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Abstract

Nedelsky and Angoff have suggested procedures for establishing a cutting

score based on raters' judgments about the likely performance of minimally

competent examinees on each item in a test. In this paper, generalizability

theory is used to characterize and quantify expected variance in cutting scores

resulting from each procedure. Data for a 126-item test are used to illustrate

this approach and to compare the two procedures. Finally, consideration is

given to the impact of rater disagreement on some issues of measurement relia-

bility or dependability. Results suggest that the differences between the

Nedelsky and Angoff procedures may be of greater consequence than their apparent

similarities.
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Introduction

Currently, there is considerable debate concerning the setting of passing

standards when scores on tests are ol;ed to make decisions regarding minimal

competency, proficiency, licensure, :Jertification, and the award of credit

(see, for example, NCME, 1978). MeJkauskas (1976), Buck (1977), and Zieky

and Livingston (1977), among others, have reviewed current procedures for

establishing cutting scores. For the most part, these procedures can be

grouped into two categories--procedures based on subjective judgments of

subject matter specialists, and procedures that Use examinee scores on the

test itself and/or some criterion measure. The latter procedures are not

discussed in this paper; rather, primary emphasis is placed upon studying

two procedures suggested by Nedelsky (1954 and Angoff (1971) for establish-

ing cutting scores based upon the judgments of subject matter experts.

Nedelsky and Angoff Procedures

Both of these procedures require jirignents by raters concerning the per-

formance of hypothetical minimally compctent examinees on each item of a test.

The approach described by Nedelsky (1954) requires that a rater examine each

distractor within an item to determine the probability that a minimally com-

petent examinee would answer that question correctly; whereas the approach

described by Angoff (1971) makes use of a judgment based on the whole item

rather than its individual components.

Using Nedelsky's procedure, raters are asked to identify, for each item,

those distractors that a minimally competenc examinee would eliminate as in-

correct. The reciprocal of the number of re!:,aining alternatives (including
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the correct answer) serves as an estimate of the probability that a minimally

competent examinee would get the item correct; and the mean of these item

probabilities, over items and raters, is defined as the cutting score for

the test (ia terms of proportion of items correct). In Angoff's procedure,

raters simply provide an estimate of the item probabilities without specifi-

cally identifying which distractors a minimally competent examinee would

eliminate. Again, the mean of these item probabilities, over items and

raters, is defined as the cutting score for the test. Notationally, through-

-
out this paper, we use X to denote the cutting score, or more specifically,

the mean cutting score that results from a particular study. For a particular

rater, r, the mean of that rater's item probabilities will be denoted X , which
-T

can be interpreted as the cutting score that would be assigned by that parti-

cular rater

Issues, Approach, and Data Sete

The Nedelsky and Angoff procedures are appealing in many contexts because

they are understandable to raters and test users: and these procedures force

raters to give detailed consideration to the specific content of a test, rather

than to its general characteristics. However, the validity and practical utility

of these approaches, and similar approaches, may rest heavily upon the extent

to which raters agree in their judgments. This issue has received very little

attention in the context of establishing cutting scores, although Andrew and

Hecht (1976) do address some aspects of this issue. The principal purposes of

this paper are: (a) to identify a psychometric approach for characterizing and

7



Cutting Score Procedures

3

quantifying the magnitude of error variances (in either cutting score pro-

cedure) attributable to disagreement evident in rater judgments; (b) to apply

this approach to data resulting from the Nedelsky and Angoff procedures, and

thereby compare the two procedures; and (c) to examine the impact of rater

disagreement on some issues relating to the reliability or dependability of

measurement.

The principal psychometric approach employed to address these issues is

based upon generalizability theory, although some aspects of these issues are

addressed in more traditional ways. Generalizability theory (see Cronbach,

Gleser, Nanda, and Rajaratnam, 1972) is especially appropriate here because

it allows us to differentiate among multiple sources of error in a systematic

manner. In the body of thic paper we introduce and explain concepts and

equations from generalizability theory, as needed; but we do not usually

prove results. Readers desiring more detail are referred to Cronbach et al.

(1972) andior Brennan (1977). It should be noted that there are mary aspects

of generalizability theory that do not concern us in this paper. For example,

we never report a generalizability coefficient and in only one instance do we

refer to a universe score variance, as this terin is defined in general:zability

theory. Indeed, the approach used here is essentially variance components

analysis viewed from the perspective of generalizability theory.

We employ three data sets to illustrate our approach to issues of rater

disagreement and to compare the Nedelsky and Angoff procedures. Data set 1

consists of the Angoff probabilities assigned by five raters to each of the

126 four-alternative items constituting a test in a health-related area. Data

set 2 consists of the (inferred) Nedelsky probabilities assigned by the same
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raters to the same items; and data set 3 consists of the eliminated distractors,

for each item and rater, that form the basis for inferring the Nedelsky proba-

bilities in data set 2. Each of the five raters is a practitioner or teacher

in the appropriate field; and, their ratings were provided independently. At

the conclusion of the study, raters were instructed to discuss each item and

provide a consensus Angoff-type judgment. These reconciled judgments are

examined, although not extensively, in a separate analysis.

Both the Nedelsky and Angoff procedures necessitate judgments about

"minimum competence." In one section of this paper, we briefly consider some

aspects of how the two procedures allow a rater to operationalize some con-

ception of minimum competence. Otl-erwise, however, this paper is not intended

to treat educational, philosophical, or psychological issues associated with

defining minimum competence. Also, throughout this paper, except in one

section, we restrict ourselves to consideration of X as a cutting score.

Finally, we recognize that in realistic settings evaluations sometimes use

more than one cutting score procedure, or a 'rariant of the procedures dis-

cussed here. This paper is not intended to address such issues in any detail.

9

111IM/

111/.
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The r x i Design and the Angoff Procedute

For the Angoff procedure, the probability assigned by the rater r to item

i can be represented as

X. A+A + A
i

+ A 114
rri rl

(1)

where A = grand mean for the population of raters and the universe

of items,

A
r

= effect for rater r,

= effect for item i, and

A = effect for the interaction of rater r and item i.
ri

(Technically, since we have only one observation for each rater-item combination,

the effect A is completely confounded with any other sources of variation--
rl

sometimes called "random" or "experimental" error.) Here, unless otherwise

aoted, we will assume that the actual raters in the study can be considered a

random sample from an essentially infinite population of raters; and, that the

actual items can be considered a random sample from an essentially infinite

universe of items. Under this assumption, and assuming independent effects

that sum to zero, Equation 1 represents what is usually called a random effects

model for the r x i design.

Given ahis model, for rater r, the average probability over the universe

of items is

Az. = +
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-
whereas the average probability over the sample of n. items is X . Similarly,

-s -r

for item i, the average probability over the population of raters is

and the average probability over the sample of n raters is X.
-r

Sample Statistics

In terms of sample statistics, Table 1 reports means, standard deviations

and intercorrelations among raters, for data set 1 and the Angoff procedure.

In Table 1 and subsequent tables, all results, except those within parentheses,

are in terms of probabilities. Results within parentheses are in terms of

number of items. For example, Table 1 reports that the mean probability over

the n = 5 raters and n. = 126 items in this study is X = 0.6632. In effect,
-r

this average probability is the (mean) cutting score, in terms of proportion of

items correct, arrived at using the Angoff procedure. In terms of number of

items correct, the (mean) cutting score is n.X, or 83.56, as reported in Table 1.-

Also, Table 1 reports that the standard deviation of the rater mean probabili-

ties is 0.0373. This is the standard deviation of the cutting scores for the

five raters, in terms of proportions of items correct. The corresponding

standard deviation in terms of number of items correct is 4.70.

