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PREFACE

Mathemutics is such a vast and rapidly expanding field of study that
there acre inevitably many important and fascinating aspects of the subject
which, though within the grasp of secondary school students, do not find a
place in the curriculum simply becsause of s lack of time.

Meny classes and individual students, however, may find time to pursue
mathematical topics of special interest to them. This series bf ramphlets,
vhose production is sponsored by the School Mathematics Study Group, is
designed to make materisl for such study readily accessible in classroom
quantity.

Some of the pamphlets deal with materisl found in the regular curric-
ulum but in 8 more extensive or intensive manner or from a novel point cf
view. Others deal with topics not usuglly found at all in the standard
curriculum. It is hoped that these pamphlets will find use in classrooms
'in at least two ways. Some of the pamphlets produced could be used to
extend the work done by a class with a regular textbook but others could
be used profitably when teachers want to experiment with a treatment of s
topic different from the treatment in the regular text of the c¢lass. In
all cases, the pamphlets are designed to promote the enjoyment of studying
mathematics.

Prepared under the supervision of the Psnel on Supplementary Publications
of the School Mathematics Study Group:

Professor R. D. Anderson, Iouisiana State University

Mr. M. Philbrick Bridgess, Roxbury Latin School, Westwood, Masssachusetts
Professor Jean M, Callovay, Kalamazoo College, Kalamazoo, Michigan

Nr. Rorald J. Clark, St. Paul's School, Concord, New Hampshire

Professor Roy Dubisch, University of wWashington, Seattle, Washington

Mr. Thomas J, Hill, Oklshoms City Public Schools, Oklahoms City, Okla.
Mr., Karl S. Kalman, Lincoln High School, Philadelphia, Pennsylvania
Professor Augusta L. Schurrer, Iowa State Teachers College, Cedar Falls
Mr. Henry W. Syer, Kent School, Kent, Connecticut
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COMMENTARY FOR TEACHERS
THE COMPLEX NUMBER SYSTEM

Introduction.

The ¢ aplex number system is one of the supreme achievements
of the hun n intellect. Compelling reasons for extending the real
number system are easy to find, In the context of the real number
system the theory of quadratic equations is most unsatisfactory,
for some quadratic equations with real coefficients have real
solutions, while others have no real solutions. The desire to
remedy this situation is surely reasonable and modest. what 1is
remarkable 1s the fact that this modest aim, once attained, yields
8 system so rich that no further extensions are necessary to cap-
ture the roots of any algebraic equation of whatever degree., How-
ever, the sclution of algebraic equations 1is only one of the
achievements of the complex number system. It 1s surely lamentable
that we are unable, at this level of the students' development, to
indicate the profusion of important and beautiful results to be
found in the theory of functions of a complex variable. We can
only state--with all the enthusiasm we can muster--that this field
of mathematlcs (and others closely related to it) is probably the
most intensively cultivated at the present time, and that its
applications in the sciences and engineering seem tO grow daily.

The extension of the real number system to the complex number
system can be regarded as the solution of a problem--the problem
of constructing a number system with certain propertles. The
sclution of any problem generally proceeds in three stages (the
solution of an equation is typical): 1. statement of the prob-
lem; 2. identification of a possible solution, assuming that a
solution exists; 3. verification that the possible solution
actually 1s a solution, Accordingly, in Section 1 we state the
properties that the system isg required to have; in Sections 2, 3,
% we identify the system by finding its elements and the rules for
operating with them, assuming that such a system exists; and in
Section 11 we verify that the system constructed with these ele-
ments and rules of operation has the required properties,

In t..c complex number system, classical algebra--the theory
of equations--finds 1ts proper setting. The role of the complex




number system in the theory of equations is discussed in Sectlons
5 and 8.

The connection between the complex number system and geometry
.8 of great importance for geometry and analysis as well as for
algebra. This connection is Introduced in Sections 6 and 7 and
further explored in Chapter 12 of SMSG Intermediate Mathematics.

1. Comments on the Introduction to Complex Numbers.

In Section 1 we review the inadequacy of the real number
system with respect to the solution of quadratic equations and
announce our ‘ntention to attempt a remedy by extending the real
number system. We state that we will find a system 1n which
every quadratic equation with real coefficients has a solution 1f
we seek one in which the equation x2 + 1 =0 has a solution.
This is so, of course, because every quadratic equation

ax2 + bx + ¢ =0

with negative discriminant can be transformed into the equivalent

equation

b 2

X+Fa-
%ac - bE
432

This 1s not discussed in the text until Section 5, but a brief
informal class discussion might be appropriate at this time.

The properties C-1, C-2, and C-3 which we require our new
number system to posses are Just explicit statements of the simple
and natural requirements that the system have all the algebralc
nvoperties of the real number system, inelude the real number
system, a-? zontain a solution of the equation x2 +1=0. In
Section 2 we impose a fourth requirement--also simple, but not
so natural.

It should be observed that in extensions of the number system
the extended system was required to have many of the order prop-
erties of the original system, but this is not done here. It is
not done because 1t cannot be done. If the complex number system
had the order properties of the real number system, the theorem
that the square of every number 1s non-negativ: would have to hold,

but this contradicts 12 = =1,

1l
¥
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Problems 1 and 4 of Exercises 2 can be assigned after
Section 1, if desired: Problem 1 reviews the reasons for pre-
vious extensions of the number system; Problem 4 is intended to
stimulate discussion of the fact, mentioned above, that the order
properties of a number system may not be presérved when the system
is extended,

2. Complex Numbers.

In the preceding section we stated a problem which we tacitly
assumed had & unique solution. It does not--as we will see later.
An additional condition is needed to make the problem definite,
that 1s, to insure that it has a unique solution.

To expose this difficulty let us consider it in a more fam-
iliar setting. Suppose that our number System is the system of
rational numbers and that we wish to extend it to a system in
which the equation x2 = 2 has a solution. Explicitly, we seek
& system which has Properties C-1 and Properties C-2 with the word
“real” replaced by "rational" wherever it occurs; and which has
the third property--corresponding to C-3--that it contains a
number ,/Z, such that Q/§)2 = 2. Let us call these Properties
S-1, §-2, and S-3, respectively,

We know that the system of real numbers has these properties,
but looking ahead, 30 does the system of complex numbers., Our
prcblem does not have a unique solution; 1t has at least two solu-
tions, and possibly more.

It would seem foolish to extend the system of rational numbers
to the system of complex numbers Jjust to achieve Properties S-1,
S-2 and 5-3; the system of complex numbers is too large--1t con-
tains a number system {the real numbers ) which already has all the
properties we require. Pursuing this objection, the system of
.real numbers might be larger than we require. It seems natural to
add to our conditions the requirement S-4 that the system be as
small as possible. With this condition added, our problem has a
unique solution S: The elements of S are those real numbers
which can be written in the form a + 4/2, where a and b are
rational numbers; and the operations in S are addition and mul-
tiplication of real numbers.




It is obvious that S has Properties S-2 and 5-3. That it
nhas all the Properties S-1 except (i), (iv) and (vii) follows
immediately from the fact that the system of real numbers has
these properties, and from S-2.. It can be verified by calcula-
ticnifhat the sum, product, opposite and reciprocal of real num-
bers which can be expressed in the form a + %/2, a and b
rational, can also be expressed in the form, so that S has
properties S-1(1), (iv) and (vit). Thus, S is a solution of our
problem. Notice that in this argument the only statements whose
proofs were not immediate are those asserting that the sum, product,
additive inverse and multiplicative inverse of numbers in S are
in S.

Tt is easy to see that S 1s the smallest system which solves
our problem, Consider any otiaer set of real numbers which, with
addition and multiplication of real numbers as operations, forms
a system S' which is a solution of the problem, Then S' con-
tains all rational numbers and /2, and is clcsed with respect to
adiition and multiplication. Hence, it must contain all real num-
bers which can be expressed in the form a + R/Z, a and b
rational--that 1is, it must contain S. '

We summarize the salient features of this discussion: The
properties we have required do not determine a unique number
system; The natural adcditional condition to impose to determine
a8 unique system 1s that the system be the smallest possible one
having the given properties; This additional condition is log-
ically equivalent to the condition that every number in the system
be expressible in a certain form; The essential part of the proeof
of the equivalence of the two conditions is the proof that the sum,
product, additive and multiplicative inverses of numbers which can
be expressed in the stated form can also be expressed in that form,

. The problem of extending the system of real numbers to the
system of complex numbers is entirely analogous to the problem we
have Just discussed. Each of the summary statements we have Just
made holds also for the extension from the real numbers to the
complex numbers., .

We could have presented a discussion analogous to that given
nere in the text. Such a discussion, however, would have been an
extensive and sophisticated preliminary to a program whose first
objective is the introduction of complex numbers and the rules for
calculating with them., Instead we have adopted a middle course.

4




In Section 2 we add Property C-4 to our requirements instead
of the more natural condition that the System be the smallest
possible system having Properties C-1, C-2, and C-3. The connec-
tion between these two conditions is suggested through brief dis-
cussion. However, in the discussion of addition, multiplication,
additive inverse and nultiplicative inverse in Section 3, 4 and
5 we make no essential use of Propeity C-4; we use it only &s a
gulde. Thus, at the end of Section 5 one can lock back and see
that Property C-4 is not necessary, but that to £ind a system
having Properties C~1, C-2, and C-3 it is sufficient to consider
the system with Property C-4, Better students should be encouraged
to do this, snd all students should be aware of the need to check
at each stage the compatibility of Property C-4 vith the other
properties of theé system.

We still have to present an example of & system larger than
the system'of complex numbers which has Properties c-1, C-2, and
C-3. The simplest example is the following. Let H contain the
complex numbers, an element J which is not a complex number, and

all expressions of the form
n n-1l

aoj + alj
b J™ + b ot

toaee t8, S0+ a,

1 LIETTI L Y

where n and m are non-negative integers, a 0! &1s e a, and
5., bl cees b are any complex numbers, and a ¥ 0, b f 0.
Thus, H 1is the set of all quotients of polynomials in J with
complex coefficients. Addition and multiplication are defined
according to the usual rules for cperating with polynomials. Then
H has .° the desired properties,

Problem 2 of Exercises 2 is intended to point out that in
previous extensions of the number system the system sought was
the smallest one having the desired properties. Problem *5 pro-
vides an opportunity for the student to carry through for himself
the discussion presented above.

1
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Exercises 2. Answers,

1,

5.

