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Overview
. .

in Part 1 (Hannan 13978

- in 'quantitativeivariables. We have

increases.conaiderably they level: of mathematical coMpiexity- Anything

e a furl .treatment of the issuesIxeeeds' bop our competence and th

ost empirical analyhs. Our koala are more modest. We. wish

emarked that

of-change

foCus

11
tv lay the minimaligtoundwoTk for the statistical-treatment of simple

'stochastic differential eqUations. We also seek to

continuities of qualitative and quantitative analysis

revealed in'the study of diffusion processes. Ourrdi,s6npsion

..provides'an entry into the rapidly growing technical literature, We hope

to persuade ,social researchers come-to, grips with this still developing -

field mathematics. a ,

We discuss two approaches' to' the stochastic study of change in

levela_./The firt ,involves -9. seemingly innocent modification of the sort

a* date. iniAtic models treated in the .last chapter. The scientist

assumes that. the'deterministit models. hold only approximately due to a
f

, I-- .t

hoot of disturbing infinenCes. It see-- natural t add' a stochastic- element

to the diffe tial equation to represent such noise. Thisinyolves- moving

-snrc51 f(Y(t), t)
dt

to

where e

that

= f(Y(t ), t)- (t

\dt

.v

denoted the ensemble of disturbing influentes.' On the view

involves Only approximation error and omposed of many,



independent specific elements, One chooses the simplest posItible.

, I.

structure for C(t). The Overwhelming.tendency is to treat skt;_
k,

as-a so-called:white,n_ise eltarcorrelated stochastic piocess. The

study of the proper ies ofA i erential equations "driven" by white noise

is the central problem in the'snalys s of. stocba tic differential equations*

(SDE's)..

1le-se motivation employs the logic of probability.' As we

oned 'changes in levels may be ionssideredas the limiting

case- of transitions.- an infinite state_space of discrete statds, where

the limit is approached by
.

decreasing the 'width' h state. For

example ,early -progress in the theory of Markov diffusion processes

considered random walks on'the real

discrete-state random encounteredencounteredain. most elementary probability

texts. As the early interest in such.analys a of, Markey processes in
- _

line as the limitin,caste of the

continuous state spaces (and in continuous time) arose

physical diffusion processes,

Applied broadly to these processes.

from the-study of
I

he term ,diffusIon process has come to be

The elementary parameters in study of diffusion processes are

-rates of transition just in the discrete -state case conidered earlier.

Substantive hypOthess enter as rest icttons on transition rates

is to formulate and solve equationsgoal, as in the diScrete7space case;

for the evolution, of probability transition 4ensiti Then one mpy

ate the effects of various rate para -icters on the evolution of the Troces:

The approximation nersnectivejs the typical miodel of entry of the

substantive modeler, the diffusion perspective has +Fore appeal to the



_ly-the.former is often referred to as the physical

vp while the latter is Zalled the mathematical

perppe perppectivesyare ncit that she ply different.

in the study of stochastic models for

en the two perspectivesges levels co 'the relatIonshiP bet
1

In particular ey the relations

equations n equationsu

etweeri stochastic differential

as folio -. In Sectors we state

oisp,proc pses and thekre-tlated Brownian
/

scusses SDE's and the twbapproachei

solving them. ction 1 4
v .

o ion

we derive Kolmogorov's diffusion equation

s relating paramet,ers of. SDE' those of diffusion equations.

Wilts on tlbondit onal densities that WIll be used n subsequent

Section treats substantive example, population growth

a random environment, froni.the°twoperspectives. Finally, Section 6
4 -

raises the proble of the behavior of Markov diffusion n-processes at

boundaries (e.g. the ,complications that arise An the study .of bounded'

process
-'7

those that are defined tkbe non-negati4e).

'-e and Brownian

-As-we 'oned above, substantive applications of SDE mode,ls almost

invariably use a white noise distu*ance forcinglunction). Since.th this

choice itiplicitly 'defines a stochastic process for' the ubstan iVe outcome,

it is important

processes. 4e begin with the white process itseaf.

