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PREFACE

Mathematics is such a vas+ and rapidly expanding field of study that there

are inevitably many important and fascinating aspects of the subject which,

though within the grasp of secondary school students, do not find a place in the

curriculum simply because of a lack of time.

Many classes and individual students, however, may find time to pursue

mathematical topics of special interest to them. This series of pamphlets,

whose production is sponsored by the School Mathematics Study Grouppis designed

to make material for such study readily accessible in classroom quantity.

Some of the pamphlets deal with material found in the regular curriculum

but in a more extensive or intensive manner or from a novel point of view.

Others deal with topics not usually found at all in the standard curriculum.

It is hoped that these pamphlets will find use in classrooms in at least two
ways. Some of the pamphlets produced could be used to extend the work done by

a class with a regular textbook but others could be used profitably when teachers

want to experiment with a treatment of a topic different from the treatment in the
regular text of the class. In all cases, the pamphlets are designed to promote

the enjoyment of studying mathematics.

Prepared under the supervision of the Panel on Supplementary Publications of the

School Mathematics Study Group:

Professor R. D. Anderson, Department of Mathematics, Louisiana State
University, Baton Rouge 3, Louisiana

Mr. Ronald J. Clark, Chairman, St. Paul's School, Concord, New Hampshire 03301
Dr. W. Eugene Ferguson, Newtsn High School, Newtonville, Massachusetts 02160
Mr. Thomas J. Hill, Montclair State College, Upper MOntclair, New Jersey

Mr. Karl S. Kalman, Room 711D, Office of the Supt. of Schools, Parkway at
21st, Philadelphia 36, Pennsylvania 19103

Professor Augusta Schurrer, Department of Mathematics, State College of Iowa,
Cedar Falls, Is

Dr. Henry W. Syer, Kent School, Ke,lt, Connecticut

Professor Frank L. Wolf, Carleton College, Northfield, Minnesota 5,057

Professor John E. Yarnelle, Department of Mathematics, Hanover College,
Hanover, Indiana



CONTI:NTS

Section
Page

1. The Law of Decay 1

c. Relative Rate of Change 4

3. A General Solution
7

Answers to Problems
10



RADIOACTIVE DECAY

Introduction

Az you prc oly know, the source of energy for the first atomic bomb

which so dramatically inaugurated the present nuclear age in 1945 was atomic

fission. The controlled fission of elements (or, in more common language,

controlled "splitting") that produces bombs was a development of an earlier

discovery that certain elements, the building blocks of nature, are unstable

and disintegrate. Such elements are called radioactive. Az they decompose,

they release energy and, at the same time, there is an overall loss of mass.

The equivalence between energy and mass is the foundation for much of Einstein%

magnificent work. We are moving too fast, however; let us start at the be-

ginning.

1. The law of decay,.

Suppose we have a rock containing uranium which is one of the unstable

elements. If we measure the amount of uranium, in grams, in our sample each

day, we find that the amount is decreasing. The uranium is disintegrating!

If we were able to wait long enough, which means about 2,000 years or more in

the case of uranium, all would have decomposed and turned into lead, an ele-

ment that is not radioactive. By carefUl experimentation it has been dis-

covered that the complete reaction proceeds in such a well-organized manner

that it can be described mathematically.

Since uranium decays very slowly, let us imagine a radioactive element of

cur own, which we shall call quiddium, that obeys the same basic laws of decay

as uranium but for which the arithmetic will be easier. Let us start with 10

grams of quiddium on the initial day.

The following table shows the amount of quiddium that remains in the

sample when measured on the five succeeding days.

411w

0 10.0000

1 9.0000

0 8.1000

3 7.2900

4 6.5610

5 5,9049

1
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ifie CAA make a graph showing the relation between ts the nuMber of days, and

xs the amount of quiddium

10

8

6

4

2

0

0 1 2 3 4 5

This is left for the reader to do as an exercise. The graph, if carefUlly

drawn, will be very revealing and saggest certain conclusions. It is impor-

tant, however, to investigate fUrther.

The change in the amount of quiddium fram one day to the next can be

readily computed. For example, the amount of quiddium changes in the first

.day from 10 grans to 9 grams so the change is

new value - old value s. 9 - 10 -1

If we call x
0 the amount of quiddium at the start of the experiment and x

1

the amount of quiddium alter one day, we can write

xl - xo Axi

where Ax
1

stands for the change in amount during the first day. Likewise

2
x x Ax2

We can arrange our information in a table.

Anount of Quiddium Change in amount

xo - 10.0000 641 = -1.0000

x
1

9.0000 Ax - .9000

x2 14
8.1000 Ax

3
- .8100

x3 7.2900 Ax14. - .7290

x4 s 6.5610 tN) - .6561

x5 5.9049

Notice that the change in each case is negative since the amount of quiddium

decreases.

