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ABSTRACT

A procedure was developed within hypothesis-testing
logic that allows researchers to support a hypothesis that has
traditionally been the statistical or null hypothesis. Four
activities involved in attainment of this goal were discussed: (1)
development of statistical logic needed to define the sampling
distribution associated with the hypothesis to be supported: (2)
'examination of the role of Type I and II errovs and power: (3)
definition of effect size: and (4) generation of critical values on
noncentral saaglin; distributions of a test statistic. Differences
between the traditional procedure of rejacting the null hypothesis
and the new procedure allowing support of hypotheses were discussed.
Specifically, the new procedure specifies that the researcher must
choose a trivial effect size: that the level of significance the
experiuenter controls for is the Type II (not Type I) error rate: and
that a noncentral sampling distribution is defined by the index of
effect size and the degrees cf freedom upon which the critical region
is located. (Author/RD)
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Introduction

Hypothesis-testing is often used to make statistical inferences from sample
data to population characteristics. The logic of hypothesis tests is that of
negative inference or indirect proof., In statistical hypothesis-testing a state-
ment is made about a hypothetical population with a known parameter from which
a specific sample is said to hawe been drawn. This statement was called the
"null hypothesis" by Fisher (1949) and must be stated in terms of a parameter
being set equal to some value. The purpose of this null or statistical* hypo-
thesis is to define the midpoint of the hypothetical sampling distribution against
which a test statistic's value will be compared to determine the probability of
that value occurring by chance alone within that sampling distribution.

In the classical Neyman-Pearson (1933) hypothesis-testing procedures the
researcher initially states two hypotheses about some parameter that are mutually
exclusive: the statistical hypothesis, Ho' and the alternative hypothesis, Hy.

A probability value is chosen a priori to serve as a criterion against which the

!

probability of the test statistic's value will be compared. If the probability

5
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of the sample value is smaller than or equal to the level of significance the
researcher concludes t' .. the sample value did not occurr by chance alone but,

rather, falls within a different sampling distribution so the H, is rejected as

*The terms null and statistical hypothesis will be used interchangeably in this
paper.
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false. Two types of errors may occur as a result of the statistical decision of
a hypot:hesis test: a Type I error occurs when a true Hj is rejected, a Type II
error occurs when a false Hj is retained.

Two approaches to the interpretation of the statistical decision have been
. taken by theorists who follow the Fisherian and the Neyman-Pearson logic of
hypo’chesis—-testing. Fisher stated that the statistical decision could have been
only to reject Hj when the test statistic falls in the critical region or reserve
judgement until further evidence has been gathered (1949). Neyman-Pearson use the
phrase "reject or accept" the statistical hypothesis as the two decision choices
(1933). Both viewpoints have been discussed at length by such authors as Bakkan
(1966), Binder (1963), Grant (1962}, ard Rozeboom (1960) with no uniyersally
accepted conclusion. If one were to read the original articles of Neyman—-Pearson
and others such as Lindgren (1968) and Winer (1971) as to the nature ol the statis-

tical decision it would become clear that one cannot prove or disprove a hypothesis

but can only support or fail to support it.

Statement of the Problem
Traditionally, the goal of a statistical hypothesis test has been to reject

the statistical hypothesis and to support the alternative hypothesis. This goal
is reflected in the setting of a low alpha level to protect against Type 1 errors
and by maintaining a high probability of correctly rejecting a false H, which is
called power. A problem arises when the researcher wants to support a statistical
hypothesis. That is, there are several instances when a researcher would want to
support a hypothesis that the difference between the real and hypothesized para-
meter values is zero (the traditional H,). There currently exist no techniques -
within statistical hypothesis-testing that allow such a hypothesis to be supported
with the researcher being able to control the probability of a Type II error or the

probability of a correct decision. It was the purpose of this investigation to
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develop a procedure within hypothesis-~testing logic that allowed the traditional
H, to be supported. The attainment of this goal involved (1) developing the sta-
tistical logic needed to define the sampling distribution associated with the
hypothesis to be supported, (2) examining the role of Type I and II errors and
power, (3) defining effect size and demonstrating its key role in this procedure,
and (4) generating critical values on noncentral sampling distrilbutions of a test
statistic. Each of these activities will be described in the remainder of this

paper.

