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PREFACE

Mathematics i{s such a vast and rapidly expanding field of study that there
are inevitably many i.portant and fascinating aspects of the subject which,
though within the grasy of secondsry school students, do not find a place in the
curriculum simply because of a lack of time,

Many classes and individual students, however, may find time to pursue
mathematical topics of special interest to them. This series of pamphlets,
whose production is sponsored by the School Mathematics Study Groupy is designed
to make material for such study readily accessible in classroom quantity.

Some of the pamphlets deal with material found in the regular curriculum
but in a more extensive or intensive manner or from a novel point of view.
Others deal with topics not usually found st all in the standard curriculum.
It is hoped that these pamphlets will find use in classrooms in at least two
ways. Some of the pamphlets produced could be used to extend the work done by
8 class with a regular textbook but others could be used profitably when teachers
wvant to experiment with a treatment of a topic different from the treatment in the
regular text of the class. In all cases, the pamphlets are designed to promote
the enjoyment of studying mathematics.
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-School Mathematics Study Croup:
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ORDER AND THE REAL NUMBERS -- A GUIDED TOUR

In view of’ the experience we have all had when the amount of money we
have is less than the cost of sn item we would like to buy, we are all familiar
with the i{dea of one number being less than another. In this lesson and those
that follow, we will be learning things about this important relationship
between numbers. - We start by considering the simplest kind of numbers -~ the
numbers 1, 2, 3, % and so forth -- the numbers we have used to count with
since we were very young. We shall call these numbers the natural numders.
We could also call them the positive integers, but usually will not.

Instead of saying that one natursl number is lesc thsn another, we may
8lso say that the first number i{s smaller than the second and mean the same
thing. Thus, 25 15 less than 30 &nd, also, 25 1is smaller than 30.

All of us are lazy and prefer a short way to write something rsther than
a long way to write it. It is convenient, therefore, to abbreviate "25 1is
less than 30" as "25 < 30". That i{s, we let "<" stand for the wvords "is
less than".

We now present some problems for you. You are to decide in each case
whether or not the ststement is true or false. Record your answers to sll the
parts of problem 1. When you have finished, check your answers against those
glven at the back of the booklet.

1. {8 4k <7
() 12 < 10
(e) 193 < 200
(d) 3<5

(e} 10,000 < 9,999

{(£) 47 + 6 <« 47

(g) 133 <133 + 9l

(h) 5+2<5

(1) 14,397 < 14,397 + 1

{4} If x s sny nstursl number, x <x + 1.
(k) If x and y sre natural numbers, them x < x + y.
() 5<7 and 7 <53

{(m} 5<7 and 7 <6

(n) 391 < 400 and 400 < 1940

(o) 391 < 391




It is plenslnc to have more money than the cost of something you want to
buy, and it i{s convenient to have an abbreviation for the phrase "is more than".
The symbol we use for this abbreviation is ">". It is true, for example,
that 12 > 10. '

If you find yourself getting confused between "<" and ">', remember
tha: ‘he shape of the symbol is meant to be helpful. The "large", open end
of tue symbol is next to the name of the number which, it is claimed, is the
large number. The small point of the symbol points towards the name of the
one claimed to be smaller.

True or False «« gs before: .

2. (a) 37>73
(v) 37 >17
(c) L9341 > 493ko
(d) If x is a natural number, x + 1 > x.
{e) If x and y are natural numbers and x < ¥, them y >x.
(f) 59 >40 end 40 > 32
(g) 73>58 and 5B > 60

The cost of a bicycle is usually between that of a candy bar and that of
@ car. 10 1{s between 5 and 17, becasuse 5 <10 and 10 < 17. Also 39
is between 1000 and 30 because 1000 > 39 and 39 > 30. In general, we
say that a 1is between b and c¢ 1if elfther b<a and a<e¢, or b >a
and a > ¢,

True or False -~ as before:

3. (8} & is between 2 and 10.
(b) 4 is between 10 and 2.
{c) & 1s between 7 and 10.
(d) 37 1s between 10 and 50.
(e) 497 1is between LOO and 500.
{r) 47 1is between 1 and 1000.
{g) 394 1s bdetween 395 and 500.
(h) 20 1s between 10 and 16.

The nstural numbers between 5 and 10 are the numbers 6, 7, 8, and
9. if we wish to talk about this collection of numbers, we will write
“{6, 7, 8, 91" to stand for the collection. We will usually refer to any




collection as a get.. The things that are in a &et are called members (or
elements) of the set. The set {3, &, 7} has fhe members 3, 4, and 7.
That is, 3 1s a member of this set and so are 4 and 7.

-

We read " (3, 4, 7)' as "the set whose members are 3, 4, and T7".
The symbols "{" and ")" are called braces. Whenever we use braces we will
be talking about sets. The left brace, "(", may be considered to be an
sbbreviation for "the set whose members are". The right dbrace, ")', tells
us when the list of names of members of the set stops. Note that it does not
make any difference in which order we list the members of a set. (3, 4, 7)
and (7, 4, 3) and {4, 3, 7]} are all the same sets.

We may also use this "set notation" for infinite sets. For example, we
would write "{1, 2, 3, 4, ...} to stand for the collection of all natural
numbers. Here "..." stands for "end so forth". We shall return to a dis-
cussion of what the word "infinite" means above. You might look it up in a
dictionary.

True or False -- as before:

L. (a) 7 1is a wember of (3, 10, 7).
(b) 4 15 a member of (3, 10, 7).
(¢} There are three members in {3, 10, 7}.
(d) Every member of (3, 10, 7) is less than 32.
(¢} Every member of {5, 7, 19, 35} 1is less than 20.
(f) Some memver of ({5, 7, 19, 35} 1is greater than 20.
{g) Every member of {5, 10, 15, 20, 25) is greater than k.
(h) The largest member of (5, 7, 10} is 10.
{1} The largest member of {5, 10, 7} is 10.
(3} The smallest member of (5, 10, 15, 20, 25} is 5.
(k) The smallest member of (3, 4, 5, 6, 7} 1s 3 &nd the largest

~omoer of this set is 7.

In mathematics (and other places), the largest member in a set is often
called the maximun of the set. The smallest member of 8 set is called the
minimum of the set. The maximum of (5, 10, 32) 45 32 and the minimum of
this gset is 5.

e




Fill in the blanks:

5. (a) The maximum of (5, 25, 72, 10} is .
(b) The minimum of {4, 3, 7, 15) 1is .
(¢) The minimum of (3, 4, 5, 6) is —_—

() The maximum of (3] 1is . ‘

(e) An example of a set whose maximum 15 4 and vhose minimum 15 2
is .

(f) An example of a set whose minimum is 4 and vhose maximum is b
is .

Is it possible to find s set of natural numbers which has no minimum?
That the snswer is "No" to this question is intuitively clear -- or is it$
In any event, the ancver 1s "No", and the fact that this is so turns out to
be & most deep and fundamental fact about the natural numbers.

Is it possible to find a set of natural numbers which has no maximum?
Here the answer is "Yes". For consider the set (1, 2, 3, ...} consisting
of all the natural numbers. Is there a maximum in this set? There is not.
We can prove this "by contradiction”. Suppose there is a maximum natural
number. Call it n. Then n 41 ‘s 8 natural number. But n<n + 1. So
n 1is not a maximum after all! In other words, there is no largest natural
number because if we are given any natural number n we can find @ larger

natural number, namely, n + 1.

