s tic bast way to attack a new problem. You will find this to be

true in some of the progyams you attempt to develob:

L}

-t e Othelr higher level.progragming lanéuggeé in widgspread use: %

?

are listed below. .

Cobol « a business language

3

-

. RPG a report generator used primarily for business
- applidations
PL/1 combines features of Algol, Fortran and Cobol
. Algol a scientific languaga
. Basic a version of Fortran used in conjdnction with.
.) typewriter like terminals
APL .4 mathematical language .J _) /’

Assembler a form .of machine language

L
14

Several dhdergraduate and graduatencourses make use of these and
s LY e - -

-~

« - other programhing Iahguages.. Translato;e of varying sophiética~-

tiofl are rquﬁre convert programs from these source languages
to machine language. : S .
. .)]

Take some time to examine the drganization of this book.

L The instructional materfals are organized into units in the text..

4

Each unit contains a dgbcriptive title, a ragionéle'explaining.the

purpose for fﬁcluding'the maéerrgl~in the unit, thé bdhavioral

) , , ' _ X
iii v)
y .

4

LI |)) o

- . . Y :
hd . . N T o y w
. . .
]

* objective that states what you will be able to perform aftar you

7

have mastered the material in the unit, prerequisites for the unit,

-

a series of activitiesa dssihned to point you in thé‘direct%pn of

the o;jective and help you. attain it some self evaluation matbri-

. als sp that you can assess Yor yourself wh&ther you have attalned,
the objective, assessment tasks with which you demonatrat& to your ,
Instructor that “you have-attainaq the. ijectiva, and . finally 1nh- ot
atruct;ona telling you what to_do next. . |

The'booﬁ.also ¢on£ains ; rather ektenaive set of appgnéiéés.
. Read the titles of the "appendices i; thé‘Table‘of~Conte§fa, $nd
thﬁmb‘through them. They contain a great deal of pracﬁical infor-
¥ .métion that you will need throughout the coufsew‘afarticularly at

| this time be aware gf the appendix containiné the glossary of‘terﬁé.

If terms which yoﬁ do not.underagand appear in the text, 100@ for
them in the glossary. If there aré qmifted terms &hich'you think

w

! g shOuld be inoluded in the giossary, write them.down and give them -
4) . N e
to your ithructor.

The page numberg in the text are designed to be used.for quick
< referencinyg. The fiést number is the unit number, and the second
nunber fumbers the page in sequence in that unit.' For example,

page 8.3 1is page 3 or Unit 8. Aﬁpendices are 'numbered similarly

except that Roman numerals are Ssed. Fox example, page V.2 is page

» »

L]

v 2 of Appendix V.

. ' The cover of the book shows the sequence of units for' the
\ . . - . .
. coursé¢ in the form of a flow charft (Q}scusged further in Unit 2)ﬂ

This fléﬁ chart will help you to assess your ﬁrogreas toward the
. .) . : . . * »
2\\terminal unit.

B

W PR o Beet e L S iai ! s RS R R AT i Mo b G e ey e o EARTITIRL o ps

%
‘ - r/ . - .
Unit 1 requires a card meader with optical mark read (OMR) ’
capability. If this feature is not av:ailable, then Unit 1 may be)
o‘mitt;ad without disturbing the sequénce of the material.
- . .
. " . ‘ ' ° ' . “
* N '
!
- . @ :

. e -b
¥ . N
s
_’/\ \
L
~ .
»,
-
. ’ .
o o “
N .
. . ' &
L
.
» - .
o5 -
-
- . s
’ \»
,
. R v
-
-~

] . [o
[] s) .
A >l
g » \‘ .
. R \ @ ° ‘)
A V .9 l b]
¢ /
« M . LEY » r -
. ¢ ' 8 , o

T T T T SIS S e e AR e R v mmar

TABLE OF CONTENTS

. Unit ' - .

- K .o _ ?

| 1. Becoming Acquainted With éhe Computer ,

‘_ v ' 2. Flowchért;

A o 3. Variables, Constaéps, Expressions apd Assignment Statements

-7 4. statement Nupbers and umonditgg{g{gmches | o L

5." Preparing a iob for Running on the Computer
’ 6. }npuE and Output ’ ,
é. -honditipnal Branching or Transfer Statements
!9{ Arrays and Subscripted V;riables
10; .Lobps ' }/
1¥. Input, Output, Formats
12, . Arithmetic Concepts ¢ N
13. Subprograms
14, ‘Debuggtpg _ 2
16, 'COmputer éoncepts-“ . R
17. ' General Forttan Programs | - | e
Units #7 and #15 are omitted, © | o™

. APPENﬁIX\}. Comparisons of Various Fortran implemeﬂtations
K \

AP?ENDIX'II= * Computer Science Glosagwy _. _“ : - R

' L)
APPENDIX III. Running a WATFIV Job on the IBM System/360 Model -
. 65 User Terminal

) A?PENDIk IV, - Additional Instructions for Operating the IBM 2501

, ' Card Reader
/7 H

. - _ - APPENDIX V, Instructions for Using the IBM 1403 Printer
« o ¢
: APPENDIX VI. How to.Get an 80/80 Listing With the System/360 ‘
~] ' User Terminal .

= 4

a

APPENDI;\VII.

APPENDIX VIII.

\

APPENDIX X,

A

Ruﬁhing Fortran Jobs on the IBM 1130 Computer

User Terminal WATfIV

Activities Tables)

L]
s
A]
.
4
o
-
\\
'
oy
]
'
o b
.l\'
\ o
5 { *
. Y N
~
)
]
« N N
& P N
£

L S hd --~~—--'~\'\--~\-r—~“‘*-’ﬂ'-!7~- T e P - T~ gy »-_-*'wfv-—-»v~iwg-»-n-T.,———:-.f:—:w‘ s "' . M ~u .7 r--——=»"=r,—--:‘t—“-ﬁ-—~‘=ﬁ=~m=-?--<;‘a—° - -:-t.w:“»v-—W--<n--l=i:—~m-v-<:-—~-~u=
g . : . @ 1, :. ® " Ty . N :.' . . L'; S '
- LWL ETR e g
'~ fn' . .‘ l ‘%
_ ' / - L o . . |
- R . t
||) -) / ’ -
‘ \ UNIT #1 (COMSC) S
i > y TITLE: Becomlug Acquainted With the Compute;;ﬂ , ' '
0 ' . ~ ‘ ‘
- " RATIONALE: Lf you're going to use-a computer, you wust know © o
s : something about running jobs on the computer. You . .
- ‘e . . P
) -/ must familiarime yourﬂﬁlf wich«som& bﬂttOﬂa hnd lights S g e
- . - ¢ .. R .- ': e .]
‘ . ‘ ~and nqi&é&:- geﬁ?must overcome any. fegra thac t ,%gmﬂﬁlgl,.i ol
. puter is aut to get ytm o that it mls;t**hagm y;m,. wch Tl N o
= % ?&6’ .' . e ! ': . 'ﬂ,f v \‘l.
3 must alﬁo get gome tpnfﬁdence and not be afraid that “\ a—m- fﬁ.-g ks
. . ;-. SETRY SN
S : R e T
you will harm the computer. . ‘ R g%‘w» f\
-;_ ‘But all these ‘reasons are less important thhn the R A
- resl rationale for'this unit. We want yon to have some N S
© a . ' - ' v ..
_ fun playing with the computer! We want you to enjoyf* L b Q@"
e | .) -
. pushing the. buttdns, seeing the lights, antd hearing
the noises! Relax, go through this unit,-and have a. L
t . - . . ;
. great timel . y L : .
- : .‘) . . 5 . e N {- .n . . ' ‘c'\“
" . . ~OBYBCTIVE: At the end of this unit you will bé able.to demonstrate
- . : P . Y . .) . . . ‘ -
:\%\ 4 thac you can run a.jqb through the computer , including .
N, . operating £he card reader and line printer, using con- _ -
\‘_. LN ") N
o o ‘nrol cards norrectly, and marking OMR cards. .
u") !
, .ﬁﬁEREQUISITES: A wilLingness to try, a aoft Jpad pencil and some
R D confidence. , e s T,
\ N . - : : ¥ ‘
\\ R N
L RN .
N, \\ ' .
. 1:1 s) + >

-
]

TS S R N T — Gt [NI e gt T
. ~

ACTIVITIES:

OMR. Cards

-

‘A.

OMR stands for

-

Gardsf

he'll_bagin-with'bMR computer

puter

s

£

the Optical-Mark Réaq:fehaufé available on the }on

v

1

The OMR Fprttan.éard is‘ﬂﬁown‘in Figure 1.1.

card reader.

=

‘- =

2

A AILVIS ASLVA - NYL L& VIO 4

B0r I3

c J:nnﬂin%uunﬂvn‘uwnuxﬁuvnvﬂto\o
3 . T ,0 =

1 T - - - = & E
: o @«@a@%ogggtﬁﬂ
i

oD o U\evna\u?nu...mu ugvnaungﬁuvnrﬂzg
CED<EDaCouaD e Stgraﬂoé.ﬂugaﬁnﬂ

nwu\mﬁ P DNCED-CSD D Qvnﬁwmxﬁuvgzg
- x - 3 o « < -
G0 <« =020 ouirD o Gfmn (=]

| C+D CiDNCADLSD D CE>Cro2 CDwE T GHONGO

" x < 3 2 O & © e
O« EDR00UED @ SLwl DI Do ID G0~

D Cr UsQO?nul..v uﬂuvnuuwﬂnxﬂu,vuﬁz@o :

o o
nnUAmBQIOCgD 8%8“8!8

SO D050 3 CR> OO CR=E G0N
- ® o T Zz 0o &« o =

CED o ORAAD © G DA S CS T D~ D)

o] n-USQ,UTAI:d -] BVﬂnUWgXﬂv.glg
=
anUAﬂBOIOA\.NtU = 8&8..863"96’8

G+ Cr Ufﬁ»U.Tﬁ U@ﬁgx.ﬂg

=D An..uhvon.)ocn.ﬁ o Q\m.tgrgﬁaﬂnglwuu '

GO ConlaDr S0 o CE>COSCDRED»ONOD
- x - x F (o] G. < @&
O < CERO0WTD © G D GO T~ D

n.vU cr USﬂRUTﬁ > ﬂuVﬂ:UW.ﬂUggg

© . <o e .
ﬁA@ngg DD

n.vUﬂU.Sﬂu\UT@UQVﬁ&UWgXﬂYQ.MvZS
- = - = z o S < -

O < CDRCOUET € GDwGDw DT DIGD- D

D C OG-SO D nuvn Uwgvnﬂ?ﬁrﬂlg
- x - 2 =]

ou;AnUBQ/OCQ.O o QUESFQDUGOAUH@OI@&

C+D C-DWCa=CSD o &vn PECDXED>GINGO
- x - z < =z

<D 0owEDe gglglg ..

n.fU COVEFD-CD D QVQ:UWQXHYQ&UZS
- x - 2 o] -8 =] &

%Aﬂvﬂ@. DG e @ESFQ.BGQ& G-

—_———— e ———

C1D CDONCEORSO = ﬂuvn UngﬂU\.nrAvZQAu
- x - 2 ¢ o =] -4

hn.\UAnUﬁQAU(&.(U ﬂ.a»..vr.,ﬂa Qo 20T -CTD

C+¥Z LD ﬂnlrﬁ/vun“;vn lwn“l.ﬂuv\ﬂe?g

T+ ¢ US».u.uY(I Ug\n J.hnﬁ [g g .& Bt 5]
z a F

hUAﬂ..“\.uQ/\LQ.%. Drqu.tS LhUu..lﬂHnVD.U -0 X

COCD o nUﬂv
TERILES b T34 WG (RAZ 4015

G5

=

CREGD ¢

wnfcn o
SHUIBAM MIMINS
o wle

Figure 1.1 OMR Fortran Card

The left~hand éide of the card s enlarged and is shown

ianigure 1.2,

The card is designed so that most key words -- such

as WRITE, FORMAT, STOP, and END -~ cap be obtained by a

single pencil mark in the box associated with each word

. i@?}

Statement.

in the lower left-hand corner of the card.

. numbers are marked in the upper left~hand corner of the

3

i
-«

,/ .

¢ ¥
o !)
- m
»H “ ,v aw v,
. . + x ~ P N M = . =T LZ - v
L~ - - o
” . w i - = Z Q e < £ ¢
: * - o -
i, o ~ o | NIOL o B e (F o [) ~ Pl o " & |W 5
m e J :
. | .
§ [
E ' ~ $ m a R
b y
@
m . . h
\\/ . ! ~ : : ad
qE70 ¥vIv¥d H IVONIINOD IKZBI0D _mmvEE Tvdd N80LI¥ GNIMEY dO0LS NI¥HnS ALTIM o
‘ m _ . s
Lo -~ m - ,g ..,m
- o
. ! o~ = ~r L [3
& = Cw
, | 1o1iaa A1 EOAINI I¥DIOOT INI¥d HONAd avay o
w, . . : @ -
L A _ . 5 0~
2 " mb - B)
_m i o~ MMH -3 IR m) cm .
m - SAsgl$ aNZ AYIRZ AIDZ TYVNYEIXE IVWEOE 0O o9 . b
| _ . ’ 2
.m 5
_. - 4, &
; : o
m I o~ m mv ~ v s .m < o
| - .) > S
L - 4) R4INZS | X1D400 ZNNIINOD VIVQ | NSMEWIJ 04 mnummmk i
l_.‘.ﬁ - - 2 & -
- \ > .
8w | ”] s
. - [mw (3] w -~ | B m \\
. | . s
STETON INTHIIVLS q40r's ROISSY 3A0Y¥4sSiE vivd xig TIVO EVRO i ROWHGD mc e
. . _ - ;
! hd) °t l“..
t ’

B.

. the rest of the card.

‘" be clean;. else i; may clog up the card reader.

T T B Caaicia o S SRET S b e e e

r , ~ %

- card. Lommants (nnt actually a part of the Fortran pro-

L]

gram itself) may be Inserted anywhere In the program by

marking the COMMENT box and then marking the message on

The main pprtion of the cé{d is used for yarilous

»

Fortran statements. Here numerals and special characters

v

require bnly a gingle mark. Tﬁe letters all require two

- . "

~marks, either Tn poaitions abqve and balow the letter or

on both sides of the }etter. The catq is designed so
that you may write in”the boxes along the tob of the card
the characters marked on the caré, thué simplifying mark-
ing the card and providing Eﬁe_information.marked for

later reference.

»

It should be emphasized that ordinaril& a single’

pencil mark in the box with a soft lead pencil (No. 2,

PIOV A -~

for example) isg %yf%@cient. it 1s not necessary to black

:

in the box completely. Sometimes marks that are too heavy

will be misread by the card reader. Ball point pen marks

are ignored, as are marks from most other writing instru-

- 4

ments. Pencll marks may be erased, provided that they
N

are erased very thoroughly without damaging the c&%d Be

—ven—

sure to brush the eraser fragments off the card; it must

Fihe

Examples~of marked OMR cards

Examiné the card in Figure 1.3. What 1s marked in

the card is written along the top: Column 1 contains

L,
¢ . y

b

1
/
\

e LT CIEERL Rt AR s ST R PR - a5 A A AT TS e e s, —am e e e

1.5

g

v
L}

S

R R
)

A

the character "A"f;' columid 2 contains "="; coljmn 3 con-

e

~
-

WO WET Sasy port
£ g E%?«G Ai3LYR - NYBIB03 TYOLLO

m C+D ﬂ J.\nnUTnMngvnuUWﬂUxﬂwYQ?g

ﬂnvﬂ.ﬂ?@CQ\U (-] gglﬁvﬁlg

et - s —te e -

‘o &D O ﬁ USnnnvlﬁugnnUngg .

-

; m. [o ﬂéﬁugvnnuwggg
PN gAangéngﬂﬂﬁoﬂﬂg

oy D ﬂusowufﬁunmvﬁ.uwgﬁﬂg
K> gagogogﬂb

& oo ﬁ§0@§8‘8]
= gﬂ@ﬂgogggg

& oD mﬂagvﬁugwﬂﬂgu
oy x P X & [+ T < =
S CDAESSONOAD O Gl DG S o Q-

ED OO CrORCICICSD D R DB GO
c- x -t

. --ﬂ.vu ngugynuuwnﬂunﬂ?g
- = ﬁh@gﬁ.ﬁog.ﬂggg

o .7 ‘&= oD ﬁéguggg.
: ﬂ ggogg

' '“U. < G éﬁugﬂﬁxﬂ?g
] ﬁhgoggg

| = oo nu&QUIguﬂwvn uwnUx.mUvm.ﬂzg

(=]

(=] gg&dbggaugg.

(= -

-
+ m = ghgngmvﬂglgn

Z = c3 \USSrnwAu\lw,vm,@wnUUxﬂv\werﬁb
™

_ &= GO OUSQU_TQ n.Muvn UWQKBYQ&UZS

Zz (=4

! w@ @Agd =] g(ﬂ\mfgb\\ﬂﬂglg

= ﬁ;h@ﬁgoh)gﬁﬂa(\ﬂ Qﬁlg ,

" om ED D COwCE-CSY s CE>Cx Lwﬂuxﬂvn&urﬁta

-4 kel [<

G a-ENEeO O T © gighﬂ‘ﬂnglg

o

.@oémn‘onﬂu

& CWEGD Gl

ED GDRD D)

va wofas e
S ITIW KIMAINLS

1 14

% Sn & T R =
B S mm on wm

T ¢ o o T o2
QK3 EIK3 ADI EED om0 (L9

= 2y e o

o
L5
2 .= . PIIU
(X =TT e
- - ’

Again, what is
Notice that .

("'; column 2 donfains "6"; column

ete.

TR TN
N T

Figure 1.3 Example of -a marked OMR card
Examine thé card in Figure 1.4,
the keyword "WRITE" is marked in the -lower -left cormer.

marked in the card is written along the top.

Then column 1 contalns "

~

-Q contains

PEZ <R S

=

-y

e

o TR e ke
'

ey

1.6

4 G&ﬂUihzw§whdhm AlZLYHM - YEBI502 TvL0

- —— — e — e

. = \0U nf{slﬁunﬂVﬂowgﬂﬂvg
3 @A\«“\gvgogbﬁ!g

mv T Ua)\.nUuln%.vU gv.ﬂonggoﬁulg

mw D n..h.rnRUo!hMu Qvnggg
. ﬂ gkﬂ»ﬁ??‘ghggg

T CeD nUS\.uUTﬁMUUQVﬂ Uwgﬁnﬂvgzg

\«

= nBAAUO.Q/UCQ\UD Q‘%ggls

= u.ﬁQUTnMu,uﬂmvv\muwﬂUxﬁVQﬂZOﬂ
= ﬂnonn“ogundoggtg'g

1-

) @ C+> 1§UQVHUWQXHUY§S
mv gﬂmg.bﬂbggg

e & 42 C .\Sﬁ QVQ-UWQ!GYQ&UZS
<

ﬁ fa=) Aﬂo.n.)oco.d) Sx@ﬂrnnueaﬂugn

—

4 &> o © Uﬂﬂu?@UQV\OWQNﬂYg

mu T2 C- UtinﬂU!n.hu > QVSWQKHYSZS
o ™ < -4
= hAU\.\O)QL.Q.AU o 3?868! ST~ D

= o= AUOQ,QXKU s ga&anﬂuﬂﬁng

== e n k\\.u).lnv JnMuvn LWﬂUXﬂYﬂw?nYO
- - 4 & (=} -4
& C=Ce= UQ/U.\.v\U = W\U.O (lQ.ﬂU.lQ”lGAU ~>T

<

L -
E= Do T ZesCaDrcst = “vwfwnmxﬂvnrﬁznto

©. - x - 3 E-4 < & x
C ﬂH O < B 2 U;n'\ctunu‘n.ﬂ..nwuﬂqﬂ

g C+T Tz WHUIPAJ UV\&UWQKHU O G
p— D ~ £ - c e’ 4 z.

= Qu:nllQCxﬁ»\Unw.W‘l(Lk«.U!Ul\ .u..\.;mlllouuu FE

E T2 € ..;..akt!..ul.ﬁ.o v!uwaﬂvd.ﬂ\:U‘.ﬂ
- H z] E

£
] ﬂ/h == \ﬂ)A&H.I.@IV =< Uﬂ{nl.\\mv.rnwbl.(n.ﬁllox -

f——————— e e o L T e

&= e < \\.nxyP/ z -, . uw]vltﬁmﬂ - o~ 0
A N . - - =z 2 ﬁ =
i = n.whuA\Hl.l\nn...U‘n-(.HnﬂJ\UI\.\xﬂll.amﬂ/lug >

SO I TR T DRI A ET Gl e

_— - s
< - = z = F] F3
= =l aiEEl s FRP e P . v $n 2 >T -7
e T oz .
P] = OZIeI LT ora ..-/luq.mv1.w1i.\ﬂ.|v gl o
N ” - F 2 - x
oy o el = P aalb R o uh.,“..nl.n-.v\.u-nw.r,
2
J el i Tl T T ot oty T e
4 wraw (wshe vektle® w7 FR Raw £ ot o
| WIETsi= =t mm e om0 22
r d faa”™ | * —M.!t oy LA RN A EEC ™
- = caul~w o=l == -~ =
4 [; wE L AT S T we o el R
I G Futem ltTlo s - - o - | gpom]
AN w ol & @ VF 1dw vVawm
3 = 3B re |- ~ LI ool T -
A W Sa38m N ARm3rs) - * TRoEeRE e e
| - - a

N Cowm my o

Sample OMR card with keyword WRITE marked

Figure 1.4

Look at the card below and write in the boxes

o

SELF EVALUATION:

at the top of the card what is marked in the card.

| =

.. O¥¥DININIIVIS A4IVM NYEIN0Z WDIeD

= Gy Jﬂﬂ:UYﬁVqunhvVﬁ:UWgKBé
= z =]

== =D« .hlﬁﬂ?g =] §G\Qﬂuﬂ8’ﬁu

————— e R

2 So o

= Dgrgagﬂgis

= G+ C USQU?PO UQVQ:UWQX&YEZS

b4 - z

L= §A§Dﬂ§§

, nw C+D Q§U§§
. @ ghggnggﬁgg

m SO Qi oaCaDeCSO = Qvnnuwgvnﬂ?gzg

. m oD o Usn»urnwuﬂwvn u\gxﬂuvo.auznro
ot -4

m C+D O LSD»UTO.&UQVQOWQ&.GYEIQO
o e

m QU)AuBn?tCnTU (=) @U(Srﬂnuﬂmmug

& G0 C Uﬁnuov-ﬁ'..flbugvn UW!HYS»S

L4 -

= QUUA@UOIU(Q{H. o ggf\aﬁglg

D C Uc.nunvtnu.Wu = QVﬂ Unggg
- -4
mﬂvanmcaQ/uCg o ﬁuorgﬁgﬁo.mulglg

- F'S - © <

P—— e e -

5 [S Uﬁw«U? [~ ﬂM.\vn meuxﬂuv.n.&ulg
© - - Z (=]
fa—ol S > en?bcnd.. =3 @?;;;bn.rUNOAY.QG

'{ﬂ

xl.r\ltL\.+Hn U.snn ,tnllj ;gvn Ungﬁvnvnwzg
-’ .=
= =< [\nn?uxat.un Etgrahﬂsn.ﬂwuglg

EE T Coow l*LYnV\UQV&U\nHRﬁYg
o o o -4

- - k4

= D<= DO(ULOQU WJU..SFQ-MUGﬂh.UNSIS

EE Gl TSI o TR >CDRCOREG > GRENGAD
~ < = — = z < < < k=4

= o= sa T o ndu.grﬂ.nugg

P - e v ——— e —— e+

TR Cel CLcCaTeIlnmum ‘..Vl ST T REDNTD
-~ . - E - Z z C & o 4

= o0 < Sz O 5T o ~ G G ST 2D~ 2D

e e e e e e

TED OCHD L TRt s TE>C~ 03T & 0 - Casdme e

- - x - = Z b -8 > [

W e E=a S M e T TG T G T N T D - Y
)

) -5
&D o C USh.#\.VT@U QVﬁ gxa&
4 - E 4 - o~ < -4
= nnUU Agg [+ ggﬂ s

L= ces c. usnjrnuﬂuuﬂwvn.ungﬁuvﬁﬂzg.....

= oﬂuA@agﬂogrﬁwvranuaﬁﬂﬁoﬂlﬂﬂ :

: @ @gbggﬂg

=
=
G C+D C v eSS s muvn.uwﬂuxﬂUvQBzS :
&= \ﬂn.:umhn?o@un ktnaraﬁcﬁrgu@ﬂ ,
=

et Y=t K enu il cdo Bl e Sl e e N
FEOR | WA a RIS NE whh Y BS @ S
D OO ™T Bl C5 s = o —n o
i 2 . ;¥ AR W RS R o
E o | r oo o5 o vt s e e
* wSR e a3 a3 A Y TG §F 0
SRRt bl B b ol i ene BT S e W
XIS T W Mie.- G www
_wul Tof e |- 2 ES & T oL
SE3OmT LxInz. g M A A e
Y - -)
-
~

T~

ey

R IS Sy PR —3 St e = Ane et g —.m = - .

-1.7

- The following statement ds marked on the card:

- T FORMAT(IHO,FLO.TY :
_ ., : L : : “ .

o ' - ‘. The "4" is-markeg in the block of gtdtamant'numéefa 12‘ B

\ ;_fche uppér'leftwﬁanﬂ corner; it-is.ma¥ked i% the "Unigs"

L e . . -

cofﬂ&ﬁ, meaniﬁg that it is 4, rather than AOI(CGﬁQ 9plumn)
- ~ or 400 (hundreds columa) or 4000 xthbuéahdé.édluMn)l '?he o
keyword FORMAT 18 marked in the keywoéd block in the lower.
left-hand cyxnar of the card. The rest of the stateﬁevf

{s marked in columns 1-11 of the card: "(" in column 1, ‘

-"1".in column 2, "H" in’column 3, etc.

ﬁ“_ ASSESSMENT TASK: You are to mark a simple Fortram program on OMR
\ lcards and run 1t oﬁ tha’computer. The prﬂgram
N | and directions are given in the UNIT #1 AGTIVITIES
‘TABLE, APPENDIX IX. When you finish.;his task,
\, take yoqrﬂérogram dedk-gnd thé printed outpu£ pro-
” duced b} your program deck to your instructor for
: .. @ . _ .

avaluation. You will pot be allowed any errors on

pd~output. Don't worry about this seem-

¥ requirement; you can meet it. L=
@ ’

-

WHAT NEXT? You ﬁay proceed with either UNIT'#2 or UNIT #3, or both,

R 2 ol T T A—— D el IS T s T PRI eaaa = Apaaa P LT R e s

Pe

' - _° _UNIT #2 (COMSC)

TITLE: Flowcharts R .
LRI '}
1 Y i . e

© TAITONALE: A flovchart (alsd spelled s tvo vords, flow chart) fo
a plan by which a paréicular problem is torbe solved.
We stress the use of é flowchart'to deségiﬁa a plan
for organizing a camputer based algorithm, or proce4

dure for solving‘a problem, because for oét_useful

algorithms there afegmany différent ways-to accomplish

®
<«

the necessary cowputations.” A flowchart pins down one
of éhesé'many possibilities. A flo@bhart'gives us a
“ h : . record of what we had.p}anneﬁ to do.’ ﬁéfbrg we'decide
to yiela to the temptation té make a chaﬂée in the'solu;
t'ion procedure, we will be able to make a cqmpérison éf
.)the proposed modf?ication with-ihé original. In some
cases a change’%illlbe desifable, in other caéeq a |
N cataatroph@f By spending more time in thg pianning _\\
stages, oné’usually reduces the debugglpg time and the
<\; . overall.praject‘ﬁima.

OBJECTIVE: ®hen you finish this unit, you will‘be able to consgtruct’

,}'/

! . & plan or procedure for solving problems of a general ° ‘

type, using hoth a hoxed‘ftbwchgrt and ‘a line by line

.0
. : 2

| flowéhartf
' PREREQUISITES: UNIT #1, if required. S S e

2.1 ' 1

P

ACTIVITLIES: We'll begin with a fajrly detalled discussion of flow

4
4 o o ' charta, and then you can try your hand at constructing

wml
e

A. What 1s a flowchart? A

* The concept of a flowchart is completely ’

° . N

. . - . y Loyl .
- o . - geéneral. A flowchart is edmply a step by step
- o z . o 'planjbr procedure, usually.éiﬁqn in some graphic

form,. for accomplishing a goal or set of goals.

A "treassure hunt" map is a flowchart. A game

board like the one used in Monopoly or Agérava—

:

tion 18 a type of flowchart. A set of directions

for assemblying a fnioddl car or wirplane is a flow-

chart. Even the procedure that you follow ;n-yOur

- *

- early morning getting .up ‘routine is a floychart,

v

though you probably don't have a copy of it fh‘a

graphic form.

b

Do you get the idea? Any mﬁltiatep procedure
can readily bé generated from a flowchart, whether
1t be tréﬁeling from place ‘A to pihte B (the flow-
chart migpt.be a map), writing a paper for an Eng

1ish course (the flowchart might be called an out-

L%

v ' line in thiiékaeg), carrying out a laboratory ex~

/ , . periment (called a procedure) or writing a computer

'y

. - IR program.

' The level of detafl required in a flowchart
:.“*] ') .

varies with the situation and procedure being flow-

L]
“ .
M ke

: | - Yoy 2N

. - . _ Y
. \ . : .
Q : b . ¢

gome ypurself. - . - ' s

b e SRS, TR ST A T T b e EEEONTTR, DY e 1 e e - TR

ot -!,'3‘_

T e T T, T WA S SR T TRy L e At s e e R, (oSS

Kt - '
charted. In some cases, it may be necessary to - . //!

N . L]

present every step in deﬁail; in other cases, .
many steps may be summarized in a single line
T o ' : v -

or statemént.

Now that you have a gederal notion of flow-

charts, let's gd on to gsome specifics of flowchart-

ing as used in a glwple example. . _ . .

.5

o~

B. Two typas of flowcharts., ‘v .-
Although many notations éiist for flowchart-
ing,‘oﬂT& two will be used here. One method con-)

gists of placing the steps in various kinds of

1

boxes; tle: o her consists of u line by 1ine f⪯
sentation. Tye basic reason for using a flowchar€>

. 18 to indicate the possible alternatives consider- ~
| . .
ed by the solution procedure and the conditions,.

]

~under which these alternatives are pursued.
First, consi@ér a rather trivial, but pracﬁi—
*cal example -- thé proeﬁdure for putting on your
shoes and socks (assuming, of course, that you do Nl
wear shoes and socka). Examine Figure 2.1 where
two flowcharts are given which describe a proce~ .

dure for shoelng your feet,

-

aterpret the "flow"

\

You can probably read and

of the procedure without any trouble., You'll learn

~ about the meanings of the symbols later, If you

,.A‘?!a.%“ .
are sure that you'understand how to read the two

flowcharts and you understand what the-procedure

- - N . 2 ey

\ ¢ >
’ K . Lo
: N e -
' ' . - Start j) '
-) & \d .’ . ® ‘f. -
" ’ .) " e
C L e ‘Find shoaes.- - Begin where afrow comes into bhox on 1ine by - lide flow-" . Find shoeg B _
' . " chart or at "Start" on boxed flowchart. Find shoes. . - : : ' S
No ’ R . ’ ' : e . B N
- 2% - Right ones? 1If they aren't the rlght ones, keep looking until y0u No - Right ™
: b find the right ones. . : : oneg?
. Yes Yes .
3 Socks on? (When you 've found the.right ones, check your sodks. _ ‘
A 'If they're on, then put your shoes on.- Socks Yes
. on? ! - h.
LI . 3} No
. b Find socks. .= If your socks aren't on, theg find them. ' Find socks |, |
. T :
' \ No . . c /
) P Right onﬁﬁ? If they aren't the right ones, keep looking until you -
- find the right dnes. ' - .
- \ ' ’ ’
; Yes . ' ’ ; _
6 Feet clean? “When you've found the right’ ones, check your feet. If ¢
o " ' ’ they re clean, put your socks on, then your shoes.
"7 Wash and dry feet. If they're not clean, wash and dry -your feet. Wash and dry feet.
8 Put, socks on. - ot Put your socks on. ‘ - ' Put_socks on |
9 L* ‘Put shoes on. * [~# . Put'your shoes on. S R fut shoes on
a - Stop when drrow goes out of the box on tha line by line (ij étop ':>
flowthart or with "Stop" onkthe boxed flowchart. A ¢)‘3
- - L
Figure 2,1 ~A line by line flowchart (left) and a boxed flewchart (right) describing . .

LN .

& procedure (center) for putting on shoes and socks.

) 4 2.5
» ‘ IS
. {)
<3 _ . !
. . is for showi{g-ggur feet as described by the flow- -
/o L -~ : ch%égg, then progqeg with Activity.C. . \
. A 3
€. - A numeric example.
' o " Let's take an example more nearly related to
computer programming ~- finding the sum and average

. . ‘ ¢

? - : of N values, Y ,°Y,, Yi? TR s
. A -~ - / R

The sum 1s defined by

‘ "‘“WSUM\<\?l'+'Y2 t ¥+ Yy)
and the average-is defined by

- -AVE = SUM : N. .

~ .\ -~

A procedure for performing these calculations 18

-

. described by the flowcharts in Figure 2.2 along
with an explanation of the operations represent- s

ed by the flowcharts. After you have examined
. : .
the flowcharts, then we'll discuss ¢ach one in

greater detail.

. | © D.- Discussion of the lime by line flowchart. \
. & ' K . :
’ ’ In the Yline by line" flowchart, the flow of

computaﬁion is from one line to the next, unless

L3

a branch uccursz which is indicated by an arcow
__amah&ting from the line. An unconditional branch

19'%ndicaied by an arrow without conditiona% indi-

o cators. A conditional branch is indicated by an
. ' }
arrow or arrows with conditional indicators, such

/&’ 34 : : o

1 ¥ Read N,Y .o YN :
- -‘\3) \ -
- § -\f‘a
2 SUM « 3
3 K+ 0 \>\“\
Awd "rb K:N T
N
2 K « K+1 .
6 - suM <« SUM + g
7 AVE « SUM + N ¢
N .
8 : Write SUM,AVE - —
&
L.,,. - *

Figure 2.2 Line by line.(left) and boxed (right)
a procedure {center) for calculating tha average o

-

"+ Obtain the numbers that will be used. \in_phe

B R g T TP

LI R T S s e S g e e .,s.-.-—-...ru_u— T R
\ o
. . : .
. e
. ot .

computations. . T

*

Set the summer to zero.
This 18- analogous to clearing the dials on a desk -
{calculator, resetting them to zeros. - .

A counter K is set. so that the N~Values of Y can be
added one aqu time.

K is compared to N.

is next.
When K#N, 'then the counter fs incremented,

-

\ v

and the next value of Y is added, after which the
counter is checked again.
of the adding operation is continued
looping. - o, N

i
i

s

When the answer to the question K2N? is &es, then .
the average 1s calculated.

°

P

The results of the calculationSrar% recorded for later

use, and that' s .all there is to do!

