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PREFACE

The early Greek geometers, particularly those of the Athenian school
under the stimulus of Plato and Eudoxus, were deeply interested in the
three classical problems of antiquity: (1) the dupli,ation of a cube, or
the determination of the edge of a cube whose volume is twice that of
a given cube; (2) the trisection of an angle; and (3) the quadrature of a
circle, or finding a square whose area is equal to that of a given circle.
Solutions to these problems were readily found if the use of parabolas.
hyperbolas and curves other than the circle were permitted. Ingenious
solutions were found by Hippias, Archytas, Eudoxus and Menaechmus.
But Plato objected to these solutions because they were "mechanical
and not geometrical"; that is. it was necessary to use instruments other
than the straightedge (unmarked ruler) and compasses. Thus, according
to Plato: "The good of geometry is set aside and destroyed, for we again
reduce it to the world of sense, instead of elevating it and imbuing it
with the eternal and incorporeal images of thought, even as it is em-
ployed by God, for which reason He always is God:'

It should be noted that no Greek geometer ever succeeded in solving
these problems using straightedge and compasses only, that is, with
Euclidean tools, and that these problems plagued mathematicians for
upwards of two thousand years. Not until the latter part of the 19th
century were mathematicians able to prove rigorously that these con-
structions were impossible with Euclidean tools. As it turns out, the
test of constructibility under these restrictions is an algebraic test, in-
volving a number of theorems in the algebra of the real number system.

The postulates laid down by Euclid were as follows: (1) A straight
line may be drawn from any one point to any other point; (2).a finite
straight line may be extended indefinitely to any length i. a straight line;
(3) a circle may be described from any center at any di,. nce from that
center. Postulates (1) and (2) define what we may do with a straightedge:
it is permissible to draw any portion of a straight line determined by
any two given points. Postulate (3) tells us what we are allowed to do
with the compasses: it is permissible to draw a circle with a given center
and passing through a given point.

It is important to note that neither instrument may be used to transfer
a distance.. In other words, the straightedge is not marked; and the corn-



passes are such that if either leg is lifted from the plane, the instrument
will automatically collapse. Hence Euclidean com are often called
collapsing compasses. Modern compasses, as you nscs)ews, stay open, and
can be used as dividers for transferring distances as the draftsman does.
You might think that modem compasses are more powerful than col-
lapsing compasses, but it can be proved that any construction that can
be effected with the modern compasses can also be performed with the
collapsing compasses; the two instruments are mathematically equiv-
alent.

In short, these three postulates are tantamount to allowing the ruler
and compasses to be used:

(1) to draw a straight line through two given points;
(2) to describe a circle with a given center such that it passes through

a given point.
These two operations are sufficient to enable us to carry out all the plane
constructions of elementary Euclidean geometry. Indeed, the term Eu-
clidean construction designates any construction which can be effected
by employing these two operations repeated any finite number of times.

William L. Schaaf
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FOREWORD
It has been known for nearly three hundred years that all Euclidean

constructions can be effected with the compasses alone. This brief intro-
ductory article sketches the history and anticipates the development of
the techniques involved in such constructions.

In these discussions of geometric constructions, it is assumed that all
given geometric data are points. Thus if a line is "given:' it may be re-
placed by two definite points lying on that line. Similarly, a given circle
may be replaced (I) by its center and one point of the circle, or (2) by
the center and two other points whose distance apart equals the radius,
or (3) by three definite points of the circle.

If we wish to effect a construction by use of the straightedge alone, the
given data must include at least four points, no three of which lie on a
straight line. If we use the compasses in conjunction with the straight-
edge, a new point may be determined (I) as the intersection of a pair
of straight lines, or (2) one of the intersections of a circle and a straight
line, or (3) one of the intersections of two circles. (In the latter case, the
second circle may be replaced by the common chord or the radical axis.)

1



A Forerunner of M scheroni
Florian Capri

The Italian Lorenzo Mascheroni who published in 1797 a well known
work on the Geometry of the Compasses,' in which all constructions are
effected without a ruler and by the use only of compasses, was antici-
pated by 125 years, as is now first shown by a Danish writer, Georg
Mohr: whose book, Euclides Danicus of 1672, the Royal Danish Scien-
tific Society at Kopenhagen has just published in facsimile and also in
translation into German. The book was overlooked by mathematicians,
notwithstanding the fact that there appeared two editions in 1672, one
in Danish, the other in Dutch. There is nothing to indicate that Mas-
cheroni had any knowledge of Mohr's book. The two worked independ-
ently. The Euclides Danicus in Dutch covers 36 pages and is a much
smaller book than that of Mascheroni. It consists of two parts, the first
part containing 54 constructions in Euclid's Elements, effected by the
use of only the compasses. The last few problems call for the construc-
tion of a figure similar to a given figure and equal in area to another. An
easy problem is the following: Given the line.BA, to find the end point
of a line twice as long. Draw an arc with A as center and AB as radius.
Starting at B, apply to this arc, using the compasses, BA three times
successively as a chord; the final intersection on the arc is the required
point E of the straight line BAE. The second part of Mohr's book gives
24 constructions of various selected problems, ending with a rather
involved problem on the erection of a sun dial.

Mohr's book is mentioned by some bibliographers but without a hint
as to the nature of its content. From its title one might surmise that it
was an edition of Euclid's Elements. Leibniz refers to him in a letter to
Oldenburg (May 12, 1676) as "Georgius Mohr Danus, in geometria et
analysi versatissimus:' More is known of him than is indicated by the
editors of the 1928 edition of his book. Cantors refers to Mohr's trip to
England and thence to France where, about 1676, he met Leibniz and
informed him that Collins was in possession of infinite series for arc sin x
and sin x. Before this, Oldenburg had mentioned Mohr, in a letter to
Leibniz of September 30. 1675, as one well versed in algebra, and me-
chanics, who left with John Collins a manuscript on roots of A +
written in Dutch. This tract was forwarded to Leibniz. Born in 1640 in

I Allen/ n Mau heron i. Gromrtria dr! ram Armo (Pavia 17147, Palermo, 1901).
'Georg Mohr, Furlides Danirus. Amsterdam. 172, Mit einem Vol-wort v(nt Johannes Hjelmslev

unit enter dentwhen Uelperseuung von Julius Pal. Udgivet af det Damike Videnskabetswi Selskab
Kobenhavn. HovedkommisAitmaer Andr. Fr. Host /lc Son, Kgl, Hof-lioghandl 1928.