There re a number of approacheS to defining a white noise -roc--s.-

One strategy (see Jazwidski 1970:81-83) begins withlra

to understand the propert of systems driven by white nois



hr of as being pur_c noisy, knowing the history

the process and.itd current 'value does not aid7in 'predicting

In 'substantive applicaelens each realiatiolif%CI may be con-

sidered to be the s.um of many independene forces; iii technical testis, the

sequence is ashe.auperposition of many independent sequences,-,,If so,

central limit theorem applies and may be consi eted Gaussian or

normally distributed. So- in discreteme analysis, white Gaussian

r,

sequence give a very simply specificakion for the affects. of omitted

variables, one that agrees closky in spir,6.t with the specification-

usually used.in static analysis.

the

With this background it seems natural tn'define,a continuous- time

analogue to white Gaussian sequences for use i fotmingISDE's. Thus we

I
pith independent increments:

txt (t T)

:ess is through is correlation

define a white Gaussian process

Perhaps the most informative app

XCtiOn Y(t T,

.and correlation function -given by

h to this

SUpptse

T, t) = u
2 0/2

-p Ti

o annprocess has ze

unctionapproximates the properties -e 'desire fo

the whifWGaussian process, In particular
N

Curiqtion is qtry small even over brief intervals If is restricted to the

(1)

for large P the correlation .



integers, the sequence

-see Braun 1975025=35).1 This

Ikequalto at t; its

} defines the 1-.)irac delta function

unctJon, depoted (5(t is zero,eirerywherb

integral over any interval' containing t

It not of course` an ordinarY unction,' treating as

were` has gNyven useful results in the study of impulse functions :And'

wet'can ,view white'.Ga sian noise as just such,* impulse function. That iE

of a great many independent impulses or shocksthe4 noiSe process consis

that each hold for_only 1,brieft instant.

Thus' we define a white Gaussian_process as a Gaussian prOce

E t X k-4Xa)( =-(t) 6(t T)

where.Q(t)Lis _Tosirive- e
4

th

1te covariance matrix and',6(t.- T.)

is the Dirac delta function..-This'process is usually referred to as-

_seor _s a d lta-correlated
_Yl

',Note th by the definition

the delta-functron, white rise has zero coVamanc but infinite:

. m

varianc

We obtain addltional insight into this process by cons ering'the

related ownian motion or Weiner pr -ows. ThiS

40-
after bert grown, the English botanic -ho discovered :egular

MoVemen of-particles suspended in solution,and NOrbert Weiner,,who

forta d the model of the process. It is discussed in joust texts on

ochas is processes, e.g. Karlin and Taylor (1975: Ch. 7).

-\Bro ian motion 14 a s ochastic)processqX 1)} with the

following-,prope,rtieS:

i) jndependence: At)7 ehdedt

-that is increments are independeu the

proce4s. This assumption

and implies it.



Stationar ty: The s ribut n

depend on t.
Wit):LILL 0 far all

Continuity: in At
,

Then if X(0) E 0 it follows that increments in tt e ptodesa, X (t +
.

, .

2
are normally with mean Pot and varian e Crt

. )

see Breimano1968: 249-50), And, any

transformed

' with mean

is given by

a

Brownian mo ion procasshaay be

into a standard Brownian moten'whichjis normally; distributed

ero.and variance of one.' correlation function for the process

Y(t, min (t, T)
1

,

That is, its au co elation depends only on the. ti_e separating the realizations.'

a
.

This process has obviou lappeal normalityjallows from very simple

(but strong) as:ptions,about the,process;and t-e first,and second moments

are simple functions or'elaped time,

properties. .Though sample paths of the

probaUflity one wpl) s nowhere difke ehtiable'wpl, norsdoes it

bounded variation wpl (Doob"1.955:393).

t
However, this pocess has s6Me,odd

4 : I

j .

ess are continuoup with

have

Finally- e consider the relationship between w16te.onolse and Brow an

o .

tion. denote rown'an motion process and a white

J
Though we.know 1=--t do0s not _exist, pretend for.the moment that it doeso

o
dt

I

Then it follows (see ,Iaz nski 1970:85Y that,white

va ive of Brownian motion:

0t '-- = w,
dt

2
4g t) when B-

0

2

%Recall thas
e,

).

noise is
A 2

he formal

is N(w, a ) , or in the case r 'standard Brownian
4

N(0,I).

/

we have already seen that noise has infinite vatianae. T_hu the ,

(4)

However,

=,



formalAsm': though suggest

mathematical, analysis.

k
3. Stochastic_ DiffereKtfal_;quations

,4
does not,

;

serve as a basis for consent

We now ~turn to propert S of prt;cesee driven by wire noise pr

Brownian motion. begin w a, veyy famous specia.1 paAe, the Ornstein-.

