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ABSTRACT

Structural analysis of covariance matrices by Joreskog's LISREL

method is proposed as an alternative to regression methodology

in the analysis of ATI data. It is shown how LISREL resolves

some of the basic problems in regression analysis, such as biased

estimates caused by unreliability of measures and interpretative

difficulties when there are multiple aptitudes and outcomes. The

formulation of LISREL models ranging in complexity is examplified:

from regression models to models involving complex structural re-

lations between latent aptitude and latent outcome variables.

Consideration is also given to the formulation of LISREL models

when there are observational units at different levels of aggrega-

tion.



Introduction

Cronbach (1957) argued that the experimental and correlational

lines of behavioral science should be merged into one, taking

jointly into account differences between treatment conditions

and individual differences. Within educational psychology such

research has been carried out in investigations of aptitude- .

treatment interactions (ATIs,Cronbach & Snow, 1977).

Not unlike many other lines of research within educational

psychology, the results in ATI research tend to be inconsistent.

Cronbach (1975) explained the inconsistencies as being caused

by higher-order interactions, just as the presence of ATIs can

be invoked to explain the inconsistent results from the experi-

mental research on teaching methods (cf. Gustafsson, 1975).

Undoubtedly higher-order interactions account for many seemingly

contradictory ATI-results. But other explanations can be invoked

as well, and in this paper we will point out one: the methods

of statistical analysis that have been used.

Multiple regression analysis, in one form or another, has been

the standard method of analysis of ATI data, with heteror7eneous

within-treatment regressions of outcome on aptitude signifying

ATI. But, as will be elaborated upon below, errors of measure-

ment in the aptitude variables enter bias into the estimates of

regression coefficients and thereby also into the description

and testing of ATI effects (cf. Cronbach & Snow, 1977, pp. 33-

34).

Another complication arises in regression analysis when there

are several outcome and/or aptitude variables. Regression

analysis is univariate in the sense that only one outcome

viLfable is treated at a time, so they must be analyzed sepa-

rately. Several aptitude variables can be analyzed at the same

time in multiple regression analysis but for each aptitude

variable a separate regression coefficient is estimated. Thus

a great many regression coefficients are estimated and tested,

which makes for chance significancies and tends to give rise

to complex patterns of results which are hard to interpret.



These two problems, unreliability of the aptitude variables and

large sets of variables, also tend to appear together and magnify

each other, since short tests are often used to cover a wider

range of aptitude variables.

The main purpose of the paper is, however, to point at the

availability of an alternative method of analysis with which

these problems can often be solved -- the LISREL method of

Rireskog and Sorbom.

The plan of the paper is as follows: Following a brief descrip-

tion of the LISREL approach, the problem of errors of measure-

ment in the aptitude variables is discussed, along with different

methods for solving it. Then examples of LISREL models of increas-

ing complexity are formuh.ted in relation to empirical ATI-studies,

to illustrate how the method can be lsed. Finally advantages and

disadvantages of this alternativ method of analysis are discussed.

1. LISREL

The abbreviation LISREL stands for linear structural relations

and it is a model of high generality in which many other statis-

tical models can be found as special cases (cf. Joreskog & Sorbom,

1978, pp. 2-3) LISREL was introduced by Joreskog (1973, 1977),

and a description of the model, and a computer program of the

same name (LISREL IV) is given by JOreskog and Sorbom (1978, cf.

also Joreskog & Sorbom, 1976, 1977). LISREL includes as special

cases the methods for analysis of covariance structures developed

by Joreskog (1969, 1970, 1971,
1974). Here only a very

sketchy description of LISREL can be given, and for a full account

the reader should consult the references.

The LISREL model consists of two parts: the measurement models

for the dependent and independent variables, in which latent

variables (common factors) are defined in terms of observed

variables, and the linear structural equation model, in which

the relations between the latent variables are specified.

The measuremen' models are factor analysis models in which a

smaller set of latent variables (factors) are supposed to account



for the relations between the observed variables, and which are

used to describe the measurement characteristics of the observed

variables. There are two sets of observed variables y'(y ,11
1 2

y ) and x'=(x
1
,x

2
), corresponding to dependent (out-

come) and independent (aptitude) variables respectively and two

sets of latent variables n"=(n ,n m ) and E-=(E ,E n
),

1 2 1 2

corresponding to dependent and independent latent variables,

respectively. There also are vectors specifying the unique parts

(errors of measurement and specificity) of the y and x variables,

(e , e ) and 6-= (6 ,6 ).
1 2 1 2 q

The relations between the latent and the observed independent

variables are specified in Ax, which is a factor loading matrix

of order q x n for the regression of the x variables on the

variables, and the relations between the latent and the observed

dependent variables are specified in ..!-e corresponding factor

loading matrix A
Y'

of order p x m.

The measurement model for the x variables is written:

(1) x = A E + (5,

and forfor the y variables it is written:

(2) y = Ayn + e.

The structural equation model specifies the causal relationships

among the latent variables and to represent these,two parameter

matrices are used: I' which is a coefficient matrix of order m x n

for the structural relations between the and the n variables;and

a which is a coefficient matrix of order m x m for the structural

relations among the 0 variables. The residuals (disturbance terms

or errors in equations) in the dependent variables are represented

with the vector: c-=(r, ,c; ,...r ).
2 'M

The system of linear structural relations has the form:

(3) 6n = F + C.

The following covariance matrices must also be defined:
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O is a diagonal or symmetric matrix of order q x q containing

the covariance matrix for the unique parts of the x variables.

O is a diagonal or symmetric matrix of order p x p containing the

covariance matrix for the unique parts of the y variables.

(1) is a diagonal or symmetric matrix of order n x n containing

the covariance matrix of the E variables.

T is a diagonal or symmetric matrix of order m x m for the

covariance of the residuals.

Thus, in LISREL it is not necessarily assumed that the errors of

measurement in the independent and dependent variables are un-

correlated with each other. It should also be pointed out that

it is possible to specify LISREL models which allow estimation

of covariances between errors of measurement in the independent

and dependent variables; this can be effected through specify-

ing a model in y variables only (cf. Example 7, below). It is

assumed, however, that the errors of measurement are uncorrelated

with ,,n and

It can be shown (cf. Joreskog & Sorbom, 1978, p. 5) that if a

set of observational data can be described with the equations

(1), (2) and (3), and if the other assumptions are fulfilled,

the covariance matrix E of order (p+q) x (p+q) of the observed

dependent and independent variables is:

(4)

- +0
A (13

-1
PcDP
-

11'13 )Ay

A (Pr s lA

-1 -
A ,'erit

-Y --x

A 0Ax -±0_x--

In specifying a LISREL model it is necessary to specify the

nature of each element in the matrices A ,A F,,(),T,0
6
and 0

y1 - -e

(the elements will be referred to with small Greek letters). The

elements can be of three different kinds: a fixed parameter, i.e.

the parameter is assigned a given value; a free parameter, i.e.

the parameter is to be estimated; and a constrained parameter,

i.e. the parameter is to be estimated but it is constrained to

be equal to one or more other parameters.

ti



From the relations (1)-(3) it would seem that LISREL is subject

to a major limitation -- the means of the latent or the observed

variables are not included in the model. In terms of regression

analysis that would correspond to regression models without the

intercept parameter, and to make a complete evaluation of ATI

effects it is necessary to include the intercept as well. Sor-

bom (1974, 1976, 1978) has formulated models which do allow

hypotheses on the means, and which come very close to the LISREL

model. As has been shown by Sorbom (1979) these models can in

fact be estimated with the LISREL program, using a special speci-

fication, so in reality LISREL does allow estimation and testing

of the intercept parameter. In most of the examples to be pre-

sented below the intercept will however not be included, but

the procedure is illustrated in Example 7 below.

So far LISREL has been presented as if there was one group

(population) of persons only, but in ATI applications there

always are two or more groups of persons, each having had a

different treatment. LISREL handles any number of groups, however,

and the presentation given above is easily generalized, through

adding a superscript (i, j=1,...,g) indicating to which of g

groups a parameter or a matrix of parameters refers. Thus, for

example, the matrix of coefficients of structural relations

between independent and dependent latent variables in the ith

group is referred to as F (i)
. If a parameter or a matrix of

parameters is constrained to be equal in all groups an asterisk

(*) is used to denote that, i.e. r
(*)

The values of the non-fixed parameters in the LISREL model can

be estimated from the sample covariance matrices. However, to

obtain any estimates it is necessary that the model is identified.

The problem of identifiability can be defined in the following

way:

Identifiahility depends on the choice of the model and
on the specification of fix:!d, constrained, and free
parameters. Under a given specification, a given struc-
ture A ,Ax,R,F,(1),T, 0 ,C), generates one and only one
E but-Where-may-be se-Viral structures generating the
-game E. If two or more structures generate the same E,
the structures are said to be equivalent. If a para--
meter has the same value in all equivalent structures,
the parameter is said to be identified. If all parame-
ters of the model are identified, the whole model is

8



said to be identified. (Joreskog & Sorbom, 1978, p.9).

For some special cases there are general rules for determining

whether a specific model is identified or not (e.g. Werts, Jire-

skog & Linn,1973; Wiley, 1973) but in most instances that is not

the case. The LISRilL IV program has, however, the capability of

detecting if a model is not identified (cf. Joreskog & SOrbom,

1978, pp. 10-11).

In an identified model the values of the non-fixed parameters

can be estimated with maximum likelihood methods. It is assumed

that the distribution of the observed variables is sufficiently

well described by the moments of the first and second orders,

which in particular holds true when the observed variables have

a multinormal distribution.

