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PREFACE

Mathematics is such a vast and rapidly expanding field of study that

there are inevitably many important and fascinating aspects of the subject

Which, though within the grasp of secondary school students, do not find a

place in the curriculum simply because of a ladk of time.

Mhny classes and individual students, however, may find time to pursue

mathematical topics of special interest to them. This series of pamphlets,

whose production is sponsored by the School Mathematics Study Group, is

designed to make material for such study readily accessible in classroom

quantity.

Some of the pamphlets deal with material found in the regular curriC-

ulum but in a more extensive or intensive manner or from a novel point of

view. Others deal with topics not usually found at all in the standard

curriculum. It is hoped that these pamphlets will find use in classroomm

in at least two ways. Some of the pamphlets produced could be used to

extend the work done by a class with a regular textbook but others could

be used profitably when teachers want to experiment with a treatment of a

topic different from the treatment in the regular text of the class. In

all cases, the pamThlets are designed to promote the enjoyment of studying

mathematics.

Prepared under the supervision of the Panel on Supplementary Publications
of the School Mathematics Study Group:

Professor R. D. Anderson, Louisiana State University

Mr. M. Philbrick Bridgess, Roxbury Latin School, Westwood, Massachusetts

Professor Jean M. Calloway, Kalamazoo College, Kalamazoo, Michigan

Mr. Ronald J. Clark, St. Paul's School, Concord, New Hampshire

Professor Roy Dubisch, University of Washington, Seattle, Washington

Mr. Thomas J. Hill, Oklahoma City Public Schools, Oklahoma City, Okla.

Mr. Karl S. Kalman, Lincoln High School, Philadelphia, Pennsylvania

Professor Augusta L. Schurrer, Iowa State Teachers College, Cedar Falls

Mr. Henry W. Syer, Kent School, Kent, Connecticut
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CIRCULAR FUNCTIONS

This pamphlet is essentially the major portion of

Chapter 5 of the SMSG text, Elementary Functions. A

few minor changes have been made for clarity and to make

the material self contained.

It is intended for use as a supplement to a stan-

dard trigonometry teXt that emphasizes the solution of

triangles or az a unit in a course on elementary func-

tions.

No previous knowledge of trigonometry is assumed

but a background of a course in plane geometry and two

years of algebra are prerequisites for the study of this

material. In addition it is assumed that the student is

familiar with the concept of a function as presented, for

example, in the SMSG pamphlet on functions or in the SMSG

text, Elementary Functions.
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CIRCULAR FUNCTIONS

1. Circular Mbtions ruld P*riodicity.

Introduction. From your earliest years you have been aware of motion and,

of change in the world around you. The rolling of a marble along a crack in

the sidewalk, the flight of a ball toesed by a boy at play, the irregular rise

and fall of a piece of paper fluttering in the breeze, the zig-zag course of a

fish swimming erratically in a tank of water are a few of the varied patterns

of movement you can observe. Very often, however, the motions you see have a

quality not shared by the few just mentioned. The succession of day and night,

the changing of the seasons, the rise and fal2 of the tides, the circulation of

blood through your heart, the passage of the second hand on your watch over the

6 o'clock mark are patterns each having the characteristic quality that the

motion involved repeats itself over and over at a regular interval. The meac-

ure of this interval is called the period of the motion, while the motion it-

self is called periodie.

The simplest periodic motion is that of a wheel rotating on its axle.

Each complete turn of the wheel brings it back to the position it held at the

beginning. After a point of the wheel traverses a certain distance in its path

about the axle, it returns to its initial position and retraces its course

again. The distance traversed by the point in a complete cycle of ito motion

is again a period, a period measured in units of length instead of units of

time. If it should happen that equal lengths are traversed in equal times, the

motion becomee periodic in time us well and the wheel can be used as a clock.*

The mathematical analysis of periodic phenomena is a vast and growing

field, yet even in the most far-flung applications of the subject, such phenom-

ena are analyzed essentially in terms of the simple periodicity of the path of

a point descLeing a circle. In the treatment of the most intricate of perio-

dicitiee, wheel motions always lie under the surface. An extended development

of the theory of periodic phenomena is far beyond the scope of this pamphlet,

Lut the study of the fundamental circular periodicities is certainly within

our reach.

Circular Motions. lot us ('onsider firtA the mathematical at;pects of the

motion of a point 1' on a circle. For convenience we tal.:e the eiecle

*The concept of time itself is inextricably tied up with that of clock, a
periodic device which measures off the intervals. It would seem then that
feriodicity lies at the deepest roots of our understundinc of the natural uni-
verse. How one decides that a repetitive event recurs at eual interVals of
time and can therefore lc eonsidered a clock is a profound and difficult 1,r1,-
lem in the philo,.;ophy of physics and doen not concern u;; here. PZue
Vol. 1, pp. e-17, ScieNce Study Committee, L:ami;ridee,
1V57.)
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u
2

+ v
2

1, which has its center at the origin of the uv-plane, radius 1 and

consequently circumference 2n. Now we consider a moving point P which

starts at the point (1,0) on the u-axis and proceeds in a counterclockwise

direction around the circle. We cmn locate P exactly by knowing the distance

x which it has traveled along the circle from (1,0). The distance x is the

length of an arc of the circle. Since every point on the circle u
2
+ v

2
1

has associated with it an ordered pair of real nuMbers (u,v) az coordinates,

we may say that the motion of the point P defines a function* p. With each

non-negative arc length x, we associate an ordered pair of real numbers (u,v),

the coordinates of P (Figure 1), that is,

p: x (u,v) .

p u, v).

p (x)z(u,v)

Figure 1. The function p.

However, it is inconvenient to work with a function whose range is a set

of ordered pairs rather than single numbers. We shall instead define two

functions as follows:

cos: x-4. u, where u is the first component of

sin: x-0 v, where v is the second .'omponent of p(x).

The terms cos and sin are abbreviations for cosine and sine. It is

customary to omit parentheses in writing cos(x) and sin(x) and write simply

See, for example, the SMSG pamphlet, Functions.



cos x and sin x. For instance,

p(0) .a (1,0) : cos 0 2. 1, sin 0 = 0

= (0,1) : cos = 0, sin = 1

p(g) .., (-1,0) : cos n -1, sin n 0

2..z)

P 2 cos 11 = ?
2

sin alLT 2
2

(You Should supply the proper symbols in place of the question marks.) Fram

their mode of definition, the sine and cosine are called circular functions.

These circular functions are relatel to but not identical with the familiar

functions of angles studied in elementary trigonometry. We shall discuss the

difference in Section 3, but we should notice now that when we write six! 2,

the 2 represents the real number 2 which can be thought of as the measure

of the length of a circular arc and not 2 degrees.

Periodicity. From the definition of p, it follows that p(x) p(x + 2n)

and consequently, cos x = cos (x + 2n) and sin x = sin (x + 2n). Functions

which have this property of repeating themselves at equal intervals are said

to be Reriodic. More generally, the function f is said to be periodic with

period a, a i 0, if, for all x in the domain of f, x + a is also in the

domain and

f(x) = f(x + a). (1)

We usually consider the pe'riod of such a function as the zmallect positive

value of a for which (1) is true. The smallest positive period is sometimes

called the fundamental period. From this definition we note that each succes-

sive addition or subtraction of a brings us back to f(x) again. We may

show this by first considering f(x + 2a) where a > 0. We have

f(x 2a) = f((x + a) 4- a)

f(x + a)

f(x)

and further

In general, we have

f(x 3a) .-- f((x 4- 2a) + a)

f(x + 2a)

f(x).

f(x + na) f(x) where n - 1,

To show that this holds for negative n, we note that

f(x - a) ;- f(lx - a) a)

-

_3
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((x - 2a) + a)

f(x - a)

f(x).

In general

f(x + na) a f(x) where n a - ...

We may express these two ideas by

f(x + na) = f(x) where a > 0 and n is any integer. (2)

In other words, to determine all values of f, we need only know its

values on the interval 0 < x < a. Thus, suppose the period of f is a a 2

so that for all x in the domain of f

f(x + 2) = f(x).

Then to find f(7.3) we write

1'(7.3) = f(l.3 + 3 X 2)

f(1.3).

To find f(-7. we write

f(0.7 - 4 X 2)

f(0.7).

