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PREFACE

Mathematics is such a vast and rapidly expanding field of study that there

are inevitably many icportant and fascinating aspects of the subject which,

though within the gras-.) of secondary school students, do not find a place in the

curriculum simply because of a lack of time.

Many classes and individual students, however, may find time to pursue

mathematical topics of special interest to them. This series of pamphlets,

whose production is sponsored by the School Mathematics Study Grouppis designed

to make material for such study .-eadily accessible in classroom quantity.

Some of the pamphlets deal with material found in the regular curriculum

but in a more extensive or intensive manner or from a novel point of view.

Others deal with topics not usually found at all in the standard curriculum.

It is hoped that these pamphlets will find use in classrooms in at least two

ways. Some of the pamphlets produced could be used to extend the work done by

a class with a regular textbook but others could be used profitably when teachers

want to experiment with a treatment of a topic different from the treatment in the

regular text of the class. In all cases, the pamphlets are designed to promote

the enjoyment of studying mathematics.

Prepared under the supervision of the Panel on Supplementary Publications of the

.School Mathematics Study Croup:

Professor R. D. Anderson, Department of Mathematics, Louisiana State
University, Baton Rouge 3, Louisiana

W. Ronald J. Clark, Chairman, St. Paul's School, Concord, New Hampshire 03301

Dr. W. Eugene Ferguson, Newton High School, Newtonville, Massachusetts 02160
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ORDER AND TEE REAL NUMBERS -- A Gunn TOUR

In view ethe experience we have all had when the amount of money we

have is less than the cost of an item we would like to buy, we are all familiar

with the idea of one number being less than another. In this lesson and those

that follow, we will be learning things about this important relationship

between nudbrs.-Westart by considering the simplest kind of numbers -- the

nudbers 1, 2, 3,-4- and so forth -- the numbers we have used to count with

since we were very young. We shall call these nudbers the natural numbers.

We could also call them the positive integers, but usually will not.

Instead of saying that one natural number is less than another, we may

also say that the first number is smaller than the second and mean the same

thing. Thus, 25 is less than 30 and, also, 25 is smaller than 30.

All of us are lazy and prefer a short way to write something rather than

a long way to write it. It is convenient, therefore, to abbreviate "25 is

less than 30" as "25 < 30". That is, we let "<" stand for the words "is

less than".

We now present some problems for you. You are to decide in each case

whether or not the statement is true or false. Record your answers to all the

parts of problem 1. When you have finished, check your answers against those

given at the back of the booklet.

1. (a). 4 < 7

(b) 12 < 10

(c) 193 c 200

(d) 3 < 5

(e) 10,000 < 9,999

(f) 47 + 6 , 47

(g) 133 < 133 + 941

(h) 5 + 2 < 5

(i) 14,397 < 14,397

(j) If x is any natural number, x < x 1.

(k) If x and y are natural numbers, then x < x + y.

(1) 5 < 7 and 7 < 53

(0 5 < 7 and 7 < 6

(n) 391 < 400 and 400 < 1940

(0) 391 < 391

1



It is pleasant to have more money than the cost of something you want to

buy, and it is convenient to have an abbreviation for the phrase His more than".

The syMbol we use for this abbreviation is H>". It is true, for example,

that 12 > 10.

If you find yourself getting confused between He and HY', remember

tbs. 'le shape of the symbol is meant to be helpful. The "large", open end

of the symbol is next to the name of the number which, it is claimed, is the

Large number. The small point of the symbol points towards the name of tbe

one claimed to be smeller.

True or False -- as before:
NR/W 4.11P11111111110

2. (a) 37 > 73

(b) 37 > 17

(c) 49341 > 49340

(d) If x is a natural number, x + 1 > x.

(e) If x and y are natural numbers and x < y, then y > x.

(f)

(g)

59 > 40 and 40 >

73 > 58 and 58 >

32

60

The cost of a bicycle is usually between that of a candy bar and that of

a car. 10 is between 5 and 17, because 5 < 10 and 10 < 17. Also 39

is between 1000 and 30 because 1000 > 39 and 39 > 30. In general, we

say that a is between b and c if either b < a and a < c, or b >a
and a > c.

True or False -- as before:

3. (a) 4

(b) 4

(c) 4

is between 2 and 10.

is between 10 and 2.

is between 7 and 10.

(d) 37 is between 10 and 50.

(e) 497 is between Iwo and 500.

(f) 497 is between 1 and 1000.

(g) 394 is between 395 and 500.

(h) 20 is between 10 and 16.

The natural numbers between 5 and 10 are the numbers 6, 7, 8, and

9. If we wish to talk about this collection of numbers, we will write

"(6, 7, 8, 9r to stand for the collection. We will usually refer to any

2



collection as a Lss-t,., The things that are in a,aet are called members (or

elements) of the Set. The set (3, 4, 7) has ihe members 3, 4, and 7.

That is, 3 is a meMber of this set and so ari 4 and 7.

We read "(3, 4, 7)" as "the set whose members art 3, 4, and 7".

The syMbols "f" and ")" are called braces. Whenever we use braces we will

be tailing about seta. The left brace, "f", may be considered to be an

abbreviation for "the set whose members are". The right brace, ")", tells

us when the list of names of members of the set stops. Note that it does not

make any difference in which order we list the members of a set. (3, 4, 7)

and (7, 4, 3) and (4, 3, 7) are all the same sets.

We may also use this "set notation" for infinite sets. For example, we

would write "(1, 2, 3, 4, ...)" to stand for the collection of all natural

nudbers. Here "..." stands for "and so forth". We shall return to a dis-

cussion of what the word "infinite" means above. You might look it up in a

dictionary.

True or False -- as before:
4111MIE.= ../MMO

4. (a) 7 is a member of (31 10, 7).

(b) 4 is a member of (30 10, 7).

(c) There are three members in (3, WO 7).

(d) Every member of (3, 10, 7) is less than 32.

(e) Every member of (5, 7, 19, 35) is less than 20.

(f) Some member of (5, 7, 19, 35) is greater than 20.

(g) Every member of (5, 10, 15, 20, 25) is greater than 4.

(h) The largest member of (5, 7, 10) is 10.

(i) The largest member of (5, 10, 7) is 10.

(j) The smallest member of (5/ 10, 15, 20, 253 is 5.

(k) The smallest member of (3, 4, 5, 6, 7) is 3 and the largest

.fanScr of this set is 7.

In mathematics (and other places), the largest meMber in a set is often

called the maximum of the set. The smallest member of a set is called the

minimum of the set. The maximum of (5, 10, 32) is 32 and the minimum of

this set is 5.

3



Lai in the blanks:

5. (a) The maximum of

(b) The minimum of

(c) The minimum of

(d) The maximum of

(5, 25, 72, 10) is

(4, 3, 7, 15) is

(3, 4, 5, 6) is

(3) is

(e) An example of a set whose maximum is 4 and whose minimum is 2

is 111
(0 An example of a set whose minimum is 4 and whose maximum is 4

is

Is it possible to find a set of natural numibers which has no minimum?

That the ansuer is "No" to this question is intuitively clear or is it?

