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PREFACE

Nathematics is such a vast and rapidly expanding field of study that
there are inevitably many important and fascinating aspects qf.fhe subject
vhich, though within the grasp of secondary school students, do not find a
Place in the curriculun simply because of a lack of time.

Many classes and individual students, however, may find time to pursue
mathematical topics of special interest to them. This series of panmphlets,
vhose production is sponsored by the School Mathematics Study Group, is
designed to make material for such study readily accessible in classroom
quantity.

Some of the pamphlets deal with material found in the regular curric.
ulum but {n a more extensive or intensive manner or frog a novel point of
view. Others deal with topics not usually found at all in the standard
curriculum. It is hoped that these pamphlets will find use in clasSrooms
- in at least two ways. Some of the pamphlets produced could be used to
extend the work done by a class with a regular textbook but others could
be used profitably when teachers want to experiment with a treatment of a
topic different from the treatment in the regular text of the class. In
8]l cases, the pamphlets are designed to promote the enjoyment of studying
mathematics,

Prepared under the supervision of the Panel on Supplementary Publications
of the School Mathematics Study Group:

Professcr R. D. Anderson, Louisisna State University

Mr. M. Philbrick Bridgess, Roxbury Latin School, Westwood, Massachusetts
Professor Jeun M. Calloway, Kalamazoo College, Kalamazoo, Michigan

Mr. Ronald J. Clark, St. Paul's School, Concord, New Hampshire
Professor Roy Dubisch, University of Washington, Seattle, Washington

Mr. Thomas J. Hill, Oklahoma City Public Schools, Oklahoma City, Okla,
Mr. Karl S. Xalman, Linceln High Schoolh Philadelphia, Pennsylvania
Professor Augusta L. Schurrer, Iowa State Teachers College, Cedar Falls
Mr. Henry W. Syer, Xent School, Xent, Connecticut
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Commentary and Answers
THE SYSTEM OF VECTORS

Introduction.

Yectors have both a geometric and algebraic aspect. The
first part of the text is primarily geometric. The algebra of
directed line segments is considered to be a pleasant device for
solving geometric problems. In Sections 3 and 4 the algebra of
vectors is worked out more carefully. Section 5 is about appli-
cations of vectors to physies. While this kind of discussion
helped form the whole subject originally, it no longer is the
central topic in vector studies. Section 6 is concerned with the
system of vectors as a whole. Instead of examining individual
vectors the student is exposed here to statements about all
vectors,

1. Directed Line Segments.

The main ideas of this section are egquivalence of directed
line segments, addition of directed line segments, and multi-
plication of directed line segments by real numbers. The student
is required to translate statements of geometric relation into

algebraic language.

Exercises 1. Answers.
-l

L
1. AA , AB, BA, BB .
A-‘—h—.—.—.-ﬁ—‘-—h
2. AA , AB, AC , BB, BA,BC,CC, CB, CA .

This is true whether the points are collinear or not.
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CA, ®D,

line segments,
parallelogram have equal measure, This might lead one to

say AC and BD are equivalent. One needs to turn again
to the Definition la for equivalent directed line segments.
The same consideration can be invoked to convince one that

e
DD
aadie
D
CB

D c

S§ are also included in the l1list of directed
From plane gaometry the diagonals of a

e -l
AC and CA are not equivalent.
(a) AC B
(b) AC
(c) AC
(d)ﬁ A c
() RA, for (AB + BC) + CA = AC + CA = AR .
(£) BB, for BA + (AC + CB) =BA + AB = BB .
(g) TB + CA . Consider what must be added to
&G + CB.
+ AC = CB
——le — —y P s
CB + CA + AC = CB .
(a) A X B A‘i-%ﬁ,ﬁi-%’ﬁ\,
1 1
I‘--§,S='§.
(b) A B X AX~2B,BX=-1BA,r=2, s=-1.
(¢} B A X AX = -1AB, BX = 2BA , r= -1, 8 = 2 .,
() A X B X -2, -4,
p-2, 8.1,
— i —t l-—h

w
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(£)

(v)
(c)
(a)

3
B A___X RX=-28B, X = 38 ,
re-%,8=3%.
: () 3
2 (£) %
oX (g) 2
cR

2. Applications to Geometry.

This section makes two main points. The first is that
vectors can be manipulated according to some cf the usual rules
of algebra. The second is that certain problems of elementary
geometry can be solved by such manipulations. '

Each of the examples is worked out a8 an isolated problem.
No hint is given about a general approach to all of them. There
is such a general appreoach which the teacher may want to discuss.
Each problem can be solved by

(1)
(2)

(v)
(c)
(a)
(e)

Choosing two directed line segments on non-parallel
lines.