Now returning to the unit circle, we observe that the functions cos and

sin bel;ave in exactly this way. From any point P on the circle, a further

movement of 2r unitz around the circle a = 2n in Equation (2),; will return

us to P again. Thus the circular functions are periodic with period 2n2

and consequently

cos (x + ag) = cos x

sin (x + 2nn) a sin x
(3)

where n is any integer. To give meaning to these formulas for negative n,

we interpret any clockwise movement on the circle as negative.

So now if we can,determine values of cos and sin for 0 < x < 2n, we

shall have determined their values for all real x.

Exercises 1

1. .Give five examples of periodic motion, and specify an approximate period

for each. (For instance, the rotation of the earth about its own axis is

periodic with period 24 hours.)



2. If p(x + 2:1) p(x), express each of the following as p(b), where

0 < b < 2. iFor exagple,

(a) p(i)

(b) 11(37)

3. Give the coordinates of p(x) for each part of Exercise 2 above.

4. Given that p has the period 2n, find two values of x where

O < x < 421, such that

(a) p(-i') e p(x); (c) p(12n) p(x);

(b) p(137f) = p(x); (d) p(-n) p(x).

5. For what values of x, where 0 < x < 2n, do the following relations hold?

(a) cos x = sin x (b) cos x - -sin x

Hint: Use the fact that cos x, sin x) represents a point on the unit

circle.

. We knew that the functions represented by cos.x and sin x have period

2n. Find the period of the functions represented by

(a) sin 2x; (c) cos 4x;
1 1(b) sin x; (d) cos 7x.

. Let f and g be two functions with the came period a. Prove that:

(a) f + g ht__. a period a (not necessarily the fuldamental period);

(b) f .g has a period a.

16. Let f be a function with period a. Prove that the composition gf

also has period a for any meaningfUl choice of a.

. Elbow that the functions sine and cosine have no positive period less than

2n,

0raphs, of Sine and Cosine.

We wish now to picture the behavior of the two functions

cos: x u - cos x

sin: x-R, v . sin x

for all real values of x. To do this we shall first look at some of the

general properties of these functions, find some specific values of the func-

tions at given values of x, and finally construct their graphs.

We already know that the sine and cosine functions arc periodie with

5



period 2x, and so we may restrict our attention to values of x where

0 < x < 2x. NOW by noting that u and v are the coordinates of a point on

a unit circle, we have

u
2 2

v 1.

But since u = cos x and v = sin x, we have

cos
2
x + sin

2
x = 1.

If we write (2) as

and as

sin
2
x - cos

2
x

cos
2
x = 1 - sin

2
x

it is apparent that neither sin x nor cos x can exceed 1 in absolute

value, that is

- 1 < sin x < 1

- 1 < cos x 1.

Another property of sin and cos derives from the symmetry of the

circle with respect to the u-axis. Two symmetric points on the circle are

obtained by proceeding the distance x in both the clockwise and the counter-

clockwise senses along the circle. in other words, if p(x) = (u,v), then

(u,-v) (Eagure 2). From this we ob-..ain the important symmetric

properties

cos (-x) = con x

sin (-x) -sin x.

Figure 2. Symmetry relations.

(3)
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SiV40 we axe ultimately interested in graphing y w sin x and y cos x,

we have managed to narrow our attention to a rectangle of length 2n and of

altitude 2 in the xy-plane* as in Figure 3.

2tr

Figure 3. Rectangle to include one cycle of sin or cos.

If we can picture the graph of the functions in the interval 0 < x < 2n, the

periodicity properties of cos and sin will permit us to extend the graph as

far as wr like by placing the rectangles end to end along the x-axis as in

Figure 4.

4 so x

Figure 4. Rectangles of periodicity.

We therefore direct our attentior to values of x such that 0 < x < 2.

To begin with, the unit circle in t:le uv-plane is divided into four equal arcs

by the axes; each arc is of length and the division points correspond to

lengths of x = 0, 11, n 2.-t with central angles of 00, 900, 180°, and 270°,2 " 2
respectively. The corresponding points on the circle will be (1,0), (0,1))

(-1,0), and (01-1), as in Figure 5.

-*Since we shall have occasion to refer to two coordinate planes for points
(111v) and (x,y), we wish to point out the distinction between them. The uv-
plane contains the unit circle with Which we are dealing. This is the circle
onto which the function p maps the real nuMber x as an arc length. The xy-
plane is the plane in which we take the x-axis as the real number line and
examine not the point function p(x) but the fUnctions cos: x y = cos x
and sin: y = sin x, each of which maps the real number x into another
real nutber.

7
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Figure 5. p(x) for X 0, It
2'

Since cos x = u and sin x

cos 0

COS

cos Y

=

=

v, we have

1,

0

-1,

sin 0

It
sin

2

sin

=

=

0

00

COS 11 = 0
2 2

sin 411 = -1
2

21_
2

We next :onsider the midpoint of each of the quarter circles in Figure 6.
These correspond to arc lengths of iy and Ye-, with central angles

45°, 135° 225° 315°.
V

Figure 6. p(x) for 242-t

8



If we drop perpendiculars to the u-axis from these points as in Figure 6, we

note that radii to the points form angles of 450 with the u-axis. From

geometry we know that for a 45
o

right triangle with hypotenuse 1) the sides
A-7

axe of length -7 and hence that the coordinates of the midpoints of the

/7 /5) 15 /51 JE /7) fl 11E)
quarter circles are respec-

( 2 2/1 '- 2 1 2'1 '- 2 1- 2" ' 2 1- 2'1

tively. We may therefore add the following to our list of values:

COS

cos

COS

COS

sin

sin

sin

sin

We can find the coordinates of the trisection points of the quarter circles by

a similar method. In Figure 7, we show only two of the triangles, but the

procedure is essentially the same in each quadrant.

Figure 7. p(x) for x =

From the properties of the 30°-60° right triangle) we note that P
1

and P
2

have coordinates t7F-,7, and (2-. ,77-; respectively. We may fill in the

coordinates of all of these points of trisection as in Figure 8, fram which

we can find eight new values for cos and sin. Collecting in one table all

of the values which we have so far determined, we have Table 1.

9 I "-0



Figure 8. Rather values of p(x).

10

16



Table 1

Values for cos and sin for one period.

sin x

0

3

2

3

-15 m 87
2

'71

1

- 1

-
2

-.71

1
-2

1

11

1 7

0

1
2

$/

2 14 .71

1
2

2 .71

- 1

0

2



Witb this table we are now in a position to begin graphing sin and cos.

Because we wish to look at the graph of these functions over the real numbers,

we shall use an xy-plane as usual and work with the points (x,y) where

y cos x or y = sin x. We shall deal separately with each function, taking

first y = cos x. From Table 1 we can now plot some points in the rectangle

in Figure 3, obtaining Figure 9.

2
3 77

2

Figure 9. Values of cos: x *cos x.

By connecting these points by a smooth curve ue shoulc, obtain a reasonable

picture of the function

cos: X COS X

as in Figure 10.

Figure 10. Graph of one cycle of cos.

If we wish to extend our picture to the right and left, we use the

periodicity property to obtain Figure 11.

12

18



Figure 11. Graph of cos.

A similar treatment of y sin x leads to Figures 12, 13, and 14.

TT
a

177 x

Figure 1 . Valu-s of sin x: x--& sin x.

Figure 13. Graph of one cycle of sin.

Figure 14. Graph of sin.

13



Since it is often necessary to work with

y a A cos x

y n cos Bx (4)

y . cos (x + C) (A, B, and C constants)

or same combination of these expressions, it is worthwhile to inquire into the

effect that these constants have on the behavior of y. In daze of

y A cos x (A > 0),

the A simply multiplies each ordinate of y = cos x by A, and the graph of

y . A cos x would appear as in Figure 15.

Figure 15. Graph of y .= A cos x.

In Exercises 5, 6, and 7 you are asked to determine for yourself the

effects of B and C in Equations (4).

Exercises 2

1. Using f(x + 2nn) f(x), and f: x--0. cos x, find

(a) f(37(); (d) f(

(b) f(27f.); (e) f(-7n);

(c) f(f); (f)

2. If f: x-0. sin x fird the values of f in Exercise 1 above.

2()



3. FOr what values of x (if any) will

(a) sin x a cos x? (c) sin x sin (-x)?

