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FOREWORD

For the benefit of those mathematics teachers

wish to improve their teaching through independent

the School Mathematics Study Group plans a series,

MATHEMATICS, on various topics directly related to

mathematics courses. Particular attention will be

topics which play an important part in the courses

veloped by the School Mathematics Study Group.

who

reading,

STUDIES IN

high school

paid to

being de-

One such topic is elementary set theory. Indeed, this

plays an important role in practically all of the recent

r6commendations for the improvement of high school mathema-

tics courses. We are indeed fortunate to obtain, for the

first volume of the STUDIES IN MATHEMATICS series, an ex-

tensive exposition of the basic concepts of elementary

set theory together with illustrations of the use of set

concepts in various parts of mathematics.

This material was prepared by Professor R. D. Luce, of

Harvard University , for a teadhing program of the Operations

Researdh and Synthesis Consulting Service of the General

Electric Company. The School Mathematics Study Group is

grateful to the General Electric Company for permission to

make this material available to high school teachers.

Although some revisions and corrections have been made,

this is essentially the first draft prepared by Professor

Luce. It is hoped that a revised and extended version of

this material will be prepared in the future.



TABLE OF CONTENTS

IN'IRODIETION

CRAMER

Page

I. SETS 7

Introduction 7
MeMbership and Notation 8
Suteets 12
A Paradox 17
Union, Intersection, and Complement 19
Set Functions 32
Algebras of Sets 34
Legislative Scheme 37

II. MATIONS, ORDERINGS, AND FUNCTIONS 47

Product Seta 47
Relations 49
Three Important Special Properties 51
Equivalence Relations 53
Matrix and GraPhical Representations of Relations . 55
Games in Extensive Form 63
Orderings 68
Functions 74
&miry of Remarks 79

III. AXIOMATIZATION OF FUNZTIONS 81

Introduction 81
Defining Functions 82
Some Well Known Prollerties of Ordinary Functions . 86
Differential Equations 93
Axicaatization and Inconsistency 98
The Arrow Social Choice Problem 101
Consistency and Uniqueness 111
The Information Measure 115
The Shapley Value of a Came 121
Non-Uniqueness ......... . . . 0 ft ... . 126
The Nan-Uniqueness of Linear Utility Functions . . . 128



CHAPTER

IV. AXIOMATIZATION (IF MATMATICAL GAMS

Introduction
Sale Ittrzinolcgy
categoricalness and
Boolean Algebras
Switching Circuits
Existence of Linear

Isomorphism .......

Utility Functions

Page

139

139
143

151
157
162



SONE BASIC MATHEMATPIAL CONCEPTS

INTRODUCTION

As you fiyat study this material, it may seem both more fun and much

less useful than some other mathematical topics you have studied or axe

studying. Wiwi the other subjects you are studying, most likely you

will never be able to quote a specific result from these materials

which you have used directly to solve a problem, but if you absorb the

ideas you will find yourself formulating problems and reasoning about

them in a way that is nev and useful.

We shall be concerned with same of the basic building blocks of

precise, logical thought -- a whole collection of ideas and concepts and

methods which, in themselves, are simple and almost familiar, yet which

can be pyramided and interwoven to yield subtle theories of considerable

power and depth. Mese vill be qualitative ideas, and so the resulting

mathematics is vastly different frmm the quantitative subjects with

which you are more familiar: arithmetic, algebra, and the calculus.

Because the notions are qualitative, they are far more related to much

of our ordinary language and ways of thinking -- to classifying, relat-

ing, and ordering concepts and things -- than they are to numerical

ideas. A thorough understanding of these basic elements of modern math-

emati6La thought permdts one to reason far more clearly about complex

qualitative situations, just as a good knowledge of the number system

permits one to reason (often in the form of a calculation) effectively

about quantitative problems.

Looked at another way, we shall be concerned with things discrete,

whereas classical mathematics deals with continuous phenomena. The

mathematics of physics, which received its primary impetus frmm Newton

and Leibnitz and which flowered in the hands of the great eighteenth

and ninteenth century mathematicians, allows us to formulate and to

solve problems involving such concepts as length, weight, time, etc.



The common property of these concepts is that they are infinitely divisible.

Fbr such problems the traditional mathematics seems ideally suited, and

one cannot expect much, if any, new understanding of them from the math-

ematics ve shall study here. But in other areas of applications --

including same microscopic physics -- the principle of infinite divisibil-

ity is stogy not valid, not even as a plausible first approximation.

Atoms exist in a small finite nuMber of states. Half a horse is no horse

at all. General Electric'e output of large industrial turbines is not

any real number, but a rather small integer. Being on a particular

committee in a company may be a relevant fact fbr some problema but this

hardly seems a numerical concept. What is needed is a discrete mathemat-

ics to parallel and supplement our better known continuous mathematics.

It is well to keep in mind that much of the world or immediate

perception is discrete, and if one point of viev must be heldless

strange than the other, it is not evident that the continuous-quantitative

is it. A. spod deal of training, such as fbur years of engineering school,

is needed befbre a person will concentrate his attention only on variables

having a continuous eharacter. Yet, you may ask: if the discrete view of

the world is quite natural and if we have an appropriate mathematics to

deal with it, why then is the child not taught this as well as the

traditional fielde7 Many would say because it is too difficult, too

advanced, and of too little use -- and their arguments seem strong. Fbr

example, there is its history of development. The ideas ve Shall speak

of came into being only toward the end of the last century -- thousands

of years after Euclid froze elementary geometry and hundreds after the

calculus vas invented. No one vill deny that, once George BOole (1815-

).864) and G. Cantor (184549l8) put fbrth these new concepts, they vere

accepted as fundamental to all mathematical thought and that mathematics

(including that of continuous processes) vas revolutionized; but many

vill point out hov recent this development has been. Can a Child be

expected to learn what the mathematical community could not develop until

50 years %go? Some think yes.



The ideas are simple. They are so simple, so immediate, so mach a

part of our language and thinking that is hard to realize that there

might be a purpose served in abstracting them into a symbolic system.

Yet, as you will see, once the abstractions are pointed out, they are

clear and understandable -- in fact, you will often have tbe feeling

that you knew about this or that all along, but had just never troUbled

to think it out clearly. And you, will be right. Were the abstracting

the end of it, it would be banal; but that it is not, for once the

formalization is effected it assumes a life and power of its own which

is far richer than will first seem possible.

The logical and clearest development of a sequence of ideas is

rarely, if ever, the historical one. Complex problems are recognized,

tackled, and often solved befOre the more basic and, retrospectively,

simpler prOblems are seen and resolved.

In these notes we Shall try to do three things. First, we hope

to give you some idea of the concepts which are available and where

yuu can find out more about them. We will draw heavily on your

unfOrmulated experience in such matters and we &all not attempt to be

as carefhl about the niceties as would be necessary in a course in pure

mathematics. Second, we will delve into one collection of ideas which

is particularly usefUl, attempting to Show reasonably explicitly bow a

modern mathematician thinks and works vith such qualitative problems

and what kinds of deductive steps are involved. This work viii be

somewhat more fOrmal =dam. seem a bit taxing, but we will try to

build up to it fairly gradually. As much as anything, your difficulties

will arise from our ordinary habit of reading into statements more or

less than they imply. One of the qualitiec of mathentics -- often,

though not always, a virtue -- is precision. Professionally, mathema-

ticians pride themselves on saying exactly what they mean and meaning

exactly what they say. 'Or this reason, statements have to be taken

literally -- a curiously difficult thing to do, especially when one

has an inadequate intuitive grasp of what is being done. Third, we
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will present several examples from the social sciences where interesting

results have been obtained by welding together a number of these almost

trite ideas. Here you viii see some of the intellectual power which

arises from an adroit interweaving of the almost trivial. It is an

impressive feat once it is understood.

In all of this we will not stress manipulative skills; there is

not time far that. We will feel successfUl if you gain some ides of

what the concepts axe, what they might be goad for, and where more can

be fbund about them. lbr those wanting to learn more of the details a

limited number of general references will be scattered about the notes.

In addition, the followingh)oks are basic references to the whole area:

Kemeny, J. G., Snell, J. L., and Thompson, G. L., Introduction to
Finite Mathematics, Prentice Hall, in press (probable dnte of
publication: January 1957).

Kerehner, R. B. and Wilcox, L. R., The Anatomy of Maltm.:stics,
Ronald Press, New York (1950).

Stabler, E. R., An Introduction to Mathematical Thought, Addison-
Wesley, Cakbridge (1953).

Wilder, R. L., Introduction to the Fbundations of Mathematics,
Wiley, New York (1952).

TVo Nude texts of a, more advanced character are:

Birkhoff, G., Lattice Theory, American Mathematical Society,
Hew York (1948).

Birkhoff, G. and MacLane, S., A Survey of Mbdern Algebra, MacMillan,
New York (1946).

While we cannot stress manipulations, here, as in all rigorous

disciplines, a real understanding does not usually result from just

reading and listening. The real import of the ideas and the fine shad-

ings of meaning do not ace..5 across until you try to work with them, which

MWAM2 doing prOblems. For the most part we have chosen very simple ones,



-aut they won't seem so until the ideas are clearly grasped. These

should be worked even when you feel that you have understood perfectly

what you have read. If you have understood, the cost in time of doing

them will be slight; and if you haven't, the gain will be great.

The starred sections and the passages in amall print are a little

more difficult than the rest of the material. They may be omitted if

one chooses without causing later difficulties, for the rest of the

text is self contained without them. However, it is recommended that

they be read, posbibly on a second time around, for it is in these

sections that we go beyond the more elementary concepts and attempt

to dhow how samething can be done with them.



CHAPTER I

SETS

1.1 INTROEUCTION

One of the simplest and most ubiquitous of mental operations is

recognition -- deciding whether an object of perception does or does

not possess certain Characteristics and whether along same dimension

one object is the same as or different from another. Set theory uses

this as its starting point. One could doubt that such a trivial base

can lead to anything much in rarticular; and, yet, from it and the rules

of loge one can derive the whole of contemporary mathematics. Of

course, ve will not attempt to do so here; we v111 only try to give

some of the elements of set theory and a fey of the applications which

arise from it. In practice, these are the usefill things to know, for

no mathematician traces back his work to the most fundamental formula-

tion; it is enough to know (or imagine) that it can be done.

Analogous situations exist in physics. It vas important to ahow

that from the microscopic theory of gases, kinetic theory, it is

possible to derive macroscopic thermodynamics, but it would hardly make

sense for an engineer designing a heat exchanger to return to molecular

principles. In the same way, it is completely uneconomical to do much

of every day mathematics by returning to set theory -- certainly this is

true of most engineering and physics mathematics. And so most engineers

and physicists are not taught set theory. Bat, at present, when human

behavior is involved, most mathematical analyses do begin in a very

basic way. Flossibly in the fature an elaborate superstructure will be

constructed fer the behavioral sciences and it will again be impractical

to return to first principles, but this is not yet so.



1.2 NEMMERSEIP AND NOTATION

The concept of a 2111 or 2Lagrl, will be accepted as intuitively

known, or, as one says in mathematics, it is undefined. Though ve dhall

not attempt to analyze its meaning into more primitive terms, it would

be unkind not to attempt to aid the intuition by examples and suggestive

discussion. A set separates the universe into two parts: those things

in the set and those not in the set. PUt another way, a set is detezmined

by a iule or property: those objects of perception which satisfy the rule

belong to the set, those which do not, do not belong to it. Consider

the property of being human and exceeding six feet in height. This

defines a set which we mdght call the set of "tall people." Given any

object whatsoever, one must decide, first, whether it is a human being

and, if so, whether that person is taller than six feet. There are twe

acts of recognition required for each object.

The rule defining a set can be almost anything, however weird,

provid-d it meets one important condition. It must be possible to

decide fbr any object whether or not it satisfies the rule. The set

defined by such a rule is sometimes (redundantly) described as '%/ell

defined." In a great deal of mathematics this stipulation is taken

pretty much for granted without explicit discussfon; but it must never

be forgotten that it is a very stringent requirement, one not so easily

met in applications, particularly when people are involved. A person

is confronted vith a matiple choice question, i.e., one having a well

defined set of alternative answers. There is no problem in stating the

set of answers offered to him, or the answer he gives, but what of the

set of alternatives he actligaly considers befbre making his choice? In

judging his performance this may be crucial. You know this much: it

mmst include the answer he actimily chooses and it is bounded by the

available set of alternatives, but it could happen that he does not

consider all of them. Is it possible to decide whether a given alterna-

tive is or is not in the set he considers? No really effective vay is

now known to ascertain this, but that does not mean this will always be



so. We offer this example only as a warning that it is easy in practice

to suppose tacitly that a set is yell defined, when iv fact it isn't.

Fbr sets with a finite nuMber of elements, the simplest, and

invariably unambigious, rule is to list all the elements in the set.

Fbr example, the set consisting of fe three integers "one," "two," and

"eight" can be specified by listing them as (1,2,8). A more bizarre

set having three elenents is (this piece of paper, Queen Elizabeth's

coronation crown, the sun). In eadh case, the order of writing the

several elements is immaterial, thus

(1,2,8), (1,8,2), (8,1,2), (812,1), (218,1), (2,1,8)

all denote the sane set.

Whenever one explicitly lists all the elements of a set, it is

conventional to surround the symbols for the elements by curly

brackets as we have done.

Mbre generally, a set is characterized by some property possessed

by its elements and not possessed by any other objects. Such a rule

must always be used when describing a set having an infinite number of

elements. For example, the set consisting of all numbers greater than

zero is called the"right half line." (The term arises from the

geometrical representation of all numbers by a line.) The property

which specifies the elements in the set is flbeing a real number and

being greater than O." Thus, 1, n, 1,036.24, etc. are in the set;

0, -1, -10
6
, etc. are not. "The members of the Senate of the United

States on January 1, 1956" defines a set of 96 people whom one can list.

"2he President of the United States in 1942" singles just one person4:

and it affords an example of a set consisting of a single element. One

nmst distinguish between a set having but one element and the element

*Had we changed the date, say to 1945, this would not necessarily be the
case.



itself. Congress observes this nicety when, on occasion, it by-passes

the rule that it cannot write a law which mimes and fires a person.

This it does by abolishing all jobs satisfYing certain characteristics,

so choosing the characteristics that there is a single position -- held

by the man they wish to get -- satisfying them. Technically, Congress

has written the law in terms of a set, not an element. Notationally, if

a denotez an element, then (a) denotes the set consisting of just that

element.

Observe that in our discussion there have really been three central

undefined concepts: set, element, and belongs to. These are related by

a particular element either belonging to or not belonging to a given set.

It is usefUl to be able to symbolize this primitive relationship brdefly;

it is done as follows: If a is an element of, i.e., belongs to, the set

A, we write

a c A.

In this context, the symbol e (Greek epsilon) can be read in a variety

of ways: belongs to, is an element of or is a member of.

Thus, 2 1,2,8 , i.e. 2 is a member of the set consisting of

1, 2, and 8. Sometimes we also want to say that "a is not a member of

the set B," and this we symbolize by

a B

where the slash means "not." So we read as: does not belong to, is

nct an element of, or is not a member of.

We now have notational ways of representing two things. First, we

can symbolize a finite set by explicitly listing its elements:

(alb,c,d). Second, if we have symbols for a set and an element, we

can symbolize that the element is or is not a member of the set: a c A,

a B. It would also be usefUl to have a symbolic way to represent a

set which is characterized by some rule or property, say proTerty P.

-10- 1



It is conventional to denote (wnd that is all it is - a name) this

set by:

(x I x has property P).

In this notation, x is a generic element of the set being defined by

the property P, and the vertical bar is read "such that." Thus, we

read the symbol as "the set of all elements x such that x has property

P." Fbr example, the right half line mentioned above would be

presented as:

(x I x is a real nuMber, x > 0).

TWo conventions we have employed had best be made explicit. In

so far as possible, capital Latin letters will be used to denote sets

and small ones to denote their elements, and the generic element of a

given set will often be symbolized by the" same letter as the set, sugh

as a e A. We will not always be able to hold to these conventions since

sometimes sets axe elements of other sets and a particular letter may

not be suitable for use as an element, but to the extent that we ema we

will fbllow them.

A variety of synonyms exist fbr the word set. The most common, and

with some authors the preferred term, is class. Also used are aggregate,

collection, and family. There axe some implicit conventions as to when

each is used, but we will not go into that here except to say that one

usually speaks of a class or collection of sets, rather than a set of

sets.

Problems

1-In two different ways, present symbolically the set of positive
integers which divide evenly into 12.

2-Display the set (x i is an integer, x2 = x) in another way.



3-Devise a property P which is meaningful for all integers, similar
to the one in problem 2, which allows the set (0) to be displayed
in the form (x I x has property P). Do the same thing for the
set (1).

1.3 SUESETS

In a certain and somewhat facetious sense, one can characterize much

of modern mathematics as the generation of new seta from old. There is,

of course, much more to it than this, but constructing new sets having

special properties is always going on. As we procerd you will see how

this can be done with profit. Our first example of it a the formation

of subsets. Fbr example, the set of all Republican Senators is a

subset of the set of all Senators. The executive personnel of General

Electric is a subset of its employees. The set of transformers produced

last week by General Electric is a subset of all its products Dar that

week, and also a subset of all its products for all time past, and also

a subset of all transfbrmers produced during the year, etc.

Fbrmally, if A and B axe each sets, A is a subset of B if every

element of A is also an element of B. In each example you can see

that this is the case: a General Electric executive is also a General

Electric employee, etc. Of course, the converse is not generally true --

there are still employees who are not executives.

If A is a subset of B, we then also say that B is a suprset of A;

however, this term will be used much less often than "sUbset."

Certain subsets are especially distinguished. Every set is a subset

of itself, for if A is a set and a e A then, repeating ourselves, a e A.

Often, we want to exclude this trivial ease when talking of subsets, and

so we need a term to refer to pubsets of a set which are different fram

the set itself. The term used is proper subset.

Suppose a E A, then (a) is a subset of A. That is, each of the single

-12-



element sets formed fram the elements of A is a subset of A.

One of the most usefUl sets, though at first it seems senseless, if

not silly, ls the one (it can be shown to be unique) which has no

elements; it is called the empty or null set. The major reason for

introducing this apparently vacuous concept is this: you may set up a

certain property and discuss the set of elements having this property,

only later to discover that there were no elements satisfying it. It is

more convenient not to have to deal with this vacunus ease any different-

ly ftom more substantial sets. The set of all United States Senators

under 25 years of age is an example. But, you will say, no one would

ever consider this set, for it is clearly eurety. Although that is true for

this example, there are other eases where the emptiness of the defining

characteristic is not nearly so evident. If you don't know much about

eats, to speak of tri-colored male eats does not seem unreasonable. Later

we shall come to other reasons for introducing the null set.

Notationally, we shall denote the null set by 0.

We observe that the empty set is a subset of every set, for every

element of 0 is, by its non-existence, also an element of every other

set.

Once again, it will be convenient to have a short symbolism for

discussing subsets. Per the phrase "A is a sUbset of B" we will write

AC B. This symbolism is not just accidently similar to the "less than"

sign, < , for numbers, for if A is a subset of B it is, in a sense,

"less than" B. However, one never says that, rather that A is a subset

of H or that A is included in B. The mark (17 is known as the inclusion

symbol.

Actually, what we have been doing just now is making a definition,

sn let us summarize it formally:



Itfinition: If A ould B are sets, we say A is a subset of B, and

write A C 13, if a A implies a B.

In terms of the inclusion symbol, we always have:

A C A; 0 C A; and if a e A, then (a) C A.

Not only will we want to teak of specific subsets of a set, but

also of the set of all subsets of a given set. For this too ve vent a
Asymbol. We could simply say that we sill write 2 for the set of sub-

sets of Al but it will be easier to remember this if we suggest how it

arose. Suppose that A is a finite set with the n elements al, a2,..., an

(the numbering of the subscripts does not matter except that ve hold it

fixed and that different elements have different subscripts). One way

of denoting a subset of A is as follows: We ask if the firwt element,

a
11

is present in the subset or not. If it is be write down a 1, if not

a O. Then we ask if the second one is in the subset, and we write a 1 to

the right of our first number if it is, a 0 if it isn't. We continue the

process through all n elements, and in this way we get a sequence of n

numbers, each either 0 or 1, whiCh describes the subset. Far examrae,

suppose n = 4, then the subset (a2,a4) is symbolized by 0101. Similarly,

the single element set (a
3
) is represented by 0010. We aiso note that

any such sequence of O's and I's represents a subset, i.e., the binary

numbers of length n correspond perfectly with the subsets of any finite

set of n elements. But it is easy to see that there art 2n such numbers,

for there are two choices, 0 or 1, for each place and therrare n places.

Tile symbol, then, far the set of subsets of A, 2
A

is suggested by the

number 2
n

. This symbol is used even if A has an infinity of elements,

where the binary representation of the subsets relight break down.

Forxnally,

2A = (B I B A).



an example, suppose A = (a,b,c), then

2A . [A2(a,b),(a,c),[b,c),(a),(b),(62 0).

The distinction between the symbols e andC must be kept in mind,

for they are sometimes interchanged by novices. One can never be

directly substituted for the other, for e establishes a relation be-

tween an element and a set, whereasC relates a set to a set. A few

exampaes will make this clear: If BC A, then B e 2A. If a e A, then

(a) CA and (a)

In set theory, just as in ordinary algebra, it is quite possible

to specifY the same thing in several different ways; sometimes this is

done on purpose, sometimes inadvertently. In algebra, we may introduce

two apparently different numbers x and yl but by some Chain of reasoning

come to the conclusion that they are the same nusiber, in which ease we

write x = :y. Similarly, with sets we may think we are defining two

different sets A, and B only later to find that they have the same

elements -- that they are identical. In that case it seems appropriate

to extend the use of the equal sign and to write A = B. When you see

such an expression and A and B are sets, you must remember that numbers

are not involved at all; it simpl;y means that the two sets A and B have

exactly the same elements, not just the same nuxber of elements.

Example: suppose A is defined to be the set consisting of the final

four words in the last sentence, and B is defined to be (elements,

number, same, of) 2 then A = B. Less trivial example: Let A be defined

to be the set of two people comprising the Democratic nominees for

President and Vice President in 1940 and B the President and Vice Presi-

dent in 1941, then it is known as an historical fact that A = B, though

it could have happened otherwise.

Note that if A = B, then A is included in B and B in A; and, converse-

ly, if both inclusion relations hold, the two sets must have the same

elements. This gives Us an easy way formally to define equality:



Definition: If A and B are sets, we say they are equal, and write

A = By if both A C B and B C A.

This concept of equality has all the properties one usually

associates with equality mmong numbers, namely:

A = A (reflexive)

if A = B, then B = A (symmetric)

ifA=BandB= C, then.A= C (transitive)

The terms in parantheses are standard for these three properties, and

they will be discussed more fully in Chapter 2. One can immediately establish
that these proparties hold from the fact that inclusion is reflexive and
transitive :

A C C

if AC B and B C C, then A C C.

(The reader should show this). These last two properties can be ahomn from the

definition of inclusion. We have previously discussed sad established the first

of these. Consider the second: Suppose a e A. Since ACB, we know from the
definition of inclusion that a c B. But since B C=C, the same definitim
implies that a c C. But if a e A implies a C, then ACC by definitiaa.

In any particular discussion or problem, we will always restrict

ourselves in advance as to what elements we want to talk about. In

other words, we will always spe,tify a universal set ur at the start

which is chosen to include everything we Shall want to mention. It

nay seem strange to bound ourselves by suCh a convention, but in

practice it is an extremely usefUl device and it will also help us to

avoid certain logical difficulties (see next section). The practical

merit amounts to this: if you don't tell your listener what you sre

talking about, he literal4 won't know except to the extent he can

infer it from your statements about the unknown universe of discourse.
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When ve are dealing with basic ideas, this indirect method will be used --

it is known as the axiomatic method. But when ve are discussing known

elements,and sets, it is important to specify which ones. Amateurs often

fail to be expaicit on this score, and it can be very tricky indeed to

decipher their later marks and symbols.

Problems

1-Let A denote the employees of a company, W the set of female
employees, E the set of executives, p the president, j a particular
male janitor. State all relationships you can think of using
e and C.

2-Write out all the sUbsets of (janitor, president, set of women
employees).

3-If A is a set having 3 elements, how many elements are ;.kere

in the set of sUbsets of 2
A

(which we Shall :rote by 2 )?

If A has n elements, how many axe there in 2 ? How would you

denote the elements in 22A which axe fbrmed from single element

sets of 2A7

A4-Let A and B be finite sets. Show 2
,--

2
B

if and only if A C B.

1.4 A PARADOX

The logical difficulties in set theory axe famous, mainly because

they were so profoundly shocking to the mathematical community. Some

years after set theory was first introduced and when it was already

being widely used throughout mathematics, it was discovered that, by

using simple reasoning of a type generally employed in mathematical

arguments, deep inconsistencies could be exhibited. Since these

arguments do not differ from those used in everyday mathematics, which

has had such rich and useful conclusions, much unease was generated.

And while a good deal of work has since occurred in the foundations

of mathematics, it cannot yet be said that all is well. While we can-

not go into this work, it is easy to exhibit one of the paradoxes.



The one we shall describe is known as the RUssell paradox, named

after its famed author Bertrand Russell. As we have seen (e.g., the set

of all subsets of a given set) the elements of sets may themselves be

sets. Thus, a priori, there is the possibilitj that there is at least

one set which ia an element of itself: While we have not exhibited such

a set, it is conceivable that one exists. In any case, let UB call apy

set not having this property, i.e., any set not having itself as an

element, an ordinary set. These we know do exist. Let W denote the

set of all ordinary sets. Question: is W itself ordinary?

One way to show that W is ordinary is to assume the contrary is true

and to show that this leads to a contradiction, i.e., to show the assungr

tion that W is not ordinary leads to an absurdity. Tills we do. If W is

not ordinary, then by definition W is an element of itself. But, by

choice, all of the elements of W axe ordinary sets, and so we have a

contradiction. Thus, we must conclude that the supposition is false and

that W is ordinary.

This seems fine. But suppose we had begun on the other tack of

trying to show that W is not ordinary by assuming it is ordinary and

arriving at a contradiction. If W is ordinary, then W is not an

element of itself according to the definition of an ordinary set. But

all ordinary sets are by choice included iu WI and again we have a

contradiction. Thus, we must conclude that W is not ordinary.

The dilemma is clear: by well accepted deductive procedures we have

proved both that W is ordinary and not ordinary. The resolution is to

try, in one plausible way or another, to exclude W and other objects

like it fram being classed as the same sort of sets as the ones which

are its elements. Dais we cannot go into.

Two closely related paradoxes which axe easily remembered are these:

Consider the assertion " This sentence is false." If you assume it is

true, then you can conclude it is false; if you assume it false, you can



conclude it true. Consider the barber in a town who shaves everyone who

does not Shave himself. Who shaves the barber?

Fbr more discussion of the problems lying at the foundations of

mathematics, see Wilder's book mentioned in the Introduction.

1.5 UNION, IL:MSECTION, AND COMPLEMENT

Tb the child and the mathematician there are certain natural

operations which can be carried out with sets. Fbr the rest of us these

conceptual operations seem slightly illegal, for they are earefUlly out-

...awed during early schooling when the Child is first introduced to another

basic notion, that of number. It is obvious to the Child that he can

"adi" a set of books that he has to a set of pencils he uses, for that

is exactly what he does when he places them together in a bag to carry

them home. Sometimes he wants to treat the two sets as separate, other

times as a unit. It depends upon his purpose. This certainly is not

the addition to which the teacher is addressing herself when she tells

him that he can only add "likes to likes" and that when he adds likes

they must not overlap. The difficulty she is trying to avoid can be

seen clearly by considering one set consisting of m books and n pencils

and another consisting of the same n pencils and p pads of paper. The

"logical sum" consists of the set of books, pencils, and pads, and it

has m + n + p elements in it, whereas the simple arithmetic sum of the

numbers of elements of the two sets gives the number

Oa + n) + (n + p) m + 2n + p.

Equally well, there is for sets something somewhat analogoue to

multiplication, namely, the set of elements which are common to two

given sets. In the above example, the u pencils are in common. There

are people who are wealthy and others who are smart, and those who are

in common to the two seta are both wealthy and smart.

