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Introduction

Hypothesis-testing is often used to make statistical inferences fram sample

data to population characteristics. The logic of hypothesis tests is that of

negative inference or indirect proof. In statistical hypothesis-testing a state-

ment is made about a hypothetical population with a known parameter from which

a specific sample is said to haw been drawn. This statement was called the

"null hypothesis" by Fisher (1949) and must be stated in terms of a parameter

being set equal to some value. The purpose of this null or statistical* hypo-

thesis is to define the midpoint of the hypothetical sampling distribution against

which a test statistic's value will be compared to determine the probability of

that value oucurring by chance alone within that sampling distribution.

In the classical Neyman-Pearson (1933) hypothesis-testing procedures the

researcher initially states two hypotheses about some parameter that are mutually

exclusive: the statistical hypothesis, Ho, and the alternative hypothesis, H1.

A probability value is chosen a priori to serve as a criterion against which the

probability of the test statistic's value will be compared. If the probability

of the sample value is smaller than or equal to the level of significance the

researcher concludes t the sample value did not occurr by chance alone but,

rather, falls within a different sampling distribution SD the Ho is rejected as

*The terms null and statistical hypothesis will be used interchangeably in this

paper.
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false, Two types of errors may occur as a result of the statistical decision of

a hypothesis test: a Type I error occurs when a true Ho is rejected, a Type II

exror occurs when a false Ho is retained.

Two approaches to the interpretation of the statistical decision have been

taken by theorists who follow the Fisherian and the Neyman-Pearson logic of

hypothesis-testing. Fisher stated that the statistical decision could have been

only to reject Ho when the test statistic falls in the critical region or reserve

judgement until further evidence has been gathered (1949). Neyman-Pearson use the

phrase "reject or accept" the statistical hypothesis as the two decision choices

(1933). Both viewpoints have been discussed at length by such authors as Bakkan

(1966), Binder (1963), Grant (1962), and Rozeboam (1960) with no universally

accepted conclusion. If one were to read the original articles of Nyman-Pearson

and others such as Lindgren (1968) and Winer (1971) as to the nature al the statis-

tical decision it would become clear that one cannot prove or disprove a hypothesis

but can only support or fail to support it.

Statement of the Problem

Traditionally, the goal of a statistical hypothesis test has been to reject

the statistical hypothesis and to support the alternative hypothesis. This goal

is reflected in the setting of a low alpha level to protect against Type I errors

and by maintaining a high probability of correctly rejecting a false Ho which is

called power. A problem arises when the researcher wants to support a statistical

hypothesis. qhat is, there are several instances when a researcher would want to

support a hypothesis that the difference between the real and hypothesized para-

meter values is zero (the traditional H0). There currently exist no techniques

within statistical hypothesis-testing that allow such a hypothesis to be supported

with the researcher being able to control the probability of a Type II error or the

probability of a correct decision. It was the purpose of this investigation to
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develop a procedure within hypothesis-testing logic that allowed the traditional

Ho to be supported. The attainment of this goal involved (1) developing the sta-

tistical logic needed to define the sampling distribution associated with the

hypothesis to be supported, (2) examining the role of Type I and II errors and

power, (3) defining effect size and demonstrating its key role in this procedure,

and (4) generating critical values on noncentral sampling distributions of a test

statistic. Each of these activities will be described in the remainder of this

paper.

Circumstances When the Null Hypothesis is to be Supported

Error terms for t and F tests are often pooled without a statistical test of

the underlying assumptions. Even when a statistical test is performed to test the

assumption of homogeneity of variance, for example, confusion arises as to haw to

conclude that the assumption has not been violated. The statistical hypothesis in

this particular test would be:

a2=a1 a2= a2

HO' 1 2 3

that samples come fram populations with equal variances which the experimenter

would want to support in order to conclude that the homegeneity assumption had been

satisfied. Authors such as Kirk (1968) and Winer (1971) suggest that a level of

significance, a = .25 be used so that the probability of making a Type II error is

lowered. Oomputer software packages such as SPSS (Nie, et al, 1975) and SAS (Barr,

et al, 1976) automatically include a test of homogeneity of variance in t-test as

suggested by Hays (1963) but no guidelines are included for the appropriate level

of significance to be used.

