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PREFACE

Mathematics is such & vast and rapidly expanding field of study that there
are inevitably many important and fascinating aspects of the subject which,
though within the grasp of secondary school students, do not find a place in the
curriculum simply because of & lack of time,

Many classes and individusl students, however, may find time to pursue
mathematical topics of special interest to them. This series of pamphlets,
whose production is spansdred by the School Mathematics Study Group, is designed
to make materisl for such study readii; accessible in classroom quantity.

- Some of the pamphlets deal with material found in the regular curriculun
but in a more extensive or intensive manner or from a novel point of view.
Others deal with topies not usually found at all in the standard curriculum.
It is hoped that these pamphlets will find use in classrooms in at least two
ways. Some of the pamphlets produced could be used to extend the work done by
a class with a regular textbook but others could be used profitably when teachers
want to experiment with a treatment of a topic different from the treatment in the
regular text of the class. 1In all cases, the pamphlets are designed to promote
the enjoyment of studying mathematics,

Prepared under the supervision of the Panel on S3upplementary Publications of the
School Mathemstics Study Group:

Professor R. D. Anderson, Department of Mathemstics, Louisiana State
University, Baton Rouge 3, Louisiana

Mr. Ronald J. Clark, Chairman, St. Paul's Schcol, Concord, New Hampshire 03301
Dr. W. Eugene Ferguson, Newton High School, Newtonville, Massachusetts 02160
Mr. Thomas J. Hill, Montclair State College, Upper Montclair, New Jersey

Mr. Karl S, Kalman, Room 711D, Office of the Supt. of Schools, Parkway at
21st, Philadelphia 36, Pennsylvania 19103

Professor Augusta Schurrer, Department of Mathematics, State College of Iowa,
Cedar Falls, Iowa

Dr. Henry W. Syer, Kent School, Kent, Connecticut
Professor Frank L. Wolf, Carleton College, Northfield, Minnesota 33057

Professor John E., Yarnelle, Department of Mathematics, Hanover College,
Hanover, Indiana
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A question which leads us back to an old, but increasingly attractive,
description of both sbstract and applied mathematics, and also shead to the
modern problems of computing machine design. In two parts.

PART ONE: ABSTRACTION

1. A Statement of Objectives

2., The Bacic Rules of Sequence Arithmetic
3. Elementary Strategy

L., Intermediate Strategy

5. Advanced Strategy

PART TWCG: APPLICATION

6. First Application: Statements
7. Second Application: Subsets
8, Third Application: Signals

9., Designing a Computer

10. The Computer in Action
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Chapter 1

A STATEMENT OF QBJECTIVES

You can't blame parents for being & little confused nowadays about what
their children are studying {n the name of mathemstics. One day it seems that

1 +1 =2
which is comforting and traditional, but on another dey one hears that
1 +1=10

which ls simple enough when you've been let in on the secret. But then there's
‘throw away two! arithmetic, in which

1+1 -0
and, as you'll soon discover, & strong case can also be made for
1 +1=1.
No wonder teachers are often asked what ‘modern mathematics? is all about.

All four of the above answers to the question 1 + 1 = 7' will eventually
find 8 place in these chapters. But before even starting on the details let's
take just a few moments for a description of long-range objectives. There are
many ways of trying to explaln what mathematics is really *all about.' One very
brief definition, having & certalin element of surprise, has over the centuries

received the blessing of several big-name philosophers. It reads simply,
‘Mathematics is & collection of games.!

Now those six words shouldn®t be expected to carry too nheavy 8 message, and

hopefully scme “riher explanatlon will be welcomed. It could run like this.

tIn order to play any game you first have to learn certeln basic

rules. The basic rules are the things you need to know even 10 under-

stand what particular game is being played. For the tamiliar, and
falrly dull, game of Tic-Tac-Toc, three basic rules sre more or

less sufficient.

1. Players take turns.
2. Put your mark in an emply space.

3., First three in a row wins.

You need to know thece basic rules if you're golu; to play 7ie-Tac-Toe
at all. But if this is 8ll that you kmow, you vould plsy the rame very

1
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badly. Here is an example of legal, but uninspired, play.

X X . XX XiX XXX

| o) o [o)(e} oo

It's & win for X, but the competition was pitiful. Nobody plays
Tic-Tac-Toe this badly for long. As in any other game, once you
know the basic rules you try to figure out the strategy of the game,
the things that are nice to know in order tc play skilfully. Here is
an example of strategy in Tic-Tac-Toe, Player X has taken the
tenter space and player ¢ & side.

O
X

X can now guarantee himself a win, in quite a variety of ways. The
logic is easy, and all Tic-Tac-Toe*players soon think thelr way through

victories such as thisg.

®) X0 X0
X X XX
®) 110

X 1s now prepered to win either in column one or in row two, and
0 will not be mble to block both. Knowing this strategy brings X

his win.

This sort of progress, from basic rules to strategy, is typical of most
games. It's true of chess, poker, tennis and almost &ny game you can think of.
It's also true of the various parts of mathematics. Arithmetlc and geometry,
which everyone agrees are parts of mathematics, involve both tasic rules and
strategy., Itfs the custom in mathemativs to cell the basic rules axioms and
the strategy theorems. But the pattern i{s the same, Starting from the basic
mules (or axioms) you try to figure out the higher strategy (or theorems) of
the gaume, so that you'll be able to play skllfully. The confusion in 'modern
mathematlics! {5 due to the fact that there are lots of cames other than arith-

metic and geometry, which are also parts of mathemati-s, but seldom resched the
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public eye until recently. Children are now becoming familisr with some of
these games, tut to parents who never had the chance they must loock strange.!

Hopetully, this longer explanation of what mathematics i{s will be helpful.
But to reinforce it, to get & clear view of the game~-like nature of mathematics,
a detsiled study of one of its parts is essential. In the follewing chapters
one of the most important, but lesser known, games of modern mathematics is
presented. It is called fsequence arithmetic.' Its basic rules are explained
first, as with any game, followed by exsmples of amateur play. Then some
strategy is developed and play becomes more skilfuil. In spite of its impor-
tance, sequence arithmetic is & much easler game than the more vamiliar 'ordinary
arithmetic,' and just where its place in the modern curriculum will eventually

prove to be, whether in kindergarten or college, makes interesting speculation.

Two other points should be mentioned before we start. First, the games
that constitute mathematics are not played Just for fun. There is definitely
some good emtertainment value in them, as mathematiclans will testify, but there
are also ways in which the games contribute to the progress of human affairs.
Exhibit'ng the possible areas of application of sequence sritimetic is a8 major
objective In what tfollows. It is also the most inmteresting part of the story.
And the second point is thls. In mathematics you play strictly by the rules.
Play ls honest. Strategy ls carefully checked to be sure that it is correct.
This policy of honest play is & strong tradition in mathematics, inspired in
part by the fact that so often the results are used in important applicetions.
Demonstrating this polley of honest play is another ms jor objective.

In swmmary, the objectives are:

1. to exhibit the sgame-like nature of mathematics;
2., to show that *math is honest;’

j. to show that *math is useful.f

It's all been said before, but gosls are important enough to rate frequent

repetition.




Chapter 2

THE BASIC RULES

2,1 The Rules Themselves.

The game of sequence arithmetic is played with sequences of zeros and oues.
Two sample sequences are these, which have been named X &and Y for short.

X 010011
Y 110101

The zeros and ones are called ‘values,! so X and Y are both six values long.
Donft try to sttach any 'mesning' to such sequences, not yet anyway. Just think
of & sequence as & thing to play with, like & tennis ball or 8 chess queen.

There are three basic rules to learn before plsy can begin. The first one tells

how to 'add! two sequences.

BARIC RULE I: To add two sequences, put one over the
other and deal with each pair of corresponding values
separately, making

0 0O 1l 1
0 $L 20 1

c 1 1 1

Making 1 + 1 - 1 is the only surprise, and it shows that, whatever 1 stands
for here, it isn't your old friend the number 1. As & first cxample of addi-
tion, ~ is the computation of the sum X + Y.

X o190 011
X 1 10101
X+3 110111

Addition {s certainly & simple enough job. Notice that the sum X + Y 1is
another sequence of zeros and ones, six values long, Just as X and Y are.
Another thing to nctice is that it doesn't make any difference which sequence
is put on top and whick &t the bottom. We just had X on top of Y, &nd
called the sum X + Y. If we put Y on top of X

Y 11 01 01
X o1 0 0 11

X .:'u‘.‘; ar
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the sum should probably be called Y + X instead. But computation produces
Y+ X 110111 4

which is absolutely identical with the X + Y sequence Jjust computed. Basically
this is because O + 1 and 1 + O bave both been prescribed as 1. Plainly
there's no need to fuss. Either sequence can be put on top, &nd wefll uge

X+Y and Y+ X interchangeably.,

Let's turn to the second basic rule, which introduces multiplication of
sequences,

BASIC RULE II. To multiply two seguences put one over the
other and deal with each pair of corresponding values separately,
neking

Olé'O
ol& w
N [y

This time there are no-surprises at all. As a first example of multiplication
here is the camputation of the product XY,

¢ 1 0 01 1
Y 1 1 01 01
XY ¢ 1 ¢ 1

Multiplylng sequences ig as easy &8 job as adding them. Notice that the product
XY is another sequence of zeros and ones, six values long, just as X snd Y
are, Notice also that once mgain it makes no difference which sequence is put
on top and which at the bottom. We Just had X on top of ¥, and called the
product XY, If we put Y on top of X

Y 1
X
tie product should probably be called ¥X instead. But computation produces
| 10 010001
which is absolutely identical with the XY sequence just computed. Basically
this ic because O X1 and 1 x0 have both been prescribed as O. Pleinly

there's no need to fuss. Either sequence can be put on top and we'll use XY
and YX {interchangeadbly,



These £irst two basic rules are simple enough, but if you find it easier
to remember words than symbols, here is a brief trsnslation. 'The only way to
get O inasum is from. O + O, and the only way to get 1 4o a product is
from 1 x 1.' We're up to the third and last basic rule.

BASIC RUL. III. To invert a sequence, replace
1 by O and replace O by 1.

This hardly needs an example, but here iz the computation of the inverse of X,
represented by the symbol X, which you read ‘X inverse.’

X 010011

X 1 01100

Notice that X inverse is ancther sequence of zeros and ones, six values long,
Just as X lis.

2,2 First Calisthenics.

Now you know all the basic rules of sequence arithmetic, and it's time for
some first effurts at playing the game., Start by computing these three sequen-
ces, using the X and Y sequences of the previous section.

¥
XY
¥ ¥

X +

The long bar over X + Y indicates the inverse of the X + Y sequence which
wes computed earlier. As a check on your aritimetic, the last two sequences
ought to be the same. In symbols,

X+Y=ET-
The equality symbol as used here means 'is the same sequence as.' So X+ Y
ought to have turned out to be the same sequence &s X ¥. If you disagree,

then check the basic rules and examples once more to see if youfve misunderstood,

because both of these sequences should have come out
0O 010 0 O.

A question often asked by beginners in sequence arithmetic is whether XY ‘anﬁ
¥T are the same. (X ¥ means the inverse of the product X Y.) To find out
in the case of our particular X and Y sequences, compute the inverse of XY

XY

LY




and compare it with X Y. They should be different. But then compute
X+¥
and compare it with X Y. They should be the same. In symbols
XY=X+7,
Now compute the sums

X+ X
Y+ Y
X+3X

and then try the products.

¥hen youfre finished youtll agree that sequence arithmetic has some very simple
features. Another simple feature is i{llustrated by the addition of a few
sequ-mes to their own inverses,

X+ X

Y+ Y

——

XY+ XY
and still another by these multiplications.

X X

Yy

Maling these various computations may begin to suggest some strategy, or theory
of the game of sequence arithmetic, but wefll postpone theory until the next
chapter. Before leaving cur X and Y sequences, here is & {.nsl set of
arithmetical calisthenics, intended mostly as a limbering-up exercise.

X+ XY
XY+XY
XY+XY
These three sequences should turn ocut i{dentical. Then try three more.
XY+XyY
(x +¥)(X +7)

XY+X¥Y
These should also agree amongst themselves. If you disagree, double-check
Jour computs&tions.

o
-
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2.3 The Shortest Sequences.

I
N
-
X
i

As further calisthenics let!s s -itcih to some very short sequénces, first
taking the shortest of them all., Our X and Y were six values long, but any
length is suitable, the rules remaining the same. There are only two sequences
of length one. One of them is

and the other is
1

and it almost seems like flattery to call them sequenccs at gll. It's & simple
Job to prepare addition and multiplication tables for these miniature sequences.
Here is the addition table.

+ 1
0!/ 0 1
I1j1 1

It tells you that O+ 1 is 1, end that 1 +1 is 1, r1d so on. This is
all very familiar to you by now. Complete the following multiplication table

yourself.

It's also reasonably clear that O and 1 are inverses of each other, and that

‘about exhausts the computational possibilities of these sequences.

Gradusting just slightly, there are only four seguences of length two.
Call them @, P, Q and I. (Read § as OH.)

H oL e
- o~ O O
- O+ O

With these little sequences computations can be done in your head. To get ‘
P+Q, Cforexample, we can Just look at P and Q, and apply Basic Rule I.

P+l 1

You can see that P + Q has turned out to be the sequence I.

P+Q=1I




And what is P Q? looking at the P and Q sequences again, and applying
Basic Rule II, leads quickly to

P QOO

50 that P Q has turned out to be the sequence .
PQ=¢

These two results are recorded in the addition and multiplication tables below.

+] g PQI Xx|¢g PQ I
¢ ¢ ¢

P P I P ¢
QiR I Q $ Q
I I

A few other entries have also been made. These entries claim that

Q+Pal RI=Q
P+P=rP gra=¢g
Q+ P =24q QP=¢

and you should check to see if you agree. Then supply all the missing entries,
completing the tables. Each place should be filled with ¢, P, Q@ or I.

There is alsc an inversion table for these little sequences,

g P QI
- Q

The entry which has been made claims that the inverse of P 1is Q. Do you
agree? Supply the missing entries, writing either @, P, Q or I 1in each
empty place. As you complete these three tables you will be forming some im-
pressions of the strategy, or theory, of the game of sequence arithmetic.

For a final limbering up take the sequences of length three. There are
exactly eight of them, and let's name them as follows.

g o0 o0 o0 D 01 1
A 001 E 101
E O 1 0 F 1 10
C 100 I 111

10

RTINS DY SN

L oxdd



The sddition and multiplication tables for these sequences are somewhat larger,
of course. A fev entriesc are included below, but most of the laber is left

to you.

D EF I

o W o> 6
(B = B I O S
- W oo W
o m m ala

H oYW O O W Bt

The inversion table for these sequences is simpler.

D E F I

H B MDD 0 W P> GIX

© W\ B 6 e

v e > Blx

|¢ A B CDETF I

w w e w|w
QS e W0

Compiete it.

-lIF

At this peoint you can consider yourself a skilful amateur at the game of

_sequence arithmetic.

11
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Chapter 3
ELEMENTARY STRATEGY
‘3.1 Only Two Distinct Kinds of Column.
From your first attempts to play this gawe perlaps you're drawing some .

conclusions. Youlve used vequences of length one, two, three and six. Any
length can be used, from one upward, the basic rules remsining the same. But
in any one version of sequence arithmetic 81l sequences should have the same
length. In other words, don't mix different lengths.

Now we come to the matter of strategy, or, &s it's called in mathematics,
_theory. We'll develop & short list of theorems, just a part of & much longer
list which Ls recorded in the literature of mathematics. ¥You'll learn how to
prove these theorems, and later we'll put them fo work in applications. The
theorems arc true for sequences of any length, and wefll use different lengths
at different times for examples. Whatever the length, two sequences are very
important. One of them contalns all zeros, no ones, and we'll call it $.

(Read 1t OH.)
¢g: all O's

The other sequence contains all ones, no zeros, and we'll call it I.
I: all l's

The practice calculations of Chapter 2 may have suggested to you what can
be expected whenever a sequence is multiplied by ¢, but herefs one further
exsmple to mmke the picture totally clear. Plck some sequence and call it A.

I'il choose this one.
A: 011010
To multiply A by ¢ we put @ under A, as usual
g: 00000 O0.
The product comes out ’
Af: 000000 .

and 1tfs identical with @. Surely everybody begins to believe that the product
will come out § no matter what sequence A we start with. In other words, we
suspect a theorem, a first plece of strategy for the game of sequence arith-

metic.