Insert Table 1 about here
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We will examine the results reported in Table 1 in somewhat more detail,

later. Here, we simply note that Table 1 suggests that there is some degree

A

of variability among rater means, as reflected by a(4- ); there is some degree
A

of variability within each rater, as reflected by a(X .- ); and there is someri
_

degree of variability in the rater intercurrelations. The sample statistics

in Table 1, however, do not indicate clearly the variability in the mean

cutting score, X, which is a principal concern of this paper. In other

words, we would like some estimate of the variance (or standard deviation)

of X if the entire study were replicated with different samples of raters

and/or items. To obtain such estimates we emplu generalizability theory.

Generalizability Theory

Given the random effects model in Equation 1, Table 2 reports equations

for estimating the variance components associated with each of the score

effects in the model. For example, a2(r) is an unbiased estimate of the

variance of A
r

(or A
r

.1,) over the population of raters. (Recall that A
r

is the

expected value, over the universe of items, of the probabilities assigned by

rater r.) Similarly, 02(i) is an unbiased estimate of the varianne of A.

(or x..1,) over the universe of items.

_
It is important that 02(r) be differentiated from u2(Xr). The former is

an estimate of the variance, over the population of raters, of the scores (or

probabilities) A
r
; while the latter is the variance, over the sample of raters,

of the scores (or probabilities) X. In terms of the random effects variance

components in Table 2,
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(2)

In other words, the observed variance of rater means over the n. = 126 items
-s

can be decomposed into two parts--one part that is uniquely associated with

raters, and another part that is associated with the interaction of raters

and items.

Insert Table 2 about here

Table 2 also reports three equations for estimating the expected variance

of X. Each of these equations is expressed solely in terms of random effects

variance components and sample sizes. The sample sizes in these equations are

identified with primes to distinguish them from the sample sizes that character-

ize the actual data available. We say that n represents a G study sample size

and n reprLsents a D study sample size. In the body of this paper, unless

otherwise noted, we will assume that the G study and D study sample sizes are

equal. In an Appendix we provide a more detailed consideration of distinctions

between G studies and D studies for the r x i design.

Equation 3 in Table 2 provides the expected value of the variance of the

mean cutting score, X, for generalizing over samples of n" rattxs and n: items.
-r -s

We'can conceive of the possibility of determining X a "very large" number of

times--each time using a different sample of E; raters and items. Equation

3 estimates the variance of the distribution of the "very large" number of means

that would result from such replications.
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A
A

It is in this sense that we say a4(X) is the variance of the mean for general-

izing over both samples of raters and samples of items.

Equation 4 in Table 2 is the expected variance of X generalizing over

samples of ni items, for a fixed set of a; raters. We denote this variance

A

a2(X1R*) to emphasize that raters are considered fixed. Again, we can conceive

of the possibility of determining 7 a "very large" number of times--each time

A

using a different sample of E: items but the same n raters. (14 (X1R*) is an

unbiased estimate of the variance of this distribution of means. Similarly,

a2671I*) in Equation 5 is the expected variance of X generalizing over samples

of n raters, for a fixed set of n items.

A A

In brief, a2(X1I*) is for generalizing over samples of raters, a2(X,R*)

A

is for generalizing over samples of items, and a2(X) is for generalizing over

samples of both raters and items. These then are three different estimates of

error variance in the mean cutting score. Whie )f these estimates is appropriate

can be determined only in the context of a specific study; i.e., it is the de-

cision-maker who must determine whether it is appropriate to generalize over

samples of raters, items, or both. It is evident from Equations 3 to 5, however,

A A A

that a2(i) must be at least as laro as a2(X1R*) and a2(XII*). This follows from

the fact that a2(i]R*) does not involve variability due to raters, a2 (r), and

02(1II*) does not involve variability due to items, G2(j)._

Generalizability Results for Angoff Procedure

For data set 1 and the Angoff procedure, Table 3 reports the usual ANOVA

results, estimat,?.d random effects variance components, and estimates of mean

cutting score variability. As reflected by the above discussion, it is usual
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in generalizability theory to report results in terms of variances; however,

in Table 3 we also report the three estimates of mean score variability in

terms of standard deviations to facilitate interpretation. We note, for

example, that in terms of proportion of items, the standard deviation of -i,

for generalizing over raters and items, is 0.0182; and in terms of number of

items, it is 2.29. Furthermore, a(X) and c(X.II*) have approximately the same

A

magnitude; and both of chem are almost twice as large as a(X1R*). Clearly,

for these data, the decision concerning whether or not to generalize over

raters is an important determiner of the magnitude of the standard deviation

of X.

Insert Table 3 about here

The results reported in Table 3 are based on the assumption that the

G and D study sample sizes are the same; i.e., n_ = n = 5 and n. = n = 126.

The equations in Table 2 can be used, however, to determine the expected

variability of X for different numbers of raters and/or items. For example,

the reader can verify that, if the number of raters were doubled to n' = 10
--r

A A

and the number of items remained unchanged, then the values of a(X), a(X1R*),

and a(iII*) would be 0.0138(1.74), 0.0084(1,05), and 0.0130(1.64), respectively.

As predicted by the equations in Table 2, increasing the number of raters on

which X is based decreases the expected variability of the distribution of

mean scores.
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All of the above results depend upon one assumption--namely, that when-

ever we generalize over a facet (raters or item), we assume that the facet

encompasses an essentially infiniue number of observations. Sometimes eval-

uators wish to generalize to a finite population of raters and/or a finite

universe of items. In this case, the equations in Table 2 are no longer

appropriate, and the Appendix provides two equivalent expressions for esti-

mating the expected variance of X for a population of raters of any size,

N , and a universe of items of any size, N..
-r
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The Nedelsky Procedure

As discussed in the introduction to this paper, there are both similarities

and differences between the Nedelsky and Angoff procedures. The two procedures

are similar in that, for each item and rater, they both provide a probability

that a minimally competent examinee will get an item correct. The Angoff

procedure directly elicits this probability from each rater, whereas the

Nedelsky procedure involves inferring this probability from the number of dis-

tractors that a rater believes would be eliminated by a minimally competent

examinee. Here we consider both aspects of the Nedelsky procedure, beginning

with an analysis of the Nedelsky probabilities (data set 2), which parallels

our previous analysis of the Angoff procedure. Then we examine the eliminated

distractors for the Nedelsky procedure (data set 3).

Probabilities of Correct Responses

Table 4 reports some sample statistics for the Nedelsky procedure based

upon data set 2, the Nedelsky probabilities of a correct response. We note

that the mean cutting score, X, is 0.5563 (70.09) for the Nedelsky procedure;

whereas for the Angoff procedure, X is 0.6632 (83.56), as indicated in Table 1.

Clearly, there is a substantial' difference in mean scores for the two procedures.

Furthermore, Tables 1 and 4 indicate that the standard deviation of the rater

means for the Nedelsky procedure is approximately double the corresponding

standard deviation for the Angoff procedure.

Insert Table 4 about here

7
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Table 5 reports a generalizabilitY analysis of the Nedelsky probabilities

based upon the same model, assumptions, and sample sizes used in presenting

the corresponding results for the Angoff procedure in Table 3. In comparing

the Nedelsky results in Table 5 with the Angoff results in Table 3, we note

A A

that each of the random effects variance components [(12(r), a2(1), and a2(ri)]

for the Nedelsky procedure is considerably larger than the corresponding

variance component for the Angoff procedure. This fact directly results in

' A

larger estimates of a(X), 0(X1R*), and a(XII*), for the Nedelsky procedure.

a(XIR*), for generalizing over items, is approximately the same for the two

procedures. However, a(X), for generalizing over both raters and items, is

twice as large for the Nedelsky procedure. A similar statement holds for

a(X1I*), when generalization is over raters only. In a later section, we

examine these and other differences between the two procedures in more detail.

