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PREFACE

Mathematics is such a vast and rapidly expanding field of study that there
are inevitably many important and fascinating aspects of the subject which,
though within the grasp of secondary school students, do not find a place in the
curriculum simply because of a lack of time.

Many clesses and individual students, however, may find time to pursue
mathematical topics of special interest to them. This series of pamphlets,
whose production is sponsored by the School Mathematics Study Group, is designed
to make material for such study readily accessible in classroom quantity.

Some of the pamphlets deal with material found in the regular curriculum
but in a more extensive or intensive manner or from a novel point of view.
Others deal with topics not usually found at all in the standard curriculum,
It is hoped that these pamphlets will find use in classrooms in at least two
ways. Some of the pamphlets produced could be used to extend the work done by
8 class with a regular textbook but others could be used profitably when teachers
want to experiment with a treatment of a topic different from the treatment in the
regular text of the class., 1In all cases, the pamphlets are designed to promote
the enjoyment of studying mathematics,
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Mr. Karl S, Kalman, Room 711D, Office of the Supt. of Schools, Parkway at
21lst, Philadelphia 36, Pennsylvania 19103
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Dr. Henry W. Syer, Kent School, Kent, Connecticut
Professor Frank L. Wolf, Carleton College, Northfield, Minnesota 55057

Professor John E. Yarnelle, Department of Mathematics, Hanover College,
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THE MATHEMATICS OF TREES AND OTHER GRAPHS

1. Introduction

Once upon & time there was 8 rich mathematician who liked fresh air. He
liked fresh air so much that he built himself a summer home in the mountains.
Figure 1 is a sketch of the floor plan. He decided that the best way to be

Figure 1

sure that he would have fresh air at all times, no matter which way the wind
was blowing, wes to put a door in each wall of each room; and that is exactly
what he did,

This mathematician had a maid who kept house for him. Each yeer he
would send her up to the summer home two days early with instructions to open
every door and sir the house. But the mald was lazy. She did not like to
spend the morning opening doors snd the evening closing them. She decided
that the rooms would get aired well enough if each room had either an out-
side door open or doors open which were part of a series of cpen doors by
which one could get outside. The only trouble with this ides was that it
took <-¢ much time to decide which doors to open so as to open the least total

number of duc --- could you have helped her?

This booklet will enable sou to solve the maidfs problem. In solving
this problem you will encounter some new mathematical ideas which are part of
an important branch of the subject known as graph theory. To get the most
value out of your reading you should follow these general instructions:

1. Have paper and pencil with you each time you sit down to work.
2. Keep your work organized; svoid using scratch paper.

3. The numbered problems are discussed in the answer section, which
begins on page 18, Unless you are really lost, you may learn more if you

wait to look in the snswer section until you have done several problems.

1
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L. A number in square brackets, [], refers to the item with that
number in “Books to Use," page 25,

It is hoped that the reader has already been introduced to sets, Venn
diagrams, ordered pairs, and the induction principle.

Enjoy yourself,.

2. Busic Definitions

Copy the set of dots in Figure 2.

e

Figure 2

Pick a dot and dravw a line from that iot to any other dot. Starting

with the same dot or with a different dot, do the same thing seven more times.
Copy the set of dots again and draw a different set of eight lines,

You have now drawn representations of two graphs. The elements r, s,
t, u, v, and w, represented by the six dots, are called vertices. The
lines represent what ave called edges., Graphs, vertices, and edges are
abstractions. A representation 2£ an abstraction is a visible object designed
to aid the student in thinking about something which, by nature, is not

visible. Representations of vertices, edges, and graphs can be three-dimen-
sional, made using balls for vertices and strings for edges; or they can be
two-dimensional, made using pencil or chalk dots for vertices and pencil or
chalk lines for edges.)

Every graph can be described by a function, f. The notation used is as

follnus:

lSimilarly, the number three is an abstraction usually represented by the
numeral “3." The numersl "3" can be seen; but the number it represents is
never seen, only talked about. Likewise, no one has ever seen s mathemstical
triangle., The only things one ever sees is a representation of a triangle,
that representation ususlly being made with ink, chalk, wood, etc.
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1. If x sand y are any two vertices and n {s the number of edges
between them, then f£(x,y)} = n, read "f of xy equals n."

2. Ir f(x,y) =n, then f£(y,x) = n. Therefore, in writing the set of
equations for & gruph, if f(x,y) is included, then f{y,x) need not be.

3. If s 1is s vertex and if there i{s no edge betweea s and sny other
vertex, then f(s,x) = 0, where x 1s any vertex. In this case s is said

to be an isolated vertex.

