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INTRODUCTION

The original planning and experimentétion from which these programs
evolved was done in a Math/Physics seminar at Hanover High School in the
Spring of 1969. We wished to explore and understand the physical forces
involved in orbital flight at a depth for which no secondary school literature
appeared to exist. The DTSS* presented an interesting opportunity for the
students to do actual constructive research using mathematical models and
computer simulations.

The mathematics is essentially that of a superior Algebra II course that
stresses Trigonometry and Analytic Geometry. A student's ability in these
areas may be sorely tried and perhaps extended if these programs and supporting
material are dissected and examined. Many problem solutions normally ob-
tainable only through the methods of calculus are found through computer
programs utilizing some interesting algorithms. The original questions asked

' by the seminar students were non-trivial, and the resulting analyses were,

consequently, slightly more sophisticated than was expected. Despite this
creeping complexity, the questions that were answered at all were answered

with a substantial degree of integrity.

The physics represents an extension of the basic physics employed in
the excellent Holt, Rinehart & Winston paperback series on space flight with
specific emphasis on "Mathematics of Space Flight", the most utilitarian of
these paperbacks. Obviously, the programs go beyond this introductory
material but may still be considered a linear extension of it. Vectors and
energy levels are the prime tools of kinetics-analysis. At least one seminar
of a good physics course such as PSSC is heartily recommended as a pre- .7
requisite to this material although much of the necessary background is well
introduced by the paperback text.

The forces and energies studied have such a large magnitude and many
of the changes sought after are so minute that the computer cannot give the
accuracy of computation that some students would desire. However, the
numerical analyses yield data that is sufficient for most uses.

During the Spring of 1970, some Hanover students are planning to write
exercise sets around the present programs, and perhaps, some new programs
as well. These exercises will lie in three categories: (1) questions requiring
extensive knowledge of the given program and its accompanying Topic Qutline
and also requiring many directed runs of the present program; (2) questions

* Dartmouth Time-Sharing System
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requiring minor re-writing of the program to present data from a different
point of view; and (3) compilation of tables to aid in analysis directed toward
writing new exploratory programs and requiring continuous and systematic
re-programming. These exercise sets may be available in a later edition of
this topic outline. The following program notes may help in creating ad hoc
exercises.

(1)

(2)

(3)

Elliptic Orbits: This topic is a time analysis of closed orbits.

The time analysis is made possible through the use of a computer
algorithm that rather accurately replaces the commonly used
elliptic integrals. The laws of planetary motion may be studied
quite closely after minor substitutions are made in the program.
Keppler's laws, as one example, are directly observable on a
time plot.

Rendezvous: The simplest form of the two ship rendezvous is solved

and the time function is used again to track the interception in
either tabular or graphic displays. The program is stripped to the
absolute minimum to emphasize "window" and relative orbital
constants. Obviously, a reversal of the ship roles in the program
leads to the Hohman transfer. The program as it stands gives a
clear picture of circular and elliptic orbits of the same magnitude.

Orbital Transfer: This program computers the effect of adding any
energy vector to any orbit configuration at any point. The potential
of this prograni as yet is largely unexplored and its limitations and
weaknesses have not yet been fully identified. Suggested exercises
would include studies of orbital stability, relative influences of

the multiple variables, and of course, problems in rotation of
orbital axes. The advanced student may use an easy variation of
the program as a flight simulator in exchanging orbits.

Future developments will hopefully extend Rendezvous to include all manner
of orbits. This will, of course, require the most careful exploitation of
Orbital Transfer to control rotation and alignment of orbital axes.

H



I. ELLIPTIC ORBITS

REF: ELORB

Time analysis of closed orbits has been a subject of fascination to astro~
nomers, physicists, and mathematicians alike for some 300 years. Theoretically,
if the orbit isknown, then the orbiting body's position is strictly a function of
time. Unfortunately for the untutored amateur or elementary student of orbital
mechanics this position plot as a function of time gives rise to some complicated
applied mathematics.

The advent of the high~speed computer offers an alternative to the elliptic
calculus developed by the giants of the 18th and 19th centuries to handle
"celestial mechanics." The ability of a computer to handle large numbers of
complex calculations in fractions of a second allows "back solving" of systems
of equations which, if solved in a straightforward manner, lie in the domain of
advanced mathematics.

Before examination of the actual equations from which the program is con-
structed, a look at the physical situation is convenient. In Figure 1 is shown
a typical elliptic orbit with Earth at its principle focus. A space ship is shown
at an instant of time along with the area which its radius vector has swept out.

Area swept out
in k seconds

\»...

Figure 1.



Since an orbit which is undisturbed by additions or subtractions of energy
has constants for its descriptive parameters, it is obvious that a few astronomical

observations will yield:
1. Closest approach to Earth
2. Furthest recession from Earth

From these data all other significant parameters may be calculated. From an
arbitrary zero time it seems as though after K seconds a given area is swept
out by the radius vector which is directly dependent on 8, the radius vector

angle.

Keppler established that the radius vector sweeps out equal areas in equal
times. If it were easily calculable, the area of an ellipse in terms of 8 would
be of immense aid since we could then directly relate t and 8. In Figure 2
such a calculation is established. The result is an integral which is included
in the text as a "given" equation but should be briefly examined at this point.