13
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THEOREM 1. A = g.

In this brief statement of what we suspect to be true, the letter A stands
for 'any sequence st all,' Trenslated into English prose the theorem becomes,
"When any sequence at all {s multiplied by @, the product is $.* How can
we be sure this theorem ig true? Actually, a proof is very easy. Look at the

example again. The thing to notice is that the first two columns alone tell
ithe whole story. The other four columns are merely duplicstes. If we chose

an entirely different sequence for A, we'd get exactly the same two distinct’

kinds ot column, the first two that we have in our example.

A Oll...
g o0o0....
Apj o00....

In these two columns the product A comes out zero. So, 1t will always come
out zero, in every column, because all other columns are duplicates, This
definitely proves that A¢ comes out a solid sequence of zeros, no ones. In

symbols, AP - @.

It has taken quite a few words, and some patience, té prove Theorem 1,
which may have seemed perfectly obvious from the start. The reason for this
patience is partly thal, in mathematics at least, it pays to be very careful.
But there's g more immediate reason, too. The easiest way to prove lots of
the theorems of sequence arithmetic is by this idea of duplicating columns.
The spirit of our proof's, for a while, will be, 'How many distinct kinds of
column do we have to examine?® For Theorem 1, only two distinct kinds will
8ppear, and that®s true of this entire chapter.

Now we'll turn to a companion theorem, which is also discernable in the
opening examples. Theorem 1 concerns multiplying a sequence by ¢. What
happens when a sequence is added to I? Take any segquence at all, snd call
it A. Let's choose just the first two values of A and leave the rest open

for a moment,

A:Olco-nun.

Add I <to this sequence. I ig Just
It 111111111

8o the seguence comes out (remember, 1 + 1 . 1)

A+I: 11 . ueaeen

1k :'é?




and it's identical with I, at least in the first two columns. 3But salmost

at once you realize that it won't make any difference how the A sequence is
completed. Either 0 or 1 will go into each open position and the new
columns of computation will just be duplicates of the two columns we salready
have. The sum A + I will be & solld sequence of ones, no zeros. It will be

the sequence I. This is our second theorem.

THEOREME. A+I=Io

In this theorem, as in Theorem 1, A can be any sequence at all.

Since we're doing so well with the @ and I sequences, here is another
pair of compsanion theorems which involve these two special sequences.

THEOREM 3. A + ¢ = A.

mﬁmh- AI-’-'-A.

The proofs of these two are left to you. Just follow the patiern by which
Theorems 1 and 2 were proved. As in the earlier pair, A can be any sequence
at all. Even so, only two distinct kinds of column can appea: .

3.2 Theorem Guessing.

Now let's break away from ¢ and I for s moment to pick up another pair
of simple companion theorems. You may have guessed these two also in your
practice sesslon. Take any sequence at 8ll, and call it A, perhaps the same

A we used 8 moment a8go.
A: 011010

To calculate A + A, you put A under A,

x

011¢C10

and eventually get the sum,
A+A: 011010

wvhich may be revealing enough for you to guess how to finish our next theorem.

mi. A+A—' .




If you can't guess, then the completed theorem appears at the end of this
chapter, along with otlLer results You will be asked to guess shortly. For
example, calculating A times A should suggest the companion to Theorem 5.
Can you guess it?

ms. M. [

If not, see the completed theorem at the end of this chapter. As usual, this
pair is true for eny A sequence at all, and once you've guessed the nissing
righthand sides, the proofs are easy. (No matter what sequence A s, only
two distinet columns appear in the computation of A + A or AA.)

Next, let?s figure out some of the strategy, or theory, of playing with
inverses of sequences. The idea of inverting a sequence is simple enough; you
Just swap zeros for ones, and cones for zeros. So, there ought to be some simgple
theorems involving inverses. To start ug off, complete this one.

THEOREM 7. @ = , and I = .

Unlike our first six theorems, in which the sequence A can be ‘any sequence
at all,' this just points out the inverses of our two special sequences @ and
I. To return to the earlier spirit, take any sequence at all, and cell it A.
We might choose the first two values, leaving the rest of the sequence open for
later choosing.

P

:Olcotco

Invert the sequence,

-A-: lo L) . ] ] L]
and then invert the inverse.
==
A: Ol . [ ] e . [

Notice the two bars over the A. Each bar says 'invert what's under me,' so
A means the inverse of A, while A means the inverse of A. Now you can
finish choosing the A sequence, and complete the calculstion. Whatever you
choose, it's easy to guess the theorem, true for any A sequence at all,

THEOREM 8., A = .




Before gradusting to bigger things, here is a final pair of companion theorems,
true for any A sequence at all, and provable by the method of ‘only two dis-
tinct columns.' Complete them if you can.

THEOREM . A+ A = .

THEOREM 10. AR

#
-

Simple as these first ten theorems are, they have an important role to play in
fur “er developing the strategy of the game of' sequence arithmetic, and in
making applications. To close up this chapter here is a summary of our Tele-
mentary strategy,' including the théorems which were left unfinished back along
the way. Remember, A can be 'any sequence st all,®

Theorem 1. AP = @.

Theorem 2. A+ I = I.
Theorem 3. A+ § = A.
Theorem 4. AI = A,

Theorem Y. A+ A = A,
Theorem 6. AA = A.

Theorem 7. $ = I and I = {.
Theorem 8. A = A.

Theorem 9. A + A = I.
Theorem 10. AR = @,

PROBLEM. Using the following {incomplete) A sequence
A 01

and the special seguences

¢ 000000
I 111111

compute the first two values of each of the following seguences.

Ap [
A+ I I
A+ @ A

-

AI A
A+ A A+ A

AA AA

17
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You uow have the only two distinct kinds of column which can appear no matter
how this A sequence i completed, or even if an entirely different A sequene-
ce is chosen. Sequences which are identical in these two columns will be iden-
tical for 'any A sequence. at all.! Camparing A¢ and @, in these two
columns, we find they agree. Comparing A + I with I, in these two columns,
we find they sgree. This is how Theorems 1 and 2 were proved. Now make sim-
flar comparisons (of A + @ with A, and of ATl with A, sand so on), there-
by proving Theorems 3 to 1C.




Chapter 4

INTERMEDIATE STRATEGY

4.1 Only Four Distinct Kinds of Column.

Now that you've seen some theorems which are true for any sequence A at
all, & fairly nstural next step is to look for theorems which are true for
any pair of seguences. These are not usually so easy to guess, so we'll follow
the way which our mathematical ancestors have cleared for us. To begin, you
could choose any pair of sequences you wish. Call them A and B. An excel-
lent choice is this pair, for reasons which will soon appear and which you may

guess. These are only four values long.

A o011l
B Cl01

First calculate thelr sum and product
A+ B
AR

and thelr inverses.

wi i

Then calculete these four sequences.

>
> +
wl Eﬂ wl w

A+
(Inverse bars arce made Just long enough to stretch over the sequence to be
inverted. Tnus, A+ B means the inverse of the sum A + B, while A means
the inverse of the product AB. You will see even longer bars in later chapters.)
Now, if you've completed the above computations successfully, then A + B and
A E should be the same. They should both be

1000

so that, at least for our special pair of A and B seguences, K_:—g, {which
is known 85 the inverse of the sum) and A B (the product of the lnverses)
have turned out to be the same sequence. Next, compare AB with A + B,

They should both be

17
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so that AB (known as the inverse of the product) and A& + B (the sum of

the inverses) have also turned out to be the came sequence. Let's also take

8 moment to notice two things that are not true. Many sn amateur at sequence
aritlmetic has assumed that & + B « A + B, and that AB = & B, Notice that
in your computations sbove both of these ere false. Those camputations seem to

be forecasting thils pair of theorems.

THEQREM 11, A + 8 - 4 B.

THEOREM 12, AB - A + B.

At least, these theorems are true for my choices of A and B.

‘ Now we came to the Important point. We chose sequences of length four, so
naturally there are four columns of tomput&tion in the sbove work. If you
choose longer A and B sequences, then you'll surely have more columns of
computation. But, no matter which two sequences you choose for A and B,
even If they are a hundred values long, computing R+ B, A B, AE and A + B

85 I've sugyested herc will not produce any new kind of column. You'll get

more columns, but they'll all be duplicates of these four. The four columns

here are the only distinct kinds there are. That's because, whatever sequences

you choose tor A and B, the two top entrics of ecach column must start the

column of't' in one of these four ways

0011
0101

and the top two centrles of & column determined what haprens all the way down
that column. Think it over, but only four distinct kinds of column are possitle,

regardless of how A and B are chosen, and the four kinds are exactly what
we already have. We can deduce thet Theorems 11 and 12 are true, not only for

our speclal choices of A and B, but for eny A and B segquences at all,

This method of only four distinct coluymns, though simple, is powerful.
We'll use {t to provide honest proof's of a number of theorems. First letts
take a pair of companion theorems that were mentioned inrormslly way back when
basic rules I and II were first introduced. When two cequences are being added
1t*s entirely immaterial which sequence goes sbove the other. The sum will be
the same either way. To be absolutecly precise it was suggested that we might
distinguish betwgen A + B and B + A, saying that when A is put sbove B
then the sum is called A + B, and when B is put sbove A, then the sum s

.
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called B + A. That would be clear and neat. But the fact that such fuss has
ne cosputational significance is the content of Theorem 13.

THEOREM 13. A+ B = B + A,

The same remarks apply to products, and you could guess the companion of
Theorem 13.

THEOREM 14. AB = BA.

As usual, A and B stand for any peir of sequences. Thege theorems Are soO
easy to believe that it seems almost silly to write out proofs. Neverthelessg,
Just to be safe, here is how the proofs look, using the same A snd B se-

quences a8s before.

A 0011 B 0101
B 0101 A o011l
A+B 0111 B+ A 0111
AB 0001 BA 0001

Comparing A + B wlth B+ A, and AB with BA, we curcly lind that they
agree. For these particular A and B sequences Theorems 13 and 1l are
secure. But to repeat, other choices of A and B might lead to more columns
of computation, but they can't possibly lead to new kinds of columns. The four
columms we have here are the only four distinct kinds there are. OQur proof for
this A and B pair covers all other A and 3 pairs also.

The content of these twu‘theorems mist seem terribly fobvious.! Unless
you've grown accustomed to the spirit of modern mathematics, you may even ob-
Ject to dignifying them as theorems. But the point is, that theorems are strat-
egy, and to play the game of sequence arithmetic honestly, it's important to
1ipt strategy which we know to be correct. Then, if we play according to our
1ist, we know welre safe. The policy in mathematics is, "Better safe than
sorry,' and mathematicians have been led to this policy by hard experience,
All too often, playing by intuition instead of by proven stirategy, they've run
into logical disaster., Intuition is great stuff, and should be worked to its
limit, but whenever possidle it should be checked by honest logic, Here we'll
carefully 1ist all proven ctrategy, and then we'll play by our list.
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&.2 The Four Basic Products.

Now we come to & small nva;anche of theorems. All of them invalve four
faxous and basic products; nasely, AB, A5, AB snd A B. The proofs of these
theorems will be much easier if we examine these products first. Take the
usual A and B sequences, -

A 0Cl1
B ci101.

Calculate the inverses,

w2t

and then the four famous products.

&6

k2l

A
Notice the reculting pattern. Esch product takes the value 1 in oniy one of
our four columns. But between them the four products mansge to supply a 1

for each column. The patiern can be used to simplify the job of proving
theorems such s this.

THEOREM 15. AB + AB = A.

Everything needed for the proof is already aviilsable. Adding the products AB
and AE should product the sequence

0011

which definitely is the same as A. And to repeat once more, should you use
other A and B sequences than mine, then AB + AF should still agree with
A, because the computations above produce the only four distinct kinds of
column that A and B sequences can generate, In these four columns AB + AB
agrees with A, so it always will, whatever sequences you choose for A and
B. That's the method of only four distinct columns. Apply this simple, but
powerful, method to the following avalanche of theory, all of which is true for
any peair of sequences A and B, Try proving these in Yyour head, Jjust looking
at the four basic products up sbove, but witho. further penmanship. If that's
too much headwork, then put the computations do . on paper, but be sure to prove
them all, one way or another,

22



THEOREM 16. A + AB = A.

THEOREN 17. A + B = A + 4B,
THEOREM 18. A + B = (AB + AB) + AB.
TEEOREM 19. AB + A B = A.

THEOREM 20. (AB + AE) + (RB + A B) = I.
THEOREM 21. (A + B){(A + B) = AB + AB.
THEOREM 22. (A + B)AB = AB + AB.

: . . : e
In several of these theorems parentheses are used to designate which compute-
tions have priority. Do computations inside the parentheses first.

4.3 Only Eight Distinct Kinds of Column.

Now letfs stretch the method of distinct columns once more, by proving s
few theorems that are true for any three sequences A, B and C. Take these

three specisl sequences first.

A 00001111
B 00110011
C 01010101

There's a fairly obvious pattern to these sélecticns. And that pattern is
useful, because it provides one neat way to guarsntee that the eight columns
of zeros and ones which are already beginning to shape up w.ll be the only
eight distinct kinds that are possible from three sequences A, B and C.
You can choose longer sequences for A, B and C, and get more columns, but

any nev column will duplicate one of the eight we are starting to develop here.
You should convince yourself of this before pushing onward. Try sttaching
more values to A, B and C. Any new column you form will be & duplicate of
one of these eight. This fact is important because it means that whatever we
prove for these special A, B, C sequences will hold for any three sequences
at all. This is the method of only eight distinct kinds of column. Let's

put it right to work. First compute

B+ C
and then multiply by A.

A(B + C)

a3



Next get the two products

AC
and f'inally compute their sum.
AB + AC

Unless you've mede an error in arithmetic you should find that A(B + C) and
ABQ+ AC have come out identical. Both should be . -

00000111

and that suggests a theorem. Since both of these sequences are the same for
our special choice of A, B snd ¢, they will alsc be the same for any other

choice,

THEOREM 23. A(B + C) = AB + AC.

As usual, there ls a companion theorem. Computing these five sequences

BC
A+ BC
A+B
A+ C
(A +B)A+C)

you should ageln discover a palr of identicsl sequences. The companion theorenm

reads

THECREM 2. A+ BC - (A + B){(A + C).

and {t's true for any three sequences A, B and C.

To close up this chapter let's apply the method of only eight distlinet
.amio to 8 pRir of theorems which are cruclal for our work in the chapters

. cude The first one concerns 'double sums.!

THROREM 25. A+ (B+ C) = (A + B) + C.

This is sometimes called a fshift perentheses? theorem, and it¥s easy to see
why. The parentheses desighate which sequences sre to be added first. On the
left, B + C should be computed first, and then A should be added to the sum.
On the right, A + B should be computed first, and then C should be added to
that sum. The theorem guarantees that both orders of procedure lead to the

b
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same final result. I'm sure that you're more than willing to believe this
theorem, but in the interest of safety take a few moments to apply our method
af only eight digtinct columng.

A 00001111
B 0110011
C 01010101
B+C ) S .
A+ (B+C)
A+B
(A+B)+¢C

The £ifth and seventh seiuences should be identical, and Theorem 25 is proved.
The companion of Theorem 25 is another *shift parentheses! theorem, but with
products {n place of sums.

THEOREM 06, A(BC) = (AB)C.

And needless to say, the proof is easy by ithe method of only eight distinct
kinds of column. If you need further practice at writing zeros and ones, then
compute BC, A(BC), and so on. Theorem 26 will stand up to the test. Further
opportunities to apply this method will be provided in the next chapter.