In any event, the answer is "No", and the fact that this is so turns out to

be a most deep and fundamental fact about the natural nuMbers.

Is it possible to find a set of natural nuMbers which has no maximum?

Here the answer is "Yes". For consider the set (1, 2, 3, .0.) consisting

of all the natural nunibers. Is there a maximum in this set2 There is not.

We can prove this "by contradiction". Suppose there is a =Xi= natural

number. Call it n. Then n + 1 'a a natural uumber. But n < n + 1. So

n is not a maximum after all! In other words, there is no largest natural

number because if we are given any natural nuMber n we can find e larger

natural number, namely, n + 1.

As we look over the above results, we conclude that a (non-empty) set of

natural numbers always has a minimum but may have no maximum.

If you like fancy names for things (and like to sound sophisticated),

you may express the fact that fat non-empty set of natural numbers has a

minimum element by saying that the collection of natural nunibers is well

ordered.

If someone asks what is the largest even natural number, the proper

answer is, "There ain't no such animal." But it is more precise (and polite --

although somewhat stuffy) to say, "The set of even natural numbers has no

maximum;" or "The maximum of the set of even natural numbers is,undefined;"

or "The maximum of the set of even natural nuMbers does not exist." Some of

you may be tempted to say that the maximum of the set is infinity (whatever

that means). But the maximum of a set must be in the set and whatever

"infinity" is, it is not an even natural number. So "infinity" is certainly

not the maximum of the set.

4



Fill in the blanks:

The maximum of the set (30, 25, 20, 15, 10, 5) is

The maximum of the set of all odd natural nuMbers is

The largest natural nuaber multiple of 3 is .

(The multiples of 3 are 3, 6, 9, 12, lS, ...).

The smallest natural nuMber multiple of 3 is

An example of a set of natural nunbers where every member is less

than 3 and yet the set has no maximum is

An example of a set of natural numbers with a minimum of 1 and

a maximma of 1,000,000 is .

A nuMber larger than 1,234,567,891,011,121,314,151,617,181,920,

212,223 is

Which natural numbers are less than 1?

Which natural numbers are between 5 and 13?

Which natural numbers are between 27 and 23?

Which natural numbers are between 2 and 3?

Which natural numbers are between 5976 and 5975?

If a is the minimum and b is the maximum of some set, then

every member of the set is between a and b. (True or False?)

If a is the minimum and b is the maximum of some set, then

every meaber of the set which is different from a and different

from b is between a and b. (True or False?)

Which natural nuobers are between 49 and 50?

If x is a natural nuMber, there are no natural numbers between

x and x 1. (True or False?)

The minimum of the set of all natural numbers is

The minimum of the set of all those natural numbers which are

greater than 38 is

One easy way to think about inequalitism is in terms of a picture.

Imagine a "number line" constructed as follows: On a horizontal line we

choose a point called the origin and label it with the numeral "0". We

label with the numeral 111" the point one unit to the right of the origin.

We label with the numeral "2" the point two units to the right of the

origin. We label with the numel91 "3" the point 3 units to the right of

the origin. And so on. The result looks like this,



In this way we may think of our natural nuMbers as identifyinê certain points
on this line -- and vice versa. But, now we see that "is less than" (or "e)

can be thought of as "to the left of". Also, "is greater than" (or ">") can
be thought of as "to the right or. Also the meaning we gave to "between"

agrees with our ideas about this picture. We could even think of the "minimue
- of 8 set as the "leftmost member" of the set.

7. (a) What is the leftmost point among the points associated with the

numbers in the set (17, 4, 3, 10)?

(b) What is the rightmost point in the set (17, 4, 3, 10)4

Here we have started to be lazy again and instead of saying, "Rightmost point
among the points associated with the numbers in the set", we said, "the points
in the set". That is, we will do what most people do and talk about such a
thing as "the point 10" instead of saying "the point on our line which was
labeled 1101."

One-third of a pie is smaller than two-thirds of a pie. Half a loaf is
better than none. Winning seven-ninths of the games you played this season is
doing bettAT than winning only two-ninths of them.

True or False:

8. (a) 't" <

2
(b)

, 2 1
Cc) is between 3 anu 1.

1(d) > 0

(e) <

(f) 2 is betweeniadl
n 2

(g) 2 is between 1 and 1
5 2

01) < 725T

(i) g

(.) .3 < .5
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Remeaber tbat ".3" is an abbreviation for ".43" is an abbrevia-

tion for " 7,9" is an abbreviation for "..la" etc.
100 ' 1000 '

9. (a) .51 < .52

(b) .76 < .19

(e) .09 > .10

(d) .4319 > .400

(e) .35 > .30

(f) .51 > .5

(g) .89 > .9

(h) .413 is between .400 and .500.

(i) .3 is between .24 and .29.

(j) The maximum of (, !, 15) iS

(k) The minimum of (.7, 1.6, 4.2) is

(t) The maximum of (.1, 02, .3, 4, .5, 06, .7, .8, .9, 1) is

(m) Every member of 1 3, 5, 10, 1) is greater than

(n) Every member of (3, 5, 10, 1) is less than 7.

(o) Every member of (3, 50 10, 1) is less than 20.

(p) Every member of (3, 5, 10, 1) is less than 50.

(q) Every member of (3, 5, if 10, 1) is greater than 1.

(r) EVery member of (3, 5, 10, 1) is no greater than 10.

4 4
(s) Every member of (7, 5, 9, 15, p 95) is at least as large as 3 .

(t) No member of (33, 47, 53, 9.96) is greater than 53.

(u) No member of (5, 4, 3, 6, g, 11) is less than 4.

If every member of a set is at least as large as some nutber A, then we

say that the number A is a lower bound for the set. Thus, 4 is a lower

bound for (10, 5, 6.0, 32) since every meldber of this set is at least as

large as 4. Note that 3 is also a lower bound for this same set. Indeed,

5 is also.

-0 1



If every member of a set is no greater than some number Bp then we say
that H is an upper, bound for the set. Thus, 17 is an upper bound for

(4, 3405, 9, 11, 7). 15 is also an upper bound for this same set. Indeed,

U. is also.

True or false or fill in the blank:

10. (a) 100 is an upper bound for 40 4, 10, 94).

(b) 10,479 is an upper bound for 41 102 94).

(b)

(d)

(e)

100 is a lower bound for (100, 1000, 10000).

1 is a lower bound for (100, 1000, 10000).

4 a lower bound for (100, 1000, 10000).

(f) The set of all natural numbers which are upper bounds for

(5, 19, 36) is (36, 37, 38, 39, ...1.

(g) The set of all natural numbers which are lower bounds for

(5, 19, 36) iS

(h) The set of all natural numbers which are lower bounds for

5, 9, 66) is

(i) The set of all natural numbers which are upper bounds for

(10, 100, 1000, 10000) is

(.1) The set of all natural number which are upper bounds for

i. E 3. .14 2. .0. 11 is

(k) tr, it and Pr, are all between and 1.

(/) .301, .302, .303, .304, .399 are all between .3 and .4.

(m) .34196 is between .3419 and .3420.