As we look over the sbove results, we conclude that a (non-empty) set of
natural numbers always has a minimum but may have no maximum.

If you like fancy names for things (and like to sound sophisticated),
you may express the fact that any non-empty set of natural numbers has a
minimum element by saying that the collection of natural numbers is well

ordered,

If someone ssks what is the largest even natural number, the proper
answer is, "There ain't no such animal.” But it is more precise (and polite ~-
although somewhsat stuffy) to say, "The set of even natursl numbers has no
maximum;" or "The maximum of the set of even natural numbers is undefined;”
or "The maximun of the set of even natural numbers does not exist." Some of
you may be tempted to say that the meximum of the set is infinity {whatever
that means). But the meximum of a set must be in the set and whatever
"i{nfinity" is, it is not an even natursl number. So "infinity" i{s certainly

not the maximum of the set.
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Fill in the blanks:

6. (s) The maximum of the set (30, 25, 20, 15, 10, 5} s ___ .

(b) The maximum of the set of sll odd natural numbers is —

(c) The largest natural number multiple of 3 is __ .
(The multiples of 3 are 3, 6, 9, 12, 15, ...).

(d) The smallest natural number multiple of 3 is .

(e) An example of s set of patursl numbers where every member is less
than 3 and yet the set has no maximum is ___ .

(f) An example of a set of natural numbers with s minimum of 1 and
o maximm of 1,000,000 is __ .

(8) A number larger than 1,234,567,891,011,121,314,151,617,181,920,
212,223 1s .

(n) Which nstural numbers are less than 1%

(1) Which natural pumbers are between 5 and 137

(3) Which natural numbers are between 27 and 237

(k) Which natural numbers are between 2 and 3%

(£) Which natural numbers are between 5976 and 5975%

(m) If a 1is the minimum and b is the maximum of some set, then
every member of the set is between & &and b. (True or False?)

(n) If a 1is the minimum and b 1is the maximum of some set, then
every member of the set which is different from a. and different

from b 1s between 8 and b. (True or Faise?)

(0) Which natural nuubers sre between 49 and 5072

{p) If x is a natursl number, there are no nmatural numbers between
x and x + 1. (True or False?)

(g) The minimum of the set of all natural numbers is .

(r) The minimum of the set of all those matural numders which are
greater than 38 is .

One essy way to think sbout inequalities is in terms of a picture.
Imagine & "number line" constructed as follows: On a horizontal line we
chooge a point called the origin and label it with the numeral "O". We
label with the numeral "1 the point one unit to the right of the origin.
We label with the numeral "2" the point two units to the right of the
origin. We label with the nume:sl "3" ¢the point 3 units to the right of
the origin. And so on. The result looks like this,




In this way we may think of our natural numbers as 1dentifying certain points
on this line -- and vice versa. But, now ve see that "{s less thap" (or "<y
can be thought of as "to the left of'. Alsco, "is greater than" (or ">') ean
be thought of as "to the right of". Also the meaning ve gave to "between"
agrees with our ideas sbout this picture. We could even think of the "minimum"’
of a set as the "leftmost member" of the set.

7. (s) What is the leftmost point among the points associmted with the
numbers in the set (17, 4, 3, 10)?
(b) What is the rightmost point in the set 17, 4, 3, 10)?

Here we have started to be lazy again and instead of saying, "Rightmost point
among the points associated with the numbers in the set", we said, "the points
in the set". That is, we will do what most people do and talk about such s
thing as "the point 10" instead of saying "the point on our line which was
labeled *10%."

One-third of a ple is smaller than two-thirds of & ple. Half s loaf is
better than none. Winning seven-ninths of the games you played this season is
doing better than winning only two-ninths of them,

True or False:

8. (a) 3<%
(v) % <1
(c) % is between % and 1,
{d) §>o
(e) % < %
(£} 2 1is between % and % .
(g) g is between % and g .
(n) "FSL =T
() 3<.5




Remepber that “.3" 15 an abbreviation for "-1%“, “.43" 4is an sbbrevia-

tion for "Tlg-" ,» ".759" 4is an abdbreviation for "%o%" , ete,

9. (a) .51 < .52
(v) .76 < .19
(¢) .09 > .10
(@) .4319 > 4098
(e} .35>.20
(£) S51>.5
(g) 89> .9 )
(h) .413 15 between .400 and .500.
(1) .3 1is between .24 and .29.
2
g:
(k) The minfeum of (.7, 1.6, 4.2) 1is .
() The maximum of {.1, .2, .3, .4, .5, .6, .T, .8, .9, 1} is .

(3) The maximum of (l, %) is .

(n) Every member of (3, 5, %, 10, 1} 1is greater than

Wi

(n) Every member of (3, 5, :3{," 10, 1} 1is less than 7.

(0) Every memder of (3, 5, :3’-, 10, 1) 1s less than 20.

1
3!

(q) Every member of (3, 5, :3{-, 10, 1} {s greater than 1.

(p) Every membder of (3, 5, 10, 1) 1s less than 50.

(r) Every member of (3, 5, %, 10, 1) 1is no greater than 10.

{s) Every member of (7, 5, 9, 15, -I-:;-, 95) is et least as lsrge as

Wi
»

(t) No member of {33, &7, 53, 9.96) is greater than 53.
(u) No member of (5, &, 3, 6, 9, 11} is less than U.

If every member of a set is at least as large as some number A, then we
say that the number A is a lower bound for the set. Thus, 4 {s a lower
bound for {10, 5, 6.94, 32) since every member of this set is at least as
large sas L, Note thst 3 {8 also a lower bound for this same set. Indeed,
5 1is also.




If every member of a set is no greater than some number B, then we say
that B 1s an upper bound for the set. Thus, 17 4is an upper bound for
(4, 3.6, 9, 11, 7). 15 15 also sn upper bound for this same set. Indeed,
11 is also.

True or false or fill in the blank:

10. (s) 100 1s an upper bound for f%, L, 10, 94).

(v) 10,479 1s an upper bound for {g-, 4, 10, 9%).
(¢) 100 1s a lower bound for (100, 1000, 10000).

(d) 1 1s a lower bound for {100, 1000, 10000).

(e) % fe & lower bound for (100, 1000, 10000)}.
(f) The set of all natural numbers which are upper bounds for

{5, 19, 36] is {36, 37, 38, 39) t--)-

(g) The set of all natural numbers which are lower bounds for
{5, 19’ 36] is _—l

(h) The set of all natural numbers which asre lower bounds for
(3, 5) 9, 66) is —_

(1) The set of all natural numbers which are upper bounds for
{10, 100, 1000, 10000} 1is .

(§) The set of all natural number which are upper bounds for
&,2,3 L5 6 1 8
552925325 993"

(k) -;—, %, %, g—, g, and % are sll between % and 1.

(¢) .301, .302, .303, .304, ..., .399 are sll between .3 and .k,

l) is .

(m) .34196 1s between .3419 and ,3420.

11 10
(n) §7 <i

In this last problem we need to know how to compare the size of two
numbers when they are written as fractions with different denominators. Here
we make use of some basic facts about fractions and find ways to express the
numbers so that they have the same denominator. In problem 10(n), for

exemple, ve can write X = fril _ -lgi and 30 . 3017 _g_ Then

17 1117 187 11 ll 17
since i'lé'}f < %&?7 s we see that the statement in problem 10(n) is true., For
2 2 2 _ 8 9.8
enother example, we see that 2- > 3 since E' = {5 and 3 =12 and 15 > 15

8
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True or False:

11.

