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A

INTRODUCTION

This report contains the documentation for the LPASS program.

It consists,of-the design procedure used, a description of the

program, and design examples using the program.

The purpoae of the LPASS program is the.design of, a maximally

flat ButterWorth or an equiripple Chebychev lowpasS dligital filter.

Starting with an.analog filter, tbe bilinear Z txansform is uSed to

find n equivalent digital filter. The user enters the.follawing

parametera: the number of second order sections, the type of filter,

the sampling interval, the -3db cutoff frequency, the starting frequency'

and the frequency increment. if a Chebychev filter is being designed,

the ripple must also be enteied.

The grogram calculates the digital filter coefficients for up to

three second order sections in caaoade. The program is designed to

calculate up to a sixth order.filter, thus.the filterorder'is twb

times the number of gatcaded second order sections. The ,filter

magnitude response is generated aver the frequency tntervel specified

by the input.

The LPASeprogram, written in Fortran IV, is supplied as a card

deck with thisreport. 'The program is in the form of a subroutine

and can be used as is by a call statement from the main proiram.

Data may be input via cards with o4put available through a line'

printer! The input/output devices may be altered as explained in

this report. Graphics routines may easily be appendtd to the program.
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The transfer function of a second order digital filter in the

domain is given by'

H(Z)

K (A
0
Z +A

1
Z+A

2)

2 '

Z +B
1
Z+B

2

*-)

where the A's and B's are the coefficients of the numerator and

(1)

denominator respectively. One common method of designing a digital

filter is to start with an analog transfer function: H(S) and'

fransform it tO the digital transfer function 7H(Z).. This

program will calculate the Scale factor Ki and the coefficients

A0' A1, A2 B1' and B
2

The transformation used is the extended

bilinear Z traTisform defined as

2 Z-1
S y. (r4.1 (2)

a

.where T is th011ampling intera1. ,Wjen this transform is emplOyed,

the desired frequencies must firet be prewatOedtd Make them com-

patible with the digital filter. The prewarped cutoff frequency is

given by

T
2

WDC 2. T Tan (3)

This prewarping is 'done by the program.

B. Butterworth Low-Pass Filter

We start wlth a normalized second order low-pass filter in

the S plane.

H(S)
1

S
2
+ 2Scose + 1

(4)



where the angle 0 is in degrees (in the program). 9 may be found

.from the Butterworth circle an& the relationShip

S
4.jw(2m-l)/2n

= d-

where .n is the order, of the filter and m = 1 2 n.

(5)

A

This relationship is. determined by the following procedure. By-

definition, a filter is n.
th

order Butterworth lowrpass,if ita gain

-characteristic is

1H (jw.)12 =
n

4

1'4- (2.51

(6)

:where a is the' gain, w is the desired cutoff frequencyvand 11 is
. c

the order of the filter. NOte that JR 0012 goes to zero as w goes

toinfinIty, indicating the filter does atienuate,the higher frequencies.

To determine its effiCiency as a low-pasEt filteT we dalculate
t

A

Thus

(
w.

an
dw P wc

1(-1-4) .

-c

w
-1

[H 001
ow n

411.

(7)

(8)

for all n and hence the gain Olaracteristic stays flat for w close

to 0. Also

p [H 110011.
an

Jurow 2w cri

( 9 )

and hence, the decline rate Or "roll-off".of the gain characteristic



at 4o to- becomes sharper as n increases. In'other wor,ds, the

,

,approximation to the ideal lowN-pass filter iisproves for larger n.

The order n is chosen according to desired specifications. The

. references have equations, curves, and tables.that select n, given

the specifiCations. For example, page 227 of -Rabiner and Gold gives

an equation for calculating n when the transition band is specified.

In the design, the poles for the full frequency resporise, H(S),

of the n
th ord r ButterWorth filter must be determifted. The pro-

*
cedure is as follows: .

IHn(iw)12 Hn(jw)Hn(j0):.0. Hn(jw)Iin(jw) ) .

a a
2

W .

2

2n , 2n[H(S)H(-S)]-:.
j

+ S

4
C j*

9 for n even

Setting the denominators equal to zero,

1/2n

w
e

for, n odd

Thus, the pole locations are the ,2n roots of ±1, depending on whether

'the order,is odd or even. These roots are located op a citcle with

' A

radius w
c

centered at the otigin of the 'S _plane and have ayMmetry

8



with respect /0 both real'and imaginary axes. For n odd, a pair of'

roots.are on the real exit and the rest are separated by rin radians.
.

FoT n even, a pair of roots are located itnn radians from the real

axis and the rest are again separated by whi radians. No roots are

On the imaginary axis for either even or odd n.

Le! 'pl, p2n be the roots. From the symmetry Of,the pole

locations, if' 1)1, . . pn are the roots lying in the right-half

plane, the left'-half plane roots are
-pl,

magnitude-squared function can then be written as.

2 .n
a (-1) wc27

H(S)H(-S)
n

The

To'be stable, H(S) must have all its pOles in,the left-half plane thum

a
wc

Hn(S) (S4131)...(S4-Pn)
, \

The program is written with uni.ty gain at D6( 0), therefore a

(13)

In order t locate the poles as.specified\above; contilder the
, -

following set orequations.

j (2m -1)'

-1 = -e
±j271.k

. . , n; for n even

n; for n odd

Substituting equations (14) intO equation (11) yields

r Si
Lto J±m

±j7r(2m-1)/2n=

EqUations(15) will give the pole. locations

Consider the form of equations .(15)

-w e w r-cos0 ±'jsinoC. c

In

(14)

n; for n even

(15)

1, . n; for n odd.

9
o}

deac ibed,dboveJ
- $ ,

16)

;



From this relationship, it can'be seen that the magnitude gor each pole
P.

is w
c

regardless-of the angle, and thus all the poles lie on a circle

With radius w-.

As an example consider, a second order filter, n a 2.

. _e±i7r(2m-10/4
w tin .

a w 1±45°S-1-1 c

.

s
+2

a co, ±135.0 5

450

111 ac 1, 2

**1

The relationship of these rot5ts about the circie'of radius w
c

iS tlustrated id Figure 1. The angle 0 is always measured from

the negative real axis.

In the program, only, the angle(s) less than 900 are considered

,so that poles lie in the left-haif'plane since Polea in the left-haif.

plane are stable. Putting .O 45° into equation (4) yields poles

at j0.707. These Iodations are in the Ieft-half plane.

V'

In the program, only even order filters are considered.

'Below are the values of 0 for 1 2 and 3 second.order sections

in cascade.

Cascaded Filter

Sections Order

2

3

Angle

0.

2 45°
444 .22.50, 67.50
6 75°, 450, 150

These calculated angles ate incorporated in the program in tbe order

given above.
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I.

-41

For N second order sections

is used per stage, because each
..

lecatia0:.

there are

stage has

N Only one specific

only one set of pole -

'Th6.following is the procedure to derive the magnitude of the ith-

stage:where i varies from 1 to N.

Given the normall.zed second okder low-pass transfer function

f

equation (4), we emplOy'the'low-pass to low-pass

An arbitrary cutoff frequency wc given by

Fot the i
th

Stage,-,equation'(4) becomes

w
c

2

Hi(S)
S +2Sw cos8

2
+w

c

transformation for

(17)

(18)

ble extended bilinear Z transiorm*, equation (2), is used to get to

. the digithl domain. Employing equa.tion (2)on equation (18) and sub-

stitutingliDC for wc .yields

WDC
2
(Z +)Z+1)

H Z)
4 2 2

-2Z+1)4--(Z -1)WDC case +WDC. E +21+1)

Putting the denominator, of equation (19) in moni6

transfe'r flinction for the stage of the filter

H (Z)

IC11 (A0 tA )

Z
2
+B

11
Z+.11

21

(19)

form Yields the

.(20)

Equation (20) is the same as equation ( ) with the exception of the

subscripts. In equation (20)
,s.br

,



die

A2

Ai an_ 2

G
4 4

yoyDC cos8 +-WpC
2

.

1 .

WDC
2

i

whc2 8

7117

B11 w. G

WIOCcose 4MDC2'
4

Letting Z e
ST

and S

have

w and taking the magnitude of

: (21)'

H
1
(jw) we

2
ocos(2wT)4Acos(wT):4-Ad 4-(A0 in(241+AisinTWT))

= ilif
(c013(20)1-13-4c000411+13)401-116113(wT))2i

(2wT)+Bii
(22)

This magnitude function is.the same for.both the Butterworth and the

Chebychev filteFsUlere .i varies from 1 to N. .

C. Chebycbev Low-Pass Filter

The advantage of the Chebychev low-pass filter Ovei the

Butterworth low-pass filter ls that the transition band of the

respbnse at frequencies greater than wc . is sharper for the Chebychev

low-pass.filter. - This is achieved by specifying a small percentage

of ripgle in the low-pass region. The amplitude.of the ripple is

specified tly the quantity, 8 (labeled RIP in the program). Figures 6

7 and 8 illUstrate the rippling for sAcond, fourth, and sixth order fil-
,

ters, respectively. The poles.of the filter are found on an ellipse



-

desdribed by two ButterwOr;h circles of radii A and B with A<B.

.. 'The location of the poles on Elie elliise is a "function "of the ripple,

8, and is given by the.followIng equation:

where

.16

29_

.v

1 (."1E-2444x-1)1/2N /

2'

Ti=EYT 1 *

(23)

I.
B is 'given for the plus sign and A for the minus sign. The dhebychev

ellipse then has malor axis B inctminor axis A., :The lodation'of the

g plane poles on the elliPse is given by

Real Part ....A cos0_

(25)

Imaginary Part B sin() -.
.t

The 'O's are the same as given for the-corresponding order Butterworth

filter. An example of Chebxchey pole locations is illustrated in

Figure 2. For A = 1/2'and B = 1 in a fourth order filter,

7

= 22.5* and 67.5'. The. Chebychev pole locations are determined

from equations (23) (24), and (25)e

where

The analog second order Chebychev low-pass filter is

K
2
a

Ii(s) =

S +K
8

S-4-1C
2

14. UP

'.1 ] 1/N
(1;e2)1 2

A

(26)

(27)

is calculated from equation (24) and N is the number of second

order sections. Km and K
2

are calculated by
-u c



.K 2Acos0

* 2 2 10- 2
K2 2. A cos 0 + B sin

2
.