A similar situation occurs when the assumption of homogeneity of regression

is tested when the analysis of covariance is used. Kerlinger and Pedhazur (1973)

and Kirk (1968) caution against the use of ANCOVA if this assumption is not met.

In this test t.1 ,?. hypothesis to be supported would be:
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0 1 2 3

Again, no guidelines exist for the researcher to follow to confidently support

this statistical hypothesis.

Chi-square goodness-of-fit tests present the same type of dilemna to the

experimenter if he wants to support the hypothesis that the distribution of sample

values does not differ significantly from the hypothesized distribution.

There are other instances when the researcher may want to support a hypothesis

that a parameter ( Pt 021P02101o, P ) is equal to a specific value. These

instances occur in path analyses, significance tests of correlation coefficients

used to indicate test-retest or intra-, inter-judge reliability, replication and

validation studies, and in particular experimental designs such as the ASA design

often used in behavior modification studies. In the ABA. design, for example,

it must be shown that the response rate in the Ai and A2 periods are the same in

order to conclude that a change in response rate during the B period is due only

to the independent variable manipulated by the experimenter. This stipulation'

implies the support of e4.ther or both of the following hypotheses:

Ho:PA-1 PA2=

Ho:BAIT I3A2=0

MbNeil, Kelly, and NoNeil (1975) suggest testing these hypotheses at a level of

significance as high as a = .60 "because the acceptance of the no difference

hypothesis is here desired" (p. 434).

These examples suggest that there are several circumstances when one

might want to support a hypothesis that has traditionally been the null hypothesis.

The classical hypothesis-testing logic does not provide the methodology Bor such

a conclusion that allows the researcher to control the probability of a correct

decision.
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Traditional Location of the Critical Region

In the traditional hypothesis test the goal is to reject Ho and the following

rational is used:

1. Ho and H1 are stated in terms of a parameter, P.

For example, Ho: P = 0

0

2. A level of.significance is chose a priori such that

P(s1 ScI Ho) =a

where s = a test statistic's value

Sc = a critical value of s that defines a critical region for Ho.

a = the probability of erroneously rejecting a true Ho.

3. The sample data are analyzed and Ss is calculated.

4. The statistical decision to reject Ho if Ss"-- Se or not to reject Ho

if Ss` Sc, where Ss is the sample value of s.

If the Ho is rejected either a oorrect decision was made or a Type I error occurred.

Since a was probahay chosen to be small the researcher concludes that the decision

ues correct and he therefore, finds support for H1. The probability of gaking a

correct decision is equal to 1 - and is found on the noncentral sanpling distri-

bution of the test statistic defined by effect size and the degrees of freedom.

C
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Figure I. Location of the Critical Region in a Traditional 110 Test
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In the traditional hypothesis test, if the researcher did not want to reject

Flo and the statistical decision was not to reject Ho two possibilities again exist:

a Type II error or a correct decision. This time the experimenter could not con-

clude that a correct decision had been made because he was not able to control for

the probability of a Type II error. Thus, the traditional hypothesis-testing

logic does not allow one to support the statistical hypothesis with the same confi-

dence provided by control of statistical errors. A different approach to hypothesis-

testing must be taken if the goal of the experiment is to support a hypothesis that

has been the null hypothesis traditionally. One approach will be described in this

paper, though alternative approaches have been offered by Myers (1978) and in the

logic of Bayesian statistics.