LY

(« ﬁéans "is repléced by")

If K2N, then 5;1 the values of.’
Y have been added, and the calculation of the ave#eii

As long as K#N, repetition
_this is called®

v

lowéharts describing
a set of N numbers.

,,_,_n_ NI T _«~LJ;|!D!JFFM

\.')

v

g gt&rt‘\) ., 3
’ . Read N o
_ Yl YN -

l SUM < 0. .

Yes

r‘b -

? , /-: —

#

(C

Mevcon bt ara om0 s era.

80X TYPE

a8 =, P, <, S, >, 2, emanating from a statement

of tHe form

expressionl : expression?
. . d

At line % the statement which follows the gtate-
_ : A ‘

Y
ment
. . L

as long as K < N 18 on line 5, When K 2 N, the
statement at line 7 follows the ome at line 4.
Entry to the routine 18 indicated by the unattach-
ed arrow at line 1; efit from the routine is indi-
cateﬂ by the arrow at iine 8.
’Q}spusaion~of boxed flowchart.
In the boxed'typeaflowchait, each statement

or idea 18 placed in one of six typeé of boxﬁs.
The shape of' the box identifies’a sﬁe;ific'func~

tion that is to be performed. Box types and their
g

functiona_follow."A' ~
) FUNCTION
" initiate or terminate a program _
' segment or algorithm

B .
T
. 7,
»

execute a process or perform a’
calculation

27 -

M

N A e A A T TS R TET M ARSI e e - s | v ST E R s sne

’ 2.3 \ L .

|
A . N .
BOX TYRE FUNCTION
T 1ﬂitiafize
e " teat e
perform loop process .
-/ increment ¥
.)
- ™ L 3
a F A ¢
- / : B
- ' ' - perform input or output
I
N
_ ’ ‘ / make a decision
¥ / -
(f*t> . connect to another sequence
& -
The.sequence of steps, orkflow, in the flow-
AR - . chart is indicated by arrows which connect boxes.
.) “ Unlabeled arrows are called unconditional branches.
. " . .
I . Arrows with labels designate conditional branches,
allowing the floW to proceed along alternate path~
Py ' . .
ways, thegconditions being stated by the labels
. ») - A} *
. on the arrows.

Now, let's take each block of the boxed flow-

" chart separately.

]
¢

Obviously, this tells you where to start in che

i st |
: <: _,;?fiﬂn;:> flowchart. ‘

|

. £
* It's also obvious that this box tells you
- & ; where to stop or terminate the procedure.
(: Stop —T>/)
e e This box must be at the logical end of the

flow through the flowchart.

This box indicates that we want the computey
to get the value of N and all the Y's from.
some device which cam supply the computer with

Information or data. Our concern at this time

18 not how this is accomplished by what kind

of device; rather the general notion of putting
: : 3

Information into the system from some external
source is the main_concérn. (This is analogous
to a person's putting data into a calculator

' through the keyboard,'thg)peraon himaelf-being

the external source.)

Similarly, thig block instructs the‘computer

to write the results on some external output

device. As in the case of the read box, the

Write

main confern now is not how this is done; just
SUM, AVE

the general notion that it is done is important.

(This is analogous to the printing of results

on paper tape by a desk galculator or cash reg-

F - dster.)
y --¢ A1l of these boxes represent some process,
5 .
. . .
S + 0 cdncluding calculations in two cases. The

29

S
S
N
N
"

R

SUMeSUM+HY ¢]
_ —
.

AVE*SUM:N:]

—

L

0

e a— .L- ——————

SUMeSUMHY

o oo e et -

K
[~ K > N? “"“1
. K+ K+l

first box says, "Rep{nce what is iﬁ-SUﬂ By
zero." The second box says, "Replace SUM
with the current value oflSUM added to YK." ®
The, third box says, "Replaca-AVE_with SUM

divided by N." s

~ . ' #
This box sets up and controls a loop process.
The summing box 1s to be repeated N times,
The counter for the loop 1s given an initial
value of zero. The next statémant-in saquence
s K = N? As long as the answer is '"no,"
the.next statement in sequence, K + K+l; is
éxeguggd, followeé by the summing process.
Then the value of K i8 compared to N again,
and the .process is repeated as long as K is
not =2 N. But, when K is 2 N, then the loop-
ing will be terminated and the next box in
sequence willvbe ekecuted -~ in this case,
AVE +« SUM + N,

k
Notice that the loop process box hagﬁ
more than one arrow coming out of it; one,
the dne labeled "yes," is a conditional

branch. Notice also that the box eontains

three distidct steps: initlalizing K, test=

Ing K against N,‘and incrementing K,

The looplpgocess could also be represented

by the symbols shown on the next page with

K + K+1

.‘l—.j
.
-

the three steps =~ initializing, testing,
and incrementing -- shOWngeparately. Here
the decision box is used.. Like the loop
process box, the d@ciéion box has more ghan

one exit from the box. Two conditional

branches occur in this case, one labeled

yes” and one labeled "no." Sequences which o

sat an initial value and test and increment
the value occur so frequently, however, that

they are usually combined into one loop proc—

ess block. Generakkibzﬁb should expect to
‘use the loop process béx for initialize-test-

increment sequences.

Ly

Some additional examples of boxed floweharts.

i

Figure 2.3
Decision Box

% The box shown "in Rigure 2.3 may be ugad'
to indicate branching alternatives such as
(1) 1less ;han zexo (<0), equal to gero
(=0), greater than zero (>0) (three
way branch) |

(£1) 1less than or eﬁual to zero (s0),

!
31 . N

2.11

[

[

e = - o 2 R s — - - —

. *
2.12 - : >
AN
greater than zero (>0) (two way
, branch)
»
(111) etc.

¢ .
'/\
ff
Figure 2¢4
Decision Box Examples
¢
In Figure 2.4 examples of two way
- branches and three way branches are given.
N If

. AREA - 40.23 < 0

[‘/ . .

the next box in sequence is \the one indicateq

by . Note that

I O Rt B e T e e e e e e o]

and

e~ 40.23 < 0

[< 40.23

are two different ways to state that the

quantity called AREA is less than 40.23.

LY

The other conditions require sdditional

~

" tests before the next box in sequence is

deternined. These cholces are 1llustrated

in Table 2.1.

Branching Alternatives for Figyre 2.4

~

w»

¥

g)
FIRST CONDITION SECOND CONDITION NEXT BOX *
AREA - 40.23 < 0 b .7

%
< .
AREA ~ 40.23 > 0 - C =~ 2MR = 0 3
AREA - 40,23 > 0 C~ 2MR # 0 A
AREA - 40.23 = 0 L<O . -5
, ' e
AREA « 40.23 = 0 L 0 6
-« . F-3
‘ ‘Table 2.1 o

N

2.14

Figure 2.5 o
Alternate Repres9ntations of Two Way Branches

-

Figure‘Z.S 1llustrates different ways to
rapresant the same alternatives.
For twod way branches, it is possible to

state the question in terms of logical rela-
tions rather than arithmetic relations. Figure
2.6 illustrates this slightdy different nota-

tion.

‘Figura 2.6 |)
Logical Representation of Two Way Branches

TFigure 2.7
A Branching Maze

—

. .J
Fill in Table 2.2 to correspond to the branching
alternatives for Figure 2.7, -

«

o
&

A

¢ Y ST R e s TS AT T e T 1m0

current sgenester. -

36

5

2,16
FIRST SECOND THIRD NEXT
CONDITION CONDITTION CONDITION BOX
l K
. .
9 | | ‘
l\
° ‘ \
I
‘i
Table 2.2
Branching Alternatives for Figure 2.7
‘e
J/l/ '
G. Your fextbook may\have additional information
that is helpful. Do Aetivity 1 in the UNIT #2
ACTIVITIES TABLE.
SELF ASSESSMENT: ..
A. Construct a line by 1ine flowchart f0£ Figure 2.4,
B. Construct a line by line flowcBart for Figure 2.7,
. C. Construet a boxed flowchart contalning of at least three
» decisions describing how you spend Mondays during the
) -) '

’

D,

Construct a line by line flowchart containing at least

three decisions describing your enyollm@nt in the Univer-

sity this sepester.

PA ':
Construct a boxed flowchart containing at least two
decisions describing how to change a flat tire -- or

a?w to get help, 1f you donlt know how to change it.

operations as pdesible to determine which of eight objects,

was of different weight if seven of the eight had identi~"

cal waights and the eighth was of differen{ weight, using

only a beam balance. Your solution must glso determine
whether the object was heavier or lighter than the other
If you are enrblled in the "PIPI Package," then construct

a line by line flowchart to describe the techniques of

~ preparing a report as described in Communications Unit 5.

L]

S5ee your {nstructor and show him some of your flowcharts. He

will help you with any errors thai have code up or with anything

-~

‘that you don't understand.

ASSESSMENT TASKS: See your instructor. You will need pencil and

-

paper, and you may use youf books. You will be.

) ;kquired'to write both boxed and line by line

flowcharts.

ﬁHAT NEXT? You may proceed with UNIT #5Iif you have done UNITS #3

and #4 already. If you haven't done 3 and 4, then go

‘f ')

- _ : 53;7

- COQS_F?‘};‘C,_C__F line by line flowchart consisting of as few .. .

2,18

~...\q—-—m = = s Crr—. == L i S S R

to UNIT #3. 1f you have done 3, but not 4, then do

oNIT f4. . -
- q . E B

’

~
-
- -]
. [}
-
-
.
. ~
¢
.
LS
’
2
-
-
L4
EY
. .
¥
.
.
4
-
L]
!
3
.
_"/

2

“=F . UNIT #3 (COMSC)

TITLE: Variables, anstants, Expressions and Assignment
Statements

"RATIONALE:

OBJECTIVE:

Fortran is a procedure—oriented language developed

PR U J— i e

specifically to handle algebralc expressions. The

mdst basic elements of algebra and Tortran are vari-~

ables and constants and the expressions constructed

]

\
from them by connecting them with arithmetic operators.
: L3
In order to program in Fortran you must have a thor-
ough grasp of these concepts in both plgebra and For-

tran. Your grasp of the algebra part ig assﬁmed; the °

« Fortrdn part is contained -in this unit,

When you complete thig unit, you will be able to
(1) ihentify and construct integer and feal

constants and variables;

(¥i) identify,*éonstruct, and evaluate Fortran

4

expressons; ' <
{

(141) identify and construct assignment statéments,

and describe the results when they are exe-

“

cuted.

PREREQUISITES: UNIT #1, if required, and a working knowledge of.

elementary algebra.

n

39

" 3.1

LAV

ACTIVITIES:

1.

SELF EVALUATION FOR PART 1: |

o . Part 1.

‘whole number. If we attempt to piace the value 3.4

?

Fortran variable$ and conﬁtﬂnKQA,x'".

The one most noticeable diffarenca bmtw@én algebra and;gj

arithmetic is the use in algabrg of alphabatiq 1acterg §f'

™ - A

to represent umknown valuea. As in the case of algebrﬁ, "

this is.a particularly important characteriStlc of Fbra:.
8

[N ©

- tran. Just as in algebra we solve or., rpdqce @xpresalons

in which unknowns (variables) appear,,?o we Vill mﬂnipuﬁ:w_m

w

late expressions in Fortran, even though at the tima,of;;
writing the program the values of the variables are un-

lknown. : 8

Refer to UNIT #3, ACTIVITIES TABLE,. Activity 1. \
In Fortran, the mode or.type & the number being used
is designated through the initial letter in the vari-

able name. You must be very eareful to insure that

the name you use for a variable cdtrectly reflects the
: »

use that will be made of the variable. One of the most

»
Pl

common errors made by new and old programmers alike is

to use an integer name for a value that is not a vhole

number, or to use & Yeal nate for a value that is a

¢

in the location labeled IX, IX.would contain only the

value 3. The .4 would be dropped and lost.

;

The answers to these exercises axe given on the page -.

following them. -

1.

Identify the following as variable names’ ox constants

. a0

i
e

. 3.3
L - &
and as real or integer if they are valid. If they are
invalid, state why they are invalid.
~ a. AKTION
o b. X-RAY
: | N
Cc. INTEREST *
d: 5.34 .
e. SUM3 ’
o £..20,00000 . @ s
g. KING - !
. he 2419
- \ . Y
1. 5.78k6 . *
j. 25 —_
'. ¢ k. DISTANGE
T N - -
\ .*.._s. e by ! ‘
° S 1. 1% * : .
= “ N 1 :
m. 10,365. ' . ‘ -
n, RATE #
o. C
. p. K8J3
. | . gq. STOP"
2. Take the numbergé qnd write it aé an integer conséant,
-a real constant;,' and a real constant in exponential form.
o P S - 3. Take the number 25.6 and.write it as an integer constant,
o) , - a real constant, and a real constant in axponential form.
4. “Write five'different integer variable names.,
. 3. Write five different real variable names.
- W , -
..- v . B s
Qo o, C. . l ’

Ao

b. Invalid:

"~ 'g. Valid integer variable ™ . 7

Answers: .

a. Valid real variable
spacial chdracter -

c¢. Invalid: more than six characters
d. Valid real constant
e. Valid real variable
f. Invalid: imbedded comma
h. Invalid: does not begin with alphabetic character

& .
i. Valid real (exponential) constant

“j. Valid integer constant

k. Invalid: to more than six characters

1. Invalid:

special character %' Lo
m. Invalid: imbedded comma |

n. Valid real Qariable

o. Valid real variable

p. . Valid integer variable ‘ .
q. Valid -real variable - e

-

&

Integer, 256; real, 256. or 256.0; real exponential,

256.E0 or 256.0EO or 2.56E2 and other variations.

Integer, 25 (the .6. is truncated); real, 25.6; realf

exponential, 25.6E0 or 2.356El 6r 256.E~1 and other varia-

2 .

tions. . 4

3
-

e

. - .
Any combinations of up to and including six alphabetic

'épd numeric characters, beginning with one of the letters

I-N, is acceptable.

LS N

Note:

F -’LT;?'?“'“

Any combination of up to and including six alphabetic
and numeric characters, beginning with one of the letters

A-H and 0~2Z, is accaptab%?.

. B

IBM 1130 Fortran allows a ?ﬁiimum of only five characters

in variable names.

-

¥ Y ® .

You must be sure that you can racognize the difference between
Integer and real constants and variables names; proceaed with

Part II when you feel that you are ready. C%ﬁ

L

Part 1I. Fortran Expressions.

1. Refer to UNIT #3 ACTIVITIES TABLE, Activity 2.

2. There are several very lmportant points in this
section which need emphasizing. Reread the reference
cited in the ACTIVITIES TABLE with spaclal emphasis on

<

T ' '
a. the use of parentheses in expressions;

=

be the hierarchy of operations in an expression;

c. valid typ}a of exponentiation;

d. the mode or type of the value of an expression;

e. probleﬁs of accuracy and précision; r
f. an& integer ;ivision.
3+~ The exponentiation oﬁe;g;or requires more discussion.
Either a.raal or an integer quantity may be raised to
an‘;;N gér powére For exaﬁpla, it 18 correct to use
ARSK

or

JERK

3.5

AN

-

3.6

B e TN
SO — - e —r— - i

N .
When an integer axponent is usad, the exponentiation

is actually performed by succeasive multiplicationa.

For example, ARRG | evaluated by the computer as

A*AYAYA. Thus, A may be positive, negative, or zero.
’

Furthermore, K may be negative or zero (1f A40.0).

[f K has a value of -4, for example, then AWK {g

avaluated as

or

1.0 :
A*A*§*A . \ _
In summary, there are no restrictions on A o;h;T>Q§

the case A**K, that is, for a real quantity raised
to an integer power (except that A cann;t be zero
Q&En K<0).

For the case d**K, there is one reatrictién,
however. Since by definition no-fractional parts are
avallable .with integars, K cannot be negative. In
other words, J**K cannot be evaluated since.lfﬁ con-

A

tains no fractional part. (Also J cannot be gero

[

when K is zero.) s
. Real exponents may be used. TFor example,
ARKE ' ’
'

o
<

is a valid-expression. When real exponents are used,

the expression is avaluated with logarithmazi

14 S

Ha

e e T e TR e e Rt el

.‘“

.antilog(e -logh)
or in Fortran, ¥aooe

EXP (E*ALOG(A))
Since the logarlithm function {8 undefined for As0.0, A

must always be greatar than zero.

The expression
»
JRkE
is allowed with some compilers. When it i{s allowed, J is

converted to a real quantity before the expression is

evaluated; the result {s real, not integer.

The results and restrictions of the types of expo-
nentigtion are summarized in Table 3.1. Certain sugges-
tions gecome appafent upon examination of the concepts
in the table.

b(ij Usually, if the po&e? to which-you are raising

~ a number is a small integer, it may be bettgr

glmply to multiply it out rather than to use
the exponentlation operator. *For example,
x*#z is bettar-written X*X.

»211). Since~tha use of an integer power is less
restrictive, use an integer power whenever
possible, unless the power is large, in which
case the execution time can become excessive.

(111) When the power {is large, 1t is bétger to use

. a real exponent for ahpfter execution time,
provided, of céursa, thatinhe number being

-~

ralsed to the power is greater than zero.

. . >

o . .. 3 {gf;

3.7

l\\/ =

L

R BT e e e

3.8

. %
&
: -
»”
'y
- 'I\ype of E\}aluat ion
@xponentiation Reatrictions procedure Result
. . .
’ JHRK K20 NE NI X Integer
AWK Generally none- | A%A%,, %A Real
most general
case¥
JRAE Not allowed XJ + J Real
. with. some com- EXP (B¥ALOG(X.J))
pllers; if or
v allowed, J>0 antilog (8dogXJ)
. EXP(E*ALOG(A)) | Real .
ANXE A20.0 or
antilog(edlogA)

A

* Thafe are additibnal rastfictions when J or A is gero. The

following cases are undefined:
. O¥ng , Ks0

0.0%K, k<0 -

exponentiation.

Results and re&tricfions
J and K represent i
A, E, and XJ represent real

quantities.

N,

on various typaes of
nteger quantities;

“

T - — T ST o

3.9
. ¥
4, The hierarchy of operations can be summarized as follows:
(1) Parenthesas, ilnnermost firat,‘from left to right.
(i) _Fuoctions from left to right.
“ L
(i1i) Exponentiation froem left to right.
(iv) Multiplication and division from left to right.
(v) Addition and subtraction from left to right.
SELF EVALUATION FOR PART Il: . . . e
7 Answers are on the page following the exercilses.
1. 1ldentify the following expressions as real or inte-
& ger if they are valid. 1If they are ‘invalid, state
why they are invalid.
’ a. J*2.04K .
\
b, A%%4+2, 0%B-C
¢, 2.0(A+B)<C
d. JRRT/KR*N @
' e. A/-BHC .
2. Construct Fortran expressions for the following.
" ath a+b ' (r) t-1
Qe —— Ce "“""'("i‘ e. p -
chd o4 8
o .
/
L’l'b a C'd
. de = + S
b c+10 b e-f-g

N
~F

3.0

Angwers.

: : 1. a.

Invalid (generally) - mixed mode
Valid, real

Invalid - miesing operator after 2.0
Valid, integer

Invalid ~ two operators (/ and -) together

(A*B)/ (C+10.0) or A*B/(C+10.0)
(A+B)/(C+D/E)

A/B+{C*D){(E*F*G) or A/B+CH¥D/ (EXF*G)
(p*(a/é))*w(r—l.b) or (P*R}s)**(Tml.O)

1f P¥R/S is negative, an error will result since the

/ b3

o exponent is real and the expression {s évaluated by

Part III. Assignment Statements.

1.

2.

- .

logarithms. This problem is overcome by writing the
expression with an integer exponent.

(P*R/S) ** (1T~1)

»

Refer to UNIT #3 ACTIVITIES TABLE, Activity 3.

In Fortran aasignment statements, the'"eduals" symbol
does not -actually meaﬁ eéuai;ty. lRather i; should be
thought of as a storage operator or égxeplacement op-
ervator. The value of khe axpreasioﬁ;on the right of

v

Mat' g gtored in‘the{storage location identified on
the left of "="; or sayipg 1t another way, the value- \
on the left of "=" {s replaced by the value of the ex-

pression on the x&ghtz. "!8

¥ bty g

e

) | - E 3.11
3. Notice that the value of an integer expression on

the right can be stored as a real value on the leff,

‘and vice versa. FYFor example, J=2.6 gives an integer

Qaiue of 2 stored in J, (The fractional part is

‘f.
truncated.) A=2 glvaes a real value of 2.0 stored

.

« In Ao

SELF EVALUATION FOR PART I{L.. | /
Ansvers are on the page following the exercises.
1. Ildentify the fol{owlng asslignment statements as
vglid or invalid.
a. J¥K=1
b. A=2.0%B | .
¢. -BaC/D+E ’
d. X=SIN(Y)
2. Constrﬁct Fortran assiénment statements for the

following.

a. x = cos(y) + x-sin(z) ' -

Y G ar YA
z&

c. 1 = (2.0-%-:»;2)1/2

3. State the humeric value.of J that will be transferred
to memory by.the following arithmetilc assignment atatg;
" ments. o
a J = 5%5/7
‘U. J = 5/7%3 N
‘ - t .

h

[|

sy S B SRR

J.12

ments.

a- X Sws/7 4
b, X m 7/5%5 7 e
d. K = 4x3Exp . g

LN

c. J = 2.0/3.0 + 2.0/3.0
d. J = 5%7/5

e. J = 7/5%5

‘Stdte. the numeric valu@ of X that will be transferred

to. memoyy by the following arithmetic asgsignment state-

Refer to UNIT #3 ACTIVITIES TABLE, Activity 4.

2

X = 3.0%.002.0

X = 4.0/2.0%5,0

X = 5.0/3.0+3.0/3.045.0/3.0

%

p [N R TRty

3.13
Anawers. ,
1. a. Invalid - single name must appear on laft‘
. b. Valid - .
c. Invalid - -B Incorrect
d. Valid .
- 2.)a. X = COS(Y) + X*SIN(Z)
T | be A m (=({~XFY+27.0)/2%82))%%4 . . o e

or A = (= (=X4Y+27.Q) [Z¥X2) k%4 .

e, R o= (2.04X%%2)%%0.5 or R = SQRT(2.0+X*#2)

N

¥ 3. a. 3
b. O
Ce 1
\ L)
d. 7
e. 5 - '
‘ﬂ. q
4. a. %.0 * -
b. 5.0
. 5 \
c. 36.0 ‘ ,@
d. 10.0 . |
. e. 10.0 s -

f. Approximately 4.33333 or 13/3

5. Refer to UNIT #3 ACTIVITIES TABLE, Activity 4.

{

AT - B - R '
3 . 1{‘ . - ; I
/ !
: \ :
—) ABSESSMENT TASK: Please see your instructor. You will bg required
to idantify and construct corr@ctly writtén constants,
.= v \
variable names, expressions, and assignment state- -
mentas. You will also ba_reguir@d to evaluate Fortran
- expressions and to describe the results &hen»Forgran
assignment ataqdﬁent are executed.
) WHAT NEXT? ~You may go ahead with UNIT #2 ox with UNIT #4. B
¢ g
.]
! \ NS
/ . ‘ g
» J’& N N N
N w
» t .
{ ‘
92
v ~
n\) o Al Y
.7_ - \ , :)
...4 R S WP - \'—-:.'-"""“."é' 4 "r~'r- KLY SO . sl 'i‘ - '."»7 - .o o o

UNIT #4 (COMSC)

TITLE: STATEMENT .NUMBERS AND.UNCONDITIONAL.BRANCHES o

f RATIONALE: One of the important characteristics of the modern
computer is its abilipy to execute repeatedly a series

/ ‘ of instructions automatically. This unit is the first

»

_of several that will help you learn to utllize this

-

+

abilicy.

~
7

OBJECTIVES: When you complete this unit} you will be able to

construct and identify statement numbexrs .and uncon-

' ditional branches that will utilize the statement _

-~

’

A

numbers. N

PREREQUISITES : UNIT. #3 (COMSC).

’ i) . . ‘ﬁ
ACTIVITIES: 1// - . . : '

1. 'Normally program steps are exécﬁted sequentially.id the

) same order in which they appaar““-lq Fi&ﬁre 4,1 the first

. L]

- . statement executed would put 5.0 in theqstorage location
t - ‘ N .
named A. : R "
- \
. ,/. ’)

“.V. - ' ”\,
.‘\ A b .5’0 0 .o
B = A+ 1.0 . vt

\ " C=B8-+ A% 3.0 _ 8-

' Figure 4,1, A sample program segment,
11lustrating the normal order of execution from top to boftom.

- 53\.\.

N

ST AR e PR SN AN TR TSRS SR b o

b2

S by it

3

L

The next one executed would put a 6.0 in locagion B. Th

@

N
e

4
last one would put -21.0 in location C. Normally this order

of executlon from top to hottom is desirable, since usually

we do want the. Statements executed in the same order in

which they are written.

There are, however, important ex-

ceptions. Frequently we may want_to rapeat the execution

of some statements or group of statements. Without the

abili%y to raepeat the executlon of a sefige of program

8teps,

lbractical}

Por example, suppose we wa

14

the programs we write would be

e

%
too long to be

«

nt to compute the volume of

25 boxes. The firat box*has dimensions of 1 unit, 4 units,

and 5 units..

“

unit lérger than the preceding box. For such a job we

Each succeeding box has dimensions each 1

9

might write the program shogn in Figure 4,2.

Y

<OTDEI<O

S
&

> <O

O
=

O
L

8 B &% ¥ 3 8

-

1.0)
4.0

5.0 .
m A% B % (Q .

2.0 \ \
5.0

6.0

w A% B % (C

3.0

6.0 .

7.0 ’ '

= A% B % (C -
atc.

T o

" Figura 4.2.

[A

v

poep

Sampie program segment for calculatiﬁg

the volume of 25 boxﬁzﬂﬁfth-dimenaion

s incremented by one each time.

. 5¢

‘o

This series would continue until we had computed the

volume of 25 boxeg. How many statements would we have
s
written? Notice that there are 4 statementsfor
the computation of VOL fqr each box. | ,
1f we take advantage of thejgterative‘gapability of a-

computer, we can write the'program ip a much shorter way,
f 3howﬁ'in Figure 4.3. The next to the last line ié nét a . i

valid Foétrah'—é'tateiﬁéﬁt';”"it' is a substitution for a Fortran

statement that wil? be covered later.,

#

e+t +ro00

a4 5 &8]

B R 2

OO O
%
(]

Wi

How>§0qﬁ>
=

Qo R D

i

=
= >

equal 26 stop

8
s

Ly

Figure 4.3. Shortened program segméht for calculating the
volume of 25 boxes with ‘dimensions incremented by one each time

]

There are some things in this serles that need explain-

ing, but one thing shoyld be clear. From a series of 100 . -

£ 1

. .) ¥
Statements, we hawve cut down to only 9 statements.
Take a look at the .fourth statement in Figure 4.3.
*There 1s a number that appears in front of the statement.

This mumber is referred to as a statement number. The

soia-purpose of a statement number is to identify the

L]

statement for later reference. We give it a unique number a

55

g U OU J— - L. Y

- e = T T cnr 2 = S [S - . s, P
ey TR 8 D T - 4

// ’ 8o that we can refer to that statement from other parts
/ | &
of the program. (Note that this is not a sequence number.

Statement number 5 is not necessarily the fifth statement .

13

If you have a hangup for numbers, you might name three
children "fen,” "Two,h and "Iwenty." These are valid
names and do not necessarfly imply that. you have twenty

children, nor are they necessarily named in numerical

.Y

- ordary)

+

The statement numbers in Figure 4.4 are perfectly

Valid.
\‘é 77|, A =B
105[| A =B+ 15.0 + &k
% 6 B=RB%A
\\999 B=DB+ 1B

~—

|

Figufe 4.4, Exagples of statements -with statemeﬂt_numbers.

L4

L4

. _
Statement numbers must be‘pogitive integers from 1
to 99999, though the maximum number allowed may be less

for some computer systems.

2, Refer to UNIT #4 ACTIVITIES TABLE, Activity 1. An example

%

of a Fortran coding ?5rm, which is available in the book~
store, is shown on page 4.5. You are ancouraged to use
coding forms for writing programs to be punqhed on com=-
puter cards, which you'll take up in UNIT #5, sinca the
format of the coding form is the sama as the format of the
Fortran compu%ef card.,

Notice once more that statement numbers are placed

-

anywhere in columns 1«5 and Fortran statements are placed

o

S

JECR S

AL LRl mnepse

PR L

L

A EVA WUNIVERS v

s T

«
scnmem——.

FAGE ... OF

PROGRAMMERS HAME

L } _| eropLem nympes
/

“
i
5
&

SECTION NO,

N

R W

L}

EROBLEM TITLE

o
D
o
g {2 |- m
£ 1.
& E L} §
cu n -+ —— - q
B 1 -t e ==t -1 j
L -)
@ LE i
o * B .t
> v +- - —- T - -
n 4 W .
£ [m
I i] i
12 4 T
i o
¥ 1
E m T —
-
2 | 7
3
[.)
S P
| q o
L @ . ’ B 4
] o
E T
3 T
0 +
2 '
2 i
7 t
o .
e P t
2 L]
& ! —
2 1
2 R i r :
? :) i P { 3
% ; i —
= -
w e i]
; ;
R K — ; —
- _ﬂ i | N H d
i i R
< HE e i
- 8 i i L
o hE R -
3 o : R
= te ; : 0
o "
< g . t : -
& = t - ; -
i ; i i : :]
R M ; 4 _ i
% 18 P ! | : :
® 1 o ' H } { H § :
” : . ;) ;
L T Y T Y PN
2 ~ . _~ N I,
& ! P 1 Loy T
5 : - ; R * j R
a “_ S Lo m T A A A
e S U RS P T -
- - e ———— e e = - - - - -4 4 s > A - - s
g o R Ty ~+n.w. R N
5 P Tt . T
2 S S S A S S S S I
et ¢ D Ry e SO RO S S T t
S B S O D N e - R
| - e - e IR i -1 - 0. - T T o .n - .@., e o e -
S : : L PR : + - , : : _
o | T T : : oty T r T ¥ S
= -+ pOR a -+ I..#'l ' J‘ + - H
o~ . . . , . £
mw —_ e ‘ - xS L_-lliLﬁ [- w —— q
: : 5 X . i
J— - - e e e pa R lﬂl - + ; - —— m W
o . B . N i &
- 4 - ‘_T [N A " S ‘Hlynl:f.ll - . . — H
2 O, A | —- :
~) ! : T i
+ - - + - -
m 1 ﬂ £ m
= : H
* ! B 2
t [
2 - [y) - A E
gy &u Co #
z] I i
e —~ T ;
< + g .
P —} —— W
2y b -
~ . 3
T) , ' _. .
- t B
.m i ; w1
.Q ” ..|1. -
Z . ;
© - 3 e

.

¥

4,6

hnywhare in columms 6-72.

The last statement in Figure 4.3 18 called an uwaconditional

————

branch. Up to this point, each statement has besen executed

» sequentially. This last statement, however, changes the

" orxder of execution. It tells the computer to execute next

4.

the statement identifled by statement number ™5" and continue

sequentially from that point. The next statement executed
=)
after statement number 5 is the statement *
3)

« A=A+ 1,0

In an unconditional GO TO statement, the 8o TO is always

. o
followed by an integer conatant which is the unique state-
ment number of the statement to which trénsfer is to take

place.

Refer to UNIT ﬁh ACTIVITIES TABLE, Activity 2.

SELF EVALUATION:

1.

Which of the following are legal statement numbers?

a. 13 d. 123456
b- QB *) Q. 2/3 .
c. 3456 £, 241

Write a statement that will cause a branch from the last

statement of the following routine to the second statement.

-

Add statement numbers-if necessary.

-

-
-

Vs e e i,

n.‘ /

3. Write a set of Fortran statements (a program segment) that

will count by fives. Set the counter to 4ero; use integers,
Then add flve to the counter, and go back to the statement
that adds five, etc. (Refer to UNIT #4 ACTIVITIES TABLE,

Activity 3, for help.)

Answers:

- »

"l. Legal statement numbers are a and c.- The number in d has

r

more than 5 digits. ‘"The ones contained in b, e, and

contain characters that are ot numerals.

A% N
wle) ;
T3] A=1.0 .. \\L
, 50 B= A+ 3.0 .
A= A+ A
He= 0.5 %A %% 32 -
GO TO 50
3. e
, Ne 0 o
10 N=N+S5
"GO TO. 10 .
r [}

~% .

ASSESSMENT TASK: Please see your ingéiuctot. You will be required
to identify valid statement ?umbers and to con-

struct one or more short program segments using

LY

unconditiqnal GO TO statements and'the material

in UNIT'#3. - \N :

| 61

4.8
WHAT NEXT? 1If you have completed UNIT #2, you are ready to
proceed with UNIT #5. 1If you have not done UNIT #2,
-
then do 1t, after which you may go to UNIT #5.
:
’
.l
\\/_"

e L

. UNIT #5 (COMSC)

TITLE: Preparing a Job for Running on the Computer

RATIONALE:

OBJECTIVE:

In the next unit, UNIT #6, you will be writing your
first Fortran program. Before you can rqp}y?gr.éyof_
gram on the computer, you must know abodthkaypunch
machines and punched cards; you must know how to run
jobs "on the computer; and yoﬁ néed to know how to
document a program.

%he first part of this unit deals with punched
cards. Since the punched card is still one of the
prime means of input to the gémputer, you need to
know how to punch'and interpret éomputer cardg. In
order to punch cards, you make use of a‘card punch
or keyptnch machine, which you will find out ho& to
use. |

The second part of the unit describes documenta-
tion of programs and.;hy it is Nmportant. ¢

The third part tells you how to run a job on the

coéputer. If you were required to' do UNIT #1, then

most of this procedu}e will be a review.

-

-

When you have completed this ﬁnit, you will be able
to demonstrate - -that you can punch computer cards and

interprat them, document and punch a Fortran program
\)

5.1

62

e

AT TR NS AT ety e e R 2 ——— = . PR - - e S A

3.2

« that is given to you, and run the program on the

&
computer.
PREREQUISITES: UNITS #2 and #4.
ACTIVITIES: 3 :
PART 1. Punching and interpreting computer cards.
A. "Do not fold, mutilate, or spindle.”" "The punched

me e - ‘hole will add itself to something else, subtract it-

self from something else, multiply itself by some-
thing else, divide itself by something else, list
iféalf, reproduce ltself, classify itself, select
itself, print itself on a card, produce an automatic
balance forward, file itgelf, post itself, cause a
total to bevprinted, coﬁpare itself to something élse,
reproduce and princlitsglf on the end of a card, cause
a form to feed to a predeta-ﬁiﬁéagpeait}on,'or to be
rejected automatically, or towspace the fdrm from one
position to another,"! : |
How can something that is nothing do all of this?

Simply by pwaching rectangular shaped holes into an

IBM card (punched card) as codes for letters and num-

bers, we can use the card as input to data processing
\ ‘ equipment which in turn performs these functions.
~ A standard IBM punched card measures 7 3/8 by

3 114 4nches, 18 0.007 inches thick, and is made of
e

-

‘Punched Cards, Donald A. C. McGill, McGraw-Hill Book
Company, page Qp.