' Writ/ Cantor. l'orirsurigrn Orr Gni-hit-fur drr Mathrmatik, vol. III, 2nd td.. p. 179.
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Copenhagen, Mohr went to Holland as a young man and did not return
to Denmark except for a short time in 1682.4

It may be proper to introduce here some historical remarks. Ever since
the dawn of abstract geometry, mathematicians have taken delight in
limiting the kind and number of instruments to be used in effecting
geometric constructions. Apparently urged by the ideal of simplicity and
economy in instrumental equipment, the Greeks ordained that in the
science of geometry only an ungraduated straightedge and compasses
shall be used. This limitation has given rise to some of the most inter-
esting and famous discussions in geometry and analysison the squaring
of the circle, trisection of an angle, duplication of a cube, and the in-
scription of regular polygons in a given circle. From time to time, further
instrumental restrictions have been made in the interest of speculative
geometry and mathematical recreation. Inspired perhaps by a remark
of Pappus, the Arabic scholar Abtl'l Wefi5 of the tenth century, in con-
structing the corners of the regular polyhedrons on a circumscribed
sphere. set himself the condition that all construction be effected with
a ruler and a single opening of the compasses. rhe German painter
Albrecht Diirer and the Italian mathematicians of the sixteenth century,
including 13enedetti and Tartaglia,* effected many constructions under
these limitations. J. V. Ponceletr in 1822 and Jakob Steiner in 1833 went
a step further and showed that all constructions possible with a straight-
edge and compasses can be effected also by the use of a straightedge, and
a circle fixed in position and drawn once for all. In 1890 A. Adler*, of
Vienna, went still further and demonstrated that all these constructions
can be made by the use of orlv an ordinary ruler with two parallel
straight edges, or only a ruler in the form of a right angle, or only a ruler
in the form of a fixed acute angle. If we take cognirance also of the fact
that all constructions possible by the straightedge and compasses can
be effected by the compasses alone, as was shown by Mohr, Mascheroni,
and later writers, then the remarkable result stares us in the face that all
Euclidean constructions can be made with any one of the four ordinary
instruments of geometric construction taken singly; viz., the compasses,
or the ruler with parallel straight edges. or the ruler with a right angle,
or the ruler with an acute angle.

6. Eneittom. Bibliotheca Mathemateu. (3) vol. 10 (1909.1910). pp. 71. 72; vol. 12 (1911-
1912. ) p. 77.

'Sec Woepcke. Journal Ailatique, (5) vol. 5 (1855), pp. 241, 352.358.
'See Moritt CArnor. op. cit., vol. 11. 2nd c(1., 1913. p, 566.
' f. V Poncelet. Traits des proprOis projrailits des figures.Paris.1822. pp. 187.190.

Steiner, Ileber die grotnetri%rhen Comtrurtiunrn ausgrfiihrt inittrh der geraden 1.inir
und eines festri Krrisec. Berlin, 11413,

'A. Adler. Veber die zur ,4utfi4lo wag grometriselier Conitinetinniaufgatien sweiten Grades not.
wendigen finiftinittri. Wiener Sitningtherirbie (1. Akadrniie d. Wisc. Math,,Natorw. Claw, vol,
99 (1590), Allth. Ila. pp. 846-1459.



FOREWORD

By using the methods of coordinate geometry, it can be proved that
the analytical processes which are equivalent to the various steps of
straightedge ancl compass construction are rational operations and the
operation of taking a square root and no others. These operations may
be combined and repeated in any way a finite number of times and
applied to the coordinates of the given points.

Actually, the only construction problems that can be solved by the
use of the straightedge alone are those which depend, analytically, upon
the solution of a linear equation whose solution involves only rational
operations. Those problems and only those problems which can be
solved by using straightedge and compasses are problems which depend
analytically upon the solution of a second-degree algebraic equation
whose solution involves rational operations together with the extraction
of square roots only.

In the course of his discussion in the present essay, the author refers
to a theorem of plane geometry which may not be familiar to you.

Theorem: In any triangle ABC, the median to side c m) is given by
4m2 = 2a2 2b2 c2.

Proof:

In BEC: 42 =BE' +
In al DEC: m2 = h2.

5
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Subtracting (1) from (2):
m2 = a2 + DE' BE2.

But BD + DE = BE.
Therefore m2 = a2 BD2 2(BD) (DE)
Using triangles AEC and DEC, together with the fact that
AE = DA DE, we have:

m2 = b2 DA2 2(DA)(DE).

Now BD = DA c .
2

Adding (3) and (4):
2m3 = a2 52 BD2 DA2,

or 2m2 = a2 b2 2(BD)2.

But BD = r
'
hence

2

2m2 = a2 -1- b2 2 (-4r2-),

or 4m2 = 2b2 c2.

6
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Mascheroni Constructions
Julius H. Hlav. 'y

INTRODUCTION

Plato is credited with (or blamed for) restricting the geometer to the use
of the compasses and straightedge alone. As Hogben points out, it was
perfectly consistent for Plato to lay down this limitation: "Geometry
was an aid to spiritual perfection. We are not expected to attain spiritual
perfection and enjoy ourselves at the same time. So it was natural for
those who held this belief to make geometry as difficult and unpalatable
as generations of school children have found it: However that may be,
we must not overlook that it was this very restriction which opened the
way to a great deal of investigation in mathematics arising from attempts
to solve certain problems by means of the straightedge and compasses
alone. The long history of the three notorious problems of antiquity
the trisection of an angle, the doubling of the cube, and the squaring of
the. circle owes its start to the Platonic restriction. The high point of
the history of construction pn blems involving the straightedge and
compasses was reached when, in the last century, it was demonstrated
that all constructible numbers are algebraic, and when the impossibility
of the solution of the three famous problems was proved.