Uhlenbeck (CU) process. ownian iffiltio as a description of the m: etent

particleain Some liquid is particularly unrealistid,in that it'assumes'

that increments are independen

of1a particle's

amounts' to.igftoring the effect's

corrects 'Oils in a straightforwardvelocity. The OU process

see Cox ale Miller 1966: 226-30; Briem n 1978: 347151).
4

Let)V(t) be-the_veRrity.of a particle of mess a suspended In'et

fiquid andletnv(t)--be thl change in, momentun during the period.

mAV(,t) = 0V(t)At Am(t)

where -0V is the visco resisting force and Am

due to random impacts with neighboring particles.

one may c hsider Am to,be a Brownian Motion.

'below), we y write,the Olj process as

mAV(t) = OV(t)At + aA

Where 0 is a stanos-Ard'Brownian motion.
t

The usual next ep irk such models o'divide by At and let At -} 0

4..

the change

If there

-hen

(5)

momentum

first approximation,

is np drift (see

giving

m dIL(S1 = 0V(t) +J
dt

or in dV(t) = OM) + uw(t ), where w(t) is white noise; see
dt (

( 6 )

II



v

A

(

ttf rtudatelk, Is_Age__:have_seen,_dP. / _does_ t_exis (6) does

not have am'orthodox meaiing, Suppose ignore this and` Push ahead

-using formal rules, Following Brieman 41968:348 write (6) as .0

di3
d (etV(t)) 1

at
dt

where a = P/m, Y

obtain

ume V(0) 0 and

Doing an integqtion by par s ives

tet
e 11(t) = Ye

egrate from 0

(9

Since fl
t
is a continuous function (wp

1
), the integral in 9) for any

realization is just the integral of a continuous function and Is thuirwell

defined., Thus the 'process given bYck

V(t)
(t=s)

(10)

\ 0
can be wP-411defined by this procedure and results in a process with.continuous

sample ppths. The integral-in (10) is termed stochastic modal.
o

Sd we find that overlooking the mathematical, patholpip of Broownian

motion-hnd proceeding with formal -rules gives a reasonable res lt for'the

OU process. we wit =1 see b low, this true -hpnever the SDE is linear,

that ia when the pa_ramet rs of Brownian motion disturbance do not depend on

the process= Results on this special'elase are particularly useful inthe state ofr

this,

sting models of. the sort discussed in the previous chapter. To show

all we need to do is add "drift" that is a function of one for more
k



4

exogenous varfables. start
A 011

1Y(t) PY(t) At 4- At 4- a-Apt

and lei il=?,-4(i) where x is' some exogenous variable. Then, as, above, we May

write this a

dY(-t)

du°

-13Y (t f
4

a410
dt

This has the e_eral-form of the linar differential equation models

h causal variables discussed in the previous' chapter. end it is now

clear that to Understand the stochastic pr_Terties-of.Y we must consider

the distributional grope es of such stochastic integrals.

Before considering s o astic integrals

The generapirst-orde SIB has the form

ate the general problem.

LIT(t ) _ f(Y(t),t) dt 'g.(Y(t),

1,.s we have seen, because

not have any orthodox

the c

the pathology of Brownian. motion

(12

such equations

earring. For this reason, it is usual to reverse

sic procedure in the calcuNs in which integrals are defined in

terms. of derivative_ (as anti-derivatives) and to define ( as the

integral equatiOn.
J

(13)

That is, the SDE is defined in terms of thekstochastic integral_ Thus to

interpret the prop ties of Y(t) we must_ consider the existence, uniqueness)

etc. of the general stochastic integral

gs (0's (14)

where gs is a random unction.



Integrals such as (14) cannot berdefined nr sample functions that is,

wp1)-because-Of_the peculi Ol Brownian motion mentioned above. They.

have, however, been defined in eh4 Mean square sense byrIto.(1944) and,
IJ

Stratonovich (1966).

to X f E tXd2

The sequence {X
n

is said to converge'in mean 'square

for ;11 n, E X end

lit E tX - X
n

I O.

cT3-

in which case we write 1 i mXli X This 'form of convergence implies

convergence inprokability (the plit convergence so commonly used in

structural ,equation afialysis)ht is slightly weaker than convergence

probability one. A very clear statement of the main square calculus is
4. 14

1

'presehted by Ja nskI (1970.:.60-70).
eo!