Figure 2. The Differential Triangular Area of an Ellipse

From Figure 2 the area of /A AOB is 3r.r.d9, and the integral (where r = L/1+e cos#6)

is
b . b
= 12 S de
a 2 a (1 +e cosB)?

Aa

which is a standard transcendental with a solution readily available from any
set of integral tables.




In most mathematical texts the solution to the area problem is mani-
pulated so that t = f(8) which is, of course, the absolute inverse to what
is required, i.e., 8 = f(t). It is precisely at this point that a secondary
school student with a computer can match the calculations of the more ad-
vanced student.

The program associated with the mathematical portion of this topic
outline can be set to report angular position (r,8) given any time interval. This
is accomplished by having the computer search for a 8 that will produce the
required time. The present program is adjusted for 5 minute intervals with
an accuracy of .001 minutes, or 15 search sweeps, whichever occurs {.rst.
This aveids the inverse solution to the ddfferential triangular area of the
ellipse which leads to elliptic integrals which would have to be solved for

each time plot. .

When "approach" and "recession" distances are given to the computer in
response to its input interrogation, the program not only presents most of the
orbital data in tabular form but on command will track the orbiting object giving
position plots with velocities at 5 minute time intervals.

As a consequence, any student with an elementary background in mathe-
matics who gain access to a time-shared computer, may study closed orbits
with their associated laws of physical behavior. The more serious student who
cares to pursue the mathematics of this physical behkavior will find all the
equations necessary for further exploration and possible re-programming.

Objects in free fall around Earth fall in orbits which are mathematically
describably as conic sections. The principal focus is at Earth center. The
polar coordinate system is used to describe a ship's orbital position. The
reference axis is through Earth center on the orbital perigee. The ship's
position in an elliptic (as well as any other conic orbit) is then

o= L (El)
l+ecos B

9
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Figure 3. Orbital Parameters (Elliptic Orbit)

Apogee ' , r: Radius vector
Perigee 8: Radius angle
Semi Latus Rectum e: Eccentricity

Semi Major Axis
: Semi Minor Axis
ae: Semi Focal Length

ganmr

NOTE: Counterclockwise orbit is with Earth rotation and will be standard.

The distance parameters in terms ot A, P are:

a = (A+P)/2 (E2)
e = (A- P /(A+P) (E3)
L = a(l -e?) (E4)

b = a ‘il—ez

1o



The inertial period, Pe, of an elliptic orbit is

Pe = 2T /a3 seconds (E6)
Gm

where Gm, the Earth gravitational constant is
Gm = 62747 nautical miles/second?. (E7)

The ship's velocity at any point in orbit is

v = [Gm(2 - 1) nmps. (E8)
Jone - 2

Velocities at apogee and perigee will be

vp = /Gm (1 +e) nmps (E9)
A
vp = \/_g[r’n_ (1 -e) nmps. (E10)

And the area swept out by the radius vector is

12 |e sin 8 + 2 Tan~! (Yl1-e2 Tan 8) (E11)
2 | (e4-1)(1+e cos 8) (1 - e2)3/2 2

A(r,8)

By Keppler's 2nd Law, the following relationship holds:

A(r,8) = t seconds (E12)
k

If (E11) is solved for one complete revolution
Al,8) = T ab (E13)

and the following equalities may be established:

Tab = 27 a3  k (E14)
Gm
t = 12 VaGm e cos B + 2 Tan™1 (V1-e2 Tang)| minutes
60bGm (e2-1)(1+e cos 8) (1-e2)3/2 2 (E15)

To directly solve (E15) for 8 in terms of t is evidently quite difficult, so the
time function is computed through a computer convergence or search program.



ELARB 037137170 09:51
THIS PRAGRAM 1S KEYED T@ THE TOPIC QUTLINE ‘ELLIPTIC

DRBITS' THKIUGH THE REM CALUMN REFERENCES

QLOSEST APPR3ACH T3 EARTH? 150
FURTHEST RECESSI2N FROM EARTH? 950

DNSTANT PARAMETERS

SEMI MAJOR AXIS IS 3992

SEMI MINQR AXIS IS 3971.91
SEMI LATUS RECTUM IS 3951.92
SEMI FOCAL LENGTH IS 400-.
ECCENTRICITY 1S 0.1002
INERTIAL PERIOD IS 105.443
PERIGEE VELBCiTy IS 15732.2
APOGEE VELQCIfY IS 12907.5

VARIABLE PARAMETEKS

-—-me---- -—-mw e w-m -

ELAPSED TIME RADIUS ANGLE RADIUS V VEL@CITY
0 1.09863 E-2 3592. 15782.2
S 18.3525 3609. 64 15711.9
10 37.5403 3661.04 15509.3
15 ) 559314 3741.88 15196. 7
20 73905 3845.11 14807.8
25 91.3733 3961.43 14332. 3
30 108.292 4080.24 13960.5
35 124.706 4191.02 13573,
40 140. 68 428 4. 13264.2
45 156.281 435107 130417
50 171. 661 4336+8 4 12924. 3
55 186976 4388+ 38 12919.3
60 202. 346 4355. 58 13026.9
65 217.936 4231.03 13240. 7
70 233855 4200.15 13546.8
75 250.225 4090. 6 13924. 4
80 267.111 3971.98 14344. 4
B85 28 4. 535 3854.98 14771.2
90 302+ 465 3750.21 15164.9
95 320.812 3667.12 15485+ 5
100 339 . 489 3612.86 156991
105 353.33 3592.14 15731-6
TIME: 2.000 SEC-