(28)

(29)

The substitution of the low-pass to low-pass transformation for- soMe

cutoff frequency w
c

, _equation (17),:into equation (26) yields
.

'2
K aw

c

.2
S + SIC-5-(0 2T1'

(30).

Using the extended bilinear 2 transform, equation (2), and substituting

.114Dc for
.4)c

we have for any section.

K aWDG
2
(2

2
+22+1)

4 2 22 '

2(2
-2241) + VC8WDC(z

2
-1) 4. 14DC

2
K2(2

2
+22+1)

T

Collecting terms yields the following for the i
th

section

I

K14(A0Z
2
4A124.A2)

H (Zi =
2
+B Z+B

li 2i

where

y,

AO = A2 = r

G 4 + 2 WDCK + IOC
2
K

T
2 T 8 2

B =
Gi

aK2WDC
2

-77177
.(33)

(32)

4

4



i varies from 1 to N. 'These .coefficienti are used to find.

giyen in (22).

Por applications where a sharper'"ro11-off reiluired the .Chebychev

filters ire used. The roll-off increasei'with7 n for any fixed e.

For fixed n, the roil-off deczeases as e 'decreases. For small'

the ripple.width, 6, is small, see equation (23), but so is the

"roll-off. .For larger 'E 'the roll-off improves but the ripple width

intreases. .In the first case the filter will be sood at DC and

low frequencies, unsatisfactory at high frequencies. The converse-is

true in the second *case%

.
The above observations suggest the proiedure to be used in

sglecting s.Chebychev filter to match a Set of specifications. The

permissible ripple width stpecifies c. With c fixed, select n

to attain the requiredkroll-off.

a

4.
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II. Using the-Piogram

The first data card read into the program contains the nuiber ot

second order sections to be cascaded, N, and the type of-filter

desired, KN. N is" equal to 1, 2,,or 3, which corresponds to

the 2
nd

4
th

or 6
th

order filter respeeiively. .10 1 yields a

Butterworth filter, while 10 = 2---yielda a Cpebychev yiter. The

format on the N 10 card is 212, The Second-data card read in'

is the sampling interval T F10.6. format.

,

should be approximately equal:to ten times:the

.The third data card contIs the Value Of

When choosing.T, 1/T

cutoff.frequency, wc

in F10.4 format.%

For the Butterworth low-pass filter, wc "Is the -3db cutoff freTtency.

For the Chebychev filter-the magnitude of. the repponse is 11(1-4-
2
)
1/2

= 1 - 6 at (0-= w
c

w is in radians. 6 is taw tapple factor.

'If the desired filter is Chebychev, i.e., kN =.2, the next

data chrd the ripple factor (RIP) in F5.3 format. The filter

response for all even order Chebychev low-pliss filters pafises through

141+E
2
)
1/2 = 1 - 6 for w-= 0 and w . For odd order'filters, the

c ,

magnitude is 1 for w = 6 and 1/(1+c
2
)
1/2

= 1 - 6 for w =
c

This program produces only even order filters. .If the desired
Ir

filter is Butterworih, i.e., KN.= 1 eilis data card is omitted from

the data deck.

The final data card is the starting frequency (FREQ1) and the

frequency increments.(DELT) in radians. The format of the FREQ1,

DELT card:is 2F1CL4. Determine DELT.by the folrawing:

*
DEL

'final frequency 7 starting frequency
,T =

1024

This is necessary because there are 1024 frequency data points calculated

in the program. Choose FREQ1 and DELT to insure that calculated values



will include the data of interest. For,maiimum efticiency of the

_K
program, DELT should be'a multiple 9f '2 so no aecimal to binary

, .

conversion errors are incurred.

The digital filter coefficients are computed an&printedout for

each second:order section. The fu1011ter megnicude,response, as well

as_each section 'magnitude response, is )ri.nted for' 'eaCh Of the frequency

increments specified. When N 1 the sectioq magnitude response i

the full filter magnitude response aqd ia'only printed.once,

The pro:1gram may be easily modified 6.incorporaie a graphide

display ofAhe magnitude response. There is a ent Cara in the

LPASS program indicating where the ograPhics subroutine call cirdshould

be inserted.
s r

The program.is written with input obtained via device'4'end output

written to device 6. These numbers should be assigned to the appro-

priate devices prior to running .the program.

The program was developed on the
'1

PDP-11120 with a DOS/BATCH

operating system. 'trial runs'frequently used a TtY terminal 'as
c

aa a card reader for input (device 4); and a TTY terminal as

well as a.line printer for output (device 6).

Double precision arithmetic is-employeth To decrease-required
`V

memory storage, 'only the frequency interval values and the full'

magnitude response are saved. The section magriitude responses are

printed:out, but are not stored. The program will produce approxi-

mately.21 _pages of output.

'Shown belay are siailiple deck Set-u s for the Chebychev and

Butterworth low-pass filters.



Data.

Card

.

.

2

3

4

5

3

4

OP

Format

. F10.6/

F10.4,

F5..3

2F10.4

212

F10.6

F10.4

2E1014

V.

Example

0302 (3 sections Chebychev.low-pass)

0.001 (T = 0.001)_

100 a(co = 100 radians)

0.10 (Ripple amplitude = 0.10)

70 0.0§ (Start at'w = 70: Steps of

0106 radianp. Will finiidi just

'past = 131 radians.)

0201aZ2-sectionii, 4th order, Butterwortfi)

0.005 (T = 0.005)

,20 (we 7 20 radians)

0.104 (start at 03 u 0, finisT,

past w = 40 radians in steps of
0.04 radians.)

4 ,

.7te tollowing-pages contain antiotated examples of output Aata.-

This is an example of the output for a 4 ofder Butterworth

a.

low-pass filter with T = 0.0Q5 and .w 20 radians. The. starting
, c

S.

frequenpy is 0 radians and the-.frequendy increment,is 0%04 radian,

WDC = 20.01668 WC = 20.00000 T .; 0.50000E-02

. FOR I = 1 ,A0 =

B
1

=

FOR I. .= 2 'A

A

.B
1

=

0.10000000E+01

0.10000000E+01.

0.18219614E+01

0.10000000E+01

0.10000000E+01

0.19167786E+01

fr

A
1

= 0.20060000E+01

K
1

= 0.22869799t-02

B
2
= 0.83110937E+00

A
1
= 0.20000000E+01

K
1
= 0.24059972E-02 .

B
2
= 0.92640257E+00

Hi 112

'Ne

0.0000 , 0.0000E+01 0.10000E+01 0.10%90E+01

0.0400 .0.10000E+01 0.10000E+01 0.10000E+01

-0.0800 0.99999E+00 0.99999E+00 .0.10000E+01

0.1200 0.10000E+01 0.99997E+00 0.1.000E+01

0.1600 0.10000E+01 0.99995E+00 249000E-f-01

0.2000 0.10000E1-01 ,0.99993E+00 Trip000E+91

0.2400 0.10000E+01 0.99990E+00 , 04.10001E+011

S.



0

W is the frequency,

is the
° th

stage. I varies from 1 to N.

WDC is the prewsrped cutoff frequency, .

,WC is the cutoff frequency.

T is the Sampling interlAil.

At, Air!Ataad A2 Are the- low,-pass filter numeratOr coefficients.

B find 4 are. he lost-pass filter-denoiimator coefficients.

. .. *
.

.
. .

K1 is r..the gain faoto ..
.

. A it,

,, ,

H is the overall magnitude of the digital transfer-ftinction.

function (18t stage).

digital tfansfer functien (2
nd

stagq)

H1 is the magnitude of the

H2 is thi magnitude of the
0

H Hl*H2.

See Figure 4.

digftal transfer

4

th
This is an example of the.outiUt for a 6 order Chebychev

low-pass filter (three second order stages cascaded) withJ = 0.005

and w = 20 radians. The starting frequencris 0 and the frequency

incretent is 0.04 radian.. The ripple is equal to 0.100.

WDC = 20.01668 WC

A = 0.24783947
A = 0.24783947
A = 0.24783947

= 20.00000 T =

B = 1.03025433
B = 1.03025453
= 1.03025453

FOR I = 1 A
0

0.10000000E+01

Al = o.limboom+pl

B
1

= -0.19774006E+01

0.50000E-02

A
1

K1

K 0.12829114
K
8
= 0.35049793

8
K
8
= 0.47878908

= 0.20000000E+01

= 0.23830688E-02

B = 0.98727357E+00

= 0.99443709 °

= 0.56142438
= 0.12841170

WDC2 = 0.40066761E+03 G(I) = 0.16142562E+06 A = 0.96548939E+00

FOR I = 2 A- = OL10000000E+01
0

A
2

= 0.10000000E+01

. -0.19600541E+01
1

A
1

= 0.20000000E+01

K
1

= 0.13321469E-02

B
2

= 0.96557320E+00



-

WDC2 =0.4006676.AE+03.

FOR' I = 3 Ao = 0.10000006E+01

.- A2 0r-9.10000000E+01-

B
1
'= -0.19519013E+01

G(1) = 0.1603127E+016 A = 0.96548939E+00

= 0:20000000E+01

=._0.30310788E03

B a'0.95321709E+00

WDC2 = 0.40066761E+03. G(1) = 0.163884961406 A = 0:96548939E+00

112 113.

0.0000 0.89998E+00 0.96549E+00 -0,96549E+00 6,96547E+00

0.04d0 0.89599E+00 0.96549E+00. 0.96549E+00' 0.96548E+00

0.0800 0.90001E+00 0.96550E+00 0.96551E+00 '0.96547E+00

0.1200 0.90009E+03 0.96552E+00' 0.96554E+00 0.96550E+00

0.1600 0:90016E+00 0.96555E+00 0.96558E+00 0.96551E+Q0

9.2000 0.90028E+00 0.96558E+00' 0.96564E0P .0.96555E+00

0.2400 '0.90042E+00 0.96563E+00' 0.96571E+00 D. 96559E+0.,

WDC is the prewarped cutoff frequency.

WC is the cutoff frequency.

T is the saMpling interval.

A ...
2

.1 is the ith stage, I varies from 1 to

k = 2Acose.

1(2 - A
2
cos

2
0+B sin

11.

A
0

A
l'

and A
2
are the low-pass filter

.

A

numerator coefficients,

Bl and B2 are the low-pass 'filter denominator coefficients.

K
1

is the gain factor..

