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PREFACE

Mathematics is such & vast and rapidly expanding field of study that
there are inevitably many important and fascinating aspects of the subject
which, though within the grasp of secondary school students, do not find a
Place in the curriculum simply bgcause of & lack of time,

Many classes and individual students, however, sy find time to pursue
mathematical topics of special interest to them., This series of pamphlets,
whose production is sponsored by the School Mathematics Study Group, is
designed to make materisl for such study rei iily asccessible in classrcom

quantity.

Some of the pamphlets deal with material found in the regular curric-
ulum but in 8 more extensive or intensive manner or from a novel peint of
view. Others desl with topics not usuelly found at all in the standard
curriculum. It is hoped that these pamphlets will find use in classrooms
in at least two ways. Some of the pamphlets produced could be used to
extend the work done by a class with & regular textbook but others could
be used profitably when teachers want to experiment with a treutment of a
topic different from the treatment in the regular text of the class. In
all cases, the pamphlet: are designed to promote the enjoyment of studying

mathematics.

Prepared under the supervision of the Panel on Supplementary Publications
of the Schocl Mathematics Study Group:

Professor R. D. Anderson, Louisisna State University

Mr. M. Pnilbrick Bridgess, Roxbury Lsatin School, Westwood, Massachusetts
Professor Jean M, Calloway, Kalamszoo College, Kalamszoo, Michigan

Mr. Ronald J. Clark, St. Psul's School, Concord, New Hampshire

Professor Roy Dubisch, University of Washington, Seattle, Washington

Mr. Thomas J. Hill, Oklshomes City Public Schools, Oklahoma City, Okla.
Mr. Karl S. Xalman, Lincoln High School, Philadelphis, Pennsylvanis
Professor Augusta L. Schurrer, Jowa State Teachers College, Cedar Falls
Mr. Henry W. Syer, Kent School, Kent, Connecticut
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FOREWORD

This pamphlet is essentially a reprint of Chapter 5
of the text titled "Intermediate Mathematics" published
by the School Mathematices Study Group.

The purpose of this publication is to make avallable
to classes of students some new materials to be used in
conjunction with standard programs. A class in second-
year algebra using a standard textbook could, with some
preparation, study the topic of "Complex Numbers" from
this pamphlet. In order to do this, the students would
need some experience with the properties of the "Real
Numbers".
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COMPLEX NUMRBER SYSTEMS

1. Introduction.

Consider equations of the form

(1a) ax® + bx + ¢ = 0,

where a, b, ¢ are real numbers, a # 0. It is assumed that we
understand the method for solving such equations and that the
results depend in 8 very essential way on the value of the dis-
eriminant, b2 - 4ac, 1If bg - 4ac > 0, the equation has two
real solutions; if FE - 4ae = 0, the equation has one real solu-
tion; if b° - hac < 0, the equatlon has no real solution,

We ask whether we can extend our number system to include
numbers of such & character that every quadratic equation with
real coeffliclents has a solution regardless of the value of 1its
discriminant, It is the task of this pamphlet to make such an
extension of the system of real numbers. Actually we shall find
that the system we derive for this purpose is a richer one than
we bargain for: 1t gives us the solutlions not only of all quad-
ratic equations with real coefficients, but also of all polynocmial
equations of whatever degree with real coefficients. Even this
does not quite describe the richness of the system we derive, but
it 1s too soon to tell the whole story. ILet 1t suffice to say
that nec further extensions will be hecessary for the purposes of
ordinary algebra.

The simplest example of & quadratic equation with a negative
discriminant is the equation

2

(1v) X+ 1 =0,
If this equatirn ' written in the form (1a) we have a = 1,
b=0, ¢ =1, and the discriminant is

b2 - dac = -k,

so that we know that it has no real soluticnc. We can see this
without evaluating the discriminant. Since the sguare of each
real number is non-negative, we have %2 2 0 for any real number
X. Thus, Iif x i real, x2 +1>0+1+-1>0, so that no
real number 1is a solution of eguation (1b).
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To start we will lcok for a number system in which equation
(1b) has & solution. It will turn out, in Section 5, that in this
system every quadratic equation with real coefficients has a soclu-
tion, Perhaps i1f you review the method of solving the quadratic
equation you can see why this should be so.

Before undertaking our extension of the system of real num-
bers, it would be useful to look at the procedure followed in
Chapter 1 of the SMSG text in Intermediate Mathematics each time
the number system was extended. In this chapter the properties of
the real number system were developed by starting with the natural
number, followed by a consideration of the system of integers.
After this came the rational numbers and finally the real numbers.
In this development it was assumed that a new system could be con-
structed which would: (1) have as many as possible of the alge-
braic properties of the old system; (2) include all the numbers of
the old system, in such a way that the new and the old algebrailc
operations, when applied to numbers of the old sysfem, would be
the same; (3) contain new numbers of the kind we need. We then
discovered the rules for operating with the new numbers as logical
congequences of the properties we assumed. For reference, a
"List of Basic Properties of the Real Number System" is included
in the Appendix.

Proceeding in the same way we now seek a new number system
which contains the system of real numbers with all 1ts familiar
properties and also contains a number satisfying x2 + 1 =0,
Equation {1b). We shall designate the system by the letter C
and call 1t the system of complex numbers. Following are the
specific properties we requlre of C:

Property C-1

(1) Two operatlions, addition (+) and multiplication (-)
are defined In C. (It is to be understood that the
result of an operation defined in a system is a number
in the system, but wnen we wish to emphasize this fact
we will say that the system 1s closed with respect to

the cperation.)

(t1) Additlon is agsociative and commutative.

(11t) ¢ poscesses one and only one additive identity.

&
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(iv) Each element of € has one and only cne additive
inverse.
(v) Multiplication is associative and commutative.

(vi) C possesses one and only one multiplicative identity.

(vii) Each element of €, other than the additive identity,
has one and only one multiplicative inverse.

(viii) Multiplication is distributive with respect to

addition.
Property C-2
(1) Every real number is a member of C.
(11) The sum of two real numhers in C is the same as

their sum in the real number system.

(111) The product of two real numbers in C 1is the same as
their product in the real number system.

(1iv) The additive identity in C 4is the number O of the
reals.

(v) The multiplicative identity in C is the number 1
of the reals.

Property C-3

The set (¢ contains a special element 1 which has the
property

1.1 = 1% 2 -1,

We call the special element 1 the imaginary unit.

2. Complex Numbers.

In Section 1 we stated a problem: to find a number system--
that is, a set of elements and the ovperations of addition and mul-
tiplication defined for the set--having propertles C-1, C-2 and
C-3. Now we try to solve this problem. Letf us first try to
identify the set of elements.




Froperty C-3 implies that C contains at least one member
not in the set of real numbers because the square of no real num-
ber is negative. By C-1, C is closed under the operations of
addition and multiplication, so that if a and b are real
numbers, the product bl 1s in C since b gnd 1 are, and 1t
follows that a + bl 18 in € since & and bl are. We see,
then, that all numbers of the form

& + dl, where a and b are real,

are included in C. The number ! and every real number can be
written In this form, We have 1 =0 + 1.1, If a s any real
number a =& + 0-1, since 0.1 = 0, (The statement that the
product of O and any number 1s O can be proved for numbers in
C exactly as 1t 1s done for integess.)

Now, however, 1f we add and multiply numbers of this form,
take their additive and multiplicative inverses, add and multiply
again, and so on, 1t would seem that we should encounter more and
more numbers of the system not of thls form, This is not so!

The sum and preduct, additive and multiplicative inverses of num-
bers which can be written in the form a + bi, & and b real,
can be written in the same form. We have not proved this, but
after we complete our discussion of operations with these numbers
you will see how such a proof can be constructed.

The results we have stated imply that if there is any system
which colves our problem then there is a simplest--that i{s, smal-
lest possible--system which Solves the problem, This 1s the system
with the following property.

Propertv C-4

Each clement of C can be written in the form a + b1, where
a and b are real numbers.

We add C-4 to our list of basic properties, thus the system
C which has Properties C-1, C-2, C-3 and C-4 is the system of
complex numbers.,

istorical Note. The adjectives "complex", "imaginary"--and,
by contrast, "real"--which are standard terms sanctioned by years
of use, serve to illustrate the "controversial" nature of our
four fundamental properties. As recently as a hundred years ago
many mathematiclans believed that C-1, €-2, C-3 and C-4 contra-
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dicted one another, that is to say, that there could be no system
with all these properties. The proof that this list of properties
is Just as respectable as that characterizing the "“real" numbers
was achieved tnrough the work of the nineteenth century mathems-
ticians Argand, fauchy and Gauss. {Such a proof i1s outlined in
Section 10.) Our continued use of the classical adjectives serves
to remind us of the old controversy and of the work of the men who
resolved 1¢t.

Exercises 2

1. For each of the fcellowing pairs of number systems state a
property of the first which is not possessed by the second:

(a) 1integers, natural numbers
(b) rational numbers, integers
(¢) real numbers, rational rumbers
(d) complex numbers, real numbers.

2. The f'ollowing equations have solutions in the system of real
numbers if a, b, and ¢ are real numbers, For each equa~
tion name the smallest number system in which the equation
has a solution in the system if &, b, and ¢ are in the
system.

(a) a+ x =b
(b} ax =1bv (a # 0)
(¢) ax + b =c (a #0C)
3. Write each of the following complex numbers in the form
& + p1 where & and b are real numbers.

(a) 1 (e} -1 (e} 3 (g) 1°.
(p) © (¢) 1 (£) @1

4, For each of the following paiss of number systems state a
property of the first whi~h is not possessed by the sccond:

(a)} natural numbers, integers
(p) real numbers, complex numbers.
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5. Iet S Ye the set of all real numbers which can be written
in the form a + %/2, where a and b are rational numbers.
Show that

fa) S 1is not the set of all real numbers.
(Hint: Show that ,/3 1is not in 8.)

{(b) 3 1s closed with respect to addition and multiplication
of real numbers.