-I.A-




B0 RB

160 PRINT "THIS PROGRAM 1S KEYED T@ THE TOPIC QUTLINE ‘ELLIPTIC"
110 PRINT "ORBITS' THROUGH THE REM COLUWN REFERENCES"

120 PRINT

130 PRINT °'"CLOSEST APPRGACH TO EARTH';

140 INPUT X

150 LET X = X+3442 ‘P

140 PRINT "FURTHEST RECESSION FROM EARTH'S

170 INPUT Y
180 LET Y = Y+3442 'A

190 LET A = (X+Y)/2 'CE2)
200 LET E=(Y=-X)/C(Y+X)

202 IF E<1 THEN 210

204 PRINT "ECCENTRICITY O@F SELECTED ORBIT IS"E
- 206 PRINT "REDUCE ECCENTRICITY BELOW E=1"

210 LET L = A*(1-Et+2) 'C(E4)
220 LET B = A% SGR(L/7A) *CES)
230 LET P = 2%3.14159265%SQR(Ar 3/62747) *(E6)

240 LET V(2)= SQR(62747/Y)>*SQR(1-E)
250 LET V(1) = SQR(62747/X)*SAR(I+E>

260 PRINT
270 PRINT
280 PRINT "C@NSTANT PARAMETERS"
290 PRINT "=--==-==-= s—eemeee-- .
300 PRINT

310 PRINT "SEMI MAJOR AXIS IS"A

320 PRINT '"SEMI MINOR AX1IS 1S"B

330 PRINT "SEMI LATUS RECTWM IS'L

340 PRINT"SEM1 FOCAL LENGTH 1 S"A*E

350 PRINT"ECCENTRICITY IS"E

360 PRINT "INERTIAL PERIOD 1IS* P/60

370 PRINT "PERIGEE VELOCITY IS"™ V(1>%*3600
3B0 PRINT "APAGEE VELOCITY IS'" V(2)*3600

IO PRINT
400 PRINT
410 PRINT ""VARIABLE PARAMETERS"
420 PRINT "======<< =scs-cc==- "
430 PRINT
432 PRINT "ELAPSED TIME','RADIUS ANGLE','"RADIUS V","VELOCITY"
433 PRINT N mmocaa= _---'l’" ----------- "’" ______ -'!’ll ________ ”
435 PRINT
440 LET N = INTC(P/760)
450 FOR M = 0 Td N STEP 5 ’SEARCH LOBP
455 LET S=0
460 LET @ = 2%3.14159265 *QVER
470 LET U = O 'UNDER
40 LET Z = (o+W /2 ‘ 'TRIAL ANGLE
40 LET TC(1) = Lt2%kSQR(A*62747)/(60%B*x62747) 'C(E1S)
SO0 LET T(2) = Ex*SINC(Z)/C((E*2-1)*(1+E*CQS(Z))) 'CE1D)
S10 LET T(3) = 2/SGR(1~-E*2)t3 '‘(E15)
13
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EL3RB (CONTINUED)

520
525
530
532
S35
540
545
550
560
570
B0
0
600
610

..620.

630
700

LET TC4 = ATNC(SQRC(1-Et2)*TANCZ/2))
LET S=S+1

LET T = TCLIRCTC(2)+(TC(3)*TC4)))

IF Z <= 3.14159265 THEN 540

LET T=T+2%3.14159265% SQRC(At 3/62747)/60
IF ABSC(T-M) < 001 THEN 600

IF S=15 THEN 600

IF T> M THEN 580

LET U = Z

GATO 480

LET @ = Z

GOT? 480

LET REL/C1+E*COS(Z))

LET V = SAQR ((2%A%62747-R*62747)/C(A*R))
PRINT M»Z*180/3+14159265, R» V*3600
NEXT M :

END

_I.C_

'CE15)

'(E1S)
'EXIT

'NEWUNDER

'NEW OVER

'VEL

'END LOQP



II. RENDEZVOUS

REF: CHASE

The rendezvous problem has been simplified to the minimum necessary to
illustrate problems of pursuit. Essentially different orbits have different velo-
cities, and movement between them requires careful calculation if interception
is the goal. The following figures illustrate the lead problem and its theoretical
solution.

Chase Ship (1)

Descent
Orbit

Figure 1.

If the descent is from a co-radial position, the chase ship will be behind
the target due to the difference in velocities and times between the descent
orbit and the target orbit.




Chase Ship (1)

Iead Interval
(Window)

Figure 2.

The chase ship initiates its maneuvers fron. a calculated lead interval
based on co-solving the three orbits for elapsed time and average velocities.

The descent orbit is interesting in its velocity changes. Initially, the
chase ship sheds velocity as the elliptic orbit, with its apogee at the chase
ship orbit, has a lower energy level at that point. As the ship descends with
the force of gravity to its perigee at the target orbit, its velocity increases
to the necessary energy level to "crack the whip" at perigee. So once again,
velocity must be reduced. In essence, velocity is twice reduced, and in
nearly the same amounts, to enter a faster orbit from a slower orbit.

