
BD 175 704

AMOR
TITLE
INSTIT0T:01

MIS AGENCY
POD DATE
-VOTE

!DRS PRICE
DESCRIPTORS

IDENTIFIERS

VOCONEIT BISONS_

SE 028 688

Schaaf, William LO, Ed.
, Reprint Series1 Finite Geometry. RS-13.

Stanford Univ., Calif. School Nathematics Study
Group.
National Scieace Foundation, Washington, D.C.
69
47p.: r related documents, see SE 028 676-690

NF01/PCO2 Plus Postage.
*Congruence: Curriculum: *Enrichment: *Geometry:
*Instruction: Nathematics Education: Secondary
Education: Secondary School Mathematics:
Supplementary Reading Saterials
*Nodular Arithmetic: *School Mathematics Study
Group

INSTRACT
This is one in a series of USG supplementary and

nrichment pamphlets for high school students. This series makes
availablu ezpcsitory articles which appeared in a variety of
mathematical periodicals. Topics covered inclu.e: (1) four finite
geosetries: (21 ainiature geometries: (3) a coordinate approach to
the 25-;oint miniature geometry: and (41 25-point geometry. (NP)

***********************************************************************
Reproductions supplied by IDES are the best that can be made

from the original docusent.
e**********************************************************************



u S DEPARTMENT OF AIM. ir
EDUCATION & WELFARE
toisT101441. oNSTITurt OF

(OutATION

P-4,- trip, Nil HAS tI k Pi kt Wi

JEA1 'I AS ( 41 r NOM
THI Pt WNW's' Ow T ION OW,GIP4

A T T P(>INIS Of v ;Eh t)PiP4101111.

sT A TT- I) 00 NOT MI( I SSI4L 'T i priF
,AL NATIONAL NST trI or

f Dui AT ,ON POSIIII)14 (04 4'1.31 f(

"PERMISSiON TO REPRODUCE THISMATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL
RESOURCESINFORMATION

CENTER (ERIC)."

a



Financial support for the School Mathematics Study Group has been
provided by the National Science Foundation.

1969 by The Board of Trustees of the Le lied Stanford Junior Mayer*Ity
All rights marred

Printed I. the United States of America

3



Mathematia is such a vast and rapidly expanding field of study that there are
inevitably many important and fascinating aspects of the subject which do not End
a place in the curriculum simply because of lack of time, even though they are well
within the grasp of secondary school students.

Some classes and many individual students, however, may find time to pursue
mathematical topics of special interest to them. The School Mathematics Study
Group is preparing pamphlets designed to make material for such study readily
accessible. Some of the pamphlets deal with material found in the regular curric-
ulum but in a more extended manner or from a novel point of view. Others deal
with topics not usually found at all in the standard curriculum.

This particular series of pamphlets, the Reprint Series, makes available ex-
pository articles which appeared in a va.-iety of mathematical periodicals. Even if
the periodicals were available to all schools, there is convenience in having articles
on one topic collected and reprinted as is done here.

This series was prepared for the Panel on Supplementary Publications by
Professor William L. Schaaf. His judgment, background, bibliographic skills, and
editorial efficieruy were major factors in the design and successful completion of
the pamphlets.

Panel on Supplementary Publications

R. D. Anderson (1962-66)
M. Philbrick Bridgess (1962-64)
Jean M. Calloway (1962-64)
Ronald J. Clark (1962-66)
Roy Dubisch (1962-64)
W. Engene Ferguson (1964-67)
Thomas J. Hill (1962-65)
L. Edwin Hirschi (1965-68)
Karl S. Kalman (1962-65)
Isabelle P Rucker (1965-68)
Augusta Schurrer (1962-65)
Merrill E. Shanks (1965-68)
Henry W Syer (1962-66)
Frank L. Wolf (1964-67)
John E. Yarnelle (1964-67)

Louisiana State University, Baton Rouge
Roxbury Latin School, Westwood, Mass.
Kalamazoo College, Kalamazoo, Michigan
St. Paul's School, Concord, N. H.
University of Washington, Seattle
Newton High School, Newtonville, Mass.
Montclair State College, Upper Montclair, N. J.
University of Utah, Salt Lake City
School District of Philadelphia
State Board of Education, Richmond, Va.
State College of Iowa, Cedar Falls
Purdue University, Lafayette, Indiana
Kent School, Kent, Conn.
Carleton College, Northfield, Minn.
Hanover College, Hanover, Indiana



PREFACE
Any mathematical system is characterized by its undefined elements,

its unproved postulates, and its definitions and theorems. A finite
geometry is a geometry in which the set of postulates and undefined
terms and relations are such that the system has only a finite number
of points and a finite number of lines. Of course the words "point" and
"line" as then used take on a somewhat different meanir.g from the
classical Euclidean concepts of point and line.

Many different finite geometries are possible. The characteristics of any
finite geometry are determined solely by the particular set of postulates
chosen. Such geometries illustrate the basic logical structure of a mathe-
matical system. Consider for example a simple three-point geometry in
which the undefined terms are point and line, and in which the synon-
ymous phrases "point on a line" and "line on a point" constitute an
undefined relation. We may agree upon the four postulates:

A,. There exist exactly three points.
A. Not all points are on the same line.
A,. On any two distinct points there is exactly one line.
A,. On any two distinct lines there is at least one common point.

This trivial geometry may be represented by the following figure, and
on the basis of the aforementioned postulates, A, A.,, it is easy to prove
these theorems:

`I',. Not all lines are on the same point.
T. On any two distinct lines there is not more than one point in

common.
T,. There exists three and only three distinct lines.

Interestingly enough, even though it is trivial, this geometry exhibits the
property of duality, which means that if in any true statement we inter-
change the words "point" and "line:' the new statement is also true.

Let us look briefly at another finite geometry, not quite as simple as
the one above. This time we shall agree upon five postulates:

A,. Each pair of lines is on at least one poir t.
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A2. Each pair of lines is on not more than one point.
A. Each point is on at least two lines.
A. Each point is on not more than two lines.
A. There exist exactly four lines.

Chis six-point geometry or mathematical model may be -interpreted"
oy the following configuration:.

Among the theorems which can be derived from these five postulates
we mention:

T,. Exactly two lines pass through (lie on) each point.
T,. Every line contains (lies on) exactly three points.
T1. Not all lines pass through the same point.
T. Two distinct lines have exactly one point in common.

A system (5) consisting of the postulates A, As, together with the theo-
rems T, T among others, may be thought of as a mathematic2l model
of some concrete situation. Instead of the above space configuration, the
system (S) could just as readily be used to represent the officers of a cor-
poration and its major departments. For example, the six "points" might
represent the Chairman, President, Vice-president, Secretary, Treasurer,
and Comptroller; and the four "lines" might represent the Manufac-
turing, Sales, Advertising and Finance Departments. All the statements
made above about "points" and "lines" would then be consistent when
the words "officer" and "department" are substituted for the words
"point" and "line,' respectively.

So an entirely new field has been opened up, and as you become more
and more acquainted with these finite geometries you will see that much
more than just "geometry" is involved the theory of numbers, higher
algebra, and the theory of groups as the following essays will reveal.

William L. Schaaf
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FOREWORD

These essays require somewhat greater mathematical maturity than
most of the other pamphlets in this Series. Frankly, to understand and
enjoy them, the reader should bc at least somewhat familiar with mod .
ular arithmetic and congruences, and with the general nature of pro-
jective geometry.

The first essay, "Four Finite Geometriee; serves to set the stage by
giving the reader somewhat of a perspective, both historical and mathe-
matical. It should be noted that the author gives severat examples of
finite geometries, and that one need not read all of them.

The second essay, by Burton Jones, is based in large part on the con-
cept of modular congruences and Galois fields, which are discussed in
another article by the same author, entitled "Miniature Number Sys-
tems" (MATHEMATICS TEACHER, 51:226-231, April 1958). The reader
unacquainted with these concepts or unfamiliar with the article referred
to, may still understand a goodly part of the present essay.

In her paper on the 25-point geometry, Miss Heidlage uses the analytic
P?proach, which, interestingly enough, reveals the intimate connection
between finite geometries and modular arithmetic.

The concluding essay by H. M. Cundy uses a different approach,
namely, that of geometric transformations. By so doing, he emphasizes
some of the properties of configurations in a 25-point geometry, includ-
ing not only conic sections, but also such matters as inverse points, the
Simson line, the nine-point circle, and the projective plane. Here again
(as in the preceding essay), little or no attention has been given to the
question of the consistency and independence of the axioms.

The reader interested in pursuing the subject furthcr may find the
following references of interest:
Arthur Coxford, "Geometric Diversions: A 25-Point Geometry!' The

MATHEMATICS TEACHER 57:561-564 ; December, 1964.
W. L. Edge, "31-Point Geometty:' MATHEMATICAL GAZETTE 39: 1 1 3

121; May, 1955.
Martha Heidlage, "A Study of Finite Geometiy:' THE PENTAGoN, voi.

