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PREFACE

Mathematics §s such & vast and rapidly expanding field of study that
there are inevitably many important and fascinating aspects of the subject
which, though within the grasp of secondary school students, do not find a
Place in the curriculum simply because of a lack of time,

Many classes and individusl students, however, nay find time to pursue
mathematical topics of special interest to them, This series of paxphlets,
whoge production is sponsored by the School Mathematics Study Group, is
designed to make material for suck study readily accessible in classroom
quantity,

Some of the pamphlets deal with material found in the regular curric-
ulum but in a more extensive or intensive manner or from a novel point of
view. Others deal with topics not ususlly found at all in the standard
curriculum. It is hoped that these pamphlets will find use in classrooms
in at least two ways. Some of the pamphlets produced could be used to
extend the work done by a class with a regular textbook but others could
be used profitably when teachers want to experiment with & treatment of a
topic different from the treatment i{n the regular text of the class., 1In
all cases, the pamphlets are designed to promote the enjoyment of studying
sathematics.

Prepared under the supervision of the Panel on Supplementary Publications
of the School Msthematies Study Group:

Professor R. D. Anderson, Louisiana State University

Mr. M. Philbrick Bridgess, Roxbury Latin School, Westwood, Massachusetts
Professor Jean M. Calloway, Kalamazoo College, Kalamazoo, Michigsan

Mr. Rorald J. Clark, St. Paul's School, Concord, New Hampshire
Professor Roy Dubisch, University of Washington, Seattle, Washington

Mr. Thomas J. Hill, Oklshoms City Public Schools, Oklahoma City, Okls.
Mr. Karl S. Kalman, Lincoln High School, Philadelphia, Pennsylvania
Professor Augusta L. Schurrer, Iowa State Teachers College, Cedar Falls
Mr. Benry W. Syer, Kent School, Kent, Connecticut
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CIRCULAR FUNCTIONS

This pamphlet is essentially the major pertion of
Chapter 5 of the SMSG text, Elementary Functions. A
few minor changes have been made for clarity and to make
the material self contained.

It 1s intended for use &8s a supplement to a stan-
dard trigonocmetry text that emphasizes the solution of
triangles or as & unit in s course on elementary func-
tions.

No previous knowledge of trigoncmetry is assumed
but a background of & course in plane geometry and two
years of algebra are prerequisites for the study of this
material. In addition it is assumed that the student is
familiar with the concept of a function as presented, for
example, in the SMSC pamphlet on functions or in the SMSG
text, Elementary Functions.

€ ¢




5

- e e --‘.’..“;“v::“.";“.‘:ﬁ e
PR A <

it o

R

CIRCULAR FUNCTIONS

1. Circular Motions and Fericdicity. o o o v v 4 o & & e s o« 1
2. Graphs of Sine and Cosine . . & v v & o v o o o o .'. e e« 5
3. Angle and Angle MeASUT® .« & « v v v e v v v v v vt w15
. Uniform Circular Motionm & v v v o v v v o o o o o o o « + . 18
S Vectors and Rotations o v v v v v e o o o o o o o o o + « .23
6. The AdQition FOXmUlBS v o o s + v o o ¢ v o o o o s o oo 27
7. Construction and Use of Tables of Circular Functions. . . . 32
8. Pure Waves: Frequency, Amplitude; and Fhase., . ., . . . . . 35
9. Analysis of General WAVES « v o « o & o 2 s o o ¢ o o o » » b0
10. Further Applications of Circular Functions. . . « + o . . . 43
Suggestions for Further Reading o v ¢ v 4 o « o & o o « « . b4

Table I. Values of sin x and cos x for
sts llﬁ?l . . L] [ ] L] . . L ] [ ] L] . L2 L] [ ] [ ] . [ ] . hﬁ

Table II. Values of six'x’T and cos in decimal
fractions Of Je v v o ¢ 0 4 4 o T

Table III. Values of sinox. coscx, tanox,
OSXSQOIIUQIDUICDUOIIIUIllhg




e
el

CIRCULAR FUNCTICNS

i, Circular Motions and Feriodicity.

Introduction. From your earliest years you have been sware of motion and

of change in the world around you. The rolling of a marble slong & crack jin
the sidewalk, the flight of a ball tossed by a boy at play, the irregular rise
and fall of & plece of paper flu£tering in the breeze, the z2ig-z8g course of a
fish swimming erratically in a tank of water are 8 few of the varied patternc
of movement you can observe. Very often, however, the motions you see have 8
quality not shared by the few Jjust mentioned. The succession of day and night,
the changing of the ceacsons, the rise and fall of the tides, the circulation of
blood through your heart, the passage of the second hand on your watch over the
6 o'clock mark are patterns each having the characteristic quality that the
motion involved repeats itself over and over at a regular interval. The mease
ure of this interval is called the period of the motion, while the motion it-
self is called periodic.

The simplest periodic motion {s that of a wheel rotating on its axle.
Each complete turn of the wheel brings it back to the position it held at the
beginning. Af'ter a point of the wheel traverses a certain distance in its path
about the axle, {t returns to its initial position and retraces its course
again, The distance traversed by the point in a complete cycle of its motion
is again a period, @ period measuréﬁ in units of length instead of units of
time. If It should happeﬁ that equal lengths are traversed in equal times, the
motion becomes periodic in time us well and the wheel can be used as a clock.¥

The mathematical analysis of periodic phenomena is & vast and growing
field, yet even in the most rar-flung applications of the subject, such phenom-
eng are analyced essentially in terms of the ecimple periodicity of the path of
a point descriting & circle. In the treatment of the most intricate of perio-
dicities, wheel motions always lle under the surfuce. An extended development
of' the theory of periodic phenomena is tar beyond the scope of thnis pamphlet,
but the study of the tundumental circular periodicitles ig certalinly within
our reuch.

Circular Moticns. Iet us consider first the mathematicnl acpects of the

motion of & point I' on a circle. For convenience we take the circle

*The concept of time itself is inextricably tied up with thut of clock, &
periodic device which measuics off the intervals. It would seem then that
Periodicity lies at the decpest roots of our understanding of the natural uni-
verse. How one decides that a& repetitive event recurs at equu!l intervals or
time and can therefore te considered a clock i a4 profound and difficult Lrob-
lem in the philosophy of physice and does not concern us here.  (Cee Physics,
Vol. %, pp. V=17, Ihysical Science Study Committec, Camiridee, aosachusetis,
1957,
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ue + vE = 1, which has its center at the origin of the uv-plane, radius 1 and
consequently circumference ¢, Now we consider a moving point P which
starts at the point (1,0) on the u~axis and proceeds in a counterclockwise
direction around the vircle. We can locate P exsctly by knowing the distance
x which 1t has traveled along the circle from (1,0). The distance x 1is the
length of an arc of the circle., Since every point on the circle ug + v2 =1
has asscciated with it an ordered pair of real numbers (u,v) as coordinates,
we may say that the motion of the point P defines a function®* p. With each
non-negative arc length x, we associate an ordered pair of real numbers (u,v),

the coordinates of P (Figure 1), that is,

p: x= {u,v).

p i x—(u, v).
v

(10

Figure 1. The function p.

However, 1t is inconvenient to work with a function whose range is & set
of ordered pairc rather than single numbers. We shall instead define two

functions us follows:

cos: x=+u, where u is the first component of p(x);

sin: x=sv, where v 1is the second ~omponent of p(x}.

The terms cos and wsin are abbreviations for cosine and sine. It is

customary to omit parentheses in writing cos{x) and sin(x) and write simply

*See, for example, the SMSG pamphlet, Functions.
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cos x and sin x. For instance,
pl0) = (1,0) : cos O0=1, sin0=0
X : ﬂ:: E‘
pl3) = (0,1) : cos3=0, sinF=1

p(x) - (-1,0) ! Ccosx =<1, sinn =0

p(%?) = 7 : cos %; = 7, sin %g = 7

(You should supply the proper symbols in place of the question marks.) From
their mode of definition, the sine and cosine are called circular functions.
These circular functions are relatel to but not identical with the familiar
functions of angles studied in elementary trigoncmetry. We shall discuss the
difference in Section 3, but we should notice now that when we write sin &,
the 2 represents the real number 2 which can be thought of as the measure
of the length of a circular arc and not 2 degrees.

Periodicity. From the definition of p, it follows that p{x) = p{x + 21)
and consequently, c¢os x = cos (x + 2¢x) and sin x = sin (x + 2v). Functions

which have this property of repeating themselves at equal intervals are said
to be periodic. More generally, the function f 4s said to be periodic with
period 8, & # 0, if, for all x in the domain of f, x + & 15 also in the
domain and

f(x) = £(x + a). . (1)

We usually consider the period of such & function as the smallest positive
value of a for which (1) is true. The smallest positive period is scmetimes
called the fundamental period. From this definition we note that each succese
sive addition or subtraction of & brings us back to f(x) agsin, We may
show this by first considering f{x + 2a) where a > 0. We have

f{x + 2a) = f'((x + &) + a)
= f(x + a)
= f(x),
and further
f{x + 3a) = f((x + za) + a)

[

f{x + oa)
{x).