(b) sin x - -cos x? (d) cos x cos (-x)?

4. Graph on the same set of axes the functions f: xry defined by the

following, using Table 1 to find values for the functions.
1

(a) y as 2 cos x (b) y 3 cos x (e) y = -5 cos x

5. Repeat Exercise 4 using

(a) y = coo 2x; (b). y = cos 3x; (c) y = cos x.
2

6. Repeat EXercise 4 using

(a) y cos (x + 11). (b) y a. cos (x - 11)-
2 2 '

(c) y = cos (x + a).

7. From the results of Exercises 4, 5, and 6 above, what effect do you think

the constant k will have on the graph of

(a) y k cos x? (b) y = cos kx? (c) y = cos (x + k)?

8. From the results of Exercise 6(b) above and Figure 14, what can you say
g.

about cos (x ) and sin x?
2

9. Az explained in the text, symmetric points with respect to the u-axis on

the unit circle u
2

+ v
2

= I are obtained by proceeding a distance x in

the clockwise and counterclockwise senses along the circle. In other

words, if p(x) = (u,v), then p(-x) (u,-v). If follows that

cos x = cos (-x)

sin x =, -sin (-x).

What relations between the circular functions can you derive in similar

fashion from the following symmetries of the circle?

(a) The symmetry with respect to the origin.

(b) The symmetry with respect to the v-axis.

3. Angle and Angle Measure.

Az we remarked in Section 10 the circular functions are closely related

to the functions of angles studied in elementary trigonometry. In a sense,

all that we have done is to measure angles in a new way. To see precisely

what the difference is, let us recall a few fundamentals.

An angle is defined in geometry as a pair of rays with a common end point.

(Fig.16.) Let Ri and R2 be two rays originating at the point 0. Draw any circle

with 0 as center; denote its radius by r. The rays R1 and R, meet the

circle in two points PI and P, which divide the circle into two parts.

Here we consider directed angles and distinguish between the angles defined by

17



the pair Er R, according to their order. Specifically, ye set a = 4(R1,R2
and RI) where each angle includes the arc of the circle which is

obtained by passing counterclockwise along the circle from the first ray of the

pair to the second (Figure 16).

Figure 16. Angles a and 5.

In establishing degree measure, we divide a circle into 360 equal units

and measure an angle a by the number of units of arc it includes. For
1

instance, if we found that an angle included -3- of the circumference, we

would say that the angle measured X 3600 or 120°. In general, if we
2nrdivide the circumference of a circle into k equal parts, each of length
k

then this length could be our unit of angle measure. Since the numerical fac-
2m
-- appears in many important formulas, it is useful to choose k so that

the factor is 1. In order to do this, it is clear that k must equal 2m.

In this case, 21E will be equal to r, the radius of the circle. When

k = 2n we call the resulting unit of angle measure a radian. Radian measure

is related to degree measure by

and

I radian =
(182) °

2n

o
1 = radians.

lo0

You should note that this definition of the radian measure of an angle

implies that an angle of 1 radian intercepts an arc of length s equal to

r, the radius of the circle. In general, an angle of x radians intercepts an

arc of length xr. That is, s xr where x is the measure of the central

angle in radians while s and r are the lengths of the arc and the radius

measured in the same linear units.

In working with radian measure, it is custamary simply to give the meas-
n

ure of an angle a as, say, 7, rather than 7 radians. If we use degree

16



Measure, however, the degree symbol will always be written, as, for example,
900, ,_o

, etc.

It is also possible to measure an angle a by the area A of the sector

it includes (Figure 16). Specifically, we have that the area A is the same

fraction of the area of the interior of the circle as the arc s is of the

circumference, that is,

A

Itr

a
2 atr

(3)

We saw above that the arc length s on a circle included by an angle a may

be expressed as s = xr where r is the radius of the circle and x is the

radian measure of a. It follows from (3) that

A =
2 2n

nr
or

That is, the measure x of a in radians is twice the area of the included

sector divided by the square or the radius.

Exercise 1

1. change the following radian measure to degree measure.

(g)

(h) .1f1

5

(a) 4:31 (d)

(b) (c)

2. Change the following d gree measure to radian measure.

(g) 810°

(h) 190°

(1) :8°

What j the meazurc (in radians) of an anglo which form;, a sector of arca

9n if the radius of the circle is 3 units?

4. What is the area of the sector formed by an anglc of (41n, if thc: radius

of the circle is 2 units?

5. Suppose that we wish to find a unit of measure so that a quarter of a

circle will contain 100 such units.

(a) How many such units will be equivalent to 1°?

(b) How many such units will be equivalent to I radian?

(c) How many of these units a central angle contain, if the inclu-

ded arc is equal in length to the diameter ot thu c.ircic?

17



4. Uhiform Circular Motion.

Let its again consider the motion of a point P ,iround a circle of radius

r in the'uv-plame, and suppose that P moves at the constant speed of s

units per second. Let Po(r,O) represent the initial position of P. After

one second, P will be at Pl, an arc-distance s away'from P. After two
secondsi P will be at P21 an arc-distance 2s from Po, and similarly after

t seconds P will be at arc-distance ts. (Figure 17.)

Figure 17. Uniform motion of P on circle O.

Clearly, LP
0
OP

1
= LP '1 OP

2
m L P

2
0P

3
... and likewise for each additional

second, since these central angles have equal arcs, each of length s. Each of

these central angles may be written az w After 2 seconds, OP will
have rotated through an angle az into position 01'2; after 3 seconds through

an angle 341); and, in general, after t seconds through an angle of the or

at. In other words, after t seconds, P will have moved from (r,O) an

arc-distance st, and OP0 will have rotated from its initial position through

an angle of cut into the position OP. If we designate the coordinates of P

by (u,v) we have

u = r cos czt

v r sin wt.
(1)

When cot = 2n, P will again be in the position Po. This motion of the

point from Po back into Po again is called a cycle. The time interval

during which a cycle occurs is called the period; in this case, the period is



44.7-4

23(
---. The number of cycles which occur during a fixed unit of time is called

the frequency. Since we refer to the alternating current in our homes az

"60..cycle", an abbreviation for "60 cycles per second", this notion of fre-

quency is not altogether new to us.

TO visualize the behavior of the point P in a different way, consider

the motion of the point Q which is the projection of P on the v-axis. As

P moves around the unit circle, Q moves up and down along a fixed diameter

of the circle, and a pencil attached to q will trace this diameter repeatedly--

assuming that the paper is fixed in position. If, however, the strip of paper

is drawn from right to left at a constant speed, then the pencil will trace a

curve, something like Figure 16.
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Figure 18. Wave motion.

An examination of this figure w-ill show why motion of this type is called wave

motion. We note that the displacement y of Q from its central position is

functionally related to tlle time t: that is, there is a function f such that

y = f(t). By suitably locating the origin of the ty-plane, we may have either

y cos (it or y sin ut; thus either of these equations may be looked upon

an describine a pure wave or, as it is sometimes called, a simple harmonic

motion. The surface of a body of water displays a wave motion when it is

disturbed. Another familiar example is furnished by the electromagnetic waves

used in rmdio, televinion, and raclar, and modern physics has even dctectu:

wave-like behavior of the electrons of the atom.

One of the most interesting applications of the circular functions is to

the theory of sound (acoustics), A sound wave is produced 1,y a rapid alterna-

tion of pressure in some medium. A pure musical tone is produc!ed by any pres-

sure wave which can Le described by a circular function of time, say:

p A sin ut
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where p is the pressure at time t and the constants A and te are posi-

tive. The equation (2) for the acoustical pressure, pl is exactly in the form

of one of the equations of (1) even though no circular motion is involved; all

that occurs is the fluctuation of the pressure at a given point of space.*

Here the numbfIrs A and w have direct musicaa significance. The number A

is called the amplitude of the wave; it is the peak pressure and its square is

a measure of 'the loudness. The nuMber ce is proportional to the frequency

and is a measure of pitch; the larger cc the more shrill the tone.