Insert Table 5 about here

Eliminated Distractors

One way of viewing the results presented thus far is that, in terms of
A

setting a single cutting score with the Nedelsky or Angoff procedure, a2(ri)

A

is always a source of error, a2(r) is a source of error if genc....alization is

A

over raters, and a2(i) is a source of error if generalization is over items.

This statement i based upon the linear model in Equation 1 for the probability

8

4



Cutting Score Procedures

14

assigned by a rater to an item. In the Nedelsky procedure, however, the data

that are actually collected are eliminated distractors, not probabilities;

even though the cutting score resulting from the Nedelsky procedure is based

directly upon probabilities. (Technically, the cutting score is a linear

function of the inferred probabilities, and a nonlinear function of the

eliminated distractors.)

Several interesting, but potentially confounding, issues arise when we

consider the set of eliminated distractors for raters and items. One of these

issues is discussed below, and other issues are treated later. For a given

item, if two raters indicate that the same number of distractors could be

eliminated, then the (inferred) probability for these two raters will be the

same, whether or not the raters agree on which distractors could be eliminated.

Technically, in terms of the way Nedelsky formulated his procedure, such dis-

agreement among raters has no bearing upon the cutting score that results from

the procedure. However, it seems reasonable to believe that one's confidence

in the Nedelsky procedure, in a specific context, might be influenced by the

extent to which raters agree not only with respect to the number of distractors

eliminated, but also with respect to which distractors could be eliminated.

To examine this issue, variance components can be estimated for a design

in which raters are crossed with items, and distractors, d, are nested within

items. We denote this design r x (d:i). 1 Formulas for estimating variance cora-_

ponents for this design are presented in Table 6, along with the estimated

variance components for data set 3. It is usual in many applications of

generalizability theory to report random effects variance components, based

4 3
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on the assumption that the population (or universe) size for each facet is essen-

tially infinite. In this case, however, it seems unreasonable to consider the

n = 3 distractors associated with each item as a sample from an essentially
--d

infinite universe of possible distractors for the item. Therefore, in Table 6,

the variance components are reported under the assumption that distractors are

fixed, and this assumption is indicated by the notation D* .

Insert Table 6 about here

Let us concentrate on the two variance components in Table 6 that involve

variability attributable to distractors. The variance component a2(d:i1D*)

reflects the average, over items, of the variance attributable to the proportion
A

of raters who eliminate each distractor. The magnitude of a2(d:ilD*) will be

large when, on the average, raters judge an item's distractors to vary in their

difficulty, or attractiveness, to examinees. By contrast, the magnitude of

A

a2(rd:i1D*) reflects disagreement or variability among raters in their judgments_ _
of distractor attractiveness for an item. To put it another way, the magnitude

of a2(rdaID*) reflects the extent to which raters disagree in their judgments

about which distractors could be eliminated.

If we consider 0.2(d:i1D*) = 0.0629 as an estimate of "true" variability_ _
among distractors, then our estimate of "error" for Lir = 5 raters is:

a2(rd:i D*)/n = 0.1814/5 = 0.0363.

Evidently, the "error" variance (attributable to the differential attractiveness

of distractors for different raters) is almost fifty percent as large as the

2o
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"true" variance among distractors. This suggests that, for these data, even when

raters agree on the number of distractors that can be eliminated, there are sub-

stantial differences among raters concerning w'Aich distractors can be eliminated.

Eliminating Correct Alternative

In conducting a study with the Nedelsky procedure, it is usual to provide

complete items, including the correct alternatives, to each rater. If the correct

alternatives for all items are specified for the raters, then it is reasonable to

expect that no rater would eliminate the correct alternative for any item--assum-

ing, of course, that the items are well-constructed and the raters take their

task seriously.

On the other hand, if the correct answer is not specified for the raters,

then perhaps some raters will eliminate the correct alternative for some items.

This is indeed what happened in this study. Specifically, the numbers of correct

answers eliminated by raters 1 to 5 were 11, 9, 26, 14, and 16, respectively. We

found no evidence of clerical error, or mis-keyed items to explain these results,

and we have no reason to question the extent to which raters took their task

seztously. However, it is likely that individual raters had differing degrees

of familiarity with the content tested by specific items.

When a rater indicates that the correct answer could be eliminated by a

minimally competent examinee, one could argue that the (inferred) probability

assigned by the rater to the item should be zero, no matter how many distractors

are eliminated by the rater. However, for the purposes of this study, we did

not adhere to this argument. Rather, we followed Nedelsky's procedure, as he

described it, and assigned probabilities on the basis of eliminated distractors

only. It is -nteresting to note that if we had assigned a probability of zero

whenever a rater eliminated the correct alternative, X would decrease and esti-

mates of variability would increase. 41
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A Comparison of the Two Procedures

Since the Nedelsky and Angoff procedures were both applied to the same items

by the same raters, the data from these two procedures (data sets 1 and 2) can

be analyzed jointly in a single design. Specifically, the appropriate analysis

involves the Ex r x i design, in which the two procedures (2) Are crossed with

both raters and items. Table 7 provides equations for estimating the variance

components for this design, and Table 8 provides the numerical values of these

estimated variance components for our data.

Insert Tables 7 and 8 about here

A

The variance components, identified as a2(a) in Table 8 are obtained by

letting N approach infinity in Table 7; and these are called random effects
A

variance components. The variance components identified as a2 (all") in Table 8

are obtained by letting n = N in Table 7; and these variance components are
-13

based on the assumption Qlat procedures are fixed. The variance components

a2(aIP*) are appropriate when we restrict our interest to the actual procedures

in our study. Strictly speaking, here, the variance components (12(a1P*) seem

more appropriate than the random effects variance components, a2(a), because it

seems difficult to consider these two procedures as a sample from some very large

set of similar cutting score procedures. However, the random effects variance

components are very useful in illustrating relationships between results for the

Exrxidesign and the tworxidesigns discussed previously.

2 2
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Tables 7 and 8 also provide equations and numerical values for estimates of

-
the variability of X, where X is, in this case, the mean over raters, items, and

procedures. For example, Table 8 reports that X (over procedures) is .6097 (78.82),

-
which is the mean of the X's reported in Tables 1 and 4.

The reader should note, however, that the estimates of the variability of

-
X in Table 8 are not averages of the corresponding estimates in Tables 3 and 5.

A A

For example, q(iIP*) = 0.0195 (2.46), which is similar to a(X) = 0.0182 (2.29) in
A

Table 3 for the Angoff procedure, but quite different from a(X) = 0.0336 (4.24)

in Table 5 for the Nedelsky procedure. This pattern of results also holds for

A

a(XIP*,R*) and a(XII",I*). One inference that might be drawn from these observations

is that there would be no particular advantage in actually setting a cutting score

by averaging X from both procedures--assuming me is primarily interested in mini

mizing the variability of X.

Perhaps the most interesting result in Table 8 is that the variance com-

ponents that contain Ilare relatively large, indicating that there are substantial

differences between the two procedures and the probabilities that result from them.

A

For example, cr2(2.1r) is about four times larger than a2(rIP*), suggesting that

there is considerably more variability attributable to differences in procedure

means than to differences in rater means (over procedures). From another per-

spective, it can be shown that the observed variance in the two procedure means is:

A A A

A
a2(21) a2(E0 a2(pri)

^

(72(( ) _ 2
G () 4-

+ +
-2. n n. n.n.

