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PREFACE

Mathematics is such a vast and rapidly expanding field of study that there
are inevitably many important and fascinating aspects of the subJject which,
though within the grasp of secundary school students, do not find a place in the
curriculum simply because of a lack of time,

Many classes and individusl students, however, may find time to pursue
mathematical topics of special interest to them. This series of pamphlets,
whose production is sponsored by the School Mathematics Study Group, is designed
to make material for such study readily amccessible in classroom quantity.

Some of the pamphlets deal with mate.ial found in the regular curriculum
but in a more extensive or intensive manner or from a novel voint of view.
Others deal with topics not usually found at all in the standard curriculum.
‘It is hoped that these pamphlets will find use in classrooms in at least two
ways. Some of the pamphlets produced could be used to extend the work done by
a class with a regular textbook but others could be used profitably when teachers
want to experiment with a treatment of a topic different from the treatment in the
regular text of the class, 1In all cases, the pamphlets are designed to promote

the enjoyment of studying mathematics,

Prepared under the supervision of the Panel on Supplementary Publications of the
School Mathematics Cludy Group:

Professor R. D. Anderson, Department of Mathemstics, Louisiana State
University, Baton Rouge 3, Louisians

Mr. Ronald J. Clark, Chairmsn, St. Paul's School, Concord, New Hampshire 03301
Dr. W. Eugene Ferguson, Newton High School, Newtonville, Massachusetts O0P160
Mr. Thomas J. Hill, Montclair State College, Upper Montclair, New Jersey

Mr. Karl S. Kalman, Room 711D, Office of the Supt. of Schools, Parkway &t
~’lst, Philadelphia 36, Pennsylvania 19103

Professor Augusta Schurrer, Department of Mathematics, State College of Iowa,
Cedar Falls, Iowa

Dr. Henry W. Syer, Kent School, Kent, Connecticut
Professor Frank L. Wolf, Carleton College, Northf'icld, Minnesota 55057

Profecsor John E. Yarnelle, Department of Mathemstics, Hanover College,
Hanover, Indiana




FOREWORD

Without assuming any previous knowledge of the subject, this
booklet discusses the following topics from simple number theory:
basic definition, diagrams for factors, divisibility tests, casting
out nines, complete factorization, greatest common factor, remsinders
in division, lowest common multiple, and some recent results by
Robinson and Proth. The level of the treatment will maske it useful
in both junior and senior high schools. A separate teachers

commentary with answers is awvailable,

As background the reader will need little more “han the
arithmetic of positive whole numbers. However, the range of
difficulty in this booklet is greamter than in some: the beginning
sections are very easy and the closing sections are rather difficult
to read. This is done intentionally so that each reader can carry
the ideas as far as he needs to. Our advice thus is: start st
the beginning and read and work along as far as your interest and
background allow you to do. You will profit from all you undertake
and understand.

This material was originally published as part of the Junior
High School texts and the Supplementary Units of SMSG.
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FACTORS AND FRIMES

1. Primes

We will assume that you are acquainted with two important sets of numbers:
the counting numbers and the whole numbers.

Counting numbers: 1, 2, 3, 4, . . .
whole numbers: 0, 1, 2, 5, « « «

It is siso assumed that yjou know the arithmetic of these numbers; for example,
how to sdd, cubtrsct, multiply, and divide with them. .

In this pamphlet we are interested in how counting numbers can te

expressed as products of other counting numbers. For instance,

OO X3 =1 XX 3=21X3IX221x6=26x1.
51 x5 -5x1.5x1x1l.
19 02X 20X 2= hx 3o lxoxt=1Xx:xh,

Are there other ways in which these number:s can be expressed as products of
counting numbers? Expresc the tollowing as products of counting numbers in

various ways: 15, 18, 0.

In the producte listed above which are equal to 6, we cee that 1, 2, 3,
and © divide exactly into €. That 1s, if © 1is divided by any one of these
four numbers, the remsinder ls zero., Similarly, 1 and 5 are the only
counting numbers that divide exsctly into 5; while 1, 2, 3, &, 6, angd 12
are thoee which divide exactly into 1.’. Two other ways of making the same
statement are:

1) The number © 1ig divisible by 1, 2, 3, and 6.
#) T cwmber ¢ Is a multiple of 1, 2, 5, and .

Thuc, 5 1isc divisible by 1l an® 5, or 5 is & multiple of 1 and 9; also,
12 is divisible by 1, o, 35, 4, &, and 12, or 10 is a multlple of each
of the numbers 1, &, i, 4, 6, and 12. '

On the other hand, 12 i{s not divisible by & wsince If 1. is dlvided
by 5 the remasinder iz . For a similar reacon, & 1is not dlvisible by 4.

BT T
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The number 1 1is in e class by itself since every counting number is a
miltiple of 1; that is, every counting number is divisible by 1. It is
oot true that every counting number is divisible by 2 (3 1is not); mot every
counting number is divisible by 23 (2k 1is not); not every counting number
is divisible by 19/6 (5 1is not). .

Every counting number is a multiple of 1 as we have seen. What are
the multiples of 2 which are greater than 27 Let us look at one way to
answer this question systematically: First write down the numbers, for
instence, from 1 to 30 inclusive. The fipst multiple of 2 greater than
2 is L4; cross out the &4 ant every second number after that. To keep

track, write a 2 below each number you have crossed out. The 1list will then
look like the following:

L N GV A SIS AT
13 M, 15 M, o1 W, 19 K, 2 K oy #,
o Kol Hovy M

We neither cross out o nor write s 2 under it because that is the number
whose multiples we are considering. The numbe s above which are not crossed

out sre 1, ., and the numbers less than 31 which are not multiples of 2.

Our second step would be to go through the same table and crosc out the
multiples of 5 which ere greater than . Then the table would look like
this:

R AN RN A A A4
S A S N W A AN
&~
v A M "K ‘Y ﬁ{;’,g‘
Here we have crossed out every third number beginning with 6, but we have
not crossed out 5 clnce that 1s the number whose multiples we are finding.
(Some of the multiples of 5 had already been crossed out since they were

also mul-iples of .) Except for the numbers . snd 3y hone of the numbers
remaining are multiples of either ¢ or 3

As a class exerclse, write out the numbers from 1 to 100 inclusive.
First, cross out all multiples of 2 and 3 except 2 and 3 885 we did
above. The number L4 and all multiples of 4 are already crossed out since
any multiple of 4 is also & multiple of 2. The next number not crossed




out £s 5. So, for the third step cross out every fifth number after 5
(that is, beginning with 10), and write s 5 below each number crossed out.
For the fourth and fifth steps, similarly cross out multiples of 7 and of
11 which are greater than 7 or 11 respectively. Keep track of the
multiples as indicated. Did you cross out any new numbers when you were
considering multiples of 11% Would we cross out any new numbers if we
considered multiples of 127 of 13%

From the way in which the table was constructed you see that every number
crossed out is a multiple of & smaller number different from 1., These
numbers are called composite numbers.

Definition: A composite number is a counting number which is divisible
by 8 smaller counting number different from 1.

The table which you have constructed oy crossing out numbers is called
the "Sieve of Eratosthenes" for the first 100 numbers® It is called a
"sieve” because in it you have sifted out all the composite numbers less
than 100. Notice that when we crossed out the multiples of 2 and 3 less
than 31, the composite number 25 remained. However, the number 25 was
eliminate 1 when we crossed out multiples of 5 in the third step. Similarly,
the number 49 was not crossed out in the Sieve of Eratosthenes until we
crossed out mult{ples of 7.

Except for the number 1, the numbers of the Sieve of Eratosthenes

which sare not crossed out are callec prime numbers.

Definition: A prime number is 8 counting number, other than 1, whiech
is divisible only by itself mnd L.

Since 1t eliminates the composite numbers, the Sieve of Eratosthenes is
a good way of finding a list of all prime numbers up to & certain point. The
composite numbers are sifted out. The prime numbers remain. Why are the
remaining numbers prime numbers? .

The number 1 is not included in the set of primes partly becsuse 1t is
divisible by itself only. We ghall have another stronger reason for this
later on.

#* Eratosthenes (ce 230 B.C.) was a friend of Archimedes and librarian
at the University of Alexandris. He was intercsted in geograrhy and
mathematics.

N
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Exercises 1

1. (a) List the prime numbers less than 100,
(b) Now list the prime numbers less than 130 but greater than 100,

2. (a) How many prime numbers are less than 502
(b) How many prime numbers are less than 1007
(¢) How many prime numbers are less than 1307

Do problems 3, 4, and 5 first without using Eratosthenes' Sieve and then use
it to check your results.

3¢ Idist all the multiples of 5 which Are less than 61.
L. List the set of numbers less than 50 which are multiples of 7.

5. List the set of numbers which are less than 100 and are also multiples
of both 3 and 5.

6. 1In the table below, the numbers along the top represent values of a
and those down the left side represent values of b. In each case if a
is divisible by b, write the values of 2 in the a-column and b-row,

b
If a is not divisidle by b, write "no" in the a-column and b-row.

e = 12 14 17 18 20 25 27
b =1
b=2
wo= 3
b =&
b =5
v =6
b= 7

T« £Express each of the following counting numbers as a product of two
smaller counting numbers or indicate that it is impossible to do this.

(a) 12 (¢) 31 (e 8 (g) 35 (1) 39 (x) 6 (m) 82
{v) 6 (a) 7 (£ 1. (n) 5 (J) k2 (1) & (n) 95




8, (a) By what mwmbers iz 24 divisible?
(b) The number 24 is s multiple of what numbers?
(c) Are the two sets of numbers you have found in (a) and (b) the
same? Why or why nott

9. Write 12 in all possible ways as & product of counting numbers greater
than 1.

10, List the pairs of prime nmumbers less than 100 which have a difference
of 2. How many sre these? Such pairs are called twin primes.

11. Express each even number between 4 and 22 &as & sum of two prime
numbers. (An even number, recall, is one divisible by 2.) Most
mathematicians believe that every even number greater than 2 is the
sum of two prime numbers but no one has been able to prove it. This is
called "Coldbach's conjecture’,

12, Are there three numbers that might be called prime triplets?

13. (a) Iocate the numbers from 1 to 50 along & number line,
(b) Underline the numerals in every second position, starting with 1.
(¢) Circle the mumerals for the prime numbers.
{d) Did you need to circle any numeral that was not underlined?

If co, write all such rmumerals.

14, Wwhat ls the intersection of the set of prime numbers and the set of odd
numbers less than 30%

e Factors.