When the program is initiated the original ship orbits are randomized within
certain bounds before being presented to the student. A Firing Table is generated
which presents all the necessary navigational and maneuvering data for a ren-
dezvous. If the student wishes to track the rendezvous, data is presented in
intervals of the student's choice. The search program from ELORB is incorporated
into the descent orbit computations and certain other data is computed from this

to show the following:




1. Elapsed time in minutes
2. Relative distance between ships in nautical miles
3. Relative angle between the ships (in degrees)

4. Relative velocity between the ships in nautical miles per hour

S. Time in minutes until rendezvous

One of the objectives of this program is for the student to become familiar
enough with the program - physics and mathematics - to reverse the positions
of the two ships. '

Suppose two ships are in differing circular orbits and a rendezvous is
desired. Suppose the target ship is in orbit of radius ry and the chase ship
is in orbit of radius r1 and further more, the chase ship is displaced L radians
from the target and is in the larger (and slower) orbit. The chase ship must
now establish a transfer orbit with its apogee on the ¢chase ship original orbit
and the perigee on the target ship's orbit.

To describe the transfer orbit we have

A = I‘l (El)
Transfer
Orbit 8 P =1y (E2)
e = A-P/A+P (E3)
S = A+P/2

Figure 3.

The velocity of the transfer orbit at apogee is

vy = Gm (1 -e) (E4)
rq .

Hence, the amount of velocity to be lost by retrofire is the difference
between the velocity of the chase ship's orbit and (E4).

Xx] = |Gm - Gm(l -e) (ES)

n ry

'le— : 17



The time to perigee in the transfer orbit is half the period of the new orbit

or
tl =’!T\’ 3 (E6)

m

[¢2]

9]

At perigee the chase ship has a velocity higher than its tangential circular
orbit and must again reduce velocity to match the target orbit.

X9 = Gm(l +e) ~ [ Gm (E7)
T2 2

If, for the purposes of simplicity, only the transfer time is considered, the
chase ship must fire its motors precisely ty seconds before the target sbip
reaches the anticipated perigee rendezvous.

Since the target ship travels 2 radians in

t = 27 [ F23

Gm

seconds, (E8)

then its angular velocity may be considered

Vg = 1 rad/sec. (E9)

ro3
Gm

Hence, it must travel w; radians to rendezvous

w, = (E6)(E9) = T, /8> (E10)
r3
The chase ship must be radians from the perigee rendezvous so the
chase ship's lead at time of firing must be
w =17 __a3 -1 : radians. _ Bii)
r23

The relative angular velocity of the ships is

1 - 1
r23 r13
\/ Gm V Gm

.~

v = rad/sec. (E12)

-11-




The amount of delay necessary for the relative ship velocities to change the
relative ship angle to the proper "window" is found from the two possible
cases in Figure 4.

Chase ship (————- Chase ship

_ Window Window

Target
ship

Target
ship

Case I Case II

Figure 4.
In Case I the target ship is outside the window and
ty = (27 - w2 -w)/v. (E13)

In Case II the target ship is inside the window énd

ty = ]Ezﬁ - wy) + (297 -w}v. (E14)

The argument for a rendezvous with the chase ship occupying the inner
position is similar.

-12-
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- CHASE 03718770 .09:35

FIRING TABLE

CHASE SHIP ANGLE IS O

CHASE SHIP RADIUS IS 4993:.67
TARGET SHIP ANGLE IS 254.557
TARGET SHIP RADIUS 1S 4088. 47

WINDOW ANGLE IS 30.7019
TIME T@ WINDOW IS 87.5434
REDUCE VELOCITY BY 652.627
DESCENT TIME 1S 63.9645
REDUCE VELOCITY BY 686.131

D0 YQU WISH T@ TRACK THE SHIPS? YES
TRACKING INTERVAL? 10

e — . >”TRACK1N6WDATA'

RELATIVE

- - -

ELAPSED RELATIVE RELATIVE TIME To
TIME ANGLE DI STANCE VELACITY RENDEZ VB US
0 105. 443 7247. 42 1342.1 151.508
10 96.9051 6823. 6 1342.1 141.508
20 88.3676 6363.1 1342.1 131. 508
30 79.83 5868.77% 1342.1 121. 508
40 712924 5343.75 1342.1 111.508
50 62. 7549 4791.56 1342.1 101. 508
60 54.2173 4216+ 25 1342.1 91.508
70 456797 3622. 66 1342. ] 81.508
80 37. 1422 3017.08 1342.1 71.508
87.5434 30.7019 2557.88 1342.1 63.9645
EXECUTE INITIAL RETROFIRE
92.5434 26.888 2279.87 1958.61 SB«9645
975434 23.1179 1992.76 1852.14 539645
102. 543 19.5237 1707.75 1679 . 49 489645
107« 543 161492 1430.23 1448653 4349645
112.543 13.0823 1168. 47 1169.55 38.9645
117543 10. 367 927.9 4 B856. 572 33.9645
122. 543 7.95924 709.123 528. 478 28.9 645
127.543 594703 520. 315 203.014 23.9645
132. 543 4. 28 638 362.216 98.1257 i8.9645
137.543 2.889 41 232. 557 353. 32 139645
142. 543 17561 133+ 147 545.032 8.96452
147.543 O«¢75464 54.5755 658. 103 396452
EXECUTE FINAL KETROFIRE
151. 508 2.19522 E-2 1« 56645 2.14577 E-4 5.08502 E-7
TME: 1.651 SEC.
READY
a