(n) 17<11

In this last problem we need to know how to compare the size of two

numbers when they are written as fractions with different denominators. Here

we make use of some basic facts about fractions and find ways to express the

nuMbers so that they have the same denominator. In problem 10(n), for

example, we can write 11 11-111 . la and 12. . 12"11 . 112 rihen17 11.17 lo7 11 11 -17 187

121 42since r8,7 p we see that the statement in problem 10(n) is true. For

another example, we see that > since = .323. and 23- = 14 and

8
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True or False:

1 1
11. (a) <

(b) 4>

(e)

(a)
>

(e) <

Cr
40 17

) >

< 495

(h)

(i) 4.31 > 1.126-

(.1)

(0)

(p)

394 < 10+0

1

1 1

31 30

If a pie is divided into 3 equal pieces, the pieces are larger

than if the pie had been divided into 4 equal pieces.

1 1

>

If your rich uncle leaves you 1/10th of his estate in his will,

you get more than if he had left you 1/9th of it.

1 1

(4) 15

1 3> 1
(r)

.

and 7

1

50
is between

1 1
(t) If x is a natural number, then 1,------v- < .

kx+ 1.1 x

(1) 0 <
1
7

1
(v) o 756

> 1
8.

1

45'

and

" "

1 1
8- >

1

51

(w)
1

If x is any natural number then 0 < .

9



As we discovered before, a picture often helps in dealing with inequali-

ties. On the number line we conatructed before, it is easy to think of cer-

tain points as corresponding o numbers of the kind we have been using. For

example, if we find, on the =pother line, the point which divides the segment

between 0 and 1 into two equal pieces, it is natural to label this point
14,

as If we choose two points on the number line which divide the segment

from 0 to 1 into three equal pieces it is natural to label these two

points (from left to right) as "11' and "EP.
3 3

1In a similar fashion we may find the pointE corresponding to

.42... and

To find the point corresponding to we would first think of as

, 2 .2. then choose points dividing the segment from 2 to 317 17 4. 17

into 17 equal pieces, and then label the 9th one of these as
17

As we discovered with the natural numbers on the line, it is the case

that "e can still be thought of as "to the left of". Also ">" can still

be thought of as "to the right of". This fact is perhaps now not so "obvious",

but it is true.

In terms of our number line, to say that B is an upper bound for a set

is to say that no member of the set is to the right of B. TO say that a

number A is a lower bound for a set .6 to say that no member of the set is

to the left of A.

In the following problems indicate in a picture some of the points that

belong to the set and state whether the assertion is true or false:

e 1 1 1 112. (a) 5 is an upper bound for tl, 7, 3, y y 30

1111(b) 1 1S the maximum of fi, ."3- p i, , 3

(c) The smallest of all the numbers which are upper bounds for

tlp , p 0.4 is 1

The minimum of the collection of all the upper bounds for a set is

called the least upper bound for the set.

10



True or False: (You may find a sketch on the number line is helpful.)

13. (a)

(b)

(c)

(d)

The least upper bound for

The least upper bound for

The leadt upper bound for

The least upper bound for

(1,

(1,

(1,

(1,

4,

4,

4,

4,

5,

5,

5,

5,

7)

7)

7)

7)

is

is

is

is

6.

8.

7.01.

7.

Let us go into some detail on problem 13(c). How do we know that 7.01

is not the least upper bound for (1, 4, 5, 7)? It is certainly an uppez .

bound for the set since 1, 4, 5, and 7 are all less than 7.01. But 7

is slso an upper bound for the set. And 7 < 7.01. Hence, 7.01 is not

the least upper bound.

How are we certain of our answer in problem 13(d)? As we noted before,

7 is an upper bound for the set. Are we certain that 7 is the least upper

bound? Yes. If a number B is less than 7, then B is not an upper

boumd for the set because 7 is in the set. We conclude that no upper bound

for the set is less tban 7 so that 7 must be the least upper bound.

More generally, we see in this fashion that if a set has a maximum, then

that maximum is the least upper bound.

Consider the set (1.1, 1.01, 1.001, 1.0001, ...). Is it clear what the

set is meant to be? The member after 1.0001 is 1.00001. The meMber after

that is 1.000001. And so on, without end. Is 1 a lower bound for this

set? Surely it is. Is 1 the greatest lower bound for the set? In order to

convince ourselves that it is, we would need to show that no number greater

than I can be a lower bound for the set. Suppose A is a number greater

than 1 as shown on the nuMber line.

0

A

1 2

Isn't it clear that if we add to the interval between 1 and 2 the points

that divide the interval into 10 equal pieces, then add the points that

divide the interval into 100 equal pieces, then add the points that divide

the interval into 1000 equal pieces, etc.; that we must eventually reach a

stage where one of these pointa will fall between 1 and A? But this first

point that does so must actually be in our set, for it will either be 1.1 or

1.01 or 1.001 or 1.0001 or, etc. Then we have a point in our set which

is less than A. It follows that A is not a lower bound for the set. Since

A vas any number greater than 1, no number greater than 1 can be a lower

boumd for the set. We conclude that 1 is, indeed, the greatest, lower bound.

11
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True or False:

14. (a) 1 is a lower bound for

(b) 2 is a lower bound for

(c) 2 is the greatest lower bound for (2.1, 2.01, 2.001, 2.0001, ...).

1111(d) 0 is a lower bound for (1, .E , r , . . ) .

1 1 1 1(e) 0 is the greatest los4er bound for (1, 27 t

(0 0 is a lower bound for (3, 1 )

(g) 0 is the greatest lower bound for C3) 1 ?71 )

4000 1000 1000 1000(h) 0 is the greatest lower bound for t
1 P 2 ' 3 P

1000
...).

,

(2.1, 2.01, 2.0G1, 2.0001, ...).

(2.1, 2.01, 2.001, 2.0001, ...).

Now we are beginning to get at some rather difficult ideas. Perhaps it

would help us to review some of the basic ideas we have used. In doing so we

shall also state same definitions more carefUlly than we have up to now. In

stating these results, we sometimes make use of the phrase "if and only if".

To assert that, "such and such, if and only if, so and so", is to say that if

such and such is true then so is so and so, and, also, if so and so is true

then so is such and such. In otber words, "such and such, if and only if,

so and so", is a short way of saying that such and such implies so and so,

and, also, so and so implies such and such. If m$ n, and p are natural

numbers, < if and only if m < n. If m, n, p, and r are naturalP P

numbers, < if and only if ME < 122. . The largest element in a set isp r pr pr
called the maximum of the set. Tbe smallest element in a set is called the

minimum of the set. A number A is a lower bound for a set if and only if

no member of the set is less than A. A number B is an upper bound for a

set if and only if no member of the set is greater than B. A number L is

the Arestest lower bound of a set if and only if L is the maximum of the

collection of ail the lower bounds for the set. A nutber U is the least

upper bound of a set if and only if U is the minimum of the collection of

all the upper bounds of the set.

The nutbers we have been talking about here are 0 and numbers which

can be written in the form 2 where p and q are natural numbers. Such

numbers arr called non-negative rationsls. Any nuMber in the form k where

12



p and q are natural nuMbers is said to be a positive rational nuMber. As

you may know, there are numbers which are said to be negative, but we will

not consider these nutbers in this study.