Expressing each of the other directed line segments
in terms of the ones originally selected.

Exerclses 2. Answers.

— 0 e el

DB = DC + DA, by Definition 1b and equivalent

directed line segments.

ol | emin 0 ami

DB =DC + CB .

-t canlh el o —

DBE=DC + CB= AB + (-BC) = AR - BC additive inverse.

—

DE = DA + AE = -AD + AB .
DE =~ CB+ AB = -BC - BA .

&



2. (a) The ray AB .
(v} The segment &S .
(¢) The ray opposite to the ray BR .
(d) The segment whose midpoint is A and which has B
as an endpoint.

3. Hint: Note the development from the case where either r
Oor 8 18 zero and the other varies to the case where both
-are variable.

(a) The line “AC .

(b) The line “A® .

(¢) Any point on AT or “BX™ or between “AC” ana =~
where “EX") [“Ac”™.

(d) Any point on “AB" or C¥™ or between “HE™ and “c¥™

where “¢7 ] """,

(e) Any point inside the parallelogram ABCD where D
is the intersection of ‘ﬁ"and ‘EY'Por on its perimeter.
-(f) Any point on “EX" (1ine through B ||™icT .
(g) Any point on ‘E?’(line through ¢ |[“ABT .
*(h) Any point on &,
*(1) Any point on “BCT where C' 1is on GR and A is
the midpoint of segment T'C .
*(J) Any point on "PQ where P 1is located on “AE" so that

K?-ep?ﬁ and 1 1is located on 'EE so that P—.a-BKE .

*(k) Any point on EF where Eﬁ-%ﬁ—ﬁ and AAF-%_E
(E on AB and F on KE).

*(1) Any point on GH whers: Eﬁ--—;-A-ﬁ and KH‘-—%A‘E.
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4, (a) o
AB - AC ¢
A B 28
3 %
* N <
\%
-AB
[ Py \
AC - A5 “‘\ &<
Q
(o)

i i nd, — il ey
*5. Let AH =rAD and AE = sAB. Then HD = (1 - r)AD and
iy
EB = (1 - s)IC . Note that the opposite sides of &
parallelogram are equal.

Let '?i = AH = [/HF and ﬁé = AE + mEG . We must show that
these are values for [/ and m for which V, =V, and
that, for these values, either Va or V, 1s equal some
constant times AC . '?i -'vé implies

(1) AR + ‘g(HD + DF) - AE + m(Eo + 06G) .

Substituting for AH ’ AE s, ete. in terms of AD and
¢ and collecting on AD and DC we obtain

In
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(2) (r+~ [ - [r)rn-t- £3DC = (s+m-ma)'ﬁE+mrA"5 .
This equality (2) is satisfied if
(). r+ f- [Ir=mr and (31) [s =5 +m-ms .
Solving (1) and (41) for £ and m in terms of r
and s we obtain
r A s
(3) I=gsE-Tim=FFs-T "
For these values of [ and m, Vl - '\72 . Moreover
-lle -l ] i T P amala.
(&) Vl = AH + [HF = I‘AD+——_—-I[( 1 - r)AD + sDC]
rs . o™
~F T T+ B0) = 55—y K.
Since ‘\?l equals & constant times AC the inter-
section of ﬁ?‘ and 3‘..?} lies on KE . Q.E.D.
Question: What happens when » + 8 = 1 ¢
6. (a)o‘ﬁ-a‘q+6§. (e) 5%-25§+aop.
(b) oc OQ - 0P . (f) AC = EOQ 20? .
(c) oD -OQ-OP. (g) CA = -20Q + 20P .
(d) OR = -OQ + OP . (h) BD = -20Q - 20F .
7‘

let O be the midpoint of AP, P the midpoint
of BE, Q the midpoint of HG .




35-1*-%(134- GD)-E(_-+§3+*)-%(‘+A+KH.)
AP-AB+§EE-AB+§(BF+FE)-AB+-§(BA+AF+FE)

= AB - %ﬁﬁ + %i? + SRR -‘%(“E + AR + AH)
AQ = AR + i-ﬁ = AH + %(ER + AG) = AR + £(HA + BB + B¥)

= AH - %ﬁﬁ + %EE + 2AF = %{Kﬁ + AB + AF)

. . Ka - K§ = Ka and points 0, P, and Q coincide.

3. Vectors and Scalars; Components.

The main topic of this section is the algebra of vectors
that are given in the component form [p,q] . The transition
from coordinates (of points) to components (of vectors) is a
little subtle. Once the change-over i1s made, the algebraic
properties of vectors are easily established.