Suppose, then, that U is our universal set and A and B are tvo of



its subsets. We want to be able to symbolize tbe set of elements which

are either in A or in B or in both -- the analogue of addition. There

are several symbols in use, the most common being A U B and A + B. We

shall toe the former to avoid confusion with numerical addition. So we

make the following

Definition: Let Ur be given and Al B C Ur, then

AuB=(x I xcAorxeB).

We speak of A U B as the union of A and B, or as A union B. The

term logical sum is also widely used, but we will avoid it.

Similarly, we want to denote the set of elements common to A, and B,

so we make the following

Definition: Let Ube given and A, BC Ur, then

AnB= (x IxeAandxB).

We speak of A n B as the intersection of A and B, or as A intersect

B. The term logical product is also used.

If one writes A + B instead of A U B, then it is customary to write

AB instead of A n B.

If in the above example we let A = (books, pencils) and

B = (pencils, pads), then

A U B = (books, pencils, pads)

A n B = (pencils).

There is a very usel-al graphical device, known as a Venn diagram,

for thinking about these and more comTlex relations among subsets.

-20-
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Whatever our sets may be, finite or infinite, we represent them in a

loose analogy by regions in the plane. /bus, we first select an

arbitrary region such as in Fig. 1 to represent the universal set U.

Then we introduce subregions to represent our subsets, sometimes shading

Fig. I Fig. 2 Pig. 3

them for greater clarity. Thus, in Fig. 2 the whole shaded area

represents A U B, while in Fig. 3 the shaded area is A n B.

Such diagrams can suggest a variety of questions. Filar example,

consider the subsets indicated in Fig. 4 What

about A n B? It is clear that there is no com-

mon region to shade, that they have no elements

in common. In our previous terminology, A r B

is the empty set. Here seems to be a ease wherl

the empty set mimes in handy, fOr it is nice always

to think of A n B as being a set, just as A U B is

always a set. As you might expect, we often have

to distinguish whether or not A n B = 0 -- much as in ordinary algebra

we have to specify whether a number if different from zero or not. POI-

this reason a.special term is irtroduced, namely: A and B axe called

disjoint if A n B = 0.

Fig. 4

An example may be illustrative. Suppose we take as our universal

set a list of corporate functions which must be considered some execu-

tive's responsibility. Let each executive in a particular company list



those functions for which he considers himself responsible. Thus, each

executive specifies a subset of the given universal set. It might be

considered desirable for each pair er these subsetb to-be disjoint,

since otherwise there would be overlapping responsibilities. Of course,

the example also suggests that there should be at least one executive

responsible for each fUnction. That is, if we extend our idea of union

beyond just two subsets (see below), the union of all these subsets should

be the universal set. A set of subsets having these twc properties -

every pair of subsets is disjoint and every element of the universal

set is in one of the subsets - is known as a partition of the universal

set. This is a useful concept and it will arise later in another context.

Another idea suggested by the Venn dtagram is shown in Fig. 5. Here

we have shaded everything in U which is not in the

given subset A. This set, known as the complement

of A (with respect to U) will be symbolized by T.

Formally,

Definition: Let U be given and A C U, th..n

A = (X 1 XE U and x A).

Fig. 5

In this con(!ept the role of the universal set is vital. FiTquently we

will simply speak of the complement of a set, but it will always be

with Implicit reference to a particular universal set. As you can see,

it is much more important to know the universal set when complements

are mentioned than for unions and intersections, since in any universal

set which includes both A and By A U B and A n B always refer to unique

sets but this is not true for complements.

The concept of complement can be generalized very easily to what

is known as the difference between two sets. The difference between

A and B, denoted by A-B, is simply the set of elements in A which are

not in B, i.e., the set of elements common to A and the complement of
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of B. See Fig. 6. So ve are led to

Definition: Let Ube given and A, BC: U, then

A-B m A n 5,

Problems

Fig. 6

1-ln a Venn diagram vith subsets A and B identify the following
wubsets:

Aut. ; TinB; Tin

2-ncpress the following subsets of U in simpler terms

;17; A-A ; A-4) ;AnT; 0-. A-K ;Anil .

1.6 WERATIONS

Beginning with a universal set U and considering subsets ve have

mad introduced a number of "operations," namely:

inclusion A C B

union A U B

intersection A n B

complementst5= X

difference A - B.

It is plausible that there must be some interrelations among these, just

as in arithmetic there are relations among addition, multiplication,

less than, etc. The kinds of numerical properties ve have in mind are

these:

x (y + z) xy + xz; xy yx; if x > C and y < zo then xy < xz.

The qpestion now is vbat relations hold among the operations for stihsets.
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The easiest way to suggest same of them,

understanding of the ones we shall state, is

Venn diagram. A couple of examples will do.

AC B. Then, what ablut A:and .b? Un a Venn

B

Fig. 7

and later to gain an

to see what happens on a

Suppose, first, that

diagram, AC B simply

Fig. 8

means that the area representing A is included in the area representing

By as shown in Fig. 7. Nov, shade in the areas representing the comple-

ments of A and By as in Fig. 8, and we see that B is included in A. Thus,

the theorem we conjecture (it is by no means proved just because one

special case holds) is: if A C B then T3 C 1. We will prove it in a bit.

As a second example, let's ask vhat happens vten you take the

complement of the union of two sets. In Fig. 9 the two sets A and B

are indicated and the region A U B is shaded. PresumOly, we want to

express this as some operations involving A, B, /1 and if possible.

Let us draw A and B again, and shade in the areas representing 17 and lc

Fig. 9 Fig. 10

as in Fig. 10. Toe area which has any shaidimg at all represents

/ U b71 and that clearly is different from A U B. The area in which the

shading is cross hatched representa A n Wy and we see that is the same

as the shaded area in Fig. 9. Thus, in this case, ve conjecture:

A U B In 1



We must stress that these diagrams only serve to suggest results;

they do not constitute proofs. The danger in generalizing from a few

special diagrams is either that ve have managed to draw cases which

posseis certain peculiarities or that ve have avoided one or two

peculiar eaaes; in either event the conjecture will not hold in general.

TO get a true proof it is necessary to go back to the definitions of the

operations in terms of elements in the sets and to verify that the two

sties of an equality do in fact represent the same set. We shall prove

these two conjectures as illustrations of the method of proof.

Theorem If A C B, then -1-3 C

Proof. By definition, iiCIL if and only if a e r3- implies a e TO

show this, we assume the contrary - namely, a e g and a A - and

arrive at a contradiction. By definition of the complement, a

implies a e A. Since by hypothesis, AC B, ve may conclude fram the

definition of inclusion that a e B. But, by definition of the comple-

ment, this contradicts our assumption that a e F; thus, we must conclude

that our tentative hypothesis a Kis false. Hence iiCL

In the mathematical literature, such a prcof would either not be

given -- the dangerous word "obvious" being written in its stead -- or

would be given in much abbreviated forma, e.g.: If a e TS and a E A, then

since A C B, a e B, a contradiction; hence

Theorem A U B =1 frt.

Proof. By the definition of equality, the assertion is equivalent to

the two inclusions,

AUBC flB and AflBC AUB.

We prove each of these separately by supposing that ve have an element in

the set to the left of the inclusion relation and then show it must also



be in the set to the right. Ifaa AUB, then by definition of

complementationlai AUB. Thus, by definition of the union,a? A

and a g B, or putting this in terms of complements, a land a e

gy definition of intersection, aeInE, so by definition of inclusion,

the first inclusion relation is Shown. Tb show- the second, we suppose

a fL Eliminating same of the steps, a g A and a By so

agAUB, i.e.pae AUB. The theorem is proved.

It turns out that there are a vast number of wuch relationships

among the several operations defined, each one of whit can be proved

in a manner similar to that just used. We do not pric;Jse to prove any

more of these here; however, a few of the proofs will be given as

exercises. Rather, we ahall present without proof a small, selected

set of true theorems. It is recommended that you drwrir the corresponding

Venn diagram in each case, for only by examining each result individual-

ly will you become femiliar with its content. This is necessary, for we

will use them from time to time.

The arrangement of the theorems into horizontal groupings is both

to make them easier to read and to indicate certain natural groupings.

The partial parallel listing will be discussed later. The terms in

parathenses to the right are standard in this area.

Let A, B, and C be any subset of a given universal set U.

1- A A (reflexive)

2- if AC B and BC C, then AC C (transitive)

3- 0C A 3'- A C U (universal bounds)

4- Au A =A 4'- AnA= A (idempotent)

5- Au B.Bu A 5'- AnB=BnA (commutative)

6- A U (3 U C) = 6'- A n (B n c) . (associative)

(A U B) U C (A n B) n c

A n (B u C) - 7'- A u (B n c) . (distributive)

(A n B) u (A n c) (A U B) n (Au c)



8- OnA=0
9- OUA=A
10- AUK=U
11- A77 07E K n

12- A 32 A

8,- tluA=t1

9' - UflAA
10' - A n = 0 (camplementarity)

AnB=KUIT (dualization)

(involution)

13- Each of the following relations implies

the other two:

A C B, A 11 B ze A, A U B = B.

There are several points to be made. First, you may wonder why we

choose to present just these particular theorema rather than some others.

First of all, there are others, e.g., ti = 0, if AC B, then TiC AT, etc.

The reason is simply this: once these theorems have been proved by using

the basic definitions and arguing in terms of elements, then you need

never do that again. Any other true relation among subsets and these

operations can be proved directly from these theorems without recourse

to the basic definitions. Here is how it is done for the two exampaes

ire mentioned.

Theorell

Proof. By theorem 10', Unit . 0. But by theorem 9', Unt1m

Equating these yields the result.

Theorem If A C B, then IS C A.

Proof. By theorem 13, A C B implies A fl B = A. Taking complements and

using theorem 11'0 K = A fl B = A U B. Fran theorem 5, K=A- uti= T3 u-A;
and so theorem 13 implies it C A.

Thus0 if you learn these theorems, it is possible fOr you to prove

any true relationship involving subsets, union, intersection, complementa-

tion, and inclusion simply by manipulating them. It must, however, be

emphasized that this is by no means the only set of theorems from which the

remainder can be derived; there are many such, but this seems to be a very
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useful one.

Second, ve ;laced a number of these theorems in parallel. Why?.

If you vill examine them careftlly you will see that each pair is in

a sense dual. Specifically, take any one of then and make the follow-

ing changes: replace each set by its complement (keeping in mind that

it can be proved that 0 and U axe complements of each other), interchange

union and intersection symbols, and reverse the direction of any inclusion

relations. This vill yield, in essence, the other theorem on the same

line. Fbr example, consider theorem 8, 0 n A = O. Making the substitu-

tions yields U U A U, which is elmost, but not quite, theorem 8'. In

stating theorem 8', and many of the others, ve have dropped the comple-

mentation sign on the A's and B'fl which would have made the pairs perfct-

ly dual. The reason far this is that the sets are arbitrary, and ve can

alveys insert A for A, and have a true theorem. Thus, to prove 8' in the

form stated, ve should have begun with Kin theorem 8, Aside fram that,

there is a perfect duality.

Third, let us comment on each of the theorems so that you will

gain a fUller understanding of their meaning.

1 and 2 have already been discussed wben inclusion was first

presented. (Section 1.3).

3-0CACUsimply states the fact that the empty set is a subset of

every set and that every set under discuzsion is a subset of the universal

set.

4-The idempotent laws, A, U A = A and A n A = Al are quite different

from anything you are familiar with from arithmetic. If you "add" a

set to itself, you do not gain sqything; if you aek what is common be

tween a set and itself, you find it is just the set.

5-The commtative laws say tam- tn... Dr.:3,r of forming union and



intersections does not matter. This is just like ordinary arithmetic,

both for addition and multiplication. This rule seems so familiar that

we often take it too much for granted. There are important mathematical

systems -- important in applications -- ;here it does not hold. Matrix

multiplication is a case in point. Or if you devise an algebra for the

operations in a machine shop, which is possible, not all operations will

commute: to drill and then thread is hardly the same as to thread and

then drill.

6-The associative laws, A U (B C) = (A U B) U C and

A n (B n . (A n B) n c, state that it does not matter how you form

unions of more than two seta or how you form intersections of them. It

does not apply to mixtures of UM1OMB and intersections! It is necessary

to have such a law, for both operations were defined on. r pairs of

sets. This rule is just like those in arithmetic, and here as there

one customarily drops the parentheses and simply writesAU BU C,

AnBnc, etc. But don't drop parentheses vhen there are mixtures of

the union and intersection symbols. The symbolAUBnCis ambigious.

Does it mean AU (B n c) or (AU B) n c? Draw a Venn diagram to see how

different these are.

7-The distributitive laws tell you how to expand (or equally, to

contract) mixtures of unions and intersections. If you think of union

as analogous to sum in arithmetic and intersection as analogous to

product, then the analogue of the first theorem is

x (y + z)- xy + xz,

which is a proverty of numbers. The analogue of theorem 7', however, is

x + (yx) (x + y) (x + z)

which, of course, is fklse. Thus, while there are some parallels to

ordinary arithmetic, they are by no Eleanfl perfect.



8 and 9-These are fairly straightforward: The null set has

nothing in common with any other set; any set adjoined to the uni-

versal set still yields the universal set; the null set adjoined to

any set does not alter it;-and any set has exactly itself in common

with the universal set.

10-This property of complements is obvious from the way they are

defined: a set and its complement have nothing in common and together

they exhaust the universal set, i.e., they form a partition of the

universal set.

11-We proved one half of theorem 11; but, as they are both very

important, you should explore the other with Venn diagrams. In words,

these theorems say that the complement of a union is the intersection

of the complements, and the complement of an intersection is the union

of the complements.

12-The complement of the complement of a set leaves the set

unchanged. In effect, this is a case of double negation leaving things

unchanged.

13-This theorem says,ineseenoes that we have definedtoo many

concepts as primitive, that we have been redundant. We could, for

example, have only defined union and equality, and in terms of these

introduced intersection and inclusion. Other combinations axe possible,

too. We did not do this because each of the concepts is in one way or

another so important and because the duality is so much clearer if they

are all involved. It is, nonetheless, well to keep theorem 13 in mind,

for it is often convenient to translate an inclusion relation into one

of the other two fOrms. We did this when proving AC B implies BC A

from the theorems.

Most often these theorems axe used to simplify expressions which

arise in problems involving sets, just as in ordinary algebra you use



the basic rules to simplify an expression of the form

(x + y) z + (x - z) (x + y) to x (x + y). 'No examples will illustrate

this. Suppose the set (A n u B is given.

using theorem

(A n )uBm.au u B

(A u B) u B 12

. u (B u B) 6

u B. 4

Similarly,

(A u n a u = [(A u n u [(A u n B] 7

5,

Ck n u n 7

u [(B n A) u (B n g)]

= [ch u a n u [(B n A) u 0] 10,

= a n u (B n A). 9

Problems

1-In a Venn diagram of seta Al B, and C, identify the following sets

(K u 13) n c; (A u B) n (K n B); (A n u (A n

2-Represent the two expressions (A - B) C and A - (B - C) in terms
of A, B, C, and the operations U, and n. Simplify as much as
possible.

3-Simplify the following expressions:

A n (AU B); A U (K n B); (AU B) n (A n B) u (A n

4-Using the basic definitions of union, intersection, complement,
and inclusion, prove theorems 7 and 11'.

5-Prove each of the following relations in two ways (by using
the basic definitions without recourse to theorems 1-13, and by
using theorems 1-13 without ever considering an element):

AnBCA and (A B)UB=AUB.
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1.7 SET FUNCTIONS

This section is really an aside here; logically it should not come

until near the end of the next chapter.- But because the fdea of a set

function enters near the beginning of the probability courae, it seems

advisable to bring it in early here. In essence, all ve want to say now

is that in various ways sets omn have number's attadhad to them, and often

such numbers are of interest. Fbr example, "attached" to any finite set

A is the number of its elements, which is usually denoted by 1 A I. Fab!.

example, I (1,5,11,65) I m 4. In addition, depending upon what A is and

what our purposes are, there may be other numbers. If A is a class of

students, their average grade is a number associated with A. Note that

it is actually associated with A as a whole, since it is an average grade,

and not to any of its elemeas - the students. If A is a set of banks,

there is a highest interest rade among the banks in A, and this is a

number attached to A. Indeed, all sorts of aggregated measures which

do not apply to individuals (people, banks, industries, countries, or

what have you) but do apply to sets of individuals are examples of what

we mean.

Let WI return for the moment to the nuMber I A 1, the number of

elements in a finite set. Suppose U is a finite universal set, then

for each subset A, the number 1 A 1 is defined. In a vay, this yields

something like a fUnction in the calculus or in algebra, something like

x
n

or log x or sin x. With these more familiar functions one has an

independent variable x, which ranges over the real numbers, and to each

value of x another number is assigned. In analogy, we take a generic

subset A of U as the independent variable, which ranges over all the

subsets of U, i.e., over and to each value of the independent

variable - to each subset - a number is assigned, I A I. This may

seem to be stretching the usual terminology for functions pretty far,

especially since ve don't seem to have any formulas to work with as

in algebra or trigonometry. We'll come back to this question of

formulas later, Par things are not quite as they seem. Fbr now, it



will suffice to say that a number of useful things can be done with such

an extended idea of a fUnction.

In summury, then, if leis any set, a real-valued set fanction is any

assignment of nuebers to the sUbsets oft,.

Probably the most widely used set fUnctions are tuorie arising in the

theory of probability.Although we shall not delve into this herela simple

example will suggest how they arise. If a die is thrown only once,

there are six possible outcomes: either a 1, or a 2, or.... or a 6 will

come up. Thus, we may take U (1,2,3,4,5,6) as the set of primitive

events, one of which will occur. Suppose we assume that the die is

perfectly balanced, so the probability of each of these events occurring

is 1/6. Now, we can also consider somewhat more complicated events,

for instance let us say that the 'event A has occurred if the die comes

up either 1,3,4 or 6, and not if either 2 or 5 appears. We see that A

I. a subset of U, namely (1,3,4,6). The event Aloes a certain probabil-

ity of occwyring which can be computed from the basic probabilities; it

is, of couyse, 4/6. In a similar way we can assign probabilities to

each of the possible complex events, i.e., to each of the sUbsets U.

This set fUnction, and others like it, are known as probability measures.

Of course, in more general contexts the events axe far more complex and

the assignments of probabilities are not o simple, but this example

illustrates the general case reasonably well.

gy and large, the functions of interest in algebra and trigonometry

have very restrictive properties. Pbr example, a central property of

the logarithm is that

log (xy) In log + log y.

Most of the fUnctions which arise from theoretical considerations in

physics are not highly arbitrary assignments of one variable to another,

but are strongly constrained in one way or another. In fact, these
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constraints are vital to much of the computational power characteristic

of physics. It is similarly true that when the concept of a function

is generalized to set fUnctions, or to even more general fUnctions, we

stEll will be most interested ifl those which-possess various sorts of

inner constraints. Roughly, the value of the fUnction at one argument

will be closely related to its values at other arguments which are them-

selves related to the first argument, as, for example, x, y, and gy were

related stove. Consider the fUnction: the number of elements in a

subset. It can be shown that

lAuB1=1A1+1B1-1AnB I.

When a set fUnction arises, one must always be on the outlook for sugh

relationships, for they can be most important.

This whole topic will be resumed and discussed more fUlly in Chapter 3.

Problems

1 IAUBI-1AI+)B1-IAflBI.-IAnB
2-ShoviAUBUCI=11114-1B1+1C1-1AnBI-IAnCI

- ItinBnc

3-Give an example of a non-trivial industrial set function.

4-DoealAi=lBlimplyA= B? DoesA=BimplIiAl=1B 1?

1.8 ALGEBRAS OF SETS

So fir ve have tacitly assumed that once a universal set is given,

we will be interested in all of its subsets. This, however, is not

always the ease in practice -- certain subsets may for one reason or

another be distinguished as important, others not. Consider U to be the

employees of a company. Most of the possible subsets would have little

or no fftnctional meaning in the operation of the company, and so will not

receive any attention as wholes. But others will be treated as whole



units for at least some purposes. For example, the subsets corresponding

.to departments in the company may be important. If so, then it usually

follows that the people (if there are agy) common to two depertmeatc axe

also important -- they may have more powsr or infOrmation than the other

members of their departments. Also the subset which consists of the

union of two departments presumably is an important unit. Fbr example,

they may form an operating coalition against the rest of the company.

Finally, if one isolates a department as important, then its corporate

environment -- 1,11 the rest of the company -- also bears consideration.

In other words, if we single out a class of sUbsets as important, it is

more than reasonable for us to include their unions, intersections, and

complements as also important. Bat why stop at this level? What of

the unions, intersections, and complements of these new sets, and so on.

Eventually, this process will stop in the sense that any "nev" union,

intersection, or complement is not really new; it is one of the subsets

already included. At first, one may think that this procedure would

necessarily generate all the possible sUbsets of Ur, but this is by no

means necessarily so. Fbr example, if we begin only with the subsets

and Ur, we vill never get more than these two sets. In the industrial

example, ve will only get subsets of people closely related to depart-

mental lines, and not many of the crazy subsets which criss-cross

departments without any rhyme or reason.

The important thing to notice is that in filling out one of these

classes of subsets, we stop when the following properties are met: the

union of any two sets from the class is again in the class, the inter-

section of any two sets from the class is again in the class, and the

complement of any set from the class is also in the class. In other

words, the class is closed under the operations of union, intersection,

and complementation -- closed in the sense that we cannot get outside

it by means of these three operations. This is a very familiar property

of many systems we know: the sum of two numbers is again a number, i.e.,

numbers are closed under addition; the vectorial composition of two

forces is again a force; etc. By and large in mathematics we are
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interested in operations which are closed, for then we are free to

perform the operations whenever we like without concerning ourselves

wtether we will get outside the set of elements we axe interested in.

So in summary, we make the following:

Definition: Let 0:be a class of subsets of a given set U. A is

an algebra of sets if wheneverAe$ andBe0, thenAUBe

AnBe0u, andKe A.

AB suggested above, (4), Ul is an algebra of sets -- the smallest

one. This is easily verified.

Suppose ne know that we vant a particular non-empty proper subset A

of U to be in an algebra of sets, but so far as we axe concerned it does

not matter if any other subset is in A. Then, we might look fbr the

smallest algebra of sets which contains A. We know that if A e $0 then

e sa we have to have at least (Al A, 4), U). The question is: do

we have to add on anything more? No, as you can easily dheck by applying

the definition: (A, A, 4), U) is, indeed, an algebra of sets.

Of course, the set of all subsets of U is also an alapbra of sets --

the largest possible for U -- since any set operation on subsets of U

yields a subset of U.

Given any arbitrary class of subsets of U, it is always possible to

find the smallest (it is unique!) algebra of sets containing the given

class.

Problems

1-Let U = (a, b, c, d). Construct the smallest algebra of sets
containing (a) and (al b). Construct the smallest one containing
(a) and (b, c). Campare these two.



2-Let Al B CU. Show that the smallest algebra of sets containing
A and B is the same as the smallest one containing A, A U B, and
A n B.

3-Let $ and $ be two algebras of subsets of U. If(!(: y show that
for each A e th$ ere exists a B e $ such that A B.

1.9 LEGISLATIVE SCHEMES

Legislative bodies and committees that reach decis..ons by voting

according to fixed legislative schemes are an ever present part of

modern western lift. Fbr the most part, they tend to be organized along

traditional tested lines, such as simple majority rule where each person

has a single vote. But in some eases, new quirks are suggested and

sometimes adopted -- an important case in recent history being the

Security Council of the Uhited Nations, where a crude attempt was made

to reflect the differential power among the nations. Even the now

traditional congressional system of the Uhited States included some

variations which had not been tried when it was first adopted. There is

often same ambiguity about What a new set of verbal rules implies for the

actual operation of a legislature, and the problem is whether we can

devise a systematic way to see through the verbal formulation of a voting

scheme to its actual implications. In this section, we propose to une

the tools so far introduced to lay the ground work for one such analysis,

and then in Chapter 3, when we have still mc,re tools, ve will present and

criticize that analysio.

A legislative scheme, in contrast to a legislature which refers to

the specific people with all their peculiarities and affiliations working

within a scheme, is a system of rules which state the conditions under

which a bill (or motion or what have you) is passed. Ignoring some

special classes of bills (treaties, for example) and the problem of

ties, the rule which characterizes the United States legislative scheme

is this: a bill is passed either if a simple majority in each house of

Congress and the President votes for it, or if a two-thirds majority in
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each house of Congress votes for it. The scheme is given abstractly

without any reference to who is in the legislature, what forces are

acting upon them, what party structure there is, etc. 'lb be sure, all

of these and more are important facts to know when trying to understand

the behavior of a particular legislature, but they are quite irrelevant

in evaluating or understanding the scheme itself.

As a result, we shall want to deal with legislative roles, not

legislators. Thus, we suppose U is the set of legislative roles.

Then, the legislative scheme singles out certain subsets of U as able

to pass a bill. We shall call these subsets winning coalitions --

coalitions to emphasize the cooperative nature of the process. All

other conceivable coalitions are unable to pass a bill and so they ary

called losing. Thus, a legislative scheme, which is usually given in

the form of verbal rules, is equivalent to listing the winning coalitions,

i.e., to giving a subset W of 2U.

A few seconds thought will indicate that not just any old subset of
u
will do as c. possible legislative scheme. There axe certain character-

istics common to all legislative schemes which serve to put constraints

on the possible subsets of First, there is always at least one way

that a bill can be passed, so W must not be the empty set. Second, it

would never do to have both a set A and its complement, Al both winning

coalitions, for then both the bill and its negative could be passed. All

known schemes avoid this possibility. Third, the addition of more votes

to an already winning coalition always results in a winning coalition.

There is no logical necessity for this condition, and not having it

woul. surely make legislative bargaining a more exciting and subtle

activity than at present, but it always seems to be met and it has a

certain compelling ethical quality.

These we shall take as the conditions characterizing a legislative

scheme. But, you may protest, there are a number of other conditions

which seem just az basic -- at least, they are found in all legislative
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schemes. Ibr example, the empty set is always losing) a sUbset of a

losing coalition is always losing, two disjoint coalitions cannot both

be winning, etc. These, as we shall see, follow logically fram the ones

we have singled out. FUrthermore, it is our contention that any new

condition you propose is either a logical consequence of the ones we

shall assume or we can find an example of a legislative scheme where

it does not hold.

Let 118 summarize all of this compactly as a definition.

Definition: Let Ube a given finite set, WC. 21j, and L = 2
u

- W.

We shall say that W is a legislative scheme if these conditions are

met:

i. W 0,

if A c W, then X c L,

iii. if A c W and AC B, then B c W.

While this is not a very rich mathematical structure, still it is

possible to prove a few trivial theorems of the sort mentioned above.

We shall list five and prove the first three; the last two are presented

as problems.

Theorem 1- U W

Proof. Since by i, W 0, there exists some A e W. But AC

U e W.

Theorem 2- 0 e L.

Proof. By theorem 11 U e W, so by ii, 0 . E L.

Theorem 3- If A e L and BC A., then B e L.

so by



Proof. Suppose, on the contrary, B e W, then since BC Al iii implies

A e W. This is contrary to the hypothesis that A e L, so B e L.

Theorem 4- If A, BeW, thenAnBi O.

Although we have demanded what the complement of a brInning coalition

be losing, we certainly have not made the assumption that the complement

of a losing coalition must be winning. ln many schemes, such as simple

majority rule with an odd number of participants, it is true; in others,

however, it is not. In the Security Council it is quite possible to

have two factions each of which is able to block the passage of a

motion. Fbr this reason, the coalitions in the set

B = (AlAeLandieL)

are ealled blocking coalitions.

Theorem 5- B L L.

