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MEASURING THE ATPROFZIATENESS OF MULTIPL=-CHOICE TEST SC-=FS

Abstrrct

A student may b: sc =myr ical ard unlike otkher students thai .3

aptitude test score - :i1s5 <o be a crmpletely apZrapriate measur »f his

relative ability. We =ms#iZer the .roblem of ¢ iazz tne s<uden zattern
of multiple-choice =pwis v test amswers to dec = wi=sther *—s -~cere is

an appropriate abi._ 1y z=mes=—=. Sevewrs: indicet - s ¢ aprramis- eness

are formulated anc = a.sec v:zn = simeslation ¢”F the Sche astis apti-

= Test,



MEASURING THE APPROPRIATEINESS QF MULT Pi——CTHOICE Tw=ST SCORESl’ 2

Multiple~rnoice aptitudes test scores === intended %o measure the rela-
*ive abilitie- ' f studemts. 3ugt sometimes —rey fail. - student can be so
mlike other = =minees =<hat mis or her test score cannc— be regarded as an

mppropriate :=-ilits messure. Two hypothetice  examples are

Example =~ (Spuriously aigm «onrs': A low ability examinee
coples =+ -%erT to saveesl o Sficult _zems from a mur> more
able neignicr.

Example IT (iouriiiuw. low score): A very able examimes,
fluent in Sp=nish, but ot yet Tluent in Emglish, miscunder-

stands the wr~—dimg = ikeveral re.snt-vely esasy quest-:cns.

There are, cf --u=se, many cther possiblz weers for sm—=as to fail.
We limit ourselves t- ™afes in which % compliica. ing Proce== =wg.,
selective copying or low Englaskm flue 1cy) tem@s <o produce =n umusual
proportion of easy _tems wrong aad hewd items right. Thus we do zot
expect to be able c¢o re=ignize a high abilify, cheater who cccasicnally
copies frcm another hizs ablli- - ex@aminee bemuse he will not have many
easy items wrong. Similavly, Je do not exper: to recognize a low ability,
low fluency examinee.

Qur goal is to desigr  prac-ical method for using pattern: of item
scores to detect aberrant ce—iiisw?e®. For this purpose we formuliate

appropriateness indices--siatistics compumed from the examinee's item

scores that tend to be low wher —== test is an inappropriate measure of
the examinee's ability and hig— Ttherwise. A very low index value opens

the guestion of whether the tes=: sdefuately measures the examinee.
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An essential feature of our approach to testing problems is the
use of only the test itself: Appropriateness indices are functions of
the examinee's item scores.

In this paper three general types of appropriateness indices are
formulated. A representative of each type is evaluatea using Monte
Carlo data in wirich most of the simulated examinees have responded
according to the usual aptitude test model while a few aberrant ones
have not.

It will be seen that all our indices perform quite well, at least
for the test we are now using to evaluate our approach (the Scholastic
Aptitude Test) and the types of aberrance we have considered. More
specifically, suppose 10% of the examinees are aberrant and we consider
the 5% of the examinees with the most extreme appropriateness scores.
A random rule would yield 10% aberrant examinees and 90% normal in
the extreme group. Using appropriateness indices, we have designed
rules yielding 50% aberrart, 50% normal examinees in the extreme gzoup.

We consider these results important because they suggest that
exsnminees for whom a test iz not appropriate can be detected without
reference to additional background veriables such as race, religion,
gender, parents' occupation, etc. That ié, they suggest there.is
internal evidence in the examinee's answer sheet indicating whether

he or she approaches the test as do other candidates with the same

ability.
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THREE TYPES OF APPROPRIATERESS INDICES

In order to present the intuitions surporting our indices we return
to Example I, the hypothetical low ability copier. He has an improbeble
pattern of responses for a low ability exmminee because he has correc-ly
answered several hard jitems. His pattern is also improbsile for a high
ability examinee because many easy items are wrong. His irregular
pattern of item scores seems contrary to the customary psychometric
assumption thet ability is constant during testing. In fact his
irregular response pattern may be much better described by a model in
which ability is permitted to change somewhat during testing.

We have been investigating three basic types of indices. The

reasoning leading to each will be presented now. later a

representative of each type will be formulated more precisely and
evaluated. !

Our simplest index type, marginal probability, uses a model for
the normal examinee's test-taking behavior only. The usual model

(reviewed in the next section) for the Scholastic Aptitude Test (SAT)

specifies the conditional probability of an observed pattern of item
responses, the probability that an examinee randomly chosen from all

the examinees with a given“ability produces the observed pattem of

item responses. The marginal probability of a pattern is obtaimed by
averaging over the distribution of ability in the population of examinees.
The marginal probability of an aberrant examinee's pattern is exmected to be
relatively low because it is unlikely that a high ability person misses

an easy item or a low ability person passes a hard item.
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The —her " . .dex Types are generalizations of fthe i=ual model
Ems were Formu_stwir &5 mathematically tram—table descripitioms of the
t'==5 of sim—mmre= #€ are now studying. Tfmese models were sugges-ed
b: .1e followipg —we :mritmg. The aberrant =xaminee's "complo.catine process”
lestr= us to expert wevikence of both low abdility (easy items fwil d) and
higr sbility /rer-d it=ms passed). In a semse soon to be meiie _ -ecxse. the
aberrant c.angiidee selaves as if his abiliTy were changing “hi” aghcat the
tesm= Thass - - ewmec?’to obtain a much better fit of the aber-ent ewmmminee's
date by usting a gmweemlizetion of the test model that allomss ability
to mEry durring tesivig.