Circumstances When the Null Hypothesis is to be Supported
Error terms for t and F tests are often pooled without a statistical test of
the underlying assumptions. FEven when a statistical test is performed to test the
assumption of homogeneity of variance, for example, confusion arises as to how to
conclude that the assumption has not been violated. The statistical hypothesis in
this particular test would be:

. 02=0% g2=,,...0%
HO. 1 2 3 k

that samples come from populations with equal variances which the experimenter
would want to support in order to conclude that the homogeneity assumption had been
satisfied. Authors such as Kirk (1968) and Winer (1971) suggest that a level of
significance, o = .25 be used so that the probability of making a Type II error is
lowered. Computer software packages such as SPSS (Nie, et al, 1975) and SAS (Barr,
et al, 1976) automatically include a test of homogeneity of variance in t-test as
suggested by Hays (1963) but no guidelines are included for the appropriate level
of significance to be used.

A similar situation occurs when the assumption of homogeneity of regression
is tested when the analysis of covariance is used. Kerlinger and Pedhazur (1973)
and Kirk (1968) caution against the use of ANCOVA if thlS assunption is not met.

In this test tl.2 hypothesis to be supported would be:




HO:BT B=2= B:;--..- B

k
Again, no guidelines exist for the researcher to follow to confidently support

this statistical hypothesis.

Chi~square goodness-of-fit tests present the same type of dilemna to the
experimenter if he wants to support the hypothesis that the distribution of sample
values does rot differ significantly from the hypothesized distribution.

There are other instances when the researcher may want to support a hypothesis
that a parameter ( M. o2,p,02,8,0, P ) is equal to a specific value. These
instances occur in path analyses, significance tests of correlation coefficients
used to indicate test-retest or intra~, inter-judge reliability, replication and
validation studies, and in particular experimental designs such as the ABA design
often used in behavior modification studies. In the ABA design, for example,
it must be shown that the response rate in the A, and Ay periods are the same in
order to conclude that a change in response rate during the B period is due only
to the independent variable manipulated by the experimenter. This stipulation’

implies the support of e’ther or both of the following hypotheses:

M= Wy =0
fota) Ay

HO:BAI" BA2=0
McNeil, Kelly, and NcNeil (1975) suggest testing these hypotheses at a level of
significance as high as @ = .60 "because the acceptance of the no differance
hypothesis is here desired" (p. 434).
These examples suggest that there are several circumstances when one
might want to support a hypothesis that has traditionally been the null hypothesis.
The classical. hypothesis~testing logic does not provide the ‘methodology for such

a conclusion that allows the researcher to control the probability of a correct

decision.

i
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Traditional Iocation of the Critical Region

In the traditional hypothesis test the goal is to reject H, and the following
rational is used:
l. Hy and Hy are stated in terms of a parameter, P.
For example, Hy: P = 0

t: P> 0
B

2. A level of. significance is chose a priori such that
p(s2 sc| Hy) =g
where 8 = a test statistic's value
Sc = a critical value of s that defines a critical region for H,.
o = the probability of erroneously rejecting a true Hy.
3. The sanple data are analyzed and Ss is calculated.
4. The statistical decision to reject H, if Ss % Sc or not to reject H,
if 8s < Sc, where Ss is the sample value of s.
If the H, is rejected either a correct decision was made or a Type I error occurred.
Since @ was probably chosen to be small the researcher concludes that the decision
was correct and he therefore, finds support fof Hy. The probability of making a
correct decision is equal to 1 - # ~and is found on the noncentral sampling distri-

bution of the test statistic defined by effect size and the degrees of freedom.
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Figure I. Location of the Critical Region in a Traditional H, Test
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In the traditional hypothesis test, if the researcher did not want to reject
H, and the statistical decision was not to reject H, two possibilities again exist:
a Type II error or a correct decision. This time the experimenter could not con—
clude that a correct decision had been made because he was not able to control for
the probability of a Type II error. Thus, the traditional hypothesis-testing
logic does not allow one to support the statistical hypothesis with the same confi-
dence provided by control of statistical errors. A different approach to hypothesis-
testing must be taken if the goal of the experiment is to support a hypothesis that
has been the null hypothesis traditionally. One approach will be described in this
paper, though alternative approaches have been offered by Myers (1978) and in the

logic of Bayesian statistics.