(a)
(v)
(c)
(a)
(e)
(f)
(&)
(n)
(1)
()
(k)
(2)
(m)
(n)

(o)
(p)

(q)
(r)

(t)
()
(v)
(w)

k5 8K
v
N8

SIS el S
[
-

b1

«999 < 1

1000
3

394 <
1 )

17 “18

1 1

31 ° 30

If a pie is divided into 3 equal pieces, the pleces are larger
than if the ple had been divided intoc 4 equal pieces.

1.1

37F

If your rich uncle leaves you 1/10th of his estate in his will,
you get more than if he had left you l/9th of it.

1 1
0”5
% > % and % > % and é >

O

1 1 1
50 is between 55 and 5T °

» [

If x 15 a natural number, then T§—%_ET <

o«



As we discovered before, a picture often helps in dealing with {nequali-
ties. On the number line ve constructed before, it is easy to think of cer-
tain points as corresponding o numbers of the kind we have been using. For
example, if wve find, on the number line, the point which divides the segment
betwveen 0 and 1 into two equal pieces, it is natural to label this point
as "%—". If we choose two points on the number line which divide the segment
from O to 1 into three equal pieces it is natural to lsbel these two

points (from left to right) as "%‘“ and "-i-".

In a similar fashion wve may find the points corresponding to 11; ’
To find the point corresponding to ﬁ ve would first think of ﬁ as

17

Lh then choose points dividing the segment from 2 <o 3

2
17 ' 17 i7 »
into 17 equal pieces, and then label the 9th one of these as "‘—:3".

= 2 +

As we discovered with the natural numbers on the line, it is the case
that "<' can still be thought of as "to the left of". Also "> can still
be thought of as "to the right of". This fact is perhaps now not so obvious" ’
but it is true.

In terms of our number line, to say that B 1is an upper bound for a ‘set
is to say that no member of the set is to the right of B. To say that a
number A is a lower bound for a set .s to say that no member of the set is
to the left of A.

In the following problems indicate in a picture some of the points that
belong to the set and state whether the assertion is true or false:

12. (a) 5 is an upper bound for {1, %, %, ’Jf', %’-, ceele

(v) 1 is the maximum of {1, -21-, 13‘-, {f, -;-, ceele

(e) The smallest of all the numbers which are upper bounds for

1 1 1
{l, ‘§’ 'g, h‘, aoo] is 1.

The minimum of the collection of all the upper bounds for a set is
called the least upper bound for the set.

10
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True or False: (You may find a sketch on the number line is helpful.)

13. (a) The least upper bound for {1, 4, 5, 7} is 6.
(b) The least upper bound for {1, 4, 5, 7} is 8.
(¢} The least upper bound for {1, 4, 5, 7) is 7.0l.
(d) The least upper bound for {1, 4, 5, 7) 1is 7.

Let us go into some detail on problem 13(c). How do we know that 7.0l
is not the least upper bound for {1, k, 5, 7)? It is certainly an upper
bound for the set since 1, 4, 5, and 7 are all less than 7.01. But 7
is also an upper bound for the set. And 7 < 7.01. Hence, 7.01 is not
the least upper bound.

Hov are we certain of our amswer in problem 13(d)? As we noted before,
7 1s an upper bound for the set. Are we certain that 7 1s the least upper
bound? Yes. If a pumber B is less than 7, then B 1is not an upper
bound for the set because 7 1is in the set. We conclude that no upper bound
for the set is less than 7 so that 7 must be the least upper bound.

More generally, we see in this fashion that if a set has a maximum, then
that maximum is the least upper bound.

Consider the set {1.1, 1.01, 1.001, 1.0001, ...}. Is it clear what the
set 15 meant to be? The member after 1.0001 1is 1.00001. The member after
that is 1.000001l. And so on, without end. Is 1 & lower bound for this
set? Surely it is. Is 1 the greatest lower bound for the set? In order to
convince ourselves that it i{s, we would need to show that no number greater
than 1 can be a lower bound for the set. Suppose A is a number greater
than 1 as shown on the number line.

A

[® Al A ’
0 1 2

Isn't it clear that if we add to the interval between 1 and 2 the points
that divide the interval into 10 equal pieces, then add the points that
divide the interval into 100 equal pieces, then add the points that divide
the interval into 1000 equal pieces, ete.; that we must eventually reach 8
stage where one of these points will fall between 1 and A? But this first
point that does so must actually dbe in our set, for it will either be 1.1 or
1.01 or 1.001 or 1.0001 or, etc. Then we have 8 point in our set which
is less than A. It follows that A is not a lower bound for the set. Since
A was any number greater tham 1, no number greater tham 1 can bde a lower

bound for the set. We comclude that 1 s, indeed, the greatest lower bound.

11
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True or False:
14, (s) 1 1s @ lower bound for {2.1, 2.01, 2.0Cl, 2.0001, ...).
(b) 2 15 = lower bound for {2.1, 2.01, 2.001, 2.0001, ...].

{e) 2 1s the greatest lower bound for {2.1, 2.01, 2.001, 2.0001, ...J).

L Lol .

{d) 0 1is = lower bound for {1,2, 3, T 5

(e) O 1is the greatest lower bound for (1, 2, ;, T l, cee )e

(f) 0 1is a lower bound for ({3, g—, 1,%, S0 &0 e e

~Ipa

(g) 0 1is the greatest lower bound for {3, g—, 1, %, 3

(h) 0 4is the greatest lower bound for {1080 , 1000 1000 1000

PRk S:T’
1000

5 S B

Now we are begimning to get at some rather difficult ideas. Perhaps it
would help us to review some of the basic ideas we have used. In doing so we
shall also state some definitions more carefully than we have up to now. In
stating these results, we sometimes mske use of the phrase "if and only if".
To assert that, "such and such, if and only if, so and so", is to say that if
such and such is true then so is so and so, and, also, if so and so is true
then so is such and such. In other vords, "such and such, if and only if,
so and 50", is a short way of saying that such and such implies so and so,
and, alse, 5o and so implies such and such., If m, n, and p are natural

8

numbers, = % if end only if m<n. If m, n, p, and r are natural

H

numbers, = < 8 if and only if p_x: < E’S . The largest element in s set is
called the maximum of the set. The smallest element in a set is called the
minimum of the set. A number A is a lower bound for a set if and only if
no member of the set is less thanm A. A pumber B is an upper bound for a
set if and only if no member of the set is greater than B. A number L 1is
the greatest lower bound of a set if and only if L 1is the maximum of the

collection of 81l the lower bounds for the set. A number U 1is the least

upper bound of a set if and only {f U is the minimum of the collection of

all the upper bounds of the set.

o

The numbers we have been talking sbout here are O and numbers which
can be written in the form g- where p and q are natural numbers. Such
numbers are called non-negative retionals. Any number in the form g— where

12
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p 8nd q are natural numbers is said to be s positive rationsl number. As

you may know, there are numbers which are said to be negative, but we will
not consider these numbers in this study.

Since we have been writing nsmes of some numbers in decimal frasetion form,
it would be well If we reminded ourselves that those numbers that we have men-
tioned in this way are positive rational numbers. For exsmple:

20,001 end 13.4675 = 134,675

2.0001 = 75 560 10,000 °

We have seen how zero or any positive rational number may be represented
by a point on the number line. And we have seen further that "less than" for
numbers may be thought of as "to the left of" for the corresponding points on
the number line.