(a)

()

(c)

(o}
St

L N L. . e andt®  Nrt® S

The system of integers has an additive identity element,
and each integer has an additive inverse.

In the rational number system each element except zero
has a multiplicative inverse.

In the real number system every non-negative number has
two real even roots, and every negative number has one
real odd root.

The complex number system contains an element 1 which
' 2

has the property i = -1,
System of integers,
Raticnal number system.
Rational number system.

1+ 01 {e) 3+ 0t

0O+ 0t (f) 0+ 21

-1 + 0% (r} -1+ 01
0+ (1)1

The natural number system has the Well Order property.
Every subset has a least element.

The real number system has in order relation. No order
relation has been defined for the complex number system.

If /3 were in S we could write

W IEPRY:

where & and b are rational. If we square both sides
of this equation we get

3 - a° + 2ay/% + ob°

or
2

2
3%3‘5 2b =‘/§‘
Since a and b are rational, the left side of the
last equation is rational, and the equation says that
V2 4is rational., Since we know this is false, the
assumption that /3 belongs to S must be false,

6 11
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(b) (a8 + &/Z) + (¢ + 4/2) = (a + ¢} + (b + d)/5, and if
& b, c, d are rational, soare a + ¢ and b + d,
Since the rational numbers are closed with respect to
addition.

(a + /2) (e + /) = (ac + 2bd) + (be + ad)\/2, and if

&, b, ¢, d are rational, so are ac + 2bd and be + ad,
Since the rational numbers are closed with respect to
addition and multiplication.

(¢) The additive inverse of a + /2 in the real number
' system 1s -{a + {/Z). But

-(a + /%) = (-a) + (-b)}/Z
and .’ a and b are rational, so are -a and -b,

The additive identity in S is 0= 0+ /3, 1If
a + B/2Z 1is not zero, it has a multiplicative inverse

5-13575 in the real number system, But

a +lh/§ i (ag f.EhQ) * (ag :b252)4/§

and if a and b are rational, so are —§—£L—~§ and
a - 2b

‘g‘:E“—g » Since the ratlonal number system is closed

a - 2b
with respect to addition, multiplication, subtraction

and division.

(d) Property (1) of C-1 was established in part {b) of this
problen.

Property (11) is established by observing that addition
in S 1is addition of real numbers and addition of real
numbers 1s associative and commutative. To be more
explicit, addition is commutative since x + Yy =V + X
if x and y are any real numbers, and hence, in
particular, if x =a + R/f, y =c + 4/7.

Property (11i) 1s established by observing that -
0=0+Q/7 1sin S, and x + O = x for any real

number. Thus, ln particular, if x = a + /3,

X+ 0 =x, and 0O 1is an additive identity in s.

0 1is the only additive identity in S since any other
additive identity c¢ 1in S wouldbe & real number which

7
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satisfied x + ¢ =x forall x in S. But, taking
x = 0, this becomes O+ c =0 or ¢ =0. Property
(vii) is established in a similar way.

Since O 4is the additive identity in S, an additive
inverse of & number & + /2 in S 1is a solution X

in S of the equation x + (a + k/2) = 0, There is one
and only one real number -{a + &/Z) which satisfles
this equation. We showed in part (c¢) that -(a + 3/2)
is in S, and since this is the only real number which
satisfies the equation, it is the only number in S
which satisfies the equation. This established property
(iv). Property (vii) is established in a similar way.

(e) S has the stated properties. Let S' be another part
of the real number system with the stated properties,
and let @ and b bDe any rational numbers. Then a,
b and /2 are in S', Since S' 1is closed with
respect to addition, it contains a + b/Z. Thus, every
number in S 4s in S', and S' contains the system S,

3. Addition, Multiplication and Subtraction.

In this section we begin the discussion of operations with
complex numbers. It should be emphasized that our objective is
to perform operations with complex numbers in terms of operations
with real numbers. The discussion of addition and multiplication
1s straightforward, but that of subtraction deserves some comment .

Subtraction is, as usual, defined as the inverse of addition.
we show that the equation

Z +Z=Ze

1
has at least one solution 2z = 25 + (-z). Notice, however, that
in order to define Z, - 2; as the solution of this equation,
and to assert

2, - %y = Zy + (-zl),

it is essential to show that the equation has at most cne solu-
tion--a unique solution. The teacher may find it desirable to
present the proof of uniqueness to the class.

8
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The additive inverse -z of 2z 1is defined by the equation

According to Property C-4, -(a + bi) = x + y1 where x and v
are real. Substituting in the equation defining -~(a + bi) we
obtain two real equations in x and ¥y which have the solution
X=-a and y = -b., We therefore conclude that

-(a + bi) = -a + (-b)1.

Notice, however, that here we have been using Property C-4 only as
& gulde. To prove the last equation it is only necessary to
verify that

la + b1l + [(-a)+(-b)1] =0

and this is done without using C-4,
Exercises 3 provide practice in addition, multiplication and
subtraction of complex numbers.

Exercises 3. Answers,

1. (a) 4+ 91 (£) -1+ 71
(b) % + o1 (g) 8+ (1)1
(¢) 3+ 71 (h) 0+ 71
(d) (% +7) + = (1) 15 + (1)1
(e} /2 +1)+ 51 (3) (3+/2)+ (9 +4/3)1.
2. (a) 51 Yes, any real number might have been added to
(b) yi the answer given here,
(e) 31
(d) 51
3. (a) -13 + 261 (1) -18 + o1
(b) 24 + (-10)t (5) 14 + (-84)1
(¢) 5+ 51 (k) 70 + 401
(d) -5+ 31 (1) ~106 - 831
(e) 2+ 2/31 (m) o2 - 181
(£) (8 -4B)+(8/3+/2)1 (n) (cx - dy)e(ey + dx)i, if
(g) -7 + 241 c,gd, Xs Y are regl nunbers.
(n) 2 + ot (0) (x* - xy)e(xy - ¥y°), 1r x,

¥ are real numbers.

i




(a) -3+ 01 (d) -2 + (-3)1
(b) O+ (-1)1 (e) -5+ #1
(e) -1+ (-1)t (£) %+ 31

(g) -a + bi, if a,b are real numbers.
(h) -x + (-y)i, if X, y are real numders.

(a) 5+ 81 (f) 1+ 1

(b) -2+ 21 (g) w+ (~7)1
(¢} ©+ 10% (h) 0+ 61
(d) -1+ 01 (1) 1+ (-3

(e) /3 -2)+(1-4201

(a) 13 =124 = (1)1 =0+ (-1)1

() i“ =1%.4% = (-1)(-1) =1+ 01

(o) 19 = (1) (-1t -0+ (101

(@ 135 - = ()T =04+ (1)t

(e} 1%%1 - (12) 1 - ((-1)21" = 0+ (1)1

(£) 179 = (18)39.1 = (-1)3%1 =0+ (-1

General rule: The values of the powers of 1 recur in
cycles of 4.

To explain the general rule first note that
i” =1,
1= = -1,
13 = 1%.1 = (-1)1 = -1,
i

Y8 - (-1)? - 1.

nn

Making use of the first four powers we have

12 - 14-1 = (1)1 = 14,

16 = 1“-12 = (1)(-1) = -1,
o2 1% L (1) (-1) = -1,
18 = 4-1“ = (1)(1) = 1.

In general, if n and m are natural numbers such that
n = 4m, we have

P i&m _ (14)m

7
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Thus, 171 o g¥L L (1) .oy,

i&m+2 = i#m_ie _ (1)(_1)

14m+3 i#m.iS _ (l)(-i)

14m+2+ _ i‘#m_ili- (l)(l) -

i
!
Y

-

i
K

i

These possibilities are all there are, for 4f n 1is a
natural number and we divide it by 4, the only non-negative
remainders less than 4 which we can get are 0, 1, 2, 3.

8. (a) 1+ {-1)¢ (r) 11 + 201

(b) 0+ (-1)1 (g) 2abe + [-a° - b3 - o3

(¢) 0+ 1071 - (b + c)(c +a)(a + D)L

(@) -7 + 841 (h) -1 + 01

(e) -1+ (-1)1 (1) -10 + o1

S. -é-ifﬁﬁi- - 3(§_§#Z_) + 2

_2+ 871 9+ 3T1 ,
= B T
_ 2+ 6/71 -818 - 6,/"?1_+ o

24+2=0

1

4., Standard Form of Complex Numbers.

Section 4 1is devoted to proving Theorem 4 and to defining
some important terms. Theorem 4 asserts that each complex number
z may be written in the form a + bi (a2 and b real) in only
one way. (C-4 asserts that =z may be written in this form in at
least one way.) This theorem justifies the definite article in
the expression "the standard form" used to describe this way of
writing complex numbers. (One advantage of Theorem 4 is that it
shows us we can have only one answer for exercises 1llke those in
Section 3 where the student 1s asked to express certain complex
numbers In what we now call "standard form"”.) The double-barrelled
way in which Theorem 4 is stated gives the teacher an oppertunity
to refresh the students' minds on the distinction between "if"
and "only 1f", a distinction which -cannot be over-emphasized,

However, the statement containing "only 1f" is the only part that
requires a proof.
11
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Any tendency to regard Theorem 4 gs obvious can be overcome
by emphasizing that the requirement in the hypothesis that a, b,
¢, d be real is essential; without this requirement the conclusion
is false. Example 48 demonstrates this.

It is worth observing that the proof of Theorem 4 can be based
on the following special case of the theorem: If a and b are
real, then & + bl = O(= 0 + 01) 1f and only if & = O and
b = 0. Let us suppose this has been proved and show how the gen-
eral case follows from it. Iet &, b, ¢, d be real. Then

a+ bl =¢c+ dil
if and only if
(a - ¢) + (b -d)t =0.

The equation in the last line helds if and only 1f a - ¢ = 0 and
b -d = O, This proves Theorem &,

A word (or two) about the terms defined in Section 4 may be
in order. "Standard form" should cause no trouble; though one must
emphasize that the a and b appearing in the standard form are
real numbers. (Throughout the rest of the chapter we sometimes
say "a + bi, 1in standard form" and sometimes "a + bi, where a
and b are real numbers"; these expressions have identical mean-
ings.) "Real part" is straightforward and should cause no trouble.
Mathematiclans have used the expression "imaginary part" as defined
in the text for many years: The imaginary part of a complex number
is a real number. This terminology may be unfortunate, but it is
standard. Writers of many elementary books have departed from the
mathematicians' usage, saying that bl 1s the "imaginary part"
of a + bi., Students reading other books will notice that tThey
are not all in agreement. (This experience is a& valuable part of
anyone's education.) A student who goes on in mathematics has to
learn sooner or later that in advanced work b 1s called the
imaginary part of a + bl. Since it seems a shame to teach him
something he must later unlearn, we stick to the mathematicians'
standard erminology: The imaginary part of a complex number is
a real number.

