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Preface to the Student

The purpose of this set of notes is to introduce the student to

the development and use of computer based models, and to analyze

quantitative phenomena in the life sciences. This will be accom-

plished by using only the BASIC programming language.

Prior to the advent of the modern high-speed digital computer,

the prediction and quantitative analysis of natural or life sci-

ence phenomena was a most difficult endeavor. This was due to the

fact that effective mathematical descriptions of biological phenomena

frequently resulted in equations which were extremely difficult to

solve. The development of the digital computer and the use of numeri-

cal methods of solution has rekindled interest in quantitative methods.

This, in turn, has inspired a surge of new courses with such titles

as, "Mathematics for the Biological Sciences", "Mathematics for the

Life Sciences", etc. The goal of these courses is to provide the

students with mathematical techniques, which hopefully, will assist

biology students in quantitative or mathematical methods of analysis.

It is the purpose of these notes to present an alternative and compli-

mentary technique to assist in the theoretical analysis of biological

phenomena.

The general procedure in pursuing a theoretical investigation is

to carefully isolate and clearly identify the probl.am and to then

formulate specific hypotheses concerning the essential phenomena.

Utilizing the mathematical equivalents of these hypotheses, a set of

equations is derived whose solutions.should yield the desired infor-

mation. In all but the most trivial of cases, the equations are

usually intractable and must be solved with the aid of a digital

computer. It is then necessary to use numerical me'thods, e.g. finite

difference methods, to transform the mathematical eiluations into a

form which permits the solution to be effected by a computer. Finally,

a computer program is developed and the program run on the camputer

to obtain the results.

In the course of following such a procedure, it is almost always

the caIe that the computer program must be altered as initial conjec-

tures or hypotheses are altered or as the availability of experimental

data changes. Such alterations usually begin by rewriting the mathe-

matical expressions or equations to accommodate the altered hypothesis:



Next, the numerical and then the cOmputerized form of these equations

is corrected and finally the program is altered to effect the changes

in the hypotheses. As the program continues to be developed and

evaluated, the investigator more and more proceeds to directly alter

the program, thus omitting the intermediate step of changing the

mathematical description. The individual lines and terms of the pro-

gram become, in a sense, a description or expression of the behavior

of the phenomena and this description is just as meaningful as the

original mathematical description. This then suggests that it may be

possible to proceed directly to a description of the phenomena in

terms of the programming language and to omit the intermediate mathe-

matical stage. It is just this procedure that is followed in this

text.

In this work, a deliberate attempt is made to minimize a knowl-

edge of formal mathematics in an effort to see just "how far" we can gc

in presenting to the student, in a pedagogically sound manner, rational

methods of quantitatively analyzing biological phenomena. This is not

an effort to downgrade or minimize the importance of mathematics (this

point is addressed again in the introduction and otber places ip the

text), rather it is just what it sets out to be; i.e. an attempt to

develop quantitative methods of analyzing phenomena in the natural

sciences using only a simple programming language. The language BASIC

has been chosen because of its wide acceptance in schools, its inter-

active capability, and its availability on both minicomputers and

larger computers. The more perceptive student and the student who

further investigates these methods may choose to use some other pro-

gramming languages such as FORTRAN, PLI, APL, etc.

Since it is the intent of the text to train the student in the

formulation, development and analysis of computer programs describing

biological phenomena, stress will be laid upon:

(a) The establishment of a clear and unambiguous statement of

the problem,

(b) The careful and complete specification of the necessary or

relevant hypotheses,

(c) An analysis of the computer output or results and the role

that such analysis plays in suggesting new alterations to

the program. The development of the computer program and

2.I 8



the analysis of the results is often times a very fruitful

source of new ideas to assist in the obtaining of a more

realistic explanation of the problem.

Another important reason for proceeding in this manner is to take

advantage of the well-known pedagogical value of a computer. The

very act of defining the problem, formulating a method of solution

and programming and debugging the program has been found to be an

excellent technique for furthering the student's understanding of

the phenomena under investigation.c

The increasing use of the computer in all disciplines has re-

sulted in the development of programs which are very large and sophis-

ticated and are applicable to many problems other than those for which

the programs were originally developed. In addition, there are r.:ro-

blems which are of frequent occurrence and special, very efficieuL

computer programs have been constructed to assist in the solution

of these problems. Suc's programs are called, "Canned Programs" ane

are usually available without cost or for a very small nominal fee.

It is the contention of your author that the effective use of these

programs is most readily obtained if the user has had experience in

developing and writing such programs; if only on a limited scale.

A user of such programs should have a skeptical attitude and the

experience to appreciate and recognize all of the limitations, as

well as the capabilities, of the program. Consequently, a further

reason for the student learning how to develop computer models is

to enable him to better use canned ?rograms. Finally, the feasibility

of proceeding in this manner is in keeping with the thesis that if

a hypotheses can be unambiguously stated and rationally defended

then it is possible to program it and to then examine the consequences

with the aid of the digital computer.

The presentation in the text will be almost entirely by example.

In the earlier chapters, biological phenomena which readily and easily

lend themselves to such a technique of analysis, will be investigated

and later chapters will discuss more difficult and complicated phe-

nomena. The style of the presentation is informal bedause this is an

introductory course whose purpose is to give the student facility and

appreciation of computer assisted analysis. Definitions of terms

and notations are frequently repeated in discussions to better fix

fir



such definitions in the student's mind. Such repetition also enables

the student to more easily follow the discussion because it minimizes

interruptions caused by the necessity to refer back to the original

mention of the term or notation. In addition, because the,aim of

the work is to enable the student to obtain an understanding of com-

puter based quantitative analysis, most of the computer programs

developed or presented are not optimal. They usually can be shortened,

made more efficient or dressed up in some manner.

The development of problems for such a text is quite difficult

and consequently only a limited number appear. However, frequent

suggestions are given in the body of the text for altering the hy-

potheses and hence the computer programs and their analysis. Am

evaluation of a student's ability to effect such suggestions should

serve as a partial gude to the measure of the student's grasp of the

subject matter. Also the assignment of prOjects, usually student

originated, should further assist the student's understanding and

capability.

The primary difficulty encountered by students in attaining

familiarity with quantitative methods in the biological sciences is

quite analogous to the difficulty students encounter in attaining a

corresponding understanding of quantitative methods in the physical

sciences. For these latter students, this is the difficulty of cor-

rectly stating or applying the mathematical statements of the under-

lying physical principles. Thus, ,it is not surprising that the stu-

dent Of quantitative methods in the biological sciences encounters

a like hardship. The student will discover that the primary diffi-

culty will be the expressing in the BASIC programming language the

quantitative consequences of his assumptions concerning the biological

phenomena. This difficulty will reflect itself in the delineation of

the problem as well as in the design and implementation of the program.

Thus, in this work we have tried to emphasize problem definition and

program formulation.

It may be of interest to remark that the modern high-speed digits:

computer is expected to accelerate the convergence of the efforts of

the biological and the physical sci2nces. Physics has sometimes been

defined as the science which seeks to formulate underlying quantitatiV

principles about our universe. As a cleequence, the development of
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techniques for optimally applying these principles has been called

engineering. In the past, the necessity and desire for mankind to

improve his lot here on earth resulted in great emphasis and interest

being placed on the discovery and utilization of these physical prin-

ciples.

The dramatic awareness of mankind of the finiteness of our local

universe and specifically of all that this awareness.implies, has

shifted the emphasis from mankind trying to unrestrictedly improve

its lot, to mankind trying to assure the continuancef what i.. has

achieved. The recognized urgency of this kilift goals, coupled

with the fortuitous development ofithe modern high-speed digital com-

puter, has given a very stror4imp4tus to the development of analogous

underlying quantitative princtples in the biological sciences. When

restricted to natural resources, such study has sometimes been called

ecology. The application of these principles has been termed eco-

logical engineering.

It is assumed that the student is familiar with the BASIEpro-

gramming language or that a short period of time is set asidnt the

beginning of the course to present the rudiments of BASIC. The F.ady

availability of computer facilities providing the BASIC language is

a necessity; most preferably in the time share mode.



CHAPTER I

THE GROWTH OF A SINGLE SPECIES

Introduction

As a first example of a model oy a simulation of a phenomenon

in the life sciences, we consider the problem of describing the

growth of a population. Thiz is an old problem and one of the first

biologlcal phenomena to be mathematically treated. V. Volterra, an
-

Italian mathematician, was one of the earliest investigatorS of ,such

problems. 141. s vrork began about 1926 ahd it'is hismork we shall

follow.

In developing this and other models,--variouS suppositions and

assumptions will be made. It is important that the student under-

stand and appreciate the implications and limitations of eabh of the

assumptions since any altgrations of th,se basic hypotheses may

significantly alter the predictiond'obtained from the m9del. As

digital computers had yet to be developed when Volterra did his

pioneering work, his models were expressed in the language of mathe-

matics. In particular, he used the diffetditial and integral cal-

culus and the subjects of differential and litegral equations quit%

extensively. .Because this is a course in computer applications in

the life sciences, we will use the programming language BASIC to

express our model in contrast to .the language oi) mathematics. There

are advantdges in the use of either language. One gignificant ad-

vantage of the mathematical formulation is the opp6rtunity it affords

to br4g the vast framework of mathematical knowledge to bear upon

the prAaem. In addition, when truly complicated models are pro-

posed, the mathematical formulation can sometimes be used to discover

biologically significant relations without the expense of considerable

computer time. Furthermore, mathematics enablesdithe investigator to

discern common structures of different models and hence sqrves ad a

unifying tool for science. On the other hand, the programming lan-

guage BASIC is extremely iasy to learn and to use and is readily

understood by a far larger audience. In addition, since almost all

sufficiently complicated mathematically forMulated problems have to

be solved with the 4id of a computer anyway, there may be a signi-

1.1



ficant saortening of time required to develop the computer program

by a directly formulating problem in terms of the programming lan-

guage. In addition, the use of the infinitesmal calculus requires

the assumption that the variables change in a.smooth or continuous

manner. In contrast, a progeamming language naturally permits

finite or step-wise changes in the variables. Consequently, for

discrete phenomena such as population growth, computer simulation

may require less restrictive assumptions and permit a more realis-

tic formulation than could be obtained bi using mathematics. As

stated previously, it is our intent to proceed as far as possible

using just a simple computer language. For the student who wishes

to learn more sophisticated modeling techniques, certainly a strong

mathematical background may be necessary and it is our hope that this

course will encourage the student to obtain such a background.

In building our model for the,simulation of the growth of a

single,population le will begin by making some very, very simple
.

assumptions. For this reasoq, the model will be quite oversimpli-

fied; however, it will permit a ready and easy programming and run-

ning on the computer. Thusf we will be able to quickly make several

computer runs. The examination of the results together with our knowl-

edge of "what we left out" of the original hypothesis will then sug-

gest alterations and/or additions to the original model. The process

will then be repeated again and as often as is neces3ary in order to

arrive at what we hope or believe is 1 realistic explanation or

model of the growth of a population. As the model progresses in

complexity and growth, it is important that the student "sees" or is

awc- of the contribution to the building of the model that an analy-

sis of results on simpler models provides. In other words, the com-

puter model itself becomes a powerful tool in suggesting alterations

and additions t6 the model. This effect is not so noticeable in the

early or primitive stage of the model building. However, as the

complexity and completeness of the description of the population

growth increases, the analysis of the computer results may be the

only means of suggesting new alterations or additions.

The fundamental idea we shall use in our model-making or simule.-

tion is the following:

1. 2
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C.

a

The next state of the variable eciaals.the old or Preceding state
-,

of the variable, plus the change in the variable.

In the language of BASIC this can be stated in the following way:"

10 LiT V(I+.1) = V(I) + C(I)

where. V(I+1) and VW are the new and old states of the variable

respectively, and C(I) is the change in the variable. This law

and variations of it will form the basis of most of the developmrt

in this work. The importance and utility of the law cannot be over-

stressed and for this Teason we call IA the Law of Change.

.By identifying the variable V(I) with the population at th&

i
th time period we see that the above law stAtes, "the population

at the beginning of,the next time ieriod is equal to the population

at.the beginning of the present time period plus the change in pop-

ulation in'this time period."

Henne,oto apply this law to our population growth model, we need

to specify two quantities:

i) The population at the initial time.

ii) The amount of change in any time period.

Thd-Ma-thus Problem

The complexity of the model will be determined by our hypothesis

concerning the second quantity. It is, of course, readily apparent

that such factors as (environment, season, time of day, prey and/or

predator specie, age, sexlietc. will all influence our choice or

specification of the rule of change. Furthermore, the length of the

time period will directly affect the magnitude of the change, C(I).

For reasons given below we wish to make our initial model as simple

as possible and yet permit it to have some creditability. Thus, we

will adopt the convention of equal time periods. This istan assump-

tion and, as far as computational or programming difficulty is con-

cerned, it is not necessary. The constancy of the time period is

adopted purely for convenience in getting started on our mOdelObuild-

ing. In the following, the student will frequently find it most

helpful to think of the time period as the generation period; i.e. th

1. 3
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period of time between generations. In order to determine a simple,

yet not trivial expression for the change in the population in a time

period, we examine in a bit more detail what we are trying to do.

We wopld like to end up with a model that is realistic and also

quite inclusive, yet we suspect that such a model will be very compli-

cated and not easy tp come by. Realizing that complicated models are

composed of many parts and further realizing that a sensible way of

buildEng a complicated or realistic model is to start with a simple

yet thoroughly understood model and to then refine it, we begin by

trying to 'select assumptions that will, we hope, lead to such a simple

model. In addition, to the advantages mentioned above, a simple

"first" model has other advant'ages, e.g. it is easy to check results

obtained from the simple model. Thus, our intuition is either con-

firmed or rejected early in the process. With these ground rule4 in

mind we now proceed to describe Volterra's initial assumptions con-

cerning the growth of a population.

It is certainly true that the change in the population in any

given pferiod of time is equal to the number of births minus the num-

ber of deaths. Thus, we can write

C(I) = (No. of birth) Co. of deaths\
in the period ' ifit the period)

.In order to arrive at expressions for the number of births and the

number of deaths in a period, certain assumptions must be made. It

is quite evident that a host of elements affect each Of these ex-

pressioi.s. Some of them are: weather, polution, health, availability

of food and water, stress, etc. It is perhaps more evident that a

rational inclusion of the combined effect of all these elements is

impossible. Consequently, it is necessary to make some very restric-

tive assumptions.

Volterra supposed that the plant or animal population, that we

are attempting to describe, lived in isolation and in a constant en-

vironment. The term "constant environment" refers t9 the fact that

during the entire time of the evolution of the population, all environ-

mental factors such as food supply, living space, birth and death

rates, etci remain constant for each member of the population. The

1.4



student should recognize the "real world" implications of such assump-:

tions. For example, the assumptjon that the food supply remainScon-

stant for each individual in tt.,re population implies that if tikpp-

ulation incivases the total food supply must also increase in order

that each individual may havelthe same amount of food. It may'be
;

possible to insure a constant food supply for a finite populatiem,

such as a cattle heid whose population is controlled; however, it is

certainly not possible to provide a constant amount of food to each

individual in an ever-increasirw population. Thus, we expect that

the results of our model might apply only to the early time growth

of a population. In this case, we say that our model "breaks down",

and hence is valid, only for early time histories. Volterra further-

more assumed that there was no intervention by any other species of

plants or animals. These are assumptions, perhaps.realizable for a

short time in a laboratory, and are certainly ideal and not realistic.

Nevertheless, try are not too far fetched and have the property of

being quite precise. In line with these strict assumptions,

Volterra further assumed that the number of birth/s

as well as the number of deaths in a unit of time was proportional

to the total number of individuals existing during the unit of time.

This is not an unreasonable.assumption since for a given period of

time, the graiter the population the greater the number of births and

deaths and the smaller the population the smaller the number of 4

births and deaths. To express these notions in the BASIC language,

we introduce the following notation for our variables:

Let P(I) denote the population at the beginning of the Ith

time period. P(I) is assumed to be constant in this time period.

Let B be the constant of proportionality (or the fraction)

relating

period.
1

the
th

the population,Ao the number of individuals born in a time

Thus/ B*P(F) is the total number of individuals born in

time period. B is called the coefficient of natality.

Let M be the constant of proportionality for the number of

individuals who die in a time period. Thus, M*P(I) is the total

number of individuals who die in the I
th time period. M is called

the coefficient of mortality.

Ca), the total change in the popu.lation in the I
th time periat

is then B*P(I)-M*P(I) and hence an application of the law of

change gives

1.$ 16



P(I+1) = P(I) + (B-M)*P(I) (1)

The term B-M is called the growth coefficient and is denoted

by G.

If we know the population at some initial time and are able to

specify the constants B and M, we can write a simple program to

evaluate our model. One such program is:

1 REM POPULATION GROWTH MODEL, SIMPLE MODEL

10 DIMENSfON 13(6p)

20 INPUT B, M,

25 LET G = B-M

30 FOR I = TO 50

40 LET P(I+1) = P(I)+G*P(I)

50 NEXT I

60 FOR = 0 TO 50

70 PRINT I, P(1)

80 NEXT

90 END

The student is urged to run this program for various values of

B, M, and P(0), Lhe initial or starting population. (See figures

1.1a and 1.1b fcr .some sample results).

The set of numbers-, I and P(I), for each run is called the

population curve. Upon examination of the results, the student will

notice that if p(I) increases, i.e. P(I+1)>P(I) for all I.

Moreover, the student will also notice that the increase in population

per time period increases, i.e.. (P(I+2)-P(I+1))>(P(I+1)-P(I)). Such

growth is commonly called exponential growth. If B=M, there ia no

chahge in the population and if B<M, then the population approaches

zero. These relations suggest that it is theguantity (B-M) that is

iMportant. These results all agree with our intuition since the state-

ment B>..M means there-are more births than deaths in a time period

and hence over a long enough period of time the population should in-

crease without bound. The pomdition B<M means there are more deaths

than births in a time period and we would thus expect that the popula-

tion should eventually die out: Consequently, our simple model is not

. 1.6
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quite as useless as we may have initially thought. Similarly, vary-

ing the magnitude of- (B-M) has the effect of changing how fast the

population grows or dies out. Moreover, we see that it was the dif-

ference in the population at adjacent time periods that gave us help-

ful insight and so we should alter our prograni to print or plot this

information.

It is important that the student recognize that both of the co-

efficients, B and M, are proportions per unit time. This can be

more easily understood by considering a numerical example. Until

recent years the birth rate in the United States was about 2.2%.

This means that in a period of time of one year, approximately 2.2

children were born for each 100 persons alive during that year. It
0

is also possible to speak of a monthly birth rate and it would be a

little less than twelve times the previous figure because of the

effect of "monthly compounding". Similarly, it is possible to give

a birth rate per decade and this would be a little more than ten

times the yearly rate. (See Chapter Iv). In this way, iime is

accounted for in our model. For those students who have had a cal-

culus based ecology course, the term natural or intrinsic growth rate

is used. The relation between the calculus and our approach is

briefly discussed in the appendix to this chapter and elsewhere

throughout the text.

The constant environment problem resulted in a model whose solu-

tion was termed exponential growth or exponential decay. Because many

scientific phenomena_ behave like exponential growth or decay, these

concepts are very useful. This fact is mentioned because we wish to

emphasize that exponential-like behavior of a variable is the direct

result of assuming that the rate of increase or decrease of the varia-

ble is directly proportional to the magnitude of the variable. In

this work, whenever such an assumption is made concerning the phenomena

under consideration, we shall use the term exponential growth or ex-

ponential decay to describe the resultant behavior. Thus, any varia-

ble satisfying an equation of the form

Y(I+1) = Y(1) K*Y(I)

where K is a constant, will be said to be exponential.

1.8
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Afit

This equationt when written in the form

Y1/4-1).-Y(I)=IK*Y(I)

avt A.Q

states that the change in the variable is proportional to the

variable. The idea of stating that the change in a variable is

proportional to the variable or proportional to functions or

combinations of other variables is extremelY useful in formu-

lating governing equations. In fact, nearly, all of the eicamples

in this work are formulated on this basis. 'This notion is em-

phasized because it frequently will enable the student to more

readily construct or devise the governing equations.

fp-
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facts suggest the following changes in the coefficients of natality

and mortality:

and

Replace B by the quantity B-Bl*P(I)

replace M by the quantity M+Ml*P(I).

Thus, as P(I) increases the terms Bl*P(I) and Ml*P(I) will also

increase and so the quantity B-Bl*P(I) will decrease whereas the

quantity M+Ml*P(I) will increase. The student should note that in

our original model the proportion of births, B, and the proportion

of deaths, M, were constant throughout the problem whereas now

these proportions are different each time period. This notion of

varying the proportions each time period is a very fruitful notion and

will be used extensively in the subsequent developments. These con-

siderations then imply that in an arbitrary time period the change in

population is given by

or

(B-Bl*P(I))*P(I)-(M+Ml*P(I))*P(I)

((B-M)-(Bl+Ml)*P(I))*P(I).

.

Thus, line 40 in our Malthus growth program should read:

40 LET P(I+1)=P(I)+((B-M)-(Bl+M1)*P(I))*P(I).

A more concise expression, requiring fewer numerical operations,

can be obtained by introducing the notation G1=B1+Ml and rewriting

line 40 as

40 .4...ET P(I+1)=P(I)+(G-Gl*P(I))*P(I).

Statement ,20 of the Malthus program should also be altered to read

20 INPUT B, Mc Bl, ma, P(0)

1.10 22



and a statement must be inserted to calculate Gl. G1 is called the

auxilliary growth coefficient.

The procedure of altering a former program in accord with altera-

tionS of the assumptions upon which the former program was constructed

will be repeatedly followed in this work. The ease with which the

consequences of the assumption of a finite environment were effected

in the program should be noted. Nearly all of the original Malthus

model program was usable. The imposition of the aliered hypotheses

required only minor changes and the addition of one programming state-

ment. This is an example of the great ease with which a computer can

be used to assist the obtaining of insight and understanding. A copy

of the program is shown below.

1 REM FINITE RESOURCE MODEL

10 DIM P(60)

20 INPUT B,M,B1,M1,P(0)

25 LET G=B-M

26 LET G1=B14141

30 FOR 1=0. TO 50

40 LET P(I+1)=P(I)+(G-Gl*P(I))

50 NEXT I

60 FOR I=0 TO 50

70 PRINT I,P(I)

80 NEXT I

90 END

An examination of statement 40 shows that the essential

parameters are the growth coefficient G and the auxiliary

growth coefficient Gl. Thus, the program could have been

simplified by replacing line 20 with

20 INPUT G, Gl, F(0)

1.11 2 3



and deleting lines 25 and 26. This 1:educed form of the program

more closely approximates the forms seen in the literature.

By running the program with different sets of constants B,

M, Bl and Ml, that is, different sets of values for G

and Gl, the student will note that the populations begin as

exponential-like growth, reach a maximum rate of growth,

then level off and approach a limiting value.

The limiting value attained by the population will be denoted by Pf

Figure 1.2, page 1.12, presents two curves obtained with two typical

sets of constants. The curves are the familiar logistic or S curves

that biologists frequently speak of. Problems (1) and (2) contain

important results about this program.

Problems:

(1) By exanining the change in population in a time period, derive

an expression for the limiting population in terms of the

constants B, M, Bl and Ml.

(2) Make some computer runs varying just the initial population

P(0). From an analysis of these runq, what can you conclude

about the final population in each case? How could you

determine this from your.program?

The student will note that changin5 the constants alters the shape

of the curve. For instance, the curve may begin flatter or steeper,

rise more quickly or slowly and level out sooner or later depending

upon what selection of constants ieused.' In a subsequent chapter,

we will discuss how this dependency of the shape of a curve on the

constants may be used to provide a method for their determination.

24
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It is interesting to note that this curve does not increase with-

out bound as the curves obtained from the former model did. Moreover,

the shape of thecurves has been drastically changed as the first part

of the graph curves up while the latter part does not. This is due to

the changing of the coefficient of P(I). The student should rerun

the original or exponential growth model and change the aonstants B

and M after 10 or 20 time periods and then note the alteration in

the resultant curve. The sudden change in the slope of the curve

might suggest to the student that a frequent and/or continual changing

of tfl'e coefficients B and M would enable the model builder to chanc

the shape of the curve so that it is "more reasonable" (whatever that

is). Thus, the student could have discovered, by just "playing around

with" the original model, the alterations ye suggested above."- Of

course, if he is fortunate enough to find an alteration which more

closely approximates that wh:ch actually takes place, he is faced with

the problem of rationally explaining his alteration. Strange as it

may seem, quite frequently this liery ptocdess Was resulted in better

explanations of a scientific phuomena. Thus, the computer becomes

an actual aid to acquiring a better understanding.

The simple relation Pf = G/G1 (See problem 1) permits an easy

experimental determination of the constant Gl. Pf may be determined

by measuring the final population observed in an environment whose

total food supply isieonstant. Since G i: assumed known, G1 is

given by

Ci = G/Pf.

Pf is called the carrying smAgity of the environment.

Contamination of the Environment

Every student is aware of the pollution and contamination of our

environment due to the expanding needs of our increasing population.

The causes and effects of contamination are under extensive investiga-

tion and are becoming better understood due to the deepening concern

of society with the preservation of our environment. Because of.the

many kinds of pollution and the diverSity and multiplicity of the"

-1.13
26



effects of each pollutant, and combination of pollutants, it will not

be possible in a simple way to include the effects of each pollutant

on thk growth of the population. It is certainly true that a changing

population greatly influences the growth and changes in the kinds of

pollutants which in turn affect the growth of the population. The

phenomenon of the growth of the population affecting the growth of the

contaminants and these in turn affecting the growth of the population

is an example of "feedback". This is a very familiar term in model-

ing. It is an engineering term and the idea of feedback has found

extensive use in many fields. It will occur in most of our work.

The programming Changes necessary to arrive at the finite resource

program were alterations of the exprew.ions for the number of births

and the number of deaths in a time period for the Malthus model. This

suggests that the effects of.contamination or pollution may be account-
*

ed for by further altering these expressions.

A thorough inclusion of the effects of pollution in our popula-

tion growth model is too difficult and so our development will be

restricted to describing the evolution of a population in a very

restricted environment. As an example of suet an environment, we

consider the growth of a bacterial culture in a finite or restricted

volume when the culture is not ienewed and hence the culture will

gradually become intoxicated or poisoned due to tilt! accumulation of

catabolic products.

The following rather intuitive thoughts about the intoxication

of the culture by the bacteria and the consequent er'ect of this

intoxication on the growth of the bacteria will serve as ah aid to

an attempt to include the effects of intoxication in a bacterial

growth model. It is certainly clear that in oirder to estimate the

effect of an intoxicant on the change in population in a time period

that the atount of the in+oxicant present during that time period must

be known. Furthermore, since it is assumed that the culture is not

restored nor altered in any way during the time of growth of the bac-

teria, it seems reasonable to further assume that an amount of intoxi-

cant present 'at one time period will Continue to be present for all

succeeding time periods. Thus, an amount of intoxicant created in a

previous time period will continue to have a deleterious effect upon

the population for all succeeding time periods. Hence, the total

- 7
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intoxication present at any time period is the accumulation of the

intoxicants created during each preceding time period. The more

mathematically trained student Will recognize that this hypothesis

merely. states that the total amount of the intoxicant is a time in-

tegral of the rate of creation of the intoxicani.

In order to estimate T(I), the amount of intoXication present

at the beginning of the Ith time period, we will suppose that the

amount of intoxication created in a time period is proportional to

the existing population. If C denotes the contamination constant o

proportionality, then the amount of contaminant created in the I
th

time p'eriod is C*P(I-1). Since the amount of intoxicant present in

th e- I
th time period is the sum of the amounts of intoxicant produce

in the previous time periods, we can write

T(I).-C*13(0)+C*1)(l)+C*P(2)-1- +C*P(I-1).

Now the total intoNication should have a deleterious effect upon the

population by decreasing the proportion of births and increasing the

proportion of deaths. We will assume that in a time period the de-

crease in the proportion of births due to such intoxication is pro-

porional to the total intoxication present in the time period and

B2 will denote the constant of proportionality. Similarly, it is

postulated that, in a time period, the increase in the proportion

of deaths is also proportional to the total intoxication present in

the time period and M2 will denote the constant of proportionality

The effect of intoxication may then be accounted for by altering the

birth and death proportions to read:

B-Bl*P(I)-B2*T(I) and M+Ml*P(I)+M2*T(I).

Hence, in an arbitrary time period the change in population is

given by

(15-131*P(I)-B2*T(I))*P(I)-(M+Ml*P(I)+M2*T(I))*P(I)

In this expression, the first term represents the change in populati

due to births in the time period and the second term is the change i

population due to deaths in the same period.

1.15
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Upon introducing the notation, G2=B2+142, line 40 in our

program should now read

40 LET P(I+l)=P(I)+(G-Gl*P(I)-G2*T(I))*13(I).

In addition, the program must be altered to provide for the new

constants B2 and M2, the calculation of G2 and the total intoxi-

cation T(I).

Retarded Time Effects

The previous development assumed that the effect of contamina-

tion was independent of the time of creation or deposition of the

contaminant. This is a restrictive hypothesis since in a completely

enclosed environment, such as a microbial population growing in a

culture, it is known that the effect of the contaminant varies

according to the age of the contaminant. Thus, intoxicants created

early in the history of the culture have a different effect than

intoxicants r,:icently created. The inclusion of such a retarded

time effect is accomplished by modifying the calculation of the

potency of the contaminant.

1.16



The discussion of the development of a computer program

wIlich includes the.effect of the time of existence of the con-

taminant is facilitated by an examination of a graphical por-

trayal of a typical population curve such as is shown in figure

1.2a.

0

61.7 8 9 10
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ELAPSED TIME IN TERMS OF NUMBER OF TIME INCREMENT

A TYPICAL POPULATION CURVE
Ficg. 1.2a

The population is shown as a sequence of steps in recognition of

the fact that the population is actually calculated at a discrete

set of points. It is assumed that the time increments are con-

stant and that the time index I, indicates the elapsed time

measured in numbers of time increments. As an example, if the time

increment is one hour, the value I=14 indicates that the elapsed

1.17



time is 14 hours. We will also adopt the convention of denoting

the initial time by 0, and hence P(0) is thednitial popula-

tion. For this reason, P(I) will denote the population at the end 9

time tFI time increments. These conventions mean that if we

are calculating the population P(I+1) from a knowledge of the

system up to and including time t=I time -increments, then we

are indeed calculating the change in the population during the

(I+1)st time period. It will further be assumed that the amount

of contamination created during a period is proportional to the

populattion at the beginning of that time period. Thus, the con-

tamination created in the J
th time period is due to P(J-1).

A

As a specific example, the population at the end of the 6th

generation, P(6), creates an amount of contamination equal to

CitP(6) during the 7th time period.

Using this notation we can begin our discussion of the devel-

opment to include retarded time effects in our growth model. We

start by estimating the potency or degree of intoxication due to

.the creation of an amount of contaminant during an earlier time

;
,period. If ithe early time period is the J

th time period,

then according to our original hypothesis, the &mount of contaminant

created in this period is C*P(J-1). To calculate the length of

time that the contaminant has been in existence it is helpful

to recall that we are at that point in the program where we have

calculated the population P(i) and are attempting to calculate

the population one time increment later, that is P(I+l). We

will adopt the further convention that the intoxication created

in a time interval is not deposited until just before the end of

tr1.17a 31



the time interval. This implies that the contaminant created

in a time period has no effect on the population growth during

that time period. Such a convention also implies that the length

of time since deposition of the contaminant is given by the dif-

ference between the present generation number, I, and the time

period, J in which the intoxicant was created. Now, because

it is assumed that the potency of the contaminant depends upon

the elapsed time since degosition of the contaminant, the expression

D(I-J)*C*P(J)

represmItz the toxicity or deleterious effect during the (I-mst time period of

the amount of intoxicant deposited in tale (J41) st time period. D(I-J) is a

coefficientm maltiplier which accounts for the potency of the

contaminant due to the time of existence of the contaminant rela-

tive to the potency of an equal amount of contaminant which has

just been created. For example, if the time period is one hour

and we are calculating the change in the population during the

11
th hour/ D(l0-5) is the effect on the potency of the contami-

nant due to the fact that the contaminant has been in existence

for five hours. Furthermore, the assumption that the contamination

created in a period has no effect on the population growth during

that period implies that, if for example 1=4, then setting

D(0)=0 assures that the amount of contaminant created during the

5
th

, time increment, C*P(4) has no effect ongthe calculation

32



of P(5). The coefficients D(I-J), (I-J)=0, 1, 2, WA., I, must

be entered as data or else provision must bp made for their

generation. A graphical representation of one possible form of

the time variation of D(I-J) is given in figure l.2b.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(I-J)

Time SiAce Deposition Measured in Number of Time Increments

Fig. 1.2b

The student should note that increasing times since,deposi-
.

tion correspond to earlier times of creation of the contaminant.

Because of this, the student should be careful in the interpre-

tation of the horizontal time scale. In essence, increasing

values of (I-J) link the present generation with generations

further back in time.

1.17c
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The toxicity.

:?'

T(I), of-,the.total amount of the contaminant

present during the (I+1)st

pression

time interval is given by the ex-
t.

D(I)*C*P(0)+D(I-1)*C*P(1)41i(I-2)*C*12(2)+

-+...+D(1)*C*P(I-1)+D(0)*C*P(I).

+ +D(I-J)*C*P(J)

The programming equivalent of this expression is

120 LET T(I)=0

130 FOR J=0 TO I

140 LET T(I)=T(I)+D(I-J)*C*P(J)

150.NEXT J

The statement nuMbers-serve merely to indicate the order of opera-

tions and bear no relation to their place in a particular program. In t.erims of

summation notation of mathematics this expression may be written

as

4e4

T(I) =

3=0

1.18

D(I-J)*C*P(J).
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The student is urged to completely understand the programming form

of the sum since this form will be used in other parts of the text.

As we have repeatedly stated, we are attempting to get the student

to think in terms of the BASIC language as early as possible'in

order that he'or she may more effectively use the computer. The

mathematical equivalent has been presented as a possible aid to

-

better understanding by the more mathematically inclined students.

In addition, the student should note that setting D'(I-J)=1 fdr

all J implies that there is no retarded time dependency and in this

instance the above expression for T(I) reduces to that given pre-

viously.

The inclusion in the population model Of this new expression,

for the effect of the total intoxication is accomplished by sub-

stituting the new expression for T(I) in our previous development.

A program accounting for retarded time contamination effects

on a population growing for 50 generations in a finite environ-

ment is given in figure 1.2c.

In this program it is assumed that the contaminant 0-Is bio-

degradable and has no toxic effect after 20 time increments of

existence. The degradation will be assumed to be in direct

proportion to the elapsed time of deposition. Thus we will

"set D(1)=1, D(2)=.95, D(3)=.90, etc. down to D(20)=0.

We will also set D(K)=0 for K=21, 22, ,,, and set D(0)=0.

The assumption that D(K)=0, for K>20 implies that the con-



5 REM POP. OR. MODEL WITH FIN. RES. AND ENV. CONTAMINATION

10 DIM P(60),D(60),T(60),Ti(60) .t

30 PRINT "TYPE 0 AND Gi THE GROWTH COEFFICIENTS"
25 INPUT 0,01
40 PRINT "TYPE 02 AND C THE CONSTANTS OF PROPORTIONALITY"
45 INPUT 021C
50 PRINT "TYPE P(0) THE INITIAL POPULATION"
53 INPUT O(0)
54 KENT
55 PRINT
58 REM LINE4.60 TO 68 'READ IN THE TIME DELAY MULTIPLIERS
60 DATA 0,1,. 95,.9,. 85,.8,. 75,.7,.65,.64. 55

62 DATA
64 FOR K=0 TO 20
66 READ D<K)
68 NEXT K
70 FOR 1=0 TO 50
74 REM LINE 75 ASSUMES NO INITIAL CONTAMINATION
75 LET T<I)=0
80 FOR J=0 TO I
90 LET T(I)=T(I)+D(I-J)*C*15(J)
100 NEXT J
104 REM LINE 105 STORES THE T<I)'S FOR OUTPUT IN LINE 150

105 LET T1(I)=T(I)
110 LET P(I+1.)=P<I)+(0-01*P(I)-02*T(I))*P(I)
113 IF P<I4-1><000 TO 170
120 NEXT I
130 PRINT " I P(1)- %(I)"
131 PRINT
140 FOR 1=0 TO 50
150 PRINT I1P(I),T1(I)
160 NEXT I
165 GO TO 200
170 PRINT "THE POPULATION BECAME NEGATIVE"
200 END

Single Population Growth Assuming a Finite Resource
Environment and Retarded Time Contamination Effect

Fig. 1.2c

36
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taminant completely degraded and therefore has no effect after

20 time increments and the setting of D(0)=0 assures that the con--

,
taminant created by P(I) does not affect the growth 'of P(I+1). This

specification of the potency multipliers is expressed by lines 60

to 68 of the program. By setting D(I-J)=1 for all values of (1-3),

the original contamination mode1,44 obtained and by setting D(I-J)=0

for all values of (I-3) the original finite resource model is ob-
*

tained. These choices of values for D(I-J) are useful for debugging

the program because they enable a comparisOn with the results of

previously developed programs. Instruction 110, which calculates

the population for the beginning orthe (I+1)st time increment,

requires a knowledge of the potency of the contamination during the

I
th time inarement. This is accomplished by statement 90, which

164
calculates the total potency to be used in the

th
I' time interval.

Instruction 113, is necessary to assure biologically realizable

results. Statements 30 and 35 call for only the four values G,

G1 and G2, as well as C, rather than the seven va1u2s, C, B, M, B1

Ml, 82 and M2. This results in no loss of generaliV since the

latter six values are combined to give the former three values

prior to the basic population calculation.

The obtaining of "reasonable" values for the parameters requires

some deliberation, as well as experimentation with the program. The

student will recall that Gl<<<G since both BI and M1 were very

much smaller in magnitiede than B and M. This was due to the fact

that the effect of a finite environment was to modify or alter the

birth and mortality rates. In a similar manner, it is assumed that

the effect of contamination will be to only further alter the birth

7
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14.1.

and mortality rates. Thus, the terms (13-13141P(1)) and (1414$11*P(I))

still remain the principle contributions to the birth and death

rates. Hence, it is expected that G2,- the.cgnstant of_proportion- .

ality modifying the growth rate because of contamination effects,

will be much smaller in magnitude than either G or Gl. The presence

lb

of the constant C is actually not required since an examinatilen of

the program shows that the effect of C can be incorporated into the

magnitude of G2. For this reason, we usually Bet Cal. C appears

in the program, however, because it i occasionally the case that

it is desirable to change all of the multipliers by a constant

proportion and such a change can be readily accomplished by only

altering C.

The student should note that the values chosen for the multi-

pliers in the program are arbitrary. The student is encouraged to

try other sets of values and to compare the results. It is also

instructive to compare results obtained from the program when

different magnitudes of G2 relative to the magnitude of G and

Gi respectively are used. Your author tried the 'combination

G=0.64 Gl=0.0003, G2=0,00003 and C=1.0. The program results

arc listed in figure 1.2d and displayed in graphtcal format in

figure I.2e. The latter figure shows that the' early time his-

tory of the population is exponential in character. As the toxic

effect acquires sufficient magnitude, the population is then

decreased. This decrease in population eventually'results in a

decrease in the magnitude of the toxicity which in turn permits

349
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the population to again increase. However, the latent toxicity

present at the start Gf the second rise in population is such

that the population does not increase to as great a value as the

initial maximum population. In this way, the successive minimum

and maximum of the population decrease ana it is evident that ifffI
the program were run a sufficient length Of time there would

no change in population from period to period. Thus,.a finite

and decreasing set of potency multipliers produces a population

growth curve which is characterized by a.rapid and large initial

increase in population followed by a sequence of damped oscillations.

The population finally assumed a constant value and--this constant

value will be called the Permitted Contamination Population.

Figure 1.3c illustrates the results of a run in which all

of the potency multipliers are assumed to have the value of 1.0.

Many variations in the time evolution of the population can be

obtained by choosing different sets of values for tae parameters

and the potency .multipliers. The analysis of results obtained

from these variations will provide the student with insight about

the behavior of the population. The examination of these variations

is facilitated if a plotting routine'is used to display the results

in graphical form.

The student who is familiar with the integral calculus will re-

cognize that the expression for T(I) is the discrete or finite

difference equivalent of the retarded time integral

-7t
fC D(t-2-)P(r )dt

riszo

41.
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and thus the program we have developed numerically solves the integro-

differential equation

wr:r.t

EG-G1-12(t)-
...J7

C 41D(t-r )13(nd rip(t).

r=o

The mathematical study of such equations is quite difficult and is

usually attempted only in graduate level mathematics courses. The ter.a

,D(t-1`) is called the kernel, and, if this term is not exceedingly

simple, the solution of such equations must be effected by numerical

methods. Thus, even a mathematically formulated discussion of this

problem would necessitate the writing of a program very similar to

1.19d



that which we have developed. This is an example -of the power of

formulating and thinking about quantitative phenomena in terms of a

programming language such as BASIC. As an assignment, the student

should assemble the program and then run it for several variations

of the set of constants.

The model that has been constructed is relatively simple yet does

produce a population curve which compares somewhat favorably with that

obtained experimentally. Many known biological effects have been

omitted. As an example, Allee (1938) noted that thirty specimens in

a culture would neutralize over two hundfctimes the amount of poison

normally neutralized by one specimen. This fac should certainly re-

quirc a significant alteration of the early time period part of our

model. The effect of overcrowding is another effect that we have

omitted. The reader can very easily cite other examples of effects

which have been omitted. He is urged to do so and to alter the program

to account for the adqitional effects. The altered program should be

run and the results analyzed to test his alterations and hypotheses.

In the preceding discussion, the student should note that such

phrases'as, "is assumed to be", "is supposed to he", "is postulated

to be', etc. are to be understood as equivalent sxpressions. They

serve to state hypotheses and the different phrases are used to avoid

repetition. This technique is frequently employed is literature de-

scribing quantitative phenomena.

It is interesting to compare the results obtained from each of the

three models. Figure 1.3 shows a popqation growth curve of a bac-

terial culture and is taken from the wori"of Buchanan and Fuller in

1928 as reported in D'Ancona (1954). Figure 1.3a is a comparison of
4

the results obtained from a Malthus model using a positive growth

coefficient. It is seen that the early time behavior of the curves is

quite similar. Consequently, it may be inferred that the initial growth

of a bacterial culture is exponential in character. Figure 1.3b is a

comparison of the same experimental data with numerical results obtained

from a finite reitource model. .The two curves compare quite well in

shape and form up to maximum growth. For early time periods, the finite

resource model agrees just as closely as does the constant environment

model results. However, since the finite resource model also agrees

for a longer period of time, we conclude that the latter model provides

a better description of _bacterial culture growth than does the former

model.
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Finally, figure 1.3c presents a comparison with the results

obtained from the contamination model. The D(I-J) were all assumed

to be constant and equal to 1. It is seen that, compared to the

results of the other two models, the contamination model yielded re-

sults wtich were in longer time agreement. Hence, one may conclude

that this model is an even better description of the bacterial growth.

These comparisons were-made on the basis of shape and form rather

than on magnitude and were made solely to illustrate how the repeated

refinement of a model can yield progressively closer agreement with

experimental results. In this way insight and understanding of the

phenomena Ire increased. chapter III describes more exact methods of

comparing results. Your author is"purposely avoiding positive statenents

to the effect that one model'is definitely better than another because-the former

produced results which more closely agreed with experiment. It is

evident that the relative worth of a model must also include an evalu-

ation of its simplicity. It is certainly possible to construct a model

which agrees more closely with experimental data by combining arbitrary

functions and constants in a 'willy-nilly' manner contrived to produce

.closer agreement. About all that can be said is that there is no sin-
,

gle best model. The decision as to which model is the better, is not

trivial and is far better left for discussion elsewnere. The purpose

in constructing, models is to gain insight and understanding of the

bioloclical phenomena and comparison with experiment is- necessary to

confirm or to deny insight.

Effect of Matin2 Possibility

For populations whose members reproduce by sexual meanWi the

frequency with which encounters take place between members of the op-

posite sex is a significant factor in the determination of the birth

rate. If the population density is k&rge, such encounters are frequent,

whereas in a sparsely settled area such encounters can be rare. In

order to simplify the analysis, we will suppose that there are a suf-

ficient number of species present to validate the following assumptions

which are due to Volterra. We assume that the proportion of sexes

remains constant over the entire growth cycle and that Fl denotes the

proportion of males and, F2 denotes the proportion of females. Thus,

1.22 .15



since the species of the population are either male or female,

F14-F2m1, and Fl*P(I) and 1112*P(I) are the number of Males and-

females respectively in the Ith time period. We will also assume

that the fraction of batal pmmdble Emicoanters between members of the op-

-posite-sex -thatsive rismto-brixtbs-is _Consequently?- in thP

4 _J
th time period if there are E(I) encounters, the number of resul-

tant births is P3*E(1).. Now the'number of possible encounters is

given by the 'product of the number of males and females in the period,

ife

or

E(1) = (Fl*P(I))*(F2*P(/))

E(I) = Fl*F2*P(I)+2.

Problem:

Verify the assertion that the number of possible encounters between

males and females is the product of the number of females and the numbe

of males by constructing a diagram and counting the number of encounter

for the case of (a) 2 females and 3 males, and (b) 4 males and 3

females.

Consequently, the number of births in the time period is

F3*E(1) = Fl*F2*F3*P(I)+2

= F4*P(I)+2

where we have introduced the notation F4 = Fl*F?*F3. By assuming th .

the number of births is determined by the number of encounters Of Aem-

hers of the opposite sex, we are in effect altering our original assurir

tion of a constant birth rate B. Recall,that a constant birth rate

implied that B*P(I) was the number of newborn in the 1th time peric

This expression must now be replaced by the expression' F4*P(I)t2. A

comparison of this expression with B*P(1), suggests that the constant

B must be replaced by F4*P(I). Since we are modifying the program

4 6
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developed in the previous section to account for the effect of mating

possibility, and since G = B-M, we must write G = -M+F4*P(I) and

the coefficient of P(I) in line 40 should read

-M+(14-G1)*P(I)-G2*T(I).

Thus, line 40 page 1.16- should read

40 LET P(I+1) = 1;(I)+(-M+(F4-G1)*P(I)-G2*T(I))*P(I).

The assumption that the proportion of encounters resulting in births

remains constant is a crude assumption at best. In the early stages

of the population growth, this assumption might be reasonable but as

the population gets larger the assumption becomes invalid. It seems

more reasonable to assume that as the population increases the propor-

tion of births due to encounters should decrease. Thus, we replace

the constant F3 by F3-F5*P(I) where £5 is positive and so small

that the quantity F3-F5*P(I) remains positive during the entire

growth cycle. The number of births due to the encounters E(I) is

then

(F3-F5*P(I))*E(I).

Letting F1*F2 = F6, permitS us to write this express...on as

(F3-F5*P(I))*F6*P(I)t2.

Line 40 then may be written as

40 LET P(1+1) = P(I)+(-1,01+(F3-F5*P(I)-G1)*P(T)-G2*T(I))*11(I).

Again, the student should prpvide the necessary alterations to his

existing program and carry out a few runs with various sets of the

parameters M, B1, B2, Ml, M2, F1t.F2, F3, F5 and P(0). In summary,

equation 40 above includes the three effects (1) a finite food

supply, (2) contamination, and (3) mating.

1.24
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Summary

This chapter has considered the general problem of the growth

Of a single population. The development began with a consideration of

tlw.grcwth of a population in a constant environment and successive

alterat,ions of the fundamental hypotheses-resulted in a set of models

each of which more closely mimiced reality, Because the alterations

consisted in modifications.of C(I), and the addition of input state-

ments, their accommodation was readily accomplished. Thus, this pro-

cedure enabled an easy and ready transition from one model to another.

-N This is in contrast to the mathematical procedure which usually

always requires the development of a new method of solution whenever

the original model is altered. Furthermore, the development of such'

methods is not trivial and can be a very difficult and time-consuming

task. In fact, it is usually the case that far more time is spent

developing a method of solution to a particular problem than is spent

discussing the solution of the problem or in discussing the correct-
.

ness of the original formulation of the problem. The programming lan-
e-

guage approach permits the scientist to concentrate on learning more

about the phenomena under investigation rather than on the learning

of some mathematical technique which is usually applicable to only a

very specific and restricted class of problems.

The direct BASIC programming language approach also permits the

investigator to place far greater emphasis on obtaining a more com-

plete and correct formulation of the problem together with a more

extensive analysis of the results. This approach is in direct con-

trast to the applied mathematics approach which has sametimes been

characterized as the art of linearization or the art of simplifying tht

problem to the extent that the resulting mathematical expression of

the problem is *sollnaae, yet the essence of the actual phenomena is

not lost.

A further value of the direct programming approach is the ease

with which it permits the investigator to examine the effects of

various biological hypotheses. This, in turn, enables the investigato

to obtain a better understanding of the overall structure, as well as

the overall interaction of the various components making up the system

In this way, major weaknesses in the system are moreeasily uncovered.

4 8
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APPENDIX

Malthus or exponential growth is frequently descr4bed in the lan-

guage of the calculus. It is the purpose of this appendix to indicate,

in a most informal manner, the connection between the two approaches.

The notion of the instantaneous time rate of change of a variable oic

function is a fundamental concept in the calculus. Heuristically speak-

ing, the instantaneous time rate of change of a function is the change

in the function .in a very small increment of time-.- If dt denotes a

small increment of time and dF denotes the change in the function F

during the increment of time, then the quotient, dF is a close
dt

approximation to the instantaneous time rate of change of the

function. In the calculus, the value of dFl- as the increment of time
dt

becomes vanishingly small is made precise, and this value is called the

derivative of the function with respect to the time. Now, the Malthus

hypothesis states that the time rate of change of the population is

proportional to the yopulation. Hence, we can write

dP
dt

rP (1)

where r is tIr constant of proportionality and is called "the intrin-

sic rate of gro),,th". The analogy to the BASIC language formulation

of the problem can be noted by recalling that in the dErivation of

statement 40 in the Malthus program it was assumed that the interval

of time was a unit interval, i.e. a single generation, a sipgle year,

a single day, etc. If the time interval had been chosen to be H

units long, the index I would have been related to the actual time by

T = I * H (2)

Thus, if B and M are interpreted as the respective birth rate and

the mortality rate per unit time, the proportion of births and deaths

in a single period is B*H and M*H respectively. The fundamental

BASIC language equation is then

P(I+1) = P(I)+B*h*P(I)-M*H*P(I)



or

P(T+1) = P(I)+G*P(I)*H

where G = B-M.

By setting H=1 statement 40 in the prognmn listed onp. 1.6 is'obtained. 'The

analogy with the term dP can be noted by writing equation (3) in the form

dt

P(I+1)-P(I) = G*P(1) (4)

since it is evident that the lefthand side of this equation is the

change in the population during the time H; that is, the lefthand

side is the time rate of change of the population. Thus, the term

P(I+1)-P(I)

is an approximation to dP . From equation (2) it is seen that the

dt
term P(I+1)-P(I) is the difference in populations occurring in a

time period whose duration is H units of time. Thus, if H is made

successively smaller the value of

P(I+1)-P(I)

approaches the value of the instantaneous time rate of change Of the

population, dP .

dt

The relation between the growth coefficient and the intrinsic rate

of growth is readily determined. From the calculus it is known that

the solution to dquation (1) is

P(i) = pmert (5)

where P(0) is the initial population. By writing equation (4) in

the form

13(I4-1)-P(I) =
P(I)

1.27
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and substituting expression (5) we obtain

P(0 e
r(I+1)H rIH- P 0)e

P(0)e
IrH

or

e
rH-1=G*H

If H=1, this simplifies to

1 = G

G*H

01,

(7)

(8)

which is a form that is frequently presented.

It is the case that the graphical display of data which has a

large variation is more easily accomplished by using a compressed

scale. A typical example of data having a wide variation is exponen-

tial growth data. To facilitate the graphical display or plotting

of such data, compression by a logarithmic scale is usually employed.

Logarithmic plotting is accomplished by plotting tne logarithm of the

function values rather than the actual value of the functions. However,

to avoid the necessity for the use of antilogarithms when reading the

data from the graph, the vertical axis is usually'labeled with the

actual values of the function. Since the logarithm subrOutine re-

quires several arithmetic operations, the frequent use of this routine

could require an excessive amount of computer time. Consequently, it

is desirable to have an alternative but "cheaper" method for compres-

sing the data. It is the purpose of the following discussion to pre-

sent such an alternative by developing an operation which is analogous

to the logarithm operation and which for sequential data requips far

fewer arithmtic operations than does the logarithmic subroutine.

We begin by considering an arbitrary smooth function G. The

exT4ession

dG --ai x At
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is the rate of change of the function C multiplied by a small increm.

ment of time At, and the product is the change in G during the

elapsed increment of time. Thus, if At denotes the difference in

time between the I
th time increment and the (1+1)st time incre-

ment we have

dG --
at x At = G(I+1)-G(I)

Since dG varies in time, the successive products of dG with small

dt dt
increments of time gives the change in G in each of the successive

time increments. If At
I

denotes the I
th time increment and dG1

ai1I
denotes the rate of change of G in the I

th time increment; the

sum of tho changes in G in N successive time increments is

dGI
igdt1

1 I
+ aL1 At "" dt N

at

-G
1
)+(G

3
-G ) +(G

I
-GI-1 )+ .

= GN-G1 .

(9)

Here G denotes the value of G at the end of the I
th time incre-

ment.*

In the calculus it is Vown that

\

dF d 110F

F dt dt (10)

%

where DIF denotes the natural logarithm of F. Furthermore, it is

evident that the term
02
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F(I+1)-F(I)

H F(I)

is an approximation to the term 1 dF r and, because of equation (10),

F dt
is also an approximation to the time rate of change-of the-natural
logarithm of F. In equation (9) if we set GP.ln F,, we'have

d ln Fl At, + d ln F1 At2 +...+ d ln Fi At
I
+...+ d ln F1 AtN

dt 1 j" dt 2 dt dt N

= ln F(N) - ln F(1). (12)

This result suggests that the sum

S(N)= F(2)-F(1)
H F(1)

xH F(3)-F(2)
H F(2)

xH +...+ F(I)-T(I-1)
H F(1-1)

X. +...+ F(N)"*F(N-1.),.
H. F (N.-1)411

(13)

is analogous to the quantity

ln F(N) ln F(1).

This sum is the desired operation on F that will be used to com-

press the scale of F. Whenever F is generated in sequential fashion,

.the calculation of S(N) for any step involves only a subtraction, a

division and an addition. \For this reason, the calculation of. S(N)

can be inexpensively carried simultaneously in the program. Two ex-

amples are given below.

The first example is the Malthus population growth problem. The

program listed on page 1.6 is modified to calculate S(1) in

accordance with the above work. The modified program is listed on

page 1.33. A sample run was made assuming that the initial population

was 10 individuals and the growth coefficient was 0.2.



A graphical portrayal,of the results is given in figure 1.4.

.The straight line graph is analogous to the straight line plot obtained

when graphing Malthus.type growth using a logarithmic.scale. By comr

.paring this plot with the conventional portrayal in figure 1.2, the

student will appreciate the advantages of each mode of plotting.

A second example is the growth of a population restricted by a

finite resource. The program and the results of a typical run are

listed in figures 1.5a and b. In figure 1.5b, the first column

indicates the number of the time period and the second column lists

the population at the teginning of the time period. The third column

indiCates the "compressed" value of P(I) and the last column is the

natural logarithm of the difference between the present population and

the initial population. This provides a measure of the data compressio

of each operation. By comparing the values of S(I) and P(I) it is

seen that considerable data compression is effected. A comparison of

columns (2) and (4) illustrates logarithmic data compression.

Statements 45 and .47 calculate the sum indicated by equation (13)

and statement 48 calculates the natural logarithm of the population.

In figures 1.4 and 1.5a, the actual population values are

listed on the vertical axis to facilitate the reading of the data.

Because such a labeling of the vertical scale is non-linear, the accu-

rate reading of the plotted data is not possible. It is usually the

case, however, that data plotted in this manner is not plotted for the

purpose of permitting accurate determination of the function. Rather,

the purpose of such plotting, is to display the data so that the overal

behavior of the function can be determined and analyzed.

The student who is familiar with the calculus will note that the

development leading to equation (10) was actually a cavalier derivatior

of the fundamental theorem of the calculus since equation (9) is a veri

close approximation to the integral of the rate of change of a functior

Your author wants to emphasiv:e that these portions of the discussion

relating to the derivative and the integral are very heuristic. Never-

theless, they can be made rigorous and are made so in the calculus.

It also should be emphasized that S(N), as calculated, is only an

approximation to the difference of the natural logarithms of the final



1 REM CONSTANT ENVIORNMENT: COMPRESSED SCALE. CALCULATION
REM
REM

10 DIM P(60),S(60)
1.5 PRINT "TYPE 0,

20 INPUT G,PI:0>
25 LET'S=0
:0 FOR 1=0 TO 49
40 LET 1:bI+1.)=P(I)+G*P(I)
45 LET R=(P(I+i)P<I))/P(I)
47 LET S(I+1)=S(I)+R
50 NEXT I
55 PRINT " I P(I)
56 PRINT
57 PRINT
60 FOR 1=0 TO 49
70 PRINT I,P<I),S(I)
80 NEXT I
90 END

READY

Fig. 1.4
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i REM FINITE RESOURCE MODEL, COMPRESSED SCALE CALCULATION
10 DIM P<60),S(60)1 L(60)
20 INPUT G,G11P<0 )
,25 LET S(0)=0
30 FOR I=0 TO 49
40 LET P(I+1)=P(I)+(0GI4P(I))*P(I)
45 LET R=(P(I+1)P(I))/P(I)
47 LET S(I4-1)=5(I)+R
48 LET Le.I4-1)=LOO(ABSCP<I4-1)7P(0))
50 NEXT I
55 PRINT " PSI) c(I) LAI)"

57 PRINT
68 FOR I=8 TO 30
70 PRINT I,P.,:D,S(I),L(I)
130 NEXT I
90 END

READY

G=0.2
G1=0.001
P(0)=10

A

10 15

TIME PERIOD

Fig. 1.5a
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and initial values of the function. However, this calculation does

serve as a very effective and cheap way for compressing the range of

a function. This in turn permits an-easy graphical analysis of the

behavior of the function.
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REMARKS CON'C RN1NG THE PROBLEMS

AT THE EN OF THE CHAPTERS

In working the problems the student is encouraged to use the com-

puter in any manner that he feels will assist him in solving a problem:

For the easier problems this;suggestion may seem rather wasteful; how-

ever, we are not discouraging thinking at the expense of computer use..

Rather, we are urging the dtudent to become facile with computer assis

ted analysit because as the px2Ob1ems become more,diffiCult, t4e use of

simple and straightforward computer methods will be the only practical

way of obtaining a solution. A further reason for exhorting the stu-

dent to use a computer is the fact that the act of formulating a

problem for a computer necessitates a thorough understanding of the

problem!. Plotting or graphing of results is also encouraged and may

be done by handl' using graph paper or with the aid of the computer on

a teletype, printer, plotter or cathode ray tube.

Some of the problems are quite easli-and as many as possible should

be attempted. If computer time is limited, the student should define,

flowchart and write out the principle RASIC programming language state-

ments for those problems he is unable to solve with the aid of a com-

puter.

Unless otherwise stated, the birth rates, mortality rates-and

growth rates are given in terms of the "natural" time period suggested

by the problem. The time period will usually be a generation, a

week and an hour, etc. and should be clearly specified in your. work.
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PROBLEMS

CHAPTER.

1. Consider an initial population of 100 individuals growing in a

constant environment.

(a) If the birth rate is 0.8 and the mortality rate is 0.3v how

many generations must pass before the population increases

10.times? 100 times?

(b) If the population is 150 individuals after a single genera-

tion, what is the growth rate?

(c) If the population is 75 individuals after a single genera .

tion, what( is the growth rate?

(d) If the population is 300 individuals after 10 generations,

what is the growth rate? (HINT: Using the computer program

to assist your guessing.)

What growth rate will result in a population of 15 individua.

after 20 generations?

2. Suppose there are two populations growing in a constant environ-

ment with the same growth coefficient and the initial population

f the first population is twice the initial population of the

second population. How do the number of Individuals in each pop-

, ulation compare at the fourth generation? If the growth coeffi-.

cient for each population is 0.1, what is the "doubling time" for

each population? The time'to increase 10 fold? What do you con-

clude about the effect on the population growth of different.

starting populations?

3. In the finite resource moloW4 if the groNth rate is 0.8 and the

carrying capacity 1000 individuals, what is the aux41iary growth

coefficient?

4. Consider an initial population of 200 individuals growing in a

finite environment with a growth coefficient of 0.9 and an

auxilliary growth coefficient of 0.000045. What is"the carrying

capacity? How many generation's are necessary to achieve the

carrying capacity? As the auxilliary growth coefficient is in--

creased, what happens to the carrying capacity? How does tne

number of generations required to attain carrying capacity vary

as the auxilliary growth coefficient increases? (HINT: Make som

runs on the computer corresponding to different values for the

auxilliary growth coefficients and examine the results.)
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5. Consider the finite resource model and let G 0.8, and G1 0.0001.

What is the carrying capacity? How does the shape of the growth

curve vary as both G and G1 increase in proportion so that

the carrying capacity does not change?

6. For the finite resource model, make up an initial population, as

well as growth coefficients, and then graph the difference

P(I+I-P(I) vs. I\ Compare this with a graph of the population.

Discuss the compariton.

7. Mo3Lfy the Malthus mddel program to permit the alteration of the

g owth coefficient after every 10 units of time. Denote the

growth coefficients by G60, K=0, 1, 2, 3, 4. Select a set of

values for the growth coefficients, G(K).

(a) Plot P(I) vs. I.

(b) Plot the sum of the relative changes in the population per

period. I.

8. Modify the Malthus model program in accordance with the folkwing

hypotheses.

(a) The number of births per period is assumed to be proportional

to the square of the population.

(b) The number of deaths per period is assumed to be proportional

to the cube of the population.

Choose various values for the respective constants of proportion-

ality, run the program and discuss the results.

9. With the aid of the Malthus model

(a) How many generations are necessary for the initial population

to increase twenty fold if the growth coefficient is 0.1,

0.5, 1,0?

(b) How many generations are necessary for the population to

become less than one-twentieth of the original population if

the growth coefficient is -0.1, -0.5, -1.0?

10. Modify the finite resource model to accord with the assumption that

the birth rate will decrease in proportion to the square of the

population and the mortality rate will increase in proportlon to

the cube of the population. Choose the constants of proportion-

ality to be 0.0001 and 0.00001 respectively. Run the program

with B=1.0 and M=0.5 and with 3=1.0 and M=0.1. Discuss

the results.
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model to include:

(a) Emigration and Immigration.
414.

(h) Harvesting and seeding.

State your hypotheses clearly and indicitte haw they are im-

plemented in the program. As an example of part a, you -might assume

that the number emigrating is proportional to the existing

population and that emigration would not occur until a certain

population has been reached. Similar statements could, apply

to immigration. As an example of part b, you may want to

harvest every 5 years, or every 9 years, and the-number you

may harvest could be a number chosen at random within certain

bounds. jt may be helpful to write the fundamental equation'as

P(I+1)=P(I)=(No. of births)-(No. of deaths)+(No. of Immigrants)

(No. of Emmigrants)+(No. seeded)-(No. harvested) where the

quantities in parentheses are measured per period. Now make

up your own hypothesis about each of the quantities.

12. In a certain habitat a herd of 1000 grazing animals has been

in lopg term existence. The herd is suddenly transferred to

a new grazing area which has a different type of feed grass.

It is observed that the weekly change in the herd population

is proportional to the amount of new grass in,excess of 500

hales. In turn, the weekly change in the amount of new grass

;ecreases in proportion to the number of animals greater than

the steady state population of 1000 animals. The initial-

amount of feed grass available in the new grazing area is 750

bales. With the aid of a computer program and constants of

proportionality that you select, describe the time c.volution

of both the herd population and the amount of new grass - using

a time period of one week.

13. A microbial population is growing in a culture and it is observed

that the population increases 30% every 3 hours. Using a time

period of one hour, what is the population at the end of the

12th hour, the 18th hour, and at the end of the day, if the

initial population is 1000?

14. For the first five weeks, an insect colony is observed to

increase 25% per week whereas for all succeeding weeks the

population decreases 5% each week. Assuming a one week time

increment, how many weeks must elapse before the pe2ulation

vanishes if the initial population is 500? 5000?

15. A culture is growing at the rate of 30% per hour. How long will

it take for the population to double? To increase by ten fold?

By 100 fold? Use one minute time increments.
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16. Two bacteria populations, A and B, exist in isolation from each

other: Type A bacteria is growing at the rate of 5% per day and

type B is growing at the rate of 20% per week. If the respective

initial sizes aae 10 ancl 1000 and a tine increment of one day is used, asmsaing

both populations stAart graging on the same day, hme long will it be until
(a) The sum of the two.populations is 100,000?

(b) Both populations ar equal?

(c) Type B population is twice the size of the type A population?

(d) Type A population is twice the size of the t4rpe B,population?

17. The initial population of a .group of insects is i,boo and the pop-

ulation at the end of the first generation is 12.O.

(a) If the increase in the population each generation is SO%

of the increases in population of the preceding genez:atiOn,

what is the population after 20 generations? After 50

generations?

(b) Using the hypotheses of part (a), after how many generations

will the population be 45 times the initial population?

(c) Using the hypotheses of part (a) and assuming that there is

an emigration of 100 insects each generation, beginning

with the 2nd generation, after how many generations will

the population be 50 times the priginal population?

18. A yeast culture is growing in such a manner that, aftea7 em:711 hour, the

culture increases by an amount equal to 25% of its present size. If

the initial culture size is 10 and a time increment cf one hour is used,

(a) How many hours before the culture size is 5000?

(b) How many hours before the culture size is 25 times the

culture size at 15 hours?

19. For I=5 write out the sequence of expressions for T(J) that

is generated by the program listed on page 1.17.
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CHAPTER II

THE ASSOCIATION OF TWO SPEC/ES

Independent Growth

The previous chapter considered the development of simple compu-

ter models for the simulation of the growth of a single or isolated

species. In this chapter, the effect of introducing a second species

will be examined. The technique to include the effects of another

species will parallel the technique used to develop the models ex-

hibited in the first chapter. In that chapter the simplest assump-

tions were made and a model devised and a' computer program written.

The construction of more realistic models was accomplished by syste-

matically removing or modifying some or all of the original simple

or restrictive hypotheses. This resulted in a sequence of more and

more complicated computer programs. In this chapter, the same pro-

cedure will be followed. Consequently, it will be first assumed that

such effects as contamination, finite or fixed food supply, etc. We
not present. Thus, only the effect of the association of two species

in the presence octhe same food supply will be considered. Initially,

it will be assumed that for all times in the growth period of both

species that there is sufficient food for each specie and furthermore,

that neither species is a food supply for the other. These hypotheses

thus imply that each species will grow independently of the other.

This suggests that only simple alterations of the first program should

be necessary in order that the program may be used to describe the

resultant growth of two species. These alterations are most readily

accomplished by introducing the foll(Iwing rather self evident notation.

Let:

P1 denote the population of the first species,

81 and M1 denote the coefficients of natality and

mortality respectively of the first species,

P2, B2 and M2 denote the corresponding variables for

the second species.

The student should note that these variables do not have the same

meaning as they had in the first Chapter.
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An examination of the program, page 1.6, reveals that line 40

should be modified to read

40 LET Pl(I+1)=P1(I)+Gl*Pl(T)

and an additional line line 45, should be inserted

45 LET P2(I+1)=P2(I)+G2*P2(I).

At.

In addition, the notation G1=131-M1 and G2=B2-M2 has been introduced.

Of course, lines 20, 25 and 70 must also be altered. The completed

program then appears as

1 REM POPULATION GROWTH MODEL. TWO SPECIES.

10 DIMENSION P1(50), P2(50)

20 INPUT Bl, B2, Ml, N2, P1(0), P2(0)

25 LET G1=B1-M1: LET G2=112-M2

30 FOR I-0 TO 49

40 LET P1 (I+1)=P1(I)+G1*P1(I)

45 LET P2(I+1)=P2(I)+G2*P2(I)

50 NEXT I

60 FOR I=0 TO 49

70 PRINT I, Pl(I), P2(I)

80 NEXT

Since lines 40 and 45 are yncoupled, i.e. each does not mntain

any terms present in the other, the results of running this program

will be the same as those obtained from the Malthus model. This pro-

gram together with its development has been presented because it will

serve as.a basis of developing the programs to be described in the

following sections.

fect of Fixed or Finite Resources

We now wish to consider the case of two populations competing for

the same limited resource; for example, food supply.

In order that we may construct a model for the two populations,

the previous equations will be modified to include the assumption

66
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that the food supply is of limited extent and that neither population

is food for the other. The program alterations necessary to accommo-

date this assumption are very similar to those made when the effect' of

a finite food supply upon only a sinObe Species was considered. The

student with a short memory is urged to reread that section.

In order that the student may better understand the derivation

of the program alterations, an alternative development of the corre-

sponding alteration of the single specie program will be presented.

To arrive at the alteration described on page 1.10, we could have

argued' or 'reasoned' in the following manner. Certainly, as the

population increases, the available food decreases and the magnitude

of the decrease in food in one time period should be proportional to

the population present in this time period. Thus, the net decrease of

food in the I
th time period is R*P(I) where R is a constant of

proportionality and is positive. This net decrease in food supply

in a given time period should reduce the proportion B, of births and

increase the proportion M, of deaths in the same time period. This

assumes that the time interval in generation periods is sufE4 !le

long so that the change in food supply manifests itself in the same

period. The magnitude of the reduction of B will be assumed to be

proportional to this decrease in food supply. Thus, the net decrease

in B in a given time period may be written as Q*E*P(I) where Q

is a new constant or proportionality and is also positive. If the

notation BI=Q*R is introduced therlbthe net proportion of births in

the time period is given by B-B1*P(I). This is the term that was

previously developed. In an analogous manner one may obtain the altera-

tion to the net proportion of deaths. The previous discussion can

now be used as a basis for developing the necessary alterations of

our program to describe the zLorth of two species competing for a

limited or fixed food supply. The student will note that in the pro-

cess of developing the necessary alterations to the program, that a new

notation will be introduced. He should not be confused by this intro-

duction and should learn to a.cept such a procedure as a matter of rou-

tine. 0: course, it is asLumed that the notation that is introduced

is self explanatory or quite obvious in the meaning it is intended to

convey. The integers 1 and 2 following the letters will usually

refer to the first and second species respectively.

67
2.3



The amount of food consumed by each species in a time period is

Rl*P1(I) and R2*P2(I)

respectively where R1 and R2 are constants of proportionality and

'are positive. The amount of food T(I), consumed by both species in

a time period is then

R1*P1(I)+R2*P2(I)

and the assumed net decrease in the proportion of births 'of the first

species in the time period is proportional to this and equal to

Ql*T(I).

Here Q1 the constant of proportionality relating the decrease in

food supply to the decrease in proportion of births. Hence, the

proportion of births of the first species in one generation is

Bl-Q1*T(I).

ap
In a similar manner the proportion of births of the second species

given by

B2-Q2*T(I)

and Q2 is a constant of proportionality. Both Q1 and 02 are

positive and very much smaller than 111 and B2 respectively.

By using analogous reasoning, it can be seen that the proportion

of deaths of each species for the same time period is given by

a nd

Ml+Sl*T(I)

M2+S2*T(I)
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.resp'Tctively. The constants S1 and S2 are the constants of pro-

portionality relating the change in food supply in the time period to

the increase in the proportion of death'szin the time period. They are'

positive and very much smaller than Ml. and M2. If the student

"works out on his own" the derition of the lasetwo expressions,

he will assure himself of a good grasp of the result.

With the aid of these results, the necessary alterations to the

previous program may now.be made to include the effect of a finite

environment. Line 40 of page' 2.2 should thus be modified to read:

40 LET Pl(I+1)=Pl(I)(B1-Q1*T(I))*P1(I)-(Ml+Sl*T(I))*P1(I).

If the notation

G1 = Bl-M1 and Tl = Ql+S1

is introduced the previous line may be written as

40 LET Pl(7.-l)=Pl(I)+(G1-Tl*T(I))*Pl(I).

'The analogous equation expressing the growth law of the second specie

P2 is r

where

45 LET P2(I+1)=P2(I)+(G2-T2*T(I))*P2(I)

G2 = B2-M2 and A T2 = Q2+82.

In addition a new line, call it 38, must be introduced to

calculate T(I) the amount by which the food supply decreases in the

I
th period. Thus,

38 LET T(I) = Rl*Pl(I)+R2*P2(I).

Equations 40 and 45 are a pair of coupled equations and

hence the task of evaluating their accuracy in describing the growth
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of the two species by making several runs and examining each run is

not trivial and could certainly.beojtime consuming and expensive.of

computer time. We are thus faced with two problems which will occur

again 'and again in' our work. The first is the assessment of the va-

lidity of our BASIC equationp in describing the phenomena under inves-

tigation. The secon0 problem 'is the checking out or debugging of the

computer program. It should be noted that these two problems are

usually closely rela.ted And 'difficult to separate. In What follows,

we shall'try to indieate some procedures and techniques useful for

deterthining the validity of the model and the program.' Of course,'

the principle or. most significant assessment of the accur!icy of the

program as well as the validity of the model is the degree of agree-
. 4

ment between the computational results and the empirical data. Con-

sequently most of our discussions 'concerning validation will be con-

cerned with checking the program. A technique that is frequently 4

used to asist in the validation of the accuracy of the progiam,

(commonly called debugging) consists in examining the basic equations

in order to obtain results which can then be used to chebk the actual

numerical results. Such an examination can have several different forms

One of the simplest of these forms consists'in specifying certain

values of the parameters in order to obtain known results. For example,

-Ippose that in line 40, /31 is set equal to M1 and Ql is set

equal to the negative of 1. Hence G1=0 and 'T1=0 and so for all

I, Pl(I+1)=Pl(I); i.e. the firSt population remains constant. Thus,

when the constants 1311, Ml, Ql, and Sl ate chosen in the af6ie-

mentioned manner, and the program is run, Tjilues of the first

population should not change. Similar remarks btain for the appro-

priate constants and the second population. 'The student should be

able to work out for himself how to choose all of the constants of

proportionaliLy in order to insure that both populations change at

th,? same rate, i.e. P1(I)=P2(I) for all I. (This does not.niean

tt!at the populations remain constant).

We again point out to the student that the simplified form of

equations 40 and 4.5 is not absolutely essential to the operation

of the program. The simplification is done to save computational

effort,and hence computer cost. The simplified form is usually easier

to examine and program accurately. On the othel hand, it is frequently
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the case that modific tions of the model, and hence of the program,

are more readily carried out when the equations appear in theixy1g

form. Consequently, when a.model is being developed and assessed,

the long form is usually the most accessible form to work with. In

addition,1: most of the programs that *are developed in this text are

shorPland do not requize significant amounts of computer time to

execute. Hence for this program, the omission of the simplification

of the equations is not so essential. However, for sophisticated and

complex models that result in computvr programs that are long running

and frequently used, such simplification can achieve considerable

savings in computational cost.

.Now both equations 40 and 45 are simple,in appeavance; how-

ever, these equations still contain a great deal of inforTation which

is of assistance in checking the program. To obtain this information

we will employ a technique which forms the basis of much of the

1.arely mathematical and theoretical research in the physical and

engineering sciences. It is usually always the case in these sci-

ences that the equations describing the phenomena under investigation

are too difficult to solve. Consequently, the engineer or scientist

must frequently be satisfied with only partial answers to questions

whose relevance may be indirect. In attempting to formulate.such

questions, the physical scientist will often alter the basic equa-

tions by rewriting them in different forms and, if possible, then

interpret the resulting forms in terms of the original phenomena.

This process will sometimes suggest "useful" and "allied" questions

whose answers may more readily be obtained. It is in this manner

or spirit that we now proceed.

The student will recall that the expressions

Pl(I+1)-Pl(I) and P2(I+1)-P2(I)

arp the changes in the populations in a given time period; that is,

they are the rates of change of the populations. It is perhaps sug-

gst'ive to examine the expressions for each of these rates of change.

The expressions are respectively:

(G1-T1*T(I))*P1(I)
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and

(G2-T2*T(I))*P2(I).

Since T(I) = R1*P1(I)+R2*1-2(I) and both R1 and R2 are positive,

it is evident that as both populations increase so also will T(I)

increase. Furthermore, in the unlikely event that the populations

Pl(T) and P2(I) were such that both of the equations

G1 = Tl*T(I) and G2 = T2*T(I)

were simultaneously sat',.sfied, the populations would remain constant.

An alternative way of expressing this fact is to note that if both

of the ratios Gl/T1 and G2/T2 simultaneously equaled T(I) for

some value of Pl(I) and P2(I) respectively, then the populations

would remain unchanged. We have thus shown that therre could exist

values of Pl(I) and P2(I), called critical values, such that the

populations would remain constant.

The student should note that it is not the case that if Gl/T1=G2/T

elat there will necessarily exist populations Pl(I) and P2(I) such

that G1=T1*P1(I) and simultaneously that G2=T2*P2(I). It is always

the case, however, that if both populations remain unchanged that the

,tc;rementioned two equations hold.

Problem

Show that if both populations are constant that the two

populations are related by

P2(I) = Rl*P1(I)) /R2
T2

= R1*P1(I) /R2
Tl

Using mathematical techniques from the theory of differential

equations Volterra was able to further show that if Gl/T1 was greater

than G2/T2 then the second populationvould approach zero, that is
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P2(I) would die out. In this case, he was also able to show that

the first-population, Pl(I), would approach the value G1/(Tl*Rl).

We now show how an examination of the expressions for the dif-

ferences in populations at successive time intervals can reveal how

Volterra's conclusions may be obtained. These expressions may be

written in the alternate forma

and

T1*(G1/T1 T(I))*P1(I) (a)

T2*(G2/T2 T(I))*P2(I). (b)

Now, if Gl/T1 is greater than G2/T2, then the quantity

Gl/T1-T(I) is greater than the quantity G2/T2-T(I) and hence the

change in the first population is greater than the change in the

second population. Since T(I) increases as 'PIM and P2(I)

increase, and the quantities GI/T1 and G2/T2 are constant, it

is evident that there will be populations Pl(I) and P2(I) such

that G2/T2-T(I) is negative and that GI/T1-T(I) is positive.

For example, suppose that both populations are such that G2/T2>T(I)

and Gl/T1>T(I). In this event both populations wobld increase and

consequently T(1) would also increase. This increase of both pop-

ulations would continue until ,T(I) became greater than G2/T2, at

which point the change in the second population would become negative,

i.e. P2(I) would begi.1 to decrease. 'Because Gl/T1 i.s greater

than T(I), the first population would continue to increase while

the second population continued to decrease until it became zero.

When P2(I)=0, it will remain so and theivalue of T(I) Will

he R1*P1(1). It is also evident that when P2(I)=0 there can be

no further change in Pl(I) since an increase in Pl(I) -would re-

sult in a negative population for the second species. Now, the change

in the population Pl(I), expression (a) abcATrr can be written in

the form

T1*(G1/T1 R1*P1(I))*P1(I).
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Since there is no change in the first population, an examination of

this quantity shows that

or

Gl/T1 Rl*P1(I)

Pl(I)*= G1/(T1*R1)

which is Volterra's result.

Despite the simplicity of the aforementioned model which describes

the association of two species which compete for the same resource

(in_this case we assumed that the resource was food supply whereas

any resource required by both species could hftve been chosen), the

results predicted by the model are verifiedsin nature. Thus, in nature

it is rarely found that two closely related species simultaneously

exist in the same biotype or locale. This is because one species

survives and the other dies out. This is predicted by our model and

whichever species lives or dies is dependent upon itA natural growth

,rate and upon the amount of the resource it requires. A possible

form of this dependency is given in the form outlined above. A more

detailed discussion of species competition is giVen in Emlen (1973).

one Species.Feeds Upon the Other,

The previous section investigated the relation existing between

two species each of which competed for the same resource. It is natural

to attempt to devflop a moilel describing the association between two

species wherein oAe speCie subsists upon the other specie. In order

to develop such a mode], it will be assumed that the food source for

the first species is abundant and is not affected by the presence of

the second or predator species. will also be assumed that the

second species feeds 9xclusive1y upon the first.

In order to obta,n some 'feel' or 'intuition' about the construc-

tion of an appropriate model, it is instxuctive to review the developnent correspond-

ing to two speciAs which are living in isolation frau eadh other aomrdam; to the

Malthim; model. The equation describing the grorArtih of the first species is:

40. LET Pl(I+1).=P1(I )+(111-M1)*P1(I)

2.10
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where Bl and Ml are the coefficients of natality and mortality

respectively for the first species. Since food is abundant for the

first species the growth coefficient, G1 = 81 - Ml, is positive.

A similar equation describes the growth of the second species

and is

45 ArP2(I+1) = P2(I)+(B2-M2)*P2(I)

where 32 and 142 are theecorresponding proportion of births and

deaths. Ijpwever1 since the species are living in isolation from one

another áa the first species is the only food supply'for the second

species, the coefficient of mortality 142 for P2(I), Must be 41444611

greater than the coefficient of natality B2. Thus, the growth co-

efficient, G2 = B2 - 142, is negative and the second population

will perish. The population curves for P2(I) will resemble those

given.in figure 1.1b, page 1.7. On the other hand, since the

supply is assumed to be abundant and the-environment advantageous,

for Pl, 31 will be greater than M1 and hence, G1 will be positive

and the first population will thus increase indefinitely.

We now return to an examination of the interesting case wherein
A

the two species are not in isolation.from one another, but rather are

existing in the same habitat. This is called the predator-prey problem.

Consider the effect of such an association on the first, or prey, pop-

ulation Pl. The fact that the first species is the exclusive food

supply of the second may be reflected in our model by altering the

natality and mortality rate of the first species in proportion to

the number of the second species. Hence, it will be assumed that in

a given time period, the actual or net increase in the proportion of

deaths of the first species will be proportional to the population of

the second species and that this increase is given by +D1*P2(I)

where Dl is the constant of proportionality. Similarly, the net

decrease in proportion of births in a time period will be given by

-Nl*P2(I) where N1 is the corresponding constant of proportionality.

In a similar manner, it is reasonable to assume that in a time period,

the changes in the proportion of births and in the proportion of deaths

2.11
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in the decond or predator population should be proportional to the

number of the first species. Thus, the terms N2*71(I) and

-D2*Pl(I) will represent the respective increase in birth rate

,and decrease in death, rate of the second species in a time period.

The constants -N1, N2, Dl and D2 are all positive and very small

compared to G1 and G2. To accommodate these changes, lines 40 and

45 of the previous program are modified to read

and

or

and

40 LET P1(I+1)=P1(I)+((Bl-All*P2(I)-(M1+D1*P2(I))).*ill(I)-

45 LET P2 (I+1)=P2 032+N2*Pl (M2-D1*1)1 (1) ) ) *P2 (I)

40 LET P1(I+1)=P1(I)+(G1-(N1+D1)*P2(I))*P1(I)

45 LET P2(I+1)=P2(I)+(G2+(N2+D2)*P1(I))*P2(T)

By introducing the notations, Fl = N1+1,1 and F2 = N2+D2 these

equations are more conveniently written as

and

40 LET P1(I+1) = Pl(I)+(GI-Fl*P2(I))*P1(I)

45 LET P2(I+1) (G2+F2*P1(I))*P2(I).

It must be recalled that since the prey is the .sole available food

slipply for the predator in the environment, G2 is negative, and that

G1,4= BI-M1 and G2 = B2-M2.

2.12
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This model is commonly called the Lotka-Volterra model of prey-

predator interaction. The next section discusses a second model

of prey-predator interaction called the Leslie model which results

from imposing the effect of a finite environment upon the prey

population.

The listing of the totka-Volterea model program is given in

figure 2.1. LineS 42 and 47 have been inserted to halt the

calculation whenever either population becomes extinct. The

heart of the progr'am is contained in statements 35 to %60.
4T

The remaining statements provide for storage, input, printing

and output.

Since the quantity Fl*P2(I) increases or decreases as P2(I)

increases or decreases, the constant Fl is a measure of the effec-.

tiveness with which the first species defends itself from the predator

species P2(I), and hence Fl is called the defense coefficient. If ,

the defense coefficient is very small, the predator population must

become quite large before the net growth rate of the prey is signi-

ficantly decreaied. Conversely, if the defense coefficient is large,

a small increase in the predator population will result in a large

decrease in the net growth rate. For analogous reasons, F2 is

called the voracity or offense coefficient. These coefficients are

such that if the prey, P1(I) improves his defensive mechanism both

2.12a



1 REM TWO SPECIES PREY-PREDATOR MODEL
10 DIM P1(1.00),P2(100)
20 PRINT "TYPE Gi, G2, Fip F2, Pi<0.), P2(0)"
21 PRINT "REMEMBER, 02 MUST BE NEGATIVE"
22 PRINT
24 INPUT 02,62,Fl,F2,P1(0),P2(0)
25 PRINT
20 PRINT "TYPE NO. OF TIME PERIODS TO RUN"
32 PRINT
24 INPUT N
35 FOR I=0 TO N
40 LET Pi(I44)=PitI)4.(Gi-Fi*P2(I))*Pi(I).
42 IF Pi(I+1)<OGO TO 90
45 LET 122(I+1)=P2(I)+(G2+F2*Pi(I))*P2(I)
47 IF P2C;41.)<0GO TO 100
60 NEXT I\
62 PRINT
63 PRINT
65 PRINT "TIME PERIOD, PREY POP., PREDATOR POP."
66 PRINT
70 FOR I=0 TO N
75 PRINT I,P1(I)1P2(I)
80 NEXT I
85 GO TO 200
90 PRINT "THE PREY\POPULATION BECAME NEGATIVE"
92 GO TO 200
100 PRINT "THE PREDATOR POPULATION BECAME NEGATIVE"
105 GO TO 200
200 END

READY

Lotka-Volteri.a. Model

Figure 2.1

2.13
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coefficients will decrease whereas if the predator, P2(I) improves

his predatory capability both coefficients will increase: In order to

obtain a quantitative feeling for these statements, suppose that the

magnitude of the growth coefficient G1 is 0.5, the magnitude of

Fl is 0.001 and that the predator population P2(I) is 100.

Hence, the n2vt or modified growth rate, Gl-Fl*P2(I)1 is 0.4. Now

if the predator population is doubled, the modified growth rate e-

comes 0.3 and the net growth rate is decreased by 25%. if however,

the magnitude of Fl is 0.002, then the net growth rates corre-

sponding to predator populations of 100 and 200 respectively are

0.3 and 0.1. Thus, doubling the defense coefficient results in a

reduction of 67% in the net growth rate when the population of the

predator is doubled.

Problem

Carry out a similar numerical analysis for the voracity

coefficient.

The student is urged to make several runs with the prey-predator

program each time using a different set of paraMeter values. The time

history of both Pl(I) and P2(I) should be recorded. It will be

seen that the predator as well as the prey population increases and

then decreases and that this behavior is repeaedi Vol.terra, by using

sophisticated mathematical techniques, . was able to give a rather com- /

\ kplete qualitative discussion of this. oscillatory or eriodic motion.

There is a very extensive literature devoted to the m thematical anal

L

-

ysis of suc motions. I

i

i

As in the previous section, it is helpful to analyze.the governing

equations to ascertain possible or probable results that may be of

assistance in assessing the validity of the computer results. This

will be done by examining the respective changes in the populations

in a given time period. They are

and

(Cl-F1*P2(I))*Pl(I)

(-G3+F2*Pl(I))*P2(I)
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where for convenience in the analysis, the notational substitution

G2 = -03 has been made. This change in notation implies that G3

is positive and seryes to emphasize the fact that 1n the absence of

the prey population the growth coefficient of the predator population

is negative. An examination of these.two quantities reveals that if

Pl(I) and P2(I) were ever such that

P2(I) = Gl/F1

and simultaneously

Pl(I) = G3/F2,

then the populations would remain unchanglsince there would be no

'changes in either the prey or the predator populations. Furthermore,

if the respective changes in the populations in a given time periQd

are written in the form

and

F1*(Gl/F1-P2(I))*P1(I)

F2*(-G3/F2+Pl(I))*P2(I)

a

it is easier to perceive why periodic motion is to be expected.

.These expressions can also be used to show that neither change

in population can indefinitely increase nor indefinitely decrease.

Such behavi.or can be .scertained by noting that if, for example, the

prey population were to increase indefinitely, the quantity

-G3/F2+Pl(I)-

would eventually become positive and hence the predator population

.,,uuld begin to increase. A continual increase in the predator pop-

ulation would result in the quantity

Gl/F1-P2(I)

becoming negative. Since Gl/Fl-P2(I) is directly proportional to



the change in 'the prey population in a time period, the change in

the prey population would then becOme negative; thus causing the

prey population to decrease. A similar discussean b mad6 to

show the impossibility of an indefinite decrease of either popula-

tion. Therefore, the populations must oscillate as time increases.

This discussion is quite heuristic in nature and most certainly does

not constitute a rigorous pr6of. However, the discussion does show

how a simple analysis can.yield useful qualitative results. .The

computer program should confirm such behavior.

In the following assignment, the student is pot expected,to

derive or obtain BASIC programming language expressions for the an-
.

.swers to the questiOns. If tie can obtain such expressiions of,if he

is familiar enough with mathematics to do so, so much the better. .

The student is being asked to alter the pertinent constants, make

the necessary or sufficient number of computer runs with the altered

constants, and to then examillEethe numerical results to determine

the magnitude of the change frhthe quantity of interest resulting from

a prescribed change in magnitude of a particular constant. By doing

this, it is intended that the student gain insight and,intuition about

the model and the phenomena. The determination of thekchange in one

variable, or a set of variables, due to a change in another variable

is a-very fruitful way to obtain insight. Even though it may require

sevefal computer runs and much.computing, the trdMendcus calculational

speed of the computer usually enables such a etermination to be

readily made.

16
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using the prey-predator model

.'W140041#04, er".

I.4t (a) Choose an appropriate set of constants and initial

conditions and construct and run the program.

(b) Graphically display the results to confirm the con-

clusions stated above.

(c) Vary some of the parameters and/or initial populations

and discuss the differences in the results.

The period is the length of time necessary f r the

populations to repeat themselves.

By varying some or all of the constants, can you

determine how the period depends upon the parameters?

(e) How do the maximum and minimum populations depend upon

the parameters?

2. (a) Modify your program,to include the ability to harvest

either the prey or the predator.

(b) State the hypothesis usedvin obtaining the expressions

for the harvesting.

(c) By varying the amount of harvest, can you control the

Population of the pr6y, the predator, or both, in a

prescribed way? This is a problem which concerns

wildlife or game managers.

3. (a) Let the magnitl4de of the prey population be the abscissa'

and the magnitu e of the'predator population be the

ordinate and pl t the time evolution of the populations..

What do you obs rve? .Such a plot is, frequently called

a phase-plane plot and is very helpful in analyzing

periodic or near periodic motions.

0 indicatessdifficult problems
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A Leslie Type Model

By altering the hypotheses, Leslie obtained a different

set of equations describing the interaction of a prey and a

predator population. The Leslie model is derived by first

assuming that the prey population exists in a finite environ-

tment and that, therefore, the natural'growth of the prey must be

moderated by the limited resources of the finite environment.

Thus, the fundamental growth equation for the prey,' in the

absence of a predator population, is

40 Pl(I+1) = P(I)+(G1-t3*P1(I))*P1(I)

where G1 a...A G3 are th natural and the auxiliary growth

coefficients, respectively. The effect of the predator on the

prey population was imposed by Leslie in a manner analogous to

that used by Lotka and Volterra. Hence, the funda.nental equation

for the prci population is altered to read

40 1,6 Pl(I+li Pl(I )+(G1-G3*P1(I)-F1*P2(1))*P1(I).

Here Fl is a constant of proportionJlity relating tae number of

predators to the pr.oportion-of.prey taken by the predators in a

time interval. This equation is identical in form tLi he equation

labeled line 40 on page 2.5 To verify this asser pn, Ihe student

should.substitute line 38 on page 2.5 into line 4C on page 2.5 and

rearrange the terms. The fact'that.these equations have the same

form is a result of the extreme generality and lack of specificity

of the analysis. Mosst quantitative models of bio-science phenomena

suffer from being gross generalizations of what is actually occur-

ring. The proper integration of all the interacting phenomena,

even assuming that the interactions were known, is a near insuI-

mountable task. Consequently, extreme simplifications and genera-

lizations are made and this can rpsult in the derivation of the same

form-of a model from two divergent sets of assumptions.
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To account for the-effect of the prey population on the

growth of the predator population, Leslie proceeded in the follow-

ing way. He reasoned that if there were many predatAus for each

prey, i.e. the ratio P2(I)/P1(I) was large, then the scarcity

of food would result in a decreased birth rate and an inCreased

mortality rate for the predator population. Conversely, if

P2(I)/P1(I) was much less than one, the consequent abundance of

prey relative to the number of predators, should result in an

increase in the birth rate and a decrease in the mortality rite

of the predator popUlation.

The simplest alteration of the predatOr birth rate to

accommodate the preceding assumption is obtained by subtracting

from the natural birth rate B2, a term which-is proportional

to the ratio of the two populations. ThUse.the birth rate of

the predator may be written as

B2 - Rl*P2(I)/P1(II.