We discovered that any non-empty set of natural numbers must have a
minimum, but some sets of natursl numbers have no maximum {for example, the
set of all natural numbers has no maximum).

Eventually we must come around to talking about "infinity" so let us ask
a question that forces us to do so. ("Infinity" is fascinating anywsy, so why
put it off?) The question is, "Which sets of natural numbers don®t have a
maximum?”’ The answer is "Infinite sets of natural numbers.” But what does
that mean? It is easlest here to say what an infinite set is by saying what
it is not. That is, we first define the phrase "finite set”. And we do so
in a very natural way. A finite set is a set with the property that it is
possible to count the elements of the set. Thus, {3, 7, 1, &%, 75} is =
finite set because it is possible to count its elements (and, thus, discover
that there are 5 elements in it). The set (2, 4, 6, 8, 10, ..., 1000} is
finite. It has 500 elements in it.

A set is sald to be infinite if and only if it is not finite. Thus, the
set {1, 2, 3, ...) consisting of sll natural numbers is infinite. The set
{2, 4, 6, 8, 10, ...] consisting of all even natural numbers is infinite.

Feel disappointed? To some extent you should. We have not defined
"infinity". We have only defined the phrase "infinite set". Thus, "infinite"
makes sense here only as an adjective modifying "set". We have not defined
the noun "infinity"” and will not need to. We shall get into enough trouble
with Just the adjective.

It is more or less obvious that every finite set of natursl numbers has
a maximum, while no infinite set of natural numbers has a maximum. (It would
be a good exercise in the careful use of language to try to write up a "proof"

of these two facts.)
13
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It®*s been toc .ong since you did some of the work. In each of the
follovwing, state vhether the set is finite or infinite and if possible find
its maximumn and its minimum:

15. (a) (1, 3,5, 7,9, «.., 999, 1001}
(v) {1001, 999, 997, ..., 5, 3, 1}
(e) (3,9, 12, 4, 1)
(@) (1,35 7,9, -..)
(e) {1000, 1001, 1002, 1003, ...)

(r) (1000, 999, 998, 997, ..., 1)

l1 1 1 1 1
(S) (5: E: it 5‘: I cee)

1 1l 1 1
(n) 5, I G s -ﬁ]

(1) The collection of all the Presidents of the United States of America.
(3) The collection of all the people in your school.

(k) The collection of all the leaves on all the trees in your state.

(£) The collection of all.the molecules in or on the earth.

(m) (2.1, 2.01, 2.001, 2,0001, ...}

(n) (.1, .01, .001, .000L, ...)

(o) f{2.3, 3.3, k.3, 5.3, 6.3, ...)

() (.3, .33, .333, .3333, ...)

(¢) (.1, .11, .111, .11, 113111, ...}

Now perhaps you see some of the "trouble" we are in! Some of these are .
8 little tricky to understand. For instance, in 15(g), how can we be certain

that {%, %, }l;-, -]5:, vee} has no minimum? Well, if it had & minimum it

would be % for some natural number n, since only numbers in this form are

in our set. But Zn_i—iT<§ and Tni—_l)' ls in our seL. So = 1is not the
minimum after all! So we have here a set of numbers which does not have a
minimum, (Of course, it is not a set of natural numbers since every non-empty
set of nestural numbers has a minimum.) If we wish to use technical langusge
we can say that we have shown that the set of all positive rational numbers is
not well ordered.

14




Also, we see that some infinite sets of rational numbers (such as
{2.1, 2.01, 2.001, 2.0001, ...}) may have a maximum -- contrary to the situa-
tion when we consider sets of natural numbers. So the "order situation" for
the positive rationsl numbers is strikingly different from that for the

natursl numbers.

Give an example of a set of positive rational numbers that has the
stated property or else state that this 1s impossible:

15. (a) A set with 3 elements whose maximum is 6.
{b) A set with 3 elements whose maximum is 1.
(¢) A set with 10 elements whose maximum is 1.
(d) A set whose maximum is 7 which has &n upper bound of 5.
(e) A set with 5000 elements whose maximum is 5000.
(£) A set with 5000 elements whose maximum is 1.
(g) A set whose minimum is U4 and whose maximum is 5.
(h) A set whose minimum is 7 end whose maximum is 6.
(1) A set with 2 elements whose maximum is 3 and whose minimum is 2.
(3) A set with 1000 members whose maximum is 1 and whose minimum is
L.

(k) A set with a minimum of 4 and nc¢ maximum.
(2) A set with a maximum of O.

(n) A set with 8 maximum of 1 and no minimum.
(n) A finite set with no minimum,

(o) An infinite set with a maximum.

(p) A set with neither a meximum nor a minimum,

Try these. True or False:

17. (a) 5 1is an upper bound for [l.l,‘E.l, 3.1, 4.1, ...).
(b) 5 1is an upper bdbound for [%5, -i%, -l%’ i%’ ces)e
{¢) 5 415 an upper bound for (5, 3, 2, 1, 4}.
(d) 5 is an upper dound for {%‘—, 23'-, %, %‘-, eaele
(e) 5 1is an upper bound for {4, 4.1, 4.11, 4,111, 41111, ...).
(£) 5 1s an upper bound for (4.9, 4.99, 4.999, 4.9999, ...]).

(g)' Every set of natursl numbers which has an upper bound is finite.

(h) Every set of positive rational numbers which has an upper bound is
finite,

15
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(1) 3 1is an upper bound for the collection of all the positive
~rational numbers between 2 and §.

(§) 3 1s an upper dound for the set of all the rational numbers
between 1 and 2.

(k) The set of all rational numbers between O and 1 is finite.

(1) The set of all natural numbers between O and 514,596,743 1s

finite,
(m) There 1s a rational number between O and 1.
(n) There is & rational number between % and 1.

(0) There is a rational number between E- and 1.

(p) There is a rational number between g% and 1,

(g) If A 1s a positive rational number, then A<,

b
(r) §+g<§+g
0 §oh<Bo
(t) %g + {% < ;g + f%
(u) %g + %% < %% + %%
(v} %? + f% < %; + %8?
(w) f%% + %-< {%%
<) 55 5 > T
(y) ﬁé—%—él is betveen 5 and 6.
(z) iﬁ}—%-&&l = 43 + %

(as) Liijg-gkl is between 43 and Lk,

When vwe divide 10 by 3 by the usual process, we first get a "partial
quotient” 3, them 3.3, thenm 3.33, then 3.333 ~- but the division never
"comes out even"! So, many books say "1—30- = 3.333..."
on the right of the equality is called an "infinite decimul"., PBut what in
the world does "3.333..." mean? Are we supposed to write "3333..." over

"10000..." for a positive rational number which is equal to {t? Surely that

where the expression

16
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would be nonsense! Let's see if we can make some real sense out of "3.333...".
Before we do, however, let us introduce a hsndy notation. In place of
"3.3333..." e shall write "3.3". That {5, a bar over a string of decimals
indicstes that the string is to be repesnted infinitely often; "4.750" means
"4.756565656...". This notation will save us considerable writing and perhaps
some confusion.

One more remark about the point of view we are adopting here and in what
follows. We are assuming femiliarity with the non-negative rational numbers ~-
and only with these numbers. Our major theme is to develop a good understand-
fng of numbers that ere not rational, but we have not yet introduced such

aumbers, and do no% use them now.