Observe that O 1s both real and pure imaginary, but that
1t is not imaginary. This may be momentarily disconcerting; but
1t should be so only momentarily. One has only to remember that
everyday connotations and relations of words and phrases are irrel-
event to their technical use: A technical term means only what its
definition says 1t means.

12 : ?



., Problems 1-5 of Txercises 4 are practice problems. Problem 6
refers to the special case ¢ = d = 0 of Theorem 4 discussed
above, and emphasizes again the necessity of the conditicn that
& and b be real, Problem 7 generalizes Theorem 4: Theorem 4
is the special case obtained by setting 2, = 1, Z5 = i.

Exercises 4, Answers.

1. Real part Imaginary part
(a) 0 2
(v) 0 0
(e) 0 1
(a) 5 -1
(e) 2x 3
() a -2
(g) 1 -3/2
(h) -2 -2/3
(1) -3 1
(3) 2 0
(k) 0 3
(1) 1 2
2. (a) -3
(p) 0
(c) -5
(a) -5.
There 1s only one way in each case.
3. (a) x =13, y=-6 (f) x=4, y=2
() x=13, y=0 (g) x=2, y=6
(¢) x=0, y=-4% (h) x=0, y=0
(d) x = %u vy = =3 (1) x=+1, y=0
(e) x = --g, y=2 (J) x=0, y=-1.
4, (a) 8+ 31 (d4) 4 + 81
() -2+ 01 (e) 11 + (-16)1
(¢} 6 + 121 (£) 10 + (-11)1
(g) 18 + 141

24 e® + o1

(n) (a2 + 2ab + b + ¢

(1) (=% - 3xy®) + (3x%y - y3)1.

13

i



5.

- —

Let z° = (x + yi)2 = 8 + 61.
Then (x2 - ye) + o2xyi = 8 + 61,
Since x and y are real, we must have
(1) x2 - y° = 8,
{11) 2xy = 6.

Squaring both members of the last two equatlons, we cbtain

4 22 4 _ e,

(111) x - 2x“y“ + ¥y

(1v) 4x%y2 = 36,
Adding the last two equations, we get

(v) (x2 + ¥3)° = 100.

Since x2 + y2 must be positive, it follows that

{(vi) x° + y2 = +10.

Adding (1) and (vi), we get

2x° = 18, oy? = 2.
Hence,
X = +3, y = il.
From (11) x and y have the same sign so {; - g and {; - :f.

Note: In & sense the problem appears to be that of finding
the square root of the complex number 8 + 61; however, we
have not defined the symbol ‘/_ for complex numbers.

Iet a =x+yi and b =u+ vi where x, ¥y, u, v are

all real,

(a) If a =0 and b =0, then a + bl and a - bl are
beth. zero.

(b) Suppose a + bi = 0, then

I
o

x+yl+ (u+ vi)t
or

]
(o]
L}

(x - v) + (y +u)t
By Theorem 4, we have

X -V = O and y +u =20
or,
(1) x=v -and y = -u

1%



l.e., 1f a=v -ul and b =u + vi, 8 + bl = 0 with
neither &8 nor b =zero.

Since a - bi =0 also, we have x + v + (y - u)l =0, or
() x=-v and y = u,

u =0 and

A

Both (1) and (2) can be satisfied only if x
¥y=v=0, Inthis case a =0 and b = O,

T et z =x 4+ y1 and Z; =Xy + iyl, ¥y # 0.

2 =8 + bzl
if and only 1irf
X = 8 + bxl, y = hyl

that 1s, if and only ir

yX
b = —L, 8 = X = _l -

5. - Division.

The discussion of division in this section parallels that of
subtraction in Section 3. The comments made about subtraction
hold also, with obvious modifications, for division. Once again
it should be emphasized that our objective 1s to express calcula-
tions with complex numbers in terms of calculations with real
numbers.

The central problem of this section is tc express the mul-
tiplicative inverse % if z =a + bl in terms of a and b,
Since %- i1s defined by the equation

-l-lz l‘

z
=X+ yi, x and y real,
equation

and since, by the Property C-4,
the problem reduces to solving th

0 8-

(x + y1)(a + b1) = 1

for real values of x and y. This equation can be transformed
into the equation |
(ax - by) + (bx + ay)i = 1.

Now, if x &and y are real, then the expressions in parentheses
are real; here we are using Property C-2., Hence, by the theorem

15
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on standard form, the equation above is satisfied if and only if

ax - by 1,

and

bx + ay 0.

Il

The problem has thus been reduced to that of solving a pair of
linear equations with real coefficients for the real unknowns X
and y. The solution of this system proceeds in the familiar way,

and we conclude

1 a -b

= +
a + bl 32 + b2 ;2 + bE

i.

To find this result we used Property C-4. However, to
establish the result we have only to verify that

a -b
+ (a + i) = 1,
(;2+b2 a2+b2%

and this verification makes no use of Property C-4.

Now looking back over the discussion in Sections 3, i and‘5
we see that, as promised in Section 2, we have proved that the
sum, product, and additive and multiplicative inverses of numbers
given in the form a + bl can again be expressed in this form.
Thus, if we had required that the system we sought be the smallest
possible system having Properties C-1, c-2, and C-3, we could have
established Property C-4 as a theorem.

Of egqual importance is the fact that we have achieved our
objective of expressing all operations with complex numbers in
terms of operations with real numbers.

Exercises 5 either provide practice in operations with com-
plex fractions, or require the proof of statements made In the
text without proof.

Exercises 5. Answers.

1. (a) 1+o0t o (e) w4 -3
(b) =+ 01 (r) &+ (gt
(c) O+ (-1)1 (g) None
(6) o+ (1)1 (h) a5+ 25t -

2. Zero does not have a multiplicative inverse,

>



3.

5.

l‘ "l

i, -1
(a) §+ (-1 | () 8+ §n
(b) 0+ (-2 (&) -+ 281
(e) -5+ (& o) B+ 38
(@) g+ (-3 (1) -5+ (3201
(e) %+%1 (1) --]3:4-5@1
(k) AR B2 2y
1y &5 - b2 2ab
(‘L) 822+ be ; 82 + be :
ea” - 2b oab
(m) 4a2 + b2 * 4a€ + b *
(n) m° - n? + o2l g
m +n m 4+ n
3x° - 2y°
) T E

let Z4 and z, be two sclutions of the equation 2.2 =2
so that

2.’
Zy24 = 22, and Z,2) = Zye
ﬁrltiply both members of each of the last two equations by

== ., Then
A
S SRS VNS S
Z, @ Z,V%1%3/ T \gT% /%3 = 4023 = 245
1 1 1
1 1 1
zZ;2 " EI(zlzu) = (E;zl)zu = 12y =z,
Therefore, Z; = 2.
17
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Alternate solution for 6:

Suppose u and 2z are so

LT e

lutions of the egquation. Then

zlu = 22

le

and 21(“ - z)

By (5f) this can happen only

2z
:O.

1f one of the factors 1s zero.

21#01 l'lu ‘2~O or u=2a2.
Let z =a + bi. (Note that a2 + b> #0.)
1 a b
Then = = - i.
2 g% 4 p° @ 4 b°
Thus, the real part of L. a =%
’ z 2 _ .2~ 2°*
a + Db
2&=ae+b2.
(a) If b =0, then a =2 (since a and b cannot both
be zero); and z = a + bi = 2 + 01,
(b) If b =%, then 2a = a®+ 1,
and
a =1 +‘%§ ,

oer
a l-@o

il

So there are two poss

ible numbers z:

z, = (l+\§)+%—i; za=(l -@)4—%1.

2

(¢) If b=1, then 28 =a” + 1,
ae - 28 + 1 =0,
a =1,
Hence, z2=1+1.

The "1f" part of the proof follows immediately from the fact

that 0-z = O,
suppose that

number éL .
1

2125

To prove the "only if" part of the statement
= 0. If 2z, £ 0, then C
Multiplying by :‘,

1l

contains 8

1
IOOZ—DBO'

1

we get Zg

18 f)r“\



10.

i1,

*12.

Thus, irf z,2, = ¢, and 2y ¥ 0, we have z, = 0.
p

Similarly, if 2,2, = 0 and Z, # 0, then we have 2z, = 0.
Therefore, 2122 = G implies that either z, = ¢ or
z, = 0, or possibly both (since 0.0 = 0),
z

. - 2
Let W, be the unique solution of zaw = 21’ then wo ZE
and 2z, w_ = z.. Similarly, let w, be the unique solution

270 1 z : 1
H =—3 -

of ZW = 245 then wy z, and Z) Wy Z3. Also, le; zwg
be the unique solution of (zazq)w = 2,255 then w, = 13

2 2234.
We must show that WoWp o= W, From ZoW, = zy and ‘
ZyW; = 2, we get (zewo)(zuwl) = 2,25 or (2224)("0“1)“z123'
Thus, w,w, satisfies (zezu)w = 2723. But w, 1is the only

Solution of this equation. Hence, WoW, = Wo.

z z
1 3
Let L and Wy == and let Wo be the unique
solution of (2224)“ = 22y + 22z, To show W, + w; = Wi
From z,w, =z, and 2,2) = 25 we get zu(zgzo) = 2,2,

and ze(z“wl) = Zy2,; S0, adding, zeza(wo4-wl)==zlzu+zez3.
Thus, W, + Wy satlisfies the equation whose only root is w3.
Hence, Wyt oWy = Wae

(a) 2+ o1 (c) &+ o1
(b) -5+ 581 (@) -%+ o1
4 4
(e) 22 Zaéeigzi)g 22 4 o1

Whether or not a and b are real numbers, provided that

2 2 a - bi
a~ + b” # 0, we can multiply the factors a + bl, —=—=5
' 5 5 a~ + b
- bl 8” + b ab - ab
and get {a + bi)-& = + 1=1
aE_+ b< aE + EE ae + b2
(for there is nothing in the proof of Theorem 3b which
-bi
requires a and b to be real). Thus, —%————§ is an
a“ + b -

inverse of a + bi, 1if a® 4 be # O. But we know already
that nc complex number can have more than one inverse, for
if 1t did, Property C-1(vii) (as stated in the text) would

be false. 19
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6. Quadratic Equations.