Since we have been writing names of some nutbers in decimal fraction form,

it would be well if we reminded ourselves that those numbers that we have men-

tioned in this way are positive rational numbers. For example:

134,67520 001 a4675
10,0002.0001 = nd 13.

10,000

We have seen how zero or any positive rational number may be represented

by a point on the number line. And we have seen further that "less than" for

nutbers may be thought of as "to the left of" for the corresponding points on

the number line.

We discovered that any non-empty set of natural numbers must have a

minimum, but same sets of natural nuMbers have no maximum (for example, the

set of all natural numbers has no maximum).

Eventually we must come around to talking about "imfinity" so let us ask

a question thnt forces um to do so. ("Infinity" is fascinating anyway, so why

put it off?) The question is, "Which sets of natural nutbers don't have a

takimum?" The answer is "Infinite sets of natural nudbers." But what does

that mean? It is easiest here to say what an infinite set is by saying what

it is not. Tbat iss we first define the phrase "finite set". And we do so

in a very natural way. A finite set is a set with the property that it is

possible to count the elements of the set. Thus, (3, 7, 1, 4, 75) is a

finite set because it is possible to count its elements (and, thus, discover

that there are 5 elements in it). The set (2, 4, 6, 8, 10, ost, 1000) iS

finite. It has 500 elements in it.

A set is said to be infinite if and only if it is not finite. Thus, the

set (1, 2, 3, eye) consisting of all natural nuMbers is infinite. The set

(2, 4, 6, 8, 10, ...) consisting of all even natural numbers is infinite.

Feel disappointed? To some extent you should. We have not defined

"infinity". We have only defined the phrase "infinite set". Thus, "infinite"

makes sense here only as an adjective modifying "set". We have not defined

the noun "infinity" and will not need to. We shall get into enough trouble

with just the adjective.

It is more or less obvious that every finite set of natural numbers has

a maximum, while no infinite set of natural numbers has a maximum. (It would

be a good exercise in the careful use of language to try to write up a "proof"

of these two facts.)
13
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Itga been teoc nag since nou did some of the work. In each of the

following, state whether the set is finite or infinite and if possible find

its maximum and its minimum:

15. (a) (1, 3, 5, 7, 9, ..., 999, 1001)

(a) (1001, 999, 997, ..., 5, 3, 13

(e) (3, 9, 12, 4, 13

(d) (1, 3, 5, 7, 9, ...)

(e) (1000, 1001, 10020 1003, ...)

(f) (1000, 999, 998, 997, ..., 1)

(g1 1 1 1
)

3, E., -5) g .)

(h) . Tict-5)

(i) The collection of all the Presidents of the United States of America.

(j) The collection of all the people in your school.

(k) The collection of all the leaves on all the trees in your state.

(2) The collection of all.the molecules in or on the earth.

(2.1,

(.1,

2.01, 2.001, 2.0001, ...)

.01, .001, .0001, ...)

(203, 3.3, 4.3, 5.3, 6.3, ...)

1.3, .33, .333, .3333, ...)

(.1, .11, .111, .1111, .11111, ...)

Now perhaps you see some of the "trouble" we are in! Some of these are .

a little tricky to understand. For instance, in 15(g), how can we be certain1111
that (7, 3, ...) has no minimum? Well, if it had a minimum it

would be for same natural number no since only numbers in this form are

1 1 1in our set. Bu
1

t < and ls in our se... So - is not the
(n + 1) n (n + 1)

minimum after all! So we have here a set of numbers which does not have a

minimum. (Of course, it is not a set of natural numbers since every notv-empty

set of natural numbers has a minimum.) If we wish to use technical language

we can say that we have shown that the set of all positive rational numbers is

not well ordered.IIM0.11

14
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Also, we see that some infinite sets of rational nuMbers (such as

(2.1, 2.01, 2.001, 2.0001, ...)) may have a maximum -- eontrary to the situa-

tion when we consider sets of natural numbers. So the "order situation" for

the positive rational numberE is strikingly different from that for the

natural nuMbers.

Give an example of a set of positive rational numbers that has the

stated property or else state that this is impossible:

15. (a) A set with 3 elements whose maximum is 6.

(b) A set with 3 elements whose maximum is 1.

(c) A set with 10 elements whose maximum is 1.

(d) A set whose maximum is 7 which has an upper bound of 5.

(e) A set with 5000 elements whose maximum is 5000.

(f) A set with 5000 elements whose maximum is 1.

(g) A set whose minimum is 4 and whose maximum is 5.

(h) A set whose minimum is 7 and whose maximum is 6.

(i) A set with 2 elements whose maximum is 3 and whose minimum is 2.

(j) A set with 1000 members whose =Min= iS 1 and whose minimum is

1000

(k) A set with a minimum of 4 and no maximum.

(2) A set with a maximum of 0.

(m) A set with a maximum of 1 and.no minimum.

(n) A finite set with no minimum.

(o) An infinite set with a maximum.

(p) A set with neither a maximum nor a minimum.

Try these. True or False:

17. (a) 5 is an upper bound for (1.1, 2.1, 3.1, 4.1, ...).

(b) 5 is an upper bound for
1 2 4

-10 10' 10 ' 10 ' 3

(c) 5 is an upper bound for (5, 3, 2, 1, 4).

el 1 1 1
(d) 5 is an upper bound for 11F, 3, TY 5. "")"

(e) 5 is an upper hound for (4, 481, 4.11, 40111, 481111, 08

(0 5 is an upper bound for (409, 4899, 4.999, 4.9999, 0083.

(g) Every set of natural nuMbers which has an upper bound is finite.

(h) Every set of positive rational numbers which has an upper bound is

finite.

15



3 is an uOper bound for the collection of all the positive

rational numbers between 2 and 4.

3 is an unper bound for the set of all the rational nutbers

between 1 and 2.

(k) The set of all rational nuMbers between 0 and 1 is finite.

(I) The set of all natural numbers between 0 and 514,596,743 is

finite.

(m)

(n)

There is a rational nutber between 0 and 1.

1There is a rational nutber between -E and 1.

(0) There is a rational number between and 1.

22(p) There is a rational nutber between and 1.
91

(y)

If A is a positive

<
19 12

E. 4.
19 12

19 0

17

.2.2.. 4. 1-.
101 2

low 39

(5 + 6)

2

(43 + 44)
2

(43 + 44)
2

rational number,

+

19

22 +
19 12

la 4- 31-

241 + 12i
17

.22.
101

> -521
1000

s between 5 and 6.

. 43 +

is between 43 and 44.

A
then

2 < A.

Whet we divide 10 by 3 by the usual process, we first get a "partial

quotient" 3, then 3.3, then 3.33, then 3.333 -- but the division never

"cotes out even"! So, many books say = 3.333..." where the expression

on the right of the equality is called an "infinite decimal". But what in

tbe world does "3.333..." mean? Are we supposed to write "3333..." over

"10000." for a positive rational nudber whiCh is equal to it? Surely that

16



would be nonsense! Let's see if we can make some real sense out of "3.333...".