Look at the collection (3, 3.3, 3.33, 3.333, «..). We know what each of
the members of this set is. What is 3.3 - 3.333...7 How about thinking of it
85 the least upper bound of the above set?

Let's "prove" that %? 1s the least upper bound of the set (3, 3.3,

. 2232333 999,999 1,000,000 _ 10
3'33) 3'333) ooc)o 3'33333 lm,m SW,W < W 3 . Also,

3.3333333 - 254333:333 _ 2,999 100,000,000 _ 10
10,000,000 ~ 30,000,000 ~ 30,000,000 ~ 3

convince ugc that %? is an upper bound for our set. But is %g the least

upper bound for the set?

Such calculations

Suppose A 1is a number such that A < %; « We resort to a picture
A
pre— i [1 —t &
3 10 4

3
Suppose we divide the interval from 3 to 4 inte 3 equal pieces, then

into 30 equal pieces, then into 300 equal pleces, then into 3000 equsl
pieces, etec. It is clear that cventuslly one of these division points will
fall between A und Lg. But when this heppens, the last point to the right

3
of A which Is to the left of %g will be in the form 99...9 over

300...0. That 15, the number in decimal form will be 3.33...3 for some
(rinite) string of "3's". But such a number is in our set and exceeds A.
Therefore, A 1is not an upper bound for the set. We have shown that no
number less than 10 i{s an upper bound for the set. We have also shown that

3

%g iz an upper bound for the set. We conclude that %g is the least upper

bound of the set.

17

G PRI e SN



RAE N R AR s e A MR AR des e caea e e sk VR e DR TSRS TN

R IR T D e R I e I R I T T A it MRS I

This suggests that we will not be led astry if we define 3.3 to be the
least upper bound of (3, 3.3, 3.33, 3.333, ...}.

In a similar vein, .1 means the least upper bound of (.1, .11, .111,
1111, ...}, .14 means the least upper bound of (.1k, .1414, .14141L,
14141434, ...), and .1G2B5T wmeans the least upper bound of ({.142857,
.1&28571&;857, 142857142857142857, ... ).

0f course, these last three least upper bounds have simpler names. They

-3-, %, and %—, respectively. (Carry out the divisions to convince
yourself that this is reasonable in terms of the division process.)

are

True or False:

18. (a) % is the least upper bound of (.2, .22, .222, ...).
(t) 1 is the least upper bound of (.8, .88, .888, ...).
(c) 7 1is the greatest lower bound of ({7, T.7, 7.T7, T-TTTy «-.}.
(a) % is the least upper bound of (.2, .22, .222; ceele
() g = 0.222...
(f) % ic the least upper bound of (.8, .80, .800, .8000, ...}.
(g) % = .8000...
1

(n) g 1s the leasi ipper bound of (.12, .l212, .121212, ...].

(1) 15 1is the least upper bound of ({1.2, 12,12, 121.212, 1212.1212,

ceele

(8) & is the least upper bound of [.b, .4k, .bbk, .Lhik, ...3.
(k) .39 1is the lesst upper bound of {3, .39, .3939, .393939, ...}.
(£) .35 is the least upper bound of (.39, .3939, .393939, ...).
(m) .999... 1is the least upper bound for (.9, .99, .999, ...}.

(n) 1 1is the least upper bound for (.9, .99, .999, ...}.

(o) 1=.3

(p) .49 1s the lenst upper bound for {.49, 499, L4999, ...].

(q)

,( r)

is the lesst upper bound of {.49, .499, .4999, ...}.

is 49

Ofr Pogee
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(s) 9«.F
(t) -9 = -S§
(u) .§ +  B=1

If you really understocd parts (m), (n), and (o) sbove, you are making
great strides. One of the things wve must admit if we want to use infinite
decimals is that some old friends now have some strange names. ".§" is
another name for 1. ".49" is another name for %-. And s0 on. There is
' no other choice if we wish to preserve our {deas about the order of the pum-

bers and their geometric representation on the line.

There is a point involved in the argument .for 18(o) being true that we
s11d over in 8 slippery way before. How do we know that a set can't have two
different least upper bounds. It is true that .9 1is a least upper bound of
(.9, .99, .999, ...}, (by the definition of .J) and also 1 is a least
upper bound of (.9, .99, .999, ...} (by an argument similar to those we
have given before). But maybe .9 1is still different from 1. We shall
show that this is not so, by showing that any set can have at most one least
Upper bound.

For suppose both & and b &gre least upper bounds of some set S.
Then, of course, a and b Are both upper bounds for S. If a £ b, then
either a <o or b <a. Suppose a <b. Then, since a 1is an upper bound
for S, b is not s least upper bound -- a contradiction. But, in a similar
way, the supposition that b <a implies that 8 4is not a least upper bound --
8 contradiction. We conclude that we must have a = b, In other words, there
is actuslly only one least upper bound, if any.

We have opened the door for some important advances. But before we pro-
ceed, fill in the dlanks in these basie definitions.

19. (a) A number B 1is an upper bound for a non-empty set S if and only
ir member of S is greater than B.

(b) A number A is s lower bound for a non-empty set S if and only
if no member of S is than A.

(¢} A pumber U is the least upper bound for a set S if U is the
of the collection of all upper bounds for S.
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(d) A number L 15 the grestest lower bound for a set § if L is
the maximum of the collection of .

(e) .3 1is the of the set {.3, .33, .333, ...).

(r) .24 1is the least upper bound of the set .

We have secen that some infinite decimals can be thought of as least upper
bounds for certain sets of rationsls., The infinite decimals with which we
have deslt have been repeating decimals. That is, in each of them a certain
block of digits war vepeated over and over again to get the infinite decimsal.
Does every positive rutional number have such an infinite decimal representa-

tion? The answer is yes.

The reason for this is clear although a detailed proof of it {is s bit
difficult to write down. Suppose x = % where Q and R are natursl numbers.
Start carrying through the process of dividing Q and R using the ususl
procedure in decimal notation. At each step in the division, the sub-remainder
that 1s "brought down" must be less than R. After enough of the usual divi-
sion steps have been carried through the non-zero digits in Q will be
exhausted and we will be bringing down a zero each time. But after this
happens we are bound to get a repetition of some exact situation we had
before since there are at most R different sub-remsinders. Thus, we must
in this way generate s repeating decimsl. (0f course, if the division comes
out even the "repeating part” will be an infinite string of "O's"). Now it
can be shown (and it actually does require proof} that the infinite decimal
generated in this manner is indeed equal to x. Sinece x was any positive
rational number, we conclude that any positive rational number is either a

terminating or a repeating decimsl.

What about the converse quection? Are there perhaps repeating decimals
which are not rational numbers? The answer is no., That this i{s so is most
easily proven in terms of the language of infinite geometric series. We shall
not give the preof here. Besldes, what we are about to do makes the result
seem most reasonable. We shall now show how to find {as a ratio of two
natural numbers) the rational number named by an infinite decimal.

The method that we are about to use does not, by itself, actuslly prove
thaet every repesting decimnl names s rationsl number. This i{s because in our
calculations we must do some arithmetic operations with infinite decimals as
if they were rational numbers. That {5, we must already assume they repre-
sent rationsl numbers to carry out our calculations. Consider the folloving

equalities:
:3 .




