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PREFACE
Mathematics is a magnificent cultural heritage. Although its origins are

obscure, it is presumably one of the oldest concerns of man, reaching back into
time by some six thou.sand years. Next to the invention of language itself,
the creation of mathematics is without doubt the most subtle, powerful, and
significant achievement of the human-mind.

Just what is mathematics? This is more easily asked than answered, at
least in any brief sort of way. Mathematics has been described as the "science
of self-evident truths"; it has been called the "science which draws necessary
conclusions"; it has been defined as the "universal art apodeictic." Bertrand
Russell's celebrated characterization of mathematics as the "subject in which we
do not know what we are talking about or whether what we say is true" is
illuminating if it is not misinterpreted. The late Edward Kasner, in his whim-
sical way, called mathematics the science "that uses easy words for hard ideas."

A sophisticated observer might say that mathematics is what a mathema-
tician does. But what does a mathematician do? Or we might ask: How does he
go about doing whatever it is that he does? Why does he do these things? Who
really cares what a mathematician does? You will find some answers to these
questions in the essays that follow. But we should like to give you a bit of
perspective first.

You must realize that mathematics has had a long history and that it is a
far cry from pre-Babylonian mathematics to the mathematics of today. Further-
more, during this long span there were many "ups and downs." There were
barren gaps and intervals of stagnation, as well as brilliant break-throughs and
lucid periods of creativity. In this connection, there are several ways of regard-
ing the development of mathematics. The conventional interpretation suggests
that this development has been an evolutionary process in which successive
generations of mathematicians built upon the contributions of their predecessors
without tearing down what had gone before (Hankel ). A less conventional
viewpoint, suggested by Spengler in his Decline of the W est. holds that there
never was a "continuous growth" of a single discipline called mather,. :ics;
what seems to be the development of a single broad subject actually is a p;..ral-
ity of independent mathematicts ). Each new and independent mathematic
follows another, not by building upon its predecessor, but by repudiating it
and reflecting a subsequent alien culture.

Perhaps a more realistic approach than either of these is that suggested
by E. T. Bell, namely, a series of rather distinct epochs, each of which grew
by expansion or extension out of the "residue" of the previous epoch. Professor
Bell has indicated seven such major epochs, together with newer concepts or
more powerful tools which survived from the earlier period and heralded the
beginning of the next epoch.

Be that as it may, we are here concerned with the nature of mathematics
as we know it today. Stared very briefly and by no means completely, contem-
porary mathematics is characterized by its sweeping generalizations; its pure
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abstractions; its succinct symbolism; its precisicm of language; its ideals of
rigorous thinking; and above all, its prime concern with patterns of ideas, with
the structure of forms, and with the qualities of relationships. The essence of
mathematics is that, unlike the physical sciencep, it is wholly "man-made",
being essentially independent of the external world. In this sense, it is an art
at uot a science.

What is described in these essays is the mathematics of today. What of the
mathematics of tomorrow? It has been suggested by Bell that we may find it
necessary to give up the idea of "one all-inclusive kind of mathematics." We
may have to abandon the concept of the continuous and embrace the discrete
in mathematics. What such mathematics will be like, nobody can foretell: "the
mathematics of the twenty-first century may be so different from that of the
twentieth century that it will scarcely be recognized as mathematics."
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FOREWORD
If one may be allowed a slight oversimplification, modern mathematics is

characerized largely by its concern for abtract structures, while mathematics
prior to the nineteenth century leaned somewhat more heavily on intuition. Yet,
as pointed out in the present essay, the interplay of intuitive consklerations and
abstract formulations has proved exceedingly fruitfuL

In this discussion of the nature of mathematics, the author appropriately
comments upon the relation of mathematics to science (a matter which is again
discussed in the second essay). The question has often been raised: How is it
that mathematics so "aptly" describes Nature? Some years ago, Heisenberg
gave an illuminating answer:

"On the one hand, mathematics is a study of certain aspects of
the human thinking process; on the other hand, when we make
ourselves master of a physical situation, we so arrange the data as to
conform to the demands of our thinking process. It would seem
probable, therefore, that merely in arranging the subject in a form
suitable for discussion we have already introduced the mathematics

the mathematics is unavoidably introduced by our treatment, and
it is inevitable that mathematical principles appear to rule nature."

Perhaps one of the most perceptive observations made in this connection
-all made over a quarter of a century ago by J. W. N. Sullivan in the follow-

ing words:
The significance of mathematics resides precisely in the fact

that it is an art; by informing us of the nature of our own minds it
informs us of much that depends on our minds. It does not enable us
to explore some remote region of the eternally existent; it helps to
show us how far what exists depends upon the way in which we exist.
We izi!! the law-givers of the universe; it is even possible that we can
experience nothing but what we have created, and that the greatest
of our mathematical creations is the material universe itself.

We return thus to a sort of inverted Pythagorean outlook.
Mathematics is of profound significance in the universe, not because
it exhibits principles that we obey but because it exhibits principles
that we impose.
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The Nature Of Mathematics
Both Qmstructive Intuition and the Study of Abstract
Structures Characterize the Growth of Mathematics.

MINA REES

Some of the most neted mathematicians and philosophers have addressed
themselves to a discussion of the nature ot mathematics, and I can hope to adcl
very little to the ideas they have expressed and the insights they have given;
but I shall attempt to draw together some of their ideas and to view the issues
in the perspective that seems to me appropriate to the present state of mathe-
matical scholarship, raking account of the great increases that have been taking
place in the body of mathematical learning, and of the changes in viewpoint
toward the old and basic knowledge that grow out of deepg understandings
brought about by generations of mathematical research.

In discussions of this subject we find a sharp difference in the views of able
mathematicians. This reflects the concern of some that the trend toward ab-
straction has gone too far, and the insistence of others that this trend is the
essence of the great vitality of present-day mathematics. On one thing, however,
mathematicians would probably agree: that there are and have been, at least
since the time of Euclid, two antithetical forces at work in mathematics. These
may be viewed in the great periods of mathematical development, one of them
moving in the iirection of "constructive invention, of directing and motivating
intuition" (1), the other adhering to the ideal of precision and rigorous proof
that made its appearance in Greek mathematics and has been extensively de-
veloped during the 19th and 20th centuries.

The first position, that the emphasis on abstraction has gone too far, is
presented by Courant and Robbins in What Is Mathematics? though their
position is modified by their recognition of the power of the axiomatic method
and the deep insights it has made possible. They say, in part (I ): "A serious threat
to the very life of science is implied in the assertion that mathematics is nothing
but a system of conclusions drawn from definitions and postulates that must be
consistent but otherwise may be created by the free will of the mathematician.
If this description were accurate, mathematics could not attract any intelligent
perLt,a. It would be a game with definitions, rules and syllogisms, without
motivation or goal. The notion that the intellect can create meaningful postula-
tional systems at its whim is a deceptive half-truth. Only under the discipline of
responsibility to the organic whole, only guided by intrinsic necessity, can the
free mind achieve results of scientific value."

The second point of view is represented classically by Bertrand Russell's
famous definition of mathematics as the "subject in which we do not know what
we are talking about or whetter what we say is true." Of this view Marshall
Stone has this to say (2): " A modern mathematician would prefer the positive
characterization of his subject as the study of general abstract systems, each one
of which is an edifice built of specified aixtract elements and structured by the
presence of arbitrary but unambiguously specified relations among them." Stone
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says in two other passages (3): "While several important changes have taken
place since 1900 in our conception of mathematics or in our points of view
concerning it, the one which truly involves a revolution in ideas is the discovery
that mathematics is entirely independent of the physical world . . At the same
time . mathematical systems can often usefully serve as models for portions
of reality, thus providing the buis for a theoretical analysis of relations observed
in the phenomenal world." "Indeed, it is becoming clearer and clearer every
day that mathematics has to be regarded as the corner-stone of all scientific
thinking and hence of the intricately articulated technological society we are
busily engaged in building?

In the history of mathematics the emphasis in research is sometimes on
constructive intuition and the acquisitimi of results without too much concern
for the strict demands of logic, sometimes on the insights pined by the identi-
fication and study of abstract systems within a carefully designed logical frame-
work. But over the years the body of mathematics moves forward inevitably
with growth in both directions. An individual mathematician chooses to work
on one frontier or the other and the emphasis changes from one period to
another, but mathematics as a whole and the community of mathematicians
have their obligation to the total spectrum. For mathematics is the servant as
well as the queen of the sciences, and she weaves a rich fabric of creative theory,
which is often inspired by observations in the phenomenal world but is also
inspired often by a creative insight that recognizes identical mathematical struc-
tures in dissimilar realizations by stripping the realizations of their substance
and concerning itself only with undefined objects and the rules governing their
relations.

As von Neumann has said (4): "h is a relatively good approximation to
truth . . . that mathematical ideas originate in empirics, although the genealogy
is sometimes long and obscure. But, once the. Ire conceived, the subject begins
to live a peculiar life of its own and is better compared to a creative one, gov-
erned by almost entirely aesthetical motivations."

EUCLID AND THE PARALLEL POSTULATE
With this introduction, it will be useful to consider briefly those episodes

in the history of mathematics that play a decisive role in the development and
understanding of this dichotomy. The Greeks made fundamental contributions
in parts of mathematics other than geometry; in addition to Archimede's wide-
ranging interest in applications, I cite only Euclid in number theory and
Eudoxus in analysis. But the failure of the Greeks to develop adequate symbols
with which to express many of their ideas made their treatment of these subjeca
cumbersome. Through Euclid's Eloosswil, however, they contritiuted to math&
matics the ideal of the development of a body of knowledge proved by logical
deduction on the basis of a limited number of axioms, a concept that has exer-
cised enormous influence.

