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PRUACE

Mathematics is such a vast and rapidly expanding field of study that there

are inevitably many important and fascinating aspects of the subject which,

though within the grasp of secondary school students, do not find a place in the

curriculum simply because of a lack of time.

Many classes and individual students, however, may find time to pursue

mathematical topics of special interest to them. This series of pamphlets,

whose production is sponsored by the School Mathematics Study Grouppis designed

to make material for such study readily accessible in classroom quantity.

Some of the pamphlets deal with matelial found in the regular curriculum

but in a more extensive or intensive manner or from a novel point of view.

Others deal with topics not usually found at all in the standard curriculum.

It is hoped that these pamphlets will find use in classrooms in at least two

ways. Some of the pamphlets produced could be used to extend the work done by

a class with a regular textbook but others could be used profitably when teachers

want to experiment with a treatment of a topic different from the treatment in the

regular text of the class. In all cases, the pamphlets are designed to promote

the enjoyment of studying mathematics.

Prepared under the supervision of the Panel on Supplementary Publications of the

School Mathematics CLudy Group:

Professor R. D. Anderson, Department of Mathematics, Louisiana State
University, Baton Rouge 3, Louisiana

Mr. Ronald J. Clark, Chairman, St. Paul's School, Concord, New Hampshire 03301

Dr. W. Eugene Ferguson, Newton High School, Newtonville, Massachusetts 02160

Mr. Thomas J. Hill, Montclair State College, Upper Montclair, New Jersey

Mr. Karl S. Kalman, Room 7110, Office of the Supt. of Schools, Parkway at
.ilst, Philadelphia 36, Pennsylvania 19103

Professor Augusta Schurrer, Department of Mathematics, State College of Iowa,
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FOREWORD

Without assuming any previous knowledge of the subject, this

booklet discusses the following topics from simple number theory:

basic definition, diagrams for factors, divisibility tests, casting

out nines, complete factorization, greatest common factor, remainders

in division, lowest common multiple, and some recent results by

Robinson and Froth. The level of the treatment will make it useful

in both junior and senior high schools. A separate teachers

commentary with answers is available.

As background the reader will need little more than the

arithmetic of positive whole numbers. However, the range of

difficulty in this booklet is greater than in some: the beginning

sections are very easy and the closing sections are rather difficult

to read. This is done intentionally so that each reader can carry

the ideas as far as he needs to. Our advice thus is: start at

the beginning and read and work along as far as your interest and

background allow you to do. You will profit from all you undertake

and understand.

This material was originally published as part of the Junior

High School texts and the Supplementary Units of SMSG.
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FACTORS Alp PRIMES

1. FriMes

We will assume that you are acquainted with two Lmportant sets of numbers:

the counting numbers and the whole numbers.

Counting numbers: 1,

Whole nuMbers: 0,

3, 4,

2,

It is also assumed that you know the arithmetic of these numbers; for example,

how to add, subtract, multiply, and divide with them.

In this pamphlet we are interested in how counting numbers can be

expressed as products of other counting numbers. For instance,

6 - 1x6 --- 6x 1.

5 1x5 - 5x1 5x1x 1.
12 4x3 -1x;:x6 ,lx,)x 4.

Are there other ways in which these numbers can be expressed as products of

counting numbers? Express the following as products of counting numbers in

various ways: 15, 18, O.

In the products listed above which are equal to 6, we see that 1, 2, j,

and b divide exactly into 6. That is, if 6 is divided by any one of these

four numbers, the remainder is zero. Similarly, 1 and 5 are the only

counting numbers that divide exactly into 5; while I, 2, 3, 4, 6, anil

are those which divide exactly into l. 'No other ways of making the same

statement are:

1) The number 6 is divisible by 1, 2, ;0 and 6.

-mber 6 is a multiple of 1, 2, ;, and 6.

Thus, 5 is divisible by 1 an1 7 5 or 5 is a multiple of 1 and 5; also,

12 is divisible by 1, 2, 3, 4, 6, and 12, or 12 is a multiple of each

of the numbers 1, 2, ;, 6, 6, and 12.

On the other hand, 12 is not divisible by 5 I;ince If 1. Is divided

by 5 the remainder is 2. For a similar reason, 6 is not divisible by 4.



The number 1 is in a class by itself since every counting nutber is a
multiple of 1; that is, every counting nuMber is divisible by 1. It is

not true that every counting nuMber is divisible by 2 (3 is not); not every
counting number is divisible by 23 (24 is not); not every counting number

is divisible by 1916 (5 is not).

EVery counting number is a multiple of 1 as we have seen. What are
the multiples of 2 which are greater than 2? Let us look at one way to
answer this question systematically: First write down the numbers, for
instance, from 1 to 30 inclusive. The first multiple of 2 greater than
2 is 4; cross out the 4 ani every second nuMber after that. TO keep
track, write a 2 below each number you have crossed out. The list will then
look like the following:

1 2 .5 / 5 de: 7 X 9 /2 11 /2

13 ;A ; 15 i 12 19 A 21 A Pi

k,'7 29 A

We neither cross out 2 nor write a 2 under it because that is the number

whose multiples we are vonsidering. The numbe:s above which are not crossed
out are 1, , and the numbers less than 31 which are not multiples of O.

Our second itep would be to go through the same table and cross out the
mult4lec, or which are creater than ). Then the table would look like
this:

;4111:-

11 413

19 per, /i 2 aj(6;

Here we tistre out every third number beginning with 6, but we have
not crossed out ; ,zince that is the number whose multiples we are finding.
(Some or the multiples of i had already been crossed out since they were
also mul-Iples ef 2.) EXcept for the ntiffibers ,! and 3, none or the numbers

remaining are multiples of either P or

Az a class exercise, write out the numbers from 1 to 100 inclusive.

First, cross out all multiples of 2 and 3 except 2 and 3 as we did
above. The number 4 and all multiples of 4 are already crossed out since
any multiple of 4 is also a multiple of 2. The next number not crossed
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out is 5. So, for the thirdstep cross out every fifth number after'5

(that is, beginning with 10), and write a 5 below each nuMber crossed out.

For the fourth and fifth steps, similarly cross out matiples of 7 and of

11 which are greater than 7 or 11 respectively. Keep track of the

multiples as indicated. Did you cross out any new numbers when you were

considering multiples of 112 Would we cross out any new numbers if we

considered multiples of 122 of 132

From the way in which the table was constructed you see that every number

crossed out is a multiple of a smaller number different fram 1. These

numbers are called composite numbers.

Definition: A composite number is a counting number which is divisible

by a smaller counting nuMber different from 1.

The table which you have constructed ay crossing out numbers is called

the "Sieve of Eratosthenes" for the first 100 numbers!. It is called a

"sieve" because in it you have sifted out all the composite numbers less

than 100. Notice that when we crossed out the multiples of 2 and "i less

than 31, the composite number 25 remained. However, the number 25 was

eliminatei when we crossed out multiples of 5 in the third step. Similarly,

the number 49 was not crossed out in the Sieve of Eratosthenes until we

crossed out multiples of 7.

Except for the number 1, the nudbers of the Sieve of Eratosthenes

which are not crossed out are calleL prime numbers.

Definition: A prime number is a counting number, other than 1, which

is divisible only by itself and 1.

Since it eliminates the composite numbers, the Sieve of Eratosthenes is

a good way of finding a list of all prime numbers up to a certain point. The

composite numbers are sifted out. The prime numbers remain. Why are the

remaining numbers prime numbers?

The number 1 is not included in the set of primes partly because it is

divisible by itself only. We shall have another stronger reason for this

later on.

Eratosthenes (c. 230 B.C.) was a friend of ArchimPdes and librarian
at the University of Alexandria. He was interested in geography and
mathematics.
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Exercises 1

1. (a) List the prime numbers less than 100.

(b) Now list the prime numbers less than 130 but greater than 100.

2. (a) How many prime numbers are less than 50?

(b) How many prime numbers are less than 100?

(c) How many prime numbers are less than 130?

Do problemm 3, 4, and 5 first without using Eratosthenes1 Sieve and then use
it to check your results.

3. List all the multiples of 5 which are less than 61.

4. List the set of numbers less than 50 which are multiples of 7.

5. List the set of numbers which arc less than 100 and are also multiples

of both 3 and 5.

6. In the table below, the numbers along the top represent values of a

and those down the left side represent values of b. In each ease if a
ais divisible by lap write the values of 117 in the a-column and b-row.

If a is not divisible by bp write "no" in the a-column and b-row.

a - 12 14 17 18 20

b - 1

b.
-.

b . 4

b Q4 5

o - b

b - 7

7. Zxpress each of the following counting numbers as a product of two

nmaller counting numbers or indicate that it is impossible to do this.

(a) 12 (c) 1 (e) 8 (g) 35 (i) 39 (k) b (m) 82

(b) 6 (d) 7 (i) 11 (h) 5 (j) 42 (1) 41 (n) 9,

I 0



8. (a) By what netbers is 24. divisible?

(b) The nuMber 24 is a multiple of what nutbers?

(e) Axe the two sets of numbers you have found in (a) and (b) the

same? Why or why not?

9. Write 12 in all possible ways as a product of counting numbers greater

than 1. .

10. List the pairs of prime numbers less than 100 which have a difference

of 2. How many are these? Such pairs are called twin primes.

11. Express each even number between 4 and 22 as a sum oD two prime

numbers. (An even number, recial, is one divisible by 2.) Most

mathematicians believe that vfery even number greater than 2 is the

sum of two prime numbers but no one hae been able to prove it. This is

called "Goldbachls conjecture".

12. Are there three numbers that might be called prime triplets?

13. (a) Locate the nutbers from 1 to 50 along a number line.

(b) Underline the numerals in every second position, starting with 1.

(c) Circle the numerals for the prime numbers.

(d) Did you need to circle any numeral that was not underlined?

If co, write all such numerals.

14. What is the intersection of the set of Prime numbers and the set of odd

nuMbers less than 30?

2. Factors.

The word "factor" is commonly used in mathematics. Though the term may

be new to you, the idea is not. We know that 5 X 2 . 10. Instead of calling

one of the numbers the multiplicand and the other one the multiplier, we give

both of them the same name -- factor. Thus, 5 and 2 are factors of 10;

6 'and 7 are factors of 42, since 6 X 7 = 42. Also, 42 = 2 x 3 X 7;

so 2, 3, and 7 are factors of 42.