Exercises 3. Answers.

by

* B(4,3)
*A(1,2)

* C(5,1)

(a) Let (a,b) be X .
Then AB 4is [(&4 - 1), (3 -2)]
Then CX is [(a - 6) , (b - 1)]
Since Eﬁ = Ei R
a-6=4.1,bp-1=3-2
as=29g b=2,
The coordinates of X are (9,2) .

ERIC Iz
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(b)

{c)

(d)

(a)

(b)

(e)

(a)
(a)

(b)
(c)
(d)
(e)
(f)
(&)

(h)

a -1l=4-6,0b-2=3--.
a--l b-h
X(-1,%)

1‘-6,2-}:-3-1
a=3 b =0
x(3,0)

1 -a=6-4,2-b=1-3
a= -1 b= 4
X(-1,4)

(-1) =a - (-6), -3-2=0b - (-1)
a= -1 b = -6
X(-1,-6)
I\
Af{-1,2)e

[
¥
]
n

P =
4

DRI : ) " AX
oC(-6,-1)

* B(4,-3)

a - (-1, =4 - (-6) ,b-2=-3-(-1)

a=2g b=
X(9,0)
T-a=4-(-6),2-b=-3- (-1)
a=-11 b= 4
X(=-11,4)
x(9,0) .

(3,2) + [4,1] = [(3 + %) + (2 + 1)] = [7,3] ,
by Theorem 3b.
{1,-1] .
4[5,6] = [4 . 5, 4 . 6] = [20,24] , by Theorem 3c.
[-20,-24] , by Theorem 3c.- ,
[-5,-6] , by Corollary of Thecrem 3c.
[-5,-6] .
3{4,1) + 2(-1,3] = [12,3] + [-2,6]
= [12 + (-2) , 3 + 6] = [10,9] .
[14,-3] .



(a)

(v)

(e)
(a)

(a)

(v)
(c)

x(3,-1] + y[3,1] = [5,6]
Ist‘x] + [SYJY] = [5,6]
((3x + 3y} , (-x + y)] = [5,6]

3x + 3y = §
=X + ¥y = 6
The solution set of the system is {(7%§y%§)} .

a3

 That 15, x = "% and y= 2.

The resulting system is,
33x + 2y = 1 whose solution set is {(- %w%)} .
ex + 3y = 2

That is, x = - % and y = % :

X = %; and y = f% .
The solution set of the system

3x + 6y = -3 )
2X + 4y = -2 1is {(a,ig—é—l)} for all real a .

For instance, one element of the solution set is
(3,:§-%-l) » or (3,-2) . Ask students to find other

pairs of numbers which belong tc the solution set.
There will be an infinite number of such pairs.

{3,1] = al1,0] + p{0,1]
[3111 - [atol + [O,b]
(3,11 = [{(a + 0) ,(0 + b)]

a+0=3 and 0+b=1

a=3 and b=1
a=]1 and b= -3 ,
T = a[-3,1] + b[1,-3]

{1,0] = a[-3,1] + b[1,-3]
[1101 = [-3398] + [b,-3b]
{1,0] = [(-3a +Db), (a - 3b)) .
Hence a and b satisfy

-38 + b=}
8*3b‘0.

We conclude that a = - %- and b = - é .

.

7
d <

3
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(d) T = al-3,1] + b[1,-3]
[011] = 8[-3,1} + b[lx‘33 "
Hence a and b satisfy
-3a + b=Q
a -3b=1,
We conclgde that a = -~ % and b = - %-.
6. 3T - 27 = a(3L + ¥3) + v(¥1 + 37
3t 4+ (-2)7 = (3al + 4al) + (4bl + 3b3)
31 + (-2)T = (3a + &hfi + (4% + 3b)F .

Hence a and b satisfy

3a + 4b = 3

- - 17 - 18
We conclude that = 7 and b 5

4., Inner Product.

The system of vectors before the inner product is introduced
1s not adequate to handle 81l of geometry. Only a few problems
relating to angles and distance can be covered. The introduction
of the inner product enriches vector algebra to the polnt that 1t
is capable of being a completely adequate substitute for
Fuclidean Geometry.

The student is not likely to see these implications of the
introduction of inner product. He should only be expected to
compute them and to use them in the simple applications indicated.
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Exercises 4, Answers.

1, Given 1 = [1,0] and '3- {o,11 .

(8) X -¥Y=(1,0] - [0,1]=1-040:1=0.
() [1,0] . (13,0} =1 .1%0.0m=1,
(¢} [0,1]-[1,0] =0 .

(4) 1.

(e) o.

(£) -7.

(8) -7 .

(n) ac + bd .
(1) 4a® + w?

(3) sa’ + sb2 .

2, X ¥ = [X|I¥] cos s
(a) 2. 3 cosgp -Q;themfoi'e. 8 = 90° ,
(b) 81.4° ,
(¢) 109.5° .
(a) 60° .
(e} 131.8° .
(r) 33.6° .
(g) o.
(h) 180° .
3. If ¥Y]X then X -¥=0.