One of the greatest of Euclid's contributions to geometry was his recog-
nition that the parallel postulate could not be derived from the others. For 2000
years after Euclid, the development of geometry is characterized by attempts

4

1 4,



to prove the earallel postulate. At last, in the time of Gauss at the beginning
of the 19th century, the problem was solved. And what a solution! A geometry
developed independently in Germany by Gauss, in Hungary by the Bolyais, and
in Russia by Lobatchevski in which this postulate does not hold, and in which
the sum of the angles of a triangle is less than 180 degrees. Interestingly enough,
Gauss's impulse was to check to determine whether our physical world (and
here he meant only tht earth on which we live) was described by Euclidean or
by this new non-Euclidean geometry. He found that his instruments were not
good enough to discriminate; but it is of some interest to recall that the non-
Euclidean geometry developed later by Riemann, in which the sum of the angles
of a triangle is greater than ISO degrees, was found by Einstein to provide
a satisfactory framework within which to develop his ideas of the physical
universe. In passing, it should be noted that the parallel postulate, unlike the
others, deals with lines that cannot be described by finite considerations. In-
finity early raised difficulties for mathematicians, and the subsequent develop-
ment of our subject sees infinity introducing new and exciting vistas, which,
however, are recurrently accompanied by logical problems that have caused
an upheaval in mathematical thought.

The successful denial of the parallel postulate the recognition that the
assumption of a contradictory postulate could be used as the basis for the descrip-
tion of a consistent geometry, one which in fact proved later to be useful in
describing the physical universe opened up a whole new world to mathema-
ticians. The requirement that axioms be self-evident became meaningless, and
in its stead were substituted the requirements of consistency and completeness.
Exploration of this new-found freedom in the choice of axioms led to the de-
velopment of many other kinds of abstract geometry, and, in algebra, there was
a veritable feast of new ideas, as new number systems were explored by varying
one axiom after another, or by recognizing, after the discovery of new systems,
that their essential structure could be described in terms of an axiom system
closely related to one that was well known but different from it in one or more
of its axioms. The axiomatic method has provided deep insights into mathe-
matics, disclosing identities where none had been suspected. In the hands of
mathematicians of genius this method has been used to strip away exterior
details that seem to distinguish two subjects and to disclose an identical structure
whose properties can be studied once for all and applied to the separate subjects.
Thus, if we consider three familiar ideas the addition of real numbers, the
multiplication of the numbers in a finite number field, and the result of per-
forming in succession two displacements in Euclidean space and, for all three,
study only the skeleton remaining when each is thought of as a set of abstract
elements with an appropriate law of combination, we quickly see that each can
be described as a group. And properties of the three may be studied together
by the axiomatic theory of groups. The nature of the elements is irrelevant to
the study of the properties that follow from the axioms.

The group is an example of one of the three basic mathematical structures
that we now recognize. It is one kind of so-called "algebraic" structure. The
other two basic structures are called "ordered" and "topological," and each can
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be described abstractly, the first concerning itself with a generalization of the
usual "less than or equal to" relation, the second with the notion of continuity.
Modern mathematics is increasingly concerned with systems that satisfy at once
the axioms for two different kinds of structure. An example of this is given by
the complex numbers. When at the beginning of the 19th century the great
discovery was made that wmplex numbers could be represented geometrically
in the Euclidean plane (a familiar topological space), all the available insights
about the plane could be used to gain familiarity with the nature of complex
numbers.

Many systems, such as the complex numbers, can be characterized by a
conjunction of the properties of two of the three kinds of basic structure. And
there are many contemporary mathematicians who are interested in the study
of known mathematical systems in terms of algebras, ordered systems, and
topological spaces.

FROM EUCLID TO GAUSS
In moving into a discussion of the axiomatic method, I omitted any men-

tion of the great eras of mathematical development from the time of Euclid
to the time of Gauss. But it was in this intervening period that a domain wide-
flung and vastly influential was conquered by mathematicians whose driving
to,ce was intuition and wnstruction, who ignored the axiomatic approach of
the Greeks and made brilliant leaps on the basis of intuition, analogy, and
guesswork. One need only mention the names of Descartes, Fermat, Pascal,
Newton, Leibnitz, and Euler to indicate the vast scientific territories that were
wnquered in the 16th and 17th centuries. Analytic geometry, many facets of
analysis and number theory, probability theory, and the calculus were initially
developed in these centuries ( 5). And later centuries have seen this kind of
mathematical discovery continue and expand. It is of interest that the con-
temporary French mathematician Hadamard takes the position that "the object
of mathematical rigor is to sanction and legitimize the conquests of intuition."
As we emphasize the deductive structure of our science and of acceptable
proof, let us not lose sight of the fact that many of the most significant results
that we prove were arrived at by guesswork, by intuition, by brilliant insight.

ROLE OF THE UNSOLVED PROBLEM
The role of the mathematical conjecture, of the unsolved problem in the

development ot mathematical ideas, should be pursued further. In perkxls of
great mathematical activity there has always been a lively interchange among
mathematicians. The long attempt to prove the parallel postulate and the
revolutionary impact of the discovery that it was independent of the others
have already been mentioned. Other great problems whose solutions were
decisive milestones in the history of mathematics are well known. The early as-
sumption that all ratios of lines are rational was disproved when the Pytha-
goreans established that the ratio of the diagonal of a square to its side is
irrational, or, as we would say, that the square root of 2 is irrational. With this
discovery the Pythagoreans introduced some of the bask problems of modern
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mathematical analysis the concept f the infinite, of limits and continuity. The
pursuit of nonalgebraic irrationals ,,as been carried on for centuries; many
aspects of the treatment of the infinite remain unresolved.

Another famous unsolved problem is the one usually referred as to Fer-
mat's last theorem. Actually Fermat, who was a mathematical genius of the
17th century although he was professionally a lawyer and public official, had
an intriguing way of announcing his results without stating his full proof,
particularly in the theory of numbers. Fermat's last theorem is stated on a margin
of his copy of the second book of Diophantus' Arithmetka, where he wrote,
after noting the solution in integers of the familiar eqc tion x + y' = at,
-On the contrary it is impossible to sepprate a cube inn, two cubes, a fourth
power into fourth powers, or, generally, any power above the second into two
powers of the same degree. ( In other words, the equation x" + y" = a' has
no solution in integers if n is greater than 2). I have discovered a truly mar-
velous demonstration which this margin is too narrow to contain."

This is the famous last theorem which he stated in 1637. Mathematicians
have been at work on this problem ever since that time. The attempts have not
been successful, but they have led to important advances in mathematical
knowledge. It was his work on this theorem that led Kumir .'r in the 19th
century to the introduction of ideals, with the consequent reestablishment for
algebraic integers of the fundamental theorem of arithmetic, the theorem that
assures the unique factorization of integers into primes, without which our
concept of integer sits most uncomfortably. The extension of Kummer's work
by Dedekind and Kronecker has been central to the development of modern
algebra. Nowadays we are apt to read in the newspaper about the solution of a
famous unsolved mathematical problem. For example, the New York Times
of 27 April 1959 carried an editorial called The mathematical age- that be-
gan: "Mathematicians made news twice last week as the solution of two his-
toric problems was announced at a meeting in this city. For most of us, no
doubt, the subjects of these two problems, automorphic finite groups and Latin
squares, are rather remote. But we are willing to take the word of professional
mathematicians that two important new steps have been taken across the
mathematical frontiers."

One of the Most famous sets of mathematical problems was formulated
by David Hilbert, the eminent German mathematician who died in the 1940's.
In his lecture at the International Congress of Mathematicians held in Paris in
1900 he described his now famous problems. Before stating his problems, Hil-
bert had this to say (6): "The great significance of specific problems for the ad-
vancement of mathematics in general, and the substantial role that such
problems play in the work of the individual mathematician are undeniable. As
long as a branch of science has an abundance of problems, it is full of life; the
lack of problems indicates atrophy or the cessation of independent development.
As with every human enterprise, so mathematical research needs problems.
Through the solution of problems, the ability of the researcher is strengthened.
He finds new methods and new points of view; he discovers wider and clearer
hori/ons:'

7



SEARCH FOR CONSISTENCY
One of the problems that Hilbert enunciated on this occasion was disposed

of in 1931 by Kurt Godel, now at the Institute for Advanced Study at Prince-
ton. Giidel's paper has been called one of the century's main contributions to
science, and something should be said of it. But first, let me put this problem
of Hilbert in its setting. The 19th century saw a great surge forward in mathe-
matical research. Gauss, one of the giants of all mathematical history, began to
change the whole appearance of mathematics. A fertile intuition, and inspired
mathematical inventiveness, combined with i concern for rigor, made Gauss's
contributions to mathematics of first importance in all the branches of mathe-
matics studied in his time in arithmetic or number theory (which he called
the Queen of Mathematics), in geometry, in analysis, in algebra. Indeed, Gauss's
work is an ornament of the whole of mathematics. In the 19th century mathe-
matics moved on many fronts, but one, in particular, was to introduce problems
that have even now not been solved. At the end of the 19th century George
Cantor introduced the notion of sets, a powerful new tool which, however, in
its 20th-century development has brought with it paradoxes and so-called antin-
omies that have undermined the confidence of mathematicians in classical
logical processes as they affect the infinite. A series .of paradoxes produced by
the type of reasoning used by Cantor in his theory of infinite sets led to a
critical examination of all mathematical reasoning. Whitehead and Russell, at
the beginning of the 20th century, tried to show that, by proper methods, we
can avoid the set-theoretic contradictions, and that all of mathematics can be
derived from logic. In this they failed, but their work has had tremendous in-
fluence. At about the same time the intuitionists, of whom the Dutch mathema-
tician Brouwer was a leader, tried ro avoid the contradictions introduced by
the use of classical logic by insisting that all proofs be constructive, that we
avoid the law of the Excluded Middle. This law is the basis for the method of
proof, familiar in high school geometry, that begins by assuming that the
desired result is not so and shows that this assumption leads to a contradiction.
The new methods avoided logical paradoxes, to be sure, but a great portion of
the mathematical results that had been found during the preceding centuries
could not be proved by the new constructive methods. Hilbert, who had
achieved eminence through the astonishing variety of his contributions to many
fields of mathematics, including algebra, analytic number theory, analysis, and
the foundations of geometry, himself began the search for a rigorous proof of
the consistency and completeness of one substantial part of mathematics such as
arithmetic. He sought to show that no two theorems deducible from the postu-
lates ran be mutually contradictory, and that every theorem of the system is
deducible from the postulates. In 1931 GOdel proved that Hilbert's search was
hopeless that it is impossible, within a sysrem broad enough to encompass
ordinary arithmetic, ever to prove the consistency of the system in question, and
that there is always a proposition of arithmetic which can be formulated within
the system that can neither be proved nor disproved by a finitv number of
logical deductions made in accordance with the procedures of the system.