Section 6 extends the theory of quadratic equations with real
coefficients by treating the case of a negative discriminant,
Since the quadratic formula invoives the expression - 4ac
and we are interested in the case b2 - bge ¢ 0, we are obliged
to precede our discussion of the formula by & definition of 4T
for r real and negative. Hence, we beglin with the examples
zE = -1 and 22 =r, r<0, and lead up to the extended defi-
nition of »/r (Definition 6), With the definition of ,/r avail-
able, we summarize our results on the special quadratics {those
having no first degree term) in Theorem 6a, & result we need in
the proof of Theorem 6b, Theorem 6b is proved by the usual process

of coﬁpleting the square, and then using Theorem 6a to solve

2 2
b b" - dac

Since .¢&;§ = 2]a], the square roots of the right member are

W57 - tac -7 - ac

ela] ’ 2la] '
42 42
One of these is 2; tac , the other is —AL 2' tac (which

is which depends on whether a >0 or a < O). Theorem 6b solves
the problem of finding the solutions of the general quadratic
equation with real coefficients, We find that every quadratic
with real coefficients is one of three types: (1) It has one
root--which is real--if 1its diseriminant is zero; (2) It has
two {different) real roots if its discriminant is positive;
(3) It has two (different) non-real complex roots if its discrim-
inant is negative.

Exercises 6, Problems 3 provide practice in calculating with
the square root symbol. It should be emphasized that when a
variable appears in the radicand, 1t is in general necessary to
distinguish several cases. One reascon for this is that the state-
ment ,/RX/S =,/r§ which holds for r >0, 8 > 0 1s not true in
general, Problem 5 requires a proof of the extension of this
statement to the case in which r and s are not both negative;
Problem 4 is intended to show why the statement 1s not true when
r and s are both negative.

20
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Problems 6-17 provide prectice in the solution of quadratic
equations. Problem 16 deserves particular comment. Although we
have established the "quadratic formula" only for the case of
real coefficients, it continues to hold when the coefficients are
complex provided the diseriminant is real; in this case the formula
can be established exactly as 1t was for the case of real coeffi-
clents. Thus, the quadratic equation

22 +Bz +C = 0

with complex coefficients £, « can be solved by means of the
quadratic formula if

B2 -k =1,

where r 1s a real number, We can construct quadratic equations
for which this is true by choosing the complex number & and the
real number r arbitrarily, and determining = from

< Alox
The equation of Problem 16 is determined by choosing & = -1,
r = -9, Quadratic equations with complex coefficients without
the restriction that the discriminant be real are considered in
Chapter 12 of SMSG Intermediate Mathematics.

Problems 18-24 provide an opportunity for the student to
investigate by himself questions which will be discussed in detail
in Section S, We mention in particular Problems 18 and 20, which
state important results of algebra; these will be stated more
generally in Section §. The approach suggested in the hint for
Problem 22 could be used for the solution of quadratic equations
with complex coefficients in general, but the method is too cum-
bersome to be useful. Some students might be interested in
pursuing this point, however,

Exercises 6. Answers,

1. {(a) 0+ 74 (e) o0+ (-4/3)1
(6) ©+ (-13/5)1 (£) o+ 51 .
(¢) 0o+ (42)1 (g) 5@ - 01
(d) -2/5+ ot (h) \/%- 01
21 0 A
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2, {a) 0+ 21 (e) el + 01
{(b) 2+ 01 (Y o0+ lelt
(c) O+ 21 (g) 0+ [ecl1
{a) Je] + 01
3. f(a) 0+ (a + b))t (e} 0+ (-8/2)1
(b) -2a8/ + o1 (¢) -a® + o1
{c) =(a +4/3%) + O1 (g) 0+ 2(a + b)i

(@) HE 4+ o1

4., Proof that .&b =,R/b if a and b are non-negative
real numbers: By the definition of the square root of a
non-negative number we know that

(\/é-)g = &,
W5)Z = ».
Thus, Qﬁi/ﬁ)e = ab,

and we know that (/8/b) 1is a square root of ab. Since
~ﬁ§ and /b are both non-negative by definition, it follows
that (/3/D) 1s non-negative. Hence, (/a/0) must be the
square root of ab; that is,

Vab = /a/b.
Now, if a and b are negative, then
VE = 3/,
Vb = 1/-5;
and (VA/5) = (4/8)(4/F) - /5.

Agaln  (VE -/B)° = (/B)2(/F)° =

but as we have Just seen

va+,/b = +/8b, a negative number which cannot be
the square root of ab.

5. r <0 and s > 0, then /3/5 = 4/-n/s = 4/-Ts;
also, ,/Ts = ;/(-r}ls} = i/-rs.

6, 0+ 1, O+ (-1)

7. ——2-1@+Oi, Lé—ié

8. -1+ {(1)4, -1+ (-1)4

22
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9. F+4l1, 1+ (4
10, -%+‘%1—-1, -%+ (-‘gz)i

11. -2+ 21, -2 + (-2)4
12. 2+ 21, 2+ (-2)1

13, -%4-‘41, -+ (01
14, If a 2-%3 (2 +2/T+2|m)+01, (2- /1T + 2a) + o1,
If a <-%; 2+ /(T + 281, 2+ [-2/7(TF 2a)it

15, - +%31, -+ (+L)n
16, 0+ 21, 0+ (-1)1

' c
17. 1If éc-g_o: 0*«/5_1’ o+(-,/§)1
C - E __-E-
If §<0' 1%34- 01, q/ a+01
3 2
18, 2" -8 = (z - 2)(2° + 2z + 4)
23-8=O if and only if z - 2 =0 or 22+2z+4=0.

The solutions are 2, -1 +,/314 -1+ (-/3)1.

19. Using"Theorem 6b we obtain the following solutions for the

given equation:
z. - =D ﬁfég - Lac

1 28
2. = =D —4/g2 - lae
2 ca ¢
Thus,
Z. 4+ 7. = b -4ac+-b-1/€§-4ac_—b—b__§_
1 2 2a 2a T 2a -
and
oo - (o A% < hac) [-b - WAZ - tee _ 0% - (b2 - lac)
172 2a 2a 4g
-8c ¢
4a a
23




20, 8z° + bz + ¢ = a(z2° +§z+ §).

By making use of the results of Problem 15, the right side
can be written as

2 .
afz® - (zl + zg)z + zlzal.
Hence,
az® + bz + ¢ = a(z - zl)(z - za),
or alternatively, multiplying out the right side of the
last equation, the left may be obtained directly.

21. (a) 2° -2z + 2 =0

(b) z2 - (2+21)z -1+ 21 =0
(c) 22 = 0
e
(d) =z -[(al+ap)+(bl+b2)i}z+€(alag-blb2)+(alb2+aebl)i}==O
#22, Let z =X + ¥y, where x and y are real.
Then 22 = x2 - y2 + exyi.
But zg = 41, so
2
(i) x2 -y =0,
(11) exy = 1.
Squaring both sides of (1) and (11) and adding, we have
(11 2 2,2

Since x2 + y2 > 0, taking square roots of both members of
(111) we have

(1v) x° + y2 = 1.

Adding (1) and (8v) we obtain

Exe = 1.

-

From (1i) the corresponding values of y are

From whence

“.+*€g (Note that from (ii) x and
y=z * 'y have the same sign.)

Therefore, = =\é§ +‘4§ i, -\é€+ (-@}i.

24




N

*23. Employing the method displayed in the solution of Problem *22

we cobtain
z -@-{- (-44;)1, -‘\gqﬂgi.

%24, Extending the idea of Problem 20, we have
[z - (2 +21)1{z - (1 - 1)1z - (1 + 4)] = 0,
or, multiplying out the left member, we obtain
2% - (3+ 20022 + (4 + 8)z - (24 41) = o,

There is no quadratic equation having all three solutions,

for the formula in Problem 20 shows that no quadratic equa-
ticn may have more than two solutions: If aze + bz + ¢ =

a{z - zl)(z - 32) =0, a ¥ 0, then either z - 2z, =0 or

zZ - 25 = 0; 1.e., z nezl or z = z,. Moreover, no quadratic
expression such as az®“ + bz + ¢ can be written as a product
of three first degree factors, say (z - zl)(z - ze)(z - 23),
times a constant: For any such product produces g z3 terms
and no quadratic can have such a term.

7. Graphical Representation--Absclute Value.

The representation of complex numbers by points in the plane
had a great effect historically on the acceptance of the complex
number system by mathematicians. This geometric representation
overcame the feeling that the complex number system was not con-
crete; the employment of the complex number system in the solution
of geometric problems, which it permitted, promoted an appreciation
of the usefulness of the system. The discussion in Section 7, and
1ts continuation in Section 8, may be expected to have a similar
effect upon students,

The discussion in the text calls for little comment., We
mention only that the notion of absolute value is a purely alge-
braic one, even thoughlits definition is geometrically motivated;
all of the properties of absolute value can be established alge-
braically. In particular, the relations !zlzel = Szlffzel,

le + zef < [zli + [zE! can be established algebraically. It is
remarkable that although the geometric interpretation of the first
relation is obscure and that of the second very clear, the

25
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algebraic proof 1s not presented in the text. The interested
teacher can find such a proof in almost any text on the theory of
functions of a complex variable. (See, for example, R.V. Churchill,
Introduction to Complex Varilables and Applications.)

Exercises 7, Problems l-4% provide practice in the graphical
representation of complex numbers and the graphical interpretation
] of addition and subtraction. Problems 5-7 involve the calculation
of absolute values., Problems 8-1C require the proof of statements
made in the text without proof., Problems 11-12 refer to the
geometric interpretation of operations with complex numbers in

special cases.

Exercises 7. Answers.

1.
§Y
M A
s -7
X
z] = |- Za
F
2.
| ¥4
~Xge —Z{ -Xe
- -Xy -
X
- - Za
26
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3. (a) ¥
AT
2, + Z5 = 3+ 21
X - 21-22=-1+0~1
-2a
(v)
, , zl + 32 =5 4+ B
4
5 Zs =~ 2, =1 -1
m*& 1‘ 2
.
49 4
y.
/rz =
>V
X
LV ix-
e
~&3
]
(c)
R z. + 2, =1+ 1
Z-Z, 1 2
X, Zi -2, = 3+ 31
F A
-2z \
X
L3
|
=2 )Y
(d) /7\
N
z, N\ 2 +zo = -4+ 1
-3 - = -
[ zl 22 2+ 71
(zez,.\ /
X -
N |/ ‘
H F ¥
27
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L1y

Xy

=Y

(£)

slum

x¥

vy

(8) LY

P

i

21+22

2 - %

Zl+2

L

Lif

-2 + 54
-4 - 31

2 - 61
-2 + 2i




3.