We consider

integral (14)

classic treatmen

first the general It definiti6n of the stochastic

We rhly on the treatment n JazN4inski (1970);-,the

is by'Doob (1955: Ch. IX). Let T = [a,b] And let

T g a scalar B o nian mo ion . c ss with- Var

tion Tsuch that

a to

rand consider the step functions

1

g
t

t

Where g- . is- independent

fitiite.
fFor

suchL step functions the, it

k

integral

and gip] )

defined as



By the. ,indepe rice as

,If f anotheri

1970 :9

di t = 40

function with the above ?Toper

d

11

(15)

see Jezwinski

That is, under the expectation, operation, stochastic integrals reduce to

ordinary integrals, (integration with respect to t rasher than with respect:

to * ). As a consequence

ance we are

g
t
(w (101 =

t

interested in step functions per se, consider a

(18)

sequerte of step functions (with successively finer cuts in T), g(w).

Suppose these converge in mean square-to g

g 0.0 dO 1.i.m. g( 1')
tt

Then it follows that

(19)

Doob (1955) has shown that this mean square limit exists for a very broad

class of functions. More generally, the It integral can be defined as

the limit of Rie ann-Stieltjes sums. Let P be the max -t.) in the

partition of T. Then the Ito stochastic integral is defined by
n-1

1.i.m. g 019 (H
t. -t4(w) (JO t

i0 1+1

(20)

A concrete example helps show how this definition differs from that

of the usual Riemann integral.

) d

(I)) = 0t - Ha. Then (see Doob 1955:443)

1
=

a
- H ) -



12

ate that the usual rules of integrattvn would give only the first term

On the 'right hand side of (21).

Stratonovich (1966)-- proposed an alternative definition that is

somewhat more specialized. Whereas 1t2's definition holds generally,

Stratonovich's approach is " just versatile enough to handle stochastic

differential equations" (Mortensen 1968:287). In 'particular, gt(m ) must

be an explicit function of P
t

.

If as before we let P = max

Stratonovich stochastic integral
n-

g 13t ) t
i.i.m
p -0

1+1

defined as

t,
i

P1+1

2

in the partition, the

Consider the example just discussed, It turns out that

b

J(P
t
- P

a
) dS . 1

2 b
(0_ 0a)2

a

which agrees with the usual rules of he calculus. This holds

generally: the Stratonovich integral can _e evaluated by the usual formal

rules.

The difference between the two apprc ches is orw of definition

And there is not yet any agreement about the comparative advantages of

the two approaches for'subs-antive work. Mathematicians, of course,

strongly prefer the Its approach because of its generality. Substantive

researchers are attracted to the Stratonovich approach because- -it retains

the usual rules of the calculus. This is an especially-appealing feature

to those who consider the white noise specification to be an approximation.

If only an approximation is involved, it does nut appear f ul



new calculus out of concern with the, pathological nature

13

lithite noise. For an

illuminating discussion of the issues involved in choosing between the

two perspectives, see gray and Caughey (1965).

-We'began this section with the GU process, an example of

special case of linear stochastic differential equations:

dY(t) = f(t) Y(t) g(t) clPt

mpo ant

(23)'

NotethatgWisnotafunctionof6.Whenever the disturbance has

this linear form, the 1to and Stratonovich approaches agree and th 'ere is

no debate whether the stochastic integral can be manipulated with the

usual formal rules; So as long as we restrict our attention to this special

3
case, much of the mathematical complexity _recedes=

For the linear cases; the integral form is

If Y(to

Y(t) - Y(t s)Y(s)ds g(s)d8

Gaussian, that is the initial distribution is normal, or

Y(
0
) BO, the process Y(t) is a Gauss-Markov proc . We can use

(24)

this fact and the rules for'taking expectations of stochastic integrals

(16) and (17) to derive the distribution of the process;

We have discussed estimating linear models such as

dY(t) = adt bY(t)dt cXdt ± ldB
t

(25)

I ; )



'Because of the linearity (25), Y(t) is Gaussian (ii Y(t

7
14

4s-Gaussian). To find. its,Mean and variance we solve (25) by formal

rules to getides

Y(t

where

and At = t 7

And

Clearly E

Var(F,(t)) = E
2 2

bAt
-1) -I- 6(0

= 0 by (16).

which, by (18) is equal to
_t

72 j-- .At
e
2b(t s)

ds = (-1
2

-e
-2h

t-
0'

2b

I

b

(26)

(27)

(28)

Thus the process pf(t)lhas "disturbance" e(t) N(0, '
where a is given

by (28). We will use this and other similar derivations extensively

in forming estimators in the next chapter.