(c¢) the additive and multiplicative inverses of a number in
S are also in S,

(a) S, with real addition ancd multiplication as operations,
has all the properties listed in Property C-1.

(e} S 1is the smallest part of the real number system which
has propertles C-1, contains the rational numbsrs, and
contains /2.

3. Addlition, Multiplication and Subtraction.

We now taxe up the task of deducing rules for calculating
with the complex numbers, The remainder of this section is
devoted to theorems which give formulas for the sum, product, and
difference of two complex numbers. We postpone the discussion of
division until Secticn 4,

Theorem 3a. {a + bi) + {(c+ di) = (a + ¢) + (b + alt.
Proct': We suppoce that a + b1 and » + dl are any two given

cemplex numbers, Consider the expression
{a + p1) + (c + d1).

Property €-1 assures us thaet addition In ¢ 13 associative and
commutative; therefore,

(a + rl) + (c+ di) = (a + e)+ (bt + 41},

But Property C-1 also asc:@:rts that the distributive law holds,
so bl + di - (b + d)i. Hence,

(a + L) + {2+ d4¢) (a + ¢} + (b + d)i,

which we were required to prove.

I8
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Theorem 3b. (a + bi)}«.(c + di) = (ac - bd) + (ad + be)i.
Proof: Given complex numbers a + bi and ¢ + di, we consider
the expression

(2 + bi){ec + di).
Using the distributive law once, we obtain
(a + bi){c + di) = a{c + di} + bi{c + 4i).

Applying the distributive law again, and using the commutative
property of multiplication, we have

(a + bi){c + d1) = ac + adi + bel + bdiZ,

But ie = =1, Soc we can write

(& + b1)(c + @81) = a¢ + adl + bel - bd,

Using the commutative property of addition and once again making
use of the distributive law, we obtain

(a + pi){c + di) = ac - bd + (ad + be)i.
This complel.” the proof.

Example 3a. Express the sum of 2 + 31 and 5 + 21 1in the form
a + bi, where a and b are real numbers.

Solution: (2 + 31) + (5 + 21) =(2 + 5) + (3 + 2)1 = 7 + 51,

Example 3b. Exprers the product of 2 + 31 and 5+ 21 1in the
form a + bi, where & and b are real numbers.

2(5) - 3(2) + [2(2) + 3(5)11
10 - 6 + {4 + 15)1¢
4 + 161,

N

Solution: (2 + 31)(5 + 21)

1

H

Example 3c. Express the product of 1, 24, and 1 - 1 1u the
form a + bi, a and b real.

Solution: 1-2% .« (1 -1) = -2(1 - 1) = -2 + 21,

Now we consider subtraction, If z 1s a complex number,
we denote the addlitive inverse of z by -z, <£o0 that by
definition

(3a) z + (-z) = 0.
Also, Just as with Integers, we define Z5 - 2y to be the solu-
tion =z of the equation

el



(3b) 2 + 2 =z,

where Zys 2, are given. (We l-ave as an exercise the procof that
Equation (3b) cannot be satisfiec by more than one complex number
z.) It is easy %o see that z, + (-2;) 1s a solution of Equation
(3b),

2y + {ze + (-zl)] =z, + [(-zl) + 22] = [zl + (-zl)] + 2z,
We have therefore proved
(3c) Zp - Zy = 2y + ('Zl)'

Our problem now is to find -z when =z =a + bl is given.
Iet -z =X +yl, where X and y are real., Since

z+ {(-z) -0

we get
(a + b1) + (x + yi) = 0.

By the theorem on addition (Thecrem 3a) this becomes
(a +x)+(b+y)t=0=0+0.1
and this equation will be satisfied if
a + x =290, b+y=0,

that 1s, if x = -a and y = -b. Thus, (-a) + (-b)1 1is an
additive inverse of a + bi, and since the inverse is unique we
have proved

Theorem 3¢, If a + bl Is a complex number (a and b real),
then 1ts additive inverse is

-{a + vi) = -a + ('b)i'.

We can now summarize our discussion of subtraction in a
theorem,

Theorem 3d. f{a i bi) - {c + d1) = {a - ¢} + {b - a)L.

Proof': Using Formula {3c¢), Theorem 3a and Theorem 3c we have

(a + p1) - (c+d1) = {a + bt) + [-(c + a1)]
= {a + bil) + [(-c) + (-d)1]
={a+ (-c)] + [+ {(-d)11
={a - ¢c)+ (b - d)t.

8 1.



Exercises 3

Express each of the following sums in the form a + bi,
where a2 and b are real numbers:

{(a) (1 + 41) + (3 + 51)

(b} (2 + 61) + (2 - 61)

(e¢) (3 +5B1)+ 21

(d) 4%+ (v + 71)

(e} (V2 + 31) + (21 + 1)

(£) (-1 +51) + 21

(g) 8+ 1

(h}) 3+ (71 - 3)

(1) (5+ 31) + (7 + 21) + (3 - 1)
(3} (3 +21) + (/2 + 71) +.,/31.

Add a complex number to each of the following to make the
Sum a real number. Can this be done in more than one way?

(a) 2 - 51 (e¢) /2 -./314
(b) x - yi (x, y real numbers) (d) -51

Express each of the following products in the form a + bi,
where a and b are real numbers:

(a) (2 + 31)(% + 71) (1) 61 .31

(p) (2 - 31)(6 + 41) (3) 7i(-21)(1 - 61)

(¢) (3 - 1)(1 - 21) (k) (% - 21)(3 - 21)(51)

(¢) 1{(3 + 51) (1) (% - 31)2(2 - 51)

(e) 21(/Z - 1) (m) (2 + 31)(3 - 21)(& - 41)
(£) (8 +,/21)(1 +,/31) (n) (c + di)(x + y1)

(g) (3 + 41)(3 + 41) (cy, d, real numbers)
(n) (1 + £)(1 - 1) (o) (x - yi)(x + yi)

(x, ¥y, real numbers)

Find the additive Inverses of each of the following complex
numbers and express them In the form a + bl, where a and
b are real numbers:

(a) 3 (e) 5 -4

(v) ¢ () -4 - 31

{c) 1 + ¢ (zg) a - vt (a, b real numbers)
(d) 2 + 31 (h) x+ yi (x, y real numbers)



5. Express each of the following differences in the form
g + bl, where a and &t are real numbers:

(a) (7 +111) - (2 +31) (g£) /& -(1-1)

(b) (5 - 61) - (7 - 81) (g) n -7t

(e¢) (3 +51) - (3 - 51) (h) (2 + 31) - (2 - 31)
(d) 1 - (1 + 1) (1) (1 -1) - 21

(e} (/T + 1) -(2+,/29

6. Express the following powers of 1 1in the form a + bl,
where a and b are real numbers.

(a) 13 (¢) 11°
(p) .'Ll‘k (e) i“n+l, n 1is a natural number
(¢c) 17 (¢) 179

7. State a general rule for determining the n-th power of 1
where n 1s a natural number. Explain why the rule works.

8. Express each of the following quantities in the form a + bi,
where a and b are real numbers.

(a) 2y g
(b) i&n+3, n is a natural number

) 31 o+ 41(5 - 1){(5 + 1)
(a) 71({2 - 31) + (41 + 10}]

Y131+ 8) - (21 + 7))

) 3(3+ 21) + (6 + 8L) - 2(2 - 31)

) (b+c-at)(a+c -Dbi)(a+ b ~-ci), wnere a, b, ¢
are real numbers,

(n) (% + -0
(1) {1 - 1)(1 - 2)(1 - 3)
G, Show by substituticn that % +'¢§;j. iz a sclution of the

equation 232 - 32 + 2 = 0.

g, Standard Form of Complex Numbers.

Property C-4 asserts that each member cf C can be expressed
in the form a + bi, where a and b are real numbers. Our
next theorem ctates that this representation is unigue: given any
complex number z, there is only one pair of real numbers a, o

such that z = a ¢+ bl,
10
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Theorem 4., If a, b, ¢, 4 are real numbers, then
a +bl=c¢c+di if and only if a =¢ and b = 4.

Proof: The "if" part of the statement "a + bi = ¢ + di 1if
a8 =c¢ and b =d" is clear, since addition and multiplication
have unique results. We have to prove the "only if" part:
a + bi ¢c+dl only 1f a =c¢ and b = d; that is, if
a + bl ¢ +dl then a =¢ and b = d,
Suppose, accordingly, that a, b, ¢, d are real numbers
and that

Il

H

a + bl = ¢ + di.
Then by the theorem on subtraction {Theorem 3d),

(a ~c) + (b -d)i =0,
and

a-c=-(b~-d)i.

H

We have to show that a = ¢ and b = d, or what is the
same, that a - ¢ =0 and b -d =0. Now if b -d were not
zero, we could write ‘

or
e R

But this would imply that 1 1s a real number since a, b, ¢, d
are real numbers and the difference and quotient of real numbers
are real. Since we know that 1 1s not a real number we con-
clude that » - d = 0. But if b -d =0, then -{b - d)i =0,
and since (a - e¢) = -(b - @)1, 1t follows that a - ¢ = O.
This completes the proof.

Example 4a. Find all pairs of complex numbers X, ¥ for which
2x + 3yl = 6 + 31.

Solution: One solution of the problem is x = 3, y = 1, If the
problem had required that x and y be real, then by the pre -
ceding theorem this would be the only solution. However, since

we permit Xx and y to be complex, the preceding theorem is

not directly applicable, and the equation ma& have other solutions;
X =3+ 31, y =-1 1s a solution, for example.

11
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We can use Theorem 4 to find all complex soluticns of this
equation. ILet x=a +o0l, y =c¢ +di where a, b, ¢c, 4 are
real. Substituting in

2Xx + 3yl = 6 + 31
we get
2(a + b1) + 3(c + di}1 = 6 + 3%,
or
(2a - 3d) + (2b + 3c¢)i = 6 + 31.