Example 1: Write 12 as a product of factors.

12 . 1 x 12,

or 12 = 2 X 6,

or 12 = 3 x 4)

ror 12 = 2 X 2 x 3 , 2
2

x 3.

5



When we ant "the factors" we mean "all the factors" of a nuMber. For
example, the number 6 has four factors, 1, 2, 3, and 6. The number 1
and the nuMber itself are always factors of a nuMber.

aample 2: Find the set of factors of 20.

The set of factors of 20 is (1,2,4,5,10,20).

The idea of factors is associated with multiplication. In mathematical
giabols we define factor the following way:

Definition. If a, bp and c are whole numbers and if ac b, then
the nu:Ober a is called a factor of b. (Under these conditions c is
also a factor of b.)

Using the terms of the first section, we say that 3 is a factor of 12
because 12 is divisible by 3. In the symbols of the definition, we see
that the number a is a factor of b if b is divisible by a.

The number 1 has only one factor, itself. Each prime number has
exactly two factors, itself and 1. A composite nuMber has how many factors?

Consider the number 24. It can be wiitfen as 4 x 6. Both 4 and 6

axe composite numbers since they can be written as products of smaller

counting numbers; 4 2 x 2 and 6 . 2 x 3. Thus

2 = 2 X 2 x 2 X 3.

However, 2 and 3 are prime numbers since they cannot be expressed as
products of smaller numbers. We cannot go any further in this process.
We therefore say that 2X2X2X3 is acomplete factorization of 24.

Definition; If a counting number is written as a praduct of prime

numbers, this product is called a complete factorization of the given number.

Examiae. 1; Find a complete factorization of 20.

20 = 4 x 5 2 X 2 x 5 = 22 x 5.

Here 4 x 5 is not a complete factorization of 20 since 4 is not a
prime nuMber, but 2 x 2 x 5 and 2

2
x are complete factorizations.

The most compact complete factorization of 20 is 22 x 5.

6
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Example 2: Find a complete factorization of 72.

Method I Method II

Using continuing division

72 = a x 9 2

72'is (4 x 2) x (3 x 3) 2

72 is (2 x 2) x 2 x (3 x 3) 2

72 2. (2 X 2 x 2) X (3 x 3) 3

Using exponents,

72 2
3

x 3
2 72 . 2

3
x 3

2

We might have used fewer steps. Notice that in both examples, the only

factors appearing in the last products al.e prime numbers. Not all the

factors of 20 and 72 (such as 4) appear in the final complete

factorization. It is convenient but not necessary to use exponents wherever

possible.

Note that 2 x 5 x 2 is also a complete factorization of 20, but this

is the same as 2 x 2 x 5 except for the order of the factors. Eimilarly,

in the factorization of 72, 2
2

x 3 x 2 is the same as 2
3 x 3 except for

the order of the factors. In fact, a very fundamental property of the count-

ing numbers is that there is only one way to write a complete factorization

of any counting nutber except for the order in which the prime factors appear.

This property is given a special name:

The pave Factorization Property of the Counting Numbers:

EVery counting nutber greater than I can be factored into primes in

only one way except for the order in which the factors occur in the product.

The word "unique" means that there is only one factorization except for

order. (The question of order is another matter.) One might say that the

Empire State Building is unive because there is no other building like it.

Here we have another reason for excluding 1 from the set of prime

numbers. If we had called 1 a prime, then 5 could have been expressed as

a product of primes in many different ways: 5 x 1, 5 x 1 x 1,

5 x 1 x 1 x 1, ... Here the product would not be unique except for the order

in Which the factors are written.

7



Exercises 2

1. List the set of factors for each of - ,e following:

(a) 10

(b) 15

(c) 9 (e) 27

(d) 18 (f) 24

(g) 11

2. Factor the numbers listed in as many ways as possible using only two

factors each time. Because of the commutative property, we shall

aay that 3. 5 is not different from 5.3.

(a) 10

(b) 15

(c) 9

(d) 100

(e) 24

(f) 16

(g) 72

(h) 81

3. Write a complete factorization of:

(a) 10

(b) 15

(c) 9

(d) 30

(e) 45

(f) 50

(g) 13

4. According to our definition of factor, is zero a factor of 6

Is 6 a factor of zero? Explain your answers.

5. (a) What factors of 20 do not appear in a complete factorization of

20?

(b) What factors of 72 do not appear in a complete factorization of

727

6. Find a complete factorization of:

(a) 105

(b) 42

(c) 75

(d) 300

(e) 64

(f) 345

(g) 311

(h) 1000

(i) 301

(i) 323

Definition. If a whole number is divisible by two it is an even number.

If a whole number is not divisible by two it is an odd number.

7. Tell whether these numbers are odd or even:

(a) 2x,

(b) 3 7

(c) 6 x 5 x 3

(d) 2 + 16

(e) 7 + 3

(11 j X 2 x 6

(g) 128 . 37

(h) 3x3x7
(1) 3 (4 + 7)

(j) + 13)

8
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8. Copy the following Uhler for coUnting nuabora N and complete it

through N 30.

Factors of N Nutber of Factors Sum of Factors

1

2

3

4

5

6

7

8

1 1 1

1,2 2 3

1,3 2 4

1,2,4 3 7

1,5 2 6

1,2,3,6 4 12

1,7 2 8

1,2,4,8 4 15

(a) Which nutbers represented by N in the table above have exactly

two factors?

(b) Which numbers N have exactly three factors?

(c) If N .-r? (where p is a prime number), how many factors does

N have?

(d) If N = pg (where p and g are different 7rime numbers), how

many factors does N have? What is the sum of its factors?

(e) If N = 2
k

(where k is a counting nuMber), how many factors

does N have?

(f) If N 3
k

(where k is a counting number), how many factors

does N have?

(g) If N = p
k

(where p is a prime number and k is a counting

number), how many factors does N have?

(h) Which nutbers have 2N for the sum of their factors? These numbers

are called laerfect nutbers. It is unknown how many perfect nutbers

there are or whether there are any odd perfect nuMbers.

9
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3. Diagrams, for Factors

Basically, we can represent a product by the diagram

2 .3 691110
where the 3 associated with the line is the multiplier, which "takes 2

into 6". The arrow indicates the direction in which the multiplication goes.

Similarly

2 3 6 4 24

represents the product (2 x 3) x 4.

Then the three different complete factorizations of 18 could be

represented by the following diagram. Notice that all the factors of 18

alao appear in the diagram.

3

3

9

In making a diagram you may wish first to make a list of all the factors

of the number and to arrange them from the smallest to the largest. For 12
this would be 1, 2, 3, 4, 6, 12. Then Start with 1 and continue to build

a Chain so that the second number is divisible by the preceding nuther, and
so on. Thus, one chain would consist of 1, 2, 4, and 12; another chain

would consist of 1, 3, 6, and 12; and the last chain would be

1, 2, 6, and 12. In each of these chains, taking any pair, the second is

divisible by the first and there is no factor between them. We could not go
from 1 to 4 since there is the factor 2 between 1 and 4. Remetber

that one of the rules of the game is that there may be no other factor

between successiveAlumbers.

10
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The diagrams for the numbers from I through 20 are shown here:

2

2

21 I 2 5

2 3 4

11

11

2
2

2
4

2
8

2

16

2

17

17

12

13

13

2

2

4

3

3
3

9 10

14

2 5
3 1 2 5

3 2 2
19

4
5 2

19 20

Same of you may be interested in pursuing the investigation of these

diagrams a little further. The following examples are included for this

purpose.

1.1

1



ftercises

1. Let a and b represent two different prime numbers. Complete calh
of the following sketches.

(a)

(b) 0
a

0

(c)

(d)

2. We have found that 6 and 10 had patterms like the one in Problem la.

Name three other numbers that we have mot sketched which have the same

pattern.

3. Notice that 4 and 9 have the sane pattern as Problem lb.

Name three others which we have not sketched that have the same.pattern.

4. A number like 12 or 18 has the same pattern as Problem lc.

Find three other numbers which have this pattern.

5. Find three numb...:s which Wave patterns like Problem ld.

6. Find patterns which have not been represented so far in the section.

12
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To find the factors of a number, we can always guess and try, but it is

much easier if we can tell from laaking at a number whether or not it has a

gAven factor. From the Sieve of Eratonthenes it is clear that a number

%mitten in the decimal system is even if the last digit is even. As far as

the sieve we have constructed goes, this is true. Thus:

A counting nuMber written in the decimal system is even if its Last

digit is one of 0, 4, 8. If its last digit is not one of these,

it is odd.

Suppose we see why this is so. To do this, remember how we found the

multiples of 2 when we began to construct the Sieve of Eratosthenes. We

started with the number and added 2 agein and again. The last digits

repeated in the pattern: 2,406,800,2,4,6,8,0". This would continue no

matter how far we extended the table. This shows that the even numbers are

those whose last digit is one of the five numbers: 2, 4, 6, 8, 0.

In Problem 4 below you are asked to start with 5 and add 5 again

and again to show the following:

A ,countinG nuMber expressed in the decimal system is divisible p2 2

if its last digit is 0 or Othervise it is not divisible

What about divisibility by 3? Can we tell by looking at the last digit?

The first ten multiples of 3 are

0, 3, 6, 9, 12, 15, 18, 21, 24, 27.

Each of the possible last digits, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9,

appears in this list. On the other hand, none of the following are divisible

by 3 even though each of the possible last digits appears here also:

4, 7, 10, 130 16, 19, 22, 25, 28, 31.

We can see, then, that we cannot tell whether a nuMber is divisible by 3

by looking at the last digit.

But suppose we add the digits of the multiples of 3. For 12 we have

1 + 2 3; for 15 we have 1 + 5 . 6; for 18 we have 1 + 8 . 9. By

this seems we can fors the following table:

13
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Multiple of 3 0 3 6 9 12 15 18 21 24 27 30 33 36

Sum of digits 0 3 6 9 3 6 9 3 6 9 3 6 9

Multiple of 3 39

I

_42 4, 48 51 54 57 60 63 66 69 72

Sum or digits 12 6 9 12 6 9 12 6 9 12 15 9

Can you make any statement that seems to be true about the sum of the digits

for all multiples of 37 You will see that in each case the sum of the digits

is divisible by 3. FUrthermore, if you add the digits of any nuMber that is
not divisible by 3 (take 25 where the sum of the digits is 7), the sum
of the digits is not divisible by 3. Can you see why this will be true for
all numbers? See Problem 3 in the next set.