We will return to non-linear SDE's in Section 5. But next we

consider the second major' perspective on continuous-time, continuous state-

space stochastic models: diffusion processes. We will first derive

diffusion equations hnd then discuss their relationship to SDE's



4. Diffusion Processes

Just as in the analysis of discrete outcomes we wish to Write

expressions for transition densities and for the changes over time in
. ,

transition densities. Since we have introduced rownian motion distur-

bances or forcing-functions, we have turned Y(t) into a Markov process.

1.5

And it seems natural to search for the relationship between the qualitative

1_
and quantitative case by considering Y(t) as the limiting case of ar

finite-state Markov process where the states are made "infinitely small."

That is, define a birth and death process on the real line where states

are non-overlapping segments of the -real line. Then let. the width of

segments zero and study the behavior of the stochastic process,

The relevant analysis is sketched by Goel and Richter-Dyn (1974: 33-34)

--see also Feller (1968: 354-59). Consider transitions from n to n 1

or to n - 1, births and deaths, respectively and assume that the

probability of a birth t,t +At) is An + .o (At) and the probability

f a death is
n
At + o(At). The procedure passing from the discrete

mode.l to models like those discussed in this chapter involves introducing

a small parameter h. Let - nh, x = mh and Fmn(t) = P(-
0

),

the probability that the process has the value x at t, given that it had

value x_ t
-0 0*

Next consider a 'sequence of birth and death processes with h 9

with transition rates A
n
(h) and 0,

n
(h). We have

h[A
n
(h) (h)1 a(nh) + o(h) C29)

h 1A (h ) (h)] b(nh) o(h) (301
n

where It) is finite, b(nh) is pos itive and lim 0(1) -= 0.



orward equation for the discrete-state process is

n-I ?m,n-1(t) 1- An)

Now ite (31) as follows.

+ p (t)
n+1 m,n+1

2 (Xn+

16

Pn-I -n-1 )

x-

2 n

x t; x-h,t)'

Letting h =0 an rising (29) '''and (30) gives one of the fundamental

equations -__ the process;

1
[a(x)-0 +

dx

where p x b)... This
0 0'

(in physical applications

cx/[b(x)131 2

called the Kol_o oroV forward e uation

en called the Fokk6s-Planck equation).

The so-called backward variables xo

through boundary conditiOns. Si

are essentially constant and enter

his equation Cakes the initial con-

ditions as given and generates the future of the piccess, it is the natural



approach

the backwa-

aP 4 r

0
3x L

0

ubstantive modeling. By similar procedures we can obtain

in which the =outcome~ s .treated as fixed. Though this equation does not

..

appear,prm sing'fot°m4 ling [since causation goei backward in'alensel(

it simptifi4s certain analytic problems and is particularly wei.l suited for

e study ofboundary problems, first passage time distributions, etc.

Thu the backward equation plays a prominent role in mathematical teat

ments of diffusion models.,

Either pfthe Kolmogorov equations provide a complete probabilisti

descriptiOn of the evolution of the phenomenon. They tell the mean_
2
and

thriance (and other moments if they exist) change over t" They give

eady-state distributions
i

if they exist. With approp--iate boundarycon-

ditions,) they also permit study of the distribution of times for first passage'

past some level (e, ., extinction of a popalation). Unfortunately

it is very difficult to solve these partial differential equations and

this has been done only for limited number of cases. Various known

lutions have been tabulated by Goel and:Richter-Dyn(1974:52-3).

An obvious question concerns the relationship between the diffusion

parameters, a"(x) and b(x) (or a(x0), b(y) and the coeffieientu of SDE's.

To address this question we need an interpretation.for a(x)-4nd b(x) in the

diffusion equations. The first, a(x), is the rate of growth of the mean when

A
the stochastic psocess is at x:

`,0



Wthere 0 is 'the state -space of the process.

'growth it the variance of the process when it is at4

b(x) = -1102P(xo, )dr

The relationship between the two sees of. par

A 'h

simple under the It interpretation of the SDP.'