Proposed Procedure to Support Hy

In this procedure the same hypotheses could he tested:

2. The probability of an incorrect decision is chosen a priori such that:
p(s_<_ Sc | P=X) =B
Since the desired outcome is to reject H; a noncentral sampling distribution must
be defined so that the critical region may be located on it rather than on the
usual central distribution. This noncentral sampling distrilution of the test
statistic is defined by the parameters of effect size and the appropriate degrees
of freedom.
3. A "trivial" effect size, X, is chosen that is the smallest difference
between the true and hypothesized parameter values stated in H, deemed to
have no practical significance.

4, The sample statistic's value Ss is found.




5. The H; is rejected if Ss < Sc and the H_ is supported.
When the Hy is supported using this method two possibilities exist: a Type II
error has occurred or a correct decision (1 ~© )* has been made.

Figure 2. Location of Critical Region in Proposed Method

* 1 - B = p(rejecting a false Hy) is found on the noncentral sampling distribution
defined by effect size and df in a traditional hypothesis test and is called power.
1 - ® = p(retaining a true Hy) found on the central distribution in this method
has never been named. Myers (1978) has proposed the use of the terms of power I
and power IT for 1 -~ B and 1 - ® respectively.

G
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To summarize this new approach to hypothe:..s-testing,when the desired out-
come is to support the statistical hypothesis: ' ihe researcher chooses a priori a
small level of significance to protect against Type II error and chooses a "trivial®
effect size which is the smallest difference between the true and hypothesized
parameter values judged to have to practical meaning. This effect size and the
appropriate degrees of freedom define a noncentral sanpling distribution of the
test statistic upon which is located the critical region. The test statistic's
sample value Ss is calculated and is compared to the Sc vaiue. H) is rejected if
Ss 8 5c and the H, is said to be supported.

Choice of a Test Statistic
The authors decided to choose one test statistic for which a noncentral sampling
distribution could be defined and which is used to test several different statistical
hypotheses across research ajplications.
The F statistic possesses these characteristics and was chosen as the test
statistic in this investigation. The central F distribution is used commonly to

test the following hypotheses:

CH_ Uz U= ,eoesel 1

1. Hg: T 3 3 " as in ANOVA

2. Hyt ”1- ‘2‘ =0 since t? with df = n equals F with af; =1, df, = n
02- o2= 02 o - .

3. Hg: 1 2 tett K to test homogeneity of variance
-B= B=...to..B . (]

4. Hy: 12 K to test homogeneity of regression

5. Hg:ig =0 Hj: g =value to test regression weights
6. Hy:p2=0 Hy:p2=value to test population squared multiple correlation

2

' . 2= 2= ce
Hy pI= pI=eneepy

Indices of Effect Size
Effect size is the degree to which a prenomenon exists in a population that

is judged to have some practical importance, or the difference between the true and

1n




hypothesized parameter values that has some meaning. The noncentral sampling
distribution of a test statistic is defined by effect size and degrees of freedom.
The population squared multiple correlation, pé ., was chosen as the index
of effect size (ES) for this investigation. Th:? p? parameter may be interpreted
as the proportion of variance accounted for in a dependent variable by a linear
model. Several other indices of ES have been developed for power analyses of the

F test and are shown to be related to p? below:

Cohen (1969) f = _R_f
I-p
2
Winer (1971) A =_np°
~p?%
Tiku (1967) ¢ ?J;;ﬁ___, where k=df in F ratio
kD (1— 09 1
Hays (1963) n? _p?