The effectiveness of the application of circular fUnctions to the theory

of sound stems from the principle of superposition. If two instruments indi-

vidually produce acoustical pressures pi and p then together they produce

pressures. pi + p,. If pi and p2 have a common period then the sum

pi + p, has the same period. This is the root of the principle of harmony;

if two instruments are tuned to the same note, they will produce no strange

new note when played tog2ther.

Let us suppose, for. example, that two pure tones are produced with indi-

vidual pressure waves of the same frequency, say

u . A cos wt

v = h sin ut

(3)
(4)

where A, B, and w are positive. According to the principle of superposi-

tion, the net pressure is

p .r A cos (.tt + P Jin

What does the graph of this equation look liXe? We shall answer this question

by reduing the problem to two simpler problems, that is, of graphing (3) and

(4) above. For each t, the value of p is obtained from the individual

graphs, since

To illustrate these ideas with specific numerical values in place of A, B,

and ii., let

A = 3, B . 4 w = n.

Then we wish to graph

p = cos nt + 4 sin nt.

Equativno ( ) and (4) become

U = 3 COO 1Tt,

V = 4 sin nt.

(5)

(6)
(7)

AThe acoustical pressure is defined as the difference between the gas pressure
in the wave and the pressure of the gao if it is left undisturbed.

20
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By drawing the graphs of (6) (Figure 19) and (7) (Figure 20) on the same set of

axes, and by adding the corresponding ordinates of these graphs at each value

of t, we obtain the graph of (5) shown in Figure 21. You will notice that

certain points on the graph of p axe labeled with their coordinates. These

axe points which are either easy to find, or which have same special interest.

Ii Tr 217 fly

Figure 19. Figure 20.
Graph of u = 3 cos nt. Graph of v = 4 sin nt.

The points (0,3), (0.5,4), (1,-3), (1.5,-4), and (2,3) are easy to

find since they are the points where either u = 0 or v = 0. The points

(0.2),5) and (1.29,-5) are important because they represent the first maxi-

mum and minimum points on the graph of p, while (0.79,0) and (1.79,0) are

the first zeros of p. To find the maximum and minimum points and zeros of p

involves the use of tables, and hence we shall put off a discussion of this

matter until Section 7, although a carefUl graphing should produce fairly good

approximations to them.
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Figure 21. The sum of two pure waves of equal period.

Dashed curve: u = 3 cos nt.

Dotted curve: v = 4 sin :ft.

R.11.1 curve: p 3 cos gt 4 sin sct; 0 < t < 2.

(The scales are not the same on the two axes; this

distortion is introduced in order to show the details

more clearly.)
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EXercises 4

1. Extead the three curves in Figwe 21 to the interval It! < 2. To the

interval It( < 3. What do you observe aboat the graph of

p 3 cos nt + 4 sin nt over It! < 3? Is it periodic? 'What is its

period? Give reaZons for your answers.

2. Sketch graphs of each of the following curves over one complete cycle;

and state What the period is, and what the range is, if you can.

(a) y = 2 sin 3t

(b) y = -3 sin 2t

(c) y = 4 cos (i)

(d) y = 3 cos (-x)

(e) y = 2 sin x - cos x

5. Vectors and Rotations.

In the next section, we shall develop the important formulas for

sin (x + y) and cos (x + y). Because our development will rely on certain

properties of plane vectors, we give, in this section, az informal summary of

those properties.

You have probably encountered vectors in your earlier work in mathematics

and science. The physicist uses them to represent quantities such as displace-

ments, forces, and velocities, which have both magnitude and direction. Same

examples of vector quantities are the velocity of a train along a track or of
the wind at a given point, the weight of a body (the force of gravity), and the

displacement from the origin of a point in the Cartesian plane.

In a two-dimensional system, it is often convenient to represent vectors

by arrows (which have both a length, representing magnitude, and a direction

and to use geometrical language. We shall do this, and we shall restrict our-

selves to vectors all of which start from a single point; in our discussion we

shall take this point to be the origin. If t and T are vectors, we define

the sum 7+-5 to be the vector R represented by the diagonal of the paral-

lelogram which has sides 1r and 7, as shown in Figure 22. If T is a

vector and a is a number not equal to 0, then we define the product aT to

be a vector whose magnitude is lal times that of T and whose direction is

the same az 1r if a > 0 and uposite to I! if a < 0; in either case, 7!

and al are collinear. Figure 23 illustrates this for a = 2 and a = -2.

It is an experimental fact that these definitions correspond to physical real-

ity; the net effect of two forces acting at a point, for example, is that of a

single force determined by the parallelogram law of addition.



Figure 22.
The sum of two vectors.

Figure 23.
A vector multiplied by a number.

These definitions of vector sum and of multiplication by a number make it

possible to express all plane vectors from the origin in terms of two basic

vectors. It is convenient to take as these basic vectors the vector 1I from

the origin to (1,0) and the vector 17 from the origin to (0,1). Then, for

any vector IT, there exist unique numbers u and v such that

(1)

in fact, the numbers u and v are precisely the coordinates of the tip of

the arrow representing IT (Figure 24). To take a specific example, the vector

1! from the origin to the point Fq14) can be expressed in terms of the

basic vectors IT and 77 as

az shown in Figure 25.

Figure 24.
A vectOr in terms of the
basic vectors 7 and 17.

24
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We now introduce the idea of a rotation of the Whole plane about the

origin 0. SuCh a rotation carries eadh vector into a unique vector, and we

may therefore regard it az a fUnction whose domain and range are sets of vec-

tors. Mbst of the functions you have met are functions which map nuMbers into

numbers, but it will be useful, in this section, to think of a rotation us a

new kind of function which maps vectors into vectors.

Any rotation of the sort we are considering is completely specified by

the length x of the are AP of the unit circle through which the rotation

carries the point A(l00). Let f be the rotation (fUnction) Which maps the

vector 0A (that is, into the vector Z5? whose tip F haz coordinates

u,v). Az we have seen above, ,-fe can be expressed in terms of the basic

vectors 17 and ir as Utr+ IX% Hence

f(U) = OP = ulT vVy (2)

as pictured in Figure 26. The same rotaticy f carries the point B(0,1)

into the point Q(-v,u), as can be shown b;' !ongruent triangles, (see Figure

26) se we also have

f(7) = 7-Q7 - u7. ( 3 )

Fl;rure .

The effect of a rotation oh the basic vectors 77 and V.

(Me figure is valid only when 0 < x < ;. The result, however, is true for

any real n for a more general derivation, see Exercises and

Now suppose that we sub:ect the plane to a secohd rotation g, in which

points on the unit circle are displaced through an arc of length y. 17,1nce g

also is a function, we may regard the successive application:, of the rotations

f and g as a composite function gf (see, for example the E;M:G pamphlet,

3



Flinction From Equation (2) and the definition of copposition, we have

(gf)at) 8(f(1)1) g(g) g(ur+ vt).

Figure 27.

(4)

We must now pay some attention to two important properties of rotations.

First, a rotation does not change the angle between two vectors, and collinear

vectors will therefore be rotated into collinear vectors. Second, a rotation

does not change the length of any vector. Now, if a is a number (a 0)

and T Is a vector, then the Vector aT is collinear with T. If f is a

rotation, the two stated properties ensure that T and f(5) have the same

length, that al. and f(t2) have the same length, and that f(s7T) is collin-

ear with f(1). We will therefore get the same vector from T if we first

multiply by a and then rotate, or first rotate and then multiply by a:

afcal. (5)

The same two properties of rotations also ensule that a parallelogram will not

be distorted by a rotation. Since the addition of vectors is defined in terms

of parallelograms, it follows that rotations preserve sums; that is, if f is

a rotation, and if lr and T are vectors, then

f(7+ 711 = + (6)

From (5) and (6),

g(Ulr+ NV) = ug(T) + vg(V),

and we may therefore rewrite (4) as

(gf)() = ug(t) + vg(V).

26
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EXercises

1. Let T be the vector OP where P is the point (4:4). Write I! in

the form liT+ Vir. If 7= fan, find the arc on the unit circle which

specifies the rotation f.

2. In Ekercise 1, replace P by

(a) the point

(b) the point

3. Find f(t) if the rotation f is specified by Mn art of the unit circle

whicb is

(a) 1- units long;

(b) 2K units long.

4. Write f(5) in the form Cr+ 4' if f corresponds to an are of the

unit circle Which is

(a) units long;

(b) i units long.