Study Figure 3 and the set of equations given with it.

fs,t) =1
f(S.,U) = 2
f(t,u) =0

£{v,x) - 0, x ¢« [s,t,u)
f(x.x}) -0, x ¢ {5,t,u,v) : Figure 3
With respect to the sbtove example, we have the followving three sets:

1 The set of vertices, X, which is (s,t,u,v].

2. The domain of. f, which {s the set of all pairs of elements in the

set of vertices.
3. The range of f, which iz (0,1,2).

Note that the range of the function of a graph 1s always a subsev of the

non-negative integers.

Problem 1. Write the set of equastions that goes with esch of your two grsphs.
(Two possitle cases are worked out on page 18.)

Having approached graphs inductively, we now state the formal definition.g

Definition 1. A graph is a non-empty set, X, of elements called ver-
tices and s function, f:
1. whose domain {: the set of s8ll pairs of vertices,

2. whose range is 8 subset of thr non-negative integers, and

nl
“All of the definitions are important, but the numtcred ones {there sre
gix of them) should be learned especinlly thoroughly. As s start, it is
suggested thst you write them out and slso memorize them. Note thut because
the definitions in the glossary are all given in the formasl "if and only if"
form, they sre sometimes worded a little differently than in the text.
3
. ¢
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3. which 15 gsuch that, if x and y ¢ X, then f£(x,y) = f(y,x).3

The following definitions describe four specisl types of grephs.h As you
read the definitions, think sbout the relationships between the different types.

A graph is s graph with multiple edges 1f it has &t leust one pair of

vertices comnected by more than one edge. The graph which goes with Figure 3
iz such a graph becsuse s and u are connected by two edges. Is either of
your graphs a8 graph with multiple edges?

It is possible for a function to have {0} as its range. The set of
edges for such a graph i{s the empty or null set. Thus, if s graph has no
edges, it is called a null graph.

Protlem 2. Write the set of equations for the null graph with the three

vertices x, y, 8nd z.

A graph is a8 proper graph if it has no isolated vertices. The graph which
goes with Figure 3 is not a proper graph because v is an isolated vertex.
The graph which goes with the mathemmtician®s house is a proper graph.

A graph is a universal graph if each pair of vertices is connected by
one and only one edge.

Problem 3. Finish the universal graphs for the sets of vertices in Figure 4.
Does each graph have the same set of equations?

Figure 4

3his statement of the definition is not & standard cne and is, &s &
matter of fact, quite unlike any the author has read. Its uniqueness i{s the
result of the following two facts. First, the study of graphs is such a new
area that no one definitional statement has really become standard. Second,
most authors only define graphs in an informal and intuitive manner, whereas
I bave chosen to give formal definitions for all of the basic concepts.

hA graph with the function £ is a graph with a loop if and oaly if
there exists & vertex x such that f(x,x) E 0. Since none of the theorems
or problems will involve graphs with loops, hereinafter the term "graph®
will be understood to mean "greph without & loop."™

i¢
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Frobles 4. If @ set cousists of ©n vertices, how many edges are in its wuni-
versal greaph?

Eroble 3. To aelp you think about the relaiionships between the different
types of graphs mentioned so far, draw a Venn diagram. Let the
universal set, U, bde the ecet of all graphs with more than one
vertex. Let N stand for the sst of graphs with multiple edges,
N for the null graphs, P for the proper graphs, and V for the
universal graphs. (Hint: To get started on this type of problem,
of wvhich there will be more, you might ask yoursell these three
questiions about each pair of sets, A and B:

1. Is ANBwg?

2. 1Is AGB-A; that is, is ASB?

3. Is BNA = B; that is, is BcA?
In this cagse, the sete A and B would be chosen from U, N, KX,
P, and V as described above.)

Scmetimes when you are given a representation of & graph, you can count
the edges by putting a number beside each one and after a while you will come
to a last edge. All of the examples given thus far have this property. A set
such that it is possible to count the members and come to a last one is called
e figite set, and thus a graph with a finite number of edges is called a

finite exaph.

It is possible to think of the real number line (Figure 5) as s graph.
The vertices of such a graph would be in correspondence with the integers.
The "real number line graph® is an jinfinite graph: there is no last edge no
matter how the edges are numbered.