The main purpose of formulating legislative schemes mathematically

is certainly not to prove such theorems as these -- they axe much too

trivial to be of any interest in and of themselves. Rather, we want

to lay out in abstract form what one can mean by such a scheme so as

better to be able to see the implications of a particular seheme and to

compare several competing sehemes. Once it is seen as a mathematical

system, then one can use mathematical techniques and reasoning to get at

the implications involved. AB an example, consider the following

schemes:

1-a three-man committee in which each person has one vote and the
the decisions are reached according to najority rule; and

2-a three-man committee in which man 1 haa two voter, and each of
the other two men have a single vote. Decisions are made
according to majority rule, except that when there axe ties
maa 2 breaks the deadlock. (Such a scheme might arise if each



of the men represented a faction, and it vas deemed that the first
faction was stronger than either of the other two, aad the second
was somewhat stronger than the third;)

It is perfectly evident that the first scheme is egalitarian, giving

each member of the committee equal weight. The second scheme is equrolI

clearly not egalitarian: the third man is in a far weaker position than

the other two. It is not quite clear intuitively how much better off

man 1 is than man 2, for although 1 has two votes, 2 can break ties.

These differences are intuitively clear mad the way to show it

conclusively is, of course, to look at the winning coalitions. In

scheme 1 they obviously are

w = ((11 2)0 (1, 3), (2, 3), [1, 21 31).

In scheme 2, we must look more earefUlly. There is here the possibility

that the one man coalition (1) may be winning. However, against (21 3)

that would result in a tie, which 2 breaks, so (21 3) is winning and (1)

is not. It is easy to see that (1, 2) and (1, 3) axe also winning, and

so, of course, is (1, 2, 3). But this is the same set of winning

coalitions, so in point of fact these two apparently different sets of

rules are identical.

If you look hack at the rules, you will immediately see through them,

but the point is that you probably didn't at first. AB the size of the

committee increases and as the rules are made more complex, it is less

and less likely that one vill be able to see their implications unless

he carries out same sort of formal analysis. Simply listing the winning

coalitions is one way. This can be tedious however. In Chapter 3 we

will describe a general formal analysis which is applicable to the a

priori evaluation of power in a legislative scheme and in a wide variety

of other somewhat related situations.

The remainder of this section is devoted to laying the backgamound

for these pursuits and as an illustration of the use of set fUnctions.



Suppose we attach the nnlber 1 to eadh of the winning coalitione in a

legislative sdheme and the nuMber 0 to the lamina coalitions, then Ye

have a set fOometILonvtidh is simply equivalent to stating the winning

coalitions. Pormally, such a fUnctionwould be introduced as f011ows:

1, if A e W

0, if A e L

This fOnction v will be known as the characteristic fanction of the

legislative scheme W. Since ve imposed some restrictive conditions

on WI it must follow that v also meets some restrictive conditions.

We could state a 'whole variety of them, but they would not all be

independent of eadh other. So we shall choose a particular set of

three vhich are rairly standard in literature, namely:

v (11) = 1,

if A and B are disjoint,

v (A U B) > v (A) + v (B).

These we prove: The first f011ows from theorem 2 above. The second is

an immediate consequence of theorem 1. The third is slightly more

complicated. If A and B are both losing, the right side v (A) + v (B) = 0

so the inequality or the equality holds. If they are not both losing,

then by theorem 4 only one is winning, and by condition iii on if,

A U B is winning. So in that ease, v (A U B) = 1 2. v (A) + v (B);

hence the equality holds.

We claim that no other conditions independent of these follow from

the assumptions about W. To show this, we will prove that any set

function having values only 0 and 1 and meeting these conditions defines

a legislative scheme if we take W = IA 1 v (A) 1].



i. w 4 0, since v(U) = 1 implies U e W.

ii. If P. e W and 71 e W, then v(A) m 1 = v(k), and so

1 = v(U) = v(A, U A) , v(A) + v(i) m 1 + 1 = 2,

but this is impossible. Thus, we must conclude that A or A E L.

iii. Suppose A e W and AC B. From the properties of seta it is easy

to show that B = A U (B - A) and that A n (B - A) = 1 so

v(B) v[A. U (B - A)] > v(A) + v(B - A) > 1.

but since v assumes only the values 0 and 1, this means v(B) = 1,

hence B e W.

Thus, the idea of a lesislative scheme and of a set fanction with values

0 and 1 and meeting these three conditions axe essentially the same. One

virtue in noting tbis identity is that we have transformed our qualitative

problem into one involving numbers, and so we may be able to use some of

the quantitative mathematics about which so mach is knawn.

It also turma out that ve have arrived at some conditions on tbis set

fUnction which are extremely important in a part of game theory. Fram

time to time we shall mention parts of game theory as illustrative of an

application of same of our mathematical ideas, and, in fact, before we

are done we will have sketdhed same of its central features. The central

problem studied in game theory is this: several people -- called plsy-

ers -- axe in a situation where each has a nuMber of possible courses of

action. Depending upon which courses are elected by the several players,

there vill be different consequences for them. EaLn player is supposed

to have preferences (not in general the same pattern of preferences for

all the players) among these consequences, and he is assumed to try to

select his action so as to get what he wants. The complication for him,

and far the theory builder, is that his outcome depends not only upon

what choice he makes, but upon the choices of each of the others. The

only infarmation he has about the other players is their preference

patterns and that they too axe trying to dhoose their action so as to

get what they want. The problem is to use this information to guide

action and to predict what will happen.



At present the theory divides into several parts. One important

distinction is whether there are only two or more than two players.

And when there are more than two, another distinction is whether they

axe free to cooperate with one another if they wish or not. In the

ease where cooperation is permissable, one proceeds as follows: Suppose

that a coalition A -- a subset A of the set of all players -- elects to

form and to cooperate, then it will be faced by some sort of opposition

from the other players. The worst possible ease it can meet is if the

remaining players, A, also form a coalition; this is the worst because

can do everything, and possibly more, than any less unified opposition.

So a conservative evaluation of A's strength is Obtained by examining

the two "person" game which results when A and Kare pitted against one

another. Using the theory of two person gsmes, which we shall not go

into here, it is possible to obtain a suitable numerical measure of this

strength; this number ve denote by v(A). If this number is computed for

each possible coalition, then a real valued set function v results. It

is known as the characteristic function of the game.

It is not by coincidence that we have used the same symbol and name

for this function as for the one introduced in connection with a legisla-

tive scheme, for it can be shown mathematically that the characteristic

function of any game must meet two, and only two conditions:

I. v(16) = 0,

ii. if A, and B are disjoint subsets of U,

v(A, U B) , v(A) + v(B).

These conditions say, in effect, that the null set has no strength, and

that the union of two disjoint coalitions is never weaker than the sum

of the strengths of these two coalitions taken separately. The union

can do everything the separate coalitions ean, and possibly more.

It is not unreasonable that a measure of the strategic possibilities

in a legislative scheme should be a special ease of such a measure for

genes in general, since voting on bills is a conflict of interest



problem which ought to be encompassed in some fashion by the theory of

cooperative games.

We will not try to push these ideas any further now, for we are in

need of more tools. In Chapter 3 we will continue our program of evalu-

ating the power structure of legislative schemes; however, there is no

reason to restrict it to that special case, so we Shall cast it in the

framework of general characteristic fanctions.

Problems

1-Prove theorem 4: if A, B e W, then A n B 4).

2-Prove theorem 5: B / L.

3-Eamine the following legislative schemes by presenting the sets
WI L, and B:

a-a four man committee [alb,c,d) in which they have 2, 1, 1, and
2 votes, respectively, under majority rule, and where man b can
ean break ties. Note this is case 2 above of a three man
committee with a two vote fourth man added. What has happened
to man 3?

b-(a0b1c1d) in which they have 4, 3, 2, 1 votes, respectively,
under majority rule, and where the chairman can break ties.
Show that securing the chairmanship is equivalent to obtaining
an additional vote.

c-(alb,c1d,e) in which they have 1, 1, 1, 3, and 5 votes, respec-
tively, under majority rule; man a has veto power which can be
overridden by a 2/3 majority.



CHAPTER II

ILA!II0NSJ ORLERINGS. Igfia

2.1 PRODUCT SETS

Having explored something of the generation of new sets from old

by selecting amaller sets -- subsets -- from a given set, we turn in

this chapter to questions of building up larger sets from two or more

smaller ones. An automobile manufheturer may advertise that his cars

come in ten colors and six models, giving the customer a choice from

among 60 combinations. It is obviously much more compact to list the

set of ten colors and the set of six models separately than to list all

60 combinations. Similarly, a menu listing ten appetizers, three soups,

twenty entrees, five vegetables, ten desserts, and four beverages offers

the diner a Choice from among 120,000 complete eti.US. Only the paper

induetry could want this set listed in explicit detail. EVerywhere you

look you will find enormous: sets presented compactly as several much

smaller sets with the indication that the overall set is generated by

making a single choice from each of the simpler sets. Each of these is

an example of what is known in mathematics as the product of several

sets.

The easiest case to deal with is only two sets A and B. Then the

set of elements of the form (a,b), where a c A and b e B, is known as

the (Cartesian) product of A and B; it is denoted by the symbol

A >< B. In order to encompass the menu and many othei examples, we

must define this concept for more than two sets. For that example we

have se,s A (standing for appetizers), S (for soups), El V, D, %ad B,

and,the set of all possible meals, A .< S >< E >.< V >< D B,

coneists of all possible elements of the form (als,e,v,d,b), where

a c A, s c 8, etc. In general when you have more than two sets it is

kind of messy and, if there are enough of them, taxing to use totally

diMrent symbols for each. So it is customary use a single generic
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symbol for all the sets and to differentiate among them b/ indices. If

there axe n sets, it is simplest to index them Ai, A2,..., A. Using

this notation, then we can make the following general

Definition: Let the sets Ai, A21..., An be given. The(Cartesian)

product of these n sets is defined as

Ai >< A2 ><...>< An = ((al,a2,...,an) i a
1

A.1, a
2

E A
2'

... 'an e An ).

The symbol on the left is often abbreviated by iElAi.

It is important to realize that a definite order is involved in the

several entries of the elements of the product space. The first entry

is always filled by an element from Ai, and not from any of the other

sets, the second from A2, and so on. This is not to say that the same

element might not be in two or more of the sets, or indeed that several

of the sets may not be identical, but rather that they axe distinguished

as playing different r. -ts by their ordering in the product set. The

ftult cup in the set of appetizers is distinguished from the fruit cup

in the oet of desserts only by being in the one set rather than the

other.

In engineering and physical problems one

product space is almost painfUlly familiar, namely

the coordinate system drawn in Fig. 11. To see

that this is a product space, let X denote the set

of points on the x axis and Y the set of points on

on the y axis, then the set of points in the whole

;lane specified by these axes is simply X >< Y. If

ire want to work with a three dimensional Euclidean space, then we add the

third coordinate Z and the whole space is X >< Y >< Z. Clearly, this can

be generalized to n dimensions. Since in physics it is often useful to

think of the point (x,y) in the plane as specifying a vector from the

origin to that point, it is customary to call the elements of

Fig. 13.



X1 X X2 X...X Xn, where each of the Xi are the sets of real numbers,

(n-dimensional) vectors. The term n-tusle is also widely used,

If S = Ai X A2 X...X An, then we speak of each Al as a comsonent

of the product set S. Components play much the same role as the

coordinates of u geometrical space, though, of course, they need not be

the number system or any other particular set. Since we know that the

coordinates of a geometrical space are not unique -- any rigid rotation

will do just as well -- we cannot in general expect a product space to

have a unique decomposition into components.

Problems

1-Present a non-trivial industrial example of a product space.

2-Let A = (male, female), B . (old, young), and C .(skilled, unskilled).
Write out all of the elements inAxBand inAXBX C.

3-Using the same sets as in problem 21 express the following set
(which, in words, consists of all categories of old workers) in the
most compact way that you can: [(male, old, skilled), (male, old,
unskilled), (female, old, skilled), (female, old, unskilled)).

4-Suppose S = A X B and T = C>< D. What does it mean if someone
asserts S = T ?

5-Suppose A = (011121314,51617,8,9). Where have you seen A X A
arise?

2.2 RELATIONS

The familiar term "relationship" connotes a whole class of

properties which relate one individual to another individual of the

same general type -- those properties X which appear (at least

implicitly) in sentences of the fOrm "a has the relationship X to b."

Fbr example, Mr. Smith is a superior of Mr. Jones. Here the relation-

ship is "is a superior of" and it holds among people. Other common

examples of relationships are "likes" between people "is in a state of

war with" between countries, "is less than" between numbers, "is the
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mother of" between people, etc.

The crucial features about these examples seem to be three: First,

a relationship holds between pairs of things of the same general type.

Second, it generally holds only between some pairs, and not between

others. Fbr example, lmother of" holds only between certain selected

pairs, namely: each mother and her daughters and sons. Third, sometimes

the order in which the two elements are taken matters: if Jane is the

mother of Mary, then Mary is not the mother of Jane. In other cases,

the order may not matter, such as "in a state of war."

Suppose a set A is given and that R denotes a relationship, i.e., a

property which may or may not hold between ordered pairs of elements.

If a,b E A0 let us write aft if the relationship holds from a to b. If

it does not Lold, we write Jib. The list of all pairs (a,b) such that

aRb is said to be the relation on A induced by the relationship R.

Actualiy, we will use the same symbol R to denote both the relation on

A and the relationship which induces it; there is a slight ambiguity here,

but it is not really serious.

But what is a listing of all these pairs (a,b)? Simply a subset of

A >< A. It is the subset which is singled out by the given property R.

Conversely, Iven any subset of A >< A one can always find a relation-

ship which singles it out. Thus, we are led to the following

Definition: An (abstract binary) relatim over a given set A is a

subset of A >< A. If R denotes the relation, i.e., subset of A .< A,

we write aRb if (a,b) E R and aTho if (a,b) R.

The prefix "binary" to th3 word relation is needed because we choose

to deal only with pairs of elements; there are, of course, trinary

relations (subsets of A >< A >< A), etc., but these seem to be of con-

siderably less importance. The word "abstract" is also prefixed because

we have hot specified the property which singles out the subset R of



A >< A. For a given set A, it can easily happen that two quite

distinct relationships single out the same subset, in which case we

have two different realizations of the same abstract relation. Far a

specific set of people, it is entirely possible for the relationships

"is a friend of" and 4works with" to be identical, though in general

they art distinct.

Problems

1-Let A = (United States, Great Britian, Germany, Japan, Russia).
Write out the relation " was at war in 1944 with" over A; the
same thing in 1939.

2-Can you see haw to treat a business flaw chart and rn organ-
izational diagram as a relation? Give a simple example with
which you axe familiar, explicitly stating what relationship
is involved and what the relation is.

2.3 THREE IMPORTANT SPECIAL PROPERTIES

Here, as almost everywhere in mathematics, one continually has his

eye out for the recurrence of the same general property in a number of

important relations. If such a property is detected, it is often usefUl

to isolate it and to see haw it interlocks with others you already know

about. We have done a little of this sort of thing before, e.g., when

we isolated those classes of subsets called algebras of sets. And we

will continue to do it. In this section we shall be concerned with

three general requirements on relations which have loomed very important

in mathematics.

First, we shall consider relations in which aRa holds for every

E A. This is true for the relation "less than or equal to" between

numbers. It hoAs by virtue of the fact a = a, so, trivially, a > a.

It is true for the relationship "lives in the same house as," since a

person certainly does live in the same house as he does. It is so

tautological in these cases, one might begin to wonder if it doesn't
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always hold, but "mother of" quickly dispells that conjecture. In that

relationship, not only does aRa fail for at least one a e A, but aiia for

every a e A. The same is true for "greater than" between numbers. Still

other relations have aRa for some a E A, and aiqa for the remainder. An

example is the relationship "depreciates," for some people depreciate

themselves, others do not.

Definition: Let R be a relation on the set A. R is said to be

reflexive if aRa for all a E A; it is said to be irreflexive if

aiia for all a E A; and it is said to be non-reflexive otherwise.

In these terms, "less than or equal to" and "lives in the sane house

as" are reflexive; )nother of" irreflexive; and "depreciates" is in

general non-reflexive. It will be recalled that we spoke earlier of

inclusion among subsets as being reflexive. This is compatible with

the present definition since it is easy to see that inclusion among the

subsets of U is a relation on 2U which is reflexive.

In a good many applications, it is a question of convention,

convenience, or taste whether or not to interpret a relation as reflexive.

FOr the relationship "is in a state of war with" one must decide whether

to treat a civil war or a revolution as a war between a country and it-

self. For "communicates to" shall we say a person communicates to him-

self or not? If we say that "a is the brother of b" when a and b have

the same parents, then "brother of" is reflexive, but we would just as

easily define it so that it is irreflexive. A certain amount of judgment

is sometimes needed :111 these ambiguous cases.

We turn to the next genex-1 category of relations. Earlier we

emphasized that generally the order in which we write the elements

involved in a relation is material, that aRb is quite a different thing

from bRa. Think of "greater than" or "mother of." Bait for some re-

lationships the order doesn't really matter; there is a perfect symmetry.



"Lives in the same house as" is a case in point: if a lives in the

same house as b, then b lives in the same house as a. Other examples

are: "equality" between numbers or between sets, "is married to," and

"is the same size as." On the other hand, there are relations like

"mother of" where if aBb we know definitely that biia. Still others are

of a mixed qualitY.

Definition: Let R be a relation on the set A. R is said to be

symmetric if whenever aBb holds, so does bRa; it is said to be

anti-symmetric if whenever aBb holds, biTa; and it is said to be

non-symmetric otherwise.

The third important property, which we have already run into with

inclusion, is typified by any comparative concept such as "larger than":

if a is larger than b, and b is larger than cl then we know that a is

larger than c. This is true of set inclusion, of "greater than or equal

to," of "lives in the same house as," etc. The other extreme would, of

course, be a relation where if aRb and bRc then we would know with

certainty that aRc. Fbr example, if a is the mother of b and b the

mother of c, then a is the grandmother of c and so not the mother of

C. In general, "in a state of war with" satisfies the same condition,

but there axe exceptions, as vhen Communist China, Nationalist China,

and Japan were mutually at war -- at least to all intents -- in the

middle forties.

Definition: Let R be a relation on the set A. R is said to be

transitive if aBb and bRc always imply aRc; it is said to be

intransitive if aRb and bile always imply ailio; and it is said to be

non-transitive otherwise.

2.4 EOIVALENCE RELATIONS

Any relation which is simultaneously reflexive, symmetric, and

transitive is called an equivalence relation. This special word is



introduced because these relations appear often and play an important

role in many mathematical situations. The equivalence relation "lives

in the same house as" illustrates vividly the central feature of any

equivalence relation: it divides the population into disjoint subsets,

namely, the sets of people who live in the same houses. In other

words, it induces a partitioning of the given population. Let us

emphasize that this feature is not unique to "lives in the same house

as;" it is true of all equivalence relations.

We say than an equivalence relation R partitions the set on which

it is defined into equivalence classes, wtich are characlerized as

follows: any two elements in the R relation are in the same class,

and any two not in the R relation are in different classes. Conversely,

any partitioning of a set induces the obvious equivalence relation on

the set. Thus, the idea of a partitioning and of an equivalence relation

are substantially the same.

The best known example of an equivalence relation 1:1 of course,

equality. It is in a sense trivial, however, for the equivalence

classes of the equality relation each consist of a single element,

whereas, in general, at least some equivalence classes will have more

than one element. The idea of an equivalence relation is therefore, a

slight, but important, generalization of equality. It says in effect

that the elements in the same equivalence class are "equal" to each

other with respect to the property inducing the relation, even though

they are not identical, as they would have to be for equality. More

often than not, we are concerned with equality along one dimension or

another, but not strict identity. Often we wish to group things with

respect to some parameter and to treat them as all equal in the rest

of the analysis. This is what one is doing when one groups people

according to income levels, or according to religious affiliation, or

profession, etc.



Problems

1-FOr each of the f011owing relationships state their reflexivity,
symmetry, and transitivity properties:

is the brother of, sells to, gives orders to, is the ancestor
of, implies, is the son of.

2-Frove formally that the equivalence classes of an equivalence
relation form a partitioning.

3-Criticize the following "proof" of this erroneous statement: if a
relation R on A is symmetric and transitive, then it is reflexive.

Proof. FiFor any a e A, the fact that the relation is symmetric means aRb

implies bRa. But by transitivity, aft and bRa imply alia, so the relation

is reflexive.

*2.5 MATRIX AND GRAPHICAL REPRESENTATIONS OF RELA.TIONS

Whenever one has actpally to work with real subsets, in contrast

to making general theoretical statements as we have been doing, there

is a problem of how best to present them. AB a special ease of sub-

sets, the same problem exists for relations; however, just because of

their specialness, some convenient methods exist for relations which

axe not applicable in general. There are two major methods: a systematic

tabular one and a less systematic, but often more revealing, graphical

one. Neither of these methods is terribly practical if the underlying

set has more than, say, 100 elements.

The tabular scheme is based on the almost trivial observation

that a relation on a finite number n of elements amounts to nothing

more than a two dimensional table with n rows and n columns. In the

entries one mark is placed if the relation holds from the element

identified with that row to the element identified with that column;

another if it does not hold. Mbre specifically, if we number the ele-

ments in A from 1 tnrough n, then ve put one mask in the entry of row

i and column j if iEj, and another if jj. The most widely used scheme

is to use 1 if iRj, and 0 otherwise. Example: Let A = (102,304) and



R = ((1,2), (2,1), (2,2), (2,3), (2,4), (4,3)), then the array is

1 2 3 4

1 010 0

2 1 1 1 1

3 0 0 0 0

4 0 0 1 0

This array, ignoring the row and column lables, forms a 4 by 4 matrix

with only the entries 0 and 1.

Other possible entries have been suggested and used -- the choice

of convention depends very much upon what one wants to find out and how

one is going to do it. Among the other suggestions, two will be

mentioned. Enter a 1 in the (i,j) entry if iRj and a -I if iij. Let U
be same set (uspoilly having some relation to the problem under investi-

gation). Enter U in the entry if iRj, and 0 otherwise. The first

suggestion results in an ordinary real-valued matrix, just as when

0 and 1 are used; the second, with its entries sets, is a new kind of

beast known as a Boolean matrix. We w/11 not look further into either

of these representations of a relation.

Returning to the 0,1 representation, suppose that the elements of

A are people in some industrial establishment and that the relationship

under consideration is "communicates to." In practice, there axe

serious questions as to what ane shn11 define 'communicates to" to mean

but presumably it would be defined in such a manner that the president

communicates to his vice presidents and not to a fbreman or a janitor.

We need not worry about such points here. If we choose any two people

a,b 4 A, we may ask: does a communicate directly to b? If not, is it

possible for him to so via some intermediary c? Or by several intermed-

iaries? Obviously, there is no problem to answering the first question;

we simply look in row a of the matrix representation and determine whether

there is a 1 or a 0 in column b. But to answer the second question, we

must simultaneously look for a 1 in row a, column c and in row c, column b,



and since ve do not care who the intermediary is we must do this for each

possible c. And when we go beyond two-step connections, the problem

rapidly becomes very messy. What ve must find is a systematic way of

using matrix operations to answer such questions.

Let us denote by R both the relation and its matrix representation,

and let R
ij

denote the entry, either 0 or 1, in row i and column j of

tbe matrix R. We note that the product Ria
cRdb

is 1 if and only if

= 1 and Reb = 1; otherwise, it is 0. Thus, there is a two-stepRex

path from a to b via c if and only
if RacReb =

1. But since we do not

care which person c is, there is a two-step path from a to b if and only

if the sum

RalRlb Ba2R2b BanRnb RaiRib
= 1

is greater .11an 0. PUrthermore, the value of the sum equals the number

of people in A who can serve as intermediaries from a to b.

But to anyone knowing matrix algebra, this sum is very familiar; it

represents the entry of row a, column b in the matrix obtained by

multiplying R by itself -- in R. Thus, simply squaring R gives up

at once the number of two-step paths between each ordered pair of

elements from A. If R represents direct communication, R2 the two-

step ones, it is plausible to conjecture that R3 gPres the number of

three-step ones, and in general lilt gives the number of k-step ones.

This conjecture is easily verified.

The main virtue of this observation is that it reduces a fairly

complicated counting problem to a very systematic procedure -- matrix

multiplication -- vhich can be carried out by a clerk or by a high

speed computer if the matrices are very large.

You may wonder what, if any, axe the matrix correlates of

reflexivity, symmetry, and transitivity. First, it is 2asy to see that



a relation is reflexive if and only if all the entries in the main diagonal

are l's. The relation is transitive if and on/y if whenever an entry of

R
2

is non-zero, the corresponding entry of R is also non-zero. This we

can see as follows: If the (10o) entry of R2 is positive, then there

exists at least one b e A such that ab and bile. But if R is transitive,

this implies aft, and so Bac =1. The converse is equally easy. The

symmetry of a relation is not best seen in terms of matrix multiplica-

tion, but in terms of the symmetry of the matrix R. Corresponding to

symmetry in a relation is perfect symmetry about thi. main diagonal, as

in the following example

0 1 0 1

1 1 0 1

0 0 0 1

1 1 1 0

It is reasonably evident that these three conditions do not combine

into a single simple condition for an equivalence relation (which, it

will be recalled, is reflexive, symmetric, and transitive). Nonetheless

there is one fact about the matrix of an equivalence relation which is

worth noting. If ane numbers the equivalence classes from, say, 1 to s,

and then numbers the elements in the first equivalence class successive-

ly from 1, those in the second successively from the last number in the

first class, and so on, then the l's in the matrix will appear as non-

overlapping squares about the main diagonal Fbr example,

1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1



represents the equivalence relation with the equivalence classes

(1,2,3), (4), (5,6), (7,8).

For computational purposes, the representation of relations by matrices

is general4 effective, but for nunderstandine the relation

they leave a good deal to be desired. Most of us do a lot better with

same sort of diagramatic representation, of which flow charts, organ-

icational diagrams, and engineering schematics are typical. The generic

mathematical term for such drawings is an oriented (topological linear)

graph. Formally, an oriented graph is a collection of points and

directed lines connecting them, as in Fig. 12.

Fig. 12

Let it be clear that this use of the word "graph" is somewhat difierent

fram the onE with which you are already familiar: the graph of a

function on a two dimensional plot.

In diagrams of oriented graphs it is customary to use a single

undirected line between points a and b if there is both a directed line

from a to b and from b to a. (This we have done in Fig. 12.)

In the general mathematical concept of a graph there may be any

number of directed and undirected lines between a pair of points, but

we shall restrict our attention to the case where there either is no

line at all connecting them, or a single directed line, or a single

undirected one. (Terminology: the points are often called nodzs or

vertices, and the lines, branches or arcs).



It should be clear how to represent a relation by a graph. Distinct

points are chosen in the plane, one corresponding to each element of A.

If aBb, we draw a directed line fram a to b. It does not matter where

in the plane we place the points, so long as they are distinct, nor

does it matter whether we draw straight or curved lines. Allthe graphs

in Fig. 13 represent thc same abstract relation, and they axe all equal

to one another. (The numbering of the points is introduced to facilitate

5 2

Fig. 13

2

your seeing the identity of the graphs.) Distances and angles are not

at all involved in these representations. On the other hand, there

can be great psychological differences among several different graphs of

the same relation. Consider those shown in Fig. 14. Most people looking

Fig . 14

at the f.irst drawing will speak of it as a simple hierarchy. Po some

people the second suggests "the man behind the throne," and to others a

simple hierarchy with a bottleneck. The third elicits the feeling that

there is a central person in a focal position of leadership. But, they

are the same graph drawn in slightly different ways. This is not to say

that vertical organization of the drawing cannot be used to convey some

information, but only that it always seems to even when such was not

intended.
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The graph of a reflexive relation has a closed loop at each point:

. The graph of a symmetric relation has only undirected lines. The

graph of a transitive relation has no configurations of the type shown at

the left of Fig. 15, only those on the right. Frau these remarks it is

Fig. 15

easy to guess what an equivalence relation must look like: clusters of

points with all possible lineswithin each cluster, and none between them.

An example (with the closed loope at each note omitted) is shown on the left
of Fig. 16. The right hand graph is,

Fig. 16

however, the same relation. We show this to emphasize how difficult it

can be to detect the properties of a relation drawn in graphical form if

there axe no initial hints as to how to organize the drawing. The same

remark tends also to hold for matrix representations.

One further graph theoretical idea is needed in the following section.

Consider the two unoriented graphs (representations of symmetric relations)

shown in Fig. 17. The main difference between these is that the one on

Fig. 17

)/
*,,



the left has a closed loop of lines: aBb, bRc, ad, and dRa; the one on

the right does not. Whenever an unoriented graph fails to have such

loops, it ic called a tree (the reason being fairly obvious). Such

graphs play an important role wherever a biftircating decision process is

involved.