The hazards in using much of classical mathematics have never been re-
moved. But there are certain results and concepts that mathematicians feel must
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be kept, either, as R. L Wilder says (7), "for application to physical problems
or, at the other extreme, for the building up of mathematical theory itself..
We find that in order to study the properties [of these concepts) which is

. necessary in order to improve their utility as mathematical tools we have
to augment the older methods of proof with new methods. And at this point
the old bugaboo of the mathematician rears its ugly head the fear that the
new methods may introduce contradictions. Here is where the mathematical
logician gers to work . . whenever we find that new concepts and methods
engender inconsistency, we shall, if the concepts seem to make for progress, try
to patch up our methods before we reject the concepts." The late E. H. Moore
is quoted as having said, "Sufficient unto the day is the rigor thereof."

LANGUAGE OF THE SCIENCES
Standards of logic change as mathematical research progresses, and we are

bound by the standards of our time. It is in the study of the properties of new
concepts, in the deeper understanding and mastery of older concepts, in the
development of technical facility in handling those that have been solidified
into theories that the enrichment of mathematics as the language of the sciences
lies. Such understanding and mastery constitute the distinctive contribution that
the mathematician brings to the increasingly many fields of physical and social
science and engineering in which mathematics is being used, and this mastery
must include the ability to recognize a mathematical concept in a concrete situa-
tion and trim it of its attributes so that it may be studied with mathematical
techniques. For mathematical 'concepts and techniques, derived solely because
of their interest and quite independently of possible use, have repeatedly proved
their usefulness. There is, for example, the application of matrix theory to
quantum mechanics, of topological results to nonlinear mechanics; there is the
use by Einstein in the general theory of relativity of the concepts developed by
Riemann in his treatment of non-Euclidean geometry; and there are other in-
stances too numerous to mention. The fact is that there is no field of mathe-
matics clearly marked as the only one appropriate for applications, and it is true
that the most unexpected applications of seemingly abstract and remote fields
have been found and are being found repeatedly. Moreover, problems arising
in the natural and social sciences continue to enrich the fabric of mathematics.
Seemingly all mathematics is the language of science. The critical facility, for
conversing in this language, is the ability to think of the problem, which is
usually presented in many frills like a lady in her Easter finery, in mathematical
form, to "construct the mathematical model," as we say. Once the trimmings
have been removed, the machinery of mathematics comes into play. This makes
it possible to derive mathematical theorems, results that can be translated back
into the original natural situation, so that their predictions can be checked
against experience. The final test of the suitability of the model is this checking
against the real world.

When the same prcxedure is used to study purely mathematical problems,
the jump to the theorems is often made by intuition, by analogy, by guess, with-
out the process of abstraction and model building. In practical problems it is



when such an intuitive guess cannot be made by the engineer or physicist that
the mathematician is consulted.

And now, as I conclude, let me state the major positions that seem to me
to emerge from considerations such as those I have set forth. They are these:

That mathematics is a language which must be learned and that the ar-
senal of techniques of mathematics must be mastered if we are to speak this
language.

That mathematics grows by the addition of new theorems, and that the
discovery of new theaems is made sometimes by insights furnished by in-
tuition, sometimes by insights provided by abstraction and the identification of
patterns.

That the proofs of theorems rely on the logic of their day, but that
mathematicians are constantly concerned to find the logic that makes the proofs
of needed theorems adequate.

That.mathematics is both inductive and deductive, needing, like poetry,
persons who are creative and have a sense of the beautiful for its surest progress.

That many of the problems of mathematics come from mathematics
itself, but that many more, at least in their earliest genesis, come from the
realities of the world in which we live.

That realms conquered by mathematics solely because of their intrinsic
interest to mathematicians have provided in the past, and continue to provide,
parts of the conceptual framework in which other scientists view their worlds.

That the process of abstraction and axiomatization has provided simpli-
fication and a deep understanding of the body of mathematical results and a
powerful tool for conquering new mathematical worlds.

REFERENCES AND NOTES

1. R. COURANT AND H. ROBBINS, W hat 1.1 Mathematics? New York: Oxford Univ. Press,
1941.

2. M. H. STONE, Liberal Educ. 47. No. II, 307, 1961.

3. , ibid. 305, 1961.

4. J. VON NEUMANN, in The World of Mathematics. J. R. NEWMAN, Ed. New York:
Simon and Schuster, 1956. vol. 4, p. 2063.

5. A number of examples, taken from the records of this period, of mathematical results
originally conjectured on the basis of observation and daring guess, and subsequently
proved, are described by GEORGE POLYA in his two-volume work Mathematics and
Plausible Reasoning. Princeton, N. J.: Princeton Univ. Press, 1954.

6. Translated from Arch. Math. Phys. Leipzig 1. No. 3, 44, 1901.

7. R. L WILDER, Mich. Alumnus Quart. Rev. 65. No. 21, 1959.

1 0



FOREWORD
Since the turn of the century an embarrassing question persistently recurs:

Where is the borderline between "pure mathematics" and "applied mathe-
matics." As suggested in the preceding essay, there are times when the ques-
tion is academic, as when, in some instances, these two aspects of mathematics
can scarcely be disentangled: for example, in the theory of relativity.

Many writers have commented upon the unexpected usefulness of the
seemingly useless. Michael Faraday observed, "There is nothing so prolific in
utilities as abstractions." Elsewhere, A. N. Whitehead has suggested that "It is
no paradox to say that in our most theoretical moods we may be nearest to our
most practical applications."

More recently, Professor Billy Goetz of the Massachusetts Institute of
Technology, in an article titled the "Usefulness of the Impossible", suggested
that "All mathematics is a gigantic tussle with nonexistent impossibilities."
Admitting at once that mathematics is "useful", Goetz goes on to say that it
is a "great and respected discipline where all is impossible and yet much is
useful. The usefulness largely flows from the impossibility."

The present essay provides a brief, illuminating historical sketch of the
relation of mathematics to science, concluding with the plea that "applications"
will take care of themselves if mathematicians will only allow their creative
imaginations complete freedom.
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Mathematical Inutility And The Advance Of Science
Should Science Entice the Mathematician From

His Ivory Tower Into Solomon's House?

CARL a BOYER

A few years ago institutions of learning were cutting requirements in
mathematics and foreign language, and Phi Beta Kappa, worried about the
survival of the liberal arts, took the drastic step of establishing for initiates
minimum requirements in language and mathematics. Today the attitude has
changed; but if the contemporary return to favor of mathematics results from
a panicky concern for defense, the revival may be short-lived. Thus it is that
mathematicians find themselves in the equivocal position of endorsing the de-
mands for increased mathematical training at the same time that they look
askance at the motives. Training in mathematics is just as appropriate for
philosophers and statesmen as for sputnik-builders; but we shall argue here a
more modest thesis concerning the role of mathematics in science, raising a
voice in protest against two extreme views. One of these was forcefully ex-
pressed in 1941 by G. H. Hardy in A Mathematician's Apology (1): "It is not
possible to justify the life of any genuine professional mathematician on the
ground of the 'utility' of his work. . I have never done anything 'useful.' No
discovery of mine has made, or is likely to make, directly or indirectly, for good
or ill, the least difference to the amenity of the world."

The only usefulness he granted mathematics was as an "incomparable
anodyne." Hardy went so far as to distinguish between what he called "real"
mathematics and "trivial" mathematics the former being nonuseful, the
latter ."useful, repulsively ugly and intolerably dull."

Where Hardy rejoiced that the remoteness of mathematics from ordinary
human activities keeps it "gentle and clean," Lancelot Hogben, at the other
extreme, in 1937 wrote in Mathematics for the Million (2, p. 36) that "rnathe-
marks has advanced when there has been real work for the mathematician to
do, and . . . it has stagnated whenever it has become the plaything of a class
which is isolated from the common life of mankind." Both of these extreme
views do violence to the history of mathematics and science. History indicates
on the one hand that the growth of mathematics and the concomitant advance
of science are not chiefly the result of ultilitarian pressures, but it teaches also
that activities of mathematicians which once appeared to be inconsequential
have in the end been of far-reaching significance in the growth of science. Para-
doxically, the mathematician seems to have been most useful to science when
the apparent inutility of his activity was especially marked. Today, especially,
surrounded Ls we are by pressures of immediacy and expediency, it is necessary
to look beyond the caricature of the mathematician as a glorified calculator and
to appreciate the part that pure mathematics has played in the long-range growth
of science.
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PRE-HELLENIC MATH EMATICS

It was customary, a generation ago, to argue that pre-Hellenic mathematics
was entirely practical; but it is obvious now that this picture was overdrawn.
Some of the problems in the Ahmes papyrus, for example, are far from utili-
tarian in nature; and the mathematical inutility in the Egypt of almost four
thousand years ago is matched in the Mesopotamian valley of the same period
by an instance recently uncovered by Neugebauer. Indefinitely many right tri-
angles with integral sides were known to the Babylonians, for they had the
equivalent of a formula for such Pythagorean triads. If p and q are arbitrary
integers, with p >q, then 2pq, and pt-i-e form such a triple of num-
bers. This result, one of the most remarkable from Old-Babylonian mathematics,
is a sophisticated bit of number theory far removed from the hope of immediate
utility.