5. Do EXercise 4 for an arc units long.

6. Let f correspond to a rotation of .1 units and g 'to a rotation of

iunits. Show that, since 7r. fal), the result in Exercise 5 is equiva-

lent to

7. If f and g are any two r6tations of the plane about the origin show

that fg = gf.

8. If the rotation f corresponds to an arc x and the rotation g to an

arc show that f(V) = (fg)(t) = (gf)(5).

9. In EXercise 8, put f(t) ;ii", and hence show that

f(V) = g(u) + g(177) = ug(r!) + vg(V) = 1;7- vU.

6. The Addition Formulas.

We are now ready to bring the circular functions into the picture. Since

f maps the vector OA onto OP so that A(1,0) is carried through an arc

x of the unit circle to F(u,v), it follows from the definitions of Section 1

that

u = cos x and v - sin x.
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Hence Equations (2) and (3) of Section 5 can be written

f(t) = (cos x)11+ (sin x)7 (1)

and
f(V) = (-sin xrU. + (cos x)ir. (2)

Since, moreover, the rotation g differs from the rotation f only in that

the arc length involved is y instead of x, we may similarly write

g(T) = (cos y)i7+ (sin y).7 (3)
and

117) = (-sin y)1.7+ (cos y)7. (4)

Substituting these results in (7) of Section 5 gives us

(gf)(71) (cos x)((cos y)17+ (sin + (sin x)((-sin y)U + (cos y)V

= (cos x cos y - sin x sin y)U + (sin x cos y + cos x sin y) . (5)

FUrthermore, the composite rotation gf can be regarded as a single rotation

through an arc of length x + y, and we may therefore write, by analogy witn

(1))

y)7".(gf)(7)) (cos (x + y))17+ (sin x + (6)

We now have, in (5) and (6), two ways of -f-essing the vector (gf)(1)

in terms of the basic vectors U and V. Since there is essentially only one

such way of expressing any vector, it follows that the coefficient of U in

(5) must be the same as the coefficient of U in (6), or

cos (x + y) = cos x cos y - sin x sin y, ( 7 )

and a similar comparison of the coefficients of 7t in the two expressions

yields

sin (x + y) sin x cos y + cos x sin y. (8)

These are the desired addition formulas for the sine and cosine.

We also obtain the subtraction formulas very quickly from Equations (7)

and (8). Thus

COO (X - y) - cos (x + (-y)) = cos x cos (-y) - sin x sin (-y). (

Since, however, (Section 2, Equations (3)

COS (-Y) = cos Y

sin (-y) --. -sin y,
and

we may write (9) as

cos (x y) = cos x cos y + sin x sin y. (10)



In the Exercises, you will be asked to show similarly that

sin (x - y) = sin x cos y - cos x sin y. (11)

From formulas (7) and (8) and (10) and (11) it is easy to derive a large

number of familiar trigonometric formulas.

ample. Find cos (x + n) and sin (x +

Solution. By (7), with y = n

cos (x + n) = cos x cos A sin x sin n.

Now, cos n = -1 and sin g a 0. Hence cos (x + n) = -cos x.

Similarly, from (8), sin (x + g) - sin x cos n + cos x sin n

sin x(-1) + cos x(0)

-sin x.

aercises 6

1. By use of the appropriate sum or difference formula show that

(a) cos ( x) . sin x; (f) sin (n - x) = sin x;

(b) sin (7,4 - x) = cos x; (g) cos (d--
2

+ x) = sin x;

(c) cos (x + ) . -sin x; (h) sin (d-- + x) = -cos x;
2 2
g

(d) sin (x + 7) cos x; (i) + x) = cos - x).

(e) cos (g - x) -cos x;

Prove that sin (x y) = sin x cos y - coo x sin y.

*3. Show that formulas (7), (8), and (11) may all be obtained from formula

(10), and, hence, that all of the relationships mentioned in this section

follow from formula (10).

4. Prove that the function tangent (abbreviated tan) defined by

sin x / g
tan: x (x t + + 2ng)

cos x -

is periodic, with period g. Why axe the values ± + 2ng excluded

from the domain of the tangent function?

5. Using the definition or the function tangent in Exercise 4 and the

formulas (7), (8), (10), (11), develop formulas for tun (x + y) and

tan (x y) in terms of tan x and tan y.

6. Using the results of Exercise 5, develop formulas for tan - x) and

tan (g + x). Also, show that tan (-x) - -tan x.
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7. Express sin 2x, cos 2x, and tan 2x in terms of functions of x.

(Eint: Let y = x in the appropriate formulas.)

8. EXpress sin 3x in terms of fUnctions of x.

9. In Exereise 7 you were asked to express cos 2x in terms of functions of

x. One possible result is cos 2x = 1 - 2 sin
2
x. In this expression

substitute x = X and solve for sin X
2 2'

10. In EXercise 9, cos 2x may also be written.as 2 cos
2
x - 1. Use this

formula to get a formula for cos

11. Using the definitions of the function tan and the results of Exercises

9 and 10, derive a formula for tan This will be an expression

involving radicals, but by rationalizing in succession the numerator and

the denominator you can get two different expressions for tan not

involving radicals.

In Section 5 we developed the algebra of rotations, and in this section

we have applied this algebra to derive the addition formulas for the sine and

cosine functions. As we shall now indicate, there is a close parallel between

the algebra of rotations and the algebra of complex numbers.

If two complex numbers are expressed in polar form, as are

cos x
1

+ i sin x
1

)

and

z
2

= r
2
(cos x

2
+ i sin x

2
)

then their product can be found by multiplying their absolute values

r2, and adding their arguments, xl and x2:

ziz2 r3r2(,cos (x1 + x2) + i sin (x1 +

Multiplying any complex number z by the special complex number

cos x + i sin x 1(cos x + i sin x)

is therefore equivalent to leaving the absolute value of z unchanged and

adding x to the argument of z. Eence, if we represent z by a vector in

the complex plane, then multiplying by cos x + i sin x is equivalent to

rotating this vector through an arc x, as in Section 5.

Let us replace the vector U of Section 5 by the complex number

1 cos 0 i sin 0.
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Then the product

(cos x + i sin x) .1 cos x + I sin x

reTresents the vector formerly called t(t) (see Figure 28), and (gf)(a)

becomes

(cos y + i sin y)(cos x + i sin x) 1

((cos x cos y - sin x sin y) + i(sin x cos y + cos x sin y)) .1.

Figure 28. Representation of 1= COS x + i sin x.

If we replace (gf)( 1) by

(cos (x + y) + I sLn (x + r . 1

we have

cos (x + y) + i sin (x + y)

s(cos x cos y - sin x sin y) + i(sin x cos y + cos x in y).

By equating real and imaginary parts we obtain the addition formulas (7) and

(8).
The subtraction formulas may be derived equally simply. Since g-1 is

equivalent to rotating through an angle -y, we hwe (g-if)(V)m g-lf(t) and

therefore

Hence

and

(cos (x - y) + i sin y)) 1.

cos Cx - y) cos x cos y + sin x sin y

sin y) sin x cos y - cos x sin y.

31
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7. Construction and Use of Tables of Circular FUnctions.

It is difficult to give in a short space an indication of the enormous

variety of ways in which the addition formulas of Section 6

cos (x + y) = cos x cos y - sin x sin y (1)

sin (x + y) is sin x cos y + cos x sin y (2)

cos (x y) = cos x cos y + sin x sin y (3)

sin (x - y) = sin x cos y - cos x sin y (4)

turn up in mathematics and in the application of mathematics to the sciences.

In this section and in Sections 8 and 9, shall describe some of the more

common applications. The first of these is their use in the construction of a

table of values of the sine and cosine fUnctions.

In Exercise 1 of Section 6, you used the difference formulas to show that

and

,n
sin k- m X) = COS x

2

cos ( - x) = sin x.
2

These formulas permit the tabulation of sin x and cos x in a very neat

way. If we had a table of cosines for 0 < x < this would, in effect, give

a table of sines in backwaxd order. For example, from the table of special

values in Section 2, we obtain the sample table shown, where y x.