~ - - + —t- + + + i
-3 -2 -1 o] 1 2 3
Figure 5

A mathematician sometimes has & choice when he makes a definition. For
example, a finite graph could have been defined as one with a finite number of

‘yertices. However, then it would have been more difficult to discuss how many

edges such a graph could have, unless we restricted ourselves to graphs with.
out multiple edges. With the definition that was given, it is fairly easy to
prove the following theorem, Theorem 1, about the number of vertices, However,

-k
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this theoren als~ includes a restriction, that of no isolated vertices. Graphs
vith isolated vertices are used less often in problems than are graphs with
-multiple edges. Thus, this is the prefermble restriction from a practical

standpoint.

Jheorem 1. A finit» proper graph has a finite number of vertices,

Proof: Let 4 be the number of edges. Assume that there are more than
2d vertices. Since each edge can “use up™ at most two vertices,
some of the vertices must be isolated. Thus, this assumption
leads to & contradiction. Therefore, since 24 is a finite num-
ber and there are less then or at most 2d vertices, then the num-
ber of vertices is finite.

_ Plagar Graphs

Eroblexm €. The function described below is to be used with each of Figures 6 -
10. For all but one of the figures, it is possible to draw (or
finish) & representation of the graph in such & way that none of
the lines intersect.

&. Find the one for which it is not possible by finding solu-
tions for each of the others.

b. For the remaining one, find two solutions on & doughnut-
shaped surface. It is recommended that a strip of paper,
taped together as shown in Figure 11, be used for the
doughnut-shaped surface,

Function: For each pair listed the value of the function is 1.
The value of every other pair is O.

(5:") (Vsz) (53"")
(t,v) {x,z) (t,x)
(u,v) (y,z) (u,¥)
8 e [ 8 4 s. oy
t e oV &o ® X t. oV Ze exX
ue ey Ue oV
Figure 6 Figure 7

6
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s y
>v z<.’° t v z X
o v v W
FMgure 8 Figure 9
s y
u v

Figure 10 Figure 11

ape

Any soluuion other than the doughnut solution shows that the graph which
consists of eight vertices and the given function is a planar graph. A graph
is s planar graph if it is possible to represent it on & plane in such a way
that the vertices are all distinct points and no two edges meet except at

vertices.

The point of tLz above problem is that whether intersections are neces-
sary or not is determined by the type of surface on which the graph is repre-
sented. In three-dimensional space, every graph has a representation which
has no intersecting lines.

Problem 7. Can you draw a planar representation of the universal grapih which
has three vertices? four vertices? five vertices?

Chains

~ In order to solve the maid's problem, we need to consider ordered lists
of edges. Consider the two edges & and b in Figure 12 and the ordered

pl.ir of edges (&,b).
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Figure 12

In this ordered pair, two edges have the vertex 2 in common. The ordered
pair (b,a) has the same vertex in common but it is different because the
edges are listed in & different order. tuitively, the difference between
(a,b) and (v,a) 1is like the difference between “walking® from 1 to 3
and "walking® from 3 to 1.

It is also possible to have ordered triples such as (a,b,c) or even
(v,e,b). Sequence is the general term used to desceribe a set of ordered items
without specifying the number of items being ordered.

Problem 8. Using Figure 12, give three sequences of edges.

Definition 2. A non-empty sequence of edges (ul, Upy .e.) is & chain
if each uk has one vertex in comon wi:h the preceding edge uk-l’ and

the other vertex in cammon with the succeeding edge Uy e
In Figure 13, {a, b, c, e, 8, 4, h) 1s a chain,

Figure 13

Eroblen 9. With respect to Figure 13, which of the following are chains?
1. f{a, b, c, 4, &, e) 3. (e, c, h, g)
20 (&, d, f, s‘ h’ C) h‘l (b, C‘ E, d)

There are several special 4ypes of chains. As you read the following
definitions, think about the relstionships between the different types.




A chain is a simple chain if no edge is used more than once. The chain
(z, g, b, c) is simple, but the chain (f, g, h, £) 1s not.

A chain is & finite chaip if it has & last edge. An infinite chain has
no last edge.

Problen 10. The sequence of edges (vl, Vo) v3, e+e) of the non-negative
real number line {Figure 14) is an example of an
chain., (two words)

1

HJ»
3]

Figure 1%

Problem 11, Draw a Venn disgram which shows the relationships among the set of
chains, C, the set of simple chains, SC, and the set of finite
chains, FC. Let the universal sét, U, be the set of non-empty
sequences of edges.

Definition 3. A finite chain (ul, Upy seey un)‘ is & cycle if the first
vertex of W is the same as the last vertex of u e

Intuitively, one can think of a cycle as beginning and ending at the same
vertex; but, technically, the cycle itself cont&ins no vertices, only edges.

In Figure 15, 1s {8, £, 1, h, b) & cycle? Why not?

a

Figure 15

Note that all graphs except for null graphs contain such trivial cycles
a5 (a, b, b, &) and (a, a).