Since the expressions in parentheses in the last equation are
real, 1t follows from the preceding theorem that the equatiocn
holds if and only 1f

2a - 3d = 6, 2b + 3¢ = 3;
or
c .3-2b g-2a-6

Here a and b may be assigned values arbitrarily. Thus, all
the solutions of the equation are given by

x=a+bi, y=352b+283-b1’

where a and b are any real numbers,
The representation of a complex number 2z as

Z = a + bi,

where a and Db are real numbers, is called the standard form

of z. Note that =z 3Is real if and only if b = 0., (Why?) We
therefore call a the real part of a + bl. The real number D
1s called the imaginary part of a + bi. Thus, we can say that

a complex number is real if and only if its imaglnary part is
zero. A complex number a + bi in which a = 0 1s called a

pure imaginary number, Thus, a complex number is a pure ilmaginary
number if and only !f its real part 1s zero, DO NCT CONFUSE the
imaginary part of b of the complex number a + bl with the pure

imaginary number bi, Both the real and Imaginary parts of

a + bt are real numbers: they are the real numbers a and D,
respectively. Usually a complex number which is not real 1s
called imaginary.

e 18
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Examples 4b
2 Real part of z _Imaginary part of z Standard form of z
1. © 0 0 0+ 0t
2. 2+ 1 2 1 2+ 14
3. 1-1 1 -1 1+ (-1)1
b, 1 o 1 C+ 11
5. 1f -1 0 -1+ 0t

In these examples only O and ie are real numbers; only 0 and
i are pure imaginary numbers; 2 + i1, 1 -1 and 1 are imagin-
ary numbers.

Exercises &4

1. Find the real and imaginary parts of each of the following
complex numbers:

(a) (1+1)2 (8) WZ - 1)°
(b) 1+ 1% (h) (-1 + /%)%
(e) 2 (1) (4+1) -7
(d) 5 -1 (5) -21®

(e) ox + 31 (k) 31

(£f) a - 21 (1) 21 +1

2. What real numbers must be added to each of the following
complex numbers to make the sum a pure Imaginary number?
Can this be done in more than one way?

() 3+ 21 (¢) 5 -2t
(p) -41 (¢) 5 -,/21

3. Use Theorem %a to find real values for x and y that sat-
isfy the followlng equations:

(a) x - y1 =3+ 61 (f) x -y +(x+y)l =2+ 61
(b) 2x + y1 = 6 (¢) (L +x)+ 1(2-y)=23-141
(¢) x - 5y1 = 201 (h) x+yi =1+ 1°

(d) 8x + 3yl = & - o1 (1) ¥y°4% = 1(1 - x?)

(e) 2x + 3yt - 4 =5x -yt % 81 (J) (x+ 1)% -y

13
14
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4, Express each of the following complex numbers in standard -

form:

(a) 3 +2L + 5+ 1 (r) (&% - 1)(3 - 21)

() (3 -21) - (5 - 21) (g} (1 - 1)(2+ 31)(4 + 21)

(e} 38(4 - 21) (h) (a + b -ci){a+ b + ci),
where &,b,c are real

(d) 6 + 51 - (2 - 31) numbers.

(e) (3 -~ 21)(5 - 21) (1) (x + yi)s, where x and ¥y

are real numbers.

5. Suppose 2z = xXx + yi, where x and y are real numbers,
and z° = 8 + 61. Solve for x and V.

*6,  Suppose, for the sake of this exerecise, that a and b are
complex numbers. Show that a + bl =0 and a - bl =0 if
and only if a =0 and b = 0., Show also that the under-
lined word can be replaced by "or" only when we also assume
that a and b are real numbers,

*T. Show that 1f z; is any non-real complex number, every com-
plex number 2z can be expressed in one and only one way 1n
the form 2z = a + bzl, where a &and b are real numbers,

5, - Division.

We have learned to add, multiply and subtract complex numbers,
We now consider division. According to Property C-1 every com-
plex number other than © has one and only one multiplidative
inverse. We denote the multiplicative inverse of 2z by 1

E, SO
that by definition

1 _
(5a) z .7 = 1.
22
Also, we define o to be the solution of the equation
1
(50) 2y 02 = 2,

when this solution exists. {(We leave as an exercise the proof
that equation 5b cannot be satisfled by more than one complex
number z.) It is easy to see that if =z, # 0, Equation 5b has
the solution ze(éad:

21 (250501 = 211(50)2,) - {2y ())zg = 1oz = 7 -

14
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We have therefore proved

A

2 1
(53) _— = T e e z 5.:’0.
z5 I 1

Our task now 1is tofind the standard form of % when
2 =a + bl 1Is ziven in standard form. Let us begin by consider-
ing a numerical example.

Example 5. If 2z =2 + 31 find 1ts multiplicative inverse
in standard form.

N

Soluticr - We seek a number x + yi (x and y real) satlsfying
(2 + 31)(x + y1) = 1.
If we multiply the factors on the left using the theorem on mul-
tiplication (Theorem 3b) we may write
(2n - 3y) + (3x + 2y)L = 1 + O1.

Hence, from the theorem on standard form (Theorem 4,

2x ~ 3y =1,

3x + 2y = 0,
Eliminating vy, we have
Hence,

-.2 ~ — .
x*lS: J“jg:
and

X + vyl = f% + (—f%)i.

Now we can verify by substitution that

1 > 3
>3 -3t BTyt

We treat the general case in exactly the same way. Suppose
& + bi, 1n standard form, 1s a non-zero complex number, Recall
that this means that at least one of the two real numbers a, b
is not O. 1If there ls a complex number x + yi, X and vy
being real numbers whicﬁ satisfies the equation

(5¢) (a + p1)(x + y1) = 1,
then by completing the multiplication in the left member we get

(ax - by) + (bx + ay)t = 1.

15
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From the theorem on standaru form (Theorem 4), this equation
will be satisfiled if and only if

(5e) ax - by
bx + ay

1,
Q.

p

Thus, our problem is reduced to that of solving two linear
equations with real coefficilents for the real unknowns x and VY.
We gsolve these equations by elimination. Teo eliminate y, mul-
tiply the first equation by a, the second by b, and add.

We get

(32 + be)x = a.
Our assumptlon that a + bl ¥ 0; i.e., that at least one of the
real numbers a, b 1s not zero, tells us that a® 4+ v° # 0.

Hence, we can write

a
X;ﬁ'
a + b

In the same way, we eliminate x from Equations (%e). Multiply-
ing the first equation by by, the second by a, and subtracting
the first from the second, we get

a
(a“ + be)y = -b.
As before, a® + b° # 0, so

V=7

27+ Db
Now by substitution we can verify that

e+ ()t

a + b a< + p°©

is a ocolutlon of Equation (5d) so that it is the unique multipli-
cative inverse of a + bl. We state our conclusion as a theorem.

Theorem H., If a + bl 1s a noen-zere complex number in standard
form, then its multiplicative inverse is

i‘ﬁi’: 2 b (2
a 52 + bg éz + b

~)1.

Now we can combine the results of this section to obtain a
formula for the quotlent of any two complex numbers when the
denominator 1s not 0O, We could state the result as a theorem,
but the statement would te cumbersome. It is better to remember
& procedure which we indicate by an example.

10
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8 + 51
Example 5b, Find the quotient ET?‘%T and express the answer
in standard form,

Solution: By Formula 5c¢,
8 + 51 1
o - (84 (T

2 + 31 137 I3+

Combining these two eguations and using the theorem on multiplica-
tion (Thecorem 4b) we obtain

Sl (84 si)(F+ 1Y

- CEe

By Theorem 5,

a5 the quotient in standard form.

The following relations involving division of complex numbers
can be proved on the basis of Property C-1 just as 1t 1is done for
real numbers.

(5£) 2,2, = 0 1if and only 1f 2, = 0 or 1z, =0 (or both).
z z Z,Z '
1 3 _ 7173
(58) T T, nE % #0, z, #0.
z 2.,  ZyZ, 4 Z,Z.
. 1 23 %1%yt 2%

We leave the proofs of these relations as exerclses. (See
Exercises 5, Problems 7-9.)

Exercises 5

1. Find the multiplicative inverses of each of the following
complex numbers and write them in standard form:

(a) 1 (e) 1+ 1
(b) 5 (£) 2+ 31
(c) 1 (g) 1+ 1°
(d) -1 (h) & - 31

2. Does every complex number have a multiplicative inverse?
3. What complex numbers are their own multiplicative inverscs”?

&, what complex numbers are the additive inverses of thelr

multiplicative inverses?




5 Express the following quotients in standard form:

(a) =T ) 2

x 1 -,/21
1 + i

(c) P (k) L2 3L

t- 1 +/31
(a) lé.%zéi (1) g-{-%%q a,b real, a - bl # O
(e) 32 ha i (m) %Ei:ggﬁ; a,b real, 2a - bl ¥ 0
(r) %—%—%% (n) E%—f—%%; myn real, -m + ni ¥ 0
(g) %}{*%% (o) §§—§—§§5; X,y real, x - yi # 0
(h) 7y

€ Show that if zy # 0, the equation 2,*2 = 2, has no more
than one gsolution,

Te Write in standard form all complex numbers 2 such that
the real part of % is %, and
(&) the imaginary part of z 1is zero.
(b} the imaginary part of z is %.

(c) the imaginary part of z is 1.

8. Prove that z,z, = 0 if and only if 2, =0, or z, =0,
or both are zero.
z z z2.2
POV = . 333
g, Ilrove that . T = e s if Z, £ 0, Z, # 0.
z z 2.2, + Z 2
1 3 194 273
*10. Prove that ==+ —= = « 1T z_ £ 0 z, # 0.
Zo  Zy 2,2y 2 ! 4

11, Make use of the formulas in Problems 9 and 10 to obtain the
following sums and products. Write the answers you obtain

In standard form,

1 + 4 1 -1 e - 31 3 + 41
() y7=7 + =7 (6) ST=7+ 5013
2 1

1l + 24 - a + bil,2 a - bi,2
(®) =7+ = () GF—=)° + (F+¥7)
() 2 + 301 7 - 261 a+biF0, & -bLtF£0
¢/ TTEL 3 - 41

18




%12, Show that the words "in atandard form" _may be omitted in
Theorem 5 1f we suppose mersly that a“ + pe £ 0.