(8) [331‘}'[3:“] = 0

‘ 3&+16-Q;a---13§.
() 3.

(¢) =3 .

(4} & ,

g, (a)‘\A2+02'\A2+12eos § =0
0

cos § =0 ; 8§ =90
(v) ©O.
(¢) 90° .
() o.
(e) 90° .
() 107.6° .
(g) 107.6° .
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(h) cos § = ac + bd .
A2 + 2)(c2 + a?)

(1) '\/32 + bE«Ag(aa + ba) cos § = 1&(a2 + b°)

cos 8§ =1
8. = o® .
(5) o°.
Note that (c?+d'3) . (-ﬁ-&-c?) = -cd +cd =0 .

Therefore since c? + 42 £ 0, el + dJ is perpendicular

to -d?. + c? . A non-zero vector is perpendicular to one
of these if and only if it is parallel to the other.

(a) Component of ¥ in the direction of X 1s |Y| cos e

I¥] -'\/32 + 42 =5, Tofind & we note two

expressions of X.-¥.

¥ = [X] - [¥] cos & and

(13) X - ¥ = X,¥; + X5V, where X = X1 + XpJ
¥

i
From (i) and (i1) we have Xq¥p + Xo¥p = lﬁHYl cos §

1+:340- 4 =/1%4+0%-4/3%2 + 42 cos o

3= 5¢co8 6§ —ecO8 § -%

Desired component = 5 - %- 3.

(v) Usins same plan as in Part (a) we obtain 4 = 5 cos@ .
.'. Component of ¥ 4n direction X = 4 ,

(¢) 3 -1+4% +0=5"°1cos8 . cosa-%.
I¥| cos @ -l-%-%.

(d) 3 -0+4 -1 =5 1cos8§ ., cos § ==
|¥| cos @ -%.

(e) 3 -3 +4% -4 m5-5¢c0o88 . cos § =1,

component = 5 - 1 = 5,

L
~7
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(£) 15+8=25.A/5cos§ . cos § = 23
54/29

|¥|cos 8 =35 . ____gg___%’s__ 4,6

54/25
(g) 3a + 4b=5, \/aE + b2 - cos g
35+‘+b_e°se

5/a2 + b2

|¥| cos g = §L“‘r‘*b = desired component.

(h) pa + qb '\/gg + qa- \/&2 + b° cos 8
Desired component -f\/aE + bé ceos § --+E§—i—32— .

VP + g

5. Applications of Vectors in Physics.

The main topic of this secfion is the use of vectors in
solving certain problems of physics. The student does not have
to know much in the way of physics to handle the material, but
there are & few bits of information which are taken for granted
in the problems (for instance, that the direction of a force
transmitted by a8 cord must be along the line of the cord).
Primarily the student should come to this work knowing about
addition of vectors, scalar multiplication, and inner products.
He should see how this knowledge can help him to learn substantial
amounts of physics easily. For instance, forces in equilibrium
can be discussed readily in vector language.

Two extreme points of view should be aveided.

/1) The student could get the impression that his knowledge
of vectors makes him an expert physicist. This is not so. He
needs to learmn a little physics as well as vector algebra fto
aolvg-theae problems,
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(2) The student could get the impression that in spite of
his knowledge of vectors he Jis unable to scolve the simple
problems given here without a lot of supplementary study cf
physics. This is not sc. He is given a few observations on
forces, resultant of forces, forces in equilibrium, work, velocity.
These should not be made to appear so formidable as to discourage
him.

Exercises Sa. Answers.

1. 542 1b.

2, R = (|R] cos 120° , |R| sin 120°)

(‘%lﬁ‘ JEL#) .

(18] cos 30° , |S] sin 30°)

CEEZ R N 2
w‘

= (0, -1000) . 1 1
+85+%=0. y iTi = 1000

(- 3 IRl + JEL:? , rﬁiéﬁ + % I3] - 1000) = (0,0) .

[R] = 5004/F ~ 866 .

IS] = 500 .

The force of wire AC on C is approximately 866 pounds;
the force of wire BC on C is 500 pounds; for equally

strong wires, CW is more likely to break since the
greatest force is on it and BC is least likely to break.

b

vak
]

7] 4

b «3)
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An alternate solution can be gained using "free" vectors,
right triangles, and the resultant of X and § as showmn
in the sketch. Using the parallelogram law for the addition
of the vectors, ?ﬁ must be the
hypotenuse of a 30° - 60° right
triangle and have a length of
1000 units. Hence, PN which
1ies opposite the 30° angle
has a length of 500 wunits.
Similarly in right triangle IMP ,
T¥ 1ies opposite the 60° angle;
it has a length of 5004/3 units.