63 , *

+

SET et ST W) e

was patented by Herman Hollerith, a statistician for

5.3

%

vy

14

apecial paper which withstands the effects of handling
by man and machine. A larger card punched with round
holes 15 used on Sperry Rand Corporation (UNIVAC) equip-

ment; however we will consider only the IBM card,

ment, avan by INIVAC since 1966. - - - - .

An example of an IBM computer card is shown in
Figure 5.1. Usually the upper corner is cut at a 60°
angle with the long edge of the card, although cards

will be found with uncut corners. The corner cut hag ¢

no effect on the operation of the computer and 13'0n1y

éo enable the oﬁeratog@to @ake a quick visual check
that all the cards are facing the same way and are
right-side up. Mixed corner cuts and mixed colgre
can be usad if.it is important to be-able to.distinguish
different card types visually.

The card is divided “into 80 colummns numbeéed 1
thru 80 from left to right, and into 12 rows numbered
12, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, from the top of

the card to the bottom.

The Hollerith code used for punched cards.

The code used in punching data into these cards

the Bureau of The Census. This code enabled the

Census of 1890 to be processed by automated equipment,

54

= P . * Ty
AT sy i L £ S b =T > Nl g .

Column 1 . , Column 80

12-edge

R

«

‘ >

Row 12 —» l'\4\s)n1m"nﬁnwmnumﬂgw-wumrmmwununnmunmwunp«vmuunmynuuh5wwwwﬁmuuuuwnumn‘1"1%ﬁmwn
Row 11 ——s- nESaanonatnEEnn, ‘i[i'ihillﬂ&l‘z"l.ié[f}l&[ﬁl’i@k’l@fﬂﬁﬁﬂ‘i@mﬁﬂﬂmﬁm&ﬂmﬂjIﬁlﬁlﬂ?ﬂdﬁt@l‘éhﬁiﬂiﬂﬁl’iili&]‘iﬂ?ﬂ
| 00000000000000000000000, . (¥R TSRV IV TS P A [D [TRToA®] -+ 0000000000000000060000080
l!llllIllllllll!lll!!ll!lll'lllllllllliflllllllllIlllllllllllllll!lllllllllllilll

~R0w 0 oot

22?3222?222222222222?222222???22222222223272?22?22222222222222222222??22?2222222
JJJJJJJJJJJ33333333333333333333313333333333333333}33333333333333333333333@333333
44444444444444#444

55
86665656685685856868SBbG856658865655886666858666658886666666666868f5688855566666
777777?1717777777777177177777{7777177777777777777777?7777777771777777 ! 111111
088888838888888388838888888888&88888888888888?88388888888888888888888888?8888 38

8999999993989995899 999899899999959999998998999999993999999998999§{ 3949
su NN
1LY}

INBENNINADRINBRDRNIN umnmnmuommmsummsommﬂmmamnmnsmus&mmu!on"’nmmmq wHge

T OKLAHOMA STATE URIVERSITY

&

-

9-adge

Figure 5.1. An example of an IBM computer card. The 80 columns are numbered by small numbers at
the top and at the bottom. The card also containa 12 rows, 10 of which are numbered 0-~9 and
two of which are not numbered on the card. Row 12 {s at the top of the card, and row 11 is
between row 12 and row 0. The top edge of the card is called the 12-edge, while the bottom
edge is called the 9-edge. s :

" ' L] . . il
. . - . . (S ES) L8

W

Anbalel

Dr. Hgllerith in 1903 left the Bureau of the Census
to found the Comput%ng Tabulating Recording Cowpany,
which later was the nucieua of ﬁhe Ihternational
Business Machiﬁ? Corporation.

An examﬁle of a punched computer card ia shown

in Figure 5!2. Careful examination of the card will

& reveal that the Hollerith Cod¢ uses a single punch in

LY

“rows 0 vhrough 9 to represent the digits 0 through 9,

raespectively. A punch in these rows is called a digit

punch, or a numeric punch. Alphabetic characters or

letters are represented by two punches in the same
column. One of these punches is ﬁp one of the rows
12, 11, or O and is called a zone punch, and the other
is a digit punéhlin one of the rows 1 thru 9. Note
that row 0 is called a zone punch for alphabatic .
gﬁaragtersvénd,is called a digit P““?b for numbers.
The codeS'for thé alphabatic and numeric characters
aré depicted in Table 5,1;

* “Note that the zone 0 digit 1 punch is not used
for‘the 1éti§r S as you might expect'but it‘is used
as the speclal character’/ or slash. § ig éone 0

LY

digie 2. '

There are also codes for special characters and/”
or punctuation marks. These consist of two digit
punches, a single zone punch, of a.zone punch and one

w’ .
or two digit punches. The apecial characters that

are used in Fortran IV are glven 1n'Tabla 3.

66 R

5.3

Lk ity 3. 2 . - St o L TN TR) Ll
SIREEE A e Ehteinti LS e E T T A ST e R s 1 ibdaca e W %= D : e Sz e . - g

*
’

r'
&
¢
3

9's

Numeric : ') Special - B _
jcharacters) . | * Alghabetic characters | | characters | — bt v
//f” 01123456789 . ARCDEF GHT JKLMNOPORSTUVHRY S T QLM , TN

12

SASE TSN mol!!l%\!l!w ARV BRI BN unmaNummwm;ls, umss!!mmosssmassmn ARSI

Zone punches

EHTWWTJHHHMﬂﬁﬂﬂﬂmmmmmﬂggﬂgmj{mmmmmmmn e |13 o
00000§00006000000000000 - IR I 01005000000000000000000
111111:1111111t:a111;111111lTlﬁnlrlllzllixtllllln111111111;11:11111:1:1:1111{}11
2222222;22222?2222222522222222:2222222!222
3330333383333233333933033333333033333330333393332333233333330M33333333303333333
A4a8004aRa00aaaaa0aadaRaetaataalanasaaaBaa800000800000la00aaas8a1a0adaetateadn
Numeric or digitJ ssssssassslssssss5555555]55555555!5555555!555555555! MBE655555555555555555555555 e
punches , x sssssﬁﬁsss6!56ssssssssssslsssss&&slassssss!sssssssaslsssosslsssssessassss%ssssss '
| R R R R RNt YRR AR AR ET FAA RN AT YRR RR] SRR R AR R R AR R RRR R Ril R Rt EE
83888388888!88&388888838SIBB888888.3888888.8888Ral!llllaalglﬁﬁssnsssa888888888

89999908999 998989999.99999999.9989993'9989999889993999&99999999989999999
TESE I NRBHDE n 0 mmmmnmsmo:nmmamammommmmumm:ummsmsr:esseomzmnsc«wem1onnmmun "0
IMORR TS) — S . N "

-

ETATE LAIVERSITY

g

Figure 5.2. A punched computer card, showing punches for numeric, alphabetic, and some special
- . characters used in Fortran. ' : v

. ' -, -

ZONE

DIGIT»

ZONE ~ DIGIT
1. CHARACTER PUNCH PUNCH CHARACTER PUNCH PUNCH‘
0 0 . Al .
1 1 J 11 1
2 2 K 11 2
3 3 L 11 3
4 4 M 11 4
3 . 5 N 11 5
6 6 0 T 11 6
7 4 7 P . 11 7
. 8 8 Q 11 8
9 9 R 11 9
. o] s 0 _2 -
A 12 1 T Q 3
B 12 2 U 0. 4 -
c - 12 3 \ O ‘ 5
g 12 4 W "0 6
E 12 5 X 0 7
F 12 . 6 - Y 0 8
G 12 7 Z 07 9
H 12 8 '
I 12 9
Table 5.1
Punched card codes
. ZONE DIGIT
CHARACTER PUNCH ‘PUNCH(ES)
. ~.Period‘6r Decimal Point 12- 3+ 8
{ Left Parenthesls " 12
+ Plus " . 12
S) .
“ Minus or Dash . 11 '
% Dollar 11 3-8
% . Asterisk ° 11 4 - 8
) Righb Parenthesis 1 5-8
"/ ‘Virgule or Slash 0 1T 1 “
3 Conna o 0 3-8
= Equal . 6> 8

Table 5.2
Punched card codes

~

g9

%

c T g

5.8

The special characters In Table 5.3.are used

granming languages.

in other pro-

Xt

ZONE

Y

Punched c¢a

rd codes

C. A pause for self evaluation.

Takg a

2

far, .

12

L1

70

DIGIT
CHARACTER PUNCH PUNCHES

\&_ Ampersand | 12

¢ Cent 12
\g- .Léés.Tﬁaﬁ . 12: 4 -8
| Vertical Line- 12 7 -8
! Exclamation ’ g §d 1 2~ 8
; Semicolon B ¢ 11 6 - 8
Not ' 11 7 -8
% Percent : 0 . 4 - 8
. Bréak or Underscore 0' 5 - 8
> Greater Than 0 6 ~ 8
¥ Question Mark y 0 7 -8
: | Colon | ! 2~ 8
~# . Number or Pound . 3 -8
@ éommergial At Sign 4 - 8
' Single Quote or Apust}ophe 5« 8
" Double Quote | 7 -8

])
Table 5.3

short "time out" and see how you're doing so °

T}

LAHORE IT

LY

ee— R
- -

//// 1. Interpret tfie punched card shown in Figure 5.3.

E[ﬂﬂﬁrﬂmnjﬁrﬂjmﬁﬂguﬁﬂjgtnmﬂgLHHmama&muumMEmMHM§ﬁmmﬂmemnuﬂ_
- n:oeunuoonuuuouugunung R 5 00000000000000000000000
wHIHIHIHIIIIIQIHl!llHIHIIQIHHHHIIIIHlllHlIIIIHHHIIIHIIIIIIHH]I
§222222222222222222222222222?222‘22'222222
S33333333333333333!3333:333333353;3333333333‘3333333333333333333333333383333.3'33333

YERS!H

4

CANAAAARA440404804000800804444484400 0444844404400 4444444444444444448444440444444
2 5SS MSmssSSM S SIS 5555555555555 5K5555555555555566555555555555555555565556555555
X 6M666606NG666666666666666GMRGGE6666666666666666656666666666666666666666665666566
RNl L RN RN RN R A R RN R N R R R R R RN R R R R R AR R R R R RR R RER AR RERE
;ssgssaasssassqssagsagsa:hsasa:hl]ssasasasaasaﬂessaaaassssaassaasaaasaséassﬁasss

9993099999993 W99993999K990906909989999999999909999998899099959809995996599993 89999

T 73358 TSN UBHIRYINNANHANDR ﬂ!ﬂ!lMhh353617353&404141““4&4504!4!505!SINMMSB57505"05!‘2@]6{536691“5?707I NNRBXNIAIB
INHURBRTH)

N

?? ! 1 |} 'SW‘OII HNHN FER: BB ll}! DII"W“G Uul‘lﬁﬂ ll 3!] } 1 l MII' aRnnn b}
! \! !!!1 !:!! E ! 7______3 53 ! 484380 31 5233 5435 3 §7 3 3350 61 62 83 &4 83 65 87 58 (3] A0

VRS

"

Figure 5.3. Interpret the punched card.

-

2. Using the blank card shown in Figure 5.4 and a

pencil,'mark the punched card codes for the letters

-

of your name and the characters of your Social

. Security number (including the dashes).

N\ . o

IR Ry e e e Sealo i TP T NSt T S U Sy, ORI SN ! e A L RSO, [S S S P S,

5.10

= = = i et SIS

i el = = - \'

11} ."‘l 3ETHRUHNYHNBY YRR N .-c}\nnunm NRHHMBRY BHOMRVSERRCBINIYIHLIIUN0OROUBEHRERAT an Y nnw

nannHNNDULHHRHOOHIE iR IM?SI&I!MMMMHMMMMMMMMMMM
- 000060000000000000000009 G U UD L QORI i W A U U Ul W s L) 00000000000000000000000
!!lllhllllll!llllIilllliltl)!!lllllll||lllIllﬁlll!lllllllll!llll!lllllllllllllll

222222222222222222?22?7???22222222222?22?32222222222?2222?2222222222222222222?é2
333]3333333333333333]1333]33333}33333331333333]333333333333333333333333333333333
44444444&444
55555555555555555*5yJHb\&ﬁﬁﬁSbb'Sﬁﬁﬁﬁﬁ‘5555555555555 9559905555559 995555555558555

OXLAKOMA STATE WMIYERS:TY

SGﬁBGEBBGBGGBBSSGEGbbGbSGbbﬁﬁﬁﬁﬁﬁﬁbbﬁbbBbﬁ668656586666666666GGGGGEGSBGBFSGBbGGBB
Y

7777]7777171777177?7171111777777771111171]177777177177 77’77177777777??777777?77

8838888388888888388885ﬁ88ﬂ388&88888888883888888888338_88ﬂ88888888888858888838888

9399999999999999999999 9&!9 9999994999999999399999¢8¢9
LT Y ey 678 3002w pr g oy LR L R PR L (R T R R R R R R T RN T W IR FU RN K]
MmNt ye ¢

999999999999999999

'J!HSS!ES)HSOGGHMHH&KMNHH70H' l

1;:.;:
P32

. Figure 5.4
Blank card for marking your name and Social Security number fL

?
o . . ' . .
If you feel that you're ready, them go ashead. If not ,

- then back up and review the material.

D. The Fortran statement card.
There is a card printed especilally for Fortran shown in’

. . {Figure 5.5. (Of course, the computer doesn't know one

L] L3 (
vcard from another; the various typgs and colors of cards

dre of consequence only to the user for his convenience.)
The card has various blocks of_columﬂa labeled to aid

you in punching Forfran programs pgoperl%._ Colunmn 1 must

* !

have a "C" punched in it for comments. Statenent numbers

g¥e placed anywhere in colimms 1-5. WPortran statements

Lt LN

LA

’Q

4

ron
Qm_ LW
STATEMENT]
HUMDR Rt

000809
Wy as
Nt
1
12222
1333
]
ﬂ“‘“
S e sss
1
%&sss
]
INRRE
]
98880,
99899

1

e 349,

9
o

5'11

FORTRAN STATEMENT

Fbﬁhﬁiﬁﬁiﬁioﬁdnnnounnhdﬁﬁnnﬁﬁﬁooﬁnnhhhh666dhﬁiiﬁiﬁéﬁﬁﬁﬁﬁﬁhﬂiﬁﬁﬁﬁﬁﬂ
rean nuu. Bk poaen O IR I E I RIRIBVELNLE LR RLA L uuuuiuuuuuwmunMﬁs&s»wuwnuuuuunmn g nn
tlllllllllllllllal{lllllllliltllIIII\dlllllIlllllltllllllll!jlllii
2222222272?2221227}222222222222222222222222222222222222222?2222222
533333333333331333333«333333?33;3333333333333333333333333333333333
44444444444444444{4444444444444444»4444444444444444444444444444444
35&55555555555555555555s55@555555555555555555555555555555555555555
sﬁaasssssssussssssssssssssssssssssusssﬁssssassqéssasssssssssssssss
117177111111)1111r1117111)11111741717111177111711i7117177771111717

88888888888883H888888&888888888833.88888BBB888888888888838888888888

IDENTIPICATION
000000049
neBHuitieh
RERRRRE
22222212
33333333
14444444

55555885%

666666686]

11111111
~
68888888

9909999999499999999988 9999939999999999999‘)9999899999999&_ 99999
LA R LR B IETIRR LRI SRR H nynsnn:uuuuur,uu.\nuuusnmunut-asssrsus:omszuuuu 14388 10 B I
L.Ik14

99
ra
1 35

9999999%
i3 NP

e RLRER (W H

. 43@4.0

Figure 5.5. A Fortran statement card

- ‘

are placed anywhere In columns 7-72. Columns 73-80 may be

used in any way for purposes of identification, such as pro-

\

gram name, programmer's name ox initials, or sequence num-

o

bers. Column 6 is used for indicating that a card 1is a

—

- cont inuation of the previous card.

-~

. You will get some practice using-Fortran cards later,
f

but” now you should be ready to take on the keypuhch machine.

I3

&

E. Punching computer cards.

The following instgbétiqns Qill‘intgoduce you to the IBM
nodel 29 keypuncﬁ machine. Go throﬁgh the.inst;uctions

carefully uné11 you can load cards, punch something into
some cards (for exaﬁple, your name, the datg;“your sbcial

atc.) duplicate a card, and‘ciear the

¢ ~

security number,

A}

Y e

.|.I|d

5.12

g

- . - o e —
Ig Py

i
nachine.

4/‘! '
. A
e e e e [. PR -

Notice: Somctimes pressing certain keys will cause the

machine t()'ﬂguqﬁ‘q>.” When this happens, press the REL
key to retease The machine,

B

L. Keypunches are located {n Ms 04, are\a 1light
rrey color, and are idéntified by a 29 lon the
name plate ou thé upper vight-hand frodt of the

machine. ;ggrdw are located in bind/placed among

the machines.

2. Turn en the wmaln switch located in froant of

{

\ .
your right kunee as you sit at the keyboard.”

3. Behind the name plate on the upper right is the

card hopper. The cards are held in place by a

. .
‘spring-loaded plate.. Place cards neatly and

secufely into ﬁhe"hopper In the upright posi-

a

t Lon. !

*

4. Three buttons or Keys on the right side of ‘the
- N . '

keyboard, -REL (release), FEED, and REG (register),

3 L 4

and one switch on the left center of the panel

L 9

of switches just aboye the keyboard, AUTO FEED,

.

control the féeding of cards into the card trick

-

There are two ways ‘to uze these controlg:
a. AUTO FEED switch "OFF." Depress the ®-

REL, FEED, and RE{ keys in that order.

v

This procedure allows the passaga of -

one card at a time through the machine

-

~ N -

5.13

and 18 useful for begianning users of
the_keypunch.

b. AUTO FEED switch "ON." Depress REL
key twice just after yoy have loadeé

the card hopper, once thereafter. Use

only the REL key for automatic opération.

When a card is in place and is ready to be punch=
ed, characters may be placed in the card by use
of the keyboard, which is simlilar to a standard
typewriter keyboard. Thg column on the card
curfently being punched is indicated by a pointer
and a scale on a drum directly in front of the
operator, upper center behind thé window. In
order fd punch alphéhgfic charaétera and other
characters on the lower portion of the keys,
aiﬁply depress the proper key. In order to

punch numbers and other characters on the upper
portion of the kéys, dppress and hold the NUM

(numeric shift) key, lower left of keyboard, and

then depress the proper key. .

When a card is being punched, it 18 in place at

the punch station. When that card is released
by pressing the release button (REL), it moves

from the punch station to the read or duglicéte.

oo g

station to the left of the punch station. When-

o
the DUP,(duplicz;e) key, located in the middle

RIS R S

5.14

of U&?top row, 18 depressed and held, the.infor-

mat {on punched in the card in the read poéition‘

is transferred to the card in the punch position.

An entire card may be duplicated; or part of it

may be duplicated by releasing the DUP button,\\

allowing corrections to be made. |

A card a{so may be inserted by ﬁand into

the card tréck at ihé }eaa.ét;tioﬁ.- fhe;é afe

two slots in the middle of fhe card track through

which a card may be pushed untgl it is against

the stop of the read station. Both the card to

be duplicated and the blank card to be punched

. may he moved into pésition eimultanéously with
-the REG button. The easiest way toﬁgo this 18 to
have the c?rd track empty, insert the card to be
duplicgted, depress the FEED button to feed a

Llank card into the punch station, depress the

REG button, and then dupiicata¢

* 7. At the completion of the jpb, CLEAR A&L.CARDS
FROM THE MACHINE AND THE DESK TOP and turn the
main swiich to "OFF." (The card track may be
c}@arad gy;9ma§§ca%}y by fl&pping the CLEAR

‘ . switch locatgd at the g;}rame right on the'panel
of switches above the keyboard to "ON.") |

Uéing'tﬁeaa instructions, practice.punéhing gards; duplicating

cards, and correcting errors. : {

2 & .

A

5.15

SELF EVALUATION FOR PART 1.

1.

Punch your name and social security number into a card.
Begin your name Iin column 5 of the card and begin your
social security number in colummn 50.

Duplicate exactly the card you just punched. :

£
Punch OKLAHONA STAYTE.UNIVERSITY in columns 11-35, Then

correct the error punched In column 17 by duplicating the

lyﬁrt that- {9 cprract and repunching colummn 17,

Find some Fortran statement cards in the bins beside some

of the keypunches. Punch the Fortran statement

5-4 XTAP=2.3%AVG/ (21.0+8)

\
in the proper columns of the card. The statement number
4 goes anywhere in columns 1-5; the Fortran statement goes
anywhere 1n columns 7-72.
Punch the Fortran program'ahown,below exactly as it appears,
ﬁﬁtt&ng\one line per card and punching the characters in
the columns as ghown. Do not expect to understand the pro-—
gram;. just punch it for now. The two lines of numbers
above the program are the column numbers. For example, i
indicates column 14 of the punched card; an "R" is punch-
ed in this column of the first card. The "0's" in the

v’ b .
program are slashed (@) in order to distinguish them from

- zeros. DBe sure to punch zero when you mean zero and "O"

when you mean "0," . o

e f

E\J

5.16,

e . by -\

’ llLllll 111 22”222232&3&39ﬁBB:’dS&&%A#M&&QSS55555555666666666677777777778

12345 7890123456 789012 345678901 23%56789012345678901234567890123456 78901234567890

C¢MP

-

ER. PROGRAM WRITTEN IN lwxluAN TV, e
TRY 1=2. 1 K . ST)
TRY2#2.6 e L
TRYSQO~6 ‘:.a‘? b

ANS=3. OWTRYLETRY2 / (FRY [~TRY 3)

o ' B o -

WRITE(6,%)ANs * ORI

FORMAT (1HO, 110 ;) .
1534003 . Co TR
JEND T - ,‘. . - T e

-~

e as necessary, ﬁdvu the cards; you'll be using them soon.

“ .) .».‘ -
.
. ’

PART II. Documentatian uf o, program.
. - N R - . 'r- . S 8

The® purpope of documentatidn is summbd up in the following

" limeric: EE) : T R

P

Johnuy found a program |
Sy o e

Ones ver useligs day.
anttiy whaY\ thut prohrm{x djd \ Coe
O\

It slmply \Udu L sayl

'}*\%ordcr for a progrdm t.o be vof use, t.o any user, including)

$ L

the programmew hima@li it must be ‘lccompanied hy 8 fairly detail~

ed. deacriptmn ~ome of the short prug\rams that You will write

for this Loume will ag\ém\(;nst t.'-u raquire any docuwg,zion; but -

\'l(~

AR

you need £0. develop good hab L td™ ‘Q{:\}.\y, 80 documensation of all

programs will be required.

. ".- i‘.v

F, Whht éhoufd;ba Included iﬁ'docug
C ?rogfém'documentation consiaty of two parts:

R o w i \e . wed
(1) program commants

(11) program dasnription

e __

1

j

Comments 1n a program should convey to the reader the

essential facts of the program and should include at

the beginning of the program

(a)

(b)
()
(d)
.(e)
(f)
(8)
(h)
1

the student's name, problem title, and date
submitted; J %
a description of the pioblem;

a description of the ﬁfogram;"

-4

o
spaclal or exciégﬁbnal conditions;

definitions andf;?rmats of input variables;

I

definitions and ‘formats of output vagiabléa;

definitions of other key variables;

&
error messages;

key comments interspersed throughout the

"

program.

The accompanying program description should include,

when appropriate,

(a)

P o SN

(b)

G'C)
(d)

(@)

[]
the problém ‘title, the student's name, the

_date submitted, the unit number ;

a brief description of the problem and the

@

gsolution methods employed;

a description of the limitations of the pro-

o
gram;

‘a description of major variables and of all

dimensional vériablés;

3.17

a description of possible errors and associat-

ed error messages;

\(' v I

T T T s TR ST e W, - P T (T e

‘A

5,18/

-

!
¢
i
§

| Stem WESR

A T e A { T o e s s e b - e o

‘\\-

(f) a compleate program listing 1?:}uding control

- cards, input and output; ,

(g) operating instructions;)
(h) a flowchart at a level of detail necessary

to convey the essential Information about

Fhe program;

(L) amdﬁscription:of-key~p01nt8—in~the~fIOW"“'“:

. diagram,
The sample program on pages 5.20 to 5.22 1llug-
Notice that one

‘
line in the program listing corresponds ta one punch-

trates many of the pointa described.
ed card. The C which appeara to the left of the first
several lines is punched in column 1 of a Fortran

statement card. Such cards are called COMMENT cards.
COMMENT cards are printed on the prégram output list-
ing, but are ignored by the compiler.

ments start in any column after colum 7 of a state-—

ment card and may be punched from columng 7 to, 72.

. Statement numbers are punched in columns 1 to 5;

column 6, the continuation indicator column, is punch-

ed if the statement §%~Qoo long for the Qfévious .
card and has to be continued on the curtent card;

Sequential lime numbers appear on the 'far left
of the printed listing. Comnments do not have a li@e
number. For example, line hﬁmbar 0506 1s associatéd
with the statement |

INDX = 1

s e

Fortran state-

S

e T

frmie TS et s e LS S L T - IR AL SR

’

FEE b ST T 4 WEE S AT 0T = R T ot nan 1 A T e st T e N L LSRR LN U SR P N P

5.19

which places the value 1 in the location assigned to
var;able callad INDX. //—N\

‘Note that the comments at the baeginning consist
of the author's name, the date, a brief deacription
vf the program, input card %éacription, output card
description, special operating instructions, and a
description of ;Le principal varidbles.

The comment éardé iﬁtefspersed ggrédghout the
program gives an indication of what the program is
supposed to do. This program genératas the glossary
listing that appesars in Appendix XI: 'The comment
cards at the beginning of the program would have been
easler to read i{f they had been get up like the terms
and the definitions of the terms in the glossary.
Comment cards with a series of spacial.characters
such as * and blank comment cards may be used to ' Al

advantage. For example, one might have punched the -

comment cards in the following format.

c
C INPUT
C CARDS ARE PUNCHED AS FOLLOWS:
C COLUMNS CONTENTS
¥z -
C 1~11 KEY
C 13-14 SEQUENCE NUMBERS
C 16-80 . DEFINITION LINE
C . ONE DEFINITION IS LIMITED TO 50 CARDS. -°
C .

RRFRL AR e kb

Comments may be punched aﬁywheté in !blumns 2-72.

(Actually, columns 73-80 may also be used, but generally
/ '

/ L.

!/81' L

E I R AR TR SR NTEST |1 T TN s T - e sl v LA =2, 2t o

o 5.20
B
) C AUTHOR: CHARLES ELLLS
C CLASS: COMSC NEW STUDENTS
C DATE: 18 AUG 1971 ' -
C° BRIEF DESCRIPTION: THlS PRUGRAM USES CARD [NPUT CONS IST ING ' ‘.
C OF LINES IN A DEFINITION OF A WORD.. THE CARDS ARE KEYED AND o
- W € SEQUENCEN. THE CARDS ARE CHFCKED FOR KEY AND SEQUENCE AND'STGRED@
€ IN AN ARRAY, WHEN $AE KPY CHANGES THE WORD DEFINITION IS PRINTED
C AND THF PROCFSS 1S REPEAY PO UNTIL ALL GLOSSARY ENTRIES HAVE BEEN
C WRITTEN. QUY OF SEQUENCE ENTRIES ARE REPORTED BY KEY ON Aj ERROR
C LISTING AND FLUSHFD FROM THF INPUT, ‘NOYT APPEARING IN THE GLOSSARY,
€ INPUT: CARDS OF VHE FORM;) ' ‘
C COL 1-11 KFY ¥
C COL 13-14 SEQUENCE NUMBER : .
C COL 16-80 OFFINIYION LINT
C ONE DEFINITION IS LIMITED T %0 CARDS ' , :
‘ C OQUTPUY: THO B.5%11 INGH LISYENGS. THE FIRSY IS THE GLOSSARY, —
C EACH PAG® TITLED AND NUMBERED. -THE SECOND IS AN ERRORR REPORT,

OPERAYING INSTRUCTIONS: $STANDARD BAYCH FORTRAN G LEVEL DECK .
SET-UP AND RUN PROWFEDURES ARE USED WITH THE ADODITION OF THE CARD; .
//GOFTO4F 001 DD SYSOUT=A FOR THE ERROR LISYING.

PRINCIPAL VARIABLES: @g
KEY 11 CHARACTER ARRAY HUR THE CURR\C;.

KEYSV 11 CHARACTER ARRAY FOR THE PREVIDUS KEY N

LINE 65 CHARACTER FOR [HE aunRFNr\gFFiNuTIGN‘LlNE.
LINES A 50 BY 65 ARRAY FOR THE COMBLETE OEFINYT ION
LNCNY COUNTER FOR™ THE NUMBER (F LINES PRINTED PER PAGE
IBLK A BLANK CHARACYER CONSVYANT ' .

LST FLAG FOR END OF DATA "

INDX - THE CURRFNT SEQUENCE MUMBER
CINDXSY SEQUENCE NUMBER OF TRE PREVIOUS L INE ‘ T .
DEFINE ARRAYS ‘ ' : S
0001 DIMENSION KEY(11},KEYSYUT 1l INEL 65) - s
0€02 COMMON LINESHS0,6%3

C INITIALIZE CONSTANTS AND COUNTERS
0003 DATA LNCNT/SS/,IBLK/IH 7,1 8TZ0/
C INITIALIZATION READ

0004 READ (5, 1) KEYLINDXo{LINF (4} yd=1,69) _
0005 1 FORMAT (11A1, 1% 02,1X,65A1} ° . 4
€00¢ INDX=1 : -

0007 GO Y0 11} . S
) C MAIN DATA READ -

0008 L3 READ (S¢14END=99) KUY, INUX{LINEL D 4 J=1365)

- € CHECK FOR BLANK GARD, YFS. REJECT 1T
cCce CIF EKEYLL)LEQLIBLKY (U TO 3 ;

-

SN RN NeNaloWe e o lre We Te WO

C CHEGK FOR END NOF DEF INI TYON - ,
€010 .00 5 1=1,11 , _ ¢
coly . TE (KEYSVAI).NEJKEY{T)) GD YO & 1 : | a :
0012 S CONT INUE . _~ T ’ .
: C SEQUENCE CHECK o _ -
0613 LF, COINDXSVEL-INDX) o NE.O. Ol INDX . EQ.0) GO TQ 4 . -
, 'C STQRE CURRENY L INF IN DEF INTTION ARRAY . v
0014 1Y 00,7 121,65 - S ‘ -
0015 T LINES{INDX I) =L I-NECT) A * ' ' N
' C STORE CURRENT KEV AND TNDX IN SAVE AREAS) '
cCle NO 12 I=1,11 . . = " !
0017 12 KEYSVIT1duKEYEDY - . l R
£o18 T INOXSV=sINDX S - -

CCis GO TO 3 L

&)
&5

L2E T i etk dmiek il

A L T A | TR TR Y TR Sl e T £ e v

"4 - T3 U
C CHECK FOR END OF PAGE.IF’'SO WRITE NEW HEADHNG ' .o s

0020 ° . & CALL PAGECINDXSV.LNCNV,ISTRY) . . -

_ C WRITE DEFINITION ON LISTING . S

021 + 7 DO 8 1=ISTRY,INDOXSV

022 . MRETE (6490 (LINES(Tyd) Jxls65)

10023 9 'FORMAT {8X,65A1)) -

0024 8 CONTINUE :

C 'CHECK FOR END OF DAVA : '

002% - IF {LST.EQ.1) GO TO 100) -
| C KEEP 'LINE COUNT STRAIGHY, OON'Y. ALLOW PAGE OVERFLOW
-0026 IF {(LNCNT+INDXSV42).6Y.55) GO TO 18
. € SPACE GLOSSARY LISTING SO ITS PREYTY -~

0027 . WRITE (6,10}

.CC28 . L1O_FORMAT {1HO). ..
_ € .'INCREASE LINE COUNT

0029 - LNCNT=LNCNT ¢ INDX SV +2

co3g - GO 1D 17
- 0031 18 LNCNT=55
' C SEQUENCE CHECK
.0032 < 17 IF (INDX.NE.1) GO TO & .

0033% GO _T0 11 _ o

. 'C ERROR, REPORT IY - |)

T 0034 & WRITE (4,13) KEY '

0035 ' 13 FORMAT (lH y°YHE GLOSSARY ENTRY NITH KEY °,11A1, IS OUT OF SEQUEN
- g 1CE*) “ = .
- C. FLUSH BAD DEFINITION - . o
. 0036 Do 1412111 . . . T
0037 14 KEYSVII)=KEY (1) B .

-P038 " 16 READ (5,1,END=100} KEY,INDX,{LINECJ) ;J=1,65)

0039, IF (KEV{}).EQ.IBLKD GO TO 16

(o % VR 00”1s~1§%,11
. Qo4l [F (KEYSVIE).NELKEY{Ed) GC TO 7

0042 © 15 CONTINUE o a o .

€043 GO TO 16 | ' '
) ¢ - SET END OF DATA FLAG -

0044 99 LS5V=] | , , ' -
,CC‘Q‘S . GD Tﬂ 6 . Y : - . 4

CO46 100 STOP - - . : .

_004T. END

i) \] %
r » - ‘ 4 ‘
‘ » . - t N
. l ‘ o |

e ' N Y . >

v v o : *® . IR

" T o | N

., . ’ @ \ o °
[} LI & 4 -
- .f‘/ :)e‘, - ‘.8:;)

0001

0002
0C03
0004

Q005
0006
co07
0008
0009
0010
0011
0012

0013
00t 4

0015
001 ¢

COrT

. 0018

0019

5.22

C

SUBROUTINE PAGE{INOX,» LNCNT, ISTRYT)
THIS SUBROUTINE WRITYES PAGE HEAD!NGS AND KEEPS LINE COUNTY STRAIGHY
COMMOA L INES (50, 695) (
DAYA IPAGE/1/ i
ISTRY=} -
IS THERE ROOM FOR ALL OF THE DEFINITION ON THIS PAGE
IFLCINDXALNCNTY JLEL55) RETURN .
YESs RETURN AND PRINT IV "
NO,PRINT AS MUCH-.AS YOU CAN
LNPOSS=S55-{ NCNT) '
~ IF (ULNPOSS.LEL2) GO TO 1 *
00 2 1=1,LNPDSS »
WRETE (6,3) (LINESCI oJ)od=1,65)
3" FORMAY (8X,65A1)
"2 CONTINUE
SET STARING POINT FOR REST .OF DEFINITION
FSTRY=ULNPOSS +1
WRITE NEW HEADINGS , , _
1 WRITE (64,4) IPAGE | v
4 FORMAT (1M]1,33X.'COMSC GLCSSARV'/ 3TX.*PAGE °,%377/7)
GEY LINE COUNT STRAIGHY
LNCNT =0
IF{LNPOSS.GT32) LNCNT=-LNPOSS

UPDATE PAGE NUMBER

lpAGEmIPAGE+1
GO BACK _)
RETURN i "
~ END
w A
€ -
! w
' .o x '
Sg Lo
i ¥

B e P =rer o B S i e S s e e

it is best to leave these colummns for other uses.)

Kw”) With this 1A mind, yéu may want to make your comment s
stand out on tha output ldsting. All kinds of varia-
t{ions may be used to accomplish this, limited only by
your imagination and creativity. (You maj_even wiash
to put.grﬁphic illuatrations In your program with

'\\J).' .

[comment cards.) Two examples are shown below.