(h)

Py 3 =
2) + 25 = b - ke
Zy -2y = k + 41
z‘#
X
-t
:;f&
fg;ﬁ-i+(g+i)=l+i. BT T 1]
*
.+ 2 12!51. -
326 1+(1+-21) -g-+(11 = =
24+z7=-1+(ﬁ-1j =q§é_'+(_1)i = X
2 2 PANEES
g&é&i éiiét
11 111

(a)
(v)
(c)

then

and

(a)
(v)

(c)

(a) 2

5
i (e) 1/72 + 2

2 =X+ yi
X+ yi

T_T 4/xg + yg ’

{zlﬂ/ X + i =X+Y§=1.
Tz] RSl ,,/xe”e

The single point (1,0).

et z=x+y1, x and y real.

Then X+ ¥yl =4/x" + y"~,

Hence, y =0, and x =‘/>?,
Therefore, the set of peints 1is the non-negative x-axis.

Since 2z cannot be Zero, the given equation may be
transformed into the equation |z| = 1, and this is
the equation of the unit circle.

29
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8. et zy = X + ¥l and Zy = Xg + Vol.
Then ]zlze} = {(x + yli)(xe + yei)}

- ‘("1"2 - ¥y¥p) + (xyyp + "25’1)1!

55 5.5 55
= /X]X5 - 2X1XoV ¥, + ViVo+ Xi¥p + EXq¥pXo¥) ¥ XgY)

- RGZ € 3 + R + ¥R

-4/x§‘+ y? 4/x§ + yg

= ‘zll"ZE‘

g, Let zZy = Xy + yli and Z5 * Xg + yei.

Then i; = (Xl + Y%i)(xg - Yei) (xlx2+ylyz)+(x2yl'x1¥2)i
A 2
2 X5 + ¥ X5 + y2

e, .
and i l 41(;§2+2x1 2y1y2+y1y2+x2 "2x1x9Y1Y2+-X1+32
| xe + y2

y@(x +y2) + yo(x5 +y§_)
XE + ye

,‘ﬁcl + yl)(x + y5)

2
2*5'2

A\t

x2 + yg

10. Using the fact that the sum of the lengths of two sides of a
triangle is greater than or equal to the length of the third
side, we have _

|z, - zel + lzal > lzlf and |z, - 22]+[zl} > {zzf
or
lzy - 2zl 2 127 - lz5] and |2y - 2502020 - 1z ]

30
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11,

12.

,,,,,,

From this we conclude .
[zl - zgl 2 tzlf - lzgt .

If O, zl = 8 + bi, and 2, = ¢ + d1 are collinear, then
the slope of the segment Joining O and zq is the same
a8 the slope of the segment Joining 0 and Zse Thus,

(1) g=%

If 23 =2 + Zos
then z,; = (a + c) + (b + d)1.
The slope of the segment Joining O and Z is

b+ 4d
a +c¢

But (11) is equal to both members of (1); that 1is,
Pofod-iobgioarensielg

Hence, the slope of the segment Joining 0 and 23 is the

same as the slopes of the segments Joining O and the points

zq and 2, respectively, and since all three Segments pass

through O, the points 0, =z and z are collinear.

(11)

1* %2
The triangle with vertices O, 4
1, 2z 1s shown in the figure at
the right. The lengths of the
sides of the triangle are 1,
lzl, |z - 1]. Iz 1/
If we multiply each of N
these lengths by |z|, we 'ob- o / T X
tain |z|.1, |z[-]z],
lz|lz - 1] = |2° - z]. These
are the lengths of the sides

of a triangle whose vertices
2

3

are O, z, z a8s the second
figure clearly shows.

The two triangles are similar
because corresponding sides are
proportional,

To obtain 8 geometric con-

struction for 22, one must

choose a unit of length on the X-axls, draw a triangle with
vertices 0, 1, z, and then construct a second friangle
similar to the first one by making each side of the second

31
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triangle |[z| times as long as the sides of the first. The
vertex of the second triangle which corresponds to =z of the
first triangle is 22.

8. Complex Conjugate.

The introduction of the notion of complex conjugates has
several important consequences. It makes possible: the simplifi-
cation of computations involving absolute values and multiplicative
inverses; the algebraic representation of the geometric operation
of reflection in & line; the algebraic formulation and manipulation
of statements involving the real and imaginary parts of complex
numbers: and the algebraic representation of all geometric rela-
tions in terms of complex numbers.

In connection with the last of these features it should be
observed that only geometric conditions which are satisfied by a
finite number of points can be expressed in terms of the complex
variable z alone, since an equation in 2z has only a finite
number of solutions. The solution set of an equation in =z alone
is, in general, a finite set of points; the solution set of an
equation in z and 2z 1s, in general, a curve.

The examples and exercises of Section 8 illustraﬁe ttie state-
ments made above, In particular, Problems 2, § and 1l are con-
cerned with computations involving absolute value and multiplica-

t ive inverse; Problems 6 and 14 are concerned with reflection in
lines; Problems 7, 8 and 10 are concerned with the algebraic form-
ulation of statements about the real and imaginary parts of complex
numbers; and Problems 3, %, 12, 13, and 15 are concerned with the
complex algebraic formulation of geometrlc conditions., Problem 1
provides practice in computing conjugates, and Problem 5 requires
the proof of statements made in the text without procf.

Exercises 8, Answers.

1. (a) 2+ (-3)t (£) 1+ (1)1
(b) -3+ (-2}t (g) O+ m
(e} 1+ (1)1 (h) 3+ 01
(d) -5+ Ot (1) -/3 + 31
(e) 0+ 2%
32



(a) 3+ (-3

(v) f%-+'f%i
() -+ (~yp)1
() -ézgi- %gi
(e) -é% + %gi

(£) %+ ¢

(8) -2%+ 52
(n) -3+ (-3

(a)

(a)

(1)
(J)
(k)
(1)
(m)

(n)
(o)
(p)

(e)

(p)

R AN

(R254R) + (RB 5 A,
(2400 | oI5 /BT,
1 1l

-
2 2
22" + 3b -8b
(1&32 + 92 )+ (ha§ + QbE)
2x" - ¥ 3Xy 11
(4x +y )+ (4x + y
R S GECRYY
3 13
% + 01
14
<:i:j::::>t X

(c) There is no complex number 2z which satisfies the

given equation.

33
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5. (a) zy + 2 (x1 + xe) + (yl + ye)i.

(x, + x5) = (yg + ¥p)t
(xl - Yli) + (xg" Yei)
(xl - Yli) + (xe = 3’21)
- Ei + Eé.

Zl+22

(b) zye2, = (X%, = ¥yyp) + (xg¥p + %97 )1
2 78, = (%935 - ¥¥p) = (%37, + x5y; )

But the expression in the right member is equal to the
following:

Zq 'y = (xl - yli)(x2 - ygi)
= (xlx2 - YIYE) —(xlx2 + xeyl)i.
Hence,
21°2p = 2y%25

(C) ('22) = I_xe - YEi) = "xe + yei H
~(z5) = (X5 ¥ 551) = -(x5 - ¥o1) = =% + ¥pl ;
Hence, (-225 = —(EE).

Since 2) + 25 = 2y + 25,

zl - ze = Zl + (-zg) = zl + !-225 = zl - ze.

we can now write

- xg - yEI xe + yei
z =

(a) = ;
2 2] 2 2’
2 x2-+y2 x2 + y2
1 1 Xp + ¥l
— - = ‘.
z, e Yol & e "
hence, -—-I = 2 .
z -~
2 zg

Since zl-z2 = 34'2n we can now write

b N~ e S S
LTI AT TN
34
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g.

The reflection of any polnt w in the y-axls is -w.

Hence, the refic.tion of 23 - (3 + Ei)ze + Blz - 7 4s
T‘

Wz? - (3 + 21)22 + 51z - 7] = _{(23) - (2 + 21)(;§}+-SI(E)—7}
= -(Z)° - (3 - 21)(2)? - 54(3) - 7]

-~ 734 (3-21)7%+ 517 4+ 7,

If 2°=32°, then 0222 -3 = (z + E)(z - T), sc elther
Z2+2z2=0 or z-2=0. Inthe first case z 1is pure
imaginary, in the second case z is real.

2

A number w 1is pure imaginary if and only if w = -w. Thus,
zlEé is pure imaginary if and only if

125 = ~(2,2,)

Zl 2 = -2122 .

Dividing this last equation by zéEE we obtain

2.5,
z A——
2 ze
and
i S 4
b
2o 2
21
which holds 1f and only 1if = is pure imaginary,
e
2 ———————— S — S——
2y = 21" = {2y - 2)(Z=23) = (2) - 2p)(7T - Bp)
= 21%] + 2,2, - 232, - 212,
_ 2 2 — ——
= [zll + [zgf - 2,2, - 2,2,
2 _ \ ~ —
Izl + zEE = (zl + zef(zl ¥ ze) = (zl + 22)(2l 4 z2)

- 2 2 — —_—
= [zlf + !zel + 272, + 2,25,
2
Thus, Izl - 22} + [zl + zglg = Elzlfg + 2[3212.
35
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10.

11.

12,

13,

let zZ; = xq ¢ yli and let Zo = Xy ¥+ yei.

2 + 25 is real if ¥y + 7y = 0, and

D is real 1if X ¥p + Xp¥q = 0.

But 1f y; * Vo = O, then either y; =Yy, = 0, or vy, #0
and v = Yoo In the first case 21 and z, are both

real, and in the second case we have xl(yg) + xe(-ye) = 0,

or Xxq = xa. So in the second case Zl = 25.

It is sufficient to show that

zq e B zl 2
P O
2 2 2 z2 2 2222 22

If y = 3x + 2 then since x = %{E'+ z), ¥ = %(E -z)
we have

HZ -2) = 3-3F+z2) + 2
or simplifying
(-3 + 1)z + (-3 - 1)z

= 4,
which may alsc be written
(-3 + 1)z + -3+ 1)z = &,

let z=x+ylL and K =4 + B1 where x, y and A,B
are real, Substituting in

we get

(A + BL)Tx + yiJ + (A + BL)(x + yi) = C
(A + BL)(x - y1) + (A -BL)(x+y1) =¢C

[(Ax + By) + (Bx - Ay)i] + [(Ax + By) + (-Bx + Ay )il = C
2(Ax + By) = C.