You may notice that every third sum of digits in the table above is

divisible by 9 and every third multiple of 3 is divisible by 9. Hence,

we have the following test for divisibility by 9:

A number is divisible 1.1 2 if the sum of its digits is divisible

la 9. otherwise, it is not divisible by 9.

5. Casting Out the Nines

You now know a very simple and interesting way to tell whether a nultber

is divisible by It is based on the fact that a nuMber is divisible by

9 if the sum of its digits is divisible by 9; also, the sum of the digits
of a number is divisible by 9 if the nutber is divisible by 9. For

instance, consider the number 156782. The sum of its digits is

1 + 5 + 6 + 7 4. 6 + 2 which is 29. But 29 is not divisible by 9 and,

hence, the number 1567 is not divisible by 9. If the second digit had

been 2 less, the nuMber would have been divisible by 9 since the sum

of the digits would have been 27, which is divisible by 9. The test is a

good one because it is easier to add the digits than to divide by 9. Actually

we could have been lazy and, instead of dividing 29 by 9, use the fact
again, add 2 and 9 to get 11, add the 1 and 1 to get 2 and see

that since 2 is not divisible by 9 then the original six-digit numiber

is not dtvisible by 9.



Why is this true? Merely dividing the given nutber by 9 would have

tested the rerult, but from ,hat we would have no idea why it would hold for

any other number. We ian show What is happening by writing out the nuMber

156,782 in the decimal notation:

1 X 10P + 5 x 104 + 6 x 103 + 7 x 102 + 8 x 10 + 2 =

1 x (99999 +1) + 5 x (9999+0 + 6 x (999 +1) + 7 x (99+ + 8 x (9+ 1) +2.

Now,by the distributive property, 5 X (9999 + 1) . (5 x 9999) (5 x 1) and,

similarl; *or the other expressions; Also,we may rearrange the nutbers in

the sum since addition is commutative and associative. Sopour nutber 156,782

may be written

1 x (99999) + 5 X (9999) + 6 X (999) + 7 x (99) + 8 x 9 + (1 +5+ 6+ 7+ 8 +2).

Now 99999, 9999, 999, 99, 9 are all divisible by 9, the products

involving these nutbers are divisible by 9, and the sum of these products is

divisible by 9. Hence,the original nuMber will be divisible by 9 if

(1 + 5 + 6 + 7 + 8 + 2) is divisible by 9. This SUM is the sum of the digits

of the given nutber. Writing it out this way dhows that no matter what the

given nutber is, the same principle holds.

EXercises 2

1. (a) Test each of the nutbers, 226843, 67945, 427536, and 45654

by the above method for divisibility by 9.

(b) For any nutbers in part (a) that art not divisible by 9, compare

the remainders when the nutber is divided by 9 and when the sum

of the digits is divided by 9.

(a) From part (b) try to formulate a general fact that you suspect is

true. Test this statement with a few more examples.
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2. Choose two num:berm. First, add them, divide by 5 and take the

remainder. Second, divide eadh umber by 9 and find the sum of the

remainders; divide the sum by 9 and take the reminder. The final

remainders in the two cases are the same. For instance, let the nuMbers

be 69 and 79. First, their sum is 148, and the remainder When 148

is divided by 9 is 4. Second, the remainder when 69 is divided by

9 is 6, and when 79 is divided by 9 is 7; the sum of 6 and 7

is 13, and if 13 is divided by 9, the remainder is 4. The result

is 4 in both cases. Why are the two results the same no matter what

nuMbers are used instead of 69 and 79? Would a similar result hold'

for a sum of three nuMbers? (Hint: write 69 as 7 x 9 + 6.)

3. If it the previous exercise we divided by 7 instead of 90 would the

remainders by the two methods for division by 7 be the same? Why or
why not?

-* 4. Suppose in EXercise 2 we considered the product of two numbers instead

of their sum. Would the corresponding result hold? That is, would the

remainder when-the product of 69 and 79 is divided by 9 be the same

as when the product of their remainders is divided by 91 Would this be

true in general? Could they be divided by 23 instead of 9 to give a

similar result? Could similar ptatements be made about products of more
than two numbers?

*5. Use the result of the previous exercise to show that 10
20

has a

remainder of 1 when divided by 9. What would its remainder be When

it is divided by 3? by 99?

*6. What is the remainder when 720
is divided by 6?

11.7. You know that when a number is written in the decimal notation, it is

divialble by 2 if its last digit is divisible by 2, and divisible
by 5 if its Last digit is 0 or 5. Own you devise a similar test

for divisibility by 4, 8, or 25?

* 8. In the following statement, fill in both blanks with the same nuMber so

that the statement is true.

A number written in the system to the base 12 is divisible by

if its last digit is divisible by If there is more than one

answer, give the others, too. If the base were 7 instead of 12,

how could the blanks be filled in? (Hint: One answer for base 12
is 6.)

* means these exercises are more difficult.
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tr.:1271".7,
-.4a..44."71414-4..4

*9. One could have &Wetting like "decimal" equivalents of nun:hers in

numeration systems to bases other than lo. For instance, in the

numeration system to the base 70 the septimal eqnivalent of

z-,17 2ol would be written .56
7

just as the decimal equivalent of
7

5(11.-a) + 6()2 would be written .5610 in the decimal system. The

nuMber .142857142857... is eqnal to 27-,; in the decimal systems and in

the rystem to the base 7 would be written .17 On the other hand,

(.04620462 ...)7. What nuMbers would have terminating septimals

in the numeration system to the base 7? What would the septimal equiva-

lent of 5 be in the system to the base 7? (Hint: Remember that if

the only prime factors of a nuMber are 2 and 5, the decimal eqnivalent

of its reciprocal terminates.)

*10. Use the result of Exercise 3 to find the remainder when

9 + 16 + 23 + 30 + 37 is divided by 7. Check your result by computing

the sum and dividing by 7.

CLI. Use the results of the previous exercises to show that 10
20

- 1 is

divisible by 9; 71
08

- 1 is divisible by 6.

*12. Using the results of some of the previous exercises if you wish, shorten

the method of showing that a number is divisible by 9 if the sum of its

digits is divisible by 9.

*13. Shaw why the remainder when tne sum of the digits of a number is divided

by 9 is the same as the remainder when the nutber is divided by 9.

6. Does 0astinE Out the Nines Work?

First, let us review some of the important results shown in the exercises

wnich you did in Section 5. In Problem 2, you showed that to get the remainder

of the sum of two numbers, after division by 9, you can divide the sum of

their remainders by 9 and find its remainder. Perhaps you did it this way

(there is more than one way to do it; yours may have been better). You know,

in thz: first placq that any natural nuMber may be divided by 9 to get a

quotient and remainder. For instance, if the number is 725, the quotient

is 80 and the remainder is 5. FUrthermore, 725 = (80 x 9) + 5, and you

could see from the way this is written that 5 is the remainder.

17



Thus, using the nuMbers in the exercise, you would write 69 7 X 9 + 6 and

79 - 8 X 9 + 7. Then 69 + 79 (7 x 9) + 6 + (8 x 9) + 7. Since the sum

of two numbers is oommutative and associative, you may reorder the terms and

have 69 + 79 . (7 )c 9) + (8 )C 9) + 6 + 7. Then, by the distributive property,

69 + 79 . ((7 + 8) x 9] + 6 + 7. Nowiethe remainder When 6 + 7 is divided

by 9 is 4, and 6 + 7 ean be written (1 X 9) + 4. Thus,

69 + 79 [(7 + 8 + 1) x 9] + 4. So, from the form it is written in, we see

that 4 is the.remainder when the sum is divided by 9. It is also the

remainder when the sum of the remainders, 6 + 7, is divided by 9.

Writing it out in this factiion is more work than making the computations

the short wsy- but it does show what is going on and Why similar results umuld

hold if 69 and 79 were replaced by any other numbers, and, in fact, we

could replace 9 by any other mutber as well. One way to do this is to use

letters in place of the nuMbers. This has tvv advantages. In the first

place it helps us be sure that we did not make use of the special properties

of the numbers we had without meaning to do so. Secondly, we can, after

doing it for letters, see that we may replace the letters by any numbers. So,

in place of 69 we write the letter a, and in place of 79, the letter b.

When we divide the number a by 9 we mould have a quotient and a remainder.

We can call the quotient q and the remainder r. Then we have

a (4 x 9) + r

where r is some whole nutber less than 9. We could do the same for the

number b, but we should not let q be the quotient, since it might be

different from the quotient when a is divided by 9. We here could call

the quotient ql and the remainder el. Then WE would have

b = (te X 9) 4- ry.

Then the sum of a and b will be

a + b (q x 9) + r + (q1 x 9) + rl.

We can use the commutative and aasociative properties of addition to have

a + b = (q x 9) + (q0 x 9) + r + rf

and the distribut:vv property to have

a + b [(q + ql) x 9] + r + ro.

18



Thantif r + r/ were divided by 9, we would hawe a quotient whiCh we might

call q" and a remainder r". Then r + rl (q" x 9) + r" and

+ b [(q + ql) X 9] + (q" x 9) + r"

((q + ql q") x 9] + r".

Now, r" is a whole nuMber less than 9 and, henceolt is not only the remainder

When r + is divided by 9 but also the remainder when a + b is divided

by 9. Sools far az the remainder goes, it does not matter whether you add

the numbers or add the remainders and divide by 9.

The solution of Problem 4 goes the same way as that for Problem 2 except

that we multiply the nuMbers. Then we would have

69 x 79 . (7 x 9 + 6) x (8 x 9 + 7)

[(7 X 9) x (8 x 9 + 7)] + 6 x (8 X 9 + 7)

. (7 x 9 x 8 x 9) + (7 x 9 X 7) + (6 x 8 x 9) + (6 x 7).

The fi,rst three products are divisible by 9 and by what we showed in

Preiblem2; the remainder when 69 x 79 is divided by 9 is the same as the

remainder when '0 + 0 + 0 + 6 x 7 is divided by 9. So,in finding the

remainder when a product is divided by 9, it makes no difference Whether we

use the product or the product of the remainders.

If we were to write this out in letters as we did the sum, it would

look like this:

a X b (q x 9 i r) x (q' x 9 + r1)

(q x 9 x q' x 9) + (q x 9 x r') + (r x q' x 9) + (r x r1).