OMMENT R ARk Ak R kaeok

w

C - %

C *

R C PLACE YOUR MESSAGE %
C FOR POSTERITY HERE, *

C T %

«
- ¢) W
C ek ARNRR | kel Kok

-
-

CCCCCCCCCCCCCCECCC
C********#************w*************************ﬁ**#*****************ﬁ*C
C* : - :
C* THE OUTPUT FORMAT FOR THE CORRECT ANSWERS IS CHANGED FOR EXACTLY *C
C¥ TWENTY QUESTIONS PER TEST. _ *C
C* . . . - * " *C
C****************WW*W**************W************************%ﬁ*********c

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC&CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

~

SELF EVALUATION FOR PART II.) - ,
. ’ _ - .-
l. Describe a method of punching the first few comment cards
of the program on page'S{ZO 80 that each cgiegory gtands

out on the page.

A\ 4

R . . .- ’
2, Write a set,of comment cards giving your name, this course

*number, the date, and the'bbjectivé"oﬁ,this unit.
. . ' N o® .
3. -Punch the comment cards that you wrdte in 2, Place.them

-
- o

]

. | ’ | 'ég

%C .

5.23

'3

3.24

with the Fortran program that'you punched for Part 1. . Xy

- .

Save all these cards. You aye gradually producing a ! N .

-

Job that you can run on the computer.

R

" PART III. Running the Job on the Computer.

If you héve cof;ectly performed the activities and éelf
evaluations in Parts I and II of this unit, ﬁhéﬁ'you‘have a
AR documented Fortran program ready.to bé run on a computer,
. - (
Refer to the ACTIVITLES TABLE for Uﬂ}T /) fdr the proceduré -

. : for doing this. R N

ASSESSMENT: TASK: .~ - -~ -~ -«]
Actdally, you have already completed the assessment. task by

. " ~h
running your program on the computer. The documéntation must be

correct, the computer output must be correct, and you must have an
g N S . * N N ‘Q‘ .‘
B0/80 listing of your program. Take tha’ program dack (less control
. - LNy, . " .
cards), the printer output, and the listing to your instructor for

L}
-

his ‘approval.

WHAT NEXT? You're nearly raady'héﬁ to write your firet program,
but first yoﬁ.musc learn how to read and write -- with the

computer, that is. UNIT #6 tells you about that.

a
°
~ .
- ’ C . : - s
N -
. - '
.
.
1

T T

: - UNIT #6 (coms$§r

S TITLE: INPUT-AND OUTPUT

'} o RATYONALE: ln ordar for a computer to peripxm usLiul work on data,

- . R 1; ls necessary to "read" those data ipto’ the computer.. t .
; . bimilarly, In order to obtain the reaulta it 1is neces- -

. e
gsarv for the Lomputer to "write" those rasults-on some
. E . . -

3

‘ » form of output meédium. In this ﬁniﬁ, yowr will disdover
. how to construct ;ather simple iﬁphtxédtput commands in-
o L L _
_ . Fortran, . . - . .
; ¥ OBJECTIVES: When you {inish fhis«unit, you will bhe able to construct
:\,;, ' | input/uutput bortran statements to

- A (1) read dats from data cards,

- 4

(1) write reaults on the output printer,

(111) carry out (1) and (i1) by means of FORMAT ¥

statémenta.

Ydﬁkwjll also demonstrate your‘ability to construct a

-

Fortran prOgram with documantation and run it on a

, (omputer.
8

J?REREQUISITES:‘ UNIT #5

E
- ' : 4 - -
‘ .« M ACTIVITIES: The term input/output will be used throughout this = . . :
S : unit and will ‘often be abbreviated 1/0. .fhe tern is
_ ' . ' g tin o
L ‘ applied to ang and all instructioh@ and processes.

. . S
.] -

-t * 601

- ’ . N ') .n
o | . 87 . o
e v L. - S L

K b b b L] bl Rkt ~ o EE N a2 Lo g ek SEVITRY . T T e —e— e e == e -
i N PR - -

: o . R . o) .
. - v . “ - pf/ .
‘ . .' . . - - !
. ' BS . X
. . N .

related Lo putting information into a computer and

~

getting information out df'a computer.

- l. Introduction

In this unit you will learn to construct Fortran
KEAD, WRITE, and FORMAT statements. The ldeas covered
5 - _

are implied by the follgqwing questions.

What to do? . (READ, WRITE) _
Where to do it? (on an 1/0 device)

- .- How to do 1it? (by an appropriste FORMAT)

Fox a“givan computer configuration, it méy be)

-»

possible to obtain input from several differeat media, -

~

such asg carda, magnﬁtic tape, magnﬁtic diak a Qypewriter,
anogher compuﬁér, papar tape,. @th@ Similarly, ic may be
posaible to place-the re&ulns‘on @averql diffexentwmedia, :
-such as papar, gardé. paper tape m;g:efic tape mﬂgnetig;;iﬁ'.
) diSK typawritar, another q;hpgﬁér, etc. For thé,preaééto o:i{‘h

¢

we will make use of only’ Qne type of input médium and one..

w * - .
-type of output medium, namely .

~
- -

punched- cards for input * .. =~
. and) h ™, ; .
[P . . . BT
. - the printed page for output.. . S N
S ~ - . '
- - " -Figure 6.1 illustrates a computer with a card reader.for

. input and a printer for output. - - .) o .
[. ML _),»"T,‘l » N . ' . ¢ c. 8" l-

______________ AN Ty T .
) ’ ‘ 8
- 6.3
S > '
- . -
. K
\ B . , y
.0O. 0.0 |
RIS
_ . CARD | ‘
READER COMPUTER, PRINTER -1 S
’ - © .k
Figure 6.1. Schemat id repraesentation of a computer
] . with its 1/0 units. :
2. READ and WRITE statements. j S .
To read a data card, Fortran statements of the form
- | READ (u,f) 118t %
@ ' are ‘used. To wrlte a line on the line printef, Fortran

-

statements of the form

e et WRITE(u, f)
& q . . . i '
and y
‘ . | c7 e WRITE(u,f) list

are uéed; The parameter u dasignates an I/O'unit'nﬁmber

or an integer- variable name which takes - on the value»of

’ the I/0 unit number. The parameter f is the statameﬁt
) “number of the corresponding "FORMAT statement, and list ‘
. K v
R : S refera to a variable name. or to sevaral variable names
- ‘. .é . N
et - separated by comnas. Fach of these parameters will be . °
T L SN discussad’in deé%ﬁl in the £ollowing panggraphs.
T 1he 1/0 qn;t number u is &etermined by the computer :)
‘ W ‘ ¢
ﬂ;_a$ T S A
I o TR JUIRC T » 1o o T e n '

6.4

¢ - | \?\\
»

@ E -
system being used. Table 6.1 identifies the Lnit numbers
\
that you will need for running programs. \
~
u - WATF1V _ 360 1130
FORTRAN FORTRANhIV : FORTRAN 1V
‘READ - : S
(card reader) a3 > ¢ 2
\' — - —
WRITE
(line printer) 6 - 6 1
? ‘ J) Table 6.4+ Fertran 1/0 Unit Numbers v

AN

L' 4 L]

Examples of WATFIV Fortran READ and WRITE statements

are shown in Figure 6.2.

. P

s

READ(5,123) A,B,C
WRITE(5,321) A,B,C,D,INO
: . WRITE(6,1971) : .
< = %? 1971 FORMAT (you will find out what goes here in the pages ahead)
©123 FORMAT (you will find out what goes here in the pagegvahead) -
321 FORMAT (you will find out what goes here in the pages shead).

7

]

Figure 6.2. Exauples of WATFIV READ and WRITE statements.

W
r

»*

Examples of 1130 Fortran READ and WRITE statements

.~ * ‘are shown in Figure 6.3..

\y‘

=

ke

TR AT RILL IR A SR .
@ : T .. S h-{q‘w¢ oo v

o e 8 m e e ettt e o s 2+ o

READ(2,444) 1,A,Y
. WRITE(1,13) A,B
444 FDRMAr(von will find out what goes here in the pages ahead)
¢ 131} FORMAT(you will find out what goes here in the pages ashead)

e e e — e . - - ©a et et v ann —aean - - .

-

Figure 6.3. Examples of 1130 Fortran READ and WRITE statements.

By using the vaifable 1/0 unit number in the.READ and
WRITE statements, converslion from one comﬁ%ter 8ysﬁem to
another is effected with minimal effortt In Figure 6.4 is
shown the program segment taken from Fi;b}e 6.3 in a form

that can be used on either WATFIV or 1130 Fortran simply

k%
by changid} the first two assignment statements.
SR C 11{0 FORTRAN ¢ WATFIV C
‘ - INe2 . IN=5 -
“ 0UT=1 - . 10UT=6
< - | {READ(IN,444)1,A,Y . . i READ(IN 444)1, A Y
RIS . WRITE(IOUT,13)A,B = ' . WRITE(IOUT,13)A,B
Y S I - — .
. :P . . _. . | X, - !,. .
Y % . . .) a - ’. . _")
Iigure b 4. Use of variable 1/0 unit numbers to
.- . facilitate«uhanging from one’ computer system to another. -
. §= - . N s o o)
. An éven better wayais showh in Figire 6.5, using the
pATQ 1ni€ializ;§&on statement, a nonékecutable statement) \»
éhat Lﬂitializes'variables at the time the program is com-
pilad .‘The i)A‘]Z.A% statament, generally reducea axegut‘loh and
- compile tima and alao conservas storage in the computer,
.~ . o S _a.'r : ’
R .) :,I : \() 1 '
*» . st o S . A
o » | ¢ :.2 - ‘: m_ﬁ:a .

13 =~ S S ST, 4 e o @ = . AT T = e i = = Ty m—— 2 e e b) T e S L YL AP e - £ £ R AT s
ot m i s Sstasy a= - e L S . v e

6.6 S .

since machine instructions for IN=2 and IOUT=1 do not have *

¢ »

- to be aathp" stored, and executed. Use the DATA atatement v -

for initializing constants inr a program whenever‘poasible.
4 -

e

C 11430 FORTRAN Y C WAIFIV _
* | [pATA 1IN, 10UT/2,1/ o DATA IN,10UT/5,6/)
READ(IN,444)T,A,Y) - READ (IN,444)1,A,Y .
ITE(IOUT,13)A,B RITE(IOUT,13)A,B -

Figure 6.5, Using the DATA {nitialization statement
for initializing variable 1/0 unit numbers. y

¢ ‘ - - @ ,
. The DATA statement can be written in other ways. Fof,
example,
| DATA IN/2/,1I0UT/1/
is equally acceptable. Nocigg‘th&t in both yays'of writing
the statement the constants are always to the right of their
respective variable names and.are contained within-slasheéﬁvaé -
There must bg a one~;o~one correqpondencé baetween vari&ﬁié// /i‘\ﬁ_wﬂx"
_nameé and‘constants;)
,The;iigg of a READ or ‘WRITE statement is of arbitrary
! Leggth;‘ﬁowever,'it:ﬁaually is easler for the novice prg-
N : . ‘grammér-tq manage,a-pnogr;m that has several READ or WRITE
statements with short lists and several simple FORMAT state-
ments, father.ihan one READ or WRITE ﬁitﬂ;é long list and

©

a éOmp;ex FORMAT statement. For this reason, several READ

~

WRITE sﬁatements with short lists may be’ preferred to »
>) ‘ : . ’ . o -
P one READ or WRITE statement with a long list. With addi- }
) _, | . . | - \92 N

e
i -

"+ tional experience in writing and debugging (correcting,
v finding the errors {(n) fnput /output statements, you will

develop a style that 1is effective for you, e
[%]
The parameter I refers to g FORMAT statement which

glves the form of the I/0 record. For our purpoges, an

L
input racord is a cowputer card, and an output record is

@ line of print on the line printer. In other words, the

»~ -

FORMAT statement describeg the format or layout of a record,

3. FORMAT Statements ,

The FORMAT statemént descriﬁes the detatlled layout of
.either data on data cards or the output on the line printer.
When reading data, 1t ind{cates .

s (1) when to get a‘néw data card,)
(11) which columns of the~data card are associatled
with.gach variable,
(111) which coluymns of the data card are to be skipped,

and .

- (iv) the fleld descriptor to be associéted with the

data field. O |

When printing on the line printer, the FORMAT statement

indicates ’ :
* | (1) when to béé;n ﬁrinting on a n;w page,‘
(11) when to double space before printlng,_ .
- _ (111) when to single space before printing, ’

(1v) fwhan to print peadings and what headings to

%he :
o primt, . -y

<

(%]

Py

e e T

6.8

(v) . where to print the valuea’on a line,

(vi) the field descriptor to be agsociated with the
. values, and
. v _ -
(vii) the number of print positionsa to yse to print

" a value.

The ticld descriptux {8 used as a template or mapping.

to ttanqlata between an internal machinL respresentation of -

the data (usually in Rhe binurx number system) to an exter-

nal "people compatible" representation of the data (usﬁally-

]

in terms of alphabetic cha>acters and the base ten nugber

system). The field dascript$rs and tﬁeir correspénding

] . {
fctions used in this unit are given in Table .2 ‘ \\
£, . ’ _
v _ - :]
.]) ‘Q
Field - | -,
Descriptor : Action
,
Iw Perform integef convérsion from or to a
field whose width is-w columms.
. o .-— . '
Fw.d Pexform real conversion from or to a
field whose width is w columns with 4 IE
places to the right of the dacimal
point. f
Bw.d Same as Fw.d except for axponential
form. “ : . oo
nX Qmit next n columns from a data card br |
. - ingert n blank characters into an out-—
put line.
ol ?rint the n characters (iﬁcluding blanks)
i 3 immadiately following the H in khe next
' : o n positiona on the outpuc line,
- -~' ". w"b. e ' v
\ ‘ .

Table 6.2 Field Descriptors and Actions

1 o) H

-

Tt T T T [

EXAMPLES :
- \

Given the input data card (where ¥ represents a
- \ '
blank),

11111111112223
card columns: 12345678901234567890123 _
punched values: YB492WWB30. 728B12345678 T

the READ statement and its assoclated FORMAT statement .

-,
ROV S ah o emte h e e Mem s e Y b

}" 0
s | READ(5,131) 1,ABK,Y o ¢ -
S AJ/ﬁ*h/;giaJ FORMAT (15,F8.2,F5.1,12,F3,0) e

3

.set tHe variables in the READ statement to the respective «
- T

values

- 1. 492 col. 1-5

. C A 30.72 ‘col. 6-1F°

B "12.3 col. 14-18
K: 45 ‘ col.t19~26‘\\

¥: 678. . - col. 21*23 o
For the sgame data card the READ Btatemant anﬂ 1ts associated
-y b < e _} . .- . - .
_FORMAT statement ° .. o
“y . _ . PR

~ ¢ -

|l rewesan LAy oo oy o
11 || FORMAT(12,F3.1,3X,F5.1 2, 12,2% rg 0) "

g » » N 1

£l

" LTI
sat the variables to the respective values
DY . * ‘ |,| v M ' \l \
‘ , I 00 col. 1-2 Ahiank data columns
A : o e =are converted as
‘ ' ' ' zeros

v el [i

e bkl m

6.10 - -
Ar 49,2) col. 3-5 »
B: 30,72 _ col, 9-13 - a decimal point o
\ . ‘ - punched 1in:a data :)
card takes prece- ‘
dance over that in-.. . *
dicated in the
Y FORMAT
L4 . . .
> CKf 12 . cbl. 16-17
; Y: 56, col. 20-21 [
. ' the remaindétof ’
the card 1s ignored B
.- The WRITE statement with its ﬂBSOCiGted FORMAT state-
'.meni (¥ means blank) . ip N)
| -
.? . ‘ WRITq(ﬁ 9876)) I
‘k\\m , '~ - 9876 FORMAT(lHi 5X 2SHIDENTIFICATIONEORBHEADING) v T
S~ . o . s

RN . R - ‘ : . LN
e - "~ . prints N
P . . .) L "-..
St \\\ IDENTIFICATION OR HEADING
., | _ Jfk\primt positiona 6 through 30 ‘at the top of a new page. ' ‘
%@' o P Thc ~same- may be heeemplishéd by the statements
. . ' . & 693_' . . ‘. .] J
R | o~ . ! - : v .) : . 1—4' N /L“‘"«-.
o P L ¥ T -
N | WRITE(S, 43; » " S
R 5 PORMA&(BlﬁlMUMBHIDENTIFICAKIONHORHHEADING) ¥ O e
© e R . . - . .. N . 8 “;"5_‘;'?. ,g‘
’ v oo T B va - . . _ ' -, . e a " _' WAL,
Py ' | %g‘
b g The leftmost charﬁgter in a ﬁrint line 18 not actually . >,
¢« T N . ? ¢ Fy - '
e T priuted but con;rols the apacfhg baqween Liﬁes of print 1f

 ') e , printing'ia on a line pxin;ar. (This statemant is no&;t&ua ' ‘xg .

for the typawrixgr/printer used on the 1130 for example)

- .
3 w LI . . . e
. - L : .
N) ¢ *g . . 5 . v _ o * . , N . v
.- . - ~ . T N - .)
. .
' - RN
, 96 A
) -) "
* . . - . :
5 o f & i i.\ ’ 2 .
Y) . . FAY
. " '
. .
'\. L T
' . - ¢ d‘i

|

1 Tt e . \\\ © 6,11
w You must.deéignape.what'gpes into that character; other-

wise, chaos may result., The firat field deecriptor typa ¥

encounteted in a FORMAT statement, ecanning from 1eft to

right, mumt be an H. The first character to the. right of . -
// - the firat H controls. ﬁhe spacing between lines of pwlnt.
|
{ =~ Table 6.3 glves the ¢ommonly used control character$. -
1 : - _
. ! ~ L] .
: _ - . N
CARRIAGE CONTROL- - i
CHARACFER -, ACTION !
I : .
R N :
3 1 - R Skip to the top of Ehe next N,
' : R . page before printing.
a 0 i - - Double apace before printing.
/ blaunk .' Single space before printing
i + ' | Print on the current line.
¢ ' L .‘ ' . | . # /
L
. - 4 ' .
o . Table 6.3. Carriage control characters for the line printer. - . K
[. ' '> * i ’ : N - y
] GiTen the FORMAT statements . . e
. xZ
. R V3 | FORMAT(lHl 20X ZQHCALENDARMFORHTHEBMONEH)

&

123 |FORMAT(1HO,26X,9HSEPTEMBER)
125 |FORMAT(1H ,21X, 1HS, 2X, }HM, 2X , 14T, 2X 1Hw,2X 1HT,

4 " 11 2X, 1HF ZX 1HS /)
M "
. y | Y
» 2) - T .. ' | ‘%
. the WRITE instructions ' S X%
. o _ . *\
\
\.

. .
f ’ | .6.12 ') ' ‘v v ? . L4
i | -_ N

: WRITE(6,121) . Doeow
a WRITE(6,123) | R
S WRITE(S,128)° - S

-
L4 v N N
.

~

Instruct the line printer to print the following headings

At‘theltop of the next page. (NOTE: FORMAT statement 125.

_ : ks pGnched on more than one card. To signal that a card i -

"to be d continuation of a previous card, a punch is placed | '
in cplumn 6, caliad the continqation-column. Although any

punch except zero in columm 6 signifies continuation the)

] B ’

digit punches 1, 2, 3, . v e simplify keeping track of the
number of continuation ‘cards., APPENDIX I gives thqﬂnumber

of continuation cards allowed.) J//

&

%~ 20 blanks ——> CALENDAR FOR THE MONTH

SEPTEMBE%

L

. . . S MTWTTF S

4
* o

“. :
<« leftmost print position

L

%

Let's look in detail at these three statements,

N
-~ 4 & !

- 1
\

£ WRITE'(s,lz:L.) s

.
|1
L}

" IHI; carriage ‘control positions the paper so that printing
. L will start at the top of the next page. _

L t
’ *

20X,

C22H:

~

SUE Y Y TR

R "6.13

places 20 blank characters ip the next 20 print
positions.)

places the Q@f_haraCCQrs following the H into the
next 22 print positlons,))

L4

Be sure the character count preceding the H is correct.
In this example the 22H indicates that the 22 charac-
ters immediately following the H are to be printed. If
the character count is tvo gmall, the compiler doesn't
approve; and if the charactéx count is too large, the
next- field descriptor or a right parenthesis might get
swallowed. Count carefully! o .

In FORMAT 121, if 20H had been used instead of 22H,

the compiler would not know how to interpret the char~
acters TH (in MONTH) and would indicate an error. Also,
1f 26H had been used, the right parenthesis would have
been included in the stripg of characters to be printed.
Then; as the compiler continued to scan to the right, -it
would not find a right parenthesis and would ‘signal that
an error had been committed. :

T

WRITE(6,123)

“ﬁ\

1HO:

13 N\,
\

?

cafriage control spaces the paper up two lines for

-printing (double-space printing). ,

26X:

places 26 blank characters in the next 26'print
positions.

places the next 9 characters following the H 1nt¢';
the next 9 print positions. coe

WRITE(6,125)

. . - ’
L] 4 * .
' ¥
.
.
) °
.

21Xe

JHS:

-~

. ‘ N £

carriage control spaces the papar.up one line for g

printing (single-space printing).

rlaces 21 blank chayacters into the next 21 priat

positions. . i

3

places's intot the next print position.
9y
° . hd) ;\

e e LT s e e e e et

6.14 |

'following'the‘slashu

TSR S il $ e e S STTER TIT RS a Su ftt L <t S e S L 4 e e TR et e s R e A A g B S b e e e et e b7 Y

2X: places 2 blank characters into the next 2 print
' positions,
3
etc. . ,
1HS: 'blaca& S into the next print positionm.

/: inserts a blank line, ?

A 3lasﬁ-pr end of recoxd indicator. tell the printer to skip to

the next record indicated by the cary control following 1it. :
. . . . R R N Cm e L - e e el . R e e e e e o R

A slash followed by ‘a right~hand parentheéia actually defines

a blank record. Sinca a blank record contains a blank carriage \

control, then single spacing results, producing erie blank line.

A FORMAT of the general form Lo \

-

n FORMAT(/1H¥, . . .) : ' '

o !

introduces a blank line before printing (double spacing), while:
n FORMAT(/1HO, . . .)

intrpduces two blank.lines before printing (triple spacing),

which can albo be accomplished by | : . B
n-FORMAT(//1H¥, . .".) | s
Notice that in an output FORMAT a carriage control is required . .

after a slash, unless there is a right parenthesis.or another

slash (both of which 1ndicate a blank record or line) immediately
K

Similarly, v ot '

-n FORMAT(I-W)) /))

.- 4. N N . . .
introduces a blank line after printing, and : \fﬂ

n FORMAT(IN,”. . . //)

* .

vh .
introduces two blank lines after printing.

' n FORMAT(1HK, . . . 1, ...)

4 . L 8

ap#&ed record., ’ e

.) n FORMAT(IMK, . . . //1m¥, . . .)
and ’ Ty . '

- , ' | ﬁ:FORMAT(lﬁﬁ,.f L-;:/lHO, ce)

: both introduce a blank line (double spacihg) between the two

) _ printgd;line&:u SO . SR LA . o
e . _ o
o n FORMAT(lgw, eI, L L L) ‘% ' .
| and | |
“ n FORMAT (1MW, . . . /1m0, . .)
Uéth introduce two blan linﬁs.or‘tripie spacing.
‘Vérfical spacing on the-page with various cogblnaﬁiohs
.) | of slashes and carriage controls is limited only by your
inganuity and your needs. .)
- o " Slashes may also be used in input FORMAT'statements; . ; ‘ ‘ |
’ meaning to skip to the next card. e C ' Y -
g - A systématic way of number{ng ﬁdRﬁATistatementa;da desirable. ' .
| ‘ By placing all FORMAT statements at the beginning or end 4f a pro- '
"!gxam and setting aside, aiset of. statement numbers £or FORMAT state-
' ‘ ments, ‘it ‘is easy to adé)dalete 0r use a previous FORMAT state~ . | ,
ment, ‘Such 3 convention is axtremely useful for degugging pux~ | .
R _ pos@s> . o
More discussion of 1/0 gtateﬁents,is contained ip UNIT #11,)
but yQu know enough noy to c?ustéuét-gnd use’' simple_ I/0 fnstruc~
tions. L
L b N R . .
. 4. Refer to UNIT #6 AYIVITIES TABLE, Activity L
"5\\ o oo e C .
_ : ‘ ct s v
. - - | B LY
. SRR U S

-

Ty T TR R —

e = R S T B T TIRUOE WSS

A AT L B e < r—F v

/
Before you can*éonstruct a cgmpléte Fortran program, you must

be able to tell the computer when to stop compiling the program

[
<

and when to stop the execution of the program,

-The END statement cer@inataé the end of the compila or
tvanslation phase and” must go at the Ehzsica snd of your praﬂ
gram. The END statament tells the compilar program thac there . .
are no more Fortran statements to compile-or translate. |

The SFOP or CALL EXIT atatement terminates the execution
phasa and must be at the logical end of your program -~ that is,
at the end of the flow through the flowchart of the program.

It is the laét°Fortran.étatemént axecuted

While the statements CALL EXIT and STOP both terminata the
execution of the program, their functions may differ slightly on
different machinas. : . -

LY

Basically the intent of the CALL EXIT atatement is to termi-
o o
nate execution of the program abd to return control of, the computer

-

. back to the monitor program that is "{n chérgm" of the overall opera-

tion, allowing the cémputer to receive another job. 'sroé, on the

A

other hand, not only terﬁl\htes the execution of the program, but *

may also arrest the total operacion of the computer so that it
{

must be restarted with the START button before another job can be

proceaaed.

\ "

~ On the. IBM?1130 computer (M§ 214) you should preferably use

che CALL BXIT statementy otherwise the ompu\gr fuat bexrestartad.
On the IBM Systam 360, you. ‘may use aicgsr CALL EXiT or STOP,

since the compiler s programmed to interpret both sﬁﬁtements as

returning control’ back to the menitor program. " On WATFIV howevar,

s | 102

e

-y e - e - = - Srmaes chaas gotas P s el B, _ng_sk, R anth W S LY o o = =%;.:..==_,A,?n..__..'_.v.a.... AT AT ATV ahe B e o U YA T e e

«/’“’“.
6.17

- it is possible to receive a diagnostic warning if the CALL EXIT

q\' '.state@ent is }mmediatgly féllowed bx END. (The reasons for this

_are probably too aophistiéated for you rigﬁt now, If you teally |
want to know, ask aﬂ instructor.) Your program is npt -incorrect
if this warning message appears.

In summary, use STOP or CALL EXIT (warning possible) on the

360; preferably use CALL EXIT on the 1130.

SELF EVALUATION: You should now be ready to construct Fortran

) prbgra@s uaing I/0 statements and run them on =
a computer. Refer to UNIT #6 ACTIVITIES TABLE,

Activities 2 and 3. \\)

¢

- ASSESSMENT TASK: Please see your instructor. You will be required
to construct a Fortran program using I/0 state-

ments and run it on both the 360 and Fhe‘llaﬁ.

WHAT NEXT? You are now ready to tackle serious programming., making

A

- use of the computer's decision making capability. Continue with

Y

Unit Bt - ~ ¢

.

- Y 103

SRS PR bt o s e o L S o e S e e e T g g !

= b = ~ = T e, T = 3

L BB Asaidl fmning a5 B wre ame

Tt g R S L R VL g S eaa o o s S

) '

A3

, 0 .. \
- : /' ' . ./-.-.
/' TITLE: CONDITIONAL BRANCHING OR TRANSFER STATEMENTS

-

I - ‘ JUNIT #8 (COMSC) , . -

L e - : :
RATIONALE: One of the powerful capabilities of & computer is its '

ability to make certa}n loglcal "decisions" « that is,
. N .
. its ability to do a certain set of operations under a

<

certain condition and to do some alternate set of opera- -
tions if some alternate condition prevails. In this
. . unit you will ‘learn how to use Fortran for decision-

making.-..
T s ’

OBJECTIVE: At the end of this unit you will be able to construct

_ \ the four conditional transfer statements in Fortran -
L I £ L. _
- o the éomputed GO TO, thg aasigned GO 10, the arithmetic

= ‘ | - IF, and the logical I§‘~Jand to construct and follow (
the logilc of“program segments that make use of these

statements.

' PREREQUISITES: UNIT #6 _ L
- .

n . n,

ACTIVITIES: The first set of activities (A~D) is intended to ‘

%

acquaint you with the forms of the four types of)

conditional tranefer statementd and how these stater

»

ments operate. Activities E-G are intended to show
e J you how and when the four statements may be used in

* . 4] Ll

actual'prdblam salﬁing situations; a sample problem . v

' .' . 891 " -. |

I AT S, A s m g, T A e T e T R Ee s oy o 75 Tt e = 8 f s o i MR e € s TR o i e i S SR AL ooy r TP S S A GOLETS ESE T T e T ST s TPl e M R S e Sna ek gt

8.2 ' ,

. is given, and five sample programs are used to 1llus-

- £ tratfa tl.m statﬁments.]
- A. Computed GO TO.
Already you havé Been introduced to the unconditional
Gd TO statement.. In this unit you will leaén about two ‘
- more GO T0~statementa in which the tranafer is conditional,“r“‘”m¢“m”“
- rather than uncogditional- The }1rst\of thes@ is the com~ -
buted Go TO, and - the sacond is the assigned GO TO. | - ‘
Réfer to the UNIT #8 ACTIVITIES TABLE, Activity 1.
° . - E Sevgrél things about computed GO TO statements need -
special emphasis: | '
°. : . 1. In)the general form of the éomputed GO.TO,
~ 4 | /
. , T GO TO (n, ny, oey)y
- 3 o . .1 is called the index and must be an integer name. ?
T lg.muﬁt also Eg_precgéeé by a comma. . !
. R
2. The relationship between the index and the state-
) : ment numbers in the list, n,, ﬂ;,-..., 1y, is 7
’ . < positional. That is, w?én the index is one, éhe
firat statement number is msed; when th% index is
v ' cwoﬁ thg‘second stateﬁentigumbe{ is used; eﬁg. ’
3. Normally the value ;f the index ghould not be '
. alloweg to excged the-numﬂer of'statement numbers
i] _ in ;hé 1ist. (lsisk) In IBM System/360 FORTRAN, .
’ " however, if the value of the index does “exceed the < -
‘ ' , number of statement numbers in the list, then the | -
| : K‘ to. . : . ¢ ©
o a ' * “~ : ’ _ l OS N
. : ' w ' o . r

El

C.

Y
rd

8.3

first exacutable statement following the computed GO

TO is executed.
. : »

4. The value of the index is never allowed to be zero or

negative.
.) L]

Asgigned GO qg.

The assigned GO TO is probébly less often used then
. - - - / - N - :

the computed GO TO, and it is not available on all com-

pilers. (The assigned GO TO is not available in 1130 ¢

Fortran.) '

’
L

. Refer to UNIT #8 ACTIVITIES TABLE, Activity 2. \
- 4 T
When the assigned GO TO is used, the index, which is

1 in the general form .
q& 10 4, {(mn,, nz,'gu., n,) - ///

must hava_previously been assigned one of the st;;;;;;:*“
« : .
numbers contained in’the 1iqfhby use of an ASSIGN state-

mgnt. The index is not relatedﬂgo the positions of the

statement numbers, as in'the case of the computed GO TO;

but. transfer is to the statement number in the list which

1Y

has been assigned to the index.

In general, the computed GO TO can be used to accomplish.

anything that the assigned GO TO can do, as you'll see in

the example later in this unit.

Y . |
Arithmetic IF.. : o .

}

The srithmetic IF is an especially important condi-

‘tional transfer statement. While the computed GO TO and .

v o, *

L. 1o

v s e i e ol Py a8 i

ol

” the assigned GO TO allow any number Of ﬁoasibla transfirs,

the arithmétic IF provides branching only for the conditions
‘vf‘; i) . -
of negative, gero, and positive, ‘ " .

Refer 'to UNIT #8 ACTIVITIES TABLE,.Activity 3.

The arithmetic expression e in the general form

“ ~

R

IF (e} n,,n,,0,)
f . . .-

can be any valid integer or real arithmetic expression. For

example, .’ '

IF (X**4+3.0/X) 5,6,20

K
A}

is a valid IT statement, as ias

LF(N)10,30,5 e

.

. Two of the conditions may cause transfer gp'the same

-statement. In other words, a statement number may be used

- . .

twice. For ‘axample, (
J t

% | IF(2)5,5,10
causes transfer to statement number S-if the argument is

, nagative or zero and to statement number 10 1if the argu-

o] .
ment f8 positive. . - . fﬁ\\

D. Loglcal IF . : |)
Another type of H{fstatememt, the loglcgl IF, is

available with many computer systems. (The logical IF is

. o ~ Coo T
Lo it available in IBM 1130 Yortran.) The logical IF branches

on one of two conditiong, depending upon vhether the argu~

’

e ment is true or false.

-

Refer to UNIT #8 ACTIVITIES T%BL?Q Activity 4.
. ‘ \ !

*

197

A
h
w
]
'y
};2
Q
ERIC

198"

R M~ma_,w-wmmﬁmm“mp;"“wmﬂMm“m;mﬁmrr!.»ﬁTWWWNTNTTWMW“mMMVQﬂWT‘ I e ey
—pt &) [] : [\. . N
ror : . . ‘--' ‘I:" S ".‘ ‘)_I
- - .
. o o 8.5\ S %
. - : \ |
There dxe three.main pitfalls in’using the logical
. o " ‘{. . Y B 7 \ \
¥ o . .
o P) : 4
Rk N : ¢ » ’ 5\ h
jkiL 1. 1f the argument cannot be determined to be true
or false, an error will result. Whenever you
.) 4 . ‘
) write a logical IF, agk yourself the question, i)
: ‘ng + Y .) * ' .
~ \ "Is the argument true or false?™ - o . .
‘ For axampla; R ERNE - LU
. ". > ‘,_ , . . ok,
IF(5%N)GO TO'6 - . . e o
. F L e e X :‘.,t.;.»'_ : i-ii'f 2 E ," o "_.' o .. '._» L L,.,g‘“:‘
is ndot correct.- Is H¥N true ar is;it'falae?"Lyrﬁi.}gwﬁﬁﬁy*F'h'éﬁ@
T L N AL S T ‘I
. ; e L me T
-3 LI T s ¥ RS VN Lo v - -
| Actually, it's ngpﬁgpge eVenltq“?gk_yye ?ueSth?L§@?§@iﬁ*M¢ [
On the other hand, " v o
. : R : .
IF(5.GT.N)GO TO 6 : - v
L3 : - :
is correct. 'Whether 5 is greater than N (the "true")
') - < :
s case), or not (the "false'" case), can be.determined
(.o _ ‘
immediately when the value of N is known.
2. Lack of' understanding of the operation of the logi-. '
cal I¥ can cause incorrect results in a prograh. Tix ’
fn mind £irmly ‘the paths of execution in_the_logigal_-
IF.
Y .,
Suppose Sl‘and 82 represent two executable
Fortpan statements. Here is a flowchart for the
ov ‘ i . 7 " "
genaral form of the logical IF
r— . - - . N ~ \
' ﬁ o
: IF(e)s v . .
2 " 1 _ .
2 N K v
L.
provided that S, is not a transfer statement:,

TR T € SR e ST Ry,

- o
.
-
.- -
-
-
L]
.
*
- " ' . -
. - i
- ~ 7 ’ [
T - N .
) \ «c ¢
» 4 N
-
* K
- Y
-
" Ay
.
N ~
' »
1
i
>
. -~ . -
. t
L
-
»
- - - *
S
-3
.
\“
X ~
”
L)
¢
-
-
v
1)
~
.