6. Quadratic Equations.

We come now to & crucial test {or the complex number system,
Does it permit us to solve equations of the form

(6a) az® + bz + ¢ = 0,
where a, b, ¢, are real numbers and
(Ev) w2 - hac <07

Let us first find the solutions of the quadratic equation on
which we have so far focused our attention:

(6c) 2 + 1 =o0.

If 2 1is an arbltrary complex number, we have

2° + 1 =2° < (~1) =22 - 12 = (2 - 1)(z + 1).

This factorization of zg + 1 shows that 1f 2z 1is a complex
number satisfying Equation (6c), then one of the factors
{z - 1), {2 +1) must be zero, and z must be either 1 or -i.
Conversely, we see that 1 and -1 both satisfy Equation (6c).
Therefore, we conclude that the solutions of Equation (6c) are
i, -Li.

Equation (6¢) is a special case of the Equation

(6a) 22 = r,

We know that if r 18 real and positive this equation has two
real sclutions. We have Just ceen that for a special negative
value of r; namely, r = -1, this equation has two non-real com-
plex solutions, { and -i. Letf us next consider the general
case in which r s negative.

If r s real and negative, then -r is real and positive,
and ,/-r s defined. We have

- (-1)(-r) = (1)%(/T)? = (1/7)°
and hence,

a3
o

2% - r = 2° - (1758 < (2 - TRz + L/TE).

ERE



Just as in the discussion of Equation (6¢), we conclude that
Equation (0d) has the two solutions 4/-¢, -1/°7, when r is
real and negative,

For tae case In whizh r is real and positive we introduced
the notation yﬁF to describe the solution set of Equation (6d):
cne solution is J/F¥ and the second +/T. It would be desirable
to extend the definition of ,/r for negative real r so that the
descriptlion of the soluticn set of Equation {6d) would be the same
for all r. The question is which of the two solutions 4/-7,
-3/-r shall we take to be /T if r 18 negative?

It chould be clear that we have the problem of defining ,/T
unambiguously for positive r. The problem is resolved by defin-
ing /T to be the non-negative solution of Equation {6d). The
requlrement that ,/r be non-negative is simply an agreement
adopted to make the meaning of /T definite. However, this
agreement makes no sense i1f the solutions of Equation (6d) are
complex. We have not defined "positive" and "negative" for non-
real complex numbers, and cannot define these terms for complex
numbers in a way which iz consistent with thelr usual meaning.

We muct make a new agreement for the case of negative r, Any
agreement which definltely selects one of the solutions 1i/-r,
-1/-r of Equation {0d) will be satisfactory. We choose

J/T = L/°T, and accordingly make the following definition:

Detinition “a. Let r be any real number, We define ,/T as
follows: '

(1) If r >0, then /T 1is the unlque non-negative real
number w sSuch that w2 = 1,

(2) If r <O, then T = 4/-r .
Example ta,
B VT - 4T -
JTE - TE - /3
WIS LW TLE = Y. Ty
Example ©b. Find the product {(/-5)(/-15).

Solution: We have

VBN TE) = (5N(L/T5) = 15/5/15 - /75

20
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Note that 1t is not correct to say

WIS TE) =/ TB-15T = /75.
The statement ,ﬁgvf_ = /TS has been proved only for the case in
which r and s are both positive. The statement 1s also true
1f r and s have opposite signs (Exercises 5, Problem 5), but
as the foregoing example shows, 1t 1s false if both r and s
are negative,

Example §c. Find the product (/r){/r°) 1f r 1is any real
number.

Solution: We have to consider two cases. If r > O we have

r~ >0, and
A/E/;g =4/r-rE =~/§E = r2.

If r < O we have r3 < 0, and

S/ = (/NI = 1B A (00) = e = R

Now that we have glven an unambiguous meaning to /T for
each real number r, we state as & theorem our previous con-
clusions about equaticns of the form 22 = r, where »r 1is any

given real number.

gorem fa. If r 1is any given real number, the equation
z° = r nas the roots ,/r and +/r, and no others.
We now turn to the sclution of the general quadratic equa-
tion
(Ce) aze + bz +e¢c=90, &, b, ¢ real and a ¥ O.

Recall that we were led to our study of complex numbers because
we failed to find real solutions of Equation (0e) when 1ts dis-
criminant bg - 4ae 1is negatlve.

Theorem Ob, The equation

az® + bz + ¢ = 0, a, b, ¢ real and a ¥ O,

has the solutlons

-b +q/£§ - kae -b —q/gé - hac

2a ! 2a

and no others.
There 15 nothing new if b° - 4ac > 0; this is the case of
real solutions. We now prove that the formula holds if

21
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hg - kae < 0, although in this case the solutions will not be

real. ‘
Divide by a and complete the square.

2 2

2 b b ¢ o)
2% + =2 + = - -+
60) TR
of
(Z + l)g _ bg - 4&2
2’ - &az |

We now have Theorem 6a which tells us that Equation (6f) has
{complex) solutions whether b° - bac 1is positive, negative, or
zero.

Applying Theorem 6a, we obtain

z + 2 . [b- - Kac or 2z + 2 . _4fb_ - 4ac .
R - Vi
-b +w/bg - kgc -b - w/bz - hae

SEC Z = éa or Z = Qa .

The proof of Theorem Ob can be completed by shov : 7 that the
numbers obtalned actually satisfy the equation.

Example Qg. Find the solutlions of 22 + 2 + 1 = Q.

Solution: a = b = ¢ = 1. By Theorem Ob the solutions are

-1 + /=3 -1+ /3
o] - 2

and _l_mm_l-zz
2 - 2
Other statements about the relation between the solutions
and coeffliclents of a quadratic equation can be established. In
particular, if zq and z, are the complex soclutions of the

equation ‘
332 + bz + ¢ =0,
then
(bg) z; 4 4y - %? s By i = § ;
and
(Eh) az® ¢ bz + o - alc - zl)(z - 22)

The proof's are left as exerclses,

o
o
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Exercises 6

Perform the 1lndicated operations and write the answers you
obtain in standard form.

VT + /T (e) /T -8/
(6) +/5 - &7 (£) L%
() WZ+5/B-/TB  (g) L=

(a) &/~F /-5 (h) &7

Write each of the following complex numbers in standard form.
Assume ¢ 15 a real number.

(a) ¥/~(2)? (e) wf-c)?
(5) v(-2)° (£) WP
(c) vi(-2)? (g) /(-0)?
(a) /o8

Perform the indicated operations and write the answers you
obtain In standard form. Assume & and b are positive
real numbers,

(a) /a2 + 3/ 00 (q) 542"

3a/-a
(v) v/ a® « /tas (e) 1/32a® - /50a
VEWT +4/F) () v -/ a°

() 4/-a° - 2ab - v° + /~(a + b)°

Examine the proof that 4/@b =43/t 1f a and b are
non-negative real numbers, and explalin why the same argumoent
cannot be used when a and b are negative,

Show that If r < O and s > 0, then 4/Q/s =4/5.

ha

-
-~
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In each

express

6. z°

7. 2°

8. 22

g. zg

10. 3z°
11, z°

18.

The equation 23 - 8 =0 has the solution 2.

of Problems 6-17 solve the given quadratic equation and

the solutions in standard fomm.

+1=20 12, z° -4z +8=0

+2z2-1=0 13. 22° + z2+1=20

+ 22 +2 =0 14, 2% - 4z - 8 =0 (a real)
-z24+1=0 15. mz2+z+%=o(mreal,m7{o)
+ 22 + 4 =0 16, 2° -1z + 2 =0

2

+ 4z + 8 =0 17. az“ + ¢ = 0 {a,c real, a#0)

Show that

z — 2 1is a factor of z° - 8, and ure this fact to find
two more solutions of the equation.

*1G.

where a, b, ¢

21
*20. If

8.22

holds for every element =z
provides a "factorization" of the expression az®

21.
of

(a)
(o)
(e)
(d)

*22.

form,

Suppose z

Solve the equation z— = 1,

are the sclutions of az2
Show that

and 22

are real and a ¥ O.
and

1 + bz +c¢c =0,

+ 2

2° 7

2120 = g7 *

and Z, are the solutions of the equation

show that the equation

21
+ bz + ¢ =0

2
az“ + bz + ¢ = a(z - zl)(z - 22)

of C. (This formula therefore

+ bz + c.)

Find the quadratic equatlions which have the following pairs

solutions:

1-1,

Z zg =1 4+ 1

™
I
(=4
LY
&)
1}

4
o I I R S Ry
i
O
‘e
N
[}V
@

=a i; a being

9

11 bli, z2 = 32 + b2

y four given real numbers.
2

17 P1s 8ps P
a
[Hint: Writing 2z 1in standard

zZ = X + yl, the given equation is equivalent to a

pair of equations whose unknowns are real numbers:

2
X

2

-y =0, 2xy = 1l.]

30



*23. Scolve the equation 22 = -1,

*24, Find an equation whose solutions are 1+ 21, 1 -1, 1 + 1.
Is there a quadratic equaticn having these numbers as solu-
tiens? If there 1s one, find it. If there is none, prove
that there 1s none.

Te Graphical Representation: Absolute Value.

According to Property C-4 and Theorem 4 each complex number
Zz may be written in one and only one way in the standard form
a4 + bi, where a and b are real‘numbers. Thus, each complex
number =z determines, and is determined by, an ordered pair
(a,b) of real numbers: a 1is the real part of z, b the
imaginary part of =z.