Before we do however, let us introduce a handy notation. In place of

"3.3333..." we shall write "3.3h. That is, a bar over a string of decimals

indicates that the string is to be repeated infinitely often; "4.756." means

"4.756,65656...". This notation will save us considerable writing and perhaps

some confusion.

One more remark about the point of view we are adopting here and in what

follows. We are assuming familiarity with the non-negative rational nuMbers --

and only with these nudbers. Our major theme is to deVelop a good understand-

ing of nuMbers that are not rational, but we have not yet introduced such

auMbers, and do not use them now.

Look at the collection (3, 3.3, 3.33, 3.333, ...). We know what each of

3.333...? How about thinking of it

bound O.f the :bio:e 3se!'?

Let's "prove" that If a the least upper bound of the set (3, 3.3,

3.33, 3.333, ...). 3.333,2 3331333 2222222 1,2L.40292 10
Al

JJ 100,000 3000000 300,000 3 so,

33333333

convince us

upper bound

33,333,333
10,000,000

IAD
that is

3

for the set?

994999,999 100,000,000
30,000,000 30,000,000

an upper bound for our set.

Such calculations

But is 12 the least
3

10Suppose A is a number such that A < We resort to a picture
3

A

-1
3 10 4

3

Suppose we divide the intervel from 3 to 4 into 3 equal pieces, then

into 30 equal pieces, then into 300 equal pieces, then into 3000 equal

pieces, etc. It is clear that eventually one of these division points will
10fall between A and 7T-. But when this happens, the last point to the right

10of A which ls to the left of will be in the form 99...9 over

300...0. That is, the number In decimal form will be 3.33...3 for some

(finite) string of "3's". But such a number is in our set and exceeds A.

Therefore, A is not an upper bound for the set. We have shown that no
10

nudber less than 3- is an upper bound for the set. We have also shown that

10 10
-3- is an upper bound for the set. We conclude that -3- is the least upper

bound of the set.

17



This suggests that we will not be led astry if we define 3.1 to be the

least upper bound of (3, 3.3, 3.33, 3.333, .).

In a similar vein, :17 means the least upper bound of (.10 .11, .111,

...), .7 means the least upper bound of (.14, .1414, .141414,

.14141414, ...), and :1710557 means the least upper bound of (.142857,

.142857142857, 142857142857142857, ...).

Of course, these last three least upper bounds have simpler names. They
1 14 Iare

' '

, and respectively. (Carry out the divisions to convince9 99 7
yourself that this is reasonable in terms of the division process.)

Thie or False:

1
18. (a) 5 is the least upper bound of (.2 .22, .2220 ...).

(b) 1 is the least upper bound of (.8, .88, .888, ...).

(c) 7 is the greatest lower bound of (7, 7.7, 7.77, 7.777, ...).

2
(d) 5. is the least upper bound of (02, .22, .222,

(e) = 0.222...

4
(f) is the least upper bound of (.8, .80, .800, .8000, ...).

(g)

(h) B. is the leas; apper bound of

(i) 15 is the least upper bound of

is the least upper bound of

.39 is the least upper bound of

.39 is the least upper bound of (.39, .3939, .393939, ...).

.999... is the least upper bound for (.9, .99, .999, ...).

1. is the least upper bound for (.9, .99, 999, ..).

1 .

.47 is the least upper bound for (.49, .499, .4999,

17 is the least upper bound of (.49, .499, .4999, ...

(.12, .1212, .121212, ...).

(1.2, 12.12, 121.212, 1212.1212,

(.4, .44, 444, .4444, ...).

(3, .39, .3939, .393939, ...).

(r)
1

is .14

th



(a) .9 IFS

(t) .9 .85

(u)

If you really understood parts (m), (n), and (o) above, You are making

great strides. One of the things we must admit if we want to use infinite

decimals is that some old friends now have some strange names. is

aeother name for 1. ".45' is another name for And so on. There is

'no other choice if we wish to preserve our ideas about the order of the num-

bers and their geometric representation on the line.

There is a point involved in the argument.for 18(o) being true that we

slid over La a slippery way before. How do we know that a set can't have two

different least upper boumds. It is true that .g is a least upper bound of

(.9, .99, .999, ...), (by the definition of ..§7) and also 1 is a least

upper bound of (.9, .99, .999, ..) (by an argument similar to those we

have given before). But maybe .5 is still different from 1. We shall

show that this is not so, by showing that any set can have at most one least

upper bound.

For suppose both a and b are least upper bounds of

Then, of course, a and b are both upper bounds for S.

either a < b or b <a. Suppose a < b. Then, since a

for S, b is not a least.upper bound -- a contradiction.

way, the supposition that h < a implies that a is not a

a contradiction. We conclude that we must have a m b. In

is actually only 2:1e least upper bound, if any.

some set S.

If a / b, then

is an upper boumd

But, in a similar

least upper bound --

other words, there

We have opened the door for some important advances. But before we pro-

ceed, fill in the blanks in these basic definitions.

19. (a) A number B is an upper bound for a non-empty set S if and only

if member of S is greater than B.

(b) A number A is a lower bound for a non-empty set S if and only

if no member of S is than A.

(c) A number U is the least upper bound for a set S if U is the

of the collection of all upper bounds for S.

19



(d) A nutber L is the greatest lower bound for a set S if L is

the maximum of the collection of

(e) J is the of the set (.3, .33, .333, .../.

(r) .1W is the least upper bound of the set

We have seen that some infinite decimals can be thoaght of as least upper

bounds for certain sets of rationale. The infinite decimals with which we

have dealt have been repeatina decimals. That is, in each of them a certain

block of digits war repeated over and over again to get the infinite decimal.

Does every positive rational number have such an infinite decimal representa-

tion? The answer is yes.

The reason for this is clear although a detailed proof of it Vs a bit

difficult to write down. Suppose x = 2 where Q and R are natural numbers.

Start carrying through the process of dividing Q and R using the usual

procedure in decimal notation. At each step in the division, the sub-remainder

that is "brought down" must be less than R. After enough of the usual divi-

sion steps have been carried throagh the non-zero digits in Q will be

exhausted and we will be bringing down a zero each time. But after this

happens we are bound to get a repetition of some exact situation we had

before since there are at most R different sub-reMainders. Thus, we must

in this way generate a repeating decimal. (Of course, if the division cames

out even the "repeating part" will be an Infinite string of "Ols"). Now it

can be shown (and it actually does require proof) that the infinite decimal

genereted in this manner is indeed equal to x. Since x was any positive

rational number, we conclude that any positive rational number is either a

terminating or s repeating decimal.

What about the converse question? Are there perhaps repeating decimals

which are not rational numbers? The answer is no. That this is so is most

easily proven in terms of the language of infinite geometric series. We shall

not give the proof here. Besides, what we are about to do makes the result

seem most reasonable. We shall now show how to find (as a ratio of two

natural numbers) the rational number named by an infinite decimal.