.Y

.Notice that onlz”s2 33 executed if the argdmept is

-

~

/
3 True 'i;
L
. ‘ _ ;é;
,.§1 . . | “
¢.

‘ false, but that_both S, and S,

executed if the argﬁmeht is true.

*

(in that order) are

0f course,-if S,"is a,tfansfer statement, then

only S, will be executed if the argument ig_false,
. . - ﬂ

and only S, will be executed if thﬂ“&tgumen

R S

[0

?
)

¥

a

IF{a)GO TO 5
S, "

Here is a flowchart for the general form

>

H$§Q¢true.

*
[J
(] *
.
»
a
.
|}
L]
.
_..___.___ —_—— [9
14
P
A S
&
-
&
-
M.
e
*

~

TR R e I e T e N N

v

3. Do yoﬁ aea anything wrong with the }ollowing -

sqﬁ%emants? s)

- 3 1
.

IF(N.GT.5)GO TO 2 ' A T
¥ 2 N=N+1

v

You should! Look at a flowchart for the statae- 3

4
. ments.

False

T

The statémeng N=l+1 is executed if the argument is
true; it 1s also executed if the argument is false!l
Nonsense! The IF statement might as well have beén

AN

left out!

Putting“it all together. - ' | g
How do you decide what type of conditional transfer

statement to use? 'Ihe answer to that question is deter-

) L)

minad’by the .pfoblen itself and in part by your prefer-
- '/’

ence. ”;)

1]n

8.7

)

T TEIREETTm T ORI TR ETTE e s e

8.8

na
& %&?’»"\;

t

In gengral, assuming that the logical IF is avail-
able on the computer yﬁa,a(e sing, logical IF'G and
arithmetic IF's can be used_intérchpﬁg@ably.‘ This 1is
particulﬁrly true if 96iy two branclies from thaaari;h-

) / :
metic IF are bein 7ﬁad. ‘For example,

/

IF (X

L
r

could be used/in etéhangeagly with

. ,'; ﬂ\'\l ! - Yy
IF(X.6T+0.0)60 16 7 ¥ S
tafenient #5 goes here. W

branches of the arithmetic IF are being

used, howpver, then two "logical IF statements are

w1y

éequired. Fpr example,

|
, | IF(X)5,6,7

]

and .. 3 .

| IF(X.GT.0.0)GO TO 7
|IF(X.5Q.0.0)GO TO 6
. Statement #3 goes here.

could be used interchangeably.

The computed GO TO is particularly useful when

»

several branches are needed; especlally 1f the condi-

tion of transfer is based on conaécutive integexrs. For
M S '
example, suppose that you wish to make a count of stu-

L4

dents who .are freshmen {(coded 1), sophomores (coded 2),

5.7 | N

~ e e’

P

© g e aes]

- ‘=
"
-
Y
w
)
(
G.

0 TR 4 T T e T e s e e e e e

Juniors (coded 3), and seniors (cogpd 4). OUne computed
GO -TO can test for all four cases and transfer to the
proper counter. This is much simpler tQan using three

logical IF's or two arithmetic IF's which gf?ld bea fe-
quired to accomplisp the game ;ésk. ’

The assigned GO TO is very ganeral; since state-
ment number ass&gnment: aré determined;;y vhatever con-
ditions the p?ogrémmer wishes; Iﬁ dées ot depend upon
co@secutive integers as the computed GO TO éoee; it does
not check just for positive, negative, or zero or just
for.trua or false. Any set of predetermined conditions
&ay be uaed for statement number assignments for the

- Index of the assigned GO TO. As already pointed out,

however, the same thing can be accomplished by assign-

ing values to the index of the computed GO TO.

Simple counters.

In a moment we'll look at an example that illus- °

trates the conditional transfer statements. But before

we do that, you need to know about simple integer counters.

Refer to UNIT-#8 ACTIVITIES TABLE, Activity 5.

A gample program. .
Now let's look at some programe which make use of
IF, computed GO TO, and assigned GO TO statements. These

programs will also illustrate the use of a simple integer

\\\ counter. Here 1s a statement of the problem:

N

Suppggg/ge have & set of data cards, each of which

~

112

o~

C e

GO TO, ang

~

"has a student's name ard JD number, and his age,

I

se#, and claésiff&htion punched in thé columns
!.shown below. T
Coluﬁha 1 - 20> Nawe
" Columns 22 - 25: 1ID numb;r
Columns 26 - 27: Age
éolumn 28: 1 fofr?kesbman
2 for sophomore
\Lﬁ\, 3 for junior | o~
.@Qésf.eehiér
Column 29:_'1 for female
2 for male _ : f
3 for 1a§t card
We want a list of Ib numﬁers and a hgad count of

" male students wh¥ are freshmen or sophomores or

‘who are under 21.

There are a number of ways to program the solution

of this problem; we will examigg five programs with

'théir flowcharts., Figure 8.1 shows a solution that

uses only arithmetic IF statements for decislons, and
;i%rre 8.2 é@ntains the saie program using only légical
IF statements. Figure 8.3 shows a program using arith-
netliec IF aﬂd computed GO TO stafements for decisions,
while Figure 8.4 shows a program using logical IF and -

compuced,gc TO statements for decisions. Finally, in

Figure 8.$:decisions are made with logical IF¥, computed

4 A4

)}

_assigned GO TO statements. .

g

3

U

T Ty e m e IR PRI i T ST T e s n.,._mm,g:;,—sz..“‘-s,m B i T T e S B .J—_‘.,lz.r%&‘ ."’L L et L ~ T E

é;ﬂ_”_,““m“L_ e N o
' . C _8tart ‘ S _— L

_|¢ , ' . R . , . . . '“}

Init:i.‘alize couriter v

-?i‘ 3 ' ¢ [] ’
T = - B ‘ . DATA IN,TOUT/5,6/\gOPNT/0/ .
3 -gﬁiiséniééiE'- // N St 10+ READ (1IN, 1) ID, IAGE, ISEX
J o » L5RX - - : © IF(ISEX-2)10,11,12 : :
.0) 12 8TO]
) 11 IF(KLASS~-2)8,8,13 "
- 0 o ' .13 IF(IAGE-21)8,10,10
< ‘ - \\\ | 8 KOUNT=KOUNTH1
) . WRITE (IOUT,2)KOUNT,ID
B GO TO 10 . -
R i - 1 FORMAT (21X,14,12,211)
B - 2 FQRMAT(1H ,I5,1H.,2X,T4)
Stop b END
m . . N
_+/
.-
+ Wy
g »
. -y /\ | - | &
< ' ; _ Increment Mnter . '
¢ ' Write count, | . . , \
) e ID o |
. | - .

[y

. Flgure 8,1, Prc_)gram using ohly arithmetic IF statement for decisions.

- a
0

-

Initialize counter

" g
N

I &.

]

/

Read ID,IAGE,. //

KLASS , LSEX

Yes

Increment

counter

- \) /,,

Write count _.;7

and 1D

SRCPRY SORN ..ml

.. R i S S

e et By e bt

'S

DATA IN,IOUT/5,6/,KOUNT/0/

READ(IN,1)ID,IAGE,KLASS, ISEX

IF (ISEX.EQ.3) STOP

IF (ISEX.NE.2)CO TO 10 °

IF (KLASS .LE.2)GO TO '8

IF (TAGE.GE.21)GO TO 10

8 KOUNT=ROUNT+1
WRITE(LOUT, 2) KOUNT, ID

GO0 TO 10

1 FORMAT(21X,14,12,211)

2 FORMAT(1H ,15,1H.,2X,%)
END

10

Tlebg

.
, e

f"‘

The program tan also be written with only two IF
statements.

L

Figﬁre 8.2
decisions.

computer bscause of the logical IF statemey

DATA IN,IOUT/5,6/,KOUNT/0/
10 READ(IN,1)ID,IAGE,KLASS, ISEX
IF (ISEX.EQ.3)STOP
IF (ISEX.NE.2,0R,KLASS.GT.2.AND. IAGE.GE.21)
“$ GO TO 10
KOUNT=KOUNT+1 - .
* WRITE(IOUT,2)KOUNT, D
GO TO 10
1 FORMAT(21X,14,12,211)
2 FORMAT(1N ,I5,1H.,2X,14)
END .

¥

Progyams using only logical IF ‘statements for
(These programs cannot he rpnpsz the IBM 1130
84)

~

B e R L IT. L L N U

Z1°g

1

6

A

Initialize counter , .

5

Read ID,IAGE,)7

AT e kit i
-
IS _ — [_
” Id
)
& . 4
- ' - / ‘
' S
A

KLASS, ISEX

%
/..
¥

#+ Increment counter

£

. - ’ // Write count,
D

‘DATA IN,XOUT/5,;6/,KOUNT/0/
10 READ(IN,1)ID,IACE,KLASS,ISEX
GO TO (10,11,12),ISEX ~
12 STOP . _
11 IF(KLASS~2)8,8,13
13 IF(IAGE~21)8,10,10
'8 KOUNT=KOUNT+1 -
WRITE(IOUT,2)KOUNT, ID
GO TO 10 1 'f':\"ﬂ
1 FORMAT(21X,I4,12,211)
2 FORMAT(1M ,I15,1H.,2X,I4) . - \
END

~

Figure 8.3. Program using:computed GO io and .,

arithmetic IF.statements for decisions.

i e e L P e ER SR .-m:v« b TR TR - S WS M AT - ST T —m R R R T e A LTSRS M e e 8 e e S “;,.-,,.-»(T B s . IEEL U W N i U PR B R ARt
—— e e —__.‘_.. e i e mmmn im memmmm e = e e = e = e e imm e e e ...___....-_ - .._: . — —_ —_ —_ e _.._..M._'_. - ———— . ---.-é"_.--:"-"h“. ——— - ,;.’ - .;, R _..\.... ... e P e m e e . [
AN) .
. .) & ' - *
(Start] . . /) . ; : .
\ ‘ Initialize counter J[' (" . =
® ' , ; \ ' :
_—e ' : o .
. ‘ ' T = - N
INDEX=1 4 | : -
. . = TS ; SN >y ' : LA
X > o e % DATA IN,IOUT/5,6/,KOUNT/0/ '
Read ID,IAGE, - A 10 INDEX=1 .
A g, ' - GO TO (9,11,12),ISEX
. b 12 STOP
3 v 11 IF(KLASS.LE.2) INDEX=2
- IF(TAGE .LT.21) INDEX=2
, l(« GO TO (9,8),INDEX
N 8 KOUNT=KOUNT+1
Stop > WRITE(IOUT,2)KOUNT,ID . .
GO TO 10 . \ :
Yes N » 1 FORMAT(21X,14,¥2,211)
i 2 FORMAT(1H ,I5,1H.,2X,14)
. END R -
INDEX=2
J
Yes
TAGE<21
» v
o ~p
INDEX=2
= l Figure 8.4. Program using computed GO TO and T
logital IF statements for decisions. (This
program camnot be run on the IBM 1130 computer
st l _ - because of the logical IF statements.)
In'bremer;t counter . : ‘ '
: \l‘ - o - ' . . . ’ o L .
L e n 120
Q L) ¥)

. .
. a
> : . - ..&) v e e erems e - N 3 e A i ChattNrmmr e . e N o
B . o, A] .
A FuiText provided by Eric - : ’ ‘
. - . - R . . . o T i} ’ B :
) - ; . . 3 Lo . - N

o . i p
* . .

N

B e I ST TSI

T S L T ey e

Initialize counter:

5

ASSIGN 9 TO INDEX

-

Read ID,IAGE,
KLASS , ISEX

ASSIGN 8 TO INDEX

PSS I - e e, 1 e 3 e e |

DATA IN;ZOUT,KOUNT/S,G,O/ *
10 ASSIGN 9 TO INDEX * . .
“ 9 READ(IN,1)ID,IAGE,KLASS, ISEX ‘
GO TO(9,1Y,12),ISEX
12 SsTOP - :
11 IF(KLASS.LE.2)ASSIGN 8 T0O INDEX
IF(IAGE.LT.2)ASSIGN 8 TO INDEX
GO TO INDEX, (9,8)
8 KOUNT=KOUNT®1
WRITE (10UT,2)YKOUNT, ID
GO TO 10 ‘
FORMAT(21X,14,12,211) -
FORMAT(1H ,15,1H.,2X,14)
END '

X
, ’“}
LI
-

‘ Figure 8.5. Program using compuﬁed GO TO;'aséigﬁed .

N =

»

ASSIGN 8 TO INDEX

-

Increment counter

N

. '// Write cdunt, ID)7

S

f;!ffh

GO TO, and logical IF statepents. (This program -
cannot be run on the IBM 1130 computer because of
the logical IF -and assigned GO TO statements.)

X e

§T°g

N - 4 182

8 :16 {

Which of these programs cannot be run on the 1130

computer and why? v

4

4

\
List. The data input will consist of a set of

data cards, eéach containing a student's ID num—

)

;&yrfécolumns 1-5), the student's classification
ébéé (column_6, explained in the table below),
the number of hours in which he is enrolled

(col?mns 7 and 8), and his.ghkade point ayerage

L3

(columnsl9~13, decimal point punched with three

digits to the right of the decimal boint).

Classifis_tiqo ‘Code |
Freshman " o o
Sopﬁomore_ 2
Juniox 3
~ Senior. 4
Special 5

-

[}

]

-

Y

&

* :
In oégmr to qualify for the Dean’s List, suppose
that a student must be a freshman, sophomore,
Junior, or senior; must be enrolled in twelve or
more hours; and must have a érada point average
of 3.50 or better.

The last cafd°will haviy only a 6 punched in
column. 6 where the classificqgion code 1s punched.
. The prdgrhm'is'to Qéké'; 1ist of iﬁ numbers
and grade point averages of students who qualify

for the Dean's List. Terminate execution when the

' last card is encountered.

Use. at least one computed GO TO, at least

*

‘ oné logical IF, énd'at least one arithmetic IF.

in your program.
Run your program on the 360 computer until
it 18 coyrect. Punch the set of tast data shown

below for trying out your program.

. e \
12345678901234567890

111114163.678
222221152.678
333332123.500 .
444443104.,000 '«
555555163.850 '
666663181.875 . .
777772133.750 :
6

-~
{

' ASSESSMENT TASK: Turn in to your instructor the printer output and

©

the program deck for the problem you worked in the

self evaluation section.

. HE

8.18

WHAT NEXT? Go ahead to UNIT #9.

=

t

M s

Your instructor will give you additional -

assessment tasks. You will be required to con-

struct ong or more Fortran programs and/or pro-

gram segments making use of conditionaloi}ansfar

statements.

%‘TITLEz ARRAYS AND SUBSCRIPTED VARIABLES

RATIONALE:

OBJECTIVE:
P

some common characteristic, such as points on a curve

B

UNLT #9 (COMSC)

Y
In order to handle large groupa\g of data which share

or grade point averages of students enrolled in a uni~
versity, some means of grouping these data together under
a single variable name, recognizing that the data share

a common characteristic, and some means of referring to
épecific data items, recognizing the uniquaneés of each

data item, are needed. In Fortran, arrxays and subscripts

»

are used for this purpose.

At the end of this lesson you will be able to congtruct
a Fortran program that makes use of one~dimensional and/

or two-dimenslional arrays.

: PREREQUISITES: UNIK #8.

ACTIVITIES:

Activities A, B, and C are designed for students who
cannot identify the terms subscript and element as used
in a set {or an arréz) of items. If a set of values of

x containing n elements in the notation

:Kl, Xz, x‘s, v & sy xn "

P

and if a set of values of x containihg n yows and m

L

9.2

€.

columng in the notation

x . 1] L]
: o1 *u,2 %1y *om
X X X s o X
2321 252 253 2,0
X > . * @
3,1 5,2 X3, g ,m

> x‘lal %,2)Kh’s vt](n"n
are m@aningfhl to you, then skip to Activity D, page 9.6
1f these notations are not meaningful to you, then go
through Activities A-C. Activity A describes arrays;

Activity B describes subscripts for arrays of one dimen=~

sion; and Attdvity C describes arrays of two and three

dimengions. ~

L]

What is an array? An grray is/iiﬁs}y a group of itmes with

some common property. /A dozen-egis is an array of eggs,

sharing the common property of "eggness." A group of red
things is an array qf red things, sharing the common property
of '"redness.'" People éag be grouped into arrays in many

ways ! an array of malés and an array of females; an arfay

of tall people and an array of short people; provided that
tall and short are properly dafined;'an array of blue-eyed
people and An array of brown-eyed people; an array of red-
haired people, an arfay of blonéfhéired people, and an array
of all the rast; or simply an éérgy of people.

In Fortran, arrays are usually composed of numbers;

but they may also be composed of alphameric data, alpha-

\

L2y

]
b
¥
Q
ERIC
'_

B

LN RN |

R e e
LY

al‘

[
dot vomt ed, el other tvpes of data. For

nane g b .

mer Lo and

con e 1R, A artay containing the grade
»

example, I we wWeoe

podut averagues ol stadvote, we would have an array of real

number .

The 1tnGavidu i l:\fz\g\. i aul catay are relerved to

LR DEETITER SN (S SR I SURT T N SN

-

What o 4 sabeies api ! Vonnh cipt o rs ih'w.&vi\ aumber t hgt

.] ,
doioerth o Gt v the poatiien din

the arvay of an individual

Gooubnoript o is oA

Y
RN ITTAYES I S T &

chrand the o not e o g subsoript

e

Wi L e e v Ve

Pt de o (TR TY R ..} ot ceen luoa catton, repre-
SR) b ' . [)
‘ - TN

* -

A\ - ‘.
' N "~ 3
l i 4] { ' :) ; | 30
! \ ; vt N teopo £
! l
| : ;
t
! v
: ~ Tt “ N
; \ \ b
H , § i ‘ ’ . » ;
| oo
| <

. ot eyt o b rarny manner; bat
BOM® Gl Ted o my e 0 ke a0 G dad Leated In the
¥
dragr e, el b Peeres Lo suop e cenvendent.

Suppento tadgl v, re U v pednt to epe number 3,

You cariarats Foave Lo diibicnty doing that, do you? Lpg

number 3 e migeely spec i faid Uy bedng in the third posi~ .
¢ ion (;_m' misebe et Poose che veiciencs point that was arbi-~

[y

tracily dhosea). ninfinly, 511 the other epps ave uniquely

3 K3

128 .

e U LI e aant T TN

9.3 -

R e bt Secenshbi cad Rt R SIES AR Y T

9.4

o

i

epeciﬁiﬁd by th@;numher of ‘the position in which -each egg
is located. ' PR
Conaidaring thepe eggs as an array of eggs, we can re-

fer to the poaitiona}x numbere as subscripts. W@ could refer

 te the egg in tha @hgydpr&éﬁlgzkiihiégg, read as egg sub-

threea, - . . e

Example 2. Consider the days of the year. They too

form gn array, and each day is ‘uniquely apécifiad by a num-

ber. For example, the bithd&y of Abraham Lincoln is che

43rd day of the year. (It's also February 12, of course;
we'll consider that notation later.) In array Jargon, we
could say that Abe was born on . day, , or day-sub-forty-three.

Example 3. Consider the seats in an auditorium as an

‘array of seats. Suppose that you are assigned seat number

108, or seat-sub-one-hundred-eight. That seat number defines
uniquely a position in the auditorium in which you may sit.

Do you now have a firm gr@ap on qhe notion QE;; subscripts

speak of position 5 1/2 in the agg carton or seat A5.32 in

L
the auditorium? Hopefully you answered, "Certainly not!"

In the definition of subscripts at the béginning of Activity

2, a subscript was sald to be integer; that restriction should
make sense to you now.
The:arrays considered in this section are said to be

one~dimensiona1 arrays because they have one subscript or

one poaitiqnal numberuassociated with each position in the

129

C,

- OOOOOO

SPTEIE, cmd SN e -

B R R e e

]) 9.5

arrays. There are other ways of looking at the positione

r

in arrays, however; one of theae will be considerﬁd.in:che

next section. /
Let's go back to the eggse and pumber them in a, different

o

way .

- OOOOOO

Clearly, there-are two rows of eggs, each containing six
eggs. We can sgacify uniquely any egg in the carton now by

stating two positional numbers; for example, the third egg

-on row one is egg, , Of egg-sub-one-three. (The row number

ie arbitrarily stated firsc.)
<2~Egpaider agéin the year as an array qf days. The year
can aiso be thought of as being divided into groups of days,
or months. Thus, the 43rd day of the year way also be re-
'ferred to by saying "the liﬁh day of the 2nd wonth," or dayz’xz,

having two positional numbers.
. ‘1- : ! ’ L
_:0r consider the seats of an auditorium. They may ‘be

numbered by row and by geat - row 5, seat 4, for.example,

,or seat, .. ‘ - ~
. , _ ‘

4

In ithese examples, two positional numbers or subacriéls |

~3

were used in order to identify uniquely each position in the

arxay. Such a system of numbéring is sald to be two-dimen-

sional, and the arrays are two-dimensional arrays. .

~ . 130

. o T
/ - o ‘

T T T TR TR e e A TR e A et e iy e et

T - SR = B P S P U e T L RN USSP RPN NN S S S N
\\ . Y \‘
.

| . 9.6 \\ .

-) L Whether an array is one-dimensional or two-dimensional

e St e e e v

‘\ 18 rxeally a matter of preference, Certa;;2£?pes of probleus
Voo v v «

\ may, however, be more easily accommodak@d by a one=dimensional

_ :‘ drray, while for'othara a two-dimensional array‘may be better

- One—di?ensional arrays do require 1ess"execution time in the

‘computer.

- ' What about the eggs in -the carton? Both gne~ and two-
) RO S

_ dimensional arrays can conveniently be used. In other words,
to think of the eggs as twelve eggs or as two rows of six

. eggs each maigs iittle difference probably. But with phe
yedr considered as an array of days, we usually p;efar to
think in terms of a two-dimensional array ~- that is, monthg
and days. : é. |

» In the case of the seats i%han auditorium, -it's definite- | “

ly easier to find a seat if youxére gilven the row and the.

seat number; rather than just a Bingle number for the seat.

Thare are also arrays of more than two dimensions. For

eﬂ

example, we could think of the year in terms of months, weeks,

and days. The third day of the second week of éhe sixth month -
would be designated QEYG,z,a* having thréa subacripts.. Or the
seats of the aud@tqrium might be divided into sections, rows,

v

“and seats. We might have section 1, row 5, geat 3, designated

; seatl)

5 3° These are exgmples of three-~dimensional arrays.

D. - Refer to UNIT #9 ACTIVITIES TABLE, Activity 1.

SELF EVALUAfIOﬁ: Refer to“UNIT #9 ACTIVITIES TABLE, Activities 2 and

3.

S e e e e TRt ET PR PR P A
]

9.7

ASSESSMENT TASK: Please see your instructor. You will be required

- . - to write a Fortran program making use of arrays:

and run it dn a computer. .
P Lon

WHAT NEXT? Handling arrays\in the problems in this unit has been

rather cumbersdme. In UNIT #10 you will learn a slmpler way of

\

-

handling arrays.

= PR s e e R (£ ST i YRR ARA U P 8 BV P S) S S Uy

UNIT #10 (COMSC) | -

TITLE: LOOPS

- RATIONALE: Oné of the great $saeté of a éomputer is the ability to

" “repeat @ set of operations time and time again. Many
applications in data procesaing and'problem solving re~ -
quire iterative procedures, that is, procedures requiyr-
ing repetition of all or parts of a program. The term
usually applied to such repetitive ogeratiéﬁs is looping
or loops. In this unit you will learn more about loop=-

ing in Fortran. You will also get a better handle on

making use of arrays in prograns,

-

OBJECTIVE: At the end of this unit you will be able to construct

Fortran program loops, using the DO statemeﬁt.
PREREQUISITES: UNIT #9 '

ACTIVITIES:

A, Sdﬁpoae chaﬁ you were given the task of writing a program
segment thét would find the sum of the elements of a onew =
dimensional array. One solution to the problem is shown in
Figure 16.1. A flowchart is shown in Figure 10.2.

ﬁotiaa that a logical IF might be used.in&tgad of the !

arithmetlc IF in li?e 5. What lbgical IF would you use?

133 “

10.1

B Al ek T T e T Ve Ty

10.2

C****t’c*ﬁ%v*i’c**ﬁ**9:**7‘(***********wﬂs****.*w&***w**

Ch¥kd% PROGRAM SEGMENT FOR SUMMING Tk
Ckk¥&% THE N ELEMENTS. OF THERARRAY A, ‘hbdok
Clkkkk USING K FOR THE COUNTER. Wik

CRARAKAARRRARAARARRRARTARARRLRIARRRRRAKRANARNAAR
Ch¥vkk INITIALIZE SUM AND COUNTER.

. 1 SUM=Q,. 0
2 Ke1
. Chdd® PERFORM THE SUMMING.
3 2 SUM=SUM+A (K) .
C¥¥%kk TNCREMENT COUNTER AND TEST IT.
4 C T KeKe)
- 5 TF(R-N)2,2,3 :

Chhdd% SUMMING COMPLETED. WRITE RESULTS.
6 3 WRITE(6,10)SUM :

Figure 10.1. Program for summing elements of an arrayg

A
o "

3 ‘ Initialize
4

.. countear
and sum

-,

Accunulate
su

. . herement
. counter
" 1s

“Tounter <
N?

Figure 10.2. Flowchart for summing elements of an array
- showing loops) '

4

ra 134 | .

e - T e - kL BT R *: P et L R SO Sy b = o Ly 2 N - S N P

e —. - j/m&.“ X B e S SN DRI ..»—.—.u.,..,;.-_-i A vtnd

' .) ” ' 10.3
Let's analysse the program segment carefully, using the

line numbers in the left margin. Lines 3 - 5 form a program

loop, that ia;Jp set of statements that are repeated. In this .

t P s

case, the loop 18 to be exacuted N times, since there are N

elements Iin the aréay to be adéed into lhe sum, After the N

8lements h;va been added, the looping is discdncinu@d; and;

in this particular program segment, the WRITE statement at \ y

1ipaz6"ig executed. "“"'_“"””“m“f“”m"' o T
Theré‘are th;ea statements altogether that control the

. -looping: linea 2, 4, and 5 of the program seément. The

three statements initialize, increment, and test the counter.

There é}e three keywords here: initialigé,~incfeme§t

and test. Don't forget them, because you will use them later.

L

.

Initiadlize, increment, test.

Fortran provides a spaciallstatemant fdr looping that
hénd;es the detaiig og.loop control‘fpr tha programmer. - This
'atatémeﬁt is the DO eﬁate@ent. ‘The three control statamenfs'
c in the program segment (lineq\z,_é, and 52=that'initialiée,_. ST
. _ . BN o .;)

increment, and test the counter can bé‘replacaa with a single .

¥ DO statement 1llustrated 1nyFiguxe 10.3. A f19§chart is shown

* N) .
in Figure 10.4. 1In the DO statement, "K=1,N,1" contains the

three control functions: C"Re1" initializes the counter to 1;

“N"»sarves as the taatfvalﬁ& (that is, as ‘long as KsN, looping

" a

. , will continue); the last "1" serves as the' increment value .

- -

- 135 Lo

TETTR T T R amEERe Ty s m— TR TR e e

S e

10. 4

e

- - - -

PROGRAM SEGMENT FOR SUMMING - .
HE N ELEMENTS OF AN ARRAY, -
UISING A DO STATEMENT. , ; -
SUM=0, 0 ’ : .
DO 2 Kel,N,1

SUMsSUM+A (K)
2 | [GONTINVE ,
{WRITE(6,10)SUM

OO0

-

o pigure 10.3. Program segment with DO | /
statement for looping. _“Q <

[d%g Initialize sum.

- Ke]
. : _ ..‘Yes K<l
o ‘ . KeK41

No

L]

Accumulate sum : [Wrice guni /

L

Figure 10.4. Flowchart for gumming N
alements of an array, using-a DO loop.
* &

10,5

(that is, K 1is incremented by one each time). The first
part of the DO statement, "D0°2," defines the range of the -
loop, consisting of the statements immedlately following

the DO statement down to and including statement number 2.

In this *particular case, the range consists of two state-
L v
ments. (The CONTINUE statement 1s actually optional in

4

this case; we could have placed the statement number 2 on .

SUM=SUMHA (K) and omitted the CONTINUE statement. The pur-
pose of CONTINUE will be discussed later.) }
When the looping is completed, that is, when K is no

longer ieas than or equal to N (K is greater than N, in

-

' ~
°
* v

4 .

other words), then the first executable statement following

the last statement in the range of the DO is executed. In

’

the example, the WRITE statement woﬁld be executed,

: The CONTINUE statement is-a'useful way to delimit the
range of a DO. It also provides a way of visually delimit- !
ing DO ranges by allowing the "body" of a DO range to be in~ °
dented from the DO and the CONTINUE statements.,

Place the following program Be?ent in parenthagized-or
indented format. Place a CONTINUE tatémént at the end of
aach'Dé loop. {(See the last pagé of this unit for the solu-
tion.)/".

. DO 17 I=1,N
DO 13 K=1,N
SUM=0. N o
DO 15 J=1,N :
15 SUM=SUM+A(I,J)*B(J,K)

.13 ¢(I,3)=5uM |
: 17 CONTINUE .

10.6

i
i
i

Refer to Activity 1 of UNIT #10 ACTIVITIES TABLE.

4

Loopin& can be -accomplished in other ways besides that of

“using the DO statement. You have geen one wvay already in

'trating‘looping without a DO statements

the eqﬁple program in Figure 10. 1 1n which a counter and
| ®

an IF gtatement were used.

SAmﬁ 106pa are. handlad more eaeily with DO statements,
such aé in the prOgram segment in Figure 10.3. But some
loops Are handled more easily by uaing a single conditional

transfér statementow~ an IF statément or a computed GO TO

_statemgnt,_for example. Let us consider a problem illus-

.Subpoae that we are to use a computer for compiling
the Dea#'a.List, and suppose that a student must have a

grnde point average of 3.0 or better in order to be on the

Dean 8 iist. Also suppose that there is one data card per

J EECE

K - C . '
.l

el

¢

10.7

student, each éf which containa a five-digit ID number in
columne 1-5, the student's classification in column 6 (1

for freshman, 2 for sophomore, 3 for junior, and 4 for
senior), and the gndde ﬁoint average in columns 7-11 (deci-
mal point punched). 1f the enrollment is very large, it
would be inconvenient to count Fﬁg cards so that the exact .
number would be knownj; it*would?b@ more convenlent to pl&d@

a ﬁsentinal“ card or a "trailler" card at the end of the data
cards aﬁd progrum the éomputer to recognize that card as the .
last é§§j. Une way to do this would be to place a caxd with
a 5 puncied in column 6, the classification column, at the
end of the data. Since\dnly 1, 2, 3, and 4 are legitimate
classificatfon codes, a 5 can be used to t&tminate the loop.
A computed GO TO {s very useful for fhis puépose.

) A program to prepare the Dean's List is shown in Figure

10.5. The flowchart is shown in Figure 10.6. This example

is similar to the problem-for self evaluation in UNIT #8.

)

C PROGRAM FOR COMPILING THE DEAN'S LIST
20 [READ(5,1) ID,KLASS,GPA

1} [FORMAT (15,11,F5.3)

GO T0{10,10,10,10,11),KLASS

11} IsTopP . -

10} {IF(GPA~3.0)20,21,21

21| WRITE(6,2) ID,GPA

2| [FORMAT (1H ,15,2X,F5.3)

GO TO 20 N 4

END '

'Eigéée 10,5, Program~loopiag controlled by a computed GO TO.

. el

1.008

Raad ID,
class,
GPA

Writé
ID and
GPA

. .) \ '
Figure 10.6. Flowchart for Dean's List problem.

H

w

thicé in the computed GO TO that‘executiog is termi-~

nated whenever the claasifiﬁation is 5, but that 1ooping
continues as XQng as the classification is 1, 2, 3, or 4,

The ccmputed GO—TO could, of course, be replaced with

A40

2

10.9

%

an IF statemdnt. For example, the arithmetic IF

. ¥,
IF(KLASS-5)10,11,11

or the logical IF

1F (KLASS .GT.4)STOP N

could be used.
Th@?éféfé'ﬂéme”alféThéfé'Wéyé of ‘checking for the last
card in this example. We cquld have used a blank card for
the trailer card and checked for a élaasification of zero or
* for an ID number of zero. (Remember that blank numeric fields
are vead as zeros wheﬁ the computer reads the data caraa.)

™

Another wa%&hould be to place a "ﬁonaensa" number, such as
9.0, in the fileld containing the gradg polint average qnd
check for that. |
The point éf this example is simply this: looping may -
be accomplished more easily in some cases without the use of
DO statements. | v
How do you decide whether to-loéé with a DO or td use
some othe;lmeans of looping? Here is a "simple rule of
' thumb'" to help you.decide:
1f the looﬁ makes use of a counter, then probably you
should use a DO,
If the looping is controlled by some condition based
on the dnput-data or some condition set by the pro-

gram, usually Eested by some conditional yranafet

statement, . then brobabiy you should not use a DO.

10.10

This rule is certainly ‘not absolute, howevar, .and should

° be apblied only as a kind of starting point.

¥

- | SELF EVALUATION: ~

A. Refer toé UNIT #10 ACTIVITIES TABLE, Activity 2.

B. Rafer to UﬁIT #10 ACTIVITIES TABLE, Activity 3.
C. Write a program segment that will find the sum of tﬁé ele~
| ments of a two-dimensional array contalning N rows and M

e e
columns. (Answer on next page.)

(

ASSESSMENT TASKS: Please see your instructor. You will be given
a problem-for which you are to comstruct a For-
tran program, making*us® of one or more DO loops,

and run 1t on a computer.

WHAT NEXT? You may go to UNIT #11 or to UNIT #13.

[

e

K - - 112

Answers to problems in the text of UNIT #10

4
' C INDENTING THE "“BODY" OF
C THE RANGE OF A DO LOOP.
C
D¢ 17 Y=1,N
DB 13 K=1,N
SER SUM=0,
- D@ 15 J=1,N
SUM=SUM+A (1,J) *B(J,X)
15 C@NTINUE
- o R L C(1,))sSUM
. 13 CENTINUE
17 CONTINUE
G SELF EVALUATION C.
¢ ASSUMEYTHAT N<11 AND THAT M<2l. ,
¢

DIMENSI@N A(10,20))
SUMMING CAN BE DONE BY ROWS OR BY COLUMNS. -
EXAMPLE OF SUMMING ACROSS ROWS.