Chapter 5

ADVANCED STRATEGY

5.1 New Strategy from 0Old.

After the falrly hesgvy dose of thecry in the prsvious two chapters it
would probably be good psychology to offer you a few applications. Certainky
you have a right to know why this game of sequence arithmetic was invented,
and what it's currently good for. It you're desperate to see the applications,
turn st once to Chapter ©. But if you can stand & final (extra heavy) dose,
thls chapter will rinish our penetration into the theory of sequence arithmetic.
Then we'll glve applicatlons our undivided attention. And if our recent efforts
cause cpectres of clxteen or more distinct kinds of column to float across your
imaginations, in a dense fog of zeros and ones, let me quickly reassure you.
Such methods are feaslble, but we're going to turn to a different technique of

proof for our last theorems. We will use the strategy we aslready have to de-

velop more advanced strategy. This method of getting new strategy from old is
by far the best way for proving'some of the theorems of this chapter. For
otlier theoreme the old method of distlnet columns may still be the easier, but

wefll use the new method anyway Jjust for the experlence.
As u flrst example, we know by Theorem 13 that
A+B =R+ A

so that two sequenves may be added in either order. Duppose we have three

sequences to add, c¢all them A, B and C. Then by Theorem 25
A+({(B+¢C)-{A+B)+C.

This 'chift parentheses? theorem says that we can add B to C first, or we
can add A to B (irst. 7The final sums will be the same. Could we even add
A to C first? I'm sure you puess yes, and maybe you see how to prove it.
Applying Theorem 13 to the sequences (A + B) and C, we can lengthen our

last result to

A+ (B+C)-{(A+B)+C=C+ (A+B8)
and now shitting parcnthescc (n the rightmost member

A+ (B+0C)2(A+B)+C = (C+A)+ K

This shows that in udding A, Ik and C it makes no differvnce which pgir of

sequences we decide to add topgether flirst, B and ¢, or A and L, or




C and A. Moreover, having done this first addition, what remains is to add
the two sequences that are left, such as A and (B + C). But we know that
any two sequences can be added in either order, and so we deduce that any three
sequences A, B and C may be added in any order we care to take them. The
sum of three such sequences is usually written without any parentheses

A+B+¢C

" to show that tne order of addition is entirely immaterisl. Let's call guch a
sum & 'double sum,!

If we turn next to triple sums
A+B+C+ 0D

and to even longer sums, it's & natural guess that the order of computation is
still immaterial. Hopefully, the following theorem ig true.

THEOREM 27. Double, triple, and longer sums such as

A+B+C
A+B+C+D
aril so on, may be computed in any order.

The proof’ of this theorem presents a new type of diffieculty. The trouble is

that sums can come in an endless variety of lengths, and we have to handle all
lengths. For situations of this sort s one-step-at-a-time procedure proves to
be useful. To illustrate, suppose that we knew the theorem to be true for sums
involving five sequences. As a& next step we could consider sums of six sequen-

ces, such as this one.
A+B+(C+D+E+F
One way of ta kling this sum is to add the A and B sequences f{irst.
(A+B)+C+ D+ E+F
Thic lemves us with only five sequences, and so from here on the order of com-
putation wonft matter. But now suppose we begin again by adding D and F
together first instead of A and B. Is it possiblc that the final result
will de different? To t'ind out we return to the five-sequence sum we already

have. Since the order of camputation in that sum doesn't matter, let's choose
to take sequence D right after A and B.

(A+ B) + D+ ete.

fole!
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The shift parentheses theorem instantly converts this to
A+ (B + D) + etc.

which is & different, but equal, five-sequence sum, in which B + D is com-
puted first. Now let's change our minds. Af'ter computing B + D 1let's take
sequence F next, with A being postponed until later.

(B+D)+F + etc.
Again shift parentheses and you have
B+ {D+F)+ etc.

This sum is still the equal of the others we've had, and now D + F is the
first sum computed. So the question of a moment ago is answered. Adding D
and F first leads to exsctly the same final result we would get by adding A
snd B first. And the same sort of proof spplies no matter which pair you
want to add together flirst! The resulting sum will equal our original

(A+B)+C+D+E+F.
You may want to choose a few pairs and explore the details yourself.

Now we come to the maln point. We've just proved that if five-sequence
sums can be computed in any order then six-sequence sums can also be computed
in any order. But these lengths serve only as an example. The idea of our
proof works just as well for longer or shorter sums! What has actuslly been
proved is that grafting an extrs sequence to & sum doesn't upset the applecart.
It the order of addition was immaterial before, then it remains immaterial
after the graft. This is the crux of the cone-step-at-s-time method. For in-
stance, we do already know that sums of three sequences (double sums) can be
computed in any order. The same is therefore true when there are four sequen-
ces invelved. And if four-sequence sums can be computed in any order, then the
same will be true of five-sequence sums. And so on it goes, up to sums of any
length. You will want to think qver the detsils of this proof of Theorem 27
fairly carefully, and to fill in details which were omitted for brevity. But
basically it's an honest proof, and it certainly makes heavy use of earlier
strategy. Needless to say, there is a companion theorem.

THEQREM 28. Double, triple and longer products
such 8s

ABC
ABCD

and so on, may be computed in any order.

29 )~
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The companion is proved in the same way. Although these two theorems are not
exciting, they are important. You'll be seeing many multiple sums and products
from here on. :

2.2 Some Speciasl Producis.

We already know that for any three sequences A, B and ¢

. - - [ J

A(B + C) = AB + AC.
That's our Theorem 23. The A sequence multiplies B + C on the left, and it
miltiplies both B and C on the right., It isn't hard to guess how this
theorem can be stretched for longer sums. First comes

A(B+ C+ D) -AB+ AC + AD

which i8 true for any four sequences A, B, ¢ and D. Here's a quick proof.
There are two double sums involved, but we don't have to worry about the order
in which we compute them, so start by giving B + ¢ & temporary aliass, X.

Then
A(B+ C+ D) =A(X+ D)
= AX + AD
=A(B + C) + AD
= AB + AC + AD

The proof is already finished, and you'll have to admit it was speedier than
tackling sixteen distinct kinds of columns would have been. We've simply used
Theorem 23§ twice. It's anocther example of using strategy already proved to )
develop more advanéed strategy. The same idea can be applied again to stretch
the sum another notch, and then another, and so on. It's the one-step-at-a-time
method 8gain in sction. The indicated result is. our next theorem.

THECREM 29. For any sequences A, B, ¢, b, K,

etce.

A(B+ C+ D) = AB+ AC + AD
A(B+ C+D+E) =AB+ AC + AD + AE

and so on.

Since products can be taken in either order, &ll the products in Theorems .’}

and 28 csn be reversed.

£y -,
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(B + C)A = BA + CA
(B+C+ DA =BA+CA+DA
(B+C+ D+ EJA=<BA+CA+DA+EA

b

So whether the sums on the left precede A or follow it, the A sequence
appears in each part of the right hand sum. We can now stretch Theorem 29 in
a second direction. As & first example, consider (A + B)(C + D) and give
C+ D a temporsary alias, X.

(A + B)X

= AX + BX

= A(C + D) + B(C + D)
AC + AD + BC + BD

(A + B)(C + D)

il

The result ls & triple sum. As one further example,

(A + B+ C)X

AX + BX + CX

~A(D+E+F)+BD+E+ F)
+C(D+ E+F)

= AD + AE + AF + BD + BE + BF + CD

+ CE + CF

(A+B+C)D+E+F)

I

and the sum on the right includes nine sequences. Here is the indicated theorem.

THEOREM 30. For any sequences A, B, C, D, E, etc.
(A + B)(C+ D) - AC+ AD + BC + BD

(A+B+C)(D+E+F)=AD+AE + AF + BD + BE
+ BF + CD + CE + CF

sand sc on.

PRORLEM 1. Prove A(B+ C+ D+ E) = AB + AC + AD + AE by giving B + C the
temporary salias ¥ and then using Part 1 of Theorem 29, which we

have already proved.

PROBLEM 3. Simpllify Theorem 30 (Part 1) for the special case when C = A and
D - B. (Notice that this amounts to & second way of proving

PROBLEM 2. Simplify Theorem 30 (Part 2) for the special case when F

Theorem 21.)

PROBLEM 4. Simplify Theorem 30 (Part 2) for the special case when D = A,
E-B and F - C.

31




2.3 The Eight Basic Products.

Now that we have the crucisl, though unexciting, Theorems 27 to 30 behind
us we can move more quickly to accumulate the remaining items of advanced
strategy that will be needed.

THEOREM 31. A(B + C) = ABC + ABC + ABC.

- -

*
The proof of this by the method of eight distinet columns is simple enough, but
for variety, here is & proof which uses our earlier accumulated strategy. Check
each line carefully to be sure you agree.

A(B + C) « AB + AC
= ABI + AIC
= AB(C + C) + A(B + B)C
= ABC + ABC + ABC + ABC
= ABC + ABC + ARC.

Theorems L, 5, 9, 23, 27 and 28 all see action. Can you find where? Next
comes & pair of theorems involving the double sum AB + AC + BC,

THEOREM 32. AB + AC + BC = ABC + ABC + ABC + ABC.
THEORFM 33. AB + AC + BC = AB + (A + B)ABC.

The proof of each of these will remind you of the proof just completed. First,

AB + AC + BC = ABI + AIC + IBC
AB(C + C) + A(B + B)c + (4 + R)BC
= ABC + ABC + ABC + ABC + ABC + ARC

= ABC + ABC + ABC + ARC.

It

And second, remembering Theorem 22 which eays (A + B)AB = A% + KB,

AB + (A + B)ARC

ft

ABI +.(AB + AB)C

AB(C + C) + (AB + AB)C
ABC + ABC + ABC + ABC
= AB + AC + BC.

The thing to notice is that, in all three proofs Just given, certain basic
products,

ABC ABC ARC ABC
play key roles. Introducing the I sequence as was done, and then replacing
I by A+A or B+ 5 or C+7T, whichever seemed best, led us to combina-

Y
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tions of these basic products. In proving other results concerning three
sequences A, B and C there are four other basic products which can appesar.

ABT ABC ASC ABC

wi

Some of these appear in the proofs of Theorems 3% to 36, which you are asked to

lttempt as problems. .
- THEOREM 34. AB + BC + CR = AB + EC + GA.
THEORIM 35, AB+ BC+ CA=ABC+ABC+ABCT

+«+KBc+ABC+ABC.

THEOREM 36. The sum of all eight basic products is I.

To the relatively innocent bystander the two sides of Theorem 34 must look like
inverses of each other. But they are equal in spite of appearances. DBoth
equal the sum of basic products shown in Theorem 35. Theorem 36 is one indica-
tor of the special role which the eight basic products play. It is 8 close
relative of Theorems § and 20.

A+A=1

iSIQ

»1

AB + AB + AB +
PROBLEIM 5. Prove Theorem 34 by showing that each side is the same combination
of six basic products. This aiso proves Theorem 35.
PROBLIM 6. Prove Theorem 20 in a second way, starting with
I=1II=(A+Z&)B+38)
and then using Theorem 30.
PROBLEM 7. Continuing Problem 6, prove Theorem 36 starting with

I = 1II = (A + A){B + B)(C + C).

FROBIEM 8. Prove Theorem 18 in s second way, sterting with

A+B=-Al +IB=A(B +B) + (A + R)B.

‘Y -~
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FROBLIM 9. For a further example of the method of only eight distinct columns,
begin by computing the following list of sequences, including our
eight basic products.

00001111
c0lilo0011
1010101

&
&
SR EE 2.2 %8 aam » o w >

gl
@l

AEC

(A + B)ARC

AB + (A + B)ARC
ABC

ABT

ABC

ABT

ABC

ABC

AB¢

ABC

Use these results to verify Theorems 31 to 36.




S.4 Four Last Theorems.

Finally let's pick up s few results which involve more complicated inver-
sions than wefve handled before.

THEOREM 37. The inverse of any sum is the product of
the separate inverses. The inverse of any
product is the sum of the separate inverses.

L -
For sums and products of Just two sequences this has long since been ectablished
in Theorems 11 and 12. Teke the case of a double sum, A + B + C. Since the
order of computation doesn't matter, we can choose to compute A + B first and
call the result X. Then

A+B+C=(A+B) +C=X+C=XC
=A+BC

- ABC

As usual, X is a temporary slias. The proof amounts to using Theorem 11
twice. For longer sums the idea is the same; Theorem 1l is used as often as

needed. As for products, the action is similar.

ABC“—*—(_AB_)C=.)EE=T{+E

= AB + C
A+B+C

Theorem 12 has been used twice. For longer products it would be used as many

times as needed. Let*s put Theorem 37 right to work.

THEOREM 38. (A + B + C)ABC = AB + BC + CA.

The proof i1s & neat bit of teamwork by earlier theory.

(A+B+C)ABC - (A+B+C)(A+F+70C)
- AB+AC+ BA +BC+CA+CB
= (AB + BC + CA) + (AB + BC + Ca)
But the two double sums in parentheses are equal, by Theorem 34. If we call
both of them X for a moment, and remember that X + X : X, then the whole
side collapses to AB + BEC + CA, and Theorem 38 is proved. Here is a final
pair.

35
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THEQREM 395. ABC + (A + B+ C)AB + BC + AC

« ABC+AEC+ABC+ABC.

THEQREM 40. [(A + B)AB + C](A + B)ABC
«ABC+ABC+ABTC+

ABcC.

The proof's will be left as problems, for those hardy souls who have survived to
this point, which is as far as we'll penetrate into the theory of sequence
arithmetic. There's much more in the literature of mathematics, but we have all
we'll need.

PROBLEM 10. Prove Theorems 39 and 40, either by the method of eight distinct
columns or otherwige,

FROBLEM 1l. Can you complete the following array of sixteen basic products
which would be involved in problems of four sequences of A, B,

C and D%
ABCD ABCD
ABCD ABTD
ABTD ABCD
ABCoD ABTD ABCD

5.5 Abstract Mathematics.

Welve come u long way from the basic rules of sequence arithmetic, You
now know quite a few fine points of the game, forty theorems' worth, sc you're
no longer an amateur player. Moreover, play has been honest; we've sometimes
labored hard Just to 'prove the obvious,? to be sure that we stay on honest,
logical ground. So the first two objectives announced in Chapter 1 have had s
turm. Psrt I has concentrated on those two objectives. It has been an example
of what is called pure or abstrsct mathematics. In Part IT we'll turn to our

third objective. The subject will become applied mathematics, and you'll see

that sequence arithmetic is a very useful game. In closing up this first part,
& few f'inal questions may be sppropriate.

Q. What is sbgstract mathematics?

A. It's 8 collection of games., Sequence arithmetic is onc of those
HAMK'S o«

Q. In sequence arithmetic what do O, i, 4, x, and - mean?

A. Notilng yet, but see Part II.

-
-

36 ¢




Q.

Does 1 +1 really equal 1 ?
Yes, in sequence arithmetic it really does.

Doesn't that contredict 1 +1 =27
No, because 1 + 1 = 2 {5 part of a different game. You expect
different games to have different rules.

Are our theorems really tirue? Lots cf them look peculiar.

Let's just say that our theorems are provable. FProvability is a sort
of relative truth. Our theorems are provable from the basic rules,
50 they're just as true' as the basic rules are. Provability is the
only kind of truth that concerns the abstract mathematician.

Does sequence arithmetic have any other neme?
It is often called a Enclean arithmetic. George Boole was one of the

early developers of the game.
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Chapter ©

FIRST APPLICATION: STATEMENTS

6.1 Sequences &s Truth Tables.

Qur first application will show you why sequence arithmetic has often been
called the tarithmetic of logic.' It deals with statements. Everyone knows
pretty much what a statement is, but here welre going '~ +<ke 8 falirly narrow
view, so let's start with an example that shows what we .1y about and what we

dontt. Here is a statement.
"My dog has fleas.?

This statement is vbrief, grammatical and frank Hglish prose, but the only

thing that is goiny to concern us is whether the statement is true or false.

Other things such as spelling and punctuation won't matter. True or false is
all that counts. But isn't it possible that my dog may have fleas at one time
and not at enother? Maybe he gobc & bath, or perhaps & more interesting host
passec by and the fleas migrate. Suppose that my dog gets s dally inspection

for one weck. The results are recorded; t, for true, means he has fleas.
ttt ittt

Clearly this is & popular dog. The lmportant point ls, hLowever, that in this
row of truecs and falses we have & seguence. This sequence doesn't use zeros
and ones; it uses t's and f's, But putting 1 in plece of t and O in

place of fslse, the sequence becomes
1110101

and its meanlng is still perfectly clear. The dog is free of fleas only at the
Wednesday and Friday Inspections. Since our only interest in statlements is

whether they are true or ralse, thls sequence of zeros and ones containg all we

want 32 know about the statement

My dog has fleas.!?

Ecsentially it's the sequence, not the English prose, that we need, The sequence

of true and falgse valueg that goes with & statement will be called the truth

table of that statement.