23, pp. 18-27; Fall, 1963.
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FOUR FINHE GEOMETRIES*
H. E MarAreish

I. INTstouticTwx. A finite geometry is a geometry based on a set of
posmlates, undefined terms, and undefined relations which limits the
set of all points and lines to a finite number. This is usually accom-
plished by a postulate limiting the number of points on a line. In the
first three of the finite geometries considered in this paper there is the
following postulate: "No line contains more than three points:' In the
Desargues finite geometry this is a theorem which follows from the pos-
tulates. The set of postulates stmuld fulfill the three requirements of
consistency. independence, and categoricalness.

Finite geometries were brought into prominence by the publication
of the Nrch len and Young Projective Geometry (Ginn and Co.. Vol. I,
1910: Vol. II. 1918) and by Nining's Lectures on Fundamental Concepts
of Algebra and Geometry (The Macmillan Co., 1911).

The simplest example is the finite geometry of 7 points and 7 lines
given in Volume I. Chapter I of the Pm jective Geometry of Vet) len and
Young. This finite geometry was first considered by Fano in 1892 in 3
dimensions where there are 15 points and $5 lines, but in each plane
there are 7 points and-7 lines.

The notion of a class of objects is fundamental in logic. he objects
which make up a class arc called the elements of the class. The notion
of a class and the relation "belonging to a class" will be undefined.
Given a set S with elements A A , A , let S have certain undefined
sub-classes any one of which will 6e called an m-dass, or in particular,
given a set of points A A , let certain sets of points be associated
in an undefined way in sets called lines.

2. THE SEVEN POINT FINITE GEOMETRY. The postulates for the 7 point
finite geometry may he stated as follows:

r). If A, and A, are distinct points (elements of 5). there is at least
one line (m-class) containing A, and A.

(2'). If A, and A. are distinct points (elements of 5). there is not more
than one line (m-class) containing A, and A.

(3'). Any two lines (m-classes) hase at least one point (element of 5)

" Presented at the ontanliation meeting of the Metropolitan New York Section of die %NMI-
matical Asviciation of merica at Queerm College of the City of New York on Aptil I. 1941.
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in rommon.
(4'). There exists at least one line (m-class).
(5'). Every line (m-class) contains at least three points (elements of S).
(6'). All the points (elements of S) do not belong to the same line

(m-class).
(7'). No line (m-class) contains more than three points (elements of S).
Symbolic diagram where the vertical columns represent lines

(In-classes):

A2A,A,A14.47A,
A,A,A.A7A1AA,

It is, however, unfortunate that it is necessary to assume that the three
points A A and iL, i.e., the diagonial points of the complete quad-
rangle, are collinear as indicated by the dotted line.

FIG. I. Geometric di2gram for 7 point finite geometry.

To prove that a postulate of a set of postulates is independent of the
rest, it is sufficient to give an example which violates that postulate and
fulfills all the rest. Since there are seven postulates in this set, it is neces-
sary to give seven examples to complete the independence proof. This is
not always easy to do, and in the case of Hilbert's postulates twenty-one
examples would be necessary to complete the independence proof.

If the word "three" were changed to "two" in postulates 5 and 7, the
entire geometry would consist of a single triangle which might well be
considered as the simplest non-trivial finite geometry: so that seven inde-
pendent postulates in this case define a geometry consisting of just one
triangle.

The independence of the postulates for this finite geometry is shown
by the following examples, whose numbers correspond to the number of
the postulate which does not hold in the example.

4
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(1'). A complete quadrilateral.

A,A,A,A,

(2'). A tetrahedmn A ,A 2A,A4, where
the faces represent lines.

A1A,A,A2
A.AAA,
A2A,A,A,

(3'). A2A141A1A42A2AA,A2A4A,

Aa

(This is the Young finite geometry of 9 pt,ints and 12 lines, section 3.)
(4'). A single point (the remaining postulates are fulfilled vacuously).
(5'). A triangle with A A2, A, as vertices.
(6'). A single line containing 3 points A A A,.
(7'). Projective geometry.

This seven point finite geometry has been generalized to give a finite
geometry of thirteen points and thirteen lines if four is substituted for
three in postulates 5 and 7; and to n:+n+ 1 points and lines, if n+ I is
substituted for three in postulates 5 and 7.

Finite geometries of this type have been treated extensively from the
standpoint of algebra and finite groups.*

The question now arises as to what theorems there are in this ieven
point finite geometry. In the first place, the duals of the postulates may
be proved as theorems and the geometry will then have duality. Postu-
lates I and 3 are duals.

THEOREM 1. (Dual of Postulate 2). Two distinct lines have only one
point in common.

THEOREM 2. (Dual of Postulate 4). There exists at least one point.

THEOREM S. (Dual of Postulate 5). At least three lines pass through
every point.

THEOREM 4. (Dual of Postulate 6). All lines do not pass through the
same point.

Vebkn and Soucy. Finite projective geometries. Transactions of the American Mathemati-
cal Society. vol. 7. 1906. pp. 24 l-259.
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THEOREM 5. (Dual of Postulate 7). Not more than three lines pass
through every point.

These theorems are all easy to prove, and they show that the geometry
has duality. Two other theorems suggest themselves.

THEOREM 6. The geometry contains precisely seven points.
THEOREM 7. (Dual of Theorem 6). The geometry contains precisely

seven lines.

The entire body of theorems of this finite geometry of seven points
and seven lines consists primarily of these seven theorems. The finite
geometry has the characteristics of a projective geometry and might be
considered as the simplest type of a projective geometry.

3. A FINITE GEOMETRY OF NINE POINTS AND TWELVE LINES. If in the
postulates of section 2, the word "three" is changed to "four" in postu-
lates 5 and 7, the postulates are satisfied by a finite geometry of 13 points
and 13 lines. But, if in this geometry one line of four points is omitted,
we obtain a geometry of 9 points and 12 lines, which is equivalent to pro-
jecting one line to infinity and converting the projective geometry of
15 points and 13 lines without parallel lines into a euchdean geometry of
9 points and 12 lines with parallel lines.

This is in some ways an advantage and a simplification, because in
general there is a preference for historical reasons for a euclidean ge-
ometry in which the parallel postulate is true. This geometry has been
used as an example of a complete logical system by Cohen and Nagel in
their book. An Introduction to Logic and Scientific Method (Harcourt,
Brace and Co., 1934).

It is remarkable that the 9 inflection points of a general plane cubic,
as far as collinearity properties are concerned, fulfill all of the postulates
of this finite geometry.

The following eight postulates define this finite geometry:
(1). If A, and A, are distinct points (elements of 5), there exists one

line (m-class) containing A, and A.
(2). If A, and A, are distinct points (elements of 5), there exists not

nmre than one line (m-class) containing A, and A.
(3). Given a line a (m-class a) not containing a point A (given element

A of 5), there exists one line (m-class) containing A and not containing
any point of a (element of S belonging to m-class a).

(4). Given a line a (m-class a) not containing a point A (given element
of S), there exists not more than one line (m-class) containing A and not

6
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containing anv point of a (dem& nt of S belonging to m-class a).
(5). Every line (mclass) contains at least three points (elements of S).
(6). Not all points (elements of S) are contained by the same line

(rn-class).
(7). There exists at least one line (m-class ).
(8.) No line (m-class) contains more than three points (elements of S).

A

/
..

A-
<

-e
e,,

Ae

. t/. i. r

I I
A./

/ '14. ` A 9 //e
... / /

... . .-
.

... ..... ....

FIG. 2. Geometric diagram for the Young 9 point finite geometry.

Symbolic diagram where the vertical columns represent rn-classes
(lines):

AA,A,A.AA,A,A,A,A4A5As
i43i47AAAgAjA7AgA7A,AgAg .

The independence of the postulates is shown by the following ex-
amples,* where parentheses represent lines or m-classes.

(1'). Two lines (A 111 A), (A A r,A,).
(2'). Six points (elements) A A, A3; A A A, taken three at a time

to form twenty lines (m-classes).

(A 14 2A 3), (A 1A 2A 4), (A 1A 5), (A 1A ,A A 4),
(A 1A ,A ,), (A ,A ,A 1), (A ,A ,A ,), (A ,A4/1 ), (A 1A A,),

(A,A,A,), (A,A,A,), (AA,A,),
(A A ,A 1), (A ,A ,A ,), (A ,A ,A ,), (A ,A A, ), (A ,A ,A ,).

(This is a complete 6-point in space, where the planes represent lines.)

(5`). (A IAaA ,), (A ,A ,A (A JA ,A 1), (A ,A ,A 7), (A ,A A) , (A A 1A :), (A 7A ,A

Sec artkle by A. Barshop, Brooklyn College Mathematics Mirror. Issue no. VII. 1939, p. 14.
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(This is the seven point finite geometry of section 2).