Each analysis of a fully identified model not only yields

estimates of parameters but also an overall chi-square test of

the goodness of fit of the model, along with standard errors

of the estimated parameters. As a help in modification of a

poorly fitting model, the first derivatives with respect to

the fixed parameters are also computed (cf. Sorbom, 1975).

Through computing the differences between the -values of the

test statistics obtained with more and less constrained models,

i.e. models differing as to the number of parameters estimated,

it is also possible to test the significance of subsets of

parameters. Consider the following concrete example: A model

is estimated for two groups in which r
(1) and r

(2) are not

constrained to be equal. The test of fit gives )(21 with df1

degrees of freedom. Then a model is specified in which

,(*) is estimated instead, which will have X2 with df
2
degrees

of freedom. The test statistic X2 X2 then is chi-square
2

distributed with df 2
- df

1
degrees of freedom, and the test is,

of course, a test of the equality of the coefficients of

structural relations within treatments. This test is the one

which above all is of interest in ATI applications. In the

same way other parameter matrices, er subsets of parameter

matrices, can he tested.

9



Within the LISREL framework it is possible to formulate a

wide range of different models, which cJ;r1 accomodate most of

the designs used in ATI research. Sevral each models will be

presented below, and we will start with a model which is

identical to regression analysis.

2. Univariate regression on observed aptitude variables

Multiple regression analysis (MR) can be handled by LISREL

as a special case. In MR the x variables are considered

fixed, i.e. Ax = I and 0 = 0, so the measurement model for
- -6

the independent variables reduces to x = C. In MR there is

only one dependent variable, y, and it is similarly assumed

that y=n. The structural relations model for treatment group

i then reduces to:

(5)
(i) (i)y (i) r(i)m + ;(i).

i.e. the ordinary MR model without the intercept parameter.

The intercept can be estimated, however, through adding another

x variable, which for all persons has the value 1, and through

analyzing instead of the covariance matrix the matri of moments

about zero (cf. JOreskog & S5rbom, 1978, pp. 8-9).

The r (i) parameters of the LISREL model (5) can be estimated

in the usual way, and they can be tested for equality in she

treatment groups. This test gives the same result as the ordina-

ry F-test of homogeneity of regression. It is, however, not

possible to compute a meaningful goodness-of-fit test within

each group since a regression model of this kind always fits

the data perfectly.

When there are errors of measurement in the x variables the

LISREL model above is misspecified. The attenuating effects

of errors of measurement on the estimates of regression

coefficients are well known (e.g. Harnqvist, 1968; Cronbach,

Gleser, Nanda & Rajaratnam, 1972; Cronbach & Snow, 1977, pp.

33-35) but we will nevertheless treat that in detail for some

simple cases, to illustrate the analytical power of LISREL and

!0



also to make clear the quite drastic effects which errors of

measurement may have on the pattern of results from ATI studies.

We first consider the case when there is 1 y variable and 1 x

variable only. The r(i)ilearix then contains one element only,

y(1). Suppose that the x variable has the measurement model:

(6) x (i.)= F
(i.)+

6
(i)

Since it is assumed that the errors of measurement are uncorre-

lated with E", it follows that the observed variance a
(i)

N XXfil

0
(1) 0 (i)

. Using (4) it is easily shown that a' 1= y'

CC 6
xy CC

a(i)

If 0
6

= 0 we can estimate y (i) through taking xy which is

a
(i)
xx

also the estimator used in regression analysis. It is obvious,

however, that if 0 (i)
? 0 a biased estimate will be obtained if

(i)
this estimator is used. If 0

6
is known, however, an unbiased

a(i)

estimate is obtained if the estimator y
(i) xy is used

a(i)_ 0(i)
xx 6

instead. Using p (i) to denote the ratio

(i)

CC
, or the relia-

a(i)xx

bility, the biased estimate of y(i) can also be made unbiased

(i)

through using the correction (i) .

Px

When there are 2 treatment groups the difference A =y
(1)

y
(2)

defines the strength of the ATI effect. If however, there are

errors of measurement in the aptitude variable and the relia-

bility is the same in the 2 treatment groups, the difference

observed if the biased estimator is used will in the long run

be:

(7) A = p
(*)

CY
(1)

Y
(2)

)

y x



Since Ax is never greater than unity, unreliability of an

aptitude variable systematically lowers the possibility of

detecting ATI effects.

As was shown by Cronbach and Snow (1977, pp. 33-34) the

attenuation also affects the crossover point of the regressions

when the interaction is disordinal, and it may even change the

ordinality of the interaction. Cronbach and Snow (1977, cf.

Cronbach, 1976) also pointed out that if the reliabilities

differ between treatment groups, the attenuated coefficients

may well be identical, while at the same time the unattenuated

ones differ.

It can thus be concluded that in regression analysis of one

aptitude variable only, errors of measurement in that variable

tend to diminish the possibility of detecting ATI effects, with

the effect of unreliability being a linear function of the amount

of unreliability, at least as icing as the reliability is the

same in all groups. Errors of measurement in the outcome variable

does not have any biasing effects on the estimates, however,

and if there is such variance it can be absorbed by T (i)

In MR the biasing effects of errors of measurement in the aptitude

variables generally tend to be both stronger and more complex,

which is illustrated below for the special case of 2 aptitude

variables. Suppose that the measurement model for the aptitude

variables is:

(8) V
1

= c
1

(i)+
6
1

(i)

x (i)= (1)+ 6 (i)
2 2 2

The errors of measurement are here assumed to be uncorrelated

with each other. In explicit notation the structural equation

.model is:

(9)
(i) (i) (i)

Y1 Y2 F4.'2



From (4), (8) and (9) it follows that the covariance matrix generated

for the ith group is:

(10)
-(i)

Ai)
2GM 2 (i) (i)0(i) y(i)

2
+ (i)

11 Y1 Y 2 C
1
C
2

'2 -C
2
C
2

(i) (i)
cr

,n(i)
11 2 1Cl2

P" + (4i)
' 1

Y
(i) + y (i) (i)(i) ,(i) a

(i) + 0 (i)

'2'2
2 1 F

'1-
F
2

-F
'1'

F
2

F 2 2 a2

The observed covariance matrix is:

0(i)

YY

(11) =(i) (i) (i)

X lY x1x1

n(i) ,,(1) a(i)

X 2Y x1x2

Assuming 0 (i) = 0 the ordinary MR estimation equations are easily
-(5

derived from (10) and (11):

(12)

(i)

Y2

Q(i) c(i) Q(i)

X lY x2x2 x lx2 x
2
y

Q(i) c(i) (7(i)

x1xl x2x2 x1x2 x1x2

a(i) 0(i) 0(1) 0(1)

x 2y xixi xix2 xiy

c
(i) c(i)

-
(i) (i)

x2x2x1x1 x X
1
X
2

x1 x2

(

If the reliabilities, o(i) and o2
i)

, are known, the bias introduced

in (12) by OP)* 0 can be avoided through using instead the estimator:



(13)

Y
(i)
1

Y(i)2

a(i) 0(i) p(i) (i) a(i)

xlY x2x2 2 X lx2 X
2Y

a(i) 0(i) p(i)0(i)
-

0(i) a(i)
xlx1 x2x2 1 2 X1X2 x1x2

0(i) a(i) p(i) 0(i) 0(i)
x2y xlx1 1 X lx2 X lY

,(i) 0(i)
p1

p2 -
0(1) 0(i)

'x
1
x
1 2

x
2

"1 "2 X1X2 x1x2

From (13) follows that in MR the attenuation effects are non-

linear functions of the amounts of error of measurement and the

covariance between the aptitude variables.

Since the effects are quite complex any general statements

cannot be made, but Figure 1 illustrates the effects in one

particular hypothetical ATI application. In this figure the
^(

expected observed differences y(1) - ''l and y(1) - y(2) have
(*

been plotted as a function of pl (*)
, with p2 taken to be .90,

(

y
1

1)
= .20, y

(2 1)
= .40, y

(2) = .40, y
(2) = .20 and 0

F",

.50. Even
12

when both aptitude variables have reliabilities as high as .90

the observed difference between the coefficients is only about

80 percent of the true difference. If x2 has a high reliability

of .90 and x
1
has a lower reliability of .50 the observed

difference between the attenuated coefficients for x
2

is, in

this particular case, 70 percent of the true difference, while

the observed difference or x
1
is only 35 percent of the true

difference. Had in the example the true correlation between the

aptitude variables been higher, even more marked effects would

have been found.



P2 = .90 Yi Ills .20 y2111= .40

r a.SO yra .40 y2'..20
4112

Figure 1 The differences between the expected attenuated within-

treatment regression coefficients as a function of the

reliability of one of the aptitude variables.

This is only one example, and other examples with even more

drastic effects could easily be constructed. It may even happen

that the observed difference between the within-treatment coeffi-

cients has the wrong sign.

Obviously unreliability in the aptitude variables has so marked

an effect on the results from ATI studies that unattenuated

coefficients should never be interpreted unless the reliability

of all the aptitude variables in well above .90 and their corre-

lation is low. Cronbach and Snow (1977, pp. 33-37, p.515) urged

ATI researchers to disattenuate the regression coefficients. Only

few researchers have followed their advice, however, so the

bias entered by errors of measurement in the aptitude variables

is likely to account for a great many seemingly contradictory

ATI results.



