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PREFACE TO THE THIRD REVISED PRINTING

Since the appearance of the second printing, this tex+t
has had a fairly extensive tryout in some 50 schools with
|,500 students involved. The teachers participating in this
experimental use of the texft have been most generous in
supplyfﬁg corrections and suggestions for improvement.

A great deal of feedback was gleaned from a three day
conference, which was attended by nearly all the teachers
using the book, and was held in Tallahassee, Florida March
23-25, 1970.

All the corrections supplied by the users have been““‘
made, but unfortunately time and resources have not aIIerd
us to incorporate the suggestions for rewriting. Only a dozen
or so pages of additional text appear in this printing.

However, most of the suggestions made by the teachers
in addition to some after thoughts of the authors appear in
the Teacher's Commentary. This commentary contains:

(a) suggestions for the handling of theory,

(b) related mathematics for interest of teachers or

possible enrichment material,

(c) some additional flow charting to supplement Chapter

(d) explanation of the rationale where treatment of

topics is unusual,




(e) alternative or improved treatments of various
topics which we were unable to incorporate in the
text,

(f) supplementary exercises, problems and examples,

(g) a summary of the proceedings of the three day con-
ference mentioned above.

I+ is expected that this commentary will be mos+
valuable although no one feacher is expected to want to use
or read all of it. 1t is suggested that the commentary be
lightly scanned before teaching the course to obtain an idea
as to what part of it might prove usefu].

We finally rcomark that in response to overwhelming de-
mand, the solutions of problems have been included in the
student text instead of the separate answer booklet. The
only exception to this are solutions which involve flow
charts. These solutions appear instead in the Teacher's

Commentary.



PREFACE TO THE FIRST PRINTING

This volume Is the first part of a one year computer
orlented calculus course (without analytic geometry). Con-
siderable lnterest has been manifested in the impact of the
computer In the calculus course, and several books have already
appeared. This book goes much further than any of the others
in the directions of introducing and motivating the ideas of
calculus through computer (i.e., algorithmic) concepts.

Chzpter | comprises an introduction to computing via
algorithms and a simple flow chart language. The book is thus
sel|f-cortained except that material on programming languzges
is excluded in order to allow the teacher to use FORTRAN, BASIC,
ALGOL, PL/1, or any other programming language. In *rying out
an earlier version of these materials in the classroom, ong of
+he authors found it expedient to teach FORTRAN by merely dis-
playing a flow charft with the corresponding FORTRAN program
alongside followed by fwo pages of exptltanation of peculiarities
of the language (integer and real variables, etc.).

The authors have follawed the algorithmic approach along
the paths where it led us. This has resulted in a departure
from the traditiona! ordering of some topics (e.g., sequences
and integration treated before differentiation). |t has also
radically changed some of the procfs of theorems and in a few
cases slightly modified the statement of theorems. For example,
the form of the completeness axiom in Section 9 of Chapter 2

is quite unconventionai. ,

re
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I+ Is natural Té suppose that a computer approach to
calculus would place more emphasis on heuristic than on rlgor.
While this may be the case with later efforts derived from
this one, It is not so in this book. The authors regarded if
part of their task fo show that such a treatment could be made
t+heoretically sound. Consequently, the course is somewhat more
rigorous than may be appropriate for a beginning calculus course.
Some of the more theoretical iraterial has been placed at the
ends of chapters, in starred sections, or in appendices to
chapters. Some users may wish fo de-emphasize this material,
but it is hoped that they will give everything cautious trial
to help determine whether the theory viewed in this new light

becomes accessible to more students.

It is hoped that the dynamic or mechanistic character of
the algorithmic approach will place concepts of calculus within
the comprehension of a wider audience. Whether this hope will
be justified only tiwne and testing wiil tell. CRICISAM is
anxious to obtain feedback and criticism in order to determine
how the text might best be modified. We invite you fto send
your reaction to CRICISAM, Room 212 Diffenbaugh, Florida State
University, Tallahassee, Florida.

The authors here exbress their appreciation for the efforts
of Prof. E. P. Miles who supplied the impetus for bringing this
project into existence anﬁ Eoordina+ing the computing facilities

at Florida State University with the writing.
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CHAPTER O

PRELIMINARIES

l. Introduction

We begin this book with an attempt to get our mathematical
house in order so that the subsequent chapters will be more
easily read. This involves some reminders of items from
earlier courses, but then a bit of review never hurt any-
one. |t also involves some definitions and minor theorems.

And finally, it involves some agreements on terminology

and some conventions.

Students often do not read a mathematics book properly.
When approaching a mathematics book, the reader should be
well-armed with pencil and paper. The reading should be
active, not passive: test every claim made by the author(s)
with concrete examples of your own choice, try ouf suggested
procedures, "doodle" with the ideas, and read with some
doubt (for there may well be errors). When you've finished
a paragraph or so, ask yourself if you understand, and if

not, go through it again.




The problems are designed as challenges, to test your
skill at manipulation, fto check whether you understand the
ideas, and in some cases to expand upon the material in
t+he text. Make sure you can do them, obtaining what
assistance is necessary from your instructor, your classmates,

or from ot+her books.



2. Numbers

In a certain vague sense, you are already pretty well
aware of the numbers used in the study of calculus, and you
are familiar with the arithmetic of those numbers. In your
study of numbers, you started by learning how to cctnt, and
then progressed to more complicated numbers. We classify

+hem as follows: integers, rational numbers, real numbers.

The integers (or whole numbers) are the numbers ... ,

-3, =2, -1, 0, 1, 2, 3, ... consisting of 0, the positive
integers (1, 2, 3, ...), and the negative integers (-1, -2,
-3, ...). An integer is even if it i 4divisible by 2,

otherwise odd.

The rational numbers (or fractions) can be constructed

by fakihg quotients of integers to obtain numbers like %,
81 3 12

- = 5 -

7’ 9 etc. In general, they are of the form

a

b
where a and b are integers with the proviso, of course,

fhaf b # 0. Every integer n is a rational number since it
may also be expressed as %. Notice that there is a smallest?

positive integer (namely, 1) but that there is no smallest

positive rational number (Problem 2).

The integers and rational numbers have a commonpiace

geomefric'represenfafion on a straight line. Once O and 1

'y
S s

. i
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_have been selected, generally with 1 to the right of O,

we merely take multiples of this unit length to obtain points

corresponding to the integers and fractional parts of it for

the rational numbers. A few have been plotted in this next

scene

———
5 5
132 3 3

where the positive numbers are to the right of 0, the negative

numbers to the left.

As we shall now see, though, these points do not "fill
up"” the line. That is to say, fthere are points on the line
which do not correspond to integral or fractional multiples
of the unit length. At 1, construct a P

right angle and form the ftriangle indi- 3 v

cated in Figure 1-1, where the point P

-+

is one unit above the point correspond- SHHJ;E |L

ing fo 1tMMT;;;:.;;g=1, aﬁd by the Pythagorean Theorem (which

states that c2 = a2+ b2, we have c2 = 12 + 12 = 1 + 1 - 2,

Now if we rotate the line segment OP o

so that P falls on the base line, we N

can ask If it falls upon a rational \

number.- If it does, then it will be o) i L
FIGURE I-2

at a distance ¢ from 0, so that for

|
B 17



. X
.some -rational number 7: we have

X
c ==
Y

We may as well (and will) assume that not both X and y are
even, for otherwise we could cancel 2 from both the numerator

and dencminator. Now we have

so that

Thus, x2 is even, and by Problem 1(f), we conclude that X

is even. Write x = 2p. Then

2y2 = x2 = (2p)2 = 4p?
so that

y2 = 2p2

Now y2 is even, and Problem 1(f) demands that y be even. But
look, we've concluded that both x and y are even, which con-
tradicts our assumption. Thus, c cannot be writfen as a quotient

of integers and is therefore not rational. The number c is

of course V2, and we call it, quite naturally, an irrational
number.

The real numbers include the rationals and fill in the
number line by including as well all the irrationals. Every

real number can be represented by decimals; for example,




(S TR
1}
o
o]

L2 - 1.857142857142857142. ..
25 _

2 - -4.16666...

V2 = 1.41424. .,

w = 3.1415926 ...

The rationals, in this representation, either terminate

(as with %) or repeat indefinitely (as with 17 and -

AR ]
[S4]

).

o

The nonrepeating infinite decimzls characterize the irra-
+ionals. When we speak of numbers, we will simply mean real
numbers; otherwise, we'll specify further by adjectives

such as rational, whole, positive, nonzero, etc.

Notice that the real numbers and their basic operations
satisfy the following properties (and you should notice the

similarities):

Addition . Multiplication

1. If a and b are numbers, 6. |f a and b are numbers,

then so is a+b. then so is ab.

a + (b+c) = (a+b) + c 7. a(bc) = (ab)lc

a+ b =D>b + a 8. ab = ba

The number 0 has the 9, The number 1 has the
property that a + 0 = a property that a-1 = a
for every number a. f>r every number a.

5. Every number a has an 10. Every number a, except
"additive inverse," -a, 0, has a "multiplicative
so that a + (-a) = 0. inverse," a~!, so that

a-a~l = 1,
11. (This connects the operations of addition
and multiplication) a(b+c) = ab + ac.
6 19
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Any system of numbers with at least fwo elements satisfying

these first eleven properties is called a field.

Order There are real numbers which exclude zero, called

positive numbers satisfying

12. If a and b are positive numbers, fthen so are a + b
and a-+b.
3. If a is a number, then exactly one of the following

statements is true:

(i) a is positive
(i) a =20
(iii» =-a is positive.

And finail!y, there is a property named after Archimedes called

+he Archimedean Axiom.

14. (Archimedean Axiom) |f a is a real number, then there

is a positive integer n which is greater than a.

(We prefer to present the Archimedean Axiom here although it
properly should follow the definition of "greater than'" in the

next section.)

We will use these properties generally without comment or
explicit reference, except that where their use is more unusual
or crucial or subtle than in routine arithmetic, an appropriate

comment will be included.

These properties do not characterize the real numbers.

Notice,for example, that the system of rationa! numbers does

satisfy all fourteen of them. However, an additional! property,
to be presented in Chapter 2, will serve with these fo char-
acterize the real numbers in the sense that the only

- 1

20



.set of humbers satisfying all fifteen properties is the system
of real numbers -- whether presented as points on a line, in-

finite decimals, or whatever.

When referring to these properties, let's agree that
"R7" will mean "property 7 of the system of real numbers."
Just as an example of the sort of things you can prove about
real numbers, we deduce two properties and show how They arise.
They are theorems, but we present them as frivialifiés. The
idea is that they don't really tell you anything about real
numbers that you didn't already know. However, it's a good
thing (or at least a comforting thing) to realize that there
has been developed a system of axioms from which one can
actually prove such things. Faith in numbers is all right,
to a certain extent, but lest we succumb to the disease of
numerology, it's wise once in a while to check that the
properties we "know" about numbers can either be proved or

must be accepted as axioms.

Trivial Theorem 1. x:0 = 0 for every real number Xx.
Proof: x0 = x-(0 + 0) by R4 (with a = 0)
= x.0 + x-0 by R11
so that
0 = x-0 + [-(x.0)] by R5

(x:0 + x+0) + [-(x.0)] by substitution

x+0 + [x.0 + (-(x+0))] by R2

x-0 + 0 by R5

= x.0 by R4

21



Trivial Theorem 2. (-x)(-y) = xy for any real numbers

x and vy.

Proof: (See that you can justify each step)

xy = xy + 0
= xy + (-x)*0
= xy + (=x)[y + (-y)]
= xy + [(-x)y + (=x)(-y)]
= [xy + (=x)y] + (=x)(-y)
= [x + (=x)Jy + (=-x)(-y)
= O0ey + (=-x)(-y)
= 0 + (-x)(-y)

= (=x)(-y).

The other usual rules for elementary computational

arithmetic can be deduced in a similar manner.

(B W a!




PROBLEMS

Prove:

(a) the sum of any two even integers is even.

(b) the product of any ftwo even integers is even.
(c) the sum of any two odd integers is even.

(d) the product of any two odd integers is odd.
(e) O is even.

2

(f) if a is an integer and a% is even, then a is even.

Prove that there is no smallest positive rational number.
Prove that V3 is irrational.
Check that the rationals satisfy the fourteen properties

listed in this section.

Which of the fourteen basic properties are not satisfied
by the set of integers; the seft of even integers; the
set of odd integers; the number 0 all by itself; the

set of irrational numbers?

Explain why the square, x2?, ¢f a real number x cannot

be negative.

Prove the "invert and multiply™ rule for dividing frac-

tions.

What troubles arise if you attempt to interpret % or

10

~
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: a
% (or in general ] for any number a) as real numbers?

9. Johnny "proved" that 2 = 1 by this argument: Let a = b;

then
a? = ab
so
a2 - b2 = ab - b2
whence
(a+b)(a-b) = bl(a-b)

and a cancellation of a - b from each side yields

a+ b = b.
Now since a = b, we write 2b = b, so 2 = 1. Find the

hole in this argument.

10. Prove the trivial theorem that 1 # 0 in the field of

real numbers.




3. Inequalities

A large amount -- probably too large an amount -- of
your early mathematical training has concerned equations,
solving them, manipulating them, reducing them, etc. But
for the necessary calculations in studying calculus, one
must be able and willing to work with expressions that are
not equal, or in some cases, nct necessarily equal. This
will enable us to make mathematically precise such loosely-
worded expressions as "all numbers befween | and 2," or
"a is nearer to b than to c," or "the square roots of the
positive integers become arbitrarily large." Furthermore,
t+he language of inequalities is indispensable in discussions

of numerical error.

We have stated in R12, RI3, and R14 enough to proceed
without delay. That is to say, just those properties about
the notion of positive numbers will be sufficient for a
systematic study of what can be done with numbers that are
not equal. For example, one can prove (as Trivial Theorem
3) that | is a positive real number. We express this by

writing | > O.




In general, x > 0 means that x is positive; and if x -y > 0,
we write x > y to express the fact that x is greater than y.

Thus, w>3, 0 > -1, and 17 > -4 for the respective reasons

that #-3, |, and 2| are positive.

The ">" symbo! turned around means "less than": X <y
means that x is less than y and is equivalent tfo y > x. So

any statement concerning > has a counterpart involving < .

Notice that, geometrically, a < b means that a lies to
the left of b on the number line, and this
S )

is very offen a useful picture which arises often in the

chapters to follow.

Now there are three operational rules which could serve
as Trivial Theorems 4, 5, and 6, and whose proofs are left
to the Problem section. They are

If Xx >y and y > z, then x > z

If z > 0 and x > y, then xz > yz

If z < 0 and x > y, then xz < yz
As with other statements, make sure you really understand
the sorts of uses one makes of these rules. The first one

allows us to write a string such as



a>b>c>d >e

without any misunderstanding and to pick as we wish from
such a string any of several inequaiities. For example,
one can deduce that b > e. (Avoid writing such things as

a >b< c, because it gives no information concerning any
relationship between a and c.) The second rule is nice,
al|6wing one to multiply an inequality by a positive number
without changing its sense. The third rule forces one %o
change the sense of the inequality when multiplying both

sides by a negative number. Thus, 2 < 3, but (-4)2 > (-4)3.

The effects of subtracting and dividing are the substance

of Problems 6, 7, and 8.

The symbol > will be used to mean "greater than or equal
to," and likewise < will mean "less than or equal to." Thus,

8 < |7 and 8 < 17 are both true, as is 8 < 8.

In many instances, you will have occasion to construct

a string of relationships looking something |ike

A =18



where the capital letters will in some cases replace rather
complicated-looking expressions and in other cases might be
numbers. What we will generally be interested in is a
relationship between what we started with, A, and what we
ended with, F. Notice in this case that we can conﬁluée

A < F, but we can also conclude A < F, which is a "stronger"

statement, thus generally more useful.

Probably for psychological reasons, you will see < and
< more often than > and >. This is undoubtedly because
we 've been taught to operate from left fo right, both in
reading and in plotting numbers. Thus, in thinking abouf
several numbers, one generally starts with the one occurring
first (i.e., the leftmost) on the line of real numbers. So,
in writing those relationships, the < symbol is somehow more
"natural."

Concerning notation, you will find phrases such as, "..
whenever a, b > 0" or some such thing. This means both

a and b are nonnegative.



PROBLEMS

. . Prove that | is a positive real number. (Hint: use
Trivial Theorem 2 along with RI12 and RI3.) From this

it follows that

-3 < =2 <=l < 0 < | <2 <3

2. Prove that if m, n, p, g are positive then
m s P
n q
if and only 1f mgq > np.
3. Prove Trivial Theorems 4, 5, and 6.

4. Prove that if 0 < x < |, then x2 < x. On the other

hand, what can you conclude if you're given that

x2 < x?

5. Prove that if x > y, then x-z > y-z.

L1
L

6. Prove that if x > y > 0, then < <
7. Prove that if x > y and z > 0, then ; > %
8. Where can > (or X) replace > (or <) in the inequality

rules?

16 29
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4. Absolute Value

We will often be concerned with the distance between two
points on the line, and since points correspond to numbers,
+his concern is really with the "distance between x and y"
for any pair of real numbers x and y. 6ne could write

d({x,y) to denote the distance between x and vy, but the notation

|x-y| is standard and fits in a framework of normal arithmetic;
besides, you will soon recognize that it makes common numerical
sense.

Nofice first something trivial: the distance between X

and y is the same as the distance between y and x. Thus,

| = v] = |y - x|
We call |x - y| the absolute difference of x and y. Notice
further that the distance between x and 0 is |x - 0| , and

the above equation yields

|x - 0| = ]0 - x]



Ix| = [-x|

Clearly, |0| = 0; and if x # 0, |x| > O because the distance
between x and O is positive. Thus, |x| > O for all numbers
x. We call |x| the absolute value of x. Some examples are:

13-7] = 4

|27] = 27

|7-3] = 4

|-27| = 27

and a picture is

Ix-yl
x Yy

Notice that we could have defined absolute value by

X
i)
(@]
-+
X
i
(@]

and thus remain free of any appeal To geometry. Indeed, you

may have learned this version of the definition.

what is the distance between 3 and -2? By our analysis,

this is |3-(-2)| = |3+2] = |5] = 5. In. general, | x+y |



represents the distance befween X and -y. And it Is natural

to ask [f there exist any relationships Deviween | x+vy |,

Ix-y| , Ix| , and |y| for arbitrary numbers X and y. There

do, and the language of inequalities tells which ones.

Consider numbers, a» b, and ¢ as represented on the line.
There are two cases: either c lies between a and b or it
does not. |f c lies between a and b, then

a é b

we have the equality

la=b | = Ja-c| + [b-c|

because the distance between a and b is the sum of the dis-

+ance between a and c and the distance between b and c. 1f ¢
does not lie between a and b,

3 B &
then,

|a-b| <la-c| + [b-c]
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We can state in general, then, that
la-b] < Ja-c| + |b-c|
for any triple of numbers.
A series of replacements will yield some equivalent facts.
First replace a-c by x, and replace b-c by y. Then since

a-b = (a-c) - (b-c), we must replace a - b by x - y. The

above statement then becomes

N P B 1Y

Next, replace y by -z. Then we get

e N N

which is more simply written

A N LN B

This last statement is classically called the triangle inequality

Now in this last statement, replace x + z by w, and then

z must get replaced by w - x and the triangle inequality becomes

Y 0 39




-t

Wi < x|+ fwex]

which can be rewritten

Jw=x | > W] =[x

Also in the triangle inequality, we can replace x by u + v

and z by -v so that x + z gets replaced by u, and we obtain

ful < Jutv| + |-v| = [utv | + |v |
1 o—
SO
jutv] > u] = V]
I'n all these recent calculations, notice that a, b, c,
X, Yy, Z, W, u, v are just numbers. Ve don't need all those
symbols to write down an organized list of the basic relation-

ships we've proved; using the fewest symbols, they are:

|a*e] < |a] *+ [P]

jato| > [e] - |b]
|a-b] < |a] * |P]
|e-b| > |e] - |P]

for any numbers a and D.
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Our concern has been centered on absolute values of sums,
and differences. What about products and quotients? An ex-

ample wlll be Instructive enough. Suppose a = 7 and b = -12.

Then
lab| = |7¢-12)| = |-84]| = 84
and |a| = |7] = 7, |b] = |-12] = 12, whence

la]-|b] = 7-12 = 84.

So in this case |ab| = |a|-|b| . You can try other choices and
see in general that the absolute value of a product is the

product of absolute values. See problems 2 and 4.

In particular, |a2| = |a]2 = 22, so that

This is important to remember, because in some calculations,
you may end up with the square root of a square of a number,

and you must be careful about what you then conclude.
One last inequality: suppose |x| < K. Then this means that

if x > 0, then |x] = x < K; and if x < 0, then |x] = -x < K,

so x > =K. Thus, |x| < K can alternatively be written
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K < x < K. In like manner, [x| < K can be expressed by

-K < x < K.

2
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PROBLEMS

1. In the relations

la - | < lal + [b]
la = b] 2 [al - [|b]

declide in each case when the equality sign holds.

2. Prove that if b # 0 then

lal .

a
b
o]
3. Determine which real numbers x satisfy:
(a) |x + 2| < 3
(b) [x - 2] < 3
4. Prove in general that
|ab| = [a| - [b]




5. Intfervals

A combination of the ideas of Inequality and absolute
value Iis handy in describing what are called intervals
on the line of real rnumbers. Problem 3(b) of the last
section demanded the determination of numbers x satisfying

|x - 2| <3,

There is both a geometric and an arithmetic approach to
solving this problem and it's terribly important for future
work that you learn to "see" the geometry and to carry out

the corresponding arithmetic.

Geometrically, If x satisfies |x - 2| <3, then Just
recall that |x - 2| is the distance between x and 2. Thus,
lx - 2] <3 means that the distance between x and 2 cannof be

more than 3. Thus, one can think

of starting at 2 and pro-

-2 -l (o] } 2 3 4 5 ©

ceeding in either direction
9 FIGURE 5-I
for up to 3 units. Starting
at 2, all the numbers up to and including 5 will satisfy the
relation, along with all numbers down to and including -1.

A plicture is given in Figure 5-1.

25
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Arithmetically, the statement |x - 2| < 3 can be analyzed
by using the last paragraph of Section 4. The statement

|x = 2| < 3 Is equivalent to the chaln of inequalities

Adding 2 all the way through yields

-|<x_<_5

which simply says that the number X must be between -1 and

5, Inclusive.

In consequence, and by means of either the geometric or

the arithmetic approach, we end up with what Is called a

closed interval. |ts center is at 2 and its radius is 3.
1f |x - 2] < 3, the same procedures yield
-] <« x < 5
and this set of points x is called an open interval. It also

is said to have center 2 and radius 3.

In either of the cases

iv };




or

we call the associated interval on the line half open. |
should be clear that neither of these intervals can be expressed

simply by a single inequality involving absolute values.

There are of course infinite intervals

FIGURE 5-2

consisting of all points to one side of, and possibly includ-
ing, a given point. The one in Figure 5-2 consists of all
points to the right of 5 and includes 5. This can be expressed

x 2 5. The number 5 is excluded by x > 5.

The most common calculations you will be using with regard
to intervals will be of the form
|A| < B.

You have seen from the above considerationz that this is

equivalent to writing



-B < A < B.

With intervals, there is a matter of notafion. I+ is
common to use [-1,5] to mean the interval in Figure 5-1, i.e.,
- all numbers x satisfying -1 < x < 5. |n general

Ca,b] means all x for which a < x < b

(a,b] means all x for which a < x <b

Ca,b) means all x for which a < x < b

(a,b) means all x for which a < x < b

Ca,») means all x for which a < x

(a,=) means all x for which a < X
(-»,a] means all x for which X < a

(-»,a) means all x for which x < a

(-»,=) means all real numbers.

For each of the first four cases, the midpoint of the interval

is its center, and half its length is the radius.

There is an aspect of intervals which involves averages.
The term average, or mean, is ambiguous, for there are several

ways in which those words are used. There is the arithmetic

mean of two numbers, a and b. This is a humber which when

+
added to itself yields a + b, and that's of course E_E_E .

There is also the geometric mean of two positive numbers a
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and b. This is a number which when multiplied by itself yields

ab, and that's of course vab. (By the way, Aralways means
the positive number t for which +2 = x.) A relationship
betfween the arithmetic mean and the geomefric mean of two
positive numbers exists, and it can be viewed by means of

intervals.

Let a and b be positive unequal numbers, and consider
intervals of length a and b, placed side-by-side, as in

Fp )

Figure 5-3. At the midpoint M of

+he entire interval can be drawn a v 1 b

a
‘2“ b the FIGURE 5-3

arithmetic mean of a and b. You

semicircle of radius

can check to see that the right

' 3 =i
L]

triangle depicted in Figure 5-5 has T t
— a + b a M b
ab as one side and > as the FIGURE 5-4
hypotenuse. Thus
a + b e U
,/85 < 2 // \\\
’ \
/ \\
/ yab a+b \
Problem 4 completes this issue by { 2 \
2 1
removing the demand that a # b. v a Y b '
FIGURE B-5

We can always conclude fthat




PROBLEMS

I. Determine and sketch all intervals (if any) corresponding
to
(a) |x + 2] < 3
(b) [x -~ 2] > 5
(c) ~ |x =~ 2] <3
(d) [x - 2| <3
(e) [x - 2| < =3
(f) |x - 2] < |x - 3|
(g) 0 < [x~2] < 3
(h) (x5 + 3I1x)100 (x-2) < 0

2. Prove (by the Pythagorean Theorem) that Figure 5=5 is

labeled correctly.

3. Prove the arithmetic mean - geometric mean inequality by

considering

(vVa - v/b)2.

4. Prove,for a and b positive, that v/ab = 2 ; B it and only if

a = b.

A
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6. Functions

In your previous school courses, you have dealt with
functions of various sorts, particularly in studying logarithms,
trigonometry, and so forth. Some reminders here should be

of help in recalling the essence of the function concept.

The essence of this concept can be put in the nutshell
of an example. Consider the sentence, "The area of a square
is a function of the length of one of its sides."™ Think

about this for a minute.

In the first place, that sentence begins with "The area,"
to denote that precisely one thing is being determined (by
the length of a side). That is to say, a function embodies
the idea of an "unambiguous designation." A given square has
precisely one number associated with it which is designated
as its area, and we're saying that this number is unambiguously
designated.- in some manner by knowing the length of a side.

In the second place, the sentence under scrutiny does
not talk about just one particular square. It concerns any

square whatsoever, and this is +he second basic idea embodied

3



in the function concept. It isn't that a function makes
Just a single unambiguous designation, but rather that a

function makes a bunch of unambiguous designations.

Thus, we could write A(S) to mea: the ar=a of square S;
and 1f S has Its sides each of length a, the well known formula
for this whole bunch of unambiguous designations could be
written |

A(S) a2

to spel! out (more specifically) that the area of any square

is determined by the length of one of its sides.

If only certain squares were under consideration, a

table would suffice. For exomple

(4]
(4,1
~

nmi|iz
25 |49 | 121 | 169{289

length of side[ I | 2
area of square| | | 4

(0]

One could think of a function as a collection or "set"

of ordered pairs, wherein the first member unambiguously

designates the second member. Thus, the idea of A(S) = a2
could be written (a,a?) where the first member designates
the length of a side and the second member designates the

area of the corresponding square.




Roughly speaking, then,a function assigns to each of

certain numbers a uniquely-determined corresponding number.

We will use letters, such as f, to refer to the functions.

The symbol

f(x) will designate the number corresponding to

the number x. The number f(x) isqkélled the value of the

function f at x; or, sometimes, f evaluated at X.

We've already studied one function a little bit, the

absolute value function. |t assigns to each number X the

number lxl

this function, it is customary to write "Suppose f(x) = |x

. In signaling that one is about to work with

or some such phrase.

In general, it is usually sufficient to simply reveal

what f{x)

is, for that carries implicitly the necessary

information one needs about the correspondence under study.

That is to say, rather than writing, "Consider the function

which assigns to each number its square,"” we will be content

with the shorter "Let f(x) = x2 " And sometimes vyou will

see "the function x2

With each function, there is associated a set of numbers

called the domain of the function. These are the numbers x

for which we wish to study the functional values f(x). We

say that f

is defined on or sometimes (for geometric reasons)

over its domain. For example, one might wish to study +the

-4 3.
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behavior of f(x) = |x| for -1 <x < I. In such a case,

t+he domain will be specified explicitly. [If the domain is
not so specified, then we assume the domain to be the set

of all numbers for which f(x) makes sense. With this agree-
ment, the function f(x) = /X with no domain specified

automatically has as its domain o,=).

Given a function and its domain, there is another set
of numbers, called the range of f. It is simply all the

numbers f(x).

Notice that we have not stated that f(x) need be
expressed by a formula, though t+that was indeed the case in
the examples given. For instance, one can define a function
f by stipulating that f(x) = x2 if x is an integer and
f(x) = 0 if x is not an integer. ln this case, the domain
of f is the set of all real numbers and the range is the set

o, !, 4, 9, 16, ... of squares of integers.

You will need to become familiar with various forms
of the word map and their mathematical usage, for they
simplify many otherwise cumbersome phrases. One says that
@

f maps its domain onto its range: for each number x in the

domain of f, the function "sends x into f(x)" as suggested by

3 47
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X————— f (X ).

(Presumably this comes from map making wherein fthe mapmakers
send Podunk onto an appropriately-placed dot on a piece of

paper.) This arrow notation will be used from time to time.

Thus, x2 maps the real numbers onto the nonnegative
numbers; /< maps the nonnegative real numbers onto the
nonnegative real numbers; |X| maps [-1,1] onto [0,!1]; /X
maps 9 onto 3 (you see, we also use this terminology for any

~part of the domain); |x| maps (-!,0) onto (0,1).

Sometimes the "onto" fterminology gets abandoned in
favor of the looser "into." |f f maps (any part of) its
domain onto certain numbers S, then it maps those numbers
into any seft of numbers containing S. Thus, x2 maps (=1,1)
into [0,1], or into [0, ») for that matter, since it maps
(-1,1) onto [O,1). Again, /X maps the positive integers
into the positive real numbers, and |x] maps the real
numbers into the real numbers. The into terminology, Then,
admits a certain amount of éloppiness, but sometimes that's

all that's needed in expressing our idea. You will note



that all the functions we will deal with map selected parts
of the real numbers into the real numbers. That is why they

are called real - valued functions. A variable is a (generally

unspecified) member of the domain of a function, and so our

functions are real - valued functions of a real variable.

Functions can be "looked at" graphically, and certain
insight about functions can often be gained in a geometric
setting. Recall from your earlier fraining the coordinate

system in the plane.

-, (+,+)
{ (3,4

in terms of an "axis of :

Every point has a name

abscissas" (often called

+he X-axis, a line of

real numbers viewed
horizontally) and an "axis

of ordinates" (the Y-axis, | (2;3)

a line of real numbers ) } (+,7)
FIGURE 6-i

viewed vertically). The

number O on each line is placed at a point called the origin,

and positive numbers are to fthe right along the X-axis and

extend upward along the Y-axis. Then the point of the plane

which is reached by going fthree units to the right of the

origin and then four units up is labeled, as in Figure 6-1,

(3,4). The points (2, -3) and (0,0), the origin, also appear

in Fiqure 6-1. A "general" point is often labeled (x,y), a
g g p




reminder that each point in the plane is named by giving its

abscissa first.

(You have by now noticed that the single symbol (3,4)

can mean a point in the plane or an open interval. This is

all right, though: a confusion never arises, because the
context in which the symbol appears makes the meaning
clear.)

In the coordinate plane, the graph of f is The set of
all points of the form (x, f(x)) for x in the domain of f.
Figure 6-2 illustrates a "general" point of the graph of some
function f. The number X
appears of course on the
X-axis and the value of f Y
at x appears on the Y-aXis,

and the pair (x, f(x)) fool =~ = 2 OuF00)
?

" shows up as a point in the

I
!
plane. This means that the X
. FIGURE 6-2
domain of f is a subset of
the X-axis, and will in our

work most often be an interval.

The range of f is a subset of the Y-axis.

Since a general point in the plane has coordinates

(x,y), and since a general point on the graph of f is given

3
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by (x, f(x)), the usage y = f(x) has arisen and is often
used in discussing functions, functional values, and graphs

of funcTidns.

For f(x)w= |x| over the interval [-1,1], the graph is
shown in Figure 6-3. Make sure that you both see it and "see"
it. In this case, it was
possible to display the entire
graph. However, the situation

is often complicated by dint

of impossibility: you couldn'*t
hope to graph |x| for all

FIGURE -3
real numbers x. In those

cases, an incomplete picture
fixing on the idiosyncracies
of the function under study is pictured, and you must become

adept at graphing functions to display those items of interest.

There are two "simplest" types of functions (simplest
in the sense that calculating functional values constitutes

absolutely no effort of any sort).

Constant functions are of the form f(x) = k for a fixed
number k. The domain is the set of all rea! numbers and the
range is the single number k. For f(x) = -2 every point on

its graph has the form (x,-2) and is sketched in Figure 6.4,



The granhs of all the con-
stant* furctions are of course

paiallel to the X-axis, and

the X-axis itself is tThe R R —
. -/
graph of the constant function
Cees y=-2
y =0 . It is difficult to 4-3
think of more to say in FIGURE G6-4

describing constant functions.

The identity function is of the form f(x) = x. This

just maps each x onto itself, i.e., f "does nothing” and
thus has the distinction of being the laziest of all functions.
The domain is the set of all real numbers, and so is the
range. Each point of the -
graph of the identity function

is of the form (x,x), so

y = x describes the geometric

situation, shown in Figure 6-5.
+

&

A\
Functions, as well as FIGURE 6-5

numbers, admit of algebraic operations. |f f and g are
functions, then a new function called the sum of f and g

and written f + g can be constructed. This is accomplished
"pointwise": if x is a number, the value of f + g at x is
obtained by adding the numbers f(x) and g(x). This means of

course that x must be both in the domain of f and in the

3
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domain of g (hence in the intersection of those domains).
Thus, the definition of the sum of two functions may be

expressed in the equation

(f + g)(x) = f(x) + g(x),.

Geometrically, the graph of the sum of two functions

is obtained by summing ordinates at each point X on the

X-axis. The geometric general rule is pictured in Figure 6-6.

P '
forf-—-—- 1 f+s 'E QX
! hed I ¥ | P00

X 3 X

FIGURE ©6-6

where the x is the same in each of the three parts. One can
thus plot the graph of f + g by graphing both f and g on the
coordinate plane and "eyeballing it" from there on out.

Figure 6-7 depicts the
graphs of the f(x) = |Xx|
and g(x) = =2 along with

f + g)(x) which is also

written |x] - 2. Figure 6-8

shows the sum of the functions

y = x and y = [x| , which of

course coincide for x > 0, FIGURE 6-7

-




along with their sum

y = x + |xX] . Notice that
fhis resulting function could
also be given by

0 for x < O
f(x) =

2x for x Z 0 FIGURE &-8

The product fg of two

functions f and g is also defined pointwise. For each point
x in the intersection of their domains, the value of fg af X

is simply f(x)g(x). Thus’

(fg)(x) = f(x)g(x).

With a little practice, an eyeballing procedure can be used

to plot fg from the separate graphs of f and g. Figure 6-9

depicts (fg)(x) where f(x) = |x| and g(x) = -2, Figure 6-10
does the same for y = |x| and the identity function y = X,
' //

FIGURE 6-10

4



obtaining y = x+|x| , this time without labeling anything.

Make sure you "see'" it.

Notice that this means for any function g, such expressions
as 2g, Tg, and in general kg for a fixed number k are well-
defined. You simply take the product fg where f(x) = k, a
constant function. Thus, -g makes sense, and so does-.-f - g,
the sum of f and -g. So differences of functions can be

calculated also.

[



PROBLEMS

I. Sketch the graph of

(a) F(x) = x2 over [~1,1] (d) f(x) = 2x
(b) y = x + 2 (e) f(x) = 2x + x?2
(¢)  f(x) = x%+ 2 (f) y = x°
2. Write down an expression for (f+g)(x) in each case and
plot the graphs of f, g, and f + g.
(a) f(x) = x g(x) = x
(b) f(x) = x g(x) = 2
(c) f(x) = |x]| g(x) = =2x
(d)  f(x) = x° g(x) = |x]|
3. Repeat Problem 2 for (fg)(x).
4. We have given meaning to 2f as the product of f and a

constant function. How does this compare with f + f?




7. More on Functions.

A class of functions called polynomials is built up by

starting with the ftwo simplest types of functions, constant
functions and the identity function, and constructing from
them more complicated functions by the operations of sum and

produéf of functions. For example
-2, x, 9

are polynomials; so are
-2 + x, -2x, -18 + 9x, x?, 4x - 2x3,
(x + 3)(2% = 7), 3+ x(1 = x(/2 = 2x))

((2x - 3)(3x) + (x%2 = x)(x + 1)) (x2 + x).

I+ is evident that any expression of the form

c. .+ c.x * cx2 + ...+ c_x
0 I 2 n ’

) P(x) =
where CO’CI’CZ""Cn are constants, is a polynomial. Con-
versely, it is easy to check that any polynomial can be
written in the form (I1); we merely have tfo multiply out,

remove all parentheses, and collect | ike powers of x. Thus

+he last two of the above examples become
3 + x -/2x2 + 2x3,

0 + Ox - 10x2 - 4x3 + 7x* + x5,
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Because’o¥ this property it is customary +o take equation (1)
as the definition of a polynomial. Thus we define: A

function P is a polynomial on a given domain if there are an

integer n and constants CO’CI’CZ""’Cn for which (I) is
+rue for all values of x in that domain.
cqnsTanTs CO’CI’CZ""’Cn are called the coefficients

of the polynomial; in particular, c\ is the coefficient of

the TeFm €kxk, k = 1,2,...,n and c4 is the constant term. In
writing a polynomial it is customary to omit terms with zero

coefficients, so that the last example above would be written
~10x2 - 4x3 + 7x* + x5,

The polynomial with all coefficients zero is written simply

as 0.

Every polynomial except O has a degree, which is the
greatest exponent of X appearing in the polynomial after
terms with zero coefficients have been removed. Here we
agree that x = xl and Cy = coxo. The degrees of the Il
polynomials in tThe above example are respectively 0, I, O,

2,3, 2, 3, 5. Polyncmials of the

o




form ax + b, where a and b are numbers, are called linear

(their graphs are straight lines) and are said to have
slope a.

Functions in general (and polynomials in particular)
may have zeros (also called roots). A zero of the function
f is any number r for which f(r) = 0. The zeros of a function,
then, appear on its graph as places where the graph touches

or crosses the X-axis.

In addition to describing sums and products of functions,
quotients may also be defined. |f f and g are functions,

then f is defined, as you've probably already guessed, by

f _ f(x)
('g—)(X) = W

whenever this makes sense. Of course, then, the zeros of g

are excluded from the domain of g. If P and Q are polynomials,
then we call the function % a rational function. in working

with quotients of functions, some fine distinctions must be

2

made. For example, if f(x) = x° - 4 and g(x) = x - 2, then
g does not have 2 in its domain. Except for x = 2, however,
this function is the same as h(x) = x + 2, which does have

2 in i1ts domain.



The graph of % may be sketched by viewing the separate
graphs of f and g, and this again requires practice. The
thing to remember is that large denominators .produce smal |
quotients and that small denominators produce large quotients.
The function % arises by choosing f(x) = | and g(x) = x, and
its graph is displayed in Figure 7-1, this Time without the
separate graphs of f and g, which you should by now see through -
the eye of your mind. Other
practice is provided in the

problem section.

Now we present some new

functions to play with. They

are quite a bit different from

+he ones we've thus far faced.
FIGURE 7-I

The greatest integer function arises as a result of

realizing that every rea' rumber X can be expressed uniquely
as
X = n + p,

where n is an integer and 0 < p < I. For example,

5 _ 1 e =

2 = 2 + > 5 = 5 + 0
5 . _ i _

-3 = -3+ 3 0=0+0

D 1 6
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I + 0.414...

~|—
~j|—

3 + 0.14159...

=
]
i
t
+

~jon

~—

The greatest integer function maps each real number X onto

X —>n
and n is called the greatest integer in x; this integer is

designated [x]. Thus, [%] =2, [- %] = -3, [VZ]

1, and

so on.
PY
A partial graph
of the greatest
integer function

is shown in Figure

7-2. lts "shape" <+ 3 2 o \ z s <
is suggestive of

steps, and this _
is just one example —_— i

of what are known

as step functions.
FIGURE 7-2
Note that +he domain

of f(x) = [x] is the set of all real numbers and the range

-is the set of all integers.

The fractional part function is closely associated with

the greatest integer function: it maps each number X onto
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p in the aforementioned representation of x as n + p,

where n is an integer and 0 < p < |, so it's pictured

X —p
and p Is called the fractional part of x. The notation for
!

. 3 _ .2 = L 2)) =
p is ((x)), so that ((-2-)) = = (¢ 5)) = = (V2 ) 0.414...

and so forth,

For those who've worked with logarithm tables, [x] is
called the characteristic of x, and ((x)) is called the

mantissa of x.

Figure 7-3 shows a partial graph of the fractional part
function f(x) = ((x)), and you will, from the definition of

this function, note that

+he domain is the set of
all real numbers and tThe 1///;/// ///i///;//x
-3 -2 - | [ 2 3

range is [0,1).

FIGURE T-3

The circular functions require a reminder of the Pythagorean

Theorem and its consequences in the coordinate plane. Suppose
(a,b) and (c,d) are the coordinates of any two points in

the plane. The shortest distance befween those points

_ may be obtained by considering, as in Figure 7-4, a right
triangle with the segment between those points as the

hypotenuse. Make sure you agree with all of the labels



in that figure. Then the

distance D between (a,b)

and (c,d) is obtained from Y I la-cl _____
’ (@b~ Ecc,b)

the Pythagorean equation. |
Ib-dl
|
!
1

D2 = |a-c|? + |[b-d|? ‘\\%cﬁ)

= (a-c)2 + (b-d)? FIGURE T-4
so that

D = /Y(a-c)? + (b-d)*

Now let us consider a circle with center at (0,0) and

radius !. We call! this the unit circle. This circle shown

in Figure 7-5 consists of all points

(x,y) at a distance | from (0,0),

so that the distance formula yields

Y(x=0)% + (y-0)°
- /xZT 7 y?

whereupon (squaring both sides)

FIGURE T-5

we obtain the following relationship between the first and

second coordinates of all the points on the circle:

x2 + y% = |I.

A )
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With these preliminaries out of the way, let u be any
real number. |Its distance from O is of course |u|. Imagine
one end of a ruler being "planted" at the point (1,0) on The

unit circle, and imagine further the ruler being "rolled along"

the circle without sliding until the point corresponding to
|u] on the ruler is reached, with y

the agreement that if u > O, then Ceos u,sinU)_»«— |

we proceed rolling counterclockwise, ///

and if u < 0, we proceed clockwise {

\ oy~ X
lalong the circle. Figure 7-6 \\ /
corresponds to a positive value of \\\\ /,//

u. If u = 0, of course, we remain T
at (1,0). FIGURE 7-6

In any case, the point |[u| on the ruler ends up at
some point on the circle, and we define cos u to be the

abscissa of that point and sin u to be the ordinate.

The sine function is defined by f(x) = sin x. [Its domain
is the set of all real numbers, and its range is the interval
[-1,1]. You've memorized that the circumference of a circle

is 2nr, so the circumference of the unift circle is 2w. A

FIGURE T7-7

]
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little thought about traversing the unift circle will be enough
+o convince you that a partial graph of the sine function is

presented in Figure 7-7.

The cosine function is defined by f(x) = cos Xx. Like the

sine function, it maps the real numbers onto C-1,1], and its

graph is sketched in Figure 7-8.

v NN\ | BN AN

FIGURE 7-8

The tangent, cotangent, secant, and cosecant functions

are defined by taking quotients of the two basic circular (or
trigonometric) functions sine and cosine. Their abbreviation

are suggestive enough to write the definitions as follows:

sin X cos X
tan X = ¥—m—— c X = =

cos X ot sin X
sec X = ——l—— csc X = I

cos X sin X

This presentation of the trigonometric functions as real-
vaiued functions of a real variable departs from the more
common presentation via angles, degrees, triangles, etc.
However, all the usual! trigonometfric identities you learned
earlier still hold, and you should use them freely.

65
3]

-

52



We end this section with some language we will use to

describe certain sorts of functional behavior.

A function which has the property that a < b implies

f(a) < f(b) is called increasing. Thus the identity function

and the constant functions are increasing, and some more

examples are

F(x) = x on [0,1]
f(x) = |x] on [0,=)
f(x) = [x]

Fix) = ((x)) on [0, 1)

and it should be obvious that if a function is increasing on
its domain, then it's increasing on any parft of its domain.
The sine and cosine functions are not increasing (exna" " on

selected subsets of their domains).

lf a < b implies that f(a) - t(b) then the function f

is called strictly increasing.