9




Just a&s there are different types of chains, so there sre also different
types of cycles. A cycle is & simple cycle if no edge is used more than once.
Does the "real number line graph® (page 5 ) contain any simple cycles?

Definition 4. A cycle 1is an elementary cycle if:
1, The vertices used to define the edges are used by the edges in the

given cycle exactly twice, and

2. no edge is used more than cm:e.5

In Figure 15, (&, b, c, d, e, ) 1is an elementary cycle, but
(a, &, 4, 4, k, 1) 1s not.

Froblem 12. Draw a Venn diagram which shows the relstionship between simple
cycles, S0, and elementary cycles, EO. Let the universal set
be the set of cycles, O.

Eroblem 13. Using Figure 15, identify each of the following chains, choosing
one of & - €,

1. (s, w) a. finite chain

2. (3, 1, c) b. finite simple chain
3. (s, t, u, v, w) c. cycle

4. fa, £, 1, n, a, g) d. simple cycle

Se (a., g, 1, e, 4, ¢, 1, h) e. elementary cycle
6. (a, g, 1, b, a, g, h)

Problem 1L. Draw & Venn disgram which shows the relationships among the fol-
lowing sets:
1. non-empty sequences of edges, U (the universal set)
2. chains, C
3. simple chains, 5C
4., finite chains, FC
5. cycles, O
6. simple cycles, SO
7. elementary cycles, FEO
You may find it easiest to use rectangles to represent the sets.
Be sure to have a large enough plece of paper. (Hint: Draw two
other diagrams first: one with everything but No, 3, and the
other with Just Nos. 3, 5, and 6.)

Without this second restriction, cycles such as (a, a) would be ele-

mentary cycles. By not stating this second restriction, scme a,uthors have, in
effect, contradicted themselves in later definitions.

10
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If you need to review the definitions in the first section, "Basic Defi-
nitions,® do so now.

Consider the cet of all towns with railroad statiocns as & set of vertices,
and let the railroad tracks represent the edges of a graph. For this graph,
there exist pairs of verticer, such as those represented by London and New York,
for which there is no chain, no sequence of tracks, which connects the two.

The telephone system, on the other hand, represents a different typre of graph;
anyone with a telephone can talk with anyone else with one (although special
arrangements have to be made for persons on the same party line). The “tele-

Phone system graph™ is an example of a connected graph.

Refinition 5. A graph is a comnected graph if, for every pair of distinct
vertices, there is a chain going from one to the other.

Problem 15. Draw a Venn diagram which shows the relationships among the set
of connected graphs, C; the set of proper graphs, P; and the
set of null graphs, N. Let the universal set, U, be the set of
all graphs with more than one vertex.

The next problem, the last Venn diagram problem, is given to help you
wunderstand the definition which follows 1t.

Problem 16. Draw & Vemn diagram which shows the relationship between the set
of graphs which contain simple cycles, GS0, and the set of graphs
vhich contain elementary cycles, GEO. (This is a tricky problem?)

In order to solve the maid's problem it is necessary to learn ocne more
definition and two theorems.

Definition 6. A finite commected graph is & tree
1. 1f it has at least two vertices and
2. 1if it has no elementary cycles.

By the previous problem, problem 16, you &lso know that & tree has no
sinple cycles.

11
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Erxcblag 17. In Figure 1 , waich drawings are not of trees? Justify your

answver. ‘ ,
a) 1 b) 1 c) 1
3 2 3 2/\3
L
d) e) f)
L 1 1
2 3 2 3
L L 4
Figure 16

Problem 18. Using Figure 17, draw a representation for each of the trees
which has exactly four vertices. Do not stop too soon!

*1

4
Figure 17

Bcoblem 19. What are the possible mumbers of edges & tree with four vertices
can have? with three vertices? with five vertices?

The mathematician's house can be considered as representing a finite con-
nected graph, and the opening of a door can be thought of as the removal of an
edge. Do you see that as long s&s there are any elementary cycles in the house,
the part of the house which is so enclosed cannot be aired? In order to know
which doors to oper, it is necessary to know more about finite connacted graphs
without elementary cycles, that is, trees. The following two theoreme describe
somes of the characteristics of a tree.

12
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Thegren 2. If m greph is & tree and 4f x and y are any two distinct
vertices, then there is one and only one sinmple chain begine
ning at x and ending at y.