SUM=0.0

pg 10 I=1,N

DY 11 J=1,M
SUM=SUM+A(1,J)

11 C@NTINUE
10 CONTINUE

aa

C EXAMPLE OF SUMMING DOWN COLUMNS. |
| SUM=0. 0 S
DB 12 J=1,M "
DP 13 I=1,N
© SUMs=SUMYA(I,J)
13 CONTINUE
12 C@NTINUE

© TITLE:

UNIT #11 (COMSC)

INPUT, OUTPUT, FORMATS

RATIONALE: Although the input/output discussions in UNIT #6 (COMSC)

“should provide the essaentials for raading ddta and priat=—"~~—~~"~"""

ing results on Ehe line printer, thaere are additional -

-

features that provide simplifications or capabilities
that are useful. As in UNIT #6 (COMSC), the card reader

will be used for input and the line printer will be used

-

faor output.

?

When you complete this unit you are well on your

L)

way toward being able to use Fortran as an effective

computational tool. Many of the programa.which you
develop in the remainder of ‘this course should be use-
ful to you throughout your college career. We %eel that
being able to understand and write computer proérams is

one of the wmost important skills that you can learn. It

-

is almost of the same level of importance as the ability

to communicate effectively both in oral and written form.
4
{

There 1s an appendix that summarizes FORMAT state~

3
° W

ments at the end of this unit.

OBJEC$IVES: When you finish this unit, you will be able-to construct

Fortran IV READ and WRITE statam&ntg@?gg their associat~

ad’ FORMAT statements to handle a varﬁppy of input/output

; 1alddq

Y

(73

. 11.2
. 8ltuations.
PREREQUISITES: UNIT #10 (COMSC).

ACTIVITIES: You should make use of a variety of READ, WRITE, and
. FORMAT gtatemehts in the programs required by the other
COMSC unitas, This will help you to become proficilent
in performing the tasks of reading and writing. It also
"w111”Hélb”foﬁ“ﬁo"bfgﬁﬁléhmﬁﬁd"ﬁféééhf"fééhlféwiﬁmﬁ“féhé;fm“m‘
“able form. TFurthermore, by inserting temporary WRITE
" statements at key points in your program, you should
be ablé to debug the program much faéter than by trust-
ing to lﬁck.) e
Format field descriptors covered in UNIT #6 (COMSC)
were |
£ ~ ‘ F, Hy; I, X.

Additional format field descriptors covered in this unit

are
. A, D, E, G.

Otﬁer format field descriptors (L, T, 2) exist, but wiil

not ge covered in this IPI sequence. Also covered in

this unit are input'and output of array data.

NOTE: THE MOST SIGNIFICANT DIFFERENCES IN FORTRAN

IMTLEME%?ATIONS FOR VARIOQUS MACHINES_AR@ MOST LiKELY

T0 OCCUk IN INPUT/OUTPUT PROVISIONS. In other words,

FORMAT atatéﬁents that work on one compiler may not

necessarily work on another.

Recall that input/output statements ave of the

11.3

form
READ | 1y
£) list
N WRITE (w,£) e
where "u" ia an 1/0 unit number, "£" 1s a format state=

ment number, and “list" ‘may be empty or contailn a list
_ of variable -names. FEach variable name in the list re-

quires an assoclated field descriptor of type A, I, D,

fied by "f." Literal, H, and X field descriptors ara
not associated with variable names in the list.

How arxe the fieid descriptors and the items in the
1/0 ligt coordinated? Each action of fofﬁat control
depends on information jointly ‘provided by the next ele-
ment of the input/output 1ist, if one exists, and the
next field descriptor obtained from the FORMAT statement.
If there’is an input/output list, at least one field .
descriptor other than '1;teral', H; or X must exist.
Stated more simply, i1f you tell the computer to write
or read the value associated with a variable;‘nama, then
you must provide a field descriptor for that value in

the FORMAT statement. As an example, consider the

statements written in symboiic form in the following

example, o
1. READ(S 1ll)€1,€2aﬁas€As€s,€e A ~
111 FORMAT(Sl,SX 8q,08 3/6“,4(10x 8s)) '
WRITE(S, 113)A,,2,,A sA, :

113 |- PORMAT(1HO, 4%, 28k~ 8,,7/2?62,6 5

. d4g

E, F, or G to be present in the FORMAT statemeat speci-.-

Py vy

11.4
Assume -
¢y represents a list element, ,) | -
Ay represents a list element,
6y represents a field descriptor.
Once the read statement 1s invoked, the foint action .
proceaeds as follows:
-T-uum:~_ww~Tm-~w aeti9§-$aqu@ne@m~~~umMTnnmm—list~elem@ntmu——f~imm—-mfieid-dséeriptor_mwm_mimm-nw
) R a €, ' .\ . 8, .
2 o - 5% (5 colums
o) skipped)
3? " . €, _ 5§
b E; . _63
5 \ . ‘ / (read next -
. &\\\ | | card)
6 €y | 8,
Fa 10X (10 columns
A) ' skipped) = <
8 . €g . Q Oy ‘
9 10x
10 _ g - 8
, . ,
11 - input list exhausted

Similarly, when the write statement is invoked, the

action proceeds as follows:

» \

-

=tz Z AT -, s e — s i
A [= o e it :

) ‘. ’ T 11.5]f
-— . action sQquence list element ' field descriptor
1 I ' o . *180 (double space i

befors print)

2 - \ o 4X (blanks placed

. y » . in next 4
) . . : print posl-
.+ . tions)
3 _ ' - Q?Aﬂ (inserts A=
o in next two
. . print posi-
_ -] o R e ~_tions) . . -
4 Al 61 iy d Cow
.95 | o , : // (double space
' o - before print)
- 6 A, 8, (watch this;
the left most
character to
be printed is
a carriage con-
trol character)
. I and must be 8
' _ blank)
(\ ' : :
,74; - ‘\3 . ,69 -
. 8 " A, 8,
9 Ay 8,
» 10 >\6 52
1l A, 63.
12 “ i . 1ist exhausted
NOTE: A field desgriptor must agree with the data type
of its associated vartable in the I/0 list. For example,
‘o ’ the descriptor I musf be used with an integer varilable
| namne. s) : \ . .
it) o - ' - " (
To be more speclfic, consider the statements ' .

XF

- | . 3 118

s [P - SR ' . in
. e PR P

-

11.6 , .
/ﬂ 7
REA.D(S 121) W,Y,K,J,A
121 FORMAT(FlO 3 ax,rs 4,2(3X,15)/T10. 6 F6.3,14)
&
B . -
The corresponding action sequence follows:
actionjsequence list element R field.descriptor b
=7 .
;) :
1 W " F10.3
I 2 4x
3| - | Y " ‘ ’ - ’ ’ F6.4 “
4 ‘ X
-) %
5 K s I3
6 o ' 3X
7 J LIS
i 8 - ‘ e / (advance to
o cL . R “next datg
' card)
9 | | A ' F10.6
\ IS \. ’ . *) . «
10 ’ : liet‘exha?bfed (the rest of
) PR : the field
. descriptors
. : - "are ignored)
Y “y N L3
NOTE: The field descriptors .
.] e N -
2(3X,15)
: ‘ _
, may also be written &s
I 3X,15,3X,15
\ Completa the action sequence for the following .
. Fortran statements. - ‘ _‘ B + :
\::J v _-‘ - - . ' o h- B
o N 14\9 ‘. v
. i~ 3

EEEE * ‘
TN ’ 11.7
: : ¢
ITE(6,196)1,J,A,X,P - e oW
19§ [PERMAT (1H1, 39X, L6HQUARTERLY REP@RT/ ’ -
e 13HOINCREMENT = ,15,3X,8HINDEX = ,14,
_ 14 11HAMT, EXT.» ,2F10.2,5X,9HPRYFIT = ,-
action sequence list alement © field deascriptor
. : §.
1 /\j v :
2 . o & R A
,3) \ | \ _
4 <
'3 N : i <R)
- 5
% 6
7 s
8
9 ¥ £
0 - S
11 ‘ - '
12 . . ¢ -~
’ £ °
13 ., . N 3
14 |
15 -
A aimpl-ifiec‘i flow diagram of "the interactiop se-
5 gquence between the format d,eécx:ipmrs and the I/0 list
: appears{tixi Figure 113 1. Refer to the flow diagram' and o T
. tram_elgrough_ the Bdftion sequences for some I/0 state-
,“'\ * -&&m&nts N ‘-'ithice‘ that the blogks in the dlagram are num-
v . * .i . - Q-) . . ’ . ®
¥ : - i} - -

-\) . ~'- 1) d . .) .

11.8

ey

12. & + next
field descrip-

©

¥

tor from FOR-
MAT stétemaent®:|

713,
Is ¢ a

Yeas

- - 1. A«
(:iO. Start I/O:> : »{ NOXt element
from 1/0
1 list
14. Terminate process-
ing’ of current record B
and inltiate processing |
T of pew recoxd.
AN
16. Perfbrm the action

specified }by the field
degcriptor.

*Left parentheses and

. commas are ilgnorad as
field descriptors.

Yes

"/"?

: Is ¢ a field
descriptor of type
"literal', H,
Q8 X7 TR

17.
Is A

é%. Finish%E}*

21. Scan the FOR-
MAY statement from
right to left to
the first left = |l
parenthesis. In-
clude the repeti-~
tion factor, if
on& is present.

&

Is ¢
the final

right paren-
thesis of th
FORMAT

23: Perform the
1/0 conversion as
specified by the
field descriptor.

.

Figure 11.1, Flow diagram of the - .
interaction sequence between the '
format- descriptors and the I/0

lisg, - o

Y

e

Yes

empty?

No

19,
Is ¢ a _
ll) ll?

Yes

No

22,
Is & a _
field descriptor
of type A, I, D, E,
F, or G?

e o A T T & T T et im -

24, Something's wrong!
You're not supposed to
get to here from there!

PRSI

|

11.9

bered, 8o you can Indicate an action sequence with a

series of numbers. Here's an example:

WRITE(6,5)A |
FORMAT (1HO,F3.1)

The action sequence is

i

10 12 11

11 13 12

12 15 13

13" 17 15

15 - 19 17

16 - 22 18
‘ 23

Here's another example:

*

WRITE(6,6) AN ' B
FORMAT (' LTABLE 5'/(1H0,F5.1)) .

2

The action sequence is) T

10 12 12 12 11 12 12 12 11
11 13 13 13 12 13 13 13 12

12 .14 15 18 13 15 15 15 13 .
13 16 17 15 17 16 17 15
15 19 17 19 19 17
16 . 22 19 20 22 18
' 23 20 21 23

Now, 'you try some. Complete the action sequence
for each dféthe following three examples, ‘using the

. - “ >
flow diagram in Figure 11.1.

. -

s ﬂ

11.10
1.
WRITE(6,7) A
711 FORMAT (1HO,FS.1,1HX)
2.
WRITE(6,8) A
8| FORMAT(LHO,F5.1//'0THAT 1S ALL.') '
3
Iy
164
153

1

f) S e e a

READ(5,9)A,B,C,D

FORMAT (2(5X,F5.1),F11.4)

ot

Correct action sequences are shown below:

1.

10

11
12

13

15
16

10

11

12
13
15
16

. 10

11
12

13

15

16

12
13

15

17
19
22
23

12
13
15
17
19
22
23

12
13
15
17
19
22
23

11
12
13
15
16

11
12
13

14

11
12
13

15

16

12
13
15
17
18

12
13

14

12
13
15
17
19

22

23

12
13
15
16

1]

12°

13

15

17
19
22
23

12
13
15
17
18

11

.12

13
13
17
19
20
21

12

13
15
16

12
13
15
17
19

22.

23

11
12
"13
15
16

12
1%
15
17
18

11.11

NOTE: In this case, the 2(5X,F5.1) in the FORMAT was
treated simply as 5X,F5.1,5X,F5.1, thus deleting the

inner parentheses,.

Array input/output is handled in much ﬁhe same way as
nonarray input/output. It is possible to reduce the number
of entries in thesinput/output list by using "implied DO's";
however, this can b time consuming s_o__Fhé_f;__ail_npliﬁi_ca;i,qgg__
in writing the 1/0 statement must be welighed against the .
accompanying increase in computer execution time. An example
of a list with an implied DO follows. 4

READ(S 1LLK,L, ((A(1,J),T=1,K,2) ,M(J,3),J=1,L)

In this example the elements updated by the READ are

K,L, A(1,1),A(3,1),A(5,1), ..., A(k,1),M(1,3),
A(1,2),A(3,2),A(5,2), +.., A(k,2),M(2,3),

A(1,L),A(3,L),A(5,L), ..., A(k,L),M(L,3)

. where k 1s either K or K-1, whichever is odd. The FORMAT

statement assoclated with this READ statement must bé such
that the fleld descriptors agree with- the data type of
corresponding Vafiabies in the 1/0 list.,

NOTE: ‘Indeg variables for implied DO's (I & J in the

example above) sre modified just as index variables of DO
statements. Consaquentl& the“valué-appeéring in an implied
DO index varilable will be different agzer éhe 1/0 statement
1s executed froﬁ what it was before the statement was execut-

V4 A\
ed,

11.13

LY
&

QUEBTION: What is an appropriate FORMAT statement for
. ' the above READ statement if K, L, M are of

integer type and A is real type? Assume that

K=5 and L=3.

“

o

One gorrect FORMAT using arbitrary field widths is

shown belbw:

111} | FORMAT(215/(3F5.1,16))

:

A ’ v

In this FORMAT, the values of K apd L huet be punched on the
first data cafd; and three values of the array A and one value

of the. array M are plaged on each of the subBequent data cards.

”

Refer .to Activity 1, UNIT #11 ACTIVITIES TABLE.
g f_

Swon
»

SELF . BVALUATION: -
A, Write a program segment that will read in the array punched

ou these data cards, using only one READ statement and one

)

FORMAT statement. (See pages 11.16 and 11.17 for solutions.)

| 10111011112022222222 333333333344 4AA4AAAASIS 555555 5566666866667 7777117778
123456789011 23456 7890(L 2343678901 2345678901234 5678901234 56 7890/1. 23456789 2343 7890
20 '

1 16.0
}

003‘ 1.2 “306 Slu 1a 81'

21.% 78.G~31.1 30,5
/7_ ‘“17-0 18.0 OQ 20. l
\ R !

19. .4.

s

11.14

—) ’ B. Write a program segment that will write out the axray
<

described in 1 above five elementa per lin®d on every other {§

line (double-spaced).

C. Write a program segment that will write out the array in

- ‘l above one element per line single=s?aced in reverse order

“ in which tﬁay waere read in,

T D. The students in a particular course took an examination on
which the scores were based on 100 points. Write a Fortran
program that can handle up to 1000 scores and will count the
number of students who made scores greater than the average.

. _(The average 1s found by dividing the total of the scores by

the number of scores.)

The scores are punched in 16 fields of five columns each
with decimal points punched. The first data card contains
-only the number of students who took the test, right-justi-.

- _ ~ fied in columns 1-5. Use only one READ statement in the

program.
.’\ -

Use a DATA initialization statement for initializing running
‘ .

sums and counters.

The output is to be placed at the top of a new page, must

look éxéctli'like that shown below, and must be produced

with only one WRITE statement,

-~

(Small x's indicate numeric fields.)

15y

*

) T

111113111122222222223333333333444444444045
12345678901234567890123456789012345678901234567890
AVERAGE SCORE IS xxx.x

- NUMBER OF SCORES ABOVE AVERAGE 1S xxxx

SCORES . . -
HXX.
- XXX.
KXXK.
atc,.

~g-

E. Refer to Activity 2, UNIT #11 ACTIVITIES TABLE.

- - \
ASSESSMENT TASK: You will be asked to comstruct, debug, and document
>

a Fortran program. Contact the instructor when you

*

feel ready.

WHAT NEXT? It you haven't completed UNIT #13 (COMSC),-you should o
do so. You should start UNIT #14 (COMSC} as soon aé you
feel that you have a good grasp of UNITS #11 and 13. You

- may want to try UNIT #12 or 16 (COMSC) congurrently with.
UNIT {#14.,
When you have completed UNITS #11 and #13, you may
elect to stop, in which case you are?ﬁot eligible for a
grade higher than ™B." If you wish to try for an "A,"
f- 'then you must complete the remaining units. Discuss

this with your instructor if you wish

r

—

T e L ~ L TR~ - Bt gt S st

Solutions to problems:

A. . ‘ e Y

READ(5,1)N, (ACX), I=1,N)
1 | {FORMAT(I2/(16F5.1))

BI
WRITE(6,2) (A(I),I=1,N)
2 | {FORMAT (1H0,5F6.1)
{.
C.)
DO 3 I=1,N
Lot N~ T+1, (‘
WRITE(6,5)ATL) ~.
3 CONTINUE »
5 FORMAT(1H ,Fé.1)

L)

On some computer systems the following,progiam segment will
work, but notice that the form of the subscript is nonstandard:

-

DO 3 I=1,N o
WRITE(6,5)A (N-T+1)
3 CONTINUE
.‘_\
I ra i
) A
159 ’

4
C K [US THE GOUNTER FOR THE SCORES ABOVE TRE AVERAGE.
C SuM IS THE CUMULATIVE SUM OF THE SCORES.
C S |Is THE ARRAY OF SCORES. - .
IMENSION S(1000) '
ATA SUM,K/0.0,8/
C INRUT SECTION
READ (5,1)N, (§(J) ,y=1,N) ™
1| [FORMAT(15/ (16F5.1))
C FIND THE AVERAGE.
DO 2 J=1,N
SUM=SUMHS (J)
AVG=SUM/N | o
C COUNT THE SCORES GREATER THAN THE AVERAGE.
DO 3 J=1,N
IF(S(J)~AVG)3,3,10
10 Ke=K+1, -
3 CONTINUE
C OUNPUT SECTION
WRITE(6,4)AVG,K, (§(J3),J=1,N)
4 | [FORMAT (18H1AVERAGE SCORE 1S ,F5.1/ _
1 35HONUMBER OF SCORES ABOVE AVERAGE IS ,14/
2 7HOSCORES/ (2X,F4.0))
CALL EXIT @
LEND
#
N w).
AN . \
160

11.

= ramon et e s e c— ~ T o — CRER T e e 21 e 8 e e e e e s e ey

UNIT #11 (COMSC) APPENDIX

. FoB»Q{s

GENERAL FORM: nnnnn FORMAT (61,62, v ooy)

where nnnn 18 a statement npumber
(1 through 4 or 5 digits)

61, ooy Gk are fleld descriptors

______ . - R

THE FIELD DESCRIPTORS AND DATA TYPES TO WHICH THEY APPLY ARE:

rAw character data fields

riv integer data fields ‘

prDw.d 'real\data fields

prEw.d real data fields

prfw.d real data flelds

prGw.s .integer, real, loglcal or complex data filelds

"literal’ éransmita literal data (output)

wH | transmits literal data (output)

wX field skip on input or imsert blanks on outpug-,a

r(...) group. format specification | '
vhere /

d is an unsigned integer constant specifying the number of

decimal places to the right of tzf decimal point, i.e.,
the fractional portion. ' The d ﬁ st be specified in D, E,

and F field descriptors even if it is zero: Furthermore \

- ' w must be greater than d. For I type format w = d+7.
In this case the field width w must include in addi-
tion to d, a position for a sign, a digit, a period,

an E; an exponent sign, and a two digit exponent such

ag &
10, xxxxxxEice

p is optional and represents a scale factor designator

of the form nP where n is an unsigned or negatively

o

signed integer constant.
- ' ' ;l‘
- r is optional and is an unsgigned integer constant- used

to denote the number of times the format field descrip-

tor is to be used. If'r is omitted, the fleld descrip=-

{

tor is used only once.
'y

8 1is-an unsigned integer constant specifying the number

e

”

! \
. of significant digits. .

v

-

w is an unsigned nonzero integer constant that specifies

the width of the field.

{

B it e L TR NP

11.19

(P

TITLE: ARITHMETIC CONCEPTS . L e

RATIONALE;

OBJECTIVES:
4(’\

a

;"\

n

UNIT #12 (COMSC) ' -~

v

It {s safe to say that more arithmetic is done im¥an

hour on the installed compﬁters today than has been

- =
done by all of mankind since man began to count. Yef“s

*

N

the type of arithmetic that we study in school satisfies

quite different propertiag from the type of arithmetic
performed by computers. The results of a computer com-
putation are usuglly close toxthose of a hand computa-
tion; hdwever, in a specific case in which an author
reported, "The numerice}iintégration in this'study

took about qne'an&vone half years with twenfy working
hours every week with a-considerablé amount of work\ﬁnd

endurances,"” the resulting hand calculation turned out
to be totally incofrecﬁl In this unit different types

of arithmetic computation will be investigated.

Determine the number of significant digits in an
expression, given the number of significant digits
in each element of the expression.

Describe intege¥ arithmetic, floating point
-

12.1

fom
s
o

! m

Ih T

12.2 | -

e SN - arithmetic, and fixed point nrithmetic ag implaw
- emy <

ment ed on digital cowputers.

Describe the asaociative, commutative, and

*

diatributive laws of arithmetic and th@ir rela-

. tionships to arichmétic performed on digital com-

A}
~ / . e L]

. putars. 5xxgxd///' . _
] .
_ Deécribe e in arithmetic due to rounding,

truncation, loas of significant digits, conversion

from decimal to binary, and convaréion from binary

to,decimal,

.
.

PREREQUISITES: UNITS 11 and 13, Math units on asgociative, commuta-
- . $ ¥
tive, and distributive laws of arithmetic.

[

\

ACTIVITIES: - Read the following material and perform the tasks

indicated, Answers are at the end‘of the unit,

. I

. < Accuracy 1is measured in terms of‘the number of
significhnt diglta which a number containa. Any one
of the digits 1, ﬁ@ 3, 4 3, 6, 7, B, 9 48 & signifiw
cant digit. The digit 0 is sometimes, but not always
. | gsignificant. Three cases are possible for the digit
0. ‘ S | .
i

(a) Zeros aré to the left of all.other non-2ero

2

<

: T digits. Here the zero is used ‘to @ndicate |
the decimal pointhané is'ﬁogggignifiggnt.
For example, in .00123, the leftmost two |

zeros are not significant; rather they serve

léq-'

[[
1

) | 12.3

as position holders for the decimal point.
(b) Zeros are Eecween aignifiéaut digits, In
‘this case the zeros are considered to bé

gignificant. In the pﬁﬁbep 1002, the two

el

i zergos are significant.

)

ﬁ' ' (c) Zeros lie to the 'right of non-zero digits

‘of a number as, for example, in the number
123400. The zeros may‘or méy not beiéigni—
ficant. The reéommended nmtatién 1f the

v C - digits are not significant 1s to write the

number as '

1234 x 102,
If the first zero were significant this

5 | o :

. . | should be written as
12340 x 30,

@

. The number of significant digits in each of the follow-

£

ing numbers is four: 1234, 1002, .01234, 3210 x 10°,

N 11000 x 10, _ R Y

How many significant digits are”iﬂ each of the

3

- . ‘ following numbers?

) . (12;{> a. 1.234 - £ 125400 x 108
! d IR b, 1.005 ‘ . 8. 1000 % 1073
T e e000 . e b 0
- o d.o00012 - : 4
) o e .000100 | - {
e 155 |

12.A

A number is asald to be corract to p significant digits if
its value is correct to within one half unit (of the given base)
in the least significant position. For example, if the number

1234 {s correct to four significant digits, it is understood

“that the numbar lies between 1233.5 and 1234.5. An alternate

expreasion for this is 1234 % 0.5, If 780 x 105'15 correct to °
tbreg aigpifigantudigita,.it lies between 77950000-apd 78050000,
Frequently,'nﬁmbers which are known to many significant

digits must be reduced to a\suitabie 1ength for computational
iurposes. A process called rounding. is used to rﬁduce such a
;umber top significaut digits; On é'computer this operation
is éerforméd by adding (s;bcracting) one half of the base in
the'position (wtl) {f the number is positive (negative) and then
retaining the resultant p significant digits. The following

examples illustrate this procedure for base 10 numbers rounded

to 4 significant digits.

12,3456
+00. 005 .
12.35[06 = 12.35 correct to four significant
digits
« 98764
. 00005 . :
. 987619 "2 ,9876 correct to four significant

digits

(12.2)

12.5
b
-12.3456
-00.005 _
-12 .3 5'0 6 = =12.35 correct to four signif-
, . lcant digits
- . 98764
"'tOOQOS
- .9876]9 I -.,9876 correct to four signif-

icant digits

This procedﬁre produces slightly different distribution
‘of results relative to the manual procedure of rounding.
The manual procedure doés not round if the digit im the
nth aignificant position is even and the digit in the
position (n+l) is a 5. >

Examples .of the manual procedure are

12,345 = 12.34 correct to four significant
digits’
12.355 = 12.36 correct to four significant

digits

Round by both the mapual and computef based methods

b

each of the foilowingwﬁﬁmbers to 5 sigﬁificant digits.

mhnual ‘ computer based
a. 3.1415926
b. 2.71828
c. 4679.25
d. 4679.35 | ' . »
€. a4679.25 '
£, ~4679.35 | | L

S

12.6

To determine the number of significant digits resulting

\
" ‘from the evaluation df an arithmaetic expression, given the num-

ber of asignificant digits in each alement of the expression, it
L]
1s necessary to establish some rules governing significant digit

arithmetic. These are given under the headings addition, sub-

traction, multiplication, and division below.

«”

Addition. When adding two positive or two negative

numbers, there 18 no losg of significéuce
when u;rounded operands are used. In some

i cases tha result may have one more sighifi~
cant digit than either of the operahds. |
For example, aupgase 1536.2 and 7428.9

- were rounded to 1536 and 7429 respective-

ly. The additions of the younded and un-

- o

'
rounded numbers are
)

rounded : unroundead

4536 4536.2

. 7429 _ 7428.9

_ ;L i 11965 _ ~ 11965.1

’
BN

both of which are correct to 5 signi-
’ficant digits. The followihg case
illustrates a loss of significance

when rounded operands are used:

° >

| 15'8 .

-

I

(12.3)

rounded unrounded
1232 1231.5 '
6746 6745.5
7978 &

71977.0

since the result is correct to.threa significant
-digite instead-of -four -significant-digits which

each operand contained. \

\

How frequently is such a loss likely to ocecur?

!

When one of thé operands contains fewer signif-
icant digits than the other, the operend with the

greater number’of.places to the right of the decimal

\must be rounded to conform to the other operand.

For example, in order to add the two numbers

12.345 and 2345.6, it is meaninglass to*féfgin more

A

than one digit to the wight of the decimal point
bacause the second number is aecurate only one place

to the right of the decimal point. 'The sum is given

4

by s ¢ - ’ h] ‘é‘-

12.7

Tt . PTECERAE S
N 4

st = it e T e Tl L A e ” . ot e — =

12.8 . /

. \
Subtraction. When a subtraction occury (by either
¥

adding.a poasitive number té/gﬁnagativa numbex
or by azbtracting a positive number from a

s positive number), a complete loss of signifi«‘ _
cance may occur. Usually each case must be .
considered indep dentlyu!'Aa"an example
consider the ﬁuﬁzgrs 12345.6 and 12345.4

which are rounded to.123&6 and 12345. The

results of rounded and unrounded subtraction

are
rounded . unrourided
~. 12346 12345 .6
- 12345 ~ 12345.4
00001 00000. 2

Although the two are rounded correctly to -
3 significant digits, the result has no
significant‘digité, 1.ef, the 1 1§ off by
a full unit. It 18 more likely that a loss
of significanceioccurs, but not a compléte
loss of signifiéance. The best stfétegy
{ 18 to try to arrange the cémputation 80
that subtraétions.do not occur. As discuss-
ed earlier in ﬁNIT #11 (COMSC), oﬁa real

ibot of the quadratic equation should be

constructed as

J . ' -1 ?})‘

" A

12.9

-b + Vb? - 4.4.c

X, = if -b s positive
2a .
or as
' V2
Xy = ~b - Zb ~ 4-ac if -b 18 negative.
a

The other root is determined by_récdgnizing that
X, %, = c/a

and hence

Thus there is no subtraction in detérmining fhe
root. If both a and ¢ are positive, a loss of
significance definitely will ;ccur in the compu- .
tation of the discriminant. This loss may be

reduced 1f b? - 4ac is computed to as high a

- number of significant digits as poséible. This

is called double or multiple precision and will
be discussed subsequently. Double precision is
another strategy for reduciné the loss of signif-~

icanca.

I el |

12.10

“d

Multiplication. Up to two d%%nificant digits way be lost
NS Y T, Wb L]

-

Divigion.

(12.4)

in a multiblication. The product of
921.2 and 102.4 each rounded to three
significant digits compared with the un-

rounded numbers provides an example.
! -

rounded / unrounded
QAL e gLy e e e
102 102.4
1842 36848 .
9210 18414
93942 A 92120
94329.88

Although the multiplier and multiplicand
are correct to thre@.aignificang digita;._
the_producg differs by 6 in thﬁ/third

_position from the left or by 0;6 in the

second position from the left. That is,

/
there is only one significant/@igit in
the product, even though both the multi-

plier and multiplicand weré correct to

three significant digits.

ﬁp to two significantidigits nay bevlost.in
a division. Consider ;he quotient of 1763.4
by 1761.6 with both dividend and divisor
rounded to four significant digits each,
How many digits are significant in the |

rounded quotient?

A2

' “eny

L

W

12,11

How many significgnt digits result if each

oparand in the expression
R = (A~R+C)¥DAE

is rounded to 3 significant diglts 1if .

' ' A = 1432.7 D = 123.4
' i

B = ?32.4 J E = 987.6
C = 341,62

/"

£ .
¢
. @
Rrounded_ﬁ Runrounded

aumber of significant digits’

73

Y
. :
v . . ,

<

12.12

Integer arithmetic as implemented on digital computersa
assumes that the radix {(decimal, binary, octal, hexadecimal,

atc.) point is on the right of a fixed size number. The fix-

~ ed number is called a word and might be 10 decimal digits or

-

32 binary diglits or 36 binary digits or some other size.

Addition and subtraction are performed .using one word. Multd-

plication and division require two words, but are subsequently

" reduced to one word. Consider a decimal“machine in whicﬁ a

word consists of two digits.

2 3 .
The sum or difference is
+ 4 | 7 generated in one word.
710
21 3 ({
X 4 7 The product raqﬁires two A
- words . . i
(
1]0 |8f11°
) The dividend
- - requires two
0|1 (6] 9 3 1721 +~ 11141 0] 1] words, the
' / B divisor re-
/ remainder quires one
quotient woxrd. The
. _ s quotient ig
in the left-
most word,
the remainder
. 18 in the
1 a .« rightmost word
. "1 : after division..

P

W

\,

12,13
f

The result after diﬁiaion fs not rounded. The remalnder occurs
in one of .the words and requires special manlpulation if it is to be
utilized further in the fepreaentation of the quotient. Instructions
on the computer make it easy to select the rightmoset wor& or the left-
most word of such é paixr of words.

In floating point arithmetic, part of the word refers to the
exponent (or power of the bases and the rest of the word gpﬁgiaté
éf significant digits: Suﬁpéaé our computef has'4-digit degimal
words with a plus or minus sigh. Suppose floating poin£ numbers

have the fiorm

[

J‘T”-‘i e d, .d, dy. | \

' 4
where e stands for the exponent and the numbers in d,, d,, and dy

make up the mantissa or the actual digits of the numbgr.~.Exponents
may range between.O and 9 in a one digit fiela. If the number 5 is
uéed to représent an exponent of (0, a one;digit field qan be used to
represeht exponents between -5 and 4. Such a representatiﬁn ie‘.
térmed an 'excess 5°' represanta;ion. It allows positive numbers

Ao

Lo represent negative exponénts. The location of the decimal point

relative to the digité*ddd (the subscript has been dropped temporarily)

Is giyen by the following table. o
-~ e exponexit decimal point
. T .

9 4 dddo.

8 -3 ' ddd.

7 2 , . - dd.d

6 1 d.dd

3 0 »ddd

4 -1 . ,0ddd

3 ~2 . 00ddd

x 3 L3, _ .000add
1 =i +0000ddd

0. -3 B . +00000ddd

175

= . R e By s aeaa s ms = Rt ea 2 e S T e B er it s
e LT L e 3 e E

.

-

.

TR Thate T SEEATSE A T T et R e s s s i =S - R L e = = — P e = e b g e

. Sp

We require that after all floating point computations

d1 is non-zero, unless e, dx’ dé,

da are all zero.
_The exponent e is a power of’lo. To multiply

two numbers, one multiplieés the mantiaaaaz and sub-

N | tracts 5 érqm the sum of tpg two exponents, per?apa
making -a corraection to force d, of the résult to he

non-zero. For example, the computatiébn of 3 x"2 in

this floating point format is carried out as

/) ‘ t) e = 6+6~5-~T*})

0f x t6r2j0fo0) .~ p710}6]o] » |6]6]o

X ?’”E%\

- In this example, di is zéro; consequently, an automatic
left shift of 1 occurs. A left shift of 1 is equiva-
kent to mdltiplying by 10; thus, the_gxponent ﬁhat be
reducéd by 1 to retain the proper valdbe.

‘The computation of 8 x 7 does not require a fixup

shift to place a non-zero digit into the d -position.

Since two three digit opexands can generate a-six»
_ digit prdddbt,.eithér two or three of the six digits are
lost in a singlé precision mu}tiplyf No rouﬂding ocecurs.,
In a double préqisién multiply, all six digits would be

retained.

[y

-]

L

- S | l?}£$°

- A S s e 4T s £ St o Ao e KT e B AT e YA
- e amd il e 7 e e Lo b i T e o . ¥

|

12.15

N - Write each of the following numbers as a floating

point number in the format just described.

(12.6) a. .67 d. ~36.2 4
| b. .000987 . *a. .02
L c. 104000 _ . . fe *"-'(_)000763 L o S

’

Indicate what the results would be in single precision

. - floating point format for] v

(12.7) a. | 4.67 X (~36.2) .
o b. 104000 % (~.0000763) L
c. ~36.2 + 4.67 | e
d. .02 + .000987 L
e 1040.00 + .02 o

™~ v f.' . -000987 X (“’o 0000763)

On the 360/65,’fi0ating point arithmetic -is used for
ar;gﬂgetic of type.REAL. Two formats ;xist, single
precision and double precision. A single pfecisién
floating point number is 32 bits in length and con-~
sists of a sign bit, 7 bits‘for the gxponent, and 24

bitsg for the fraction.

t] exp fraction
0 1 8 '

Simgie precision floating point representation

<

 ; R E | 177

12,16

"Excess 64" 1s another designation for the bias of

~

A
The fraction 18 in binaryﬁgthe exponent reprasents

Q

powers of 16. A bilas of 6&10 sarves the game pur-.

pose as the bilas of 5 in the discusslona above.

N

64. The binary representation of 64 is

" 1000060, : 64y, = 4015 . ‘
An exponent of 65,9 | 7 o

1000001, = 65,5 = 41,¢
indicates that the fractional part is te be multiplied
by 16'. An ‘exponent of 62 indicates, that the fractional
part lsgﬁo be—mult}plied by 16'3, etc., Double precision
floating point numbers on the 360/65 use two words with
" the. fraction part being 56 bits in length. _
e o o LI
. 7 . 3 , 7 63 L
1 | exp ' .

O 1. -n‘B . 32) . ‘ @ ¢ N

B R v

Double precision floating point repreéentation -

Although ity is not difficult, we shall forego calculating

in floatihg point arithmetic for the 360,

A

4

- e
L4
-
L]
. ¥
.
~
«
&
. A
-'
-
&
L3
. [
-*
-]
3 n
l
L \ 2
Iy
&
¥
¥
L -
o
d L]
¢
i
0 .
q .
K]
' 3
H
.