Possibly the most extensive application outside of mathematics

proper of relatirla and their representations is in that part of social

psychology known as sociometry. The central thesis of this discipline

is that certain of the relations which exist and can be observed in

groups of people are crucial to an understanding of the behavior of

groups, and there is an extensive literature exploring empirical data,

relating it to mathematical properties of relations, and probing the

mathematics of relations itself. A recent survey of this material is:

Lindzey, G. and Borgatta, E. F. "Sociometric Measurement," Handbook of

Social Psychology (G. Lindzey, ed.), Addison-Wesley, Cambridge (1954),

405-448.

*Problems

1-Write the matrix representation of the relation having the follow-
ing graph:

-.)...

Draw the graph corresponding to this matrix:

1 1

1 1 1

1

[0

0 1

1 0 0

0 1 1

0 1 -1

0 1

0 0

0 0

1 1 ij

2--Ftr the last matrix, how many three-step paths are there from
1 to 5, fram 2 to 4?



3-Can you see any difficulty in the interpretation of the entries of

ic as the k-step paths in the relation represented by R.

).-What does the matrix condition R
2
= R mean for the relation

represented by R?

*2.6 GAMES IN LICTENSIVE FORM

In section 1.9 we mentioned one mathematical construct which arises

in the theory of games (which is the current mathematical model for

conflict of interest among people or organizations), and here we want

to discuss another which illustrates the use of some of the ideas we

have so far developed. The material given here arises at the beginning

of game theory, when one is first trying to abstract fmto mathematical

form what it is that the rules of a parlor game actually tell you. First

of all, the rules of any parlor game specify a series of well defined

moves where each move is a point of decision for a given player from

among a eet of alternatives. The particular alternative chosen by a

player at a given decision point we shall call the choice, whereas the

totality of choices available to him at the decision point constitutes

the move. A sequence of choices, one following another until the gane

is terminated, is called a 2122:. Let US suppose that in one game (at

some stage of a play) player 1 has to choose among playing a king of

hearts, a two of spades, or a jack of diamonds, and that in another

game a player, also denoted 1, has to choose among passing, calling, or

betting. In each case the decision is among three alternatives, which

may be represented by a drawing as in Fig. 18.

But how ean these two examples be considered

equivalent? Certainly it is clear from common

experience that one does not deal with every three-

choice situation in the sane way. One might if they

were given out of context, for there would be no other considerations to

govern the choice; but in a game there have been all the choices preced-

ing the particular move, and all the potential moves following the one

under consideration. That is to say, we cannot truly isolate and abstract

* The material in this section is almost identical to ID, 39-.44 of
Luce, R.D. end R. Raiffa, games and Deoisiqns, John 1iley, New York, 1957.
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each move separately, for the significance of each move in the game

depends upon some of the other moves. However, if we abstract

all the moves of the game in this fashion and indicate which choices lead

to which moves, then we shall know the abstract relation of any given

move to all other moves which have affected it, or which it may afTect.

Such an abstraction leads to a drawing the type shown in Fig. 19 --

to a tree. The number associated with

each move indicates which player is to

make the move, and therefore these

11 .-""snumbers run fram 1 through n, if there

axe n plbsfers. In the example of

Fig. 19, n . 4, and we see that all

the moves, save the first, are assigned

to one of the players; the first move

has 0 attached to it. A move assigned to "player" 0 is a chance move,

as, for example, the shuffling of cards prior to a play of poker. To

each chance move, which need not be the first move of the game, there

must be associated a probability distribution, or weighting, over the

several alternative dhoices. 7.1) a chance move entails the flipping of

a fair coin, then there are two choices at the move and each will occur

with probability 1/2.

Fig. 19

As we naid, the graph of a game is a tree, whir.11 is called the Emp
tree. It may not seem reasonable to assume the graph of a game is a

tree, for in such games as dhess the same arrangement of pieces on the

board can be arrived at by several different routes, vhich appears to

mean that closed loops of branches can exist. Hourever,, in game theory

we choose to consider two moves au different if they have different

past histories, even if they have exactly the same possible future

moves and outcomes. In games like chess this distinction is not remily

important and to make it appears arbitrary, but in maw ways the whole

conceptualization and analysis of games is simplified if it is made.

The tree character of a game is not unrelated to the sinking feeling

one often has after making a stupid choice in a game, for, in a sense,



each choice is irretrievable, and orce it is made there axe parts of the

total game tree which can never again be attained.

The tree is assumed to be finite in the sense that a finite number of

nodes, and hence branches, is involved. This is the same as saying that

there is some finite integer N such that every possible play of the game

terminates in no more than N steps. Such is certainly true of all parlor

games, for there is always a "stop" rule, as in chess, to terminate

stalemates. Tb say the tree is finite is not to say that it is small and

easy to work with. Fbr example, card games often begin with the shuffling

of a deck of 52 cards, and so the first 0 move has 52!, i.e., approxi-

mately 8.07 x 10
67

, branches stemming from it. Clearly, for such games

no one is going tc draw the game tree in full detail!

The next step in the formalization of the rules of a game is to

indicate what each player can know when he makes a choice at any move.

We axe not now assuming what sorts of players are postulated in game

theory, but only what is the most that tLay can possibly know without

violating the rules of the game. Clearly, there is the possibility that

the rules of the game do -ot provide a player with knowledge on apy

particular move of all the choices made prior to that move. This is

certainly the situation in most card games which begin with a chance

move, or where certain cards are chosen by another player and placed

face dawn on the table, or where the cards in one player's hand are not

known to the other players. Indeed, it may be that a player at one move

does not know, and cannot know, what his domain of choice was at a

previous move! The most common example of this is bridge where the

two partners must be considered as a single player who intermittently

forgets and remembers what alternatives he had available on previous

moves.

Tb suggest a method to characterize the information availa ble to a

player, consider a game whose tree is that shown in Fig. 20. The dotted

lines enclosing one or more nodes are something new in our scheme; as we
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shall see they emn be used to characterize

the state of information when a player has

a move. Let Us suppose that the rules of

this game assert that on move 1 player 2

must choose among three alternatives denoted

a,b, and c. Regardless of player 2's choice,

player 1 has the second move. We shall

Ippose that the rules of the game permit

player 1 to know whether or not player 2 selected choice a. If player 2

chooses b, then the rules are such that player I can only know that

either b or c was chosen, but not which. While verbally this mey seem

eomplicated, graphically all we need do is enclose in a dotted line

those moves of player 1 which end up on b or c. The dotted line simply

means that from the rules of the game the player is unable to decide

where he is among the enclosed moves. The single move at the end of

choice a is also enclosed, for if that choice is made player I knows it.

If choice b was in fact made, and if player 1 ther makes choice f (of

course, he does ne. know whether he is making f er i) the next move is

up to player 4. Note that according to the diagram, the rules of the

game make it impossible for him to determine whether he is choosing

between n and o or between p and q.

Fig. 20

In general, the rules of any game must specify in advance which

moves are indistinguishable to the players -- the sets we have enclosed

in dotted lines. Abstractly, there are two obvious necessary features

to these sets of moves -- which are known as information sets. Each of

the moves in the set must be assigned to the same player, and each of the

moves must have exactly the same number of alternatives. Fbr if one move

has r alternatives and another a, where r s, then the player would need

only count the number of alternatives he actuelly has in order to elim-

inate the possibility of being at one move or the other. A third con-

dition, which may be less Obvious, must also be assumed, namely: a single

information set shall not contain two different moves of the same play of

the game tree. The reason for this is the impossibility of devising rules



so that a single player is unable to distinguish between two of his moves

which lie on a single play, i.e., on a Chain of moves from the first moNe

to an end point of the tree.

Returning to Fig. 20, consider player l's information set which has

two moves. Since they axe indistinguishable, each choice on one move

must have a corresponding choice on the other move. It is convenient

in these diagrams to pair them systematically, so f corresponds to i,

g to j, and h to k. It is clear that this correspondence can be gen-

eralized to information sets having more than two moves and other than

three alternatives at each move.

The final ingredient given by the rules of the game is the outcome

which occurs at the end of each play of the game. Almost anything may

be found to be the outcome of same game; for example, the subjective

reward of victory in a friendly game, or the monetary punishment of

seeing someone elee sweep in the pot, or death in Russian Roulette. In

any given system of rules for a game there is same fixed set of outcomes

from which specific ones are selected by each of the plays. Each of the

end points of the game tree is a possible termination point of the game

and it completely earacterized the play of the game which led to that

point, for there is only one sequence of choices in a tree leading to a

given end point tram a fixed first move. We may index these end points

and denote a typical one by the symbol x . Now, if X is the set of

outcomes, the rules of the game associate to each x an outcome tram X

which we may denote by f(x). For example, in a game like tic-tac-toe

the set of outcomes is (player 1 loses and player 2 wins, player 1 wins

and player 2 loses, draw). In this case, and in a wide class of games,

it would be sufficient to state the outcomes for only one of the players,

but in other situations which axe not strictly competitive it is necess-

ary for the elements of the outcome set to describe what happens to each

player.

In summary, then, the rules of any game unambiguously prescribe the



following:

i. a finite tree with a distinguished node (the tree describes

the relation of each move to all other moves and the dia-

tinguished node is the first move of the game);

ii. a partition of the nodes of the tree into n 4- 1 sets (telling

which of the n players or chance takes each move);

iii. a probability distribution over the branches of each 0 move;

iv. a refinement of each of the player partitions into the

the partition of information sets (which characterizes for

each player the ambiguity of location on the game tree of

each of his moves);

v. an identification of corresponding branches for each of the

moves in each of the information sets; and

vi. a set X of outcomes and an assignment f of an outcome f(x)

to each of the end points x or plays -- of the tree.

Ybu vill note how relations have played a role in this description:

foremost as the game tree itself, but also az equivalence relations in

the form of the player partition and the information partition.

In Chapter 3, when we have introduced the idea of utility, we will

see how this complicated structure is translated into a far simpler

mathematical structure which is much more like same of the maximization

problems with which you are familiar.

2.7 ORDERINGS

In addition to relations that partition sets equivalence

relations -- there is another important class of relations, namely those that

tmpose an ordering on the elements of a set. We have already mentioned

several examples of such relations: inclusion among subsets of a given

set, greater than or equal to among numbers, and not poorer than among,

say, suits of different qualities. We see that these three examples are



all like an equivalence relation in being reflexive and transitive,

but they differ in not being symmetric. One mdght be tempted, on the

basis of inclusion and inequality, to suppose that orderings axe

inevitably anti-symmetric, for if AC B and A B, then we know that

BC A is false. But II:not inferior ton raises some doubts about this,

for a person certainly can judge two suits to be of the same quality

without concluding that they must therefore be the same suit. This being

the oases we axe led to the following

Definition: Let R be a relation on the set A. R is called a

quasi-ordering of A if it is reflexive and transitive.

Note, according to this definition any equivalence relation is

also a quasi-ordering, but, of course, the converse is not so.

It seems reasonable to cs,11 a relation like "greater than or equal

to" an ordering, since it orders the numbers according to magnitude,

but why the prefix "quasi"? Not only relations like numerical inequality

are encompassed by the definition, but also relations like set inclusion

which do not manage to string things out in a single "line." Given two

subsets, neither may be a subset of the other. That is to say, two

elements a and b may be incomparable in the sense that neither aRb nor

bRa holds. This is the reason we qualify the word "ordering" by "quasi."

Another example: suppose that in same population we measure the weight

and height of the people. Let xl denote the weight of person x end x2

his height. Define the relation "smaller than" over the population to

be: x is amaller than y if both x weighs no more than y and is ro taller

than y, i.e., xl < yl and x2 < y2. One can readily verify that this is

a quasi-ordering of the people and that there may be pairs of people

who are not compErable, namely: those x and y such that x weighs more

than y but is at least a short as y and those such that x is as light

as y and is taller than y. This kind of relation can, of course, be

extended to more than two numerical dimensions, each of which is ordered

according to magnitude.
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It is frequently convenient to decompose a quasiordering into two

separate relations. In the case of inequality into "strictly greater

than" and "equal to." In the case of "preferred or indifferent to"

into "strictly preferred to" and "indifferent to." Formally, if R is

a quasi-order, we define two relations P and I as follows:

an if aRb and bRe

aIb if aRb and bRa

It follows directly Pram the transitivity of R that both P and I are

transitive. Since R is reflexive, aRa always holds; hence aIa and afa.

Thus P is irreflexive and I is reflexive. Clearly, by the definition I

is symmetric and P is anti-symmetric. So, in summary, a quasi-order

can be decomposed in a natural fashion into a relation PI which is

irreflexive, anti-symmetric, and transitive, and a relation I, which is

an equivalence relation.

It sometimes happens that once we have decomposed a quasiorder into

these two relations, we decide that we are willing to treat each of the

equivalence classes induced by I as a unitary object. That is, we are

actually interested in the relation over the set having these equivalence

classes as its basic elements. There is absolutely no difficulty in

defining a relation which corresponds perfectly to P over this set, for

if A and B are two different equivalence classes and aPb holds for some

a E A and b B, then for a' E A and b' E B, a'Pb' also holds. This

folluws immediately fram the transitivity of R. Thus, for the equiva-

lence classes we define a new relation, call it P again, as follows:

APB if A = B or if, for a e A and b 11, aPb. This new relation is like

set "inclusion" in that it is reflexive, anti-symmetric, Ind transitive.

In other words, it is a quasi-relation which is also anti-symmetric.

Since this special class of quasi-relations is quite important, we are

led to the

Definition: If R is an anti-symmetric quasi-ordering of A, it is



called a partial orderilv of A.

A partial order is almost the same as a quasi-order except that we

can conclude that a = b if both a& and bRa hold; in a quasi-order tle

same condition only allows us to say a and b axe "indifferent" -- which

is to say, equal with respect to the property characterizing the order,

but not necessarily identical elements. Set inclusion is a partial order.

While some interesting orderings do not allow us to make comparisons

among all pairs of elements, others do. Examples: greater than or

equal to, (optimistically') preferences people hold among commodities,

etc. Presumably these are sufficiently important to be given a name.

Definition: A quasi-order R on A is called a weak ordering of A

if every pair of elements is comparable, i.e., if a,b e A imply

that either aBb or bRa or both holds.

Definition: A partial order R on A is called a simple ordering of

A (it is also called a linear ordering and a chain) if every pair of

elements is comparable.

We note that a simple order stands in the same relation to a weak

order as a partial order does to a quasi-order: the former in each

case being anti-symmetric, the latter not.

As we suggested above, if Ai is a set weakly ordered by RI, A2

weakly ordered by and An by Rn, then it is always possible to

induce a quasi-order on the product set A = Al >< A2 )-( >.< An.

Pam:ally, we do so as follows: Let x = x2, .., xn) and

y (y11 y21 yn) e A, then we define xRy if and only if

x2'19r2,
..., and x R y

n n n'

Themostfamiliarexamplesofthisarewheneachkis the set of real
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numbers ordered by magnitude, as was the case in our example.

It is also always possible to induce a weak ordering on A, and in

many contexts this type of weak order is important. Roughly speaking,

what we do is order the n sets A
i
according to their "importance," and

then require that a more important "dimension" always have precedence

over a less important one. Example: a military commander may have

several courses of action, each of which will have repercussions in

several quite different domains. Be might evaluate them according to

his potential for future action, the damage inflicted on the enemy, loss

of life among his own troops, and his personal gain in prestige. If he

judges these consequences to be of overriding importance in the given

order, then he will always choose the course of action which makes his

potential for fUture action greatest, but if they are all the same in

that dimension he will drop to the next and choose the one which results

in greatest enemy damage, but if they are also all the same on that level,

he will drop down to the next, and so on. A very familiar example of

this kind of hierarch of dimensions is the ordering of words in a

dictionary: the first letter governs the ordering except when two words

have the sane first letter, in which case the second does, and so on.

In general a lexicographic ordering R of the product set A is

defined as follows:

xRy if x1R1y1 and

or if x1R1y1 and y1R1x1 and x2R2y2 and y
2
It' x

2
or....

To close this section on orderings, let us append a word of caution.

Throughout mathematics orderings of the types discussed are so Ubquitous

and usefUl that one tends to get a little rigid about them. This seems

to be a particular problem when it comes to formulating socially and

psychologically interesting "orderings" sunh as preferences among goods,

or comparative quality of objects, etc. Much of the difficulty centers
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in the assumption that a preference relation, say, is transitive. One

feels, somehow, that if he prefers a to b and b to c, then he should

prefer a to c. It is certainly a plausible normative statement for

"strict preference," but it is something else again for "preferente or

indifference." Fbr imposing transitivity in the latter case implies

that we axe supposing "indifference" is also transitive. It is doUbtful

if this is often so. We have come back again to the question of dis-

crimination which was first raised when the idea of a set was intro-

duced. By and large people do not, and in some sense cannot, discriminate

perfectly. An example may suggest the difficulty with orderings. Most

people would strictly prefer a cup of coffee with one lump of sugar to

one with five lumps. These same people, however, could be expected to

report indifference between two cups which, no matter how much sugar

they contain, only differ Pram each other in sugar content by a thousandtn

of a gram. If so, then by taking a sequence of cups from one to five

cubes in increments of a thousandth of a gram, we would have to conclude

fram the transitivity of indifference that the person is indifferent

between one and five cubes. Az this is contrary to choice, we have cast

doubt on the widely used assumption that indifference is transitive. TO

get around such dilemmas it is possible to introduce "orderings" in which

P is transitive and I is not, but we shall not go into that here.

Problems

1-What kinds of relations are the following (prove your answers):

a-let "age" mean a person's age in years at his last birthday, and
let the relation be "lx,s the same age as"

b-less than one year's qerence between birthdates

c-at least as tall as

d-let A be a set of cities in the United States, and let the re-
lation be defined on A >< A as the "the greater distance between
two cities in scheduled airline miles."

2-Give significant industrial examples of a quasi-order, weak order,
and a lexicographic order.



3-Just before the definition of a partial order, we sketched how a
quasi-order induces a partial order on the set of equivalence
classes of the indifference relation. We asserted that the in-
duced relation is transitive; prove this.

2.8 FUNCTIONS

The intuitive idea of a fUnction is widespread and of the utmost

importance in almost all science. Essentially, one means by a function

a rule that assigns something to each value of ti!, variable quantity. Fbr

example, if x denotes a real number, then the ftnction f, where

f(x) = x3 , is the rule that assigns the real number x3 to each value x

of the variable. In addition to such power fUnctions of algebra, many

common examples of fUnctions axe known fram trigonometry and the calculus:

the sine, the exponential, the logarithm, etc. It is uswoly made clear

in the calculus that we shall call any rule which assigns a real number

to each value of a real-valued variable x a function. Of course, in

practice attention is largely restricted to continuous fUnctions, or at

worst to those whichtlike 1/(1 - x) and 1/(1 - x) x have only one or

two discontinuities.

Historically, these axe among the earliest notions of a function,

out during the 19th century the concept was broadened until now we have

an exceedingly general and simple definition. Even in the calculus one

begins to see the need to bloaden the concept. For example, consider

the process of taking the derivative of a fUnction. This can be looked

upon as the assignment of one fUnction, the derivative, to another. The

cosine is assigned to the sine, since d sinx = cos X. Thus if you take
dx

the set of differentiable functions as the underlying variable, differ-

entiation assigns to each of these another function. This is very much

like our ordinary idea of a function, except that real numbers are re-

placed by real-valued "ordinary" fUnctions. The sets which represent

the independent and dependent variables are sets of ftnctions not the

real numbers. But other than that, the notion is not very different.

The integral, and many other operations with functions, can be viewed



require special treatment.

Definition: Let D and R be two (not necessarily different or

disjoint) sets. A subset F of D >< R having the property that for

each d e D there exists at least one r c R such that (d,r) e F is

called a fUnction tram the domain D into the range R. The set

[rl r E R and there exists d E D such that (d1r) C F]

is called the imagr of D under F. A fUnction F is called single-

valued if (dlr.), (d,r') c F imply r = r'.

Fbr reasons which are partly historical and partly matters of

convenience, certain special notations are used for functions which

differ fram the usual notation of a subset of the product of two sets.

Historically, the early notions of a function arose and were widely

employed long before this more abstract definition was evolved, and as

a result different notations were introduced. Naturally, these are

better known. In addition, many of the concepts one wishes to consider

about fUnctions ean be more neatly expressed in the conventional

notation (see Chapter 3). There axe four, somewhat different, notations

which we may mention. In these F is simply the name of the function

which is given by tue sUbset F of D >< R; this is not the first time we

have let the same symbol play two different, but closely related roles.

1-F: D -013

2-F: x --0F(x)

F
3- x *F(x)

4 -F

But what of the most common notation of all, F(x); why is that

omitted? It is true that this is the most common notation, but it is

mdslea:!ing and, in fact, incorrect. F(x) denotes the image of the

point x in the dum-sin, not the whole function which describes haw each



point of D is mapped into R. The function is F. We will avoid the

notation F(x) for a fUnctioa.

There is a certain amount of terminology about fUnctions which it is

well to have at one's finger tips. Same of it has already been introduced

and used: domain, range, image, and single-valued. We say that a function

is onto R if its image is R; otherwise, or if we don't know, we say it is

into R. A function which is not single-valued is called multi-valued.

Actually, most often one just uses the word "ftnotion" to mean "single-

valued fUnction," and prefixes it by 1multi-valued" if it is not single-

valued. There are a fair number of synonyms for fUnctions, many of which

have implicit conventions for their use. Among them are: mapping,

transformation, and operator.

There is a perfectly trivial way to avoid ever having to

work with multi-valued fUnctions, but often this trick does not

really buy anything. Suppose F is a multi-valued function fram

D into R. This means that F(d) is not necessarily a single

point in RI but can be a subset of I. But, of course, a subset

of R is a single element in 2R, hence we can always treat F as

a single valued fUnction fram D into 2
R

. The res.:on that this

change is not always valuable can be easily illustrated. Sup-

pose F is a real-valued function of a real variable defined as

follows:

x for x 1
F(x) =

0 for x < 1

At the point 1, F(1) = (0,1). To make F single-valued, we would

then pass fram the fairly simple range of the real numbers to

all possible subsets of the reels, which is an extremely compli-

cated set having none of the neat and familiar structure of the

reels. This is an awful price to pay for being unwilling to skirt

about one obstreperous point in the dclain.
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Suppose that F: D and that D = X >< Y, then we say F is a

fuaction of two variables, one with domain X and the other with domain

Y. If d E Dy then by our assumption about DI it has the form

d = (xly), where x X and y E Y. Thus, F(d) = F((x,y)). FOr

simplicity, F((x,y)) is usually written F(xly). If D is the product

of n sets, then we say F is a fUnction of n variables. Fbr example,

suppose X is the set of real numbers, then we know that X >< X denotes

the plane Thus, if F: X >< X -#X, then F is an "ordinary" real-

valued fUnction of two real variables. Examples of such functions are

F(x,y) = xy and G(x,y) = x + y. So we see that the familiar multi-

plication and addition of numbers can be considered as functions fram

the plane into the real numbers.

Problems

1-The set operations of union, intersection, and complementation
are all fUnctions. Specify the domain and range of each. Are
they onto or only into? Are they single- or multi-valued?

2-Prepare a list of five truly significant fUnctions which are in
one way or another involved in an industrial plant. Make at
least two of them concerned with management problems. In each
case carefUlly specify the domain, the range, and the fUnction
itself,

2.9 SUMMARY RENAME

So far we have really done nothing; we have only introduced you to

a battery of concepts which you have had to take on faith az being use-

ful. This probably was not too difficult to do, since at least in

special cases you have seen many of these notions before. Raving this

apparatus, we will be able to delve into its uze in social science

problems it the next chapter. There we s1s1.11 be almost entirely con-

cerned with the question of how to specify and to find out about

functions when their ran,fies and domains are different fram the real

numbers. In the course of doing so, we will work through simple

versions of several problems which have proved important in the social



sciences.

But before turning to these questions, one point should be made about

the ground we have covered. A number of very general ideas have been

introduced, including relations, orderings, and fUnctions in this chapter.

Yet in each case it turned out that we were not required to iutroduce any

new 'basic ideas. Once an idea was evolved, we were always able to formu-

late its definition in terns of our more primitive idea of a set. Thus,

our only undefined, primitive ideas continue to be those of a set,

element, and belongs to (plus the rules uf logical inference). Every-

thing else has been given meaning in terns of these primitives. This

kind of economy is not only intellectually elegant, but allows us to

concentrate on a relatively few primitives if later any difficulties

seem to arise.

Let us turn now to the methods which have been evolved fLr working

with functions.



CHAP1ER III

AXIOMATIZATION OF FUNCTIONS

3.1 rNTRODUCTION

Much mathematical work in science -- be it physical or behavioral

science -- is devoted to the isolation and investigation of functions

rhich, for one reason or another, are deemed to be of interest. In the

physical sciences the malor, but by no means exclusive, tools axe

differential equations tind their various extensions and relatives which,

together, axe called analysis. Fbr the most part, these methods cannot

be carried over directly to the behavioral sciences because the basic

behavioral variables -- at least as they axe now viewed -- are not

numerical. The sir;le outstanding exception to this is economics.

This observation must not be interpreted to mean that the sets

representing social and psychological variables are totally without

structure; on the contrary, some structure is essential. But it just

doesn't happen to 1 hat of numbers. Fbr most of US trained in the

physical sciences, being deprived of our major wea-on -- analysis --

leaves us with a bewildered empty feeling, and we tend to fall bEck

upon non-mathematical approaches, relying on intuition and, all too

often, prejudice when we have to think abo t problems where people .re

in-olved.

The main purpose of this chapter is to show that things are not

nearly so black as they first seem and that what one is forced to do

in the mathematization of behavioral problems is not, after all, so

differeat fram what one does in physics. We shall begin by talking a

bit about the definition of a few familiar functions, for such defini-

tions are not always well understood. After that we siaH inquire as

to just what one means by a differential equation and its solution. We

will not be in the least concerned with solutions to particular
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differential equations, but rather with the meaning of a solution to any

differential equation. Once this is understood, it will be more or less

clear in principle how to extend thesz same ideas to domains and ranges

which are not numerical. However, to stop at that point would hardly be

convincing or satisfactory, and so the rest of the chapter is devoted to

pxesenting a number of special cases with an eye to mAking this "in

principle" extension far more concrete and meaningfUl. In each case,

one or two very simple examples will be given to illustrate the idea,

and then in starred sections more complicated examples drawn fram the

behavioral sciences are offered. In order to keep complications to a

minimum, we have sometimes chosen formulations of these problems which

are less general and less elegant than some available in the literature.

Let us stress again that there is a simple conceptual unity lying

behind these examples, and that in turn there is a close conceptual --

though not technical -- similarity between them and the analytic methods

you know so well. The details of presentation should not be allowed to

becloud the basic simplicity and power of the axiomatic method.

3.2 DEFINING FUNCTIONS

In a way, all that we have to say in this chapter is implicit in OUT

previous remarks about defining a set. Basically, a set must be defined

via a property (sometimes presented as two or more properties for con-

venience of statement which its elements, and only its elements, satisfy.

There are two special aases of this which we have singled out as being of

a distinctive character, rendering them almost conceptually different-

First, the elements of a finite set can be listed explicitly. ,:;econd,

some sets can be defined as a "combination" (e.g., union, intersection)

of pre.riously defined sets. The very same comments hold for functions,

since, as we have seen in the last chapter, they are nothing more nor

less than a special brand of set a subset of D 2).. R.

It will help, however, if we explore the implications of this remark



much more fUlly. We will first dispose of the last two special methods

of definition, and then concern ourselves in the rest of the chapter with

functions defined implicitly by properties they satisfy. The most

familjar examples of functions presented explicitly are those giren in

tabular or graphical form. Tables of the sine or the logarithm are ex-

plicit listings of two fUnctions. To be sure, only certain selected

values of the function axe tabulated and then only to a certain degree

of accuracy, and one must interpolate to find other valu-s. The tabular

or graphical presentation of experimental data amounts to the same thing.