Cronbach et al. (1972, pp. 287-302) describe methods useful

in corrections for attenuation, which methods do not necessari-

ly assume that the errors of measurement are uncorrelated. We

shall in relation to a concrete example show how correction for

attenuation can also be effected with LISREL.

EXAMPLE 1: Disattenuating regressions

Most of the examples to be presented will employ real data, but

here we will use generated data. For each of 2 treatment groups

a LISREL model was constructed and the models are shown in

Figure 2.

6, --su-
m oe)

Figure 2 The model for the generated data

114n

In the figure the following symbols have been used (cf. Jbre-

skog & Sorbom, 1978): Latent vc..7iables are enclosed in circles,

observed variables are enclosed in squares, and errors of

measurement and disturbance terms are included without being

enclosed. A straight one-way arrow indicates a causal influence

of one variable on another and curved two-way arrows indicate

covariance between variables without any causal interpretation.

In the models variances are given in pharanthesis. Thus, for

both groups the measurement model for the aptitude variables is

identical, there being 2 r,-variables, each being measured by 2

-observed x-variables, with reliabilities .50 and .845. In group

16'



1 El is assumed to have a strong relation to an observed outcome

variable, while in group 2, F,2 is assumed to be strongly related

to outcome.

From Figure 2 follows directly that the following parameter

specification was

A(*) =
--x

0(*) = ding

1'(2) = (.20,

used:

1.0 0.0

1.3 0.0

0.0 1.0

0.0 1.3

(1.0, .31,

.60) 4'
(*)

*

1.0,

= (.48)

)

.31),

1.0
.5

F(1)=

1.0

(.60, .20),

Inserting the parameter

matrices are obtained:

matrices in (4)

1.00

the following covariance

.70 2.00

(1)
=

.91 1.30 2.00

.50 .50 .65 2.00

.65 .65 .845 1.30 2.00

1.00

.50 2.00

(2)
.65 1.30 2.00

.70 .50 .65 2.00

.91 .65 .845 1.30 2.00

Using the GGNRM routine in the IMSL libarary of computer sub-

routines, data with a multivariate normal distribution was

generated according to these E-matrices. There were 150 subjects

in each treatment. The following sample covariance matrices were

obtained:

1



1.12

.84 2.03

S(1)
1.16 1.44 2;29

.63 .48 .80 1.91

.75 .56 1.03 1.42 2.12

1.03

.52 2.15

(21
.53 1.47 2.14

S .83 .68 .66 2.07

.95 .95 .98 1.56 2.26

Having data on4x-variables it would of course be natural to

analyze them all in one MR equation for each treatment. But

with data such as these this is not possible since after correc-

tion for attenuation some of the variables are so highly inter-

correlated that problems of multicollinearity would occur. Thus

the variables will be treated 2 at a time.

We consider first estimation and testing of the attenuated

coefficients. The regression model for x-variables 1 and 3

is shown in Figure 3. To obtain the estimates the following

sper:ification was used:

(*)_ (*)_ ,(i)_ ,(i) (i)_[ (i) (i)
Ax I, (26 ox , E yi ,y2 ],

A (*). [12, o*)-.- [03, 6(*)=E11, Y(i)=[Y(1)]
Y

where S (i) denotes the sample covariance matrix for the

x-variables in the ith group. To test the equality of the

v:egresson coefficients in the treatment groups the F
(i) matrices

were in another model constrained to be equal.
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The model used to estimate the attenuated coefficients

for the generated data.

To correct for attenuation we used the known population values

of 0
(5

(*) and to obtained the unattenuated coeffici is 0 can

be entered as a matrix of fixed parameter values. The LISREL

model used to obtain the unattenuated coefficients is shown in

Figure 4.
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The model used to estimate the unattenuated coefficients
for the generated data.



The following specification was used:

I 0 (*) =(1.0, 1.0),

.68 (1)

(2)

2

[(1)

(1)1

.48

r (i)
= Y

(1) (1)
Y2

A
(*) =(1),

Thus, the diagonal of the 0 (i) matrix contains free parameters

and estimates of these parameters are of course estimates of

the "true variances ".

Estimates of the attenuated and disatten12ated regre17,son

coefficients are presented in Table 1 nor the 4 possible

combinations of 2 x-variables at a time, 1 from each latent

variable. The true coefficients are also presented, as are

the results from the tests of equality of the estimated reg-

ression coefficients within the treatment groups.

Table 1

Estimates of regression coefficients for the grmerated data in example 1

x-varia-
tiles

Attenuated coefficients Unattenuated coefficients True values

(1)
yl

(2)
Y1

(1)
Y2

(2)

'2

1)
(1)

'1

(2)

1

(1)

'2

,(2)
'2

1)
(1)

/1
(2)

)1
(1)

Y2
(2)

Y2

1 and 3

1 and 4

2 and 3

2 andv4

.36

.34

.46

.44

.13

.07

.14

.07

.24

.26

.14

.14

.36

.39

.36

.39

11.22

15.56

26.76

32.32

.65

.71

.47

.53

-.00

.09

.02

.04

.35

.20

.28

.12

.77

.44

.76

.47

11.63

12.44

17.65

31.92

.60

.60

.46

.46

.20

.20

.15

.15

.20

.15

.20

.15

.60

.46

.60

.46

1) The x2-value refers to the test of equality of the within-treatment coefficients, with

2 degrees of freedom.



The disattenuation of course has a considerable effect on the

magnitude of difference between the within-treatment coefficients.

The test of interaction, does, however, not result in any higher

values on the test-statistic for the unattenuated coefficients than

for the attenuated ones. This is due to the fact that the correc-

tion for attenuation increases the standard errors (cf. Bergman,

1971) and also to the fact that removal of the error variance

from the 4) matrix causes a higher correlation between the variab-

les, and the standard errors of the estimates of the r coefficients

are strongly affected by that.

The figures presented in Table 1 illustrate another point of some

significance: the regression coefficients are not invariant for

the x-variables measuring the same latent variable. This is because

the true variance of the variables differ and coefficients of

regression are not invariant over transformations of scale. Thus

it is possible to find a significant interaction with one aptitude

variable, while no interaction is found with another aptitude

variable measuring the same latent variable but on another scale.

In this case we could use the population values as the fixed

(parameters of Oa *). In practice the population
values are never

known so some kind of estimate must be used. It must be pointed

out, though, that it is not quite correct to estimate the relia-

bilities from the same sample as is used in the regression analysis.

This is because the estimates are entered as fixed parameters in

the LISREL model, but if they are estimated front the same sample

they should in reality be treated as free parameters.

To conclude, we have seen how ordinary MR analysis can be handled

by LISREL as well, and that the biasing effects of errors of

measurement can be corrected for if there are estimates of the

error variances (and possibly also error covariances). But we

have also seen that apart from the problem of errors of measure-

ment in the aptitude variables, MR meets with other problems:

different aptitude variables which measure the same latent vari-

able cannot be included in the same regression equation; the

regression coefficients are affected by the scale on which the

observed variables are measured; and for each observed variable

one regression coefficient must be estimated which in tests of



interaction tends to inflate the chosen level of significance

and tends to give rise to complex patterns of result, which are

difficult to interpret. We have eathe concluded that the

problems caused by use of attenuated coefficients are likely

to account for many seemingly contradictory ATI-results the

other problems listed above are likely to account for another

share.

2. Univariate regression on latent aptitude variables

Even though it is possible to make corrections for attenuation

to take into account the biasing effects of errors of measure-

ment in the aptitude varibles, that solution is not the optimal

one: the other problems associated with MR still remain and it

is necessary to supply estimates of the error variances. But

LISREL can, when there is more than 1 observed aptitude variable

for each latent aptitude variable, be used to estimate the regres-

sion of observed or latent outcome variables on latent aptitude

variables. Such analyses do not require that estimates of 06 are

supplied, instead estimates of 06 are obtained.

EXAMPLE 2: A LISREL model for univariate regression on .2 latent

aptitude variables

We will use the generated data in Example 1 to illustrate speci-

fication and estimation of parameters in a regression model with

latent aptitude variables. The model is shown in Figure 5.
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6,
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Figure 5 The model used to estimate the parameters for the generated data.



The following specification was used for i=1,2:

cP(*)=
(*) (*)

2l (1)22

1.0 0.0

(*
x
21

) 0.0

0.0 1.0

(*0.0 A
42

)

(*) A(*) A(*) A(*)

11
'

22
' '6

33
'

44

r(i),_ (i) (i)
A (1),1 (*)

Yl , Y2
-Y

D (*) =(0)
(*) = (1), T

(i)
=

(i)

The specification follows quite straightforwardly from the

specification used in generating the data. It should be pointed

out, though, that for each F,-variable, one of the elements of

A
x
has been taken to be unity. This achieves a fixation of the

scale of the latent variable to be equal to the scale of one of

the observed variables. Any observed variable, and any constant

can be used.

The parameter matrices in the measurement model for the aptitude

variables i.e. AX *), and 0 (*) have been constrained to be
o

equal in the groups, as they should be if the data have been

successfully generated. If the parameters in the measurement

model for the aptitude variables are constrained to be equal

in the treatment groups, fewer parameters need to be estimated,

which results in a more powerful analysis. Furthermore, if Ax

differs between the groups any interaction is of course difficult

to interpret, as would also be the case if (1) differs between the

groups. No problems of interpretation are caused by different 06,

however, and if necessary one or more of the elements of 06 can

be allowed to vary over the treatment groups. In the analysis of

these data we also noted that the test of interaction was not

invariant over transformations of the scales of the latent



variables when the Ax
matrix was not constrained to he equal

in the treatment groups, which is another strong reason why in

ATI research at least the Ax
matrix should be the same in all

groups.