Similarly, if a < b implies f(a) > f(b), then f is

decreasing; and the term strictly decreasing is reserved for

+hose functions for which a < b implies f(a) > f(b).

Functions which are either increasing or decreasing are

called monotone.

5
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In general with regard to functions, situations will
arise in which one might wonder if extreme cases are to be
included, and the word "strictly" will be used to exclude

extreme cases.
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PROBLEMS

1. What is the degree of the polynomial

(x2 + V2x + 1)(x2 = V2% + 1) - x%*?

2. Prove that the degree of the product of two polynomials
is the sum of their degrees, and that the degree of

the sum is at most the larger of the two degrees.

3. Plot the graph of é for each of the pairs of functions

in Problem 2 of the previous section.

4, Show by example that there exist functions f, g, and h

for which gh = f but é # h. Is it, on the other hand,

true that if é = h, then gh = f?
5. Prove that each real number x can be expressed in only
one way as
x = n + p
where n is an integer and 0 < p < 1. (Hint: show that
if x =m+ q where m is an integer and 0 < g < 1, then
n =mandp = g.)
6. What function is the sum of the greatest integer function

and the fractional part function?




. 7. Ské%éh.graphs of the other trigonometric functions.

8. Sketch the graphs of
(a) f(x) = x + sin x
(b) f(x) = [sin x]J
(c) f(x) = x sin X
(d) f(x) = ((sin x))

G9




8. Composition and Inverses

Thus far, we have rarried out only algebraic operations
with pairs of functions: f+g, f-g, f-g, and é. One more
operation needs to be discussed, and it is not algebraic.

We present first an example.

Let f(x) = x- and g(x) = x+I. We evaluate f at 2 and

then proceed to evaluate g at f(2): first, f(2) = 4 and
g(4) = 5, in general,
g(f(x)) = f(x) + |
= x% + .

We label the function thus obtained g(f), so that
(g(f))(x) = g(f(x))

and we call g(f) the composition of f and g. The f comes

first in this phrase because the picture is

"% s f0 =9+ g(fix))

“stice that the composition of f and g is not necesfuarily
the same as fthe composition of g and f. indeed, the examnple

we started with yields



(f(g))(x)

F(g(x))

(g(x))2

=(x+1)2 = x2 + 2x + |.

The graph of f(g) can seldom be obtained from a hurried
view of the graphs of the separate functions involved, This
is because f(g) is evaluated at numbers which are in The

range of g.

We give some examples:

(a) f(x) = |x]|; g(x) = -x, Then
(F(g))(x) = |-x]| = |x| = f(x) and
(g(f))(x) = -|x| = -f(x).

(b)y f(x) = sin x; g(x) x2 . Then

(f(g))(x)

sin x2 and

(g(f))(x) (sin x)2 which is usually wriftten

sin2x.

(c) f(x) = [x1; g(x) = ((x)). Then

(f(g))(x) = [((x))] = 0 and
(g(f))(x) = (([xD)) = 0,
58
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(d) f(x) = sin x; g(x) = Then

I
<

. !

si — and
n X
!

sin X

(f(g))(x)

(g (f))(x)

= CsC X.

x2 + sin x + [xJ. Then

(e) fi(x) = x; g(x)

(f(g))(x) x2 4+ sin x + [x] and

(g(f))(x) x?2 + sin x + [xJ.

Example (e) was selected in a complicated enough way
that you should be convinced that any function composed with

the identity function remains unchanged.

Another example is

fix) = 2x + 7; g(x) = %x - % . Then

g(f(x)) = x, the identity function.
In general, if g i's any function such that g(f) is the
identity function, then g is called the inverse of f and we

write f_l +o denote this inverse. Schematically, fthis means

that for any x in the domain of f we have

f_l

X LN f(x) — x



raavey In the last example,

Do not confuse f—l(x) with

-1 - 7
f(x)—fx—i,buf

Fix) ~ 2x + 7

and these are clearly not the same functTions.

Notice that not all functions have inverses. For example,
f(x) = 7 has no inverse function. You should be able to see

that the greatest integer function has no inverse.

I+ is very important that you give special attention to

Problems 5, 6, and 7.

7"
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PROBLEMS
Wha* are the zeros =i The sine and cosine finctions?
Whaf are the zercs or sin % ?
Sketch the granh of sin %.

Write an expression for the inverse of f where

(a? fFix) = x2
(b) f(x) = x2 + |
(c) f(x) = -X

See if you can prove that if a function is strictly
increasing, then it has an inverse. It's not very hard

to do.

Does a strictly decreasing function have an inverse?

Let f be a strictly increasing function. Plot f and
its inverse on the same coordinate axes, and compare
them with the graph of the identity function. Do you

notice anything?

-

/N
61



Chapter |

BASIC COMPUTER CONCEPTS

by

A. |. Forsythe, T. A. Keenan, E. I. Organick, and W. Stenberg

ACKNOWLEDGEMENT: This chapter is borrowed, with permission of
t+he publisher, John Wiley and Sons, Inc., New Yorx from an

‘introductory text by the above authors entitled
COMPUTER SCIENCE: A FIRST COURSE

This text in turn stems fro— an earlier effort entitled
"Algorithms, Computation and Mathematics" published by the

School Mathematics Study Group and from other SMSG publications

Copyright © 1969 by John Wiley and Sons, Inc.
All rights reserved. No part of this chapter may be re-
produced by any means nor transmitted, nor translated into
a machine language without written permission of John
Wiley and Sons.



Chapter |

BASIC COMPUTER CONCEPTS

1. Algorithms and Flow Charts

A distinction should be made between the study of
computers and the study of computing. The study of compu-
ters deals with the design of large complex networks of
circuits and electronics that make up a compdfer. You
will learn very little about that in this book. The sub-
ject of computing, on the other hand, deals with the
organizing of problems so that computers can work them.

As we shall see, this topic consists primarily of the
uéfudy of algorithms--learning not only to understand but

also to construct and improve them.

What is an algorithm? An algorithkm is a list of
instructions to carry out some process step by step. A
recipe in a cook book is an excellent example of an algo-
rithm. Here the preparation of a complicated dish fis
broken down into simple steps that every person experi-
enced in cooking can understand. Another good examp le of

an algorithm is the choreography for a classical ballet.

% 76



Here an intricate dance is broken down into a succession
of basic steps and positions of ballet. The number of
these basic steps and positions is very small, but by put-
ting them together in different ways, an endless variety

of dances can be devised.

In the same way, algorithms executed by a computer
can combine millions of elemeﬁTary steps such as additions
and subtractions, into a complicated mathematical calcula-
tion. Also, by means of algorithms, a computer can con-
trol a manufacturing process or coordinate the reserva-
tions of an airline as they are received from ticket
offices all over the country. Algorithms for such large
scale processes are, of course, very complex, but they are

built up of pieces as in the example we wil!l now consider.

If we can devise an algorithm for a process, we wil!
see that we can usually do so in many different ways.
Here is one algor ror the every-day process of

changing a flat fire.

Algorithm for Changing a Flat Tire

Jack up the car.

Unscrew the lugs.
Remove the wheel.
Put on the spare.
Screw on the lugs.
Jack the car down.

UV B WN —
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We could add a lot more detail to this algorithm. We
could include the steps of getting the materials out of
the trunk, positioning the jack, removing the hub-caps,
loosening the lugs before jacking up the car, etc. For
algorithms describing mechanical processes, it is general-
ly necessary to decide how much detail to include. How-
ever, the steps we have listed will be adequate for
gétting across the idea of an algorithm. When ws get to
mathematical algorithms, we will have to be much more

precise.

A flow chart is a diagram

for representinyg an algorithm.

In Figure I-1, we see a flow Jack up the car

.

chart for the flat tire algo-
Unscrew the lugs

rithm. The ) *

Remove the wheel

AND ‘

Put on the spare

in the flow chart remind us of ‘

+he buttons used to start and Screw on the lugs

v

stop a piece of machinery.
Jack the car down

v

FIGURE 1-1
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Each instruction in the flow chart is enclosed in a frame
or "box". As we will soon see, the shape of the frame
indicates the kind of instruction written inside. A =ec-

tangular frame indicates a command to take some action.

To carry out the task described by the flow chart, we
begin at the start button and follow the arrows from box

to box executing the instructions as we come to fThem. .

After drawing a flow chart, we always look to see
whether we can improve it. For instance, in the flat tire
flow chart, we neglected to check whether the spare was
flat. |f the spare is flat, we will not change the tire
but will call a garage instead. This calls for a decision
between two courses of action. For this purpose, we

introduce a new shape of frame into our flow chart.

C D

Inside Fhe frame we will write an assertion instead of a

command.

(; The spare is fIaTAt)

This is called a decision box and will have two exits,

labelled T (for true) and F (for false). After checking



the truth or falsity of the assertion, we choose the

appropriate exit and proceed to the indicated activity.

l

(; The spare is fIaT::}T

F

Call a garage

Change the tire

|

Insetting this flow chart fragment into Figure IQI,

we obtain the flow chart in Figure 1-2,

There is still another
0
instructive improvement pos- T
( The spare is fla+;>r___—__
sible. The instruction in
‘F |
box 2 of our flow chart in Jack up the car
reality stands for a number ¢ 2
of repetitions of the same Unscrew the lugs
\J
task. To show the addition- ‘ 3
al detail we could replace Remove the wheel Call a
l 4 garage
box 2 by: ‘
Put on the spare
Unscrew a lu
? A 4 3
! Screw on the lugs
Unscrew a lug
A 6
‘ Jack the car down
: lu
Unscrew a g t‘

Y

Unscrew a lug

! 69 FIGURE 1-2

Unscrew a lug
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The awkwardness of this repeated instruction can be

eliminated by inftfroducing a loop.

Unscrew a lug

|

As we leave the box, we find that the arrow leads us

right back to repeat the task again. However, we are
caught in an endless loop as we have provided no way to
get out of the loop and go on with the next task. To rec-

tify this situation, we again require a decision box, as

follows:

-

Ail the lugs have
been unscrewed

Unscrew a lug

|
v

Replacing box 2 of our flow chart with this mechanism
and making a similar replacement for box 5, we get the

final result shown in Figure |-3.




Now that you have fol-
|lowed the development of the
flat tire flow chart, try to
devise one of your own. In
the algorithm of the fol-
t-wing exercise, you will
probably discover some de-
cisions and loops. There
are many different ways of
flow charting this algo-
rithm, so probably many
different looking flow

charts will be submitted.

1

0
(::The spare is flaf:>
‘F I

Jack up the car

2

All the Iugs have
been unscrewed
‘F
Unscrew a lug

1T

¥

Remove the wheel 3

' 4

\J

Call a

garage

Put on the spare

-y 10

Al'l the lugs have
been unscrpwpd
i
Screw on a lug
T

—
Jack the car down 6

I
V-

FIGURE 1-3
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PROBLEMS

1. Prepare a flow chart representing the following

recipe.

Mrs. Good's Rocky Road

Ingredients:

-

cup chopped walnuts

% Ib. block baksr's chocolate

% Ib..marshmaliows cut in halves
3 cups sugar

% cup evaporated milk

% cup corh syrup

1 tsp. vanilla

% Ib. butter

% tsp. saif

Place milk, corn syrup, sugar, chocolate, salt in a

four-quart pan and cook over high flame stirrinyg con-

stantly until mixture boils. Reduce to medium flame
and continue boiling and stirring until a drop of
syrup will form a soft ball in a glass of cold water.

‘Remove from flame and allow to cool 10 minutes. Beaft
in butter and vanilia until thoroughly blended. Stir
in welnuts. Distrinyte marshmallow halves over Bof—
tom of 10" square buttered baking pan. Pour syrup
over marshmallows. Allow fo cool 10 minutes. Cut

in squares and setrve,

8.2
,
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2. A Numerical Algorithm

Now we are ready to look at an alygc..rhm for a math-
ematica} calculatin~. As a first example, we will take
the problem of t° . terms of the Fibonacci sequence:

o, 1, 1, 2, 3, 5,8, 13, 21, 34, 55, ...

In This sequence, or list of numbers, the first two tTerms

are givern tc be 0 and 1. After that, they are constructed
according To the ruie that each number in the list is the

sum of the two preceding ones. Check that this is the

case. Thus, the next term after the last one lisied above

is:
34 + 55 = 89.

Clearly, we can keep on generating the terms of the se-
quence, one after another, for as long as we like. But in
order to write an algorithm for the process (so fthat a
computer could execute,it, for example), we have fo be
much more explicit in our instructions. Let's subject the

process to a littie closer scrutiny.

To the right is a table showing the computation of

13 ]



the Fibonacci

sequence.

We can
see that in

each step the

latest term becomes the new

aiid the sum becomes the new

latest term.

Next Latest lLatesT Sum
Term Term .
0 1 0+ 1 =1
1 1 1+ 1 =2
1 2 1+ 2 =23
2 3 2 + 3 =5
3 5 3+ 5 =8
5 8 5 + 8 =13
8 13 8 + 13 = 21
next latest term

Let's construct a flow chart (Figure 2-1) for finding

the first term to

exceed 1000 in the

Fibonacci sequence.
After 64 steps
which take us
through the loop of
flow chart boxes
2-5 fifter times,
we eventually
emerge from box 3
at the T exit and
proceed to box 6.
This box is seen to
have a different

shape because it

calls for a

Initially take the next-
latest term to be 0 and

the Jlatest term tTo be |.
————
) | 2

Ftnd the sum of the late
term and the next-latest
term.

st

K] 3

The sum is greater T
than 1000. 6

YF 4

Now demote the latest
term to the role of
next-latest term.

v 5

Now let the sum just
calculated be designated
as the latest term.

)]

FIGURE 2-I

Write down
the value of
the sum.

STOP



different kind of activity =-- thut of writing down our
answer. The shape is chosen so as to suggest a page forn

off a line printer, one of the most common computer outpuf?

devices.

1597
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3. A Mode | of a Computer

The algorithm considered in the preceding section can
be presented in much simpler notation which is at the same
time more nearly ready to be given to a computer as a set
of instructions. To do this, we need to introduce a con-
ceptual model of how a computer works This model is
axtraordinarily simple--childishly so, in fact. It is
amazfng but +true that such a simple view of how a computer
works is completely adequate for this entire course. We
will present a more realistic picture of a ccmputer in
later sections of this chapter--but only to satisfy your

curiosity, not because we have any real need of it.

Variables. In computing work, a variable is a letter

or a string of letters used to stand for a number. In

the formula

the !etrers A, L, and W are variables. In the formula
DIST = RATE x TIME,

DIST, RATE, and TIME are variables.



At any pariicular Time, a variable must stuird for one
particular number called the value of the variabln~.
Although at any time fthe value of a variable is one par-
+icular number, this value may change from time to Time
during a computing process. The value of a variable may
change millions of times duri:: the execution of a single

algorithm.

In ou.. conceptual model of a computer, we will asso-

ciate with each variable a window box. On the top of each

box the associated variable is engraved. |Inside each box

is a strip ot paper with the present value (or current

value) of the variable written on ift.

Each box has {S <¢§ ;
a lid which may be QS’ N A
opened when we wish
to assign a new
value to the vari- FIGURE 3-I -

able. Each box

©3s a window 'n the sid: so that we may read the value of
a variable with nc danger of altering the value. These
window boxes constitute the memory of our computer. 'n
Figure 3-1, we see the course of executing the Fibonacci

sequence algorithm of the preceding section. Here NEXT

n ¢ 8




stands for "next to last term" and LATEST stands for

"latest term'".

The Model and How |1t Works. We visualize a computer

as a room with a numoer of window boxes in it and a staff
of three workers--the master computer and two assistants,
the assigner and the reader. The master computer has a
flow chart on

o‘
his desk from Qﬁ}

which he gets
Ce - ASSte <
his instruc awnpulvz jyﬂ@l <&§

tions, ac- ﬁ”’mi /wf/dm \'h@

cording to Y

elegures ’”
v

¢c.irtein tasks

to his assistants. (In a real computer the tasks of these

workers are pertformed by electronic circuits.)

To see how this team operates, let us suppose that
the computer is in the midst of executing the Fibonacci

sequence algorithm of Figure 2-1. One of the insfructions
*
in this algorithr was:

¥ 2

rind the sum of the
|latest term and the
next-latest term

Y
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In a simplified flow chart notation, this instruction will

Y 2
SUM € LATEST + NEXT

v

Inside this flow chart box, we find an assignment

take tThe form:

s+atement. Reading this statement aloud we would say,
"Assign to SUM the value of LATEST + NEXT", or more simply,
"Assign LATEST + NEXT to SUM". The left-pointing arrow is

called the assignment operator and is to be thought of as

an order or a command. Rectangular bowes in our flow

chart language will always contain ascignment statements and

will therefore be called assignment boxes.

Now let's see wha't takes place when the master comput-
er comes to this statement in the flow churt. We shall
assume that the variables LATEST and NEXT (but not SUM)

have the values seen in Figure 3-1.

The computation called for in fthe assignment state-
ment .ccurs on the right-hand side of the arrow, so tThe

master compiter looks tnere first.

»

SUM —f LATILT 4 HEXT

\ ,
L N m e

He sees that he must know the values oi tThe variabies

no Y



LATEST and NEXT so he sends the reader out to fetch these

values from memory.

The reader then goes to the memory and finds the win-

dow boxes labeled 445 Q§$ K\
= £ >3
LATEST «nd NEXT. A

¢

He reads the

values of these

variables through = _readen

the windows, jots

the values down,
and takes them o«
e )
back to the master :::j
9
\D

CompulT  popder N
Y N
The master gy¢,
p ﬁ
computer computes
the value of

LATEST + NEXT using the values of these vaiiables brought

to him by the reader,

8 + I3 = 21.

What does he do with this value?

The master computer now looks at the left-hand side



of the arrow in his instruction.

PLT Y N

V4 “
' SUM JETLATEST + NEXT

e e e

He sees that he must assign the computed value of
LATEST + NEXT, namely, 21, writes "21" on a slip of paper,
calls the assigner, and instructs him to assign this value

to the variable SUM.

The assigner goes to th: memory, finds the window box

labeled SUM, A
*
x4

and dumps out

its contents.

Then he puts

the slip of
paper with
the new value
in the box, closes the lid and returns to the master

computer for a new fTask.

Recapitulating, we see that assignment is the process
of giving a value to a variable. We say that assignment

is destructive because it destroys the former value of the

variable. Reading is nondestructive because the process

in no way a'ters the.values of arny of the variables in the

memory .

81
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We present in Figure 3-2 the entire flow chart of
Figure 2-1 in simplified flow chart language. The old and
the new flow charts are placed side by side for easy

comparison.

START

! |
Initially take the nexft NEXT & O
latest term to be O &nd
the latest term to be 1. LATESTé& |

S EPE—
2

Find the sum of the latest
12:: and the next latest SUM & LATEST + NEXT

I s I,
This sum is greater T ( T
than 1000. suM >|000;:)—-
I i
A 4

Now demote the latest term NEXTé&— LATEST
to the role of next latest
term. LATEST ¢ SUM

v ;

Now let the sum just cal-

culated be designated as

the latest term. ‘
-r :

Write down
the velue of SUM

ki

STOP

(a) Olgd (b) New
FIGURE 3-2
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The translation requires very little explanation. In
light of the foregoing explanation it should be obvious
t+hat the statement in box 1 is equivalent to the ftwo state-
ments in box 1 on the right. The new version of box 2 has

been discussad in detail; box 3 is obvious.

We sea that the two statements in boxes 4 and 5 of the
old flow chart are compressed into one box, box 4 of the
new flow chart. This is permissible whenever we have a
number of assignment statements with no other steps in
between. However, it is very‘imporfanf to understand that
Thesg assignment statements must be executed in orcder from
top to bottom and not in the opposite order and not simul-
taneously. In fact, we should always think of a computer
as doing just one thing at a time and the order in which
things are done is generally exftremely important.

You can see that the statements in box 4 involve no
~-=nytation, but merely involve changing fhe values in
o .n window boxes. This sort of activity will occur

very frequently in future flow charts.

In box 6 of the fiow chart, we see written only the
variable SUM. The shape of the box (called an output box)
tells us that the val:e of the variable SUM is to be

written down. 1|f in some other algorithm we wished to

Bg



write down the values of several variables, we would list
+these variables in an output box separated by commas, for

example:

Tracing the _ow Chart. To better understand what our

flow chart in Figure 3-2(b) is doing, let us trace through
it executing the steps as the nraster computer and his

assistants would do them,

Tracing of the Flow Cnart of Figure 3-2(b)

Flow
Step Chart Values of Variables Test True
Number Box or
Number NEXT LATEST SUM False
1 1 Q 1 -
2 2 1
3 3 1 > 1000 F
4 4 1 1
5 2 2
6 3 2 > 1000 F
7 4 1 2
8 2 3
9 3 3 > 1000 F
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Step
Number
10
11

12

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

Flow

Chairt

Box
i.umber

4

2

Values of Variables

NEXT

2

21

34

55

LATEST

2
)

21

34

55

89

85

SUM

21

34

55

89

144

94

13

21

34

89

Test

1000

1000

1000

- 1000

> 1000

> 1000

> 1000

True
or
False



Flow

Step Chart Valués of Variables Test True
Number Box . or
Number NEXT LATEST SUM False

33 3 144 > 1000 F
34 4 89 144

35 2 233

36 3 233 > 1000 F
37 4 144 233

38 2 377

39 3 377 > 1000 F

T 40 4 233 377
41 2 610
42 3 610 > 1000 F
ey g e g g g e e e e i e

44 2 987

45 3 987 > 1000 F
46 4 610 987

47 2 1597

48 3 1597 > 1000 T
49 6 1597

In this trace, for ease of reading, the values of the
variables are reproduced only when assignments are made to
+hem. In between such steps, the values of the variables
do not change and hence have the last previously recorded

values. For example, in step 33 where we are working a



test, the values of the variables are

NEXT 55, LATEST 89, SUM = 144,

In step 34, the values are

1]

NEXT = 89, LATEST 144, SUM = 144,

You can see that on step 48 in the execution of our
algorithm, we finally leave box 3 by the true exit and pass

on to box 6 where we output the answer, 1597, and stop.

" The infantile simplicity of our conceptual mode!| avoids
and concea!s certain pitfalls. There is a danger of

+hinking of assignment as being equality or substitution

Wwhich it is not. (We'll have more fo say about this later " -

on.) This and uther sources of confusion (such as the
effect of a ceirain sequence of flow chart statements) can

be cleared up by thinking in terms of our mode!l which will

always give the right answers.

In fact, the best way to get the ideas into your mind
would be to make some window boxes and, with two other
students, take the roles of master computer, assigner, and
reader and work through a couple of algorithms as described

in this section.

LS}
0
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PROBLEMS

1. What would be the effect of changing the order of
the two assignment statements in LATEST € SUM
box 4 of Figure 3-2(b) so as to NEXT&LATEST

appear as seen at the right. Trace through the flow

chart with this modification until you find the answer.

2. (a) To compare the effects of the assignment statements

A« B and B « A

find the missing numbers in the table below.

Values before Assignment Values After
___Execution of  to be o Execution of
Assignment Executed Assignment

A B A B

7 13 A« B ? ?

7 13 B « A ? ?

1}
@

(b) Iln which of the two cases is it true that A

after assignment?

(c) Are the effects of the two assignment statements

the same or different?

S
©




4. lnput

Imagine that you are a bookkeeper in a large factory.
You have records of the hourly rate of pay and the number of
hours worked fqr each employee, and you have to calculate the
week's wages. Of cour;gﬂ_fhis can be done by hand; but assume
there are nearly a fg;usand workers in the plant so that the
job will be quite tedious. Naturally you prefer fo have the
computer do this task for you. That being the case, you will

have to devise a flow chart to give the instructions to the

computer.

_ How will you get thz hourly rates and the Yours worked
into the flow chart? Will you write them all in separately?
¥ so, it will take a tong time. The characteristic situa-

tion is that we have a stack of punch cards, one for each
worker. According to a certain code of hole-patterns, each
card is punched with the name of the worker, his hourly rate
of pay, the number of hours worked, and perhaps some other
things as well. Here is a sample of what such a card might

look like

/AARONSON A A 2.98 37.50
TR

| | . - |
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Now we will Introduce a new shape of frame--the input

box--into o'r flow chart language. The input box has this

shape
to suggest a punch card. Inside the box will appear a single
variable or a list of variables separated by commas.

RATE, TIME

When the above box is seen in a flow chart, it is inter-
prefed as an instruction to the master computer to do these
three things: |

i) read two numbers from the top card In a stack
of punch ;ard§;”> ”

ii) assign these numbers réspecfively to the
variables RATE and TIME; and

iii) remove this card from the stack.

We see that an input box is a command to make assignments,
but this command is essentially different from that in an
assignment box. In an assignment box, the values to he
assigned are to be found in the computer's memory or are
computed from values already in the computer's memory,
whereas, with an input box the values +o be assigned are
obtained from outside the memory. No calculation may be

called for in an input box.

o0l () 7
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In a real computer (not our conceptual one), the dis-
+inction between these two kinds of assignment shows up
very sharply. The assignments called for In an input box
usual ly involve some mechanical motion such as removing a
card from a stack, while assignments called for In an
assignment box are made by electronic pulses which move at
nearly the speed of Iight, and hence much faster than Input

assignments.,

Now, let's see how the Input box is used In our hourly
.rate and payroll problem, Should we input the data from all
the cards before we start our calculations? |f so, we would
need a tremendous number of window boxes in which to store
e g }-l—t+h-i-s- data. - knstead, we will calculate.the. _wages after each
card is read. A description of our process lIs:
1. Read the RATE and TIME from
the top card in the stack @

and remove the card.

2. Multiply the RATE by the RATE, TIME

TIME to get the WAGE.

2

3. Output the values of RATE,

TIME, and WAGE. WAGE=— RATE x TIME

4. Return to step 1.

Y 3

This is realized in the flow

RATE, TIME, WAGE

chart of Figure 4-1. Each step in

the above list appears in a simi- | Fig. 4-

larly numbered box Iin our flow-chart except the 4th step.

*

Ry
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That is represented by the arrow returning from box 3 to box 1.

You may wonder that the flow chart does not have a stop
button. We assume as one of the functions of the input box,
the duty of stopping the computation if fhe reading of another

card is called for when 1he stack is empty.

10>
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PROBLEMS

Modi fy the flow chart of Figure 4-1 o provide for an
overtime feature. All hours in excess of 40 are to be
paid at time and a half. You will have to place a fest
somewhere in the flow chart to determine wHeTher the
worker actually put in any overtime. The formula by
which his wages are computed will depend on the outcome

of this test.

1.,
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5. Computer Memory

Now w2 are ready to look at how our conceptual model

of a computer can be realized in an actual machine. |In
this section and the next, we will discuss a prototype ma-
chine which we wil! call SAMOS. SAMOS is a prototype ma-

chine stripped down to the bare essentials. Some features
of its operation are described in considerablie detail while
others are glossed over. The programning of SAMOS is

described briefly in Section 6.

In order to study this bock, it is only necessary that
you should have a general idea of how a computer works. So
we suggest that you rea< over the material in these two
sections quite rapidly without attempting to master ift.

Just retain what sticks in your mind.

Cores

We will start with the memory.
How are all those window boxes

realized in actual practice? The

memory of SAMOS is a rectangular

1u5



box. Inside the box, there 1s an arrangement of *tiny mag-
netic doughnuts about E%-of an inch in diameter. These

doughnuts are called cores.

Our box is divided in 61 horizontal layers or trays

called core planes.

On each of these layers wires are strung in fwo direc-

+ions like the lines on a sheet of graph paper.

There are a hundred wires in each direction., At each point
where two wires cross, the wires are threaded fthrough a

core like the thread passing through the eye of a needle.

95 1(¢



Since there are 100 x 100 crossings in each layer, we see
that there are. 10,000 cores in each core plane and hence

61 x 10,000 = 610,000 cores in the entire box.

These cores are capable of being magnetized in either

the clockwise or the counter~clockwise sense.

Because of this, the core can store information. We
could think of clockwise magnetization as meaning "yes" and
counter-clockwise as meaning "no". We will instead think
of clochwise as standing for "O" and counter-clockwise for
"i{n_  |n any event, the information contained in the direc-
tion of magnetization of a core is the smallest unit of
iﬁformaflon and is called a bit of information. We see

that one core can store one binary digit 0 or 1, but a

A 1¢7
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collectlon of cores can store a very large number. This we
wlll discuss a little later on, after a digresslon to see

how the cores get their magnetism.

Flrst you must know that a pulse of electric current
moving along a wire generates a magnetic field running

around the wire, as depicted below.

S/ S TN L
NS a7

=

This field can be detected by a pocket compass. The
strength of the magnetic field is strongest near the wire

and dies away as we move further from the wire.

| f the direction of the current is reversed, the

direction of the magnetic field is also reversed.

, u/_\n/\ N,/_\ N/\ n/\n/\
Sen S e S o s s o/

—

Thus, when a pulse of current passes through a core,
the core will become magnetized in one direction or the

other, depending on the direction of the current.
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But how can we manage to magnetize just one core in-

stead of the whole string of cores thiough which the

A A AL aaaa an

pulse passes? The answer lies in the magnetic properties
of the material of which the core is made. WIith this mate-
rial, if the pulse is too weak, then the direction of the
magnetization c¢f the core is not permanently altered,

After the pulse of current has passed by, the core merely

returns to its former magnetic condition, whatever that was.

On the other hand, if the current is sfrong enough,
the core remains permanently magnetized in the sense estab-

lished by the direction of the current, regardless of the

former magnetic condition of the core. The situation is
analagous to ftrying to fthrow a ball from the ground to the
flat roof of a building. If you have enough power in your
throw, the ball will land on the roof; otherwise it will
bounce agalinst the wall and fall back to the ground.

1G9
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Now the strength of the pulses is carefully regulated
so that one pulse is not sufficient to permanently magne-
tize a core but two pulses acting simultaneously will exceed
the threshold strength and result in permanent magnetism.
Thus, pulses passing afong both wires shown below will
permanently magnetize just the one core which is located

where the wires cross.

Now let's leave the
individual core planes and
consider the entire memory

or store of the computer

composed of the 61 core
planes. Each vertical
column of 61 cores consti-

tutes a computer word. Thus, the memory of the computer is

composed of 10,000 words. These words have addresses (like
house numbers) which are 4-digit numbers from 0000 to 9999

by means of which we may refer to them. Each of the 10,000
dots on the top of the box is the top of a vertical column

of 61 cores (or a word). The manner of assigning the

addresses is indicated in the figure.

ol 10




Each of these words

corresponds to a window

box in our conceptual

I
mode|. Each variable in
+he flow chart will have \

a certain address. The

word with that address will have in it a certain pattern of
"bits" (directions of magnetization of its cores) repre-
senting tha value of that variable. "Assigning a value to
a variable" is effected by putting a certain pattern of

bits into a word.

In more detail, when we said "the master computer tells
the assigner to assign the value 1597 to the variable SUM",
what actually takes place is this: The variable SUM is
represented inside the machine by means of its address;
suppose it is 0103. Now all the 61 x 2 = 122 wires passing

through cores in the word

addressed 0103 are ener—\\\\\
gized with pulses of ;;;\ //////”_———_——_\\\\\\

ADDRE $S

current in the proper olo3

direction so as to

achieve the pattern of

bits representing the

number 1597.




In a modern computer, this assignment process can be
performed in 3/10 of a microsecond; that is, 3/10,000,000

of a second.

Characters

One obvious way of r=presenting the number 1597 would

be in the binary system as
110001 11 101

preceded by a string of zeros to bring the total number of
binary digits up to 61. But that isn't the way we'll do
i+. We want the words to operate on the decimal system
rather tha < inary, and we would like to be able to store

letters as well as digits.

For this reason, we sub-

TR covs GBS oy i
divide our 61 bit words . aITs 6oITS S BiTS

into 11 characters as shown at right.

The first character is reserved for holding a sign,
+ or -. Here O stands for + and 1 for -. Each of the
other characters consists of 6 bits. These characters can
be used to store numbers or letters, according to the

following code.



Code Char. Code

Char. Code Char. Code Char.

V] 00 0000

1 00 0001 A 01 o001 J 10 0001

2 00 0010 B 01 0010 K 10 0010 S 11 0010
3 00 0011 C 01 0011 L 10 0011 T 11 0011
4 00 0100 D 01 0100 M 10 0100 U 11 0100
5 00 0101 E 01 0101 N 10 o101 V 11 0101
6 00 0110 F 01 0110 O 10 0170 W 11 0110
7 00 0111 G 01t o111 P 10 0111 X 11 0111
8 00 1000 H 01 1000 Q 10 1000 Y 11 1000
9 00 1001 | 01 100y R 10 1001 Z i1 1001

We have used up only 36 of the 64 combinations availab

with a 6 bit code. This leaves 28 addition-

9 | & (-]
al combinations for other special symbols H o
OB o
0 [o]
such as +, >, etc. We introduce one of these i 9
] []
right now, namely the blank space, , which ; u 3
- 1 0
-] ]
is coded as 0 L
! 0
o |Y |8
11000 O. 0 o
t /]
| 0
elo |
With this code, you can see that the 61 0 0
] ]
bit computer words displayed vertically at 5 A 5
! {
)
the right furn out to be é ;
\ 0 ]
0 (O | 2
+18Jluly 6 E|]G]G]|S S i
3 0
| 0
0 0
E
and 0 3
0
[ 0
t 0
~lofo]l3s{9o]l7]ls]ol1]21s vle ¢
i i
] 0
1 0
From now on we will represent our com- o [ ’
\ |
0
puter words as strings of 11 characters ' 4
Os [
instead of strings of 61 bits. ' §
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6. Arithmetic and Control Units of SAMOS

Now that we have seen how SAMOS's memory is structured
we will consider how the memory is used in executing an

alqgorithm.

Our computer has several other components besides the

memory. These are

shown in the block CONTROL UNIT
diagram in Fi- : T { T i
: ARITHMETIC oo
gure 6-1. ' UNIT ' i
| ! !
Y ¥ i i
INPUT e QUTPUT
The solid t(Card Odr »|  MEMORY > (typewriter or
ape reader
lines indicate the pe ) line P”nter)
FIGURE &-|
directions in which
~values may be transferred. The dashed lines indicate the

+ransferral of instructions or the exercise of control.

The contro! unit and the arithmetic unit perform the

duties of the "master computer".

An important part of the arithmetic unit is the

accumulator. This is a special computer word in which all

187 "




arithmetic operations are performed. Furthermore, a simple

assignment like

LATEST & SUM

is carried out by first copying the value of SUM into the
accumulator and then copying the value in the accumulaTor
into the computer word belonging to “he variable LATEST.
The value of SUM is unchanged in this process. Note that
values to be input or output do not pass through the

accumuiator but go directly in and out of memory.

Where does the control unit get such instructions as
referred to in the last paragraph? These are aiso stored
the computer's memory. We will learn something about that

presentiy.

[
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7. Machine Language

Getting an algorithm into a form in which a machine can
execute it involves several ftranslations which may be depicted

as follows:

ENGLISH @ FLOW CHART @'PROCEDURAL @ MACHINE

*| LANGUAGE | 7| LANGUAGE |~ | LANGUAGE

fou have already had a little experience with the first frans-

lation step. ‘he second translation step is the process of
translating a fiow chart into a procedural language such as
FORTRAN, ALGOL, MAD, or PL/I. sSuffice it to say That tThis
step is quite mechanical and can be performed by a person
who has no idea what the algorithm is all about. The third

translation process is completely mechanical and is done by

the computer itself. This process is called compiling.

We don't need to know how compiling is done, but we do
need to know the reason for doing it. Each make and style
of computer has ts own language~~that is, its own set of
instructions which it can understand. To avoid this tower ff
Babe! in which a programmer would have to learn a new Iangqage
for each machine with which he wished to communicate, the
procedural languages were developed. These procedural languages

constitute a kind of "Esperanto" which enables a programmer

to communicate with many different machines in the same language.

105 ) )




The programmer merely prepares, say, a FORTRAN program on
‘punched cards, feeds it into the computer which "compiles"
a machine language program which is placed in the computer's

memory .

In our SAMOS cémpufer, these instructions will be placed
in order in consecutively-addressed locations in memory start-
ing with 0000. After the computer has executed an insfruc%fon,
it will always look for the next instruction in the next
address, except when there is a branching instruction telling

it to go to a different address for the next instruction.

To see how this works, consider the following instruction

seen in the Fibonacci sequence flow chart.

SUM ¢ NEXT + LATEST

FIGURE T-I

In FORTRAN, this instruction would appear as:

SUM NEXT + LATEST;

and in ALGOL:

NEXT + LATEST

SUM:

In the SAMOS language, these variables cannot be referred to
by name but only by the addresses in memory associated with
the variables. Suppose that NEXT, LATEST, and SUM have been
given, respectively, the locations 0100, 0101, and 0102.
Then in the SAMOS language, the above instruction would take

the form or a sequence of three instructions:

, 11
1i7
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Figure 7-2. SAMOS instructions for Figure 7-1

These instructions have the form of 11 character words,
but the first character is not used here and neither are the
5tn, 6th, and 7th. The letters at the left of the instructions
indicated the operation being performed, and the four-digit

numerails at the right are addresses.

The letters LDA stand for "LoaD the Accumulator". The
whole instruction means: '"Copy the contents of the memory
word addressed 0100 into the accumulator without altering
the contents of address 0100." Cleariy this is the function
of the reader in our conceptual model. We will not go into
t+he details of the electronics invoived in carrying out this
instruction. |t is sufficient to know that when this pattern
of bits in the instruction

OI L D AI 00 O| 0100

is brought to the control unit, certain switches are thrown
which allow a pulse of current to pass through the cores of
the word 0100. The magnetized cores effect an alteration of

the current which in turn permits a copy to be made.

The second Instruction in Figure 7-2 means: "ADD the

value in the word addressed 0101 to the-value already in the

Wi:s



accumulaior and piace the result in tThe accumulator." The

+hird instruction means: "Copy (or ST@re) the number in the
accumulator into the word addressed 0102." Times vary from

machine to machine, but in modern computers, the time requlred

for carrying out such instructions will usually be less than

1

TW_O_OB- of one second.
] ]

A Complete SAMOS Program. We are about ready to see how

the entire flow chart for the

Fibonacci sequence algorithm (re-

4 peated at the left) will emerge in
NEXT & 0 SAMOS language. First, however, we
LATEST¢ 1 o
>\ 2 must remark that in the SAMOS language
SUM & LATEST+ NEXT we can never refer to a number direcTl
y_3 but only to a memory address in .
T :
M
< SUM > 1000 ) which this number may be found. This
F
4 even applies to.constants. Thus,
PP
NEXT ¢ LATEST
LATE ST<— SUM part of the compiling process will
L . Y 5 involve providing memory addresses
SUM :
for the constants (as well as the
variables) appearing in the program.
We assume that the addresses 0103,
FIGURE 7-3 0104, and 0105 have been set aside

for the constants 0, 1, and 1000
appearing in the flow chart and that the proper values have

already been put in the words with these addresses. The
108
1.9



memory locations 0100, 0101, 0102 have been allocated for
+he variables NEXT, LATEST, SUM, but no values have been
placed in these words. The state of the memory at the
begi'nning of the execution of the SAMOS program for the
Fibonacci algorithm is at the bottom of Figure 7-4. Opera-
tions not previously met will be explained in the discussion

following this program.

120
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|
MEMORY + OPERATION ADDRESS FLOW CHART
LOCATION - ' EQUIVALENT
(Address) 1 2 3 4156 718 9 10 11 Character number

‘0 00O L D A 01 0 3

NEXT =0
0O 00 1 s T ¢ 0' 0 O
0 00 2 L D A 01 0 4

[LATEST =1}
0O 00 3 s T @ o1 0 1
0O 00 4 L D A 01 0 1
0O 005 A D D 01 0 O0|V[SUM=LATEST + NEXT]
0O 006 s T ¢ 01 0 2

T

0O 00 7 L D A 01 0 5 SUM > 1000
0O 00 8 S U B 01 0 2
0O 00 9 B M | 00 1 5 F
0O 010 L D A 01 0 1

[NEXT = LATEST]
0O 01 1 s T @ 01 0 O
0 01 2 L D A 01 0 2

[LATEST =-SuM]
0O 013 s T ¢ 01 0 1
0O 01 4 B R U OO0 0 4 Arrow from flow chart

box 4 to box 2

0 015 W oW D 01 0 2 [:ED
O 016 HoL T 14!!’
e e
\__/\-M/V_/\M. ~

0O 100 The variable NEXT
0O 101 The variable LATEST
O 102 The variable SUM

0O 103 + 0O 0 0f0OO0O0O|J]OO0O O O The constant O

0O 104 + 0O 0 0jooO0O0O}O0OO0 0 1 The constant 1

0 105 + 0 0 ojooojt1ro O O The constant 1000

Figure 7=-4, SAMOS Program for Fibonacci sequence algorithm

1
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Discussion. The instructions in memory addresses 0004,

0005, and 0006 have aiready been discussed. Before looking
at the other instructions, look first at memory locations 0100
through 0105 to see where your variables and constants are

located.

From previous discussions, you see that the instruction
in 0000 copies the value in 0103 (that is, the number 0) into
the accumulator. Next, the instruction in 0001 copies the
value in the accumulator into the word with address 0100.
Together these steps are equivalent to assigning 0 to the
variable NEXT. Similarly, the instructions in addresses 000%
and 0003 are equivalent to assigning the value 1 to the va:. -

able LATEST.

Remember that the control unit executes the instructtons
in order until it comes to a branching instruction. The
first of these branching instructions is found in address

0009, reading

The code BMI stands for "Branch on Mlnus". The whole in-
struction means, "If the number in the accumulator is nega-
tive, go to address 0015 for the next instruction, otherwise
go on as usual to the next numbered address (0010)." We will

see shortly that the number in the accumulator at this time

-



Is just

1000 - SUM

so that the number In the accumulator will be negative only

in the case that

SUM > 1000.

In this case, the branching instruction sends us to address

0015 where we see the instruction

wW|w|D oj1]oja2

which means, "Write the WorD in address 0102" which amounts

to printing out the value of SUM.

Now why is it that when the instruction in address 000
is reached, the number in the accumulator is 1000 - SUM?
Well, on looking at the instruction in address 0007, one
sees that it instructs us to load the accumulator with the
contents of 0105; that is, to put the number 1000 in the
accumulator. The next -instruction, that In 0008, tells us
to "subtract the contents of 0102 from the accumulator and
put the result in the accumulator." Since the contents of

0102 is just the value of SUM, this amounts to the placing



in the accumulator.

You should be able to verify for yourself that the
instructions in addresses 0010 through 0013 accomplish the

assignments indicated in the right-hand column.

The instructions in memory address 0014 needs to be

described.

BRU stands for "BRanch Unconditionally™. The meaning of the
entire instruction is "Go back to memory address 0004 for

the nex+ instruction and continue in order from there." You
can see this corresponds to the arrow from flow chart box 4

leading back to flow chart box 2 where we again repeat the

assignment
SUM <« LATEST + NEXT

The instruction in 0016, of course, stands for HalT and

amounts to stopping the computing process.

You can best understand all this by tracing through the
SAMOS program by hand, keeping a record of:
i) which instruction is being executed;
ii) +the value in the accumulator;

iii) +the values in the memory locations 0100, 0101, and



0102 (the values of NEXT, LATEST, and SUM).
Note that the contents of the instructions in addresses

0000 - 0016 are never altered, nor are the contents of the

locations 0103 - 0105 (the constants 0, 1, and 1000).

ndza




PROBLEMS

1. Construct a list of SAMOS instructions for the flow
chart of Figure 4-1. You will need two additional

instructions. The first is

OPERATION ADDRESS
| 2 34 56 789101l
R{W|D 110{0}{5

which is an instruction to read a number from a card

into the computer word addressed 1005.

The second is

which is an instruction to multiply the number in the
accumulator by the number in address 1023 and put the
result in the accumulator. (Of course, in the address
part of these insfructions we may put any address we

wish.)

hee




8. Odds and Ends

Only a few of the ideas we have learned about SAMOS

need to be remembered.

Among the things to be remembered is fthe sequential
nature in which the computer works, that is, the one-by-one
steps in which the computer performs its tasks. The order
in which the tasks are performed is just as important as

what it does.

Another property of computers that we must understand

is the finite word length. We have seen that SAMOS words

consist of 10 characters and a sign so that the largest

number representable in this coding system is

+ 9,999,999,999

a rather large number but still finite.
You should be aware that there are other ways of
coding numbers which allow us to work with numbers other

than integers. One of the most common of these is floating

point form which is similar to the so-called "scientific
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notation".