The method that we are about to use does not, by itself, actually prove

that every repeating decimal names a rational number. Thie is because in our

calculations we must do some arithmetic operations with infinite decimals as

if they were rational numbers. That is, we must already assume they repre-

sent rational numbers to carry out our calculations. Consider the following

equalities:

20



(100)(.37) s 37.37

37.37 . 37

(10X.5M 5.Th7

(loo99).(.5124) 5124.17

CloomoW,IN) (10(.517) . 5119

It should be clear that these equalities do need justification. After

all, infinite decimals are different from finite decimals and how much of

what you can do with finite decimals carries over to infinite decimals is

really not obvious. (For example, how do you carry over the usual process

for multiplying finite decimals to the case of infinite decimals? What is

.Tg multiplied by .57)

We shall not give detailed arguments to justify the equalities displayed

above. They do hold. In general, you may get the result of multipiying an

infinite decimal by a pOwer of ten by moving the decimal point appropriately.

And you may add or subtract infinite decimals in the fashion you would expect.

Using these facts, if x .37, then 100x 37.37 and, on subtracting,

we get 99x 37. Then x = 3-1 and we have expressed x as a ratio of natural
99

numbers.

If x = 15.3175r, then 10x = 153.17, 10,000x . 152,124.157, and, on
151,971subtracting, 90990x = 151,971. Hence, x

In this manner, we may express any repeating decimal as a ratio of

natural numbers.

Our grand conclusion from all the above is that a number is rational if

and only if it has a terminating or repeating decimal expansion.

But this is a strange kind of conclusion since the only numbers we have

considered so far are rational nudbers. At this stage, if a number isn't

rational it simply isn't.

On the other hand, we do have infinite decimals that are not repeating.

Examples abound: .101001000100001w, .3434443444444344444443...0

.12345678910111213141516.." etc.

If these infinite decimals mean anything, they are certainly not names

for rational numbers. We must invent a new kind of number for these symbols

to names The door is now open to do this, but first do the following problems:
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True or False:

20. (s) .001001002001-.. is a rational number.

(b) .110110110110... is a rational number.

(c) .767667666766667... is a rational number.

(d) .799999... is a rational number.

(e) .699999... * .7

(f) .74747474... is the least upper bound of (.74, 7474, .747474, ...).

(g) .69999... is the least upper bound of (70 60 6.1, 6.01, 6.001,

6.0001, 6.00001, ..).

(h) The least upper baund of (.3, .33, .333, .3333, ...) is the same
rl 1 1

es the least upper bound of 15, r, ,

(i) .14141414...

(1) 3.173737373... *

(k) 5.4319191919... . ank
9900

The set (1, 1.01, 1.01001, 1.010010001, 1.01001000100001, ...) is a

set of rational nuMbers. 2 is an upper bound for this set. In fact, all

the nutbers in the set are between .9 and 1.1. What is the least uppu

bound of this set which is bounded above? In a sense, this is the question

that this whole presentation has been headed towards. There is an obvious

answer to the question in terms of the machinery we have built up. The least

upper bound should be the number named by the infinite decimal

"1.01001000100001...". But this expression does not nane a rational nuMber.

So, what does it mean? It is a name for the new kind of number we now invent

to be exact1y the thing we want -- the least upper bound of the set (of

rationals) (1, 1.01, 1.01001, 1.010010001, ...).

The temptations of course, is simply to define 1.1010010001... to be

the least upper bound of the set (1p la, 1.1011 1.101001, go). But this

won't work by itself. We got away with defining .3333... to be the least

upper bound of (.3, .33, .333, .3333, ...) because it turned out that this

least upper bound did exist among the rationale so that ".3333..." ended

up being a name for something with which we were already familiPr -- namely,
1

In order to attach a meaning to 1 1.1010010001..." we must end up saying

something like "1.1010010001... is defi d to be such and such" where the

such and such" is something with which wi re already familiar -- something

already well defined. One thing to do is 1,0 define such a number to be a

whole mess of sets of rational numbers -- sets of nationals which (on an
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44,14' :a

intuitive basis) "have the given nuMber as least upper bound." This is what

we still do. In order to do so we shall bring in a new idea.

If A and B are sets of rational nuMbers, we shall say that A and

B evally law if either

(1) - A and B have the same rational least upper bawd or

(ii) given any a in A, there is a b in B such that

b >a, and, vice versa, given any b in B, there is

an a in A sudh that a >b.

For example, (5, 6) and (4, 6) get equally large while (5, 7) and (4, 6)

do not.

(1) and (.9, .99, .999, .9999, ...) get equally large since they both

have the same rational least upper bound.

(10 2, 3, 4, 5, ..) and (2, 4, 6, 8, ...), clearly get equally large.

(.1, .101, .101001, .1010010001, ...) and (.101, .1010010001,

.101001000100001000001, ...) get equally large.

For each or the following, state whether or-not the two sets get equally

large. ("yes" or "no" will do.)

21. (a) (447, 10), (10, 7, 4)

(b) (10, 7, 4), (10, 11, 12)

(c) (7, 7.1, 7.11, 7.111,

(d) (7, 7.1, 7.11, 7.111,

(e) (3, 4, 5, 6, 7, .0),

...), (4, 10, 73

...), (6, 7, 10

(1, 4, 9, 160 25, ..-)

(f) (1, 2, 3, 4, 5, ..,), (100, 1010.1 100.11, 100.111, ...)

(g) (.1, .11, .111, ..), (.1, .109, .1099, .10999, .1099990 ...)

(h) (.1, .11, .111, .1111, ...), (.1, .101, Ar)

(1) (.1, .101, .1010010001, .101001000100001, ...),

(.1,
1
s, .101, .101001, 45, .1010010001, 4, .1010010001000010

I. .)

(12.* D.)
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(k) (42, ay .202, .1011 .202002, .101001, .20200201002, .1010010001y see3,

(.2, .202, .20202, .2020202; ...)

(1, 2, I y 3, , 4, t.9 59 39 1539

(m) (.113), (.113, .113113, .113113113, ...)

221 y 231 24, 1: 251 2611

(n) (.1, .101, .10101, .1010101, Agee), fly 4.10, 0101, .1010, 010101,

.101010, ...)

(0) (.23, .2323, .232323, ...), (.2, .23, .232, .2323, .23232, ...)

We are going to use sets of rationals to identify our new nuMbers. We .

want two sets of rationals to identify the same number if they get equally

large. Of course, we are not interested in sets of rationals such as

(1 2, 3, ...) which are unbounded on the right, so we restrict our atten-

tion to sets of rationals which are bounded above. Soy finally, we may state

our basic definition. A real nunber is a collection of sets of rationals

which are bounded above and all of which get equally large. Thus, we do not

simply associate our new real numbers with certain sets of rationals. We

actually define a real number to be a collectio: f sets of rationals.

We need a way to name these new objects we call real numbers. One is at

hand. The collection of all those sets of rationals which get equally as

large as (by b.al, b.a1a2, b.a1a2a3y ...) where "b" is a decimal name for

a natural nuMber and the Os are decimal digits, is denoted by "b.a1a2a3...".

So, with perhaps some feeling of accomplishment, we can now say exactly what

any infinite decimal means. "a01001000100001w" stands for the collection

of all sets of rationals which get equally as large as (.1, .10y .101, .1010,

.10100, .1010011 .1010010, ...).