Againpeach of the first three products is divisible by 9 and hence the

remainder when a X b is divided by 9 is the same as when r x r, is

divided by 9.

We used the number 9 all the way above, but the same conclusions would

follow just as easily for any nuMber in place of 9, such as 7, 23, etc.

We could have used a letter for 9 also, but this seems like carrying the

generalization too far.

There is a shorter way of writing some of the things we had above. When

letters are used, we usually omit the multiplication sign and write ab in-

stead of a X b and 9g in place of 9 x q. Henceothe last equation above

could be abbreviated to

or
ab qe9 x 9 + gr'9 + rg19 + rrl

ab 9 x 9qq1 + 9cirt + 9r0 +

lo
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But this is not especially important right now.

Soolet us summarize our results so far: The remainder when the sum of

two numbers is divided, by 9 (or any other number) is the same as the

remainder when the sum of the remainders is divided, by 9 (or some other

Maher). The same procedure holds for the product in place of the sum.

These facts may be used to give quite a short proof of the important

result stated in Problem 13 of Exercises 5. Concider again the number

156,782. This is written in ihe usual form:

(1 x 10') + (5 X 104) + (6 X 103) + (7 X 102) + (8 x 10) + 2.

Now,from the result stated above for the product, the remainder when 102

is divided by 9 is the same ae when the product of the remainders 1 X 1 is

divided by 9, that is, the remainder is 1. Simi1ar/4 103 has a remainder

1 X 1 x 1 when divided by 9 andphences 1. Sc, all the powers of 10 have a
remainder 1 when divided by 9. Thus, by the result stated above for the

sum, the remainder when 156,782 is divided by- 9 is the same as the

remainder when (1 x 1) + (5 x 1) + (6 X 1) (7 X 1) 4- (8 X 1) 2 is divided

by 9. This last is just the SUM of the digits. Writing it this wily it Is

easy to see that this works for any number.

Now we can use the result of Problem 13 of Exercises 5 to describe a

Check called "casting out the nines" which is not used much in these dews of

computing machines, but which is still interesting. Consider the product

867 x 934. We indicate the following calculations:

861 sum of digits: 21

934 sum of digits: 16

Product: 809,778

Sum of digits: 8 + 0 9 + 7 + 7 + 8

Sum of digits: 3 + 9 . 12

Sum of digits: 1 + 2 = 3

39

sum if digits: 3

sum of digits: 7

Product: 3 x 7 . 21

Sum of digits: 2 + 1 . 3.

Since the two results, 3, are the same, we have at least some check on the

accuracy of the results.

20



Exercises 6

1. Try the method of checking for another product. Would it also work for

a sum? If so, try it also.

2. EXplain why this should came out as it does.

3. If a computation checks this way, show that it still could be wrong.

That is, in the example given above, find an incorrect product that would

still check.

4. _Given the nubber (5' 75) (36 74) + (2° 73) + (1 .72) + (4 '7) + 3.

What is its remainder when it is divided by 7? Wbat is its remainder

when it is divided by 6? by 3?

Can you find any short-cuts in the example above analogous to casting out

the nines?

6. In a numeration system to the base 7, casting out what number would give

a result corresponding to that in the decimal system when nines are cast

out?

7. The following is a trick based on casting out the nines. Can you see how

it works? You ask someone to pick a nuMber -- it might be 1678. Then

you ask him to follm another number from the same digits in a different

order -- he might take 6187. Then you ask him to subtradt the smaller

from the larger and give you the sum of all but one of the digits in the

result. (He would have 4509 and might add the last three to give you

14.) All of this would be done without your seeing any of the figuring.

Then you would tell him that the other digit in the result is 4. Does

this trick always work?

One method of shortening the computation for a test by casting out the

nines is to discard any partial sums which are 9 or a multiple of 9.

For instance, if a product were 810,6450 we would not need to add all the

di its. We could notice that 8:1- 1 . 9 and 4 + 5 . 9 and hence the

remainder when the sum of the digits is divided by 9 would be 0 + 6,

which is 6. Are there other places in the check where work could have been

shortened? We thus, in a way, throwaway the nines. Zt was from this that

the name "casting out the nines" came.

By just the same principle, in a numeration system to the base 7 one

wouId cast out the sixes, to the base 1? cast out the elevens, etc.
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7. Divisibility, la 11

There is a test for divisibility by 11 Which is not quite so stmple as

that for divisibility by 9 but is quite easy to apply. In fact, there are

two tests. We shall start you on one and let you discover the other for

yourself. StppoLe we wdsh to test the number 17945 for divisibility by 11.

Then we cun write it as lefore

(1 104) + (7 103) + (9 102) + (4 .101) + 5.

The remainders when 102 and 10
4

are divided by 11 are 1. But the

remainders when 10, 103 and 10 are divided by 11 are 10. Now 10 is

equal to 11 - 1. 103 m 102 (11 - 1), l05 is 104 (11 - 1). That is enough.

Perhaps we have told you too much already. It is your turn to carry the ball.

Exercises 7a

1. Without considering 10 to be 11 . 10 can you fram the above devise

a test for divisibility by 117

2. Noticing that 10 m 11 - 1 and so forth as above, can . . devise another

test for divisibility by 11?

We hope you were able to devise the two tests suggested in the previous

exercises. For the first, we could group the digits and write the number

17945 as (1 x 104) + (79 x 102) + 45, Hence the remainder when the number

17945 is divided by 11 should be the sane as the remainder when 1 + 79 + 45

is divided by 11, that is, 1 + 2 1 4. (2 is the remainder when 79

is divided by 11, etc.) This method would hold for any number.

The second method requires a little knowledge of negative numbers (either

review them or, if you have not had them, omit this paragraph). We could

consider -1 as the remainder when 10 is divided by 11, since

10 m 1(11) + (-1), where q - 1 and r'. -1. Then,the original number

would have.the same remainder 48 the remainder when

1 + (7(-1)3) + 9 + I4(-1)) + 5 is divided by 11, that is, when

5 - 4 + 9 - 7 + 1 is divided by U. This last sum is equal to 4, which was

what we got the other y. By this test we start at the right and alternately

add,and subtract digits. This is simpler than the other one.



Exercises 7b

1. Test several numbers for divisibility by 11 using the two methods

described above. Where the numbers are not divisible, find the

remainders by the method given.

In a number system to the base 7, what nuMber could we test for

divisibility in the sane way that we tested for 11 in the decimal

system? Would both methods given above work for base 7 as well?

3. To test for divisibility by 11, we grouped the digits in pairs. What

number or nuMbers could we test for divisibility by grouping the digits

in triples? For examplepwe might consider the number 157892. We

could form the sum of 157 and 892. For what nuMbers would the

remainders be the same?

4. Answer the questions raised in Problem 3 in a numeral system to base 7,

as well as in numeral system to base 12.

1
5. In the repeating decimal for -g in the decimal systempthere is one digit

1
in the repeating portion; in the repeating decimal for in the decimal

system, there are two digits in the repeating portion. Is there any

connection between these facts and the tests for divisibility for 9

and 11? What would be the connection between repeating decimals and

the questions raised in Problem 3 above?

6. Gould one have a check in which llis were "cast out"?

. Can you find a trick for 11 similar to that in Problem 1 above?

8. Divisibility la 7

There is not a very good test for divisibility by 7 in the decimal

system. (In a numeration system,to What base would there be a good test?)

But it is worth looking into since we can see the connection between tests

for divisibility and the repeating decimals. Consider the remainders When

the powers of 10 are divided by 7. We put them in a little table:

n 1 2 3 4 5 6 7

Remainder when

is divided by

10n

7

2 6 4 5 1 3



rr you compute the decimal equivalent for 7, you will see that the

remainders are exactly the numbers in the second line of the table in the

Order given. Why is this so? This means that if we wanted to find the

remainder when 7984532 is divided by 7 we would ealte

(7 X 106) + (9 X 10') (8 X 104) + (4 x 103) + (5 x 102) + (3 x 10) + 2

and replace the various powers of 10 by their remainders in the table to get

(7 x 1) + (9 X 5) + (8 x 4) + (4 X 6) + (5 x 2) + (3 x 3) + 2.

We would have to compute this, divide by 7, and find the remainder. That

would be as much work as dividing by 7 in the first place. So this is not

a practical test, out it does show the relationship between the repeating

decimal and the test.

Notice.that the sixth power of 10 has a remainder of 1 when it is

divided by 7. If instead of 7 some other nuther is taken which has neither

2 nor 5 as a factor, 1 will be the remainder when some power of 10 is
divided by that number. For instance, there is some power of 10 which has

the remainder of 1 when it is divided by 23. This is very closely eonnected

with the fact that the remainders must, from a certain point on, repeat.

Another way of expressing this result is that one ean form a weber completely

of 91s like 99999999, which is divisible by 23.

EXercises 8

Complete the following table. In doing this, notice that it ia not
necessary to divide 1010 by 17 to get the remainder when it is divided by

17, We can compute each entry from the one above like this: 10 is the
remainder when 10 is divided by 17; this is the first entry. Then

divide 10
2

, that is, 100 by 17, and see that the remainder is 15. But

we do not need to divide 1000 by 17. We merely notice that 1000 is

100 x 10 and hence the remainder when 1000 is divided by 17 is the same as

the remainder when 15 x 10, or 150, is divided by 17. This remainder

is 14. To find the remainder when 10
4

is divided by 17, notice that 10
4

is equal to 103 x 10 and hence the remainder when divided by 17 is the

same as when 14 x 10 is divided by 17, that is, 4. The table then gives

the remainders when the posters of 10 are'divided by various numbers.
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11 13 1719 21. 37 101 41

1 1 1 1 1

10
1

1 3 1 10

10
2

1 2 1 15

103 1 6 1 14

10
4

1 4 1 4

105 1 5 1 6

10 1 3. 1 9

10
7 1 1 5

10
8

1 1 16

10 1 1 7

1
10

0
1 1 2

10
11

1 . 1 3

10
12

1 1 13

1013 1 1 11

10
14

1 1 8

1015 1 1 12

10
16

1 1 1

Find what relationships you,can between the nuther of digits in the repeating

11111
decimals for -p etc., and the pattern of the remainders.

WhY does the table show that there will be five digits in the repeating

1
portion of the decimal for m...? Will there be some other fraction T which

will have a repeating decimal with five digits in the repeating portion?

How would you find a fraction

portion?