273-7), a(x) = f -(t

a Markov process sufficiently regular'for(34)

the solution of

dX (t) = f(x(t),t ) dt "t

b(i) = g(x(t),t). ITha

(35).

particularly

I-ee Doob 1953:

is, if fX(Ot

d (35) to hold, then

givA'the same transition densities as does the Kolmogorov diffusion

equation. If (11.36) is interpreted in the Stratdhovich sense, th

relationship and b(x) and f ) 1 g(.) is slightly more Complex

(see Ja inski 1970r131). The main point is that the two interpretations

disagree on this fundamenta:, issues. Mortensen (1 6g:279) summarizes the

issues as fol'lows:

...the situation is that the one'unambiguous way to specify
a Markov process is to especify its trans density, or,

equivalently, the Fokker4Planc equation obeyedby the
transition density. The diver ence arises when one wishes
to generate the speCkfied proc_ss as a solution to a stochastic
differential equation forced:y the differential o a Weiner

process [i.e, dw(t)]. The divergence boils down tO, two different
ways of associating the coefficients in the Fokker-Planck equation
with t'he coeffiaientS in the stochastic. differential equation, and,
respectively, two ways of integrating this\stochastic equation.



nb lish eement'con rning the relation Clip

STE's_ta diffusion' equations. Con:sider fh Brownian motion

:he rd .egtfationithldrffk and variance

with initial d ion:

where &

ii

the-Dirac

(37)'

a.funct. on. ,The latter is just a formal way of

dicating what the probability mass at all coneentrated'on :the point x
0'

Assume that the boundaries are the natural ones:

p x' t p(0' t0;

which state that the process cannot move

Subject to, these conditions

P-

ayAolve

0 (39)

i

an infinite amount in finite

the pIrtial - ifferent alr equation

Following Cox and Miller (1965:209T10) we simplify the probleM by

making a change of variable -- using the known solution from Section 3:

(40)
(t) = X(t X

0

Jt

which gives us the forward'equa on
S

where p (y,t) is

,2
1 .to p

Ot 2 Ox 2
(41)

nowthe probability transition density of the Y

process with ?(0) s O. Use the moment generating functiion of li(t):

which, ate() ing to (41) satisfies

21

(42)

c4



OM - 1

cat 2

with initial cOnd tion M(8,0) = 1. Ths_

20
6

'(43)

M(O; t) e e (44)

which is the moment generating Unct on of a normal distribution with

mean zero and variance t. Transforming back to X(t) we see that

found earlier by using the SDE.

As Ng rel heavily in later chapters on generalizations of the

''OU prpcess

dX(t) Ok(t)dt 4-

we sketch ,its

(45)

np( gain following,Cox and Miller) by means of the

diffusion equation. The forward equation for ti-is Oil process

).E1

Ot -ax

Its m.g..f.

satisfies

t)dx

2-?dO Oehj0

tax 2

This is simpler to use expressions in the cumulant generating

function K(8; log t):

000K = G-8
.2-2

:11(..-F

at 2

-The solution of (49) for 1(0) = xo is

bt . 2 Mt 1-2K(9; -Xe 8+0 (1 - e-'' )( -8
2b

2

6)

(47)

(48)

(49)

(50)



N?

and this too agrees wifk_ur earlier calculations.

s last equation Lmplies, that X(t) is normally distributed with

Abebe
) s Xoe _Var X(t

2
= (1-e

2bt

. 21

(51)

An Example

In Part I we noted that social scientists Often study distributional

consequences of social structure. We added that only a stochastic perspec

ye lends asystematic treatment to s}lch issues. Thus in choosing a

substantive example of the poshible sociological applications of St's

and diffusion models we have ch8sen -one that concerns a distribution

that arises frequently in social data the lognormal distribution.

Our choice has also been guided by an interest in illustrating the

possible value of pursuing the study of nonlinear SDE's.

We start the example by considering a stochastic treatment` ex-

ponential population growth. This corresponds to taking the deterministic

4Althusian model com0oundr.interest model and incorporating random en-

vironmental factors that perturb the growth rate. The modern treatment

of this issue begins with Ipowontin and Cohen (1969) and Levins (1969).