Table 2

Estimates of the free parameters for the generated data (Example 2)

Group
1 2

21 1.29 (.11)

A42 1.22 (.10)

0611
.95 (.11)

0622
.34 (.12)

06
33

.77 (.10)

0

644

.37 (.12)

4)11 1.14 (.17)

4)21
.62 (.10)

4)22
1.22 (.17)

Yl .68 (.08) .06 (.12)

Y
2 .18 (.07) .60 (.09)

4)1 .41 (.06) .54 (.09)

Standard errors are shown in parenthesis

The LISREL estimates of the free parameters are presented in

Table 2, along with their standard errors. One of the estimates

(0
)

) deviates more than 2 standard errors from the true value,

33
which may be either an effect of chance or a reflection of an

imperfection in the data generation routine.

A very good overall fit was found (x2=9.5, df=15, p<.85), and

the fit is so good that there is no room for differences between



the treatments with respect to the parameters of the measurement

model for the aptitude variables. Constraining the r (i) matrices

to be equal, a very poor fit was found, however, (x2=43.0, df=17,

<.00), and the test of overall interaction thus gives x2=33.5

which with 2 degrees of freedom is highly significant.

This approach to estimating and testing ATI effects effectively

solves the problems associated with the MR approach: The regressions

on latent variables can be estimated directly, the test of inter-

action is invariant under tranformations of the scales of the

latent variables, and fewer coefficients need to be compared.

Models of this kind can be used whenever It is reasonable to impose

a factorial structure on the aptitude variables.

But even when there is 1 observed aptitude variable only for each

hypothsized latent variable, it is sometimes possible to estimate

regressions on the latent variables without using correction for

attenuation. This can be done if "half-tests" are constructed by

splitting the items in a measurement instrument into 2 roughly

parallell halves which are both entered into the analysis. One

drawback of this method is that it is not always possible to

construct such half-tests for lack of item-level data, and another

drawback is that power is lost. However, less power is lost if

the half-tests are so well equated that the same A parameters

can be used for both. There is also another reason why as often

as possible the same A parameters should be used: if these are

allowed to be different the estimates often tend to be unstable,

with negative estimates cf one or more of the elements of 06.

In most cases, however, development of the measurement model

for the aptitude variables corresponds to imposing a factorial

structure on the aptitude variables, and there are strong reasons

to find one or more suitable measurement models in a first step,

and not until later study relations between the latent aptitude

variables and outcome variables.

Most of the aptitude variables used in ATI reserach have been

used in other factor analytic investigations, so often previous

research suggests which factorial structure to impose on the

aptitude variables. Any such idea can be tested,thus using



LISREL to perform confirmatory factor analysis. Should a poor fit

be found, the first derivatives with respect to the fixed para-

meters can be inspected to see how the model should be modified

(SOrbom, 1975). Another possibility is, of course, to investigate

the aptitude variables with exploratory factor analysis in a first

step.

LISREL extends beyond ordinary factor analysis, however, in that

the errors of measurement are not necessarily assumed to be un-

correlated. Such correlation can come about if the speCific factors

of 2 tests correlate, for example, or if the tests have been adminis-

tered at a common occasion (cf. Cronbach et al., 1972). If there

are such correlated errors of measurement, that would in ordinary

factor analysis call for additional factors (cf. Sorbom, 1975).

As soon as there is a high correlation between the latent variables,

the standard errors of the F(1)coefficients are high. Since the

power of the test of ATI effects generally tends to be too small,

it is important, if statistically significant interactions are

sought, to keep the correlations between the latent variables

low. One way of doing this is to let the errors of measurement

for certain variables to correlated instead of adding further fac-

tors.

Example 3: Developing the measurement model for the aptitude

variables

We will illustrate development of measurement models for the

aptitude variables with some real data.. A complete account of the

ATI study from which the data are taken is given by Gustafsson

(1979a) It included the following aptitude variables:

Opposites, a vocabulary test of verbal ability.

Figure series, a test of inductive or non-reasoning ability.

Metal folding and Cubes, which tests have been thought to measure

spatial visualization (Vz) ability.

Figure and Flags, which tests are supposed to measure spatial

orientation (SR-0) ability.

Since there was 1 verbal test only, the 40 items in Opposites

were split in one half consisting of items with odd numbers and

2 r:



one half consisting of items with even numbers.

The study included 2 treatment groups, called Reading and Listening

with 159 and 155 subjects, respectively (see also Example 4, below).

The covariance matrices for the aptitude variables are presented in

Table 3.

Table 3

The covariance matrices for the aptitude variables in the Gustafsson

(1979) study

Reading
1 2 3 4 5 6 7

1. Opposites I 10.515

2. Opposites II 8.331 11.981

3. Metal folding 9.899 10.240 49.190

4. Cubes 7.656 7.744 33.771 56.884

5. Flags 30.143 30.383 117.735 109.607 862.442

6. Figures 22.622 22.465 78.929 79.421 453.959 405.613

7. Figure series 8.973 10.053 25.142 23.476 93.570 58.544 35.403

Listening

1 2 3 4 5 6 7

1. Opposites I 8.525

2. Opposites I: 6.747 10.642

3. Metal folding 5.539 5.379 36.649

4. Cubes 3.712 5.439 16.718 32.913

5. Flags 10.220 11.384 65.457 63.715 719.271

6. Figures 9.163 11.368 40.167 48.082 315.977 302.637

7. Figure series 5.671 8.131 14.284 13.048 46.094 31.241 35.891

In the Table the tests have been assigned numbers, and these

numbers will be used to refer to the variables in the specification

of LISREL models.



For reasons made explicit by Gustafsson (1976, 1979a) it was

thought that performance on the Vz tests is to a large extent

influenced by non-verbal reasoning ability, while the SR-0 tests

were thought to be more "clean" indicators of spatial ability.

This suggests testing of the 3-factor model shown in Figure 6.

OP I

62 --0-1 OP II

MF

CD

FL

6, -11 FS

Figure 6 The original 3-factor model for the aptitude variables in the

Gustafsson (1979a) study.

28



The specification of this model is as follows:

1 0 0

21
(*)

0 0

0 1 0

(*
0 X

42
)

0

0 0 1

0 0 A
(*)

63
7'(72)

00

(*) (I
0 - diag 66 ,...,66

*)

6 11 77

(*)
0 11

(*) (*)
0 21 0 22

(*) (*) (*)

4)31 4)32 4)33

The test of fit of this model gave a borderline significance

(x2=53.7, df=39, p<.06). Relaxing the constraints of equality

of all the parameter matrices in the groups a somewhat better

fit was found (x2=29.0, df=22, p<.14), even though the test of

the group difference is not significant.

Since none of the goodness-of-fit tests is significant it could

be concluded that this simple 3-factor model is sufficient to

account for the structure of the aptitude variables. But the

p-values are quite low, and the samples are not large, so there

is room for improvement of fit.

An analysis of the first-order derivatives with respect to the

fixed parameters in models estimated within each of the treat-

ment groups indicated that Figure series should load also the

factor defined by the 2 verbal half-tests. With that parameter

freed but the parameters being constrained to be equal in the

groups a x2 of 40.3 was found, which with 38 degrees of freedom

corresponds to a p-value of .37. This is here considered being

an acceptable fit.

The aptitude variables thus fit a 3-factor model close to the

hypothesized one. Following Cattell (1971) and Snow (1977) the

3 factor were labelled Gc (crystallized ability) Gf (fluid-

analytic ability) and G (spatial-visualization ability), res-

pectively.



But in this model there is a high correlation between of ana v ,

the correlation in both groups being around .75. Such a correlation

certainly is too high to give the statistical test of ATI effects

any reasonable power with the sample sizes used. However, the

variance represented by the Gv factor can be represented as a

covariance between the errors of measurement for Flags and Figures

instead. Therefore an alternative measurement model was defined

in which the factors Gf and Gv were collapsed into one, Gfv. This

model is shown in Figure 7.

Figure 7 The 2-factor model for the aptitude variables in the

Gustaf sson (1979a) study

80



The following specification

A (*) =
-x

1 0

(*)
X
21

0

0 1

(*)
0 X

42
.(*)

0 52
(*)

0 62

X
(*) X

(*)

71 72
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(1)

( ) =

0(*)
I 11
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0
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44

0 0 0 0
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55
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66

0 0 0 0 0 0 e
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A very good fit was found for this model (x2=40.9, df=39, p<.39),

and the covariance element in 06( *) was statistically highly

significant. A moderate correlation of about .50 between Gc and

Gfv
was found.

This 2-factor model has the advantage that reasonable magnitudes

of the standard errors of estimates of r can be expected. But it

has, of course, the disadvantage that if there is a different

pattern of results for Gf and Gv this will not be detected, even

at the descriptive level. Therefore we certainly cannot recommend

that measurement models are developed with an eye only on the

correlation between the 1-variables; the substantive question

under investigation is of course more important, and it does seem

that ATI researchers must allow themselves to interpret even

nominally non-significant effects (cf. Cronbach, 1975).



3 Multivariate regression on latent aptitude variables

So far we have only considered the case when there is just 1

y-variable. But LISREL can handle any number of outcome variables,

and in the simplest case these are treated as separate observed

outcome variables in a model corresponding to multivariate regres-

sion analysis. We will illustrate such a model through bringing

in also the outcome variables in the Gustafsson (1979a) study.