(4'). (A, A, A,),
(A, A, A ,,,),
(A ,14 A ,,),
(A, A, A,),
(A. A, A ),
(A,
(A, A, A ),

(A, A, A , ),
(A. A A 1,),
(A A A,),
(A, A,
(A, A,
(A, A A ),
(A, A, A ),

(A, A, As),
(A, A ,,A ,,),
(A A A,),
(A, A, A ),
(A, A,
(A, A, A ),
(A, A, A ),

(A 4, 4,),
(A A 13A 1.),
(A ,,A, A ,),
(A, A, A ,,),
(A, A ,.A ),
(A, A,
(A, A A ).

(5'). A complete quadrilateral.

1112), (111113), (41, ,), (A340, ,), (113114).

(6'). A single line of three points (A ,A ,A,).
(7'). A single point A ,no lines.
(8'). Plane euclidean geometry.
This finite geometry is euclidean in the sense that through any point

not on a line there is one and only one line parallel to that line. The
geometry does not have the property of duality because any two distinct
points determine one line, but any two distinct lines do not determine a
point since they may be parallel.

Several theorems suggest themselves, such as the following:

THEOREM 1. There exist exactly nine. points.

THEOREM 2. There exist exactly twelve lines.

THEOREM S. Every line has precisely two lines parallel to it.
THEOREM 4. Two lines parallel to a third line are parallel to each

other.

'THEOREM 5. The six points on two parallel lines determine a hexagon
such that the intersection points of opposite sides are collinear. (Pappus-
Pascal theorem).

4. THE PAPPLI FINITE GEOMETRY. The postulates of the Pappus finite
geometry may be stated as follows:

(I). There exists at least one line (m-class).
(2). Not all points (elements of S) belong to the same line (m-class).
(3). Not more than one line (rn-class) contains any two points (ele-

ments of S).
(4). Every line (m-class) contains at least 3 points (elements of S).
(5). No line (m-class) contains more than 3 points (elements of S).
(6). Given a line (m-class) and a point (element of S) not on it, there

8
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exists a line (m-class) containing the given point (element of S) which has
no point (element of S) in common with the first line (m-class).

(7). Given a line (m-class) and a point (element of 5) not on it, there
exists not more than one line (m-class) containing the given point (ele-
ment of S) which has no point (element of 5) in common with the first
line (m-class).

(8). Given a point (element of 5) and a line(m-class) not containing
it, there exists a point (element of 5) contained in the given line (7n-class)
which is not on any line (rn-class) with the first point (element of 5).

(9). Given a point (element of S) and a line (m-elass) not containing
it, there exists not more than one point (element of S) contained in the
given line (m-class) which is not on any line (m-class) with the first point
(element of S).

FIG. 3. Geomtrk diagram for the Pawls finite geometry.

Symbolic diagram where the vertical columns represent lines
(m-classes):

A,A,A,A,A,A A A,A,
A A ,A ,A 1A A A
A ,A.AA,A A,A,A A,.

he independence of the postulates is shown by the
following examples:

(1'). A single point A ,.

(2'). A single line containing points A,. /1.2. A ,.

(3'). The faces of an octahedron, where the faces rep-

9



resent lines:

(A ,A A,), (A 1A A ,), (A ,A A 3), (A 1A A
(A,A,A,), (A,AA,), (AAA.), (A,A,A,).

(4'). A simple quadrilateral (A,A), (AA), (AA.), (A.A,).
(5').

(6').

(7`).

(A ,J,A, A ),
(A A Aal 11)
(A,A,A A ,4),
(A.A A .41,),

(A 1.4 A IA ),
(AAA. A ),
(A,A,A ,,A ),
(A,A,A A ),

(A ,A,A A ),
(ARATAINAI.),
(A,AA,A,),
(A 44 1A IA 13),

(A,A,A,), (A ,A,A,), (AAA.),

(AAA.),
(A,A,A1,),
(A 4A A ,2)

(A IA ,A ),
(A oA ,A ),
(A,A,A,),
(A A,A

(A,AA,,A ),
(AAAA),

(A 4A,A, A ).

(8'). The finite geometry of section 3.
(9'). Two non-intersecting straight lines (A ,A AO. (A ellA ).
The Pappus finite geometry is treated in the book Fundamentals of

Mathematics by Moses Richardson (Macmillan, 1941).
The duals of the postulates can be proved, showing that the geometry

has duality. The geometry has the euclidean property of parallelism of
lines. It also has dual property of parallelism of points.

DEFINITION. Two points which are not connected by any line will be
called parallel points.

The most important theorems are the following:
THEORgM 1. If the six points of two (parallel) lines are connected to

form a hexagon, the opposite sides intersect in three collinear points.
(Pappus-Pascal theorem).

THEOREM 2. There are precisely nine points in the geometry.
THEOREM 3. (Dual of Theorem 2). There are precisely nine lines in

the geometry.
The Pappus geometry contains no artificial lines and is associated with

one of the simplest non-trivial configurations in geometry. The Master's
thesis of John E. Darraugh (Brooklyn College, 1940) lists thirty-five
theorems for the Pappus finite geometry.

5. THE DESARGUES FINITE GEOMETRY. The postulates of this geometry
may be stated as follows:

(I ). There exists a point (element of S).
(2). Two distinct points (elements of S) are contained by at most one

line (m-class).
DEFINITION. Line p is called a polar line of point P if no point of p is

connected to P by a line. Point P is called a pole of line p if no line

10



through P contains a point of p.
(3). For every line p (m-class), there is at most one pole P.
(4). There are at least three distinct points (elements of S) on a line

(m-class).
(5). For every point (element of S), there exists a polar line (rn-class).
(6). If a line p (m-class) does not contain a given point Q (element of

S), the polar line q of point Q has a point in common with line p.
A,

A 3
FIG. 4. Geometric diagram for the Desargues finite geometry.

Symbolic diagram where the vertical columns represent lines
classes):

A,A,A,AAA, AAA, A,
AA,A,A,A,A.AA,A, A,
A ,A A 7A A OA 11J4 AA ,A 10 .

The independence of the postulates is shown by the following ex-
amples:

(1'). The null set a geometry without points or lines.

(2'). (A,AA,), (A,AA), (AAA),
(A,A,A,), (A,A,A,), (A IAA ,), (A,A,A.).

(3') Two lines (A,AA), (A,A,A0).
(4'). A simple hexagon A ,A 3A 5A a.

1112), A 3), OA 4A ./10), 4111).

(5'). A single point A ,.

11



(6'). (A,A, A.), (A A.), (A 14,04,.),
(A !A i.A ), (A ,A A ,.), (A A, A.), (A 441 A.),
(44.A7), (A7A.A1.), (AA A), (A4,A1.).

The Desargues finite geometry has only six postulates, it has duality
and polarity, it is non-euclidean in that a line may have as many as three
lines parallel to it through a given point, and it is associated with a real
configuration.

Fic. 5. Four triangles each inscribed in and circumscribed about another triangle
of the set.

This finite geometry is treated in Part III, Chapter 1 of Fundamental
Mathematics by Duncan Harkin (Prentice-Hall, 1941).

John E. Darraugh, in his Master's thesis (Brooklyn College, 1940)
gives fifty-two theorems for this geometry. Among the most important
theorems are the duals of the postulates, and also the following:

THEOREM 1. If A lies on the polar line of B, then B lies on the polar
line of A.

THEOREM 2. If b and c are both parallel to a, then b ana c intersect in
a point.

THEOREM 3. There exist precisely ten points.
THEOREM 4. There exist precisely ten lines.
THEOREM 5. If two triangles are perspective from a point, their corre-

sponding sides intersect in collinear points. (The Desargues theorem

12



MINIATURE GEOMETRIES
Burton W Jones

In a previous article' miniature number systems were developed
that is, number systems which have most of the usual properties of
numbers with which we are familiar but which contain only a finite num-
ber of numbers. Similarly, there are geometries that are "miniature" in
the sense that they contain only a finite number of points. Here, how-
ever, we are in the beginning forced to make a number of choices: Is it
to be plane geometry, solid geometry, or a geometry of many dimensions?
Is it to be Euclidean, projective, or any one of the other geometries we
know about?

Our first arbitrary choice is to confine ourselves to plane geometry.
That being the case, the following requirements are quite natural:
I. The geometry consists of a set of undefined elements called points.
2. It contains certain subsets (smaller sets) of points called lines.
3. If L is a line and p is a point in the set of points which comprise L,

we call p "a point of L" or write "p lies on L:' The same idea is ex-
pressed by writing that "L contains p" or "L passes through

4. Any two points "determine a line"; that is, given any two points p
and q, there is exactly one line L passing through these two points.
Notice that in the first three statements we set up a terminology. This

is especially true of the third statement. We could merely write "L con-
tains p" or "p is contained in Li.' but if we are to get help from geomet-
rical visualization (and this is our chief guide in this development) it is
useful to preserve as much of the geometrical terminology as possible.
Property 4, on the other hand, is the first really restrictive requirement.