It becomes clearer all the time that mathematical inutility was not un-
known in the pre-Hellenic period; but with the Greeks it seems to have become
a passion. Greek mathematics started out soberly enough with an eye to the
practical. Geometry took its name from the measurement of the earth, and soon
it was projected into the heavens; arithmetic promptly found applicability in
the Pythagorean discovery that music is "number in motion." But then, probably
toward the beginning of the last third of the 5th century B.C., came a discovery
which was poles removed from the world of the practical man, and this left a
deeper mark on mathematics than has any other single event in its history. Two
line segments, it was found, might be such that the ratio of their lengths is hot
expressible as a ratio of integers. That the diagonal of a square, for example, is
incommensurable with its side is of no consequence for the engineer with his
slide rule, but in Greece this devasting discovery paved the way for the classical
deductive development of mathematics. Ultimately, of course, the deductive
method spilled over into the sciences, for it was found to have practical, as well
as esthetic, value.

The 5th century B.C. bequeathed also to mathematics the three famous
problems of antiquitythe duplication of the cube, the squaring of the circle,
and the trisection of the angleand the better half of later Greek developments
centered about these. Inasmuch as craftsmen of the time could solve each of
these with a precision that would challenge the keenest senses to find a flaw, the
problems made sense only to the impractical geometer, and, as was discovered
in modern times, all three of them are, as presented, impossible of solution.
Could anything be more futile than to tackle problems which are meaningless
to the practitioner and beyond the power of the scholar? History here has amply
vindicated the activities of the ivory-tower mathematician, for the search for
solutions led to discoveries without which modern science as we know it would
have been unthinkable. Conic sections, for example, seem to have been discov-
ered by Menaechmus, tutor of Alexander the Great, in the course of his efforts
to duplicate the cube, and although the utility of the ellipse, parabola, and hy-
perbola escaped Greek scientists, we know that without the speculations of Men-
aechmus there might have been no laws of Kepler, no law of gravitation, and
no Lunik.
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EUDCMUS AND THE GREAT TRIUMVIRATE
At the Academy of Plato, as among the Pythagoreans, mathematics was a

class-related subject far removed from the common life of mankind, and yet the
subject flourished exceedingly. The chief contribution of Eudoxus, the outstand-
ing tnathematician associated with Plato, was a theory of proportion which is the
equivalent of modern definitions of real number, and it is to be doubted that any
practical scientist has had occasion to use the principle of Eudoxus or can tell
what a real number is. Eudoxus also had a hand in the method of exhaustion,
and this was about as impractical a forerunner of the calculus as could be im-
agined. Nevertheless, without Plato, the "maker of mathematicians," and the
work of Eudoxus, the bulk of what we think of as Greek mathematics would

t have developed.
The last century of the Hellenic period might be called the "heroic age,"

for it was then that the characteristically Greek problems and principals were
formulated. During the "golden age" which followed, these were elaborated by
the great triumvirate of Euclid, Apollonius, and Archimedes. The earlier sections
of Euclid's Elementsthose included in modern elementary textbookshave a
flavor of practicality, but the deeper one goes, the further the material departs
from the ordinary world; one finds a proof of the infinity of primes, a formula
for perfect numbers, and the crowning Platonic theorem that there are but five
regular solids. In the Conics of Apollonius are elaborated the properties of
curves, which at the time were beautiful and impractical, for the ellipses which
we see in the heavens, the hyperbolas which are formed by our lamp shades, and
the parabolas we descry in our suspension bridges were not there for the Greeks.
Even the quadratures of Archimedes, which anticipated the now indispensable
integral calculus, had at the time little utility; and Archmedes' most sophisti-
cated treatise, On Spirals, was largely a mental exercise in circle-squaring and
angle-trisecting.

SHARP DECLINE
Conflicting conjectures have been advanced to account for the sharp decline

in mathematics following the great triumvirate, but there is general agreement
on one aspectan admitted transfer of interest from pure to applied mathe-
matics. Under the practicalist theory the shift in interest to the popular fields of
astronomy and mensurational geography should have been a catalyst for rapid
mathematical development, not the herald of centuries of doldrums. Let this be
a warning to those who would equate mathematics and measurement, or who
would espouse the fragile thesis of Tobias Dantzig, in Number, the Language of
Science (1930), quoted ( with approval ) by Hogben (2, p. vii ) "It is a re-
markable fact that the mathematical inventions which have proved to be the
most accessible to the masses are also those which exercised the greatest influ-
ence on the development of pure mathematics."

I have mentioned above the mathematical inventions of greawst influence
in the pure mathematics of the Greeks, and these inventions were neither acces-
sible nor of interest to the masses. There was in ancient Greece another type of
mathematics which had wide appeal. Computation and arithmetic methods, stem-
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ming from Babylonian views, were what concerned the vast majoritynot axio-
maticsand the place of Heron and Diophantus becomes dearer when one
regards them as representatives of a tradition which always was present in
Greece but which shows through only rarely because of the loss of ancient
works. Occasionally both traditionsthe higher axiomatic or nonutilitarian
stream and the lower arithmetic or utilitarian currentappear in one and the
same individual. Ptolemy's Almagest, for example, is akin to classical geometry,
while his astrological Tetrabiblos adopts the Babylonian arithmetical devices,
and the verdict of history has been that the theoretical Almagest was more influ-
ential in the advance of science than the pragmatical Tetrabiblos.

No better illustration of the baneful effect of the cold breath of utility upon
the ardor of the mathematician can be found than in ancient Rome, where the

consequence for science of the Roman contempt for mathematical inutility is
too well known to require repetition here. Let us hope that history will not re-
peat itself in this respect and that a tough-minded concern today for the immedi-
ate and obvious needs of national defensejust such as the Romans had in mind
may not stifle the legitimate interests of the pure mathematician. Administra-
tive agencies in this country ( and apparently in Russia also) thus far have been
very far-seeing in this respect and have generously supported basic research, but
if the public clamor for more mathematics in the schools were to result merely
in fostering development of expedient techniques, the results could be tragic
indeed.

The consequences of a lack of interest in the principles of mathematics, as
distinct from a concern with practical outcomes, can be seen in the medieval civil-
izationsLatin, Greek, Chinese, Hindu, and Arabic. Not one of them had a vig-
orous tradition of pure mathematics and, interestingly enough, none was strong
in science. Much has been made of the so-called Hindu-Arabic system of numer-
ation, but even granted th. it was an invention of the Hindus (which is not
definitively established ), it should be noted that the system involved no princi-
ples not known in antiquity, and that with it the Hindus and Arabs were able to
do but little. Only later, in 16th-century Europe, was a significant mathematical
advance made.

THE RENAISSANCE AND MATHEMATICS
A facile explanation of the opening of the new age sometimes is found in

the rise of a merchant class with practical computational needs, or in the explora-
tions which posed geographical problems, or in the establishment of closer re-
lations between the scholar and the artisan, but the revival in mathematics does
not fit neatly into any of these. Apart from the recovery of the Greek treatises in
pure geometry, the event which marked the opening of a new era was the publi-
cation of the algebraic solution of the cubic equation. On the surface this looks
like an eminently practical result, but nothing could be more deceptive. The
formula which Del Ferro and Tartaglia discovered and which Cardan published
in 1545, just two years after the epoch-making treatises of Copernicus and
Vesalius, was not then, and is not now, of use to the applied mathematician or
the practicing scientist. It gave a strong fillip to the pure mathematician's pursuit
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of algebra, but it did not satisfy the practitioner's need for a practical device for
getting approximations to the roots.

Nevertheless, the radical solution of the cubic did in the end stimulate the
advance of scienceindirectly, and in a rather curious way which well illustrates
the unexpected role that mathematical inutility plays. The new formula called
attention to imaginary numbers, for in some mysterious way they were bound
up with the real roots in the so-called irreducible case.Cardan said of the arith-
metic in this case that it iF "as subtle as it is useless," and Bombe lli, his contem-
porary, described it as "a wild thought, in the judgment of many; and I too was
ft ,r a long time of the same opinion." Today any electrical engineer can attest to
the ultimate utility of such useless wild thoughts on imaginary numbers; but
these numbers at first were rejected by practical men, and even by some not
generally regarded as excessively utilitarian. Of them Simon Stevin wrote,
"There are enough legitimate things to work on without need to get busy en
incerrain matter"; and only occasionally were men bold enough to handle these
quantities which Leibniz regarded as a sort of amphibian, halfway between
existence and nonexistence.

Contemporary with Stevin was Francois Viete, an inadequately appreciated
mathematician who likewise valued mathematical inutility. Trigonometry in its
infancy had been so unfortunate as to be immediately applicable to astronomy
and navigation, and hence, as a science of indirect measurement, it had had a
limited growth. By subordinating the practical art of solving triangles to the
liberal study of relationships among the trigonometric functions, Viete did much
to convert the subject into a branch of pure mathematics, sometimes known as
goniometry, or analytical trigonometry. Today in secondary schools the solution
of triangles is giving way to increased emphasis upon the analytic side of trigo-
nometry, and every electrical engineer, every student of optics and acoustics,
knows through the work of Viere that the immediately practical is not in the
end necessarily the most useful.

DESCARTES, FERMAT, AND BOYLE

It is in the 17th century that one expects to see the other side of the coin
aspects of mathematics which were suggested by experience and which directly
promoted the advance of science. Much of this there was, but less, I suspect, than
is commonly assumed. Analytic geometry, for example, was not the practical
outgrowth of a mundane use of coordinates. Descartes regarded his geometry as
a triumph of philosophical method to be appreciated by the elite, and it took
form in his mind as a generalization of an impractical locus problem inherited
from ancient Greece. Apollonius had considered the locus of points for which
the product of the distances to two of four given lines should be proportional to
the product of the distances to the other two lines. Pappus had suggested, but
was unable to complete, the generalization of this to six, eight, ten, or more lines,
hinting at a geometry of more than three dimensionsthe height of inutility, one
should suppose. About this problem Descartes developed his coordinate geom-
etry, the aim of which at the time was the theoretical geometric construction of
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the toots of equations that now would be solved by the practical man through
successive arithmetical approximations.