To see how this works, recall that any decimal numeral

such as =-382.519 can be expressed as

- .382519 x 10°

in which (right after the sign, if any) there is a decimal
point followed by a non-zero digit multiplied by a suitable
power of 10. We can code numbers in this way in SAMOS by

reserving three characters for the exponent, thus Faving

sian of
number

siagn of
exponent

exponent
part

precision
part

Some examples of how numbers are coded in this system

are shown in the table which follows:

NUMBER FLOATING POINT FORM SAMOS CODING
3.1415926 31415926 x 10! + 401 3141592
-273.14 -.27314 x 10° - +03 2731400
.0008761 8761 x 107> + =03 8761000
.73 .73 x 10° +  +00 7300000
4 .4 x 10 +  +01 4000000
1/3 .333333333 x 10° +  +00 3333333
177 157142857 x 10 +  +01 1571428

<8




By glancing at the table, we see that the eight-digit
representation of m in the top of the left-hand column has
to be chopped down to 7 digits of preciéion due to space
requirements. The same holds True for 1/3 and 11/7 at the
bottom of the table. Thus, we see that in a computer even
such a simple fraction as 1/3 cannot be represented exact-
ly, but only to a close approximation. This characteristic
of "finite word length" presents important problems in com-

puter work, which will be discussed in various places in

the main text.

In this coding system, we can represent large numbers
but we pay a price in giving up three places of precision.

The largest floating point number representable is

HEEEEECOEEEE

which represents the number

999,999,900,000,000,000,000,000,000
000,000,000,000,000,000,000,000,000
000,000,000,000,000,000,0€0,000,000
000,000,000,000,000,000.

Similarly, there is a smallest positive number which can be

represented, namely,

[+-Ts[s[t[oJojo]o]o]0]

m 1:9




or

0.000 000 000 000 000 000 000 000 000
000 000 000 000 000 000 000 000 000
000 000 000 QOO 000 000 000 000 000
000 000 000 001

which is very small indeed.
In practice, most machines impose other rastrictions

which further limit the largeness and the smalliness of the

numbers which can be represented.
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9. lteration Boxes

Typical of the sort of thing we will have to do quite
frequently in this course is adding up the reciprocals of
the integers from | to 1000, indicated by the probably familiar

"sigma" notation
1000

1
n=| 4
I f you try to evaluate this sum by hand computation, you

will soon find out why this problem had best be donc on a

computer.

5
For this algorithm, we need two > NNt
voriables, a variable n which succes- ¢ 4
_ , SUM & SUM+n
sively takes on the values |, 7, ...,
1
000, and a variable SR whioh keeps FIGURE O -]
a running total of the “um of the reciprocals of the values
of n. The rudimentary idea i illustrated in Figure 9-1.

NDf course we nocd o te.tfing device in order to branch
out of this loop when n cxceeds 1000 as well as a means of

assigning n its initial value |. These additions are seen

in Figure 9-2. The finizhing touches to make this flow chart




operational are: starting the
variable SUM with a clean slate
(SUM « 0); and outfputting the
final va%ue of SUM. The complete

flow chart is seen in Figure 9-3.

Y _6

-

-'.‘! g 111

>y
rd

2
né&1

5 3
n&n+ 3 n < 1000

F'

T_4
SUM suM+in

FIGURE 9-2

We see that the variable
n acts as a sort of
counter "controlling"”
the loop in this flow
chart. This variable n:
i) starts with tThe
value | (Flow
chart box 2);
ii) and goes click,
click, click in steps
of | (box 5);
iii) through the value
IOOG‘(box 3);
iv) executing the
loop computation
(box 4) at each

step.



Loops controlled in this way by counters are of such
frequent occurrence that we find it convenient to introduce a
new kind of flow chart box to
assume all these functions of
the counter, initialization,
testing, incrementation seen in

Boxes 2, 3, and 5 of Figure 9-3.

This three compartment flow chart

box illustrated in Figure 9-5
: FIGURE, 9-4
is called an iteration box. It is readily seen to be
obtained by compressing to-
testin
initialization 92 gether boxes 2, 3, and 5 of
né&<1i -+4»> F : -
incrementation n<4o0o |- f19ure 9-3. The flow chart
-1
n& N+ of Figure 9-3 with this

;r

computation
portion

of loop

modification is seen in

Figure 9-6

FIGURE 9-5 1
SUM &0
These iteration boxes are ‘} 2
often very helpful in organizing néet n< 1000
nen+1
our thinking in constructing lT'4
flow charts. They are useful SUM é— SUM+Vn

in many other contexts besides
summation formulas, notwith-

standing the fact fthat summation

FIGUR 9 -6
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formulas will be among our best customers for jteration boxes.

The initial value of the variable n, the size of the step,
and the relation in Box 2 may be chosen at will. Thus in

Figure 9-7 we see a flow chart for calculating the product of

the odd integers between 5 and 30.

@ As a sample of use of

iteration boxes, study the flow

PROD ¢« 1
* chart of Figure 9-8 which prints
K& 5 K> 30 T [PrROD | out every three digit number
[i'<€-K+2 3 which is equal fo the square of
’___I F‘
PROD €~ PROD XK STOP six more than the sum of its

digits.
FIGURE o -7
Hé&1 F

=

T€0 1<
TET+1

Y

U <0 F
» U & U+

' 4

N & 100X HH10X T+U

F Y 2
<-GI=(H+T+U+6)2 )
| yr s

=

FIGURE 9-8
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PROBLEMS

l. Using iteration boxes, write a flow chart and a computer

program and run it for computing the exact values of

n! for n=1=1, 2, 3, ..., 9.
2. Write and run a computer program for computing approximate
values of n! for all integer values of n from | to 100,

12
3. (a) Draw a flow chart for calculating 2:'
n=I
(b) Trace this flow chart by hand to find the value of '

the sum in (a)

5
3
(c) Repeat (a) and (b)) for the sum Z: k
k=]
n
4, (a) Draw a flow chart which will output n, ) k3 , and
2 k=
n
2: Kk for each value of n from | to 50.

k= |
(b) Write the program for part (a) and run it. Study

your output and make a conjecture. Can you prove it?

5. In Figure 9-8, which flow chart boxes comprise
(a) the loop controlled by box 37 box 27 box |7
(b) During the course of the algorithm, how many times
do we enter box | from the top? box 2?7 box 37

(c) How many times will the ftest in box 5 be executed?

ot
~{
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Chapter 2

SEQUENCES

Sequences of Approximations

There are many occasions in mathematics when we need
to work with numbers which we cannot calculate exactly. When
this happens, we must be content with approximations. You
have experienced this fact in connection with finding square

roots and finding areas of regions with curved boundaries.

A rather crude method for approximating, say, the
square root of 2 would be T« construct a square of side
length | and then measure the length of the diagonal. If

the figure is carefully drawn, an

approximation cun be obtained but | 46

only accurate to a few decimal places.

FIGURE -

For a crude approximation of the area of a circle of
radius |, we could inscribe such a circle in a cardboard
square. First weigh the square and then cut out the cir-
cular disc and weigh it. The area of the circle, @m, is then

calculated by

B 150




m _ weight of circle
4 weight of square

Again, even with the most careful construction and the bestT
scales, we could hardly expect a result accurate to more than

three decimal places.

These methods of approximation, <iif§\::::>

with their limifed accuracy, are of no

theoretical importance in mathematics. 2 5
Mathematicians often require methods FIGURE 1-2
of approximation of unlimited accuracy. To this end, we
look for a sequence or list of approximations with better

and better accuracy, so that whatever accuracy may be demanded
can be achieved by going sufficiently far down in our list,
As an example, we will show how fto construct such sequences

for finding square roots.

You may have learned in your school days the "divide
and average algorithm" for approximating square roots. This
is a method for finding a sequence of approximations for

square roots. I+ works like this:

To find the square root of a positive number a, we choose
our first approximation to be any number we please, 91’ so

long as it is positive. A number h1 is computed by dividing
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a by 91,

The next approximation, g , to the square roof of a is obtained
2

by averaging g1 and hl’

Now we iterate this process over and over, i.e.,

) 9, + hn
gn+1 2
a
h =
n+l In+1

gets closer and closer to the sqguare root of a. We can get
numbers as close as we like to the square root of a. Why
+his is the case will be shown a little later on. For now,

let us see how easy it is to write a computer program for

121
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this algorithm. The flow chart for

this program is shown at right. This

flow chart is not complete because we w

have not provided a stopping mechanism. [

This will be done later. a
2

The purpose of the variable, n, .gziz
is to number the lines of output. As ———>y 3
we see, subscripted variables are not Plé_'@/g
needed in the computer program. Instead, :,9 =
we let the variables g and h take on ———"vJ 5
new values over and over again. We 9'6(9+h)/2
also note that for our first approx- n é[n+4
imation (first value of g), we have | FIGURE |-3
arbitrarily selected the positive
number |.

Let's examine a few lines of output from this algorithm,

ignoring the finite word length and concomitant round-off
error obtained in computer calculations. We will make our
calculations exact. We will take the input value of a to
be 2. You should trace through the flow chart and verify

the values listed below:



n g

| |

2 3/2

3 17/12
4 577/408

5 665857/470832

The square of the last value of g listed above is

443365544449
221682772224

which exceeds 2 by 777 682'772 554 , that is, by less than

| part in two hundred billion. Thus, g5 is a quite good
approximation of Y2. We could repeat the process as many
times as we like, getting more and more terms of the sequence

ever closer to V2.

Let us see why this algorithm works. First note that

if two pairs of positive numbers (gl, hl) and (92; h2) have

the same product, a, that is



+hen the two members of one pair must lie between the two

members of the other pair.

(1 f h1 is larger than either g "or h , Then g must, in
2 1

2
compensation, be smaller than either g or h in order for
2 2
the products glh and g h +to be the same.)
1 2 2
As a special case, /a must lie between the members of
any such pair. (Take g = h = va.)
2 2
Since h, = —= by definition, we see that g h = a, so
1 9, 11
that g and h lie on either side of /a.
1 1
t 4 ;
91 Va 1
g; + hy
Now g = ——F—— by definition and is therefore the midpoint
2
of t+he interval joining g and h
1 1
g2
g /a h
1 1
The number h_is then determined by h = 2 so that g h = a,
2 2 92 2 2
whence by preceding remarks h also lies between g and h
2 1 1



and on the opposite side of /a from g .
2

Il i {aT‘ -l
9  hy 9 hy
Furthermore, since g 1is the midpoint of the segment joining
: 2
g and h , we can see that the length of the segment Jjoining
1 1
g and h is less than half that of the larger segment.
2 2
That is,
h -g | < %|h -9l
2 2 1 1

Now the same process is repeated to find g and h .
3

3
That is,
g + h
2 2 a
=___.h=._
93 2 ’ ; 93
. T
g, hohs 959, hy
and we have
h -g | <gh -9 ] <glh -9 |
3 3 2 2 1 1

Now we see that the length of the interval joining 9,
and hn is decreased by at least half each time n is increased

by |. Hence this interval "shrinks to a point" as n increases




without bound. This point to which it "shrinks" is /a, the

only number contained in all these intervals. The inequalities

n n| < 2n-1|91 - h1|

show that the difference between 9, and /a can be made as

small as we like by choosing n large enough.

“In light of this, we say that the sequence

converges to /a. Also, the sequence

converges to /a.

The trace of the flow chart of Figure |-3 suggests that
the terms of the sequence of g's converges to (or zeros in
on)" Va much faster than by simply reducing the error by
half at each step. This can be explained by means of the
following calculation, where the first two equalities follow

from the definitions of g and hn and the remaining two

n+1

from algebraic simplification:

132 14»\
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, 2
9n * hn °n 9
2 - a - a)2
i 9, 29n Ja + :i i (gn ya)
29, 29,

Thus, if 9, is such that the "error" ]gn - /5! is less than
17100, then (g _ - /a)2 is less than 1/10,000 so that the error
. . . - I : .
in the next approximation ]gn+1 - /§| will be 7676665: , which
is less than 1/20,000 if 9, is greater than |. And for the

following term,

| 2
(20,000)

- /5-] 29I’1+1'

|
|9 < §00,000,000

n+2

This shows that once the error starts getting small, it

diminishes very rapidly indeed.

We cannot leave the square root problem until we provide
a stopping mechanism for the algorithm given in Figure 1-3.
In order to provide for this, we will input a number, €,

which is our maximum tolerance of error. (The Greek letter

¢ , pronounced "epsilon," is fraditionally used for this purpose.)
With each new computation of g and h, we will make the fest
lg-h]<e€
F
Lo 1R

14




When we get a true answer to this

test, we will know that g lies

within ¢ of va since Ya is
( €
between g and h. Then we can

terminate the computing process

or go back for new values of a.

In theory, this value of € can
N « |
be as small as you like. In g+ |
h « a/g
practice, however, taking finite *
—> 4
word length and round-off error N, g, h

in account, we must take ¢ ____,,1"—::>w”

sufficiently large so that (1a-n] < e<:)1—

the test will eventually be YF 6
satisfied, thus avoiding an end- N « N+

g « &h
less loop. How small € may be h < a?q
safely taken will depend on the
word length characteristics FIGURE 1-4
of your machine and/or your
programming language as well as The size of the numbers a
whose roots are being calculated. In other words, there is
some minimum accuracy €, beyond which we cannot hope to

go, and we must take € 2> €
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PROBLEMS

Write a program implementing the flow chart in Figure
I-4, and have the program approximate the square root
of each of the following numbers: |, 2, 20, .0002,1010,

-6
Read a value of 10 for e.

Write a program fto make a table of square roots. For
each number, the program should obtain a sequence of
approximations to the square root, but only the last
approximation should be printed in each case. Your

instructor will specify the size of your table.

: 1B 14,
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2. Approximating Solutions of Equations

As you know, many mathematical problems may be reduced
to the solvingvof equations. You know a formula for solving
quadratic equations. Similar, but much more complicated,
formulas exist for solving third and fourth degree equations.
But for higher degree equations, no similar formulas can be
found. For such equations and for equations of a nonalgebraic
type like

sin x = %

we will generally have to be satisfied with approximate solu-
tions. Again we look for sequences of approximations by means

of which we can get as near as we like fo the true solution.

The method we present here for finding sucn sequences
is very simple and at the same time one of the best for

computer use. We first write our equation in the form

f(x) = 0.

For example, the equations

8x3 = 6x + | and sin x ;

would be expressed in the form
8x3 - 6x ~ | =0 and sin x - % = 0.

Then the problem becomes that of finding a zero of the ’

1t
o

function f, that is a value of x for which f(x)

4.

L. b
<),



Graphically, this is the point at which the graph of the

function, f, crosses (or touches) the X-axis.

Now if we have an interval
[L;, R3yJ such that +he functional
values at the end yoints, f(L;y)

and f(R;), have opposite signs,

then the graph of the function L //// R,
must cross the X-axis somewhere ”///////‘ '
between L; and R; (provided that L

the graph of f is an unbroken FIGURE 2-1

curve).

We look at the midpoint M; of the interval [L;, R;]

Ly + Ry
My = ———
and consider three cases. R, f(R)
Case 1. If f(M;) = 0, then M
: |
M; is a root. L, R,
M., f(M,)
Case I1l. If the sign of f(M;)
is opposite to that of f(L;y), L, fw.
then f will have a zero between FIGURE 2-2
L; and M;. In this case, we

let

Lz = Ll and Rz =M1

and repeat the process, find-

ing My, etc.

ot PR £ |




Case Ill. 1f the sign of f(Mj;) is the same as that of f(Ly),
hence opposite to that of f(R1), then there is a zero befween

M; and Ry. In this case, we lefT

In this way (unless we actually find a zero), the

sequences

and

are constructed. A zero of the function is always located

between Ln and Rn and moreover the length

is reduced by half each time n is increased by 1. Thus,
each of the numbers Ln and Rn can be made to differ from
the zero by as little as we like. In ofther words, both of

the sequences
L1, L2, L3, ... and Rl, R2, R3,

converge to the zero.

A flow chart for our algorithm is seen at the right
of the next page. Again we see that the computer has no
need of subscripted variables but instead prints out the
successive values'of L and R. The variable N merely num=-

bers the lines of outpuft.




The flow chart in Figure
2-3 is not quite ready to be
converted into a computer pro-
gram because we have not-provi-
ded for a way to stop unless

we actually hit a root. Also,

because of round-off and finite

word length, we should modify
the test in box 7 to read
T
[F(M)|CEL
"
The final flow chart ready

for translation into a computer

program is shown in Figure 2-4,

As in the previous example, we

must have € > € In most

applications of this algorithm,

one is interested only in the

final value of M and not in the

intermediate values of L and R.

and

N1 N &N+ |

]

S

]
L,R

2
fLXFRY (O )—f—j "

yT_ 3 "Method
Né&| ln&PP'lCdb'Q"

N,L,R
5

M & (L+RY/2

Y 7

( fM)=0 ) T

G

8

\
C#(M)xf(u o )

¥T 9 N F

R&M LEM
[ |
y

N & N+I

|
FIGURE 2-3

number of steps N or the

10

In this case, the boxes

can be eliminated.

I+ is assumed that the input values of L and R are such

that L < R.

at L and R (i.e.,

I+ is further assumed that f has opposite signs

that f(L)-f(R)<0).

L )



I+ will be found that this

sequence will not converge nearly
as fast as the square root algo- = »
“rithm. Faster converging methods < FCLYXFCR) €O ) F
are possible for the problem af YT 3 y
L _ Né& | “Method
hand, but to use them it is ne lnupphcaMe”
cessary that the function satisfy i 4 __’—’i/”p—
extra conditions which in general _——lf’——
are hard to verify. However, ]
_ T
there are many important special GR LI<e
F
cases where the faster methods + &
. M & (L+R) /2
- are—known-to . work and should be
Y 7
used. Such methods will be (:IF(NﬂH el ) T
studied in a later chapter.
F M“1s an
approxnma'
Y 8 zero”
CF(M)XF(L)(O) J
41T 9 NF 10 (srt0
ReM LEM
i R |
Y ]
N < N+l
i

FIGURE 2-4




PROBLEMS

Draw a flow chart for a program which is to search for
zeros of a function f in the following manner:
(a) Read values for: A left end-point of an interval
B right end-point of an interval
e error tolerance
N a positive integer
(b) For each integer K between 1 and N, apply the algo-
rithm of this section to the sub-interval [L,R] of
[A,B], where

BQA and R = A + KE=A

L = A+ (K-1) N

Write the program described in Problem 1, and run it with
the following functions f and numbers A, B, e, and N:
(a) f(x) = x3 = 2x%2 + x + 5

A= -0, B=10, = .0lI, N=40

(b) f(x) = x3 = 2x%2 + x + 5

A=-10, B=10, e= .01, N=2
(c) f(x) = x* - x2
A=-5 B=5,¢e =.0l, N= 20

Use the program written in Problem 2 to approximate
(a) the positive root of x2 = 2 =0

(b) the positive root of x2 = 30 = 0

(¢) the negative root of x> + x + | =0

In each case, let N=1 and choose apptopriate values of
A and B.



3. Problem Solution Using Sequences

Sequences also arise in other ways than in approximating

numbers. We give here an illustration.

Example: A boy has a super~ball which when dropped will

bounce back to % of its original height. If the ball is

dropped from a Leight of 5 feet and allowed to continue to

bounce, what will be the total up and down distance it travels?
Solution: I+ is clear that the ftotal up and down distance

‘s 5 feet less Than ftwice the total distance the ball fravels
downward. lf we let dn represent the total distance the ball

falls before reaching the ground for the nfh time, we have,

ignoring the diameter of the ball,

d1 = 5

o w50 s()

o es(g) s

oo e s(@) () s’

- @)@ D
dn"5+5(a+5(§+5(§+ v 5(g

We have thus constructed a sequence. We will show that this
sequence converges to a certain number which we will Take as
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total distance the ball falls in infinitely many bounces.
There may be some question as to whether the ball actually
bounces infinitely many times. In the mathematical model
of the problems we have selected, it is convenient to adopt
the attitude that it does bounce infinitely many times.
This gives answers close to actual experience. (The total
th

distance the ball travels after the 100 bounce is negligible

for all practical purposes.)

In order to find the number to which our sequence con-
verges, we express the term dn in a different way. We

i||u§frafe this with d6

o
(2]
1
w
+
w
N
|~
S——
+
w
N
o~
S
[z
+
w
N
o}~
S—
w
+
w
N
o]~
S——
£
+
w
N
o]~
S——
wn

Thus,

[N
o
|
[04]
(6]

I
(6]
P

|~

S
o

—

Similarly,

Now we can see what happens to dn as n gets large; the value

n n
ot (3)

gets closer and closer to zero so that the term 5(%)
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becomes lnsignificant. Thus, we see that the sequence
dl, d2, d3, ... converges to the value of 40. The total
up-and-down distance traveled by the ball will be

2(40) - 5 = 75 feet,

(In this problem of the bouncing ball, we see an examp le
of "mathematical modeling". Mathematics is not equipped to
talk about nature directly; there is always a mode|ling process
involved. In this case, we think of fthe position of the ball
as being a point on a vertical line. You may if you wish
think of this as the center of the ball. In this simplistic
mode!, we ignore the difference in air resistance at different
speeds, the deformation of the ball on hitting the ground,

etc. furthermore, we take a rule for +the height of return cf

the ball observed in a certain range of heights and extend it
to very small heights for which we are unable to make measure-
ments. I+ is a moot question whether the ball actually bounces

infinitely many times, but in our modél we consider this fo

be the case. More sophisticated models of the bouncing ball
are possible taking into consideration all of the phenomena
mentioned above and others. But in any case, in using math-
ematics to describe real life occurrences some model is either
tacitly or explicitly being used. The "correct" answers to
such problems are considered to be those calculated bv use of
+he mode! and not those obtained by performing the experiment

and making measurements.)
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PROBLEMS

Consider the sequence

d, = |
d2 = | +r
dy = | + r + r2
d, = | +r + r2+ r3
d = | +r +r2+ r3 .+ .;. + et
(a) Compute rd, - d, .
‘b) Compute a new expression for dq by dividing your
result in part (a) by r-1. (Assume r # 1.)
(c) Repeat steps (a) and (b) with n in place of 4.
(d) To what value does the sequence dn converge if
Ir|<1?
(e Can you determine whether or not the sequence dn
converges if r2l?
Repeat Problem | with the sequence indicated below,

where k is some number.



d = k + kr
2
d = k + kr + kr2
3
d = k + kr + kr2 + kr3
N
d = k + kr + kr2 + kr3 + oo+ ke
3. For each sequence indicated, compute the number to

which the sequence converges.
|

(a) d = | + +

n 2 >
(b) d =L+ L 4L P
n 2 4 8 16 2n
= 2 2 2
(c) d =10+ 2+ 5+ 5+ ...+ e
_ ;. la 28 56 2,n-1
(d) dn 7 = t 3 = + + 7 (-3)

4, (a) Show that the repeating decimal 0.232323,..

. 2 3 2 3 .
(that is, 10 + 00 + 7000 * 15000 + ...) is equal
+ 23
° 39
(b) Show that the repeating octal number 0.451451451...

(that is, % + 27 + jy + f% + é% + g% + ...) s
8

equal to

4:.82°+ 5.8 + |
83 - |
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(c) Show that in the base B number system (for any
integer B>1), the expression

0'C1C2°"Cndldz"'dmd1d2°"dm"' (where dl...d

m
keeps repeating) represents a rational number.
Hint: The value of the first n+km digits is
cr e (3% e + <o)
B B B Bt L
where
c c c d d d
1 2 1 2
C=-—jg+—+ +——2— and D = g— + -— + + 0
B2 B B2 g™
5. Suppose that Katonah loses a war against Nashville and

agrees to pay reparations in perpetuity as foilows:

1000 knashes the first year; each year after THQ first,
the amount to be paid is % of the amount for Theﬁpreceding
year. Suppose that fractions of knashes are minted

in such a manner that each year it will be possibleifor

the exact debt to be paid. How much will be paid

during eternity?

6. The 5a|f—life of a radio-active isotope is the time in
whic% half of any given quanTjTy will decay. For ex-
amplé, the half-life of Strontium 90 is about 25 years.
Thus, .half of any quantity of Strontium 90 will decay
in 25}years, three-fourths will decay in 50 years,
seven—éighfs will decay in 75 years. |Indeed, for any

posTivetinTeger n, The fraction winich decays in 25n years




will be N

+...+—IF
2

N —
N —
oo} —

For each of the following elements, calculate the amount

of the element that will have decayed and the amount that
will remain after the indicated time.
(a) | oz. Strontium 90 (half-life 25 years); 1000 years

(b) 3 oz. Strontium 90; 1000 years

(c) 3 oz. Strontium 90; 3000 years

(d) | oz. Rubidium 87 (half-life (1.2)(10'!) years);
(1.2)010') years

(e) |6 tons Rubidium 89 (half-life |5 minutes); 24 hours

(f) | oz. Beryllium 8 (half-life 10 !0 seconds); |
second (You may estimate the answer to part (f).)

(g) ] Ib. Radium 226 (half-life 1600 years); 16,000

years

7. Suppose that a bull breaks half of the remaining dishes
in a china shop every 20 seconds. I|f the shop originally
has 64000 dishes, how quickly must the bull be routed

in order to save 10007
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4. Definition of Convergence

We have seen enough of the usefulness of sequences to
warrant their systematic study. First we give a formal

definition of a sequence.

Definition. A sequence is a function whose domain is

the set of positive integers. (We have not said what
the range of the function must be. This is in fact

quite arbitrary. But for most of our sequences in the

present chapter, the range will be a set of real numbers.

Thus in our sequence, a, of approximations for the square

root of 2

n a(n)
[ [
2 3/2
3 17/12
4 577/408
we have a(l) = |, a(2) = 3/2, a(3) = 17/12, etc. However,

in the case of sequences it is customary to depart from The
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ordinary function notation and use subscripfts, writing

a =1, a = %, a = +%, a = %%%, etc.
1 2 3 Y

Sequences are usually defined by means of some formula,

such as

2
b :éﬂ_-’-_4 n = |, 2' 3’

" 2n%2 + 3
or by means of a recurrence relation by means of which terms
of a sequence are defined in terms of their predecessors.
An example of this 1s the above sequence for the square root

of 2 in which the terms are defined by

a = |

1

2
+

a = onzt” %nos n=2,3

n 2 3 t4

Not all sequences converge. For example, the terms of
the sequence
c, = n2 n=1=11, 2, 3, .




dn=(-|)” n=1, 2, 3,

osclllate between -1 and | and do not "zero in" on one

particular value.

To be precise, it will be necessary to pin down the

concept of convergence by giving a definition of it. In
our earlier work on sequences of approximations, we said

. that a sequence converged fo a number L provided that the
sequence could be used to approximate L to any desired degree
of accuracy. This is intuitive but rather vague. We can,
however, give this statement a pfecise meaning. Before we
talk about approximafiné_;o any desired degree of accuracy,

let's talk about approximating to a given fixed degree of

accuracy.

When we say that a sequence a_, n = l|,2..., approximates
a rumber L with accuracy € , we mean that if we start computing
terms of the sequence,we eventually get tfo the point where
all the remaining terms will differ from L by less than €
This condition can also be phrased geometrically, to wit:

Consider an interval centered at L with radius € (the radius

of an interval is half its length). Now affer n reaches a
certain value, then for all higher values of n, the terms
a_ will lie in this interval.

1G.;
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Ny v~

€ €
As an example, we will show that fthe sequence

2

a, = L Z I n =1, 2? 3,

n
approximates the number | with accuracy 1/100. First of all,
note that all terms of this sequence are greater tThan | since

the numerator is greater than the denominator. On the other

hand, by writing a, in the form
a_ = | + !
n nZ

we see that as the value of n is increased, the value of a,

decreases. Thus for all n greater than 10, we have
| <« a_ < a = |.0]
n 10
: th X .
Therefore, after the 10 term a!! succeeding terms will lie

in an interval of radius /100 centered at |. And this means
that the sequence ag, n = /!, 2, 3, ..., approximates | with

an accuracy !/100 according to our definition.



We must point out that there are many other numbers which

this sequence approximates with this accuracy. For example,
for all n greater than |0, we have seen that a, lies between’
| and 1.0! and hence all these a lie between !.005 - .0!

and 1.005 + .0! (that is, between .995 and 1.015). Hence,

this sequence approximates |.005 with accuracy 1/100.

Similarly, the above sequence approximates | with accuracy

1/1,000,000 since for n > 1000, we have

_ |
< a, <2 = | * 7-500,000

co that all terms after the 1000'" term lie within 171,000,000
of |. (Note that this sequence does not approximate 1.005

with accuracy 1/1,000,000.)

Now we are ready to give a definition of convergence.

pefinition. A sequence a , n = /1, 2, ..., converges
o L provided that for every positive number e , the

sequence approximates L with accuracy €

This is what we meant earlier by our vague talk of a
sequence approximating a number to any desired degree of

accuracy. |f this definition is interpreted geometrically,

183
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it says that for whatever positive € we choose, we eventually
reach the point where all further terms of the sequence lie

in the interval centered at L with radius € .

The above definition is generally worded in this some-

what more readily usable form:

Definition. A sequence aj, n = l, 2, ..., converges

to L provided that for every positive number € there
is a number N so that for all values of n greater than

N, a, differs from L by less than €.

We can easily show that the sequence

actually converges to !. G/ wan an arbifrary positive number

€ , we need only exhibit a pusitive integer N such that

n

for all n>N. Now
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2
n +I S = _
- 2

n n

and 1r < 1 nbl—’ that is if n>7'€._ . Thus, N may be taken

n
to be any integer greater than —L— .
€
This shows that the sequence a _, n =1, 2, «ie, approximates

| with accuracy €. And since e was quite arbitrary except

for being positive, we see therefore: that for every positive

number € , the sequence a,» n = |, 2, 3, «su, approximates
| with accuracy € . [In other words, the sequence converges
to |.

There are several theorems we should like to prove

about convergence. The first of these is that a sequence
cannot converge to two different numbers. For suppose

a;, 2, I is a sequence and that L and M are two

different numbers.

Choose small infervais I1 and I2 centered at L and M which

do not intersect.
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If the sequence converges to L, then after a certain_point
all the terms in the sequence will lie in the interval |
: 1
so that none of these terms will lie in | . Thus, the sequence
2

cannot converge to M.

Hence, we see that the number to which a sequence con-
_verges (if the sequence converges at all) is unique. This

number is called the limit of the sequence.

Definition. We denote by

lim a
n-~>o

the number to which the sequence al, a , a, ... converges.
2 3

If the sequence does not converge, we say that lim a
n-+>w

does not exist.

Thus, according to the previous example, where

2
nc + |
an s — n, = I, 2, 3, LI
n2
; . n2 + |
we can say that lim a, = | or, replacing a, by ——— , we
n->o n 2

may write directly

. n2 + |
lim ———— = 1.




You will be asked in the problems to prove that If -

is a convergent sequence and if r,>a for all n, then lim Fa2a.
: N -»co

It follows that if o is a convergent sequence and r,>a for

all n, then Iim r_>a, but it need not be true that lim r sa.
N> Nn—>w n

2 +

For example, n_* ' .| for all n, but we have just seen that
n2

. n% + | . .
lim P—= "~ =), Similar statements can be made with < and
n-»c n?

< in place of > and >.

|+ will also be a problem to prove that if X0 and Y,

are convergent sequences and Xa2Y for all n, then

lim x_>1im y . The corresponding statement for < is true,
n-=>e n-><

but the corresponding statements for > and < are subject to
the reservations of the previous paragraph. Be certain to
notice the hypothesis that X0 and y, are convergent sequences.

2
. + |
! for all n, and |im E——;——-= I,

n n-+x n

For example, 5+(-|)n3n

but it is not correct to conclude that Iim [5+(-1)"0>1,

n->c
because lim [5+(-1)"] does not even exist.
n->
Another problem will be to prove that if lim X, = 2
n—)w
then lim Ixn|=|aL You should determine for yourself what
n-—+

can be said about the convergence of the sequence X0 if

‘n"' \ . ..
1oy



Example: An interesting ex mple of a sequence defined by

a recurrence relation is the Fibonacci sequence. |In this

sequence, the first two terms are | and each subsequent term
is the sum of its two immediate predecessors. A few terms

of the Fibonacci sequence are:
'\, ', 2, 3, 5, 8, 13, 21, 34, 55, 89,

Thus, the terms a, of the Fibonacci sequence are de-

S

fined by the following conditions:

a = |
1 ' 1
a = | MAX
2 2
a+1 = a, + a1 n =2, 3, «.. N — 1
ASNM1 &0
ASUBN &1
A flow chart for generat- 4’{j
N,ASUBN
ing the terms of the Fibonacci !

sequence is shown in Figure CASUBN)MAX T
4-)1., Here the variables F;V

5

ASUBN, ASNMI, and ASNPI ASNP14-ASUBN + ASNM1
stand for a a and v 6

" n’ “n-1’ ASNM{ €~ ASUBN
a , respectively. The ASUBN ¢€—ASNP1
nt N €& N+1
use of MAX is to prevent 1

FIGURE 4-I
I6g
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overflowing your word~lengtt . The input value of MAX should
not exceed half of the largest integer expressible in your

machine.

The Fivonacci sequence obviously does not converge.
The terms, increasing by at least | each time, eventually

exceed any prescribed bound.

We call attention here once and for all fto a principle
which slightly generalizes the meaning of "sequence'"; namely,
if we alter the values of the first 53 terms of a sequence
al, a2, a3, ... this will not affect the convergence or di-
vergence of the sequence nor the value to which it converges
if it does converge. To see this, we need only require that
+he value of N in the definition be always taken greater than
53. Thus we may always be oblivious, in questions of con-
vergence, to what happens to the first 53 terms, or even to
whether they are properly defined. Of course, this principle

is valid not only for 53 terms but also for 279 or 8967 or

for any fixed finite number of terms.

, : . - |
For example we might define a_ h=3)(n<5) ° Clearly

5. We blithely ignore

this is meaningless for n = 3 and n
+his fact in discussing the convergence of the sequence since
there are only finitely many integers for which a, is undefined.
In light of these remarks one may, if he wishes, adopt a modi-
fied definition of sequence as a function whose domain is the

set of all positive integers greater than some arbitrary number.
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PROBLEMS

For each of the sequences indicated below, determine
whether the sequence converges, and if it does, find
the limit.
n
(a) a_ = (=1)
n n
(b)Y b= — Hint: JRZFT >n, so —— < —
yOZF] YAZF]
- ! ; -
(c) c, = y if n >1, and ¢, = 14.
nz-1
(d) dn = cos nm
(e) e, = cos 2nTm
(f) fn = J/4-cos 2Znm
(g) g, = 5
Let dn = (-1)". Answer each of the following questions
and justify your answer.
(a) Does tThe sequence dn approximate 2 with accuracy 107
(b) Does the sequence dn approximate -1 with accuracy
1,

2 * 1,500,000 °
(c) Does the sequence dn approximate | with accuracy %?
(d) Does the sequence dn approximate 0 with accuracy % ?
(e) Does dn converge?
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The decimal expansion of % is 0.142857142857142857....

Let a be the sequence of numbers obtained by keeping

the first n digits of the expansion. That is,

al = 0.1
a, = 0.!4
ag = 0.142
etc.

(a) Does this sequence approximate 0.14 with accuracy
0.0037?

(b) Does this sequence approximate % with accuracy

0.0037?

(c) Does this sequence converge 1o %?

Prove that each of the following sequences fails tTo converge.

(a) a = n2
n

(b) b (-1)"

n

Affirm or deny each of the following statements and

justify your reply.

(a) If "n > a for all n, and if . converges, then
Jim r_ 2> a.
n+e D
(b) | f N > a for all n, and if n converges, then *

fim r_ > a.
n—+e
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(c) If r is a rational number for all n, and if .

n
converges, then lim r_is a rational number.
n-o
(d) If X, 2y, for all n, and if both X, and vy
converge, then lim x_ > lim vy .
n->w n>o n
(e) If X2y, for all n, and if Y, converges, then

xn‘converges.

~ (f) If X, and Y, @re sequences which converge to the
same limit m, +hen lim z_ = m, where z, is the
N> !

sequence X X X
q 1’ yl’ 0? Y2’ 3’ Y3,

(g) If ;LZ r =m, and if s, Is defined by s, = Moty
then lim s = m,
n->e
(h)y 1f tim x_ = a, then lim |x_| =]a]l.
N> n->o n
(i) If x 1s a sequence and the sequence y_ = Ixnl

converges, then the sequence xn converges.

X

6. Let T be defined for all positive numbers x by T(x) =

X

(a) Show that T(x) > VZ if x < VY7, and T(x) < /7 if

+
N

+

x > /Z.
(b) Show that |T(x) - VZ| < (VZ - 1) |x=-/Z]|.
Hint: Show that IT‘X) - Y7l . 1) -/7 _ /2 = :
X = V2 /7 - x X
162
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(c) Let a_ be the sequence defined by a; = |, and
I T(an) for n > |. Show that a_ is a sequence
of rational numbers which converges to V2.

(d) Calculate a , a , a , and a

2 3 L 5

(e) Write a program to approximate Y2 by calculating

terms of the sequence a_ until two successive

-6
terms differ by less than 10 . Have the program
print the number N of terms calculated, and the
average of the last two terms. Compare the rate

of convergence with the rate of convergence obtained

by the program written for Problem | of Section 2-1.

The "arithmetic-geometric" mean M of two positive numbers
a and b is defined as follows: suppose that a < b and
define a recursion formula by a = a, b = b,

a + b 1
a =vYJa_ b _, b =N __ N We get two sequences

n+1 n n n+l 2

a, and bn and it will be shown later that both sequences
converge fto the same limift M. Write the appropriate
flow-chart and program for computing an e-approximation
to M, and carry out the computation for e= .000005 and
the following pairs of values of a and b.

a=1, 1V, 5, .o001, 1 , 10

b = 2, 10, 6, 1000, 105, 10

Draw some conclusions from the last three cases and

prove your conclusions if you can. Is this an efficient
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algorithm, in the sense of giving an accurate result
in few steps? Try some of the above cases for the
smallest € that you can use on your computer and see

how many more steps are needed.

8. Modify the Fibonacci sequence flow chart so as to

output a running total of the first n terms of the Fibonacci

sequence, i.e.,

Your output box should have the form

N, ASUBN, SSUBN

Write the program for this flow chart and run it. Can you

spot a simple relationship between terms of the sequence

s , S, S, ... and tferms of the sequence a_, a_, a_, ...?
1 2 3 1 2 3

Can you prove that this relationship always holds true?

Hint: You may want to use mathematical induction.

9. Check for convergence:
(a) 47, 183, -1010, 62.5, 1/2, 1/3, 1/4, ..., ——,
(b) ', &, -4, 2, /8, -1/16, 3, /32, -1/64, 4, 1/128,

. { I“ 1 ','f\'




5. The Simplest Limit Theorems

‘In the preceding section (Section 4), we had shown that

.. n2 + 1
||m—'F17——='|.

n -»o

We did this by means of the definition of convergence using
e and N, and it was a relatively tedious process. When The
rule of formation of the terms of a sequence is fairly com-

plicated, the € and N process becomes positively painful.

Fortunately, there are theorems available which help

us to avoid such unpleasant calculations. Among such theorems

(as we will presently prove) are the sum and product theorems
for limits:
if lima_ = A and limb_= B
n->o now

“then |im (a_ + b_) = A + B
n n

n->c

and lim (a_b_) = AB
nn

n->oo

The conclusion of the Sum Theorem could be written as

[im (a_ + b ) = |lima_+ lim b
n n n
n->o n->c n-~c

which tells us that we may interchange the order of adding

and taking the limit. The theorem is often verbalized as

"the limit of the sum is the sum of the limits".

Tei ‘{i b
o
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Returning to the example above, we could write:

n2+1 n2 1
n

Applying the Sum .Theorem, we have

. +
lim ERTL = lim (1 + %7) = Jim 1 + lim %2
n-»c n>®° n-+o
Since it is quite .vious that
X _ N ‘
lim 1 = 1 and lim 2= 0,
n-ro n -+
we have
2
lim ekl = 1+ 0 = 1.
now
This example provides us with an exce | reason for

wanting to have the Sum Theorem and similar theorems for

products and quotients, etc., at our disposal. These theorems
often enable us to decompose complicated limits into combi-
nations of limits so simple as to be obvious on inspection.

The sum and product theorems +hemse lves should seem
quite obvious, for if n is large enough so fthat aZ is very
close to A and bn is very close to B, then a_ + bn ought to
be very close to A + B, and anbn ought to be very close fo
AB. We are glad that this simple-minded way of looking at

things is at hand to lend credibility to these theorems. Buf

proofs are nevertheless necessary fo. WO reasons:
1Y +the theorems are not all that obvious; the reasoning
having been offered in their support will leave the
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critical reader with an uneasy feeling in the pit
of his stomach; and

2) we want to be sure that these theorems actually
follow from the definition of convergence on which

fourdation we propose to erect a lofty edifice.

Now let's see how these proofs go.

Theorem 1, (Sum Theorem) I¥f lima_ = A and limb_ = B, then
n->co n-»o n

lim (a_ + b _) = A + B,
n n
n-><
Proof: Consider an interval I with center A+B and arbitrary

radius e. I

Let 11 and 12 be intervals half as long as 1, centered at

A and B, respectively.

1 Iy [
€ € € € € €
b b 5 %h
----- bt - —- t b
A B A+B
If for some value of n, a, lies in I; and b, in I,, then
we have
A-e€/2 <a <A+ €/2
B -¢e/2 < b < B + e€/2
and adding
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A+B ~-¢ < a + bn < A+ B + ¢

n
so that a + bn is in the interval I.
And since lima_ = A and lim bn = B, we know that there
n->o eSS

are numbers N; and N so that for n > Nj, a_  is in I; and

for n > Nz, b_ is in I,. Taking N to be the larger of Nj

and Np, we see that when n > N, we have a_ in I, and b_ in

I, so that, as seen above, a + bn is in 1. Thus, the re-

quirements of our definition are met and we can conciude that

lim (an + bn) = A + B
n->o

The next two theorems and their proofs are quite simple.

The proofs will be left as exercises for the student.
'Theorem 2. lim < =k

n -+
Theorem 3. M Jim a, = A, then Ilim (Kan) = KA

n-ow n -+

Corollary 1.1f Iim a, A and lim bn = B, then lim (an - b ) =A

n
N> n-or-o rj->-©
Proof: lim (=b ) = lim (-1)b_ = ~1+B = -B by use of Theorem 3.
n->c n n->w n
Thus, lim (a_ = b ) = lim (a_+ (=b )) = A+ (-B) = A - B by
n n n n
n->-o n-+>w

Theorem 1.

Corollary 2.1fF 1im a, = A, then Ilim (an - A) = 0. The proof

n->o n-o

is left to the reader.

wwd
=»
(5 )
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Corollary 3. If lim a_ - A) = 0, then lim a_ = A.
n->o n n->o n

Again the proof is left to the reader,
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PROBLEMS

1. Find two nonconvergent sequences whose sum converges.

2. Prove that if lim x> a and limy_ >b, then
n - n--c n -

lim (x_+ yn) > a+ b.

n->e
3. Prove that if |im X, > a and Iimy < b, then
n - n - n -
lim (x_ =y ) >a - b.
n-e "
4. Prove that if lim x_ > a and k > 0, then lim kx_ = > ka.
no-o N>~ n
5. Prove that if lim x> a and k < 0, then lim kx < ka.
n - n-»o -

6. Prove Theorem 2.

7. Prove Theorem 3.

8. Prove Corollary 2.

9. Prove Corollary 3.

10. Suppose a_ is a sequence which approximates A with
.accuracy e and b is a sequence which approximates

B with accuracy n. Prove that the se2quence a +b_

approximates A+B with accuracy e€+n.
Il. Suppose b is a sequence which approximates B with
accuracy n. Prove that the sequence -bn approximates

-B with accuracy n.

. | 1
280 M gy
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13.

Let a and bn be as in Problem 10. Prove that the
sequence a - bnapproximafes A-B with accuracy e+n.
Construct an example to show that a - bn need not
approximate A-B with accuracy e-n even if ¢-n > 0.
Let a, be a sequence which approximates A with accu-
racy ¢, and let k be some ..umber. Prove that the

sequence ka  approximates LA with accuracy [k|e.
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6. Product an< Quotiant Theorems

A sequence al, a2, cs, ... is called bounded provided

t+hat all the terms of the sequencc lie in some intervel

lower bound upper bound

\

b I | T | 4 H I
L =

212y dpd a3 A5 B

o

The left and right end points of such an interval are call~zd,
respectively, lower and upper bounds “or fhe sequence. It

is clear that if we can find one such interval, we can find

many - lower bounds upper bounds

/+\ ‘/? \r

1 4 s 4 3 e 3 I
T T T \ T T 7 T T

b' b" b ajdg az_a4a5 [ B B‘l B“

Also it is quite clear that given a snunded sequence, one

can find an interval centered at the origin in which all

. ) L L i L L i L 11
-M 0O b aag aasasag O
+he terms of the sequence lie. That is to say,

-M < a <M n =1, 2, 3,

| 183
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This can be expressed mure concisely as

We will use this form in our "official" detinition of bcunded-
ness.