The word "factor" is commonly used in mathemstics., Though the term may
be new to you, the idea is not. We know that 5 X 2 = 10, Instead of calling
one of the numbers the multiplicand and the other one the multiplier, we give
both of them the same name -- factor. Thus, 5 and 2 arc factors of 10;
6tand 7 are factors of 42, since 6 X7 = L2. Also, 42 =2X3 X T;
so 2, 3, and 7 are factors of k2.

Example 1: Write 12 as a product of factors,

12 =1X%12,
or 12=2 X6,
or 12 = 3 X &4,
or 12 - 2X2%X3=2°%X3,

n



Wien we say "the factors" we mean "sll the factors" of & number, For
exaxple, the number 6 has four factors, 1, 2, 3, and 6. The number 1
and the number itself are always factors of a nuzber,

Example 2: Find the set of factors of 20.
The set of factors of 20 is {1,2,4,5,10,20}.

The idea of factors is assoclated with miltiplication. In mathematical
gymbols we define factor the following way:

Definition. If a, b, and ¢ are whole mmbers and if sc =1b, then
the number a is called & factor of b. (Under these conditions ¢ ig
also & factor of b.)

Using the terms of the first section, we say that 3 is a factor of 12
because 12 is divisible by 3. 1In the symbols of the definition, we see
that the number a is a factorof b if b is divisible by a.

The number 1 has only one factor, itself. Each prime number has
exactly two factors, itself and 1. A composite number has how many factors?

Congider the number 24. It can be writfen as & X 6. Both 4 and 6
are composite numbers since they can be written &s products of smaller
counting numbers: 4 =2 X2 and 6 = 2 x 3. Thus

2b =2 x2 x2 x 3,

However, 2 and 3 are prime numbers since they cannot be expressed as
products of smaller numbers. We cannot go 8ny further in this process.
We therefore say that 2 x2 x2 x3 4is a complete factorization of 24,

Definition: If a counting number is written ss a product of prime

numbers, thls product i{s called a complete factorization of the given number.

Example 1: Find a complete factorization of 20.

F

D=4 x5c2x2x5-= 2° x 5e

fere L4 x5 1is not a complete factorization of 20 since L4 15 not a
prime pumber, but 2 x 2 x5 and 22 X 5 are complete factorizations,
The most compact complete factorization of 20 ig 22 X 5,

LT
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Example 2: Find a complete factorization of 72.

Method I Method II
Using continuing division
72 = 8x9 2 T2
72°= (4 x2) x (3 X3) 2 36
72 = (2%X2) x2 x (3 x3) 2 18
72 = (2 x2x2) x(3x3) 3 LS
L3
Using exponents,

72 = 25 x 3 72 = 23 x 3°

We might have used fewer steps. Notice that in both examples, the omnly
factors appearing in the last products &.e¢ prime numbers. Not all the

" factors of 20 and 72 (such as L4) sppear in the final complete

factorization. It is convenient but not necessary to use exponents wherever

possible.

Note that 2 X5 X 2 1is also a complete factorization of 20, but this
{s the same &8 2 X 2 X 5 except for the order of the factors. Cimilarly,
in the factorization of 72, 22 X 3 X2 1is the same as 23

the order of the factors. In fact, 8 very fundamental property of the count-

X 3 except for

ing pumbers is that there is only one way to write a complete factorization
of any counting number except for the order in which the prime factors sppear.
This property is given a special name:

The Unique Factorization Property of the Counting Numbers:

Every counting number grester than 1 can be factored into primes in
only one way except for the order in which the factors occur in the product.

The word "unique" means that there is only one factorization except for
order. (The question of order is another matter.) One might say that the
Fmpire State Building is unique becsuse there is no other dbuilding like it,

Here we have another reason for excluding 1 from the set of prime
aumbers. If we had cslled 1 a prime, then 5 could have been expressed &s
a product of primes in many different ways: 5 X1, 5X1 X1,

% %X1X1X1l, ... Here the product would not be unique except for the order
in which the factors are written.
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Exercises 2

PN

List the set of factors for each of * e following:

(a) 10 (c) 9 (e) 27 (g) 11
(v} 15 (a) 18 (£) 24

Factor the numbers listed in as many ways as possible using only two
factors each time. Because of the commitative property, we shall
say that 3¢5 415 not different fram 5. 3.

(a) 10 (e) 24
(v) 15 (£) 16
(e} 9 &) 72
(d) 100 (n) 81

Write 8 complete factorization of:

(a) 10 (e) 9 (e) 45 (g) 13
(o) 15 (4) 30 (£) 0

According to our definition of factor, is zero a factor of £

Is € a tactor of zero? Explain your answers.

(a) What factors of 20 do not appear in a complete factorization of
202

(p) What factors of 72 do not appear in a complete factorization of
2R

Find & complete factorization of:

(a) 105 (£} 34
(6) W2 (g) 311
(e} 75 {(r) 1000
(4) 300 (1) 301
(e) 64 (3) 323

Definition. If a whole number is divisible by two it is an even number.

whole number is not divisible by two it is an odd number.

Tell whether these numbers are odd or even:

(a) 2 x5 (f) 3 x2%x6
{(b) 3+7 (g) 128 - 37
(e} 6x5x3 (h) 3 %3 x7
(d) 2 + 16 (1) 3(4+7)
{e) 7+3 (4 b5 (y +13)
8
1
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Copy the following table for counting numbers N and complete it
through N = 30.

N Factors of N Number of Factors Sum of Factors

1 1 1 1

2 1,2 3

3 1,3 2 N L

L 1,2,4 3 ’ 1

5 1,5 2 6

6 1,2,3,6 4 12

7 1,7 2 8

8 1,2,k,8 4 15

(a) Which numbers represented by N in the table above have exactly
two factors?

(b) Which numbers N bave exactly three factors?

(¢) If N = p2 (vhere p is 8 prime number), how many factors does
N have?

(d) If N = pg (vhere p and g are différent ~rime numters), how
many factors does N have? What is the sum of its factors?

(e) If N= of (where k 1is a counting number), how many factors
does N have?

(£) If N = 3k (vhere k 4s a coumnting nmumber), how many factors
does N have?

() If N ="p° (vhere p is a prime number and k is a counting
number), how many factors does N have?

(b} Which mumbers have 2N for the sum of their factors? These numbers

are called perfect numbers. It is unknown how meny perfect numbers
there are or whether there are any odd perfect numbers.
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3. Disgrams for Factors

Basically, we can represent a product by the diagram

2 -3 6
O— 0

where the 3 associated with the line is tie multiplier, which "takes 2
into’ 6". The arrow indicates the direction in which the multiplication goes.
Similariy

2 3 6 q 24
O —»O— >0

represents the product (2 x 3) x L.

Then the three different complete factorizations of 18 ecould be
represented by the following diagram. Notice that all the factors of 18
also appear in the diagram,

In making a diagram you may wish first to make a list of all the factors
of the number and to arrange them from the smallest to the largest. For 12
this would be 1, 2, 3, 4, 6, 12, Then start with 1 and continue to build
& chain so that the second number is divisible by the preceding number, and
so on. Thus, one chain would comsist of 1, 2, 4, and 12; another chain
would consist of 1, 3, 6, and 12; and the last chain would be
1, 2, 6, snd 12. 1In each of these chains, taking any pair, the second is
divisible by the first and there is no factor between them. We could not g0
from 1 to 4 since there is the factor 2 between 1 and 4. Remember
that one of the rules of the game is that there may be no other factor
between successive numbers,

10
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The disgrams for the numbers from 1 through 20 are shown here:

I
2
rd
I
]
1
|
2
2
e
4
e
8
e
i6
Some of you may be interested in pursuing the investigation of these
diagrans 8 little further. The following examples are included for this
rurpcse.

11
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Exerciies 3

1. Iet & and d represent two different prime numbers. Complete ca~h
of the following sketches.

(s) (e)

(o) (a)

2, We have found that © and 10 had patterns like the one in Problem la.
Name three other numbers that we have not sketched which have the same
pattern.

3. Notice that 4 and 9 have the same pattern as Problem 1b,
Name three others which we have not sketched that have the same.pattern,

-

k. A number like 12 or 18 has the same psttern as Problem lec.
Find three other numbers which have this pattern.

5. Find three numb..s which have patterns like Problem 1d.

6. Find patterns which have not been represented so far in the section,

Ie
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L. Divisibility by 3 and 9

To find the factors of a number, we can always guess and try, but it is
mich casier if we can tell from looking at & mumber vhether or not it has =
given factor., From the Sieve of Exratosthenes it is clear that & numbder
written in the decimal system ig even if the last digit is even. As far as
the sieve we have constructed goes, this is true. Thus:

>
4 4

A counting number written in the decimal system is even if its last
digit is one of 0, 2, 4, 6, 8. If its last digit is not cne of these,
it is odd. '

Suppose we see why this is so. To do this, remember how we found the
multiples of 2 vwhen we began to construct the Sieve of Eratosihenes. We
started with the number and added 2 ageain and again. The last digits
repeated in the pattern: 2,4,6,8,0,2,4,6,8,0,... This would contimie no
matter hov far we extended the table. This shows that the even numbers are
those vhose last digit is one of the five numbers: 2, 4, 6, 8, 0.

In Problem 4 below you are asked to start with 5 and add 5 sgain
and again to show the following:

A counting number expressed in the decimal system is divisible by 5
if its last digit is O or 5. Otherwise it is not divisible by 3.

What about divisibility by 3? Can we tell by looking at the last digit?
The first ten multiples of 3 are

o, 3, 6, 9, 12, 15, 18, 21, 2%, 27.

Each of the possible last digits, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9,
appears in this list. On the other hand, none of the following are divisible
by 3 even though each of the possible last digits appears here also:

4, 7, 10, 13, 16, 19, 22, 25, 28, 31.
We can see, then, that we cannot tell whether & number is divisible by 3
by looking at the last digit.

But suppose we add the digits of the multiples of 3. For 12 we have
1+2«3; for 15 wehave 1 +5c6; for 18 we have 1 +8 =9, By
this means we can form the following table:

13
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Multipleof 3/ 0 3 6 9 12 15 18 21 24 27 30 33 36
Sun of digits | © 3 6 9 3 6 9 3 § 9 3 6 9

Multiple of 3 | 39 42 45 48 s51 sk s7 60 63 66 69 72
Sum of digits { 12 6 9 12 6 9 12 6 g 12 15 9

Can you make any statement that seems to be true about the sum of the digits
for all multiples of 37 You will see that in each case the sum of the digits
is divisible by 3. Furthermore, if you add the digits of any number that is
not divisible bty 3 (take 25 where the sum of the digits is 7), the sum
of the digits is not divisible by 3. Can you see why this will dbe true for
all numbers? See Problem 3 in the next set.

