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PREFACE
Probably no symbol in mathematics has evoked as much mystery, ro-
manticism, misconception and human interest as the number pi (if). For
most of us, our first meeting with this strange number, at once naive yet
forbidding, is in our study of geometry. Here we learn that if is the ratio
of a circumference to its diameter (C/D). But we soon find that ir has
many other significant properties, none of which has anything to do,
directly, with the geometry of the circle. As we become more familiar
with higher mathematics, we find, perhaps to our surprise, that the num-
ber ir appears in the most unexpected places in algebra, in analysis, in
the theory of numbers, in probability theory, and .in various other
branches of mathematics. Indeed, the noted English mathematician and
master of paradox. Augustus de Morgan, once referred to "this mysteri-
ous 3.14159 which comes in at every door and window, and down
every chimney:'

It is true that the numerical value of r as a measure of the circumfer-
ence to the diameter is of some practical value. But the significance of
the number if for theoretical mathematics goes far beyond its utilitarian
value. It is no exaggeration to say that the familiar definition of 7r as C/D
is in reality a bit of an accident, for the meaning and concept of if enters
into mathematics in many ways. This is illustrated by an anecdote re-
lated by W. W. R. Ball in the following passage quoted from his Mathe-
matical Recreations and Essays:*

De Morgan seas explaining to an actuary what was the chance that a
certain proportion of some group of people would at the end of a given
time be alive, and quoted the actuarial formula, involving if. which.
in answer to a question. he explained stood for the ratio of the cir-
cumference of a circle to its diameter. His acquaintance, who had ius
far listened to the explanation with interest, interrupted him , Ad

exclaimed. "My dear friend, that must be a delusion: what can a circle
have to do with the number of people alive at the end of a given time?"

During the three thousand or more years that mathematicians con-
cerned themselves about the value and nature of 7r, much energy and
amazing patience were manifested. Many of these activities led only to
blind alleys: methods of investigation were abandoned as newer and

W. W. R. and Coneter. H. S. M. Mathematical Recreations and Essass, Maanillan.
Eleventh Edition. p, 355 ,



more powerful mathematical tools became available. But these efforts
were by no means altogether in vain. Not only did they stimulate the-
oretical mathematical discoveries, but also shed much light upon the
computational aspects of mathematics. Indeed, the story of the determi-
; ion of the numerical value of 7r is sufficiently exciting to form the

bject of a separate pamphlet in this series. The present collection of
essays emphasizes geometric and analytic aspects of the number 7r, al-
though some allusions to its numerical value are unavoidable.

William L. Schaaf
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FOREWORD

The literature dealing with the number 7r is indeed voluminous. Many
aspects of this familiar constant have been discussed and many properties
described its history; its uses; its numerical approximation; its char-
acteristics as a number, whether rational or irrational, algebraic or trans-
cendental; the distribution of its digits; its relation to the number e, its
relations to probability theory, to the theory of numbers, and to other
trathematical topics.

The number r has been the subject of doggerel verse designed as a
mnemonic to remember the sequence of digits in its approximation; and
both w and e have been the themes of more serious poetry.

The word "pi" has been used in naming mathematics clubs. With
tongue cheek, one writer has titled an article: "How to Make Pi

Be that as it may, this firit essay presents the reader with a general,
overall picture concerning w, thereby setting the stage for the other
essays. In so doing, it was impossible to avoid anticipating a number of
items which will be discussed in greater detail in a subsequent article.
It is to be hoped that such occasional repetition will not prove irksome.
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The History
of the

Number Pi
David A. Lawson

.The easiest and probably the earliest area computed by man was the
area of the square. So it was only natural that attempts to find the area
of a circle, which presented a far more difficult problem, gave rise to the
idea of considering a square of equal area. This idea developed into
one of the classical problems of geometry, "the squaring of the circle'
It is found that much of the early history of the number represented by
* is connected with this problem.

The Egyptians had a method for finding the area of a circle by com-
paring it with a square. The rule as presented in the Rhind Papyrus
assumed that the area of a circle is equivalent to that of a square whose
side is eight-ninths of the diameter of the circle. This amounts to stating
that the area of a circle of radius R is (256/81)R2. Upon comparison with
the true area, *R1, it may be seen that the ancient Egyptian rule is
equivalent to having Tr 256/81 = 3.16049+. This is not a very close
approximation to the true value of *, yet it is closer than other approxi-
mations obtained before the time of the Greek mathematicians.

While the value of r was obtained by the Egyptians as a result of their
attempts to "square the circle the Babylonians, on the other hand, were
interested in the rectification of the circumference; that is, in finding
directly the relationship between the radius and the circumference.
The Babylonians reached the conclusion that the circumference of a
circle is equal to a line which is "a little more than six times the radius:'

The Hebrews considered the circumference of a circle as equal to
.imes the diameter. This may be seen in at least two places in the

Old Testament, 2 Chronicles 4:2, and 1 Kings 7:23. The first of these
two verses is as follows: "Also he made a molten sea of ten cubits from
brim to brim, round in compass, and five cubits the height thereof; and
a line of thirty cubits did compass it about!'

The problem of squaring the circle was a problem which the Greeks
took up with zest the moment they realized its difficulty. Although many
Greek mathematicians and nonmathematicians became interested, the
contributions of several men stand out. First, Antiphon of Athens must
be mentioned. "Antiphon inscribed within a circle some one of the
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regtiar inscribed polygons which can be inscribed. On each side of the
inscribed polygon as a base he described an isosceles triangle with its
vertex on the arc of the segment of the circle subtended by the side. This
gave him a regular inscribed polygon with double the number of sides.
Repeating the construction with the new polygon, he had an inscribed
polygon with four times as many sides as the original polygon. Contin-
uing the process, Antiphon thought that in this way the area of the
circle would be used up, and he would some time have a polygon in-
scribed in the circle the sides of which would, owing to their smallness,
coincide with the circumference of the circle" [4, p. 2221*. Antiphon
assumed that he could make a square equal in area to any regular
polygon, an impossible assumption. Otherwise, his method is still an
approximation.

Antiphon started the "ball rolling" in the right direction and soon
afterward Bryson of Heraclea gave it another push. His method was
similar to that of Antiphon but with the addition of a circumscribed
polygon. Bryson was the first to introduce into mathematics "the con-
cept of upper and lower limits in approximations" [8, p. 125], comparing
a circle with its regular inscribed and circumscribed polygons. By using
a modification of Bryson's method, Archimedes was later able to calcu-
late his approximation to Ir.

It is interesting to note that Euclid, in his Elements, made no effort
to find the area of a circle or to calculate the ratio of the circumference
to the radius.

Following Euclid there lived "the greatest mathematician of an-
tiquity" [6. p. 1661, Archimedes. In ti 'ig the method oriOnated by
Bryson. Archimedes made one important change; he considered the pe-
rimeters of the polygons and the radius of the circle rather than the area.
This method for finding the limits between which ir must lie was prac-
tically the only one used for about two thousand years preceding the
invention of the differential calculus. Archimedes found the value of

to lie in the range.
22/7 >r>223/71.

Later he made even a better approximation, his figures giving

195882/62351>v>211872/67441,
or

3.1416016>r>3.1415904.

The arithmetic mean between these two limits gives the close approxi-
mation 3.141596.

Numbers in brackets refer to the literature cited at the end of this paper.
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Archimedes' calculations were most remarkable considering the "un-
wearied perseverance" [8, p. 127] he must have employed to get such
results by using the crude system of Greek notation. Anyone who is
familiar with the Greek system of numbers will agree that even the cal-
culation of w to 707 iecimal places is much less a wonder than Archi-
medes' results, correct to only four decimal.places.

One other result obtained by the Grecian school might be mentioned.
The astronomer, Ptolemy, who lived in Alexandria about 150 A.D.,
exprhressed w as the sexagesimal fraction 3 + 8/60 + 30/3600, or 3.14166--..

c Romans added nothing to the work of the Greeks. Instead, they
seemed to have lost much of the exactness which Archimedes had con-
tributed. Even though the Romans seemed to realize that 3 1/7 was
closer to the true value of w than 31/4, they frequently employed the
latter fraction heasuse it was "more convenient" [1, p. 351].

A Roman treatise on surveying contains the following instructions
for squaring the circle: "Divide the circumference of a circle into four
parts and make one part the side of a square; this square will be 9ual
in area to the circle" [8, p. 128]. Although this is actually an impossible
construction, if the construction were possible, w is found to be e(qual to
4. This is more inexact than any other known computation for -the
number w.

