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PREFACE
Mathematics has often been characterized as the "Handmaiden of the

Sciences:' It would seem that somehow, mysteriously, mathematics is a
powerful tool which "explains" or "describes" Nature in a remarkably
convenient and uncannily accurate way. The curious observer may well
wonder how to account for this apparently fortuitous piece of serendip-
ity. Einstein himself once raised that very question: "How can it be that
mathematics, being after all a product of human thought independent of
experience, is so admirably adapted to the objects of reality?" Elsewhere'
he gave a partial answer to his own question: "As far as the laws of mathe-
matics refer to reality, they are not certain; and as far as they are certain.
they do not refer to reality:'

A more explicit answer may perhaps be found in the way in which
mathematics use causal nwdels. We cannot know the "laws" (if any) that
govern our physical environment; we can only observe the effects of these
laws. Thus, out of sheer human curiosity, when confronted with a phy-
ical situation, we idealize the circumstances and create a hypothetical
model as nearly like the physical situation; then we attempt to study the
model mathematically. The general procedure is suggested by Swann,'"
as follows:

The pure mathematician . . . will set up a branch of mathematics
founded upon certain postulates having to do with quantities, letters,
etc., that he chooses to be talking about. In this mathematical scheme,
there will appear relationships between certain quantities which occur
in the mathematics, and it will be his hope to invent a scheme of
mathematics of this kind which shall form an analog of the regularities
of nature in the sense that there t. ay be a one-to-one correspondence
between certain things in the mathematics and the observable phe-
nomena in nature. . . . When the correspondence has been set up, the
postulates of his mathematics become the laws of nature in the physics.
Or, in the cogent words of another celebrated physicist:1

"On the one hand, mathematics is a study of certain aspects of the
human thinkiog process; on the other hand, when we make ourselves

' Albert Einstdu: Geometric und Frfahrung.
'W E G. Swann, "K fality in Physic-II': Science 75:113-114 (1932) .

W Heisenberg. asiitunell hy R w Bridgman in Science, 1930. v01, 71, p. 21.
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master of a physical situation, we so arrange the data as to conform to
the demands of our thinking process. It would seem probable, there-
fore, that merely in arranging the subject in a form suitable for
discussion we have already introduced the mathematics the mathe-
matics is unavoidably introduced by our treatment, and it is inevitable
that mathematical principles appear to rule nature:

These passages both give plausibility to a viewpoint expressed a few
years earlier by J. W. N. Sullivan,' a perceptive philosophical observer of
science, in which he suggested that

I the significance of mathematics lies precisely in the fact that
it is an art; by informing us of the nature of our own minds it informs
us of much that depends upon our minds. It does not enable us to
explore some remote region of the externally existent; it helps to show
us how far what exists depends upon the way we exist. We are the law-
givers of the Universe; it is even possible that we can experience
nothing but what we have created, and that the greatest of our mathe-
matical creations is the material universe itself:

Enough has been said here to indicate that the relation of mathematics
to physical science is far from a simple matter. The present group of
essays will make these concepts more meaningful, especially as they con-
cern the relation of geometry to empirical science and measurement.

William L. Schaaf

J. W. N. Sullivan, Aspects of Science, Second Series, Mftril Knopf. 1926, pp. 93 ff.
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FOREWORD
No doubt you have at one time or another come across so-called optit.il

illusions, such as a drawing in which one of two equal line segments
appears at first glance to be definitely longer than the other; or a drawing
in which parallel lines seem to bend, or where an apparently curved line
is actually made up of many small straight line segments.

How do we come to recognize and identify such matters as length or
direction, straight or curved, flat or round, and so on? It is questions like
these that are of interest to the physiologist, the engineer, the architect,
the designer, and the mathematician.

For although geometry as a mathematical discipline is not in the least
concerned with material or physical objects, nevertheless many of the
basic concepts of geometry are suggested by human experience when
observing and handling material objects. Not only the objects them-
selves, but the ways in which they are orientated to one another also sug-
gest geometric concepts such as horizontal, vertical, oblique, parallel, per-
pendicular, symmetric, congruent, and the like. In the present article
the author explores the sources of our imagery and our conception of
space and spatial relationships. As such, the essay furnishes a most ap-
propriate introduction to the succeeding paper on the relation of geom-
etry to empirical science, which is somewhat more sophisticated and
rather profound.



GEOMETRY AND EXPERIENCE*
N. A. COURT

STUDENTS who gather for their first lesson in geometry know already
a good deal about the subject. They are familiar with certain shapes that
textbooks on geometry call parallelepipeds, spheres, circles, cylinders,
which the students would call boxes. balls, wheels, pipes. Notions such
as point, line, distance, direction, and right angle are quite familiar and
clear to them, in spite of all the difficulties learned mathematicians pro-
fess to encounter when they try to clarify or define these concepts.

The question arises, how was this store of knowledge gathered, how
was this information acquired? The empiricists maintain that geomet-
rical knowledge is the result of the experience of the individual in the
world surrounding him. However, the universal acceptance of the basic
properties of space lead the apriorists to the conclusion that these spatial
relations are innate, that they constitute a fundamental characteristic or
limitation of the mind which cannot function without it or outside of it.
The invention of non-Euclidean geometry has done considerable damage
to the solidity of the apriorist armor but has not eliminated the debate
between the two schools of thought.

During the present century the eminent French sociologist Emile
Durkheim (1858-1917) advanced an Intermediate thesis. The source of
our geometric knowledge is experience. However, at a very early stage
of civilization this individual experience is pooled and codified by the
group. owing to social necessity and in order to serve social purposes.
Our basic geometric knowledge is thus a social institution. It is this social
function of geometry that accounts for the fact of wits universal accept-
ance. for the inability of the individual to act contrary to it, for the mind
to reject it.

It is universally agreed that the actual experience of living is the basic
factor in the process of accumulating information of the kind that we
call spatial or geometrical. This in turn amounts to saying that we come
into possession of this information through our senses. Such being the
case, the question naturally comes to mind, which of our senses is it that
performs this function?
°From an address before the Mathematical Colksquim, University of Oklahoma, May 1944,
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The sense of hearing helps to acquire the notion of direction. To a
lesser degree this is also true of the sense of smell. The sense of taste need
hardly be mentioned in this connection. The sense of. sight and the sense
of touch remain. It does not take much effort to see that these two senses
play the dominant part in the shaping of our geometrical knowledge.

The sense of touch, considered in its broader aspect of including also
our muscular sense, supplies us with information as to the shape of
things. It is also our first source of information about distance. By touch
we learn to distinguish between round things and things that have edges,
things that are flat and things that arc not flat. It is the sense of touch
that conveys to us the first notions of size. This object we can grasp with
our hand, and this other cannot be so grasped: it is too big; this object
w-. can surround with our arms, this other we cannot: it is too big.

These examples imply measuring and the measuring stick is the size
of our hand, the length of out arm, and, more generally, the size of our
body. The whole environment that we have created for ourselves in
our daily life is made to measure for the size of our body. That the clothes
we wear are adapted to the size of our body and our limbs goes without
saying. But so is the chair we sit on, the bed we sleep in, the rooms and
the houses we live in, the steps we climb, the size of the pencil wc use,
and so on without end. We take it so much for granted that things should
fit our size that we are startled when they fail to conform to the adult
standard, as, for example, in the children's room of a public library
where the chairs are tiny and the tables very, very low. The legendary
robber Procrustes, of ancient Greece, had his own ideas about matching
the sit, per and the size of the bed. He made his victims occupy an iron
bed. If the occupant was too short, he was subjected to stretching until
he reached the proper length. If, on the contrary, the helpless victim
was too tall he was trimmed down to the right size, at one end or the
other. Hebrew writers placed this famous bed in Sodom, and it was one
of the iniquities that caused Sodom's destruction, by a "bombardment
from the air:*

In many cases the fact that things are made on the "human scale" may
be less immediate but is no less real. The clock on the wall has two hands,
whereas, strictly speaking, the hour hand alone should be sufficient.
Owing to the limitations of our eyesight, wc cannot evaluate with suffi-
cient accuracy fractional parts of an hour by the use of the hour hand
alone, unless the face of the clock was made many times larger than is
customary. But then the clock would become an unwieldy object. out
of proportion to the other objects around us made to the "human scale

The comparison of the size of objects surroukxling us with the size
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of our body is not just a kind of automatic reflex but is a deliberate
operation as well. When in the course of MIT cultural development the
need arose for greater precision in describing-siies and for agreement
um some units of length, we turned to our,body to provide the models.
The length of the arms and of the fingers, the width of the hand, the
length of the body and of the legs all served that purpose at one time or
another, at one place or another. The yard is, according to tradition, the
length of the arm of King Henry I. The origin of the "foot" measure
requires no explanation, and we still "step off" lengths.

The sense of vision is the other great source of geometrical infor-
mation. .1i) a considerable extent this information overlaps the data fur-
nished by the sense of touch. Sight informs us of the difference in sizes
of objects around us. Sight supplements and extends the notion of dis-
tance that wc gain through touch. Sight tells us of the shape of things, and
on a much larger scale than touch does. But sight asserts its supremacy as
a source of geometrical knowledge when it comes to the notion of direc-
tion. Moreover, sight tells us "at a glance" which object is closer, which
is farther, which is in front and which is behind, which is above and
which is below. Sight is supreme in telling us when objects are in the
same direction from us, when they are in a straight line. When we want
to align trees along our streets, we have recourse to sight. The fact that
light travels in a straight line is one of the main reasons for the dominant
position the straight line occupies in our geometrical constructs. I realize
that some learned persons will smile indulgently at the statement that
a ray of light is rectilinear. I will, nevertheless, stick to my assertion as
far as our terrestrial affairs arc concerned, whatever may be true of light
on the vaster scale of the interstellar or intergalaxian universe.

Up, to this point the geometrical knowledge I have mentioned is the
kind familiar to "the man in the street:' Let us now turn to the systematic
study of the subject, to the science of geometry. Are both empirical
sources of geometrical knowledge reflected in systematic geometry? Is it
possible to classify geometrical theorems on that baiis?

H we examine Euclid. we see that hc leaned heavily towards tactile
geometry, or the geometry of size. His main preoccupation was to estab-
lish the equality of segments and angles, to prove the congruence of tri-
angles. The method of proving triangles to be congruent consists in
picking up one triangle and placing it on the top of the other, which
implies that the moving triangle does not change while it is in motion.
This possibility of rigid motion was much insisted upon by Henri Poin-
cart (1854-1912) and is now considered by mathematicians to be the
characteristic property of the geometry of size, or, to use the professional

5
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fundamental importance, in the collection of Pappus. Greek author
of the third century of our present era. A syswmatk study of visual geom-
etry had to wait for a millennium and a half before it found its apostle
and high priest in thc person of the French army officer Jean Victor
Ponce let (1788-1867), the father -of projective geometry.

Consider any geometrical figure, say a plane figure (triangle) F (Fig. 1),
for the sake of simplicity, and let S be a point (representing the eye) not
in thc plane of figure E Imagine the lines joining every point of figure
F to the point S. Now. if we place a screen between S and figure F. every-
one of these lines will mark a point on the screen, and thus we obtain
a new figure F' in the new plane. t c image of figure E

Sik..1::-. -......
\ :"" ... --"'" ....

4.0. .. ... S.
11, s ss `

%. S.
s N.

FIG. 1. IN REPRO.) EC' ME GEOMETRY
I we compare the two.figures F and F', we notice some very interesting

things. -Flic figure F' in general will be different from E It has suffered
many distortions. If A, B arc two lxiitits in F and A'. B' arc their images
in F', the distance A'B' is not equal to the distance AB, as a rule, and may
be either smaller or greater than AB, and this alone deprives thc figure
F' of any value in the study of thc figure F from a metrical point of view.
There are, moreover, many other distortions of various kinds. But some
characteristics of F always reappear in P. Of these the most important is
that a straight line p oi V has for its image in F' a straight line p'. and
consequently an!, three points A, B. C of F that lic on a straight line in
F will have for their images in F' three points A', B', C' that also lic in a
straight line. If two lines p and g are taken in F. their images in F' are
two straight lines p' and g', but thc angle p'g' is not equal to thc angle
pg. as a rule, and may be either smaller or larger than pg. In particular.
the images of two parallel lines are not necessarily parallel, and the
images of two perpendicular lines are not necessarily perpendicular.

If we call figure F' the projection of figure front the !mint S. we may
say that projection preserves incidence and collinearity. The systematic
study of projective geometry, or visual geometry, is the study of those

6
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properties of figures that remain unaltered by projection, just as it may
be said of metrical geometry that it is the study of those properiies of
figures that remain unaltered in rigid motion.

From the point of view of the theory of knowledge it is of great signifi-
cance that the distinction between tactile geometry and visual geometry
was not noticed by either philosophers or psychologists. Only after the
patient labors of mathematicians created the doctrine of projective geom-
etry did the distim ion come to light. The credit for having pointed out
this distinction gfx. , to Federigo Enriques, Professor of Projective Geom-
etry at the University of Rome.