If this were to be a complete logical development of the real number

system, we would now launch into the statement and proof of a series of

theorems that follow from our definition. We would first need to define

addition and multiplication for real nuMbers and tell what it means for one

real number to be less than another. Mnch of this goes through in a very

natural way when we use the infinite decimal names for the reals. One of the

next things we would do would be to show that those real numbers which we

naturally now call rational real numbers (1 e those collections of sets of

rationals which all have the same rational least upper bound) do behave as

rational numbers should.

:44
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There has Probably been too much rigor in these last few paragraphs,

anyway. It's fairly certain you can answer the following questions even

though we haven't actually stated all the needed definitions. (True or False)

22. (a) .101001000100001... + .010110111011110... = .11111...

(b) .010110111011110... < .101001000100001...

(c) 5.431 < 5.4309009000900009...

(a) (3)(aolool000l0000l...) = .303003000300003...

(e) .124 < .12345678910111213...

(f) (7)(M)
(g) (7)(.43) = 3.51

(h) :f7 + =

.rr 1.51

Now that we have the real nuMbers clearly defined, what have we gained?

In what ways do the real numbers as a system differ from the rational nuMbers

as a system? Algebraically, the two systems are very similar. Addition and

multiplication always make sense and are commutative and associative in both

systems. Multiplication distributes across addition in both systems. And

division, except by zero, is always possible in either system.

But, of course, the reels make up a more comprehensive system than the

rationals since each rational can be thought of as a,real number. In terms

of our development, this amounts to treating the rational number Ti as

identical with the real number which is the collection of all sets of

rationals which get equally large with the set (-)
Q

The basic difference between the rationals and the reels is usually

expressed by saying that the real number system is complete while the rational

nuMber system is not. To say that a number system is complete is to say that

whenever a set of numbers from the system is non-empty and bounded above, then

that set has a least upper bound In the system. More briefly, a system.is

said to be complete if every non-empty set which has an upper bound has a

least upper bound.

Tbe system of natural numbers is Lomplete in this sense since each set

of natural numbers which is bounded above has a maximum and that maximum will

be the least upper bound.
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Completenesa is lost, however, in moving from the natural nuMbers to the

rational numbers system. For example, the set of rationals (1, 1.01, 1.01001,

1.010010001, ...) is bounded above but has no rational least upper bound.

ne least upper bound for the given set is the real number 1.01001000100001...

which is not rational.

Real numbers which are_not rational are said to be irrational. -

Before discuesing the proof of the completeness of the real nuMber system,

let us look at other consequences of this completeness.

The first has to do with roots of equations.

23. Find the positive rational x for wbich

(a) 2x 4 x

(b) 3x - 7 = 5 x

(c) 7x 4 . 4 x

(d) 5x + 10 m 20 x

(e)
x2

= 4 x

(f)
x2

= 144 x =

(g)
x2

= 36 x =

(h) x2 . 25 x =

(0 x2 = 5 x . _____

0) x
2

3'''25
x = -----

(k) = 7x2 1 x = ----

..../MR



Consider 23(r) more closely. How are we certain that there is no rational

number x for which x + 1 = x? If there were such a number, we would have,

on subtracting x from both-sides of the equation, that x + 1 - x a x x.

That is, 1 O. But this is impossible. We conclude that no such x could

exist.

Suppdse we had asked for the positive rational number x for which

x
2

im 2. Just as is the case when we ask for the x for which x + 1 = x,

there is no such positive rational x! We.shall now prove this.

,First, we need the fact that the square of an even number is even and

the square of an odd nuMber is odd. TO say that a natural number is even is

to say that it is a multiple of 2. Thus, if x is eyed, we have x 0 2k
2

(

, .2for some natural number k. But then x 2k; - 4k
2 2

. Since is

clearly an even number, x
2

is even when x is. If x is odd, V. x

must be one greater thsn some even number. That is, for some k i.c must
.have x = 2k + 1. But then x

2
= tk + 1)

2
= (2k + 1)(2k + 1) =

(2k + 1)2k + (2k + 1) 40 + 2k + 2k + = 4k2 + 4k + 1 which is one

greater than an even nuMber. Hence, x
2

is odd when x is.

2

Now suppose there is a positive rational number x = such that
p,2

x (-9 = 2. There is no loss in generality in assuming that P and Q

are not both even since this will certainly be the case when x is expressed
0.2

as a fraction in lowest terms. Since (E)2 . 2 we have = 2 and F2 = 2e.
Q-

Then P2 is even. But this Lmplies that P itself is even since if P is

odd so is its square. Therefore, for some natural number k, we have P = 2k.
.Then from P` = 2Q2 we get t2k;
2

. 2Q
2

= 2Q
2
, and, finally, 2k

2
- Q

2
.

Hence, Q
2

is even and so is Q. But this is a contradiction since either P

or Q must fail to be even. Since the assumption of the existence of a

rational number whose square is 2 leads to a contradiction, there cannot be

any such rational number.

If we had only rational nuMbers, we could not solve the equation x
2

= 2.

In the positive reels, however, we can do so. The solution is denoted by

is called the positive square root of 2, and is the real number which is the

collection of all those sets of rationale which get equally large with the

set of all rational numbers whose squares are less than 2.

;YI
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ILINTA.41,

It cat be shown that not only is 07 irrational, but so is AT when N

is any natural number which is not the square of a natural number. Thus, none

of the nuMbers 40 05, 05, IT, le, 163, ... would exist if we had only

rational numbers to work with, but they all are perfectly well defined

(irrational) real numbers. In fact, the system of non-negative real numbers

is closed under the-process of taking square roots. That is, every non-nega-

tive real number has a real square root. An even stronger statement can be

made in that no matter what natural number k and positive real nudher b we

are given there is always a real number x such that x
k

b. In other words,
th

the non-negative reels are closed under taking k-- roots. This is certainly

not true of the rational number system.

24. Classify each of the following as to whether it is a rational number,

an irrational number or undefined (i.e., not a real number):

(a) A-6

(0 in

(c) .034034034034...

(d) .010203

(e) )1.

(f) The collection of all sets of rationale which get equally large

with (-)
3

(g) The collection of all sets of rationals which get equally large

with the set of all rationals whose squares are less than 3.

(h) The collection of all sets of rationale which get equally large

with the set of all rationale whose squares are less than 81.

(i) The collection of all sets of rationale which get equally large

with (1, 2, 3, 4, !Odle

(j) The collection of all sets of rationale which get equally large with

(1, 1 - .01, 1 - .01001, 1 - .0100100010 1 - .01001000100001, ...3.

(k) The collection of all sets of rationale which get equally large with

(.3, .1, .31, .11, .31311, .111, .313113111, .1111, .31311311131111,

.11111, ...).

(i) .1234567891011121314...



(m) The x for which x2 . -1.

(n) The smallest positive real number.

(o) The least upper bound of the set of all reale whose squares are

. less than 2.

The move from the rationals to the reels is very important in terms of

the number line. In the picture below we have shown the nutber line and a

geometric construction of a length of /F.