Similarly, Ow natural mortality rate, M2, is altered to read

M2+R2*P2(I)/P1(I).

in these two expressions, R1 and R2 are the constants of propor-

tionality. In terms of these new birth and mortality rates, line

45 may now be written as

45 LET P2(I+1)=P2(I)+(B2-R1*P2(I)/P1(I))*P2(I)

-(M2+R2*P2(I)/P1(I))*P2(I).

with the aid of the notation

R3 = R1 + R2

2.17b



this,equation may finally be written as

45 LET P2(144)=P2(1)(G2-R3*P2(I)/P1(I))*P2(I).

The alteration of the program shown in figure 2.1 to

acc odate the Leslie form of the equations is readily accom-

Nplish O since only lines 40 and'45 need to be changed in the

manner indicated immediately above. Provision must also be

made to enter the constants G3 and R3 into the program.

The behavio f the populations as described by the Lotka-

Volterra mode Was characterized by a sequence of oscillations

whose amplit/des increased in time. In contrast, both popula-

tions in the Leslie model tend to reach an equilibrium after a

series of damped oscillations. Such behavior more nearly approxi-

mates prey.and predator populations living in consort with one

$another.
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Effect of'Emigration

There are several possibie causes of emigration from a population

and an accounting of all of these causes together with their indliced

emigrations is a difficult task. Intuitively, it seems reasonable

to assume that a principle cause of emigration is Orowding and that

the degree of crowding should directly affect the ate of emigration.

The degree of crowding, or population density, is measured in the num-

ber of animals per unit area. For ease of treatment, it will be assumed

that the area in which the competing populations exist is constant,

that is, it does not change from time period to time period. It is
-

convenient to take the magnitude of this area as unity since the mag-

nitudes,94 the prey and, predator populations and the respective popu-

lation densities are then numerically equal. Because it is reasonable

,.to assume that increaSing,croyding results in increasing emigratiOn it

will be assumed that the number of animals leaving a population in

any time period will be proportional to the number of animals in the

population during that time period. Hence, the number of emigrants of

the prey and predator populations may be denoted by L1*P1(I) and

L2*P2(l) respectively, where Ll and L2 are constants of propor-

tionality. The accountiWg of emigration is then readily inCluded in

the program by altering lines 40 and 45, ,page 2.12 to read'

v

40 LET P1(I+1) = P1(I)+(G1-Fl*P2(i))*P1(I)-Ll*P1(I)

and

45 LET P2(I+1) = P2(I)(G2-F2*P1(I))*P2(I)-L2*P2(I).

These equations may be simplified by introducing the notation G4=G1-11

and G5=G2-L2 and recom,bining terms to give

ild

40 LET P1(I+1) = PI(I)+(G47F1*P2(I))*P1(I.)

45 LET P2(I+1) = P2(I)+(G5-F2*P1(I))*P2(I

A comparison of these equations with,those given on page 2.12, reveals

that the struci:ure of the sets of equations is identical and thus ttfe

two models are actually the same and differ only in the magnitude of

the growth coefficients. CI6
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The emigration model that we have developed assumes a continual

emigration no matter how dense or sparse the actual populatio

is more realistic to assume that there exist pre and predator popu-

lations below which there will not be an emigration but rather there

will exist an immigration, i.e. an influx' of prey or predators.

.) The magnitudes of these critical populations would have to be obtained

from experiment or qbeivation. We will denote them by P3 and P4

, respectively.

Now the number of animals entering or leaving the area in a time

period should be proportional to the magnitude of the difference be-

tween the present population and the critidal population. Let L3

and L4 be the constants of proportionality for the prey and predator

populations respectively. Then, in a single time period, the nUmber

of prey entering or leaving the area is

-L3*(P1(I) - P3)

and the number of predators emigrating or immigrating is

-L4*(P2(I) - 1,4),

The fundamental equations become

40 LET P1(I+1) = Pl(I)+(a-F1*P2(I))*Pl(i)-1,3*(P1(I)-P3)

and

45 LET P2(I+1) = P2(I)+(G2-F2*P1(I))*P2(I)-L4*(P2(I)-P4).

These equations, may be simplified to

40 LET Pi.(I+1) =" P1(I)+(G4-Fl*P2(I))*P1(I)+L5

and

45 LET P2(I+1) = P2(I)+(G5-F2*P1(I))*P2(I)+L6

where L5 = L3*P3 and L6 = L4*P4.

We again remind the student that the growth coefficient fOr the

preda'tor, G2, is negative.

7
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Programming Assignment

,t

1. (a) Write or modify a previous program to include the effect

of immigration or emigration.

-(b) Choose an appropriate set alf parameters and initial'

valuel and run the program. Compare the results with

those obtR:ined from the prey-predator Isodel.

(c) Do there exist any pre and/or predator populations which

If remain unchanged?

(d) Discuss how the results obtained in part (b) may have

been anticipated by an analysis of the fundamental

equations. (HINT: The discussion should be similar

to that given on pages 2.14 and 2.15 for the prey-

predator case).

Environmental ToxiCity

The effect of the catabolic a ts produced by a population grow-

ing in a confined environment with a limited resource was considered

in the first chapter. A review of that work should prove advantageous

in understanding the development.which is to follow. In that work,

.4 was assumed that ..t,4e amount of contaminant created in a time period

was proportionad to the existing population in that pmriCd. This ammmiptimm will

also be made-trr-the multipopulation model and thus the amounts of created

th
in the p.eriod by the first and second poixilatims respIctilmay, Sl*P1(j) and

S2*P2(J) where O<J<I and S1 and S2 are the corresponding

constants of proportionality.

Just as in the single population contamination model, the effect

of the toxicity created by both the first and second populations will

be to decrease the birth rate and to increase the mortality rate of

each population. The tout' toxicity at the beginning of the Ith period, arehted

each population, will he denoted by Tl(I) and T2(I) respeaively.

The toxicity of the amourit of contaminant areated by the first popu-

lation during the Jth time period will be assumed to bg.

D1(I-J)*Sl*P1(J). Similarly, D2(I-J)*S2*P2(J) will repeesent'the

toxicity created by the amount of contamination deposited by thR

th

11.

second population in the J time period. Thus, the total toxicities

are given by
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120 LET Tl(I) .SIC 0

130 LET T2(1) = 0-

140 FOR J 0 TO I-1

150 LET T1(44_ ,= T1(I)+91(I-J)*S1*P1(J)

160 LET T2(I) = T2(.I)+D2(I-J)*S2*132(J)

170 NEXT J

The statement numberS only serve to indicate the order of the

statements and do not refer to their place in any particular program.

The effect of Tl(I) anti T2(I) is to adversely altxm the birth and martality-

rates. In order to more easily account for this effect, it is conmeniemt to

introdWice the following rotation. Let B (K,L) andl M(cia) denote the macinittrie of

the modification of the birth rate and the mortality rate respectively

of the K
th species due to the cumulative toxicity o2 the contami-

.

nant deposited by the Lth species. Thus, we can write

8(1,1)=Y1*T1(I)

8(1,2)=Y2*T2(I)

B(2,1)=13*T1(I).

8(2,2)=Y4*T2(I)

where Yl, Y2, Y3 and Y4 are constants of proportionality relating

the deleterious effect of the contaminant toxicity to the birth rate.

Similar equations can be written for the adverse effecr on the mortality

rate.. They are

M(1,1)=Z1*T1(I) M(2,1)=Z3*T1(I)

M(112)=ZrT2(I) M(2,2)=24*T2(I)

where Zl, Z2, Z3 and Z4 are the constants of proportionality.

-These modifications in the birth and mottality rates of each species

are incorporated into the fundamental equations in a manner entirely

analogous to that used'ih including the contamination effect in a

single population. For ease of writing the equations, we do not in-

clude emigration nor immigration nor do we include the effects of a

finite food supply. The fundamental equations for each population

now become



ftta

40 LET Pl(I+l)--41(I)4.(Gl-Fl*P2(I))*Pl(I)-(B(l,l)+B(1,2)+M(1,

M(l,2))*Pl(I)

and

) 4-

45 LET P2(I+l)=P2(I)4.(G2iF2*PI(I))*P2(I )_(B(2,l)14-B(2,2)+M(2,l)+

M(2,2))*P2(I).

is important to note that in these equations, the variables

R(K,L) and M(K,L) are sums and depend on I, the present time

L.)riod, and thus are different for every time period. Consequently,

tl:e sums mu.;t be recalculated every time period and hence it is seen

1-har; the retarded time effect manifets itself in a considerable in-

,..rcase in computing effort. If powever, the effect of the contami-
'.

independent of its agc or time of existence, then the time

variables Dl(T-J, and D2 i 1-J) are constant. In this event, the sums do not

to be campietcly ri.,calculated each period; they merely have to be augtented by

z:C]lition of a single term. Thi.,] term is the amount of contamination created

th,2 present time period.

The irst, difficult part of developing a useful computer program is the.obtaining

the time delay.perameters and tho constants of ixoportionality. Each cf these

..1,arptPrs is a function of the rettrded time (I-J), and the determination of this

relation or dependence is a difficult experimental task.

We do not continue the discussion of the computer model for the

-ffect of environmental toxicity on the multipopulation because of

t.;r7, aforementioned difficulty of obtaining realistic data. The pre,-

ceding development is an example of the fact that it is quite easy to

nntruct a very elaborate hypothesis and to then develop a computer

;..,--;ram whose usefulness is questionable or difficult. This observa-

tion is made to ,mp-ess upon the student that the theoretician'or

modeler who constructs the computer program must be aware of the limi-

tations imposed upon the experimentalist in his efforts to obtain the

necessary parameters and experimental results. The fact that computer
)

programs based upon elaborate- pothesis may be readily constructed is

90
2.22



.4

not wlthout merit however. It is frequently the case that not all

of the important variables can be measdred experimentally because of

excessive cost, excessive time or inabilitx,to actually obtain by

direct means.all of the desired data.' Thus, it is necessary to use

computer models together with available eixperimental methods to

carry out.sthe investigation. This is almost always the case in the

physical and engineering sciepces and will most certainly be the case

ip the life sciences. As quantitative understanding becomes deeper,

such understanding will indicate the direction and kinds of experi-

ments to be performed. For these reasons, it is also necessary for

the experimentalist to have a working knowledge of the capability and

limitations of the digital computer. These facts again illustrate

the principle that the experimentalist and the theoretician must work

closely together and the more knowleAgeable each is of the other's

work, the better will be the scientific work.



Other Models c...--

There are many other models of the interaction of two or

more populations. For a rather complete discussion of the inter-

action of two populations, see the work of Murdoch and Oaten (1975).

In this section we consider some of these models. The first model

is an alteration of the prey-predator model to include the'

assumption that the prey population has a refuge. Thus, it is

assumed that a certain number of the prey are always safe from the

predator. In order that the student may more easily follow the

development, we present an alternative method of deriving the

Lotka-Volterra equations. It will be recalled that the prey and

the predator equations were first written in the Malthus form and

then modified in accord with the assumptions given on pages 2.11

and 2.12. The Malthus f rm of the prey equations is
I

1
I

Pl(I+1)=P(I)+Gl*P1(I).

We now reason in the following manner. The terM Gl*P1(I) repre-

sents the change in the prey population in one time period and

it is this term which is to be modified to account for the pre-

sence and actions of the predator population. It "seems"

reasonable to as.sume that the change in the prey population should

be reduced in proportion to the number of possible interactions

of_the prey with the predator. The number of possible inter-

actions is P1(I)*P2(I). It is known that the actual number-of

such interactions resulting in the death Of a prey is only 'a

small fraction of the total number of interactions or else the

prey vpulation would become extinct. If Fl denotes the frac-

tion, the number of actual deaths in a period is then Fl*P1(I)*P2(I).

Thus, the change in the prey population in a time pericd is

G1*P1(I)-F1*P1(I)*P2(I).

J
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If this term is substituted for the change in the prey popula-

tion as given by the Malthus form of the equation, the equation

governing the prey population may be written as it appears in

line 40 of the program listed in Figure 2.1. The equation govern-

ing the time evolution of the predator May be derived in a similar

manner.

We now return to the probleM of deriving equations for the

prey-predator interaction assuming that the prey has a refuge.

Let K denote the number of prey which are.assumed to have a

safe place for refuge; then (P1(I)-K) denotes the number of

prey available for the predator. Thus, the number of possible

interactions between the prey and the predator is (P1(I)-K)*P2(I).

Since only a fraction, Fl, of these interactions actually

occur, and we are assuming that each of these results in the

death or non-birth of a prey, the change'in the prey population

in one time period is given by F1*(P1(I)-K)*P2(I). By analogous

reasoning the change in the predator population dueto the presence

of the prey populatio4 is given by F2*(P1(I)-K)*P2(I) where F2

is a constant of proportionality. Since these terms represent

the changes in the prey and the predator populations respectively

due to interaction affects, they must each be added to the corre-

sponding Malthus form of the prey and predator populations. Thus,

lines 40 and 45 are modified to read

and

40 LET P1(Il)=P1(I)+G1*P1(T)-F1*(P1(I)-K)*P2(I)

45 LET P2(I+1)-T2(I)+G2*P2(I)+F2*(Pl(I)-K)*P2(I).

We remind the students that the respective magnitudes of Fl and

F2 in the two models are not the same and that G2<0 since it is
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assumed the predator cannot survive in the absence of the prey.

Provision must also be made in the program for inputting K,

the number of prey which can have a safe refuge. This alteration,

(Ind the -replacement of lines 40 and 45 as indicated above, are

the only modifications required of the program listed in figure

2.1.

It is also possiblc to construct a model in which a fraction

of the prey population is able to find refuge from the predarr

poputation. Before doing so, it will be easier for the stude

to follow the derivation if Ve first present derivations of al r-

n tive models for the constant environment model, the finite resource

modcl and the prey-predator model. The fundamental equation govern-

Ing the growth of a population in a constant environment was

P (I+1) = P(I)+G*P(I)

G=B- and where B and M were the respective numbers of

oirths and deaths per individual per time period. The above

,...luation may be written as

P (I+1) = (1+G)*P(I)

P (I+1) = R*P(I) (1)

a

where R=l+G. The constant R may be conveniently thought of as

a population multiplier. If R>l, which corresponds to G>()

or 13-'M, the population increases as I increases, and if R.<1,

4-lich corresponds to G<0 or B<M, the griwth decreases. Further-

,-I0, since W1 and 13-'0, we must have R>0. Equation (1) is the

desired alternative form of the Malthus model and is mathematically

equivalent to the form given by equation (1) in the first chapter.

26
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To derive, with the aid of equation (1) an equation describ-

ing the growth of a population in a finite environmeni, we recall

the derivation given in the previous chapter. In that derivation,

the birth and the death rates appearing in the Malthus model were

decreased and increased respectively in proportion to the size of

the population. This, in effect, decreased the growth rate G,

in proportion to the population size and enabled the growth rate

to be written as (G-Gl*P(I)). Our alternative derivation of a

model 'for population growth in a finite environmentfwill be based

upon the idea of altering the population multiplier R appearing

in 6'quation (1) in.accord with the consequences of the assumption

of a finite resource. Thus, we want the multiplier to decrease

as P(I) increases. Such a variation may be accomplished by

dividing R by a term which increases as the population

increases. We choose the form of the term to be (1+A*P(I))

where A>0 and thus the multiplier may be wrltten as

R/(1+A*P(I)).

The magnitude of A is very much less than the magnitude of R.

The student will note thtat as P(I) increases, the value of the

total fraction will decrease. Equation (1) may then be written as

P(I+1)=R*P(I)/(1+A*P(I))
(2)

This is the desired alternative form of a model for the growth

of a population in a finite environment. It is important that the

student note that this model is actually mathematically different

from the previous finite resource model as given by equation 40,

page 1.10, since the equations do not give the same numerical

results. It is also important.to note that dividing R by the

term (1+A*P(I)) is just one of many possible ways to get the

multiplier to decrease as the population increases. For example,

we could have chosen to replace R by the term R/(1+A*P(I)1.2)

or by the term R/(1+A*P(I))t2, etc. The primary reason for

0,3
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replacing R by.the term R/(l+A*P(I)). rather than some other

term is that this term is very simple. This is in keeping with the

philosophy that in the absence of other knowledge or evidence the

simplest model is to be preferred.

The condition for the population to "level off" is equivalent

to stating that there be no-change in the population from one time

period to the next. This is obtained by imposing the equality,

OP

%

P (I+1) = P(I)'

in equaticn (2). We then get

P (I) = R*P(I)/(1+A*P(I))

or after some simple algebra,

P (I) (R-I)/A.

Thu, value of I for which this holds is the number of the time

interval for which there is no longer any change in the population..

Thu population corresponding to this condition is called the carry-

Lnq capac_ity for this model. Thus, the carrying capacity is given'

by (R -1)/A. a

An alternative model for the competition of two populations

for the same limited resources may be obtained in an analogous

manner. We begin the derivation by writing.down the equations

describing Malthus type growth for each of the populations. The

equations are

6

and

P1(I+1) R1*P1(I) (3)

P2(I+1) = R2*P2(I).
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The restrictions on the respective magnitudes of R1 and R2

are analogous to those given previously for R. The imposition

of the assumption that both populations are competing for the

same iimited resources may be accomplished by dividing each of the

population multipliers by a term which increases4as each of the

populations increase. One of many such terms is

1 + Al*P1(T) + B1*P2(1).

The two preceding equations may then be written as

and

P1(I+1) =-R1*P1(I)/(1+Al*P1(I)+Bl*P2(I))

P2 (1+1) R2*P2(1)/(1+A2*Pl(r)+B2*P2(I)).

(5)

(6)

Both_ AI and A2 are positive and very much smaller in magnitude

than' R1 and R2 respectively. Al and A2 are 'analogous to

the logistic parameter A in the single population logistic model.

The parameters Bl and. 132 are also positive and very much smaller

in magnitude than R1 and 12 respectively. They account for the variation in

growth of each popul.ation due to the magnitude of both populations and are not to

be =liaised with their definitions as given in previous sections. alma-dons (5) and

(6) are alternative fmmo of the equations describing the giwti of twcy popula-

tic= carpeting for the same limiud resources.

0
These equations may be modified in several ways to simulate

the-interaction of a prey and a predator population. We illustratetv

one possible modification which leads to the Leslie model of prey-

predator interaction. Leslie (1948) chose not to modify equation

(5), the equation describing the competitive effect of the predator

on the growth of the prey poOulation. ,However, he did significantly

modify the equation describing the competitive effect of the prey

on the predator, equation (6). He assumed thrat a significant factor

modifying tne growth of the predator population was the presence

of the prey as a necessary food supply for the predator. He fUrther

2.29`=)7
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assumed that the effect on the growth of t/he predator of the pre-

sence of the prey should be such that if there were a large number

of the prey as compared to the number of predators, that the

growth of the predator'population would increase. Conversely,

if the ratio of the number-of.predators to the number of prey

was large, the predator population should then decrease. He

accomplished such a variation by rewriting equation (6) as

P2(1+1) = R2*P2(I)/(1+C1*P2(I)/111(1)) (7)

where Cl is a positive constant. Equations-(5) and (7) are

identical with the equations given by Leslie in 1948 and 1958. .

An examination of equation (7) shows that if the prey become/

very numerous compared to the pxedators, the term .P2(1)/P1(I)-+.6,

and the predator population is then governed.by the equation

P2(1+1) = R2*P2(1).

Analogously, if the prey becomes scarce, or disapperars, the quantity

P2(I)/P1(I) CMO and equation (7) reduces to

P2(1+1) = 0.

In this event, the predator population becomes extinct.

We are now ready to derive a model for the interaction of a

prey and predator population assuming that a constant fraction of

the prey have a;refuge from the predator. A convenient starting

point is Leslie's prey-predator model. We assume th#t a fraction

of the prey can/find a refuge from the predator and hence are not

coMpeting with the predator for the limited-resources. This fraction .

will be denoted by (14), where O<K<1. Thus, only the fraction IC

of the prey population'is subject to predation and competition and

the growth of the pr.ey in refuge is similar to that of a single
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population living in. a finite environment. These assumptions

suggest that the governing prey equation be written as

Pl(It1)=(1-K)*Rl*P1(I)/(1+A1*P1(I))

11%401k . K*R1*151(/)/(1+Al*P1(I)+131*P2(I)) . (8)

The student will\
note that the first tqrm on the right hand side

of the equation corresponds to that part of the prey population

living in the refuge and the second term corresponds to the por-

tion of the prey population competing with the predator population

for the limited resources. Equations (7) and (8) are the desired

equations and are analogous to those appearing in Leslie and

Gower (1960). By varying K it is possible to study the effect

of different refuge percentages on the population growth.

Many other modifications to these models can be made. The

student is urged to invent some of his own modifications. The

establishment of which model is the "best" is a question which your

author will dodge since each of these models grossly simplifies

the actual state of affairs. In addition, the meaning of the word

"best" in this context ifi quite ambiguous since the word can have

many meanings depending upon the circumstances.

We purposely did not indicate how to modify an./ of the existipg

programs to include the above models since such*modifications .

require only very simple programming changes.. We again remind the

student that the obtaining of .the constants appearing in each of

these models may indeed be difficult. For more about this problem,
4

see the enia of this chapter.
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"-4.1 Tb.

Running of Programs

The difficulty of obtaining realistic parameter values and/or

initial conditions (starting populations) frequently prevents

the ready running of programs such as these. This is due to the

fact that the programs usually produce biologically meaningful'

results only for a restricted range of parameter values find/or

initial conditions. For example, in the Lotka-Volterra prey-

predator model, it is possible to choose the magnitudes of the

voracity and the defense coefficients so that both the prey and

the predator populations will oscillate and duFing part of the

oscillations both populations will be negative. SuCh a result

is biologically impossible and demonstrates that the validity

of the model, depends upon the magnitude of the parameters as

well as on the fundamental equations. It is of interest to

point out that in a traditional mathematical development of a

quantitative methods course, the emphasis is on obtaining a

"closed form° exprefision for the answer. This form will contain

the parameters and the intial conditions and because of the dif-

ficulty of performing the tedious arithmetic necessary to evaluate

the solutions, it is rarel'y the.case that numerical estimates of

the answers are obtained and examined. Thus, the problem of

obtaining realistic values for the model parameters is really

omitting: With the advent of the computer, the task of perform&

ing the tedious arithmetic has been eliminated and 'mathematibally

oriented quantitative methods courses are placing more and more-
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emphasis on discussing and comparing numerical results. As a

consequence, the problelit of the determination of parameters

which give biologically significant results is assuming greater

importance.

To illustrate the preceding disftssion, we consider tl,e

selection of a set of values for the constants of proportionality

occurring in the prey-preclator model as listmd tn fig. 2.1. An maminatIml of

equaltiguis 40 and 45 shows that it is the growth ooefficients Gl and

G2, and the modified.growth coefficiefits Fl and F2, that

are important. This is equivalent to saying that the quanti-

ties of interest are the differences of the respective birth

and death rates and the respective sums of the pairs of con-

stants of proportionality, N1, D1 and N2, D2.

The determination of G1 is easy, since, by hypothesis,

it is the normal growth rate of the prey in the elbsence of

the predator. G2 is negative because it is assumed that the

prey is the only food for the predator. In the absenae of

experimental data, it is difficult to estimate a reasonable

magnitude for G2. Thus, as a first guess, we arbitrarily select
AO.

a Value approximately equal to the negative of the normal

growth rate of the predator assuming that its food supply was

Ele7tiful._ Values for Fl and F2 are then obtained by trial

and error. To assist in their determination, we recall that

for the finite resource model the normal growth coefficient

was very much larger than the modified growth coefficient.
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Consequently, it seems reasonable to initially seelect values

for the defense And voracity coefficients that are m4oh smaller

in magnitude than Gl and G2 respectively. By examining the

results, these values can be improved by iteratioa. Chapters

III, tV andlr illustrate other methods for 'determining model

parameters. There are also sophisticated experimentaftechniques

which can be of assistance in the determination of Fl and F2.

By observing the interaction of prey-predato populations,

it has been noted that the.magnitude of both popula ons.oscii-

late. By utilizing strict experimental controls, it possible

to achieve a nearly constant environment in'which the m imum

and.the minimum populations are clearly discernable. Howe er,

in the real world the environment is anything but static an

controlled; and thus the maximum and minimum populations may-

vary considerably. These observations suggest that a possible

aid to the selection of a set of parameter values is the exis-

tence of gscillatory-like behaYior of each of the populations.

The existence of oscillatory-like behavior implies the possibility

of the existence of a set of parameter values for'which the ampli-

tude of the oscillation remains constant. In an attempt to see

if indeed such constant amplitude oscillations can be produced

by the model, the student may try several different sets of

parameter values. Such an attempt will not be successful. However,

it is possjble that, due .tp repeated failure to obtain constant

amplitude oscillations, the student will gradually get the idea

that it may very well be impossible to find such a set of parame-
4

ter values. The student who.carries out this search an4 by so

doing concludes that it is not possible for the model to produce

osciliatory-like behavior, illustrates the use of a model to gain

understandiig. The lack of existence of constant amplitude oscil-

lations is due to the fact that the governing equations are differ-

ence equations and it is known that solutions to this particular

set of difference equations do indeed have the property that they

oscillate with increasing amplitude. In this regard, see the paper'

by'Innis. fn contrast, if the Lotka-Volterra prey-predator problem

is formulated in terms of differential equations, it is possible

s
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to choose the constants of proportionality so that the ampli-

tudes of the solutkons do remain bounded. Thus, in this latter

formulation, the prey and the predator populations are repeated

and the motion is cyclic.

The prey-predator interaction is best revealed with the aid

of a graph whose abscissa and ordinate are respectively the

magnitudes of the prey and the predator populations. Figure 2.2

shows such a representation for a typical prey-predator problem.

Fig. 2.2
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The solid line representat results obtained from a differen-

ti44 equation fórmulation of the problem using a given set of.

parameter values. The dashed line indicates results obtained

from the BASIC programming language formulation of the problem.

In both examples the initial populations were the same. /n

this regard note part 3a of the programming assignment.

451,
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CloSin9 Comments

rn closing this chapter, we again reiterate some of the

fundamental philosophy concerning the value of models. In-essence,

we are hypothesizing speciiie interactions or r3lations among the

populations and their environment and then using the computer to

analyze the consequences of such hypotheses. The hypotheses aro

expressed in the BASIC programminglianguage and are usually very

much oversimplified and restrictive. Nevertheless, we feel that

they have in them some of the essential mechanisms Involved in the

determination of the behavior of the interacting populations. For,

this reason, it is felt that we can gain understanding by analy-

zing our models. For example, in the prey-predator interaction

we were able to determine what happened to each population under

the assumption that the prey and the predator populations affected
A

each other 0 a definite and prescribed manner. Now we hoped that

the prescribed effect of interaction approximated-the actual

Interaction and hence by analyzing the results of our program

runs, we can or cannot confirm the validity of our hypotheses.

In this way, insight and understanding of the actual interaction

of the popuations s gained. Of course, if we are fortunate

enough that, for a wide range of values of the parameters, our

results very clgsely approximate actual observed behovior, we

then have some faith in using the model as a predictiye tool.

Using models for prediction is fraught with pitfalls; neverthe-

1es3 in making decisions of any sort involving future occurrences,

some kind of model must be used. The principal reason that the

results of canputer based node's are subject to sudh somme scimtiror is (tha wry

fact.) ttlimt the basis of these models cmin be Laid bare far aal to mee.

Thus, there is not room for rhetoric, Niague phrases, and other

methods of conviction that are so frequently used when presenting

an argument. The computer program is very specific and hence the

prescription for calculating the results is clearly evident in *

tho program. For this reason, it is possible to discern what the program is
doing and to consequently know the actual basis upon which the

tr.
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results were obtained. There is no ambiguity or vagueness

in the programming statements and thus there are no hidden

agendas.

This brief discussion concerning the philosophy of modelin4

was given to again remind the student that the importance of a

model is the ability to test and.analyze the consequences of

the assumptions upon which the.model is constructed. It is

sometimes possible, as we have seen above,eto arrive at the

same model using different assumptions. Therefore, in the light

of the previous discussion, it is important to interpret and

analyze the results of the model always recognizing the particu-

lar assumptions from which the model was constrtiCted.

The kinds of equations that we have beeniconsidering in these

first two chapters are called finite difference equations. A very

readable discussion of such equations is given in the text by

Goldberg (1958). It is known that there exist finite difference

equations which are unstable; that is, when they are programmed

and run on a computer the numerical results bear no relation to

the true results. This is because of the limited arithmetic

precision of the computer. Speaking very loosely, such behavior

is called numerical instability and is discussed in courses in

numerical analysis.

2.38
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PROBiEMO

CHAPTER II

Modify the two independent growth equations to-include:.

(a) The effects of a finite food supply and prey-predator

interaction.

(b) The effects of contamination and a finite food supply.

(C) The effects of contamination assuming an abundance of

food, space, etc. and no prey-predator interaction.A.

List, and clearly define, ap notations.

2 Write a.program to analyze 14a). .Choose values for the param-

eters and make some runs. DiSCUSS your results.

3. In a two population finite resource Model, the natural growth

rates for the first and second populations are 0.4 and 0.6

respectively. Let the initial populations be 100 and "200

and let the constants R1, R2, T1 and T2 have the respec-

tive values 0.001, 0.002, 0.3 'awl 0.2.

(a) Determine which population will survive.

(b) How many generations before the dying population becomes

less than 1, i.e. dies out.

(c) Make some runs, using diEfotent initial po?ulations and

record the number of generations before one population

dies out. Plot the results. Discuss them.

(d) Make some runs with different yalues of G1 and Tl.

Graphically display the number of generations required

for the cnishing of a specie versus the ratio Gl/T1.

Discuss 41e results.

4. An insect population is increasing 10 percent per week during

the summer months of April 1 througeOctober 1. In the remain-

ing or winter months, the population decreases 5 percent per

month. A migratory bird population resides in the same habitat

as the insects during the months of May through August. Each

bird eats approximately 50 insects per day-and during the month

of June the birds reproduce. /t is assumed that corresponding

to each pdkent, two newborn survive to become adults. It is

further assumed that by the end of June,the newborn birds are



At.

eating aa many insects as the adult birds and that during the

month of June they required no insects as food. finally, it is

assumed that during the remaining months'from September through

April, the mortality rate of the birds is 60 percent. /f the

initial population of the insects is 100 million, and the ini-

tial population of the birds is 1060 on May le graphically dis-

play the time evolution of each copulation for a period of five years. (lse a

time increment of one day in your problen and mom. there are 28 days each sold

5. Two populations, P1 and 112, are coexistent. The sdaily change

in the first population is directly propOrtional to the number

of the second population while the daiiy change in the second

population is such asi to decrease the second population by an
Irb

amount proportional to the second population. Describe the growth

of both populati s.

6. In a community f twolspecies, the first sr 'cies grows at the./

rate of 20% per month (30 days) whereas the seconle,ppeciek

grows at the rate of 5% per week. The daily fcad consumpt4ton

of the first population is proportional to the first populaion)

with a constant of proportionality equal to 1 food unit per-

day per 1000 individuals. Similarly, the daily food Consumption

of the second population is proportional to the second popula-

tion ,v1 a constant of proportionality equal to 2 food units

per day per 1000 indivigkals. The effect of this food consump-

tion on the growth rate of each population s such as to,decrease

the growth rates of each population by nts. proportional to

the total food consumed each period, he respective bonstants,

of proportionality are 0.01 0:002. Describe the growth

of the two populations. (HINT: One day shOuld be chosen as the.

fundamental time period).
0 .

Using the conditions of problem 6, describe the growth of the

two species assuming-thatthe daily food consumption of each pop-

ulation is proportional to the square of each populationg with

the same constants of proportionality.

In the derivation of the^prey-predator program, it was assume'd

that the proportioni of births and deaths o'f the prey were

modified in proportion to the population of the predator. If

instead, the change in the birth and death proportions of the

2.40



kprey are assumeto be proportional to the cube of the predatoro

populaticn describe the time4 evolution of both the prey and'the

predator.

Construct a program describing the time behavloor of three popular,

tions assuming that two populations are prey for the,third. *ate

your hypOtheses-clearly. Describe the results.

10. Same as problem number 90fonty assume that the firbt populatiOn

is prey for the second and that both the first and-second popula-

tions are prey for the third population.

Construct a program describing the.behavior of.these populations-.

competing for the same food supply. Describe yourIsults..

416

14'44.
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CHAPTER III

PARAMETER'DETERM1NATION

Introduction

. In the Malthus model.the growth coefficient G was an unde-

Itermined parameter, whereas in the finite resource model both G

and G1 were undetermined or free parameters. The student will

recall that these parameters resulted from the assumption that one
10.

variable was proportional to another variable and that the parameters

either were the constants of proportionality or were lirectly related

to the constants of proportionality. In fact, G was defined as the

difference between the birth rate 13, and the mortality rate M,

and G1 -was defined in a similar manner. The determination of such

parameters is frequently effected by a comparison of model results

with experimentally obtained results. Sometimes it is possiblit to
"
oonduct experiments which will permit the determination of each param-

eter in a sequential and direct manner. It is also occasionally the
4

case that some of the parameters may be obtained from calculations

utilizing both theoretical and experimental resulta. Usually, however,

the determination of the parameters is more difficult and it is np.t

possible to determine each parameter sequentially. Consequently, a

sk of experimentai data must be obtained and a comparison made with

a set of computer or theoretical results in order to obtain the model

parameters. The process is both lengthy and difficult and'has neces-

sitated the development of elegant mathematical and experimental tech-

niques.

There are two primary sources of error.which make the determi-

. nation of the parameters difficult. They are (1) errors in the

model, and (2) errors in the experimental data. The model can be in

error because it was constructed on the basis of an incomplete or

an incorrect hypothesis, because computational resource limitations

prevented the construction of a more complete model, or because of

_programming erriers. These latter errors are very difficult to detect

since there rarely exists any -known answers or-data with wHich the

iirogram can be checked.. The experimental data nay be in error becausp

of limitations in exierimental technique, the impossibility of per-
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formin4 the exact desired experiment, inaccuracies in .the redoeding

of the data-or just plain experimental blunders. All of these fac;

tore must be considered when the investigator is determining the model-

parameters. It is not our place to consider these sources of diffi-

ctilty here except totsay that in accordance with Murphy's Law, pro-

gramming errors and experimental blunders usually occur and necessi-

tate an attitude of eternal vigilance to prevent their occurrence.

We will "assume away" all'of the others and carry on as if thely could
.

- -

;not happen Io nice people like us.

An Example

As the first exaMple of the general problem of parameter deter-.

viination, we consider.the problem of determining the growth coefficient.

in the Malthus model. This pro:lem is chosen because of the simpli-

city of presenting the ideas. In actual fapt, it fa quite difficult *

experimentallyensure.siach a pepulatiorgiowth because of the difff-

culty of,ensurinethe hypotheses of a completely constant environment

over a lengthy period of time.

The output of the computer program consists of a sequence of

points which describe the time evolution of the population. If a

smooth curve is drawn throu4h these points, the resultant curve de-

scribes the population at any instant of time. This rathr obvioas'

statement is made because in the following we will use the,terms,graph,

curve, and sets of points interchangeably. As, the student has noted,

the graph changes shape as the growth parameter G changes. This

suggests the possibility of determining the growth parameter by suc-

cessive alterations of an initial estimate of its value until a popula-

tion curve is obtained which coincides wits, or is close to, the

experimentally determinedopulation curve. There are several alter-

ation processes which.have been used with varying degrees.of effective-

ness. The first process to be described is a trial and error process

and is admittedly not elegant. Nevertheless, such a procedure is

usually quite effective, especially when the- investigator has some

gevious"knowledge concerning same or all of the parameters. Moreover,

since it depends upon the interaction of the inveitigator -with-the

computer, the technique enables the investigator to develop some insight'

into the problem.



In multiple parameter determination problems, as well as in the

single Malthus parameter determination problem, if a mathematical for-

mulation had been employed to describe the phenomena, the polutions

of the resulting equations would have contained the model parameters

and the problem of the determination of these parameters would still

have remained. This problem.has a long.mathematical history and many

techniques have been developed to facilitate its.solution. These

techniques are usually iterative procedures, i.e. they require an'

initial guess at the value of the parameters and tiien a "correction

process" is applied which hopefully, will improve the initial guess.

The corrected set of values is used as the initial guess for the deter-

mination-of the next set of values and the proceSs repeated. The pro-

cedure is continued until the theoretically obtained graph is suitably

close to the experimentally obtained curve -and then the parameter

values so required are assumed to be the desired values. There is

thus, a very close similarity between the mpde; approach sand the mathe-

matical approach to the problem.

Perfect agreement, that is complete coincidence of the theoretical

and experimental-data, cannot be expected and hence, we will have to

be satisfied with those parameter values yielding a calCulated curve

which is clbse to the experimental curve. Thus, we'are making the

tacit assumption that large changes in the values of the parameiiers

will produce correspondingly large changes in the resulting population

curve because this will insure that two very different sets of parame-

ter values would not produce two .population curves equally close to

the experimental C'urve. If two widely different sets of parameters

did produce almost coincident population curves, it would be'most

difficult to accurately determine the parameters. We would say that

the model is very insensitive to these parameters and that quite possi-

bly the model could be improved or some other technique should be used

.to obtain the parameters.

Comparison of Two Curves

The criteria for selecting the model parameters depends upon the

ability to determine the comparative closeness of different computer

generated curves with the experimentally generated curvee. In particu-

lar, if we have two curves labeled C1 and Cr how can we decidd



4,

-
;713.:VVia44.

which curve is closer, to a thira curVe labeled, C3. If the three

curves were three points.and the points labeled Pl, P2, and 'P3

*the problem wouad have a simple solution. We would use a ruler and

justpeasure the aistance between"the two po..nts P1 and P3 and

the distance between the two points P2 and P3, and then compare

the results. However, the obtaining of a numerical estimate.for the

distande between two curves is a more difficult task since we do not

have a correspondingly simple method of numerically estimating the

distance between two curves. We are thus faced with the problem of

trying to eptablish soMe way of assigning a numerical value to the

distance betwAn two; curves., In mathematics, such an expression is

called a Norm.

The establishment of a suitable measure for the numerical esti-

mate of the,distance between two-curves is'greatly facilitated bT

examining a pictorial representation of the problem. f,igure 3.1 %

below indicates a portion of two curves labeled C1 and C
2

re-

spectively.
de. 0. s-

1 2 3

TIME

Figure 3.1
f
4
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The points Al, Bl C and D1, belong to the curve C1 and

the points A2, 1,2, C2,- and 02, belong to Elle curve C2. Before

?attempting to formulate an expression for the numerical estimate of

/ the distance between the two curves, it is necessary to establish some

desirable characteristics that such an expression should possess. An

examination of the figure will suggest some of these characteristics.

First of all, the estimate should have the property that a large numer-

4cal value of the distance estimate-should correspond to the fact that

.the curves are far apart, and conversely, a small numerical estimate

should imply that the curves are close tbgether. In particular, if

the magnitude of the numerical estimate for the distance is zero, the

two curves should coincide, and conversely; if the two curves coincide,
.

4

the numerical estimate should be zero. A second desirable feature for

the expression for the estimate of the distance is that the estimate

for the distance between the curves C
2

and C
I

should be equal to

the distance estimate between the curves C
1

and C
2'

Finally, the

numerical estimate of the distance should also possess the property

that the numerical estimate of the distance betwee'n the two curves C1

and C
2'

when added to the distance estimate between the two curves

C
2

and C
3'

should be greater than or equal to the numerical estimate

of the distance between curves C
1

and C
3'

This ia generalization

of the fact-that a straight line is the shortest distance between two

points. With these criteria in mind we proceed to "guess at" or

"cobble up" an expression for the numerical determination of the dis-

tance between two curves. The fact that we can numerically determine

the distance between two,points and the idea that we can imagine each

curVe as made up of a large number of points suggests a method of de-

termining the required estimate.

In order to make the subsequent discussion more easy to follow,

it is convenient to introduce the following definition. Let P
1

be

any point on curve Cl, and P2 be any point on curve C2, then the

pair of points (P11 P2) are said to be corresponding points if they

have the same abscissa or horizontal coordinate. Thus, if a pair of

corresponding points have the same ordinate or vertical coordinate, the

points coincide and this point is a point of intersection of the two

curves. Furthermore, if a section of the first curve is close to a

-
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section of the second curve the differences of the ordinates (these

differences are called deviations) of corresponding points on these

sections is small. These facts suggest that.a summation of the dif-
ct

ferences of ordinate values for several corresponding points should

provide a reasonable measure of the distance between the two curves.

This estimate is defective however, since an examination of the cor-

responding pairs of points (B1, B2) Ind (Di, D2) in Fig. 3.1

reveals that the difference in verticalAralues of B
1

and B
2

is

the negative of the difference Of the vertical values of Di and

D
2'

Hence, the sum of these deviations is zero and yet the portions

of the curves subtended by these points arecertainly not coincident.

This defect is readily corrected by always takingI.he difference be-

tween the ordinate values as ,positive, i.e. taking the absolute

value or magnitude of the difference. It is then seen that if .the

sum of the absolute value of the deviations of a specified set of

corresponding pains of points is zem) that, at least at these points, the curves must

coincide. Furthermore, the distance as calculated gives the same value f or

the distance from C
1

to C
2

as from C
2

to C1 Finally, if the

sum is very small for a large number of points and the curves are

"smooth" and do not have many wiggles, then the curves yin be close

together. If the BASIC programming language notation is used to indi- //

cate the absolute value of a quantity, the sum of the absolute values

of the difference of the ordinate values would appear as

ABS(A
1
-A

2
) + ABS(B

1
-B

2
) + ABS(C1-C2

) + ABS(D1-D2 )-

In this expression A11A2, B1, ...,,D2 indicates the vertical

values or ordinates of the points.

A very popular method of numerically estimating or determining the

distance between two curves is to calculate the sum of the squares of

the deviations. With reference to Fig. 3.1 and the four points shown,

this criteria may be expressed as

(A -A )
2 + (B -13 )

2 + (C -C )
2
+ (D -D )

2

1 2 1 2 1 2 1 2

A 6
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where the subscripted variables again indicate the ordinate or ver-

tical values of the points.

Another very popular distance criteria is the maximum magnitude

of the deviations. Using the same illustrative example, this criteria

is obtained by first calculating the four quantities

ABS(A
1
-A ) ABS(B

1
-B

2
), ABS(C -C ) and ABS(D

1
-D

2
).

and than determining the largest of thimse. This estivate is sovetimes called

the Max. Nam. and measures the closeness of tvn curves by the tragnitude of the

largest distance betwen pairs of corresponding points. It is soma tbat ial the

Oproperties of a distance measure are funned amd in particular, if the maximum

der:Lad:ion is zero, the curves will coincide.

Still another method is based upon a calculation of the area be-

tween two curves, being careful to consider all such areas as positive.

Each of these methods satisfies all of our desired criteria for the

numerical estimation of the distance between two curves. In this work,

the criteria for closeness will frequently be chosen to be the sum of

the squares of'the deviations since this criteria is the easiest to

calculate. The student may be familiar with such a criteria from

courses in statistics where the method of "least squares" plays such

an important role. Thus, in the Viork below we will calculatefthe sum

of the squares of the differences of several pairs of corresponding

points on the two curves and if this difference is small, we will con-

clude that the curves are close together. If a pair of curves is a

finite, though small, distance apart we note that by increasing the

number of pairs of corresponding points we can indefinitely increase

the value of the sum,and this would imply that no matter how close the

two curves were that by taking enough pairs of points in the calculation

we could always conclude that the curves are far apart. However, the

criteria for the determination of the distance between two points is

to.be used to compare the degree's of closeness of two curves, Ci and

C2, to curve C3 and thus we will choose the same number of pairs of

corresponding points in each cimparison. This criteria also requires

that the points chosen on the C1 and C2 curves.correspond to the

7
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points chosen on the C3 curve. In this manner the smaller sum will

provide a consistent measure for determining which of the curves, C1

or C2 is closest to curve C
3

Comparison with Experiment

Saving established a usable measure that will permit the compari-

son of both model and experimental results, we return to the problem

of determining the growth parameter G in the Malthus model. The

recent growth of many human populations has been described as exponen-

tial. In particular the United States, with its"vast area and relative,

abundance of natural resources, has provided an approximate constant

environment for the growth of the population up until regent times.

Thus, the recorded population growth of the United Statelvshould pro-

vide somewhat realistic data to use as a basis of comparison. The

changes in population due to immigration will be ignored and it will'

be assumed that the Malthus mociel xesults can approximate the actual

population growth. The growth is presented in Table 3.2 and the

data has been taken from Peterson (1961).

The experimental data is presented for equal increments of time;

however, it is often the case that such data is obtainable only at

unequal time increments or at instants of time which do not coincide

with the computer results. Since the criteria for closeness requires

that pairs of experimental and theoretical points be corresponding

points, interpolation or Curve fitting techniques must be used to ob-

tain data that enables the use of corresponding experimental and

theoretical points. Such techniques will be discussed later (see

Chapter Iv), and thus the present example will'use the same time

period in the model as employed in the experiment. This will insure

the existence of corresponding data points.

A Suggested Method

We will determine G using the sum of tNe squares of the devia-

tions as the criteria for the closeness of two curves. Hence, we will

modify the constant resource model computer program to calculate the sum

of the squares of the differences between pairs of corresponding experi

mental and calculated points. With the aid of this program, the

qi%L A 8
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TABLE 3.2

U. S. Population Growth

Population
Year (Millions)

1790 3.93

1800 5.31

10 7.24

20 9.64

30 12.87

40 17.07

50 23.19

60 31.44

70 39.82

80 50.16

90 62.95

1900 75.99

10 91.97

20 105.71

30 122.78

40 131.67

50 150.70

60 179.32

n
3.9
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-determination of. G will be accimplished by fin(U.ng that value of G

which results in the minimum value for the sum of the squares of the

deviations. The time increment in the model will be assumed to be ten

years to coincide with the time increment in the experiment. This imr.

plies that the growth coefficient, when so obtained, is with respect

to a ten-year period. Thus, we would be obtaining the relative change

in the population over a ten year period instead of over the normal

single year period. It is possible to calculatethe populations assum-

ing a single year period and to then compare the populations every ten

years. See problem number 1 at the end of the chapter. The results are

somewhat different than what might be expected. The growth coefficient

so obtained is a yearly growth coefficient, that is, the relative change
s

in the population each year.

The procedure for determining G will be very heuristic. It will

consist of assuming different values for G and then using the program

to evaluate the sum of the squares of the deviations, S, of the pairs

of corresponding computational and experimental points. The value of

G resulting in the smallest sum will be assumed to be the true value.

This is a pure trial and error procedure. Hopefully, however, our in-

tuition will be increased as the number of trials increases and thus

the process should not be too lengthy. Our intuition is usually always

greatly increased when such a procedure is used and this is one of the

principle benefits of such a very heuristic procedure. Complicated or

elegant methods sometimes render the obtaining of answers easier, but

render the obtaining of insight more difficult. In actual practice,

usually only a small number of trials are necessary to obtain fair

results. This last statement may require some clarification. In

essence, the problem is to know when to stop correctrhg the value of

G. One criteria for stopping is exhaustion, but this is hardly a work-

able criteria. The process is usually stopped when it appears that

small changes in G produce only very, very small changes in'the sum.

In order that the trial and error process be effective, it is assumed

that the model approximates the experimental phenomena sufficiently

closely so that there truly does exist only one minimum point, i.e

only one value of G for which the sum of the squares ol the deviation

is a minimum. The perceptive or mathematically sophisticated student

will note that we are assuming there are no relative minimum points for

the surfeme S.

3.10



A principal value of the guessing, or trial and error technique,

is that complete failure of the method frequently serves to indicate

a significant deficiency in the model. Furthermore, for very compli-

cated models such a technique may very well be the only feasible

technique. Finally, it may be the case that) there are some exterior

imposed constraints on the parameters, e.g. each should be larger

than some value, yet the sum is not a minimum for parameter values

satisfying these constraints. Thus, the investigator must compromise,

which cqmpremise must partially he determined by conditions exterior

to the problem as well as the desrre to minimize S. In almost all

cases, a satisfactory compromise is obtainable only with the assistance

of the intuition and objectives of the investigator. It is only fair

to point out to the student that the assumption that there does indeed

exist a minimum point, and that furthermore, this point is the only

such point, is *very strong assumption. In practice, this frequently

is not*the case, and there do exist other relative minimum points.

Since the purpose of this section is to illustrate a method which is

often times successful, a discussion of alternative methods, improve-

ments and pitfalls,will be postponed until later.

The Program Modifications

The original Malthus model program has been modified to calculate

the sum of the squares of the deviations. Because it was very easy to

do, the prdgram was also modified to determine the deviation of largest

magnitude as well as the magnitude of this deviation. In addition, the

program was altered to also calculate and print the relative error cor-

responding to each observation point. The relative error, R, for a

period is defined to be the deviation, D, between the theoretical

and the observed population at this period divided by the observed pop-

ulation. Thus, since D = P(D)-E(I), it follows that R = D/E(I).

As mentioned previously, the numerical value of the deviation of lar-

gest magnitude and the distribution of the magnitudes of the relative

errors are other estimates of the degree of closeness of two curves.

They are included in-this. program because Apir calculation requires

very little extra effort. The program is listed in Fig. 3.3 and

3.11



1 REM SINGLE VARI ABLE CURVE F TT I NG
2 REM SIMPLE POPULATION GROWTH MODEL
3 REM LEAST SQUARES AND MIN MAK FOR DEVIATIONS
5 DIM P(50)1 E(50)
10 GOSUB 205
15 PRINT "INPUT G, P(0)"
20 INPUT G P(0.0
25 REM INSTR, NOS. 30 TO 40 CALCULATE THE POPULATIONS
30 FOR .1 rze TO 25
35 LET P(I+1)=P(I)+G*P(I)
40 NEXT I
41 PRINT
45 14gP1 INST. NOS. 50 TO 85 CALCULATE THE MEASURES OF CLOSENESS
46 PRINT
50 LET S=0: LET K=0
55 LET M=ABS<P(0.)-E(0))
57 LET RomM/E(0)
60 PRINT K, NEM E(0). M. R
65 FOR . I TO 17
70 LET D=RBS<P(I)-E(I))
75 IF DC=MGO TO 85
80 LET M=D: LET K=1
85 LET S=S+DisD
90 LET R=D/E( I )
95 PRINT I1 P(I) , E(I) , D R
100
105
118
115
120
155
160
200
205
21
215
220
225
230
235
240

NEXT I
PRINT
PRINT "THE VALUES OF 13, S, M AND K ARE"
PRINT G, 5, PI, K
STOP
RETURN
END
R M INSTR. NOS. 205 TO HE EXPERIP1E"TAL
D T 3. 93, 5. 31, 7. 24, 9. 64, 12. 87, 17. 23. 19, 31.. 44

TA 39. 82, 50. 16, 62. 95, 75. 99, 91.. 97, 105. 71
D TR 122. 73, 131. 67, 1.50. 7, 1.79. 32
F R J=0 TO 17

230 ENTER
07,

READ El,',1)

NeXT J
RETURN
END

READY

,

Figure 3.3 1

3.12
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the three measures otcloseness are calculated in instructions 50 to

100. Instructions 30 to 40 calculate the population using the

assumed value of the growth coefficient and the experimental.data,

E(I), is entered by instructiohs 205 to 230.

TheLprogram can be used to assess, by different criteria, the

closeness of the theoretical and experimental data. The us'e 2f more

than one criteria for the closeness of two curves is presented to

illustrate the fact that different parameter values may be obtained

depending upon which closeness criteria is used. As previously stated,

there are many criteria fcr the closeness of two curves. In 'fact, if

the relative error is small in magnitude for all observation points

of interest, this indicates that the curves are close together oVer

the entire time period or range. In contrast, the fact that the sum

of the squares of the deviations is small indicates that the total

vari ion between the two curves is also small. It is p9ssible for

the to al variation to be small and yet for the relative error4at a

single or a few points to be quite large. Consequently,. the uniform

smallness'of the relative error .eogether with a comparatively small,

or minimum value, for the sum of squares of)the deviations provides a

quite good working criteria for testing t?(-; closeness of the two curves.

Your author has used this program to determine the "best" valge

for G and detailed results are presented in Tables 3.4,-3.5, and

3.6. Table 3.4 gives a detail of a "typical" run. ,The column headed

1 indicates the decade number and the columns labeled P(I) and Erie'

list the calculated population and the observed population respectively

foi each decade. The last two columns, entitled D and E list the

deviation, (P(I)-E(I)) and the relative error (10(I)-E(I))/E(1.

respectively. At the bottom of the table there is given the value of

the growth coefficient G used to calculate the population, the value

of the sum of the squares of the deviations, S, the magnitude, M, of

the largest deviation, and the decade in which this deviation occurred.

The values of A=0.265. and' Pf0)=3.93 million were used in this run

and a graphical comparison of the calculated population growth versus

the known or experimental growths is given in figure 3.7. In Tables

3.5 and 3.6, the results appearing in the columns labeled S and

M are rounded figures and the number listed in the column headed IC

is the decade period corresponding to the.deviation of largest magni-

tude. In each of these tables, the results of a dozen or so runs are
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RUN

R13002

'INPUT,' 6, P:0:-+
? 265, 3 93

Table 3.4

-Results of a Typical Run
Using Program in Fig. 3.3

Pt Et I)

.

0 7 .1, 3. 93 0 0

1 4. 97145 5. 31 . 23855 . 0637571

2 6. 28888 7, 24 . 951116 . 13137

7. 95544 9. 64 1. 68456 . 174747

4 10. 0636 12. 87 2. 80637 . 218055

5 12. 7305 17. 07 4 33951 . 254218

6 1.6. 1041. e 23. 19 7. 08593 . 30556

20. 3717 31. 44 it 0683 . 352047

8 25. 7701 39 82 14. 0499 . 352834

22. 5992 50. 16 17 5608 . 350095

10 41. 238 62. 95 21 12 . 344908

11 52. 1661 75. 99 21. 827:9 . 313514

12 65. 9901 91. 97 25. 9799 . 282482

81. 4775 105. 71 22. 2325 . 21021E.

14 105.599 122. 73 17 131 .139583

15 133 583 131. 67 I. 91278 . 0145271

16 168 982 150 7 1 : 2822 . 121115

17 213. 763 179, -.'2 34 4425 192072

THE VALUES OF G. c, ti AND V ARE

265 4734 94 34 4425 17

READY
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Run G

S

(Sum of Squares
of Devs.)

ti

(Max Meg
of Bev.)

1ht

K
(Time Period

for M)

1 .265 4734.9 34.44 17

2 .27 5838.1 49.27 17

3 .26 4597.3 29.04 12

4 .25 6622.9 34.78 12

5 .2 37770.94 92.13 17

6 .3 44429.4 160.64 17

7 .263 4573.1 28.77 17

8 .262 4546.807 27.83 12

9 .261 4555.28 28.44 12

10 .2615 4546.775 28.14 12

11 .2613 4549.16 28.26 12

12 .2618 4545.76 27.96 12

Table 3.5

Comparison of Results of Several Runs

(Initial Population Equal to 1.93 Million)
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Run
P(0)

(Init. Pop.) G

S ,

(Sum of Squares
of Days.)

M
(Max Mag
of Dev.)

K
.(TimePiii*

for M)

1 3.5 0.262 6,462.1 34.85 12'

2 3.8 0.262 ,4,839.9 29.95 12

3 4.5 0.262 6,186.77 55.76 17

4 4.2 0.262 4,70.8 40.09 17

5 4.1 0.263. 4,537.4 34.87 17

6 4.0 0.262 4,491.6 29.64 P 17

7 4.1 0.261 4,423.65 32.00 17

8 4.2 0.261 4,539.4 37.15 . 17

9 3.8 0.263 4,776.37 29.36 12

10 3.9 0.263 4,597.5 27.7 12

11 3.7 0.263 5,105.5 31.01 12

12 3.7 0.264 5,007.1 30.43 12

13 3.8 0.264 4,745.46 28.77 12

14 3.9 0.264 4,637.70 29.97 17

OW,

Table 3.6

Comparison of Results of Several Runs

(Different Initial Populations)
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presented. Table 3.5 presents results.obtained(by using an initial

population identical to the experimental population of 3.93 million

persons. Table 3.6 presents results wherein the initial population

is varied slightly around the initial experimental value. By varying

the initial population, a different Value for the growth parameter as

well as a smaller value for the sum of the,squares of the deviations

is obtained. Hence, we conclude that if the sum of the squares of

the deviations is used for the closeness criteria that the best re-

sults are obtained by varying both the growth coefficient and the

initial population. Because of exterior constrants, it may be the case ,

that the initial population must coincide with the observed value. In'

this event, on the basis.of the results hhown in Table 3.5, the best

value for G is 0.2615. On the other hand, if the investigator de-

cides that it is permissable to vary the initial population, the re-

sults of Table 3.6 imply tbatudthAn iniadaLpopuUticilof 4.1 millicm,

the best value for the growth coefficient is 0«261. ,The student should

understand that the decision of whether or not to permit the variation

of the initial population is not a mathematical decision. The deci-

sion must be made by the investigator and be in accord with his ob-

jectives. Further examination of the results in Tables 3.5 and 3.6'

also reveals that small changes in.the parameter values did sometimes

produce significant changes in the value for the sum, S, as well as

for the numerical value of the deviation of largest magnitude. This

fact implies that the aforementioned criteria for discontinuing the

iteration must be applied with some care.

Table 3.5 also illustrates that, for the runs shown, the minimum

value of the maximum deviation is obtained for G = 0.262, whereas

the smallest sum of squares of the deviations is obtained for .0 = 0.261

Table 3.6 reveals a similar behavior. The value of G equal to 0.263

corresponding to an initial population of 3.9 million results in the

minimum-maximum deviation. This value is slightly different than the

least squares value of 0.261 corresponding to an initial population

of 4.1 million. It is usually the case that different parameter

values are obtained for different criteria of closeness.

The resolution of the question of which measure of closeness to

use is a problem to be decided by the investigator and is not a

mathematical one. Recently, the idea of selecting the parameter value

3.19 4:8



which results in the minimum value for the maximum deviation has be-

come very popular in mathematical approximation theory and is being

used quite extensively in this field. This is called the min mai'

criteria. As stated previously, there also exist other closeness

criteria. It is well for the investigator to understand the limi-

tations of each measure, because he must substantiate his choice,

interpret his results, and infer his conclusions accordingly. We

will discuss all of these problems again in the next chapter.

In the previous example, the value of G was obtained by using

a hit and miss process to find a parameter value which would result

in a minimum value for the particular closeness criteria. It is im-

portant to note that the value of G so obtained is not necessarily

the value that would produce the absolutely lowest sum. To find such

a value, a prescribed iterative piocess would have to be constructed

and the process proved to yield the parameter value corresponding to

the minimum value of the chosen closeness criteria. This analysis

will not be carried out here and is best left to another more ad-

vanced course. The value to the investigator of such a proof should

not be underestimated since it would assure him that he had indeed

achieved the value of G resulting in a minimum for the chosen close-

iless criteria. In the example, the sum of the squares of the devia-

tions was chosen as the criteria for closeness. The trial and error

process was stopped after obtaining what seemed to be two figure

accuracy recognizing that the very restrictive hypotheses in our model

probably made the continued refinement of the parameter value unrea-

listic. It is always well to keep in mind that the program results

are obtained from hypotheses which do not completely and accurately

describe the phenomena under investigation. Consequently, there is a

realistic limit to the accuracy of such a program and to use the pro-

gram to determine the parameters to a large number of significant fi-

gures is nonsense. In addition, the observed data contains experimen-

tal errors and hence, excessive accuracy is again unwarrarited.

For this simple example, it is also feasible to plot the two

curves and visually compare,the results. Such a procedure does not

appear to be very scientific; nevertheless, it is a ve4y useful one.

Visual observation and comparison is of great assistance in obtain-

ing insight. Complex programs with several tables of results usually

9
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-Prevent the effective plotting of all results. Even a moderately

complex computer program can generate a vast amount of output and the

analysis and effective use of this information can be a staggering

task. It is also true that far more useful information than can be

readily outputted is generated by such programs. Thusi it is fre-

quently the case that decisions concerning which results to display,

as well as the development of methods of analysis of the results,

are at least as difficult a task as the development of the original

program.

The previous work is very heuristic and has been presented in such

a manner as to provide the student wlth an overall intuitive feel for

tle problem. A rigorous analysis of techniques-for detetlIpining the

closeness of tmo curves is the subject of approximation theory and

is beyond the scope of this work. We reiterate, the purpose.of this

work is to encourage the student to think quantitatively and to de-

velop a sense of the power and ready applicability of the digital

computer. Consequently, in this introductory course, heuristic methods

and a cavalier (albeit, hopefully honest) attitude is encouraged. The

serious student will then recognize that a more careful analysis of

the procedures is needed and he is referred to texts in numerical nal-

ysis, approximation theory and statistics. We will touch on some of

these matters later, but only very briefly.

3.20
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PROBLEMS

CHAPTER III

1. Using the population data for the United States as given in

Table 1, obtain the yearly growth coefficient, G, for the--

Malthus model and the least squares norm by (a) starting with

the known population, and (b) by varying the initial popula-

tion.

2. Using the same data and model as in problem #1, obtain thet'

growth coefficient for the qin max norm.

Same as problem #2 above, only use the min max norm applied to

the relative error..

4. With the aid of a plotting or graphing routine, or by observing

the appropriate calculated infprmation, determine G so that the

magnitude of the relative error is as nearly constant as possible.

5. Construct other measures of closeness. Write computer programs
a

using each and compare and discuss the results.

6. Find the minimum value and the minimum point for

(a) A2 + 10A + 15

(b) A + 4A2 + 10

7. Using the Malthus model and the tabular data listed below, deter-

mine the growth coefficient G using

(a) The least squares norm.

(b) The min max norm.

1 2 4 6 8 10 20

P 10 11 664 13 6049 15 86 7 18 5093 21 58925 46 6096

1
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CiAPTER IV

AUTOMATED PARAMETER DETERMINATION

Introduction

The previous chapter discussed and outlined a heuristic method

for the determination of the parameter occurring in the constant

environment model. Since such constants occur in every model and

it is neCessary to know such constants in order to use the model,

their determination is of paramount interest to the investigator.

Frequently, because-of the inability to otlierwise determine the paramr.

eters, they must be determined with the aid of the model itself, and

the complexity of the model may render the heuristic method the only

available method. The previouVy described minimization technique

can also be applied, with very evident modifications, to the deter-

mination of parameters when.the quantity is to be maximized rather

than minimized. Finally, many important and diverse problems can

be recast as minimization or maximization prghlems, and hence the

technique has wide applicability. For these reasons, we extend our

comments on the method and discuss some of the questions raised in

the previous chapter. The comments will be limited to methods for

the determination of a single parameter. In actual practice there

are very few single parameter models. Even the constant environment

model should be considered as having two parar.?.ters because, as we

noted, the initial population can assume the role of a free parame-

ter. Nevertheless, further discussion of the single parameter problem

is warranted because it will provide much insight for the problem of

the determination of more than one parameter. Two, or more, parameter

problems will be discussed in the next chapter.

Minimization

The previous method for the determination of the parameter was

based upon the premise that a unique value of the parameter would

result in a specific quantity being the minimum value for this value

of the parameter. In our example, the quantity was the sum of the

squares of the deviations and the previous statement means that any

4.1.
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other value of the parameter would result in a larger value for the

sum of the squares of the deviations. In order to avoid excess ver-

bage it is convenient to introduce some notation. Let the specific

quantity to be minimAzed be called the criteria function and denote

it by M. The model parameter will'be denoted by A. The value of

A that results in the minimum value for. the criteria function will

be called the extremum or extreme value. Finally, the problem of

-determining the extreme value corresponding to a specified criteria

function will be called the minimization problem. In the preVous

chapter, M was the sum of the squares of the deviations, S. M

could also have been the maximum value of the relative error or the

sum of the absolute magnitudes of the deviations, etc. The parameter

A may be identified with the parameter G in our constant environ-

ment model. Using this terminology our problem can be restated as

one of determining the value of A which makes M a minimum and the

only zwpiremmit imposed upon. M is that it be calculable. It should

44so be noted that in the example, the deviations were.calculated at

equal increments of time, i.e. ten years. The equality of time

increments is not necessary and unequal time increments are frequent-

ly used because of the inability to obtain experimental data at uni-

form increments of time. This statement does not mean that the model

results are to be obtained using unequal time increments; rather, it

means that the calculation of M may use unequal immem,nts of time.

Since equal time increments were used to obtain the moiel results,

the obtaining of model results at unequal time increments will neces-

sitate the use of interpolation from the equal time increment data.

This is discussed in a later section entitled, "Interpolation".

The minimization problem has a long mathematical history and its

study has resulted in the creation of much beautiful mathematics.

With the advent of computing machines there has appeared renewed

interest on the part of mathematicians to obtain effective numerical

algorithms for its solutio4t There is, however, a fundamental dif-

ference between the problem as we have considered it and the problem

as the mathematician has traditionally-viewed it. In the typical

mathematically posed version of the problem, a family of functions

and a set of parameters Is given txgether with an expression involving both the

fimxtioms ard the pa:nmeters. probUm is to then determine the values

1



of the parameters so that %ken the resulting functions are used to

evaluate the expression, the expression asstabes a minimum value.

As an example, consider

X
4

by the expression

of X. In this example,

X
3

; the parameters are

the problem of

aX + bX
2

+ cX
3

the family of

a, b, and

to be minimized is

10

approximating the monomial

for a known set of values

functions is X., X
2

and

c," and the expression MI

3,i2Del (aX bX2i cX.L1
%

i=l

10
The symbol E indicates that the square of the quantity in

i=l
brackets is to be evaluated for the prescribed values X1, X2, X3

etc. up to and including x10, and the results totaled. The stu-

dent will note that for each triple of values, (a,b,c), there existi

one value for M. The problem then, is to determine the value of each

of the parameters, ad), and c, which render M a minimum. As this

example shows, in the mathematically posed version of the problem, the

family of functions was prescribed or given beforehand, whereas in our

problem they are not given. In fact, they are not even known, because

all that is given is a set of program statements whose execution by

the computer result in a set of numbers which can be used.to evaluate

the criteria function which is to be minimized. This fundamentak dif-

ference in the two problems means that much ofothe previous mathematical

work is not readily applicable to our problem. \,

For those students who have had advinced mathematics, the problem

as posed using the programming language BASIC is more closely related

to the mathematical problem of determining by least squares, or some

minimization technique, the parameters occurring in a differential

equation when it is not possible to write down an explicit form of the

solution of the differential eqUation and resort must be made to numer-,

ical methods of solution. This problem is recent and digificult and



has 811910 COMO into prominence with the advent of the digital computer.

For these reasons there is a shortage of useful results and thus we

cannot expect conventional mathematical analysis to be of great'as-

sistance in the solution of our problem. Nevertheless, the proiolem as

posed in the BASIC language has a distinct advantagii over the classi

cal mathematical method of analyzing problems. In only rare instances

is the investigator fortunate enough to be able to mathematically

formulate the problem in such a manner that he can "capture the

essence of the phenomena" and also solve the resultant moel equa-

tion, or equations, in closed form. Because of this diffi ultylof

obtaining a complete mathematical description of the phenome,na, the

investigator frequently avoids mathematical modeling alt6gether and

resorts to straight curve fitting with polynomials. He then may

attempt to attach some kind of meaning to the coefficients of the

polynomial. Such an attelipt is difficult at best because there is

nothing biological or natural about the family of monomials 11\ X,

X
2

, X
3
; etc. They possess no inheyent biological or natural charact-

eristics. In contrast, an expresston of the problem in a programming

language results in a computer pkogram which is a direct realization

of the investigator's concept of the behavior of the phenomena and

consequently the parameters enter the problem in a more natural way.

Because of this, it is usually possible to associate a biological

characteristic with them and hence, the iask of gainng insight is

much easier using the programming language formulation than using

the mathematical formulation.

It is known that for conventional mathematically posed minimi-

zation problems that there may exist two or more relative minimum

points. In terms of our notation this means that there can exist

two or fore distinct values of A (called critical or extremum

points) for whidh M is a local minimum. Thus, there can exist two

'values of A, say Al and A2, such that the value of M at Al

is less than the value of M at local or nearby points of Al and

also the value of M at the point A2 is less than the-value of

M at points in the near neighborhood of A2. The value of M at

Al need not be the same as the value of M at A2. The points Al

and A2 are called relative minimum points or local minimum points.

Figure 4.1 indicates a minimization curve having three local
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minimum points 111, P2, and P3. P1 is the true minimum point.

The problem of determining the number of relative minimum points,

their location, and the value of M at these points, is a very dif-

ficult problem. At the very least, it is more difficult than the

original minimization problem. An effective and practical method of

determining such points is still in the process of being developed.

In actual practice the problem is resolved with the aid of the in-
. vestigator's intuition, other knowledge of the phenomena the inves-

tigator may possess, or "brute force" computing. Thus, in our

formulation of the problem we too will use the insight, etc. of the

investigator.

The success of all minimization techniques rests on the assump-

tion or hope that our model sufficiently well represents
s
the phenomena

under investigation and that our experimental data is sufficiently

accurate, so that for the Mbasure of closeness we Select, there

is.only one minimum point. If there are local minimum,points, we are

further assuming that we know enough about the problem to "guesstimate"

the initial value of the parameter so that our search routine will

"find" the parameter value giving the minimum value of M. The impli-

cation of this statement can be more fully appreciated by examining

TFigure 4.1. We see that P1 is the minimum point and that points

P
2

and P
3

are local minimum points. Thus, we are hoping to guess

a value of A in the neighborhood of A = 2, and to select an initial

step size small enough so that we do not step over into the neighbor-

hood of A = 7, or A = 11. In this example a step size of one unit

or a half unit would be satisfactory. There are techniques for de-

termining an initial guess and they are discussed in other sections

of this chapter.

The question of vhat measure of closeness, i.e. what norm or

criteria function, .to use is not a tri#ia1 question since, as we have

seen, differen4 norms may give different4values for the parameters.

The selection.of the norm is largely at the investigator's discretion

and such techniques as plotting, comparison, other means of experi

mental verification, etc. are used in the-final determination of the

parameters. It is frequently helpful to determine-the parameters

using two or more norms thus providing a check pn the consistency

of the model and the work. This statement is based upon the premise

4. 6
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(not proven) that if the model and the data are consistent, the

value of the parameter yielding the minimuM M for one norm "mid

be equal to or very close to the value of the parameter yielping the

minimum value for a different norm. Thus, if two widely Offerent

parameter values are obtained under two different norms there is

serious reason to question the investigation. In summary, the deter-
_

mination of parameters occurring-in most complex modits-is

art, not A science.

An Automated.Iterative Procedure or Algorithm

It has probably occurred to the student that the nethod described in the

pnmeding chaptew for determining the-parameters could be aulxmated and that sudh

a procedure would be very desirable. This may be done by writing a computer

program that mimics the necessary decision-making process and then

carries out all of the prescribed alterations of the initial parameter

estimates. Such a program is called an algorithm. An algorithm is a

specified procss or set of instructions for achieving a prescribed

goal. In contrast, the programs that were developed in the first two

chapters are called models because they are analogous to the mathemati-

cal expressions (equations) which describe or govern a phenomena. The

principle characteristic that distinguishes an algorithm from a model

is that the .objective of the algorithm is usually precisely specified;

whereas the objective of a model is usually to obtain insight into the

phenomena. An algorithm may be part of a model since the achievement

of a definite goal, such as the determination of the value of a func-

tion, may be an integral part of a model. The subroutine which cal-

culates a random number is an example of an algorithm. There are

different algorithms to solve the same problem or classeS of problems.

The choice of which algorithm to use can depend upon such factors as

(1) the kind of computing facility available, (2) the accuracy

desired, (3) the amount of computing permitted, etc.

A .great deal of effort has been devoted to attempts to derive suc-

cessful minimization algorithms and to more clearly delineate the con-

ditions or hypotheses which will insure the success of such procedures.

This tank is not easy because the conditions for their success must not

be so restrictive that these conditions prevent the procedure from

being applied to a significant problem. Neverthel ss, mathematicians
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have been quite successful in deriving algorithms which do succeed

under very br3ad and general conditions. There also exist algorithms

for which no proof of their general success can be given, but which

do succeed admirably in a large number of cases. Proven algorithms

may fail because one or some of their necessary conditions have not

been met by the problem whereas quite heuristically based algorithms

may succeed ticause of something exceptional about the problem under

investigation.

The trial and error technique that we have described is an

WLrexample of a frequently successful technique t is also quite gen-

eral in that it may be readily adapted to a l rge variety of problems

with an expected high probability of success. However, there is no

guarantee that the method will converge, i.e. reach an answer, or

that if it does converge, that it has converged to the correct solu-

tion. For these reasons it is mandatory, not just prudent, that the

investigator check his results.

A Minimization Algorithm

The problem is to develop an algorithm that will determine the

value of A that will render the quantity M a minimum. This will

be accomplished by writing a computer program that mimics an orderly

human decision making process. One possible orderly process is the

following. Guess at an initial value for A and evaluate M. Denote

this value by AO and let H be a amall positive number. Increase

AO slightly to AO + H and again evaluate M using the new value

of A. If this latest value of M is less than the original value,

we have improved our initial guess. Suppose this were the case. In

this event we shoutd again increase A slightly, and evaluate M.

Ifothis new value of M is less than the previous value, we replat

the process until we reach.a value of A which no longer decreases

M. We denote this value of A by Al. In the event that our initial

increase of AO to AO + H had not resulted in a decreased value of

M we would have "proceeded in the opposite direction" by decteasing

A to AO - H and then evialuating M. If this had resulted in a value of

M less than the original value, we again would have decreased A to

AO - 2H; M would have again been evaluated, compared with the

9
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previous value, and the process repeated until we arrived at a v

for A which would no longer have decreased M. Just as before

this value of A is denoted by Al. 'At this point the value of the step s

is reduced to say 11/I0, and the entire procedure repeated us g the

point Al as a'starting poiiit. Once the new endpoint is ached,

the value of the step size is again reduced and the entire process

is repeated using the last determined end point as the new starting --

point. In this way, by repetition,.the extreme value can be deter-

mined to as many significant figures as desired. The procedure is

terMinated when the step size is less than a predetermined value.

A program for the determination of G, the growth coefficient,

in the constant environment model using the empirically determined

population data of the United States from 1790 to 1960 is given in

Figure 4.2. The corresponding flowchart is listed in Figures 4.2a

and 4.2b. The criteria function has been denoted by Ml, rather

than M, and the student should be able to readily follow the program

by comparing it with the flowchart. The flowchart does not depict

the evaluation of M1 in detail because M1 is 'arbitrary and the

minimization program is independent of the specific criteria function.

By simply changing the calculation of the criteria function, the pro-

gram may be used to determine the value of A which minimizes other

criteria for closeness. The calculation of M1 is accomplished in

statements 300 to 385, and in this example M1 was chosen to be

the sum of the squares of the deviations. We emphasize that the pro-

gram may not always be successful since its success may depend upon

a "good" initial estimate of the parameter and on the fact that there

exist no local minimum points between the initial estimate and the

extreme value of the parameter. A guarantee of the success of a given

search methad would require a careful statement of the conditions

necessary for success and a proof of the convergence of the search

method under the specified conditions. Such a task is difficult at

best and would require advanced mathematics and so will not be dis-

cussed here. In defense of our cavalier attitude, it should be pointed

out that such Convergence proofs rely on hypotheses which are usually

very difficult to insure and hence, are'of little or no use to the

investigator. In essence, one just tries and hopes for the best.
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1 REM AUTOMATED ONE,DIMENSIONAL SEARCH

5 REM CONSTANT ENV. MODEL, U.S. POP. DATA, ONE YEAR TIME INTERVAL

10 DIN P(50),R(50)
12 DIM P1(100)
15 GOSUB 500
20 PRINT "INPUT THE INIT. GUESS A AND THE INIT. POP. P(0)"

26 PRINT
30 PRINT "INPUT THE INIT. STEP srms H AND THE LIM. STEP SIZE

35 INPUT Hal
36 PRINT
40 PRINT "INPUT THE MAX. NO. OF ALLOWABLE STICPS, Cl"

45 INPUT C1
46 PRINT
ler PRINT
48 PRINT "THE VALUES OF A, MI AND H ARE

50 LET Cm0

55 GOSUB 300
60 um mo=mi
65 LET A=A+H
70 GOSUB 300
95 IF M1<=2.10 GO TO 110

-100 LET A=Ar.H

105 GO TO 200
110 LET C=C+1
115 rF C4C1 GO TO 125

120 GO TO 400

125 LET A=A+H:L'Efy0=M1

130 qosus 300
135 rF MlomMO GO TO\110

137 L/IX

11t0 LEP RIH/10
145 rF Ht'ulE1 GO TO 450

150 GO TO 65
200 LET AgA01
205 GOSUB 11

210 IF MI GO TO 225

215 LET AgA H
220 GO TO 14
225 LET ORC+1
230 IF 0011C1 GO TO 240

235 GO TO 400
240 LET MOgM1
245 GO TO 200
295 REM INSTR. NOS. 300 TO 385 EVALUATE MI

Figure 4. ?
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300 LaP1(0)-P(0)
301 FOR I=1 TO 17
302 FOR J=0 TO 9

303 LET P1(J+1)=P1(J)+A'Pl(J)

304 NEXT

305 LET P(I)=P1(J+1):LET P1(0) P(i)

306 PRINT P(I),E(I)
307 NEXT
350 LP
355 FOR I=0 TO 17
360 LET D=ABS(P(I).-E(1))

365 LET S=S+DiT

370 NEXT I
05. Lrr mi=s
380 PRINT A,MM,H
385 RETURN
40o plawr "EXCEEDED MAX. NO. OF STEPS"

405 PRINT "THE VALUES OF A AND MO AREP
410 PRINT A, MO
415 STOP
450 PRINT "SEARCH COMPLETE. THE VALUES OF A, MO AND C ARE"

455 PRINT A, MO,C

460 STOP
495 REM INSTR. NOS. 500 TO 525 ENTER THE EXPERDIENTAL DATA

500 DATA 3.9395.31,7.24,9.64,12.87,17.07,23.19,31.44
505 DATA 39.82,50.16,62.95,75.99,91.97,105.71

510 DATA 122.73,131.67,150.7,119.32
515 FOR J=0 TO 17
520 READ E(J)
525 NEXT J

530 RETURN
540 END

READY

Figure 4.2 (cont4nued)
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Statements 20 to 45 relate to the required input necessary to

use the program. Instructions 20 .and 25 are self evident. State-

ment 30 requires an initial step or increment size H, And H1

designates the smallest or stopping step size. In order to prevent

possible endless looping or searching, a maximum number of allowable

--steps must be -entere4 t4e-procitram.--21215-is-provided--for
ments 40 and 45. For the results presented in this chapter, the

value of 100 was used and most runs were completed in less than

20 to 25 steps.

Starting Values

In order to use the program developed in the previous section, it

was assumed that the investigator had obtained, by one means or another,

a good initial estimate of the parameter. In this section we indicate

some methods for obtaining such estimates.

An obvious yet simple method for obtaining a starting value is to

write a program for evaluating ma for an arbitrary input value of

the parameter. Then by examining the results for various values of

the input parameter it is hoped that enough insight is gained to per-

mit a close estimate of the required parameter value. This is the same

procedure that was carried out in Chapter III to evaluate G. The pro-

cess may seem simple.and naive, but it is plaisantly quite successful.

The method aleotmis the valuable auxiliary attribute of providing further

insight about the problem. The investigator may even find that his

hypotheses or the program he developed using these hypotheses, is in

errorl

A second method is to guess at an interval which you "feel" con-

tains the true value of the parameter. Denote the smaller of the

interval end points by L and the larger of the int9iva1 end points

by R. This interval is then subdivided into n eglial intervals and

M1 evaluated at each of the subdivision points. The subdivision point

corresponding to the least value for MI is then taken to be the

starting point. The method can be used as a basis for an automated

searching routine by merely applying the same subdivision process

again to the subinterval containing the minimum value of M1 and

repeating the process until the desired accuracy is obtained. (See

:4
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problem 4). This process is called the uniform interval search

method. The process will fail if the interval points are chosen

incorrectly and Figure 4.3 depicts what could happen if the ini-

tial intervals were selected as shown. In this case the uniform

search method, using an interval size of one unit, would estimate that

a value of A near 5 or 6 would be a "good" starting value where-

value of-----A-- near 3 or 4 would be much better. In fact
1

a

value A near 5 or 6 will-result in the uniform interval search

technique converging a value sOnewhere near A = 5.5 rather than in

the neighborhood of = 3.5.

A third method of determining an initial starting, value is the

random search method. This is just a simple variant of the uniform

search method wherein a point in the interval from A=1. to MDR

is chosen at,random and the value of G.M1 calculated. L and R

denote the left and right extremities of the interval which is as-

sumed to contain A. A second random point in the interval is then

selected and M1 again evaluated. If the second value of M1 is

less than that corresponding to the first random point, keep the

second random point and repeat the whole process with a third random-

ly selected po40.... If the second value of M1 is not less than the

first value of Ml, keep the initial A value and repeat the whole

process with a third random point. As many points are chosen as is

desired or as one has time for. The process can fail in a manner

similar to the way in which the equal interval search method fails

and for the same reason. If it is known that the dependence of M

on A is such that the curve of M vs. A is concave upward for all

values of A in the interval, then it is possible to considerably

shorten the random search tec4ique. A curve is said to be concave

upward in the interval (L,R) if, as A increases from L to R,

0.10"

the slope of the tangent line to the curve always increases. A con-

cave upward curve "holds water" providing its minimum point is not

at an end point. It also has the property that a line segment join-

ing any two points on the curve is such that all points on this line

segment lie above the curve, i.e. if the curve was "filled with.

water" all points on a line segment joining any two points on the

water-curve interface would lie entirely within the water. It will

be ieen in the next section that if the criteria function is concave

upward, this property is very useful.

146
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Program Results

In this section we discuss the use of the program as well as pre-

sent some impf(cations of the results obtained from it. The program

considers the Malthus model and is used to determine the growth co-

efficient corresponding to the U. S. population data as given in

Table 3.1. The criteria for closeness was chosen to be the $um of

the 'squares of the deviations and Table 4.4 lists typtsal program

results. Runs numbered 1 to 15 correspond to a variation of the

initial population and in the first run the initial population was

chosen equal to-that given in Table 3.2. Por this run the value of

0.26175 was obtained and the value of the criteria for closeness.

M1 was 4545.714. This parametei value was reached after eight

evaluations from an initial guess of 0.262. In each run, the ini-

tial step size H was taken to be unit change in the last significant

figure of the initial guess and the minimum step size was selected as

one-thousandth of the initial step lize. The runs were chosen in the

order they occurred to your author at the tinuil.! Hence, they are not

arranged in any completely systematic way nor are they selected in the

most efficient manner. They are presented in this order to illus-

trate how one begins examining such results. Hindsight always beats

foresight. The use of an excessive number of digits in presenting our

results is done for purposes of illustration. The comments made in the

previous chapter conce_Amg the proper number of significant digits to

use in an actual investigation still apply.

An examination of runs 2 through 15 of Table 4.4 reveals that

as the initial population is increased, the value of M1 decreases.

In fact, for an initial population of 11.0 million the value of M1

is 941.4217; almost one-fifth of that obtained in the first run.

There is a corresponding large change in the calculated value of A

which is 0.18101. The small value of M1 indicates that this latter

curve is much closer (in the sense of least squares) to the actual

population curve than is the curve corresponding to the first run.

However, the difference between the iniAal population of 11.0 million

as compared to the actual ivit01 population of 3.93 millitim is pro-

bably far too large to tolerat\and consequently the growth parameter

Of 0.18101 is not acceptable. This is an example of the well known

fact that the least squares closeness criteria tends to force the

8
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LEAST WARES

P(0)

Run No. Init. A (millions) A .111
c

n
1 0.262 3.93 .26175 t4545,714 8

2 0.262 5.00 .24272 3234.665 8

...._ ...

3 0.24 6.00 .22838 2382.822 9

4 0.24 7.00 .21630 1784.66 9

5 0.21 8.00 .20586 1376.996 9

6 0.21 9.00 .19667 1118.389 10

7 0.20 10.00 .18844 980.1222 11

8 0.19 11.00 .18101 941.4212 3

9 0.18 12.00 .17422 986.7569 9

10 0.16 11.5 .17754 954.4008 13

11 0.17 11.2 .17960 944.192 5

12 0.18 10.5 .18464 940.3965 14

13 0.18 10.8 .18244, 942.0019 10
4.

14 0.18 10.9 .18172 941.2874 7

15 0.13 11.1 .18030 947.39,9 3

16 0.1 3.93 .26175 4545.714 17

17 0.9 3.93 .26175 4545.714 23

18 -0.5 3.93 .26175 4545.714 23

19 -1. 3.93 .26175 4545.714 27

,20 2. 3.93 .26175 45145.714 37

2/" -3. 3.93 .26175 4545.714 47

Program Results from Automated Search Routine

TABLE 14.4



two curves closer together for large ordinate values at the expense of

smaller ordinate values. In this example the relative error for the

'smallest ordinate. Value or population is about 173% whereas the rela-

tive error for the largest ordinate value is less than 5%. Thus, the

two curves are much closer, in a relative error sense, in that region

where the ordinate values are the largest. We again remind the student,

that the time increment in our model was chosen to be ten years to

correspond to the time increment of Table 1. Thus, the yearly growth

coefficient is approximately one-tenth of this or 0.018. Actually

this is not quite correct since a yearly growth would be compounded

and hence, the yearly growth coefficient cannot be obtained by simply

dividing the decade growth rate by fen. (See problems 6 and 7).

Since the value of Mf was increased after increasing the initial

population beyond 11.0 million to 12.0 million, no furthernincrease

of the initial population was attempted. The student should note that

such a simple *test is certainly not a proof that the criteria function

will continue to increase as the initial population is increased. This

is merely an assumption on the,part of your author. In the absence

of such a proof, "some" confidence in the assertion that further in-

creases of the initial population would not result in a smaller value

for M1 could be obtained by trying a few other values of A greater

than 11.0 million and noting that the value of M1 is increased.

By varying the initiai population as well as the value of A, in

effect, a two-parameter search was conducted. The parameters were A, a

.the growth coefficient corresponding to a decade; and P(0), the

Oitial population. In the next chapter we shall discuss such two or

more parameter search routines.

In runs 16 through 21, the initial population was always chosen

equal to that of the tabulated initial population. The initial guess

at the growth coefficient was varied and an examination of the results

reveals that the same value for the growth coefficient is always ob-

tained. This insensitivity to an initial guess is a very desirable

property for the closeness criteria to possess. Frequently, one is

not so fortunate and widely drfferent initial guesses produce widely

different final values. The cycle count reveals that as the initial

guess strays farther away from the true value there is a corresponding-

increase in the number of cycles necessary to reach the final value.
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By increasing the value of the step size H, as the initial guess

was chosen further away from 0.26175, the cycle count could have

been considerably decreased. In all of these pAblems, H was

chosen to be 0.1. The fact that the procesa converged to the same

final value for such a wide range of initial guesses indicates that

the graph of M1 versus.A "holds water", i.e. is concave iiward.

In mathematical optimization theory such a property is.called con-

vexity. This is a very desirable property and nearly all search type

algorithms that have been proven to be successful require this proper-

ty. (See Cooper and Steinberg).

Tables 4.5 and 4.6 display results fot different criteria of

closeness. In Table 4.5 the maximum of the magnitude of the devia-

tion was the closeness criteria and.in Table 4.6 the criteria for

closeness was the maximum magnitude of the ielative error. For an

initial population of 3.93 'million corresponding to the actual

population in 1790, a value of 0.26254 was obtained for the growth

parameter using the maximum of the magnitude of the deviation for the

closeness criteria. A value of 0.27280 was obtained for the same

initial population using the maximum of the magnitude'Of the relative

error. Each of these parameter values is very'clDt.;e to the value of

0.26175 obtained by using the least squares measure of closeness.

Table 4-5 also shows a similar result when tie initial popula-

tion is varied. However, such is not the case when the closeness

criteria is the maximum of the relative error. For this criteria,

the best result is obtained for an initial population of 5.0 million,

not 11.0 million. This is due to the fact that a large difference

between the initial populations results in a large initial relative

error which is independent of the, magnitude of the growth coefficient.

In fact, as the.assumed initial population grows without bound the

initial relative error also grows without bound; that is, becomes

as large as you care to make it. Further examination of Figure 3.7

reveals that there is a break or discontinuity in the slope of the

empirical curve at about 1930. 4 The presence of this discontinuity

can manifest itself by making the determination of the parameter much

more difficult. For a positive growth coefficient, the Malthus

(model) results in a computed curve of constantly increasing slope

and Ilence, the obtaining of G by a comparison with a curve having

0.1
4.20



ofr.

.41 TABLE 4.5

Max. ABS (Deviation)

* P(0)
Run Init. A (millions) A El C

1 .17 11.0 .18220 9.9945 5
;-

2
(

%

, .17 10.0 .16949 11.741 10
,--

3 .18 3.93 .26254 27.50347, 19

4 .20 7.00 .21704 18.05097 12

=of

TABLE 4.6

Max. ABS (Reltive Error)

4014,00.

1 .20 3.93 .27280 0.325571 17

2 .25 7.00 .135 .7811705

39 .25 4.00 .27116 .2177319 9

4 .25 5.00 .25119 .2722646
.

19

5 .25 4.5 .26028 .2809245 10

6 .25 3.5 .28361 .3608289 7

7 .29 3.2 .29192 .3886122 5

Comparison of Results



a broken slope will be difficult. If the experimental data

"scattered" or has anomalies which are believed dUe to experimental

error, it may be advisable to "sthooth out" the-data. The study and

application of smoothing techniques is a matter for advanced mathe-

matical statistics courses and will not be considered here-. These

techniques are usually averaging techniques and a very common, but .

crude, technique is the French Curve technique. Your author-has

seen this used with occasional surprising success. The technique

consists in visually free-handing a curve through the data with the

aid of'a French Curve. The free-hand curve is then used as the

empirical curve and the model parameters obtained by comparison With

The procedure is easy to apply and can be used as a possible

check technique:

Intrpolation
The parameter determination methods that we.have been discussipg

require the comp,:ted ane experimcntal pointb to be corresponding

points. The student will recall that two sets cf data points are

saia Lc be corresponding data points if the absci.-sae of pairs of

points coincide. As stated in the previous chapter, the acYfevement

of corresponding points may be ielpossible due to li:itations of

experimental technique. ft is the purpose of this section to describe

a simple method of obtaining corresponding e.,:pc;Limental and computed

points.s There are other, far mare elegant and sophisticated, inter-

polation methods and they are presented in courses in numerical anal-.

ysis. The meth d presented here will be based upon the elementary

notion of propo tion, ricl is called linear i:nterpolation.

Since the omputational and experimental points are interlaced

points (See Figu 4.7), we have a choice of interpolating the experi-

mental data to obtain experimental data points at points corresponding

to the calculated points or we haye the choice of obtaining from the

calculated data, interpolated points corresponding to theiexperimental

data points. We choose the former and the student should realize that

the interpolation procedure to be described is independent of such a
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In Figure 4.7 the points denoted by small circles represent

calculated po pts and are eguidistant'on the T axis. The abscissae

are indicated by 111, I=1, 2, 3, The sgdares indicate

experimental points and their abscissae, which are unequally spaced,

. are denoted by T
E J=1, 2, 3, is desired to obtain

an estimate for:the experimental daia curve at the points who-se ab-

scissae are TC, I=1, 2, 3, , This can be done by determinin

two experimental points whose abscissae define an interval containing

a TC point and then estimating the value for the experimental curve

at T1 . We will denote this estimited value by El. In the

figure, the abscissae 111_1 and T of th, experimental points

and E define an interval which contains the abscissae TC
J-1
of the calculated point CI . A similar remark obtains about the

abscissae of the experimental points Ej+2 apd Ej+3 with regard

to the _abscissae of the computed point C . .The estimation of

the prdinate value of the point on the/experimental curve whose ab-
C

scissae is T
I

will be based upon the assumption that the experimental

curve is a straight line between the points Ej21 and Ej . , This

assumption implies that if the abscissae were the midpoint of the

interval (T
E TE ) then the value of' E

I
would be the value of

J-1 J

E plus one-half of the difference of the values of E and EJ-1
This is equivalent to saying that would be the average value of

E and E if TC were the midpoint of the int.,:rval (TE
-

TE).
J-1 J1 J

If TC is only one-fourth of the it-ay from T
E
-1

to. 1
E

, then the
J

value of E
I

is the value of E plus one-fouth of the differenCe

between E ane EJ-1
. Thus, the important relation is the fraction

of the distance (T - T ) that TC is from TE
C E lE E

and this fraction is merely the ratio (T1 - Tj...1)/,(134.1 - Tj). We

thus conclude that the value of the experimental/curve for any point

C
-TT lying in the interval (T3_1 , TJ) _is given by

E E
E
I
= EJ-1

+ (EJ EJ1 ) (T
C

T
E

1
) / (T T ).

-

The same expression can be derived by using similar triangles and this

is commonly done%

4.24 154
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We reiterate, the method assumes that the experimental curve is

a straight line (or is very close to being a straight line) between

any two experimental points whose abscilisae are adjacent points, so

that the experimental value obtained by linear interpolation is equal

to or close to the actual, experimental value. This assumption is

actually quite good if the points are close enough together ana the

\ data is not scattered or noisy. Because of experimental difficulties

\it is frequently the case thai there is considerable scatter or noise

in the experimentally determined data and for this reason it may be

better to interpolate on the calculated data since they are usually

not so scattered. The term scattered or noisy data refers to the

location of the experimental points relative to a "reasonably smooth"

and "simple" curve drawn through them. If the distances of.the ex-
,

perimental points from this curve are'random and widely fluctuating

the scatter is said to be large whereas if the'simple smooth curve

passes through or is very close to each experimental point the scatter

is said to be small. Your author realizes that this is a very heu-

ristic definition and that it Contains fuzzy terms, but he hopes that

you, the student, get the general idea. The phenomena of scattering-

is usually dealt with by smoothing procedures Which, as we stated

previously, are best left to another course.