It is natural to expect and the expectation has been realized by
experience that if we permit the tisL of instruments other than the
straightedge and the compasses, we can solve a greater variety of prob-
lems. For example, it is well known that the trisection of an angle is
possible if we permit just a slight modification of the straightedge, e.g.,
putting one mark on the straightedge.

THE MASCHERONI PROBLEM

It was left for an Italian mathematician (and it turned out later that
he had been anticipated by a Danish mathematician) to prove that Plato
missed a trick. In 1797, Lorenzo Mascheroni published his book Geo-
metria del Cornpasso in which he showed that all the constructions of
geometry that are performable by the use of the straightedge and corn-

7



passes can also be performed by means of the compasses alone. The
Danish mathematician Hjelmslev discovered in 1928 that one of his
countrymen, Georg Mohr, had anticipated Mascheroni in his discovery.
In Euclides Danicus, published in 1672, Mohr had solved the so-called
Mascheroni problem.

The question naturally arises: "How can it be shown that all the
constructions of Euclidean geometry can be done by means of the com-
passes alone?"

The number of constructions in geometry is infinite, and therefore
we certainly cannot prove our problem by solving every construction
problem with compasses alone. However, all Euclidean constructions
are merely finite successions of the following four fundamental con-
structions:

I Drawing a circle with a given center and a given radius
II Finding the points of intersection of two circles

III Finding the points of intersection of a line and a circle
IV Finding the point of intersection of two lines.
It is obvious that the first two problems offer no difficulty since our

instruments are the compasses. It is necessary, however, to make some
convention about the meaning of a straight line, since a straight line
cannot be drawn with compasses alone. We will say that a straight line
is given if two of its points are given. It must be possible, however, to
find as many points on the line so given as we desire. The solution of
this problem is easy and will be made clear in the rest of the article.

We must therefore show that it is possible to solve problems III and
IV with the compasses alone. The solution of these two problems, as
well as many other Mascheronian constructions, can be simplified con-
siderably by introducing the theory of inversions. However, since that
theory is not a usual part of elementary geometry, we will give the con-
structions and solutions that do not explicitly involve this theory. The
reader may consult Courant or Yates (see the bibliography) for the
constructions by use of inversions. We will conclude with additional
problemssome worked out and others merely proposed.

SOLUTION OF PROBLEM III

Problem: To find the points of intersection of a line and a circle
Case 1: Given circle 0 with radius r and a line defined by points A and
B, where A and B are not collinear with 0.

8
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A

FIGURE 1

Construction:
1. With A as center and radius A0 draw an arc through 0 (problem I).
2. With B as center and radius BO draw an arc through 0 (problem I).
3. Determine 0' point of intersection of these two circles (problem II).
4. With 0' as center and radius r intersect circle 0 in X and X' (prob-

lems I and II).
Points X and X' are the required points of intersection.

Proof:
AO = AO' ,B0 = BO'

by construction.
AB is the perpendicular bisector of 00'. (Two points equally distant

from the ends of a line segment determine . . .)

OX = O'X, OX' = O'X'
by construction.

X and X' lie on AB. (Points equally distant from the ends of a line lie
on the perpendicular bisector.)
Case 2: Given circle 0 with radius r, and a line through the center of the
circle and determined by A and 0.

We can draw the arc of an arbitrary circle with center A and inter-
secting circle 0 in points B and C (Problems I and II).

It is clear that the midpoints of the arcs BC are the required points.
Therefore, if we succeed in bisecting an arc we have solved the prob-

lem.

9
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FIGURE 2

A

Auxiliary problem lila:To bisect an arc of a circle
Given: Arc BC with center 0 and radius r
To find: X, the midpoint of arc BC

Construction:
With B and C as centers and radius r draw arcs DO and OE.
Construct OD = OE = BC.
Determine point F such that

DF = EF = CD (= BE).

FIGURE 3

With OF as radius and D (or E) as center cut arc BC in X.
Point X is the required midpoint of arc BC.

10
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Proof:
Since BC = DO and BD = OC, BC is parallel to DO.
Since BC = OE and BO = CE, BC is parallel to OE.
Therefore, D, 0, E are collinear.
Since DO = OE and DF = EF, OF is the perpendicular bisector of

DE.

Therefore, OF is perpendicular to DC and OF bisects BC and arc DC.
It remains, therefore, to show that X lies on OE
To prove that X is on OF, we will show that ZXOE is a right angle.
We can do this by proving

EX" = OX2 + O.

Since CO is the median of triangle CDE,

4a2 = 25e2 +2(TE2 DE2.

Rut by construction DE =20E, DC = EF, OC = CE.

40C' =2EP 20C2 40E'
40E2+ 20C2 = 2EF2
20E' + OC' = EP

In right triangle OEF, "r2 = O + 67.2
2072 -3-- 672 = 5E2 --I- OP
0E1+ 0G2= O-F2.

Since X is on arc BC, OC OX: and OF = EX by construction,
OE + OX: = EX2.

We have now demonstrated that it is possible to bisect an arc, and,
thus, we can complete the solution of Problem III.

The complete construction may then be carried out as follows:
With center A and any radius (we have used the radius of the given

circle, for convenience) intersect circle 0 in points B and C.
With B and C as centers and radius BO draw arcs OD and OE.
With BC as radius and 0 as center intersect arcs OD and OE in D

and E.
With centers D and E and radius DC construct arcs intersecting in E

I I



FIGURE 4

With center E and radius OF intersect circle 0 in points X and X.
We can check our construction by cutting the circle 0 with a circle

with center D and radius OR

SOLUTION OF PROBLEM IV

Problem: lb find the in f intersection of two lines AB and CD

B' *D

P

FIGURE 5

12
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Construction:
Let us adopt the following notation: K(Y) is to mean: "A circle with

K as center and passing through Y and having therefore the radius Kl."
I. Find the symmetric B' of B with respect to CD. (Draw circles C(B)

and D(B) from which it follows:
a. DB' = DR and b. CB' = CB)
2. Find the symmetric B" of B' with respect to AB. (Draw circles A(B')

and B(B') from which it follows:
a. AR" = AB' and b. BE" = BB')
3. Find the symmetric B" of B with respect toBT". Draw circles BP(B)

and B"(B) from which it follows:
a. R'B" = B'B and b. B"B" = B"B)
4. Cut B(B') in P by B'"(B) and it follows:
a. B"B = B"P and b. BP = BB'
5. Cut N(B) in S by F(B) and it follows:
a. B'B B'S and b. PS = PB
6. Cut P(B) in X by S(B'") and it follows:
a. PB = PX and b. SR" = SX
X is the required point of intersection of AB and CD.