EXAMPLE 4: Multivariate regression on 2 latent aptitude variables

The purpose of the study reported by Gustafsson (1979a) was to

study suppression of visualization by reading (Brooks, 1967) and

in particular if pupils with different aptitudes are differenti-

ally affected by such suppression. As has already been mentioned,

there were 2 treatment groups, one that read an unillustrated

teaching material dealing with the heart and the circulation of

blood (Reading), and one that listened to a tape recorded presen-

tation of the same information (Listening). It was suspected

that some parts of this material is better learned if visualiza-

tion processes are relied upon, and the results obtained by

Brooks-(1967) suggest that the possibilities of doing that

should be better in the Listening treatment than in the Reading

treatment.

Immediately after the instruction the pupils took 2 post-tests,

one verbal and one pictorial. Using procedures described by

Gustafsson (1979a) 3 scales were derived from the items in the

2 post-tests: one consisting of verbal questions asking about

the circulation of blood (CIRC-V), one consisting of pictorial

items asking about the circulation of blood (CIRC-P), and one

consisting of verbal items asking about terms and other informa-

tion of a verbal kind (VERB).

The covariances for these 3 outcome scales, as well as their

covariances with the aptitude variables are presented in Table 4.



Table 4

The covariance matrices for the outcome scales, and the covariances

between aptitudes and outcomes in the Gustafsson (1979) study.

Reading

VERB CIRC V CIRC-P VERB

Listening

CIRC-V CIRC-P

VERB 3.407 3.163

CIRC-V 1.768 2.659 1.006 2.111

CIRC-P 1.089 1.422 2.146 .890 .584 2.086

Opposites I 3.443 2.968 1.755 2.209 .980 .701

Opposites II 3.669 3.063 2.043 2.188 .922 .749

Meta] folding 6.546 5.317 4.092 3.166 1.789 1.501

Cubes 6.045 5.442 3.310 2.023 1.770 2.122

Flags 22.008 21.071 16.329 9.619 12.063 6.017

Figures 15.013 13.562 8.549 5.558 6.085 3.856

Figure series 5.862 4.415 2.624 2.923 1.856 1.978

To analyze the data the 3 outcome scales were used as observed

outcome variables, and these were regressed on the latent aptitude

variables in the 2-factor model. This model is shown in Figure 8

and those parameter matrices which were not specified in the pre-

ceeding example are given below:

A
(Y *) = I, 0

(*) =0,
- -E

`P (1)=

(*) = I, F
(i) =

th(i) th(i) th(i)

'31 '32 '33

(i) (i)
Y 21 Y 12

y
(i) y

(i)

21 22

v(i) (i)

'31 '32



Figure 8

VE

C-V

C-P

The model for the multivariate regression of the 3 observed ouL
came scales on the 2 latent aptitude variables in the Gustafsn
(1979a) study.

Thus, in a multivariate regression analysis the a matrix is

considered being an identity matrix, and 'P must generally be

taken to be a free symmetric matrix.

Table 5 presents the estimates of the r (i) matrices within th,e

Table 5

Estimates of the structural relations coefficients for the

Gustafsson (1979a) study

Latent aptitude variable

Reading Listening t Reading Listening t

VERB .33 (.06) .28 (.07) .54 .11 (.03) .07 (.04) .94

CIRC-V .28 (.05) .07 (.06) 2.59 .10 (.03) .09 (.03) .15

CIRC-P .16 (.05) .05 (.06) 1.40 .07 (.03) .08 (.03) -.24



2 treatment groups. The test of equality of the F
(i) coefficients

within the treatments gave x2=12.2, df=6, p<.06, so the interaction

has a borderline significance. In Table 5 the results from pair-

wise t-tests of the equality of each of the F(1)- coefficients have

been entered as well. The t-values have been computed according to

the following formula:

(1)
Y
YE Y 1(72E

)

SE
2 (1) + SE

2
(2) - 2COV (SE (1) SE (2))

YE
YYE YY

E
YYE

When the measurement model for the aptitude variables has been

constrained to be equal in tho 2 groups there is a slight correla-

tion between the estimates of the F-coefficients, which must be

taken into account.

The t-tests indicate that the interaction is accounted for by

differences between the treatment groups with respect to the

relation between Gc
and CIRC-V, and to some extent also CIRC-P,

there being a higher relation in the Reading group than in the

Listening group between these variables.

Contrary to expectations no interaction is found with Gfv; it

had been expected that a higher relation would be found between

spatial ability and the spatial types of outcome variables in

the Listening group than in the Reading group. But it is of course

conceivable that the component parts of Gfv do give different

patterns of results. Indeed, using the 3-factor model for the

aptitude variables a higher relation between Gv and CIRC-V was

found in the Listening treatment and also a higher relation

between G
f
and CIRC-P in that treatment. But in spite of the fact

that rather large differences were found, they were far from

significant, owing to the large standard errors of estimates

caused by the high correlation between Gf and Gv. For a discussion

about the results the reader is referred to Gustafsson (1979a).



4. Causal orderings among the outcome variables

In multivariate regression models no ordering is assumed

between the outcome variables. But when the variables measuring

outcome have been given at different points in time, to assess

achievement and retention for example, there is such an ordering

which should be reflected in the model. LISREL allows formula-

tion of such models, in which a causal structure is specified

not only between aptitude and outcome variables, but also among

the outcome variables. The analysis thus performed corresponds

to path analysis.

But in this kind of models errors of measurement in the outcome

variables enter bias into the estimates, which can be taken into

account either through correction for attenuation or through

specifying a model with latent outcome variables. We will consider

an example where only observed outcome variables are available,

but where latent aptitude variables can be employed.

Example 5: Latent aptitude variables and observed outcome

variables with a causal ordering

Out example consists of a reanalysis of an ATI study reported

by Gagne and Gropper (1965; cf. Cronbach and Snow, 1977, pp.

96-99 and 266-273), which investigated differential effects of

visual and verbal presentations. The design used was rather

elaborate, and it included several kinds of measures of per-

formance. Here we will use just a sub-set of variables; thus

no full account of the study will be given.

The main instruction consisted in 7 self-paced programmed

lessons on mechanical advantage, using a verbal presentation

format. All subjects received this instruction. The treatments

contrasted consisted of fixed-paced introductions with informa-

tion presented either visually or verbally, and this introductory

lesson functioned as an "advance organizer".There was also a

control group which had no introductory lesson but this group

will not be included in the reanalysis. But even before the

experimental treatments, the subjects had instruction on concepts

basic to the main program, in order to assure a common level of

3G



prior knowledge.

The treatment groups were quite small, there being 46 and 42

subjects in the visual and verbal groups, respectively.

The study included 4 aptitude variables: Otis IQ (IQ), DAT

Verbal reasoning (VR), DAT Abstract Reasoning (AR) and DAT

Space Relations (SR). Before the treatments the

subjects also were given a pre-test of mechanical advantage

(PRE-ACH).

Achievement (ACH) was measured immediately after the main

lessons, and retention (RET) was measured 4 weeks later. The

same test was used on both occasions.

The covariance matrices are presented in Table 6

Table 6

The covariance matrices for the verbal and visual groups in

the Gagne and Gropper (1965) study

Visual group:

IQ VR AR SR PRE-ACH ACH RET

IQ 50.211
VR 14.935 27.626
AR 7.2'31 10.347 51.624
SR 27.008 22.269 75.375 342.324
PRE-ACH -2.916 3.167 13.991 37.523 53.993
ACH 10.198 19.098 23.537 53.842 20.565 63.218
PET 9.700 16.269 24.620 47.589 23.320 57.193 76.021

Verbal group:

IQ VR AR SR PRE-ACH ACH RET

IQ
VR
AR
SR
PRE-ACH
ACH
RET

55.383
31.168
33.934
63.570
21.634
18.420
15.804

55.339
31.169
40.860
10.840
28.721
34.870

64.674
82.057
16.835
29.438
16.920

382.085
50.317
54.174
17.790

54.716
24.826
6.732

64.n0
44.131 95.766



The time ordering inherent in the design makes it possible

to specify causal relationships between PRE-ACH, ACH and RET,

and the outcome variables can then be "regressed" on the

aptitude variables, which here can be estimated as latent

aptitude variables.

A 1-factor model was first tried for the aptitude variables,

but even with the small samples used, the fit of this model

turned out to be poor (x2=22.1, df=6, p<.003).

It is reasonable to assume that a 2-factor model is needed to

represent the aptitude variables, with IQ and VR measuring one

factor (Gc) and AR and SR measuring the other factor (Gf). This

model did show a good fit, even though the goodness-of-fit test

cannot be taken seriously with the small groups available. In

the sequel we will therefore stress the descriptive pattern of

results.

In developing the measurement model for the aptitude variables

it was noted that the correlation between the latent variables

differed greatly in the treatment groups: in the Visual group

it was .38 and in the Verbal group the correlation was .84.

The full LISREL model with Gc and G
f
as latent aptitude variables

is shown in Figure 9.