With only one statement to play with, the action in this chapter would be

limited, so here ls a larger supply; tour statements named A, B, C wund D.
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My sunt hss i'less.

My brother has rleas.
My cat has fleas.
My dog hLas {'lees.

OO0 I 2

Fleas wlll be with ug throughout the chapter so relex and enjoy them. To set
ug up l'or some later vamputations, suppoce that Inspectlons carried out on the

same seven days reterred to sbove rroduce the followlny truth tatles.

A: 0010100
B: 0010001
C: 0110001
D: 1110101

There are obvious impli-ations but let's leave them to you to deduce. Notige
that the ssme letter ig being used to represent both a statement and its truth
table, Thatts because, &8s far as wefre volng to bLe concerncd, the two are in-
Svparable. Two gspeclal stetements called P snd I will also play roles.

Let's Introduve these simply by thelr truth tables,

¢ O00CVCOo0O
I l111111

which maves § @ ctatement that lo slways false and [ & statement that ig
alway:s Crue (on Lhese same seven days).  You csan translate ¢ and I 1Into

sultal Lo kEncdlon prose ir you want to.

0.0 Or, And, HNot.

Mzt we aoh in what ways statements can Le vombined to make more -omplica-

ted statements.  One obvious example is,
My aunt hLus fleas or my brother has f'leas.t

Here two of our statements have been connected by or. One or the other of these
relatives s in trouble, maybe cven both, The possibility that both may have
flegs indlvetes that the word or plays s double role in language. Sometimes it
means 'either or both' and someiimes fone or the other btut not both.' The ususl
decision at 'uis point is to use an inclusive or. This means that when two
statements are connected by or, the combined statement is cousldered true when
elther or toth of the parts are true. In our case, referring: btack Lo the se-

quences A and B, the cambined statement then has this “ruth table,

A+B: 001¢C101

k o

Q :4 ~

RIC
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The only way for the combined statement to be false 1s for both of Its parts to
be false, and that seems to happen here more often than not. It tskes only &
moment to realize that or is now playlng that same role that addition plays in
sequence arithmetic, If we add the sequences A and B by the first basic

mule of seqQuence arithmetic, making

0 0 1 1
L . £
0 1 1 1

then we pet correct true-false values for an inclusive or combination of state-
ments. {(The only way to get & 0 is from O + 0.) For this reason our latest
statement and its truth table will be called A + B,

A+ B: My aunt hac fleas or my brother has f'leas.

You can begln to scee an tarithmetic of statements' developing, with + meaning

or.

You cen also probably guess what comes next. Another familisr way of com-

bining statements uses and. For example,
'My aunt has fleas and my brother has {leas.’

Common useye tells us that the combined statement is true only when both parts
are true. In our case, referving back to the sequences A and B, the com-

bined statement has thic truth table.
AB: 00100C00

Only on Tuesday did both people have fleas. Surely this ic reminiscent of se-

quence arithmetic, with and playing the role of multiplication. If we multiply

the sequences A and B by the second basic rule of sequence arithmetic,

making
0 C 1 1
X 0 X 1 x 0 X 1
C 0 0 1

then we get correct true-false values for an and combination of statements,

¥or this reason our latest statement and i{ts truth table will be cgllrd AB.
AB: My sunt has fleas and my brother has tleas.

The arithmetic of statements is growing. The next ster g to consider a state-
ment such &g

My aunt doos not have fleas.?




Referring basck once more to the sequence A, it's easy to produce the truth
table that we need here.

A: 1101011

It's {mpogsible to escape noticing that not has the same effect on s truth table
that inversion has in sequence arithmetic., If we invert s sequence by the third
basic rule, replacing L by O and O by 1, then we do get the correct
truth table for our latest statement. For this reason the statement will be
called A,

A: My aunt does not have fleas.

The three operations of Sequence arithmetic have now been translated into the

language of statements.

PROBLEM 1. Translate these symbols to English prose,

CD:
C +

D:
C:
and this English prose to the symbols of seguence arithmetic,

: My aunt has fleas and oy cat has fleas,
: My brother does not have fleas.

¢ My aunt has fleas or my cat has f'leas.

6.3 Translation.
Moving.on to slightly more interesting translations, how does
AB:
sound in English? If you come up with '™y sunt has fleas, but my vrother does

not' then you're right. The word but plays the same role as and in places like

this, at least In so far as truth or falseness is concerned. Try another.
ABC:

A direct, but wordy, translation is *My aunt has fleas and my brother has fleas
and my cat has fleas.' But surely anyone would -horten that to "My aunt and
brother and cat all have fless.' Here are some more abireviated but sccurste

translations.
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Either oy aunt doesn't have fleas or my
brother doesn®t.

A+ B: It isnt't true that one or both of them has fleas.
A BCD: Only the cat and the dog have fleas.

Exanine them carcfully to see If you agree.

To discover when one of these statements is true &nd when false, one sys-
tematic way is to use the symbolic translation. Take the last statement as an
example. From the truth tables A, B, C and D the computation of A BCD by

the rules of sequence arithmetic is routine.
A BCD 0100000

So fOnly the cat and the dog have tleas! is true just on Monday. For the next
to last statement the truth table is

A+ B 1101010
and so 'It isn't true that one or botu of them has fleas' i1s false on Tuesday,
Thursday and Saturday.
FROBLIM ’. Match these statements with the symbols which follow by writing
one of the letters & to 7 Ybefore each statement.
: All four have tleas.
It isn't true that all four have f'leas.

At least one of them has fleas.

3

: Only the dog has {leas.

"

Exactly one of them has f{'leas.

: My sunt has fleas, and so does elther my brother or

my cat or my dog.

None of the four has flesas.

.

Either my aunt or my brother has fleas, and so does
elther the cat or the dog.

S - ABCD W-ABCD

T . A{(B+ C+ D) X -A+B+C+0D

U - (A + BYC+ D) Y-ABCD

vV ABCD 7 ABCD+AEBCD+ABCD+ABCD
L5



PROBLEM 3. When ic the statement 'It isn't true that they all have fleas'
falge?

FROBLEM L. When ls the statement "Ei{ther oy aunt or my brother has fleas, and
sO “oces either my cat or my dog' true?

6-1" Slmplification-

Now that you've had & little practice at translating back and forth be-
tween the languages of English and sequence arithmetic, let's apply the strat-
egy, or theory, that wefve worked out in earlier chapters. As a first example
take the redundant

My aunt has fless or my aunt has t'leas.?

which clearly translstes to
A+ A,

Since weeknow that A + A _ A, our redundant statement simplifies to
My aunt has fleas.!?

Of course, in this staggeringly simple example the strategy of sequence arith-
metic is more s luxury than a necessity. A toddler could make this simplifica-
tion without leaving the field of knglish prose. One important point bears
repeatlng, however. The original redundant statement and its simplification
are clearly not identleal. They differ in lengi., runctuation, and many other
ways. But, and this is the point, both have identical truth tubles. As far
8s truth or falseness goes, there's no difference between them. Here's s

second casy example,
'It isn't true that my aunt does not have fleas.!
After spotting the double negpative you'll surely decide that this ic Just
'My aunt has fleas.!®

all over ugaln, Just by optlcal ingpection. But what is the symbol for this
redundant statement? Isn't it Jjust A? And don't we have a theorem which
guaranteec that K = A 7 This theorem is again s luxury rather than a neces-
sity for this particular problem, but at least theory and common sense both
lead us back to statement A,

Graduating now to some slightly more challenging examples, consider the
statement
My aunt and brother both have fleas, or else

she docs but he doesntt.!

Y




Perhaps you can see &t once how that statement can be simplified. But whether

you can or not, here ic how it translates,

AB + AB

which will strike & familiar note. According to Theorem 15, such & sequence is

identical with A Itself,

AB + AB - A

in so far as truth is concerned. So once again we can simplify what we have to

'My aunt has fleas.'

Next compasre these two statements.
)

B: Neither my aunt nor my brother has fleas.
A + B: It isn't true that one or both of them does.

You csn choose between them strictly on the basis of brevity or uvlarity or
personal taste, because our old result about the inverse of 8 sum and the
product of the inverses (Theorem 11) shows they have identical truth tables.

The same is true of this pair.

(A + B)(C + D): Either my sunt or btrother has fléas,
and so does either my cat or my dog.

AC + AD + BC + BD: My aunt and cat both have fleas, or else
she and the dog do, or maybe it's my
brother and cat, or maybe my brother

and dog.

This time Theorem 30 comes to our rescue. The English prose is getting more
complex, and translatlon into the symbols of sequence arittmetic begins to

look more like & nevessity than a luxury. Our theorems can be 8 help in com-
paring and cimplifying complex statements. Of the above pair (A + B)(C + D)

seems both simpler and clearer.

PROBLEM 5. Write elther A, I or § on the lines provided to show what the

following statements can be reduced to.
Either my asunt does have fleas or else she doesn't,
My aunt has fleas and she doesn't Lave tleas.

My sunt has fleas sand my suni has i'leas.

Either my aunt has fleas or else she and my brother botn do.
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PROBLEM &. Do any of these statements have the same truth table?

&) Either my aunt or my brother has fleas, and one or the

other doesn't.

b) Elther my aunt has fleas and oy brother doesn't, or

vice versa.

¢) Either my aunt or my brother has fleas, but it isn't true
that they both do.

PROBLEM 7. Do these two statements have the same truth table or not?

a8) My sunt hss fleas but ny brother does not, or else he doeg
but the cat doesn't, or maybe the cat does and my aunt

doesntt,

b) My sunt doesn't have fleas but ny brother does, or else he
doesn't but the cat does, or maybe the cat doesn't and
ny aunt does.

6.5 The Lady or the Tiger,

For & final example let?s get away from fleas and puzzle out this ancient
dilemma., A captured warrior, the prince of his tribe, is given the following
sporting chance by the chief of his captors. 'You see these two doors. Behind
the one is my daughter, behind the other a hungry tiger. I shall have either
one of these¢ doors opened, whichever you choose. To help you I will rermit you
to put one statement to one of these two guards. He will answer simply true or
false. However, I warn you that one of these guards never speaks the truth,

whereas the other never lies.!

What statement should the warrior make? At first glance his chances look
gbout fifty-t'ifty, but every student of loglc has thought his way through at
least one old chestmut of this sort, so watch how the apparent fifty-fifty can
be turned Into a sure thing. There are two basic statements with which this
warrior is concerned. First, pointing to one of the two doors, he could say,

A; This {s the lady's door.

(Notice that A now represents a different statement; It doesn't refer to
Sunts and f'leas anymore.) The other basic statement is, pointing to one of
the two guards,

- B: You tell the truth.

L8

1!




B et Y Yy

Qur warricr's problem is that he doesn't know whether these important state-
ments are true or false, If it occurs to him to try all the various combina-
tions of true and false, then he might be led to consider these truth tables
for A and B.

A: €011
B: 0101

There are four possible cambinations, and each of these four short columns dis-
plays one of those combinations. In column one, both statements are false; in
columns two and three, one is true and one false; in column four, both are

true. Put in another way, our warrior's problem is that he won't know which of
the four columns he's picked, when he chooses one door and one guard. Eventusl-
ly, it might occur to him that it would be awfully nice if he could arrange for
the‘guard’s answer to be as follows.

Guard’s answer: 0Q1 1

Call it wishful thinking if you want, but if our warrior could formulate a
statement which would bring these replies (depending on which door and which
guard he points to) then his problem would be solved. Because this truth table
is identical with that of A, so that & reply of *false' comes Jjust when A

is false, and a reply of ‘true' cames just when A 1is true. He can believe

the answer he gets, at least for distinguishing doors. (He still won't know

whether it was the truth-teller or the liar who answered, but presumably he

doesn't care.)

But what statement can possibly schieve this miracle? Take the four
columns one by one. In the first, the guard's answer is to be *false.' But
in this column B happens to be false, so it's the liar who is giving this
snswer. If the liar sasys 'false,! then the warrior's statement would have to
be true, so the truth table for the (still unknown) warrior's statement would
have to lead off with & 1. In the second column the guard's answer is still
tfalse.' But here B is true, so it's the truth-teller speaking. And if the
truth-teller says 'false,’ then the warrior's statement would have to be false.
Argue {t out for the remaining two columns yourself. The truth table for the

warrior's statement would have to be this. Do you sgree?
wWarrior's statement: 1 001

So now we face the job of producing a statement which has a specified truth
table. If this brings recollections of Ythe method of only four distinct col-
umns® that got heavy use in Chapter 4, then youfre not far fram the finish.
One statement which has such & truth teble is AB + A B.

L9
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A + AB: 1001

Check thet by the usual ruleg of sequence arithmetic {f you have to, but this
is a sultable miracle statement for our warrior. Translating it into English
prose, we have 'This ls the lady's door and you tell the truth, or else it is
not the lady’s door and you lie.' If the guard fully understands this state-
ment, our man ls safe. At least, he can have the lady instead of the tiger.

If you enjoy this sort of thing, here is an easler one that you can figure
out in your head. An explorer ig in a region inhabited by two tribes. 'The
members of one tribe always lie, the members of the other amlways tell the truth.
He meets two natlves. ‘Are you a truth-teller?® he asks the tall one. 'Goom,'
the native replies. 'He says, yes,! explai:;s the short native, who cjcaks
English. '"Him big liar.' Which tribe dld each belong to? I doubt that you'll
need any sequence arithmetic to find the answer.

o6 Summary .

The cxamples of this chapter have obviously been light-hearted. Their
purpoce hun t.oen to chow the close rclationchip between sequences and state-
ments, and to sugpect how sequence arithmetic can be helpful In unsnarling the
logl of —omplex statements. It will no doubt be a long time vefore courtroom
trials and leglslstive aftalrs ure conducted in symbolic language but the pos-

clbility 1 not beyond the realm of cclence flctione.

Notlee particularly that, In this application, the ldeas of sequence
aritumetl- ploek up & kind of 'meaning,' 0 meanlng false, 1 meaning true,
+ omeanings or, and co on. And the mysterious 1 +1 = 1 means simply that
when platements A and B ure both true, then su Is A + B. It amounts to
our declelon to use an iucluslve or. If we had voted for *elther onc or the
viher tul not both,' then L 4+ 1 would be 0 instead of 1. 5o the mystery
sulved, and 8o so0 of'ten hapjpens, the solution provers to ve extremely clmple.

ot two altojether dif'fercent=looking: solutlions, however, cce Chujpters 7 and 8,




Chapter 7 '

SECOND APPLICATION: SUBSETS

7.1 Sequences as Membership I:ists.

Suppose there sre Just ten prisoners in 8 small Jeil. -The following table
shows which of the ten belong to certain groups, or to use the officisl term to

certain subsets. For convenlence the subsets have been named A, B, C and D.

12345678910

(Redhemds) A: 0110010001

(First offenders) B: 0011111100
(Six-footers) C: 1000110001
(Females) D: 0001011000

The cymbol 1 means that & prisoner telongs, end O means he doesn't. Prison-
ers ., 3, 0 and 10 are redheads, the others are not. Prigsoners 3 to 8
are first offenders, and so on. Each row of this table amounts to a membership
11t for that particular subset. Obviously cach row is also a sequence of O's
and 1%s, and we arc going to use the letters A, B, C and D to represent
thece cequencec. So these letters will be dolng double duty, representing both
the subsets and the sequences, but this won't cause us any trouble. The se-
quence is the membership list ti - tells who belongs to the subset and who
doesn't, and this questlon of membership is the only thing sbout the subset
thgt will concern us. Lots of other subsets can be lmagined, and the approp-
rinte membership lists vould be worked out from the Jall records, but two spec-

tal subsets descrve speclal mentlion.

Lo skhs 678910

I: 1111111111
g: 0000000000

Subset I includes sll the prisoners. It Is the master subset (or set) from

which the other subseic are drawn. It may seem odd to cali It & subset, but it
does no harm. Subset @ ls called the Yemply subset® and It's easy to see why.
It has no members st all. It may also seem odd to cull this a subset, but it's

cugtomary and useful.

FROBLEM 1. What can you say about prisoner © ? What alout prisoner ¢ 7
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7.2 Union, Intersection and Complement .

Which prisoners are either regheaded or first offenders? To put the same
Question in another WY, if we merge the subsets A and B into & cingle sub-
set, who belongs and who doesn't? Here is the membership list which provides
the angwer.