Proof: If there were not a chain, then the graph would not be comnected.
' By definition, a tree is a connected graph, If there were

more then one simple chain, then any two together would form
a cycle wvhich, by the proper elimination of extra edges,
would yield at least one elementary cycle., (Figure 18 should
suggest to you how this prccedure works.) By definitiom,
trees do not have elementary cycles. Therefore, there is only
one simple chain between any two vertices.

Figure 18

Theorem 3. If & tree has n vertices, then it has n - 1 edges.

Comment: A corollary of this theorem is that every tree has one less edge
than it has vertices. Every tree has a finite number of edges by the defini~
tion of a finite graph. By theorem 1, page s, We know that every tree has a
finite number of vertices. Therefore, even when & finite number of vertices
is not postulated for a particular tree, we will know af'ter proving theorem 3
that that tree has one less edge than it has vertices.

Preliminary exercise: Draw & representation of a tree with, say, between
five and ten edges. Add one edge to it in such a way that it still represents
a tree. How many vertices did you 8dd? Can you add an edge in another way so
as to 8dd a different number of vertices?

Proof: The proof of this theorem is by induction. let S(n) be the state-
ment that & tree with n vertices has n - 1 edges. A tree
must have at least two vertices, Oince, for a tree, two ver-
tices are connected by one and only one simple chain, the sim-
plest tree has only two vertices &and one edge. Therefore,

s{2) is true.

Suppose that S(k) 1s true, that is, that a tree with k vertices
has k -1 edges. One way to get a tree with k edges is to

14
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add an edge to & tree with k - 1 edges. As we add the edge,
can ve add no vertices? ome vertex? more than one vertex?
If no vertices are added, then the new edge will be a simple
chain between the two vertices which are its endpoints. By
theorem 2, there already was a simple chain between those ver-
tices; so now there are tvo simple chains between them. Since
that theorem says that there must be exmctly one chain, such
a graph would not be a tree. Therefore, it is necessary to
add at least one vertex. If we add more than one vertex, then
the graph is not connected; either the new edge is disconnect-
ed or else there are isolated vertices. BSince trees must be
connected, we cannot add more than one vertex. Because it is
necessary to add one and only one vertex while adding the ex-
tra edge, a tree with k edges must have k + 1 vertices.
Thus, S{k) implies S{x + 1).

Since S(2) 1is true and S{k) implies S(k + 1), then
S{n) is true for all n > 1; and the theorem is proved by
induction.

Restatement of the lazy maid's problem: You remember that she wanted to
get rid of all air traps (elementary cycles) by opening &s few doors {(removing
as fev edges) as possible. Since a finite proper graph has a finite number of
vertices {theorem 1, page 6), the problem, stated in general terms, is twofold:

1. For a finite connected graph with n verticesand m edges, nn
what is the smallest number of edges that must be removed if there are
to be no elementary cycles?

2. How can sppropriate edges be chosen?

Note:

1. W¥e do not have fewer edges than vertices, so we are not starting with
a tree. (mn>n -1) ’

2. A graph, by definition, must bave at least one vertex (n > 1). Since
m > n, the type of greph we are considering here also has at least
one edge and thus at least two vertices.

Soluticn: We begin by eliminating an edge belonging to an element&ryr
cycle, say the edge & between the vertices x‘1 and X . The graph is still
connected because the other part of the cycle forms a chain from X to xJ.
If there is another elementary cycle, another edge can be eliminated in the

sEe Way. Since the greph is finite, there will cane & time when there are no

S S
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elementary cycles left. Then we shall have a finite connected graph with no
elementary cycles and with at least two vertices, in other words, a& tree. This
tree has n vertices, the same number as for the original graph. It has n - 1
‘edges, by theorem 3. If r was the number of edges removed, then

n--l=mar

6

or Ir="=me.n-+1,

Note that in snswvering the first half of the problem the methodology for
the second was given.

Froblem 20. What is the amallest number of doors that the maid has to open?
(®int: In order to count the edges, copy or trace figure 1.) Is
there more than one set of doors which consists of this ™least num-
ber” and which will air out the house?

Summary Qui

Finish all the problems before checking the answers.

Froblem 21. For each of & and b, fill in the blank in the following state-
ment with as many of p - s as are true, The graph with this

set of equations is & .
a. f{x,y) =1 p. universal graph
£{y,z) = 1 4. proper graph
£(x,z) = 0 r. graph with miltiple edges
b. flx,y) =1 s. tree
tly,2) =1
£x,z) = 1

Problem 22. Refer to figures 19 - 21,
a. Is (a, c, b) & chain?
b. Is (e, £, g, h) an elementary cycle?
¢c. Is G a representation of a tree?
In each case, Justify your answer.

sAdnpted from [4), p. 37.
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Problem 23. With respect to the "real number line graph,™ for what pairs is
the value of the function 17?