A'canputer subroutine to carry out the interpolation will consiit of

two parts. The first part will be a search routine to determine the

pairs of experimental points whose abscissae contain the abscissae

of a computed point. The second part will consist qf the interpola-

tion calculation. The required input will be the coordinates of the

set of experimental points and the absciSsak of the computed points.

The set of experimental points shouXd be arranged and labeled in

order of increasing abscissae for ease of determining the ordinate

pairs. If this is not the case, an ordering routine would be,first

used to label the set of experimental points each in the order of

increasing abscissae. It is assumed that, as a result.bf calculation,

the abscissae of the calculated points are so ordered. The flowchart

in Figure 4.8, depicts the procedure and assumes that the labels

I and .1 are such that increasing integral values of I and .1

correspond to increasing values'of the abscissae of the respective

computed and experimental points. Since the interpolation subroutine

4.25
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requires the existence of both the experimental and the calculated

set of points, it is assumed.that these data sets are available

upon entry to the subroutine lrha aubrOutine is called whenever

the continuance of the main program requires interpolated values.

Consequently, the.subroutine may be used many times in,a single

program. The flowchart was constructed assuming that

TE < TC and that TE TC where M .and N

are the number of expprimental and computed points respectively.

Taken together, these two inequalities insure that the span of the

abscissae of the computed points lies entirely within the span of the

abscissae of the experimental points. The process of detereining a

function at points between where the function is defined is called

interpolation and the process of determining the function at prAnts

outside the span of the abscissae points where it is defined is Calied

extrapolation. The methods for extending or extrapolating a function

to points exterior to the domain over which it is known are v4y simi-

lar to interpolation methods. However, experience has proven that the

results are much less reliable and extrapolation should be avoided if

reasonably possible.

4.27



PROattriS

CHAPTER IV

.1041e
4.4. la,

1. Evaluate G by modifVing the program given in Fiyure 4.2 to

(a) Minimize the maximum shagnitude of the deviations.

(b) Minimize the maximum magnitude of the relative error.

(c) Minimize the sum of the squares qf the telative error.

2. By varying the initial population determine the value of G for

M1 equal to

(a) The sum of the squares of the deviations.

(b) The sum of the squares of the relative error.

(c) The maximum of the magnitude of the deviation.

(d) The maximum of the magnitude of the relative error.

3. For each of the four norms listed in problem 2 above, modify and

use the program to find the minimum of

(a) A2 + A - 10

(b) A4 + A
2 - 100

What are the differences in the results when the'different norms

are used?

4. (a) Modifdy the program given in Figure 4.2 to use an initial

guess calculated gy one application of th .! equal search

method. Using the data as given in Table 3.2 calculate

an initial estimate to the Malthusian growth parameter with

L=0.05 and R=0.95 and n=20.

(b) Write a uniform search program and make up your own examples.

_Discuss the results..

5. (a) Draw a flowchart of the random search method.

(b) Write a computer program using the random search method to

find the minimum of

A2 +iA - 10 and A4 + A2 - 100 .

6. Modify the program of Figure 4.2 to calculate the population

yearly for 1800 to 1960. By comparing the calculated population

each decade with the gopulations given in Table 1 determine the

growth coefficient.

4.28
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7. Repeat problem 6 using

(d) Max. magnitude of deviation norm.

(b) Max. relative error norm.

(c) Sum of squares of relative error normi.

The following record of the World's population growth from

1800 A.D. to 1968 A.D. is listed in the table below..

(Emmel, 1973).

Year 1800 1850 1900 1930 1950 1960 1968

Pop. (Billions) 0.85 1.1 1.5 2 0 2 5 3.0 5

Calculate the growth coefficient.using the least squares close-

ness criteria and a time period of one year. Emmei estimates

the population of the world to be 4.5 billion people in 1980

and 7.4 billion in the year 2000. Do you agree?
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CHAPTER V

MULTIVARIABLE SEARCH METHODS

Introduction

Chapters III and IV considered the development of single variable

search techniques for minimizing a criteria function that depended.upOn'

4-single parameter. The methods were described by using as an example 1

the determination of the growth coefficient G in the Hylthus model ti*

obtain a correspondence with the United States census data of 1790 to

1960. The criteria function was the'least squares criteria and the

initial population.in the model was held constant and equal to the

actual population in 1790. Later, in another sequence of runs, the

initial population was also varied and for these cases it was found

that the numerical value of the criteria function could be considerably

reduced and that the value of G also changed accordingly. Since both

P(0) and G were simultaneously varied, the minimization of the cri-

teria function was, in effect, accomplished with the aid of a two vari-

able search.

In this chapter we will investigate the development of two or

more variable search methods with particular application to parameter

determination methods. As -was the case with single variable search

methods, the techniques have very wide applicability since a great many

diverse problems can be recast as minimization problems. Consequently,

by developing the programs in such a way that the evaluation orthe-

criteria function is done in a subroutine the ,programs may be applied

to a broad range of problems. By constructing this subroutine to cor-

respond to the criteria function appropriate to the particular minimi-

zation problem, the search routine program can be used as a method of

solution to the problem.
NN.

,

An Example

To illustrate the development of a tWo parameter Search program,

we will consider the problem of determining G and G1 in a finite

resource model of the United States population growth. The parameters

will be determined by comparing the model results to the United States

5. k.



population data from 1790 to 1960. The procedure will be a direct

extension of the single parameter.method and both 'G and G1 will

be obtained using the sum of the squares the deviation as the

closeness criteria. Hence, we will modify the finite resource model

computer program to calculate the sum of the squares of the differ-

ences of the corresponding points of experimental and calculated pop-

ulations. Furthermore, the time period in the model will be assumed

to be one decade to coincide with the time period in the census data.

Again, the procedure will be very heuristic and will consist in using

the program to evaluate the sum of the squares of the deviations of

the corresponding computational and experimental points for different

pairs of values of G and Gl. The values of G and GI. resulting

in the smallest sum will be assumed to be the true values. This is a

pure trial and error procedure, and as in the case of the guessing

method for the determination of a single parameter, we hope that our

intuition will be,increased as the number of trials increases. Fur-

thermore, for this simple model we are also hoping that only a small

number of guesses should be required.

The alterations necessary to the finite resogrce program are 4ery

straight forward and very similar to the modifications made to the

Malthus model. The program is listed in figure 5.1 and it should

be self-explanatory.

In the finite resource model the term G*P(I), for small popula-- 0

tions, is very much less than G. Thus, for small starting populations,

it is expected4that the model will predict Malthus or 3cponential-like

growth during the initial growth period. Furthermore, an examination

of the graph of the actual United_States population data also reveals
,

that the initial growth is exponential. These facts intimate that

using the value of 0.26 for the initial guess of G may be a good

starting value for this parameter. The obtaining of a reasonable first

guess for the auxialliary growth coefficient GI is more difficult.

However, it will be recalled that the derivation of the finite resource

model was based upon the assumption that G1 was very much smaller in

magnitude than G. Hence, a value of 0.00026 or 0.0026 might be a

5.2 63
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1 REM .T110, VARIABLE FINITE RESOURCE HEURISTIC SEARCH
2 REM
3 REM U. S. POP. DRTA# ONE DECADE TIME PERIOD
4 REM
5 REM'
6 DIM P(50)#E(50>
7 PRINT "INPUT O. 01 AND P(0)"
19 INPUT O. 01, P(0)
11 PRINT
12 PRINT
14 REM
15 REM LINES 2050 ENTER U. S. POP DATA
16 REM
20 DATA
25 DATA
30 FOR Joe TO 1?
49 READ E(J)
50 NEXT .1
57 AM
58 'REM LINES 60-80 CALCULATE THE POPULATIONS
59 REM
60 FOR Ims0 TO 17
70. P(I+1)0P<M1.(0-01*P< I ))*P( I)
80 NEXT I
82 PR/NT "DECADE CRLC. POP. EXP. POP, DEY. REL
ERR3R"
84 PRINI
85 REM
86 REM L INES 90-150 CALC. SUM OF SQUARES. S, RND PRINT RESULTS
87 REM
90 LET 5-0
100 FOR -0 TO .17
110 LET DIsP(I )-E( I
120 LET 5-5+D*D
130 LET FaID/E( I )
149 PRINT Lp(I),E(D, D. F
145 PRINT
150 NEXT I
155 PRINT
160 PRINT
165 PRINT " G Gi P(0) 5"
179 PRINT
175 PRINT 13.61,Fi(8),5
198 END
ipe END

3. 93, 5. 31, T. 24. 9. 64, 12. 8?, 17. 611?, 23. 19, 31. 44. 39. 82, 59.16
62,. 95# 75.99,91. 9?, 105. no 122. 78, 131. 67, 150. 7. in. 31

pie

READY

Program to Calculate G and GI in the Finite Resource Model

Fig. 5.1
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good starting value for the second parameter. If the limiting popu-

lation, or carrying capacity, C, of the United States were known,

the relation G/Gl = C would provide an initial estimate for

This discussion on the obtaining of starting valu4s was specific to

the finite resource model and quite heuridtle in natUre. The student

must remember that if very accurate initial 'guesses could be made, we

would effectively have the answers to our problem and then presumably

would have no need to use a search program in the first place. Other

techniques for obtaining starting values are discussed later in this

chapter.

A possible check on the accuracy of the program results can be ob-

tained by noting that if the finite resource model does produFe early .

time results which agree closely, with the tabulated data, it is to be

expected that the value of the growth coefficient obtained from the

model would closely approximate the value obtained in the Malthus model.

The checking of computer results in this manner is an exa4ple of using

the results of a simpler program, the Malthus program, to check the

results of a more complicated program, the finite resource program.

It is not expected that the results should be identical because the

programs and the hypotheses upon which they were built are not iden-

tical; however, any expected similarities in their results should be

exploited for purposes of checking the correctness cf the programs.

Tables 5.2a, 5.2b and 5.2c list results otr.ained from the

program. The detailed results of a typical run are shawn in Table

5.2a wherein G and GI were chosen equal to 0.345 and 0.0017

respectively and the initial population, P(0), was chosen as 3.93

million. The value obtained for S was 300.836. Column 2 lists the

calculated population and column 3 lists the actual population cor-

responding to each decade. The deviation, or difference of these two

populations ror each:decade, is listed in column 4 and the fifth

column lists the relative error of this deviation. It is seen that the

.,eviation of maximum amplitude occurs in the last decade whereas the

relative error of largest amplitude occurs in the seventh decade.

Thus, the deviation of maximum amplitude-occurs where the population

is.the largest whereas the maximum amplitude of the relative error

occurs at a middle decade and for a quite small population. This in-

dicates that different closenets criterih may produce model curves,

5. 4
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which compare differently with the experiMental data. The results

listed in Table 5.2b also 'contirm this fact. Table 5.2b illus-
,

, -

trates the results of'severai computer rhns corresponding to different

valuei of G and Gl. In-each run the initial.population was'idetn-

tiV to that recorded in 1790. Columns 6 and Tof this table, list
. ,

the deviation of maiimum amplitude and the r elltive error of maximuM ,

amplitude respectively.' The nuibers appearing parenthesis in

columns 6 and 7 indicite the dpcade in which the respective maximum
,

deviation and the maximum relative error occurred. The student will ,

note that,small changes in G and G1 ,produce large changes in. all

three measures of closeness; that is, in the sums of ihe squarett of'

the deviations, the maximum deviation and the maximum relative 3rro

The-various criteria functions are 'thus 'quite sensitive to the al!F"'

eters a and Gl. A comparison of the finite reSource mode results

with the Malthus model results in table 3.5 shows tha he least

value for the sum of the sqUares of the deviations w .4545 for the

Malthus model And only 301 for the finite reso ce model. This

indicates that the finite resource model giv:, resulti that more

closely fit the growth of the United Sta s population from 1790 to

1960 than does the Malthus model. I s to be emphasized that these
;

results confirm this conclusio5,enly when the sum of the squares of

the deviations closeness criteria is used as a basis fole the compari-
.

son of the two models. If a similar analysis is carried, out to ascer-

tain the relative merits of the two lels using a different closeness"

criteria such as the maximum deviation or the maximum relative error,

a different conclusion might be reached.

Table 5.2b further reveals that the least value for the sum of.

the squares of the deviations is obtained for G = 0.345 and G1 = 0.0017

In contrast, the minimum mQ,!cimum deviation is obtained for a value of

G = Q.33 and a value of Gl= 0.00145, whereas a minimum value for the

maximum relative error criteria is obtained for G = 0.35 and

G1 = 0.0018. All three of these sets of values for both the growth

coefficient and the auxilliary growth coefficient are fairly close.

Colmuquently, it is safe to conclude that a reasonable value ior G

is 0.34 with an error of approximately -4.-0.01. Similarly, a rea-

sonable value for G1 iv 0.0017 with an error of approximateiy
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RUN

REWR

INPUT 6, 61 AND P(0)
.?0. 345, 0. 0017, 3. 93

DECADE

..0

1

2 .

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

345

READY

CALC. POP. EXP. POP.

3. 3. 93 0

5. 25959 5. 31 -.

7". 02713 7. 24 -.

9. 36754 9. 64 -.
fr

12. 4502 12. 97

16. 482 1.7. 07

21. 7064 23. 1.9

28. 3941. 31. 44

36. 8195 39. 82

47. 2176 50. 1.6

59. 7175 62. 515

74 2576 75. 99

90. 5023 91. 97

107. 802 1.05. 71

125. 237 122, 78

141. 78 131. 67

156. 522 1.50. 7

168. 873 179. 31

Gi

I.. 70000E-03

P(0)

3 93

DV/. REL. ERROR

6504065 -9. 49274E-03

2/2874 -. 0294025

272463 -. 0282638

-. 41984 -. 0326216

-. 588045 -. 834449

-1. 48358 -. 8639751

-3. 04585 -. 0968783

-3. 00046 -. 8753506

-2. 94238 -. 0586598

-3. 23245 -. 0513495

-1. 73241 -. 0227978

-I.. 46765 -. 0159579

2. 09151 . 8197853

2. 45705 . 0200118

18. 1105 . 8767866

5. 82185 . 0386321

-10. 4366 -. 058204

300. 836

Detail Printout of Fin. Res. Model
Table 5. Za01
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G G1 P(0)

1 .265 0.001 3.93

2 0.30 0.001 3.93

3 0.33 9.001 3.93

4 0.33 0.002 3.93

5 .33 0.0015 3.93

6 .33 .0016 3.93

7 .33 .0013 3.93

8 .33 .0014 3.93

9 .33 .00145 3.93

10 .34 .0016 3.93

11 .35 .0018 3.93

12 .35 .0017 3.93

13 .35 .0016 3.93

14 .345 .0017 3.93

15 .345 .00165 3.93

16 .3425 .00165 3.93

S Mhx. Dev. Max Rel Erroi

12561.95. -50.81(17) -.411(10)

1534.52 -17.61(12) -.256(7)

5690.329 +44.75(16) -.297(16)

3743.266 -41.94(17) -.234(17)

410 7755 7 g.14417) (#'4" -.153(7)

136.98 -16.84(17) -.158(7)

892.0854 18.49(16)

io

461.3196 11.64(15) -.149(7)

397.3647 *899(15) 7.151(7)

315.8525 10.77(15) -.114(7)

325.1555 -13.67(17) -.0793(7)

450.7575 14.56(15) .111(1.5)

941.342 20.19(15) .153(15)

301.0446 -10.45(17) -.0969(7)

356.3005 12.74(15) .0967(15)

303.5757 10.46(15) -.106C7)

Comparison of Results, Fin. Resource Model, U.S. Pop.

ISame Initial Population)

Table 5.2b

)8
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.1* ^.4

Run G G1 P(0). S 'Max. Dev. Rel. Err.

1 .3 .0015 5.0 1619.42 ;27.95(17)
(

.272(0)

2 .3 .0012 5.0 282. 1.91(15) .272(0)

3 .33 .0014 5.0 2361. 27.61(15) . .272(0)

4 .33 .0015, 5.0 1222. 21.08(15) .272(0)

5 .33 .0017 5.0 422 -14.97(17) .272(0)

6 .33 .0016 5.0 612 15.03(15) ..272(9)

7 .25 .0015 8.0 6641 -54.76(17) 1.035(0)

8 .25 .001 8.0 735 -18.38(17) 1.035(0)

9 .25 .009 10.o 366 - 8.57(17) 1.035(0)

10 :25 .008 )8.0 506 11.52(16) 1.035(0)

11 .28 .001 8.0 5212 34.20(15) 1.035(0)

12 .28 .0012 8.0 1737 18.57(15) 1.035(0)

Comparison of Results, Fin. nesource Model, U.S. Pop.

(Different Initial Populations)

Table 5.2e.

5 .8
.9
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Table 5.2c lists results for different pairs of values of G

and Gl corresponding to different initial populations. Using only

these results as a basis we conclude that a variety of values may be'

Obtained for the two growth coefficients by varying both'Ve closeness

criteria and the initial population. The student will mean that

varying the initial population as well as the criteria function in

the Malthus model, also resulted in different values.for the growth

coefficient. We again emphasize that the decision concerning the

final choice of values for G and Gl must remain with the inves-

tigator since he alone must decide which closeness criteria he will

accept. Frequently, a graphical portrayal of the resu.lts correspond-

ing to the various best fits is an excellent aid in this decision.

In addition, outside constraints,, for example, themalcimumwmnitteadrug

tolerance in a drug dosage model, can be an overriding consideration

in the choice of a criteria function. We remark, in passing, that by

varying the initial population, as well as both growth coefficients,

we are in effect conducting a three variable search.

General Comments

In the course of the ta.ial and error effort required to obtain

estimates for the two parameters, it was noted that small changes in

G1 produced much larger changes in the value of the criteria function

than did small changes in G. Thus, the criteria function was found

to be more sensitive to -G1 than to G. It is frequently the case

that the criteria function is more sensitive to some parameters than

to otheri. It is,also the case that there can be a great range in

the magnitudes of'the final values of the parameters; that is, the

extremal values of some of the parameters may be very much larger

than the extremail values of other parameters. Both of these facts

suggest that during the search process, different parameteri may re-

quire different search step sizes, or equivalmtly, the same search

step site may not be appropriate for all parameters. If the criteria .

function is found to be insensitive to large changes in a parameter,

it is apipropriate to use a large step size when "searching on this

parameter"; ot the other hand if the criteria function is sensitive

to small changes in a ven parameter, it is appropriate to use a

V.
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small search step size when minimizing with respect to this variable.

Thus, in the automated two variable search ratine that we will

describe, we will make provision to permit a different search qtep

size for each variable. A measure of the sensitivity can be cite-

tained by making some trial runs with the previously described program.

In the next section, the development of a two variable search

routine is presented. Your author wants to emphasize that the routine

presented is just one of many different possible search routines.

the existence of different search routines is due to the fact

that in multivariable parameter minimization pr?blems there are

several ways to determine the many different possible paths which

can be used in the conduct of the search. For example, it is

possible to vary only one parameter until no further improve-

ment is obtained and to-then vary another parameter until no

further improvement is obtained. This process is repeated until

the effect of all of the parameters has been examined. The

procedure is then started all over with the first parameter and

the entire process is repeated until there is no further

improvement in the criteria function for any parameter variation.

This is the technique described in the next section. A different

search routine consists in varying each parameter in turn by a

specified small amount and then proceeded to the point yielding the

most improvenej t in the criteria function. Using tLis point, the

process is agaift repeated and a new nei4hboring poinr is found.

The process is terminated when no neighboring point reaults in an

improvement of the criteria function and the point at which this

occurs is taken to be the extremum point. If more accuracy is

desired, a smaller st s selected and the entire process

is again repeated. Th are many other search routines and

they are more or less n ependent of the criteria for closeness.

Because of th inh rent difficulties associated with multi-

variable search problem it is wise to use at least two different

routines to see if the am0 parameter values are obtaired. If

each routine produces a significantly different set of paramete

values, the results should be regarded as highly suspec , to s

the least. As in the single variable case, a principle
)
cause

such a divergence of anSwers is the presence of local relativgi
/

minimum points. Such points occur far more frequently in'two or

more parameter minimization problems than in single parametei

problems. /7/
5.10



The discussion of relative Minimum points for criteria functions

of more than ,one parameter is fascilitated by the introductiarof the
0

potation of A, 0, C, etc. for the parameters and the letter M for

the criteria function. For example, the parameters A 4nd B may kW'

identified with the parameters G and G1 in, the fiuite reso4Kce

model or they may be identified with P(0) and G in the Malthus

model. Our discussion will be restricted to the consideration of two

parameter problems. The student should have no difficulty extending

the ideas to three or more variable problems. As stated above, it is

known that there may exist two or more relative minimum points. 7Ela

terms of our notation, this means that there can exist two or more disr-

tinct pairs of values for A and pf called critical pointif for which

M is a local minimum. Thus, there can exist two distinct values of

A and of B, say 1 Bl) and (A2, B2) such that the value of M

at (Al, Bl) is less than the value of M at local or nearby points

of (Al, Bl) and also the value of M at the point (A2, B2) ia lesS

than the value of M at points in the near neighborhood of (k2, B2).

The value of M at (Al, Bl) need not be the samefas the value of M

at (A2, 32). The poirits (Al, B1) and (A2, B2) are called relative

minimum points.

5.10a
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The existence of relative minimum points in multiparameter mini-

mization problems is more serious than the existence of such points

in single parameter problems. Some of the reasons for this are: (1)

such points usually, occur with much greater frequency in multiparameter

proble6s, (2) the determination of the number and locaiion of these

points is more difficult because the dimension of the search.space is

higher, and (3) the fact that the sensitivity of each parameter to

a given step size may vary tremendously with each parameter frequently

results in local minimum points having an inordinate affect on the

search path.

-In the section entitled Minimization in Chapter IV, several

comments were made concerning difficulties associated with the aptili-

cation of search programs to single parameter problems. These comments

apply even more forcefully to multiparameter problems and the student

can rest assured that the greater the number.of parameters to be deter-

mined the greater will be the difficulty of their determination. This

is reflected in a greater increase in conceptualization time, program-

ming time, and especially computing time. This latter increase is due

to the accelerated expansion of the search space as the number of

variabl.s increases. R. Hellman speaks of this is° "the curse of

dimensionality" and the difficulty is well illustrated in the text by

Cooper and Steinberg. In fact, as the number of variables increases

the increase in the required computing time is so rapid that it is

rare that search problems involving more than five or so parameters

are attempted. Vigorous research efforts are presently being devoted

to this problem by computer scientists and applied mathematicians.

A Minimization Algorithm

In this section we develop an algorithm to determine the values of

the parameters A and B that will render the quantity M a minimum.

This will be accomplished by writing a computer program that mimics an

orderly human decision making process. One possible orderly process is

the following. Select an initial value for A and B and evaluate M.

Denote theseyalues by AO and BO respectively, and let H and K be

small positive numbers. H and K are the step sizes in the A and B

directions respectively. Increase AO slightly to AO+H and again

5.11



evaluate 14 using the new value of A together with BO. If this

value of M is less than the original value, we have improved our

initial guess. Suppose this were the case. In this event we should

increase A slightly to A0+2H, and again evaluate M using the

original value BO for B. If this new value of M is less than

-the previous value, we repeat the process until we reach a value of .

A, which when combined with BO no longer decreases M. We denote

this value of A by Al. In the event that our initial increase of

AO to A0441 had not resulted in a decreased value of M we.would

have "proceeded in the opposite direction" and decreased A to

AO-H and again evaluated M using the value of BO for B. If

this had resulted in a lue of M less than the original value, we

would have further decrea d A to AO-2H. M would have again been

evaluated, compared with the previous value, and if it were less the

process would have been repeated until we arrived at a value for A

which when combined with BO would no longer have decreased M. As

above, this value of A is denoted by Al. We are now at the point

(Al, BO) and, using the same procedures, will improve our guess on

BO by increasing B slightly fran BOvxto all+K and omtvaximg the values of M at

the paints (ALBS) and Va,B0440 . As befe,re, if the value of ti corresponding to the

point (Al, BO+K) is less, we repeat the process until M is no

longer decreased. This new point is denoted by (Al, 81). If the

point (Al, BO+K) had resulted in an increased M, as compared to

the value of M obtained at (Al, BO), we would have decreased B

from BO to BO-K and evaluated M. If the value of M were less,

we would further decrease B from BO-K to BO-2K, compare the

respective values of M, and repeat the process until M is no

longer decreased. We denote this point by (Al, Bl). This point can

be thought of as our new starting point, (AO, BO), and the entire

process repeated arriving at a new ending point (Al, B1). Using the

last ending point as a new starting point, the process is repeated

cigain and again until there is no change in either 'AO or BO.

These values can be accepted as the desired values for A and B or

more refined values can be obtained by decreasing the size of the

search steps H and K, to H/10 and 1(110, using the final values

of A and B, Al and 81, as the new starting points and then re-

peating the entire process. By a repetition of these procedures still

more refined values for A and B may be obtained.

5.12
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The minimization problem for two parameters can be likened to

the problem of finding the point on the ground closest to the bottom

part of a motionless irregularly shaped balloon which is floating

above the flat ground. The student may visualize the search process

as a process of walking/in the (A, B) plane (the ground) along a

path which is alternately parallel to the A axis and then parallel

to the B axis until the desired point is located. Figure 5.3 depicts

this precess,2.rd the bottcm portion of the bark= surface is the M surface.

The conditions necessary for the success of the searCh routine

can be inferred by an examination of Figure 5.3. It is intuitively

evident-that the surface must be convex and concave upward, that is

"hold water", in a region containing the minimum point. Now the

vertical projection onto the AB plane of the portion of the M

,
surface containing the minimum point and which holds water is a sec-

tion of the AB plane which we will call the "successful search space".

It is so called because no matter which point in the spaCe is selected

for an initial point, the search routine will succeed.

The actual determination of the successful search space is a task

more difficult than the original problem of determining the minimum

point. consequentfy, we will not continue this discusSion except to

say that the techniques for easily delineating the successful search

space are under intensive investigation.

A flowchart of the entire search routine is shc MI in Figures 5.4a

to 5.4e. The comments appearing on the flowcharts are to clarify the

procedure and the number appearing above the symbols refer to the cor-

responding statement numbers in the program listed in Figure 5.5.

Figure 5.4a depicts the increasing of A and the possible conse-

quences of such an action, and Figure 5.4b depictS the consequences

of decreasing A. Figures 5.4c and 5.4d illustrate similar actions

and the possible results for the second parameter B. Finally, Figure

5.4e illustrates the decisions necessary for changing the step size

and for concluding the program. In this latter figUre, the left-hand

portion of the figure depicts the procedure necessary to reduce the

search step sizes. There are two step sizes H and K, called the

A step size and the B step size respectively, and both step sizes .

must simultaneously become smaller than their respective preassigned

limiting step sizes El and E2. Since it is possible for one step

5. 13
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TWo Dimensional Minimization Surface

Fig. 5.3
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48

INPUT 424,j

Initial increase of A not
helpful. Return to initial
guess.and try decreasing A.

i4o
A4-A-H,B4-B

to 250

Ev MI

A4441344105 1

MO*NI
441et

EV to.

135
YES

Further increase of A not
helpful. Return'eo previous
point and try increasing B.

i8o

r

to 400

Exceeded max A limit

195

154-B

04-ma

200

Continue to increase A.

IA2cPRINT A,B,M0

A EXCEEDED

Flowchart of Two Variable Search

Fig. 5.4a

5.15
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Initial decrease of A not
.

.

255 I
helpful. Return to prevloUs
point and try increasing B. Ir EVAL MI

275

1.24441,13÷B
.277

to 1400

270

NO YES

Try decreasing A.

280 i

I A4-A-H,.R.4-B

04441

285 I

Further decrease of A not helpful.
Return to previous point and try
inrea8ing B.

30

A A+H,R4-B

to 1400

300

0

EVAL 141.1

YES

Continue to
decrease A.

320
AA-A, B4-13

M04-MI

t49-

Continuation of Flowchart
JO' Two Dimensional Search

325 i

IPRINT A,10110.

IN A EXCEEDED

iS
Fig. `' 5.I4b



I

Initial increase of B not
helpful. Return to initial
'1,-ris and try decreasing B.

425

A.4-A,B+B-K

NO

lift+A,B+B+K

405

EVAL M1

420

Try increasing B.

YES

to 500

Exceeded max B limit. Fr

435

44-A,B+B-K NO I YES

M04140

430

1438
-Continue to increase B.

615

STO

to 100

A44,134-13-K
NO

445

104,B÷B+K
MOW1

IF

450

EVAL M1 1

465

No more pos B improvement.
Return totprevious point, to search
again on A using same step size.

Continuation of Flowchart
for Two Dimensional Search

4,

Fig. 5.4c
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Try decreasing B.

Initial decrease in B not help
Have concluded search with

this step size. Go search againi EVAL M1
with smaller step size to refine
answer.

680

Have exceeded neg B limit. 528

530 NO

HItNT A,B,M0.

c4 EXCEEDED

No more neg B improvement. Return to
original point and search again in A using
same step size.

Continuation of Flowchart
for Two.Dimensional Search

Fig. 5.4d
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NO

650

KtiC/10
1

10

652 Is A step size too small?

Correct A
Step Size.

659

dr.

NO

2ALCULATE Mle
THE MEASURE
OF CLOSENESS

720

C+C+1

Closeness
Criteria
Calculation.

Exceeded Max. No. Steps?

YES

658 s B Step Site
too small?

17/NT FIN.VAL1
,B,M0 ETC.

7231

'PRINT A9B,,M1
C,P,K

LOST VALUES

_a?

Continuation of Flowchart
for Two Dimensional Search

Fig. 5.4e



size to be less than its limiting step size while the other step,size

is simultaneouely larger than its limiting step size, provision must

be made to recognize this fact and to act accordingly. Thus, instruc-

tion 652 determines if the A step size is leas than the limiting

step size of A and if it is not, a similar determination is made for

the B step size in instruction 653. If the B step/size is less

than its limiting value, the B step size is multplied by 10 making

it larger than its limiting step size. The search then proceeds with

these step sizes. n alogous remarks can be made if the A step size

liis less than its 'iting step size. This procedure insures that all i

search steps will be takeelpith step sizes riciit less than the preassigned(

limiting step sizes. The.calculation of the closeness criteria and the

determination of whether or not thpreassigned maximum number of swarch

steps has been exceeded is depicted in the right-hand portion of Figure

5.4e.

A program listing appears in Figure 5.5. We again remind

the student that the program, as listed, is for the determination

of the growth coefficient G and the auxiliary grcwth coefficient

G1 in the finite resource model of the population growth of the

United States from 1790 to 1960. The closeness criteria is the

sum of the squares of the deviations between the experimental

.1nd the calculated populations. By suitably changing the sub-

routine for the evaluation of the criteria function, lines 700-716,

other closeness criteria may be used. In addition, by suitably

altering the experimental data statements, ltnes 48-130, together

with the determination of the closeness criteria in lines 700-716,_

the program may be used to degermine the parameters occurring in two

other parameter models. Thus, the program is quite flexible.

The program requires as input; an initial population Z(0),

an initial starting point (A,B); the respective step sizes in

the A and B direction, H and K and the limiting or Mmallest

permitted step sizes El and E2. There are two "safety checks"

built into the program. 02.The first check insures that the search

path will not proceed without bound in either the A or the B

direction. The second check insures that the search path does not

loop bac:1\ onto itself and thus result in an endless search, i.e.

a loop.
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The program assumes that the investigator is ami r enough with

his problem so that he can initially specify a region in he AB plane

in which the search should take place. It is assumed that this region

is a,rectangle whose sides are parallel to the A and B axis. The

location of the sides of the rectangle must be specified as input and

are accomModated in the program via statements 42 and 43. Statement

42 requires as input the minimum and maximum limiting search values in

the A direction. These values are designated by Al and A2 respec-

tively. Statement 43 requires as input similar limiting values.with

respect to the i4 direction'and they are denoted by Bl and B2.' If

any of these limits are exceeded by either an A or a B value in

the search, the program stops and prints out4e iact that the search

path has "wandered out" of the permitted _se-arch.region. The specifica-

vor
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.42

1. REM FINITE RESOURCE MODEL, LEAST SQUARES, U. S. POPULATION
5. PRINT
'15 DIM P(50), E(50')
20 PRINT "8 AND B ARE THE INITIAL GUESSES"
23 PRINT "P<0) IS THE INITIAL POPULATION"
24 'PRINT "INPUT A, 8,
25 INPUT A, 8, P.:0)
26 PR INT
27 PRINT

PRINT "H AND K APE THE INITIAL STEP SIZES"
PRINT "El AND E2 APE THE LIMITING STEP SIZES"
PRINT "INPUT H, t<3 El.. E2"
INPUT H, K, El, E2

34 PRINT
PRINT "T 1.5 i;HE MAXIMUM ALLOWABLE /JO. OF SEARCH STEPS"

38 PRINT "INPUT T"
7'.9 PRINT
40 INPUT T
42 PRINT "Al- AND 82 ARE THE MIN. AND MAX. PTS. OF Ft INTERVAL"
43 PRINT "81 AND 82 ARE THE 111N. AND MAX. PTS. OF B INTERVAL"
44 PRINT "INPUT R11 R21 81 AND 82"
45 PRINT
46 INPUT A1, 821 81, 82 448 REM INST. NOS. 50 TO SO ARE DATA INPUT TO FIN. RES. MODEL'
50 DATA 3. 93, 5. 7. 24, 9. 64, 12. 87, 17. 07, 23. 19
52 DATA 31. 44, 39. 82, 50. 161 62, 95, 75. 99, 91. 97
54 DATA 105. 71, 122. 78,131. 67, 15a 7, 179. 32
60 FOR J=0 TO 17
7,0 READ E<J)
eo NEXT .1

84 REM INITIALIZING
86 LET C=0.
95 PRINT "THE VALUES OF MO, 81 B AND C ARE"
100 005118 700
105 LET MO=Mi
110 LET A=A+HNLET 8=8
1.24.0SUB ?00
135 T1*--Mi<MOGO TO 145
140 LET A=R-H\LET 8=8
142 GO TO 2513
145 LET R=A+HNLET 8=BNLET MO=P11
160 GOSUB 700
175 IF Mi<MOGO TO 185
180 LET Fi=A-H.A_Et 8=8
182 GO TO 400
185 IF A<R260 co 145
195 LET A=ANLET 8=8\LET M0=M1

Cl el PRINT A, 8, MO
205 PRINT "EXCEEDED ALLOWED M.RX. VALUE OF A"
206 PRINT "THE VALUES OF A. B AND MO APE"
207 PRINT A, 8, MO
208 STOP
210 STOP
250 LET A=A-H'NLET 8=6
255 GOSUB 700 Fig: 5.5
270 IF MI.CM6G0 TO 280
275 LET FI-A+H\*LET bac& - c?./
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\i:77 GO TO 400
BO LET A=R-H\LET B=B\LET M0=M1
285 GOSUB 700
zao IF M1(MOGO TO 310
105 LET A=A+H\LET B=B
107 GO TO 400
210 IF A411G0 TO 280
320 LET A=A\LET B=B\LET M0=M1
25 PRINT A.6',M0
:30 PRINT "EXCEEDED ALLOWED MIN, VALUE OF A"
111 PRINT "THE VALUES OF A, B AND MO ARE"
32 RRINT A,B,M0
;35 STOP
350 PRINT
400 LET A=A\LET B=B+K
405 GOSUB 700
420 IF Mi<MOGO TO 430
425 LET A=A\LET B=B-K
427 GO TO 500
430 IF B<B260 TO 445
435 LET A=A\LET B=B\LET MO=M1
428 PRINT-"EXCEEDED ALLOWED MAX. VALUE OF B"
439 PRINT "THE VALUES OF A, B AND MO ARE"
440 PRINT A,B,M0
444 STOP
445 LET R=A\LtT B=B+K\LET M0=M1
450 GOSUB 700
465 IF qi<moul TO 420
470 LET A=A\LET B=B-K
472 GO TO 100
475 PRINT
500 LET A=A\LET B=B-K
505 GOSUB 700
520 IF M1<M060 TO 528 4

525 GO TO 680
528 IF >B100 100540
530 LET A=A\LEf S=B\LET MO=M1
535 PRINT "EXCEEDED ALLOWED MIN.. VALUE OF B"
536 PRINT "THE VALUES OF A, B AND MO ARE"
57 PRINT A,B,M0
538 STOP 4

540 LET A=A\LET 8=B-KNLET MO=M1
545 GOSUB 700
5g0 IF 111:ZMOGO TO 528
565 LET A=A\LET B=B+K
567 GO TO 100
570 PRINT
6i0 PRINT
645 PRINT

-85
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650 LET 1004/10%LET K K/1.0
652 IF H<E100 TO 650
65.-, IF K<E2G0 TO 655
654 GO TO 100
655 LET K=10*K
656 al TO 100
656 IF K(E2G0 TO 662
659 LET H=10*H
660 GO TO 100
662 PRINT
66: PRINT
664 PRINT
665 FRINT "THE FINAL VALUES OF MO AN& C ARE"
667 PRINT A.81110,C
668 PRINT
669 PRINT "THE FINAL VALUES OF H ANC' ARE"
670 PRINT 1-411,
675 STOP
677 PRINT %

680 LET A=AIA.ET P=81.,LET M0=M0
682 PRINT "THE INTERMEE'IATE VALUES'OF A, 8, MO ARE"
684 PRINT H,B,M0
685 PRINT
686 GO TO 650
689 PRINT
690 REM INST NOS 700 TO 716 EVALUATE M
700 FI-2F I.=.0 TO 25
701 LET
702 IF P(.14-1,,:=O6O TO 705
703 NUJ I
704 GC TO 707
705 PRINT "THE POPOLHTIn IS LESS THAN OR EDUAL TO ZERO"
705 STOF
707 LET 5=0
''08 FOR I=0 TO 17
710 LET b=P.I.-E(I
712 LET S=S-141*
714 NEXT I

715 LET Mi=S
76 PRINT A,B,Mi,C
719 PEM INET NOS 71 TO 70 PREwENT ENE.LESS OPING
720 LET C=C+1
722 IF C IGO TO 7:i

PRINT "1HE LuST we=iLUEE FIF f, E, MO A C. PRE"
724 PRINT 81 8 M1,C
727 PRINT "THE l'/ALUES OF H ANL' lc ARE".
728 PRINT
729 PRINT. "EXCESSIVE N 16FP OF STEPS"
730 $4.01-
732 RETURN
825 END

Fig. 5.5 (cont.)
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tion of the search region may be difficult; nevertheless, there is

some validity to _the statement that, "if the investigator knows so

little about his problem that he cannot even vaguely specify the

search domain, he certainly cannot specify reasonable starting values,

and consequently, shou1.1 not be attempting to solve the problem".

Frequently, assistance in determining the boundaries of the search

domain may be obtained by using the trial and error program pre-

vious3Ldescribed. In addition, it is occasionally possible to set

the boun ries by using one of the routines for obtaining starting

values. ee the section entitled Modifications).

Po3silble endless looping is prevented by counting the nuaber

search steps and checking this number against the m4ximuiu number of

allowable steps, C, which has been initially speci led as input in

statement 38,. Since no search step may be taken without an evalua-

tion of the criteria function,'the search step count is accomplished

by counting .the number of times that the criteria function is evalua-

ted. The counting and comparing is accomplished by statements 720

and° 722. It is certtinly true that in a well designed program this

latter'check should not be required. Nevert".less, your author, in

recognition of Murphy's law, has develop e habit of including

such a step counting routine in seaxchi. ,rugrams.

The student will recall that the purpose of thr program was to

estimate ,the value of the two growth coefficients G and GI whic

occur in the finite resource model. However, the search routine was

designed to be independent of a particular problem and so the search

variables were designated as A and B. Consequently, in order to

use the routine for the determination of the qrowth coefficients-_lthe

fundamental finite resource model growth equation was written as

LET P(1*4-)-- = P(I) + (A - B * P(1) )*P(I)

and this is statement 701. The variable A is to be identified

w1Nh the growth coefficient G and the variable B is to be iden-

tified with the auxilliary growth coefficient Gl.



Modifications

The two parameter search routine just described constructs a

search path that proceeds along a parameter until there is no futther

decrease in the criteria function and then the path'is changed to pro-

ceed along the other parameter. A different search routine/alled

the local search method, may be obtained by evaluating the criteria

function at the throe new neighboring points of the present point.-

The fourth neighboring point is the point from whence we have Just

come and by saving the value of the criteria function at this-point

we avoid the hecessity of reevaluating the criteria function. The

direction corresponding to the parameter step which resulted in the

least value for, the criteria function is the direction taken for the

next step. \The procedure is repeated using the new point as the

:itarting point. If there is nc further decrease in the'Criteria

flInction in any direction, the step sizes are decreased and the

proFes repeated usinq'the last point as the new starting point.

*T.T procedure is stopped when a predesignated step size is reached.

1.t is possible to refine the method by using the magnitUdes of

differoves between the value of M at the point and its value

t7he neighboring points to provide a best direction in which to

i,r(7.,!ed. This direction will not nec6ssarily be parallel to either-

-0- the parameter lines. For those students who have had the calcn-

.
this process is a finite difference, or secant equivalent, of a

a

qradient technique for minimizing a function of two variables. This

frequently more effiient method, esrSecially if the number of c:7-

parameters is large. TectIni.ques for speeding up the search are

'-.7-own. However, since our purpose is to introduce the student to

search methodz and to illastrate theit capabilities and limitations

v will not discuss such refinements. Some of the problems will

hint.of these.

A still different search routine may be obtaineck.by merely re-

-? .rsing the order of the variation of the parameters: Thus, the pro.i.

qram is modified to first search on B,and to then search on A.

This simple variation can serve as an effective check on the.accurac
s.

of the first routine. In particular, your author has found that the

simple reverse order search has iairoved very useful in ascertaining

whethe; or ntiL; the former search has settled on a local minimum point.
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Starting Values

The obtainment of good starting values for multiparameter search

routines is necessary for their success. Such values may be

obtained from several sources. The heuristic search program described

at the beginning of this chapter may be the easiest way to obtain a

"feel" for the situation and to thus permit a guess at reasonable

starting values. Another way to determine starting values is to place

a course grid over the AB plane and to then evaluate the criteria

function at each of the grid points. The grid,point corresponding to

the minimum value of the criteria function is then used as the start-

ing point. By applying this method again and again, each time with

a smaller grid size and each time using the last determined extremal .

point as the origin of the grid for the next finer grid evaluation,

the method can be used to determine the parameters. This is the two-

dimemsional equivalent of the uniform interval search mettrd. By making the ow-

memame grid sizes smaler amd mailer, the desire:1 accuracy can be obtained. The

existence of a local minim-um point near a grid point can result in a

great deal of computational effort to accurately determine the loca-

tion of the local minimum point. If the size of the grid mesh is

small, and the initial search space large, the method requires a large

amount of computer time. A large mesh size reduces the 'calculational

effort but increases the probability of "zeroing inh o? a local mini-

mum point. For these reasons the method must be used with care.

For some simple models a preliminary analysis of the BASIC

equations may reveal relations among the variables which can be 'of

assistance in the obtaining of starting values. The single popula-

tion finite resource model is an example of such a model. In this

model, preliminary analysis showed that the limiting population or

carrying capacity, C, was related to the two growth parameters in

a simple way. Thus for this model, if the empriical data -indicates

a limiting population, it is only necess;lry to estimate a starting

value for one of the parameters, since the starting value for the

remaining parameter is readily obtained !from the equation.

. ., 9
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Numerical Results

Figure 5.6 lists the detailed results obtained from a typical41

program run and a tabular listing of, the results of several runs is

presented in table 5.7. In all of these runs the initial population

was chosen to be identical to the actual population and the runs were

terminated when the search step size became less than the.minimum per-.

mitted step size. For runs 9, 10 and 15 the minimum permitted step

sizes for A and B were set at 0.000,01 and 0.000,000,1 re-

spectively and for all of the other runs they were set at 0.000,1 and

0.000,01 respectively. Swath excegmave acomracy is ursoarranted frcei the data;

hmolver, this acimuacy was used for purposes of illustration and omparison of

results. 'The results listal ha lams 11 through 16 Imre obtaine'd fran reverse

order suathing, i.e. B ves first mmled and then A was varied. In all runs,

the constraiMs on A and on B wre each selected to be 0 emd 2. The search

path ion the 16th lam violated these constraints so the search was concluded

before reaching tmadmal artummil malues.

-Most of these runs tertinated in a small numbeeof steps because .

the minimum permitted step size was fairly large. The number of-steps

necessary to arrive at a minimum point depends upon such factors as

the accuracy of the starting values, the lengths of the initial and

minimum permitted search step sizes, the criteria function, and the

scatter in the experimental data. . Some comments'on the results are:

1. Frau the results of the first and mooed rims, as displayed in IMege 5.7, it is

seen that a 12% change in the haitial value of B results in a 19% chance ha the

value of the criteria furction. If however, the mininum permitted step

size in the second run is reduced by one-hundredth, the search

yields extremal values almost equal to those obtained in the first

run. Thus, it is r-en that the final result can be very dependent

upon the minimum permitted step sizes. A comparison of the re-

sults of run 3 wittl run 4 and the results of run 5 with

run 6 shows that a\6% change in the initial value of A pro-

duces no significant change in the value of the criteria functions

An examination of the.first six rens reveals that is is the ini-

tial value of B which is the more critical to the successful

deteimination of the extremal values resulting in a minimum value

of the criteria function..

.) 0
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rt-r,4

. 4

A AND B ARE THE INITIAL GUESSES
P(0) IS THE INITIAL POPULATION
INPUT FE, B, P(0)
?. 34, . 0017, 3. 93

H AND K ARE THE INITIAL STEP SIZES
El AND E2 ARE THE LIMITING STEP SIZES
INPUT H, K, E1, E2
?. 01, . 001, . 0001, . 00001

T. IS THE MAXIMUM ALLOWABLE NO. OF SEARCH STEPS
INPUT T
?1.00

Ai AND A2 ARE THE MIN. AND MAX. PTS. OF A INTERVAL
Bl. AND 82 ARE THE Mitt AND MAX. FkTS. OF B INTERVAL
INPUT Al1 A21 81 AND B2
?0, 2, 0, 2

_THE VALUES OF A, B, MO AND C ARE
34 1. 70088E-83 381. 094 0
35 1. 78080E-03 450. 757 S.

33 1. 70000E-03 1.199. 07 2
34 2. 70080E-03 9606. 25 3
34 7. 00080E-04 32604. 3 4

THE INTERMEDIATE VALUES OF A, 8, MO ARE
34 1. 70000E-03 381. 094
34 1. 70080E-83 381. 094 * 5
341 1. 70080E-03 ,347. 069 6
342 1. 70080E-03 ,321. 089 7
343 1. 78000E-03 -305. 917 B
344 1. 70000E-03 298. 91.5 9
345 1.'70000E-03 301. Q44 10
344 1. 80080E-03 461. 952 11

. 344 I.. 60080E-03 442. 398 12

THE INTERMEDIATE VALUES OF A, 8, MO ARE
. 344 1. 70000E-03 . 298. 915

THE FINAL: VALUES OF A, B, MO AND C.: ARE
. 344 1. 70000E-03 298. 915 13

THE FINAL VALUES OF H AND K ARE

1. 80008E-04 1. 00000E-05

STOP AT LINE 675

,Results of a Typical Run of the Program Listed in Fig. 5.5
Fig. 5.6 hi!

5 28
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RUN
NO.

INITIAL VALUES
A

.34 .0017 .01 .001

.34 .0015 .01 .001

.35 .0017 .01 .001

4 -.;33 .0017 .01 .001

5 .35 .0015 .01 .001

6 .33 .0015 .01 .001

7 .34 .0017. .1 .001

a .34 .0017 .1 .0001

9 .6 .002 .01 .001

10 .1 .005 .01 .001

11 .34 .0017 .01 .001

12 .34 .0015 .01 .001

13 .35 .0017 .01 .001

14 .33 .0017 .01 .001

15 .6 .002 .01 _.001

16 1 .005 .01 .001

A
FINAL VALUES

Mffl

.344 .0017 298.9 13

.333 .0015 357.7 13

.344 .0017 298.9- 13

.344 .0017 298.9 18

.333 .0015 357.7 14

.333 .0015 37.7 12

.339 .0016 309.3 22

.34 .001628 303.1 3!

.3431 .001687 297.8 . 40C

.3436 .001686 297.8 61!

.339 .0016 309.3 17

.333 .0015 357.7 2?

.339 .0016 309.3 2:

.339 .0016 309.3

.3433 .00168.3 37.7 64`,

VIO TED CON TRAINT

Summary of Results of Several Runs of Programs Listed in Fig. 5.5

Table 5.7



Runs 1, 7 and 8 indicate the effect of different%step sizes.

3. Runs 9 and 10 are illustrative of the effectiveness of the

program if the initial values of the parameters are quite different

than the extremal values. In each of these runs the search path

wandered considerably in the A-B plane and several steps were

required to arrive at the final minimum value..

,The results listed in runs 11 through 15, which were obtained

by reversing the order of the search, show that virtually the

same values are obtained and hence the order of the search 19

immaterial.

5. For those runs in which the indicated final value of the criteria

functiisn was considerably different than 298, it was found that a-

decrease of the minipum permitted step sine would allow the search

ton continue until a value of approximately 298, was obtained.

This further illustrates the sensitivity of the extremal values

to the minimum permitted step size.

6. In this example, the,minimum value of the criteria function was

usually obtained for each run. This was due 'to the smoothness

and shape of the criteria function, If the maximum deviation

had been chosen as the triteria function, such uniformly close

agreement would not have been obtained.

7. There.was considerable variation in the number of'steps necessary

to arrive at the extremal values. This variat_on increased as

the magnitude of the minimum permitted step size decreased. Such

kehavior should not be unexpected since the traversing of even a

relatively short distance will require many search steps if the

- magnitude of the search step.size is sufficiently mall.

The values obtained from a successful search must be checked'tor

assure that a local extreme point has not he obtained. Some methods _a

for checking the values are;

1. Rerun the program with different initial starting values for the

search_variables. If a different set of final values is obtained,

the first set of variables may define a local minimum point.

2. Compare the values with other results obtained on similar problems.
I

Compare the values with any known empirical results.



et

4. Do the results seem "unreasonable"; that is, do they appear

implausible, improbable, unrealistic, unexprted, etc.? If

the answer to any of these criteria is yes, then the.results

are to be viewed as suspect. They may not be wrong; however,

further checking and analysis is called for.

5. Conduct a reverse order search sand compare the final results.



1. Pearl (1927) obtained a population growth curite far a yeaW.cul-
,

ture. 4Lis given in Table 5.,8, and is graphically displayed.in

Figure 3Ilk The S or logistic shape of the curve is very

evident and there is little scatter ,or 'noise in the data.

(a) Modify the program of figure 5.5 ,to determine the growth

coefficients using one hour as the time period.

(b) Find the growth coefficients,using for the closeness criteria

i. the maximum deviation

ii. the maximum relative error

iii. the sum of the squares of the relative error.

(c) Find the growth coefficients assuming the time period is

15 minutes and the criteria function is the sum of the

squares of the deviation.

(d) How do. the growth coefficients of part (c) compare with

those obtained in part (a)?

modify-the prograins given in Figure 5.5 to calculate A and B

using'

.(a) The.maximum deviation.

% (h) The,maximum relative efivr.

(c) .The.sum of the sqUares of the relative erro-:.

3. Find,the yearly growth coefficients for

(a). 2a

(b) 2b

(c) 2c $.

4. For part (a) of problem 2 investigate the effect of

(a) The accuracy of starting valuei.

(p) The magnitude of initial search steps.

(c) The reversing of the prder of the.search.

(d) The magnitude of the minimum permitted search step.

5. Same as, problem 3 only for part (b) of problem 2.

Same as problem 3 only for part (c) of problem 2.
,

7 Using the program given in Figure 5.5 al the maximum deviation

as the closenesi criteria, calculate the yearly growth coeificients..

Compare them with the yearly group coefficients obtained in 3a.
4
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Hours
of

Growth

0

2

3

5

6

8 (

quantity
of
Yeast

9.6

18..3

29.0

4T:2

71.1

119.1

174.6

257.3

350.7

1

4.

4.4.4-rut\

TABLE 5.. 8

FIGURE 5 . 9

J.-

Hours 1 Quantity
of

'stGrowth Yea

9 441.0

10 513.0

11 559.7

12 5944.8

13 62i .4

14 .6494.8

15 651.1

16 655.9

17 659.6

18 661.8

el , i $ AO to
Fz

°HOURS

LEAST CELL POPULATION GROWTH

- ---.-.- :



8. Same as problem 7 using the maximum relative error as the

measure of closeness. Compare to results ot 3b. .

Same as problem 7 using the sum of the squares of the relative

errors as the increase ofcloseness. Compare to results of 3c.

,11
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CHAPTER VI

LIFE-TABLES

Introduction

The role of computer models in the management of natural

resources is becoming more recognized. The principle task of

a wildlife manager is the establishment of objectives and the

determination of policies which will insure the achievement

of those objectives. The simultaneous accomplishment of both

of these taiks is very difficult since Management objectives

are oftpn established as dresult of compromise, and policies

designed to achieve one set of goals usually preclude the

achievement of another set of goals. As a resulte-the wild-

life manager must be able to successfully analyze the expected

"outcome of implementing different policies prior to the actual

enforcing of a prescribed policy. It is becomirw increasingly

apparent that computer simulation may be the tool which-provides

the wildlif manager with the capability of "pre-testing" his

policies.

The management of wildlife populations subject to hunting

harvpst requires an estimation or prediction of the number of

animals available for harvest. Such populations are usually

distinguished by their sex as fawns or' does, and by age

classes as 1-year-old bucks, 2 to 5-year-old bucks, bucks over.

6 years, etc. Consequently, the manager of a herd subject.46

harvest requires a model which wilr predictwitlie time evolution

of the population by sex specific age clas'es.

This chapter will consider the development of mo4els whose

objective is the prediction of the year by year evolution of

the populations of the separate age classes in a population.

The student will note that such models.are based upon simple

and direct extensions of previous work.
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Development of the Model'-
The first model!describing the time evolution of a popu-

lation was the Malthus or exponential growth model. The fun-

damental equation of this model was

p(r+l) = P(x)+B*P(I)-401,(1)

whtre B and M were the respective proportions of birth and

deaths in a given period of time. These proportions were

assumed to be constant over the entire time of evolution of the

population. The equation expresses the fact that the population

of the next generation is equal to the population of the pre-

ceding generation plus the number of births minus the number

of deaths in that generation. It should be recalled that-this

Malthus model postulated an average birth rate and an average

mortality rate and that, therefor.e, these rates are undeistood*

to be averages over all age classes in the population. The

model thus ignored specific age class distinctions. In addi- .

tion, the model made no allowance for differences in sex. The

very young and the very old in a population are known to have a

higher mortality rate than the middle aged and since it is

furthek known that the birth rate varies with,age; it seems

reasonable to attempt to account for such effects in-our model.

This suggests dividing the population into age classes and

then applying the fundamental law of change to each age group"'

.to enable the prediction of the population of each age class

in successive years.

The classification of a population by age groups 'is called

a Life Table. SinCe it is desired to describe the time evolu-

tion of an age class, an application of the fundamental law of

change to the population in an age group gives

de
12(K+l) = P(10+C(K).
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If the-time period is chosen to be one year, this equatiein

states that the population of the K+1 year olds next-/ear is
0

equal to the population of the K year olds this year plus-the

change in population of the. K year olds during this year.

If the population of each age group is described in this manner,

and if provision is made for estimating the newborn, it is seen

that the initial life table population coin be "upgraded" each

year to produce a yearly succession of life tables which would

describe the time history of the age groups in the population.

With this background, the student should be able to readilif follow

the subsequent development.

For the Oescription of herds consisting of large animalJo

such as deer, elk, bear, etc., which reproduce annually, it is

convenient to choose the unit of time of the age group ty be

one year. Simil-arly, the unit of time during which the life

table-is upgraded will also be a year. Neither of these

restrictions is essential. Since the fertility ratds and the

mortality rates of the separate age groups are ser dependent,

it is realistic to further separate the populationa into age

groups by sex. we begin the development of the pro4ram by

letting M(K) denote the male population whose age Ls K

years and F(K) will denote the female population of the same

age. Dl(K) and -D2(K) will denote the respective mortality

rates of the male and female populations pf the Kth age group.

We will also assume that there is no emigration nor immi-

gration and consequently the sole cause of the change in popu-

,lation of an age group is mortality. Thus, an application of

the above equation to each age group gives

and

M(K+1) = M(K)-D1(K)*W(K)

F(K+1) = F(K)-D2(K)*F(K)

for K.=- 1, 2, 3, , where N denotes the number of-age classes.

6.3
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rf the mortality rates Are Available' in the memory of the

computer, and if these equations are inserted into a loop

with index K, it is evident that one sweep through'the-loop

would produce the population of each age group for the next

year. Another sweep through the loop would produce the

population of the various age.groups for the next successive

year, etc. This procesi would enable us to calculate the

time evolution.of a life table. Rowever, at thp end of the

calculation, the only populations available in the computer

memory would be those contained in the life table of the last

year of the calculation. Consequently, it would not be possi-

ble to examine the yearly change of a particular age)group

unless'provision were made for printing out the 40.fe table each

successive year. In addition, because past life tables are

not aVailable in the memory, it would be impossible to perform

many,useful calculations involving them. For these and other

reasons, it is highly desirable to develop the program in such

a way that all of the calculated information of interest is

available at any time. Thus, we reformulate our program uti-

lizing variables which have two subscripts4 one subscript will

specify the age group and the other subscript will specify the

age of the.life table. This different notation will permit the

storing of intermediate results. The basic hypothesis will not

be altered, just the program statements will be altered. The

notion of altering the notation to fit the situation is a

frequently occurring process when performing a mathematical

analYsis of a phenomena. In the latter event, it4i8 often

the case that a new mathematical notation is introduced or the

existini mathematical notation is altered because it will

enable the investigator to more readily analyze his problem.

In so doing, the inveptigator does not change the basic biologi-

cal or physical hypothesis or assumptions, rather he changes the

mathematical notation to enable an easier analysis of the conse-

quences of the basic hypotheses.

6.4
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Consequently, we start anew to develop the computer program.

Let H(K,I) denote the male population.in the Kth age group

after I time periods. I represents the age in"time periods

of the life.table. Similarly, F(K,I) will denote the female

population of the Kth age group in the life table whose age

is I time periods. For example, if the length of each age

group is a single 'year and theltime period is also one year,

m(6,4) denotes the number of males who are 8 years of age after

4 years. .Tfie statement F(7,5)=112 states that there are

112 7-year-old females alive after Y'lears.

In this new notation, the fundalintal age group calcula-.

tions appear as

and

100 LET M(K+l,I+1) = M(K,I)-D1(K)*M(K,I)

4

110 LET F(K+1,r4-1) = i(K,I)-1)2(K)*F(K,I:.

If Kma and Im5, *the first of these statements says that the

number of 9-year-old males alive after 6 years is to the

number of 8-year-old males alive after.5-years, minus the number

of 8 year olds who die during the fifth year. This latter

number is equal to the product of the mortility rate for 8-year-

old males and the number of 8-year-old males alive after 5.

years. Similar remarks apply to the female age group calcula-

tion. It is convenient to introduce the notation

40

Sl(K)=1-1)1(K) and 52(K)=1-1:112(K)r

The terms 51(K) and 52(K) can be interpreted as the survival

rates of the Kth male and female age classec reipectively.

6.5 203



"Specifically, Sl(K) and 52(K) are 'the 1;roportion of males

and females that were K years of aige at -the ileginning of the

1th time period and who survived to become K+1 years of

age at the beginning,o'f the 41+1) time period. Since both

DICK) and D2(K) are mortality rates, they are each less than

. or equal tousilty and lience,,eactrof the surviiial raptes is

positive andblesd than or equal to unity, or zero. Ecologists

frequently speak of the two sets of values, Sl(K) and 52(K)

as the set of age-Tspecific survival rates. It is important to

note,that these rates are Measured in units per leirTth of time

period. If the length of the time period is crib yeart.,they are

proportions per year, i.e they are the proportion 'of the

population of the age class that survives each year. The Bur-
'

vival rates.have"the dimension of reciprocal time units. It

is not essential.to assume that both the survival rates:aid J4'

theb fecundity -rates as well as the sex ratio),of-the newborn

remain constant during the entire time of eVolution of the

population. Year to year variations in.ihe weather, a variable

food supply, size of the total population, the presence or

absence of predators, etc. can all result in considerable yearly

variations of the rates. The proAer accounting for suchyaria-

tions is not easy because the obaining of valid experimental

data ikdifficult. Nevertheless, the imclusion in the model

of variable fecundity and survival rates is readily accomplishq4

with the aid of a subroutine or a stored array.

Statements 100 and 110 may bh<ritten in terms of the

survival rates as

and

100 LET M(K+1,I+1) Sl(K)*M(K,I)

110 LET F(K+1,I+1) = S2(K)*F(K,I).

6.6
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Th13 is.the form of the age group calculations.that we shall

ude And is the form molt frequently encountered in the litera-

ture.

The total number of offspring present:at the begirininrof.

-the next time period is the sum o4fthe newborn produced by'each

,female age class during the present time period. It is known

,that the .fecundity or reproductive rate varies with the ,age

class and provision for such variation.is Made by denoting the

rates by R2(K) where K, is the index counting the age class.

The number of newborn produced by the K female gge group

'is equal to the number of fer4les in that age group times tfie

fecundity .iate for that group, or F(K,I)*R2(K). :The total

number of newborn produced in a single period is

F (0, I) *R2 (0)4-1? (if I)*R2 (1)+F (2, I)*R2 (2)+ if (N, X)*R2 (N)

If we denote the number of newborn in the I
th period by C(I),

a possible computer program for calculating C(I) is:

4

LET C(I)=0

FOR K*0 TO N

LET C(I)=C(I) + F(K I)*K2(K)

NEXT K

1

44.

Usually R2(0)=0, i.e. no first age group animals give birth.

For ease of coding, it is sometimes convenient to carry the

extra term. Since regroductive rates are the highest during thd

years immediately following the onset of adulthood, it folloWs

that asc.K increases; R2(K) will increase rapidly to a maxi-

mum, le el off, and then gradually decrease. The obtaining Of

such f rtility data' is quite difficult and it is known that

6.7 cl
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fertility data.estSblishod for a given herd in a sipecific

habitat isrobably will T.correspond to that established for

the same herd existing in a different habitat:- It is also

assumed that 'there ia always a surficient numiler of malet;

present,in the population to service all of the females.
. .

To pbtain the nuMber of newborn males and females in a

. siApgle yeam4it is con;renlentto assume;that the sex r.44p of
, .

the neuiborn-U.independent. of the age class. Hence, if PI
I

1 denotes the fraction'of themewborn that are Males, the 'number

)of newborn males and females respectively if, given.by.

and

OW

t

.

= Pl*.C(I).

P(l,I+l) = (l-F1)*C(1).

,N

The determination of the mortality rates MOO and
N..1

may 'also be a diffigult, time-consuming and expensive taskf

lb is sometimes posiable to use the model as a means of obtai*

lng these values. This may be accomplished if an accurate set

%of life tables is available for A sUccession of.years.. An

assumption of what are thought to be "reastlnable" mortality

rates is used-as Anput and the'program is. run. If the computer

results ar0 in agreement with thevailablejife table popula-

tions for a sequence of successive\years, then it is reasonable

to assume that the mortality rates are correct. If the program

results do not agree with the tabulated data, another set of

mortality rates.is 'tried And results again compared. This

trial and error process rs quite inefficient, but the problem

is difficult. Emlen 44;973) presents a detailed discussion of
,

the development of life table data. We also assume that both

the surviiability rates and the birth rates do not change from

one time period to the next.

'6.8
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Leslie (1945), using matrix algebra, put forward a deter-

ministic mbdel for the prediction Of life tables and hence,

many ecology texts use matrix algebra when discussing life

tables. Our use'of BASIC provided a direct formulation of the

prob],erik in the programming language. It is interesting to note

that if the matrix model of the problem were programmed for

A computer using BASIC, the ability of the BASIC language

to perform matrix operations voluad simplify the programming.

HoWaver, since most of the Matrix elements are zeroes, such a

BASIC expression of the problem would be very wasteful of .

computer time. Our direct expressiqp is much more economical

of computational time, and as we shall see later, permits a

ready modifiCation of the program model.

Because the survival rates are all positive and less

than unity, they also may be regarded as probabilities. Usher

(1972) considers the' sets Sl(K) and S2(K). as transition

probabilities from onettime to another and in this way brings

to bear many of the mathematical results of probability theory.

All of these interpretations appear in ttv literature.

6.9
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An Example 1

In the previous section, $.t wasiassumed that the sex ratio

of the neuborn was independent of,tir ageclass. For,example,.

if 45% of the newborn from the third age aims is male, it

was assumed that 45% of the newborn from all of the other

age classes w:ere also male. The empirical data of Lowe (1969)

for the red deer population on the Island.cf RhuM has been
_

analyzed by Usher (1972) and resulted In fecundity rates

which indicate a variation froM age class to age class of the

sex ratios of the newborn. Thus, it is necessary to modify

the newborn calculation.to account for this variation. /t is

assumed that, for each age class, the birth rate for male and

female offspring fs known. This data can be obtained from a

knowledge of the newborn sex ratios from each age class. Denote

`the birth rates forAp male and female offspring respectively

by Yl(K) and Y2(K)111 where 'R is the inclex counting the age'

class. Because the fraction of newborn males plus the fraction

of newborn females must equal the fraction of newborn of each

age class, it is evident that

Yl(K) + Y2(K) = 112(K) for all K.

Now, the number of newborn males for the Kth age,:class is

Yl(K)*F(K4I), and thus, the total,number of newborn malp

is given by

M(1,I+1) = Y1(1)*F(1,I)+Y1(2)*F(2,I)+ +Yl(N)*F(N,I).

40111°

The number of newborn females is given by a similar expression.
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As an example, we consider the application of our life

table model to the red deer population on the:Island of Rhum

using the data as presented by Usher (1972). Table 6.1 gives

the survivability and fertility rate data by sex for each age

class. Figure 6.2 lists the'program and the following para-

graph describes the program. Because cif the simplipity of the

program, a flowchart is not pretented. 0

In order that the student may more easily follow the pro-

gram, we again emphasize that the index K counts the age

classes and the index I counts the time periods. In this

programl'both the time period and the time span of each age

class are,assumed to be one year. Statements 40 to 100 provide

for the inputting of tile survivability rates per age class., The

fecundity rate data.is entered in statements 110 to 165. By

changinythese rate data, "'other po0u1itions may bie studied.

For the initial population distribution, your author for no good

reason, chose a population of 100 deer fc?r each age class, both

male and female. These starting populations are entered in

lines 170 to 235. The actual calculation begins at linp 405

and is continued through line 490. In this calculation, the

index I counts the generations. At the start of each genera-

tion, lines 410 and 411 initialize the number of neWborn counters,

'and the calculation of the number of newborn for each generation

is accomrlished by instructions 450 and 460. Lines 430 and

440 calculgte the number of male and female deer inithe nexi ,

age group for the next perlod. The total population,PCO, is calcu-

lated each period and.this is accomplished by instructions 472 ,

to 475. Each year the number of newborn, as well as the totel

population, is printed,out by statement 480. Finally, statements

510 to 530 print the potiulation of each age class fo4, the last

time period.

2c9
6.11



-4

9r.

S.

AGEtict .p1.(10

1 0.71g

2 .990

3 .990

4 :990

Its! :76 qs.ti

. ,

(FAm Ushale 1972)
A S2 ($)

.863

. 902

. 882

. 879.

N, 5 .990 .862
1

6 . .993. .840

7 .734 ;808

8
. .496 .507

9 .370 .326

Ate .864

.821 .824

.781" ..83.0

.720 .735
.

.611 t .680

.364r .529
,1

0 .

fp.

I"

0 .3,0

11

12 -

13

14

15

1.6 .

- go

6.12

0 .

Pe
4

4.

0.202 214

0.419

0.434 ,.459 .

0.362 . .x.589

0.363 .589

0.353 .576

0.376 .612

.422 .353

.417 .348
. 7!..t.

.464, .388

.464 .385
.k0,kt.

.'t

.464 . 380
1

.464 300 5

.464 .388
,

.464 .388,

!:



5 REM . RHUM ISLAND DEER LIFE TABLE PROGRAM
6 REM
7 REM
20 DIPI 1I(16. 26), F(16. 26), 51(/6), S2(16), Y1(10. Y2(16)
39 REM
40 REM
41 REM
45 DATA . 48, 99, . 99, . 99.. 99.. 991... 734.. 496
50 DATA . 37, . 848, . 821, . 791, . 72.. 6114. 364. e
Se FOR Jost TO 1.6

THESE DATA ARE MALE SURYIVABIITY RATiS

65 RERD 51(3)
70 NEXT J
74 REM
75 REM THESE DATA ARE FEMALE SURVIVABILITY RATES
76 REM
88 AMR . 863.. 902.. 882.. 879.. 862.. 84.. 8081 . 507
85 DATA . 326.. 864.. 925, . 81., , 735.. 68, . 529. e
90 FOR J=I. TO 1.6
95 READ 52.(3)
120NEXT
109 REM
118 REM THIS FECUNDITY -DATA IS FOR lisiALt NEWBORN
ill REM
1.15 DATA 0.. 2824. 419.. 434i . 362, . 363.. 355.. 376

-120 DATA . 422.. 41.7.. 464.. 464.. 464.. 464.. 464.. 464
125 FOR J=1 TO 16
130 READ VW>
135 NEXT
139 REM
148 REM THIS FECUNDITY DAM IS FOR FEMALE NEWBORN
141 REM
145 DATA 0. 214, . 444.. 459.. 589, . 589.. 576.. 612
152 DATA . 353.. 348.. 388.. 388.. 388.. 388, . 388, . 388
155 FOR 3=1. TO 16
160 READ Y2(J)
165 NEXT
169 REM
170 !OEM
1.71 REM
175 FOit K=1. TO 1.6
1.80 LET (UK. 0)=1.00
185 NEXT K
1.99 REM

INITIAL MALE POPULATION

Fig. 6.2
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280 REM
281 REM
285 FOR K=1. TO 16
210 F(K 0)11'100
215 NEXT K
230 PRINT "N=NO. OF YRS. EVOLUTION, N MUST NOT EXCEED 25"
235 INPUT N
240 PRINT
241 PRINT
242 PRINT
245 PRINT
250 PRINT
255 PRINT
395 PRINT
396 PRINT
399 REM
488 REM
481 REM
485 FOR I=0 TO N
410 11(1 1+1)=0
411 F(11 I+1)=0
414 REM
415 REM

INITIAL FEMALE POPULATION

"PERIOD

416 REM
428 FOR K=1 TO 15
438 M(K+11 I+1-S1(K)*M(K, I)
448 F(K+11 I+1)=52(10*F(K, I)
450 M(1* I+1)=M(11 I+1)+Y1(K)*F(K, I)
468 F(1.1 I+1)=F(1, I+1)+Y2(K)aF(K, I)
470 NEXT K
472 LET P-0
473 FOR 501. TO 16
474 LET Po5P+M(S1 I+1)+F(,S, 1+1)
475 NEXT S
480 PRINT 1+11 M(1.; 1+1), F(i, I+1, P
490 NEXT I
495 PRINT
496 PRINT
497 PRINT "POPULATION 9Y. ROE CLASS FOR THE LAST TIME PERIOD"
500 PRINT "ME CLASS* NO. OF MALES. NO. OF FEMALES"
581 PRINT
510 FOR K-1 TO 16
520 PRINT K WK. N>, N)
530 NEXT K
999 END

PROGRAM RESULTS:

J
NEWBORN MALES NEWBORWCEM. TOT. POP. "

I COUNTS THE TIME PERIODS

J COUNTS THE ROE CLASSES

Fig. 6. 2 (Cont. ) .
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The number of generations or time periods that the program

should run is entered by statement 235. Because of storage

limitations, the maximum number of generations was set at 25.

On computers with a larger memory this number could easily be

raised. By deVe1oping the program in a manner similar to that

indicated at the beginning of this chapter, the use of double

subscripts would have been avoided. This would have greatly

reduced the storage req4irements and such a procedure may be

necessary when using coMputers witkvery limited storage

capacity. This is an example of how the hardware, or computer

capability, may dictate the problem formulation. As computer

modoXs become more complex and increase in size, such limitations

upon problem formulation become more severe.

The program was run for 25 time periods, and as stated

above,, assumed an initial population of 100 deer in each age

class, both male and female. Figure 6.3a is a print out of'

the results. These results agree with those of Usher (1972)

given in his table 3. The comparison is made by "normalizing"

our results at the 25
th time period so that the number of

males in the first age class is 1000. The normalizing is done

by dividing each of-the male and female age class populations

by 11217.8, and then multiplying the quotients by 1000. The

number 11217.8 is the number of males in the first age class

at the last time period as is shown by the listing of the popu-

lation by age class for the last time period in figure 6.3a.

The normalized populations are listed in columns 3 and 5 of

figure 6.3b and the "unnormalized" populations are listed in

columns 2 and 4 of the same figure.. The normalized populations

have been rounded to the nearest integer.

Since the population growth of the Rhum Island deer popula-

tion appears to steady down to a constant rate of growth independ-

ent of the initial starting population distribution, it is of

6.15



NoNO. OF YRS, EVOLUTION. N MUST NOT EXCEED 25
?25

PROGRAM RESULTS

PERIOD NEWBORN MALES NEWBORN FEM. TOT, POP.

±
2
3
4
5
6
7
8
9

3 567
433. 416
432. 84
513. 328
578. 659
637. 191
727. 274

. 846. 39
996. 362

61.2. 4
480. 484
484. 932
573. 444
643.622
770. 464
905. 397
1062. 82
1261.*-05

10 1157: 61 1432. 17
11 1340. 19 1656. 51
12 1565. 91 1936. 76
13 1821. 84 2255. 13
14 2118. 4 2629. OS
15 2466. 46 3068. 12
16 2871. 1.6 3559. 68
17 3339. 49 4139. 76
18 2,895. 15 481.3. 53
19 4520. 24 5601. 65
20 5260. 03 6520. 01
21 6120. 3 7586. 79
22 71.2±. 17 8827. 63
23 8286. 03 10278. 9
24 9641. 19 11958. 2
25 11217. 8 13984. 3
26 13052. 4 16178. 5 4

3452
3548. 04
3785. 35
4232. 5
4805.91
5539. 68
6458. 41
7504. 78
8647. 92
9925. 71
11484. 6
13334. 9
15497. 3
18028. 1.
20978. 4
24406. 7
28385. 6
33020. 7
38422
44708. 8
52022. 6
60531. 6
70431
81948. 5
95359
110945

POPULATION 8%' AGE CLASS FOR THE LAST. TINE PERIOD
AGE CLASS,. NO. OF MALES, NO. OF FEMALES

1
2

11217. 8
6922. 37

13904. 3
10313,

3 5889. se 7995. 14
4 5011. 25 6060. 8
5 4263. 86 4578. 6
6 3627. 88 3391. 8
7 388..% 58 2447. 81.
8 1949/- 1699. 56
9 830. 992 ;" 741. 064
10. 264. 348 207. 734
11 192. 57 154. 294
12 I3.-799-- 1-09:-363
13 91. 2048 75. 984
14 56. 4427 47. 9637
15 29. 5153 27: 8959
16 9. 27994 12. 7584

6.16
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A Comparison of Normalized and Uhnormalized Results

N an 25 years

No. of Males No. of Females

Normalized to Normalized to 4;

X From Run M(1.N)=1000 From Run M(1,N)=1000

1 11219 1000 13904

2 6922 617 10313

3 5890 525 7995

4 5011 447 6061

& .
5 4264 w 380 4579

6 3628 323 3392

7 3090 275 2448

8 1949 174 1700

,
-9 831 74 741

10 284 24 208

11 192 17 154

, 12 136 12 109

13 91 .8 76

14 56 5 48

15 -
30 2 28

16 9 1 13

Fig. 6.3b 5
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interest to examine the growth rev. of the po?ulations of

individual age groups. We choose to examine the increase or

decrease each time period of the number of newborn. This may

be done by comparing the ratio of the number of male newborn

for two successive time generations at several consecutive

generations. For example, the ratio of the number of male

'newborn in the 25
th time period to the number of male newborn

in the 24th time period is 1.16. This indicates that the

male population has gained 16% from the 24th to the 25th

generation. If the corresponding ratio for the female newborn

is calculated, the value 1.16 is again obtained. The equality

of the two raios suggests that the population change "has

settled down' 'to a constant change in population for each

period and that the magnitude of this change is equal to 16%

per time period. To check the assertion that the rates were

approaching a limiting value as the number orgenerations

increase, we calculated these same male and female newborn

ratios for earlier generations. They are listed in the table

below.

N (Generation) M(10N)/M(1,N-1) F(1,N)/F(1(N-1)

5 1.100 1.196

10 1.158 1.157

15 1.1638 1.1634

20 1.1636 1.1637w

25 1.1635 1.1636
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This table indicates that, indeed the change in population is

approaching a constant value of 16% per period. In fact,'

this value is almost achieved after only ten. generations.

'Further evidence that, as the number of generations increases,

the population is settling down or converging to a oonstant

change in population per period may be gai:iei by examining

the change in population per period for ea6h age class. Your

author did this by choosing the nuiber of time periods, N,

in the program to be 24 and 25 4Spectively and comparing

the resultant age class populations. It wab noted that the

percentage increase for each age class was a consi7ant and

equal,to 16.36 percent. These results indicate that the

change-in population appears'to have converged to a value

approximately eque4 to 16.36 percent and that this change is

the same tor each age group. We will denote this value by'ir.

A precise discussion of convergence is the subject of

advanced mathematics. Nevertheless, it is useful to present

a short and very heuristic discussion of convergence as it v

effects our work. In brief, the'maihematician would say that

by making the number of time periods large enough, it is

possible to insure that the change in.population from one time

period to the next becanes as close as desired toacxmstant value. Of

amn7se, inacanputer it is mt polmlible to run the program for an in-

finite or indefinitely large number of time periods and thus;

we must arrive at an approximate result'by running for a suffi-

ciently large number of time periods. We can obtain a good

estimate for this number by comparing the'population change as

the number of periods increases. This.comparison is done with

the finite digit arithmetic of the computer. Consequently, if

the change in the population from one generation to the next

appears constant for several generations to within the number

6.19



of digits of the arithmetic used in the computer, we 4i11 say

that the corresponding value for the population change is

the Plesired value for V.

In an atteppt to determine what effect different distri-

butions of starting populations might have on the growth rate,

three more runs were made. The first run assumed an initial

population di'stribution of 160 deer in the first age group,

150 deer in the second age group and so on down to the 16th

age group which began with only 10 daer. In the second run,

the distribuaon of the starting populations was reversed.

Thus, the first age group contained 10 deer, and the 16th age

group contained 160 deer. In the last run, the beginning popu-

lation distribution consisted of 400 deer in the sixth through

and including the tenth age gropus and no deer in the other

age groups. The program was modified to calculate the quotients

P(I+1)/P(I) where the index I counts the time'periods.

Only these quotients were printed out. Figure 6.3c lists a

summary of the results obtained by running the program for 25/

'time periods. The order of the columns (7,mresponds to the

order of the specified inttial population distributions as

described above. The fourth column lists .he same results for

the run of the program in which the initial population consisted

of 100 deer in each age class.

As noted previously, the population of each age group, as

well as the total population, always settled down to a constant

rate.of growth. Thus, the relative numbers of individuals of

different ages remain constant from one time period to the next.

A population which has these characteristics is said to be a

population which haa a stable age distribution.

It is nearly always the case that survivability and fecun-

dity data obtained from populations which have inhabited an

area for a long period of time, characterize a stable age group

6.20
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Groititt_Corres.v.p.c.L.2Rain to Different Initial
-Population Distributions

GR. RATE GR. RATE GR. RATE di: RATE

1.16348 .994019 1.1195 1.07875

1.0904 95457 .984213 1.02782

1.10336 1.01812 ?1.03413 1.06689

1.13121 1.09917 1.13041
r

1.11813

1.14012 1.12855 '..16912 1.13548

1.15099 1.15523 1.17279 1.15266

1.16168 1.1721 1.16509 1.16584

1.16271 1.16099 1.16447 1.16202

1.15795 1.14394 1.15013 1.15232

1.15419 1.13806 1.14161 1.14776

1.15929 1.15363 1-.15466 1.15705

1.16176 1.16012 1.16067 1.16111

-1.16246 1.16169 1.1613 1;16216

1.1633 1.16331 1.16254 1.1633

1.16362 1.1637 1.1632 1.16366

1.16352 1.16327 1.1632 1.16342

1.16323 1.16271 1.16267 1.16302

1.16336 1.16317 1.16315 1.16329

1.16355 1.16361 1.16364 1.16357

1.16359 1.16368 1.1637 1.16363

1.16357 1.16361
--,

1.16359 1.16359

1.16356 1.16357 1.16354 1.16356

1.16355 1.16353 1.16352 1:16354

1.16354 1.16352 1.16352 1.16353

1.16354 1.16353 1.16353 1.16353

1.16355 1.16356 1.16356 1.16355
,

Fig. 6.3c
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population. This is becaOse the population has become

"adjusted" to its environment which is assumed not to have

changed. Most large herd populations tiave A steady age

distribution and this fact is very helpful in obtaining sur-

vivability and fecurreity data.

By increas*Itg the number of age groups and altering the

fecundity and suNrivability rates, the program can be used to

sttaly changes in human populations. Since human populations

evolve over a long period of time, it will be necessary to

require a much larger computer memory or to redesign the program

to.minimize the storage requirements. Provision must also be

made to alter the rate data during the course of the run. For

example, it is quita evident that in many highly industrialized

populations, the fecundity rate is 4ecreasing and the mortality

rate by age group is slowly changing. The program must have

the capability to accept.these changing rate data. Because

their rate data is not constant over time, such populations

do not have stable age structure population distributions.

It is evident that a constant increase in the Population'

each time period will result in an increasingly large population

for each age class as the number of time periods increases. The

accumulation of large numbers of individuals per age group can

be prevented by "normalizing" the age group populations before

beginning the life table calculation for the next time period.

This is accomplished by setting the population of some reference

age group equal to a constant, say 1000, and then "scaling" all

of the other populations 'in accord with this population. For

the Rhum Island deer program, it is convenient to choose the

t number of newborn males as the reference age class. If Ml(K,I)

'and Fl(K,I) denote the quotients M(K,I)/M(1,I) and F(K,I)/M(1,I)

respectively, then by choosing the values 1000*M1(K,I) and

6.22
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1000411(K,I), K=1 tO N, for the initial populations each time

*period, we have normalized our population. An estimate of the

value of V is made by calculating the change in population of

the smallest age class each period. The student should cdrry

out the program modifications necessary to effect this normali-

zation.

When the population growth has achieved a stable value,

the change in the total population can be deScribed by a single

equation:

T(I+1) = T(I) + V * T(I).

In this equation, T(I) denotes the total population and V

denotes the growth coefficient corresponding to a stabilized

growth. Thus, V is analogous to G in the Malthus problem and.

the assumed 6onstancy of the survival and birth raites'of the

life table model corresponds to the assumed constancy of the

birth and mortality rates of the Malthus model. It should be

noted that there do exist sets of values for the SICK) and

52(i), and for the Yl(K) and Y2(K), such that it is not

possible to reach a stable age distribution. See Poole (1974).

With the aid of e,quations (7) or (8) in the appendix of the first

chapter, it is possible to relate V to the intrinsic growth

rate r. This is usually done in mathematically oriented

texts on population biology. We will not do so since it is

more meaningful to speak of the change in the population over

a specified time period, such as a year or a generation, rather

than as an instantaneous time rate of change.

The fact that the change in population from one generation

to the next approaches a constant value independent of the

starting population suggests that the primary quantities of

interest in describing the time evolution of a population are

the survivability coefficients, Sl(K) and S2(K), and the

6.23



fertility coefficients, Yl(K) and Y2(K). It is frequently

assumed that the survival rates of the males and the females

are identical and alPo that the fertility coefficients ate

equal. Under these assumptions the evolution of the population

can be completely characterized by a consideration of only thes

changes in the female population. Thus, the sets of parameters

S2(K) and Y2(K) are sufficient to describe the population growth.

In the iiterature, these sets of coefficients are fre-

quently referred to as Px and Fx respectiVely, and are

interpreted in a probabilistic tiense, e.g. Poole (1974). Thus, px

denotes thesprobability that a female alive at time t, and

in the age group-from x to x+l, will still be alive at

time t+1 and hence, in the age group from x+1 to x+2.

Here the variable x counts the time periods which may be

measured in generations, years, etc. The variable t is the

elapsed time and is measured in the same uriits as is the variable

x. The symbol Fx denotes the number of, female offspring born

at time t, that will still be alive at time t+1, of a female

in the age group x to x+1. Hence, the BASIC variables I and K

correspond to the traditional variables t and x respectively.

Let the initial female population of the cohort be denoted

by P-(0). Since only 52(0) of these will be alive at the end

of the first time period, the actual number alive at the end of

this period is S2(0)*P(0). Similarly, since 52(1) denotes

the proportion surviving the second time periode_the number

alive at the end of the second time period is S2(0)*S2(1)*P(0).

Continuing in this way, it is seen that the number of females

from the original cohort that are alive at the end of N time

periods is '

S2(0)*S(1)*S2(2)*
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Thus, the proportion of the Original cohort population still

alive after. N time periods is__

S2(0)*S2(1)* * *

41511,1,

In the literature, this proportion is usually denotedlby lx.

1x
is the proportion of the original population alive 1st time

t and of age x. It is also helpful to introduce another variabler,

denoted by mx, which denotes the average number of offspring

.produced per female whose age ii in the.interval x to x+1.

Hence, the quantity, lxmxP(0), is the total'number of births

from females of.age x. If this quantity is summed over all x,

that is summed over all age groups, the total number of births

is obtained. Consequently, lxmx is a measure of the reproduc-

tive capacity of the females of age x, and the 1" va, x

curve is a measure of the reproductive capacity of the entire

population.

Since the proportion

S2(0)*S2(1)* *S2(N -1)

fp it is possible to evaluate this quantity for all values

t
of an thd then graph it as a function of N. In is way,

the .asurevf the feproductive.capacity of the Rhum Island deer

popul4tion could be dsplayed.

The preceding comments were made to enable the student to

more easily relate tit4 programming notation' to that used in the

literature. There is a wide diversity of notation and terminology

in the population dynamics literature and so the subject will not

be pursued here. Comments on the notation can be found in Mertz

(1971). -
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A Pictorial Representdtion

A useful technique for displaying the age group population

,structure at any given tirie period ia a form of .horizontal bar

graph. The following examplevill serve* to indicate the method

of.construction of such a graph. Suppose there are onli 5 age

groups in the population and. the male population ofeach age

group is 500, 400, 300, 200 and 100 respectively. Let the female

population of each age group be 300, 400, 50 200 and 100

respectively. The male population diStributlion is represented

by a horizontal histogram on the right of t e vertical axis

and the female population distribution is epresented by a hori-

zontal bar graph on the left side of the v rtical axis. In

both representations, the base of the bar 4graph is the vertical

axis. Pictorially the population structure appears as shown

in figure 6.4.

600 400 200

Female Population

0 200 400 600

Male Population

Population Structure

Figure 6.4
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Since the =small age groups are on the bott6M and the

older age groups are on the top, the figure clearly demonstrates

that most of the male population is young, whereas most of the

female population is middle aged. If the figure were top

heavy, the population would consist largely of older members.

To enable the ready analysis of the effeci of varying survivability,

fecundity rates and initial populations, the program shown,in

figuie.6.2 was modified to descrike,a population of only 5 age

groups. tigure 6.5 is'a listing of the program.

Line 20 Provides for the necessary storage. The survive-

Bility rates are entered as input in lines BO to 120 and lines

115 to 150 provide for the inputting of the fecundity data.

The initial population of each age class is entered in lines

17,5 to 210. By providing the ability to directly enter Such

data as input, the evolution of populations with very different

conditions may be easily examined. The number of generations,

N, the program is to be run is entered by lines 230 and 235.

The index.I counts the generations and the index K counts the

age groups. The actual generation by generation calculation

begins at line 405 and continues through line 490.. Lines 410

and 411 initialize the counters M(1,I) and F(1,I), which

count the number of male and female newborn respectively.

This initialization is done at the beginning of each generation.

The numbers of males and females in the next age group, for the

next time period, are calculated in statements 430 and 440,

while lines 450 and 460 calculate the number of newborn during

the Ith time period. Finally, the results are printed out in

lines 505 to 590. A print out of a typiCal run is shown in

figure ,6.6 and figure 6.7 is a pictorial representation of

the growth of the population for the first 5 generations.
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RBLT5

5-REMH-
6 REM
7 REM
8..REM ,

le PRINT
iX PRINT
12 PRINT
13 PR/NT
20 DIM.M(e),201;F(6,26)
39 REM; ;

40 REW INPUT10%,URyiVABILITY RATES
41. REM .

45/.PRINT "TYPE1-5MALE *04).4VABILITy RATES"
50 INPUT'. S1(1), S1( 2,7-SV3), Si.(4>l, 51(5)
55 . PR INT

""

AQE GROUP,LIFE TABLE PROSRAM

5 AGE GROUP LIFE TABLE PROGRAM"

75 kgpl. jNPtJT FEMALE SURVIVABILITY RATES
76 REM-
88. kRINT'"TYPE 5 FEMALE SURVIVABILITY RATES"
85%/NOUT 52(1),S2(2),S2(3),S2(4),52(5)
90 PRINT
.109REPI
110 REM
11/ REM
115 PRINT
120 INPUT
125 PRINT
139 REM
140 REM
141 REM
145 PRINT
150 INPUT
155 PRINT
169 REM
/70 REM
171 REM
175 PRINT
lee INPUT
185 PRINT
199 REM
200 REM
201 REM
285 PRINT
210 INPUT
215 PRINT

INPUT FECUNDITY DATA FOR MALE

"TYPE 5 MALE BIRTH RATES"
Y1(/), Y1(2), Y1(3), 4.1.(5)

NEWBORN

INPUT FECUNDITY DATA FOR FEMALE NEWBORN

"TYPE 5 FEMALE BIRTH RATES"
Y2(1),Y2(2),Y2(3),Y2(4),Y2(5)

INPUT INITIAL MALE POPULATIONS

"TYPE 5 STARTING MALE POPULATIONS"
M(1, 8), M(2, 8), M(3, 0), P(4, 0), M(5, 0)

INPUT INITIAL FEMALE POPULATIONS

"TYPE 5 STARTING FEMALE POPULATIONS"
Fil, 0). F(2, 0), F(3, 0), F(4, 0>, F(5, 0)

Fig. 6.5
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230, PRINT "TYPE WINO. OF YRS. EVOLUTION. N MUST NOT EXCEED 25
235 INPUT N
240 PRINT
245 PRINT
250 PRINT
255 PRINT 41 PROGRAM RESULTS"
260 PRINT
265 PRINT
395 PRINT "TIME PERIOD) NEWBORN MALES, NEWBORN FEMALES"
396 PRINT
399 REM
480 REM I COUNTS THE TIME PERIODS
481 REM
485 FOR I=0 TO N
410 M(11I+1)=0
411 F(1.I+1)=0
414 REM
415 REM K COUNTS THE AGE CLASSES
416 REM
428 FOR Kol TO 4
438 M(Kil..I+1)=S1(K)*M<K,I>
448 F(K+1,I+1)=S2(K)*F(K.I>
450 M(11I+1)=M(1.I+1)+Y1(K)*F(K.I)
468 F(11I+1)=F(1.I+1)+Y2(K)*F(K.I)
478 NEXT K
488 PRINT I+1..M(1.14-1).F(1,I+1)
$498 NEXT I
495 PRINT
500 PRINT
505 FOR Io0 TO N
587-PRINT "THE GENERATION NUMBER IS ":I
518 PRINT "AGE CLASS. NO. OF MALES. NO. OF FEMALES"
520 PRINT
550 FOR Kol TO 5
568 PRINT K.M(K.I).F(K.I)
578 NEXT K
588 PRINT
585 PRINT
598 NEXT I
990 END

Fig. 6.5 (Cont.)
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ROLT5

5 AGE GROUP LIFE TABLE PROGRAM
fr

TYPE 5 MALE SURVIVABILITY RATES
?. 8. . 2. . 4. . 6. 0
TYPE 5 FEMALE SURVIYABILM RATES
'.9, . 2. . 5. . 6. 0
TYPE .5 MALE BIRTH RATES
?0. 1, 2, 2, 1

TYPE 5 FEMALE BIRTH RATE
?el, 1, 3. 2. law

TYPE 5 STARTING MALE POPULATIONS
?108, 100, 100, 190, 100

TYPE 5 STARTING FEMALE POPULATJONS
?8, 8, 100. 0. 9

t,,410%1444.11,044140,-

4,

.""%po

A."'

TYPE N=NO. OF YRS. EVOLUTION. N MUST NOT EXCEED 25
?6

PROGRAM RESULTS

TIME PERIOD, NEWBORN MALES. NEWBORN FEMALES

208 360
2 iee tee
3
4
5
6
7

siK

270 279
198. 252
333 351
342 399. 6
455. 22 508. 59

THE GENERATION NUMBER IS 0
AGE CLASS, NO. OF MALES. NO. OF FEMALES

1 100 0
2 109 , 0
3 iee tee ,

4 tee e
5 age 0

Pig. 6.6
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THE GENERATION NUMBER IS i
AGE CLASS. NO. OF MALES. NO. Olf FEMALES

1 289 300
2 80 0
3 20 0
4 40 50
5

. 60 0

THE GENERATION NUMBER IS 2
AGE CLASS,- NO. OF MALES. NO. OF FEMALES

glib*
1 100 100
2 160 270
3 16 0
4 8
5 24 t 30

-THE GENERATION NUMBER IS 3
AGE CLASS, NO. OF MALES. NO. OF FEMALES

1 270 270
2 80 90

'3 32 54
4 6.4 0
km 4. 9 0

THE GENERATION NUMBER IS
AGE CLASS. NO. OF MALES.