]

In general, we have
f{x + na) = f{x) where n=1, &, 35, ... .
To show thet this holds for negative n, we note that

t{x -a)=f{{x -a] +a)
= f(X),




f(x-&)-f((x—&}-i-a)
= f{x - &)
« f{x).

In general
£{x + na) = £(x) where n = =1, =2, =3, ves
We may exprecss these two ideas by
f{x + na) = £{x) where & >0 and n is any integer. (2)

In other words, to determine a8ll values of £, we need only know its
values on the Interval O < x < a. Thus, suppose the period of f is & =2
50 that for all x in the domain of ¢

fx + 2) = £(x).

]

Then to find £{7.3) we write

£{1.3 + 3 x 2)
£f{1.3).

£{7.3)

n

To find £{(-7.3) we write

n

£(0.7 - & x 2)
£{0.7).

£(-7.5)

Now returning to the unit cirele, we observe that the functions cos and
sin behave in exactly this way. From any point P on the circle, a further
movement of &t units around the circle (n = 2t in Eguation (2); will return
us to P sgain. Thus the circular functions are periodic with period 2r,

and consequently

cos {x + 2nm) = ecos x

sin {x + 2nn) = sin x (3)

where n is any Iinteger. To give meaning to these formulas for negative n,
we interpret any clockwise movement on the circle as negative.

50 now if we can determine values of cos and sin for O < x < 21, we
shall have determined their values for all real x.

Exercises 1

1. . Give five examples of pericdic motion, and specify an apprroximate period
for each. (For instance, the rotation of the earth about its own axis is
periodic with pericd 24 hours.)



2. If plx + onx) = p(x), express each of the following as plv), shere
O<b< 2, (Forexample,

(&) = ol + ) = pE),

(a) o(-3) () p(-L)
(v) pl3n) (a)  plko76m)

3. Give the coordinates of p(x) for each part of Exercise 2 above.

4. Civen that p has the period 2n, find two values of x where
0 < x < 4, such that
(a) M-%}n plx); (c) plian) = p(x);
(v) plisn) = plx); (6) plex) = p(x).
5. For what values of x, vhere O < x < 21, do the following relations hold?
(a) cos x = sin x (b) cos x = =sin x
Hint: Usc the fact that (cos x, sin x) represents & point on the unit

cirecle.

*G, We know that the functions represented by cos.x and sin x have period
2t, Flnd the pericd of the functions represented by
(a) sin 2x; {e) cos Lx;

(v) sin %x; (d) cos %x.

#7. Let f and g be two functions with the came period a., Prove that:
(8) t + g hes a pertod a {not necessarily the fudamental period);

(b) f.g has a pericd a.

*8, let f bve s function with period a. Prove that the camposition gl

also has period & for any meaningful choice of a.

*g, Show that the functions sine and cosine have no positive period less than

o,

2. Graphs of Sine and Cosine.

We wish now to picture the behavior of the two functions

cos:t X=* y = 005 X

sin: x=v = sin x

for all real values of x. To do this we shall first look at some of the
general properties of these functions, find some specific values of the func-
tions at given values of x, and finally construct their graphs.

We already know that the sine and cosine functions are periodic with

11



period 2x, and s0 we may restrict cur attention to values of x vhere
0<x< 21, Now by noting that u and v are the coordinetes of a point on
& unit circle, we have

wf e Ve e 1. (1)
But since u = cos x and v = sin x, we have
cosgx + 510 = 1. (2)
If ve write {2) as

sinex = 1 - cosex

and as

cosex = ] = sinex

it is apparent that neither sin x ner cos x can exceed 1 in sbsolute
value, that is

1 < sin
1

in
Q
0
v

Another property of sin and cos derives from the symmetryy of the
circle with respect to the u-axis. Two symmetric points on the circle are
cbtained by proceeding the distance x in both the clockwise and the counter-
clockwise senses along the circle. 7Tn other words, if p(x) = (u,v), then
o{~x) = (u,-v) (Figure 2). From this we obt.ain the important symmetric
properties

cos {-x) = cos x

(3)

sin {-x) = -sin x.

v

xPX) = (V)

K (1,0

N X p(-x)s(u,-\’)

Figure 2. Symmetry relations.



Since we are ultimately interested in graphing Yy=s8inx and y = cos x,
we have mansged to parrow our attention to a rectangle of length 2x and of
altitude 2 in the xy-plane® as in Figure 3.

by

x

29

Figure 3. Rectangle to include one cycle of sin or cos.

If we can picture the graph of the functions in the interval O < X < 2x, the
periodicity properties of cos and sin will permit us to extend the graph as
far as we like by placing the rectangles end to end along the x-axis as in
FMgure &,

Figure L. Rectangles of pericdicity.

We therefore direct our sttention to values of x such that 0O < x < 2,
To begin with, the unit circle in tle uv-plane is divided into four equal arcs
by the axes; each arc is of length %, and the division points correspond to

lengths of x = 0, 5, x, <&, with central angles of 0°, 90°, 18¢°, ana 270°,

respectively. The corresponding points on the circle will ve (1,0), (0,1),
(-1,0)‘ md (O,'l), as in f‘ig‘lre 50

" *Since we shall have occcasion to refer to two coordinate planes for points
{(u,v) and {x,y), we wish to point out the distinction between them. The uv-
plane contains the unit circle with which we are dealing. This is the circle
ontoc which the function p maps the real number x as an arc length. The xy-
plane is the plane in which we take the x-axis as the real number line and
examine not the point function p(x) but the functions cos: x—y = cos x
and sin: x-=»y = sin x, each of which maps the real number x into another
real number.
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f\'

(0,1)

¢’

::;\\ (1.0)

yd
Q
O-1)

Figure 5. p(x)

for x =0, TR

Sinee cos x = u and sin x = v, we have

CcOos
cQs

Cos

cos EL 0,

=
N
1
..
~

We next :onsider the midpeoint
These correspond to arc lengths of
15°, 135°, 25°, 315°,

¢%-%)

of each of the quarter circles in Figure 6.
E, %?, %?, and %?, with central angles

|

sin 0 = Q,

x
sin 5= 1,
sinx = 0,
sin -12:1 = -1l.

Jv

(%%

PR T R A AN R e SRR e R

=

B-43)

Figure 6. p(x) for %, %F, %?, %%.
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If we drop perpendiculars to the u-axis from these points as in Figure 6, we
note that radii to the points form angles of 45° with the u-axis. From
geometry ve know that for a 2&5 right triangle with hypotenuse 1, the sides

are of length % and hence that t’ne coordinates of the midpoints of the

quarter circles are ( 2 ) (-2 s 2).- (- 2 --{—2:), and (f 1f_),. respec-

tively. We may therefore add the following to ocur list of values:
cos 1’5 = -‘/—5 in f— = -'-/—EE
x V2 x V2
cos Y sin 317 =5
cas%=-§ sin%ﬂ=-§,
cos Z)% = _'/;E sin‘:&E = -«-'gg

We can find the cocrdinates
8 similar method.
procedure is essertially the same in each quadrasnt.

of the trisection points of the guarter circles by
In Figure 7, we show only two of the triangles, but the

fc

Figure 7. p(x) for x = %, %
From the praperties of the 30 -60° right triangle, we note that P and PE

have coordinates —3 E) and (= 5 2), respectively. We may £ill in the

coordinates of all cf these points of trisection as in Figure 8, from which
Collecting in one table all

we can find eight new values for cos and simn.

of the values which we have so far determined, we have Table 1.
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| £

Figure 8.

Further values of p(x).
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With this table we are now in & position to begin graphing sin and cos.
Because we wiszh to look at the graph of these functions over the real numbers,
we shall use an xy-plane as usual and work with the points {(x,y) where
Yy =cos x or ¥y = sin X. We shall deal separately with each function, tsking
firgt y = cos X. From Table 1 we can now plot scme points in the rectangle
in Fgure 3, obtaining Figure 9.

Yy

Flgure 9. Values of cos: x=ecos X.
By connecting these points by a smooth curve we shoulc obtain a reasonable
picture of the function
COS: X =+ (05 X

as in Figure 10.
vy

B
14
ol
I"q\)

Figure 10. Graph of one cycle of cos.

If we wish to extend our picture to the right and left, we use the
pericdicity property to obtain Figure 11.
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Figure 11.

<

-f g

Graph of

COS .

A similar treatment of y = sin x leads to Figures 12, 13, and 1lk.

iy

bt |

Hl:' <+

=1 ]

4

{4

Figure l«. Valu's

of sin x:

x— s5in x.

