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PRUACE

Mathematics is such a vast and rapidly expanding field of study that there

axe inevitably many important and fascinating aspects of the subject which,

thoagh within the grasp of secondary school students, do not find a place in the

curriculum simply because of a lack of time.

Many classes and individual students, however, pay find time to pursue

mathematical topics of special interest to them. This series of pamphlets,

whose production is sponsored by the School Mathematics Study Groupois designed

to make material for such study readiii accessible in classroom quantity.

Some of the pamphlets deal with material found in the regular curriculum

but in a more extensive or intenaive manner or from a novel point of view.

Others deal with topics not usually found at all in the standard'curriculum.

It is hoped that these pamphlets will find use in classrooms in at least two

ways. Some of the pamphlets produced could be used to extend the work done by

a class with a regular textbook but others could be used profitably when teachers

want to experiment with a treatment of a topic different from the treatment in the

regular text of the class. In all cases, the pamphlets are designed to promote

the enjoyment of studying mathematics.
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A question which leads us back to an old, but increasingly attractive,

description of both abstract and applied mathematics, and also ahead to the

modern problems of computing machine design. In two parts.

PART ONE: ABSTRACTION

1. A Statement of Objectives

2. The Basic Rules of Sequence Arithmetic

3. Elementary Strategy

4. Intermediate Strategy

5. Advanced Strategy

PART TWO: APPLICATION

6. First Application: Statements

7. Second Application: Subsets

8. Third Application: Signals

9. Designing a Computer

10. The Computer in Action
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Chapter 1

A STATEMENT OF OBITEC'TIVES

You can't blame parents for being a little confused nowadays about what

their children are studying in the name of mathematics. One day it seems that

1 + 1 = 2

which is comforting and traditional, but an another day one hears that

1 + 1 s 10

which Is simple enough when you've been let in on the secret. But then there

'throw away two' arithmetic, in which

1 + 1 - 0

and, as you'll soon discover, a strong case can also be made for

1 + 1 - 1.

No wonder teachers are often asked what 'modern mathematics' is all about.

All four of the above answers to the question 11 + 1 = ?' will eventually

find a place in these chapters. But before even starting on the details let's

take just a few moments for a description of long-range objectives. There are

many ways of trying to explain what mathematics is really 'all about.' One very

brief definition, having a certain element of surprise, has over the centuries

received the blessing of several big-name philosophers. It reads simply,

'Mathematics is a collection of games.'

Now those six words shouldn't be expected to carry too heavy a message, and

hopefully rsme ''-sther exTlanation will be welcomed. It could run like this.

'In order to plaL. 9ry game you first have to learn certain basic

rules. The basic rules are the things you need to know even to under-

stand what particular game is being played. For the familiar, and

fairly dull, game of Tic-Tac-Toc, three basic rules are more or

less sufficient.

1. Players take turns.

2. Pat your murk in an empty space.

3. First three in a row wins.

You need to know these basic rules if yos're goiuc, to slay r's e-Tas-Toe

at all. But if this is all that you know, you sould play the same very



badly. Hare is an example of legal, but uninspired, play.

MEE
IBM

It's a win for X, but the ommpetition was pitiful. Nobody plays

Tic-Tac-Tbe this badly for long. Az in any other game, once you
know the basic rules you try to figure out the strategy of the game,
the things that are nice to know in order to play skilfully. Here is
an example of strategy in Tic-Tac-Toe. Player X has taken the
center space and player 0 a side.

X oan now guarantee himself a vino in quite a variety of ways. The
logic is easy, and all Tic-Tac-Toeplayers soon think their way through
victories such as this.

130 II
11FMa.

X is now prepared to win either in column one or in row two, and
0 will not be able to block both. Knowing this strategy brings X
his win.

This sort of progress, from basic rules to strategy, is typical of most
games. It's true of chess, poker, tennis and almost any game you can think of.
It's also true of the various parts of mathematics. Arithmetic and geometry,
which everyone agrees are parts of mathematics, involve both basic rules and
strategy. It's the custom in mathematics to call the basic rules axioms and
the strategy theorems. But the pattern is the same. Starting from the basic
rules (or axioms) you try to figure out the higher strategy (or theorems) of
the gEale, so that you'll bc able to play skilfully. Ile confusion in 'modern
mathematics' is due to the fact that there are lots of camt:s other than arith-

metic and geometry, which are also parts of mathemati_7s, but seldom reached the



public eye until recently. Children are now becoming familiar with some of

these games, but to parents who never had the chance they muct look strange.'

Hopefully, this longer explanation of what mathematics is will be helpful.

But to reinforce it, to get a clear view of the game-like nature of mathematics

a detailed study of one of its parts is essential. In the following chapters

one of the most important, but lesser known, games of modern mathematics is

presented. It is called 'sequence arithmetic.' Its basic rules are explained

first, as with any game, followed by examples of amateur play. Then some

strategy is developed and play becomes more skilfUll. In spite pf its impor-

tance, sequence arithnetic is a much easier game than the more ','amiliar 'ordinary

arithmetic,' and just where its place in the modern curriculum will eventually

prove to be, whether in kindergarten or college, makes interesting speCulation.

Two other points should be mentioned before we start. First, the games

that constitute mathenatics are not played just for fun. There Is definitely

some good entertainment value In them, as mathematicians will testify, but there

are also ways in which the games contribute to the progress of human affairs.

Exhibielng the possible areas of application of sequence arithmetic is a major

objective in what follows. It is also the most interesting part of the story.

And the second point is this. In mathematics you play strictly by the rules.

Play Is honest. Strategy is carefully checked to be sure that it is correct.

This policy of honest play Is a strong tradition in mathematics, inspired in

part by the fact that so often the results are used in important applications.

Demonstrating this policy of honest play is another major objective.

In summary, the objectives are:

1. to exhibit the game-like nature of mathematics;

2. to show that 'math is honest:'

J. to choW that 'math Is useful.'

It's all been said before, but goals are important enough to rate frequent

repetition.



Chapter 2

THE B&SIC RULES

2.1 The Rules Themselves.

The game of sequence arithmetic is played with sequences of zeros and ones.

'No sample sequences are these, which have been named X and Y for short.

X 0 1 0 0 1 1
1 1 0 1 0 1

The zeros and ones are called 'values,' so X and Y are both six values long.

Don't try to attach any 'meaning' to such sequences, not yet anyway. Just thilik

of a sequence as a thing to play with, like a tennis ball or a chess queen.

There are three basic rules to learn before play can begin. The first one tells

how to 'add' two sequences.

BAraC RULE I: TO add two sequences, put one over the

other and deal with each pair of corresponding values

separately, making

0 0 1 1

40 +1 +0 +1

0 1 1 1

Making 1 + 1 - 1 is the only surprise, and it shows that, whatever 1 stands

for here, it isn't your old friend the number 1. As a first example of addi-

tion, is the computation of the sum X + Y.

X 0 1 0 0 1 1

1 1 0 1 0 1

x+Y 1 1 0 1 1 1

Addition is certainly a simple enough job. Notice that the sum X + Y is

another sequence of zeros and ones,, six values long, just as X and Y are.

Another thing to notice is that it doesn't make any difference which sequence

is put on top and wbich at the bottom. We just had X on top of Y, and

called the sum X + Y. If we put Y on top of X

1 1 0 1 0 1

0 1 0 0 1 1

5



the sum should probably be called Y + X instead. But computation produces

Y + X 1 1 0 1 1 1

whioll is absolutely identical with the X + Y sequence just computed. Basically
this is because 0 + 1 and i + 0 hive both been prescribed as 1. Plainly
there's ao need to fuss. Either aequence can be put on top; and we'll use
X + Y and Y + X interchangeably.

Letts turn to the second basic rule; which introduces multiplication of
sequences.

BASIC RULE II. To multiply two sequences put one over the

other and deal with each pair of corresponding values separately;
making

0 0 1 1

X0'. xl X0 X1

0 0 0 1

This time there are no,surprises at all. As a first example of multiplication
here is the camputation of the product XY.

X 0 1 0 0 1 1

1 1 0 1 0 1

XY 0 1 0 0 0 1

Multiplying sequences is as easy a job as adding them. Notice that the product
XY is another sequence of zeros and ones; six values long; just as X and Y
are. Notice also that once again it makes no difference which sequence is put
on top and which at the bottom. We just had X on top of Y; and called the
product XL If we put Y on top of X

1 1 0 1 0 1

0 1 0 0 1 1

the product should probably be called YX instead. But computation produces

YX 0 1 0 0 0 1

which is absolutely identical with the XY sequence just computed. Basically
this is because 0 x 1 and 1 x 0 havp both been prescribed as 0. Plainly
there's; no need to fuss. Either sequence can be put on top and we'll use XY
and IX interchangeably.

6



These first two basic rules are simple enoagh, bat if you find it easier

to remember words than ayebols here is a brief translation. 'The only wey to

get 0 in a sum is from 0 + 0, and the only wey to get 1 in a product is

from 1 x 1.' We're up to the third and last basic rule.

BASIC REJlie; III. To invert a sequence, replace

1 by 0 and replace 0 by 1.

This hardly needs an example, but here is the computation of the inverse of X,

represented by the syMbol 2, which you read 'X inverse.'

0 1 0 0 1 1

1 0 1 1 0 0

Notice that X inverse is another seqeence of zeros and ones, six values long,

just as X is.

2.2 Firat Calisthenics.

Now you know all the basic rules of sequence arithmetic, and it's tine for

some first efforts at playing the game. Start by computing these three sequen-

ces, using the X and Y sequences of the previous section.

Y
X + Y

The long bar over X + Y indicates the inverse of the X + Y sequence which

was computed earlier. As a check on your arithmetic, the last twe sequences

ought, to be the same. In eyebols,

The equality symbol as used here means 'is the same sevence as.' So X + Y

ought to have turned out to be the same seqeence as Y. If you disagree,

then check the basic rules and examples once more to see if you've misunderstood,

because both of these sequences should have come out

0 0 1 0 0 0.

A qgestion often aaked by beginners in sequence arithmetic is whether it Y and

X X` are the same. (X Y mane the inverse of the product X Y.) To find out

in the case of our particular X and Y sequences, compute the inverse of XY

X I

7
I



and compare it with I Y. They should be different. But then compute

+Y

and compaxe it with X Y. They should be the same. In symbols

1-7.7c+Y.
Now oampute the sums

and then try the products.

Yhen you're finished you'll agree that sequence arithmetic has some very simple
features. Another simple feature is illustrated by the addition of a few
seqp,!es tb their owm inverses,

and still another by these multiplications.

xx
Y

Ma:ling these various computations may begin to suggest some strategy, or theory
of the game of sequence arithmetic, but we'll postpone theory until the next
chapter. Before leaving our X and Y sequences, here is a f_nal set of
arithmetical calisthenics, intended mostly as a limbering-up exercise.

These three sequences should turn out identical. Then try three more.

(x + y)(3? Y)

xy+R-i
These should also agree amongst themselves. If you disagree, double-check
your computations.

8



2.3 The Shortest Sequences.

As further calisthenics let's s Itch to some very short sequences, first

taking the shortftst of then all. Our X and Y were six values long, but any

length is suitable, the rules remaining the sane. There are only two sequences

of length one. One or them is

and the other is

0

1

and it almost seems like flattery to call them sequences at all. It's a simple

job to prepare addition and multiplication tables for these miniature sequences.

Here is the addition table.

It tells you that 0 + 1 is 1, and that 1 + 1 is 1, f id so on. This is

all very familiar to you by now. Complete the following multiplication table

yourself.

0 1

It's also reasonably clear that 0 and I are inverses of each other, and that

about exhausts the computational possibilities of these sequences.

Graduating just slightly, there are only four sequences of length two.

Call them 0, P, Q and I. (Read 0 as OH.)

0 0

0 1

1 0

1 1

With these little sequences computations can be done in your head. To get

P + Q, for example we can just look at P and q, and apply Basic Rule I.

You can see that P + -Q, has turned out to be the sequence I.

9



And what is P Q? Looking at the P and Q aequences again, and applying

Basic Rule II, leads quickly to

P Q 0 0

so that P Q. has turned out to be the sequence

P Q

These two results are recorded in the addition and multiplication tables below.

0.

P

Q QI Q

A few other entries have also been made. These entries claim that

Q + F . I
41 - Q

P + P. P
95 P

Q.+ Ø Q
1;1 2.

and you should check to see if you agree. Then supply all the missing entries,

completing the tables. Each place should be filled with 0, P, Q or I.

There is also an,inversion table for these little sequences,

P Q I

The entry which has been made claims that the inverse of P is Q. DO you
agree? Supply the mdssing entries, writing either 0, PI Q or I in each
empty place. As you complete these three tables you will be forming some im-

pressions of the strategy, or theory, of the game of sequence arithmetic.

For a final limbering up take the sequences of length three. There axe

exactly eight of them, and let's name them as follows.

0 0 0 0 D 0 1 1

A 0 0 1 E 1 0 1

k i 0 1 0
B e 1 1 0

C 1 0 0 I 1 1 1

10



'Me addition and multiplication tables for these sequences are somewhat larger,

of course. A few entries are included below, but most of the labor is left

to you.

A B C

0 0ABC
A AADE
B BDBF
C CEFC

E F I D E

0 0 0 0 0
A 0A00
00B0
000C

The inversion table for these sequences is simpler. Complete it.

0ABCDEFI
I F

At this point yuu can consider yourself a skilfUl amateur at the game of

sequence arithmetic.



Chapter 3

ELEMENTARY STRATEGY

3.1 Only Two Distinct Kinds of Column.

Fram your first attempts to play this game perhaps you're drawing some

conclusions. You've used sequences of length one, two, three and six. Any

length can be used, fram one upward, the basic rules remaining the same. But

in any one version of sequence arithmetic all sequences should have the sane

length. In other words, don't mix different lengths.

Now we cone to the matter of strategy, or, as it's called in mathematics,

.theory. We'll develop a short list of theorems, just a part of a much longer

list which is recorded in the literature of mathematics. You'll learn how to

prove these theorems, and later we'll put them to work in applications. The

theory= are true for sequences of any length, and we'll use different lengths

at different times for examples. Whatever the length, two sequences are very

Lmportant. One of them contains all zeros, no ones, and we'll call it 0

(Read it OH.)

0: all O's

The other sequence eontains all ones, no zeros, and we'll call it I.

1: all l's

The practice calculations of Chapter 2 may have suggested to you what can

be expected whenever a sequence is multiplied by 0, but here's one further

example to make the picture totally clear. Pick some sequence and call it A.

I'll choose this one.

To multiply A by

The product comes out

and It's identical with

A: 0 1 1 0 1 0

we put 0 under A, as usual

0: 0 0 0 0 0 O.

0.

AO: 0 0 0 0 0 0

Surely everybody begins to believe that the product

will come out 0 no matter what sequence A we start with. In other words, we

suspect a theorem, a first piece of strategy for the game of sequence arith-

metic.

13



In this brief statement of what we suspect to be true, the letter A stands
for 'any sequence at all.' Translated into English prose the theorem becomes,

'When any sequence at all is multiplied by 0, the product is O.' How can
we be sure this theorem is true? Actually, a proof is very easy. Look at the
example again. The thing to notice is that the first two columns alone tell

the whole story. The other four columns are merely duplicates. If we chose

an entirely different sequence for A, we'd get exactly the same two distinct'

kinds of column, the first two that we have in our example.

A 0 1 . . .

0 0 0 . .

AO 0 0 . .

In these two columns the product AO comes out zero. So; it will always come

out zero, in every column, because all other columns are duplicates. This
definitely proves that AO antes out a solid sequence of zeros, no ones. In
symbols, AO 0.

It has taken quite a few words, and some patience, to prove Theorem 1,

which may have seemed perfectly obvious from the start. The reason for this

patience is partly that, in mathematics at least, it pays to be very careful.

But there's a more immediate reason, too. The easiest way to prove lots of

the theorems of sequence arithmetic is by this idea of duplicating columns.

The spirit of our proofs, for a while, will be, 'How many distinct kinds of

column do we have to examine?' For Theorem 1, only two distinct kinds will

appear, and that's true of this entire chapter.