-x -1

In other words, the variance components that contain E contribute directly to the

disparity we have identified in the procedure means.
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The results reported in Table 8 are based upon the same data that led

to the results in Tables 3 and 5, for the two procedures separately. It

might seem, therefore, that there ought to be some relationships between the

variance components in Table 8 and those in Tables 3 and 5. This is indeed

the case. The reader can verify that the average of the variance components

for raters in Tables 3 and 5 is:

[a2(r) a2(r)]/2 a2(r)

where variance components to the right of the equality are for the E x r Y

design in Table 8, a2(r) is the variance component for raters, for the Angoff
1

A

procedure in Table 3, and a2(r) is the variance component for raters, for the
2

Nedelsky procedure, in Table 5. Similarly,

[a2(i) a2(i)]/2 a2,ti) + a2 () , and

[a2(ri) + a2(ri)]/2 = a2(ri) + a2(pri).
1 2

In effect, Table 8 crystallizes many of the differences between the two pro-

cedures evident in comparing Table 3 with Table 5.

Differences in Sample Statistics for Raters

We can also examine differences between the two procedures using the

sample statistics reported in Tables 1 and 4. In examining these differences,

we will occasionally point out (without proof) relationships between the results

in Tables 1 and 4 and the generalizability analyses results in Tables 3, 5, and

8.

2 1
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Correlations and Covariances Among Raters, Within Procedures. Using

Tables 1 and 4, the reader can verify that the average of the rater inter-

correlations for the AnToff procedure is 0.187, and the correspeaoti.g result

for the Nedelsky procedure is 0.222. In terms of covariances, these averages

are 0.0061 and 0.0125 for the Angoff and Nedelsky procedures, respectively

The magnitude of these average covariances is influenced by the degree to

which similar probabilities are assigned to items. Indeed, the average of
A A

the rater covariances is simply a2(i) for the Angoff procedure, and a2(i)

for the Nedelsky procedure. Evidently, there is more variability over items

in the probabilities assigned using the Nedelsky procedure. We will see

further evidence of this fact, below.

Rater Means. Figure 1 provides a scatterplot of the rater means (over

items) for the Angoff procedure (see Table 1) and the Nedelsky procedure (see

Table 4). The reader can verify that the correlation in Figure 1 is -0.052;

and, it can be shown that the covariance (in terms of the random effects variance

components in Table 8) is

A A

a2(r) a2(ri)/n. = (-0.0002) + 0.0071/126 A -0.0001.
-1

Clearly, there is little, if any, linear relationship between the two procedures

in terms of the five rater means.
2

Note that this result is not influenced by

the difference in the grand means (ils) for the two procedures.

It appears from Figure 1, however, that there are two clusters of raters--

Raters 2,3 and Raters 1, 4,5. Given the small numbers of raters involved, we

hesitate to say that there is a strong correlation among raters within clusters;

0
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however, Figure 1 certainly does not preclude thiE; possibility. In any case,

Raters 2 and 3 are outstanding in that they assign relatively low probabilities

using the Nedelsky procedure and relatively high probabilities using the Angoff

procedure.

Insert Figure 1 about here

Rater Standard Deviations. Figure 2 provides a scatterplot of the statis-

tics a(X .) for each rater, by both procedures. Recall that, for a given raterri
and procedure, a(X ) is the standard deviation of the probabilities assigned

1.
ri

to items. We observe that the standard deviations for the Nedelsky procedure

are somewhat higher than those for the Angoff procedure, which is consistent

with the fact that the variance components for items and interactions are

higher for the Nedelsky procedure. Again, however, Rater 3 and, to some ex-

tent, Rater 2 appear to be different from the other three raters. Specifically,

for both procedures, Raters 2 and 3 exhibit less variability in the probabili-

ties they assign to items.

Insert Figure 2 about here
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Differences in Sample Statistics for Items

In principal, we could construct tables, analogous to Tables 1 and 4,

that would report, for both procedures, sample statistics for elp.ry item.

Since we have 126 items, however, the resulting tables would be too large

and too detailed to be very informative. Rather, we provide four perspeutives

on items statistics in two figures and two tables.

Figure 3 provides a frequency polygon for the average (over raters) of

the probabilities assigned to items by both procedures; and Figure 4 provides

a frequency polygon of the standard deviation of the probabilities assigned

to items. Consistent with previously discussed results, Figure 3 indicates

that the modal probability (interval) is considerably higher for the Angoff

procedure. Also, consistent with previous results, Figure 4 indicates that

there is somewhat more variability in the probabilities assigned to items

using the Nedelsky procedure. Most importantly, however, the Nedelsky

standard deviations in Figure 4 are bimodal. As discussed below, this bi-

modality is not an artifact of these data--it is a result that is virtually

guaranteed by the Nedelsky procedure, per se.

Insert Figures 3 and 4 about here
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Recall that, for each rater the probability assigned to an item by the

Nedelsky procedure is the inverse of the number of non-eliminated alternatives.

For the four-alternative items that characterize this study, this procedure

for assigning probabilities means that the only (inferred) probabilities that

can be assigned to an item using the Nedelsky procedure are 0.25, 0.33, 0.50,

and 1.00. In particular, note that there can be no probability between 0.50

and 1.00. Now, ,onsider the probabilities assigned by raters to an item. If

all raters assign probabilities in the range 0.25 to 0.50, the standard devia-

tion will be relatively small; and, of course, if they all assign probabilities

of 1.00, the standard deviation will be zero. However, the standard deviation

will be relatively large when some raters assign a probability of 1.00, and

other raters assign probabilities of 0.50 or lower.

Thf bimodality in Figure 4, then, seems almost certainly a direct result

of having only a small number of unequally spaced probabilities with the

Nedelsky procedure. Furthermore, this peculiar characteristic of the prob-
-

ability scale is a plausible explanation for the fact that our estimates of

the variability of x are higher for the Nedelsky procedure than for the Angoff

procedure. (See Tables 3 and 5.) Also, the restricted nature of the Nedelsky

probability scale may account for the differences in the means for the two

procedures, at least to some extent. To examine these issues in more detail,

let us consider Tables 9 and 10.

Insert Tables 9 and 10 about here
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Tables 9 and 10 provide relative frequency distributions (over items)

for the probabilities assigned using the Angoff and Nedelsky procedures,

respectively. Inspection of these tables reveals several points of interest.

First, no rater assigned probabilities below 0.20 using the Angoff procedure.

This implies that the range of probabilities for the two procedures is about

the same; and, consequently, differential restriction in range is not a

factor of importance in this study. Second, for the Nedelsky procedure, on

the average, probabilities below 0.50 were used for 28 percent of the items,

whereas for the Angoff procedure, they were used for only 7 percent of the

items. Third, for the Angoff procedure, on the average, probabilities in

the range 0.60 to 0.95 were used with 53 percent of the items, whereas the

Nedelsky procedure precluded use of such probabilities.

These points and visual inspection of Tables 9 and 10 reveal a consistent

tendency for raters to assign more homogeneous probabilities using the Angoff

procedure. Furthermore, it appears that a rater who uses a probability of

0.33 or 0.50 with the Nedelsky procedure is very likely to use a somewhat

higher probability when given the opportunity to do so with the Angoff pro-

cedure.

Operationalizing Conceptions of Minimum Competence

There are many ways in which the Nedelsky and Angoff procedures appear

to be very similar. For example, they both involve raters' judgments about

individual items; they both yield, directly or indirectly, a matrix of rater-

by-item probabilities, and, given this matrix, the computational process for
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arriving at a cutting score is the same for both procedures. The procedures

obviously differ in that probabilities are directly elicited in the Angoff

procedure, whereas probabilities are inferred from eliminated distractors in

the Nedelsky procedure.

It is also possible that the two procedures differ, to some extent, in

the way they technically allow a rater to operationalize a conception of mini-

mum competence. In the Angoff procedure, to arrive at a probability, a rater

might conceptualize a group of minimally competent persons and reflect upon

what proportion would get the item correct. Alternatively, for the Angoff

procedure, a rater might conceptualize a single minimally competent person

and reflect upon what proportion of the times this person would correctly

respond to the item, if it were administered a large number of times.