If B ¥ O, then
C - 2Ax
R

which 1s the equation of a straight line. If B = 0, then
c

2K
which is the equation of & straight line parallel to the y-axis,
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14, The points Zy =Xy + iyi and Zy = Xy + iy2 are symmetric

15,

with respect to the line y = x 1if and only if y =x 1is
the perpendicular bisector of the segment Joining 24 and
Zoe This is equivalent to two conditions: the midpoint of
the segment Joining zy and Zo i3 on the line y =

the segment Joining 2y and Z, is perpendicular to the
line y = x. The first of these conditions is algebraically

Xl+ X2 yl+y2

-
= b

2
the second condition is
Yo - V¥
%, = -l
2 1

Thus, for symmetry with respect to Y = x the following
palr of equations must be satisfied:

Xy t X5 = vy + Yo

Yo =¥ = X - X5
Multiplying the second equation by i and adding the result
to the first we obtain

X] + Xy + i(ye - yl) =y t¥,t i(xl - xe)

]

(xl = iyl) + (xu, + iYE) (ixl + yl) - (ixg - ye)

t

<Xl = iyl) + (XE + in) i(xl = iyl) - i(xe 'iyg)

2. + 2. = izl - 122

(1 - 1)21 + (1 + 1)z2 =0
which was to be proved.

Let z; = x; + y1, 2o = X5 + ¥o1. (We assume z;, #0,
Z, # 0O since otherwise the problem has no geometric meaning.)
Then

ZIEE (x + yli)(x2 + yef) = (xl + yli)(x2 - ¥ol1)

= (xl 2 + ylyg) + (ylxg = X1y2)i:
8o that if zIEE' is real
¥i¥p - ¥1%5 = 0.

If xy =0 then since y;, # 0 1t follows from this equation

that x5, = 0, 80 that both zy and z2 are on the y-axis

37
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and.the segments Joining them to the origin are parallel.
The same conclusion is obtained in the same way 1if Xy = 0.
In the general case Xy #0 and x5, # 0 so that we may
divide our last equation by X X, to obtain

¥ v
1 2
y1 Yo
X1 %

Thus, the slopes of the segments Jolning zq and Zs to

the origin are equal and the segments are parallel. In every
case therefore if zlEE is real, the segments z;, and 2,
to the origin are parallel.

9. Polynomial Equations.

In this section we discuss the ultimate significance of the
system of complex numbers for algebra. We state without proof
the Fundamental Theorem of Algebra, and consider simple examples
in which it applies.

Properly speaking, the Fundamental Theorem of Algebra states
that every polynomial equation of positive degree with complex
coefficlents has at least one complex solution., The theorem we
have stated as the Fundamental Theorem is obtained by combining
the preceding statement with the Factor Theorem which asserts that
{f p 1s a solution of the polynomial equation P(z) = O, then
z - r» 1s a factor of P(z). According to the Fundamental Theorem
1f P(z) 1is a polynomial of degree n > C then the equation
P(z) = 0 has a complex solutlon r- . By the Factor Theorem then,
P(z) = (z - rl)Pl(z) where Pl(z) is a polynomial of degree
n -1, If n -1>0, then applying the same argument to Pl(z)
we conclude that Pl(z) = (z - rg)Pglz) or P(z)=(z-rl)(z-r2)P2(z).
Continuiryg in this way we obtain the theorem stated in the text,

The teacher may wish to present the preceding discusSsion and
a proof of the Factor Theorem to the class. The following simple
proof of the Factor Theorem is based on the factoring identity

k K (zk—l + ZK-EP zk«3r2 k-l)

z- - pr = (z - 7r) + 4 see + D

: 38 4°
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n n-1
P(z) = ajz + a,z ... ta, gz +a

be a polynomial and let r be a solution of P(z) = 0; that is,
P(r) = 0. fThen,
P(z) = P(z) - P(r)

n n-1 n
= (aoz +a,2 +...+an_lz+ao) - (aor +a,

I

n-1
r +...+an_1r+ao)

n-1

a (2P - rn) + al(z - rn_l) + vee + an_l(z - r)

C

n-l+ n-2

= ao(z—r)(z z r+...+rn-l) + al(z-r)(zn'2+zn'3r+...+rn'2)

+ ...+8n_l(z -r')

= (z—r)[ae(zn-l+zn"2r+...+rn_l)+an(zn'2+zn-3r+...+rn-2)
e ta ]
= {z - r)Q(z).
Exercises 9. Answers.
1. (a) 1, multiplicity 1
-2, multiplicity 3
(b) 0, multiplicity r
- %, multiplicity 2
3, multiplicity 1
(c) 3 - 21, multiplicity 2
-1, multiplicity 5
2. (a) Since z° + 2" 4 323 - 23z - (_l - 1)3{2 -(’1+' 1y,

we have the following zeros:

0, multiplicity 3

=l - i, multiplicity 1

L P23 nultiplicity 1

(b) ‘Stnee z° + 222 + 1 = (z + 1)%(z - 1)2, we nave the

following zeros:
-1, multiplicity 2
1, multiplicity 2
(e) Since 23 4 32° 4 3z + 1 = (z + 1)3, we have

-1, multiplicity 3
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(a) Example 1: (z - 1){(z - 2) = O.
Example 2: a{z - 1)(z - 2) = 0, where a 1s real,
non-zero, and not equal to 1.

(b) Example 1: (z - 1)(z - 2) = O. This equation is of
degree 2 and each zerc is of multiplicity 1.

Example 2: (z - 1)(z - 2)E = 0, This equation is of
degree 3 and has zeros which are of multiplicity 1l and
2, respectively.

An equation of degree 4 can have either one, iwo, three,
or four solutions. The number which 1t has depends on the
multiplicity of the zeros of the polynomial associated with
the equation. The following examples are illustrative.

One solution: (z - 1)4 = 0,

The polynomial (z - l)2+ has the zero 1 of multiplicity

four. Hence, the solution of the equation 1s the single
value z = 1.

Two solutions: (z - 1)}{(z - 2)3 = 0.

3 are L

The zeros of the polynomial (z - 1)(z - 2)
(multiplicity one) and 2 (multiplicity three). The

solutions of the equation are z = 1,2. Another example
is (z2 + 1)2. Note that here we have two palrs of con-

jugate complex numbers.,
Three solutions: (z - 1)(z - 2)(z - 3)2 = 0,

The zeros of the polynomial are 1 (multiplicity one),
2 (multiplicity one), and 3 (multiplicity two). The
solutions of the equation are z = 1,2,3,

Four solutions: (z - 1)(z - 2)(z - 3){z - %) = 0.

The zeros of the polynomial are 1,2,3,4%; each is of
multipliecity one. The solutions of the equation are

2 = 1,2,3,40
23 +1 = (z + 1)(z2 -2+ 1) =0, Hence, z = -1 1is one
solution. To obtain the remaining solution, put
22 -z +1=0,
zZ = —1—' .
40



The solutions of the given equation are

1 l+g{31 1 -./31
¥ | ] 2] .

€
6. (a) Since z = & 4is one sclution, (z - 4) 4s a factor of
the polynomial in the left member of the glven equation.
Dividing the polynomial in the left member by (z - &),
we find that the given equation can be rewritten in
the form

(z - lé)(Sz2 -8z + 4) = 0,
Factoring again, we have
(z - 4)(3z -~ 2)(z - 2) = 0O,
The solutions of the equation are 4, %, 2.
(b) 2, 1+4, 1 -1

7. (a) -1, -2, 1_*‘.2@@&, Lé.ﬁ@l ]
(0) %, 1, -1 +ﬁi, -1 -,/21.

8. (a) (z - 1)z + 21) or 22 + (21 - 1)z - 21,
The polynomial 1is of degree 2,

(p) In order for the polynomial to have real coefficients
it must have the conjugate of -21i as a zero becsuse
it has -21 as a zero. Hence, the polynomial must be
of degree 3; the required polynomisl is
(z - 1)(z + 21)(z - 21) or z° - 2% 4 Uz - 4,

(¢) The polynomial of lowest possible degree must contain
the square of a polynomial of degree 2 which has both
-21 and 21 for its zeros. Thus, the required poly-
nomial is of degree 5; it is

(z—l)[(z+21)(z—21)}2 or 25-2&4-833-8224-162 -16,

9. Since 3 +,/21 1is a solution of the equation, so is 3 -,/Z1.

Thus, o
{[z - (3 +4Z1)1{z - (3 -421)]) = (2° - 62z + 11)

is 8 factor of the polynomial in the lef't member of the given
equation. By long division it can be found that the other
factor 1s (z2 - 9). Hence, the solutions of the equation are

3 +A/§i’ 3 —«/§i, 3, -3'1
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10.

11.

le

maﬁia

1 -./51, 1+/51, J2, </Z.
() (z - r )z - )z - r3) =
2% + [(ery (=1 )+ (-r5)12% + () ) (-rp 1 (=r) ) (-r g W (~rp) (-5) 12
& [(~ry Nrp)(-ry)]
= 2" - (rl + 1yt )z + (rl o+ Ty + rers)z - (rlrgrs).
(0) (z.= mp)le = s)(e = 2z - )
= 34 - (r rq+Ttr +r4)z +(r1 2+r1r3+rlr4+r2r3+r2ru+r3r4)zE
- (ryror 3+ TTTy 4+ Tyrory + r2r3r4)z + (rlr2r3r4).
(¢) (= - rl)(z - rg)...(z - r7)
=zl - (r 1 ¥ Tpt cee ¥ T )26+ (r1 pt TyTa+ 4-r6r7)25
- (rl o3 + TyFply + w.e 4 Ielelo 4+ L

+ (-1)(ryrp ool o).

Answers Eg.Misceilaneaus Exerclses.