Fermat, an independent inventor of analytic geometry, represents an even
more striking instance of mathematical inutility, for he was as unconcerned
about the practical outcome of his studies as he was about personal fame. And
yet Fermat was an inventor in three branches which turned out to be among
the most useful of all: he discovered the fundamental principle of analytic ge-
ometry; he invented the differential calculus; and he was a founder of the theory
of probability. His coordinate geometry was scarcely more practical than Des-
cartes'. It was a study of geometric loci, the "crowning point" of which was the
following propositi ,n: Given any number of fixed lines, the locus of a point
from which the sum of the squares of the segments drawn from the point to
meet the lines at given angles is constant is a solid locus (conic section).

Can this be used in the workaday world? His new infinitesimal analysis did
turn out to have tremendous practical implications, but Fermat's thought here,
too, was nonutilitarian. Perhaps the best way to describe his calculus is to say
that it represented the first satisfactory definition of the tangent to a curve, a bit
of theory which Newton and Leibniz developed into an algorithm which made
possible the celestial mechanics upon which our hopes for space travel are
founded. Even Fermat's theory of numbers, at the time far removed from the
market place, has not been entirely without applicability, for his studies in fig-
urate numbers enter into statistics.

Francis Bacon, in his utopian Solomon's House, had valued mathematics
solely for its utility, but Robert Boyle, Fermat's Baconian contemporary, put in
a good word for mathematical inutility. Boyle realized with regret that in math-
ematics one cannot in old age atone for the sins of neglect in one's youth, and
it was not lack of training in practical mathematics that he regretted. "I confess,"
he wrote ( ), "that after I began . . to discern how useful mathematics may
be made in physicks, I have often wished that I had employed about the specula-
tive parr of geometry, and the cultivation of the specious Algebra . . . a good
part of that time and industry, that I had spent about surveying and fortification
. . . and other parts of praaick mathematics" (italics mine).

The Principia of Newton probably never would have been written had it not
been for the work of Fermat and others like him, and hence it can be regarded
as the fruit of earlier mathematical inutility rather than as an inevitable out-
growth from social and economic roots of the time. In fact, there is not so large
a proportion of applied mathematics in the book as is commonly supposed.
Moreover, the philosophical import of the law of gravitation far tcanscended any
practical significance. It should be noted also that Newton's contribution in this
connection was not so much a discoverysome half a dozen men earlier had
suggested an inverse square lawas it was a mathematical proof of the validity
of the law, and the practical man has no truck with mathematical demonstration.
Newton derived as a corollary of the law of gravitation the fact that within the
earth the force varies directly as the distance from the centera hit of knowledge
which at the time served no useful end but which carried within it the germs of
potential theory and paved the way for the electromagnetic age.
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IN TIME OF CRISIS
It is in times of crisis akin to our own that the temptation to undervalue

mathematical inutility is great, but mathematicians of stature generally have
risen above this. Few more striking instances of this can be found than during
the French Revolution. Lazne Carnot and Gaspard Monge were key figures in
the frantic defense against foreign invasion, yet during the turmoil they did not
yield to the exigencies of the moment and divert their efforts to applied mathe-
matics alone. Both men spent much time reviving pure geometry, one of the
more beautiful but less immediately useful branches, and their names still are
associated with theorems in the subject. Carnot, the "Organizer of Victory,"
wrote an especially useless workone on the metaphysics of the calculus, which
has gone through many editions down to our timeand Mange was instrumental
in the establishment of the Ecole Polytechnique, an institution which might
well be taken as a model of balance between pure and applied mathematics.

Lagrange, one of the teachers at the school, spent much of his time looking
for a logical foundation for the calculusa pursuit which scientists of the time
regarded as misdirected effort, hut which has since led to the theory of functions,
a subject which physicists find indispensable. But the theory of functions owed
even more to what at the time looked like a fruitless effort. During the Napole-
onic era no less than three men were toying with the idea of picturing imaginary
numbers, and the result, now known as the Argand or Wessel or Gaussian dia-
gram, became the basis for the theory of functions of a complex variable, with
striking consequences for science. It probably is not too much to say that electro-
dynamics is the gift of the imaginary number, once shunned as useless.

NINETEENTH CENTURY DEVELOPMENTS
Most ages have produced men who studied mathematics with little regard

for its applicability, but the 19th century was a veritable paradise of mathemati-
cal inutility. One of thc amazing things about this penchant of the century is that
it proceeded in the main from anciens acres of the Ecole Polytechnique, a school
of technology. In France, pupils of Mange stirred a revival in pure geometry
such as had not been seen since the days of Apollonius. Projective geometry, with
its concern for ideal elements, and the analytic geometry of imaginary points
fascinated the heirs of the French Revolution, inapplicable though these studies
might be. Ponce let, an engineer in the French army under Napoleon, reached
the epitome of mathematical inutility when he noted that all circles in a given
plane have two points in commonnot ordinary points, of course, but two points
which are both imaginary and at infinityl The two chief mathematical journals
of the time both carried in the title the phrase (one in French, the other in
German ) "Pure and Applied Mathematics," but so obvious was the preponder-
ance of pure mathematics that wags read rhe title as "Pure Unapplied Mathe-
matics." And treatises of the time showed the same tendency.

The imaginary appeared everywhere in analysis, geometry, and algebra, and
especially in the works of Cauchy. And what was the effect upon science of this
feast of uselessness? It probably is safe to say that physics, at least, never devel-
oped more rapidly than during and immediately following the period we have



been describing. Mechanics, optics, thermotics, acoustics felt the effect of Cau-
chy's theory of functions of a complex variable. But how, one may be inclined
xi ask, can the theory of the imaginary number have anything to do with the
real world? The answer, of course, is that imaginary numbers are not fictitious,
despite their name. What one generation labels impossible, another reduces to
common sense. After Gauss, Wessel, and Argand had shown that imaginary
numbers can be pictured as points in a plane, it was a short step to Sir William
Rowan Hamilton's identification of the theory of complex numbers with the
properties of couples of real numbers. This led Hamilton to devise a four-dimen-
sional analogthe system of quaternionsand this in turn was later generalized
into the theory of tensors, without which the mathematical theory of relativity
would be unthinkable.

Relatively is in a real sense a bequest to science of once-useless mathe-
matics. Not only is it an outcome of the imaginary number; it resulted also from
some impossible geometries. Gauss, greatest mathematician of all times, played
indifferently with useful and useless mathematics. His contributions in probabil-
ity and statistics found ready application; much of his theory of numbers, which
he enjoyed most, still is without palpable use. Among the mathematical toys of
Gauss was one called non-Euclidean geometry, of which similar schemes were
developed independently by Bolyai and Lobachevski.

The new geometries seemed to be a denial of common sense, but disagree-
ment with sense never has been, and we hope never will be, a bar to mathe-
matical investigation. If it had been, the 19th century would not have pursued
the study of geometries of more than three dimensions. As it turned out, both
non-Euclidean geometry and multidimensional geometry are applicable to sci-
ence in the theory of relativity. Bertrand Russell has said that Riemann is logic-
ally the immediate predecessor of Einstein, and one might add that Cayley's
geometry of n-dimensions, developed in 1843 with no inkling of possible appli-
cability, has since found a place in thermodynamics, applied chemistry, and
statistical mechanics. Here in America the aralysis of Gibbs once was termed a
"hermaphrodite monster," hut the monster soon was tamed and became the
chemist's best friend. Perhaps even today's bizarre mathematics of transfinite
numbers eventually may become a scientist's man Friday. Had Hamilton been
dissuaded on utilitarian grounds from toying with economically worthless non-
commutative algebras, much of the abstract algebra of the 20th century would
never have developed, and quantum mechanics would have been the loser.

The history of science seems indeed to support the findings of psychology
in the thesis of a great nonagenarian mathematician of our day, Jacques Hada-
mard, who, on the basis of a study of The Psychology of Invention in the Mathe-
matical Field (4), concluded that "practical application is found by not looking
for it, and one can say that the whole of civilization rests on that principle.-
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FOREWORD
Perhaps the greatest contribution of the ancient Greeks to mathematics

was their naive faith in deductive logical reasoning as a basis for creating the
geometry of their day. Since the time of Euclid and Aristotle, the science of
logic has been the concern alike of scientists, mathematicians, philosophers and
theologians. A3 with other disciplines, logic underwent an evolution until today
modern logic, or more precisely, various systems of logic, bear but little re-
semblance to the relatively simple tenets of Aristotle and Plato.

The inception of modern logic was foreshadowed by Leibniz (1666) when
searching for a universal system using symbolic rules which would make think-
ing unnecessary. The latter half of the nineteenth century saw the development
of logic extended quietly by George Boole's Laws of Thought ( 1854); A. De
Morgan's formal logic (1874 ); John Venn's Symbolic Logic (1881); C. S.
Peirce's introduction of truth tables (c.1880 ); Frege's symbolic logic applied
to the foundations of arithmetic (1880-1900); Hilbert's logical foundmions
of geometry (c. 1900 ). In 1910-1913 Whitehead and Russell published their
monumental work, Principia Mathematica, which is probably the most com-
prehensive formulation of symbolic logic ever undertaken.

There quickly arose three major schools of opinion in the field of mathe-
matical philosophy: (1) Logicalism, identified with Whitehead and Russell;
(2) Formalism, as typified by Hilbert; and (3) Intuitionism, as championed
by Brouwer.

Since then there has been considerable controversy regarding these points
of view, and, indeed concerning the larger matter as to the very nature of
mathematics and its relation to logic. In fact, the critical study of the properties
possessed by formal abstract postulational systems has become known as meta-
mathematics. Interestingly enough, the controversies between the mathema-
ticians and the logicians have not yet been satisfactorily resolve('
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Are Logic And Mathematics Identical?

An Old Thesis of Russell's Is Reexamined in the Light
Of Subsequent Developments in Mathematical Logic.