In the study of the sources of our geometrical knowledge too little
attention is accorded to our own mobility, to our ability to change places.
Even thc hinge of our knowledge due to touch is considerably increased
by our ability to move our arms. In cotmection with our visual informa-
tion our mobility is of paramount importance. 16 mention only one
point, the shape of an object depends upon the point of view, or the
point of observation. It is our ability to change places that makes it pos-
sible for us to eliminate the fortuitous features from our observations.

As has been mentioned before, our tactile and visual information do
not cover thc same ground, but they overlap to a considerable extent
and thus complement each other. But do they always agree? If a person
drives his car over a stretch of straight road, he observes that the road
is of thc same width all along. He knows it to be so by comparison with
the size ( f his car and by comparison of thc sizc of his car with his own
size; in other words, it is a tactile fact. Now, if he turns around and looks
at the road just traversed, he sees "with his own eyes" that the road is
getting narrower as it extends back into the distance and seems to vanish
into a point. These two items of information on the sank subject wn-
tradict each otly.r. Which of them is trite and which is false? Which of
term, of metric geometry. Euclid's is thus metrical geometry exclusively,
or nearly so. This is not at all surprising, since metrical women y is the
geometry of action, the geometry that builds our dwellings and makes
our household utensils. The very origin of Euclid's geometry is supposed
to bc connected with the parcelling out of plots of land in Egypt after
thc recession of the flood waters of the Nile.

Euclid did not know that his was metrical geometry. '16 him it was
just geometry, for he knew of no other kind. Neither did his successors,
in spite of the fact that thcy added to Euclid's Element a considerable
number of geometric propositions which in their nature are visual and
not metric. There arc numerous such propositions. some of them of

7



them do we accept and which do we reject? Above all, how do we go
about telling which to accept and which to reject?

When one puts a perfectly good spoon into a glass of water, he sees
that the spoon is unmistakably broken, or at least bent at a considerable
angle. He takes the spoon out, and it is as good as it was before he put
it in. He runs his finger along the spoon while it is in the glass and feels
that it is as straight as ever. But when he looks at it, there is no doubt that
the spoon is bent; contradictory testimony of two different senses. Again
the question arises, which of the two pieces of information do we accept,
and on what ground do we make our choice?

A long time ago I read of a lake where the water was so clear that on a
bright moonlit night it was possible to see the fish asleep on the boetom
of the lake. Devotees of fishing would take advantage of this situation
and go out in a boat, as quietly as possible, to the middle of the lake
and then try to catch the fish by striking them with a harpoon. It was
explained in my reader that aiming the harpoon at the spot where a fish
was seen would spell disastrous failure and that successful practitioners
of the sport would know the spot at which to aim, although the fish was
seen to be elsewhere.

The moral of this fish story is of great importance. In the case of the
road and in the case of the spoon we all repudiate the testimony of our
eyes and accept the verdict of the sense of touch. We do so whenever the
tactile and the visual testimonies are in disagreement. But why?

The answer to this puzzling question may be found in the activity of
man. Moreover, his activities are purposeul and must be coordinated so
as to achieve success. Now, man's organs of activity, his hands, are also
the main organs of touch. Man has thus developed a close co-ordination
between his touch and his actions. At short range, he has implicit faith
that his actions will be fruitful if he relies on the data furnished by
touch. Visual data concern objects at a distance and serve well as a first
approximation. They are good in most cases but are always subject to
control and check. If light sees fit to indulge in such vagaries as reflection,
refraction, and mirages, so much the worse for light. My fish story points
to just that moral. Sight leads us to the fish. But if we want to act on it
successfully, we must subject this information to the necessary correction
as learned by touch. Otherwise we shall have no fish to fry.

8



FOREWORD
As a mathematical discipline, geometry that is, pure geometry, is

without "content" in the sense that it makes no pretense at describing
the properties of physical objects or any relations between such objects.
It deals instead with "ideals" or ideas; these do not "exist" in the sense
that material objects exist for us. Moreover, we make our own "rules of
the game" when we explore these ideals. Thus a geometry any geom-
etrycan never be proved right or wrong, and certainly not by observ-
ing or measuring physical objects in support of a particular system of
geometry.

Therein lies the essential difference between physical science and
geometry. In the case of science, we arrive at generalizations and con-
clusions through inductive inference, whirh thereby introduces an ele-
ment of uncertainty. An inductive inference based on experimental
evidence can never be absolutely certain; at best, it may be highly prob-
able. This thought was expressed by Einstein when he said, in effect, that
a hundred successful experiments can never prove that a theory is cor-
rect, but a single contradiction will prove that it is incorrect. On the
other hand, in geometry (as in all pure mathematics) we establish gen-
eralizations through deductive inferences. This is a procedure which
demands that some propositions or generalizations are mutually agreed
upon at the very outset, as are also conventional rules of thought known
as formal logic. In this way, no uncertainty enters the picture. If you
accept the assumed propositions and the conventional mode of logical
reasoning, then you must also accept the conclusions which are thus
arrived at by deduction, or implication.

Such is the central theme which is very ably expounded in the present
article.



GEOMETRY AND EMPIRICAL SCIENCE
C. G. HEMPEL

1. INTRODUMON. I'he most distinctive characteristic which differen-
tiates mathematics from the various branches of empirical science, and
which accounts for its fame as the queen of the sciences, is no doubt the
peculiar certainty and necessity of its results. No proposition in even
the most advanced parts of empirical science can ever attain this status;
a hypothesis concerning "matters of empirical fact" can at best acquire
what is loosely called a high probability or a high degree of confirmation
on the basis of the relevant evidence available; but however well it may
have been confirmed by careful tests, the possibility can never be pre-
cluded that it will have to be discarded later in the light of new and
discontinuing evidence. Thus, all the theories and hypotheses of empiri-
cal science share this provisional character of being established and
accepted "until further notice:' whereas a mathematical theorem, once
proved, is established once and for all; it holds with that particular cer-
tainty which no subsequent empirical discoveries, however unexpected
and extraordinary, can ever affect to the slightest extent. It is the pur-
pose of this paper to examine the nature of that proverbial "mathemati-
cal certainty- with special reference to geometry, in an attempt to shed
some light on the question as to the validity of geometrical theories, and
their significance for our knowledge of the structure of physical space.

The nature of mathematical truth can be understood through an
analysis of the method by means of which it is established. On this point
I can be very brief: it is the method of mathematical demonstration.
which consists in the logical deduction of the proposition to be proved
from other propositions, previously establislwd. Clearly, this procedure
would involve an infinite regress unkss sonic propositions were accepted
without proof; such propositions arc indeed found in every mathematical
discipline which is rigorously developed; they are the axioms or postu-
lates (we shall use these terms interchangeably) of the theory. Geometry
provides the historically first example of the axiomatic presentation of a
mathematical discipline. The classical set of postulates, however, on
which Euclid based his system, has proved insufficient for the deduction
of the well-known theorems of so-called euclidean geometry; it has there-
fore been revised and supplemented in modern times, and at present
various adequate systems of postulates for euclidean geometry are avail-
able; the one Most closely related to Euclid's system is probably that of
Hilbert.
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2, THE INADEVACY OF EUCLID'S POSTULATES. The inadequacy of
Euclid's own set of postulates illustrates a point which is crucial foi the
axiomatic method in modern mathematics: Once the postulates for a
theory have been laid down, every further proposition of the theory
must be proved exclusively by logical deduction from the postulates; any
appeal, explicit or implicit, to a feeling of self-evidence, or to the charac-
teristics of geometrical figures, or to our experiences concerning the
behavior of rigid bodies in physical space, or 'the like, is strictly pro-
hibited; such devices may have a heuristic value in guiding our efforts
to find a strict proof for a theorem, but the proof itself must contain
absolutely no reference to such aids. This is particularly important in
geometry, where our so-called intuition of geometrical relationships,
supported by reference to figures or to previous physical experiences,
may induce us tacitly to make use of assumptions which are neither for-
mulated in our postulates nor provable by means of them. Consider, for
example, the theorem that in a triangle the three medians bisecting the
sides intersect in one point which divides each of them in the ratio of
1:2 To prove this theorem, one shows first that in any triangle ABC (see
figure) the line segment MN which connects the centers of AB and AC
is parallel to BC and therefore, half as long as the latter side. Then the
lines BN and GM are drawn, and an examination of the triangles MON
and BOC leads to the proof of the theorem. In this procedure, it is usu-
ally taken for granted that RN and C( intersect in a point 0 which lies

between B and N as well as between C and M. This assumption is based
on geonwtrical intuition, and indeed, it cannot be deduced from Euclid's
postulates; to make it strictly demonstrable and independent of any
reference to intuition, a special group of postulates has been added to
those of Euclid; they are the postulates of order. One of these to give
an example asserts tl-at if A, B, C are points on a straight line 1, and
if B lies between A and C, then B also lies between C and 4. Not even
as "trivial" an assumption as this may be taken for granted; the system Of
postulates has to be made so complete that all the required propositions
can be deduced from it by purely logical means.
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Another illustration of the point under consideration is provided by
the proposition that triangles which agree in two sides and the enclosed
angle, are congruent. In Euclid's Elements, this proposition is presented
as a theorem; the alleged proof, however. makes use of the ideas of
motion and superimposition of figures and thus involves tacit assump-
tions which are based on our geometric intuition and on experiences
with rigid bodies, but which are definitely not warranted by i.e. de-
ducible from Euclid's postulates. In Hilbert's system, therefore. this
proposition (more precisely: part of it) is explicitly included among the
postulates.

3. MATHEMATICAL CERTAINTY. It is this purely deductive character of
mathematical proof which forms thc basis of mathematical cc: lainty;
What the rigorous proof of a theorem say the proposition about the
sum of the angles in a triangleestablishes is not thc truth of the propo-
sition in question but rather a conditional insight to the effect that that
proposition is certainly true provided that the postulates arc true; in
other words, the proof of a mathematical proposition establishes the fact
that the latter is logically Miplied by the postulates of the theory in
question. Thus. each mathematical theorem can be cast into the form.

P, T

where the expression on the At is the conjunction (joint assertion) of all
the postulates. the symbol on the right represents the theorem in its
customary formulation, and the arrow expresses the relatim of logical
implication or entailment. Precisely this character of mat heniat kal theo-
rems is the reason for their peculiar certainty and necessity, as I shall
now attempt to show.

It is typical of any purely logical deducturn that the conclusion to
which it leads simply re-asserts (a proper or improper) part of what has
already been stated in the premises. Thus, to illustrate this point by a
very elementary example. from the premise. "This figure is a right tri-
angle:' we can deduce the conclusion. "This figure is a triangle"; but
this conclusion clearly reiterates part of the information already con-
tained in the premise. Again, from the premises, "All primes different
from 2 arc odd" and "n is a prime difkrent from 2:' we can infer logically
that n is odd; but this consequence merely repeats part (indeed a rela-
tively small part) of the information contained in the premises. The
same situation prevails in all other cases of logical deduction: and we
may. therefore, say that logical deduction which is the one and only
method of mathematical proof is a technique of conceptual analysis: it
discloses what amnions are concealed in a given set of premises. and it



makes us realize to what we committed ourselves in accepting those
premises; but none of the results obtained by this technique ever goes
by one iota beyond the information already contained in the initial
assumptions.

Since all mathematical proofs rest exclusively on logical deductions
from certain postulates, it follows that a mathematical theorem, such as
the Pythagorean theorem in geometry, asserts nothing that is objectively
or theoretically new as compared with the postulates from which .it is
derived, although its content may well be psychologically new in the
sense that we were not aware of its being implicitly contained in the
postulates.

The nature of the peculiar certainty of mathematics is now clear: A
mathematical theorem is certain relatively to the set of postulates from
which it is derived; i.e. it is necesarily true if those postulates arc true;
and this is so because the theorem, if rigorously proved, simply re-asserts
part of what has been stipulated in the postulates. A truth of this con-
ditional type obviously implies no assertions about matters of empirical
fact and can, therefore, never get into conflict with any empirical find-
ings, even of the most unexpected kind; consequently, unlike the hy-
potheses and theories of empirical science, it can never suffer the fate of
being disconfirmed by new evidence: A mathematical taith is irrefutably
certain just because it is devoid of factual, or empirical content. Any
theorem of geometry, therefore, when cast into the conditional form
described earlier, is analytic in the technical sense of logic, and thus true
a prthri: i.e. its truth can be established by means of the formal ma-
chinery of logic alone, without any reference to empirical data.