You may notice that every third sum of digits in the table above is
divisible by 9 and every third multiple of 3 4is divisible by 9. Hence,
we have the following test for divisibility by 9:

A number is divisible Ly 9 1if the sum of its digits is divisible
by 3. otherwise, it is not divisible by Y.

5. Castinyg Out the Nines

You now know & very simple and interesting way to tell whether a number
is divisible by Y. It is based on the fact that a number is divisible by
9 If the sum of {ts digits is divisible by 9; &also, the sum of the digits
of a number is divisible by 9 if the number is divisible by 9. For
instance, consider the number 156782. The sum of its digits is
L+5+6+7+8+2 whichis 29. But 29 is not divisible by 9 ang,
lrenice, the number 15674 is not divigible by Y. If the second digit had
been ¢ lecs, the number would have been divisible by § since the sum
of the digits would have been 27, which is divisidle by 9. The test is a
good one because it is easier to add the digits than to divide by ©. Actually
we could have been lazy and » Instead of dividing 29 by 9, use the fact
sgain, add 2 and 9 to get 11, add the 1 and 1 to get 2 and see
that since 2 is not divisible by 9, then the original six-~digit number
is not divisible by 9.
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Why is this true? Mrrely dividing the given number by 9 would have
tested the result, but from .hat we would have no idea why it would hold for

any other pumber. We can show what is happening by writing out the number
156,782 1in the decimal notation: '

1Xx10 +5x10°+6x10°+7x10° + 8 x10+ 2 =

1 X (99999 +1) + 5 x (9999+1) + 6 X (999 +1) + 7 x (99+1) + 8 x (9+1) + 2.

Bow,by the distributive property, 5 X (9999 + 1) = (5 x 9999) + (5 x 1) and,
similarlv for the other expressions. Also,we mey rearrange the numbers in
the sum since addition is commtative and associative. So,our number 156,782
ey bte written

1 % {99999) + 5 X (9999) + 6 X (992) + 7 X (99) + 8 x 9 + (L+5+6+ 7+8 +2).

Now §9999, 9999, 999, 99, 9 are all divisible by 9, the products

involving these numbers are divisible by 9, and the sum of these products is
divisible by 9. Hence,the original nmumber will be divisidle by 9 if

(1 +5+6+ 7+ 8+ 2) is divisidble by 9. This sum is the sum of the digits
of the given mumber. Writing it out this way shows that no matter what the
given number is, the same principle holds.

Exercises 2

1. (a) Test each of the numbers, 226843, 67945, L427536, and L5654
by the above method for divisibility by 9.

(v) For any numbers in part (&) that are not divisible by 9, compare
the remsinders when the number is divided by S and when the sum
of the digits is divided dy G.

(¢) From part (b) try to formulate a general fact that you suspect 1is
true. Test this statement with a few more examples. ’

15
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Choose two numders. First, add them, divide by Q and take the
remainder., Second, divide each number by 9 and £ind the sum of the
remainders; divide the sum by 9 and take the remsinder. The final
remainders in the two cases are the same. For instance, let the numbers
be 69 and 79. First, their sum 1s 148, and the rempinder when 148
is divided by 9 4s 4. Second, the remainder when 69 1is divided by
9 4s 6, and when 79 is divided by 9 4is T; the sumof 6 agnd 7
is 13, end if 13 4is divided by 9, the remainder iz 4. The result
1s 4 in both cases. Why are the two results the same no matter what
numbers are used instead of 69 and 79?7 Would a similar result hold
for a sum of three numbers? (Hint: write 69 as 7 X9 + 6,)

If in the previous exercise we divided by 7 instead of 9, would the
remainders by the two methods for division by 7 be the eame? Why or

Wy not?

Suppose in Exercise 2 we considered the product of two numbers instead
of their sum. Would the corresponding result hold? That is, would the
Temainder when the product of 69 and 79 is divided by 9 be the same
as when the product of their remainders is divided by 9?7 Would this dbe
true in general? Could they be divided by 23 instead of 9 to give a
similar result? Could similar statements be made about products of more
than two numbers?

Use the result of the previous exercise to show that 1020 has &
remainder of 1 when divided by 9. What would its remainder be when
it is divided by 3? by 99¢

What i the remainder when 720 is aivided by 67

You know that when a number is written in the decimal notation, it is
diviaible by 2 if its last digit is divisible by 2, s&nd divisidle
by 5 1if its last digit is O or 5. Can you devise a similar test
for divieidbility by 4, 8, or 257

In the following statement, fill in both blanks with the same number so
that the statement is true,

A number written in the system to the base 12 is divisible by

if its last digit is divisible by o If there is more than one
answer, give the others, too. If the base were 7 instead of 12,
how could the blanks be filled in? (Hint: One answer for base 12

is 6.)

¥ means these exercises are more difficult.
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#9. One could heve something like "decimal" equivalents of numbers in :
numeration systems to bases other than 10, For instance, in the

mmeration system to the base 7, the septimal equivalent of

5(%) + 6(%)2 would be written .56..‘, Just as the decimal equivalent of

5(%0) + 6(%5)2 would be written .56 in the decimal system. The

10

nuzber 142857142857 ... is equal to % in the decimal system, and in

the rystem to the base 7 would be written .1
Qllo = (QMEME ooo)

7° On the other hand,
7° What numbers would have terminating septimals
in the numeration system to the base 7? What would the septimal equiva-
lent of % be in the system to the base 7? (Hint: Remember that if
the only prime factors of a number are 2 and 5, the decimal equivalent

of its reciprocal terminsates.)

#10. Use the result of Exercise 3 to find the remainder when
9+ 16 + 23 + 30 + 37 is divided by 7. Check your result by computing
the sum and dividing by 7.

#11., Use the results of the previous exercises to show that ].C)20 =1 1is

108

divisible by 9; 7 - 1 is divisible by 6.

#12. Using the results of some of the previous exercises if you wigh, shorten
the method of showing that a number is divisible by O if the sum of its
digits is divisible by G.

#13. Show why the remainder when tne sum of the digits of & number is divided
by 9 1is the same as the remainder when the number is divided by 9.

6. Why Does Casting Out the Nines Work?

First, let us review some of the important results shown in the exercises
which you did in Section 5. In FProblem 2, you showed that to get the remainder
of the sum of two numbers, after division by 9, you can divide the sum of
their remminders by 9 and find {ts remainder. Perhaps you did it this way
{there is more than one way to do i{t; yours may have been tetter). You know,
in the first placg that any natural muber may be divided by 9 to get a
quotient and remainder. For instance, if the nmumber is 725, the quotient
is 80 and the remainder is 5. Furthermore, 725 = (80 x9) + 5 and you
could see from the way this is written that % is the remainder.

17




Thus, using the numbers in the exercise, you would write 69 = 7 X 9 + 6 and
79=8x9+7, Then 69+ 79 = (7 xX9) + 6 + (8 x 9) + 7. Since the sum

of two numbers is commutative and associstive, you may reorder the terms and
have 69 + 79 = (7X9) + (Bx9) + 6+ T. Then, by the distributive property,
69+ 79 = [(7+8) x9] +6 + 7. Now,the remainder wvhen 6 + 7 is divided

by 9 is 4, and 6 + 7 canbe written (1 x9) + 4, Thus,

69 + 79 = {[(7+8+1) x9] +4. So, from the form 1t is written in, we see
that L4 1is the-remainder when the sum is divided by 9. It is almo the
remainder vhen the sum of the remainders, 6 + 7, is divided by 9.

Writing it out in this farifon is more work than making the computations
the short way btut it does show what is going on and why similar results would
hold if 69 and 79 were replaced by any other numbers, and, in fact, we
could replace 9 by any other number as well. One way to do this is to use
letters in place of the pumbers. This has two advantages. In the first
place it helps us be sure that we did not make use of the special properties
of the numbers we had without meaning to do so. Secondly, we can, after
doing it for letters, see that we may replace the letters by any numbers. So,
in place of 69 we write the letter a, and in place of 79, the letter b.
When we divide the number 8 by 9 we would have a quotient and a remainder.
We can call the quotient q and the remasinder r. Then we have

8 = {(gx9)+r

where r s some whole number less than 9. We could do the same for the
number b, but we should not let q be the quotient, since it might be
different from the guotient when 8 is divided by 9. We here could call
the quotient q' and the remainder r'. Then we would have

b= (g! Xx9) + rt,
Then the sum of a and b will be
a+b=(gxy) +r+ (g x9)+ 1,
We can use the commutative and associstive properties of addition to have
8+b=(gx9)+(q? X9) +r + x!
and the distributive property to have

a+b=[(qg+q")x9]+r+ !,

18
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Then,if »r + r' were divided by 9, we would have a quotient which we might
call q" and & remafnder r". Then r + r' = (¢" x9) + r" and

a+ba=[{qg+q') x9] +(q" x9) "
« {{q+q*+q") x9] + r".

Now, r" {s a whole number less than 9 and, hence, it is not only the remainder
vhen r + r' is divided by 9 but also the remainder when a + b is divided
by 9. So,as far as the remainder goes, it does not matter whether you add

the numbers or add the remainders and divide by 6.

The solution of Problem L goes the same way as that for Problem 2 except
that we multiply the numbers. Then we would have

69 X779 = (TXx9I+6) x({(BXx9+7)
= [{(7Tx9) x(Bx9+7)]+6x(8x9+7)
« (TXx9X8x9)+(7Tx9x7)+(6x8x9)+(6xT7).

The first three products are divisible by 9 and by what we showed in
_Problem?; the remminder when 69 X 79 is divided by 9 is the same &s the
remainder when 0+ 0+ 0+ 6 X7 is divided by 9. So,in finding the
remainder when a product is divided by 9, it makes no difference whether we
use the product or the product of the remainders.

If wve were to write this out in letters as we did the sum, it would
look like this:

aXb=(gx92+r)x{g*x9+rt
c{gx9 xg" x9) +{gx9xr!)+(rxg x9)+ (rxrt.

Again,each of the filrst three products i{s divisible by 9 and hence the
remainder when a X b s divided by 9 is the same as when r X r* 1is
divided by 9.