It was extended by Capocelli and Ricciardi (1973) and Tuckwell (1974) among

others,

Let N(t) denote the size of some population. Then exponential

population' growth follow, (as we saw in Part 0 fm



dN(
dt

In the deiermjnistic treatment, r is a constant parameter a

N(t) N
0
e
rt

Suppose, however, that r(t) varies randomly over-time

dueto a variety of independent environmental variations. We might

22

(52)

begin by considering r(t) to be a white noise. Then the apprmpriate SLOE

tten

where P
t

dN(t) N (53)

Brownian moti8n process.- Note that this equation is non-

lilpar since g(.) = N(t), a func;ion of Pt.

dN(t) = dP
t

N(t)

integrate from to to t:

lriL/
log No

have see- repeatedly that:

dPt
to t.

dP

-rite (53) as

-(54)

Thus it follows that log (N /N ) has a normal distribution with mean

2
zero and variance t. That is, N(t) has at lognormal distribution.

It is a simple matter to add "drift" to this model, allowing the

average growth rate to be p (which may, depending on the problem, be

positive or negative). Similar calculations give

N ,2

p(N .t N t) N-1 exp
-(log pt)

9'0" No
N 0 (55)

( 2 WO It 1/2
9

2 (J t



or, N(t)

*That

23

ognormal distrIbution with mean pt and variance u
2
t.

E(N(t)) Noe(
4

2 2Pt u-2 t t
Var(N .= No e.: e

Next we wish to calculateiextinct on:probabilities, that is the

probability that N(t) will "hit" zero. To do so we must use the diffusion

(56)

57

equations...And; recall, the 1t8 and Stratonovich interpretations -disagree

on how to relate coeffiients of this SDE (53) and those of the

Koimogorov equations. Both approaches have been used in the ecological

literature. Levins (1969) follows It8 and Capocelli-Ricciardi'(1973) and

Tuckwell (1974) follow Stratonovich. It:turs out that, on the latter

interpretation, the probability o ultimate extinction is unity if i. < 0,

zero when P. >o .5when µ = On the 1t8 interpretation, populations

may Ar extinct with probability one even when the dverage growth rate is

posAtive.,(Tuckwell 1974). So choice of interpretation does make a substantive

difference. And, agreement appears to be mounting among population

ecologists that the implications of the Stratonovich interpretation are

Substantively more reasonable for this problem.

It is worth contrasting this formulation with the classic discrete

time motivation of the lognormal (Aitchison and Brown 1957). According

to the "law of proportionate effect", the growth^(or decline any unit

is a random multip of its existing size:

N(t N(t-1) e,(t)N(t-1) (58)

where e(t) is some well-behaved random process. If the latter is an

independent, identically distributed random variable, central limit theorem



arguments -imply that N(t) converges to a lognormal distribution. So

what -we have shown is that such a conclusion is retained in the limit

continuous -ti me pdro ss. And in the -s. _tudy of p'ocesses'such growth

in pe-rsonalincome, growth .ofsiz0e of organizations, etc. the con-

4nuous-time specificatOn is more ealist14 --,the
0.-,

g

e. is no fixed gesta-

tion period in such processes and increments may occur- spar

the malhematical structure- outlined ip this chapter provides a'thus

cal l y.

24

pbtentiallyuseful tool for analysis of distributional features of social

structure.

This analytic structure may also -nded to more complex dis-

itibutional.issues. The popul on ecolod:14terature cited above also

addresses effects of rando in growth,rates and carrying capacities

in logistic growth, i.e., propert..1!0 of logistic growth in random en-

vironrents. The results, though necessarily more complex, are suggestive

for sociological applications.

Boundary Behavior of Diffusion Processes

We mention one final issue that,, mst be faced in Using diffusion

models in substantive modeling and empirical research. This concerns

the choice of boundary conditions in solving the Kolmogorov equations.-

In some contexts, where the outcome -may take on positive or negative

values, it is reasonable to assure that the-boundaries,are the so- called

natural ones , and c3. We use the boundary structure implicitly in
,c4t

derivi results on Browniaa4otion and OU Processes.

Unfortunately many situations of interest to social scientists do

not have natural boundaries at infinity. This is t

outcomes that somehow depend upon counts,

2 o

of all those

size of an organization



25,

votes for a party, etc Such variables may not be negative. Consequently

Any process depfdting7their dynamics -must be restritted to the-non-
,

negative half line CO, c'37 a minimum. In some.cases g., hours of

work), there i also a logical, upper.limit so that the process is-confined

between two bar= e.g, [0, aj. The study of processes constrained

by boundaries is more complex.- And we cannot hope to treat the subject

adequately here. The classic treatment of these issues is by Feller (1971);

a very clear and less technical exposition of 'eh ,issues can be found in

Dynkin and,Yushltevich (1969).