WDC2 (WDC)
2

G(I) = 4 2
+ iNDC,K8 + (WDC)2K

2.

The A following G
[ 1

(I) is a =
+ c

2

4

W is the frequency.

is the overall magnitude of the digital ransfer function.



H1 is dr magnitude oi the digital transfer function (1
5t

stage).

H2 is the magnitude of the digital transfer function (2nd stage).

H3 .iS the magnitude 6f the odgtel transfer func4ion (3
rd

stage).

H H1*H2*H3.

See Figure 8.
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Figu're 1

Figure 2
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INTRODUCTION

This report contaiOS the documentation for the BPASS

consists of ihe design procedure used a description of the program,

and design examples uoing,the prOgram
.

The-purpoee'pf the BPASS program is'the,dedign ofeither a

maNtaally flat ButterwOrth or a Chébychev filter writhequal ri001e, in

the pass band. ,,pr each tylie of filterihere.is a chbice ot:band-pase'-'

.orband-stop filtere. Starting'with an analog fili,ei,.thebili#ear,

.,Z trans-for, iti.utied-tO.design an equivalei digital filier,..'ihe user
4

, .

';..entirt.the'loW-pass.filter2:order, the,type-i&filter desired, th'e

eampling inten'Tal, the.uppersand'lower cutoff freqUenitia, the'

starting frequency and frequency increment, and if a,Chebychav filter

is being designed, the.ripple. The 16w-pass filter' sections are

transformed to, second order band-pass or band-stop'sections. Mum the.-

progrAm generatee the digital.filter coefficients for up to six

"

second.ordet sections:in cascade or uP-tOl. 12th order.filier: The

,design.is cerried out intbe-frequency domain, The Orogram calculates

the transfet function.coefticients foraach,secon&ordersection, the

magnitude-function for each' section, And the-final cascaded filter

magnituderespOnse over thefreqUency interval specified by the inpUt

The BPASS program, written in Fortran IV is suPplied as a card

deck withthis report. The program is in.the form ok a subroutine and

capbe used as is by a call statement from the main program. Data

.may be input via dards With output available through a.line printer.

The input/output'devices may. be altered-as explslned in,this report.
,

Graphic routines mareasily be appended to the Arogram,



;
.rf, 4

i-tr

I. 1?es1gn Proc.edure

*..A.. Preliminary aiscussIon

. ."

One common Method of desiinini a digital filter is to start

aileanalog.transfei7function H(S) :and transform it to he

digital 'tranafer function. g(Z).

The 'transfer function,of,a second order digital ilter in the

4

Z domain is givtr by

Itibkoz2 +. A2).

4(Z)
'22 + Bli +-Hi

. where the .A's and B's 'are the coefficients of the numerator' and
.

denominator, respettiVely.. -This program will calculate tbe adale
. .

factor and.the coefficienta. A,u , A Ai, B1, and Hi. The.,

transformaion used is the ektended bilinear Z -transform

Where ia the sampling itterVal. Whe the extended bilinear Z

transform is employed, the desired freq cies must first be Ora-.

warped to makethem compatible with the di tal filter. In the

band-pas nd banoi-stop filters, the upper d lower cutoff frequenCies

47 and the center frequency of the'filter ate .interest. Calling the

u uia respectipppr.and lower trequencies wandity, the pre-
.

warped upper (WDU), lower (WDL), amd cpnter (WDM) frequencies end the

. bandwidth between WDU and WDL are found by

, 1'



,

cap
w T

.

2 '

W T
WDL y lag-T4

WM! WDL

1

(3)

1'
are spikif.ied-by. the 4signer and the prewarping,is done

y tWprogram.

In'the_design proi6dure for all bandrpass7Und bandr-stop filters of

,V.rder: n' (n".. eyen), the.,Pngram begl.ns by first finding he poles

for the-corrdeponang 1012- order,ldw-pass filtei. 1110

filter is then transformedinto a band-pase'orluand-stop

,ordera

:Butterwrth Band-Pass.Fater
t1

,

e.

We,start with a normalized second order low-pass'auttarVorth

filter' transfer funetion in the

1
H(S)

S2 47, 2Scpse 4- 1 .

(4)

where ihe_angle, 8 is_in.dogrees (in-the prOgram) and ulay tie found

from the'Buttgrworth circle and the relationship

_ 1

e
±jw(2m - 1)/2n

Is

Where n is th order 4 the )Low-pass filtet and In 1, 29.089

This re1ationsh6 is determined by thelollawing procadyre. By

(5)

n.

definition, a filterJA nth order Butterworth law-pass if lts gain

-tharacteristic is

elk



2n
+

oc

(6)

-

, 1

where a is-the DC gain, w iS'the'-diaired cutofffre44

is the order of the low-pass filter.,

In the design, the poles of H(S) must be found. The pracedure

is -as follows:

Hn(j012 lin(iw)Hn(iw) Hn(iw)11133:5- lin(jw)lin(ac.44

-:(11(8)I(-sYls
,

a
2

2n

S't

..d....

7

,.

Sating the denominators equal to.2erci,.

S 1

w
(iq) /2n

t

(8)

Thus, the Oole locatio4, are the 2n roots Of depending'on

whether the low-pasik filter order is odd or even. These roots aTe,

1 cated on a circle vith radius
c centered-at the origin of the S

plane aN\have symknetry with respect to both real-and imaginary axes.

oitc,
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For n odd, a.pair of roots are on the real axis and the rest are

separated by nin radians. ?or n even. a pair of roots are located

1T/2n eadians.from the real axis and the rest Ire again separated by

aln'radians. Nd roots are on the imaginal,'" axis, for either even or

odd ft.-

Let .be thelWoots. From the Symmetry of the pole

locations, if . pi,...,pn aie the roots lying in the right-half plane,

the left-half plane roots-are

function,can then be written as

.H (8).%(-S)
(s + PI.

2 n
a (-1) w

c

-pn. The magnitude-squared

.(S pn)(S p1)...(S pn)
(9)

To be stable, H(S) muse have all its poles in the left-hand plane,

thus

awH*.{SY
n S p +

. I

(10)

The program is written with unity gain at DC, w 0 therefore'

a 1. .

In order to locate the poles as specified above, considei the

f9flowing set of equations.

1 -e±in(4

-1 -e
±j2 k

n; for n even

n; for n odd

Substituting equations (11) into-equations (8) yields

-e
ipr(2m - 1)/2n

ve,

±jwk/n
= -e-

w _

.0"

2,.., n; for n even

(12)

4sT

0, n; for n odd

I.

4,



a

Equations (12) vill give the pole locations'as described above.

Consider the form of equations (12)

±j6s e W [-COW) ± jsino] (13)

From this relationship, it Can been seen that the magnitude for each

ple is w
c

, regardless of the eagle, and thus all the poles lie on a.

circle with4radius w
c

AB an example, zonsider a second order filter, n 2.

I -e
±j11-(2m - 1)14

c

S
1

w ft135°
± c

e - 45°

The.relationship af these roots about the circle of radius w
c

is always, measured from the'i1luatrat1ed in Figtire 1. 1 The angle

negative real axis.

tin qie program, only the angle(s) less than 90° are considered

SO that the poles lie in the left-half plane because poles in the

left-half plane are stable. Putting 6 450.'into equation,(4)

yields poles at -0.707 '±j0.707. These locations are in the left-half

plane. From equations (12), for loV-pass filter orders n

6, the values of e are given below..



P

Low-Pass
Filter
Order

Second
Order

Cascaded
Angle Sections

Band-Pass
Band-Stop
Filter
Order

0

1 0! 1 Z
2 45! 2, -4 '

3 60°, 0° .3 . 6

4 22.5°, 67.5° 4 , 8

5 72% 360, 00 5 10

6 750 450, 15° 6 12

is the order of the low-pass filter and is used to determine pole

locations, n is also the number .of second order band-pass or4band-

stop sections which results from the transformation of the losrepass

filter sections and which will be cascaded to lorm the band-pSss or

band-stop filters of order n'. The transformation is elplained below.

The calculated angles are incorporated.in the program in the order

given above,

GiVen the normalized second order Awpass transfer function
r.

equation (4), we transform this low-pass into a band-pass transfer'

function for some bandwidth WB, and center frequency, WOK by

usin,-. the transform

S S
2
+ WDM2 *

SWB.

Equation (4) then transforms to a 4th order transfer function

2
S

2

H(S) =
NUS + S

3
2WBcos0 + Si (\M2 + WB

2
) + S2WB WDM

2
,cosS + WDM

4

(14)

Using the root finding subroutine "POLRT" from the IBM Scientific

.Subroutine Package (SSP), the.roots of the denominator of equation (15)

If



110

*Co

are found. (Note:_ FOLRT has been attached to BFASS as a double

precision subroutine and is included in.the Card deck). Theiroots

found will be complex conjugate pairs. Calling the real and imaginary
\

parts.of the pairs &El, AUi1, RE24 AIK2 equation .(15) ie factored

to yield two cascaded secona order sections

H(S)
SWB SWB

S
2
- 2SRE

1
+ RE

1
+ AIK

2
S
2

- 2SRE
2
+ RE

2
+ Aim

2 . 2

For each 0 of a given N, the program calculates roots for both

(16)

.sectiona of equation (16).and labels them the ith and the ith + 1

seCtion. If .14, the number of second order seCtions specified; is

- even, the program will calculate N pairs of RE and MIK value's

or 2N = n. roots.' If N is odd, the last value of 0 is .o.

Substituting 0 = 0 into equation (4) and factoring yields two

.identical first order sections, 1/(S + 1). The program will calculate

)%1 + 1 pairs of RE and AIM values, but because the last two pairs

are the same dpe to the identical first order sections, the last pair

.r-

will not be used.

Eiecause both second order sections of equation (16) are of the

same format, we will deal with only one section; the ith section

and let

-2RE D

RE + AIH
2

C

(17)

The design of an n'th 9.rder band-passor band-stop filter leads to

n'/2 second. order aectiOns. Substituting equations (17,), into one.



section of equation (16) yields the transfer function far.the ith

section .

SWB
.111

(S)

S + SD + C
(18)

The extended bilinear Z transfoime equation (2))1a used.to get to

the digit* &main. Employing equation (2) on eq4ation (18) yields

H (Z) for the ith second order section.