4
NO. OF FEMALES

1 199 252
2 216 243
3 1.6 18
4 12. 8 27
5 .3. 94 0

THE GENERATION NUMBER IS
AGE CLASS, NO. OF MALES,

1 333

5
NO. OF FEMALES

351
2 158. 4 226.8
3 43.2 48.6
4 6.4 9
5 7.68 16.2

THE GENERATION NUMBER IS 6
AGE CLASS, NO. OF MALES. NO. OF FEMALES

1 342 390.6
2 266.4 315.9

4,

3 31. 68 45. 36
4 17. 29 24. 3
5 3. 04 5. 4

6.31.
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gen. no. 0

460 260
female

gen. no. 2

gen. no. 1

71#71"."16 400 200
female

460 260
female

gen. no. 4

; 0

male female male

gen. no. 5

400 200 0 2 0 40 400 2 0 0 200 400

female male female male

Evolution of Population Structuxe

Figure 6.7
2 :40
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Harvest

The previous discussion concerning the Rhum Island deer

herd population suggests that it shoul4 be possible to harvest

a proportion of the population and yet permit the population

to remain constant or even increase. There are several ways

to harvest a populationpand the simpleat Method, which we

will call the equal harvest method, is to harvest the same

propdrtion, H, from each age class. The inclusion of an

equal harvest in our piogram is accomplished by noting that

during each generation thp number of males analgemales harvest-

ed from each age class is H*M(K,I) and H*F(H,i). This

number of males and females must be removed from our population

each time period and so thefage group equations become

430 LET 14(x+l,I+1)=Sl(K)*M(C,I).:TH*M(K,I)

and

440 LET P(K+l,I+l)=S2(10*F(R,I)-H*F(K,I).

The calculation of the number of newborn is not"changed since

it is assumed that they are not harvested. Provision must be

made for "inputting" t harvest proportion, H.

, The allowable nge of values for H is°restricted by the

minimum value of th male and female survivability coefficients.

The harveSt proportion must be less than this mlnimum value to

insure the survivability of the succeeding aga,classes. H must

also be greater than or equal to zero since ing0 corresponds to

no harvest. We also assume that survivability and fecundity
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-rates are not affected by 'harvesting. figure 6.8 illustrates

results obtained from the harvest program. The results were

obtained for har4est rates of 0.1, 0.163, 0.2 and 0.5

respectively. In each case the program was ran for ten years

and the initial population WAS that listed in figure 6.3a,

columns 3 and 5. By choosing the inital population in this way,

we are 'assuming that the population growth of the herd has

"settled down" to a constant rate of change. Thus, we are

'mimicing the harvesting of a herd that is accustomed and ad-

justed to its habitat. By comparison with the initial popula-

tion, it is seen that a harvest rate of' 0.1 permitted an

increase in the population for all age classes whereas a

harvest rate of 0.163 resUlted in almost no change in the

age cl,ss population. The harvest rates of 0.2 and 0.5

respectively resulted in moderate and severe decreases in the

population. All of the final numerical results appearing in

the tables have been rounded to the nearest integer because

integer arithmetic was not used in the program. By using dif-

ferent harvest ratios for each age class, several harvest"

policies can be explored.

It is of interest to disCuss the implications of harvest-:

ing with a harvest proportion equal to V, the limitipg value

of the population change. 'We assume that harvest takes place

after the emergence of the newborn and that no newborn are

harvested. Under these conditions, .the population will remain

stable, that is, there will be no change in the total population

from one period to the next. The student should verify this

assertion by altering the life table program to include har-

vesting# setting H=V, and using as initial population the nor-

Malized age group populations corresponding to V. Since both V

and the normalized populations have been determined numerically,
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AGE
GROUP

H=0.1
MALE FEMALE

.HARVEST.PROGRAM RESULTS

H=0.163
MALE . FEMALE

11=0.2
MALE FEMAL

H=0.5
MALE FEMALE

,

.

1 1855 2292 997 1229 678 832 11 13

2 1084 1656 560 872 370 583 4.0......

3 912 1256 467 649 307 430 3

t

4 768 928 391 472 256 '309 3 3

5 647 683 327 342 213 221 2 2

6 546 492 275 240 178 153 2
,-.1

460 345 230 165 149 104 ,
A 1

8 274 231 131 108 83 66 0 0

9 103 90 44 38 26 22 0 0

10 27 20 10 7 5 3 0 0
,

11 lb 13 6 4 3 ,, 0 0

12 13 9 4 3 2 1 e
a

13 8 6 3 2 1 1 0 .0

14 5 4 2 1 1 0 0 0

15 2 2 1i 1 0 0 0 0

16 1 1 0 0 0 0 0 0

POPULATION BY AGE CLASS AFTER HARVESTING

WITH DIFFERENT RATES FOR 10 YEARS.

THE INOrIAL POPULATION ISGI,VEN IN COLUMNS 3 AND 5 (FIG. 6.3a)

FIG. 6.6
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and because of the subsequent finite digit arithmetic, there

will be a slight drift in the results. However, the popula-

tion will.remain relatively unchanged for several time periods.

By varying H and noting the change in the population distribu-

tion by age class over several time periods,' it is -pOSsibIe to

estimate the value of H which produces a prescribed, but constant,

change in the popul,tion. If the value of H is'such that no

change is produced over several generations, then H=V. Such a

scheme can actuaaly serve as an effective iteration scheme for

the determination of V. 4

V is related in a simple manner to the value of the latent

value, , mentioned by Usher in his article. The relation

is

wnere = denotes approximate equality. If N
K

denotes the

population in the K
th age class corresponding to V, then the

exact relation between X and V is

X= 1 + V - VN

it*

K=1

6.36
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Here M denotes the maximum number of age classes, and male and

female age classes are considered as distinct. The term

E NK

K=1 .

denotes the sum of the normalized age grc...p populations. The

correction term

is quite small. Using the Rhum Island deer herd data, taking

M=32, and V=0.1636, the value of the correction term is

found to be l.9x1.0
-5

Thus, the relation A = 1+V then

is quite accurate. If the newborn had also been harvested in

the same proporton, the relation A = 1+V would have been

exact.

We purposely did not derive this result since the derivation

uses linear algebra. The result is mentioned to indicate the

connection between our elementary approach and the more mathe-

matically sophisticated approach of Leslie and Usher. The

6.37
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student who is familiar with linear algebra will find it

instructive to derive the result. The effectiveness of the

matrix formulation of the problem is due to the fact that the

elements in the matrix are assumed to be constant. Since

many of the useful results of matrix algebra rely on the fact

that the elements of the matrix are constant, this formula-

tion is somewhat limited in its applicability. In contrast,

the structure of the BASIC language age group equations per-

mits them to include survival and fecundity rates which can

vary from one time period to the next. Such alterations can .

be easily effected in the program. Other tYpical alterations

might include the effect of flnite resources, the effect of

contamination, prey-predator interactions, the effect of com-

petition, the effect of time lags, etc.
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Discussion

Integer arithmetic was not used in the calculation because

your author felt that the consequent increase in-computer time

was not worth the possible benefit. -On-the other hand, the

use of integer arithmetic when outputting data would have

resulted in a more realistic appearing population and probably

should have been inCluded in the program.

An examination of the table of newborn males and females '

shows that as the number of time periods increases, the number

of newborn continues to increase. This suggests that the deer

population would become arbitrarily large after a sufficient

number of time periods. Since this is an impossibility, it

must he the case that thlre exists a factor in their environ-

Ment'that results in survivability and fecundity rates which

imply an increasing population. It is probably the case that

this factor is harvesting, i.e. hunting pressure. Thus,

assuming equal harvest, we determined that approximately 16%

of the herd was harvested each year. Your author has not

checke4 the validity of this assertion with the actual hunting

harvest. Nevertheless, he suspects that this is the case. It

is certainly the case that if no plausible reason can be dis-

covered for the continued growth of the herd then the experi-

mental data is in error. The purpose of the above discussion

was to illustrate another way in which theory can assist

experiment.

In order to make the development easy to follow, the com-

puter programs developed in this section did not contain any

safety checks. If the programs were to be actually used, they

should contain safety checks. For example, it is possible that

the population of an age class may drop below a single individual.

In this event the population for that age class has effectively

6.39



'441

vanished and provision should be made for setting it equal to

zero. If population effects are included (see next section),

and the modification parameters are chosen too large, the popu-

lations of_ an age_class may even bevorne negative. Provision

must be made in the program to test for such an occurrence.

The existence of nesative populations or abnormal population

changes are signs of possible errors in the data or in the

program. For these and similar reasons, it is imperative that

the programmer analyst give reasonable effort to ascertaining-

the possible existence of physically unrealizable results. He

then must make provision in the program for testing for their

occurrence, and in the event such results do occur., the program

must have the proper instructions to enable it to take the

correct action.
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Population Effects (Effect of a Finite Resource)

It is known that fecundity rates as well as survivability

rates are decreased by an increasing population living in a

finite environment. In this section, we discuss the inclusion

of such an effect wtich is sometimes called the population

effect. As an aid in this discussion, it is helpful to note

the analogy of the life table development with the prey*ous

development of the exponenttal,growth model. In each model,

the growth rates were assumed to be constant and independent

of population. Now, it should be recalled that the necessary

modification of the exponential growth model to include the

effect of a finite environment was accomplished by modifying

the average growth rate by an amount proportional to the pre-

sent-population. This suggests modifying the life table develop-

ment in a similar manner.

We will assume that the survivability rates, as well as the

fecundity rates, for each age class, are reduced by an amount

proportional to the total population. Thus, if P(I) denotes

the total population at the beginning of the I
th

time period,

the survivability rates must be written as

Sl(K)-:.53(1)*P(I) and 5200-54(K)*P(I).

The sets of values 53(K) and 54(K), K=12 IN are

constants of proportionality relating the reduction in the

survivability rates to the present population. They are called

the survivability modification parameters and are positive and

very much smaller than each of the 51(K) and 52(K).

The accounting for the effect pf the finite environment

on the fecundity rates is accomplished in a like manner. Thus,

the birth rates are written as

Yl(K)-Y3(K)*P(1) and Y2(K)-Y3(K)*P(I)

6.41
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where Y3(K) and Y4(K), K=1,2, re, IN are two sets of

proportionality constants relating the decrease in the fecundity

rates to the present population. Y3(K) and Y4(K) .will be

called the fecundity rate modification parameters. The total

population, P(I) is given by

10 LET P(I) = 0

20 LET K=0 TO M

30 LET P(K) = P(K)+M(K,I)+F(K,I)

40 NEXT K

50 LET P(I) = P(M)

where M is the number of age classes.

The 1.wogrammin9 alterations necessary to accommodate these

changes are very straightforward. Provision must be made for

storing the'constants, c-quations 430 to 460 must be changed by 4r4t

insertiot of the modified survivability and fecundity rates,

_ad finally provion must be made for calculating the total

1,opulation each time period.

Your author made these corrections to the program shown

1n figure 6.2 and made some sample runs a'ssuming a common value

tor each of the sets S3(K), S4(K), Y3(K) and Y4(K). The varia-

tion of the number of newborn males was used as a measure of

the effect of varying the survivability modification parameters.

The results are presented in figure 6.8 where it is noted that,

as the magnitude of the modification parameters increasesIthe

number of newborn males decreases. It should also be noted that

the modification parameters result in a leveling off of the numper of

newborn. Hence, these parameters are analogous to the growt

rate modification parameter G1 that appears in the finite

resource model. In these runs, the fecundity rate modification
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parameters are set equal to zero. If the surNlivability rate

modification parameters are set equal to zero and the fecundity

rate modification parameters are varied in an analogous man*
a similar behavior is observed. Many other variations of the

pazameters may be studied, and other measures of the change in

the population, such as the change in the total population,

can be used to measure the effects of these variations. The

student is encouraged to so modify the program and to then

carry out a computer assisted experimental analysis of the

effects of parameter variations.

It is important to note that the actual obtaining of the

4N parameters is a nearly impossible experimental task. Thus,

Aie alteration of the program to provide for these constants

not api;ear fruitful. Nevertheless, a cdreful examination

t7 results obtained by varying these parameters can result in

better understanding. The previous development again illus-

tIfs the fact that the ability to construct very general

p7c;grams is both a blessIng and a curse. (See page 2.22).

Ls a iurs ct because it tends to negate the real effort and

.fA,Ienuity required to obtain valid and useful experimental

ita and, st.t tends to encourage unjustifiable curve fitting

and parameter juggling. On the other hand, it is a blessing

necause greater insight can frequently be obtained and sometimes

such flexibility, when properly combined with empirIcal knowl-

edge, can permit the determination of the necessary parameters.

6.,44
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Effect of Mating Possibility

The original development of the life table assumed that the

ability of a female to produce an offspring was independent of

the number of males in the population. Promiscuity is a char-

acteristic of most populations and hence, this is a reasonable

assumption. On the other hand, there do exist a few populations

for which mating partners, once chosen, do remain faithful

throughout the life span of each partner. For such monogamous

populations it is known that an unequal distribution of the

population of each sex can directly affect the number of new-

born. Examples of such populations are Geese and Swan. It

is the purpose of this section to present a modification of the

life table analysis to include the effect of unequal numbers of

males and females. In this connection, it may be helpful for

the student to reread the section entitled, "Effect of Mating

Possibility" in the first chapter. The development of the

model will be based upon an attempt to mimic the growth of a

population that begins with individuals only in the first

three age classes. Thus, initially the first age class consists

of the newborn, the second age class is made up of yearlings,

the third age class contains two-year-olds who are possible

parents ana there are no individuals in the remaining (N-3)

age classes.

It will be assumed that the time interval for each age

class is one year and that the population breeds only once a

year. Thus, it is convenient to choose the time period for the

life table as ono year. It will also be assumed that no individ-

ual is older than N years. It is further assumed that the

fecundity and survival rates by sex are known for each age

class and that finite environment or population effects are

negligible. Because an individual is assumed to be monogamous

6.45
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.throughout its lifetime, the number of Oqssible mothers in an

age class is given by the minimum of the npitiber of males or

females in an age class. Finally, it is assumed that the

individuals constituting a mating pailr select-each, ather the-

frst year of mating possibility. Thus, the fact that the popu-

lation is monogamous implies that no older individuals will

mate with younger individuals, and hence, the individuals in

each pair will always remain the same age.

As a result of these assumptions, the number of possible

mothers in an age class is given by the minimum of the number

of males and females in the age class. The implementation of

these assumptions is accomplished by.adding the lines

442 IF F(K,I)- M((,I) GOTO 450

444 LET F(K,I)---.M(K,I)

!) the prccrram lif;ted in figure 6.2. It was assumed that there

100 males and temales in each'of the first three age classes

the remaining age classes contained no animals.

Usinq the Rhum Island red deer survivability and fecundity

your author FO modified the program given in figure 6.2.

The program Was run fcr 20 perio4s and the results are given

tn fiAlLmeb.Win columns 3 and 5. The original Rhum Island red

doer program listed in figure 6.2 was modified to have the same

initial age class population distribution and also run for 20

time periods. The results of this program are listed in columns

2 and 4 of figure 6.10. It is seen that the modification due to

rnating possibility resulted in a decrease in the,number of new-

horm as would be expected. Similar conclusions can be inferred

4;th respect to other comparisons of population distributions.

The inclusion of population effects may be accomplished by ad-

joining to the program those statements developed in the previous

section.

9
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MATING POSSIBILITY

TIME
PERIOD

N

NEWSOM MALES NEWBORN FEMALES
ORIG. PROG. MOD. FROG. ORIG. PRft. MOD PROG.

0 100 100 100 100

1 62 62 66 66

2 94 91 99 96

3 107 101 129 123

4 118 111 153 146

5 138 124 182 168

6 167 142 215 189

7 195 '156 241 199

8 225 171 275 216

9 262 191 320 242

10 305 218 378 279

11 355 248 442 319

12 413 279 513 360

13 481 313 597 401

14 560 350 693 447

15 651 392 806 500

16 757 441 938 563

17 881 496 1092 634

18 1025 558 1271, 715

19 1193 627 1479 803

20 1388 704 1720 901

Figure 6,10
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PROBLEMS

CHAPTER VI

1. Alter the initial age class population and run the program

for 24 generations or so.

2. Alter survivability and/or fertility rates, Apen make runs

to 3ee how sensitive results are to such changes.

Rewrite the program on figure 6.2 using integer arithmetic..

Make some trial runs and compare the results with those

obtained from the original program.

4. Figure 6.11 lists life table data on the White laver elk

herd in Coloiado and is 'presented with the Gourtesy oi Dr.

R. Ream of.the University of Montana Schoolof Forestry.

The herd is heavily harvested and has, a very high repro---

ductive rate. For purposes of herd management, it is

convenient 'te designate the following classes of animals:

(1) Calves - including both males and.females less

than one year old.

(2) Cows - includes all females in the population

except calves.

(3) Spike bulls - includes All yearling males.

(4) 2-5 point bulls - includes all males iv 2,

and 4 year old age class.

(5) 6-point bulls - includes all males 5 years and

older. These are called the trophy bulls.

(a) Modify the program given in-figure 6.2 to simulate

the time evolution of the age group populations of

the elk herd.

.(b) It is assumed that the harvestors (hunters) can dis-

tinguish between the five classeS. It is further

6,
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'ELK POPULATION TABLE

NGE

'NO. OF

. MALES

Based on White River Herd
Data -- Colorado

MALE NO. OF FEMALE

SURVIVAL FEMALES SURVIVAL

REPRODUCTIVE
RATE

0 1000 .82 1000, .82 0

800 .95 800 .95 0

2 240 .90 700 .95 .95

3 65 .85 550 .90 .98

4 35 .80 320 .85 .96

5 25 .70 200, .75 .95

9 .65 120 .70 .90

7 3 .65 66 .70 .90

8 1 .60 40 .65 .85

9 1 . SO .22 .60 ..80

oRiya

10 0 .40 12 .60 .75

11 0 .30 7 .55 .70

12 0 .20 4 .50 .60

o

13 0 .20 2 .50 .50

14 0 0 1 .50 .40

15 0 0 0 .40 .30

16 0 0 0 .30 .20

17 0 0 0 0 0

Figure 6.11
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assumed that each hunter is successful "and will .

harvest a single animal in that class for,which he

is given a license. How should licenses be issued

to: ,r

(1) Maximize the number of trophy bulle?

(2) Maximize the total number of animals taken?

5. Figure 6.12 lists survivability and population data for the

Yellowstone Park Grizzly Bear population as obtained from

Crii4headi et al, 1973. The fecundity rate was found to

be approximately 11.00 for the years 1959-67 and 0.68 for

/ the period 1968-70. These rates are constant over all but

the first five age classes and these classes cannot give

birth. Construct a life table model of the bear population

making provision for acceptance as input the sex ratio of

.1le newborn and also the fecundity rate. Make some runs

with different birth rates and initial populations. Both

the survivability and the fertility rates are in error

due to sampling limitations. The s nsitivity of the popu-

lation to these errors can he found by maki7 computer runs

with different values for these rates.

6. As suggestei'in tile section describing population .effects,

modify the Rkuiti cieler program to include the effect

of increasing,pog'ilafton. State'tile assumptions behind

your modifications. .Make up-some data and run the program.

Discuss your results.

7. Using the program listed in figure 6.5, make up a set of runs

to examine the effect on the evolution of the population due to:

(a) Changes in the male survivability rates only,

(b) Changes in the female survivability rates only,

(c) Changes in both,

(d) Changes in the initial population, both male)and

female, and

(e) Any combinaiion of changes you select.

6.50
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Age
N

Clam;
m460.6r SkS114:10,

Posiss

StarvivarsMp
Rata
Ps

An.01111. 11111MMIWAIRWMOW

SusAaars1.4-
asta

M. c 19.S 14.763S 13.8 oeemeo
i.c 73.4 14.5 9.6928 8.5 0.9529

14.. 9.9 0.8566 15 1 9.6790
14.o 11.S 0.6235 S. 4.9091.

4. 1 .... 61 7.0 0.5143 5.11 9.5209
5.S /.7 3.6 0.9444 4. 1 9.9758'
6.5 '7. 4 3.4 0.9412 4.6 9.9599,

7.R 3. 2 A.9688 3.6 9.9737'
S.5 6.8 3. 1 0.9677 3s, iorr3e,
0. 6. A 3.4 8.9607 3.111

I V. I{ 6.1 see 1411429- 3.4 414.9786
11.5 i.1 2119 469642 303 0.9394
12.5 5.6 2o? 0,4660 461 0.9032
13.5 5.2 2.4 6.6750 a.. 9.95.71
14.5 4.5 2.1 0.7610 9.7917
15.5 3.5 1.6 0.7560 68
14.6 2.6 1.2 0.8333 4 0.05
17.5 2.2 1.9 0.8044 111 9.7590
1R.5 1.7 9.8 0.7569 9.9 0.1859
14.5 1.4 W. 4.8333 0.7509
2A.5 i . 1 9.8 0.8949 0.9 0.6007
21-5 9.A 6.4 0.7500 0.4 0.7599
22.5 0.6 0.3 0.6667 9. 3 9.6607
23.5 9.4 0.2 8.5000 0.2 9. US
#4.5 0.2 0-1 0.5020 S I 9. 5009
25. S 0.1 9.2 9.811419

4.111,1111111111.

TOTALS 178.2 48.8
"s

Grizzly Bear Data

Fig. 6.12

1.
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,

State you, variations and the reasons for choosing them.

Discuss and compare the results. Do they agree with

your intuition?

Make a run witH the 5 group program using rate,data,and start-

ing populations of your own selection. Run the program for

NI generations. Record the populations and then use these

populations as initial popalations for a new run, of N2

generations, in which.the rate data are chinged. ftamine

your results. Discuss them. Note that this procedure of

"chaining" runs corresponds to-Changing the rate data

during the course of one long run.

Alter the 5 group program to.accept changing rate data.

Make up your own data and carry out some runi. Discuss

your results.
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CHAPTER VII

APPLICATIONS TO GENETICS

Some Preliminaries.
\'s

The science of geneticsis that body of knowledge which

attempts to explain the transmission of.physiological and mental

characteristics from the parents to their offsPring. Biologists

believe that the unit,of structur0 of a living organism is the cell

and that it is through the cell that the6characteristics of an

organism are exwessed. This expression is accomplished by collec-

tions of rod 'shaped bodies called chromosomes which themselves are

made up of sets of smaller bodies called genes. It is these latter

bodies which biologists believe determine the characteristics or

hereditary traiti transmitted from the parents to the offspring.

It is known that a certain number of genes from each of'the parents

anite to form a unique collection of genes in the offspring and

since there is associated with each gene Or set of genes a charac-

bPristic or characteristics, an accounting of the distribution of

the genes in the offspring will enable us to specifY,the hereditary

traits'or characteristics of the offspring. Consequently, in this

chapter we will attempt to use a computer to determine and/or list

the number and kinds of genes in the cell of the offspring. ,We

will assume that the student is somewhat familiar with the biology

of heredity; at least to the extent of having had a secondary school,

elementary college or University level course in the life sciences.

Thus, we will freely use some elementary biological terms early

in our discussion. We will begin by describing the work of Gregor

Mendel who.in 18.65 founded the modern science of genetics'. Most

,students are familiar with his work and know that he postulated or

stated laws that:

Permitted the assigning of definite probabilities to

specified gene distributions that occurred in the cells

of the offspring, and
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(b) associated the gene distributign of the offspringwith a

distribution of heredity traits and thee enabled the

prediction of the heredity characteristics of the off-

spring.

Since some students may not be familiar with Mendel's_work it

will be described in the next section.

Mendel's Experiments

Our discuesion will begin with a summary of Mendells experi-

ments. The summary will include only that part of his worksith

which the student must be familiar in order that he understand

the work that is to follow. In the event that our presentation of

Mendel's work is too brief, the student is urged to consult an

elementary Modern biology text or some of the references at the

end of the chapter.

Mendel worked with the pea plant.. His experiments consisted

of crossing and growing successive generations of the plants. For

each successive generation, he would note the biological or phYsical

characteristics of the parent plants, cross plants with specific

characteristics with other plants of the same or different set of

characteristicsrand theh tally the distribution of these characteris-

tics in the offspring. For example, if the characteristic of

interest was height of the plant, Mendel would cross several pairs

of plants, each member of which was a tall plant, each member was

a short plant, or the members of the pairs would be such that one

was short and the other tall. By carefully listing the distribution

.
of the characteristic of the offspring and then comparing this dis-

tribution with the specified distribution of the same characteristic

in the parents, Mendel was able to devise a hypotheses which enabled

him to predict, with great accuracy, the distribution of the char-

acteristic in the offspring resulting from a specified distribution

of this characteristic in the parent generation.

He worked with several pure bred varieties of pea plants. .Each

variety of plant was 'distinguished from the other by such outwardly

distinguishable characteristics as vine height, positio l. of flowers,
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color of seed, color of flowers, etc. In.totalls-Mendel noted the

pea plants podsessed.oeven distinct 4ological characteristics

which carried over from generation to geneiation. Furthermore,

each of these characteristics was characterized by the fact that

it could be in only one of the two possible states. For example,

the characteristic of color of seeds could either be in the yellow

state (a yellow seed) or in the grieen state (a green seed), and

the characteristic of stem height could either be in the tall or

the short state. Mendel recognized that in order to establish the

validity of his hypothesis concerning the distribution of the states

of the characteristics through succeeding generations, that he would

have to have a collection of seeds with the property that when they

were pollinated (regenerated) solely among themselves they would,

always reproduce in their offspring the unique chara6teristic states

of the parents. Plants with this capability are said to "breed to

type" or are pure bred. Mendel also recognized that it would be

mandatory to be able to absolutely control the pollination or ferti-

lization of each plant in order to rigorously account for the matings.

This was readily accomplished in the pea plant by the well-known

technique of artificial fertilization"ror pollinization.

Becauve the plants were pure bred, the self-pollinization of

two distinct tall plants would produce.a tall plant. Analogous

results would occur after the breeding of two pure bred small plants.

However, the breeding by artificial pollinizatiwi of a tall plant,

with a shi:Irt plant such bleeding is called hybrid breeding and the

offspring labeled hybrids), also produced a tall plant regardless

of which plant the original.pollen came from. Since the state of

tallness always resulted from such a mating, Mendel had established

experimentally the fact that the state of tallness was dominant as

compared to the state of shortness. He thus labeled tallness a

dominant state or trait and shortness a recessive state or trait.

It is.important that the student recognize that Mendel had estab-

lished this relation only for the pea plant. The very opposite

could well be tru, for some other plant.

Having established the relation, of dominance for the state of

tallness over the state of shortness, Mendel then experimented with
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crosses involving other characteristics of the pea plant. In a

very similar manner, he found by experiment that by crossing

plants that produced yellow seeds with plants that produced green

seeds that all first generation plants had. yellow seeds and thus

yellow was the dominant seed color as compared to green. Simi-

larly, he found that round seeds were dominant to wrinkled seeds.

After performing analogous experiments to compare all seven char-

acteristics, Mendel found the-surprising result that for each of

the seven characteristics one of the states of each characteristic

was always dominant. Stated in another way, one of the'states of

each characteristic appeared to be lost.

The following table is a summary of Mendel's findings:

The Pairs of Contrasting Staes

Rounded seeds, wrinkled seeds

Yellow seeds, green seeds

Colored seed coat, white seed coat

Inflated pod (unripe), constricted pod

Green pod, yellow pod

Axial flowers, terminal flowers

Tall stem, short stem

Dominant State of the Fl
Hybrid Offspring

Round seeds

Yellow seeds

Colored seed coat

Inflated pod

Green pod

Axial flowers

Tall stem

Having discovered the existence of dominant traits or states

by breeding pure bred types, Mendel then proceeded to experimentally

determine Lhe distribution of these characteristic states in suc-

ceeding generations. As a means of keeping track of each generation,

he labeled the hybrid offspring of the two different but pure bred

plants the first filial or F
1
generation, the offspring of these

offspring the second filial or F2 generation, and so on for each

succeeding generation.

Because both parents of the original parents were pure bred,

the offspring of either self-pollinated tall or self-pollinated

short plants were indeed either all tall or all short, respectively.

However, it was the resultant distribution of the height character-

istic states occurring in the offspring of the Fi generation whose
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parents were hybrids for the states of tallness and shortness that

was most unexpected and historically significant. Mendel found

that approximately 75% of the plants were tall and 25% were

short even though.all of the parents were tall. Furthermore,

upon experimenting in a similar way with the other characteristics

he found analogous distributions for the states of these charac-

teristics. Thus, other F2 generations consisted of plants in

which nearly 75% were green colored and very nearly 25% were

yellow colored; in still another set of F2 generation plants

about'three-fourths had round seeds and about one-fourth had wrin-

kled seeds. These results were obtained despite the fact that the

parents were all green colored or all had round seeds. The fact

that the proportions were so definite and consistent was indeed

most surprising and Mendel set himself the task of devising a

hypothesis for the rational explanation of such behavior. It was

this hypothesis and consequent explanation which earned him the

title of "The Father of Modern Genetics".

His reasoning was simple and yet imaginative and is one of

the best examples in science of a mental,model or hypothesis to

explain a scientific phenomena. Mendel hypothesized in the fol-
It

lowing manner in order to establish a model with which to explain

the height distribution of the offspring of the hybrid F1 plants.

He assumed the existence, in the parent plant, of a pair of unknown

influences which controlled the dissemination of the height char-

acteristic to the offspring. He called these unknown influences

factors; however, today we know them as genes and will so desig-

nate them in the discussion which follows. We also now know that

the process of dissemination te the offspring of the parental char-

acteristics 4s accomplished by the actual givingcto the sperm

nuclei or gamete a single gene from each parent. Furthermore, we

know that a pair of gametes, one from each parent, unite to form

a single cell galled a zygote. The zygote is the original cell,

which by division and duplication, develops into the offspring

plant or organism. The modern theory of heredity holds that there

exists in the membrane of the nucleus of the cell a number of
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distinct linear threadlike bodies, called chromosomes, which are

the carriers of the hereditary factors or genes. The division of

the cell is called cytokinesis and the events and mechanisms in-

volved in the division of the nucleus of the cell are called

mitosis (3ronounced my-toe-sis). These events and mechanisms

assure that the newly formed cells receive the same number and

kind of chromosomes, and hence, the same distribution of genes,

as existed in the parent cell.

Now, since some of the hybrid offspring plants in Mendel's
1

experiments were either tall or short, he further assumed that

these unknown genes must occur in pairs. In making the assump-

tion of the existence of such pairs of genes for each state,

Mendel established his first law of heredity which states:

"The various hereditary characteristics (such as height,

color of plant, shape of seeds, etc.) are controlled by

genes and furthermore these genes occur in pairs."

He formulated his second law of heredity by assuming that the

tall plants of the F1 'hybrid offspring were unlike the tall

plants of the offspring from pure bred tall plants since the state

of smallness did not appear in the first or Fi 'generation, but

would reappear in the next generation. Thus, his second law of

heredity states:

"One gene in a pair of genes may m4sk or prevent expression

of the other gene."

Mendel further assumed that when the gene pairs of the off-

spring are created that these gene pairs contain only one gene

from each of the pair of corresponding genes of each parent. Thus,

his third law of heredity, frequently known as the itawIt Segre-

gation states:

"Only one member of any pair of genes in a parent is

transmitted to each offspring."
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By examining successive generations, of offspring of pea

plants that originally differed from each other in two charac-

teristics, Mendel established the Law of IndeOendent Assortment

which states: 4*

"A gene pair associated with one characteristic (for

example, height) segregates independently of a gene

pair, associated with another characteristic (for

example, color of seeds)."

With these laws Mendel was able to predict the distribution

of the traits in successive generations of offspring. This pre-

diction was accomplished by calculating the possible pairings of

genes of the parents. In order to make such calculations more

orderly and more readily understood by the student, it is con-

venient to introduce some definitions and notations. These are

used frequently in describing genetic phenomena and many students

are probably familiar with them. As stated previously, are

assuming that for each characteristic such as height, 4 ... of

seed, etc., there exists in each of the parents a heredity factor

or set of heredity factors, which specifies a state of the charac-

teristic. Such a heredity factor is called an allele. Thus, the

qene for tallness and the gene for shortness are alleles of each

other. Biologists frequently say that "alternative forms of the

same gene are called alleles of each otWer". Also, the term

allelic.forms is used to describe the existence of the two (or

more) heredity factors associated with a given characteristic.

If the allele of tallness is dominant as compared to the allele

of shortness, the tall allele is said to be dominant over the

short allele, or is the dominant allele. A recessive allele is

defined in a corresponding manner. It is cUstomary to label the

dominant allele with a capital letter or letters and the recessive

allele with a ginall letter or letters. Thus, the allele corre-

sponding to tallness will be labeled T and the allele for short-

ness labeled t. When both members of the pair of alleles are the

same (for example, TT or tt), the cell is said to be ham9212z_
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Conversely, when ihe alleles differ, the cell is said to be heter-

, zygote. We have seen that some F1 offspring of a hybrid pairing

may all have the same outward appearance of tallness but when

these F
1

offspring are paired, they produce some offspring

which are short in outward appearance and thus some of the. F1

offspring must have carried a recessive allele of shortness.

Consequently, the hereditary constitution of the F1 offspring.

was different than their external appearance and so it is con-

venient to distinguish between these two properties. Thus, the

appearance type of the organism will be called the phenotype of

the organism land the gene or heredity structure of the organism

will be called the genotype of the organism.

The assumption of associating a specific gene with a specific

biological or physical characteristic is very limited. In fa6t,

it is usually the case that the state of the characteristic, as

well as the characteristic itself, is specified by more than the

alleles from just a single gene. It is now believed that the

principle means by which hereditary characteristics are determined

are the chromosomes and their expression in terms of DNA molecules.

Genes are assumed to be alligned igroa linear order along the chro-

mosome and the location on the chromosome of a specific gene is

called the locus. It has also been determined that the bio-

chemical processes required in the formation of the basic cells

directly influence the development of the chromosomes. The

field of study re3ating these processes to an understanding of

heredity is called cytogenetics. Developments in this discipline
,r

have shown that the gene may not be the ultimate unit of organi-

zation. However, for the purposes of this work, it will be

assumed that the gene is the fundamental unit of heredity. The

hypothesis of the existence of genes and their role in the deter-

mination of hereditary phenomena is a very valuable and fruitful

hypothesis. This work shall be limited to an elementary analysis

of this role.
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The Prediction of Heredity Characteristidd

In this bection we will consider the problem of prediCting

the distribution of the height characteristic of the pea plant

offspring knowing the gene distribution of the parent plant.

For purposes of illustration, it is.assumed that each parent is

a hybrid for the characteristic of height. Thus, the chromosome

of each 6arent contains an allele for tallness', as well as an

allele for shortness. Mendel's Lnw of Segregation does not

specify which allele of the paii of parent alleles is trans-

mitted by a parent to the gamete of the offspring. Consequently,

it is assumed that either allelc of each parent may be trans-

mitted and that there ekists no internal, nor external, factor

prohibiting, nor discriminating in fayor of, the transmission

of a particular allele of the pair. (Here we are excluding ex-

ternally induced mutations And the effects,of selectivity). 4.111trus,

either allele may be transmitted with equal probability and this

fact is a fundamental as,sumption in th following discussion.

We are now in A pisition to deAcribe the gene dissemination

process by a flow diagram. The symbol

0
Tt

will denote the gene corresponding to the characteristic of height

and the letters T 4nd t denote the allelic forms corresponding

to the states of tallness and shortness respectively. The flow

diagram or inheritance chart of two hybrid for height parent

plants is:

(A) (B)
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A box in the toR row designates the allelic form of the height

gene in a parent whereas a box in the bottom row designates one

possible pairing, in an offspring, of an allele from each

parent. One such pairing results from the transferring of a

tall allele from each parent to givf a TT allelic pair in

the offspring. Another offspring pairing results from the trans-

ferring of a T allele _from parent A in conjunction with a

transferring of a t allele from parent B. The same allelic

offspring pairing is obtained by the transferring of a t

allele from parent A together with a T allele from parent B.

Finally, a fourth allelic pairing in the offspring could arise

from the passing of'a short allele from both parents. Each of

the four possible offspring pairing occur with equal probability

because it is assumed that it is equally likely that a tall or

a short allele will be passed down from ei6ler Parent plant.

The fact that each -of the four possible pairings is equally prob-

able means that Zor a large number, say 1000, of matings there

will be vproximately 250 of each pairing. Since the T allele

is dominant and it As assumed there is no sexual distinction 6f

alleles, i.e. tT and Tt give equivalent phenotypes, there

will be about 75U ,tall offspring and about 250 short off-

spring. Thus, there will be very nearly three times as. many

tall plants as there are'-'iort plants._ In this way, Mendel

explained the 3:1 distoution of tall and short plants, the

311 distribution of green and yellow colored plants, etc.

Such pictorial representations provide a basis for the cal-

culation of the prediction of occurrence of a specific gene dis-

tribution. In this work, *ye wial not develop calculation methods

in a manner that i
;Iermally followed in a genetics course; rather

we will usr- 1 computer to simulate the .process (that is we will

grow our cwn plants on the computer) and count the number of

desired genotypes. In brief, our simulation will consist of

using the random number generator to select "at randoM" an allele

from each parent and to than record the selected allelic pair.

(The possible allelic pairs are TT, Tt or tT and tt). After the

process has been repeated several times (corresponding to the
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mating of several pairs of plants) the recorded frequency .of

occurrence of each allelic pair will permit the determination of

the ratio of occurrence of each gentoype and hence the aobability

of occurrence of tall plantS as compared to shoit plants. ,.Genet-

icists call the ratio.of occurrence,of each genotype to the total

number of occurrences of all genotypes, the genotypic ratio and

the ratio of occurrence.of a phenotype to the tbtal.number of

occurrences of all phenotypes the phenotypic ratio.

In the preceding examplef.the phenotypic ratio for tall

plants was three-fourths and for short itlants ii was one-fourth.

The corresponding genotypic ratios for TT, Tt and tt respec-

tively were one-fourth, two-fourths (or one-half), and one-fourth.

The Tore skeptical student may well ask, "Ikn't the procesa,_

of repeated use of the random number generator and the counting

of allelic pairs a rather wasteful procedue when we can get the

answer-by paper and.pencil together with the application of known

formulae from btatistics and probability?" Our answer is a quali-

fied "Yes". For many simple problems this is,certainly the case.

However, in attempting to describe the change in gene distribution,

which occurs over several gener9ions, when such changes are

Modified by genetic selection or mutation due to environmental

factors, the simple but-computationally feasible technique of

simulating the "passing of the genes" with the aid of a computer

may well be the only technique that enable:: us to describe and

predict the resultant hereditary characteristics. There are many,

many other situatiNns in which the determination of the apparent

final distributioh of genes is only possitble by modeling and com-

puter-assisted counting. Frequently, both computer modeling and

mathematical statistics are used together to carry out the deter-

mination. This confrontation between mathematical statistics and

a computef is again referred to below. Hence, as in the case of

our comatter modeling of population phenomena, we shall find that

we can, with the aid of suitable models and the computer, analyze

far more complex hereditary phenomena than we could if we were

limited solely to the tools of mathematical statistics. All we

are really doing is taking advantage of the tremendous capacity
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of the modern electronic digital computer to perform very detailed,

repetitive calculations in incredibl4 short periods of time. The

prospective serious life scientist should not lose sight of the

premise that his goal is the understanding, predicting and ex-

plaining 'of phenomena in the life sciences im an as unambiguous

a manner as is possible, be it with the aid of the lancivage called

BASIC, FORTRAN, etc. or with the aid of the language,called mathe-

.
matics or with the aid of both languages.( A second and Possibly.

more iMportant reason for proceeding in the above manner isL.that

the very act of modelinc or simulating the genetic flow via a

computer forces the student to understand thoroughly what is

hAppening in a biological sense. Also, there is a great des].

of feedback from the development of the computer simulation to

the understanding of the student. In contrast, frequently the

matheillatical modeling of the phenomena leads to mathematical

equations or problems each of which requires a "mathematical trick"

to effect the solution. Consequently,,a great deal of the stu-

dent's effort is devoted to discovering these "mathematical

tricks" (i.e. taking courses in mathematics) when this effort

could be devoted to the further understanding of genetics.

Lastly, from the point of view of probability theory, there

is much to be said for this procedure of growing the offspring

on a computer. The student who is familiar with the subject of

probability and statistics will recall that the statement, "the

probability of a four'occurrinq on the single toss of a die is

on ixeh" can be interpreted to mean that if the die is ttssed

fficiently large number of times, that the ratio of the num-

er of outcomes which are the occurrence of a four to the total

number of outcomes, can be made arOitrarily close to one-sixth.
A

In a similar manner, by repeating the simulation, a sufficiently

large number of times, we should expect (in the sense of prob-

ability theory) to he able to determine the genotypic ratios.



The approach to the analysis of random processes is a direct

carrying out of the 'results of the "frequency interpretation"

definition of the probability of an event.

Of course, it is to be expected, and in fact, it is well

documented, that a judicious combination and use of the toole

of mathematical statistics in conjunction with the computer

does indeed enable us to attack Gen more comPlicated genetic

phenomena. Thus, though we are deliberately neglecting the use

of the mathematicalYtóols of probability theory and statistics

fdir pedagogical reasons,the prospective serious student of

genetics is urged to become knowledgeable in these disciplines.

However, as stated in the preface, the goal of this text is to .

introduce the student to an6ther tool, the computer, as an aid

in his understanding of his subject, and thus we are deliberately

m.4ximizing the assistance of the computer and minimizing theUse

of formal mathematics.

. I



TheDeNm.lc_2EnentoL_theCoi2i_nuteri'roram

We turn now to the development of a computer program which

wp.l calculate the number of genotypes arising from N matings

fn a pure hybrid populati.on.. In order that the student may more

easily correlate the discussion with the BASIC programming lan-

guage, which does not have upper and.lower case letters, we shall

introduce a slight change in-notation wherein we shall denote the

alleles of a gene by A and the development will be

restricted to a consideration ly two alleles since the

extension to multiple alleles wiil be apparent. -,Finally, the

discussion will also include only one characteristic and later'

the extension to more than one characteristic will be indicated.

Tsco begin the discudsion of the development of a computer

program to simulate the process of transferring genes from the

parents to the offspring, we consider the simple, but useful,

problem of simulating the genotypical pOration.resulting from

the mating within a pure hybrid population. Thus, we wish to

simulate the occurrence of a large-number of crossings of a male

AB parent with a female AB parent Assuming equal likelihood

of an A or B allele being transmitted from either parent. The

libeling male and female is introduced for convenience in distin-

guishing ilmong.parents. Because the parent population is assumed

to be pure hybrid, all males and females in the parent population

are the AB genotype. Thus, there are no AA nor BB genotypes

in either the male or female parent group. For ease of under-

standing, it is convenient to imagine that there are an equal

number of males and fem,les.

The simulation is basedrupon an idea which is very simple.

A random number generator will be uzed to choose an allele from

each parent and the allelic pair will be examined to determine

the resulting genotype The process Will be repeated a "large"

number of times in order to simulate the genotypic population

arising from a large number of such hybrid matings. The number

of AA, AB andi BB "offspring" genotypes will be recorded and
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the ratio of each of these three numbers to the total number of

matings will be called the genotypic ratios, and will be a

description of the genotypical population.

The student will recall-that the subroutine which generates

or produces'a random number produces a positive number whose

Magnitude is less than or equal to unity. Thus, if R denotes

the random number so generated, O<R<l. Furthermore, it is

equally probable that any number between 0 and I may be chosen.

Hence, in order toz, choose an allele at random we Can let all

random numbers greater than one-half correspond to A alleles and

all random numbers4tess than or equal to oni=half be B alleles.

We furthermore note that the different genotypes may be' dis- .

tinguished ii we introduce two new variables M and F, and let M

and F have the values 0 and 1 respectively depending upon whether

a B or an A allele was selected from each parent, Thus, if

M+Fr-'2, then both M and F were one and an A allele was selected

from each parent. The resultant offspring genotype was then an

AA. Similarly, M+F=I denotes an AB or BA genotype and M+F=0

signlfies a BB genotype. (An AB genotype is the saMe as a BA

genotype since we are assuming no sexual distinction between

alleles). Now, our procedure for determining the genotype of

one offspring will be to use the random number generator and

to then decide whether the male allele is A or B. The process

will be repeated again usihg the random number generator to

decide whether or not the female allele is A or B. In each case,

the values of M and F are determined and the quantity Mi-F is

then tested to see whether-it has the value 2, 1 or 0, i.e.

whether 'the genotype -of tIle offspring ii AA, AB or BB.

The entire calculation is porireyed in thp flowcharts,

figures la and lb. Figure la is a flowchart utilizing a verbal

description to portray the order and flow of the program. Figure

lb is a flowchart portraying the samv information but utilizing

the programming language BASIC to describe the.flow. The numbers
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appearing beside the enclosures refer to the corresponding line

of the program which is shown in fiigure 2. In ehe program the

following notation has been introduced:

Gl, G2 and G3 denote the respective number of AA, AB and

BB offspring genotypes..

N is the number of matings;and it is assumed that each

mating always results in just one offspring.

The student should run this program severd times And each

time increase the magnitude of N the number offspring. As

N gets larger, the student should compare tile ratios of the numr

ber of AB and BB gdnotypes to the number of AA genotypes. What

do you notice? These ratios are also called the,genotypical

ratios.



GENE

5 REM FIRST GENETICS PROGRAM
6 REM
10 REM PURE HYBRID MATING, SINGLE GENERATION
11 REM
30 RANDOMIZE
50 PRINT "TYPE THE NUMBER OF OFFSPRING"
-55 INPUT N
56 PRINT
57 PRINT 7-

64 REM
65 REM LINES 70 TO 90 SET THE GENOTYPE COUNTERS TO ZERO
66 REM
70 LET G1=0
60 LET 02=0
90 LET G3=0
91 REM
92 REM LINES 110 TO 180AXTERMINE MALE AND FEMALE ALLELE
93 REM
95 REM
96 REM
100 FOR I=1 TO N
110 LET R=RND
120 IF R. 500 TO 140
130 LET M=1
135 GO TO 150
140 LET M=0
150 LET R=RND
160 IF R<=. 500 TO 168
170 LET F=1
175 GO TO 198
160 LET F=8
190 IF M+F=2G0 T6 220
200 IF M+F=OGO TO 230
210 LET 02=02+1
215 GO TO 240
220 LET 61=01+1
225 GO TO 240
230 LET G3=G3+1
240 NEXT I
250 ,PRINT "THE NUMBER OF AA GENOTYPES IS";Gi
260 PRINT "THE NUMBER OF AS GENOtYPES IF";G2
a7e PRINT "THE NUMBEP OF BB. GENOTc'PES IS",G2
275 PRINT
280 PRINT "THE PROPORTION OF AA GENOTYPES IS",Gi/N
290 PRINT "THE PROPCRTION OF AB GENOTYPES IS";62/N
300 PRINT "THE PROPORTION OF BB GENOTYPES IS";63/N
400 END

LINES 190 TO 230 DETERINE AND COUNT GENOTYPES

Fig. 2
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Discussion of Some Results

Figure 3 illustrates the results of several runs for which

the initial population was varied from 25 to 10,000. An exami-

nation of these results suggests that, as the number of crossings

is increased, the genoprpic ratio approaches 0.25 : 0.50 : 0.25, \

that is 1:2:1. This/is the genotypic ratio that is assumed by

the offspring population resulting from a pUrely random mating of

an infinite number of.hybrid Matings. Thib result can be derived

by a simple counting argument.

Because the process is random, one should not expect that,

if these runs were duplicated,.the exact same results would be

obtained. There would be a variation filom these results. In

order to get a feel for the possible degree of variability of

the results, three ,sets of three runs each were made with the

same number of crossings in each run of a set. The number of

crossings was chosen to be 50, 100 and 1000 respectively. The

results are summarized in Table 1. Considerable variation is

noted in the set of runs which correspond to 50 crossings and a

lesser degree of variation is displayed by the results in which

1000 crosses were used. This shows that the degree of variation

of the genotypic ratios decreases as the number of crossings in-

creases. This is to be expected since small samples usually

possess a greater degree of variability than large samples..

The student should be aware that, if he attempts to run

this program on the computer in order to verify the correctness

of his version of the program, identical results will not be

obtained. This is due to the fact that different brand computers

have different random number generator subrautines and also have

varying degrees of arithmetic accuracy. In addition, line 30

RANDOMIZE insures (at least to within the finite capacity.of

the computer) that a different sequence of random numbers will

be generated each time the program is run. For some versions of

the BASIC programming language, the omission of the RANDOMIZE
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1.1164NOTYPIC VARIATION

S. _
,

Number of Crossings
.

50
__

100 1000

It

7.;

.:,.

.
v
9
C5

0
44
0

z

AA .26 .22 .30 .29 .22 .25 .243 .264 .268

.

AB .58 .58 .52 .51 .49

,

.53

.

.489 .496 .479

BD. ,16 .20 .18 .20 .29 .22

.ov

.268

A

.240

,

.233

Table 1
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statement insures that the same sequence of ran4om numbers Will

be generated each time the program is run. Such a capability

is of great assistance when debugging a program which makes use

of a random number generator. This is cue to the fact that the

detection of a presumed program bug in a program is greatly

facilitated if the same sequence of operations can be assured

each time the program is run. This assurance is obtained if

tbe same set of.random number is used each time the program is

run.

The success of this program in providing insight concerning

the distribution of genotypic ratios resulting from pure tandom

mating in an infinite hybrid population is dependent upon the

generation of a truly random sequence of numbers. Such a

quence is necessary because the random mating of an infinite

population is being simulated by a finite number of supposedly

random matingp. Heuristically speaking, a sequence of numbers

is said to be random if the occurrence of each number is equally

likely and if there is no pattern in the order in which the num-

bers appear. A, more precise definition of a random sequence of

numbers requires ideas from advanced statistics and need not be

discussed here.

The generation of sequences of random numbers.by a computer

requires an algorithm for, doing so. Since the algorithm can be

repeated, identical sequences of numbers can be generated. In

contrast, if a toss of a die were used to generate a sequence of

random numbers, the repetition of.the toss of the die to generate

a second sequence, ,would not result in the generation of the same

sequence of random numbers. Consequently, the numbers generated

by a random humber generator are usually called psuedo-random

numbers. Nevertheless, the algorithms used in such subroutines

produce sequences of numbers which satisfy, or nearly satisfy,

many of the sophisticated tests for randomness.

It is also evident that the limited word length of the com-

puter restricts the number, N, of dist.inct random numbers'that

can be generated. Thus, the range of the numbers aPpearing in.
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such sequences are restricted. Because of this, the user must

be careful. about' the use of the same random number generator for

generatipg sequences contaping very very many numbers. If the

use of such sequences is aintemplated, inquiry should first be

made of the computer center personnel to ascertain the advisa-

bility or feasibility of doing so. These comments are heuristic,

and for the most part, constitute part of the lore surrounding

the use of Monte-Carlo methods. Monte-Carlo is the name given to

techniques or methods which require a sequence, or sequences, of

random numbers. Such methods may also be called stochastic

methods.
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Simple Extensions

The previous program is quite limited in scope and after

studying the program in conjunction with the flowchart, the

student will easily see how to modify it.in order to make it

more general and hence useful. To illustrate to the student

how readily,the program may be.generalized, we give Some ex-

tensions. Certainly it seems unreasonable to restrict ourselves

to the simulation of genotypes arising from matings'in only"a

pure hybrid population. Thus, we will alter thé-prOgram so that

the investigator, or user of the program, may specify the number

of AA, AB and BB genotypes in the original population. In

the altered program these numbers will be denoted by Al, A2,

and A3 respectively. Since random mating will be assumed, it

will be necessary to simulate the random selection of pairs from

the genotypic ratios implied by the relative population of each

parent genotype. For ease of presentation, it will be further

assumed that the genotypic ratios of both the 19ale and the female

parents are he same. This neans that the ?tobbility of an AA,

AB or a BB male or female p nt being selected as one of the

partners in the mating is prolortional to the respective number

of AA, AB or BB parents.

The student should note that by properly choosing the number

of AA, AB and BB genotypes in the original parental population,

it is possible to specify the genotypic ratios of the original

parent population. The specification of the genotypic ratios by

specifying the respective genotypic populations is possible

because the populat4on is finite. Such a,method of specification

would not be possible if the population were infinite in size.

In that event, the genotypic ratios would have to be directly

specified. However, bec,use of the finite capacity and ability

of the computer, an in,Onite population cannot be simulated and,,,

the specification ofthe genotypic ratios in terms of the resec-

tive numbers of genotypes is possible. An original genotypic

a.
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ra of 2 5:3 can'be specified in an infinite number of wayp.

For example, an.original parental genotype, gopulation of 200AA,

500AB and 300BB,,r a population of 100AA, 250AB and 150BB or

an original population consisting of 2AA, 5AB and 38B would each

imply an original genotypical ratio of 2:5:3.

Another extension of the program is suggested by the fact

that it is of interest to be able to examine the genotypic

ratios over several generations. This may be accomplished by

assuming that the offspiing are the sole parents of the succeed-

ing generation. Thus, the respective numbers of offspring geno-

types in a given generation will be used to determine the genotypic

ratios of .the parents of the subsequent generation. It will also

be assumed 44.hat the genotypical distribution of the offspring,

when Acting as parents for the next generation, is the same for

both sexes. In another program modification (to be described

later) it will be seen that this restriction is easily removed.

It will again be assumed that if a parent ii"-en B---'genotype that

is eq4tlly likely, th.t an P. or a B allele wi be transmitted.

(see fdr reference instruction numbers 380-403 and 440-463 on

page 7:30). 0
It is important the student understand that the process of

!iot altering the genotypic ratios of the parents as each offspring

is created requires that the parent population be infinitely large.

In a finite population, the selection of even a single pair of

parents does indeed alter the genotypic ratios of the remaining

set of parents. However, if the parental population is very large,

as we are assuming, the change in the genotypic ratios is so

small that it can be ignored. Such a change cannot be ignored

when the population is small. Thus, in the program modification

under discussion it is assumed that the population is so large

that the mimicing of matings may be accomplished without the

necessity of accounting for the alterations of the parental geno-

typic ratios after each mating. An analogous assumption is made
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41.

in probability theory (see the chapter entitled, Random Processes)

when the simulation of random events with the aid of a random num-

ber generator is used to calculate probability estimates when the

ratio of the sample size to the population size is very,small.

It is more correct to think in terms of a parent gene pool con-

sisting of three gen4ypes. Our discussion has been couched in

terms of parents and their associated genotypes in order to pre-

sent the ideas as simply as possible. Genetics is a very sophis-

ticated suWect and to even a tempt a complete quantitative

discussion in this work would be out of place.

Since the numbers of the respective offspring genotypes are

used to calculate the genotypic ratios of the parents of.the-

subsequent generation, it is necessary to grow very many offspring

in order to insure a valid estimation of the parental ge.notypic

ratios. A crude method for estimating the required number of

generated offspring can be obtained by growing several of wing,

calculating their genotypical ratios and -then growing sever l

more offspring and again calculating the genotypical ratios of

the total number of offspring. If the two sets of ratios are

sufficiently close, it is reasonable to assUme that sufficient

offspring have been grown. (Note all the weasel words). Such a

condition has not been included in the program; however, it could

be with some programming effort. The problem of the determination

of a sufficient liumber of offspring is similar to the problem

of determining a sufficient number of trials when simulating prob-

abilistic phenomena on a computer and is addressed again in the

chapter en'titled Random Processes.

As previously stated, the simulation is certainly not valid

for those populations which are small in number. For such popula-

tions, the parental genotypic ratios must be altered after each

mating before simulating the growth of the next offspring. Thus,

the determination of the genotypic ratios of subsequent generations

of small populations requires more computational effort. In



addition, the smallness of the population, coupled with the assump-

tion of only a single offspring from each mating (as in a monog-

amous population), requires a more serious assessment of the

implicationtl of the results.

The following paragraphs explain in some deipil how the

above listed modifications are implemented into the program. A

flowchart of the program is shown in figure 4 and the prograp is

listed in figure 5. The number of generations for which the pop-

ulation is to be simulated will be denoted by G, and the number

of offspring to be "grown" each generation by C. The'se nuilibers

are required j_nput.

The modification of our original program to permit the user

to specify the original genotypic population is easily accom-

plished by the insertion of an input statement (line number 114)

in which Al, A2 and A3 are the desired original number, of AA,

AB and BB genotypes respectively. The ability to specify the

number of generations G, as well,as the number of offspring per

generation C, is provided in the same input statement.. The pro-

gram assumes that the same number of offspring are produced each

gerTa4tion; however, the alteration to permit a different number

of offspring each generation is slight.

Since the parents of each generation may have a different

genotypical constitution, provision must be made to calculate

the genotypical ratios anew after each generation in order to

properly simulate the random mating of the new parents according

to their genotypical ratios.This is accomplishe4 by statements

numbered 146-148. The student who has, had a course in genetics

and is familiar with the well-known Hardy-Weinberg law should

realize that the previous statement does not cqnflict with the

concrusion of this law because the law is valid only for very

large populations. The symbols Gl, G2 and G3 have the same

meaning as in the previous program. The symbols Al, A2 and A3

were introduced to signify the original or starting number of

9
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GENE1

5 REM FIRST POPULATION GENETICS PROGRAM
6 REM
7 REM
20 RANDOMIZE
2002 PRINT "Ai=NO. OF RA GENOTYPES IN ORIGINAL POPULATION"
103 PRINT "A2=N0. OF ABL GENOTYPES IN ORIGINAL POPULATION"
104 PRINT "A3=NO. OF 88 "-GENOTYPES IN ORIGINAL POPULATION"
108 PRINT "C=NO. OF OFFSPRING PER GENERATION"
110 PRINT "G=NO. OF GENERATIONS TO RUN PROGRAM"
212 PRINT "TYPE Al. A2, Al C, G.

114 INPUT R11 82,A31 C16
115 PRINT
116 PRINT
117 PRINT
118 PRINT " PROGRAM RESULTS
119 PRINT
120 PRINT
125 LET N=81+82+83
128 LET N1=Ai/N
129 LET N2=A2/N
130 LET N3=83/N
131 PRINT "THE INITIAL PROPORTION OF RA GENOTYPES IS";N1
132 PRINT
133 PRINT "THE INITIAL PROPORTION OF AP GENOTYPES IS",N2
134 PRINT
135 PRINT "THE INITIAL PPOPOPTION OF BP GENOTYPES IS";143
136 PRINT
139 REM
140 REM G1, G21 G: ARE THE Na OF AA, AP, es GENOTYPES RESPECTIVELY
141 REM
142 LET Gi=81
143 LET 62=82
144 LET G3=A3
145 FOR I=1 TO G
146 LET N1=Gi/N
147 LET N2=G2/N
148 LET N3=03/N
158 LET Gl=0
151 LET G2=0,
154 REM
155 REM. LINES 150-152 SET THE GENOTYPE COUNTER TO ZERO AT BEGINNING
156 REM OF EACH GENERATION
157 REM
300 REM LINES 250-46.3 PICK EACH PARENT AND THEIR ALLELE
310 REM
320 REM LINES 750-410 PIO A MALE PARENT AND HIS ALLELE
321 REM
340 FOR K=1 TO C
350 LET R=RND
360 IF R<=Ni THEN 40:?
362 IF N2-0 THEN 400
370 IF R>=<Ni+N2) THEN 400

Figure 5
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380 LET R=RND
390 IF R)=.-5 THEN 463
400 LET M=0
401 GO TO 410
403 LET 11=1
404 GO TO 410
407 REM
408 REM LINES 410-470 PICK A FEMALE PARENT AND HER ALLELE
409 REM
410 LET R=RND
415 IF R<=N1 THEN 463
417 IF N2=0 THEN 460
420 IF R>=011.+N2> THEN 460
440 LET R=RND
450 IF 12)=.5 THEN 463
460 LET F=0
461 GO TO 470
463 LET F=1
464 REM
465 REM LINES 470-490 DETERMINE THE GENOTYPE
466 REM
470 IF M+F=2 THEN 492
480 IF M+F=i THEN 494
490 LET G3=03+1
491 GO TO 500'
492 LET 61=61+1
493 GO TO 500
494 LET G2=G2+1
501 PRINT
502 PRINT
503 PRINT "GENERAION OF THE OFFSPRING IS";I
505 PRINT
510 PRINT "THE NUMBER OF OFFSPRING IS";C
515.PRINT
520 PRINT "THE NUMBER OF AR GENOTYPES IS"1G1
525 PRINT
530 PRINT THE NUMBER OF AB GENOTYPES IS";G2
535 PRINT
540 PRINT "THE NUMBER OF BB GENOTYPES IS";G3
545 PRINT
550 LET N=G1+02+G3
555 LET R1=31/N
558 LET R2=62/N
560 LET R3=03/N
570 PRINT
575 PRINT "THE AA GENOTYPIC RATIO IS";R1
580 PRINT
590 PRINT "THE AB GENOTYPIC PATIO IS"R2
595 PRINT
600 PRINT "THE er GENOTYPIC RATIO IS";R7f

READY

.;

Figure 5 (continue
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genotypes. Thus, lines 128-130 calculate the genotypic ratios

of the intial parent population in order that these ratios may

be printed out by lines 131, 133 and 135. 'By again recalculating

the original genotypic ratios in lines 142-148, your'author

provided a set of statements, lines 146-148, which are used

each time the parent genotypic ratios are calculated anew in

terms of the numbers of the respective genotypes of the offspring.

The generation loop begins at line 145 and separates the calcu-

lation of the initial parent genotypic ratios from the calculation

of the genotypic ratios for each generation. Lines 150 and 151

set the respective offspring genotype counters to zero and line

340 begins the offspring generation loop.

From the initial number of AA, AB and BB genotypes the

initial genotypic ratios are calculated. (Inst. 125 etc.).

Since both the male and female parentb,are assumed to have the

aforementioned genotypical distribution, a random number generator

is employed to select at random a male parent from such a distri-

bution (Inst. 350-370). If the male parent is an AA or BB,

the gamete will carry only an A or B allele respectively.

However, if an AB male is selected, the fact that it is

assumed to be equally / that the gamete will carry an A or

B allele requires that tne random number generator again be

employed to determine which allele will be transmitted (Inst.

380). The selection of the femPle parent and her allele is

accomplished in an identical manner (Inst. 410-470). The geno-

type of the resulting offspring is then determined (Inst.

470-490) and the process repeated until the required number of

offspring are created. These offspring then 4ecome the sole

parents of the next generation and the entire process is re-

peated.

In order that the student may more readily understand the

method used to "grew an offspring" we will describe how a

mating and resultant determination of the genotype of the
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offspring is simulated assuming that there are Gl parents who

possess AA alleles, G2 parents who possess AB alleles, and

G3 parents who possess BB alleles respectively. An example

will best illustrate how this is accomplished. Suppose that

G1=200, G2=500, and G3=100, i.e. there are 200 parents who

are AA genotypes, 500 parents who are AB or BA genotypes arid

100 parents who are BB genotypes. Thus, 1/4 of the parental

population is AA, 5/8 of the parental population is AB or BA,

and the remaining 1/8 is BB. Now, in order to randomly select

parents from such a genotypical population, we select a random

number between 0 and 1 and determine where this random number

lies relative to a linear genotypical description of the popu-

lation. This determination can perh4ps best be described by

imagning that the parental genotypical description is "laid

out" along a unit interval, OP (see figure 6 below).

0

0

AA parents

,wenamtmoi! 7/8 1

AB parents BB parents

Figure 6
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The region OQ 'represents the portion of parents with the

AA genotype, the region OR represents the portion with AB or

BA genotype, and the region RP represents the portion with BB

genotypes. Since our random number will be represented by some

point on OP it will lie in one of the regioris 00, OR or RP.

Thus, if the random number is less than 1/4, the male or

female parent is said to be AB; and if the number lies between

1/4 and 7/8, the male or female parent is said to be AB or BA;

and if the random number is greater than 7/8,, the male or

female parent is said to be BB. Furthermore, if the parent is

determined to be an AA or BB, the allele of the gamete of such

a parent will be an A or B allele respectively, and hence there

is no need to again utilize the random number generator to deter-

mine which allele is forthcoming to the offspring from such a

parent. However, if the parent is determined to possess an AB

genotype then a random number generator is utilized to determine

the 'allele transmitted to the offspring.

The determination of the allelic pair of the male parent is

accomplished by lines 350, 360, 362, and 370 of the program and

the corresponding determination for the female parent is made

by lines 410, 415, 417, and 420. Lines 380, 390, 400, and 403

determine the allele passed from the male gamete to the offspring

and lines 440, 450, 460, and 463 determine the allele given by

the gamete of the female parent. The program alteration to permit

the growth of several generations is accomplished by lines 145

and 595. The remainder of the program should be easily understood

when read in conjunction with the flowchart.

Since the simulation utilizes the notion of male and female

parent, we again remind the student that it is assumed that the

probability of selection of an AA, AB, or BB genotype is the same

for both sexes. We are also assuming equal probability of select-

ing an A or B allele if either parent is an AB or BA genotype.

am 4
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The program is very useful for obtaining a quantitative

feel for the distribution of genotypes over several generations.

By choosing to grow a large number of offspring each generation,

that is by setting C equal to a large number, it is possible

to study the evolution over successive generationi of the geno-

typic ratios of an "infinite" population. When this is done,

the student will note that the ratios cal.culated after the first

generation do not change significantly in successive generations.

This is in accord with the famous Hardy-Weinberg law which will

be discussed in the following section.

It is evident that such a method of analysis may be expen-

sive of computer time; however, your author 'again reiterates

his purpose in presenting the analysis of quantitative phenomena

in the biological sciences in this manner. It is "to enable the

student to obtain an appreciation and understanding of quantita-

tive phenomena minimizing a knowledge and use of formal mathema-

tics". In addition, the cost of a computer calculation is de-

creasing both in time and money, whereas the coSt of learning by

conventional means is increasing in both time and money. A

thorough and complete discussion and analysis of program results

would require the use of several statistical ideas. -iince such

an analysis would require a significant departure from the intent

of the work, further discussion of the program results will not

be considered.

Figures 7 and 8 illustrate sampie output for the program.

Your author, for no good reason, chos'e the initial numbers of

genotypes to be 1, 1, 4 and 1, 20, 1. Note that these numbers of

genotypes imply initial genotypic ratios of (1/6, 1/6, 4/6)

and (1/22, 20/22, 1/22). The student might ask why was not

a larger number of parent genotypes chosen? The answer is that

there is no need to since it is the genotypic ratios which are

important. As stated previously, there are an infinite set of

genotypes that can give the same set of genotypic ratios and

C.
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RUN
th

GENE1

Ai=NO. OF ,AA GENOTYPES IN ORIGINAL POPULATION
A2=NO. OF AB GENOTYPES IN ORIGINAL POPULATION
fia=m). OF BB GENOTYPES IN ORIGINAL POPULATION
C=NO. OF OFFSPRING PER GENERATION
G=NO. OF GENERATIONS TO RUN PROGRAM
TYPE Al. A2, A3. C, G.

?1, 1, 4, leelo, 5

PROGRAM RESULTS

THE INITIAL PROPORTION OF AR GENOTYPES IS 166667

THE INITIAL PROPORTION OF AB GENOTYPES 15 166667

THE INITIAL PRI.JPORTION OF BB GENOTYPES IS .666667

-JENERATION Or THE OFFSPPING IS i .GENERATION OF THE OFFSPRING

7HE NUMBER OF tiFFSPRING IS 1000 THE NUMBER OF OFFSPRING IS 1000

THE NUMBER OF AA GENUTYPES IS 55 THE NUMBER OF RA GENOTYPES 69

-HE NuMBER OF AB GENOTYPES IS D64 THE NUMBER OF AB GENOTYPES 267

'HE NUMBER OF BE GENOTYPES IS 581 THE NUMBER OF BB GENOTYPES 1,1" 564

AR GENOTYPIC RATIO IS 055

THE RR GENOTYPIC RATIO IS .364

rHE BB GENOTYPIC RATIO IS TikT:1

GENERATION OF THE OFFSPRING IS 2

THE NUMBER OF OFFSPRING IS 1000

THE, NUMBER OF RA GENOTYPES IS 59

THE NUMBER OF AB GENOTYPES IS :369

'HE NUMBER OF BB GENOTYPES IS 572

THE FIA GENOTYPIC RATIO IS 059

THE AB GENOTYPIC RATIO IS 369

THE BB GENOTYPIC RATIO IS .572

THE AA GENOTYPIC RATIO IS o69

THE AB GENOTYPIC RATIO IS .:67

THE BB GENOTYPIC RATIO IS 5e4

GENERATION OF THE OFFSPRING IS 4

THE NUMBER OF OFFSPRING IS 1000

THE NUMBER OF RA GENOTYPES I 67

THE NUMBER OF AB GENOTYOES TS 378

THE NUMBER OF BE GENOTYPES IS 555

THE AA GENOTYPIC RATIO IS .007

THE AB GENOTYPIC RATIO IS

THE BB GENOTYPIC RATIO IS .555



RUN

GENEi

A1=NO. OF AA GENOTYPES IN ORIGINAL POPULATION
A2=NO. OF AB GENOTYPES IN ORIGINAL POPULATION
A3=NO. OF Be GENOTYPES IN ORIGINAL POPULATION
C=NO. OF OFFSPRING PER GENERATION
G=NO. OF GENERATIONS TO RUN PROGRAM
TYPE Al R2, A.3. C, G.

?I., 20, 1, 1000, 5

PROGRAM RESULTS

THE INITIAL PROPORTION OF AR GENOTYPES 15 .0454545

THE INITIAL PROPORTION OF AB GENOTYPES IS 909091

THE INITIAL PROPORTION OF BB' GENOTYPES IS .3454545

GENERATION OF THE OFFSPRING IS 1

THE NUMBER OF OFFSPRING IS 1000

THE NUMBER OF AA GENOTYPES IS 266

THE NUMBER OF AB GENOTYPES IS 486

THE NUMBER OF BB GENOTYPES IS 248

THE AA GENOTYPIC RATIO IS .266

THE AB GENOTYPIC RATIO IS .486

THE Be GENOTYPIC RATIO IS .248

GENERATION OF THE OFFSPRING' IS

THE NUMBER OF OFFSPRING IS 1000

THE NUMBER OF AR GENOTYPES IS 235

THE NUMBER OF AB GENOTYPES IS 505
(

THE NUMBER OF BB GENOTYPES IS 260

THE RA GENOTYPIC RATIO IS .25

THE ge GENOTYPIC RATIO IS .505

THE 90 GENOTYPIC RATIO IS .26

iiT,ire 8

GENERATI-ON OF THE OFFSPRING I5.3

THE NUMBER OF OFFSPRING IS 1000

THE NUMBER OF AA GENOTYPES IS 22e

THE-NUMBER OF AB GENOTYPES IS,512

THE NUMBER OF BB GENOTYPES 15,260

. THE. -RA GENOTYPIC RATIO IS
. 228

7,36

THE AB GENOTYPIC RATIO IS .512

THE BB GENOTyPIC RATIO IS .26

GENERATION OF THE OFFSPRING IS 4

THE NUMBER OF OFFSPRING IS 1000

THE NUMBER OF RA GENOTYPES IS 222

THF NUMBER OF. AB GENOTYPES IS:473

THE NUMBER OF BB GENOTYPES IS 295

THE AR GENOTYPIC,RAT10 IS .232

THE AB SENOTYPIC RATICf IS .473

THE BB GENOTYPIC RAUL! IS .295

288



ar.a.

4.

your author chose a simple set.. The 1000 offspring were chosen

to be grown each generation because this number represented a

happy medium between a very large number of offspring requiring

mubh more computer time and a very small number of offspring

which would not have been representative of an infinite popula-

tion. f.

An analysis of the results of both runs reveals that.the

genotypic ratios for the first generation offspring is considerably

different than the genotypic ratios of theft. parents. However,

there is not a significant difference, from generation to genera-

tion, of the genotype ratios-of the subsequent generations. As

stated above, this observation is in accord with the Hardy-Weinberg

principle. The student is urged to experiment with different

initial genotypic ratios and offspring calculation. By so doing,

a good feel for some of the prnipal results of classical popu-

lation genetics can be obtained.

^
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The Hardy-Weinberg Principle

The observation that the genotypic ratios of the offspring

did not significantly change after the first generation, suggests

that such behavior may indeed be the case regardless of the dis-

tribution of the initial genotypic ratios. Further confirmation

of this hypothesis may be obtained by making other runs with

different initial genotypic ratios and using a larger number of

offspring per generation. The hypothesis that the genotypic

ratios do not change after the first generation in an evolving

infinite population in which pure random mating occurs is the

thepis of the Hardy-Weinberg law. It is customary in genetics

te4s to demonstrate the validity of the Hardy-Weinberg law

using only first year high school algebra. The ability to demon-

strate, independent of any specific numerical values, the validity

of a properly specified assertion, is one of the significant ad-

vantages of mathematics. Nevertheless, it is necessary to

"discover" or "find" assertions worth verifying. This may be done

with the aid of the language of mathematics, but is usually done

by observation of empirical and/or computer generated results.

In this work, the latter viewpoint is emphasized.

In order to gain more confidence in our suggested hypothesis,

we will examine in detail a particular case. We will choose a

particular set of numerical values for the numbrs of initial

.genotypes and also choose a given number (large) of offspring

per generation and carry through all of the gory arithmetic in

amanner as close as possible as is done by the computer. Of

course, such a procedure proves absolutely nothing (except to

disprove the assertion, in the event the results of the arith-

metic calculations contradict the suggested hypothesis). Bowever,

such a procedure usually does provide insight into the entire

process. Moreover, if the results of the arithmetic calculation

Are in agreement with the assertion, the evidence for the validity

of the assertion is increased, and it may then be worthwhile to
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lilimbattempt to verify the assertion wlth the aid of the language

of mathematics. The actual act of performing the arithmetic

calculation is frequently an aid in establishing or developing

the necessary mathematical tricks. It should be noted that the

computer program on the simulation of rand'Im processes'

with the aid of a r om number generator. We shall assume that

random mating is indeed simulated.by such a process and we shall

assume that the selecting of A large number of offdpring is

equivalent to growing an infinite populations. In carrying out

the arithmetic calculations, use will be made of the frequency

interpretation of probability.

In the computer program, it was assumed that the number of

AA, AB and BB genotypes was the same for the males as it was for

the females. Thus, the genotypic distribution of both parents

may'be given by specifying the number.of AA, AB and BB genotypes

respectively. For this particular problem we suppose that the

initial parent population consists of 100,000 pairs of males

and females with the following
degtribution of genotypes:

30,000AA; 50,0001B; and 20,0130ps. Hence, the initial parent

genotypical ratios are 3/10 AA; 5/10 AB; and 2/10 BB. Because

it is assumed that there is an equal probability of a male or a

female being torn, there.will be an equal number of males and

females.in the offspring population and each sex will have the

same number of AA, AB and BB genotypes iespectively. The

genotypical ratios of these 100,000 offspring will then be the

genotypic ratios of the 100,000 males and 100,000 femalei that

will act as parents for.the next generation. TAis assumes that

each sex has the same respective genotypic ratios.

The calculation for"the determination off/the number of each

genqtype in the offspring populations is done in the 'following

way. Since random mating in an infinite-populaticin is assumed,

the proportion of each type of mattng, AA male x AB female,

BB male x AA female, .etc., will depend upon the product of the

proportion of the male gendtype and the proportion of the female

--t
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genotype. This follows from the fact that when an individual

chooses a mate, the likelihood of that mate being a particula

genotype is propoxtional to the number of that particular geno-

type in the partner's population. Hence, for the genotypic

populations assumed in this example, any male has a 3/10

chance of mating with an AA. female, a 5/10 chance of mating

with an AB female and a 2/10 chance of selecting a BB

,female mate. Since there is a 3/10 chance that the mating male

will be an AA genotype, the likelihood, out of all possible

matings, of an AA male mating with an AA female partner is

3/10 x 3/10 or 9/100. Thus, random mating implies that the

number of matings of anTspecified pair of genotypes is propor-

tional to the product of the proportions of the genotypes in the

population of each partner. Hence, we can write that the propor-

tion of:

AA males x AA females iS 3/10 x 3/10 or'9/100,

AA males x AB females is 3/10 x.5/10 or 15/100,

'AA males x BB females is 3/10 x 2/10 or 6/100,

AB males x AA females is 5/10 x 3/10 or 15/100,

AB males x AB females is 5/10 x 5/10 or 25/100,

AB males x BB females is 5/10 x 2/10 or 10/100,

BB males x AA females is 2/10 x 3/10 or 6/100,

BB males x AB females is 2/10 x 5/10 or 10/100, and

BB males x RB females is 2/10 x 2/10 or 4/100.

Frequently, such a listing is presented in array form as:

re

AA (3/10)

AB (5/10)

BB (2/10)

AA (3/10) B (5/10) BB (2/10)

AA x AA = AB x AA = BB x AA mc

3/10 x 3/10 or 9/100 5 10 x 3/10 or 15 100 2/10 x 3/10 or 6/100

AA x AB = AB x AB BB x AB ms

3/10 x 5/10 or 15/10 5/10 x 5/10 or 25/100 2/10 x 5/10 or 10/100

ABzBB= BB x BB

5/10 x 2/10 or 10/100 2/10-x 2/10 or 4/100
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The student should note that the computer program, when

randArtly selecting mates, d.id not alter the proportions of the

remaining genotypes as the partners were selected. This was

done because it was assumed that the, parent populationc were

infinite. By now the student should recognize the importance;

for infinite populations, of the ratio of the genotypes, not

the absoulute number,of the genotypes. In fact, for infinite

populations, it makes no sense whatsoever to talk about numbers

of genotypes. However, in the program,the number of each

genotype in the offspring population determines the genotypic

ratios for the parent generation. This method of determining

the genotypic ratios is possible because the computer generates

only a finite number of matings; it cannot generate an infinite

number of matings because of its finite capacity. Thus, the

only purpose in growing-a large number, say 100,000, of off-

spring is to assure that the computer grown genotypic distribu-

tion approximates the cienotypical distribution resulting from

the growth of an infinite number of offspring.

The determination of the number of AA, AB or BB offspring

genotypes is made by first determining the respective number of

parent crosses and then, in conjunction with the number of off-

51Dring, determining the number of the genotypes resulting from

each type of crossing. We work this out in complete detail.

The respective number of parent crosses are obtained by multi-

plying the proportionate number of crosses with the total num6r

cf offspring. It is assumed that one cross results in one off-

spring. The numbers are:
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for AA males x AA females,

for AA males x AB females,

for AA males x BB females,

for AB males x AA females,

for AB males x AB females,

for AB mal.es x BB females,

for BB males x AA females;

for BB males x AB females,

for BB males x BB females,

9/100 x 100,000 or 9,000,

15/100 x 100,000,or '15,000;

6/100 x 100,000 or 6,000,

15/100 x 100,000 or 15,000.

25/100 x 100,000 or 25000.

10/100 x 100,000 or 10,000,

6/100 x 100,000 or 6,000,

10/100 x 100,000 or 10,000'i\and

4/100 x 100,000 or 4,000. ,

Since it is assumed that there is no sexual discrimination

acting in favor of or against one or the other of the alleles

that is passed from the parent to the offspring, the likelihood

of A or B allele passed by an AB pareht is th same regardless

of the sex of the parent. The numbers of the enotypes produced

by each croPs :;.scthen seen to be:

from the AA male x AA female, 9,000 AA, since only an AA

offspring can be produced;

from the AA male x AB female, 7,500 AA and 7,500 AB,

since one-half of the offspring are AA and the

other half are AB;

from the AA male x BB female, 6,000 AB, since only an AB

offspring can be produced;,,

from the AB male x AA female, 7,500 AA and 7,500 AB,

since one-half the offspring are AA and the other

half are AB;

from the AB male x AS female, 6,250 AA, 12,500 AB and

6,250 BB, since one-fourth of the offispring are AA

and BB and the remainder are AB;

from the AB male x BB female, 5,000 AB and 5,000 BB,

since one-half of the crossing produce AB offspring

and the other half produce BB offspring;
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.from the BB male lc AA female, 6/.000 BA, since only a

BA can be produced;

from the BB male x AB female, 5,000 BA and 5,000 BB,

since one-half are BA and the other half Axe BB,

and finally

from the BB male x BB female, 4,000 BB, since only

BB offspring can be produced from such a mating.

With the aid of the assumption that an AB genotype is iden-;.

tical to a BA genotype, that is there is no sex preference for

the origin of a particular allele, the numbers of AB and RA

genotypes may be combined. Thus, the numbers of offspring geno-

types are: 30,250 AA, 49,500AB and 20,250BB. Note that

there are 2x30,250 + 49,500 or 110,000 A alleles and

2x20,250 + 49,500 or 90,000 B alleles. Hence, the total number

of alleles has been preserved. This means that there has been

no immigration nor emigration of either type of genotype nor has

there been any mutation during the production of the offspring.

The genOtypic ratios are: 3025/10000 for AA, 4950/10000 for AB

and 2025/10000 for BB. The numbers of genotypes, as well as the

corresponding genotypic ratios, for the offspring are different

than those assigned initially to their parents. This difference

in the ratios is in agreement with the computer results. The

computercresults also indicated that, when these progeny acted as

parents, the respective numbers of these genotypes of their

offspring would be equal to the numbers of the genotypes of

the parents. Thus, there would be no further change in the i

genotypic ratios of subsequent offspring generations. To check

this observation, we proceed to again calculate the numbers of

genotypes, together with their genotypic ratios, df.the offspring

of these progeny. Since the first offspring become parents to the

new progeny, we use the genotypic ratios just calculated as the

genotypic ratios of the new parents.
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The calculation proceeds just as before and so some of the

calculations are combined in order to shorten the presentation.

It'follows that:

the number of AA male and AA female crosses is

3025/10000 x 3025/10000 x 100,000 or 9150.625,

the number of AA male and AB female crosses is

3025/10000 x 4950/10000 x 100,000 or 14973.75,

the number of AA male and BB female crosses is

3025/10000 x 2025/10000 x 100,000 or 6125.625,

the number, of AB male and AA female crosses is

4950/10000 x 3025/10000 x 100,000 or 14973.75,

the number of AB male and AB female crosses is

4950/10000 x 4950/10000 x 100,000 or 24502.5,

the number of AB male and BB female crosses is

4950/10000 x 2023/10000 x 100,000 or 10023.75,

the number of BB male and AA female crosses is

2025/10000 x 3025/10000 x 100,000 or 6125.625,

the number of BB male and AB female crosses is

2025/10000 x.4950/10000 x 100,000 or 10023.75, and

finally

the number of BB male and BB female crosses is

2025/10000 x 2025/10000 x 100,000 or 4100.625.

Hence, the numbers of genotypes produced by these respective

matings is:

from the AA male x AA female - 9150.625 AA;

from the AA male x AB female - 7486.875 AA and 7486.875 AB;

from the AA male x BB.female - 6125.625 AB,

from the AB male x.AA female - 7486.875 AA and 7486.875 AB;

from the AB male x AB female - 6125.625 AA, 12251.25 AB and

6125.625 BB,

from the AB male x BB female - 5011.875 AB and 5011.875 BB,

from the BB male x AA female - 6125.625 AB,

Irom the BB male x AB female - 5011.875 AB and 5011.875 BB,

and finally frolethe BB male x BB female-4100.625 BB.
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Thus, the numbers of each offspring genotype produced in the,

secondsgeneration are: 30,250 AA, 49,500 AB, and -20,250 BB.

These numbers are the same as that grown in the first generation

and consequently this particular numerical example reinforces

the credence of the hypcitheses that the genotyPic ratios remain

constant after the first generation. Of course, this assertion.

is subject to all of the hypotheses and assumptions used in carry-

ing out the numerical example. We reiterate, the purpose in

carrying out all of the gory arithmetic in stich detail was to

clearly indicate just where all of the assumptions entered the

development. It must again be emphasized that such a numerical

calculation in. no way constitutes a proof of the assertion. A

proof would require that the initial genotypic ratios be speci-

fied independent of any particular numerical values and then the

argument carried through with the aid of elementary algebra.

Because the algebraic proof requires the specification of the
genotypic ratios rather than the numbers of each type of geno-

type, the mathematical proof proceeds somewhat differently than

has been indicated above. In the preceding calculation, the

results were carried out to decimal fractions just to indicate

that the results are indeed numerically accurate for this par-

ticular set of initial numbers of genotypes. The student.is

urged to choose another sat of numbers and to then carry out the

calculation in order to more thoroughly understand the process

and to see how the assumptions enter the calculation.

Your author apologizes for the arithmetic detail of the

previous work; however, it has been his experience that many

non-mathematically oriented students have difficulty following

the terse mathematical arguments presented in the language of

mathematics. It is especially difficult for such students to

understand where and how the basic assumptions enter the develop-

ment.

To summarize, we present a formal statement of the Hardy-

Weinberg law. The law states that the proportions of the alleles
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at a particular loOes, as well as the proportion of the genotypes

derived from them, remain constant from generation to generation.

Furthermore, these genotypic proportions will be found after the

first generation of mating and are independent of the genotypic

proportions of the original parental population. The conditions

unger wl-Ich the law is valid are: .

1. The population must be suffi`6iently large so that

chance changes in gene ratios are insignificant.

.2. Mutation must either not occur or must have already

reached its own equilibrium.

3. Reproduction must be random, that is, the chance of

mating is independent of the genotype.

4. All types of matings are equally successful in

producing offspring, i.e. there is no genotypical or

sexual survivability dependence.

5. There is no preference by sex of the transference of

an allele from the parent to the offspring.

6. The allelic ratios of both sexes are the same.

In atl of the preceding developments, the terms 'ratio' and

'proportion' have been used interchangeably; however, most works

in genetics use the term 'frequency:. The terms ratio and pro-

portion were deliberately used because, to most students, these

terms do indeed denote a comparison of the relative magnitudes of

two quantities, whereas the term frequency usually refers to the

number of occurrences,of an event. The student should note this

distinction in the use of these terms in order that he or she

not be confused when consulting works in genetics. (In these

works, the word frequency is taken to mean proportion or ratio).

The cOnstancy of the genotypic ratios for all succeeding

generations after the first, is referred to as Hardy-Weinberg

equilibrium. Since a great many populations closely approximate

the assumptions required for the Hardy-Weinberg law to obtain,

the equilibrium conclusion can be used to study the effects of
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various exterior influences, such as migration, mutation, etc.,

on the genetic evolution of the population. These effects are

imposed on the population, the resultant genotypic ratios are

calculated for subsequent generations, and then compared to
.

those that would,be inferred by the Hardy-Weinberg law. This

provides a yardstick by which the effects of exterior induced

genetic alterations may be measured.

The equilibrium c9nclusion of the law, enables the predic-

tion of future genetic behavior of populations which closely

approximate the assumptions in the law. There are thus two

different, but important, implications of the law.

If the population is in Hardy-Weinberg equilibrium, that is,
..4

he genotypic ratios are not changing from generation-to genera-

tion, there is a very simple relati. on between the genotypic

ratios and the allelic.ratios. In the preceding Fxample, after

the initial offspring were grown, there were 30,250 AA, 49,500

AB, and 20,250 BB genotypes. Thus, there were 55,000 A

alleles and 45,000 B alleles. In terms of proportions, these

numbers are respectively, 0.3025 AA, 0.495 AB and 0.2025 BB,

and 0.55 A alleles and 0.45 B alleles. Now, .3025 = (55) 2

.495 = 2x.55x.45 and .2025 =,.(.45)
2

-

a denotes the proportfon of A alleles,

tion of B alleles, that the proportion

This suggests that if

and b denotes the propor-

of AA genotypes is a2

the proportion of AB genotypes is 2ab and that the proportion of

BB genotypes is b2. This can he shown to be true for all

proportions of A'and B alleles providing the population is in

Hardy-Weinberg equilibrium and the sum of the tWo allele propor,

tions is one. These relations are very useful in analyzing

single loci ge;etic data for populations approximating.the Hirdy-

Weinberg hypotheses. The relation, a + b = 1 ikis also useful

in deriving relationships among the various genotypic and allelic

ratios.

As stated at the beginning of this section, by making other

runs with different initial conditioris, further confirmation of
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the Hardy-Weinberg law may be obtained. Figures 9 and 10

griphically portray results obtained by running the program

for 30 generations. In figure 9, the initial respective numbers

of parent AA, AB and BB genotypes were 1/ 1, and 40 and in

figure 10 the initial numbers were 10 20, and 1.

The results show that, for a growth ok 1000 offspring

per geneiation. the BB genotypic ratio'remains fairly constant

after the first generation. There is an apparent upward drift

as the number of generations increases. This is probably due

to the lack of complete randomness of the random number genera-

tor or it may be an example of mild genetic drift; genetic drift

is defined in the next section. The evolution of the BB geno-

typic ratio for the run corresponding to 100 offspring per

*generation also tends to confirm the Har4y-Weinberg principle.

However, these results fluctuate far more than the results ob-

tained using a growth.of 1000 offspring. An even wider fluc-

tuation is indicated by the results wherein only 10 offspring

are grown each generation. These observations concerning the

fluctuation of the population reinforce the earlier observation

that the variability in the results increases with a decrease

in the population. Such fluctuations ir results are characteris-

tic of all Monte-Carlo type calculations in which the random

sample is small.
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Gene Dispersal

Both runs labeXed C=10, reveal the, startling behAvior that

the BB genotypic ratio reaches zero and eventually stays there.

Whe fact that the TilB genotypic ratio remains zero implies that

the AB genotypic ratio must also become and remain zero. If

such wei-e not the case, the equal probability of an A or a B

allele being transferred from parent to offspring would soorier

pT later have resulted in a mating of a female AB and a male AB

genotype; and such a mating wo.uld Wave produced a BB genotype

at least one-fourth of .the time. Au examination of the computer

runs revealed that no AB genotypes were in existence after the

BB genotypic ratio had remained zero for a sufficient number of

generations and.the population was made up of only AA genotypes.

The phenomena of an initial distribution of parent alleles

,
consisting of both A and B alleles evolving into a population

in which only one allele is present is called gene fixation.

No further change.is possible in gih:.genetic maIe4p of the

population once.the fraciion of either the A or the B alleles

becomes 0. In the two Tuns discussed above, the AK genotypic

ratio becomes fixed at unity. In the event that the allelic

ratio becomes unity, the population is said to be homozygous

for that locus. Such a population is called homoallelic. As

the results have indicated, gene iixation increases as the

population decreases. Thus, small populations exhibit decreased

heterozygosity and a loss of variability.

if the behavior of the AA genotypes over successive genera-

tions is considered, it will be seen that the AA genotypic

ratios also fluctuate from generation to generation. The fluc-

tuation increases with decreasing population. The phenomena of

the fluctuation of genotypic ratios due to.random alterations

is called genetic drift. As is noted from the previous discussion,

the notion of gene fixation and the process of genetic drift are

closely related.
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If the run corresponding to 10 offspring per generation had

been repeated, the result could equally well have been that

eventually the AA genotype would have disappdared from the

gene pool. Thus, the AA genotype might have become and re-

mained zero. Further runs would have yielded different reaults

such as either the A or the B allele disappearing from the popu-

lation in a greater, or in a smaller/ number of generations.

Other results would indicate a greater, or a lesser, variation in.

the BB genotypic ratio. Nevertheless, because of the random

nature of the process and the finite size of the population,

eventually the population will become homoallelic; that iè, will

consist only of A alleles of only of B alleles.

It is to be emphasized that, since the genotypic ratios were

not changed as each of the 10 offspring were grown, the simu-

lation has mimiced the random Miting of 10 pairs of individuals

'Out of an infinite number bf suCh pairs having.the same geno-

typical distribution. Thus, it is assumed that the genotypic

distribution of,the 10 mating pairs is the genotypic distribu-

tion pf the illfinite population. This means that the genotypic

distribution of the infinite population changes.in accord with

the change in the genotypic distribution as calculated from a

sample of only 10 offspring.. This is a rather unrealistic pre-

sumption and consequently, its implications will not be pursued.

Instead, we will use the interpretation that the generation to

generation variation of the genotypic distribution of a small

mating population can be discussed atisuming completely random

mating with no change in the parent genotypic ratios as the

offspring are grown. .In the next section, a more realistic model

of the evolution of a finite population will be used. We now

continue the discussion of the genotypic variation by examining

its yariation in small populations.

The number of generations necessary for the population to

become homoallelic increases as the sample or offspring population
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increases. This is-verified by the results shown in figgres 9

and 10. These' results show. that by 20 generations or sof.one

or the other of the allelei had completely disappeared from

the population. In contrast.sample populations consisting of

100 or 1000 offspring per generation exhibited-relatively small

variatibn in the BB genotypic ratios, let alone'indicating a

disappearance of one or the other.of the alleles by 30 genera-

tions.

Since there is such variation from run to run, it is of

interest to make several runs and to then construct histograms

for the distribution of the number of AA, At and BB offspring

respectively: The histograms should better indicate the varia-

tion possible from run to run. In this way it may be possible

to study the variation in genotypic ratio with the number Of

generations. .
The variation of the genotypic ratio over several

generatlons is called gene dispersal.

One method of eximining this variation is to make several

runs, each of G generations in duration, ar;(1 for each run, and

for each generation of the run, record the number, of BB genotypes

among the offspring. Then, for a given generation, form the

histogram consisting of the-total number of times, for all of

the runs, 10 BB genotypes were recorded, the total number of times

9 BB genotypes were recorded, etc. down to the total nuMber of

times zero BB genotypes were recorded. If histograms are made

for successive generations, say generations 1, 5, 10, 20, 50 and

100, the result.ent set of bistograms gives a graphical portrayal

of the dispersal of the BB genOtype.