We will _ mply illustrate the implications of the most widely used

barrier specifications for the sort of model we propost as a starting

,point for empirical analysis -- the DU process. Consider first, absorbing

\=,

boundaries at which the unit is trapped. ,An example,is zero population

size (for popUlation not exposed to immigration) -- once size hits zer

the population goes extinct, which is merely another way of saying that

it is trapped at zero_ Goel and Richter-Dyn(1974: Table 3.4) solve the

simple CD process

dX(t ) bX(t)dt dOt

2
where 0 is a normal Brownian mot on wit- ianpe for the case where:

the process is confined betwe-n an absorbing barrier at zero and posi4ive
0

infinity. Instead of the 'simple normal distribution of -(28),' the

transition density is

p( m(t) /v(t )2/21

VV(t)j2 (59)



where m(t) x e and V (t
2

G g (1 - e -).

2b

The first exponential

term in (59) is identical'to that in the

second exponential

unrestricted process; the

term reflects the probability of extinction.

If instead the barrier at zero is reflecting,' that is the process

on hitting zero jumps back to its previous level, the transition density

identical to (59) except that the second exponential term is

subtracted from the first (i.e., the plus is replaced by a minus between

the two exponential terms (Goel and'Richter-Dyn 1974 Table 3.4, Appendix G

Though these densities are not no

obstatTe to empirical

reflecting barrier)

variables such as s

form estimators.

:the transition dens

real, they do not provide, any special

analysis. If either specification (absorbing or

is appropriate to the study of change in non-negative

izeand labor supply, one may use expressions (59)

Goel and Richter-Dyn (1974) have collected, results on

ities of.several processes with various combinations

upper and lower boundaries: These permit development of estimators for

some more complex problem In a wide variety of cases, we can obtain

expressions for 'densities that permit the formation of estimators for

dyn ic parameters (by maximum likelihood). We return to this issue in

the next chapter.

-It. _tikes us that for many social processes, the appropriate

Specification Of'a boundary-is some combination of absorbing And reflec

ing, Consider hours of work. Individuals may become unemployed for

variable, periods (temporarily absorbed at z but then return to --rbut

would be extremely useful to specify boundary,conditions that p
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a unit to be trapped for a period of random length and then be released

to jump to some new initial nonzero level. Such a process ould tbmhlfie-

elements of discrete-state and continuous-state specifications. Work has

begun on such models and the term sticky barrier has been applied to such

4
boundaries. Dynkinand YushkeviCh. (1969: Ch. 4) give clear treatment of

the strategy of forming models with sticky barriers and results on some

discrete -time models. We have found no simple treatment of sticky

barriers In continuous -time models. However, the potential: value of

such applications to social research seems sufficiently great that we

eagerly await further developments on these models.

7 Conclusion

What general implications for sociological. analysis emerge from this

avalanche of algebra? ,The first conclusion we draw is that it is-both

feasible and useful for sociologists to formulate and test stochastic

models of change in metric variables. And this conclusion is apparently a

new one; we have remarked earlier on the spParent.consensus to the contrary. We

propose that the general class of SDE's driven by Brownian motion serves as

a convenient and powerful vehicle for joining probabilistic arguments to

the kinds of substantive concerns discussed in Part F. We might

begin with linear SDE' ensions of Ohrenstein- Tilenbeck process

models, for which analytic results are obtained readily. in the next

chapter we present a strategy for analyzing such models with conventional'

panel data.

2i
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A deeper understanding of the change processes requires attention to

, the diffusion equations, and plarticularly to the nature of boundary con-

ditons that constrain social processes. Efforts at such deeper study

also seem likely toe involve us in the study of nonlinear SDE's (and

diffusion equations that may not have explicit solutions) If so we

should attend to the developing literature on the two interpretations

of such models and form judgments about the fit of these interpretations

to sociological arguments.



The process

f (4,1)

to w

spec

2

Footnotes
-La

also referred to as one with constant spectra density,

2
la fact the characterization "white" plays on the analogy"

e light which contains all frequency components

al density,

29

and has constant

The adjective formal in this usage refers to the use o assical rules

, in calculations to which they do not strictly apply.

/
argued in the last chapter that the sociological analysis profits

from a focus, on distributional features of social structure. We show

by example in Section 5 -that such a focus will freqUently lad to

the specification of non-linear SDE's. Thus-we'do not advocate single-

minded pursuit.of the simpler linear case.

ish to thank.Burton'Singer for bringing

attention.
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