Definition. We say that a sequence a , a , a , ... is
1 2 3

bounded provided that there is a number M so that

|an| < M for all positive integers n. Such a number M is

called "an upper bound for the absolute values of an."

We can see that the sequence

is not bounded, for, no matter how large a number M may be

chosen, we will be able to find n so that a. > M,
On the other hand, we can see that the sequence

an=(-|)” n=1, 2, ...

(that is, the sequence whose terms have the values
-1, 1, =1, 1, -1, 1, ...) is bounded since for this sequence
|a | = |(~I)n| 2. 1, so that the conditions of the lz2finition

n
are catisfied with M faken to be i, or, for that matter,

e 4 .
2 '3
. "_-_s 18'i




any number greater than 1.

This sequence, an=(—l)n, n=1, 2, ..., clearly fails to
converge, and so it is evident that a bounded sequence does

not necessarily converge. On the other hand, we have

Theorem 5 |f the sequence a , @ , @ , ... converges, then
1 2 3

it is bounded.

Proof: Denote the limit of the a, by L. We can find a

positive intfeger N so that for all values of n with n > N, we

have a, between L-1 and L+1.
| |
—P e —A—
L-1 L L+ 1
Thus, for all n 2 N, we have

lanl < Ju] ot l.
(This takes care of both the case that L is positive and the
case that L is negative.) The number lL|+I is now » candidate
for the M in the definition. The only terms oi the sequence

whose absolute values could possibly exceed lL|+I are



Since there are only finitely many of these, we can check

them all out. We let M be the largest of the numbers

]L|+ l’ |81|’ |a I’ Ia I’ L 4 laN_Il

2 3
and then we will have |an| < M for all positive integers n.
Theorem 6. If |lima_ = 0 and the sequence b , b , b,
- n-+w 1 2 3

is bounded, then the sequence

converges to zero.

Note that we do not assume that the sequence bl, b, b,
2 3

converges. Thus, for example, we could apply this theorem

to prove that the sequence

! . .
wosin N, n =1, 2, 3, ...

converges sinace

fim — = 0
n->c

3| —

and sin n is bounded (|sin nj < !). This is true even though

+he sequence sin n, n =1, 2, 3, ..., does not converze.

Procf: ie&" 0. Let M be an upper bound for the a solute

value of the bn' Choose N o tnat for n > N, we have




S W< e < W
(in other words, so that|a_| < £,
n M
Then for n > N, we have
£
|an| < M and |bnl < M

SO Tha{

la b | < GPM = ¢

or .n other words, forn > N,

-g < ab =-0<ce
nn ’

which is what is .eceded to show that the sequence anbn’

n=1=1,2, 3, ..., converges to O.

¥ |im a =A and lim b _=B,
n n

Theorem 7. (Product Theorem)
N> N-co

+hen 1im (arbn) exists and is equal! to AB.

>0

Proof: Check that

(b_ - B)
n n

176
187




lanr h .
Since b _ -~ B + 0 as n»>> (by Cor0| Y 2 of ®dpegm 3) and Sincg
5 b d (b ‘
the sequence a_, n = 1, 2, ..., ' Y ,nd® Y Yheorem 5), we
’B .
see by Theorem 6 that lim a (brl ) 0
n-»
Theorem 3 assures us that
a
limaB =g 115 n_ BA
n -
n-> : n

eon 55Ur
And now Theorem | (The gSum 1" V) 2 ®s ys that
lim a_b_exists and is given by
noew NN
r i (b <
lim a_b_ = lim (a_B) nsN2p " R)
n->w n-» \

!
x - =) ]
Example. Let x_be the sequenc? " (4 RS e
!
z 1j 4 - ) _ |
n=1,2,3, ... . Then lim X n{h ( A% i (5 + =)
n->o0 \ n\).oo
= 4.5 = 20
In order to prove the remaif L7 Mg, we need e

mit ce 1T g
following lemma whose proc+t we ¢ \in® Q| Jows the same

general lines as Theorem 5.
[ s Co
Lemma. If the sequence a_, n = 2\ oot ”verges to a
. nas n of Tts |-
number different from zero and \né +erms eqgiat -0

zero, then the sequence

PRI

2 1m
_ g8 _ e




1 2 3
is bounded.
Theorem 8. (Reciprocal Theorem) | f al, a2,

converges to

a number A different from zero and !.as none of its terms equal

t+o zero then

n+>o —n A
A |y
Proof: —— - == —— = (A - a ) (=—=)(y§)
a A a A
n n n
Since A - a_ 0 as n+» and since by our lemma %— . % is bounded,
n
then
. ! P\ _
tin(e - 1) ©
N
by Theorem 6.
Theorem 9.. {(Quotient Theorem) i lim a, = A and [|im bn = B
N> N

with B # 0 and none of the terms bn = 0, then

lim LU %
N> n
‘£89
178
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Proof: lim %— = % by Theorem 8, and hence by the Product

n-»oo n

Theorem,

a
. n _ . | _ Yy _ A
||mb—-— I|m<an-b——>— (A)(g)—B

n+© n n-eco

Suppose that a, is a sequence which converges to a number

A. | f f and g are functions such that

bim f(an) = f(A) and |im g(an) = g(A) ,

n-—+o nN—+w

then
im G(an) + g(an)) = f(A) + g(A) ,
N
and
bim (f(an)g(an)) = f(A)g(A).
[ R
{f h is eit..r a constant function or the identity funct’n,

we know that lim h(an) = h(A). Thus if P is any polynomial
N>
function,

l'im P(a_) = P(A)
n

n->o
RS
119
10n




Now if f and g are polynomial functions and i is the
f(x)

rational function R(x., = , we have
gx)
bim f(an)
. _ n7*® _ f(A) _
[ im R(an) * Tmg(a ) - g(A) - R(A),
n -+ n
n >

providing that g(A) # 0 and g(an) # 0 for all n.

txample. Let cn bethe sequence defined by

(3 + L )2 4+ |
C = n
n |
(3 + — )2 - |
n
Then lim ((3 + 932 + 1)
N> n
lim cn = ]
n-w lim ((3 + =)2 =1)
n-*ro n
lim (% + 2932 + 1im |
=|'1'*':o “_n n->o
Lim (3 +%)2 - lim |
n-re n-+

(lim (3 + =))2 + |

_ n-»c
(lim (3 + 42 |
gl
n-*ro
32 - | 8
191
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Example. Suppose P(x) = 2x3 - 4x2 - 7x - 5, and suppose

a, ls a sequence which converges to 3. Then

2(3)3 -4(3)2 -7(3) -5

lim (2(a )3 - 4(a )2 - 7a_ - 5),
n n n

n-»co

54 - 36 - 21 - 5 = -8

Example. Let a, be any sequence which converges to 2 and

for which 3(an)2 - 4(an) - 2 # 0 for any n. Then

2
L (D24 i}

) 3(an)2 - 4a ) - 2 3(2)2 - 4(2) - 2

N w»

1

Example: An inferesting sequence can be obtained from the

!
Fibonacci sequence. Let rn be defined by the ratio
$

Rt YR
9
t

th

where a, is the n +erm of the Fibonacci sequence. We will

not now attempt to answer the question cf whether the sequence

rl, r2, ... does converge, but we will show how to find the

value it converges to if it does indeed converge. Using

t+he definition of Fn and the recurrence relation for an+1’

we have for n22,

18
192




series converges absolutely. That is, z:an is absolutely

< A ey .
convergent If Z,Ianl is convergent.

The alternating harmonic series is an example of a
series that converges but does not converge absolutely.
The following theorem shows that the reverse case is

impossible.

Theorem 2., An absolutely convergent series is convergent.

Proof. Let E:Ianl converge. Define two new series by

a if a >0, 0 if a_ >0
n n — n —
bn = cn =
0 if a_ < 0, -2 if a < 0,
n n n
b, 2 0 and b < |an|, and hence, by Test |, b, converges.

The same is true for z:cn. Hence 2:(bn - cn) = z:an

convarges. (Problem I(a) of Section 2).

This theorem will sometimes tel!l us when a series
containing negative terms converges butf never when It

diverges. For example, the seriles

|
|+ y-gt+tgtg-gtrtrrtg-gt ...
diverges, but none of our tests will give us this iInfor-

mation, (See Problem 2),

-

M 9,




From Theorem 2 and Test | we get another useful test

for convergence,

Ratlo Test |, 1f, for sufficiently large n,
!
< M < | converges
CIy - N
a # 0 and |=—— then E:an
n > M2 > | diverges
a4
Proof., |f for n > N we have s MI < | then
2 n=N _ n
lanl < Mllan-ll < Mllan-zl ces XM IaNI = CM,", where

C = Ml-NlaN . Since M| <1, E:CMIn converges and hence so
does E:Ianl, and by Theorem 2 so does z:an.

a

If for n > N we have il > M, > | then, similarly,
n
a > cM."., Since M, > |, a_ does not approach 0, and
n' = 2 2 n ’
the series diverges by Theorem | of Section 2.

The following test Is related to the one above in the

same way that Comparison Test 3 is related to Comparison

Test 2,
Ratio Test 2. If lim |— = M then
n-+w n

converges M < |

E:a 1 f .

n .
diverges M > |

If M = | this test gives us no Information,

o 912 ;
o 962



Example 4, continued,

(n + 15(.9"*!

63, 9"

Since .9 < |

Proof of Theorem . We

need consider only the
case of an increasing
sequence., |f the theorem
is true for this case,
and if 8)1535,83500 is a
decreasing sequence with
a lower bound B then
-al,-az,-és,... is an in-
creasing sequence with

an upper bound -B and
Then

so has a limit L.

lim
N n

< cea < B < 444 < B.

-— 1l e

The flow diagram in

Figure 3~1 gives the

PR Y
T
[ L 2R

Applying Ratio Test 2, we have

S
Iim.9(n+l) = .9 Iim (1 + )
n o n n +co n

the series converges.

Ay — 2y
?1 (—'—‘ B
L — 1

o=

[ce—i+Bi)/2]

Ais — AL A1 €— C
Bis ¢ Bi+s €—DBi
1 R |
Le—it+1
Figure 3-|
Gk ——————+——
Aj C an L Bj
- Aitq Bl
(@) Statement E s true
- e t—p——} $ Y
A L. C Bi

Ap+1 Bi+1
(b) statement E is  false.

Figure 3-2

913 9¢ .
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essense of the bisection process one follows to produce
two sequences satisfying the conditions of the Complete-
nes Axiom and determining ALE . Here Statement E is the

following: There is an n for which ¢ < a_ <B The

' [ ]
“way this statement operates is shown in Figure 3-2, In

n

each case the half of [Al’Bi] chosen for [AI+|’BI+|] s

" the one containing the presumed limit L.

By the usual bisection argument the sequences
AI’AZ’AS"" and BI’BZ’BS"" satisfy the conditions of
the Completeness Axiom and so have a common !imit L., We

have only to show that L is the limit of 3 yps83p000 o

Given ¢ > 0 we must find an N such that

|la - L] < € whenever n > N,

n
Now the length of the interval [Ai,B'] is

i~

B' - A = (BI - Al)/z ,
and so we can find an i for which B' - Ai < €., Since
BI'BZ"" is a decreasing sequence with limit L, L :-Bi'




Simitarly L > A, so L is in the interval [Ai,Bl:l. By
construction, there Is an a In the interval Ca;,8, 0.
I'f n > N then also

a, Is In EAi’BIJ’ for

a, 23y 2 A. and

n |

a, = BI since, by

construction, each

Bi is an upper bound ; —_ ; .
: A ay a L B
of all the a_. ‘ N n v
n
Figure 3=3 illus-
trates the relative Figure 3-3

posltions of the
various numbers.
Since, for n > N, both a, and L lie In an interval of

length < € we have la_ - L] < ¢ as desired,

n

Like statement M in the proof of the existence of
a maximum, In Section 6-7, Statement E is nonconstructive
since I+ cannot, in general!, be decided Iin a finite

number of steps.

BRI 96



PROBLEMS
|. Prove Comparison Test 3.

2. Show that

! ! | ! | | ! !
|+ z-gtg+ts-gryrg gt -
diverges. [Hint. thpare the partial sums 83,86.89,...
with t+he partial sums of the series | + % + % t oeee

Does this last series converge or diverge?]

3, Test the following series for absolute convergence,

convergence, or divergence,

(a) (-t L
n=| n3
= n=| n

8
3
N

(c) (-1""

n=| n3 + |
(d) (-1)k=! ‘TI" |
= 7
b "o og.




(o) ;z: (—pyk-t Kk
= k2 + |
. = k |
() ;Z;g =" TR
- 2
n n
(g) (-n"
n= e

(h)

3
" 8
[}
3
[}
VY
+ |+
3 3
N
SN——
N

(i) (=1 )”"-ﬂﬁ
n=| 3

() (-1)" log n
h= n

(k) (-
=l Yn

8
b=

3
1]

We often think ¢t a real number as an infinite

decimal, e.g.
n = 3,14159265358979... .

In general, any positive number A = N,a|a2a3... ,
where N is a non=-negative integer and each I has

a value 0,!,2,..,.,8, or 9, What we mean by this

Lo W



a

a a )
| 2 3
A =N+ + + + oee¢e = N +
0 2

n
102 103 to"

(a) Prove that any such series converges to a

value in [N,N + 1J.

(b) What general statement can be made about the
remainder after n terms; that is, about the

error in truncating the number fo n decimal

places?

(c) To round off the number to n decimal places

we add 5/IOn+ and truncate. What can be said

about the remainder?

96§
918




4, Infinite Series and Improper Integrals.

There is considerable similarity between infinite

series

and improper integrals of the type

© M
./; f(x)dx = ﬁLm j; f(x)dx.

To capitalize on this similarity we need the analog for

functions of Theorem | of Section 3.

Theorem |, A bounded monotone ¢unction on [a,=), has a

limit as x = .

The proof is the same as for the earlier theorem,
with merely the substitutica of x for n througheut, The

same is true of Corollary | and the comparison tests.

Corollary |, |f f(x) > 0 for sufficiently large x then

, M
./; f(x)dx converges if and only if.jg f(x)dx is bounded

for all M > a,

L

919 969



We leave the statement and proofs of

tests as an exercise,

Example 1. In Example 3 of Section 12-4

the Integral

the comparison

vve encountered

+
! dt

/ 3/4° 4+ 440 - 415 - 43 + 4+
0 (1 + 1t3)2

and made some vague statements about i3

convergence.

We can now be good mathematicians and determine its con-

vergence by comparing it wi+h-/: i; dt,

Using Comparison Test 3 we have

83

bi 3/t .i_212;.> 2 (l__
T (1 ¢ 13)2

3/t12 + 4+10 4+ otc.
T (1 + t3)2

/I PRI
3 +2 13 3

(=)

Hence the given integral converges.

L]
o

which converges,

370

920



Our main interest, however, is In the interaction of
series and Integrals, and for this the following theorem

is fundamental.

Theorem 2.- |f f Is a decreasing functlon then
m
) 25 f(k) = f(n) i./. f(x)dx < ;E f(k) - f(m)
=n n =n
and

m m m
(2) /; F(x)dx + flm) < Z f (k) :._/; f(x)dx + f(n).
<=n

Proof. The inequali-

ties

;
£(K) K///// p(kﬁl

k+ |
.;/; f(x)dx K+1

< f(k)

Figure 4-1

are obvious from Figure 4-1, since the middle term is the
shaded area under the curve and the two bounds are the

areas of the contained and the containing rectangles. In
(3) let k have the successive values n, n + |, «oe, m = |

and add the resulting inequalities. Ve get

5T5i. 5)71
' LY}



m m m= |
Y f(k) _<_/; f(x)dx < 3 f(k),
k=n+ | k=n
which is (1), To get (2) we solve the left=hand
inequality and the right-hand inequality of (1)
m
separately for ), f(k) and comblne the two results

k=n
as in (2),

Although this theorem is stated for any decreasing
function our only interest, by virtue of Theorem | of
Section 2, is in a decreasing function with limit O,

Such a function is necessarily positive,

Corollary 2, If for sufficiently large x, f(x}) is a

decreasing function with limit zero fhen./: f(x)dx

and z:f(k) either both converge or both diverge,

Proof. If E:f(k) converges then the rightmost sum
of (!) remains bounded as m +» o, Hence./:m f(x)dx is
bounded as m = » and by Corollary | the integral con-
verges., |f 2: f(k) diverges then the leftmost sum

of (1) is unbounded. Hence so is./;m f(x)dx and by

Corollary | the integral diverges,

o1 97






Example 2. The p-series, f p # |,

The limit exists only if | = p < 0, i.ea p > 1. For
p = | we get *Lm log m which dous not exist. Hence the

p-series converges only for p > 1.

Example 3. Ve wish to compute S, k™2 to 5D accuracy.
k=1

How many terms do we need? From (2) we have

m m m
-2 | -2 -2 |
4+ = < < + —
_/;+| X dx E K ./;+| x dx »

m2 T k=n+) (n + 102
or
m
| | ] -2 | | |
- -t — < 2: k < _——t —
- - +
n+ o m p2 7 g=n+d n+tlbom h+ 2
Now let m > =, This gives
(4)—1_—;-<R< l|+ ' ’
n ¢ - n=n (n + 112

R, being the remainder after n terms of k™2, This
k=1
tells us that the remainder decreases quite slowly, like

—_T ° However, (4) also says that

923 9
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! < R = - < .

2(n + N2 = ° n + | 2(n + 102 7 2(n + 1)2
Hence if we add l I + ! to the n-th partial sum
n 2(n + 12 |
we get an approximation in error by at most ——m  —— .
2(n + 1)2

Using this, for 5D accuracy we need an n such that

—t 5 x IO_G.

2(n + 1)2
which gives n = 233, In a sum of this magnitude roundoff
error will not be serious but it must be allowed for. This
will increase the value of n slightly.

(=]

ExamEIe 4, Although neither Z %nor‘/; -){-dx converge,
k=1
the difference of their "partial sums",

n
3 L
(5) s = E: & - togn

does converge as n + «, This is evident from Figqure 4-2,

_—
ot

1 2 n n+1

Figure 4-2




Sn Is the area of the cross-hatched region, and as n

increases this area decreases as pieces of the bottom

rectangle are whittled away. Hence Sn, being a bcunded

decreasing sequence (bounded below by 0) has a limit,
This limit, like = and e, crops up in a surprising
number of places in mathematics. It is called Euler's

constant and designated by the Greek letter Y (or some-

times by C or other symbols). |fts value to 20D is

y = 0.57721 56649 01532 86061,
. no
Knowing y, the best way to approximate > x for large n
k=1
is by replacing Sn in (5) by its limi*t y. Thus

100
3. = = log 100 + y = 5.18.,
K=

The error in such an approximation can be shown to be

about !/n.

This relation indicates the extremely slow growth of
the partial sums of the harmonic series. To have
ﬁE -& > 100 we need, approximately, log N + y > |00, or
h—l exp(100 - vy). This is a very large number. As a
computer exercise the smallest such value of N was computed

exactly. |t Is

N = 1509 26886 22113 78832 36935 63264 53810 14498 59497.




PROBLEMS

Prove Comparison Test | for integrals: If f(x) > 0

and g(x) > 0 on [a,=), and if g(x) is unicon on

" [a,M] for all M > a, then if

g(x) < f(x) converges

on [a,=) and if _/; f(x)dx
g(x) > f(x) diverges

so does ./; g(x)dx,

State and prove Comparison Test 2 for integrals,

Determine, if possible, the convergence or divergence

of the following integrals.,

(a) /; ->|—<e">< dx
(b) Jﬁ log x e % dx
(c) f /—2——x dx

! x< + |

(d) 0 —L __ dy
Vy3 + |
y

o 926 9
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(f) /;
(g) Jﬁ“
(h) ./;“
(i) Jﬁ“

(5 /:.———

w f

State and

integrals

Show that

Y8 + x

prove a comparison test for improper

b
of the type {lg+./; f(x)dxe.

|
jg x Pdx converges for p < | and di-

verges for p > I,

By comparison with integrals of the above type

~determine, 1f possible, the convergence or divergence

of the following integrals.



(a)

(b}

(c)

(d)

(e)

()

dx. Let u = a = X.J

s '
0 x2) (i

!
+

[Hint.

dx, k% < 1.

- k2x2)

e
Iog X dx
53

S~
=)

n/2
tan 2x dx.

S~

Determine the convergence or divergence of the following

series,

Corollary 2 is not necessarliy the best test

to use,

(a)

(b)

(c)

(d)

|
n(log n)?2

M

n=2
hos 3
3 no
n=| 4"
2 sin —
2:I 21
n=
2 !
n=| n- + 2n

o 9 8
B L z
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(e) 2. log (3n + 1)
(£) ) log (I + =)

(g) 2: arctan

. — k + 2
th) 2: Tog (k + 3)

iy 3 sink

8., in Section 11-8 we defined the gamma function ,

rix), by

r(x) = _/; fx-|e-fdf.

-n

(a) By comparison with Z:nx-le show that

a0
-/; +*~'e=T4+ converges for all values of x.

|
(b) By ‘comparison with jg +*"1dt show that

|
jg +*~'e"td+ converges for all x > O,

(c) Hence show that T'(x) is defined for all x > 0.

=

o l 929 9"




(d) Show that F'(x + |) = xI'(x) for all x > O,

(e) Hence show that the value of T'(x), for any
x > 0, can be obtained from the value of
T(z) for a suitable z in [1,2). Given that

ret.5) = 0.88623 find I'(.5) and T(6.5).

e

I | L/z

Figure A A Fiqure B

| want to pile dominos, as in Figure A,so as to

get as great an overhang as possible. The first

(top) domino can be put with Its center of gravity
" over the edge of the second one, so as to give an

overhang of L/2. The c. of g. of these two can

be pdf over the edge of the third; this gives an

additional overhang of L/4, And so on. We can

obviously do no better than this,.

930




(a) Show that 1f the c. of g. of the first n
dominos is a distance of an from the front

edge (Figure B), then

L
a = a + .
n+ | n 2(n + 1)

(b) What is the maximum overhang available with 28
dominos of length 2 in.? [Hint. Use Example 4.]
Ans. 3.89 inches.

(c) What can you say about the overhang if there is

no restriction on the number of dominos?
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5. Power Series.

We now return to the considerations of Section |
but with a different approach. There we started with
a function f and determined its Taylor series, of the

form

(1) Y, a (x - a)”.
n
n=0
Here we start with the series (1) and see

whether it defines a function, A series of the form (1)

is called a power series. Every Taylor series Is a

power series but the converse is not true.

0f course we are interested in whether or not (1) con-
verges - more precisely, in the determination of those
values of x for which (1) does converge, We see at once

that (1) converges when x = a, for then the series Is just

ao + O + O + O + L N J = ao.

To investigate other values of x we need a preliminary

‘ t+heorem.,

Theorem 1. If (1) converges for x = X, it converges

absolutely for any x for which |[x - a] < |[x, - a

If (1) diverges for x = X4 it diverges for any x for

which [x = a| > |[x, - a

932



n n
Proof. I £ E:an(xo - a) converges then |an(x0 -a) | +0
as n + =, Hence for n sufficiently large Ian(xo— a)nl <.
Now

n

la_(x = a) | n
n _| x - a = "
. ’
Ian(xo - a)n| X0 a
with 0 < r < | since we are assuming |x = a| < |x0 - ale.

Hence for n sufficienfly large Ian(x - a)|n < r", and by
Comparison Test |, E:lan(x - a)nl converges since 2"
converges. For the second half of the theorem, if

E:an(x - a)" converged so would z:an(xo - a)" by the first
N

half and Theorem 2 of Section 3. Hence z:an(x - aj

must diverge,

We can now prove the basic theorem concerning the
convergence of power series.
Theorem 2. For any power series of the form (1), one
of the following is frue:
(a) The series converges only for x = a;
(b) The series converges for all x;
tc) There is a positive number R such that the series

converges if |x - a] < R and diverges if |x - al] > R.

Proof. For simplicity we give the proof for the case a = o,
{.e. for
(-]
(2) a, x".
n=0
' 933




The general proof proceeds similarly,

That (a) and (b) can occur is shown by applying the

(=]

Ratio Test to the two series . n!x" and D
n=0

n=0 n!

| f neither (a) nor (b) is true, there must be two points,

X and Yo with X, # 0, such that (2) convergés

for x X and diverges for x = Y-

If x, <0 replace it by -x|/2;
if Y, < 0 replace it by -zyl,

Then by Theorem | the series (2) T—1
still converges for x = x| <«
Z e (Xi+Yi)/2

and diverges for y = Yo and ¢
0 < x, <y,. We now start (jf§::anz" convergcig)
the bisection process shown F'%/ \‘ T

Xie1 Xi Xi+1‘——‘z:
in Figure 5~1, This gives us Yies Fad Yisg «—Yi

| _J

an increasing sequence : - V.
Le—1L+1

Xps Xpp oo and a decreasing

sequence Y, Y,y eee with a Figure 5~1

common limit R, and such that (2) converges at each X
and diverges at each y,. If | x| <R there is an x,> |x|
and so by Theorem |, z:anxn converges. |f |x| >R there

is avy;< | x| and by Theorem 1, E:anxn diverges.
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In case (c) the number R is called the radius of

convergence of the series. Cases (a) and (b) can be

included in this definition by allowing R to have the

values 0 and = respectively.

The algorithm of Theorem 2 is an impractical method
of determining the radius of convergence, since the
fruth or falsity of the branch condition, 2a_z" con-

verges, Is difficult to determine. The following theorem

is useful in many common cases.
2n
Theorem 3., If lim = R < » then R is the radius
n-»o a —
n+ |
o
n
of convergence of > a (x - a) .
n=0

Proof. Applying the Ratio Test to the series, we have

convergence or divergence according as

n+ |
a (x - a)
n+ |
Iim < | or > |,
n >« n
a_ (x - a)
n
or according as
n
a (x - a)
Alm n n+|| > | or < |,
(x = a)

a
n+|

This limit is 17?%?7;r , and so we have convergence or

« This

divergence according as R > [x = a] or R < |[x - a

is just the condition that R be the radius of convergence.
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Example 1. The Taylor series for log x about I is

L = 2 + L(x - )3 -

Hence
a
n | . - n_+ |
Aim = lim{— % = lim =1,
B a n+o\n n + | n-+o n
n+ |
Hence R = |, and the series converges for |[x - I < !

or 0 < x < 2, which agrees with what we found at the end
of Section 1.

Example 2. The Maclaurin series for sin x,

. _ I 3 I 5
sin x = X = 37 X" + 5T X cee

]
has coefficientz 0, |, 0’-éT’ 0, ?T’ co oy
and Theorem 3 obviously cannot be applied. Howev=r, we

can put z = x2 and write
i = x| - 4z + = 22 )
sin X = X "'3! Z 5! Z - e e ’

and apply Theorem 3 to the series in z. We get

Mol 7 ° Zn + 300 (2n + 2)(2n + 3) = =

)y =

= lim
R n-lrcn

in agreement with Problem 4 of Section I,

Neither Theorem 2 nor 3 tells us anything about
convergence when | x ~ al = R. Anything can happen
here, as Is shown by the following examples, each of

whi'ch has R = 1I: ’
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(a) E:-ér converges at both | and =1;
n

n
(b) ér converges at =1 but not at |;
(c) 2: x" converges at neither | nor =I.

Frequently the behavior at the ends of the intferval of
convergence s of no great Interest. If it must be

determined the methods of Sections 2 to 4 are available.

For values of x within the inferva! of convergence

the relation

f(x) = 2: a (x - a)"
n
n=0
defines a function, since for each such x, f(x) has a
definite value. The manipulation of these functions,
for a glven value of a, Is particularly simple, being

essentially the same as for polynomials. For simplicity

we use a = 0 in the following discussion; In any case
one can achleve this by introducing a new variable

z = x - a and using power series in z,

Vi A 931 9
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The polynomials,

f(x) = a, + ax + 62x2 +oaas toa x,

g(x) = by *+ byx + byx2 4 .o+ b x",
have the properties:
(a) f(x) * g(x) = (ay % by) + (3, £ bIx + «ou + (3 b yx";
(b) cf(x) = ca, + cax + ... canxn;

= 2
(c) f(x)glx) = aob0 + (aobI + albo)x + (aob2 + albl + azbo)x

(d) f'(x) = a, + 2a,x + 333x2 + ... + na x ':

The corresponding propertles of power series are

stated in Theorem 4, Proofs of (a) and (b) follow from

Problem | of Sectlon 2 but (¢), (d), and (e) are much harder

and proofs will not be given here.
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Theorem 4, Let

[ -] (-}
fF(x) = X a x" and alx) = 2, b x"
n n
n=0 n=0
have radii of convergence RI and R2 respectively., Then
- n - .
(a) f(x) % g(x) = Egb (a % b Ix, R = min (RI’RZ)'

(b) cf(x) = 3, ca x", R =Ry;

= 2
(c) f(x)g(x) = aobO + (aobI + albo)x + (aob2 + albl + azbo)x

n
+ o0t (aobn tab oyt e ¥ anbo)x
+ v R = min(R,,R,)
1 = 2 n=1 = .
(d) f'(x) a, + 2a,x + 3agx% + ...+ na X + «oey, R Rys
! a xn+|

X
- ! 2 ! 3

In each case R is the radius of convergence of the series.

ExamEIe 3, We have establlished that

(3) s e e 2 -3k, xl <,

gt 959



and so, setting x = 12,

|
I+ t2

R A T S LI S b B S

Thtegrating from 0 to x we have, by (e),
(4) arctan x = X = éx3 + %xs - %x7 + v x| < 1.

Example 4. Starting agaln with (3) we get by differentiating

and changling signs,

|
(1 + x)2

= | = 2x + 3x%2 - 4x3 + ..., x| < 1.

We can get the same result from (c) by multiplying the
series in (3) by Itself, It Is often convenlient to do this
by the method used In elementary algebra for multiplyling

polynomials:

| + X
I = | - x x2 = x3
|+ x LI B )
I— X x2 - X3 [ K]
- x + x2 = X3+ ...
xz -x3+ R
- X3 + " e
L] L ] . L]
___i____.= | - 2x + 3x2 - 4x3 + e
(1 + x)2

940 - 999



From (d) of Theorem 4 we get the following important

result,

Corollary |, |f the series

f(x) = 2: an(x - a)n
n=0

has a radius of convergence R > O then

(a) All derivatives f(n)

(x) exist for |x - al < R;
(b) 2, =r|1—-!-f(n)(a), n=0, 1,2, eoo ;
(c) L e (x - a)" is the Taylor series of f(x) about a,
n=0

Proof., By Theorem 4(d),

f1(x) = 2 na (x L na (x - ", x| < R
' n=0 n=|

Applying Theorem 4(d) to this series gives

" = . - - n-2 _ = n-2
f"(x) = ) nin Na_(x = a) = Y n(n - Na (x = a)
n=1| n=2
| x| < R.
And so on., In general
5) %) = 3 nn = Deeatn = k+ Da_(x = 2%, |x| <R,
n=k
"'5{",{)* 94]
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we - Putting-x = a In (5) glves

(k)

f (a) = k(k - I)...I-ak = k!ak,

which gives (b), (c) follows at once from the definition

of a Taylor series.

This corollary tells us, among other things, that
there Is at most one way of expanding a function in a
power series in x - a, namely, the Taylor series about a,
Thus two power series that equal the same function mus*
have thelr corresponding coefficients equal, This
enables us to use the method of undetermined coefficients

to compute ferms of a Taylor series.

Example 5, To find terms of the Maclaurin series for the

function
(6) f(x) = S22 X
| + ex
we assume that
= 2
f(x) ag t @ x * ayxt + ...

and write (6) as

= X 2 +
cos X (| + e )(a0 + 3% + a,x cee)

942. 950



or
| + Ox = %xz + 0x3 + L4 ...

(2 + x + =x2 + -é—x:’ +osxt 4 L (e tagxd azx"' + aed)

2

1 2
2aO + (2aI + ao)x + (2a2 + aI + 2ao)x

1 1 3
+ (2a3 + a, + 2aI + 6ao)x + e .

Equating coefficients of powers of x gives

- =4
2a0 = 1, ag T 7 »
- = -4
2aI t a, = 0, e = =g
2a, + a, + ta = - a, = -+
2 ! 2°0 2’ 2 4 °
2a, + a, + La. o+ La = 0 a; = 1
3 2 27| 60 ’ 3 48 *

and so on., Since we have formulas for the n-th terms of
the two given series the above equations are the first few

v .cases of a general recursion formula,

0 if n is odd

(-I)n/z/n! if n is even

for determining a . Our present methods do not suffice
to determine the radius of convergence of this serles,
From the theory of functions of a complex variable it can

be shown that R = mw,

SR 43
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Example 6. We wish to find the Taylor series about | cf

/ﬁ£9%4? ifox # 1.
f(x) =
| if o x = 1.
To simplify the algebra we set z = x - | and find the

Maclaurin series for

g(z) = f(1 + z) = //Tbg ('z+ 2L,

Proceeding as above we get

log (1 + 2) S IO I S o
- | - 5z + 32 723+ ...

= 2 2
(aO + alz + azz + 4ee)

2 4 2a0a|z r (2a0a2 + a|2)z2

3
+ (2a0a3 + 2a|a2)z

. 2 4
+ (za()d + 26|63 + 32 )Z + e

4
Hence ao2 = | and since f(0) = |, we must take aj = I|;
2a,a, = - a, = -
0| 2 ! | ’
2 = 1 = 13
2aga, + 3, 3 32 % 36




and so on, Finally,

= | - f(x - 50, - 2 - "
f(x) = | = 4(x 1) + 96(x 1) + ... an(x 1)+ eeae

where the coefficients are defined by the recursion formula

n
_ (_qy" _
B;b ad . = (=1 /(n + 1), a, I

You can see how this method might be used for a wide
variety of problems. For instance, referring to Example |

of Section 7-2, if we put

y = f(x) = ¥ a(x - a", a =1, ag = +35
n=0 "

we can solve
x3 + f(x)3 = 3xfx)
for IR PYRRRN thereby obtaining a Taylor expansion of the

implicit function discussed in that example.

Another application is to differential equations. The

equation

Py
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(1) Lo g2 492, y(o) =1,
for example, can be solved by putting

= 2 =
(8) y = a5 + a,x + a,x“ + ..., ag = I,
and solving

3 = 2 2 2
a, + 2a,x + 3a3x + e x< + (ao + a, x + a,x + .e4)

2 |

successively for CIWLPYRRRI In this type of problem the
determination of the radius of convergence of the series
can be extremely difficult, and in general it can only’be

approximated by numerical computation.

There is a serious objection to this method of getting
power series if we wish to use fhe series to compute approx-
imate values of the function; namely, we have no bounds for
the remainder after n terms. For instance the series (8)

is readily found to start

= 2,43 ., 14,85
(9) Yy | + x + X + 3X + 6)( + sx + se .
If we put x = ,2, is
4 7 6 .
= 2 - 3 g ) - 5
S5 = | + ,2 + (,2)c + 3(.2) + 6(.2) + 5(.2) l.256
946 954



a good approximation to y(.2), and if so, what Is the
maximum possible error? We have no easy way of answering

these questions.

This does not mean that (9) is worthless, for there
are uses for Infinite series other than the computation
of function values. One of these is the determination
of !limits, the topic of Section 10~4, Suppose, for

instance, that we want to find

| = X
1 COS

x+8 x !

y(x) = e
where y(x) Is the solution of (7)., Expanding each function

in a Maclaurin series gives

- R DO T BT
| (1 5 X + 24x ces)

"y 3 | |
X+0(| +X+X2+3X3+...)-(|+x+'§-><2+'6-><3+ ooo)

L2 o 1 v
2x + 24x + ® e o

x+0 1.2 1.3
2x +6x + * o 0

0]
3

"
3
Nl =i

-

9‘7 9(‘)’7
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For limits as x - a this method is often the simplest
one to use 1f the functions involved can be expanded in

Taylor series about a,

Power series have many other interesting properties
and applications, some of which are given in the problems,
For the full development and understanding of the theory
of power series It Is necessary to allow the variable to
assume values which are complex numbers. The related
theory, the theory of functions of a complex variable, is

one of the most Interesting branches of mathematics,

958
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PROBLEMS

I. Find the radius of convergence of E: anxn for each
n=|
of the following cases, if possible,

(a) a_ = 2" (b) a = n?

(c) a = i%%li () 8 = :n

(&) a_ = %;%}; (£) o = flfhgl
(g) a, = lfé?ll (h) a, = cos (2£J

(i) a

sin (%g). [Hint. Try grouping terms.]

2. (a) Derive the "binomial series"

m m -
| + mx + —im—y—ll x2 + coe

(1 + x)

mim = 1) se0 (m=n + 1) _n
+ X
n!

where m is any real number,
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(b) Show that the radius of convergence of the
binomial series is | except when m Is a non-

negative integer, in which case It is =,

Find the flirst four non-zero terms of the Maclaurin
serles of each of the following functions. |f
you can, also find the general term and the radius

of convergence.

(a) e” sin x

sin X ]

(b) +an x. [Hint, tan x = ot X

X -X
e + e
(c) cosh x:_—z_—
e - e %
sinh x = _._2__—

X
(d) log cos x. [Hint, Use JC tan t dt.]

(e) Y3 + cos x. Ans. 2 - %xz + 7%§x“ + T§%§TXG + eee

x + vy , y(0)

(f) Solution of y'!

0.

(g) Solution of y' = .x - y2, y(0)

Ans. -2|-X2 - Im-xs + —I%UXS - -g-g%vxll + eee o

950
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4, The "sine integral"™ function Si(x) is defined by

X sin t
Si(x) = /; =—F— dt,

(a) Find the Maclaurin series of Si(x).,
(b) Tompute Si(!) to 3D.

(¢) Use the computer to compute Si(5) to 5D.

Ans. 1.,54993,

(d) Write and run a program to tabulate Si(x) to 5D
for x = 2(,1)7, Compare with page 242 of
"Handbook of Mathematica! Tables", Abramowitz

and Stegun, Dover Publications,

(e) This table can also be computed by evaluating
the integra! by Simpson's rule, |f this is
done efficiently, i.e, without recomputing
the whole integral for each value of x, which
method do you think is most efficient, Give

the reasons for your answer.

(f) Recompute the table using the Simpson rule and
- compare, if you can, the machine times needed

for the two method.

51 100;




The following theorem can be proved by methods some-

what beyond those of our text: If 3 a_ converges
n=0

then the function f(x) = 3 anxn is defined and
n=0
continuous in -1 < x < |, The important point is

the continuity at x = 1.

(a) Apply this theorem to

_ x2 x3 xt
to prove that
| - IR = log 2
7 3 4 L) by .

Check the answer of Problem 8,Section 2.

[Hint. Since log(l + x) = f(x) for x < I, and
both functions are continuous at x = |, we

must have log(l + 1) = fC1).].

(b) Prove that

| ! ! Ll
I-?+3'-'7"+c-c-'4--

(c) Using the method of Problem 8, Section 2,

evaluate w to 2D. (But see Problem 7 below).



6. Evaluate the following limits.

. tan x - X
(a) lim ———
. x+Q Sin x = X

(b) Lim arctan x - X
x+0 g% . 7% - 2x

(c) Lim log (1 + x)
x+0 log (1 = x)

(d)  1im YT+ x = V1 = X
x-+0 Zx

(e) ]

6y tim (L - —
x>0 X /X

( . V% =

g) lim

¥ x| log X

(h) lim (tan x - sec x)
X+

7. (a) Prove the identity

arctan A + arctan B = arctan ? t 28

by taking tan of both sides.

953 ' ~




(b) By successive application of this identity

show that

4 arctan % - arctan 7%§ = arctan | = % .

(c) Use this identity and the Maclaurin series
for arctan x to compute m to 4D accuracy,
using pencil and paper ohly.

This method was used by William ShanKs
in 1873 to compute m to 707 decimal places,.
Since the advent of the electronic computer =
has been computed to more than 100,000

decimal places,

8., Associated with any sequence YR YERR there is

‘a power series a, + a x + a2x2 + ... o« Even though

this power series may not converge for any x except

zero we write *

gix) = anxn
n=0
and call g(x) the generating function of the sequence.

Here is one of the many applications of generating

functions,
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(a) The Fibonacci numbers (see Section 2-4) are

defined by

(i) f = f o, 0= 2,3,

Multiply (i) by xn, sum from 2 to «, and

reduce the result to
(ii)  gtx)(] = x = X

where

[-]e

(iiit) glx) = fnx

0

n
is the generating function of the Fibonacci

numbers.

(b) From (ii) derive by partial fracfion§

. 2| | ]
(iv) g(X) -F[I — ax" T - bx] ’
where a = I_.;.-_/E ’ b = l—i—./—s- .

(c) Expand the two terms of the right-hand side

of (iv) in series, and equate coefficients of

Y

A




like powers of x in the resulting series and

(i11) to get, finally,

e [E) - (2]

(d) Check the formula for n = 0,1,2,3.

5
and that fn is very nearly equal to this quantity

(e) Prove that f_ is the integer closestto R s s "
n a - ’
for large n.
- 20
(f) Show that fIOO 3.5 x |0

(g) Criticize the derivation of the formula for fn.

vz
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Chapter 14

DIFFERENTIAL EQUATIQNS#

!. Numerical Solution.

In Section 9-2 we con idered some differential

equations with initial conditions, of the form

(N y' = fix,y), y(xo) = Yo

For certain simple cases of the function f we were able
+o find a solution of (1), that is, a function y(x)

satisfying the initial condition and such that
y'ix) = fix,y(x))

for every x in some interval er’xN]' In this chapter we
shall consider much more general cases of (1), discussing
whether they actually have solutions, and, if so, how to

determine these solutions either exactly or approximately.

To keep things simple at first we start off with an

.equation we know all about, namely
(2) y!' = ky, y(0) = 1,
*Some of the material in this chapter is taken from

"Engineering Mathematics" by Block, Cranch, Hilton, and
Walker. Permission to use this material has been granted
by the copyright owner, Cornell University, but its publi-
cation in this form is not endorsed by the copyright owner
or the original authors.
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We have seen that the unique solution to this equation is
-y-= ékx.' Suppose.we did not know this and we wanted to
find the value of

y(x,) where x, = ol / KX
Since from (2) we can
find y'(0) we can

use the linear appfox-

imation of y(x),

y(x) = y(0) + xy'(0), X
X3
to get
Figure |-
y(xl) = YI
= y(0) + .1y'(0) = 1 + .lk.
In Figure 1-1, y(xl) is the ordinate of A and YI the
ordinate of A,. ‘
Now suppose we want y(xz), where x, = 2x|; We could

of course take
y(xz) = | + ,2k,

giving the point BZ’ but it seems better to start with

AI and take another step of X Thus:



-~ = 1 =
y(xz) = Y2 YI + .y (YI) YI +_.IkY|.

This gives us point BI' Notice that the line AIBI is
not tangent to the curve y(x), nor paralle! to the
tangent to y(x) at A, but is tangent to the solution of

y' = ky that passes through AI‘ (Dotted line in Fiqure I=1).

The process can now be repeated to get Y3,Y4,...
corresponding to points CI’DI"" that approximate points

c,D,... on the tfrue solution,

To investigate this process further it is convenient

+o introduce some notation. We assume that X4y = %X T h
is constant, so that X = %X + nh = nh in our present
example., Then

- ! - -
(3) Yn+| Yn + hy (Yn) Yn + thn, YO e

This equation gives a recursion formula for Yn' Written

in the form

Yn+|

(1 + hY , Yy =1,

we see that Yn is multiplied by the constant (I + hk) at

each step. Since its initial value is | we obviously have

(1 + h)",

<
[}
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Now we can write

| Jnhk
(1 + hk)" = [(I + hiOTE

<
U]

and by Problem 7(a) of Section 10-4,
|

lim_ (] + hk)h = e,
hk-+0
Hence for a fixed x = nh, as h + 0 and n =+ =,
lim Yn = ekx = y(x), Thus we are assured that we can get

as close an approximation as we wish, by taking h small

enough.,

We shall show that this happy conclusion applies to
a very general class of equations of the form (1). Before
proving this, however, we shall examine these equations

from a geometric point of view.

e - ley,

U}
—
+
o0
x
e
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PROB LEMS

I+ The error in using Yn as an approximation to y(x) is
£ o= XX o (1 + k)N

(a) Regarding the right-most term as a function of h

and using its linear approximation show that
E = %hkzxy(x).