16
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Answers

1. ‘IVo possible sets of equations and representations:

a) T b)
8 r
W 8 %
t v t v

a) flr,s) =1 " b) glr,s) =1 , u

£(r,t) = 1 glr,t) = 1

£(r,u) = 1 glr,u) =1

f(s,t) = 1 gls,t) =1

£(t,w) =1 glt,u) =1

£lu,w) = 1 glv,vw) = 3

flv,w) =1

lu,v) =1

For all other pairs of vertices, the values of f and g are O.
2. f(x,y) = 0 f(y,z) =0 f(x,z) = 0

3. a) b)

Yes, each does have the same set of equations.
1
k. 21:1(:1 - 1)

5:

18




6. &) Figure 10 has no solution. There is & story, “The Story of the Persian
Caliph and His Daughter's Boyfriends," which goes with that figure.
See [1], page 8. Possible solutions for figures 6 - 9 are:

éé)@

b) Two possible solutions are:

1) 2)

For further study on some of the differences between planar surfaces
and doughnut~shaped surfaces, see [2] or [6].

14




7. &) b)

c) The universal graph with five vertices is not planar. Neither is the
graph vhich goes with the function whose value is 1 at each of the
- pairs listed and 0 elsevhere.

(y,x) (v,x) {w,x)
(u:l’) (V}Y) (V:Y)
(u,z) (v,2) (v,z)

It has been proved that a graph is not planar if and only if part of
if is, in a certain technical sense, ™like™ either of the two non-
planar graphs mentioned sbove. See [U4], p. 96; [6], p. 42; [10],
p. 142; or [9], p. 2ll. There is a proof in [9], and [10] nen-
tions another place to find a good one.

8. Three possible sequences are (a, b, a), (e, a, b), and (e, b, c, 4, 8, e).

9. Number 1 and Number 2.
10, Infinite simple

11,

12,




13.

14,

15.

16.

17.

l‘b‘ 2-3, S-b, h-a, S-d, 6-01
- f j‘ -
vjGcijrc o Zé)//
/ / /SC
U P C N
U GSO and CEQ

Any elementary cycle is a simple cycle; therefore, GEO ¢ GSO.
Any simple cycle which is not an elementary cycle can be broken up into
elementary cycles; therefore, GSO0 g GEO,

Refer to figure 22,

a) This graph is not a tree because (&, b, ¢, d) is an elementary
cycle.

b) This graph is a tree. ,

¢) This graph is not & tree because it is not comnected; 4 is an iso-
lated point.

LS
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d) This graph is not & tree because (e, £, g) 1is an elementary cycle.
e) This graph 1is not a tree because (u, v) 1s an elementary cycle.
f) This graph is a tree.

47
L]

19. four vertices - three
three vertices ~ two
five vertices - four

20, 17 =44 - 28 + 1,
Yes, there is more than one set.
Q: When is a house not a house?
A: VWhen it is a tree.

21. & ~ q,8; - D,q.

7Ad&pfed from [9], p. 160,



22, a) No. Edges s and c have no vertex in common.
b) HNo. The vertex between £ and g 4is used more than once.
¢) Bo. G 4s not connected.

23. flx,y) =1 ifandonlyif x=y + 1.

Further Study

By degcribing some other problems related to graph theory and by providing
guidance concerning the choice and use of other sources, it is hoped that the
reader will be stimulated to study other aspects of graph theory and topology.

Problems to Consider

The following five problems 1llustrate same additional ideas vhich are
part of graph theory. Answvers to the starred problems appear after the fifth
problem. The sources and page numbers are listed after each problem, and each
answver is taken from the same source as the corresponding problem.

1. Road Constructian. If a person were given a set consisting of n cities
and were given the cost of constructing & road between any pair of these citles,
how could he determine the cheapest way to construct a road network which would
connect all n cities? [4-38],

#2. Round Tour of the World. Pretend that the world is shaped like & dodeca-
hedron and that there is a town at each of the twenty vertices. Using figure
23, plan & world tour such that each town is visited once and only omce, travel
i3 done along the edges, and the last town is the same as the first. [4-28]
and [9-107]. See [8] and [11] for discussions of Hamilton circuits, the
generalization of the idea behind this problem.