Force in AC is 10000/4/3 X 5770 .
Force in BC is 5000/+/3 % 2885 .,
Force in CW is 5000 pounds.

OF = (|OP] cos 23° » |0l sin 23°)
oQ = (I®| cos 113° , || sin 113°) W = (0,-300)
OP + 0% + OW = 0 ; 1.e., (|OP| cos 23° + [0@] cos 113° ,
= o == o
|oP| sin 23% + |OQ| sin 113° - 300) = (0,0)
Solving |OP| ¥ 117 and [0Q] % 276 .
From the Law of Cosines,

e 2 2
cos 3 = Irhrrrres-
- o971 .

Angle B X 14° = angle ECD .

2 2 .2
Mso,cescne—é’%’-&’-;—--%z—c.ﬂso.md c ~ 112° .

Angle ACE < 180° - (14° + 112°) . 540

Forming & vector diagram in a
coordinate system with a vector
unit of 1 pound of force, we mmmde—-
see¢ that the components of the
vectors are:

20
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7.

R = (fﬁi cos 54° , fﬁt sin 54°)
S = (IS] cos 14° , [8] sin 14°)
T = (0,-20) .

N
A
~
A

wlie iy
Since R +§ + Tw= ° , adding the left member vectors gives
the equal vectors

(-0.588 [Rl + 0.970 [S| , 0.809 [R| + o.242 (8] - 20)
= (0,0) .
Equating corresponding components, we have
0.588 [R| + 0.970 {§| =0,
and 0.809 [R| + 0.242 [§] = 20 .
Solving these equations simultaneously, we have

/I = 525 151 .

0.809 (S84 18] + o.242 [§] = 20 .
(1.334% + 0.242) |8} = 20 .

3] = f9 % 12.7 .

IRl - §=#fg (12.7) % 21,0 .

The force on wire AC is approximately 21 pounds;
on wire BC , approximately 12.7 pounds. Wire AC
is the one which is most likely to break.

The force on wire BC at C. is 5004/3 ~ 866 pounds;
on AC at C , it is 1000 pounds; and on Cw at C,
it is 500 pounds,
R = ([R] cos 210° , [®| sin 210°) ) 3
1
- (-G-F L, -3 R . g
S - (18] cos 4s® r§[ sin 45°) — | .
- 1 '§ s l S - a
«(75 151 2 D R iT1= 2000
¥ = (0,-2000) .

(-0.588 |R| , 0.809 [BI) ;
( 0.970 [8] , o.242 [§]) ;

b1

H
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since R +'§ +¥=0 , addition gives two equal vectors; thus
c@-:ﬁu 15, - % W +v..;_rm - 2000) = (0,0) .

Equating corresponding components gives the following pair
of simultaneous equations:

= rﬁ‘ '1—@"01
R
- £ [RI +J;_13[ - 2000 = O .
In the first equation,
Rl &
[R] \/6 3] .

Using this value in the second equation, we obtain

e+ ) I8 = 2000 .
(,\/6'*\/5”‘

Hence, H _»\EE_SE_QEO_O)_ ~ 6750

7] LR ——1 X 5465 |
A8 -A/Z
The vectors are placed in a coordinate system using 1,000
pounds of force as a convenient vector unit. The vector
components are as follows:

lrt! cos 30° , |F ptl sin 30°)
IF e [A/3 7. ] -
Fopt "[ =2 ’ %" S
F; - []F;t cos 120° , lF | sin 120°) -
F
— ~ 90*
[—ir | :Fws]
= » T 5 30°
rs - (01-6) . :
ViR
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Since the airplane i1s moving in a straight line at constant
speed,

e emdie
ﬁept + FL + FS =0 .

Adding the vectors in the left member we obtain
el e ——r e
IFooe B [F) [Fope!  IFLIAT
ept L ept L
+-T+° 3 f + é - 6
Equating corresponding components and solving the equations
simultaneously, we obtain

= (0,0) .

3

‘ - .
'Fept‘ = 3,000 , and !FL! = 3,/3 X 5,196 ,

Hence, the effective propeller thrust is 3000 pounds
and the 1ift force is approximately 5196 pounds,

i
— .
X0 S
Fepf
'
-l i,
F, = (IF| cos 105° , |F]| sin 105°)
= (-0.26 Fy| , 0.97 [F{]) .
- (0'97 !Fept' s 0.26 ‘Fe;t” .
-t
Fg » (O-*l0,000) .
[p W
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Since ?; + F_e;t + 'i‘; = 0 , we have the twoe simultaneous
equations:
ol eusmmuli,

(2) 0.97 |F;| + 0.26 |Fope | = 10,000 .