For the thousand years following the decline of the Greeks, the center
of mathematical activity shifted eastward. The Hindus, in particular,
were very active during this period. Their mathematicians carried the
method of Archimedes far enough to get an answer closer to the true
value than either Archimedes or Ptolemy. In spite of the fact that Aryab-
hatta (about 500 A.D.) calculated r correctly to at least four decimal
places, the great Hindu mathematician Brahmagutita gave the value
Nirrd which equals 3.16228. Unfortunately, it was this latter value for r
which spread to Europe and was used cuite extensively during the
middle ages.

The Chinese mathematician Tsu Ch'ungchih (fifth century A.D.)
should not be overlooked. Probably by using the method of Archimedes,
he found that the true value of r lies between 3.1415926 and 3.1415927.

The Arabians must be remembered in view of the fact that they
handed down the results of the Greek and Hindu mathematicians to
the awakening countries of Europe. In this way many of these results
were probably preserved. The Arab scholar, Muhammed Ibn Musa
Alchwariztni, who brought the principles of our present system of nu-
merical notation from India and introduced it to the Mohammedan
world, brought together the various Greek and Hindu approximations
for the number v.

Going back to Europe, it is found that little was done in mathematics
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during the Dark Ages. The value of r was calculated on more than one
occasion, but all these results were less accurate than those of the Greeks
and Hindus. For example, Michael Psellus was a scholar who lived in
the latter part of the eleventh century. Although his contemporaries
called him "first of philosophers:' what survives of his mathematkal work
is very inaccurate. "In a book purporting to be by Psellus on the four
mathematical sciences, arithmetic, music, geometry, and astronomy, the
authors' favorite method to find the area of a circle is given. The area
was taken as the geometric mean between the inscribed and drcum-
scribed squares: this gives a value to r equal to the square root of 8, or
2.8284271" [5, p 545]. "The greatest mathematical genius of the middle
ages" [9. p. 395], Leonardo of Pisa (thirteenth century), was able to get
a little closer in his calculations; he gave r equal to the value 3.1418.

During the fifteenth century the sciences began to revive. Greater
interest was shown in mathematics, and especially, at first, in the quact-
rature of the circle. This interest was, to a large extent, aroused by
Cardinal Nicolas dc Cusa who claimed to have discovered a method for
squaring the circle. None doubted that the cardinal had solved this
famous problem until his construction was proved false by Regiomon-
tanus.

For the next couple of hundred years the circle-squarers as well as the
calculators were very active. But, during this period, the reputable
mathematicians began to realize that the ancient problem of quadrature
was an impossibility. They wasted little time upon it except to show that
the results of the various circle-squarers were incorrect. Of course, these
demonstrations had little effect on the circle-squarers. "In the future as
in the past. there will be people who know nothing of this demonstration
and will not care to know anything. and who believe that they cannot
help succeeding in a matter in which others have failed, and that just
they have been appointed by Providence to solve the famous puzzle"
18. p. 116].

A few years after the revival of interest in mathematics, or about 1500
A.D.. mathematicians began to extend the value of r to more places of
decimals. Adrian Metius published his value of r correct to six decimal
places. and Vieta. in 1579, calculated the value correct to nine decimal
places. In 1593, Adrian Romanus determined Tr to 15 places, but in order
to do so he had to calculate the perimeter of an inscribed regular poly-
gon of 2" sides. where

2" = 1.073,741.824.

All these results were outdone by Ludolf Van Ceulen who carried
Archimedes' method to a calculation of r correct to 35 decimal places.
He was so proud of his work that he requested in his will that his results

6
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be engraved upon his tombstone. Hermann Schubert tells us that in
honor of Ludo lf r is called today in Germany the Ludolfian number. The
history of Archimedes' method of calculating Tr was closed in 1630 when
Grienberger, the last to employ the method, announced his result correct
to 39 places of decimals.

A new period in the solution of our problem began in the second half
of the seventeenth century with the development of the calculus. New
analysis came to the aid of the investigators, and the method of Archi-
medes became obsolete. The new methods attempte ! to express if ana-
lytically by developing it as an infinite product or series. The first im-
portant new result was produced by John Wallis (1616-1703) who proved
the two relationships,

7r/2 = 2/1 2/3 4/3 415 6/5 6/7 8/7 8/9
and

2 +
+ 25

2 + 49
+ 81

2+
The continued fraction form had previously been expressed without
proof by Lord Brouncker (1620-84).

The first infinite series developed for the study of the circle was the
series,

7r/4 1 1/3 + 1 117 + 1/9 1/11 +

Although others knew it previously, this series was published by Leib-
nitz and bears his name. The Leibnitz series converges so slowly as to
be inconvenient in practice. It is the series obtained from the expansion
or arctangent x.

arctan x = x x2/3 + x2/5 xT/7 +

when x is set equal to 1.
If x is taken equal to Virg, the arctangent series becoMes

VTTE (1 1/3 3 + 1/32 5 /3' 7 +
1/3' 9 1/3' 11 4- .),

a series which converges much more rapidly. This general series was
discovered by James Gregory independently of Liebnitz. The series is
frequently called Gregory's series.

By using various infinite series, the following men extended the value
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of 7r to more and more decimal places during the next two hundred years
[1, pp. 356-7];

Abraham Sharp, in 1699, to 71 correct decimal places;
Machin, about 1706, to 100 correct decimal places;
De Lagney, in 1719, to 122 correct decimal places;
Vega, in 1789, to 126 correct decimal places;
Vega, in 1794, to 136 correct decimal places;
Rutherford, in 1841, to 152 correct decimal places;
Dase, in 1844, to 200 correct decimal places;
Clausen, in 1847, to 248 correct decimal places;
Rutherford, in 1853, to'440 correct decimal places;
William Shanks, in 1873, to 707 decimal places.

What about the circle-squarers while all this was going on? Of course
they were as busy as ever. But, at the same time, various mathematicians
were trying to prove that the quadrature of the circle is an impossibility.
The first step was made in 1761 by the French mathematician Lambert
who proved that Ir is not a rational number. In 1794, Legendre showed
that 77. c2nnot be the root of a quadratic equation with rational coeffi-
cients. "This definitely disposed of the question of squaring the circle,
without, of course, dampening in the least the ardor of the circle-
squarers" 3, p. 117].

The intimate connection between the number e and 77. had been well
known for some years; so when, in 1873, Hermite proved that e was
transcendental, the efforts were redoubled to prove 7r was also a trans-
cendental number. Nine years later, Professor Lindeman of Freiburg,
Germany, was successful in proving this fact.

We are so accustomed to the use of the symbol r to express the ratio
of the circumference of a circle to the diameter that we are in danger
of overlooking the fact that the use of the symbol 7r is quite recent. It
was apparently used in this connection by William Jones in 1706. But it
was Euler, "the most prolific mathematical writer who ever lived" {6, p.
1681, who made this symbol popular by using it consistently after 1737.

The number 7, has properties of which many of us are unaware. This
is especially true in the field of probability. An interesting experiment
was conducted by Professor Wolff of Zurich some years ago. "The floor
of a room was divided up into equal squares, so as to resemble a huge
chessboard, and a needle exactly equal to the side of these squares was
cast haphazardly upon the floor. If we calculate, now, the probabilities
of the needle so falling as to lie wholly within one of the squares, that
is, so that it does not cross any of the parallel lines forming the squares,
the result of the calculation for this probability will be found to be
exactly equal to 3. Consequently, a sufficient number of casts of the

8



needle according to the law of large numbers must give the value of 7r
approximately. As a matter of fact, Professor Wolff, after 10,000 trials,
obtained the value of 7r correct to 3 decimal places" [8, p. 140].

There have been other methods of this type employed to calculate 7r.
For example, if two numbers are written down at random, it has been
found that the probability that they will be prime to each other is 6fir2.
"Thus, in one case where each of 50 students wrote down 5 pairs of
numbers at random, 154 of the pairs were found to consist of numbers
prime to each other. This gives 6/7r2 = 154/250, from which we get
7r = 3.12" [1,p. 359].

Let us consider the question of benefits which might be derived from
calculating the value of IT to a large number of decimal places. Such
calculations show the power of modern methods compared with some
of the older ones. But, for practical use, the general opinion seems to be
that there is no need to have the value of r to more than 10 or 15 decimal
places. Measurements are seldom correct to as many as 10 decimal places,
and if 7r is used to many more places, the result would have fictitious
accuracy.