2
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Of more significance than the amount of change is the relative change,

measured by the ratio

change in amount

original value

This gives us the following table:

'No. of days

t

Amt. of quiddium

x

Change

Ax
Relative change

Ax/x

0 10. - -

1 9.0000 -1.0000 -.1

2 8.1000 - .9000 -.1

3 7.2900 - .8100 -.1

4 6.5610 - .7290 -.1

5 5.9049 - .6561 -.1

Since the time interval in each instance is one day, the relative rate of

changb as indicated by the table is approximately -.1 and is a constant.

Although quiddium WAS chosen so that the arithwetic would be easy, and

our data vas assumed to be without experimental error, contrary to what happens

in the real world, our example illustrates the gmeral law of radioactive de-

cay which applies to all radioactive substances: the relative rate of change

in the amount of a given sample is a legative constant.

It is only in theory that we assume that the rate of radioactive decay is

constant. Experiment reveals it is approximately a constant as does our table.

For the purposes of prediction, we assumed that the rate is constant. This

(theoretically) makes our life easier. Actually the usefulness of our pre-

dictions about quiddium depends on how closely the actual rate of decay

approximates the constant we use.

We may mention the reason for this law is that any particular atom of the

radioactive element has a certain definite probability of disintegrating in a

given interval of time. In our present example, we have assuMed, really, that

the proWAlity of a quiddium atom disintegrating during a day is 0.1. Thus

if ve have a very large number of quiddium atoms, it is almost certain that

of them will disintegrate during any one day.10
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Exercises 1

1-1. Using the tables on page 2, predict the amounts x6 x7 , and x8.

Round off your results to four decimal places.

1-2. Make a graph showing the relation between t and x . (see page 2.)

1-3. Suppose that the measurements were made every half day, but that the

same relative rate of Change was observed. Make a table showing the

values of x for t = 0, .5 , 1 , 1.5 , 2 , ... 5.

1-4. Make a graph showing the relation in problem 3.

1-5. Here is a table of the amounts of centium in a sample measured at

various times.

t in days x in grams change in x

0 100.0000

1 99.0000

2 98.0100

3 97.0299

4 96.0596

5 95.0990

The amounts were measured to the nearest .0001 of a gram. Calculate

the change in x during each day. What is the relative rate of change

in x per day? Is it constant? Predict the values of x6 and x7

2. Relative rate of change.

If x
o

is the amount of quiddium at the start and x
1

is the amount a

day later, then the change in labeled Ax for the interval is found by

subtraction

- x0 = Az .

Since this pattern applies equally well to all intervals, we can say

Ax
ri n 1

where x
n

is the amount of quiddium present at the end of the nth day. The

relative change in x is the ratio of the change to the original value. That

is

relative change in x
change in x

original value of x

4



In sykbols, we have fOr the nth day

Axn x -
n xn - 1relative change in x =

.xn
- I n - 1

The relative rate of change is the relative change per unit time. Since we

have been using the day 1113 our unit of time (that is the length of time be-

tween measurements was I day), the relative rate of change is

relative change in x
1

As you recall, we assumed that the relative rate of change is a constant for

each radioactive eleatent. For quiddium, this constant is approximately -.1.

Let us look again at our pattern for determining the relative change.

We have

or

Then

and

If we calculate each of the ratios,

x
1

x
2

x x
n

/ x
1

x
n - 10

x
3

we learn that each is approximately equal to .9.

A sequence of numbers such that the ratio of any twn consecutive numbers

in the sequence is a constant is said to be a geometric progression. The con-

stant is called the common ratio of the progression. As we have seen the

amounts of quiddium on successive days form a geometric progression whose

commOn ratio is .9.

(1)

Using this fact, we can form a series of equations:

5



n
x
n - 1

If we substitute in equation (2) the value of xi from equation (1), we have

x
2

.9x
0

'9
( 4 )

In a like manner, we can substitute the value of x2 from equation (4) into

equation (3); we have

Xe
. .9

(.9)x0

If we repeat this pattern once more, we have

or

By extrapolation of our reasoning, we have

xn (.9)nx0

which is a formula expressing the amount of quiddium that remains after n

days in terms of the initial amount.

Exercises 2
_

2-1. (a) For centium, as described in Exercise 1, find the values of

x
1

x
2

1
x
2

x3

x
4

(L) Find a formula for the amount of x
n

of centium in the sample

after n days.

6 /
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2-2. In Exercise 1-5, find a formula for the amount of quiddium in the sample
agter n half-days; and also after t days. (How many half-days are
there in t days?)