Proof :
It has to be proved that X lies on AB and on CD.
I. ByS) P(S)

2. SX = SB" by 6b
3. arc SX = arc SB"
4. ISBX = 1/2[arc SX]

ZSBB" = 1/2[arc SB"]
5. and ZSBX = ZSBB"

and X lies on BB"

(Since B'S = BB' [5a]. BB' = PB [4b],
PB = PS [5b])

6. AR is the perpendicular bisector of B'B" by 2 above.

7. B"B'" =
(Since B"B" =B"B [3b], B"B'

B'B [3a], B"B = B'B [2b])
8. Therefore, X lies on AB.
9. Triangles R"BP and XBP are isosceles and have ZXBP in com-

mon. (B" B = B"P [4a], PX = PB [6a]).
10. Triangles B"BP and XBP are similar.
11. BB":PB = PB:BX

13
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12. BB"':BB' = BB':BX, by substitution in 4b.
13. LB"'BB'= LXBB', by identity.
14. Triangles B"BB' and PXB' are similar.
15. But triangle B"'BB' is isosceles, by Sa.
16. Therefore, triangle BXB' is isosceles and BX = B'X.
17. And since CD is the perpendicular bisector of BB' (by 1),
18. X must lie on CD, and X is the point of intersection of AB and CD.

MISCELLANEOUS PROBLEMS

1. To bisect a line segment.

Given: Line segment AB.

Construction:
Draw circles A(B) and B(A).
On circle B(A) find point C diametrically opposite to A. (Mark off

AB on B(A) three times.)

FIGURE 6

Draw arc with C(A) intersecting A(B) in D and E.
Draw D(A) and E(A) intersecting in E F is the required point.

Proof;
Since AD = AE, CD = CE and DF = EF, AC is the perpendicular

bisector of DE and F lies on CA.'
Isosceles triangles ADF and CAD are similar.

14



Therefore

or

and

CA:AD = AD:AF

2A8:AB = AB:AF

AB =2AE
2. To construct a regular pentagon

A

FIGURE 7

Xx

Construction:
Take any point on circle O.
Find point D diametrically opposite to A.
Find F. the midpoint of arc BC. (See auxiliary construction in the

solution of Problem III above.)
From F mark off points G, H so that FG = FH = AO.
Find point Y so that GY = HY = OX = (AF).
Then AY is the side of the required pentagon.
The proof is left for the reader.

$. To construct a line through a given point parallel to a given line.
4. To erect a perpendicular to a given line at one extremity of the

given line.
5. To drop a perpendicular to a given line from a given point outside

the given line.
6. To construct the fourth proportional to three given line segments.

15
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7. To construct the mean proportional between two given line seg-
ments.

8. To construct the tangents to a given circle from a given external
point.

9. To find the center of a given circle. (This is called Napoleon's
problem. Napoleon is reported to have challenged Mascheroni to solve
this problem. and Mascheroni succeeded with a very elegant solution.)
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FO REWO RD

One does not ordinarily associate the name of Napoleon with the
development of mathematics, yet he is supposed to have said that the
advance and perfecting of mathematics are closely related to the pros-
perity of a rotion. Suffice it to say that Napoleon did have contacts with
a number or mathematicians, including Monge, Fourier, Poncelet, and
Mascheroni. h is the latter in whom we are here interested. When
Lorenzo Mascheroni in 1797 published his celebrated Geometria del
Compasso, he proved that any construction that can be _performed with
the straightedge and compasses could also be executed with the com-
passes alone. To be sure, no straight lines appear in such constructions;
points are not determined by the intersection of the two straight lines;
a straight line is regarded as having been "constructed" or obtained
when the locations of the two points lying on the line are known. All
constructions are made with the compasses, but without restriction to
a fixed radius.

Mascheroni asserted that such constructions with compasses alone
were more accurate than those involving the use of a straightedge as
well. It was Napoleon who proposed to French mathematicians the
problem of dividing a circle into four equal parts by using only the
compasses; Mascheroni solved the problem by applying the radius three
times to the circle.

About a century later, the famous Viennese geometer August Adler,
in his Theorie der Geometrischen Konstruktionen, proved that Mas-
cheroni's claims were correct, namely, that all Euclidean constructions
can be carried out by the use of the Euclidean compasses alone. How-
ever, in so doing, Adler used the idea of inversion of a circle, a concept
unknown to Mascheroni, having been put forth by Jacob Steiner in
1824. Other mathematicians, including E. W. Hobson and H. P Hudson,
have also corroborated and contributed to Maschtroni geometry. It is
also of interest to note that in 1822 Poncelet proved that all construc-
tions possible with Euclidean tools can be performed with the straight-
edge alone, if we are given a fixed circle with its center in the plane of
construction.
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Mascheroni Constructions
By N. A. Court

In a recent issue Of THE MATHEMATICS TEACHER,' Dr. J. H. Hlavaty
called attention to the curious so-called Mascheroni constructions, or
geometric constructions with compasses alone. The readers of Dr.
Hlavaty's attractive article may be interested in some supplementary
notes of a historical and bibliographical nature.

A BYPRODUCT OF THE MASCHERONI CONSTRUCTIONS

Plato enjoined seekers after geometrical knowledge to carry out their
geometric constructions with only an unmarked ruler and compasses.
What prompted such a restriction is an open question which has led
to considerable speculation. It seems certain, however, that it never
occurred to the great philosopher that such a seemingly innocent limi-
tation imposed upon the permissible construction tools could possibly
have a bearing upon the nature of the problems which can then be
solved. For example, the Greek geometers soon discovered that they
could devise a number of methods for the trisection of an angle if they
disregarded Plato's restriction, but they were never able to solve that
problem while complying with the restriction. They came to the con-
elusion that Plato's restriction was a severe handicap at times, though
this, of course, did not show that a "legitimate" solution of the trisection
problem could not be found. This view was shared by succeeding gen-
erations of mathematicians, and for about two thousand years geometers
awaited the genius who would finally conquer the trisection problem,
only finally to discover that this "messiah" will never come.