6,

6

6,

IQ

VR

AR

SR

Figure 9 The model used for the Gagne and Gropper (1965) study.
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and the following matrix specifications was used to estimate

the model:

0
(*)

=
.

diag
(*) ,0 (*)

6 11
6
22-6

(0

1

_a(i) 1
21

(*) ,e (*)

'

e
6
33

6
44

)

'

r
(i) =

(i)
Yll

(i)
Y21

(i)
Y 31

(i)
Y12

(i)
Y 22

(i)
Y 32

_a(i) _a(i) 1
31 32

(i) (i) (i) (i)
T = (4) 11 f4) 22 4)33 )

, A(17 *)= I 0(*) 0

The causal relations among the y-variables are specified in

, which can be seen in the explicity formulated structural

equations:

PRE-ACH= Y G
'11 v + Y12Gf + 1'

ACH= PRE-ACH Y
1321 + '21GV + Y22Gf + 2'

RET= a22ACH + 1321PRE-ACH + y31Gv +
y32Gf +

The estimates of the r (i) and a(i) matrices are presented in

Table 7. The relations between the latent aptitude variables,.

and PRE-ACH and ACH differ only little between treatments,

there being in both treatments relatively high relationships

between G f
and PRE-ACH and between Gc

and ACH. For RET, however,

there is in the Visual group no relationships with any of the

latent apt1''ide variables, while in the Verbal group there is

a rather strong positive relationship between RET and Gc, and
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Table 7

Estimates of the structural relations coefficients for the Gagne and Gropper (1965) study

.(i) (i)

I

Y.____.

(, WI WV

Visual Verbal Visual Verbcil Visual Verbal Visual Verbal

PRE-ACH

ACH

RET

-.28(.43)

.89(.43)

-.07(.33)

.08(.43)

.51(.41)

1.07(.55)

.52(.30)

.31(.30

.08(.22)

.39(.30)

.28(.29)

-.55(.37)

.26(.15) .26(.15) .08(.11)

.86(.13)

-.19(.19)

.66(.21)

also a rather strong negative relationship between RET and

G
f.

In tho Verbal treatment there is also a lower relationship

between ACH and RET than there is in the Visual treatment.

Cronbach and Snow (1977, pp. 266-273) have presented another

reanalysis of this study and that reanalysis gave very much

the same results as those found here. In the Cronbach and Snow

reanalysis 2 weighted composites of the 4 aptitude variables

were used, however, and in that analysis it could not easily

be seen that there is a negative partial relationship between

G
f

and RET in the Verbal group.

As was also pointed out by Cronbach and Snow the results are,

however, affected by errors of measurement in the outcome

variables. No estimates of reliability are presented by Gagne

and Gropper but to illustrate the effects of errors of measure-

ment in the outcome variables, we have corrected for attenuation

using an arbitrary estimate of .90 as the reliability of the

3 outcome variables.

Correction for attenuation in the outcome variables is of

course done in exactly the same way as correction for attenua-

tion in the aptitude variables, and we present here only the

fixed parameters in the 0 (i) matrices:
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0("= (5.399, 6.322, 7,602), OLVEL (5.472, 6.416, 9.577)

The estimates of the
F(1)and

B
(i) matrices, after correction

for attenuation are presented in Table 8. Among the I' coefficients

only the coefficient for the relation between Gc and RET in the

Visual group is affected to any appreciable extent. The coeffi-

cients for the relation between ACH and RET are the ones most

affected, but the difference between the treatment groups of

course remains. Thus, the unattenuated coefficients allow very

much the same conclusions as the attenuated ones.

Table 8

Estimates of the structural relations coefficients for the Cagne and Grower (1965) study,

using correction of attenuation for the outcome variables

Cc Cf ACH REP

Visual Verbal Visual Verbal Visual Verbal Visual Verbal

PRE -ACH

ACH

RET

-.28(.43)

.90(.43)

.23(.37)

.08(.43)

.51(.41)

1.00(.54)

.52(.30)

.30(.30)

.92(.23)

.39(.30)

.26(.29)

-.58(.38)

.29(.17) .30(.17) .04(.14)

1.05(.17)

-.25(.22)

.81(.25)

Correction for attenuation is not the optimal solution of the

problem of errors of measurement in the outcome variables; if

possible a measurement model with latent variables should

be used for the outcome variables.

To conclude , there is a tendency towards interaction with

respect to RET. However, the treatment groups were small, and

probably more importantly, there was a large difference between

the correlation for the latent aptitude variables in the treat-

ments. Thus, had flr example Gf been used as an outcome variable,

and Gc
as an aptitude variable, at least as strong interactions

as those found with the outcome variables proper would have been

found, which should temper attempts to interpret the results in
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this study until they have been replicated.

5. Structural relations between latent aptitIde and latent

outcome variables

Especially when there is a causal ordering of the outcome

variables it is essential that latent rather than observe6cuttxme

variables are studied. But also when many outcome variables

have been measured at the same time, it may be desirable to

reduce these to a smaller set of n-variables.

Using a concrete example we will illustrate how such models

with both latent aptitude and latent outcome variables can be

formulated.

EXAMPLE 6: Latent aptitude variables/latent outco,ne variables

Our example consists of a reanalysis of a study presented by

Behr (1967) and for a full account of the reanalysis the reader

is referred to Gustafsson and Lindstrom (1978).

Behr investigated the same hypothesis as did Gagne and Gropper,

i.e. that tests of verbal ability are more highly correlated w:_!h

achievement in a verbal treatment than in a figural treatment .Ind

that tests of spatial (or figural) ability are more highly related

to achievement in a figural treatment tiv.n in a verbal treatment.

The subject matter taught was modulus seven arithmetic and there

were 2 treatment groups: in a verbal-symbolic treatment (VS)

subjects studied a programmed teaching material using algebraic

symbols complemtented with verbal information; in a figural-

symbolic (FS) treatment figural information was added.

The aptitude variables were selected to correspond to cells

in the Guilford (1967) "Structure-of-Intellect (SI)" model.

Of the tests,6 had a figural content (-F-), 5 had a sematic

tontent (-M-) and 2 had a symbolic (-S-) content. In addition

there was a test called Integration which was not directly

classifiable in the SI structure. There are reasons, however,

which motivate this test being regarded an -F- test (cf.

Gustafsson & Lindstrom, 1978, p.4). The aptitude variables are

presented in Table 9.
:;



Table 9

The aptitude variables in the Behr (1967) study

Test SI-cell

Gestalt Completion Test CFU

Figure Classification CFC

Figure Matrix CFR

Paper Folding Test CFT

Map Memory MFU

Object Memory MFS

Wide Range Vocabulary Test CMU

Word Classification CMC

Verbal Analogies CMR

Memory for Word Meanings MMU

Sentence Completion MMR

Object-Number.Test MSR

Addition/Subtraction Test MSI

Following Direction Test (INT)

Three criterion measures were determined: Time used to study

the program (TP), a Learning Test (LT) score and a Retention

Test (RT) score. The LT was admini5,tered 2 days after the

instruction and the RT 2 weeks after the instruction. The LT

and RT were parallel forms and consisted each of 5 parts.

From these parts 2 subtest scores were derived: LA and RA

which were speed tests of modulus seven addition and subtrac-

tion, and LB and RB which assessed understanding of structural

properties of the modulus seven system.

Subjects in the study were prospective elementary school

teachers, there being 120 and 109 subjects in the VS and FS

groups, respectively. The subjects were randomly assi.*ned to

treatments.



In the reanalysis the measurement models for the aptitude

and outcome variables were first developed separetely, and

they were then fitted together through the structural rela-

tions equations.

The measurement model for the aptitude variables included

the 7 -F- tests and 5 -M- tests, which were assigned to

one factor each in a 2-factor model. The goodness-of-fit

test showed a borderline significance (x2=128.0, df=106,

p<.07) when the parameters of the measurement model were

allowed to be different within the treatment groups; constraing

them to be equal the test of fit resulted in a p-value of .05.

The fit could be better but it did seem difficult to develop

any useful measurement model with a better fit, so this model

was used, along with another measurement model with 1 latent

variable only.

The latent variables in the 2-factor model will be referred to

as factors of verbal and figural ability. Unfortunately there

was a high correlation of around .80 between these factors in

both groups, and we have already seen how such high a corre-

lation effectively precludes discovery of significant ATI

effects. Several attempts were made to find other measurement

models with a lower correlation between the latent aptitude

variables. These attempts were unsuccessful, however, and

it does seem that the analysis of the aptitude variables shows that

there simply is not much information about the verbal/figural

ability distinction in this sample. This is almost certainly

due to the facts that the majority, if not all the subjects in

the sample must have been female, and that tests of figural

ability were used in which the items can successfully be solved

by verbal and non-verbal reasoning proc3sses. There are strong

indications that females in particular resort to such strategies

on figural tests whenever possible (Gustafsson, 1976, ch 6).

The measurement model for the outcome variables included the

subtest scores (LA, LB, RA, and RB) from the criterion tests.

With 4 observed variables it is in LISREL possible to define

a model with 2 latent variables, and still there is 1 degree

of freedom left to test cP.Nodness of fit. But it should be
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possible to define 2 potentially meaningful 2-factor solutions:

either one with a learning factor defined by LA and LB, and a

retention factor defined by RA and RB, or a model with a compu-

tational speed factor defined by LA and RA, and a factor reflec-

ting understanding of the structural properties of the modulus

seven system, defined by LB and RB.

Both these 2-factor models were estirrw.teL ail tested, and in both

cases a poor fit was found, with the it 7)(-irl worse for the

learning/retention factors than for thy` speed/understanding

factors. This indicates that in fact all 4 latent variables are

needed to account for the structure among the 4 observed vari-

ables. But again there is the possibility of invoking covariances

between the errors of measurement, and in that way representing

systematic variance which would otherwise call for additional

latent variables.