(Redhead or first offender) 0111 11 1101

Check {t yourself. Prisomers 1 snd 9 are the only ones who fail to
Qualify. This new subset is less exclusive than either A or B, To be
adnitted to the merger it's enough to belong to A or to B or to both. The
only way to fail {s to be in neither A nor B, 1like priscners 1 gand g.

I hope this reminds you of the addition process of sequence aritimetic. If we
add sequences A and B wé get exactly the membership 1ist for our merger,

A+B: 0111111101

And this is no coincidence. The only time we want & O here is when A and
B have matching O'%s. And that is precisely what sequence addition offers ug.
The merger of two subsets A and B is called their union. We represent it
by A + B. Next, which prisoners are both redheaded and first offenders? Here
is thg membership list which provides the answer,

(Redhesded first offender) 001001 00 00

Only prisoners 3 and 6 qualify. This new subset is more exclusive than
either A or B. To be sdmitted you must belong to both A and B, and that
will remind you of the multiplication process of sequence arithmetic. If we
multiply A and B we get exactly the membership list for our latest subset.

AB: 0010010000

And this ic no coincidence., The only time we want & 1 here is when A and
B have matching 1's. And that is precisely what sequence multiplication
offers us. This new subset is called the intersection of A and B. It is
also known as their overlap, since it picks out the common members of both.

The intersection of A and B is represented by AB. One operation of se-
quence arithmetic is left, inversion, and its application to subsets isn't hard
to guess. Which prisoners are not redhesded? Herc i{s the appropriste member-
ship list.

(Not redheaded) 1001101110

To belong here a prisoner must not belong to subset A, and vice versa. This
leads to a complete reversal of the O's and 1's. Inverting the A gsequence
certainly brings this same result.
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A: 1001101110

Our uew subset ls called the complement of A, or sometimes the inverse. It
is represented by A.

And so we come to the conclusion that whenever subsets are merged, inter-
sected or complemented, their membership lists are added, multiplied or in-
verted according to the rules of sequence arithmetic. A few more examples will
be encugh to make this crystal clear. The subset of prisoners who are red-
headed, but not first offenders (in A but not in B), hsas this membership
list.

AB: 0100000001

Only prisoners . &and 10 qualify. The subset of prisoners who are redheaded,
not first offenders, and temale ({n A, not in B, im D) hes this member-
ship list.

ABD: 0000000000

Nobody qualifies. This subset ls empty. If we amsk for redheads who are also
either first offenders or very tall (in A and also in eiiher B or c)
then the list

A(B+C): 0010010001

shows that prisoners 3, & and 10 are available. Once a subset has been
described In the symbolism of sequence arithmetic the computation of its member-

ship list bevomes routine,

PROBLEM .. (Comjute membership lists for the following subsets and describe the
membership of each, {(For example, AD includes male redheads.)
AD:
AECD:
AD + AD:
(A + B)(C + D):

+ >
gl wi
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T«3 Subset Diapgrams.,

In large scule subset problems the use of sequences as memtership lists,
and of sequence arithmetic for computing membership lists is neat, natural and
nacessary. In a wide variety of modern applications, however, only a few sub-
gels see action at any one time, For such broblems, lnstead of ldentivying
subsets Ly membership lists, we can use an ancient device called the subset
disgram. Imsgine some master set I, perhaps our ten prisoners or perhaps
some much larger sei. Also imsgine each member of I rerresented by a number

Or a spot inside this square.

To identify any sutset of I we can now drew an interior boundary enclosing
the numbters or spots which represent the members of that subset. For instance,
if we gather the members of some subset A in the left half of the square,
then a vertlcal boundary down the center encloses the members of A in that

hall. It also puts the non-members of A (members of A) into the other half.

One advantage of sulset diasgrams already bLegins to appear. They of'ter usg a
clear pleture of how various subsets are related to each other. Merging the

A and A regions, ror example, we certainly seem to have the entire square.
This is how dlagrams illustrate our A+ A = I theorem. It 8lso seems crystal

clear that the A and A regions have no overlap, which i{llustrates AR = ff,

With cubsets A and 2 neatly sorted to left and right, surpose we also
bring the members of some subset B to the top halt' of our square. A hori-

zontal boundary through the center encloses B and B.

i
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Various unions, intersectlons and complements now bevome easy to visumslize.
Take these Pour ramous intersections tfirst. They will remind you of four

basic produzts.

AR AB AB AE
Mombers of both A and B sre ln the upper left quarter, where the A and
B reglong overlap; membors of A but not of B are at the lower left, etc.

Together thooe four merge to the master set I, nicel; illustrating theorcm 20,
AB + AB+AB+AB=1
The union of onl. Al and A5 produces the left half of the sguare, which

still reprecent  cuvczt  A. Thic illuctrates AB + AB = A. 'The other famillar

unions have Lhuoe disgrams.

2|
*
o]

FI B

Since shading of wny subsel leaves [is complement {or inverse) unshaded, and
vice verss, we now have 8 pleturesque view of quite s number of theorems. Com-
ure the dlagrams off A + B and A E, {or instence. They are complements,
whiclh Illustrates A + B - A B. Or compare the diegrams of A, AB snd A + B.
The flrst two together muake the last, illustreting A + AB = A + B. A few
similar results are suppested in the following problems. This sort of ploetur-
wwque divylay of unlons, Interccetion and complements 1s what has made subset

dlagrams so popular.
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FROBLEM 3. As this diagram shows, prisoners 3 and 6 of our opening example
fall in subset AB, Indicate whether the others fall in AB, B or A3 by
writing their numbers in the sppropriate quarter.

3,6

FROBLEM 4. Refer back to the diagrams of this section to properly shade the
fellowing.,

AR + AB AB+ A B A+ 3B A+3B

FROBLEM 5. Compare the dlagrams of AB and A + B. Which theorem does thisg
illustrate?

PROBLEM 6. From the diagram of A + B note which three of the four quarters
of' our square sre shaded. What theorem does this illustrate?

FROBLEM 7. From diasgrams of A+ B and A + 5 deduce
which parts of our square are in (A+ B)(A +B),
and shade those parts in the disgram at the
right. Which theorem does this illustrate?

7.4 More Disgrams.

For problems involving three subsets A, B 8nd ¢ 1 écpular procedure
is to group the members of € in a belt across the middle of the diagram,

splitting cach of the four regions we already have into two partis.




Keeping subset A In the left nhalf of the dilsgram and subset B in the top
half, as before, it isn't difficult to locate various slmple unions and inter-

sections. Here are some typical ones, shaded as usual.

AC A+ C A+T AT
“The master set 1 has now been split into eight parts. The significance of
each part is eacy to discover, and it will came as only & mild surprise that

these e lpght parts correspond to eight basle products.

ABC | ABC 6 2
ABC | ABC 7 3
ABC | ABC 5 1 ’
ABC | ABC 4 0

Lt Lecomes tiregome writing these products over and over, so each of these

elphit subsets ls glven a number, from O to 7, as shown at the right. (The
popularity of this unusual number pattern will be explained In Chapter y.)
Notl.e Cirst that cubset 7| is ingside A, B and €. This mekes it the home
vt ABC, s shown. Similarly, subset ¢ is inside A and B but outside C.
This makes it the home of ABC. Check the other six yourself, to be sure you

ggree with thelir produet lsbels.
Dlayrams of this sort offer us pleasant artist?s impressions of our var-

ious theorems sbout A, B and C. Take rirst A, B + C and their inter-

section.

A B+ C A(B + C)




You can see that the subset at the right is the overlap of the first two. Sub-
sets 5, O and | make up this overlap. Now teke AB, AC and their union.

AB AC AB + AC

You can see that the subset at.the right is the union, or merger, of the first
two. OSubsets 5, 6 and 7 make up this union. We have come upon 5, 6 and

7 In two different ways and obtained s plcturesque view ot Theorem 23,
A(B + C) - AB + AC
as well as of Theorem 31,
A(B + C) - ABC + AXT + ABC

As a second example let's watch AB + (A + B)ABC develop. (See Problem 7 tor
the dlagram of (A + BJAB or (A + B)(& + E).)

(A + B)AB C {A + R)ABC AB AR + (A + B)ABC

Subsets "3, %, © and 7 are included in the finished product. Now watch
AB + AC + BC grow.

e e

AB AC BC AB + AC + BC

Again {t's the subsets 3, 5, & and 7 which are included. We have ~ome to
Lthese four in two different ways and achieved a pleturesgue view of Theorenms 32
and 33.

AB + AC + BU . AB + (A + B)ABC

AB + AC + BC - ABC + ABC + ABC + Abv

Pl




The most popular way to achleve & four-subset disgram is by a vertical
btelt down the center of our diagram, with the members of a fourth subset D
inside the belt and the members of D outside.

—

Keeping the aress for A, B and C Just as before, it is still easy to locate

the various intersections and unions. Watch (A + B)(C + D) develop.

A+ B C+D (A + B)(C+ D)

Also watch AC + AD + BC + BD develop.

AC AD BC BD unicn

Notice that in both these examples the final result is the same, as Theorem 30

guarentecs.

(A + B)(C+ D) - AC+ AD + BC + BD

It 1s possible to develop diagrams for more than four subsets, but they become

falrly couplicated and we'll leave them to the professionals.

PRORLEM 3. Show that (A + B + C)ABC includes six of the cight baslic areas
by shadlug each of the following disgrams.

ABC B0 A+B+C  (A+3B+CAEC

Wnich of our theorems does this illustrate?
59



FROBLEM 9. Show that AB + BC + CR and AB + 3C + CA both include the same
six numbered subsets as in Problem 8.

&1
3
8

union

AB BC CA union

Which of our theorems does this illustrate?

PROBLEM 10. Show that ABC + (A + B + C)AB ¥ AC = BC 1includes four of the
eight basic areas. (Refer back for diagrams of AB + AC + BC
and A+ B+ C.)

——_1_4
AP + AC + BC AB + AC + BC A+B+¢C
(A+B+C)AB+AC+BC ABC final

Which of our theorems does this illustrate?

FROBLEM 11. One of the following two subsets is identical with the subset of
Froblem 10, Use subset dlagrams to discover which one it is,.

a) [{A+ B)AB + C](A + B)ARC
b) [(A+ B)AB + CJA + B ABC

c) [(A+ B)AB + CJ(A + BJABC




PROBLEM 12.

FROBLEM 13.

FROBLEM Llh.

Each of the sixteen parts of this diagram corresponds to one of
sixteen basic products. Prisoner 3

(of our opening example) falls into 3
subset A BTY, and prisoner 6
into subset ABCD, as shown. Write
the number of each of the other

prisoners in the appropriate part.

Which basic product represents that

part of the diagram?

Show that A{B + C + D) includes seven of the sixteen parts by
shading each of these diagrams.

A B+ C+D A(B+ C + D)

Also show that AB + AC < AD includes exactly the same seven
parts.

AB AC : AD AB + AC + AD

A possible objection to the horizontal and vertical belts we have
used to represent subsets € and D is that they leave € and
D disconnected. (Each consists of two separate strips.) This is
not & very impcrtant objection. Major users of subset dlagrams
don't mind the disconnectedness. Perhaps the most emusing way to
connect up the separate parts of € is to convert our square

into a cylinder by bringing its top and bottom edges together.

top edge-—-‘ !
bottom ed.ge—-—U

A



PROBLEM 14. (Continued)

Subset € can occupy the front face of the eylinder and € the
rear face. Where will A, B, D and their inverses end up?
This still leaves D disconnected. How can its two paris be
brought together?

Te5 A Mouse-~-Maze Problem.

The main purpose of this chapter has been to show that certain problems
involving subsets are applications of sequence arithmetic, with the ldems of
union, intersection, and complement playing the roles of sddition, multiplica- !
tion and inversieon. When only & few subsets are involved at one time the re-
lationships between them are neatly exhibited by subszet diggrams, with the
result that sequences (playing their roles of membership lists) seldon =mee
avtion. In more complicated problems, with many subsets involved, disgrams
become more contusing and It is probebly wise to work directly with the se-
quences themselves. In such cases calculating machines will probadbly be used

for the computations. Muachines handle the longest sequences with relative ease.

The ldea of subset, t'inds a place in almost all parts of mathematics, so
welll close up this chapter with two typlcal small-scale examples. Suppose
twenty mice are introduced one-by-one Into a maze. If 8 MOuSe comes out the
correct exit he ls rewarded with a piece of cheese; otherwise he gets nothing.
kach mouse makes three trles. With A, B and C representing: the suwsets
Wat make successful r'irst, second snd third iries, respectively, the results
are as shown here at the left., (At the right ls & reminder of ouy basic

pattern. )
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The dlagrum provides a simple summary of the results and cen be used to angwer

nuerous questlong sbout the experiment.




Question: How.many mice were successful every time?
Answer: Look in ABC. Three mice,

Question: How many were never successful?
Answer: ILook in A B C. Elght mice.

Question: How many didn't make it until the final try?
Answer: Look in A B C. Four mice.

Question: How many made it on the very first try?
Answer: Subset A oQccuples the entire left half. PFour mice.

Question: How many mede it on the second try?

Answer:

Question:  How many on the third try?

Answer:

Questlon: How many mice had at least one success?

Answer:

Question: How many times was a succesg followed by a success?

Answer:

Question: lHow many times was a roeceess followed by a fallure?

Answer:

This exumple torders on the cubject of vprobability in which subsets play &

consypleuous part.

T o6 é Protlem of Detevction.

Suppose that the following somewhat improbable facts are truc.

a) The murderer wore a2 tall sllk hate.
1Y ALL Irishmen are redheaded.
¢J  The butlerfs name ls OfBrien.
d) Redieads never wear hats.
what can be deduced? Presumably a good detective would unravel the faectls |
no time at ali, but as a last example ot subscts let's stretch things out

bit, uslng thesc subgets.

e Irishmen H. Hat-wearcrc
R, 'The butler Me The murdoerer
R . I{l dl 1€y 1:‘.
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Subsets B and M have only one member each, and our problem is to discover
whether or not B and M are the same. Fact (a) puts subset M inside of
subset H. For situations of this sort s slight varistion of our subset dia-
gram is more convenient. Instead of dividing up our square in the now familiar
patterns, we Just draw loops surrounding the members of each subset. To show
that M 1is completely inszide H, we simply put the N loop completely inside
the H loop.

Take fact (d) next. It guarantees there is no overlap between redheads and
hat-wearers. So subsets R and H must not overlap on our disgram, which
now grows to this.

©
9

Coming to fact (b) we find that the whole of E is inside R.

o]
)

Finally, fact (c) puts the butler somewhere inside F.

¢
Im
0

The disgram now shows clearly that B and M are not the same man, which was
probably crvstal clear in the first place. It may not be current practice to
use subset diagrams in criminel investigations, but you can at least see the

6




possibilities. In a complicated case 1t may even be useful to bring membership
iists into action, and let computers do the detective work.

PROBLEM 16. Assuming that

a) no one who is going to & party ever fails to brush his hair,
b) no one looks fascinating, if he is untidy,

¢) opium eaters have no self-command,

d) everyone who has brushed his hair looks fascinating,

e) no one wears white kid gloves unless he is going to a party,
f) & man is always untidy, if he has no self-command,

make & deduction which uses all these facts. (This is one of
many such problems created by Lewis Carroll, the author of
Alice in Wonderland.)

T.7 Summary. .