It is natural to impose two other requirements, the first to make it a
finite geometry and the second to keep it from being too trivial:
5. The geometry contains only a finite number of points.
6. The geometry contains four points, no three of which lie on a line.

Now we are faced with our second choice. If the geometry were to be
Euclidean' we would specify:
E7. If L is a line and p a point not on L, there is exactly one line 4,

through p which has no points in common with L. L, is called "parallel
to

' Burton W. Jones, "Miniature Number Systems:* THE MATHEMATICS TEACHER, LI (April 1955).
226-231. This will hereafter be referred to as **Article 1:' and its contents will be presupposed in
mucb of this article.

*R. H. Bruck. "Recent Advances in the Foundations of Euclidean Plane Geometry:* The Amer-
ican Mathensetkal Monthly, 62 (August-September, II, 1955). 2-17.
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On the other hand, if the geometry were to be projective we would
specify:
P7. Every pair of lines has a common point.

In this article we make the second choice since it is simpler in a num-
ber of respects; if we are to manufacture a geometry we might as well
make it as simple as possible. Notice that Property 4 with Property P7
affirms that any pair of distinct lines has exactly one common point.

A FINITE GEOMETRY WITH SEVEN POINTS
Before considering the general theory, let us look at one particular

finite geometry: one with seven points and seven lines. (This is actually
the "smallest" geometry.) Number the points 0, 1, 2, 3, 4, 5, 6 and the
seven lines may be taken as the following seven sets of three points each:
L.: O. 1, 3; 1.1: 1, 2, 4; 142: 2, 3, 5; 3, 4, 6; L,: 4, 5, 0; L,: 5, 6, I ;
L,: 6, 0, 2. Inspection shows that each pair of lines has exactly one com-
mon point and that each pair of points determines a line. Also each point
has three lines through it, and each line contains three points. This can
be seen from the sets of points above or from the diagram.

FIGURE I

Notice that one of the lines, L,, is not straight, but recall that the lines
are sets of points and the only purpose of drawing the lines is to indicate
the sets of points which comprise them.

COUNTING LINES AND POINTS
More generally, suppose one line contains m+ l points. First we shall

show that every line contains exactly m + 1 points. Let L be the given
line and L any other line. From Property 6 there will be some point p
not on either line. Let p be the point common to L and L and p p,, ,
ps the other points on L. Then the m lines determined by p and the
points on Lo, except p, will intersect L in m distinct points. Thus L has
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at least as many points as L. By reversing the argument we can show that
L has at least as many points as I. and hence both lines have the same
number of points.

Next we can show that m+ 1 is the number of lines through a point.
Given a point p and some line L not throitgh p. it follows that L has
m+ I points and that each of these with p determines a line through p.
But any line through p intersects L in one of these points. Hence there
are just as many lines through p as there are points on L. that is, there
are m+ I lines through p.

Third, we can count the number of points in the geometry. Given a
point p, every point of the geometry will lie on a line through p. Each
such line contains m points besides p and there are m+ I such lines.
Hence the total number of points is m(m+1)+1.-=& +m+ 1.

In a similar fashion it can be shown that there are m2-4- m+ I lines in
the geometry. Notice that 7 is the least number of lines in a finite geom-
etry satisfying the properties listed above since that is the value of
or+ m + when m=-2 and if 1 there would be only three points in
the geometry denying Property 6.

DuALITv
Perhaps the most important consequence of our choice of Property

P7 is the pm inriple of duality: any true statement about lines and points
is also true when "line" and wpoint" are interchanged and the corre-
sponding change in connective used. For instance, "any line has the same
number of points as any other line" implies, by duality, " any point lies
on the same number of lines as any other point:* This principle seems
like something too general to establish until we realize that by virtue of
the fact that we assume o. :v Properties I to 6 and P7, we need merely
verify duality for these seven properties. This can easily be done.

Suppose we consider "another" geometry defined by interchanging
"point" and "line" in the Properties I through 6 and P7, that is, a dual
geotnetry. We now show that this will have all the properties of the given
geometry. In this dual geometry, a point would be identified with the
set of lines through it. Property 3 is its own dual, and Property P7 is the
dual of Property 4 if included in P7 is thc italicized statement at the end
of the first section. If the geometry contains only a finite number of lines,
it must contain only a finite number of pairs of lines, and hence a finite
number of points.

It remains to consider the dual of Property 6, namely 6d: the geometry
contains four lines, no three of which have a common point. 'Ib show that
this implies Property 6, let 124, be the point determined by lines a and II,
134,. the point determined by lines h and c, and similarly define P,,, and
P. Suppose P,. P,,. and Pr, were collinear. The first two of these lie on
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the line b and the second two on the line c; moreover they determine the
lines b and c. respectively. But b and c are distinct lines and hence /3,
11,,. and Pc, arc not collinear. In similar fashion any three of the four des-
ignated points can be shown to be noncollinear. Thus we have shown
that a geometry which satisfies the dual properties, satisfies the given
ones. In similar fashion one may show that a geometry which satisfies
the given properties, satisfies the dual ones. Hence the two geometries
are the same, and the principle of duality is established.

CONSTRUCTION OF FINITE GEOMETRIES FOR 111=4i

First, let us illustrate the construction for p=3, n 1, m=3. Associate
with each point an ordered triple (a, b, c) where a, b, c are numbers of
GF(3) (see Article I), not all are zero, and the triples (a, b, c) and (ka, kb,
kc) are associated with the same point. For example, (1, 1, 0) and (-1,
-1, 0) represent the same point. The number of triples excluding (0,
0, 0) is 3'-1=-26 and the number of proportionality factors different

. from zero is 3-1=-2. Hence the number of points in this geometry is
26/2=-.-...13. Notice that 13,-_-_.m2-1-m +1 for m=3. Then the following
triples will represent the points of this geometry:

Po: (0, 0, 1); Pi: (0, 1, 0); 1:1: (1, 0, 0); P,: (0, 1, -.1); 134: (1, -I, 0);
11: (-1, I, -I); Pa: (1, I, I); (1, -I, -1); 131: (-1, 0, -1);
(0, 1, 1); Pi.: (1, 1, 0); P: (1,1, -1); P.: (1, 0, -1).

Now we must determine the lines. Let the point P be associated with
the ordered triple t-.=-4, b, c) and the point P' with t'(a', b', c'). Then
the line determined by P and P will be defined to be all those points
associated with the triples rt+rT, that is

(ra f. ea', rb eb', re + ec')
where r and ri range over the numbers of GF(3) excluding r=-0=e.
Thus, if P=P, P'=P r=0, yields the point P, above; r=1,
e =0 yields 12; e=1=-r yields P, and r=1=r' yields P. (Notice that
r=-1, e=1, being proportional to 1 and -1, yield no new point.) We
call L the line composed of these four points. It can be seen that the
quadruples of subscripts of points associated with the lines of this geom-
etry will be:
L: (0, 1, 3. 9); Li: (1, 2, 4, 10); L: (2, 3, 5, 11); L.,: (3, 4, 6, 12); I.,:
(4, 5. 7, 0); I.,: (5, 6, 8, 1); L: (6, 7, 9, 2); I. (7, 8, 10, 3); I.,: (8, 9, II, 4);
L. (9, 10. 12. 5): Lto: (10, 11, 0, 6); L. (11, 12, 1, 7); Liz: (12, 0. 2, 8).

In order for the remainder of this essay to he meaningful. the reader is urged to stop at
this point and refer to an earlier article by Lite same author on -Miniature Number Systems:
The silathematics Mather 51:226-231; April, 1958.
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It can be shown without much trouble that this geometry satisfies the
required properties of a finite geometry with m=3.

Similarly if m=2, there will be seven points determined by the triples:
Pa: (0, 0, I); 131: (0, 1, 0); 131; (1, 0, 0); P,: (0, 1, 1); 134: (1, 1,0); (1,
1,1); 13: (1, 0, 1).
The lines will be those given above, and the numbers of the triples will
be in GF(2).

In general, then for m=p* we consider the triples (a, b, c) where a, b,
c range over the numbers in GF(m), not all arc zero, and two triples in
which a, b, c are proportional are associated with the same point. Then
there will be rn'-1 triples not all zero and m-1 proportionality factors
different from zero; hence (ms-1)/(m-1)=W-1-m+1 points. The
lines are defined as sets of points, as in the above example. This system
can be shown to have all the required properties of a finite geometry.

DETERMINATION OF LINES BY MEANS OF GAMS FIELDS
The reader may have noticed a curious pattern in the two examples

abcrie for m=2 and m=3 in the formation of the successive lines. 'For
instance, for m=2, the line L. is the set of points /3, P P, and the line
L, is 131, 13,, 131. The subscripts of the points of the latter are those of the
former increased by 1. The subscripts of the points in the line L, are 2,
3, 5, those for L. are 3, 4, 6 and for L. are 4, 5, 0 where 6+1 is replaced
by 0, addition being (mod 7). The same pattern holds in the geometry
with tn=3.