Definition of a Trivial Effect Size

Oohen (1969) has suggested a convention to define small, medium, and large
effect sizes in terms of his f index. The three f values he suggests are f = .10,
.25, and .40 to represent small, medium, and large effect sizes. When these f
values are converted into p? values they become"2 = ,0J99, .0588, and .1379,
respectively. These values chosen by Cohen were chosen on the basis of the stan-
dardized difference between group means in the population not on their relative
frequency of occurrence in the reswarch literature (Cohen, 1969, pp. 277 - 28l).

Several unbiased estimates of p2 were calculated from statistical tests
reported in educational research articles in order to select a "trivial" effect size
in this i_nvestigation.‘ A formula suygested by Cohen and (Gohen (1975, p. 106); was
used to obtain unbiased estimates of p? . This formula is the same as the

shrinkage foimula for RZ presented bv Kerlinger axd ledhazur (1973, p. 283).

-~
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B2 —af, (v-1)

df ,+ (dle)
A
where 9 =the unbiased estimate of 62
at l=the degrees of freedam numerator of the F ratio
df,=the degrees of freedam deraminator of the F ratio
F=the sample F ve¢lue
A total of 58 unbiased estimates ofé2 were camputed fram articles in

eight issues of the American Educational Research Journal, and randamly se-

lected issues of the Journal of Educational Measurement, and Experimental

Child Psychology. No more than three_F and/or t values were evaluated from

any one study so that any massive study would not cverwhelm the results. Table
I presents the centile values for the frequency distribution of the 58 estimates

including the £ values for camparison.

Table I. Centile Values for a Distribution of 58 Unbiased Estimates of

rli\ ¢ and f Taken fram Educational Research Journals
— £
Percentile rank pe £

10 .06 .25
25 .12 .37
50 | .17 .45
75 .37 .69
90 .59 120

The median value was .17, reflecting that 17% of the variance was the
typical amount accounted for by the linear model used in the statistical test.
This median value is larger than Cohen's "larye" effect size of 92 =,1379
and his "medium" effect size of 62 =,0588 fell at the tenth percentile in this

distribution. On the basis of the literature review and Cohen's suggestions two

T
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"rivial" effect sizes were chiosen to define the noncentral F distributions in

this study:p? -.0099 and .06.

Generation of Critical F Values on the Noncentral Distribution

The noncentral beta form of the noncentral F distribution was used in
this process (Winer, 1971, p. 832). When this noncentral beta density function
was int-;egrated the cumulative distribution function for fixed factors was:

2 2. =k i 2 .
p(R® < RZ|p%a,b)=e Kk (%a+i,%b)
. 0 Z—T! I xRo

where Rg = an cbserved sample coefficient of determination
p? = the population coefficient of determination
a = the degrees of freedan numerator
b = the degrees of freedam denaminator

k=% A, with being the noncentral parameter
I, = the incovplete beta function

This equation was used to solve for F(a,b, » ) iterating on the .ample r2 value
until the error was less than 1074", The computer software requires the user
to sct the "trivial" effect size value in the program and then to supply the
desired level of significance and df to get the appropriate critical F value on
the noncentral F distribution. The obtained values of_Ri_2 were expressed as F

values using the following formula:

F(a,b)=R2/a

(I-r0) /b
Four tables of critical F values are presented at the end of this paper for
the noncentral F distributions defineﬁ oy two effect sizes, 32 =,0099 and .06,
and by various d} at two levels of significance (B8 =.05 and .0l). In order to
support H, using this method one would want to 1ind a sample F value equal to or

smaller than the critical F value.




Examples of Ho Support Procedure

Namboodiri, Carter, & Blalock (1975,p.99) present an exanple of

a one-way ANOVA in which three groups each of fifteen subjects are campared to
determine the effectiveness of three teaching techniques. If the experimenter
had wanted to support the hypothesis that all three groups, on the average,
did equally well on the achievement test he would need to support the traditional
Ho. For the purposes of this paper, assume that the investigator had det;exnﬁ.rled
a priori that the smallest amount of variance accounted for by knowledge of
group membership in predicting achievement scores was 6% or _1:_2=.06. and that
a significance level of .05 was desired. Thus, the effect size would be
p?=,06 and B=,05. Using the £ables included with this paper, the critical
F value using the conservative degrees of freedom of 2,30 would be .143 (the
exact F value at df=2,42 i5.203 ). The observed F value in this example was
.10 which is smaller than the critical value needed to retain Ho at the .05
level of significance. The experimenter would have ' 3 able to conclude
that the three teaching techniques yielded equal means on the achievement test
with Type II error controlled at .05.