LEON HENKIN

It was 24 years ago that I entered Columbia College as a freshman and
discovered the subject of logic. I can recall well the particular circumstance
which led to this discovery.

One day I was browsing in the library and came across a little volume
by Bertrand Russell entitled Mysticism and Logic. At that time, barely 16, I
fancied myself something of a mystic. Like many young people of that age I
was filled with new emotions strongly felt. It was natural that any reflective
attention should be largely occupied with these, and that this preoccupation
should give a color and poignancy to experience which found sympathetic
reflection in the writings of men of mystical bent.

Having heard that Russell was a logician I inferred from the title of his
work that his purpose was to contrast mysticism with logic in order to exalt the
latter at the expense of the former, and I determined to read the essay in order
to refute it. But I discovered something quite different from what I had imag-
ined. Indeed, contrasting aspects of mysticism and were delineated by
Russell, but his thesis was that each had a proper and iii.portant place in the
totality of human experience, and his interest was to define these and to exhibit
their interdependence rather than to select one as superior to the other. I was
disarmed, I was delighted with Russell's lucent and persuasive style, I began
avidly to read his other works, and was soon caught up with logical concepts
which have continued to occupy at least a portion of my attention ever since.

Bertrand Russell was a great popularizer of ideas, abstract as well as
concrete. Probably many of you have been afforded an introduction to mathe-
matical logic through his writings, and perhaps some have even been led to the
point of peeping into the formidable Prmcipia Mathematica which he wrote
with Alfred Whitehead about 1910. You will recall, then, the astonishing con-
tention with which he shocked the mathematical world of that time namely,
that all of mathematics was nothing but logic. Mathematicians were generally
puzzled by this radical thesis. Really, very few understood at all what Russell
had in mind. Nevertheless, they vehemently opposed the idea.

This is readily understandable when you recall that a companion thesis of
Russell's was that logic is purely tautological and has really no content what-
ever. Mathematicians, being adept at putting 2 and 2 together, quickly inferred
that Russell meant to say that all mathematical propositions are completely
devoid of content, and from this it was a simple matter to pass to the supposi-
tion that he held all mathematics to be entirely without value. Aux armes,
citoyens du monde mathematique!

Half a century has elapsed since this gross misinterpretation of Russell's
provocative enunciation. These 50 years have seen a great acceleration and
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broadening of logical research. And so it seems to me appropriate to seek a
reassessment of Russell's thesis in the light of subsequent development.

DEFINITIONS AND PROOFS
In order to explain how Russell came to hold the view that all of mathe-

matics is nothing but logic, it is necessary to go back and discuss two important
complexes of ideas which had been developed in the decades before Russell
came into the field. The first of these was a systematic reduction of all the
concepts of mathematics to a small number of them. This process of reduction
had indeed been going on for a very long time. As far back as the days of
Descartes, for example, we can see at least an imperfect reduction of geometric
notions to algebraic ones. Subsequently, wiih the development of set theory
initiated by Georg Cantor, the reduction of the system of real numbers to that
of natural numbers marked another great step in this process. But perhaps the
most daring of these efforts, the culminating one, was the attempt by a German
mathematician, Got lob Frege, to analyze the notion of natural number still
further and reduce it to a concept which he considered to be of a purely logical
nature.

Frege's work was almost entirely unnoticed in his own time (the last three
decades of the 19th century ), but when Bertrand Russell came upon Frege's
work he realized its great significance and gave these ideas very wide currency
through his own brilliant style of exposition. The ultimate elements into which
the notion of natural number was analyzed by Frege and by Russell were
entities which they called "propositional functions." To this day there persists a
'controversy among philosophers as to just what these objects are, but at any
rate they are connected with certain linguistic expressions which are like sen-
tences except for containing variables. just as there is a certain proposition
associated with (or expressed by ) the sentence "U Thant is an astronaut," for
example, so there is a propositional function associated with the expression "x
is an astronaut." Since propositions had long been recognized as constituting
one of the most basic portions of the domain of investigation of logicians, and
since propositional functions are very closely related to propositions, it was
natural to consider these, too, to be a proper part of the subject of logic. It is
in this sense that Frege seemed able, by a series of definitions, to arrive at the
notion of number, as well as at the other notions under study in various parts
of mathematics, starting from purely logical notions.

The second important line of development which preceded Russell, and
upon which he drew for his ideas, was the systematic study by mathematical
means of the laws of logic which entered into mathematical proofs. This de-
velopment was initiated by George Boole, working in Englar.id in the middle
of the 19th century. He discovered that certain of the well-known laws of logic
could be formulated with the aid of algebraic symbols such as the plus sign, the
multiplication sign, and the equality sign and of variables. For example, Boole
used the familiar equation P.Q. = Q.P. to express the fact that sentences of the
form "P and Q" and "Q and P" must be both true or both false (whatever
the sentences P and Q may be), while the generally unfamiliar algebraic equa-
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don (P.Q. ) = (P) (Q) indicates that the sentence "Not both P and
Q" has the same truth value as "Either not P or not Q." Boole demonstrated
that tbrough the use of such algebraic notation one can effect a great saving in
the effort needed to collate and apply basic laws of logic. Later his work was
extended and deepened by the American C. S. Peirce and the German mathe-
matician E. Schroder. And Russell himself, working within this tradition, found
it I convenient basis for a systematic development Of all matilematics from
logic. By combining the symbolic formulation of logical laws with the reduc-
tion of mathematical concepts to a logical core, he was able to conceive of a
unified development such as was attempted in the Principia Matbematica.

FROM RUSSELL TO G6DEL

What was the Principia like? Well of course the work is still not com-
pleted (only three of four projected volumes having appeared); and since
Bertrand Russell has most recently seemed to occupy himself with the political
effects of certain physical research it may, perhaps, never be completed! Never-
theless, one can see clearly the intended scope of the work. Surprisingly, it
reminds one of the present massive undertaking by the Bourbaki group in
France. For even though the Principia and Bourbaki are very dissimilar in
many ways, each attempts to present an encyclopedic account of contemporary
mathematical research unified by a coherent point of view.

In the Principia, starting from certain axioms expressed in symbolic form
which were intended to express basic laws of logic (axioms involving only
what Russell conceived to be logical notions), the work systematically pro-
ceeds to derive the other laws of logic, to introduce by definition such mathe-
matical notions as the concept of number and of geometric space, and finally
to develop the main theorems concerning these concepts as part of a uniform
and systemic development.

Viewed in retrospect, the contemporary logician is struck by the willing-
ness of Russell and Whitehead to rest their case on what, for a mathematician,
must be considered such flimsy evidence. The world of empirical science, of
course, expects to achieve conviction on the basis of empirical evidence, but the
quintessence of the mathematician's approach, especially of the mathematical
logician's, is the demand always for prodf before a thesis is accepted. Yet you
see that whereas Russell was interested in establishing that in a certain sense all
of mathematics could be obtained from his logical axioms and concepts, he
never really set out to give a proof of this fact! All he did was to gather the
basic ideas that had been developed in a nonformal and unsystematic way by
mathematicians before him, and to say, in effect, "You see that I have been able
to introduce all this loosely formulated work within the precise framework of
my formal system. And it's pretty clear, isn't it, that I have all the tools available
to formalize such further work as- mathematicians are likely to do?"

In this respect one is reminded of the approach of that first great axiom-
atizer and geometer, Euclid. Euclid, too, conceived that all propositions of ge-
ometry that is, all the true statements about triangles, circles, and those other
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figures in which he was interested could be developed from the simple list
of concepts and axioms he gave. But in his case, too, there was never any
attempt to prove this fact other than by the empirical process of deriving a large
number of geometric propositions from the axioms and then appealing to the
good will of the audience, so to speak. 'Well," we may imagine him saying,
"look how much I have been able to deduce from my axioms. Aren't you
pretty well convinced that di geometric facts follow from them?"

But of course there were mathematicians and logicians who were not
convinced. And so the demand for proof was raised.

Actually, the proper formulation of the problem of whether a system of
axioms is adequate to establish all of the true statements in some domain of
investigation requires a mathematically precise formulation of the notion of
"true sentence," and it was not until 1935 that Alfred Tarski, in a great pioneer-
ing work, made fully evident the form in which semantical notions must be
analyzed for mathematical languages. Of course, it is a trivial matter to give
the conditions under which any particular sentence is true. For example. the
theory of Euclidean geometry the sentence "All triangles have two equal a .6les"
is true if, and only if, all triangles have two equal angles. However, Tarski
made it clear that there is no way to utilize this simple technique in order to
describe (in a finite number of words) conditions for the truth of all the in-
finitely many sentences of a language; for this purpose a very different form
of definition, structural and recursive in character, is needed.

Even before Tarski's treitment of semantics, indeed as early as 1919, we
find the first proof of what we call, in logic, "completeness." The mathematician
Emil Post (in his doctoral dissertation published in that year ), limiting his
attention to a very small fragment of the system created by Whitehead and
Russell, was able to show that for any sentence in that fragment which was
"true under the intended interpretation of the symbols," one could indeed get
a proof by means of the axioms and rules of inference which had been stated
for the system. Subsequently, further efforts were made to extend the type of
completeness proof which Post initiated, and it was hoped that ultimately the
entire system of the Principia could be brought within the scope of proofs of
this kind.

In 1930, Kurt Gide' contributed greatly to this development and to this
hope when he succeeded in proving the completeness of a deductive system
based upon a much larger portion of mathematical language than had been
treated by Post. Godel's proof deals with the so-called "first-order predicate
logic," which treats of mathematical sentences containing variables of only one
type. When such a sentence in intepreted as referring to some mathematical
model, its variables are interpreted as ranging over the elements of the model;
in particular, there are no variables ranging over sets of model elements, or
over the integers (unless these happen to be the elements of the particular
model). Now Gtidel shows that if we have any system of axioms of this special
kind, then whenever a sentence is true in every ntodel satisfying these axioms
there must be a proof of finite length, leading from the axioms to this sentence,
each line of the proof following from preceding lines by one of several ex-
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plicitly listed rules of logic. This result of Godel's is among the most basic and
useful theorems we have in the whole subject of mathematical logic.