Which would have six digits in the repeating

If you wish to explore these things further and find that you need help,

you might begin to read some book on the theory of numbers. Also, there is

(elite a little material on tests for divisibility in "Mathematical EXcursions"

by Helen Abbott Merrill, Dover (1958).
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9. Complete Factorization

Suppose we apply what we have learned about divisibility to a few
examples:

bumple 1 Find a complete factorization of 232. Since the given
number has 2 as its Last digit, it is even and has 2 as a factor. So,
232 m 2 x 116. Then 116 has 2 as a factor and we have 232 m 22 x 58.
Then we have 232 23 X 29. We can see that 29 is a prime number by looking
at our table of the Sieve of Eratosthenea or by trying the prime factors:

2,3,5,7,11,13,17,19,23 less than 29. Some of you may be able to see why it
is necessary only to try 2, 3, and 5.

A tabular way of finding the complete factorization is the following:

232 116 58 29

2 2 2 29

where 2 is the first factor and 116 is the quotiemt; then 2 is a
factor of 116 and 58 is the quotient, etc. A complete factorization,then,

is on the second line.

Example 2 Find a complete factorization of 573. Here the last digit
is odd and hence 2 is not a factor. But the sum of the digits is 15, which
if; divisible by 3. Hence, 3 is a factor of 573 and, dividing, we have
573 . 3 x 191. By our tests 2, 3, and 5 are not factors of 191. Trial
shows that 7, 11, and 13 are not factors and,henc4 191 is a prime number.
Wny is it not necessary to try any primes larger tnan 13? Therefore,
573 . 3 x 191 is the complete factorization.

Example 1 Find a complete factorization of 539. Our tests show that
none of 2, 3, and 5 are factors. If we try 7, Me see that 539 = 7 x 77 .
72 x 11, which is a complete factorization.

It is important to notice that the tests for divisibility depend on the

nutber being written in the decimal system. For instance, the nutber 21 in
the decimal gystem is written

30s ev en in the system base seven. This

nuMbe; 30
e , is not eventin spite of the factothat its last digit issevn

zero. However, since 30seven means (3 x seven) 0, the fact that the

last digit is zero tells us that the nutber is divisible by seven.
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If a nuMber is written to the base seven it is very easy to tell Whether or

not it is diVisible by seven; one merely looks to see if the last digit is

zero.

The property of one nuaher being a factor of another does not depend on

the way it is written; for instsnce, seven is always a factor of twenty-ones

no matter how it is written. But the tests for divisibility which we have

given here depend on the system of numeration in which the nuMber is written.

Exercises 2

I. Find the smallest prime 2actor of each of the following.

(a) 115 (b) 135 (c) 321 (d) 484 (e) 539 (f) 121

2. Find a complete factorization of each of the following.

(e) 39

(b) 60

(c) 81

(4) 98

(e) 180

(f) 258

(g) 378

(h) 432

(i) 576 (k) 1098

(j) 729 (1) 2324

3. Notice the list of multiples of 3. In going from 9 to 120 the units

digit decreases from 9 to 2, and the tens digit increases from 0 to

1; hence,the sum of the digits decreases by 7 - 1. or A net decrease

of 6. Similarly,in going from 18 to 21, the first digit increasec

by 1, and the second decreases by 7. Is thf.s always true when the

tens digit increases by 1? What happens When one goes fram 99 to 102,

from 999 to 1002, etc? Can you see from tais, that always for a

multiple of 3, it is true that the sum of its digits is a sultiple of

37

4. Show that the test given for divisibility by 5 always works.

5. List the multiples of 9 and see if you ean show from thi.1 the test for

divisibility by 9.

6. Can you give a test for divisibility of 6 in the decimal systve

7. Can you give a test for divisibility by 15 in the decimal systemi

a. Which of the following sumhert are divisible by 2?

(a) 1111
ten

(b) 1111
s en

(c) 1111
s

(d) 111
t e

9. Suppose a nuMter is written in the system to the base 7, Is it

divisible by ten if its last digit is 0? Is it divisible by 3 if

the sum of its digits is divisible by 3?



1110. Amswer.the above questione for a system of numeration to the base twelve.

CLL. Find a test for divisibility by 6 in a system of numeration to the base
Sirre

4112. Give a test for divisibility by 4 in the decimml system.

10. Greatest Common Factor

Consider the nutbers 10 and 12. We see that both 10 and 12 are
even numbers. They are both divisible by 2, or we may say that 10 and 12
are multiples of 2. Because 2 is a factor of 10 and is also a factor of
12, we say that 2 is a "common factor" of 10 and 12.

All whole nutbers are multiples of 1. Thus, 1 is a common factor of

the metbers of any set of whole nutbers. Therefore, When we are looking for

common factorsowe generally look for nutbers other than 1.

What factor other than 1 is common to both 12 and 15? Is 2 a
oommon factor? Sinre 15 is odd, 2 is not a factor of

it is impossible for 2 to be a common factor of

15. Therefore,

12 and 15. However, 12
and 15 are both multiples of

15.

Do the numbers 12 and

of factors of 12 and

3. Hence, 3 is a common factor of 12 and

30 have any common factors? Writing the set

the set of factors of Set of factors of 12 is (1,2,3,4,6,12)
30 as shown at the right,

we see that there are

several common factors.

Set of factors of 30 is (1,2,3,5,6,10,15,30)

The nutbers 1, 2, 3, and 6 are the common factors of 12 and 30.

Do the numbers 10

of factors of 10 and

the set of factors of

21 as shown at the right,

we see that 10 and 21

do not have any common

factors other than 1.

and 21 have any =mon factors? Writing the set

Set of factors of 10 is (1,2,5,10)

Set of factors of 21 is (1,3,7,21)

28
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Solon see that for any set of whole numbers the numbers have the common

factor 1. For some aeta qg whole numbers there is a common factorgother,

than 1, and, for some sets of whole numbers, there are several common factors

other than 1.

Recognizing common factors is useful in many ways. "You have already used

the idea of common factors in changing fractions to lower terms. For example,

10
in Changing I-2- to you use the common factor; 2, of 10 and 12.

12
For T5 we thould see that 2 is a common factor of 12 and 30. The

6 6
result is 15. However, we see that for 15 there is a common factor; 30 of

6 2
6 and 15. Thus, 1-5 may be written as 5.

2
Is it possible to change it to 5- using a single nuMber instead of

using 2 and 3 in turn? Some of you may have wondered Why anyone would

12
choose to change To- by using both 2 and 3 when it would be much quicker

to use 6.

Is 6 a factor of both 12 and 30? Referring to the earlier listing

of these factors, we see that 12 and 30 have the common factors 1, 2, 3,

and 6. How does 6 differ from the other common factors? It is the Largest

of the common factors of 12 and 30. Such a factor is called the "greatest

common factor".

Definition: The greatest common factor of two whole nuMbers is the

largest Whole nuMber which is a factor of each of them.

Generally, the greatest common factor is more useful in mathematics than

other common factors. Therefore, we are most interested in the greatest

common factor.

Letts try another example. Suppose we wish to find the greatest common

factor of 12 and 18. We could write the set of factors of each:

Set of factors of 12 is (1,2,3,4,6,12)

Set of factors of 18 is (1,2,3,6,9,18)

The set of common factors of 12 and 18 is (1,2,3,6). The largest member

of the set is 6. Therefore, 6 is the greatest common factor of 12 and

18.



Similarly, suppose we with to find the greatest common factor of 24 and
6o. Writing the factors of each:

Set of factors of 24 is (1,2,3,4,6,8,12,24)

Set of factors of 60 is (1,2,3,4,5,6,10,12,15,20,30,60)

The set of common factors is (1,2,3,4,6,12). The greatest of these factors is

12. Therefore, 12 is the greatest nommon factor of 24 and 60.

EXercises 10

1. Write the set of all factors for each of the following. List these

carefully as you will use these sets in answering Problem 2 below.

(a) 6

(b) 8

(e) 12

(d) 15

(e) 16

(f) 21

2. Using your answers in Problem 1 above, write the set of common factors

in each of the following cases.

(a) 6, 8

(b) 8, 12

(c) 12, 15

(d) 6, 8, 12

3. Write the set of all factors for each of the following.

(a) 19

(b) 28

(c) 36

(d) 40

0) 12, 15, 21

(f) 8, 12, 16

(e) 45

(f) 72

4. Using your answers to Problems 1 and 3 above, write the set of common

factors for each of the following.

(a) 19, 28

(b) 16, 36

(c) 28, 40

(d) 36, 45

(e) 40, 72

(i) 19, 36, 45

5. Using your answers to Problems 2 and 4 above, write the greatest common

factor for each of the following cases.

(a) 6, 12, 16

(b) 16, 36

(c) 28, 40

(.d) 36, 45

(e) 40, 72

(f) 8, 12, 161 36

6. Find the greatest common factor in each of the following cases.

(a) 15, 25

(b) 18, 30

(c) 24, 36

(d) 25, 75

(e) 32, 48

(f) 15, 10, 36

(g) 12, 24, 48

(h) 40, 48, 72

(1) 15, 30, 45

(j) 20, 50, 100
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7.

8.

9.

(a)

(b)

(c)

What is tha greatest oommon factor of

What is the greatest common factor of

What is the greatest common factor of

any counting number?

6

29

a

and 64

and 297

and a where a is

(a) What is the greatest common factor of 1 and 64

(b) What is the greatest common factor of 1 and 297

(c) What is the greatest common factor of

represents any whole number?

1 and a where a

Let a and b represeut any two different whole numbers where a <b.

(a) Will a and b always have a common factor? If so, what is the

factor?

(b) Let c represent a common factor of a and b. Can c a7

If so, give an example.

(c) Can c la? If so, give an example.

10. Suppose 1 is the greatest common factor of three numbers.

(a) MUst one of the three numbers be a prime nuMher7 If not, write a

set of three composite numbers whose greatest common factor is 1.

(b) Can two of the numbers have a greatest common factor larger than 17

If so, give an example.

11. In finding the greatest common factor for a set of nukbers it is

sometimes troublesome to write out all the factors. Try to find a

shorter way of obtaining the greatest common factor. Assume that you

are to find the greatest common factor of 36 and 45.

(a) Write a complete factorization of 36 and 45. (List all of the

prime factors of 36 and of 45.)