(b) The relative error, the ratio of the error to

+he true value, is in many cases more significant
than the absoluTeAerror. Discuss the behavior of
the two types of error in this problem, particu-

larly as x increases with fixed h., The cases

kK >0 and k < 0 must be distingu’. ..t

2. Use the computer to determine E for various values
of k, x, and h, with kx = 1. The value of (I + hi) /D
is best obtained by successive squaring, using h = x/ZN.

Does the linear approimation seem to hold pretty well?

what happens for very small values of h?

. igg;
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2, Graphical Solution.

We consider the differentlal equation
(13 y' = fix,y),

assuming that the function f has enough continuity proper=-

ties to make the following discussion meaningful.

At any point (x,y)
at whlich f(x,y) is de- //
fined, (1) determines a
direction, or more pre- — \\\

cisely, a slope at the X

point, The combination
of point and slope Is Figure 2.1

called a line element

and is usually repre-
sented by a point with

a short line segment

through 1t, Figure 2-1| ////7—<;\\\
shows three line elements,

Figure 2-2




Any solution of (1) must be tangent to the line
element at each of its points (Figure 2-2); and con-
versely, if we can find a curve that is tangent to the
line element at each of its points then it determines
a solution of (1), This property can be used to get

some information about the solutions of (1),

To do this we first draw a large number of line
elements, as in Figure 2-3, for the equation y' = X - y2.
This is somewhat of a chore if done by hand and is
mosf easily accomplished by first drawing isoclines,
curves along which the line elements have constant
direction. These are obviously the curves f(x,y) = m

for various values of m. One of these is shown dotted

in Figure 2-3,

A much pleasanter way to get the line element field
is to use a computer with a good graphical output. Here
it Is easier to dispense with isoclines and just plot a

large number of line elements on a rectangular grid.,

ATTEs - I
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Figure 2-3

With a sufficient number of line elements one can
fairly easily sketch in solutions of the equation.
These give an idea of the general shape of the curves,
their behavior with regard to local extrema and inter-
vals of monotonicity, etc. In Figure 2-3 it is easy

to deduce that the solutions approach the parabola

x = y2 = 0 as x increases but what happens as X decreases

is not so obvious. !n fact, each curve has a vertical

asymptote (Problem 2).

O







This graphical approach is often useful in getting
an idea of the shape of a solution before starting an
‘elaborafe analysis or compu+a+|on to find it precisely.
Knowing what to expect ahead of time is both a guide in
+he selection of a method of computation and a check on

any serious errors that might occur.

[
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PROBLEMS

Use line elements +to sketch several solutions of
each of the following equations. Make whatever
comments you can akout different ftypes of solution of

the same equation, local extrema, behavior for x

increasing and decreasing, etc. Note that all local
extrema occur on the isocline f(x,y) = 0.
(a) y' = x + vy (d) y' = X
x2 + y2
v - X y - Ox t+ y
(b) vy v (e) 'y X = 5y

(c) y' = =L (F) y' = x +

We wish to show that a solution of %% = x = y2
has an asymptote as x decreases.
(a) Setting z = =-x, show that the above statement is

the same as showing that %% z + y2 has an

asymptote as z increases.

(b) Let y(z) be a solution of %% =z + y2 and w(z) of
%% - w2, with initial condition y(a) = w(a) = b,
a >0, b 20. Give an argument showing that

ytz) > w(z) for all z > a.

- W8I0



(c) Solve for w(z), to get w(z) = : .
a+F-z

(d) Show that y(z) has an asymptote as z increases.

3, Consider y' = xy + | for x > 0, and the solutions
starting at (0,b) for various negative values of b. Let C be

the curve xy = =1 in the fourth quadrant,

e (a) Show that a solution that crosses C eventually

goes down rapidly in the fourth quadrant. .

(b) Show that a solution that crosses the x-axis

eventually goes up rapidly in the first quadrant,

(c) Show that there must be at least one curve that
érosses nei ther the x=axis nor the curve C.

[Hint, Use a bisection process.]

(d) We shall show later (Section 8, Problem 9) that
there Is exactly oneAsuch curve, through a point

(O,bo). Locate bO as well as you can.




3, The Fundamental! Theorem,

To discuss the solution of
(1) y' .= f(x,y), y(xo) =Yg

we must first consider
some properties of fthe

function f. Suppose that

f is defined in some open

region R in the xy-plane,

The adjective "open" means

that the points on the

boundary aré not regarded

as points of R, For

Figure 3-1

example, R might consist
of the points strictly inside a circle, or inside a

rectangle,

f is continuous in R if, given any point (xo,yo) in R

and any ¢ > 0 there is a § > 0 such that |f(x,y) - f(xo,yo)l
whenever (x,y) is in R and |x - xol < § and |y - yol < &,
This is an obvious generalization of the definition of

continuity for a function of one variable. Its geometrical

R v 968 10 ?8



significance is shown in Figure 3-1: Given a square of
side 28 with center at (xo,yo), the function values at
‘ the center and at any point inside the square will

differ by less than €.

f is Lipschitzian in y (see Section 3=-10) in the

region R if there is a number L such that

| f0x,y ) = Oy < Llyy = ol

for all pairs of points (x,yl),(x,yz) in R, We usually
prove that f is Lipschitzian by showing that If;(x,y)| < L
in R, where f;(x,y) designates the derivative of f with

respect to y regarding x as a constant; i.e.

. fix,y + h) = flx,y)
' = » 2
fy(x,y) Alg A .

Proof Is left to the reader, (Problem 1),

We can now state the fundamental existence and

uniqueness theorem for differentia! equations.

Theorem !, |f f is continuous in a region R, then for aay
(xo,yo) in R there is an H > 0 such that (!) has a solution
yix) for | x - xol < H, If in addition, f(x,y) is Lipschitzian

in y i.n the region R then the solution is unique,

ﬁyﬂyi 969 1019




The proof of this theorem is well beyond the level

of this text.

Example |, For the equation

(2) y' = x + vy, y(0) = |
we can take R as the whole plane, since f(x,y) = x + vy
is continuous for all values of x and y, and f;(x,y) = |

is certainly bounded.

The solution is

y(x) = 26" - « - I,

Y=2eX-X-1
which extends indef-
initely in both

directions. Hence in

this cass we can Tak=

H as large as we

please.

Figure 3-2

Example 2, Consider the equation

(3) yr= A28y =,




The function is defined and continuous in each of the

regions x > 0, == <y < ® and x < 0, =» <y < =, Since

our initial point (1,1) lies in tThe former region we use
8y - 6 X
. ' = is i
RPN _LR_ bounded if |y| is bounded above and

x is bounded away from zero., So we must fake P of the

form

a < x <o, |y|l <M,

for some a > 0 and some M > O, M

The solution is (1.3

_QZEE__'_

%

y = 3
= —_— ’
2 + x2

(S

curve C) in Figure 3-3, The )

o

curve goes indefinitely fo

the right but must stop when

| __X=8N7 ___

it hits the boundary of R at

x = a, Hence H = | - a,

where a can be arbitrarily -M

small.
Fioure 3=3
| f we change the initial
condition to y(l) = 3 we get

curve (@ with equation

; i'i"f oM




This behaves quite differently, having an asymptote at

x = V2, and hence having H = V2 - I,

Finally, curve C) ’

96
64 - 7x2

with initial condition y(4) = -2, has an asympfofe on

the left, at x = 8/Y7 = 3, and so H = 4 - 8//7 = |,

Example 3, (See Problem 14 of Section 9-2),.

(4) yt = 3y¥%, yo = o,
Here f is continuous for all x and y but f; = 2y’1/3 is
unbounded near the x-axis. The fundamenfa] theorem
says that (4) has a
solution but it may
Y = (x-b)?

not be unique, In

fact, any curve of
Y=0

the type shown in

Figure 3-4 is a solu-
3y2/3

tion of y!' =

3
Thus there is an infi~- Y= (X~2)

nite number of such

curves through any

point on the x=axis. Figure 3-4

m




PROB LEMS

le (a) Use the Mean Value Theorem +o prove that if a

function F has the property

L, < F'(y) <L

I 2

for alt y in [a,bl, then for any vy, and y, in

[a,b]

F(yl) - F(yz) = k(yI ),

Y2

Prove that if |F'(y)| < L for ally [a,b] then

(b)
[Fey ) = Faydl < Lodyy = v,
efor all y , vy in [a,bl.
2. investigate carefully the solutions of gt = =2/y.

3. Consider the modification of Example 2:

4y2 - 6y ‘
TV if x # 0,
fix,y)
0 if x = 0.
913 1(72t\
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(a)

(b)

(c)

(d)

Show that f is not continuous at any point

(0,c).

Show that y' = f(x,y) has solutions over

intervals (a,b) that include the value x = 0,

Show that there are no solutions through (0,c)

unless ¢ = 3/2 or 0, For ¢ = 3/2 there is an
infinite number of solutions, feor ¢ = 0 there
is one,

Compare the above behavior with that of

y' = a(x,y) when

x|<
-+
X
R
o
-

alx,y) =

oM .



4, Euler's Numerical Method.

The numerical method that was introduced in Section |
s known as Euler's method of solving differential equations.

Given the equation with initial condition
(1) y' = flx,y), f(xo) =Yg

we choose a number h, generally small and positive, and

define numbers YO' YI' Y2, cee ,YN by

(2) YO = Yoo Yn+| = Yn + hf(xn,Yn), n =0, |, «ca , N=I,
where Xn = %o + nh, The special case of Section | Jeads us
to hope that in the general case Yn will be an approximation
to y(xn).
2
Example |. y!' = 4y = 6 , YOIy =1,

This case has been examined in Example 2 of the last section,

so we know what to expect.

X Y f(x,Y) y (x)
Table 4-1 gives the comput- 1.0 |1.000 -,667 1,000
ations for h = ,5, N = 6, é:g :igg ::ggg :;88
and Figure 4-| shows the g:g :?g? :::g; :32;
same data graphically. i:g :égg -.067 :%é;
Even with such a large
value of h the Yn are not Table 4-1

hopelessly bad approximations to the y(xn). Cutting down

975



the size of h improves the approximation considerably,
as one can see by comparing the values at x = 2 from

Tables 4=1 and 4-2,

U]
Now conslider the same 1
equation with -the initial
condition y(1) = 3. We saw
in the earlier example that
Y Y
this has an asymptote at
x = VZ = 1,414 and hence
the solution cannot be con- -
1 2 3 4
tinued beyond this point.
Nevertheless, the numer- Figure 4-1
ical "soluti~*", as Table 4-3
shows, goes i 31ht on past vZ
x Y fix,y) y
with no clear indication
1.0 1.000 -.667 |.000
that its results are mean- 1.2 867 -.578 .872
ingless., The rather l.4 . 751 -.535 W, 758
sudden jump in the value h.6 644 ) -.455 657
1.8 .553 ~,588 .573
of Y at x = 1.5 does indi-~ 2.0 . 475 .500
cate possible frouble
and suggests that we back Table 4-2
up a bit and try a smaller
value of h. But the computed value at x = 1.4 looks perfectly

good even though it is hopelessly far off,

96
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e

This example shows the X Y fix,y) y (x)
need for two things: first, l.0 3.00 6.00 3.00
lol 3,60 9,16 3,80
a machine program to carry 1.2 4,52 15.16 5,35
out the arithmetic involved 1,3 6,04 28,12 9,68
in getting a numerical l.4 8.85 61.66 75.00
1.5 15,02} ]| ====--

solution to any useful

Table 4-3

accuracy; and secondly, an
error analysis that will tell
us what value of h to use to get a given accuracy. We leave
the first of these to the.reader (Problems 2 & 3) and

proceed to discuss the second,.

We assume that (1) satisfies the conditions of the
Fundamental Theorem and has a unique solution y(x) for

Xg & X £ X We deslignate y(xn) by Yoo The error in

N.
the approximate solution given by (2) is then En =¥, - Yn‘

Now by the Extended Mean Value Theorem,

- - | - 2
y(xn+|) = y(xn) + (xn+| xn)y'(xn) + f(xn+| xn) y"(g),

where xn < £ < X . This can be rewritten as

n+|

(3) y . = v, hflx ,y,) + 7h2y"(£).

m
1 @“;{ .

st f




Subtract from this the recursion formula

(4) Y + hf(x_,Y ),
n n n

yn+|

and we get

= - f! I2n

(5) Eoe E. 0+ h[f(xn,yn) f.xn,Yn)] + oshey"(8).
The quantity T _ = %hzy"(a) is called the truncation

error, the error arising by cutting off al! terms of (3)

except those of first deagree in h, To handle the ex~
pression in brackets we make the further assumption that
all (xn,Yn) lie in the region R, Then by the Lipschitz
condition,

f(xn,yn) - f(xn,Yn) = Kn(yn - Yn) = KnEn’

where |Kn| < L, the Lipschitz constant, Then (5) becomes

(6) En+| = (1 + hKn)En + Tn .

Now, however, we must remember that we really do not

compute Yn exactly from (4), because of roundoff .errors

+1
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in the computation., That is, we really have

’

Y = Y+ hflx ,Y ) + R

n+ n

where Rn is some unknown roundoff error, about which

we can only say that IRnl < R for some small number R
depending on the com.,lexity of the function f, tThe word-
length of the machine, etc. With this factor in the

analysis (6) is replaced by

(7) E = (Il + hK JE_+ T - R .
n+ | n"-n n n
To get bounds for En from (7) we must have bounds for
the quantities Kn,Tn; and Rn. We have already seen that
IR | < R. Assume that for atf x in Cxgrxy] we have

n
ly"(x)| < M; then ITn] < %hZM. For K we use only an upper

bound, Kn < K. We take care of the lower bound by assumino
that h is small enough tfo make I + hKn positive, (In fact, if
IhKnI > | the approximation is too poor to be of“any value.)

Under these conditions,

- hM , R n
(8) e | < (7- R T [(| + hK)" - 1].
The proof, which is not difficult but rather longa, is

given at the end of this section. The case K = 0 can be

handled by taking limits as K - 0 (see Problem 1).

5,
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The bracketed expression in (8) can be handled as in

Section |. For small values of hK we have approximately

(9) (] + hK)N = eNhK = er

’

if x = Nh, We can therefore draw the following conclusions

from (8) and (9):

l« 1f there is no roundoff, i.e. in the case of exact

= y(x).

‘mathematical analysis, lim|E 0 and lim Y
vsis, ligleyl "% n30 N
This proves the convergence of Euler's method under the

conditions we have assumed,

2. 1f roundoff is present then *he upper bound for
lEnl becomes infinite as h - 0, This does not mean thaft

|E necessarily becomes very large but it admits the

N
possibility. A more exact analysis, using equation (7)
and the statistical distribution of the Rn’ shows that

| E does indeed become arbitrarily large as h =+ O,

N
3., For fixed h and variable x, the bound on IENI

grows like ¥, Here again, this does not mean that IENI

grows this fast, but if the Kn remain fairly close to K

the growth is of this order of magnitude.

: I



4, Roundoff and truncation error are of about equal
significance when h? = 2R/M. For a typical situation we
might have R = 107!*, M = 8, in which case the critical

value of h is 5 x 10-8, Since this would require twenty

million steps to go from X0 to Xg + | one is hardly
likely ever to use so small a value of h, On the other
hand, for R = 1078, M = ,5, fthe critical value is 2 x 10-%,

This implies only 5000 steps per unift change in x and gives
| Kx -l
|En|i gle = = 1) x 107",

For K = 2, x = | we geTIEJ < 3,1 x [07%, which is only
3-place accuracy. |f more accuracy is needed and there is
no way of decreasing R = by aoing to another machine or

by using multiple precision programming - Euler's method
must be abanaoned in favor «¢f one more complicated but
more accurate. There are literally dozeﬁs of such methods
and more are invented every year. Any good book on
Numerical Analysis will discuss several of the most
important ones.

Example 2. y!' = x = y2, y(0) =0, y(2) =7

This is the equation discussed graphically in Section 2.
We see from the discussion and Figure 2-3 that y(x) is

an increasing function whose value at x = 2 is roughly
between | and l.4. To oet the value of M we need to know

something about y"(x). y" is obtained by differentiating

‘.
e
I
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the differential equation with respect to x, thus:

2).

y" = 1 = 2yy! = | = 2y(x -y
y"(0) = |, Since y is increasing, y' > 0 and y > 0; hence
y" decreases. A few tria! roints taken from Figure 2-3
are enough to convince one that y" never gets close to

-! for x in the range [0,2], and so we can take M = |,

To get a value for K we use the result of Problem I(a)
of Section 3. Since f;(x,y) = -2y Is bounded by
-2,8 and 0, we see that the values of Kn are similarly
bounded and so we can take K = 0, Then Problem | of this

section gives as the bound on ]Enl,

) _ h R
|En| :_n(?-h M + R) = X<2-+ -h—)c
For x = 2 the error bound is then simply h, plus the

roundoff contribution,

In Table 4-4, columns Y! and Y2 give the vaiues of Y
at corresponding values of x, for h = .1 and h = ,0005
respectively., By our results above, Y2 should be accurate
+to 3D; hence the next column, giving the differences of Yl

and Y2, is an estimate of the errors in Yl.

1 ‘2
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(The machine which produced this table has R < IO-]Z,

so the roundoff error is negligible.)

Actually the error

On the other hand,

_._-';“".
v 1("\‘ ’

Y, at x

t+he error at x = |,
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2 is very small.

is in good

agreement with the computed bound, which is h/2 = .05.
The cause of the decrease beginning at about x = l.! is

the change in the curvature of +he solution near this



point. (See Fioure 4-2 and Problem 7 of Section 10-1.)
At first the curve is convex, and YI underestimates, as

in Figure d4-1,
9 Y

“hen the curve
becomes concave y
and Y' overesti=-

mates, thereby (1.19 y 0.61)
gradually can-

celling the pre-

vious errors,

From this point
on the curve is Figure 4-2
fairly flat, i.e. M is small, and the error build=up in Y'
will be less than the above estimate,

It is important to notice that the discussion in the
above example is not mathematically rigorous. We have
not proved that y(2) lies between 1.4 and |, nor that -1
is a lower bound of y", This can be done in this simple
“example but in general the difficulties would be too areat
to be justified. Instead we usually proceed as we do for
Simpson rule integration; we get a solution for a value

of h hopefully small enough, repeat the process with a

984
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value of h half as big, and compare the results. This
was done in columns Y2 and Y3 of Table 4-1. The
difference, tabulated in the next column, indicate that

+he values are almost surely accurate to 3 places,

Proof of (8). We start with

(7 En+| = (1 + hKn)En + Tn - Rn,
where
!
(10) 0 < | + hK < | + hK, ITn| < 7h2M, |Rn| < R,
and EO = 0 since Y0 = Yo Consider quantities Fn defined

by the recursion formula

;@ = | 2 ; -
(1) Foyy = (1 + hKOF + Zh2M + R, Fy = 0.

It is easy to see that if |E | < F_ then | E

n+|| hl Fn+|

For, from (7) and (10),

| E < vk JTE T+ [T ]+ IR

n+||

I A

2
(1 + hK)IEn| + zhZM + R

< (] + hK)F_+ %th + R
n

n+ |

Ly




Since |Ey| < Fy it follows that

(12) |[E | < F
n -— n

for all n.

To get (8) we have to solve (11), This equation is

of the form

€(13) Foeyp = aF, *+ by

where a and b are constants., We can simplify it still

further by adding a suitable constant to Fn’ i.e. let

G =F + ¢, In terms of G_, (13) becomes
n n n
Gn+i = aGn - ac + b + c, GO = C.
Taking ¢ = b/(a - 1) leaves
G 4y = G, Gy = b/ta = 1),

Now, obviously,

= — — 2 =
GI aGO, G2 aGI a GO’ cee Gn‘ a GO’
and so the solution of (I13) is
F o= 2 ___B - _b 3" - n,
n a - | a - | a - |

L

Ty




Finally, putting

a = | + hK, b = zh2M + R,

gives as the solﬁfion of (11,

_ hM R n _
Fn.. <§— + FK) [(I + hK) I] .

(8) then follows from (12).
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PROBLEMS

l. (a) Show that taking limits in (8) as K + 0 gives

hM, R
|En| < (77ﬁ E-)nh.

(b) For x = Nh discuss |Ey| as h goes to zero with

fixed X, and as X increases with fixed h,

2, (a) Write a flow diagram for the recursion process

)y

<
L]

Y + hf(x_,Y
n n n

X = x_ + h,

with initial values YO = Ygr Xg° Output the

successive values of x and Y,
(b) Write a program from your flow diagram.

(c) Test your program with the two cases of Example |,

3, Modify your program in Problem 2 to output x and Y
at every M steps rather than at every step. This
enables you to use very small values of h without

.unduly depleting the forests of America.

E
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Use your program in Problem 2 or 3 to make reasonable
tabulations and graphs of the solutions cf the follow-

ing equations over the given intearals. DNiscuss any

~fgature of the solution that seems unusual.

S5x + vy

' =
(a) vy < = 5y

, y(o) = -1,

(i) for 0 < x < 1, (ii) for 0 < x < 1.5,

(Compare with Section 2, Problem 1(e)).

(b) y' = . y(0) = 2,

(i) for =.9 < x < .5, [Use necative values of h

-
J

for x < 0O,

(ii) for 0 < x < .9,

(Compare with Section 7, Examrple 2).

(¢) 8L = 2q(+) = =5/y , y(0) =0, 0 <t < 1000,

aF
1 . 1
| = cos vish if 2n < R < 2n+|
a(t) = , = 0,01,2,00.
0 i 2n41 < T%? < 2n+2

(Compare with Section 5, Exarple 1.

Use your program to solve Problem 3(d) of Section 2.

1039



6, (a) Use Euler's method with h = ,2 to estirmate

y(1)y if
y!' = xy + 1, y(0) = -1,

Tabulate x,y, and y', and carry only two

decimal places in your calculations.

(b) Use your values of x,y,y' fo compute y",

and estimate values for M, K, and R,

(c) Determine the possible error in your approx-

imation to y(1).

7. (a) Solve y' = xy + 1, y(0) = -], by expressina y
as a Maclaurin series, as illustrated in

Section 13-5,
(b) Compute y(l) to +two decimal places. Ans. -0.24

(c) Use the result of (b)) ft0o aet the actual error
in 5(a) to two olaces, and corpare with the
estimated possible error in 5(c), is the latter
a reasonable bound, much too pessimistic, or

not a bound at all?

e




8. (a) |Is Euler's method the best numerical way to

find y(x) when given
y!' = f(x), y(xo) = yo?
Describe a better one.

(b) Flow chart and proaram the best method you can

thir of.

(c) Solve

y' = /1 + x3 , y(1) =2,
+o 5D accuracy for x = 1(,1)5




5. Applications.

A differential equation is apt to arise in a
mathematical model of almost any problem involving
continuously changing quantities. As is tThe case with
all applications of mathematics the solution of such a
problem involves the three steps of setting up +he model,
solving the equation, and interpretting the Eesulfs.

“The rest of this chapter treats step 2. In this section
we are mainly concerned with step |, more particularly
with the last half of step |I. The formulation of & modell
involves first the acceptance of some simplifyina approxi-
mations to the true situation, and then the expression of

the simplified picture in mathematical terms.

The examples and problems of Section 9-2 illustrate
the two most common ways in which a differential equanon
is set up as a model of the approximation of a physical
system, In one of these (Examples 3 and 4 and Problem 5
+o 12) the derivative of a quantity enters directly,
usually as a slope or a rate of change, and the differ-
ential equation results from a relation between this
derivative, the quantity ifself, and the independent
variable. Motion problems, involving distance, velocity,

and acceleration, are typical of this mode of formulation.
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The other method , illustrated by Examples | and 2
of Section 9-2, makes no direct use of derivatives but
variable, attempting so to formulate the situation
that by letting these changes approach zero an équafion
involving one or more derivatives appears. This technique
is more general than the former but is also less direct
and often tricky to isiandle. We shall give examples of

both methods.

In some of the examples and probiems, notably Example 2
and its related problems, we consider the realism of the
approximations made in step |, by interpratting the
solution of the differential equation back into physical
terms. Results that are physically impossible indicate

+the need of changes in the simplifying assumptions,
Example i. The Allukaw river, like the Nile, has a stronaty
seasonal flow, approximated by
f(4+) = 108(1 + sin =%) cu ft/day
58 ’

+ being measured in days from January l. To level off the

flow we build a dam 200 ft high, holding 2 x 10!0 cu £1,

2
]
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Flow in 108 cu ft/dag

to impovid the water. The

water runs out of an open- :Ftpfﬂﬂ
ing at the base of the dam g S
‘he rate of 107Y/y Y
t/day, y being the Y 107V

height of water in the dam,

If we imagine the reservoir Figure S5-I
to behave simply like a tank, as in Figure 5-i, then the
area of the base is 2 x 10107200 = 108 sq ft, and the
volume of water in it is 108y, So
d 8 - 8 . t _ /0
-a—_F(IO Y) 10°()] + sin -5-5) 10 Y »
or )
dy _ .1 !
TF=+tsinsg -5 V.
A machine solution, using Euler's method with h = | but

printing only every 20 steps, gives the curves in Figure 5-2.

It was assumed that the reservoir was empty on January |,
that the annual variation in flow has been reduced from

2 x 108 +to .3 x 108,

Flow 1in Flow out Water leve! 200

90

Height in feet

1 2 3
Time 1n Years
994 Figure 5-2
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Example 2. R rabbits are running around in Australia. We

make the following approximations regarding- the change in R:

(a) The rabbits are spread uniformly throughout

Australia;

(b) wWhen two rabbits of opposite sex meet they

produce r more rabbits;

(c) The average lifetime of a rabbit is b years.

From (a) the chance of a rabbit meeting a member of
the opposite sex in a given time is proportional! to R.
Hence the total number of such meetings in a given time
is proportional to R%, By (b) the rate of increase by
births is proportional to R2, By (c), 1/b of the rabbits

die each year. Hence, measuring time in years,

dR _ _ o2 R
aF - R T w

The solution of this equation is analyzed in Problem I.

This is of course a very crude mrdel since our
assumptions are grossly oversimplified. for one thing,
we have neglected the food supply - If there are too
many rabbits some of them starve. We can include this
point by making b a decreasing function of R, for instance

b = c(l = R/RM), where Ryis an upper bourd to the number

PR S
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of rabbits that could possibly live in Australia. |If

we want to get fancy we can let RM be

to take care of climatic variation.

Example 3. A long rope of vari-

able cross-section hangs verti-
cally and supports a weight W
at its lower end., (Figure 5=3),
At distance x from this end let
A(x) be the areus of cross=-=&c”
of the rope, pfx) the density
of the material, and S(x) ire
stress in the rop in force per
unit area., Consicer the forces
acting on ihe portion of the
rope between % and x + AX.
(Figure 5-4), Pulling voward

at the top i< the orce
S(x + AXIAIx ¥ 2%

of the stress at hic point.
Pulling downward Is S(x)A(y)

plus the weight of +he pir . of

996 -1_046

a function of *t,

? AX
%
X
“I
Figure 5=3

“igure 5=4



rope. This weiaght w is bounded,
VA .
qp(xI)A(xz,ux < w < qp(xS)A(x4)Ax,

where D(xl), A(xz) and Pixg), A(x4) are the minima and

the maxima of the density and the area functions in the
interval [x,x + Axl. Assuming that the functions ©
and A are continuous, it follows that there are Xxg and Xg

in [x,x + ax] such that
W = gp(xS)A(xG).
We must therefcre have
S(x + Ax)A(x + Ax) = S(x)A(x) + go(xS)A(XG).

Dividing by Ax and letting Ax - 0 qives

S(x + Ax)A(x + Ax) = S(x)A(x) ,
0 . I = A§50 gp(x5)A(x6)

(1 d(SOAAIXI) _ qo(x)A(X) .
dx

The initia! condition is T(O)A(O) = W,
(a) 1f A is constant the equation becomes

S' = gp(x),

X
W+ /é Agp(t)dt.

AS

1947




Thus the tension AS merely builds up with the weight

of the rope below that point,.

(b) For constant p, how should A vary so that S
is constant? This is the "most economical"” desian,
since S can be kept just below the breakinag point., We

get
SA' = gpA,

which integrates to

_ W x/k _ s
A = -g- e ’ k = EE’- .
For steel, k = 15,000 ft., so a vertical cable three

miles long woul!d have to have a cross-sectional!l arec 2.7

times as large at the top as at the botton.
(c) Suppose the rope is
SA
elastic, so that it stretches Ao
under tension., Assume that p

ic constant throughout the

stretciring and that A has the

constant value Ao in the un-

stretched state, The two states

of a portion of the rope are

stown in Figure 5-5, Hooke's SA
Figure 5-5



Law says that
h = cHSA

where ¢ is a constant. Since we are assumina that tne
density is not changed, the volume must be the same in

the two sTaTes; that is,

AOH = A(H + h) = A(H + cHSA)

Swhich gives

(2) Ao = ACl + cSA).

To combine this with (1) put it in the form

A
_ 0

CSA - T“ - Ic
Then (1) gives

A

_.—C A' = cgp/\’

A2
or

A cge

A3 Ao

In equations involving physical quantities it is
often convenient to work with "dimensionless" variables,

defined as the quotient of two variables of the same

o5 7999 I04‘9
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physical dimensions., In the present case let us intro-
duce the variable y = A/A, . Replacing A in the above

equation by Aoy, we get
(3) -y 3y =k, k = capAq.

Separating variables and integrating aives

v 2 - y(0)7% = 2kx,
or
y = (y(0)™% + 2k 12,
To get (0) we combine (2) with W = A(0)S(0)., This
gives

_OA(O) [
y(0) = Ry = T

So our finmal solution is

A= Ag(b2 + 2kx) Y2,

where b = | + cW and k = cquO.

_Example 4, Newton's second law of motion says that the
rate of increase of momentum of any boerdv is equal to the
fo'ce actina on the body. Consider a "ccket whose mass

and velocity at time t are M(t) and V(t), acted on by a

lﬁﬁl 1050
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force F (such as gravity,
alr resistance, ect.). At
+ime t the momentum of the
V(t+At)
rocket is M(H)V(t)., At
+ime t+ + At this "body" has v(t)
separated into two parts,
the rocket at time t + At //]\”‘\ Ve -V
ans the portion of the fuel P
that was burned and e jected

@) (b)

as gas in the intferval At.

The mass of the exhaust gas is Figure 5-6
M(t) - M(t + A1) = - AM

and its velocitv is —(Ve - V), where V is the "exhaust
velocity", a constant depending on the design of the-
rocket and the kind of fuel. More precisely, the momen-

+um of the exhaust gas is bounded,

S(v = V() < Mom. < =(V_ = V(T M,
- - e 2

& |
where t, and t, are values of * in the interval [f,t + At]
at which V(1) has minimum and maximum values. Since V is

continuous there is a +3 in ttis interval such that the

momentum of the exhaust gas is -(Ve - V(TS))AM.

o 105
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The increase of momentum in the interval At is

then

M(t + Aat)V(t + A1) - (Ve - V(f3))AM - M)Vt .,

To get the rate of change of momentum we divide by At

and let At + 0; thus

[P~'-(+ £ AIVCE ¥ %) = MIDVEE)  (y L yerg)) A(-M)]

AT AT AT
_d dw
= LoV v - v 53,

since +3 -~ t+ as ot » 0, By Newton's law we then have

My ! ;vM'V + VeM' - VM!' = F,
or
(4) mMy!' = -vev' + F,
There ére several inferestina snecial cases of this

rocket equation,

(a) F =208, i.e. motion in free space. We can

write (4) as

dv _ dM
Mo = Ve 97 ¢



or

am gy
T V .
e
Assuming M = “O when V = 0 we qet by integrating,
'
Vv
log M - Tloa MO = -7 s
. e
or
MO _ V/v
—_—_ = e

MO/M is the "mass ratio", the ratio of the initial to
the final mass required to attain velocity V. For
example, if Ve = 10,000 ft/sec and V = 36,000 ft/sec,
the velocity needed to escape from earth's gravity,

then M/MO = 37, In other words about 97% of the initial
mass must consist of fuel, This large mass ratio is the

reason why rockets cost so much.

(b) |f the fuel is burned at a constant rate then
M = MO - ct. The equation becomes
" cVe + F
= ME‘T‘E? .

For a rocket moving through the air at subsonic speed the

resistance F is of the form - kV2, The resulting equation is
eV, - kv?
v s /S
A - L)
ro ct

Some conclusions that can be drawn in this case are ftreated

in Problem 4.,
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PROBLEMS

. (a) Solve the rabbit equation

..__:aRZ.-

dR
dt

oo

with Inital condition R(0) = RO, by the method
of separation of variables introduced in

Sectlon 9-2.

-1
Ans. R = R [k - (k - l)e*/b] , k = abRj.
0 0
(b) Show that 1f Ry < g% the rabbits die off, but
if Ry, > 3% they become infintely numerous in a

0

finite time.

2, Uslng the computer, investigate the suggested equation

%5 = aR® - 7= E/RM)
(a) Using the values
Ry = 3 x 108 = 100/sq mile;
¢ = %, an average life of 5 years;
a = 10""%, adjusted to try to get = reasonable
answer;
RO = |0Y%;

draw a graph of the growth fer 100 years.

S o
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ERIC

Aruitoxt provided by Eic:

3.

(b)

A coiled spring (see
figure) behaves like
an elastic rone with

the following changes:

SA

tenslon T;

placed by the linear

unit

is replaced by the

(ii) AP is re-

Show that at the equilibrium situation the
averag~ |ife span of a rabbit, as alven by

b = c(l = R/RM), is ridiculously small. To
avold thls we must replace a by a function
that is fairly constant until b gets down to,
say, |/2, and then decreases rapidly as b goes
to zero. Try constructina such functions and
run experimental trials with varioﬁs para=~
meters to see 1f you can get a realistic popu-

lation growth,

(i) The quantity

density A, mass per

length.,

wes 105



Equations (1) and (2) then become

T' = ga,

>
f

A(l + CT).

(a) Puttingy = A/Ao show that these give tho same
equation (3), with suitable definition of k,

and the same value of y(0).

(b) Suppose z is the lenath
of an unstretched spring

that stretches into the

piece nf length x in the
stretched condition, Since mass is preserved

in the stretching,

X
\gz = /(; Al(u)du.

Using the solution of (3), show that this gives

X = ;zz + bz,







This Is well illustrated with a Slinky, using
w =0, k is large enough, due to a large value of c,
to spread the coil out nicely and give the effect

pictured in the previous figure.

4, (a) Separate variables in the equation

cV_ - kv?2
e

v =
v M0 - ct

of Example 3(b) and solve with initial condition

V(0) = 0 to get

L - (1 - & ’
be Mo KV
(5) V = 3= 2o, b=2/2
| + | - [T
0

(b) Letting r be the mass ratio

M- oF

and sketch the graph of V as a function of r.

. inr-
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5. |f we neglect air resistance a rocket ascending

vertically is acted on by a force f = =Mg,

(a) Set up the equation of motion if M = MO - ct,

as in Example 3(b).

(b) Integrate the equation, assuming v(o) = 0.

_ ct
Ans. vV = -Ve |Og (l - -ﬁo—> - g‘f.

(c) Integrate s' = V to get the height s at time T

M
(d) For a given mass ratio r = - we have
Mo =M
t = —= E(r - 1), Show that this gives
vV =V log r - gM(r - 1),
e = c
V.M 9
s = —%—(r - | - logr) - sl (r - 12,
2c?
Wwith this velocity the rocket wil)l coast to an

2
additional height of %6" Show that the total

height attained is

2
(Ve log r) VeM

= - +
S 75 (r log r r 1)

Show that r log r - r + | is positive for r > | and hence
+ha+ the maximum S is thus obtained by making c as large

as possible. What are some limiting factors on the value of



6. A tank contalns V G gal /mmn

gallons of salt solu- \\

tion. G gal/min of a ) @% .
: 100 gal/ min

solution containing V gal

.5 Ib/gal is pumped
in, and 100 gal/min of
the solution in the
tank is pumped out, The solution in the tank is
stirred constantly and may be considered tc be of
uniform concentration. At the beginning of the process
the tank contains 10,000 gal of fresh water. We want
to know the concentration of the solution in fhe»fank

after t minutes.,

(a) Assume G Is constant, G = 100 gal/min.
[Hint. Set up a differential equation for S, the

amount of salt in the tank.] Ans, C = %(L - e-f/|00>.

(b) Assume G fluctuates as given by

t_

G = 100 + 50 cos 00 .

[Hint. First find V as a function of t. The

equation for S will have to ke integrated numeri-=-

cally.]

Partial answer: V = 5000(2 + sin t/100).




7.

(c)

(d)

°

In (b) replace cos t/100 by the step function,

707 \ /\
o somw 150N 26om JSON t
- 707
) NS

having the same root mean square, and solve the
problem. Considering that either of these two
cases might be used as an approximation to an
oscllilating input, has one of them any advantages

over the other?

Run solutions with .707 replaced by other con=-
stants and see If there is one that gives better

agreement with the sine curve,

Two gasses combine to form a solid,

(a)

X+ Y =+ Z.
Give an argument like that In Example 2 to show
that

dx _

IT T XY
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where x and y are the concentrations of X
and Y, and a Is a constant. State any assump=-

tlons you make.

(b) Glve an argument to show that x - y is a con=

. §¢én+ p. By Interchanging the roles of x and v,

’

if necessary, we can assume p > O,

(c) Solve the differential equation,

Partial answer: x = P it p > 0.

| - (yo/xo)e"aer

In Problem 7 suppose that z is also a gas, which can

spontaneously decompose into X + Y.

va) Derive an equation

dx _ _
IT C Caxy + bz,
(b) Show that, with x = y = p, as before, we also

have x + z = Q.

“(¢) Reduce the differential equation to

dx
xZ 4+ (p + r)x = rq

= «a dt, r = b/a.

The quadratic polynomial in x must have one

positive and one negative root. (Why?) Let «a

[

aaldEoem 10p
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and =8 be the roots and solve for x.

-yt XA = O
a + Bke 0
Ans, x = — , Yy = alea + 8), k = ——ag.
| - ke Yt X + B

9, (@) The dynamlic systems in Problems 7 and 8 approach
"steady states" as t + », Show that the steady
state can be obtained directly from the differ-
ential equation by seftina %% = 0, This Is

characteristic of steady states.

(b) Find the steady states of the simple rabbift
equation in Example 2, Is a steady state
necessari ly one approached as 1t + «? Discuss

+he notion of "stable" and "unstable" steady states.
(¢) For the second rabbit equation,

R

' = 2 _
R aR (T = R/R,) °

show that the graph
Rl
of R' versus R has

the shape shown. Z//’\\\\
Hence show that for

- \/S‘ S,
SI < Ro < RM the popu-

latlon will approach 1

)

the steady state

m 1062




10,

R =S but for 0 < RO < S| it will approach

2’
zero, What are the steady states, and which

ones are stable?

Newton's law of cooling says that the transfer of

heat from a body at temperature 6 to its surround-
ings at temperature Bs is proportional to 6 - Bs.
|f we assume the temperature of a body is uniform

throughout and that the heat content is proportional

t+o the temperature, this gives the equation

d
d

[+ >]

= -k(6 - 6_)
S

_*.

The equation holds regardless of the sign of 6 - es.

(a) A pie is taken from an oven at a temperature

of 350°F 2 4 set to cocl in an atmosphere of
70°., In 45 minutes it is barely eatable, say
150°, wWhen will it reach 90°? Ans. 94,8 min,

(b) An identical pie made at the same time is set i-
the draft of an oscillating fan which has the
effect of multiplying k by a factor of 2 + cos t/2.

When does this pie reach 90°? Ans. 48.7 min.

" ¥ 1 -"x
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Il. A body subject to Newton's law of cooling contains
a small amount of radioactive material, which adds
heat to the body at a constant rate. Show that this
is equivalent to a non-radiocactive body in a hiaher

surrounding temperature.

12, Over a series of days the air temperature is approx-

imately

es = 75 + 15 sin 27¢t,

A closed car standing in the shade has a cooling
coefficient of k = 2. Assuming that the car's tfem-
perature is 75° at t = 0, graph its temperature over

a period of four days.

I3, Consider a vertical column of atmosphere of | sq ft.
cross-section. At height x above the ground let

p(x) be the density and p(x) the pressure.

1SQ. FT.
(a) Explain why
p(x) = p(x + Ax)
+ gp(xI)Ax, *
AX
where x, is in [x,x + axJ.
X
F07
S T

10 .-




(b) Derive the differential equation

dp _
Ix - 9"
(c) |f the atmosphere is at constant temperature

then p is proportional to p. Solve for p as a

jmncfion of'x, given that p(0) = 15 Ib/sq in.and

/ap(0) = .08 Ib/cu ft.

ws 1065
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6. Systems of Equations,

In more elaborate problems than those consldered
in the last seaction differential equations can arlse
in forms other than the standard y' = f(x,y). Consider,

for example, the equation
(1) y02+y2=x2’

involving the independent variable x, a function
y = y(x), and its derivative y' = y'(x), Equation (1)

is equivalent to the combined statement

(2) y' = ¥x2 - y2 or y' = -/x2 - yz .

Any curve that satisfies (2) at each point (x,y(x))
is a solution of (I): note that it is allowed to satisfy
a different part of (2) at different points. A sirprer

example to see is
(3) y'2 = (y + Dy' +y =0,
which gives by factoring

(4) y' = 1 =0 or y' =y = 0,

KR
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The curve (Flgure 6-1)

x + | If x < 0

e It x >0
satisfies (4), and hence (3), at all polnts, By com=
bining the solld and dotted curves In the figuré{four
solutions satisfy=-
ing f(0) = | can be
obtalned. This
does not contradict
the fundamental

Py
theorem since (3) ______,///

is not In the form

for applying this vaX+1

theorem. Each part
of (4) is; but each Finure 6-1
part of (4) taken as a sevarate equation, has a unique

solution through each point.

This example illustrates some of the complexities
thzt can arise if we conslder differential eguations
of the form F(x,y,y') = 0. In most cases, however,
t+he routine, but tedious, procedure of the following

example can be used.

m 10
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Example 6-1, Solve

(5) cos y' + wy y' =

X,

yen = 1,

Here we cannot solve for y' explicitly, as in (2),

but we can proceed by consldering y' as an implicit

functlon of x and y defined by the given equation,

For x = 1, y = | equation

(6) cos y'!

z
which has solutions

(Figure 6-2)

'%yo

(5) become

== coS Y!

e

S

y' = 3,70, o

The last two values
can be refined as
much as needed by
applying Newton's
method to (6)., The
three values for y!
imply that through the
point €1,1) there
pass three solutions
of (5). Let us con-
centrate on the one

with y' = 1,11,

M -
AR
IR I
PR R

3
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1.11

Figure 6-2

#* (1.,9)
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One step of Euler's method, with h = .1, gives

'xl = lol, y, = l.111, and

lal "06|7 y'a

7 coé y!

,

Now (7) also has three solutions but we are interested
in only one of them. For since we have assumed that

y'! is a continuous function of x, the value of y' at

X =fx1 will be close fto that at x = X,, and so we want
the solution of (7) that is close to l.ll. ln other
words, l.l1 should be (if our value of h is sufficiently

small) a good first approximation in applying Newton's
method to (7). Two applications of Newton's method

gives y' = 1.24 correct to 2D. We can now get
y, = ol + J101.,24) = 1.23

and continue the process. Trouble can arise only when (3),
as an equation in y', acquires two equal roots.

At the next step they will (generally) separate again,

and we do not know which one to follow. This is precisely
the situation that causes the multiple solutions in the
previous example (see Problem 1), and conditions out=-

side the mere statement of the di fferential equations

are needed to decide which path to take.
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Of considerable more importance than the implicit

@qiations, F(x,y,y" = 0, are the systems of equations.

Here we have more than one unknown function and an
equal number of equations. The standard form for a
system of equations is analogous to that for 2 single
equation, that is, the derivatives are expressed as
functions of the varfables. For example, for three
equations in the three unknown functlons x(t), y(t),

z(t), we have

x! = f(t,x,y,2),
(8) y!' = g(t,x,y,2),
z' = h(t,x,y,z).

For a2 more generai notation we can use a subscript

notation, thus:

Yi = fl(x,y',yz,...,yn),
Yé = fz(x’Y|’Y2’--"Yn)’
Y; = fn(x’Y|’Y2’---’Yn)’

or, more compactly,



(9) yL = fk(x,yl,yz,...yn), k = 1,2,00e,0n
For such systems of equations the fundamental
theorem and Euler's method carry over in the simplest

pbsslble way. Thus we have

Theorem ., I1f, in an (n + |)-dimensional region R
in (x,yl,yz,...,ﬁg-space, each of the functions fk
in (9) is continuous and is Lipschitzian in each of
the Yo then for any point (XO’YI,O’YZ,O""yn,O)
in R there is an H > 0 such t+hat (9) has a unique
solution y, (x), Kk = l,0eeyn, in |x - xOI < H with
yk(xo) = yk,O’ K = 1,c00,N.