In mathematics a great deal of time 1s spent

dlscussing associative, commutative, and distributive

propertiea of arithmetic. To remind you of these

, .
properties we ligt them below.

v Associative property (grouping property)
Addition . . {(atb)+c = at+(bic)
. . Multiplicafionq (a-b)-c = a-(b-c)
. . | ,
Commutative property (ordering property)
. L -
" Addition .‘ - *atb = b+a
Muliiplicqfion a*b = b.a
" Distributiye property - | .

n

(d&th)-c = a-c + b-c
ac(QjE) = a-b+ a-c .

k4

.On a digital vomputer; the commutative property
holds (any truncation that. occurs will occur independent

”

of the order of the operands); hqwever,\the assoc%ative

and' distributive properfiés_need-pot hold. The t:hree:,Lr
. ; " ‘ o, .

e

B : . . .
digitsfloating point repregentation ‘used earlier.illus-
triates thi% well: . .

A
<

. t]e d,d,d, - -

_'Single'pfeéision floating point format .

. ~ <€
*) “ 2 i I-; .
a Y .
. .l\‘\ ’5(. '
. LY -
. - [v
? ®
] . » v
3 ‘.'/',.J > 2 °
€ * o
P & ¥
» . *
o EEN LZ

AT G o e W T, R et (1 e 3

B o L SN

12.17

Gt = SR T AR Al e =

12.18
If the values a, b, and ¢ were
a = 5670.
b = -5670. |) .
c = ,000987
& then
\-
f (atb)+c = .000987 = |j+} 2|9 8 7
.
. and .
at(btc) = 000 = |+[0]0 0 ©
. i Thus 5
. (atb)+c # a+(b+c).
. Determine numbers a, b, and ¢ for which
. (atb)- cg# a.c + b-¢
[: , {f thé arithmetic is dé‘i\‘é‘tﬂ"’aur digit floating
boint fépresent@tion. ‘
(12.8) a. a= | . d. (ath)ec = .
b.,. b= ' : , Ee_ a-¢c + b-¢ =
N . : \
» G c =
' “ - l 18{)
AN ’) 1 .
r \

. . . 12.19

Determine -numbers a, b, and ¢ for which

a-(b-¢) ¢ (ab)-c

(12.9) a. a = d. a-(b.¢) =

by, b= a. (a-b)-c = _ /

it the arithmetic is done in the 3 digit floating point

representation.

NOTE: 99.999X OF THE ARITHMETIC DONE TODAY DOES
NOT SATISFY THE ASSOCIATIVE OR DISTRIBUTIVE

PROPERTIES.

-

It should be obvious from these examples that the order

of operands may produce some error in a computation,

Before yoﬁ get the idea that things are really
. 3
ke — bad, the computers are almost associative (aa) and

¥/ almost distributive (ad) enoﬁgh so that reasonable

reéults occur. . It is unlikely that computers ever
will be associative or distributive. (Why?) Conse-
%

quently, in order to establish a degree of harmony with

mathematics an aa~ad system must be defined mathematfgllry.

° . Whe knows, you just might get involved in-such a project.
/ . .) » ‘
& ' A . N
”
LS ° .

N
’

12.20

L)

Minor numerical discrepancies hay take place
during input/output. Numbers represe ted iﬁ ba;;
10 must ?e convertdd to binary beforq7computationﬂ
occur and results must be converted froﬁ binary.;o

' Qecimal for printing. ﬁxact frnct;pnal represen-
tations in decimal do not necessarily have exact ‘ ‘
fra%tional rapresentations in binary; conaéquently,

an error occurs when a converted value 1s trquated

- to the word size of the machine. For examplé,
(.l)lﬁ.ﬁ.(.0001@0010001000100010001)2

- — That 1s, 1/10Idoea not have a terminating binary
fraction expansion and hence has to be trunéatea to .

~the nu&ber of bits in a word, The frgction 1/2, on
the other haAd, has an exact binary repreaéntagion,
namely, (.1) s The fraction 1/3 hgs.both a non-ter-
minat ing decimal expansion and a non-termlinating
binary expanslon. Errors which occur becaqéerf-the
requirement'for different bases aré usually not
significant: Infrequently special programming may .

be fequired to avoid a truncatioh problem in the

o ' - conversion from one base to another - but only in-
frequently. ' . .
, - »
W ey p oo, ot e o o v, . . L
, . . . B o
-’ “) hi
s -
X oy e i
! . - w
¢ \" , * T -
v - §- . -

-~

12.21

L% 3 . - L]

‘Concluysion. In the preceding discussion wa have avoided actual

details .of how various computora handle arithmetic operations.

jCDmputers mav differ markedly in this regard. The same program
w ' ' : - ’ .
run on different computers may possibly produce slightly different

numéric results, especially if several signiflcant figures are

"f@quirﬁd,in the regults, B B T o o e
i . - - T
The.,axerc¢ises .in th{s‘unit are Intended to demounstrate to you

-

that- numbers are not néceasarily"what they appear to be andl that

* . .) "
whether numbers are or.are not rounded before calculations generally . e T

F]

affects resuylts.

-

Generally computers .do not round results of arithm&tié\gpera~

tions, but rather trunéagf the results to the sﬁeclfied numbér of
digits that .the computer ié destgned té hardle. .Aﬁ'examplé of how ‘
¥ - - : .
thia-migﬁe aftect results is foqu‘in a calcuiﬁtion that involves ,
‘::;;ral divis;gn steps, iq which tpa'rémainder is ‘lost each time. ’

The absolute value of the final result will be expected to- be
. o . ST

smaller than 1f"roumding'based on the magnityde Qf*the remainder

could have been performged. For example, suppose we wanted to
,) \ b , L4 . N .
"evaluate ‘ _ . K .

t
L]

to three significant digits with truncation of digits beyond three. .

\

4

' The result "ig . o . » ., o

8043 4 5.2 4 1.54 42,27 = 17,45 » 17.4
n '

bt

Iml

[3

o L

il et

T b - IR TR T

12.22

Rounding gives . _*‘

L

8063 4 5.21 4+ 1.54 + 2,28 = 17.46 + 17.5...

If the fractioms containing the remainders are included, then the

result is
_— 17.47 » 17.5.)
. /’ -
- You can suoe thﬂt Lha error accumulates a8 morg operationa are
performed - - : :

RS : . .
What conclusions can we draw? There are many possgible; here

& e

are a few;

L

-

© &, In general,)::7 should organize calculations in 'a program = -

g0 that the g

formed is minimized., . o : e

.
- - r 9 - ¢ .

ber of ggithmetic operations that are per-

b. Avoid qituations in g-program- in which two quannitiea of

sim{lar magnitude are qubtragted, resulting Lﬂ 1@38 of L

. - en. - A
twe e - LRI IRCL N
-y . o . -

significant digits. T B

- Q _'. -

¢. In general, you shOuld arrange operations’ that are;especially
prong€ to loss of aignificant digita (subtraction and division}

af/'
30 that they occur 1a3t or near the end of a series of cal-

°

culations. T . ' ' - ‘

- L.
<

ki

" ; o A

Check them by hand,- if possible, with several sets of trial
data. ., Additional care-is also required because a program .
will not'ﬁecéssérily produce correct results with allvéaga

)

. : . e
" just because: it does for some data. \)

» o .
oo . ‘. -
@ . N
o
@
o < N
-~
. R . @
- v » n “ .
L o -
. L “o ©
Al "o
. ye
.’ - hdied ° o
L,
' %, - : T
I) i
. o “ ' c ° oo

. — T " B iAo LS a e R s LI e = e 220

Be sure that results glven by the computer are reasonable:f“;;f?

A
SELF. ABSESSMENT: If you have worked through the examples in the
e X matarial, then you should have assessed your

1

prograss alyeady. Check your angwers with those

-

given on the next page. -

ASSESSMENT TASK: Please see your instructor. You will be required -
~ to apply the rules on rounding, the typea of = .

arithmetic, etc., as spacified in the objectives.

WHAT NEXT? You should complete UNITS 14 and 16 before you can begin’

UNIT 17. ' ' .

- - \
~ S 4 . -
L]
IS
h »
»
3 » .
- 4 .
. \
L] -
1 - i -
4.
. - -
.
\5:' N o .
. ~ . .
.on !
o L
P L Y
¢ -«
'y
. . ¥
1 - Y .
. » L]
»
' - LS ‘%&.
' B .
. . « & e . T N
¢ .
2 B s a: e > -
-~ - . - ‘.' - "
! R B
; EEY)
. = -) —
. . . v
. - . 0
P To vy § i - *
° ST, - v -~
< ¥ et . ° b - -

12.24

& - -

Solutions to problems in UNIT #12:
(12.1) a. & f. 6 M\
b. 4 g 4
c 3 h, . 1
d. 2 ¢ k
— e, 3 o
. AN
? . o
(12.2) . manual N computer based '
- a. 3.1416 7 3.1416
- b. 2.7183 _ 2,7183
C 4679.2 4679.3
t a4, 46794 L 4679.4 T
< . "~ o - .
, ce. -4679.2) ~4679.3
. . RS
f. -4679.4 =4679.4 _— B .
(12.3) The diglt in the position involved in the vounding nust
o . contain 5 for each operand. Assuming that the digits 0 :
to 9 are equally likely. candidates for this digit posi- _ ¢

tion, there is 1 chance in 10 for each operand or 1 chapce
in 100 that such a loss will occur.

"

(12.4) 3 - | | : L - |
(12.5) Rrouf&d - 41682732 Runrnded™ 416697356928 L
& numbe; of significaﬁé digits w 2
(12.6) a: T L7
’ b ev +4200 ~° .
g "¢, cannot be reéresentad 'f.* ~1763 .
‘)a - N .) , .

[Aruiroc rovisaay enc IR
Lam vy
s,
N

. . >; j
i ° ~ 12.25
‘ (12.7) a. -8169
b. cannot be reprasented
c. =715
= d. +4210 . . »
e, +9104
f. cannot be represented
‘ -
- L) . . N -] .)
(12.8) a. 1000. d. 10
* b. =999, e. cannot be represented since
: a-c is tod large) &
. Ce].O\
o. (12.9) a. 100. ©d. 100 - (1) = 100 '
b. 100, e. cannot be represented since
. . a-b 48 too large e’
- Co -01 G\ ‘
? . -
\. ¥ '
/“ ' -
) oL 6] .
. . | \:)' . ’
\J.. A - ?‘ - * ! '
N) . . M\ &
- ‘ N - _
A -
. 18*;1 b
. . . e N !/_
: . /. .
. i - ®
< . ¢) A / ' $

LR

he 3

\Wiﬁ

UNIT #13 (COMSC)
1.

TITLE: SUBPROGRAMS

RATIONALE:

3 v -

The writing and debugging of long programs nay
bacome quite fréstrating. But, if the programs

can be divided into shorter, simpler parts, then
both tﬁf writing and debugging caﬁ be simplified.
By using sgbprogr;ﬁ@ in Fortran, yo% ggn divide
programs into shorter and simpler segments, write
tﬁem, and débug them quite easily. This capabi%ity
alone providgs an important rationale for learning"
to use subprograms.

Another useful feature of subprogr;msuis that
they may be saved for future use with other programs.
A eubpr;gram is an independent unit Qh;ch can be
placed with any other{grogram (or subprogram) and“can
be used with that ﬁrogram§ provided 1t is properly

called. This obviates your having to write more than

one time a program that handles a particular type of
;. R .

‘task.

Subprograms are alﬁefy powerful part of Eortraﬁ

and are used wideiy Certainly your skills in the \ise

¢

of Fort an would be incowplete wiﬁhout an ability to

o

write and Yse subprograms.

Y,
\

13.1l S,.‘;?. | '

13.2

OBJECTIVE: At the end of this unit you will be able to construct

any type of subprogra? and its coxxesponding caliing
statement and to construct.a proéram using aﬁy type

of subprogran.
-

PREREQUISITES: UNIT #10 (COMSC).

SUBOBJECTIVE 1: Identify the four elements of the concept of °

subprograms.

()

ACTIVITIES:

34

A. . Here are six numbers: 2.5, 8.1, -5.2, 0.0, 4.3,

~~%,6. Find the average of these numbers and

. In order ({

to work the problem you had to go aslde to the

write it in this blank:

margin or to scratch paper for .a work area. You,

in éffact, transferxred thé numbers to ihh‘work

area, performed the calculations that were re- .
“quired, and then transferred the answer back to
the blank -line where you Qére told co~piace the
.answer. What you just did is analogous to what
happens\when'a s&%érogrnm is used in‘FortqﬁnZ
Let's 1nyestigate further what yoq.did.

In the problem given to you above, "Here - oy

are six numbers, TFind the average" the
LA TN ’

ey word 1s°avexq&m."This word tells you which s

Isg . o

[

13.3

procedure to pull from the atored information
in your mind. I« othet words, the word averago
elicits the procedure that says to add the num-

bers togéther and divide by the number of items.

v

~The procedure has a name. Fortran .subprograms

I

also have names. In order to use a subprogram,

you must refer to it by its Q?me in a talling;

" statement, about which you wiii\learn'more short~

A

ly. | ' N
The name average tells you whgl‘combutatioﬁal
procedure to follow, but you cannot find the aver—
% : .

age of some numbéra unless you have those nu@bers.
Se the second thing yoﬁ did was to traﬁéfer the
numbers whose average you were to find to a'worka
area.f_81milarly, a Fortran éalling statement sends
the data items sp?cified'innthe cai}ing statement
to the éﬁbprogram (analogous to the'work areé).
The items sent are called arguments. \)

" Once the numbers weré in the work area, then

you could actually execute the "average" procedure

and find the average. In’the same way,-a’?ortran'

' subpgogram.ia exaculed, performing whatever task

’

‘it 1s programmed to do.

B .Fﬁpally, when you had calculated ghe_average'

[

-

"
-+

-

- Lgn .
. (' l l“

s

LN

Ly

-

Fy

IR & e

e i i

N e R —-.

| 4
. 13.4 .
* A
- . ’ in the work area, then you transferred the result
. to the place where you were instructed to put it.
- Thén you proceaded through the material. Similar~)
-4
ly, a Fortran subprogram sends the result (or
) r i
< ' : resultq) to the maln program &ﬂé\?EtﬂfﬂS control - u-ﬁ\f-
-to th main program, which allows’ the computer to .)
=) .
. . : procged through thé rest of the program.
) « S Let's féviewhthe four elements of* the concep#s
- C 7 of subprograms and the corresponding elements of»_"
;) s _
- .solving the problem to find the average of six
- ' numbers. .
.-t Average Problem _Fortran Subprograms .
N " 1. The name average" tells the . 1. The name of the subpro-
\ , | “ student which of his mentgl gram tells the computer
y . . procedures to use. Invoking which subprogram to use.
\ : the name calls for the pro- T Invoking th? name calls
|) ‘cedure. '] > the subprogkam.
| _ . .
! 2. The student transfers the six 2. The -data to beused in’
\ pumbers to the work area _ the subprogam are -sent
! 5 (scratch paper or margin) so to the subprogram through
i o . . that he will have numbers for the argument list.
' ‘ calculating. . ; ')
- 3, ' The actual calculation of 3. The instructions in the
: * the average 'is performed. 2% subgyogram are executed.
4., The resulps of the calcu- - 4. The results of the subpro-
lation are transferred gram that has been exe-
_ back to the blank line on cuted are returnéd Lo
T a the page. - " . the main program,

*

i e riacayend

o - T RR s T e o enems s = 4 = Rt vt == = - it e“‘m"-’-i'x_""'(*‘-?-,

13.5

B. Refer to UNIT #13- ACTIVITIES TABLE, Activity 1.

»

SELF EVALUATION:

¥

A. Identify the four elements of the concept of nubproQ

grams in the following analogy.

RS J— . . -- o e
. .

A student is working s problem and comes to' a - Lo
v) step in which he must take the square root of a num-- o
"ber. He refers to a square xoot table in a mathemat-" .. e

~ . -

. X - oo Lt . ' .6_ .,
. ical handbook, writes the syuare root of the numbel o _‘%
‘ : op the paper, dnd proceeds with the problem. .- e T
N . 2 R . .

- ~ w_ B, The Yortrhn compiler has a "built-in" subprogram for BT

ty R T

N) - ", ¢aleulating the square root; the name of the subpro- v
S v ‘ . K ! .
.

gram™J 8 SQRT. Suppose that the statement Y=SQRT(X)

. — ;~ B . - |) ' » . .!. '.l._ g
i > 2 . . T LI R e
' LN : oecurs in\§<f:?b(gn~pgogram. Identify the four ele- ' N

S ”~ > : “ " meats of tﬁeiggifepc of subprograms when that state-
- ' ment 1g &xacutéd; “ . - e
. ~gDBOBJECQTTVE I1: Constrruct aingie statement functions and call- ' ':'.L;,_
- § - . 4 ! ~ . - “a
¥ o _ . 8
. ing statements for them; construct compfgte a
' prograw using-them. ., . , - ‘ B T
' '\ < K ! . .) 3
ACTIVITIES: . - | R
. RN - ¥ . . . R) 3
© C. Refer to UNIT #13 ACTIVITIES TABLE, Activity 2. i AT
N T - ' < . " . - . IR . Y e
o . . _ 4 2
w "Dy The quadratic fefmulq for finding the rootﬁ'of_a” ' R
. A o ,_ . : — BN
: V2 o o ?
. . < ¢ ~ R
. *._,_,gj . . . ‘ ., .]] o) - .
n ' -.2-‘:\. ’ . " -‘ '. ’ l 9‘) .I . ~ . . ! » :.
R . : oy . o .
) ‘ \ : \ ;

Mgy T meealf Sam -t - e e v - - T R e B e R, S e vy L A e oD B o e o, S, e | = SIS gy ¢ R s et = i T E o L o g

13.6 .
.
. 0 . _ w
quadratic equation of the form . A
o ¢ \ I
- ax? +; bx + c w) _ "
is - B) . .
| SN V1Y v .
R S . et - . U L. 2a R . R Tl . . R S
A simple program fof finding the roots of a '
‘ quadratic equatidn\ia shown below{ thé”pnogrém
s, . v
%%%9 asgumes that b> -.4ac 2 0, that is, that ‘the ' T
equatlion has two real rootg. 7 .
! v ' . ' *
v} l N
b‘ * . , EAP(S l)A B (a
11 FORR@T(BFIO 1) P
ROOTIN (~B+SQRT (B¥B-4 A*C))/(Z 0*A)
ROOT2 (B-SQRT(B*B~%,0 A*C))/(Z?O*A) o
- WRITE(»2)A,B,C,RO0TL,RO0T2) o .
2 FORMAT {1 HO, 5%10 2) e -)
CoppsToR g) -
[LND 4 . / “_
. : , . : \-% Y1
.) . '. L4 l . . . ’ '! -
©y . _ Tﬁis program can E&\é:?roinﬁgypwever in the
) b h accuraty of the calculation. In UNIT "#12 (COMSC) yo
- learn ,.'something about the loss of.significant digits
! N N W .) * l. . ~ '
) "In arithmetic operations. An example given in UNIT #11#
» ' R
. , illustrétiug this condition is found in the quadratic
formula. 1f it turns out that the absolute value\\f b
. . and the quantity Vb® -~ 4ac -+ are of nearly equal magni~ g
a R

w

I o i &
Ty

.8

'+ e B, ahreday P L N W, W o Poe kel s et e St ememseabe e
. .

&Q" !

¥ 12

tud@~and the two are subtracted, significant. digits
“ .

may be lost. In order to prevert the occurrance of

this possibility, we can find the roots using a

slightly different approach.

Use
NSV I ST

f; = btV'd Sac when -b>0Q

. 2a o

, \
\and use .
heVHE

r, = -b- b 4ac when ~b<0.

. . 2a

L 4

The second root can be found from
r, = S

2

since it isitrue that

SRR
(Try it, if you don't believe itl)

The program can ke rewritten ag follows:

8 4

13.7

: READ(5,1)A,B,C

1 || FORMAT(3F10.1) _ .

IF(~B)10,11,11 /4

10 || ROOTLw (~B~§ QRT(B*B~ JO%AXC)) /(2. 0%A)
1 GO TO 12

11 ROOTlM(*B+SQRT(B*Bw4 O*A%C))/ (2.0%A)
12 ROOTZmC/(A*?DOTl) 0

{| WRITE(6',2)A,B,C,RO0T1,RO0T2
2 FORMAT(lHO »2F10.2)
CALL EXIT
END
N YA
’ v ' ~

13.8

b AT TR (P o e

e e, TS e Y S S TN |

v R R gt

L d

NO?@%%?In the arithmetic IF statement, transfer can

Y

ba ei;har'zo statement numbeyr 10 or to statement tum-

bar 11 when (~B) 18 zero. The results are the same .
?

either way.

Construct tﬁ:ée single statement functions for
finding the roots of a quadratic equation. {(These
will be for statements 10, 11, and 12 of the pravious'

program.) Co

There are mény ways to construct the functiaqa

1

A\ §
correctly., One set of torrect functions is shown
r

) -

below: . . .ot '

RINEG(A,B C)a(anSQRT(B*B“lf O%AXC))/ (2.0%A) -
- R1POS(A,B,C)= (*B+SQRT(B*B»-I+ O%ARC))/ (2.0%A)
R2(x,z R)*sZ/(X*R) . ;

L
\

(Notice that the names choeen for the\fu nctions.
&

must be real in this &ase, siﬂce‘thé results are -, ’

, /3\0 '1‘*13 T

o . [l

e e o i o iy T

L 4

. .
> . -
P °

returned to the calling statements as the names

of the subprograme. Real names return real results;
AN .

integer names retury integer results.)

Now comstruct three calling statements for tha
functions y%u have written. "'““\\\;)
. ' T

*

\ -

oo

-

q

Again there are many possible correct calling
J

statements. For the statements above, the calling .
3 ‘ »
statements could be ™ S :

ROOT1=RINEG(A,B,C)
. ROOTI4R1POS(A,B,C)

ROOT2=R2(4,C,RO0TL) | SR
L, |
The function'names must match exactly; the arguments
‘ :l \7\ :
_ IR
A

!) .in the correspongding calling and function statements
- ' ’ . -

must match in number (three in thia case), type (feal

to:rmal and integer to integer), and order (first

’ 5 ' /D
,k/ . ' argument in calling statement tg fif@t argument in,
function statement, eeédndlto second, etc.).
T ¢
SELF EVALUATION: R

> . \M)
C. Reconstruct the entire program that f£inds the roots
- 4 of a quadratfc equation, making use of the functions °

that you have constructed.

(" : .

St AT g e

1

TR R T ST AT g e et
~—

=%

. E) 13.11

v
o

There are many ways to construct the, program f///?r/,,

correctly. . One-solution ls shown below.

RlNEG(A)B €)= (~B~SQRT(B*B)~4 . 0*ARC)N / (2. O*A) -
R1POS(A,B C)w(dB+SQRT(B*B)~4 O*A*C)
JR2(X,.2 R)~Z/(K*R) S N

| |.rREAD(5,1)4A,8,C
L 1 | | FORMAT (3F10.1) ;

IF(-B)10,11,11 «
10 | { ROOT1=RINEG{A,B,C)
GO TO 12 ® v
11 || ROOT1=R1POS(A,B,C)]) .

12 || ROOT2=R2 (A, ¢, RODTL)

WRITE(6,2)A,B,C,RO0T1,RO0T2

2 FORMAT(IHO 5F10. 2) :

CALL EXIT oo "

END R e -/

Notice that the arguments in thé function ataéemen;s
. * - .
are dummy arguments ‘and need not befqgi:d the same
Bx'?alid

names- of the *propéar types may be.used as arguments

as they are in the calling statement.

i

in the. function statement —- provided that the same

names. axe used on the right side of the =, of courae,

¢ ‘-/ f i .) .
D. Xdentify the four elementg.of the concept of subpro-

: ..'.ﬁ
grams for the program you have written.

SUBOBJECTIVE XII: Construet a FUNCTIOﬁ subprogram qnﬁ'calling

statementa, conatruct a mai\Z program that calls £

¢ the subprogram.

TR AN A G S Ta e SRRSO Tt NSt IS e e S

~ACTIVITIES: . . . :) .

F. Refer to UNIT #13 ACTIVITIES éABLE,'Activity 3.

'G. Below is a simple program fbr findiné<the maximum

element in an array of real nquérs.

*

_ DIMENSION T(31)

« "I READ(5,1)N, (T{J),J=1,N)

1} | FORMAT (13/(10F8.1)) '

HIGH=T (

PO 10 J=1,N

IF (HXIGH-T(J))11,10,10 -

11| | HIGH=T (J) - ' >
10{ | CONTINUE B ’ -
‘ WRITE(6,2)HIGH —

2| | FORMAT(1HO;F5.2)

STOP

END

~

Take the algorithm for finding the maximum and
construct a FUNCTION subprogram that will find -°

. .
the maximum.

A3

")]
. T 13.13
- - - e
g Cthe
_° One correct.way to construct the subprogram is
shown below. .
4 N » < & . M A
I’ o - - . - o
FUNCTION HIGH(T,N) -
DIMENSION T(31) - .
HIGH=T (1) . oL
1| DO 10 J=1,N .
IF(HIGHnT(J))ll 10,10
11| | HIGH=T(J) . ot A
10 | | CONTINUE CN
RETURN ‘)
ENDP
R A | . , '

o

A | —

Notice that the namesof the subprogram 1s real,

- : K} M -
since we have an array of real numbers and will

4

want a real number returned to the main program.

Notice also that the name of the spbprog%am

1. .

£
.appears (and musg\appear) at least once to the

left of =; thia 1s done so that»tﬁe result obtain-

- ed by the subprogram (the¢ maximum element in this

case) can be transferred back to thé maln program
. i))

as the name of the subprogram in the calliné state-
. ' . . *
“\entb .

It is also correct « and actuaily preferable e
to write the DIMENSlON statement DIMhNSION T(N) ’

(except on the IBM 1130). More will be sald of this

~

\ L]
Clater. , t . ,
! N ———

H, Now construct a calling statement that could be used,

‘<, . Y

<
Ao
)
:':J

Bl Rt b I T TR 3 N EE BN TN § = B b AT S RIS E S P L LI A J . - S Ereu e e S

oy

SRR ———

13. 14 :
e | /

. - ; ¢
* . for calling the subprogram. Any correct calling

_statement will do. |

AY

Several examples of corxrect calling statements

%. ‘are shown below.
w) i ,
X=HIGH(X,J) '
BIG=HIGH(T,N)
- BIG=ABS (HIGH(T,N))+5.0
. Y=HIGH(T,10)
. ‘ B=HIGH(T,J-1)

I. Now conatcht a main program from the simple program

B

given earlier that will call the subprogram that you

Wrota L]) - .:
. \ : , .
i H
. . 2 &
® \ \
. - e
¥ L2
V
‘
P4 .
. :
N
-~
- .
b Y
_ ! 3 3
. e ’ .
(oo \ A
%
- . ’ b

_ 'Onéggorract waj.to goﬁatrugt the main program is éhown-'
S -0/} IR

u o

T RS R R ST E TIETESORL SRR - R e s cas e ...m—'\—-’.u"‘s_a’iﬁvr-,m:r_4_(ﬂ-i.ﬂ-qml,—ﬂ.,_%.\x- R T B e MR e P L B L o ST St ATy ot g g e e e SR e 18 e ke R A e B S e S g s men s

a . . e
‘ e -
- - o o 13.15
PROGRAM -
DIMENSION A{31)
EAD(5,1)N; (A(J),J=1,N)
FORMAT(IB/(].OFB 1)) N - -
e = IG=HIGH{A,N) — S .
ITE(6,2)BIC ~

FORMAT (1HO,¥5.2)

1 STOP :

| [END
A% ’
SELF EVALUATIQN! !
o} e \ .
. E. Refer to UNI® #13 ACTIVITIES TABLE, Activity 4.
bUﬂbBJ CTIVE IV: Construct a SUBROUTINE gsubprogram and CALL
- statements; construct .p maln program that
~calls ithe subprogram.
. J. \ Refer t§ UNIT #13 ACTIVITIES TABLE, Activity 5. A
K. nstrugc a SUBROUTINE subprogram that will find
- _ th maximum,elimen; of an array‘ (You may use
the amé algo 1thm used in the previou& section.)
f "
, ' <
] \
i \\- . . ’ I) @
. * ' 2\.,1::?

e e skt B e LRI S N T s | KOS IO Y Sy

13.16

Y |
.

e X s Sl R AT T | Eamame e 1 i con

y ’

A

One correct way to construct & SUBROUTINE

subprogram to find the maximum element of an

array is shown below.

&

SUBROUTINE HIGH(T,N,BIG)

' DIMENSION T(31)

BIG=T(1)

DO 1 Js=1,N '
IF(BIG-T(J))11,10,10

11} | BIG=T(J) ‘
10| | CONTINUE '

RETURN
END

s o

Ly Construct a CALL statement that may be used to call the

SUBROUTINE subprbgram. . . ' 5

A

?:

Some examples of correct CALL-statements are given

below. ' v

CALL HIGH(T,N,BIG) . ; ‘
CALL HIGH(A,M,X) L
CALL HIGH(A,15,X) «

\M. Write a main program that will read an array of N elements

«from data cards: will call a SUBROUTINE subprogram to find

L4
1]

TN AT B e R e B R e R - B s R sl At RIS
S
: N L3 ﬁ? ,
. & - » »
v L .
. s
Le
-

L

the largest element in the array, and will write the

largest element.

| o RN -:.-'5}:3?" p
- i T
S
One solution to thé& problem foliovs:
14 . s. R
1
DIMENSION A(31))
1 T READ(S,1)N, (A(J),J=1,N) . ; -
1| | FORMAT (13/ (1078.1)) _ . P
| |CALL HIGH(A,N,BIG) '
JWRITE(6,2)BIG
2| | FORMAT(1H0,F10,2)
| sTop ' .
END - T
'_7/ :
. . . |
3 29'1

B s IV ST SO

T T e e e R AP YoM oA S2E, (o At Lot e o i menene B e Aty e . - Ly e
LY 7 °
.

a

’ - LEY ¢ ‘ 1
. . .

. e . ‘ ‘ . \.! & - \ -
o . 13,18 - ’ .o - . | g! . \\' ’
) L . 7{ L ' 3 ’ .

e e T . NOTE: Thé-DIMENSION atatament in the subprogram could

-

-) : .. bew«« in general should bg =~ writ;en DiMENSION T(N),

i .
S . . - N

N .; el . @xcepc bn the IBM 1&30. You will learn more about
] B . '\ [
- T . ‘ . . .yf ' - : ‘ .
- s - Lhis 1n the next activity. - .
. ~ P . . : s, e T .
S - e) ' : SR
' N. Refer to UNIT #13 ACTIVITIES"J,‘ABLE, Activity 6.
: . - - - - - w

~

%

*
» : - 3

F. Refer Lo UNIT #13 ACTIVITIES TABLE, Activity 7. : Lo K
. ; . . r '
v ' ASSFSSMENT TASK Please seﬁ your i;structo:.\ You will be given a | '
. ﬁroblam for whtch you are to comstruct a prqgram |

\ N o

gnd run it on_a computer. Then you will be Te-"

- . K :
! " quired to gdﬁstruct some short programs or pro-
(| , | ~ R
gram segments that make use of the various kinds
i) N of subprograms. . ot o

»
e,

WHAT NEXT? If you haven't completed UNIT #11, you shéuld do so.»

v

You éhould'start UNIT #14 as soon as &ou feel;that'yqu

have' a goo&:grasp of‘ﬁNITSL#ll and #13 YoQ‘may\wanF_f
to rxy UNIT #12 or #16 concurrently with UNIT #14 . J'
When ygu have completed UNITS #ll and #13, you.
N | méy elect_¢§ s&ap, in whithagase you are not eligible
| éor é grade highér than "3.“ Ik jbu wish to try fér
 "an "A " than yoll must complete the remaining units, - -

: Discuss this with youx instructor if you wish,

T i . Sy

.. UNIT #14 (COMSC)
. ’ ' s /\
TITLE: DEBUGGLNG _

RATIONALE: " 1f ydh haven't discovered by now that it is

ra????_9?§X_¥9_mﬁk9majgrugpgmmiggﬁgrrgg,.thn“ .

either ;ou'afe an exceptional programmer or
you hanAit been doing the programs. (Which
do you think is the mbre‘likely?). People
involved in:gigprating computer programs
\qually admit to making programming errors.
They also have developad debugging techniquas
which help.tﬂgm to keep the errors to@g mind-
mum, In this unit you will ba expoaed to
methods that othery hava found ugeful., You
will alse have an opportunity to help those
bahind you -in the Fortran programming hierw
N ‘ archy with. their programmlng and debugging
problems. You should strive to prevent pro4
gramuing eg%ors:.bﬁt_yéd also. should be able

. to correct errors once they occur.

-«

OBJECTIVES: To"p pravant programming and logical errors.*

To diagnosa and cofrect errors, if’ they do

3 i

? ;14°¥3£)(;.

occur/\ . v "

. . 0‘\ . ') .
PREREQUISITES: UNITS #11 and 13 (COMSC). . :)
' _ N, 7 Lo ./

At this point you should carry out the activﬁtieg iﬁ‘the .

UNIT #14 (COMSC) ACTIVITIES TABLE.
Now fou ara on your way to becomin§:3ﬁ~MBE oY
\ N o " N _//

MASTER BUG ERADICATOR /o
- o ' /

Several levels of debugging exist. Some a e,eaa:?% to
- -

use than others; some are used under one syste , but dot

&

another; and so on. Whac{one';ooka for is an [effective method
. for the particular system that is to be used:

Here are*aome'general suggestions that you should use for

debugging will be simplified: .
¢ . _ ' '
- 1. Plan your program carefully. . Is the loglic correct?

Draw a flowchart

o~

Does it handle all possible cases?
"~ P '

in anouéh datail to handle the stirky parts of the

program-before yau actpally start Lo write the pro- .

.1 » | _ --gram. %f neéaasary,'break up'ihé rogram into Qf-.

- . routines, Includ% check painP'and diagncstic'printﬂ '
outs in the planning stages, rat;hm% than after the

.v*) ‘-) - .) 1)
_) . 0 . . . ‘
: | &7 ' :

W

1

errors occur. Check your loglc one more time.

— "
: S
You ghould bé in the habit of writing ag initial comments

.

section at the beginning of the program. This comments

section should include your name, ddte, problem name or , .

title, a brief description of the problem, a 1lidt of
2

variables, defipitiona and formats of both 1h§u§_gnd;_

output variables, thelr function in the program and fheir
¢

dimensions, a descriptionr of apecial or exceptional ¢on-

ditions, and possible error conditions.

’

Place all of the type declaration statements at the

beginning of the program immediately after.the initial

-

comments section. These daclarations*inclu@é;COMM@N,

DIMENSION, INTEGER, -REAL, DATA, etc. R .