-I1.A-




HASE

100 RANDOMIZE '@RIGINATE
105 LET J = 180/3 14159265

110 LET R(D) RND* 1000+ 4000

120 LET RC) RND* 1000+ 4000

130 LET W(1) RND* 62831853

140 LET W(2) RND* 6+ 2831853

150 LET V(175 SGR(62747/R(1))

160 LET V(2) SQKC(62747/RC(2))

17¢ IF RCiI) > RC(2) THEN 200 *GATE
180 IF RC1) < R(2) THEN 100

190 GaTa 100

200 LET A = RC1) 'APQ GEE
210 LET P = RC(2) *PERI GEE
220 LET E = (A~ P)/(A+P) *ECCENT
R W23‘O__LET__S ETCAFPYF 2 e e e - " R . e SEMI MAJ s e e e
240 LET TC1) = 3.14159265%SQR(St3/62747) 'COAST TIME

250 LET W = 3+14159265%SARC St 3/R(2)13)~-3.14159265 'WINDOW
260 LET V(3)=1/SAR(RC1)t 3762747
270 LET V(4)=1/SAR(KR(2)+3/62747)

280 LET V = V(4)-V(3) 'REL
290 LET Z = 6.2831853~-W(1) 'INITIALIZE
300 LET Ww(1) = O '@RBITS

310 LET W(2) = W(2)+Z

320 IF W(2) < 6.2831853 THEN 340

330 LET W(2) = W(2)-5.2831853

340 IF W(2) < (6.28318530-W) THEN 380

350 LET Y = (6.28318530-W(2))+(6.28318530~W) 'TARGET ADV.

360 LET T(2) = Y/V ‘TIME T@ FIRE

365 IF T(2)/760>100 THEN 100

370 G@To 400 'EXIT

380 LET Y = (6.28318530-W(2))~-W . 'TARGET ADV.

390 GATa 360

400 LET XC1) = SQRC62747/A)-SARC62747*C1-E)/A) 'EXCESS

410 LET XC(2) = SUR(62747%C1+E)/P)~-5GR(62747/P) 'VELQCITIES

420 PRINT »»'"FIRING TABLE"

430 PRINT ssM====== ===== .

440 PRINT

450 PRINT "CHASE SHIP ANGLE I1S"WC1I*180/ 314159265
460 PRINT "CHASE SHIP RADIUS IS"RC1)

470 PRINT “TARGET SHIP ANGLE IS"W(2)*180/3.14159265
&80 PRINT “TARGET SHIP RADIUS IS"R(2)

Q0 PRINT

SO0 PRINT "WINDOW ANGLE IS' Wx130/3.14159265

510 PRINT "TIME To WINDOW IS"T(2)/60

520 PKINT "REDUCE VEL2CITY BY'X(1)*3600

530 PRINT "DESCENT TIME IS"TC(1)/60

540 PRINT *REDUCE VELQCITY BY"X(2)*3600

550 PRINT

560 PRINT ''==-====-cme-ee-cccccsess oo oo oSS m o em o "
570 PRINT




HASE (CONTINUED)

B0 PRINT D@ YQU WISH T@ TRACK THE SHIPS'3
590 INPUT AS

600 IF AS="YES"THEN 620

610 STOP

620 PRINT °‘*TRACKING INTERVAL''3

630 INPUT J

640 PRINT
650 PRINT
660 PRINT »»*TRACKING DATA"
670 PRINT »»"=======- S
680 PRINT

690 PRINT *ELAPSED',"RELATIVE®,"RELATIVE', "RELATIVE'S> "TIME TO"
700 PRINT "TIME'»'"ANGLE'>*DI STANCE'» ""VELOCI TY''» ""RENDEZ V@ US"

71 O PRIN T | ] ", = .', L .', 0 e o ip moap o> -
720 FOR T = 0 T0 INT(T(2)/60> STEP.J . ,
720 FaR T = 0 T IN

740 LET WC(3) = T*60*xV(3)+WC1)

750 LET WC4)=Tx60%xV( 4)+1(2)

760 LET M = ABS(W(3)-WC4))

770 IF M < 314159265 THEN 790

MO LET M = ABS(M-6.28318530)

790 PRINT M*180/3.14159265,

800 LET D = SQRCAt2+Pt2-2xAxPxCQ SCM))

810 PRINT D»

820 LET V(5S) = ABSC(VC(iI)Y-v(2))

830 PRINT V(5)%3600»

840 PRINT ~T+(TC1X+TC2))/60

850 IF T = T(2)760 THEN 890

860 NEXT T

870 LET T = T(2)/60

880 GOTQ® 730

890 PRINT

900 PRINT "EXECUTE INITIAL RETROFIRE"
910 PRINT

920 LET L = Skx(1-Et2)

930 LET B = Sk SQRCL/ S

940 LET WC1) = W(C3)

950 LET W{(2) = WC4a

960 IF W(1) < 6.2831853 THEN 990
970 LET WC(1) = w(1>-6.28318530
980 GOTO 960

990 IF w(2)< 6.2831853 THEN 1015
1000 LET W(2) = W(2)-6.28318530
1010 GOTO 990

101SLET J=5

~1020 FOK T=C(J+TC1>/60) TO TC1>/30 STEP J
1022 LET@=Q+1

]