We used the nuwber 9 all the way above, but the same conclusions would
follow Just as‘easily for any number in pléce of 7, suchas 7T, 23, etc.
We could have used a letter for O alsg but this seems like carrying the
generalization too far.

There is & shorter way of writing some of the things we had sbove. When
letterc are uged, ve usually omit the multiplication sign and write ab in-
stead of a Xb and 9q in place of $ X q. Hence, the last equation above
could be abbreviated {o

ab = qq'0 X 9 + qr'9 + rq'9 + rrt

or
8b = 9 X 9gq* + 9qr?! + Yrq! + rrt,

19
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But this is not eapecially important right now.

S0, let us suwmarize our results so far: The remainder when the sum of
two numbers is divided by 9 (or any other minber) is the same as the
remainder when the sum of the remainders is divided by 9 (or some other
musder). The same procedure holds for the product in place of the sum.

These facts may be used to give quite a short proof of the important
result stated in Problem 13 of Exercises 5. Concider again the number
156,782. This is written in the usual form:

(1 x 10%) + (5 x 10*) + (6 x 16%) + (7 x 10%) + (8 x 10) + 2.

Now, from the result stated above for the product, the remainder when lo2

is divided by 9 1is the same as when the product of the remainders 1 X 1 is
divided by 9, that is, the remainder is 1. Similarly 10° has a remainder
1 Xx1x1 when divided by 9 and hence, 1. So, all the powers of 10 have a
remainder 1 when divided by 9. Thus, by the result stated above for the
out, the remainder when 156,782 is divided by " 9 4is the same as the
remainder when (1 X 1) + (5 x1) + (6 x1) + (7Tx1)+ (Bx1)+2 is divided
by 9. This last ic just the sum of the digits, Writing it this way it is
easy to see that this works for any number.

Now we can use the result of Problem 13 of Exercises 5 to describe a
check called "casting out the nines" which 15 not used much in these days of
computing machines, but which is still interesting. Consider the product
867 X 934. We indicate the following calculations:

867 sum of digits: 21 sum of digits: 3

934  sum of digits: 16 sum of digits: 7

Product: 809,778 Product: 3 X7 = 21

Sum of digits: B8+ 0+ 9+ 7+ 7+ 8«39

Sum of digits: 3 + 9 = 12

Sum of digits: 1 +2 =3 Sum of digits: 2+ 1 = 3,

Since the two results, 3, are the same, we have at least some check on the
accuracy of the results,

20
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Exercises 6

1. Try the method of checking for another product. Would it also work for
a sum? If so, try it also.

2, Explsin why this should come out as it does.

3. If a computation checks this way, show that it sti;l could be wrong.
That ic, in the example given above, find an incorrect product that would
still check.

L. Given the mumber (5°¢7°) + (3-7“) v (207 + (Le7°) + (be7) + 3.
what is its remainder when it is divided by 7% What is its remainder
when it is divided by 6% by 3%

5. Can you find any short-cuts in the example above analogous to casting out
the nines?

6. In a numeration system to the base 7, casting out what number would give
a result corresponding to that in the decimal system when nines are cast
out?

7. The following isc a trick based on casting out the nines. Can you see how
it works? You ask someone to pick & pumber -- it might be 1678. Then
you ask him to form another number from the same digite in a different
order -- he mignt take 6187. Then you ask him to subtract the smaller
from the larger and give you the sum of all but one of the digits in the
result. (He would have L4509 and might add the last three to give you
14.) All of this would be done without your seeing any of the figuring.
Then you would tell him that the other digit in the result is 4., Does
this trick always work?

One method of shortening the computation for a test by casting out the
nines is to discard any partial sums which are 9 or a multiple of G.
For instance, if a product were 810,645, we would not need to add all the
digits. We could notice that 8+ 1 =5 and 4+ 5 =9 and hence the
remainder when the sum of the digits is divided by 9 would be 0+ 6,
which is 6. Are there other places in the check where work could have been
shortened? We thus, in a way, throw away the nines. it was from this that

the name “casting out the nines" came.

By Just the same principle, in a numeration system to the base 7 one
would cast out the sixes, to the base 12 cast out the elevens, ete.

1
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7. Divisibdility by 11

There i3 a test for divisibility by 11 which is not quite so simple as
that for divisibility by 9 but is quite easy to apply. In fact, there are
two tests. We shall start you vn one and let you discover the other for
yourself. Suppoce we wish to test the number 17945 for divisibility by 11.
Then we cun write it as Vefore

(1°20%) + (7-10%) + (9-10%) + (& *10%) + 5.

The remainders vhen 10° and 10" are divided by 11 are 1. But the
remainders when 10, 105 and 10° are divided by 11 sre 10. Now 10 1is

equal to 11 - 1. 10° =10° (11 - 1), 10° = 10* (11 - 1). That is enough.
Perhaps we have told you too much mlready. It is your turn to carry the ball.

Exercises ia

1, Wwithout considering 10 to be 11 - 1, can you from the above devise
8 test for divisibility by 117

2. Noticing that 10 = 11 - 1 and so forth as above, can . . devise another
test for divisibility by 117

We hope you were able to devise the two tests suggested in the previous
exercises, For the first, we could group the digits and write the number
17945 as (1 X 10“) + (79 x 10%) + 5. Hence the remainder when the number
17945 1s divided by 11 should be the same as the remainder whem 1 + T9 + 45
is divided by 11, thatis, 1 + 2+ 1 =4, (2 is the remainder when 79
is divided by 11, etc.) This method would hold for any number.

The second method requires & little knowledge of negstive numbers (either
reviev them or, if you have not had them, omit this paragraph). We could
consider -1 as the remainder when 10 is divided by 11, since
10 = 1(11) + (-1), where q=1 and r = -1, Then the original mmber
would have the same remainder us the remainder when
1+ [7(-1)3) + 9+ [4(-1)] + 5 1is divided by 11, that is, when
5=4+9 -7+ 1 is divided by 11, This last sum is equal to 4, which was
vhat we got the other my. By this test we start at the right and alternately
add and subtract digits. This is simpler than the other one.




1,

2.

3.

I

7.

8.

Exercises Tb

Test several mumbers for divisibility by 11 using the two methods
described above. Where the numbers are not divisible, find the
remainders by the method given.

In a number system to the base 7, what number could we test for
divisibility in the same way that we tested for 11 in the decimal
system? Would both methods given above work for base 7 as well?

To test for divisibility by 11, we grouped the digits in pairs. What
number or numbers could we test for divisibility by grouping the digits
in triples? For example, we might consider the number 157892, We
could form the sum of 157 and 892, For what numbers would the
remainders be the same?

Answer the questions rsised in Problem 3 in a numeral system to base 7,

as well as in numersl system to base 12,

In the repeating decimal for % in the decimal system,there is one digit

in the repesting portion; in the repeating decimal for s in the decimal

1
pystem, there are two digits 1n the repeating portion. 1Is there any
connection between these facts and the tests for divisibility for G
and 117 What would be the connection between repeating decimals and
the questions raised in Problem 3 above?

{ould one have a check in which 1ll1's were "cast out"?

Can you find a trick for 11 similar to that in Problem 1 above?

Divisibility by 7

There {8 not & very good test for divisibility by 7 in the decimel

gystem. (In & numeration sys;emvto what base would there be a good test?)

But it is worth looking into since we can see the connection between tests
for ddvisibility and the repeating decimals. Consider the remainders when
the powers of 10 are divided by 7. We put them in & little tablie:

n fefelsfe]s]e ]

Remsinder vhen 10" 1 3 {2 1 6 | & | 5 | 1| 3
is divided by 7

[
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If you compute the decimal equivalent for %, you will see that the
remsinders are exactly the numbers in the second line of the table in the
order given. Why is this so? This means that if we wanted to find the
remainder when 7984532 {s divided by 7 we would write

(7x105)+(9x105)+(8xm“)+(uxlo3)+(5xme)+(3 X 10) + 2
and replace the various powers of 10 by their remainders in the table to get
(7x1) +(9x5)+ (BxUL)+ (4x6)+(5x2)+ (3 x 3) + 2.

We would have to compute this, divide by 7, and find the remminder. That
would be as much work as dividing by 7 in the first place. So this is not
a practical test, out it does show the relationship between the repeating
decimal snd the test.

Notice that the sixth power of 10 has a remeinder of 1 when it is
divided by 7. If instead of 7 some other number is taken which has neither
2 nor 5 as a factor, 1 will be the remsinder when some power of 10 is
divided by that number. For instance, there is some power of 10 which has
the remainder of 1 when it is divided by 23. This is very closely connected
with the fact that the remainders must, from a certain point on, repeat.
Another way of expressing this result is that one can form a number completely
of 9's like 99999999, which is divisible by 23.

Exercises 8 '

Complete the following table., In doing this, notice that it ig not
necessary to divide 1010 by 17 to get the remsinder when it is divided by
17. We can compute each entry from the ome sbove like this: 10 1is the
remainder when 10 is divided by 17; this is the first entry. Then
divide 102, that is, 100 by 17, and see that the remainder is 15, But
we do not need to divide 1000 by 17. We merely notice that 1000 is
100 X 10 and hence the remainder when 1000 is divided by 17 is the same as
the remainder when 15 X 10, or 150, is divided by 17. This remainder
is 1. To find the remainder when 10“ is divided by 17, notice that 10
{s equal to 10% X 10 and hence the remainder when divided by 17 1is the
same as when 14 X 10 1is divided by 17, that is 4. The table then glves
the remainders when the powers of 10 are divided by various numbers,

L
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3 7 9 11 13 17 19 21 37 1al | .
1 1|11 1
w131 10
100 1l211 15
1w | 1|6 )1 14
ol B RN E 4
1w 11]s |1 6
T BEU IR I 9
10 |1 1 5
10° | 1 1 16
100 | 1 1 7
1009 | 1 1 2
1w0tt | 1 g1 3
107 | 1 1 13
w03 | 1 1 11
w1 1 8
10 | 1 1 12
10 | 1 1 1

Find what relationships you can between the number of digits in the repesting
10101 1 1
3’ ?" 9’ ll! 13!
Why does the table show that there will be five digits in the repeating
portion of the decimal for pg? Will there be some other fraction % which
will have a repeating decimal with five digits in the repeating portion?

How would you find a fraction % which would have six digits in the repeating
portion?