4. POSTULATES AND TRUTH. Now it might be felt that out analysis of
geometrical truth so far tells only half of the relevant story. For while a
geometrical proof no doubt enables us to assert a proposition condition-
ally namely on condition thai the postulates are accepted , is it not
correct to add that geometry also unconditionally asserts the truth of its
postulates and thus, by virtue of the deductive relationship between
postulates and theorems, enables us unconditionally to assert the truth
of its theorems? is it not an unconditional assertion of geometry that two
points determine one and only one straight line that connects them, or
that in any triangle, the sum of the angles equals two right angles? That
this is definitely not the case, is evidenced by two important aspects of the
axiomatic treatment of geometry which will now be briefly considered.

The first of these features is the well-known fact that in the more
recent development of mathematics, several systems of geometry have
been constructed which are incompatible with euclidean geometry, and
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in which, for example, the two propositions just mentioned do not neces-
sarily hold. Let us briefly recollect some of the basic facts concerning
these iwn-euclideau geometrie.s. The postulates on which euclidean
gemnetry rests include the famous postulate of the parallels, which, in
the case of plane geometry, asserts in effect that through every point P
not on a given line 1 there exists exactly one parallel to 1, i.e., one straight
line which does not meet I. As this postulate is considerably less simple
than the others, and as it was also felt to be intuitively less plausible than
thc latter, many efforts were made in the history of geonwtry to prove
that this proposition nced not bt accepted as an axiom, but that it can
be deduced as a theorem front the remaining body of postulates. All
attempts in this direction failed, however; and finally it was conclusively
demonstrated that a proof of the parallel principle on the basis of the
other postulates of euclidean geometry (even in its modern. (ompleted
form) is itnpossiblc. This was shown by proving that a perfectly self-
consistent geometric-al theory is obtained if thc postulate of the parallels
is replaced by the assumption that through any point P not on a given
straight linc 1 there exist at least two parallels to I. This postulate obvi-
ously contradicts the euclidean postulate of the parallels, and if the latter
were actually a consequence of the other postulates of euclidean geome-
try, then the new set of postulates would clearly invoke a contradiction.
which c-an be shown not to be the case. This first non-euc:idean type of
geonwtry. which is called hyperbolic geometry, was discovered in the
early 1!0's of the last century almost simultaneously. but independently
by thc Russian N. I. Lobatsthelskij. and by the Hungarian J.
Later. Rientann developed an alternative geometry, known as elliptical
geometry. in which the axiom of thc parallels is replaced by the postulate
that no line has any parallels. (File acceptance of this p)stulate, however,
in ctmtradistinct ion to that of hyperbolic geometry, requires the modi-
fication of some further axioms of euclidean geometry. if a consistent new
theory is to result.) As is to be expected. many of tlw theorems of these
non-euclidean geometries are at variance with those of euclidean theory:
thus. e.g., in the hyperbolic geometry of two dimensions, there exist, for
each straight line I. through any point P not on 1, infinitely many straight
lines which do not meet 1: also, the stun of thc angles in any triangle is
less than two right angles. In elliptic- geometry, this angle sum is always
greater than two right angles: no two straight lines are parallel; and
while two different points usually determine exactly one straight line
connecting them (as they always do in euclidean geometry), there are
certain pairs of points which arc connected by infinitely many different
straight lines. An illustration of this latter type of geometry is provided
by the geometrical structure of that curved two-dimensional space which
.is represented by tlw surface of a sphere. when the concept of straight
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line is interpreted by that of great circle on the sphere. In this space,
there are no parallel lines since any two great circles interseu; the end-
points of any diameter of the sphere are points connected by infinitely
many different "straight lines:* and the sum of the angles in a triangle
is always in excess of two right angles. Also, in this space, the ratio be-
tween the circumference and the diameter of a circle (not necessarily a
great circle) is always less than 2Tr.

Elliptic and hyperbolic geometry are not the only types of non-euclid-
ean geometry; various other types have been developed; we shall later
have occasion to refer to a much more general form of non-euclidean
geometry which was likewise devised by Riemann.

The fact that these different types of geometry have been developed
in modern mathematks shows clearly that mathematics cannot be said
to assert the truth of any particular set of geometrical postulates; all that
pure mathematics is interested in. and all that it can establish, is the
deductive consequences of given sets of postulates and thus the neces-
sary truth of the ensuing theorems relatively td the postulates under
cot isidera t ion.

A second observation which likewise showsa hat mathematics does not
assert the truth of any particular set of postulates refers to the status ol
the concepts in gemnetiy. There exists, in every axiomatized theory, a
close parallelism between thc treatment of the propositions and that of
the concepts of the system. As we have seen, the propositions fall into two
classes: the postulates. for which no proof is given, and the theorems,
each or which has to be derived from thc postulates. Analogously'. the
concepts fall into two classes: the primitive or basic concepts. 1or which
no definition is given, and the others, each of which has to be precisely
defined in terms of the primitives. (The admission of some undefined
concepts is clearly necessary if an infinite regress in definition is to be
avoided.) The analogy goes farther: Just as there exists an infinity of the-
oretically suitable axiom systems for onc and the same theorysay. eu-
clidean geometry. so there also exists an infinity of theoretically possible
choices for thc primitive terms of that theory; %cry oftenbut not always
different axiomatizations of the same thcory involve not only different
postulates. but also different sets of primitives. Hilbert's axiomat izat ion
of plane geometry contains six primitives: point, straight line, incidence
(of a point on a line). betweenness (as a relation of three points on a
straight line), congruence for line segments, and congruence for angles.
(Solid geometry. in I lilberes axiomatization. requires two further prim-
itives. that of plane and that of incidence of a point on a plane.) All other
concepts of geometry, such as those of angle. triangle, circle, etc., are
defined in terms of these basic concepts.
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But if the primitives are not defined within geometrical theory, what
meaning are we to assign to them? The answer is that it is entirely un-
necessary to connect any particular meaning with them. True, the words
"point," "straight line," etc., carry definite connota ions with them
which relate to the familiar geometrical figures, but the validity of the
propositions is completely independent of these connotations. Indeed,
suppose that in axiomatized euclidean geometry, we replace the over-
suggestive terms "point." "straight line," "incidence," "betweenness,"
etc., by the neutral terms "object of kind 1," "object of kind 2," "relation
No. 1," "relation No. 2." etc., and suppose that we present this modified
wording of geometry to a competent mathematician or logician who,
however, knows nothing of the customary connotations of tlw primitive
terms. For this logician, all proofs would clearly remain valid, for as we
saw before, a rigorous proof in geometry rests on deduction from thc ax-
ioms alone witlmut any reference to the customary interpretation of thc
various geometrical concepts used. We see therefore that indeed no spe-
cific meaning has to be attached to the primitive terms of an axiomatited
theory: and in a precise logical presentation of axiomatized geometry the
primitive concepts are accordingly treated as so-called logical variables.

As a consequence, geometry cannot be said to assert the truth Of its
postulates. since the latter are formulated in terms of concepts without
any specific meaning; indeed, for this very reason, the postulates them-
selves do not make any specific assertion which could possibly be called
true or false! In the terminology of modern logic, the postulates are not
sentetwes, but sentential functions with the primitive concepts as vari-
able arguments.This point also shows that the postulates of geometry
cannot be considered as "self-evident truths," because where no assertion
is made, no self-evidence cat' he claimed.

5. PURE AND PHYSICAL GEOMETRY. Geometry thus construed is a purely
formal discipline: we shall refer to it also as pure geometry. A pure geom-
etry, then.no matter whether it is of the euclidean or of a non-euclidean
varietydeals with no specific subject-matter: in particular, it asserts
nothing about physical space. All its theorems are analytic and thus truc
with ccrtainty precisely because they are devoid of factual content. "l'hus.
to characteri/e the import of pure geometry, we might use the standard
form of a movie-disclaimer: No ixortrayal of the characteristics of geo-
metrical figures or of the spatial properties or relationships of actual
physical bodies is intended, and any similarities between the primitive
concepts and their customary geometrical connotations are purely
coincidental.

But just as in the case of some motion pictures. so in the case at least of
euclidean geometry, thc disclaimer does not sound quite convincing:
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Historically speaking, at least, euclidean geometry has its origin in the
generalization and systematization of certain empirical discoveries which
were made in connection with the measurenwnt of areas and volumes,
thc practice of surveying, and the development of astronomy. l'hus un-
derstood, geometry has factual import; it is an empirical science which
might be called, in very, general terms, the theory of the structure of
physical space. or briefly, physical gemnetr y.What is the relation between
pure and physical geometry?

When the physicist, uses thc concepts of point, straight line, incidence,
etr., in statements about physical objects, he obviously connects with
each of them a more or less definite physical meaning. Thus, the term
"point" serves to designate physical points. i.e., objects of the kind illus-
trated by pin-points. cross hait-s, etc. Similarly, the term "straight line"
refers to straight lines in the sense of physics, such as illustrated by taut
strings or by the path of light rays in a homogeneous medium. Analo-
gously. each of the other geometrical concepts has a concrete physical
meaning in the statements of physical geometry. In view of this situation,
we can say that physical geometry is obtained by what is called, in con-
temporary logic, a scmantical interpretation of pure geometry. Gener-
ally speaking. a semantical interpretation of a pure mathematical thcory,
whose primitives are not assigned any specific meaning. consists in giving
each primitive (and thus, indirectly, each defined term) a specific mean-
ing or designatum. In the ease of physical geometry. this nwaning is
physical in thc sense just illustrated; it is possible. however, to assign a
purely arithmetical meaning to each concept of geometry; thc possibility
of such an arithmetical interpretation of geometry is of great importance
in the study of the consistency and other logical characteristics of geom-
etry. but it falls outside the scope of the present discussion.

By virtue of the physical interpretatim of the originally un interpreted
primitives of a geometrical theory, physical meaning is indirectly as-
signed also to every defined concept of the theory: and if every geometri-
cal term is now taken in its physical interpretation, then.every postulate
and every theorem of the theory under consideration turns into a state-
ment of physics. with respect to which the question as to truth or falsity
may nwaningfully hc raiseda circumstance which clearly contradistin-
guislws the propositions of physical geometry from those of the corre-
sponding uninterpreted pure thcory.Consider. for example. the
following postulate of pure euclidean geometry: For any two objects x, y
of kind 1, there exists exactly one object / of kind 2 such that both x and v
stand in relation No. I to 1. As long as the three primitives occurring
in this postulate arc uninterpreted, it is obviously meaningless to ask
whether thc postulate is true. But by Viritle of the above physical inter-
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pretation, the postulate turns into thc foliowMg statement: For any two
physical points x, there exis:s exactly one physical straight line / such
that both x and y lie on I. But this is a physical hypothesis, and we may
now meaningfully ask whether it is true or false. Similarly, the theorem
about thc sum of the angles in a triangle turns into the assertion that the
sum of the angles (in the physical sense) of a figure bounded by the paths
of three light rays equals two right angles.

Thus, the physical interpretation transforms a given pure geometrical
tlworyeuclidean or non-euclideaninto a system of physical hypotheses
which, if true, might be said to constitute a theory of the structure of
physical space. But the question whether a given geometrical theory in
physical interpretation is factually correct represents a problem not of
pure mathematics but of empirical science: it has to be settkd on thc
basis of suitable experiments or systematic observations. 1.he only asser-
tint) the mathematician can make in this context is this: If all the postu-
lates of a given geometry, in their physical huerpretation. arc true, then
all the theorems of that geometry, in their physical interpretation, are
necessarily true. too, since they are logically deducible from the postu-
lates. It might seem, therefore, that in order to decide whether physical
space is euclidean or non.cuclidean in structure, all that wc have to do
is to test the respective postulates in their physical interpretation. How-
ever, this is not directly feasible: here, as in the case of any other physical
theory, the basic hypitlwses arc largely incapable of a direct experi-
mental test; in geometry. this is particularly obvious for such postulates
as the parallel axiom or Cantor s axiom of continuity in Hilbert's sys-
tem of euclidean geometry, which makes an assertion about certain infi-
nite sets of points on a straight line. Thus, the empirical test of a physical
geometry no less than that of any other scientific theory has to proceed
indirectly; namely, by deducing from thc basic hypotheses of the theory
certain consequences. or predictions, which are amenable to an experi-
Mental test. If a test bears out a prediction, then it constitutes confirm-
ing evidence (though, of course, no conclusive proof) for the theory;
otherwise, it disconfirms the theory. If an adequate amount of confirm-
ing evidence for a theory has been established, and if no disconfirming
evidence has been tumid. then the theory may bc accepted by the scientist
'until further notice:'

It is in the context of this indirect procedure that pure mathematics
and logic acquire their inestimable importance for empirical science:
While formal logic and pine mathematics do not in themselves establi
any assertions about matters of empirical fact, they provide an efficient
and entirely indispensable machinery for deducing, from abstract theo-
retkal assumptions, such as the laws of Newtonian mechanics or the pos-
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tulates of euclidean geometry in physical interpretation, consequences
concrete and specific enough to be accessible to direct experimental test.
Thus, e.g., pure euclidean geometry shows that from its postulates there
may be deduced the theorem about the sum of the angles in a triangle,
and that this deduction is possible no matter how the basic concepts
of geometry are interpreted; hence also in the case of the physical inter-
pretation of euclidean geometry. This theolem, in its physical interpre-
tation, is accessible to experimental test; and since the postulates of
elliptic and of hyperbolic geometry imply values different from two right
angles for the angle sum of a triangle, this particular proposition seems
to afford a good opportunity for a crucial experiment. And no less a
mathematician than Gauss did indeed perform this test; by means of
optical methods and thus using the interpretation of physical straight
lines as paths of light rays he ascertained the angle sum of a large tri-
angle determined by three mountain tops. Within the limits of experi-
mental error, he found it equal to two right angles.