1030 LET K = O
1040 LET ® = 6.2831853
1050 LET U = O

Q2
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HASE C(CONTINUED)

1060
1070
1080
1090
1100
1110
1113
1115
1120
1130
1140
1150
1160
1170
1180

1190

1195
1197
1198
1200
1205
1210
1220
1230
1280
1290
1300
1310
1315
1316
1317
1320
1330
1340
1350
1351
1360
1370
1380
1390
1400
1405
1406
1407
1410
1420
1430

LET Z = (Q+Ws2

LET NC1) = Lt2%xSQR(Sx62747)/C60%B*x62747)
LET NC2)=E*SINCZ)/((Et2-1)*%( 1+E*CA S(Z)))
LET N¢3) 2/SQR(1=-Et2)1t 3

LET NC4&> ATNCSGQRC1-Et2)*TANCZ/2))
LET N = NCIIRNC2)+NC1)*NC 3)*NC 4)

IF Z<=3.14159265 THEN1120

LET N=N+TC1)/30

LET K = K+1

1F ABS(N-T)><.01 THEN 1195

IF K=15 THEN 1195

IF N> T THEN 1180

LET U= 2

GZT@ 1060

LET @ = 2

GATO 1060 "

IF T<TC1)>/30 THEN 1200

LET T¢C3)=TC1)/60+TC2)/60

Go TO 1205

LET T¢(3)=@*xJ+T(2)/60

PRINT TC(3),

LET W(2) = J*x60%VC(4Q)+W(2)

LET W=Z-3.14159265 +W(1)

LET M=ABS(W-W(2))

PRINT M*180/3.14159265,

LET R = L/C1+E*COS(Z))

LET D= SQR(Rt 2+P1 2- 2% R*P%*CB8 S(M))
PRINT D»

IF T<TC1>/30 THEN 1320

LET VC1)=SQR((2%xS*x62747=-R*62747)/( S*R))-X(2)
Go T@ 1330

LET V(1) = SQR((2%S*62747-R*62747)/(S*R))
LET V(S) = ABSC(V(1)-V(2)) :
PRINT V(5)*3600,

LET TC4)=TC1)/60 +TC(2)/60 -T(3)
PRINT TC4)

IF T=TC1)/30 THEN 1420

NEXT T

PRINT

PRINT "EXECUTE FINAL RETROFIRE"
PRINT

LET T=TC¢1)/30

LET J=TC4)

LET R=P

G3 To 1022

STOP

END
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ORBITAL TRANSFER

REF: XFR

The problem of "where are we ? " besets every pilot of a spaceship once
he has fired his ship's motors. The problem in its most simple form is finding
t he new orbit attained from the old orbit by introducing an energy vector re-
presented in this program by the coplanar thrust of the motors.

The program despite its complexity does have simple inputs and outputs.
The inputs for the old orbit are in response to interrogation.

1. Eccentricity of the old orbit.
2. Length of the Semi~Latus Rectum in nautical miles.
3. Position of the ship in degrees from perigee axis.

The program then invites the student to fire the motors which he does by answering
further interrogation.

1. Angle at which motors are fired (in degrees).

2. Length of time motors are to be fired (in seconds).

3. Desired interval between interim calculations (in seconds).
The output from the program is quite prompt.

1. Eccentricity of new orbit.

2. Length of new Semi-Latus Rectum in nautical miles.

3. Length of new radius vector in nautical miles.

4, New radius vector angle with respect to the new perigee axis.

5. Direction and amount (in degrees) of orbital rotation as measured
between the two perigee axes.

Obviously, this program can be sequentially staged to move the ship about quite
freely. Attempting to move under power from one polar plot to another is sub-
stantially challenging, particularly if velocities are to be matched. Repeated use
of this program demonstrates that axial shifts are much larger for low eccentricity
orbits than for ones of higher eccentricity given the same amount of disturbance
through added thrust.

~-13-



The general factors that must be taken into consideration are presented
in crude and exaggerated form in the following figures.
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An apology is extended for the profusion of factors in Figures 1 through 3,
but each has its particular place in orbital navigation. Before proceeding to
a fuller discussion of the program a small development of the use of the
inclination angle is in order. Certain liberties have been taken in its deri-
vation which do not appear in the mathematical text and could be puzzling to
t he serious student.

By assuming that each moment the motors fire is their last moment, and
consequently at each moment the ship is in a calculable orbit, these inter-
mediate orbits may be continuously calculated. The program uses an interval
of 5 seconds but is adjustable to any figure one may desire. Obviously the
smaller the interval the more accurate the calculations become. In an orbit
of thousands if not tens of thousands of seconds in period an interval of 5
seconds closely approximates the actual value. Assuming the 5 second (or
less) interval is a sufficiently close approximation of the actual value, the
calculations for instantaneous angle of orbital inclination become rather straight-
forward.

c_'ranﬁ;:.nJr bo
erbitt ot P
Cngle of

Inclination \\

Orki“'al
ath

PQYPendlcular P
Yo radius vecker

Figure 4.