Proposed Procedure to Support No

In this procedure the same hypotheses could be tested:

1. Ho: P = 0

Hl: P> 0

2. The probability of an incorrect decision is chosen a priori such that:

p(s< Scl P = X) =f3

Since the desired outcome is to reject H1 a noncentral sampling distributiqp must

be defined so that the critical region may be located on it rather than on.the

usual central distribution. This noncentral sampling distribution of the test

statistic is defined by the parameters of effect size and the appropriate degrees

of freedom.

3. A "trivial" effect size, X, is chosen that is the smallest difference

between the true and hypothesized parameter values stated in Ho deemed to

have no practical significance.

4. The sample statistic's value Ss is found.
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5. The Hi is rejected if Ss 5-- Sc and the Ho is supported.

When the H0 is supported usina this method two possibilities exist: a Type II

error has occurred or a correct decision (1 -a ) * has been made.

Figure 2. Location of Critical Region in Proposed Method

* 1 - B = p(rejecting a false Ho) is found on the noncentral sampling distribution
defined by effect size and df in a traditional hypothesis test and is called power.

1 - a p(retaining a true Ho) found on the central distribution in this method
has neyer been named. Nyers (1978) has proposed the use of the terms of power I

and power II for 1 - t3 and 1 - a respectively.
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Tb summarize this new approach to hypothes-testing,when the desired out-

come is to support the statistical hypothesis: 'ffie researcher chooses a priori a

small level of significance to protect against Type II error and chooses a "trivial"

effect size which is the smallest difference between the true and hypothesized

parameter values judged to have to practical meaning. This effect size and tha

appropriate degrees of freedom define a noncentral sampling distribution of the

test statistic upon which is located the critical region. The test statistic's

sarrIple value Ss is calculated and is compared to the Sc value. Hl is rejected if

Ss -SSc and the Ho is said to be supported.

Choice of a TOst Statistic

The authors decided to choose one test statistic for which a noncentral sampling

distribution could be defined and which is used to test several different statistical

hypotheses across research al,plications.

The F statistic possesses these characteristics and was chosen as the test

statistic in this investigation. The central F distribution is used commonly to

test the following hypotheses:

1. Ho:Py 11-3 113 ....... as in ANOVA

2. Ho:P1- =0 since t2 with df = n equals F with dfl =1, df2 = n

3. H
2

0:-27 to test homogeneity of variance

4 1-10:7 to test homogeneity of regression

H0:0 = 0 Ho: =value to test regression weights

6. Ho: p2 =1 0 Ho: p2 =value to test population squared nultiple correlation

Holp2= p2=....p2
1 2 k

Indices of Effect Size

Effect size is the degree to which a pl-anomenon exists in a population that

is judged to have some practical importance, or the difference between the true and
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hypothesized parameter values that has same meaning. The noncentral sampling

distribution of a test statistic is defined by effect size and degrees of freedom.

The population squared multiple correlation, 0 4 was chosen as the index

of effect size (ES) for this investigation. Th1P2 parameter may be interpreted

as the proportion of variance accounted for in a dependent variable by a linear

model. Several other indices of ES have been developed for power analyses of the

F test and are shown to be related

Cohen (1969)

Winer (1971)

Tiku (1967) 0

Vkf.1)(1

2
Hays (1963) n

to P2 below:

2-

where k=df
1

in F ratio

np2

np2

P2)

2
P

Definition of a Ttivial Effect Size

Cohen (1969) has suggested a convention to define small, medium, and large

effect sizes in terms of his f index. The three f values he suggests are f = .10,

.25, and .40 to represent small, medium, and large effect sizes. When these f

2
values are converted into P values they becomP

2
= .0J99, .0588, and .1379,

respectively. 'Mese values chosen by Cbhen were chosen on the basis of the stan-

dardized difference between group means in the population not on their relative

frequency of occurrence in the research literature (Cohen, 1969, pp. 277 - 281).