Since the number of.A alleles is given by the sum of the

number of the AA genotypes, plus one-half the number of AB geno-

types, it is easy to also record the number of A alleles for

the offspring of each generation. In a similar manner, the number

of B alleles may also be recorded. Schaffer, page 52, ref. 1,

displayed the phenomena of gene dispersal by portraying the
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variation, from generation to generation, of the ratio of the

number, Na, of A alleles to the number, NB, of B alleles.

.His'computer generated results were obtained from a mimicing

of the growth of 400 populations over 32 generations, each

population having 8 matings per generation and an initial dis-

tribution of 2 AA, 4 AB, and. 2 BB individuals. 'In order that

the student may better appreciate the significande of the ratio

NA/14By
we note that if N

A
/N

B
= 0, the number of A alleles is 0-

and the number of B alleles is 16. On the other, hand, if NA/NB

is infinite, the number of A alleles is 16 and the number of B

alleles is O. Also, NA/NB = 6/10 implies that there axe 6 A

alleles and 10 B alleles and NA/NB = 14/2 iiteans that there are

14 A alleles and 2 B alleles. Schaffer reemrded, for each of

the 32 generations, each of the possible 17 values that NA/NB

courd assume. For a selected set of successive generation AUM-

bet's, numbers 1, 2, 4, 8, 16 and 32, the frequency of the possii-

ble values that could be a'ssumed.by NA/NB4 were plotted against

the ratio number. These numbers ranged from 0 to 16.with number

0 corresponding to the ratio, NA/NB = 0, and the number. 16

corresponding to the ratio, NA/NB = infinite. In this way,

Schaffer constructed a sequence of six histograms iwhich clearly

indicated the increasing dispersal with increasing generations.

.01
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Related Prolects

As a suggested project, the student is urged to modify the

prceding program t9 print out the information necessary to

enable the drawing of the histograma. If a plotter is available,

a set of computer drawn histograms can be generated. By varying

the initial parent genotypic ratios, it is possible to study the

variation in spread after a specified niimber of geneiationé due

to different initial genotypic ratios; It is also possible to

study.the effect of offspring population, size on the variation

in the spread of the genotypic ratio. The modification of the

program to obtain the necessary information is tedious but rather

straightforward. The student should note that an analysis of

such variation is complicated because it is rather difficult to

decide on what is a reasonable measure of such variation. The

fact that the population became homoallelic after a number of

44generations, suggests that the average number of generations

required for the population to become homoallelic may be a

reasonable measure of the dispersal due to random mating in

small sample populations. The necessary program alteration to

discuss this is straightforward.
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Small Population

This section describes the development of a computer program

to mimic the genotypical evolution of a small population. The

population is assumed to consist of males and females who mate

in a monogamous manner. It is again assumed that the offspring

will be the paxents of the next generation so that the genotypi-

cal distribution of the offspring is assumed to be the genotypical

distribution of the parents for the subsequent generation._ The

basic ideas.are straightforward and rather easy to understand;

however, their implementation in a program requires sole atten-

tion to detail. In the discussion to follow, frequent)reference

will be made to specific sets of lines of the program. In this

way, the discussion can be more readily related to the program

which is piesented in figure 18 (p. 7.76). As in the previous

genetics programs, the program will be restricted to describing

'the genetic èvontibn in'terms of 2 alleles et a'single iocusJ

.As previously stated, in a large or infinite population, the

probability of selecting an AA, AB or BB genotype male-parent

remains the same no matter how many AA, AB or BB male parents

have been previously selected. Thus, when repeatedly selecting

parent genotypes, the parent genotypic ratios do not have to be

changed after each selection. Such.is not the case, however, for

small mating populations. When the population is small, say

less than 25 or 50, it is necessary to alter the parent genotypic

ratios in accord with the number of previous matings.

For example, suppose the starting population wac composed

of 2AA, 4AB and 3BB male parent genotypes. The initial male

genotypic ratios would then be 2/9AA, 4/9AB and 3/9/0. Now

suppose it is desired to investigate the offspring resulting

from the mating of these males with the females in the population.

If the first two males which mate are AA, then there are no other

AA male parents in the parent population. Consequently, the male

parent genotypic ratios are OAA, 4/1AB and 3/7BB. In contrast,
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if the genotypic numbers 2AA, 4AB and 38B characterized the

genotypical make-up of an infinite population, after having

selected 2AA male parents, the ratios.of male parent genotypes

would be 2/9AA, 4/9AS and 3/9BB. These ratios are the same

as 'the original genotypic ratios. The important fact is.that

for infinite poptlations, the genotypic ratios of the parents

do not change after a, finite number of matings. In contrast,

;for small populations, the genotypic ratios change after every

mating.. Thus, in mimicing the growth of a small population,

the genotypic rdtios must;be properly altered after each mating.

In order to clarify ihe pro6edure for altering the geno-

typic ratios, some examples will be presented. The student

shoultnotethat, for the example considered in the previous

paragraph, the probability of selecting an AA male as the first

of the male parents to mate is 2/9. However, after this AA male

has been selectedethere is only one AA male'remaining in the

pargnt population, and the nuMber 8f aisle patentt has been

reduced to 8. Thus, the probability of selecting a second

male AA parent is 1/8, the probability of selecting a male AB

is 4/8, and of selecting a male BB parent is 2/8. Hence, after

a male AA parent has been selected,'not only does the probability

of selecting an AA male parent ch9ge, but so does the probability

of selecting either an AB or a BB Male parent. As a further

example, suppose an AA.male had been selected first, a BB male next

and thmlanother BB male parent selected. The genotypic numbers

are then IAA, 4AB and lAB and hence, the genotypic ratios are

1/6, 4/6, and 1/6 respectively. In this case, the probability

of selecting an AA male parent for the next mating is 1/6, and

fpr.the respective selection of an AB and a BB male parent, the

probability is 4/6 and 1/6.

This rather lengthy discussion was given to better enable

the student.to "see" how the probability of selecting a parent

changes in accord with the number of genotypes of the parents

7.57
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that tave previously mated during that generation. The geno-

typical ratios for the selection of female parents must change

-in the same manner. A procedure for effecting such a change

is described below and is used in the program in lines 3040 to

3180 for the male parents and in lines 3500 to 3640 for the

female parents.

In terms of the notation used in the program, the altera-

tion of the genetic ratios is accomplished in the following way.

Let N1, N2 and N3 denote the respective initial number of AA,

AB and BB male genotypes and let Tl = N1+142+N3. The initial

genotypic ratios are NI/T1, N2/T1 and N3/T1. 'Now let Ul, U2

and U3 denote the number of AAF AS and BB male parents that so

far have mated in this generation. The genotypic ratios of the

male parents after Ul+U2+U3 matings are respectively:

411-

(N1-U1)/(T1-U1-U2-1/3), (N2-U2)/(T1-U1-U2-U3) and (N3-U3)/(T1-U1-U2-U3).

The number of male matings of'each genotype prior to the present

mating are counted by the counters Ui, U2 and U3 and the

number of each such female genotype matings is couiited by the

counters U4, U5 and U6. The appropriate counter UI., U2 or ,

U3, is increased by one each time the respective male-parent

genotype is selected to mate. The appropriate counter' U4,

U5 or U6, is also increased by one each time the respective

female parent genotype is selected to mate. In this way, the

counters are changed after each mating and consequently, so also

are the genotypic ratios changed in the desired way. Of course,

at the beginning of the next generation, before any offspring

are grcwn, these counters must all be initialized to zero. (See

lines 5550 to 5670).



The technique ef randomly selecting a male'or female-parent

from such a distribution of parent genotypes is the same as

that used in the previous program. For the male parents, the

genotypic ratios are "layed out" on the interval (0,1) as shown

in figure 11.

AA AB BB

1

(N1-111) (Nl+N2-111-U2)
T1-4.11-172-0 T1-U1-0-U3

Figure 11

The lengths of the intervals are equal to the numerical value

of the genotypic ratios. In accord with the previous discussion,

the interval boundaries are changed after every mating to adjust,

to the new genotypic ratios. A male parent genotype is chosen

by using the random number generator to select a random number

and the interval which contains the random number defines the

genotype of the parent. When U1=N1, all male AA parent geno-

types have mated and whenever U2=N2, the boundary points of

the AB genotype interval coincide. Consequently, the AB interval

has vanished and in this event there are no more AB genotypes in

the parent population. Similar remarks hold abflut the BB geno-

type interval. 'This method of determining the genotypic,ratios

assures that no more than the original number of a specified

male parent genotype can be selected. Analogous statements apply

to the selection of the female parent genotype.

For a.small population, the evolution of the genotypic

ratios over several operations will be mlmiced by writing a pro-

gram which:
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(a) accepts as inputs the respective number of male and

female AA, AB and BB genotypes,

(b) varies the probability, of selecting the parents in

accord-with the number of AA, AB or BB genotypes that

have previously been selected, then calculates the

genotypes of the offspring,

(c) tabulates the respq.ctive number of AA, AB or BB off-

Apring genotype for each generation, and

(d) repeats the above process for several lenerations.

The sAldent should note that, by growing a large number of off-

spring each generation, the program could also be used to mimic

the genetic evolution of large monogamous populations. However,

such a use would be quite expensive of computeripime.

In the program, provision will be made to 40ecify as input,

the'number of male and the number of femaie parsnt KA4 AB and Be

genotypes. These will be denoted by N1, N2, N3 and N4, N5, N6

respectively. 01, 02, 03 and 04, 05, 06 will denote the AA, AB

and BB male and female offspring genotypes respectively. Because

the mating is assumed to be monogamous, the assumption of a single

offspring per mating would result in a halving of the population

each generation. Hence, provision will be made to produce a ran-

dom number of offspring from each mating, which number will

result, over several matings and generations, in a specified

average number of offspring per mating. The selected average

will be two offspring, but any other average can be ensured by

a simple alteration of the program. (See lines 500 and 510).

In the program to be described, it will be assumed that,

if more than one offspring results fiom a single mating, each of

the offspring will have the same genotype. In other words, the

offspring from a single mating will be assumed to be genetically

identical. In the event more than one offspring results from a

mating, the sex of all such offspring will be determined in a
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random manner. (See lines 4050 to 4080, lines 4230 to 4270,

arid lines 4420 to4460). This means it will be possible for

there to be born, in a single generation, an unequal nbmber of

males 'AId, females. Since monogamous mating is assumed, and the

offspring of the previous generation are assumed to become the

parents of the subsequent generation, the number of ratings j.n

the new generation will be the minimum number of male and 'female

offspring from the previous generation. For the initial mating

population, this determination is made in lines 1.50 to 1780.

For all other.generations, the determinatkon of thawinimumik

number of offspring is made in lines 5230 to 5289.41

As previously noted, if only one offspring per mating is

. assumed, the number of offspring produced "each generation will

be one-half the number of parents. Thus, if the initial parent

population consisted og 16 males and 16 females, there woullOpope

8 offspringiaSter the l'irst generation, 4 after Ve second, 2
,.

after the third and only 1 after the fourth. In order to avoid' '

itthe vanishing of the population and also avoid using th "boy'

of assuming that identical twins of opposite sex are bor of

each mating, it will be assumed that an "average" of two off-

spring will result from each mating. The student should recall

that the previous program describing the genetic evolution of an

infinite population implicitly made use of the 'ploy' that iden-

tical twins of opposite sex were born of each mating. For small

populations, this is not a realistic assumption and it will not

be used in this development. Instead, a variable number of off-

spring will be permitted to be born from a single mating and, on

the average over several matings, tWo offspring per mating will

result. In this way, the parent population should remain approxi-

mately constant in size. The sex of the offspring will be chosen

randomly and siblings will be asstimed genetically identical.

The method of selecting the number of offspring, S, re-

sulting from a single mating will be based on the observation

elOP
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that, since two offspring per lating is to be the desired average,

che probability of two offspring actually being produced from a

single mating should be at least as great as the probability

that there result any other number of offspring from a single

mating. Also, the probability that no.offspring result from 0

mating should be lower than the probability that two offspring

occur from a mating. finally, the probability that a very large

number of offspring result from a mating should be very Much

lower than the probability that two offspring result from a

mating. It will be asuumed that no more than seven offspring

can result from any single mating. One set of probabilities that

accomplish such a distribution of offspring per mating is shown

in Table 2 below.

No. of Offspring

Probability of that
no. of offspring

resulting from a mating

0 0.135

1 0.270

2 0.270

3 0.180

4 0.090

5 0.036

0.013

7 0.006

Table 2



some.feel or intuition about the relation.of tgis particular

set of probabilities to our problem can be obtaiped by consider-.

ing the total number of offspring produced by a very lirge num-

. ,ber of matings for which the number of offspring per mating

"behaves" in accord with the listed probabilities. Let the

large number ofNmatings be 1000. Then, the fact that 0.135

of the matings will result in no offspring will be interpreted

to mean that, of the 1000 matings, 0.135 x 1000, or* 135

vdmatings will produce no offspring. Similarly,:of the 1000

matings, 0.270 x 1000, or _270, of them will each produce .

,one offspring. Another 270 matings will each produce 2 off-

spring for a total of 40 offspring. Contimuing in this way,

it is seen that, 180 ma6.ngs will each produce 3 offspring for

a total of ,540 offspring, 90 matings will each produce 4 offspring

for a total of 360 offspring, 36 Matings will each produce 5

offspring for a total of 180 offspring, 13 matings will each

produce 6 offspring for a total of 78 offspring and finally 6

matings will each produce 7 offspring for a total of 42 offspring.

The grand total of the number of.offspring produced by the 1000

matings is 2000, or an average of 2 offspring per mating. The

student should also note that the sum of the probabilities is
.r

one and, therefore, one of the numbers 0, 1, 2, 3, 4, 5, 6, or

7, will always be selected as the number of offspring from any

mating. There are many sets of probabilities which could yield,

"on the average", two offspring per mating. The student can ex-

periment with different sets of probabilities by first setting a

limit on the maximum number of offspring to be produced from a

mating and then assigning a probability to each of the distinct

number of offspring resulting from a single mating.. The set of

probabilities so afisigned must add up to one to insure that all

matings are accou ted for. The sets of probabilities can then

be compared by car ying out a calculation similar to that used

above for an assume 1000 matings. A comparison of the different
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respective numbers of offspring, as well as the total number of

offspring, will provide further insight about the probd6ility

distribution.

The set of probabilities shown in Table 2 corresponds to

a discrete set of probabilities corresponding to a Poisson dis-

tribution whose mean is 2. The studtnt who is familiar with

statisticsVill recognize this. Enough discussion has been

presented about the listed set of piobabilities so that the

student should have some insight about them. Since it is the

purpose'of this work to minimize the use of formal mathematics,
A

the relation of this topic to classical mathematical statistics

will not be further explored here. The interested student is

urged to carry out the exploration on his ot her own.

In order to mimic the random selection of the number of

offspring per mating from such a distribution of probabilities,

the technique described in a. previous section, pp. 7.32

will be used. This technique is based upon the fact that ihe

random number generator produces a number between 0 and 1.

Thus, if the interval (0,1) is partitioned into intervalS whose

lengths are numerically equal to the respective probabilitiei,

and a random number is selected by the random number generator,

this number will "fall" in one of the intervals. The interval

containing the random number specifies the number f offspring.

The interval (0,1) is completely covered by such Lartition

because the sum of the probabilities is one. The number corre..

sponding to the end points of such a partition are most easily

obtained by forming the cumulative sums of the probabilities.

These sums are: 0.135, 0.405, .0.675, 0.855, 0.945, 0.981,

0.994 and 1.000; If these numbers are layed out on the interval

(0,1), the resultant intervals will have the d!Bsired lengths.
.

This is shown in figure 12.
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1 2
I 4 It

6

.135 ;405 .675 .855

Partitioning of Unit Intorval
for Selecting Number of Ciffspring

Figure 12

if1 gr
go co ers

ch at en

To illustrate the method of selecting a random number of

offspring from such a distribution of probabilities, the follow-

ing numerical example is presented. Suppose RND = 0.963. Since

this number is greater than 0.945 and less than 0.981, it

.lies in the interval correiponding to 5 offspring. Consequently,

5 offspring will be said to result from the mating. The larger

intervals correspond to the smaller numbers of offspring and hence

will be "landed in" more frequently by a number produced by the

RND. This is as it should be because large numbers of offspring

are to occur far less frequently than smaller numbers of off-

spring.

t 7
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Program Description

'Figure 13 contains a list of the notations used in the

program and figure 14 is a representation of the uverall program

organization. The numbers appearing at the upper left of each

box in the flowchart refer to the corresponding line, or lines,

in the program. Figure 15 is a flowchart of the method for

determining the number of offspring resulting from each mating

and figure 15a depicts the method of selecting the number of

offspring in terms of the program variables.

Figure 16 illustrates the method of determining the genotype

of the male parent and its allele. Since an identical method is

used to determine the fiaale parent and her allele, no flowchart

of the procedure is shown. Figure 16a shows this-determination,

in terms of the program variables. The sex and genotype of the

offspring are determined in accord with the procedure displayed

in figure 17, and figure 17a illustrates the procedure in terms

§f the program notation. In the program, it is assumed that all

siblings are genetically identical. This,assumption can be

removed by changing the order of the determination of the 'sex

and the genotype.

Most of the program consists of bookkeeping and of the

tallying of results whose values are functions of the numbers

generated by the random number generator. In attempting to

follow the flowcharts, and the program, it is helpful to recall

how the production of an offspring from a single mating is to be

mimiced. The student is again reminded that, wh'en attempting to

gain familiarity with various parts of the program, it is, very

helpful to remove the RANDOMIZE statement. This will insure that

the Aame set of random numbers will be generated each-time the

program is run. Thus, replicable numerical results should appear

and the same program branches followed each time the program is

run. It is also helpful to insert counters at specified points

in the program and 'to have the counters print out their value"
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Al(1), A2(1)

61(1), 52(1)

Ni(I), N2(I), N3(I) No. of Aril AB and BB male genotypes in Ith generation

N4(I), N5(I), N6(,)

Dl(I), D2(1)

D3(1)

Tl(I), T2(1)

In(I), U2(I), 113(I) Counters for no. of AA, AB and BB male parents that

PROGRAM NOTATION

No. of A and B male alleles in 1th generation

No. of A and B female alleles in 1
th

generation

No. of AA, AB and BB female genotypes in I
th

generation

Total no. of A and B alle1es'in I
th

generation

Total number of alleles in
1th

generation

Total no. of male and female parents in'Ith generation

have mated in the Ith generation

U4(I), U5(I), U6(I) Counters'for no. of AA, AB and BB female parent6 that

have mated in the I
th

generation

01(/), 02(I), 03(I) Counter's of-male AA, AB and-BB offspring genotypes

during the Ith generation

04(I), 05(I), 06(I) Counters of female AA, AB and BB offspring genotypes
o

C(I)

Ci

Sl, 52, ,

F

S7

during the Ith generation

No. of matings permitted in the Ith generation

No. of generations

Counter for no. of matings in a generation

Cumulative sums for determination of no. of offspring

or siblings per mating

Malkfand female allele markers

No. of offspring or siblings per mating

Figure 13
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( Start

100 to 1370 I

Enter init. no.
of geno. and gen.

1500 to 1710
1.1!litialize counters

1750 to .1780

1800

IDet. init. nciir
of matings

Cal. init. no. I

of A & B alleles

1840 to 1910

Print summary of, 1

init, genetic status

1990 1

Begin growing
first generation

4004

1995
Begin first mating
for this gen.'

47101
....

Increase counter of
no. of gen: hyone

4720

5109___imL5;10
Set Cenci: counters for
arenta of.nezt gen.

Det no. of matingiq
for next en.

5410 t954/30
Cal. no. of A & 8 alleles.'
'for males & females resp.

54fQ to lifi,01

res
Cal. tot. no. of
A & 8 al

5530 to 5670
Reset parent &.offspring
geno. counters to zero
--in Wok. f MN& geA.

5685

2000 to,2220 I

INat. no. of offspring
from this mating

3.010 to 2180 I

1

Det. male parent
and its allele

3500 t9 3640 I

tr. female.parent
and its allele

4010 to 4290
Det. pex 'and geno.
f offspring.

. 5719 r-

Print no male and/ori
fem, parents remain

5760

5770 to 6239
Print results
gen. by gen.

9999

Overall Organization

Figure 14
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2020

2000 Select a random
number, RN

2010

1.

2040
-1

1No offspring
created

2030

Begin seleciidg
fmale parent

2050
2070

One offsprimgl
created

3000

211

'Three offspring
created

2120

20601_

Begin selectingl 2080
male arent

I

2100

I.

offspring I
creattid

2090

3000

3000

.Begln selecting
'male arent

3000

2140

Firour offsprinil
created

3000

7.69

21.60

Continue I

as above

Determination of No. of leffspring

Figure 15



' ; - ^-. '; `. . Th

,

,

2000:1

R us RND

2010,1

R S1

3000

2050

2060

300

3000

2110

2120

3000

t4

3000

Determination of No. of Offspring

Figure 15a

AN.
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3040

Select a random
number RN

3050

Is RN
, such that parent

is an AA geno.?

3060

Increase AA
gem). counter
by one

3070

Is RN
.

such that parent
"s ac AB geno.

Increase AS
geno. counter
b one

Is R
such that
allele is

an A
3130

Allele
is A

Go to
select female

allele

3500

7.71

Selection of Male Parent Allele

Figure 16



3000

Selection of Male and Female Alleles

3060

4Q70 3100

11122441711

31101
[RiERND

3120

or

4000 3 )4
7.72



4000 determination of Offspring
genotypes

Figure 17

Set sibling
counter to zero

4050

4210

[Set sibling
counter to zero 1

1

4220

4060
Increase male
afsp. AA
count by one

4080

1

Increase fem.
offsp. AA
count by one

4240

4090
Increase sib.
counter by one

4400

Set sibling
counter to zero

PP- 4410

Is
offsp. count
= no. sib

4280 t
44-----

1

Increase sib.
counter by one

4270

Increase fd;
offsp. AB
copt by on-

4710

Increase mating
counter by one

4440

Increase male
offsp. BB
count by one

4470
Increase sib.
unter by one

7.73 t7.65

-:
XAre all

matings for thi-
gen. complete7(

1Go to 49901

LiGo to 20001



4020

4000

4240

24+F-1

4210

4210
4040

4050 0.

4060 4080

4230

RIERND

4240

4250

4400

4410

Jags

470
4415 Determination of Offspring

Genotypes

4420

-"
R %E. 0.5

4430 4460

03=03+1

44 0
J-.7+1

7.74 tg3 4: 6

Figure 17a



whenever it is desired. After the program is debugged and tested,

these counters and their associated PRINT statements can be

deleted from the program.

The following paragraphs contain comments concerning varioui

portions of the program. The paragraphs should be read in con-

junction with the program, figure 18, since they refer to the

program by line number. The purpose of the comments is to

further clarify the program and its structure.

The calculation of the number of male and female A and B

alleles appears in lines 1800 to 1830 and in lines 5400 to 5430.

These statements express the fact that the homozygote parent

alleles, AA and BB, each contribute 2 of the same alleles

resectively to the parent allele pool whereas the heterozy-

gote AB parent contributes only one A and one B allele to the

parent pool. Lines 1700 and 1710 .tate that the number of male

or female parents is just the sum'of the respective AA, AB and

BB male or female parent genotypes. Lines 1500 to 1550 initial-

iz(2 the counters which record the number of male or female AA,

AB or BB genotypes that have mated as the matings take place

during a generation. The operation of initializing a variabie

zets the variable equal to a desired starting value. In this

instance, the desired starting value is zero. The initializing

of the counters'Ul, U2, , U6 insures that there will be no

more matings than there are respective genotypes. These counters

must be initialized at the start of the growth of each generation.

See lines 5550 to 5600.

Lines 1600 to 1650 initialize the counters 'of the male and

female offspring AA, AB and BB genotypes before the start of the

growth of the first generation. These counters must also be

reset to zero at the start of the growth of each succeeding

generation. This is accomplished in lines 5620 to 5670. Because

the number of agfspring or siblings per mating is not constant,

it is possible to have more or less offspring than there are

matings or parents. Thus, the respective numbers of offspring

genotypes will not usually be equal to the respective numbers of

parent genotypes.
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5 REM SMALL POPULATION, POPULATION GENETICS PROGRAM

REM
20 RANDOMIZE
200 DIM Al(50)1A2)1B1(50),B2(50) r

210 DIM NI.<50),N2(50.),N1(50:,N4C50).N5K50"1 N6(50)
220 DIM T1(50),T2(50),C(-50)
230 DIM Di(50),D2(50),DB(50)
400 PRINT " SMALL POPULATION GENETICS"
401 PRINT
402 PRINT
403 PRINT
500 DATA .135,405A. 6?5,.855,.945,981,.994
510 READ Si,S2,SS,V4,S5,S6,S7
1A00 PRINT "TYPE INIT. NO.- OF RA, AB AND BB MALE,GENOTYPES"
1110 INPUT N1(0),N2(0),N1(0)
1120 PRINT
1130 PRINT "TYPE THE INIT, NO. OF AR, AB AND BB FEMALE GENOTYPES"
1140 INPUT N4(0),N5(0),N6(0)
1150 PRINT (
1160 PRINT "TYPE THE NO. OF GENERATIONS, G"

1170 INPUT G
1180 PRINT
1210 PRINT " INITIAL GENETIC STATUS OF POPULATION"
1220 PRINT
1230 PRINT
1300 REM A1(I> & A2(I) ARE NO. OF MALE & FEM. A ALLELES RESP.

1320 REM
1330 REM 81(I) & 820) ARE NO. OF pli:(Lg & FEM. B ALLELES RESP
1340 REM
1470 REM
1480 REM LINES 1500 TO 1710 SET INITIAL COUNTERS
1490 REM
1500
1510
1520
1530
1540
1550
1560
1600
1610
1620
1630
1640
1650

LET U1=0
LET U2=0
LET U3=0
LET U4=0
LET U5=0
LET U6=0
REM
LET 01=0
LET 02=0
LET 03=0
LET 04=0
LET 05=0
LET 06-0

Figure 1

7.76



)
1700 LET TIk0:J=N1k0>+N2k.0)+N';.
1710 LET T20)=N4(0)+N5(0)+NE10x
1720 REM
17:0 REM LINES 1760 TO 1;'80 CiALL NO OF MATINGS FOR INIT. PARENTS
1740 REM
1750 IF T10A,,:=T2.:0GC., TO 1780
1760 LET Ck.0=T2(0
1770 GO TO iso
17E3:3 LET Ck.O.A=T1(.0i
1E:00 LET Al.,0=2,0cNI.t.0)+N,0
1810 LET A2...00=2*N3(0)+N20)
1820 LET 81.:0,=2*N4(04-N5k.E0
1810 LET F3-20=21eN6(11+N5i0)
is:2 LET D1.:0:!=A1(0+H2(0,
184 LET V2<0;.=A21:.0)+82tJ.1,
182,6 LET ('.0)=D1(0)+D2(.01
1840 PRINT "INIT. NO. OF MALE A ALLELES IS"iA1(0)
1850 PRINT "INIT. NO. OF FEM. A ALLELES IS":81(0
1855 PRINT
1:r:360 PRINT "INIT. NO. OF MALE 8 ALLELES IS":82(.0')
1870 PRINT "INIT. NO OF FEM. 8 ALLELES 1.54;82(0)
1875 PRINT
1880 PRINT -TOT. NO. OF INIT. A ALLELES IS"JA1(0)+E1(0)
1900 PRINT "TOT. NO OF INIT. 8 ALLELES ISA2(0)+82(0)
1905 PRINT
1910 PRINT "INIT. NOS. OF MALE e FEM. PARENTS ARE":T1(0.);" & "iT2(0)
1915 ERINT
1.'4.L0 PRINT

19-.0 REM
194v REM LINES 1990 TO 5500 GROW OFFSPRING FOR ONE GENERATION
195!74 PEM
1960 PEM
1:'0 REM LINES 2000 TO .L2=ci SELECT NO OFF'SPRING OF THE MATING
J.14E:0 REM

1c490 FOR 1=0 TO G
1;094 LET C1=0
1.95 LET C1=0 .

2000 LET R=RND
2010 IF R>=S1G0 TO 2040
2020 LET S=0
211:.0 GO TO 3000
2040 IF R::=52G0 TO 2070
.1050 LET S=1
,:060 GO TO :000
2070 IF R:,=S2G0 TO 2100
2080 LET S=2
2:=40 GO TO 2000
:100 IF V,=S4G0 TO ;_'1:c1

.1.0 LET S=2
;A20 GO TO 7;000

:7,0 IF P=55G0 I 1E.0

2140 LEr 5=4

Figure 18 (Cont.)

7.77



2150 GO TO 3000
2160 IF R>=S6G0 TO 2190
2170 LET S=5..
2180 GO TO 3000
2190 IF R:'=S7G0 TO 2220
2200 LET S=6
2210 GO TO 1000
2220 LET 5=7
2990 REM
3000 REM LINES 1-040 TO 3180 SELECT MALE PARENT LLELE
1010 REM
.3040 LET R=RNE)
tt:050 IF R>=(NUI)-U1)/(Ti(I)-U1.-112-U3G0 TO 3090
2060 LET U1=U1+1
3070 LET M=1
3080 GO TO 3500
3090 IF R>=(N1(I)+N2(I)-U1-U2)/(T1(I)1.11-U2-U3)00 TO 3170
3100 LET U2=02+1
1110 LET R=RND
.2120 IF R<=. 500 TO 3150
31:0 LET M=1
3140 GO TO 3500
3150 LET 11=0
«1160 GO TO 3500
3170 LET U3=U3+1
1180 LET M=0
1290 REM
1100 REM LINES 3500 TO13640 SELECT FEMALE PARENT ALLELE
3310 REM
3500 LET R=RND
3510 IF R>=<N4(I)-U4)?(T2(I)-U4-U5-U6>GO TO 350
3520 LET U4=U4+1
1530 LET F=1
3540 GO TO 4000
3550 IF R>=(N4(1)+N5(I)-U47U5)/(T2(I)-U4-U5-U6)G0 TO 3630
3560 LET U5=U5+1.
3570 LET R=RND
3580 IF R(= 500 TO 3610
3590 LET F=1
3600 GO TO 4000'
3610 LET F=0
620 GO TO 4000
3630 LET U6=U6+1
3640 LET F=0
1650.09 TO 4000
3980 REM
3990 REM LINES 4010`T0 4290 SELECT GENOTYPE OF OFFSPRING
4000 REM
4010 IF (M+F)<>200 TO 4200
4020 LEr J=0
4030 IF J=500 TO 4700
4040 LET R=RND
4050 IF R. 500 TO 4080
4060 LET 01=01+1
4070 GO TO 4090
4080 LET 04=04+1 Figure 18 (Cont.)
4090 LET J=J+1
4100 GO TO 4030
4200 IF (M+F)<>1G TO 4400 rl,

" 0
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4210
4220
4230
4240
4250
4260
4.270
4280

4400
4410
4415
4420
4440
4450
4460
4470
4480
4485
4690
4700
*710
4720
499(1
5(100

5010
5100
5110
5120
51:d
5140
515w
':160

ci

.7.240

5.:50

-;260

!".;0

528
0

.60

!Th4.0,1

'.4!7:41

z, i. t.

LET J=0
XF J=SGO TO 4700
LET R=RND
IF R.:=_5G0 TO 4270
LET'02=02+1
GO TO 4280
LET 65=05+1
LET J=J+1
GoTa-4220
LET J=0
IF J=SGO TO kr00
LET R=RND ,

IF R(:=2. 5GO TO 4460
LET 01=02+1
GO TO. 4470
LET'O6=0641,
LET J=J+I
GO TON44
...1!REM

LINE 4710 8, 4720 COUNT.NO. OF MATINGS IN THIS GEN.

REM
LET C1=C1+1
IF C1..,:C(I)G0 TO 2000
REM .,,

REM LINES 5100 TO 5210 SET THE GENOTYPE COUNTERS FOR THIS GEN.

REA
LET NI...1+1)=01
LET N2I+1>=02
LET N2LI+1:.=0:
LET N4,A+1)=04
LET N5I+1)=05
LET N6I+1)=06
REM
CET TIAI+1=N1I+1...+N21+1)+NI(I+i)
LET T2I+1)=N4(I4-1)+N5I-1-1-.)+NE,kr+1>
REM
REM
REM
IF 1.1I+1<=T2kI+.1.)1:20 TO 5280
LET CI+1.)=T2k1+1)
GO TO 5400

CkI+11J=T1I4-1)

P

LINES, 52aci TO 5280 CRLC. NO. OF MATINGS FOR NEXT GEN.

LET
PEM
i;TrI

frE('l

LET
LET
LET

LET
LEJ

LINE t.40 CALCULATE NO OF A AND P. ALLELES

EJ,I+1,--7,Lf04+ut.

14-1.)=A1.1+1.)+E.ItI+1,

EJ2,14-1=b1ki,i,411kI4-1!

Figure 18 (cont.)
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.5500
5510

-.550

tst.to

5570
5580
5590
5600
5610
5620
560
5640
5650
5660
5670
5685 IF C(I+1 )0.0GO TO 5760
5690 PRINT,
5700 PRINT-
5705 PRINT .9

571'0 PRINT "ON GEN. NO. ";I+2.:"NO MALE ANWOR FEM PARiNTS REMAIN."

5720 PRINT "NO. MALE PARENIS =";Ti(I+1),"NO. FEMALE PARENTS =";T2(I+1)..

5730 PRINT
5740 PRINT
5750 GO TO 5770
5760 NEXT I
5770 PRINT " PROGRAM RESULTS,
5780 PRINT
5785 PRINT
5790 PRINT
5800 PRINT "GEN. NO. NO. OF MALE PAR. NO. OF FEM. PAR."

5805 PRINT
5810 FOR I=0 TO G
5820 PRINT " ";I;" ":T1(I);" ";T2(I>

5830 NEXT I
5840 PRINT
5850 PRINT
5980 REM
5990 REM LINES 6010 TO 6250 PRINT RESULTS
5995 REM
6000 PRINT " A ALLELE 8 ALLELE"

6010 PRINT "GEN. NO. MALE FEMALE MALE FEMALE"
6020 PRINT
6030 FOR 1=0 TO G

TOT. ALL.

REM
REM
REO

LINES 5550 TO 5660 RESET PAR.

LET L11.7-0

LET W:=0
LET LI0
LET U4=0
LET U5=0
LET U6=0
REM
LET 01=0
LET 02=0
LET OZ=0
LET 04=0
LET 05m0
LET 06=0

OFF. GEN. COUNTERS EACH 'GEN.

6040
6050
6080
6090
6100

6120
6130
6140
6150
6160

PRINT I,A1(I),81.(1),A2(I),82 I)
NEXT I
PRINT
PRINT
PPINT "GEN. NO. TOT. A ALL.

PRINT
FOR I=0 TO G
PRINT " ";I,Di(I),D2(I>,, . (I)

NEXT I
PRINT

TOT. 8 ALL.

nom IS Want.,
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617,0 PRINT
6180 PRINT
6190 PRINT "GEN. NO. AR R8 88
6200 PRINT
6220 FOR I=0 TO G

MALE GENOTYPES FEMALE GENOTYPEg
AR RS SS"

62:0 PRINT I,N1(I);" "JN2(I)i" "iNI(I),,N4(I)i" ",N5(I);" ";N6(I)

6240 NEXT I
6250 PRINT
6260 PRINT
9999 END

Figure 18 (Cont.)
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-,-4;
0,4

Lines 5100 to 5150 set the number of parent genotypes for

the next or (I+1)st generation. This explains-the use of the

index I+1, rather 'than the index I, in lines 5200 to 5460.

1 of these lines are specifying.the 'distribalan-of-genotypes-
14.

a4cI alleles for the parents of the next generation in order that

tI2e entire process of growing ihe offspring of the next genera

tion can be xepeated in the next generation.

The student should recall that, if a parent is a homozygote

AA or BB, an A or a allele.respectively will descend to be

united in the zygote. However, if the parent is a heterozygote

AB, it is equally likely that either an A or a 13 allele will

descend. The choice pf which allele is to descend is made with

the assistance of the random number generator. This explains the
r

use of the RND statement in lines 3110 to 3150 and lines 3570

to 3610.



Y

Miscellaneous Comments

As the DIM statements indicate, the program was written to

run for a maximum of 50 generations. By increasing the range

of the DIM 'statements, the program can be run for a larger

number of generations. Of course, the computer storage ma--

computer run time will increase accoraingly.

The program was written in BASIC because BASIC.is the lan-

guage used in this work. Since most BASIC compilers are inter

pretive, each statement or line in the program is translated

into machine ianguage and then executed by the computer. Thus,

if the program is run for many generations, the same lines are

translated into maChine language again and again for as many

times as there are generations to be run. In contrast, a.pro-
4

gramming.language such as FORTRAN, only requires one transiatiqn

of the FORTRAN language to'the machine language. Such a trans-

lation is called a compilation. The process of compiling avoids

the several translations that are necessary when BASIC is used.

In this sense BASIC is inferior to most higher level programming

languages sdch as FORTRAN, APL, COBOL, etc. The program may be

more difficult to put together and debug in one of these other

higher level languages; however, it will usually run much more

efficiently. In fact, if one attempts to combine,life table

analysis with population genetics, it may well be the case that

assembly or machine language may be the most appropriate language

to use. However, we reiterate, BASIC was chosen foi this work

because it is so very easy to learn and is readily available'on

mini- as well as maxi-computers. Just as the goal of this work

is to minimize the use of mathematics, so also is the goal to

minimize the use of more sophistiCated programming languages

and techniques. This is an introductoty course which emphasizes

conceptualization of quantitative ideas in a single programming

language. As the student becomes used to expressing his or her

thoughes and ideas in BASIC, and attempts.more sophisticated

problems, he or she is urged to become familiar with other higher

level programming languages and techniques.
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Program Results

Figure 19 illustrates the results from a typical run. The

initial numbers of male AA, AB and BB genotypes were chosen to

be 3, 4, and 5, and the initial numbers of female AA, AB.and BB

genotypes were selected to be 6, 5, and 4 respectively.: The

problem was run for 10 generations. As the results indicate,

there were no more male parents to mate after 9 generations and

consequently no further mating occurred. On other runs with the

same starting distribution of genotypes, one or the other of the

parent populations would disappear. This would occur after

varying numbers of generations. Sometimes the population wopld

continue mating for up to 20 generations whereas on other runs

the population would have to discontinue mating after only 5
%

generations.

The dying out of a parent population after some variable

number of,generations is due to thek random selection of mates

and to the assumption of monogamous mating. In'particular, the

assumption that the number of matings for the subsequent genera-

tion is equal to the minimum of the number of theAliale and the

female offspring of the previous generation, servys to accelerate

the decrease in the mating population. The entire process is

similar to genetic drift. In contrast however, for infinite

populations, random mating can induce genetic drift but it

cannot result in the disappearance of the population.

It is interesting to run the program for several generations

assuming a large mating population. Your author ran the program

with an initial male and female genotypic distribution of 100 AA,

200 AB and 100 BB genotypes. A comparison of the number of A

alleles with the number of B alleles, generation by generation,

igirealed that up to the 15th generation, these numbers alter-

nated in being the largest in magnitude. However, after the

lsth generation, even though both numbers decreased, the total

number of B alleles decreased much faster than did the total

number of A alleles. Thus, once the random distribution of
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GENE2

-V°

SMALL POPuLATION GENETICS

TYPE INIT. NO. OF AR, AS AND as MALE GENOTYPES
7'1, 4,-5

TYPE THE INIT. NO. OF AR, AB AND SS .FfEMALE GENOTYPES
76,5,4

TYPE THE NO. OF GENERATIONS,

INITIAL GENETIC STATUS OF POPULATION

INV'. NO. OF MALE A ALLELES IS 10
INIT. NO. OF FEM. A ALLELES IS 17

INIT. NO. OF MALE S ALLELES IS 14
INIT. NO. OF FEM. 8 ALLELES IS 11::

TOT. NO. OF INIT. A ALLELES IS 27
TUT. NO. OF INIT. 8 ALLELES IS 27

INIT*. NOS. OF MALE & FEM. PARENTS ARE 12 & 15

MM.

ON GEN. ,t110.. 9 EITHER NO MALE AN0/OR FEM PARENTS REMAIN
NO. MALE PARENTS = 0 NO. FEMALE PARENTS = 8

GEN NO

1

6
7

9

10

PROGRAM RESULTS

NO. OF MALE PAR. NO. OF FEM. FAR.

15
1:
/5

2

1.

0
. 0

Figure 19

7.85 3 7

11
17,

5
6
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GEN.

0

A ALLELE
NO. MALE

10
1 11
2 8
3 8
4 2
5 6
6 10
7 2
8 2
9. 0
10 0

.FEMALE

/7
6i
5
4
12

S ALLELE
MALE FEMALE

14
17
1E.
22
2

.13
16
16
5
8

4 0 0
2 0 0
4 0 0
9 0 0
0 0 0

Ti

GEN. NO. TOT. A ALL.

24

TOT. B ALL. TOT.

27

ALL.

51
1 19 33 52
2 16 36 52
3 13 27 40
4 6 10 1.6
5 18

14 1.4
4 4

.8 6 6
9 0
10 0 okekra'

GEN. NO.
MALE GENOTYPES

AR FIB BB

0 3 4 5
1 3 7 5
2 .. 2 8
3 2 4 9
4 0 2 0
5 3 0 0
6 5 0 0
7 1 0 0
8

N
1 0 0

9 0 0 0
10 0 0 0

READY

FEMALE GENOTYPES
RR RS BB

6 5 4
1 4 6
1 6 6
1 3 1
0 4 2
6 0 0
a ef 0
1 0
2 0
0 0
0 0

Figura 19 (Coat .
7. 86
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offspring was-such as to produce substantially more cif one type

of allele than the other type, it was not possible for the

latter to again "catch up" with the former type of allele.

Consequently, on the 50th generation there were 91 A alleles and

45_11 alleles/ s_ratio of approximately 2:1.

Of course if this problem were to be rerun, the results

might show a complete reversal from the previous results.

the possible variability of such results suggests that several

runs, each with the same starting conditions, should be made

and the results averaged. Once this average is determined, the

deviation of a particular run from this average can be obtained.

The deviation is the quantity of interest. The computer time

required to make several runs in order that a reasonable esti-

mate of the average may be obtained may be extensive.

The program can provide insight into many diverse phenomena

concerning small populations. Many different initial distribu-

tions of parent genotypes can .be examined and the effect on the

generation to generation variation of the genotypes noted.

From the preceding discussion, it is evident timt statistical

procedures,play a very important and necessary role in genetics.

Such procedures are useful in determining sample sizes, the degree

of correlation of results, statistical measures such as the mean,

the average, the variance, etc. Statistics also forma the basis

of the analysis og the bias or non-randomness of sets of numbers

produced by random number .generators. FOr these reasons, those

students who are interested in further pursuing the,study of

genetics are urged to become familiar with the techniques of

statistical analysis.
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Another Program Alteration

This section considers a modificatidn of the first popula-

tiongenetics program to include selectivity and survivability.

___Riologists know from experiments -that-, -if -the reproductive-and

the survival capabilities of a given genotype are limited, after

several generations that genotype will either disappear from the

population or the genotypic ratios of successive generations

will change.

Our discussion of reproductive and survival capability will

be quite restrictive. It will be assumed that the controlling

factors of reproduction and survival are:

(1) the capability of a parent genotype to mate, and

(2) the capability of an offspring zygote, once formed, to

survive.

It will further beLassumed that a measure of these capabilities

can be described with the aid of selection coefficients and'

survivability coefficients. These coefficients are defined below

and their definitions differ from those commonly given in genetics

texts. However, these definitions are adopted because they seem

quite natural for this discussion and this setting.

In order to investigate the selection and survival capabili-

ties, the first population genetics pr..gram will be altered to

include them. To do this, it is convenient to introduce the

idea of a selection coefficient. A selection coefficient is a

measure of selection against a characteristic or phenomenon,

i.e. its action is just the opposite of a preference for something.

The selection coefficiont is a positive number whose magnitude

is less than unity and it is used in the following way. Let M1

denote the effective mating selection coefficient of the male AA

genotype, then. M1-0.4 means that 0.ky- or 60%, of the male AA

will effectively mate. Similarly, M1-0 means all male AA

genotypes will effectively mate and M1-1 means no male AA

7.88



genotype mating will result in'an offspring.

manner, M2 and M3 are the respecti est

effectiveness by the male AB d BB genotypes.

Fl, P2 and F3 will enote e three female se

The -Inclusion_of y to simulate the s_
offspring of a prescr genotype is accompliahed by intrii;

ducing the coefficients Cl, C2 and C3. These are called the

survivability coefficients for the offspring with Ai, AS, and

BB genotypes respectively. The nurvivability coefficient is

interpreted in a manner directly opposite to that of the selec-

tivity coefficient. Thus, C2=0.40 means that only 0.40, or

40%, of the AB offspring will survive to become parents for the

next generation. Similarly, C2=1 means all AB offspring will

survive to become parents for the next generation."

Figures 20a,b,c are flowcharts describing the selectivity

of the male parents and figures 21a,b,c are the corresponding

flowcharts aepicting the selectivity of the female parents.

The selectivity of the offspring and the tallying of the number

of offspring of the three different genotypes is portrayed in

In a similar

against mating

Analogously,

tion coefficients.

ability of

figures 22a and 22b respectively. The program is'listed in

figures 23a,b. As in the previous flowcharts, the numbers

appearing adjacent to tihe enclosures refer to the corresponding

lines of the programs. The "English" loanguage BASIC notation

versions of the flowchart have been combined to save space. It

is hoped this will not confuse the student.

In the flowcharts, and in the program, the following

additional notation has been used:

Al, A2 and A3 denote the no. of AA, AB ,and BB
genotypes'in the original
population

denotes the no. of generations

denotes the no. of offspring per

generation

-R
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Oft

SeleCtivity of Male Par
\

nts

,101"/Ar r.1Vmk.'l :77,1&40,4,

*15 Is male parent an AA genotype?

264 Is male AA parent selected'against?
(If yes, select another male parent.)

265 Male allele ls an A.

Fig. 20a'
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NO

.

Selectivity ofiMale..faments (eont.)

,v

217 Are there no ABmale parents? (A ye,

answer implies that the male parent-ie'
BB geriotype.)

261 Is male BB parent selected againit?.
(If yes, select another male parent.)

(262 262 Male allele is a B.

MINO

Fig. 20b

. 7.91
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,`""r; 7.`i" ,
: `

; 11'; , h!; t0.1,; v.:4;A ' 40.404:0024,00 40,:"
11 :

Selectivity of Male Parents (cont.)

X=AND(0)

1240

R=END(0)

251

14.0

220 Is male parent a BB genotype? (A no
answer implies that the male parent is
an AB gegotype; a yes answer implies
that the mile parent is a BB genotype.).

230 Is AB male parent selected ageqt ?

25p Is allele of male AB -parent an A?
,0

251 Male allele is a B.

Fig. 20c

7 .92
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AI

qi=liND(d)

a

X=RND(0)

4

telectivity of Fema1 Perents

.r

,

364 Is AA female parent selected against?
es. (If yes, start mating process over.)

#

365 365 Feinale allele is A.

Fig. 21a
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Selectivity of Female Parents (cont.)
6

11.

317 AL there no female AB parents? (A
yes answer implies female parent is BB.)

61 361 Is BB female parent selected againstNO YES (If yes, start mating process over.)'

362 Female allele-is B.

-Fig. 21b
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1, , A-*
';

Selectivity of Female Parents, (Cont.)4i-

320` is female parent a BB genotype?
answer implies female parent is &Pi

_genotype, a yes answer implies fesa-
'1arent is BB genotype.)

4

330 Is AB female parent seietted against?
(if yes, start mating process over.)

50 , 350 Is allele of female AB parent an,A?

351 Female allele is a B.

2140 4 7Fig.
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/
......2s21111111,1L91.2.M_Malkia

430 Offspring is, BB genotype.

44o Does BB offspring suriave?

210 BB offspring does not survive; go back
'and "grow" another offspring.

445 445 One iore BEL offspring is created.

45o

Z=RND(0)

G2=G2+1

425 Offspring is AB genotype.

)455 Does AB offspring survive?

21 CI AB ofkspring does not survive; go hack
and "grow" another offspring.

1

460 One more AB offspring is created.

*

Fig. 22a

7.96
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;AP.A

Purvivability or OfSspring (cont.)

5.,

410 Offspring is .AA genotype.

Does AA offspring survive?

es-AC.,

T7i:

210 AA offspring does not suivive;
go back and "groe another dff1ly4

.

475 One more AA offspring is -create&

Fig. 22b

7.97



R8052

1.REM
3'REM
4 REM
5'REM
6 REM
7 REM LINES 10-46 PROVIDE FOR INPUT
8 REM
10 PRINT "A1=NO. OF RA GENOTYPES IN ORIG. POP.

11 PRINT "TYPE A1",INPUT A.
12 PRINT

'412

*.

GENETICS PRWRAM1 MULTI ....GENERATIONS, SELECTIVITY
AND SURVIVABILITY, INPUT ORIG. NO. GENOTYPES

15 .PRINT "A2=NO.OF RS GENOTYPES IN ORIG.pCIP."
16 PRINT "TYPE A2"\INPUT A2
17 PRINT
20 PRINT "A3=NO. OF BB GENOTYPES IN ORIG.POP."
21 PRINT "TYPE A3"\INPUT A3
22 PRINT
25 PRINT "G=NO. OF GENERATIONS TO RUN PROGRAM"
26 PRINT "TYPE G"\INPUT G
27 PRINT
30 PRINT "C=NO. OF OFFSPRING PER GENERATION"
31 PRINT "TYPE C"\INPUT C
32 PRINT
35 PRINT "MI, M21 M3 ARE MALE SEL. COEFFS."
36 PRINT "TYPE MI, 4121 M3"\INPUT M1,M21M3
37 PRINT
40 PRINT "FI, F21 F3 ARE FEMALE SEL. COEFFS."
41 PRINT "TYPE F11 F21 F3"\INPUT
42 PRINT
45 PRINT "C11 C21 C3 ARE OFFSPRING SOLIVABILITY CGEFFS.
46 PRINT "TYPE C19 C21 C2"\INPUT C1,C2,C3
47 PRINT
49 PRINT
106 REM
197 REM Mi1 112, M3,. F11 F2, F3 ARE THE MALE FIND FEM. SEL. COEFFS.

108 REM EXAMPLE: M1=0.4 MEANS 60X OF RA GENOTYPES WILL MATE
109 REM EXAMPLE: Mi=1. 0 MEANS COMPLETE SELECTION AGAINST AN
110 REM AA MALE PARENT
111 REM
112 REM C1, C21 C3 ARE OFFSPRING SURVIVABILITY COEFFICIENTS

113 REM, EXAMPLE: C2=0.45 KERNS 45X OF RS OFFSPRING WILL SURVIVE
114 REM
115 RANDOMIZE
120 LET N=A14412+R3
130 LET N1=A1/N\LET N2=A2/N\LET N3=113/N
131 PRINT "THE INITIAL PROPORTION OF RA GENOTYPES IS"Ni
112 PRINT
133 PRINT "THE INITIAL PROPORTION AB GENOTYPES IS"N2
134 PRINT
135 PRINT "THE INITIAL PROPORTION OF BB GENOTYPES IS"N3
£36 PRINT
140 LET GinAi\LET G21142MST G3=A3
141 REM

7.98
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142 REM G1, G2, G3 ARE THE NO. OF AR1 RB . 88 GENOTYPES RESPECTIVELY
143 REM
145 FOR 1=1 TO
246 LET N1=G1/N\LET N2=G2/N\LET N3=G3/N
150 LET G1=0\LET G2=0\LET G3=0
170 FOR K=1 TO C
189 REM
190 REM LINES-210-365 PICK EACH FlARENT AND IT'S ALLELE
191 REM
200 REM LINES 210-265 PICK A MALE PARENT AND HIS ALLELE.
201 REM
210 LET R=RND(0)
215 IF R<=N160 TO 263
217 IF N2=0G0 TO 260
220 IF R>=1(N1+N2)00 TO 260
225 LET XEIRND(0)
230 IF XORM2G0 TO 210
240 LET R=RND(0)
250 IF R>st,5130 TO 265
251 LET M20\GO TO 310
260 LET X=RND(0)
261 IF Xt:=M3G0 TO 210
262 LET M=0\GO TO 310
263 LET X=RND(0)
264 IF X<=M1G0 TO 210
265 LET M=1\GO TO 310
259 REM
300 REM LINES 310-365 PICK A FEMALE PARENT AND HER ALLELE

301 REM
310 LET R=RND(0)
315 IF R(=N1G0 TO 363
17 IF-N2=000 TO 360

320 IF R>=<N1+N2)G0 TO 360
325 LET X=RND(0)
330 IF X<=F200 TO 210
340 LET R=RNti(0)
350 IF R>=.5G0 TO 365
351 LET F=0\GO TO 41.0
360 LET X=RND(0)
361 IF X<=F300 TO 210
362 LET F=0\GO TO 410
363 LET X=RND(0>
364 IF X<=FiG0 TO210
365 LET F=1\GO TO 410
399 REM

% . c.) A
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1,:e410' r AV

400 REM LINES 410425 DSTERMINE THE GENOTYPt

401 REM
410 IF M+F=200 TO 465
425 IF M+F=160 TO 450
429 REM
430 REM LINES-445, 460 AND 475 COUNT THE GENOTYPES

431 REM
435 LET Z=RND(0)
440 IF 2)=C3G0 TO 210
445 LET G3=G3+1\GO TO 500
450 LET 2404D(0)
455 IF Z>=C2G0 TO 210
460 LET,G2=G2+i\GO TO 500
465 LET 2=RND(0)
470 IF 2>=C1G0 TO 210
475 LET G1=G1+1\GO TO 500
500 NEXT K
501 REM
502.REM LINES 508-585 PROVIDE FOR OUTPUT

503 REM
506 PRINT
507 PRINT
508 PRINT ".THE GENERATION NUMBER IS"I+1.
510 PRINT "THE NUMBER OF OFFSPRING IS"C
515 PRINT
520 PRINT "THE NUMBER OF RA GENOTYPES IS"G1
525 PRINT
530 PRINT "THE NUMBER OF AB GENOTYPES IS"G2
535 PRINT
540 PRINT "THE NUMBER OF BB GENOTYPES I5"G3
545 PRINT
550 LE R1=G1/01\LET R2=G2/01\LET R3=03/01
555 PRINT
565 PRINT "THE RATIO OF AR TO AA GENOTYPES IS"Ri

578 PRINT
575 PRINT "THE RATIO OF AB TO RR GEONTYPES IS"R2

580 PRINT
585 PRINT "THE RATIO OF BB TO RA GENOTYPES IS"R3

598 PRINT
593 LET N=G1+02+G3
595 NEXT I
600 END

READ'?

7.99a
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denotes the sum of the genotypic

ratios..

Nle N2 and N3. denote the AA, AB and BB genotypic

ratios, and

Gl, G2, and G3 denote the AA,' AB and BB genotypes .

of the parents for the next gene-

ration.

The plan of the computer program is as follows:

From an initial specification of the number of AA, AB or BB

parental genotypes (the number is assumed to be the same for

both the male and female parents). An AA, AB or BB male parent

is selected with the aid of the random number generator. The

random number generator is again used with the appropriate ielec-

tion coefficient Ml! M2 or M3 to decide whether or not the male

mating is sterile, i.e. whether or not a male gamete descends

to form a zygote. (See instlo 225-265). If a male gamete is

not forthcoming, a new male parent is selected and the process

is repeated. The female gamete is obtained in the same way

except that, if a gamete from the female is not forthcoming,

the entire process is repeated, i.e. a new male parent is selec-

ted and,the total process repeated until both a male and female

gamete are forthcoming and hence, it is postulated that a zygote

is formed. The survivability of the zygote to become a parent

for the next generation is simulated by using the random number

generator in conjunction with the survivability coefficients

Cl, C2 and C3. (See insts. 445, 460 and 475 where the countim of the

offspring genotypes is also accomplished). If a zygote does not

survive, the entire process of growing a new zygote is repeated.

As in the.previous program, the genotypical description of the

offspring is used as the genotypical description of both the male

and female parents for the next generation because it is assumed

that the offspring are the only parents in the next generation.

7.100
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The student is again reminded that the following assumptions

are made in the program:

(1) The genotypic ratios of the male and female parents

are the same and are equal to the corresponding geno-

typic ratios of the offspring of the previous genera-

tion.

(2) "Phe population is infinite. -Thus, a large number of

offspring must be grown each generation to assure a

reasonable estimate of the, genotypic ratios for the

parents of the next generation.

The construction of the program'assumed that:

(1) There is no need for subscripts. Consequently, they

are not used. This is in contrast to the previous

program. The use of subscripted variables is frequently

a matter of taste.

(2) The student will not be confused by the use of pultiple

statements occurring in a single line of the program.

This has been done to. restrict the length of the pro-

gram. Most BASIC compilers.have this capability. If

the compiler on your computdr does not have this

capability, the necessary modifications that must be

made to the program are evident and should not be

difficult to make. Multiple statement lines are in-

dicated wherever the symbol A," appears. Examples of

multiple statement lines are: line 11, line 130,

line 250, etc.

The program as written, contains much more interesting

information than is printed out. For example, counters could be

ihserted to determine the number of AA, AB and BB male attempt\

at mating that had to occur in order to successfully mate with a

female. Counters could also be inserted in the program in order
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?4,

to determine the number of attempted male matings necessary to

produce a zygote which would survive. In an analogous manner,

similar facts could readily be obtained about %male attempts at

matings.

Many modifications could-readily be made to the program to

investigate other interesting genetic phenomena. For example,

a simple modification of the program to permit the.slow change of

the selectivity or survivability coefficients each generation

could possible simulate the effect of variable mutation. The

assumption of equal genotypical descriptions for both the male

and female parents could be removed,although for infinite potiu-

lations this may not be too biologically meaningful. The selec-

tion and survivability coefficients could be made sex dependent.

The oytput from a typical program run is shown in figures

24a and 24b. The initial numbers of AA, AB and BB genotypes

were chosen to be 1, 2 and 1 respectively. Since it is the

genotypic ratios that determine the selection of mating pairs,

it was convenient to enter an equilibrium distribution using

small numbers. The 10,000 offspring were grown to provide rea-

sonable accuracy and stability to the results. There is no selec-

tion against either an AA or an AB genotype of either sex of

parent. However, the initial conditions did specify a selection

of 50% against male BB parents and selectioniof 25% against BB

female parents. Thus, there is distinct avssure against the

successful mating of a BB genotype, male or female. The BB off-

spring is subject to a 75% survivability whereas the remaining

genotypes are assumed to all surVive. In this run, it is evident

that the entire mating process iksuch as to discriminate age4nst

the'BB genotype.

This particular run illustrates the use of just one possible

set of selection and survivability coefficients. Other sets of

coefficients could have been used and would have indicated dif-

, ferent degrees of prefisure on the same or other genotypes. Your
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Re852

AluNO. OF RA GENOTYPES IN ORIG. POP.
TYPE At
?I

A2uNO. OF AB GENOTYPES IN DRIG.POP.
'TYPE A2
?2

A3=NO. OF 88 GENOTYPES IN ORIG.POP.
TYPE R3
?1

G=NO. OF GENERATIONS TO. RUN PROGRAM
TYPE G
?4

C=NO. OF OFFSPRING PER GENERATION
TYPE C
?18008

Mi. M2, M3 ARE MALE SEL. COEFFS1
TYPE Mi, M2, 113

?0, 0, .5

F11 F21 F3 ARE FEMALE SEL. COEOS.
TYPE F11 F21 F3
?0, 0, .25

C1, C2, C3 ARE OFFSPRING SURVIVABILITY COEFFS.
TYPE C11 C2, C3
?1, 1, .8

THE INITIAL PROPORTION OF AA GENOTYPES IS .25

THE INITIAL PROPORTION AB GENOTYPES IS .5

THE INITIAL PROPORTION OF 88 GENOTYPES IS .25

THE GENERATION NUMBER IS 2
THE NUMBER OF OFFSPRING IS 10000

'THE NUMBER OF AA GENOTYPES IS 1065.

THE NUMBER OF AB GENOTYPES IS 5241

THE NUMBER OF 88 GENOTYPES IS 1694

Output

Figure 24a

THE RATIO OF AR TO AA GENOTYPES IS 1

THE RATIO OF AB TO AA GEONTYPES IS 1.70995

THE RATIO OF BB TO RA GENOTYPES IS .-552692



- output (cont.)

THE GENERATION NUMBER 1.53
THE NUMBER OF OFFSPRING IS 10000

THE NUMBER OF RR GENOTYPES IS 3793

THE NUMBER OF AS GENOTYPES IS 4925

THE NUMBER OF BB GENOTYPES IS 1262

THE RATIO OF AR TO AA GENOtYPES IS

THE RATIO OF AS TO RA GEONTYPES IS 1.29644

THE RATIO OF BEI TO AR GENOTYPES IS .237991

THE GENERATION NUMBER ZS 4
THE NUMBER OF OFFSPRING IS 10060

THE NUMBER OF AR GENOTYPES IS 4499

THE NUMBER OF RS GENOTYPES IS 482

THE NUMBER OF BB GENOTYPES IS 919

THE RATIi) OF AA TO 41 1GENOTYPES IS i

THE RATIO OF AB TO AR. GEONTYPES IS 1..01845

THE RATIO OF BB TO AA GENOTYPES IS .204268

THE GENERATION NUMBER IS 5
'THE NUMBER OF OFFSPRING IS 10000

THE NUMBER OF RA GENOTYPES IS 5031

THE NUMBER OF AB GENOTYPES IS 4210

THE NUMBE OF SS GENOTYPES IS 759

THE RATIO OF AA TO AA GENOTYPES IS i

THE RATIO OF AB TO RA GeahTYPES IS .8S-6812

'THE RATIO OF BB TO AA GENOTYPES IS .150865

Figure 24b
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author ran a ser45 of eleven rune whe;ein the following initial

conditions were imposed on .each run:

(a) the initial genotypic distribution was 1:2:1,

J:0) the number of offspring was 1000,

(c) the number of generations wal 5,

(d) there was no seletion against any female parent gene-

types; hence F1=04 F2=0, and F3=0,

(e) all offspring survived; hence 'Cl=1, C2=1 and C3=1, and

(f) there was no selectiOn against the male AA or the male

AB parent; hepce M1=0 and M2=0.'

For each run, the selection against the BB male genotype

varied. The first run had no selection .pgainsts the. mpleoBB

genotype and the last rgn had complete selection against the

genotye. Hence,.for the last run the value of M3 was 1. In

the remaining runsothe selection coefficient was incremented

by a value ot 0.1. Thus, the 11 runs corresponded to a set of

runs in which the value of M3 was 0, 0.1, 0.2, ... I 0.9, 1.0

respectively. -

At analysis of thd'se results indicated that, the run

corresponding to M3=0 gave zesults which agreed vary well with

the conclusions of the Hardy-Weinberg law. This ,uld not be

surprilsing since for these initial conditions, fthe basic assump-

tions of the program are in accord with all ofithe hypotheses

necessary for the validity of the law. (This statement is pre-

dicated on the idea that 1000 #fsPring is effectively an infinite

population). As M3 was increased from 0, through the values

0.1, 0.2, etc., ther4 was a gradual decrease in the proportionr

of BB genotypes measured at the fifth generation. A comparison

of the proportion of BB genotypes in the population at the f....fth

generation for varlous values of '143 indicates that this pro-

portion decreased as M3 increased. In fact, for M3=1, that is

for complete selection against the mating of the BB male parent,
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the proportion of the entire population that consists of in(

genotypes is only ,0.061. This proportion is about 0.1 of the

number of AA genotypes remaining in the population at the en of

the fifth generation. Thb genotypic ratios at the d of th

fifth generation for the run corresponding to comple on

against th0 male BB genotype were 0.571:0.39:0.061.

This example of a set of runs was presented td'illustrate

the many and varied experiments that may be performed with such

a program. In fact, the actual performing of the computer based

experiments is very easy once the program has been developed.

It is the analysis And interpretation of the results that is

time consuming and difficult. Because it is so easy to carry

out such experiments, it is vim) tempting to "just so ahea and

try several diffekent sets' of initial conditions and see if any

interesting results are forthcoming". Needless to say, such a

procedure cannot be expected to be very effective or productive.

Nevertheless, the student is urged to, do a bit*of such experi-
r-

mentation just to get a feel for the capabilities and limitations

of the program. One thing the student will learn from such an

experience is that the analysis and interpretation of the results

from several runs is not a t4vial task. In fact, this.task may

be even more difficult than the development of the program which

produced the results. This should not be surprising because the

program runs are arialogous to a series of experiments and it is

well-known that the analysis of experimental data is.not a tri-

vial task. The paradox of the seeming ease with which computer

output data can be generated compared to the not so gre4t ease

which is required to analyze and interpret such data is part

of the lore 'that is well known in computing centers.
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Other Extensioris

In this section, extensions of the previous techniques to

describe other,genetic phenomena are presented. The procedures

for carrying out these extensions or modifications will be pre-

sented in written form only. Neither a flowchart nor a program

will be presented. Nevertheless, it is hoped that the written

presentation will be of sufficient detail to enable the student

to readily carry out the modifications. There are no essential-
,

ideasjnvolved in the extensions and thus, i. was not

felt necessary to give a "full blown" presentation. Time per-

mitting, the student is urged to actually carry out some, or all,

of these modifications and extensions. In doing so, however,

all of the justifications for the necessary modifications'should

be carefully stated. The program should be run and experimented

with to obtain insight into the problem.

All of the problems considered so far in this chapter were

restricted to a single loci at which only two alleles resided.

For many physical characteristics, it is known that it is nec-

essary to postulate the existence of more than two alleles at a

locus in order to "reasonably" explain the distribution of the

different states' of the characterist4c in the offspring popula-

tion. To illustrate a method of treating more than two alleles

at a single loci, we consider the specific case of three alleles

at a single loci.

Denote the alleles by A, B, and Co and for the purposes of

this discUssion let us suppose that.the physical characteristic

is the height of the offspring. In this hypothetical example, the

A allele is considered the allele for tallness; the B allele, the

allele for average height; and the C allejle is considered the

allele for shortness. We further assume that the mating popula-

tion is infinite in number and that the genotypic descriptions of

the male and the female parents are identical. Since there are

the three alleles at the locus, the possible genotypes in the

7.107



population are AA, AB, AC, BA, 'BB, BC, CA, CB, anci CC. However,

we are further assuming that there is no distinction among the

genotypes and therefore the AB and BA genotypes are identical,

as are the BC and CB genotypes and the AC and CA genotypes.

Thus, the distinct genotypes in the population are AA4 AB, AC,

AM, BC and CC.

The program is developed by mialcing the mating of males and

females randomly chosen from a population initially.specified by

the respective numbers of AA,. AB, AC, BB, BC and CC geno&ypes.

These numbers will be designated in the BASIC programming language'

by Al, A2, A3, 82, B3, and C3 respectively. If N designates

the number of individuals in the parent population, then

N =.Al+A2+A3+82+83+C3,

and the respective genotypic ratios are

Al/N, A2/N,1A3/N, B21N, B3/N, and C3/N.

The random choice of a parent from such a distribution is accomr-

plished by comparing t4e value, RND, obtained from the random

number generator to the fractions:

Al/N, (A1+A2) /N, (Al+A2+A3) /N, (Al+A2+A3+B2) /N, (Al+A2+A3+B2+B3) /N

and 1.0.

These fractions specify a set of points on the interval (0,1)

which bound the intervals whose lengths are equal to the respective

genotypic ratios. Thus, the interval containing RND will specify

the desired parent genotype. This procedure is used for the

selection of the male and female parent alleles. Once the parent

genotype has been determined, the procedure for selecting the allele

o I
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to descend to the zygote is the same as that described in preced-

ing sections. It may be the case that, if for example, a BC

parent genotype were selected, the likelihood of a B allele

desfending is much, greater than the likelihood of a C allele

descending. In this event, when selecting fhe allele for descent,

the vakue 0.5 would not be the value to which the RND should be

compared. Rather the RND should be compared to a value specify-

ing the degree oif preference in selecting a B allele over a C

allele. We remark'in passing that is not easy to experimentally
4obtain or det7mine such a value.

,

The tallying Of the gencitypei of the oc.fspring is accomplished

as in the other programs. If it is desired to grow successive

generations, the offspring are .as umed to be the parents of the

next g eration and the program fied to "grOw" several gene-

rations. A program describing the ating process will be s9mewhat

longer Aan the first program in thi pter; however, no essen-
r

/tially new ideas or procedures are required to develop the program.
..b

Another extension of,interest is the description of the geno-

typic distribution resulting from a population described by two

alleles at each of two distinct loci. Let the pair of alleles at

the first locus be denoted by A and B, and the pair of alleles at

the second locus be denoted by C and D. It is again assumed that

the population is infinite and that there is no distinguishing be-

tween the heterozygotes AB and BA, and the heterozygotes CD and

DC. The possible genotypes in the population are:

AACC, ABCC, BBCC, AACD, ABCD, BBCD, AADD,' ABDD and BBDD.

Thus, we are assuming independent assortment; that is, the pair

of alleles at the locus occupied by the A or B alleles segre-

gate independently of the pair of alleles at the locus occupied

by the C or D alleles. (This restriction could be removed but the

development of a meaningful set of rules governing the selection

of.the alleles is not an easy task).
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The random selection of a genotype from a parent population

consisting of nine different genotypes proceeded in the fraIM8 way

as described in the previous example. The genotypic ratio of

the varents are specified by specifying the initial numbers of

each genotype and then evaluating the corresponding genotypic

ratios. These ratios are then °Played out* along the interval

(0,1). and the correspondence between each interval and a parent

genotype is assigned. A value of RND is selected, and the inter-

val which contains this value designates the parent genotype

Both parent genotypes are selected in the same manner. The

procedure-for determining the genotypes of the offspring is

_the same as used in the other examples. Provision must be made

for tallying a larger number of distinct genotypes. This is

accomplished by the inclusion of a greater number of branching

statements (IF statements) in the program. The program may be

extended to desCribe the genetic evolution over several successive

generations in a lanner very analogous to.that used to so extend

the first program.

Of the work presented,in this chapter, other extensions

are also possible. Some of them are listed below:

(a) Modify each of these programs to mimic the genetic

evolution of small populations.

(b) Modify the programs to LIclude selectivity and surviva-

bility.

(c) Modify the small population program shown in figure Datil

to include the effect of migration.

(d) Modify the small population program shown in figure 23a,b

to include the effect of prescribed mating. The pre-

scription'is to be supplied by the user.

(e) Rewrite one of the programa to permit the distinction

between heterozygotes, that is, between the AB and BA

genotypes, etc.

(f) Develop a program to mimic the mating among parents of

different ages: The specification of the requisite

7
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time,periods, and the proper accounting of the phel-

nomena associated with each time period, is a critical

part of the program. The development of such a pro-

gram is quite a detailed process and should probably

-be a term and/or class project.



Comments on the Chapter Problems .

The problems at the end of thip chapter suggest other com-

puter based experiments to be performed. The problems also

suggest several modifications of the programs. Some of the

program modifications may.requiie considerable time.and''effort

in order to insure that the resultant program is thoroughly

debugged and performs as desired. IrAsome of these problems,

#

it may be easie5Itto develop the entire program from "scratch"

rather than try to modify an existing program. The student

should also.note thai there are several equivalent, in the senie

of producing the same.output, ways to modify the program. In

this regard, it should be pointed out that different but equiva-

lent programs may indeed give different output. This is due to

the finite length arithmetic carried out by the computer. Be-

cause the computer performs arithmetic using only a finite number

of digits, there.is round-off error. Round-off error can affect

equivalent algorithms differently. For pxample, it is possible

to add a column of figures in one order and'to again add the same

column of figures.in another order and yet get different answers.

Such cliscrepancies are due to the lack of precision caused by

using a fixed, but finite, number of digits in the arithmetic.

In many of the problems, it win be of interest to run each pro-

gram several times and to then compare the variability of the

results. In this isay, some feeling can le obtained about the

sarple size and the stability of the program.

6,4
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PROBLEMS

CHAPTER VII

Note: In discussing the results obtained with the previous or

similar programs, it will usually be necessary to make several

runs with identical starting conditions. The averages of the

results of these runs will then provide a norm or standard

against.which other runs may be comparea. Because the averages

so obtained are not exact, and because of the possibility of

great deviation: in a single run, it is not expected that accurate

quantitative comparisons of results cai be made. Thus, in the

problems below which require a discussion of results, it is only

expected that valitative remarks be made. The purpose of the

runs is to provide some insight into the genetic phenomena

assuming the validity of Mendel's description of the transfer-

ence of hereditary characteristics.

1. Make several runs of the program listed in figure 2. Discuss

the results obtained from making:

(a) Several runs with the same value of N and

(b) Several runs with different values of N.

Is your intuition about sample size and the variation of

results confirmed? Discuss.

2. Make several runs using the First Population Genetics Program

listed in figure 5. Discuss the results obtained from the

following variations of the starting conditions:

(a) Hold Al, A2, A3 and G constant, vary C,

(b) Hold Al, A2, A3 and C constint, vary.G, and

(c)- Hold A2, A3, C and G constant, vary Al.

Try other variations of the starting conditions. Discuss

your results.
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3. Using the progmam in figure 5, and properly choosing the

starting conditions, make some runs whose results can be

compared to the Hardy-Weinberg principle. Discuss your

comparisons.

4. Carry out one of the projects suggested in the section

entitled Related Projects.

5. Get the Small Populatio

P

, Population Genetics Program

El/listed in figure 18 u and running on your-computer.

Make some preliminary runs with different sets of input data

to obtain a feel for the program and the results'it produces.

Using your own starting conditions, make some runs and dis-

cuss the results. Try to use the program as an experimental
.4

device for "growing" monogamous mating small populations.

Alter the method of selecting the offspring to permit a

larger average number of offspring per mating. This can

easily be accomplished by properly changing the statements

in lines 500 and 510. Make some runs and compare the results

with those obtained from problem 5.

7. Alter the method of selecting the number of offspring so that
I

exactly 3 offspring are born of each mating. Discuss the

results of some runs with this alteration.

modify the program shown in figure 2 to:
i

(a) Permit the specification of the initial genotypical

distribution of both male and female parents, and

(b) Permit random choice of mating partners.

9. Same as problem 8, only using the program in figure 5.

10. ,Modify the program shown in figure 5 to permit small, but

random, decreasing changes of the BB genotypic ratio. In

this way, the phenomena of mutation can bL7mimiced.- Make

some runs and discuss your results. State specifically

the hypotheses used in your modifications.

; 7
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11. Modify the program in figure 5 to pexmit a small constant

change of the BB genotypic ratio. This change is to be

compensated for by making the appropriate changes in the

AB and AA genotypic ratios. In this way the phenomena of

migration can be mimiced. Make some runs and discuss

your results. State specifically the assumptions used in

your modificiltions.

12. Modify the second population genetics program to permit

the running of the program several times and to permit the

tallying of the frequency with which a given offspring

genotype occurs at a given generation. Run the program

for a given initial distribution of parent genotypes and

then plot the frequencies of occurrence of the genotype at

the specified generation. 4

13. Extend the modificiation suggested in problem 10 above to

include the tallying of the frequency of a given genotype

at several specified generations. Include in this mcidifica-

tion the automatic running of the program several times

using the same starting conditions for each run. The tally-

ing procedure should tally the total genotypes for all of

the runs. The program so extended is somewhat analogous

to the program developed by Schaffer for infinite mating

populations. Run the program. Discuss the results so

obtained. The presentation/and discussion of the results

may require considerable thought. Because of this, and

because the program alterations are considerable', this'

problem should probably be a term project.

14. -.)xtend the program described in problem 9 to include the

ability to:

(a) Run the program several times, and

(D), Tally the male and female genotypic clescriptions

for several specified generation.

Choose an initial genotypic distribution and run the program

several times. Plot tallies given by the program. You

should note a distribution similar to that given by Schaffer.
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15. -Get the multi-generation, selectivity-and survivability

program of figure 20 up'and running on your computer.

(a) Make several runs varying only one survivability

coefficient.

(b) Make several runs varying only one selectivity

.coefficient.

(c) Make up your own set of starting conditions

and make several runs with these conditions.

Discuss the results obtained from each of the' above.

16. Alter the program shown in figure 23 to include the effect

of a slow change in the selectivity coefficient. State

clearly your basis fgr the rule of change that you chose.

Discuss the results of some runs. Note that, if the 'varia-

tion of the selectivity coefficient is small, it is not easy

to compare the results obtained with the modified program

to the results obtained from the program depicted in figure

23. This difficulty is due to the random nature of the

process and hence, of the results_themselves.

17. The same as problem 16 except alter the survivability

coefficient.

18. The same as problem 16 except alter the survivability and/or

selectivity coefficients in such a way that either one or

the other, or both, are sex dependent.
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Introduc--n

As mentioned in the previous chapter the analysis of genetic

phenomena is usually accomplished with the aid of classical proba-

bility theory. In contrast, the method of analysis that we have used,

was based upon the repeated use of the random number generator to

mimic or simUlate the actual flow of the genes from the parents to

their offspring. Th s suggests the possibility of attacking other

probabilistic problems in the natural sciences in a similaemanner.

Our an,1,,sis of genetic phenomena consisted of the following steps:

The establis ent of a mechanism,or experiment, whereW genes

were passec from the parents to the offspring.

The constrhction of a computer based dxperiment (program)

which would mimic the mechanism.

3. The repeated use of the program.to permit the d,ztermination

of the distribution of the-alleles in a large number of matint

In the work described below, the same procedure will be followed.

Thus, we will first attempt to construct or contrive an experiment

(mechanism) which describes the problem and to then repeatedly mimic thc

experiment with the aid of a computeL The relevant quantities will be

tallied and then used to calculate the estimated probabilities. The pr .

sent chapter, which should be considered as introductory, will serve to

illustrate some Computational procedures and to comment upon their effet

tivene The techniques will be presented by considering a variety of

simple examples. FOr each example, an analogous rval world experiment w

be hypothesized and then the experiment will be mimiced on the computer

r.



It is hoped '.at sucn a procedure will also serve toltter relate the

problem to reality.

This chapter contains an appendix which presents * technique for

actually calculating the desired probabilities. The technique is

based upon an analysis of the computer based estimation of the proba-

bility. The presentation in this chapter will consist in a thorough

discussion of several problems taken from probability. This should

give the student a feeling for what can be accomplished. 'The technique

is intuitive andlfor this reasoniquite easy to follow.

A Very Simple Problem

The student is familiar with the fact that the probability of throw-

ing (An ace in one toss of a die is one-sixth. Most modern probability

theory texts will arrive at this result by stating that the probability
A

of throwing a die on a single toss of a die is the ratio of the number of

possible outcomes which are an ace to the total number of possible out-
,.

comes. Thus, for a single throw of the die, since the, number of possible

outcomes which are an ace is one and the total number of possible out-

comes is ,dx, the probability is one-sixth. It is assumed that all pos-

sible u,,.,:omes are equally likely and in the subsequent work this assump-

?

tion will be made unless otherwise stated. The probability, as calculated

'in the above manner, uses knowledge pertaining only to the single throw of

the die. Nevertheless, the phrase, "the probability of throwing an ace on

a single thrbw of a die is one-sixth" can usefully be interpreted to mean

that if the die is thrown a large number, N of times and a tally, T,

is kept of the number of aces thrown, the ratio T/N is very close to

one-sixth. This interpretation arises from the intuitive notion that by

throwing the die enough times, the ratio T/N can be made arbitrarily

close to one-sixth. This suggests the simulating of a throw of the die

with the aid of a random number generator, which in the subsequent ets-

3 1-2



cussion w111 be denoted by RNG. Repeated throws require repeated use

of the RNG. The computational procedure is now quite evident and simply

consists of using the RNG "to throw the die" tallying whether or not an

ace is thrown, and repeating the process N times. The determination

of whether or not an ace has been thrown is' based upon the following

two facts: (1) it is known that there are six possible outcomes on

the throw of a fair die and (2) the RNG produces a random number which

is uniformly distributed in the unit interval; that is any number in

the interval (0,1) has equal probability of being selected. This

suggests that by subdividing the unit interval into siic subintervals of

equal length and "assigning" the first interval to the throw of an ace,

4

it is possible to mimic the actual throw of an ace. Thus, if the RNG

produces a number, R such that R<l/6, we will say an ace has been

thrown,-and if R>l/6, then we will say that some other number, not an

dye, has been thrown. After N repetitions, the tallied number of aces

divided by N is the probability estimate. The student will recognize

that this procedure is entirely analogous to that used to esrimate the

genotypical description of the offspring.

Your author deliberately uses the word estimate rather than calcula

since the result is indeed an estimation of the numerical value of the

probability as calculated in the classical manner. The procedure, which

is called the frequency method, relies on the intuitive idea that if the

number N of trials is large enough the difference between the estimat
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value for the probability and the value for the probability as obtained

in the more conventional manner shaild be verv small. Thla Weed a tte nodern high-

speed digital computer is such that the mimicing of 10,000 or 100,000

trial's of simple
experim)nts can be done in seconds and thus the mimicing 0

procedure is feasible for some probability problems. However, there are

a great many "seemingly simple pro abil,y problems", whose answers cannot

feasibly be obtained in this man er because the computational costIf

. would be too great. Nevertheless, there are a number of interesting

and non-trivial problems whose required probabilfties can be effectively

estimated in this manner. This number is sufficiently large, and the

problems sufficiently diverse, so that a discussion of some of these

problems should be of help and interest.to the student. In-addition,

there is a wide range of problems which can only be analyzed in this

manner and many of them are of sufficient importance so that the possi-

ble large computational cost is accommodated. These procedures are

called Monte Carlo methods. They are even useful in obtaining estimates

to answers to problems which are not probabilistic such as determiniqg

the aro )f an irregular shape, calculating the heat distribution in a

bar whose ends are maintained at different fixed temperatures, tc.

Finally, this method of attacking probabilistic problems provides the

student a further opportunity in model building. In this way the

relation between the actual and the theoretical is more clearly

demonstrated.

A flowchart and a computer program for estimating the probability

of throwing an ace in one throw of a die is given in figure 8.1. The

program input is N, the number of times it is desired to perform the

experiment of throwing the die,and the output is the estimated probabil-

ity. By varying the magnituie of N the accuracy of the estimated
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Fig. 8.1

1 REM ESTIMATES PROB. OF AN ACE ON SINGLE THROW OF DIE

5 RANDOMIZE
10 PRINT "TYPE N, THE NO. OF THROWS"

20 INPUT N
30 T=0
40 FOR I=1 TO N
50 R=RND
60 IF 14.4.0.1666.667 GOTO 80

70 GOTO 90
80 T=T+1
90 NEXT I

100 P=T/N
110 PRINT "PROB. OF ACE ON A SINGLE DIE THROW IS"

115 PRINT
120 PRINT P
130 END



probability can be determined. The determination of the throw of an

ace is given in line 60 of the program. Because the nuMber 0.166667

corresponds to the fraction 1/6, the perceptive student may well ask,

Et

'haven't you used the answer to find the answer?". 'In fact, it appears

that the exact answer has been used to find an approximate answer!

The explanation of this seeming enigma is as follows. The usual tech-

?

(nique for mimicing the throw of a die on a computer is to write

LET R=INT(6*RND+1)
(a)

Now the operation 6*RND+1 produces a random number between 1 and

7 and taking the integer part of this number yields an integer between

1 and 6. We associate a 1 with an ace on the throw of the die and

thereby mimic the throw of an ace. By using the operation of

'integer part' we are in effect subdividing the interval (1,7) into

6 equal parts, each of unit lengthfand by associating the interval

(1,2) with the throw of an ace we,are determining when an ace is thrown.

Thus, we are associating 1/6 of the interval (1,7) with an ace.

Therefore, the process defined by equation (a) above actually expands

the unit interval, partitions it into 6 equal parts and then assign7,

one cif these parts a desired interpretation. Now the same end can be

accomplished by directly subdividing the unit interval into 6 subinter-

val parts and then asSociating the first of,these subintervals,(0,1/6),

with the throw oi an ace. This procedure requires less computational

effort and is muCh easier to implement. "Hence we are using it.

It is certainly true that we have ended up building the answer

into our problem, albeit unwittingly. However, this turns out to be

a blessing rather than a curse since it permits an easy recognition

of our procedure with the Approach used in classical probability theory.
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In fact, if we associate the length of the unit interval with a larg

number, Np of throws we see that the interval (0,1/6) corresponds

to N/6 throws and hence the ratio (N/6)/N=116 is the desired

probability. This interpretation is very fruitful and we shall pursue

it more in the first appendix to this chapter.

In order that the student may better appreciate the above dis-

cussion we donsider the random selection of the parental genotypes in

the gpnetics problem in a similar manner. In the simple version of

that problem the number of AA, AB and BB parent genotypes was

given and it was required to randomly select a parent from such a pre-

scribed genotypical distribution. We will illustrate the procedure

for selecting a parent genotype by considering a specific example.

Assume that there are 200 AA, 500 AB and 300 BB parent genotype.

respectively. Since there is a total of 1,000 parents, it is necesSa2

0
to construct a process for selecting a random.nUmber between 1 and

1,000. The instruction

LET R=INT(1000*RND+1)

accomplishes this. This instruction expands the unit interval to an

interval 1000 units in length and then subdivides this intemal into 1000

equal intervals of unit length. By associating values of R from

1 t 200. with AA parent genotypes, values pf R from 201 to 700

with AB parent genotypes and values of R from 701 to 1000 with

BB genotypes we have constructed a process which randomly selects an

AA AB or BB parent genotype. The procedure of comparing a random
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number in the unit interval with the respective fractions 0.2, 0.7

and 1.0 accomplishes the same objective and is easier to implement

and more economical to use. In effect we are saying chat 0.2-of the

parents are AA genotypes, 0.5 of the parents are AB genotypes

and 0.3 of the parent, are BB genotypes. This seems a more natural

description.

Incur die problem, as the number of throws increases, it will be

noted that the estimated probability does indeea approach 1/6.

However, the speed of this approach is very slow, that is about 100 times

as many trials are needed to get a single decimal digit more of accuracy

in the estimated probability. This result is in accordance with the well

krown fact (at least around catrouter colixws) thiMt Monte Carlapo ,ar MG based procedums

require a 'very large number of trials to obtain reasonable accuracy. It can be six=

that the accuracy variesas the squarerootof the mther of trials and thus

an increase in accuracy of two decimal digits, that is an increase in

accuracy of 100, will require (100)
2 or 10,000 times as many trials.

Despite this very real difficulty in the obtaining of accurate answers,

the mett,od is quite useful for obtaining reasonable or crude estimates.

The student should run the simple dice program for different values of

N. He will note that for small values of N, like 12 or so, the results

varr dramatically. This is in accord with the wellanown observation

that much more frequently than one would intuitively expect,.it is the

case that the number oCaces recorded in 12 throws of a die is not 2.

A repetition of the experiment of throwing he die 100 times indicates

less relative variation in the estimated probabilities and repeating the

e,--periment with 10,000 throws of the die reveals approximately one

tenth tpe previous relative variation. Such comllarisons also illustrate

the difficulty in obtaining accurate assessments; from small samples.
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It is natural to ask, "In view of this uncertainty about the

answer, how does one know.when a prescribed degree of accuracy has

beWttained?" The answer is "One cannot actually know for certain

if a prescribed degree of accuracy has been attained". Theory tells

us that as -the number of experiments increases it becomes more and

more certain that the ratio of the tallied successful experiments to

the total number of experiments approaches the true probability. Your

author deliberately chose the word approaches rather than the word

converges because the latter word has a very definite meaning in

mathematics. In mathematics, if a sequence of numbers is said to con-

verge to a number, it is understood that by "going out far enciugh in .

the-sequence" it is definitely possible to find a term in the sequence

of numbers, such that this term and all others succeeding or beyond it

in the sequence, are arbitrarily close to th? number. In contrast,

the sequence of probability estimates generated by repeating the ex-
.

periment for successively larger numbers of tri cannot be said

to converge to the probability in the sense tha, ,t is possible to

firui some finite value for N such that for all numbers of experiments

greater than N the value of the probability as calculated would be

arbitrarily close to the true isrobability. The key word here is the

word 'all'. What i5 true, and can be shown, is that for a large

enough value of N, the probability as estimated fot larger and larger

numbers of experiments, would have less and less of a chance of dif-

o
fering from the true probability by an arbitrarily small aMount. In

other words, the certainty of getting arbitfarily close to the true

probability increases as the number of experiments increases. A

rigorous,discussion of this topic is presented in texts on mathematica

probability, see for example, Uspensky.
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In light of-the previous discussion, the accuracy of the results

is subject to question. Nevertheless, the "probability" of the methods

producing very incorrect estimates is very very small providing that

the number of experiments is large enough. We nbw present a heuristiä

discussion of how to probably obtain a prescribed degree of accuracy

using the mimicing technique. Denote the number of repetitions of N

trials by M where M may be 3 or 4. A crude method for estimating the

accuracy of the result consists of M repetitions of N trials and noting

the degree of agreement of the left most figures of the probability

estimates obtained from each repetition. If the first 3 figures, say,

are the same, then we use these first 3 ficiures as our probability

estimate. An obvious improvement on this Method is to make more

effective use of the data obtained in the M repetitions of the N

trials. By adding the total number of favorable experiments in all M

repetitions and then dividing this sum by the total number of trials,

M*N, it is possible to obtain a probability estimate corresponding to

(M-1)*N more mimiced experiments with very little extra effort.

Another measure of the accuracy can be obtained by averaging the

.probal,_.ity estimates calculated from each of the M repetitions and

then comparing this result to the others. If the probability estimates

obtained from each of the M repetitions are considerably different,
0

4

one from another, it may be necessary to increase the number of trials

by a factor of 10 or 100 (hopefully not more unless computational time

is of no concern) and to then rerun the programs. "Proper" comparison

of the results so obtained with the earlier results should then enable

a reasbnable estimate of the probability to at least a few significant

figures. (Note all of the hedge words.)
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A Second Simele Problem

A fatmer has a herd of 20 ranch cows which simultaneously become

infected with hoof and mouth disease and in four weeks 15 of them hips

recovered while the remaining 5 have not yet reoovered. Five animals are selected at

random from the entire herd and it is desired to know the probability that:

(a) None of the 5 have recovered in four weeks.

()) Exactly 3 of the 5 have recovered in four weeks.

(0, All 5 have recovered in four weeks.

The first"task in the procedure for estimating the probabilities

is to construct a "real world" experiment which; if repeated often

enough and the appropriate results tallied, would enable the calcula-

tion of the desired probability estimates. In this example a realiza-

tion of what is required in order to estimate the probabilities will

sucliest the experiment to be performed. The frequency method suggests

that we imagine that there exists a large number N, of such herds

and that from each of these herds 5 animals are selected at random.

After each selection of 5 animals, the number of recovered animals

is tallied and running totals of the results are.kept. An estimate

of the probability that all 5 have recovered is given by the ratio

of the number of selections resulting in all 5 animals having recovere

divided by N. Similar ratios give the required probability estimates

for parts (b) and (c). An equally appropriate hypothetical experiment

consists in randomly selecting five cows, tallying the health status

of each cow, then replacing the five cows. The cows are allowed to

mill and mix together and five oolasareagminselcted at random and the

health status is againtallied. The process is ,i-epeated N times.

0,"
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The development of the computer program requires a method for

mimicing the selection of 5 cows at random from a herd of 20 cows.

This will be accomplished by a slight modification of the technique

used to mimic the random selection of a parental genotype from a

prescribed distribution of parental genotypes. The mimicing of the

random selection of the first cow is based upon the fact that the

proportion of recovered cows is 15/20. Recalling that the RNG

produces a random number, R, between 0 and 1, we generate an R and

compare it to the proportion 15/20. If R<15/20 we say that we have

selected a cow which recovered; if R>15/20 we say the selected cow

has not recovered. The selection of the second cow is based upon the

fact that after the selection of the first cow, the herd consists of

only 19 animals, and if it is supposed that the first cow selected

has recovered, the remaining proportion of recovered animals would

then be 14/19. The mimicing of the selection of a second cow is

accomplished by comparing a second random number with the ratio 14/19

to determine the state of health of the animal. In a similar manner,

if a second recovered cow has been 'chosen, the remaining proportion of

recoyered cows is 13/18 and a third R is chcisen and compared to the

ratio 13/18 to determine whether or not the third selected cow has

recovered. On the other hand, if the initial R had twen such that

R>15/20, we would have said that a sick cow had been selected. Since

15/19 of the remaining herd has recovered, the next value of R is

compared to 15/19 to determine whether or not a recovered cow has

been selected. If a recovered cow is then selected, a third value

of R is compared to the fraction 14/18 to determine the status

of the health of the third cow drawn. The procedure should now be-

p



clear and the process is repeated two more times, thus mimicing the

choosing of 15 cows at random. Of course, for the calculation of

part (a) if ever an unhealthy cow is selected there is no need to

continue mimiting the experiment since only those experiments re-

sulting in the selection of 5 recovered cows are tO be

tallied along with the total number of experiments. The implication

of this fact should be included in the program to minimize computer

time. In the program shown below this was not done.