Why does this pattern hold? To answer this for m=2, observe in a
table given at the end of Article I, that x is a generator of GF(8), that is,
each power of x will be of the form ax,-+-bx-Fc (mod 2, x,+ xi- 1). Fur-
thermore, every number of GF(8) will be a power of x. Thus x will be
expressible in the form asx24- hsx+cs where a,, b1, c, are in GF(2). Hence
we can associate x' with thc point whose triple is (a,, b,, ci). Thus
xl=0 x2+ 1 is associated with Pa: (0, 0, 1), x=0. x3+1 x +0 is associated
with 111: (0, 1, 0), , x1=x2+x +0 with 134: (1, 1, 0), etc. Since x is also
a generator of GF(27), a similar development holds for m=3.

Now suppose that x is a generator of GF(m3) and consider the follow-
ing three triples:

t, = (as, h ci); t, = (a1, h,, Ci); t (ass, bik, Ck),

where the a's, b's and c's are numbers in GF(m). Suppose the points rep-
resented by these triples lie on a line, that is:

a = rag +sal, 1)4= rb,-f-sb,,
where r and s are numbers of GF(m) and not both are zero. Then x'
eye+ b,x-f-c; with similar expressions for k and j imply xi' =
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and thus, for every integer u, x"" = rx""4-sx". Hence a, = ra-F
sa and similarly for b and c. Thus t, rti..4-st,.. and the points
P,,, P,, and P are collinear.

Thus wc have shown why the lines are formed from the initial one by
the process described. There is one further question which should be
answered: Since GF (m2) contains m2 numbers, there will be tre different
powers of x but only m2-Fm +1 different points: what is the explanation
of this apparent discrepancy? The answer to this question is left to the
interested reader.

In general, then to form a co-ordinate system with co-ordinates in
GF(m), we may find a generator of GF(m2) (not necessarily x as above)
whose powers arc all quadratic polynomials with coefficients in GF(m).
We use the coefficients of the polynomials corresponding to successive
powers of the generator, up to the power ne-f-m+ I. as the co-ordinates
of the successive points of our geometry. This elegant device is due to
James Singer.2

PERFECT DIFFERENCE SETS

Another approach to the problem of designating the points consti-
tuting the various lines,of a finite geometry is by way of arithmetical
properties of the sct of subscripts of the points of line L. Consider the
numbers 0. I, 3 in the number'system (mod 7). The six differences are:

0-1=6, 3-1=2, 1-3=5, 3-0=3, 0-3=-.4 (mod 7). These
are just the numbers 1, 2, 3, 4, 5, 6. In general, a set of numbers
0, I, 2.. , m whose differences (mod m= +m-1-1) are 1, 2, 3, , +In
in some order is called a perfect difference set. Whenever such a set can
be found, it can be used as the subscripts for a set of points on a line
which may be called 1,. (For instance, for m=3, a perfect difference set
is 0, I, 3, 9.) The other lines then are gotten by increasing the subscripts
by I, by 2. etc. It is not too difficuh to prove that such a difference set
leads to a finite geometry. In fact, the first three properties of a finite
geometry and the fifth already hold. Hence it remains only to show
properties 4, 6, and P7. Here we shall only give an indication of how to
show Property 4. leaving the rest to the reader.

Let al2+ m +1 be denoted by s and suppose

P

is a perfect difference set (mod s). The points P with these subscripts will
constitute the line 1., and the line L will consist of the points P whose
subscripts are

tir Singe% "A Theorem in Finite Projective Geometry and Some Applicalinni to Num-
bet T iy: Transactions Arnrrican Mathematicat Sociriy, 43 (19314), 377-5115.
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a u, a, + u, a-f-u (mod .9
where u takes the values 0, 1. 2, , m. Let P, and P, be two points. We
wish to show that they lie on one and only one line L. that is, there is
only one set of three numbers: a, a u such that and f=a,--1-14.
Since thy a's form a perfect difference set, there will be exactly one pair
such that aka,,if (mod s).Then there is exactly one u in the range
indicated such that +u (nuxi s). For example, if m=3 and the dif-
ference set is 0, 1, 3, 9 with s=13, suppose we find the line determined
by P., and P. Then 9-0=5-9 (mod 13) shows that acz.-.A. a,-.=0 and
5.=-9+u (mod 1:4) shows that u=9. Hence thc points P,, and P lie on L.

BIA)CK DE-SIGNS

Recent interest in finite geometries has arisen from their connection
with designs used in experiments. Using as an example the finite geom-
etry with seven lines anti seven points, suppose one wanted to test seven
different varieties of seeds by planting. One might have seven different
plots of ground. Let these plots correspond to the lines of the geometry
and the varieties of seed correspond to the pointi. A seed then would be
planted in a given plot of ground if the corresponding point occurred
on the corresponding line. Then there would be a desirable symmetry
of treatment since each seed would be planted in three different plots
of ground, each plot of ground would contain three different varieties of
seed, and each seed would be competing with eath other seed in a plot
of ground exactly once. Each finite geometry yields a design with anal-
ogous properties.

DESAIWI TES' THEOREM

One of the most interesting tlworems of projective geometry is De-
sargues' Theorem. We shall show that this theorem holds in every finite
geometry which has co-ordinatization as described above. Recall that this
theorem may be stated as follows: If a, b, r and a', b', r' are two sets of
three points each such that the lines we, ble,rr' are concurrent, then the
points determined by the following pairs of lines are collinear: ab, a'b':
ar. be, b'r'. To prove this let A. B, C and A', B'. C' be triples cor-
responding to the given points. Then, since aa', bb', cc' arc concurrent,
numbers r r,, r,, c, s,, s, can he chosen so that

r,A r;I:+sC'.
These equat ions may also be written in the following form:
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Tlw left side of the first equation is a triple associated with a point on
the line ab and the right-hand side is a triple associated with a point
on the line a'b'. Since these triples are equal, each represents a point
wibich is on each of the lines and hence their point of intersection. Simi-
larly the triple on each side of the second equation represents the point
of intersection of ac and de', while the triples in the third equation repre-
sent the point of intersection of bc and b'c'. But r,I3 r1A r,A
r.,Br.S: shows the third point lies on the line determined by the first
two, that is, the points of intersection of the following pairs of lines are
collinear: ab, a' b'; ac, de'; be, b'c'. This is what we wished to prove. The
converse of this result may be proved in a similar manner or may be seen
to follow from the principle of duality.

THE EXISTENCE OF FINITE GEOMETRIES

Since finite fields with r elements exist for every prime p and'every
natural number, one may, using the methods above, show that a finite
geometry exists having m 1 points on a line whenever m is a power of
a prime. Furthermore, if the geometry is constructed using the co-ordi-
natization above, Desargues' Theorem holds. There are, however, finite
geometries with m 1 points on a line and m a power of a prime, for
which Desargues' Theorem does not hold.

On the other hand, if m is 1 or 2 more than a multiple of 4 and if it
contains to an odd power some prime factor which is 1 less than a multi-
ple of 4, there is no finite geometry with m-1-. 1 points on a line. Thus
there is no finite geometry for which ra,6 since 771 contains to the first
power the prime factor 3. But it is not known whether there is a finite
geometry for pn=10. In fact, the only finite geometries known have m
a power of a prime. There is thus a wide gap between the values of
m for which finite geometries are known to exist .,nd those values for
which it has been proved that no finite geometries exist. The existence
of this gap in our knowledge is the reason for much of the interest in this
subject today.
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A COORDINATE APPROACH TO THE
25-POINT MINIATURE GEOMETRY(')

Martha Heidlage

A RATHER NOVEL WAY to study the familiar concepts of Euclidean geom-
etry is to limit the number of points and lines in this geometry to a finite
number and then examine the resulting system. Such a geometry, based
on a set of postulates, undefined terms and relations, and restricted to
25 distinct points is called the 25-point miniature geometry. It can be
characterized by the 25 letters A through arranged in three distinct
5x 5 arrays (Fig. I), where the latter two of these three basic arrays were
generated by a 60° rotation of the 25 letters on a lattice. In this geometry,
the following definitions are given:
Definition 1. Pointany letter in one of the arrays.
Definition 2. Lineany row or column of five distinct letters in the three

basic arrays (e.g., ABCDE).
Definition S. Parallel linesany two rows or columns having no "points"

in common (e.g., ABCDEi!FG1111).
Definition 4. Perpendicular linesany row and any column having one

"point" in common (e.g., ABCDE 4FKPU).
Furthermore, some of the basic axioms") of tl ,. ystem are:

Axiom I. Every line contains 5 and only 5 points.
Axiom 2. Not all points belong to the same line.
Axiom 3. Every point lies on 6 and only 6 lines.
Axiom 4. There are 30 and only 30 lines.

(1) (2) (3)

ABCDE AI L TW A HOQX
FGHIJ S V E K NP WE G
KL MNO GO R UD V DF MT
P QRS T YCF NQ j S IT C
UV WXY MP X BI RYBIK

FIGURE 1

THREE RAMC ARRAYS

" Support for study leading to this article came from the National Science Foundation. Miss
HeidIage's faculty sponsor at Mount St. Scholastica College is Sister Helen Sullivan, O.S.R.