Several unbiased estimates ofp2 were calculated from statistical tests

reported in educational research articles in order to select a "trivial" effect size

in this investigation. A formula suggested by Cohen and Cbhen (1975, p. 106) was

used to obtain unbiased estimates of p2 . This formula is the same as the

shrinkage formula for R2 presented by Kerlinger a)d I,D,dhazur (1973, p. 283).

7
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02
=dfl(F -1)

df2+(df1F)

A2
where P =the unbiased estimate of 02

df
1
=the degrees of freedom numerator of the F ratio

df2=the degrees of freedom denominator of thWF ratio
F=the sample F wlue

A total of 58 unbiased estimates ofA2f) were omputed from articles in

eight issues of the American Educational Research Journal, and randomly se-

lected issues cf the Journal of Educational Measurement, and Experimental

Child Psychology. No more than three F and/or t values were evaluated from

any one study so that any massive study would not overwhelm the results. Table

I presents the centile values for the frequency distribution of the 58 estimates

including the f values for comparison

Table I. Centile Values for a Distribution of 58 Unbiased Estimates of

P12 and f Taken from Educational Research journals

Percentile' rahk

A_
p4

10 .06 .25

25 .12 .37

50 .17 .45

75 . 3 .69

90 .59 1 20

The median value was .17, reflecting that 17% of the variance was the

typical amount accounted for by the linear mcdel used in the statistical test.

A2
This median value is larger than Cohen's "large" effect size of P =.1379

and his "meihim" effect size of 02 =.0588 fell at the tenth percentile in this

distribution. On the basis of the literature review and Cohen's suggestions two
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"trivial" effect sizes were chosen to define the noncentral F distributions in

this study:A2P -.0099 and .06.

Generation of Critical F Values on the Noncentral Distribution

The noncentral beta form of the noncentral F distribution was used in

this process (Tiner, 1971, p. 832). When this noncentral beta density function

was integrated the cumulative distribution function for fixed factors was:

2 2p(R 4 Rolp;a,b)=e7kiciki 1- Rg(lia+i,1/2b)
4.7171 1 x

where R2:-) = an observed sample coefficient of determination

P
2 = the population coefficient of determination
a = the degrees of freedom numerator
b = the degrees of freedom denominator
k- = ½ A , with being the noncentral parameter
Ix = the incomplete beta function

This equation was used to solve for F(a,b,A) iterating on the ample r2 value

until the error was less than 10
-4*

. The computer software requires the user

to set the "trivial" effect size value in the program and then to supply the

desired level of significance and df to get the appropriate critical F value on

the noncentral F distribution. The obtained values of R2 were expressed as F

values using the following formula:

F(a,b)=R/a2

Four tables of critical F values are presented at the end of this paper for

the noncentral F distributions defined )y two effect sizes,(0 =.0099 and .06,

and by various df at two levels of significance (P. -..05 and .01). In order to

support 1-10 using this method one would want to :Lind a sample F value equal to or

smaller than the critical F value.



p.1.3

Ekamples of Ho Support Procedure

Namboodiri, Carter, & Blalock (1975,p.99) present an example of

a one-way ANOVA in which three groups each of fifteen subjects are compared to

determine the effectiveness of three teaching techniques. If the experimenter

had wanted to support the hypothesis that all three groups, on the average,

did equally well on the achievement test he would need to support the traditional

Ho. FOr the purposes of this paper, assume that the investigator had determined

a priori that the smallest amount of variance accounted for by knowledge of

group membership in predicting achievement scores was 6% or r2=.06 and that

a significance level of .05 was desired. Thus, the effect size would be

p2=.06 and a=.05. Using the tables included with this paper, the critical

F value using the conservative degrees of freedom of 2,30 would be .143 (the

exact F value at df=2,42 is.203 ). The observed F value in this example VMS

.10 which is smaller than the critical value needed to retain Ho at the .05

level of significance. The experimenter would have' 'liable to conclude

that the three teaching techniques yielded equal means on the achievement test

with Type II error controlled at .05.