This chapter, like the last, has been intentionally light-hearted. It
has tried to show how sequence arithmetic is related to subset affairs. Notice
particrularly that the 1's and O's of our sequences have again been assigned
a 'meaning.' In our first application they meant true and false, and sequences

were truth tables. Now 1 and O mean member and non-member, and sequences
are membtership lists. And the mysterious 1 + 1 = 1 now means merely that
being in A and also in B surely puts you in the union A + B. Things that

lo0k so strange in abstract mathematics can look so simple in the spplicaticn.
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Chapter 8

THIRD APPLICATION: OSIGNALS

8.1 Sequences as Signals.

Now we turn to an application that will be given more extensive coverage.
Not tlmt statements and subsets aren't important, but thic third application
will get the lion's share of our attention because of a surprising twist that

it tskes. To begin, imagine that these six cards

Q [+ o

1 Q 3 4 4 t

are slipped, one by one, between 8 wire and s hot electrical conta:t,

r\\\l_ hot contact
wire L\\\J

card

Cardc ., Y and © have a hole punched in them, the others do not. o Lt
things are lined up accurately, the wire will touch the hot contact only when
cards o, o and © are In position. Centact will be made through the holes,
and current will flow in the wire. When cards 1, 3 and L4 sare in position
there {s ne hole, no contact, and no current. As the six cards are slipped

successlvely lnto pesition, the electrical experlences of our wire can be sum-

E

rized In this way,
010C11

where 0 stands for a c¢old wire (no current flow) and 1 ror & hot one. Our
electrical spparatus amounts to a sort of ‘card reader.' It converts a sequence
of cards, with holes or without, into a sequence of clecirleal hots and colds.
The wire carries s sort of electrical signal, and our sequence of zeros and ones
1z & record of that signal. In the chapter thic is the sort of role thal se-

quences will play. They will represent electricar ziynals.
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8.2 The +, x and = boxes.

The simplicity of ~onverting sequences to electrical form hag led to the
invention of devices for adding, multiplying and inverting sequences, according
to the basic rules of sequence srithmetic. For example, & *plus box'! will take
any two electrical sequences ac 'inputs?! (call these input seguences A and B)
and produce the correct sequence A + B as foutput.!

r

:_‘ + A + B
—

It takes each pair of values of the input sequences in turn aand generates the
correct output value. In the following example the successive steps are
0+0=0, 1+0=1, 0+1=1, and so on.

010011 ‘
+ e

The plus box is designed to perform this familiar additicn process. It pro-

duces a cold output only when both input contacts are cold. How it does this
is not something we'll go into here, but a few hints are otfered in Problem 1.
There is also & device which wetll call a "times box.! Tt takes two input se-

Quences, A and B, and generates the product sequence AB, value by value.

A“

B X — AB

For the same input scquences used sbove the successive steps sre O X 0 - 0
I s b3 ;

1xXx0:0, 0x1=%0, and so on.

010011

o X
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The times box is designed to perform this familiar multiplication process. It
produces & hot output only when both inputs are hot. Finally, we need some-
thing that inverts sequences. Calling it a ‘dssh box,! this one takes any
fnput sequence A und generates the ocutput K, value by wvalue.

In this example the successive steps are 0 = 1, 1= O, and so om.

Cmn] — | {mmw

These +, X and - Dboxes provide s way of doing the computations of sequence
arithmetic electricslly. If you're still wondering what they look like inside,
the ﬁnswer is that modern devices are made of tubes or transistors, and you'll
have to look elsewher: for the details. But it may be amusing for you to ex-
anine the followlins disgrams of old-fashioned +, X and - boxes and try to
guess which is which. You®ll probably need help even here, so don't forget
that for our purposes it doesn't reslly matter.

PROBLEM 1. Identify these old-fashiocned +, X and - boxes.

A (5[

= -

69

g

an



8.3 Electrical Machines: Analysis and Simplificstion.

Suppose we connect +, X and - boxes together to make more complicated
electrical machilnes. As &8 simple first illustration, let's figure out how N
Muchine 1 btehaves.

s

T

MACHINE 1

]

(Where wires are joined at a solid spot, as at the left of this disgram, it is ;
to be .auerstood that both are hot together or cold together. They carry iden-

tical sequences, or signals, and can be treated as a single wire.) Since there L
is only one input to the machine (at the left), we could simply ask what happens

when thal input is cold and what happens when it's hot. You can probebly fig-

ure that out im your head, but these two diagrams may help.

i 0

| = [
0 —

Each wire is labeled, with O if it's cold and 1 i1 it's hot. In the first
diagram the {nput ls cold; in the second dlagram the input is hot. But in both
cases the output isAhotE So whatever sequence of zeros and ones is fed into
Machine 1, the output will always be hot. This is & brute force method of
analyzing machine behavior, but it does work.

Now let's spply & more sophisticated analysis to the same machine. What-
ever the input signal sequence is, call it A. Then the sequences, or signals,
being carried in the various other wires can easily be lebeled.

. ] - _IJE_' e
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And the output is A + A. But one of the theorems of sequence arithmetic

guarantees

so our output here is I, a sequence of ones. Brute force and strategy agree;
the output of Machine 1 will always be hot, making it plain that the machine is
actually useless. We can get an slways hot output much more cheaply, Jjust by
connecting a wire to a wall outlet. The price of the dasti and plus boxes can
be caved. |

Analyzlng machines becomes more interesting when there are more inputs.

For example, what does Machine 2 accomplish?

[" +

A X
B MACHINE 2

L R

With Just two inputs we could apply & brute force method, making one input the
seguencee

0011

and the other Input
01¢01.

This would show us what happens in the only four possible situstlons this
machline can face. but (t's more eleszant to use strategy. Labelling the inputs
A and B, we proceed to identify the sequence, or signal, belng carried in

ga~h wire., The recults look like this.

|+ A+AB

e L
t + _ A +AB +8B

'
The (inal output is A + AB + B, Can this be simplified? The combination

A+ AB looks familiar, and checking our theorem list you wouid soon be reminded
(sce Theorem 16) that A + AB = A, for any pair of sequences A and B at
all. The final output of Machime 2, namely, A + AB + B, can therefore be sim-
plified to A + B, and the machlne can be replaced by a single plus box.

11
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The ~ther two boxes can be puf back on the shelf for future use,

or else re-
tumed for a refund.

As & third example, here is Machine 3. It has three inputs, A, B and C.

5
B =1 as
A + AB + AC
MACHINE 3
c X —ac

The sequences in all other wires have gls

© been labeled, and the output is
AB + AC.

But Theorem 23 says that AB + AC is the same sequence as A(B + C),

and so Machlne 3 could be replaced by the simpler Machine k.

B+

x A(B + C)

MACHINE &

These three cxamples nay be enough to suggest how the strategy of sequence

arithmetic is used to analyze and simplify electrical machines.

PROBLEM >, Label the sequence in each wire of Machlnes 5 &and o,

theorems do they illustrate?

Which of our

MACKINE 5 MACHINE 6




MACHINE 7

Show that the machine can be replaced by just one of our simplest

boxes {(+, X or =-).

PROBLEM 4., Show that Machines 8 and $ produce the same output seguence.

X 1 |
B - L_J__~‘ B + - rJ_ﬁ

MACHINE 8 MACHINE 9

PROBLEM %, Show that Machine 10 can be repla.ed by a single box (~, X or =-).

! MACHINE 10

(Where wires cross without a solid spot, as at the upper left of

this dlagram, there is no contact between them; they are insulated.)

PROBLEM 6. Analyze Machine 11 and then simplify it to & two-box machine.

X :§

e m
o B! MACKINE 11
SR A ) g NS NN + v
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4heay 4
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8.4 Electries! Machines: Design.,

letts turn now from the aualysis of given machines to some examples of how
machines can be designed for specific purposes. Once again we'll uge light.
hearted examples, but the spirit will be right. Take the problem of the nall
light which ic= supposed to respond to either of two switches, one upstairs and
oue downstalrs. If we suppose that the light should be off when both switches
resd off (see Diagram (§)) then it must come on when either one switch or the
other {5 turned to the on position (Diagrams (k) and (g)) and it will go off
sgain if both switches are turned on (Diagram (g)).

| N
ON -( >_
4 N\
OFFj |OFF [QEEJ
®

ON oN ON

im

QFF

c d

Think It ové?, and experiment with a real hall light if you have to, but the
light chould be on when the switches disagreeand off” when the switches agree.
Using A and B to represent the two switches, and using 0 for off and 1
for on, what is required for the hall light is & sequence, or slgnal, which
takes the value 1 whenever A snd B disagree, sand the value O otherwise.

This can be summarized as follows.

Switeh A: 0011
Switch B: 0101
Hall 1ight: 011 0O

Egeli column covers cone of the only four situstions that can occur. In the
center two celumns, tor example, switches A ‘and B dlsagree, so the hall
ilght should te on, In the other two columns the switches agree, and so the
light should be off. Only four columns appear because these represent the only
- Tour distinet situations which can arise. Now the problem Is this. What com-

- bloation of A and B behaves in this particular way? If you want to find

out for yourself, then turn back to Chapter &. In particular, notice once again

... oW the special products AB, AF, AB and A B behave in the four distineci

dnds of column we fuce, In particular, AT and AB behave iike thig.

I

AB: 0010
ABs 0100
h

~

Gadlim -

s i,] =



DT TSR L AT e e 0 R e M R R P

ST RS ST e e e T B o :
. N B Py IR

Thic suggests that a suitable sequence for the hall light will be the sum of

these two products.
AB+AB: 0110

Now that we have a formula for the hall light sequence, it's an easy Jjob to
diagram the appropriate machine. (lMachine l2.)

Switch X
A - hall light
+
MACHINE 12
Switch
B -
X

Label each wire yourself, according to the sequence it carries, and discover
that the output is really AB + AB so that this machine will properly control
the hall light. Of course, there are much cheaper ways to provide proper con-
trol for a hall llght, without using +, X and - boxes at all. Bul the point

here iz that we have desligned an electrical machine for a specific task.

Checking back to Theorem 21 you will find that (A + B}{(A + B) 1is the

same as AB + AB. This sugyests a second way in which a machine for hall lignt
control could be designed. However, a count of the number of boxes requifed
shows that lu each cace it takes five boxes to produce the cutput wanted, so
there ls no udvantage in using the (A + B)(A + B) machine as a substitufe.

But looking at Theorem .2 does suggest & simplificatlon. The sequence (A+ B)AB
is also the same as AB + AB and it requires only four boxes. One dash box can
be saved. Check the tollowing disgram of Machine 13 which produces (A + B)AR.

Label ecach wire according to the sequence, or signal, which it carries.

Switeh
A
+ hall 1ight
" ,
HMACHINE 13
Switch " _
B
[b]
~ b ]
£ .

s az et R,

RS 27
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Machines which produce correct hall light behavior will find g completely dif-
fereat application in the next chapter. ‘

B

Suppose we arrange that the hall light shall be on whenever the two
switches A and B agree, and off otherwise. That's Just the opposite of
what wefve Just timished arranging, and it's not the approved system, but once
in a while & hall light does get hooked up in this reversed fashion. The ap-
Propriate sequence for the light is now AB+ A B because this combination of
A and B tskes the value pattern we've asked for in the four familiar columns.

A: 0011
B: © ; 01
AB+AEB: 1001

Refer back to Chapter & again if you have to, but AB + A B is what we need.
-

And check the diagram of Machine 14, which produces AB AB as its output.,
Switch
A - ;F"““‘x
+ MACHINE 14
Swﬁg.ch - J Lx

Perhaps you'll recall that AB + A B is also the warrior?s statement in the
lady-tiger problem of Chapter 6. That problem and this medified hall light
problem are tlie same masthematical problem. They differ only in the ‘meaning?
assigned to the various sequences (truth tables or electrical signals).

Next consider the problem of s hall light that has to respond to three
switches A, B and C. If the light is off when all three switches read off,
then it will have to go on when 81y one of the three switches ig turned on. It
will have to go off agaln i any two switches read on, but must come on again
when all three switches reasd on. Think 1t over carefully, but the required

“behavior ls summarized In this table where, as usual, O means off aad 1

x;;;ﬁzﬁuns on.

| Switch &t 00001111 *
Switch B: 00110011 -
Seiteh ¢ 01010101

Hall light: 01101001 é
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Ccsn we design a machine which will cutput such a signal? If no inspisation
strikes instantly, then there is always the method of products. To produce
ones im columns 2, 3, 5 and B the basic products listed below will do.
Verify this by referring back to the eight distinct columns of Chapter &.

ABC 01000000
ABC 00100000
ABC 00001000
ABC 00000001

The hall light signsl can, therefore, be achieved by adding these four products
together.

AEC+ABC+ABC+ABC

But this would be a fairly expemsive machine, requiring elght times boxes, three
plus boxes and three dashes. Itts only human to hope for simplifications. Un-
fortunately, very little simplification is possible in this example. We could

regroup our four products inte two pairs,

(AB + A B)C + (AB + AB)C
which eliminates two times boxes. This also allows us to use two machines we've
designed before, for AB + A B and for AE + AB. The following Machine 15
shows big Foxes labeled AB + A E and AB + AB, You know what's inside of

them, or can easlly look back to find out. As usual, check this machine to be

sure you agree lt's correct for the Job.

&
-
®

MACHINE 15
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FROBLEX 7. Design a machine which has this output pattern.

FROBLEM 8,

FROBLEM 9,

A: 0011
B: 0101
Qutput: 1011

In words, the output is supposed to be hot except when A is cold
and B is hot., Ope solution, using basic products, is
o

Output = A B + AE + 4B

but this uses more boxes than are necessary. Find a design which
uses only tw 4, X or - boxes.

Design & machine which has this output pattern.

A: 00001111
B: 00110011
C: 01010101
Qutput: 00CO0O10Q111

Notice that the output is hot only when the majority of A, B and
C are hot. Four bagie products will surely do the Job here, but
find a design which uses only five +, X or - boxes.

Machine 16 has lost i{ts lsbels.

A —

B— p—— MACHINE 16

¢ —i

To f£ind out what‘it contains the brute force method of testing a1l
possible input combinations is used. These familiar sequences in-
clude the eight rossible combinations.

A: 00001111
B: 00110011
C: 01010101

The output sequence proves to be mogtly hot.,
Output: 011 1.r1 10

-

From this evidence can you diagram the machine? (Hint: There are
Just six +, X, - boxes involved.)

B
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8.5 Szmma;g.‘ o
So gpow O and 1 bave three tneanings,! the latest being cold for O
and hot for 1. And sequences also have three meanings; &8s truth tebles, as
membership lists, and as electrical signals. And the mysterifous 1 + 1 =1
has & third translation, as hot + hot = hot. The message of Chapters 6 to 8
Lss been that our abstract game seems to be perfectly modeled for applications
of three quite different-looking types. Historically it is the applications
which cume first, developing more or less independently of each other. Later
the deep analogy between them was gradually recognized and the abstract game
begen %o develop. Each application then served to help the others and strategy
grew quickly, another example of 'in union there is strength.¥ Progress {rom

applications to sbstraction ls characteristic of mathematics.

-7
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Chajter

DESIGNING A COMPUTER

J.1 DBluary Symbols for Numbers.
ry

Our story now takes & surprising turn, in the direction of fordinaryt
aritimetic, Ordinary arithmetic is & much betiler-known game than sequence
arithmetic, and 8 more camplicuted one. The pieces with which 1t ls played
are called numbers snd, llke any other game, it has its own basle rules and

gtrategy. Starting from such simple and traditional origins ss
1 +1-=2

the game progresces ultimately to the scphistlcsted heights of calculus, and
beyond., It wlll .¢ reassuring to hear, however, that only the vasement level
of that tow:rin- clkyscraper ol theory will be involved here.

The Ciprst things we will need are called the binary symbols for numbers.
Declmal © . ~uwi. are, of vourse, more popular, at least with human belngs.
Assl, ' “he symbols ¢ to 4 to the simplest numbers, the decimal system
il w oo Lhe Ldea of position value to bulld symbols for more complicated num-
ber.  As everyone knows pertectly well,

2h6d
representy the combinatlon
o X 1000 + %+ x 100 + 6 x 10 + 8 x L,
{he key symbols in this system are 1, 10, 100, 1000, and so on, the vaiue of

Lt he dlgit 1 increamsing tent'old with each shifrt to the lett. The binary sys-
{ef ls very similar. It uses only the digits 0 and 1, but position value

remalns the central idem. Here are & few of the key binary symbols, asccompanied

by .ielr Jdeclimal trenslatlons. Noticve that the value of' the digit 1 now in-

cresses tworold with each shift to the left.

Blinary Decimal
0 0
1 1
10 2
100 I
1000 8
' 10000 Lo
100000 3
&1

PR 1ORY



Just ag with decimnls, the binary symbols for other numbers can be fashioned by
choosing suitable combinations.

Bimgx Decimal

11 - 3=2+1

1¢1 5 e 4o+ 1
lo011 11 =8+2 + 1
11Q001¢ 50 = 32 + 16 +. 2

In the last example the three 1's translate to 32, 16 and 2, and
110010 1is an alias for the nunber we call decimal 50.