In 1899, Hermann Schubert gave an example "to show that the cal-
culation of 7 tO 100 or 500 decimal places is wholly useless. Imagine a
circle to be described with Berlin as centre, and the circumference to
pass through Hamburg; then let the circumference of the circle be com-
puted by multiplying its diameter by the value of 7 to 15 decimal places,
and then conceive it to be actually measured. The deviation from the
true length in so large a circle as this even could not be as great as the
18 millionth part of a millimetre" [8. p. 398]. Some years ago the late
Professor Newcomb remarked, "Ten decimals are sufficient to give the
circumference of the earth to the fraction of an inch, and thirty decimals
would give the circumference of the whole visible universe to a quantity
imperceptible with the most powerful microscope" [9, p. 398].

Curiously, attempts have been made to "fix" the value of ir by law.
Typical of these attempts was the bill presented to the legislature of
Indiana in 1897. The bill was suggested by a local circle-squarer who
said that "the present rule in computing the circle's area is entirely
wrong:' The bill was introduced as "A bill for an act introducing a new
mathematical truth and offered as a contribution to education to be
used only by the state of Indiana free of cost by paying any royalties
whatever on the same, provided it is accepted and adopted by the official
action of the legislature of 1897:' The bill was considered by the Com-
mittee on Education which recommended that it "do pass:' The bill
passed the house but was lost in the state senate.

9
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FOREWORD
In this essay the author presents a number of interesting sidelights

on The number 2. from earliest times as well as from today.
Some of the notation used may be unfamiliar. For the reader who may

have forgotten, we recall that the symbol ni (read "factorial n") means
the continued product

n(n 1)(n 2) 321
We also note that the limiting value of the expression

(1 + 1y

as k becomes indefinitely great, is designated by the letter e. Using the
binomial theorem, it can be shown that

limk_,,[(1 + k =l+x+-2-fx2+-3-Tx3 +,
or

X2 X3el= 1 +X+ fr±if+
When x = 1, we have

1 1e = 1 + 1 + 2! + 3! + .

Calculation shows that e is approximately equal to 2.7182818 it is
known that e is both irrational and transcendental.

The number e plays a very significant role in mathematical analysis.
Thus it is used as the base for the system of natural logarithms. (Ordinary
logarithms to the base 10 are called common or Briggian logarithms.)
The conversion from one system to the other can be effected by using
the relation

log, N
log, iö lo

-z '0
N

where log, 10 = 2.3025 and sogi
10 '43429 .

For the sake of clarity, the base is usually indicated. For example,
log. 100 = 2; log e = I; etc. If the base to be used is not explicitly
indicated, as in "log some ambiguity might arise. Hence if log, x is
meant, it is preferably written In x, where "In" indicates "natural
logarithm:'

I 1
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What's New About Pi?
Phillip S. Jones*

In January of 1948 a new footnote, if not a new chapter, was added to
the history of 2-.1 At this time John W Wrench, Jr., of Washington, D. C.,
and D. E Ferguson of Manehester, England, published jointly the cor-
rected and checked value of w computed to 808 decimal places.' This
concludes a project begun by Dr. Ferguson in 1945 when he became
interested in the correctness of the unchecked 707 decimal place value
first given by the Englishman William Shanks in 1873 and revised by
Shanks himself in 1874.'

Ferguson found errors in Shanks' value beginning with the 528th
place and gave a corrected value to 620 places. He had extended this to
710 places by January of 1947.

In this latter month Dr. Wrench collaborating with Levi B. Smith
published an 808 decimal place value. Shortly thereafter Ferguson
discovered an error beginning with the 723rd place of Wren -h's value.
The final 808 place value published jointly by these two computers may
be regarded with considerable confidence since they did their ctommerta-
dons independently and using different formulas. Ferguson the
formula w/4 = 3tari-1 1/4 + tan-1 1/20 + tan-1 1/1985 which he obtained
from R. W. Morris but which has been shown to have appeared in 1893
in S. L. Loney's Plane Trigonometry. Wrench used Machin's formula
w/4 = 4 tan-1 1/5 tan-1 1/239. This latter was also used by Shanks.

These are prodigious feats of computation and immediately raise the
question of why should anyone undertake them. The famous American
astronomer and mathematician Simon Newcomb once remarked, "Ten
decimal places are sufficient to give the circumference of the earth to the

Such is the incredible pace ol technological progreu that, less than ten years after this paper
was written, the value of r was determined to More than 100,000 decimal places. This computation
was carried out oss July 29, 1961. on an I.B.M. electronic system, in less than nine hours. Editor

'Prof. L H. C. Hildebrandt originally suggested that Miscellanea include a note on the new
value oi r.

'"A New Approximation to w (Concluded)' Mathematical Thbles and Other Aids to Computa-
tion, III, plp.

' D. F. Ferguson, "Evaluation of w, Are Shank's Figures Correct?" Mathematical Note, 1889,
Mathematical Gazette 30 (May, 1946), pp. 69-90.

"A New Approximation to IC Mathematkal Thbles and Other Aids to Computation. H.
p. 245.
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fraction of an inch, and thirty decimals would give the circumference of
the whole visible universe to a quantity imperceptible with the most
powerful telescope according to Kasner and Newman.' The latter then
give two reasons for such calculations: the hope to find a clue to the
transcendental nature of 7, and "the fact that is, a purely geometric ratio,
could be evolved out of so many arithmetic relationships was a never
ending source of wonder:" The former could not have motivated our
modern workers since 7 was proved irrational by J. H. Lambert in 1761
and transcendental by E Lindeman in 1882. Shanks, however, might
have had some such motivation and hence it may be of interest to quote
his own words from his first publication on this subject. "Toward the
close of the year 1850 the Author first formed the design of rectifying
the circle to upwards of 300 places of decimals. He was fully aware at
that time that the accomplishment of his purpose would add little or
nothing to his fame as a Mathematician, though it might as a Computer;
nor would it be productive of anything in the shape of pecuniary rec-
ompense at all adequate to the labour of such lengthy computations.
He was anxious to fill up his scanty intervals of leisure with the achieve-
ment of something original, and which, at the same time, should not
subject him to either too great tension of thought or to consult books.
The Writer entertains the hope. that Mathematicians will look with
indulgence on his present 'Contributions' to their favorite science, and
also induce their Friends and Patrons of Mathematical Studies, to accord
him their generous support by purchasing copies of the work!' (The
book was "Printed for the author" i.e., privately published.) Later
Shanks says, " no one, so far as we know, has hitherto been able to
and we are of the opinion that it can never be accomplished to ascer-
tain the limit, strictly speaking of the ratio under consideration:"

Our modern computers have not published analyses of their motives.
They appear to have been actuated by intellectual curiosity and the
challenge of an unchecked and long untouched computation. However,
it might be noted that lengthy and rapid computations and machines
to perform them are of great interest these days. For example H. S. Uhler
has computed 1/2 log 7, log is, and ln 7 to 214 and 213 decimal places for
the purpose of using them later in computing tables of ln xr Wrench
has computed tables of ir/n to 206 significant figures to be used in later
calculations of ir'In! which in turn are needed in calculating certain
transcendental functions.' Werner E Vogel has computed Angular Spar.

'Edwani Kamer and James Newman, Mathematics and the Imagination (New York: Simon and
Schuster, MO), p. 78.

William Shanks, Contributions In Mathematics Comprising Chiefly the Rectification of the Circle
to 607 Places of Decimals (London: 1853), pp. v, vi,

1 Mathematical Thbles and Other Aids to Computation.1, p. 55.
p. 452.
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ing fables' for use in gearing problems which include tables giving
angles in radians to ten decimal places. To compute these a many decimal
place value of w was used. (He cites a 70 place value in the book.)

NOTES ON OLDER FACTS

Historical discussions of 17 and collections of interesting formu!as for
its calculation are to be found in many places," but two interesting
items in its long history are often inadequately treated.

It is frequently stated that the Egyptians calculated the area of a circle
as (819d)2 which is equivalent to giving a value to ir of 8.1605. Though
not incorrect, such a statement by stating truths in modern notation and
too concisely fails to display several interesting features of the Egyptian
procedure. Actually the Egyptian in each case subtracted from the di-
ameter of the circle one-ninth of the diameter and then squared this
result. This is consistent with the Egyptian use of unit fractions; the
use of 819 is not. This second more exact statement also avoids any im-
plication that the Egyptian had conceived of an abstract number w, a
mathematical constant, in any modern sense. Further, the exact state-
ment furnishes a plausible suggestion as to how the Egyptian arrived
at his procedure. In the Rhind Papyrus the calculation of volumes of
cylinders precedes the calculation of areas of circles. This fact has led
A. B. Chace and others to speculate that the Egyptians may have made
a circular cylindrical container and then several sizes of square prisms
of the same height. They speculate that it was by comparing the liquid
capacity of the cylinders and these prisms that the Egyptians determined
experimentally that the prism erected on the square whose side was one-
ninth less than the diameter of the cylinder most nearly approximated
the volume of the cylinder."