6. ON POINCARCS CONVENTIONALISM CONCERNING GEOMETRY. But sup-
pose that Gauss had found a noticeable deviation from this value; would
that have meant a refutation of euclidean geometry in its physica; inter-
pretation, or, in other words, of the hypothesis that physical space is
euclidean in structure? Not necessarily; for the deviation might have
been accounted for by a hypothesis to th effects that the paths of the
light rays involved in the sighting process were bent by some disturbing
force and thus were not actually straight lines. The same kind of refer-
ence to deforming forces could also be us, if, say, the eculidean theo-
rems of congruence for plane figures were tested in their physical inter-
pretation by means of experiments involving rigid bodies, and if any
violations of the theorems were found. This point is by no means trivial;
Henri Faincart% the great French mathematician and theoretical physi-
cist. based on considerations of this type his famous conventionalism con-
cerning geometry. It was his opinion that no empirical test, whatever its
outcome, can conclusively invalidate the euclidean conception of phys-
ical space; in other words, the validity of euclidean geometry in physical
science can always be preserved if necessary. by suitable changes in the
theories of physics. such as the introduction of new hypotheses concern-
ing deforming or deflecting forces. Thus, the question as to whether
physical space has a euclidean or a non-euclidean structure would be-
come a matter of convention, and the decision to preserve euclidean
geometry at all costs would recommend itself, according to Poincare, by
the greater simplicity of euclidean as compared with non-euclidean geo-
metrical theory.

It appears, however, that Poincare's account is an oversimplification.
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It rightly calls attention to the fact that the test of a physical geometry G
always presupposes a certain body P of non-geometrical physical hypoth-
eses (including the physical theory of the instruments of measurement
and observation used in the test), and that the so-called test of G actually
bears on the combined theoretical system G.P rather thlin on G alone.
Now, if predictions derived from G.P are contradicted by experimental
findings, then a change in the theoretical structure becomes necessary.
In classical physics, G always was euclidean geometry in its physical inter-
pretation, GE; and when experimental evidence required a modification
of the theory, it was P rather than GE which was changed. But Pain-
cares assertion that this procedure would always be distinguished by its
greater simplicity is not entirely correct; for what has to be taken into
consideration is the simplicity of thc total system G-P. and not just that
of its geometrical part. And here t is clearly conceivable that a simpler
total theory in accordance with all thc relevant empirical evidence is
obtainable by going over to a non-euclidean form of geonwtry rather
than by preserving thc euclidean structure of physical space and making
adjustments only in part P

And indeed, just this situation has arisen in physics in connection with
the development of the general theory of relativity: If thc primitive terms
of geometry are given physical interpretations along the lines indicated
before, then certain findings in astronomy represent good evidence in
favor of a total physical theory with a non-euclidean geometry as part G.
According to this theory. the physical universe at large is a three-dimen-
sional curved space of a very complex geometrical structure; it is finite
in volume and yet unbounded in all directions. Flowerer, in compar-
atively small areas, such as those involved in Gauss' experiment, eu-
clidean geometry can serve as a good approximative account of the geo-
metrical structure of space. The kind of structure ascribed to physical
space in this theory may be illustrated by an analogue in two dimensions;
namely, the surface of a sphere. The geometrical structure of the latter,
as was pointed out before, can be described by means of elliptic geom-
etry. if the primitive term "straight line" is interpreted as meaning
"great circle: and if the other primitives are given analogous interpre-
tations. In this sense, the surface of a sphere is a two-dimensional curved
space of non-euclidean structure, whereas the platic is a two-dimensional
space of euclidean structure. While the plane is unbounded in all direc-
tions, and infinite in size, the spherical surface is finite in size and yet
unbounded in all directions: a two-dimensional physicist, travelling
along "straight lines" of that space would never encounter any bound-
aries of his spice; instead, he would finally return to his point of depar-
ture, provided that his life span and his technical facilities were milli-
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cient for such a trip in consideration of the size of his "universe:' It is
interesting to note that the physicists of that world, even if they lacked
any intuition of a three-dimensional space, could empirically ascertain
the fact that their two-dimensional space was curved. This might be
done by means of the method of travelling along straight lines: another,
simpler test would consist in determining the angle sum in a triangle;
again another in determining, by means of measuring tapes, the ratio of
the circumference of a circle (not necessarily a great circle) to its diam-
eter; this ratio would turn out to be less than

The geometrical structure which relativity physics ascribes to physical
space is a three-dimensional analogue to that of the surface of a sphere,
or, to be more exact, to that of the closed and finite surface of a potato,
whose curvature varies from point to point. In our physical universe,
the curvature of space at a given point is determined by the distribution
of masses in its neighborhood: near large masses such as the sun, space is
strongly curved, while in regions of low mass-density. the structure of
thc universe is approximately euclidean. The hypothesis stating the con-
nection between the mass distribution and the curvature of space at a
point has been approximately confirmed by astronomical observations
concerning the paths of light rays in the gravitational field of the sun.

The geome o< II theory which is used to describe the structure of the
physical univers.: is of a type that may be characterized as a generaliza-
tion of el" itic geometry. It was originally constructed by Riemann as a
purely mathematical theory, without any concrete possibility of prac-
tical application at hand. When Einstein, in developing his general
theory of relativity, looked for an appropriate mathematical theory to
dcal with the structure of physical space, he found in Riemann's abstract
system the conceptual tool he needed. 'This fact throws an interesting
sidelight on the importance for scientific progress of that type of investi-
gatimi which the "practkal-minded" man in the street tends to dismiss
as useless, abstract mathematical speculation.

Of course, a geometrical theory in physical interpretation can never
be validated with mathematical certainty, no matter how extensive the
experimental tests to which it is subjected; like any other theory of em-
pirical science, it can acquire only a nmre or less high degree of confir-
mation. Indeed, the considerations presented in this article show that
the demand for mathematical certainty in empirical matters is misguided
and unreasonable; for, as we saw, mathematical certainty of knowledge
can be attained only at the price of analyticity and thus of complete lack
of factual content: Let ine summarize this insight in Einstein's words:

"As far as the laws of mathematics refer to reality, they are not certain;
and as far as they arc certain, they do not refer to reality:'
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FOREWORD
The present essay by Professor Lenzen, although written a little over

a quarter of a century ago, is as valid today as when first published.
Moreover, the article affords an excellent historical perspective to the
development of geometry and its relation to physical science and to
the concept of measurenient.

It has been said that much nonsense has been written about the
nature of measurement. lb be sure, the ancient Greek geometers, and
indeed, Western mathematicians until the middle of the 17th century,
talked and thought in terms of lengths and areas as if these were basic
realities. But when Descartes expressed the distance between two points
analytically, that is, in terms of coordinates, he transformed a physical
reality into an idealized model; an expression involving numbers en-
abled him to dispense with the geometrical figure which represented
the "length" of a segment.

The full significance of this breakthrough is vividly exemplified in
contemporary physics. It is clear today that the essence of measurement
in general consists of mapping empirical observations and relations into
an appropriate formal mathematical model. Ironically, many centuries
of mathematical development were required to arrive at this concept. It
is a point of view which had to wait until the 20th century until
mathematics had become universally regarded ai a disclipline which in-
cludes many posturational systems.
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PHYSICAL GEOMETRY
V E LENZEN

I. INTRODUCTION. Prior to Einstein a distinction was usually made be-
tween geometry and physics. Geometry was viewed as a rational science
which is independent of sensory experience; physics was known to be
an empirical science based upon observation and experiment. The sharp
separation between mathematics and physics may be illustrated by the
sciences of kinematics and dynamics. In his Principles of Mechanics,
which was published in 1905, Slate says, "In the first two chapters we
shall be occupied with conceptions Velocity and Acceleration that
rest entirely upon a mathematical basis.. .. If mechanics is taken to in-
elude kinematics also, as it frequently is, that part of the science which
is physical and not geometrical must be specially distinguished. It is desig-
nated as Dynamics. The point should be watched at which the transition
is ... made by introducing experimental results into the framework of
our science' The ideas expressed by Slate are characteristic of older
books on mechanics. In the study of motion there was recognized the
progression: geometry, the science of space; kinematics, the science of
motion which was based upon the addition of time to space; dynamics
or mechanics, which explained the motions of the material bodies in the
physical world. Geometry and kinematics were viewed as mathematical
sciences, dynamics or mechanics as a physical science. In the present
paper I shall show how geometry and physics have .been united in the
science of physical geometry.

2. HISTORICAL SKETCH. Our discussion of the relation of geometry to
physics may well be prefaced by a description of its subject matter.
Geometry is frequently defined as the science of space, but what is space?
One of the best answers to this question is given in Carnap's early
monograph, Der MUM [1]. In this work he distinguishes between for-
mal space, intuitional space, and physical npace. Formal space is a system
of general ordinal relations. The formal properties of the terms and re-
lations of such a structure are determined by postulates. Formal or
abstract space is the subject matter of abstract geometry. Intuitional
space is the system of relations between spatial objects such as lines,
surfaces, and volumes, the properties of which are apprehended in sense-
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perception or imagination. Intuitional space is especially considered
in the Kantian philosophy of geometry. Physical space is the system of
relations between the bodies and phenomena of the physical world and
is the subject matter of physical geometry. It may be added that the dis-
tinction between topological, projective, and metrical properties applies
equally to formal space. intuitional space, and physical space. The pres-
ent discussion will find need only for abstract geometry and physical
geometry.

The development of an understanding of the relation between geom-
etry and physics may be credited principally to the theory of relativity.
This theory initiated a program for the reduction of physics to geometry.
The special theory of relativity made it possible to express kinematics
in terms of a four-dimensional space-time. In the general theory, space-
time is viewed as a Itiemannia continuum whose curvature is deter-
mined by matter. A free maul, particle describes a world line which
is a geodesic of this continuum. The general theory of relativity thus
reduces the physics of gravitation to geometry, and unified field theories
have been constructed in order to reduce all physics to geometry. This
geometrization of physics appears to have made it a branch of mathe-
matics, to have freed it from dependence on experience. A unified
mathematical representation of physical phenomena is offered, and this
achievement has inspired Sir James Jeans to declare that God is to be
conceived as a pure mathematician.

The reduction of physics to geometry requires, however, that geom-
etry bc exhibited as an empirical science. In so far as geometry can be
applied to the physical world it is based upon observation and experi-
ment. I shall represent geometry to be the most firmly established branch
of physics. If physics is to be reduced to geometry, geometry must also
be reduced to physics.

That the concept of physical geometry is a significant contribution
may be shown by exhibiting historical philosophical interpretations of
geometry. Geometry as a mathematical science was created by the an-
cient Greeks, but the raw materials for a geometry were fashioned by
their predecessors, notably the Egyptians. The Egyptians had to make
surveys of land in order to redetermine the marks of boundaries which
had been washed away by the floods of the Nile. Hence they measured
distances and lengths and discovered propositions that express the met-
rical relations of the elements of simple figures. The Egyptians thus
discovered and used propositions of physical geometry. The Greeks
organized such propositions into a deductive science; Euclid founded
geometry upon axioms and postulates from which propositions may be
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derived as theorems. Euclidean geometry has furnished the classical
model for science.

The Greeks created the deductive science of geometry and originated
the view that geometry is a rational science which is independent of
sensory experience. Thus Plato taught that the objects of science must
be universal and permanent. The objects of perception are in a state of
flux, and hence propositions about the world of experience are infected
with uncertainty and relativity. He explained the possibility of rational
science by the theory of a transcendent world of pure forms, or ideas,
which can be known only by reason. Geometrical structures such as
triangles and circles are pure forms which arc to be distinguished front
the crude perceptible triangles and circles in the world of sense-percep-
tion. Geometry is approximately applicable to experience because per-
ceptible figures participate in the pure forms. The soul has direct
knowledge of pure forms in a pre-earthly state of existence; perception
through the senses stimulates recol!cction of the pure forms in which
the objects of perception participate. In support of his theory that knowl-
edge of geometrical figures is latent in the individual mind, Plato nar-
rates how Socrates guides an uneducated slave boy step by step to the
recognition of the truth of a proposition in geometry. Thus the Platonic
philosophy of geometry interpreted the objects of geometry to be ideal
entities which transcend ordinary experience.