The proof of this theorem is essentially no more

difficult than that of the simpler theorem in Section 3,

Euler's method is equally easy to generalize.,
For simplicity let us take equations (8). The basic

recursion formula is




X = x_ + s f(fn,xn,yn,z ),

n

Yoey = Yy tos 90t X,y z0),
(10)

zZ o4 T %, + s h(fn,xn,yn,zn),

fn+| = Tn + s,

with the initial values, fo,xo,yc,zo being given,
One important warning: in programming we generally

omit the subscripts and use, for instance,
x «+ x + s f(t+t,x,y,z)

instead of the first equation of (10)., This is

24l right, but then to use
y «+y +s glt,x,y,z)

for the second equation is wrong. The above assign-

ment is equivalent to
= Yn + s g(fnnxn+|nYnnZn)n

yn+|

which is not the given equation., The correct programming is
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x

x| « X + s f(t,x,y,2)

yl 4_y + s X g(’f’x’y’z) '''''

z+ z + s x h(t,x,y,z)

The one phase of Euler's method that does not
generalize easily is the error analysis. Although
the same general conclusions can be obtained the
analysis is much more complicated, involvfng techniques

quite unsuitable for our present text.

So far we have considered only first crder

differential equations, that is, those in which only
first derivatives appear. Higher order equations, or
systems of equations, can be reduced to systems of
first order equations by introducing extra unknown
functions to stand for the lower order derivaf{ves.

Thus
(11)y -~ y™+ 3xy" - exy = cos X

is equivalent to the system

Ceyy 1023
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y' = u,

12) e = v,
v! = =3xv + exy + cos X.
The system
x" o= flt,x,y,x',y"),
(13)

y" = f(t,x,y,x"',y"),

which arises in considering the motion of a planet

through a resisting medium, can be reptaced by

x' = u,
y' = v,
u' = f(t,x,y,u,v),
v! = g(t,x,y,u,v).
Theorem | tells us what kinds of initial conditions

are appropriate for such equations or systems, For.(12)
we would want values of y(xo), u(xo), v(xo) as initial
conditions, corresponding to y(xo), y'(xo), y"(xo) for
(11, Similarly (13) would need x(0), y(0), x'(0), y'(0),

that is, the initial position and velocity of the planet,
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For higher order equations, a different type of
condit+ion arises naturally. This is typified by the

trivial equation
(14) y" = 0,

The solutions of this are, of course, the lines
y = ax + b, where a and b are arbitrary constants.

The standard initial conditions

= ! = .

y(xo) Yo Yy (xo) LAY
amount to specifying a point on the line and the siope
of the line. |t is well known that a line can also be

spec:fied by two polnts; that is, t+hat (14) has a unique

solution satisfying
y(xo) = Yo y(xl) =Yy

(The x,,Y, used here should not be confused with the
X|sY ) occuring iIn Euler's method,) Such considerations

lead to the important 1wo-point boundary value problem ,

namely:

Given a region R in the xy-p lane and a differential

equation

(15) y" = fix,y,y'),

(¥
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under what conditions will two pointsin R, (xo,yo) and

(xl,yl), Xg < Xy determine a unique solution of (15)

i = = ?
on xg < X £ X, with y(xo) Yor y(xl) Y,

This is a difficult and complicated problem even
for relatively simple equations, The following example

shows the kind of thing that can happen.

Example 2, y" = -y, y(0) 0, y(xl) =Y. It is

easy *o check theat
y = a sin x + b cos X

satisfies the differential equation for any a and b,
In Problem 6 of Section 7 it will be proved that Tthese
are the only solutions, To satisfy the condition

y{0}) = 0 we must have

o
"

a sin0 + b cosO,

or

0 = b,
Then to satisfy the condition y(xl) =y, we need

y, = a sin Xy

ol 1oy,




Case A: sin x, # 0. Then 2 = yl/sln X, and there

is a unique solution,

Case Bl: sin X, = o,
Y, # 0. We require Y
yy = @ x 0, which is

impossible; hence, no

solution.,

e . —— — . —— — ol

.
-

Case B2: sin X, = o,
Y, < 0, Here we need
0 =ax 0, which is
true for any value Flgure 6-4

of a. Hence there Is an infinite number of solutions.

The situation is illustrated in Figure 6-4, The
+rouble in Case B lies in the fact that every solution
that goes through (0,0) also goes through (#,0), Con-
ditions under which situations like this occur, and the
conclusions that can be drawn in these cases, constitute
an important chapter in the theory of differential

equations, but one t+hat we cannot investigate here,

BT R for
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PROBLEMS

le (a) Show that each solution of equation (3) has

one of the forms:

(i) y=x=-2a+ 1,
(ii) y = eX72
x - a + | if x < a
(iit) vy =
e*7® if x > a
ex-a if x < a
(iv) vy =
x - a+ | if x>2a .

(b) Show that for any point (xo,yo), with y, £ 1,
there is an H > 0 such that for |x - xol < H

there are two solutions of (5) through (Xqs¥g)

(c) Show that for any point (xo,l) and for arbi-
trarily small H > 0 there are four solutions

of (5) through (xo,l) for |x - xol < H,

ws 1078
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(d) Show that the exceptional points described
in (c)-are characterized by yielding double

roots for y'! as solutions of (5).

2. Set up a program, analogous to the one of Problem 2
or 3 of Section 4, to solve a system of m first
order differential equations., Test it on the

following, given the exact solutions.

-yz, y(0)

Ly

(a) !

z' = 1/y2, z(0) = 0,

Solve for O < x < I

Solution: y = cos x, z = tan X,
(b) x' = -x +y + 2z -1, x(0) = 1,
y' = x -y + 2z - 1, y(0) = 2,
z2' = x+y -2z -1, z(0) = 3.

Solve for O < X < 2.

Solution:

x _e-2f
y (= et v+ t+ 1 +{o0

-2+
z e

3. Use the program of Problem 2 to solve the following.

(a) y" = -y, y(0) = 0, y'(0) = I, 0 < x < 8.
Solution: y = sin x.
;?Z

W %
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(b) (1 = x2)y"™ - 2xy' + 20y = 0.
y(0) = 1, y'(0) =0, 0 < x < .9.

Solution: y = mx(3 = 30x2 + 35x%).

(c)

x (:}——> S (1)

Y —
x" = —6m , Yy" = —ZGE , x(0) =0,
(y - x)2 (y = x)2
y(0) = D, x'(0) = y'(0) =0, G =6,7x 1071,
E =6.,0 x 102%, m= 7,4 x 1022, p= 3,8 x 108
In how many seconds will the moon hit the earth?
Ans. 4.1 x 10°,
r
4, Two tanks, of capa- -
cities VI and V2 6,- :$
gallons, are full of , r’
salt solutions. AT — A
+ = 0 the first tank I{ i
Vy Sy Vo Sz
contains S0 Ibs of
salt in solution, the second has pure water, It is

desired to dilute the solution in the first tank by

interchanging the contents of the tanks at the rate of r

gal/min,




(a) Set up differential equations for SI and Sz,
+he amounts of salt in the two tanks at time t
minutes. Assume perfect mixing in the tanks

at all times.

(b) For the case

v, = 1000, Vv, =500, S, =500, r = 60,

what are the concentrations in the two tanks at

the end of 10 minutes? Ans. .361, .178.

(c) How long will it take to get the two concentra-

+ions within 1% of each other? Ans. About 28 min.

Modify Example 2 of Section 5 to include the presence
of dingos, the wild dogs of Australia. Assume that
dingos live exclusively on rabbits and make other
appropriate assumptions to get differehTiaI equations
Qoverning the populations of rabbits and dingos.
Solve these for various values of the constants and
various initial values to see if you can get a fairly

realistic model,

L1031 10s;



6. A dingo is
éhasing a rabbit Y
by running
directly towards
it at any moment,
with velocity V,

If the dingo's

coordinates are

(x,y) and the

rabbit's (A,B) then

dx _

F_F—VCOS e,

dy .

T V sin @8,
where

cos 8 = A—B—i , sin e = 5—6—1 , D= ftA-x)2 + (B-y)2,

Supposing the rabbit runs in the circle
+ t
A = 1000 cos gz ft, B = 1000.sin g& ft,

and the dingo has velocity 30 ft/sec and is at (0,0)
when + = 0, where and when does the dingo catch the
rabbit? [Note. Because of the various errors In

Euler's method you cannot expect D ever to become

exactly zero.].

L 18205







“7. Inké fiquép{aéhic, out of N people let x be the
number who have not been infected and y +he number
who are infected, The remaining N = x = y have been
infecféd, have recovered, and are now immune to

further infection.,

(a) Justify the equations:

dx _

aF = T

d

TF = -y,

»

where a and b are constants.

(b) Assume y(0) = m > 0, x(0) =M > b/a. Justify

the following conclusions.

(i) vy increases at first.
(ii) x always decreases, eventually
becoming < b/a.
(iii) y is a maximum when x = b/a and then

decreases, approaching zero as t + «.

(iv) x may approach a limit x_ > 0.
(¢) Take N = 100, so that x and y are percentages,
and M = 100 - m, and run solutions for various
values of m,a, and b. In particular, try to see

how x_ depends on these parameters.

et
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7.7 Separation of Variables.

We return now to the first order equation y' = f(x,y),
Although numerical computations, using Euler's or some
similar method, can get an approximate solution fo
essentially any such equation there are various reasons
for finding analytic solutions, if possible, Perhaps
the most important reason is that the form of the solution
may tell us more about its behavior, particularly under
changing initial conditions, than a mere table of values.
Thus the knowledge that the solutions of y' = x/y are the
hyperbolas y2 - x2 = ¢ is useful information thut is not

likely to be obtained from numerical solutions.

The solving of y' = f(x,y) is a generalization of

the process of finding an indefinite integral, for the

latter is simply the special case y' = f(x). Thus we
might expect to encounter all the difficulties, tricks,
and special cases that were the subject of Chapter 1|1,

along with some new ones. This is indeed the case, Of

all the various means that have been devised for solving

a differential equation we shall consider in this chapter
only two or three, suitable for many common and important
cases,

s b 084
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Mgfmwn. The méthod of separating variables was introduced

in Chapter 9 and has been used without comment earlier
in the present chapter., Let us look at it a little
more critically.

- 2
Example !. y' = 1 L——JL—, y(0) = .5,
Y |-X2

We can separate variables, first writing y' as %% , to get

either

(1) —ydy . dx
/1 - y2 | - x2

or

ydy . __dx

y2 - | x2 - |

In the first form we must have |x| < I, |y| < I and in fthe
second, |x| > !, |y|] > 1. Seeing that our initial point
satisfies the first pair of inequalities we must use (1).

This integrates to
(2) -/ - yz = arcsin X - ¢,

The value c is determined by the initial point to be

c = ¥3/2 = .866... . So, finally, solving (2) for y gives

. 103 10
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(3)  y=/T<-(c-arcsin x)?Z

the positive sign of the square root being chosen to

give y(0) = ,5.

The graph of (3) is " B
given in Figure 7-1 for
the maximum domain of x. c
However, this whole curve (0, .5)
is not a solution of the gi § - gg(g'ﬂ
differential equation. cC: Y= 1-(mf2-c)
For it is evident from | ! X
the original equation A
that y! >0 fory > 0. Figure 7-1

Hence the piece BC of the

curve must be excluded, and the domain of the solution (3)

is only the interval
-sin(l - ¢c) < x < sin ¢,
or about
-.134 < x < ,761,

In this case the restriction on the formal solution (3)
was easy to deduce, but this kind of trouble may occur

in subtle forms. One must always be most cautious when



“deailing with multiple valued expressions like square
roots and inverse trig functions. The following theorem

telis us how we can proceed In a general case.

Theorem |. Let f be unicon in (a,b) and g in (c,d),
and let gly) # 0 for all y in (c,d). Let X, be in (a,b)
and Y, in (c,d). Let

X y
F(x) = /; fC+)dt, Gly) = fy g(t)dt.

0 0

Then

(a) F is defined in (a,b).

(b G is defined and strictly monotone in (c,d).
(c) G has an inverse function H.

(d) y(x) = H(F(x)) is defined for all X for which F(x)

is in the range of G.
(e) G(y(x)) = F(x) for all such Xx.

(f) y(x) is the solution of

T f (%) (x.) =
v' = gyy 0 Y%’ T Yoo



Proof. (a) Since x, and x are both in (a,b), the
interval [xo,x] is contained in (a,b), Hence f is

unicon on [xo,x] and F(x) exists.

- (b) Similarly, G(y) exists, By the Fundamental
Theorem of Calculus, G'(y) = g(y) # 0 and so G'(y),
being continuous, is either always positive or always

negative., Hence G is strictly monotone, by Section 6-6.

(c) Every strictly monotone function has an

inverse, Section 7-3.
(d) The range of G :s the domain of H (Section 7-3).

(e) Basic property of the inverse function:

G(H(u)) = u for all u in the domain of H. Hence
Gly(x)) = GIH(F(x))) = F(x),

(f) Applying the chain-rule to y(x), as de-

fined in (d), gives

(4) y'(x) = H'(F(x))F"(x).
By Section 7-3,

|
] —
HU (W) = Voo T e
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Hence

' =
(5) H'(F(x)) GT(H(F(x))) G'(y(x)) °

Since F'(x) = f(x) and G'(y) = gly), (4) and (5) give us

y'(X) = a-vzl—xw f(x),

i.e., y(x) is a solution of y' = %%%; . Since, by

definition, G(yo) = 0, we have H(0) = Yo Since, also,

F(xo) = 0, we have, finally

yixg) = H(F(xg)) = H(O) = yq.

The only reason for requiring gly) # 0 was to insure (b).
As long as G is strictly monotone the remaining conclusions
follow. For instance, gly) = y2 on (-1,1) is acceptable

since

y
- 2 - 1y3 2 1y
Gly) ~/;o +24t = gy 3Y4

is strictly increasing on (-1,1).

To see how this theorem applies look at Example |

again. We have




fix) = —— -1 < x <7, Xg = 0,

gly) = —f—, 0 <y <1, vy, = .5,
/1 - y2 0
y = 0 is excluded sinte g(y) must not be U,
X
dt .
F(x) = / ——— = arcsin X
O SR ’
y d )
G(y)’=f Y = /I - y2 v+, ¢ = V3/2,
LA~ '

The inverse function H is thus

(6) H(z) = VI - (c - 2z)2 ,
the positive value being used since {(z) must lie in
the domain of G. The range of G Is ¢ - | < 6 < ¢, so

this must be the domain of Hs This is a restriction
on (6), which otherwise could have the range
c - | <z < c+ |, This restriction :3 what rules out

the arc BC in Figure 7-1, We now get

yi{x) = H(F(x)) = ¥| - (¢ ~ arcsin x)*

as before, but with the restriction
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¢ - | < arcsin x < c,

or

sin(c = I) < x < ¢,

giving the arc AB as the solution,

The conditions of Theorem | are sufficient to insure

a solution but they may not be necessary. That is, there
may be solutions that do not satisfy these conditions.
The equation in Example |, for ins+ahce, has the obvious

solutions y = | and y = -1, The former can be combined

with (3) to give the solution

JT - (c - arcsin x)2 if sin(] = c) < x < sin c,

! if sin c < x < |,

to give a solution in the interval sin(] - ¢c) < x < |,
Since the two parts fit fogether with the same s lope, O,

the differential eguafion is satisfied at this point.
One must always be on the lookout for these extra

solutions. They usually lie along the boundaries of the

regions in which the other solutions are defined.
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Some of the advantages of the analytic solution (3)
over a numerical solution can be appreciated by Investi-
gating the dependence of the solution on the initial
pdlnf, or, equivalently, on the value of the constant c,
In Figure 7-2,
curves of the type

Y
AB are variations r

s
r o
of the one obtained , ‘[ // b
above for c = V3/2. //
The two extreme :
A A X

-t A A c ct
cases of this type

Figure 7-2
go through the
points (-1,0) and (1,!) and correspond to ¢ = | - /2 and
c = n/2 respectively, For larger values of ¢, up to
c =1 + n/2 we get curves of type CD; and for

-m/2 < ¢c < | - /2 curves of type EF. This kind of Infor-
mation can of course be obtained numerically by computing

a large number of solutions for different initial values,

This is apt to be time consuming and therefore expensive,
especlially If the critical curves through the corners

are to be determined with some accuracy.,

1099
1042




The technique 1In Theorem | of using the integrals F

and G with x, and Yo 2S lower limits can be applied in

0

Yy2 -
Example 2. y' = LA Tl ’ y(0) = 2,
(x2 = 1)

We obviously must have

x # +1, |y| > 1. Hence Y
any solution lies in

+(0,2)
one of the six un- '

shaded regions outlined :;;<;/;/?%j>;v/{<;/j/(;/<;
by heavy lines in //j/i)<;/ //<;/;/i)/;/17

Figure 7-3, Consider-

Ing the position of

the initial point (0,2)

we see that our solu-

Figure 7-3
tion must satisfy
- < x < Iy ly > 1.
We get
X X
dt ! t - | ! | - X
F(x)—f = Iog‘ | =log ’
o 2 _, ? T+l 2 I+ x
pa
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the argument of the log function being chosen to be
positive for the values of x in which we are interested,

Similarly,

Y Y
Gly) /; 4 - ﬁl-log|+ + /12 -
VEY IR 2
= % logly + vy2 - |) - % log(2 + V3)
= _l. Iog b + Y - |
2 2 + V3
We wish To solve
! y + Vyz - _ | = x
= log = 3 log I v
2 + /3
This is obviously equivalent to
(7) y+ /N2 =1 = a : = : , a =2 + /3.
The range of y + vy2 = | is | fo = for'y > 1, hence x

must be restricted, if necessary, so that




The right-hand inequality Is automatic for x >-l;

for x + | > 0 the left-hand Inequality becomes

P R N - N B
-2 ! 3+ /% V3
Hence x is restricted to =! < x < 1/v3,

To solve (7) for y note that

y - YT -1 = '___-
y+/y2—|
Thus

Adding this to (7), and doing a little algebra gives us

as the solution

(8) y = 2 , -1 < x < L .
| - x2 /3

1045




Figure 7-4 shows what happens at x = LI . The curve

(8) has a minimum point and is increasing for 1/Y3 < x < 1,
but the given differential equation obvliously implies
y' < 0. The dotted curve in

the figure Is a solution of Y

(x2 - 1)

obtained by taking the other

determination of the square

root, So here again it is
the mul!tiple valued quantity

that cause the trouble, X

-4
The solution can never- Figure 7

theless be continued beyond x = 1/¥3 since, as we have seen,.

y = | is a solution, Our solution is thus

= B x+r e < x< 1/V/5,

! if 1/Y3 < x < |,

In Examples | and 2 we were able to solve explicitly

for y(x) in terms of elementary functions. This Is not







to be expected in general. The following example

exhibits two kinds of complications,

2
Example 3. y' = (y* + y2 e ,  ytoy =1,
Here we must avoid y = 0 but otherwise there are no

restrictions, We get

Y | fx 1-2
ﬁ —_dt = 0 e dt.

th o+ t2

The left-hand side integrates by partial fractions, and

we get
X
| T Jf +2
(9) vl arctan y + | + 7 = o © dt.
Here are our two troubles: First, the right-hand side

cannot be integrated in elementary terms. We can express
it as a power series, or we can use Simpson's rule to
approximate it for a given x., Having done so, we then
have the problem of solving (2) for y. This is another
numerical process, using bisection or Newton's method,
All in all, Euler's method, or some more accurate step-

by-step methed, would seem to be preferable.

=
Lt

5 50
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PROBLEMS

l. Solve the following equations. Note that your answer

is not necessarily wrong if it is not in the form given,

3
(a) y' = x2y. Ans. y = ce” /3,
(b) y' = ay/x., Ans., y = ex?,
(c) y' = aym/xn, m# 1, n#1,
A ns, y = [a : : : xl-n + C] 1 /(l=m) .
(d) y' = cos x cos y., Ans, y = arctan sinh(sin x + c).
v o= o XTY _ X
(e) y' = e . Ans, y = =loglc - e7),

2 4
(f) y' = l—;——l . Ans, y = tan log cX.

2
(g) y' = L_+l . Ans' y H—x .

x2 + | = ex

2 - | c + X
(h) y' =X—. ANS . y = ¥—m———— ,

%2 - | | + ¢cx

2, The given solution of Problem 1(d) applies only *to

-n/2 <y < n/2, Find the solution with initia! condition:

(a) y(0) = 2m,
(b) y(0) = 3u/2,
- 1048

S - 1058




Consider the special case of Problem I(c),

y'

(a)

(b)

(c)

(d)

(a)

(b)

= -yn/xn.

For n > 0 what solution has this equation that

is not covered by the given answer?

For n = 1/2 find the special case of the given

answer that satisfies y(l1) = 1,

Combine (a) and (b) to get the most complete
solution with the given initia! condition.

What is the domain of this solution?

Do (b) and (c) for the case n = 2/3. Warning:

There are complications.

What is the solution of Problem I(h) not covered

by the given answer?

There are two points that behave peculiarly with
respect to the solutions of this equation. What

are they and what is the peculiar behavior?

1049
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5. Sometimes equations in which the variables cannot
be separated can be reduced to separable form by
an appropriate substitution. The substitution
y = ux, replacing y by u, Is often helpful. One

common case in which if‘works is when
f (x,ux) = f(1,u),

f is then said to be "homogeneous of degree zero

in x and y".

(a) Show that if f is homogeneous of degree zero

and y = ux then
du ___ dx
fCl,u) - u x

(b) Solve the following equations, at least to the
point of expressing y as an implicit function

of X.

= X X
(i) y! L+ exp (x).

Ans, y = =-x log (~-log cx) .
- v 2 Y X
(ii) vy y - x °
Ans. y = x = V2x2 + c
1050
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111y yr-= 2242 (see Section 2, Problem I(e)).
y X - By ’

2 o 2
(iV) y'—iL-x—x—o
2 - w2 V2 - %2
Ans y * /y3 X = C exp yly + /Z x7)
X X

(¢) What is the meaning of "homogeneous of degree

zero" in terms of line elements?

6. To solve y" = -y (see Example 2 of Section 6) we use

the form of y" given In Problem | of Section 7-6:

_ dy! dy' d dy'!
[ J— Y _ = gy oy _ Sy _ oy
Y X dy dx dy LA

(a) Solve

(b) Solve

4 - o /o - y2

1051 1101
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(¢) Show that in al! cases thls is of the form

y = a sin x + b cos x.

7. A flexible rope of uni=-
form linear densify p
Is hanging loosely as
In the fligure. The

weight of the portion AN
TO

between (O,yo) and (x,y)

must be balanced by the

upward component S of

the tension T at (x,y),

SO

X
S = ./g go/1 + y'(1)2dt.

Since the tension T is ftangent to the curve we have

S = !
Tg = y'(x),
Hence
§ N .
z'\. ay'(x) = A YI o+ y' ()2 df, a = 50
| T
IR S | IIOQ




(a) How do we get from this equation to

ay"(x) = Y1 + y'(x)2% ?
1
(b) Using y" = y' %%— , solve this equation for
y' in terms of y. Show that the simplest

form is obtained by choosing y(0) = a,.
yZ - a .

|
! = -
Ans, Yy 3

(c) Solve the equation for y. [Hint. The easiest
method is that of Problem 8, Section !1-3,
Otherwise see Example 2.

_ X _ a x/a -x/a .
Ans., y = a cosh 3= §-<e + e ) . This

curve is known as a catfenary.
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8. Linear Equations.

A differential equation of the form

(1) y' = p(x)y + g(x)

is said to be linear. Linear equafioné, and their
generalizations to higher order equations and systems

of equations, have properties that make them especially
usefu! in examining the behavior of certain kinds of
physical systems. We shall return to this aspect later.

For the present we study the solutions of (1),

Theorem |. Let p and q be unicon in (a,b), let X0 be
any point in (a,b), and let Yo be arbitrary. Then (1)

has a unique solution in (a,b) satisfying y(xo) = Yoo

Proof. Let r be a function, to be determined, positive

and unicon on (a,b). Since r(x) is never zero, (l) is

equivalent to
(2) ry' - rpy = rq.

We wish to choose r so that the left-hand side of (2)

ié the derivative of ry. Since

T 1054 11“4



(ry)' = ry' + r'y,
this will be the case if
(3) r' = -pr,

Thus we have to solve (3) for r. Since r(x) is never

zero on (a,b) we can separate variables, getting

a

L= -p dx.

7|

This glives

X
Iogr=-f p(t)dt + c,
*0

or

-S(x)
= e

where

X
s(x) = Jf p(t)dt + c.
%0

Since we are only after some function r, c can be taken

to be any value we wish., We chocse it to be 0 so as to

make s(xo) = 0,

Equation (2) now becomes

-s5(x) e-S(X)q(x),

(e y)' =

from which we get

LI
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X
= eS(X) L/: e-S(T)q(T)dT + c]

0

Putting x = X gives ¢ = Yo+

This proof not only establishes the theorem but

gives a formula for the solution, namely

y=yu(x)+u(x)f ':JLE_I'_)T ,

(4)

X
uix) = X s = f p(t)dt.
XO ’

However, it is advisable to use the above derivation

rather than trust one's memory of the formula.

R |f an initial point is not given we can take Xq tTo
be any convenient point in (a,b) and regard Yo 2@s the

arbitrary constant of integration.

Example 1. y' =y + e2x.
p(x) = | and q(x) = e2x are unicon for all x so we need

not worry about bounds for x. Since X0 is not given

take it to be zero. Then

s{x)

n
o\)
X
o
—+
|
X
L ]

r{x)

n
®
L]




Equation (2) is

- -X -X_2X
e xy' - e = e "e

or (always check this step)

Integrating gives

- X X
ye = c t+ e

L 3

or, finally,

y = ce’ + ezx.
Example 2, y' = S S y + 1.
’ x2 - |
Here p(x) = > a is unicon on any interval that does
' x¢ = |
not contain | or -1. Let us take the interval (-1,1)
and choose X, = 0. Then
X X
+ df ! |
s = ./; > 7|og]+2 - 1] = =zlog (I - x2) .,
t4 - |
F= oS = (1 - x2) /2
= /2 ' -
(- )52y 2 - xym! 2
(1 - xz)_l/zy = arcsin x + ¢
y = /1 = x2 arcsin x + ¢ /1 = x% .

1657 ]




lf we take the interval (I|,=), with Xg = 2, we get

1 x2 !
s = = log ,
= 3
r = ) —
) x2 - |
y = ¢ /x%2 - | + % x2 = | log(x + /x%2 - 1),
Example 3. y' = xy - x3, y(0) = 2,

Here p(x) and q(x) are unicon over any interval.

for brevity, we have

X
/(; t dt = x2/2,

2
u =ex /2'

n
i}

2 2 X -t2
y = 26777 - ¥ /2/(; 36717 /244,

The substitution z = -t2/2 reduces the integral

to

Using (4)

-x2/2 -x2/2
—_—2
2_/; zeldz = 2(z - 1)e? =.=(x2 + 2)e~ % /2

0

L3 1%

L

T1. -

+

2,



Hence

2
e” /2, x2 + 2 - 2e

y = 2
or’

x2 + 2,

~
!

One can run into the same kind of trouble that was

I1lustrated in Example 3 of Section 7,

Example 4, y' =y + Vx , y(1)y =1,
We get
x=1
s = x =1, u=e ,

x
y = X! o ex! Jc e~ THI/F 3¢

x= | X -
= e - e Jc e /¥ dt.

The last integral is not expressible in elementary form,

so recourse must be had to numerical integration,

The situation is more annoying if p(x) cannot be
integrated in elementary form. Then two numerical

integrations are needed.

1058 1 )
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We turn now to the properties of linear equations
of use in applications, Many a present-day device is
what Is called a "black box"; that is, a mechanism -
using this term in the loosest fashion to include
electrical, hydraulic, acoustic, etc. devices = that
has an input q and an output y that are functions of
time, Thus for a TV set the input is radio waves and
the output is light and sound waves, For an automobi le
(in the simplest case) the input is displacement of
the gas pedal and the output is angular velocity of
the wheels. In these and other similar cases the
relation between the input and output is much more
complicated than can be represented by a single
differential equation but many of the basic principles
remain the same. For a TV set, for example, it is
absolutely essential that the performance be linear to

a very high degree of accuracy.

We consider, then, the

situation illustrated in

Figure 8~!, where g and vy
. Black box
are functions of time *t q(+) y(t)

and are related by the
Figure 8-

LU SR







equation
(5) f(t)y' + g(t)y = q(t), t+ > tg -
Here f(t) and g(t) are two functions of t determined by the

internal structure of the black box. +0 is some start-
ing time, usually chosen to be O, Our problem is to
investigate the form of the function y(t) and in

particular to see how it depends on fthe input and on

the initial value Yoo

Consider first the case with zero input. A solution

of
f(t)y' + g(t)y = 0

is called a null function of the equation. Equations (4)

show that, omitting the identically zero null function,
all nul! functions are multiples of one another, being

simply multiples of

ult) = exp Jr+ - 9is) ds
to f(s :

Note that the null functions depend only on f and g, that

is, only on the structure of the black box.

SR ) 1174
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It now follows that any solution of (5) can be
expressed as any other solution plus a null function,

For if Y and y, are two solutions, i.e.

f(ﬂy'l + gty q(t),

f(ﬂyé + gltly, = q(t),

then, subtracting
1
f(T)(yI - yz) + g(H(yI - yz) = 0,

That s, v, = ¥p = z Is @ null function, and y, =y, + z.

Hence if we have one null function of the black box
and if we have one output for a given input then we can
get all possible outputs by simply adding multiples of
the null function. In Example 3, for instance, if one
were lucky or clever enough fo notice the simple solution
y = x2 + 2 he could get any solufion by adding a multiple

. . =x2/2 . . :
of the null function y = e . Which multiple Is to be

added is determined, of course, by the initial value y(To).

So far we have only considered a single input, When
we come to consider the outputs corresponding to several
different inputs the basic property is the following,

known as the Principle of Superpositions




Let yk(f) be an output corresponding to the inpuft

qk(f), k = 1,2,004,m, and let ¢ ,Cr,ese,Cp be any constants.
Then
m
y(t) = Y ey
j=1

is an output corresponding to the input

m
q(t) = ca; (1.

J=1
I+ is left to the reader (Problem |) to express
this in terms of equations and fto prove it by simple

substitution of the output into the equation.

This principle finds its most common applications
in the static case, the case in which the structure
functions of the black box, f(t) and g(t), are constant.

The differential equation Is then

ay'+ by = q(t)
kt

and y = e ', k = -b/a, is a null function. Our first

observation is the following:

B 1 -
R T tig



The output with zero input grows without bound if
k >0, is constant if k = 0, and tends to zero if
k <« 0, Since it is essenfﬁally impossible to adjust
a mechanism so that k is exactly zero the middle category
is of little importance. In the case k < 0 the behavior
of the black box is said to be damped; we set h = -k and

call h the damping coefficient, |f k > 0 the behavior

is negatively damped, This case can occur on.y when

there is a source of energy within the box.

When we come to the problem of finding a solution for
a given input the principle of superposition plays a vital

role. lf, for example,

q(t) = 6t2 = 5 + 3 sin 4t - 2e-6+

we need only find solutions for

q = t%, |, sin 41, o0t

and then combine these solutions with the corresponding
constant multipliers. The above terms are typical of
those that appear in practical problems. For one thing,
we can approximate many functions by partial sums of a

power series, that is, by sums of powers of ft. It is also

1: .
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possible to approximate many functions by sums of multi=
ples of sin nt and cos nt for different values of n,
"Thus even If the Input is quite complicated we may be
able to find an output, approximately, by approximatinag
the input by terms of the form xn, sin NX, COS NXe. enx

terms are not so common but they are just as easily

handled, so we include them in the following discussion.
The method we use is the "guessing" method, or
"method of undetermined constants" of Section 11-6,

Case |, q(+) is a polynomial of dearee n. We observe

that the solution

T -
| kt e kZq(z)dz
(6) F
-t-
0
will also be a polynomial of dearee n. (Problem 2).

Letting this polynomial be

= + ’ 2 n
Yy ao al'f 4 az'f' + se0 + an‘f

we substitute in
ay' + by = q(t),

equate coefficients of corresponding powers of t, and

solve successively for 3., @ ces 5 3pe

n-1"*

1065 1[ ‘ =
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Example 5. y' + 3y = x2 - |,

Put vy = a + bx + cx2. Then
b + 2cx + 3a + 3bx + 3cx?2 = x2 - |,

Equating coefficients gives

3¢ = 1, c = 1/3,
2¢ + 3b = 0, b = -2/9,
b + 3a = -1, a = =7/27,

So
Yy = gw(=7 = 61 + 912),

Case 2, An input of the type A sin nt + B cos nt, has

— -

an output a sin nt + b sin nt. (Problem 2).

Example 6. To solve y' + 3y = cos 2t one sets
y = a sin 2+t + b cos 2%, to get

2a cos 2% = Zb sin 2+ + 3a sin 2+ + 3b cos 21 = cos 2+.

Equating coefficients of sin and cos gives

W
Q
i
N
(o
i}
o
-




from which

= 2 -
a—-r3-, b_TS.'

Hence y = +3(2 sin 2t + 3 cos 2t),

Case 3. (Proof left to reader: Problem 2),

ay' + by = ehf has a solution

ehf/(ah + b) if h # Kk,

y=
Liekt if h = k.
ExamEIe 7. Solve
y' + 3y = x2 = | +5 cos 2t - 27 + 37T, yo) = 1.

Using the results of Example 5 and 6, and Case 3, we get
as a solution of the equation
y, (1) = so(=7 = 61 + 912) + 242 sin 2t + 3 cos 21)
2_t 3t

- ze + 3te .

The general solution is

. y o®
SR [ 7}




Putting in the initia! condition gives

7 15 ! _ 425
|=-2-7-+—|-3-—7+C, C-m-

So, our answer is

_ [4z25 -3+ 1t | 2 ey

5 .
+ TT(Z sin 2t + 3 cos 2t).
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PROBLEMS

I. Prove the Principle of Superposition.

2. (a) Prove that the expression (6) is a polynomial
of degree n if q(t) is a polynomial of degree n.
[Hint. Prove it for a single term and then

combine terms.]
(b) Prove that (6) is of the form a sin nt + B cos
if q(t) = A sin nt + B cos nt.

eth then (6) is

(c) Prove that if q(t)
"t/Cah + b)Y if h # K

l t ekJr
a

3, Solve each of the following:

(a) vy' = % + X. Ans. x2 + Cx.
(b) y' = xy + x. Ans. Ce* /% .,
(c¢) y' =y tan X + sin X. Ans. C sec X - % cCoSs X.
(d) y' = -y sec X + cos X.
Ans, (sec x - tan x)(C + x = cos X).

B I §




' = -
(e) vy v l. Ans, (C log(x + 1))(x + 1),
(£) y' = =X - 1. Ans. (Ce¥ 4+ x + 2)/(x + 1),
(g) y' =y log x + x*. Ans., x (1 + ce™ ™).

4, The equation

2y x2

y' = =%+
X' (k2 o+ 272

has one solution that remains bounded as x =+ «,
|

Find it, and show that *lm y(x? = - .
5. Solve each of the following.

(a) y' - 2y = e + 3, Ans. y = cel* + &% - 3/2,

-3 sin 3x, Ans. y = Ce3x + %(sin 3x + cos

(b) y' - 3y

-X

(c) y' = x2 =y, Ans., y = Ce " + x? - 2x + 2,

(d) vy'! y + 2x + 3 + 4e™ + 5 sin x + 6 cos x.

(e) y' +y = cos x + sin x, Can you see a solution?

6. Get the solutions of the equations in Problem 4 that

satisfy the given initial conditions.

1]
N
L]

(a) y(0) = 0. (b) y(0)

(c) y(1) = 2. (d) y(0)

o /29
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Two +tanks of —\ r
ml it

volumes VI and e

Vz,'are connected Vi 5S4 Va2 Sz

as shown, and
salt solution
flows through them at r gal/min. Let S, and $, be the
amount of salt in the two tanks. The flow Into the

flrst tank Is fresh water, and initially there is fresh
water in the second tank. When is the salt content of

+he second tank a maximum?

log VI - log V2
Ans., If VI # V2, t = T .
v, Y
Vi
1F v, = Vyy t=
This problem I llustrates how the output of one linear

process can be used as the Input of another. This
is the principle of multi-stage amplifiers in radio
sets.
An equation of the form
n
y' = p{x)y + q(x)y

is called a Bernoulli equation.




|=n

(a) Show that a substitution of the form u = vy

gives a linear equation in u,
(b) Solve each of the following

(1) y + xy?

~<
1}

(i) y' =y + x/y

2 2
(iil) yv=u—'

9., (Refer to Sectlion 2, Problem 3).

(a) Solve y' = xy + |, y(0) = b.

(b) Show that the answer can be written in the form

® -t2/2 x2 /2
(h - by - ./: e d+) e ,

where
o . .
- -1t2/2
by = - jg e dt.
(c) Show that for large x the solution grows like
2 2
ex /2 or -ex /2 depending on whether b > bO or
b < bo.
(d) Investigate the behavior, as x + =, of the

solution with b = bO'

T —(t2-x2)/2
[Hint. y = - ./;( e =X dt. Use the fact
that 12 « x2 = (t+ + x)(t - x) > 2x(t = x) for

t > x.

1072
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The value of by can be approximated from (b) by
the methods of Section 11-9, By other methods one

can prove that bo = -/n/2.

10, Conslder a damped linear system represented by

%{- = =hy + q(1).

We are Interested in the long-time behavior and so

can lgnore the null function ce™t which dies outs

(a) Fi!l in the gaps in the following argument,

If q(t) = sin(at + b), a > 0, then

y(t) = ! [h sin(at + b) = a cos(at + b)]
a2 + h2
= I [ h sin(at + b)
/a2 + h2 | /a2 + h?
- 2 cos(at + b)] = A sin(at + c)
va2 + h2
where A = 1//22 + he , ¢ = b - arctan % .

M=

(b) 1f q(t) B, sin(net + bn)’ w > 0,

1}

write an expression for the corresponding output

n

y(t),

P U Tizs
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The Input In (b) Is periodic of period 2n/w, 1.e.
q(t + 2n/w) = q(t). The answer to (b) tells us
that the output Is also periodic, with the same
period.s Since most periodic phenomena, such as
sound waves, radio waves, tides, mechanical vibra-
tions, etc,, can be approximated by ftrigonometric
sums we see that the property of periodicity Is

preserved by a linear differential equation.

To solve y' = p(x)y + q(x), y(xo) =Yg by power

series,first If X9 # 0 replace x by t + Xq » to qgive

g
(7) E% = f(H)y + g(+), y(0) = y,.

Assume we know the Maclaurin expansions of f and g,
fCt) = 3 a t", gty = X b t",
n n
n=0 n=0

It can be proved that if the radil of convergence of
these two series are RI and R2 then the solution of
(7) has a Maclaurin expansion whose radius of con-
vergence is > min(RI,Rz). Let this series be

s n - n
= c t = c (x = x.) .
Y 520 n gé% n 0

3 w310y






(a) Show that

cqg = Yoo

c, = bO + 35Cp»

c, = %-[b| + (agc, + élco)],

cg = %Eb¢ + (agc, + 3¢ + azco)],

and so on,

(bY Find 5 terms of the series solution of

y'! =y cos x + sin x, y(0) = 1.

Ans. y I+ x + x%2 + %x3 - %x“ + eee e
i2. (a) ©Draw a flow chart for the algorithm of Problem

IIta), assuming the én and b_ are stored.

(b) Adapt it to use recursion formulas to compute a,
and bn when they are needed. Note that bn Is used

only once and need not be stored whereas each a

and ch is used in ull later steps,

(c) Program the algorithm for Problem I1(b) and find

+the first 20 terms of the series.

(d) Find the first 40 terms of a series solution of

1075 11, ;
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y' = XL+ 1, yCD) =o0.
53

Use i1t to approximate y(.l). How accurate do

you think your value is?

[First derive (I + 7172 o | _ Ql-* + 2’:—2'*-2

IEEIEICRNE

13, A second order linear differential equation has the

form
fF(H)y" + g(t)y' + h(t)y = q(1).
(a) What would we mean by a null function?
(b) Prove that if z, and z, are null functions so

is az, + bz2 for any constants a and b,

(c) Prove that any two solutions differ by a null

function,
(d) Prove the Principle of Superposition,.
(e) For the special case
y" - 2y' <3y = sin t

(i) find +two null functions of the form ekT.

Ans. k = =1,3,



(i1) Find a solution of the form a sin t + b cos t.

Ans, +U(—2 sin t + cos t}.

(i11) Find +he solution satisfying the initial condi-

tions y(0) = 0, y'(0) = |,

Ans. 40y = Ile> - 15¢™1 - 8 sin t + 4 cos *.
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ANSWERS

vYolume 1|

Chapter 9

|1-8, page 607

2
2) ae?X, b) 26X + X, o) 2x3e™ + 2xe™, 4 %

X - 2.
o) xZe , ) ! log f' ) z e/z ! ,
(e + 1N2 + V22 - |
3x
h) 383x [ L - 445* e X ] ’
log(e™ - 1) Clogte”™ + 11J%2(e”” + 1)
) 2e=2X(cos 2x - sin 2x), 1) 3%x2(x log 3 + 3,

2 -1/2
k) log x, ) cot x, m) sec X, n) | _+ x(x _:_ll_ ’

x + /x2 + |

2
o) 2 ’ 0) 2x log(l + x )’ Q) xzex,
ex - e—x 1 + X2
r) e2%(a sin bx + b cos bx), ) 256> % cos 4x.

2 X
a) y' = ('- + — - 2) Y
x | + x2 ’
| 2 3 4
-
b) y (x + | + X + 2 + x + 5 + x + 4 )Y,

(=1 + cot x - 2 tan 2x = % - 3 cot 3x + 4 tan 4x)y,

o]
~

~<

i}

' - y(x logy = vy)
d) y x(y log x = x)




Chapter 9

I-10, page 609

a) Min at P(x,y) (-l,g), b) Min at P(xl,y ) = (0,0)

4
Max at P(x ) = (2 )
20Y9o 57

(0,100, d) vy is not defined at x = 0,

c) Max at P(x,y)

no extrema,

o) Min at Plx,y) = (1, =2), ) Max at P(x,y) = (e,d)
1-11, page 609

a) —ge* + ¢, b %exa f e, ¢ loglx - 1] + ¢

d) %i + log|t| + c, e) % log|t2 + 1| + ¢,

£) logle® + 1| + ¢, @) logle* + 1| + c,

h) %x - % log|2 + Se4x| + c, i) arctan e® + c,

j) loglsin x| + ¢, k) -log|cos x| + c, 1) -% + e,

| ! !
m) —;—2-+|, n) -7<e—2—s’|). o) log 3,

p) % - % log 2, r) does not exist, s) does not exist.
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|-13, page O12

a) cosh

r
b) jslnh

fCOS h

¢

X

X

X

X

sinh Xx.

dx

dx

dx

dx

Chapter 9

cosh?x

cosh x +

¢]

sinh x + ¢

sinh2x

log}cosh x| + ¢

log|sinh x| + ¢

y Y A-33



Chapter 9

I-16, page 612 2-1, page 626

log 2 = .693174 a) s = 1612 + 5t + 100

log 3 = 1.098657 b) r? = -3 cos 6 + | + /7
log 5 = 1.6095 c) y2 = x2 + 2x + 9

log 7 = 1.94598565 d) y2 = x2 + |

log Il = 2.397984 e) y = loglc - &%)

- (L 2
2.56505 8 f)z = (3+ /1 + 1)

log I3

2-2, page 626

a) a #0, ay + b = ked* + c, b) a =0, vy =bx + ¢

2-3, page 627 2-4, page627
a) 2 a) )98I
b) Twice the mass of earth. b) 1993

A-34




Chapter 9

2-5, page 627 2-6, page 627
a) e~°1386T, b) e~69.317h -12 = xy - 8y
2-7, page 628 2-8, page .28
y = o~ kX keY = x3

2-9, page 628 2-10, page 628

g a) .09956 Ib/gal.

b) 105 min.