A second example could be taken from Kohout's 1974 study ir which
an ARA design was used. Kohout investigated the effects of positive verbal
stimili on the response rate of part-word repetiticns in stutterers. No
stimulation was presented by the experimenter during che Al or A2 baserate
and extinction periods and the verbal stimuli were presented contingent
upon the occurrence of a part-word repetition during the experimental (B) period.
As described previously, the N\ and A, response rates must be shown to be
equivalent in order to conclude that a chancje during the experimental period

was due only to the experimental variable.
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If Kohout were to re-do her statistical analysis using the Ho
support procedure instead of concluding no difference on the basis of
a non-significant tradition~l Ho test she would be able to retain Hos:. -«

Ho:u _ ~u _ =0
S T-Y)
#0

Ha: u, -u
S
Let us assume that Kohout decided that a difference of one-half of one
standard deviation was the smallest difference of consequence. Cohen (1969)

presents an effect size index of d for the difference between means where:

d=/m1~m2/
s

This d index can be converted into the amount of variance accounted for by a
linear model using the equation:

p2=32
(dz+4)

If Kohout chose one-=half of one standard deviation as her effect size the é?
value would equal .0583 which is close to the tabled effect size Qf .06.
Using the .06 value and a level of significance of .01 thz tabled critical
F value is .001 at df=1,16 (the actual degrees of freedam should be 1,17
since there were 18 measures per period). The observed F value taken from
the Kohout data is .00039 for subject 1 which is smaller than the critical
value needed to retain Ho so Kohout would have been able to conclude

that the average response rate of part-word repetitions during the baserate

and extinction pericds was equal.

-~
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Conclusion

A procedure was developed within hypothesis-testing logic that allows the
researcher to support a hypothesis that traditionally has been the statistical
or null hypothesis. The major differences between this procedure and the tra-
ditional test when the goal is to reject Hy is that (1) the researcher must
choose a "trivial" effect size, (2) the level of significance controlled for
by the experimenter is the Type II error rate not a fype I error, and (3) a non-
central sampling distribution is defined by the index of effect size and the df
upon which the critical region is located.

Readers are encouraged to review Cchen's work on power aﬁalysis (1969) in
which he provides sevgral examples of expressing effect size in tems of £ or

for various research designs. The authors of this paper are currently con-
ducting a massive review of research literature in various fields for the cam-
pilation of tabled frequency distributions of effect sizes cataloged by area of
study, measurement level of the variables, and the research design. Hopefully,
tables of this type would serve as useful guidelines to the choise of a trivial
effect size for researchers.

The procedure presented in this paper could be applied in any research
setting when hypothesis tests are conducted and the desired ocutcame is to support
a hypothesis that states that the difference between the true and hypothesized

parameter values is zero.
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Table 2

Critical Non Central F Values

Effect Size: bz = ,06 ; ﬁu ;;. f
Sth Percentile ¥ ER ‘ ;
afy R
1 2 3 “ s & 7 8 9 10 12/ 1§ .-20 30 g0
. ' ' ! '