Angle of Inclination

Since we are substituting a small t for dt the angle swept out by the radius
vector for small t is arbitrarily held to approximate that angle swept out for dt,
i.e., d(8 +8*). The radius vector, r, increases by dr across angle d{(8 + 8*)
and the differential arc length approximated by its tangent has length rd(8 + 8%*).
Assuming d8 then the "new" radius vector crosses the tangent to the curve at
right angles. By taking the angle vertical to § the construction becomes clearer
as noted on the following page.

-15-
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Position
P
Tan en{'
'fogofb‘+ New OrbA’o.\
\aa’rh
\
£\
. \
Figure 5. N
Tan # = dr from use of
rd(8 + 9%)

vertical angles

(NOTE: Error of small t in place of dt is proportional to the difference between
the arc length of the orbital path and the length of the equivalent tangent seg-

ment.)

If r = L then dr = e sin{@ + B*) by the
1 + e cos(B + B*%) rd(8 + 8%) 1 +e cos(8 + 8%)

use of the simple differential formulas. Since the angle of inclination describes
the orbit all that remains is the task of fitting all the data and formulas together.

Since the companion program was to be as realistic as possible, an actual
spaceship was modeled within the program. The ship has a certain mass, thrust,
and fuel usage compatible with current chemically propelled rockets. These ship
parameters can be varied for any number of reasons.

The ship is at Py: (ro, '90) in an originating orbit with known constants of:

ro = Lo (E1)
l+e

oCO0s 8o

At this point the ship has a velocity, " determined by

vol = Gm (2 - (1-eo%) (£2)
o Lo

where Gm is Earth gravitational constant.
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Furthermore, the angle made by the tangent to the orbit and the perpendicular
to the radius vector at Py is the angle of inclination and is

Tan #, = €5 sin fo (3)
1 +eqg cos B¢

The ship is rotated to the burn angle (measured from the perpendicular to the
radius vector to the axis through motors) and the motors are fired. At the end
of (m) seconds the ship has added perpendicular and radial distance vectors due

to this thrust. These distance vectors are:

m2 3 cos z (E4)

o

X1
and
vy = 1m?(7 sin z) (E5)

The supporting equations for these vectors are:

9o = Gm (E6)
'o
5 =15 ‘ , ' (E7)
(w-m . k/2)
h = mvo sin fg + m2 (T sin 2z) (E8)
gh = Gm/(r + h)? (E9)
and
g = (g0 +gn)/2 (E10)
where

t is the ship thrust in.pounds;
w  is the ship weight in pounds;.
k is the pounds of fuel burned per second;

Jdo s gravitational acceleration at P, ;

-17-
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gy s gravitational acceleration at height h;
g is mean gravitational acceleration during time m;
and

a is mean acceleration from ship during time m.

To keep these equations at a secondary school level of complexity certain
simplifying assumptions have been made. Evidently § and & are not true
means but first approximations from their respective infinite series. Also,
for m, a time interval of m £ 5 should be used. The results of (E3) are
based on the tangent to a curve closely approximating the curve for small
distances; i.e., the differential arc length is extended.:

At the end of m seconds of firing the ship is in a new orbit which may be
computed in terms of the old orbital parameters.

For the point of entry P(r,8) on the new orbit, r is computed as

2 = (x; +x9)2 + (ro +y] +v2)?

Xy = mvg, cos fg
y9 = mvg sin fgg

The radius vector has now moved forward angle (w) from its old position.
Further orbital relationships are: '

8 = w+8,

Tanw = (x] +x)/r

m2v? = (x) + Xz)z +(yp + y2)2

Tan g = (y1 +y2)/(x |+ x2)
The original reference line which was the perigee axis of the old orbit
has rotated to reflect the perigee axis of the new orbit; i.e., the ship's
reference line has rot_ated through an angle of 8*.

The new orbit through point P is defined by:

r = L
1 + e cos (8 + 8%)

(E11)
(E12)

(E13)

(E14)
(E15)
(E16)

(E17)

(E18)



vZ = Gm (2 - (1-e%))
r L

Tan g = e sin (8 + 8%)
1 +e cos (8 + 8%)

The simultaneous solution of (E18-20), a tedious exercise in analytic
geometry, vields:

e2 -1 = rv2 cos 2 4 (rv2 - 2Gm)

Gm?
L = r“v2 cos? #
Gm
sin 8% = -c sin 8 + cos 6 1 - c2

where

c = (L-r)/er = cos (8 + 8%)

A sufficient condition for -1 € ¢ € 1 isthat P < r <€ A and of the two
solutions to (E23) the sum is used in the first two quadrants while the
difference is used in the last two quadrants.