Another often quoted but rarely documented tale of r is that of the
attempt to determine its value by legislation. House Bill No. 246, In-
diana State Legislature, 1897. was written by Edwin J. Goodwin, M.D.
of Solitude, Posey County. It begins as follows: "A bill for an act intro-

'Werner E Vogel. Angular Sparing Tables (Detroit: Vinco Corp., 1943, $10.00).
"Kamer and Newman, op. cit., pp. 65-79. D. E. Smith. "The History and Transcendance of 7."

in Monographs on Topics in Modern Mathematics (J. W. A. young, Ed.). (Longman., Green, 1915).
pp. 389-416.

u Arnold Buff= Chace. The Rhind Mathematical Papyrus (The Mathematical Association of
America, 1927), Vol. 1, pp. 35-36, 91-92. A summary, with references. of other theories which
have been advanced to explain this Egyptian procedure may be found in J. L. Coolidge, A History
of Geometrical Methods, (Ox(ord: 1940), p. 11.
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ducing a new mathematical truth and offered as a contribution to edu-
cation to be used only by the State of Indiana free of cost by paying any
royalties whatever on the same.

Section I. & t enacted by the General Assembly of the State of Indiana: It has been found that
a circular area is to the square on a line equal to the quadrant of the circumference, as the
area of an equilateral rectangle is to the square on one side..

The bill was referred first to the House Committee on Canals andthen to the Committee on Education which recommended its passage.It was pased and sent to the Senate where it was referred to the Com-
mittee on Temperance which recommended its passage. In the mean-
time the bill had become known and ridiculed in various newspapers.
This resulted in the Senate's finally postponing indefinitely its further
consideration in spite of the backing of the State Superintendent of
Public Instruction who was anxious to assure his state textbooks of the
use, free, of this copyrighted discovery. The detailed account of the bill
together with contemporary newspaper comments makes interesting
reading.12

" Donald F Mela directed the writer's attention to the source for this data; namely, Will E. Fd-ington. "House Bill No. 246, Indiana State Legislature, 1897" proceedings of the Indiana Academy
of Science, Vol. 45 (1935), pp. 296-210. Thomas F Holgate, "Rules for Making Pi Digestible" in theContributor's Club of The Atlantic Monthly for July, 1935 is also pertinent.

16



7

wauredult.

FOREWORD

In this unusual essay, the author stresses certain geometric aspects of
bringing together a number of interesting related ideas, particularly the
three significant numbers w, e, and G, where e is the familiar limit of
(1 + 1 ix)' as x becomes infinitely great, and G is the ratio of the Golden
Section, namely, 1/2(Vg 1). The reader who is familiar with the
"Golden Measure" will recall that

G= 1/4(/15 1) = + WO.
is the positive root of the quadratic equation X: + X 1 = 0, which is
obtained when dividing a unit segment into mean and extreme ratio.

Not the least interesting features of Baravalle's essay are the geometric
construction of the value of 7, and Kochansky's geometric, approximate
quadrature of the circle. For further observations on the quadrature of
the circle, the reader is referred to the foreword to the essay by P D.
Bardis.

Indeed, approkimate geometric constructions of r have been most
ingenious. One of the most remarkable such constructions yields a
straight line segment which differs from r by less than .0000003. The
construction is quite simple and is described by Martin Gardner in the
Scientific American for July, 1960, page 156.
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The Number Pi
H. von Baravalle

Two outstanding constants of mathematics have been dealt with in
csevious articles in THE MATHEMATICS TEACHER, the number e, the

of the natural logarithms' and the number G, the ratio of the
Golden Section.* To complete this series, the present article takes up
the third and best known constant, the number T.

As its symbol indicates (if stands for periphery), it represents the ratio
of the two outstanding dimensions of the circle, the way around it and
the distance across it.

circumference of a circle
diameter of the circle

Expressing the diameter in terms of the radius r, we obtain the formula
for the circumference of the circle c:

= r; c = 27r.

This is by far not the only ratio in which this constant appears. For in-
stance, r is also the ratio of the area of a circle A to the area of the square
erected on its radius r:

7r = 4; A = irr2.

It further appears in many other formulae. The volume V of a circular
cylinder with a base-radius r and altitude h is:

V = r'grh

and of a circular cone

December 1945 lame (Volume XXXVIII, No. 5).
January 1948 blue (Volume ELI. No. I).
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The surface of a sphere is:

A = 4eir
and its volume

V =

The domain of T also extends beyond circular structures. The area of
an ellipse with the semi-axes a and b is

A abr
and the volume of an ellipsoid, with the three semi-axes, a, b, and c is

V = 4 abcr.
3

The area enclosed in a cardioid drawn in Figure 1 as an envelope of
circles is

3
A

2 '
in which a stands for the diameter of the circle whose circumference is
indicated by the dotted line.'

Further examples of curves whose formulae contain w are the roses.
The area enclosed by a three-leaved rose (black portions in Figure 2) is

A = 4 air'

in which a stands for the radius of the circle circumscribed ayound it.
The area enclosed by a four-leaved rose (black area in Figure 3) is

A = 1
a2r

2 '

in which a again denotes the radius of the circumscribed circle. The
volume of a ring (torus), obtained by rotating a circle with radius a
about an axis in the same plane at a distance of b units from the center
of the circle is expressed in the following formula:

V = 2a2br".

The volume of the solid of rotation produced by rotating an astroid
about one of its axes is:

' lb construct Figure I. the dotted ruck is dMdcd into thirty.two eral parts. Each of the thirty-
two points of division becomes the center of a circk whose radius is its distance from the highest
point on the circle (upper end of vertical diameter).

20



FIG. I. The cardioid.

FIG. 2. The three-leaved rose. FIG. S. The four-leaved rose.
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FIG. 4. The astroid.

32 .
V = Rig a 7r.

Here a represents the distance of any of the star points from the center,
the radius of the circumscribed circle. The surface area of the same solid
of rotation is:

12A = axlr.
5

The formula for the volume of the solid x20 + ro = a213 whose
traces on the coordinate planes are astroids, also contains IT:

4V = a
35

All these formulae are obtained by integral calculus.
We can also go beyond areas, surfaces and volumes to find w again in

a variety of relationships. A semicircle (radius r), cut out of sheet metal
and balanced on a point, will be in equilibrium only when the point of
support lies on its axis of symmetry at a distance d from the center,
which is:

4rd = .

IT even appears in formulae of probability, statistics and in the field
of an actuary.

Any vibration, mechanical, acoustical or electrical, proceeds with
varying speed. By determining the distance covered by a point on a
vibrating musical cord between its extreme positions during a certain
time unit, we obtain its average speed of motion. The actual speed of
the point is greater every time the cord is near to passing its middle
position. It is less than the average speed every time the point finds itself
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near to one of its extreme elongations. The maximum speed occurs
when the point passes in either direction through its position of rest.
This maximum speed is in any vibration exactly r/2 times the average
speed.' As this holds good for vibrations accompanying every sound of
our own vocal cords and in the air amund us, r is contained in every
word and sentence we say.

The value of I! up to 22 decimal places is

3.1415926535897932384626 .

These successive numerals are the same as the number of letters con-
tained in the successive words of the French verse:

"Que raime a faire apprendre
Un nombre utile aux sages.
Immortel Archimede, artiste inginieur,
Oui de ton jugement pent priser la valeur:'

Translation: "How I like to teach a number, useful to the learned:
Immortal Archimedes, skillful investigator, yes, the number can tell the
praise of your judgment:'

Until recently r had been calculated to 707 decimal places. This
figure had been obtained by an Englishman, Shanks, in 185i.
With the help of the modern electronic comptktinh achines, the num-
ber of decimal places has now been extended to over 2,000.

The history of the number r dates back 3,500 years, as far as historical

The differential equation of a vibration is

dIx a x
and its complete solution is x = c sin (at a). In this equation, r and a represent arbitrary con-
stants. For x = 0 at t = 0, the solution is:

sin at. Maximum speed:

Average speed:

The ratio.

is therefore: r12.

x = c sin at.