By outbidding Plato in "puritanism:' Mascheroni brought the ques-
tion of the role of construction tools in geometry to the fore at a time
that was ripe and ready to deal with it. The matter was taken up by
Ponce let (1788.4867), Steiner (1796-1867), and others. These prelim-
inary studies paved the way for Gauss (1777-1855), who finally provided
the definitive answer to the question concerning which problems can
and which cannot be solved with ruler and compasses.

No. 7 (November 1957).
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GEORG MOHR

Strictly speaking, the term "Mascheroni construction" is a misnomer,
for the Italian mathematician was not the first one to discard the ruler
and to carry out geometrical constructions with the compasses alone;
he was anticipated 125 years earlier by a Danish mathematician named
Georg Mohr. In 1672, Mohr simultaneously published, in Amsterdam,
a Dutch edition and a Danish edition of a book bearing the title Euclides
Danicus. This book contains Mascheroni's basic result and a goodly
number of his pmblems.

Very little is known about Georg Mohr. He was born in 1640 in Copen-
hagen, and it is surmised that like many of his Scandinavian contempo-
raries he left Denmark to study at the then flourishing Dutch universities.
No other writings of Mohr are known. Leibniz, in a letter daeed May 12,
1676, and addressed to H. Oldenburg, then secretary of the Royal
Society of London, refers to "Georgius Mohr Danus in Geometria et
Analysi versatissimus" ("the Dane Georg Mohr very well versed in
geometry and ana1ysis").2

The contemporaries of Mohr may have known a good deal more
about him than we do now, but they appear to have paid little attention
to his Eurlides Danicus. In fact, the book seems to have passed itirely
unnoticed. Bibliographical references to this work are very scant, and
those extant seem to take the book for some kind of compilat m of
Euclid's Elements. A copy of the Danish edition of the Euclides L licus
came to light only very recently, and by sheer accident, when a Danish
student happened upon the book in a secondhand bookshop. He showed
the book, for appraisal, to his reacher, Professor Johannes Hjehnslev of
the University of Copenhagen. The latter, realizing the book's historical
importance. published a facsimile copy of it together with a German
translation, Georg Mohr, Eurlides Danicus, Amsterdam , 1627 , in Copen-
hagen in 1928.

Strange as may be the reappearance of a book which was ignored for
more than two and a haif centuries, this find does not in any way detract
from the merits of Mascheroni's work. At the time the Italian mathe-
matician wrote his Geometria del corapasso, nobody knew anything
about either Mohr or his book. Mascheroni concludes the preface to his
renowned book with the explicit statement that he knows of no work of
the same kind as his, and there is not the slightest grolind for doubting
his word.

'C.. I. (;erhatilt. tribnizeris Mathemathrh. cf hriften (BerIin). I (1549). 5$.
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MATHEMATICIAN AND POET

Mascheroni's fame as a mathematician is largely based on his Geo-
metria del compasso, but not exclusively so; he is also the author of several
other books. The author of the article on Mischeroni ing'the Great Soviet
Encyclopedia,3 now approaching completion, credits the Italian mathe-
matician with having been the first to introduce into mathematical
analysis the sine integral and the cosine integral, that is, the functions

la(sin t dt)1 t and f (cos t dt)/ t.

In addition to being a gifted mathematician, Mascheroni was also a
talented poet a rather rare combination. To consider him as "the great-
est poet among mathematicians" is to belittle him, for li:erary men are
just as eager to claim him as one of their own as mathematicians are to
consider him as belonging to their clan. The articles devoted to Mas-
cheroni in the French Grande Encyclopedic' and the Enciclopedia Ita-
lian& characterize him as both "mathematician and poet:' Moreover,
both articles were written, not by mathematicians, but by professors of
literature. There is more than one edition of Mascheroni's collected
poetical works,

NAPOLEON

Although a member of a monastic order, Mascheroni had sympathy
for the French Revolution and was a great admirer of Napoleon. The
book Problemi per gli agrirnensori or Problems for Surveyors, which
Mascheroni published in 1793, included a dedication, in verse, to Na-
poleon. During Napoleon's campaign in northern Italy, the two men
became acquainted with one another, and the successful general learned
directly from the Italian scholar about the latter's geometrical discov-
eries. When, shortly after that, Mascheroni published his Geometria del
rompasso, he made use of his poetic talent to place at the head of his
work a dedicatory ode to Napoleon. a poem of considerable literary
merit. Napoleon. on his part. repaid his friend by being instrumental
in bringing the author's work to the attention of the learned circles of
France.

There is, in this connection, a historically authenticated anecdote
that is worth relating. In December of 1797 there took place in Paris a
brilliant gathering of prominent writers and scholars, with the immortal

'XXVI, 425.
' XXIII, 560,
XXII. 496.

21

4 ,



Lagrange and Laplace among them. A most conspicuous member of
the company was the young and victorious General Napoleon Bonaparte,
who happened to be a former pupil of Laplace in a military school. In
the course of the evening, the victor at Arco le and Rivoli had occasion
to entertain Lagrange and Laplace with a kind of solution of some prob-
lems of elementary geometry that was completely unfamiliar to either
of the two world-famous mathematicians. Legend has it that after having
listened tc the young man for a considerable while, Laplace, somewhat
peeved, remarked, "General, we expected everything of you, except les-
sons in geometry:'

Echoes of the above conversation prompted the young A. M. Carette,
who had just graduated from the famous Ecole Polytechnique founded
by Gaspard Mange (1746-1818), to translate Mascheroni's book into
French. The translation was published in 1798, one year after the orig-
inal had come off the press. Thirty years later, in 1828, Carette published
a second edition in which he included a biography of Mascheroni, but
the dedicatory poem to Napoleon was left out the political complexion
of France had changed.