But the very next year, in 1931, the hope of further extension of this
kind of completeness proof was definitely dashed by Gadd himself in what is
certainly the deepest and most famous of all works in mathematical logic. Gödel
was able to demonstrate that the system of Principia Mathematica, taken as a
whole, was incomplete. That is, he showed explicitly how to construct a certain
sentence, about natural numbers, which mathematicians could recognize as
being true under the intended intepretation of the symbolism but which could
not be proved from the axioms by the rules of inference which were part of
that system.

Now, of course, if (*yodel !lad done nothing more than this, one might
simply conclude that Russell and Whitehead had been somewhat careless in
formulating their axioms, that they had left out this true but unprovable sen-
tence from among the axioms, and one might hope that by adding it as a new
axiom a stronger system which was complete would be achieved. But GOdel's
proof shows that this stronger system, too, would contain a sentence which is
true but not provable; that, indeed, if this system were further strengthened,
by the addition of this new true but unprovable sentence as an axiom, the
resulting system would again be incomplete. And indeed, if a whole infinite
sequence of sentences were to be obtained by successive applications of Gödel's
method, and added simultaneously to the original axioms of Principia. the same
pnxess could still be applied to find another true sentence still unprovable.

Actually. Gadd described a very wide class of formal deductive systems
to which his methods applies. And most students of the subject have been con-
vinced that any formal system of axioms and rules of inference which it would
be reasonable to consider as a basis for a development of mathematics would fall
in this class, and hence would suffer a form of incompleteness. From this view-
point it appears that one of the basic elements on which Russell rested his
thesis that all mathematics could he reduced to logic must be withdrawn and
reconsidered.

CONSISTENCY AND DECISION PROBLEMS

have been talking about completeness, which has to do with the ade-
quacy of a formal system of axioms and rules of inference for proving true
sentences. But I must mention, also, a second aim of the Russell-Whitehead
Principia which also fared ill in the subsequent development of mathematical
logic. Russell and Whiwhead were very much concerned with the question of
consistency. While they hoped to have a complete system, one containing proofs
for all correct statements, they were also concerned that their system should not
contain proofs of incorrect results. In particular, in a consistent system such as
they sought, it would not be possible to prove both a sentence and its negation.

To understand their concern with the question of consistency it is necessary
to recall the rude awakening which mathematicians sustained in 1897 in con-
nection with Cantor's theory of transfinite numbers. For centuries before the
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time of Cantor mathematicians simply assumed that anyone who was properly
educated in their subject could distinguish a correct proof from an incorrect one.
Those who had trouble in making this distinction were simply "weeded out" in
the course of their training and were turned from mathematics to lesser fields of
study. And no one took up seriously the question of setting forth, in explicit and
mathematical terms, otactly what was meant by a correct proof.

Now when Cantor began his developineni of set theory he concerned him-
self with both cardinal and ordinal numbers of rransfinite type. (These numbers
can be used for infinite sets in very much the same way that we use ordinary
numbers for counting and ordering finite sets.) Many of the properties of trans-
finite numbers are identical to those of ordinary numbers, and in particular
Cantor showed that, giyen any ordinal number b, we can obtain a larger num-
ber, b + I. However, in 1897 an Italian mathematician, C. Burali-Forti, demon-
strated that there must be a largest ordinal number, by considering the set of all
ordinal numbers in their natural order. Mathematicians were unable to find any
point, either in the argument of Cantor or in that of Burali-Forti, which they
intuitively felt rested on incorrect reasoning. Gradually it was realized that
mathematicians had a genuine paradox on their hands, and that they would have
to grapple at last with the question of just what was meant by a correct proof.
Later, Russell himself produced an evea simpler paradox in the intuitive theory
of sets, based up on the set of all those sets which are not elements of themselves.

This background sketch will make clear why it was that Russell and
Whitehead were concerned that no paradox should be demonstrable in their
own system. And yet they themselves never attempted a proof that their system
was consistent! The only evidence they adduced was that a large number of
theorems had been obtained within their system without encountering paradox,
and that all attempts to reproduce within the system of Principia Matbematica
the Burali-Forti paradox, and such other paradoxes as were shown, had failed.

As with the question of completeness, mathematicians were not satisfied
with an answer in this form, and there arose a demand that an actual proof of
the consistency be given for the system of Prineipia (and for other systems then
considered). The great and illustrious name of David Hilbert was associated
with these efforts to achieve consistency proofs for various portions of mathe-
manes, and under his stimulus and direction important advances were made
toward this goal, both by himself and by his students. But as with the efforts to
prove completeness, Hilbert's program came to founder upon the brilliant ideas
of Kurt Godel.

Indeed, in that same 1931 paper to which I have previously referred,
Gtidel was able to show that the questions of consistency and completeness were
very closely linked to one another. He was able to show that if a system such as
the Principia were truly consistent, then in fact it would not be possible to pro-
duce a sound proof of this fact! Now this result itself sounds paradoxical. Never-
theless, when expressed with the technical apparatus which (hidel developed,
it is ill fact a precisely established and clearly meaningful mathematical result
which has persuaded most, though admittedly not all, logicians that Hilbert's
search for a consistency proof must remain unfulfilled.
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I should like finally to mention a third respect in which the original aim
of mathematical logicians was frustrated. The questions of consistency and com-
pletenes.s clearly concerned the authors of Principia Mathernatica, but the ques-
tion of decision procedures seems not to have been treated to any serious extent
by Russell and Whitehead. Nevertheless, this is an area of study which inter-
ested logicians as far back as the time of Leibniz. Indeed, Leibniz himself had a
great dream: He dreamt that it niight be possible to devise a systematic proced-
ure for answering questionsnot only mathematical questions but even ques-
tions of empirical science. Such a procedure was to obviate the need for
inspiration and replace this with the automatic carrying out of routine proced-
ure. Had Leibniz been conversant with today's high-speed computing machines
he might have formulated his idea by asserting the possibility that one could
write a program of such breadth and inclusiveness that any scientific question
whatever could be placed on tape and, after the machine had been set to work
on it for some finite length of time, a definitive reply would be forthcoming.

Loot ArrEx 1936
Leibniz's idea lay dormant for a long time, but it was natural to revive it

in connection with the formal deductive systems which were developed by
mathematical logicians in the early part of this century. Since these logicians had
been interested in formulating mathematical ideas within a symbolic calculus
and then manipulating the symbols according to predetermined rules in order
to obtain further information about these mathematical concepts, it seemed na-
tural to raise the question of whether one could not devise purely automatic
rules of computation which would enable one to reach a decision as to the truth
or falsity of any given sentence of the calculus. And while the area of empirical
science was pretty well excluded from the consideration of 20th-century logi-
cians seeking such decision procedures, it was perhaps not beyond the hope of
some that a system as inclusive as that of the Principia could some day be
brought within the scope of such a procedure.

Efforts to find decision procedures for various fragments of the Principia
were vigorous and many. The doctoral dissertation of Post, for example, con-
tained some efforts in this direction, and further work was produced during the
succeeding 15 years by logicians of many countries. Then in 1936 Alonzo
Church, making use of the newly developed notion of recursive function, was
able to demonstrate that for a certain fragment of mathematical language, in
fact for that very first-order predicate logic which Gadd, in 1930, had showed
to be complete, no decision procedure was possible. And so with decision proced-
%MS, as with proofs of completeness and consistency, efforts to establish a close
rapport between logic and mathematics came to an unhappy end.

Well, I have brought you down to the year 1936. Probably most mathe-
maticians have heard at least something of the development which I have
sketched here. But somehow the education in logic of most mathematicians
seems to have been terminated at about that point. The impression is fairly wide-
spread that, with the discoveries of Godel and Church, the ambitious program
of mathematical logicians in effect ground to a halt, and that since then further

29

3



work in logic has been a sort of helpless faltering by people, unwilling to accept
the cruel facts of life, who are still seeking somehow to buttress the advancing
frontiers of mathematical research by finding a nonexistent consistency proof.

And yet this image is very far indeed from reality. For in 1936, just at the
time when, many suppose, the demise of mathematical logic had been com-
pleted, an international scholarly society known as the Asspciation fir Symbolic
Logic was founded and began publication of the Journal of Symbolic Logic. In
rhe ensuing 25 years this has greatly expanded to accommodate a growing vol-
ume of research. And at present there are four journals devoted exclusively to
publishing material dealing with mathematical logic, while many articles on
logic appear in a variety of mathematical journals of a less specialized nature.

In the space remaining I should like to mention very briefly some of the
developments in mathematical logic since 1936.

SETS AND DECISION METHODS
I have found it convenient for this exposition to divide research in mathe-

matical logic into seven principal areas. And first I shall mention the area deal-
ing with the foundations of the theory of sets.

To explain the connection of this field with logic it should be mentioned
that those objects which Russell and Whitehead had called "propositional func-
tions" are, in fact, largely indistinguishable from what are now called "sets" and
"relations" by mathematicians. From a philosophical point of view there is per-
haps still room for distinguishing these concepts from one another. But since, in
fact, the treatment of propositional functions in Principia Mathernatica is exten-
sional (so that two functions which are true of exactly the same objects are
never distinguished ), for mathematical purposes this system is identical to one
which treats of sets and relations.

Among systems of set theory which have been put forth by logicians as a
basis for the development of mathematics, the principal ones are the theory of
types used by Whitehead and Russell themselves, subsequently amplified by L
Chwistek and F. Ramsey, and an alternative line of development initiated by
E. Zermelo, to which important contributions were subsequently made by A.
Fraenkel and T. Skolem. Still another system, having certain characteristics in
common with each of these two principal forms, was advanced and has been
studied by W. Quine and, to some extent, by J. B. Rosser. Of these systems the
Zermelo-type system has probably received most attention, along with an im-
portant variant form suggested and developed by J. von Neumann, P. Bernays,
and Gadel.