M gure 23
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*3. Mho is the Most Powerful? This is & directed graph problem. In figure
24, the vertices represent pecple; and the "arrows™ represent influence. An
Arrow goes fram x to y 1f the influence of x on y is of significance.
Decide who the most powerful person is. [9-136]. (A teacher who has an
especially troublesome class is sometimes advised to make & diagram like this
one. The information for it is obtained fram student questionnaires:) '

b, Jobs and Applicants. A firm has n vacant jobs of various typres and has
& group of n applicants such that each workman is qualified for one or more
of the Jobs. Under vhat conditions is it possible to assign each man to a
position for which he 1s qualified? [4-43] and [9-92].

5. Optimum Personnel Assig@nt. There are n workers in & firm who are to

be assigned to n different machines. The output of each worker with respect
to each machine is known. How should assignments be made so as to achieve the
maximm total output? ([7-vii, 79] and [9-229].

Even though there are similarities between problems four and five, problem
five is much more difficult.

Answers to Selected Problems

2. One possible solution is shown below.

3. One might think that because person number 12 has the most direct influe
ence that he was the most powerful, but the people wham he dominates are not
very influential. Person number 2 is the most powerful because the three
people whom he influences are themselves very influential.

£
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Books to Use

Graph theory is & branch of topology. Two types of works have been in-
cluded in this list: all the mic*smrks_ on gr.aph theory and some additional
bocks which are suitable for high school students and which are about other
areas of topology. The first six books are listed in their order of difficulty.
The first five were written for high school students. Those which contain
both exercises and solutions are numbers 1, 3, 4, and 5. The last five books
are more difficult. They are listed alphabetically.

There are two famous problems that are included in most of these books.
The first is & proposed theorem about the number of colors needed to color &
map. Because map coloring is easy to explain, this topic is often included :
beginning books even though the proofs for the part of the theorem that have
been proved are quite difficult. Mep coloring is discussed in numbers 1 - 4,
6, 8, and 10. The other famous problem is the Koenigsberg bridge problem.
It was the first problem in the first graph theory book, which was written by
Fuler a little over 200 years 8go. This problem is discussed in numbers 1, 2,
4, 6, 8, 9, and 11,

Elementary Works

{1] Jomnson, D. A., and Glenn, W. H., Topology, the Rubber-Sheet Geometry.
Pasadena: Webster Publishing Company, 1966. L40pp. This bocklet is & general
introduction to topology and thus includes & mumber of different topics. One
sectlon of it 1s devoted to tricks and puzzles which involve topological con-
cepts.

[2] Barr; Stephen, Experiments in Topology. New York: Thamss Y. Crowell
Company, 1964. 210 pp. This book is written in a very readable style. To
help the reader understand certain concepts, instructions are given on how to
make paper models of a number of different topological surfaces. The book
also includes & chapter on sets and Venn diagrams, )

(3] Dynkin, . B,, and Uspenski, V. A., Multicolor Problems. Boston: D. C.
Heath and Company, 1963. 66 pp. This booklet is very thorough. It includes
& short appendix on coloring spheres.

25 g7
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(L]} Ore, Oystein, Craphs and Their Uses. New York: Random House, Inc., 1963.

131 pp. As can be seen from the table on page 40, Ore's terminology is different
from that used here, The beginning of the book is fairly informal, but the rest

of 1t requires thorough work.

{5] Chion, W. G., and Steenrod, N. E., First Concepts of Topology: The
Geometry of Mappings of Se ts, Curves, Circles, snd Disks.. New Yark: .Random
House, Inc., 1966. 160 pp. Both [4] and [5] are part of the same series:
the New Mathematical ILibrary, the Monograph Project of the School Mathematics
Study Group.

{6] Arnold, B. H., Intuitive Concepts in Elementary Topology. Englewood
Cliffs, New Jersey: Prentice Hall, Inc., 1962. 182 pp. This book includes
an explanation of mathematical proofs by induction. It gives a proof for a
special case of the Jordan curve theorem, a theorem which is referred to fre-
quently in topology. The book contains problems but not soluti'cmu. It was
written as a text for college sophomores. It is my impression that only the
last two chapters require more than high school material. However, what makes
the beok & college text is that the student needs to have had experience in
working with proofs.

Advanced Works

(7] Avondo-Bodino, G., Econamic Applications of the Theory of Graphs. New
York: Gordon and Breach, 1962. 108 pp. The subject matter of this book is
the solution of four practical but difficult economic problems, one of which
is problem five on page 2k « Most of the book is on & very abstract level. The
first two chapters are a little easier than [11], but the rest of the book
is much more difficult.