The selection procedure has been discussed in such great detail

to emphasize the closeness of the computer based experiment to the

actual experiment. We again repeat, the procedure is to mimic, with

the computer, the way in which the probabilities would-actually be

estimated if they were to be estimated experimentally. In a real

sense we are constructing computer based experiments. It is usually

the case that the most difficult part of the problem is the imagining
a.

of the hypothetical 'real world' experiment which, if actually carried

out, would yield the data necessary to estimate the desired probabili-

ties. In this regard, as an aid in the imagining of the experiment, it

may be of assistance to disregard the cost or practicality of the

proposed experiment; just assume that whatever the procedure is;

it could be carried out regardless of cost, size, manpower, etc.

The sole criteria to be met by the hypothetical experiment is that if

it were carried out it would yield data, which if tallied, could be

used to form the ratios which are to be the estimates of the desired

probabilities. The construction of the computer program which mimics

the experiment is usually quite evident once the 'real world' experi-

ment has been carefully delineated.

A computer program which mimics the experiment is shown in ficTum 9.2

and the Irocedure for selecting the 5 cows at random is accomplished

in instructions 120-170. In particular, instruction 140 is the_

mechanism whereby the proportions are altered each time a recowred

cow is chosen. The initial proportion of recovered cows is specified

8.13
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10 REM A SECOND S.I7LE PROBLEM

20 RANDOWZE
30 PRINT "TYPE N, THE NUMBER OF EXPERIMENTS

40 INPUT N
70 LET S=0
-80 LET U=15
90 LIET V=21
f.00 FOR Isl. TO N
/10 LET J=0
120 FOR K=1 TO 5
130 LET R=RNDip>
140 IF R<=<1.1.--0060 TO 160
150 GO TO 170
160 LET J=J+1
170 NEXT K
180 IF J=560 TO 200
190 GO TO 210
200 LET S=S+1
2/0 NEXT I
220 LET P=S/N
230 PRINT "THE PROBABILITY IS"O)

240 END

READY

. 8.2
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in instructions 80 and 90. By altering these data, other proportioi

may be examined. Line 160 in the program tallies the number of re-

covered cows out of the that are selected and line 200 tallies

the number of times 5 recovered cows are selected. The probability .

ralcul.ated in line 220. By changing instruction 180 to read

180 IF J=3 GOTO 200

part (b) can be answered and by changing the nuiber 3 in the above

line to the mimber 0, part (c) can be answered.

A Third_Problem

A geneticist has a large population of experimental white mice.

50 percent of the mice have short tails, 25 percent have discolored

eyes and 40 percent of the mice with discolored eyes also have short

tails.

(a) What is the probabllity that a mouse selected at randot

chas discolored eyes and also has a short tail?

(b ) What is the probability that a muse chosen at randan has

neither of the afflictions?

A. 'real world" expt-riment would consist in choosing a mouse

at.,random and then recording whether it had a short tail, discolored

yes or both. The experiment would be repeated a large number of

times and a tally nade of the number of mice that had the respective

-afflictions. In order to computationally mimic the random,drawing.of

a large number of mice and to then determine the respective afflictior

of each of the mice so selected, it is first necessary that the pro-

portions of-mice having the respective afflictions be designated propi

on the interval (0,1). The designation of the proportion of mice ha

short tails is accomplished-by letting the interval (0,015) corresp

to short tailed mice.. Since 40 percent of the mice'with discolored
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,wooi

eyes also have short tails, we see that 40 percent of 25 percent,

or 10 percent, of the total mice population have both afflictions.

Thus, the interval (0.4,0.5) corresponds to the proportion of the

mice population having both afflictions and the interval (0.5,0.65)

corresponds to the proportion of mice having only a discoloration of

the eye. A pictorial representation of the distribution of the bropor-

tions of the afflictions'in the unit interval is

0 0.4 0.5 0.65 1

0

where:

A B

i) segment OB designates the short tail mice,

ii) segment AC deqignates the discolored eye mice,

iii) segment AB designates the mice with both afflictions, and

iv) segment CD designates the unafflicted mice.

These segments are the proportions of the mice population having

the respective afflictions. The selection of a mouse at random and the

_-:TrIL.1,ion of its affl :-tion is accomplished by choosing a random -

nur".)er md then noting in which interval the randmi nuftetr falls. Becatme the

populaticn is "large" these proportions will notchange regardless of

the number of mice selected from the population. The construction of

the program for part (a) is now straightforward and is represented

in the flowchart, figure 8.3.



444.1/4

YES

SELECT A MOUS

TALLYIONE
SINCE HAS BOTH

FFL OHS

YES NO

1ALGULATE
RINT PROB4r11

Fig. 8:3

Flowchart for Third Problem
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The flowchart of the program to mimic the experiment to obtain the

tallies necessary to answer part (b) is obtained by replacing the first

test by

Those students who have had the rudiments of probability theory

will recall that the answers are readily obtainable from the pictorial

representation, on the unit interval, of the respective afflicted

proportions of the mouse population. Thus, it may seem that by attacking

the problem in this manner, we have used a megaton to only partially

shoot down a fly. However, the constructioa of such computer based

experiments is an art. The capability to readily construct such pro-
_

grams is very helpful when these programs are to be integral parts of

larger programs. Thus, your author feels that the more examples you

have to look at, the easier it is for you to acquire the art.

A Fourth '17ob1em

A biologist has two cags containing 500 and 1000 flies

respectively. Because -of unsanitary'conditions ±n the laboratory 1/5

of the flies in the first cage become sick and 1/4 of the flies in

the second cage become sick.

(a) What is the probability that a fly chosen at random comes

from the second box and is ill?

(b ) If 30 percent of the flies in the second cage have a

wing mutation what is the probability that a randomly

seledted fly is not ill but does have the wing mutation?

,
0 8
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An experiment whose repetition would produce data permitting the

estimation of the required probabilities could consist in randomly

selecting a fly from either cage, noting its health status and the cage it came frou

and then returning the fly to its original cage. The estimatiolL of the answer
1*

to part (a) will be obtained by mimicing the random selection Of a

fly, tallying whether it came from the second cage and was ill, and then

repeating this procedure a large number of times. The determination of

the cage from which the fly was selected is made by compaiing a random

number RI, to the ratio 500/1500 or 1/3. In discussing this

problem, and others to follow, R1, R2, R3, etc. will denote random

numbers in the interval (3,1) as suaxmsivay =duped kw the Rm. If RI >

the fly is said to come from the second cage. Given thit the fly came

from the second cage, a second random number R2, is chosen and com-

pared to the ratio 1/4 and if R2<1/4, 'the fly is said to be ill.

The development of the program should now be ,ezident.

The answer to part (b) requires the determination of whether or

not the randomly selected fly came from the second cage, had a wing

mutation and was not ill. To accomplish this we select R3 and, as

above, if R3>1/3 the fly is said to come from thd second cage.,.By

comparing R4 to 3/101 the determination of whether or not the fly

has a wing mutation can be made and.by comparing R5 to the ratio 1/4

the health of the fly can be ascertalned. Thus, if the three inequallt:

R3>1/3, R4<3/10 and R5>1/4 are all simultaneously satisfied,the f:

.will be said to have come from the second cage, have a wing mutation an(

be in goo0 health.
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i REM PROBLEM NO. 4 OF CHAPTER VIII
28 PRINT "TYPE N. THE NO. OF DESIRED EXPERIMENTS"

30 INPUT N
90 RANDOMIZE
180 LET S=0
110 FOR I=1 TO N
120 LET R=RND
130 IF R>= 33333300 TO 150
1.40-00 TO 210
150 LET R=RND
160 IF R(=.3G0 TO 180
170 GO TO 210
189 LET R=RND
190 IF R(=.2500 TO 210
208 LET 5=5+1
2/0 NEXT I
229 LET P=S/N
225 PRINT
230 PRINT "THE ESTIMATED PROBABILITY IS"

249 PRINT P
250 END

'READY

A
Fig. 8.4

Flowchart for Problem 8.4b
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The. computer program for part (b) is listed in figure 8.4 and

the determination of which cage the fly is selected from is accomplished

in lines 120 and 130. Lines 150 and 160 determine whether or

not the fly has a wing mutation and lines 180 mx1190detmmdne the health of

the fly. The tallying is done in line 200.

A Fifth Problem

Three large cities C10 C2/ and C3 experience a simultaneous

epidemic of both influenza and measles. In city Cl, the proportion

of people having influenza is 1/8 and the proportion having measles

is 1/16 while in city C2 the respective proportions are 1/10

and 3/10, and finally in city. C3 the respective proportions are

1/25 and 1/5. It is assumed that all individuals are equally likely

to have either disease or both. The populations of the cities are such

that city Cl is twice as large as C2 and three times as large as C3

(a) What is the probability that a person selected at random frc

one of the three cities has only measles?

(b) What is the probability that 'a person selected at random Irc

one of the three cities thas both influenza and measles?

(c) A person is selected at random from each city. What is the

probability that exactly one of these people 6s only one o

the illnesses?

(d) If a person is selected at random from one of the three

cities, and ha$ both diseases, what is the probability that

the selected individual came from city C2?

8.21



For parts (a), (b) and (d) the experiment will consist in randomly selecting

an individual from one of the three cities, and then based upon the epidemic data

of that city, determining the state of the health of the chosen

individual. In order to use the RNG to select an individual from one

of the three cities it is first necessary to properly subdivide the

unit interval in accordance with the relative proportions of the

populations of the thr,2e cities. This may be accomplished by letting

the entire unit interval represent the total population of the three

cities and then determining that part of the interval each city should

occupy. A little thought suggests that the required subdivision is

obtained by designating the first 6/11 of the unit interval as repre-

senting city Cl, the second 3/11 of the interval as representing city

C2 and the last 2/11 as representing city C3. Thus, the choice of

which city the randomly chosen individual comes from is given by

the three possibilities:

if Rl<6/11 the individual is from city Cl,

S 0 / if 6/11,R1,9 '1 the individual comes from city C2, and .

(c) if 9/11<R1<1.0 the individual comes from city C3.

The development of the computer program to answer part (a) is

explained below and in the flowcharts shown in figure 8.5a, 8.5b

and 8.5c on pages 6.26 8.27, and 8.28.



Instruction 120 of figure 8.5a determines if thei randomly

selected individual comes from city Cl and if he does, linc 140

ascertains whether or not he has influenza. Assuming that he does hay

influenza, a marker, C is set equal to one (line 170) to denote

this, and the number of individuals with influenza is increased by one

(line 180). If the individual does not have influenza the marker is

set equal to zero. The marker proyides a method for noting whether

or not an individlIal has inflUenza and this capability is used in

instruction 230 to separate those individuals having only measles

from those that have both measles and influenza. Instruction 210

decides whether or not the individual has measles. CounLors have been

inserted at the proper places to provide for the counting ok the number

of individuals having the various diseases. Counters Fl and

M1 count the number of individuals from city Cl who have only

influenza or only measlesiespectively and counter Ell counts the

number of individuals having both diseases. Similarly in figures 8.5b

and 8.5c counters F2, m2, 82 and F3, M3, 83 count the

respective number of such individuals in cities C2 and C3. Thti--

estimated probability for part (b) is obtained by replacing line 810

by

810 LET P=(B14412+83)/N

and rewriting line 820 as

820 PRINT "THE XOBABILITY OF HAVING BOTH MEASLES AND INFLUENZA IS"
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Paxt M requires the,mimicing of the experiment which consists of

the random selection of 3 individuals, one fran each city, and the determina-

tion of the health status of ex.h. This experiment is repeated a large =ter

of times and all occurrences in which exactly one of the three selected

individuals has only onedeisease are tallied. The ratio of the number

so tallied with the number of experiments proyeides an estimate of the

required probability.

The previous program needs only slight modifications to obtain

a program which will permit an estimation of the answer to part (c.1)

Because an individual is selected from each city, the determination of

which city tne individual originates from can be omitted angtherefore,

lines 110, 120, 320 and 330 may be deleted. The determination of the

health sthtus of a ramkutly select.ed individual fran a given city is aaximplifamd by

comparing R, a random number produced by the RNG, to the appropriate

proportism of sick individuals in the given city. This selection 'mist be repeated

three .4 each tine with o (iiffin:ent randan number. nar each individual the health

statas is rtxmrded and a determination is made of wnetner or not exactly one

of the three individuals has only one of the diseases. If this is

so, a tally is recordecis: The experiment is then repeated N times

regardless of whether or not exactly one of the individuals has only

one of the diseases. The quotient of the tally and N yields the

desired probability estimate. To obtain an answer to part (d) it

is first necessary to understand what is called for. In terms of

our frequency interpretation of probability we see that this question

8.24



is equivalent to asking what proportion of all the individtials having

both diseases is the number of C2 individuals having both diseases.

The modification of the computer program to obtain'an estimate

to the probability asked for in part (d) is quite simple. This is

because provision has already.been made for tallying the number of

individuals in each city having both diseases (lines 260, 460 and

660). Since the probability is estimated by the ratio of the nuMber

city C2 individuals having, both diseases to the total timber of in-

dividuals having both diseases it is only necessary to alter line 81C

to read:

810 LET P=B2/(B1+B2+B3)

and to rewrite line 820 as:

820 PRINT "PROB. THAT AN INDIVIDUAL HAVING B0"11 DISEASES IS FROM C
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INPUT N I

F1=F1+,

çJ

120 Is the individual
from city.C1?

r
140 Does the iRdividual

have influenza?

210 Doe:4 the individual
have meaL;les?

Flowchart for Problem #5

Fig. 8.5a .



R4=RND

380

F2=F24-1.

Does the
individual
have both? 430

400

320 rs the individ%11
from city C2?

340 Does the individual
have influenza?

r.

410 , 410 Does the individual
NO I have measles?

800 800

800

Flowchart for Problem #5 (continued)
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570

C=1

.580

P3=F3+1

530

R6=RND
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NOYES

550
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individual
hay,- both?
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610 Does the individual
hEi.ve measles?
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)4(..hart for Prob1om.#5 (continued)
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RBP2O on,

1. REM THIS 1 THE FIFTH PRDBLEM
2 REM

REM
10 PRINT "TYPE N. THE NO. OF TIMES WISH TO DO EXPERIMENT"
35 INPUT N
40 PRINT
44 REM
45 REM LINES 50-72 INITIALZE THE COUNTERS
46 REM
50 LET F1=0
51 LET F2=0
5'2 LET F3=0
60 LET B1=0
61 LET 82=0
62 LET B3=0
70 LET M1=0
71 LET M2=0
72 LET M3=0
90 RANDOMIZE
100 FOR 1=1 TO,N
110 LET R1=RND
120 IF R1<=.545454G0 TO 130
122-GO TC 320
124 REM *_ . 0-
125 REM INSTRS. 130 TO 260 ESTABLISH HEALTH OF IND. FROM FIRST CITY
126 REM
130 LET R2=RND
140 IF R2. 12560 TO 170
150 LET C=0
160 GO TO 200
170.LET C=1
180
200
210
220
230

LET
LET
IF
GO
IF

F1=F1.+1.
R3=RND

R3<=.0625.00 TO 230
TO BOO
C=100 TO 260

240 LET M1=Mi+1
258 GO TO BOO
260 LET 81=8141
270 GO TO BOO
320 IF R1(=.81818160 TO 330
322 GO TO 530
324 REM
225 REM INSTRS. 330 TO 460 ESTABLISH HEALTH OF IND. FROM SECOND CITY
326 REM

.330 LET R4=RND
340 IF R4<=.1G0 TO 2-70
250 LET C=0
360 GO TO 400
270 LET C=1

Fifth Problem

, 3)9
8.29



380
400
410
420
430
440
450
460
470

LET
LET
IF
GO
IF
LET
GO
LET
GO

F2=F2+1
R5=RND

P5<=.300 TO
TO SOO
0=160 TO 460
M2=M2+1
TO SOO
82=82+1
TO SOO

430

519 REM
520 REM INSTRS. 530 TO 660 ESTABLISH HEALTH OF IND. FROM THIRD CITY

521 REM
530 LET R6=RND
540 IF R6(=.0400 TO 570
550 LET C=0
560 GO TO 600
570 LET C=1
580 LET F3=F3+1
600 LET R7=RND
610 IF R7(=.260 TO 630
620 GO TO SOO
630 IF C=1.G0 TO 66.

Gip LET M3=M3+1
650 GO TO 800
660 LET 83=83+1
670, GO TO 800 1

800. NEXT I
810 LET P=(M1+M2+M3)/N
820 PRINT "THE PROB. OF AN IND. HAVING ONLY MEASLES IS"
830 PRINT
840 PRINT P
850 END

Fifth Problem (continued)

4
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A SixtivProblem

In three large southern pine fat-was, soma the trees are.infected with

-a stem disease. One-third of the trees in the first forest are in-;,

fectéd, one-fourth of the trees in the second and one-fifth of the

trees in the third forest are infected. A tree is selected at random

from each forest:

(al What is the probability that exactly one tree has the diseast

(D) If exactly.one of the trees selected has the infection, what

is the probability that the infected tree came _ft= the secor

forest?

The experiment for part -(a) is readily imagined. It consists,it

merely drowing a tree from each forest and tallying one marker if only

one of the selected trees is infected. -.The trees are then "replaced"

and the experiment is repeated. The computer based mimicing of the

experiMent consists in comparing three. different random numbers to

1/3, 1/4 and 1/5 respectively; and, whenever only one qf the R's'

is less than its respective ratio, a number is tallied.

The obtaining of an answer to part (b) is not so straightforwar

since 4 not readily #:-vident what data should be tallied. If

probabij.ty is thpught of as a proportion or a ratio,.it is recognized

that the que'stion in part (b) is equivalent to asking what proportia

of the total number of selections resulting in exactly one Infected'

tree is the number of selections restating n exactly one infected tre

coming from the second forest? The experiment ia thus the same experi

ment used to answer part (a), only an additional record iskeptdesignatingt

forest produced the infected tree. As the experiment is repeated,

tallies are kept of the number of times the infected tree'comes from

each forest whenever only one,infected tree is recorded among all thre



of the trees selected. The prop6rtion of the number of tallies of

exactly one infected tree coming from the second forest to the total

number of experiments in which exactly one infected tree is selected

from all three forests is the desired probability. The computer

program to answer part (a) would only need to be slightfy altered

.to count the number of times that the selected tree comes from a

given forest and is also the only infected tree selected from the three.

We will not develop the computer program; that task will be left

to the student as a pr:oblem. However, it is necessary to point out

that the procedure described above for estimating the probability

could be very expensive of computing time. Ais is because the pro-

cedure depends upon generating large sets of data from data which is

itself a subset of generated data. In this example t is necessary

to genentte a set of data consisting of. a large number of experiments in which

only one tree was infected of the three randomly selected trees.

This-set must be large enough so that it contains a reasonable repre-

4

sentation of infectEd trees drawn fromEch forest. Since the procedure bar

determining an experiment in which eXactly one tree is infected may

produce many experiments in which no trees are infected or-in which

2 or 3 trees are infeL'....1, it is seen that the building up of a,

large nunther of desired experiments could require considerable computing

time. For example, suppose that only one-thousndth. of the trees in

each forest were infected. Then, given that exactly one of the chosen

trees was infected, it is evident that the probability that the infected

tree came from the second forest is 1/3. However, the generation of a

large number of trials in which exactly one tree of the three randomly

selected trees was infected would require many many selections of groups

of three trees. The excessive number of selections would be required

because nearly all of the triple of trials would result in trials
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in which no tree was infected. 'This type of computational difficulty

is frequently encountered when using a computer to estimate probabilities

by mimicing an experiment. Frequently, alternative but valid, experi-

ments can be constructed which Can be more economically mimiced en the

computer. However, the construction of such experiments may require

considerable ingenuity.

As an example of a problem for which experiments can be imagined

and which require different amounts of computational effort we consider

the problem of determining the probability of a three-nothing split in'

trump in a bridge hand, given that the declarers have ten trump between

them. For thos'e who are unfamiliar with bridge we state the problem in

more famili,Ir terms. All of the cards of a 52-card deck are randGmly

dealt out to form lour distinct hands of 13 cards each. It is given

tt Lwo of the hands contain a total of 10 cards in one suit. WLat

the probability that the remaining three cards of the suit all lie

In only one of the two remaining hands?

At first sight it would seem that the experiment would be to

deal out four hands and then to note if there was a total of 10 cards

in one suit in two of the hands. If this was found to be the casE.,

then this fact would be recorded and it would further be recorded whethei

or not the three remaining cards of that suit were all in one of the oth(

two hands. The drawback to such a procedure is obvious; it might be

necessary to deal several sets of four hands before a set of four hands

was dealt which had the required 10 cards of the single suit in two

hands. Furthermore, the mimicing of the dealing of 52 cards requires

at least 51 uses of the random number generator together with a large

number of shift operations. Such a procedure would require
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a very large nuMber of computer based mimiced deals before a sufficient

number of deals with 10-0 suit splits occurred. Thus, it seems ad-

visable to attempt to construct another experiment which would require

less computational effort to mimic. A little (or maybe coniider-

ableL thought will show that an equivalent experiment is to de!sl 26

cards to 2 hands with the restriction that there are only 3 cards of one

suit, say spades, among the 26 cards. There may be 13 hearts and 9

clubs and 1 diamond or same Other distribution of cards in the remaining three

suits; the important point is that there areinly 3 spades among the

26 cards. Now the computer mimicing of this deal requires far less

computer effort. The RNG is used-to produce an R,, the R is compared

Pc) 3/26. If R<3/26, we assign a spade to the firSt hand, and proceed

to "deal the next card" to the second hand. If a spade was dealt to

the first hand, the proportion of spades in the remaining 25 cards is

now 2/25 and the next R must be compared to 2/25 to determine if

a spade is to be dealt to the second hand. The procedure is now

evident. To avoid unnecessary dealing of cards a test should be made

to ascertain after the third card is dealt, if 3 spades have yet been

dealt. If they have, the dual should be terminated and a new-deal

begun. A further shortening of the process can be attained by noting

if there exists one spade in both hands. If this is the case, then

there cannot possibly be'three spades dealt to one hand so the deal

should again be stopped and a new deal begun.

Thus it is seen that with some thought it is possible to con-

struct experiments whose mimicing requires considerably less computer

power than would other experiments. In this sense our computer esti-

mation of probabilities is somewhat of an art, like programming. We

have dwelt on this seemingly simple problem at some length just to
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illustrate some of the consideration necessary to effectively carry

out a computer based mimicing.

We again remind the student that our purpose is to illustrate

the great potential of the computer as an aid in quantitative analysis.

The very act of constructing the experiment to be mimiced frequently

contributes to a deeper understanding of the phenomena in question.

It is hoped that the techniques of solution outlined above for these

simple exampldts will-be of assistance in the estimation of probabilitic

tor more complicated problems. Sophisticated analysis of complex pro-

blems will require a good knowledge of probability theory and im,mnuity

with a compopter.

8.35



Seventh Problem

In a certain large forest there are twice as many larch trees

as there are white pine and three times as many spruce as white pine.

It is known that 40% of the larch, 25% of the white pine and

33 1/3% of the spruce are suffering a worm infestation. A tree is

selected at random and is found to be infected. What is the proba-

bility that the selected tree is a white pine? This question is

equivalent to asking, "What proportion of the total number a infected

trees is the number of infected white pine trees?". The hypothetical

real' experiment consists in selecting a tree at random, determining

which species it is, and then determining if it is infected. The

experiment will be repeated a large number N, of times ind a tally

kepteof the number of expetiments in whlch a selected tree is infected

and of the number of experiments in which a selected white pine tree

is infected. In order to mimic the selection of the species of the

tree it is first necessary to partition-the unit interval into

subintervals whose lengths are in the same ratios as the relative

sizes of the corresponding species. Thus, since the unit interval

corresponds to the entire forest, it is evident that 3/6 or 1/2

of the unit interval must correspond to spruce trees, 2/6 or 1/3

of the unit interval must correspond to larch and the remaining 1/6

of the interval should be assigned to white pine. The unit interval

is thus partitioned as

0 1/2 5/6 1

0 A

5,
Unit Interval Partition
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The random selection of a tree from this distribution is mimiced

by generating a random number R1 and comparing it to the fraction

1/2. If R1<1/2, a spruce tree is selected, if R1 is such that

1/2<R1<5/6 a larch tree is selected and if Rl>5/6 a white pine is

selected. For example, suppose R1=0.638; this means that a larch

is selected. The health of the larch tree is determined by generating

another random number R2 and comparingAit to the fraction 1/4. If'

R2.(1/4, the tree is said to be infected and a tally is made. If

R2>1/4, the tree is said to be healthy and another tree selected

from the forest. The process for arbitrarily selecting the species

and then determining the state of health of the tree should *now be

apparent. The ratio of the number of infected white pine to the total

number of infected trees is the des.ired probability.

0
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The Eighth Problem

A large number of mice are treated for cancer by radiation

therapy. It is noted that 40% improve, 35% remain unchanged

and 25% actually become worse. Six mice are selected at random.

What are the probabilities that:

(a) All six of the mice have improved?

(b) Two of the mice have improved, three remain unchanged

and one has becoMe worse?

(c) One has improved, one remains unchanged and four have become

worse?

The experiment to be performed is the random selection of six mice from

those that have been treated for cancer radiation and the determination

of the number of m.lIce sowsotected whose health has improvedowthe number

whose health has not changed, and the number whose health has actually become

worse. In order to mimic the experiment, it is necessary to establish

a method for randomly selecting the mice. This is easily done by

recalling the procedure used to select an individual in problems

3, 5 and 7. Thus, the unit interval is partitioned into intervals

of lenc,-,hs 0.4, 0.35 and 0.25 respectively as shown below

0 0.40 0.75 1

*

0 B C D

UNIT INTERVAL PARTITION

In accordance with the data of the problem, the segment OA is

assigned to those mice who have improved, the segment AB to those

who showed no change and the segment ,BC to those who actually became

.,.,8
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worse. Using the RNG, a random number R is produced and the status of

the health of the mouse is determined by noting which segment contains

R. This process is repeated six times and each time the status of the

N- mouse so chosen is noted and the appropriate suki tallies are kept.

The experiment, whidh consists in mimicing of the selection of the six

mice, the determination of the health of each mouse and the 'appropriat

tallying of the three stateeof health is repeated N times. For

part (a), a tally is kept of the number'/of times all six mice have

shown improvement. For part (b), tallies are kept of the number of

times that two mice have improved, three mice have remained unchanged

and one mouse actually became worse. Similar tallies are kept for
A

part (c). The flowchart shown in figure 8.6 depicts the organization
0 0 0. 40 40

of the computer program to obtain an estimate to part (b).

tar.
9
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F counts favorable
experiments

W counts improved
mice

U counts not improved
mice

S counts mice who
became worse

-
Has the mouse
improved?

YES

Alla- 4,

tw=w+i 1 Is the health
unchanged?

YES

Did 2 mice
improve?

YES

YES

Have 6 mice
been chosen?

Did 3 mice remain unchanged?

YES NO

ave N
..:xperiments
been mimiced?

Flowchart for Problem 81)

4 0
Fig. 8.6
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Ninth Problem

In a northwestern community there is considerable discussion

concerning the advisability of spraying forests with DDT to attempt tp4

halt a spruce budworm infestation. The officials have decided to

poll each of the community members of which there are. 1750. The

results of the poll reveal that 900 are in favor of using DDT,

500 are opposed to its use and the remaining 350 have no opinion.

Nine people from the community are chosen at random. What is the

probability that:

(a) All nine are in favor of spraying?

(b) Five are in favor of spraying and four are against it?

(c) Three are in favor, two are opposed and four have no

opinion?

This is a problem with a finite number of individualb .(elements

or events) to choose from and so it is called a probability problem

with 'a finite sample space. Data to calculate the estimates to all

three parts of the problem can be obtained-by repeated penfOrmance

of the following experiment. Nine in4ividuals in Succession are selec

from the community and their opinion concerning the advisability or

non-advisability of spraying with DDT is determined. For each such

experiment a tally is made of the number in favor, Fp the number

opposed, A and the number with no opinion, D. The indiviiduals

are replaced after each experiment and the entire experiment repeated

N times. As each experiment is repeated the following tallies are ker

(1) The number of experiments for which F=9. This will provide

the data to estimate the answer to part (a).
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(2) The number of experiments for which F=5 and Am4. This

will provide the data to estimate the answer to part (b).

(3) The number of experiments in which F=3, A 2 and D=4-1

This will provide the data to estimate the answer'to part(c).

The computer mimicing 'of the experiment requires the repeated

4titioning of the unit interval. The determination of the opinion

of the first individual to be chosen at rapdan requires the init4Rl partitioning of tlie

-

unitintgmmral into three mbinteanmas of lengths 900/1750, 500/1750 and

350/1750 respectively. Pictorially this sUbdivision is represented

on the unit interval as

0 900/1750 1400/1750 1

0 A B C
1

UNIT INTERVAL PARTITION _

.N

The segment OA represents the people in-favor of spraying,

i

the segment AB represents the people opposed, ardthe segment BC

represents those individuals who have no opinion concerning the ad-

visability of spraying with DDT. The det rmination of a random sam-

0pling cz. '3pinions of each of the 9 succes1ively selected individuals

is accomplished by altering the three proportions in accordance with

the resultant opinion expressed by the last chosen individual. The

next paragraph.gives an example of this.

The opinion of the first indivihual selected is determined by

using tke RNG to obtain a random number R1 and then noting the

location on the unit interval of R1 relative to the points A and

B. Suppose that R1=0.612; then it is seen that R1 lies ii: the



tnterval AB and so we have selected an individual who is opposed to

the spraying of Dt0T:"As r'result of having selected such an individw

the proportion of the numbers of individuals holding the various

opinions has changed, albeit not very much. The proportions now are:

900/1749 in favor, 499/1749 against and 350/1749 with no opinion.

.Thub, the selectionnof the opinion of the second individual requires

the altering'of the proportions used to select the opinion of the

first or previous individual. Point A now has the coordinate 90M

point B has the coordinate
, 900/1749 + 349/1749 or 1249/1749,- one

4

point C remains the end-point. A second random number R2 is se-

lected and compared to these proportions tekdetermine the opinion of

the secOnd individual. Suppose the.number is Ra=0.915, then the

second individual is said to have no opinion and the new 'coordinates

used to find the opinion of the third individual are 900/1748,

1399/1748 and 1. A third random number, R3, is selected and the

process repeated for attotal of nine times. The denominator used to

determine the opinion of the ninth individual selected is 1742. A

flowchart and computer program for the estimation of the probabilities

of part c is shown in figure 8.7 and 8.8. The remarks inserted in

.the program should assist the student in following the work. On two

runs of the program for 10,000 experiments probability estimates of

0.0247 and 0.0214 were obtained. Your author got careless and let

the program run for 210,000 experiments and obtained the estimate of

0.022319. The actual probability is 0.0223423. See appendix A.

3
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C - ,-ounts experiments
K - counts opinions in experiments

80

100

110

Is ind. in favor
of spraying?

Have sufficient
experiments been
mimiced?

et

Is sample
size
complete?

Is ind. opposed to spraying or does
4 he have no opinion?

YES NO

160 150

YES NO
220 220

170
YES NO

Are more than
3 in 4'avor':

300

YES

2 0

NO

Are more than .

2 opposed?

Fig. 8.7

Flowchart for Problem #9
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Are there
more than
4 with no
opinions?



. _ . ,e.tr ,
M'r

i REM THIS IS PROB4M 9C
2 REM
_ REM
10 PRINT "TYPE IN THE NUMBER OF EXPERIMENTS, N"
15 INPUT N
16 PRINT
80 LET C=0
98 RANDOMIZE
94 REM.
95 REM LINES ii0n1.20 INITIALIZE THE OPINION COUNTERS
96 REM AT THE BEGINNING OF EACH EXPERIMENT
97 REM

FOR K=1 TO N
110 LET U=0
112 LET V=0
114 LET W=0
116 LET A=0
110 LET F=0
120 LET D=0
125 FOR I=1 TO 9
*38 LET R=RND
134 REM
135 REM INSTR. 140 DETERMINES IF IN FAVOR OF SPRAYING
136 REM

.z,140 IF R<=f900U)/(1750UVW)G0 TO 1.60
150 GO TO 200
160 LET F=F+I.
162-LET U=U+i
164 REM
165 REM INSTR. 170 DETERMINES IF MORE THAN 3 IN FAVOR
166 REM -

J.70 IF F>300 TO 800
180 GO TO 780
194 REM
195 REM INSTR. 200 DETERMINES IF.OPP6SED TO SPRAYING

'0

196 REM
200 IF R<=(1400UV)/(1750UVW)G0 TO 220
210 GO TO 380
220 LET A=A+i
222 LETy=V+1.
224 REM
225 Rrm INSTR. 230 DETERMINES IF MORE THAN TWO ARE OPPOSED
226 REM
238 IF A>200 TO 800

g 248 GO TO 700
300 LET 01:044
302 LET W=W+1
304 REM
385 REM INSTR. 31.0 DETERMINES IF MORE THAN 4 HAVE NO OPINION
309 REM
310 IF D>400 TO 800
700 NEXT I
710 LET C=C+1
800 NEXT K
810J.ET P=C/N
820 PRINT "PROB. 3 IN FAVOR, 2 OPPOSED & 4 WITH NO OPINION IS"
830 PRINT P
,900 END

4 Fig. 8.8
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The mechanism for changing the pr6porttons in accord with the

selection of an indiyidual with a4pecified opinion is accost-

plished with the aid of counters. The counters are designated by

the letters U, V and W respectively and they tally the respective

numbers of individuals who are in favor of spraying with, DDT, the

numbers of individuals who are opposed to such spraying and the

number who have no opinion about the spraying. These counters

are used.to properly alter the proportions in accord with the

nalbers of individuals who have previously been rendomly selected

and polled during the experiment. The incrementing of the counters

is.shown in figure 8.7 above the respective numbers 170, 230 and

310. The latge diamond shaped detision figures contain the calcu-

lation necessary to establish the proper proportions. 'The term

U+V+W represents the total number of imdividuals so far selected

in the e$periment. The expression

(900-U)/(1750-apig-W),

which appears in the diamond under the,number 140, is the fraction

of the remaining total population that is in favor of spraying

with DDT after a total of u+V+W individuals have been polled of

,Ohich U were in favor of spraying. 'This method of calculating the

'fraction of the remaining population which is in favor of spraying

/ is extremely useful in a great many probability problems wherein

/ the probabilities change after each increment. The reader will

recall that this procedure was introduced in the second problem in

this chapter and also used in the chapter on Genetics.

It is interesting to note that by simply holding the proportions

constant and equal to 900/1750, 500/1750 and 350/1750 respectively

for the selection of of the 9 individual's opinions, wedhave

mimiced the selection of opinions from a "large" population in which

it is given that 900/1750 of the population favor the use of DDT,

500/1750 of theit oppose its use and the remaining 350/1750 have no

R.46, * 121
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opinion. In our problem, because of the large number of people,
4

1750, and the small number of individuals in the sample size,

9 , the successive proportions generated are nearly constant and each is very close tc

the respective proportions far the large. population. Thus, with minima loss ha ace=

and with considerable savings in computational effort we could have

used the original oroporiions to randomly select all 9 of the indivi-

duals. This fact is used to advantage statisticians because

it greatly simplifies the calculation of the probabilities involving

repeated trials. See the further discussion of this problem in

appendix A. If, however, the number of people in the community

had been smaller, say 100, and the size of the sample larger, say

35, then the proportions usein determining the last 10 or so

opinions would have been considerably different thaxi the proportions

used to select the first 3 or 4 individuals. Thus, it may be seen that

by running the program with different initial proportions and different

sample sizes that the effect of both population and sample size can

be investigated. This is another example of the flexibility of

general computer programs.

8.47
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Discussion

The technique of obtaining estimates to probabilities by mimicing

the random process on a computer is an easy technique to learn and to

use. However, the methog,.like any method, is not a panacea and must

be applied with.some care. Some of the considerations that need to

be recognized in using the mimicing method are:

1. The possibility of excessive oomputational time required to

mimic the required number of experiments.

2. The difficulty of assessing the correctness of the results.

This is due to the fact that the mimicing process produces

approximate results and, moreover, the results are not

replicable because of the very randomness of the process.

3. The rapid increase in the computational effort to obtain more

accurate answers. This consideration has been discussed

earlier in the chapter.
er

4. The very heavy reliance on the random number generator sub-

routine. Because this subroutine is utilized so frequently,

any inaccuracies it posseses, even if they are small, will

certainly manifest themselves. We have not discussed the

effect of such inaccuracies or inconsistencies in random

number generator subroutines because our purpose is merely to

illustrate an approach. This topic is discussed in texts

on simulation.

Despite these difficulties, the method is useful and does assist'

in providing an intuitive understanding of random processes. In

addition, the very fact that the results are not replicable, serves



to confirM the expected lack of agreement when comparing empirically

determined results of a random process with numerical results obtained,

from a theoretical analysis. py varying the number of experiments

in these programs, the student can obtain an intuitive feel for the

inherent variation in a random process thus acquiring some estimation

of the possible variation in the expected difference of the results.

The mimicing method does permit the approximate analysis of

random processes, which if analyzed in the classical way, would be

intractable or at the very least would require computer based mimicing

of part of the problem. The method frequently is useful wnen em-

pirical data is used in conjunction with the theoretical formulation.

A final reason for presenting this method is the fadi- thii -ihe7--

computer based simulation of stochastic processes is accomplished

by mimicing a sequence of random events. Thus, the understanding of

stochastic processes is facilitated by a familiarity with the mimicin5

method of estimating probabilities.

9



APPENDIX A

-The Relation to Classical Probability Theory

The student who is familiar with the classical method for cal-

culating simple probabilities should have noted the very close relation-

ship between this method and the computer based Oethod of estimating

Probabilities- Our computer based method of estimating the probabilities

required three steps. They were:

(a) The visualization or construction of a hypothetical experiment

which, if actually carried out a large number of times, would

yield the data permitting an estimate of the probabilities.

(b) The construction of a computer program which, if run on a

computer, would mimic the experiment:

(c) The actual running of the program a sufficiently large number

of times in order to obtain the needed data.

It'is the purpose of this appendix to-illustrate how the analysis of

these steps frequently can suggest a method for actually calculating

the probabilities. The methods will require the repeated application

of the notion of proportion and usually will involve only simple

arithmetic. Our procedure will be to discuss each of the preceding

examples and thus it will be assumed that the student is familiar with

the preceding work. In particular, it will be assumed that the reader

completely understands the statement of each problem, since in the

interests of saving space, the problems will not be restated. We will

not introduce such notions as conditional probability, Bayes' Theorem,

etc. and then show how these notions can be utilized to obtain the

solutions to certain classes of probability problems. Rather our

approach will be to illustrate, by example, a general method of approach

which should permit the student to solve many kinds of simple probability

problems. 4.20
RA,



The elementary example of calculating the probability of throwinc

an ace on the single throw of a die has already been discussed on

page 8.7. In that example it was noted that the interval (0,1/6)

was 1/6 of the unit interval and this proportion was ind9ed the

desired probability. A discusgon of the second problem will be

given later in this appendix. In the third =bleu, pacre 8.16, it will km

recalled that in order to mimic the experiment it was neCessary to

subdivide the unit interval in sections whose lengths Vere equal to

the respective proportions of the numbers of mice havin4 the different

characteristics. The pictorial representation of this subdivision

is given on page 8.16. With the aid of the various lengths of the

subdivisions it is quite apparent how the probabilities called for

in this problem should be calculated. For part (a) the segment AB

designates the proportion of mice with both afflictions. Since this

segment is 0.1 of a unit, this means that 0.1 of the mice popula-

tion have both afflictions. Thus, 1 out of 10 mice have both

afflictions and according to the classical theory CIO probability

this is the desired probability. For part (b) the section CD

corresponds to the portion of the unit interval having no afflictions

and so the proportion of the population having no afflictions is 35/10(

which is the probability of a mouse having neither affliction as cal-

culated in the classical manner. It is equally easy to answer the

following problem. Swpose a mouse is selected at random from this

population and that it has discolored eyes. What is the probability

that it also has a short tail? Again, thinking of probability as a

proportion this question is equivalent to asking what proportion of
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the population having discolored eyes is the population having sliort

tails, i.e. what proportion of the segment AC is the segment AB?

The answer is 0.1/0.25 or 0.4 and hence ihe desired probability is

0.4 or 4 out of 10.

The fourth problern, page 8.18, concerning the flies in the two cases

necessitated the comparison of a random number R1 with the proportion

1/3 to determine if the randomly selected fli came from cage numbeif

one: Thus, 1/3 of the chosen flies would come from cage one and

2/3 would come from the second cage. The- health of a randomly

selected fly crom the second cage was determined by comparing a second

random number R2 with the proportion 1/4 because 1/4 of the flies'

in the second cage were ill. Thus, 1/4 of 2/3, or 1/6 of the

original number of flies came from the second cage and were ill. Be-

cause we are assuming it is equally probable that any fly is selected

from the original population, the proportion 1/6 is also the de-

sired probability of selecting a sick fly from the second cage.

-0

8.52



To answer part (b) of the fourth problem it is necessary to

determine what is the proportion of flies that have a wing mutation but,

are not.ill. This proportion will be determined by examinihg how the

computer generated estimate of the probability was accomplished.

Since the fly has a wing mutation-it must have come from the second

cage. Thus, it must have come from. 2/3 of the original popmaation.

Now since R4 was compared to 3/1.0- to determine whether or not the

fly had a wing mutation it is evident that 3/10 of 2/3, or 1/5

of the original population came from the second cage and had a wing.

mutation. R5 was compared.to 1/4 to determine if a fly from the

second cage was ill; thus 3/4 of the flies in the second cage were

not ill. This means th&t 3/4 of 1/5, or 3/20 of the original-:

population had a wing mutation and was not ill. Thus, theTrobability .

of selecting such a fly is 3/20.

The obtaining of the answers to the fifth problem, page 8.21, is nAtas

straightforward as the obtaining of the answers to the previous four

problems. Our discussion will be rather lengthy because it introduces

a useful technique for obtaining probabilities. This technique is

based upon the notion of calculating 'the numberof favorable experimmts

tenaa he total nurber of everinents. These results are then used to

calculate the desired proportions and these proportions are the proba-

bilities. We will consider the parts of the problem separately.

The answer to part (a) requires the determination of the number

of individuals from each city who have only measles since the total

number of such individuals divided by the total population is

then the required probability. To determine the number of such

individuals in each city we follow the computer based experiment which

first determines from which city the individual is selected and then

determines whether or not the individual has only measles.

8.53



randomly selecting an individual from any one of the three cities, on

the basis of the relative sizes of the three cities, implies that the
.01

number of individuals selected from a city iä in direct proportion to

the size of the city. Here, if N individuals are selected, it follows

that such a random selection will produce 6N/11 individuals from

city -VI, 3N/11 individuals from city C2 and 2N/11 individuals

from city C3 Now having determined how many individuals wre selected

from each city we again follow the computer program and note that of the(

individuals chosen from city Cl that 1/16 of Chem have measles.

Since 6N/11 individuals come from city Cl, it follows that,

6N/11 x 1/16, or 3N/88 of them have measles, and because 1/8

of the citizens of city Cl have influenza, 7/8 of them do not have

influenza. Thus, since the possibility of an individual having influ-
A

enza is independent of whether or not he has a disease, it follows that

7/8 of all of the individuals of cip.y Cl do not have influenza.

This implies that 7/8 of 3N/88, or 21N/704 of the. Cl-

citizens have measles but do not have influenza.

In a similar manner, of the 3N/16 number of fhdividuals selected

from ci*y C2, 3N/11 x 3/10, or 9N/110 of these have measles.

Because 9/10 do not have influenza, 9/10 of 9N/110, or 81N/1100

do not have influenza but do have measles. Finally, for city C3,

2N/11 x 1/5, or 2N/55 have measles and 2N/55 x. 24/25; or 48N/1375

have measles but not influenza. Now the total number of such individuals

from all three cities is 12177N/88000 or 0.1384N. Therefore, the

probability of randomly selecting a person with only measles is 0.1384N/N

or 0.1145. Your author apologizes for this ratherflong winded expla-
.

nation. However, he wanted to emphasize that by reasoning in analogy

with, and in the order of, the computer programs the answer can be

obtained.
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The answer to part (b) is obtained in a very similar manner.

In contrast to part (a), it is necessary to obtain the

proportion of the number N, of people selected that have both measles

and influenza. Of the 6N/11 people in Cl, 1/8 of them or 3N/44

have influenza. Since the proportion of all citizens of Cl having

measles is 1/16, it follows that 1/16. of 3N/44. or

3N/704 individuals from this city have 60th diseases. Analogously,

3N/11 x 1/10, or 3N/110 citizens from city C2 have influenza and

3N/110 x 3/10, or 9N/1100 have both diseases. Finally, 2N/11 x

or 2N/275 of the residents of C3 .have influenza and 2N/275'x 1/5,

or 2N/1375 have both diseases. Thus, the total nuMber of people

from all three cities having both diseases is 1223N/88000.

Since the proportion of People from all three cities having boa

diseases is the total number of individuals having both diseases

divided by the total number of residents, the proportion is (l93N/88000

, r 0.0139. This is the required probability.

Part (d) of the problem is equivalent to determining the number

of residents of city C2 having both diseases is what proportion of t

total number of residents having both diseases. Since the number of

residents of each city having both diseases has already been calculate

above in obtaining the answer to part (b), the desired proportion is

(9N/1100) / (1223N/88000) or 720/1233 = 0.5'887

This is the desired result.

3
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The obtaining of the answer to part. (c) is more difficult and

requires a different method of attack because the experiment is

different. Here the experiment consists of drawing 3 individuals, one

from each city, and it isthis experiment that is repeated N times.

This results in the selection of 3N individuals and it is the determi-

nation of what proportion of these 3N individuals is the number of

individuals selected such that they have only one disease among the

three simultaneously seledted. Thus, the number of such individuals

must be determined. The student will note that, for each experiment,

one citizen is selected from each city and so the relative sizes of

the cities is not a consideration in the calculation. The number of

individuals from the first city that have only one of the diseases

is obtained by adding thelpumber of individuals who have measles but

not influenza to the number who have influenze but not measles.

Thus for city Cl, which is assumed to have N people, N/16 citizens

have measles and 7/8 x N/16, or 7N/128 have measles but not influenza

Similarly, N/8 of the people have influenza and 15/16 of N/8,

or 15N/128 have influenza but not measles. Thus the number of people

from cit-y Cl having only one of_the diseases is 11N/64. A similar

)calculation shows that there are ,N/l00 people in city C2 who have

influenza but not measles ahd 27N/l00 who have measles but not

influenza for a total of 17N/50 people who have only one of the di-

seases. Finally, N/25 x 4/5 plus N/5 x 24/25, or 28N/125

of the people in city C3 have only one of the diseases.

It is now necessary to determine the number of individuals chosen

from city Cl who have only one of the diseases and which corresponds
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to a selection of a pair of individuals from the other two cities

having no diseases. A similar determination must be made for cities

C2 and C3. This determination is.possible because we are assuming

that the choice of a diseased or healthy individual from any city

does not depend upon the health of the residents of the other cities.

This means for example that if a healthy individual is chciain-fr-o-ariaft

first city, this fact has no effect on the status of the health of tht

individuals chosen from the other two cities. Thus, if for example,

3/4 of the individuals in city C2 are Tlalthy then because the indi-

viduals are picked simultaneously from each city, 3/4 of the

citizens selected from cities Cl and C3, regardless of their heal(

will be accompanied by the selection of a healthy individual from cit:

C2. Hence, if 400 sick persons are selected from city Cl then 3(

healthy persons are simultaneously selected from city C2. Thus, frot

both cities 300 individuals are selected who are ill. If, in additit

3/5 of the individuals chosen from city C3 were healthy, then 3/5

nf 300 or 180 individuals selected from all three cities would be

ill and these 180 would all come from the first city. It is seen

therefore that out of N individuals selected the calculation 9f the

number of individuals selectedfrom a given city who have only one dim

and who are acLompanied by the choice of a healthy individual from eic

of the two,e4iaining cities requires the determination of the proport,

of healthy ind\lIviduals in each of the cities.

The proportion of healthy individuals selected from city Cl is

obtained by first calculating the number of healthy members of Cl. T

number of individuals in the first city who have either disease or bo

diseases is N/16 + N/8, or 3N/16 and hence the number of healthy
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individuals is 1314/16. Thus the proportion of healthy individuals

in the first city is 13/16. A similar calculation for city C2

reveals that the proportion of healthy individuals is 3/5 and for

city C3 the proportion is 19/25. Hence,when choosing an Odividual

from each city the probability of choosing a healthy individual frim

the first city is 13/16, from the second city 3/15, and from the

third city 19/25.

Since the number of people from the first city that have only one

of the diseases is 11N/64, 3/5 of these, or 33N/320 will correspond

to the simu16ineous selection of all healthy individuals irom city C2

and in turn 19/25 of these, or 627N/88000 will correspond to the

simultaneous selection of no sick individual from city C3. Hence, of

the total number, 314, of individuals seleCted from all three cities,

the number of Andividuals having only one of the diseases and coming

from the first city is 62714/8000. Similarly, the number of individuals

selected from the second city ilaving only one disease is 1714/50 and

13/16 of these, or 221N/800 correspond to the simultaneous selection

of a healthy individual from the first city. Then, because 19/25

of the i%dividuals chosen from the third city are healthy,

19/25 x 22114/800 or 419914/20000 inlividuals selected from the

second city are simultaneously selected with healthy individuals from

each of the other two cities. Finally an analogous calculation shows

that 273N/2500 individuals selected from the" third city re simul-

taneously picked with healthy individuals from the first and second

cities.



tlw

HenaPthe total number of individuals selected such that they

only have one disease among thethree simultaneously selected is

627N
WNW 4199N PP 273N

/--gn

or 0.397525N

The proportion so chosen is 0.397525N/3N=.1325 and this, is the relu

probability. Whew!!!
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The method of solution of this problem was based upon calculating

the numbers of individuals having various characteristics and then

forming the desired proportions or ratios. The
i

numbers were expressed as fractions of N, where N was the number

of times the experiment was repeated, This notion of expressing the

numbers of individuals or events in terms of a fraction of the number

of experiments is a very fruitful one. In fact almost all of the

problems could have been solved using this idea. As an example we

"redo" the third problem using this notice of expressing the number of

occurrences of the various emits in terms of the nuther N of experiments.

From the data of the problem, N/2 of the mice have short tails,

N/4 have discolored eyes and 0.40 of N/4 or N/10 of the mice

have both afflictions. Thus, N/4 - N/10 or 3N/20 have only

discolold eyes and N/2 - N/10 or 2N/5 have only short tails.

To answer part (a) we note that the proportion of mice having both

afflictions is (N/10)/N or 1/10 which agrees with the answer

obtained previously. The answer to part (b) requires the deter-

mination of the number of mice having no afflictions. This number is

given by bubtracting the number of mice having only short tails,

the number having only discolored eyes and the number having both

afflictions from the total number, N. Thus, N - 2N/5 - N/20 - N/10=7N/2(

mice are healthy. The probability is then given by the ratio

(7N/20)/N or 7/20 which again agrees with the previous result.

The student should work out on his own the fourth problem tiding the

number of experiments" method. It is a very useful and quite intuitivp

,technique and for these reasons we shall frequently use it.
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'7%3 answer the sixth problem, page 8.31, we note that part (a) is

similar to part (c) of the fifth problem. The experiinent con-

sists in selecting a tree from each forest and a tally is to be made

whenever only one of the three trees selected is he lthy. Now the

Problem calciaate the-proportion_of___the_mumberof_faxperime.nte_

that resulted in the selection of exactly one infected tree of the

three trees chosen. Because the experiment is done a large nUmber

gf tittles Part of the delsired tallies will corresPond to cases Wm:rein the

infected tree came from the first forest and simultaneously only

healthy trees came from the other two forests. Similarly, part of

the tallies will correspond to infected trees being chosen from the

second forest with the other forests having had healthy trees selected

from them. Azi analogous remark maY be made about the infected trees

from the third forest. It is necessary to calculate the number of

trees corresponding to each of the above cases in order to arrive at

a total.

The number of infected trees selected from the first forest is

N/3. Simultaneous with the selection of N/3 infected trees from

the first forest was the selection of a number of healthy and

unhealthy trees from the second and third forests. Because 3/4 'of

the trees in the second forest are healthy,. 3/4 of the selections of

any tree from the first forest will be accompani7ed by the selection ot

a healthy tree from the siecond forest. It is assumed that there

is no preference in the selection of the trees and this aseamptialholds

throughout the problem. Thus 3/4 of N/3 or N/4 of the trees

selected from the first forest were infected and accompanied by the

choice 'of a healthy tree from the second forest. Similarly, because
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4/5 of the third forest is made up of healthY trees, 4/5 of N/4

or N/5 trees selected from the first forest are infected and were

selected simultaneously with healthy trees from the other two

forests. The procedure for calculating the number of cases wherein

exactly one tree was infected and the tree came from the second forest

is the same. Thus, of-the N trees selected from the second forest,

N/4 of them are infected. 2/3 of N/4 or N/6 of the selected

trees are infected and are accompanied by a choice of.healthy trees

from the first forest. Finally, the number of infected trees chosen

from the second forest and corresponding to the choice of no infected

trees from the first or third forest is 4/5 x N/6 or 2N/15.

Similarly the numb,Ir of infected trees chosen from the third forest

along with no infected t.,-ees from the other two forests is

N/5 x 2/3 x 3/4 of N/10. Therefore, /the total number of experi-

ments in which exactly one infected tree was selected is

N/5 + 2N/15 + N/10 or 13N/30.

The propyrtion, and hence the probability, is 13/30.

The problem posed in part (b) is equivalent to the determination

of 'what proportion is the number of times exactly one infected tree is

selected and that tree comes from the second forest to the total

number of times in which exactly one of the selected trees was

infected. From part (a), the number of experiments resulting in the

selection of only one infected tree and that tree came from the second

forest is 2N/15. In addition, the number of experiments which corre-

spond to exactly one infected tree regardless of which forest it

came from, was 13N/30. Therefore, the desired probability is



(3215)/(11130)
or 4/13.

The calculation of the probability required in the seventh pro-

blem, page 8.36, is straightforwaud. The slhidWrtshoadrermaithe seciiande-

scribing the computer mimicing of the experiment. We begin our

calculation by letting N be the number of experiments and

calculate the number of infected trees of each' speciee interns Of N.

Now in accord with the partitioning of the unit interval, N/2 of

the trees selected will be spruce, N/3 will be larch and N/6

will be white pine. Of the white pine, 1/4 are infected and

therefor( the number of infected white pine trees is' N/24. A

similar calculation shows that the number of infected larch is 2N/15

and the number of infected spruce it; N/6. Thus, the probability

is

N/6

N 2N N

24 15 6

or 20/41



We now consider the calculation of the probabilities asked for in

the second problort, page 9.11. Sime the empwinent of selecting 5 ams is repmMmd

N times, the =WET to part (a) is obtainad by calculating the number of experiments

in which all five of the selected cows had not recovered. This calcu-

lation is done in the following way. Because the herd consists of 5

animals who have not rTcovered, 5N/2() is the number of experiments in

which a sick cow may be selected on the first draw. For these selec-

tions, since a sick cow was selected, 4 out of the 19 remaining cows

are ill. Consequently, 4/19 of the N second draws will result in a

sick cow being chosen. This means that of the 21120 experiment which
14..6

resulted in the initial selection of a sick cow, only 4/19 of these,

or N/19 experiments will result in a sick cow being selected on both

the first and second draw. For these cases, 3/18 of the experiments

will result in the-4third draw yielding an ill cow. Thus, of the N/19

experiments resulting in the selection of 2 ill cows on the first

2 draws, only 3/18 of them, or N/114 experiments will result in

the selection of a sick cow on each of the first three draws. The

procedure for completing the calculation should now be evident. 2/17

of N/11i, or N/969 experiments will result in the first four draws

selecting an ill cow on each draw. Finally, 1/16 x N/969 or

N/15504 experiments will result in recovered cows being selected

on each of the five draws. Therefore, thè probability that none of

the 5 selected cows has recovered is 1/15504.

The student should have noticed that this answer was obtained

by multiplying the successive proportions of sick animals, i.e.

5/20 x 4/19 x 3/18 x 2/17 x 1/16 = 1/15504.
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This far' suggests how to calculate such probabilities for simillar

problems. If these proportions are interpreted as pro lities,

the above calculation is an example of the product law classical

probability.

Part (c) is done in a very similar manner. The experiment is the

same, but the initial and successive proportions are different. Our

method of explanation,will be to again work out the number of success-

ful events for each successive &aura an animal. Out of N selections of 5 animals

per each experiment, 15N/20 selections will consist in having chosen a recovered anim

for the first of the 5 animals to be selected. This being the case, the proportion

remaining healthy animals is 14/19. Bence, 14/19 of 15N/20 or 2IN/38 empacirmants%

result in the selection of 2 healthy animals on the first two draws.

Using the hint described in the previous paragraph, the procedure forc

culating the probability of picking three healthy cows on the remain-

ing three draws should be evident. The probability is

15/20 x 14/19 x 13/18 x 12/17 x 11/16 or 351/5168.

Part (b) is more difficult and requires an examination of the 1

computer based mimicing of the selection process. It will be recallet

that the program shown estimates the probability that all 5 cows ten

recovered and that by changing line 180 to read

180 IF J = 3 GOTO 200

the estimation of the probability of drawin4 exactly 3 recovered

animals may be obtained. Because only 3 recovered animals are to b

chosen, an examination of how the computer could pick exactly three
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rommyered cows, reveals that it could have accomplished this selection

in a variety of ways. For example, a healthy cow could have been

picked on the

on the second

chosen on the

.from hoof and

first, third and fourth draws and a sick cow picked

and fifth draws, or healthy cows could have been'

second, fourth and fifth draws and cows still suffering

mouth disease picked on the first and third draws.

Other orders of selection (combinations) are also possible which

would result in the selection of exactly 3 healthy cows being

picked out of the 5 animals drawn. Furthermore, each of these

selections appear to be equally probable since there is no priori

reason that the random selection procedure should prefer one of

these combinations to another such combination of 5 selected cows.

Thus, the calculation of the probability that exactly 3 recovered

caws were chosen out of the 5 selected requires:

(a) The calculation and listing of all possible combinations

a sample of 5 animals containing exactly 3 recovered

cows,

(b) The calculation of the number of experiments that will

result in the selection of each of the combinations found

in part (a), and

(c) Adding the results obtained in part (b), and diyiding

by N to obtain the desired probability.

We will next illustrate how each of these calculations may be

performed and then we will show that the above set of tasks is

equivalent to carrying out the following 4 calculations.
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(1) The calculation of the number of ways in which 3 distinct

objects may be selected from 5 objects.

(2) The calculation of the number of experiments corresponding

to any one combination o draws yielding exactly 3

recovered animals.

(3) The multiplication of the number of experiments obtained

in step 2 by the number of ways obtained in step 1.

(4) Dividing the result of step 3 by Nu the number of experi-

ments.

The Lftter setof 4 calculations nmuiresmuchlesscaqmtftiomileffortilmn

formr set of 3 calculations. For those students who are familiar with probability_

. the procedure is equivalent to using the bimodal distribution to calculate the prat

bilities fcTa finitBsamplespaceas isekine in classical probability theory.

Now the listing of the combinations of 3 healthy animals from

5 animals can be accomplished with the aid of a Computv program.

In .order to not interrupt the dismission of the method for calculatin

the probability, we will simply list the possible combinations. A

description of a computer program which both lists and counts the

combinations is given in Appendix B. Let R and S denote the

selection of a recovered animal and a sick animal respectively; then

the possible selections are: RRRSS, RRSRS, RRSSR, RSRRS, RSRSR,
lb

RSSRR, SRRRS, SRSRR and SSRAR. Hence, there are 10 possible

selections of exactly three recovired anipals out of 5 animals.

In the computer based experiment, to generate the required tallies for prcblem 2*

if the number of experiments, NI is very large* each of these.ocrabinations will tz

selected several times by the compalr. This suggests ihat we calculate the numt

of experiments resulting in the choice of each of these combinations. Consider
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the choice RRMVL At the risk of ing the student, we uork this calculation out in

complete detail s6 that the au eeding comments and work are easier

to appreciate. From our previous work, the number of experiments
,

resulting in the selection of an R on the first draw is 15N/20

and the number of experiments resulting in the selection of an R

on each of the first two draws is 14/19 x 15N/20 or 21N/38

experiments. Since the proportion of sick cows in the remaining herd

is 5/18, it is evident that 5/18 x 21N/38 or 35N/204 experiments

resulted in the selection of a recovered cow on each of the first.two

draws and the selection of a sick cow on the third draw. Now, 13/17

.of the remaining animals'have recovered and so the number of experi-

ments resulting in the selection of RRSR on the first four draws

is 455N/3468. Finally, since 4/16 of the herd has not recovered,

the number of experiments resulting in the choice RRSRS is 455N/13872.

A review of this calculation reveals that the result was obtained

by'multiplying the respective proportions 15/20, 14/19, 5/18,

13/17, and 4/16 and then multiplying the result by the number of

experiments. Furthermore, the proportions were obtained by noting

whether a recovered or a sick cow was seled-ted and then subtrac-
\

ting one from the respective number of remaining healthy or sick cows.

The product wasdivickd by the number of animals remaining in the herd

to give the respective successive proportions. The analogy between

this process and line 140 of the program listeksin figure 8.2

should be noted. This procedure for calculating the number of experi-

ments corresponding to a particular combination of 5 cows wherein
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exactly 3 of them have rempvered-suggestsiphat the number of experi-

ments resulting in'any other such combinatioA, for ex4mp1e SRRSR, can

be obtained by successively multiplying the respective proportions

5/20, 15/19, 14/18, 4/17 and .13/1.6 andthen multiplying-by the

number of experiments. Thus,' the number of experiments yielding the
-

combination ERRSR is 5/20 x 15/19 x 4/11 x 13/14 x N or

455N/13872. This is the same as the previous result and should not bi

-surprising since the previous result may be written as 15/20 x 14/19

5/18 x 13/17 x 4/16 x N and a comparison of the two products shows

that the multiplicands in the numerators and denominators respectivel:

are the same but appear in a different order. The student should ver

for himself that the same result holds for the remaining eight combilw

tions. In fact, the generalization of this result is clear and is ve
0

useful. Because the number of experiments is the sane for each choic

t. and there re ten possible choices, the total number of experiments

resulting in the selection of exactly 3 recovered cowls' out of the

5 selected is 10x455N/13372 or '2275N/6936 and hence, the desired

probability i3 2275N/6936.

We will apply this procedure to another similar problem in order

to assist the student in fixing the procedure in his mind. Suppose

that a grove of. 50 spruce trees has been infested by a spruce bud

worm infestation and that 20 of the trees had become infested. If

. seven trees are selected at random, what is the pr9babi1ity that ex-

actly four had become infested? As before, it is first necessary to

recognize that the experiment to be mimiced consists in the random

selection of 7 trees from the grove and the attendant determination

if
of the well being of each of the 7 trees. The experimentris to

be simulated N times 'on the computer and the above method of cal-
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culatini the probabilities aonsists in the'determination of.the

number of exarriments resulting in exactly four infested tree's being

among the seven trees selected in the sample. If it iS known that

there are fourinfested trees in the sample, there are many ways in

which four infested trees can be chosen from the sample of seven

trees. Now, the total number of experiments resulting in the selec-

t

tion of exactly.four infested trees from the seven which are sampled

iS determined by the product of the number of ways in wh4h four

such treef can be selected from seven trees and the number of ex-

periments resultillg in just one of the combinations of four trees

out of the seven,\y actually listing the possible coM'binations it

may be seen that there are 35 such possible ways. As an example, t o

of the combinations are HHSSHSS and SHSHSHS where H and S

denote a healthy and an infested tree respectively. Since N

experiments are performed, the number of experiments inIZftich the
Ir6

combination HHSSHSS is achieved is

30/50 x 29/49 x 20/48 x 19/47 x 28/46 x 18/45 x17/44 x N

or 9367N/1664740. The corresponding expression for the aumber of
(MO

experiments in which the cothination SHSHSHS is selected is

20/50 x 30/49 x 19/48 x 29/47 x 18/46 x 28/45 x 17/44 x N

or 9367N/1664740, and it is seen tbat the two expl.essions are equal in numerical value..

aw

The equality of the two results Should not be surprising in view of the previous dis-

cussion. Since the total number of experiments resulting in a choice of exactly four

infested trees out of the seven selected is N/.t5, the desireh probability is then 35/11

times the Above expression or 9367N/47564. ,91ascampletes our discussion of the

second problem. 4AO
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We now consider

culation of the nuae

the solution of the 4.ghth poblem. The cal-

r of experiments for faghcpart, of the problem

is accomplished in a ,manner entirely analogou, to that developed to

calculate the similar quantities in the second probl4i. For part

%a), since there is only "one ssible way of selecting six mdce and

since the propoition of mic hat improved is 2/5, it follows

that (2/0xN is the number of mice that improved in .D1 experi-

ments. l'he proportion interpretation of probability then implies

that the probability of chobsing an improved mouse on each of the

six draws is *(2/5)
6

or 0.004096.

The answer to part (b) is obtained by following the four steps

listed in the discussion of the second problem. The number of ways

a

of selecting two improved mice, three !killice which are unaffected and

one mouse which has become worse from six such mice can be obtained

by the use of the gomputer.pro'gram described in Appendix B. This

may be done by letting the digit 3 .dermte an improved mouse, the

digit 2 an unaffected mouse and the digit 1 a mouse\iho became

e
Worse. The computer will then list the 60 combinations. The

next step is to calculate the number of experiments corresponding

to just one of the combinations of six mice. swe will describe the

calculation for six mice listed in the order 3, 3, 2, 2, 2, 1.

The number of, experiments resulting in the selection of an improved

mouse on both the first and second draws is (2/5)2xN. Since the

oportion of Unchanged mice,is now 7/20, the number_of experiments

resulting in the selection of improved mice on the first two draws

and unchanged mice on each of the next three draws is
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(2/5)
2 x (7/20)

3 x N. Finally, because 1/4 of tke mice are actually.

in worse shape after the treatment, the number of experiments re-

sulting in tilt required combination is (2/5)2 x (2/20)3 x (1/4) x N.

Since there are 60 such combinations the total number of 4xperimenti

Is (2/5)
2 x (7/20)

3 x (1/4) x 60 x N and therefore, the reormkEed,_______

probability is 1029/10000.

Part (c) is done the same way. There are 30 ways of selecting

one improved mouse, one unchanged mouse and four mice which have

become worse from 'six such mice. By now the student should have

recognized that the number of experiments corresponding to one

specified combination of the 30 combinations is merely the product

1of the respective proportions corresponding to the state of health

of the mice. Thus 2/5 x 7/20 x (1/4)
4 x N is the number of ex-

iperiments in which one specified combination is selected. The total

number of experiments corresponding to all possible combinationsis

2/5 x 7/20 x (1/4)
4 x 30 x N and fience the probability is 21/1280.

A
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The Iplculation of the designatedprobabilitiei for the ninth

problem-requires a blight alteration of the-procedure for calculatitig,

the number of experiments corresponding to a specific combination.
, ,

This alteration is due to the fact:that the population is finite and

thus, as vitizens are selected, the proportion of the remaining

individuals holding a prescribed opinion changes. The situation is

entirely analogous to that encountered in the second problem. Part

N

(a) requires the calculation of the number of ekperiments resulting

in samples all of whose citizens opposed the spraying. By recalling

the method of calculation used 141 ihe second'problem it is seen that

the number of sucb experiments is

500/1750 x 499/1749.x 498/1748X497/1747 x 496/1746 x 495/1745
_5

x 494/1i44 x 493/1743 x 492/1742 x N or 1420473 x.10.. x N.
-

.

,

Since there is only one way to select 4 suCh opinkons from 9 ipeOp

this number is a;so the total number of 4xperimenti in,which all. 9

people are opposed to spraying with DDT. The probabilAty is thin phi

number divided by N or 1.20473 x

Fbr part WI' the number of possible combfnations of 9 opinions

of which 5 are'opposed to spraying and 4 are -infavor of spraying

is 126. To calculate the number of experiments corresponding to juE

one of these combinations, we fiote that the number of experiments in

.whfch the first 5 draws in succession result,in gn opOosing vote is

500/1750 x 499/1749 x 498/1748 x 497/1747 x 496/1746 x N.

cp

Hence, the number of experiments resulting in the specified combina-

tion forall g opinions is

F. 72
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500/1750 x 499/1749 x 498/1748 x 497/1747 x 496/1746 x 900/1765

x 899/1744 x.898/1743 x 097/1742 x.N- or '1.32378 x 16-5N
,tt

Multiplying this number by 126 ""to obtain the number of experiments

Corresponding to all possible combinaiions ind then dividing by N

giVes!i probability of .00166196.

\The number of possible combinations in part.ici is 1260.and the

a

number of esperiments corresponding to just one of these combinations

is

900/1750 x 899/1749.x 898/1748 x 500/1747 x 499/1746 x 450/1745

x 349/1744,x.348/1743 x U7/1742 * N or 1.77320 x 10-5N

The probability is obtala by multiplying this riumber by the number

of combinations and dividing by the number of experiments to Ove

0.0223423.1

Your author purposely chose this problem because it i1lustra4

the computational difficulties than can arise even when an exact

answer can be obtained. The numerical eValuation of the products of

the fractions is time consuming and, when done on a computer, can

lead to serious loss of accuracy since only limited precision

arithiletic can be used. It is also the case that overflows can

easily occur in the computer if the order.of the arithmetic is

not chosen properly. For example, suppose that the method of nu-

merically evaluating the product is to first multiply all of the

numerators, then multiply all of the denominators and then divide

4 4 4



the former product by the latter product. AB the student can note,

each of these products cOuld be quite large. In fact, if the sample,

had contained 80 individual's opinions, the products would be

larger than 101". One method for -minimizing the numerical difficul

ties associated torth the evaluating of sucli products is to alter-

nate ,the order of th\e operations of multiplicaticm and division. Ppm:ilia 7

programs have been developed to evaluate such products and your local'

computer-center should be able to provide them.

The initial proportion of citizens in favor of using DDT is

900/1750 and the initial proportion opposed to the use of DDT is

500/1750 whereas the initial proportion having no opinion is 350/175C

Now, if these proportions were representative of a *large" populatior

that is a population in which it is assumed that the proportions do

not change as individuals are selected, then the answer to part a

would be (500/1750)
9 or 1.2688 x 10-5 which is very close to the

previous answer. Thus, again we see that if the ratio of the total

population to the sample population is greater than 10 or so that

very little error is made if no correction is made to the proportions

while doing the calculation.

Similarly, the answer to part (b) would be (500/1750)5 x (900/1750)

x 126 or 0.0167822 and the answer .to part CO wouldbe (900/1750)3

x (500/1750)
2 x (350/1750)

4 x 1260 or 0.0223856.
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APPENDIX B

In the previous appendix it was stated that a listing of all

possible ways of selecting,3 recovered cows from 5 cows could be

accomplished with the aid of a computer. This appendix describes

the development of the computer program for obtaining such a

listing. Even t4ough such a listing was not needed to calculate

the probability (only the number of such ways was needed),, the

program may be of interest in its own right. The program to be

developed wil list'all of the possible distinct combinations of

n objects and, if some of the objects are identical, the listed

combinations will be distinct. It is the abilitito list only

distinct combinations which makes the program useful since the

listing of all possible combinations, regardless of whether or not

they are distinct, is not very helpful.

If a recovered cow is associated with the digit 2 and a.cow

who has not yet .recovered associated with the digit 1, it is

evident that the determination of the number of possible ways of

selecting 3 recovered cows from a grOup of 5 cows is equivalent

to determining the numer of possible orderings of the numbers

2, 2, 2, 1 and 1. There are ten such orderings and they are:

2,2,2,1,1; 2,2,1,2,1; 2,2,1,1,2; 2,1,2,2,1; 2,1,2,1,2;

1,2,2,2,1; 1,2,2,1,2; 1,2,1,2,2; and 1,1,2,2,2.

The order of the digits describes the order in which the cows

were chosen.- For example, the order 2,1,2,1,2 corresponds

ttla first choosing a recovered cow and then alternately choosing

a cow which has not yet recovered followed by a recovered cow,

etc. This suggests the development of a program whiCh receives

as input several numbers and then as output lists them in all

possible distinCt orders. For example, if it is desired to list

all pobsible ways of selecting 3 recovered cows from a group of 5

cows, the input would be the five ?digits 2,2,2,1 and 1 and output

would be the 10 five digit numbers as listed above. As a further



example, suppose it is desired to know the number and ways in

which it is possible to seleàt 2 brown horses, 2 red horses and

-'~-11' black horse from a grotT of 5 such horses. By identifying .the

digit 3 with a brown horde, the digit 2 with a red horse and the

digit I. with a black horse, the input to the program would be the

set of numbers 3,3;2,2, and 1. Thepossible ordeOngs'are (for

brevity the commas are omitted): 33221, 332128.4-'33122, 31322,

31232, 31223, 13322, 13232, 13223, 12323 and:.122233

and the number of such selections is 12. Each set'of numbers

prescribe an order in which the horses are to be chosen.

8.75a
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Each of the preceding sequences of numbers were listed in

decreasing order and it is the property of decreasing order that

shill be exploited in the development of the computer program.

It is helpful to note that because the numbers of the listing are

to appear in decreasing order that any number in the list is

smaller than all those preceding it and larger than all those

numbers following it in the list. This fact provides the key to

the development of the program because it ensures that all of the

numbers will be distinct, i.e. there will be no repetitions,

even if the original number has repeating digits. With these

remarks in mind we proceed to discuss the following problem.

Suppose the first K numbers in the list have been constructed,

how then is the next number bin be constructed? -Such a oonstniction

requires a procedure for insuring that the largest of all possible

smaller numbers is the next number selected. To this end we

examine a numerical example and see if we can "divine out" a

method.

First of all, we adopt the convention that them:dims far

which 4 are going to find all possible listings must be entered

in such a way that the number formed by them is the largest possible

such number. Thus, the initial arrangement of the digits must be

such that they do not increase as they are read from left to right.

For example, if the digits 5, 9, 1, 3, 8 are to be so listed,

they must be entered in the order 9, 8, 5 3, 1 and if the

digits 3,4,3,5,4,6,5 are to be so listed, they must be ini-

tially entered in the order 6, 5, 5, 4, 4, 3, 3.

8.76
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4.

Ebr our =erica example, we consider the digits 54,113,9 and for the sake

convenience we.will omit the commas when writing them. The first

several entries in the output of the computer Program should appear

4, as

98531
98513
98351
98315
98153
98135
95831
95813
95381
95318
95183
95138
93851

etc.

There are 120 such numbers and the student should extend the

list up' to 50 or so. Reading from the bottom uppthe last few

numbers in the list are 13589, 13598, 13859, 13895, 13958,

13985, 15389, 15398, .etc. The student should study this list

and attempt to make up the rule for determining the subsequent

entries in the table.

Now we recall that if any sequence of digits is in non-

decreasing order when read from left to right then the number

formed by these digits is the smallest number that can be formed

by them. This fact, when applied to the number 95138 shows

that any interchange in the last- three digits 1, 3, or 8
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would only serve to increase the numerical value of the number

95138. The digit in the second place, 5, is the first digit

not in decreas*ng order whenrsreading from right to left. It is

the first digit out of non-decreasing order and it is this very

property that indicates that the digit 5, and all the digits

to the right of it must be interchanged to insure the apaining

of the next smallest number in the listing. The determination

of how these digits must be interchanged is fascilitated by the

introduction of the following notation. Let S(J) denote the

digit .7 places from the left. Thus, for the number 95139

we have s(1)=9, S(2)=5, S(3)=1, S(4)=3 and S(5)=8. In

this example the sequence S(3), S(4). and S(5) was non-

decreasing and S(2) was the first digit out of non-decreasing

order. With the aid of this notation, a flowchart of the pro-

cedure for determining the first digit, counting from the right,

that is in non-decreasing order is:
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Purthpr.study of the sequence, reveals that the out of order.

digit is always interchanged with 011, next smaller.number. to the

'right ofathe out of order number. Morever, there will always be

such a number unless the end of the listing has been reached.

If this interchange.is made, the number 95138 is.trensformed

to 93158 which is not the next smaller number. However, it is

evident that by reversing the order of the last three_digits to

give 93851 that the next smaller number is obtained. Thus a

suggested procedure for obtaining the next smaller number consists

of the fOur steps in the order in which they are stated:

1. Reading the number from right to left and determining

the first digit which is increasing and denotir- this

digit by S(L).

2. Reading from left to right beginning with the digit SW

and determining the next smaller digit to S(14). Denote

this digit by 8(R).

3. Interchanging S(L) ando S(R).

4. Reversing the order of'all of the digits to the right

of the L
th digit.

*

It should be noted that these steps have been devised trom an

examination of a listing of a number all of whose digits are dis-

tinct. The steps may have to be modified if the number is something

like 95533. We are considering the easiest case first. The student

should recall that thil5 is in keepilmwith our philosophy of first de-

vising a program to solve the easy problem on the theory that if we

cannot solve the easy problem our chances of solving the harder

problem are certainly not better.
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The transformation of 95138 tc; 93851 by the preceding steps

can be represented schematically as

Other transformations appear as

1

9

8X9

5 9 1

To insure-that the procedure does indeed produce the next smaller

number in the' list, it is instructive for the student to choose

other numbers and construct the schematics for their transformation

using the above steps.

The determination of the digit to the right of S(L) that is

to be interchanged with S(L) is based 1.. ,on the fact that all of

the digits to the fight of S(L) are in increasing order; that is,

S(L44), S(L+2), S(L+3), S(N) are a non-decreasing sequence

of digits. This means that in order to find the next smaller digit

than S(L) we have merely to searcb for the first digit to the right

.-.
T.1 40
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of ,S(L) that is smaller than SW. Thus if S(R) denotes the

first digit to the right of S(L). such that S(L)>S(R)

S(R) is the digit to be ,interchanged with the digit S(L). To

minimize the number of operations the search procedure is made from

right to left. See instruction 240 6r 260.

The basis for the transformation has now been described and the

interchanging is repeated until the digits are all in ascending order.'

The program as written will accept numbers up to 20, digits. There

are many BASIC dialects and it may be the case that the computer

accessed by the reader has a dialect which permits easier entry of

the initial number. Should this he.the case the reader can easily

modify the program. A flowchart of the process is shown in figure 8.8

and the program is listed in figurT 8.9. Figure 8.10 ccxmpanyi the proaram

listing, is a typical output listing the number of distinct Combina-

tions of choosing 3 recovered cows from 5 cows. The notation Is

that used in the discussion.

The printing of all.of the combinations amite suppressed by making the

following modifications to the program.

1. Eliminate lines 105, 110, 112, 113, 114, and 115

2. Change line 570 to read, 570 GOTO 150

By increasing the number 1000 apperiniein lines 565 and

705, the program can accommodate problems having more than 1000

dist4nct combinations.
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1

Input initial sequence
in descending order,
also N, the number of
elements in 5(0)

rtint out I

sequence
initial

170 I.

1.144-1

YES

TOO

1

NO

217

Finding s(U)

FloWchart

0.

Finding number to
F right of S(L) that
is equal to or
smaller than
S(L)

Interchanging SW
and S(R)

Interchanging order
of digits from
S(L+1) to S(N)

FOR Q=L+1 TO
N T(Q)S(Q)

NEXT Q

!FOR U=L+1 TO

N S(U)=
T(N+L+1

NEXT U

1:

PRINT
SEQUENCE"

K_

4

for Listing Combinations

Figure 8.8
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1 REMOMMBINATION COUNTING
29 DIM S(20),T(20)
50 PRINT "THE NUMBER OF ELEMENTS IN THE SEQUENCE IS"
55 INPUT N
68 PRINT
70 PRINT "THE SEQUENCE MUST BE IN DESCENDING ORIII,ER"
75 PRINT "TYPE IN THE SEQUENCE"
80 FOR Iw1 TO N
82 INPUT SW'
83 NEXT I
85 PRINT
90 PRINT
108 Km1
105 PRINT "SEQUENCE";K
110 FOR I=1 TO'N
112 PRINT S(I);
113 NEXT I
114 PRINT
115 PRIgT
150 LET JoaN
170 LET J=J-1,
200 IF J=OGO TO 708
219 IP S(J)<=S(J+1)G0 TO 170
220 LET La2.1
225 REM L POINTS TO THE LEFTMOST NUMBER TO BE SWITCHED
239 LET REBN
235 REM R POINTS TO THE NEXT NUMBER EQUAL TO OR SMALLER THAN S(L)
240 IF S(L)>5(R)G0 TO 300
260 LET R=R-1
270 GO TO 240
295 REM INSTRS. 300 TO 320 INTERCHANGE S(L) AND S(N)
390 LET A=S<L)
310 LET S(L)-S(R)
328 LET S(R)=A
330 GO fo 450
445 REM INSTRS. 450 TO 500 SWITCH ORDER OF L+1 TO N DIGITS
450 FOR 0=L+1 TO N
468 LET T(0)=5(Q)
470 NEkT 0
480 FOR U=L+i TO N
490 LET S(U)=T(N+L+i-6
599 NEXT U
560 LET 4K=K+1.
565 IF K=100000 TO 705
570 00 TO 1.05aw
700 PRINT "THERE IS A TOTAL OF";K:"COMBINATIONS"
702 GO TO 710
705 PRINT "MORE THAN 1000 COMBINATIONS. PROGRAM AUTROMATICALLY STOPS"
710 END

t.

READY

Figure 8.9
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THE NUMBER OF ELEMENTS IN,THE SEQUENCE IS
4/?5

THE SEQUENCE MUST BE IN DESCENDING ORDER
TYPE IN THE SEQUENCE
72
?2
?2,

?1
?1

SEQUENCE i
2 2 ' 1 1

SEQUENCE 2
2 2 1 2 1

SEQUENCE 3 .

2 2 1 1 2

SEQUENCE 4
2 1 2 2 1

SEQUENCE 5
2 1 2 1 2,

SEQUENCE 6
2 i 1 2 2,

SEQUENCE 7
1 2 2 2

SEQUENCE 8
1 2 2 1

SEQUENCE 91212
SEQUENCE'10
1 i 2 2 2

THERE IS A TOTAL OF 10 COMBINATIONS

READY

*No

A Typical ReAult from the Program listed in Figure 8.9

Figure 8.10



PROBLEMS

CHAPTER VIII

1. In a zoo exhibition.there are five white tail deer and three

mule deer. Three deer are selected at random from the area.

What is the prObability that all are white tail deer? Two

are white tail deer and one is a mule deer?
( One is a white

tail deer and two are mule deer? All three are mule deer?

2. A monkey sits at a typewriter containing-the letters it, B, D,

G and O. What is the probability.of tilt monkey typing the word

BAD? Thesword GOOD?

3 A laboratorl(Mouse is placed in a maze ccristing of five doorways

through which it must pass in order to obtain a reward of food.

The-re are four paths leading from one doorway to another and

from the start to the first doorway there are three paths.

Assuming that no two Paths have,the same Aength and also-assaming

that it its equally likely that the mouse chooies any path,

what is the probability tkat the use chooims the sequence of

paths %Mose total length is a minimum?

4. Them are three spottA deer in an enclosure each having three,

four and tOme spots respectively.

(a) What is the-probability that a deer selected at random

has four spots?

(D) Two deer ake selected at random. What is the probability

that the sum of the number of spots is greater than eight?

(e) A deei Is selected at random and the number of spots it
%

has is recorded. The deer is t#en replaced. A second

deer is selected at random and its number of spots re-

.

corded. Wha\t, is the probability thait the sum of the

number of spots appearing on each deer is greater than

eight?
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In a large city 40% of the population has contacted influenza.

What is the pr9bability that in a random sample of 10 people

6 of thei have influenza?

6. In an elk herd consisting of 1000 elk. 200 elk are over

years of age and 100 of the elk are underfed. An elk is

selected at random.

(a) What is the probability the elk is over 5 years ofsage?

Is underfed?

(b) What is the probability the elk is over 5 years of age

and undeifed?

(c) If the elk is underfectwhat is the probability ihat he is

under 5 years of age?

In a fish hatchery of 1000 fish, it is noted that 3000 of the
'1

fish have become infected with parasite A, 2000 with parasite

B, and 1000 of the fiah have been under attack from both

parasites simultaneously. A fish is chocpen at random.

(a) What is the probability that the fish is subject to

attack by parasite A? By parasite B? By both parasites?

(b) If the fish is under attack by parasite A what is the

probability Lt is under attack by both parasites? If it

is under attack by parasite .18 what is the probability

it is under attack by both parasites?

8. Let.two fair dice be thrown.

la) What is the probability that both numbers are odd?

(b) What is the probability that only one of the numbers

showing is a 3?-

Pan 8
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(c) What is the probability that the sum is 8?

(d) If the sum is 7 what is the probability one of the num.P.

bers is a 2?

(e) If the sum is 7 what is the p4obabi1ity the numbers

differ by more than 1?

(f) What is the probability one number is odd and the other

even?
A

9. `4 There are 4 collies, three bulldogs and 5 terriers in a

kennel. Four dogs are selected at random.

Y-44-

(a) What is the probability the first two dogs selected are

terriers and the third and fourth dogs collies?

(b) If a terrier is selected, what is the probability a

bulldog.and collie are also sd.ected?

(c) If a terrier is selected on the first draw, what iR the

probability a bulldog and a collie are also selected?

(d) What is the probability that three bulldogs aFe selected?

10. Three fair dice are thrown.

(a) What is the probability that their sum is greater than 10?
a

(b) How many throws must be made so that the prdbability of

of the sum of the numbers being greater than 10 is

greater than 80%?

(c) What is the probability that the numbers on the three dice

can be arranged in succession.

11. A good mile runner can run the mile in under 4 minutes in 8 out

of 10 races whereas a fair mile runner can run the mile in under

4 minutes 2 out of 10 races. A man runs the mile in 3:59.

What is the probability he is a fair mile runner?

8.87



12. In a corn farm there are twice as many corn plants with tall

stalks as short stalks. 60% of the ciarn with tall stalks

produces long ears of corn and 50% of the short stalk corn

produces long ears of corn. A stalk of corn is chosen at random.

(a) What is the probability it is tallandtas short eared corn?

(b) If the stalk: has ehort,ears of corn,.what is the probability

it is a short stalk?

13. Use the data of problem 12. Two stalks of corn aresialected at,

random.

(a) What is the probability that each stalk is short and

produces short corn?

(b) If both stalks have long ears of corn, what ii the

probability one stalk is short Lnd the other stalk long?

14. Forest A is four times as large as forest B r and both are

'infected with spruce bud worm. Forest A is 20%, infected and

Forest B 3Q% infected.

(a) A tree is selected at random and found to be infected.

What is the probability it cable from Forest A?

(b) Two trees are selected at random and one is observed to

be infected and the other healthy. What is the probability

the infected tree came from Forest B and the healthy tree

came from Forest A?

(c) What is the probability that three trees selected at

random came from Forest A and are healthll

15. An epidemic breaks out in a population. 30% of the,population

is infected the first week, 20% is infected the se d week and

... uO
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10% is infected the third week. Agter the fourth week, there

are no new infections. An Individual is selected at randoid in

the population and found to be infected. What is the probability

the individual was infected in the second week? Wbat is the

probability that of three people selected, one was infected each

week?
%

N.

1"

16. A forest is sprayed with DDT which is 70% effective in eliminati.

ing a parasite. After spraying, 5,t(ees are selected.

(a) What is the probability that all five treekate still

afflicted with the parasite? ,'

(b) ,What is 'the probability that three trees are not infected?

(c) What is the probabiliy that at least three trees are

infected?

17. Ten patients are in an operating ward. Five patients have had

apendectoittiess two have had tonsils.removed and three have had

ski accidents. Four patients are selected at random.

(a) What is the probability all four have had their appendix

removed? f

) What is the pFobability at least 2 have had their

appendix removed?

(c) What is the probability each of the four selected has had

each of the operations?

(d) If two have had their appendix removed what is the

probability that one of the remaining two individuals

had his tonsils removed and the other had a ski accident?
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18. Ten horses in a racing stable of 15 horses are known to be

ill. Four horses are selected.

(a) What is the probability only one is ill?

(b) What is the probability at most one is ill?

(c). If two are ill, what is the probability All four are ill?

19. A hunter is 20% successful in his quest for elk, 30% successful

in hunting for white tail deer and 40i successful in hunting

for antelope on any Oven hunting trip.

(a) /f he hunts for\all three animals on a sipgle trip, what is

the probability he will bag all three on a single trip?

(b) What is the probability he will bag all three on five

trips?

(c) What is the probability he will get at least one animal

in three trips?

P



REFERENCES

CHAPTER VIII

Uspensky, J. V. 1937. Introduction to Mathematical Probability.

McGraw-Hill. New York, NY.

%-g

8.91



CHAPTER IX

COMPARTMENTAL ANALYSIS

Introduction

This chapter presents the development of a technique,

called compartmental analysis, that is useful in describing

the flow of a quantity or quantities in biological and

ecological systems. Typical examples of such flows are:

(a) The flow of thyroxine as it passes from the blood

to the liver and is absorbed into bile.

(b) The flow of energy in an ecosystem.

(c) The exchange oflnorganic phosphate between the

blood and tissues.

(d) The movement of'DDT in a human food chain.

(e) The transfer of organic matter in a peat bog.

Compartmental Analysis is also useful in:

(a) Analyzing rotifer populations viewed as energy

transferring systems..

(h) The analysis of enzyme kinetic problems.

The method of presentation will be to discuss examples

and to develop the necessary computer prograls for their

solution. It will be seen that the solution of each example

requires the use of the fundamental law of change. Because

these problems are usuadly formulated in terms of the simul-

taneous ordinary differential equations, we will indicate

the connection between the two procedures to enable the

student to read the relevant literature.
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A fundamental problem in physiology is the detenmination

of the flow of various fluids from one part of the body to

another part of the body. This.problem is of interest because

,a knowledge of the transport of fluidsfwithin the body is

very helpful in determining the function and method of opera-

tion of component parts of the body. In the following sec-

tions, a very effective technique for analyzing such flows will

be described. The technique is called compartmental analysis.

In the literature, the term 'fluid' is usually

replaced by the term 'substance'. This reteacement occurs

because it is frequently quite difficult to identify the

particular fluid or substance which is flowing or diffusing

into, and/or out of, the compartment of interest. It is

known that substances which exist in one part of the body

are 'sometimes transferred or diffused to adjacent parts of

the body.. However, the mechanism by which the transfer

takes place is not always completely understood. One

possible explanation is based on the postulation of the

existence of a fluid or substance which flows or diffuses

from one compartment to another compartment and which trans-

ports the substanCe of interest. This postulation provides

the basis for compartmental analysis in physiology.

TO analysis consists in modeling the fluid behavior

by assuming the existence of compartments into which, and

put of which, the fluid flows. Assumptions are then made

which specify the amount of fluid which enters and/or leaves

a cbmpartment in a small increment of time. These assump-

tions enable the writing of equations relating the change in

the amount of fluid in the compartment in a small increment

of time to the amount of fl.Vid'entering and/or leaving the

=apartment in the arre unit of time. Thus, it is evident that the fundWmaltaa
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laW of change will form the basis of the formulation of the

eguaticns. The student' who is familiar with hydraulics will

note the very close analogy between the method of analysis

and that used in hydraulics.

9.3
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Transfer of the tlui from the Musble Tisie

As the irst ex= pie, we consider the ,analysis of the

transfer'of a fluid from the muscle tissue of a guinea pig

to the extracellular fluid of the muscle tissue. Since it

is very difficult to directly measure the rate cif fluid trans4

fer without disturbing the actual flow of the fluid, indirect

methods have been developed. Foremost among these methods is

the tracer method. This technique consists in labeling the

fluid being transferred with radioactive ions. The time. .

variation of the transfer of.these ions can then.be detected-
.

by radioactive sensors. Since it is assumed that the trans-

fer of the ions is caused by their being transported by the

flowing cr diffusing fluid, the measured.rate of transfer

of the ions is assumed to be the actual rate of transfer of

thy fluid. In this way, the effective transfer rate .of the

flui:d can be determined. Before presenting a discussice of the tracer method

(see the section entitled, "Tracer Methods"), we illustrate our method of
..._

analysis of eane simple problems so that the student can more readily

appreciate the ideas.

Using the tracer technique, Born and Bulbring (1956),

'radioactively labeled the fluid with potassium ions)and

succeeded in analyzing the-transter of these ions from the

guinea pig muscle tissue to the extracellular fluii_

In this experiment, the smooth muscle of quinta pigs

was permited to take up
42

K
+ ions until the radioactivity

had become constant in the muscle. The muscles wpe then

immersed in a constantly flowing non-radioactj.extrace11ulr

fluid and the time variation of the cuncentr' ion of the
42

K
+

4

in the muscles was recorded. The observed r sults indicated

a decreasing loss in concentration of the pptassium ions and

hence the ions were being transported froOhe muscle to the
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extracellular fluid. It is desired to construct a simple

expIanationvhöNp quantitative prediction would.agree with

the-empirical results.

This may be done by assuming that the muscle acts like

a compartment or a container in which the
42K+ ions are

'deposited. The compartment 41 filled with potassium ions,

andy-..the stored ions'are.then Permitted to diffuse out of

the Com ent. The process may be conveniently depicted

in terms o a flow diagram in which the muscle is imagined

to be a co rtment or tank into which potassjum ions are

deposited ankfrom which ihey are diffusing. The flow of

ions into the muscle is denoted by Fl(t) and the transfer

oi ions from the tissue to the extracellular fluid is de-

noted by F2(t). Both of these flows may, and usually do,

vary in time. Q(t) will denote the quantity of the potassium

ions in thdouscle. Using this notation, the flow diagram

of the proCiss.appears in figure 9.1 as:

Fl(t)
Q(t)

F2(t)

A Single Compartment Model

Fig. 9.1

9. 5



In thls work the flow of a quantity is the rate at which

that quantity is'adding to, or exiting from, a compartment.