Solving this system of equations, we get
IFpl ~ 3.7 [Fgp,l »
and ﬁ‘:p:l = 2,600 pounds.
| IF| = 9,500 pounds.
10. F = (|F}| cos 100° , IF,| sin 100°) ¥ (-0.17% |F[|, 0.985 IF.1)
T4l = (IFyl cos 10° , |Fgl sin 10°) ¥ (0.985 |Fyl , 0.174 |Fyl)
F = (0,-500) .
-0.174 |F[| + 0.985 [Fy| = 0 . T

0.985 [Fr| + 0.174 [Fy| - 500 = 0 .
7 - 382 1Ry . 50,
(0.985) ($:952 IF3| + 0.17% |Fj| = 500
Tyl = zm5225Tr * 87.3 . v’%“m

% xb-:%s,g (87.3) % 4gh .

k b

&2




(a)

(v)
(e)
(d)

(e)
(r)

(g)

2, / between P and F_ = ¢ since sides of /S ave

Exercises Sb. Answers.

Fo
1
.
?‘oﬁ
cwunmlin i
Febb - Fp cos §
ol
W=d - Fopp

F;b = 10 cos 10° ¥ 10 x .985 = 9.85 1b,

Work = d - F:;b ~ 10 x 9.85 = 98,5 1b.

N

W =100 * 10 * cos 20° X 1000 © .940 = Q4O ft. 1b,

W = 8660 £t. 1b,
W=ad . 10 cos 10°

1000 ¥d . 10 . ,985
d --’5%- 101.5 ft.
an 190? _ 100
1000
100 - cos 00 = 10 ft.

10.6 ftl

d =

d = 1000 - 1000 = 1000 X 571.4 ft,

100 cos 89° 100 - .0175 1.75

mutually perpendicular,




(a) [Fyl =Pl cos (- o)
Fal = IFl stne ¥ = -F,
WeF - T

W=dTP sing (Note that tials is equivalent to
left-P 4in a vertical direction
from R to S .)

W=10 - 10 - sin 10°

WS 100 ¢ .17h = 17.4 £t. 1b.

(¢) W =500 f£t. 1b. .

(@) 4= gglry

d = 575 ft,
(e) d = 292 rt,
(£) da = 571 £t.
(g) d4 =10 rt.

Exercises 5¢. Answers,
1. ~ 1.8 miles.

2. From Figure (a) we determine the 05
angle which the path of the boat
makes with the shore line (/ ¢ )
and the speed of the boat along L3
0Q . Iet lengthof OQ = d .

a2 = 1.3% 4 0.5°
a
d =4/1.5% = 1.39 = distance traveled, °
The boat covers the distance d in Q fon = %;’-
25 minutes, Hence if 8 4is the e a2®
speed of the boat along OQ
Figure (a)

s+ <%= 1.39

s = 3,34 ,




Figure (b) is our force diagram,
We have

OT + TR = OR
% =4 , [OK| = 3.3
and /TR = 21° ,

By the Cosine lLaw

IT®|% = 4% 4 (3.30)% -2 - 4
» 3.34% cos 21°
ITR] N 1.52 .

By the Sine Law applied to ARTO

3.3% 1.82 ~ 0
8in g  sin - &~351 Figure (b)

3. A/37 ~ 6.08 miles per hour.

k.

Since the velocity is constant, in one second the body will
reach the peint (2,1.5) . Thus, the velocity vector is

21 + 1.5 . The velocity of the body is 200 - feet per
second to the right, and 150 feet per second upward.

Its speed is 250 feet per second,

At t = 15 the body is at 'y
the point (130,131) . Thus, 004 /
it has moved 1300 miles to
the right, and 1310 miles 504
upward.
=2
0 50 100 150

Since ship B does not cross
the wake of ship A until

after ¢t = 2 , the ships will
not collide.

2%
v ahum’%h
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7. 8ince both ships are at the
point (14,-1) when t = 4 ,
the ships will collide.

PATH OF SHIP A

t=|

tz3
PATH OF SHIP B~y N o
ta] $32 13 t=

8. We compute the displacements that would result from one
hour of travel. Thus

Ry = -47,
§;--3(cose)3+3(sine)-3. é‘.
R
Consequently, “\\\\\
BL=R* R i

-(-3cose)'§+(3sine —“)T-

The scalar components of Ei are both negative. This
means that the boat will actually be carried downstream.
The situation is illustrated by the diagram below.