Figure 13. Graph of one cycle of sin.

y
/\ t
- o \/n-"
LY ]
Figure 1k. Graph of sin.
13



Since it {8 often necessary to work with

Yy = A cos X
y = cos Bx (&)
y =cos (x+C) (A B, and C constants)

or same combination of these expressions, it is weorthwhile to inguire into the
effect tha® these constants have on the behavior of y. In case of

y = A cos x (A >0},

the A simply multiplies each ordipate of y = cos X by A, and the graph of
¥ = A cos x would appear as in Figure 15.

—— . S ——y S S o ——

-A

Figure 15. Graph of ¥y = A cos x.

In Exercises 5, &, and 7 you are asked to determine for yourself the
effects of B and C in Equations (4).

. Exercises 2

1. Using f{x + 2nx) = £{x), and f£: x=+cos x, find

(a) £(3%); (a) f(%"—);
{v) t(%‘-); (e) £(-7x);
(e) (&) (£) £(-23F).

2. If f:1 x=+sin x, fird the values of f {n Exercise 1 above.

1k

210




3. For what values of x {if any) will
(a) sin x = cos x? (¢} sin x = sin (-x)?

(b} sin x = -cos x? (d) cos x = cos {~-x)%

4. Graph on the same set of axes the functions f: x=ey defined by the
following, using Table 1 to find values for the functions.

(a) y = 2 cos x (b) y = 3 cos x (¢) y = % cos x
5. Repeat Exercise & using
{a) y = cos 2x; (b)_ ¥y = cos 3x; (¢) y = cos %x.

6. Repeat Exercise 4 using

]

(a) y = cos (x + %); (b) y = cos (x - %); (¢) y =cos {(x+ =)

Y. Frow the results of Exercises &, 5, and 6 above, what effect do you think
the coustant k will have on the graph of
(a) y = k cos x? (b) y = cos kx? (c) y = cos (x + k)2

8. TFrom the results of Exercise 6(b) above and Figure 1L, what can you say
sbout cos {x - %) and sin x?

9. As explained in the text, symmetric points with respect to the u-axis on
the unit circle u2 + v2 = 1 are obtained by proceeding a distance x in
the clockwise and counterclockwise senses slong the circle. In other

words, i1f p(x) = (u,v), then p(-x) = (u,-v). If follows that

COo& X = CO& ("x)

sin x = -sin (-x).

What relations between the circular functions can you derive in similsr
fashion from the following symmetries of the circle?

{(a) The symmetry with respect to the origin.

(b} The symmetry with respect to the v-axis.

3. Angle and Angle Measure. .
As we remarked in Section 1, the circular functions are closely related

to the functions of angles studied in elementary trigonometry. In a sense,
all that we have done is to measure angles in a new way. To see precisely
what the difference is, let us recall a few fundamentals.

An angle is defined in geometry as & pair of rays with a commeon end point.
(Fig.14) Let R, and R, be two rays originusting at the point O, Draw any circle
with O as center; denote its radius by r. The rays R, and RQ meet the

1

circle in two points Pl and P, which divide the circle into two parts.

Here we consider directed angles and distinguish between the angles defined by

15
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the pair Rl’ Re according to their order. Specifically,‘we set q = 4(Rl,32)
and 8 = 4(R,, R;) where each angle includes the arc of the circle which is
obtained by passing counterclockwise along the circle from the first ray of the
pair to the second (Figure 16).

Figure 16, Angles o and B.

In establishing degree measure, we divide & circle into 360 equal units
and measure an angle o by the number of units of arc it includes. For
instance, if we found that an angle included % of the circumference, we

would say that the angle measured Lx 360° or 120°. 1In general, if we

divide the circumference of a cireli into Xk equal parts, each of length E%E‘
then this length could be our unit of angle measure, Since the numerical fac-
ar %? appesrs in many important formulas, it is useful to choose k s0 that
the factor is 1. In order to do this, it is clear that k must equal 2x.

In this case, EE; will be equal to r, the radius of the circle. When

K = 2t we call the resulting unit of angle measure a radian. Radian measure

is related to degree measure by

o] o]
1 radian = (ia@rg) = (3%2) (1)
and
lo = z%a radians. (2)

You should note that this definition of the radian measure of an angle
implies that an angle of 1 radian intercepts an arc of length s equal to
r, the radius of the circle. In general, an angle of x radians intercepts an
arc of length <xr. That {5, s = xr where x is the measure of the central
angle in radians while s and r are the lengths of the arc and the radius
measured in the same linear units.

In working with radian measure, it is customary simply to give the meas-

ure of an angle g &5, Say, %, rather than % radians. If we use degree

16
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measure, however, the degree symbol will always be written, as, f'or example,
g0°, 45°, ete.

It is also possible to measure an angle g by the ares A of the sector
1t includes (Figure 16). Specifically, we have that the area A is the same
fraction of the ares of the interior of the circle as the are s 1is of the

c¢ircumference, that is,

A 5 .
=5 (3)
nr

We saw above that the arc length s on a circle included by an angle o may
be expressed as s = xr where r {s the radius of the circle and x is the

radian measure of q. It follows from (3) that

AL X
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That is, the measure x of ¢« in radians is twice the area of the included

sector divided by the sguare ot the radius.

Ixercises 3

1. Change the following radian measure 1o degree measure.

(xt Bx

(a) 3 () — (g) 3

n 18n
(v) z (e} o (h) =

5
: iy S 13m
{o = . < L25
o) -5 (r) < (1) =
2. Change the following degree meacure to radian measure.

(a) o70° (q¢) L& (g) 8&10°
(b} -30° (e) 195° (n) 190°
(¢) 135° (r) -16° (1) 18°

3. What i. the meacure {in radians) of an angle which fommoe & cector ot arces

9x  if the radius of the circle is 3 unite?

L. Wnet is the mrea ot the sector formed by an angle ol (%)ﬁ, it the radius
of the circle is 2 units?

5. Suppose that we wish to find & unit of measure so that a quarter of a
circle will contain 100 such units.
(a) How many such units will be equivalent to lu?
(b) How many such units will be equivalent to 1 radian?
{c) How many of these units will & central angle contaln, if the {nciu-
ded are is equal In length to the diameter of the cirele?
17
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4. Uniform Circular Motion,

' Let us agmin consider the motion of a point P .around & circle of rsdius
r in the‘uv-plane, and suppose that P moves at the constant speed of s
units per second. lLet Po{r,O} represent the initial position of P. After
one second, P will be at Pl’ an arc-distance s away from PO. After two
seconds, P will be at Pé, an arc-distance 25 from PO, and similariy after
t seconds P will be at arc-distance ts. (Figure 17.)

1c

Flgure 17. Uniform motion of P on circle O.

Clearly, APOOPI = gflOPE = Z PQOP * ... &and likewise for each additional
second, since these central angles have equal arcs, each of length s. Each of
these central angles may be writtenas @ = %. After 2 seconds, OP will
have rotated through an angle Qv into position OPE; after 3 seconds through
an angle 3w; and, in general, after t seconds through an angle of tw or
wt. In other words, after t seconds, P will have moved from (r,0) an
arc-distance st, and OPO will have rotated from its initial position through
an angle of «t into the position OP, If we designate the coordinates of P

by (u,v) we have

u=rcos wt

(1)

v =1rsinat.
*

When «t = 2v, P will again be in the position PO’ This motion of the
point from Po back into PO again Is called a cycle. The time interval
during which 8 cycle occurs is called the period; in this case, the period is

18
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%?. The number of cycles which occur during & fixed unit of time i{s called
the frequency. Since we refer to the alternating current in our hames as
"60ecycle", an abbreviation for "60 cycles per second”, this notion of fre-
quency is not altogether new to us.

To visualize the behavior of the point P in a different way, consider
the motion of the point Q which is the projection of P on the veaxis, As
P moves arocund the unit circle, Q wmoves up and down along a Tixed diameter
of the circle, and a pencil attached to Q will trace this diameter repeatedliy--
assuming that the paper is fixed in position. If, however, the strip of paper
is drawn from right to left at a constant speed, then the pencil will trace a
curve, something like Filgure 18.
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Figure 18. Wave motion.

An examination of this figure will show why motion of this type is called wave
motion. We note that the dicplacement y of Q from its central position is
functionally related to the time t, that is, there is a function § such that
y = £{t). By suitably locating the origin of the ty-plane, we may have elther
y=cosut or y = sin wt; thus either of these equations may be looked upon

as describing a pure wave or, as 1t is sometimes called, a simple harmonic

motion. The surface of a body of water displays & wave motion when it is
disturbed. Another familiar example is furnished by the electromasgnetic waves
used in radio, televicion, and radar, and modern phycics has even detectecd
wave=-like behavier of the electrons of the atom.