0 1

The right triangle shown has both legs one unit long. By the Pythagorean

Theorem, its hypotenuse must have length What was shown in the last

section tells us that if we had only rational points on the line, our arc

would pass right through the line without hitting it. This, of course, should

not happen for a line.

The completeness of the real nudber system can be expressed in geometric

terms by saying that every point on the number line has a real coordinate.

The converse is also true in that every real nuMber corresponds to some point

on the line.

According to the definition we gave for a real number, the real number

b is identified with the collection of all sets of rationals which are not

to the right of b and yet have members arbitrarily close to b.

This geometric picture will be helpful as we look at an incomplete sketch

of the proof of the completeness of the reels. Let S be a set of real num-

bers which is bounded above by, say, b. Then for each x in S, x < b.

Each x in S is a collection of sets of rationals. Clearly, none of the

rationals in any of these sets could exceed b. Let A be the collection

of all the rational nuMbers which belong to any of the sets corresponding to

any x in S. Then A is bounded above by b. Let y be the real number

consisting of the oollection of all sets of rationals which get equally large

with A. y will be the least upper bound for S.

This outline of the proof leaves many details to be filled,in. You might

try your hand at filling the gaps.

25



The word "real" we have used to identify the nuMbers we have introduced

is, in a sense, unfortunate. Real numbers are neither more nor less real

(in a non-technieal sense) than are the rational nuMbers or other kinds of

numbers. It is true that real numbers do seem to have a "concrete representa-

tion" on the nuMber line. But it turns out that even so-called imaginary

nuasrs also hive a "concrete" geometric interpretation.

Indeed, the reale almost seem to be a bit "unreal" when we look at the

care needed to build them from the rationals.

25. Correctly enter "Yes or "No" in each position in the following table:

30



The number system: Natural numbers

Every finite set of numbers
has a maximum.

EVery non-empty set
of numbers has a minimum.

Every set of numbers which is
bounded above has a maximum.

Every set of numbers which has
a maximum is finite.

Every infinite set of numbers
has no maximum.

Between imy two distinct
nutbers there is another number.

Each nutber corresponds
to a point on the line.

Each point on the line
corresponds to a number.

Every non-empty set of nuMbers
which has a least upper bound.
has a maximum.

Every non-empty set of nuthers which
is bounded above has a least upper
bound.

Non-negative rationals Non-nssative reels



1. (a)

(b) F

(e)

(d) T

(e) F

(f) F

(g)

(11) F

(i) T

T

(k)

(2) T

ANSWERS

4. (a)

(b)

(e)

(d)

(e)

(r)

(g)

(h)

(1)

(i)

(k)

5. (a) 75

(n) T (b) 3

(0) F (c) 3

(d) 3

2. (a) F (e) (2, 3, 4) et. al.

(b) T (I) (4) only

(c) T.

(d) T 6. (a) 30

(e) T (b) Does not exist

T (e) Does not exist

(g) F (d) 3

(e) Does not exist

3. (a) T (f) (1, 387, 1,000,000) et. al.

(b) (g) 1,234,567,891,011,121,314,

(e) F 151,617,181,920,212,224

(d) T (h) none

(e) T (i) 6, 7, 8, 9, 10, 11, 12

(f) r (j) 24, 25, 26

(g) F (k) none

(h) F (2) none

F

(n)

(o) none

(P)

((:)) 39

3



T. (a) 3

(b)

8. (a) T

(b) T

(e)
Ca)

(e) T

(r) F

(b)

(i)
(i) T

9. (a)

(b)
(c) F

(a)
(a)

(g)
(h) T

(1) F

(i)
5

(k) 4.2
CO 1

(m) T

(n)
(0) T

(0,
(q) T

(r) T

(s)
(t)
(u) F

33

10. (a) T

(b) T

(e) T

(d) T

(e)
(r)
(g) (1, 2, 3, 4, )

(II) (1p 2, 3)
(10000, 10001, 10002, )

(i) (1, 2, 3, ...)
(k) T

(i)
(10 T

(n)

11. (a) F

(b)
(c)
(d) F

(a)
(f) T

(g)
(h)
(i) T

(i) T

(k) F

(m) T

(n) T

(o)

(P)

(9)
(r) T

(s) T

(t)
(u)
(v) T

(w)

3 7



Min 1, Max 1001 Finite

Min 1, Max 1001 "

Min 1, Max 12 "

Min 1, No Max Infinite

Min 1000, No Msx Infinite

Min 1, Max 1000 Finite

No Min, Max 3.2"- Infinite

1 1
Min 305, Msx 5. Finite

(i)

.0)

(k)

(A)

(06)

(0)

(0)

(p)
(q)

No Min or Max
.1 11 II

ti II 11 II

It

No Min, Max 2.1

No Min, Max 0.1

Min 2.3, No Max

Min 0.3, No MAX

Min 0.1, No Max

Finite

11

If

Infinite

Infinite

Infinite

Infinite

Infinite

34

16. (a)

(a)

(c)

(d)

(a)

(r)

(8)

(h)
(i)

(i)

(k)

(2)

(m)

(n)

(0)

(P)

17. (a)

(a)

(c)
(a)
(e)

(r)

(s)

(h)

(i)

(k)

(1)

(a)

(n)

(0)

(p)

(4, 5, 67 et. al.

(}, 11, 1) et. al.

(21.0' 10' 10°

Impossible

(1, 2; 3$ em00 5000) et. al.

..0 1) et. al.

(4, 5) et. al.

Impossible

0:4

%Imo $ 97.9 11 1) et. al.

(4, 5, 6, ...) et. al.

(0) only

(1, I-, t,

Impossible

, 3. 1
(2. A., , v, Er, )
(1, F, 3, r,

et. al.

) et. al.

...) et. al.

et. al.

git L



18. (a) r
(b) F

(e) T

(d) T

(e) T

(f) T

(g) T

(11) F

(i) F

(k) F

(1) F

(m) T

(n)
(a) T

(I)) T

(q) T

(r) T

(s) F

(t) T

(u) T

19. (a) No

(b) less
(e) minimum

(d) lower bounds for S

(e) least upper hound
(f) (.214, .214214, .211214214p )

20. (a) T

(b) T

(a) F

(d) T

(e)

(r)
(g)
(h)

(1)
(i) T

(k) T

21. (a) Yea

(b) No

(a) No

(d) Yes

(e) Yes

(r) No

(g) No

(h) Yes

(i) Yea

(a) Yea

(k) No

(I) No

(m) Yea

(a) Yes

(o) Yes

22. (a) T

(b)

(c)
(d) T

(e) F

(g) F

(11)

(i) F

23. (a) 2

(b)

8
Cc)

(a) 2

(e) 2

(f) 12

(g) 6

(h) 5

(i)
6r

(is)



2

(m) 60

CO

(o) .2

(p) .6

(q) 25

(r) No solution

(a) No solution

24. (a) rational

(b) irrational

(e) rational

(d) rational

(e) rational

(f) rational

(g) irrational

(b) rational

(i) undefined

(j) rational

(k) irrational

(/) irrational

(m) undefined

(n) undefined

(o) irrational

36
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