") It should be pointed out that nothing is said here about the amaistenct or independence of
these axioms, or whether this set of axioms necenarily characterizes this geometry. (Editor)
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During the remainder of this discussion,
this system shall be referred to as the miniature geometry.

Following Descartes' example, it is possible to coordinate this geom-
etry to obtain the 25-point "mini-co geometry"; that is, a miniature
coordinate geometry which is, in a sense, isomorphically related to. the
25-point miniature noncoordinate geometry considered at the beginning
of this article. Regard the first array (Fig. 2) of the 25-point miniatbre
geometry as the key array, and associate an ordered pair of number from
the set of residue classes (mod 5) with each of the 25 distinct letters: The
coordinates, for example, of the point A are x=0, In the mini-co
geometry, as in the miniature geometry, one can formulate the following
basic definitions.
Definition I. Pointan ordered pair of numbers from the set of residue

classes (mod 5).
Definition 2. Lineset of five distinct points satisfying a single linear

equation in two unknowns.
Thus, corresponding to each of the 30 lines of the miniature geometry,

there is an algebraic expression in the mini-co geometry. For example,
the equation of a line through the points 1. (1. 2) and IV (2, 0) of the line
AILTW (Fig. I) can be expressed in the familiar determinant form:

2

9

Expanding this determinant, one obtains
4

3

9

A

0

V W X
9

4

FIGt,KE 2

ARRAN' WITH C00111/IN,VIES

V. 2x + 4 or y 3x +4 (mod 5). Ilsing the same metl'od, thc equation
of the line through the points G (1 , 3) and R (2, 1) of the line GORUD
(Fig. I ) is given by v=--3x (mod 5). It is possible to verify, by mere substi-
tution. that the points of the two lines AILTW and GORITD do actually
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satisfy these two derived equaticns. As one might expect, the following
familiar definition is stated in the mini-co system.

Definition 3. Parallel linesline whose equations differ only in their con-

stant terms.

Thus, the two equations just derived, y=3x+4 mod 5) and y=3x
(mod 5), corresponding to the rows AILTW and GORL ID respectively,
represent the equations of two parallel lines.

Since each of the three basic"arrays (Fig. 1) consists of five parallel row
lines and five parallel column lines, it follows that the algebraic expres-
sions Gf these parallel lines will fall into one of six sets of equations,
where the equations of each set differ only in their constant terms. In
Figure 3, these equations of the mini-co geometry and their equivalent
forms from the miniature geometry are arranged in six sets, such that
the sets L L and L, represent the parallel columns of the arrays, while
the sets L, L,. and L. represent the parallel rows of the arrays.

In the mini-co geometry, perpendicularity follows from the notion of
slope, where the slope of a line through the points P,(x y,) and P,(x, y2)
is given by the familiar formula

The slope of the'lines in set L, is actually undefined, since one obtains
an expression of the form

tli

while the slope of the lines in L. is 0, in L, is 4, in is 3, in L is 1, and
in L is 2.

L, undefined) L, (m4,3)
x=0AF K P U y=3x+4A I I. TWx,1BGLQV y=3x+24 V EHK
x7-77.9 C H NI R 4,7 y=3x C, 0 R U D

x=3DI NS X y=3x-F3Y CF NQ
x=4 E J 0 T Y y=3x+ I NI II X B J
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L, I. (mr,= I )
A BCDE A NVJ R

y=3 F GHI J y=_-x+ I H P DL Y
y=2 K L MNO y=x+3 0 WF S B
y=1 QRS T y=_-x E MU I

Ii V WX Y y_.--=x+2 X GTCK
L, L. (n2=2)

y-,.--4x+4 A S GY M y.,_--2x +4 A HOQX
y=4x-f- I I V OCP 1 N P WE G
y=-4x+3 L E RF X y=-2x+-3 V D F MT

T HUNB .-9x L S UC
W KDQJ R YBI K

FIGLIRE. 3

EQUATIONS (mod 5)

In general:
Definition 4. Perpendicular linestwo lines such that the slope m, of one

line is twice the slope m, of the other line in the mod 5
system.

For example, the lines of /.:, are perpendicular to the lines of L., since
2 4=8=3 (mod 5), and the lines of L. are perpendicular to the lines of
L, since 2 1=2 (mod 5). By convention, consider the lines of L, to be
perpendicular to the lines of L, in the mini-co geometry.

Thus far, the definitions formulated have closely paralleled those
found in ordinary Cartesian geometry The concept of distance, how-
ever, requires a slightly different definition. In the miniature geometry,
distance between two points of an array is defined as the least number of
steps separating the letters or points on the line which joins them. Ac-
cording to this interpretation, distance can be measured only horizon-
tally or vertically in a row or column, but not diagonally, and yields
only two nonzero units of length-1 or 1. lb illustrate this, let d ja, b]
denote the row distance from a to b and let dr[a, e] denote the column
distance from a to c. Since the points on the ten lines in Figure 4 are
cyclically permutable, the following distances are obtained:

d.[A. Et] El=dr[A, F]
..,dr[A,1.1]=1

d,[44. Cl =-_-(1.[A,D1,d,[441, K]
2=d,[A, 11=2
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In the mini-co geometry, distance between two points Ps(x y1) and
P1(x y.) is given by the formula

d=:Axix,)2-1-2(y1y) (mod 5).
This particular expression was chosen since it always yields positive dis-
tances in the mini-co geometry and automatically distinguishes between

A B C D E
F G H I J
K L M N 0
P Q R S T
U V W X Y

FIGURE 4

BASIC ARRAY

row distances dr and column distances dr. Thus, the nonzero lengths in
the miniature geometry have equivalent expressions in the mini-co ge-
ometry, where the single expression d[a, i] is used to denote either the
row or the column distance from a to b as in the following:

. d A , 131--_,-d[A , 1 (mod 5)
d A , C ==d[A , D :=7-. 2 (mod 5)
d A , F ..d[A , ET FE NI 2 (mod 5)
d A , K =d[A , P]2V 2 (mod 5)

It is evident from the above scheme that the only nonzero row lengths
in the mini-co geometry are I and 2, while the only nonzero column
lengths are V2 and 2V2 and distances can be measured horizontally,
vertically, and diagonally by merely applying the distance formula.

With this machinery available, the study of conic sections falls into
place, since a definition of any of the conic sections requires only the
notions of point, line, and distance. Consider the four cases: circle,
parabola, ellipse, and hyperbola. In both the miniature and mini-co
geometries, a circle is defined as the locus of all points equidistant from
a fixed point, called the center. For example, let M be the center and let
the radius be determined by a row distance of length one. In the three
basic arrays (Fig. 1), the six points, L and N of the first array, P and I
of the second array, and F and T of the third array, are the only points
on a circle of center M , with radius of row length one. This same circle
of center M in the miniature geometry also has a quadratic expression
in the mini-co geometry. In general, the equation of a circle (Fig. 5)
with center (a, h) and radius r is given by:

(x+4a)24-2(y+4b) r2 (mod 5).
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Note the coefficient 2 in the second term, this factor being a consequence
of the mini-co definition of distance. Moreover, since the mini-co geom-
etry allows only four possible distances, the radius r is restricted to four
values. Thus, if each of the 25 points serving as the center of a circle
can admit of only four possible values, there must be oply 100 circles
in the entire system!

Center: a, b)
Radius: r

(x+4a)=-/-2(y+4b)2_ (mod 5)
r=_-1, 2, sf2. 21/2

Flamm 5
GENERM. EQUATION OF CIRCLE

The remaining three conics are defined as follows: Let F be a fixed
point called the focus and let d be a fixed line, not through F, called
the directrix. Then a conic is the locus of a point P which moves so that
its distance from the focus F bears a constant ratio, or more commonly,
eccentricity e to its distance from the directrix d. Again, since distances
in the mini-co geometry are only four in number, this ratio e is also
limited in the values it can assume. Thus, the conic just defined is
I a parabola when e=__1;
2 an ellipse when e<1 or e=-_1/2=---.3 (mod 5);
3 a hyperbola when e>1 or ea.:2 (mod 5).
The general equation of a parabola (Fig. 6) with focus , b and row

Fat us: ta, b)
Row directrix: y=d

(at -{--lay.,--.1y(b+,1(1)-1-2((t: 4b2) (mod 5)

FIGuio: 6

GENERAI. EQUATION OF PARABOLA
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directrix y=_-d is given by

(x+4a)1=4y(b+4d)-1-2(d2+4W) (mod 5).