Indeed, any tine the domain is finite, this method can be used, often to

advantage. ?lox. many theoretical purposes, however, it is not suitable

either because it is not sufficiently compact or because, in idealizing

the problem, we have chosen an infinite set as the domain. Aetna-fly,

something e.l.osely related to an explicit tabulation of a function is

also possible when the domain is infinite, provided the image is finite

Example:

f(x) =
1, if X iS a re7Uanal number

0, if x is an irrational number

This function is given an explicit definition by relying on an implicit

defisition of certain subsets of the domain, in this case the definition

of the rationals and irrationals. This is often a usefUl trick.

Definitions of new functions in terms of ones which are already

known plus admissible operations (such as addition and multiplication)

in the range and domain are familiar. Ordinary algebra can be thought of

as being built up this way.

Another class of examples where new functions are defined in terms of

old are derivatives ana integrals of known fUnctions. Sometimes they can

be explicitly expressed as old functions, e.g.,

d sin x
dx



Other times they cannot, as for example the elliptic integral

1/2
f(1 - k2sin'x) dx.

Nonetheless, this integral is a well-defined fUnction expressed in terms

of an operation on an old function; for numerical work, one usually looks

it up in tables.

One very general and usefUl construction of new functions from old

is the iteration of two or more functions. Suppose f is a fUnction

from D onto R and g from R into S, i.e.,

f: D --,R (onto)

g: R --)S

We may now define a function h which is the overall effect of first

mapping D into R via f and then R into S via g -- the iteration of

g on f. Fbrmally, h: D -,S is defined as

h(d) = g[f(d)], d E D.

It is customary write h = g[f], or simply gf. A word of caution:

suppose D = R = S = reua numbers, then the symbol gf is adbiguous, for

it (!ould mean the iteration of g on f or it could mean the function H

defined as follows:

H(x) = g(x)f(x), x any real number.

UsuAlly, the context will differentiate between these two meanings.

As an example of iteration, suwose D = R S = real numbers, and

f(x) = x
2
and g (x) = log x, then



g[f(x)] = g(x2]

. log x
2

= 2log x

= 2g(x).

Note, f[g(x)] = f[log x]

= [log x] 2

Thus, in general, f[g] g[f].

Aithoughdefining new functions in terms of old is an extremely

valuable and oftea not too difficult activity, it still doesn't ever

get to the heart of the problem of defining fUnctions. Somewhere that

process must cea,se and one or more function, have either to be given

explicitly or implicitly. Sometimes explicit definitions can be used,

but for much theoretical work they will not do. This leaves us, then,

with the major area of implicit definitions. The rest of .hapter

is devoted to this.

Problems

1-Suppose f and g are defined to be

f(x) = bx and g(x) = logbx.

What can you say about f[g] and g[f]?

2-1n general, if

f: D (onto)

g: R --)D (onto)

have the properties

g[f(d)] = d for all d E D

f[g(r)] = r, for all r R

we say f and g are inverses of each other. Show that a necessary
and sufficient condition for a function f from D onto to have
an inverse is that for each r E R, the set



[dI d E D and (d,r) e f]

has exactly one element.

3-Let D = (a,b,c,d) and R = (1,2,3). Suppose f: D -*R and
h: R -.1) are explicitly defined as:

f(a) = 2 h(1) = b

f(b) = 1 h(2) = a

f(e) = 3 h(3) =c

f(d) = 2

Write out h(f). Restricting f to the domain [a,b,c), write
out f[h].

3.3 SOME WELL KNCWN PROPERTIES OF ORDINARY FUNCTIONS

As with sets, an implicit definition of a function is a list of

properties which it satisfies aad which specifY exactly that function --

no more, no less. Actually, in practice, we ofte,, find it convenient

to discuss a whole class of functions, each of which possesses a given

property. It may be worth reviewing a few of these.

In analysis, a very prevalent assumption is that a function is

continuous, or at worst that it has a tinite nuMber of disconti:luities.

You will recall that, rolighly, a real-valued function f of a red,"2

variable is continuous at the point x provided that whenever y i a

point "near to" x, then f(y) is also "near to" f(x). We will not

attempt to make this preuise -- which amounts to making precise what

we mean by "near to" -- since we shall not use continuity extensively.

A function is said to continuous if it is continuous at every point

x. This is a property which may or may not be met by a function. Fbr

example, the function drawn in

Fig. 21 and de:ined ao: 1

Fig. 21



f(x) =
02 if x < 0

if x > 0

is a step function with a single discontinuity at x = 0. While it is

not continuous, each of its ha.lves are. This makes it comparatively

easy to work with. Not all functIons have just a finite nuMber of

discontinuities, and so they are not all built up of continuous seg-

ments. Fber example, the fUnction f where

1, if x is a rational nutber

if x is an irrational number

which we mentioned before, is everywhere discontinuous. Many of the

functions for which you know "formulas" are continuous: e
x

,

2
x sin x,

etc.; and others have only a finite number of discontinuities:

log x where x > 0, l/x 1/(1 - x)(1 + x) etc.

Another property which is frequently singled out i analysis is

monotonicity -- whether a function is always increasing or always

decreasing. Fiormally, we say a iml-valued fUnction f of real

variable is monotonically increasing if x < y implies f(x) < f(y);

it is strictly monotonically increasing if x < y implies f(x) < f(y).

The step function of Fig. 21 is monotonically increasing, hut not

strictly. For the domain x > 0, x
2

is strictly monotonically in-

creasing. There are parallel definitions for decreasing functions.

A number of the important functions are neither monotonic increasing

nordecreasing: the siae, x
2

for all x, etc.

In one sense, each of these conditions is fairly weak, for e'lch

defines 3arge class of functions having that property. But there

is some aarrowing down. If you think only of continuous functions,

tne sine is included, but if you stipulate the class of continuous

monotonic functions, then the sine is left 0,1t. As more and more



properties are added, fewer and fewer functions can be found which

meet all of them -- until, finally, you may c,,xt dawn to just one

function meeting them or, if you're not carefUll to none at all.

We'll come back to this, but first let us consider the question of

generalizing these two properties to a broader class of functions.

Neither the idea of continuity nor monotonicity makes much use of

the properties of the number system, which meams that it should not be

too difficult to make them meaningful properties for functions with

domains and ranges a good deal more general than the number system. Of

the two, continuity is the more difficult to generalize, and as we will

not need this generalization we shall do no more than say a few sug-

gestive words about it. The only term in our informal definition of

continuity which refers to properties of the number system is "near

to." If we could abstract what we mean by this then all sets having

a "near to" structure on them would be suitable domains and ranges for

defining continuous fUnctions. Such an abstraction is possible, and

it is known as a topology. Sets having a topology, i.e., a concept of

"near to" defined on them, are known as topological spaces. So far

toDology has found little, if any, direct use in the attempt to do

mathematical work in the behavioral sciences, mad so we will not enter

into it here.

The generalization of monotonicity is much more important for our

purposes here, though it certainly is not nearly so important in

mathematics in general. To del'ine monotonicity, the only property of

the numbers which was requirea was their ordering, which it will be

recalled is a simple ordering. Thus, it is easy to see that the

generalization can be made at least to those ranges and domains which

are simply ordered. But if you look at the definition carefully, you

will see that it neither matters whether the ordering is strictly anti-

symmetric nor whether all pairs of elements are comparable or not. We
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are therefore led to make the following

Definition: Let $ be a quasi-ordering of the set D and V a quasi-

ordering of the set R. A function f with domain D and range R is

said to be order preserving if for every alb E D such that a $ b,

then f(a)

(Terminological note: Some authors use "monotonic" where we have

used "order preserving," but this is not very common in the

literature of applications to the behavioral sciences.)

Order preserving functions are important for this reason: the

image of such a fUnction reflects the order structure of the domain,

and if one knows a lot about the image, then indirectly one also knows

a lot about the domain. The ordered set we know most about is, of

course, the real numbers oldered by magnitude, and so it should not be

surprising if at some point we attempt to map an ordered set arising

out of a behav_Loral science problem into the real numbers. One such

topic is known as utility theory (See Section 3.11). The real number

system is not, however, the only ordered set we know something alout

(subsets under inclusion is another one), and so we should not be

completely rigid about representing ordered system numerically.

So far we have introduced only properties which are not very

restrictive, and this is 1J.able to be somewhat mdsleading. It would

ainear that we would have to have very long lists of properties before

we narrnwed ourselves dawn to a single function. This is not true, and

to illustrate it we will examine two properties, each of which inn: on

very much tighter clamps. Again, let us confine ourselves to functions

whose domains and ranges are the real numbe7s. Suppose x denotes the

level of some physical var:.ablc, and f(x) some measu:le of the response

of a system when the variable takes on the value x. Similarly, f(y)

is a measure of the response wlien the variable has the value y. If

we know both of these quantities, tnen do we also know the response
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f(x + y) when the variable has value x + y? Not in general. But for

some systems, especially in some elementary parts of physi'es the

response to x + y is simply the sum of the responses to x and to y

separately, i.e.

f(x + y) = f(x) + f(y). (1)

This is sometimes known as the "superposition law."

What is eq. 1? Well, first of all, in technical jargon it is

called a functional equation. Clearly it is an equation, but in

contrast to ordinaxy algebraic equations which it somewhat resembles,

the unknown quantity is the function f, not a number. Looked at

another way, it specifies a property which must be met by those

functions f which are said to solve it; it narrows down the admissible

range of acceptable functions. Almost any function you can think of

does not have this property. In fact, if you add to eq. 1 the condi-__
dion that -c* be continuous, thtTA it can be proved that

(2)

where a is any constant. It is easy to see that the functions of

eq. 2 do satisfy eq. 1; it is a little more dafficult to show that they

are the only continuous functions which do so.

Eq. 1 plus continuity narrow us down to th( functions of the

sirple family given by eq. 2. This is far more restrictive than any-

thing we have seen so fai. It is easy to see how, by adding a third

1Jroperty, we cr_71 narrow f down to a sini;le function. All we have to

do is specify the value of f at some point different from for

example, if we zet

= f , where xo 0,



then we see from eq. 2

f(x
o

) = ax = f
o

SO,

a = f /x
o

A unique ftnction has been defined by three of its properties.

As a second, and somewhat similar, example, suppose we consider

those fUnctions f with domain x> 0, such that

and

1-f is continuous,

2-f(xy) = f(x) +

In words, these are the continuous functions that map the operation

of multiplication of positive numbers intc the addition of nuMbers.

From this you can guess that logarithms are included among the

solutions. In fact, it can be shown (and will be later) that they

are the only solutions that are continuous. If, in addition, the

value of f is specified at any single point other than x = 1, then the

base of the logarithm is specified and so the solution is unique.

The various properties of the logarithm which make it so useful

and which give you the feeling that you can work with it in a way

that is impossible with arbitrarily deflnPd fuilLtions follow immediate-

ly from the functional equation f(xy) = f(x) + f(y). FOr example, let

us prove log x
n

= n log x, where n is an integer. In terms of the

Azanown" f, we want to show f(x13) =7af(x). The method of proof is by

mathematical induction. This method is often appropriate when you have

a series of related propositions, one associated with each integer.

One shows by direct verification, which is often trivial, that the
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proposition is true for n = 1. Next, one supposes that the the( em is

true for the integer n, and then establishes that this implies it is

also true for the integer n + 1. These two proofs are equivalent to

a proof that it is true for each n, for take any n, then the fact

that it is true for 1 implies that it is true for 2, that it is true

for 2 implies it is true for 3, and so on until you get to n. For

our functional equation, the assertion is trivially true for n = 1.

We suppose it is true for n, and attempt to show it for n + 1. Fl.om

the functional equation,

fn+ 1 .

) = f(x'xn)

= f(x) + f(xn).

Substituting the induction hypothesis that f(xn) = nf(x) we find,

f(xn + 1) f(xn)

= f(x) + nf(x)

= (n + 1)f(x).

So, we have shown that you can get to some of the ordinary

functions of analysis by an implicit definition in terms of their

properties. Indeed, we would claim that this is the basic way such

functions are defined, but the fact that they are very familiar and

that you can use them easily in calculations tends to mask this.

Anything you know about the logarithm can be derived from the two

properties we have stipulated. For example, if you choose a value

for the base -- a value of f for some x / 1 -- then it is possible

to compute f for any other value of the argument. This is, in fact,

one way to prepare a log table. We are not, of course, denying that

the logarithm can be shown to be equal to a number of other expressions

which in some contexts are taken as its definition. br example, it is

well known that

l f FL(og x .

Cs



To show this from our definition it is necessary to show that the

expression on the right is coatinuous (which is trivial since all

integrals are continuous) and that it satisfies the fUnctional

equ'ltion for the logarithm. Of course, it is extremely usefUl to

know that this integral and the logarithm are the same thing, and

much of elementary methematics is devoted to such equalities. It

amounts to showing that an implicitly defined fUnction sometimes

can also be defined as a combination of previously defined functions.

Problems

1-In problem 2 of the last set you showed that a necessary and
sufficient condition for a fanction f to have an inverse is
that [di d e D, (d,r) e f] is a single element set for every
r e R. Can you think of a simple equivalent condition (in
terms of the properties defined in this section) when f is a
real-valued function of a real variable? Prove your answer.

2-USing only the property f(xy) = f(x) + f(y), show f(1) = 0.

3-Consider those real-valued fhnctions of a real variable which
satisfy the functional equation f(x + y) = f(x)f(y) and axe
not identimlly O. Show f(0) = 1. Can you think of any
fUnction satisfying this functional equation?

4-Ube mathematical induction to ahow 1 + 2 + 3 n
n(n 1)

3.4 DIFFERENTIAL EQUATIONS

Beyond a doubt, the most familiar way to get at functions of

importance in physics is via differential equations. To many, this

method seems superior to all others. CertaLily, it is a field which

has received intense study for several hundred years and many of its

results have been reduced to handbook simplicity. Although such detailed

knowledge is very usefUl in practice, it has blinded some to the true

nature of the method involved. We wish to discuss this method briefly.

Let us suppose, as an example, that we are interested in the

number of radioactive atoms which have not yet decayed at time t



assuming that we began with N such atoms at time 0. Let this unknown

number or atoms be denoted by f(t). The first important thing to

recognize is that we have no immediate precise grasp on the function

f. Our intuition tells us that if N is very large, then we will not

get into serious trouble if we suppose f is continuous. FUrthermore,

the very concept of radioactivity insures us that f will be a

monotonically decreasing fUnction of time, but beyond that we have

little immediate feel for f itself. The second important point is that,

while we do not know f directly, we ean say certain things about f and

functions of f from physical principles. In particular, it can be

shown that f has the property that its rate of change in time is pro-

portional to its value, i.e.,

df
= -kf, where k > O.

ct

It is well known that this differential equation is solved by

f(t) = Aexp(-kt),

where A is a constant. Now, introduce the initial condition

f(0) = N

then we get the unique solution

f(t) = Nexp(-kt).

kll of this is trivial and very well known. But suppose you place

yourself in the shoes of the scientist wk.') first arrived at such an

equation from some physical process (certainly not radioactivity, but

that is of no matter). You know nothing of the theory of differential

equations, for it has not yet been formulated, but nevertheless you

have posed this problem: to find those functions f of timc which



satisfy the following properties:

df
= -kt

dt

f(0) = N.

(Note: by writing the first equation, we implicitly impose the

condition that it is meaningful, i.e., that f is everwhere differenti-

able. It is well known that this implies that f is a continuous fUnc-

tion of time.) Given this problem, wbat would be the first question

you would ask? If your answer is itsillmat is the solution" or some

variant of it, then we doubt that you have really placed yourself in

this early scientist's shoes. You know that there is a solution and

you would watt to find it. He however, would not have known immed-

iately fram the two properties he had written down that a solution

exists. It is not, when you think about it, completely obvious that

these two peculiar conditions axe necessarily satisfied by any

function f. Fbr instance, had he set up the problem to find those f's

which satisfy

then he could not have found a solution.

No, his first task would be to assure himself that he had in fact

posed a soluable problem to show the existence of a snlution. Tb be

sure, he might do this by demonstrating that the exponential is a solu-

tion, but what if he did not have any hint that this was so? It can be

quite futile to try randomly one function after another. FUrthermore,

he might realize that his was but a special case of a whole class of

similar problems, and so he migbt be tempted to use indirect methods to



show once and for all the existence of a solution for each member of

the class of differential equation problems. In fact, this is the

reason that you don't have to worry about the existence of solutions

to most of the equations which arise in physics and engineering. It

has been done for very general classes of differential equations.

Advanced courses in differential equations are very largely concerned

with such questions.

Once having established to his satisfaction that the problem posed

is solvable, then one might suppose that his next task would be to

exprefs the solution in terms of known fUnctions. But again, this is

doubtfUl. Ay what stretch of the imagination could he suppose that

there is only one ftnction satisfying the conditions he has posed?

This is not to deny that we know that there is only one solution to a

first order linear differential equation plus one initial condition,

but is it obvious from just looking at the two conditions? Thus, you

might expect that his second task would be to show that the solution is

unique. Again, this is something which can be done without knowing

the functions which solve the prdblem, and it can be done once and for

all for broad classes of differential equations. It is because this

has been done in the mathematical literature, and not because it is un-

important, that the engineer and physicist need not be much concerned

today with uniqueness problems.

In any characterization of a function by properties which it must

satisfy -- differential equations are one special case -- the two

questions of extence and uniqueness are of primary importance. ln the

applications of mathematics to the behavioral sciences which we sbAll

mention, it will be necessary for us to deal explicitly with these

questions, for we do not have a comprehensive general theory of exist-

ence and uniqueness of functions on which to fall back. Once we have

done this, then we may want to worry about describing the fUnction in

same other terms. This is what a solution to a differential equation is.

It is customary to say that we have solved a differential equation if



we can express the solution in the form of integrals of known functions.

Outside that realm, the criteria for what const.Ltutes an acceptable

representation of a solution are far vaguer, and a certain amount of

judgment is needed. In some cases, we axe satisfied with a demonstra-

tion of existence. In others we need to have practical methods to

find certain values of the function.

TO return to our hypothetical mathematician, once assured that a

solution exists and having begun to worry about uniqueness, he might

well conjecture that it is not unique. Sudh a conjecture would be correct

if at first he only set up the differential equation without the

initial condition. Any fUnction of the form Aexp(-kt) is a solution

to the differential equation alone. This is, of course, well worth

knowing, for _t tells you that all solutions axe ftndamentally the

same shape and differ only by a scale factor. Put another way, the

ratio of two different solutions to this differential equation is

some constant. Not only is that a compact statement of the situation

described by the equation, but it also suggests the nature of the

condition which has to be added to render f unique.

Thus, if you set up some properties to describe one or more

functions and you find more rather than one, then the next thing to

do is to try to find out how two different solutions are related to

each other. This mars that you want to describe the transformations

which map c golutim into the others. Ideally, but not invariably,

the class of transformations which describe how to go from one

solution to the others has certain nice closure properties: any

transformation from the class maps a solution into a solution, and

any two solutions are related by one of the transformations in the

class. In this case, the mathematician's problem is to give a compact

description of this class of transformations and of one of the

solutions.

In summary then, our mathematician first working on this differential



equation problem would have had to do the following things:

1-show that a solution to the problem exists,

2-determine whether it is unique or not, and

3-if it iB not unique, ascertain how the several solutions are

related to one another.

There is nothing about these three steps which rests upon the fact

that his was a differential equation problem. The same questions are

meaningfUl and important whenever a function is defined implicitly by

properties which it must meet. As we shall see in the following sec-

tions, some of the terminology is a little different when we work in

a more general context, but the ideas are not different.

3.5 AXIOMATIZATION AND INCONSISTENCY

The first question when a function is implicitly defined in a

context different fram the real numbers is: what context? The

mathematical nature of both the damain and range of the function must

be described. Usually, this becomes apparent from the verbal formu-

lation of the problem in question and fram the aims of the analysis.

Nonetheless, it is an extremely important step which determines to a

surprising degree the success or failure of the effort. Fbr example,

it has sometimes happened that an apparently intractable or very

messlr problem is made very mudh simpler by an appropriate change in

the domain or the range. In any event, these two things have to be

specified precisely at the outset. (By and large, in engineering

problems both the domain and range are the real nuMbers and usually

this is taken for granted without any comment.)

Once that is done, then appropriate properties of the function

must be specified. Without a doubt this is the most difficult part

of the task. It is a subtle art, requiring both a considerable

sophistication in mathematics and a perceptive understanding of the



physical or behavioral situation one is trying to abstract. Mathematical

experience is needed so that the problem formulated will lead to

suitable and interesting mathematical results, and the substantive

problem must be well gmsped so that the mathematics reflects it

rather than some other problem. The interplay between these two

demands is most tenuous and only rarely is there a fruitful union.

For the traditional problems of physics, it now seems comparatively

simple to set up such conditions, for there are thc Known laws of

physics to be drawn on. So f%r there are precious few laws, or even

hints of laws, in the non-physical sciences, and one is forced to

considerations which differ considerably from those used in physics.

Among these are: unconfirmed or only partialltr confirmed guesses as

to the /aws operating, assumptions as to the statistical independence

of two processes, ethical and normative demands, and a priori demands

on the nature of scientific measures. Some of these will be illustrated

in our later examples.

In any event, a list of properties of the unknown function is

presented. When speaking in the general context, these properties are

known as axioms, and the set of them as an axiom system for the un-

known function. The whole activity is called axiomatizing a fUnction

or giving an aY lmatic definition of a function. While such terminology

is rarely appleu to the mathematics of physics, we could say that the

differential equation and its initial condition mentioned in the last

section are each axioms which together characterize a specific exponen-

tial fUnction.

The first problem, as we said, to be posed of any axiom system is

existence: does there exist a fUnction satisfying all the axioms.

Again, in the general context, the language is a bit different. Often

one does not speak of the existence of a solution to the axtam system,

but rather of the "consistency" of the axioms. Also one speaks of a

fUnction "satisfying" them. If there is no inner contradition among

the axioms, i.e., if there exists a ftnction which satisfies all of



them simultaneously, then the axiom system is said to be consistent.

If they are contradictory, they are said to be inconsistent.

A trivial example of an inconsistent system: Suppose D = (1,213)

is simply ordered by-magnitude and R = (1,2) is also simply ordered by

magnitude. Problem: to find any fUnctions f: D -01 satisfying the

axiom

if xoy c D and x < y, then f(x) < f(y).

It is easy to show that no such function exists -- that the axiom is

inconsistent (with the domain and range) -- for by two spplicabions

of the axiom we have

1 < 2 so f(1) < f(2)

2 < 3 so f(2) < f(3)

hence the range has three distinct points, contrary to assumption.

A less trivial example: When we introduced the conc..rts; of union,

intersection and inclusion of sets, we drew same parallels with ora-L!,-7

addition, multiplication, and inevAlity We already know that the

parallel is far from perfect, but it would be interesting to see how

far it goes. The following problem sets up one of the simplest analogies

that might be possible. Suppose U is a set with two or more elements,

D = and R = real nudbers. Tb find those functions F: D such

that the following axioms are met:

1-if A,B D and A n B = 0, F(A U B) = F(A) +

2-if A,B E D, F(A n B) = F(A)F(B); and

3-if A,B c D and A B, then AC B implies F(A) < F(B).

We claim that this axiom system is inconsistent. A proof goes as

follows. From axiom 1,



F(tY) = F(1.1 u 0) = F(U) +

hence F(0) = O. Fbr any A e D, axiom 2 states

F(A)= F(A 11 A)

so F(A) = 0 or 1. If A i 0, axiom 3 implies F(A) 1. But since U

has two or more elements, there is at least one subset A different

frau U and from 00 so AC Ur and F(A) = 1 = F(U), which is impossible

by axiom 3. Thus the system is not consistent.

Althowgh the first example was completely trivial, and the second one

not very difficult, they both illustrate the basic procedure involved

in showing an axiom system to be inconsistent. Our next section is

devoted to a more complicated and interesting inconsistent axiom

gystem. It arose in welfare economics, and it is interesting mainly

because one does not at first suspect the axionm to be inconsistent.

Problems

1-In the last example, suppose we drop axiom 2. What function
satisfies axioms 1 and 3?

2-Let D and R be the real numbers, and f: D H. Show that the
following three axioms are inconsistent:

i.f(xy) = f(x) + f(y),

ii.f(x + y) = f(x)f(y).
f has at least two different values.

(Note: do not assume f is continuous.)

*3.6 TH?, ARROW SOCIAL CHOICE PROBLEM

Roughly speaking, the concept of a fair social decision is one

which is arrived at by taking into account eciwilly the preferences of

each (adult) individual for the several alternatives that have arisen



or that are presented, by the leaders of the society. It amounts to a

rule that enables society to pass fram the "votes" of the individuals

to a social decision, but not just any rule. The rule must be "fair;"

it must "take into account equally" the preferences of each of the

individuals. The problem is to agree upon what we mman by "fair."

What properties characterize a fair rule? Once we have agreed upon

that, then we eau investigate mathematically those rules which satisfy

these properties and we ean ask whether particular rules in common

use meet them. If not, then where do they fail and is this important?

?Or example, the rule most commonly used in Western societies is simple

majority rule. Does it satisfy our intuitive ideas of fairness?

Such problems have been discussed for some years in the

literature of political science and welfare economics, but not until

1951 was one formulated and attacked as a mathematical problem. This

work, and a sketch of the background of the problem, can be found in

K. J. Arrow's Social Choice and Individual Values, John Wiley and Sons,

New York (1951). Thia important book attracted a good deal of attention

and resulted in not a little controversy and mdsinterpretation; as a

result there have been a dozen or so journal publications on the problem

since then. The formulation we ht1 present, which in many ways is

simpler than Arrow's presentation, is based upon one of these papers:

Weldon, J. C., "On the Problem of Social Welfare ?Unctions," Canadian

J. Econ..and Pol. Sc., 18, 1952, 452-463.

We begin with two known sets. First, the finite set A of m

distinct alternatives presented to society. Secondlthe finite set I

of n individuals composing the society, which may be as small as a

three-man committee or as large as the whole electorate of a nation.

We shall suppose that each of the individuals "votes" on the altern-

atives in A and these votes axe entered into a 'Machine," which will

be described below, out of which cones the social decision. We must

now translate into mathematical terms what we shall mean by "vote"

and by 'omobine."
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We shall not mean by 'vote" what you expect -- the selection of

the most preferred alternative. Bather, we shall suppose that each

person orders the whole set A according to his preferences. This gives

a good deal more infOrmation about his preferences than just the selec-

tion of his most preferred alternative, and it should be desirable to

utilize this added information in one way or another when reaching a

social chcice. Now, what do we mean when we say he orders the

alternatives? We take this to mean that evch person rank orders

them, i.e., he states which alternatives is most preferred (say, by

ranking it 1), which is next most preferred (by ranking it 2), etc.

We will also allow him to report that he is indifferent between

pairs of alternatives if he chooses. In terms of our previous termin-

elogy, the reported preference orderings will be weak orderings of A

(see section 2.7). Thus, for example, if A = (a,b0c0d), then an

admisstble preference ordering is for a person to say he prefers

b to a,c, and d, a to c and dl and that he is indifferent between

c and d. In other words, he rank orders them b,a0c d. The follow-

ing preference pattern, however, is not admissible: a is preferred to

c and d, b to a and c, c to d, and d to b. It is not admissible be-

cause it is a non-transitive relation: a is preferred to d, d to b,

and b to a.

On any given set A a number of different weak orderings are

possible, the number increasing very rapldly as the size of A increases.

Nonetheless, we shall have to deal with all of the possible weak order-

ings of A; let Us call this set of weak orderings W. Our supposition

then is that each person selects exactly one element from W, i.e., he

votes in the usual sense of the word for just one of the weak orderings

in W, and this selection is fed into the 'machine" for maRing social

decisions.

This leads us to the second question, what do we mean by the word

"machine" in this context. Whatever its detailed physical realization,

it must have this property: for any selection of n weak orderings from



WI one by each individual, it comes up with a social decision based

upon them. That is to say, it is a fUnction whose independent variables

axe the weak orderings selected by individuals and whose dependent

variable is the set of possible social decisions. We must meke this

more precise.

First, let us consider the independent variable -- the domain

of this function. When the individuals each select a weak order -- sNy,

1 chooses RI, 2 chooses NI..., n chooses An then the whole society

has chosen an n-tuple (RI,Bv...,%), where each Ri e W. ln other

words, the whole society has Chosen an element from the product set

V = W >.< W >< >< W (n times).