One of the most interesting applications of the clrcular functions is to
the theory of sound (acoustics), A sound wave iz produced by & rapid &lternu-
tion of pressure in some medium. A pure musical tone is produced by any pres-

sure wave which can Le described by a circular function of time, say:

p = Asinat (o)
19
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wvhere p is the pressure at time t and the constants A and w are posi-
tive., The equation (2) for the acoustical pressure, p, is exactly in the form
of one of the equations of (1) even though no circulsr motion is involved: all
that occurs is the fluctuation of the pressure at a given point of space.*

Here the numbers A and « have direct musical signitficance. The number A
is called the amplitude of the wave; it is the peak pressure and its square is
a measure of the loudness. The number « ig broportional to the frequency
and is 8 measure of pitch; the larger « the more shrill the tone.

The effectiveness of the application of circular functions to the theory
of sound stems from the principle of superposition. If two instruments indi-
vidually produce acoustical pressures P, and Doy then together they preduce
pressures - Py + p2. Ir pl and Py have a cammon period then the sum
Py Py has the same pericd. This is the root of the principle of harmony;
if two instruments are tuned to the same note, they will produce no strange
new note when played together.

Let us suppose, for exmmple, that two pure tones are produced with indi-

vidual pressure waves of the same frequency, say

]

A cos ut (3)
B sin ut (&)

It

v

where A, B, and @ are positive. According to the principle of superposi-
tion, the net pregsure is
= Acerut + P osinat.

What does the graph of this equation look like? We shall answer this question
by reducing the problem to twe simpler problems, that is, of graphing (3) and
(4) avove. For each t, the value of p is obtained frcm the individual

grapho, cince
p = u + v.

To {llustrate these ideas with specific numerical values in place of A, B,

and «, let

A=3%, B=Lh, w=nx,
Then we wish to graph
p = 5 cos nt + 4 sin nt, (5)
Equations (3) and (4) become
' u = 3 cogs nt, (6)
v = b s5in e, (7)

*The acoustical pressure is defined &s the difference between the g85 pressure
in the wave and the pressure of the gas if {t is left undisturbed.

a0
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By drawing the graphs of (6) (Figure 19) and (7) {Figure 20) on the same set of
axes, and by adding the corresponding oxdinates of these graphs at each value
of t, we cbtain the graph of (5) shown in Figure 21. You will notice that
certalin points on the graph of p are .labeled with their coordinates. These
are points which are either easy to find, or which have some special interest.

Y
&
vl
- 3+
24 24
4 i
¢ > 3 P ) + — ——
I t 1
* 1 2 + | .;.. t
efq =
- -24
-'l —.l
- +— + + - 49
(o] q T &F 2Tty
— + 1 —+ —
0 14 T .4 2r tn
Figure 19. Figure 20C.
Graph of u = 3 cos =nt. Graph of v = 4 sin nt.

The points (0,3), (0.5,4), (1,-3), (1.5,-4), and (2,3) are easy to
find since they are the points where either u =0 or v = 0. The points
(0.29,5) and {1.29,-5) are important because they represent the tirst maxi-
mum and minimum points on the graph of p, while (0.79,0) and (1.79,0) are
the rirst zeros of p. To find the maximum and minimum points and zeros of p
involves the use of tables, and hence we shall put off a discussion of this
matter until Section 7, although a careful graphing should produce fairly good

approximations to them.
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Figure 21. The sum of two pure waves of equal period.

Dashed curve: u = 3 cos nt.
Dotted curve: v = 4 sin nt.
Full curve: P=3cosnt +4 sinnt; O<t <o

(The scales are not the same on the two axes; this
distortion i{s introduced in order to show the details

more clearly.)
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Exercises &

1. Extend the three curves in Figure 21 to the interval [t| < 2. To the
interval |t| < 3. Whnat do you observe about the graph of
P=3cosxt+4sinat over [t] < 3? Is it periodic? "What is its
period? Give reasons for your answexrs.

2. Sketceh graphs of each of the following curves over one complete cycle;
and state what the period is, and what the range is, if you can.
(&) y = 2 sin 3t (d) ¥y = 3 cos (-x)
(b) y = -3 sin 2¢ (e) y =2 sin x - cos x
(¢} y = & cos (%)

5. Vectors and Rotations.

In the next section, we shall develop the important formulas for

sin (x + y) and cos (x + y). Because our development will rely on certain
Properties of plane vectors, we give, in this section, an informal summary of
those properties.

You have prohably encountered vectors in your earlier work in mathematics
and science. The physicist uses them to represent quantities such as displace-
ments, forces, and velocities, which have both magnitude and direction. Some
examples of vector quantities are the velocity of a train along a track or of
the wind at a given point, the weight of a body (the force of gravity), and the
displacement from the origin of a point in the Cartesian plane.

In a two-dimensional system, it is often convenient to represent vectors
by arrows (which have both a length, representing magnitude, and s direction)
and to use geometrical language. We shall do this, and we shall restrict our-
selves to vectors all of which start from & single point; in our discussion we
shall take this point to be the origin. If §' and 'f are vectors, we define
the sum S+ T to be the vector R represented by the diagonal of the paral-
lelogram which has sides & and ET as shown in Figure 22. If T is a
vector and & is a number not equal to O, then we define the product eT to
be & vector whose magnitude is fa} times that of T and whose direction is
the same as T if a >0 and orposite to T if & < 0; in either case, 7T
and é?' are collinear. Figure 23 illustrates this for a = 2 and & = -2.
It is an experimental fact that these definitions correspond to physical real-
ity; the net effect of two forces acting at & point, for example, is that of a
single force determined by the parallelogram law of addition.




Mgure 22. Magure 23.
The sum of two vectors. A vector multiplied by a number.

These definitions of vector sum &and of multiplication by a number make it
possible to express all plane vectors from the origin ‘in terms of two basic
vectors., It is convenient to take as these basic vectors the vector U from
the origin to (1,0) and the vector V from the origin to (0,1). Then, for
m vector -ﬁ, there exist unique numbers u and v such that

-+ (1)

in fact, the numbers u and v are precisely the coordinates of the tip of
the arrow representing R (Figure 24), To take & specific example, the vector
® rrom the origin to the point P{-%, —23) can be expressed in terms of the
basic vectors U and V as

2. E +£§V,

as shown in Figure 5.

.“(O. 1} p {01
{u, v
A
viivV
w1,0)
— ) o]

0 ~ -iu u(1,00

Figure L. Figure :3?/;
A vector in temms of the - 1 R,

= e+

basic vectors U and V. © Ev Qv
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Helnaw introduce the idea of a rotation of the whole plane about thé
origin . Such & rotation carries each vector intc & unique vector, and we
may therefore regard it as & function whose domain and range are sets of vec-
tors. Most of the functions you have mei are functions which map numbers into
numbers, but it will be useful, in this section, to think of & rotation as &
new kind of function which maps vectors into vectors.

Any rotation of the sort we are considering is completely specified by
the length x of the arc AP of the unit cirecle through which the rotation
carries the point A(1,0). Let £ be the roiation (function) which maps the
vector OA (that is, U) into the vector OF whose tip F has coordinates
(u,v). As we have seen above, OF can be expressed in terms of the basic
vectors U and V as ul + vv. Hence

—
£(T) = OF = uU + vV, (2)

as pictured in Mgure 20. The same rotatio t carries the point B(0,1)
into the point Q{(-v,u), &s can be shown b’ :ongruent triangles, (see Figure

26), so we also have

o) = Q = -vU + uv. (3)

B{O,N
v‘ k4

v, \AZ

0 U Al1,0)

Flgure G,
The effeet of & rotation on the basic vectors T and V.
(The filgure 1c valid only when 0 < x < %. The result, however, is true for
any real x; for a more genersl derivation, see Exercises 8 and Ge)
Now suppose that we subject the planc to a second rotation g, in which
points on the unit circle arc displaced through an arce of length y. Since ¢
also is a function, we muy regurd the successive appllcatlons of the rotations

£ and g as a composite tunction gf (cee, for exumple, the SMOG pumphlet,
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(g2)(@ = a(rm) = g(TF) - gl + W), (&)

AlLO)

Figure 7.

We must now pay some &ttention to two important properties of rotations.
First, a rotation does not change the angle between two vectors, gnd cellinear
vectors will therefore be rotated into collinear vectors. Second, a rotation
does not change the length of any veetor. Now, if a 1s & number (a £ 0)
and T is a vector, then the vector aT is collinear with T. If £ 1isa
rotation, the two stated properties ensure that T and £(T) bave the same
length, that aT and f(aT) have the same length, and that f£(aT) is collin-
ear wvith £(T). Ve vill therefore get the same vector from T if we first
multiply by a and then rotste, or first rotate and then multiply by a:

£(aT) = as(T). (5)

The same two properties of rotations also ensuie that a parallelogram will not
be distorted by a rotation. Since the addition of vectors is defined in terms
of parallelograms, it follows that rotations preserve sums; that is, if £ is
a rotation, and if T and T are vectors, then

£(S+T) = £2(8) + £(T). (6)
From (5) and (6),
g(ul + W) = ug(D) + v(@),

and we may therefore rewrite (4) as

(g£)(0) = ugl®) + vg(¥). (7)
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Exercises 5

1. Let T be the vector OP where P 1is the point ('g, 2) Write T in

the form u'17+ W. Ir -'1’ i‘(m Iind the arc on the unit circle which
specifies the rotation f.