Example: 36 . 2 .2. 3.3.3 . 22. 33

45 ? .? .? 7.7

(b) %%at is the greatest common factor of 36 and 457

(c) Compare the list of prime factors of 36 and 45 and the greatest

common factor of 36 and 45. Can you see a shorter way of

obtaining the greatest common factor?

12. (a) Write a complete factorization for 18 and for 90.

(b) Whet is the greatest common factor of 18 and 907
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13. Factor ooMplete4 each nuMber in the following sets and find the greatest

common factor for each set of numbers.

(a) (24,60)

(b) (36,90)

(c) (72,106)

(d) (25,75,125)

(e) (24,6o,84)

*14. (a) What is the greatest common factor of 0 and 6?
(b) What is the smallest common factor of 0 and 6?

(c) What is the smallest common factor for any two whole numbers?

4115. You have learned about operations with whole numbers: addition, sub-

traction, multiplication, and division. In this section we studied the

operation of finding the greatest common factor. This is sometimes

abbreviated G.C.F. For this problem onLyllet us use the symbol "e

for the operation G.C.F. For any whole nutbers, a and b and c,

(42,105,147)

(165,234)

(306,1173)

(26*,2184)

a A b = G.C.F. for A and b

or a A c G.C.F, for a and c

Example: 12 a 18 . 6

9 A 15 . 3

(a) Is the set of whole numbers closed under the operation A?

(b) Is the operation A commutative; that is, does a A b b A a?

(c) Is the operation A associative; that is, does

a A (b c) (a 46h) A c?

11. Remainders in Division

Another way to find the greatest common factor is to make use of a

relationship among the parts of a division problem. TO understand this methoc;

let us review the division process.

The questiooy"What is the result of dividing

*Bow 'saw 51s are contained in 16?"

W. can find the answerby repeated

sUbtractionpas shown at the right. BY

counting the nuliber of times a 5 is

subtracted,we obtain the answer, 3, with

rmaaindom 1. Does 16 (5 + + 5) + 1?

32

16 by 5?", may be stated,

16

1



Ths usual way of finding the answer to this division prOblma is shown

below:

Remainder I.

TO check the answer we use the following ides:

16 (5 x 3) + 1.

In the division problem above, the 16 is called the dividend, the

is the divisor, the 3 is the Quotient, and the 1 is the remainder.

Let's try another example. Divide 253 by 25.

10 Remainder 3

2075T-
22

Does 253 (25 x 10) + 37

In general, for any division problem:

dividend m (divisor x quotient) + remainder

Using mathematical symbols, where

"a" represents the dividend,

"b" represents the divis,1

"q" represents the quotient,

"R" represents the remainder.

This division relation may be expressed as follows:

a (b q) + R

Consider the following example in division:

24 Remainder 23

25703

123

, 100

We can write this problem in the form

623 = (25 X 24) + 23.

33
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21,4s follows tbe general fora:

dividend (divisor s quotient) .1- remainder

or

a a (a q) + R

EXertises 11

1. Copy

use

and oomplete

the table

the following table. Do this carmfullx as you

in answering 'Vale: 2.

will

DIVIDEND . (DIVISOR QUOTIENT REMAIN=

9 2 1

a. 12
1011

b. 14 3 ?

c. 29 7 3 2

d, 37 5

e. 38 9 T

f. 41 13 7

S. 59 7 5 9
h. 11 6 0

ii 77 7 3

81

2. Use the table in Problem 1 in answering,parts al b, and c.

(a) Compare the divisor and quotient in each part. Does one of these

always have the greater value in a division problem?

(b) Compare the qgotient and dividend. Which one has the greater value

if the dividend and divisor are both counting numbers?

(c) Compare the divisor and the remainder. Which one always has the

greater value in a division problem?

(d) Can the dividend be zero? If so, give an example.

(c) .Can the divisor be zero? If so, give an example,

(f) Can the quotient be zero? If so, give an example.

(g) Can the remainder be zero? If so, give an example.



3. Using tbs table in Problem 1, answer tbe following questions.

(a) Can any whole number appear as a dividend? If not, give an example.

(b) Can any whole number appear as a divisor? If not, give an example.

(c) Can any whole number appear as a quotient? a not, give an example.

(d) Wit the remainder always be some whole number? EXplain.

4. Copy and complete the following table for the division relation.

a . (b. q) R

IIIIII:III b q R

a' 111110311 ? 7 ?

b. MIN 10 9 8

c. 50 12 ? ?

d. 100 2 7 0

III:11111 283
17

IMIIMIIMEIN
1 ?

111111111 630

Using the table above answer the following.

(a) Can R be greater than b? If so, give an example.

(b) Can q be greater than b? If so, give an example.

(c) Can R be greater than the quotient, q? If so, give an example.

(d) Can any whole nuMber be a possible value of b? Explain.

(e) Can any counting nuMber be a possible value of b? Explain.

(f) Can any whole nuMber be a possible value of a? Explain.

'. Using the division relation, a . (b .q) + R where R < b, answer

the following.

(a) If b 40 write the set of all possible remainders.

(b) If b 11, describe the set of all possible remainders.

(c) If all the possible remainders in a division problem are the

Whole nuMbers less than 25, What is b?

(d) If .1 K, which one of the following represents the nuMber of all

possible remainders?

(K), (K + 1), or (K - 1)
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*7. By using the division relation we have a method for finding the greatest

common factor of tie) numbers.

bomple A4 Find the greatest common factor of 12 and 8.

(1) First, divide the Larger number hy the smaller:

12 divided by 8 1; Remainder 4

(2) Second, divide the divisor, 8, by the remainder, 4:

8 divided by 4 2; Remainder 0

(3) Tbe 4 is the last divisor used which gives a remainder of

0. Tbe greatest common factor of 8 and 12 4. 4.

Example B: Find the greatest cammon factor of 35 and 56.

(1) First, divide the Larger number, 56, by the smaller

number, 35.

1 Remainder 21

35 M
12
21

(2) Second, divide the divisor, 35, by the remainder, 21.

1 Remainder 14
205

21

(3) Next, continue dividing the last divisor by the last

remainder until the remainder is 0.

1 Remainder 7 2 Remainder 0
147Er 7ra

14

-7

The Last divisor used is the greatest common factor.

The 7 is the greatest common factor of 35 and 56.

Note that when 14 is divided by 7, the remainder is 0.

The 7 is the Last divisor used.

Using the above method, find the greatest common factor for each of the

following pairs of =gibers.

(a) 32 and 92 41 (d) 124 and 836

(b) 81 and 192 41 (e) 336 and 812

(e) 72 and 150 * (f) 1207 and 1349
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12. Least Common blUltiple

You have already learned a great deal about multiples of numbers:

that all whole nutbers are multiples of 1;

that ever numbers (0,2,4,6,...) are multiples of 2;

that (0,3,6,9,...) are multiples of 3.

Similarly,we can list the multiples of any counting nutber.

The nuMber 2 is an even nuMber, and the number 3 is an odd number.

Usually we do not think of such nutbers as having much in common. Yet,if we

look at the set of asiltiples of 2 and the set of multiples of 3, we see

that they do have something in common. Some of the multiples of 2 are also

multiples of 3. For example, 6 is a multiple.of both 2 and 3. There

are many such numbers divisible by both 2 and 3. The set of these nuMbers

is written as follows:

(6,12,18,24,30,...)

Definition: Numbers which are multiples of more than one number are

called common multiples of those numbers. "Common" We= belonging to

more than one. Thus, 6 and 12 are common multiples of 2 and 3.

Let's try another example. List the common multiples of 3 and 4.

First, we list the multiples of each:

Set of multiples of 3: (0,3,6,9,12,15,18,21,24,w)

Set of multiples of 4: (0,4,8,12,16,20,24, ...)

The numbers that these sets have in common are the common multiples. of

3 and 4. This set is written as follows:

(0,12,24,36,48,...)

Ommmon multiples are very useful in arithmetic. For example, let us

1 1 1
add 7 + We write as

1 2 2 3 4, 2 5d as ;. Then + g 6 =

Here we use a common multiple of 2 and 3. In wing such problems,you may

have called the 6 a "common denominator". It is a common multiple of the

denominators of the given fractions.

Since 6, 12, 18, and so on, are multiples of 2 and 3, we can use

1 1
any of these nuMbers in adding -§ + 3. Notice that the number, 6, which we

did use is the smallest of those possible. It is also the smallest of the

common multiples of 2 and 3. The number, 6, is called the leaat common

xmltiple of 2 and 3.

37
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Definition: The least common multiple of a set of oounting numbers is

the smallest counting number which is a multiple of each member of the set

of given numbers.

Suppose we wish to find the least common multiple of 12 and 18. First,

we list the sets of multiples of each:

Set of Multiples of 12: (0,12,24,36,48,60,72,84,...)

Set of MUltiples of 18: (0,18,36,54,72,...)

The set of common multiples of 12 and 18 is (0,36,72,108p...).

The smallest counting number in this set is 36. Therefore, 36 is the least
common multiple of 12 and 18.

What is the least common multiple of 2, 3, and 47

Set of Multiples of 2: (0,214,6,8,10,121...)

Set of MUltiples of 3: (0,3,619,12,150...)

Set of MUltiples of 4: (0,4,8,12,16,20,...)

The set of common multiples of 2, 3, and 4 is: (0,12,24,36,...). What
is the smallest counting number in this set? According to our definition,

the least common multiple of 2, 3, and 4 is 12.

Exercises 12

1. Write the set of all multiples less than 100 for each of the following.

(a) 6

(b) 8

(c) 9

(d) 12

2. Using your answers in Problem 1, write the set of all common multiples

less than 100 for each of the following.

(a) 6 and 8 (d) 8 and 9'

(b) 6 and 9 (e) 8 and 12

(c) 6 and 12 (f) 9 and 12

3. Using your answers in Problem 2, write the least common multiple of the

elements of each of the following sets.

(a) 6 and 8 (d) 8 and 9

(b) 6 and 9 (e) B and 12

(c) 6 and 12 (f) 9 and 12
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4 Find the least common multiple of the. elements of each of the following

sets.

(a) (2,5) (e) (2,5,6)

(b) (4,6) (f) (4,5,6)

(c) (2,3,5) (g) (206,7)

(d) (3,4,6) (h) (8,9,12)

5. Find the least common multiple of the elements of the following sets.

(a) (2,3) (g) (2,13)

(a) (3,5) (h) (7,11)

(c) (3,7) (i) (3,13)

(d) (5,7) (j) (11,13)

(e) (2,11) (k) (2,3,5)

(f) (5,11) (1) (23,29)

6. Refer to Problem 5 and answer the following vestions.

(a) To which set do the nuMbers 2, 3, 5, 7, 11, 13, 23, and 29

belong -- the set of composite nuMbers or prime nuMbers?