Since each individual is free to choose any of the weak orderings of

A, i.e., any element of W, the society as a whole can select any

element from the product set V.

Once society has selected an element from the product set V 1

then the role of the )machine" is to reduce this complex of information

into same sort of decision about the alternatives in A. At the very

least, the machine must transform such an element of V into an element

of W, i.e., into a weak ordering of the elements of A. Thus, we take

the range of the fUnction to be W. Any fUnction with domain Vaud range

W will be called a social fUnction.

In summary, then, the framework of our problem is this: A set A

with m elements and a set I with n elements are given. W is the set

of all weak orderings of A and V = W >< W >< >< W (n times). A

ftinction F: will be known as a social ftinction. Fbr convenience,

we shall denote by R the generic ordering selected by the social

fUnction F, i.e.,

R =



You will recall that in section 2.7 we shaved how any weak ordering

R can be broken down into a "strict preference" ordering P and an

"indifference" relation I, which were defined as follows:

aPb if and only if &a) and Oa

alb if and only if alit and bRa.

If R denotes a weak ordering, the corresponding P and I relations will

be denoted by Pi and I.

Now that we have set up the general framework of the problem, our

next task is to arrive at conditions on the function F such that it

can be called "fair," This will be most easily done by introducing an

auxiliary concept defined in terms of F, and then stating the condi-

tions of fairness in terms of this concept. We suppose that F is a

fixed social fUnction and we let V denote a subuet of individuals,

i.e., VC I. If a and b f A, then the set V can be considered decisive

for alternative a against b provided that whenever all the members of

V prefer a to b and everyone outside V prefers b to a, then society

prefers a to b. Stated formally, the subset V is said to be decisive

for a against b if F has the property that if

and

then

aPib, for all i V

bP a
Y

for all i E

We shall now formulate the four conditions of "fairness," the last

three being in terms of decisive sets. The first three are not partic-

ularly controversial and will be relatively easy to agree upon, but

the last one will require more discussion.

The first axiom only requtres that both the set of alternatives



and the set of people be adequawly large to have an interesting

prOblem.

Axiom 1. The sets A and I ahall each have three or more elements, i.e.,

m > 3 and n > 3.

The second axiom simply says that whenever there is unanimity in

society between a pair of alternatives, then the social fUnction shall

reflect this unanimity.

hclom 2. Fbr any pair of alternatives, the set I is decisive.

Cur third requirement of fairness reflects the generally accepted

belief that there should not be a dictator -- a person whose preference

alone for one alternative over another commands socieLy to have +he

same preference.

Axiom 3. If i e 12 then OA is not decisive for any pair of alternatives.

The next and last condition will bear considerable more discussion

before we state it, for it is much the strongest and most controversial

of the axioms. Suppose the n weak orderings (RI, 112,...1%), one from

each individual, leads to the social ordering R according to a given

social fUnction F. Let us now focus on two alternatives a and b, and

let us suppose that society prefers a to b. The last assumption does

not really result in any loss of generality, for we can always inter-

change the labels on the alternatives. Within society, a certain set

of people will have stated that they prefer a to b, another set that

they are indifferent between a and b, and the remainder that they prefer

b to a. Among the other possible pairs of alternatives, each individual

will have reported some pattern of preference. Question: should society

ever change its preference for a over b if all the members keep their

preferences between a and b, but alter same (or all) of their preferences
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among the other alternatives? Put another ways if the individual

preferences between a and b are held fixed, but those among other,

irrelevant, alternatives are changed, should there ever be any change

in the social decision concerning a and b?

The major argument for answering No is this: If the social

decision between a and b also depends upon how individuals order the

other alternatives, it may well be worthwhile for an individual to

misrepresent his true preferences in order to put extra weight on an

alternative about which be feels strongly. Just how he should

misrepresent his preferences in order to emphasize a particular

alternative will depend upon the ftnction F and upon the preferences

expressed by the other members of society. Thus, one enters into

the complex domain of strategic considerations where decisions depend

upon estimates of what other individuals are going to do. Tb be sure,

this is not a real objection when n is extremely large, but in small

committees it can become a serious problem. For this reason, it is

argued, the social function should have the property that it is

independent of irrelevant alternatives. We state this formally as

Axiam 4 If, for same (R1,1112,...2%), F has the property that

aP b fOr i e V,

bP a tor e V, and

aPb,

then V is decisive for a against b.

Any social function satisfying axioms I through 4 is called a

social welfare function. Arrow's principle result, known as his

impossibility theorem, states that there is no social welfare fUnction,

i.e.,

Theorem. Axioms I through 1 are inconsistent.



Proof. We shall suppose that a social welft.re function exists, and

then show that this leads to a contradiction. Specifically, we shall

use a "downward" mathematical induction, starting with the set 1, to

show that there must exist a single element decisive set, which is

contrary to axiam 3. TO do this, two steps are involved. First, ve

must eE 9b1ish that the set I is decisive, but this is assured by

axiom 2. Second, we must show that if there is a decisive set with q

elements, where 2 < q < n, then this implies there is a decisive set

with q-1 elements. TOgether, these two statements imply that there is

a decisive set with one element, which violates axiom 3. so to prove

the theorem, we need only wove the induction step.

Suppose / is a set with q elements which is decisive far some

element a against some element b of A. Let a be any element of ,

and define V
q-1

=
q

- (a). V
q-1

y5 since q > 2. According to

to axiom 1, there is at least one element in A different from a and b;

let c be one such. We will now show that Vol must be decisive for a

against c, which will prove the induction step and so the theorem.

Consider any n-tuple of weak orderings (R1,B2,1% ) which include

the following strict preferences:

I. aPib, hPic and aPic for i E Vc-1,

cPaal aPab and cPab,

bPjc, cPja and bPja for i E Vq.

Define R = F(RI,R2,...,R11). We claim that aPb and bRc.

have assumed that V is decisive fbr a against b and we

the orderings Ri such that aPib for i E Vci and bPja for

Tb show bRel we suppose this is not the case, i.e., cPb

that by choice of the Rio

cP b and bP c for i
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. But observe



hence according to axiom 4 this would mean (1) is decisive for c

against b. As this violates asclom 3, we mmst conclude that bRc.

Since R is a weak ordering, aPb and bRc imply alt. But, by

choice of the Hi'

aPe, for i E V
q-1

and cr a
'

for i E V

Thus, axiom 4 implies that V
q-1

is decisive for a against c, as WBB

to be proved.

AB we pointed out earlier, the truth of the induction step implies

the existence of a single element decisive set, which is impossible.

Thus, our original assumption that a social welftue function exists

is untenable, and the theorem is proved.

Many people have found this result disconcerting because they have

been willing to agree to each of the four conditions as necessary

requirements of "fairness" and at the same time have felt certain

that a "fair" machine (function) could be devised. The fact of the

matter is that this is not so. Once convinced, same emotionally

reject the whole process and head to other activities; others became

intrigued with the question whether the problem has been unfortunately

formulated and whether some modificatien might not result is positive results.

Such research is currently going on and some positive results have

been obtained. Although we cannot go into this work, the three major

directions it has taken can be indieated. The first is to question

the whole formulation of the problem in terms of weak orderings.

Basically this amounts to a total recasting of the problem. The second

direction rests upon the empirical observation that in any given culture

it is unlikely that all possible cambinations of preference patterns

will ever arise. There are usually strong correlations among the weak

orders registered by the members of the same society, and so in



practice we are asking too much when we demand. that F be defined over

the whole of I. It will generally suffice to know F for some slibset

of ig. The tricky task is to choose a suitable subset: one that seens

to include all cases which arise empirically and, at the same time,

leads to a mathematically tractable problem. There has been

same success in this direction.

The third major tact is to drop the eondition of the independence

of irrelevant alternatives (axiom 4). This permits the participants to

enter into strategy considerations when reporting preferences, but in

many contexts this does not really seem relevant or important. Hbwever,

it is not sufficient just to drop axiom 4. It must be replaced by

same other condition, fbr one can easily produce examples of fhnetions

meeting the first three axioms which are impossible to consider "fair"

social functions (see prob?ems 2 and 3 below).

*Problems

1-In a democratic society it is often claimed that majority rule
is a "fair" method to reach social choices. The ttraction F
representing majority rule is defined as follows:

aPb if and only if [il i e I and sPib] has more elements

than [Id I E I and bPia].

aIb if and only if these two sets have exactly the same
nuMber of elements.

Arrow's theorem asserts that this function cannot be "fair"
in the sense of being a social function which meets axioms
1 through 4. Where does it fail? Prove your answers (examples
of violations will suffice).

2-Let n = 3 and let A = (alla21...,am). Let S denote the weak

ordering of A in which al is strictly preferred to a2, a2 to a3,

etc. Let S* denote the converse ordering where am is strictly

preferred to am_l to a
m-2

etc. Let Fbe defined as

follows:



fR1, if RI i S or S*

F(R1,142,143) = R2, if RI = S or S* and R2 i S or s*

R3, if Ri = S or S* aad 11 = S or S*.

Show that F satisfies axioms 1, 2, and 3.

3-Let F.0) denote any fUnction satisfying axions 1, 2, and 3 Pore

a given A and n = 3 (by problem 2, at least one such fUnction
exists). Show that for the same set A and n >3, the function

F(n) defined below also satisfies the first three axioms:

F(n)(1132112,---yR) = F(3)(R1,112yR3)-

3.7 CONSISTENCY AND UNIQUENESS

In general, one does not try to construct inconsistent axiom

systems, for one is usually trying to get at fUnctions which M2eis
pretty sure exist. Proofs of inconsistency serve primarily to show

either that one's intuition has been in same way faulty and that the

axiomstization does not really capture what was intended, or that what

people have been talking about is non-existent. These are both

important services, but they give neither the author nor the reader

the same constructive satisfaction as yielded by a positive result.

TO show that an axiom system is consistent, two general methods

are available. Either one can exhibit a function which satisfies

the axiom system, or one can devise a proof which shows that there

must be such a function even though one is not explicitly produced.

Simple examTles of the indirect method are not easily come by; at

least we have not thought of one. The direct method assumes one of

two forms. First, the axioms can be manipulated in such a way as to

derive a necessary mathematical form for any fUnction satisfying

them, and then it is shown that this function (or fUnctions) does in

fact satisfy the axioms. It is important that this last step be

varried out, for from an inconsistent set of axioms one can sometimes

derive a necessary functional form,which nonetheless cannot satisfy



them. Mere is a tendency to forget to make this verification.

Second, a fUnction may be woduced (usimalypreceded by the phrase

"Consider the following...1 and then it is shown that it satisfies

the axioms. Often such functions are complicated, and one wonders

from whence they spring. Usucl1y, tbe authnr is hard pressed to sky;

he will have drawn up on his mathomatical txrerience, or had some

insight into the problem, or tried other fUnctions and gradua.14

modified them into the correct one, butpabcme all, he will have had

some luck. There is no set of rules that can be set down.

As an example, supisose the question is raised whether the functlonal

equation

2'(74r) f(x) +

where f is a real-valued fUnction of a real variable, has a solution.

It vill suffice to produce one. Consider the function f, wtere

t x dt
1 t

Cbserve that if the change of variable u = ty is made, tben

80

xY du
f(x) f ,

V du I du
f(x) r(Y) = f f

u u

=
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Thus, the given integral is a solution to the functional equation.

In whatever wqy existence has been established, awe it is done then

questions of uniqueness arise. Por instance, is the solution given

above the only one to that functional equatior4or are there others?

The answer is that there are others, but as we shall see they must

be discontinuous. Roughly, there are two general procedures to

establish uniqueness. One can manipulate the axioms to derive the

necessary form of the function, and if thAs necessary form is unique,

then we know that if there is any function satisfying the axioms at

all, it must be unique. As we stated above, one must actually show

that the necessary fOrm for the solution is in fact a solution. The

other method, which we shall illustrate, begins with the assumption

that there are two solutions and shows that they must actually be the

same. One does not need to have an explicit representation of any

solution tc the problem to use this method, which is often an

advantage.

Suppose f is a real-valued function of a positive real variable

which satisfies the following axioms:

Axiom 1. f is continuous for x > 0,

Axiom 2. f(xy) = f(x) +

Axiom 3 f(x0) = 2101 uhere fo is a constant and xo 0 or 1.

We show that f is unique. First, we show that any fUnction

satisfying axioms 1 and 2 has the property that f(x) = yf(x), for

any real and positive y. If y is an integer, n say, then from section

3.3 we know that f(xn) = nf(x). Now, suppose we let x = zn then

f(x) = f(z) = nf(z)



so

f(z) = f(x1/n)

Thus, if m and n are integers, these tvo results combine to show

" 32

But it is well known that if y is any real number, then we can choose

integers mend n such that min is arbitrarily close to y. Thus, by

thecomtinuity of fo it follows that

Now, let us suppose that f and f' are any two fUnctions satisfying

axioms lo 22 and 3. We dhow f = f'. Any point x can be expressed in

the fbrm x= x
o

for some appropriate y > 0, so

f(x Y)
ft r(x) ft (x0)

yf(x0)

yf(x0)

f

o

Thus, f = f'l or, in other words the fUncticn 3atisfying the three axioms

is unique.

TV() examples of consistent axiom systems which are satisfied by a



unique function and which have arisen in the behavioral sciences axe

given below. The derivation is given only in the first case.

*3.8 THE INFORMATION MEASURE

A postwar development that has attracted a good deal of attention

is the mathemeical theory of cammunication. It arose out of

electrical communication problems, where it has been widely used and

elaborated, and its basic formulation is due largely to the work of

Wiener and Shannon. A standard reference is: Shannon, C. E and

Weaver, W. The Mathematical Theory of Communication, University of

Illinois Press, Urbana (1949). Largely because it really is a (special)

theory of statistical inference, it has had considerable impact outside

the area of electrical communication, especially in psychology. Fbr a

fairly camprehensive survey of both the theory and its applications

to psychology, see: Luce, R. D., A Surve7 of the Theory of Selective

Information and Some of its Behavioral Applications, Technical Report

No. 8 (revised), 1956 Behavioral Models Project, Columbia University.

We cannot go into any of the details of the theory here except to

derive the mathematical fent of the central function employed. This

fUnction is interpreted as a measure of the "average amount of

information transmitted" by messages in a communication system, where,

however, these words have a meaning which,though reasonable, is

somewhat different fram common sense usage. The measure is often

called the "(average) amount of information transmitted," but the

shorter labels "entropy" (because of its formal identity to the

expression for physical entropy in statistical mechanics) a:2_ "uncer-

tainty" are widely used.

Consider the following idealization of many comaunication systems.

A set A of n alternatives is given, and tram it messages are formed

by successive tanporal selections (cith replacement). Thor example, 1

might represent an alphabet and the successive selections; are used to



form words and sentences. Such messages are then transmitted through a

communication system, which involves certain pbymical components, to

its destination. Let us consider the arrival of such a message frmn the

ivint of view of the person (the destination) receiving it. He is rarely,

if ever, certain what syMbol he will next receive, for if he were com-

pletely certain it would be pointless to transmit it. No information

will be oanveyed when the receiver is able to predict with oertainty

what he All receive. But ane should not jump from this to supposing that he

must be completely uncertain as to wbat he will receive. If the person

is sending the message in English, then the receiver knows a priori that

the probability of receiving an "e" is a good deal larger than the

prdbability of receiving a "z". Such knowledge is known to everyone

speaking English, and it is contimmity employed when inferring the

symbols sent via a clWmmel which introduces some distortion, as in

noisy telephone communication.

Thus, in general, we can suppose that there is a known prObability

distribution over the elements of A which describes the a priori

probability that each is selected. Suppose that A = (1,2, n),

where the numbers axe simply labels for the elements in A. The

prObability distribution is then some set of numbers

with the properties

and

p(1), p(2),..., p(n)

p(i) > 0, for i = 1,2,..., n

p(1) + p(2) + p(n) = 1.

But this is hardly enough to describe the statistical structure of

most sources of messages. Fbr examTle, in any natural language the



selections made are not independent of each other. Ybu know in

English that if you receive a "q," the probability is pretty close

to 1 that the next letter will be "u; even though "u" has a very low

a priori probability of occurring. We will, however, ignore this

observation and melce the assumption that we are working with a source

in which successive selections from A are statistically independent.

That is to say, the probability of selecting element i e A is p(i) no

matter what has preceded it. No doubt this appear to be an excessively

restrictive assumption since it seems to eliminate all natural

languages from consideration, but in point of fact it turns out that

it is easy to extend the information measure for independent selections

to non-independent selections. Floor example, if the dependence extends

only to the immediately preceding symbol, then we work with the joint

probability distribution p(i,j) defined over the product set A .< A.

But this is still a probdbility distribution over a set, albeit a

special set, and so it will have been included in our study of the

independent ease.

As we suggested before, no information can be transmitted if one

of the symbols in A is certain to occur, i.e., if p(i) =1 for some

e A. FUrthermore, as the symbols become more and more equiprobable,

then more and more information can be transmitted. Fbr example, if A

has only two elemoats, 1 and 2, and if the probability of 1 being

selected is 0.9, then more infbrmation is transmitted on the average

than when the probability is 1.0, i.e., when none is transmitted. But

suppose the probability is dropped down to 0.8, then isn't it more

revealing to receive the symbol 1 than if tbe probability had been 0.9?

Extending this argument you see that for two symbols the maximum

infbrmation must be transmitted when each has prdbability 0.5, i.e.,

when they axe equiprobable. Is it suitable to take the probabilities as

a measure of the information transmitted? And if it is, what probabil-

ity or combination of probabilities should we employ when A has three

Words such as "Iraq" prevent it from being exactly 1.



or more elements? Since any proposal one might make would seem

totally ad hm one is led to consider reasonable properties fOr such

a measure of the average amount of information transmitted and to see

whether or not this singles out a particular measure. This we do.

First of all, since we are speaking of a measure, we mean a

functionutich has the real numbers an its range. Seconds since we

have spoken of it as a measure of the average, amount of information

transmitted, we presumably mean that we ahall find a value of the

fUnction for each alternative and then take the average of it over

all the alternatives in A. But each alternative i is characterized

by its probability p(1) of occurring, so the fhnction depends upan

that. So the measure is a real-valued fUnctiou f with domain the

real interval from 0 through 1. Already we have made a very strong

assumption, one which is similar to the condition of the independence

of irrelevant alternatives in the Arrow social Choice problem. We

have not only said that the measure of information transmitted by a

selection of the grabol i depends upon p(i), but also that it depends

only upon p(i). The distribution of prdbability over the other

alternatives is completely irrelevant!

Accepting this, we now introduce three axioms. First, it seems

plausible that if p(i) is changed only slightly, then the amount of

infOrmation transmitted should also change cnly slightly (though not

necessarily proportionately). Thus, we impose

Axiom 1. f shall be a continuous fUnction of p(i).

Suppose that two successive selections are made from A, aay I. and

then j. Since we have assumed that selections are statistically

independent, we know that the probability of the joint occurrence

of 1 and then j, (i,j), is simply given by the product of the

imobabilities of the individual occurTences taken separately, i.e.,



p(i,j) = p(010(j).

Furthermore, given that the selections are indnendent, it seems

plausible that the total amount of information transmitted is simply

the sum of the amount transmitted by 1 and the amount transmitted by

j. This is reasonable only because tbey axe independent. We would not

want to say that the amount of infbrmation transmitted by (q,u) in

EngAish is very different from that transmitted by q alone -- certainly

it is not as much as the sum of q and u taken separately. But since we

have assumed independence, it is reasondble to impose

Axiom 2. f[p(i)p(j)] = f[p(i)] f[r(3)].

Finally, in any measurement problem it is necessary to agree upon

some unit in terms of which measurements are made: centimeters for

length, seconds fbr time, grams for mass, etc. In this field it has

proved convenient to say that one unit of information has been trans-

mitted whenever a selection occurs between two eqltally likely

alternatives. The unit is called a bit. Thus, ve have

Axiom 3., f(1/2) = 1.

These three axioms should look familia:, they are the same as

those we set up in the preceding section. So we know that there is

a unique fhnotion satisfying them, which must be the logarithm to

same base which is determined by axiom 3. It is easy to see that it

is the base 2, i.e.,

f(p) = -log2p.

Now if we take expected values over all the elements in A, we obtain

Shannon's famed expression for the average amount of information

transmitted:



-p(1)log2p(1) + p(2)log2p(2) +... + p(n)log2p(n) = p(i)log2p(i).

In terms of this concept and two others -- channel capacity and

noise -- Shannon was able to prove some extremely interesting and very

general theorems concerning the possibility of transmitting messages at

certain rates andwith certain accuracies. Roughly, he gives a precise

numerical meaning to the inzuitive idea that we can trade accuracy for

speed and conversely, but we cannot enter into these questions here.

Before ending this section, we should mention that Shannon's

original derivation of the measure is a good bit more elegant that this

one, and it is correspondingly more difficult. The main difference is

the choice of domain for the measure. He began with a fhnction defined

over probability distributions, i.e., a ftinction H having a typical

value

E

He did not suppose, as we did, that H can be expressed as the expected

value of some function defined in terms of the probability of an

individual element being selected. Rather, he gave an axiom system,

which is somewhat similar to ours, for H from which he was able to

derive that H must be the expected value of the logarithm of the a

priori probabilities.

*Probleme

1-Evaluate -Z p(i)log2p(i) when
i=1

i. p(i) = 1/n, for i= 1,2,...,n.

p(1) = 10 p(i) = 0, for i = 2,3...In.

(These two values can be shown to be the maximum and minimum,
respectively, of the information meaeure when there axe n



alternatives.)

2-In the game "20 questions" one supposedly can isolate ..ny

"thing" in 20tinary (yes-no) questions or less.. If this is
so, what is the maxioum possible number of "things?"

3-Suppose that A is a set of n elements with a given probability
distribution p(i), 1 e A. Suppose we form a single long message
by making successive independent selections frau A. Let g denote
the probability of this message and let N, where N is very large,

logp
denote its length. Show that is approximately equal to

E p(i)1032p(i).
i=1

*3.9 ME SHAPLEY VALUE OF A GAME

AB background for this section you should reread section 1.9 on

Legislative Schemes, particulaay the last two rages. You will recall

that we stated, but did not demonstrate, that for games (conflicts of

interest) with n players it is possible to calculate a plausible

measure of the "strength" of each coalition (= subset of the set of

players). Let Ur denote the set of players. Then, msthematirally,

coalition "strength" is a function v5with damlin 2U and range the real

musbers, that satisfies two conditions, namely:

I. v(()) = 05

if AlB C U and A and B are disjoint, then

v(A U B) > v(A) + v(B).

Such a function is known as the Characteristic fUnction of a game.

Most, but not all, of the present theory for games with n > 2

players is based entirely upon characteristic functions, and so it

is really quite immaterial exactly how they arise frau the original

formulation of a game in extensive form (see Section 2.6). Indeed,

we shall make no verbal distinction between a game and its character-

istic function, and ve shall speak of the game v when we actually



mean the game with characteristic fUnction v. In this section we

ahall be cummunedwith a priori measures of individual power for

games in characteristic fUnction form.

The problem we shall describe was both raised, and solved by L.S.

Shapely in 111 value fbr n-persoa games's COntributions to the

Theory of Games, II (H. W. Kan and A. W. Tucker, eds.), Annals of

Mathematics Study 28, Princeton University Press, 1953, 307-317. An

interesting and easily uaderstoodapplication of the Shapleyvalue

to legislative schemes is found in Shapley, L. S. and Shubik, M. "A

Method fbr EValuating the Distribution of Power in a Committee System,"

Amer. Pb1. Sc. Rev., 48, 1954, 787-792.

auk ,st that you are to be a player in a game (described in

characteristic :Unction fbrm) which you have not participated in befbre.

You cannot know exactly what will happen in the play of the game, far

that depends upon decisions of other players as well as yourself.

Nonetheless, it would be surprising if you did not have same opinions,

based entirely upon the structure of the game as described by its

characteristic fUnction, of its a priori worth to you. Fbr example, the

legislative scheme in which a coalition is winning only if yau are in it

is surely worth more to you pover-vise than the scheme wtere any

coalition having a majority of the players is winning. The problem is

to make such sUbjective.evaluatione both explicit and precise. Ftam

what ve have said, the evaluation must depend in some manner upon the

set of numbers v(A), where A CU. JUst what fUnction of the character-

istic function would be reasonable to select is not, on the faoe of it,

obvious, and certainly any ad hoc definition would be questioned and

countered by other suggestions. So we axe driven once again to employ

the axiomatic method. Fbllowing Shapley, we shall list three apparently

weak conditions from which it is possible to derive the unique function

which satisfies them. We will not actually carry out the proof, but we

will state the result.
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We start out with the idea that player i's evaluation of a game

v is a real number which depends upon the characteristic ftnetion v.

That is, fbr each player i we will have a function Oi with domain the

set of all possible dharacteristic fUnctions and range the real

numbers. The quantity 0i(v) will be known as the value of the game v

to player I.

Since the numbering of the players is arbitrary, we may always renum-

ber them in any way we like by a permutation of the original numbering

system. This will cause the characteristic fhnction to look different

even though it represents the same underlying game, but, since these

are only notational differences, players who correspond under the

relabeling should have the sane value. So Shapley's first conation is

Axiom 1. Value shall be a property of the abstract game, i.e., if the

players are permuted, then the value to player i in the original game

shall be the same as the value to the permutation of player i in the

permuted game.

If U is the set of all players, it is easy to show (using condition

ii of a characteristic function) that no coalition has power in excess

of v(U). Thus, in a sense, this is all the power available in the

situation for distribution among the players. Now, although eadh of the

players is evaluating the game for himself, his expectation must

reflect in large part what the other players can rightfUlly expect. We

would hold that if these a priori expectations totaled to more than

v(U), then surely at least one of the players must be over-evaluating

the worth of the game to himself. Similarly, if the sum of the

values is less than v(U), then in a sense there is sone under-estimation

of the a priori worths. The second argument is much less convincing

than the first, but let us accept it and so impose

Axiom 2. Dor every game v.,



4)1(v) + 02(v) +...+ On(v) = v(u).

Next, consider a player i who is participating in two different

games with characteristic functions v and le, say. He has an

evaluation for each of these games: 01(v) and 01.(w). Nov, if we

could think of these two games as being a single game, let US call it

u, then he would have an evaluation Oi(u), but since we assume that u

is but a renaming of the two given games, we should have

(u) = (1)1. (v ) + (w)

The next thing to consider is whether we can treat the two games

as a single one. Let UB suppose that v is a game over th' set of

players R and that w is a game aver the set S. While in our preceding

discussion we assumed that R and S overlapped, at least to the extent

of player i, we shall now be more general and suppose that they may or

may not overlap. It is a trivial matter to extend both v and w to the

set of all players, R J S. If A is a subset of R J SI we define

v(A) = v(R n A)and w(A) = w(S n A).

This is to say, in the game v, a coalition A has exactly the strength

given by those members of A who are actually in the game, i.e., those

who are in R; the members from S who are not in R contribute nothing.

Now, the two games are defined over the same set of players. Consider

what may be called the sum of the two games, denoted by u = v + w, and

defined by the condition that if A is a subset of R U S,

u(A) v(A) + w(A).

It is easy to see that u is a characteristic ftnction, and so it will

serve as the single gaine representing the two given ones. Thus, the

third condition imposed by Shapley is



Axiom 3. If v and w are two games and ifv+wis defined as above, then

0i(v + w) = 0i(v) + 0i(v).

The last =icon is not nearly so innocent as the other two. Fbr,

thoughv + V is a game comiloaed 2ram v andw, we cannot in general expect

it to be played as if it were the two separate games. It will have its

own structure which will determine a set of equilibrium outcomes which

may be very difftrent from those for v and fOr w. Therefore, one might

very well argue V )t its a Exiori value should not necessarily be the

sum of the velum lf the two component games. This strikes UB as a
flew in the concept of value, but we have no alternative to suggest.