A second example could be taken from Kohout's 1974 study ir which

an ABA design was used. Kohout investigated the effects of positive verbal

stimuli on the response rate of part-word repetitions in stutterers. No

stimulation was presented by the experimenter during c..he Ai or A2 baserate

and extinction periods and the verbal stimuli were presented contingent

upon the occurrence of a pert-word repetition during the experimental (B) period.

As described previously, the Ai and A2 response rates must be shown to be

equivalent in order to conclude that a change during the experimental period

was due only to the experimental variable.
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If Kohout were to re-do her statistical analysis using the Ho

support procedure instead of concluding no difference on the basis of

a non-significant traditioml Ho test she would be able to retain Ho:,

Ho:p -p =0
A1 A2

Ha: p -p /0
Al A2

Let us assume that Kohout decided that a difference of one-half of one

standard deviation was the smallest difference of consequence. Cohen (1969)

presents an effect size index of d for the difference betwammans where:

df/221224

This d index can be converted into the amount of variance accounted for by a

linear model using the equation:

P
2_32

If Kohout chose onednalf of one standard deviation as her effect size the (12

value would equal .0580 which is close to the tabled effect size of .06.

Using the .06 value and a level of significance of .01 th'a tabled critical

F value is .001 at df=1,16 (the actual degrees of freedom should be 1,17

since there were 18 measures per period). The observed F value taken from

the Kohout data is .00039 for subject 1 which is smaller than the critical

value needed to retain Ho so Kohout would have been able to conclude

that the average response rate of part-word repetitions during the baserate

and extinction periods was equal.



Conclusion

A procedure was developed within hypothesis-testing logic that anows the

researcher to support a hypothesis that traditionally has been the statistical

or null hypothesis. The major differences between this procedure and the tra-

ditional test when the goal is to reject Ho is that (1) the researcher must

choose a "trivial" effect size, (2) the level of significance controlled for

by the experimenter is the Type II error rate not a Type I error, and (3) a non-

central sampling distribution is defined by the index of effect size and the df

upon whichLthe critical region is located.

Readers are encouraged to review Cohen's work on power analysis (1969) in

which he provides several examples of expressing effect size in terms of f or

for various research designs. The authors of this paper are currently con-

ducting a massive review of research literature in various fields for the cam-

pilation of tabled frequency distributions of effect sizes cataloged by area of

study, measurement level of the variables, and the research design. Hopefully,

tables of this type would serve as useful guidelines to the choise of a trivial

effect size for researchers.

The procedure presented in this paper could be applied in any research

setting when hypothesis tests are conducted and the desired outcome is to support

a hypothesis tht states that the difference between the true and hypothesized

parameter values is zero.
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Table 2

Critical Non Central F Values

Effect Size: p
2

= .06

5th Percentile

df
1

10

. 1

,

Is

1.2

I ,

I' 1.

.o.

16:

".
, .

20

1 1

30 60

S.

.

PJ

t-A

0
r-6

I

(1)

ttl

:74

In

1 2 5 6 7 8 9

0.008

0.006

0.006

0.006

0.007

0.007

0.008

0.000

0.008

0.009

0.010

0.013

0.016

0.030

0.174

0.028

3.762

16.048

40.155

0.061

0.062

0.063

0.065

0.067

0.069

0.071

0,073

0.076

0.078

0.083

0.094

0.106

0.143

0.325

0735

2.269

8.464

20.540

0.110

0.119

0.125

0.130

0.134

0.138

0.142

0.146

0.149

0.153

0.160

0.174

0.190

0.233

0.400

01712

1.773

5.936

14.024

0.143

0.161

0.172

0.180

0.187

0.193

0.198

0.203

0.207

0.212

0.221

0.237

0.253

0.296

0.448

01704

1.527

4.674

10.750

0.165 0.182 0.194 0.203 0.211

0.191 0.214 0.231 0.244 0.255'