Since the eighteenth century the theory of Kant has exerted a wide-
spread influence. Kant started from the assumption that pure mathe-
matics. which is exemplified by geometry, is a prim-i and therefore
independent of experience. He propounded the question, how is pure
mathematics possible? His answer as applied to geometry was that space
is the a priori form of external intuition which is the condition of all
perceptual experience. Geometrical figures are constructions in spacc
and can be constructed in pure intuition independently of sensory expe-
rience. Fhis theory provided a new foundation for the interpretation
of geometry as the science of universal and necessary truths.

The Kantian theory dominated the philosophy of geometry during
the nineteenth century. Geometrical figures were assumed to be con-
structed in pure intuition and analysis of such figures yielded the self-
evident axioms of Euclidean geometry. In recent years the German
philosopher Husserl has offered intuitions into the essence of geometri-
cal structures as the foundation of geometry. Intuitional space which
is referred to by Carnap is an inheritance front Kant. During the nine-
teenth century, however, the non-Euclidean geometries were created
and led to the development of new points of view. Helmholtz and otlwrs
exhibited intuitive models of the non-Euclidean geometries. and thus
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shook the Kantian doctrine that intuition reveals physical space to be
Euclidean. The study of foundations led to the abstract theory of geom-
etry, according to which the propositions of geometry are blank forms
devoid of empirical reference. The postulates of a geometry constitute
an implicit definition of the fundamental concepts which express the
properties of formal space. Geometrical theory is concerned with the
deductive dependence of theorems upon postulates. Since postulates
and theorems are devoid of empirical significance, the problem of their
truth or falsity does not arise. A proposition in geometry becomes true
or false only when a concrete interpretation is given to the concepts.

The criticism of the theory that pure intuition is the origin of geom-
etry was accompanied by the development of the view that in so far as
geometry can be used in physics, geometrical proposition.s express the
positional relations of perceptible bodies. Gauss measured the angles of
a physical triangle whose sides were light rays, in order to test whether
or not the sum of the angles is equal to two right angles. Helmholtz [2]
in an essay on the origin and significance of the axioms of geometry
declared that these axioms describe the mechanical behavior of our most
rigid bodies during motions. Riemann [3] in his famous essay on the
hypotheses which constitute the foundations of geometry advanced
the hypothesis that the metrical structure of physical space depends
on the physical forces in it. Thus the question, is physical space Eu-
clidean or non-Euclidean?, acquired significance. The significance of
this question presupposes that the metrical structure of space is defined
in terms of the positional relations of physical bodies or phenomena.
The standpoints of Gauss, Helmholtz and Riemann eventually were
realized in the contemporary concept of physical geometry which is ex-
emplified in Einstein's relaiivistic theory of gravitation. Geometry, in
so far as it is relevant to physics, is a physical science that is based upon
observation and experiment.

3. AN OPERATIONAL THEORY. SYNTHETIC TREATMENT. The function of
physical geometry is to describe the properties of physical space. In prep-
aration for an exposition of how physical geometry may be developed,
it is desirable to set forth the elements of the problem. In agreement
with Carnap. I distinguish data of experience, postulate of measure, and
relational structure. Data of experience are the contact of two points at
a specific time, the incidence of a point on a line, the inclusion of a body
by a surface, and so forth. Perceptions of contact, or of coincidence, espe-
cially furnish the raw materials of geometry. But such data of experience
are sufficient only for the topological structure of space. Projective prop-
erties require the determination of straight lines, and metrical properties
require procedures for measuring length and angles.
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Projective and metrical geometry are relative to definitions which are
matters of convention. Carnap has clearly shown that it is possible to
proceed in two ways. One may adopt a postulate of measure and then by
observation determine the scheme of geometrical relations that describes
the metrical structure of space. Experience determines whether physical-
space is Euclidean or non-Euclidean only if a standard of measure has
been adopted. It has been traditional to adopt as standard of measure
the distance between two points on a rigid body and to postulate that
this distance is independent of position. As Carnap has pointed out, an
alternative procedure is to postulate the scheme of geometrical relations
and then determine from experience the standard of measure that is
implied. The possibility of this procedure was especially emphasized by
Poincar6, who declared that geometry is determined by conventional
definitions. He contended that since Euclidean geometry is the simplest,
convention will decree its continued employment for the description of
physical phenomena. If light did not travel in straight lines, Euclidean
geometry could lin be used to formulate different laws of physics. The
general theory of relativity, however, predicts a behavior of rigid bodies
which makes it convenient to change the geometry rather than the stand-
ard of measure.

The foregoing discussion demonstrates that metrical physical geom-
etry exemplifies the operational theory of physical concepts. This theory,
awhich has been expounded notably by Bridgman [4], expresses the
meaning of physical concepts in terms of operations. In order to measure
a physical quantity it is necessary to control the conditions under which a
quantity assumes a determinate value. The procedures of measurement
require physical and mental operations that are performed in accord-
ance with prescribed rules. The definition of a physical quantity is
expressed by the description of the conditions and procedures of meas-
urement. Consistent application of this operational theory leads to the
interpretation of a physical quantity as a number assigned to a physical
property of bodies. Thus the definition of a physical quantity does not
express an intuitive insight into an intrinsic essence of the quantity.
lextbooks of physics have defined mass as the quantity of matter in a
body, but this is only a verbal definition. A significant definition of mass
must describe the procedure for measuring the mass of a body. The same
point of view applies to physical geometry. Consider. for example. the
concept of length. Some philosophers have declared that we have a direct
perception of length which acquaints us with the meaning of the con-
cept: this has been the basis for the concept of intuitional space. The
operational theory. however, recognizes that length as a physical quan-
tity depends on operations of measurement in terms of a standard. The
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operational nature of length is especially demonstrated in the special
theory of relativity.

I have several times referred to a standard of measure as a basis for met-
rical physical geometry. This standard is based upon the properties of
practically rigid bodies. I assume that we are acquainted with examples
of such bodies: sticks, stones, and manufactured bodies, such as iron
rods. In order to describe the properties of rigid bodies, let us suppose
that two points have been made on such a body. A point will be a hole
made by a pin or a dot with a pencil. The two points may be called a
rigid point-pair and detOmine a stretch. Given two rigid point-pairs
that may be placed alongside each other so that the points of one are in
Contact with the points of the other. If the rigid pairs are displaced
together, the contacts are preserved. If one rigid pair is kept fixed and
the other displaced and returned to its initial position, the contacts are
restored. If a number of rigid point-pairs can be brought consecutively
into contact with a specific pair, they can be brought into contact with
one another. Stretches defined by rigid point-pairs in contact are
said to be congruent. If it is postulated that the length of a stretch iF.
independent of position, stretches at a distance may be defined to be
congruent.

I shall now explain how metrical, physical geometry may be developed
so as to describe the properties of physical space. Physical space may be
defined as the system of positional relations of perceptible bodies and
phenomena. Such positional relations may be investigated from the
standpoint of topology. but I propose to study the metrical structure of
space. For this purpose we adopt rigid point-pairs as standards of meas-
ure. Thus the metrical structure is determined by the positional rela-
tions of practically rigid bodies. Indeed. Einstein [5] has described space
as the totality of' possibilities of relative position of practically rigid
bodies.

On investigating the properties of space it is necessary to specify a
frame of reference relative to which rigid bodies are at rest or in motion.
In elementary geometry a geometrical structure is ordinarily assumed to
be at rest in a frame that is rigidly attached to the earth. As we shall see,
however, the special theory of relativity has brought to light the rela-
tivity of space to a frame of reference.

The procedure in building physical geometry is exemplified by some
elementary experiments which have been described by Carnap [1, p. 41].
Let us have given a standard body of which two points A, B determine
a standard stretch. Consider a physical surface such as the top of a desk.

(1) We discover that A and B and also C and D of the standard body
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may be brought simultaneously into contact with four points At, B1, CI,
Dt, upon the surface. Repeated experiments demonstrate that whenever
A, B, C or A, C, D or B, C, D are in contact with their corresponding
points, the fourth pair of points is in contact. The pair A, B can be
brought into contact with Bt and C1, with CI and A and with D3 and
B. The conclusion Is that with respect to the point-pair (A, B) as a
standard, Al, Bt; Bt, Ct; CI, D3; A, Bt are rigid point-pairs. From the
first experiment one infers the rigidity of C, D and further.the rigidity
of the set A, B, C, D.

(2) If A, B, C, D are brought into contact with four other points of
the surface, repeated experiments yield the same results as before, and
therefore the other points constitute a rigid set of points. All sets of four
points of the surface are demonstrated to be rigid, and hence the whole
surface is rigid

(3) In the first experiment it was found that the contact of three pairs
chosen from AA., BB., Mi. DA, involved that of the fourth, provided
the fourth was not CC,. We discover that while A, B, D remain in con-
tact with the corresponding points. an initial contact of C with C1 may
he interrupted. We then declare that A, B, C, D and A 1, B1, Ct, Dt have
moved with respect to each other, and during the motion three pairs
of !mints have remained in contact. This is the characteristic of a straight
fine. ii. B, D lie on a straight line and so do At, B30 D1. A straight line
is thus defined by point-pairs that remain fixed with respect to a rigid
frame during a rotation about the line.

(4) It we bring A into contact with A. and simultaneously B in con-
tact with B.', B,", One after another, it never occurs that D is not in
contact with a point of the surface A% Di", . The points A 1, Bt' , D1' ,
lie on a straight line. also Al. Bt" , Dt" and so forth.

(5) If the preceding experiment is performed with A in contact with
,C, A ,, etc., the sante results are obtained. Thus from every point in the
surface there extend straight lines in the surface in all directions, and
hence the surface is judged to be a plane.

As a result of the preceding experiments we have learned how to rec-
ognize a straight line and a plane. In practice we test the straightness
of a linc by the physical law that light travels through a homogeneous
medium in straight lines. Straight lines are exemplified by the edge of a
solid, by a stretched cord, and by the path of a ray of light.

Our next task is to introduce the concept of distance or length. Sup-
pose that we have given two stretches determined by rigid point-pairs
(A .B) and (A 1,B 1) respectively, so that A is in contact with Al and B is in
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contact with B1. A. previously stated, the stretches are said to be con-
gruent. The same length, or distance between their end points, is
assigned to each of the congruent stretches. Congruence is directly tested
when corresponding points are in contact, but this test fails when the
stretches are separated. However, we shall assign the same length. or
distance, to the separated stretches. Wethus adopt the fundamental pos--
tulate that the length af a stretch determined by a rigid point-pair, or the
distance between the two points, is invariant in displacement. It is
assumed, however, that the temperature remains constant. A standard
stretch may be assigned the length one. The length of any straight line
can then be determined with respect to our standard. We may measure
the length of a line by counting the number of times that the standard
can be laid off on the line, or by counting the number of equal stretches
that may be placed end to end along the line.

The operational significance of the concept of length is especially
exemplified by the special theory of relativity. I have already stated that
space is associated with some frame of reference. A fundamental assump-
tion of classkal kinematics was that space is absolute, that is, the same for
all frames of reference regardless of their state of motion. This means
that the geometrical properties of figures were viewed as invariant under
a transformation of the frame of reference. Thus the length of a rigid rod
was postulated to be the same relative to frames of reference in relative
motion with respect to one another. Indeed, it appears to be self evident
that the length of a rod represents an intrinsic property which does not
depend on the franw of reference. According to the operational theory,
however, the concept of length is defined by the method of measure-
ment, and in relativistic theory the result depends on the statc of motion
of the frame. If the frame is one in which the rod is at rest, an ob-
server can measure the length of the rod in terms of a standard of
length by placing a calibrated scale of length adjacent to the rod under
investigation and observing the points on tilt scale that _oincide with
the end points of thc rod. But in a frame relative to which the rod is
moving, this procedure is not possible because of relative motion be-
tween the rod and the instrument of measurement. A possible procedure
is to mark the simultaneous positions of the end points of the rod on the
frame of reference. Oiw may then at one's leisure measure the distance
between the two points on the frame of rekrence with a scale at rest.
Simultaneity, however, is relative to the frame of reference, and hence
the outcome of measuring length is relative. In general, in the theory
of relativity the geometrical structure of a body is relative to the frame.
A configuration which is described as a circle from a frame relative to
which it is at rest is described as an ellipse from a frame relative to which
it is moving.
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Let us now return to the problem of constructing a physical geometry
for structures at rest in a selected frame of reference. We have a standard
of length and methods for the recognition of straight lines and planes.
We may verify the proposition that a straight line. is shorter than an adja-
cent line between the same points; this proposition may be used to define
a straight line. We may constaia figures out of straight lines. The prop-
erties of a plane triangle may be used to determine the curvature of the
plane; the curvature is zero, negative, or positive according à.s the sum
of the angles is equal to, less than, or greater than two right angles. The
curvature of three mutually perpendicular planes at a point determines
the curvature of space at that point.