H (Z)
2 4

2D
i

3022 -
(19 )

k

+ Z(2C -) +
T
2 .2

Putting the denominator of equation (19) in monic.fotm yields the

tranaler function for the ith second order stage of.the filter

K 11(A
0
Z A

1
Z + A

2
).

H (Z)
Z
2

+ B Z + B
21

(20)

This equation is the same as equation (1) with the exception of the

subs,:ipts. For all four filter types discussea here, the scale

factor, K
l'

and coefficients B
1

and B
2

are.a function of the

section calculated, while the coefficients A
O' 1,

and A
2

are the

same for all sections Calgulated. In going from equation (19) to

equation (20) we have



Al 0

2D
i4

G + + C
i

T2
T

.2C -.

T
2-

B
li G

8

4
2D

- i
+

Ci
T2

T

B =
21 G

(21)

ST A
61T'Letting Z e ...e7' for S jw and taking the .magnitude of 7

H (j4 we tiave

111100 li

/60cos(2wT) + Alcos(wT) + A2)2 +.(Aosin(2wT) + Ais1n(a))2

kos(2wT) + BlicosZWT) + B21) 2 + (sin(2wt) +Blisin(wT))2

(22)

The magnitude function, fquat1ons(22) is tliw. same for all the filters

discussed in this report.

C. Butterworth Band-Stop Filter

. The design procedure is almost exactly the same as that

of the Butterworth band-pass filter, except that the transformation

to band-stop is the reciprocal of equation (14), 1.e,

SWB

.S
2
+ WDM

2

I;

(23)



'4

0

and we find H (Wto be

S2 4.. W10162
Hi

S2 +
.

SD + Ci

-(24)

After imploying the extended bilinear: Z transform, equation (2),

we haVe

and

A
0

.E A
2

Bli' B2i'

4 ,
MP Ar.

_2

2 8
2

M2

are the'saMe.functions of .Ci and D. as.in

(25)

equation.(21). These coefficients are then used in the calculation

of equaiion.(22) tó, find Illi(jOks

ChebyChev Band,Pass Filter'
4

the Chebychev filter ripples with equal amplitude in the

pass-band. The amount of ripple is specified by be quantity. 6.

(iabeled RIF, in:the program). The poles of the filter are foUnd on

1

an ellipse described by two Butterworth "Circles of radii A And B

with A < B. The location of the'poles on the ellipse is a function of

the ripplend is given by the following equation:

where

B, A m.-2--

C

/-2 + +eN( e 1
-1/

1.

ind, N is numerically equal to the order of the low-pass filter

which is transformed to yield the band-pass filter. B is given

-(26)

(27)



.

fb

for the pins sign and A for t,he minus sign. The Chebychev ellipse

then has-major axis B and minor axis A. -The location of the. S

plane-poles on the ellipse Ili given by'

.Real Part A cos8 .

Imaginary Part 0 sine

The O's are the same as given for the corresponding order

Butterworth filter. An example of Chebychev pole locaiions

(28)

1 .

illustrated in Figure 2. For A and 'B mg 1 .in a`-faurth order

filter, 0 = 22.5e and 67.5*. The Chebychev pole locaiions are

determined from kuations .(26), (77) and (28).

The analog second order ChebycheV low-pass filter'is

H(S)

2/N

+ 6:62

1
K2

+ k
8
S K

2

(29)

s calculate1 from equation (27) and N is equal to the'order,of

the law-pass filter which is"transformed to yield the band-pass filter.

K
8

lnd K
2

are calculated by

K
8

= 2Acos8

2

2
= A cos

2
O + B

2
s1n

2
8

The substitution-of the.Iow-pass to band-pass transformation,

,equation (14), into equation (29) yields

S
2
WB

2
K
2 I

2/Ni.

/1 E2
.H(S)

S
4
+ S

3
K
8
WB + S

2
(I2WDM

2
+ K

2
WB

2
) + SK

8
WDM2WB + WIN

4

(30)

(31)

. (32)

k



After finding thd roots of Aquation #32) and making the substitutions

given by equation (17) we find the ith sectnd.order section

SWK

(S),
+ SD + C

i

[ 1

t2

(33)

-Applying the extended bilinear Z transform equation (2) yields an

equation.of the form of equation (20) where

A
0

1

2

I.
G
1

6

B
li

and B
21

are tne same functions of C and D .given by

equations (21). likse coefficients:are then uqed in equation (22) to

(34)

find IH1(j)1.

E. 61ebychev,Band-Stop Filter

Given equation (29). for H(S) we apply the lOw-pass to

band-stop transformation equation (23) to obtain the 4th order

transfer function
2 wum2121( 1 T2IN

2 XT:i
H
i
(S)

4 '3 2

K2S + S K8 WB S
2
(WB

2
+.2K

2
WDM

2 4
) + SK

8
WDM WB K

2
WDM

(35)

N is equal to the order of the low-pass firier which is transformed

-to yield the ban4 stop filter.

rx.



After finding the roots of equation (35) and making the

substitutions given by equationS (17). 6ve iti s4cond oiOer section is

(S WDM2)K.3

.H (S) 2.

2
S SDi

,ar `", *,0,94; r4'-
;.1.;

(36)

Applying the extended bilinear Z transform equation (2) yields an

equation of the form of equation (20) where

4
...A

0
A
2

=

= 2WDN? -

K
3

Kli --C

2

(37).

B11 and B
21

are the same functions of C and Di given by
1

equations (21). These coefficients are then .USed in equation (22)

to find 1H (j01.

. . . . r4, riPi

V



1- pains the Ppsfam
.

The first data card read into the piosram cont4ns the number of:

second order sections to 'be cascadedN, and the type of,filter
"." ":, --

desired KN. N is equal to 1 2,..., ore6, which corresponds to

the order of the law-pass filter, and hence corresponds to the 2nd,

4th,... or,i2th.order band.Oass or band stop filter relpectively.

KN is the type of filter desired. Tbe values of KN specifies

one of the four choices given, by

1

2

Type )

Butterworth Band-Pass
Butterworth.Band-Stop
Chebychev Band-Paps
Chebychgv Band-Stop

41

The focmat on the N, KN card is 212..

The second data cardread in is the sampling interval T

F10.6 format. When choosing T, 1/T shoUld be approxiMately equal

to ten times the center frequency (1ZUM).

The third data- card read in contains the values of the upper

and lower cutoff frequencies, wu and wi, in 2F10.4 format. For

the Butterworth filters, the cutoff frequencies are'the -3db cutoff

frequencies. Foi the Chebychev filters, the magnitUde of the

reaponse is 1/(1 +
2

) = 1 - 6 at the cutoff frequencies. w is in

radians. iS is.the ripple factor.

If the desired filter is Chebychev, i.e., KN 3 or 4, the

next data card coqtains the ripple (RIP) factor in F5.3 format.

If the desired filter is Butterworth, i.e., KN = 1 or 2, this

card Is omitted from the data deck.



The final data card is the starting frequency (FREQ1)' and the

frequencY increments (DELT) in radians. Thelormat of the FREQ1,

DELT card is 2F10.4. Determine DELT by the following:,
DELT .

final frequenc - starting frequency
024

This is necessary because there are 1024 frequency data points

calculated in the program. Choose FREQ1 and DELT to insure that

calculated values will include-the data of-interest. For maximmm

efficiency of the program, 'DELT should be a multiple of 21( so no ,

decimal to binary cOnversion errors are-incurred.

The digital filter coefficients are computed and printed out for

each second order section. The full filter magnitude resPonse, as well

as each section magnitude response, is printedfor each of the

specified frequency increments. When-there is only one second order

section, the ie n magnitude response is the full filter magnitude

response and is only printed once.

The program 'may be.easily,modified to incorporate

display of the magnitude response. There is a comment

BPASS program indicating where the graphics suproutine

should be inserted.

The program is written with input obtained via device 4 and

a graphics

card in the

call card

output written to device 6. These numbers should be a signed to the

appropriate device% prior to running the.program.

The,program was deVeloped on a PDP-11/20 with a DOS/BATCH

operating system. Trial runs frequently used a TTY.terminal'as well

as a card reader for input (device 4); and a TTY terminal as well

as a line printer for output (device 6). Double precision arithmetic
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is employed. To.decrease required Memory storage, only the frequency

intQrvA yn7ues and the full magnitude reaponse are saved'. The.

'section magnitude. responses are printed out, but are nOt stored.

The program will piCiduce approximately_21 pages of output.

Shown below are sample deck set-upel.

.Data
Card Format

212

2F10.4

4 F5.3

.5 .2F10:4

212

Ft0.6
. 3 2F10.4

4 2F10.4

).

r4ample

0504 (5 sectior. Chebychev ban -s.
.0.002 (T 0.002)
60 40 (w 60, w = 40 radtans)

. u 1 -

0.10 (Ripple amplitude 0.10)

0 0.1 (Startgat w 0. Steps of

0.1 radian. Will linish
just past w 102'radiac-.

0401 (4 sections Butterworth har,d fss)
0.002 (T 0.002)
60 40 (w

u
60, w 40 radians)

0 0.1 (Start at w 0. Steps of

0.1 radian. Will finish
just past w 102 radians).

4

The following pages contain annotated examples of output data. 0

41



This is an examOe of the output fpr an 8th order Butterworth

'band-stop filter (0402) with T = 0.002, wu 60 radians, aad

wi = 40 radians. The starting, frequency is 0 radian and the frequency

increment is 0.1 'radian.

WDU = 60.07210 WDL.= 40.02135 WDM = 49.02902 WB = 20.05076 .

T = 0.20000E-02

THE pOTS OF THE FILTER ARE GIVEN BELOW
REM 1) = -8.52659476 MAGINARY(1) = -44.46786740

2) w -9.9188916 I4AGINARY(2) = -52.1409591';

REAL(3) = -4.55076557 EMAGINARY(3) = -59.01588870

REAL 4) 1= -3:12232691 bMAGINARY(4) = -40.49140500

Tqh )EFFICTFNTS OF EACH DIGITAL
GIVEN BELOW

FOR -= 1 A
o

= 0.10024038E+07
A = 0.10024038E+07
B
2

1
-0.19584863E+01

FOR 1 = 2 A
0

= 0.10024038E+07
A = 0.10024038E+07
2

B
1
= -0.19498774E+01

FOR I = 3 A
o

= 0.10024038E+07
A
2

= 0.10024038E+07
B = -0.19681836E+01

FOR = 4 A
O

=

A =
7

0.00)0
0.1000
0.2000
0.3000
0.4000
0.5000

0.10024038E+07
0.10024038E+07

3401

0.10000E+01
0.10000E+01
0.10000B+01
0.99999E+00
0.1000q+01
0.10000E+01

HI

0.11726E+01
0.11726E+Or
0.11726E401
0.11726E+01
0.11726E+01
0.11726E+01

FILTER SECOND ORDER SECTION ARE

A = -0.19951923E+07
K = 0.98125481E-06
B2i = 0.96653295E+00

A = ;-0.19951923E+07
KI = 0.77769448E-06
Bi
2
= 0.96090048E+00

A = -0.19951923E+07
K 0.98755180E-06
B2i = 0.98202353E+00

A s
.