(8] Bell, W. Rouse, Mathematical Recrestions and Essays. New York: acmillan,
1962, (Reprint of an 1802 edition.) 418 pp, The introductions to the Koenigs-
berg bridge problem, the fifteen girls problem, and especially the map coloring
problem are very clear and understandable. However, after a topic has been

introduced, the discussion becomes rather complex,

[9] Berge, C., Ihg Theorv of Craphs and its Applications. Translated by
Alison Doig. New York: Johmn Wiley and Soms, Inc., 1962. 24T pp. This book

is very difficult. However, it contains & number of problems, some with solu-
tions, which are fun to read. They are found on the pages listed below.

30 L1 72 109 135-36 178 188
H L2 92 110 165 179 202
36 66 107 112 17677 187 204

26 n ..
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{10] Harary, Frank, "Combinatorisl Problems in Graphical Enumermtion,®

Applied Cogbinatorisl Mathemmtics. Edited by Edwin F. Beckenbach. New York:
John Wiley and Sons, Imc., 1964. This chapter discusses some of the difficult
problems in greaph theory which have bean solved and a number which have not.

{11) Ore, Oystein, Theory of Craphs. American Mathematical Society Collogqui-
~wm Publications, Volume XXXVIII. Providence, Rhode Island: American Mathe-
matical Society, 1962, 270 pp. This book contains problems but not solutions.
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Graph theory is a fairly new area of study;
To aid you in further study,
authors. This booklet uses

Table of Terminologies

and, as yet, the terminology is not standardized.
the fpollowing chart.list® the terms used by some of the different
Berge's teminology for non-directed graphs,

Berge Berge Avondo-Bodino Avondo-Bodino Ore
non~directed directed non~directed directed
vertex or point vertex or point point Point vertex
edge arc line arc edge
chain path chain course connected sequence
simple chain _ simple path path
elementary path arc or simple path

cycle circuit cycle circuit
sinple cycle simple cycle cyclic path
elementary cycle elementary circuit elementary cycle circuit
tree arborescence tree arborescence tree




Glossaxy

Chain.
A non-empty sequence of edges (w,, u,, ...) is & chain if and only if
each has one vertex in commofl wi

2
%h the preceding edge .1’ ang .
the other vertex in common with the succeeding edge wu .. (éhge 8).

Connected graph.
A graph 1s a connected graph if and only if, for every pair of distinct
vertices, there is a chain going from one to the other. (Page 11).

WCJ.e .
A finite chain (ul, Uy eeey un) is a cycle if and only if the first

vertex of w, is the same as the last vertex of u . (Page 9).

Elementary cycle.
A cycle is an elementary cycle if and only if:
1. the vertices used to define the edges are used by the edges in the
given cycle exactly twice, and
2. no edge is used more than once. (Page 10).

Finite chain.
A chain 15 a finite chain if and only if it has a last edge. (Page 9).

Finite graph.
A graph is a finite graph if and only if the set consisting of its edges
is a finite set. (Page o).

Finite cet.
A set is a finite set if and only if there exists & positive integer =m
such that the elements of the set can be put into & one-to-one correspon-
dence with a proper subset of (1, 2, ..., m}. (Page 5).

Graph.
The set consisting of a set, X, and a function, f, is & graph if and
anly if:
1. X 1is & non-empty set of vertices, and
2. { 1is a function
&. whose domain i1s the set of all pairs of vertices,
b. whose range is & subset of the non-negative integers, and
c. which is such that, if x and y € X, then f{x,y) = £{y,x).
(Page 3).

Graph with multiple edges.
A graph is a graph with multiple edges if and only {f it has at least one
pair of vertices connected by more than one edge. (Page ).

Infinite chain.
A chain is an infinite chain if and only if it i{s not & finite chain.

(Page ).




Intinite graph.
J(\ gnph)iu an infinite graph if and only if it is not a finite graph.
Page 5

Null graph.
A grsph is a null graph if and only if it h&s no edges. (Pn.ge Ly,

Planar graph.
A graph 1s a planar graph if and only if it is possible to represent it
on a plane in such & way that the vertices are &8l distinct points ami no
two edges meet except at vertices. (Page 7).

Proper graph.
1(1 gnph is a proper graph if and only if it has no isolated vertices.
Page 4).

Simple chain.
1(% chn.in)is a simple chain if and only if no edge is used more than once.
Page 9).

Simple cycle.
A cycle 15 a simple cycle 1f and only if no edge is used more than once.

(Page 10)

Trée-
A graph is a tree if and only if:
1. it is finite,
2. 1t is conmected,
3. it has at least two vertices, and
L., it has no elementsry cycles. (Page 11).

Universal graph.

A graph is a universal graph if and only if each pair of vertices is con-
nected by one and only one edge. (Page 4.)
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