=Alf CO at: for t 0: ddxt 1...= a c.S

For at ; x = c and x 2ac
2 t
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records show. The Egyptian Rhind Papyrus, dating back as far as 1700
n. c., gives directions for obtaining the area of a circle. Expressed in
modern symbols, its formula with A for the circle's area and d for its
diameter, is as follows:

A = (d =9 d I (1 --

y , 256=4rs(--8T =r4 643--yr =r

The fraction 256/81, which here takes the place off, equals in decimals
3.16050 Compared with (3.14159 .), the difference is 0.01891

, or less than 1/50.
Archimedes expresses v numerically as follows:

1 103 -1- > 7r > 3yr

Expressed in decimals, the same relationships would read:
3.142857 > > 3.140845.

ididway between these two values of Archimedes lies the number
3.141851, which, compared with v is only 0.000259 .. or about 24 ten-
thousandths greater. In ancient China, v was expressed by Ch'ang Ming
(125 A.D.) as viz 3.162 , the accuracy of which is only slightly
less than the value given in the Egyptian papyrus. In 265 A.D. Wang Fan
expressed the value of v by the fraction 142/45, or 3.15555 . In 470
A.D. Ch'ung-chih gave a different fraction: 355/113, or 3.1415929 ,
which is correct all the way out to 6 decimal places. In India Aryabhata
(510 A.D.) expressed Ir in this way: "Add 4 to 100, multiply by 8 and add
62,000. This is the approximate circumference of a circle whose diameter
is 20,000:' Thus v appears as the fraction 62832/20000, which resolves
to 3.1416, and is less than one ten-thousandth off.

Though some of these values are sufficiently accurate to have met the
practical demands of their times, none reveals any mathematical regu-
larity for the value of v. Against the background of the philosophies of
antiquity, one can appreciate the great disappointment which this fact
caused to mathematicians and philosophers. This failure regarding the
outstanding ratio of the most perfect curve to conform to any pattern
of mathematical regularity was considered as a blemish upon the divine
world order, and never accepted as the ultimate answer.

The anticipations of antiquity regarding 1r finally proved justified,
but the solution was found only as recently as 360 years ago. The value
of v was expressed for the first time in a regular mathematical pattern
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in 1592 by the great French mathematician, Francois Viète (1540-1603),
who found:

1= 2 viwy2 rimm77-4..
The denominator is an infinite product of expressions of square roots
with a regular structure. The possibility of one such development sug-
gests the possibility of other simpler ones; and actually, in 1655, John
Wallace (1616-1703), an English mathematician, found:

2 4 4 6 6 8 8 10 10 12 12
= 4 63 3 5 5 7 7 9 9 11 11 13

Here 12 is expressed by infinite products of numbers, this time in both
numerator and denominator of a fraction, but without any roots. In
the numerator we find the even numbers, in the denominator the odd
numbers. Both appear in pairs with the exception of the first factor in
the numerator. Only three years later, in 1658, Viscount Brounecker
(1620-1684) expressed the value of 7r as a continued fraction:

77 = 4
12

32

52

7 22 +
92

2 +
2 +

which again shows complete regularity, the only varying figures being
the squares of the odd numbers.

Progress was on the march. The same century brought the final pres-
entation of ir as the limit of an infinite series of the simple fractions
made up of the odd numbers as their denominators and with alternating
signs. the Leibnitz Series. The regularity which was impossible in deci-
mal- expressions of the value of ir now became possible through an infinite
series of common fractions. Actually, this expression in fractions was
more in keeping with the work of the thinkers of antiquity than was
that in decimals, which have been in use only since the sixteenth century.
That the series is infinite (the transcendence of Tr was proved by F. Linde-
mann in 1882) makes the result even more dynamic.

The Leibnitz Series is a fruit of the calculus obtained by one of its
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inventors. It is derived from expanding the function of arctangent
according to Maclaurin's series.

r(0) No)
f(x) = f (0) + x + x 31 x.

f (o) )
+ + x's -1-nf

The form for arctan x thus reads:

xa Xi X7 X11 X27$.1arctan x = x
-8- .4- 5- + 11 (Iri 2n 1+

which converges for all values of x within the limits

I < x < 1.
Substituting x = 1 for an angle of 45° (in radians 450 ------ 7r/4; tai.. . 5' =
1) we obtain:

Or

(
I . 1 1 1 1 1 1

'=4.1-T-'-T--1+T 11+13 It- ± ).
The Leibnitz Series has not been surpassed in all subsequent history

in point of its outstanding simplicity. The only later additions were
devices for calculating larger numbers of decimals with less effort in the
process of computation, in other words, by finding means of developing
r through faster convergencies.

By expanding the arcsine in the same way we obtain the formula:

I 1 , 1 3 1 *, 1 3 5 1arcsin x = x + x + x x

1 3 5 7 I a

2 4 6 8 X- +
9

which converges for all values of x within the limits of 1 < x < I.
Substituting x = 1, we obtain for arcsin I, corresponding to an angle of
90°, or, in radians, to 7r/2, the formula:

1 _1_ 1 3 5 1 4. 1 3 5 7 1

-2 3 2 . 4 5 2 . 4 6 7 ' 4 6
a series which, though more complicated than the Leibnitz Series,
converges faster. Further series show a still greater convergence for
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instance, that which Abraham Sharp used in 1717 to calculate the value
of Tr to 72 decimal places:

1 1 1 1 1 1

6 ( I 3 3 32 5 33 7 T 34. 9. 35 11 -4- .)
To find the value of ir geometrically, Deinostratus (350 a.c.) used a

curve called the Quadratrix. Its construdion is shown in Figure 5. Above
and below a horizontal base AB, a quarter of a circle with A as its center
and AB as its radius is drawn and olivided into equal parts. In Figure 5
there are 8 equal parts above and 8 below the base. Then the perpendic-
ular radii are divided into the same numbers of equal parts as the quarters
of the circles and through every point of division a horizontal line is
drawn. After also adding a radius through each point of division on the
circle, we start with the highest point C and mark the point where the
next horizontal line and the next radius intersect, and then continue
marking the intersection points of the second horizontal line and thz
second radius and so forth. The curve passing through these pGints is

FIG. 5. Geometric construction of the value 1r .
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the Quadratrix. Where it cuts the base AB is the point D and the ratio
of the line segments AB and AD is°

AB 7r

AD -2
The geometric aspects of w lad io the famous problem of the quad-

rature of the circle, the task of constructing a square (quadratum) whose
area equals the area of a given circle. The curve in Figure 5 also derives
its name from this problem. An outstanding contribution to the quad-
rature of the circle was made by Archimedes who found that the area
of a circle equals the area of a right triangle, one of whose legs equals
the radius and the other the circumference of the circle. This discovery
established an equality between the curved area of a circle and the area
of a form bounded only by straight lines, and made possible the con-
struction of the quadrature of a circle immediately upon straightening
out its circumference. The latter task, so easily performed in actuality
every time a wheel rolls over a road imprinting on the road its exact
circumference with each revolution, has nonetheless been an age-long
challenge to masters of geometric construction. Its complete solution is
possible only by the use of higher curves. Numerous approximations
of this geometric construction have been found, however, which for
practical purposes represent a solution. Figure 6 shows the approxima-
tion constructed by Kochansky. Through the end-points of the vertical
diameter are drawn two tangents to the circle. On each of these tangents
a certain point is marked. On the lower tangent this point A is three
times the length of the radius of the circle away from the point of tan-
gency, while on the upper the point B is fixed at the intersection of the
tangent with the prolonged radius drawn at an angle of 30° to the verti-. cal diameter. The distance AB is then equal to r times the radius.° The

'The length of the arc BC being one-quarter of the circumference of a circle. is
2rr r

= r
Its ratio to the radius r is therefore r/2. The ratio of one-eighth of the arc BC to one-eighth of the
radius is therefore also r/2. The length of the perpendicular from E to AB equals EDI= AG
which is by construction one-eighth of the radius AC; BF is 14 of BC. Therefore, the ratio BF to
ED, is still r /2. What holds good for the eighths holds good for any other fraction. The smaller
each pan of the arc BC becomes, the closer it approaches the length of the perpendicular FB,.
Through the similarity of the triangles ,IAB,F and -MD,E we obtain the proportion:

AB, FB,
AD, -ED,

With an increasing number of points of division and the angle FAB decreasing in size, B, ap-
proaches B, D, approaches D. and the ratio FBI! ED, the ratio FA I ED, which equals r/2.

'AB computed as the hypotenuse of the right triangle ABC, with its vertical leg 2e, and its hori-
zontal leg 3r minus the distance a, which I. one-half the length of the base of an equilateral triangle
with the altitude r (a = r/13) is:

AIS = 12,-)° + (3r
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FIGURE 6. Construction by Kochansky.

approximation provides a difference of less than 0.0001, which lies
beyond the graphical limit of precision of Figure 6.