The idea of binary symbols is basically & simple idea. It can be extended
with very little difficulty to the other numbers of ordinary arithmetic. For
instance, a minus sign still denotes a negative number, soc - 1 0 {5 binary
for -2. And

.1l

epregents the same number as while

i
‘5:
.01

is an alias for %. Since we will be using integers only, there is no ilmumediate
need for detailed exploration to the right of the 'binary point.!?

PROBLEM 1. Translate from decimal to binary.

Binary Decimal Binary Decimsl
6 = 4 + P l_:)
T=s=4&4+2+ 1 LT
9 28

10 29

PROBLEM 2. Translate from binary to decimal.

Binarz Decimal Binagz Decimal
L0411 11111
1100 100100
10100 101101
1100 111111
8z

Lo
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PROBLEM 3. Suppose three subsets A, B and C have these membership lists.
(The top row gives cach member a number, from O to 7.)

01234567 =
A: 00001111 .
B: 0011¢C0C11 . ;
¢: 01010101
It's easy to discover that this puts one member into each of the
eight basic products ABET, XBC,ABTC, and so on. It's also *
easy to see that each member's number is duplicated in binary in a
the column underneath his number. (Under 3, for example, you ‘
find 01 1.) Write the number of each member in the part of our
standard subset diagram where he belongs. (Members 3 and 4  have
already been placed.)
3
4§
This explains the numbering pattern used in Chapter 7. You may
want to extend the pattern to two-subset or four-subset diagrams.
9.2 Binsry Computing.
Next let%s nobice how easily the sums and products of ordinary arithmetic
can be computed using binary symbols. For sums, the four basic facts are these.
0 0 1 1
+0 +1 +0 +1
0 i 1 10
The last of these is our old, familiar 1 + 1 =2 in binpary translation, and
. it shows that whenever we face the sum 1 + 1, we are going to have to fput
-——--dowt O and carry 1, Just as with decimal symbols the sum 5+ 7 =12 T3
. makes us fput down 2 and carry l.%' The technigue will lock very familiay
T80 you.  Here are a few illustrations.
| 1010 10101 101 , =
100 100 111
1110 11001 1100
83 -
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In the first illustration there are no carries at all. In the seccad there is
Just one, and it amounts to s binary tramslation of L + 4 - 8. The third ig-
volves seversl carries which can be similarly explained. You can see that

binary adding is a simple enough Process.

At

A somewhat ditferen' view of this matter of carries rates at least pscsing
wention, because 1% exposes new mathematical horizons. Wienever the sum 1 + 1
- dears in a column, then as far as that particular column is concerned the sum
is 0. Of cuourne, we know that 1 + 1 is really 10, or . iIf you prefer,
at leact in ordinary arithmetic. But the two is thrown sway, into the next

column to the left. It becomes s carry. In declmal computstlions tens are
thrown away, into the next column to the left. e idem of throw-awnys has
turned out zc e surprlsingly userul, with the result that the inevitable pro-
cess ol abstraction has run {ts coursc. "Throw-away arithmetics! are now of'-
ficial parts of the collection of ge les that we call mathemstics. 1In particu-
lar, 'throw-away twos'! is played with only two pieces, O and 1. Its basic

rules include no surprises except for
l+1=0

from which it gels its name. A. youfll see shortly, binary computations are
very popular with electrical ¢..culating machines, so that fthrow-away twos!
sees heavy, but more or less out-of'-sight, avtlon every time that a carry is
made. Thraw-awéy arlthmetivs also have other more exotic and leg. obsrured
applications, to the production of random numbers for exemple, and to the de-
sign o! experimental patterns. Mot that's another story so let's et back to

our rcequences of’ zeros and oneg.
Here s one seif-explanatory example of multiplleation using birury symbols.

1011
101
1011
0000
1011
110111

In decimal this would read 11 X &5 = 55

Tne other operations of ordinary aritimetic can also be performed with
binary symbols, but .e wonft go into the details here. -

co
.
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PROBLEM 4. Perform these additicus. Also translate to decimal.

1¢110 110 11 1¢01lQ1l
Loll 101 11 10111

PROBLIM &, Multiply 1 10C bty 1 0 1l. Also translate to decimal.

9.3 The Hall-Adder.

Now we come to the reassons for this excursion 'into binary symbolism. All
these O0%s and 1%s must be at least slightly reminiscent of sequence arith-

metic. A binary symbol such sas
101101

is a sequence of' zeros and ones. It®'s true that In this chapter you've been
acked to interpret this sequence in another new way, but it's still a sequence

)

of zeros and ones. With punched cards, of the sort mentioned in Chapter 8, we

could even convert this sequence into electricity,
hehhetlb

and our old friend the number &5 {decimsl) would take & torm that an electrical
wechine can understand. That's our first point. Binery symbols can be used to
nake the numbers of ordinary arithmetic understandable to electrical machines.

Which of these six rards should be punched to translate 45 into electricity?

With numbers represcnted in electrical form it isn®t too big a Jump to the
design of an electrical machine that will do computstions. Take the operation
of addition. What would a machine have to be able to do in order to compute
sums a5 we did Just 8 few moments ago? Princlpally it would have to know how

to handle the four baslc sums,

0 0 1 1
+ 0 + 1 + 0 + 1

— eeseses — —

because computationy involve repeated handling of these four. In each case it

1must know what to 'put down' and what to Ycarry.! The facts are simple enough
oy ;
to be summerized in the four columns of this Iittle table.

A: 0011
B: 0101
Record: 0110
Carry: CQCQC1
85




The two digits to be added are called A and B. For added dignity, the

tabie uses the word ‘record' lustead of fput down.'! Examine these columns to
be sure you egree that they properly present the facts of addition. Then let's
concentrate on the row labeled *record.' When should & 1 Le recorded? Only
when the two digits to be added disaﬁfee! That may hit & resonant spot in your
memiory. Qur four columns here are the same four distinct kinds of column that
ve'lve encountered Qefore. And record takes the value 1 only in the two col-
wuns where A and B disagree. Do you recall that such behavior arises in
sequence arithmetic when '

AB + AB
is computed? . And for cbmputing such a sequence we have already designed {in
Chapter 8) at least two electrical machines. Any one of those machines can now
be used teo produce the proper record. We simply have to offer it A and B
as inputs. But we also need = CaITy, so look &t the bottom row of the sbove

tatle. The only 1 is in column tour, where A and B are both 1. This
behavior may recall the product

AB

of' sequence arithmetic. So'a simple X box will produce the correct carry as
output, given A and B as inputs. To obtain both of the outputs we need,

the following machine will serve. It is called a hulf-adder.

Ag +AB ~—4———— Record

HALF-ADDER

B X Carry

This machine can handle only two digits. It will take & ~ombination of half«
adders to campute an ordinary sum.

9.4 An Adding Muchine.

Suppose these four-digit numbers ar: to be added. Bach A or B is
either & © ora 1. ‘

Ai& Aj AL’ Al
Bu E3 BQ Bl
86
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Let me try to convince you that the following machuine is up to the job., It
will be emsier than a tfirst glance might suggest. ‘

A, B, A, By A, B, A B
0 o% 1] 1} q [ 1y It
|
H i | ; H
— O e‘ —J1 o% — 0 |1} 1 /o
| l I
ol I+ ) 1l l
) i — I
| l |
i
| | 1
0 | C i 1 i
H { H | H ||
i i
— 1 | — 3] 1 ol 1 0
8, s, S, 8

The letter H represents s Limslf-adder.

The best way to understand this adding machine is to actually follow it
through & typical computstion. Take these numbers.

A, A AL A 0101

4 3 "2 "1

Eh B3 BQ BL =0111

A few moments ago we added them and got 1 1 0 0, confirming the fact that
5 + 7 is still 12. For the machine to duplicate our effort these Ats and
Bfs must be brought to the eight input contacts. At the top of the diagram
you can see l's and Ofs (for hot and cold) lsbeling the appropriate wires.
Other 1lf's and Ofs indicate the repercussions within the machine. Follow
the action slowly from right to left, just as though you were doing the com-
putation by hand. With record coming cut of the lower right of each H box,
and carry coming out of the lower left, you will find that the machine takes
exactly the same steps that you would take, and hopefully arrives at the same
resuit. That result appears at the four output contacts, at the bottom of the
diagram.

o . 5, 85 8, §=1100

This machine was designed to handle binary symbols of four digits each.
Notice the dotted lines which separate it into four parts. Each of these parts
{except the one at the right) is called a full-gdder. A full-adder takes the
A and B diglts ¢. onme column and the carry from the previous column (to the

87
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right) as Inputs; It outputs onme correct delt for the sum and the carry for
the next column (to the left). For serious camputing & macilue mist handle
symbols of roughly forty blnary digits (bits for short}. To do this, more
full-adders will have to be added at the ler't of our dlmgram, untll the sel-
ected capacity is reached. Whatever capaclty:is selected, it is, of course,
possible to offer the machine numbers whose sum will exceed that capacity. In
our simple four digit machine &Ry sum over flif'tecn will do Just that. Such s
sum will produce a hot carry out of the leftmost + box, causing the foverflow!
Light to come on as a wvarning that & most important digit, the one with the
highest position value, has Just escaped trom the computation. As an cxamle,

follow the computation

1100
+ 0100

through the machine. The overtlouw light should o on. What sum does our

machine produce?

Y“ed Computer Science.

One wmethod of computing sums eleootrically has Juct been outlined. There
are many alternative methods. It ic also possivle to de_ipn muchines whiich
perfom the other operations of ordinary aritimetic, and machincs which per-
form various related chores whi.h will be deceribed in our next and final
chapter. By connecting these various mechlnes togetlier, & remarkably versatile
device can be constructed, capable of doing almost anything arithmeticel, and
8t clectrieal speed. The Litersture of computing machine desirn carries the
fall stery and au be studied Ly embryo computer cclentists. The main point of
this ~hapter has been that binary symbols.ofrcr a way by whlch numbers can be
represented elevtrivally, as Sequences of zeros and ones, and that sequence

aritimetic, in whi b
1 + l - l

plays a8 basic role in the design of electrical maralnes whioch do correct cam-

putatlions lor a Qifferent arittmetic in which

L+ 1 =,

&8
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FROBLEM 6.

PROBLEM T.

FROBLEM 8.

et mane

Let A, B and C denote the three inputs to a full-adder, C
being the carry fram the previocus column. The usual three sequences

A: 00001111
B: 0C110011
C: 01010101

display the only eight poscsible combinations a full-adder can ever
face, one combination in each column. What should the outputs of
the full-adder be for each of these combinations?

Recorad:

Carry:

Convince yourself that the following symbols of sequence arithmetic

properly represent record and carry.

Record =ABC+ABC+ABC+ABC
Carry = AB + BC + CA

Design an alternate full-adder from the above two symbols. Does it
appear to be simpler than the design given in Section S.4, or not?

Use our theorems to convince yourself that the following design

also represents & correct full-adder.

5 S
oy
A
- + record
x L -
e
B — =
+ - r
X fﬁ L car
c Ty

Show that what the full adder described in Section G.4 actually

computes are

Record = [{A « B)AB + C](& + B)ARC
Carry = AB + (A + RB)ABC

and use our theorems to verify thst these arce allacec for the

symbols of Problem 6.

89
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Chapter 10

THE COMPUTER IN ACTION

10.1 Memory.

The previous chapter has suggested that 1t is possible to design an elec-
trical machine which can peiform the operations of o:dinary arithmetic. Not
only is it possible but, as most of you know, thousands of such machines slready
inhabit our planet. The computing abilities of such mechines would be largely
wasted if they were unable to 'remember® the numbers involved, and so, many ways
have been devised to provide machines with memories. All that is needed is a
way to preserve electrical seq&enees, so0 that they can be retrieved when wanted.
One of the easler devicves to picture in your mind consists of rows of magnetiz-
gble spots. This little memory, for example (black spots magnetized, white
spots not),

ooe
oceo
800

eece
can be tranclated for human computers into

01
010
100
111

and, if you want to, you can t'ind a connection between this miniature memory
and the three-way hall light of Chapter 8., A human computer uses his bdbrain,
assorted sheets of paper, and perhaps still other apparatus in various stages
of discrganization; i'or memory. In 8 machine, however, the sequences of zeros
and ones are neatly stored in rows of uniform length, one sequence to a row.
Each row ls called s memory location and numbered for easy reference, using
‘binary symbols. The four locations ebove could be labeled 001, 010,011
and 10 0. A larger memory appears belew. It will serve as the conversatlon
piece of this chapter. The memory itself comnsists of the colwmn of nine-value
gequences in the céntev. Iongtion numbers, in binary snd decimsl, have been
included st the left, for your convenience as we refer btack to this memory.

Snre explanetory phrases are 8lso oirered at the right, but these will not be
P ’
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clear until later. This collection of ones and zeros will look formidable st
first sight, but It is & tiny memory by the standards of serlous modern come

puting.

Location Sequence Exj lanation
—————A———
1 0CQo0QO01 CC1010000 Add an X number
0 0000L0D 010010011 to SUM.
3 000011 011010000
I 000100 001010001
5 000LO01 OlOOlOOlO} Add 1 to COUNT.
6 000110 011010001
7 000111 111001111 Is COUNT less
8 001000 1100010;1} than 32 7
3 0clo001 100010000 No. Punch SUM.
10 001010 C0000C0000 Stop.
11 00:011 OC®1000010 Yes. Modity instruction
12 001100 OLOOlOOlO} number 2.
13 001101 011000010
4 .001110 101000001 Jump back to L.
1% 001111l 000100000 THIRTY-TWO
16 010000 000000000 SuM
17 010001 000000000 COUNT
18 V10010 C0000000 1 ONE
iy 010011 011001111 X,
0 0LOLOO 111101001 X,
21 010101 011000011 x;
o 10110 101001110 X

4

{Locations J3 to L0 are filled dth other cequences that will be called

simply XD’ Xb, up to X ,)

3.7

10.2 Instructions.

If machines are to perform arithmetica! tasxs for human musters, then come
munications between man and machine must be established., A language under-
standable Ly both must be devised. The machine must be told what to do., It

needs instructions. As a matter of fact, some of the sequences in the above

memory are instructions. It is only necessary that we and the machine both

g2
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understand the langusge. These instructions can be explained to you in mod-

erately plain English, but they will have to be explained tc the machine by

proper electrical wiring. In previocus chapters welve designed machines for

adding numbers as well as for various simpler tasks. Here we will need similar

machines for understanding and executing eight types of imstruction, but wefll .
leave the details of design in the capable hands of computer scientists and

focus our attention on 8 strictly human to humsn understanding. Taking last

things first, one type of instrucltion is -

000 _ STOP

the last six digits of the sequence being irrelevant. As indicated, 000
tells the computer to stop. A more typical kind of instruction is

001 : Copy the sequence which is now in

— o — o — —

location _ _ _ _ _ into location
0000 00, erasing the previous con-
tent of COCO0O0O0O0 first. The
sequence originally in _

should be in both locations after this

instruction is executed.

The Euglish translastion is at the right. Notlce that of the nine digits in the
instruction, the first three indicate what kind of job is to be done (00 1
means a copying Job) and the last six indicate & memory location which is in-
volved. Location 0 00 00 0 s a special memory location which sees a gr ut
degl of action once tae computation gets underway. This will sll be ruch
clearer when we have followed the maching in asction for a while, as we will
shortly, but let's just lict the other instruction types first. '

c1o0___ ___ Add number in location _ _ _ _ _ _ to
number in 00 0 0 O 0, leaving content
of _ _ _ _ _ _ unchanged. The sum
should appear in O 500 0 C 0. This

o addition is a binary computstion, using

e ‘ full-sddexrs as described in Chapter 9,

and not the simple 1 + 1 =1 =addition

of Chapter 2.

¢il_ _____ Copy sequence now in locatlion
000000 into loeation ’

erasing any previous content of

T . The sequence originally

—n o o ww
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in C0O00O0GC should be in both

locations af'ter tinis instruction is —
executed. f%
100 Punch the sequence ig onto

- e o — -— e an = e mee

a card, (The sequence als¢o remsins in
location _ _ _ _ _ _ for future use.)

101 __.____ Take the next instruction from location :
______ . (This breaks the normal -
routine, in which imstructions are
ﬁaken from consecutive locations. It

is called 8 Jjump instruction.)