2. In Exercise 1, replace P by

A
.(s) the point ('§ 75);
(v) the point ( -'123 -35) .

3., Fnd f{m if the rotation f {8 specified by &an arc of the upit circle
vhich is

(&) 3-2’5 units long;
(b) 2x units long.

L, write £(U) in the form WU+ W If f corresponds to an src of the
unit circle which is

(a) units long;

I E

units loﬁg.

(v)

LWST |-

5. Do Exercise 4 for an arc %? units long.

€. Let f correspond to a rotation of 4’;— units and g 'to & rotation of
E units. Show that, since ??x=113ﬂ, the result in Exercise 5 is equiva-

lent to g(V).

T If £ and g are any two rotations of the plane about the origin show
that fg = gf.

8. Ir the rotation f corresponds to an arc x and the rotation g to &an

arc %, show that £(V) = (£8)(T) = (s£)(D).

-—p e
G. In Exercise 8, put tTEﬂ = uU + vV, and hence show that

f(§3 = glul) + g(éiﬁ = ug(33 + vg(zﬁ = uV - vU.

6. The Addition Formulas.

We are now ready to bring the circular functions into the picture. Since
£ maps the vector Eﬁ: onto or so that A(1,0) is carried through an are
X of the unit circle to P(u,v), it follows from the definitions of Section 1
that

u = Cos X and v = sin X.

27
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Hence Equations (2) and (3) of Section S can be written

£(T) = (cos xJU + (sin x)V (1)
and - —

£(V) = (-sin x)U + {cos x)V. (2)

Since, moreover, the rotation g differs from the rotation £ only in that
the arc length involved is y instead of x, we may similarly write

g(0) = (cos y)U + (sin yiV (3)
and — -
g(V) = (=sin y)U + (cos y)V. (4)

Substituting these resultc in (7) of Section 5 gives us

(gi‘)(-U.) = {cos x)((cos y)?w“ {sin y)-\?) + {sin x)((-sin y)?w“ (cos yV

—
= (cos x cos y - sin x sin y)U + (sin x cos y + cos x sin y)V. (5)

Furthermeore, the composite rotation gf can be regarded as a single rotation

through an arc of length x + y, and we may therefore write, by analogy witn

(1),
(g0) (V) = {cos (x + y))-U‘+ (sin {(x + y))?. (6)

We now have, in (5) and (6), two ways of -r~~essing the vector (gf)(iﬂ
in terms of the basic vectors ET. and 'ﬁi Since there is essentially only one
such way of expressing any vector, it follows that the coefficient of Tf in
(%) must be the same as the coefficient of T in (€), or

cos (x +y) = cos x cos ¥y - sin x sin y, (7)

and 2 similar comparison of the coefficients of YV in the two expressions

vields
sin {(x + y) = sin x cos ¥y + cos x sin y. (8)

These are the desired addition formulas for the sine and cosine.
We 2lso obtain the subtraction formulas very quickly from Equations (7)
and (8). Thus
Ay
cos (x - y) = cos {x + (-¥)) = cos x cos (=y) - sin x sin (-y). ()
Since, however, (Section 2, Equations (3))
cos (~y) = cos y
and
sin (-y) = =sin y,
we may write (9) as

cos {x - y) = cos x ¢os y + sin x sin y. (10)

g



In the Exercises, you will be asked to show similarly that
sin (x = y) = sin x cos y - cos x sin y. (11)

Froam formulas (7) and {(8) and (10} and (11), it is emsy to derive a large

nutber of familiar trigonometric formulss.

Example. Find cos (x + x) and sin (x + x).
Solution. By (7), with y ==,

cos (x + x) = cos x cos 1 - gin x sin x.

Now, cos X = -1 and sinx = 0. Hence cos {x + %) = -cos X.

Similarly, from (8), sin {x + x) = sin x cos « + cos x sin x

It

]

sin x(-1) + cos x(0)

-sin x.

Exercises v

1. By use of the appropriate sum or difference formula show that

(a) cos (% - x) = sin x; (r) sin (x - x) = sin x;

(v) sin (% - X) = cos X; (g) cos (%? + x) = sin x;

(c) cos (x + %) = -sin x; (h) sin (%g + X) = -c0s X;

(&) sin (x + %) = COs X} (1) sin (% + x) = cos (% - x).

]

(e) cos (s - x) = -cos x;
Ce Prove that sin (x - y) = s5in X ¢cos y -~ cos X sin y.

*3,  Show that formulas (7), (8), and (11) may all be obtained from formula
(10), and, hence, that all of the relationships mentioned in this section
follow from formula {(10).

4., Prove that the function tangent (abbreviated tan) defined by

tan: x--§%§—§ (x £ ¢ £-+ 2nrt)

is periodic, with period =x. Why are the values 1 % + 2nt excluded
from the domain of the tangent function?

e Using the detfinition ot the function tangent in Mxercise 4 and the
formulas {7), (8), (10), (11), develop formulas for tan (x + y) and

tan {x = y} in terms of tan x and tan y.

6. Using the results of Exercise 5, develop formulas for tan (% - x) and

tan (7 + x). Also, show that tan {-x) = -tan x.

&9

anx



7. Express sin 2x, cos 2x, and tan 2x in terms of functions of x.
(Hint: Let y = x in the appropriate formulas.)

8. Express sin 3x in terms of functions of x.

g. In Exercise 7 you were asked to express cos 2x in terms of functions of
%x. One possible result is cos 2x =1 - 2 singx. In this expression

substitute x = % and soive for sin %.

10. In Exercise 9, cos 2x may also be written as 2 casex - 1. Use this
_formula to get a formula for cos é.
11. Using the definitions of the function tarn &and the results of Exercises
9 and 10, derive s formula for <tan %. This will be an expression
involving radicals, but by rationalizing in succession the numerator and
the denominator you can get two different expressions for tan L not

2}
involving radicals.

In Section 5 we developed the algebra of rotations, and in this section
we have applied this algebra to derive the addition formulas for the sine and
cosine functions. As we shall now indicate, there is 8 close parallel between
the algebra of rotations and the algebra of complex numbers.

If two complex numbers are expressed in polar form, as are

2z, = rl(cos x, +1 sin xl)
and
Z, = re(cos Xy * i sin xg)
then their product can be found by multiplying their absolute values r and
Tos and adding their arguments, X1 and Xqt
- ’ el 0
2,2, = T T, cos (xl + xz) + 1 sin (xl + x2)>.

Muiltiplying any complex number 2z by the specisl complex number
cos x + 1 sin x = 1{cos x + 1 sin x)

is therefore equivalent to leaving the absolute value of z unchanged and
adding x to the argument of 2. Hence,; if we represent =2z by & vector in
the complex plane, then multiplying by cos x + i sin x 1is equivalent to
rotating this vector through an arc x, as in Section 5.

Let us replace the vector -3 of Section 5 by the complex number

1 =cos O+ 1 sin Q.
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Then the product
(cos x + 1 sin x)+1 = cos x + 1 sin x

‘mpmmts the vector formerly called £{U) (see Figure 28), and (g£)(@)
becomes

(cos y+ 1 siny)cos x +1 sin x) +1 =
((eos x cos y - sin x sin y) + i(sin x cos y + cos x sin y)) .1,

[

COBX ¢ iginx
i P

Figure 28, Representation of = cos x + 1 sin x.

If we replace (gf)(T) by

<cos {(x+y)+1sin (x+ y)) e 1l
we have

cos (x +y) +1isin(x+y)=

(cos x cos y - sin x sin y) + 4(sin x cos y + cos x sin y).

' By equating real and imeginary parts we obtain the addition formulas (7) and
(8).
The subtraction formulas may be derived equally simply. Since g'l is
equivalent to rotating through an angle -y, we have (s-lf)(m = g-lfm and

therefore
(ccs {(x - y) +1 sin {x ~ y)) . 1.
Hence
cos (x ~y) = cos x cos y + sin x sin y
and

sin (x - y) = sin x cos y - cos x sin y.
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7. Construction and Use of Tables of Circular Munctions.
It is difficult to give in a short space an indication of the enormous
variety of ways in which the sddition formulas of Section 6

cos {x + y) = cos x cos y - sin x siny (1)
sin {x + y) =~ sin x cos y + cos x sin y (2)
cos (x ~ y) =cos x cos y + sin x sin y (3)
sin {x - y) = sin x cos ¥ - cos x sin y (&)

turn up in mathematics and in the application of mathematics to the sciences.
In this section and in Sections 8 and 9, v shall describe some of the more
common applications. The first of these is their use in the construction of a
table of values of the sine and cosine functions.