Now welll turn to a companion theorem, which is also discernable in the

openinz examples. Theorem 1 concerns multiplying a sequence by O. What

happens when a sequence is added to I? Take any sequence at all, and call

it A. Let's choose just the first two values of A and leave the rest open
for a moment.

A: 0 1

Add I to this sequence. I is Oust

I : 1 1 1 1 1 1 1 1 1

so the sequence comes out (remetber, 1 + 1 - 1)

A + I: 1 1

E



and it's identical with I, at least in the first two columns. BUt almost

at once you realize that it won't make any difference how the A sequence is

empleted. Either 0 or I will go into each open position and the new

columns of computation will just be duplicates of the two columns we already

have. Tbe sum A + I will be a solid sequence of ones, no zeros. It will be

the sequence I. This is our second theorem.

THEOREM 2. A + I = I.

In this theorem, as in Theorem 1, A can be any sequence at all.

Since we're doing so well with the 0 and I sequenLes, here is another

pair of companion theorems which involve these two special sequences.

[THEOREM 3. A + 0 = A.

[THEOREM 4. AI .

The proofs of these two are left to you. Just follow the pattern by which

Theorems 1 and 2 were proved. As in the earlier pair, A can be any sequence

at all. Even so, only two distinct kinds of column can appea:.

3.2 Theorem puessing.

Now let's break away from 0 and I for a moment to pick up another pair

of simple companion theorems. You may have guessed these two also in your

practice session. Take any sequence at all, and call it A, perhaps the sem

A we used a moment ago.

A: 0 1 1 0 1 0

To calculate A + A, you put A under A0

A:

and eventually get the sum,

A + A:

0 1 1

0 1 1

0

0

1

1

0

0

which may be revealing enough for you to guess how to finish our next theorem.

THEOREM . A + A :=

15
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If you can't guess, then the completed theorem appears at the end of this

chapter, along with other results you will be asked to guess shortly. For
example, calculating A tines A should suggest the campanion to Theorem 5.
Caa you guess it?

THEOREM 6. AA 0

If not, see the completed theorem at the end of this chapter. As usual, this
pair is true for aey A sequence at all, and once you've guessed the missiag
righthand sides, the proofs are easy. (No matter what sequence A is, only
two distinct columns appear in the computation of A + A or AA.)

Next, let's figure out some of the strategy, or theory, of playing with
inverses of sequences. The idea of inverting a sequence is simple enough; you

just swap zeros for ones, and ones for zeros. So, there ought to be some simple

theorems involving inverses. TO start us oil', complete this one.

THEOREM 7. 7 , and 1=

Unlike our first six theorems, in which the sequence A can be 'any sequence
at all,' this just points out the inverses of our two special sequences 0 and
I. To return to the earlier spirit, take any sequence at all, and call it A.
We might choose the first two values, leaving the rest of the sequence open for
later choosing.

Invert the sequence,

and then invert the inverse.

A: 0 I

X: 1 0

Is: 0 1

Notice the two bars over the A. Each bar says 'invert what's under mell so

means the inverse of A, while Al means the inverse of A. Now you can

finish choosing the A sequence, and complete the calculation. Whatever you
choose, it's easy to guess the theorem, true for aey A sequence at all,

THEOREM 6. 7 .

2 C



Before graduating to bigger things, hare is a final pair of companion theorems,

true for agy A sequence at all, and provable by the method of 'only two dis-

tinct columns.' Complete them if you can.

THEOREM 9. A + A

[THEOREM 10. A-

Simple as these first ten theorems are, they have an important role to play in

fur her developing the strategy of the game of sequence arithmetic, and in

making applications. To close up this chapter here is a summary of our 'ele-

mentary strategy,' including the thftrems which were left unfinished back along

the way. Remember, A call be 'any sequence at all.

Theorem 1. AO = O.

Theorem 2. A + I = I.

Theorem 3. A + 0 - A.

Theorem 4. AI A.

Theorem ). A + A = A.

Theorem C. AA . A.

Theorem 7. = I and T

Theorem 8. -A- , A.

Theorem 9. A + - I.

Theorem 10. AW = 0.

0.

PROBLEM. Using the following (incomplete) A sequence

A 0 1

and the special sequences

0 0 0 0 0 0 0

1 1 1 1 1 1

compute the first two values of each of the following sequences.

Ao

A + I

A + 0

AI 7
A + A A + A

AA AA

17



You aow have the only two distinct kinds of column which can appear no matter
how this A sequence ia completed, or even if an entirely different A sequen-
ce is chosen. Sequences which are identical in these two columns will be iden-
tical for 'any A sequence.at all.' Comparing AO and 0, in these two

columns, we find they agree. Comparing A I with I, in these two columns,
we find they agree. This is how Theorems I and 2 were proved. Now make sim-

ilar comparisons (of A 4. 0 with A, and of AI with A, and so on), there-

by proving Theorems 3 to 10.

1") r".
4.1

18



Chapter 4

INTERMEDIATE STRATEGY

4.1 Only Four Distinct Kinds of Column.

Now that you've seen some theorems which are true for any sequence A at

all, a fairly natural next step is to look for theorems which are true for

!a:41r of sequences. These are not usually so easy to guess, so we'll follow

the way which our mathematical ancestors have cleared for us. To begin, you

could choose ally pair of sequences you wish. Call them A and B. An excel-

lent choice is this pair, for reasons which will soon appear and which you may

guess. These are only four values long.

A 0 0 1 1

0 1 0 1

First calculate their sum and product

A + B

AB

and their inverses.

"A-

Then calculate these four sequences.

A + B

A B 3

AB

+

(Inverse bars are made just long enough to stretch over the sequence to be

inverted. Tnus, A + B means the inverse of the sum A + B, while AB means

the inverse of the product AB. You will see even longer bars in later chapters.)

Now, if you've completed the above computations successfully, then A + B and

X 3 should be the same. They should both be

1 0 0 0

so that, at least for our special pair of A and B sequences, A + B, (which

is known as the inverse of the sum) and TS (the produ,A of the inverses)

have turned out to be the sane sequence. Next, compare AB with 71 + E.

They should both be

1?
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1 1 1 0

so that AB (known az the inverse of the product) and X + (the sum of

the inverses) have also turned out to be the same sequence. Let's also take

a moment to notice two thiriga that are not true. Many an amateur at sequence

arithmetic han assumed that X + E - X + B1 and that AB . A E. Notice that

in your computations above both of these are false. Those computations seem to

be forecasting this pair of theorems.

THEOREM 11. A + B - X E.

THEOREM 12. A --B A

At least, these theorema are true for my choices of A and B.

Now we eoce to the important point. We chose sequences of length four, so

naturally there are four columns of computation in the above work. If you

choose longer A aud B sequences, then you'll surely have more columms of

computation. But, no matter which two sequences you choose for A and B,

even if they are a hundred valuea long, computing A + B, NE, AB and -A- +

as I've suggested here will not roduce Ela new kind of column. You'll get

more columns, but they'll all be duplicates of these four. The four columns

here are the only distinct kinds there are. That's because, whatever sequences

you ehoose for A and By the two top entrien of eaeh column must start the

column off in one of these four ways

0 0 1 1

0 1 0 1

and the top two entries of a column determined what happens all the way down

that column. Think It over, but only four distinct kinds of column are possible,

regardless of how A and B are chosen, and the four kinds are exactly what

we already have. We can deduce that Theorems 11 and 12 are true, not only for

our special choices of A and B1 but for p_a A and B .sequences at all.

This method of only four distinct columns, though simple, is powerful.

We'll use it to provide honest proofs of a number of theorems. First let's

take a pair of companion theorems that were mentioned informally way back when

basic rules I and II were first introduced. When two sequences are beine added

it's entirely immaterial which sequence tpes above the other. The sum will be

the same either way. To be absolutely precise it was suggested that we might

distinguish betwvn A + B and B + A, saying that whon A is put above B

then the sUM is called A + Bp and when B is put above A" then the sum is
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called 13 + A. Mat would be clear and neat. But the fact that such fuss has

no costputational significance is the oontent of Theorem 13.

LTBEDREM 13.

The same remarks apply to products, and you could guess the companion of

Theorem 13.

THE0REI4 14. AB BA.1

As usual, A and B stand for any pair of sequences. These theorems are so

easy to believe that it seems almost silly to write out proofs. Nevertheless

just to be safe, here is how the proofs look, using the same A and B se-

quences as before.

A 0 0 1 1 B 0 1 0 1

B 0 1 0 1 A 0 0 1 1

A + B 0 1 1 1 B + A 0 1 1 1

AB 0 0 0 1 B A 0 0 0 1

Comparing A + B with B + A0 and AB with BA, we surely find that they

agree. For these particular A and B sequences Theorems 13 and lh are

secure. But to repeat, other choices of A and B might lead to more columns

of computation, but they can't possibly lead to new kinds of columns. The four

coital= we have here are the only four distinct kinds there are. Our proof for

this A and B pair covers all other A and B pairs also.

The content of these two, theorems must seem terribly 'obvious.' Unless

you've grown accustomed to the spirit of modern mathematics; you may even ob-

ject to dignifying them as theorems. But the point is, that theorems are strat-

egy, and to play the game of sequence arithmetic honestly, it's important to

list strategy which we know to be correct. Then, if we play according to our

list, we know we're safe. The policy in mathematics is, 'Better safe than

sorry,' and mathematicians have been led to this policyby hard experience.

Aal too often, playing by intuition instead of by proven strategy, they've run

into logical disaster. Intuition is great stuff, and should be worked to its

limit; but whenever possible it should be checked by honest logic. Here weIll

carenaly list all proven strategy, and then we'll play by our list.
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4.2 The Four Basic Products.

Now we come to a muall avalanche of theorems. All of them involve four

famous and basic products; mm041 AB, AS, B and W B. The proofs of these

theorems will be much easier if we examine these products first. Take the

usual A and B sequences,

A 0 0 1 1

B 0 1 0 1

Calculate the inverses,

and then the four famous products.

T3

.

Notice the resulting pattern. Each product takes the value 1 in onIy one of

our four columns. But between them the'four products manage to supply a 1

for each cOlumn. The pattern can be used to simplify the job of proving

theorems such as this.

MOM 15. AB + AB =, A.

Everything needed for the proof is already avsilable. AdAing the products AB

and AN. should product the sequence

0 0 1 1

which definitely is the same as A. And to repeat once more, should you use

other A and B sequences than mine, then AB + AS should still agree with

A, because the computations above produce the only four distinct kinds of

column that A and B sequences can generate. In these four columma AB +

agrees with A, so it always will, whatever sequences you choose for A and

B. Thit's the method of only four distinct eolumns. Apply this simple, bat

powerful, method to the following avalanche of theory, all of which is true for

any pair of sequences A and B. Try proving these in your head, just looking

at the four basic prodacts up above, but witho further penmanship. If that's

too much headwork, then put the computations ds . on paper, but be sure to grave

them all, one way or another.
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THIOBEK 16. A + AB . A.

THEM* 17. A + B . A + 1B.

MORE* 18. A + B . (AB + AB) + XB.

TELOBEK 19. 1B + :K.

Timm eo. (AB + A33) 4- (AB 4- 53") I.
THEM* 21. (A + B)(X + I) . + AB.

MORIN 22. (A + B)AB Ag + XB.

_ w
In several of these theorems parentheses are used to designate which computa-

tions have priority. Do computations inside the parentheses first.

4.3 Only Bight Distinct Kinds of Column.

Nbw let's stretch the method of distinct columns once more, by proving a

few theorems that are true for Ex three sequences A, B and C. Take these

thxee special sequences first.

A 0 0 0 0 1 1 1 1

B 0 0 1 1 0 0 1 1

C 0 1 0 1 0 1 0 1

There's a fairly obvious pattern to these selections. And that pattern is

useful, because it provides one neat wNy to guarantee that the eight columns

of zeros and ones which are already beginning to shape up N-11 be the ony

eight distinct kinds that are possible from three sequences A, B and C.

You can choose longer sequences for A, B and C, and get more columns, but

any new column will duplicate one of the eight we are starting to develop here.

You should convince yourself of this before pushing onward. Try attachiag

more vslues to A0 B and C. Amy new column you form will be a duplicate of

one of these eight. This fact is important because it means that whatever we

prove for these special A, B, C sequences will hold for tila three sequences

at all. This is the method of only eight distinct kinds of column. Let's

put it right to work. First compute

and then multiply by A.

B + C

A(B + C)
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'Next get the two products

and finally compute their sum.

AB

AC

AB +AC

Unless you've made an error in arithmetic you should find that A(B + C) and
AB.+ AC have come out id,mtical. Both shouldbe

0 0 0 0 0 1 1 1

and that sugEests a theorem. Since both of these sequences are the same for
our special choice of A, B and CI they will also be the same for any other
choice.

THEOREM 23. A(B + C) a AB + AC.

Az usual, there is a companion theorem. Computing these five sequences

BC

A + BC

A + B

A + C

(A + B)(A + C)

you should again discover a pair of identical sequences. The companion theorem
reudz

THEOREM 24. A + BC - (A+ B)(A + C).

and It's true for any three sequences A, B and C.

To close up this chapter let's apply the method of only eight distinct

rmo to a pair of theoremz which are crucial for our work in the chapters

Li..c:Eid. The first one concerns 'double SUMS.'

THrOREM 25. A + (B + C) (A + B) + C.

This is aometimes called a 'shift parentheses' theorem, and it's easy to see
why. The parentheses designate which sequences are to be added first. On the
left, B + C should be computed first, and then A should be added to the sum.
On the riLht, A + h should be computed first, and then C should be added to
that sum. The theorem cuarantees that both orders of procedure lead to the
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same final result. I'm sure that you're more than willing to believe this

theorem, but in the interest of safety take a few moments to apply our method

of only eight distinct columns.

A 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

B C

A + (B + C)

A + B

(A + B) + C

The fifth and seventh sequences should be identical, and Theorem 25 is proved.

The companion of Theorem 25 is another 'shift parentheses' theorem, but with

products in place of sums.

THEOREM 26. A(BC) (AB)C.

And needless to say, the proof is easy by the method of only, eight distinct

kinds of column. If you need further practice at writing zeros and ones, then

compute BC, A(BC), and so on. Theorem 26 will stand up to the test. Further

opportunities to apply this method will be provided in the next chapter.
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Chapter 5

ADVANCED STRATEGY

5.1 New Strategy from Old.

;* 7 ",,".:

After the fairly heavy dose of theory Ln the previous two chapters it

wOuld probably be good psychology to offer you a few applications. Certainly

you have a right to kmow why this game of sequence arithmetic was invented,

and what it's currently good for. If you're desperate to see the applications,

turn at once to Chapter b. But if you can stand a final (extra heavy) dose,

this chapter will finish our penetration into the theory of sequence arithmetic.

Then we'll give applieations our undivided attention. And if our recent efforts

cause spectres of sixteen or more distinct kinds of column to float across your

imaginations, in a dense fog of zeros and ones, let me quickly reassure you.

Such methods are feasible, but we're going to turn to a different technique of

proof for our last theorems. We will use the strategy we already have to de-

velop more advanced strategy. This method of getting new strategy from old is

by far the best way for proving some of the theorems of this chapter. For

other theorems the old method of distinct columns may still be the easier, but

we'll use the new method aeyway just for the experience.

Az a first example, we know by Theorem 13 that

A +B=B+ A

so that two sequen,:es may be added in either order. Suppose we have three

sequences to add, call them A, B and C. Then by Theorem 25

A + (B + C) (A + B) + C.

This 'shift parentheses theorem says that we can add B to C first, or we

can add A to B rirst. The final MIRO will be the same. Could we even add

A to C first? I'm sure you guess yes, and maybe you see how to prove it.

Applying Theorem 13 to the sequences (A + B) and C, we can lengthen our

last result to

A + (B + C) (A + B) + C C + (A + B)

and now shirting parentheses in the rightmost member

A + (B + C) (A + B) + C (C + A) +

This shows that in adding A, B and C it makes no difference whi,!I: pair of

sequences we decide to add together first, B and C, or A and 15, or



C and A. Moreover, having done this first addition, what remains is to add

the two sequences that are left, such as A and (11 C). But we know that

any two sequences can be added in either order, and so we deduce that any three

sequences A, B and C may be added in any order we care to take them. The

sum of three such sequences is usually written without any parentheses

A + B + C

to show that tne order7'of addition is entirely imnaterial. Let's call such a
sum a 'double

If we turn next to triple sums

A +3+C+ D

and to even longer sums, it's a natural guess that the order of computation is

still immaterial. Hopefully, the following theorem is true.