By such procedures we build up a concept of metrical physical space.
The positional relations of rigid bodies which determine the metrical
structure of space are described by a geometry which is a branch of phys-
ics. Applied to the physical world of experience, our procedures yield
the result that to the first approximation, at least, actual physical space
is Euclidean. The sum of the angles of large triangles, the sides of which
are thc paths of light rays, is two right angles. It is possible to construct
a Cartesian coordinate system out of equal rods. This means that out of
a set of rods, thc corresponding end points of which coincide when the
rods are placed adjacent to one another, it is possible to construct a
cubical lattice which is the physical realization of a Cartesian coardinate
system.

The propositims that characterize the positional properties of con-
figurations of rigid bodies are only approximately verified by experience
on account of lack of precision in observation. In the development of
geometry, the fiction of a precise observation is adopted and the prop-
ositions are interpreted to express definite relations between definite
properties. This procedure makes it possible to study the deductive
relations between propositions, and Euclidean geometry may then be
founded on axioms which express the properties of a set of terms and
relations. We may then transform these axioms into a set of postulates
which implicitly define he formal properties of the objects of geometry
and thereby obtain an abstract geometry. The structures of physical
geonwtry then exemplify approximately the formal properties defined
by the postulates. In the passage from physical to abstrart geometry it
dors not appear to be necessary to interplate a srienre that is founded
on pure intuition.

4. ANALYTIC TREATMENT. In the foregoing discussion I have employed
the synthetic method of building geometry, but one may use the analytic
method. A Euclidean space is characterized by the fact that it admits a
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cubical lattice which will serve as a Cartesian coordinate system. l'he
metrical structure of space is described by the formula which expresses
the differential element of distance between two points in terms of the
differences in the coordinates of the points. Thus Euclidean space ad-
mits a Cartesian coordinate system for which

ds2 = dx2 + + de.

Curvilinear coordinates may also be used, but the formula for the line
clement in such coordinates can always be transformed to the Cartesian
form.

On a curved surface it is impossible to extend a Cartesian coardinate
system over a finite region. Accordingly one introduces Gaussian, that
is, curvilinear, coordinates. The coordinate lines may be labelled
u, constant and u., = constant. The position of a point on the surface
is specified by giving its Gaussian coordinates u, and u,. The distance
between two points U1, u, and u, duu,, + du, is expressed by the
formula

= glIdu,'

The g's are function of u, and u, and are called the components of the
fundamental metrical tensor. The measure of curvature of the surface
is a function of the g's and their derivatives.

In the classical accounts of differential geometry the curved surface
is viewed as imbedded in a three-dimensional Euclidean space. The g's
are expressed as functions of the derivatives of the Cartesian coardinates
with respect to the Gaussian coordinates on the surface u1. 112,

Ox Pz

g" Piik I PU1 Piik

A physicist, however, prefers an exposition of the immediate physical
significance of the g's. The discussion presupposes that in an infinitesi-
mal region the surface may be assumed plane. I assume that we have a
standard of length which is invariant during displacements on the sur-
face. ds is the length of the element of arc between the two points relative
to the standard. du, and du,, are increments of coordinates and have no
immediate metrical significance. As we pass from ul, lc: to ui dul,
the distance cis is related to the coadinate increment du; by di2
g11du12. Then di V g du,. Thus Vg is the ratio of distance advanced
to increment in coordinate u,. For example, if di = 1/2 for du, = 1,
V g = 1/2. This means that if a unit of length is placed on the coordi-
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nate line u, = constant, one half of the unit extends from the line u, to
+ I. A similar explanation is given for Vg. 110 is the angle between

the coordinate lines, gu == cos 0 Nig, Vg,. The metrical structure
of the surface is known if we determine the es for every point of the
surfice. Let us now consider the application of the methods of analytic
geometry to physics.

5. A METRIC FOR A GEOMETRY FOR l'HYSMS. Classical physics was
founded on the assumption that physical space is Euclidean. this means
that a set of equal rigid rods can be fitted topther to form a cubical lat-
tice of finite extent. The lines of the lattice may be used as the lines of a
Cartesian coardinate system. Cartesian coordinates directly express the
distance of a point from a coordinate plane and hence have direct physi-
cal significance. If Cartesian coardinates are symbolized by x x x the
the metric of Euclidean space is expressed by the formula ds2 = dx,2
dx:: dx 32 . To the first approximation. at least, physical space is Euclid-
ean, and this fact explains the universal application of Euclidean geom-
etry in classical mechanics.

The special theory of relativity provided a basis for a four-dimensional
space-time relational structure of events. In addition to three spatial co-
Ordinates x x xi there was introduced a fourth coordinate, the value of
which is directly related to the time indicated by a clock. If is time indi-
cated by a clock, we may define x, = ict. Then

ds2 dx,'' dx,2 4- dx,2

expresses thc metric of space-time. d.s, thc invariant interval between
two events, is thus expressed in term.: of differences of spatial coOrdinates
and the time.

The general theory of relativity assumes that space-time is a contin-
uum characteriied by a Riemannian metric. In a gravitational field the
positional relations of rigid bodies do not satisfy the propositions of
Euclidean geometry. It is not possible to build finite Cartesian lattices
out (if equal rigid rods. The rate of clocks is affected by a gravitational
field. I knee tlw metrical structure of a space-time region containing a
gravitational field cannot be expressed by the formula for d.s used in the
special theory. The more general Riemannian formula

d.s2 = g,4dx,dxt

is necessary. The g,, have a physical significance that may be defined by
a procedure similar to the one for the two-dimensional surface.
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The theory that physical space-time is Riemannian raises the problem
of how the standard of measure for ds is set up at a particular space-time
point. In ordinary space this is accomplished by bringing a standard of
length to the point. Rut the interval of space-time contains spatial and
temporal factors. The metrical evaluation of ds may be made with the
aid of the special theory of relativity. In a relatively small space-time
region it is possible to select a frame of reference relative to which there
is no gravitational field. A gravitational field is relative to a frame of ref-
erence and will vanish relative to a suitable accelerated frame. For exam-
ple, there is no gravitational field relative to an elevator which is falling
freely towards the surface of the earth. Relative to the frame with respect
to which there is no field and in which the coordinates of an event are
xz, Xe x3, x4, the interval between two events may be expressed by

ds': =_- dx12 ds: -f- dx= dx
and dx dx,, dx dx, may be determined by rigid rods and clocks as in
special relativity, and hence the value of the corresponding ds can be cal-
culated.

The geometrical significance of the gik is part of their physical signifi-
cance. The go, also have a dynamical significance, for they are the poten-
tials of the gravitational field. The law of gravitation expresses a condi-
tion on the g's and their derivatives. The fundamenta! law of motion is
that a free particle describes a geodesic in curved space-time. In this sense
physics is reduced to geometry. but geometry is a branch of physics.

6. SUMMARY. This paper may be summarized by a restatement of the
relation between physical geometry and abstract geometry. Typical
propositions of Euclidean geometry may be formulated as generaliza-
tions from experiences of practically rigid bodies. Such laws are ex-
pressed in terms of quantities which may be determined within limits
of precision. The next step is to assume that the propositions hold
exactly for a set of objects, such as ideal rigid bodies. Propositions with
a precisely defined content may be reduced to a set of axioms from which
theorems can be deduced. The status in reality of ideal objects is uncer-
tain. Historically the attempt has been made to give them reality in a
transcendent realm or to view them as constructions in pure intuition.
The problem of the ontological status of the objects of geometry is
avoided by eliminating the empirical reference of the concepts. The
axioms then become postulates which implicitly define the formal prop-
erties of the objects of the concepts. Thus generalizations from experi-
ence become transformed into definitions. The self-evidence which has
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been attributed to the axioms of Euclidean geometry is founded on their
status as definitions. The proposition that a straight line is the shortest
distance between two points is self-evident in the sense that it may be
used as the definition of a straight line.

Once we have the concept of abstract geoinc ry, it is possible to create
new abstract geometries and then seek physica Interpretations of them.
The interest in differential geometry stimulated by the general theory
of relativity has resulted in the invention of non-Riemannian geome-
tries. The geomet of '47tyl, for example, is based upon the assumption
that the standard t4 Lance is a function of position. But such develop-
ments are beyond the scope of this paper.
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FOREWORD
The word "dimension", not unlike a goodly number of other familiar

mathematical terms, is often used loosely and ambiguously by the lay-
man. Just as the word.s "countless" and "infinite" are frequently used to
convey the idea of a very great many objects, so the word "dimension" is
frequently associated with the notion of magnitude or size. Thus a rec-
tangle is said to be two-dimensional because its area is given by the prod-
uct of its two dimensions its length and its width. Similarly, a rec-
tangular prism is said to be three-dimensional because its volume is
given by the product of its three dimensions: length, width and height.
Such a conception of dimension is quite naive, if not almost meaning-
less, mathematically.

A mathematically meaningful approach to the concept of dimension-
ality is through the notion of simplexes, or what might be called "basic"
sets of points. Thus a simplex of dimension zero is a single point. A sim-
plex of dimension I is a line segment joining two vertices (its faces). A
simplex of dimension 2 is a triangle together with its interior; its 1-
dimensional faces are its three sides, and its 0-dimensional faces are its
three vertices. A simplex of dimension 3 is a tetrahedron together with
its interior; its 2-dimensional faces are its four triangular "surfaces", its
I-dimensional faces are its six "edges", and its 0-dimensional faces are
its four vertices.

In the present essay, still another approach is taken to the concept of
dimension, namely, one involving the notions of neighborhood and
boundary. Although these two notions are familiar and intuitively easily
comprehended, they nevertheless lead to a sophisticated abstract point of
view which is characteristic of contemporary mathematics, .and which
clarifies much of the thinking about the relation of mathematics to physi-
cal reality.

Since the reader may not be familiar with the terminology of topology,
a few remarks may prove helpful.

A set E of points is said to be compact (1) if E contains only a finite
number of points, or (2) if every infinite subset of points of E has at least
one accumulation point in E. By an accumulation point of a set of points
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is meant, somewhat loosely, a point P which is the limit of a sequence of
points of the set.

A set of points is said to be a connected set if it cannot be divided into
two sets R and S which have no points in common and which are such
that no accumulation point of R belongs to S and no accumulation point
of S belongs to R. A simply connected set is a set such that each pair of
its points can be joined by a simple arc all of whose points are in the set.
A simple arc is a set of points which can bc put into one-to-one corre-
spondence with the points of the closed interval [0, 1] in such a way that
the correspondence is continuous in both directions. Roughly, this
means a segment of a curve that does not "cross itself". All simply-con-
nected sets are connected: but not all connected sets are simply-connected.

These observations may help the reader to understand more of Pro-
fessor Menger's essay; on the other hand, if the technical subtleties still
seem a bit formidable, he should not be dismayed. Instead, by reading
and re-reading, it is altogether likely that some insight into these rather
significant concepts will be gained nevertheless.
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WHAT IS DIMENSION?
KARL MENGER

I. SOLIDS, SURFACES, AND LINES. Strictly speaking, all material objects
are 3-dimensional. Yet, only such objects as a metal sphere, a wooden
block, or a rock are considered to be typical representatives of 3-dimen-
sional entities (solids). A piece of sheet-iron, paper, and a membrane
approach what we mean when we speak of 2-chmensional objects (sur-
faces). Wire, threads, and streaks of chalk represent our idea of 1-dimen-
sional entities (lines).

What is the difference between objects of different dimensions? Origi-
nally, mathematicians believed it to be a difference in quantity, in the
sense that a surface contains more points than a line and less points than
a solid. Now primarily the words "more:' "less',' and "equally many" arc
restricted to finite sets while surfaces, as well as lines and solids, contain
infinitely many points. But Georg Cantor extended their use to all sets.
We say that two setsfinite or infinitecontain equally many elements
if we can establish a one-lo-one correspondence between their elements.
Cantor found that two infinite totalities do not necessarily contain
equally many elements. For instance, among geometrical objects a
straight line segment contains more points than some dispersed infinite
sets, e.g., the set of all points on a straight line whose distances from a
certain point are integers. However, a straight line segment, a square.
and a cube do contain equally many points [II. Since these objects arc
of different dimensions, it follows that dimension is not a quantitative
property.