Thus, when the computational speed/understanding factors are

postulated, for example, the possible effects on the correla-

tion between these 2 latent variables of administration of

the tests at 2 common occasions, can be taken into account if

0 and 0 are allowed to be greater than zero.
c LA,LB RA,RB

Quite obviously, however, such a model cannot be estimated

within the framework of the measurement model for the y-

variables only -- with 4 observed variables and 2 latent

variables there is only 1 degree of freedom left. However,

as was shown by Joreskog & Stirbom, (1978, pp. 22-28) it is

possible to estimate such a model when variables are added.

The full LISREL model for the computational speed/understanding

factors and for the verbal/figural aptitude factors is shown

in Figure 10, for one of the treatment groups. The LISREL model

for the learning/retention factors is quite similar to this one,

the only differences being that there is a unidirection:1 in-

fluence of learning on retention, and that LA and RA in that

model have correlated errors of measurement, as have LB and RB.

4



Figure 10 The full LISREL model for the speed/understanding outcome
factors in the Behr (1967) study.
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To estimate the model containing the computational speed/under-

standing factors

tion was used:

A
(*) =

-x

as outcome variables,

1 0

A(*) 0
21

A(*) 0
31

A(*) 0
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A
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The 2 free parameters in the 8-matrix have been constrained to

be equal which is indicated by use of the same index to refer

to them within the matrix. The parameters of the measurement

model for the aptitude variables were constrained to be equal

in the treatment groups. The parameters of the measurement model

for the outcome variables were not constrained to be equal in

the treatment groups, even though it should perhaps have been

desirable to constrain A
Y

as well.

The model had a far from perfect fit (x2=272.0, df=217, p<.01),

but we already know that the most important source of lack of

fit is the measurement model for the aptitude variables.

The t-values of the estimates of the covariance for the errors

of measurement of LA and LB was 1.44 and 1.39 in the Vi:.; and FS

groups respectively; for RA and RB the corresponding figures

were 3.15 and .20. Thus, only in the VS group a significant

covariance is found.

The test of equality of the r (i) matrices gave x2=3.2, df=4,

p<.53, so the interaction is not significant, as can hardly be

expected with as high a correlation between the latent aptitude

variables as is present in these data.

The coefficients are presented in Table 10. Descriptively

Table 10

Estimates of the structural relation coefficients for the

speed/understanding outcome variables in the Behr (1967) study.

VS

Speed

FS t

Understanding

VS FS

Verbal .24(.85) -1.01(.75) 1.10 .63(.70) 1.20(.85) -.52

Figural .32(.23) .44(.20) -.39 .37(.19) .14(.23) .77

Standard errors are shown in parentheses.

The t-values refer to approximate tests of equality of the within-treatment

coefficients.
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there are some differences between the r(1) coefficients, and

for a discussion about possible interpretations of the tendency

towards interaction, the reader is referred to Gustafsson and

Lindstrom (1978).

Neither with respect to the learning/retention outcome factors

any significant interaction was found and for these outcome

there were not even descriptively any differences between the

(i) coefficients worth noting. Bur the relation between

learning and retention was stronger within the FS treatment

than within the VS treatment, the 8 coefficients being .76 and

.62, respectively. Thus, in this study just as in the Gagne

and Cropper study there is a tendency for retention to be less

related to learning in a verbal than in a visual/figural treat-

ment. Such differential effects of treatment have not previous-

ly been given much attention in ATI research because the out-

come variables have been treated on at a time in separate MR

analyses.

In the original analysis of the data Behr (1967) examined the

within-treatment regressions of one outcome variable at a time

on one aptitude variable at a time. A handful of significant

interactions were found, with CMU, MMR and CMC entering inter-

actions with one or more outcomes. It is hard to find any

reason, however, why these verbal tests and not the others

should enter into interactions.

6. Formulating LISREL models including intercept parameters

All the LISREL models formulated hitherto are incomplete

as models for ATI effects in the sense that they do not

include the intercept parameters. Without estimates of these

parameters it is impossible to determine whether an interaction

is ordinal or disordinal, for example.

But, as has been shown by Sorbom (1978, 1979) it is possible

to formulate LISREL models which do allow estimation and testing

of these parameters as well. Using the generated data constructed

in Example 1 and analyzed in Example 2, we will illustrate the

procedure.
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EXAMPLE 7: Univariate regression on latent aptitude variables,

including the intercept

The structural equation models used in Example 2 can in explicit

notation be written:

(1) (1) . (1)
Y = Y 1 1

Y
2 2

+ C;

(2) (2) , (2), ,

Y Y1 -r Y2 '21. g

Here, however, we want to estimate instead the structural

equations:

(1) (1)_L 1), (1),
c,y = a - Yi c,1 Yl 2 C;

(2) (2) (2) (2)
Y = a + Yl 1

+ Y2 2
+ Cr

where a (i) is used to denote the intercept parameter.

In generating the data all the variables were supposed to have

a zero mean. The following sample mean vectors were observed:

1)

x = (-.090, .061, -.061, -.137, -.005)

(2)

x = (-.099, -.086, -.148, -.055, -.260)

with the y variable given first, and then the 4 x-variables.

To take into account the vectors of means, along with the

covariances, the matrix of moments around zero is analyzed.

The moment matrix is computed automatically by the program if

the mean vector and the covariance matrix are both supplied.

A dummy variable, which for all the persons has the value 1,

must be added, however. The dummy variable is the only x-

variable in the model and it is treated as a fixed variable.

All the other variables are treated as y-variables, with the

pattern of relations between the variables being specified in



the a-matrix. Another n-variable must also be included, with

which the means of the variables are represented.

For our example the following specification was used.

1 0 0
X14)

X24)0 1 0
24

(*)

A
(*) = (1), 0 (*) =(0), (*) = (1), A

(1) -a
(i)
13

01 -s
12

0 1 -a23(*) 0

(*
0 -a

23
) 1 0

0 0 0 1

X 3 #:4)0 X(*) 0
32

1 X0 0 44
)

0 0 x
(*) A(*)
53 54

r

0

r
(1)

= 0

0

r
(2)

=

0
(*) diag (0, 0 (*)

, 0 (*)
, 0

(*)
, 0 (*)

),

£22 33 C44 55

w(*) (i) th(i) rn(i) 0)
)11 ' '22' '33 '

Y 11

Y 21

Y 31
1

The y
11

) parameters here represent the intercept parameters and

the other elements of the r (i) matrices represent the means on

the latent aptitude variables. It is generally only possible

to study differences between the treatment groups, with respect

to the means on the latent variables and the I11) y31
) parameters

have been specified to be equal to zero, while the corresponding

parameters in the other treatment groups are free parameters.

The parameters in this model which correspond to those estimated

in Example 2 were quite close, and the small differences which

could be observed are due to the fact that here the information

in the mean vectors is also taken into account.
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The estimates of the free parameters in r
(2) were .08, -.04 and

-.12, respectively and we can write the full structural equation

models as:

y
(1) = 0 + .68

1
+.18

2

y(2)= .08 + ,051 +.612

This method of estimating the intercept parameters can be used

with latent as well as with observed outcome variables, and it

generalizes to any number of outcome variables, in which case

a vector of intercept parameters is of col.;:se estimated for

each group.

7. LISREL models for multilevel data

In the models considered so. far the individual subjects'scores

form the basis for estimation of parameters and testing goodness-

of-fit. But in ATI research classes rather than pupils are often

sampled, and the instructional process most often takes place

with the pupils organized into classes; thus the pupils can often

not be considered independent units of observation.

Having analyzed the possible consequences of treating such hier-

archically nested observations as individual observations Cron-

bach and Snow (1977) were forced to make a "radical reappraisal

of the ATI model" (p. 99; cf Cronbach, 1976b),asserting the

necessity of separating within-class and between-class components

of ATI effects. They showed that ATI effects may arise not only

through pupils'differential response to treatments, but some

processes may affect the class as a unit, and sometimes the

pupil's relative standing in the class may be of functional

importance.

To analyze ATI data at the between-class level Cronbach and

Snow (1977) suggested that for each pupil the class means on

the aptitude and outcome variables should be entered into the

regression analysis, while for the within-q1ass analysis it

was suggested that the deviation scores between the pupils'



scores and their class means should be entered. It has been

found that such analyses often give drastically different result::

at different levels (Cronbach, 1976b),even though the differences

can often be accounted for by anomalies in the data (Cronbach &

Webb, 1975; Gustafsson, 1978).

LISREL also offers great possibilities for conducting such

multilevel analyses . It has been shown by Schmidt (1969)

that maximum likelihood estimates can be derived of the within-

class and between-class covariance matrices, and these can be

parameterized in LISREL models, to allow separate estimates of

parameters at the two levels, and also tests of the equality of

structural relations, for example, at the two levels (Keesling,

1975, 1978). Such two-level analyses could in priciple be carried

out for all the types of LISREL models we have considered here.

A great problem, of course, is that there in most studies tend

to be few classes (or other higher level units) only, which

precludes the possibility of obtaining any stable estimates at

the class level. We would like to suggest, however, that in the

least within-class analyses should be performed to guard against

the possibility that results obtained in non-hierarchical analyses

can in fact he accounted for by effects at the class level, which

may be more or less artifactual.

EXAMPLE 8: Pooled within-class analyses contrasted with overall

analyses

We will present, briefly, an example of such an analysis. The

data analyzed were collected within a large scale observational

study of the teaching process in 60 classes in grade 6 (Bredange

et al, 1971), which study also included measures of teacher and

pupil personality and, for some of the classes, measures of

learning outcome. Here only a small subset of variables will be

analyzed, and for a full account of the results from reanalyses

of these data the reader is referred to Gustafsson (1979d).