Recalling that ordered pairs of real numbers formed the
starting point of ccordinate geometry, we find that we are able
to represent the complex numbers by points in the xy-plane. We
agree to assoclate =z with the point (a,b) 1if and only if
2 =a+ bi, 1in standard form, and we set up a one-to-one corres-
pondence between the elements of C and the points of the
Xy-plane,

It is customary to use the expression "Argand diagram" to
describe the pictures obtained when the peint (a,b) of the
Xy-plane is used to represent the complex number & + bi given
in standard form. Figure 7a is an example of an Argand diagram
showing three points (0,0), (%4,-5), (-4%,3) and the complex
numbers they represent. Note that
polnts on the x-axis correspond v
to realnumbers and points on z = ~4 + 31
the y-axis correspond to pure ’
imaginary numbers. For the z=04+01 x
sake of brevity we shall often
say "the point z = x + yi" in- .
stead of "the point (x,y) z=4%+(-5)1
corresponding to the complex
number z = x + yi."

Figure Ta
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The geometric representation of complex numbers by means of
an Argand diagram serves a double purpose. It enables us to
interpret statements about complex numbers gecmetrically and to
express geometric statements in terms of complex numbers. As a
first example, consider the formula for the coordinates of the
midpoint of & line segment: The midpoint of the segment Jolning
(xl,yl) and (xe,yg) is the point (x,y) given by the formulas

Xy + X V. + Y
1 2 1
(?&) x='—T—_: yz_‘—é_a-
In terms of complex numbers this may be stated: The midpoint of
the segment Joining the points 2, =Xy + yli_ and 2y = X5 + yzi
is the point =z = x + y1 glven by

+ 2

(7b) . ZET‘

Note that we can express in one "complex" equation a statement
which requires two "real"” equations.

Now we can use Equation (7b) to establish a geometric inter-
pretation of addition of complex numbers. ILet zq and Z5 be
two complex numbers and suppose that the points O, Zys zg are
not collinear. Let 23 = zl + zg and consider the gquadrilateral

whose vertices are 0, Z;, Z,s Zg (Figure 7b). The midpoint of

the dlagonal from 2z, to z, Z,mZ, 12
Zy + 25

1s = ; that of the dilagonal Z

from 0O to z4 is

0+ Z i 33 B 24 + 22 2,

—s -2 -2

Hence, the diagonals have a common 0

midpoint. Since the diagonals of the Figure 7b

quadrilateral bisect each other, the figure 1s a parallelogram.
Thus, we have a gecometrical construction for the sum of two com-
plex numbers: If two complex numbers arc plotted in an Argand
diagram, their sum is the complex number corresponding to the
‘fourth vertex of the parallelogram whose other three vertlces are
the origin and the two given points (and which has the segments
Joining =z, and z, to the origin as sides.)



When the points 0, 2y, 2, Aare collinear the parallelogram
collapses into a straight line and cur construction fails. We
shall discuss this caye later.

Next we consider the geometric construction of the difference
z5 - 27 Of two complex numbers. Since 2y = 2y =2, + (~zl) we
have only to find a geometric construction of the additive inverse
-z of the complex number 2. By equation (7b) the midpoint of
the segment Joining 2z and -z is

zxl2) 0.,

that is, the midpoint is the origin. Thus, if a complex number is
plotted in an Argand diagram, its additive inverse is the complex
number corresponding to the point symmetric to the given point
with respect to the origin (Figure Tc).
We could now describe geometric
constructions for the preoduct and
quotient of complex numbers but
these constructions are not very
illuminating. After we have studied
trigonometry and the relation between
complex numbers and trigonometry we -z
will be able to state simple and
elegant geometric interpretations of
these operations, Figure 7¢

Example 7a. Given zy =3 +1, and 2, = 2 - 21, make use of
an Argand dlagram to {ind the difference Zy - Zye

Solution: Begin by plotting 24 and

2. Then locate the additive inverse

of Zgs namely “Z,. This 1s easily -2

done since we know that 25 and 25 x,

are symmetric with respect to the

origin., The point 2y - 25 is the N

same as z; + (—ze}. (See Figure 74.) v z,
The geometric representatlon of

complex numbers suggests a definition Figure 74

L+ (-}

of absolute value of a complex number, Recall that when real
numbers are represented by points on a iine, the absolute value
of & real number is equal to 1ts distance from the oripgin.




Accordingly, we define the absolute value [z| of a complex
number z =& + bi to be the distance from the origin to the
point (a,b). Using the distance formula our definition may be
stated algebraically as follows:

Definition 7a. If z =a + bi, where a and b are real

numbers, we write
[z] =4\/9.E + b2 s

and call {z| the absolute value of 2,

Example 7b. Show that the distance between the points =z and

z, 1is izg -z, 1.

1

Solution: If zy =X ¢ yli, 2y = X5 + yli where X1s Yys Xp»
¥ are real numbers, then by the theorem on subtraction

zZy ~ 2 = (xe - xl) + (yE - yl)i.
By the definition of absolute value

}32 - zl! =A/(;2 - xl)a + (Ye - Yl)g
and this is the distance between the points (xl, yl) and
(xa.v Yg)-
wWhen zy and z, are real numbers we know the followlng
relations involving absolute value and the algebralc operatlons:

(TC) !Zl'Zé} = lzll tzgt
o) EN

() 1T

(7¢) 2y + 2,] < 12,1 + i2,]

(75) 2,1 - lzol| < 12y - 2yl

These relations continue to hold when and zg are complex

z
numbers. Formulas (7c) and (7d) can be éroved by calculation
(Exercises 7, Problems 8-9), although we will present simpler
proofs in the next section.

The algebralc proof of Formula {7e) 1s quite difficult but
we can give an easy geometrlc proof., Consider the triangle whose

vertices are O, 2ys 23 * 25 in Figure 7b. The lengths of its

28



sides are {zll, Ezei, lzl + zei. Why? Since the length of a
side of a triangle is less than the sum of the lengths of the
other two sides, we have

[z, + 251 < |z;] + 2,1,

We will show later that when the parallelogram collapses into &
straight line we have either the inequality above or the equation

lz; + 250 = |z, + 2,1,
This will complete the proof of Formula (7e), which is often
called the "triangle inequality"., The discussion of (7f) 1is left
as an exercise (Exercises 7, Problem 10).
For further discussion of the algebra and geometry of com-

plex numbers 1t 1s convenient to introduce the notion of complex
conjugate, We do this in the next section.

Exercises 7

1. Plot each of the following complex numbers in an Argand
diagram. ILabel the points with fthe symbols Zys Zos ete.

(a) z; =1 (e) Zg = 2+ 1

(v) Zy = 1 (£f) zg= -4 - 21
() z5=-1 (8) 27 =42 -1
(a) 2z, = -1 (h) Z2g =T - /31

2. Plot the additive inverse of each complex number in
Problem 1. Label the point that corresponds to z, with
the symbol ~Z1s ete.

3. In each of the following problems find z, + 2, and
Z1 = 2o and also construct them graphically.

(a) zy =1+ 14, Zp =2 + 1
{b) z; = 3+ 21, Z, =2+ 31
{c) z; = -1 + 21, Z, =2 -1
(a) zy = =3 + 41, Z, = -1 - 31
(e) z; = -3 + 1, 2y = 1+ 4
(r) z, = -1, Z, = 2 - 4y
(S) zl = 3: 22 = -3 + 51
{(h) z, = 4, 2, = -41
29




1C.

11,

i2.

Tet 215 2o eees Zg be the points given in Problem 1. Use
EQuation Tt to find the midpoints of the segments Jjoining

25 and 25, Zq and Zgs 2y and 27, and plot the points
in an Argand diagran.

Find |z] 1if:

(a) 2z =3 - 41 (d) = 14 410

(b) z = -24 (e) z =1 +4/21
(¢) z =1+ 1°

h

i

P4

Show that if z ¥ O, !TET = 1,

Find the set of points described by each of the following
equations

— ey == z
(a) z =1 (o) z = |z| (¢) 2z =157
Give an algebralc proof of the equality
lzlzei = {zll"zef:
if 2y and z, are complex numbers,

Give an algebraic proof of the equality

|Z2] °

if 2z; and 2z, are complex numbers, and Zg # 0,

Z5

Give a geometric proof of the inequality

<

Zl - 22& .
1 =&+t bi, z, = ¢+ di are collinear. If
23 = 2y + 25 show that = lies on the line through 0,

IENIENEN
Suppose 0, z

245 and 22' :
Prove that the triangle with vertices 0, 1, z 1s similar
to the triangle with vertices 0, z, z2 by showing that
corresponding sides are proportional, (Hint: Note that
the length of each side of the second triangle is equal to
|z] multiplied by the length of each side of the first
triangle.) Use the result to describe a geometric con-

struction for 22.
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8. Complex Conjugate.

Definition 8a, If 2z =a + bi, 1in standard form (2 and b real),

we call a + (-b)i the complex conjugate, or simply the conjugate
of z, and write '

2=8+F 01 =a+ (-b)i.
Since a + (-b)i = a - bl we may also write

Z=8 +DLl =a - bi,

Example 8a. 2 + 31 = 2 - 31; (%) = -1 = 1,

It 1s easy to see that the conjugate of the conjugate of a com-
plex number is the complex number itself. If z = a + bi in
standard form, we have

(z) =(a + L) =a -bi =a + bl
go that

(8a) 2 =2z,

Thus, 1f the first of two numbers is the conjugate of the second,
then the second is the conjugate of the first. We call such &
pair of numbers conjugate,

Although we have not used the term"conjugate" before, con-
Jugates of complex numbers have appeared in many of our statements
about complex numbers. Thus, for example, the solutions of a
quadratic equation with negative discriminant are conjugate, Also,
the formula for the multiplicative inverse of z = a + bl can be
written

1 -8 + {-b)i . 2
a + ol a“ + b [z{E
or
8 1.2,
(8b) = —Q(ZI

From Equation (8b) we get immediately
(8c) z+T = |z]?,

* This last equation 1is important enough to deserve statement as a
theorem and a new proof,
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Theorem Sa. ZeZT = Izla.

Proof: If z =& + bl in standard form, then
2.2 2 2(

z+% = (a +bt)(a - b1) = a2 - (b1)® = a2 - b1 = a-p
= a% 4+ b2 = (\/aE + 12)° = [zle.

Now that we have proved Equaticn {8c) independently of
Equation (8b) we can derive (8b) from (8c). In fact, it is con-
venient to use Theorem 8a directly in dividing complex numbers. :
T™he following example is illustrative.