1 0.008  0.061 0.110 0.143 0.165 0,182 0.19% 0.203 0.211 0.217 0.226 0.239 0.246 0.256 0.266
2 0.006  0.062 0.119 0.161 0.191 0.2L% 0.231 0.244 0.255 °0,264 0,278 0.296 0.308 0.323 0.339
3 0.006  0.063  0.125 0,172 0.207 0.233 0.254 0,270 0,283 0.29% 0.311 0.334 0.348 0.367 0.387
! 0.006  0.065 0.130 0.180 0.218 0.247 0.270 0.288 *0.303 0,316 0.335 0.361 0.377 0.400 0,42l
5 0.007 0.067 0.13 0.187 0.227 0.256 0.203 0.303 0.319,0.332. 0.353 0.382 0.400 0.425 0,452
6 0.007 0,069 0.138 0,193 0.235 0.267 0.203 0.314 0.331 0.345 0,360 0.399 0.418 O0.446 0.475
7 0.008 0,07 0,142 0.198 0.241 0,275 0.302 0.326 0.342' 0.357 0.36L 0.413 0.434 0,463 0.4S5
; 0.008 0,073 0.146 0,203 0.247 0,282 0.309 0.332 0.351 0.366 0.391 0,425 0.447 0.478 0.5.2
9 0.008  0.076 0.4 0,207 0.253 0.288 0.316 0.339 0.353 0.375 0,401 0.436 0.453 0.491 0,527
f,10 © 0.009 0.078 0.153 0.212 0.258 0.294 0.323 0,34 0.366 0,382 0.409 0.445 0.469 0.503 0,540
12 0,010 0.083 0.160 0.22L 0.267 0.304 0.334 0.358 0.979,' 0.396 0,423 0,461 0.486 0.522° 0.562
16 0.013  0.09% 0.17% 0,237 0.285 0.323 0.354 0.379 0,400 0.418 0.447 0,487 0.513 0.552 0.596
20 0.06 0.106 0,190 0,253 0.302 0.340 0.37L 0.396 0.418 0.436 0.465 0,507 0,534 0.575 0,622
30 0.030  0.143  0.233 0,296 0.3u4’ 0,382 0.412 0.436 0,457 0.475 0.504 0.545 0,573 0.615 0.666
60 0.17%  0.325 0.400 0.448 0,483 0,510 0.531 0.549 0.565 ' 0.578 0.600 0.63L 0.654 0.690 0,737
100 0,628 0,735 0,712 0,704 0,708 0,703 0,708 0,709 0,732 0,746 0,72 0,733 0,743 0,702 0,793
200 3,762 2,265 1,773 1,527 1.378 1,281 l.214 1,162 1,122, 1.091 1.046 0.990 0.960 0.922 0.895
500 16,048 0.UGY 5,936 4,674 3.917 3.4L2 3,048 2,779 2.570 2,404 2,152 1.837 1.650 L.402 1,160
1000 40.155 20,540 14,024 10.750 8,786 7.477 0.543 5.842 5,207 4.861 4.208 3.392 2.901 2.249 1,599
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Table 3
Critical Non Central F Values
Effect Size: p? = .06°