0207. 0.233 0.254 0.270 0.283

0.218 0.247 0.270 0.288 0.303

0.227 0.258 0.283 0.303 0.319

0.235 0.267. 0.293 0.314 0.331

0.241 0.275 0.302 0.324 0.342

0.247 0.282 0.309 0.332 0.351

0.253 0.288 0.316 0.339 0.359

0.258 0.294 0.323 0.346 0.366

0.267 0.304 0.334 0.358 0.379,

0.285 0.323 0.354 0.379 0.400

0.302 0.340 0.371 0.396 0.418

0.344 0.382 0.412 0.436 0.457'

0.483 0.510 0.531 0.549 0.565

0$703 01703 01700 0709 0012
1.378 1.281 1.214 1.162 1..122,

3.917 3.412 3.048 2.779 2.570

8.786 7.1177 0.543 5.842 5.297

0.217

0.264

0.294

0.316

:0.332

0.345

0.357

0.366

0.375

0.382

0.396

0.418

0.436

0.475

'0.578

0.710

1.091

2.404

4.861

0.226

0.278

0.311

0.335

0.353

0.368

0.301

0.391

0.401

0.409

0.423

0.447

0.465

0.504

0.600

0021

1.046

2.152

4.208

0.239

0.1296

0.334

0.361

0.382

0.399

0.413

0.425

0.436

0.445

0.461

0.487

0.507

0.545

0.631

01703

0.990

1.037

3.392

0.246

0.308

0.348

0.377

0.400

0.418

0.434

0.447

0.459

0.469

0.486

0.513

0.534

0.573

0.654

0.743

0.960

1.650

2.901

0.256

0.323

0.367

0.400

0.425

0.446

0.463

0.478

0.491

0.503

0.522'

0.552

0.575

0.615

0.690

0,702

0.922

1.402

2.249

0.266

0.339

0.387

0.424

0.452

0.475

0.495

0.5J2

0.527

0.540

0.562

0.596

0.622

0.666

0.737

0.7g3

0.895

1.160

1.599

.



-1k

Table 3

Critical Non Central F Values

Effect Size: p2 .06'

1st Percentile

df
1

1 2 3 4 5 6 7 8 9 10 12 16 20 30 60

1 0.000 0.012 0.033 0.052 0.067 0.079 0.089 0.096 0.102 0.107 0.115 0.126 0.132 0,141 0.151

2 0.000 0.012 0.037 0.062 0.083 0.101 0.115 0.126 0.136 0.143 0156 0.173 0.184 0.199 0.215

3 0.000 0.012 0.039 0.068 0.093 0.114 0.131 0.145 0.157- 0.167 0.183 0.204 0.218 0.238 0.25

4 0.000. 0.013 0.041 0.072 0.100 0.123 0.142 0.158 0.172 0.183 0.202 0.228 01244 0.268 0.293

5 0.000 0.013 0.043 0.076 0.105 0.130 0.151 0.168 0,183 0.196 0.217 0.246 0.264 0.291 0.321

0.000 0.013 0.044 0.078 0.109 0.136 0.158 0.177 0.193 0.206 0.229 0 260 0.281 0.311 0.344

7 0.000 0.014 0.046 0.081 0.113 0.140 0.164 0.184 0.201 0.215 0,239 0.273 0.295 0.327 0.363

0.000 0.014 0.047 0.083 0.116 0.145 0.169 0.189 0.207 0.223 0.248 0.283 (),307 0.342 0.381

9 0.000 0.015 0.048 0.085 0.119 0.148 0.173 0.195 0.213 0.229 0.256 0.293 0.318 0.354 0.396

10 0.000 0.015 0.049 0.087 0.122 0.152 0.178 0.200 0.219 0.235 0.262 0.301 0.327. 0.365 0.409

12 0.000 0.016 0.052 0.091 0.127 0.158 0.185 0.200 0.228 0.245 0.274 0.315 0.343 0.385 0.432