(b) From your answers in Problem 5, what appears to be an easy wey to

find the least common multiple in those eases?

7. Find the least common multiple, for each of the following sets.

(a) (4,6) (f) (10,12)

(b) (4,8) (g) (12015)

(c) (4,10) (h) (4,6,10)

(d) (6,9) (i) (10,15,30)

(e) (8,10) (j) (4,6,8)

6. In Problem 7, to which set of nuMbers, composite or prime, do each of

the nuMbers, 4, 6, g, ..., in parts (a) through (j) belong?

9. Compare the questions and your answers in Problems 7 and 8. Then answer

the following.

(a) If c and d are compocite counting numbersocan c or d be

the least common multiple? Write an example to explain your.answer.

(b) If c and d are composite counting numbers, must c or d be

the least common multiple? Write an example illustrating your

answer.



10. (a) What is the least common multiple of 6 and 6?
(b) What is the least common multiple of 29 and 29?
(c) What is the least common multiple of a and a where a is any

counting number?

11. (a) What is the least common multiple of 1 and 6?
(b) What is the least common multiple of 1 and 29?
(c) What is the least common multiple of 1 and a where a

represents any counting number?

12. (a) If a and b are different prime numbers, can a or b represent

the least common multiple of a and hi
(b) If a and b are different prime nuMbers,how can we represent the

least common multiple of a and b?

1F(c) If a, b, and c are different prime nuMbers, what is the least

common multiple of a, 13, and cy

13. Study the following examples. Try to discover a shorter way to determine

the least common multiple.

EXample A: To find the least common multiple of 4, 6, and 8:

(1) First, write a complete factorization for each number.

4 . 22 6 . 2 .3 8 = 23

(2) The least common multiple is 23 3 or 24.

(3) Note that 22- 2. 3.23 . 192 which is a common multiple of

4, 6, and 8, but not the least.

Example 13: To find the least common multiple of 12 and 18c

(1) A complete factorization for each nuMber:

12 --, 2
2
.3 18 = 2.3 2

(2) The least common multiple of 12 and 18 is 22- 32 or 36.

(3) Is (22 .3-2 -32) a common multiple of 12 and 18?

(4) Is (22.3. 2. 32) the least common multiple of 12 and 18?

Now find the least common multiple of each set in the following parts.
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12,

14,

9,

16

16

15

(h)

(i)

(j)

10, 14 41(k)

16, 18 *(1)

4, 5, 6 *(m)

.6 8, 9

8, 9, 10

12, 20, 22

, 16, 20

250, 200

324, 144, 180

306, 1173

4114. (a) Is there a greatest common multiple of 3 and 52 If so, write an

example.

(b) Is there a greatest common multiple of 4 and 6? If so, write an

example.

(c) Is there a greatest common multiple of any set of counting nuMbers?

41.15. (a) May we consider 0 as a multiple of zero? (Does 0 X 0 = 07)

(b) May we consider 0 as a multiple of six? (Lees 6 x 0 = 0?)

(c) May we consider 0 as a multiple of a, if a is any whole number?

(d) Assume the least common multiple was defined as "the smallest wbole

nutber" instead of "the smallest counting number". What would be

the least common multiple for any set of counting numbers?

(e) Using the correct definition for least commen multiple, is there a

least common multiple for any counting nutber and 0?

13. Sub-sets of Whole NUMbers

In this booklet you have studied Whole numbers for the most part. Also,

you have studied some important sUbsets of.whole nuMbers. These subsets are

shown in the sketch below:

ZERO

1 WHOLE NUMBERS I

Note that zero is.a member of the set of whole nutbers, but not

a mether of the set of counting numbers. The ONE, the PRIME

NUMBERS, and the COMPOSITE NUMBERS are metbers of the set of

COUNTING NUMBERS and also metbers of the set of WHOLE NUMBERS.

41
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EVery member of the set of counting nutbers is a member of

the set of whole numbers.

You learned that a FUME nutber is any counting nuMber other than 1

that is divisible only by itself and 1. The nuMber 1 is not a prime number.

We dhose not to include 1 as a prime number because any number can be

expressed az the product of primes in many different ways if we include 1 in

the set of prime nutbers.

A COMPOSITE nutber is a counting number, other than 1, that is not

prime. Composite nutbers have more than two factors.

The term "factor" was used instead of the words multiplicand and

multiplier. The nutber, a, is a FACTOR of b if b is divisible by a.

The set of factors of a number contains all counting numbers which are factors.

A COMPLETE FACTORIZATION of a nuMber r-Tresimats the number as a product of

prime numbers. For a prime number this is Jle'nutber itself. For a composite

number there are three or more factors. The UNIQUE FACTORIZATION PROPERTY of

counting numbers refers to the fact that every composite nuMber can he expressed

as the product of primes in only one way, except for order.

A Comm FACTOR of a set of whole numbers is a number that is a factor

of each metber of the.set of numbers, The GREATEST COMMON FACTOR of a set

of whole numbers is the largest counting number which is a factor of each

meMber of the set of numbers. A common factor can never be greater than the
largest methber of the set.

The whcie nutber, b, is a MULTIPLE of the whole number, s, if a. c b,

where c is also a whole number. A COMMON MULTIPLE of a set of numbers is a

multiple of each member of the set of nutbers. The LEAST COMMON MULTIPLE is

the smallest counting number which is a multiplo of every metber of the set

.of nuMbers. The least common multiple cannot be less than the largest member

of the set of nutbers.

Exercises 11

1. Find the greatest common factor of the numbers in each of the following

sets of numbers.

(a) (2,3) (e) (12)36) (1) (39,51)
(b) (6,8) (f) (15021) 41, (j) (74,146)

(c) (7,14) (g) (23,43) * (it) (145,72,252)

(d) (15,25) (h) (66,78) 1-* (1) (L414,92424)
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2. Find the least common multiple of the numbers in eadh of the sets of

nuMbers in parts (a) through (1) in Problem 1.

3. (a) Find the product of the metbers of each set of nuMbers in Problem 1.

(b) Find the product of the greatest common factor and the least common

multiple for each set of nutbers in Problem 1. (Refer to your

answers for Problem 1 and Problem 2.)

(c) How do your answers for (a) and (b) compare?

4. (a) Write the set of all composite nutbers less than 31.

(b) Write the set of all prime nutbers less than 51.

5. Let a and b represent two counting numbers. Suppose that the greatest

dmmmon factor of a and b is 1.

(a) What is the least common multiple of a and b? Give an example

to explain your answer.

(b) Would your aniwer for part (a) be true if you started with three

counting nutbers as las and c? (Remembers the greatest common

factor is 1.) Give an example to explain your answer.

6. (a) Can a prime nuMber be even? Give an example to explain your answer.

(b) Can a prime number be odd? Give an example to explain your answer.

(c) How many prime numbers end with the digit 5?

(d) With the exception of two prime nutbers, all primes end with one of

four digits. Write the two primes wbich are exceptions.

( ) Write the other four digits which occur in the ones' place for ell

primes other than the exceptions you found in part (d).

7. Suppose the greatest common factor of two numbers is the same as their

least common multiple. What must be true about the numbers? Give

examples to explain your answer.

(a) What is the least common factor of 2867 and 64313

(b) What is the greatest common multiple of 2867 and 6431?

9. 112 tulip bulbs are to be planted in a garden. Describe all possible

arrangements of the bulbs if they are to be planted in straight rows

with an equal nutber of bulbs per row.
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10. TVo bells are set so that their time interval for striking is different.

Assume thatoat the beginningeboth of the bells strike et the same time.

(a) One bell strikes every three minutes ind the second strikes every

five minutes. If both bells strike together at 12:00 noon,

when will they agein strike together?

(b) One bell strikes every six minutes and the second bell every fifteen

minutes. If both strike at 12:00 noon, when will they again

strike together?

(c) Find the least common multiple of 3 and 50 and of 6 and 15.

How do these answers compare with parts (a) and (b)?

11. (a) Can the greatest common factor of some whole numbers ever be the

same number as the least common multiple of those whole numbers?

If so, give an example.

(b) Can the greatest common factor of some whole numbers ever be greater

than the least common multiple of those numbers? If so, give an

example.

(c) Can the least common multiple for some whole numbers ever be less

than the greatest common factor of those whole numbers? If so, give

an example.

*12. (a) Is it possible to have exactly four composite nuMbers between two

consecutive primes? If so, give an example.

(b) Is it possible to have exactly five oonsecutive composite numbers

between two consecutive primes? If so, give an example.

,*13. Given the numbers 135, 222, 783, and 1065; without dividing,

answer the following questions. Then check your answers by dividing.

(a) Which numbers are divisible by 3?

(b) Which nuMbers art divisible by 6?

(c) Which nuMbers are divisible by 9?

(d) Which nutbers are divisible by 5?

(e) Which numbers are divisible by 15?

(f) Which numbers are divisible by 47

*14. Why is it important to learn about prime nuMbers?

15. BMAIMUSTER. Ten tulip bulbs are to be planted so that there will be

exactly five rows with four bulbs in each row. Draw a diagram of this

arrangement.
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16. BRAIBBUSTER. Do you think there is a largest prime number? Can you find

it or can you give a reason vhy you think there is no greatest one?

14 Robinson's Results

We are going to report to you on results published by Professor Raphael

M. Robinson, or tte University of California at Berkeley, in the October, 1956,

issue of theTroceedings of the American Mathematical Society% This will

give you come idea of how research mathematicians axe applying high-speed

computers to solve problems about primes.

Robinson's note is based on calculations carried out during 1956 and 1957

on the SWAC (Standards Western Automatic Computer) at the University of

California at Los Angeles.

TO obtain an idea of the meaning of this work, let us think for a

moment about the problem of finding out whether a given numbe; n, is a prime.

According to the definition of a prime, we must find out Whether n is

divisible by some smaller number other than 1. The most obvious method is

to divide n by the nuMbers, 2, 3, 4, .., up to n - 1. If any of these

numbers divide evenly into n, then n is not a prime. If none of these

divisions come out evenly, then n is a prime. This method requires n - 2

divisions. If n is about 10
1 00, and if each division requires .001 of

a second, then this would take about 1097 seconds. How many seconds are

there in a year? About how many years would this take?