The proof

that sums

lengths.

be useful

involving

ces, such

THEOREM 27. Double, triple, and longer sums such as

A + B + C

A +B+C+ D
sr,' so on, may be computed in any order.

of this theorem presents a new type of difficulty. The trouble is

crari come in an endless variety of lengths, and we have to handle all

For situations of this sort a one-step-at-a-time procedure proves to

To illustrate, suppose that we knew the theorem to be true for sums

five sequences. As a next step we could consider sums of six seven-

as this one.

A +B+C+D+E+ F

One way of takling this sum is to add the A and B sequences first.

(A+B)+C+D+E+F
This leaves us with only five sequences, and so from here on the order of com-

putation won't matter. But now suppose we begin again by adding D and F

together first instead of A and B. Is it possible that the final result

will be different? To find out we return to the five-sequence sum we already

have. Sinee the order of computation in that sum doesn't matter, let's choose

to take sequence D right after A and B.

(A + B) + D + etL.
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The shift parentheses theorem instantly converts this to

A + (B + D) + etc.

which is a different, but equal, five-sequence sum, in which B + D is com-

puted first. Now let's change our minds. After computing B + D let's take

sequence F next, with A being postponed until later.

(B + D) + F + etc.

Again shift parentheses and you have

B + (D + F) + etc.

This sum is still the equal of the others we've had, and now D + F is the

first sum computed. So the question of a moment ago is answered. Adding D

and F first leads to exactly the same final result we would get by adding A

and B first. And the sane sort of proof applies no matter which pair you

want to add together first1 The resulting sum will equal our original

(A + B) +C+D+E+ F.

You may want to choose a few pairs and explore the details yourself.

Now we come to the main point. We've just proved that if five-sequence

sums can be computed in any order then six-sequence sums can also be computed

in any order. But these lengths serve only as an example. The idea of our

proof works just as well for longer or shorter sums! What has actually been

proved is that grafting an extra sequence to a sum doesn't upset the applecart.

If the order of addition was immaterial before, then it remains immaterial

after the graft. This is the crux of the one-step-at-a-time method. For in-

stance, we do already know that suns of three sequences (double sums) can be

computed in any order. The same is therefore true when there are four sequen-

ces involved. And if four-sequence sums can be computed in any order, then the

same will be true of five-sequence sums. And so on it goes, up to sums of any

length. You will want to think ever the details of this proof of Theorem 27

fairly carefully, and to fill in details which were omitted for brevity. But

basically it's an honest proof, and it certainly makes heavy use of earlier

strategy. Needless to say, there is a companion theorem.

=ORM 28. Double, triple and longer products

such as

ABC
ABCD

and so on, may be computed in any order.
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The companion is proved in the same way. Although these two theorems are not

exciting, they are important. You'll be seeing many multiple sunm and products

from here on.

5.2 Some Special Product.s.

We already know that for any three sequences A, B and C

A(B + C) = AB + AC.

That's our Theorem 23. The A sequence multiplies B + C on the left, and it

multiplies both B and C on the right. It isn't hard to guess how this

theorem can be stretched for longer suns. First comes

A(B + C + D) AB + AC + AD

which is true for fla four sequences A, B, C and D. Here's a quick proof.

There are two double sums involved, but we don't have to worry about the order

in which we compute them, so start by giving B + C a temporary alias, X.

Then

A(B + C + D) A(X + D)

AX + AD

A(B + C) + AD

. AB + AC + AD

The proof is already finished, and you'll have to admit it was speedier than

tackling sixteen distinct kinds of columns would have been. We've simply used

Theorem 23 twice. It's another example of using strategy already proved to

develop more advanced strategy. The sane idea can be applied again to stretch

the sum another notch, and then another, and so on. It's the one-step-at-a-time

method again in action. The indicated result is.our next theorem.

THEOREM 29. For any sequences A0 13, C, D, E,

etc.

A(B + C + D) . AB + AC + AD

A(B + C + D + E) - AB + AC + AD + AE

and so on.

Since products can be taken in either order, all the produc s In Theorems :23

and 29 can be reversed.
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(B + C)A - BA + CA

(B + C + D)A . BA + CA + DA

(B + C + D + E)A . BA + CA + DA + EA

So whether the slims on the left precede A or follow it, the A sequence

appears in each part of the right hand sum. We can now stretch Theorem 29 in

a second direction. As a first example, consider (A + B)(C + D) and give

C + D a temporary alias, X.

(A + B)(C + D) (A + B)X

AX + BX

A(C + D) + B(C + D)

._- AC + AD + BC + BD

Tbe result is a triple sum. Az one further example,

(A + B + C)(D + E + F) . (A + B + C)X

AX + BX + CX

A(D + E + F) + B(D + E + F)

+ C(D + E + F)

. AD + AE + AF + BD + BE + BF + CD

+ CE + CF

and the cum on the right includes nine sequences. Here is the indicated theorem.

THEOREM 30. For any sequences A, Bp Cy D7 E, etc.

(A + B)(C + D) AC + AD + BC + BD

(A + B + C)(D + E + F) = AD + AE + AF + BD + BE

and so on.

+ BF + CD + CE + CF

PROBLEM 1. Prove A(B + C + D + E) - AB + AC + AD + AE by giving B + C the

temporary alias X and then using Part 1 of Theorem 29, which we

have already proved.

PROBLEM 2. Simplify Theorem 30 (Part 2) for the special case when F = 0

PROBLEM 3. Simplify Theorem 30 (Part 1) for the special ease when C = X and

D 'E. (Notice that this amounts to a second way of proving

Theorem 21.)

PROBLEM 4. Simplify Theorem 30 (Part 2) for the special case when D

E T3' and F - C.
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5.3 The set Basic Products.

Now that we have the crucial, though unexciting, Theorems 27 to 30 behind
us we can move more quickly to accumulate the remaining items of advanced
strategy that will be needed.

THEORE( 31. AC B + C) . ABC + ABZ + AgC.

The yroof of this by the method of eight distinct colunms is simple enough, but
for varietyphere is a proof which uses our earlier accumulated strategy. Check
each line careftilly to be sure you agree.

A(B + C) is AB + AC

ABI + AIC

AB(C + Z) + A(B + E)C

- ABC + ABU + ABC + AEC

. ABC + ABU + AEc.

Theorems 4, 5, 9, 23, 27 and 28 all see action. Can you find where? Next
comes a pair of theorems involving the double sum AB + AC + BC.

THEOREM 32. AB + AC + BC . ABC + ABU + AEC + ZBC.

THEOREM 33. AB + AC + BC . AB + (A + B)ABC.

The proof of each of these will remind you of the proof just completed. First,

AB + AC + BC - ABI + AIC + IBC

= AB(C + -0") + A(B + 1.0C + (A + X)BC

. ABC + ABU + ABC + AEC + ABC + XBC

ABC + ABZ + AC +

And second, remembering Theorem 22 which says (A + B)AB AB + IB,

AB + (A + B)ABC ABI + TB)C

AB(C + + + 11)C

. ABC + ABZ + AEC + 1.B.c

. AB + AC + BC.

The thing to notice is that, in all three proofs just given, certain basic
products,

ABC AB AC BC

play key roles. Introducing the I sequence as was done, and then replacing
I by A + X or B + or C + Z, whichever seemed best, led us to coMbina-
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tions of these basic products. In proving other results concerning three

sequences Al B and C there are four other basic products which can appear.

AISZ ABC 13c XEZ

Boas of these appear in the proofs of Theorems 34 to 36, which you are asked to

attempt as problems.

THEME 34. A3 + + -1-V3 + + -07.4 .

TIMOR& 35 . + B-a+azAEC+A3Z+ABZ
+ NEC+IBC+XB C.

THEOREM 36. The sum of all eight basic products is I.

To the relatively innocent bystander the two sides of Theorem 34 must look like

inverses of each other. But they are equal in spite of appearances. Both

equal the sum of basic products shown in Theorem 35. Theorem 36 is one indica-

tor of the special role which the eight basic products play. It is a close

relative of Theorems 9 and 20.

AB + AE + IB + . I.

PROBLEM 5. Prove Theorem 34 by showing that each side is the same combination

of six basic products. This also proves Theorem 35.

PROBLEM 6. Prove Theorem 20 in a second way, starting with

I = II (A +X)(B +E)

and then using Theorem 30.

PROBLEM 7. Continuing Problem 6, prove Theorem 36 starting with

I - III = (A + W)(B + 3)(C + Z).

PROBLEM 8. Prove Theorem 18 in a second way, starting with

A + B AI + IB A(B + E) + (A + X)B.

r)f.) f
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PROBLEM 9. For a Author example of the method of only eight distinct columns,
begin by computing the following list of sequences, including our
eight basic products.

A 0 0 0 0 1 1 1 1

B 0 0 1 1 0 0 1 1

C 0 1 0 1 0 1 0 1

43 + tE + CA

Xt

Eb

EA

It +lb + -C7A

B + C

A(B + C)

AB

AC

BC

AB + AC + BC

A + B

AB

ABC

(A + B)ABC

AB + (A + B)ABC

A B C

A B C

A g C

A 17

X B C

X B

A B C

ABC

Use these results to verify Theorems 31 to 36.



5.4 Four Last Theorems.

Finally letss pick up a few results which involve more complicated inver-

sions than we've handled before.

THEOREM 37. The inverse of any sum is the product of

the separate inverses. The inverse of any

product is the BUM of the separate inverses.

For sums and products of just two sequences this has long since been e!7tab1ished

in Theorems 11 and 12. Take the case of a double sum, A 4 B + C. Since the

order of computation doesn't matter, we can choose to compute A + B first and

call the result X. Then

A + B + C = (A + B) + C . X + C 7-5

.A+BU
_= ABC

As usual, X is a temporary alias. The proof amounts to using Theorem 11

twice. For longer sumz the idea is the sane; Theorem 11 is used as often as

needed. Az for produts, the action is similar.

A B C 7175 XC . 7 +

- AB +

Theorem 12 has been u3ed twice. For longer products it would be used as many

times as needed. Letle put Theorem 37 right to work.

THEOREM 38. (A + B + C)ABC = AE + Br: + a.

The proof Is a neat bit of teamwork by earlier theory.

(A + B + C)ABC - (A + B + C)(K + E + .6)

AE + AZ + B + + clT + dE

(AE + B-d + dit) + ("Al + Ecl + a)

But the two double sums in parentheses are equal, by Theorem 34. If we call

both of them X for a moment, and remember that X + X X, then the whole

side collapses to AE + BC + LiK, and Theorem 38 is proved. Here Is a final

pair.
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THEOREM 39. MIC + (A + B + C)AB + Bc + Ad

lu ABC +Ariz+-A-Bz+XIT c.
THEOREM 1+0. [(A + B)AB + C] (A + B)ABC

ABC+Ar3B+IBE+1.73-C.

The proofs will be left as problems, for those hardy souls who have survived to

this point: which is as far as we'll penetrate into the theory of sequence
arithmetic. There's much more in the literature of mathematics: but we have all
we'll need.

PROBLEM 10. Prove Theorems 39 and 40, either by the method of eight distinct

columns or otherwise.

PROBLEM 11. Can you complete the following array of sixteen basic products

which would be involved in problems of four sequences of A: B,
C and D ?

ABCD
ABC 5
ABZD
A B C D

5., Abstra-t Mathematics.

A B C D5
A B C 5

A B C 5

AET5 X3E5

We've came a long way from the basic rules of sequence arithmetic. You

now know quite a few fine points of the game, forty theorems' worth: so you're

no longer an amateur player. Moreover: play has been honest; we've sometimes

labored hard just to 'prove the obvious,' to be sure that we stay on honest,
logical ground. So the first two objectives announced in ChLpter I have had a

turn. Part I has concentrated on those two objectives. It has been an example

of what Is called pure or abstract mathematics. In Part II we'll turn to our
third objective. The subject will become applied mathematics: and you'll see

that sequence arithmetic is a very useful game. In closing up this first part,

a few final questions may be appropriate.

Q. What is abstract mathematics?

A. It's a collection of emos. Sequence arithmetic is one of those

games.

Q. In sequence arithmetic what do 0, end - mean?

A. Nothing yet, Wt see Part II.
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Q.

A.

4.

A.

Does 1 + 1 really equal 1 ?

Yes, in sequence arithmetic it really does.

Doesn't that contradict 1 + 1 2 T

No, because 1 + 1 2 is part of a different slum. You expect

different games to have different rules.

Q. Axe our theoreds really true? Lots cf them look peculiar.

A. Let's just say that our theorems are provable,. Provability is a sort

of relative truth. Our theorems are provable from the basic rules,

so they're just as 'true' as the basic rules are. Provability is the

only kind of truth that concerns the abstract mathematician.

Q. Does sequence arithmetic have any other name?

A. It is often called a Elolean arithmetic. George Boole was one of the

early developers of the game.
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Chapter 6

FIRST APPLICATION: STATEKENTS

6.1 Sequences. as Truth Tables.

Our first application will show you why sequence arithmetic has often been

called the 'arithmetic of logic.' It deals with statements. Everyone knows

pretty much what a statement is, but here we're going .e t...ke a fairly narrow

view, so let's start with an example that shows what we .ery about and what we

don't. Here is a statement.

'NY dog has fleas.'

This statement is brief, grammatical and frank English prose, but the only

thine that is going to concern us is whether the statement is true or false.

Other things such as spelline and punctuation won't matter. True or false is

all that counts. But isn't it possible that my dog may have fleas at one time

and not at another? Maybe he gets a bath, or perhaps a more interesting host

passes by and the fleas migrate. Suppose that my dog gets a daily inspection

for one week. The results are recorded; t, for true, means he has fleas.

tttftft

Clearly this 12 a eopular dog. The hnportant point is, however, that in this

row of trues ami falses we have a sequence. This sequence doesn't use zeros

and ones; it uses t's and fls. But putting 1 in place of t and 0 in

place of false, the sequence becomes

and its meaning is still perfectly clear. The dog is free of fleas only at the

Wednesday and 1'r1day inspections. Since our only interest in statements is

whether they are true or false, thls sequence of zeros and ones contains all we

want to know about the statement

1* dog has fleas.'

Ecsentially It's the sequence, not the English prose, that we need. The sequence

of true and false values that goes with a statement will be called the truth

table of that statement.

With only one statement to play with, the action in this chapt,:.r would be

limited, 60 here ls a lareer supply; four statements named A, B, C and D.
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A: My aunt has fleas.

B; My brother has fleas.

C; My 1,at has fleas.

D: My dog Las fleas.

Fleas will be with us throughout the ,11.apter so relax and enjoy them. To set
us up for some later oomputations, suppose that inspe,Aions carried out on the
same seven days referred to above roduk.!e the following truth tables.

A: 0 0 1 0 1 0 0

B: 0 0 1 0 0 0 1

C: 0 1 1 0 0 0 1

D; 1 1 1 0 1 0 1

There arc obvious impliations but let's leave them to you to dedat:e. Notiee
that the same letter is bolnc used to represent both a statement and its truth
table. That's Lef7ause, as fur as we're coini.: to be coneerned, the two are in-
separable. Two speial statements c!killed 0 and I will also play roles.

bet's introduee these simply by their truth ta1)les,

0 0.0 0 0 0 0 0

1 1 1 1 1 1

whi,q1 makes. 0 u stat,ment that is always false and I a statement that is
always tru, (on these same seven days). You L.an translate 0 and I Into
cuitat 1,. pros ,. if you want to.

.',.' Or And Not.

we ask in what ways statements can he ,..ombined to make more -cmildica-

ted staterant:.,. One obvious example is,

'My aunt has fleas or my brother has fleas.'

here two uf our statomentl; have been ,!onne,..tcd by or. One or the other of these
relatives :s In trouble, maybe even both. The possibility that both may have
fleas indi2utes that the word or plays a double role in langua6e. Sometimes it
cleans 'either or both and sometimes 'one or the other but not both.' The usual
deision at Hiis point is to use an inclusive or. This means that when two

statements are ,.onnected by or, the combined statement is .!onsidered true when
either or both of the parts are true. In our case, referrinc lack to the L:e-
q4en,:es A and 14, the ,7ombined statement then has this truth table.