-1)

Example 8b. Find the quotient %—E—%% .

Solution: The conjugate of 2 + 31 1is 2 - 31. Multiplying
+ by S—E—%é, and using Theorem 8a and Equation 5f, we get

+
8 + 51 _ 2 - 31 + 51 (2 - 31)(8 + 1
2 + a1 - 381 § + gi

_(2)(8) - 15)(r3) + ES(&3),+ 2(4)]1

2 + 3
- 4
- E (P -F - Hr
If we plot z and z in an Argand diagram (Figure 8a),
Y
-2 = -3 + bl R L R R R e Z =a+ bl
1
1
t
t
T X
]
t
t
‘ —-—
z2 =8 ~ bl
Figure 8a

we see that z 13 the reflection of z in the x-axis; that is,
z and z are symmetric with respect to the x-axis, Similarly,
-z 1is the reflection of z in the y-axis, From this diagram,
or by direct calculation, we also see that z + 2 = 2a and

z - Z = 2bi, With these equations we can express a and b in
terms of z and z. We thus obtain the following theorem:
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Theorem 8b, If 2z = a + b4 in standard form, then

zZ+2=2a, 2z -2 =2bi;
or
a

W

T+ 2), b=HT-z).

Cbserve that since a complex number is real if and only if its
imaginary part 1s 0O and pure imaginary if and only if its real
part is O, Theorem 8b has the following corollary.

Gorollary. The complex number 2z 4is real if and only if z = 2
and pure imaginary if and only if 2z = -z,

Theorem &b permits us tc state any relation between the real
and imaginary parts of a complex number 2z as a relation between
z and z. In particular, many statements of analytic geometry
can be expressed as a relation of this kind. Before considering
examples we state the following theorem which simplifies the com-
putation of conjugates.

Theorem 8c., If 2 and z, are any complex numbers, then

(a) Z) 2y = 2] + 2,
(v) Z) "2y =%y *Z, 5
(e) 2y -2, = 2y - Z, ;

(a) <§-j§-> i

The proofs are left as exercises (Exercises 8, Problem 5).

gxample 8c. Show that, for any 2z, the reflection of the point
31z + 2 1in the x-axis is the point -3iZ + 2.

Solution: The reflection of a point 31z + 2 1in the x-axis is
1ts conjugate, 31z + 2. Using Theorem 8c twice we obtain

31z + @ = (31)(z) + 2 = (31)(z) + 2
=317 + 2,
which was to be shown.

Example 8d. Show that the circle of radius 1 with center at
the origin is the set of all points z which satisfy the equation

2z =1,

33
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Selution: There are two possible approaches, We can start with
the definition of this circle as the set of points whose distance
from the origin is 1, and use the fact that the distance of the
point 2z = x + yi from the origin is |z|. Then =z 1s on the
circle if and only if

z] = 1.
Squaring both sides of this equation and using Theorem &a we get

Z 2 = !z!g -1,

However, we can also start with the equation of the circle
from analytic geometry:

xe + ye = 1,

If 2 =X + yi then by Theorem &b

X = %(z +2Z), y= é(z -Z).

Substituting for x and y, we obtain

[3(Z + 2)1% + [3(Z - 2)1° = 1,
or
HZ + 2)% - T - 2)% = 1.
Simplifying, we have
z-.z2 =1,

Example Be. Show that the segments which join the points
Z; = X3+ yli and Zy = X5t ygi to the origin are perpendicular
if and only if the product Zq -!é is pure imaginary.

Solution: Again, there are two apprcaches. We can either express
the geometric conditions immediately in terms of 2, and 25 OO
state them first in terms of (xl,yl) and (xe,yg), and then use
Theorem 8b. We will follow the first approach.

The segments Joining zy and 2 to the origin will be per-
pendicular if and only if the_triansle with vertices O, 215 Zp
i1s a right trlangle. By the Pythagorean Theorem this will be true
if and only if

12, 1% + 12y1% = [z - 2,]°
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Using Theorems 8a and 8c this equation mey be written

171 * 2325 = (2] - 2 (Z] = 2p) » (21 - 2,)(2] - F3)

0

E.- ———

z,2, + 2525 = 224 - 3122 - 252 + LIRS
0= -2122 - zezl

or, using Theorem 8c again and referring to Equation (72),

212, = 2.2, = —(zlzg).

By the Corollary to Theorem 8b this equation can hold if and only
if the product ZIEE 1s pure imaginary,

Flnally, we can use Theorems 8 and 8c to establish
Formulas 7c¢, 7d. We do the first as an example,

Example 8f. Show that |z, 2ol = lzq]lz,1.

Solution: Since the numbers in the equation which is to be estab-
lished are positive, it will suffice to prove
|2y + 2,1 = [2.1%12,1%.  (imy?) we have

2 — e
|2, - 2z, (25 25)12772,] = (zy-2,) - (z]°23)
— — 2, 2
= (zl'zl)(zg‘ze) = Izll 122f .
Thils completes the proof.

Exercises 8

1. Express the conjugate of each of the following complex
numbers in standard form:

(a) 2+ 31 (d) -5 (g) m’

(p) -3+ 21 (e} -21 (h) 4 + 16

(¢) 1 -1 (£) 1 -1° (1) -3t + 31°
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Use

conjugates to compute the following quotients. Write the

answer in standard fomm.

(a)
(v)
(e)
(d)
(e)
(f)

2 + & -5 4+ 61
T (8) Z%tf
3 - 61

s (n) S
-1 + 1 )
e+ 5 () 3 +451
-4 4+ 31 (1) 3 ==
2+ 3t 5 -/-3
6
Tt (o) eI
V3 -/
3 + 24 3 _ 1
e (1 =2

(m) 5%—%—%%1 ; a,b real, 2a + 3bi # O

(n) H; X,y real, 2x - yi #0

1 (-1 + + {2 - 1
(o) L1+ 1) +_2§3 b )

21
(p) T - L)L - 2)(L - 3)

each of the following sketch in an Argand dlagram the
of complex numbers 2z which satisfy the given equatiocn.

=2 =_1
2 =3 (v) =z = -

each of the following sketeh in an Argand dilagram the
of points 2z that satisfies che given equation.

z + 2z = 3 (b z -z =21 (¢) z-Z=3+21

zq = X + yli, 22 = yei be any complex numbers,
Yis %55 Vo real., Prove each of the following.

Zq 2y
Z, ¥ 25 = 27 ¥ 25 (a) (E_) = =~ [Hint: Show that
2 4
. - - 2
217%2 T %1°%2 .1
= L - —) = = and use (b).]
2y T3 7% "2 22" Z:

n

{Hint: Show that T-éej = -(%
and use (a).]

no
Ne®
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10.

or

11,

12.

13,

14,

15,

For any 2z, find the reflection of the point
2% < (3+ 21)2° + 51z - 7 1in the y-axis.

Ir 22 = (E)E, show that 2z 1s either real or pure
imaginary.

Show_that the product zlEE' is pure imaginary if and only

ir E& is pure imaginary.
e
2 2 2 2
Prove that |z, - 22{ + [zl + zei = elel + 2[22l .

Suppoese zq and z, are complex numbers and that

zl + 22 and 2122

are real numbers. Show that

elither
Zq and z, are real,
Zl = 22 .
Use the relation z .z = [z!g to show that
gl _lal
22 ’22[

Write the equatlon of the straight line y = 3x + 2 as an
equation in z and zZ.

Show that if X # C 1s any complex number and C 1s any
real number, then Kz + Kz = C 1s the equation of a straight
line.

Show that the points zy and Zn
to the 1line y = x 1f and only 1if

are symmetric with respect

(1 - i)zl + {1 + 1)22 = 0,

What 1s the relation between the line segments Joining

and 2z, to the origin if the product zlEg 1s real?

21 2




g. Polynomial Equations,

Linear and quadratic equations are special cases of polyno-

mial equations. A polynomial is an expression of the form

_ n n-1l 2
(ca) P(z) = a2 +‘alz t oo ta, 2548 g2+ a
where n 1is a non-negative integer and 815 815 8ps evey a._1s @
are any given complex numbers, &) # 0. The non-negative integer
n 1s called the degree of the polynomial and the numbers ags 8y,
8y soey 8o 15 a are called its coefficients. A polynomial
equation of degree n 1s an equation

(9b) P(Z) = 0,

n

where P(z) 1is a polynomial of degree n, Linear equations are
polynomial equations of degree 1; quadratic equations are poly-
nomial equations of degree 2.

Examples Ya.
(a) 2z° - 322, z -2=0 1is a polynomial equation of
5
degree 3 with rational coefficients.

(b) zb —\/§z3 + 732 - 3 =0 1s a polynomial equation of
degree 5 with real coefficients.

(c) 23 - W/z + 3 =0 1is not a polynomial equation.

(a) 523 -{2-1)z+ (3+71) =0 1s a polynomial equation

of degree 3 with complex coefficients.

(e) z -3 +-%§ = 0 1s not a polynomial equation, but

b/
mgltiplying by z2 we obtain the polynomial equation
33 - 322 + 1 = 0. Every solution of the first equation
is8 a solution of the second, and every solution of the

cecond equation is a solution of the first.

Ordinary algebra 1s mostly concerned with the solution of
polynomial equations., Let us summarize some of the advantages
that the complex number system € has over the real number
system R 1n connection with polynomial equations.

There are certaln quadratic equations whose coefficients are
in R but which have no solutions in R; every such equation
has solutions in C. This was proved in Section & for the case
of real coefflcients, but 1t is true even If the coefficients
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are complex numbers., For example, the equation
22+ (1 - 51)z - (12 + 51) = O

has the two solutions 2 + 31 and -3 + 21, a fact which may be
checked by substitutlion. Methods for finding such solutions are
beyond the scope of this pamphlet. The theorem that the solutions
of any quadratic equation with complex coefficients are complex
numbers is an unexpected and remarkable result. It shows us that
we will not have to extend the complex number system in order to
solve quadratic equations whose coefficients are in €. Recall
that R does not have this property; indeed it was Just for this
reason that we extended R to C.