2-11, page 629

13,7 min,




Chapter 10

-1, page 642

a) convex, b) concave, ¢) convex for x > 2, concave for x
d) convex and concave, _e) convex, f) concave, g) convex
h) convex, i) neither

|-2, page 642

a) Proof: h" = f" + g" >0

0, g(x) = x2, h(x) = =-x?

b) False. f(x)

c) False. f(x) = =1, g(x) = x2, h(x) = -x?
-3, page 643
a) Yes, b) No
|-4, page 643
a) e¥ is convex, y = x + | is tangent at (0,!), so e” > x +
b) log x is concave, y = x + | is tangent at (1,0),

so log x < x + |

£ A-36




Chapter 10

-6, page 643

a) flex at (-1,2), b) flexes at (0,4), (3, -5
¢) flexes at (=L , 2), d) flexes at (+/3, iig),

Y3

e) flexes at (2, 25), f) flexes at (.66, +.22),
e .

g) cot x = ; ’ h) no flex

2-|, page 653

a) Output

|, .75000, .66667, .64!67
2, .70833, .67933, .01450
4, ,69383, .69122, .0013!1

EXCESSIVE ROUNDOFF 8, ,69383, 100131

2-2, page 653

a) .69314, b) 19.625

2-4, page 6553

a) .375, b) T = .,38935, E = =-.01435
c) M= ,36794, E = -,00706, d) AI = ,32865, E = =-,00369
e) Ay = .37508, E = =-,00008

A=-37 11 3,



Chapter 10

3-2, page 663

a) Xq = 2 b) Xg = |
x| = |,54 x| = ,75
Xy = 1,522 Xy = .73
|E] < .002 |E] = .005

2 8, -
= (3 + 3) = 2,8333,

b) x, = 3, X Xy

3-4, page 664

a) Any number N # O can be written as c x |0

.1 < c < 10, Then /R = 2 x 10"

b) Program and run for c JHCa1)IC1)I10, cou
number of steps to get 8 place accuracy.

step will be needed for 15 place accuracy

2m
, where

nting the
One more



Chapter 10

3-5, page 664

a) Use a =0, b =1, b) Use a = 0, b =1,
c) a=2,5, b =3 for large root
a=2, b=1,5 for smaller root

d) Two roots are 2 and 4, For the third root put z = =x > 0

and write as log z = —lg%—g z, Take a = ,5, b =1,

a) =3, b)0, o 0, O %, e ==, )0, o0,
|
. | iy = . log(! - x) = 1 | - X
ST S 5L S
log X log2x X
2
= Jim (-x) lim %2%—§
1 log X
= -1 - lim e = 0
X>1- -

4-7, page 682
a) e, b) ex, c) |, d) o
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Chapter 1|

|-1, page 690

a) %x“ - x3 + %xz - x + c, b) /?(%x -2) 4 ¢, ¢) —% cos 36 + ¢

_ - /5
e) L arctan 2 + c, d) —% e 2% 4 c, f) 1 log et s c,
/5 /5 2V5 x + V5
"g) 4 log |x + VxZ + 3| + c, h) tan 6 + c, i) sec 8 + ¢
2-1, page 696
)

a) =z 072" + ¢, b) % log |1 + sin 2x!
c) -cos log t + ¢, d) Y2+ 1 +¢c, @) % log |x2 + /x* + 1| + ¢
f) Iog(ex+e-x) + c, g)-L(Iog [x3 + 1| + -__L__) + c,

3 3

x> + |

: ! . ! ;
h) —-arctan cos x + ¢, i) g Sin 4x = =5 Sin I0x + ¢,
J) % sin 4x + %U sin 10x + c, k) -% cos X = +U cos 5x + ¢,

! 2x - 3
1) log [4x2 - 4x = 3| + 7 log |5 57| * S

l
m)log||+1‘anx|+c, n).—l_l' ‘><+I+/><2+2><+%+C:
/2 !
» A—40




Chapter I

2-1, page 696 - con't,

o) arcsin (% x - 1) + ¢, p) %(Iog x)% + ¢,
| 2x

q) x2_x+|—6—4[log |2x2+x| + 19 log ?X_"‘_II]-’- c,
f) dx3 o X2 4 3x - 4 log |x * 1| - ——— + c

3- g x+' ’
s) arctan vx2 + 4x + 3 + c, t) % log |2 + 3 tan x| + c,
u) vx2 + 2x - arctan ¥x2 + 2x + c, v) % tan3x + c,
w) tan x + % tan3x + c, x) = «»t x - csc x + ¢,
y) =2 cot ; - x + c, z) 41— arctan (/5 tan x) + c

2-2, page 698

I | |
5 (cos 2x = 5 cos 4x 3 cos 6x +

cos 8x) + c

S| —

2-5, page 698

tan3x - tan x + x + ¢

+
Wi~

tan’x - % tanSx

| B

c) ffanax dx

tanbx - % tan?x

S| —

.ffan9x dx % +an8x - % tanbx +

loglcos x| + ¢

A-41
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Chapter 1|

3-1, page 710

2 2 _ o
a) % log |———| + c, b) % log 4:____2 =1 I c,
| + x2 Yx2 - 9 + 3
! 2 |
c) -~ 5 log 5 + c, d) = sec 2x + c,
e |
y 1/2 I
e) - (2x - 1) {(x + 10) + c, f) -3 cos (ax + b) + ¢,
2 | « 3
g) T (x + 5)¥Yx = | + c, h) —— arctan = !t
3v2
1) 35 (5x2 + 3) (<2 - N334 e, x4,
i 3 4/3
k) 2(Vx = log (I + VX)) + c, 1) zglx + 1) (4% -~ 3) + ¢,

3-2, page 71|

Eesily Integraeble for odd integers.

3-3, page 712

a) -+6 cos 2x + c, b) % tan22x + c,

, J ]
c) 2 sin x = = log IT————v———

d) T&F (5 cos?3x - 7) cos°3x + c,

Ilog




Chapter !|

3-3, page 712 - con'ft,

e) =-s R4 % sec3x + c, f) 3 tandx + c,

g) ~2_(a +bcos x - a log |a + £ cos x|) + ¢
b2 ’

h) = -% log |! - tan%x| + c

3-5, page 712

, sin 2x + a sin x (2 cos x + a)
Hint: <o Jx F 3 cos x dx = « sin x dx
2 cos2x = | + a cos X

3-6, page 713

_I - 2 1/2 2 _X - 2 : X
a) 3 (4 x2) (x2 + 8) + c, b) -» Y4 x2 +.2 arcsin 5 + ¢

c) (4 + x2)1/2[%(4 + x2) - 4] + c,

N

d) /x2 = | + log |[x + Vx2 = || + c,

s o
e) (——f—x>/4 - {1 + x)2 + 3 arcsin (-I—-;-l) + c,

-

£) (x = 2)/4/x% - 4x + B + c, g) (x = 1)/3/2x2 + 2x = | + ¢

—_—
_ Y2ax + x2
ax

h) + c

Ligg



Chapter 1|

3-9, page 715

a) x - tan % + ¢, b) log ll + tan ;1 + c,
X
I | + tan 7 + /7 | % | P
c) — log + c, d) = log tan - — tan® = 4
| + tan % - V7 2 z 4 2
sin X X
e) Iog l-rﬁm + c, £f) /5 IOg ‘I + tan 2-‘ + c,
g) log I: = g + c
A = /h - 2 cos x - 2 cos?x - /3 (1 + sin x - cos x)
B = V2 (I - cos x)
(a - 1) tan =
h) a2 > |: —2Z arctan 2z + ¢
VaZ - | YyaZ - |
| (1 - a) tan ; + /1 - a2
2
a< < | log = + c
Y1 - a2 (1 - a) tan > - /1 - a2
a2 = |: ¢csc x - a cot x + ¢

3-10, page 715

See Problem 5-2, Page 719




Chapter 11

3-11, page 716

2
b) a) a2 > b2 + c? T arctan g + ok
d:;/az-—bz-c2
| (a - c) tan ; - b - d
B,) a% < bz + c%, a # ¢t 7 log = + k
(@ - ¢) tTan v b + d
d = /b2 + c2 - a2
By) a =c, b #0 % loy |» *ta al + k
>
v) a2 = b2 + c?, a # c: = — +
5 - {a - ¢) tan =
2
| X
72) a=c¢,c#0, b =20 y tan 7 * I
4-1, page 726
a) - x cos x + sin x + ¢, h) e~ X(x + 1) + ¢,
c) x arcsin 2x + %/T - 4x%2 + ¢, d) ¥ Tan x - log |sec x| + ¢
e) 3x(tan 3x - 3x) - log lsec 3x| + _x2 + ¢,
P4
f) (x - %) arcsin Vx + % VANV gy e“ix2 - 2x + 2) ﬁlC,
h) x[(log x)2 - 2 log x + 2] + c, Py 4T F 7 (3xM + 4) 1+ ¢,

J) % (x%2 arctan x = x + arctan x) + ¢,

A-45 1-’-4}3




Chapter ||

4-1, page 726 - con'fT,

ax
e

k) ~— ( a cos bx + b sin bx) + ¢,

az+b2

1) % [(x2 + 1) sin 2x ~ x cos 2x] + ¢,
m) %-¢4 + x2 (x2 - 8) + c,

n) Y1 + x2 arctan x - log |x + Y1+ le + c,

o) x log |x2 + 1| - 2 (x - arctan x) + c,

p) 2e5'" X (sin x = 1) + ¢, Q) 2 (sin Vx -

r ! e><2 ( - 1) + c s) =~ ! log x + il
2 g ’ x + 2 g 2

4-2, page 727

% [sec x tan x + log |sec x + *an x|] + ¢

4-3, page 727

x
e .
= [x(sin x = cos x) + cos x]+ ¢

A-46 Irys

X + c
X + 2




Chapter 1|

5-1, page 737

a) -%(Zx + 33" 4 o, b) -x + %[%} log|3x + 2| - % log|2x

|2 I 27
c) mx% + 2x + g log [x + 1| + 4= log |x - 3] + ¢,
d) ;ﬂé—T - log |x = 1] +# log [x - 2] + c,

I x + 2 J X =3
el m‘ IOg X_-_T + 31- IOg ———3-x " + c,
£) x = 6 log |x = 1| + 11 log |[x = 2| + c,
g) 4[5 tog [x = 1] = 109 Ix + 1| + =71 * ¢,
h) =x2 - 2 lo (x2 + 4) + & arctan 3 + c

7 g 2 2 H
i ! x = | Vi + 3
i) 2 log |x + 3| + 5 log |5—5—7| * ¢ 0> oy |

| (x = B

k) - log |x = 1] + 2 log |x - 2| + c,
P l [ 2 log 53—:;:L—J + 19 + lg arctan x 7 + ¢

2-5- (x - |)2 | = x 2 7-1 ’
m) % [qu (x2 + 2) + 7 log |x2 + 6}

+ — arctan —é + I_ arctan 3&]+ c,
2v/2 V2 2/6 Y6
‘_". ‘ A_47

114,

1

- 1]1+c,




Chapter 11

5-1, page 737 - con't,

n) %[3 log |x + 1] - 14 1og |x + 2| + 13 log |x + 3|1 + ¢,
o) % x = | + % log |x% + 2x + 2| - % arctan (x + |) + c,
22+ 2x + 2
| (x = D3 (x + 2)"
p) Z log x + 5 *oc,
q) + 7z log |x - 1| + % log |x + x + 1] + —E arctan 240 4
| V3 /3
2
r) 2 + 3 Jog |x%2 + 1| + c, s)%lo; X + c,
* x2 + | x2 + |
5-2, page 738
. tan2% - 2 tan £ -
Z | 2 z
a) x + ——— + ¢, b) 5 lo - = - x| + c
X 2 9 X x ’
|+ tan 3 | fan2§+2fan§~l |
2X < - X
sec’s tan = I tan 5
c) x5 - log = + c,
(1 - tan 7) I + tan >
6-1, page 744
— /2
a)—l—'—(log ]/E x + V2x2 - || - ;—__x_)'*' c,
2v2 /2x2 - |

{ 3 | x2 . 2ol . .
b) z (x3 - g[x cos.6x + x— sin 6x 1g sin 6x]) + ¢




Chapter 11

6-1, page 744 = con't,

3/2

) g ((2x = v 202x - /2 o (2x - |)'1/2) v c,
! . 05 sin 4x sin 8x 3

d) Vi (sin>2x cos 2x - 7 + 77 + TX) + c,

e) 10x + 2 + log v¥2x% = x = | + ﬁéz - c,
-18v2xZ2 = x = | 2/Z 4vZ
e 2 |

) iog |2x - 1] - — - ) + c,

8\ 2x = T 202x - 12
2x ! . 3
g) e [73 (sin 3x 6 cos 3x) sin®3x
+ %1 ((sln 3x = 3 cos 3x) sin 3x + %)J + c,

h) %1‘< a - 32X + —2— log
(2x2 - 1)2 2(2x2 - 1) avZ

. |
i) gz((fanZSX + 7 log lcos 3x + 1) + 3x

J3 % arctan = - —X — +c
< 2(x2 + 4)
6-3, page 74°
ik k3 4+ 12x2 + 23x + 23)e” % + ¢

2x - V2 )
+ c,
2x + V2

tan 3x - x2 + c,



Chapter ||

6-4, page 745

S e?X [(ac 4 bd)sin bx + (ad = bg)cos bx] - ¢
a2 + b2

6-5, page 745

- —alc -
p = (ac + d) , Fo= ad = c‘ q = a<cc 2ad + c¢
e e2
_-nl
. - —acd + 2ac + d , e = a2 + |
e2
6-6, page 745
ehx[(px2 + ax + r)sin kx + (1x%2 + mx + n)cos kx] + ¢
7-1, page 76|
a) 3 log 2 ~ 2 = —.42 b) | 2 = .43845
g 2 5 Tt 2 -z 109 2= . ,
¢) g (12V7 ing 2 - 8YZ + 4 = ,394, d) log 2 = ,6931,
e) 0 £) 2 (| + 6v/2) = ,537 g) ~ (~e" "+ D
’ 35 ; . ’ 2
7-3, page 762
4 2
a) mwab, b) jnab
1[{[7




Chapter I

8-, page 773

a) 3, b) divergent, c) w, d) divergent, e) 2
f) divergent, g) O, h) divergent
8-2, page 773 8-3, page 774 8-4, page 774
m n2 . . m 27
vi a) 7= b) divergent >3 0
a
8-5, page 774 8-6, page 774
No. Since ng x log x = 0 a) I x 5280 tt/Ib.
b) 800 x 5280 ft/1b.
f’ | ' | c) 3930 x 5280 ft+/1b.
o * 'eg X X =77 d) 4000 x 5280 f+/Ib.
9-2, page 792 9-5, page 793
b) n = 130 = ,04
: Ti4g




Chapter 12

|-1, page 820 I-2, page 820Q -3, page 820

-4, page 820 t-5, page 820 -8, page 821

212 + 4n ) 22T, by 27 ) %, by 4m

i-9, page 822 2-1, page 830

a) c > % , € > 2 b) BT%E%LTT . No, (c) No.

2-2, page 8531 ‘ 3-1, page 834 3-2, page 834
(D+L ) (D+L,)

a) Gp2log IR 28.080n ft/1b 50000

3-3, page 834 3-4, page 834

350000 t/1bs a) %wrZsz f+/1bs,  b) 3nrZ L2 ft/ibs

3-5, page 834

8333333.33325pn f+-1bs.

4-2, page 8453

a) 16.43, b) 3.82, c) 2n2a,

d) /I + a2 = log |1 + /I + a2| + log |a] - 1.032,

A-52 ligq



Chapter 12

4-2, page 843 - con't,

e) Vezc + | = log Il + ve?C + 1| + ¢ - 1.032

4-4, page 845

b) S + =, 'C has no length,

4-6, page 845

) Ly, =1+ = log |1 + V2| = 1.62

5-2, page 853

a) 2/%, b) 0, ¢ 1/2, d) n/4, e) log2 - 5

5-3, page 854 5-4, page 854

' m 2 4
a) ~a? b) Za, c) a a) =a?, b) ~a, c) =2

5«5, page 854

] ] i
a) — , b)) — , ¢ , d) /T F 7,
/2

- 1
o) —>— (log?€ - 2 log 8 + 2) = .57
373

Bt a-s3 1159




Chapter 12

6-1, page 866

2-
a) 6 & =3 = 4,1, b)6

el - |

- 3 - 3 -— - 3 -— n -— n

a)X=§,Y=§'o b) x = 0, Y=§b, C)X=2-, Y = F »
- ! - Ve - = I

d) X = T V= -1, e) X does not exist, y = R

6-3, page 866 6-4, page 867

Area is infinite. Area is infinite, therefore centroid not

defined.

6-5, page 867 6-6, page 867

— - 5 ~ _ 4da - _ 4b

X = ma, y--é-a X—ﬂ-,y—-—"

6-9, page 867

a) Origin at lower ieft corner

X =2.8,y =5.1, by x = 3, y = 7.0

[}
S
O

c)'x =y =4.5, d) x =10, y

e) Origin at upper teft corner

;=#,_y_=-x', f) x = 2.9, y = -5.6

3
6 - 5T




Chapter 12

6-12, page 869

a) P(1/2,1/2): barycentric coordinates m = m,, m; = 2m2
P(1,0): barycentric coordinates mo=m,, mg= 9]
P(O,1): barycentric coordinates m = m, = 0, m, arbitrary

m3(2 - x = 2y)

P(x,y): barycentric coordinates m_ = WY
o My X
2 " 2y
b) barycentric coordinates xy coordinates
2 |
CL,1,1) (§ ’ 3)
(1,2,3) &,
(0,1, o, 4
| B 12
(1,0,0) (0, 0)
2b N
(a,b,c) <a+5+c'a+b+c>







Chapter 13

a) .001, b) .013, c) 4 x 10 7, d) 4 x 10

/7./7( /T r\2 _ 2, ,[3'3
) ( ) % = Zar¢"!

b) 74‘7)(-? -—4- -Z =
c) e + e%(x - a) + +e2(x - a)2 a_ = e”
7° ’ n nt ?

d) 2 + x - 2x2, a =0 {f n > 4; 4 - I5(x+ 1) + 28(x + 12,

1.3 4+ 2_.5
e) X+3-X +-'-5-X ’

I l 2 zl'(zl"l %-2 e o0 2|'-n+|) I/Z-r
f)3+3-(x-9) -m(x-Q) ’ an= Y 3

| I s (="
g) log 4 + T(x - 4) - Xf(x - 4)-, a, = —
. nd

A-56

153




Chapter I3

1-7, page 884 - con't,

h) 2 - %xz - éfx“, 1) 1 + x + %xz, J) x + %x3 + %st

|-9, page 886

a) .947, n = 5, b) .17, n =6

{-10, page 886

e) The Maclaurin series is O + Ox + 0x2 + Oox3 + ... . It
converges for all x, its sum is 0 and thus converges to

f(x) only for x = 0,

1-11, page 887

Hint: let u = t+ = x and x = |,

a) n = 200001, if there is no roundoff, b) 9, c) 7, 13,



Chapter 13

2-8, page 902

a) .90, b) .176

2-9, page 904

d) Hint: Use n = 9, recursive formula a + =a x (n

3-3, page 916

a) conv, absolutely, b) div.,

e) conv,, f) conv,. absolutely,
h) conv, absolutely, i) conv,

k) conv,, 1) div.,

4-3, page 926

a) conv,, b) conv., c) div.,
f) conv., g) conv., h) div.,
k) div.,

4-6, page 927

a) div., b) conv.,, c) conv,,

A-58

C

1y

)

conv,,

d) div.,

g) conv, absolutely,

d)

i)

d)

Find

0.7

absolutely,

div.,

conv.,

conv,,

Jj) conv,,

e) conv.,,

J) conv,,

e) conv.,

f)

=1)/<{n + 4),

div



Chapter 13

4-7, page 928

a) conv., b) conv., c) conv,, d) div., e) div.,

f) div., g) conv., h) div., i) conv. absolutely.

4-8, page 929

e) I'¢.5) = 1.77246, r(6.5) = 387.92

4-9, page 930

b) 3.87 in., ~) it is unlimited

5-1, page 949

a) % ’ b) I, c) = d) é , e) 4, f) our present

»

methods do not suffice to determine the radius of convergence

of this series, g) |, h) |, i) |

5-3, page 950

2 . L3y L s |3 4 2.5 4 M1 .7
a) x + x2 o+ opd 4 g e, D) X g g T
2 4 6 b 2n
X X X X - »
O NG T rET Y ey Lo TzT . R T
= 2n+|
x3 x 7 x 2 X _
X+ T Tt Lo r‘Z=0(2n+|>!’,R"‘°




Chapter 13

5-3, page 950 - con't,

d) —%xz - +zx“ - %5x6 - 7%;5

> 2.n
£) 1 4+ x + x2 + EZ% o

5-4, page 95|

n+
x2 !

Il
) | x3 + x5 + = 2: (="
a) x = =ryTX 55T e T 120 Tn + D02n + 11

b) .946, c) 1.54993, d) flow c"?™Ts see next page.

5-6, page 953

|
a) =2, b) 1, ¢) =1, & % , 223, f) e,
!
1157




Chapter 14

4-7, page 990

a) y(x)

-.236, c¢) |E|] < .05

b) y(I)

4-8, page 99|

SRR EE G SR U o e o o T

a) Simpson's rule, or even the trapezoidal rule, is better.

5-5, page 1008

cV
= e - - _ ct
a) V! = -Mo—_?,r- a , b) V = Ve IOg (1 .M;)
veMO |
c) § = =—=— (r - logr - 1)~ 2-gf2

5-10, page !013

a) 94,8 min., b) 48.7 min,

5-13, page 1014

c) p = l4eX/“‘7 if x is measured in miles,

1154

- at,



Chapter 14

6-4, page 030

ds, rs, rS, dS2 rS, rS|
a) = - + =
dt V1 Vz * dt v Vz ’

b) .361, .178, c) about 28 min,

6-6, page (032

Flow Chart, see next page.

7-2, page 1048

a) y = arctan sin h sin x + 2m,
b) y = ;1 , for sec y + tan y becomes infinite.

7-3, page 1049

r=m 0, b)y = (-x1/2 4+ 2)2,

[}
[
X
+
O

-
~<
n

a) y
c)y = , Domain 0 < x < =,

d) There is an infinite number of solutions of the form

(2 - x1/3)3 ¢ 0 < x <8

y = 0 if 8<x<b

(b1/3 - x2/3)3 ¢ x > f'
09

. A-62

e
ds



Chapter 14

7-4, page 1049

a) The solutions arey =1, y = =I|
b) P|(x,y) = (1,1)
, P2(x,y) = (=],=1)

c + X

All the curves y = q go through (1,1) and (=1,=-1),

+ Ccx
but they have all different slopes at these points,

8-4, page (070

3 3
y = -Xz + ol » ILLTJ(-XZ +  — X )= "7|'
/xZ + | X Yx% + |

d) y = ce® + 4xe” - 2x - 5 + Vi (sin x + |1 cos x),

[+]
~
n
(7]
;.
X

[s1}
-
O
1
X
-
o
-
O
n
Ny
-
O
-
O
.
W
-
(=%
=
O
n

8-8, page 1072

(i) y = (ce*/? = x = 232,

o
~
—~
-
~
n
-

A-63
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Chapter 14

8-9, page 1072 = con't,

(111) y = /ce?® - x2 - x -_%

8~9, page 1072

2 X _42
a) y = e° /2 4 _/g o~ T/ 244

8-12, page 1075

Flow Chart, see next page.

a-6al 167




INDEX VOLUMES

Absolute convergence, 157,911
Absolute value,17,33
Acceleration,419,594
Algorithm,65
for area,219 ff.
for Fibonaccl sequence,
108,158
numericai.73
for partial fractions,800,
80 I
Alternating series,895
Ati-derivatives,562 ff.
Approximation
ot extrema,455 ff.
of function value,470 ff.
of Integrals,2i1 ff.,
645 ff.,776 ff.

of limit of sequence,125 ff.

of root of equation,l36,
656 ff.
of solution of differential
equation, 958,975 ff.
Area,207,325 ff.
Arithmetic units,103
Assignment box,79
Assignment statement,79
Axiom(s)
Archimedean,?7
comple®eness, 202
of real numbers,b

Barycentric coordinates, 868
Bounded function,670,919
Bounded sequence, 173,905

Catenary, 1053

Center of area,8€l

Center of gravity,856

Center of mass,856

Centroid,856

Chain rule,499

Circle, unit,50
area,|25,211,347,703

Coefficlent
damping, 1064
of polynomial,b45
Comparison test,907,909,
910
Completeness axiom,202
Composlition theorem,399
Computer, 65
concepts,65
language of,105 ff.
memory of,77,94 ff.
model of,76 ff.
word,95
Compiling,105
Control unit,I103
Convergence
of improper integrals,
766
rate of, 661
of series, 889
of sequences,|32,l49,
153,154
Continuity,386,387
Continuous functions,
386 ff.,968
Coordinate(s),37
barycentric,868
system, 36
Cores,95
Curve
length of,837
plane,835
slope of,410
Cycioid, 549
Cylindrical shells,812 ff.

Decision box,68
Definite integrals,582,746
Derivativel(s),408 ff.
chain rule for,499
of composite functions,
495 ff.
formulas,418.426,428,429,
427,558,599,603
of impiicit functions,509

116

*ud



Differential(s),541 ff.
Differential equations,
621,957 ff,.
first order systems, 1020
higher order, 1023
linear,|1054 ff.
Differentiation,407 ff.
explicit,509
implicit,509
logarithmic,605
Duhamel's theorem,828

Error,47|
in approximation,21¢
bound,473,649,661,778,782
roundoff,!118,438,979
truncation,978
Euler's constant,925
Fxponential function,597 ff.
Extended mean value theorem,
464

Floating point, 116
Flow chart,67 ff.
for integrals of convex
functions,65]
for maxima,458
for Newton's method, 662
for root of an equation,
140
for Simpson's rule, 784
for trapezoidal rule,226
Formulas for volumes and
areas,449
Fraction,3
Function(s),3! ff.
circular,49
ccmposition of,57
concave, 634
constant, 38,542
convex,633
continuous, 386,968
decreasing,53

derived,416

domain of,33

elementary, 686

exponential,597 ff.

garma, 769 ff.

gonerating,954

graph of,37

greatest integer,47

identity, 39

increasing,53

inverse ftrigonometric,
525 ff.

linear, 46

logarithm,593 ff,

monotone,53,479 ff.

null,l06]

piecewise monotone, 229

polynomial, 44

range of, 34

rational, 46

roots of,46

strictly decreasing,53

strictly increasing,53

unicon, 254

weight, 850

Fundamental existence and
uniqueness theorem,969
Fundamental theorem of

calculus,575,579

Gamma function,769 ff.

Generalized mean value
theorem,673

Greatesi integer function,
47

ldentities,trigonometric,
275,695
Inequalities, 2,13
triangle inequality,?20
Input,89
Input box,90
Integer,13

lig:



Integral
approximation of,221
645 ff.,776 ff.
definition of.235,317
deflinlte,582,746
elllptic,t34
exponentlal,b785
generallzation of,823 ff.
improper, 764
Indefinlite,b582
tables, 740
Integration,234 ff.
by partial fractlons,729
by parts,717
by substitution,566,699 ff.
Intermediate value theorem,
403
Interval ,25 ff.

fFf.,

Law of the Mean, see Mean
Value Theorem
Length of a curve, 837
L'Hospital's Rule,666
Liwit(s)
avaluation of,666 ff.
infinite,670
left-hand, 668
of a function,374 ff.
of a sequence, |56
Line element,962
Linear differential
1054 ff
Lipschitz(ian)
coefficient, 293
condition, 293
function,293,431,969
Local maximum tests,466,485,
486
Local maximum point,443
approximation of,455
Logarithm,593 ff.

equation,

Machine Language, 105

11{(

Maclaurin expanslon,873
serles, 879
Mass ratlo, 1003
Maximum theorem,44]|
Mean
arithmetic,28
geometric, 28
value, 846,848
Mean value theorem,462
applications,470
for integrals,85I
Modulus, unicon,290 ff.

Newton's method, 656 ff.
Null function, |06l
Numbers,3 ff.

Open region,968
Ordinates, 36

Pappus theorem,864

Parametric equations,548

Partial fractions,729 ff.

Partial sum, 888

Piecewise monotone
tunctions, 229

Polynomial ,44

Power series,932

Principle of superposition,
1062

Pythagorean theorem,4

Radius of convergence, 935
Rate of change,533
Ratio tests,912
Rational numbers,3
Real numbers,5
Related rates,533
Remainder
in Taylor expansion,873
in series,893 '
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Rolle's theorem,463 Taylor's series,879

Round-off error, 18,438,979 theorem,465
Trapezoidal rule,266,778

Trigonometric functions,

1 51 ff.
Samos,9§,l03 ff. . Trigonometric identities,
Separation of variables, 275,695
Sequégzz,IZS £f.,149 Truncation error,978
bounded, 173
convergence of,132,153,
154,156 Variable, 36,76
Fibonacci, 158 Velocity, 368
limit of, 156 Volume ,b 337
Series,879,888 ff. formulas for,449
absolute convergence,9!| of solid of revolution
alternating, 895 340,809
convergence, 889
divergence, 889
expansion of functions, Weight functions,850
879 ff' Weighted average, 187
geometric,908 Work, 360,832

harmonic,890
Maclaurin,879
p-series, 908
power ,932
Taylor's, 879
Set,63]
concave, 63l
convex,63|
Simpson's rule,784 ff.
Slope of a curve,4l0
Solids of revolution, 340,
809 ff.
Speed, 367
Squeeze theorem, 189,394
Step function,48
Support,633
Systems of differential
equations, 1020

Tangent line, 407
equation of,410
slope of,410




Fo= _ntl _ n n-1 - 4
n a a an
n n
= | + l = | + !
%n Tn-1
n-1
Now if Iim r_ =L # 0, we have
nee "
: _ | _ X | I
Fim r_ = lim (1 + = )= 1+ |im = | T
n-»« n--e n-1 n+e "' n-1 n-1
n->c
or
L= 1 + 4
C o
(Do you see why ltim r must also equal L?) This equation
o Nn=1
L =1 + % can be rewritten in the form L2 - L - | = 0,
Solving this quadratic equation, we have
L= 1 /5
2
Since the |limit must obviously be positive, we can throw

away the negative solution, so that the only possible value
. .1+ /5
for Ilim r_ is ——=
n 2
n->o
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Example. Suppose a  is the sequence defined by a1 = 3, and

- 2 \ : -
an+l =a," - 2 for n > 1. If lim a_ = A, then
n—)-m
A= lima .. = lim ((a )22 2) = A2 -2
n-*+o n n->c n
Solving the equation A = A%2 - 2, we obtain A = 2 or A = =-1.

The first few terms of the sequence a  are 3, 7, 47, 2207;

the sequence does not seem to be converging to 2 or -1. In
fact, all the terms are > 3, because al = 3, and if a > 3,
then a = (an)2 - 2>32 -2 =7 >3, Therefore, the sequence

n+1

a, does not converge to 2 or -~i, and hence does not converge

at all.
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PROBLEMS

Find the limit, if it exists, of each of the following
sequences.

(a) a_ = 2 +
n

I
8

(b)Y b_ = ————Tz——
8

(c) c = (4 -52 _ 304 - 1
n n n
(d) dn = n2 - (n2 - 1)
n-1
(&) o = 2 - 1
n 2n
, . 2
2
() f = —D
3 4 + =
n
_ n . _1
(g) g9, = (-1)" + o
2
(hy h = —D" (1 - 24 2,3
n nZ + 1 nl 2"

Exhibit two nonconvergent sequences whose product

converges.

Prove that.if lim x_ > a > 0 and limy_ > b > 0, then
nve " n--e

lim x y > ab.
nYn Z
n-»o

Prove that if 0 < lim x_ < a and limy_ > b > 0, then
n->w N> n
xn a
[im v <5 providing Y is never 0.
n-» n

VB 184
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5. Prove that if lim x_ = 0 and if |y | <a and |z | 2b >0
N->oc0 Xy n
for all n, then |im = 0.
RE -] n
6. Find sequences x_ and z_ such that Iim x_ = 0 and z_ > O
n n naw D n
*n
for all n, and 1lim — = | (Compare Problem 4.)
n+o “n
7. Suppose that X0 is a sequence of nonzero numbers such

that for every number K there is an integer N such that

|xn| > K for all n > N. Prove that lim %— = 0.

n+® “n
8. Modify the flow chart for the Fibonacci sequence in
Section 4 to provide for the output of the value of .
Output box should have the form shown at the right.
Write the program and run it.

See whether the terms . actually N, ASUBN, RSUBN.

seem to be converging to

I + /5 . . .
— (Since in any earlier program you computed

¥5 to 2 large number of decimal places, it will be an

I + V5

easy hand calculation to compute — to compare

with your computer output in this problem.)

9. Suppose K is a number and a, is a sequence defined by

= = 2 -
a1 K, and CIN (an) 2 for n > 1. For each of the

following values of K, evaluate the first five terms

185
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of the sequence an. In each case, determine whether

the sequence converges, and if it does, find its limit.
(a) K =2 (d) K =20

(b) K = -| (e) K=L}£.

(c) K= -3

0. Prove that the sequence sin n does not converge. Hint:

Assume that lim sin n = L. Use the identity

n->
sin (n + 1) = sin n cos | + cos n sin |
to show that lim cos n exists and that, if M = lim cos n,
n-e n-c
then L = L cos | + M sin |. Use the identities
sin 2n = 2 sin n cos n
and sin? n + cos? n = | to obtain other equations relating

L and M. Finally, show that the three equations are

contradictory.




7. The Squeeze Theorem

Before going on with our limit theorems, we will discuss
a theorem that has nothing to do with limits but which is

needed in the proof of the corollaries to the '"squeeze"

theorem, which does involve limits.
The Weighted Average Theorem. lf r, s >0 with r + s = 1,
then ra + sb lies between a and b. (Here we use the word

'between' to include a and b themselves.)

When r and s satisfy these conditions the expression,

ra + sb is called a convex combination or weighted average

of a and b. For the common special case where r = s = =

we have ra + sb = %a + %b = E—%—E » the ordinary average or

arithmetic mean of a and b, which of course lies between
a and b. The theorem in the general case, for all its

simplicity, is frequently useful.

Proof: | f a < b, Then

a = ra+ sa < ra + sb < rb + sb = b.

11
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If a > b,

a =ra+ sa 2 ra+ sb >rb + sb = b,

and the proof is complete,

Actually, we can say quite a bit more about ra + sb
than is actually contained in the theorem. Assume a < b.
The fact is that the point ra + sb divides the segment [a,b]

in the ratio of s to r. That is, if d1 and d, are the

distances illustrated below
d
d 1 2
A A
e n's =
L [ 4
T T T
a ra + sb b
then, using the relation r + s = | in the forms s = | - r
and r = | - s, we have
d1 = (ra+sb) - a = sb - (I-F)a = sb - sa = s(b-a)
d2 = b - (ra+sb) = (l-s)b - ra = rb - ra = r(b-a)
so that
il _ s(b - a) _ S
d2 rio - a) r

It is further true that every number x between a and

b can be expressed as a convex combination of a and b.




We leave 1t To you +to check'fhaT choosing

Fo= b - X g = X - 2
T b - a b - a
yields r > 0, s > 0, r + s =1, and
_ b - X X - a _
ra + sb = 3 @ + = b = x.
Theorem 10. (Squeeze Theorem) Suppose that 1im a, = L= 1imb_.
N N> n
Further suppose that ch lies between a, and bn for n=1, 2, .
Then the sequence Ci» Cp» C3, ... cONverges and lim c_ = L.
n-w
Proof: Let € >0, We know that we can find N1 so that for
n > Nl’ a will lie within a distance € of L. Similarly, we
can find N2 so that for n > N, b, will lie within a distance
L

e of L. Letting N be the larger of N1 and N2, we can see
that for n > N, both a_ and bn lie within a distance € of L,
whence <, lying between an and bn will also |lie within a

distance € of L.

€ [
e A ~ _A —
L - € a L c b L + €
n n n
1
Example. Consider the sequence c. defined by cn = 2"

By.The binomial formula,
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SELS L EELES TS S
n n -

1 1
Taking the nJrh root, we obtain (I+%) >2 n. Also 2" > 1.
Since lim (1 + L) = | and lim | = |, it follows by the
N 2w n n->o
1
Squeeze Theorem that lim 2" = 1.
n -

) i - > > . = '
Coroliary . If r, 20 and s,z 0 and n s, I holds
for all integers n and |im a = L= 1lim bn’ then

n->oo N -»o00
lim (rna + s b ) = L.
1> co0 n nn

LIt should be noted that we do not assume that the sequences

ro.r , ... and S s S ... converge.]

1 2 2°?

Proof: Letting

we see by the conditions on . and S that <, is a convex
combination of a, and bn and hence cn lies between a, and
bn' Since a, and bn converge to the same value L, then by

the Squeeze Theorem, so also does S That is,

lim c, = lim (ra + s b)) = L.
noreo N n°n non




Corollary 2. If Iima_= 1L = 1lim bn and p_ > 0, q > 0

n=»c n=-c n = n =

and for no value of n are p_ and a, both zero, then

n

im 0on n’n L
n=+m" n n
P d O that
Proof: Let r = ——— and s_ = SO a
I n Pn + 9, n Pn + qn

| whence the conclusion

r >0, s_ >0, and r_ + s
n — n — n n

follows from the theorem.

ey
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PROBLEMS

Prove that lim nr” = 0 if |r] < I. Hint: If r # 0,

N+

we Have, setting € '
| rl

0 < |ne"| = 0 < L
) -
(1 + ¢) |+ one + 00OZD) 2
for all n > 2.
Prove that lim n"r" = 0 if |r] <1 and k is a positive
n-+w
integer.

Let r be @ number and let dn be the sequence defined by

d = |
1
d =1 + 2r
2
d3 = | + 2r + 3r2
d = | + 2r + 3r2 + ... + pr7?
(a) Calculate rd - d .

(b) Calculate rd - d .
n n

(c) Obtain a new expression for dn by dividing the
result of part_(b) by r-I, assuming r # |I.

(d) Prove fhat lim d. exists if [r] < 1.

n->e



(e) If |r| < I, what Is the value of Iim d_?
N->oo

4, Let r be a number and let dn be the sequence
d = a
1 1
d =a + ar
2 1 2
d =a_ +ar +a_r?
3 1

d = a +ar+ar2+ ...+ a r'n-l
n 1 2 3 n

where al, a , a, ... is the Flbonacci sequsnce.

2 3
(a) Calculate rd_ - d_.
n n
(b) Prove that lim a r" =0 if |r| < 1 » where
n L
n-+e
a
L= t1im 2L
a
n-+o n

(c) Calculate the limit of the result of part (a),
I

assuming that lim d_ exists and that |r]| < T -
N+
(a) Calculate lim d_ assuming that lim d, exists and
n-o N
that |r| < I
r
5. Use the Squeeze Theorem to show that !im "v/2" + 3" =
n-»o
- 204
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8. A Geometric Limit

Right now, we are mainly interested in the limit to
be developed in this section as an example of the use of
the Squeeze Theorem. Later on, we shall see that thils

limit is of very basic importance.

Suppose that a;, as, a3z, ... is a sequence of positive
numbers converging to zero. Let
sin a
n a
n
What can we say about the sequence b,, b,, bz, ... ? Does

it converge? |If so, to what value? The Quotient Theorem

cannot be applied since lima_ = 0.
n->oc n
This puzzler becomes accessible to us by the applica-
tion of the Squeeze Theorem to a pair of inequalities which
we will derive from geometric considerations. In this

g S

P o]

A\

o

(b)
FIGURE 8-I




. X L .
derivation, we need an < L but since the an's converge to
zero, this will be true if we restrict ourselves to suffi-

ciently large values of n.

From the inclusion relations (see Figure 8-1)

AOPQ C sector OPQ C AOPS,

we conclude that

area AOPQ < area sector OPQ < area AOPS.

By simple trigonometric considerations, each of these
areas is expressible in terms of x, the radian measure of
angle P0OQ, where 0 < x < %:

area AOPQ = Slg X, area sector OPQ = %; area AOPS = fa; X,

Therefore, the last inequality can be reexpressed as

sin x X tan x
2 22272

Now the geometry has done its duty and we resort to simple
algebraic.manipulafion to bring this inequality into a more

usable form.

Multiplyi 7 by the positive number ;T%—; gives
< .x < 1
— sin x =— cos x

1

and taking reciprocals,

sin x

1 >
- X

> cos Xx.

Thus, when n is large enough that a, < %, we have

sin a
> cos a
— n

195 206
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Since cos I length of 6§, evidently |lim cos a, = 1.
n-+oc

Also lim 1 = 1. Therefore by the Squeeze Theor:m,
n-»o
sin a_
lim ——— = 1.
a
n -+ n
This "proof" rests on certain facts concerning circles,
areas, and arc lengths which you learned in your high school
trigonometry course. |In high school, these facts were

supported by heuristic reasoning and appeal! to intuition.

Conseguently, we cannot regard the proof given here as being

entirely rigorous. Nevertheless, we will accept the results
derived here until we are in a position to establish them
firmiy.

267
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PROBLEMS

!+ Suppose that a, is a sequence of nonzero numbers such

that lim a_ = 0. Evaluate each of the following limifts,
n > . .

and justify your answers.

sin %h sin (-x)
(a) lim ——%  (Hint, What is S-1=—— if x # 07)
n--e n X
1 - cos a,
(b) lim 3 2 (Hint. Use the formula 1 - cos 2x =
N> n
2 sin?2 x)
1 - cos a,
(c) lim =
n->e n
(d) lim sin a
n
n->o
(e) Jim tan a
n--e :
sin kan
£y dim ——F—, where k is any constant. (Hint For k # 0,
n->e n
consider the sequence bn = kan.)
tan a, - sin a,
(g) lim 5 3 . (Hint, MWrite in terms of sin a_
n ->e n

and cos a, and express in terms of previously-determined

fimits.)

A0y

| 9 208
pot




9. Completeness

Recall from Chapter O that a function f is said to be

increasing if f(a) < f(b) whenever a<b. In particular, a

sequence c_ is increasing if ¢, = cJ whenever i<j. On the

other hand, the sequence cn is decreasing if ci > ¢_. when-
= J

ever i<j.

In examples in earlier sections, we considered the

Fibonacci sequence

l, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

derived from the Fibonacci sequence by the rule,

We had shown that if the sequence r , r , r , ... converges,

| /E 1 2 3
+
then it converges to ———7—2 . Our computer output gave

209



a strong

this value,

will

but we have not yet been

indication that this sequence does converge to

able to prove it. We

take up that question now.

In order to determine whether the sequence r , r , r ,
1

actually converges, let us consider the differences dn

defined by

By the definition of ro» we have

a a
d - r n+2 n+1 an+2 n n+1 n+1
n n+ a a
1 n+1 n n+1 an
Calling the numerator of this fraction P, and using the re-

currence relation for the terms of the Fibonacci sequence,

we have

ERIC

Aruitoxt provided by Eic:

1

a a - a a
n+o n n+1 n+1
(a + a ) a - a (a a )
n+1 n n n+1 n ri=1
a a + a - a a - a a
n+1 n n n+1 n n+1 n-1
a a - a a
nn n+l "n-)
-(a a - a a )
n+l n=-1 nn
T Pho



Using this relation repeatedly, we see that

.—'!:PI’
so that atil pn's alternate
are all equal to that of p

1

in sign and their absoldte values
, which

is easily computed to be
2] =

22, (2

() =2 -1 =1,

Thus, Thewpn's alternately take on the values +! and -]
now we have

. And

(_)n* 1
nt1 - n T

a
2n%n+1

Consequently, the differences dn alternate in sign and
decrease in magnitude. (The denominators a_a
increase as n

nen+ 1 obviously
increases.) This means that the values of
. alternately oscillate to the right and left with ever

decreasing oscillations (see Figure 9-1).

21
1 I A J.
r, Q q,r; e r; Pz
FIGURE 9-1

(Another way of saying this is that each - lies between its
two immediate predecessors.)

Furthermore

211
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n+
1 n anan+1

which obviously approaches the limit 0. We can see that the
rn's with odd subscripts form an increasing sequence and the
rn's with even subscripts form a decreasing sequence, and

the intervals

Lry, r,l
Cry, ry,d
Lrs, e
Crass rg

are nested one within the other and shrink down to a point.

Clearly, the sequence r,, Frp, rz, +.. Converges.

Clear as the convergence of this sequence is, it cannot
be proved. When these intervals shrink down to a point,
there is nothing to guarantee us that there is a number
associated with that point. This situation must be remedied
by adopting some completeness axiom. (An axiom is a.state-
ment adopted without proof.) There are many statements which
could be taken as completeness axioms with equivalent effect.

The one most convenient for our purposes is the following:

&

g
-

-4
C.
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Completeness Axiom. !f L , L, L, ... is an increasing

1 2 3
sequence and Rl’ R2, R3, ... a decreasing sequence with
lim (Rn - Ln) = 0, then the two sequences both converge

n*«

to the same number.

This axiom assures us that the sequence rl, r, r,

2 3
discussed above converges. It furthermore guarantees that
the bisection process used in finding roots will always

converge, even without the assumption that the function f
has a root on any interval [c,d] for which f(c) and f(d)

have opposite signs.