For the Nedelsky procedure, however, there are only as many distinct

probabilities that can be assigned (indirectly) as there are alternatives to

the item, and these probabilities are not equally spaced. Logic suggests,

therefore, that neither of the above two conceptualizations works very well

with Nedelsky procedure. For example, if a rater believes that 75 percent of

a group of minimally competent persons would get an item correct, the rater

cannot eliminate some number of alternatives that will yield a probability of

0.75. Technically, the rater cannot even report the average number of alter-

natives that a group of minimally competent persons would eliminate, unless

this number is an integer.

It seems, then, that the Nedelsky procedure constrains a rater to con-

ceptualize minimum competency in Lerms of the performance of a single person

on a single administration of an item, with the additional constraint that

30
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this person will respond based upon a process of eliminating distractors. We

know of no compelling empirical evidence to suggest that examinees (specifi-

cally, minimally competent exaniinees) generally respond to an item based upon

a process of eliminating distractors, even though this process is frequently

recomnended to potential examinees. However, even if examinees do respond in

this manner, there still seem to be relatively clear differences in the con-

ceptualization of minimal competence implicit in the Angoff and Nedelsky

procedures.

This study cannot directly address the extent to which different con-

ceptualizations of minimum competency may have influenced the study's results;

and it is not likely that raters gave this matter a great deal of conscious

consideration. Nevertheless, any cutting score procedure necessitates some

conceptualization of minimum competence; it seems likely that the conceptual-

izations are different for the Angoff and Nadelsky procedures; and evaluators

are probably well-advised to consider such differences in choosing a cutting

score procedure in a given context.

cutting Scores other than i

It is important 'to note that, throughout this paper, we have assumed that

-
the cutting score, X, that results from either procedure is the mean of X ,

-r

for all raters who participated in the study. For example, we pointed out that

Raters 2 and 3, in our study, appear to be different from the other three raters.

However, we did not suggest eliminating them from the study for the purposes of

calculating a cutting score. In our opinion, unless there is clear evidence that

a rater did not adhere to the intended procedure, it is probably not generally
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advisable to eliminate atypical raters in determining the cutting score. (We

assume, of course, that raters were chosen carefully in the first place.) How-

ever, if an atypical rater were eliminated, it would be best to redo analyses

using the remaining raters, only. We make this suggestion because the elimina-

tion of an atypical rater, after the study is completed, probably implies that

one has changed one's conceptualization of the intended population of raters.

Reconciliation Process. Sometimes, rather than using X as the cutting

score, it is sugsested that a cutting score be determined by a reconciliation

process. In principal, such a pro,:ess might be applied in conjunction with

either the Nedelsky or the Angoff procedure. For example, after the five raters

in this study completed the Angoff procedure, they were instructed, as a group,

to reconcile their differences on each item. In Table 1 the mean (over items)

of these reconciled ratings is denoted r(c). One typical result of using a

reconciliation process is that certain raters tend to dominate, or unequally

influence, the reconciled ratings. This is indeed what happened in our study,

as indicated by the high correlations between the actual and reconciled ratings

for Raters 1 and 2. The effect of this dominance by Raters 1 and 2 is that the

reconciled cutting score (0.70) is quite a bit different from X (0.66).

There is certaiq logic in using a reconciliation process that appears to

be compelling. One might argue that the ideal result of using either the

Nedelsky or the Angoff procedure is for raters to agree on every item. There-

fore, why not force them to concur? One argument against this logic is that

forced consensus is not really agreement, although forced consensus may effec-

tively hide disagreement. Also, we point out that a reconciliation process does

not guarantee that the same cutting score will result each time a study is
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replicated. If a study is replicated a large number of times, with different

raters, the average reconciled cutting score night be considerably different

from the average X or A, in Equation 1; however, there could be as much, or

even more, variability in the distribution of reconciled cutting scores as

there is in the distribution of X's. We do not mean to imply, however, that

a reconciliation procedure should be avoided, necessarily; rather, we wish to

emphasize that use of reconciliation procedure involves complexities over and

above those encompassed by either the Nedelsky or the Angoff procedure.

Nedelsky's Cutting Score. When Nedeloky originally described his uro-

cedure he did not actually suggest using X (or n.X) au a cutting score.

Rather, the cutting score he suggested using is

M + k a .

-FD FD

We find Nedelsky's discussion of M k, and c
FD

somewhat confusing. However, it

appears that M is intended to be the mean test score for a group of "border-line"

examinees, only (Nedelsky, 1954, p. 5); a is the standard deviation of this

distribution; and k is an a aiori defined constant used to classify these

"border-line" examinees into passing and failing examinees. Since Nedelsky

suggests using our n X as an estimate of M it is clear that his cutting

score will equal n X only if k is defined as zero of a
FD

is zero.

It is not clear to these authors why one would use M + a
FD

as a cutting
-FD

score if one actually had test scores for a known group of "border-line" exami-

nees. In such a case, the test data themselves would likely provide a reasonably
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sound basis for defining a cutting score independent of raters' judgments. We

infer, therefore, that Nedelsky probably wants us to consider a hypothetical

group of borderline examinees. We have already argued that there may be a

logical inconsistency ir conceptualizing a group, of minimally competent exam-

inees when one uses the Nedelsky procedure. However, even if we overlook this

issue, we are still faced with the problem 'Of estimating a2
FD

(a parameter for

a test score distributiln) using only the raters' probabilities.

It can be shown that the formula suggested by Nedelsky (1954, p. 12) for

estimating 02FD
is

a 2 = EEX Al - X )/n
FD . -ri -ri -r

r

. . ._ -
4 n. [X(1 - X) - a2(r) - a2(i) _.

-s

where X is the (inferred) probability assigned to item i by rater r. Nedelsky
-xi

14.81.A.

provides a rationale for his estimate of 02
FD

; but, in our opinion, his rationale

is weak in that it confounds considerations of parameters and estimates. However,

even if one accepts his formula for estimating 02
FD

, the very process of defin-
__

ing a cutting score as M + k a
FD

requires fairly strong assumptions and a
-FD

substantiol degree of subjective judgment over and above that required to esti-

mate the cutting score n.X. Whether or not such complexity is advisable

depends upon the specific context of the cutting score decision process; however,

there are probably not many contexts in which this complexity is warranted and

the procedure is easily defended.
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Measurement Reliability or Dependability

In the Nedelsky and Angoff procedures the cutting score that results may

be viewed as the mean, over items and raters, of the probabilities assigned to

items. In this paper, we have denoted this mean as ii, and suggested that the

magnitudes and sources of error in a cutting score procedure may be examined

through studying the expected variance of X. For both the Nedelsky and Angoff

procedures, there are three possible estimates of this variance, depending upon

whether a decision-maker wants to generalize to a population of raters ana a

universe of items, to a population of raters for a fixed set of items, or to a

universe of items for a fixed set of raters.

More specifically, in generalizability theory the (observed mean) cutting

score, X, resulting from a particular study is an unbiased estimate of A in

Equation 1. (Recall that A is the cutting score that would result if the

population of raters used the Nedelsky or Angoff procedure with the universe

of items.) However, we know that if a study were replicated a large number of

times, it is very likely that the X's from these studies would vary; and any

such variation reflects error in using 3E from a single study as an estimate

of A. It is usually not possible to conduct a number of replications of a

cutting score procedure; but, even so, generalizability theory enables us to

estimate the expected variance in the distribution of X (see Table 2). It is

the expected variance of the distribution of means that we have examined in

considerable detail. Again, however, there is not just one estimate of this

variance. There are many estimates depending upon (a) whether one wishes to

generalize over raters, items, or both; and (b) the sizes of the samples of

raters and items used to calculate X.