16 0.001 0.018 0.057 0.098 0.136 0.169 0.198 0.222 0.243 0.262 0.293 0.337 0.368 0.414 0.468

20 0.001 0.021 0.062 0.106 0.4.v; 0.179 0.209 0.234 0.256 0.275 0.307 0.354 0.386 0.436 0495

30 0.001 0.029 0.077 0.125 0.167 0.203 0,234 0.260 0.283 0.303 0.337 0.386 0.421 0.475 0.541

60 0.009 0.072 0.141 0.197 0.241 0.278 0.308 0.334 0.356 0.375 0.408 0.456 0.490 0.544 0.616

100 0,000 0,213 0,200 0.333 0,370 0.300 0.421 0,441 0.460, 01473 0,400 0.535 0.663 0.609 0.672

200 1.593 1.101 0.947 0.871 0.826 0.799 0.782 0.770 0.761 0.754 0...747 0.741 0.740 0.746 0.769

500 11,050 5.928 4.219 3.365 2.053 2.512 2.265 2.003 1.943 1.830 1..662 1.450. 1.320 1,164 1.010

1000 31.965 16.438 11.263 8.659 7.111 6.067 5.323 4.772 4.337 3.996 3.473 2.829 2.441 1.925 1.413

1.11.111..
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'Table 4

Critical Non Central r Values

Effect.Sizer'02 = .0099 .

5th Percentile,
df

1
11111MIMMAIIIMMINNi

1 2 3 4 . 5 6 . 7 8 . . 9 10 12 16 20 30 , 60

1 0.006 0.055 0.100 0.132 0.154 0..169 0.181 C,190 0.198 0.204 0,1213 0.225 0.232 0.242 0.252

2 0.005 0.054 0.107 0.146 0.176 0.197 0.214 0.227 0.238 0.247 0.261 0.279 0,290 0,305 0.321'

3 0.005 0.054 0.110 0.155 0.188 0.214 0.234 0.250 0.263 0.273 0.290 0:313 0.327 0.346 0,366

4 0.005 0.054 0.113 0.160 0.197 0.225 0.247 0.265 0.280 0,292 0.311 0.337 0.353 0.376 0.400

5 0.005 0.054 0.114 0.164 0.202 0.233 0.257 0.276 0.292 0.305 0:327 0.355 0.374 0.400 0.427

6 0.005 0.054 0.116 0.167 0.207 0.238 0.264 0.285 0.302 0.316 0.339 0.370 0.390 0.418 0.449

0.005 0.054 0.117 0.169 0.211 0.243 0.270 0.291 0.309 0.325 0.349 0.382 0.403 0.434 0.467

8 0.005 0.055 0.118 0.171 0.214 0.247 0.275 0.297 0.316 0.332 0.357 0.392 0.415 0,447 0.482

9 0.005 0.055 0.118 0.173 0.216 0.251 0.279 0.302 0.321 0.338 0.364 0.400 0.424 0.458 0.496

10 0.005 0.055 0.119 0.174 0.218 0.253 0.282 0.306 0.326 0.343 0.370 0.400 0.433 0.468 0.508

12 0.005 0.056 0.121 0.177 0.221 0.258 0,288 0.313 0.333' 0.351 0.380 0.420 0.446 0.485 0.528

16 0.004 0.057 0.123 0.180 0.227 0.265 0.296 0.322 0.344 0.363 0.394 0,437 0.466 0.509 0.558

20 0.005 0.057 0.125 0.183 0.231 0.270 0.302 0.329 0.352 0.372 0.404 0.450 0.480 0:526 0.580

30 0.006 0.060 0.130 0.190 0.239 0.279 0.313 0.341 0.365 0.386 0.420 0.49 0.03 0.554 0.615

GO 0.009 0.071 0.145 0.206 0.257 0.298 0.333 0.363 0.387 0.409 0.446 0.48 0.535 0.592 0.665

100 0,009 0.084 0.165 0.229 0.279 0.321 0.355 0.384 0.409 0.431 0.467 0.520 0.557 0.616 0.693