5

In order to drift downstream as little as possible 6 must
be determined sc that tan ¢ 15 minimum:

- -3 sin & + &4
cos b

tan «

28




This problem can be handled easily by using calculus.
However, by making use of a table or graph we can obtain an
approximate solution without using calculus. Thus, the
smallest value of tan o occurs for

sme'-%,
8 3 4g° ,

For this value of & ,

i

B = -3(.66)1 + (3 + § - 1)

- -1.98T - 1.757 .
The corresponding value of e 1s given by

3@ e
'3?5 3T

~ 410,

tan & = = 0.88 .

Traveling in this direction, the boat will land at C .

B e P

Bf-= v —~

A
&°

i

Thus 5 = % mile,
X =%tan o =% - (.88) = 0.44 miles.

Therefore, the boat must be carried at least O.4% miles
downstream. Another way of saying the same thing 1s that
C 1is the farthest point upstrecm at which the man can
land the boat.

The intuitive meaning of this problem is quite subtle.
Iet us consider the effect of different values of §
Evidently if & < 0 , then the man is using a component of
his rowing to help the current sweep him downstream. This
is the very opposite of what he wishes to do.

28

u
ta
'y

L I‘E“
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Hence, a wise choice of § requires 0 6 < % .

It might seem sensible to head straight for the
opposite shore; i.e., to choose & = 0 . Iet us examine
this possibility carefully.

M == -
]

A

If ¢ is chosen so that it is about 49° , then the
man will have sacrificed a component BA which would carry
him to the opposite shore, but he will have gained a much
larger component BC which is keeping him from being swept
downstream. For & X 49° he is crossing almost as fast
as he would be for @ = 0 , but he is not being swept
downstream so rapidly. It is a good bargain.

wWhat would happen if the man sacrificed even more of
the crossing component in order to gain a larger component
working against the current? Suppose he chooses g = 70° .
In doing sc he sacrifices a crossing component of BA 4n
order to gain the component BC which opposes the current.
The price is too great, however,

8
{

W —— =

A 10

Even though the man is not being swept downstream 8o
rapidly, he will actually be swept farther downstrean,

This is true because the crossing component 6§ is now
very small; consequently, it takes him a long time to cross,

During this time, he is swept, siowly but surely, a long way
down the stream.

30



Finding the optimum value of & 1is, therefore, a

matter of compromise; it is motivated by a desire to oppose

the current as much as possible, without slowing progress
toward the opposite shore more than a little.

Exercises 5d. Answers.

1. {a) rd
X
bt Y
T
X
31 + 87 + 5k
(v) 5
<
" + Y
-T
-’
{
X
35 + 3k

31

b

i

1

. oA
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Since the graphs for each of the remaining parts of this
problem are similar to (a) and (b), they have been omitted.

2. (a) 16 . (¢) o.
(b} 10 . (e) ©.
(e} ©.

3. (a) 16 (c) 0.

3./29 @ o.
(v) 10 . (e) 0.
A28 /12
L, 0.

5. We shall give two solutions to this problem.
First sclution: Iet us first find vectors having the
directions of the suspending cords. By corienting axes
appropriately we obtain the top view represented in the
fellowing diagram.

—30° CABLE (2)

CABLE (I}

| 250 “\ CABLE (3)

let R be a vector which is parallel to cable (1). Then
the vector -1 makes an angle of 30° with A s &an
angle of 60° with ¥ , and an angle of 90° with T .
let A = ax'f + a.y? + az"E . If we "dot" T intc both
sides of this equation, we get

iy I~ -l -l iy =l
J -A=J" (axi+ay1+azk)

- ax('f - 1)+ ay('f T+ az(f - k)
a,(0) +a (1) + a,(0)

= 8 _ .
y




Now, if we choose ﬁl =1 , we get

%-3.1.;3‘1 - |R] cos %0°
-OI

Proceeding s;milarly. we have

T-T-ax-cos 150° = - cos 30°

Hence,
-1

We now seek a vector B which is parallel to cable (2).
Let us first find a vector U of length one, which lies
in the xy-plane directly under cable (2); (i.e., U
points along the noon-day shadow of cable (2)).

T3l GT .
Now, B 1ies in the plane of k¥ and U . Hence, we can

use X and U as basis vectors. Thus,

Evidently,

To find b, and b, , we proceed as before. Let Bl = 1.
?-E-bl-coséoo-%.
'ﬁ-'ﬁ-b,‘,-coaso"-\%-.

'ﬁ-%ﬁﬁg—u‘

1 1
-ﬁ+4(§1+@_§)
-\Q—T+%3+%§.

Consequently,
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By symmetry, we can see that T » the unit vector parallel
to cable (3), must be

TET Pk
The forces are equal in each cable. Let one unit of length
of vector represent one pound of force, Then, since the

cables are flexible and can transmit only forces parallel
to themselves, we have

-l ul

F, = ch,
_F~2 = c-‘ »
FS = c .