Resq?ve a block of statement numbers gdr'FORMAT statement
numbers - for example, 200~299, Place all FORMAT state~
ments immediately after the type dec%gratioﬁ statements,
In this way it-is posg%ble to check eaéily the exidting
FORMAT statements to determine whether it is nécesaary‘

to add another FORMAT statement or whether a current one
oLhex .

will do. As a rule you will be adding and deletsing write

statements during the debugging phase. A block of reserved

&

FORMAT statement numbexs will slmplify the process. #

Resgrve another block of statement-numbers as FORMAT
statement numbers for temporary diaghostic type printouts.

Place the FORMAT statément right next to the WRITE state- -

208

9.

-~ N
!

PR R = s

ment. If both ar@\punéhed on oppoaite cut cards from tle

‘

rest_of the program (on the back side of a FORTRAN card,

for example), 4t i8 easy to remove both when you are

finished with them.

-~

Keep your READ, WRITE, and FORMAT statements as simple

ments, the more 'likely you are to. have trouble.

~
®

Use}a CONTINUE statement as the lagt statement in the -

range of a DO. Use geparate CONTINUE stateménts for the

ranges of nested DO's.

reference point for GO TO statements.

Use a CONTINUE statement as a

Then it is easy

to insert.or delete other statemants without having

tq repunch the st tement number and shuffkg the cards.

Parenthesize your program by indenting parts of the pro-

gram that are in the same logical block.

7

parentheslze the statements that are in the range of a

DO statement,

Example

3 DO 37 T = 1,N
T = BRE4, O%AXC
DO 35 J = 1,M

S(I,J) = T*X(L)
R(I,J) = T*FLOAT(J)*Y(X,J)

35 CONTINUE

37 CONTINUE

chance of having to make.a'chan337in the value of the con-

-,

209

-

Use variables rather than constants 1f there is a remote

In particular

as possible. The more you try to include in these state-

c&':'.v

e Saamun S

Y

1

At

Lt ¢

‘ stant. .For examplae, 'if ‘you have several statements of

the form

- -

-
- L3

: S T L .
it {8 easler to make a single change of thy form

’
< -’

. 1

1UP = 15

provided all the DO's originally were punchéd as

DO —~ I = 1,IUP

I3

than to chapge each DO “individually.
After you have tried &he program on the computer and

found thqt‘it cbntéih@ eérrors, ther you should begin by

correcting complle errors, that is, errors which prevent-

ed thé'cqmpfler from making sense out of what you wrote.

& . - ®

Generaliy the bémpilgr will list suziaﬁrore. Soue com;

pilers (WATFIy;'for example) list mdet of the error diag-

@

nostic messages immediétel*_following the statements con-

[y

taining the e;rqrs; some.(liBO, for example) list all of

the diagnostic-ﬁessagés at the end .of the program listing.

&

Often one error may produce several‘ﬁiagnostic messages ,

some of which may not appear to be related to the error.
i - e .

@
-

Usually, in such cases, howeyer, at least one of the

¢
.

messages will -be meaningful.

When there are no compile errors, the program may

still contaln executioh errors, errors which make it

impossible for the computer to perform the fnstructions
| e | | X
. 210

14,6 . .

= yaes s i 3 E 3 ool

&

LY

glven to it, @ome compllers (WATFIV, for aexample) give

N
|| _ : diagnostic messaﬁes for exacution errors; some (1130,

BENAW » for example) give no erroy diagno@t{cs.

T

12,

. :\\ - Here are some general suggestions for removing

<

.)
compile and execution errors:

Y

“

. 10. Check the punched deck for mispﬁnchad tharacters,

words gpelled'incorrebtly, interchanged letters,
atc, Also check to see that the corract columns

are used -- statement” number ip 1 to 5, continua-

~

tion in 6, Fortran statement:in 7 to 72. Make

wure that all comment cards have a "C" punched

-
-

in column 1. s

Check control cards to see that they are in the

proper order and are corrgftly punched.

Use the error messages to see which lines cause '*%\

&ompiie errors. Remember that the error megsages
may not alw§¥§ diagnosé the errér clearly, but
fhey d; idéérm you which line is. in error., Check
éﬁe correct form of the statement with the text-.
book for commaa,-pareptﬂesee, ﬁandatOryluse of ’%Q
integer .nuibers, etc. ° |
Use the WATFLV diagnostic-ﬁessages,to find exe~

«

cution errors. The messagea'tell in which lines

the errors are. Again be avare that the error

N -

ﬁaeéage ma%,nbt always diagnose the fault exactly.

Cheék the form of the statement; check to be sure.

Rl

- §

£)

" ‘ ! . . ’ -'-r-

b b e Stbietd

)

/- . "that the t§pe of the variables 15 conaistent»-
s . i real numbers read with F-type formats, charac-
' .
. ters compared with characters in ah IF statement, , " '
RO . ? eté. (Check.fof keypunch errors involving mis-)
B ' _ spelling in variable.names. Also check for

. A}
reversal of row and column subscripts.
\x 14, 1f therv are no error messages, but the answers
are wrong, three main methods are used:
. - :

a) Intermediate results should be printed out

if any lorg calculations Bre performed;

write statements may be inserted to check ‘ <

s “ -

- on the order of execution of the statements.
(Unformgted 1/0 in WATFIV is useful here.
See "Format-free 1/0" under "Language EXCen;
aions," page VIIL.7 of Appendix VIII.) -
b) Go thru the program statgmegf by statement,
performiﬁg all operations bf hand and keeping
! ‘ _ | " track of the current value of the_gffiables.
é)r Break uptthe"program intonegﬁegtéhor sub-
pfogrgmé, running, each individually to pin-
point where the error occurs.
" There is additional.informacion in Aﬁpendix VIII for

debugging using the WATFIV compiler. See partiewlarly.pages

VIII.17 % VIII.19.

+ SELF EVALUATION:’ You have already been dabugging programs now for

. some time. - You probably havé'é?me notion of
: - }

.i“l‘l'.h

ASSESSMENT TASK:

’

form on the next page. You will be supervised by

N 1
& .
success or lack of it in debugging yoursown programs.

What's it like to debug sonieone elsé's program--
one you didn't write? Your guccess at this task is
a real maasufé_bf your debugging aﬁﬁl}ty. Report,
to your instructor; he will give you a program list:

iné that" contains errors for you to debug.

ta

Now that you are satdsbted with "bug killer'. techniques,;

you are'readyifor the acid test. It is now your tuxn
to climb ovethQ the other side and help those %nrther'
down the ladder with their aebUBginé problems.‘ Beé
gentle, be tactful, ask penetratrng questions, try to

A

help/the neophy;es learn how tq debug. If allﬁklse '

o’

fails and you are in dire need to convince.the neophyté

that he can.improve his technique, .you may ask in a

controlled manner, "Why in thunderation did you do that,

- -

gtupid?"

*When you are ready, report to your instructor and

he will set up a schedule ior you to be*in diagnostic

»

lab for sevegal hours in the next 2-3 weeks. Keep aghw.

-

detailed log of your'activities by £i1lling out the

9

T .

the diagposticidéﬂregularlg,ﬁssigned to the diagnostic
lab. Be éufe to get his signé;uré and his evéluatidn_ ;
wher” either you or ﬁe wmust leave the lab. When you
ha&e “served your time," then take your log sheet to

youy instructor for his. approval.

.

213 L

A e g k. e ermns = + — - e e
‘ . . o= 7 g vy -

.

‘ * \ . ; i o .

- _ . . Log for Diagyostig Lapﬁ “ ' J} . ‘ﬁl‘

i . |) ‘ ' . ’ e)

*

:* Your name i !) _
v) . Ry,
Time Time Time Supervisor's Total
- in - out _spent [Name Evaluation¥® helped Tally of vigitoxs help?d'
- . st N . - k . | . s \ ,
0 i) | v
r ‘ .
‘ }
. ~ i)
—s & \ - R
7 - _ v N .
) - , I E
. . i) T e
v z i
(LY ‘ :) (
J T
. . | ’
T i
* "S" for satisfactory; "U" for unsatisfactory. Place rewarks below or on back. .
. ¢ '
‘ fan - ’ . i
’ hd . »
2 A 4 . bl . 2 1- 5
¥ ‘“‘#« .. . T . *;.-‘_‘.‘. : . o

B
;8

6°%1

&
. ' 14.10
v)) Fi L [y :
WHAYT NEXT? At this poiq&Etha rem?;ning units probahly are 12 and
¢ B " 16. You may elect either one of these. TIf you have -

completed them, then you are ready to do UNIT 17, which -

*
is the last one.’
)
—_ (— - R L.
.)
. L]
'/' \] &
L
A
NS
.. -
g ’ [
A <
i]
216
H
\ .
; LR

"
i

h

UNIT #15 (CoMSC) . . °
/ T

'
‘.
. - v

This unit has been o fied from this manual.

7/
¥
'
Y 4 '
7 o
rd
. .
’ 7
1
*
'
.
.
o 1501 2“- { :
N PR
.

te

[
.
t
*
)
.
~

£

A%

/ ' -

UNIT #16 (CoMSC). ;

-
. TITLE: COMPUTER CONGEPTS

Ay

RATIONALE: After proceeding this~farwiq§£he.COMSC Bequance you

‘should -be wondering what ‘15 Yeally golag on {n Ehat

.comﬁu'ef.» How’ddes it put programs, subprogrémﬁ,
instructions!‘and data together in a.way that mean-
ingful results occur? This unit should give ﬁdu'~
& éoma insight into basic_hérdware.elemantg éf a
compﬁtar an& a feeling for the relationsﬁipg that
exisé béhweé; hardware~an& prbg}ams. |
OBJECTIVES: Describe hardware features of two different |
machinas.; Describe the 1n€arrelation;ﬁipa
baetween hardware features and various feétures

' used in setting up a‘Fortranzprogfam.

N PREREQUiSITEs; UNITS #11, 13 (COMSC)

ACTIVITIES: We shall take some time out heravto describe’
hardware aspects of several different comp&ters. -
A spectrum of references exists on different ma-

chinés. The most comprehens%yefto date is the

book by Bell and Newell which discusses in detail

161

. 16.2

many exisgingfcompuﬁers. The prk by qurga
discusges briefly the organization of several °
different computé}a; ;hilé the ;book by Iveéaon

. ‘introdhcgs an- elegant language that can be used?
to describe computer ilnstruction gets conciaefﬁi ' '
The book.by Struﬁle refers specifically tQ\EQ;
IBM/36O series and the book by Louden refers to

/) | the IBM 1800 and 1130 machines. Both of these

books deag;yith assembly language programming

. : for the respective machines.

G. G, 'Bell and A. Newell, Computer Structures:; Readings
and Exawmples, McGraw—Hill 1971. :

. I. Flores, Cowputer Organization, Prentice Hall 1969.

K. Iverson, 'é Progr&mming thguage, Wiley, 1963, 4

R. K. Louden, Programming the IBM 1130 and 1800, Prentice
Hall 1967,

- G. Struble, Assambler Languagp Programming the IBM System/
360, Addison Wesley, 1969. , ’

N
¢ \'1:‘;

S
v

Experience with gssembier'language programming -

18 necessary to get a real feeling for computer hard— .

ware and its relationship to higher level programming. 7

Lor

If you find ghe concepta describad here and in the

o “'U-

»

-

"éﬁpériénéé"&ﬁ“a“Sﬁiii“¢6h§ﬁEéi’éﬁéﬁwéﬁman IBM

§ R ‘ »
readings of 1hterest, you might want to get some
experience with assembler language programming
followed by additional experlence with compiler

writing and studies in computer organization.

Qﬁe of the best ways to get an understanding of

-~

computer hardware concepts is to get hands on

. 1130, a Digital Equipment Corporation PDP-8 or

PDP-11, a Hewlett Packard hp.2100, or some

-
.

similar machine. -
()
Computers can be described in terms of

& . ¢

processors (Pj, memoxy (M)} switcheé'(s),.control
lines (K), and input/output devices. Bell and
Newell refer to puch a description as a PMS descrip-

-

tion and have creatsd a.special language to facil-

. o ;
. itate the discussion of a PMS description. Com~

~~tion sets, data representations and registers.

. scription of imstruction setg. Bell and’ Newell

puters can be described also in terms of instruc~

-

Iverson created an elegant 1anguagé for the de-~

- .

¥

-

created a different langﬁage for the ﬁéscripcibn

of 1ﬁstrpctiop sets. Although these languages

are well designed to describe machine <characdteris-

16.4 . ‘)
AN
. ' - T : -
§ [

tics, we shall not use them in this - unit since

. ' it takes soﬁa'study to bacome proficient with .

theilr use. '

\ ~.

Thé memory of a computer stores data and 4
inatructions. Just_as.Fprtrdn atataméﬁ;a are
T T T e am"-anged--in -eards-in "5aquence;“‘mch1ne ""j;ng'trucfa"""'— T e
tions are arxangad‘in memory in'aeqﬁénce. Data
aiao are arranged -in memory in sequence., The

¢ - Y3 .
only distinction between data and instructions

i

<. is that instructions are interpreted and.exegth 3
ed by tH; qpéputer whareas daté‘ara not. At

. 'timas, lostructions may be opératad on as data.
Present day czgggter memories are made of magnet-
ic cores. New technologies are under investiga~ . ~
tion fog faster cheaper memories. Most of the
memories operate in a two state or binary mode,
that is ‘in an "on-off" or "0 - 1" mode, Two

- state devices aré fast, reliable, stable and-

T ow

?

. &

' . reasonably cheap. Devices with more states
.) - ¥y
s . currently lack one or more of these required ~

- ‘ characteristics. _ .
" o Because of the use of two state technology,

computers normally operate in'a binary arith-

ar

’

o b

o) _
ters and groups of anBers. Some computers use
* /

16.5

métic mode. We shall discuss biﬁary, octél, and

hexadecimal arithmetic later. Memory is organized

in a hierarchy of bit patterns. Two of the funda-

mental bit patterns are used to represent charac-
N i .

1)

. ! .) ~
6 bits to represent & character resulting in 2°

~-0r- 64 different-unique-characters: —Recent computers —— -4

L ad

use 8 bits to represent a character. How many

unique chargcters are possibie with an 8 bit repren'

sentation?) ‘) o

Sample character codes are shown in Table 16.1.

N -) v .

16.6

o # (
ASCII / IBM
chéracter 8-bit 6-bit (TTY) 8-bit 6-bit

‘blank 1000 0000 10 0000 0100 0000 .110009

A 1010 0001 00 0001 1100 0001 01 0001

B 1010 0010 00 0010 1100 0010 01 0010
Sy 1771010 1001~ 7 - 0010017 {11007 1001 0L 1001

J " 1010 1010 00 1010 1101 0001 10 0001

g K 1010 1011 00 1017 1101 0010 10 0010
R © 1011 0010 01 0010 1101 1001 10 1001

s 1011 0011 01 0011 1110 0010 11 0010

T 1011 0100 01 0100 1110 0011 11 0011

2 1011 1010 011010 1110 1001 11 1001

0 0101 0000 11 0000 - 1111 0000 00 0000

1- 0101 0001 1110001 1111 0001 00 0001

9 0101 1001 11 1001 311 1001 00 1001

(Q»/oioo 1000 10 1000 0100 1101 11 1100

) 0100 1001 10 10Q1 0101 1101, “01 1100

+ 0100 1011 10 1011 0100 1110 01 0000

- 0100 1101 10 1101 1 0110 0000 10 0000

. 0100 1110 10 1110 0100 1011, | 01 1011
.= 0101 1101 11 1101 0111 1120 ' 00 1011

TABLE 16.1 -

H

223

- SEVERAL DIFFERENT CHARACTER CODES.

2 4

‘

“eérably from the codes used by the common carriers

16.7

<

These character codes are recognized by
different organizétionsiand dfff;rm;t cémputﬁrs.
The ASéII code (American §ﬁandar& Coda feri;pfor-
mation gpterchangé) is the résult of an attempt
to standardise character codes. The codes imple-
mented by‘éomputer manufacturers differed consid-
(telephone, télegraph). _Pﬁﬂﬁﬁems arose when com-
puters were attacﬁed to common carriér lines. The
ASCI} code helps éo pgovide standards for two pre-
viously independent iﬂéustrias. ‘

The gxtendéd Q}ﬂgry coded égc%mal interchange
code (EBCﬁIC) 1s used by IBMf36q‘and 370 computers.
By raplééing a .8ingle éit under program control <in .
a 360 or 370, that machine will recognize ASCII
code. Howewér, IBM, at present, dogs not* support

software to use the ASCII code. '

There are two places where the character
codes play iﬂféttanﬁ functions._ One-of’these
has been discussed earlier, namely the number
of bits used to represent charactérs. The more
bits per cﬁaracter, the greater the number of
uniqua_charaiyers.that caﬁ be rapy@éented~by

the code. The choice of the bit codes to repre-

e e e o

-3
.
L
£
4

16.8

IBM code:

ASCII code:

. . .

Lo G - -]

Hon

w4

sent characters is of 1ast1ng importance to the
programpers. Since & character 'is represented

by a string of bits, that chara:ter code also

" can be thought of as a number. When all the

nuneric -codes’ the resulting sequence is called
the collating bequence. Arrange the characters
presentad in the previous table in increasing

sequence according to their 8 bit codes:

. »
-

ol

blank, .,

o

Are these seqqgnces the same? %)

1t a list of paoples names were placed in lncreasingi

alphabetic sequ@nca according to the ASCII 8 bit code,
would that list also be in increasing alphabetic se-

quence according to the IBM 8 bit code?

4

What do you think the 8 bit- LBM code and 8 bit ASCII

-

for C, K, L, @ and V should be? SR

8 bit IBM - © 8 bit ASCIY

N)

AN

--characters -are -arranged-in-sequence by -thatir --——— — - -

.-increasing sequence. . The IBM character code has - ——

16.9

8 bit' IBM 8 bit ASCII

‘Both character codes arrange the alphabet in

'héles' in it baéwéan I and ,J and between R and §
whereas thé ASCII code assigns 26 consecutive
nu&bers to the 26 characters of the aipﬁabat. if

a file_ié placed in agcanding sequence according

to the ASCII code and then printed, would the list-

ing be the same as if the file were placed in

agcending sequence according to IBM code and then

listed? The answer depends on what was in the

file as follows:

¢

characters in file

" alphabetic only ,

~ -

numeric only

alphabetic and

nuneric

pqinCed kistings the same
yes

yes
\ -

; ' no .Wﬁy?

alphabetic and

special fyaran€§ra ? | !

numeric and . :
special characters ?

L X

Why?

S

s

Why? —
The fact that differené character codes éxiat can
ba of concern to you in applications where the inter-

226

‘ N . .
,‘ €
. . . .
“- ! .) - FN ’ ae e o e e s

B e LI R

Laae S G = =~ = - S P A TP TR PR UUE SPES e —.

16' 10

pretation of the code iai;ggbndent on the specific
\ .

<

code used.

Since any group of bits could be called a

' e

. oy
character, if one is interested in processing char-

"

acters, the computer should have an easy way to

manipulata characters. Such machines are referred

g e e DU - - .1 T L% e e e e e e e e e e e e e e e e e e — e — . = .______._.___ ,.___...___.Q_._________. T
* to as data processing machines. Other applications .

require the computer to perform/a large number of

cogputations quickly. rachines are called

sclentific computers oy \aymber cSrynchers." Sev@ﬁgl

- computers bridge the gap-and pfo ide both character
(
manipulation and sclentific computing capability so
pitt ¥ L ,
’ that the dichotomy no lowger exists for those com- '

.

putera.

fv# - . .
— The arlthmetlc data representations also are

@a

imﬁortant“in describing a computer. Binary'is
\usdally.thg base. Intag@rs,aée repfesented“in .
‘terms o£\54nary integers. Reai,numbers aré reprewﬁp

sented in tefms of "floating point" numbers. A

lfloating point number consists of three parts: a

sign, an exponent and a-mancisaé. The exponent
. -may be in terms of base 2 or base 16 on a binary

machine. In order to represent boﬁh positive and
. 4 négativg axponents and.positive and negatiﬁe valuesf Mu,gfx
. ,V' with a aingle,sigﬁ poaitioﬁ, the aign of the éxpaa -)

.

.- o . nent part is determined by its magnitude compared

‘ ’ ')"“f . .) a.
Yo ’ R » V“ﬁ'(. *

with the largést magnifudé allowed for an expohant.
For example on the 360, 7 bits represéﬁt the expo-~
. nent (a total of 128 different exponent values).
Those exponent values that are éreater-chan 64 are
’ ’ consideggd as positiQe‘exponent values, whereés
those exponent values that are less than 64 are

considered as negative exponent values. Such

h notatipn is given the name "excess. 64" rvepresen—
’ tation. On thé 360 the bagé for the exponent is
lﬁ;rather than 2, while the base for ihe value ié
¢ 2, Giveﬁ the numbers ’
O .
exponent . value
.- : | 65 KXXKXKX
¢ 7 - . 68 , . » XKAXAXX
whare Xxxxxxx staﬁds for the same mantigsa in
both cases, the sécond number is N
16% = (2)% = 212
7 .
' larger in magnitudg than the first number.
Numeric data are said to oc;upy a "word" or -
group of words on a computer. Exémplesﬁof word
sizgg are ' | .
& ~
. . @’\])
228

16.12

[™

i

B N EREENNO e - o

computer - word size T>
PDP-8 | 12 bits
o Eea11s 16bits
IBM-1130 | 16 bits)
M 360 32 bits ,
“ CIEM 7090 - 36 bits .
| CDC 3600 . 48 bits
" ¢DC 6600 60 bits

- -
Y

rd

Other numeric representations are possible, “Half

word or double word representations provide for

more economlc use of storage space in the first
. L €

instance and for more accuracy in the second.

+*

What other features should a computer have?

{(Your éxp%rience with Fortran should help you with

a

thi? one.,)
v .
- _A“computer should be able to perform calculations

and tests., It should be able to initiate an inpué

énd an output. Turthermore, it must be able to. exert

control over all of these functions.
Calculations are performed in registers oa most
of the scilentific machines. A register contains the

same number of Bita ag a word. Registers in which

~computations are perforﬁed usually are called the

P

209

ke et

t

accumulator and the agcumulator extension.

extenalon 1s the léast

1 word l ' 1 word

acc . - ace extenslon

The

T . ~
extenslon pair. Addition and subtraction take

" place in the acéumulatﬁﬁ, dﬂ?reas multiplication

‘ﬁ and division take place in the pair of registera.

Tests can be performed to determind whether the

%

t Fortran statement performs this test?

‘previous result were zero, negative or positive.

“ Suppose the Fortran ptatement

<

IF (A ~ 7.2) 12,6,29 “

£

be the next statement to be executed?

16.13

v

were executed and A had the value 7.19. What would

The computer might translate this Fortran statement

’ to a serles of machine instructions similar togthe
- o following: ,
. . loa& the accumulator with A

~ subtract 7.2 - . :
' branch 1if acc < 0 to statement 12
. . o branch 4f acc = 0 to statement 6
branch 1f acc > 0 to statement 29

e

. .aignificant_part of the accumulator-accumulator_._..

a

“r

S~

The IBM/360 has 16 general purpose registers for

y ” performing integer arithmetic instead of a single

accumulator and a single ‘extension. It also has

4 floating point registars for perforuing float-

ing point arithmetic. The IBM 1130 has anlaccumu~

“iéé&i"éﬁ&"éi?éﬁéiéﬁmfar integer arithmetic., Float-

N ing point arithmetic is simulated by software rather

“than hardware.

The machine instructions aranexecuted.sequenm

tially similar to Fortran statements, The sequence

is alteréd if ﬁ brénch'coudition occurs,

Input/output occurs between memory and some

external device. The list éf different external

N - - - LY
devices that can be attached to a computer is an

: ' nmagnetic disk
| magnetic drum
magnetic. tape
magnetic strip
punched card teader
. : magnetic card reader
éptical card reader

¢ _ punched paper tape
KT - vreadey

* card punch

oo 23l

ever expanding one. Examples of such devices are Y

- teletype keyboard

typewriter keyboard

character display

- vector display

1néremgntal plotter

liné printer

character printer_

analcg“ihterface _

o

communications inter- .

faca

1615
paper tapé ﬁunch .f .aﬁéther comﬁutar -

Frequently a small céﬁputer.ie used to control |

the input/output. Such 8 devica.is called an 1/0

Qrcéesaor. Jhe CDC 6600 has 10 peripheral proceaso;s

attached to the mainvprocessor;-.Each of these befiph“

eral processors is given a.specific type of task to

2 — RS - —

' pérféfﬁ{ ;Oéﬁéf>65ﬁbﬁégfé ﬁé#g!ébecial purpose co L

puters which control input/oufput §berations for the
faster davf%ég. Such speclal purpose computers, or

control units, have a limited instruction set which

B

specifically relates to input/outpué.
' a
A simplified diagram of a computer appears in

FIGURE 16.1.

[

-

~

¥

input/output [T 7 “'"]
- . : <o

L

. . .

memory & =m0 control

_ - N
Mo ‘ I
' O

, 1T
» [arithmetic l—--~; - “J ' ‘

“unit -

]

_ . FIGURE 16.1 : '\
THE MAIN COMPUTER COMPONENTS.
ntiol

In this exampie data paths are solid lines, co

paths are broken lines.

A .

4

\

.,‘.;Wi-@wfvﬁ-nﬁ*x—-?“;*-ﬁv—n.ww.ww_..‘-s=_,-,—, ST e e T T T A R Ty s e 1 5 e S EETITS L P « e A e
- N e . . .

v N r * - 4 !
- , 16.16 ~ : . " -
-, _ \ Draw a simplified diagram of a computer

which, includes a|secondary memory such as disk

_ _ : which has a ddta patb to memory and a~control

path to the cvntrol unit.
' |

¢

\
- s 1 4
L) '.ﬁ
y)
i
. | Cousider the Fortfan axpregsion
f”“\ Lo o R=A+B¥C |
t . o.- . ‘%a |
. . What componen'_.? of the computer c_leséﬁbed in the .
. : | previous diagraﬁ.are activated at each stage of
this computation?
1. load’B control, memory: arithmetic'uﬁit .
_ 2., multiply control, mamory?,arithmetic unit
.. by C S R ' R
. -) X '~ . . . £ -
) 3, add A control, memory, arithmetic unit
T store . control, arithmetic unit, memory
s " result i . o '

gl

g Uy U S N

TR YT

- T e WA AR
o .
16.17
Y
What components ¥f the computer described .in the
- diagram are activated by the instruction - .
READ(5,111) A,B ?. |
) b
.) 1
1. format 111
gy _A_,_-T._ o e e \ S
R 3. format 111°
4. rvead B §
5. format 111 .
What components ére activated by the instruction -
| WRITE(6,113) C,0 ?
1. \
20 -
3. " i .
) 40 . N
5. |
What components are activated by the instructi
.) - | | %
IF (A-B) 12,13,12 ?
1. load A % : .
2. subtract B !
. 3. branch o -) N .
234 - .
4 ! s . e _ _____,_Q_S-oe _'_.

gt PR

4

EX - - oy ST N T | ! b s g me -

\

Refer to UNIT #16 ACTIVITIES TABLE for more N

information.

s)UNIT #10 (COMSC) was concerned with loops and

methods for executing loopé in Fortran. The exawple

e L R : [

17

W

SUM=0.0
DO 17 I=1,N

SUM=SUMHX (1) .
CONTINUE -t

~

illustrates a loop in which the addresses assoclated
with the array vari%%l@ X are modified successively.

Recall that X(1).i1s the address of the first element
/W

of the X array, X(2) is the address.of the second

’

element of the X artay, etc. A computer must have
the ability to computegaddresses of array elémants

ensily. One method of calculating addresses is to

make use of a special register (or set of registers)

called an index register.. The address of the array

X is held in the imstruction; the index is held in

the index régisngr; the éddress of X and the value in o
the index regist%r-aré added to.produce an "effective |
address” that ié used to reference the. location X(I) .,

in memoxry. ~If a memory reference instruction iskto'

use an index register, an ihdicat@r must be set in the

instruction to that effect sometime prior to the exe-

%
v

cution of the instruction. For the statement

235

¢

SUM=SUMH+X (1)

' 16,19

a schematic of effective address calculation, assuming index

register 3 contains the index, appears as follows?'

. instruction index affactive
instruction address register 3 address
load accumulator from SUM | suM T SUM
add to accumulator from X
modified by index register _ _
3 \ X i X+1s
store accumulator into $ SUM i . SuM

» _ :
?he increment step of the DO loop modifi

es index register 3 and

Y

also tests index register 3 to determine vhether the loop has

been completed.

‘can be represented as follows:

Symbolically the effective address computation

where

IR

" e

&

T

-

‘AR is the addreaa‘rﬁgister,
IR 18 the index reglster,
EA is the effective address,

236

rhnhu’w."“"‘*" . ,_q

TN A |

B L sdae o W - TRALT () R

e o Do ST IR

16020 A

i By

The EA is enclossd in a dashed box to indicate that it does not -
appear In storage; rather it is created, used, and discarded un-
caramonibusly in fractions of a microsecond.

The Fortran statements -

X,

S

X(J) = Y(JI)+A(D)
57| | CONTINUE

i

,
illustrate more graphically the usefulness of an index fegister
+ in effective address computation. Suppose index register 2 con~

' tains-the index J. Fill in the following table that simulates

effective address calculation.

instruction indek effective
address register 2 address .
Y i ¥ g
s A j
X - 3

.

»

In this case index,regiSter 2 is used in three effective addrass

L4 v L}

computations.
" \j
. How many index registers does a computer have? That depends

it

on thé spgcific computer. Some computers do not have index registers

. othargwhave“chrea, others have eight, still others have fifteen. s

<3y

16.21

.

The 1130 has 3.1ndex reglsters; the 360.h@3 15 registars
that may be used as index registers. One must be able to
86t an index register to an initial value, incrém@nt (ox
decrement) an index régiat@r, test an indox reglster,
branch based on the test, and store an index regiatgr.

Such capabilities are impldmented differently on different

machines.

U R o e o

Other hardware features include base registers, in-
&

direct addrassing, floaéipg point registers, interrupt
" facilities, ioput/output channels, &ultiplaxor éhanﬁéla,
control units, peripheral proceasors, memory locks and
keys (also called memory protect), and ;elocatability.
Many of these topics are covéred in a course ih agéémbly
language programming; others are covered in tgopics in P
;ompucer organizgtion.
The éypes of data a computer allows are an impo?tant
. . kay to itg éharacéar. The éet of operations which a com~
puter performs 1ls another basic indication of its charac~
tef. The IBM 1130 hgg aﬂbgaic 1ns§ru§tion set of 29 in-
sérﬁctions, while the IBM 360/65 has\béer"140 instruct#bns
and the IBM 370/165 has over 160 inatrucgionsl Subsets

of the instruction set pertain to specific hardware func-

, tions. Several of these_ functions are listed below.

o~y

=

IRy ‘2 > ’..(Saaten e |

16.22

function . instruction types
arithmetic 1oading a register, storing a

reglster, addition, subtrac-
tion, multiplication, division
in binary integer, floating
point, and decimal, round, com-
pare

\ - &
index register load index, modify index, store
Jdndex, test index, branch on
" index ‘ '

test bit, lasert bit, shife

register left, shift register

e right, rotate register, store
bit, and, or, exclusive or,
mask, test

- bit manipulation

N character manipu- move character, insert charac-
lation tex, test character, translate
' - character, edit character

input/output Initlate I/0, test X/0,.test
channel, stop 1/0

miscellaneous laterrupt processing, storage
pProtect, error recovery

Since computer instéuction sets vary widely, not all cdma
puters will contain all Qf these functioms, _If & computer does
noﬁ have flosting point hardﬁaré, floating point arithmetic may
be simulgted by a program. The resulting simulation is a great

deal slower in execution spead than hardware would be, however.

‘Mozt of the functions listed above may be simulated by programs

1f they.do not exist on the pa;ticular computer. Exceptions
are input/output and’interrupt.proceasing. These may be quite
diffioult or impossible to simulate 1f the hardware does not

exist on the machine. Many of the hardwaretfeaturaﬁ on today's

computers wafa'aimulatad by programs on earlier computers. In

239

16.23
fact, nultiply and divide are sinulated to this day on some
computers by-making uge of repeated additions And ahifta‘in_
the first case Qnd by repeated subtractions, tests, and shifts
in the second casal! Those softwara simulated featur@s_that

"provéd useful were incorporated into the hardware of later
maghin@s. F%pating point, index reglaters, character manipu-
lation, storage protect, and interrupt processing are a few

“

porated into hardware.
SELF EVALUATION: Suppose?azggwputer as a 4 bit accumulator and a

PO

four bit accumulator extension. Suppose

0 OIIrrrInm
L

Act ACC EXT

+ the contents of both ACC and ACC EXT can be shifted
left by 1. Suppose the leftmost bit of ACC rgpi;ces
the bit in L after the shift. Suppose the L bit can
be tested for 0 or 1. Draw a flowchart to simulate
multiplication by addition by loading the multipli-
cand in ACC, shifting left the ACC and ACC EXT one
position, testing the L_bit.“ If the L bit i‘%l, ;ﬁé'
multiplier should be added inta ACC EXT. Théﬁpioduct

N

appears in ACC and ACC EXT.
N -

<

"~ examples of software simulated features that have been incor-

16.24

Answer:

=Pl K=0
, | : ‘ \.. . Load multiplipa;d into ACC,
¥ Shift left one.
K=Kd-1,

Is L bic 17

P e

Add multiplier to ACG EXT.

No

Is K=4? *

Store product

'ASSESSMENT TASKS: Raportﬂpp‘youn.instructéf‘and discuss the

T

assessment tasks with him,

4

- : . "

WHAT NEXT? You may do either UNIT #12 or UNIT #14. If you have
complaeted 12 and 14, then you should be ready for

UNIT #17, the last one.

R

s

S adst S = Sl ol = S e ! e 2Bt K et P - e g g

UNIT #17 {(coMSC) -

[

TITLR:s General Fortran Programs ‘
RA&IONALE: Constructing general, efficient, accﬁrate and skillfully
done éomputer programs fortsolving problems 1ls a worth-
“while goal for any programmer. That goal also happens
to be the overall oﬁjectiva of this course.. |
. You should by this time have developed considerable
expertise in constructing Fortran programs and rumning . ‘ »
them on the computey. ﬁow fou should put that skill teo
use in a %airly aophiati;ated problem sdiving sitﬁation. ' ‘ .
OBJECTIVES: At the end of this unilt you will demonstrate your
.ability to'aolva‘problems efficlently a?d:acéufatei§'f
using Fortran programs that you comstruct and a com-
puter, |

.PREREQUISITES:‘ If you have chosen the option of trying for an-"A,"

L then UNITS 12, 14, and 16 éra requifed. If you héve AN
, ‘ | o ‘ chosen to try for é "B," then only UNIT 12 is re- — | ‘
quired., v | |
© ACTIVITIES: | , - - f

A, . Some éeng;aliconsidefatiogé :) | .
A \ ‘A Fortran program of optimum worth is ome that is
accurate and efflcient. Some of-thé considgfationa_rag;rd-
ing accuracy ware discﬁased in UNIT 12 and will not be

discussed again in this it Rather we will focus on

e A e 8 e e e A i

SEhaasiathiiatatio ioses b “otevs g - D 2 P B i o T T N A B AT T 18+ oy R STy o et T Ly g

An.afficient program is one that uses the compﬁtar'a

-

capabilities to thae greatqgt;advsntage. Efficlency suggest