Bath the pupils and the teachers were given the same personality

questionnaire, the High School Personality Questionnaire (HSPQ,

-!
Cattell, Coan & Beloff, 1957) The items in that questionnaire

have been reorgainzed, however, to measure three scales labelled
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Introversion, Impulsivity and Stability, with the definition

of these variables coming close to the corresponding Eysenckian

concepts (Eysenck & Eysenck, 1969). Only the Extraversion/Intro-

version (E/I) variable will be studied here.

The 13 teachers scoring highest on the E/I scale were selected

as an extreme group of I teachers, and the 12 teachers scoring

lowest were selected as an extreme group of E teachers. In the

I classes there were 289 pupils and in the E classes there were

254, who had a complete set of data.

Aptitude variables were the E/I scale, a vocabulary test of

verbal ability (VA), and a test of nonverbal reasoning ability

(RA). Since these variables reflect different latent variables,

each variable was in the LISREL model entered as two half-tests,

with the same X coefficient for each.

Outcome variables were 5 sub-tests in a standardized mathematics

ahcievement test, and a scale measuring attitude towards the

teacher (Gustafsson, 1979b). The 5 mathematics sub-tests were

in the measurement model for the dependent variables taken to

reflect the same latent variable (MA), and the teacher

attitude scale was entered as 2 half-test to make possible

inference about the latent variable (TA).

The full LISREL model for these variables is shown in Figure 11,

and there is no need here to present in detail the parameter

specifications, since these can be derived from the figure and

from the models treated earlier in this paper.

In one analysis no account was taken of the fact that the pupils

were organized into classes, i.e. the covariance matrices computed

from the raw scores were analyzed (Pooled). In another analysis

the covariance matrices computed from the deviations between the

pupils-scores and their respective class means were analyzed

(Within), and the number of observations was taken to be the

number of pupils minus the number of classes.



Figure 11 The model used to study interactions between teacher

an pupil personality.

In the Pooled analysis, with A (x *) and 4(*) constrained to be
- -

equal in the I and E groups, a rather poor fit was found, with

a p-value of .0005. The main reason for this poor fit was that

1 factor only could not account for the 5 mathematics sub-tests.

In th2 corresponding Within analysis, however, a p-value of .04

was found, which indicates that there may be differences between

teachers with respect to which weight they place on different

aspects of mathsmatics.

The estimates of the r
(i) coefficients for the Pooled and the

Within analyses are presented separately for the E and I groups

in Table 11. The estimates in the Pooled and in the Within

analyses generally come quite close, even though there also are

some slight differences.



Table 11

Estimates of the structural relation coefficients in the

Pooled and the Within analyses.

Pooled Within

MA TA MA TA

VA .91 .74 -.03 -.02 .88 .69 -.04 .06

RA .68 .84 -.12 .03 .75 .81 -.04 -.08

E/I -.18 .14 -.14 .26 -.19 .15 -.11 .28

The test of overall interaction gave in the Pooled analysis

x2= 8.3, which with 6 degrees of freedom is not significant.

In the Within analysis a somewhat higher, although non-signi-

ficant, e of 9.6 was found. But it is reasonable to restrict

het test of interaction to the E/I scale, and in Table 11

it can be observed that there are important differences between

the -,,-fthin-grolup coefficients for this variable. The test of

interaction with Introversion alone gave in the Pooled analysis

a of 6.3, which with 2 degrees of freedom is significant; in

the vvi.thin anaLysis an even higher x2 of 7.6 was found.

Tfigs there isQ significant interaction with introversion, such

that in classes with an extravert teacher there is a negative

relationship between this variable and achievement/attitude,

while in classes with an introvert teacher there is a

positive relationship. The fact that a somewhat stronger

relationship is found in the Within analysis than in the Pooled

analysis lends further credence to this conclusion, since the

match/mismatch between teacher and pupils personality must take

place within classes, and since the interaction cannot be

accounted for as being due to a few classes having extreme means

on one or more of the variables.



8. Discussion and conclusions

ATI studies are typically designed to test hypotheses formulated

in terms of hypothetical constructs referring to unobservable

aptitude and outcome variables, and as indicators of these

variables several observed variables are often used. As we have

tried to show in this paper, experiments with such a structure

can advantageously be analyzed with LISREL.

Of course other methods can be used as well: In order to reduce

several observed variables to few latent variables, component or

factor analysis can be applied (cf.Cronbach & Snow, p. 39); to

study relations between true variables rather than observed vari-

ables correction for attentuation may be employed; and to study

relations between measurements with an intrinsic causal ordering

path analysis can be used. But with LISREL it is possible to

specify models including all these features, which results in a

more parsimonious and often more efficient analysis.

LISREL also brings other advantages to ATI research. The necessity

of formulating explicit measurement models for the aptitude vari-

ables makes it natural to investigate the similarity of the struc-

ture of the aptitude variables in tie treatment groups, which only

too seldom has been done. But when it is done, it is surprisingly

often found that there are differences between the treatment groups

with respect to the level and structure of the aptitude variables

(cf. Cronbach & Webb, 1975; Cronbach & Snow, 1977, p. 38; Gustafs-

son, 1976, 1977). Such differences often result in spurious ATIs

and they can of course also be suspected to conceal ATIs at times.

Using LISREL it is easy to detect such differences and LISREL also

allows some investigations into the possible effects of such

differences on the estimates of the stuctural relations within

treatments, through comparing the results when the same measure-

ment model is used and when different measurement models are used.

The necessity in LISREL of formulating explicit models brings

another advantage: It forces the researcher to a deeper penetra-

tion of the substantive problem, both in designing the study and

in analyzing the data. In the long run this may prove to be one

aI,



of the greatest contributions of LISREL to ATI research.

The possiblity in LISREL to test the goodness-of-fit of a model

or of a part of a model is another great advantage of the method.

It must be stressed, however, that use of statistical tests to

assess the fit of data to a model is fraught with several problems

of which it is necessary to be aware (cf. Gustafsson, 1979c, pp.

27-28). For one thing, the test is a large sample test and when

too small a sample is used, there is a risk that the test statis-

tic does not have the distribution assumed. Another problem

associated with small samples is that the power of the tests may

be too low to detect even gross deviations from the model. But

samples can be too large as well. This is because no model can

ever be supposed to be perfectly fitted by data, so with large

enough a sample any model would have to be discarded. The results

from the goodness-of-fit test must therefore not be given any

absolute interpretation, and modifications of models should be

dictated more by substantive considerations, than by statistical

ones.

So far we have stressed the advantages of LISREL over other methods

for analyzing ATI data, but there are of course problems associated

with this method of analysis as well.

In LISREL it is essentially assumed that data have a multivariate

normal distribution. Only little is known about the robustness of

the method against violations of this assumption, but it is probably

fair to say that some of the advantages that LISREL has, are reduced

when this assumption is not fulfilled.

It must also be pointed out that to achieve its full potential,

LISREL requires more than one observed variable for each latent

variable. As has already been pointed out this problem can be

solved, however, if half-tests are entered. The method of half-

tests is likely to be useful also when a group of tests do measure

a common factor, but when there is also important specificity in

some of the variables which is suspected to interact with treatments.

In our experience the standard errors of the estimates of the P

coefficients tend to be large in LISREL, which is a great problem.



Even in MR the power of the tost of interaction generally is too

low with the sample sizes which are feasible in ATI research

(Cronbach & Snow, 1977).

One reason why the standard errors tend to be large in LISREL is

that there often is an inverse relationship between the consisten-

cy and the variance of an estimator (Parenthetically it can be

pointed out that even within regression analysis this inverse

relationship has been studied,cf. Winer, 1978). But the standard

errors are also functions of the size of the correlations between

the aptitude variables, and another reason why LISREL tends to give

higher standard errors than MR is that in MR these correlations

are underestimated as a function of unreliability in the aptitude

variables.

If statistically significant interactions are sought it is necessary

to select the sample, the aptitude variables and the LISREL model

so as to minimize the correlation between the latent aptitude vari-

ables. But as was pointed out by Cronbach and Snow (1977) the

generally low power of any test of ATI effects makes it necessary

to place lower weight on formal statistical tests, and to consider

instead the descriptive patterns of results. Cronbach (1975) even

claimed that: "The time has come to exorcise the null hypothesis.

We cannot afford to pour our costly data down the drain whenever

effects present in the sample 'fail to reach significance'"(p.124).

We strongly agree that less emphasis should be placed on statistical

inference and that greater importance should be attached to descrip-

tion of effects in the sample. Even in such an approach it would

seem that LISREL offers some advantages. For one thing, the latent

aptitude variables can be supposed to be more or less invariant over

different studies, which is important when the results from different

studies are brought together. The description is also, based on con-

sistent estimates of the parameters and it is generally very parsi-

monious. Furthermore, when a descriptive approach is used it is

important that an eye is kept on possible differences in the struc-

ture of the aptitude variables in the treatment groups, and, as

has already been pointed out, this is easily done with LISREL.



For reasons of space we have generally not included results from

MR analyses of the data analyzed with the different LISREL models.

It is, however, our experience that the MR results may differ

drastically from the LISREL results, as may of course be expected

on the basis of the problems caused by errors of measurement only.

We therefore want to conclude this paper by recommending that, to

the extent it is possible, the available ATI data are reanalyzed

with LISREL.
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