3 5
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We emphasize that the numerical results reported in this paper are for a

specific study, only; and, as such, these results are illustrative, rather than

definitive. Nevertheless, there appear to be noticeable differences in the

means (cxr cutting scores) for the two procedures. Also, for each procedure,

there is evidence of error, as reflected in the expected variances of the dis-

tributions of means over replications; and these variances frequently have

considerably different magnitudes for the two procedures. Given these results,

it seems reasonable to consider their potential impact on issues of reliability,

or measurement dependability. A complte discussion of these issues is beyond

the intended scope of this paper. We will, however, consider these issues in

the context of the index of dependability 0(A), defined by Equation 6 in Table

11.

This index was developed by Brennan and Kane (1977a) using generalizability

theory and the linear model for the ELx i design:

Y = p p (1, p .1121 (7)

(See also Brennan, 1978, and Brennan and Kane, 1977b.) In Equation 7, Y is
-111

the observed score of person Eon item 1., and the terms to the right of the

equality are the score effects or components for the decomposition of Y

The linear models in Equations 1 and 7 are formally identical. We have used

different notation in each of them for the purpose of emphasizing that Equation

1 is applied to a rater-by-item matrix of probabilities, whereas Equation 2 is

applied to the person-by-item matrix of observed scores.
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For any meaningful joint use of Equations 1 and 7, the item universe must

be the same for both equations although the effect for items in Equation 1,

Aiq,,isdifferentfromtheeffectforitemsinEquatior
p

Most impor-
i

tantly, A and p in Equations 1 and 7 are very different. The parameter

A is the cutting score (or grand mean of the probabilities) for the population

of raters and universe of items; whereas the parameter p is the grand mean of

the observed scores, Y
1:

for the population of persons and the universe of
-2

items.

Using generalizability theory and the linear model in Equation 7, Brennan

and Kane (1977a) derived Equation 8 in Table 11 as an estimate of their index
A

of dependability. This estimate is identified as 0(A) in Equation 8 to empha-

size that it is based on the assumption that A is somehow known, without error.

This assumption is reflected in the term 61 - )02 in the numerator and denomi-

-
nator of Equation 8. When A is not known, however, and we use X from a par-_

ticular study as an estimate of A, then this term is no longer appropriate.

Insert Table 11 about here

Furthermore, we may not simply replace A with X in the term (Y - A)2

because the expected value of a squared quantity is not equal to the square

of the expected value. Rather, the expected value of (F - i)2 is

r oF TO2 = A)2

31

(9)
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if we wish to generalize over samples of raters (R) and samples of items (I).

If we wish to generalize over samples of items, only, then

- 7)2 = - A) 2 t ;2(0*). (10)

Table 2 provides equations for a2() and a'(XIR*) in terms of variance com-
n

MM.

ponents fo:: the effects in Equation 1; and Equations 9 and 10 can be derived

using an approach employed by Brennan and Kane (1977a, p. 280).

It follows from Equations 9 and 10 that when we use X as an estimate of

A, we should also subtract a2() or a 2 (X1R*), as appropriate, from bcth the--I

numerator and the denominator of Equation 8 in Table 11. The two resulting

(modified) estimates of the index of dependability 0(A) are provided by

Equations 11 and 12 in Table 11.

Let us return now to the original question that motivated our development

of Equations 11 and 12--namely, what effect do different values for X and its

expected variability, for the Nedelsky and Angoff procedures, have on reliability

or measurement dependaLility7 Without loss of generality, we restrict ourselves

to considering t(X) in Equation 11 for generalizing over raters and items. Since

(),) can be no greater thdn one, decreasing the numerator and denominator in

%quation 8 by V.(X) results in decreasing the magnitude of the estimate of the

Brennan-Kane index. This is to be expected, because we have introduced additional

sources of error attributable to the procedure used to establish a cutting score.

Furthermore, "all other things" being equal, the larger the magnitude of

the smaller the magnitude of (1)(X).

a266 is larger for the Nedelsky procedure

Since our study results suggest that

, we might expect (1)(X) to be smallev
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for the Nedelsky procedure. However, "all other things" are not equal unless

the cutting scores for the procedures are equal. When they are unequal, as

we found, the magnitude of OF - T02 will be different; and this difference,

A

in turn, will affect the magnitude of 0(X). Moreover, whether or not higher

values of X will result in higher values of (Y.- -i)2 depends entirely upon the
A A

magnitude of Y. In brief, the effect of X and a260 on the magnitude of 1(A)

cannot be predicted independent of test data for examinees; and, it is not

A
n

necessarily the case that lower values of a4(X) are always associated with

higher values for estimates of measurement dependability.
A

Note that we have not suggested that a2 (511 I*) be considered in the con-_
text of modifying the Brennan-Kane index. Of course, there is an equation

analogous to Equations 9 and l0--namely,

ICy- _ To 2 = _ )0 2 4. ;2 (x1 I*)
R

in which generalization is over samples of raters only. However, in this
A

equation, items are considered fixed; and if we incorporate a2(iII*) into an

estimate of 0(A) we must then consider items fixed in estimating the other

variance components, too. To do so means that there is no larger universe

of items (or tests) to which we wish to generalize; and, under such circum-

stances, estimates of reliability, generalizability, or dependability for the

i design are usually undefined.

39
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Summary and Conclusions

Based upon an application of generalizability theory to a rater-by-item

matrix of probabilities, we have provided and discussed equations for esti-

mating the expected variability in a cutting score determined by the Nedelsky

or Angoff procedure. Our development assumes that the cutting score in a

particular study is the observed mean (probability) over raters and items,

and that this mean may be viewed as an estimate of an "idealized" cutting

score, defined as the mean for a population of raters and a universe of items.

In this sense, the expected variability of the observed mean is error variance

attributable to a particular application of the procedure used to define a

cutting score.

We have applied this approach to data sets resulting from the application

of the Nedelsky and Angoff procedures by five raters to a 126-item test. Also,

we have examined these results for each procedure separately, and we have com-

pared results over procedures. Our data indicate that both the cutting scores

and their expected variances are considerably different for the two procedures.

We have postulated that these differences may be explained, in whole or in part,

by differences in the ways probabilities are assigned using the two procedures,

or differences in the ways minimum competency is conceptualized. Both explana-

tions depend heavily on the fact that the Nedelsky procedure necessarily (al-

though indirectly) restricts a rater to a small discrete number of unequally

spaced probabilities.

In examining the two procedures, we have considered several issues not

directly associated with variability in the mean cutting score, X. Our data

suggest, for example, that even when raters agree on the number of alternatives

0
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to eliminate using the Nedelsky procedure, these same raters may disagree on

which alternatives to eliminate. Also, we found that raters, using the Nedelsky

procedure, eliminated a considerable number of correct alternatives. Further-

more, we have briefly discussed some issues associated with use of a reconcilia-

tion procedure and the elimination of atypical raters.

Finally, we have examined the influence of different values of X, and the

expected variance in the distribution of X, on reliability, or measurement

dependability. TO do so, we developed a modification of the Brennan-Kane

index of dependability, O(A). We found that, for a given value of X, increas-

ing the expected variance of X results in decreasing the estimate of 0(A).

However, if both X and its variance change, then the estimate of 0(A) could

increase, decrease, or even remain unchanged--depending on results for examinee

test data.

The numerical results reported in this paper are for a single study, only.

As such, they surely do not form a sufficient basis for passing judgment on

either the Nedelsky or the Angoff procedure. Even so, these data do suggest

that the differences between these procedures may be of greater consequence

than their apparent similarities. In particular, the restricted nature of the

Nedelsky (inferred) probability scale may constitute a basis for rejecting this

procedure in certain contexts.