EDITORIAL NOTE. There is reason to believe that the idea of undertaking geo-
metric constructions with compasses alone was suggested to Mascheroni by the
earlier work of Giambattista Benedetti r, 0-1590), a Venetian by birth, who
wrote on the geometry of so-called rusty cor,yasses, or compasses of fixed opening.
Such investigations seem first to have been considered with some success by the
Arabian mathematician Abii'l-Wefi (940-998).

A German edition of Mascheroni's work, entitled I.. Mascheroni.s Gebrauch des
Zirkels, was prepared by J. P GrOson and brought out in Berlin in 1825. It is based
on Carette's 1798 French edition of the work. The subject is treated in English in
various places, for example: A. Cayley, Messenger of Mathematics, Vol. 14 (1885),
pp. 179-181; A. Cayley, Collected Papers, Vol. 12, pp. 314-317; E. W Hobson,
Mathematical Gazette, VoI. 7 (1913), pp. 49-54; H. P Hudson, Ruler and Com-
passes, Longmans Green and Company, Inc. (1916), reprinted in Squaring the
Circle and Other Monographs, Chelsea Publishing Company (1953), pp. 131-143;
J. L. Coolidge, Treatise on the Circle and Sphere, Clarendon Press (1916), pp. 186-
188. The work by Hudson gives not only Mascheroni's exposition, but also a more
modern treatment, due to A. Adler of Vienna, which employs geometric inversion.

A bibliography of Mascheroni's mathematical writings is given in L'Interme-
diarc des mathimatfriens, Vol. 19 (1912), p. 92. For a picture of Mascheroni, after
an engraving by E Redenti, from a drawing made from life, see D. F. Smith. His-
tory of Mathematics, Vol. I, Ginn and r.ompany (1923), p. 516. Here one can also
find reference to three Italian biographies of Mascheroni.

The particular problem, "to divide the circumference of a circle into four equal
parts by compasses only:' has become known as Napoleon's problem. Although
the solution to this problem appears in Mascheroni s work, it is narrated that
Napoleon proposed the problem to the French mathematicians.
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FOREWORD

We have already su ested the distinction between the Euclidean
compasses and modern compasses; the former is a collapsible instrument,
whereas with the modern compasses (with a set radius) not only can we
describe a circle (as with the Euclidean compasses), but we can also
carry a distance from one place to another, an operation which is properly
executed by an instrument known as the dividers.

Every operation that can be performed with straightedge and dividers
can be performed with straightedge and Euclidean compasses. The con-
verse is not true, however; the straightedge and dividers can do more
than the straightedge alone, but not as much as the straightedge and
Euclidean compasses.

Both Mascheroni and Adler showed how it is possible to avoid deter-
mining a point as the intersection of two straight lines. Naturally, if we
use the compasses only, a straight line cannot be "drawn" but it can be
determined: we consider it as having been "constructed" when two
points lying on the line are known or have been found. Once a line has
been so "constructed," it is also possible, still with the compasses alone,
to determine any other desired points on the line.

Mascheroni's methods are older than those of Adler. Since Mascheroni
freely used his compasses as dividers, his methods are often shorter. Thus
Mascheroni describes a given circle C(AB) in a single operation; Adler,
using Euclidean compasses, must use a construction using five circles
to accomplish the same result. However, Adler's methods are more
elegant and more powerful.
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Can We Outdo Mascheroni?
By Wm. FITCH CHENEY, JR.

DRENZO MASCHERONI was for many years professor of mathematics at
the University of Pavia (some twenty-two miles south of Milan), where
Christopher Columbus had once been a student. Mascheroni was an
Italian. He was born in 1750 and died in 1800. During his life, he pub-
lished a considerable number of mathematical writings, the best known
of which was his Geometry of the Compass, which first appeared in
1797. In it he showed how all standard constructions usually performed
with straightedge and compass could be carried out with the compass
alone. Mascheroni claimed that the compass was more accurate than the
straightedge, since few, if any, "straightedges" are really straight, and
they tend to skid more easily than a compass when in use.

Mascheron; -.zed the "Modern Compase,' which retained its setting
when lifted from the paper, rather than the more elegant "Classical
Euclidean Compass of the Greeke,' which would close up if either point
was raised from the drawing surface. In his constructions, Mascheroni
frequently reflected points across lines, but did not know of inversion,
which was discovered by Steiner in 1824, and was later named by Liou-
vile "the Transformation by Reciprocal

As is well known, the mechanics of reflecting the point, P, across the
Iine, AB, consists in swinging two classical arcs through P, centered at
A and B respectively, until they meet again at P. Inversion, on the other
hand, replaces P by Q on the same produced radius of the inversion circle
centered at 0, such that the radius, r, of that circle is the geometric mean
of OP and 0Q. If OP = r, so does 0Q. If V2 r<OP, the mechanics of
inversion consists in drawing P o 0, (that is, the circle centered at P and
through 0), to intersect the inversion circle at S and T, and then reflect-
ing 0 across ST to Q. This construction is readily justified through the
similar isosceles triangles, SOP and OQS. It requires three classical arcs.
lf P is less than 1/2 r distant from 0, its distance from 0 must be doubled,
to P,, by letting 0 o P cut P o 0 at U and V, and Uo V cut P 0 0 at
P1. If P, is more than V2 r from 0, it is inverted to Q, by the process out-
lined above, and Q, then replaced by Q, twice as far from 0. If P, is not
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more than 1/2 r from 0, doubling must continue to P, which is. After
inverting P to (2, the distance of the latter from 0 must then be
doubled the same number of times to reach Q, the inverse of the original

To double any distance with compass only takes three classical arcs.
In 1890, Professor August Adter of Vienna published a book on The

Theory of Geometric Constructions, and devoted Chapter Three to the
consideration of Mascheroni's constructions. Professor Adler used the
classical compass throughout his work, and relied largely on inversion.
He could do evefything with the classical compass that Mascheroni could
do with his modern one.

Still later, in 1916, Hilda P Hudson published a book on Ruler and
Compasses (Longmans, Green and Co.), in Chapter Eight of which she
commented on the work of Mascheroni and Adler, and focused atten-
tion on the number of arcs necessary in their various ce Istructions, and
whether or not they were all classical. It is largely frc. the stimuli of
these publications that the present paper has been pt (Awed.