Thus, the unit of flow is expressed in volume per unit time or

mass per 'unit time'. These units are usually written as

volumetime or mass"time
-1 respectively. The use of the-1

term floW in this work shoeld not be confused with the term

mass flow or volume flow as used-in hydrodynamics. In this

latter usage, these terms designate the transport through space

of a specified.amount of mass or volume in a unit time. We

again remind the student that the use of argument t in the

flow Variables and the volume variable indicate6 that, since

the quantitieevary in time, the quantities are to be

evaluated at a specified time, t. In other words, such a

notation indicates that the variables are functions of time.

In this example, the ions do'not return from the extracellular

fluid to the tissue. Since we are interested only in the

variation in time of the concentration of ions in the tisiue,

there is no need to depict the fixtracellular fluid as a compart-

ment. This simplification also means that it is only ne.7essary

to depict the ions entering and leaving the "muscle tissue"

compartment.

In conce tualizing a modelofor the transfer of the potassium

ions from the tissue to the extracellular fluid, it is helpful to

think of a fluid flowing into and out of a tank. A hydrodynamic

model anallpous to the single compartment system is displayed in

figure 9.2:

9.6
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Wl(t)

Hydrodynamic Analogy

Fig. 9.2

W2(t)

where Q(t) denotes the amount of water in the parallelsided

tank and Wl(t) and W2(t) dendte the 'respective input and

output flow rates. Q(t),_is measured in volume units and accord-

ingly the flow rates Wl(t) and W2(t) are expressed in units

of volume per unit time. Typical volume units-for Q(t) are

cubic centimeters, liters, gallons, etc., and the corresponding(

typical units for the flow rates are cubic centimeters per secdnd,

liters per mi4nute, gallOns per hours, etc. Frequently, the.

-Amount 12(t) is expressed in unip of mass such as grams or

pounds. In thig event, the quantities .W1(t) and W2(t) are

called mass flow rates and are expressed in units bf mass per

unit time, i.e. grams per second, pounds per minute, etc. In

this hydrodynamic analogue the input flow rate is prescribed,

as is the cross-sectional area *A of the tank, and it is desired

to cAlculate Q(t). Thisc.gn be accomplished by' timing the
%.
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fundamental law of change to write:

Q(I+1) = + C(I) (9.1)

where C(I) denotes the change in the amount of the fluid in

the I
th time increment. For convenience we will assume that

the time increment D1 is small and constant and therefore,

the actual time, T(I), is given by

T(I) = T(0) + I * Dl. (9.2)

4

In equation (9.1), C(I) is equal to the change in the amount

of fluid in the tank in a time increment. If El(I) represents

the amount of fluid entering the tank,and E2(I) denotes the

amount of fluid leaving the tank during the time increment, then

C(I) = El(I) - E2(I).

Moreover, if Al and A2 denote the cross-sectional areas of ,

the respective pipes through which the fluid enters and exits,

then

and

El(/) = FI(I) * 01,0
U.

. /

E2(I) * Dl.

Fron.e4enentary physics it is known that the rate cf the fluid exitirv through an

orifice of unit cross-sectional area is proportional to the depth (ar head) of t*

. 8
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fluid jin the tank. Thus,

F2(I) = K1 * H(I)

where H(I) denotes the depth of.the fluid in the tank during

.the I
th time inceement and K1 is the constant of propor-

tionality. If A3 denotes the cross-sectional area of the tank,

we can write

or

Hence,

= A3 * H(I)

F2(I) = Kl * Q(1)/A3.

E2(I) = Kl * Q(I) Dl/A3,

and the fundamental law of change may be used to give

4(1+1) = Q(i)+(F1(I)*D1-Kl*Q(I)*D1/A3). (9.3)

If the,ratio K1/A3 is denoted by K, this equatiOn can be

simp,,ified to liyt

The term

Q(1+1) = Q(I)+Fl(I)*D1-K*Q(I)*131. (9.4)

9 . 9



repreahts the amoupt of fluid being transferred from the tank

in the time increment, and it is seen that this amount is propor-

tional to the quantity WI), of fluid in the tank. The term

Fl(I)*D1 represents the amount of fluid entering the tank in

the time increment.

We now return to the potassium ion transport problem and note

that there is a direct analogue to the relation just derived.

This follows from the fundamental assumption concerning the

transport of a substance out of a compartment in a smill incre-

ment of time Dl. The assumption is: "In a small increment of

time, the amount of the substance leaving a compartment.is pro-

4portiona1 to the concentration of the substance in the compart-

ment". This is frequently called Fick's law. Thus, for this

particular-problem, the law states: "In a small time increment,

D1, the amount of the ionized potassium leaving the muscle tissue

compartment to enter the extracellular fluid is proport4onal to

the concentration of the potassium .itins in the muscle tissue".

If Q(I) now denotes the amount of ionized potas-

sium at the beginning of the I
th time increment, the quantity

of ionized potaFsium leaving the tissue to enter the extracellular

fluid during the .ime D1 ,may be written as

K1*Q(I)*D1.

K1 is the constant of proportionality and is measured in units

of reciprocal time. Such constants are called rate constants or

transfer coefficients and their determination is of fundamental

imxntance.. The aribunt of ionize potassium entering the tissue in the tine

incremeni D1 is Fl(I)*D1 wi4re Fl(I) denotes the rate of flow'

of the entering ,ionized potassim at the time t. The evation governing the

9.10
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time variation of the concentration of the ionized potassium in the

tissue is obtained by using the fundamental law of change. This gives

4(I+1) = Q(I)+Fl(I)*Dl-Kl*Q(I)*D1. (9.5)

If there is no addition of potassium ions after the start of

the experiment,

F(I) = 0, I = 1, 2,
a

and equation (9.5) may be written as

Q(1+1) = Q(I)-K1*Q(I)*D1. (9.6)

This is the equation describing the simple diffusion of the potassium

ions from the tissue to the extracellular fluid. Equation (9.5)

is just a different form of the equation governing the flow of a

fluid from a tank or of the equation describing Malthus population.

growth. This may be seen by noting that the change in the variable

in each ofthe fundamental equations has the same form. The

respective changes in the variables are F1(I)*D1-1(1*()(1)*D1,

Fl(I)*D1-K*Q(I)*61 and B*P(I)-M*P(I). Each of these terms is

a difference between "what comes in and whit goes out" in the

time period, and therefore, each is a statement about the conserva-

tion of the respective variables. This suggests that there is

a general conservation principle governing many diverse phenomena

and this is indeea the case. It is possible to use such a

principle as a bials for thp derivation of the preceding equations.

In fact, the equations gove2ning many diverse physical phenomena

are usually derived from conservation principles. In this way,

9.11
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conservation principles form a basis for demonstrating the unity

of the physical sciences. The occurrence of the same equation

under different guises is thoroughly exploited by mathematicians

to also illustrate the unity of the discipline* in which the

equations occur. In addition, mathematicians use these sfMi-

larities to extend and derive solutions of the equations.

The student who has studied the calculus will note that a

mathematical formulation of this problem is given by

Ag.

dQ
dt

Ot=0)=Q0

and the solution is a

Q(t) = 0
exp(-Kl-t). (9.8)

The appearance of the exponential function accounts for the term

"exponential decay" with a decay or loss rate of Kl. Since

equation (9.7) describes many diverse phenomena, its solution

(9.3) is very useful and has been well studied. It is frequently

the case that the results obtained from compartmental analysis

are better graphically portrayed with the aid of a logarithmic

scale This fact suggests the use of the technique developed

in the first chapter for compressing the variation of the con-

centration to apsist the graphical representation of the program

results.

9.12
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There is no acceptable format for the depiction of com-

partmental models. A frequently encountered format correspond-

ing to the single compartment potassium ion model is shown in

figure.9.3 below:

Fl(t)
Q(t)

KliN(t)

Fig. 9.3

Another format is shown in figure 9.4 below:

Fl K1

Fig. 9.4



f
where it is understood that the amount of the substance leaving%the

compartment in a small increment of time, D1, is el to the product

of the èonstant of proportionality Kl, the concentr on Q(t) present

in the compartment during the time incement, and Dl.

As a ntmerical example, we consider the loss of
42K+ ions from the muscle

to the extracellular fluid when the muscle haS an irdtial ionconarr

tration of unit sttength. The program, is shown in figure 9.5 and

line 95 6f the program specifies the initial strength of the ion

concentration in the muscle. The constant of proportionality or

*-11rate constant wasINFhosen to be 0.19 min., the time increment was set

at I min. and the program run for 20 time increments for an actual totPO tII

of 20 minutes. In the program, C(I) denotes the concentration of

the ionized potassium and line 120 expresses the governing equation.

equation 9.6. .Lines 140 and 145 are insbrted merely to illus-

04
trate the use of the compressed scale, S(I),. and line 100 initializes

the value of S(0) to coincide with the actual value of the natural

logarithm of the initial concentration. The elapsed time is calculated

in lines 105 and 130. The results are portrayed in both tabular

and graphical form in figure 9.6.
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1 REM THE SIMPLE DIFFUSION OF POTASSIUM IONS, EQ. 9.

10 DIM C<105),T,:105),Sf:105)
20 REM C1(1 DENOTES THE ION CONCENTRATION

22 REM DENOTES THE ELAPSED TIME TO THE ITH TIME INCREMENT

24 REM St:I) DENOTES THE TON CONCENTRATION ON A COMPRESSED -:..CALE

50 PRINT "TYPE THE TRANSFER COEFFICIENT Ki AND THE TIME INCREMENT Dl"

60 INPUT K1,('1
. 1

65 PRINT
70 PRINT "TYPE THE NUMBER OF TIME INTERVALS. N"

80 INPUT N
85 PRINT
86 PRINT
94 REM C.O.,=1 CORRESPONDS TO UNIT STRENGTH INITIAL ION CONCENTRATION

95 LET C.:0)=1
99 REM INITIALIZING 5.0) TO CORRESPOND TO LOG(C(00

t00 LET St:0=LOG(C(.0))
104 REM EXPERIMENT STARTS AT TIME T=0

105 LET T.:.0=0
110 FOR I=0 TO N
119 REM INSTR. 120 IS 'THE FUNDAMENTAL SIMPLE DIFFUSION EQUATION

120 LET CeA+1'.=U1).-4.1.*D1*UI)
125 kEM INSTR. 10 CALCULATES THE ELAPSED TIME

110 LET Te.I+1)=T,1)+Di
135 REM LINES 140 &145 CALC THE COMPRESSED SCALE VALUES OF THE CONC_

140 LET R=(C(I+1)C(I)VUI
145 LET Se:I+1)=S<I'.+R
150 NEXT I
180 PRINT "I T(I) C 'I) S(I)"

185 PRINT
190 FOR 1=0 TO N
210 PRINT 1,T(.I),CI),S(I)
220 NEXT I

230 END

READY

Simple Diffusion Program

Fig.

9.15



0
",

1-

) -4

Po 1.- t-J. i" 14' ko CO -4 CN Let 4. 1_1 Le tp Po ...1C <
CD '45 ri) -A CN Ln 4. I..) V) CD 0

in m
-4 - -4

MI 4-.6

-4

3
rrf Ul

Po 4-4. 1C CO -A Cri t...A 4A 1- Po 4- (S)

e4.:. co -A Cr% I I 4. I. .1 1.) t.,*.

0
-41 0

C)
ITI

"r1
M40
W4

Pi

- 4
f.-

0 CD 0 CD CD CD C;; CD CD CD Fd. 4-6. V) to Irt 44 tn u. co

PO PO 1...1 .4 tn (1.1 --1 ',0 PO LA 05 PO
CO 4. 1.114 'A 1... el r tr

r-b

-1 PO tn 05 1,.J1 1.
1,,.! IN -4 4. tA CD k-.1 -A 4. ch 4. 4- I-- F4

CD OD 05 PO ON 1.. 4. CD CN -.4 --I tn V) OD CO -.4 r..m.

'4D 4 CO OD PO OD (D 4.

I11111113 1111,111111i
O 0 0 U41.0 Po V, Kt Po V) 1 .., I, H. H. H.

'w -.1 km t- 1-`

co In 4- NI al (XI kill 4- PJ 0 '43 '1 0 1...! P". VI (ri -,1 (0 'LI

....

Z 33

4
.4
=M

:TO -4
111 3

1.4. P 1/0 4- fri IN -A CO VD Fig PO 14 4-
1-4

m4

z
c,



In developing the expressions for the amount of the
A

substance entering or exiting from a compartment in a small

increment of time, we postulated that this amount could be repre-

sented as a flow rate multiplied by.the small increment of time.

However, it was also stated that the flow rate varied in time.
ar

Now the critical reader might well ask about the accuracy of c

statements like, "the amount of the substance entering thelempart-

ment in the small time increment, Dl, is equal-to Fl(I)*Dl where

Fl(I) is the entering flow rate at the beginning of the time incre-

ment". Such a statement is not precise, that is, it is not

rigorously true; however, if Dl is sufficiently small, the statement

is "very nearly true". An alternative argument for justifying

our approach is noted that if the floW rate changes smoothly in

time, by making D1 sufficiently small, the error committed in

using the expression Fl(I)*D1 to represent the amount of fluid

entering the compartment in the time increment, can be made as

small as is desired. The student who is familiar with the

calculus, will recall that an application of the mean value theorem

can be used to justify the assertion.

In essence we are saying there is very little or negligible

error incurred by assuming that Fl(t) does not change during the

time increment Dl. For this reason, it is convenient to speak of

the value of Fl(t) during the time increment as the value of Fl(t)

at the beginning of the time increment. Similar comments are to

be mar'. ,ibout other variables which change during the entire time

cf interest. It is important to note that by making the above

assuwptions, we are not restricting the variation of the flow

rate.from one time increment to another time increment, rather we

are assuming that the flow rate is constant during the time incre-

.ment. Graphically, we are replacing a smooth or continuous curve

by a set of steps and using a "step like" approximation to the curve.

Since the amount of fluid is continuously changing, the

rigorous analysis of such flows would require the use of differen-
.

tial equations. If the problem is described by differenti-1 equa-

tions but becomes at all complicated, a digital computer must be

9.17
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employed,to effect a solution. The resultant computerllased)

solution is equivalent to dividing the time of interest into

small time increments and assuming that the flows are constant

in each time increments This latter.procedure is analogous to

our procedure. However, in fairness it should be pointed out that

very accurate Methods have been developed for the numerical solu-

tion of differential equatiops.: The formulation that we have

used, and will continue to use in this chapter, is equivalent to

a first order Euler method of solution. We will continue to use

this method of presentation because it permits an easier concen-

tration on the formulation of the problems and the development of

programs. This is the primary purpose of the.course. More accu-

rate methods of solutiOn of the model equations will be left to

other more advanced courses.

In cose the student feels he is being given an incorrect

formulation, it should be.pointed out that the fundamental model

is itself a very crude approximation to the actual biological

phenomena even if-it is formulated in the language of mathematics.

Elegant and sophisticated analysis of an incomplete or irrelevant

model is far less satisfactory than an approximate analysis of a

realiEtic model- In addition, the expetimental and dat'a collection

errors associated with the obtaining of the necessary data fre-

quently mitigate against an overemphasis on the numerical accuracy

of the solution of a prescribed set of model equations.
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Example #2

This example develops a simple compartmental model for the kine-

tics of the transfer of inorganic phosphate in a physiological system

over a period of time. It is assumed that inorganic phosphate enters

the blood from some source and that a certain portion enters the

tissue surrounding the blood and the remainder goes elsewhere. It is

further assumed that the phosphate entering the tissue is returned to

the blood at a different rate than it entered the tissue. The problem

is to describe the time variation of the internal exchange of the

inorganic phosphate between both the blood and the tissue.

Thediscussion of this example will be more complete and will

include a delineation of the assumptions, and some of the restric-

tions, of compartmental analysis.

,Let the blood be designated as compartment 1, and the.tissue

as compartment 2. A diagramatic representation of the two

compartment system is shown in figure 9.7.

K3

Kl

K2

#2

(Tissue)

Two Compartment Model of Transfer

of Inorganic Phosphates

Fig. 9.7
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The diagram is an oversimplification of the actual prOleSs by
%

which the inorganic phosphate enters the blood, is tran4ferred to

the tissue and is then returned to the blood. Many 'complex biochemi

processes are involved in the transfer. For example, the inorganic

phosphate could enter the blood from several sources and with differ

flow r tes from each source. Since an accurate accounting 'of the
4001,44a

differen rocesses by which each source contributes inorganic phos-

phate to the blood is far too complicated, the mass flow of the phod

phate into the blood is assumed to be'some average of the total of

the flows of inorganic phosphate entering the blood. This flow is

denoted by Fl. A similar remark obtains About the flow of the phew-

phate leaving the blood. There are several avenues by which the pile

phate may leave the blood and the exiting mass flows of each avenue

are different. It is assumed that the total of these mass flows cai

be represented by an average exiting flow F3. It is further assumed

that the exiting average mass flow is proportional to the concentra-
,

tion of the inorganic phosphate in the blood.

The mass How at which the phosphate leaves the blood to enter

the tissue is also assumed to be a total mass flow since there i'sr
more than one process by which such a transfer of phosphate may occt

An analogous statement may be made about the flow of the inorganic

phosphate from 'the tissue co the blood. The constants of proportior

ality associated with each of the flows are different because the
*

biochemical processes for each flow ard different. The technique of

representing the total of all contributing flows from one compartmer

to another by a single total such flow is fundamental to compartment

analysis'since it eliminates the necessity of accounting for each o

the contributing subsidiary flows. Because of this, compartmental

analysis is a great oversimplification of the total chemical kinetic

process. A more thorough accounting of each individual flow, togett

with a determination of the fundamental chemical kinetics necessary

to understand such mass transfers, is-the.subject of much intensive

investigation. We have used the term mass flow because we are inte

ested in describing the mass of the inorganic phosphate'in various

components of the system at different instants of time. This requi-

the notion of a flow of mass or mass flaw rate which,as was previoui

noted, is measured in units of mass time
-1

. A complete descriptit
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of the dynamics of the eacchange of the inorganic phosphate between the blood and

the tissue naqtdres a knowledge ot the tine variation of the quantity of

inorganic phosphate in both the blood and the tissue. The direct

e-Verimental Obtainment of ttliS variaticm is usually not possible and con-

sequently indirect methods must be used. As mentioned previously, one mach mathcd is

the tracer method whigh will be discussed later. Because this

example involves the determination of the time variation of quantities

of inorganic phosphate.in the tw6 compartments, the fundamental quan-

tities of interest are the masses of phosphate in the various com-

partments. In many problems, such as those involving the determina-

tion of the intensity of radiation or the chemical kinetics of a

reaction, the concentration of a substance or of a material is the

primary quantity of interest. Compartmental analysis is also a

useful method for the analysis of these problems.

With this heuristic discussion as a background, we list some of

the simplifying assumptions that are usually made in applying compart-

mental analysis.

(1) The amount of substance being transferred frau a ccapartment

during a short period of time is proportimal to the mncentra-.

tim of the substance in the ainpartment and to tle 14mIth

of the time incrawerit Dl. Since the volume of the oaripartnent

is assumed to be constant, this assumption imlies that the

anxrt of the sWostarce leaving a oanpartment in a time increment

is proportional to the mass of the substance in the catpartuent.

There is abundant experimental evidence substantiating the validity

of this assumption, e.g. Sheppoemd (1962). The oonstant of propor-

timmaity is frequently called a transfer coefficient, beattme it

relates the effective amount of the substance actually being

transfmnmd in the 4mall time increment to the =Runt of the sWbstance

present in the =apartment at the time of the transfer.

(2) The molecules of the reaction participate in the process in

a random way. Thus, there'is no diAinction between the old

and the newly formed molecules.

(3) The kinetic processes are irreversible.
81IL

(4) The system being analyzed is described by the fewest number

of possible compartments.

(5) The compartments 'are of constant size throughout the time of

interest. Thus, if the concentration of the substance is

known, thp amount of the substance in the compartment is

9.21 484



obtained ty multiplying the concentration by the volume

of the compartment. In this way the time variation of the

(ivantity of the substance in t..he corpartmeni may be obtained

if the time variation of the concentration is known. Anal-

ogously, if the time variation of the total quantity in

the compartment is known, the variation of the concentration

may be cbtained by dividing by the volume of the compartment.

(6) The material, upon entering the compartment, is instantaneous-

ly thoroughly stirred and mixed. In reality, there is a

short but firate time of mixing; but this approximates in-

stantaneous'mixing if the mixing time is veiy short compared

to the turnover time of the mass of material in the compart-

ment.

Theso assumptions 'are modifications of those given in Atkins (1969

and the serious student Is encouraged to become familiar with this work

The first and last ,ammmIction form the bas.i.s of the ccupertmental arelysis

of the tracer method. Their importance will be more fully appreciated

after the student has read the section on the determination of cbnstant

It is customary to state the first assumption in terms of the instanta-

ricous time rate of change.. Thus, the first assumption is usually

stated as, "The rate of loss of a substance ftom a compartment is

proportional to the concentration of the substance in that compart-

ment".
t

Since, for short increments of time, the loss rate nay be-assured

to be constant, our statement of the first assumption in terms of the

transfer of an amount of material in an increment of time is a simple

modification of the usual statement. Assumption #1 is very important

as it permits the calculation of the amount of sudstance being trans-.,

ferred in an increment of time. Recent theoretical. mefforts in co-

partmental analysis are aimed at permitting the removal of some or all

of-these assuMptions. The discussion of'such methods requires a very

detailed discussion of the'biochemistry ind physiology or biology

peculiar to the phenomenon under analysis -and.consequently will not

be discussed here. This fact is mentioned to indicate another area

in which computer assisted analysis is enlarging understanding.

InAhe caripartment diagram shcwn in fiq.. 9.7, Fl deldgpates the mass flow

of the inorganic rtosphate frau an outside source into the blood. This flaw is pre-

scribed and is analogous to a driving force in a nechanical or physical sysimmil. It

may vary in time or be constant. The constant of proportionality

9.22 --...



\\
\\*relatinl 4-11e amc -c of inorganphosphate which leaves the blood in

an indrement of time to the amotnA o:° phosphate' in the blood during
this time increment is denoted by la. Similarly, 1(2 denotes the
transfer coefficient which relates the amount of phosphate leaving
the tissue to enter the blood during the time Dl to the amount of
inorganic phosphate in the tissue during that time increment. F3

designates the increment of mass of the phosphate leaving the blood to

qp elsewhere-and the corLesponding constant of proportionality is

denoted by K3. Thus,
0%.

F3 (I) = K3*Q2(I)*D1.

If Cl(I) and C2(I) denote the concentration of the phosp;hate in

the blood and the tissue respectively, and Ql(I) and Q2(I) \denote

the corresponding masses of phosphate, we have

Ql(I) = V3,*C1(I)

ard Q2(I) = V2*C2(I)

where VI and V2 denote the respective volumes of the compartments.
The equations of =part:mental analYsis are frequently derived using the

Fick principle which is a statanent of the conservation of material in the
system. The principle is a statement governing the time behavior of a quantity
or substance, Br being transported by the fluid. .The principle states that:
"In a small increment of time, the change in the quantity S in a ca:partment
is equal to the difference between the wount of S entering the cawtment
and the amount of S leaving the darpartnent in the sane increment of tine plus
the amount of S being created in the canpartment mirnis the amount of S
being destroyed in the danpartment during this sane time increment". In all
of the examples with which we shall be concerned, it will he assuned that
there is no creatim nor destruction of the substance S in the canpartment
and consequeintly ue shall timit our discussion to those prdDlems requiring only
an accounting of the entering and exiting flows. With this background we
are mu mewed to derive the equations describting the flog of tie material
in the systan.

By using the first assumption it is evident that the amount of
phosphate transferred from the blood to the tissue in the Ith time
increment is Kl*Ql(I)*Dl and that the amount of phosphate flowing
into,the first compartment from the tissue is K2*Q2(I)*Dl. During the

sane time increrent the mount of phosphate entering =wines* 4/1 frcm the outside is

FI*D1 arxi the amount leavjag the aavertinfn 6.9 IOVI(I)*DI. In these expressims, DI



represents the length of the Ith time increment. In thia work,

it is assumed that the time immanent is constani arid srall. Now, an appli-

cation of Pick's piinciple to the first compartment gives

01 (I+1) = Q1 (I)+(F1 (I)--Kl*Q1(I)+1(2*Q2(1)-143*Q1 (I) ) *D1. (9.9)

When applied to.the second compartment, the Fick principle yields

Q2(I+1) 02(I)+(Kl*Q1(I)-1(2*Q2(I))*D1. (9.10)

We ronind the student that the quantities Ql(I+l)-Q1(I) and

02 ( I+1) -Q2 ( I) are the respective differmcms of the commtrations in coch

omparbnek fran cme period to the next. Thus, the previous discussion was con-

cerned with the development of expressions for the change in the vari-

ables in one time .period in order to apply the fundamental law of

change. By now the student should have realized that the discussion of

jriost of the topics in this work has been concerned with the obtainment

of the change in the variable or variables in a time period in order to

use the law of change. This reminder is being given in order that the

student might better Appreciate the simplicity of the approach and

the utility of the law.

The construction of the principle part of the program is quite
i4

simple. Provision must be made for the entering of the transfer

coefficients. The entering of the time variation of inflowing inorganic

phosphate, Fl(I), may be accomplished by a table or a function. The

program was lun assuming an initial concentration of inorganic phosphatt

Om the blood equal to unit strength. It was fprther assumed that no

phosphate entered the blood except that being returned from the tissue.

Thus, Fl(I) was set equal to zero for the entire run. The values for

the constants of proportionality were chosen identicaltto those used by

Atkins (1169) and runs were made cortesponding to a time increment of
0.1

I unit. Figure 9.8 lists the program and it should be self-explanatory. The heart

of the program is contained in lines 200 to 230. Figure 9.9 displays the output of

a typical run, and figure 9.10 portrays the graphical resents of a tvoical run.

7
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411,

1 REM JULY 30, 1975
5 REM TWO COMPARTMEN1-MODEL OF TRANSFER OF INORGANIC PHOSPHATE

18 DIM 01<205),Q2(205),F1(205),T(205)
a PRINT "TYPE THE TRANSFER COEFFICIENTS Ki, K2, K3"

30 INPUT K1,K21K3
35 PRINT
40 PRINT "TYPE THE TIME INCREMENT Di"

45 INPUT Di
46 PRINT
47 PRINT
48 PRINT
55 FOR 1=0 TO 280
57 REM INST. 55 TO 70 ASSURE NO INFLOWING PHOSPHATE

60 LET F1(I)=0
78 NEXT I
185 T(0)=0
187 REM SETTING 01(0>=1 GIVES UNIT INITIAL STRENGTH

190 LET 01(0)=1
195 LET 02(0)=0
197 REM INSTR. 200 TO 230 ARE PRINCIPLE PART OF PROGRAM

200 FOR 1=9 TO 200
205 LET T(I+t,=T(I)+Di
218 LET 0/(I+1)=01(1)44.F1(I)-K1*O/(I)+K2*02(I),-K3*01(I))*Di
220 LET 02(I+1)=02(I)+(K1*O1(I)-K2*02(I))*D1
238 NEXT I
290 PRINT " I T(I> O<I) .02(I) F1(1)"

295 PRINT
308 FOR I=0 TO 40
320 PRINT I,T(I),A1(I),02(1),F1(I)
330 NEXT I

READY

Fig. 9.8
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In order to dhaa the effects on the results of different time inmments,

the program was modified to accommodate smaller time increments by

properly altering the dimension statement and lines 55, 200, and

300. Figures 9.11 and 9.12 show the results for time steps of

0.5 and 0.1 respectively. A comparison of the results correspond-

ing to the three different time increments reveals small differences

in the numeric41 values. Fot example, the maximum value of the con-

centration of the inorganic phosphate in the tissue occur's at slightly

different times for the three time increments. Similarly, the numeric-

values of the maximum values are also different as are the valiies of

the phosphate concentrations in beth the blood and the tissue for cor-

responding times. These, and other differences in the results, are

due to the magnitude of :he time steps. In sOme problems, it is the

case that for a small change ia the time step there is an unusually large Change.

in the numerical results. Such prealems are said to be unstable. It

is important for the student to know of,the existence of instability

and to be able to recognize it. A ciude method for detedting the

existence of instability is to compare the degree of agreement of

results obtained by running the program with time increments.which are,

within 10 to 25 percen( of each other. If the-results are !kit rea-
*

sonably close to one another, there is cause to suspeat an instability

These statements are very loose and cavalier and certainly need U. be

made more precise. The princiRle codcern in this work is_tb-

develop computer based methods of analysis. However, it serves no

purpose -to develop algorithms or programp which are unstable and hence

useless. Thus, your author's purpose in mentioning the phenomena-of

instability at this point is to alert the.student to)ts existence and

to suggest a very rough and ready, albei not infallible, method for

'detecting it. The effect of accumulating a small error is shown in tht

second column of figure 9.12 where a non-integer representation of

the total time occasionally appears. This error isecaused by the com-

-plater repeatedly adding the Nunded binary representation q 0.1.

With this brief di4ression we will continue the discussion of

comparttental analysis.
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t.
Example #3

This example 15,,,ihe study df the metabolism and excretion'of

paxacetamol by Cummings, King and Martin (1967) and is taken from

Atkins (1969). Their experimfant consisted in measuring the elimination-.

of nine of: the metabolttes of paradetamol.in a buman who had presumably

receivpd the deug oially. Following Atkins we will consider only*the-

formtion7,4nd excretion'df paracetamol sulphate.

It is thought that the paracetamol enters the plasma anithatit is ix

the plasma-wh4e the metabolitei qf paracetamol are formed. A portion

of the paracetamol is transformed:into paracetamol sulphate and is

then transferred to the urine where the time variation of the sulphate

was experimentally measured. Part of the remaining paracetamol in the

lasme is transformedinto otWer metabolites. These metabolites, along
.

with-the paracetamol.itself, diffuse out of the plasma at a rate which

is assumecrto be propoTtional to the quantity.of,paracetamol present

in th:e plasda. A Kepresentation of the compartmental model of this

system is showhAn,fig. 0.13:

Kl

if

K2 Q2
K3

Iwo 3Q;\

A

%.11141411ft
Portrayal of th,e Metabolism and Excretionu

Fig. 9.13

f1,1

9.31
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where Olvdenotes the quantity of paracetamol intbe plasma and"

02 .and 0 denote the quantity Of paracetamol sulphate in the

plasma.and tI4 urine tespectively. .In this model the first
.

compartment represents that portion of the plasma which contains

the paracetamol which is the source of the sulphates. The second

gompartment 'represents that portion of the plasma which contains

the sulphates and the third coMpartment denotes the urine into

which the paracetamol 'sulphates flow. In accord with.the assump-

tions listed above, t4 paracetamol sulphate is.assumed to be'

generated in the first compartment and to4.then leave tHls compart-

ment at .a rate which is-directly proportional to the quantity

of paracetamol in the compartment. K1 Will denote-the constant

of proportionality relating the amount of paracetamol and paraceta-

mol metabolites leaving the plasma in a time D1, and K2 will

denote the constant of proportionality ,relating the amount of

paracetamol converted to paracetamol sulphate in the time Dl.

Finally, K3 will denote the transfer coefficient associated

with the transferring of the paracetamol sulphate from the' plasma

to the urine.



A 441X, lox this cieveloppent wita the mathematical

developm,,It given by Atkins redjuires a careful recognition of the

different notations. The ncessity for the different notations is

due.to the restriction of a single capital letter followed by a single

integer as required in the BASIC programming language.
The derivation of.the governing equations is a6complished by

applying Fick's principle to each compartment and using the first
assumption to enable the application of the law of change to each quantity.
For the fir;t compartment it is eviident that the quantity

(Kl*Q1(I)-44C2*Q1(I))*D1

w represents the amount of paracetamol leaving the first compartment in

the ith time increment. Thus, the equation governing the change

in the amount of paracetamol is

Ql(I+1.)=Ql(I)-(K1*()1(I)+K2*Q1(I))*Dl. (9.11)

The amount of paracetamol sulphate being created in the interval of

time D1 is

K2*Q1(I)*D1

and the amount leaving in the same time intervaltis

10*Q2(I)*D1.

Hence, for the second compartment,

Q2(I+l)=Q2(I)+0(2*Q1(I)-K3*Q2(I))*Dl.

In a similar manner

(9.12)

(23(I+1)=Q3(I)+10*()2.(I)*D1 (9.13)

is the equation governing the time change of the paracetamol

sulfate in the third compartment. The construction of a computer

program will be left to problem *4.

- It is usually the case that compartmental analysis of human

physiological phenomena is more complex because such analysis

requires many compartments and thus, many "paths" by which sub-

stances May be transferred. The most general three compartment

model is shown in fig. 9.14. 4 6
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Pit 03
14445T3

General Three Compartment Model

Fig. 9.14

The equations governing the behavior of the system are obtained in

the usual manner. They are:

(21(I+1)=Q1(I)4.(F1+T2*Q2(I)+10*03(I)-(K1+El+T1)*Q1(I))*D1

Q2(I+1)=Q2(I)+(F24-T3*Q3(I)+K1*Q1(I)-(K2+E2+T2)*(j2(I))*D1

03(I+1)=Q3(I)+(F3+1C2*Q2(I)+T1*01(I)-(10+E3+T3)*Q3(I))*D1

The quantities, Fll F2, and P3, denote the entering flows tp each

omputmeft. These flows are usually specified and are sametimmi maned the

"drive" flags in analogy with the notion of driving forces in vibration 'theory,

Itle quantities, Ea, IV and E3, an? tle ve transfer coefficients relating

the ccoceitrations in the compartments ting flows which do not mtar otter

omTputments. Ell 321 R3 and Ti, T2, T3 are transfer coefficients. It is usualli

the case that T1=101, T2=4C2 and T3=1C3. A principle um of such sodas is to

obtain an understanding of the, chemical kinetics of a phyaological phenmena.

It is frequently the case that acre than cne theoretical =del may describe a

aystem Sprinscal ani attalberg (1949) describe a two mampartment model for

the description of the meiabolism of organic nitrogen, and in 1951 ,

Rittenberg constructed a three parameter model of the same phenomena

The decision as to which model is the most valtd is a difficult

9.34
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decisibn and the fourth assumption is usually invoked when,attempting

to make the decision.

Probably the most difficult part of compartmental analysis is the

determination of the transfer coefficients. The usual procedure for

their determination rests on a comparison of numerical results wi.th

experimental results. A 'set of values for the-transfer coefficients

is assumed in the model and the numerical results obtained by usilig

these coefficients is compared to the experimental results. If satis-

factory /tgreement is not obtained, the coefficients are altered until

the desired agreement is obtained. This is a process which is easy

to describe but difficult to actually carry out and we will discuss

it later in this chapter. Because of the difficulty of obtaining

the c6nstants of proportionality, compArtmental models are usually

restricted to a small number of compartMents, even-though the construc7

tion of computer programs for the analysis of modeleconsisting of

several compartments, is rather straightforward. The problem of
-

determining the transfer coefficients is called the inverse problem,

Monot and Martin (1974).

4
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The Tracer Method

Since most of the experimenial data uged to determine the rat

constants is obtained With the aid of tracer methods, it is appropriz

to give a short summary of the method. The texts by Sheppard *(196.2)

and Atkins (1969) contain a more complete exposition of the subject.

It is exceedingly difficult to obtain, by direct means, the trait

fer coefficients of substances in a biochemical reaction occurring II

a living entity. These coefficients are usually obtained by an in-

direct method called the tracer method. This method consists in

"labelling" or "tagging" the substance to be measured with a "tracer

which has the property that it is easily detected by an observer.,

Frequently, the tracer Is a radioactive isotope; hommer, occasionally dyes at

also uspd as tracers. In essence, the tracer method consists in add.
0.,

a small amount of the tracer to the substance of interest, called tht

mother substance. As the 'mother' substance is transferred from one ct

partment to another compartment in the system, a proportion of the'

tracer.is also transferred as it is carried along with the mother

stance. There is thus a change of tracer concentration in each cow-

partment and the time variation of the tracer concentration in the

compartments can be experimentally noted. Because it is assumed tha

the tracer does not alter the rate of transtm: of the miter substame, the

transfercoeflacimits used in describing the tracer time behavior are

Identical with the transfer coefficientS used in deScribing the time

behavior of the mother substance. A comparison of the experimental

results with the numerical results obtained from a theoretical model

of the-transfer of the tracer permits the determination of the trans-

fer coefficients. These coefficients may then be used to construct

model of the transfer of the mother suiastance and a computer based st

tion of this model gives the dynamic i4havior of the mother -substabC.

in the system. In this way the tracer method is an excellent exampli

of the simultaneous use of theory and experiment to atain understant

ing.

Many biochemical processes arØ
(

steady state processes and since

their analysis requires the use o#' tracer methods, we present a brie

discussion of the notion of a steiady state. Before giving a formal

definition of steady state, we qive an example of its occurrence. Ct

sider the exchange of water bet een the plasma and the ascitic fluid



It is known that water enters the plasma through the large intestine,

leaves the plasma through the kidney, and that there is a flow of water

from the plasma to the'ascitic fluid and return. The two compart-

ment configuration shown in figure 9.7 can be used to represent

this system if the first compartment denotes the plasma and the

second compartment denotes the ascitic fluid. Q1 and 02 den9te

the amounts of water in each-of the respective compartments. The

entering flow of water to the plasma is denoted by Fl and the

exiting flow of water to the kidney, P3, is described.by the

transfer coefficient, 1(3. The exchange rates of water between

the plasma and the ascitic fluid are associated with the respective

transfer coefficients, KI and K2. The dynamic process of the exchange

of water between the plasma compartment and the aslitic fluid compart-

ment is said to be in a steady state process becallse there are actual

flows of water yet there is no change in the quantity of water in each

of the cOmpartments. For this reason the quantities of interest are

the transfer rates involved in the exchange process. Tfie e4uation

. governing the quantity of water in the ascitic fluid can be written

in the form

Q2(I+1) 02(I) F (KlatQl(I) K2*Q2(I))*D1.

Now, if it is assumed that there is no change in the amount of

water in the ascitic fluid from one period to the next, it must

be thr r-ase that

Kl*Q1(I) = K2*Q2(I).

However, both Kl and K2 are constant and since Q2(I) is also assumed

to, be constant, it follows that Ql(I) must also be constant. Thus,

the assumption of no change in the amount of water in the ascitic

fluid from one period to the next implies that there is also no

change in the &mount of water in the plasma from one period to

the next. There is then a steady state.

5c 0
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With this example as a background, we now define a steady state

process. Our defihition follows closely that given by Atkins (1969).

A "Steady State Process", or "Steady State", is said 'to exist in a

system of a mixture of substances if they are transported from one

part of the system to another, or are transformed from one into anothe

and yet, because their rates of removal are equal to their rates of

replacement, their concentrations or amounts in all relevant compart-

ments remain constant during the interval over' which observations

are made. If there are no flows into or out of the system, the system

is called a "Closed' System'. A closed system which is in the steady -

*state is said to be in a state of "Dynamic Equilibrium".

The importance of tracer techniques to the successful analysis of
lb
steady state phenomena is vividly pointed out by Riggs (1972) who

states that, "Without the ue of isotopic tracers it is always difficu

and often impossible, to study the dynamics of such a system because

no observable changes in the concentrations of S occur unless we

deliberately add an appreciable amount of S to one of the compart-

ments. .But the moment we add S to one of the compartments, we de-

stroy the steady state which is the very thing we want to study! It is

the prime virtue of isotopic tracers, and particularly radioactive

9.38



tracers, that the: allow us to avoid this difficulty." The substance

S referred to by Riggs in this quote is the same as our mother sub-

stance.

A further use of tracer kinetics is the determination of the

rates of synthesis of products of biochemical reactions. This de-

termination is possible because it is frequently the case that the

substance being transported is created as a result of a biochemical

reaction. Consequently, a determination of the rate at which the sub-

stance is being transported from one compartment to another provides a

direct measure of the rate at which the substance is being synthesized.

The work of Popjak and Beeckmans (1950), in determining the rate of

synthesis of cholesterol by growing fetuses is an example of the use

of tracer methods in this manner.

As an example of the tracer method, we consider the determinatiOn

of the amount of body water in a man. The patient receives a small,

bUt known, amount of "labeled" water.' The label is usually deuterium

or a radioactive isotope such as tritium and its concentration in the

water is also known. After sufficient time has elapsed, it is assumed

that the labeled water has thoroughly mixed with the body fluids end a

sample of body fluid is taken. Since the action of mixing with the

body fluid will have diluted the concentration of the labeled substance

in proportion to the amount of body fluid, a measurement of the concen-

tration of the label in the sample will enable the determination of

the mass of the body fluid. For example, suppose that 1000 cc of

label. 3 water containing 120,000 counts per minute was injected.

"tfter mixing, a sample )t- 10 cc of body fluid is taken and is found to

havc an activity of 20 counts per minute. Since the original concen-

tration of labeled water was 120 counts per minute per cc and,the final

concentration was 2 counts per,minute per cc, there has been a dilu-

tion of the initial concentration by a factor of 1/60. Thus, the total

amount of body fluid is 60*1000 cc or 60 liters.

This example is an illustratic:rn oi "isotopic dilution", that is,

the use of an isotore to determine the amount of a substance present in

a system. The student should note the close analogy of the.tracer

method with the technique of tagging a small number of fish in a pond

for the purpose of determining the total number of fish in the pond.

In this technique, tl.e number of fish that are tagged is noted and the

9.39 5"4-1



tagged fish are then released into the lake. AfteX'a sufficient

amount of time, the tagged fish are assumed to have thoroughly mixed

with the other fish in the pond. A prescribed number of fish are

again caught and the ratio of the number of tagged fish in this catch

to the original number of tagged fish released into the pond enables

an estimation of the total number of fish in the pond.

Intuitively, it is seen that a tracer should have the following

properties:

(1) The biological or physiological system should not be able

to distinguish between the mother substance and the traces

(2) There should be no exchange of the tracer with other con-

stituents in the system. This implies that the only change

in the tracer concentration should be that due to the trans-

porting of a portion of the tracer as it is carried ilonci

with the transferring mother substance. Thus, the transfer

coefficients describing the dynamics of the tracer are the

same as the tranSfer coefficients describing the exchanges

of the mother substance.

(3) The tracer must be such that it is possible to accutatelY

describe its variation in time by the use of a model. The

model must reflect the transfer rates and the transformatior

of the mother substance in the system and in this way permit

the determination of the time variation of the substance.

The model may be expressed in a programming language or in

the language of mathematics.

ThiN3e properties imply that, when a tracer is added to the sr3tem, the

kinetics of the system is not disturbed. This is usually

accomplished by labelling the substance with a very small amount

of the tracer.

Because the absolute radiation level of the tracer used in an

experiment may be arbitrarily set by the investigator and because we

are interested in the proportionate change in the tracer conc-entratior

it is convenient to formulate tracer kinetics problems in terms of

fractional amounts or ratios. The student will recall that in the

preceding example, it was the dijution, or,proportionate decrease,

of the original concentration of the tracer that was.significant;

'not the change in absolute amounts of the tracer. For this re.ason,

the term "specific activity" or "concentration" of the tracer is most
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helpful. The specific activity or concentration of a tracer is definee
to be the ratio of the amount of the tracer to the ahnunt of the

mother substance. If the tracer is radioactive, the amount of radio-

activity is measured in terms of counts per minute or a counting rate:

Because the amount of*the mother substance is measured in volame or

mass units it is usual to measure the concentration, or specific

activity, in counting rates per m-mole or counts per minute per milli-

gram. This is due to the fact that the efficiency of the counting device

is assumed to be constant but unknown: For this reason the term

"relative specific activity" is useful. The relative specific activity

of a tracer, or traced substance,, is defined'to be the ratio of the

specific activity of the substance at a given time to the specific

activity of the substance at a different time. It is usually the case

that instruments for measuring radioactive tracer emissions measure

the relative specific activity. Thus, the time variation of the con-

centration of the radioactive tracer is obtained by first deter-

mining, in some manner, the specific activity of the tracer in the

mother substance at an initial time and then using the instrument to

measure the relatrive specific activity at other instants of time with

remspect tothe specdfic activity recorded at the initial time. The

relative specific activity is also the ratio of the specific activity

of one tracer substance, at a given timerto the specific activity of

another tracer substance at the same time. This latter definition is

partioularly useful when comparing the relative activities of two or

more ,acers.

If the isotope is ,,table, its concentration is usually measured

n :erms of an "abundance ratio" which is defined to be the ratio of

the nilmber of atoms of the tracer isotope to the number of atoms of

the most abundant natural isotope. A mass spectrometer is an instru-

ment for detecting such a ratio. Since the number of atoms of the most

abundant isotope is either known beforehand or is determinable, the

time variation of the abundance ratio as measured by the mass spec-

trxxxter, enables the 6M:armination of the variation of the nunter of atoms

or the time variation ot the concentration of the stable tracer isotope.

With this brief summary of tracer methodology we introduce some

notation that will.be useful in oxistructing our computer models. Let:



Ml = Amount of the mother substance Measured in,grams, cc., etc.
.

R1 = AbSolute amount of the tracer measured in counts per minate

microcuries, etc..

Roi = Amount of the, labeling substance measured in graMs', cc., et-

Cl = Concentr-ation of the tracer in the labeling substance
4'

measured in coUnts per minute ptr gram, microcuries per cc.

etc.

Al = Concentration of the tracer in the total amo,.Ant., of the-

labeled substance. It is measured in the same uni 'as,Cl.

Cl is also called the "specific activity" of the origina, abeling

substance and similarly Al is often calld the specifiE activity

of the labeled mother substance. "The total amount of the labeled

substance, T1,' is the sum of the amounts of the labeling substance

and the amount of the mother substance. Thus,

011,

a.
Tl = Ql + Ml.

ln terms of this notation it is seen that

and

Cl = Rl/Q1

Al = R1/(01 + Ml).

Sinc the quantity of labeling substance added tb the mother substanc

is usually very much less than the amount of the mother substance,

i.e. Q1 <<< Ml, there is very little loss of accuracy if we write

Al = R1/MI.

In fact, in many texts this equation is given as the definition of

specific activity or concentration of the labelled substance.

To assist the student in understanding the notation we illustrat

the application of the notation to the previous enple of isotope dilution. In

team; of this example, we have
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and thus

Now

and

01 = 1000 cé,

R1 = 120,003 counts per min.

Cl = 120 counts per min. per cc.

Tl = M1 + 1000

Al = 120,000/(M1 + 1000).

From the sample it was determined that Al = 2 counts per min. per cc.

and thus,

a

or

2 = 120,000/(M1 + 1000)

M1 = 59,000 cc.

Since '1o0 << 59,000, no significant error is made by.ignoring the

ilmc-rt of the labeling :.,libstance, 1000 cc., in the denominator

he above equation. In this event, the amount of the body fluid

s then

1
M1 = 60,000 cc.

= 60 liters

which agrees with our previous answer.
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Determination of Transfer Coefficients.

The problem of the determination of the transfer coefficients

has frequently been mentioned in the preceding examples. The

next example illustrates a method for Obtaining transfer cOeffi-

cients and will require an application of the search routinei

which were developed in an earlier chapter.

We.consider the problem of determining the transfer coeffi-
?

cient occurring in a single compartment model cif the turnover

of inorganic phosphate in a rabbit plasma. It is known that

inorganic pholphate enters the plasma of.the rabbit and then

leaves the plasMa. A single compartment model is shown in figure

9.15.

FØ Ml, R1, Al A

Single Compartment Model of Transfer of

Plasma Phosphate in Rabbit Plasma

, Fig. 9.15

The figure is a composite representation of the system and the

notation appearing in the figure is to be intmrpreted in the

following way. If the flow of he mother Substance is to be

considered, MI isLunderstood to repr6sent the quantity of intrest.

On the other hand, if the flow of the
32P-phospilate ion is the

quantity of interest, the quantity R1 is to be understood.

Finally, if the yariation of the specific activity.is the quantity

. 4 4.
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of interest, it is understood that the symbol Al is to be ised.

.A singlre notation may be used rto denote the exiting flow rate

'because the 'transfer coeffipient is assumed to be the same 'for

all pree quantities. The entering flow rate of.the mother sub-

-stance wilIebe denoted by FO(I).
4-

The equation governing the behavior of the transport of the...4r

inorginic phosphate can be obtained by a proper accounting of the

entering and'exiting mass flows during an increment of time. In

ferms of the previous notation, the quantity of ptZsphate entering

tkte compartment in a tiMe period is

ts

t13

FO(I)*bl.
4

By Fick's law, the quantity of phosphate leaving the compartment

in the same time period is

Kl*Ml(I)*D1,

and th*erefore the change in the amount of phosphate in the com-

partment during)the time increment is.

TI)*D1 Kl*M1(I)*D1.

An application of Fick's principle, which is4form of the fun-

damental law of change, gives

Ml(I+1) = Ml(I) +(FO(I) Kl*M1(I)*D1.

ThiS is the equation governing the time behavior of the amount

of inorganic phosOhate in a rabbit plasma.

In order to use this equation, it is necessary to obtain

the transferi.coefficient, Kl. The procedure for &Staining the

ta:ansfer coefficient is the following:

(1) The inorganic phosphate is labeled with tracer 32P-phosphate

ions and a record of the time variation of the specific

activity of radioactive ions is obtained.

Ecok 0
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(2) An equation is derived which describes the time varia-.

tion of the specific activity of the tracer substance.

Because the tracer is assumed to not alter the kinetics

of the turnover of the inorganic phosphate, the equation

will contain Kl as a parameter.

(3) The equation will be solved for various values of Kl

and the value of the transfer coefficient which gives

the least value for the measure of closeness of the

numerical and the experimental results will be the
4

desired value for the transfer coefficient.

student should note that this proceduke is entirely analogous

to that used to obtain the growth coefficient in the Malthus

model of the population growth of the United States. _The value

of K1 so obtained, can now be insekted into the equation governing

the time variation of the inOrganic phosphate and this equation

solved' to predict the variation in time of the phosphate. In

this problemiand indeed in nearly all compartmental analysis

problems, the structure of the equations governing the,behavior

of the mother substance an'd the behavior of the tracer substance

are the same. Only fhe values of the parameters or the initial

conditions may differ. This means that the solutions to the two

sets of equations will be similar and hence the time variation of

the mother s,pbstance and the tracer is also similar. Indeed, in

many cases it is not necessary to refer again to the equation

governing the mother substance since the information of interest

can be obtained directly from the transfer coefficient or from an

examination of the solutions of the equation governing the time

variation of the specific activity of the tracer. For example,

in some problems, the quantity of interest is the turnover time

and this can be obtained from the transfer coefficient directly.

We now proceed to derive the equation governing the change

of the labeling
32
P-phosphate. It is assumed that there is a

thorough and immediate mixing of the tracer phosphate with the

inorganic phosphate and hence the tracer ions are transported"-

immediately along with the phosphate. The magnitude of the influx

of the entering
32P-phosphate is the product of the flow rate of ,

9



the phosphate and the'concentration of the ion, AO(I). Both

FO(I) and AO(I) would have to be specified and entered as

input data. In a single time increment, the quantity of

32P-phosphate entering the compartment is

FO(I)*A0(I)*M1(I)*D1.

By the first assumption, the quantity of 32P-phosphite leaving

the compartment in the same period of time is

Kl*Rl(I)*D1

and thus, the change in the amount of
32P-phosphate duririg the

period is

FO(I)*A0(I)*M1(I)*Dl Kl*Rl(I)*Dl.
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As before, an application of the fundamental law'of change gives

Now

R1 (I+l) Al (I) + (F0 (I) *AO (X)*M1(I)--Kl*RI(I))*D1. (9.15)

R1(I) = Al(I)*M1(I
0

1.11011 IF ff.

and thusithe previous equation may be written as

A1(I+1)*M1(I+1) =A1(I)*M1(I)+((F0(I)*A0(I)-xl*Al(I)*M1(I))*D1.
(9

If it is assumed that the system is in a steady state, that is

Ml(I+1) = Ml(I) = Ml, I=0,

thenhe preceding equation becomes

A1(I+1) = M(I) + (FO(I)*A0(I)/Ml Kl*A1(I))*D1. (9.17

This equation, in conjunction with the experimentally obtained time'

variation of the ion, will be used to determine the rate constant.

As experimental data we use the data obtained by Hevesy and

Hahn (1940) and presented In Atkins (1969). The- data is shown

;in tabular form in table 9.1.

t I : 25 50 75 100 125 150 175 200 225 25'

.087 .11 .125 .13 .1407 .1407 .1375 .1405 .145 .15.

Time Variation of Plasma Phosphate (From Atkins, 1969)

Table 9.1

9.44.
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Because Hevesey and Hahn used a constant rate of tracer infusion,

the quantity FO(I)*AO(I)/M1 must also be constant. This constant'

value will be denoted by FO. In the experiment, it was assumed that

the initial tracer concentration wai zero. Thus,

Al (0)

Since the 'infusion rate of the tracer was not iipecified, it is

necessary to determine FO as well as the rate constant Kl. For _

ease of discussion, we will use the single parameter determination

program described in figure 4.2. in order to readily use the program,

the rate =Instant, El, will be _denoted by A, .and.equation (9.17)

will be written as.'

Al(I+1) = Al(I) + (F0 A*Al(I))*Dl. (9.18)



The Jcloseness criteria will be the .least squares criteria and hence

the only significant change to the program is the alteration of the

subroutine. which .calculates the measure of closeness4

The computer program appears in figure 9.16 and the student

should note that some of the headings, as well as the dimension.state

ménts, have been altered from those appearing in the original pro-

gram. The change necessary to calculate -141 was accomplished by

replacing lines' 300 to 310 in the original program with lines 300

to 330 in the new program. Lines 300 to 330 are necessary to

calculate the transport of the phosphate corresponding to a time

increment of one minute.. Thus, D1 = I minute. The calculated and

exPerimental data are compared at 25 minute intervals. Since

there are 10 such intervals, the index I has a range of 0 to 10_

and the total time interval is 250 minutes. If a fundamental

time interval differing from one minute is to be used, this sec-

tion of the program must be altered in accordance with the change

in the.magnitude of Dl. In addition, a change in the time incre-

mT will necessitate a change in,the time unite used to express

t#e rate constant. Lines 500 to/525 of the original pro-

gram have also been changed to permit the entry of the empiricallv

determined time variation of the specific activity, E(I.), of the

phosphate ion. Finally, lines 27 and 340 of the new program are

necessary to insure the maintenance of the proper starting values

each time the subroutine for the evaluation of MI is used.

The results of a typical run are listed in figure 9.17. The

first column listed under the heading, "The values of A, M1 and H

are" displays the successive values of the rate constant.as the pro-

gram searches for the best value of the rate constant. The second

colt= displays thevalueof the closeness criteria, ma, and thethird °plum

lists the search step size. In this emagaelAhas been determined to four

significant digits. Because the closeness criteria is the least

squares criteria, the best value for A is that value which mini-

mizes the sum of the squaies of the deviations between the specific

activities as calculated with a particular value of the rate

constant and the specific.activities as empirically determined.

An examination of the program will reveal that as FO, 'the constant

infusion rate, is varied, the magnitude of the transfemcoefficient

also varies. Thus, as-stated before, this is really a Am parameter Fabian.

The situaticn is very similar to the constant environment population

model comparison with the United States population data.

9. 505
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1 REM DETERMINATION OF TRANSFER COEFF. IN ONE COMPARTMENT MODEL
5 REM DATA FROM HEVESY AND HAHN, ATKINS(1969)
8 REM D1 THE TrmE INCREMENT IS ONE MINUtE
AO DIM A1(30), A2(30), E(3O)
12 PRINT "TYPE THE INFLUX RATE FO"
13 INPUT FO
14 PRINT
15 GOSUB 500
18.REM A DENOTES THE TRANSFER COEFFICIENT
20 PRINT "TYPE THE INITIAL GUESS A AND THE INIT. CONCENTRATION A1(0)"
25 INPUT A,A1(0)
26 PRINT
30 PRINT "INPUT THE INIT. STEP SIZE H AND THE Lrm. STEP SIZE Hi"
35 INPUT H1H1
36 PRINT
40 PRINT "INPUT THE MAX. NO. OF ALLOWABLE STEPS Ci"
45 INPUT.C1
46 PRINT
47 PRINT
48 PRINT "THE VALUES OF A M1 AND H ARE"
49 PRINT
50 LET C=0
55 GOSUB 300
60 LET MO=M1
65 LET R=R+H
78 GOSUB 380
95 IF M1<=M06O TO 110
100 LET A=A-H
105 GO TO 200
110 LET C=C+1
115 IF C<C1G0 TO 125
120 GO TO 400
125 LET A=A+H\LET M0=M1
130 GOSUB 300
135 IF M1<=M0GO TO 110
137 LET P=R-H
140 LET H=H/10
145 IF H<=H1G0 TO 445
150 GO TO 65
208 LET A=A-H
205 GOSUB 300
210 IF M1(=MOGO TO 225
215 LET A=A+H
220 GO TO 140
225 LET C=C+1
230 IF C4:=C1G0 TO 240
235 GO TO, 400
240 LET M0=M1
245 GO TO 200 1

Inverse Problem forli Single Compartment Model

Fig. 9.16
4
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295 REM _INSTR. NOS. 100 TO 285 EVALUATE MI
296 REM A1(J). DENOTES QUANTITIES CALCULATED USING D1=1. MINUTE
297 REM A2(I) DENOTES THE VALUE OF 81(J) AT MULTIPLEC OF 25 MINUTES
298 REM THE J INDEX'COUNTS THE ONE MINUTE INTERVALS
299 REM THE- I INDEX COUNTS THE 25 MINUTE INTERVALS
300 LET A1(0)=A2
301 LET A2(0)=A1(0)
302 LET D1=1
205 FOR I=0 TO 9
307 FOR J=0 TO 24
210 LET Ai(J+1)=A1(J)FoA4.A1r.j
315 NEXT J .4

320 LET A2(I+1)=A1(J+1)
325 LET A1<0)=A2(I+i)
330 NEXT I
340 LET A1(0)=A3
350 LET S=0
355 FOR 1=0 TO 10
360 LET D=ABS(A2(I)-E(.1))
165 LET S=S+D*D
370 NEXT I
175 LET M1=S
180 PRINT A,M1,H
385 RETURN
400 PR.INT "EXCEEDED MAX. NO. OF STEPS"
405 PRINT "THE VALUES OF A AND MO HRE"
410 PRINT A, MO

) 415 GO TO 460
445 PRINT
446 PRINT
450 PRINT "SEARCH COMPLETE. THE VALUES OF A, MO AND C ARE"
455 PRINT A,MO,C
459 PRINT
460 PRINT

411462 REM LINES 460-485 PRINT THE BEST VALUES OF A (I) AND E(I)
465 PRINT " I A2(U, E(I>"
470 PRINT
475 FOR I=0 TO 9
480 PRINT I,A2(I),E(I)
485 NEXT I

490 GO TO 540
495 REM INSTR. NOS. 500 TO 525 ENTER THE EXPERIMENTAL DATA
500 DATA 0,.087,11,.1.25,.13,14P7, 1407
505 DATA .1375,1405, 145,

. 151
515 FOR J=0 TO 10
520 READ E(J).
525 NEXT J
530 RETURN
540-END

*D1

Fig. 9.16 (Cont.)
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1
TYPE THE INFLUX RATE FO
7. 005

1YPE THE INITIAL GUESS A, AND THE INIT. CONCENTRATION fii(0)
035, 0

INPUT THE INIT. SUP SIZE H AND THE LIM. STEP SIZE H1
7. 001, . 00001

INPUT THE MAX. NO. OF ALLOWABLE STEPS, C1
7100

THE VALUES OF A, Mi AND H ARE

035 3. 31007E-04 1.. 00000E-03
036 3. 16687E-04 1. 00000E-03

. 037 5, 18786E-04 1_ 00600E-03
0361 3. 27697E-04 1. 00000E-04

. 0359 3. 07838E-04 1.. 00000E-04
0358 3. 011.81E-04 00000E-04
0357 2. 96752E-04 1. 00000E-04
0356 2. 94583E-04 1. 00000E-04
0355 2. 94709E-04 1. 00000E-04

SEARCH COMPLETE. THE VALUES OF A, MO AND C RRE
. 0356 2. 94583E-04 5

142W E(I)

0 0 0
1. . 0837896 087
2 . 117732 . 11

. 1314E42 . 125
4 . 137052 . 2.3

5 . 129309 1407
6 . 140223 . 1407
f . 140593 . 1375

140743 . 1405
9 140804 . 145

Output from Program Shown in Fig. 9.16

Fig. 9.17

9. 53
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1.4144-+WARtiti,14,

By actually varying EV and cavaring the results obtained with each variation, your
mitt= found a reasonably close agreement (in the some of the sms of the swan,*
of the deviations) with the experimental data. The student should

modify the two-dimensional search routine, figure 5.5, and attempt-

to obtain the "best" value for both FP and Kl.

As a second example, we considec=the problem of the determina-

tion of the-rate constants in a two compartment model used to explair

the exchange of water between the plasma and the extracellulat I

fluid. It is also.assumed that water is excreted from the plasma

at urine. Insuline was used as a tracer. The example is taken

from Atkins (1969), and the system model is portrayed in figure

9.18.

Ng*

Two Compartment Model for Exchange of Water Between Plasma
and Extracellular Fluid

Fig. 9.18

yip

The first compartment represents the plasma and the second com-

partment represents the extracellular fluid. The experiment was per-

formed by Zender, Denkinger and Falbriard (1965) who injected insulir

intraveneously and recorded the time variation of the insulin in bott

the plasma and the extracellular fluid.
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The,cquations des6ribing the diffusion of the insulin are derived

in a manner analogous to that used in the previous example. Let

RI(I) 'and R2(I) denote the amountS df insulin in compartments

and 2 respectively. The amount of insulin entering the first com-

partment in a time period is

K2*R2(I)*D1

and the amount of insulin leaVing the same compartment in the same

time period is

Kl*Rl(I)*Dl + KO*Rl(I)*Dl.

This expression results from the first assumption and the designation

of the transfer coefficients by KO and Kl. An.application of the

funcipmental law of change gives

R1(I+l).= Rl(I)+K2*R2(I)*Dl-Kl*Rl(I)*Dl-KO*Rl(I)*Dl.

The equation governing the change of the insulin in the second com-

partment is derived in a similar manner. It is

R2(I+1) = R2(I)+Kl*R1(I)*D1-K2*R2(I)*D1.

Because

R1(I) = A1(I)*M1(I) and R2(I) = A2(I)*M2(I) 1=0,1,2,1,

the above equations may be written as

A1(I+1)*M1(I+1) = Al(I)*M1(I)+1(2*A2(I)*M2(I)*D1-K1*A1(I)*M1(I)*D1

-KO*A1(I)*Ml(I)*Dl

and

(

A2(I+1)*M2(I+1) = A2(I)*M2(I)+Kl*A1(I)*M1(I)*D1-K2*A2(r)*M2(I)*01.

Since the system is assumed to be in a steady stote, the quantities

of water in each cancartmente 191(I) and f42 (I) are cOnstant. Thus; we can write

4.) 8



Ml(I) M1 and M2(X) m

Furthermore, the assumption of a steady state tmplies that the rate

constants *K1 and K2 are equal. These assumptions enable the

preceding equations to be written in the simpler form:

and

Al(I+1) = A1(I)+Kl*A2(I)*(M2/M1)*D1-Kl*A1(I)*D1

-KO*Al(I)*D1

A2(I+1) =.A2(I)+Xl*Al(I)*.(M1/M2)*D1 KI*A2(I)*D1.

In most mammals the ratio of the amount of water in the plasma to tilt

amount of water in the extracellular fluid is approximately four.

Thus. we set

and get

and

M2/M1 = 4

Al(I+1) = Al(I)+(4*K1*A2(I)-Kl*Al(I)-KO*Al(I))*D1

A2(I+1) = A2(I)+(Kl*Al(I)/4 - Kl*A2(I))*D1.

This is the desired form of the eqtlations.

The data used for the determination of the rate constants KO

and Kl is taken from that given in Atkins (1969). Because there ar

two parameters to be obtained, the two-dimensional search program

listed in figure 5.5 for the determination of the growth coefficie

in the finite growth model will be used. The program will be modifi

to accommodate the above two equations. The concentration of instal.

in the first compartment has been empirically determined for 14

successive ten-minute intervals. This data constitutes the empirica



. data used in comparison with the calculated speci44c activities

to 'select the "best" set of rate. constants.

The following is a summary of ttie changes made in the originalsaumh

program of figure 5.5.

(1) Lines 1 and 5 are remark statements describing the program.

(2) Line 8 is a modified dimension statement to accommodate the

specific activities.

(3) Lines 12 and 14 are new input statements as are lines 22

and 24.

(4) The student will recall that in the original program, tI

fundamental search variables were _labeled A and B.

Lines 20 and 21 serve to identify the rate constants 1

KO and Kl with the variables A ahd B respectively.

(5) Lines 50 to 58 enter the empirically determined specific

activities of the plasma. They are denoted by El(I).

(6) Lines 26 and 27, in conjunction with lines 732 and 733 are

necessary to insure the correct initial concentrations

after a set of concentrations has been calculated. After

a set of concentrations has been obtained and the correspond-
I.

ing measure of closeness evaluated, the specific activities

A1(0) and A2(0) must be reset to their original starting

values A5 and A6 respeciively. This resetting is necessary'

because, at the end of a calculation of a complete set of

specific activities for ten minute intervals from 0 to 140

minutes the values of A1(0) and A2(0) are equal to the

values of the specific activities corresponding to 1310,

minutes. This is due to the way the specific activities

are calculated in in'structiong 705 to 730. By resetting

A1(0) and A2(0) to their initial or starting values we

insure that there is no accumulation of specific aetivities

from a calculation of one set of values of the search

variables to the calculation of ,the next set. This is a

form of initializing.

(7) Lines 700 and 701 also initialize the specific activities.

9.57
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(8) Lines 702 to 730 calculate the specific activities

using a time increment of one minute. These,instrUctionx

also save the specific activities corresponding to 4n

minute intervals: The latter pair .of specific activities

are labeled A3(I) and A4(I) respectively. The

variables Al(J) and A2(J) denote the concentrations

of the insulin in the first and second compartment

corresponding to one minute intervals. The procedure to

obtain the insulin values at ten minute intervals is to

calculate the concentrations using a one minute interval

and to then store every tenth value so obtained. The

student should "walk through" thcs part of the program, to

insure himself that this is indeea accompliehed.

(9) Lines 735 to 743 calculate the sum-of the squares of

the deviations corresponding to a given set of values Of

the rate constants.

(10) Lines 837 to 844 print out the results in order that

visual comparison can be made of the closeness of the
calculated results to the empirical results

If a "good" set of starting values is not available for the.ra

constants, the program can be used as an aid in finding them. This

may be done by choosing the number of.search steps, T, equal to o

When the program is then run, the progiam will not attempt a search

but will calculate the measure of closeness, as well as print...lout t

calculated concentrations for the guessed pair of rate constaAs':

After a few trials, it is usually possible to find a pair of "reaso

able" starting values. Using these values, a larger value for T,

say 50 'or 100, may then be used and the program will Search or.

".try to refine" these initial values. If the search is successful,

that is, if a set of rate constants are found which do minimize the

sum of the squares of theideviations, then the values should be che

to assure that a local Minimum has not been obtained. The student

should recall the methods for checking the results obtained from

search routines as stated in chapter V. -The modified program

appears in figure 9.19 and results of a-typical run are given in fi

ures 9.20 and 9.21 .

2.1
f
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RBC60 BASIC V01-05

i. REM DET. OF TRANS. COEFS., 2 COMPTS., 2 YAR. SEARCH
5 REM D1, THE TIME INCREMENT IS ONE MINUTE
9 DIM 81(20),A2(20),A3(20),A4(20),E1(20)
12 PRINT "TYPE THE INITIAL GUESSES FOR THE RATE CONSTANTS, KO AND Ki"
14 INPUT KO,(1
20 LET A=K0
21 LET 8=K1
22 PRINT "TYPE THE INITIAL CONCS. 81(0) AND A2<0)"
24 INPUT A1<0>,A2,.:0)
26 LET A5=AI:0)
27 LET A6=A2(0)
28 PRINT
10 PRINT "H AND K ARE THE INITIAL STEP SIZES"
Li PRINT "Ei AND E2 ARE THE LIMITING STEP SIZES"
32 PRINT J'INPUT H, I.:,- El, E2"
33 INPUT H,K,E1,E2
34 PRINT
37 PRINT "T IS THE MAXIMUM ALLOWABLE NO. OF SEARCH STEPS"
38 PRINT "INPUT T"
39 INPUT T
40 PRINT'
42 PRINT "Ai AND A2 ARE THE MIN. AND MAX. PTS. OF A INTERVAL"
43 PRINT "Bi AND 82 ARE THE MIN. AND MAX. PTS. OF 8 INTERVAL"
44 PRINT "INPUT Ai, A21 81 AND 82"
46 INPUT A11 821 81,82
48 REM rNsT; NOS. 50 TO 70 ARE DATA INPUT
50 DATA 3350,1688,944,593,4151 314,250,204
52 DATA 170,142,119,1001 85,71.'60
54 FOR J=0 TO 14
56 READ El<J)
56 NEXT J
84 REM INITIALIZING
86 LET Cm0
93 PRINT
94 PRINT
95 PRINT "THE VALUES OF A, MO AND C ARE"
100 GOSUB 700
105 LET MO=M1
110 LET A=A+HLET B=B
120 GOSUB 700
135 IF M1,ZMOGO TO 145
140 LET A=A-HNLET B=B
142 GO TO 250
145 LET A=A+H\LET B=B\LET MO=Mi
160 GOSUB 700
175 IF Ml<MOGO TO 185
lee LET A=A-W.LET B=8
182 GO TO 400
185 IF A<A2G0 TO 145
195 LET A=ANLET B=BNLET MO=M1
200 PRINT A,B,M0
205 PRINT "EXCEEDED ALLOWED MAX. VALUE OF A"
206 PRINT "THE VALUES OF A, B AND MO ARE"
207 PRINT A,B,M0
208 STOP
210 STOP

2
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250 LET ANIA-H\LET 0=8
0 255 GOSUB 700

270 IF M100G0 TO 280
275 LETAI=A+N\LET 8=8

277 GO TO 400
280 LET AmITH\LET 8=8\LET MO=M1
2;?.5 GOSUB 700
300 IF Mi<MOGO TO 110
205 LET A=A+HLET 8=8
307 GO TO '400
110 IF A>A100 TO 280
:20 LET A=WCLET 8=8\LET MO=Mi
125 PRINT A,8,MO
370 PRINT "EXCEEDED ALLOWED MIN, VALUE OF A"

111 PRINT "THE VALUES OF A4 8 AND MO ARE"

:22 PRINT A,B,mo
325 STOP
350 PRINT
400 LET A=A\LET B=B+K
405 GOSUB 700
420 IF Ml<MOGO TO 430
425 LET A=A\LET 8=8K
427 GO TO 500
430 IF 882G0 TO 445
435 LET A=A\LET 8=6\LET MO=M1
438 PRINT "EXCEEDED ALLOWED MAX. VALUE OF 8"

439 PRINT "THE VALUES OF A, .8 AND MO ARE"

440 PRINT A,B,MO
444 STOP
445 LET A=A\LET B=B+K\LET MO=Mi
450 GOSUB 700
465 IF M1M0GO TO 430
470 LET A=A\LET 8=8K
472 GO TO 100
475 PRINT
500 LET 8=A\LET 8=8K
505 GOSUB 700
520 iF Ml<MOGO TO 528
525 GO TO 680 .

528 IF 8>8100 TO 540
J530 LET A=A\LET B=P\LET M0=M1
535 PRINT "EXCEEDED ALLOWED MIN. VALUE OF 8"

536 PRINT "THE VALUES OF A, 8 AND MO ARE"

537 PRINT A,B,M0
538 STOP
540 LET A=ANLET 8=8-10.LET MO=M1
545 GOSUB 700
560 IF Ml<MOGO TO 528
565 LET.A=A\LET B=B-+K

567 GO TO 100
570 PRINT
620 PRINT
645 PRINT
650 LET H=H/10\LET K=K/101
652 IF H<E100 TO 658
653 IF K<E2G0 TO 655

654 GO 'TP 100
655 LET K=1(344e,
656 GO T6 100
658 IF K<E200 TO 662
659 LET Hm10*H
660 WTO 100

'Pig. 949 continued



-:6,Z PRIV*
663 !MINT
664 PRINT
665 PRINT "THE FINAL VALUES OF A1 Bp. MO AND C ARE"
667 PRINT F118.1401G
668 PRINT
669 PRINT "THE FINAL VALUES OF_ H AND K ARE"
670 PRINT H,K
675 GO TO 825
677 PRINT
680 LET A=A\LET 8=8+IONLET M0=M0
681 PRINT
682 PRINT "THE INTERMEDIATE VALUES OF A. B. MO ARE"
684 ORINT 11,8,M0
686 GO TO 650
689 PRINT
690 REM INST. NOS. 700 TO 716 EVALUATE M\N 700 LET A1(0)=A5LET A2(0)=A6
701 LET 113(0)=A5\LET A4(0)=A6-
702 LET Di=1
705 FOR Isme TO 14
707 FOR J=0 TO 9
710 LET AI(J+1)=A1(J)+(4*44492(J)-8011(J)A*Ai(J))*Di
712 LET R2(J+i)=A2(J)4.(8*A1<J)/4-8*A2(J))*D1
715 NEXT J
720 LET A30+15=A1(J+1)
722 LET A4(1+1)=442(7+1)
724 LET Ai(0)=A3(I+i)
726 LET A2(0)=A4(I+1)
730 NEXT I
732 LET AIX0)=A5
733 LET A.20)=R6
735 LET S1=0
737 FOR 1=0 TO 14
739 LET H1=E1(I)A3(I)
741 LET S1=S1+H1*H1
743 NEXT I
815 LET M1=51
817 ,PRINT
818 PRINT A18,M11 C
819 REM INST. NO 821 TO 830 PREVENT ENDLESS LOOPING
820 LET C=C+1
821 IF C(TGO TO 832
822 LEt MO=Mi
823 PRINT "THE LOST VALUES OF A. 8, MO AND C ARE"
824 PRINT A18,MO1C
825 GO TO 835
87 PRINT "THE VALUES OF H AND K ARE"
828 PRINT H,K
829 PRINT "EXCESSIVE NUMBER OF STEPS"
83Er STOP
832 RETURN
835 PRINT
836 REM LINES 837 TO 844 PERMIT COMPARISON OF RESULTS
837 PRINT " COMPARISON OF EXPERIMENTAL AND.eCALCULATED VALUES"
838 PRINT
829 PRINT " I E1(I) A3(/) A4(I)"
840 PRINT
841 FOR I=0 TO 14
842 PRINT
842 PRINT I,E1(I),A3(I),A4(I
844 NEXT I
850 END

!lg. 9.19 matinued
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The portion of the output listed in figure 9.20 preceding

the statement "T4e Values of A, B, MO and C are° presents the

computer request for input, together with your author's response.

The remaining portion of the output lists results obtained from

the run. The four columns appearing pnder the heading, *Com-

Tarlson of Experimental and Calculated Valuesil-in-fig. 9.21*

kdepict in order from left to right, the number of the ten-minute

time interval, the experimentaa data corresponding to the time

interval, the calculated concentrations of insulin in the plasma,

and the calculated concentrations of the insulin in the extra-

cellular fluid corresponaing to the respective time interval.

air e *ft,
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TYPE l'HE INITIAL GUESSES FOR THE RATE CONSTANTS, KO AND Ki
"7...04, .02
TYPE THE INITIAL CONCS. Aii:0) AND A2(0)
?"3350, QL

H AND r.. APE THE INITIAL STEP 'SIZES
E1 AND E2 ARE THE LIMITING STEP SIZES
INFUT H, K. 1. E2

01, 001, 001

-27.

T 1'7. THE MAXIMU !=iLLONAELE NO. OF SEARCH STEPS
1NU" T
-100

A1 AND A2 APE THE MIN. AND MA PTc. OF A INTERVAL
AND 82 APE THE MIN. AND MAK PTS. Or E. INTERVAL

INPUT Al, A21 81 AND 82
70, 1, 0, 1

THE VALUES OF A. 6, MO AND C. APE

. 04 ;12 5e416. 7. o

. 05 ci':', 28846. 6 1

. 06 , 02 215951 g.

. 05 . 01 48C12:. 5

05 . 01 79571:8 4

THE INTERMEDIATE VALUES OF A, 8, MO ARE
. 05 . 02 28846. 6

05

.051

349

048

047

046

045

.046

046

.046

046

02 28646. 6

40477. 7 6

19:44. 7

3.2165. 2

. 02 7519. 64 9

. 02 56.$. .6.9

6775. 22 11

021 .1670 07

022 2544.. 42

2/81. 6 14

024 2516. 01 15

. ,

141 1.0

Fig: 9.20



013241

--deo A

04... Z1S 1 6 16

o45 . i:.'14..... 2021. 45

.144
7 LI'

045 *4 4.

045 2751. 42

TmE INTERME&IATE VRLuES OF R, 6, MO ARE

.045 02: 2021.45

THE FINAL VALUES OF A, E, MO AND C ARE

045 02: 2021.45 22

THE FINAL ViUES OF H AND ARE

1.00000E-04 1.00000E-04

Fig. 9.20 continued
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..!:1141KIEZIN OF EFEF.IMENTPL. AU' CALt 1L.HTE WiLLIEE

4 415

7.7 g70

1--0 ami.

L.*

le4 :01

170 r=

160. 616

590

404 1E1:

... :OS. 014 146. 10:

E 250 242:. :;--.,..' 110. 702

204 201. , 115. 71:7

:E: 17C.1 172. :16 101. 962

142 14E. ?4,, 69. 6675

..10 119 129. 642 -1 7451f %....0 .

/1 1E10 111. L'''54 . 69. 1107
12 E35 :-----.9. 1269 60. 6254

.,..... 71 LE, i4E: 51. 1906

14 ei".0 76. 1292 46. 6552-a

Fig. 9.21
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Just aS a matter of interest, your author compared the results

obtained from this program with those obtained when the measure of

closeness was chosen to be the sum of the squares of the relative

errors. To obtain the rate constants corresponding to th4s Measure

of closeness, it was only necessary to alter line 739 to'read

739 LET H1 = (A3(I) El(I))/El(I)

and to then proceed as before. This single and simple change, which

enables the determination of the parameters using an-entirely dif-.

ferent closeness criteria, again illustrates the versatility of the '41.

direct computer language approach.

The values of the rate constants corresponding to a minimum

value of the sum of squares of the deviations were used as initial

values for the altered program. The results corresponding to the

closeness criteria of the sum of the squares of the relative errors

are displayed in figure 9.22. The final values of the rate constant

were achieved by setting T equal to a large number and carrying out

the search. The results displayed in this figure were obtained bY

the sinple device of sett.ing the initial choices of the rate constants equal to thc

obtained from the previous run and then setting T=1 so that only a

summary would be printed out.

To facilitate discsion of the results, it is convenient to

denote the expression, "sum of the squares of the deviations" by SSD

and to denote the exPression, "sum of the squares of the relative

errors" by SSRE. A comparison of the results obtained from the two

programs reveals that:

(1) For the SSD criteria, 1(0=0.0454 and K1=0.0233, whereas

for the SSRE criteria 1(0=0.0497 and 1(1=0.0301. This is

a difference of approximately 10% in KO and 30% in Kl.

(2) There is a very large difference in the nuiprical value

of-each measure of closeness. This is to & expected

because the SSRE measure is a relative error and for each

data point this measure'should be less than unity in magni-

tude if the 'fit is any good at allt1,. In contrast, since

the empirical,values for the concentrations are very large,

i.e. very mich greater than unity in magnitude, it is to

9.66
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TYPE THE INITIAL GUESSES FOR THE RATE CONSTANTS., KO AND
7. 04970, . 03011
TYPE THE INITIAL CONCS. Ai.(0) AND A2(0)
1'3350, 0

H AND K ARE THE INITIAL STEP SIZES
El. AND E2 ARE THE LIMITING STEP SIZES
INPUT H.. K. El, E2
?. 00001, . 000001, 0013001_,

T IS THE MAXIMUM ALLOWABLE NO. OF SEARCH STEPS
INPUT T
?J.

Al AND A2 ARE THE MIN.
81 AND 92 ARE THE MIN.
INPUT Al, R21 91 AND 92
?0, 1. 0, 1

THE VALUES OF A, 9,

. 0497 . 03011
THE LOST VALVES OF A,

0497 . 03011

AND MAX. PTS.
AND MAX. PTS.

MO FIND C ARE

OF A INTERVAL
OF B INTERVAL

0713295 0
9, MO AND C ARE

0713295 1

COMPARISON OF EXPERIMENTAL AND CALCULATED VALUES

Ei(r) A3( A4(I)

0 3350 3350 0

/688 1540 01 154. 733

944 922. 299 189. 45

51.8. 022 182. 847

4 415 373. 265 163. 743

.# 314 29'2. 601. 142. 449

6 -250 782-: 122. 441. Results From iSRE

204 200. 716 104. 702 Figura 9.22

170 169..647 89. 3324

9.- 142 144. 006 76. 1451

10 119 122. 473 64. 8769

11 100 184. 247 55. 266

/2 85 88. 7655 47. 075

13 71 75. 5953 40. 0965

"." 14 60 64. 3837 34. 1.521
30
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be expected that even if the fit is good, tile deviationi;

will also be greater than unity.. Ikus, the SSD criteria

is a sum of squares of quantities which themselves are each

ir

larger in magnitude than unity, and the value of

i :
criter

is therefore, much larger than the value of the S cri-

-timr4a-whi4AT A s 41 -sum- of squarea-e-f---qu-ant-it-i-es--setrich -shawl&

each less than unity in magnitude.

3) The agreement between the calculated and empirical values

for early times for the SSD criteria is quite good. Howev.

as time increases, the agreement becomes worse. This is

due to the fact that the magnitudes of the concentrations

for early times are very much larger than the magnitudes

of the concentrations for later times. This kind of agreel

illustrates the well known fact that parameters determined

with the aid of the SSD criteria tend to be of such a valu'

that relatively close agreement is obtained for, large cal-

culated and empirical values but poor relative agreement

is.obtained for small calculated and empirical values. 110-

that when using the SSD,criteria the relative error for the first time

period is approximately 1% whereas for the Last time period it is 25%.

En contrast, the relative agreement betmaen the c&lculated and

the empirical values as obtained using the SSRE criteria

is fairly constant for all data po4nts. WAAMT, demagnifinik

the difference Al(1)-E1(1) is 148 and this is very muct

larger than the corresponding magnitude of 19 using the

SSD criteria for closeness. However, the agreement betweel

A1(1) and El(1) measured in :terms of per cent error is

864% 'and the agreement between the last values, Al(14)

-and E1(14), when measured in terms of per cent error

is 7%. This illustrates the fact that the SSRE criteriiL

produces parameter values which correspond to calculatedr

values which are in close agreement with the empirical

results measured in'terms of per cent error for all of the

data points. There are exceptions to these statements;

nevertheless your author felt it prudent to mention them

because they are a part of the "lore" of curve fitting and

parameter determination. Figure 9.23 is a comparison of

the deviations/and figure .9.24 is a comparison of the re

9.68
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tive errors obtained by using each criteria.

\
(4). There are considerable differences in the corrdsponding

specific aotivities of.
I
e ex. Acellular fluid, A2(I),

as calculated using the SSD criteria and as calculated

using the SSRE criteria. The values of maximum magnitudes

or peaks are different and they occur at different times.

A comparison is shown in figure 9.25.

9.73.
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An Illustration of a Non-Linear Model

To demonstrate the flexibility and capability pf the direct

computer.approach, your author altaered the equation governing t.he

time behavior of the insulin in the plasma compartment .to include

the assumption thaethe amount of -Insulin being transferred from the

plasma to the urine in a time increment is equal to

7*A1(J)*A1(J)*D1.

In effect, this assumption states that the rate constant is propor-

tional to the concentration. Mathematically speaking, one would

say that we are assuming that the loss of insulin in a time peilod

is koportional to the square.of the concentration. Furthermo4e, by

makina this assumption, the fundamental character of the problem

changes from a linear to a non-linear problem. It is nearly always

the case that non-linear problems are intractable (unsolveable) with

strictly formal mathematiqal techniques and that recourse must be

made to computational methbds. The que ready solution ofsthis

far more difficplt probleni in a mathematical sense is yet another

example of 2he flexibility of the computer based approach.

The only alteration required in the previous program is

replacement of line 710 with the statement:

710 LU Al(J+1) A1(T)+(4*B*A2(J)-13*A1(J)-A*Al(J)*A1(J))*D1

,!r was made the program and the program was run using as

ItIcsses for 'Alt, ,t- r.-on3tants the values

KO--- 0.045 dnd X1 = 0.023.

The program was unable to compl(Ae even one step in the search bccause

of an overflow. Examination of the changed equation together with

noting that the initlal concentration for A1(0) vas 33501 suggested

that in the first time increment, the term

-A*A1(0)*A1(0)

was so large.,and negative that the value for Al(1) became negative.

This, resulted in the values of A1(2), Al(3) beconing even larger



in magnitude, 41beit neciative; thus causing the overflow. This analy-

sis suggested the initial selectipn of a much smaller value for KO

i.e. for A. The values

6 KO = .0.0001 and 151 = 0.05

were then tried and after. many Search steps the value far .(71 became-

negative. Because it is,known that the rate constants must be positiv

the calculation was programmed to stop should a rate constant become

negative and hence the program did indeed halt.

Just to experiment, your author removed this-restriction and per-

mitted the program to run cin. After several more steps the values of

the rate constants became

Kg = 0.00002 and Kl = -0-.00766.

Tle specific activity of the insulin in the second compartment, A2(51

negative for all time increments. This too is a physiologically

impossible result.
Your author inclilded this discussian to give an example of the discretion which

must be used in interpreting program results. The user must always keep hominids

constraints imPosed by the "real world". He must not blindly accept

the numbers that the program produces. The student should note that,

as a result of the modification, the results produced were nonsensical

This in turp is good evidena7 that.the modification itself was wroni,

i.e. the hypothesis,that the amount of insulin leaving the plasina tO

the urin is proportional.to the square qf the concentration of the

insulin in the plasma Is false. It is thasrecessary to alter the hrpthesis

and in this way the computer becomes a valuable tool for acquiring

understanding of a phenomena because it enables a ready acceptance

or...rejection of hypotheses.

The problem of which hypotheses or models to accept or reject is

particularly accute in the compartmental analysis of physiological

systems. Atkin (1969) gives several examples of different models

hich are1efipts to explain the same phenomena.

This cmaates the portion of the chapter devoted to the compartmental analysis

of physiological and/Or bdcchemical OtMNICOEML There are nEny valet' applications of

oompertmental analysis to these kinds of problems and they can be found in the

journals ind the texts listed in the references at the end of the Chm?ter. The

student uto is 'familiar with electrical engineering should have noted the very clome

9.74 ,
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analogy betueen cocpartmental analysis and the laved parameter nethod of

analysis of electrical circuits.
The falawing sectipns will ,indicate sane applications of catpartmental

analysis to ecological systems.

Food Chain Kinetics

In thisisectign we consider the analysis of the movement of a

small'amount of some substance through a food chain. A food chain

is a sequence of species and/or organisms through which food, energy

_or material is transferred as a result of one species eating another

species and in turn being eaten by a third species, etc. Some ex-

amples of substances which aire known to movellgough a food chain-

are pesticides, essential minerals and radionuclides. The deter-

mination of the concentrations of these substances in each species,

as the substances move through the food chain, is a problem of great

interest. As an example, the determination of the concentration of

a radionuclide in the various components of a food chain provides

a means of assessing the.effect of the radioactivity on the indivi-

dual components of the food chain.

/
Because the laws governing the movement of small amounts of a

substance through a food chain are very similar to the laws govern-

ing the behavior of the flow of traders through physiological and

biological'systems, the method of presentation will closely

parallel that used to discuss the previous.examples. Emphasis

will be placed upon the derivation of the equations and not upon

le.c,opment of the c,utor programs. Since the derivationof

the equations may occasimally require results from radiation physics

or chemistry with which the ,;tudent is not familiar, your author will

simply state and use such results. The context of the derivation

will usually indicate when such a procedure ig being used. Despite

the fact that the computer programs resulting from the quantitative

description of food chain kinetics may appear quite straightforward,

the obtainment of the necessary transfer coefficients, loss rates

and other necessary data is frequently a difficult task. It is this
. ,

fact which makes the obtainment of the fundamental equations a non-

trivial matter.

9.75
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A Nuclear Fallout Problem

Due to a nliclear test, nUclear fallout reSUItS in the deposi-

tion of radioactive material on an ecosystem. Xt.is desired to

,describe the flow of the radionuclides through the system. Wt

consider a very idealized form of this problem consisting,of a sin-

gle radionuclide, strontium-89, and a single ecosystem made up

of a two-element food chain, plants, and rabbits. The strontium-89

is deposited on the plants which_are in turn eaten by the rabbits

and the problem is to determing the time variation.of the con-

centration of the strontium-89 in both the plants iand the rabbiti.

-Since large concentrations of radioactivity are quickly lethal,

it is of interest to restrict the discussion to very low levels

of radioactive concentrations. For this reason it is usual tO

consider radioactive concehtraitions in -units of microcuries

(10
-6 curies) or picocuries (10-12 curies). These magnitudes

are comparable to.those used in tracer studies.

This presentation will follow that.given. by L. Eberhardt,

(1970) and the very difficult problem of acquiring accurwke and

sufficient empirical data will not be considered. Your author

again cautions the student against building elaborate theoretical

or computer models without proper consideration of experiemtnal

and biological considerations. 4.

Just as in the description of the behavior of a tracer in a

physiological system, the description of the flow of a'radionuclide

in an ecosystem is accomplished by parlddoning pr subdividing the

ecosystem into units or compartments, arid then accounting for the

amounts of radioactivity entering and leaving each compartment

during a small increment of time. In this example, the ecosystem

has been greatly simplified by imagining that there,are only two

compartments, the plants and the rabbits. A compartmental diagram

is shown in figure 9.26.

S39.
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Simple Two Compartment
Nuclear Fallout Model

510

Fig. 9.:26
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The snurce of the radiation is the fallout of the strOntium-69.

The tills varietOn of the resultant radiation intensity incident

upon the ecosystem is accountpd for by assuming that, the decrease

in fallout radiation intensity in a small increment of time, DI,

is directly proportional to the existing.radiatian intensity of

the fallout and to the length of the time increment. In this,

and the remaining problems, D1 is assumed to be very'small com-

pared to' the total time'of 4erest. Thus, if S(I) denotes e
,

th.

concentration of the incident
,

source radiation present at the

beginning of the ith time increment, we'have'

S(I+1) = S(I) Ll*S(I)*D1 (9.19)

where Ll is a constant ok proportionality and is measured in

units of inverse time. The equation governing the time variation

of the concentration of the strontium-89 in the plants is derived

from an accounting of both ihe amount of radioactivity absorbed by

the plant in the small time increment as well as the amount of

radioactivity leaving the plant during the same time increment.

It is assumed that the amount of radioactivity entering the plant

in the time reriod is proportional to the intensity of the radio-

activity present from the fallout at the start of the time period,

and to Dl. The amount of radioactivity leaving the plant is

assumed to be proportional to the intensity of the radioactivity

preent in the plant at the start of the period and aldo to Dl.

Hence, if P(I) denotes the intensity of the strontidm-89 in the

plant at the start of the Ith time increment, we can write

P(I+1) P(I) + K2*S(I)*D1 L2*P(I)*D1

or

P(I+1) P(I) + (K2*S(I) - L2*P(I))*D1 (9.20)

where K2 and L2 are constants of proportionality and L2 is called a.loes rate. Both

constants are measured in units of inverse time and the length of the time unit is

the magnitude of Ell.

The time variation in the intensity of the sirontium-89 in

the rabbit, R(I), is 4erived in a similar manner. In the time

increment, D1, the concentration is increased by the amount of

9.78 , 0",



radiation incident upon ,the rAbbit and the amount of radistion

ingested by the rabbit from the plants. The amount of radioactivity

incident upon the rabbit from the fallout is assumed to be propor-

tional to the incident radiation'intensity, to the exposed area A,

of the rabbit, and to the length of the time increment.' Further-

more, the aMount of radiation ingested is assumed.to be propor-

tional to the amount of plant ingested during the time period, to

he intensity of the radiation present in the plant at the time

of ingestion and to Dl. K3 and 1C4 denote the respectiye constants

of propoqionality and are expressed in units of inverse timp. P1

will denote the amount of the plmat eaten during the time incremmai; and it will

be assumed that the smne amount is eaten em:h period. The student should note

that the constants of prOporticnality relating the transfer of the radioactive

Strontium-89 from the source to the rabbits and plants respectivrely have been

purposely given the distinct labels Ll and K2. This has been done to emphasiva

the fabt that the effective transfer rates.of the radioactivity from the sourcrA

to the plants and to the rabbits may be, and usually are, differeft. In animals,

Strontiur-89 usually concentrates in the bone narrow. The acihal flow or passage of

the radionuclide from the plant to the bone marrow is quite complex.

The radioactive substance passes through the gastrointestinal tract

and is taken up by the-blood where it is then transferred to the

bone marrow. The radioactivity leaves the bone marrow via the

blood stream from which it is eventually excreted. Because a

detailed representation'of this process is not trivial, it is

expo(' to assume that the radiOactive strontium-89 is trans-

ferred directly from the plant to the bone marrow and that the trans-

fer is immediate. The ,process by which this tratsfer of radioacti-

vity is effected is ignored,and the bone is treated as a compartment.