In Exercise 1 of Section 6, you used the difference formulas to show that

sin (% - X) = COs X
and .
cos (5 - x) = ain x.

These formulas permit the tabulation of sin x and cos x in a very neat
way. If we had a table of cosines for 0 < x g % s this would, in effect, give
a table of sines in backward order. For example, from the table of special
values in Section 2, we obtsin the sample table shown, where ¥ = % - X.

X 05 X E-x
(4 8737 >
n

o} 1 5
b 73 x
€ 2 3
n ﬁ b1
I P L
LS 1 bt
3 2 [
b
5 0 0

. )

5 = sin ¥ y

In this table the values of the cosine are read from the top down, and the
values of the sine from the bottom up. Since it is & very inefficlent use of
space to put so few columns on & page, the table is usually felded in the
middle about the value x = Yy = % and is constructed as in the following

sample:

T

e



%
X cos X sin x ==X
2
x
0 1 0 >
ﬂ LA 1 x
[ .2 2 3
n 2 iz %
§ 2 2 _ N
pis .
5= sin y cos Yy ¥

At the end of this pamphlet we give three tables:

{We define

It
it

2.

I.

II.

A table of sin x sand

(slightly less than %).

A table of sin ix and cos

1.00.

2

cos X

i

2

for decimal values of x

X

in decimal fractions of

up

ol

ITI. A table of sinox, cosox, and tancx, in degrees up to 90°

sina: xo-* sin xc, with similar definitions for cos®

clear what is intended.

We shall follow this practice.)

Exercises 78

Why is Table I not folded ms are Tables II and IXI?

Find
(a)
(v)

From
(a)
(v)

From
(a)
(v)

from Table I sin x &and co

0.73;
-5 -1?;

Table I, find
sin x = 0.1049;
cos x = 0.9131;

Table II, find
t = 0.31;
t = On‘ig;

X

when 0 <

gin wt and

s x when x Is equal to

(e) 1.55;

(d) 6.97 (Hint: 2v = 6.28).
x < % and

(c) sin x = 0.6495;

{(d) cos x = 0.5403.

cos at if w= § and

(
(

c) t =
d) t =

<

0.62;
0.71,

From Table II, find t (interpolating, if necessary), if w = %,
O<t<l and

(a)
(v)

sin at = 0.827;
cos wt = 0.905;

(
{

e) sin

i) cos

wt x Oal‘?ﬁ;
wt = 0.795.

and tana.

is ususl to write sin x in place of sinox, etc., when the context makes



6. TFrom Table III, find sin x and cos x (interpolating, if necessary)

when
(a) x = &% (e) x = 36.29%
(v) x = 73% (d) x = 81.5°,

7. From Table III, find x when O < x < 90° and
(a) sin x = 0,629; (e) sin x » 0.621;
(b) cos x = 0.991; {d) cos x = 0.895,

Extending the scope of the tables. Table I, at the end of this pamphlet,
gives values of the circular functions cos:
only for O0g<xg %, but we can extend its scope to the set of all real numbers
by vsing (&) equations (1)-(4), (b) our knowledge of the circular functions of
all multiples of % (see, for example, Table 1), and (c) the fact that any

e
real number can be expressed as the sum {or difference) of twc numbers of which

Xx=cos x And sin: x-esin x

one is a multiple of % and the other is in the interval {x: O<x < %}.

Similar remsrks apply to Tables II and III.

through examples.
Example 1., Find
Solution.

equation (2), we then have

The technique is best explained

sin 2.

Since % = 1,57, we write 2 = 1.57 + 0.43, and, using

sin 2 = sin (1.57 + 0.43)
= sin (% + 0.43)
= gin % cos O.43 + cos % sin 0.4%
= cos 0.43
= 0,90§0.

Alternatively, 2+« 3,1k - 1,1k = x - 1.14, and therefore

sin 2 =

sin {x - 1.14)

sin % cos 1.1% -~ cosc w sin 1.14

= sin 1.1k
x O.g(ﬁé-
Exagple 2. Find cos 4.56.

Solution. Since

L56 = 3,14 + 1.42 =1 + 1,42, we have

cos 4,56 = cos {x + 1.42)

= coc x cos 1.42 - zin x sin 1.42
& =005 l.}h?

= -0,1502,

pIn
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This technique can be used to simplify expressions of the form

sin (n% + x) and cos (n% + x).

Exampl- 3. Simplify cos (%g + X)e

Sclutien. cos (%? + x) = cos ;; cos X - sin %? sin x

b1 T
=< o8 X - sin = sin x
2 2"

= -'Sin Xe

= ¢0s

Example 4. Find cos 0.82=x.
Sclution. In this case, it is easier to use Table II. Since
0.82x = 0.50x + 0.32%x, we have
cos 0.82x = cos (% + 0.32x)
. b8 - bl
= QO0S > cos 0.32x sin >
= -gin 0.32x%

sin 0.328«

= -gin O.SA(%)

-0.84kL,

R

Exercises Tb

Using the table that you think most convenient, find

1. sin 1.73; 9. cos (-135°);
2 cos 1.37; 10. sin 3270;

3. sin {(-.37); 11.  cos {-3271°);
L.  sin (-.37%); 12.  cos 12.4n;

5. cos 2.8x; 13,  sin 12.4;

6. cos 1.8r; *14, cos {sin .3n);
7. cos 3.71; *15. sin {sin .7).
8. sin 1359;

8. Pure Waves: Frequency, Amplitude, and Phase.
As we remarked in Section &, the superposition of two pure waves of the

saxe frequeucy yields a pure wave of the given frequency. Now we shall be able
to prove this result. In order to be more specific, instead of assuming that
either of equations (1) in Section 4 defines a pure wave, let us say that, by
definition, a pure wave will have the form

y = Acos {at - a), (1)

where A and w are positive and O < a < 2t. The number « is called the
35
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phase of the pure wave. The sine function now becames simply a8 special case of

(l), and definez a pure wave with phase %,

y = sinwt = cos (ut =~ %). (2)

The phase of 8 pure wave has & simple interpretation. We will take the graph
of

¥y = cos wt (3)

a5 a standard of reference, and the cycle over the aterval <Q‘S t < %?)
between two peaks of (3) as the standard cycle. Now the graph of

y = Acos {ut - a) reamhes its peak, ccrresponding‘to the first peak of its
standard cycle, at the . where wt - a= 0, that is, at t = {% Since (%
is positive, it is clear that the wave (1) rcaches its first peak after the
standard wave (3) reaches its first peak, since (3) has a peak at t = 0. That
is, the wave {1) lags behind the wave (3) by &n amount %. Since the period
of (3) is %?, this lag amounts to the fraction

Q
@ @
g
w
of 4 period. (Filgure 29.) W¥e see from {2) that sin ut lags tehind cos wt

by 4 quarter pericd. (See Flgures 1Y and 20.)

y=A cos(wt-a)
1‘7’/:

< [A=1]
\

|

:

t

t
i
5

-'0
Figure X/. Graphs of two cosine curves.

We now wish to test the idea that the sum of two pure waves which have the
same perioed but differ in amplitude and phése is again a pure wave of the same
period with some new amplitude and phase. You will recall that in Section 4 we

sketched the graph of
¥y = 3 cos mt + 4 sin nt (&)

by adding the ordinates of the graphs of u = 3 cos nt and v - 4 sin xt. The

i 5




graph supported this idea, At that time we also had to leave open the question
of the exact lcocation of the maximum and minimum points and the zeros of the
graph.

We are now in 8 position to deal with these problems. Since finding the
maximum and minimum points and finding the zeros involve essentislly the same
procedure, we shall confine our attention to the maximum and minimum points.