Similarly, the general equation of an ellipse or a hyperbola (Fig. 7) with
focus (a, b) and row directrix y=_-d is given by

(x+4a)2+2(y-1-4b)2=_2e2(y+4dy (mod 5),

where e=3 for an ellipse and e=2 for a hyperbola. It is to be noted that
the algebraic expressions of these conics have similar ,representations
for column directrices. Furthermore, while the general definition of a
parabola determines five distinct points for each such conic, the defini-
tion of an ellipse or a hyperbola directly determines only three distinct
points. However, an observation of the symmetrical arrangement of
these three points in the arrays conveniently reveals the existence of a
fourth likely prospect. When this point is substituted in the equation
for the ellipse or hyperbola. it is seen to satisfy the equation and thus is
regarded as a point on the conic in the mini-co geometry.

It is interesting to note that there are certain pairs of ellipses or pairs
of hyperbolas which are related in such a way that six of the eight points
on the two conics also describe a circle! For example, consider the pair
of ellipses E, and E2with the common focus M. Applying the definition
of an ellipse to the three basic arrays, one obtains the following pair of
ellipses: E1=11, N, T, K) and 0, P, LI. Note, however, that
the points I, N. T , P, L, and F are also points on the circle of center M
and radius one which was defined earlier. Such ellipses or hyperbolas
will be called symmetric conics such that six of the eight points of a pair
of symmetric ellipses or symmetric hyperbolas also constitute a circle!

AND AMP .40, 41! mcm mom INNe am. limmeW

Focus: a, b)
Row d rectrix: y=d

(x+4a)2-1-2(y+4b2e2(y +My (mod 5)
where e=3oellipse

e=2ohyperbo1a

FIGURE 7

GENERAL EQUATION OF ELLIPSE AND HYPERBOLA ROW DIRECTRIX
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This 25.point miniature geometry and its coordinate counterpart
illustrate the wide range of applicability of finite geometries to the basic
Euclidean concepts. It thus seems reasonable to conclude that treatment
of these familiar concepts should be considered initially in a finite system
and secondarily in Euclid's "world of the infinite"!
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25-POINT GEOMETRY
H. Marlyn Cundy

FINITE Galois arithmetics are well-known; finite geometries however,
though more interesting to the amateur, have not really acquired pro-
fessional status and do not appear to any great extent in standard works.
The following example arose from a chance remark in Mathematics for
T C. Mits, by L. R. and H. G. Lieber; from this I deduce that a full
theory has been worked out, but I have not seen it, and as far asi am
concerned what follows is original, and I hope readers of the Gazette
may find it new and stimulating.
1. Basic structure.

Consider the array of lettersA BCDE
F G HI J
K I. M N 0P QR S T
U V WX Y

and denote by p the operation of replacing this array by

A I L T W

S HK
G 0 R U DYCF NQMP X B J.

The reader can discover for himself the rule by which the transposition
is effected. If the operation is repeated we obtain a new array, but a
further repetition merely gives the first array with the order of rows
and columns altered; the first row reads AEDCB and the first column
AUPKF. The three arrays formed by the operations I, p.p are here
set out in a table:

ABCDE Al LTW A HOQX
FGHI SrEHK NPWEG
K LMNO p R D p F'DFMT
P QRST YCFNQ I I.SUG
U VWXY MPXBJ RYBI K.
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We regard the letters as points; every row and column in any array as a
line; two rows or two columns in the same array are lines having no
point in common and will be called parallel; a row and column in the
same array are perpendicular.

Distance.
The lines are regarded as closed and the points on them as cyclically

permutable. The distance between two points is the shortest number of
steps separating them on the line which joins them; row-wise and col-
umn-wise distances are regarded as incommensurable. Thus we write

AB.RE=LT.7-_-DF=1, AC=AD=LW
A Y=2",

column-wise distances being denoted by dashed numerals. Sense is not
taken into account at present. and there are no axioms of order. Note
that

2)0=-2, 2><2=1.

Axioms.
lt is easy to verify the following axioms:
(a) There is one and only one line joining any two points.
(b) Two lines meet in one point unless they are parallel.
(c) Through any point there is one and only one line parallel to a

given line.
(d) Through any point there is one and only one line perpendicular

to a given line.
The geometry is therefore plane and partially metrical. The concept

of angle cannot be developed satisfactorily in any manner which satis-
fies the fundamental congruence axiom (SAS).

2. The fundamental transformation-group.
I have already defined the operator p. Let us regard the identity oper-

ator as including any cyclic permutation of rows or columns or both;
that is, let us confine ourselves for the moment to transformations which
keep one point. say A, fixed. Denote by i the operation of reversing the
cyclic order in the rows. The operation of reversing the order of both
rows and columns (if we like, of turning the plane through 180) com-
mutes with all other operations considered and is conveniently denoted
by 1. These three operations preserve **distance" and "angle" and
generate the group of congruent rotations about A. The group is of
order 12, containing the elements ± 1, ±i, ±p2, ip, ±ip2, which
are connectPd by the relations.

i2=-_- 1 , pi. -ip2,
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(This is the dihedral group of the regular hexagon D, i being a reflec-
tion in the y-axis, and p a rotation about the origin through r/3.) The
relations are easily verified by direct operations on the arrays of letters.

The only further operations which preserve right-angles and parallels,
but not distance, are the elements of the product of this group with the
operation q, defined as the operation of doubling distances in rows and
interchanging rows and columns. (Neither of these operations separately
preserves parallels when combined with p.)

Thus, the first array becomes
A B C D E AFKPU
F G II I I C HMR W
K L M N 0 q E I OTYPQRS T B G I. Q U

IV X V DI NS X
The reader can now verify that (14=-1, qi= iq, pq== pq2=
q. ip:q=pqi. The extended group is of order 48, and includes all the
similar rotations about A, since q obviously leaves ratios of distances
unaltered. (Remember that 2x 2=1 and that I and 1 ' are incommen-
surable.) These rotations carry B into any one of the 24 points other
than A. combined with the "reflection"---i about the line AB. This last
operation transforms the right-angled triangle ABG into ABU, and the
24 "rotations" transform these into 24 similar pairs of right-angled tri-
angles with one vertex at A and any one of the other 24 points at the
right-angled corner, including of course the identical pair themselves.

If now we consider the 25 cyclic changes of rows and columns which
carry A into any other point (the "pure translation"), including the
identity, and form the product, we obtain 1200 similarity transforma-
tions of the configuration into itself, of which 300 are congruent trans-
formations. The four operations 1, q, q', q" can be considered as "mag-
nifications without rotation:' 'lb sum up, the congruence group of rota-
tions is generated by the elements p; and the similarity group is
the product of this group by the cyclic group on the add;tional generator
q. The operator q changes 1 to 2', 2 to 1', 1' to 1, and 2' to 2. Further,
the full congruence transformation group is transitive on all the 25

S. Triangles and parallelograms.
I shall not attempt here to develop the geometry logically from the

minimum of axioms. It will be more interesting, I think, to indicate
sonic of the methods of proof and to outline the results that can be
obtained. It will be found that almost every euclidean theorem expres-
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sible in this geometry is true in it. To prove any particular result, we
have only to verify it for a few cases which we can show are transformed
into all other possible cases by the operations of the congruence or sim-
ilarity groups, C and S. We begin with triangles. There are 25 . 24 .20/
3!=2000 of these, formed by any three non-collinear points. They are
of three types only. 1200 are scalene right-angled triangles, obmined
from ABF by the operations of S. The sides of ABF are 11'2' and the
others are similar to it, of four "sizes:' found by magnifying ABF by
1, q, qs, qs. A set of one of each size is ABF (11'21, APB (2'12'), ADP
(22'1') and AUD (1'21); (q removes B to the position of P; that is, AB
becomes AB'-..==AP=2'; operating on lengths, q is the cycle (1'12'2)).
A further 200 are equilateral, for example, RBI, with four lengths of
side. The remaining 600 are isoceles, similar to ABH (1121 The group
S carries the representative triangles ABF, ABI, ABH into every other
triangle; 6 operations of S carry RBI into itself, and 2 operations ABH,
owing to their symmetry.

The important midpoint theorem,that the line joining the midpoints
of the sides of a triangle is parallel to the base of the triangle and equal
to half the base, can be verified by the reader in the three basic cases by
the following figures; the theorem is invariant under S, therefore it is
true for all cases. The fact that opposite sides of a parallelogram are

equal follows from the observation that if we regard the 25 points as
forming a rectangular array in a fundamental cell of a euclidean point-
lattice (or on the universal covering-surface of a torus), the operations
p and q preserve euclidean parallels. Hence a parallelogram in the finite
geometry is a euclidean parallelogram on the lattice and its opposite
sides are equal in both geometries. By the same argument its diagonals
bisect one another.
4. Circles.

There are six points distant I from A, namely B, E, I, W , H, X. These
lie on a circle. There will be 100 circles, with 25 centres and 4 radii.
Since in the triangles AB! and ABH, AR is perpendicular to BI and AT
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to BH, the altitudes of all isosceles (and equilateral) triangles bisect the
bases, so that the centre of a circle through three non-collinear points
can be found uniquely by the usual construction. It follows from the
midpoint theorem that the angle in a semi-circle is a right angle, for
instance, BIE. There is only one line through any point on the circle
which does not meet it again, and it is perpendicular to the radius; for
example, for the circle BEIWHX, the tangent at B is BGLQV , and it is
perpendicular to AB.