With the help of Kochansky's construction, it is possible to effect the
quadrature of the circle, as shown in Figure 7, in two steps. In the dia-
gram to the left we recognize Kochansky's construction. The resulting
distance is used as the base of a rectangle with an altitude equal to the
radius of the circle. According to Archimedes, the area of the circle
equals the area of a triangle whose base is the circumference of the circle
and whose altitude is the radius. Therefore, it also equals the rec-
tangle whose base is half the circumference of the circle and whose alti-
tude is the radius. The next step consists in transforming the area of the
rectangle into a square a step accomplished as indicated in Figure 8.
The rectangle ADEF is the same as the one in Figure 7. By construction,

FIGURE 7. Construction of the quadrature of a circle.
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DB is equal to DE and the intersection of the semicircle above AB with
the prolongation of DE determines the point C. AABC is a right triangle
with the altitude h. The area of the square with h as its side equals the
area of the rectangle ADEET

The four areas which arernarkEd in black in Figure 7 are equal to
one another and show in their sequence from left to right the comple-
tion of the quadrature of the circle.

Finally, comparing the three great constants of mathematics, G, e, 7:

G = 0.6180339887 .
a = 2.7182818284
w = 3.1415926535

in the form of continued fractions:

e = 1 + 1 +
1 +

1 + 1

2 +
11 +

1

1

I1 +
4 +

12

32
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2 +

' AD = h

2 + .

tan 4 CAD '

DE = DB = h - tan 4 BCD; 4 BCD = 4 CAD (angles whose sides are perpendicular).
Therefore
h

AD DE h tan 4 CAD = h'.tan 4 CAD
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FIGURE 8.

G expresses itself through repetitions of the number 1 only, and e
through repetitions of I and the powers of 2. In the fraction of w, the
variable element is the series of the squares of the odd numbers.

There is an approximation between w and G which played a major
role in the history of the investigations of the proportions of the Great
Pyramid in Egypt:

,ity= 0.6168

G = 0.6180 .

Though the difference between the two values is only 0.0012, their close-
ness is merely incidental and has no basis in mathematical law. Neither
is there any mathematical connection between G and e.

Different is the case with the constants w and e. Between them there
is a distinct mathematical relationship. The expansion of es, according
to MacLaurin's Series is

xs x$ xthe=l+x+-0-+T- -f-rf++7+
and that of sin x and that of cos x

x3 xs x7 xssinx=x--8-r+-51--"T + ( I)t"
x3 x6 x xscosx=1 4...
2! 4! 6! 8!

+ ( 1)114

x216.1

(2n 1 )!

x2s.:

The two series for sin x and cos x together furnish all the terms of the
series of e, with the only discrepancy in their signs, a difficulty which
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does not exist for the hyperbolic sines and cosines. Their expansions
have only positive terms:

XS X5sinh -3T + +

i XS _t_ X. i4 XS4.3COlh X = 1 -r -r -r
21 4! 61 (2n 2)1

Therefore it readily appears that e = sinh x + cosh x. An analogous
result for the trignometric functions can be obtained if we substitute
for x its product with the imaginary unit:

XS X5 X4 X5 X4 XSCia = I
2! 31 4! s 5! 6! s 7! +

and separate the real and imaginary terms. Thus, the result is:

eis = 1 + +
5 a.

21 4! 6! x 3! 5! 71 6)
Or

= cos x + i sin x,
a formula which finds wide application in the solving of differential
equations, particularly of those connected with all types of vibrations.
Substituting x = We we obtain:

el* = cos 7r + isin 7r = 1 +10= I

which results in the formula,
=

It is this formula which prompted David Eugene Smith to use it in the
mathematical credo placed in his library:

THE SCIENCE VENERABLE:

Voltaire once remarked "One merit of poetry few will deny; it says
more and in fewer words than prose With equal significance we may
say, "One merit of mathematics few will deny; it says more and in fewer
words than any other science: The formula, e = I expresses a world
of thought, of truth, of poetry and of religious spirit, for "God eternally
geometrizee
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FOREWORD

Strangely enough, the C/1:1 ratio is only one of the many properties
of the number w, and is by no means the most meaningful property. It
is known, for example, that if two numbers are written at random, the
probability that they will be prime to each other is 6/0. Or, consider
another probability ratio: on a plane, a number of equidistant parallel
lines are ruled, say at a distance d from one another, and then a stick
of length k, where k < d, is dropped on a plane at random; the prob-
ability that the stick will fall in such a way as to lie across one of these
lines is given by 2k /wd. This can be proved theoretically as well as "car.
roborated" experimentally by recording the results of a very large num-
ber of trials.

About 1750, the celebrated Swiss mathematician Euler developed the
analytic properties of the sine and cosine and established the relation

= cos i sin 0.

From this it is ea'sy to see that, for --=

en' = cos 71. + i sin w.

But since

we have

cos = 1 and sin r = 0,

= 1.
This is but one of many ways in which w enters various branches of
mathematical analysis.
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Pi and Probability
WALTER H. CARNAHAN

One of the ancient weaknesses of men seems to be to take a chance and
place a bet on its outcome. And one of his oldest scientific interests is
that of the relation of diameter and circumference of a circle. In this
brief article we shall call attention to the relation of this scientific in-
terest to that of the observation of certain results of chance (but not the
placing of bets).

Some two hundred years :3 go Buffon did an interesting experiment
connecting w and probability. fie tossed a needle onto a ruled surface,
counted the tosses, and counted the number of times that the needle
touched a line. Out of this experiment he found the value of Ir. This is a
simple and interesting experience for high school pupils to repeat.

FIGURE 1

Rule off a board or paper with equally spaced parallel lines n units
apart. Cut a wire whose length is n12 units. (This length is not neces-
sarily n/2 but is suggested as a convenient one.) Now toss the wire at
random onto the ruled surface, count tosses T and contacts C. After
fifteen minutes or more, divide T by C. The result is approximately
equal to Tr.

The proof of this conclusion is not beyond the comprehension of a
high school pupil. Suppose that the wire is bent into a circle; its cir-
cumference is n/2. and its rius is n/4w. Considered as a geometric line,
the number of points on the needle is proportional to its length.* (The

By the author's frank parenthetic admission, thts is a very loose statement. The idea might be
restated as follows: "the number of contacts is pmportional to the length of the needle Even this
observation. based purely on intuition, leaves much to be desired by way of mathematical rigor.

EDITOR
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philosophy underlying this statement might be debatable, of course.)
Whether the needle is straight or bent, one point on it is just as likely
to touch a line as is any other point. The shape of the needle will not
affect the probability of any given point coming to rest on a line. Hence
we can develop the discussion by assuming that the needle is bent into
a circle. Since always two points on the circle will rest on the line if the
line is in tangent or secant position, the probability of a one-point con-
tact equals two times the probability of a secant relation.

A line will have a secant relation to the circle if the center of the circle
is within radius distance of the line. The distance between two lines is
n, and in the area between any two lines there are two areas 11/4.7r units
wide in which the center of the circle could lie for a secant relation.
Hence the probability of a secant relationship is n:n/ 27r = 27r. Therefore
the probability of a one-point contact is 7r.

Now, the probability of contact when the needle is tossed is TIC.
Hence r = TIC.

Another simple experiment for finding the value of 7r by using prob-
ability is tossing a coin onto a cross-ruled board. The distance between

A

FIGURE 2

consecutive vertices of any square should be not less than the diameter
of the coin; it may be greater than this. Toss the coin for fifteen minutes,
count tosses T and count the number of times C the coin touches a ver-
tex of a square. Multiply the area of a square by C. and divide this
product by raT, r being the radius of the coin. This is approximately
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equal to T. It is convenient to take s the side of the square equal to 4r.
If this is done, then r = 16CIT

The proof of this is simple. The area of the part of any square in which
the center of the coin can fall for contact is the area of the coin (four
quadrants). The total area in which the center of the coin can lie is the
area of the square itself. Hence the formula as derived from consideration
of the law of probability.

In rationalizing the result of the coin-tossing experiment our atten-
tion was on the center of the circle. The coin itself merely served to
determine the size of undrawn circles on the boar rt _antains the
drawn squares. An alternative is to draw the circles a not draw the
squares. The centers of the circles as shown in the figure are at the ver-
tices of squares. The size of the circles or of the squares is not important
so long as the circles do not overlap each other. For convenience let the
radius r of each circle be I inch, and let the side s of each square be 4
inches. Toss darts at the board without aiming at any particular point
on it. Count tosses T and the number of times C that a dart enters a
circle. Divide 16C by T This is approximately equal to r.