(200)(.37) = 37.37

37.37 = .37 = 37

(10)(.512%) = 5.12%
(10000){.512%) = 5124.12%
(10000) (.512%) - (10){.512%F) = 5119

It should be clear that these equalities do need justification. After
all, infinite decimsls are different from finite decimals and how much of
what you can do with finite decimals earries over to infinite decimals is
reslly not obvious., (For exumple, how do you carry over the usual process
for multiplying finite decimsls to the case of infinite decimals? Whst is
42 multiplied by .57)

We shall not give detailed arguments to Justify the equalities displaeyed
above. They do hold. In general, you may get the result of multiplying an
infinite decimal by a power of ten by moving the decimal point appropriately.
And you may add or subtract infinite decimsls in the fashion you would expect.

Using these facts, if x = .37, then 100x = 37.37 and, on subtracting,
we get 99x = 37. Then x = 2L and we have expressed x as 8 ratio of natursl

99
numbers.

It x = 15,3124, then 10x = 153.12%, 10,000x = 152,124.I2%, and, on

, 151,971
subtracting, 9,%90x = 151,971. Hence, x = 9,990  °

In this manner, we may exprecs any repeating decimsl as a ratio of

natural numbers.

Our grand conclusion from all the above is that a pumber is rational if
and only if it has a terminating or repeating decimsl expansion.

But this i{s a strange Kind of conclusion since the only numbers we have
considered so far are rational numbers. At this stage, if 8 number isn't
rational it =imply iun't,

On the other hand, we do have infinite decimals that are not repeating.
Examples abound: .101001000100001..., .3436454358000003000ALLYS,,,,
»12345678910111213141516..., ete, .

If these infinite decimals mean anything, they are certainly not names
for rational numbers. We must invent a new kind of number for these symbols
to name! The door is now open to do this, but first do the following problems:
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True or Falge:

20. (s) .00100100IO0L-.. is & rstional number.

(b) .110110110110... is & rational number.

(¢) .767667666766667... 1is a rational number.

(d) .799999... is & rationel number.

(e} .699999... = .7

(£) .T4TWT47L... 1s the least upper bound of (Th, THTH, THTATL, ...).

(g) .69999... 1is the least upper bound of (7, 6, 6.1, 6.01, 6.001,
6.0001, 6.00001, ...).

(n) e least upper bound of (.3, .33, .333, .3333, ...) 4s the same
as the least upper bound of (% ) 5 %’-].

14
(1) .14141b14,,.,. = 55

142
(1) 3.173737373... = 35,9—0-

(k) 5.4319191919... = %%;%?

The set (1, 1.01, 1.01001, 1.010010001, 1.01001000100001, ...} is a
set of rationsl numbers. 2 is an upper bound for this set. In fact, all
the numbers in the set are between .9 and 1.1. What is the least upp:
bound of this set which is bounded above? In a sense, this is the question
that this whole presentation has been headed towards. There is an obvious
ansver to the question in terms of the machinery we have built up. The least
upper bound should be the number named by the infinite decimsl
"1.01001000100001...". But this expression does not name s ratiomal number.
So, what does it mean? It is a name for the new kind of number we now invent
to be exactly the thing we want «~- the least upper bound of the set {of
rationsls} {1, 1.0L, 1.01001, 1.010010001, ...}.

The temptation, of course, 1s simply to define 1.1010010001... toO be
the least upper bound of the set {1, 1.1, 1.101, 1,10100L, ...). But this
won't work by itself, We got away with defining .3333... to be the least
upper bound of (.3, .33, .333, .3333, ...} because it turned out that this
lesst upper bound 414 exist smong the rationals so that ".3333..." ended
up being a name for something with which ve were already familirr ~-- namely,

L. In order to attach a meaning to "1.1010010001..." we must end up saying

3 L]

something like "“1,1010010001... is defi 4 to be such and such" where the
"such and such" is something with which w re already familisr -- something
already well defined, Ome thing to do 1is vo define such a number 0 be s

whole mess of sets of rational numbers -- sets of rationals which (on an

22
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intuitive basis) "have the given number as least upper bound." This is what
we shall do. In order to do so we shall bring in a nev {dea.

If A and B are sets of rational numbers, we shall say that A and
B get equally large if either

(1) A and B have the same rationsl leust upper béund or

(11) giveneny a 4n A, thereisa b in B such that
b >a, and, vice versa, given eny b in B, there is
an a in A such that a >b.

For example, (5, 6} and {4, 6) get equally large while (5, 7} and (&, 6)
do not.

(1] and {09’ Q99’ .999, -9%9’ onc] set equall,y hrge since they both )
have the same rational least upper bound.

{1, 2,3, 4,5, ...) snd (2, 4, 6, 8, ...) clearly get equally large.

{.l’ 0101-’ .lOlQOJ., .lolmlml’ L N J ] End {nlOl’ alolmlml’
.10100100010000100000L, ...} get equally large.

For each of the following, state whether or -not the two sets get equally
large. ("yes" or "no" will do.)

21. (a) (4.7, 10), {10, 7, 4)
(v) (10, 7, &), (10, 12, 12}
() {7, 7.1, 7.1, 7.11, ...}, {&, 10, 7}
() (7, 7.1, 7.1, 7.111, ...}, (6, 7, %?}
(e} (3, 4,5,6, 7, «ca), (2, 4,9, 16, 25, ...}
() (1,2,3,% 5, ...}, {100, 100.1, 100.11, 100.111, ...}
(g) (.1, .11, .113, ...}, (.1, .109, .1099, .10999, .109999, ...}
(n) (.1, .11, .11, .11, ...}, (.1, .l01, f%}

(1) (.1, .101, .1010010001, .101001000100001, ...),

{.1, 516’ .101, -5%, .101001, 513, .1010010001, 5%, .101001000100001,

b
g o)
l 2 b
(cj) {51 -3-’ &, '5-’ gg -o-}, {l}

a3

t>
~1
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(x) (.2, .1, .202, .101, .202002, .101001, .2020020002, .1010010001, ...J,
(.2, .202, .20202, .2020202, ...}

(z) {1! %’ 2’ 13." 3’ I]i’ u’ é’ 5’ “'}’ {53’ %’ 231’ ?’ %! %’
c-.]
(=) (.113), (.113, .113113, .113113113, ...)

(n) (.1, .101, .10101, .1010101, ...}, {1, .10, .101, .1010, .10101,
-101010, [ N ) ]

(o) (.23, .2323, .232323, ...}, {.2, .23, .232, .2323, .23232, ...)

We are going to use sets of rationsls to identify our new numbers. We
want two sets of rationsals to 1dent}fy the same number if they get equally
large. Of course, we are not interested in sets of rationals such as
{1, 2, 3, +..) which are unbounded on the right, so we restrict our atten-
tion to sets of rationals which are bounded above. So, finally, we may state
our basic definition. A reaml number i{s a collection of sets of rationals
which are bounded above and all of which get equally large. Thus, we do not
simply associate our new real numbers with certain sets of rationals. We
actually define a real number to be 8 collectic: £ sets of rationals.

We need a way to name these new objects we call real numbers. One is at
hand. The collection of all those sets of rationals which get equally as
large as (b, b.a

» b.8,8,, b.a 8,84, ess) where "b" 1is a decimal name for

1 1 172
& natural number and the a's are decimal digits, is denoted by "b.a.8.8_...".

1%2%3
So, with perhaps some feeling of accomplishment, we can now say exactly what
any infinite decimal means. ",10100100010000l..." stands for the collection
of all sets of rationsls which get equally as large as {.1, ,10, .10l, .1010,

.10100, .101001, .1010010, ...}.