The Simian line.
For the triangle BEI and the point H on its circumcircle, the feet of

the perpendiculars are the collinear points QYC. The general investi-
gation is left to the reader.

The isosceles triangle.
The triangle ABH has midpoints TQD, centroid L which divides the

medians in the ratio 2 1, circumcentre I, feet of altitudes TOC, ortho-
centre W, Euler line AILTW, on which WL=2LI. The "nine points
ctntre" is A, and the "nine points circle" contains the points TOCQDL.

The equilateral triangle.
The triangle BWH has in addition an incentre A; its circumcircle is

BEIWHX, also with centre A; the triangle IEX is congruent to BWH,
and the triangles LDQ. OCT are congruent and equilateral.

FiGuil 2
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The right-angled triangle.
The properties are left to the reader.

5. Polar properties and inversion.
Consider the circle centre M and radius I; it contains the six

points LNPITE The remaining eighteen points fall into two classes:
(i) points on tangents. BCDGIKOQSI7WX, each on two tangents,
and (ii) points which are midpoints of chords, AEHRUY The polars of
the points (1) can be identified as chords of contact of tangents; they are
perpendicular to the lines joining the poles to the centre. For example,
B lies on BGLQV, the tangent at L, and OWFSB, the tangent at E Thus
LE is the polar of B and is perpendicular to MB at X. For six of these
points BDKOI7X, the line joining the point to the centre meets the
circle in two points, and the polar is the perpendicular to this line
through the fifth point on it. For the remaining six, and the points in
class (ii), the lines joining them to the centre do not meet the circle,
but the polars can be obtained by the reciprocal property. For example,
A lies on the polar of 0 (AFKPU), and of D (ANI1R). Hence the polar
of A is OD, which is perpendicular to AM, and parallel to the chord
TAL with midpoint A. The reciprocal property can be shown to hold
throughout.

Inverse points.
For the above circle, inverse points are the pairs

BDKAEHRUF, X VOW WC QS.

Inspection shows that, if we now take sense into account. inversion in a
circle of radius 1 is the transformation 1-01, 2-4-2,
Inversions in circles of other radii are obtained by transforming these
relations by the operations q. Since two circles do not necessarily inter-
sect. the standard euclidean procedure cannot be carried through. but
it will be found that a straight line inverts into a circle through the
centre; thus Sl'EHK invert into YDII,VO, which lie on the circle
YDIWOM. centre S and radius 2'. Also a circle not through M inverts
into a circle: for example. GDMPT. centre R and radius 2. inverts into
AI'EXPT, centre W and radius 1. The centres are not inverse.
6. Parabolas.

The locus of a point which moves so that its distance from A is equal
to its distance from CHMRW has five points on it. namely, BIXTO.
There are 600 such parabolas, each occurring twice if the operations of
S are applied to one of them. We have then only to verify results for this
particular case. The following familiar results are seen to be true (Fig.3):

ABCDE is the axis, IT X0 are focal chords. The tangent at the ver-
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tex B is BGLQC The tangent at I is QEMITI; the foot of the perpen-
dicular from A to this is Q. on the tangent at B. The tangents at the
ends of a focal chord IT meet at right angles at M on the directrix. AM
is perpendicular to IT The tangents at I, T, X are QEMUI, I'DFMT,
LERFX. They form a triangle MEF, whose orthocentre M lies on the
directrix, and whose circumcircle MWEFAJ passes through the focus.
The chords IT, BX are parallel; their midpoints lie on a linc LAI paral-
lel to the axis, which meets the curve at 0 and the directrix at M, where
the tangents at /, 1' meet. The tangents at B, X meet at L, also on the
line, and the tangent at 0, (ORUD, is parallel tr i )rds.
7. Projective geometry,

We now add to the rows in the first block an "infinity point" r in
which the "parallel lines" formed by the rows meet; and to the colutmls
another "infinity point- ri. We define r, c,. (7., similarly for the second
and third blocks. If we consider r,, r,, r, c c,, c., to lie on a single line.
we obtain a configuration of 31 points and 31 lines such that six lines pass

FIGURE 3
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through every point, six points lie on every line; every two lines with-
out exception meet in a unique point, and every two points are joined
by z.. unique line. In addition, the complete quadrangle construction
leads to a unique harmonic conjugate. Fig. 4 shows three con.structions
for the harmonic conjugate of W with respect to C and M. Note that
R, W; 11, c, are both harmonic pairs we respect to C, M and similarly
for all other ranges.

The axioms of projective geometry are therefore satisfied, and the
projective theory of the conia can be developed. In particular, Pascal's
theorem is true and enables us quickly to obtain the six points which
comprise a conic, given four or five of them. For example, through
AGQW we find, apart from line-pairs, only three conics (Fig. 5, p. 36).

FIGURE 4

In this case, because AW, GQ have a common midpoint 1., though not
in general, these three conics have the same centre, L. The first two can
be called ellipses; the first has two equal diameters and one different;
the second ha.i all its diameters different. The third is a hyperbola; the
tangents at r c, are KLMNO and HPDLY, which meet at L, the centre.

In this case we begin with four points not on a parabola or circle. If
we take four points on a parabola, say B1XT, we again obtain three
conics, namely,

an ellipse B1XTEV, with centre L,
an ellipse B1XTFQ, with centre M,
the parabola BIXTOr1.

FIGURE 5
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The centres (including those of the line-pairs) are the six points K,
L, M, N, r r of which the first five lie on a line.

Similarly, if we begin with four concyclic points, for example.
HRGN, we obtain

the circle HRGNKQ, with centre 0,
the ellipse HRGNSL, with centre M,
the ellipse HRGNXY, with centre A.

The centres, and those of the line-pain, are the six points 0, M, A, W,
I, U which, as is easily verified, lie on a conic. Note also that in each case
the "new" six points, namely, UCRFr,c,, EVFQ0r1, KQSLXY, also lie
on a conic. (The first is the hyperbola, centre L, asymptotes Lr Lc,,;
the second the parabola focus H and directrix DINSX; the third an
ellipse centre R.) We conclude then that through any four points three
conics can be drawn, excluding line-pairs, each containing two other
points. These extra six points themselves lie on a conic. The centres of
the three conics and the three line-pairs lie on a further conic. Of course,
there is one and only one conic through five points, no three of which
are collinear.

8. The rectangular hyperbola.
The conic through G touching Ar Ac, at r c, is RNGYr1c1. This

is a rectangular hyperbola, centre A; RAN, GAY are diameters. The
tangent at G is XGTCK; it meets the asymptotes at C, K and CG=GK.
All the triangles formed by three points on the curve are right-handed,
so that the orthocentric property has no significance. In fact, NGRY is a
parallelogram in which each diagonal is perpendicular to a pair of oppo-
site sides (Fig. 6).

9. Conclusion.
I have said enough to indicate the very large scope and some of the

fascination of this geometry. I have not investigated at all its many
peculiar properties in which it differs from euclidean geometry, but it
is amusing to see all the familiar results coming out. What more will
you have? Why bother about a continuum when 25 points will do all
the tricks? Or are there really only 25 points? In considering the parallel-
ogram we had recourse to an infinite lattice. This approach su sts a.4:
euclidean model for the geometry. Suppose the length l is calie. k, and
lt=l. Then if 1=10/3, the operation -p is a plane rotation of the
rectangular euclidean lattice, through 27/3, with a reduction of all
distances, modulo 5k or 51. (It is then clear why the group generated
by ± I, p, I is the dihedral group DO This is apparent from Fig. 7, in
which AB-=-,:k, (mod. 5k or 51) and ZBAL=27/3.
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FIGURE 7

p carries Al to AB, and AS to A E
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If this rotation is followed by a reflection in the centre A (the oper-
ation I), reversing the sign of k, it is seen to be equivalent to p. It is
easier to see the rotation on the lattice (Fig. 8); p is a rotation in the
clockwise direction through 7/ 3. The operation qi in this model is now
seen to be a magnification by 2/ VS coupled with a rotation through
1,47; AR is carried to AP, and AF (6 units) to AE. We expect euclidean
results therefore to be true in this geometry in so far as they apply to
points on the lattice. Finally, it becomes clear that what we have really
been investigating is the geometry of a rectangular lattice of this type.
We have for example proved that three non-degenerate conics pass
through four points of this lattice, if we may select the cells appropri-
ately in which points are to lie, that is, if we may replace any point by
an equivalent point, and if we insist that the conic contains an addi-
tional lattice-point. Further every conic through five points of the lattice
contains a sixth, possibly at infinity, provided equivalent points are suit-
ably selected. If we remove this restriction, the result provides that every
conic through five points of the lattice contains another rational point
of the lattice; that is, any conic through five points with rational coordi-
nates contains a sixth such point; but this is obvious anyway by Pascal's
theorem.
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