A -+ 13: 0 0 1 0 1 0 1
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The only way for the combined statement to be false is for both of Its parts to

be false, and that seems to happen here more often than not. It takes only a

moment to realize that or is now playing that same role that addition plays in

sequence arithmetic. If we add the sequences A and B by the first basic

rule of sequence arithmetic, makine

o

4-0

0

o

+1

1

1

+0--
1

1

+1--
1

then we get correct true-false values for an inclusive or combination of state-

ments. (The only way to get a 0 is from 0 + 0.) For this reason our latest

statement and its truth table will be called A + B.

A + B: my aunt has fleas or my brother has fleas.

You can begin to see an 'arithmetic of statements' developing, with meaning

or.

You can also probably gues what comes next. Another familiar way of com-

bining statements uses and. For example,

'My aunt has fleas and my brother has fleas.'

Common usage tells us that the combined statement is true only when both parts

arc true. In our case, referring back to the sequences A and B, the com-

bined statement has this truth table.

AB: 0 0 1 0 0 0 0

Only on Tuesday did both people have fleas. Surely this is reminiscent of se-

quence arithmetic, with and playing the role of multiplication. If we multiply

the sequences A and B by the second basic rule of sequence arithmetic,

making

o 0 1 1

x0 xl x0 xl

0 0 0 1

then we get correct true-false values for an and combination of statementL..

For this reason our latest statement and its truth table will be call-d AB.

AB: MY aunt has fleas and my brother has flas.

The 'arithmetic of statements is growlhg. The next steL Is to Lonsidt:r a state-

merit suoh as

'My aunt doos riot have f1ea:--3



Referring buck once more to the sequence A, it's easy to produce the truth
table that we need here.

W: 1 1 0 1 0 1 1

It's impossible to escape noticing that not has the same effect on a truth table
that inversion has in sequence arithmetic. If we invert a sequence by the third
baSic rule, replacing 1 by 0 and 0 by 1, then we do get the correct
truth table for our latest etatement. For this reason the statement will be
called W.

W: My aunt does not have fleas.

The three operations of sequence arithmetic have now been translated into the
Language of statements.

PROBLEM 1. Translate these symbols to Deglish prose,

CD:

C D:

and this English prose to the symbols of sequence arithmetic.

My aunt has fleas and my eat has fleas.

: MY brother does not have fleas.

: My aunt has fleas or my eat has fleas.

6.3 Translation.

M4)eing,on to slightly more interesting translations) how does

sound in English? If you come up with 1My aunt has fleas, but my brother does
note then you're right. The word but plays the same role as and in places like
this, at least in so far as truth or falseness is concerned. Try another.

ABC:

A direct, but wordy, translation is 1My aunt has fleas and my brother has fleas
and my cat has fleas.' But surely anyone would .,horten that to 'My aunt and
brother and cat all have fleas.' Here are some more aUreviated but accurate
translations.
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X + Either my aunt doesn't have fleas or My

brother doesn't.

A + B: It isn't true that one or both of them has fleas.

W ECD: Only the cat and the dog have fleas.

Examine thus carefully to see if you agree.

TO discover when one of these statements is true and when false, one sys-

tematic way is to use the symbolic translation. Take the last statement as an

example. From the truth tables Al B, C and D the computation of 7; FOD by

the rules of sequence arithmetic is routine.

17 E C M 0 1 0 0 0 0 0

So 'Only the cat and the dog have fleas' is true just on Monday. For the next

to last statement the truth table is

A + B 1 1 0 1 0 1 0

and so 'It isn't true that one or both of them has fleas' is false on Tuesday,

Thursday and Saturday.

PROBLEM L. Match these statements with the symbols which follow by writing

one of the letters S to Z before each statement.

: All four have fleas.

: It isn't true that all four have fleas.

: At least ohe of them has fleas.

Only the dog has fleas.

Exactly one of them has fleas.

: My aunt has fleas, and so does either my brother or

my cat or my dog.

: None of the four has fleas.

Either my aunt or my brother has fleas, and so does

either the cat or the dog..

S ABCD

T - A(B + C + D)

U - (A + B)(c + D)

ASO

w-74537-af)

X =A+B+C+ D
YABCD

TT3 -15+AET5
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PROBLEM 3. When is the statement 'It isn't true that they all have fleas'

false?

PROBLEM 4. When is the statement 'Either my aunt or my brother has fleas, and

so 4oes either my cat or my dog' true?

6.4 Simplificatior.

Now that you've had a little practice at translating back and forth be-

tween the languaiLes of Ehglish and sequence arithmetic, let's apply the strat-

egy, or theory, that we've worked out in earlier chapters. Az a first example
take the redundant

gae
lea aunt has fleas or my aunt has fleas.'

whieh clearly translates to

Since weknow that A + A

A + A.

our redundant statement simplifies to

'My aunt has fleas.'

Of course, in this staggeringly simple example the strategy of sequence arith-
metic is more a luxury than a necessity. A toddler could make this simplifica-

tion witnout leaving the field of English prose. One important point bears

repeating, however. The original redundant statement and its simplification
are clearly not Identical. They differ in lenee:e eunetuation, and many other
ways. But, and this is the point, both have identical truth tables. As far
az truth or falseness goes, there's no difference between them. Here's a
second easy exaMple.

'It isn't true that my aunt does not have fleas.'

After spotting the double neeative you'll surely decide that this le just

'MY aunt has fleas.'

all over again, just by optical inepection. But what is the symbol for this

redundant statement? Isn't it just 7 ? And don't we have a theorem whieh

guarantees that 7 , A ? This theorem is again a luxury rather than a neces-

sity for this particular problem, but at least theory and eommon sense both

lead us back to statemeat A.

Graduating now to some slightly mere challeneine examples, consider the

statement

1140, aunt and brother both have fleas, or else

she does but he doesn't.'
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Perhaps you can see at once how that statement can be simplified. But whether

you can or not, here ic how it translates,

AB Ari

which will strike a familiar note. According to Theorem 15, such a sequence is

identical with A itself,

AB , A

in so.far as truth is concerned. So once again we can simplify what we have to

imy aunt has fleas.'

Next compare these two statements.

7:1T: Neither my aunt nor my brother has fleas.

A + B: It isn't true that one or both of them does.

You can choose between them strictly on the basis of brevity or clarity or

personal tastes because our old result about the inverse of a sum and the

product of the inverses (Theorem 11) shows they have identical truth tables.

The same is true of this pair.

(A + B)(C + D): Either my aunt or brother has fleas,

and so does either my cat or my dog.

AC + AD + BC + BD: my aunt and cat both have fleas, or else

she and the dog do, or maybe it's my

brother and cat, or maybe my brother

and dog.

This time Theorem 30 comes to our rescue. The English prose is gettinc, more

complex, and translation into the symlols of sequenee arithmetic 1)0c:ins to

look more like a necessity than a luxury. Our theorems can be a help in com-

paring and simplifying complex statements. Of the above pair (A + B)(0 + D)

seems both simpler and clearer.

PROBLEM 5. Write either A, 1 or 0 on the lines provided to show what the

following statements can be reduced to.

.....11.1=

Either my aunt does have fleas or else she doesn't.

my aunt has fleas and she doesn't have fleas.

my aunt has fleas and my aunt has fleas.

Either my aunt has fleas or else she and my brotht!r hoth do.
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PROBLEM 6. DO 114y Of ti1e;;C statements have the same truth table?

a) Either nw aunt or my brother has fleas, and one or the

other doesn't.

Either my aunt has fleas and my brother doesn't, or

vice versa.

c) Either ney aunt or my brother has fleas, but it isn't true

tlaat they both do.

PROBLEM 7. Do these two statements have the same truth table or not?

a) My aunt has fleas but my brother does not, or else he does

but the cat doesn't, or maybe the cat does and my aunt

doesn't.

b) !.;y aunt doesn't have fleas but my brother does, or else he

doesn't but the cat does, or maybe the cat doesn't and

my aunt does.

6.5 The Isad4 or the Tiger.

For a final example let's get away from fleas and puzzle out this ancient
dilemma. A captured warrior, the prince of his tribe, is given the following
sporting chance by the chief of his captors. 'You see these two doors. Behind
the one Is my daughter, behind the other a hungry tiger. I shall have either
one of these doors opened, whichever you choose. To help you I will permit you
to put one statement to one of these two guards. He will answer simply true or
false. However, I warn you that one of these guards never speaks the truth,

whereas the other never lies.'

What statement should the warrior make? At first glance his chances look
til)out fifty-fifty, but every student of logic has thought his way through at
leaut one old 4!liestilut of this sort, so watch how the apparent fifty-fifty can
be turned into a sure thing. There are two basic statements with which this
warrior io concerned. First, pointing to one of the two doors, he could eay,

A: This is the lady's door.

(Notice that A now represents a different statement; it doesn't refer to
aunts and fleau agymoree) The other basic stat'ement is, pointing to one of
the two geards,

B: You tell the truth.
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Oar warrior's problem is that he doesn't kaow whether these important state-

ments are true or false. If it occurs to him to try all the various combina-

tions of true and false, then he might be led.to consider these truth tables

for A and B.

A: 0 0 1 1

B: 0 1 0 1

There are four possible cobbinations, and each of these four short columns dis-

plays one of those combinations. In column one, both statements are false; in

columns two and three, one is true and one false; in column four, both axe

true. Put in another way, our warrior's problem is that he won't know which of

the four columns he's picked, when he chooses one door and one guard. EVentual-

ly, it might occur to him that it would be awfully nice if he could arrange for

the guard's answer to be as follows.

Guard's answer: 0 0 1 1

Call it wishful thinking if you want, but if our warrior could formulate a

statement which woald bring these replies (depending on which door and which

guard he points to) then his problem would be solved. Because this truth table

is identical with that of A, so that a reply of 'false' comes just when A

is false, and a reply of 'true' comes just when A is true. He can believe

the answer he gets, at least for distinguishing doors. (He still won't know

whether it was the truth-teller or the liar who answered, but presumably he

doesn't care.)

But what statement can possibly achieve this miracle? Take the four

columns one by one. In the first, the guard's answer is to be 'false.' But

in this column B happens to be false, so it's the liar who is giving this

answer. If the liar says 'false,' then the warrior's statement would have to

be true, so the truth table for the (still unknown) warrior's statement would

have to lead off with a 1. In the second column the guard's answer is still

'false.' But here B is true, so it's the truth-teller speaking. And if the

truth-teller says 'false,' then the warrior's statement would have to be false.

Argue it out for the remaining two columns yourself. The truth table for the

warrior's statement would have to be this. Do you agree?

Warrior's statement: 1 0 0 1

So now we face the job of producing a statement which has a specified truth

table. If this brings recollections of 'the method of only four distinct col-

umns'. that got heavy use in Chapter 4, then you're not far from the finish.

One statement which has such a truth table is AB + WE.
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A / 3 + 1 0 0 1

Check that by the usual rules of sequence arithmetic if you have to, but this
is a suitable miracle statement for our warrior. Translating it into English
prose, we have 'This is the lady's door and you tell the truth, or else it is
not the lady's door and you lie.' If the guard fully understands thin state-
ment, our man Is safe. At least, he can have the lady instead of the tiger.

If you enjoy this sort of thing, here Is an easier one that you can figur9 .

out in your head. An explorer is in a region inhabited by two tribes. The
members of one tribe always lie, the members of the other always tell the truth.
He meets two natives. 'Axe you a trUth-tellerlo he asks the tall one. 1Goom,'
the native replies. 'He says, yes,' explains the short native, who speaks
Ehglish. 'Him big liar.' Which tribe did each belong to? I doubt that you'll

need any sequence arithmetic to find the answer.

6.6 summary.

The examiles of this chapter have obviously been ltght-hearted. Their
purpose flan been to show the olose relationship between sequences and state-
ments, and to suggest how sequence arithmetic can be helpful In unsnarling the

(JC .i.gtiflex statements. It will no doubt be a long time before courtroam
trials !ind iecislative affairs art, ,.onducted In symbolic language but the pos-
sibility not beyond the realm of science fiction.

Notie forticularly that, in this applloation, the Ideas of sequence

arLthmeti,. pik up a kind of 'meaning,' 0 meaning false, 1 meaning true,
m:,uning or, and so on. And the mysterious 1 + 1 1 means simply that

when :Itatements A find art both true, then su Is A + b. It amounts to
our deolston to use an inclusive or. If wf, had voted for 'either one or the

but not both,' then 1 4 I would be 0 instead of 1. So the mystery-----

suived, and as so often haitens, the solution proves to be extremely simple.
two altorether different-looking solutions, however, see Chupters 7 and 8.
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Chapter 7

SECO= APPLI CATI ON : suBans

7.1 Sequences au Membership Lists.

Suppose there are just ten prisoners in a amall jail. .The following table

shows which of the ten belong to certain groups, or to use the official term to

certain subsets. For convenience the subsets have been named A, B, C and D.

1 2 3 4 5 6 7 8 9 10

(Redheads) A: 0 1 1 0 0 1 0 0 0 I

(First offenders) B: 0 0 1 1 1 1 1 1 0 0

(Six-footers) C: 1 0 0 0 1 1 0 0 0 1

(Females) D: 0 0 0 1 0 1 1 0 0 0

The symbol 1 means that a prisoner belongs, and 0 means he doesn't. Prison-

ers 3, 6 and 10 are redheads, the others are not. Prisoners 3 to 8

are first offenders, and so on. Each row of this table amounts to a membership

list for that particular subset. Obviously each row is also a sequence of O's

and l's, and we are going to use the letters A, B, C and D to represent

these sequences. So these letters will be doing double duty, representine both

the subsets and the sequenses, but this won't cause us any trouble. The se-

quence is the membership list t! tells who belongs to the subset and who

doesn't, and this question of membership is the only thing about the subset

that will concern us. blots of other subsets can be imagined, and the approp-

riate membership lists could he worked out from the jail records, but two spec-

ial subsets deserve special mention.

1 3 4 5 7 8 9 10

I : 1 1 1 1 1 1 1 1 1 1

0 : 0 0 0 0 0 0 0 0 0 0

Subset I inoludez till the prisoners. It is the master subset (or set) from

whieh the other subsets are drawn. It may seem odd to call it a subset, but it

does no harm. Subset 0 Is called the 'empty subset' and it's easy to see whY.

It Isis no members at all. It may also seem odd to call this a subset, but it's

customary and useful.

PRObLEM 1. What can you say about prisoner What about prisoner 9 ?
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7.2 Union, Intersection and ,Complement.

Which prisoners are either redheaded or first offenders? To put the same
question in another way, if we merge the subsets A and B into a single sub-
set, who belongs and who doesn't? Here is the meMbership list which provides
the answer.

(Redhead or first offender) 0 1 1 1 1 1 1 1 0 1

Check it yourself. Prisoners 1 and 9 are the only ones who fail to
qualify. This new subset is less exclusive than either A or B. To be
admitted to the merger it's enough to belong to A or to B or to both. The
only way to fail is to be in neither A nor B, like prisoners 1 and 9.
I hope this reminds you of the addition process of sequence arithmetic. If we
add sequences A and B we get exactly the membership list for our merger.

A + B: 0 1 1 1 1 1 1 1 0 1

And this is no coincidence. The only time we want a 0 here is when A and
B have matching Ols. And that is precisely what sequence addition offers us.
The merger of two subsets A and B is called their union. We represent it
by A + B. Next, which prisoners are both redheaded and first offenders? Here
is the membership list which provides the answer.

(Redheaded first offender) 0 0 1 0 0 i 0 0 0 0

Only prisoners 3 and 6 qualify. This new subset is more exclusive than
either A or B. To be admitted you must belong to both A and B, and that
will remind you of the multiplication process of sequence arithmetic. If we
multiply A and B we get exactly the membership list for our latest subset.