Qur basic problem still is to express

¥y = 3 cos nt + & sin nt
in the Torm of
vy = Acos {at - a) (1)

that Is, to show that y 1is a pure wave, but in the process we shall be able
to obtain the exact location of the maximum and minimum points of the graph of

the sum. If we write out (l) in terms of the formula
ces (ﬁ -~ a) = coc 3 eos a+ sin 8 sin (5)
we obtain

¥y = A cos {wt - a) = Alcos wt cos g + sinwt sin q)
or
Yy = Acos wt cos a + A sin wt sin a. (6)
In our case, w = 1 we have

y = Acos it cos a + A sin nt sin a. (1)
Upon comparing (7) with (&), we note that it
Acos g+ 3 and A ging =4 (8)
then (7) and (&) will be identical. We shall therefore seek values of A and

a which satisty the egquations (8). To do this, we may begin by squaring both
sides of the equations (8) and udding them to obtain

o LRl 2
>, .2 :

e 2 S
37 4+ 4% = A" cos“q + A" sin‘a

or

A° =,
Since A is positive, we have

A=5, ()
and consequently from {8),

cor a = % and sin g = %. (10)

From Table 1

a = 0.927. (11)

45
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Now, by using (9) and (11), wve may put (&) in the form
¥y =3 cos xt + 4 sin nt =5 cos (xt - 0.927), (12)

showing that it is & pure wave with amplitude 5, per.od 2 (as before), and
phase 0.927. We note that Ehggl = 0.265 15 very close to the value 0.2
obtained graphically in Section 4. We are also in a position to locate the
maximm and minimum points of our graph. From (12), y will be & maximum when

cos (=t - 0.927) = 1,
that is,
nt - 0.927 = 0

c.
t = -—{%31 = 0.295,

and y will be a minimum when

cos (nt - 0.927) = -1,
that is
nt - 0.927 = =«

t =1+ Eﬁggl = 1.255

where, -in each case, we have taken the smallest positive value of t.
We now put the general equation

y = Beos wt + C sin wt (13)

in the form (1). If we proceed exactly as before, using (6) and (13), we find
that for specified B and C, A= #EE + €7 and a sclution of the equations

i le

cos @ = % and sin g = (1%)

will determine a unique «q in the interval from O to 2t, from which the
form (1) follows. (See Exercise 3 below.)

Exercises 8

1. what is the smallest positive value of t for which the graph of equation
(4) crosses the t-axis? Compare your result with the data shown in
Flgure 21.

2. Sketch each of the following graphs over at least two of its periods.
Show the amplitude, period, and phase of each.

(a) y = 2 cos 3t (e) y = -2 sin (2t + x).

(b) 'y =2 cos (%;) (£) vy =5cos (3t + Z)

(e) y = 3 cos (-2t)

(d) y = -2 sin (E) (Remember that the phase is defined to be positive.)

38
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Express each of the following equations in the form y = A cos (nt - @)
for some appropriate real numbers A and «.

(a) y = 4 sin xt - 3 cos xt (d) ¥ = 3 sinnt + & cos nt

(b) y = -% sin nt + 3 cos xt (e) y =3 sinnt - & cos nt

(e} y = <k sin nt = 3 cos nt

Without actually computing the value of @, show on & diagram how A and
Q@ can be determined from the coefficients B and C of cos at and
sinuwt 1if each of the following expressions of the form B cosat + Csinut
is made equal to A cos (ut - o). Compute q, and find the maximum 8nd
minimum values of each expression, and its perio&. Give reasons for your
ansvers.

(&) 3 sin 2t + kL cos 2t (e) -sin (%) + cos (é)

(b) 2 sin 3t - 3 cos 3t

Verify that the superposition of any two pure waves A cos (wt - @) and
B cos {wt - B) 1is 8 pure wave of the same frequency, that is, that there

exist real numbers € and +y such that
Acos {at - a) + Beos (wt - B) = C cos (at - Yis

Solve for all values of +t:
(&) 3 cosat + b sinnt = 2.5
[Method: From equation (12) we see that this equation is equivalent

to 5 cos (mwt - 0.927) = 2.5. For every solution, we have
cos (mt - 0.927) = 0.5,
which is satisfied only if the argument of the cosine is %+ o or

X+ onx It follows that the equation is satisfied for all values

3
of" t such that

or such that

CAUN 1 .
g oo Ll T =+ i,
bi¢ 3
Question: What is the smallest positive value of t for which

equation (a) is satisfied?]
(b) 3 cos mt + 4 sin nt = 5
(¢) sin 2t - cos it - 1
(d) 4 cos At - 3 sin xt = ©

(e) L4 cos nt + < sin at = |



7, Show that sny wave of the form
y = Beos {ut - 8), (u# 0l
can be written in the form (1), that is,
y = A cos {at - @)

where A 1is non-negative, w positive and O < a < &n.

9. Analysis of General Waves.
In Sectione & and 8 we considered the superposition of two pure waves of

the same period {(or frequency). We found that the superposition of such waves
is again a pure wave of the given frequency. Next we ask what coaclusion we

can draw about the superposition of two waves with different periods. Suppose,

-y = 2 sin 3x = 3 cos 2X.

ol
3
and %, so they cannot be combined into & single term, the way we could 1f we

Unfortunately, sin 3x and c¢os 2x have different fundamental periods,

had only cos 3x and sin 3x, say, or cos 2x and sin 2x. However, any
multiple of & period can be looked upon as & perlod. That is, we can consider
¥y = 2 sin 3x as having a period of %?, %%, 2, %g, or any other integral
multiple of %?. Similarly, y = 3 cos 2x can be considered as having a
period of =w, ¢, 3w, etc. Now, comparing these values, we note that both
expressions can be considered as having & period of &n, and hence their dif-
ference will also have a period of 2x. In effect, we simply find the least
common multiple of the pericds of two dissimilar expressions of this form and
we have the pericd of their sum or difference. There is little else that we
can conclude in general. About all we can do to simplify matters is to sketch

separstely the graphs of
u= 2 sin 3x, Vv = 3 cos 2x,

and y = u - v. The result is shown by the three curves in Figure 30.

The superposition of sine and cosine waves of different periocds can pro-
duce quite complicated curves. In fact, with only slight restrictions, any
pericdic function can be approximated arbitrarily closely as & sum of a finite
number of sines and cosines. The subject of harmonic analysis or Fourier
series is concerned with approximating periodic functions in this way. The
principal theorem, first stated by Fourler, is that a function f of period
a can be approximated arbitrarily closely by sines and cosines for each of

wvhich come multiple of the fundamental period is a.

40 4c
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u = 2 sin 3x, v = 3 cos 2X

y=u-=-v=2g¢in3x -3 cos 2x, 0< x < 2.

Specifically,
X onx bnx Lnx
{x) = A+ (A cos —= + B, sin —) + (A, cos —= + B _ gip —)] + e
(x) 0 ( 1 a 17 8 )+ 2 a 2 2 )
2nmx . Engtx .
+ (A cos = + I ocos i—“), (1}
n & n a

and the mere terms we use, the better is our approximation.
Ac un example, vonsider the function depicted in Figure 31. This function
is defined on the intervul =0 < x <1 LY
0, it x = =-x
-1, it -w < x <0
g, 1ir =0

X
1, if 0« x <.
For &1l other values of x  we define (%) by the pericdicity condition
flx + ) = t(x).

This function has a particularly simple epproximation as a series of the

form (1), namely,

L . " ¢ ain R TR ~
l{Sin X . zigljx . qinfgx 4 ee. . SiD &Ln k}\‘. {4)
1 i 5 no- 1

L1
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Figure 31,  Grsph of periodic function.

0, if x = -x
1 if O<«<x <=
x= f{x) ={"’ ; fx + 2x) = £x).
0, if x=0
A1, if - <x <O
sin x | sin 3x , sin5x ., ., sin \En - l)x\
1 3 5 -1
As an exercise, you may graph the succossive approximations to f{x) by

Fourier series: %(

taking one, then two, then three terms of the series, and see how the succes-
sive graphs approach the graph of y = f{x).

The problem of finding the series (1) for any given periodiec function f.
is taken up in calculus.

Ixercises g

1. Sketch graphs, for |x| < m, for each of the following curves.

(g) y = % sin x

_ kisin x _ sin 3x°
(b) y = sy 1 + 3 ,

- bisin x | sin 3x , sin Sx
“’)yx\l*s*ﬁ)

2. (a) Find the periods of each of the successive terms of the series (3),
namely,
sin 3x sin 5x .
3 L] 5 > .
(b) What terms of the general series (1) are missing? From the symmetry

sin x,

properties of the function f defined by (2) can you see & reason

for the sbsence of certain terms?

[
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10. Further Applications of Circular Functions.

We have seen in Section & that the circular functions of real numbers
arise naturally in the theory of socund and, more generally, iﬁ the study of
simple harmonic motion. Here, however, it would be possible (aithough somewhat
inconvenient) to work in terms of functions of angles rather than of real num-

bers. There are many applications of the circular functions, however, where
one must use the real-number approach.

For example, in the study of vibrating membranes (e.g., a drum!) the
equaticn

sin x

cos X - = 0

sin x

arises. C(learly, sin x is & number and hence is meaningful only if
we are considering x &s also being a real number.

Similarly in the study of the motion of an electron of mass m and charge
¢ subjected to an electric field of intensity E and e magnetic field of

intensity K we need to consider the expression

Em ‘He, _ _, Het
Ko \T /

where, again, t must be considered as a real number.