If this were to be a complete logical development of the real number
system, we would now launch into the statement and proof of a series of
theorems that follow from our definition, We would first need to define
addition and multiplication for resl numbers and tell what it means for one
real number to be less than another. Much of this goes through in u very
natural wany when we u.e the infinite decimsl names for the reals. One of the
next things we would do would be to show that those real numbers which we
naturally now call rationsl real numbers (i.e., those colleetions of sets of

rationals which all have the same rational least upper bound) do behave as

rational numbers should.

&2
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There has probably been too much rigor in these last few paragraphs,
snyway. It's fairly certain you can answer the following questions even
though we haven't actuslly stated all the needed definitions. (True or False)

22, (a) .101001000100001... + ,010110111011110... = ,11111...
(v) .010110111011110... < ,101001000100001...
(e) 5.431 < 5.4309009000900009. ..
() (3)(.101001000100001...) = .303003000300003...
(e} .124 < ,12345678910111213...
(r) (T(.1I3) - .BY
(8) (7(.T3) = 3.00
() 77+ 3% - .01
(1) .77 + .2 = 1.0L

Now that we have the real numbers clearly defined, what have we gained?
In what ways do the real numbers as & system differ from the rational numbers
as a system? Algebraically, the two systems are very similar. Addition and
multiplication always make sense and are commutative and associative in both
systems. Multiplication distributes across addition in both systems. And
division, except by zero, is always possible in either system,

But, of course, the reals make up a more comprehensive system than the
rationals since each rational can be thought of as a real number. In terms
of our development, this amounts to treating the rational number % as
identical with the real number which is the collection of sll sets of
rationals which get equally large with the set {%}.

The basic difference between the rationals and the reals is usually
expressed by seying that the real number system is complete while the rational
number system is not. To say that a number system is complete is to say that
whenever a set of numbers from the system is non-empty and bounded above, then
that set has a least upper bound in the system. More briefly, s system is
said to be complete if‘every non~empty set which has an upper bound has a
least upper bound.

The system of natural numbers is complete in this sense since each set
of natural numbers which is bounded above hss a maximum and that meximum will
be the least upper bhound.

o
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Completeness is lost, however, in moving from the natural numbers to the
rational numbers system. For example, the set of rationals {1, 1.01, 1.01001,
1.010010001, ...} 1is bounded above but has no rationsl least upper bound.

The least upper bound for the given set is the real number 1.01001000100001...
which is not rational.

Real numbers which are_ not ratiocnal are said to be irrationsl. - -

Before discussing the proof of the completeness of the real number system,
let us look at other consequences of this completeness.

The first has to do with roots of equations.

23. ¥Find the positive rationsl x for which

(a) 2x =4 x=__
() 3x -7=5 x= _____
() 7x-b4 =14 X=____
(d) 5x + 10 = 20 x=___
(&) x° =k Xx=
(£) x° = 14k x = __
(8) x° - 36 x=____
(n) x° =25 x=
(1) x2=-§% x=
(3) x2 = %g X=__
(k) x° =+ x=
() £ =% x=____
(m) x° = 3600 x=
() x =1 X = ____
() %~ .ok x=___
(p) x° = .36 x=
©(q) X =625 X=____
(r) x4+1=x x= __
(s} x+7=3 X = ___
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Concider 23(r) more closely. How are we certain that there is no rationsl
numter x for which x + 1 = x? If there were such a number, we would have,
on subtracting x from both sides of the equation, that x + 1 ~ x = x - x.
That is, 1 = 0. But this i{s impossible. We conclude that no such x could

exist.

Suppose we had asked for the positive ratiomal number x for which
x2 = 2. Just as i5 the case when ve ask for the x for which x + 1 = x,
there is no such positive rational x! We shall now prove this.

First, we need the fact that the square of an even number is even and
the équare of an odd number is odd. To say that s natural number is even 1is
to say that it is a mmltiple of 2. Thus, if x is even, we have x = 2k
for some natural number k. But then x° = (Ek)2 = hke. Since Lk® is
clearly an even number, xe is even when x is. If x {s odd, t!}. > x
must be one greater thun some even number. That is, for some k wc must
have x =2k + 1., But then x° - (2k + 1)° = (2k + 1)(2k + 1) =
(2k + 1)2k + (2k +1) = 4k° + 2k + 2k + 1' = bk° + bk + 1 which is one

2
greater than an even number. Hence, x  1is odd when x {s.
Now suppose there is a positive rational number x = g guch that

2
x2 = (g) = 2. There is no loss in generality in assuming that P and Q

are not bvoth even since this will certainly be the case when x 1is expressed
2

as 8 fraction in lowest terms. Since (g)e = 2 we have = = 2 and P2 = QQE.
Q

Then P is even., But this i{mplies thet P itself i{s even since if P is

&
odd so i{s its square., Therefore, for some natural number k¥, we have P = 2k.

Then from P° = 2Q° we get (2k)2 = zqg, 4k© - 2Q2, and, finally, %% - Qg.
Hence, QE is even and so is Q. But this is 8 contradiction since either P
or Q must fall to be even. Since the assumption of the existence of a

rational number whose square is 2 1leads to a contradiction, there cannot be

any such rational number.

If ve had only retional numbers, we could not solve the eguation X = 2.
In the positive reals, however, we can do so. The solution is denoted by JE,
is called the positive square root of 2, and is the real number whieh is the
collection of all those sets of rationals which get equally large with the
s€t of all rational numbers whose squares are less than 2,

~
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It can be shown that not only is +2 irrationsl, but so is vN when N
is any natural number which is not the square of a matural npumber. Thus, none
of the numbers 73, /5, /6, /7, /8, /10, ... would exist if we had only
rational pumbers to work with, but they all are perfectly well defined
(t{rrationel) real numbers. In fact, the system of non-negative real numbers
1s closed under the-process of taking square roots. That is, every non-nega-
tive real number has a real square root. An even stronger statement can be
made in that no matter what natural number k sand positive real number b we
are given there i{s always a real number x such that xk = b, In other words,
the non-negative reals are closed under taking kEE roots. This {s certainly
not true of the rational number system.

24. Classify each of the following as to whether it is a rational number,
an irrational number or undefined (i.e., not s real number):

(a) A8
(v) AT
(¢) .03403403L0O3kL...

(a) .010203

() /%
(f) The collection of all sets of rationals which get equally large
with {%]

(g) The collection of ell sets of rationals which get equslly large
with the set of all rationals whose squares are less than 3.

(h) The collection of all sets of rationsls which get equally large
with the set of all rationals whose squares are less than 81.

(1) The collection of all sets of rationals which get equally large
with {1, 2, 3, &, ...).

(J) The collection of all sets of rationals which get equally large with
{1, 1-~.01, 1~ .01001, 1 ~ .010010001, 1 - .01001000100001, ...J.

(k) The collection of all sets of rationals which get equally large with
{.3, .1, .31, .11, .31311, .111, .313113111, .1111, .31311311131111,
.11111, ...},

(£) .123%56789101112131%...



(m) The x for which x° = -l.
(n) The smallest positive real pumber.

(o) The lesst upper bound of the set of sll reals whose squares are
less than 2.
The move from the rationals to the reals is very important in terms of
the number line. In the picture below we have shown the number line and a
geometric comstruction of a length of 2.

/

0/1{’5 .
The right triangle shown has both legs one unit long. By the Pythagorean
Theorem, its hypotenuse must have length ¥2. What was shown in the last
section tells us that if we had only rationel points on the line, our arc
would pass right through the line without hitting it. This, of course, should
not happen for a line.