110 Take the next iastruction from location

______ if the sequence now in
location C 0 00 0 O is negative.
Otherwise follow the normal, consecu-
tive routine. (This requires the

machine to make a decision.)

e
-
-

______ Subtract the sequence in ——— — — _

from the sequence in 00000 O,

leaving content of uncharnged.

— o o o o

The difference should appear in
CC00O0O0.

Now let's watch the action as these types of instruction are executed.

10.3 A FProgram.

The sequences in the memory exhibited in Section 10.1 give the computer
full instructions for performing a particular arithmetical job, Such a set of
instructicus is called a program. Let's see what job this program spells out.
The f€irst inctruction is in location 1, +the next in location Z, and sO on.
See if you agree that this ic what happens when the first three incstructions
are executed. '

1. C00NQCOO0OO0O appears in tocation Q.
2. 011001111 appears in location O.
3- 011001111 appears in locsrion 16.




- The sequences in locations 16 and 19 bhave been added, and the sum (xl)
has been stored in location 16. Try the next three instructions in our com-
puter memory. Here is what they achieve. '

L. 00CO000O0O0O0 appears in location O.
5% 000000001 appears in location Q.
€. 0000000C1 appears in location 17.

The computer has *counted' from 0O to 1 in location 17. Take the next two
ingtructions together. When & sequence stands for a number instead of for an
instruction, the first digit is used to indicate the sign, O meaning a pos-
itive number and 1 a negative number. The other eight digits are the binary
symbol for the number itself. As instruction 7 comes up the seqQuence
000000001 4s still in location 0. Subtracting 32 will produce a
negative 3l.

7. 1000111111 appears in location Q.
8. The computer fjumps® to location eleven.

Instructions @ and 10 are bypassed for the moment. Now comes a crucial
development. Tuake three more instructions together.

11. 010010011 appears in location O.
12. 010010100 appears in loeaticn O.
13, 010010100 appears in locacion 2.

The content of location 2 has been modified. In a momeat the computer will

be executing instruction 2 agsin, and you should mote the eftect of this mod-
ification. We're up to instruction 1k

1%. The computer !jumps? to location 1.

Wefve watched one trip through what is called a *loop.' ILet'!s watch one more
trip.
l. 11001111 appears in location O.
. . 100011010 appears in location O
3. 100011010 appears in location 16,

-

——.. The sequences in locations 16 and 20 have been added, and the sum (Xl + Xé)
.+ .hms been stored in location 16. t

4. 000000001 appears in location O.
5. 000000010 appears in loeation O.
6. 000000010 appears in location 17.

The computer has counted from 1 to 2 in location 17.

B
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7. 100011110 sppears in location O. _
8. The computer Jumps to location eleven. ‘ =
11. 010010100 appesrs in location O. :
2. 010010101 appesrs in location O.
13. 010010101 appears in location 2.

The instruction In location & has again been modified.

14, The computer Jumps to location 1.

4 ke

And two trips through the *loop! have been completed. Further trips I lesve to
you to {ollow in detail. The third trip will first bring the sum Xl + X2 + X
into location 16, Then it will raise the count in location 17 to three.

Finally, [t will modity the instruction in location 2 to read 010010110

3

Convince yourself of these things and then convince yourself that the sum in
location 16 will continue to develop until it includes whatever nwmbers have
been stored in locations 1y through 50, at which point it will be

xl + X2 + oeae + XSQ' Thirty-two numbers will have been summed. An important
change will then occur. The computation will break out of the loop! Do you
see how that happens? On the thirvy-second trip through the loop, after all
thirty-two numbers Rave Leen summed, the count (in location 17) will climb to

32. Then notice the result of executlng instructions 7 and 8.

7. 0000C000CO appears in location O.

Y. The computer decides not to Jjump.

For the flirst time it refuses the Jump, becsuse now the number in locstion O
ig pot negative. Instructions 9 and 10, which have been bypassed thirty-
one tlmes, {'inally get their turn.

Y« The computer punches out the final sum.

10. The computer stops.

Its mssigned Job has been completed. As you can now see, that Job was the

summing of thirty-two numbers.

To summarize the action, a flow chart is & helpful and commwon device.

Here is the flow chart for this program.

Read program ‘ Add an X Add 1t
into meumory ety number to B COUNT ©
and START. 1 SUM. ‘
f !
: Modify Is COUNT s
instruction (8  less than (N Pun:;n gUM
nunber 2. 307 S0P
i
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The loop is cleurly visible. After thirty-one complete trips around this loop,
the *No' exit is taken and the loop has Leen broken. It takes a modest effort
to cee clearly all the details of this electricsl computation. But once you'lve
mastered those details, the preclge thic 1" the pLrogram has an almost aesthetic
appesl.

Two final romerks mey be useful. Plalnly a sequence may be elther a num-
ber or an Instruction. How effectively this fact 1s exploited can be seen by
recalling the modiflcations made to instruction 2. By treating this sequence
as a number, and adding one to it, the machine converts the sequence into the
dealred instruction for thie next trip around the loop. Thic versatility can
also lead to catastrophco, as you will soon see. The second remark ls this.

The program eould curily be modified to sum a million or more numbers lnstead
of Jjust thlrty-two. Our present macliine, however, hasc its limitations. Memory
locationa L1 to 3 were not used, so with a few changes thirteen more num-
bers could have ooen gecommodated. Thirty-two is such B8 pleasamt number in

binary that thic oxtra capacity was i{gnored in my example, Lut see Préblem 13,

174 A fant-Mortem,

IL i5 ecusy to see that the tinlest program error, a single O where there
should be & 1 or vice versa, -an produe a catastrophe. As an easy example,
what would happen it the seguence t'or location 1  were mispunched and entered
the computer a8 00001 000 0, the crror being in the third digit? You
protably gee at once that thic makes the very first lnstruction s stop instruc-
t.lon. The computation will never even get started. Wwhen the start button is
pushed, Lt may appeur tlat the computer heg not been plugged In. But exper-
lenee has chown that when a program fails to run properly 1t is usually the
program and not Lhe mactline which s to blame. We just Iinvestigated the effect
of 8 known crror in a inown locatlon. But hunting down a program error is
usually hard work and ways have been found for the computer tq assist In the
search. Our program is so brief that in the event of trouble we could esk the
machine to punch out the entlre memory for our lnspection. In a more serious
problem such & 'memory dump® would be too voluminous to te helprul, and more
sophisticated detectlve sork is called for. Here is a typical, but simplified,
example.

Suppoge we know that our program should take less than a minute of the
machine's time. It has been running, however, for three minutes and the oper-
ator has Just stopped the computatlon. A program error ls suspected, but in
wvhich memory location? To find the error a 'post-mortem' is conducted, in
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which the machine punches out the onswers to our questions. Here is a plein
English translation of the process.

Question: Which was the last instruction executed?
Answer : Instruction in location [0

This 1s surely a dlscouraging reply. The sequence in o was supposed to be
our number xk. The machine has interpreted it as an i{nstruction. Some num-
Lers also make perfectly reasonable instructlions and the sequence in loca-
tion 220 )

1L0100Q1110 )

means *Jump to locatlon 14 for your next instruction' Just as surely as it
means 'negative 78.' So the machline has jumped to locatlon 1h. Let's fole
low it.

Questlon: What ic the sequence in location 1k ¢
Angwer: 101000001

Just what it should be, a "jump to locatlon 1' Instruction.

Questlion: What io the cequence in locatlon 1 2
Answer: 001010000

Just what it chould be, *Copy SUM from location 10.'! So we follow the ma-

chine to location /.

Quegtion: What 1s the sequence in loeation 2 ¥
Answer: 101010110

Ouch! Thle doesu't reaotely recemble the *add' Inrtructlon we thought we had
here. Ingstead It reads *jump to location (2 for your uext instruction.?t

And nuw we know why the machlne wouldn't stop. It has been patiently tfollowe
Ing instructlons, Jumping from ' to 1% wwo 1 to . to v over and over
again, following an unintended loop. The proyram error, which we still have
not lo-ated, has sent the machine intc & seuseless, never-ending loup, in which
it computed nonsense untll the operator mercifully storped It. Such futile anc
unendiny, loops have been compared with human Insanity. Our machine wus unable
to help itself, and required shock treatment {cuttlng off the electric power).

Now we know what happened to our program. But why? Elther our second
instruction was ircorrect wher it entered the caomputer, or it was spolled
aftervard. Let's try the sevond poscibllity first.

Quéstion: What sequences are in locatlions 11, 1. and 13 ?

Answer: O
0
0

Lol L Y
Lol & 3 L
OO0
o0
(s R o N8
oo
I N
oNoNe]
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This looks like the error! The middle sequence has a displaced 1. It should
read 010010010 instead. The effect of this misplaced 1 1is catas-
trophe. This twelfth instruction was supposed to alter instruction 2 by
adding to it the sequence in location 18. Instead, it adds the sequence in
location 20, and alters imstruction 2 to the jump {nstruction

107010110

that we dlscovered s few moments Check for yourself that the misplaced

1 1in imstruction 12 fully explains what happened to our program. Follow the
computation until it enters the senseless, unending loop. If in our post-
mortem we had asked for the sequence in location 17 (the COUNT), what would

the m&chine have answered?

It is easy to see that communication vetween man and machine is delicate
work. It is also lmportant work because of the large role which machines now

play in business end science. Preparing correct programs has become 8 major
ares for the use of human labor. An enormous demand for skilful programmers
has developed, to translate human thoughts into electrical language. To sim-
plify thlc work, ways have been found to place a greater part of the burden of
~anslution upon the machine itself, by means of other programs rermanently
torized by the machine. Such procedures are called automatic programuing.
{hey are already remarkably scphisticated, and what the ultimate will be in
man-machine relations 1s impossible to predict. In one very popilar system

our program of this chapter enters the machine as

SUM = 000
D3I =1, 32
SM = X(I) + SUM

Amateur cryptographers will have little difficulty in breaking the code.

PROBLEM 1. Show that if the sequence for location 6 entered the machine
incorrectly as 011010000, then the sequence in location
2 should ultimately become O 11 00 0 0 0 0. This translates
to Ycopy the sequence nowin 000000 into 00000 0.t
The machine would not &ccept such an instruction. It would stop
without punching out a sum, which would be your first indication
of trouble. In such e situation it might slso have been taught to
type out 'faulty instruction in location 2.°' What sort of detec-
tive work might discover that the fault is really with instruction
6, not with instruction 2 7
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FROBLEM 2.

FROBLEM 3.

Show that if the sequence for location 5 entered the machine in-
correctly a8 01 0010000, then the machine would, as ex-
pected, pupch out & sum and stop, but that the sum would be the
yrong sum. This is the most dangerous kind of Program error.
Unless the machine operator noticed that this program took much
less than the expected time to run its course, the incorrect sum
night very well be accepted as correct. Suppose an error is sus-
pected. Can you plan a post-mortem? If you ask for the sequence
in location 17 (the COUNT) what will the machine answer? What
is the incorrect sum which the machine produced?

Adapt our program to the summing of forty-five numbers, xl to xh5,
vhich have been stored in memory locations 19 to 63. Except for
properly storing those forty-five numbers, only one sequence of

the program would have to be altered. Which one, and what is the
alteration? . '

Location New Sequence

10.5 A Reminder.

We've come to the end, and I think that s reminder of what nmy objectives
have been is the most appropriate way to finish. They were:

1.

2,

3.

to offer a detailed view of one of the simpler, but important
ganes which make up mathematics;

to show that the game s played carefully and honestly;

to show that the game is useful; it has applications.

This 1s typical of the many parts of mathematics, and whatever part you study,
you will find it helpful tuv look for the basic rules (need to know), strategy
(nice to know), and applications.
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ANSWERS TO PROBLEMS

Chapter 2
Section 2.2
¥ 001010 X+X 111111
XY 001000 111111
+ Y 001000 XY + XY 111111
XY 101110 XX 000000
X+% 101110 XY 000000
X+ X 010011 X + XY 010011
Y+ Y 110101 XY + XY 010011
X+X 101100 ¥+ XY 010011
XX 010011 XY + XY 100110
YY 110101 (x+ Y)(X+Y) 100110
XX 101100 XY +XY 100110
Section 2.3

x o 1 + | ¢ P QI x| § P Q I
0o {00 ¢ | ¢ P QI g| ¢ ¢ ¢
1 {01 P |P PITI P| ¢ P Qg P
| g P Q 1 Q [|Q I QI Q| # F Q Q
-tI QP @ I |{I 1171 I ¢ PRI
+ A B CDETFZ]I x| A B CDETFI
#|# ABCDETFTI pi1g PP ¢ oo
AjA ADEDETITII Alg A P ¢ A A G A
B|BDBPF DITF]I B|¢d 6 B g B ¢ B B
C{C EF CIZETF]II cldg g dcgccc
D{DDDIUDTITITI D|{# A B P DA B D
E{EEI EI ETIII E|p A g CcC A ECE
FIF I FPF ITITFI F|¢ § BCB CFF
I}jI I I 1 1II I I{§ ABCDETFI
¢ A B C DEPF-I

-{I F ED B A
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Chapter 4
Section 4.1 and 4.2
A+B 0111 AE 1110
AB 0001 AB 0001
R 1100 AB 0010
B1l1o10 AB 0100
A+B 1000 AB 1000
Section h.3
B+ C 01110111 A+ BC 00011111
A(B + C) 00000111 A+B 00111111
AB 00000011 A+C 01011111
AC 00000101 (A+B)(A+C) 00011111
AB + AC 00000111 A + (B+C) 0ll11111
BC 00010001 A(BC) 00000001
Chapter 5

2. (A+B+C)(D+E)-AD+AE + BD + BE + CD + CE

be (A+B+C)(A+B+TC) -AB+AC+BA+5C+CA+CB
5 KB4+ BC+CR«AB(C+C)+(A+A)BC+A(B+B)C-ABC+ABE
+ABC+ABC+ABC+AEC, etc.

l11. ABCD ABCD ABCD ABCD

ABCD ABTD ABTD ARcCcD

ABTD ABCD ABCD ABCop

ABCoD ABCD ABCD ABCD

Chapter 6

le My cat has fleas and my dog has fleas; My cat has fleas or my dog has
fleas; My cat does not have fleas; AC; B; A + C.

2. V,5,X% Y,2,7, W, U,

3. Only on Tuesday.
4, On Tuesday, Thursday, and Saturday.
5 I, @, A, A
6. All do. (See Theorems 21 and 22.)
7. Yes. (See Theorem 3k4.)
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Chapter 7

Bumber 6 belongs to all four subsets; number 9 belougs to none.

2. 0110000001 0000010000; 0111001 001;
0000000001; L000000010; 111 1111111,
3. A3
k)
2510
5. Theorem 12.
6. Theorenm 18, -
Theorem 21 Theorem 38 (see
Problen 9).
9. Theorem 38 (see Problem 8, also).
10. i . 11. (C) .
Theorenm 39.
1z. 3 7 1 ABTYO €& ABCD
sl s 2 ABTD 7 ABCD
; 3 ABCD 8 ABCD
2 o L EBTD 9 ABTD
5 ABCTD 10 AEBCD
13. 14. Bend the cylinder into a doughnut
ShaPEQ
Ectiﬂngcé
7 on second try, 11 on third; 9 successes after a success; 2 fail-
ures after a8 success.
1%, Opium eaters don't wear white kid gloves.
Chapter 8
1. Left to right, -, +, X; 2. Theorem 10, Theorem 8.
3. A; 4, AB+B=A+A+B; 5, A+ B; 6. A+ B
7. A+ E; 8. AB + AC + BC; 9. (A + B + C)ABC.
103
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1+ 110, 111, 1001, 1010, 1111, 1000 1, 11100,
11101 1.

2. 11, 12, 20, 25, 31, 36, U5, 63.

3.
s i 6 | 2 12ji3]9 14
713 87 e
) nisle
210 s lo sfs]i o

4. 1010 i, 1011, 11 0, 101100.
5 11110,

6. Record: 011010 01
Carry: 00010111

This full-adder uses more equipment than the one in Section 9.4,

T Record = ABC+ (A + B+ C)AB + AC ¥ BC
Carry = AB + AC + BC
This full-adder uses less equipment,

Chapter 10

1. Check the COUNT. It will be ZEero,.
Qe COUNT = SUM = 207,
3. Iocation 15: 000101101
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