AB: 0 0 1 0 0 1 0 0 0 0

And this is no coincidence. The only time we want a 1 here is when A and
B have matching l's. And that is precisely what sequence multiplication
offers us. This new subset is called the intersection of A and B. It is
also known as their overlap, since it picks out the common members of both.

The intersection of A and B is represented by AB. One operation of se-

quence arithmetic is left, inversion, and its application to subsets isn't hard
to guess. Which prisoners are not redheaded? Here is the appropriate member-
ship list.

(Not redheaded) 1 0 0 1 1 0 1 1 1 0

To belong here a prisoner must not belong to subset A, and vice versa. This
leads to a complete reversal of the Ols and l's. Inverting the A sequence
certainly brings this same result.
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X: 1 0 0 1 0 1 1 1 0

Our uew subset is called the complement of A, or sometimes the inverse. It

is represented by X.

And so we come to the conclusion that whenever subsets are merged, inter-

sected or complemented, their membership lists are added, multiplied or in-

verted according to the rules of sequence arithmetic. A few more examples will

be enough to make this crystal clear. The subset of prisoners who are red-

headed, but not first offenders (in A but not in B), has this membership

list.

A B : 0 1 0 0 0 0 0 0 0 1

Only prisoners and 10 qualify. The subset of prisoners who are redheaded,

not first offenders, and female (in A, not in B, in D) has this member-

ship list.

AEI): 0 0 0 0 0 0 0 0 0 0

Nobody qualifies. This subuet is empty. If we ask for redheads who are also

either first offenders or very tall (in A and also in either B or C)

then the list

A(B + C ) : 0 0 1 0 0 1 0 0 0 1

shows that prisoners 3, 6 and 10 mre available. Once a subset has been

described in the symbolism of sequence arithmetic the computation of its member-

ship list be,Aimes routine.

PROBLEM Compute membership listu for the following subsets and describe the

membership of each. (For example, Ai5 includes male redheads.)

A5:

ABCD:

A5 + ID:

(A + B)(c + D):

B + 5:
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7.3 Subset Dlrax.

In large sele subset problems the use of sequences az membership lists,
and of sequence arithmetic for computing membership lists is neat, natural and
necessary. In a wide variety of modern applications, however, only a few sub-
sets see action at any one time. For such problems, Instead of identivyine
subsets by membership lists, we can use an ancient device called the subset
diagram. Imagine SoMk master Eet I, perhaps our ten prisoners or perhaps
some much larger set. Also imagine each member of I represented by a number
or a spot inside this square.

To identify any sulset of I we can now draw an interior boundary enclosing
the numbers or spots which represent the members of that subset. For instance,
if we gather the members of some subset A in the left half of the square,
then a vertical boundary down the center encloses the members of A in that
hali. It also puts the non-members of A (members of W) into the other half.

A

One advantage of suteset diagrams already begins to aipear. They offer us a
clear picture of how various subsets are related to each other. Merging the
A and T regions, for example, we certainly seem to have the entire square.
This is how diagrams illustrate our A W I theorem. It also seems crystal
clear that the A and T regions have no overlap, which illustrates AT . 0.

With subsets A and T neatly sorted to left and right, suppose we also
brine the members of some subset B to the top half of our square. A hori-
zontal boundary through the center encloses B and E.
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Various unions, intersections and complements now become easy to Visualize.

Take these tour famous intersections first. They will remind you of four

basic products.

AB AB XB 7 I

Members of both A and B ore In the upper left quarter, where the A and

B regions overlap; members of A but not of B are at the lower left, etc.

Together these four merge to the master set 1, nicel illustrating theorem O.

AB + A1.3 + 4 X I

The union of ord.. A.B and AE produces the left half of the square, which

otill represn'. :,uto:2t A. This illustrates AB + AE ,= A. The other famdliar

unions have LhoL;,: dIagrams.

Since shading, of any outset 1.aves its complement (or inverse) unshaded, and

vice versa, we now have a piyturesque view of quite a number of theorems. Com-

!are the diagri-im of A + B and X E, for instance. They are complements,

which illuL:trates A + B X E. Or compare the dia6rams of A, -A.36 and A + B.

The first two to6other make the last, illustratinc A + AB A + B. A few

slmliar rhuits are suct;ested in the followinc problems. This sort of pictur-

esque lay of unions, intortion and complements is what has made subset

diagrams :;) popular.
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MEAD( 3. As this diagram shows, prisoners 3 and 6 of our opening example
fall in subset AS. Indicate whether the others fall in Aji, :EiB or A I-3 by
writing their numbers in the appropriate quarter.

3,6

PROBLEM 4. Refer back to the diagrams of this section to properly shade the
following.

A+AB AB + W

4111e,

4

A + + B

PROBLEM 5. Compare the diagrams of AB and W + E. Which theorem does this
illustrate?

PROBLEM 6. From the diagram of A + B note which three of the four quarters
of our square are shaded. What theorem does this illustrate?

PROBLEM 7. From diagrams of A + B and T + )"; deduce

which parts of our square are in (A+ B)(T. +1),

and shade those parts in the diagram at the

right. Which theorem does this illustrate?

7.4 More Diair

For problems involving three subsets A, B and C a Popular procedure
is to group the members of C in a belt across the middle of the diagram,
splitting each of the four regions we already have into two parts.

4



Keeping subset A in the left half of the diagram and subset B in the top

half, as before, it isn't difficult to locate various simple unions and inter-

sections. Here are same typical ones, shaded as usual.

AC A + C A +

4

AC

'The master set I has how been split into eight parts. The significance of

each part is easy to discover, and it will come as only a mild surprise that

these eght parts correspond to eight basic products.

AB7 Tel-B-a-

ABC XBC

AR Mk

AM 707

,

_

2

7 3

1

4 0

cmes tiresome writing these products over and over, so each of these

Lt subsets ls given a number, from 0 to 7, as shown at the right. (The

popularity of this unusual number pattern will be explained in Chapter 9.

Notte first that subset y is inside A, B and C. This makes it the home

uf ABC, as shown. Similarly, subset 6 is inside A and B but outside C.

This makes it the home of A1Z. Check the other six yourself, to be sure you

agree with their produc't labels.

Diagrams of this sort offer us pleasant artist's impressions of our var-

ious theorems about A, 13 and C. Take first A, B + C and their inter-

section.

A B + C

5 `(

A(B + C)



You can see that the subset at the right is the overlap of the first two. Sub-
sets ), 6 and y make up this overlap. Now take AB, AC and their union.

AB AC

=1/1

AB + AC

You can see that the subset at,the right is the union, or mercer, of the first
two. Subsets 5, 6 and 7 make up this union. We have come upon 5, 6 and
7 In two different ways and obtained a picturesque view of Theorem

as well as or Theorem 31.

A(B + C) - AB + AC

A(B + C) - AC + AZ + ABC

At; a second example let's wat:h AB + (A + B)ABC devcloi. (see Problem 7 for
the diai:ram of (A + B)AB or (A + + E).)

11.!

SuL)sets 3, 5, and

AB + AC + BC grow.

AB

(A + B)ABC AB AB + (A + B)ABC

are included in the finished product. Now watch

AC BC AB + AC + BC

Agfilh it's the subsets 3, 5, and y which are incLuded. We have .ome to
these four in two different ways and achieved a pil7turesque view of Theorems

and 33.

AE + AC + BC - AB + (A + B)ABC

AB + AC + BC , 'ABC + ATC + ABT: + AB'.2



The most popular way to achieve a four-subset diagram is by a vertical

belt down the center of our diagram, with the medbers of a fourth subset D

inside the belt and the members of 5 outside.

ID
MassEMIMUM

Keeping the areas for Al B and C just as before, it is still easy to locate

the various intersections and unions. Watch (A + B)(C + D) develop.

A + B C + D

Also watch AC + AD + BC + BD develop.

MEMMaEMI
AC

INN==NMI=
AD BC

(A + B)(C + D)

EMI
MUMEMI
MEM

BD union

Notice that la both the-e examples the final result is the same, as Theorem 30

guarantees.

(A + B)(C + D) AC + AD + BC + BD

It is possible to develop diaGrams for more than four subsets, but they become

fairly co:aplicated and we'll leave them to the professionals.

PROBLIN 8. show that (A + B + C)ABC includes six of the eidht basic areas

by shading each of the following diagrams.

ABC ABC

Which of our theorems does this illustrato?

5c?

A + B + C

6

(A + B + C)ABC



PROBLEM 9. Show that AE + fa' + dE and 11 + C + a both include the same
six numbered sUbsets as in Problem 8.

NHSME=Mal
NMI

A-13

'AB

1
BZ

BC

MOMMI=MU.
IMMO

CA

CA

Which of our theorems does this illustrate?

union

union

PROBLEM 10. Show that ABC + (A + B + C)AB + AC + BC includes four of the
eight basic areas. (Refer back for diagrams of AB + AC + BC
and A + B + C.)

A2 + AC + BC AB + AC + BC

(A+B+C)AB4AC+BC ABC

Which of our theorems does this illustrate?

A + B + C

final

PROBLEM 11. One of the following two subsets is identical with the subset of
Problem 10. Use subset diagrams to discover which one it is.

a) [(A + B)AB + C)(A + B)ABC

b) l(A + B)AB + CLA + B ABC

c) ((A + B)AB + C)(A + B)ABC

6o



PROBLEM IP. Each of the sixteen parts of this diagram corresponds to one of

sixteen basic products. Prisoner 3

(of our opening example) falls into

subset A B r15, and prisoner 6

into subset ABCD, as shown. Write

the number of each of the other

prisoners in the appropriate part.

Which basic product represents that

part of the diagram?

PROBLEM 13. Show that A(B + C + D) includes seven of the sixteen parts by

shading each of these diagrams

A B+C+D A(B + C + D)

Also show that AB + AC AD includes exactly the same seven

parts.

AB AC AD AB + AC + AD

PROBLEM 14. A possible objection to the horizontal and vertical belts we have

used to represent subsets C and D is that they leave -5 and

13 disconnected. (Each consists of two separate strips.) This is

not a very Important objection. Major users of subset diagrams

don't mind the disconnectedness. Perhaps the most amusing way to

connect up the separate parts of C is to convert our square

into a cylinder by bringing its top and bottom edges together.

top edge-0.

bottom edge.
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PROBLEM 14. (Continued)

Subset C can Occupy the front face of the cylinder and C the

rear face. Where will A, S, D and their inverses eml up?

This still leaves -5 disconnected. How can its two, parts be

brought together?

7.:j A Mouse-Maze Problem.

The main purToSe of this chapter has been to show that certain psoblends

involving subsets are applications of sequence arithmetic, with the idens of

union, intersection, and complement playing the roles of addition, multiplica-
tion and inversion. When only a few subsets are involved at one time the re-

lationships between them are neatly exhibited by subset diairams, with tle

result tlmt sequences (playing their roles of membership llts) seldom .see
action. In more complicated problems, with many subsets involved, diagre=

become more confusing and it is probably wise to work directly with the se-

quences themselves. In such cases calculating machines Will probably be used
for the computations. Machines handle the loncest sequeneeo with relative ease.

The idea of subset finds a place in almost all parts of aatheinatics, so
weIll close up this chapter with two typical amall-seale exaciples. Suppose
twenty mice are introduced one-by-one into a maze. If a mouse oorws out tlie

correct exit he is rewarded with a piece of cheese; otherwise he 6ets nothinc.

Each mouse makes three tries. With A, B and C representinc tie 5ubsets

that make successful first, second and third tries, respectively, the noults
are as shown here at the left. (At the right is a reminder of our basic:

pattern.)

0 1

3 3

i 14

0 ti
-

A B U TB-6

ABC ABC

AEC T7c
A B C -41-3-L5

The diagram provides a simple summary of the results and ceri be used to amswr

numerous questions about the experiment.



Question: How.many mice were successful every time?

Answer: Look in ABC. Three mice.

Question: How zany were never successful?

Amswer: Look in -A Va.. Eight mice.

Question: How many didn't make it until the final try?

Answer: Look in 71- E C. Four mice.

Question: How many made it on the very first try?

Answer: Subset A occupies the entire left half. Four mdce.

Question: How many made it on the second try?

Answer:

Question: .How many on the third try?

Answer:

question: How many mice had at least one success?

Answer:

question: How many times was a success followed by a success?

Answer:

Question: How many times was a rflccess followed ;,.y a failure?

Answer:

This example borders on the subject of probability in which subsets play a

conspicuous part.

7.6 A Problem of Dete:.tion.

Suppose that the followine somewhat improbable facts are true.

a) The murderer wore a tall silk hut.

0 All Irishmen are redheaded.

c;) The butlerfs name is O'Brien.

d) Redneads never wear hats.

What can be deduced? Presumably a good deteAive would unravel the facts in

no time at aL, but as a last example of subsets let's stretch thintLs out a

bit, using these subsets.

E. Lrishmen H. Hat-wearers

B. qlw butir M. The murderer

E. Ek:dhes-1:-.
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Subsets B and M have oaly one member each, and our problem is to discover
whether or not B and M are the same. Fact (a) puts subset M inside of
subset H. For situations of this sort a slight variation of our subset dia-
gram is more convenient. Instead of dividing up our square in the now familiar

patterns, we just draw loops surrounding the members of each subset. To show
that M is completely inside H, we simply put the M loop completely inside
the H loop.

Take fact (d) next. It guarantees there is no overlap between redheads and
hat-wearers. So subsets R and H must not overlap on our diagram, which
now grows to this.

Coming to fact (b) we find that the whole of E is inside R.

Finally, fact (c) puts the butler somewhere inside E.

The diagram now shows clearly that B and M are not the same man, which was
probably crystal clear in the first place. It may not be current practice to
use subset diagrams in crimtmal investigations, but you can at least see the



possibilities. In a complicated case it may even be useful to bring membership

lists into action, and let computers do the detective work.

FROMM 16. Assuming that

a) no one who is going to a party ever fails to brush his hair,

b) no one looks fascinating, if he is untidy,

c) opium eaters have no self-command,

d) everyone who has brushed his hair looke fascinating,

e) no one wears white kid gloves unless he is going to a party,

f) a man is always untidy, if he has no self-command,

make a deduction which uses all these facts. (This is one of

many such problems created by Lewis Carroll, the author of

Alice in Wonderland.)

7117 Summary.

This chapter, like the last, has been intentionally light-hearted. It

has tried to show how sequence arithmetic is related to subset affairs. Notice

partimilarly that the l's and O's of our sequences have again been assigned

a 'meaning.' In our first application they meant true and false, and sequences

were truth tables. Now 1 and 0 mean member and non-member, and sequences

are membership lists. And the mysterious 1 + 1 1 now means merely that

being in A and also in B surely puts you in the union A + B. Things that

look so strange Jn abstract mathematics can look so simple in the application.
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Chapter 8

THIRD APPLICATION: SIGNALS

6.1 SequeT1ces as Signals.

Now we turn to an application that will be given more extensive coverage.

Not that state=nts and subsets aren't important, but this third application

will get the lion's share of our attention because of a surprising twist that

it takes. To begin, imagine that these six car&

El
1

qlNIIMINIMMEM.

3

E
are sill ed, one by one, between a wire and a hot electrical ,!onta.!t.

wire

card

hot

Cards 5 and b lave a hole punched in them, the others do not. So if

things are lined up accurately, the wire will touch the hot contact only when

curds 5 and 0 are In position. Contaot will be made through the holes,

and current will flow in the wire. When cards 1, 3 and 4 are in position

there is no hole, no contaot, and no current. As the six cards are slipped

successively Into position, the electrical experiences of our wire can 1,e sum-

marized in this way,

0 1 0 0 1 1

where 0 stands for a cold wire (no current flow) and 1 for a hot orw. Our

electrical apparatus amounts to a sort of 'card reader.' It converts a sequence

of cards, with holes or without, into a sequence of electrical hots and colds.

The wire ..arries a sort of electrical signal, and our sequence of zeros und ones

is a record of that signal. In the chapter this is the sort of role that se-

quences will play. They will represent electrical oignals.
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8.2 The +, boxes.

The simplicity of converting seqUences to electrical form has led to the

invention of devices for adding, multiplying and inverting sequences, according

to the basic rules of sequence arithmetic. For example, a 'plus box' will tale

any two electrical sequences as 'inputs/ (call these input sequences A and B)

and produce the oorrect sequence A + B as 'output.'