200 0.030 0.137 0.227 0.290 0.339 0.378 0.410 0.436 0.459 .0.47B 0.511 0.559 0.594 0.650 0.726

500 0.382 0.466 0.505 0.540 0.562 0.576 059i 0.603 0.615 0.623 0.642 0,667 0.688 0.722 0.776

1000 2.294 1.515 1.256 1.111 1.037 0.990 0.961 0.934 0.913 0.902 0.882 0.057 0.846 0.837 0.844

2 1

, *

4.



Table 5

Critical Non Central F Values

Effect Size: p
2

= .0099

1st Percentile
df1

1 2 3 4 5 6 7 9 10 12 16 20 30 60

1 0.000 0.010 0.030 0.048 0.062 0.074 0.083 0.090 0.096 0.101 0.108 0.118 0.125 0.134 0.143

2 0.000 0.010 0.033 0.056 0.076 0.093. 0.106 0.117 0.126 0.134 0.146 0.163 0.173 0.188 0.203

3 0.000. 0.010 0.035 0.061 0.084 0.104 0.120 0.134 0.145 0.155 0.170 0.191 0.205 0.224 0.245

4 0.000 0.010 0.036 0.064 0.090 0.111 0.130 0.145 0.158 0.169 0.187 0.212 0.229 0.252 0.277

5 0.000 0.010 0.036 0.066 0.093 0.117 0.137 0.153 0.168 0.180 0.200 0.229 0.247 0.274 0.303

0.000 0.011 0.037 0.068 0.096 0.121 0.142 0.160 0.175 0.189 0.211 0.242 0.262 0.291 0.324

7. 0.000 0.011 0.033 0.069 0.098 0.124 0.146 0.165 0.182' 0.196 0.219 0.252 0.274 0.306 0.342

8 0.000 0.011 0.038 0.070 0.100 0.127 0.150 0.169 0.187 0.201 0.226 0.261 n.285 0.319 0.358

9 0.000 0.011 0.038 0.071 0.101 0.129 0.152 0.173 0.191. 0.206 0.232 0.269 0.294 0.331 0.372 Fa

tn

11'2 10 0.000 0.011 0.038 0.071 0.163 0.131 0.155 0.176 0.195 0.211 0.237 0.275 01302 0.340 0.385 fl

12 0.000 0.011 0.039 0.073 0.105 0.134 0.159 0.181 0.201 '0.217 0.246 0.287 0.315 ,0.357 0.405

16 0.001 0.011 0.040 0.075 0.108 0.138 0.165 0.108 0.209 0.227 0.258 0.303 ,0..334 0.381 0.438

20 0.001 0.011 0.041 0.076 0.110 0..141 0.169 0.193 0.215, '0.234 0.266 0.314 0:347 0.399 0.461
4

30 0.001 0.012 0.042 0.079 0.114 0.147 0.176 0.202 0.225 0.245, 0.2,80 0.332 0369 0,428 0.501

60 0.002 0.014 0.047 0.006 0.124 0.158 0.189 0.216 0.241''0.263 0.300 0.358 0.399 0.467 0.556

100 0.003 0.017 0.054 0.096 0.135 0.171 0.202 0.230 0.256 0.278 0.317 0.376 0.419 '0.490 0.587

200 0.006 0.027 0.075 0.124 0.165 0.202 0.235 0.263 0.288 0.3,48 0.467 0.449 0.521 0.622

500 0.015 0.114 0.188 0.241 0.285 0.319 0.348 0.370

.0.311

.0.391 0.411 0.441 0.489 .p',624 '0.583 0.671

1000 0.702 0.626 0.601 0.589 0.594 0.597 0.600 0.602 0.603 .0.611 0.617 04638 6.651 .0.680 0.731
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