41
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Appendix

The 11 x I Desi9n and Sampling from a Finite Universe

Table 2 provides equations for obtaining estimated random effects variance

components for the r x i design. We emphasize that these variance components

are for a random effects model in which both the size of the population of

raters, N , and the size of the universe of items, N , are assumed to approach
--r -1

infinity, (i.e., N cc. and N co). The equations In Table 2 for estimating1
the variability of mean scores do distinguish, however, between G study sample

sizes and D study sample sizes. (D study sample sizes are identified with

primes.)

The G study (i.e., generalizability study) sample sizes are the actual

numbers of raters and items on which G study data are available; and these are
A A A

the sample sizes used to calculate a2 (r), a2(i), and a2(ri) in terms of mean

squares. A decision-maker, however, may ba interested in a D study involving

A

consideration of the expected value of statistics, such as ou2(T) for sample

sizes that are different from the G study sample sizes. Of course, the G

study and D study may be the same study, in which case there is no distinction

tetween G study and D study sample sizes.

We wish to develop a general expression for the expected variance of the

mean, X, for samples of n raters from a population of any size, N , and samples
-r

of n' items from a universe of any size, N. We begin by expressing expected
-1 -a

mean squares in terms of variance components using the Cornfield and Tukey (1956)

procedures (treated by Millman and Glass, 1967; Kirk, 1968; and others):

4 2
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[MS(r)] = (1 - 14/1211)a2(ri) + nia2(rINi);

I'61WS(i)] = (1 - n_./E_ r)a2(ri) + p_a2(i1N ); and

pscri)] cr2tri).

In Equations A.1 to A.3 it is important to note that a2(r1111) is not identical

to the random effects variance component a2(r) unless N. =; similarly,

02(iIN ) is not identical to 02(i)unless N =; and a2(ri) is unaffected by--r --r

the size of N and/or N . Also, note that the sample sizes in Equations A.1
-1-

to A.3 are for the G study--not the D etudy.

A.3,

Now, in terms of estimates of the variance components in Equations A.1 to

A

a2611N =-

(
1 - ---=. -

a2(Eliii)

( -1
n' a2(0

+

4)
_

A

n' n"-r -r

n p; a2(ri)

1 - -

N H N.-r

(A.4)

Equation A.4 results from well-known principles concerning the variance of the

distribution of means for (D study) samples of size n'randomay sampled from a

popultion or universe of size N (see, for example, Cochran, 1977, p. 23). A

slight modification of Equation A.4 is sometimes discussed in treatments of

matrix sampling (see, for example, Sirntnik and Wellington, 1977, p. 354).
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Equation A.4, however, is sometimes awkward to use for a particular D

study, because G study results are usually reported in terms of estimated

random effects variance components--not the estimated G study variance com-
A

ponents a2(r1N ) and a2(1.1N ), for sampling from a finite universe. Brennan- -r

(1977) has shown that

and

a2(r1N ) = a2(r) + a2(ri)/N.,__-

a2(iIN ) = a2(i) a2(ri)/N
-r

(A.5)

(A.6)

where estimated variance components to the right of the equalities are the

random effects varianc* components in Table 2.

Given equations A.5 and A.6, Equation A.4 can be expressed as:

n, 0.2(r) n: a2(i)
-2. -

. _
a2 (iIN ,N.) = 1 - + 1 -

-- -T -1- - N I n ' N. I n:
-r r 3. -3._ ---- --

_..

A

+
. nn

rr

(A.7)

N N

n'n: a2(ri)T 1

Equation A.7 can be used to obtain an unbiased estimate of the expecea variance

-
of X for any values of n', n:, N , and N using random effects variance components,

only. Let us consider, for example, the three special cases in Table 2. If Er
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and N both approach infinity, then Equation A.7 is a 2 (X) in Table 2. If N-1 -V-..

approaches infinity, and LI; = Nit then Equation A.7 is 02(XII*) in Table 2.
..

If N approaches infinity, and n' = N , then Equation A.7 is a2(X111*) in-1 --r -r- - -
Table 2.
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Footnotes

The junior 4.uthor is currently Director, Southeastern Regional Test

Development Center, Educational Testing Service, Atlanta, Georgia.

1
For the r x (d:i) design, it can be argued that a rater may not examine

a given distractor independent of the other distractors for an item. 7.f so,

then one independence assumption associated with the linear model for this

design becomes suspect, at least to some extent. This issue, however, is

relatively unimportant here because our analysis is intended only to summarize

data that have an indirect bearing on the principal analyses in this paper.

2
By definition, a variance component must be positive: however, estimates

of variance components are occasionally negative. When a negative estimate

occurs, sometimes it is advisable to treat it as zero (see Cronbach et al,

1972, and Brennan, 1977), and at other times it is best to leave the estimate
A

unchanged (see Sirotnik, 1970). Here, we do not set a2(r) to zero because it

is a mathematical fact that a covariance of the type in Figure 1 is exactly

A A

a2(r) + a2(ri)/n

as shown by Cronbach et al. (1972, Chapter 8). This is true even if a2(r) is

negative. Indeed, a negative covariance could never occur unless a2(r) and/or

A

a2(ri) were negative.

4 8
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Table 1

Means, Standard Deviations, and Inter=relations

Among Raters for the Angoff Procedure

Mean S.D.
'Intercorrelations over over

items: items:

r(2) r(3) r(4) r(5)
a

r(c)

r(1) .525 .053 .046 .150 .731

r(2) .171 .206 .382 .744

r(3) .161 -.036 .237

r(4) .209 .217

r(5) .432

r(c)

0.6632 (83.56)b aqr)

'R. a(X ,)

0.6713 0.2033

0.7194 0.1607

0.6559 0.1193

0.6167 0.1869

0.6525 0.2183

0.6984 0.1541

= 0.0373 (4.70)b

a
r(c) is a reconciled rating arrived at by the raters themselves.

Numbers within parentheses are expressed in terms of number of items.

41)
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Table 2

Variance Components Notation and Formulas for

Random Effects i x i Design

Number of raters = n (G study); n (D study)
-r

.

Number of items = n (G study); n: (D study)
-1

a2 (r) = [MS (r) -

a2 (i) = [MS (i) -

A

a2
--r

A

a26-15 =

A

ci2OTIR*)

A

A

a2(r)/n'

=

A A

a2 (r) + -2

A

+ a2(i)/n' + a2(ri)/n'n: (3)

(4)

(5)

-T - -
A A

a2(i)/n.. + a2(ri)/n'n:
-- -1

A A

+- -r -r-1
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Table 3

ANOVA, Variance Components, and the Veriability of Mean

Scores for the Angoff Procedure

Effect (a) df SS

r_ 4 0.7000

i 125 7.1443

ri 500 13.3526

a2(X ) = 0.0014
.

a2(X) = 0.00033

;2671R*) = 0.00009
A

a2 = 0.00028

A

MS a 2(a)

0.1750 0.0012

0.0572 0.0061

0.0267 0.0267

a(/r) = 0.0373 (4.70)
A

a(i) = 0.0182 (2.29)

;(iIR*) = 0.0095 (1.20)

= 0.0167 (2.10)

A A A

Note. The terms a2(a) are, more specifically, a2(r), a2(i),
;2(ri). Results in the second half of this table for the
variability of mean scores assume that n' = n = 5 and

-r -rn = n = 126.
-1 -1

'Results within parentheses alL expressed in terms of number
of items.