In this table the values of the cosine are read from the top down, and the

values of the sine from the bottom up. Since it is a very inefficient use of

space to put so few columns on a page, the table is usually folded in the

middle about the value x = y = and is constructed as in the following
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At the end of this pamphlet we give three tables:

I. A table of sin x and cos x for decimal values of x up to 1.57

(slightly less than
IT X nx

II. A table of sin 77 and cos in decimal fractions of 7 up to

1.00.

III. A table of sin x, cos
o
x, and tan

o
x, in degrees up to 900

(We define sin
o

x -.to sin x
o
p with similar definitions for cos

o
and tan

o

It is usual to write sin x in place of sinclx, etc., when the context makes

it clear what is intended. We shall follow this practice.)

Exercises la

1. Why is Table I not folded as are Tables II and III?

2. Find from Table I sin x and cos x when x is equal to

(a) 0.73;

(h) -5.17;

(c) 1.55;

(d) 6.97 (Hint: 2n at 6.28).

3. From Table I, find x when 0 < x < 5 and

(a) sin x 0.1099; (c) sin x = 0.6495;

(b) cos x 0.9131; (d) cos x = 0.5403.

4. From Table II, find 4;in ut and cos ut if a) ; and

(a) t 0.31; (c) t = 0.62;

(b) t - 0.79; (d) t =, 0.71.

From Table II, find

0 < t < 1 and

(a) sin ut ft 0.827;

(b) cos at

(interpolating, if necessary), if w

(c) sin ut * 0.475;

(d) cos ut ft 0.795.
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6. From Table III, find sin x and cos x (interpolating, if necessary)

when

(a)

(b) x 730;

(c) x = 36.20;

(d) x

7. Pros Table III, find x when 0 < x < 9cP and

(a) sln x m 0.629; (c) sin x 0.621;

(b) cos x sat 0.9091; (d) cos x

EXtending the scope of the tables. Table I, at the end of this pamphlet,

gives values of the circular fUnctions cos: x= cos x and sin: x- sin x

only for 0 < x <.i, but we can extend its scope to the set of all real numbers

by osing (a) equations (1)-(4), (b) our knowledge of the circular fUnctions of

all multiples of (see, for example, Table 1), and (c) the fact that any

real number can be expressed az the sum (or difference) of two numbers of which

one is a multiple of and the other is in the interval ix: 0 < x <

Similar remarks apply to Tables II and III, The technique is best explained

through examples.

E_xample 1. Find sin 2.

Solution. Since 7 ea 1.57, we write 2 1.57 + 0.43, and, using

equation (2), we then have

sin 2 = sin (1.57 +

. sin (7..
.4. 0.43)

= sin cos 0.43 + cos sin 0.43
2 2

* cos 0.43

= 0.9090.

Alternatively, 2 3.14 - 1.14 m n - 1.14, and therefore

sin 2 = sin (n - 1.14)

sin n cos 1.14 - cos n sin 1.14

. sin 1.14

m 0.9086.

pcample 2. Find cos 4.56.

Solution. Since 4.56 . 3.14 + 1.42 n + 1.42, we have

cos 4.56 -4, cos (n + 1.42)

cos n cos 1.42 - sin n sin 1.42

. -cos 1.42

m -0.1502.
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This technique can be used to simplify expressions of the form
n

sin (n- t x) and cos (n- t x).
2 2

Eiampl7 1.. Simplify cos (.;1. + x).

1221.Solution. cos k cOs cos X - sin sin x
2 2 2

= cos cos x - sin sin x

,Eample 4. Find cos 0.82n.

Solution. In this case, it is easier to use Table II. Since

0.82x = 0.5011 + 0.32u, we have

cos 0.82n = cos (S- + 0.32n)

A A
cos cos 0.32n - sin -2- sin 0.32v

-zin 0.32n

= -sin 0.64()

1.

2.

3.

Using the table

sin 1.73;

cos 1.32T;

sin (-.37);

Exercises

that you think most convenient, find

9. cos (-135°);

10. sin 3270;

11. cos (-327°);

4. sin (-.3771); 12. cos I2.4n;

5. cos 2.8n; 13. sin 12.4;

6. cos *14. cos (sin .3n);

7. cos 3.71; *15. sin (sin .7).

8. sin 135°;

U. Pure Waves: Frequency, Amplitude, and Phase.

As we remarked in Section 4, the superposition of two pure waves of the

same frequeucy yields a pure wave of the given frequency. Now we shall be able

to prove this result. In order to be more specific, instead of assuming that

either of equations (1) in Section 4 defines a pure wave, let us say that, by

definition, a pure wave will have the form

y = A cos (at - a), ( 1 )

where A and w are positive and 0 < a < 2n. The number a is called the
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atas of the pure wave. The sine function now becomes stmply a special case of

(1), and defines a pure wave with phase 1
2'

n,
y sin ut = cos (art -

2
(2)

The phase of a pure wave has a simple interpretation. We will take the graph

of

y cos cot (3)

2n
az a standard of reference, and the cycle over thc :Iterval (0 < t < 77

between two peaks of (3) as the standard cycle. Now the graph of

y A cos (tit rears its peak, corresponding to the first peak of its

standard cycle, at the where at - a = 0, that is, at t = Cci..1". Since a%

is positive, it is clear that thc wave (1) reaches its first peak after the

standard wave (3) reaches its first peak, since (3) has a peak at t = 0. That

is, the wave (1) lags behind the wave (3) by an amount Since the period

of (3) is 2E, this lag amounts to the fraction

of a period. (Figure 29.) We see from (2) that sin at lags behind cos at

by a quarter period. (See Figures 19 and 20.)

Figure d(). Graphs of two cosine curves.

We now wish to test the idea that the sum of two pure waves which have the

same period but differ in amplitude and phase is again a pure wave of the same

period with some new amplitude and phase. You will recall that in Section 4 we

sketched the graph of

y = 3 cos nt 4 sin nt (4)

by adding the ordinates of the graphs of u _3 cos gt and v - 4 sin nt. The



graph supported this idea. At that time We also had to leave open the question

of the exact location of the rwirtms,m and minimum points and the zeros of the

grapb.

We are now in a position to deal with these problems. Since finding the

maximum and minimum points and finding the zeros involve essentially the same

procedure, we shall confine our attention to the maximum and minimum points.

Our basic problem still is to express

in the form of

y 3 coo itt + 4 sin nt

y = A cos (at - a) (1)

that is, to show that y is a pure wave, but in the process we shall be able

to obtain the exact location of the maximum and minimum points of the graph of

the sum. If we write out (1) in terms of the formula

cos - a) - cos t3 cos a + sin 3 sin a

we obtain

y = A oos (cot - a) = A(coo at coo sin at sin a)

or

y - A cos cot cos a + A sin Lot sin a.

In our case, co n we have

y = A cos Itt cos a + A sin Itt, sin a.

Upon comparing (() with (4), we note that if

A cos u 3 and A sin a - 4

(7)

then (7) and (4) will be identical. We shall therefore seek values of A and

a which satisfy the equations (8). To do this, we may begin by squaring both

sides of the equations (8) and adding them to obtain

+ 4` = A
2

cos-a + sin
2
a

2
9 + 16 - A (cos a + sin`-u)

Or

Since A is positive, we have

and consequently from (8),

From Table I

A=

4
cos a - and sin a ,= 7.

a
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Now, by using (9) and (11), we may put (4) in the form

y 3 cos xt + 4 sin nt = 5 cos (nt - 0.927), (12)

showing that it is a pure wave with amplitude 5, per.,od 2 (as before), and

phase 0.927. We note that °T7 0.295 is very close to the value 0.29

obtained graphically in Section 4. We are also in a position to locate the

maximum and minimum points of our graph. From (12), y will be a maximum when

that is,

cos (nt - 0.927) . 1,

nt - 0.927 0

t = 21221 = 0.295,

and y will be a. minimum when

cos (nt - 0.927)

that is

nt 0.927 g

t 1 + = 1.295

where,.in each case, we have taken the smallest positive value of t.

We now put the general equation

y B cos at + C sin at (13)

in the form (1). If we proceed exactly as before, using (6) and (13), we find

that for specified B and C,. A = JL2 + C2 and a solution of the equations

cos a T and sin a =

will determine a unique a in the interval from 0 to 2n, from which the

form (1) follows. (See Exercise 3 below.)