If these three axioms are accepted, then Shapely has shown that

one need not -- dare not -- demand more of.ja value, for they are

sufficient to determine 0 uniquely, and, indeed, one can dbtain an

explicit formula for it, namely:

0i(v) = E 7n(s) [v(S) v(13 - (i))],

s C

where s is the number of elements in S and

7
n
(s) = (s l):(n

Let us examine this formula in detail. It is a summation over all

subsets of the set of players, with a typical term consisting of a

coefficient -- which we shall discuss presently -- multiplying

(v(S) - v(S - If i is not a member of SI then S - (i) = SI and

so the term becomes zero. Thus, the formula only depends upon those

coalitions involving i. It amounts, therefore, to a weighted sum of

the incremental additions made by i to all the coalitions of which he

is a metber.



TO return to the coefficients -- the weights -- any one vho has

dealt at all with simple prbbability models will recognize them as

very familiar. Suppose that ve build up randam coalitions by choosing

a player at random from all the players, a Second at random frau all

the remaining players, and so on. Keep track of player i =dither' be

is added to the random coalition, calculate his incremental contribu-

tion to it. It is easy to dhow that the probability of his being

added to S - (1) is exactly in(s). Thus, the value of the game to

him is equal to his expected incremental contribution to a coalition

under the assumption that coalitions are formed at random.

*Problems

I-Suppose n = 2 and that

v([1)) = v((2)) and v((1,2)) . 0.

calculate 4)i(v) and cp (v).

2-Suppose n = 3 and that

v((1)) = v((2)) = v((3)) =. 0

v((1,2)) = v((1,3)) =v((2,3)) = v((1,2,3)) . 1.

calculate 01(v), i = 1,213.

3.10 NON-UNIOENESS

A consistent axiom system for a ftnction does not always single out

a unique fUnction, and sometimes there does not seem to be any

acceptable way to add another axiom to arrive at a unique fUnction.

Non-uniqueness is hinted at if all plausible attempts to prove

uniqueness fail, but this is not conclusive. Basically; there are

two ways to prove non-uniqueness: first, and much the most common,

is to exhibit two different fUnctions satisfying the axioms, and

second, is to prove that uniqueness would lead to a contradiction.



The several solutions to a non-unique axiom system may be so

diMrent fram one another that little can be said about their

relation to each other. We know, for example, the whole family of

logarithms (i.e., logarithms fo different bases) satisfy the

fhnctional equation f(w) f(x) + f(y), and that they-axe the only

solutions if f is continuous. But if ve do not stipulate continuity,

many other discontinuous solutions exist and there is precious little

that one can say about their relation to one another and to the

logarithms. In auth cases, one tries to avoid the resulting confUsion

by adding other axioms, uudh as continuity, so that a fairly coherent

family results. By "fairly coherent" we mean that a simple description

of the whole family can be found. Fbr instance, the family of logarithms

to different bases can be described by giving one member of the femily --

the logarithm to a particular base -- and by noting that any other member

of the family is obtained by nnatiplying it by a positive constant. The

last statement follows from the well known property

logbx = logba logax.

Similarly, as we pointed out earlier, the several solutions to

the differential equation

dt
-kf

differ fram each other only by a constant.

Oae should not get the impression that it is always possible or

desirable to introduce another axiom to restrict the fUnctions to an

easily described class. Fbr example, in section 1.9 we stated the

two conditions characterizing the characteristic filnetions of n-persou

games. It turns out that there is no simple description of the set of

all characteristic functions, but we surely do not want to add more

conditYtLs. The two conditions for characteristic functions arise

frow corliderations in game theory and they are the only ones which
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can be derived, so we must live with them.

One also should not get the impression, when a family of solutions

can be easily described, that the only class of transformations are

constants, as in the two examples above. IL the next section we will

present the axiams for linear utility fUnctions, and it will be oho=

that two solutions u and u' of the axiom system mast be related by

what is known as a positive linear transformation, i.e., there are

constants X: and L, where X: > 0, such that u = Xu' + L. Aladin Cbayber

4, where we discuss the axiamatization of nathemtleal systems, we will

be concerned with still another class of transformations.

Very little general advice can be given as how best to Choose

axioms so that the whole class of solutions eau be easily described or

how beat to find a description of that class. Experience indicates

that it is often possible to fOrmulate problems whose solutions have a

compact description and that such problems are of interest, but little

of the experience in doing this has been neatly summarized, even as

rules of thumb.

*3.11 THE NON-UNIQUENESS OF LINEAR UTILITY YunuTIONS

The preferences of individuals, organizations, and industries play

an important role in all behavior and, therefore, are bound to be an

integral part of any behavioral science. Far example, in any conflict

of interest (the mathematical model being a game) each participant is

confronted by decisions to be made, and, depending upon which are

actually made, certain consequences result. A unique pure coneequence

will not necessarily arise fram a given set of decisions, far there

may well be probabilistic elements in the situation which together

with the decisions made by the participants determine the resulting

pure consequence. So, fram the point of view of the participants, a

probability distribution over the pure consequences is the normal

result of a set of decisions, but that too can be considered to be a



consequence. In any event, it is the consequences, not the decisions

themselves, which matter to the participants and about which they have

preferences. Of course, they will try to argue back from their

preferences among the consequeuees to the aPpropriate decisions to

achieve preferred outcomes, and indirectly this induces a preference

structure over the decisions. This backward inference and the problem

of which decision is appropriate for getting what one prefers is what

game theory is about.

Preferences are relations: given two alternatives a and b, then

either a is preferred to b, b to a, a is indifferent to b, or they are

not comparable according to preference. But it is none too easy to

work directly with relations, and certainly our theoretical powers

would be vastly augmented vere ve able to cast them in a numerical

framework, thus putting at our disposal nudh of ordinary mathematics.

So, ve are led to inquire whether there is any plausible way to assign

numbers to the elements of a set A of alternatives in such a way that

numerical magnitude reflects a person's preference relation > over A.

That is, if a A and we assign u(a) to a, then we would want these

numbers to have the property that a > b if and only if u(a) > u(b).

In more formal terminology, ve would like to find a real-valued function

u with domain A which preserves the ordering > on A. See section 3.3

for the definition of an order preserving function.

FOr one important set of alternatives this is trivial to do. If

a person is offered two sums of money, it seems safe to suppose that

he will prefer the larger (other things being equal), and so the

numerical magnitude of money serves very well. But most alternatives

do not allow such a trivial assignment -- consider preferences among

the several drinks offered at a party, or among automobiles, or

women, etc. Actually, in these latter examples the trouble is not

really in assigning numbers, for that dan be easily done if the

preference ordering is a weak ordering (see section 2.7), but rather

that it can be done in so many different ways. Observe that if A is a



finite veakly ordered set and u is a real-valued order preserving

/Unction with domain Al then any strictly increasing monotonic

fUnction (see section 3.3) iterated (see section 3.2) on u is also

a real-valued order preserving function with domain A. Thus, there

is an infinity of real-valued order preserving !tractions. FUrther-

more, it is not difficult to show that the only property of numbers

which is held fixed under such transfOrmation is ordering; this

means that we cannot use any of the ordinary properties of nuMbere

other than ordering. ln effect, then, it is pointless to replace

the given weak ordering by a numerical fUnction.

Indeed, the history of the utility concept in economics suggests

that it vas a good deal worse than pointless to introduce utilitiee

in this fashion. There was so much misune and misunderstanding that

this concept of utility vas pretty thoroughly discredited.

Another strand of the history of the utility idea traces back to

early work, arising largely fram the needs of gamblers, in probability

theory. In essence, the utility problem was this: suppose you have

assigned the utility u(a) to alternative a and u(b) to alternative pl

then what utility does a gamble whose'outcomes are either a or b have?

Let us denote by aob the following gamble: a chance event (such as

throwing a six with a die) has prdbability a of occurring and probabil-

ity 1 - a of not. If it occurs you receive alternative a, if not you

receive b. Thms, boa means that you receive b with probability a and

a with probability 1 - a. With this interpretation, aob and b(1 - a)a

mean exactly the same gamble. The question now is whether you can

express the utility of the gamble, u(a0b), in terms of la(a), u(b), and

a so that it correctly reflects preferences among gambles and pure

alternatives (which axe, of course, e special ease of gambles).

In the traditional gaMbling situations, the alternatives are money,

and, as we said, it is plausible to take the utility of a SUM of money

to be its numerical value. So, in this context, aob means you get $a



with probability ar and 0 with probability 1 - a. Either a or b

or both maybe negative nuMbers, which means you lose that sum. Now,

if the gaible adb is repeated a large number of times, one ean expect

an average return per gamble of aa + (1 - clOb dollars. This appears

to be a suitable index for the worth of the gaMble. Or does itT

Consider the falowing problem, due to Bernoulli, which is known

as the St. Petersburg paradox. A fair coin is tossed as many times as
thnecessary for a head to appear. If the first head appears on the n

toss, you receive 2n dollars. Since you inevitably receive some money,

the person running the game must charge a fee for each play. Question:

how large does the fee have to be before you will be unwilling to pay

it to play the game? According to our preceding discussion, this should

depend upon your expected winnings in the game. So let us compute these.

The probability that the first toss is a head is 1/2, in which case you

receive 2 dollars; the probability of a tail on the first toss and a

head on the second is (1/2)(1/2) = 1/4, in which case you receive

2
2
= 4 dollars; the wobability of tails on tbe first two tosses and a

head on the third is (1/2)(1/2)(1/4 . 1/8, in which case yau receive

23 8 dollars; etc. Since each of these possible outcomes is inde-

pendent of the others, we compute the e_pected winnings as

2(1/2) + 4(1/4) + 8(1/8) +...+ 2n(1/2n) +... = 1 + 1 + 1 +

which suns to no finite amount. In other words, you should be willing

to pay any finite amount, however large, to participate once in this

game. But this is silly.

There appear to be two possible flaws in the argument that leads

to the St. Petersburg paradox. Firsts we assumed that the worth, or

utility, of money to a person is measUred by its numerical value.

There is considerable evidence, including sUbjective considerations,

to suggest that this is false. Second, we employed an argument based

on many replications of the gamble to justify evaluating it in terms



of its expected monetary return, and then we used this same evaluation

when the gamble occurs only once. In other words, while the long run

argument probably mekes sense for a gambling house, it may not fOr the

individual gambler playing only a few tines. Another indicatidi that

monetary expected values do not represent tbe subjective worths of

gambles is based on the following observation. Consider gambles of

the falowing form: you win a fixed amount x if a fair coin comes up

heads and lose the same amount x if it comes up tails. All such

gambles have the same expected return, namely: 0. BUt would you be

indifferent between one where x = $0.05 and one where x $1,000?

Obviously not.

So, we may want to drop either the assumption that the utility

of money is equal to its numerical value or the assumTtion that the

utility of a gamble is given by the expected value of the utilities

of its components or both. Of the two, we are much more willing to

drop the first than the second, especially since it only applies to

money anyhow. Ar non-monetary outcomes we have the task of assigning

numbers and so we might juet as well extend this problem to include

monetary outcomes. But once we admit that the utility of money any be

different from its numerical values, then the expected value of utility

(not money!) assumption may hold. At least we do not have any evidence

to hand whIlfit shows that it doesn't. The modern theory of utility,

which originated with von Neumann and Morgenstern in the second edition

of their famous book The Theory of Gazes and Economic Behavior, Prince-

ton: Princeton University Press (l947), describes the conditions on

the preference ordering such that one ean work with expected utilities.

Fbr a general survey of more recent work in this and related topics,

see Edwards, W., "The Theory of Decision Making," Ftythol. Bull., 51,

1954, 380..417 sad Luce, R.D. sad Raiffa, H., Games aad Deciaioas

Wiley, 1957, Chapter 2.

The reason for all this Alas about expected utilities is largely

mathematical, for without this property such theories as those of

games and statistical decisions would be virtually impossible.



Intuitively you can easily see the power of the assumption. One need

not know the utility fOnction for each of the infinity of gambles

possible with a finite set of alternatives, rather it is sufficient to

know them for the finite set and to compute them, using expected

utilities, far any gaMble. It permits an extremely economical summary

of a person's preferences over all gambles.

So we have the following problem. Let a finite set A be given and

let G be the set of all possible gambles formed from elements of A.

let 0 be weakly ordered by > Ito find a real-valued !Unction u with

domain 0 satisfying

Axiom 1. (order preserving) if sob 0, a >b if and only if

u(a) > u(b).

Axiom 2. if alb e 0 and a is any real =tuber such that 0 < a < 1, then

u(aah) = au(a) + (1 a)u(b).

Any fUnction satisfying these conditions is known am a linear utility

function of the weakly ordered set G. (The word "linear" refers, in

this context, to the second axiom.)

The first observation we make is that this axiomatization is not

consistent unless the weak ordering satisfies certain restrictive

properties. Par example, if a >b > c it is necessary that there be

a nuMber a, 0 < a < 1, such that b aac. To show this, supyose u

satisfies the axioms. Then by axiom 1, u(a) > u(b) > u(c). Ar

elementary property of numbers assures us that there exists a number

a, 0 < a < 1, such that u(b) au(a) + (1 - a)u(b). as, according

to axiom 2,u(b) = u(a0t), so by axiom 1, b aar.

This means, in effect, that preferences must possess a certain



continuity if they are to be represented by linear utility ftactions.

If we think of ass a variable quantity, b is preferred to a when

a = 0 and as it is increased until a point is reached where they are

indifferent. After that, any increase in a causes the gamble to be

preferred to b. Except for certain discrimination difficulties which

people always seem to exhibit, this seems like a plausible way for

preferences to behave. But there mayr be exceptions, as is suggested

by letting

a five cents

b moue cent

c instant death.

One can derive other necessary requirements on the weak ordering

if the axioms are to be consistent, i.e., if a linear utility function

is to exist. FUrthermore, and this is the important pert of utility

theory, von Neumann and Morgenstern took one such set of conditions --

each of which has a certain intuitive plaueibility for preferences --

and showed that whenever these axe met there must be a linear utility

ftaction. We shall not develop this theory in this section; our aims

are more modest.

We shall suppose that we have a case where a linear utility function

exists and then inquire into its uniqueness properties. First, it is

easy to see that it is not unique, for if u satisfies the axionw and

K is a constant s> 0, then so does Ku. Second, s: ce there are several

linear utility ftnctions, we would like to know how they are related

to one another. Our claim is this:

Theorem. If u and u' are two linear utility functions, then there

exist constants K and LI K> 0, such that

u = KU' +



and any such transformation, which is known as a positive linear

transformation, of a linear utility ftinction is also a linear utility

function.

Proof. The second half of the assertion is easily verified and it is

left as a problem.

The first part is a little more subtle. ahoose any a0b e G such

that a > b. Define K and L to be solutions to the following

simultaneous algebraic equations:

and

u(a) = Ku' (a) + L

u(b) = Kuqb) + L;

L

u(a) u(b)
u'la) - u'(b)

uqa)u(b) u(a)uqb)
uqe,) uqb)

Since a > b, axiam 1 implies that u(a) > u(b) and uqa) >

so both constants axe well defined and K > 0.

Nov, consider the fUnction

u" = Kul+ L.

We claim that u" = u, i.e., for every c G, u"(c) = u(c). Since

> is a weak ordering, exactly one of the following three cases holds
0/0

for each c E G:



i. > al

ii. a > c > b,

b > c.

Each one requires roughly the &line treatment; we will earry out case

ii here. and i is assigned as a problem and iii is almost identical to

i. In we know from the necessary condition we derived for >

that there exists a number a, 0 < a < 1, such that c sob. Accord-

ing to axiom 1,

e(c) ulanb) = KW(sob) 4. L.

Since u' satisfies the axioms, we use the second one and carry out

some simpde algebra:

u"(c) = Kilqactio) + L

= K[au'(a) + (1 - a) u'(b)] + L

= a[Kuqa) + L] + (1 - a)[Ku'(b) + L].

Recalling the equations which were used to define K and Ly

u"(c) = 0[KW(a) + L] + (1 - a)[Ku'(b) + L]

= a(e) + (1 - a)u(b).

Finally, we use the fact that u satisfies axiom 2 to obtain

u"(c) = au(a) + (1 - a)u(b)

= u(acto)

So we have completed the proof that u and u must be related by a

positive linear transformation. Thus, in any particular problem it

is sufficient to describe one of the linear utility functions in

detail, i.e., to give its values an the underlying set A, and to rsmark



that all others are related to it by means of a positive linear

transformation.

Another way to say this is that linear utility fUnctions are

uniquely determined up to their unit and zero, i.e., it is completely

arbitrary which element of G we take to have zero utility and which

pair of elements we take to be one unit apart in utility. This means

that it is a measurement like ordinary (Fahrenheit or Centigrade)

temperature scales, not like length or mass where the zero is uniquely

determined.

*Problems

1-Suppose u is a real-valued order preserving function with a
quasi-ordered domain. Show that the quasi-order must, in fact,
be a weak order.

2-If K > 0, show that Ku + L must be a linear utility fitnction if
u is.

3-Carry out the proof that u"(c) =u(c) for the case c > a.

4-IYom the axioms for a linear utility function, show that >
must have the property that

aid) > apa if and only if a > p.

Interpret in words what this means. Is it a reasonable condition?



CHAPTER IV

AXIOMATIZATION OF MATHEMATICAL SYSTEMS

4.1 INTRODUCTION

From the mathematician's point of view, our failure to emphasize

any axiomatizations other than of functions has been, to say the

least, peculiar. He would feel, and rightly for pure mathematics,

that our present topic is much the most important aspect, that our

long dhapter 3 should have been little more than a footnote to this

chapter, and, when he had completed this chapter, he would feel we

had done a very incomplete job. Without disputing such objections

for pure mathematics, we feel -- and at present this is little more

than a conjecture -- that our emphasis is reasonable for those who

will be concerned with applications of mathematics to behavioral

problems. Nonetheless, beeause the history is short and also because

traditior is always an uncertain guide to the future, we would be

unwise not to suggest the more prevelant uses of the axiomatic method

in mathematics and to indicate same of the systems which have proved

important.

Hy a mathematical system we have in mind something fairly complex,

ususlly with several interrelated operations, which is studied as a

whole entity. Examples are: geometry, the real or complex number

system, the algebra of matrices, the theory of sets, etc. Other

examples, derivative from these, will appear later. In the course of

studying sueh systems, studies that initially axe very fUmbling and

tentative, certain concepts and operations gradually loam as more

important than others. They seem to be more fUndamental to the system

in the senne that they are widely used and axe often crucial in the

proofs of important theorems. Sometimes these are the ideas which

have arisen early in the study and which seem intuitively natural; in

other oases they seem to be much more sophisticated concepts which have



required a long time for their development. Fbr example, in the

number system the operations of multiplication and addition, which

arose very early, are still considered basic to the system and axe

the source of ideas for a great deal of modern algebra. But equally

well, the idea of a topology -- the "near to" structure mentioned

earlier -- appears today to be a crucial feature of the number system,

and it has led to the extremely fruitfla stuay of topological spaces

which pervade much of modern mathematics. This idea was much slower

developing, and it was really only adequately formulated within the

last fifty years.

As certain concepts and operations begin to stand out as crucial

to the system being studied, one is tempted to isolate them totally

from the original system and to study them in their own right.

This is the central idea 1,ying behind the axiomatization of mathematical

systems. Example: if we think of real numbers, they have a lot of

properties: a notion of multiplication, of addition, of less than,

of nearness, etc. We could single out just one of these for isolated

study, ignoring its relations to the others. For instance, suppose

we select multiplication. The minute we do this, we begib to realize

that we have concepts of multiplication in other mathematical systems,

such as matrix algebra, and so one is lead to see what common prop-

erties multiplication may have in these several systems. Such a study

finally leads to the very rich theory of groups.

By isolating a portion of a system we mean this: One or more

operations or concepts of a known system axe selected and same of

their properties, i.e., theorems in the original system, axe taken

as axioms to characterize these "undefined" operations or concepts.

The choice of which properties to use is, just as with functions, a

fairly subtle business, requiring judgment and experience.

Once an axiomatization is given, then the mathematical problem is

to introduce definitions -- often motivated by corresponding concepts
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in the original mathematical system which suggested the axiomatiz-

ation -- and to plA-ove theorems about these definitions, i.e., true

assertions which follow from the axioms and the rules of logical

inference. Again, many of the central theorems, at least at the

start, will be suggested by properties found in the original math-

ematical system; however, as the axiom system is intensively studied,

there /ill usually result ideas and theorems either not noticed or

not particularly significant in the original system.

You may ask: what is the point of all this? Our answer must be

that sudh methods have, historically, enriched mathematics and science.

Por one thing, isolating a part of a complex system such as the real

nuMbere permits us to see which classes of theorems rest upon which

basic facts. Second, some of the systems which have been isolated

have been found to recur over and over in widely divergent parts of

mathematics, and so their independent stuoty has meant that an

elaborate set of theorems axe ready for application in any context

where operations and concepts satisfying the axioms appear. The

abstract notion of multiplication as formulated in group theory is

a ease in point. Third, isolating significant subsystems of one or

more basic mathematical systems permits us to see haw they night be

recombined in a variety of ways. Same of these new constructs have in

the past proved extremely fruitfUl in extending our understanding of

one part or another of mathematics and in creating new mathematics

which, sometimes, is suited to particular applications. The recent

history of mathematics includes the intensive study of systems, the

abstracting of, portions as axiomatic systems, the application of these

results in other parts of mathematics and the recombining of different

subsystems to form new mathematical systems, the intensive study of

these, further abstraction, etc. This continual and complicated inter-

play and refertilization arising fram abstracting and recombining has

proved very stimulating to mathematics.

Although we have emphasized self stimulation in mathematicp, we do not



want to play down the possibly more important stimulation fUrnished

by the application of mathematics to science. It is here, primarily,

that the original mathematical systems are developed and the central

theorems, which often are suggested by the properties of the physical

systems abstracted, are proved. It is anticipated that the attempted

applications of mathematics to behavioral problems will, in the ftature,

prove to be the source of many new and rich ideas for mathematics.

Some, though not all, axiomatizations of mathematical systems are

a good deal like the material discussed in chapter 3 in that they

involve fUnctions. Even so, there are two vsys in vhich they

generally differ, although neither of these is strictly necessary.

First, in very many cases there is more than one function, and the

several fUnctions are intertwined in same manner. EXample: if we

vere to abstract fram the theory of sets, ve would have both a fUnction

representing union and one representing intersection and these would

have tn be interrelated in just the war union and intersection axe in

set theory. Second, when an axiomatization includes fUnctions, it is

usual for the range and the domain of the fUnction to be extremely

closely related. EXample: suppose multiplication of numbers is to

be abstracted. In that case one assigns to every pair of numbers, a

and b, a third nuMber ab called the product of a and b. This suggests

that in the abntract formulation there must be a function with some set

R as its range and R >< R as its domain. Or, if we try to abstract set

theory, one operation which must be taken into account is complementa-

tion, which assigns to every subset of U another subset of U, namely,

its complement. Tins, in the abstraction we would have a function with

both domain and range some set A, where Aplays the role of In the

usual terminology, many of the operations which concern us are "closed."

We take one or more elements fram a given set and the operation leads

us to another element in the same set. This sort of closure is re-

flected by having the damain of the function which represents the

operation closely related to its range.



But one should not get the idea that all of the systems studied

axiomatica14 are based on functions. Actually, we have already

seen sevexal cases which were not, although at the time we did not

mention that we were using the axiomatic method. Our dPfinitions of

different classes of relations reflexive, symmetric, etc. -- were

really simple axiom systems. Similarly, our definition of an alaebra

of sets could be treated 81,13 an axiom system.

4.2 SOM 'TERMINOLOGY

As in the axiomatization of ftinctions, one has problems of

existence, uniqueness, etc. Actually, slightly different questions

must be phrased and same of the emphasis is, for good reason, different.

Consistency. The first question here, as with functions, is whether

the axioms as a group are consistent, i.e., whether something exists

which satisfies them. It is usual to call any mathematical structure

which satisfies all the axioms of a given system an interpretation of

the system. Fbr the most part, this problem is either extremely simple

or extremely difficult, depending upon how you look at it. Since the

axioms in general arise from some special mathematical structure, such

as the real numbers or set theory, which has already been investigated

and is generally accepted to exist, they are trivially consistent. This

is the simple way of looking at it. But one can question how we really

know that the number system exists. Are we not living in a fool's

paradise by supposing that we cannot prove contradictory results within

that system? While this is a fruitfUl skepticism from a pure math-

ematics point of view, in applied 'work one usilally takes a far more

pragmatic approach and assumes that the well known systems do in fact

exist and that they vill serve as demonstrations of the consistency of

an axiom system.



Colgleteness. The direct analogy of uniqueness for axiom systems

is completeness, meaning, roughly, that there is at most one possible

interpretation of the system. By and large, this concept is not of

the same practical importance for systems as it was for functions,

because most of the axiomatizations are not complete. Indeed, much

fundamental research on the completeness of systems, stemming in

large part from work of Wdel, has shown that it is very rare to find

a set of axioms which are both consistent and complete. Such work

has been extremely important in understanding the fonelations of

mathematics and in some respects it has been profoundly disturbing,

but for applications it need bother us but little. Of much greater

relevance to us Is the next notion.

Categoricalness. Au axioms system will be called categorical if,

roughly, any two interpretations of the system, while not identical,

are formally the same in the sense that one can be "superimposed" on

the other in such a way that they look alike. That is to say,

elements of one can be identified with elements of the other and

operations in one with operations in the other, so that corresponding

operations take corresponding elements into corresponding elements.

We will go into what we mean by this much more fully in the next

section, for it is an important notion.

In practice, this amounts to having uniqueness, for it meams that

if we have investigated one interpretation of the system fully, then

we know how all others must look, for we can set up an identification

of elements and operations so that they are formally the same.

When an axiom system is not categorical, then problems arise which

are similar to non-unique axiomatizations of /Unctions. Can we

establish haw one interpretation maps into another? If not, can we

classify th ,! several interpretations into some reasonable taxonomy?

Independence. One axiom of a system is said to be independent of



the others in the system if it is not a logical consequence of them.

One dhows this is so by finding an interpretation which meets all the

remaining axioms but vhich fails to meet the one under consideration.

It is clear that if such an interpretation can exist, then it is

impossible to derive the one axiom from the others. If this can be

done for each of the axioms in a system, then the'system is said to be

independent.

This notion is not really terribly important fbr most purposes. Tb

be sure, it is nice to get rid of obvious redundancies in an axiam

system, but often the less obvious ones are lel in fbr either

paychological or pedagogical reasons. Areandant axiom system is

often natch more intuitive and easier to recall than one that is

independent. Of course, it can be an intriguing mathematical game

to be certain that a particular set of axioms is independent and,

if not, to devise one thsti is, but only rarely does this result in

a valuable contribution to the understanding of the system. Same

judgment is generally necessary.

Weakness and Strength. Allied to the concept of independence is

the scientifically more important question of which of two axiam

systems for the same concepts is the veaker. Such problems arise fram

the fact thdt there is never a unique way to axiomatize any concept.

Uwe are abstracting from a given mathematical system, we choose

certain properties of the original system as axioms and fram these

derive other properties as theorems. It is quite arbitrary which of

the properties we choose to take as axioms and which we try to derive,

though in general there is not really complete freedam in this choice.

The axioms should be, in some sense, simple, immediate of comprehension,

and appealing to the intuition. But even within these vague criteria,

there is a good deal of free-)m in their choice.

Nov suppose A and B are two axiom systems for the same undefined

concepts. We say that A is stndiager than B (equally, B is weaker than



A) if it is possfble to derive all of the axioms of B from those of 144

but the converse is not possible. If we can derive all we want or need

from a weaker axiom cystem we shall always prefer it to the stronger

one. Tbe reason for this is clear: we invariably want to assume as

little as possible to get the results we need, and so of two axiom

systems which give us these msults we prefer the weaker one. This

does not den,y that _ram the stronger system we can derive theorems

wbich we cannot prove for the weaker one, but rather that, for what-

ever reason, we are not interested in these extra results.

It should be mentioned that it is not always easy to apply the

above principles. A particular theorem which we need may appear to

require all the axioes of a particular system A, and, therefore,

appear not to be provable within a weaker axiom system B; yet it is

well known that appearances can be deceiving. An ingenious mathema-

tician may be able to derive the theorem from B, even though the

original proof seemed to rest on everything assumed in A. Often this

can be a very valuable contribution as, for example, when the WdOMB

of A seem too strong to be tenable in some empirical context, but

those of B are acceptable.