The assumption that the radioactivity is immediately transferred

from the ingested plant to the rabbit could be removed by assuming

a time-lag for the radioactivity to pass from the ingested plant

'to the bone marrow of the rabbit. Finally, the loss in radiatidn

from the rabbit during the increment of time is assumed to be

proportional to Dl and to the radiation present in the rabbit

at the start of the time period. The equation for the concentra-

tion of the radiation present in the rabbit is then given by

:712
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Equations 9.19, 9.20 and 9.21 represented the

accounting of the entering and exiting Strontium-89

The amount of radiation incident from the fallout on

is so small that it may be neglected. In this event

(9.21) may now be written as

desired

radiation.

the animal

equation

R(I+1) = R(I) + (K3*A*S(I) + Kil*Pl*P(I) 1.3*R(I))*D1. (9.21)

R(I+I) = R(I) +(K5*P(I) 1,3*R(I))*D1 (9.22)

where we have introduced the notation .K5= K4*Pl.

The similarity between the derivation .of these equations and

the derivation of the equations governing Ole movement of tracers

in physiological system should be quite evident. This very,q.ose

analogy means that the programs used to solve each class of pro-

blems are also very similar; A program of this example'is shown

in figure 9.27 together with a listing of the results of a typical.

run. Statements numbered 250 and 510 enable the listing of data

at integral units of time. The size .of the dimension statements

are such that the total number of time increments must be less than

105. Consequently, if for example it is desired to run the program

for 100 integral units of time with an incremental time step of

0.2 units, the dimension statements will have to be enlarged to

accommodate at least 500 entries; The loss and intake rates and

the initial or starting values are taken from Eberhardt's paper.
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i REM JULY 30. 1975'
5 REM FLOW OF STRONTIUM-89 IN PLANTRABBIT FOOD CHAIN
20 DIM S<105).P(105).R(105).T(105)
30 PRINT "TYPE Li. THE FAL"OUT LOSS RATE"
35 INPUT Ll
40 PRINT "TYPE THE INTAKE RATE K2 AND THE LOSS RATE L2 OF THE PLANT"
45 INPUT K2,L2
50 PRINT "TYPE THE INTAKE RATE K5 AND THE LOSS RATE L3 OF THE RABBIT"
55 INPUT K5,L3
60 PRINT "TYPE Di, THE LENGTH OF THE TIME INCREMENT"
65 INPUT DI
70 PRINT "TYPE N, THE NUMBER OF TIME INCREMENTS"
J75 INPUT-N
200-LET S(0) 750
210 LET P(0)=0
220 LET R(0)=0
2:30 REM INSTR. ::50 CALCULATES THE CORRECT PRINT INTERVAL
258 LET D2=INT(1/D14-1. 00000E-06)
300 FOR 1.0 TO N
320-LET S(I+1)=S(I)L1*S<I)*D1'
340 LET P(I+1)=P(1:'(K2*S(I)L2*P(I)*Di
360 LET R(I+1)=R(I)+(K5*PCDL3*R(I))*Di
380 LET T:1+1>=T(I)+D1
408 NEXT I
495 PRINT
508 PRINT "I R<I). P(I> SU)"
505 PRINT
510 FOR 1=0 TO N STEP D2
528 PRINT I,T(I),R(D,P(I),S(I>
530 NEXT I
550 END'

TYPE L1, THE FALLOUT LOSS RATE
1 5
TYPE THE INTAKE RATE K2 AND THE LOSS RATE L2 OF THE PLANT

0:A6
TYPE THE INTAKE RATE k5 AND THE LOSS RATE L3 OF THE RABBIT
''.115. 3285
1YPE L1, THE LENGTH CF 1HE TIME INCREMENT

1

TYPE N. THE NUMBER OF TIME INCREMENTS
'100

1, P, I

0 0 0 0 2750

10 1 122 :82 2169. `g": 1646. 52

20 2 472.455 1194. 91. 985 836
30 817. 7 2/ 4057 07 590. 257

40 4 1281 72 4:84 57 7:57, 40clir'

50 5 1728. 76 4514. 04 211.

60 6 2184. 67 4527. 22 /26. 692.

70 7 2611 :9 4472. 95 75. 8552

80 99999 1012. 67 4380. 42.. 45. 4173

90 9 :289 07 4267 02 27 193

100 10 1736. 84 4143. /2 16. 2815



A Second Example in Food Chain Kinetics

This problem is adapted from the paper of Eberhardt and

Hanson, 1969, which describes the time variation of the concen-

tration of cesium-137 in a lichen-caribou-Eskimo food chain. A

compartmental model of the system is shown in fig. 9.28.

= ,

Three Compartment System for Flow of Cesium-1371
in lichen-caribou-Eskimo Food Chain

Fig. 9.28
es

The source of the cesiUM-137 radionuclide was the residue from

nuclear weapons testing in the early 1960's.

The formulation of the problem proceeds in a manner entirely

analogous to the procedure used in the preceding examples. Fick's
A

principle is applied to each compartment to obtain the desired set

of equations. The distinguishin7 featVres of this example are the

detail required to mitic the time variation of the cesium-137 enter-

ing the food chain and the technique used to obtain the transfer

coefficients.

Because records were not available for the accumulation of

cesium-137, Eberhardt and Hanson used the monthly accumulation records

of Strontium-90 fallout as recorded in Fairbanks, Alaska and shown in

table 9.2. It was assumed that the ratio of the intensity of

the cesium-137 to the intensity of the strontium-90 remained constant

throughout the time period during which the data was collected and

hence the rate-of deposition of the cesium-137 would be identical to

the rate of deposition of the strontium-90. In this way the tine

-Variation of the cesium-137 enterinithe food chain could be estimated.

9.82
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Estimates of strontium-90 dePOsitiqp

at Fairbanks, Alaska (mCi/km2)

(from Eberhardt and Hanson, 1969)

Year Jan. Feb. Mar. Apr. May June July Aug,. Sept, Oct. Nov. Dec. Total

1962 0.08 0.22 0.18 0.08 0.22 0.99 0.76 0.66 0.13 0.97 0.25 0.04 3.68

1963 0.15 0.35 0.60 0.40 0.30 2.43 2.54 1.62 0.19 0.17 0.02 0.07 8.84

1964 0.06 0.11 0.07 0.22 0.44 1.37 0.01 0.61 0.14 0.12 0.09 0.07 3.31

1965 0.04 0.02 0.14 0.11 0.07 0.55 0.25 0.29 0.14 0.28 0.06 0.10, 2.05

1966 0.03 0.03 0.13 0.12 0.09 0.06 0.02 0.04 0.01 0.53

--: zero to trace

Table 9. 2



3+;

The choice of the units with which bp stpress the intensity of the
radionuclide is set by the ease with which the necessary parameters

and data may be .obtainsd and by convenience. Thus, the intensity

.of the-cesium-137 radiation in the lichip compartment was expressed

in nano curies..per square meter, i.e. nCi/m2 . This choice was

partially dictated by the fact that it was experimentally possible to

estimate the conversion coefficient relating this unit to the radiati^:

intensity Per gran drY ifieight of caribou ramie- The latter unit was se-

lected because it permitted the determination.of a conversion factor

from nCi/gm dry weight of caribou muscle to units of total radiation,

or body burden, in the Eskimo. This individual choice of units was

also very convenient because it avoided the necessity for estimating

the amount of lichen eaten each day by the caribou.

In deriving the equation for the time variation of the cesium-137

in the lichen, it is necessary to obtain an expression for the amount

of radiation entering the lichen in a small time period as well as an

expression for the amount of radiation leaving the lichen during_the

same period of time. The latter expression is easily obtained by

assuming that the decrease in cesium-137 intensity in the lichen is

proportional to the magnitude of the intensity in the lichens. The

obtaining of an expression for the amount of radiation entering the

lichen requires a knowledge of the time variation of the cesium-137

fallout intensity. This time variation was not recorded; however,

the strontium-90 fallout intensity was pcorded at regular time

intervals over a period of several ydars. By assuming that ihe

ratio of the cesium-I37 intensity to the strontium-90 intensity

remained constant over the entire period of recording, it follows

that the time variation of the intensity of the cesium-137 is the

same as that of the strontium-90. Hence, an equation describing'

the intensity of the strontium-90 over the,time period of interest

will be developed and this equation will be used to give the time

variation of the cesium-137. The equation will be, derived by

assuming a model for the time variation and then determining the

parameters in the model so that the equation 'best' approximates

the recorded data. The development is given in the next few

paragraphs.

ft,
9.84
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An analysis,of the strontium-90 fallout data as depicted in

table 9.2 reveals a monthly variation in the fallout intensity.

Nevertheless, the data "appears" to indicate that the magnitude

of the intensity is decreasing with time. The monthly variations

can be somewhat removed by calculating the yearly accumulations.

This is a very crude form of data smoothing. If the year is

assumed to extend from June 1 to June 1, the yearly accumulations

are given in table 9.3:

YEAR ACCUMULATION

1963-1964 7.94

1964-1965 2.75
10 -

1965-1966 1.86

1966-1967 0.45

The last figure is the result of a very cavalier extrapolation

from the 'monthly Uata. These tabular values clearly indicate the

decrease of the intensity with time. Moreover, the decreasing

set of values appear to be exponentially decreasing. Recalling

that radioactivity decays in an exponential manner, furt',-,r

suggests that a reasonable approximation to the time variation

of the fallout intensity may, be obtained by assuming that the

decrease in the intensity,'is proportional to the existing inten-

sity. -Thus, we write

9;48



. F(1.+1) = F(I) A*F(I)*D1 (9.23)

where F(I) is the daily radiation intensity, Dl i5 chosen to be one

day and A is a decay rate tal7be determinod by parameter fitting.

F(I) will be expressed in units of nCi/m2. The parameter A -

will be determined by Using equation 9.23 as a basis for calcula-

ting thn daily fallout intensitiet which in turn will enable the

calculation of the total fallout eat.11 year. The total fallout

each year will be compared to the empirical values appearing in

tabel 9.3 using the sum of the squares of the deviations closeness

criteria. The value of A, which results in the smallest sum of

the squares of the deviations, will be the desired decay rate.

The magnitude .of the daily fallout intensity is the decrease in

cesium-137 intensity from ohe day to the next. This decrease is

equal to A*F(I)*D1 where F(I) is calculated according to equation

9.23. The sum of such terms for I=0 to 364 is the accumulated

fallout intensity in a single-year.

A program which performs these calculations, together with the

results of a typical run, is shown.in figure 9.29. Equation 9.23

is represented by line 220 -of the program. The accumulation of

fallout in a single year is accomplished by ihserting the equation

Y = Y+A*F(I)*D1 (9.24)

in the same loop in which the daily variation in fallout inteiVity

is calculated. The loop consists of instructions 20u to 260 and

line 210 corresponds to equation 9.24. The student should recog-

nize that the form of equation 9.24 is the standard form for

accumular,ng or summing a set of quantities. In this instance, the

quantities are the terms A*F(I)*D1 for 1 = 0,1,2, ,364. Line

280 stores the yearly accumulated fallout for latex printing and

.
line 300 calculates the deviatipns of the empirical and calculated

yearly fallout intensities. Instruction 320 enables the summing

of-the sqUires of the deviations and line 340 insures that the

previous years accumulated fallout radiation will not be carried

overspo the hext years total.

9.86
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RBC24

10 REM DET. OF FALLOUT DECAY CFNISIiiNT IN ALASKA FOOD CHAIN

11 REM.
20 PRINT "TYPE THE INITIAL INTENSITY, F"
25 INPUT F
26 PRINT
7,0 PRINT "TYPE A, THE ESTIMATED VALUE OF THE DEC.RY RATE"
15 INPUT A
36 PRINT
37 REM
38 REM LINES 40-55 INPUT THE YEARLY INTENSITY

. 39 REM
40 LET E<1)=7.94
45 LET E<2)=2. 75
50 LET E(3)=1.86
55 LET.E(4)=. 45
139 REM
140 REM 'THE OUTER J LOOP C,ALCULATES THE MEASURE OF CLOSENESS
141 REM
.150 REM LiNES 200-260 CALe.R.AD: INT. IN ONE YR. USING D1=1 DAY
151 REM
4,0 FOR J=1 TO 4
1.0 LET D1=1
200'FOR I=0 TO 364
210 LET Y=Y+A*F*D1.-
220 LET F=F-A*F*Di
260 NEXT I
280 LET C(J)=Y
300 LET D2=Y-E(J)
320 LET S=S+D2*D2
340 LET Y=0
260 NEXT J
400.PRINT "THE SUM OF THE SQUARES OF THE DEVIATIONS IS":S
405 PRINT
410 PRINT " J C(J>
415 PRINT
420 FOR 3=1 TO 4
430 PRINT J.C<J).U.,:0
440 .NEXT
500 END

READY

TYPE THE INITIAL INTENSITY, F

713

TYPE THE ESTIMATED VALUE OF THE DECAY RATE
7).0025

1-.E SUM OF THE SQUARES OF THE DEVIATIONS IS . 5:4489

4

C(J) D(J)

7:78621 7.94
1. i2274. 2.75
1.25241 1.86
.502292 .45

&i0
0,.97

Figure 9.29



It is neeessary to provide a starting source intenity, F(0).-'

Because this value must also-be determin'ed, the problem is

actually a two-parameter determination problem. The program

shown in figure 9.29 enables the'guessing of the

parameter values. Your author did not use an automated search

routine because he was only interested-in illustrating a proce-

dure, not in the obtainment of refined numbers such as 41pld have

been prdduced by an automated search routine. It also would have

seen of interest to use 4 different closeness criteria Mich as

the sum of the, squares of the relative errors. A few trial runs

resulted in a value of 13.0 nCi/m
2

for the initial source inten-

sity and a value of 0.0025 (DAY)
-1

for the parameter A. The

variation of the,source intensity may then be expressed as

F(I+1) = F(I) 0.6025*F(1) (9.25)

where F(0, = 13.0 nCi/m
2

. This is the desired equation for the

strontium-90 fallout int;nsity and completes our discussion on*

how to obtain it. By recalling that the strontium-90 fallout
k

intensity is 1.7 times the cesium-137 fallout intensity, it is

pcipsible to use equation 9.25 to describe the time variation of

the cesium-137 fallout intensity. This may be done by using a

proper starting value, F(0), which corresponds to the initial

cesium-137 radiation intervity.

The radiation transfersed from the lichen to'the caribou depends

upon the amount of lichen eaten bY the.caribou which in turn depends

upon the average grazing area of the caribou. Thus, a knowledge

of the intensity of the fallout radiation upon a unit area of

the lichen, in conjunction with the magnitude of the grazing area

9.88



of the caribou, will enable an estimate of the consequnt radiation

transferred from the lichen to the caribou. The unit of area

was chosen,to be one square meter. Now only a pertain fraction,

K, of the fallout radiation coming'to rest upon the lichen is

actually absorbed into the lichen. Tpis meang that not all of

the fallout intensity, F(I), will be transferred to the lichen.

However, because not all of the incident fallout is transferred

to the lichen, the actual amount of strontium-90 absorbed into

the lichen is K*F(I) where K is a proper f Action. One method

for estimating the transfer coefficient, 1, is based upon an

analysis of the fundamental equation governing the time behavior
0

of the radiation intensity in the lichen.

To derive this equation, we begin by noting that the amount

of radiation entering the liehen in a time period is

4

K*F(I)*D1.

-

If L(I) denotes the intensity ()eradiation in the lichen during

the I
th time period, by assuming that the loss in radiation is

proportioned to the radiation, the term

--1,1*L(I)*D1

'is seen to represent the amount of radiation lost by the lichen

during the same pmricd. LI is a. consta.mt and is ammed to be 0.0002 and is

obtained from experiment. Ll represents the frad-Acri of the existent lichen intersity

thdwrim; e time perilest, od. The loss rate from the lichen is,
,

less than the natural decay rate of oesium-137 because there

exist many mechanisms whereby the lichen can lose radiation other

than by just the normal radioactive decay of the cesium7137. Some

of these mechanisms are: the washing away of the radiation on the
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surface of the lichen by raiilfallf the carrying away of the radia-

tion by evaporation, the loss of the radiation to the soil, etc.

For these reasons there has been a range of estimates of the loss 47

rate varying from 0.0001 to 0.0004. The lichen radiation inten-

sits equation is obtained by an application of Fick's principle to

yield

L(I+1) = L(I)+ (K*F(I)-L1*L(I))*D1. (9.26)

With the aid of this equation we can now obtain a value for

K. We begin by recalling the work with the prey-predator models.

In that work, a maximum or a minimum of the population was noted

to occur when there was no change in the population variable from-

one time period to the next. Thus, for the particular,time period

corresponding to a maximum value of the cesium-137 radiation intensitt

in the lichen, it must be the case that there is no change in the

intensity. Hence

or

L(I+1) = L(I)

K*F(I).- 0.0002*L(I) = 0 (9.27)

for that particular time period, I. (These two equations do not

hold for all time periods). From observafion, it was noted that

the maximum conceration

there are about 1600 gr/m
2

concentration of radiation

48 nCi/m2
. Now, an analys

radiation concentration in

in the lichen was 30 pCi/gm. Since

of dry weignt of lichen, the maximum

in the lichen is 48,000 pCi/m
2 or-

is of the data reveals that the maximum.

the lichen occurred about three years after
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the start of the collection of fallout data. The approximate

value of the maximum intensity of the fallout radiation was 0.84

nCi/m
2

. This value wai obtained-by using equation 9.25 as the

basis of a program which was run for three years or 1095 time

increments with.an iditial fallout intensity of 13.0 nCi/m
2

.

_With the aid of these eesults, equation 9.26 may now be

written as

K*0.84 - 0.0002*48 =

which enables the value of the transfer coefficient to be calculated

as

K = 0.011

It was assumed that the initial concentration of cesium-137

in the lichen was 15 pCi/gm dry weight or 24 nCi/m
2

. This value,

together with the value of K permits the use of equation 9.26'
,;

in describing the time variation of the radiation intensity in the

lichen.

Because it,is assumed that most of the radiation,body burden
G'

in the Eskimo is due to the eating of caribou muscle by the Eskimo,

we reql.ire an equation governing the tkansfer of cesium-137 through

the caribou muscle. The unit of radiation intensity in the muscle

was chosen to be nCi/gm dry weight of caribou muscle. This unit

was chosen because it enables an easier conversion to the entering

radiation for the Eskimo radiation intensity equation. It is known

that the process by which the radionuclide enters the caribou muscle

from the lichen is complicated. There is also a time lag because the

radiation does not immediately concentrate in the caribou muscle after

the caribou has eaten the lichen. Both of these factors are ignored

in our model. The former factor is ignored because we are interested

in the overall behavior of the entire food chain and \ the latter effect
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is ignored because the time of interest scale is very large compared

to the elapsed time from the time the lichen enters the caribou to the.

time the radiation in the lichen has concentrated in the caribou

muscle. The basic equation governing the time variation of the inten-

sity of the radionuclide in the caribou muscle is very similar to the

previous equation for the time variation of the radionuclide intensity

in the lichen. The equation is

C(I+1) = C(I)+(Cl*L(I) L2*C(I)),D1 (9.28)

where Cl is'a conversion coefficient relating the effective

transfer of the radiation intensity in the lichen to the intensity

in the caribou muscle and L2 is an effective loss rate. Just

as with the lichen, there are many mechanisms by which a living

organism can lose,radiation other than...N1 the process of pure 4

radioactive decay of the radionuclide. Consequently, the strident

will note that in'this example, as in other food chain kinetic

problems, the loss rates are effective loss rates and not pure

radioactive decay rates.

To obtain a value for L2, we recall from a knowledge, of

radiation chemistry and experiment, that in 30 days the radiation

intensity would be reduced by one-half. In the literature such

a loss time is referrea.to as a half-life or a half-time. Now,
4

by using the equation of radiation loss,

R(I+1) = R(I) L2*R(I)*D1,

setting R(0) = 1, assuming a value for L2 and then running the

program for the number of timesincrements necess4ry to yield a

value of R(I) equal to one-half of R(0), the effective half-time

can be determined. The half-time is the value of I expressed

in units of Dl. At first sight this pAocedure does not seem to

be of much help in the determination of L2 since a value of L2
1

L.: 0
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is required to use the program. However, by recalling some of the

problems at the end of the first chapter dealing with exponential

growth, it is possible to use such a program to determine the value

of L2 which results in a specified half-time. This can be done

by assuming an initial value for L2 and then, using the program

to perform the calculations, an accurate value for L2 can be obtained

by,trial and error. With- D1 set equsal to one day, it is found

that the loss rate corresponding to 30 days.is approximately 0.02

(day}-1. The student should write a program and attempt to verify

this. As used in the above equation, L2 is sometimes called a

decay parameter.

Upon digestion of the lichen by the caribou not all

of the radiation in the.lichen is transferred.to the, caribou.

Thus, Cl is an effectivetransfer coefficient relating the

effectiveness of the transfer of radiation from the lichen to

the caribou. This conversion coefficient depends upon tbe amount

of lichen eaten eath day,as well as on the net amount of the radi-

ation in the digested lichen ultimately residing in the caribou.

muscle. A value of 0.1 Was thought to be a representative value.

One possible TIthipd for obtaining a conversion value is to permit the caribou to

graze on lichen having a known and constant radiation intensity.

The lerff-h of the grazing period is assumed to be such that the ra-

diation intensity in the caribou muscle has reached an equilibrium

level. The intensity levels in both the caribou muscle and the lichen

are then noted and an effective loss rate is assumed for the radiaticn

in the caribou muscle. This loss. rate Was set at 0.02 and with a mmasured

equilibrium intensity of 200 pCi/gm dry weight in the caribou muscle

it is evident that the radiation excretion was 0.02*200 pCi/gm or

4 pCi/gm dry weight of caribou muscle. The measured equilibrium

intensity of the lichma UMS 40 pCi/gm dry weight and, therefore, the intermity

of the caribou occretion loms vms about 0.1 of the radiation intersity in tho

lichen. Because the flow of radiation from the lichen to the caribou



was assumed to be in equilibrium, that is in a steady state, the gain

in radiation intensity from eating the lichen must equal the loss in

radiation intensity due to excretion loss. For this reason, the value

of 0.1 was chosen for a conversion value to convert from-exist00

lichen radiation to entering caribou radiation.
1,

With the aid of the above results, equation 9:28 may be Wiitten

as

*C(I+1) = C(I)+(0.1*L(I) 0.02*C(I))*D1. (9.29)

The initial.concentration of cesium-137 in the caribou muscle was

set at 80 pCi/gm dry weight.

The Eskimo raiation is

E(I+1) = E(I)+(El*C(I) L3*E(I))*D1 (9.30)

This equation Is derived by assuming that the gain in body burden radiation

is proportional to the intensity df radiation in the caribou muscle

, and the loss in radiation body burden is proportional to .the magni-

tude of the body burden radiation which is expressed in units of nCi.

The effective loss'rate, L3, was chosen equivalent to a 70 day half-

life and hence L3 = 0.01(day)-1 . This value for 13 was obtained in

a manner similar to the method for obtaining L2. The estimate of the

conversion factor from caribou muscle radiation intensity to Eskimo body

burden was based upon an assumptical of constant neat intake for each indi-
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vidual and required a comparison of computed caribou muscle radiation

intensity with observed Eskimo body burdens. Because of the'cOmplit.

cations of obtaining canplete data, aswell as the difficulty of obtain-

ing a reliable estimate of the conversion parameter, we will simply

postulate that a reasonable valpe for the 'Eskimo body burden conver-

sion factor is 80. For compl-ete details on the obtaining .of such an

estimate, see the paper by Eberhardt and Hanson previously referred

to, as well as the paper by Hanson and Eberhardt, March 1969. This

latter paper also provides evidence that a reasonable value for the

initial Eskimo body burden is '500nCi.

equzItions 9.25, 9.26, 9.2,9, and 9.30, together with the ,

prescribed initial conditions, permit the constructiOn of afAcomputer

program which decribes the time variation of the cesium-137 radiation

intensity in each compartment.

In their model, Eberhardt and HanSon included thE time variation

of the amount of Jichen eaten-by the caribou. This can be done by

multiplying the convorsion coefficient by\a factor which changes in

time. The authors' state,. "On the premisethat some lichen is

present in the diet at all times, minimum.content was set at 10% and
A,
increased very iradually f()i- ibout five months; reaching about 30%

in the fifth month, and th(.rn rising rapidly (in a' few weeks) to 100%

and rc-Inaining at that, :-vel for six months." The variation is

repf-atc-' ,ch year. Th :iuthors also accounted for a time variation

1- the 'Eskimo diet of car-bou meat. We again quote from the Eberhardt

aT.d iIinson paper. "Thus A 'spring kill' is assumed to take place on

June 1 and intake c!oncentrations held at that level for 2 months,

dropped to one-half the same level for 15 days (to correspond to a

reduced supplyrof meat), then to zero for a further two months,

.whereupon a new sampling is made (to correspond to a mid-October

caribou harvest) and utilized as intake until the following June 1,

when the cycle is repeated." This variation can also be introduced

into thq model with the aid of a multiplicative factor, which is to

vary in time and magnitude acCording to the previous statements.

-In this example the student should note that a good portion of the

development was devoted to obtaining the conversion coefficients. These
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coefficients are measures of the effectiveness'of the transfer Of

radiation from one compartment to another and for this reason could

also be called transfer.coefficients. The methods for obtaining the

coefficients are very.useful and so vie recapitulate them. The first method

relies on the use of the steady state or equilibrium condition. In

this condition it is postulate4 that the gain in radiatkon intensity

in a time increment is equal to the loss in radiation intensity during

the same time increment, that i, the amount flowing in is equal tq

the amount flowing out. Now, in our models Of the time variation of

the radiation intensity,theNpxpression for the amount flowing in, as

well as the expression for the amount flowing out, are all of the'same

form for each compartment.

The amount flowing in,in,a unit of timelis given by an expression

of Ihe form C*C(I) and the amount flowing out in the same unit of

time is given by a similar expression, L*L(I). By setting up an

experiment in which it is assumed that.the flow between compartments

is in the steady state it is frequently possible to meamme Ca) and L (I) .

Since the loss coefficient, L, is also known or assumed, the

equality of the two expressions provides a method of obtaining C,

the transfer coefficient. Thus

C = L*L(I)/c(I).
(9.31)

The second method begins witn tne observation that the expressicn C*C(I)

is the change in radiation tntensity in a compartment in a tiMe period. Sumose*

tnat tae experimental aetermination of the values of C(I) and L(I) at the time of

PONiMUM or minimum radiation intensity of the compartment can be effected, then tk

use of the equation

C*C(I) L*L(I ) = 0

enables the evaluation of the transfer coefficient. This is due

to the fact that, at a time of maximum Or minimum radiation in-

tensity in-the compartment, the change in the intensity is zero.
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Finally, by assuming different values for the transfer coefficient,

and comparing the calculated compartmental radiation levels with

those measured experimentally, it is also possible to determine

the transfer coefficient. There are thus three daferent methods

for the determination of these coefficients.

The program for this model will not be developed since the

preceding discussion should be sufficientlyedetailed to permit

the student to write his own program. We leave this as a problem.

The Movement of a Pesticide in a Food Chain

Because of the abundant use of pesticides in the raising of food,

crops, and the associated possible long term effects of pesticides,

the description of the movement of a pesticide through a food chain is

of current interest. This example, which is adapted from O'Neil and

Burke, 1971, describes the development of a very simple compartmental

model for the description of the movement of DDT and DDE through a

human food chain. Your author chose this example because it serves

to illustrate the required balance between model sophistication and

practical considerations. The length of time in which the authors

woreyermitted to develyT the model was -ry short and also the paucity

of th data pamitted tht uetermination of only a few model parameters.

Thric5e constraints necessitated the development of a simple model as

Well as the exercise of caution in the interpretation of the model

result!.
9

The data shown.in table 9.4 lists the yearly pesticide concen-

trations in the foo:i and in the human together with the intensity
of the ?esticide umage. Thn data is taken from the above-nentioned work of O'Neill

and Burke. The intensity o7 the pesticide in the humar %les measured in the human

ari.inose tissue. An ekamination of the data suggests a decline in

0 0 0
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Table 9.4. Data utilized for modeling DDT and DDE movenient. through the
human food chain.a

DDT + DDE
in Human

Adipose Tissue
(PP) '

Year Us: ge

(1(``)1b)

DDT + DDE
in Market

Place Diet
(mg/kg)

1965 0.031

1956 I

0.040

1967 40 0.(C6 4.

1968 0.019 61

1969

1970 0.015

aFrom-0-k1lland Burke; 1971
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the usage of the pesticide as well as a decline in.the concentration of

the pestioide.in the food in the market place. The pesticide concentta-

tion in humans appears to oscillate; however, as the authors point out

in their paper, there is.some justification for questioning the accu-

racy of the data. It is evident that a decrease of the 1970 intensity

data by only two-tenths of one per cent would result in the appearance

of a continual decline in the concentration of .the pesticide in the

human from the pea,k year of 1968. .This Overall change of thecharact.er

of the data due to such a small change in the data, coupled with the

fact that th,e reliability of the data was difficult to assess, further

mitigates against.the construction of arr elaborate model.

The determination of the compartmentalization, as well as the

number of compartments, is one of the first steps in the construction

of the mOdel. This initial determination is an art and depends to a

great extent on the intuition and insight of the knvestigator. In

keeping with the policy stated by Atkins, 1969, concerning the number

of compartments to be used'in_developing tracer models, it is desirable

to use a minimum number of compartments consonant with the obtaining

of "reasonable" agreement with the data. Thus in thks problem, a two-

compartment model was initially assumed,. The compartments consisted

of the food supply and the human adipose tissue. Since it was not

possible with this two-compartmental model to obtain reasonable

agreement with the qualtative behavior of the qata, a three compart-

ment model was hypothesLzed. the authors divided the food supply

into tw, umpartments, Tach of which weie distiaguihed by their

raLe ,7,f absorption of tht_ 1)est1cie.. The first compartment was assumed

tc ,ickount for the short trTm absqrption of the pesticide, e.g. the

effect of direct spraying of the pesticide upon the food supply. The

second compartment was postulated to account for the Icing term-ef7oc't.

of the-pesticide through recycling froth the soil of the pesticide

sprayed upon the soil.

By vsing these three compartments, O'Neill and Burke were able to develop a

model which mimiced the qualitative .beha-ior of the data. The thi.ee

compartment model is shown in figure 9.30 on the next page.



SHORT TERM
EFFECTS

FOOD

'MAN

LONG TERM
EFFECTS
FOOD

Fig. 9.30'

....- .

The derivation of the governing equations follows from an appli-

cation of Fick's principle to each colEartment together with the

1

assumption that in a small time,incre ent the amount.of pesticide

gaiaed by a-com.partment is proportion 1 to the cgneentration of the

pesticideof the inputting or feeder-ccapartnemtar4 the amoupt of pticid" lost in

the sarnetimeinmwent is proportional bathe comentrationof the pesticide inthe

comparbrent. Ihe constant of proportionality relating the amount or change

in concentration of the pesticide from a compartment to its successor\

compartment is best thought of as a transfer coefficient or a conversion.

factor. This is because not all of the pesticide leaving a compart-

Ment 'effectively' enters the successor compartmcat. The situation

is quite analogous to the transfer of radionuclides from one compart-

ment to the next. The constant pf proportionality relating the existing

concentration of pestticide to the amount leaving .the comparbnent in an increment ot

time is also an effective constant because it accounts tor all possible ways the pesti

may leave the compartment other than by the sole transfer of the pesticide tO anFther

compartment.

Let S(I) denote the quantity of'the pesticide expressed in millions of pounds,

Fl(I) and F2(I) denote the concentration of the pesticide in the respective food com-

partments exwessed in milligrams of pesticide per kilogram bf weight of food,

i.e. mg/kg and finally let H(I) denote the.magnitude of the pes-

ticide concentration in the human adipose tissue measured in parts

.er million, ppm. In terms of this notation, the governing equations

may be written as:
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and

Fl(I+1) = Fl(I) + (Kl*S(I) - 1,1*F1(I))*D1

F2(I+1) = F2(I) + (K2*S(I) - 1,2*F2(I))*D1;

(9.32)

(9.33)

.H.(I+1) = H(I) + (K3*(F1(I) + F2(I)) L3*H(I))*D1 (9.34)

and DI is chosen to be one day.

An expression for S(I), the daily usage tay be

obtained by curve fitting and/or interpolation. Curve fitting is

a process whereby one function, or a set of data, is represented
%

by 4nother function. In this section, we introduce a simple type of

curve fitting which is equivalent to approximating the data by a

straight line. The time variation of the DDT usage appears to be

such that the usage decreases by a constant amount each year, that

is, the quantity (S(I+1) S(I)) is constant from year, to year.

This suggests that the time variation of the intensity can be approxi-

mated by the expression

S(I+1) = S(I)+S1*D1 (9.35)

where S1 is a constant to be determined so that the values of S(I)

are close to the empirical values which we will denote by E(I).

The closeness criteria will be chosen to be the least squares criteria

and thus we will attempt to determine S1 so that the sum of the terts

(S(I)-E(I) )
2

for I 0, 365, 730, and 1095 is a minimum. These numbers correspond to 0, 1,

2 and 3 years respectively because D1 is chosen to be coe day. This also implies

that S1 is expressed in units of the nuMber of millions of ibs. per day. It

should be evident to the student that this method of obtaining an expression for

approximating the source usage is very analogous to the method employed in

the previous problem bo obtain an approximating expression for the empirical.ly

determined fallout intensities. The program to accampliSh this is very simalar

to that given in figure 9.29 and hence will not be reproduced here. The initial

value, S(0), can be made to coincide with the recorded usage in the year 1965, or

the initial value can be left as a free parameter to be determined.

Your author obtained the value of S1 = -0.018 under the constraint



of initially setting S(6) = 53.0 and he dbtained the valge of

S1 --- -0.019 and 5(0) =.54 if S(0) was also determined as a free

parameter. The value of 365*(-0.019) is approximately -7.0 and
a

this implies that the value of -0.019 for S1 corresponds to a

yearly decrease of Seven million pounds of usage of the pesticide

which rate of usage is in accordance with the tabular data.

The constancy of the expression (S(I+1) S(I)) for all incre-

ments of time means that the graph of S(I) versus I appears as a

straight line. Hence,,the term linear or straight line approxima-

tion for such a representation of the data. In the Alaska food

chain example, the strontium-90 fallout intensity was approximated

by equation 9.23. If this equation is written in the form

(F(I+1) F(I))/F(I) = -A*Dl,

is seen that exponential approximation corresponds to assuming that

the relative change in F is constant. In contrast, linear approxi-

mation assumes that the magnitude of the change in any time incre-

ment is constant. These are the two assumptions most frequently

used in describing data. A surprisingly farge and varied number of

phenomena are quite well approximated by one or the other of these

approximations.

The determination of the six parameters, XI, K2, 1(3 and Ll,

L2, L3 is acocmplished by a omparison of model and empirical results. This

method of determination is in contrast to the method used to obtain

the parameters in the two previous examples. In those examples

other information was available which permitted an easier and more

direct determinatiOn.

The tact that a two parameter model could not be constructed which would surtab.

match the empirical.data meang that it was not possible to find values tor the

parameters for the two parameter model such that the model iemats agmedwitn

the empirical data. The student should realize the limitations of the

implication of this statement. All of the models were
constructed using Fick's principle and the aesumption that thT,fluxes

were proportional to the concentrations. Hence, if for example, the

fluxes had been assumed to be proportional to the square of the con-
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centrations it might have been possible to have obtained agreement

with the use of only a two-pai7ameter modfl. Other two parameter

models could have been constructed utilizing still other assumed

relations between the fluxes and the concentration in the com--

partments. Thus, the statement "that reasonable agreement could

not be obtained for a two parameter model" actually means that,

for the special case of.a linear compartment model, that is, a

model for which the.fluxes were assumed to be proportional to the

first power of the concentration, it was not possible to obtain

reasonable agreement between the model results and the data. The

assumption that the fluxes are proportional to the first power of

the concentration corresponds to the assumption of first order

kinetics as used in describing chemical reactions.

The transfer coefficients and the loss rates must be obtained

from a multidimensional search:routine., Because there are six

values to he determined, it is not feasible to use such a routine

unless the investigator has a "reasonable" estimate of starting values

for the parameters. To get such'4Values, your author first wrote a

program for calculating the time variation of the pesticide concen-

trations in the three compartments assuming that the values_of the

parameters were specified. Provision was made to specify these values

as itaput and the sum of squares closeness, criteria enabled the deter-

mination of the measure of closeness for any given set of values for

tL,2 paramcters. Since parameter values were specified as input,

it wac: possible "to play with alterations of the parameters to get a

feel" for scale reasonable values to use as initial values for the'

multidimensional search program. The program for calculating the

pesticide concentrations is gi'ven in figure 9.31, and the results of

a tyllical run are displayed in figure 9.32. The student will note

that lines 290, 310 and 330 correspond to equations 9.31, 9.32 and

9.34 respectively. In the text, subscripted variables are used for

ease of reading by the student; however, they are not necessary in

the program. The index J counts the years and the index I cdunts



k
350 LET Si(J)125
370 LET NIXJ>=F1
S90 LET'N2<J:A=F2
410 LET HikJ)=H
500 NEXT J .
530 PRINT " 'SIAJ) Ni(J) N2(J)

'532 PRINT
550 FOR J=0 TO 4
570 PRINT'J.Si<J);Nie.J>,N2(J),Ni<J)+NZ(J).H1(J)
590 NEXT J
699 REM
700 REM LINES 705-720 ENTER FOOD PESTICIDE CONCENTRATIONS
701 REM
705 DATA 40,26,19,16,15
710 FOR 1=0 TO 4
715 READ E3(I)
720 NEXT I
724 gEM
725 REM LINES 730-745 ENTER HUMAN PESTICIDE CONCENTRATIONS

726 REM
730 FOR 1=0 TO 4
735 DATA 2,4.65,5.61,5.22,5.27
740 READ E4e.I)
745 NEXT I
799 REM
800 REM LINES 800-840 CALC. Mi. THE MEASURE OF CLOSENESS

801 REV
810 LET M1=0
8,20 FOR W=0 TO 4
830 LET M1=M14-(Ni(W)42(W)E3(W)Y-2+<Hi(W)E4(W))
840 NEXT W
845 PRINT
850 PRINT
855 PRINT "THE VALUE OF THE CLOSENESS CRITERIA IS". M1

1000 END

oak

Ni(J)4442(J) NIA

Figure 9.41 (Cont.)
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RBC25

5 PEM FEETICIDE FOOD CHAIN PROBLEM
6 REM
7 REM
20 PRINT "TYPE THE INFLUX TRANSFcptOEFFICIENTS Kl, K2, K3"

25 INPUT K1,X2,K3
10 PRINT
2'5 PRINT "TYPE THE LOSi;TRATES Li, L21 L2"

40 INPUT Li,L2,L3
42 PRINT
50 PRINT "TYPE THE INIT, VAL. FOR FOOD PEST. CONC.', F1, F27

55 INPUT F1,F2
56 PRINT
60 PRINT "TYPE H, THE INIT. CONC. OF PEST. IN THE HUMAN"

63 INPUT H
64 PRINT
65 PRINT
66 PRINT
67 REM
68 REM LINES 70-80 STORE INITIAL VALUES FOR-LATER USE

69 REM
70 LET N1<0)=F1
75 LET N2f:.J)=F2
SO LET H10)=H.
84 REM
85 REM INSTRS. 95,-110 INITIALIZE VARIABLES
86 REM
95 LET D1=1

0 v' 100 LET S=53.0001
110 LET Si<O>=S
144 REM
'145 REM INSTRS. 150-500 ARE MAIN PART OF CALCULATION
146 RE;
150 FOR J=1 T9 4
239 REM
240 REM INSTRS 250-140 DAILY UPADATE THE YAPS_ FOR A YfAR'S -IME

241 REM
250 FOP I=0 TO 164
270 CET 5=S-.0185*01
290 LET F1=F1+(K1*S-Li*F1.>*D1
310 LET F2=F2a2*S-L2*F2)*D1
20 LET H=HkK.R.F1+F2-L14H>,ND1
340 NEXT I

Figure 1.31 .



5'1

R8C35

TYPE THE INFLUX TRANSFER COEFFICIENTS Ki., NI:, KZ.

000068, . 0009

TYPE THE LOSS RATES L1, L2.. LZ
00014.. 0012

'PE THE INIT, VAL. FOR FOOD PEST. COW, , Fl, F2
7'21, 14

TYPE H. THE INIT. cptx. OF PEST. IN THE HUMAN
?2

N2e".J) N1.(J-.4N2(J)

0 5Z. 0001 14 45 2

1 46. 2471 11. 1401. 14. 5024 25. 6425 4.97521
19. 4942 4. 00.731 14. 8164 18. 8197 5.51874
32. 7412. '1. 43862 /4. 9513 16. 2899 5.39536

4 25. 9888 . 51.698; 14. 9161 15. 4sai 5.14877

THE VALUE OF THE CLOSENESS CRITERIA 1525.6594

Typical Result From Program Shown in Figure 9.31

Figure 9.32
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the days. Instructions 250 to 340 of the program calculate the

increase in the concentrations during a single year using daily

increments. Instructions 350 to 410 store the yearly concentrations

and the loop specified in lines 250 to 340 is repeated 4.times to

give 4 sets of yearly concentration. A summary of these results

is printed out by line 530 to 590. The experimentally determined

yearly concentrations, E3(1), of the pesticide in the food-are

read in by statements 705-720. Each of these terms is the sum of

the DDT and DDE concentrations of insecticide. The. values, E4(I),

of the doncentration of the pesticide in the humans are read in by

lines 730-745. These sets of values are used in the sum of squares

closeness criteria, statement 830. In this statement, the expression

(N1(W)+N2(W)-E3(W)) represents the deviation of the sum of the

calculated concentrations of the pesticide from the actual con-

centrations of the pesticide in the food. The term (H1(W)-E4(W))

represents the,difference between the calculated and the experi-

mental values of the pesticide concentration in the human. These

terms are each squared and ad404.-in a loop, in lines 810 to 840

to give the value of the closeness criteria. The result printed

out by line 855.

The initial concentrations used in the run whose results are

shown in figure 9.32 were taken from.the work.of O'Neill and Burke

(1971) They used an analoque computer to carry out an."intuitive

search" to obtain the "best" set of values for the transfer coeffi-

cientsL Their paper did not'specify what closeness criteria they

used to evaluate the best set of paramete5s. As the parameter

values were altered and the results of the runs compared, one set

with another set, the insight and intuition of the investigators

was increased. Such interaction between man and the machine is

sometimes the only way of obtaining a set of values for use as

starting values in an automated scIrch routine. Most automated

search routines,require starting values quite close to actual

values if the routine is to converge.



The ability to visually display the results on a graphic

display terminal or on a plotting device is of great assistance

in comparing the results obtained froiii different sets of parameters.

There are also technicolor graphic units which permit the display

of results in different colors. Such multicolor displays better

enable the investigator to compare results. Three-dimensional

representations of the results are another technique that is quite

useful in analyzing computer output.

Because it is usually the,adi-that sO much data is being

generated by a computer during the course of its solving a

problem, it is frequently quite difficult to thoroughly appreciate

the final results that are printed out. 'Consequently, a variety

of combinations of results may have to be printed out. The selec-

tion of which combination of results to examine is not easy. The

problem is made more difficult by the fact that computer time

costs money as does the investigator's time. In addition, a

significant amount of reprogramming may ;:le necessary to capture

and print the desired information. Thus, a judicious choice must

be made to ascertain just what combinat ± results are to be

printed out. It is indeed enigmatic tl investigator using

a computer based method of analysis can find himself deluged

with results which he cannot fully appreciate and on the other

hand the investigator limiting himself to pencil and paper type

mathematics is frequently able to obtain only a very small fraction

of his necessary results.

A
Relation of this rormulation to the Differential

Equation Formulation

Theusual formtlation of compartmental Models is expressed

in' the language of differential equiM;icms. In mach a folmulatinn, it is

assumed that the intensities are varying continuously. Crudely

speaking, this means that the intensity in a compartment measured

at time I is at most only slightly different in maTatude than

9.1u0



when measured an instant of time later, ',Pet . Here the

symbol 14 lesignates a very small incimmaltof tine, i.e. an "instant"

of time. Such a continuous variation implies that thereareno =Men
y

large changes in the quantitiesiduring a mall time hwrmment; there are onlV
....6

small changes in small time increments. In fact, by making the

time increment small enough, the magnitudes of the changes

can be made as small as desired. Because of this

assumed behavior of the time variation of the intensity, it is

appropriate to use the differential ca culus notion of the instan-

1taneous time rate of change of a.varia le. The.instantaneous time
I

rate of change of a variable is the limiiin3 valial of the quotient of the
m

VIN.44.

charme in the variable and the time increment dul.nq which the change taies place

as the time increment becanes arbitrarily small. Thus, the exprEmsion of the furtia-

mental equations in the larmuage of the differential calctilus requires that Fick's

principle be stated in terms of instantaneaus rates of change (usually the

word instantaneous is omitted, it being understood) of the concen-

trations. Loosely speaking, Fick's principle is stated as, the

time rate (-)f change of the concentration is the rate at which the

concentration is being increased minus the rate at which it is

being decreased.

7n contrast, our formulation of Fick's principle stated that

the magnitude of the change in the concentration during a time

period was equal to the increase in concentration during that time

period minus the loss or 'decrease in concentration during the same

period. Thus, our formulation involved equations relating the

magnitude of changes of variables during a finite time period.
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Such equations are sometimes called finite difference equations.

It can be shown that as the time increment becomes vanishingly

slept our formulation is equivalent to the usual differential

equation formulation. Such a demonstcption will not:be made

here as it is more appropriate for a mathematical treatment.

It is perhaps worthwhile to give some examples of the two

formulations. The first example has already been presented in

equation 9.7. The symbol.

denotes the time rate of change of the variable Q. Similarly, the

symboi

denotes the time rate of change of the variable P. The differential

equation formulation of the second problem would appear as

,_,43162

ft
1 tel .1r1.4)1 le-tirZ.Q2 hes 4'1

e

573

9.110

(9.9a)

(9.10a)



fts

These two equations correspond to equations 9.9 and 9.10

respectively.
m-

A comparison of the'two forms of the respective equations

shows that

and

(01( I*1) -Q1 ( I) ) /D1

(Q2(I+1)-Q2(I))/D1

are respectively analogous to the quantities

dal
_

and
d02
W-1-1

Note the comment in the line be/ow 9.10 on pageq..16.

The differential equation,formulation of the third example is

aid 2

11.2. al k3. 622

514
9.111

fi

(9.11a)

(9.12a)
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and d
de

or
=1(3.02 (9.13a)

As a fourth and final example, the usual mathematical equivalents

(9.19a)

(9.20a)

(9.22a)

of equations 9.19, 9.20 and 9.22 #re

A comparison of these two formulations should reveal to the

student how to translate from one form to the other. It is fre-

quenti ,he case that the literature will employ the notation that

a dot (*) over a variable signifies the time rate of change of

the variable. In this event, the'above equations would'appear as

;

s=-14.s (9.19b)

P=152.S-1,2.1)

R=K5-P-L311 t.,

9.112
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Much work has been done on the analysis of multicompartment

moftls. In the literature describing such work, it is usual to

list an arra Yor matrix of transfer coefficients and to then supply

a brief discubsion or list of rules as to the use of the table in

setting up the governing equations. An eXample of this is the

work of O'Neill, 1971. His work consists solely in the listing of

transfer matrices corresponding to diffrent ecological compart-

mental models. In all such work, it is assumed that the equations

are linear; that is, only the first powers of the variables appear

in the equafions and no products of variables appear.

To illustrate the relation to our formulation, we *begin by

reniifn4-to the general 3- coMprflnenCrikidel oescribed in Fig-. 9.14.

For ease of discussion it will be assumed that there are no entering

flows and the only exiting flows go from one compartment to another.

Thus, F1=F2=F3-0 and E1=E2=E3=0. The equations describing the

system may then(be written as

(..(k/ (r) F_2xa..2(1) f-k3 ii-e23(4kpl

c22(.. ci22 CP K 4(;)/ (f) -01"(2t X a)(r) TJ xa3(z))if

Q.3 (-1-1 ) -a5 (1) ( letri)/( (.) frj 14- / 61.) (4) 7f- D L

NOw, by recalling the derivation of, these equations, it is spen that

the term T2*Q2(I) is the flow from the second compartment to the

first compartinent and the term K3*Q3(I) is the flow from the

third compartment to the first compartment. This suggests that a

'change in notation for the transfer coefficients T2 and K3 would



be of assistance in accounting for the v4 ous terms in'the'eguation.

The doublesubript:notati:on of,BASIC suggests ,itself. Thus, we
/ .'

.

set T(1/2)=T2 and T(1 3),=K1./ The first equation may than be
.. ,

written as
/

.

:'
e

(1-1-) -6? t Ko2r6ri ?' J *dig; 0-) 74- ro. J.) 103

,

'In an ana1ogoue-monnerYwe also introduce the furiher obviocs

notation: T(2;1)=K1c T(2,3)=T3t T(3,1).41.and T(3,2)=K2.. The
'-

second and third equations may then be written as

0,1(14- (ri *6-4/(4 -( CFI

cz.nt_re-6 aitr) 0-15, I/6r) T(.514 *etr'z2 (x) ---\((c3 r3i 3(rj)

Since the terms Kl+Tl, K2+T2 and K3+T3 are effective transfer

coefficients for the flaws leaving the first, second and thi

"compartments respectively/ it-is natural to designate these tra s-

fer coefficients by T(1,1), T(2/2) and T(3,3) respectively.

Thusy-the equations may now be written in the form: u

/b--0 d (4 TO, x62/(T) -A-T(/.. r(', 5JA of(4*-4(

ac2atJ Q4(4- ) (r O Aia /(z) akzegal 1-62,3) iwia141.1)
(9.36)

agei-o-t -Q3 CT) (773i or* (.1-) refia2bacwil 7751 I) i434fflot

a.
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(tP

'

aP.

An examination -of the righi hand side of the above set-of,
.

u,tions,suggestS-that.if the transfer coefficients. .are written

in the square 'array form

.4110) T(I,2) 1111,3)

1(2,1) -1(-2,2) 1(2,3)
1(3,1) 1(3,2) 1r(3,3)

.and the concentrations in the compartments written in the vertical
a ,

single element array form

that there is a simple rule for forming any of the right hand

sides of equation (9.36) with the aid of these two arrays.

Tot, rule is the following: To form the right hand side of any

equation multiply the terms in the corresponding row of the square

array in order by the teems in the vertical array and add the results:

For example, to obtain the right hand side of the second equation,

multiply'the
st element in thb ?second row of the square array by

the 19t element in the single vertical array, 'then multiply the

second element in the second row of the square array by the

second element in the vertical array and finally multiply the

5i8
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e

4

4

Mt

lbw

third' 61emerit-in the eCond row of the square.afray_by_itbe third

2e1ement ip;the.single vertical'array. The suM of..-thL products

then gives.the right hahd side of the secohd equation

The veent will note that the indices of.a term in

square array ecy the row ant the co1,4mn Of the.tfansfer ffi-

cient. Thus, T(2. ..is the e1ement.in the'second row and the

third column.- Iff general,,T4,Jf'denotes the trd6sfer coefficient

in the I
th row and tho" column. Furthermore, the term

4

T(2,3) designates the proportion of the sOstance in 'tlie third

compartment transferred, jrn the time ihcrement D1 to the second

Compartment. Hence, ip general', the term Ta,J) d4ignates the

proportion of t Substance of the
th

he .7 compartient transferred-
+.

th
ih the time incremeht D1 to the.I . compartment.-

In mathemat,i.C.s it is-uidal tddesignate the square array.
-..

by T(.I,J) or-si9aply T. If ()(?), or simply Of designates the

vertical sing146 array, the right hand side of equation 9.36.

may be writtOn as

I.
It is)usual practice to also

termi.

esignate,t.hasource and leakage

(EE2
)E3

snd

by F(J) and E(J) or more iimply by F and E respectively. By using

tnis notation, the description of the original model depicted in "

I

figure 9.14 earl be written in the succinct form

WI4-1) = b(I) + TQ + F-dm. E.

9.116
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...
-J:

.The expression otthe equations is mitt' an abbr ated form°

it is sopietime; helpful in obtaining an overall des tion'of the .

.- .

. behavior
.

of,Pple system. Furthermorer it does. Ler4t the elaboiate
,

machineryfieveloped.iii the matrix calcvilus .to 150:,..used to hisist

in ih'ana 9..sis of t ystém. Nevertheless, when actualcnumerical I.:

values are desired, ey most usuany are, the orifinhl iort .-

of,the'equatioha m tbe used. In-ihis way the'matrix notation

can effebtively hide.t..exiscenctof.'the n4celsit of performimg
.

,
#.

a "grubby .110-s-of.arithmetic.

Tbatudént who is 'familiar with linear algebra or with_the

use of the commands in the BAUC progfamming language will have

long recognized that the square array is a 3x3 square matrix and

the vertical linear array is a 3 vector. We apologize to these

students for this xligreision, nevertheless, itOhas'been your'apth9r's

experience that Many studehts-are unfamiliar with, or.do not recall,'

matrix, operations ahd0their use. Consequently, this brief discussion

Was in6luded in the-work.

Such a matrix is naturally called a transfer matrix. Since

the above described use of.the matrix to form the fundamental

equations permits a ready anoNobvious extension to the description
0

of a system consisting of more,than three combartments, the notion

of a transfer matrix and its properties plays a central role in

the analysis of multicompartment models. As stated previously,

O'Neill i1971) has presented several transfer matrices, each of

. which is a listing of the transfer coefficients corresponding to

'a particular compartment model. He also provides the reference

to the original investigator in order that the interested readcr

can more easily use the particular matrix in the investigator'L

prbgram.

If the system under examination is in'the steady state,

the amount of flow entering any compartment in an kncrement of

"N time is balanced by the amount of flow leaving.the compartment

9.117
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so

in the smile .interval of time.

matrix:the diagonal term ié

the rest of the terms in the
a'

ilipties that, -in the'trAnsfer

the negative of the sigh of all ofi,.

same,column. For exarlpler the

diagonal,terme, -T(3,3), is such that, .

T(1;3) + T(2,3)) = -T(3,3).

this condition holqs for all transfer coefficient matrices of.

interest since,the,deteimination of-the transfer coefficients

is usually accomplished when the sydtem being-modeled islin the

steady. state. \'

a
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PROBLEMS
14

CHAPTER IX

r

4..4

Using equation (9.5), discuss the constant infusion of ions

M. added in equal doses atfequal time intervals.
.

3. Uiing equation (9.5), discuss the case corresponding to the

a.

into the tissue. Discuss the results for ,different iRfusion:

rates-and different transfer coefficients. For feferen

see Chapter 3, Atkins.

Using equation (9.5), analyze the effects.of multiple infusilip

0
of a tracer labeled substance. In tilis case; the tracer is

4

infusion of a tracer labeled substance whose rate of infusion

,decreases in proportion to the elapsed Am.

4. Write a computer program to analyze the formation and excretion

of paracetamol itulphate from paracetamol. Use the transfer ,

co.efficients K1 = 0.09 per hour, K2 = 0.753 per hour, and

K3 = 0.257 per hour. Assume a unit initial concentration of

paracetamol in-the plasma. .Th:se values are taken from

Atkins (1969). How does a change in the time step D1 affect

the results?

5. In the two.compartment fallout problem, run the program for

different intake and loss rates. What effect do these varia-

tions have on the results? How do the results change as the

initial value of the intensity of the source changes?
vi

41.
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6. 'Conbider-the lichen-caribou-Eskimo food.chain. example. lter

the program for determining the parameter A to use a time
a

amp

increment of.one-tenth of a day. How much does the value of

A and F(0) change? As a.result of this alteratIon, what can

yoU say about.the sensitivity of th4 final values to changes

in the lengthfof the-time increment?

7 Write a program to determine the value of the decay parameter

when tbe half life is specified. Choose some.different half

lifes and determine the decay parameter by trial and error.

What effect does changing the value of the time increment have

on the final values of the decay parameters? What is the

relation of the trye un1t in which the decay parameter is

expressed to the length of the time increment, Dl?

8. (a) Write a program to calculate the time variation of*the

radiation intensity on the lichen-caribou-Eskimo food chain.

Run the program for different values of the parameters.

Discuss the results.

(b) Alter the preceding programs to include the time varia-

tion of the lichen diet of the caribou. Use the variations

as specified in the text. Try other variations. Compare and

k

diicuss 'the results.

(c) Alter the program in part (a) to include the time varia-

tion of the caribou diet of the Eskimo. Use the time variation

specified in the text as well as your own. Compare and discuss

the results.

046

3
9.120



(d), Combine parts a b, and c. Compare and discuss the

results. NOTE: This problem could be parceled out to the

class for a total class project.

9 Using the program describing the movement of pesticides

through a lbod chain, figure 9,31, choose different transfer

coefficients and loss rates and make a setof runs. Compare

the results.

10. In4the program listed in figure 9.31, the measure of closeness

is the sum Of the squares of the deviations of the calculated

and the experimental data. The terms of this sum are calcu-

lated by line 830. Alter this instruction so that the measure

of closeness is the sum of the squares of the relative errors.

Using the same set of transfer coefficients and loss rates

as you used in problem 9, rerun the program. Compare your

results. Can you improve the measure of closeness?

11. Alter the measure of closeness in one of the programs to be

the sum of the squares,of the relative errors or the mdnimum

of the magnitude of the largest deviation. Make some runs

and compare the results.

9.12k
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ABSTRACT

Using a computer to simulate tree growth allows one to

quickly see how stocking level affects tree diameter, height,

and volume growth, as well as stand mortality and volume. Also,

one can easily see how individual tree growth is influenced by

tree size and age. While this is not a new or unique cdncept

in forestry, the approach presented here differs from that of

such authors as Beck (1974), Lin (1974), and Burkhart and Strub

(1974), who have used mathematical formulas to simulate natural

growth gpenomena.

The ability of a computer to do many calculations in a

short period of. tiMe makes the substitution of a compliter lan-

guage Dor formal mathematics possible. This paper will .dearibe

a method of using the cOmputer directly to simulate growth Of

ponderosa pine and Douglas-fire;tands of various stocking

levels. Using the computer directly offers sevIral.advantages

over constructing( mathematical formulations: (1) it is faater,

(2) it allows use of BASIC computer language, which is easy to

learn, (3) it clearly illustrates how growth rate changei oyer

the life of a tree or a stand, and (4) it yields results that

can be understood by a widei audience.
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iThe purpce of these notes Is ti) describe to thp student how*.tree
4

4

grows in.terms that provide a visual represehtat,Ion or feel of the preset

ion. Ps'trees..increase iihrrae; some of the dime6Mna1 chahgeS.are
(:W 4

p

40
, ,0s;

great enough to be observe5 from year to year orilyqp from month to mon h
!-

As a. ti:pe ows'in height Ole change is easily observed as the'growing
4 si a

f

tseason pir gressep.
.4

,
. ..7.

if
.

.

.

,

4
.

..The.year to year changes in diameter are more sdbtle but can be ,.',. ....

.

...
,

detected by the use of
.

"dendrometeri binds around the tree with an ex4=

pansion scale :indic(tin4 tye dirdensional changes. The third characteris-

tth of .a tree, and the most important, is the stem Volume. Tear to

. year changes of thistdimension are not easily depicted. To add to the

confusion, the volume is not easilyoe'asured or computed.

Tha stem contaps all of the usable material for today's markets

90 our efforts atidepicting growth will include this dimension. It

should be reMbered, however, that the stem is only a portion of the

biomass, .of a tree and that parts which you do not use through,consumption

are eventually oxidized and their constituents returned to the soil and'

air. Since mostle the minerals and nutrients th a tree r mokes from

t
;

thb soil during its growth are in these none use parts thei retugiik..3

whence they came is of-great importance and until t e oxidize th y are

a source of stored energy.

The stem of a treeis a complicated geometric ficiure and the compu-

tation of its cubic volume is, at its beet, ofly an approximation. The

most accuiati method is caccomplished throgh measuring its displacement

when immersed in a fluid. But this.kind of treatment, is not compatible

with a standing,groiing trees,:so many methods of approximation have been

10.1



developed. \Probably the

spee5 of applicationrare

:

ost accurateof these, consistent with ease and-,mw

ocal volume tables which iequire only the

measurement of a tree's diameter for their application. The most easy to

apply and the most accurate of local volume tabies are the TARIF volUr*

tables: .These are A series of volume tables for different TARIF numbrs.

The TARIF number of a tree can be determined from a table of these
--\)

numbers if you know the diameter And height of a tree. More expAicitly,

the TARIF number'is ths amount of cubic volume from a 12 ire stump to a

4 tnch tc* t.c one square foot of basal area at a point 4.5 feet from

the '''round.

The cubic volume itset is. computed from a multiple regression formu-
#.

All of this information does not give the reader much feel for

how d tree changes in size with increases in age. -attempt is made

here to-&.xpress these changes in more readily undersiandable relation-
.

ships and 4.n simple non-mathematical language.

Custom has decreed thgt a tree's diameter will be measured'at a

point 4
h
5 feet above the average ground level. It takes a seedling a

period of time to /reach this height, for our illdstration we will use

.7. year% After the 7th year theri tree begins to accumulate a

diameter.dimension. Each year sees.a growth ring added to the accumulation

of.previous years growth. The amount that is added varies wispl tree spe-

cies, tree siie, the productivity of the growing site, the amount of

moisture available duiing 'the growin4 season, and the general physical

For our illustration me will uSe ponlirosa pine as the tree species

an45yroductive site index of 100. The index is the height of a tree

condition of the tree.

-

at 100 ,years. This site index,is about Average or in the middle of the

10,2
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4

range between a very poor site and0 a site of maximum productive capacity?

At the close of.the 8th yP r the diameter of the"tree should be the

amount of of growth. The.value selected forthis diameter grotit

is .28 inches Individual trees may grow faster than this or.they may

grow less. This value is the diameter growth rate of the average tree .

depicted-in the "Yield of Even-aged StAds of Ponderosa Pine" by Walter

Meyer. Meyer, 38).

-The diiketer growth rate will become less as the tree gets larger.

A constant diameter growth results in a rapidly increasing volume, since

the size of the tree upon which thisodiameter is laid is steadily growine

larger. As the tree gets largerr both the di rowth rate and cross

sectional areS growth rate of the tree stem steadily de ease. The 'crow

sectional area rate of growth is about double that of th iameter growti

The reduction in diameter growth is small at first and then increases as
4

the-free get.is larger. The diameter growth ieems to be related-more to

.01

-tree size than age, since quite old trees, if small, have the ability

to put on diameter growth equivalent to younger trees of the same size.

Since the reduction in diameter growth is a function of tree size
owins_

it can be handled as follows:

10 DIMENSION D(201)

20 D1=.282

30 D4=.00228

-4.0 FOR 1=8 TO 200

* 4

60. gEXT I .

70, END

41.

10.3
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The value of D4 can be determined from .growth recdrds of trees.

There will be more about a selection of this value and D1 later.

Besides griming in diammter trees increase in height each year and

this will now be add6d to the tree growth model. It has already indicated

that the young tree reactms breast height, 4.5 feet at about 7 years

of age so the annual heighth increase will be started at this point as was

er growth.
0

Like dlameter growth, the heighth growth becomes less eoch year as

the tree becomes larger but in this case the effective dimension is height.

The program will be changed to include this growth parameter of a tree, but

to make the handling of variables a.little easier a new varieble fill be

used in place of B.

The program will now lookias

10 DIM P(201,5)

20 D1=.282

30 D4=.00228

40 D2=2.3

50 D5=.0193
-

.60 P(8,2)=4.'6

100 FOR X=8 10 200

140 IF P(I12).<100 THEN 200

150 D5=.0152

200 P(I+1,1)=P(I,1)+D1-D4*P(I,1)

210 P(I+1,2)=P(I12)2+D2-D5*P(/,2)

470 NEXT I

280 END

40.

10. 4



;

The variables are defined as follows:

1. Dl=diameter growth of the tree t4 inches
low

2. D2=height growth of the tree in feet

3. D4=a constant of proportionality that reflects the loss of

diameter growth ,because of the size of the diameter
N

4. D5=a constant of proportionality that reflects the loss of

height growth be4ause of the height of the tree

5._I=age of the tree in years

6. P(I#1)=diameter of tree in inches in the 1th year

7. P(I,2)=height of tree in feet in the Ithl year
a

A free growing tree will have a root system and crown that is in

direct proportion to the stem size. -No attempt will be made here to

.
include these dimensions hnthe progr ut the volume of the stem will

be

used on a given tree are determined from a table of tr numbbrs using

the diameter and height of the tree. Once the ta as been

determined the volume of the tree is then,dete in its diameter.

To provide for volume in the program, the following statements will
4

now be included.. Tarif numbers which provide the vSlume table to

not be added:

90 V2=.0006

110 IF P(I,1)<2 THEN 140

120, V=.26

130 V1=V1+P(I11)/P(I 2)



A 0

160 /10' 1<60 THEN 190

170 IF I>1.35 THEN 190

180 V2=472-41000055

190' Ni=V4V2*I

22.0 P(I15)=V*V1*P(I,1)

9 t

New variables added to the program are:

V 10110 V1=constants 1. proportionality whose product =vides the total

cubic Nti lune, a the tx4e in feet when nultiplied by the diameter of

the tree

V2=coilstant of prOportionality thai provides an increase in V as

the age of a tree increase's

P(I15)=tqtal volume of the tree in cubicjeet in the Ith yeit

The

value of

the same

increase

n feet.

minimum diametdt tree for which volume is cpmputet is 2", the

V is not assigned untAl the tree redches 'this size. At

time 41.-fe value of',TI begins to acculplate with the yekrly

4

equal to the ratio of the tree diameter in inches aver the height

The program at this point wil/, grow a frlie standing

senvironmental limitations. The tree grows by increasing

IA height, both values,increasing by adding gh a yearly

tree without

itL-diameter

growth. The

yearly growth redUces in amount each year as the tree gets la4er.

Ttie volume 0 turn is computed by applying the produ6t of 2 va1yes

both of which increase ap ihe trep becomes= older. Volume of the stem
9



of a tree is a function of more than diameter and Weight, it also is

aff.ectid by the rate of taper of the stem, this taper is rapid in young

trees, gradually lessening as the tree a ea. Program statement 130

provides for this impro4ement in form. the tree is about 60 year

old, the rate the form improves begins to drop off. StAtement 180 prov4

for tW.s change whial continues unt,i1 the tree is about 135 years old.

The program needs statements that will PRINT the data it has com-

puted so the following 4re added:

70 PRINT "AGE DBH HkIGHT - VOLUME"

80 N=10

230 .IF I<>N THEN 270

240 PRINT I;TAB(6);INT(P(I,1)*100+.5)/100;TAB(13);

-250 PRINT INT(P(I,2)+.5);TAB(23);INT(P(I.5)*10+.5)/10

260 N=N+10

'41

A RUN of this program (figure 2) provides the information listed in

-Ifigure I.

a
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A

10

:!LIGhT
0.55 9

'VOLUME.

20 3.34 23 0.5
30 6.06 , 44
.A0 3:71 53 -.1

53 v11.31t 16

60 la.ve 7,3 27
79 16.32 35 41..1

19.74 91 58.6
SO) 21.11 96 79.4
100 21.43 100 103.6
110 25.69 107 130.7
123 27.9 114 .160.1

130 30.es 119 ' 191 4
140 32.13 124 227.2
150 34.24 127 269.4
150 36.26 131 315.7
170 '33.23 134 366.3
180 40.16 136 421.4
190 42.35 133 431
200 43.39 140 545.4

Figure 1

r-Growth table for ponderosa pine on site index 100

5 .9 6.

10.8 .0
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13 DIM PC201,5)
20 D1=.232
32 DO=.00223
40 D202.3
52) D5=.0193
SO 1213:2)=4.5
75 *RINT" A5E -3EIGiiT VOLUME"
33 A=10
90 V2=.0315
133 FOR 1=41 T3 23Z
110 IF PCI, j)c2 ThEN 140'
123 .V=.26
133 VI=V1tPC1.1)/PC1,2)
140 IF r3(I,2)c109 THEA 1 0

153 D5=.0152
160 IF 1461 T3L3 190
173 IF 1.135 THEN 190 lbw
163 g2=v2-.0v13:455
190 7=V+V2w1
233 INI+1,1 NI,1)+DI-D4wPCI,1)
210 PCI+1 =17(1,2)+D2-46*PC1.02)
220 PCI,5)=Mg'71*Nio1)
233 IF I.c.A TaLA 270
240 pnIAT 1;TAFIC6);IqT(P(1,1)4,1M.5)/100;TALIC13);INIT(NI,2)+.5);
250 MINT TABC23);I4TCPCI,5)100+.5)/10
250 W=N+10
270 NEXT I
230 LND

Figure 2

A basic 1 'age program

for growing VW pine on site index 100

10.9

..



The volumes produced by this program for a tree as it increases in

diameter and height is a product of two factors and the diameter Of the

tree. One of these factops is an accumulating ratio of the diameter of

the tree over the height for each year in the life of the tree. Tliis

value accounts for the improving form of the tree with age, the other is V

which increases by the product of V2 times the age class each year.

The resulting values are lower than the volumes produced by a tarif

volume tahle. This should be expected because the entry tables used
RIM

to determine the tarif number for a tree of a given diameter and height

are constructed from the calculations of the volumes of many ponderosa

pines for each combination of diameter and height. The measurements

used in the calculations were taken of trees grown in a forest, of

trees growing in competition with other trees.

The volumes of trees growing eone, without competition were not a

part of the measureients. Such trees.retain their branches as part of

their live most of their total height. The shortest or greatest

taper in tree stem is in the crown and the mos4rapid diameter growth

rate is at the base of the crown. This results in a tree of low form

fac t or lower volume for a given diameter and height. The variation,

of the computed volume from the tabular volume increases as the tree
f

becomes older and larger.

The history of development of open grown ponderosa pine in a forest

environment is not available, even,for a small number of trees. Those

41ndividuale of this species grown in fields or parks certainly would not

be representative of forest.grown trees where the only change _haabeen

a lack qf competition from other trees.



Without some basic information to use for comparispn there is no

way to judge whether the diameters produced by running this program are

realistic. The constants D1 and D4 cannot be determined by testing

against known diameters for diffarent ages for the open grown pine by,

they can be determined by fitting computed diameters to the diameters

'provided in the yield tables for fully stocked even aged stands of this

species. These tables are not the histozir of the development of individg

stands but are a composite of many stands of different ages put together

to illustrate the historical development of asingle stand. They are the

best information available about the growth in size, number, and volume

of trees in well stocked stands.

Height growth of trees is not materially affected by competition

from other trees in even aged stands so the height growth of this indivi-

dual tree matches that of the average tree in the yield table.

Since the computed diameter and volume have no information for coin-

parison and the constants producing these values need basis in fact our

next step is to build on our program so that it can duplicate a yield tab-

then our constants can be adjusted to accommodate known trends.



,Yiela pies tv.present the so called normilly stocked stand or a

fdkest that completely utilizes the site on which it grows. 'This crit

of itocking is subject to some questiori but thiOsboull not affect the

use to%determine the growth variables required for the growth model.

Only one vartable is added to the first model but this

that is very influential to the growth rate of a tree:

competition for the nutrients and moisture that a Uwee

is a variable

There is now

nfteds to grow

and there is competition for its required space and light. The above

ground competition'changes the shape of the tree., Lower limbs, not receiv-

in% enough light die and eventually drop. This\leaves less crown to

provide the pnergy.required for growth. In alZ tilts tree grows less

rapidly as competition increases and competition increases as.the individ-

ual trees grow and require more space for their activities.

How many seedlings start a forest on its growth cycle? Yield tables

do not provide this information so an arbitrary pumber of 2300 per

acre is select* During the first two or three years the mortality

would be quite severe, but they soon outgrow the early hazards and the

survival rate settles.aown to ag.predictable amount. No attempt will

be made to predict these early year mortality patterns, insteA a

mortality, variable Di will be sought that reduces 2300 trees per

acre to the riumbers Of trees per acre that the yield table lists 14 10

year age classes starting with the age of 20.

A mortality of 3.04% per year reduces 2300 trees to the required

number, 1280 at age 20. At 20 years of age the mortality in the
w

program changes to 2.45 percent. When theibasal area exceeds 75 .

square feet the mortalitY*Is increased by the addition of the product of

.000015 times the basal area in excess of 60 .square feet. At tlie

maximum of 230 square feet this amount to .000015*(230-80)=.00225 or

it raises the mortality to 2.675 percent, an increase of .225 percent

over the mortality ofNtrees without any reduction in their ability to

survive in competition with other treqs.

10412
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4
Wien, the age of the trees pass 'ylsara the mortality is

- * r

increased by the rate of 61.3/45. -Each yed thereafter the mortalitl

is reduced as the tree becomes oldeA The ze of.the variables that'

_

..

C

apply the effect of age and stocking on the mortality rate are "air_ .

mined through trial and error. They were selected to make the number

trees surviving each decade approximate thofte of the yield table.

These changes can be. made in the program by adding the following

statements.

14 P(1,3)=2300 1441

15 D=.0304

16 15116.56.5

4 a

115101,(1,4)=(P(1,1)/2)**2*3.142/144*P(1,3)

131 IF I<8 THEN 140

132 P(8,2)=4.5

192 IF 1<21 THEN 197

193 D=.0245

194 IF-P(1,4)480 THPN 191

.195 DO=w000015

196 GO TO 198'
4

.197 DO=0

198 D8=D+DO*(P(I14)- 80)
4

199' IF I<60 THEN 204

2n) .1)8=D8*D6/I

204 IF I<8 THEN 220

601



and changing the number of statement 200,to 203.

Statement 60 can now.be removed and 76 and. 100 can be changed*
4

as follow,: 40.

1
,,_

70.. PRINT "-AGE DBH HEIGUT NO. Of TREES BASAL AREA

TOTAL VOL."

100 FOR I=1 TO 200

Statementit 250 should now read

250 PRINT TAB(25);INT(P(I,3)*10+.5)/104TAR(35);INT(P(I,4).5

251 .TAB(46);INT(P(I,5)+.5)

The new variables are:

D=motality as a decimal

190=a value that increases mortality. This (alue is multiplied

the basal area in excess of 80 square fee.

D6=a value that changes mortality when it'is divided by age
tit

starting at 60 years and the ratio used as a Multiplier

for D.

,D8=the corrected mortality.

P(I,3)=tpe number of trees per acre.in. the It_h- year.

P(I,4) the basal area, in square feet, per acre..

.The results of runniqg this progra; would indicate that an optimum

survival rate for the trees exists when they reach/the miximum age

computed foe.the yield table. Mtn the trees are 200 years

their mortality would be. .0245+.000015*(228-60)*56.5/200=-.0075

6 0 2
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7
'The lowest survival'10ra e occurs at the ag of 60 years when

\

mortality reaches .0245+. 0O15*(227_$0).026V5.

A It is during the age period from 20. to 60 that the basal are

per acre is approaching its maximum value' and the efiect on mor lity

. the rapid basal area per acre,increase over the previous yea reecho

its culmination. From 60 years on, the `mortality starts a s qdy
L.

decrease with the ifibreasing acje of the trees.

Various techniques have been proposed and used in tree growth

4models to account for the effect of other'trees on the growth rate of

individual. There.are do many factors, that effect the growth of

ifidividual treef, but are very dificult to measure or cont*ol, that

it is an exertOn in futility to develop methods of accounting for th

effect on growth of a selected tree caused by other trees. Much r,ese

is required,bef e rçaligOtic models can be constructed of ir.ldividual

tree growth in a forest. It'is more logical to grow the average tree

in a forest and for this purpose the basal area 9d is th9 bes

1

critieria of competition available (ick, 74). eld tables vide

mtasurement of this parameter in thei tables making its use relative
.
.easy:

The next step is to add the statements that will 41ply these bas

r area values to the diameter growth to *fichieve a duplication of their

real effect.

.-"" 46
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Co tition is.meavred byebasal area.elpears,toltart reducing t

diaMeter growth of a tree when it reaches 130 square feei for up to

that poipt an annual siameter growth of D1=.282 incheq that reduces ea

year by. ,D4=03028 times iameter (P(I,1)) fits very well to,the patArn

of diameter growth depiCted by the yield table. This trend of diameter

growth continues until the basal area reaches 130 square feet per
. 4

acre, ordpn age of ab ut 25 years bUt beyond this imint, comitimted diame-

ters begin am'increasi g gain over the yield table diameters.

N. The aadition o a statement identifying this,basal.area:

151 IF P(If4) 130 .THEN 155

d t.12e addition of 1 diatements tG account for the e fect.of basal

area on diametagrawth and, to change the mmriable for annual diameter ,

growth from Dl-tol39. )

152 D9=D1-133*P(IF4)

153 GO TO 160

155 D9=b1 '

e

and a statement that assigns a value to D3;

65 D3=.00 6

-and to change statemat N140 so that it branches to .151;

e

4r;

140 'IF P(L,2)<100 THEN 1

6.( 4
4
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INN

and to change Statement 205 to substitute .09 for D1

205 P1T+i,1)=11(I,1)+D9-D4*NI,1)

will provide forthe effectpof basal area per acre on the diameter

growth of the average tree.

The variable D3 is a constant that, when multiplied by the bafal

4rea when it reaches a minimum of 130 sque:ke feet, will further reduc

the diameter growth ol D1=.282. The value'of D3 like the other con7

1
stauNused in this model has been deliberately selected to prodnce

.

results that duplicate the yield table valu s.

Now gp,..back to the statempnt that cal

and include the number of trees on an acre to calculate the volume per

tes the volume of the tre

acre.
lema.

220 P(Ir3)=V*V1*P(Ir WP(I, 3)

The variable U026 which is increased by an amop1tof-r-V2*.0006

times the age for every year of growth beyofid seven years

which is an accummulated ratio of diameter over height for each year
-

/

'in the ii e of the trees after the diameter has reached 2 inohes, wer

determined b comparing the volumes-that resulted for the individual

tree, computed by taking the product of V*V1*P(I,1) with that obtaine

from a TARIMevolume table for a ponderosa pine of similar diameter.

The tarif number that identifies the volume table is determined from al

entry table that uses the generated diameters and height for a tree of

"that age.

.The comparison was not very good, for the generated volumes exceec

tttpse indicated /by the TARIF volume tables from the ages of 60 to 1

yeas. A correction to the program is made that reduces the value of

10.17



V2 a little each year from the.age of 60 to 135. V, which

represents the improvement' in form of a tree as it grows older, is

increased by adding V2 times age to V each year. During the years

between 60 and 135 apparently the Improvement in form is slower than

during the balance of the trees life and a reduction of V2=.0006 by

.0000055 each year provides the needed change.

The necessary statements a5p:

160 IF I<60 THEN 190

.170 IF I>135 THEN 190

180 V2=V2-.0000055

These atements are already in the program placed there during Ow
0

construction of the individual tree growth model but not explained at

that time. Weeds slaw down in a tree form inprovementoccurs.durina this pmricd

cannot be determined for sure .but it might be caused for the following

reason. The years from 20, to 60 represent the period of rapid

basal area increase and hence greatly increasing competition between

trees. This causes the lower branches of a tree to die and, to eventually

ha,

drop off. As indicated eaMer, the maximum rate of taper of a tree is

in the crown. As the becomes shorter in relation to the total

height of a tree the form of the ..5ree improves. From 60 years of age

orhe basal area does not change much so tfie competition remains con-

stant, with mortality compl!menting growth. This should result in a reduc

tit= in the die-off rate of the limbs at the bottamof the crow's of the

trees, with a resulting slow down in the form or taper improvement of

the trees as they continue to grow lin height and diameter. This continue(

height grow6 still provides increasing shading of the lower limbs but.

606
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there is do longer the increaid of coMpetition free the side:so the
,

crown length to total tree height is reduced to a very slow rate of,

change.

-After-a-tree reaches an age of 135 its annual height growth has

reducedwfrom an initial rate of 2.3 - .0193*4.5=2.21 feet at seven

Y,ears of ag to a rate of 2.3 .0152*121=0.46 feet. The next 65

years will r;wtslalt in only 19 more feet of height. At the start Of4t4

.46

period the diameter. growth of the tree is .282- .0006*230.- .002*18Y.3

inches and it is still growing at the rate of .28 - .0006*230-.002*,24

.094 inches when the tree is 200 years old. This annual,increase

in diameter is fairly uniform all the way up the stem to the base of

the crown. The result is.a steady improvement in form that will conti

so long as the tree is able to maintain its diameter growth rate.

The single tree growth program, which was produced first, utilizes

all the constant that effect diameter, height and volume growth as

determined from building the program to duplicate the yield table valu

for these dimensions for well stocked stands of agescfrom 20 to 190

years with the exception of thou duplicating the effect of4kasal area

on tree growth-in diameter and the constants required to duplicate

the dumber of tre4.0 per ac;Ncoft.4

' The changing of statement 14

14 P(1,4)=2300 to an INPUT statement

14 XNPUT 'PI 1,4)

10.19
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ik

lets you vary the number of trees per acre that the program uies for a

run.- To facilitate this input ihe following statement should also be

added:

13 imItIT "HOW MANY TREES PER ACRE DO YOU WISH TO PLANT";

It should be remembered, however, that the reduction of this starting

number of trees to the number of trees at 20 years of age may not be

realistic. The comparisons should be made with number of trees surviving

to the 20th year.

A\listing of the completed program is given in figure 3 and

followed by three sample run outputs in figures 4, 5, and 6. T

first of these runs duplicates 61e yield table valties and the

other two show the results of beginning with less and then with

more than 2300 seedlings per acre: Table 7 gives normal yield

table values with tarif volumes./

o 8
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" APailt4W%

13

14
15

IS

F.:43

4q..*

65
70
30
90

614 PC2:41.5)
1711A T".1:0 mm!,,1" TREES PEI

13P!!T 7)C 1.3)
Li= . 339/4

16=55.5
D112.232
D4= . 09223
D2=2.3
D5= . 9193
D321.0016
11111T" AGE D54 11E1 WIT

4=10
V2=. 0005

ACIL U0 YOU w r.A TO, °Lai T";

4
N10. OF 'TREES 3ASAL TOTAL 1.0t.

..www.www01,1,

10: F OR 1=1 13 200
11 IF 13(1-. 1).42 Tign 131
115 50,(1,4)21 (P( I.. 1) /2)414'2*3.142/144*PC 3)

120 V=. 25
130 V1=V1+PC 1) /P( I, 2)

131 IF' 148. TAEN 140
4

132 PC9.2)=4.5
140 IF PC1.. 2)4100 Tap 151
15b Et5=. 0152 *4

151 IF PC1.4)4130 TUFA 155
152 D9=D1-D3*12( I 4)
153 GO TO 160
155 LI9goroj

150 IF 1460 THEW 190.
170 IF 1135 TAEN 190
lia ve=v2-.(1)200055

v=943/2*1
192 IF 1421 TlEA 1970
193 D=. 0245
194 IF P(1,414.40 T3E:,1 197
195 DO=. 000515 -

195 ;80 TO 193
197 Eineso

173 D3=1:11+:4041CICI..4)-a0)
199 IF I46!;) TaEU 204
200 193=1)3*DW I
254 IF 143 TA2W 220
2h5 '3(1+1,1)=P( I, 1 i+D9- DoLN 1.1)
1(1 0(1+1,2)=P( I.. 2)+D2-U5q0C 1,2)

299. P(1+1, 3)=PC 3)-1)3,102(1,3)

T-.25 PC 5)=uiorl*P( I. 1)*P( 103)
ri7,9) IF I42.A T3E:4 270
240 7,1INT I; TA:1( 5)) 1:oTc7C I , 1 )f 1 774-. 5) /190); T.4.$t 13); 1.17(PC

25f4 p71AT TAJ(25):IirrcNI.3)4-.5);TAIJOs);IAT(*(I,4,4,.5);
51 PIUT Ta3C46); MT(PCI.5)+. 5i
260 W=N+1st

Figure 3 '4**)

Basic computer languagp pub generating
ponderosa pine yield tables fair site index 100

.
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101 'mica' TiLa.S 2%1 aCRE. U0 YOU /415J TO PLAAT 7233

441.1k.. L.-44, 1E111T AO. 5F TREES BASAL AREA TOTAL% ',3L.

23 3.34
30 5. SI

40 7.14
5(4 1.47
60 9.72
720 13.95
50 12.14

,

90 13.3
100 14.44
110 15.54
120 r 16.52
In 17.63
140' 13..7

\ .

1,5:0 19.71
163 2r1.69
170 21.66
152' 22.6

/ 173 23.53
2oa 24.43

21 1279 73

4 4 935 169

54 756 210
59 577 226
73 440 227
35 347 227
91 283 223
95 236 229
130 . 201 229
107 174 229
114 152 229
119 135 230
124 120 230
127 108 , . 230
9-1 93 229

--134 90 229
136 32 229
133 76 229
143 70 223

Figure 4

1 553
2739
4596
5395
7314
1714
9342
3909
9420

. 99511

10191
10451
10791
11231
,11675
12115
12553
1297a
13429

Ponderosa pine normal yield table
for a site index of 100

0
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ft

al 'INNY TREES PER ACRE GO YOU 141S3 TO bLAAT ?IWO)

AGE LiJA 1E1WiT t30. OF TREES BASAL le:ILA TOTAL ',IL.

13 7$.56 4 757 1 92

3.34 28 556 34 234

31 5.16 44 431 36 1341

40 3.53 53 335' 135 2701

5% 13.37 69 259 152 3731

60
70

1201.
,

13.59.
78
35

200
159

157
150

4432
5030

90
15.11

(16.59
91
96

131
110

163
165

5517
5104

109 13.03. 100 94 166 6543

110 19.42 107 82 148 6921

120 20.77 114 72 169 7227

130 22.09 119 64 170 7470

140 23.37 124 57 170 7753

15 24.62 127 .
52 171 1124

16 25.34 131 47 171
.

3493

17 27.04 134 43 171 3353

130 23.2 136 39 171 9209

190 29.34 138 36 171 9564

200 30.45 140 34 171 9918

Figure 5

Ponderosa pine yield table for a starting generation
of 1000 trees per acre for a sit:e index of 100

slr 1
10:23



nuAAa

:toy; MANY 17*-1,..S PLR ACRE D3 YOU '41.1:1 Ta PLAAT 71,4Rqo

41E. Di.",:i 3E1G4T AO..._0 TRLES_BASAL ATIEA TOTAL VOL.

17' 9:56 9 757 4 0

2,9 2. 36 23 5552 24i 2213

1C4 3. 12 44 4134 333 6346

43 4. 5 54 3135 345 9005

50 5.15 69 - 2349 339 10543

, 53 5.34 78 1763 321 11431

70 6. 57 35 1372 323 12130

30 7. 3 91 11,06 321 12100

90 8:02 96 914 32 t 13422 4

100 3. 72 100 772 320 13959

. 113 9. 42 107 522 329 14462

129 10. 29 114 575 320 14322

130 10.76 119 5%6 120 15042

140 11. 41 124 450 319 15455

150 12.15 127 403 31.9 161411

160 12. 63 1 al 363 313 16564

170 13.29 134 3 313 17116

182 13.9 136

.30

3o I 317 17672

190 14. 5 133 276 315 13232

233 15. 03 140 254 315 14797

Figure 6

Ponderosa pine yield table for a starting regeneration
of 10,600 trees per acre for a site index of 100

6 2

10.24



,

1.4

t-- tn t on 0 0, ol et. 42. on or 0 on el

F or 447. 0. en t- ez r- r- 01 CV CU

on or cl 147: V- C- or or at cp.

e,

C. or m- or or or or on or or or on on on or

cr. el tr OJ 0.1 eV el 0 0 CU el 0 0 01 0 CU CU

-- el cl el C.! 0 0 CI ee el cu Cu N 0 co 0 0.1

3
me.41 -4

OD V:
or un 4 ur: cu or or 6' 0 el ;.? or

Wt. C4 1'.: or v- ur. or ol V- Ul VI 0,3 s on cp. 0 ur,

11

a

F-
.

e; o "4 kr Ul Ilk on 41,'

n un on tc, -4 el 03 CO on on on

4,1 ur on e- or nr

e. ol Ul 0 N t- V- v- r. 0 Ul
r kr' un o- un *****

13 tss CO el 47 dOkvn m a e 0 On

41 u r- am es w4 w4 we, wft w4 ."4 0.1 Cla 0l

7

-4 Ait

1.4 u4 cS CD Ci;) da st
kst tn r (.11 ey. Is

4:4 C1 in 0 N elk 03

a



DOUGLAS-FIR MODEL
a

?4
a

*

The program developed for.ponderosa pine on a site index of

-100 can be chdnged to match the yield table growth for different

site indexes or the program can be altered to fit'other species

of trees.- To illustrate this flexibility, the changes will be

made to duplicate the yield table values for Wet.t Coast Douglas-

fir on a site index of 200, a very good site for this species

west of the Cascade Divide in Oregon, Washington and British

4

Columbia.

1. The-"annual diameter growth, D1=.282, -g ven in statement

20, becomes D1=.455.

The annual height growth, D2=2.3, gi n in statement 40,
ft

becomes D2=4.2.

3. The correction value for.the effect of height on height

growth, D3=.0006, given in statement 65, becomes

D3=.000645.

4. The correction value for the effect of basal area on

diameter growth, D3=.0006, given in statement 65,

becomes D3=.000645.

The height at which D4 is.changed, given in statement

140 as 100, becomes 200.

6. The value of D5, given in statement 150 as .0152.becomes

.0175.

814

,10446
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7. The beginning mortality, D=.0304, given in statement 15;

4 becomes D=.071.

8. The new mortality Value, given in statement 193 as

D=.0245, becomes D=.037.

9 The starting value for computing volUme, V=.26, -given

in statement 120, becomes V=.89.

10. The rate at which V2 changes each year betwen age 60

and 135 years, given Ar statement 180 as V2=V2-.0000055,

becomes V2=V2-.000021 and applies to the period from
e

90 to 170 years. The slowdown in form class improvement

starts later than It does for ponderosa pine and the

reduction is greater.

41. The decrease in mortality as the tree becomes older was

given in statement 200 with a ratio of 56.5 over the

age applied as a multiplier to the mortality-Valtie.. This

reduction starts in thicear 60 and D6=516..5 in statement

16 becomes D6=24.

With these changes., the pro4am proaucei; the results shown in

. .

Table 9 when run with 2000 trees per acre ai the beginding stocic-

V
ing level* Table 9 provides the comparable values from McCar4le.

(1949). (Tarif volumes replace the yield table .volum&i.). 'Me

ent% tables used were Tarif Access Tables for Pacific Northwest

Species, Volume 2, Major Coastal Species (Meyer: 198). The tinal

program is-listed in Table 8.

10;27



4.

4 J
10 DIM PC201a5)
13 PRINT"AN MANY TREES,,PER ACRE DO YOU VISH TO PLANTtZ
14 1NPOT P(1o3)
15 1)=.071
16 D6=24
20 DIs..455
30 1.14=.00224
40 b2=4.2
14 D5=.0165
65 L3=.000645
70.PRINT". A1E DBH 3EIG'AT NO: OF TREES bASAL AREA TOTAL VOL.
30 N=I0
90 v2=.000i
100 Fon 1=1 TO 200
110 IF PCI.1)c2 THEW 131
115 P(I,4)=CPCI 1)/2)**2*3.142/144*P11,3)
120 V0:39
130 v1=y1+PCI.1)/PCIs2)
131 IF 143 THEN 1 40

I32. P(3,2)v4.5
140 IF PCI,2)c200.THEN 151
.150 D5=.0175 -

151 IF P(I.4)4130 T3EN 155
1521)9=D1.-1)3=15C1s4)
153 GO TO 160
155/0=D1 f

160.IF I490.T1EN IRO
170 IF 1,170 THEN 190
130 V2=172.000021
190 V=V+V2*1
192 IF Ic21 THEN 19
193 1)=.037
19.1F P(I44)480 THE 197

195 DO=.000005

)
199

19 GO TO 193
197 0
198 Ii3 D.DO*CP(1.4).-80

20
EN tIF 04.

4 1r 14
205 PCI+1 IA D4*PCI 1)
210 PCI+Is :1 6541P( I, 2)

220 PCI+1,3 C1.3)
225 PCI;5 P( 3)

230 IF I( EN 270
240 PRI 14TABA6)4 161T-on k, 1 )*1004.. 5)/100;TAB( 13)/ INTCPCI,2)+.5);

250 DR 4T TABC2SifINITCPC1,3).v.5);TABC35);INTCPC1.4)+A);
251 DR NT TA5,46); INT(P(I,5)+.5)
260 N .4.10
270 N XT 1
28 8

Table 8

,Basic computer language for generating
Douglas fir yield tables for a sitg index of 200

6 6



10"T MAAv t.:1.,

AGE D...13
-.ft.

10 0701

-,Lri i41k1.6
'1E1(13T

i 3

YO '4Ic3 TO ')LANT ?2311t
Nb. OF TnEES.JASAL AREA TOTJAL. "OL.

1195 0 0

2: 5.3(.4 50
\

555

30 9.2 131.7- 375 : 173' 6070

40 12.216 U05 e55 10 '14-130-c-

50 15.11 130 174
5.

217 1022.4

le6z 17.-0.
.
149 119 2,7r3 10630

70 20.6 165 1'03 .238 13097

130 23.04 179 91 264 15534

90 25.24 191 92 235 17900

100 27.35 200 74 302 19313

110 ,029.26 207 63 317 21513
120 31.05 .212 63 329 22938

130 32.72 217 53 339 24211

140 34.29 220 54 343 25159
150 35.73 224 51 355 2513053

160 37.19 226 43 * 352 26134
170 33.53 '229 45 367 2611.3

130 39031 230' 43 371 27209

190 41.1)3 232 41 375 28245
200 42.2 233 39 379 29226

Table 9

Douglas fir normal yield table
for a site index of 200
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