Exercises 8

1. What is the mnallest positive value of t for which the graph of equation

(4) crosses the t-axis? Compare your result with the data shown in

Figure 21.

2. Sketch each of the following graphs over at least two of its periods.

Show the amplitude, period, and phase of each.

(a) y = 2 cos 3f

(b) 'y = 2 cos (1)

(c) Y 2, 3 cos (-2t)

(e) y = -2 sin (2t A).

(f) Y 5 cos (3f i)

t /

(d) y = -2 sin
,

Oiemember that the phase is defined to be positive.)
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3. Express each of the following equations in the form y A cos (nt - a)

for some appropriate real numbers A and a.

(a) y = 4 sin nt - 3 cos nt

(b) y -4 sin nt + 3 cos :ft,

(c) y -4 sin nt - 3 cos nt

(d) y = 3 sin nt + 4 cos nt

(e) y = 3 sin nt - 4 cos nt

4. Without actually computing the value of a, show on a diagram how A and

can be determined from the coefficients B and C of cos ut and

sin ut if each of the following expressions of the form B cosut+Csintut
is made equal to A cos (at -.a). Compute a, and find the maximum and

minimum values of each expression, and its period. Give reasons for your

answers.

(a) 3 sin 2t + 4 cos 2t (c) -sin I) + cos
2

(b) 2 sin 3t - 3 cos jt

Verify that the superposition of any two pure waves A cos (ut - ci.) and
B cos (at - t3) is u pure wave of the same frequency, that is, that there

exist real numbers C and T such that

A cos (at - a) + B cos (ut f3) = C cos (at - Y).

6. Solve for all values of t:

(a) 3 cos nt + 4 sin gt = 2.5

[Method: From equation (12) we see that this equation is equivalent

to 5 cos (nt - 0.927) = 2.5. For every solution; we have

cos (nt - 0.927) 0.5,

which is satisfied only if the argument of the cosine is + 2ng or
3

+ 2mt. It follows that the equation is satisfied for all values3

of t such that

or such that

gt - 0.927 = +E. + 'rut

3

0.,?1 1
t 4-

Question: What is the smallest _positive value of t for whicll

equation (a) is satisfied?)

(b) .3 cos gt + 14 sin nt 5

(c) sin 2t - cos :t 1

(d) 4 cos At - 3 sin gt - 0

(e) 14 cos nt + sin nt -



7. Show that any wave of the form

y B cos (at - 0), (4 / 0)

can be written in the form (1) that is,

y . A cos (at - a)

where A is non-negative, co positive and 0 < a < 2n.

9. Analysis of General Waves.

In Sections 4 and 8 we considered the superposition of two pure waves of

the same period (or frequency). We found that the superposition of such waves

is again a pure wave of the given frequency. Next we ask what conclusion we

can draw about the superposition of two waves with different periods. Suppose,

-y a 2 sin 3x - 3 cos 2x.

Unfortunately, sin 3x and cos 2x have different funaamental periods, --
3

and It, so they cannot be combined into a single term, the way we could if we

had only cos 3x and sin 3x, say, or cos 2x and sin 2x. However, any

multiple of a period can be looked upon as a period. That is, we can consider
2n 4n 83v

y = 2 sin 3x as having a period of 3 2n 3 or any other integral3

2n
multiple of --. Similarly, y 3 cos 2x can be considered as having a

3

period of n, 2n, 3n, etc. Now, comparing these values, we note that both

expresuions can be considered as having a period of 2n, and hence their dif-

ference will also have a period of 2n. In effect, we simply find the least

common multiple of the periods of two dissimilar expressions of this form and

we have the period of their sum or difference. There is little else that we

can conclude in general. About all we can do to simplify matters s to sketch

separately the graphs of

u = 2 sin 3x, v 3 cos 2x,

and y = u - v. The result is shown by the three curves in Figure 30.

The superposition of sine and cosine waves of different periods can pro-

duce quite complicated curves. In fact, with only slight restrictions, any

periodic function can be approximated arbitrarily closely as a sum of a finite

number of sines and cosines. The subject of harmonic analysis or Fourier

series is concerned with approximating periodic functions in this way. The

principal theorem, first stated by Fourier, is that a function f of period

a can be approximated arbitrarily closely by sines and cosines for each of

which some multiple of the fundamental period is a.
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Specifically,

f(x) A0

Figure 30.

u 2 sin 3x, v 3 cos 2x

y = u v - 2 sin 3x - 3 cos 2x, 0 < x < 2n.

2nxN 4nx . 147tx
cos + sin ) A, cos + sin

I
---)

a 2

2nnx 2/1:nx
+ (A cos 1 co

a
( 1 )

and the more terml; we u!;e, the better is our approximation.

A:: an example:, con:;ider the function depicted in Figure 31. This function

is defined on the interval < x < n Ly

0, if x

-1, if -n < x < 0
f(X)

0 if x = 0

1 if 0 < x < n.

For all other values c,f x we define f(x) by the periodicity condition

f(x + - f(x).

This f'unction hall a particularly ol:%ple approximation ac a series of the

form (1), namely,

4:sin x sin 3x oin c)x L)x,

rc 1 5

14 1
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Figure 31. Graph of periodic function.

0, if x -n

1, if 0 < x <x f(x) f(x + 2n) f(x).
0, if x = 0

-1, if -is < x < 0

Fourier series: 4(sin x sin )x sin 5x sin .c2n - 1)
n I 5 2n - 1

As an exercise, you may graph the suceossive approximations to f(x) by

taking one, then two, then three terms of the series, and see how the succes-

sive graphs approach the graph of y = f(x).

The problem of finding the series (1) for any given periodic function f.

is taken up in calculus.

Exercises 2

1. Sketch graphs, for Ixi < n, for each of the following curves.

4
(a) y sin x

x . .s.111,12C(b) y *

(c) 4"in x _q.12-11 11.12_22i)

/

2. (a) Find the periods of each of the successive terms of the series (3)0

namely,

sin 3x sin 5x
sinx,

3 5

(b ) What terms of the general series (1) are missing? From the symmetry

properties of the function f defined by (2) can you see a reason

for the absence of certain terms?
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10. Further Applications of Circular Functions.

We have seen in Section 4 that the circular functions of real numbers

arise naturally in the theory of sound and, more generally, in the study of

simple harmonic motion. Here, however, it would be possible (although somewhat

inconvenient) to work in terms of functionz of angles rather than of real num-

bers. There are many applications of the circular functions, however, where

one must use the real-number approach.

For example, in the stuoky of vibrating membranes (e.g., a drum!) the

equation

sin x

arises. Clearly, sin x is a number and hence
sin x

is meaningful only if

we are considering x az also being a real number.

Similarly in the study of the motion of an electron of mass m and charge

e subjected to an electric field of intensity E and a magnetic field of

intensity H we need to consider the expression

Em /He Het'
--t - sin

H2e'M
TZ ;

where, again, t must be considered as a real number.

In particular, the calculus abounds in situations where the real-number

point of view must be used. Listed below are a few of the many expressions

found in the calculus in which the trigonometry of real numbers must be used:

sin h
(in finding the "derivative" of sin x);

2
- 2 sin x + sin 2x (in finding the area under one arch of a "cycloid");

sin 2x
x ------

2
(in "integrating" sin

2
x);

x,
e kcos x + sin x) (in solving a "differential" equation).
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Table I

Values of sin x and cos x for 0 < x < 1.57.

sin x cos x x sin x cos x

.00 .0000 1.0000 .40 .3894 .9211

.01 .0100 1.0000 .41 .3986 .9171

.02 .0200 .9998 .42 .4076 .9131

.03 .0300 .9996 .43 .4169 .9090

.04 .0400 .9992 .44 .4259 .9048

.Q5 4500 .9988 .45 .4350 .9004

.06 .0600 .9962 .46 .4439 .8961

.07 .0699 .9976 .47 .4529 .8916

.06 .0799 .9968 .48 .4618 .8870

.09 .0899 .9960 .49 .4706 .8823

.10 .0998 .9950 .50 .4794 .8776

.11 .1098 .9940 .51 .4882 .8727

.12 .1197 .9928 .52 .4969 .8678

.13 .1296 .9916 .53 .5c55 .8628

.14 .1395 .9902 .54 .5141 .8577

.15 .1494 .9888 .55 .5227 .8525

.16 .1593 .9872 .56 .5312 .8473

.17 .1692 .9856 .57 .5396 .5419

.18 .1790 .9838 .58 .5480 .8365

.19 .1689 .9820 .59 .5564 .8-309

.20 .1987 .9801 .60 .5646 .8253

.21 .2085 .9(80 .61 .5729 .81)6
,--,,,

,..c, .2182 .9759 .62 .5810 .8139
.23 .2280 .9737 .63 .5891 .8c60
. 24 .2377 .9713 .64 .5972 .8021