-0.19951923E+07

Kl = 0.99216788E406
Bi - 7.9:-11.7! :40"
2 ;

H2

O. 5284E+00
O. 284E+00
0.8 284E+00
0.8 28.1E+00

0.8 283E+00
0.85282E+00

113

0.68611E+00
0.68611E+00
0.68611E+00
0.68610E+00.
0.68609E+00
0.68609E+00

H4

0.14575E+01
0:14575E+01
0.14575E+01
0.14575E+01
0.14576E+01
0.14576E+01



a
11

WDU is the prewarped upper frequency.

WDL ts.the prewarped lowei frequency.
* . ,

PK is the prewarped center frequency.

. WB is.the bandwidth, WDU WDL.

. T\is the sampling interval.

The ReaLand Imaginary-Part of.the roots of .thie,filttr, are given nex .

7
I is the ith stage. I varies from.1 tO N.

A
O'

A
l'

A
2

are the Butterworth band-stop filter numerator coefficients.

s-

K
1

is the gain
A
factor.

B
1,

and B
2
are the Butterworth band-cop filter denominator coefficients.

0

W is thdlfrequency
4.

H is the overall magnitude of the digital transfer function

4he magnitude of the digital transfer function (1st stage).

112 is the magnitUde of the digital transfer function age).

113 is the magnitude of'the digital transfer furiction e):

114 is tfie magnitude of the digital transfer function stag )

See Figure' 4.

1



a.. v
This is an exaMile of the output for an 8th order Chebychev

band-paas.filter (0403) with T = 0.002,:cou = 60 radians, and

tol.= 40 radians. The starting frequency is 0 radian, the frequency

increment is 0.1 radian, and.the ripple is 0,, .

I.

WDU = 60.'07210m = 40.02135 WDM = 49.02902 WB = 20.05076
T = 0.20000E-02

A

, 414A = 0.37642105 B =%1.06850027

' 4A = 0.37642105 B = 1.06850027

THE RQOTS OF THE FILTER

K8 = 0.69553541 K2 = 0.28813942
K8 = 0.28810020 K2 = 0.99524620

ARE GIVEN BELOW
REAL(1) = -3.19528085 IMAGINARY(1) = -44.97792290
REAL(2) = -3.77772492 IMAGINARY(2) = -53.17662810

REAL(3) = -1.15829660 IMAGINARY(3) = -40.10115290
REAL(4)' = -1.7j001696 IMAGINARY(4) = -59.89456990

.

4

0

- THE COEFFIgIENTS OF EACH DIGITAL FILTER SECOND_ ORDER SECTION ARE

FOR I = 1 A
a

= 0.10000000E+01- A = 0.0Q000000E+00

A
2

= -0.10000000E+01 K
1

= 0.10395603E-01
B
1

= -0.19792607E+01 Bi
2

= 0.9!3732565E+00

FOR I = 2 A
o

= 0.1000o000E-Ka A = 0.00000000E+00-

A = -0.10000000E+01 KI = 0.10375296E-01
2 1

B
1.

= -0.19737935E+01 B. = 0.98504460E+00
2

FQR I = 3 A = 0.10000000E+01 A
1
= moomomm+oa

4 12 -0.10000000E+01 Ki = 0.19406846E-01
1 = -0.19889723E+01 13 0.99538493B+00

FOR 1 = 4 A
o

= 0.100000.06E+01 A = 0.00000000Et00
A = -0.10000000E+01 KI = 0.19346636E-01
B
2

= -0.19788675E+01 BI = 0.99312838E+00
4 1

2

GIVEN BELOW

W H H1

11P.0000 0.00000E+00 0.00000E+00
0.1000 0.12493E-12 0.51560E-03
0.2000 0.19990E-11 $0.10312E-02
6.3000 0.10121E-10 0.15468E-02

0.4000 0.31991E-10 0.20625E-02

0.5000 0.78116E-10 0.25783E-02

H2

0.00000E+00
0.36886E-03
0:73771E-03
0..11066E-02

0.14755E-02
0.18445E-02

dek

H3 114

0.00000E4-00 0.00000E+00
0.12106E-02 0.54265E-03
0.24211E-02 0.10853E-02
0.16318E-02 0.16280E-02
0.48426E-02 0.21707E-02
0.60536E-02 0.27134E,02

,

r



WDU is the prewarped upper frequenay.

WDL isthe prewarped lower frequency...

wpm is the prewarped center frequency.

WB is the, bandwidth, WDU.- WDL.

T is the sampling inte'i'Val.

B, A im'
li(4-2 c-.1.)1/N

*

1(8 2Acos(0)

2 2 2' 2

2
= A cos M.+ B sin (0)

The Real and Imaginary part of the roots of the filter are given next.

is the 1th stage. I varies from 1 to N.
\

A A
1,

e the Chebychev band-pass filter numerator coefficients.

K is the gain factor.
1

B
1'

and B- are'*the Chebychev,hand-pass filter denomipat9r coefficients.
2

is- the frequen'cy.

110

H is the overall magnitude cif the digital transfer functiOn.

H1 is the magnitude of the_digital tsransfer funciion (1st stage).

'H2 is the -magnitude of the Aiptal transfer functiop (2nd stage).

H3 is the magnitude of the digital transfer functiori (3rd stage).

114 is the magnitude* the digital transfeir function (4th stage).

See Figure 5..
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M#GNITUDE VG FREQUENCY
FOR :

DIGITAL TRANSFER FUNCTION

8t ORDER §UTTERWORTH BAND-PASS FILTER

N = 4 -

Start at w ='0 radian ,
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Steps of 0.1 radian
w
u
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MAGNITUDE. VS FREQUENCY
FOR

DIGITAL TRANSFER FUNCTION

8 ORDER BUTTERWORTH BAND-STOP FILTER

N 4

Start at w 0 radian
T 0.002
Steps of 0.I'radian
w =-60 radians
w = 40 radians
1

w (radians)

k ,1

Figure 4
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MAGNITUDE'VS.FREQUENCY
FOR

DIGITAL TRANSFER FUNCTION

8
th ORDER CHEBYCHEV BAND-PASS FILTER

N = 4
Start at w 7 0 radian

'Ripple = o = 0.100
T = 0.002
Steps of 0.1 radian

= 60 radians
u

= 40 radians
1 .

()

7'

20 40

WI
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MAGNITUDE VS FREQUENCY
FOR

DIGITAL TRANSFER FUNCTION

10
th

ORDER CHEBYCHEV BANDSTOP FILTER

N 5

Start at w = 0 radian
Ripple =-0 = 0.100
T = 0.002
Steps of 0.1 radian
w = 60 radians
w
u

... 40 radians
1

w (radians)

6' 2

,Figure 6
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INTIMODUCTION

This'report describesjinw touse twevrograms for the weighted

'least squares design of-norirecursiveand reCUrSive digital filters.

First the theoretical aspects Are considered and the design equations

parl developed. -The signal model in this work is assUmed,to.be a

polynomial hecause the state model is simple. Hdwever, the -tbeory is
4

eaeily extended to include, any signal model represented by.a linear'

. differential equation.

Then the operation of.the two Programs, It described along with

examples to illustrate their operation.

do,



I,

a

A

LEhST SQUARES pEsimi OP NONRECURS/VE'DIGITAL FIVERS

The design of nonrecursive and recursive digital filters using

weightedjeast,squares ii based on a model for the input signal.

The most common mo lhat are currently.in use are.differentinI

equations. The subse ueht representation of the differential equa-

tion by a first-order vector differential equation leads to the

concept of a state variable and the state space representation for

a system. By use of the pr per formulation, a continuous signal

.represented by a differential equation can be described by a first-

order vector difference equation or a discrete time state space

model. References that describe the essential'aspects of state

variables are by De Russo, Roy and Close [1] and Chen.['2].

Since signals from laboratory instruments are not'usually des-

cribed by a differential equation, approximationH often utilize a

polynomial. For this reason, the vector form of a polynomial approx-

imation will be used in this report. The reader should he aware

that this can be generalized to include any signal model that can be

represented as a linear time-varying differential ecntation. Later

in the paper a scalar model representing aGaussian time'signal

will also be utilized to develop a time-varying filter that can be

used for reducing the base-link error and for the initial separation

of signal components.

To develop the polynomial model let the signal z(t) be epre-

sented by a polynomial of order At the time t = nT the state

vector for the signal is.giyeh by



0

Redefining the state vector as

..theuseof a Taylor series repreakntation for each elei4nt of x(nT)

now permits the state of system at 0.,(n+h)T to be described in terms

of the State at tionT by the relationship

(1)

(2)

x[(n + h)T1 tftihanTi (3)

where',O[h] Ili the mxm state transition matrix with elementS

[111 fel)! 0<i<m (4)

lJ

The state transitiOn matrix Ihj satla(les a11 of the relitionAhipm

for general state transition matrices with the ilivortant t 'being for

this work

-2-

(5)
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and

otml otpl + p1 (6)

At this point, these models can be utilized in the design process.

Design of Nourecursive Filters

Let the input signal start at time t=0 and assume that ihe signal

over a finite data window is approximatekby a polynomial z(t).

Defining.the-state of the signal by (2), then the state of the signal

at time t=(n+h)T is given in terms.of the signal at time t=nT by (3).