51
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Table 4

Means, Standard Deviations, and Intercorrelations Among Raters

for Probability of Co:reJt Response from Nedelsky Procedure

Mean S.D.

over over
Intercorrelations

items: items:

r(1) r(3) r(4) r(5) 3E otx )ri_ 1

r(1) .307 .118 .196 .377 0.6438 0.2828

r(2) .065 .204 .350 0.5337 0.2317

r(3) .161 .195 0.4495 0.1827

r(4) .242 0.5700 0.2376

r(5) 0.5844 0.2310

A

0.5563 (70.09)a a(X ) = 0.0717 (9.03)a

a Results within parentheses are expressed in terms of number of items,
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Table 5

ANOVA, Variance Components, and Variability of Mean Scores

for Probability of Correct Response from Nedelsky Procedure

A

Effect (a) df SS MS a200

ri

4 2.5890 0.6473 0.0048

125 13.1817 0.1055 0.0125

500 21.4284 0.0429 0.0429

a2 (Te )
--r

;2(T)

a26EIR*)

a2(71I*)

=

=

=

=

0.0051

0.0011

0.0002

0.0010

a(X)r
A

a(X)

1A1(iIR*)

=

=

=

=

0.0717

0.0336

0.0130

0.0321

(9.03)

(4.24)

(1.64)

(4.04)

A A A A

Note. The terms a2(a) are more specifically a2 (r) a2(i) and a2(ri).
Results in the second half of this table, for the variability of mean
scores, assume that n = n = 5 and n: = n = 126.r r 1

5 3
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Table 6

ANOVA and Variance Components for Eliminated Distractors

Using Nedelsky Procedure

Effect (a) df SS MS a2(aID*)

r_ 4 9.3418 2.3354 0.0058

i 125 42.6245 0.3410 0.0121

d:1 252 124.9251 0.4957 0.0629

ri 500 79.9844 0.1600 0.0533

rd:i 1008 182.8853 0.1814 0.1814

a2(rID*) = [MS(r) - MS (ri)Vnind

a2(ilD*) = [MS(i) - MS(ri)Vn n

a2(dalD*) = [MS(da) MS(rd:i)]/Er

02(rilD*) = MS(ri)425.11

02(rd:i1D*) = ;41S(rd:i)

Mean over items of proportion of distractors eliminated for raters

1 to 5:

= 0.6984, 0.6085, 0.5053, 0.6561, 0.6878
--r

)7: = 0.6312 a(X ) = 0.0786
--r

;3
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Table 7

Equations for Estimating Variance Components and the Expected Variance

of the Mean Score for the 2.xrxiDesign)_

Effect Estimated Wriance Component

- MS(pr) - ms1E1) + MS(211)]/n n__

{MS1r) - MS(ri) - (1 - n /N ) [MS1(2/)

MS(ri) (1 - n /N )(ms,(0)
-E -2.

[mS (ED - MS (211.)

[ms (ED - ms (pri)

ri [MS (ri) - (1 - n IN )MS(pri)]/n

- ME(pri)])/n n

- ME(pri)]//n n

When n = N , we identify the variance components as a2 (al") . In terns of

these variance components;

A A

a2(x Ipit) a2(rIp*) a2(rr
a2(11134,) = 02(

_LItt)/14
A A A

a2(XlpfteR*) = 02(

A

02(I X1p* PI"
A

rIP*)/n" + a
-r

A

+ a

r1P*)/n" + o
-dr

2(11E*)/14 + a2(rill")/n11:.-T-1

2(rilP*)/n'n'

2 (Eill?..*)/./.ca;

AMP .11

5 5

Ai&
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Table 8

ANOVA and Variance Components for Probability of

Correct Response with Both Procedures

Effect (a) df SS MS

1

4

3.5989

1.5537

3.5989

0.3884

3. 125 15.6601 0.1253

122E
4 1.7354 0.4339

El 125 4.6652 0.0373

ri 500 20.9520 0.0419

EEL 500 13.8285 0.0277

A

a2(co
A

a2 (ct I p*)

0.0050

-0.0002

0.0074

0.0032

0.0019

0.0071

0.0277

0.0050

0.0014

0.0083

0.0032

0.0019

0.0210

0.0277

Means over procedures and items for raters 1 to 5:

= 0.6576, 0.6266, 0.5527, 0.5934, 0.6185
-r

A A

5.C..2.4 0.6097 (78.82) a(x ) = IP*) = 0.0396 (4.99)
-r -r

cy2(ilp*) = 0.00038 a(XIP*) = 0.0195 (2.46)

cy2(ilp*,R*) = 0.00010 = 0.0100 (1.26)

0.00031 a(XIP* I*) = 0.0176 (2.22)

5



Cutting Score Procedures

52

Table 9

Relative Frequency Distribution by Raters by Probability

of Correct Response Using Angoff Procedure

Probability
of Correct

Relative Frequency

Responsea r(1) r(2) r(3) r(4) r(5) Average

<0.20 0.00 0.00 0.00 0.00 0.00 0.00

(0.20, 0.25) 0.03 0.02 0.00 0.07 0.06 0.04

(0.30, 0.35) 0.02 0.00 0.00 0.02 0.06 0.02

(0.40, 0.45) 0.00 0.00 0.06 0.00 0.00 0.01

(0.50, 0.55) 0.42 0.24 0.19 0.44 0.36 0.33

(0.60, 0.65) 0.01 0.04 0.31 0.00 0.01 0.07

(0.70, 0.75) 0.26 0.33 0.23 0.37 0.31 0.30

(0.80, 0.85) 0.01 0.23 0.20 0.00 0.02 0.09

(0.90, 0.95) 0.12 0.07 0.01 0.10 0.04 0.07

>0.95 0.13 0.08 0.00 0.00 0.15 0.07

0.67 0.72 0.66 0.62 0.65 0.66-r

a
Raters were constrained to report their probabilities in units of 0.05.
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Table 10

Relative Frequency Distribution by Raters for Probability

of Correct Response Using Nedelsky Procedure

Probability
of Correct

Relative Frequency

Response r(1) r(2) r(3) r(4) r(5) Average

0.25 0.06 0.06 0.07 0.05 0.00 0.05

0.33 0.16 0.25 0.42 0.16 0.17 0.23

0.50 0.40 0.52 0.43 0.57 0.60 0.50

a
1.00 0.38 0.18 0.08 0.22 0.23 0.22

0.64 0.53 0.45 0.57 0.58 0.56

a
Our analyses of these data used a probability of 0.99, rather than
1.00, for coding convenience.

;) 8
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Table 11

Equations for the Brennan-Kane Index of Dependability

and a Modification

0(A). is

cy2 (2) 4. _ A) 2

a2(2) (p ..., )02 4. a2(A)
(6)

a (E.) 4. _ )02 _ ;2 Ci.)

a2(i) + _ )02 _ ;2(7) ;2 (A)

where

a

A

a2 (E) [MA(0

a2 (j) Ems (1) _

2 (21) ms (21)

;2(A) sal

a2(y) m a2()"'
A

a2(1)/A2: a2(Elyen.

(8)

a2 (2) .4. CIF 2 a2 (y) a2 (x)

A A

q. (17 a2 _ a2 (7-E) a2 (A)

a2 (2) _ 'TO a2 (f) a2 (3E1R*)

A

a2 (x...) 4. (': _ 21)2 a2 (y) _ ;2 R*) c;2 (to
(12)
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Figure 1. Rater means (over items) for
probability of a correct response using
Nedelsky and Angoff procedures.
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Ficure 2. Standard deviations, for each rater,
of the probabilities assigned to items using
Nedelsky and Angoff procedures.
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Figure 3. Frequency polygon of the means (over
raters) of the probabilities assigned to items-
Frequencies are plotted for the midpoints of
intervals having width 0.10.
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Standard Deviation of Probabilities
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Figure 4. Frequency polygon of the standard
deviations (over raters) of the probabilities
assigned to items. Frequencies are plotted
for the midpoints of intervals having width
0.05,