30
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XFk

100 PRINT "THIS PR3GRAM IS DIKECTLY KEYED T3 1THE TJFPIC QUTLINE"
110 PKINT "'@KBITAL TRANSFER' AND THE NUMRERS IN THE REM CALUMN®"
120 PRINT "@F THE LIST @F THIS PKIGKAM KEFER T2 THE EQUATI2N NUMBEKS"

130 PRINT"IN THE TEXT."

150 PKRINT

160 LET T = 75000 *THRUST

170 LET G = 62747 ' GM

180 LET w = 50000 'WEIGHT

190 LET K = 100 'FUEL USE

200 LET I = 180/ 3.14159265 'kAD/ DEG

210 LET J = 3141592657180 '*DEG/ KAD

220 PRINT “ECCENTKICI1Y'":

230 INPUT

240 PKINT "'SEMILK"; ‘NeM,

250 INPUT

260 PRINT "P3SITIAN ANCLE'; ‘DEG

270 INKUT P

20 LET P = J * P

290 PRINT "BURN ANCLE™; '‘DEC

300 INPUT Z

310 LET 2 = J * £

320 PRINT "BURN TIME''; 'SEC

330 INPUT TCDD

340 PRINT "INCHKEMENT'; *SEC

350 INFUT M

360 FOK N = M 13 TC1) STEFP M

370 LET R = L/CI+E*CISCF)) 'CEDD
390 LET V = SAiR(L) ¥ SURCC2/K)-CC1-Er2)/7L)) ‘CE2)
410 LET U = AINCEX*SINCPY/CI+E*CASCPII)D ‘(ED
430 LET GC1Y = (/K2

450 LET A = T*CC1)/Ch-M*xK/2) ‘CED
470. LET H = MxVkSINCLD +o SkMr 2x A% SINCZ) 'CEY)
490 LET C(2) = G/ (Kk+H)Yt 2

S16 LET GC3) = (GC1) +GC2)>/2 ‘'CEL1O)
520 LET A = T#CC3)/C(L-M*xK/2) ‘CET
540 LET XC1) = «5%Mt 2xA%xCHSCL) '‘(E4)
560 LEI YCL1) = o« 54M1 2%xA%SINCZ) : '(ED)
S50 LET X(2) = Mxyx(CasCL) CE12)
60 LET Y(2) = MxvkSINCL) 'CE13)
620 LET PC1) = ATNC(XC(1)+X(2))/K) ‘(E1D
640 LET K = SWhOCXC1II+X(2))t 2+ Ck+Y (1) +Y(2))1r ) ‘CE1D)
660 LET P = PC1I)+F ‘'CE14
630 LET S = SURKLCXCII+AC2) It 2+4(YC1)4+Y (2D 2] '‘(E16)
640 LET v = S/

710 LET U = ATNCCYC1I+Y(2))/7(XC1)+X(2))) CE1D
730 LFT E = SURCCRAVT 2k CI S 1 2% KxVr 2-2%G)+ 61 2) /Gt 2)

750 LET L = CCnevxCosS(UIIT2Y/C ‘(Fe2d
770 LET C = (L-R)/CE*XK) ‘CEZ4)
MU LF P < 6283158530 THEN <00

90 LET b = F=~6.25318530

SILA- 3y




XFK (CONTINUED)

8O0 IF P > 314159625 THEN 840

810 LET 8§ = (~C*SIN(P)+C3S(P)*S@R(1=-Ctr2))/2
811 LET S=2%8§

820 LET S = ATNCS/ SGk(1=St2))

830 GaTd 930

B840 LET S = (-C*SINC(P)~-C2S(P)*SuUR(1=-Ct2))/2
841 LET S=2%S

850 LET S = ATNC(S/SQKkC1-St2))

860 IF Y(1) < O THEN 890

870 LET P = P+S§

875 LET SC(1) = SC1) - §

8860 GOTO 970

890 LET P = P=S

895 LET SC1) = SC(1)+S§

900 LET S = ATNC(D(2)/SQkC1-D(2>t2)) 'AXIAL SHIFT
910 G@T@ 970

920

930 IF YC(1) < O THEN 960

940 LET P = P-S

945 LET SC1) = SC1) + §

950 G@T3 970

960 LET P = P+5S

965 LET SC1) = SC1)-5

970 LET W = W=-M*%xK/2

980 IF P < 6.28318530 THEN 1000

1000 LET W = W-M*K/2

1020 NEXT N

1080 PRINT

1090 PKRINT "ECCENTRICITY","SEMI LR's'"RAD V', '"KAD ANGLE",'"AXIAL SHIFT"
1100 PRINT EsLsR>P*15SC1)*]

1500 END

e e SHLB- g




RUN

XFR 03718770 09:32

THIS PKOGRAM 1S DIRECTLY KEYED T3 THE TOPIC QUTLINE

'0RBI TAL TRANSFER® AND THE NUMBERS IN THE KEM COL UMN

@F THE LIST OF THIS PRAGRAM REFER T@ THE EQUATION NUMBERS
IN THE TEXT.

ECCENTRICITY? .01
SEMILK? 4800

PO SITION ANGLE? 90
BURN ANGLE? 30
BURN TIME? 20
INCREMENT? 5

ECCENTRICI TY SEMI LR RAD V RAD ANGLE AXIAL SHIFT
749169 E-3 489 6. 69 49 24+ 29 18 4. 512 ~93.667

TIME: O. 498 SEC.
READY
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