Given that the signal starts at tap, the first 1 observations

are each defined as

mUTI = Mx[fT] + vijT] j"

, where M is a row matrix that

to the actual measurements.

are the measurement noises.

variables with zero mean and

7

relats the measurable state variables-

(7)

The elementa of each noise vector y_UTF

In general these ar taken as random

the time dependentAdocovariance matrix

RUT] =EIV(jT)vt(JT)1 (8)

Aowever, in most laboratory. systems'only the data i.g_available and

the depiivatives are not measurable. Furthermore, the noise covariance
*

,

matrik is usually not known and./for scalar measurements the noise

yet-lance is assumed constant and ;he noise samp ivrelated. Fot

the remainder of this paper, only scalar measurements and uncorrelated

measurement noise with time-invariant statistics will be assumed; The

menn value of the noise will be taken as zero and the variance as (1
2

.

The results are easily extended to vector measurements and to measure-

meng noise with time varying statistics.

-3-



PS, For St observatinns, the total observation vector at tainTiis

delined as
4

mEnTI

ml(n

M[ (n--2.-1-1)T.1j

(9)

This vector now forms a data window of Z data points. For an estimate

of the data at t=nT the' use'of the expr'ession

if x[(n-j)T] 0(-1) x,[nT], (10)

is combined with (9) to yield

[nT)

MO i -2+11

xinn + vt[nT] (10

The m4trix of constants H[nT1 As now defined as

H[nT) =

What (11) can be wricien as

= H
-t

T x[nT

The elements ip H[nT] are constants -given by

,

tr.

2)

(13)

0<i<R, (1,4)

0<i<q

-4-

te.



where 2 is the size of the data window and 0 the order of the

polynomial.plus one. Whenlisj.m() the value'of (14) i one. Note that '

since (12) is a' matrix of-constanfs there is no need to make the

matrix a function of time.- However, in the derivation for, the recur-
,

sive filters this provides a method for separating different-H.Matrices...

The optimal estimate of the data/at ti;nT is now given in terms

"of weighted.least squares or minimum variance ,because this form is
a

utiliied in the

ance matrix for

the optimal minimum

where W[nT] is

14[11T1 =

For uncorrelated

,ii*rix with elements

WEnT] ..[Ht(nt)

derivation of the recursive

the total observation

R
t
(nT) Ehr (nT)

-t

variance estimate

x[nT] W[nT] mt[nT1

a series of Constant weights

[
Ht(nT)M

t
(nT)]-1H(nT)

noitle with constant

a2 and (17) red

H(nt
)1-1 lit(nT).

filters. If the covaril

vector is

vt(nT)I "t (15)-1

is

(16)

givep by

-
-1Ht(nT)[11

t
(nT)

.],

1
(17)

iance a
2

(15
.)

is a diagonal

illes to

4
(18)

1
This is the same result obtained using conventional least squares when

the noise covariance is ahonal matrix of equal constants. -The
...- .

reader should .be awareAhat the estimate vector is an estimate of the
s

idata and all of the derivatives in the model. However, all of the

weights in the derivative terms must be scaled by the scale factors in

the state vector defineti by (2).

-5-
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The Covariance matrix for the estimate given by (10 is given by

g(nT) W(nT) R (nT) Wt(nT)

SUbstituting (17) into (19) now yields
,

(19).

i(nT) 7 1Ht(nT) [Rt(nT)]-1.H(nT)1-1 (20)

which simplifies further to -

g(nT) 7 (Ht(nT). H(nT)1-1 a2 (21)

for the uncorrelated noise.

By defining a delay or prediction factor a, estimates of the

aT units behind or ahead cif the point t7nT can be done. To do this

thegpotal obstintation'vector is writfi;n al

m (nT) 7 H (nT) x[(n Tl + yt(nT)
a (22)

where H (nT
a

now takes the form

144)(-a-1)

Ha(nT) 7 (23)

The individual elements of thre matrix now become

Ha(nT)ii 7 (a-i) 0<1<2. (24)

Ct< <ci

The form for ale optimal estimate nluw utilizes (nT) in (18). The

covariance of the estimate uses H(nT) In (21).

-6-



Example

or a five-pc4nt window with cp,O, the optimal weight matrix and

the coVariance matrix for the estimate are shown -in'Table 1 for,a

third-order polynomial fit. For a2, the estimate of the data in

the middle of the window is obtained and weight matrix and covariance
4

matrices are shown in Table 2. This case corresponds to weights

given in reference [3].

In practice, the design of nonrecursive filters is initiated hy

specifying the size of the window which is the number of rows in the

H matrix, the .order of the polynomial approximation which is one less

than the'number of columns in the H matrix and a which determines

the coefficient values in the H matrix. iThis makes the design suit-

able for use with interactive graphics Since only three parameters

need be specified to generate the weight and covariance matrices.

If 91e model of the signal process is modified by additive

uncorrelated driving, noise, the variance terms of the driving noise

fade the Memory so that past data has less effect on the estimate.

This can be thought of as uncertafhty in the signal model. The con-

cept is particularly important in recursive filter design. For non-

recurSive filters, it can also be utilized and can be useful when

using a non-recursiVe filter to initialize a recursive filter.
*

If the model includes driving noise, the state at time tiwriT s

given by

x[pT] f-il -1)TI + -1)T1 (25)

.00

where wq(n-1)T1 is a sample from a noise process with mean ze and

covariante matrx Q. Thia noise process is assumed to be white. In

-7-



a

terms.of the total measurement vector, plt[nTI now becoMe

14[TIT] H[nT] x[nT] + 2,t (nT) + v [nT]
--t

(26)

where Rt[e] is the total noise vector due to the driving noise. For

scalar measurements this is given by

0

-M44-1] w[(n-1)T]

2t[nT] = -M44-2] w[(n-1)11 140[-11 w[(n-2)T] (27)

The total noise vector that corrupts the total measurement vector is-
.

now defined as

[ T] = pt[nT] + yt[nT] ,(28),

For scalar measurements the coliariance matrix for r
t
[nT1 has diagonal

elements whose value increases down the diagonal. Since the diagonal

elements ake not the same, the minimum variance expressions of (16) and

(17) must be employed to find optimal linear estimates.

Example

To illustrate how the driAng noise affects the filter weifihts,

consider a zero order process which is equivalent to estimating a signal

of constant value. For a three-point filter with scalar measurements,

the'total noise,vectoi. is

,,c01::7'

viral

v[(n-1)TI w[(n-1)T1

v[(n-2)TJ 7.4(n-2)T] - sof(n-1)T1

-8-
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If the variance of the measuremeht noise II and of the driving

2
noise 01. the covariance matrix o

R
t
[nT

0

nT] is

2c +
1 .

a
2
+ 20 2

1

The resulting weight matrix obtained using minimum variance is

where

and

WinT1 la
0

a
1'

a
2

2 2. 2
(01 + a ) (2al +

2
o )

. '

2 2
D2

ao

(20
1

+ a.)

(30)

(31),

(32)

(33)

2 2 2
0 (eIr + a )

(34)
D

where D is given by,
1

D (20
2
y

2
+ 0

2
a ) + a

2
(201

2
+

2
(35)

1

2

a2(0.12 a2)

The terms in the weight.matrix satisfy the following inequality

.

a > a > a
1 2

2
For a ',0 the equalities'hold end

0
a
1

a
2'

1/3 which are
.1

2
'the well known weights to estimat4 a mean. If a is not zero, the

1

,

inequalities hold and as 01
2

oecomes large with respect to a
2

a
' 0

approaches one and al and a become smaller so that fading is

-9-
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introduced. The covariance of the estimate is a scalar,given by

1
,. (a

1
2 + 02) (2o

1
2 + 02) 02

S(nT) .0.
.0.

D Co2 (37)

where .0 is a-dimensionless constant whose value.approaches one as (112

becomes larger than 2
jhus for o

1

2
>> a

2
only the current observa-

tion is.effectively. used and fhe variance of the estimate is approxithately

2
.

TAk

The fading otiviously reduces the signal-to-noise enhancement of a

nonrecursive digital filter. On the.other hand, fading can be used to

reduce ,the deterministic error due to a nonexact model. In practice,

fading in nonrecursive filterspis not often utill\zed. Instead, the

window length is more typically used as a desig\parameter. In future

work, however,.it may be desirable to further explore the relationship

between fading and the size of the data window to achieve imProved designs

when nonexact signal mod4ls are employed.

LEAST SQUARES DESIGN OF RECURSIVE DIGITAL FILTERS-
/

40

The fixed memqry or nonrecursive'filter design is now extended to

recurSive digital filters that utilize all of the data. The result is

a recursive form that is usually called the Kalman filter. While there

are a variety of derivations for the Kalman filter, stetting with a fixed

memory filter using a polynomial model with driving noise gives the resblt

in such a way to give the reader greater'intuitlon about how the filter

works.

The derivation of the recursive filter is started by using a signal

model

x[riT] (DM xl(n-1)T1 + wl (n-1)11 (38)

-10 -

ta.



and the scalar observation or Measurement model

yEnT) = MxInT) + vin11. (39)

t

In (38) ind (39) the terms 4(n-1)TI and I are the drivfng.nolpw

and the measurement noise. TheSe noise tert4 have zero mean and are

, .

uncorrelated with themselves and each other. 'Given the n+l_m!rsurements

starting at t=0, the total observation vector at time t=nT is given in

terms of x[nT] as

lira] = + pt1nT1 + yt[nTi (40)

In (40) the matrix II[nT] is

the vector ki[nT] is

MEN-n)

aMm.

0

1'

-"[-Ii w[(11-1)Tj
2,

-M E 4+-(3-j)]
3-1

-M"11 4[-(n+1---1)] w[(n-J)T]j=1

4.

and v [nT] is the total measurement noise vector. Defining the,sum-t

pt[nTi +,ytInTI

(41)

(42)-

(43)



.

4111

estimates used in 'the derivation and phe reader should remember them.

as the.total noise vector with autocovariance

R
t
[nTj =1ir [nTi r

t
t
[nT11-t

the optimal estimate using linear inimum variance is given by

1

(44)

x[nTj W[nT] k...t[nTj (45)

A

, where W[nT] is the weight matrix

W[nTj

The covariance of the estimate is

Tj

AA!

Ht[nT] R
t
[nTi

[-.