Among the significant efforts expended on these systems were those di-
rected toward establishing the status of propositions such as the axiom of choice
and the continuum hypothesis of Cantor. Here the names of Cock! and A. Mo-
stowski are especially prominent.

Gadd showed that a strong form of the axiom of choke and the general
ized continuum hypothesis are simultaneously consistent with the more ele-
mentary axioms of set theoryunder the assumption that the latter are consistent
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by themselves. Mostowski showed that the axiom of choice is independent of
the more elementary axioms of set theory, provided that a form of these elemen-
tary axioms is selected which does not exclude the existence of nondenumerably
many "Urelemente" (objects which are not sets). The independence of the ax-
iom of choice from systems of axioms such as that used in Godes consistency

,proof, and the independence of the continuum hypothesis in any known system
of set theory, remain open questions.

More recently the direction of research in the area of foundations of set
theory seems to have shifted from that of formulating specific axiom systems
and deriving theorems within them to consideration of the totality of different
realizations of such axiom systems. It is perhaps J. Shepherdson who should
be given credit for the decisive step in this shift of emphasis, although his work
clearly owes much to Godel's. Subsequent work by Tarski, R. Vaught, and R.
Montague has carried this development much further.

An important tool in their work is the concept of the rank of a set, which
may be defined inductively as the least ordinal number exceeding the rank of all
elements of the set. This notion may be used to classify models of set theory ac-
cording to the least ordinal number which is not the rank of some set of the
model. Recently there have been some very interesting contributions by Azriel
Levy to these studies. His efforts have been directed toward successively strength-
ening the axioms of set theory so as to penetrate increasingly far into the realm
of the transfinite.

A second area that I would delineate in contemporary logical research is
that dealing with the decision problem. While it is true that the work of Church
made it clear that there could be no universal decision procedure for mathe-
marks, there has remained a strong interest in finding decision procedures for
more modest portions of mathematical theory. Of special interest here is Tarski's
decision method for elementary algebra and geometry, and an important exten-
sion of it which was made by Abraham Robinson. Wanda Szmielew has also
given an important decision procedurenamely, one for the so-called "elemen-
tary theory" of Abelian groups. By contrast, the elementary theory of all groups
was shown by Tarski to admit of no decision procedure. In fact, Szmielew and
Tarski considered exactly the same set of sentencesroughly, all of those sen-
tences which can be built up by the use of the group operation symbol, and vari-
ables ranging over the group elements, with the aid of the equality sign, as well
as the usual logical connectives and quantifiers. If we ask whether any given
sentence of this kind is true for all Abelian groups, it is possible to answer the
question in an automatic way by using the method of Szmielew. But if we are
interested in which of these sentences are true for all groups, then Tarski's proof
shows that it is impossible to devise a machine method to separate the true from
the false ones.

A result closely related to Tarski's is that of P. Novikov and W. Boone
concerning the nonexistence of a decision method which would enable one to
solve the word problem for the theory of groups, a problem for which a solution
had long been sought by algebraists. In fact it is a simple matter to show that
the Novikov-Boone result is equivalent to the nonexistence of a decision method
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for a certain mbse; of the sentences making up the elementary theory of groups
namely, all those sentences having a special, very simple, form. Hence, this
result is stronger than Tarski's.

RECURSIVE FUNCTIONS
Nuw the key concept whose development was needed before negativesolu-

tions to decision problems could be achieved was the concept of a recursive
function. Intuitively speaking this is simply a function from natural numbers
to natural numbers which has the property that there is an automatic method
for computing its value for any given argument. A satisfactory and explicit
mathematical definition of this class of functions was first formulated by J. Her-
brand and Gide]. But it remained for S. C. Kleene to develop the concept to
such an extent that it now underlies a very large and important part of logical
research.

Much of the work with recursive functions has been along the line of
classifying sets and functions, a classification similar to that involving projective
an analytic sets in descriptive set theory. Kleene himself, his students Addison
and Spector, and other logicians, including Post, Mostowski, J. Shoenfield, and
G. Kreisel, have contributed largely to this development. Also to be mentioned
are the applications which initially Kleene, and subsequently others, have at-
tempted to make of the concept of recursive function by way of explicating the
notion of "constructive" mathematical processes. In this connection several
attempts have been made to link the notion of recursive function with the
mathematical viewpoint known as intuitionism, a radical reinterpretation of
matlwmatical language which was advanced by L Brouwer and developed by
A. Heyting.

ALGEBRA, LOGIC, AND MODELS
A fourth area of logical research deals with material which has recently

been described as algebraic logic. This is actually a development which can be
traced back to the very early work of Boole and Schroder. However, interest in
the subject has shifted away from the formulation and derivation of algebraic
equations which express laws of logic to the consideration of abstract structures
which are defined by means of such equations. Thus, the theory of Boolean al-
gebras, of relation algebras, of cylindric and polyadric algebras have all succes-
sively received attention; M. Stone, Tarski, and P. Halmos are closely associated
with the central development here. The algebraic structures studied in this do-
main may be associated in a natural way with mathematical theories, and this
association permits the use of very strong algebraic methods in the metamathe-
matical analysis of these theories.

A fifth area of modern logical research concerns the so-called theory of
models. Here effort is directed toward correlating mathematical properties pos-
sessed by a class of structures defined by means of given mathematical sentences
with the structural properties of those sentences themselves.

A very early example is Garrett Birkhoff's result that, for a class of struc-
tures to be definable by means of a set of equational identities, it is necessary and
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sufficient that it be dosed under formation of substructures, direct products, and
homomorphic images. Characterizations of a similar nature were given for
classes definable by universal elementary sentences (Tarski ) and by any elemen-
tary sentences ( J. Keisler ).

A related type of result is R. Lyndon's theorem that any elementary sen-
tence whose truth is preserved under passage from a model of the sentence to a
homomorphic image of that model must be equivalent to a sentence which does
not contain negation signs. In a different direction, E. Beth has shown that if a
given set symbol or relation symbol is not definable in terms of the other symbols
of an elementary axiom system, then there must exist two distinct models of thes,.
axioms which are alike in all respects except for the interpretation of the given
symbol. (This proves the completeness of A. Padoa's method of demonstrating
nondefinability.) A logical interpolation theorem of W. Craig's provides a close
link for the results of Lyndon and Beth.

A sixth area which can be discerned in recent work on logic concerns the
theory of proof. This is perhaps the oldest and most basic portion of logic, a
search for systematic rules of proof, or deduction, by means of which the conse-
quences of any propositions could be identified. In recent work, however, logi-
cians have begun to depart in radical ways from the type of systems for which
rules of proof were originally sought. For example, several attempts have been
made to provide rules of proof for languages containing infinitely long formulas,
such as sentences with infinitely many disjunctions, conjunctions, and quantified
variables. Tarski, Scott, C. Karp, W. Hanf, and others have participated in such
efforts. Curiously enough, while this direction of research seems at first very far
removed from ordinary mathematics, one of the important results was used by
Tarski to solve a problem, concerning the existence of measures on certain very
large spaces, which hal.: remained unsolved for many years.

The last area of logical research 1 should like to bring to your attention is
a kind of converse study to what we have called algebraic logic. In the latter we
are interested in applying methods of algebra to a system of logic. But there are
also studies in which results and methods of logic are used to establish theorems
of modern algebra. The first to have made such applications seems to have been
the Russian mathematician A. Malcev, who in 1941 indicated hnw the complete-
ness theorem for first-order logic could be used to obtain a result on groups.
Subsequently the same technique was used by Tarski to construct various non-
Archimedean ordered fields. Perhaps the best-known name in this area is that of
Abraham Robinson, who formerly was associated with the University of Toronto
in Canada. Among his contributions was the application of logical methods and
results to improve a solution, given in 1926 by E. Artin, to Hilbert's 17th prob-
lem ( 17th of the famous list of problems presented in his address to the Inter-
national Congress of Mathematicians in 1900 ). Robinson showed that when a
real polynomial which takes only nonnegative values is represented as a sum of
squares of rational functions, the number of terms needed for the representation
depends only on the degree and number of variables of the given polynomial,
and that it is independent of the particular coefficients .
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RUSSELL'S THESIS IN PERSPECTIVE
hope that this very brief sketch of some of the areas of contemporary log-

ical research will give some idea of the ways in which logicians have reacted to
the theorems of aide! and Church which, in the period 1931 to 1936, dealt so
harshly with earlier hopes. Speaking generally, one could describe this reaction
as compounded of an acceptance of the impossibility of realizing the original
hopes for mathematical logic, a relativization of the original program of seeking
completeness and consistency proofs and decision methods, an incorporation of
the new methods and constructs which appeared in the impossibility proofs, and
the development of quite new interests suggested by generalization of early
results.

Now with this background, let us return to Russell's thesis that all of
mathematics can be reduced to logic. I would say that if logic is understood
clearly to contain the theory of sets (and this seems to be a fair account of what
Russell had in mind ), then most mathematicians would accept without question
the thesis that the basic concepts of all mathematics can be expressed in terms of
logic. They would agree, too, that the theorems of all branches of mathematics
can be derived from principles of set theory, although they would recognize that
no fixed system of axioms for set theory is adequate to comprehend all of those
principles which would be regarded as "mathematically correct."

But perhaps of greater significance is the consensus of mathematicians that
there is much more to their field than is indicated by such a reduction of mathe-
matics to logic and set theory. The fact that certain concepts are selected for in-
vestigation, from among all logically possible notions definable in set theory, is
of the essence. A true understanding of mathematics must involve an explana-
tion of which set-theory notions have "mathematical content," and this question
is manifestly not reducible to a problem of logic, however broadly conceived.

Logic, rather than being all of mathematics, seems to be but one branch.
But it is a vigorous and growing branch, and there is reason to hope that it may
in time provide an element of unity to oppose the fragmentation which seems
to beset contemporary mathematicsand indeed every branch of scholarship.
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