(2 -31) = -2 + 31

2-31y =2+ 31
j2 - 31 =/F+ 3 =,1I3
2= 31] = |2 - 31] =4/I3

1____T-3 _2+31_2 . 3,
2 - 51" TE_T_§_7§""T3T"' I3 7 13

1]
2 - 31]% = (/T3)% = 13
(2 - 31)%] = |2 - 31]% = 13

T8 = (% v sUxEo = (5 5O + 150

=._£% , 22

[z - (e + di)llz -~ (¢ - d1)] =
z° - [{c + d1) + (¢ - di)]lz + (c + di)(c - a1) =

22 - 2cz + (c2 + de) = 0,

4o



W

1
L&

3. It is closed with respect to multiplication, but not with
respect to addition since 1 + 1 18 not in the set.

4, ya 20

x2+y22x2

.‘/xE + yE zﬁ
Ix + 1y} > Ix] > x
fz] 2 x
5. (a) Cirele of radius 3 with center at (2,0).

(b) Set of points exterior to circle of radius 3 with
center at (-2,0).

(e) Set of points interior to circle of radius & wifh
center at (0,2).

(8} Set of points interior to, or on, circle of radius 5
with center at 2y
6.  lx+yl-(2+31)] =5 -
[(x -2)+ (y-3)1] =5
Ax-2%+ (y-3)°=5
(x -2)2 + (y - 3)% =25

xg + y2 - 4x - 6y - 12 = 0.

The sSet of points satisfying the given equaticn is the circle
of radius 5 with center at (2,3).

7. (a) The distance from the origin of z, 1s less than that
of zg.
(b) z 1s on the circle of radius 5 with center at the
origin.

(e) z; and 2z, are symmetric with respect to the origin.
. \

(d) 24 and z, are symmetric with respect to the y-axis.

(e) 2, and 2z, are symmetric with respect to the x-axis.
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9.

10.

If z = x + yi the stated conditions become

X =Y, .y‘x2+y2-1.

The solutions of this pair of equations are Xx = e s

¥ o= -1 and x = -—2h3 vy --—-éh-. The solutions of the

2 V2 V2

problem are therefore 2z = —l—+ Li - —-—1

VE VBT VB WE
If the coefficients are real and 3 + 21 1is a solution, then
3 - 21 must alsc be a solution. If the equation is quadratic,
it can have no more than these two solutions. Thus, the
equation must be
alz - (3 + 21)1[z - (3 -21)] =0

or ,

- 6ax + 138 =0

where a # 0 1s any real number.

We show generally that if 2z = x + y1 4is any complex number
(not zero) the quadrilateral with vertices 3z, iz, 122, 15z
is a square. The midpoints of the diagonals of this quad-
rilateral are o |

zZ + 1"z .2 -2 _ o

1z + 1% _ 1z -1z _
) -

so that the diagonals bisect each other at the origin. Thus,
the quadrilateral is a parallelcogram. The slope of the seg-
ment joining the origin to z =x + yi1 1is %; the slope of
the segment joining the origin to 1z = i(x + yi) = -y + xi
is -%. Since these slopes are negative reciprocals, the
diagonals are perpendicular, Thus, the parallelogram is a
rhombus. Finally, each diagonal is equal to 2{z| and

hence, the rhombus, having equal diagonals, 1is a square.

If z, 1s a solution, then ES is also a solution, since

the coefficients are real. By the Fundamental Theorem

a{z - zo)(z -z)

322 + bz + ¢ o

Ll

alz® - (zo )z + z z ]

2 —
az< - a(zo + zo)z + az z,.

R



12.
i3.

l“.

;;.ni‘iia B

Equating coefficients we obta.n

b = -a(a.° + EE)’ c = az

(o]
or
- — c
2ot % =3 % Tacc
The curve 2z + z = - § is the straight line x = - ]; .
The curve 2z = §- is the c¢ircle x2 + ye = gu Since =z

1ies on both curves 1t is one of the points of intersection
of these two curves (the other is EE). Thus, to construct
the roots of the quadratic equation aze + bz +c=0

(b2 - 4ae € 0) draw a circle of radius«/qg about the origin
and draw the straight line parallel to the y-axis through

(- S%, 0). The solutions of the equation are the points of
intersection of these curves.

o .
a{z” -2z + 4) =0 a real, a # 0.

If z=x+ y1 then 32 = x2 - ye + 2Xyl1 so that the real
part of z° 1s O Aif and only if x° - y2 = 0. Since

x° - y2 = (x + y)x - y), x° - ya = 0 1if and only if

XxX+y=0 or x ~y =0, Thus, the set of points satisfying
the given condition is the set of points on the lines of
slope 1 and -1 through the origin.

We have (5)2=(E ) = z If the real part of z° 1
zero, then the real part of z° is zero, since z° and

— 2
z2 = ;§ are conjugates. Since (%) = —JHE'EE, and

1 2 1.2
is real, it follows that the real part of =) 1s zero.
T;TK ’ P ()

The discriminant of the equation is
(1 + r)2 - hepep=1r < 6p+ 1.

The equation has only one real root when the discriminant is
O; that is, when r 1is one of the zeros--3 - 2/2, 3 + 2/2--
of the discriminant. The equation has complex roots when
the discriminant is negative. TFor very large values of r
the discriminant is positive, so that it will be negative if
and only if r 1is between its zeros--3 - 2/2 < r < 3 + 2/7,
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i5.

16,

i7.

18.

Irf a=1, b=3i, then a+bi =1+ 14 =0; a+D0L=0=0;
a -bi -1¢1 =2, Thus, & + b1 ¥a - bi 1in this case.

The set of pointes equidistant from zq and Z, is the set of
points 2z which satisfy the equation

lz - zll = |z - 22[.
Squaring this equation we have
e 2
!Z - zll = iz - zgl
from which we get
(z - zl)(z - zlj = (z - 32)(2 - 225
(z - 29){z - z,)
2Z - 2,2 + 232 + 2,2) = 2Z - %52 - 2,
(z1 - 22)2 + (zl - 22)2 = 212, - ZyZne

H]

(2 - 2,)(7 - Tp)

The last equation 1is the equation of the perpendicular
bisector of the segment.

The point 2z ©belongs to the set if and only if

|z - E;! < lz - zcl; that is, if and only if the distance
from z to z, is less than the distance from z ¢to Zge
This will be true if and only if the point 2 1lies on the
same side as 2, of the perpendicular bisector of the
segment Joining z, and E;. This perpendicular bisector
is the x-axis. Thus, the set is the set of all points =z
which lie on the same side of the x-axis as E;. This can

also be established by calculation.

let zZ, =a+ bi s&and zZ, = ¢ + di where a, b, ¢ and d
are real.
(1) 21 _a8+bl  c-dl_ac+bd, be-ad

= « i,
. Z5 ¢ + adi c - di 02 + d2 02 + d2
Hence, E£ is real if and only if (2) bec - ad = O,
2

It can be shown that be - ad =0 4if and only if =z, and
z, are on a straight line through the origin. To establish
this we must prove two if-then statements.

{a) If z, and z, are on a straight line through the
origin then ©bDe -ad = 0, and
(b) If be - ad = 0 then z; and z

line thrcugh the origin.

p are ona straight
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Cemom

——a

Proof of (a): If the line is the y-axis, then & = O and
¢ =0 and we have at once D0 - 0.d = 0, If the line
18 not the y-axis, then the slope of this line Joining
the origin to Z4q is equal to thebsloge of the line
Joining the origin to Zns i.e., 2%
Hence, bc =ad or be ~ ad = 0,

a c

Proof of (b): We have (2) be = ad. If 2z is on the y-axis

then a =0 and by (2) be = 0, But b ¥ 0O because
2 =8+ bl £#0 by hypothesis. Hence, ¢ = 0 and Zs
is also on the y-axis. This proves that z, is on the
y=-axis 1if 2y ls and the two points are on a straight
l1ine through the origin.

If 2z; 1s not on the y-axis, then a # 0. From
this we see that ¢ # O because 1f ¢ =0 and a # O
we must conclude from (2) that d = 0 and this would
mean that 2, =¢ + di = 0 1in violation of our hypo-
t@esis that 25 is a non-zero complex number. Hence,
ac # 0 and we may divide both members of (2) by ae

to obtain
b_4d

a c
which 1is precisely the condition that z4 and Zg lie
on a straight line through the origin.

We summarize our argument
b

== 15 real 1f and only if bec - ad = 0 and be - ad = O
2
if and only irf

Zq and 25 lie gn a straight line

through the origin., Therefore, E& is real if and only
if z) and z, 1lie on a straight®line through the
origin.

z% = -1 or zk + 1 =0.

(z2 + 1)(2° - 1) =0

Hence, z2 = =1 or 32 = 1., The solution set is evident by

the union of the solution sets of the equations solved in
Problems 22 and 23 of Exercise 6, namely,
1 1 i

= S .
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20, It will be sufficient to show that the law of trichotomy 1s
inconsistent with 0, for the element 1. Certainly, 1 # 0.
Then either 1 >0 or 1< 0. In elther case, by O, we
have 12 > 0 and we are confronted by the contradiction
-1 >0,

21. If x and y are real, it 1s evident that the conjugate of
X+ yl is x - yi. Moreover, it can be shown that if
X+ yl=x-yi, then x and y are real, Let x =a + bl
and y =c¢c + di where 8, b, ¢ and 4 are real.

x+yl=(a-d)+ (b+d)i

X+ yl=(a-4d)-(b+ech

X -yl =(a+4d)+ (b -c)i
Since X + y1 = x - y4 we have

(a -d) ~{b+ec)l=(a+4d)+ (b-c)k

3

According to Theorem 5-4

and
-(b+ C) Eb - Co

From these equations we conclude that d = 0 and b = O,
S x=8 and ¥y =c¢ where a8 and c¢ are real,
Hence, X + y1 =x - yi if and only if x and y are real.

2. The proposition stated is true provided x and y are real,
In this event we have

x| + |yl <+4/Zlz] 1f and only if

(Ix] + Iy2 g 2z|2,

lzlg = x° + yg and we have

t2

Now,

P Q
Ix[€+ 2lxliyl + lyvl® L 2ix
This reduces to O S_lee - 2lxllyl + ly!g or

2
+ 2ly]°.

0 < (1x] - I¥])® which 1s

true because the sguare of any real number is
non-negative., Q.E.D,
The proposition is not true for all complex values of Xx
and y as the following counter-example will show.
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et x= 8+ 21 and y = -1 + 44

then [x| =,B8 = 23/ IT and |y| = /I7.
[x] + Iy] = 3/T7

zZ=x+ 1y = (8+21) + 1(-1 + 41) = 4 + 1.

fz] =4T7. It is false that ~a/TT > /17,

hence, in this case |x| + |y| is not equal to
or less than »/Z|z].