If you wish to explore these things further and find that you need help,
you might begin to read some book on the theory of numbers., Also, there is
quite a little material on tests for divisibility in "Mathematical Excursions"
by Helen Abbott Merrill, Dover (1958).

decimals for etc., and the pattern of the remainders.
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9. Complete Factorization

Suppose we apply what we have learned sbout divisibility to a few
examples:

Exnmg&e‘i Find a complete factorization of 232, Since the given
puxber has 2 as its last digit, it is even and has 2 &g & factor. So,
232 = 2 X 116. Then 116 has 2 as a factor and ve have 232 = 2° x 56.
Then we have 232 = 2> X 29. We can see that 29 is & prime mumber by looking
at our table of the Sieve of Eratosthenes or by trying the prime factors:
2+3,5,7,11,13,17,19,23 less than 29. Some of you may be able to see vhy it
is necessary only to try 2, 3, and 5.

A tabular way of finding the complete factorization is the following:

232 116 58 29
2 2 2 29

wvhere 2 is the first factor and 116 45 the quotient; then 2 is a
factor of 116 and S8 15 the quotient, etc. A complete factorization,then
is on the second line.

§§552£g 2 Find a complete factorization of 573. Here the last digit
is odd and hence 2 1is not a factor. But the sum of the digits is 15, which
1s divisible by 3. Hence, 3 is a factor of 573 and, dividing, we have
973 = 3 X 191. By our tests 2, 3, and 5 are not factors of 101, Trial
shows that 7, 11, and 13 are not factors and,hencg 191 is a prime number.
Way is it not necessary to try any primes larger tnan 139 Therefore,
573 = 3 X 191 1is the complete factorigation.

Example 3 Find a complete factorization of 939. Our tests show that
none of 2, 3, and 5 are factors., If we try 7, we see that 539 = 7 X 77 =
TE X 11, wvhich is a complete factorization.

It is important to notice that the tests for divisibility depend on the
number being written in the decimal system. For instance, the number 21 in

the decimal system {s written 30 in the system base seven. 7This

seven
number 3°seven‘ is pot even, in spite of the fact, that its last digit is

zero. However, since 30;eyen Teans (3 X seven) + 0, the fact that the

last digit is zero tells us that the number is divisible by seven.




If a number is written to the base seven it is very eagy to tell whether or
oot it is Aivisible by seven; one merely looks to see if the lagt digit 1is
zexro.

The property of one number being a factor of another does not depend on

the way it is written; for instence, seven is always & factor of twenty-one,
no matter how it is written. But the tests for divisibility which we have
given here depend on the system of numeration in which the number is written.

1.

2e

3.

5-

6.
I
8,

9-

Exerciéés g
Find the smallest prime Jactor of each of the following.
(a) 115 (b} 135 (e) 321 (@) A8k (e) 539 (£) 121
Find a complete factorization of each of the following.
(8) 39 (e) 81 (e) 180 (g) 3718 (1) 576 (k) 1098

(b) 60 (a) 98 (£) 258 (n) 432 (3) 729 (1) 2324

Notice the 1ist of multiples of 3. In going from 9 to 12, the units
digit decreases from 9 to @, and the tens digit increases fram O +to
1; hence,the sum of the digits decreases by 7 - 1, or a net decreag:
of 6. Similarly,in going from 18 to 21, +the first digit increases
by 1, and the second decreases by 7. Is th's always true when the

tens digit increases by 17 What happens when one goes from 99 to 102,
from 999 to 1002, ete? Can you see from tais, that always for a
multiple of 3, it is true that the sum of its digits is a multiple of
3?

Show that the test given for divisibility by 5 slways works.

-e

List the multiples of ¢ and see if you can show from thi: the test for
divisibility by 4.

Can you give & test for divisibility of 6 4n the decimal system?
Can you give a test for divisibility by 15 in the decimal system’
Which of the following numbers are divisible by 2°%

(a) 111

ix

{a) llllten (p) 1111 {c) 1111.s three

seven

Suppose 8 numter {s written in the system to the base 7. Is it
divisible by ten if its last digit is 0% Is it divisible by 3 1ir
the sum of its digits is divisible by 32
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#10. Answver the above Questions for a system of mumeration to the base twelve,

#11. Find a test for divisibility by 6 in a system of mumeration to the bage
seven,

A AL

%12, Give & test for divisibility by 4 din the decimal systen,

10. Greatest Common Factor

Congider the mumbers 10 and 12. We see that both 10 and 12 are
even mumbers. They are both divisible by 2, or we may say that 10 and 12
are multiples of 2. Because 2 is a factor of 10 and is also a factor of
12, we say that 2 is a "common factor" of 10 and 12.

Ail whole numbers are multiples of 1. ‘I'hus, 1 1is a common factor of
the members of any set of whole numbers, Therefore, when we are looking for
common factors,we generally look for numbers other than 1.

What factor other than 1 1s common to both 12 and 15? Is 2 a
common factor? Since 15 s odd, 2 is not a factor of 15. Therefore,
it is impossidle for 2 to be a common factor of 12 and 15, However, 12
and 15 are both multiples of 3 Hencé, 3 is a8 common factor of 12 and
15,

Do the numbers 12 and 30 have any common factors? Writing the set
of factors of 12 and

the set of factors of Set of factors of 12 is (1,2,3,4,6,12)
30 as shown at the right,
we see that there are Set of factors of 30 is (1,2,3,5,6,10,15,30)

several common factors.
The numbers 1, 2, 3, and 6 are the common factors of 12 and 30.

Do the numbers 10 and 21 have any common factors? Writing the set
of factors of 10 and

the set of factors of Set of factors of 10 1is (1,2,5,10)
21 as shown at the right,
we see that 10 and 21 Set of factors of 21 is ({1,3,7,21)

40 net have any common
factors other than 1. '

28




So, ve see that for any set of whole mmbers the mmbers have the common
factor 1. For some sets of whole numbers there is & common factor,other
than 1, and, for some sets of whole numbers, there are several common fadors
other than 1.

Recognizing common factors is useful in many ways. You have already used

the idea of common factors in changing fractions to lower terms, For example,

in changing -]-‘l% to g you use the common factor, 2, of 10 amd 12.

For -13‘—% we should gee that 2 is s common factor of 12 and 30. The

6 6

result 1§ 5 However, we see that for 15
6 and 15. Thus, % may be written as 2.
Is it possible to change 31—% to % using & single number instead of

using 2 and 3 in turn? Some of you may have wondered why anyone would

there is a common factor, 3, of

choose to change %26 by using both 2 and 3 when it would be much quicker
to use 6.

Is 6 a factor of both 12 and 307 Referring to the earlier listing
of these factors, we see that 12 and 30 have the common factors 1, 2, 3,
and 6. How does 6 differ from the other common factors? It is the largest
of the conmon factors of 12 and 30. Such a factor is called the "greatest
common factor".

Definfition: The greatest commen factor of two whole pumbers is the
largest whole number which {s & factor of each of them,

Cenerally, the greatest common factor is more useful in mathematics than
other comnon factors. Therefore, we are most interested in the greatest
common factor.

Let!s try another example. Suppose we wish to find the greatest common
factor of 12 and 18. We could write the set of factors of each:

Set of factors of 12 is (1,2,3,4,6,12)
Set of factors of 18 4s {(1,2,3,6,9,18)

The set of common factors of 12 and 18 s (1,2,3,6). The largest member
of the set is 6., Therefore, 6 is the greatest common factor of 12 and
18,
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Similarly, suppose we vish to find the gréuteﬂ: common factor of 24 and
Writing the factors of each:

e e hbe

Set of factors of 24 1s (1,2,3,4,6,8,12,24)
Set of factors of 60 is (1,2,3,4,5,6,10,12,15,20,30,60)

The set of common factors is (1,2,3,4,6,12). The greatest of these factors is

12,

1.

2.

3.

De

Therefore, 12 is the greatest common factor of 24 and 60.

Exercises 10

Write the set of all factors for each of the following. List these
carefully as you will use these sets in answering Problem 2 below.

(a) 6 (c¢) 12 (e) 16
(b) 8 (a) 15 (f) 21

Using your answers in Problem 1 above s write the set of common factors
in each of the following cases.

() 6, 8 (e) 12, 15 ve) 12, 15, 21
() 8, 12 (d) 6, 8, 12 (£) 8, 12, 16

Write the set of all factors for each of the following.

(a) 19 (e) 36 (e) &5
(v) 28 (a) 4o (£) 72

Using your answers to Problems 1 and 3 above, write the set of common
factors for each of the following,

(a) 19, 28 (e) 28, Lo (e) 4o, 72
(b) 16, 36 (a) 36, 45 (£) 19, 36, 45

Using your answers to Problems 2 and 4 above, write the greatest common
factor for each of the following cases,

(a) 8, 12, 16 (c) 28, Lo (e) Lo, 72

(b) 16, 36 () 36, 45 (£) 8, 12, 16, 36
Find the greatest common factor in each of the following cases,

(8) 15, 25 | (£) 15, 30, 36

(b) 18, 30 (g) 12, 24, 48

{c) 2k, 36 (n) &o, 48, 72

(d) 25, 15 : (1) 15, 30, 45

(e) 32, 48 (J) 20, 50, 100

30 'f) ", .
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(a)
(v)
(e)

(a)
(v)
(e)

Let
(a)

(b)

(e)

What is the greatest common factor of 6 and 61
What is the greatest common factor of 29 and 247
WVhat is the greatest common factor of a and a vhere a

any counting nusher?

What is the greatest common factor of 1 and 61
What is the grestest common factor of 1 and 297
What is the greatest common factor of 1 and & where &
represents any whole number?

2 and b represent any two different whole numders vhere a < Db.
Will & and > always have a common factor? If so, what is the

factor?

Let ¢ represent a comnon factor of a and b. Can c=a

If so, give an example.

Can ¢ = b? If so, give m example,

Suppose 1 4is the greatest common factor of three numbers.

{(a) Must one of the three numbers be & prime number? If not, write a
set of three composite numbers whose greatest common factor is 1.
(b) Can two of the numbers have a greatest common factor larger than 17

If so, give an example.

In finding the greatest common factor for a set of numbers it is

sometimes troudblesome to write cut all the factors.
shorter way of obtaining the greatest common factor.

are t0 find the greatest common factor of 36 and U5,

(=)

(v)
(e)

(a)
(v)

Write a complete factorization of 36 and &5,

prime factors of 36

and of 15.)

Example: 36 = 22¢3¢3:3 -22-33
= 77
What 1s the greatest common factor of 36 and 452

45 =221

Compare the 1ist of prime factors of 36 and 45 and the greatest
common factor of 36 and 45,

Can you see 8 shorter way of

obtaining the greatest common factor?