It is said that Napoleon Bonaparte delighted in stumping his engi-
neers with the problem of quadrisecting a given circumference with a
compass as the only tool. This problem is now generally known as "Na-
poleon's Problem:' although it had been known before Napoleon's time.
Mascheroni solved this problem by first stepping off the radius of the
given circle around its circumference to locate in succession the four
points, A, B, C and D, at 60° intervals. (See Fig. 1. In the figures of this
paper, all construction arcs are numbered in the order in which they are

FiouRE I

drawn.) Thus AD was a diameter. Re then let A 0 C cut D o B at E
and E If the center of the given circle was called 0, he then swung an
arc centered at A and with radius equal to OE, to cut 0 0 A at G and H.
This resulted in the arcs, AN = HD = DG = GA = 90°. lb justify this
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construction, note that in triangle AOC the cosine law tells us that AC =
rNa. The law of Pythagoras applied to right triangle AOE makes
OE = rx/Y and in any circle, rla is the length of the chord to subtend
a 90° arc. This construction of Mascheroni to solve Napoleon's Problem
requires six arcs, the last of which is necessarily modern.

If we wished to solve Napoleon's Problem with the classical compass,
we could replace Mascheroni's last step by reflecting E across BB' to E'
and drawing A o E' to cut 0 0 A at G and H. (Here B' is the other
point of intersection of 0 o A with A o 0. See Fig. 2.) This quadrisects

FIGURE 2

the circumference with eight classical arcs. However, we note that the
circle 0 o E completes the quadrisection of circle B o 0, with the point
diametrically opposite 0 lying on A o C. Hence we may assume that
B o 0 is given, (see Fig. 3), and construct in turn 0 o B, C 0 B, A o C,
D o B and 0 o E to quadrisect B o 0 by the points, 0, P. Q and R.
This requires only five arcs, and they are all five classical. (It is of inter-
est in passing to note that this construction simultaneously quadrisects
the circumference of C o 0.)

A second and ancient problem solved by Mascheroni with compass
only. was to construct the lengths of the sides, d and p, of the regular
decagon and pentagon inscriptible in a given circle, whose radius may
be taken as unit of measure. Mascheroni first quadrisected the given
circle, 0 o A, as described above. (See Fig. 4.) He then let G o 0 cut
0 o A at and K so that arcs AJ JB BG = CC CK KD 30`'.
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FIGURE 3

Finally he let Jo C CUt K o B inside 0 o A at L. This construction
makes OL = d and AL = p, as is shown in the following paragraphs.

If, in a circle of unit radius, we inscribe a regular decagon of side d,
then one side and two radii to its ends form an isosceles triangle, ABO,
whose angles are 36°, 72° and 72°. (See Fig. 5.) If AC bisects angle A,
then triapgles ABC and A CO are isosceles, with triangle ABC similar to
triangle ABO. From this similarity arises the quadratic equation, d2
d = I, whose positive root is the famous Fibonacci ratio, (Vs 1)/2.
Now in Figure 4, the sides of triangle JKL are by construction Vg, \PZ
and 12. Hence its altitude from L is 1/2V'5, and LO = 1/21§ 1/2 = d.

Since connecting alternate vertices in a regular decagon produces a
regular pentagon, we see that the perpendicular from A to BC, in Figure
5, would bisect it at M. Then AM = Y2 p and MC = 1/2(1 d). In the
right triangle, AMC, AM2 4- MC2 = AC', or p2/4 + (1 - (2)2/4 = ci3.
Since d = I d' this reduces to p2 = I + d3, so that p is the hypothenuse
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of a right triangle whose legs are I and d. But in Figure 4, ALO is a right
triangle with legs 1 and d, so its hypothenuse, AL = p.

FIGURE 6

In this construction, Mascheroni used a total of nine arcs, one of which
was modern. Figure 6 illustrates an alternative construction to improve
on this plethora. With 0 0 A given, let A 0 0 cut 0 0 A at 13 and C. Let
B 0 0 meet A 0 0 again at A and meet 0 o A again at E. Let G o B meet
0 A again at F, and meet D 0 at G and H. Then A G meets 0 0 A at
P and (2, such that arcs AQ= QF = FP PA = 90°. LetPoO meet
0 o A at R and S, and let E R meet A oG inside 0 0 A at T: Then
OT = d and ST = p. In this construction, all the arcs used are dassical,
and there are only seven of them.
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A third fundamental compass construction contributed by Mascheroni
was the location with compass only of the midpoint of an arbitrary arc
of a given circle with known center. (See Fig. 7.) When given the arc

FIGURE 7

AB on 0 0 A, he would first draw A 0 0 and B 0, and cut them at C and
D respectively by a circle centered at 0 and with radius equal to chord
AB, so that CD was a diameter of this last circle. He then let C o B cut
D 0 A at E. Lastly he swung an arc centered at C, with radius equal to
OE, to cut arc AB of 0 o A at M. This required only six construction
arcs, but the third and sixth of these necessitated the use of a modern
compass. To justify this construction, let OA =1 and AB = CO = OD =s.
Now if M is the midpoint of arc AB, COM is a right triangle of legs s
and I, so that CM = VITT. Now if H is the midpoint of CO, the alti-
tude HA of isosceles triangle CO A is /f s214, and it is also the altitude
of right triangle HDA, whose base is 3s/2. Thus AD=V1s214+9.5214=

+ 2r .----- DE. Finally, in right triangle ODE, OE = 2.s2 $2 =
1117--f-$2 = CM, as desired.

Hilda Hudson solves this same problem entirely with classical arcs,
for which she specifies the number necessary as fourteen. The following
construction effects a definite reduction from that number. (See Fig. 8.)
Assume that arc AB is given on 0 0 A. Let A 0 0 cut 0 o A at C. Let
(;oacutA oOatD.LetOoDcutAoQatE.LetBoOcutOoDatE
Let F o A cut E o B at G, and cut 0 o A at H. Reflect G across AH to K.
Then E a K bisects arc AB at M. All of the arcs used in this construction
are classical, and there are only nine of them.