We can now find the scalar c¢ . The total upward component

is _
l S
c&%ﬁ + ?E + %k) = %§ .
But the total upward component must balance the downward

force of gravity. Consequently,

$em1s5,

c = 10 .
Thus, 'f?-, = 1074 .
Since |A] = 1 , it follows that [i&[ = 10. Therefore,

there is a tension of 10 pounds in each cable,

Second Solution: Begin exactly as you did in the first
solution, but notice that once we have

A= -\Z%:I +-%E ,

P alite
T - bl + b +

we know that

yJ
XNe do not need to find x and y components. It suffices
to work only with vertical components.

3
. +

o)

+

& T

1
-Cx + C

i
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As before,

E )

m CA ,

cE ,
- cC

o?’:&“’»7“
'

L1

and we get
3 = 15,
¢ =10 ,
¥, | = 10 .
Hence, we again find that each cord exerts a force of 10
pounds on the lighting fixture.

6. Let us choose axes so that the xy-plane is horizontal, with
3' pointing north and 1 pointing east. The three vectors
we need to consider are as follows:

i% (representing the velocity of the airplane
with respect to the ground);

E; (representing the velocity of the airplane
with respect to the air); and

o

(representing the velocity of the wind with
respect to the ground).

We know from physics that
AG - Aw + WG .

Now, E; = 100[ (cos 30°)T + (cos 60°)k]
= 50./3 7 + 50k ;

also, HG = 301 .

Consequently,

Rg = 301 + 504/F T + 50k .

The upward component SGE does not appear in the ground
speed. In fact, the ground speed 1is

IR - 50k| =/fB0% + (504/3)2
Nz

g2 miles per hour.

- ERIC 37
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7. BEvidently, the pilot will achieve the fastest ground speed
if his heading is with the wind. Using the notation
employed in Problem 6, we have

7\;-50«/3-2*'50.1?1
Rg = (30 + 50/3)1 + 50K ,
- 50k] =a/(30 + 504/7)2

117 m.p.h.

Similarly, the smallest ground speed will be achieved if
the pilot heads into the wind; in this case the ground
speed will be

B - 50K| =a/(50/F - 30)2
57 m.p.h.
8. The proof is analogous to the one for two dimensions.
9. 71 - 37 + 5k .

10. A ——— -

11. 1

6. Vectors as a Formal Mathematical System.

The main topic of this section 1s the solution of a problem.
To teach this section successfully the teacher must do more than
sclve the problem. He must help the student understand what the
problem is and also help him understand that which is offered as
a& solution of the problem really solves the problem,

First, let us consider what the problem is. We learned that
vectors obey certain rules. We ask whether vectors are the only
objects which obey these rules. The answer is certainly "no,"
since forces and velocities also obey them. The question which
we propose is whether any system of objects which obeys these
rules can be correctly treated as a system of vectors--whether it

36
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is “essentially the same™ as our system of vectors, We answer
this question by proving that any system which obeys Rules 1 - 11
is isomorphic to our asystem of vectors.

Exercises 6. Answers.
1. Yes.

2. The system obeys the rules 1, 2, 3, 4, 5, 6, 8, 9, 11, but
not 7 and not 10 .

The left member of Rule 7 becomes

r® (s O (a,0)) =r @ (32,5

»(58) (%)
(~—— » —5%")

rsa rsb
= =

and the right member of Rule 7 becomes

(rs) © (a,b) = (T , 5F0) .

These are not equal.

The left member of Rule 10 becomes
l@(a:b)-'(%a%)-

The right member of Rule 10 becomes (a,b) . These are
not equal.
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This system obeys rules 1, 2, 5, 6, 7, 9, 10, 11, but not
3, nt 4, and not 8 .

The left meﬁber of Rule 3 becomes

(2,0) @ ((e,d) @ (e,0)) = (a,0) @ (=42, &4

28 + ¢ + @ 2b + d + ¢
- ( 1y ’ Py )

The right member of Rule 3 becomes

((a,0) @ (c,a) + (e,f) = (252, 2Edy @ (e,r)

(a + ¢" 4+ 2o b+d + 2r)
- 2 s 2 .

These are not equal.

The left member of Rule 4 becomes

(a,0) @ (x,y) = (BFE, 2L, .

The right member of Rule 4 is (a,b)
These two are equal if and only if X = a and y=D5,
Therefore there is no single (x,y) such that for all (a,b) ,
(a,b) ® (x,¥) = (a,b) .
The left member of Rule 8 becomes
(r +8) ® (a,p) = ({(r + s)a, (r+ s)b)
The right member of Rule 8 becomes
(r© (a,0)) @ (s ® (a,b)) = (ra,rb) @ (sa,sb)

ra + sa > + 8b
= ( I} o) )

These are not equal,