We could shorten the work very much if we think a little. If n is not

a prime, then n can be expressed as a product of two smaller numbers:

n . a b.

If a iv. the smaller of these factors, then n is at least a .a - a
2

.

n a
2

.

Therefore, if n is not a prime, then it is divisible by some nuther, ap Olose

square isost most, n. To test whether n is a prime, it is enough to divide

n by the numbers, 2, j, ..., up to the largest number whose square is no

larger than n. If n 1,000,000, then we do not have to try any divisors

greater than 1,000, since 1,0002 1,000,000. Thus to see whether 999,997

is a prime, we only need to divide by 2, 3, .., 999. By this method we

only need 998 divisions instead of 999,995 divisions in the previous

method.
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If n is about 101 then this method requires only about 10P°

divisions, nsr 1015° elOP° 10100. If each division takes 401 of a

second, how many years mould it take by this method to test whether n is a

prime?

If we wish to test really Large nutbers, we must look for better methods

so that we eau obtain the answers in a reasonable time. Therefore,

mathematicians try to find special classes of nutbers which have special

properties which enable us to reduce the work even more.

For example, a great deal of work has been done on numbers which are

one leas than a power of 2. We may represent such numbers in th e. form

n , 2
m

- 1.

If m . 2, then n 0 22 - 1 A. 4 - 1 3, which is a prime. If m 4,

then n . 2
4

- 1 - 16 - 1 15, which is not a prime. If m is not a

prime, then n cannot be a prime. But m may be a prime without n being
a prime.

Exercises 14

1. Make a table for n . 2m - 1, up to m = 20.

14-20

1 I

2. Test the statements:

(a) If m is divisible by 2, then n is divisible by 3.

(b) If m is divisible by 3, then n is divisible by 7.

(c)

(d)

If

What

m is divisible by 5,

is the general la.w7

then n is divisible by 31.

46



15. Froth's Theorem

Robinson reports on nuabers Which are one more than a small multiple of

a power of 2, that is, nuMbers of the .form

n (k. 21) + 1,

where k is a small odd number.

He and his group tested for primeness all nuMbers of this form with

k < 100 and m < 512, as well as a few larger tutbers. First they divided

by all numbers less than 10,000; and for k S 7 they tried divisors up to

100,000. After eliminating all small factors in this way, they then applied

a theorem stated by Froth in 1878. Let us see if we cannot get some idea of

what Froth's theorem says and how it is used without trying to examine all

of the details.

Froth's theorem gives a method of testing numbers of the form

n = (ks 2
m
) + 1 for primenesspprovided the counting nuMber, k, is odd

and less than 2m1 We can avoid much of the complication of the statement of

Proth's theorem if we restrict ourselves to the case where k is not divisible

by 3. Thus we may use

k 1, 5, 7, 11, 13, 17, ...

m 1, 2, 3, 4, 5, 6, 7, ...

and we are able to test the numbers n (k. 2
m
) + 1 for primeness. For these

number4 n Froth's theorem states that:

n is prime if, and only if, it is a factor ofOnt NM! AMMON.

n-1
2

3 + 1.

Does this look mysterious to you? It is likely that it does, because

you are not a mathematician. It would very probably look a bit mysterious

even to a mathematician if he didn't happen to be familiar with the special

techniques which are needed for a proof of this particular theorem. If you

will accept, however, our word that it is a true theorem (and a great many

very respectable mathematicians will testify to its being true) then it should

not be hard to see what it says and how it is used.



n-1

n-1In the first place, what does 3
2

+ I mean? The expression --- is
2

being used as an exponent. Ile number, n, we are using here is odd. (Why?

n-1What is the form of n?) Thus n - 1 is even, so that 7 is a counting

n-1

number. Thus, 3 2 + 1 is just one more than 3 raised to a counting number

power. To test n for primeness, we need only find this number and then

divide it by n. if this division comes out evenpthen n is a prime; other-

wise n is a composite.

What nutbers can we test for primeness by this method? Let us list a few

.of them in a table and then spp1y the test to some of them. Fill in the

blank spaces in the table below. Remember that Frothls theorem requires that

0 < k < 2m, and that we have restricted ourselves to numbers, Is, which are

not divisible by 3.

m (k 22) + 1

1
0,

1 3

1 2 5

1

_

3

----
9

5 3

7 3 51

1

5 4 81

4 113

U. 4

13 4

5 33

k
lir

m n 0 (k. 2m) + 1

5

A

5 16175 225

11 5
,

1 65

6 321
,

417

5
,

545

..

2,817
, ,

17,409

17
.

2,177

,

10 7)169
...

10,241

Now let us see how the test works for a few of these numbers. To

refresh our memories we restate it here:

If n = (k. 2m) + 1 where 0 < k < 2m and k is not divisible by

then n is prime if, and only if, it i& a factor of

n-1
7,

3 + 1 .
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&ample 1: Let k 1 and m 0 2 so that n 5. (Look it up in the

n-1 4
table.) W- are testing. 5 for primeness. In this case0 2- is 7 or 20

SO
n-1
2

3 + 1 . 3
2

+ 1 . 9 + 1 . 10.

n-1

Is n a factor of 3
2

+ 1? Is 5, a factor of 10? Yes, it is, so the

test tells us that 5 is a prime. Does this check with what you already

know?

ExamRle 2: Let k - 1 and m = 3 so that n 9. (Look it up.) We

divide
n-1

1

7 2 + 1 . 3
4

1 = 81 1- 1 m 82

by 9. The division does not come out even, so the test tells us that 9 is

not a prime. Does this check with what you already know about 9?

Example : If k 1 and m 60 then what s n? The table should

tell you that n . 65. If it does not, work it out again. so

n-1
2

3 + 1 . 332 + 1 = 1,853,020,188,851,842.

We would have to divide this number by 65 to continue the test. It would

not be worth the effort, however, since we can easily recognize that 65 has

5 as a factor, and is therefore not a prime.

Xample 4: Let k = 7 and m = 4 so that n = (k 2m) + 1 = 113.

n-1

In this easq, the number 3
2

+ 1 = 3
66

+ 1, is 9 times the square of

1,853,020,18808510842 + 1. If you are ambitiouF,, you may calculate

this nuther and divide it by n = 113. The division will came out even if

you do your work correctly, so what do you conclude about 113?

Examples 3 and 4 should convince us of one thing. Prothls theorem is not

well suited for testing large numbers for primeness by hand calculation.

Large computers, however, are constructed expressly to make calculations of

the order of the ones which discouraged us above. And they do them quickly!

1
On the SWAC the time for the test was no more than 1- minutes as long as

2
m < 512. For m about 1000 and k 3, 5, or 7 the test took about



7 minutes. The nuMber n (7 21f") + 1, is larger than 10300 .

Compare 7 minutes with the time it would take the machine to test 10300

for primeness by trying all possible factors. Earlier in this section you

got some idea of this time for nuibers of the order of 101 00 .

For k . 1, the test had previously been carried out for all m < 8192,

and the only primes of this form which have been found are the cases:

m 0$ 1$ 2, 4, 8, and 16.

The largest new prime discovered by this work is the case k = 5

m 1947:

,

n t5 2
1947

) + 1.

If you wish to estimate this numbers first notice that

103 = 1000 < 2
10

1024.

Therefore, we have

21947 21940 (210)194
> (103

)194
O582.

Therefore, n has more than 582 digits. On the other hand, notice that

2
13

- 8096 < 10
4

.

Therefore, we have

(8.21947) (23 .21947)

(213)150

= 1 + 10
600

Consequently; n has no more than 600 digits.

1 + 2
1950

4,
+ (10 )

150

Remether that by using the theorem of Froth, this prime was discovered

by a single division taking a matter of minutes. By using either of the

oruder methods discussed before at least 10
291

divisions would have been

necessary. How long would this have taken at the rate of a thousand

divisions per second?

This nuMber is the fourth largest prime known at present. The larger

ones are the numbers

xi vz. 2M - 1

with m 3217, 2281, and 2203. The latter ,,1 were reported by Robinson

in thelroceedings of the American Mathematical society" in 1954. The large t

one uas reported early in 1958 by H. Riegel in Mathematical Tables and Aids

to Computation (page 60).
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&ample 2.: Estimate the number of digits in each of three primes.

Perhaps you would be interested in the general statement of Proth's

theorem. For nutbers n = (k 2m) + 1 with k divisible by 3, the important

n-1

difference in the test for primeness is that the nuMber, 3 2 + 1, must be

replaced by a new nuMber. The number to use is of the form

n-1

2
a + 1

Where a is a counting nutber Which may have to be chosen differently for

different values of k and m. The condition which a must satisfy will be

found in the statement of Proth's theorem.

Theorem: Let 0 < k < 2m and n = (k .2m) + 1. Suppose a is a

counting number which has the property: no sum of a and a multiple of n

is a perfect square. (Alternative: the sum of a and a multiple of n is

never a perfect squere.)

Then n is a prime if, and only if, it is a factor of

n-1

a
2

+ 1.

The condition which a must satisfy is rather a strange one. It would

seem that it might be difficult tO find a nutber which satisfies it in some

cases. We could never find such a number by any nuMber of trial operations,

for the condition which a must satisfy involves a statement about all

multiples of n. We may reject some choices of a on the basis of a single

calculation, though. If k 3, and m . 2 so that n = 3 .2
2
+ 1 = 13

then would a - 4 do? No, because 117 + a = 117 + 4 = 121 is a perfect

square, and 117 is a multiple of n . 13. To find a nutber, a, which we

man be sure will fit the condition for a given n, then, we will have to use

reasoning. We will have to reason that, for a certain nutber, a, no matter

how many multiples of n we try, adding a will never give a perfect square.

Mathematicians know enough about nutbers so that finding such a nuMber is

not a very difficult problem. As you may have guessed from the discussion

above, it is posaible to show that whenever k is not divisible by 3, the

number a . 3 satisfies the condition of the theorem. Once we have found

the right number. a, to go with n, we can avoid the many tedious calculations

necessary to test a large nutber for primeness. Instead of dividing n by
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ill prime numbers Whose squares are less than no we need only perform one

calculation. We simply try the division

n-1

(a 2 + 1) + n;

if it comes out eve; n is a prime, if not, n is not a prime.