Write s complete factorization for 18 and for 90,
what is the greatest common factor of 18 and 50?

is

?

Try to find a
Assume that you

(List &ll of the



#14,

#15.

i1.

relationship among the parts of a division problem,

Factor completely esch nusber in the following sets and find the greatest

comp factor for esch set of numbers.

(s) (24,60} # (r) (42,105,147)
(v) (36‘:%) *(‘) {165123"}

(c) (72,108} # (n) (306,1173)
(a) (25,75,125) # (1) (2040,2184}

(e) (24,60,84)

(a) What {s the greatest common factor of O and 6%
(b) What is the smallest common factor of O and 6%
(c) What 1is the smallest common factor for any two whole pumbers?

You have learned sbout operations with whole numbers: addition, sud-
traction, multiplication, and division. In this section we studied the
operation of finding the greatest common factor. This is sometimes
sbbreviated G.C.F. For this problem only,let us use the symbol "A"
for the operation G.C.F. For any whole numbers, a and b and ¢,

a A b = GQCQFQ for a ‘nd b

or aAdcs=G.ClF,. for a and ¢
Example: 12418 =6
9A15=3

(s) Is the set of vhole numbers closed under the cperation A?

(b) Is the operation A commtative; that is, does a Ab = b A a?

(c) ' Is the operation A associative; that is, does
aad(bAc)=(zAad)Act

Remainders in Division

Ancther way to find the greatest common factor is to make use of a

let us reviev the division process.

The questicn, “What is the result of dividing 16 by 5%, may be stated,
“Bov many 5's are contained {n 161"

We can find the answer by repested
subtraction,as shown at the right. By
counting the number of times a2 5 is
subtracted, ve cbtain the ansver, 3, with a

o obon B 5

rempinder, 1. Does 16 = {5+ 5 + 5) + 1%

32
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The usual way of finding the ansver to this division predlem is shown

g Remainder 1
5)1

%
To check the answer we use the following idea:

16=(5x3)+1.

Al e .x\w::.-vx.“J,f\ o il A T I

X3 3

s
i

In the divisicn problem above, the 16 4is called the dividend, the 5

is the divisor, the 3 is the quotient, and the 1 is the remminder.
Let's try another example. Divide 253 by 25.

10 Remminder 3
25Y253
2

3
Does 253 = (25 X 10) + 3%
In general, for any division problem:
dividend = (divisor X quotient) + remainder
Using mathematical symbols, where

"&" represents the dividend,
“b" represents the divis~:,
q
"R" represents the remainder.

" represents the quotient,

This division relation may be expressed as follows:
as= (b . Q) + R

Consider the following exmmple in division:

24 Remainder 23
257623
2
123
. 100
=3
We ¢an write this prodlem in the form

623 = (25 % 2L) + 23,

33
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Thes follows the generel fomm: =

dividend « (divisor X quotient) + remsinder
ar
a=(beqg) +R
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Exercises 1

1. Copy and complete the following table. Do this carefully as you will
use the tnplc in ansvering Problem 2.

DIVIDEND = (DIVISOR °+ QUOTIENT) + REMAINDER
EXAMPLE 9 i 2 1
a. 12 6 g 0
b. 1k 3 ? ?
Ce 29 ? 3 2
d. 37 5 ] ?
e. 38 9 T ?
f. 41 13 ? ?
g. 59 ? 5 9
h, ? 11 6 0
i. 7 ? 3 17
3. 81 T ? 0

2. Use the table {n Problem 1 in answering parts s, b, and «.

(a) Compare the divisor and quotient in each part. Does one of these
always have the greater value in a division problem?

(b) Compare the quotient and dividend. Which one has the greater value

, if the dividend and divisor are dboth counting mumbers?

(c) Cogpare the divisor and the remainder. Which one always has the
greater value in a division prodlem?

(d) Can the dividend be zero? If so, give an example.

{e) Can the divisor be zero? If so, give an example.

(f) Can the quotient be zero? If so, give an example,

(8) Can the remainder be zero? If so, give an example.

34
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Using the table in Problem 1, answver the following questions.

{a) Can any whole number appear as a dividend? If not, give an example,
{b) Can any whole number appear as a divisor? If not, give an example.

(c) Can any whole number appear as & quotient? If not, give an example,
(d) Must the remainder always be some whole number? Explain.

Copy and complete the following table for the divigion relation.

g8 =(begq)+R

s b q R
ae 15 ? 7 ?
b. ? 10 9 8
Ce 50 12 ? ?
d. 100 2 ? 0
e 283 17 ? ?
f. 630 . ? 25 5

Using the table sbove answer the following.

() Can R be greater than b? If so, give an example,

(b) Can g be greater than b? If so, give an example.

(c) Can R be greater than the quotient, q7 If so, give an example,
{(d) Can any whole number be a possible value of b? Explain.

(e) Can any counting number be & possible value of b? Explain.

(f) Can any whole number be a possidle value of a? Explain.

Using the division relation, & = {(be*q) + R, where R < b, answer
the following.
(8) If b =LU4, write the set of all possible remainders.
{b}) If b = 11, describe the set of all possible remsinders.
(c) If all the possible remainders in & division problem are the
whole numbers less than 2%, what is b?
(d) If »~ = K, which one of the following represents the number of sall
possible remainders?
(K), (K + 1), or (K - 1)

L



#% 7. By using the division relation we have a method for finding the greatest
common factor of two numbers.

Example A: Find the greatest common factor of 12 and 8.

(1) First, divide the larger number by the smaller:
12 divided by 8 = 1; Remainder L

(2) Second, divide the divisor, 8, by the remainder, U:
8 divided by &4 = 2; Remainder 0

(3) The L4 4s the last divisor used which gives a remainder of
O. The greatest common factor of 8 amnd 12 4. L.

Example B: Find the greatest common factor of 35 =&nd %6.

(1) First, divide the larger number, 56, by the smaller
muxber, 35.

1 Remainder 21
35556

22
21
(2) Second, divide the divisor, 35, by the remainder, 21.

1 Remainder 1i4
21)35
21
14
(3) Next, continue dividing the last divisor by the last
remainder until the remainder is 0.
1 Remminder 7 2 Remainder O
14721 716
14

=

The last divisor used is the greatest common factor.

The 7 4s the greatest common factor of 35 and 56,
Note that when 14 ig divided by 7, the remainder is O.
The 7 4is the last divisor used.

Using the above method, find the greatest common factor for each of the
following pairs of mumbers.,

(a) 32 and 92 % (d) 124 anda 836

(b) B1 and 192 % {e) 336 and 812

(¢) 72 and 150 # (f) 1207 and 1345
36

B
-




12, least Common Multiple

You have slready learned a grest desl adbout multiples of numbers:

that all whole numbers are multiples of 1;
that ever numbers (0,2,4,6,...} are multiples of 2;
that {0,3,6,9,...] &are multiples of 3.

Similarly, we can list the multiples of any counting number.

The number 2 is an even nmumber, and the number 3 4is an odd nunber.
Usually we do not think of such numbers as having much in common. Yet,if we
look at the get of mmltiplesof 2 and the set of multiples of 3, we see
that they do have something in common. Some of the multiples of 2 are also
multiples of 3. For example, 6 1is a multiple of both 2 and 3. There
are many such numbers divisible by both 2 and 3. The set of these numbers
i written as follows:

(6,12,18,24,30,...}

Definition: Numbers which are multiples of more than one number are
called comwon multiples of those numbers. "Common" means belonging to
more than one. Thus, 6 and 12 are common multiples of 2 and 3.

let's try another example. List the common multiples of 3 and 4,
First, we 1list the multiples of each:

Set of multiples of 3: {0,3,6,9,12,15,18,21,24,...)
Set of multiples of 4: {0,4,8,12,16,20,24,...)

The numbers that these sets have in common are the common multiples of
3 and L. This set is written as follows:

(0,12,24,36,48,...)

Common multiples are very useful in arithmetic. For example, let us

1,1 1 1 2 2 3+2 5
..dd ] + 30 WE write 2 as % and 3 as 3- ‘I’hen g + g = %— = B.

Here we use &8 common multiple of 2 and 3, In aoing such problems, you may
have called the 6 a "common denominator". It is a common multiple of the
denominators of the given fractions.

Since 6, 12, 18, and so on, are miltiples of 2 and 3, we can use

any of these numbers in adding —é—+ %—. Notice that the number, 6, which we

did use is the smallest of those possible. It is also the smallest of the
common multiples of 2 and 3. The number, 6§, 1s called the least common

mltige of 2 and 3.
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Definition: The least common muitiple of a set of counting numbers is
the smeilest counting number which is a multiple of each member of the set
of given numbers.

Suppose we wish to find the least common multiple of 12 and 18, First,
we 1ist the sets of multiples of each:

0

Set of Multiples of 12: {0,12,24,36,48,60,72,8L,...)
Set of Multiples of 18: ({0,18,36,54,72,...)

The set of common multiples of 12 and 18 1ig (0,36,72,108,...}.
The smallest counting number in this set is 36. Therefore, 36 is the least
common multiple of 12 and 18.

What is the least common multiple of 2, 3, and 42

Set of Multiples of 2: {0,2,&,6,8,10,12,...)

Set of Multiples of 3: (0,3,6,9,12,15,...)
Set of Multiples of 4: (0,4,8,12,16,20,...}

The set of common multiples of 2, 3, and L4 1is: {0,12,24,36,...). What
is the smallest counting number in this set? According to our definition,
the least common multiple of 2, 3, and 4 is 12,

Exercises 12
l. Write the set of all multiples less than 100 for each of the following.
(a) 6
(v} 8
(e) 9
(d) 12

2. Using your answers in Problem 1, write the set of all common multiples
less than 100 for each of the following.

(a) 6 ana 8 ' (d) 8 anda 9"
{(b) 6 and 9 (e) 8 and 12
(¢) 6 and 12 (f) 9 and 12

3. Using your answers in Problem €, write the least common multiple of the
elements of each of the following sets.

{a) 6 and 8 {(d) 8 and 9

(p) 6 and ¢ (e) 8 and 12

(e) 6 snd 12 (f) 9 and 12
38
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Find the least comon multiple of the elements of each of the following
sets.