-1

(46)

S[nT] *

Substitutiarof (46) and (47)

4
W[nTj R [nTj W

gives an alternate-farm

Htlaj
[ R[TI

n

t
[nT1

,

i)H[nT1 -1

(47)

(48)

which allows
itt

the alternate fii-rm for (46) to be written as

[i

W[nT] = S[nT] H [nT] Ri [nT j

The forum tivdh by (46), (47), '(48) and (49Y apply to the remaining

(49)

-Next the p ediction or forecast of the signal state X[(n+1)T] is

found by first writing the total observation vector yt[nTj as

Y
t
inT) = H

1
[nTj x[(n4-1)T]

21t[nT]
[nT] (50)

where 111 is given as

and plc [ral] is

[nW] w H[nT] 44-1j (51)

-12-



n+1 x n+1 matrix with elements a
2

. Taking the covariance o

And performing some algebraic manipulation gives

/t
E{pit[nT1.21t[nT11... E(R1InT] 21,[nT]l + QHi[344]. (57)

where Q is the aiagonal covariance matrix of the driv.ing noise vector

/I
w[nTI. This matrix is usually assumed to be time ynvariant. Thusl from

(57)

R
lt

[nT] R [nT] + H
1
[e] QHt

[TIT] (58)
. 1

Substituting (58) into .(56) now gives

S
1
[(n+1)T] I., W

1
[nT] lynT] W

t
[nT] (59)

1

t t
+ Wl[nTl.Hl[nT] Wil[nT] Wi[nT]

If X [(n+1)T] is an unbiaseCNestimate thed the'Oonstraint relationship
1

W [Ian H [nT] I
1 . .1

(60)

musi be satisfied [A] so that (59) can be Stmpilfied to

S1[(r1+1)T].... Wi[nT] Rt[nT] 4[nT1 + Q (61)

Al-A1so iecognizing that x1[(n+1)1] can be written as
,

x1[(n+1)T] xEnT] (62)

the weight matrix W1[nT] is

w
1

f (13[1] W(nT).

Substitution at (58) intb (61) and-app,Wng (47) now gives the'final

form for S1[(n+,1),T] as

.0/

[(n+1)T] 45[1] SEnT).4)
t
[nT] +

1
(64)

The recursion is now formulated. When the observation at t (n+1)T

arrives the new total obsqrvation vector in terms of the signal.state

-14-



411

x[(n+1)T] is

xj(n+1)T1 11101+1)T1 + f(11+1)11 + yt[(11+1)11. (65)

The ea imate is gtven by

x[(n+1)T] g[(n+1)T] .11 [(n+1)T] Rt1(n+1)11-1 (66)

with the covariance

i[(n+1)T] Ht[(n+1)T]lit[.(n+1)Til-I H.[(n+1)T] -I (0)

'where R
t [(n+1)T] is the coviiiance matrix of the total measuiiment noise

vector

r [(n+1)T]
-t EtE(it+1)T1 + 2./..t[(n+1)

Pirst the recursion for the covariiince matrix\ is found. Given that ,

4[(n+1)T]

-M44-1] w[nT]

2

.-M E .[-(3-1)] [(n+1- ]

j.1

L_

n+1

-M E 1)[-(n+1-j)] w[(n+1-j)11

substitution.of (2) into (69) gives

2tE(n+1)T]

Next H[(n+1)T] is given as

Elt[nT]

H[(n+1)T] Mc1[-1]

1

(69)

(70)

(71)



Which can be rewritten with' the Aid of (41) as

HinTj 1-1

The covariance matrix for v [(n+1)T1 is now an n+2 x m+2 diagonal-t

matrix with elements a 2
so that R

t
[(n+1)T1 is seen to be

t
[(n+1)T1

021 0

--I-
0 Rit[nT]

Since this is a diagonal matrix its Inverse is

R
t
[(n+1)T]

Substitution of (74) and

multiplication now yields

A

S[(n+1)T]

1

a
2

(72) int0.(67)

+ tI-...
1] H

t
[nT1

a 2

.

a

and perforting the matrix

R
lt

[nT] -1
HInTI (75)

inverse of (56) gives

(72)

(73)

(74)

Substitution of (51) into'(75) and the use of the

A ,

S[(n1-1)T]
M M

S
1
[nT]

2
0

-1 - 1
(76)

Equation (76) along with (64)'now forms a recursion for ehe covSriance

of the estimate.

-16-
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4

Vor the quantities in (76) the application bf the matrix.inversion

lemma [51, gives

M M
2

S
1
[TIT) Nt-IM

1
Jral Mt + o

(77)

S

This form will be used to generate an expression for the Kalman gain. Post

."\....._-, multi lying both sides of (75) by M
t
/a

2
and using'(75) the Kalman gain is

,

defined as

K[(n+1)T] ;[(n+1)T] kt/G2

S
1
[(n+1)T]'M

t
[0
2
+ M S

1
[(n+1)T] M

t
]
-1

. .

Thus.the covariance matrix given by (76) becomes

(78)

S[(nt1)1] in [I - 10(n+1)11 MI S1[(n+1)T1 (79).

The recursion for the optimal estimate is now formed that uses the Kalman

gain given by (78). Using the form for the optimal estimate given by

(47) the estimate x[(n+1)TJ is

xf (n+I)T1 'S'[(x*1)T] 14t[(n+1)T] 1R
lt

[(n+1)T]
-1

Yt[(n+1)T]. (80)

where yt[(n+1)T1 'is the new total observation vector given by.

It n+1)TJ

Substitution of (74), (72

multiplication yields

(81)

and (81) into (80), and carrying out the matrix

A[(n+1)T] S[(n+1)T1

+ Of-11 H [fiT

-17-
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Using the estimate of the forecast x1[(n+1)T1 (82) is simplified to

x[(n+1)T1, S[(n+1)T]
t -1

-y 5[(n+1)1].+ 51f(n+1)T) x [(n+1)-T)

'Adding and subtracting (MtM/o2) perfoyming soMe algebraic .

manipulation, and applying (76) now yields

(83)

--

x[(p+1)T] x [(n+1)T] + K1(n+i)T1 l[(n+1)T] - M xi[(n+1)TJ (84)

('
where KI(n+1)11 is given by (78). Equations (84), (79), '(78), (64) and

11

(62) snow fork the recursive formulation calledthe Kalman filter; These

equations are now summarized as

and

_2.!

1
(nT) 0(1). xf(n-1)T1

S nT) 0(1) S[(n-1)11

(85)

) Q (86)4

K(nT) S
1
(dT) M

t
fc

2
+ M S

1
(nT) M

t

S(nT) [; 101T) M] S (nT)

x(nT) x
1
(nT) + K(nT) [Y(nT) M x

-1
(nT)]

fI K(nT)M1 0(1) xf(n-1)T1 + K1nT) y(nT)

In this set of equations, xl(nT) is thf forecast or .prediction of the

_estimate at.t.nT 'using the previously generated eatimate at t...[(n-1)Tj..

The covariance of the forecast iS
1
(nT). The term K(nT) is ',the time

. ., L

viryilig Kalman gain matrix and y(nT) is the observation at [...db. The

0 . .

terms x(140 and S(nT) are the estiMaile- at t-nT and'its covariance.
,

The term a
2

is the varianc of tne measurement noise aria tne term Q im
.

.
the c riance of the driving noise. It is the term.Q that serves as

a key design parameter.
0

(87)

(i8)

(89)
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If'there is no driving noise so that the diagonal elements"of

ire all'zero, the filter is simply an expanding memory filter. 'This means

that if the filter i 'initialized properly, the estimates will correspond

to those Obtained by designink honrecuzsive filters where the data window

startSeat zero 'Snd a pew weight matrix, W(nT) is computed As each new
_ . . .

ideasnretient.is-madl. Obviously as the window expands, tfle variance of

.the estimate will dectease; hOwever,-if the model is not exact determinis-

tic.errors will begin to indrease.

Ik usingt4he ectuatiqpg..ifiy must bEt properly if a truly

(Inbias.ed eltAmafe4s to be formed. In practice this is usuallr done using

a nonredurafve filtet. FoY

'4' A
included in the computation'

exsct initialization, driving noise must be

of the nonrecursive filter weights.- To mini-

mize the computation, the minimum H matrix shopld be used which erns the

number of rows should,equal the Aumbex of columns. By using this.minimum-
'.

.

matrix the fiiter-weights are computed and sihe initial.-optimal'estimate

. is formed from the actual data.

USING THE PROGRAMS

HARDWARi

The programs are writ en in DOS FORTRAN. They were d4velopedeon a

PDP 11/20 with a DOS/BATCH operating system. Printed results'are written

*

to logical'unit 5 which can 'be aSsigned at run time to,a line printer,

CRT terminal, disk file, or other suitable output device. Data is entere.d

,from units b and-3, which can he assigned to a:card reader, disk.data

fi4e,.TTY keyboard% dr, any othef suitable input device. Plotss can he

.obtained.y.ith graphic# display. terminal anethe,plotting subroutines

provided.. The progt6s can be eilsily modified to use other plotting routines.,

-19-



NONRECUNSIVE FILTER PROGRAM

Tile program for generating the coefficients for non-recursive filters

is called PROGRAM WINDOW. WINDOW iS written in DEC FORTRAN, but 'may be

run on other versiops of FORTRAN IV with minor Modifications. The program

can call,plotting packages to produce CRT or hardcopy plots of the filter

iv response to various inputs.

Program WINDOW reads the filter parameters SIGMA, N, M, IA, IPLOT

from logical unit 6, where:

SIGMA

IA

IPLOT

determines the input covariance
If SIGMA > 0.0, R becomes, 02*1,
SIGMA and I is the identity ma

If SIGMA f 0.0, the matrix R is
unit 6 in 10F8.2 FORMAT.

is the number of points in the window
(1 < N < 20).

matrix K.
where a2
triX.

read froi

is the order of the polynomial fit (1 < M < 9).

is the offset a from the first point in the
window. If IA > 0, the fater predicts /A
sample times ahead of the most recent sample.
If IA <1), the filter smooths IA sample times
behind the most recent sample.

oe

is.the plotting control variable. If IPLOT'
0, the program finishes after the Coeffi-

cient matrices are computed and printed
. out. If ;PLOT # 0, an.input signal is read,
an,d the input points are filtered using the
coefficients computed.'

The parameters are reid in F10.4,.413 FORMAT.

, 'Once the filter parameters have been Tead, WINDOW generates the re-

quired S Lovariance) an8 T matrices arid computes the weight matrix W.

7

All three matricies are then written to logical unit S. tf !PLOT 0,

the program terminates after the weight matrix W has been printed.