1st Percentile

df

1

1 2 3 b S5 6 7 8 9 10 12 16 20 30 60

1 0.000 0.012 0.033 0.052 0.067 0.079 0.089 §.096 0.102 0.107 0.115 0.126 0.132 0.141 0.151
2 0.000 0.012 0.037 0.062 0,083 0,101 0.415 0.126 0.136 0.143 0.156 0.173 0.184  0.199 0.215
3 0.000 0.012 0,039 0.068 0.093 0.11s 0.131 0.445 0.157- 0.167 0.183 0.204 0.218 0.238 0.253
4 0.000 0.013 0.041 0,072 0.100 0.123 ©6.142 0,158 0.172 0,183 0.202 0.228 O.2u4 0.268 0.293
o 0.00d 0.013 0.043 0,076 0.105 0.130 0.151 0.168 0.183 0.196 0.217 0.2u6 0.264 0,291 0.321
0 0.000 0.013 0.0u4 0.078 0.109 0.136 0.158 0.177 0.193 0.206 0.229 0.260 0.281 0.311 O.3ud
1 0.000 0.0i4 0.046 0.081 0.1i3 0.140 0.164 0.184 0.201 0.215 0,239 0.273 0.295 0.327 0.363
e 0.000 0.014 0.047 0.083 0.116 0.145. 0.169 0.189 0.207 0.223 0.248 0.283 2,307 0.342 0.381
9 0.000 0.015 0.0u48 0.085 0.119 0.148 0.173 0.195 0.213 0.229 0.256 0,293 0.318 0.354 0.396
df 10 0.000 0.0i5 0.049 0.087 0.122 0.152 0.178 0.200 0.219 0.235 0.262 0.301 0.327. 0.365 0.u409
12 0.000 0.016 0.052 0.091 0.127 0.158 0.185 0,208 0.228 0.245 0.274 0.315 0.3u3  0.385 0.432
16 0.001 0.0348 0.057 0.098 0.136 0.169 0.198 0.222 0.243 0.262 0.293 0,337 0.368 0,414 0.u468
20 0.001 0.021 0.062 0.106 0..%% 0.179 0.209 0©.234 0,256 0.275 0.307 0.354  0.386 0.U36‘ 0.u95
30 0.001 0.029 0.077 0.125 0.167 0.203 0,234 0,260 0,283 0,303 0.337 0.386 0.421 0.475 0.5u41
60 0.009 0.072 0.141 0.197 0.2u1 0,278 0.308 0.33u 0.356 0.375 0.408 0.456 0.490 0.5u4 0.616
100 0,080 0,213 0,206 0,333 0,370 0,308 0,424 0,44l 0,468, 0,473 0,480 0,638 0,663 0,608 0,672
200 1.593 1.101 0.947 0.871 0.826 0.799 0.782 0.770 0.761 0.754 oi7u7 0.741  0.740 0.746 0.769
500 11,058 5.928 4,219 3,365 2.853 2.512 2,365 -2.080 1,943 1,830 1{662 41,4507 1,320 4,164 1.010
1600 31.965 16,438 11.263 8.659 7.i11 6.067 5.323 u4.772 4,337 3.996 3.473 2.829 2,441 1,925 1.413
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‘Table U X
Critical Non Cehtral I' Values .
Effect Size: p2 & ,0099 | T
5th Percentile , o
.9y L

1 2 3 b 5 - 6 i 8 -+ 9 10~ 42 .16 20 30
0.006 0,055 0.100 0.132 0.154 0,169 0.181 (¢,190° 0.198 0,204 0,213 0,225 0.232 0.242
0,005 0,054 0,107 0.146 0.376 0.197 0.214 0.227 0.238 0,247 0.261 0.279 0,290 0,305
0,005 0.054 0.110 0,155 0.188 0.214 0,234 0,250 0.263 0.273 0,290 0.313 0.327 0.346
0.005 0,054 0.113 0,160 0,197 0,225 0.247' 0,265 0,280 0,292 0.311 0.337 0.353 0.376
0.005 0,054 0.114 0.164 0.202 0.233 0,257 0.276 0.292 0,305 0.327 0.355 0.374% 0.400
0.005 0.054 0.116 0.167 0,207 0.238 0.264 0.285 0.302 0.316 0.339 0.370 0.390 0.418  0.u49
0.005 0.054 0.117 0,169 0.211 0.243 0,270 0.291 0.309 0.325 0.349 0.382 0.403. 0.434  0.467
0.005 0.055 0,118 0.171 0.214 0.247 0.275 0.297 '0.316 0.332 0.357 0.392 0.415 0.447  0.uB2
0.005 0.055 0.118 0,173 0.216 0.251 0.279 0.302 0.321 0.338 0.364 0.400 0.424 0.458.  0.496
0,005 0.055 0.119 0.174 0,218 0.253 0.282 0.306 0.326 0.343 0,370 0.408 0.433 0,468 0.508
0.005 0.056 0.121 0.177 0.221 0.258 0.288 - 0.313 0.333° 0.351 0.380 0.420 0.446 0185 0.528
0.004 0,057 0.123 0.180 0,227 0,265 0.296 0.322 0.3u4 0,363 0.394 0,437 0,466 0.509 0,558
0.005 0.057 0.125 0.183 0.231 0.270 0.302 0.329 0.352 0.372 0.404 0.450 0.480 0.526 0.580
0.006 0.060 0.130 0.190 0,239 0.279 0,313 0.341 0,365 .0.386 0.420 O0,4F9 0.303 0.554 0.615