(a) (2,5} (e) [9’5’6}
() (4,6} (£) ({4,5,6]
(c) {2;3’5} (g) {2’6!?}
(a) (3,4,6) (n) (8,9,12)
Find the least common multiple of the elements of the following sets.
(a) (2,3} ~{g) (2,13)
(v) (3,5} (8) (7,11}
(c) [3’7} (i) {3113}
() (5,7} () (11,13)
(e) (2,11} (x) (2,3,5)
() {5,11) (1) (23,29}

Refer to Problem 5 and answer the following questions.

(8) To which set do the pumbers 2, 3, 5, 7, 11, 13, 23, and 29
belong -- the set of composite numbers or prime numbers?

(b) From your answers in Problem 5, what appears to be an easy way to
find the least common multiple in those cases?

Find the least common multiple for each of the following sets.

(o) (4,6} () (10,12)
(v) (4,8} (g) {12,15)
(¢) (4,10} (n) {4,6,10)
(a) (6,9} (1) {10,15,30}
(e) (8,10) (3) {4,6,8)

In Problem 7, to which set of numbers, composite or prime, do each of
the mumbers, 4, 6, 8, ..., in parts (s) through {j) belong?

Compare the questions and your answers in Problems 7 and 8. Then answer
the following.

(8) If c¢ and 4 are compocite counting numbers,can ¢ or d be
the least common multiple? Write an example to explain your answer.
(b) If c and d are composite counting numbers, must ¢ or 4 be

the least common multiple? Write an example illustrating your
answer.

3




10. (a) what 1s the least common multiple of 6 and 69
(b) What is the least common multiple of 29 and 292
(c) what is the least common multiple of & and & where 8 is any
counting number?

11. (a) What is the least common multiple of 1 and 6%
(b) What i{s the least common multiple of 1 and 297
(c) What {s the least coumon multiple of 1 and a where &
represents any counting number?

12, (a) If a and b are different prime numbers, can & or b represent
the least common multiple of a and b?
(b) If a and b are different prime mumibers, how can we represent the
least common multiple of a and b?
®#(c) If a, b, and c¢ are different prime nunbers, what is the least
common miltiple of a, b, &and cf

13. Study the following examples. Try to discover a shorter way to determine
the least common multiple.

Example A: To find the least common multiple of 4, 6, and 8:
(1) First, write a complete factorization for each number.

h:eg 6 =23 8:23

(2) The least common multiple is 23. 3 or 24,

(3) Note that 2°« 2. 3. 23 192, which is 8 common multiple of
L, 6, and 8, but not the least.

Example B: To find the least common multiple of 12 and 18
(1) A complete factorigation for each number:
12:22-3 18:2-32
(2) The least common multiple of 12 and 18 is 2°.3° or 36.
(3) Is (2°+3+2+3°) & common multiple of 12 and 187

(L) Is (2°+342+3%) the least common multiple of 12 and 18%

Now find the least common multiple of each set in the following parts.

L0




(a)
(p)
(e)
(d)
(e)
(r)
(g)

%1k, (a)

(b)

*15. (a)
(b)
(e)
(a)

12, 16 (n) 8, 9, 10

14, 16 (1) 12, 20, 22
9, 15 (3) 9, 16, 20
10, 14 *(k) 250, 200

16, 18 #(1) 324, 144, 180
L, 5, 6 % (m) 306, 1173

£, 8,9

Is there a greatest comuwon multiple of 3 and 5?7 If so, write an
example,
Is there a greatest common multiple of 4 and 6?2 If so, write an

exsmple.
Is there a greatest common multiple of any set of counting mubers?

May we consider O as & multiple of zero? (Does O X O = 07)
May we consider O as a multiple of six? (Does 6 X O = 0?)
May we consider O as & multiple of &, if a 1is any whole number?
Assume the least common multiple was defined as "the smallest whole

- number” instead of "the smallest counting number". What would be

the least common multiple for any set of counting numbers?
Using the correct definition for least comon multiple, is there a
least common multiple for any counting number snd 07

13. Sub-szets of Whole Numbers

In this booklet you have studied whole numbers for the most part. Also,
you have studied some important subsets of whole mmbers. These subsets are
shown in the sketch below:

WHOLE NUMBFRS

COUNTING NUMBERS

ZERO ONE FRIME KUMBERS COMPOSITE NUMBERS

Note that zero is a member of the set of whole numbers, but not
e member of the set of counting numbers. The ONE, the PRIME
NUMBERS, and the COMPOSITE NUMBERS are members of the set of
COUNTING NUMBERS and also members of the set of WHOLE NUMBERS.
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Every member of the set of counting numbers is & member of
the set of whole numbers.

You learned that a PRIME number is any counting mumber other than 1
that is Aivisible only by itself and 1. The number 1 is not & prime number.
We chose not to include 1 as & prime number because any number can be
expressed as the product of primes in many different wvays if we include 1 in
the set of prime numbers.

A COMPOSITE number is & counting number, other than 1, that is not
prime. Composite nunbers have more than two factors.

The term "factor" was used instead of the words multiplicand and
multiplier. The nuwber, a, 1s a FACTORof b if b is divisible by a.
The set of factors of & number contains all counting numbers which are factors.
A COMPLETE FACTORIZATION of a number rpresents the numher' as 8 product of
prime numbers. For a prime pumber this is che’number itgelf. For & composite
number there are three or more factors., The UNIQUE FACTORIZATION PROFERTY of
counting numbers refers to the fact that every composite number can he expressed
&8s the product of primes in only one way, except for order.

A COMMON FACTOR of a set of whole numbers is a number that is a factor
of each member of the set of numbers. The GREATEST COMMON FACTOR of 8 set
of whole pumbers is the largest counting number which is & factor of each
member of the set of mumbers. A common factor can never be greater than the
largest member of the set.

The whele number, b, is & MULTIPLE of the whole number, 8, if a-+c = b,
where ¢ (s also a whole number. A COMMON MULTIPLE of & set of numbers is &
multiple of each member of the set of numbers. The LEAST COMMON MULTIPLE is
the smallest counting number which is a multiple of every member of the set
of numbers. The least common multiple cannot be less than the largest member

“of the setl of numbers,

Exercises 13

1. Find the greatest common factor of the numbers in each of the following
sets of numbers.

(8) (2,3) (e) (12,36) (1) {39,51)

(b} (6,8) (r) {15,21) *® (J) (74,146)

(e) {7,14) © (g) (23,43} %® (k) (b45,72,252)

(a) (15,25) (n) (66,78} ® % (1) (4b4,92,104)
e




2. Find the least comon multiple of the numbers in each of the sets of
numbers in parts (a) through (1) in Problem 1.

3. (a) Find the product of the members of each set of numbers in Problem 1,
(b) Find the product of the greatest common factor and the least common
multiple for each set of numbers in Problem 1. (Refer to your
answers for Problem 1 and Problem 2,)
(¢) How do your answers for (a) and (b) compare?

L, (a) write the set of all composite numbers less than 31,
(b) Write the set of all prime numbers less than 51.

5. let a and b represent two counting numbers, Suppose that the greatest
common factor of a and b is 1,
(a) What is the least common multiple of & and b? Give an example
to explain your answer.
(b) Would your answer for part (a) be true if you started with three
counting numbers s, b, and c? (hemember, the greatest common
factor 1s 1.) Give an example 40 explain your answer.

6. (a) Can a prime number be even? Give an example to explain your answer.
(b) Can a prime number be odd? Give an exsmple to explain your answer.
(c) How many prime numbers end with the dlgit 572
(d) With the exception of two prime numbers, all primes end with one of
four digits. Write the two primes which are exceptions.
(e) Write the other four digits which occur in the ones* place for gll
primes other than the exceptions you found in part (d).

7. Suppose the greatest common factor of two numbers is the same as their
least common multiple. What must be true about the numbers? Give
examples to explsin your answer.

8. (a) Wnat is the lemst common factor of 2867 and 64317
(b) What is the greatest common multiple of 2867 and 64317

9. 132 tulip bulbs are to be planted in a garden., Describe all possible
arrangements of the bulbs if they are to be planted in straight rows
with an equal number of bulbs per row.
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#12,

. %13,

%1k,
5.

Two bells are set so that their time interval for striking is different.
Assume that, at the bdeginning both of the bells strike at the same time.

(a) One bell strikes every three minmutes and the second strikes every
five mirmuteg. If both bells strike together at 12:00 noon,
when will they sgain strike together?

(b) One bell strikes every six minutes and the second bell every fifteen
minutes. If both strike at 12:00 noon, when will they asgain
strike together?

(c) Find the least common multiple of 3 and 5, sand of 6 and 15.
How do these answers compare with parts (a) and (b)?

(a) Can the greatest common factor of some whole numbers ever be the
same number as the least common multiple of those whole numbers?y
If so, give an example.

(b) Can the greatest common factor of some whole mumbers ever be greater
than the least common multiple of those numbers? If so, give an
example.

(c) Can the least common multiple for some whole numbers ever be less
than the greatest common factor of those whole numbers? If so, give

an example,

(a) 1Is it possible to have exactly four composite numbers between two
consecutive primes? If so, give an example.

(b) Is 1t possible to have exactly five consecutive composite numbers
between two consecutive primes? If so, give an example,

Given the numbers 135, 222, 783, and 1065, without dividing,
answer the following questions. Then check your answers by dividing.
{a) Which numbers are divisible by 3%
(b) Which mumbers are divisible by 62
(c) Which numbers are divisible by 9%
{d) Which numbers are divisible by 5%
(e) which numbers are divisible by 15%
(£) Wnich numbers are divisible by 47

Why is it important to learn about prime numbers?

BRAINBUSTER, Ten tulip bulbs are to be planted so that there will be
exactly five rows with four bdbulbs in each row. Draw a diagram of this

arrangement .
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16, BRAINBUSTER. Do you think there is a largest prime number? Caa you find
it or can you give s reason why you think there is no greatest one?

14, Robinson's Results

We are going to report to you on results published by Professor Raphael
M. Robinson, or the University of California at Berkeley, in the October, 1958,
issue of the 'Proceedings of the American Mathematical Society", This will
give you come ides of how research mathemsticians are applying high-speed
camputers to solve problems about primes.

Roblnson's note is based on calculations carried out during 1956 and 1957
on the SWAC (Standards Western Automatic Computer) at the University of
California at Los Angeles.