.25 .2474 .9689 .65 .6C2 .7()61

.26 .2571 .9664 .66 .6131 .7900

.2y .2667 .9638 .67 .6210 .7833

.26 . 2 ,'64 .9611 .68 .6288 .7776

.29 .2860 .9582 .69 .6365 .1712

.30 .2955 .9553 .70 .6442 .7648

.31 .3051 .9523 .71 .6518 .7584

.32 .3146 .9492 .72 .6594 .7518

.33 .3240 .9460 .73 .6669 .7452

.34 .3335 .9428 .74 .6743 .7385

.35 .3429 .9394 .75 .6816 .731:

.36 .3523 .935') .76 .6889 .7248

.37 .3616 .9323 .77 .6961 .7179

.38 .3709 .9287 .76 .7033 .7109

.39 .3802 .9249 .79 .7104 .7038



Ttble I -- Cont.

sin x COS X

.80 .7174 .6967

.81 .7243 .6895

.82 .7311 .6822

.83 .7379 .6749

.84 .7446 .6675

.7513 .6600
.86 .7578 .6524

.87 .7643 .6448

.88 .7707 .6372

.89 .7771 .6294

.90 .7833 .6216

.91 .7895 .6137

.92 .7956 .6058

.93 .8016 .5978

.94 .8076 .5898

.q5 .8134 .5817

.96 .8192 .5735

.97 .8249 .5653

.98 .8305 .5570

.99 .8360 .5487

1.00 .8415 .5403

1.01 .8468 .5319

1. .85 21 .5234
1.03 8573 .5148

1.04 .8624 .5062

1.05 .6674 .4976
.8724 .4889

1.07 .8772 .4801

1.06 .8820 .4713

1.09 .8866 .4625

1.10 .8912 .1,536

1.11 .8957 .4447

1.12 .9001 .4357

1.13 .9044 .4267

1.14 .9086 .4176

1.15 .9128 .4085

1.16 .9168 .3993
1.17 .9208 .3902

1.18 .9246 .3809

1.19 .9284 .3717

46

sin x COS X

1.20 .9320 .3624
1.21 .9356 .3530
1.22 .9391 .3436
1.23 .9425 .3342
1.24 .9458 .3248

1.25 .9490 .3153
1.26 .9521 .3058
1.27 .9551 .2963
1.28 .9580 .2867

1.29 .9608 .2771

1.30 .9636 .675
1.31 .9662 .2579
1.32 .9687 .2482
1.33 .9711 .2385
1.34 .9735 .2268

1.35 .9757 .2190

1.36 .9779 .2092
1.37 .9799 .1994

1.38 .9819 .1896
1.39 .9837 .1798

1.40 .9854 .1700
1.41 .9871 .1601

1.42 .9887 .1502
1.43 .9901 .1403
1.44 .9915 .1304

1.45 .9927 .1205
1.46 .9939 .1106
1.47 .9949 .1006

1.48 .9959 .0907
1.49 .9967 .0807

1.50 .9975 .0707
1.51 .9982 .0608
1.52 .9987 .00E3
1.53 .9992 .0408
1.54 .9995 .0308

1.57 .9998 .0208
1.56 .9999 .0108
1.57 1.0000 .0008
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Table II

Tables of sin and cos in decimal flactions of

sin x-
2

cos x-
2

.00 .000 1.000 1.00

.01 .016 1.000 .99

.02 .031 1.000 .98

.03 048 .999 .97

.04 .063 .998 .96

.05 .078 .997 .95

.06 .094 .996 .94

.07

.05

.09

.110

.125

.111

.994

.992

.990

.93

.92

.91

.10 .156 .988 .90

.11 .172 .985 .89

.12 .187 .982 .88

.13 .203 .979 .87

.24 .218 .976 .86

.15 .233 .972 .85

.16 .249 .969 .84

.17 .264 .965 .83

.18 .279 .960 .82

.19 .294 .956 .82

.20 .309 .952 .80

.21 .324 .946 .79

.22 .339 .941 .78

.23 .353 .935 .77

.24 .368 .930 .76

.25 .383 .924 .75

.26 .397 .918 .74

.27 .422 .911 .73

.28 .426 .905 .72

.29 .44o .898 .72

.30 .454 .891 .70

Xcot y-
2

sin y-5

47
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Table 11 -- Cont.

atsin x- cos x-
2

.30 .454 .891 .70

31 .468 .884 .69
.32 .482 .876 .68

33 .495 .869 .67
.34 .509 .861 .66
.35 .523 .853 .65
.36 .536 .844 .64

.37 .549 .836 .63

.38 .562 .827 .62

.39 .575 .818 .61

.40 .588 .809 .60

.41 .600 .800 .59

.42 .613 .790 .58
43 .625 .780 .57
.44 .637 .771 .56
.45 .649 .760 .55
.46 .661 .750 .54
.47 .673 .740 .53
.48 .685 .729 .52
.49 .696 .718 .51

.50 .707 .707 .50

cos y-g sin y-2
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Table III

o
x

0
x

0.000

cos x

1.000

°t an x

0.000
1 .018 1.000 .018

2 .035 0.999 .035

3 .052 .999 .052

4 .070 .998 .070

5 .087 .996 .088

6 .105 .995 .105

7 .122 .993 .123

8 .139 .990 .141

9 .156 .988 -.158

10 .174 .985 .16

11 .191 .9b2 .194

12 .208 .978 .213

13 .225 .974 .231

14 .242 .970 .249

1) .259 .966 .268

16 .276 .961 .267

17 .292 .956 .306
18 .309 .951 .325

19 .326 .946 .344

20 .342 .940 .364

21 .358 .934 .384
I-,,c_ ...J(') .92' .404

23 .391 .921 .425

24 .407 .914 .445

25 .423 .906 .466

26 .438 .899 .488

2( .454 .891 .510

26 .470 .883 .532
29

1 qv.4c,..) .85 .554

30 .500 .866 .577

31 .515 .85 , .601

32 .530 .848 .625

33 .545 .839 .649

34 .559 .829 .675

35 .574 .819 .700

36 .588 .809 .727

37 .602 799 .754

38 .616 .788 .781

39 .629 .777 .510

40 .643 .766 .839

41 8 .755 .869-----
2 .669 .743 .900

.731 933
-44 717;695 .719 .966

.707 1.000

49

o
x sin

ox
cos x tan x

46 0.719 0.695 1.036
47 .731 .682 1.072
48 .743 .669 1.111
49 .755 .656 1.150
50 .766 .643 1.192

51 .77 ' .629 1.235
52 .788 .616 1.280

53 .799 .602 1.327
54 .809 .588 1.376

55 .819 .574 1.428

56 .829 .559 1.483

57 .839 .545 1.540

58 .848 .530 1.600

59 .857 .515 1.664
60 .866 .500 1.732

61 .875 .485 1.804
62 .883 .470 1.881
63 .891 .454 1.963
64 .899 .438 2.050
65 .906 .424 2.145

66 .914 .407 2.246
67 .921 .391 2.356
68 .927 .375 2.475
69 .934 .358 2.605
70 .940 .342 2.747

71 .946 .326 2.904
72 .951 .309 3.078

73 .956 .292 3.271
74 .961 .276 3.487

75 .966 .259 3.732

76 .970 .242 4.011

77 .974 .225 4.331
78 .978 .208 4 . (05

79 .982 .191 5.145
80 .985 .174 5.671

81 .988 .156 6.314
82 .990 .139 7.115
83 .993 .122 8.144
84 .995 .105 9.514
85 .996 .087 11.43

86 .998 .070 14.30
87 .999 .052 19.08
88 .999 .035 25.64
89 1.000 .015 57.29

90 1.000 .000