A + B

It takes each pair of values of the input sequences in turn and generates the
correct output value. In the following example the successive steps are
0 + 0 - 0, 1 + 0 . 1, 0 + 1 = 1, and so on.

010011

00 0 0
---4 olloill

The plus box is designed to perform this familiar addition process. It pro-

duces a cold output only when both input contacts are cold. How it does this

is not something we'll go into here, but a few hints are offered in Problem 1.

There is also a device which we'll call a 'tlmes box.' It takes two input se-

quences., A and B, and generates the product sequence A.B., value by value.

For the same input scquences used al;ov 1 the successive steps are 0 x 0 -

1 x 0 , 0, 0 x 1 . 0, and so on.

010011

x)10101---
X --iocoolo
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Tbe times box is designed to perform this familiar multiplication process. It

produces a hot output only when both inputs *re hot. Finally, we need some-

thing that inverts sequences. Calling it a 'dash box,' this one takes any

input sequence A and generates the output 17, value by value.

In this example the successive steps are 0 1, 1 . op and so on.

These +, x and - boxes provide a way of doing the computations of sequence

arithmetic electrically. If you're still wondering what they look like inside,

the answer is that modern devices are made of tubes or transistors, and you'll

have to look elsewhere for the details. But it may be amusing for you to ex-

amine the followinc; diagrams of old-fashioned +, x and - boxes and try to

guess which is which. You'll probably need help even here, so don't forget

that for our purposes it doesn't really matter.

PROBLEM L. Identify these old-fashioned x and - boxes.



8.3 Electrical Machines: Analysia and Simplification.

Suppose we connect +, X and - boxes together to make more complicated

electrical machines. As a simple first illustration, let's figure out how

Machine 1 behaves.

r-E MACHINE 1

(Where wires are Joined at a solid spot, as at the left of this diagram, it is

to be -nuerstood that both are hot together or cold together. They carry iden-

tical sequences, or signals, and can be treated as a single wire.) Since there

is only one input to the machine (at the left), we could simply ask what happens

when that input is cold and what happens when it's hot. You can probably fig-

ure that out in your head, but these two diagrams may help.

Each wire is labeled, with 0 if it's cold and 1 if it's hot. In the first

diagram the input is cold; in the second diagram the input is hot. But in both

cases the output is hots So whatever sequence of zeros and ones is fed into

Machine 1, the output will always be hot. This is El brute force method of

analyzing machine behavior, but it does work.

Now let's apply a more sophisticated analysis to the sane machine. What-

ever the input signal sequence is/ call it A. Then the sequences, or signals,

being carried in the various other wires can easily be labeled.
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And the output is A +W. But one of the theorems of sequence arithmetic

guarantees

A + I

so our output here is I, a sequence of ones. Brute force and strategy agree;

the output of Machine I will always be hot, making it plain that the machine is

actually useless. We can 6et an always hot output much more cheaply, just by

connecting a wire to a wall outlet. The price of the dash and plus boxes can

be saved.

Analyzing machines becomes more interesting When there are more inputs.

For example, what does Machine 2 accomplish?

MACHINE 2

With just two inputs we could apply a brute force method, making one input the

sequence

and the other input

00 LI

0 1 0 1.

This would Show us what happens in the only four possible situations this

machine can face. But it's more elesant to use strategy. Labeling: the inputs

A and B, we proceed to identify the sequence, or signalo being carried in

ea.'h wire. The results look like this.

+ AB

A + AB + B

The final output is A + AB + B. Can this be simplified? The combination

-A-+ AB looks familiar, and checking our theorem list you would soon be reminded

(set Theorem 16) that A + AB A0 for any pair of sequences A aad, B at

all. The final output of Machine 2, nameLy, A + AB + B, can therefore be sim-

plified to A + B, and the machine can be replaced by a kinc1e plus box.

71



A

The rther two boxes can be pui back on the shelf for future use, or else re-
turned for a refund.

Az a third example, here is Machine 3. It has three inputs, A4 B and C.

AB + AC
MACHINE 3

The sequences in all other wires have also been labeled, and the output is
AB + AC. But Theorem 23 says that AB + AC is the same sequence as A(B + C)
and so Machine 3 could be replaced by the simpler Machine 4.

A A(B + C)

MACHINE

These three examples may be enough to suggest how the strategy of sequence
arithmetic is used to analyze and simplify electrical machines.

PROBLEM 2. Label the sequence in each wire of Machines 5 and b. Which of our
theorems do they illustrate?

MACHINE MACHINE 6



PROBLEM 3. Label the sequence in each wire of Machine 7.

MACHINE 7

Show that the machine can be replaced by just one of our simplest

boxes (+1 x or -)

PROBLEM 4. Show that Machines 8 and 9 produce the same output sequence.

MACHINE 8 MACHINE 9

PROBLEM 5. Show that Machine 10 can be repls,.ed by a single box (.e, x or -

MACKNE 10

(Where wires cross without a solid spot, as at the upper left of

this diagram, there is no contact between them; they are insulated.)

PROBLEM 6. Analyze Machine 11 and then simplify it to a two-box machine.

MACHINE 11



8.4 Electrical Machines: Design.

Letss turn now from the analysis of given machines to some examples of how
machines can be designed for specific purposes. Once again we'll use light-

hearted examples, but the spirit will be right. Take the problem of the hall
light which in supposed to respohd to either of two switches, one upstairs and
one downstairs. If we suppose that the light sheuld be off when both switches
read off (see Diagram (A)) then it must come on when either one switch or the
other is turned to the on position (Diagrams (h) and (a)) and it will go off
again if both switches are turned on (Diagram (a)).41

OFF

OFF

1111NOM.I.

OFF

ON

tc?

ON

ON ON

Think It over, and experiment with a real hall light if you have to, but the
light ohculd be on when the switches disagreeland off' when the switches agree.
Using A and B to represent the two switches, and using 0 for off and 1
for on, what in required for the hall light is a sequence, or siglal, which
taken th(2 value I whenever A and B disagree, and the value 0 otherwise.
Tills can be summarized as follows.

Switch A: 0 0 1 I

Switch B: 0 1 0 1

Hall light: 0 1 1 0

Each column covers ono of the oniy four situations that can occur. In the
center two columns, for example, switches A and B disagree, so the hull
light should be on. In the other two columns the switehes agree, and so the
light should be off. Only four columns appear because these represent the only
Tour distinct situations which can arise. Now the problem is this. What com-
-IA-nation of A and B behaves in this partienlAr way? If you want to find
oat for yourself, then turn back to Chapter Z. In particular, notice once again
..LOW..the special products AB, AB, B and A. T3 behave in the four distinct
tinals col' column we face. La particular, A5 and XB behave like thin.

A E : 0 0 1 0

7 1 B ; 0 1 0 0



-

This suggests that a suitable sequence for the hail light will be the sum of

these ti.V products.

A B + 0 I 1 0

Now that we have a formula for the hall light sequence, it's an easy job to

diagrmm the appropriate machine. (Machine 12.)

hall light

MACHINE 12

Label each wire yourself, aecording to the sequence it carries, and discover

that the output is really AE + 7.3. so that this machine will properly control

the hall light. Of course, there are much cheaper ways to provide proper con-

trol for a hall light, without using +1 X and - boxes at all. But thu point

here is that we have designed an electrical machine for a specific task.

Checking back to Theorem 2l you will find that (A + B)(7 + E) is the

same as AE + TB. This suggests a second way In which a maehine for hall light

control could be designed. However, a count of the number of boxes required

shows that in each case it takes five boxe3 to produce the output wanted, so__
there Is no advantage in using the (A + B)(F, +E) machine as a substitute.

But looking at Theorem does suggest a simplification. The sequence (A+ B)AB

is also the same as AE + TB and it requires only four boxes. One dash box can

be saved. Check the following diagram of Machine 13 which produces (A + B)AB.

Label eadi wire according to the sequence, or signal, which it curries.

hall light

MACHINE 13



Machines which produce correct hall light behavior will find a completely dif-
ferent application in the next chapter.

Suppose we arrange that the hall Light shall be on whenever the two
switches A and B agree, and off otherwise. That's just the opposite of
what we've just finished arranging, and it's not the approved system, but once
in a while a hall light does gpt hooked up in this reversed fashion. The ap-
propriate sequence for the light is now AB + E. because this combination of
A and B takes the value pattern we've asked for in the four familiar columns.

A: 0 0 1 1

B: 0 1 0 1

AB + X 33 : 1 0 0 1

Refer back to Chapter 4 again if you have to, but AB + X 3 is what we need.
And check the diagram of Machine 14, which produces AB + X as its output.

MACHINE 14

Perhaps you'll recall that AB + X33- is also the warrior's statement in the
lady-tiger problem of Chapter L. That problem and this modified hall light
problem are the same mathematical problem. They differ only in the 'meaning'
assigned to the various sequences (truth tables or electrical signals).

Next consider the problem of a hall light that has to respond to three
switches A, B and C. If the light is off when all three switches read off,
then it will have to go on when any one of the three switches is turned on. It
will have to go off again if any two switehes read on, but mast come on again
when all tixce switches read on. Thiuk It over carefully, but the required
behavior in sol/mmrized in this table where, as usual 0 means off and 1

an.

Switch A: 0 0 0 0 1 1 1 I

Switch IS: 0 0 1 1 0 0 1 I

Switch C: 0 1 0 1 0 1 0 1

Hall light: 0 1 1 0 1 0 0 1



Can we design a machine which will output such a signal? If no inspieation

strikes instantly, then there is always the method of prodncts. TO produce

04es in colunms 2, 3, and 8 the basic products listed below will do.

Verify this by referring back to the eight distinct columns of Chapter 4.

ABC 0 1 0 0 0 0 0 0

B 0 0 1 0 0 0 0 0

ABC 0 0 0 0 1 0 0 0

A B C 0 0 0 0 0 0 0 1

The hall light signal can, therefore, be achieved by adding these four products

together.

X C +XBZ + A -13 -a" + A B C

But this would be a fairly expensive machine, requiring eight times boxes, three

plus boxes and three dashes. It's only human to hope for simplifications. Un-

fortunately, very little simplification is possible in this example. We could

regroup our four products into two pairs,

(AB + X "i)C + (AT3. + XB).

which eliminates two times boxes. This also allowz us to use two machines we've

designed before, for AB + X Ti and for Ail B. The following Machine 15

shows big l'oxes labeled AB + A B. and JO + XB. You know what's inside of

them, or can easily look back to find out. As usual, check this machine to be

sure you agree it's correct for the Jobe

A

MACHINE 1.5
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PROBLEM 7. Design a machine which has this output pattern.

A: 0 0 1 1

B: 0 1 0 1

Output: 1 0 1 1

In words, the output is supposed to be hot except when A is cold
and B is hot. One solution, using basic preducts, is

attput = X B + + AB

but this uses more boxes than are necessary. Find a design Which
uses only two 'fp x or - boxes.

PROBLEM 8. Design a machine which has this output pattern.

A: 0 0 0 0 1 1 1 1

B: 0 0 1 1 0 0 1 1

C: 0 1 0 1 0 1 0 1

Output: 0 0 0 1 0 1 1 1

Notice that the output is hot only when the majority of A, B and
C are hot. Four basic products will surely do the job here, but
find a design which uses only five +, x or - boxes.

PROBLEM 9. Machine 16 has lost its labels.

MACHINE 16

To rind out what,it contains the brute force method of testing all
possible input combinations ie used. These familiar sequences in-
clude the eight possible combinations.

A: 0 0 0 0 1 1 1 1

B: 0 0 1 1 0 0 1 1

C: 0 1 0 1 0 1 0 1

The output sequence proves to be moetly hot.

Output: 0 1 1 L1l 1 0

From this evidenoe.can you diagram the machine? (Hint: There are
just six +, x, - boxes involved.)
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4.4

6.5 Summary.

So now 0 and I have three 'meanings,' the latest being cold for 0

and hot for 1. And sequences also have three meanings; as truth tables, as

membership lists, and as electrical signals. And the mysterious 1 + 1 . 1

has a third translation, us hot + hot hot. The message of Chapters 6 to 8

has been that our abstract game seems to be perfectly modeled for applications

of three quite different-looking types. Historically it is the applications

which cune first, developing more or less Independently of each other. Later

the deep analogy between them was gradually recognized and the abstract game

begen to develop. Each application then served to help the others and strategy

grew quickly, another example of 'in union there is strength.' Progress from

applications to abstraction is oharacteristic of mathematics.
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Chal,ter )

DEZIONINO A COMPUTER

9.1 Binary Symbols for Numters.

Our story now takes a surprising turn, In the direction of 'ordinary'

arithmetic. Ordinary arithmetic is a much Letter-known gama than sequence

arithmetic, and a more complicated one. The pieces with which It Is played

art called numbers and, like any other game, it has its own basic rules and

strategy. Startine from such simple and traditional origins as

the game proKressc ultimately to the sophisticated heights of calculus, and

beyond. It w111 c reassuring to hear, however, that only the uasement level

of that towf!rih 1;ivsrape r of theory will be involved here.

The f r..t t1ni.0 we will need are called the binary symbols for numbers.

Decimal ..-....,Ji are, of e,ourse, more popular, at least with human beings.

symUoLs 0 to 7 to the simplest numbers, the decimal system

i.he idea of position vaLue to build symbols for more canplleated num-

berc. As everyone knows perfectly well,

'2466

represents the combination

x i000 + x 1,00 + x 10 + 6 x 1.

The key symbols in this system are 1, 10, 100, 1000, and so on, the va ue of

t he dleit 1 increasing tenfold with each shift to the left. The binary sys-

L011 Is very similar. It uses only the digits 0 and 1, but position value

remains the central idea. Here are a few of the key binary symbols, accompanied

Ly elr. Lieeimal translations. Notice that the value of the digit I now in-

creases twofold with each shift to the left.

Binary' DeciMal

0 0

1

1 0

1 0 0

1 0 0 0 8

10000 1.0

1 0 0 0 0 0



Juat as with decimals, the binary symbols for other numbers can be fashioned by
choosing suitable combinations.

Binary

3

Decimal

1 1 + 1
0 l 4 + 1

1 0 1 I 11 = 8 + 2 + 1
1 1 0 0 1 0 50 = 3a + 16 +. 2

In the last example the three l's translate to 32, 16 and 2* and
1 1 0 0 1 0 is au alias for the number we call decimal 50.

The idea of binary symbols is basically a simple idea. It can be extended
with very little difficulty to the other numbers of ordinary arithmetic. For
instance, a minus sign still denotes a negative number, so - 1 0 is binary
for -2. And

.1

1represents the same nuMber as while

.01

1is an alias for 4. Since we will be using integers only, there is no Immediate
need for detailed exploration to the rigAt of the 'binary point.'

PROBLEM 1. Translate from decimal to binary.

Binary Decimal Binary Decimal

7 4 + 2 + 1 17

9 28

10 )9

PROBLEM :c?. Translate from binary to decimal.

Binary Decimal Binary Decimal

1 0 1 1 1 1 1 1 1

1 1 0 0 1 0 0 1 0 0

1 0 1 0 0 1 0 1 1 0 1

1 1 0 0 !. 1 1 1 1 1 1

82



PROBLEM 3. Suppose three subsets A, B and C have these mmmbership lists.

(The top row gives each member a number, from 0 to 7.)

' 0 1 2 3 4 5 6 7

A: 0 0 0 0 1 1 1 1

B: 0 0 1 1 0 0 1 1

C: 0 1 0 1 0 1 0 1

It's easy to discover that thls puts one member into each of the

eight basic products X Ira, xr3 C, X B and se on. It's also

easy to see that each member's number is duplicated in binary in

the column underneath his number. (Under 30 for example, you

find 0 1 1.) Write the nuMber of each member in the part of our

standard subset diagram where he belongs. (MeMbers 3 and 4 have

already been placed.)

3

This explains the numbering pattern used in Chapter 7. You may

want to extend the pattern to two-subset or four-subset diagrams.

9.2 Binary Computing.

Next let's notice how easily the sums and products of ordinary arithmetic

can be cokquted using binary syMbols. For sums, the four basic facts are these.