To obtain an idea of the meaning of this work, let us think for a
moment about the problem of finding out whether a given numbex n, is & prime,
According to the definition of a prime, we must find out whether n is
divisible by scome smaller number other than 1. The most obvious method is
to divide n by the numbers, 2, 3, 4, ..., upto n -1, If any of these
pumbers divide evenly into n, then n is not a prime, If none of these
divisions come out evenly, then n 1is a prime. This method requires n - 2
divisions. If n 1is about 10100, and if each division requires .001 of
a second, then this would take about IOQT seconds. How many seconds are

there in a year? About how many years would this take?

We could shorten the work very much if we think & little. If n {s not
& prime, then n  can be expressed as a product of two smaller numbers:

n=aga°¢*b.
If a 1ic the smaller of these factors, then n 1is at lesst a+a = ag.

n> 32.
Therefore, if n 1is not a prime, then it is divisible by some number, a, whose
cquare is,at most, n. To test whether n 4is a prime, it {s enough to divide
8 by the numbers, 20, 3, ..., Up to the largest mumber whose square is no
larger than n. If n < 1,000,000, then we do not have to try any divisors
greater than 1,000, since 1,000° = 1,000,000. Thus to see whether 999,997
is & prime, we only need to divide by 2, 3, ..., 999. By this method we

only need 993 divisions instead of 999,995 divisions in the previous
method,

45
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If n is about 10100, then this method requires only about loﬁo

divisions, for 10°° +10°0 = 10*®., Ir emch division takes .00L of s
second, how many years would it take by this method to test whether n is a
prime?

If we wish to test really large numbers, we must look for better methods
so that we can obtain the answers in a reasonable time. Therefore,
mathematicians try to find special classes of numbers which have special
properties which enable us to reduce the work even more.

For example, a great deal of work has been done on numbers which are
one less than a power of 2. We may represent such numbers in the form

n-=2m-l.

If w2 then ne2° -1m=4-1:3, whichisa prime, If m = &
then n = Qh = 1=16 -1=1% which is not a prime. If m 1is not a
prime, then n cannot be a prime. But m may be a prime without n being
A prime.

?

Exercises l4

1, ‘Mnke & table for n = 2% - 1, up to m = 20.
o 1] 2' 3| | é | 7 I 8 ; g9 Llo |11 I12 '15 llk-eo
JREEE !H BERR

2s Test the sctatements:

(@) If m is divisible by 2, then n is divisible by 3.
(b) It m is divisible by 3, them n is divisible by 7,
(¢) If m 1s divisible by 5, then n is divisible by 31,
(d) what is the general 1law?
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15. Proth's Theorem

Robinson reports on numbers which are one more than a small multiple of
a power of 2, that is, numbers of the form

= (k.gm) + 1,
where k {s &8 smmll odd number.

He and his group tested for primeness all numbers of this form with
k <100 and m <512, as well as # few larger numbers. First they divided
by all numbers less than 10,000; and for k £ 7 they tried divisors up to
100,000. After eliminating all small factors in this way, they then applied
& theorem stated by Proth in 1878. Let us see if we cannot get some idea of
what Proth's theorem says and how it is used without trying to examine all
of the details.

Proth's theorem gives 8 method of testing numbers of the form
n=(k+2") +1 for primeness, provided the counting mumber, k, is odd
and less than 2, We can avoid much of the complication of the statement of
Proth's theorem if we restrict ourselves to the case where k 1is not divisible
by 3. Thus we may use

k = l’ 5’ 7‘ 11, 13, 17, ese
o = l’ 2’ 3’ h, 5’ 6, 7, eee

and we are able to test the numbers n = (ke 2m) + 1 for primeness. For these
numbers n, Proth's theorem states that:

n ig prime if, and only if, it is 8 factor of

n-l .

3° 41,

Does this look mysterious to you? It is likely that it does, because
you are not 8 mathematician., It would very probably look a bit mysterious
even to a mathematician if he didn't happren to be familiar with the special
techniques which are needed for a proof of this particular theorem. If you
will accept, however, our word that it is a true theorem (and a great many
very respectable mathematicians will testify to its being true) then it should
not be hard to see what it says and how 1t is used.

7
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n-1

In the first place, what does 3 2 . 1 mean? The expression Eéé is
being used &s an exponeant. The number, n, we are using here is odd., (Why?
Woat is the form of nf) Thus n - 1 is even, so that Eél is a counting

a-1

number. Thus, 3 2 + 1 is just one more than 3 rauised to a counting number
power. To test n for primeness, we need only find thic number and then
ddvide it by n. If this division comes out even, then n 1is & prime; other-

vise n 1is a composite.

What numbers can we test for primeness by this method? Llet us 1ist a few
‘of them in & table and then apply the test to some of them. Fill in the
blank spaces in the table below. Remember that Proth's theorem requires that
0<kK Em, and that we have restricted ourselves to numbers, X which are
not divisible by 3.

ne (ke2®) +1

K
1 5
1 7
1 ' 11
5 3ﬁl‘ 1
T 3 571
1] & !___

5 L 81
1 113

1]

13 | 4 $g4, 209 17
1 5 33

Now let us see how the test works for a few of these numbers. To
refresh our memories we restate it here: ‘

If n=(ke2") +1 where 0<k <?" and k 18 not divisibdle by 3,
then n is prime if, and only if, 1t ic & factor of

Bl

3 + 1.
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Example 1: Let k=1 and m=2 so that n=5. (look it up in the

table.) W= are testing 5 for primeness. In this case, 2%£ is % or 2,
5 -1
32+ln32+1=9+1n10.
n-1 '

It n a factor of 3 2 +17 Is 5 a factor of 10? Yes, it is, so the
test tells us that S 4is a prime. Does this check with what you eslready
know?

Example 2: Let k=1 and m=3 so0 that n=9. (Look it up.) We

divide n-1
2

]
+1=3"41=8L+1=8

q

-

by 9. The division docs not come out even, so the test tells us that 9 1is
not & prime. Does this check with what you slready know about 97

Example 3: If k=1 and m= 6, then what is n? The t&ble should

tell you that n = 65. If it does not, work it out again. E%L is 32, so

n-l

32 +1 =3 +1 =1,853,000,188,851,842.

We would have to divide this number by 65 to continue the test. It would
not be worth the effort, however, since we can easily recognize that 65 has

5 &s a8 factor, and is therefore not 8 prime.

Example 4: let k=7 and m=15 so that n= (k-2%) +1 = 113,
n-1

In this cace the mmber 3 2 +1 =30 +1, s 9 times the square of
1,853,020,188,851,842 + 1,  If you are ambitious, you may calculate

this number and divide it by n = 113, The division will come out even if

you do your work correctly, so what do you conclude about 1137

=

Examples 4 and 4 should convince us of one thing., Proth's theorem is not
well suited for testing large numbers for primeness by hand calculation.
Large computers, however, are constructed expressly to make calculations of
the order of the ones which discouraged us above. And they do them quickly!

Qn the SWAC the time for the test was no more than l% minutes as long as
~

m ¢ B5l2, For m about 1000 and k = 3, 5, or 7 the test took about

Lg
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7 atnutes. The number n = (7 -21000) + 1, is larger than 10330.
Compare 7 minutes vith the time {t would take the machine to test 10500
for primeness by trying all possible factors. Earlier in this section you
ot some idea of this time for mumbers of the order of 10-°,

For k = 1, the test had previously been carried out for all m < 8192,
and the only primes of this form which have been found are the cases:

o= 0, l, 2, h, 8, Bﬂd 16.

The largest new prime discovered by this work is the case k = 5,
B = 1947:
ns= (5‘219“7) + 1.

If you wish to estimate this pumber, first notice that

3 10

107 = 1000 € 27 = 1024,

Therefore, we have
| 219&7 S 219“0 - (210)19h > (103)19h - 10532.
Therefore, n has more than 582 digits. On the other hand, notice that
23 - 8096 < 10",
Therefore, we have

n<l+ 8.2y 214 (23,2197 L, 51990

L+ (283190 ¢ 14 (104190

= 1 + 10600.

Consequently, n has no more than 600 digits.

Remenber that by using the theorem of Proth, this prime was discovered
by 8 single division taking a matter of mimites. By using either of the
cruder methods discussed before, &t least 10291 divisions would have been
necessary. How long would this have taken at the rate of a thousand

divisions per second?

This number is the fourth largest prime known at present., The larger
ones are the numbers

n=2"-1

with m = 3217, 2281, and 2203. The latter .' " were reported by Robinson
in the 'Proceedings of the American Mathematical Jociety"” in 1954, The largest
one was reported early in 1958 by H. Riesel in Mathemstical Tebles and Aids

to Computation (page 60).
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Example 5: Estimate the number of digits in each of three primes.

Perhaps you would be interested in the general statement of Proth's
theorem. For numbers n = (k+2") + 1 with k divisible by 3, the important
n-1
difference in the test for primeness is that the number, 3 2 . 1, must be
replaced by a nev number. The number to use is of the fom
n-1

a 2 + 1

where & is a counting number which mey have to be chosen differently for
different values of k &and m. The condition which & must satisfy will be
found in the statement of Proth's theorem.

Theorem: Let O < k< 2" and n= (k+2) + 1. Suppose a 1is a
counting pmumber which has the property: no sum of & and a multiple of n
is & perfect square. (Alternative: the sum of a and & multiple of n is

never a perfect squere,)

Then n is a prime if, and only if, it is 8 factor of
n-1

a e + 1,

The condition which & must satisfy is rather a strange one. It would
seen that it might be difficult t6 find a number which satisfies it in some
cases. We could never find such 8 number by any number of trial operationms,
for the condition which a must satisfy involves a statement sbout all
multiples of n. We may reject some choices of & on the basis of a single
calculation, though., If k = 3, and m =2 so that n = 3 -22 +1-= 13,
then would a = 4 do? No, because 117 +a = 117 + 4 = 121 1s a perfect
square, and 117 is 8 multiple of n = 13, To find = number, & which we
can be sure will fit the condition for a given n, then, we will have to use
reasoning. We will have to reason that, for & certain number, a, no matter
how many multiples of n we try, adding a will never give a perfect square.
Mathematicians know enough about numbers so that finding such a number is
not a very difficult problem. As you may have guessed from the discussion
above, it 1s possible to show that whenever k 4is not divisible by 3, the
mimber 8 = 3 satisfies the condition of the theorem. Once we have found
the right number. a, to go with n, we can avoid the many tedious calculations
necessary to test & large number for primeness. Instead of dividing n by

51




all prime mumbers whose squares are less than n, we need only perform one
calculation. We simply try the division
n-1
(= 2 1) + n;

if it comes out even, n is & prime, if not, n 1is not s prime.
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