Mascheroni pointed out that all geometrical constructions ordinarily
made with straightedge and compass were reducible to the location of
a series of points found by the intersections of lines and, or, circles. Con-
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structing the intersection of two circles is obviously independent of the
use of a straightedge. The intersections of the line AB (determined by
the two points. A and B) with the circle C o D, he determined by reflect-
ing C ancl I) across AB to E and F respectively, and drawing E a F, which
must cut C a D in the desired points. This requires only five arcs, all of
which are classical. However, one arc, (and hence 20% of the work) may
be saved by the following trivially obvious procedure. First reflect C
acrossABtoE,theintersectionofd a C with B o C Let A a C cut C a D
at G . Let B a G cut A a C at II. Then E a H will cut C a D in the desired
points. It should be noted that if A, B and C are collinear, the reflection
of C a D across AB coincides with C a D, and hence fails to determine
the desired points of intersection. In this case the solution depends on
bisecting the two arcs into which A a D divides C a D, using a construc-
tion already presented in this paper.

The remaining obstacle to eliminating the necessity of the straightedge
in geometrical constructions is the location of the intersection of the
lines joining two given pairs of points. Mascheroni solved this problem
with eleven arcs, most of which were modern. Adler solved it by invert-
ing the two given lines with respect to an arbitrary circle, and then
reinverting the proper intersection point of the two corresponding
circles.° This construction' of Adler's used only classical circles, but

For the convenience of readers unfamiliar with invenion theory, the following proof is included
that all the points on a straight line go into all the points on a circle thru the center of inversion.
Assume that 0 o A is the inversion circle, that M is die foot of the perpendicular from 0 onto an
arbitrary line, and that P is an arbitrary point on that line. Let N be the inverse of Af, and Q
of P, so that OM ON = OQ OP, and triangles OQN and OMP are similar. Therefore OQ is per.
paidicular to Ng, and as P moves on the arbitrary given line, Q moves on the drcie whose diameter
is ON. Furthermore, if C is the center of this circle, OC = 1/2 ON = 1 /(2 OM), so that C may be
found by reflecting 0 across the given line and inverting the resulting point.
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according to Hilda Hudson, it took thirty-six of them in the general
case. She reduced this number to sixteen by her construction. The pres-
ent paper effects a further reduction. (See Fig. 9.)

FIGURE 9

If the two given lines are AB and CD, their point of intersection, X,
may be located as follows. Reflect A across CD to E. Reflect E across
AB to E Reflect A across EF to G. Let G o A cut A o E at H and I. Then
reflecting A across HI will give X, the desired point of intersection of
AB and CD. The justification of this construction lies in the facts that
a line inverts into a circle through the center of inversion, and that its
center is the inverse of the reflection of the center of inversion across
that line. (See footnote.) In the construction of this paragraph, the inver-
sion circle is A o E, which coincides with A o E The inverse of the line
CD is E 0 A. If C and D were both reflected across AB, the resulting
line, CD', would cut CD at X, and its inverse circle would, by symmetry,
be F o A. But E A cuts F A at G, whose inverse must thus be X.

If AB is perpendicular to CD, the above procedure breaks down be-
cause F coincides with E. But then A o E cuts E o A at IC and L, o
cuts E o A at G, and X is found from G as before. At the most then, by
the constructions just described, the intersection of two general lines
may be determined by only nine arcs, all of which are classical.

The table compares the numbers of arcs used for the constructions
cited. There is a challenge in the fact that further simplifications have
not in all cases been proved impossible.
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The problems cited above arc basic. Many similar problems admit of
fascinating short cuts, usually within the comprehension of the best
high school students. Their investigation, where time permits, provides
both a valuable review of fundamental geometrical facts and a strong
stimulus to further study..

The problem
Number of am used

by Mascheroni,
admitting modern

ones

Least previously pub.
lished number of

am, using classical
am exclusively

Minimum number of
am in this laaper.
using classical arta

evclusively

Napoleon's
Constructing sides of inscribed

8 5

decagon and pentagon 9 11 7
Bisecting an Arc 6 14 9

Intenettion of general line and
cIrcle 5 5 4

Intersection of two general
uraight lines 11 16 9
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FOR FURTHER READING AND STUDY

Some of the following references pertain to geometric CO liStrui ions in general as
well as to Mascheroni geometry.
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Giischen, 1906. gir - 0-
AM:1-IMAM, R. C. Construction with a double-edged ruler. Amrrican Mathrrnaticul

Monthly 25:358-360; 1918.
BECKER. J. P On solutions of geometrical constructions utiliiing the compasses

alone. Mathematics Teacher 57:398-403; October 1964.
CARNAHA?V. WALTEst. Compass geometry. School Science and Mathematics 32:384-

390; 1932.

CARNAHAN. WALTER. Geometric constructisms without the compasses. School
Science and Mathematics 36:182-189; 1936.

Ev Es, H. antl HtiCGATT, V. Euclidean constructions with well-defined intersections.
Mathematics Macher 44:262-263; 1951.

Gounwito. M. All geometric constructions may be made with cc mpasses. School
Science arid Mathematics 25:961-965; 1925.

HALLEMBERG, ARTHUR. The geometry of the fixed-compass. Mathematics Teacher
52:230-244; April, 1959.

HEss, A. L. Certain topics related to constructions with straightedge and compasses.
Mathematics Magazine 29:217-221; 1956.

HtTusoN, H. P Ruler and Cifinpasses, New York: Chelsea Publishing Company,
1953: pp. 131-143.

KOS-10VMM, A. N. Geometrical Cons urtions Using Compasses Only. New York:
Blaisdell Publishing Co., 1959.

LANASCOL, A. QuEMPEst DE. Gtiomitrie do Compas. Paris: Librairie Scientifique,
Albert Blam.hard, 1925. P. 406.

MILLS, C. N. The problem of Napoleon. Mathematics Teacher 46:344-345; 1953.
SMOGORZHEVSK11, A. S. The Ruler in Geometrhol Constructions, New York: Blais-

dell Publishing Co., 1961.
STEINER, JACO& Geometrical Constructions with a Ruler, Given a Fixed Circle with

Its Center. New York: Scripta Mathematira (Yeshiva University), 1950. p. 88.
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