0,009 0,071 0.145 0.206 0.257 0.2986 0.333 0,363 0.387 0.409 0.446 0.438 0.535 0.592 0.665
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syl se stsoulodfu Trny
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e
0,009 0.084 0.165 0,229 0.279 0.321 0.355 0.384 0.409 0,431 0.467 0.520 0.557 0.616 0.693 g
0.030 0.137 0,227 0.290 0.339. 0.378 0.410 0,436 0.459 -0.478 0.511 0,555 0.594 0.650 0.726 0.
0.382 0,466 0,505 0,540 0.562 0.576 0:/591 0.603 0.615 0.623 0.642 0.667 0.688 0.722 0.776 i#
2,294 1,515 1,256 1.111 1.037 0.998 0,961 0.934 0.913 0,902 0.802 0.857 0.0u6 0,837 0.8y 3
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Table 5

_\:Omzmmp

Critical Non Central T Values
Effect Size: p% = 0099 :
1lst Percentile L
1 2 3 4 6 7 8 9 10 12 16 20 30 60
0.000 0,010 0.030 0.048 0.062 0.074 0.083 0.090 0.096 0.101 ©0.108 0.118 0.125 0.134 0.143
0.000 0.010 0.033 0.056 0.076 0,093 0.106 0.117 0.126 0.134 0,146 0.163 0.173 0.188 0.203
0.000. 0.010 0.035 0.061 0.084 0,104 0.120 0.13% 0.145 0.155 0,170 0.191 0.205 0.224 0,245
0.000 0.010 0.036 0.064 0,090 0.l11 0.130 0.145 0.158 0.169 0.187 0.212 0,229 0.252 0.277
0.000 0.010 0,036 0.066 0.093 0.117 0.137 0.153 0.168 0.180 0.260 0,229 0.247 0.274  0.303
0.000 0.011 0.037 0.068 0.096 0,121 0.142 0.160 0.175 0.189 0.211 0.242 0.262 0.291 0.324
0.000 0.011 0,033 0,069 ©0.098 0.124 0.146 0.165 0.182 0.196 0.219 0.252 0.274 0.306 0.3u2
0.000 0.0l11 0,038 0.070 0.100 0.127 0.150 0.169 0.187 0.201 0.226 0.261 n,285 0.319 0.358
0.000 0.011 0.038 0.071 0.1l01 0.129 0.152 0.173 0.191:0.206 0.232 0.269 0.294 0{331 0.372
0.000 0.0l 0,038 0.071 0,103 0.13L 0.155 0,176 0,195 0,211 0,237 0.275 0,302 0,340  0.385
0.000 0.0l1 0.039 0.073 0.105 0.13 0,159 0.181 0,201 '0.217 0.246 0.287 0.315 0.357  0.405
0.001 0.0l11 0.040 0.075 0..08 0.1.38 0.165 0.188 0.209_ 0.227 0,258 0.303 |02334 0.381 0.u38
0.001 0.011 0.041L 0.076 0,110 0.1lul 0.169 0.193° 0.215;"0.234 0.266 0.314 0.347 0.399 0.u46l
0.00L 0,012 0.042 . 0.079 0.lik 0.147 0.176 0.202 0.225 .0.245: 0,280 o..3'32 10,369 0,428  0.501
0.002 0.0ly 0,047 0.086 0.124 0.158 0.189 0.216 0.241"0.263 O.SQO 0.358 0.399 0.u467 0.556
0.003 0.017 0.054 0.096 .0.135 0,171 0,202 0.230 0.256_ 0,278 0,317 0.376 0.419 “0.490 0.587
0.006 0.027 0.075 0.l24 0,165 0.202 0.235 0.263 0.288 ;0,311 0.3u8 0.407 '0.449.0,521  0.622
0.015 0.1l4 0.188 0.24l 0.285 0,319 0.3u8 0.370 -0.391.'0.Ull Oauél 0.489 '93524 *0.,583 0.671
0,702 0.626 ©0.60L 0.589 0,59 0.597 0.600 0.602 0.603 .0.61; 0,617 00%38 ‘¢f§51 0,680 0,731
, . . . .
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