4.3 ckTEGORICALNESS AND ISOMORPHISM

AB we pointed out above, it is fairly rare for an axiam system to

be complete, i.e., to have a unique interpretation, but it is much

more common for one to be categorical, i.e., fbr the interpretations

to be formally the same. In this section we wish to make clear,

without being completely precise about it, what we mean by two systems

being "formally the same." Time word which is used for this notion is

isomorphism. What we will do is define isomorphism of two very simple

classes of systems and then suggest how it must be defined more

generally.

The simplest c e is simply that of sets having no structure of any



sort upon them. In that case a special word instead of isomorphism

is used. TV() sets A and B are said to be in one-to-one correspondence

(usually written 1:1 correspondence) if there exists a fUnction f from

A onto B which has an inverse. Let us see what this means. First,

since "ftinction" means "single-valued fUnction" there is just one

element of B associated to any one element of A, and, since the

fUnction is onto and has an inverse, there is associated to each

element of B just one of A. In other words, there is a one-to-one

pairing of the elements of A and B.

It is eaay to see that if A and B axe finite sets, then they can

be placed in 1:1 correspondence if and only if they have the same

number of elements. But be careftzl about carrying over notions of the

meaning of 1:1 correspondence fram finite sets to infinite sets. If

A is finite, there clearly cannot be a proper subset B which is in 1:1

correspondence with A. But if A is infinite, this is possible (indeed,

it is one way to define what we mean by infinite). Oansider, for

exmmple, A = set of integers and B = set of even integers. Clearly, B

is a proper subset of A since all the odd integers are not included in

B. But we claim that there is a 1:1 correspondence between A and B,

namely f: A -*B, where

if a c A, f(a) = 2a.

Since a is an integer, 2a is an even integer. The mapping is onto

since if 2a is an even integer, a is an integer. And f has an inverse,
-,

namely, f
1
(b) = 1)/20 b e B.

Any infinite set which can be put into 1:1 correspondence with the

integers is said to be a countable (or denumerable) set; otherwise it

is said to be non-countable. By what we have just seen, the even

integers axe countable. Equally yell, so axe the odd ones. Less

obvious is the fact that the set of all fractions (numbers of the form

a/b, where a and b are integers) is also countable. If that is so, one



might be tempted to suppose that all infinite sets are countable, but

we can dhow that this is not the case. Consider the set of all real

numbers lying between 0 and 1. We show that this set is not countable.

Tb do this, we suppose that it is in fact countable, i.e., there is a

first (the one mapped into the integer 1) which ve denote by al, a

second (the one mapped into the integer 2) which we denote by a2, etc.

It is, of course, well known that any real number can be expressed au

an infinite decimile expansion of integers fram 0 through 9. Let us

denote the ith integer in the expansion of an by ani, i.e., we have

the array

Si = 0.a11 a12 al3

a
2

= 0.a21 a22 a
23

a
3

= 0.a31 a
32

533

a
n

0.ani
an2 a n3

Now, let us consider the real number

where

b = 0.b1b
2
b
3
....

a,i + 1, if aii i 9
vi

0 , if a
ii

= 9

We claim that our counting has ignored

it is same number in our list, say the

expansions

ann and in

of a
n

and b.

the latter b
n

py choice the

a . Thus,

this numlyer. If not, then
thn . Now consider the decimile

nth integer in the former is

they are not the same number,



so b was omitted from the counting. But this is contrary to choice,

so such a counting cannot be possible.

So, fbr sets without any assumed structure, 1:1 correspondence is

what we mean by isomorphism. Whenever there is some structure under

consideration, the idea becomes a little more complex. Pbssibly the

simplest case is sets having a single relation defined ont.hims.

Suppose A and B are seta with relations B and SI respectively.

We say the system (A,11) is isomorphic to the system (B,S) provided

ve can find a 1:1 correspondence f between A, and B such that both f

and f
-1

are order preserving, i.e.,

and.

if alb AI then aBb implies f(a)Sf(b),

-,if xly e B, then xay implies f 1(x)Bf 1
kyl.

Graphically, this is particularly easy to see. Consider the two

relations

1 2 a ---)...

We clain that these are isomorphic. This is eauily checked once you

make the 1:1 correspondence of the points:

1-b

2-d

3-c

4-a



Another case where isomorphism is simple to define is among sets

having a multiplication structure. AB we pointed out before, multi-

plication in a set A amounts to a fUnction from A >< A into A. It is

usual, however, not to use fUnctional notation, but rather some symbol

such as aob or a*b to stand for the element which is the "product of

a and b." Suppose (A,o) and (B1*) are two multiplicative systems.

We say that they axe isomorphic provided that we can find a 1:1
-1

corr,spondence f between A and B such that f and f both preserve

the multiplication, i.e.,

and

if a,b E A, f(aob) =

-1 -1
if :ca. E By f 1(x*y) =

The generalization to more complicated mathematical structures is

wobably clear. We begin with two sets, each having a series of

operations, functions, relations, and the like. A 1:1 correspondence

is established between the operations, etc., and another between the

elements of A and B. If the element-wise correspondence has the

property that both it and its inverse preserve the effects of corres-

ponding operations, then we say it is an isomorphic mapping of the one

system onto the other. If such a mapping exists, then the two systems

axe said to be isomorphic. We will not try to make isomorphism any

more precise than that.

As we said earlier, most axiom systems are not complete, but

many are categorical in the sense that any two interpretations are

isomorphic.

Problems

1-Establish whether or not the following pairs of relations are



isomorphic.

I.

ii.

3

a >4b

IfX1d --1),c

2-Let 111 denote a class of sets, each set having a relation defined
over it, Consider isomorphism of pairs of sets and their relations
as a relation over M. Show that it is an equivalence relation.

3-Show that the positive real numbers under multiplication are
iscmorphic to the set of all real numbers under addition.

4.4 WOMAN AICTKBBAS

Our first, and primary, example of an axiomatic system arises from

set theory. The interpretations of the system that we shall present

axe known as Boolean algebras, the name honoring George Boole who

laid the foundatione of set theory. In one way it is a poor example

of axiomatization, for it is somewhat unrepresentative. Bather than

select some portion of set theory to serve as a guide for the axiom

system, we shall use the entire structure: axioms will be given for

Niniefined" operations analogous to all of those of set theory -- to

union, intersection, complementation, and inclusion. It is much

more usual to attempt to abstract acme limited, but crucial, portion

of the original system; we shall see two examples of this using the

real nusiber system as the source of ideas. Actually, there are such

abstractions from set theory. Fbr example, if one abstracts the

inclusion relation and the fact that the union of A and B is the

smallest set which includes both A and B and the intersection of A

and B is the largest act included both in A and B, then one has the



axiom for what axe known as lattices. But because Boolean algebras

axe quite important and we already have some background in set theory,

we shall use them -- even though they axe not fully representative --

aB our example of an axiomatization.

Let us suppose that we impose on a set B four undefined operations

which correspond to the four major operations in set theory, and we

specify that they must satisfy properties which correspond to some of

the theorems which can be derived in set theory. But there are an

infinity of true theorems in set theory, so which shall ve select?

This problem always confronts one in an axiomatization, and a wise

choice among these possible axioms is always a major intellectual

feat. Often when an abstraction is first being formulated and

investigated, several different axiomatizations will be put forvard.

Sometimes they all persist in the literature, but more often experi-

ence with the several formulations leads to a decision as to which is

preferable. In the present context, we don't really have to enter into

the pros and cons of different axioms, for there is widespread -- indeed,

total -- agreement. This isn't to say that there are not a number of

different systems for Boolean algebras available and used, but only that

they are all equivalent to each other. The set of theorems which we

shall use as axions axe those listed in section 1.6. It is recommended

that you reread that section now.

So, to be more precise, we assume as given: a set B which has at

least two elements 4 and u -- these will play special roles correspond-

ing to the null and universal sets -- a relation R on B, and three

functions

F
1
: B>< B -#11

F2: B >< B -# B

F3: B

Notational convention: Since the relation and the three functions are



to play roles paralleling the usual set operations, it is convenient

to use a parallel notation. In actual practice, exactly the same

sydbols are employed; however, bete we shall add a star tp each of

the usual gribols in order to emphasize the distinction between these

operations which axe to be aximitized and the familiar set theoretical

operations. Thus, if sob e B, we write

a C *b for ab,

a U *b fbr

a n *b fbr
-*
a for F (a)

It is extremely important to understand that these starred

operations have nothing to do with inclusion, union, intersection,

and ccaplementation among the subsets of B. They stand for relations

and fUnctions defined in terms of the elements of B1 not in terms of

its subsets. In the axiccativstion, the elements of B will play the

role of sUbsets in oft theory. In other words, if U is a universal

set, B correspobds to 2, not to U.

A system (11, U *1 n *, --*), where the ranges and domains of

the operations are those given above, is called a Boolean algebra

provided that the following SICIOMB are satisfied for every alb,c c B:

Axiom 1.

Axiom 2.

a (: *a.

if a C *b and b C *c, then a C *c.

iexics (: *a.

Axicis 4. a U *a = a.

Axiom 5. a U *b b U *a.

Axial! 6. a U *(b *c) =

(a u *b)

Axiom 7. a U *(b *c )=

(a U *b) n

Axiom 8. 4 n *a . 4.

Axiom 3'. at: *u.
Axiom 4 a n *a = a.

Axiom 22, a n *b =b n *a.

Axiom 6'. a n *(b n *c)

n *b) n *c.

Axiom 7'. a n *(b j *) =

*c). (m n *b) j *(a n *c).

Axiom 8'. u *a = u.
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Axiam 9. u a . a. Axiom 9'. u n = a.

Axiom 10. a U *a =u. Ark= 10' . a n

Axiom U. a U *b = a fl *b . Axiom 11'. a n *b = a u * b

Axiom 12. a so a.

Axiom 13. Each of the following implies

the other two:

a C 41,, a n *b = a, a U *b = b.

The first problem we must consider is whether this axiom system is

consistent. It certainly is for some sets Bo for all we need do is

choose a set [land let B = 2
u
and the resulting algebra of subsets is

certainly an interpaetation of the system. A theorem which we shall

state below shows that the axiom system is only consistent for certain

sets B.

Second, wty did we Choose this particular set of theorems of set

theory to use as axioms? The answer is reasonably clear if you recall

the statement we made when discussing the corresponding theorems in

set theory to the effect that it is possible from these theorems alone

to prove any other theorem which can be phrased in set theory concepts.

It is never necessary to resort to arguments involving elements of

subsets. Thus, in any Boolean algebra it is always possible to derive

from the axioms agy theorem whose corresponding statement is true for

sets. But if that is so, it must mean that any interpretation of a

Boolean algebra cannot really be very different from the algebra

generated by the subsets of a given set. Among other thingb, we

migtt conjecture that all interpretations in which the underlying

sets B axe in 1:1 correspondence are isomorphic. Tbis, and a bit more,

is true, but our way of arriving at it has hardly been honest. It has

been built upon our statement in Chapter 1 that any other true theorem

for sets could be derived directly from those which we listed, but we

did not prove this statement.

It actually follows from the central representation theorem for



Boolean algebras to which we have been leading up. The theorem is

this: Any interpretation of a Boolean algebra is isomorphic to an

algebra of sets (see section 1.8), which is, of course, also an

interpretation. This says not only that any two interpretations which

axe in 1:1 correspondence are isomorphic, but also that there are no

interpretations which are not isomorphic to an algebra of sets. Thus,

whenever we have to think about a Boolean algebra, we will not be

misled by thinking of an algebra of subsets of a given set with the

operations of union, intersection, inclusion, and complementation.

BUt if this is so, has there reFOly been any point to the

axiomatization? Won't all interpretations be so immediately parallel

to set theory itself that the aximatization is superfluous? Ttio

rather distinct examples suggest that this is not so. The first we

shall sketch briefly am, and you vill study it and related topics

much more fUlly later; the second will be presented in the next

section.

Consider elementary logic. It begins with a set of propositions,

i.e., statements which can be either true or allse. Ekamples: "a red

automobile must be a fire engine," 14t. Rverest exceeds 10,000 feet in

height," "a tree is a tree or a house," etc. Of these, the first is

empirically felse, the oecond empirically true, and the third

tautologicftsoly true. Four basic logical connectives can be identified

which allow US to form new propositions froom old: If p and q denote

propositions, then we can fOrm the propositions

p or q, p and q, not p, and p implies q.

It is generally assumed that these connectives satisfy certain

properties. These lie so deep in our early training, and are so

closely integrated with experience, that we sometimes forget that

they are unproved assumptions -- or axioms of the calculus of

propositions. For example: not(not p) = pl g or q q or p, etc.



It turns out that if we make the following identifications

"or" fOr U*

"and" for n*

"%aot" fbr -*

"imIllies" for C*,

then each of the axioms for a Boolean algebra becomes one of the

usual assumptions of logic. In other words, the mathematical

structure lying behind our ordinary propositional logic is the same

as that fOr sets; it is a Boolean algebra. Tbis is not unreasonable

when you remember that A u B is the set of elements either in A or

in B, A n B the set of elements in A and in B, etc.

Ome final point should be made.. The axiom's we have presented are

far from being independent; this is suggested by axiom 13 which says

that ve could have defined some of the operations in terms of others.

In the literature one can find a number of different independent sets

of axioms for Boolean algebra, and there is one which is based upon a

single undefined operation (known as the Sheffer stroke). We have

Chosen a non-independent set for our discussion because in this fOrm

they are pwticularly simple and intuitive; the axiom of the

independent sets tend to be somewhat more obscure. FOr a much more

detailed discussion of these points see Birkhoff's Lattice Theory and

for a less commebensive, but simpler, discussion see Birkhoff and

MacLane's A Survey of Modern Algebra.

Problems

1-Show that every Boolean algebra has a Boolean sUbalgebra of
just two elements.

2-Define formal1y wbat it means fOr two interpretations of a
Boolean algebra to be isomorphic.

*3-Let ur be a set. lb= the n by n matrices having as entries,



not numbers as in ordinary matrix theory, but subsets of U.
Thus if Ai

j
denotes the entry in the ith row and jth column

of the matrix Al Aii(: U. Can you see plausible ways to

define the Boolean operations Au *B, A n *14 AC *B, and
-*
A 1 where Amid Bare such matrices, so that the set of all
such n by n Boolean matrices form a Boolemn algebra? By
analogy to ordinary matrix multiplication, we can define
Boolean matrix multiplication as follows: The ij entry of
the product of A and B2 written AB, is the subset

(Ail (1 Bij) u CA12 (1 B
2j

) U....0 (A
in

n Baj)

= d (Ait n B10).
k = 1

Suppose we think of the rows and columns of the matrix aa
representing people and of Liras a set of information. What
is the analogue to the cummunication interpretation of ordinary
matrix multiplication given in section 2.5.

4.5 SWITCHING CIRCUITS

A switch, as we shall use the term, is any device which is always

in one of two possible states, which can be called "on" and "off." An

electric knife switch of the type shown

in Fig. 21 is a good example. Such
input

switches axe "wired" into circuits to

fOrm more comTlicated switches of the

same general sort, i.e., under same Fig. 21

conditions they axe on, under the remaining they are off. If a

switch is in the "on" position, current fram the input will flow

through a wire attached to the "on" terminal, but not through a wire

attached to the "off" terminal. Each distinct switch in a circuit

will be given a name such as p or q. In some circuits there will be

two physically distinct switches which axe "ganged" together so that

they are on together and off together. In such cases, the same symbol

will be used for these switches, for theyrare fUnctionally the same.

We propose to show that the algebra of such circuits is a very

-157-



simple Boolean algebra and that this is usefhl to know. Suppose it

is a Boolean algebra, then since a switch has only two states it is

presumable the two element algebra (4, u) which is relevant. Let us

identify the element 4 with the "1,..ff" terminal of a switch and u. with

the "on" terminal. Now if p is a switch, we say that p = 4 if the

knife is in the "aff" position and p = u if the knife is in the "on"

position. Now, consider the switch 5:

if p = 4 I then 5 = = u

if p = u , then 5 = ii = 4.

So 5. is the switch which is on when p is off and off when p is on.

Physically, 5 can be obtained from the switch p amply by interchanging

the connections to the output terminal
AL__ A

as in Fig. 22.

Now, if p and q are two switches,

then p U q is a switch with the following

properties:

p u q = 4 if p = 4 and q = 4,

= u otherwise. 1

This amounts to wiring p and q inP P

parallel, as shown in Fig. 23.

Similarly, p n q is a switch with

the properties

pflq=uifp=uandq= u
. 4 otherwise.

p q,

Fig. 22

4

B

A

Fig. 23

Fig. 24

This corresponds to switches wired in series, as in Fig. 24. Note

the strong duality between these two drawings.



Observe, both fram the algebra and the drawings, that p U q and

p n q axe again switches of the same basic type: they have one

input and two output terminals and they are in one of two possible

states. Either current will pass out of the off terminal or out of

the on terminal. By repeated application of these two constructions

plus negation, any expression which can be formed in the two element

Boolean algebra can be reproduced as a switching circuit. Thus, for

example, statements in elementary logic can be reduced to switching

circuits.

Example: Design a circuit so that a light can be turned on by

a switch at any one of three doors. Let the switches be denoted by

p, qj and r. The overall circuit is to be "on" whenever either of

p orqorris "on," i.e., it has the formulapUqUr. By one of

the axioms of a Boolean algebra, this can be written (p J q) u r.

The circuit for p U q is given in Fig. 23, so (p U q) U r must be

the one shown in Fig. 25.

1 1 1

Fig. 25

Example: A light is to indicate when two switches p and q are

both in the same position, i.e., the light is to be on if and only

if both p and q are on or both are off. Thus, the formula for the

circuit is (p n q) U 6,7 n i). The construction for this circuit

is shown step by step in Fig. 26. In actual construction, the pairs

of switches with the same labels would be ganged switches operating

together.
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p n

Fig. 26

The merit of making the identification between switching circuitR

and the two element Boolean algebra is that it is comparatively easy

to translate a complicated verbal statement of the conditions to be

met into an algebraic fOrmula, then to use the axioms to reduce this

expression as much as possible, and then systematically to realize

the simplified expression as a circuit.

EXample: Suppose that a circuit must be designed to lock the gate

of a plant. It is stipulated that the gate shall be 010en only when

one of the following conditions is net:

i. a switch y in the president's office and another, ok, at the

guard's station are both on;

ii. when p is off, the gate is open if both the guard's switch

and one, r, controlled by the security officer are on;

iii. to insure extra protection at night there is a time clock

rwitch which, when offal keeps the gate locked unless all

three switches -- the president's, the guard's, and the

security officer's -- are on.

Design this circuit.

1 C

-16o-



The circuitsmst be in one state -- on or off, it doesn't really

matter -- if and only if one of the following conditions are met:

either

1. p n qj or ii. p n q n r, or iii.inpnqn r.

Thus, the overall circuit is

(pnq)U Cinqnr)U (iinpnqnr).

A fey manipulations of the axioms Shows that this is equivalent to

the circuit q n (p U r). Interpreted verbally, the gate is open if

and only if the guard's switch is on and either the president's or the

security ofncer's is also on. In other words, the time clock plays

no role and the president and security officer have the same degree

of control. The realization of the circuit is shown in Fig. 27.

Nx.
Fig. 27

It should be added that there axe a variety of ways of drawing

the schematics of such circuits. This style was chosen because it

shows very clearly the dual roles of union and intersection (see

Figs. 23 and 24).

Problems

1-Draw the circuits fbrpU5 asdpni in terms of the single



(ganged) switch p. Ry drawing the two different positions for
knife in pi show that the fOrmer amounts to s. wire and the latter
to an open circuit.

2-Prove (pflOU (pilqnr)U (sflpflqnr) =q11 (pU r)
using the axioms of a Boolean algebra.

3-Suppose a door is locked if p is off, or q is on, or if p is on
and q is off. ftpress this circuit algebraically, simplify, and
draw the resulting circuit in terms of the two switches p and q.

*4.6 EXISTENCE OF LINEAR MLITT FUNCTIONS

Aulging by our emphasis on the axiamatization of fUnctions, it is

reasonable to conclude that most of the successful axiomatizations

related to behavioral problems have assumed that form. However, sone

important ones exist which are axiamatizations of systems, not fUnctions.

One of the simplest to describe, and one for which same background was

established in section 3.11, is the axiamatization of a relation over

a set of gambles such that a linear utility fUnction exists. You will

reeall that when we first encountered this problem we presented same

of the background and then inquired into the uniqueness of such

fhnctions when they do exist. Of course, it is of even more interest

to know when they exist, for if we know what conditions die preference

relation must meet then we may have some idea whether it is suitable

to use linear utility fUnctions to represent preferences.

As background for this discussion, it would be vise to reread

section 3.11. There we began with a finite set A of alternatives

and from this generated the set G of all gambles based upon A. One

way to look at G is as the set of all probability distributions over

the elements of A. Another way is to think of G as ccaposed of all

elements of A, and all elements of the form aob, where a,b e G and a

is a real number, 0 < or < 1. Such an elemont is interpreted as the

gamble in which the outcome is a (posmibly another gaMble) if an

event having probability o! of occurring actually occurs and b if the

event fails to occur.



The elements of G are all possible outcomes which may arise from

the basic outcomes A in a situation where there is risk -- where

chance events play a role in deciding exactly what outcome will result.

It is assumed that any given person will have preferences not only

among the alternatives in A but also among all the gadbles in G. Let

us denote this preference relation by >, where a > b means that he

prefers gamble a to gasIble b or he is indifferent between them.

Par the reasons cited in 3.11, it is of interest to know when a

real-valued function u with domain G exists having the tvo properties:

and

1-(order preserving) a > b if and only if u (a) > u(b),

2-(linearity) u(a) = ou(a) + (1 a)u(b).

Such a function, when it exists, is known as a linear utility function

(for the preference relation > on G), and we established that, while

not unique, it is determined up to a positive linear transformation.

The problem now is to establish cooditions on > such that a

linear utility fUnction exists. It will be reealled that, to prove

the uniqueness result, we found it necessary to derive in section 3.11

a property which >would have to be met if a linear utility function

exists. It was: if a > b > c, then there exists a probability a
such that aom - b. It seems plausible that there are other properties

which we might establish in much the same limy. Same of these might

be independent of the ones previously derived; others might be

logical consequences. FUrthermore, it is plausible -- though not

certain -- that if we derive enough of them we will finally be able

to show that whenever these are met, then a linear utility function

has to exist. Such a set of properties > constitutes the axionatiza-

tion fOr which we are looking. As in all such axiomatizations, there

is no unique set of axioms which will yield the result we want.

Various, apparently quite different, sets will do ecrullly well in the
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sensP that they are all logically equivalent to each other and from

any of them existence of a linear utility function can be eirtabliwoed.

The choice among them is purely psychological. One Wants =JAMS

which are fairly simple to understand and which have a eertain

plausibility. We want them to be in a form that a person will

agree (before he knows the theorem) that preferences do (or should)

satisfy these conditions. FOrl by agreeing to them, then he has

implicitly agreed that preferences can (or dhould) be represented

by a linear numerical utility fUnction. This is something we cannot

expect him to agree to directly, and the whole point of the axionatiza-

tion is to transform the prdblem to a different level where he is more

certain how preferences do (or should) behave.

Let us present such a set of seven suitable axioms.

Axiom 1. > is a weak ordering of G.

As we pointed out earlier, this axiom must be satisfied by any

preference relationwhich is to be simply described numerically.

Intuitively, there seem to be two major doubts about it. First, it

implies that strict preferences are transitive: if a is preferred

to b and b to c, then a is preferred to c. It seems that we all

feel that preferences should be like this, but it is not difficult

to devise sets of alternatives which lead people into intransitive

traps. Secondi it supposes that indifference is also transitive, and

that seems questionable. Fbr example, in seasoning food most of us

would agree that we are indifferent between a given amount of pepper

and that plum one grain more. But if indifference were transitive,

ve would have to conclude that we are indifferent between any two

amounts of pepper, which is silly. Woo alternatives seem possible;

either we can attempt to change the model quite seriously, fOr instance

by introducing probabilities of preferences, or ve can say that a

weak order is an approximation to reality -- an approximatiouwhich

is sometimes pretty good.



Axiom 2. a > b > c implies there exists an a, 0 > a > 1, such
that sac - b.

This condition was derived in section 3.11, and we discussed its
meaning there. It amounts to saying that there is a continuity of
preferences. Again, it is doubtilil that it is ever strictly true
for preferences, but it seems like a plausible approximation to
reality.

Axice 3. Let a be any number such that 0 < a < 1, then a > b if
and on.1,v if aac > bCe for any c e G.

Assuming a linear utility function exists, this property of >
is proved in much the same way as the preceding property. It has
a very reasonable meaning: if you prefer a to b and then form the
two gambles aac and bah (note that the same grobability and the same

alternative c enters into each gamble), then your preference for a
controls your preference between the gambles.

Axice 4. ace, - a.
Axiom 5. acd, b(1 - a)a.
Axiom 6. alb _ a.

These three are extremely simple to prove. Rix- example, to
show axiom 4,

u(aas) = au(a) + (1 - a)u(a) = u(a),

by linearity of u. But since u is order preserving, this implies that
ace _ a. These are equaLly easy to interpret. Just think of what ace.
means and you see that a person would have to consider it preference-
wise indifferent to a. The other two are evili ly plausible.

Axiom 7. If a and f3 are not both 0, then



-

This is arrived at as fallows:

u(an000] On(a) + (1 - 00u(b0c)

= on(a) + (1 - o)pu(b) + (1 - a)(1 ft)u(e)

+ (1 - a - + ap)u(c)

= u[ (a b)(a + p

Possibly the easiest way to criticize this axiom is first to

consider a special case of it in conjunction with axiom 4, namely:

(adb)Ob EOM.

The assumption then is that the two stage visible on the left, which

involves only two ultimate alternatives, ia held indifferent to the

one stage gamble on the right. First, we observe that the tvo basic

alternatives have the same prebeibility of occurring in both eases.

Thus, rationally, it certainly is a reasonable assumption, but it

does imply that the person does not receive any pleasure from the

gaibling itself. Only the final chances over the alternatives count.

Possibly, it is reasonable for certain important applications, suen SA

business ones. There, one would hope, only the risks involved should

be considered, not whether they axe divided into one or two stages.

Even if you feel, as we do, that most people's preferences do not

satisfy these axioms, you can still feel that under some conditions it

would be desirable for a decision maker to satisfy them. If so, then

you are saying that ideally his preferences should be represented by a

linear utility ftnetion, for it can be ahown (we will not do so here,



but see problem 3) that any preference relation > on a set G of

gambles which satisfies these seven axioms can be represented by a

linear utility fUnction. This famous theorem was first proved by

von Neuss= and Morgenstern in the second edition of The Theory- of

Games and Economic Behavior.

As we said, a nuMber of other equivalent axioms systems can be

fbund in the literature. The only merit that really can be claimed

fbr one over another is that the axioms of one seem more intuitively

reasonable. There are numerous counter intuitive examilles available

where one or another axiom appears to be untenable.

One of the main uses of this theory is to justify introducing

numerical payoff* into tbe theory of games. in section 2.6 we

described what is meant by the rules of the game. Among other

things, there was the game tree vbidh described the pattern of

decisions for the various players. Assigned to the end points of the

tree were certain outcomes, far the end point °tithe tree describes a

unique path of decisions through the tree. Now, if it is assumed

that each of the players has a preference pattern among the possible

outcomes and gambles involving these outcomes which satisfy the seven

axioms abc7e, then we know that for eadh player each outcome can be

represented by a numerical utility. Thus, we can replace the assign-

ment of outcomes to the end points by the assignment of the correspond-

ing utilities. This new structure, which is the same as tbe rules of

the game except that there are nuabers (utilities) instead of outcomes,

is known as the extensive form of a game.

*Problems

1-Using same of the seven axioms, show GM b.

2-Derive the property expressed in axiom 5 from the assumption a
linear utility fhnction exists. Discuss its plausibility.

3-Choose any a, b e G such that a > b. Define u(a) . 1 and
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u(b) = 0. Fbr any other c e Q, how would you use axiam 2 to
determine the value u(c)? (In the existence proof, this is
hay u is actually constructed; the other axioms are then
utilized to show that it is both order preserving and linear.)