In particular, the calculus abounds in situations where the real-number
point of view must be used. Listed below are & few of the many expressions
found in the calculus in which the trigonometry of real numbers must be used:

EEE—E (in finding the "derivative" of sin x);
éx - 2 sin x + sin 2x (in finding the ares under cne arch of a "cycloid");

sin &%

3 (in "integrating" sinex);

e®{cos x + sin x) (in solving a "differential" equation).

);3
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setts: Addison-Wesley Publishing Co., 1962.
Chapter 6,
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Values of sin x and cos x for O < x < 1.57.

Table

pe

210
o1l
.12
13
.lh

A5
.16
17
llS
1Y

.20
21

lalal
Loy =,

23
.2k

26
. 2‘ ‘,
.29
.30
31

-39
.33

39

sin x Cos X X sin x
. 0000 1.0000 L0 . 38ak
.0100 1,0000 A1 .3986
. 0200 L9998 L2 L4078
.0300 5996 L3 169
e Yoo L9592 ik LB
500 LGOE8 45 L4350
. 0600 L9982 L6 Lk39
. 0659 3976 A7 525
L0799 .9968 | M8 L6168
. 0899 .9960 | 49 L4706
. 0998 3950 50 LTSk
L1068 L9940 51 L4882
L1197 5928 52 4565
L1266 (9916 53 SES
L1399 L9902 Sk S1k1
J1kSh .H888 55 5227
.1593 G872 56 5312
L1642 .9856 57 5396
L1790 .5838 .58 5480
. 1889 .4820 59 5564
L1987 .5801 .60 5646
. 208 L9780 .61 5729
2182 97993 £0 5810
2280 L9737 63 5891
2377 L9713 Bk 5972
2L L9689 65 B2
571 L9664 .66 6131
L2607 L0638 Ny 6210
276k L6011 68 6288
L2860 582 69 L6365
L H5 L9953 .70 BLb2
3081 9523 71 L6518
L3146 L9492 e L5504
L3240 .9LE0 T L6669
«3335 L9L2B Sl LETh3
34 L9304 .75 6816
.3523 .9359 76 L6889
L3616 L9323 LT L6061
L3700 L9287 .8 L7033
L3802 L0249 79 L7104

COS8 X

9211
L3171
L9131
SO00
.90k8

LS00,
8961
8916
8870
8823

8776
8727
8628
5577

8525
BLs
BLig
8365
B30

8253
L1090
813y
8080
Bo2y

L7061
L7600
o’f‘BBS
I

12

LTELB
L7584
7518
T2
7385

-31 [
L7248
JIYG
L7110y
7038

PO
i+

i;«fz’

i

i



Table _I_ -= Cant.

x sin x cOoSs X X sin x cos X
-80 o?l.?h 06967 1-20 l9320 13621*
81 7243 .689s 1.21 5355 .3530
82 L7311 6822 1.22 .9391 3436
.83 7379 6749 1.23 e %) 3342
B4 SThAE 678 1.24 5458 3248
55 .T513 .6600 1.25 9490 3153
86 7578 524 1.26 9521 3058
.87 LT6M3 6448 1.27 L9551 .2963
.88 LT707 6372 1.28 580 . 2867
.89 771 294 1.2 G608 2771
.50 .7833 6216 1.30 .G636 L2675
91 J7895 6137 1.31 .9662 .79
.92 7556 6058 1.32 G687 2482
93 .8016 5978 1.33 9711 238
.Sk B076 5858 1.3k 9735 .2288
W5 B13k 5817 1.3 9757 .2190
.56 8162 5735 1.36 5779 2092
.97 .B2kg 5653 1.37 9799 1994
.98 8308 5570 1.38 .g819 1866
95 .8360 5487 1.39 .6837 L1798
1.00 8415 5403 1.40 L9854 .1700
1.01 8468 5319 1.41 9871 .1601
1. 8521 5234 1.k2 .G887 1502
1.03 573 S1L8 1.L3 .9501 1403
1.0k 8824 5062 1.4k .9915% 130k
1.0 BeTh LLGTE 1.45 G927 1205
1.06 B4 4889 1.46 L9939 L1106
1.07 8772 L8001 1.47 .954G .1006
1.G3 8820 L7133 1.48 .9959 .0507
1.06 L8866 L4625 1.49 L9967 0807
1.10 8912 L4536 1.50 L9975 0707
1.11 B987 RN 1.51 L9682 o808
1.12 L9001 357 1.52 .9987 0508
1.13 L90LkL 267 1.53 L9992 ok 08
1.1k 5086 4176 1.54 5095 0308
1.1 9128 L4085 1.5% 9998 .0208
1.16 L5168 3993 1.56 L5959 .0108
1.17 L3208 . 3902 1.57 1.0000 . 0008
1.18 .92k6 . 3809
1.19 Luo8k L3717

L6

e



Table II

Tables of sin and cos in decimal fractions of %
X sin x% cos x%
.00 .000 1.000 1.00
01 016 1.000 .99
.02 .031 1.000 .58
.03 LOL8 L5999 97
Oh . 063 .998 .G6
Ne,) 078 597 .95
.06 094 .996 Re1%
07 L110 994 93
.08 B Y-, 992 .Ge
c@ -ll'l 0990 -91
.10 156 .G88 .50
W11 172 985 85
.12 .187 .82 .88
.13 . 203 979 .87
5t .218 976 .86
A5 .233 972 .85
.16 . 249 569 .84
.17 . 264 965 .83
.18 279 .960 .82
.19 . 294 956 .81
.20 .305 551 .80
21 .32k .9k6 .79
.22 .339 LGh1 .78
.23 353 .935 T
= .368 930 76
5 .383 .52k 5
.26 .357 .918 JTh
27 L2 911 .73
.28 W26 905 .72
.9 LLo .898 .71
.30 LSk 891 .70
X {in vZ ‘
cos ya Bin y2 y
L7




‘I\ble E e Ccntc

X sin x% COS x%

.30 A5k 831 .70
.31 468 884 £9
.32 482 876 68
‘33 lk% 0869 067
o3k 509 861 .66
'35 -523 ,853 -65
.36 536 LBk 6k
.37 5k9 836 .53
.38 562 827 2
.39 S5 ,818 61
40 588 809 .60
LAl 600 500 59
2 .613 .790 .58
43 555 .780 57
Jab 637 771 .56
A5 649 760 55
L6 .661 .50 Sk
L7 673 LT4O 53
A8 685 ) 52
49 696 .718 51
.50 L0 707 50

bid h
cos y-é sin yE hY

L8

&



B tatm bl & AR

Table III =

x° sin’x cos x tan®x x° sin%x cosx tan’x s

0 0.000 1.C00 0,000 §

1 018 1.000 018 L&  0.719 0.655 1.036 -

2 .035 0.999 038 L7 31 Lo 1.072 !
3 LOB2 .999 B2 L8 J7h43 660 1.111
4 Q70 .G98 070 Ly .55 56 1.150
5 .08? 996 .088 50 766 43 1.192
& O L9 Ee,) 51 T 29 1.235

7 .122 993 .123 52 .788 B16 1.280 i

8 .129 990 L1kl 53 . 799 502 1.327 .
g L1586 988 - 158 54 809 588 1.376
10 ATk 085 176 55 816 STk 1.428
11 .191 582 194 56 829 559 1.483
12 . 208 .978 213 57 .83% 545 1.540
13 25 97 231 58 S48 530 1.600
14 LoL2 70 .2k9 59 557 515 1.664
1% .29 .G66 . 268 €0 366 500 1.732
16 L 276 061 L 287 61 875 485 1.804
17 292 956 306 62 883 e 1.881
18 « 309 451 .35 63 891 L5k 1.963
19 .326 .GLé Yt T an 899 438 2.050
20 3k LSLO .36k £5 .506 L2k 2.145
21 388 LG3k .384 66 .91k L07 2,246
22 <375 927 L0k 67 921 -.391 2.356
23 - 391 el L5 &8 .927 375 2.k75
k- 07 LQ1k Lbs 69 .93k .358 2.605
> 423 .906 L6 70 Noly 342 2,747
26 438 .8469 488 71 .GL6 .396 2.904
a7 sk 891 510 72 951 «309 3.078
28 L0 L8853 532 73 556 .92 3.271
! 485 B85 55k T4 .G61 276 3.487
‘ ' L8686 STT i) .966 55 3.732
857 .601 76 970 2h2 k.01
848 65 77 97 .25 L.331
.839 Hho 78 .978 .208 L7105
Rk 675 79 982 161 5.145
819 LT00 80 985 STk 5.671
B 27 81 .988 156 6.314
799 SToM 82 560 139 7.115

. 788 781 83 593 122 8.1k ‘

T 810 84 995 105 9.51k% -

<766 .839 8s .996 .087 11.43 o

755 869 . 86 958 .070 14.30 o

743 .500 . . 87 959 .52 19.08 S

.731 .933 88 <599 035 28.64 i

AL A 966 89 1.000 018 87429

G707 1.000 . 90 1.000 000 :