11. Construction of the Complex Number System.

Section 11 outlines GRuss's construction of the complex
number system, As a source of historical information we suggest
Ihe Development of Mathematics, by E.T. Bell (McGraw-Hill, 1945,
Second Edition): Wessell and Argand, p.177; Jauss, p.179;
Cauchy, p.19&,

12. Sample Test Questions for Chapter 5. (Answers on Page 55)

Note: In the questions included in this sz2ction 8, b, ¢, 4,
X, ¥ 8re real numbers and z 1is 8 complex number,

Part I: True-False.
Directions: If & statement is true, mark it T; if the statement
i3 false, mark it F.

1. The imaginary part of a + bi is bi.
2. The discriminant of the equation x°+2=0 1s -8,
3. Every complex number has an additive inverse.

4, A one-~-to-one correspondence can be established beiween
points of the xy-plane and the elements of C,

5. The product of & complex number and its conjugate 1is a
complex number.,

6. The sum of a complex number and its conjugate is a pure
imaginary number.
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11,

12.
13.

14,
15|
16.
lTu

18,

Part

If the coefficients of a quadratic equation are real numbers,
then the roots of the equation are real numbers.

|z] is a non-negative real number,
The swn of - z and -z 1s a real number.

If 2z 1s a complex number,, 2z and Z correspond to points
in the xy-plane which are symmetric with respect to the
y-axis.
The multiplicative inverse of (x - yi) 1is §§:_X£§ .

X + Yy
If (a + bi)(x + y1) =1, then ax - by = 1.

(a + b1){a + bi) = a® + be.
If Jz| =1, then z 4is its own multiplicative inverse.

The set of numbers ({1, -1, i, -1} is closed under mul-
tiplication.

lz | + 2,51 < 127 + 251,

The reflection of 2z 1in the y-axls is -z.

IT: Multiple Cholce.

Directions: Select the response which best completes the state-

19.

20.

ment or answers the question.

Which one of the following equations does not have a solu-
tion in the real number system?

(a) x+5=5 (6) x° -5
(p) (x + 5)2 =9 (e) /X + 5

(c) x° + 5=0

! I
o O .

what ordered palr of real numbers (x,y) satisfies the
equation x - 4yi = 201 ?

(a) (20,0) (a) (0,5)
(b) (O,—S) (e) (O:O)
(¢) (0,20)



2l. If z=(5-61) - (3 - 41), then the standard form of 2z is

{(a) 2 - (10)1 (a) 2+ (-2)1
(v} 2+ (2)1 (e} 2 + (r0)t
(c) 2+ (-10)1

22. The additive inverse of ¢ - di is

(a) -c + 41 d) 1
(v) 37 . (e) o
{(e) e + 41

23. 1If the complex number 5 + 51 1s represented by the peint P
in an Argand diagram, then the slope of the line segment
Joining P and the origin is

(a) § (0) 3 (c) 5 (@) 1 (e) o

24, Which one of the following expressions does not represent a
real number?

(a) 12 +./2 (d) 6 + 21
(v) a1t (e) (20)° -3

(c) 4/(-3)E

25. The multiplicative inverse of 1 is

(a) 1 (b) -1 (e) 1 (@) -1 (e) - %
26, Which one of the following equations has non-real solutions?
(a) x-4=6 (d) 2x° - 1%x + 3 = 0
(b) 4x° - 3x + 6 = O (e) x° = ,/IF
(¢) 6x° + 5x = 8 = 0

27. The conjugate of -4 written in standard form 1is

(a) 4+ o1 (d8) -4+ 01
(b) - F -0t (e) None of these
-
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28, Which one of the following is not equivalent to each of the
cther four?

(a)ra./(e)E (d) 1/-(21)§
(b) ~/(-2)§ (e) 4%
(c) «/-(2)2

29, The product of (2 + 31) and (5 - 31) 1is

(a) 19 + 91 (¢} 1 - 211
(b} 19 + 211 (e) 10 - ot
(¢) 1+ 96t

30. When written in standard form the real part of (2 - 1)2 is
(@) 1 (v) -1 (e} 5 (d) -3 (e) 3

31. Given z = -31, then z in standard form is
(a) 31 (b) O+ 31 (c) |31t (d) o+ (-3)1 (e) -31

32, The smallest set which contains the absolute value of every
complex number 1s the set of

(a) natural numbers (d) rational numbers
(b) integers (e) complex numbers
(c) real numbers

33. 'The additive inverse of 1 1is
() () -1 (e) 1 (d) -1 (e) ©
34, Which one of the following pairs of complex numbers can be

represented by points which are symmetric with respect to
the origin in an Argand diagram?

(a) 3+ 24, 3 -21 (d) 3+2i, -3+ 21
(b) 3+ 21, 2+ 31 (e) 3+ 24, -2-31
(e} 3+ 21, -3-21

35, In an Argand diagram the set of points defined by the
equation lzl2 =5 1s

(a) a point (da) a circle
(b) a straignt line (e) two parallel lines
(c) ¢two perpendicular lines
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36. If =z 4is a complex number such that 12- = -1 and zz = 1,
then 2z is

(a) 1 (d) 1 or -1
(v) -1 (e) 1 or -1 or -1.
(e} L+ or -i
37. Which of the following ordered pairs of real numbers (x,y)
satisfies the equation 3x + Syi - 3 = 5x -yl + 612 2

(a) (-4,1) (a) (&,1)
(v) (-1,0) (e) (-4,-4)
(c) (0:“1)‘
38. Which of the following equations has the solutions 2 - i
and 31 ?

(a) 22 - 4z + 5 = O

(b) 2% - (2+ 41)z + (3 + 61) = 0O
(¢) z2 -(2+21)z+ (3+ 61).=0
(d) 2% - (2+ 21)z + (-3 + 61) = 0
(e) 2% - (2 -21)z + (6 -31) =0

39. The equation 23 - 232 + 2 -2=0 has 1 as one of its

solutions. The other solutions of the equation are
(a) '132 (b) '13'2 (C) 'isl (d) -132 (e) O:'i

40, Which one of the following complex numbers is the reflection
of 2 - 31 1in the y-axis?

(a) -2 - 31 (a) -3 -21
(v) -2+ 3t (e) 3 - 21
{c) 2+ 31
41, The solution set of the equation 22 + 34 = 0, where a 1is
a8 real number, is
o]
(a) @°, -a°) (a) {a%1, -a°1)
. a-, -a,a‘ *8. e -a’a ,-‘a
(b) 1, -a1) (e) (-a%, a%1, -a%1)

(c) (a, -a, 1, -1
L2. The length of the line segment which joins the points
representing 3 + 41 and -4 + 51 1is

(a) v2 (v) 3% (¢} 22 (d) 1 (e) %0
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Part IIT: Matching.

Directions: In questions 43-49 choose the' point on the Argand
diagram which represents the given number. Write
the letter which identifies the point of your choice
on an answer sheet. Any choice may be used once,
several times, or not at all.

43. 2 - 31 l ) )
4. 3 - ot BERTRE
45, TN SR EE S

P ‘ $
46, |3 + 41 4J T §
47, (24 31) 4 (1 - 1) | J Rleﬁ '
48, (3 + 21) - (5 + 51) ; 1 oL +— 5 x1
49. z, sueh that |z | = 2 B = Nl

J i |

% —
Part IV: Problems,
50. Express the quotient -%ri—%i in standard form.

51, If =z = 4 + 21 - 16, find the standard form of =z,

52. Find the ordered pair of real numbers (x,y) that satisfies
the equation x - 151 = 5yi.

53. Find the real values of X and y which satisfy the
equation x -y + (x + y)i =2 + 61,

54. Solve the equation (x + yi)(2 + 1) + 3x - 11 = 0 for real

values of x and vy.

55. For what real values of k does the equation zg + kz + 1=0

have solutions that are not real?

56. Write a quadratic equation with real coeffiecients which has
5+ 1 as one of its roots.

57. If z; =-2+1 and 2, =1+ 4i, find =z, + z, in stand-

ard form and exhibit the sum graphically.

1 2

58. Describe the set of points in the plane which satisfy the
condition |z| = the real part of =z.

5k
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59. Solve each of the following equations and express the solu-
tions in standard form:

(a) 32°+z+1=0

(b) 22 + 2 +¢ =0, ¢ 1is a positive integer

(c) pz2 +q=0, p<0,qg>0, and p and gq are real.
60. Given the following numbers: 2, -12, 41,-%, -J106, 0, ,

's/:—: \%m.- «/5?5: ja/gs - ?3;-! -\/Bl: %/‘IE: »/?3': «/31:: 1-74: '\/3: 3-?7:

-1/7, 1%, 2 +./5, 2 - /5.

(a) Classify the given numbers into two lists; real numbers
and imaginary numbers.

(b) Reclassify the real numbers into rational and irrational
numbers,

Answers to Sample Test Questions.

Part I: True-False.

1. F 7. F 13. F
2, T 8. T 14, T
3. T 9. F 15, F
4, T 10. F 16, T
5. T 11. F 17. F
&, F 12, T 18, T
Part II: Multiple Choice.

19. (c) 27. (a) 35, (d)
20. (v) 28. (ec) 30, (c)
21, (d) 29. (a) 37. (v)
22, (a) 30. (e) 38, (c)
23. (d) 31. (b) 36, (a)
24, (4) 32, (c) 40, (a)
25. (b) 33. (4) 1. (Qq)
26, (b) 34, (c) b2, (e)

S
LG4
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Part III: Matching

43, L 47, S
4k, R 48. N
k5, N 4g, T
46- Q
Part IV: Problems
Y i {
5 |
0. B F 13;'1 T 4 Za
5. 5+ 2% [ %
52- (03-3) / /
53, x =4, y =2 / _
&
S, x =2, y=-1 -
| X
55. x| <2 |
56. 2z° - 10z + 26 = O L | ﬂj
57. :'a'.l + ZE = -1 + 51
{

58, Non-negative part of x-axils.

. (a) --tedDy o1 (D
4/-%4—01, ?/%-*01

(p) =z

(¢) =z

i
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60. The table shows the answers to both parts (a) and (b).

i REAL x IMAGINARY ] [

RATIONAL IRRATIONAL
2
-12
44
2
3
/1%
0
T
el
27
4/50
1/3
3
-]
45
2/1%
V23
J¥
1.74
-3
3.37
2 T
2 +./3
2 - /-5
57