The reason for this is readily seen. Since the entire board is covered
by squares (not drawn), the dart always enters a square. In every square
there is a circle (in four quadrants) into which some of the darts will

000000
000

FIGURE 3

enter. The mathematical probability of a dart entering a circle is the
ratio of the area of a circle to the area of a square, that is, Trr21ts2. The
experimental probability is C T Hence :77-1.+' = C T, or ---,- 16C / T
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Any suitable device can be used to select the point on the board in
the above experiment. If the board is level, a rolled marble would do,
although with this device there is a difficulty of telling where the point of
contact of marble and board is located. A tossed disc with a hole through
the center is very convenient. One can use a rifle or air pistol if one aims
at the board in general and not at any particular point on it. Small circles
on a board placed at a great distance will help. (See Fig. 3.)

The preceding experiment can be varied by drawing a set of ellipses
on rectangles rather than circles on squares. We shall not go through

CD( CD CD
E CD CD

FIGURE 4

the details. We might repeat the familiar textbook statement that "This
is left as an exercise for the student:' If a and b ate the semiaxes of the
ellipses, and if Sa and 31) are sides of each rectangle, then -Tr 9C/ T (The
area of an ellipse is Trab.)

There are numerous possible variations of the devices suggested: One
square in one circle: one circle in one square: one ellipse on one rec-
tangle. One can even cut up the squares or circles and scatter the pieces
so long as they do not overlap. Or one can cut the figures and arrange
the pieces in patterns. The ratio of the areas is the essential consideration.
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Much of the mysticism and controversy surrounding the number Ir
may be attributed to the many ill-fated attempts "to square the circle
that is, to construct a square that is exactly equal in area to the area of
a given circle, using only the compass and a straightedge. If it were
possible thus to square the circle, it would also be possible, with compass
and straightedge only, to construct a line segment exactly equal in length
to the value of The problem of constructing a straight line segment
of length equal to that of a circumference is referred to as the "rectifica-
tion of the circle'

The story of the many attempts to square the circle falls into three
periods. The first period, from earliest Egyptian times to the middle of
the seventeenth century, was characterized by the use of geometric
methods. Men sought an exact construction of ir by calculating the sides
or areas of regular polygons inscribed and circumscribed in a circle.

The second period, from about 1650 to 1750, showed the influence of
the newly invented calculus, and was characterized by the use of analyti-
cal methods. Men sought to express 7r analytically in terms of continued
fractions, convergent series and infinite products. During this period
great interest was aroused in laboriously computing the value of 7r to
more and more decimal places. None of this activity, however, led to
any further insight into the nature of the number 7r; it was not even
known whether ir was rational or irrational. However, one discovery was
of significance: the relation between 7r and e , namely,,

eh" := 1 ,

developed by Euler about 1748.
The third period was devoted to an intense and profound study of

the real nature of the number 7r. The cumulative efforts of the brilliant
analysts J. H. Lambert (c. 1768). Legendre (c. 1794). Fourier (c. 1815),
Liouville (c. 1840), and Hermite (c. 1873). culminated in Lindemann's
proof (1882) that Tr is a transcendental number, that is, it cannot be the
root of an algebraic equation.

It can be shown that a point p can be determined by means of compass
and straightedge alone only if each of its coordinates is a root of an
equation of some degree, a power of 2. of which the coefficients are
rational functions of the coordinates of the points of the given data. This
criterion leads to the conclusion that the problem of the rectification of
the circle as defined above is possible only if 77 is a root of an algebraic
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equation with rational coefficients, of that special class whose roots can
be expressed by rational numbers or by numbers obtainable by succes-
sive extractions of square roots.

When it was finally proved that 1r is a transcendental number, and
therefore not the root of an equation of the type stated in the above
criterion, then it was shown once and for all that 'squaring the circle"
is impossible. Yet the tribe of would-be circle-squarers, totally unabashed
and unconvinced, carries on, even to the present day.
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Evolution of Pi: An Essay in Mathematical
Progress from the Great Pyramid to Eniac

Panos D. Bardis

If a man were robbed by the river of a part of his land, he would come to Sesostris
ancl tell him what had happened; then, the king would send men to inspect and
measure the degree to which the land had been diminished, so that in the future it
should pay in proportion to the tax imposed originally. In this way, it seems to me,
geometry was born and came to Greece.

Herodotus, Historiai, II, 109.

INTRODUCTION

The Nile's contribution to mathematics. the Queen of the Sciences, has
been followed by innumerable developments, many of which were more
spectacular than the one described by Herodotus. And while our mathe-
matical knowledge advanced, numerous other fields, including the social
sciences, achieved a higher degree of progree as the Queen of the Sciences
became their most invaluable handmaid. Of course, since the natural,
social, and psychological worlds are complex, mysterious, and unfathom-
able, what we know at the present time still constitutes only an infini-
tesimal fragment of the boundless realm of truth. That is why the real
scientist not the charlatan often makes statements similar to the
Socratic "I only know one thing that I know nothing" or Galileo's
proverbial "I do not know:' and even reminds us of the genuine and
spontaneous humility with which little Jo, in Dicken's Bleak House,
constantly exclaims. "I don't know nothink about nothink at all'.' And
his humility is reinforced considerably by the realization that the progress
of his science, like that of every other field, has often been similar to
the movement of a glacier, due to myriads of incorrect theories, unsound
assumptions, and inadequate methods. Indeed, even in the history of
mathematics we find many theories which have proved to be about as
erroneous as Homer's famous reply to Hesoid concerning the number
of Achaeans who went to Ilium, namely, "There were fifty hearths, and
at each hearth were fifty spits, and on each spit were fifty joints of meat;
and there were three times three hundred Achaeans around each joint"
(Mcidarnas. Peri Homerou kai Hesiodou, 319).

This last point may be partly illustrated by presenting some of the
most important stages in the evolution of what William Jones has
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called Ir. Before doing so, however, it would be interesting to mention
one of the most amusing mathematical paradoxes dealing with this value.
According to Augustus De Morgan's Budget of Paradoxes (1872), Comte
de Buffon (1707-88) asserted that, as Laplace proved later, the value of ir
may be calculated roughly by means of this strange experiment: after
drawing two parallel lines, at distance D apart, on a floor, throw a needle
of length L < D. The probability that the needle will cross one of the
parallel lines will then be 2LID1. Indeed, in 1855 Ambrose Smith of
Aberdeen performed this experiment with 3,204 trials and found that

3.1412. 'A pupil of mine De Morgan also informs us, "made 600
trials with a rod of the length between the seams, and got r = 3.137:'

At any rate, while reading numerous ancient, medieval, and modern
mathematical and nonmathematical classics, I found many interesting
passages dealing with the circle ratio. Of these, I have summarized the
most important ones for the present article, in which the items included
have been classified both geographically and chronologically, as follows:

Japan. Yoshida Shichibei Koyu or Mitsuyoshi (1598-1672), who wrote
Jinko-ki (Small Number, Large Number, Treatise), the first great Jap-
anese work dealing with arithmetic, gave 7 as 3.16. Imamura Chisho,
on the other hand, Mori's famous pupil, in his Jugai-roku (1639) states
that 1r = 3.162. The same value was given by Yamada (1656), Shibamura
(1657), and Isomura (1660), while Murarnatsu (1663), in the fourth
book of his San.co, which deals with the mensuration of the circle, gives
rr as 3.14, unaware of the fact that he had actually calculated the first
eight figures of this value. Later, Nozawa (1664) and Sato (1666) also
asserted that 7 = 3.14.

In the seventeenth century, Japan's greatest mathematician was Seki,
who discovered a type of calculus known as yenri (circle principle), the
main problem of which may be represented by Oyama Shokei's (1728)
formula,

a' = 4dh[i
t (222:Ink)); (1-zd) 1

where a stands for the length of the arc, d for the diameter, and h for
the height of the arc. On the basis of this principle, in the next century,
Matsunaga Ryohitsu calculated 7r to 50 figures, At about the same time,
Takuma Genzayemon of Osaka employed the perimeters of polygons of
17,592,186,044.416 sides and computed 7 to 25 decimal places. Then,
in 1769 Arima Raido, Lord of Kurume, published his Shuki 3ampo in
which he gives 7 to 29 figures by stating that

42822 45933 4930417 =
13630 81215 70117
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In the sixth book of another mathematical treatise, Aida's Sampo Kokon
Tsuran (1795), we find that

_L. 1! 2! 3! 4! +2 = ' 3 3 5 -8 5 7 ± 3 5 7 9
China. Ch'ang Hong (78-139), Emperor An-ti's minister and astrol-

oger, believed that 7 = IR while Wag Fan (229-67), an astronomer,
asserted that

142
= 45

Toward the end of the third century, what is known as "Chih's value of
r" was given by Liu Chili as 31/4. One and a half centuries later, Wu, a
geometer, stated that r = 3.1432+. Tsu-Chung-Chih (430-501), how-
ever, gave an "inaccurate value 22/7, and an "accurate value 355/113,
also stating that w is found between 3.1415926 and 3.1415927. Another
geometer, Men (c. 575), took w as 3.14, while in the thirteenth century,
Ch'in Kiu-shao, in his Su-shu or Nine Sections of Mathematics, gave IT
as 3, 22/7, and M. Finally, Ch'en Chin-mo (c. 1650) took 7 as 3.15025.