But the merits of C go far beyond this. Every polynomial
equation with coefficients in € has solutions in C, and indeed
all the solutions that could be expected are in C. This result,
which 1s known as the Fundamental Theorem of Algebra, comes as an
enormous bonus, when we recall that to solve the simple equation

x2 = -1 fhe new element 1 had to be invented., Conceivably,

cne might expect to need a new number J <to solve x4 = ~1, for
example. This 1s not the case! This equation has four and only
four complex solutions, all of the form & + bi, where a and b
are real numbers. (See Exercises 9.)

The first proof of the Fundamental Theorem was gilven by Gauss
in 1798. Since then several other proofs have been developed and
although some are qulte simple, none 1s simple enough to be pre-
sented here. We shall, however, make a precise statement of the

theorem in a form which 1s basic for the study of polynomials.

Theorem 9. Let

P(z) - a n n-1 2

A -+ A se s T =z + Z +
1 a1 T &n-2 én-1 %n

be a polynomial of degree n with complex coefficients, Then
there exlist n complex numbers Ty Toy eeey T (not necessarily
distinct) such that

P(z) = ao(z - rl)(z - re)...(z - rn).

If one of the factors in the factorization of P(z) stated in
Theorem 9 is z - r, r 1s called a zero of P(z); if exactly
m of these factors are z - r, r 1s called a zero of multi-

plicity m. A zero 1s called a simple zero if its multiplicity
is one; otherwise, 1t 1s called a multiple zero. Since the total

[9%]
\&

-
.
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number of factors in Theorem S is n, the sum of the multipli-
citles of the zeros of a polynomial of degree n is n. This
- may also be stated: The number of zeros, each counted with its
multiplicity, of a polynomial of degree n 1s n.,

Since a product 1s O 1if and only if one of its factors is
O, 1t 1is clear that 2z 1s a solution of the polynomial equation

P(z) = O

if and only 1f 2z equals one of the zeros of P(z). According to
Theorem 9 a polynomial of degree n > O has at least one zero
(exactly one if P = Th = ea. = rn) and may have as many as n
zeros (exactly n 1if no two of the numbers Y, Tpsy ... T, are
equal). It follows that every polynomial equation of degree

n >0 has at least one complex solution, and may have as many as
n solutlons, but has no more than n sclutions,

Example 9b. Discuss the possible number of solutions of a poly-
nomial equation of degree 3. Include examples.

Solution: The equation may have 1, 2, or 3 solutions. If it
has one solutlon, this must be a triple zero (zero of multipliclity
3) of the polynomial. If it has two solutions, one must be a
simple zero, the other a double zero (zero of multiplicity 2) of
the polynomial. If it has three soclutions, each must be a simple
zero of the pclynomial.

An example of the first case is given by the polynomial
equation

23 - 32° 1 3x - 1= (z - 1)3 =0,
1.

The only solution of the equation is z =
of the polynomial 23 - 322 + 3z ~ 1.

1 1is a triple zero

The equation

23 -z - 2 t+ 1= (z+ 1)z - 1)2 =0

has the colutions 1, -1, -1 1s a simple zero and 1 a double
zero,
The equation

27+ z - z(z - )z +1) =0

has the solutions O, 1, -1, Each 1is a simple zero of 33 vz,
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Let P(z) be a polynomial of degree n,
P(z) = a_(z - r )z - ry)...(z - r ),
and define Q(z) by
Q(Z) = ao(z - re)--.(z - I‘n)-

Then Q(z) is a pclynomial of degree n - 1 whose zeros are the
zerocs of P(z), except possibly for r,, and

P(z) = (z - r)a(z).

Now suppose we have to determine the zeros of P{(z) and that we
have found one zero, ry. The remaining zeros will be the zeros
of Q(z) and to find Q(z) we have only to divide P(z) by

z ~ rl, since
_PE)_:Q(Z).

Z-I‘l

This fact enables us to reduce the solution of a polynomial
equatlion of degree n to the solution of an equation of degree

n -1 once we have detemined one solution of the original equa-
tlon. The following example illustrates this,

Example Sc. Find all solutions of the equation z3 -1 =0,

Solutlion: The solutions of the equation are the zeros of 33 - 1.
One zero is obviously 1. We divide 23 -1 by z -1:
zg + 2 + 1
z - 1] z3 -1
3 2
z2° -z
z:
2
zZ- -z
z
z -~ 1
-0

The remaining solutions thus are the zeros of 22 + Z + 1, that
is, the solutions of
22 + 2 +1=0,
L
Solving this quadratlic equation we get the roots -5+ b 5

%% - i\ég- . Thus, the solutions of the gilven equations are 1,
1 &é; 1 553
-§+ ,—§ -~ o
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In this example we observe that, as in the case of quadratic
equations, the complex roots are conjugate. We can show that
whenever the coefficients of a polynomial equation are real the
complex solutions occur in conjugate pairs; that is, 1if 2z 1s
a solution of such an equation, z 1is also a solution. Let =z
be.a solution of

az" +a zn'l + ... + 8

o 1 z+a = 0.

n-1

n n-1i
“ m LN N ] =
Then we have a2z + a;2 + ta, 4z +a, = 0 = 0,

and using Theorem 7c repeatedly we get

T\ | TTyn-1 —_— -_
a (z)" + a,{z) + w43 _(2) +3 =0.
Since the coefficlents are real, aj = 3y 8y = 8y, eevy B 178) 19
a, = &, and we have
=\ —=\n-1 - _
ao(z) + al(z) + ... +a, jZ+a, =0,

so that z 1s also a solution of the equation.

Exercises G

1. De.termine the zeros and the multiplicity of each zero for
fne following polynomials.

(a) 5(z - 1)(z + 2)°
(v) 2%z + Bz - 3)
(¢) (z - 3+ 21)%(z + 1)°
2. Find the zeros of the following polynomials and state the
multiplicitiy of each zero.
(a) 22 4 z:}‘L + 32°

{p) zl‘L + 22° + 1
(c) 23 +3z2° + 3z 4 1



10.

11,

Write two pelynomial equations whose only solutions are
1 and 2 such that:

(a) the two equations have the same degree;

(b) the two equations are of different degrees.

Discuss, with examples, the possible number of solutions
of an equation of degree &,

Find all solutions of 23 + 1 = 0.

Find all solutions of the following equations, given one
selution, '

2+363“16=O 3:4

(a) 3z3 - 20z
(v) 23 - 4 + 6z - 4 =0 zZ =2

Find all solutions of the following equations, given two
solutions.

(a) z + 22

(v) 2t - 3z3

fz+2=0 z = -1, -2
- 32° -7z +12 = 0 z =4, 1

Find the polynomial whose zeros include 1 and -21 14f:

(a) the polynomial has the lowest possible degree.

(b) the polynomial has real coefficients and has the
lowest possible degree,

(c) the polynomial has real coefficients, the lowest
possible degree and -21 1is a double zero.

Given that 3 +4/21 1is a solution, find all solutions of

the equation
: 4 3 2

2 -6z + 2z + 54z - 99 = 0,

Given that 1 -,/51 is a solution, find all solutions of
the equation
4 3 e
z -2z° + 427 + 4z - 12 = 0,

(a) Find a formula for the coefficients of the cubic poly-
nomial whose zeros are T Ty ra if the coefficient
of the highest power is 1.
*(v) Do the same for the quadratie polynomial.,
*(c) Make a guess as to the form of a corresponding formula
for a polynomial of degree 7.
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10.

Miscellaneocus Exercises.

1.

5

10.

If =z =2 - 33, evaluage N
-z, 7, lzl, 1], 3 21, |28, ana 2121,

Write a quadratic equation having the sclution ¢ + di
and ¢ - di, where ¢ and d are real.

Is the set of numbers ({1,-1,1,-1} closed with respect
to multiplication? Addition?

If 2z =X + yl, show that

x< |zl anmda ¥y < |z].
Sketch the set of points 2z which satisfy each of
the following conditions,
(a) |z - 2] = 3 (¢} lz -21] < &
(v) |z +2]>3 (@) lz - 2,1 <5

Write an equation In x and y which 1s equivalent to
the equation |z - (2 + 31)] = 5.

Describe the set of points in an Argand diagram which
satisfy the given equation,

Give a geometrical interpretation for the following
relations.

(a) lz;] < lz,| (d) z; + 25, =0
(v) lz| =5 (e) 2z, -Z;=0

(c) 2y + 25 =0

Find all complex numbers 2 such that (Real part of
z) = (Imaginary part of z), and |z] = 1.

Determine all quadratic equations with real coefficlents
which have 3 + 21 as a solution,

Plot the point corresponding to 3 + 51 in an Argand
diagram, then multiply the given number successively
by 1, 12, and i3, and plot the three points which
correspond to the resulting products., Finally, show
that the three last named points together with the
given point form the vertices of a square,

by



il,

12.

13.

14,

150

16.

17.

18,

19.

}ai

Show that if zZ, is & solution of the equation
aze +bZ+ c¢c=0, where &, b, ¢ are real and

2 _ i .
b bac < O, then 2,2, = 5 and zZ, + 2z, o
Use the result to describe a geometric construction

for zo.

Find all quadrstic equations with real coefficlents
having solutions zq and Z, such that 2) + 2, = 1
and  z 2z, = 4,

Find all complex numbers 2z for which the real part of
z 1s 0. Show that if z belongs to this set, then
5 also belongs to the set.

For what real values of r does the equation

rx® + (1 +r)x+2=0

have non-real complex solutions? For what values of r
does 1t have only one solution®

Show by an example that & - bl need not be the com-
plex conjugate of a + bi,

Find the equation of the perpendicular bisector of the
line Joining zy and z,. [Hint: Use the fact that
the perpendicular bisector of a line segment 1s the set
of points equidistant from the endpoints.,]

et z_=x_ + yoi. Describe the set of points

o o
2 =X+ yi1 +which satisfy the inequality
Z -2
z° < 1.
2 - 2,

Let 2 and 2, be distinet non-zero complex numbers,
Show that zl and 22 represent peints in an Argand
diagram lyingzcn a8 straight line through the origin if
and only 1if El is resal.