0 0 1 1

+ 0 + 1 + 0 + 1

0 1 1 1 0

The last of these is our old, familiar 1 + 1 = 2 in binary translation, and

it ghows'that whenever we face the sum 1 + 1, we are going to have to 'put

,---doun 0 and carry, 1,/ just as with decimal aymbols the sum 5 + 7 . 12

males us 'put down 2 and carry 1.' The technique will lock very familiar

tO4CU, 'are are a few Illustrations.

1 0 1 0 1 0 1 0 1 1 0 1

1 0 0 1 0 0 1 1 1

1 1 1 0 1 1 0 0 1 1 1 0 0
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In the first illuztration there are no carries at all. In the seceed there is

just one, and et amounts to h binary traaclatioa of 4 -4- 4 - 6. The third la-

volves several carries which can be similarly explained. You ean see that

binary addiu,g is a simvle enough process.

A somewhat differen, view of this matter of carries rates at least paesing

ntion, because it exposes aew mathematical horizons. Whenever the sum. 1 + 1

.,ears in a column, then as far as that particular column is concerned the sum
is O. Of cearee, we know that 1 + 1 is really 10, or e if you prefer,-
at least in ordinary arithmetic. But the two is thrown away, into the next
column to the left. It becomes a carry. In decimal computations tens are

thrown away, into the next column to the left. The idea of throw-aways has

turned out to 'Je surprisingly useful, with the result that the inevitable pro-

cess of abstraction has run its course. 'Throw-away arithmeties1 are now of-
ficial parts of the collection of geees that we call mathematics. In partieu-

tar, 'throw-away twos' is played with only two pieces, 0 and 1. Its basic
rules include no surprises except for

1 + 1 0

from which it bets its name. A_ you'll see shortly, binary computations are

very popular with electrical c,culatlng machines, so that Ithrow-away twos'

sees heavy, but more or less out-of-sight, action every time that a carry ie
made. Throw-away anithmetics also have other more exotie and lc obseured

applications, to the production of random numbers for example, and to the de-
sien or experimental patterns. Jet that's another story so let'e Get taek to

our sequences ot* zeros and ones.

Here is one sef-explanatory example of multiplication usine bihury symbols.

1011
0 0 0 0

1 0 1 1

1 1 0 1 1 1

In decimal this would read 11 x 5 = 55.

The other operations of ordinary arithrxtic can also be performed with

binary symbols, but ,e won't go into the details here.
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PROBLEM 4. Perform these additions. Also tranzlate to decimal.

1 0 1 0 1 1 0 1 1 1 0 1 0 1
1011 101 1 1 1 0 1 1 1

PROBLEM 5. Multiply 1 1 0 Ly 1 0 1. Also translate to decimal.

93 The Hall-Adder.

Now we come to the reasons for this excursion'into binary symbolism. All

these O's and l's must be at least slightly reminiscent of sequence arith-

metic. A binary symbol such as

1 0 1 1 0 1

is a sequence of zeros and ones. It's true that in this chapter you've been--
asked to interpret this sequence in another new way, but it's still a sequence

of zeros and ones. With punched cards, of the sort mentioned in Chapter 8, we

could even convert this sequence Into electricity,

h chhch

and our old friend the number 4!) (decimal) would take a form that an electrical

machine can understand. That's cur first point. Binary symbols can be used tO

make the numbers of ordinary arithmetic understandable to electrical machines.

Which of these six oards should be punched to translate 45 into electricity?

With numbers represented in electrical form it isn't too big a jump to the

design of an electrical machine that will do computations. Take the operation

of addition. What would a machine have to be able to do in order to compute

sums as we did just a few moments ago? Principally it would have to know how

to handle the four basic sams,

0 0 1 1

+0 + 1 + 0 + 1

because computationu involve

must know what to 'put down'

to be summarized ln the four

repeated handling of these four. In eaL.h case it

and what to 'carry.' The facts are simple enough

colums of this 7ittle table.

A: 0 0 1 1

B: 0 1 0 1
Rez!ord: 0 1 1 0
Carry: 0 0 0 1
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The two digits to be added are called A aud B. For added dignity, the

tab-,e uses the word 'record' instead of 'put down.' Evgmine these columns to
be sure you agree that they properly present the facts of addition. Then let's
concentrate on the row labeled treeord.' When should a I be recorded? Only
when the twy digits to be added disagree! That may hit a resonant spot in your
memory. Our four columns here are the same four distinct kinds of column that
we've encountered before. And record takes the value 1 only in the two col-
UM4A where A and B disagree. Do you recall that such behavior arises in
sequence arithmetic when

AB + 7.13

Is computed? . And for cOmputing such a sequence we have already designed (in

Chapter 8) at least two electrical machines. Any one of those machines can now
be used to produce the proper record. We simply have to offer it A and B
as inputs. But we also need a carry, so look at the bottom row of the above
table. The only 1 is in column four, where A and B are both 1. This
behavior may recall the product

AB

of sequence arithmetic:. Su'a simple x box will produce the correct carry as
output, given A and B as inputs. To obtain both cf the outputs we need,

the following mathine will serve. It is called a half-adder.

Rt.cord

Carry

HALF-ADDER

This machine ('Eln handle only two dicits. It will take a embination of half-
adders to ,..Impute an ordinary mm.

9.4 An Adding Machine.

Suppose these four-digit numbers ar '! to be added. Each A or B

either a 0 or a 1.

A A A. A4 3

B B, B
3 f? 1
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Let me try to convince you that the following machine is up to the job. It

will be easier than a first glance might suggest.

si

The letter H represents a half-adder.

The best way to understand this adding machine is to actually follow it

through a typical computation. Take these numbers.

A A_
3

A2 Al - 0 1 0 1-
4

B B. B 0 1 1 1
4 3 , 1

A few moments ago we added them and got 1 1 0 0, confirming the fact that

5 4- 7 is still 12. For the machine to duplicate our effort these A's and

B's must be brought to the eight input contacts. At the top of the diagram

you ean see l's and Ots (for hot and cold) labeling the appropriate wires.

Other l's and O's indicate the repercussions within the machine. Follow

the action slowly from right to left, just as though you were doing the com-

putation by hand. With record coming (Alt of the lower right of each H box,

and carry coming out of the lower left, you will find that the machine takes

exactly the same steps that you would take, and hopefully arrives at the same

result. That result appears at the four output contacts, at the bottom of the

diagram.

S4 53 S2 SI =1100

This machine was designed to handle binary symlols of four digits each.

Notice the dotted lines which separate it into four parts. Hach of these parts

(except the one at the right) is called a full-adder. A full-adder takes the

A and B digits one column and the carry from the previous column (to the
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right) as inputs; It outputs otle correct aiLit for the sum and the carry for
the next column (to the left). For serious comi,uting a machine must handic
symbols of roughly forty binary digits (bits for short). To do this, more
full-adders will have to be added at the left of our diagram, until the sel-
ected capacity is reached. Whatever capacity-is selected, it is, of course,
possible to offer the machine nuovbers whose sum will exceed that capacity. In
our simple four digit machine any sum over fifteen will do just that. such a
sum will produce a hot carry out of the leftmost + box, causing the 'overflow'
light to come on as a warning that a most important digit, the one with the
highest position value, has just escaped from the computation. As an example,
follow the computation

1 1 0 0

+ 0 1 0 0

through the machine. The everflov Licht should co on.

machine produce?

Comuter Zc Lence.

What sum does our

One 1-4ethod of computing, sums ely,etrivally has just been outlined. There
are many alternative methods. It ic also poLwible to de-icn,mLchines whia
perform the other operations of ordinary arithmetic, and machines which per-
form various related chores vhl1i will be dec,!ribed in our next and final
chapter. 13y connectnc these various machines toGether, a remarkably versatile
device can be ,,,onstructed, capable of doinc almost anythinc arithmeticvl, and
at electrical speed. The literature of computinc machine desicn carries the
tll story and -an Le studded by embryo computer scientists. The main point of
this ,q1apter has been that binary symi,ols offer a way by which numbers can be

represented electrically, us sequences of zeros and ones, and that sequence
arithmetic, ln

plays a basic role in t le design or electrical manhines whici; do correct com-
putations for a different arithmetic in wnich

1 t
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PROBLEM 6. Let Al B and C denote the three inputs to a full-adder, C

being the aarry from the previous column. The usual three sequences

A: 0 0 0 0 1 1 1 1

B: 0 0 1 1 0 0 1 1

C: 0 1 0 1 0 1 0 1

display the only eight possible oaMbinations a full-adder can ever

face, one combination in each column. What should the outputs of

the'fUll-adder be for each of these coMbinations?

Record:

Carry:

Convince yourself that the following symbols of sequence arithmetic

properly represent record and carry.

Record--ABC+AEZ+A.BT+TTC
Carry AB + BC + CA

Design an alternate full-adder from the above two symbols. Does it

appear to be simpler than the design given in Section 9.4, or not?

PROBLEK 7. Use our theorems to convince yourself that the following design

also represents a correct full-adder.

,,

record

carry

PUOBLIIM 8. Show that what the full-adder described in Section 9.4 actually

computes are

Record [(A T B)AB + Cl(A + WABC

Carry . AB + (A + B)ABC

and use our theorems to verify that these are uliasee for the

symbols of Problem 6.
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Chapter 10

THE CCICUTER IN ACTION

10.1 Memory.

The previous chapter has suggested that it is possible to design an elec-

trical machine which can perform the operations of ordinary arithmetic. Not

only is it possible but, as most of you know, thousanda of such machines already

inhabit our planet. The computing abilities of such machines would be largely

wasted if they were unable to 'remember' the numbers involved, and so, many ways

have been devised to provide machines with memories. All that is needed is a

way to preserve electrical sequences, so that they can be retrieved when wanted.

One of the easier devices to picture in your mind consists of rows of magnetiz-

able spots. This little memory, for examplc (black spots magnetized, white

spots not),

can be translated for human computers into

0 0 1

0 1 0

1 0 0

1 1

and, if you want to, you can find a connection between this miniature memory

and the three-way hall light of Chapter 8. A human computer uses his brain,

assorted sheets of raper, and perhaps still other apparatus in various stages

of disorganIzationi for memory. In a machine, however, the sequencz.:s of zeros

and ones are neatly stored in rows of uniform length, one sequence to a row.

Each row is called a memory location and numbered for easy reference, using

Aymbols. The four locations above could be labeled 0 0 1, 0 1 0, 0 1 1

and 1 0 O. A larger memory appears belc.w. It will serve as the conversation

ploce of this chapter. The memory itself consists of the column of nine-value

sequences in the center. Lormtion nuMhers, in binary and decimal, have been

included nt the left, for your convenience as we refer back to this memory.

Some explarultory phrases ere also offered at the right but these will not be
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clear until later. This collection of ones and zeros will look formidable at

first sight, but it is a tiny memory by the standards of serious modern com-
puting.

Locution Sequence

0 0 1 0 1 0 0 0 0

0 1 0 0 1 0 0 1 1

E;q1anation

Add an X number
to SUM.

1

,

0 0 0 0 0 1

0 0 0 0 1 0

3 0 0 0 0 1 1 011010000
4 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1

5 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 Add 1 to COUNT.
6 0 0 0 1 1 0 011010001
7 0 0 0 1 1 1 1110 01111 Is COUNT less
8 0 0 / 0 0 0 110001011 than 3:2 7

c : 0 0 1 0 0 1 1 0 0 0 1 0 0 0 0 No. Punch SUM.

10 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 Stop.

11 0 0 1 0 1 1 0 ill 0 0 0 0 1 0 Yes. Modify instruction
12 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 number 2.

13 0 0 1 1 0 I 011000010
1)4 0 0 1 1 1 0 1 0 I 0 0 0 0 0 1 Jump back to 1.
1!) 0 0 1 1 1 i 0 0 0 1 0 0 0 0 0 THIRTY-TWO
lb 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 SUM

17 o 1 o o o 1 o o o o o o o o 0 COUNT
18 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 ONE

lv 0 1 0 0 1 1 0 I 1 0 0 I 1 1 I X
1

L0 0 1 0 1 0 0 1 1 1 1 0 1 0 0 I X9

A 0 1 0 1 0 1 0 1 I 0 0 0 0 1 1 X
3

-- 0 1 0 1 1 0 1 0 1 0 0 1 1 1 0 X
4

Locatiom; j3 to j0 arr.: filled dth other sequences that will be called

simply X, , X up to X ,)

10.2 Instructions.

if machines are to perform arithmetical tass for human masters, then comp.

mnracations betwen man and machine must, be established. A language under-

standable by both must be devised. The machine must be told what to do. It

needs instructions. Az a matter of fact, some of the sequences in the above

memory are instructions. It is only necessary that we and the machine both
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understand the language. These instructions eau be explained to you in mod-

erately plain English, but they will have to be explained to the machine by

proper electrical wiring. In previous chapters we've designed machines for

adding numbers as well as for various simpler tasks. Here we will need similar

whines for understanding and executing eight types of instruction, but we'll

leave the details of design in the capable hands of computer scientists and

focus our attention on a strictly human to human understanding. Taking last

things first, one type of instruction is

O 0 0 STOP

the last six digits of the sequence being irrelevant. Az indicated, 0 0 0

tells the computer to stop. A more typical kind of instruction is

O 0 1 Copy the sequence which is now in

location into location

0 0 0 0 0 07 erasing the previous con-

tent of 0 0 0 0 0 0 first. The

sequence originally in

should be in both locations after this

instruction is executed.

The aiglish translation is at the right. Not:ce that of the nine digits in the

instruction, the first three indicate what kind of job is to be done (0 0 I

means a copying job) and the last six Lndicate a memory location which is in-

volved. Location 0 0 0 0 0 0 is a special memory location which sees a gr,at

deal of action once tne computation gets underway! This will all be much

clearer when we have followed the maching in action for a while, as we will

shortly, but let's just list the other instruction types first.

O 1 0 Add number in location to

O 1 1
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nuMber in 0 0 0 0 0 00 leaving content

of unchanged. The sum

should appear in 0 0 0 0 0 0. This

addition is a binary computation, using

full-adders as described in Chapter 9,

and not the simple 1 1 = 1 addition

of Chapter 2.

Copy sequence now in location

0 0 0 0 0 0 into location

erasing any previous content of

. The sequence orjginally



1 0 0

in 0 0 0 0 0 0 Should be in both

locations after this instruction is

executed.

Punch the sequence in onto

a card. (The sequence also remains in

location, for future use.)

1 0 1 Take the next instruction from location

(This breaks the normal

1 1 0

routine, in whieh instructions are

taken from consecutive locations. It

is called a jump instruction.)

Take the next instruction from location

if the sequence now in

location 0 0 0 0 0 0 is negative.

Otherwise follow the normal, consecu-

tive routine. (This requires the

machine to make a decision.)

1 1 1 Subtract the sequence in

from the sequence in 0 0 0 0 0 0,

leaving content of unchanged.

The difference should appear in

0 0 0 0 0 O.

Now let's watch thi_ action as these types of instruction are executed.

10.3 A Program.

The sequences in the memory exhibited in Section 10.1 give the computer

full instructions for performing a particular arithmetical job. Such a set of

instructions is called a program. Let's see what job this program spells out.

The first instruction is in location 1, the next in location 2, and so on.

See if you agree that this is what happens when the first three inctructions

are executed.

1. 0 0 0 n 0 0 0 0 0 appears in location O.

2. 0 1 1 0 0 1 1 1 1 appears in location O.

. 0 1 1 0 0 1 1 1 1 appears in location 16.
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The sequences in locations 16 and 19 have been added, and the sum (Xi)

has been stored in location 16. Try the next three instructions in our com-

puter memory. Here is what they achieve.

4 . 0 0 0 0 0

5. 0 0 0 0 0

6. 0 0 0 0 0

0 0 0 0 appears in location 0.

0 0 0 1 appears in location 0.

0 0 Q 1 appears in location 17.

The oamputer has 'counted' from 0 to 1 in location 17. Tale the next two

instructions together. When a sequence standa for a number instead of for an

instruction, the first digit is used to indicate the sign, 0 meaning a pos-

itive number and 1 a negative number. The other eight digits are the binary

symbol for the number itself. As instruction 7 comes up the sequence

0 0 0 0 0 0 0 0 1 is still in location 0. SUbtracting 32 will produce a

negative 31.