Later, geometers throught that the difference between a I-dimensional
and a higher-dimensional object lay in the fact that the former, but not
the latter, can be traversed by a continuously moving point. Indeed,
lines on a paper or a blackboard are drawn, i.e., traversed by the point
of a pencil or chalk. However, Peano found that a continuously moving
point can traverse a square surface or a solid cube though nobody would
call these objects I-dimensional. On the other hand, I-dimensional ob-
jects were found which cannot be traversed by a continuously moving
point [2]. Thc fact that an object is the path a a point is interesting in
itself, but has no bearing on the question of the dimension of the object
[31
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When one-to-one, as well as continuous, mappings had proved to be
inadequate bases for the definition of dimension, mathematicians at-
tempted to characterize dimension of a totality T as the least number of
real numbers required to describe topologically (in a one-to-one and bi-
continuous way) the elements of T. Each point of our ordinary space
can be topologically characterized by three, but not less than three, real
numbers, e.g., its Cartesian or spherical coordinates; each point of a
simple surface by two, but not less than two, real numbers1 e.g., the
points of a sphere by longitude and latitude; each point of a simple line
by one number. Thus, by the last definition, our space is 3-dimensional,
simple surfaces are 2-dimensional, simple lines are 1-dimensional. Simi-
larly, each color sensation of a normal eye can be topologically charac-
terized by three, but not less than three, rral numbers, viz., the quantities
of three standard colors whose mixture produces an identical sensation.
Hence, thc totality 'of color sensations of a normal eye is 3-dimensional
while the corresponding totalities for a partially or totally color blind
eye arc but 2- and 1-dimensional, respectively. In the same way, a totality
of all mixtures of four ingredients which cannot be obtained by mixing
less than four of them is called four-dimensional. In fact, in this direc-
tion lies our only elementary analytical approach to the fourth dimen-
sion and higher-dimensional spaces.

Unfortunately, however, the last definition applies only to very simple
spatial entities, viz., to those which can be obtained by means of a very
simple transformation from a straight segment, a square, or a cube. Such
entities are called arcs, discs, and topological spheres. In our space and
in the plane, arcs and discs form only a small part of the lines and sur-
faces studied by modern geometry. Even if we admit objects which arc
sums of a finite number of arcs and discs our domain is still very re-
stricted. For instance, the line mentioned above, which cannot be tra-
versed by a continuously moving point [2], does not belong to this do-
main since it is not a sum of a finite number of arcs. In fact, it is the sum
of infinitely many arcs, but all sets which are sums of infinitely many
arcs cannot possibly be called I-dimensional since the square and the
cube are sums of infinitely many straight segments [4].

16 formulate the intuitive difference between lines, surfaces, and
solids one can devise a simple experiment whose outcome depends upon
the dimension of the object to which it is applied [5]. We cut out from
the object a piece surrounding a given poivt. If the object is a solid we
need a saw to accomplish this, and the cutting is along surfaces. If the
object is a surface a pair of scissors suffices, and the cuts are along curves.
If we deal with a curve we may use a pair of pliers and have to pinch the
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object in dispersed points. Finally, in a dispersed object nb toot is re-
quired to perform our experiment, since nothing needs to be dissected.
This characterization of dimension leads from n-dimensional to (n 1)-
dimensional objects. It ends with dispersed sets, naturally called O-dimen-
sional, and, beyond these, with "nothing," in set theory called the "vacu-
ous set." It is, therefore, convenient to consider the latter as 1-dimen-
sional.

2. THE DEFINITION OF IMMENSION. lb make this idea precise we need
only two simple auxiliary concepts: neighborhood and boundary. In our
space we call a set N a neighborhood if each point of N is center of a
sphere (though perhaps a very small sphere) all of whose points belong
to N. The interior of a cube is .a neighborhood, whereas a cube with its
faces is not. For even the smallest sphere about a point of a face contains
points not belonging to the cube. Nor is a plane a neighborhood in our
space. For each sphere about each point of a plane contains points not
belonging to the plane. :Fhe boundary of a neighborhood N is the set of
all points which do not belong to N but are centers of arbitrarily small
spheres which contain some points of N. For the interior of the cube the
boundary obviously ctmsists just of the six faces.

In terms of these concepts the result of our recursive dimension ex-
periment can be explained as follows: A set S of points of our, space is at
most n-dimensional if each point of S lies in arbitrarily small neighbor-
hoods whose boundaries have at most (n 1)-dimensional intersections
with S. The set S is n-dimensional if it is at most n-dimensional but not
at most (n 1)-dimensional. That S is not at most (n 1)-dimensional
means that S contains at least one point at which S is at least n-dimen-
sional, that is to say, a point which does not lie in arbitrarily small neigh-
borhoods whose boundaries have at most (n 2)-dimensional intersec-
tions with S; the boundaries of all sufficiently small neighborhoods of
such a point have at least (n - 1)-dimensional intersections with S. The
vacuous set called 1-dimensional, is thc starting point of the recursive
definition [6].

By this definition, a set S is 0-dimensional if it is not vacuous, and each
point of S lies in arbitrarily small neighborhoods whose boundaries have

1-dimensional. i.e., vacuous, intersections with S in other words, no
points in common with S. A set S is 1-dimensional if it is not 0-dimen-
sional and each point lies in arbitrarily small neighborhoods whose
boundaries have at most 0-dimensiolial intersections with S. But it should
bc clearly 'understood that a point of a 1-dimensional set S may also be
contained in arbitrarily small neighborhoods whose boundaries have
more than 0-dimensional intersections with S. For instance, each point
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of a straight line S is contained in arbitrarily small neighborhoods whose
boundaries contain whole pieces of S. Such neighborhoodscan be formed
by adding two cubes of different size, one of which has a face passing
through S.

Furthermore, it should be dear that we cannot always expect to find
simple neighborhoods of a point of an n-dimensional set whose bound-
aries have at most (n 1)-dimensional intersections with S. One of the
most interesting examples in this respect arises from the study of the
following four sets whose sum incidentally exhausts our space:

the set So of all points which have three irrational coordinates,

the set S, of all points which have one rational and two irrational co-
orditiates, 1r

the set S. of all points which have two rational and one irrational co-
ordinate,

the set S, of all points which have three rational coordinates.

If a, b, c are any three rational constants, then the planes x = a, y = b,
z c do not contain any points of S, and the planes ax + by cz = 1
do not contain any points of S. If a, 13, are any three irrational con-
stants, then the planes x = a, y = 13, z = 7 do not contain any points of
S3. Now, for i = 0, 2, 3, each point of Si is contained in arbitrarily small
cubes whose faces are part of such planes which have no point in com-
mon with S.. Hence, S. S S, are 0-dimensional. So is S, but the proof of
this fact is much more difhcult [7]. For not only each plane meets S but
as Schreier noticed, each surface of the form z = f (x,y) where f is a con-
tinuous function, has points in common with S, and the same is true for
each surface y = f (x, z) and x = f(y, , z). In fact, only recently S. G. Reed,
Jr. arid the author constructed [8] a neighborhood whose necessarily
complicated boundary has no point in common with S,.

Since dimension of the subsets of our space has been defined in terms
of neighborhoods the definition is applicable to the subsets of all spaces
in which neighborhoods are given. An example of such a space is the 4-
dimensional euclidean space whose points are the quadruples of real
numbers x, y, z u and in which the sphere with radius r and center xo,
z, u, consists of the points x, y, z, u satisfying the inequality (x x0)2
(y y)2 ,(z z11)2 (u u)2 r2. A set N is a neighborhood if each
point of N is center of a sphere all of whose points belong to N.

3. CRITERIA FOR A SATISFACTORY DEFINITION. Now let us examine the
definition of dimension. Its objective is to make precise and to extend the
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ordinary usage of the words "1-dimensional," "2-dimensional," and "3-
dimensional." A good definition of a word must include all entities which
are always denoted and Inu.st exclude all entities which are never denoted
by the word. For the word "1-dimensional" straight lines, ellipses and
lemniscates are objects of the former type; square surfaces, solid cubes,
and finite sets of the latter type. A good definition should extend the use
of the word by dealing with objects not known or not dealt with in ordi-
nary language. With regard to such entities, a definition cannot help
being arbitrary. In connection with the word "1-dimensional" consider
the four sets Si whose sum exhausts our space. A general definition of "1-
dimensional" will imply for each of the sets S, S S S S, + S3
whether or not it is I-dimensional. Our definition implicitly assigns to
these seo the dimensions 0, 1, and 2, respectively, which like each assign-
ment is somewhat arbitrary since ordinary language does not assign to
them any dimension. A good definition must yield many consequences,
in particular theorems which are aesthetically satisfactory by their gen-
erality and simplicity, and theorems connecting the defined concept with
concepts of other theories. It is these theorems which justify the unavoid-
able arbitrary element of the definition. Some of the theorems will ex-
tend statements which are true in the restricted domain of ordinary lan-
guage to the extended domain of the definition. Other theorems will ex-
hibit interesting exceptions or even correct erroneous habits of thinking.

The definition cnitlined in this paper has yielded an extensive dimen-
sion theory which, since its foundation in the early twenties, has devel-
oped into one of the central branches of topology. Since even an
enumeration of the main results would surpass the limits of this paper
we shall confine ourselves to a kw illustraiions of the general criteria
of this previous paragraph. An example of the numerous statements
extending to all sets a proposition known to hold for the simple objects
of ordinary language, is the theorem [5] that an n-dimensional set S
contains infinitely many points at which S is n-dimensional, and that
these points form a sei S' which is at least (n-1)-dimensional. Under
certain conditions we can say that S' is n-dimensional. However, there
are rather unexpected exceptions in which S' is only (n-1)-dimensional.
One of the facts which justify our definition of 0-dimensionality is the
simple and beautiful general theorem that each n-dimensional set is the
sum of n 1 but not less than n 1 0-dimensional sets. If we had assigned
to the sets S, S-FS1. S-+-S,d-S, other dimensions than we did, it would
have been at the expense of a simple systematic theory.

4. FIVE PROPFANIES OF IMMENSION. In concluding, I shall select five of
the theorems of dimension theory which, as we shall see, arc of a par-
ticular importance:
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1. The euclidean n-space is n-dimensional. (This theorem is due to
Brouwer.) The cases n=1, 2. 3 of this theorem show, in particular, that
the definition of 1-dimensionality excludes square surfaces and solid
cubes which ordinary language always excludes and which older defini-
tions failed to exclude.

II. The topological image of an n-dimensional set is n-dimensional.
In conjunction with theorem I this simple theorem shows that the con-
cepts of 1-dimensional and 2-dimensional sets include arcs and. discs
which are always called 1-dimensional and 2-dimensional, respectively.

III. Each part of an n-dimensional set is at most n-dimensional. Nat-
ural and simple as this theorem is it does not hold for some other defini-
tions of dimension [9].

IV. A set S cannot be split into denumerably many [4] closed [10]
summands each of which is of smaller gimensthn than S. (This so-called
sum-theorem which occupies a central role in dimension theory, a' well
as the simple theorems II and III arc due to Urysohn and the author.)

V. Each n-dimensional set can be topologically transformed into a
subset of a compact [10] n-dimensional set. (This theorem is due to
H urewicz.)

5. FURTHER. ASPECTS OF THE PROBLEM. What is dimension? Have we
answered this question? In one sense, we have. We have explained which
sets arc 1-dimensional, which are 2-dimensional, etc. In fact, with each
subset of our space and with each subset of much more general spaces
we have associated an integer, the dimension of the set. This is also
expressed by saying that dimension is a set function. However, there
are many other set functions. With each set in our space we may, for
example, associate the number of pieces of which it consists, or its meas.
ure (in some sense). In this connection the question "What is dimen-
sion?" may be interpreted in the following sense: "Among the many set
functions, by which properties is dimension characterized?"

So far this question has only been answered for the plane [ I]. There
dimension is characterized by the properties described in theorems I to
V. that is to say: In the plane. dimension is thc only set function with
the following properties:

I) It assumes the values 2. 1, 0, ---- I for thc square. the straight line
segment, the single j)oint, and the vacuous set. respectively:

2) It assumes the same value for any two sets which can be obtained
from each other by a topological transformation:

3) It never has a greater value for tlw part than for the whole;
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4) No set can be split into denumerably many closed sets of smaller
function value;

5) Each set can be topologically transformed into a part of a compact
set of equal function value.

In the plane, therefore, this is another answer to the question, "What
is dimension?"

Foomarts

'Mso some dispersed sets and a straight line segment contain equally many points, e.g., the set
of all points on a line whose distance from a certain point is irrational, or Cantor's so-called
dncontsnuum.

'E.g., the so-called sinusoid consisting of the points (a, y) of plane for which either
0<x5._ I and y=sinl/xorx=0and-15 y!. I.

'In Utis connection we may mention a comparitively recent result of the theory of curves. If a
set S as well as each subcontinuum of S can be traversesl hy a continuously moving point, then S is
1-dimenzional in the sense defined in this paper. The converse of this theorem is not truc.

'One might think that I .dimensional are the sets which are the sum of denumerably many arcs,
i.e., of as many ara as there arc integers. But this definition would still be too narrow while the

class of entities which arc sums of non.denumcrably many arcs contains the square and the cube
and thus is too wide.