The completeness of the resl number system can be expressed in geometric
terms by saying that every point on the number line has a real coordinste.
The converse is also true in that every real number corresponds to some point
on the line.

According to the definition we gave for a real number, the resl number
b 1is identified with the collection of sll sets of ratiomals which are not
to the right of b and yet have members arbitrarily close to b.

This geometric plcture will be helpful as we look &t an incomplete sketch
of the proof of the completeness of the reals. Let S be a set of real num-
bers which is bounded above by, say, b. Then for each x in §, x < b,
Each x in 5 1is a collection of sets of ratiomals. Clearly, none of the
rationals in any of these sets could exceed b. Let A be the collection
of all the rational numbers which belong to any of the sets corresponding to
any x in S. Then A 1is bounded above by b. Let y be the real number
consisting of the collection of all sets of rationals which get equally large
with A. y wvill be the least upper bound for S.

This outline of the proof leaves many details to be filled in. You might
fry your hand at filling the gaps.




The vord "resl" we have used to identify the numbers we have introduced
13, in a sense, unfortunate. Real numbers are nelther more nor less real
(in & non-technical sense) than are the rationsl numbers or other kinds of
numbers. It is true that real numbers do seem to have a "concrete representa-
tion" on the number tine. But it turns out that even so-called imaginary
numbers also have a "concrete” geometric interpretation.

- -

Indeed, the reals almost seem to be @ bit "unreal” when we look at the
care needed to duild them from the ratiomsls.

25. Correctly enter "Yes or "No" in each position in the following table:

30



The number system: Natural numbers

Non-negative rationsls

Non-negstive reals

Every finite set of numbers
has & maximum,

Every non-empty set
of numbers has a minimum,

Every set of numbers which is
bounded above has a maximum.

Every set of numbers which has
a maximum {s finite.

Every infini{te set of numbers
has no maximum,

Between any two distincet
nuxbers there is another number.

Each number corresponds
to & point on the line.

Each point on the line
corresponds to a number,

Every non-empty set of numbers
which has a least upper bound.
has & maximum,

Every non-empty set of numbers which
is bounded atove has & least upper
bound.




ANSWERS

1. (a) T be (a) T
{v) F () F
(e) T (e) T
(a) T (@) T
(e) F (¢) F
(£) F (£) T
(g) T (g) T
() F (h) T
(1) T (1) T
(N T ) T
(x) T (k) T
(¢) T
(m) F 5. (8) 75
(n) T (v) 3
(o) F (¢) 3
(d) 3
2. (a) F (e) {2, 3, 4) et. al.
() T (1) (4) only
(¢) T
(6) T 6. (a) 30
(e) T (b) Does not exist
(£) 7 (c) Does not exist
(¢) F (d) 3
(e) Does not exist
3. (a) T (£) (1, 387, 1,000,000} et. al.
(v) T (g) 1,234,567,891,011,121,31%,
(¢) F 151,617,181,920,212,224
(a¢) T {nh) none
(e) T (1) 6,7,8,9,10,11, 12
(£) T () 2%, 25, 26
(g) F (k) none
(n) F (£) none
(m) F
{n}) T
(o) none
(p) T
(q) 1
(r) 39
32
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(u) ()

{v)
(w)

7. () 3 10. (a) T
(v 11 (b) T
(e) T
8. (a) T () T
(v) T (e) T
(c) 7T (¢) 7T
(¢) T () (1,2, 3,4, 5)
(e) T (n) 0, 2, 3)
(£} F (1) (10000, 10001, 10002, ...)}
() T () @, 3, ...)
(n) T (x) T
(1) F (¢) T
() T (m) 7T
(n) T
9. {e) T
(v) F 11. (a) F
(¢) F (v) T
(d) T (¢c) T
(e) T (@) F
(g) T (e) T
(g) F (£) T
(n) T (g) T
(1) F (n) T
(J) 3 (1) T
> (3y T
(k) 4.2 (k) F
(2) 1
(¢ F
{m) T
{m) T
(n) F
(n) T
(o) T
(o) T
(p) T
(p) F
{¢) T
(¢) F
(r) T
() 7T
(s} T
R (s) T
o (t) :
T
T
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| 12, () T 16. (a) (&, 5, 6} et. al.

(b) T
(C) T (b) ( » 2, 1) et. al.,
(e) th’ 10, 10 o.u) et. al.
13 :.:; : (d) Impossible
(c) F (8) (1’ 2’ 3, o-;, m] et. al,
(&) T (£) (5%003’%999’ ceey 1) et. al.
(5) ““’ 5} et. al.
1, (a) 7 (h) Impossidle
(®) T (1) (a. 3) only
(o) = () (5o os5 )
(a8) T J 10000 599 » °c-» 1)et. al.
(¢) T () (4,5,6, ...) et. a1.
(e) T (2) (0) unly
(g) T {m) {1, %, %‘-, ,’f, eee) ot. al,
(n) T
(n) Impossibdle
15. (s) Min 1, Max 1001 Finite (o) (2,1, -é‘-. ﬁ-, é-, .e.) et.al.
() Min 1, ¥ax 1001 " (M 0,2,3 3,3 b))

(c) Min 1, Max 12 "
(d) Min 1, No Max Infinite
(e) Nin 1000, No Max Infinite

et,. al,

(f) Min 1, Max 1000 Finite 1. (s) F
’ (0) F
(g) Mo Kin, Max I Infinite (c) T
(h) Min 3—-}6, Mex £ Finite g:; ;‘
(4} No Min or Max Finite () 7
{H " v v " . () T

(k) = = = ® " 8
(n) F
(y » oot (1) ¥
(s) No Min, Max 2.1 Infinite (9) T
(n) No Min, Max 0.1 Infinite (0) F
(o) Min 2.3, No Max Infinite () T
(p) Min 0.3, No Max Infinite (@) T
(q) Min 0.1, No Max Infinite (n) T
(o) T
(p) T
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18. (a) ¥ 21, (a) Yes
(v) F (v) No
{e) T - (e} No
(@) T (@) Yes
(e) T (e) Yes
() T (£} wo
(¢) T (g) No i
(n) F (n) Yes
(1) F {1) Yes
() F (3) Yes
(x) F (k) No
() F (2) No
(m) T (m) Yes
(n) T (n) Yes
(o) T (o) Yes
(p) T
(@) T 22. (a) T
(r) T (®) T
(s) F (¢) F
(¢) T (@) T
(u) T (e) F

() T

19. (a) No (g) F
{(b) less () T
(¢) minimum (i) F
(d) 1lower bounds for § (

(e} 1least upper tound 23, {(a) 2
(£) (.ok, .ou2k, .2kol2k, ...} (p) &
(e) 2

20, (a) T T
(b) T (a) 2
(e) F (e) 2
(d) T (£) 12
(e) T (5) 6
(£) T (n) 5
(g) T (1) 2
(w) = (» 2
(1) T 1
(5) T (x) 5
(k) T |
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2k,

(n)
(o)
(»)
(q)
(r)
(a)

(a)
(v)
()
(d)
(e)
(£)
(g)
(n)
(1)
(J)
(k)
(2)
(m)
(n)
(o)

No solution
No solution

rational
irrational
rational
rational
rational
rational
irrationsal
rational
undefined
rationsl
irrational
irrational
undefined
undefined
irrationsl
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