3. A general solution.

If we have a sample of radioactive material aid measure the amt.:ants

every h days, that is we measure the amounts at the times

we find the amounts

tar0,h,2h y see y nh p es. p

X m X0 9 Xi y x2 , x3 p Xn *ea oil

We say that the relative change for the first h day period is

X
1

X
0

0

For the second h day period, it 18

x2- x
1

x

In general the relative change for the nth h day period is

xn - xn 1

x
n - 1

If we assume that the relative change is constant, (a convenient theory which

is approximately borne out by the experimental evidence) we have

x0

X,
u

X,
g.

xl

xn - xn - 1

xn - 1
The relative rate of change per day, however, is somewhat more difficult

since we must consider the time interval of h days. We have

relative rate of change

7

relative change
time interval

xl

0

7
4
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As we have seentin building our theory we assume the relative rate of

change Is a negative constant. If k is a positive number, then we can call

the constant -k. Taus we can write

Generally we can write

(8)

xl-Xo
-k.

h x

x2 xl

h x
1

x
n xn - 1

77-7777 -k

By a series of substitutions similar to those used in the previous section, we

can obtain an expression for x
n

in terms of x0

First we transform equation (6) and obtain

x
1
= (1 kh)x .

0

This we substitute into equation (7) obtaining

x
2
- (1 - kh)x

0
-k .

h x (1 - kh )

When we solve this Last equation for x2, we have

2
(1 - kh)

2
x
0.

Reasoning in this way we see that the amount, xn that will be lei" at the

end of n time intervals is determined by the formula:

x
n

(1 - kh)nx
o

This formula describes mathematically one of the very important processes

out of which mita developed the fascinating and powerful concept of controlled

atomic energy that holds so much promise for all peoples.

Exercises .5.

3-1. Express x
3

in terms of x
2

.

8
rN
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C

EXpress x
3

in terms of x
0

3-3. EXpress x
4

in terms of x
0 '

3-4. EXpress x
n

in terms of x
0

3-,. Let x(t) denote the amount at the time t. Give a formula of the

form
x(t) Ct x .

0

where C is a certain constant, expressing x(t) in terms of t.

(Notice that at the end of the nth time interval, t = r . Solve this

equation for n in terms of t. )

3-6. Thke k .1. Compute C in problem 3-5 for h = 1 , .5 0 .

.001:.

What do you notice about the values of C?

1 .01 1

3-7. The time T at which half of the radioactive substance has disinte-

grated is called the half-life. In other words, the half-life is the

solution T of the equation

AT 1
u x = -x

0 2 0

Obtain a formula for T in terms of k and h .

3-8. It is sometimes easier to measure T than k. Find a formula ex-

pressing k in terms of T and h. For T = 10 , compute k for

these values of h

What do you notice about the value of k?

Note: Problems 3-6 p 3.7 3-8 are for students who have studied

logarithms.

-444-
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ANSWERS

Exercises 1

1-1. x
6

- 5.3144

x7 - 4.7830

x8 - 4.3047

21-3. Relative rate of change per E day

x

1

2

9 .5000

1

9.0250

1.5

8.5738

2.0

8.1451

2.5

7.7378

3

7.3409

3.5

6.9739

4.0

6.625 2

4.5

6.2939

5

5.979 2

1-4.

10

8

6

2

0 0.5 1 1.5 2.0 3.0

t Amt. of Centium Change in Amt. Relative change

0 100.0000

1 99.0000 1.0000

2 98.0100 .9900

3 97.0299 .9801

4 96.0596 .9703

5 95.0990 .9606

6 94.1480 .9510

7 93.2065 .9415

10



2-1. (a) xi
loo .99

.99

x4 . 96.O6
.99

13 97.03 "

(b) xn (.99)nx0

Exercises 2

2-2. x
n

= (95)n10 (n = number of days)
2

3-1. 13 = (1 - Ish)x2

3-2. 13 = (1 - kh)3x0

3.3. x4 = (1 MI)z()

3-4. x
n

= (1 - 1th)nx0

3-5. kh) x

1

If

xt = Ctx0

Exercises

t = hn --P n =
h

11
a
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3-6. If C = (1 - then

h = 1 10C = 0.90000

h = 0.5 -41.0 = 0.90250

h = 0.1 -40C = 0.90448

h = 0.01 -400 = 0.90574

h = 0.001-4C = 0.92202

As h approaches zero, C approaches 1.

3-7. (1- kOhico
2
x0

1
h log

T = 2 - .3010 h

log(1 - kh) log(1 - kh)

3-8. k 1 - (.5)

Let T = 10

h = 1 --ok = 0.06696

h = 0.5 40 k = 0.06812

h = 0.1 30k = 0.06900

h = 0.01 plc = 0.07000

h = 0.001ok = 0.07500

12