' See the author's book -Dinwnsionsthcorie" 1928.
' The history of this definition and the ensuing theory is outlined in the beautiful exposition of

Hurewia and Wallman. Dimension Theory. Princeton Unisersity Press, 1941.
T See Ilurewia and Waltman, p. 19.
'To be published in Issue 5 of the Reports of a Mathematical Colloquium, University of Notre

Dame publication.
' Sec thc Appendix to Ilurewia and Wallman. Ditnension Theory.

set C Is rlosed if its sumplenient is a neighborhood, and hence C contains all cluster points
of C, i.e.. all points of which each neighborhood has infinitely many points in common with C. A
set C is called comport if for each infinite subset of C there exists a cluster point in C. It should be
noted that theorem IV would not hold if we omitted the word closed: our 5.dimensional space
can he split into a finite number of sets of smaller dimensions which are nut closed. eg., into the
four U-dtmensional sets S., 5,, S2, S,. Nor would theorem IV hold if we admitted splitting in more
than denumerahly many closed sets. Our 1-dimensional space is sum of infinitely many (but not
denunwrably many) closed ndimensinnal sets, e.g., of sets each of which sonsists of exactly one
point.

" Monatshefte f. Mathematik U. Physik, 56, 1929, p. 195.
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FOREWORD
More than half a century ago, in his classical book Elementary Math-

ematics from an Advanced Standpoint, Felix Klein observed that "every-
one knows what a curve is, until he has studied enough mathematics to
become confused through the countless number of possible exceptions:'
Do not be lightly deceived by simple words in mathematics, such as
straight, fiat, round, curve, and so on. The late Professor Kasner once
gave a "booby prize" definition of mathematics as "the science which
uses easy words for hard ideas:' Thus what a mathematician calls a
"simple curve" might look very complex to you, while a curve such as
the figure "8" is not considered a simple curve, however "simple" it may
appear.

Thus we encounter all sorts of curves in mathematics: continuous
curves; curves with "breaks" or discontinuities; curves with special
points; curves which have tangents and curves which do not; and so on.
Then there are so-called pathological curves, as for example, the Snow-
flake curve, which, although infinite in length, can nevertheless be
drawn on a small finite area, say a visiting card; the In-and-Out Curve,
whose curvature cannot be measured; the Space-filling Curve, which,
when complete, passes through every point in a given square (or cube);
-nd, hard to believe, the Cisscross Curve, which crosses itself at every

of its points.

After perusing the following article, the reader may wish to learn more
about mathematical curves. lb this end, he will find the following ref-
erences of interest:

I. Edward Kasner and James Newman, Mathematics and the Imagina-
tson, pp. 343-356.

2. Oystein Ore, Graphs and Their Uses, pp. 5-20; 53-67.
3. Hans Rademacher and Otto Toeplitz, The Enjoyment of Mathe-

matics, pp. 61-66; 163-177.
4. Hugo Steinhaus, Mathematical Snapshots, pp. 46-61; 95-108.

49

52



WHAT IS A CURVE?
G. T. WHYBURN

1. INTRODUCTION. When the searching light of modern mathematical
thinking is focused on the classical notion of a curve, this idea.is found
to involve elements of vagueness which must be clarified by accurate and
exact definition. Fortunately this has been made possible and relatively
simple by development in the field of set-theoretic topology. We shall
endeavor to set forth below, first the need for explicit definition of a
curve, then the definition itself, and finally several illustrations of types
of simple curves which can be completely characterized by their topo-
logical properties and which more nearly approach the classical notion
of a curve.

2. THE CLASSICAL NOTION. The concept of a curve as the "path (or
locus) of a continuously moving point" usually is accompanied by intui-

FIG. 1.

tive notions of thinness and two-sidedness. When the curve is in a plum,
these were thought to be consequences of the rather vaguely formulated
definition of a curve as just given.

That the path of a continuously moving point is not necessarily a thin
or curve-like set was shown by Peano and somewhat later by E. H.
Moore, who demonstrated the remarkable fact that a square plus its
interior can be exhibited as the continuous image of the interval. In
other words, if S denotes a square plus its interior, we can define con-
tinuous functions x(t) and y(t) on the interval 0-75 f I so that as t varies
from 0 to I, the point P fx (1), y(t)] moves continuously through all the
points of S.
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A still more striking result in this direction is the remarkable theorem
proved independently by Hahn and Mazurkiewicz about 1913. This
theorem auerts that in order for a point set M (in euclidean space of any
number of dimensions) to be representable as the continuous image of
the interval 05-15-1, it is necessary and sufficient that M be a locally con-
nected continuum, (A continuum in euclidean space is a closed,
bounded, and connected set; and a continuum M is locally connected
provided that for any E>0 a 8>0 exists such that any two points x and
y of M at a distance apart <8 can be joined by a subcontinuum of M of
diameter <E). Thus since obviously not only a square but also a cube,
an n-dimensional interval, an n-dimensional sphere and a multitude of
other sets are locally connected continua, any such sct M can be repre-
sented as the path of a continuously moving point in the sense that we
can define continuous functions.

x, x.(t) 0 5- t 1, i 1 , 2 , , n

such that as t varies from 0 to 1 the point P with coordinates (xi, x2, ,

xi.) moves continuously through all the points of M.

Even when a set is sufficiently "thin" or "1-dimensional" that we
would probably call it a curve it may be in a plane and still not be two-
sided. To illustrate we note that in Figure 1 any point on the base of the
continuum, such as x, is a boundary point of each of the three regions
R R,. R, into which the continuum divides the plane. Hence there
are three sides of the base of this continuum. (Clearly we could add extra
oscillating curves to the figure so as to make an arbitrarily large number
or even an infinite number of regions each having all base points x on
their boundaries). Nevertheless our continuum is a thin 1-dimensional
set made up of an infinite number of line segments. Now it is possible
to construct in a plane a continuum which is thin in the sense that it
will not contain the interior of any circle and yet is so unusual that it will
divide the plane into any finite number or an infinite number of regions
and, further, it will be the boundary of each one of these regions. Also
a plane continuum can be constructed which not only itself cuts the
plane into infinitely many regions but has the remarkable property that
every subcontinuum of it (any "piece" of it) also cuts the plane into
infinitely many regions.

3. DIMENSIONALM. GENERAL DEFINITIONS OF CURVE, SURFACE, Sala
Undoubtedly sufficient evidence has been given of the necessity of being
precise in our definitions and statements concerning curves, surfaces,
etc.. and of the unreliability of our intuition concerning these concepts.

We leave aside the continuous traversibility of the set as a criterion
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characterizing or distinguishing between curves, surfaces, solids, etc.,
since we have seen how it fails in this respect, and concentrate on con-
tent or dimensionality of the set as a guide.

Hence it seems natural and adequate to define a curve as a 1-dimen-
sional continuum, a surface as a 2-dimensional continuum and a solid
body as a 3-dimensional continuum.

These definitions are satisfactory provided we give an adequate defi-
nition of dimensionality of a set. To this end let us concentrate our at-
tention on compact sets, i.e., sets K which have the property that any
infinite subset has a limit point belonging to K, sets which are closed
and bounded if they lie in a euclidean space.

We then define the dimensionality of the empty set to be 1 and
agree the dimensionality of any other set is to be 0. Assuming, then,
that we have defined the dimensionality concept for dimensions n-1,
by induction we define a set K to be of dimensionality n provided (1)
every pair of distinct points p and q of K can be separated in K by some
set X of dimensionality n 1, i.e., K X falls into two separated sets
K, and K, fmntaining p and q respectively; and (2) some pair of points of
K cannot Ix separated in K by a subset of K of dimensionality < n 1.
Thus for n 0, a set K is of dimension n provided n is the least integer
such that every pair of distinct points of K can be separated in K by the
removal of a subset of dimension not greater than n 1.

According to this definition, then, a compact set K is of dimension 0
provided every two points of K can be separated in K by omitting the
empty set, i.e., provided they are already separated in K. Hence a 0-
dimensional set is one which is non-empty bui. is totally disconnected in
the sense that its only connected subsets are single points. A compact set
K is I-dimensional provided any two points can be separated in K by
omitting from K a 0-dimensional or totally disconnected set but some
two points cannot be separated without omitting Some points from K.
A compact set K is 2-dimensional provided each pair of points of K can
be separated in K by omitting a I-dimensional set but not every pair can
be separated by omitting a 0-dimensional set, and so on.

Stated in other terms, if we accept our definition that a curve is a 1-
dimensional continuum, a surface is a 2-dimensional continuum, and a
solid body is a 3-dimensional continuum, we see that a non-empty com-
pact set K is 0-dimensional if every pair of its points are separated in K.
The set is 1-dimensional at most provided we can (with shears if you like)
separate any two of its points by cutting the set along a 0-dimensional
set, i.e., by cutting out only single points as connected pieces. The set is
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2-dimensional at most provided we can separate any two points by cut-
ting the set along a 1-dimensional set, i.e., by cutting out only curves as
connected sets. The set is 3-dimensional at most if we can separate any
two points by cutting.(with a saw perhaps) the set along a 2-dimensional
set, i.e., by cutting out only surfaces as connected sets.

4. SOME SIMPLE TYPES OF CURVES. Having defined exactly the notions
of curve, surface, and solid in terms of their topological properties in
such a way that they correspond roughly to the geometrical notions of
line, plane, and space, we consider now some interesting particular kinds
of curves which may be similarly characterized.

Take first a straight line interval ab joining two points a and b and
ask the question "What properties of a set make it essentially like an
interval?" or "When are the points in a set associated together like those
in the interval ab?" For example, if ah is a taut string and we release the
tension and let it go slack but do not allow it to loop over onto itself, it
is no longer straight but it retains its same essential structure. It can still
be severed by cutting out any one of its points other than a or b; and it
is this property in particular which characterizes the interval completely
from the topological point of view. In other words, if we understand by
a simple arc any set of points which is topologically equivalent to an in-
terval in the sense that its points can be put into one-to-one and contin-
uous correspondence with the points of' an interval, then in order that a
continuum T be a simple arc it is necessary and sufficient that T contain
two points a and b such that the removal of any point of T other than a
or b will disconnect T. Thus in Fig. 2, (a) is a simple arc, but (b) is not a
simple arc because the removal of neither a, b, nor x will separate the
the set (i.e., will make it fall apart).

(a) (b)FIG. 2

Consider next a circle C and let us ask similar questions. If C is dis-
torted, as was our interval, by letting it slacken and bend but not fold
onto itself or be broken violently, it is seen to retain its essential set
structure. It retains the property, for example, of being severed by the
removal of any two of its points whatever. Here again the property men-

, led is characteristic for the type of curves which are topologically
; ivalent to the circle. In other words, if we define a simple closed curve
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as a set which can be put in one-to-one and continuous correspondence
with a circle, then in order that a continuum C be a simple closed curve
it is necessaty and sufficient that C be disconnected by the omission of
any two of its points. Thus in Figure 2, (a) is not a simple closed curve
since the removal of both a and b leaves the set connected. In Figure 3,
(a) and (b) are simple closed curves but (c) is not a simple closed curve
because the removal of x and y leaves the set connected.

(a) (b) (C)

FIG. 3

A curve which is made up of a finite number of simple arcs which
overlap with each other only at end points of themselves is called a graph
or a linear graph. A graph, then could be regarded as being constructed
by putting together in any one of numerous ways a finite number of
simple arcs so that no two of the arcs will overlap anywhere except pos-
sibly at an end point of both. All of the curves illusP;-ated in Figs. 2 and
3 are graphs; and of course many more complicated structures could be
made which would still be graphs. However, if a graph is in a plane it,
like the simpler curves previously discussed, will have the classical prop-
erty of 2-sidedness which does not belong to all curves.

0 , ,0 \I
qb . 4,g1 f

6 .-.
.

(a) FIG. 4 (b)
Finally, we mention two further types of curves which in general are

not graphs and yet whose structure is interesting andssimpld, namely the
dendrite or acyclic curve and the boundary curve. A dendrite is a locally
connected continuum which contains no simple dosed curve. It may
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contain infinitely many simple arcs [See Fig. 4 (a)). In fact it may be
impossible to express it as the sum even of countably many arcs, and yet
it has the property that any two of its points are end points of one and
only one arc in the curve. A boundary curve is a locally connected con-
tinuum which can be so imbedded in a plane that it will be the boundary
of a connected region of the plane. Although it is true that every den-
drite is a boundary curve, in general a boundary curve will contain one
and may contain infinitely many simple closed curves [See Fig. 4 (b)].
However, it is interesting to note that no such curve could contain a
cross bar on a simple closed curve. In other words, the most that any
two simple closed curves can overlap is in a single point (point of "tan-
gency"). Thus any boundary curve breaks up into so called cyclic ele-
ments which are either single points or simple closed curves, no two of
these have more than one common point, and these fit together to make
up the curve and give it a structure relative to these elements which is
very similar to that of a dendrite [Compare Fig. 4 (a) with Fig. 4 (b)].

5. CONCLUSION. We have touched but a few of the many interesting
aspects of the fundamental theory of curves. The subject has an extensive
literature, particularly from the topological point of view, which the
explorative reader will find fascinating as well as instructive. The field is
a live one and it is currently receiving important contributions. Inter-
esting and difficult problems remain unsolved. There is much to attract
and repay the student who will expend the effort necessary to acquire a
knowledge of these problems and to master the methods which have been
devised for attacking them.
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