If MOT 0 0, WINDOW reads 101 SaMple point from'logical unit 3 in

G15.6 FORMAT, These points,are provided by the user, and are used by

WINDOW as the filter input signalt The program filters this input signal

-20-



lb"

4
using the Weight matrix W, and tabulates'the input signal, output signal

(filter response) and error signal (inpdt minus output) for each sample

time. The tabulated results'are printed on unit 5. The sureof the total

absolute error is also 'computed and writte;1 to unit 5. WINDOW then.c

the plotting package routines (subtoutine IDIOT) to plot the filpu An

output (estimate) signals vs. time. After a PAUSE, the prog m calls the

alotting package to plot the error signal (input minus o put ) vs. tine.

The plotting packages are included to be Used with W DOW, or WINDOW may

be Changed to call other plotting routines.

Program. WINDOW can be modified to writ the derivative estimate .

Note from equation 2. that the m
th

derivative term is multiplied by a

T
m
/rei fac4ot, where T is the sample time.. Thus, if the derivative'

estimates are written out, they will be sCaled by this factor. To

illustrate the use of the program, WINDOW was run pith the parameters

SIGMA 1.0, N 5, M 4. 3, IA 0, and IPLOT O. The filter weighting

coefficients are'listed row by row, and are shown with the input pata-
,

meters and S and T matrices' in Fig. 1. The filtet obtained using the

weight mat i shown estimates the input data and the first three deri-.

vatives. In equatiori forme these estimates are given by

;(11T) 0.9857 y[ Tl 0.05714,y[(n-1)11 - 0.0857 y[(n-2)T)

+ 0.05714 y[(n-3)T) - 0.01429 yl(n-4)T)
.

x[nT) a. 1:488 yinTL- 1.619.110-..11T1_ 5714 Ac.n.-2)Ti

+ 1214Lxiin-ipi - 0.3452 yl(n-4)11

=.0.6429yInTI 1.071 yL(n-1)11 - 0.1429 y1(p-2).11

T2/ 2

0.9286 y[(1-3)T1 - 0.3571,y[(n-4)TJ

T
2/

2

-21-
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.1

x[nT] = 0.08333AnT1 - 0.1667 yi(n-UTI

T
3/

6

-
+ 0.1667i1.(n-3)T1 - 0.08333 yan-4./TI

RECURSIVE FILTERS

The Kalman filter program is'called ADAPT. ADAPT is written in DEC

FORTRAN, but may be 'mil on other versions of FORTRAN IV with minor modi-

fications. The program can call plotting packages to produce CRT of

hardcopy plots of the filier response to various inputs.

Program ADAPT reads the filter parameters SIGMA, M, andA from

logical unit 6, where

SUM !determines the initial covariance
matrix R. If SIGMA > 0.0q R becomes

where o2 = SIGMA and I igi! the
identity matrix. If SIGMA

. the matrix R is read from unit 6 in
10F8.2 FORMAT.

is the order of the polynomial fit
' (1 < M < 9).

is the driving noise term.

The parameters are read in F10.4,I3,F10.4

Once the filter parameters have' beep

FORMAT.

read, ADAPT generates an initial.

S (covariance) and T matrix. ADAPT then generates an initial weight

matrix W, which is used to initia4ze the x vector. The ipitial covari-

0
ance matrix is used to initialize the S matrix.

Once initialized, ADAPT reads 1_01 sample points from logical unit 3

in G15.6 FORMAT. These points are provided by the user, and are used by

1

.ADAPT as the'Kalman filter input. The program filters the input using

equations 85through 89: The sample number,filterput, filter output,

.error signal (input minus output), and Kalma

1

gain are tabulated and

written to unit 5. The total absolute error is also computed and written
i
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to unit 5.. ADAPT then calls the plotting package routines (subroutine.

IDIN to plot the input and output (estimate) signals.4s. tinle. *After

a PAUSE, the program calls the plotting package to plot the "error sig-

nal (input minus output) vs. time. After a second PAUSE,JDIOT is

Called to'plot the Kalman gain vs. time.
If

'Program ADAPT can be modified to write the derivative estimates.

Note from equation 2 that the 'mth derivative term is multiplied by a

Tm/mt factor, where T is the sample time. Thus, if,the derivative

estimates*Aire written.out, they will be scaled by this Tactor.

To illustrate the use of the'program, ADAPT was run.with the

parameters SIGMA = 1.0 M 3, Q = 0.0. The S (covariance) and T

matrices used to generate the initial weight matrix (W) are shown in

'Fig. 2. 'The S and W matrices are used to initialize the Kalman filr

.q
-1=t ters S and x matrices. The Kalman filter was thep, used to filter .

an ideal sinusoidal signal. A portion of the tabulated results is

shown in Fig. 3.

GETTING ON LINE

In order to run progtam WINDOW and ADAPT, first build two files

named WINDOW.FTN and ADAPT.FTN from the sou'rces provided (Card deck

or paper tape). Also create PLT.FTN and SENDGT.MAC from the sources.

Compile programs W NDOW and ADAPT with the FORTRAN compiler to create

WINDOW.OBJ and ADAPT.OBJ. The che word Integer option should be

selected for all compilations. Also, compile PLT.FTN to create

PLT.OBJ. Assemble SENDGT.MAC under the MACRO a sembler to create

SENDGT.OB4. Create a subroutine library called IJJLH3.OB.7 from

4

PLT.OBJ and SENDGT.OBJ' (in that order). Next, LINK WINDOW.OBJ,

PLTLIB.OBJ ad 4*Fin litlrary to create a file' called WINDOW.LDA.

A



a

Also, create ADAPT.LDA by LINKing ADAPT.OBJ, PLTLIB.OW and the FTN
4

library. The files WINDOW.OBJ, ADAPT.OBJ, PLT.OBJ and SENDGT.OBJ nay

now be deleted..

Before running WINDOW or ADAPT, build tIvOile PLOTGT.MAC f om

the source. PLOTGT,is the plotting routine that is loaded into the
a.#

GT40. Assemble and LINK PLOTCT so that PLOTCT.LDA may be loaded into

the GT40. After PLOTGT.LDA is running in the GT40, ADAPT.LDA or

WINDOW.LDA mby be executed'using.z. RUN comnand. The source listings

contain additional documentation on these programs.
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t**FINITE MEMORY DIgITAL FILTER PACKAGE+tf

VARIANCE OFIERROR= 1.0000
w SIZE OF WINDOWIN 5

ORDER OF
\\ TO PREDICT 0 UNITS AWAY FROM THE FRONT OF THE WINDOW

.
11.
1.
1.
1

MAGIC T MATRIX
0000 0. 0000 0. 0000 0. 0000
0000 -1.0000 1. 0000 -1. 0000'
0000 -2. 000 4. 000 -8. ose
0000 -3. 000 9. we -27. 00-
0000 , -4. 000 16. 00 -64. 00

VARIANCE MATRIX,.
0. 9857 ir 488
1. 488 61'379

IP 0. 6429 3. 869
0. 8333E-01 0. 5972

fitv

0d 429 O. 812:3E-01
'24'69 0. 5972
Z 571. 0. 4167 4,r

AO: 4167 0 6944E-01-

,4W1NDOW WEIGHTS, FROM FRONT TO SACK

0. 9857 to

1, 488.

0 6429
0

. ROW 1 OF W, .CORRESPONDING
0.-5'714E-01 -0. 8571E-01 0.

11,.

ROW 2 OF W, CORRETSFONDIi4G
-1. 619 -O. 5.714' 1

TO THE-INPUT SIGNAL
5714E-01 -0 1429E-0f

TO DER I VAT I VE .NUMPER 1
04:3 -0 3452

ROW 2 OF W, CORRESPOND I NG TO DER I VAT I VE NUMesER
.07.1 -0. 1429 0 9286 -0. 1571

ROW 4 OF W
0. 8333 -0. 1667

ORRESPONDING TO DERI,VATI'/E NUMBEO
.3576E-06 0 lt::67 -0. 2 3E - 0 I.

Fig. I.- Program WINDOW Sample Output

4P



- DR1 V I NG NO SE= 0 0000
ORDER OF F I Tog 2
INITIAL ERROR VARIANCE

KALMAN STRUCTURE DIGITAL FILTER PACKAGE***

1, 0000

MAGIC T MATRIX

0 . woo a ewe \ e eeee
4.i 0000 -1: 0000 1. 0000

1. 0000 -2. 000 4. 000
.1:00ee -3. ow- 9. ow

e

0. 0000
-1. 0000

000
-27 00

VAR I ANCE MATR I X, 'S 7
fl. 0000 * 1. 923 . I_ 0060 113 1667

12. 50, .. 2. 611
11. 50

.

2. See
2. 500 0. 5555

1. 8" 14. 72
1.4 0000 12. 50
W 1667 2. 611

WINDOW WEIGHTS,44 FROM FRONT TO SAO<

2,1

POW 1 OF W, CORRESPOND I NG TO THE I NPUT S I GNAL
111, i. 0000 0. 4128E-05 -0. 2503E-05 0 9527E-06 ,

6

1 922

1 wieo

frig 18,67

ROW 2 OF W; CORRESPODING TO gERIYATIVE NUMBER 1
-3. me 1, 500 -0, 2377: 0

-ROW 3 OF W. CORRESPOND I NG TO DER I VAT I VE NUMBER 2
-2. t00 2, 000 -0. 5000

1\
ROW 4 OF W. .C.ORRESPOC4DING TO DER I VAT I E NUMBER

-0 5000 0 5000 1,667

f

Fig. 2 - Program ADAPT Sample Output

0
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0.9857

1.488

0.6429
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---

Table I

N.. *Weight Matrix

1.488 0.6429 0.04333

6.379 3.869 0.5972

3.869 2.571 0.4167

0.5972 0.4167 0.06944

Covariance Matrix

Optimal Weight Matrix and Covariance.Matrix For
a Five Point Nonrecursive Filter Using a Third.
Order Polynomial Model.. The Filter Estimates
the Data at the End of the Window
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-0.1667 0.0 0.1667 -0.08333

Waght Matrix

0.4857 0.0 -0.1429 0.0

.0.0 0.9828 0.0 -0.2361

-0 . 1 4 29 1).0 Q.07143 0.0

0.0 -0.2161 0.0 0.06944

0 Covariance.MatrixA

Table 2 Optimal Weight Matrix and Covariancq,Matrix For
a Five Point Nonrecursive Filter Usfhg a Third
Order Polynomial Model. The Filter Estimates
the Data in the Center of thedWindow
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