When this completeness axiom is adjoined to the Field,
Order, :nd Archimedean axioms of Chapter 0, the development
of our axiom system for the real numbers is finished. From
these axioms, we can derive all the properties of the real
number system. The completeness axiom constitutes the
fundamental distinction between Algebra and Caiculus. We
will find that t¥his axiom will be invoked over and over
throughout the course to guarantee the existence of the basic

concepts of calculus.



. _ n
Let a sequence <, be defined by Cg = | and C 41 " —E;_?_f

(a)

(b)

(c)

(d)

(e)

()

(a)

(b)

(c)

(d)

PROBLEMS

| f ¢, converges to a number L, what is L?

Calculate ¢,, ¢c,, c3, ¢, as fractions and as decimal
approXimations to the nearest ten thousandth. Does
this sequence seem to be converging to the valhe

L calculated in part (a)?

Calculate Coyp IM terms of ¢, and simplify.
- _ n+1 .
Let d €ty e Calculate dn in terms of
2cn + 5
c, and simplify. (Use the formula Chtq = __E:_If

and (c).) Show that the values of dn alternate in

sign and that lim dn = 0.

N0
Explain how we can see that the sequence ¢, does

indeed converge.

How large must N be in order that ]cn-L] < 107°

for all nsN?

Prove that 4xy < (x+y)2 ., (Hint: (x-y)2 > 0.)
In the arithmetic-geometric algorithm of Problem

7, Section 4, prove that if a_ < bn’ then a <b

n n+l—"n+1"

Prove that if a, < bn’ then a ., 2 a, and bn+1 < bn'
. [T
Prove that if 'a < bn’ then bn+1 - a1 23 (bn an).

(Hint: Draw a picture.)

m



(e) Prove that lim a_ and lim b_ exist and are equal.
n > n+e D

This proves the existence of the arithmetic-geometric

mean M.

Suppose a sequence <, is defined as follows:

C1=|
c2=|—l
2
! !
s =l-z*3
- _ | 1
cw=l-z+3-7
- _ L _yynt1 |
Cn"l 7"'3 Z+---+(|) Y

We can form a new sequence Rn by choosing only the odd

terms of the sequence Ch* Thus,

R = |
: ! I
T i R
Ry= -3+ 3-7+53
R:l-l+l.__l.+i+ + !
n 2 3 4 5 toe 2n-1

Similarly, we can form a new sequence Ln choosing only

the even terms of the sequence S

RO, 2]



(a) Using the Completeness Axiom, prove that the

sequences R_ and L_ converge and fthat lim R_= lim L
n n n->o n n-ro

(b) Prove that the sequence c, converges and that

limc_ = timR_ = |im L
n->x n->o n->o
(c) Obtain a simple expression for Rn - Ln'

(d) What is the smallest value of n such that

(e) Use the computer to approximate lim c_ with an error
n->-o

of less than 7000
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Chapter 3

AREA ANL INTEGRAL

1. Area

There are five fundamental! properties, all very natural,

which form the basis for our development of the subject of

area. These are:

. Any bounded region in the plane has area, which is

a nonnegative rea! number.

1. Congruent regions have the same area.

. If the regions R2 and R1
are such that RZC: R
then Area of R < Area

2

of R .
1

V. If a region R is decomposed into a number of non-
overlapping parts, say R , R, R , then
1 2 3

Area of R = Area of R + Area of R + Area of R
1 2 3

217
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V. The area of a rectangular region is the length times

the width,

We will not worry about units. We will always be working
in the coordinate plane and will be using as our unit of

length the unit used in constructing the coordinate system.

Knowing the area of a rectangle, we can immediately find
the area of a right triangle. (See Figure I1-1.) In the

rectangular region R, we see that a diagonal divides the

rectangle into two right riangles which are congruent and

therefore have equal area

R,

Thus FIGURE |-

2(area of R )
1

Area of R

so that

Area of R = area of R - L

This is the familiar fact that the area of a right triangle

is half the product of the lengths of the legs.






We can further find the area of any triangle by a similar

method. (See Figure 1-2.) We see that drawing an altitude

FIGURE 1-2

divides the triangle into two right triangles so that

Area of R Area of R1 + Area of R2

byh  b,h  byh + by,h
2 2 2

bh
2

Thus the area of any triangle is half the base times the

altitude. All this is of course very well known to you.

We can continue in this way to find the areas of polygonal
régions; that is to say, regions whose boundaries are made
up of line segments like the one shown in Figure |-3. By
drawing diagonals, such a region can always be decomposed

into triangular regions whose area can be computed from the

FIGURE I-3

; Y
I R
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usual formula. And then the area of R is just the sum of

the areas of the triangular regions.

The problem of computing the areas of regions whose
boundaries are made up of line segments is now disposed of.
We are rcady to tackle one of the major problems of calculus=-~

the problem of finding the areas of regions with curved boundaries.

In calculus we usually work with the areas of regions

having the configuration shown in Figure 1-4, That is to say,

-

the regions are -bounded on the
bottom by the X~axis, on *the

—f

sides by vertical Jines, and

on top by the graph of some
| N

.

function. SOV
a b X
FIGURE 1-4
Thus, to find the area of a region shaped like this

we would first find this area:

i

L.




+hen this one:

o=5

and then take the difference.

. . . 7 ©Xy
Although we are not in a position to fing Th Nt area
N a3 .
of any region with curved boundaries, still we ¢? L)hro"'"‘a*e

such areas to any desired degree of accuracy,

Let's see how this
works out with a particular

example. Let's compute

/////////’/’—ﬁf
the area of the quarter "o 2
of the circle x2 + y% = 4 \\\\\\\\\\\\\~\’

depicted in Figure 1-5.
You were taught in high

schoo!l that the area of

a circle with radius r is -5
FIGURE '{ea
mr2. Since the radius of the circle is 2, the 2 Ot the
A se
quarter circle is g +22 = m, As a check we yill how closely
(O
our computed area agrees with the well-known aPP N te
values of w.
: f19un
We see that the region is of the special c¢cor ytion

e
described above. |+ is bounded by the X-axig, T/  Sngical

‘ Mm .
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lines x = 0, x =2, and the graph of a certain function. We

@
find a formula for this function by solving the equation

x2 + y2 = 4 for y. Now

So the function under consideration is given by
fix) = /4 - xZ , 0 < x < 2.

Although we cannot calculate the area exactly, we can

approximate it by "rectangular configurations," a term we

shall use to indicate regions composed of adjacent rectangles.
In Figure 1-6, we have a region composed of three adjacent
2 2

%
2 o
FIGURE (-6 FIGURE 1-7

The area of the

EF

rectangies contained in the quarter circle,

shaded part is the amount by which the area of the quarter
circle exceeds that of the rectangular configuration.

In Figure 1-7, we see that the quarter circle is contained

in a rectangular configuration composed of four rectangies.



The shaded area is the amount by which the total area of

the rectangles exceeds that of the quarter circle.

Figure |1-8 shows Figures [-6 2

and |-7 superimposed. The shaded

area represents the difference

between the areas of the rectangular

configuration in Figure |-7 and

0 2
that in Figure 1-6. FIGURE 1-8

By repeating this process with a large number of
rectangles, the shaded area can be made quite small, See

Figure 1-9.

it looks as though , by using

thinner and thinner rectangles, we 2 u

can get closer and closer

approximations to the area of

the quarter circle. Let's now

actually compute some of these 5 5

FIGURE -9

rectangular configuration areas for

our quarter circle.

22°
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0 X, X X3 X2 O X, Xa X3 Xa2 0 X, Xa X3 Xe 2
FIGURE 1-i0 FIGURE |-1i FIGURE |-12
In Figures I-10, I-11, and I-12, we have plotted

points xl, x2, x3, xq, between 0 and 2, and we have.sketched

the corresponding inscribed and circumscribed rectangular
configurations along with the superimposed rectangles,

showing the difference of the areas.

The values of x , x , x , x » in the picture were
1 2 3 4

chosen as,

The areas of the four rectangles in Figiure 1-10 are

(x = 0)f(x ), (x = x )f(x ), (x - x )f(x ),
1 1 2 1 2 3 2 3

(x = x )f(x )
L 3 L

where

f(x) = V4 = x<Z

224
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Substituting in the values we obtain for the four areas

Rect- .
i A
ang | e Width Height rea
| 56 - 0 = .56 |4 - (.56 = 1.92|(.56)(1.92) = 1.0752
2 1.2 - .56= .64 |y4 - (1.2 = 1.6 | (.64)(1.6) = 1.024
3 1.6 - 1.2= .4 4 - (1.6)7% = 1.2 | (.4)(1.2) = .48
4 1.92- 1.6= .32 |Va4 - (1.92" = 56 | (.56)(.32) = L1792
Total 2.7584
Similar computations yield for the sum of the areas of
the five recfanglés in Figure I-11,

(x =0)f(0) + (x =% )flx ) + (x =-x )f(x ) + (x -x )f(x )
1 2 1 1 3 2 2 L 3 3

+ (2-x )flx )
L L

.56(2) + .54(1.92) + .4(1.6) + .32(1.2) + .08(.32) = 3.3984.

The true area, w, of the quarter circle lies between
these two estimates. That is, m lies somewhere in the

interval [2.7584, 3.3984]




2.7584 3.3984

and hence the distance between m and the midpoint of the

Interval cannot exceed half the length of the interval.

2.7584 3.0784 3.3984

That fact may be expressed in the form
|7 -3.0784] < .32

Actually, our estimate, 3.0784, differs from m by less than

.064

This average of our upper and lower estimates can be

seen to be the sum of the areas of the four trapezoids and

SN

one triangle shown in Figure |-13.

The area is again shaded and is
seen to be much less than half

the shaded area in Figure 1-12,

0 X, X2 Xy Xe 2
FIGURE |-13

>
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In this section, we have seen how our general principles
regarding area have enabled us to find approximations of
the areas of regions with curved boundaries. In the next
section, we will improve our method so as to find sequences

of approximations which converge to the actual area.



PROBLEMS

(a) ODraw a graph of the function y = x2 + 5.

(b) Choose four points X X0 X and X4 between 0
and 3. Draw the five rectangles under the curve
y = x2 + 5 with bases o,x, 1, [x,,x,7, [x,,x51,

[x3,x4], and [X4,3j.

(c) Compute the sum of the areas of the five rectangles

drawn in (b).

(d) Repeat parts (b) and (c), this time with rectangles

above the curve y = x2 + 5,
(e) Estimate the area of the region in the firs+
quadrant under the curve y = x2 + 5 by averaging

your results from parts (c) and (d).
(f) Calculate the difference between your estimate

made fn (¢c) and the +rue value, which is 24.

Draw a flow chart for a program to do the computations
like those in Problem | parts (c), (d), and (e) for a
function f on an interval [A,B]. The program should

read numbers X1s Xop eee, Y which'parTiTion the interval
CA,B] into N + | parts [A,xlj, [xl,xzj, ceo, [xN,B].
Assume that the function f is nonnegative and monotone

on the interval [A,B].



2. An Algorithm for Area

In order to devise an algorithm for calculating areas to
any desired degree of accuracy, we need only make finer and
finer subdivisions of our intervals. This leads fto longer
and more tedious calculations so that we would naturally prefer

to have these calculations done by a computer.

The first step in developing our algorithm is fo analyze
the error. Suppose that f is a monotone function over un
interval [a,b]. Let us subdivide the interval by means of
points xl, x2, x3, o e x7 and construct the uppgr and lower
sums according to the method in the preceding section. |In
Figure 2-1, the total area of the shaded rectangles represents

the difference between the upper and lower sums.

(b, f() R (b, fo)

R
N
(a,fca | (a, f@) =1z
é X Xa i; Xe Xg KXo Xq b a X XX Xe XsXe Xq b
FIGURE 2- FIGURE 2-2
o, 21’ 22 9
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In Figure 2-2, all these shaded rectangles have been slid
horlzontally so as to fit, wlthout overlappling, into a rectangle
sltuated above the widest of our subintervals. The area of
this rectangle is |f(b) - f(a)]'(x, = x) and thus our upper

b

sum U and our lower sum L satisfy
U-1L < |[f(b) - f(a)|-<xq - x )

In general, this can always be done provided that the function

f is monofoﬁé;”and we will always have
U=~ L < [fb) -~ f(a)|-s
where § is the width of the wides+ subinterval in our par-

titfioning of the interval [a,b].

Using the average of the upper and lower sums

as an approximation of our area, we have

U - L |
[T -~ Area| < 5 <z | f(b) - f(a)|.5
Thus, the number %If(b) - f(a)|+s is a bound for our
error. This bound can be made as small as we |ike by choosing
Cihel
0 .

230




our partition so as to make S sufficiently small.

| f we take a sequence of partitions of the interval

[a,b] where 6 , 6 , §6 » ... converges to zero, then
1 2 3

ITn - Areali%lf(b) - f(a)l-én

so that T , T , T, ... w'll converge to the Area as a limit.
1 2 3

One simple way of constructing this sequence of partitions

is by successively halving the intervals of the preceding

partition, as in Figure 2-3,. In this way, all the intervals
in the nT" partitionin - : +
P 9 3 i
of [a,b] have the same
- 2 "; 'l ' 1 'L
length, namely b-a » SO 3 b
2N
that L,
3 4 L L A (] -} L 4
a b
(S - b-a 4 : 1 1 L . . | 1 Lol 1 1 L L 1 =
n 2N : a
|

FIGURE 2-3

We can see that in successive computations of the lower
sums, each rectangle is replaced by two rectangles with a

greater combined area.

231
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n* partition n+1% partition

72

v

N

3 (8) b a (
FIGURE 2-4

o
-~

While in successive computations of the upper sums, each

rectangle is replaced by two rectangles with a smaller

combined area.

n*" partition ——— _n+I* partition

.

N

s (a) b 3 (b) b
FIGURE 2-5

Now the sequence L , L , L ... is an increasing

1 2 3
sequence while U , U , U, ... is a decreasing sequence.
1 2 3
Moreover, Ln < Un forn =1, 2, ..., and Un - Ln converges to

zero since

0 < U - < flb) - fCa)  _ |
- N n 2n

-







Therefore, by our completeness axiom, lim U_ = lim L_.
n
n+m n+m

We have ob“ained this conclusion without using the assumption

that *he area of the region exists.

The area of the trapezoidal

approximation to the area is h
nt" partition

Un * Ln
Tn = 2
Since
3 . b
L ST Su, FIGURE 2-6

the squeeze theorem assures us that the sequence Tl, T T

2, 3, > 0
converges to the common value of lim L_and lim U .
n+m n+m
In computing Ln and Un’ we will let h represent the width
of the subintervals. (They all have the same width, namely,
b-a

N ) The values of L, and U, are then given by

2"
Ln=f(a)h+ Zf(a+ kh)h
k=1

n

U = . fla+ Kkh)h + £(b)h
k=1

m '23?



and we can make use of the distributive law to write Ln and

Un in the form

2"-)

L, = h[f(a) + Z fla + kh)J
k=
2"-

U, = hlf(b) + kZ| fla + kh)]

Introducing a variable SUM to stand for

2"-1
SUM = 3~ fla + kh)
k=
we have the formulas,
L, = h{f(a) + sum), Un = h(f(b) + SUM).
The computation of L Xé¢ a
n SUM & 0
and U will thus be
" !
accomplished by the L€ n T
— L=2 —
process shown in Figure > L €U
2-7. The flow chart v d
: X ¢ X+h
for the entire process SUM & SUM+£(X)
of genérafing a sequence V
of upper and lower sums LN <« h X (5um+¢(a))

UN € h X (SUM ++ (b))

and trapezoidal sums is

seen in Figure 2-8.

Figure 2-7

e
s

ol




Variables NUM (=2") and

FA (=f(a)) and FB (=f(b))

have been introduced to reduce
repeated computation. You
should especially note how h
gets its successive values

by being repeatedly halved.
The final output value of TN
is guaranteed to differ from
the true area by less than the

input value of €.

The program works for de-
creasing functions as well| as
increasing functions, except
that in this case the upper
sums will appear as the LN
outputs and the lower sums as
the UN outputs. You should

see why this is the case.

In Figure 2-9, we see a
variant of Figure '2-8 which
will reduce the computing

time by half. The basis

23;
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for this improvement is as
follows. In executing the

1
| f box 5 d 6 of
oops o oxes an o a.b,€.
Figure 2-8, the value of f(x) 2
. FA & f(a)
is computed for 2" - | FB & f(b)
heb-a
different values of x. However, edrz—ré-ler?-FAl/Z
- NUM < 1
2"7Y - | of these values have TOT & O
already been computed and summed hdéf S
1 lerr< 2. |T.
in the previous pass through > N& Nt
Fy——
the loop. The variables TOT d& d/z £
and d(= 2 X h) are introduced ;‘(ZQ_/F?
SUM &0
to eliminate this source of err &err/2
inefficiency. How the re- L v 5
. . L1 T
vised flow chart works is left T—TF T L > NUM
for you to discover for your- Ff_"_"__"‘I 6
X & d+X
self. SUM & SUM+{£(X)
Y 7
TOT € TOT/2 + 5UM xh
LN € TOT +hxF A
UN €<TOT +hxF B
TN < (LN+UN)/2
NUM & NUM < 2
Y 8
NL,LN,UNJTN, ,err

Figure 2-9

23¢




PROBLEMS

Write a program for the flow chart of Figure 2-8 or
Figure 2-9. Run this program with the function in the

previous section.
f(x) = /4 - xZ, a=0, b =2

Remember +hat the true value of the area is w. Compare

your final value of TN with tabulated values of w.

Write a flow chart for computing a trapezoidal approxima-
+ion T to the area under the curve y = F(x) on fthe
interval [A,B], where F is a monotone function which is
nonnegative on [A,B]. First have the program calculate
how small the subintervals must be in order to guarantee
that T will differ from the true area by no more than

e. Then calculate T using equal subintervals of

appropriate width.

Write the program flow charted in Problem 2 and use it

to approximate the area under each of the following

curves, Use ¢ = .001.
(a) f(x) = ¥x on [0,!]
(b) f(x) = Vx on [!1,2]

(c) f(x)

Yx + 1 on [0,!]

A

21 237



(d)
(e)

(f)
(g)

(h)

(j)

f(x)
f(x)
f(x)

f(x)

f(x)
f(x)

f(x)

Ccos

Ccos

X

X

on

on [O,%

on [0,n]
Lo, 1]
on [0,1]
on [0,1]
on [0,%]
Lo, 1]

49
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3. Non~Monotone Functions

The process we have developed suffices to compute the

area under the graph of any monotone function. In a certain
sense, this will suffice for our needs, because in under~
graduate mathematics virtually all the functions we encounter

are either monotone or "piecewise monotone". By "piecewise
monotone" we mean that the domain can be divided up into a
number of intervals of mon o=
tonicity as depicted in

Figure 3-1. Now the area under

the curve can be obtained by

computing separately the areas Figure 3-1|
under the monotone pieces and

adding as indicated in Figure 3-2.

In another sense, however,
The situation is not quite Figure 3-2
satisfactory. There are two
reasons for this. First, sums

and products of piecewise

monotone functions are not

necessarily piecewise monotone
Figure 3-3

T 98 239



(though we will not give an example of such a situation
here). This would lead to the necessity of qualifying some
of the theorems we wish to prove later on. Secondly, even
though a function may be piecewise monotone, it can have a
great many maxima and minima (as in Figure 3-3), and the
problem of actually locating these points may be a practical

impossibility.

There is, however, another means of controlling error in
estimating areas which does not require the ability to locate
the maxima and minima. For this purpose, we will relax our

definitions of upper and lower sums (i.e., make them more

general).

Looking at Figure 3-4(a), we see the graph of a function
f with the area under the graph shaded. |In Figure 3-4(b), we
see a rectangular configuration including the area under the
graph. We will call the area of such a region an upper sum.
In Figure 3-4(c), “we see a rectangular configuration entirely

contained in the region illustrated in Figure 3-4(a). We

will call the area of such a region a lower sum.
If we denote the heights of the recTaanes in Figure
3-4(b) as Ml' M2, N M7 and the heights of those in Figure

3-4(c) as ml. m2, ceny m7, then we see that the upper sum

M 2490 '
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\ \“\ S
W
a-x\:\\ X, Ag\ X3  XaX b & \§\§§§§b
(3) 5 X DXq a=x, X, Xgo ()E) Xe Xy Xg b= ¥q
AN QAW
\\ N \\ B N
NN
as%, X, X, X3 Xexs Xe bexq asxo ¥ Xa Xs XeXs Xg b=x,
(c) cd)

Figure 3-4

U and the lower sum L are given by the formulas

S = Mk(xk - xk_l) and S = EZ: mk(xk - xk—l)'

= | k=1

M.

x

In Figure 3-4(d), the rectangles in Figures 3-4(b) and
3-4(c) have been superimposed and the shaded area represents
the difference U - L. The heights of the shaded rectangles

in the figure are



If, as in Figure 3-4(d), each of these heights is < 2e, then
we could as in Figure 3-5(a) "drop each of the shaded
rectangles down to the bottom of the elevator shaft", and
then we see in Figure 3-5(b) that the whole configuration

fits inside a rectangle

N

Figure 3-5

of area 2e(b - a). That is, U - L < 2e(b - a). And now,

since the area under the curve, A, lies between L and u,
L+u L+y
u+L > Z
A ('_%f_—%
r A R e A
L U L L+uy u
2

we observe that A lies within a distance (U - L)/2 of the

average (L + U)/2 of L and U. That is,

< e(b - a).

tay Tt
» I
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In this way, we can make the error in estimating the
area as small as we like provided that our function has the
property that for every € > 0 we can find a partition
X , X , X cees X and upper and lower bounds, Mk and,mk,

]
0 1 2
on each of the subintervals so that for each subinterval

we have

But what functions have this property? How are we to
find such partitions and such numbers Mk and mk? We address

ourselves to these questions a little later on.. What we need

for now are the generalized concepts of lower and upper sums.




4, Integrals

The process we have deve!oped for computing areas has
many appiications. The mathematical name for the limit found

by this process is "the integral from a to b of f", written

b
].f(x)dx

a

(The reason for the "dx" will appear later. At present consid-

er it merely as part of the symbol indicating integration.)

We no longer require that the function f be positive over the

interval [a,b]. We will be

able to find integrals of

functions such as that in ’\\\ //’TS ///ﬂ
a b X

Figure 4-1. \\\‘/// \\4//

The area interpretation

FIGURE 4-I

of such an integral would be
the shaded area above the
X-axis.minus the shaded area

below the X-axis, as shown

in Figure 4-2. Jé\s
\4-
N AR\ NN
F] N\ §§§S7 b X
However, it is not

always profitable to think

of these integrals In terms FIGURE . 4-2

1oge :
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of area.

Below we give a formal definition of the integral. You
will see that this definition coincides with what we have

been doing in finding areas.

Definition: Let f be a function defined on an interval

e
&~

La,b]. Suppose there is a sequence Ln’ n=1,2, ...,

of lower sums over this interval and a sequence Un’

n=1,2, 3, ..., of upper sums with Iim (Un - Ln) = 0.
. n->o
Then the common Ilimit, L, of these two sequences is

denoted as

b
] f(x)dx
a
Up until now we have been using the assumption made in

the first section of this Chapter that the regions under
consideration have areas. On the basis of this assumption,
it is easy to see that if there exist sequences satisfying
the conditions in this definition, then they must converge

to the area, A, under the curve. For then we have

Ln <A< Un for all integers n, and since ;L: (Un - Ln) =0,
we have also lim (U_ - A) = 0 and lim (A - L ) = 0.
n->w n->o n

In order to make our development rigorous, it is neces-

sary to free ourselves from the assumption that regions under

Lo 0§ T245




the graphs of functions have areas. However, once this
assumption is dropped, our definition of the integral is open
fo serious objections. First, it is not clear that sequences
satisfying the conditions in the definition necessarily con-
verge. Second, it is not clear that another pair of se-
quences Ln' and Un' satisfying the several conditions, but
based on different partitioning of the interval [a,b], will
necessarily converge to the same limit. These objections

are disposed of in Appendix B to this chapter. The discus-
sion given there is easy-going and informal but somewhat
lengthy. We hope that the student will read +his discussion
now or at least before leaving this chapter in order to
appreclate the simple steps necessary to validate the above
deflnition; it makes our theory of inf;grafion dependent

only on the field, order, Archimedean, and completeness

axioms for the real number system.

Although we now allow the possibility that f may assume
negative as well as positive values, we will show that we
may nevertheless confine our discussion to positive functions.
To see that this is so, suppose that f assumes both positive
and negative values in the interval [a,b]. Let -K be a lower

bound for f in the interval [a,b] so that

g{x) = f(x) + K > 0 for x in [a,b].






Let ' = _
L 2: mi(xi xi-1)

be a lower sum, for f in [a,b]. (Here some or all of the m.

may be negative, but let them all be taken > -K.) Taking

mi' =m. + K, we see that
' n
1 - 1 -
L :E:mi(xi xi_l)
i=1

is a lower sum for g on [a,b]. Next we calculate

n n
r = ! - = -
L 2m O - X)) (my + K)Oxp = x,_ )
= i=1
n n

2.m G =X ) K - X))
=1

L + K(b - a)

[Conversely, if we had started with L' being given, then
taking m. = mi' - K, we could have computed the lower sum
L so that L = L' - K(b-a).] Similar results for upper sums

are obtained by replacing the m. and mi' by Mi and Mi" Here

we obtain U' = U + K(b-a).

"Now if we have sequences_Ln and Un for f, then the
sequences Ln' and Un' constructed according to the above rule

satisfy

u ' -+ = [Un + K(b - a)] - [Ln + K(b - a)]




Consequently, if either of the sequences Un - Ln or Un' - Ln'

converges to zero, then both do since they are the same.

Moreover,

[Df(x)dx = |im Ln = lim [Ln' - K(b - a)]

a N0 n -

B )
= |im Ln' - K(b = a) = fg(x)dx-K(b-a).
n-+e a
Accordingly, we have the following recipe for finding the

integral of a function f which assumes negative values:

(1) Find K so that f(x) + K is > 0 throughout [a,b];
(2) Construct g by g(x) = f(x) + K;

: b
(3) Calculate the integral [ g(x)dx.
a

b
(4) Subtract K(b-a) from this result to find Jr f(x)dx,
: a

This is something we never need to do in practice; it
is Introduced solely for the purpose of justifying the use
of methods which apply only to positive functions in proving
facts about integrals. We give one example of finding such

a number K mer2ly to guarantee that our meaning will be clear.

3x + 5 sin x. Find a number K so that

Example. Let f(x)
g(x) = f(x) + K is > 0 throughout the interval [-4,6].

Solution: Throughout the interval [-4,6], the inequalities

thy o 2L18



x > -4 and sin x > -|

hold so that

3x > -12 and 5 sin x > -5
whencé
3x + 5 sin x > =17,
Therefore,
glx) = f(x) + 17 = 3x + 5 sin x + 17 > 0

throughout [-4,67.

Before going on we pause to briefly consider the question:
What functions have integrals? That is, for what functions

do there exist sequences of lower and upper sums Ln and Un

with lim (U_ - Ln) = 0? We have already seen that such

n~»x
sequences can be found when f is monotone. There is no need
in this course for knowing the most general class of functions

for which integrals exist, but we will return to this question

later in this chapter.
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PROBLEMS

Repeat Problem | of Section 3-1 with fge function
y = x2 - 5. For part (f), evalua‘re! (x2 - 5)dx

3 0
assuming that ] (x%2 + 5)dx = 24.
0

Suppose that K is a number and that f is defined on an

B
interval [A,B] by f(x) = K. Show ‘rha‘r! F(x)dx = K(B
A

Interpret this result geometrically in the case K > 0.

ST

A)



5. Theory of Integration

We next present several important theorems concerning
integrals. In order to streamline the sfaTemenTs of these
theorems we adopt the convention that the integrals on the
right side of the equal sign are given to exist. The theorem
then assures us of the existence of the integral on the lef+t
as well as the stated equality. We also assume that a, b,

and ¢ belong to an interval in the domain of f.

Theorem |, !'f a < b < ¢ then

c b c
! f(x)dx = !f(x)dx + !f(x)dx

a a b

b o
Proof: Since ff(x)dx and f f(x)dx are given fo exis*
a b
there are sequences Ln' and Un' of lower and upper sums over

[a,b] and sequences Ln" and Un" of lower and upper sums over
[b,c] with

lim (U ' - L ") =0 and lim (U_ ' - L ')y = 0 .

noren n n N> n n

We define lower and upper sums Ln and Un for f over [a,c] by

-
1]

L'+ L " and u =u '+ uy "
n n n n n



as illustrated in Figure 5-1 where Ln and Un are respectively

represented by the entire shaded areas in Figures 5-1(a) and 5-1(b)

I~ j
§ N /’\ /ér
N g _
NN %
NN i
\\L-n,\ \\/ w7z z
\ ‘\\\\i\/ 7 47 %
NNINNNNWNINZZ v
C (a) °® c s ° ¢
Figure 5-1
Now we see that
U =L = "4+ UM - L'+ LM
n n n n n n
= (v - LYYy 4 (U -m
n n n n
wheace by the *theorem on the limit of the sum,
Fim {U_ = L) = Jim (U_' = L %) + |im cy " - L.") =0+ 0-=20
s n N > n n A e n n

This shows then that a sequence of the desired form exists
c
so that f f(x)dx exists. As for the value of this integral

a
(working with upper sums, although lower sums wou!d do as well)

:.._v 2:) )

L - )
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C
ff(x)dx PimU = 1im (U ' + U ")
n n n
a n-)-co n-)-co

litm U ' + 1limu "
n - n n->c

j;b

a
Definition 1. j f(x)dx = 0
a

C
f(x)dx +f f(x)dx.
b

Definition 2. If a > b, we define
b a
Jr f(x)dx =-.f fix)dx.
a b
Theorem 2. If C is a constant then

b b
f C-f(x)dx = C-] f(x)dx
a a

-

Proof: Consider the case that C > 0. Let Ln and Un be lower

and upper sums fecr f on [a,b] with Iim (U, - L) = 0. For each
n->co

value of n, Ln and Un are expressible in the form

n n

L = k; M, = X, ) and u_ = M (X = X, ).
kS k=1

Now we have

me < fix) < M, for x in [xk_l, xk]

3




whence

Cem, < Cf(x) < C*M_ for x in [xk_ , xk].

1

(For negative C these inequalities are reversed.) Hence ka

and CM, are lower and upper bounds for f on [xk_l, xk]; and
therefore
n n
CLn = Z ka(xk - X ) and CUn = Z CMk(xk ~ X,
k=1 k=

are lower and upper sums for Cf on [a,b]. Now

lim (CU_~ CL ) = C lim (U_ - L ) = (C)(0) = 0
n n n n

n > n->c
b
~assures us of the existence of j Cf(x)dx. Finally,
a
b b
/ Cf(x)dx = lim CU_ = C |im Un = C ff(x)dx.
a n->co : . now a
Lemma. l'f L' and U' are lower and upper sums for f over La,b]

and L" and U" are lower and upper sums for g over [a,b], then

L = L'+ L" and U ur o+ u"

are lower and upper sums for f + g over [a,b].




Proof: We will show this only

for lower sums. In Figure 5+-2(a) V$\§§ <
and 5-2(b) we illustrate Ilower: Eé;i?Q:E§::\\//$§;§§

NN\
sums for f and g over [a,b]. (@) b
Figures 5-2(c) and 5-2(d) are the
same except that vertical lines \ -\\\3
' y N\
have been drawn at all partition lf\\\\\\\\
points of both partitions. This §§\ ‘Q£§\§§>\AS§\
b
shows that L' and L" may be re- 8 (b)
p
garded as lower sums with respect f
to the same partition. Let us p
s N N
denote this partition consisting \:is\h\\ V§§§
N N
of all the partition points by Ek\ §§\¥\$t\\ ;§>\
b

\\.. N
and we let the heights of the Q$SS LQ§§§§§>
MV

rectangles over the subintervals >
-randg a C(d) b

in Figure 5-2(c¢) be identified

t t t 1 R
as m1 , m2 L and those in Figure 5-2

Figure 5-2(d) as m ", m ", ... m
S . 1 2 n

Now we see that mk' < f(x) and mk" < g(x) for x in [xk—l’ xk].
Adding, we get

m' +m" < f(x) + g{x) for x in [xk_ xk].

k k 1’
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the sum
n
L = -
M O = X))
k=1
n
= ( ! + " -
mk m )(xk xk-l)
k=1
n n
= 1 -
P T I S R R MO =X )
k=]
= L' o+ L,

The result for upper sums is proved in the same way.

Theorem 3. (integral of the sum)

b b b
j Cfix) + g(x)]dx = f f(x)dx +f g(x)dx.
a a

a

Proof: Let Ln' and Un' be sequences of lower and upper sums
for f over [a,b], and le+t Ln" and Un" be sequences of lower

and upper sums for g over [a,b] with

Fim (U " - L ') =0 and Fim (U " - L ™) = 0.
n n n n
n->o - nNow
2
-“- 4



Now the preceding lemma allows us to define a sequence of

upper and lower sums for f + g over [a,b] by

L = L'+ L"andU =U"'"+ U" forn-=1, 2, 3,
n n n n n
Since
u - L = (UuU"+ U™ - (L."+ 1"
n n n n n n
= (U ' = L ") + (uU" -, ™m
n n n n
we can see that
lim (U - L) = lim (U.'" = L 'Y + tim (U"™ - L") =0+ 0 =
n n n n n n
n -»o n->o n -+

b
This shows that f Lf(x) + g(x)Jdx exists.
a

Consequentiy,

b
f Cfix) + g(x)Jdx lim U
a n -

H 1 "
[im (Un + Un )

n-+
= |im U "'+ |im U "
n-+ n n-+

b

b
f(x)dx + [ g(x)dx
a

/.

ot 2%57




It might be thought that Theorems 2 and 3 would be of
little practical value from the computational point of view

as they say nothing about bounds on the error.

However, if we assume we have shown that I1 = fgf(x)dx = 2.377

with error < .002 and that I2 fgg(x)dx = |.162 with error

< .005, then

{A

2.377 - .002 < I1 2.377 + .002

1.162 - .005 < I < 1.162 + .005

| A

3.539 - .007 < I1 + 1 < 3.73% + ,007

Then, fg(f(x) + g{x))dx = 3.539 with error < .007. Thus, in
general when approximating the integral of the sum of two
functions, we can add the approximations found for the functions

separately and add the error bounds.

Similarly, with the conditions as above I3 = fg4f(x)dx =4T
1

satisfles 4(2.377 - ,002) < 4T < 4(2.377 + .002)
1

or 9.508 - .008 < 4T < 9.508 + .008.
= 1 —

Again we see that in approximating the integral of a constant
multiple of a function, we multiply the approximation of the
original function by the constant and multiply the error bound
258
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for the integral of the original function by the absolute

value of the constant.

The remaining theorems of this section find several

applications in Section 9 of this chapter,

Theorem 4. If a < b and f(x) > 0 for all x in [a,b], and if

the indicated integral exists, then

b
f f(x)dx > 0,

a

Proof: Clearly each of the upper sums Un in the definition

of the integral is greater fthan or equal to zero and hence
b
Jr f(x)dx = limu_ > 0
a n-—+o n

l'f the inequality f(x) > 0 in Theorem 4 were strengthened
to f(x) > 0, then we could also replace the inequality in

the conclusion by a strict inequality. This is difficult to

prove in full generality and the proof will be omitted here.
Theorem 5. lf a < b and f(x) > g(x) for all x in [a,b], and if

the indicated integrals exist, then

/

Proof: Using the theorem on the integral of the sum, we have

b b
f(x)dx > f g{x)dx.
a

249
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b b ‘

b
j f(x)dx = [ glx)dx + [ [f(x) = g(x)J]dx
a a a

and the last integral on the right is > 0 by Theorem 4.

b+h b
Theorem 6. f f(x - h)dx = j f(x)dx
at+h a
Proof: As illustrated in Figure 5-3, the graph of f(x - h)

over the interval [a + h, b + h] is merely a shift to the

$(x-h)

§§\‘
\{

N

Figure 5-3

7774

v

V777

right of the graph of f over [a,b]. Moreover, from the
congruence of the shaded regions in this figure we see that
each lower sum for f(x) over La,b] is also a lower sum for
f(x - h) over [a + h, b + h]. Similarly, for upper sums.

Thus sequences Ln and Un of lower and upper sums for f(x)

over [a,b] with lim (U_ - Ln) = 0 are also sequences of lower
n--wo

and upper sums for f(x - h) over [a + h, b + h]. Thus,

b b+h

f fix)dx = lim U_ = f fi{x - h)dx.
n
a n- ath
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PROBLEMS
I. Approximate each of the following integrals and specify
an error bound in each case. Use the results of Problem

3 of Chepter 3, Section 2.

| 0
(a) f 3/x dx (h) f sin (x + %)dx
: 0 -n/2
/2 /2
(b) f -2 sin x dx (i) [ (sin x + cos x)dx
0 0
2 /2
(c) vV2x dx (j) f (sin x - 3cos x)dx
| 0

!
(g) f/><+ld><

26 ]
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6. Unicon Functions

For the class of monotone funéTions we have succeeded
in demonstrating the existence of integrals and in approximat~
ing these 'ntegrals with bounds on the error. In R
Section 3 we generalized the definition of lower and upper
sums so as to pave the way for the consideration of nonmono-
tone functions. We are ready to introduce another class of
functions, the unicon functions, which‘we will show to have

integrals which we can approximate to any desired degree of

accuracy.

The idea of a unicon function is quite simple to understand
if we think of it in terms of control of error. Suppose we
have a function f and we want to compute the values of f(x)
for several values of x all in an interval [a,b]. Perhaps
these values of x are determined experimentally or perhaps

they are subject to computer round off, but anyws.s s uppose

they are subject to error. We would like to know that a
small error in the value of x will produce a correspondingly
small error in the value of f(x).

25¢. 760



a—— ——t——
L X4 X2
Y
8
Figqure 6-1

Putting it slightly differently, suppose that the maximum
error we can permit in our computed values of f(x) is scme
positive number €; is there some tolerance, &, so that when
the error in the value of x does not exceed 8§ then the error
in f(x) will not exceed €? That is, can we find a number §

so that
[ fix ) - f(x2)| < € whenever x - x | <§ 7
1
This situation is illustrated in Figure 6-1 for a particular
choice of the numbers x1 and x2. Here the tolerances € and

§ are represented by the lengths of the ‘heavily drawn intervals.

I|f the answer to this question is affirmative no matter

how small the positive number € may be, then we say that f

363



is unicon over the interval [a,b]. Putting this as a formal

definition, we have:

Definition. A function f is said to be unicon ov:r the

interval [a,b] provided that for every positive number

e there can be found a positive number 6 so that

If(xl) - f(x )| < € whenever X, and x, are in [a,b] and
2
[x - x| < 6.
1 2 -
Most familiar functions are unicon. We give a few
examples. In these examples it will be understood that x1

and x2 are always taken to be in the interval Ca,bl].

Example . f(x) = 3x where [a,b] is arbifrary

[f(x ) - f(x )| = |3x - 3x | = 3|x - x |.
1 2 1 2 1 2

Thus by choosing 6§ = €/3, we see that if |x1 - x2| < & then

[f(x ) - f(x )| 3/x - x | < 348 = 3.€e/3 = €.
1 2 1

2 —_

Example 2. f(x) = x3 where [a,b] is arbitrary

|f(x ) = f(x )] =[x 3 - x 3
1 2 1 2
= [(x - x )(x %2+ x x + x ?2)|
2 1 2
= |x = x |e]x 2+ x x + x 2| < |x = x |+3k2
1 2 2 1 2



where k = max (|a|, |b]). Thus letting & = e/3k2, we see

that if |x - x | < & then
1 2 -

If(xl) - f(x2)| < |x1 - x21.3k2 < 8-3k2 = (e/3k2)-3k2 = ¢,

Example 3. f(x) = sin x where [a,b] is arbitrary.

The result is obvious from the following diagrams of the unit

circle

SIN X ~SIN X, |

-_~\42

SN X

Figure 6-2

We see that|x =~ x | is the length of the arc PQ which is

1 2
greater than the length of the chord PQ since a line segment
is the shortest path joining its endpoints. Furthermore the

chord PQ is longer tha2n the segment OR since +the hypotenuse

of a right triangle is longer than either of i+s legs. Thus
we have
|sin X - sin x2|= length of QR < length of PQ
< length of PQ = |x1 - x2|

255
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Thus, taking 8 = € we see that if |x -~ x | <8
|sin X - sin x | <ix ~ x| =68 =¢.
The same method applies when the angles are in different

gquadrants. Note that we are using radian measure for angles

as is always done in calculus for very good reasons which

will eventually become apparent. The same argument works
equally well for the cosine function.
Example 4. f(x) = 1l where 0 < a < b.
X
| | X - X
|f(x ) = f(x )| = |—— ~ —| = | LA —2
1 2 X X X X
1 2 1 2
| |x - x
= |x - x |- < — 2
1 2|xxl al
1 2

Thus, taking 6§ = a%¢ we see that if le - x | < & then

2
Ix = x| 2
‘——I—i_l_z_is—=as=s.
) *, a2 a? a?
Example 5. f(x) = ¥x where 0 <ac<b
{(This is a little bit tricky. 1+ can be shown much more

easily if a is given to be greater than 0.)

i ’ "-f‘: 2 ()'f)\



Let ¢ and d represent numbers greater than or equal to

zero and check the string of inequalities:
(c = d)2 = |c = d|l|]c-d|] < ]c=-d|le]c+ d|] = |2 - d? |
whence by taking square roois,

c - < cc - d .
I dI_VZ 2

Now we use this inequality to verify that

[f(x ) = f(x )| = |/x - Vx| < VIx - x|
1 2 ‘ 1 2 - 1

2

(We took ¢ = Vxl and < = Vx ), Hence, taking & =¢2 we see
2
that when |x - x | < & then
1 2 -

If(xl) - f(x2)| <Vix - x| < /8 = /eZ = ¢.

a

Example 6, As an example L
_ 2 24 —
of a function which is not :
O 18 —
unicon, consider the "post- Q.
[T
age function", P, which O 121 r—
v
gives the number of cents E 6p—r
i
: v
of postage as a function of T - T T
1 2 3 4. OUNCES
the weight of the letter POSTAGE FUNCTVOAI, p
according to the formula,
i Figure 6-73




"six cents per ounce or fraction thereof." This function is
graphed in Figure 6-3. To see that this function is not

unicon on the interval [0,4], note that we may choose ><1 and

X, as close together as we like with xl < 2 < x2. For example,
take ><1 = 2 - % and x2 = 2 + % for some large integer n. Then,
P(x ) = 12 while Pi{x ) = 18,
1 2
Clearly if now € < 6, we will not be able to find a 6§ > 0 so
tha+t
[P(x ) - P(x )| < e whenever x - x| <6,
1 2 - 1 2 —

It is evident that whenever such "jumps" occur in the graph

of a function, the function cannot be unicon.



PROBLEMS

Gold leaf comes in square sheets in various sizes up to

10" on én edge. What is the maximum tolerance of error

in measuring the length of an edge in order that +the

error in the computed value of the area should never exceed
(a) | square inch?

(b) .1) square inch?

(c) .01 square inch?

Suppose f is defined on [0,!] by f(x) = 0 or | accordingly
as x is rational or irrational, respectively. Prove that

f is not unicon on [0, I].

Suppose ¢ <« d < 0. |f f(x) = % on [ec,d], prove that f

is unicon on [c,d].

Prove that if f is unicon on [a,b], and if glx) = f(x + ¢),
then g is unicon on [a - ¢, b - ¢].

Use Problem 4 and Example 3 +to0 show that the cosine

function is unicon on any closed interval.
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6. Find an expression for 6 in terms of € such that
Ix 2 - x 2] <€ whenever |x - x | <& and x and x
1 2 1 2 1 2
are in the interval:
(a) [o0,3]
(b) [-10,10]

(c) [a,b]

27 g
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7. Unicon Functions and Integrals

We are ready to show that unicon functions are integrable

and to approximate their integrals with guaranteed error bounds.

First we make the following simple observation.

Theorem |. Suppose f to be defined on [a,b]. Suppose that

for each ¢ > 0 there are lower and upper sums L and U with

: b
U=-1L < 2¢ (b - a). Then I f(x)dx exists.
a

Proof: For each positive integer n we let Ln and Un be upper
2

and lower sums with U - L_ < Z=(b - a) so that lim(Uu_ - L ) =
n n n n n
N->o
b
Thus, by definition [ f(x)dx exists,
a
Accordingly we will now show, for a function f unicon

over [a,b],that we can find for any e > 0 lower and upper suus

L and U with U - L < 2¢ (b - a).
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