7. 1 0 0 0 1 1 1 1 1 appears in location 0.

8. The computer 'jumps' to location eleven.

Instructions 9 and 10 are bypassed for the moment. Now comes a crucial

development. Take three more instructions together.

11. U 1 0 0 1 0 0 1 1 appears in location 0.

12. 0 1 0 0 1 0 1 0 0 appears in locaticn 0.

13. 0 1 0 0 1 0 1 0 0 appears in location 2.

The content of location 2 has been modified. In a moment the computer will

be exer:uting instruction 2 again, and you should note the effect of this mod-

ification. We're up to instruction 14

14. The computer 'jumps' to location 1.

Welve watched one trip through what is called a 'loop.' Let's watch one more

trip.

1. 0 1 1 0 0 1 1 1 1 appears in location 0.

2. 1 0 0 0 1 1 0 1 0 appears in location 0

3. 1 0 0 0 1 i. 0 1 0 appears in location 16.

The sequences Ln locations 16 and 20 have been added, and the sum

_bms been stored in location 16.

4. 0 0 0 0 0 0 0 0 1 appears in location 0.

5. 0 0 0 0 0 0 0 1 0 appears in location 0.

6. 0 0 0 0 0 0 0 1 0 appears in location 17.

The oorsputer has counted from 1 to 2 in location 17.
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7. 1 0 0 0 1 1 1 1 0 appears in location O.

S. The computer jumps to location eleven.

11. 0 1 0 0 1

12. 0 1 0 0 1

13. 0 1 0 0 1

The instruction in location

0 1 0 0 appears in location O.

0 1 0 1 appears in location 0.

0 1 0 1 appears in location 2.

2 has again been modified.

14. The computer jumps to location 1.

And two trips thxough the 'loop' have been completed. Further trips I leave to

you to follow in detail. The third trip will first bring the sum X
1

+ X, + X

into location 16. Then it will raise the count in location 17 to three.

Finally, it will modify the instruction in location 2 to read 010010 11 0

Convince yourself of these things and then convince yourself that the sum in

location 16 will continue to develop until it Includes whatever numbers have

been stored in locations 19 through 50, at which point it will be

X1 + X0 + + X32. Thirty-two numbers will have been ro3tninf-d. An important

change will then occur. The computation will break out of the loop! Do you

see how that happens? On the thirsy-second trip through the loop, after all

thirty-two numbers have been summed, the count (in.location 17) will climb to

32. Then notice the result of executing instructions 7 and 8.

7. 0 0 0 0 0 0 0 0 0 appears in location O.

b. The computer decides not to jump.

For the first time it refuses the jump, because now the number in location 0

is not negative. Instructions 9 and 10, which have been bypassed thirty-

one times, finally get their turn.

9. The computer punches out the final sum.

10. The computer stops.

Its assigned job has been completed. Az you can now see, that job was the

summing of thirty-two numbers.

To summarize the action, a flow chart is a helpful and common device.

Etre is Vie flow chart for this program.

Read program
Into memory
and START.

,iimomiNw

Add an X
.--4W number to

ZUM.

Modif;/

instruction
nuMber 2.

Add 1 to
COUNT.

Ts COUNT
less than

327
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The loop is clearly visible. After thirty-one e0Mplete trips around this loop,

the 'WO exit in taken and the loop has been brOken. It takes a modest effort

to see clearly all the details of this electrical computation. But once yOu'Ve

mastered those details, the preeise fogie of the pregrmm Las an almost aesthetic

appeal.

No final remerks may be useful. Plainly a sequence may be either a num-

ber or an instruction. How effeetively this fact Is exploited can be seen by

recalling the modifleations made to instruction P. By treating this sequence

az a number, and adding one to it, the machine converts the sequence into the

desired instruction for the next trip around the loop. Thie versatility can

also lead to catastrophe, as you will soon see. The second remark is this.

The program could easily be modified to sum a million or more numbers instead

of juet thirty-two. Our present machine, however, has its limitations. Memory

locations l to r.3 were not used, so with a few changes thirteen more num-

bers could have ..een aecommodated. Thirty-two is such a pleasant number in

binary that th:e extra capacity was ignored in my example, but see Problem 13.

;.1. .iest-Mortem.

It is easy to see that the tiniest program error, a single 0 where there

siouid be a 1 or vice versa, -an produe a catastrophe. As an easy example,

what would happen if the sequence for location I were mispunched and entered

the computer as 0 0 0 0 1 0 0 0 0, the error being In the third digit? You

prohabLy ee at once that this makes the very first instruction a stop instruc-

tion. The ,.omputation will never even get started. When the start button is

puohed, it may appear that the eomputer has not been plugged in. But exper-

ience has shown that when a program fails to run properly it is usually the

proGram and not the macsine which Is to blame. We just Investigated the effect

of a known error in a ;:hown location. But hunting down a program error is

usually hard work and ways have been found for the computer to assist in the

search. Our program is so brief that in the event of trouble we could ask the

machine to punch out the entire memory for our inspection. In a more serious

problem such a 'memory dump' would be too voluminous to be helpful, and more

sophisticated detective work is called for. Here is a typical, but simplified,

example.

Suppose we know that our program should take less than a minute of the

machine's time. It has been running, however, for three minutes and the oper-

ator has just stopped the computation. A program error is suspected, but in

which memory location? To find the error a 'post-mortem' is conducted, in
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which the machine punches out the answers to our questions. Here is a plain

&glish translation or the process.

Question: Which was the last instruction executed?

Answer : Instruction In location L2.

This is surely a diecouraging reply. The sequence in :S was supposed to be

our namber X. The machine has interpreted it as an instruction. Some num-

Less also make perfectly reasonable instructions and the seqnence in loca-

tion i.72

1 0 1 0 0 1 1 1 0

means 'jump to location 14 for your next instruction' just as surely as it

means 'negative 78.1 So the machine has jumped to location 14. Let's fol-

low it.

Question: What is the sequence in location 14 ?

Answer: 1 0 1 0 0 0 0 0 1

Just what should be, a 'jump to location 12 instruction.

Question: What le the eequence in location 1 ?

Answer: 0 0 1 0 1 0 0 0 0

Just what it should be, 'Copy SUM from location 16.2 So we follow the ma-

chine to location

Question: What is the sequence in location ?

Answer; 1 0 1 0 1 0 1 1 0

Ouch! This doesn't reaustely resemble the 'add' inetruction we thoueht we had

here. Instead it reads 'jump to looation 2 for your next instruction.'

And now we know why the machine wouldn't stop. It has been patiently follow-

ing instructions, jumping from to 14 to 1 to to over and over

again, following an unintended loop. The program error, which we still lave

not loeated, has sent the machine into a senseless never-ending loop, in which

It computed nonsense until the operator mercifully storTed it. Such futile an(

unending loops have been compared with human insanity. Our machine was unable

to help itself, and required shook treatment (cutting off the electric power).

Now we know what happened to our program. But Az? Either our second--
instruction was ireorrect wher It entered the computer, or It was spoiled

afterward. Let's try tlw seeond possibility first.

Que-stion: What sequences are in locations 11, 1: and 13 ?

Answer: 0 0 1 0 0 0 0 1 0
0 1 0 0 1 0 1 0 0
0 1 1 0 0 0 0 1 0
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This looks like the errors The middle sequence has a displaced 1. It should,

read 0 1 0 0 1 0 0 1 0 instead. The effect of this misplaced 1 is catas-

trophe. This twelfth instruction was supposed to alter instruction 2 by

adding to it the sequence in location 18. Instead, it adds the seqaence in

location 20, and alters instruction 2 to the jump instruction

1 0 ' 0 1 0 1 1 0

that we discovered a few moments Check for yourself that the nasplaced

I in instruction 12 fully explains what happened to our program. Follow the

computation until it enters the senseless, unending loop. If in our post-

mortem we had asked for the sequence in location 17 (the COUNT), what would

the machine have answered?

It is easy to see that communication between man and machine is delicate

work. It is also important work because of the large role which machines now

play in business and scieace. Preparing correct programs has become a major

area for the use of human labor. An enormous demand for skilful programmers

has developed, to translate human thoughts into electrical language. To sim-

plify this wurk, ways have been found to place a greater part of the burden of

lanslution upon the machine itself, by means of other programs permanently

aorizcd by the machine. Such procedures are called automatic programming.

They are already remarkably sophisticated, and what the ultimate will be in

man-machine relations is impossible to predict. In one very popalar system

our program of this chapter enters the machine as

1 SUM = 0.0

2 DO 3 . 1, 32

3 =A a X(I) + SUM

Amateur cryptographers will have little difficulty in breaking the code.

PROBLEM 1. Show that if the sequence for location 6 entered the machine

incorrectly as 0 1 1 0 1 0 0 0 0, then the sequence in location

2 should ultimately become 0 1 1 0 0 0 0 0 O. This translates

to 'copy the seqaence now in 0 0 0 0 0 0 into 0 0 0 0 0 0.1

The machine would not accept such an instruction. It would stop

without punching out a sump which would be your firat indication

of trouble. In such a situation it might also have been taught to

type outlfaulty instruction in locatiou 2.1 What sort of detec-

tive work might discover that the fault is really with instruction

6 not with instruction 2 ?
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PROBLEM 2. Show that if the sequence for location 5 entered the machine in-
correct4 as 0 1 0 0 1 0 0 0 0, then the machine would, as ex-

pected, punch out a sum and stop, but that the sum would be the

wrona sum. This is the most dangerous kind of program error.

Unless the machine operator noticed that this program took much

less than the expected time to run its course, the incorrect sum
might very well be accepted as correct. Suppose an error is sus-

pected. Can you plan a post-mortem? If you ask for the sequence
in location 17 (the COUNT) what will the machine answer? What

is the incorrect sum which the machine produced?

PROBLEM 3. Adapt our program to the summing of forty-five numbers, Xi to X
45,

which have been stored in memory locations 19 to 63. EXcept for

properly storing those forty-five numbers, only one sequence of

the program would have to be altered. Which one, and whai is the

alteration?

Location New Sequence

10.5 A'Reminder.

Wetve come to the end, and I think that a reminder of what my objectives
have been is the most appropriate way to finish. They were:

1. to offer a detailed view of one of the simpler, but important

games which make up mathematics;

2. to show that the game is played carefully and honestly;

3. to show that the game is useful; it has applications.

This ie typical of the many parts of mathematics, and whatever part you study,

you will find it helpful tu look for the basic rules (need to know), strategy

(nice toknow), and applications.
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Section 2.2

ANSWERS TO PROBLEMS

Chapter 2

Y o 0 1 0 1 0 X + 7 1 1 1 1 1 1
- k y 0 0 1 0 o o Y + Y 1 1 1 1 1 1

1 7 7 o o 1 o 0 0 X Y + XY 1 1 1 1 1 1
11Y 1 0 1 1 1 0 XYC 0 0 0 0 0 o

1 0 1 1 1 0 X I ' 0 0 0 0 0 0
l c X o 1 0 o 1 1 x + X I I 0 1 0 0 1 1
Y + Y 1 1 0 1 0 1 Xl+XY 0 1 001 1
X + R 1 0 1 1 0 0 -7 1 7. 0 1 0 0 1 1

XX 0 1 0 0 1 1 k Y + 7y 1 o 0 1 1 0
Y Y 1 1 0 1 0 1 (X + YKR + 1 ) 1 0 0 1 1 0

5 1 I 1 0 1 1 0 0 XY+ 7 Y 1 0 0 1 1 o

Section 2.$

0

O 0 0

1 0 1

P Q I

0

ABCDEFI
0 OABCDEFI
A AADEDEII
B BDBFDIFI
C CEFCIEFI
D DDDIDIIIE EEIEIEIIF FIFFIIFIIII.IIIII

ABCDEF.I
FEDCBAO
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P Q
00 0.0

P OPOP
CI 0 OQQ

OPQI

ABCDEFI
0 0 000 0 0 00
A ØAØØAAØA

ØØBØBØBB
0 0 0c 0 CC

D OABODABD
E OAOCAECE
F ØØBCBCFP

OABCDEFI
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Section 4.1 and 4.2

Chapter 4

A + B 0 1 1 1 AB 1 1 1 0

AB 0 0 0 1 A B 0 0 0 1

X 1 1 0010
13 1 1 X13 0100

A + B 1 0 0 0 'Kg 1000
Section 4.3

B + C 0 1 1 1 0 1 1 1 A + BC 0 0 0 1 1 1 1 1

A(B + C) 0 0 0 0 0 1 1 1 A + B 0 0 1 1 1 1 1 1

AB 0 0 0 0 0 0 1 1 A + C 0 1 0 1 1 1 1 1

AC 0 0 0 0 0 1 0 1 (A+B)(A+C) 0 0 0 1 1 1 1 1

AB + AC 0 0 0 0 0 1 1 1 A + (B+C) 0 1 1 1 1 1 1 1

BC 0 0 0 1 0 0 0 1 A(BC) 0 0 0 0 0 0 0 1

Chapter 5

2. (A + B + C)(D + E) AD + AE + BD + BE + CD + CE

4. (A + B + C)(X + + Z) AE + AZ + + BZ + + dE

5. + Bab" + KB-(c + +

+AB-d+TB-d+WBC+XIC etc.
11. ABCD XBCD AT3ZD -A-BZ15

ABC5 ABZ5 ABCD
ABUD AECli XECD XEZD
AECD WBC-15 ABCD ABCD

Chapter 6

1. My cat has fleas and my dog has fleas; MY cat has fleas or my dog has

fleas; MY cat does not have fleas; AC; 14 A + C.

2. V, Sp X, Y, Z, T, W, U.

3. Only on TVesday.

4. On Tuesday, Thursday, and Saturday.

5. 0, A, A.

6. All do. (See Theorems 21 and'22.)

7. Yes. (See Theorem 34.)
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1. Number 6

2. 0 1 1 0 0

0 0 0 0 0

3.

2:1

Chapter 7

belongs to all four subsets; nuMber 9 belongs to none.

0 0 0 0 1; 0 0

0 0 0 0 1; 1 0

5. Theorem 12.

6. Theorem 18.

0 0 0 1 0 0 0 0; 0 1

0 0 0 0 0 0 1 0; 1 1

4.

7.

am

Theorem 21

9. Theorem 38 (see Problem 8, also).

10.

12 .

13.

Theorem 39.

DIM
11113111111

a 1111111
MIN a

1 1 0 0 1 0 0 1;

1 1 1 1 1 1 1 1.

ION

11. (c).

8.

mm
MINIM
Ming
IMMO
unt1.111

Ii
Theorem 38 (see

PrOblem 9).

1. x rco 6 ABCD
2 A YAH5 5 7 ABCD
3 AB.CD 8 "A- B C D

4 KB5 D 9

5 -A-BC 5 10 A C

14. Bend the cylinder into a doughnut
shape.

Section 7.5

7 on second try, 11 on third; 9 successes after a success; 2 fail-

ures after a success.

15. Opium eaters donit wear white kid gloves.

Chapter 8

. Left to right, -, +, x; 2. Theorem 10, Theorem 8.

3. 17; 4. AB +13.A+A+ B; 5. A+ B; 6. A+ B

7. A + -25; 8. AB + AC + BC; 9. + B + C)ABC.
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Chapter 9

1. 1 1 0, 1 1 1, 1 0 0 1, 1 0 1 0, 1 1 1 1, 1 0 0 0 1, 1 1 1 0 0,
1 1 1 0 1 1.

2. 11, 12, 20, 25, 31, 36, 45, 634

3.
EMEICI
MOOD

ncrn
Gana

4 1 0 1 0 1, 1 0 1 1, 110, 1 0 1 1 0 O.

5. 1 1 1 1 O.

6. Record: 0 1 1 0 1 0 0 1

Carry: 0 0 0 1 0 1 1 1

This full-adder uses more equipment than the one in Section 9.4.

7. Record . ABC + (A + B + C)AB + AC + BC

Carry . AB + AC + BC

This full-adder uses less equipment.

Chapter 10

1. Check the COUNT. It will be zero.

2. COUNT . SUM = 207.

3. Location 15: 0 0 0 1 0 1 1 0 1
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