India. After 327 B.C., when Alexander the Great invaded this country,
India's mathematicians were influenced considerably by the mathemati-
cal works of the Greeks. This influence is partly indicated by many sci-
entific terms which the Indians borrowed from various Hellenicwritings.
The Hindu scientists, for instance, used the word kendra for center
from the Greek kentron and jamitra for diameter from the Greek
diametros. Long before Alexander's time, however, India had many
brilliant mathematicians. Among them was Baudhayama (c. 500 B.C.),
who, in one of the Sulvasutras (Rules of the Cord), suggests that the
construction of a circle equivalent to a square may be achieved by
increasing half the length of one side by one-third of the difference
between itself and half the length of the diagonal, which means that
r = 3.088.

A thousand years later, in the celebrated Paulisa Siddhanta, a treatise
on trigonometry, we find that w = Vril. At about the same time, Aryab-
hata the elder of Kusumapura, the City of Flowers, wrote his famous
Aryastasata in which the volume of the sphere is inaccurately given as
wr2NFP', which leads to w 16/9, undoubtedly a distortion of the Egyp-
tian value

(16Y,
\ 9 )

computed by Mmes. Then, in the sixth century, Aryabhata the younger
wrote the Ganita, a poem in 33 couplets, the fourth of which deals with
r as follows: "Add 4 to 100, multiply by 8, and add again 62,000: the
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result is the approximate value of the circumference of a circle of which
the diameter is 20,000:' Accordingly,

62,832
20,000

or 3.1416. In the next century, Brahmagupta (c. 628) used two values
for 7, the "practical" one or 3, and the 'neat" one or VT& This last
value was also employed by Mahavira the Learned (c. 850) in his Ganita-
Sara (Compendium of Calculation), as well as by Sridhara (eleventh
century) in his Trisatika (300 Couplets).

Babylonia. As early as 2100 B.C., the mathematicians of Babylonia
dealt with the circle ratio, but took it as 3.

Hebrews. The value of 3 is also found in the Talmud, a collection of
Hebrew books dealing with ceremonial regulations and laws, as well as
in two passages of the Old Testament. According to the first of these,
"And he made a molten sea, ten cubits from the one brim to the other:
it was round all about, and his height was five cubits: and a line of thirty
cubits did compass it round about" (I Kings, VII, 23). Similarly, the
second passage reads as follows: "Also he made a molten sea of ten cubits
from brim to brim, round in compass, and five cubits the height thereof;
and a lime of thirty cubits did compass it round about" (H Chronicles,
IV, 2).

Egypt. One of the many fascinating theories dealing with the mystery
of the Great Pyramid, which was built 5,000 years ago, is analyzed by
Abbe Moreux in his La science tnystirieuse des Pharaons (Paris, 1923,
pp. 28-29), where he states: "Additionnons en effet les quatre cótes de la
base du monument dont la valeur était primitivement de 232405: nous
aurons pour le perimetre 931'22: Soit: 4 X 232°3805 = 9314'22. Di-
visons maintenant la longueur de ce perimetre par 2 fois la hauteur de
la pyramide qui était epoque de sa construction de 1483°208, nous
trouverons la valeur de 7:' This means that

931'422=
2 X 14841208

= 3'1416'

About one thousand years later, the famous Golenischev or Moscow
Papyrus, which includes 25 mathematical problems, gave r as

(16Y,
9 /

The same value is found in Ahmes's (moon-born; 1650 B.C.) Directions
for Obtaining the Knowledge of All Dark Things, a book included in
the Rhind Collection of the British Museum and containing 80 prob-
lems. Indeed, according to the fiftieth problem. the area of a circle may

=

46



be calculated by deducting from the diameter 1/9 of its length and
squaring the remainder, which means that

3 1604.9

Greece. Archimedes (287-212 B.C.) dealt with the circle ratio in one
of his most famous works, The Mea.surement of the Circle, which con-
sists of three mathematical propositions. The third of these propositions
reads as follows: "The ratio of the circumference of any circle to its
diameter is less than 3 1/7 but greater than 3 10/71:' A close approxima-
tion was also given by Claudius,Ptolemy in A.D. 150 in his great treatise,
Mega le syntaxis tes astronomias (VI, 7), where he states that

8 30= 3 8' 30" = 3 +
0 3600 3.141,666 .6

Michael Cunstantine Psellus (1020-1110), however, the Neoplatonist
whom the Byzantine emperors called Philosophon hypatos (Prince of
Philosophers), took 77' as Vs.

/tat)). Pietro della Francesca, an Italian painter, in 1475 published
his De corporibus regularibus, in which he discussed his famous problem
of the regular octagon by stating that "Diameter circuli qui circumscribit
octagonum est 71,' and using r as 22/7.

Switzerland. Leonhard Euler, one of the greatest mathematicians,
popularized die symbol r in 1737, but this was not the first time that the
circle ratio was represented by the sixteenth letter of the Greek alphabet.

France. Francois Vieta (1540-1603), a great expert in deciphering the
cryptic writing of diplomatic documents and one of the first to intro-
duce letter symbols in algebra, employed one of the earliest methods of
computing the value of r by means of infinite products. He thus stated
that

1/72". + 1/2 472. NA/2 + 1/2 .

More than a century later (1719), De Lagny gave ir to 127 places.
Germany. Albertus de Saxonia (1325-90), the bishop of Halberstadt,

considered Tr equal to 3 117 . On the other hand, in the sixteenth century,
Ludolf van Ceulen became famous by devoting many years to the cal-
culation of the circle ratio, which he gave to 20 decimal places in his Van
den Circkel, and later to 35 in his De arithmetische en geometrische
fondamenten. This achievement was regarded so important that the
value of ir was cut on his tombstone in St. Peter's churchyard at Leyden,
and, in addition, the circle ratio was named "Ludolf's number" this
term is often employed by mathematicians even at the present time. Then
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7, was computed to 140 places by Georg Vesa in 1793, to 205 by Zacharias
Dase in 1844, and to 250 by T Clausen in 1847, while in 1882 F. Linde-
mann proved the transcendence of 7r, a discovery that led to Kronecker's
well-known question, "Of what value is your beautiful proof, since irra-
tional numbers do not exist?"

Netherlands. Adriaen Anthoniszoon or Metius (1543-1620) took
355/113 as the value of 7r, and Adriaen van Roomen of Louvain (1561-
1615), in his Ideae rnathematicae, gave 1r to 17 decimal places.

England. Finally, John Wallis (1616-1703), a brilliant cryptologist
and one of the founders of the Royal Society, gave one of the first values
of the circle ratio involving infinite products. Thus, his well-known
product for r is

i f 2 2 4 4 6 6 2k 2k
3 3 -5- 3 -/-""" --i 2k-i-i°66

Another founder of the Royal Society, Lord Brouncker (1620-84),
through his work on the quadrature of the circle, discovered that

4 1 12 32 52=
IT 1+ 2+ 2+ 2+

Then, in 1705 Abraham Sharp computed r to 72 places, while in 1706
an important step was taken by William Jones, who, on page 263 of his
Synopsis pa/mariorum matheseos, for the first time expressed the circle
ratio by means of the symbol ir. The passage referring to this matter
reads as follows: ". . in the Circle, theDiameter is to the Circumference

. 3.14159, ?cc. =7r" (7r is the initial letter of the Greek word periphereia,
which means periphery or circumference)." In the same year, John
Machin, a professor of astronomy in London, calculated ir to 100 decimal
places, and, finally, in 1853 W Shanks gave 707 figures!

Before closing, I should also add this last item: a few years ago, thanks
to various modern scientific developments, the calculating machine
known as ENIAC took only 70 hours and correctly computed 7r to 2.035
decimal places!
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