2
Solve the equation zu = -1. (You may find it helpful

to refer to Lxercises 6, Problems 22 and 23.)



20, Show that it is impossible to satisfy all the order
postulates of Chapter 1 in the complex number system.
Consider the element 4. Certainly 1 # 0, so either
1 >0 or 1< 0 if the "Prichotomy"” property is to
hold. Show that each of the assumptions 1 >0, 10
leads to conclusions contradicting at least one of the
order postulates.

21, Find all complex numbers X, ¥y with the property that
the conjugate of x + yi is x - yi.

#«22, If 2z = X + yl, show that

Ixi + Iyl <42 lz].

11. Construction of the Complex Number System.

In this chapter we have assumed that we have avallable a
number system (which we called the complex number system) satis-
fying certain lmposed requirements {the four fundamental proper-
ties C-1, C-2, C-3, C-4). 1In a sense we have stated what a com-
plex number system ought to be. On the basis of the imposed
requirements we have learned h v to compute in such a system.

It 41s a fundamental (but sophisticated) question whether
there actually exists a number system C fulfllling the require-
ments we set down in Section 1 and 2. We shall sketch the basic
steps for constructing such & system, Manyof the details will be
left te the reader.

Let us return to our earlier developments., There we learned
that the rule which associates with the complex number a + bl
the ordered pair of real numbers (a,b) sets up a one-to-one cor-
respondence between the set of complex numbers and the set of
ordered pairs of real numbers. This fact and the information which
we have obtained on how we are compelled to add and multiply in C
motivates the following proposal for constructing, on the basls
of the real number system, a number system which meets the require-
ments we 1lmposed on C.

46
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Let K denote the set of ordered pairs of real numbers
(a,b). These are the objects which we are to "add" and "multiply".
Let us say: (a,b) = {c,d) if and only if a =c¢ and b = d.

It 1s necessary to define operations of addition and multi-
plication for K. The facts we have deduced from the fundamental
properties of the complex number system lead us to believe that
the definitlons which we shall put down are "reasonable" when we
keep in mind our mission of constructing a complex number system
with "real building blocks".

We define

Addition: (a,b) + (c,d) = (a + ¢, b + d).
Multiplication: (a,b).{c,d) = (ac - bd, ad + be).

Note that the operation of "addition" in XK 1is defined in terms
of the operation of addition in the real number system and that

the operation of "multiplication" in K is defined in terms of
addition, subtraction and multiplication in the real number system,
Note that our definitions assure closure of the operations <=

and e of K: the "sum" of two ordered pairs of real numbers is
an ordered pair of real numbers, the "product” of two ordered

pairs of real numbers 1s an ordered pair of real numbers.

TWo remarks are in order, Flrst, we must distinguish
"addition” and "multiplication" in K from addition and multipli-
cation in the real number system. Two two kinds of addition and
multiplication apply respectively to different kinds of objects.,
That is why we use the exaggerated plus sign < and the exaggera-
ted times sign # for the operations of "addition" and "multipli-
cation" in K.

Second, we emphasize that 4 and ¢ are constructed from
what we learned about addition and multiplication in @ keeping
in mind that our correspondence between a + bdi and (a,b)
identifies "real part" with "fiprst component" and "imaginary part"
with "second component”, The cpadework sets in at this stage. We
verify first that K with the addition 4+ and multiplication
satisfiles the usual laws of algebra. This verification depends
upon propertieé satlsfied by the real number system, We easily
verify that (0,0) 1is the additive identity for K, that (1,0)
is the multiplicative identlty for K, and that (-1,0) 1is the
additive Inverse of the multiplicative identity.

47

o&n°




Explicitly, we have the following results:
(a,b) + (0,0) = (a,b), (a,b) » {1,0) = (a,b),
(1,0) 4 (-1,0) = (0,0).
Verify these three statements.
Furthermore, (0,1} » {0,1) = (-1,0).

Hence, K possesses an element whose square is the additive
inverse of the multiplicative identity. This sounds a bit heavy-
nanded but tells us that we have grounds for optimism as far as
capturing something that will play the role of the all-important
1, Let us go so far as to deaote (C,1) by 1. We may write

(11a) (a,b) = (a,0) + {0,p) = (a,0) + (b,0) o (0,1)
= (&,0) + (b,0) s 1

Now if we restrict our attention to the special elements of
K whose second components are zero, we see that they behave under
+ and - the same way that their first components do under the
+ and ¢ of the real number system. That 1s,

(11b) (a,0) + (b,0)
(11c) (a,0) * (b,0)

(a + 1,0),
(av,0).

n

Verify the statements (11b), (1lc) and also the following two:

(axo)+('aio) = (O:O)i
(8,0) . (';' ) O) = (1,0), a ?‘l 0.

We now define a notion of order among the special elements
of the form (a,0). (Remark: We could not define & notion cf
order in K, even if we wanted to, which would yield the expected
relation among the .pecial elements (a,0)., This remark applies
to C also. If we had an order relation in C 1like that in R
we could expect the square of each non-zero gelement to be positive,
This would force 12 into the unacceptable position of belng both
positive andnegative in the sense of the real number system.)
We define

"ress than": [(a,0) € (b,0)] means (a < b),.

It is now possible to show that the set of elements of the
form (a,0) together with the operation of addition <, the
operation of multiplication e, and the relations of inegquality
& osatisfy the postulates for the real number system.
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Verify this assertion.

We are thus Justifled in taking this set of awkward appearing
elements (a,0) with addition, multiplication and order so intro-
duced 8s our real number.system. With this understanding we verify
that X hnas all the properties imposed on C. Note that (-1,0)
is the additive inverse of the multiplicative identity of our
present real number system and that

(114) 11 = (-1,0).

Thanks to the fact that the elements (a,0) may be taken as
the real numbers, Property C-2 is satisfied. By Formula (11d),
Property C-3 is satis{ied. Further, Formula (11=) tells us that
Froperty C-% is satisfied. There remains to be verified only
that 4 and ® are commutative and associative, that the dis-
tributive law holds in K, &and that each element has an additive
inverse, in order to show that K has Property C-1.

The commutative and associative laws for 4 and * are
readily verified as is the distributive law. AS an illustration
we consider the distributive law:

(a,p) * [(c,a) + (e,r)]
(a,b) o (c + e,d + )

1

1]

(a{c + e) =b(d+ ), blc +e)+ald+rf))

and [(a;b) o {c,a)] * [(a,b) * (e,r)]

(ac - bd, bc + ad) ¥ (ae - bf, af + be)

((ac - vd) + (ae - bf), (be + ad) + (be + ar))

(alc + e) -b(d+£), ble+e)+ald+£)).
We see that the distributive law holds.
Additive inverse? Since

(a,v; ¥ (-a,-b) = (0,0),

(-a,-b) 1s the additive inverse of (a,b).
- I¢ 1is now simple to verify that a non-zero element (a,b)
has a2 multiplicative inverse and hence that the equation

(a:b) * (x,y) = (c;d)x (a,b) # (0,0)

has a unique solution.
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Given (a,b) ¥ (0,0), we verify that
a =D

(o - bre) s - )

a~- + b

li

(1,0).

We now conclude that X together with <= and ¢ satisfies
the conditions imposed on the complex number system.

At this stage it suffices to redesign our notation for the
real numbers in X and to designate the real numbers by the
letters a, b, ¢, ... to use the standard notations for the
additive unit and the multiplicative unit, and to write + and -
for 4= and * respectively. With these agreements each complex
number 1is of the form

]

a + bi,

where a and b are real, and 12 = -1,




APPENDIX

LIST OF BASIC PROPERTIES OF
THE REAL NUMBER SYSTEM

Taken from Chapter 1 of "Intermediate Mathematics" (sMsG)

For arbitrary a, b, ¢ in R:
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(Dichotomy) Either a =b or a £ b.
(Reflexivity) a = a.

]
mw

(Symmetry) If a = b, then b
(Transitivity) If a =b and b = c, then a = ¢,
(Addition) If a =b, then a +c =b + ¢,

(Multiplication) If a = b, then ac = be.

(Closure) a + b 1is a real number.
(Commutativity) a+b=2Db+a.

(Associativity) a + (b + ¢) = (a + b)) + c.
(Additive Identity) O+ a =2a + 0 = a.
(Subtraction) For each pair a2 and b of real
numbers, there is exactly one real number o such
that a + ¢ = b,

(Closure) ab is a real number.

(Commutativity) ab = ba.

(Associativity) a(be) = (ab)e.

(Multiplicative Identity) 1.2 =a .1 = a.

(Division) For each pair a,b of real numbers,
b # 0, there is exactly one real number c such

(Distributivity) a(b + ¢) = ab + ac.

!
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(Trichotomy) If a and b are real numbers,
exactly one of the following holds:

a = b, a < b, a > b,
(Transitivity) If a < b, and b < ec, then a < c.
(Addition) If a < b, thenm a+ c< b+ c,

(Multiplication) If a < b and © < ¢, then
ac < be; but 1if a b and ¢ ¢ 0, then bc < ac,

(Archimedes) If a and b are positive real numbers
and &8 < b, there is a positive integer n such that
na > b,

{(Density) If a and b are real numbers, a ¥ b,
then there 18 a real number ¢ such that a < ¢ < b
or b << c< a. Hence, between any pair of distinct
real numbers there are infinitely many real numbers.

(R) 1Ir {aO, Bis Bpy eess B ...} and

{bo, by by eee, b ...} are two seguences of real
numbers with the properties

(1) ag<a; <a,< ... <8 < o

(11) by 2 Dby 2052 00 21 > .0,

(111) a, < by, for every natural number n

(1iv) b, -ag _lﬁ , for every natural number n
10

then there is one and only one real number ¢ such
that an ¢ L bn’ for every natural number n.
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