Type IT indice- (likelihood ratios) use the standard iikelihood ratio
techemique tr quanti~y the amount of improvement of fit achieved by permitting
atrilEty tc vary acm»pss items. Thus to compuvte a type IZ index both the
mug} model snd a eermeralization of the usual model are—>itted to the
emmm- nee's data by sedecting parameter vslues that maximize the probability
6.0 e exmmrinee's pattern of item responses. The ratio =F the two
pr wllities indicates how much better the generalized =model fits.

~Jpe TIII indices (estimated ability variation) are obtained by
eStwee®ing the perameter values of the varying ability moé=ls and using

the e==imated parsmeter values to indicate the degree c¢f sberrance.
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TEST THEORY

The obserre==x pattern o2 —igat and wrong answers on a randomly cimr=n
ansver Scet ®i__ be treated ms t== outcome of a two stage experimwens.
In the Zi=r'~ :stame, an examim=e -v2:h ability © is sampled. In the
second ="4#2¢ 3 =equence of imdemgndent dichotomous random variables
Wylgyeme e w is generat:=i. These are the item scores, coded
one for—oory. :t and zero for incorrect.

T+ usus - model for the SAT is primarily concerned with the relation
betwee~ abilicy and item scores  iccording to this model the conditional

probat=lity tat u, is one i 1 continuous, iacreasing function of

ability, P.&&) , called the i g1 characteristic function. The conditional
probabl—ity tmt a randomly selécted examinee with ability © produces
the pem=e=rn of right and wrong answers corresponding to the vector of

= < s < s >
item responses U 5 Gy u is then

n u l-u,
(1) £(ule) = 1 P, (o) i[l-Pi(O)] i,

i=1
For a discussion of item characteristic curve theory see Birnbaum (1968).
In this work each item characteristic function is assumed to have
the "logistic" functional form

-a,(6-b
PO) = oy + (1-c )L+ e 1O

(2)
0Ka ’ =0 <bph, <o

i i ) OSC <l .

i
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This functionel form is used regularly with multiple-cmeice aptitude tests.
For evidence supporting its adequacy for the tests am rwpulation we wizh
to study, see Iord (1968) and Levine and Saxe (1976).

This basic model, in whi:h examinees differ onl: =n ability, will

be called the standard model of item characteristic 2urve theory. Various

generalizations will be used to describe aberrant exemrnees. The major

one used in this paper is the Gaussian model in whict we msssume that a

new ability Gi is sampled for each item. Thus the probability that
the i -th item is correct becomes P&(Oi) insteac¢ of Pi(G) . In the
Gaussian model, "item abilities" 6, are assumed to be independent
normal rendom variables with mean Oo and variance 02 .

In the first stage of the standard model, an examinee with ability ©
is sampled. 1In the first stage of the Gaussian model, on the other hand,
an examinee with "central ability" o, and "ability variance" c2 is
sampled. Thus the Gaussian model can accommodate two kirds of differences
between examinees. The standard model can be seen as the limitifig case of
the Gaussian model with the ability variance 02 equal to zero.

The generclization of the conditional probability (1) used to define

the standard model becomes



=T~

n u l-ui
/...fji[ll’i(ei) Q;(6,) “el(ey - 6,)/0l8,...d0.

‘\ 1
~—
[}

(3) f(UIs-:, 7

u, l-u
I /Pi(t) IQi(t) io[(t - oo)/a]dt

i

]

vhere ¢(x) is the Gaussian density (2n)-l/2e-x2/2 .

In the dimcussion section we will wish to refer to other generalizations
of the standard model. Like the Gaussian and standard model, each uses
8 vector of permmeters @ to characterize the examinee and. assumes that
a new ability Oi is independently sampled for each iteme The models differ
in the specification of the distribution of the Oi and are definédlba'r a

formula of form

u, l-ui
(4) £(Ule) = I /Pi(t) IQi(t) dFe(t)

1

where the definition of @ differs from model to model. For example,
we have the standard model with @ = < 0 > and all the Oi = 0 , the

Gaussian model with

2 2
= < > ~ .
e Oo,o s Oi 1}(90,0 )

And finally, as a limiting case, we have the unconstrained model in which

the Oi may be any value and

8=<91,92,--- Oi,.-- On> where -w<91<m .
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THE INDICES

Type I: Marginal Probabilities

If the (generally unknown) density for the © 's is specified and
denoted by g , then the formula

o0

() [ewrlole(e)se

-Q0

can be used to obtain the marginal probability of a vector of item scores
U* . The standard model specifies a particular formula for the conditional
probability f(U*IO) « Our different marginal probability indices specify
different ability densities g(®) .

The density g(6) summarizes our information about a sampled
examinee's ability before scoring the test. Suppose we choose
to ignore that information and base our ability estimate only on the
examinee's test performance. Mathematically this can be expressed by
replacing g(6) by a density E(Q) with a very small variance and
centered about 6 s the maximum li]lplihood estimate of ability obtained
by maximizing f£(U*|0) . As the variance of g(6) tends to zero,

Je(u*lo)g(e)de converges to £(U*18) . The logarithm of the maximum
fo(U*) = 1og £(u*(0)

is our representative type I index. We use it basically because it is
straightforward to calculate and works well, not because we believe

the single point distribution for g(6) is reasonable.

11
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Other type I (marginal probability) indices can be obtained by
estimating the ability distribution g(®) from the observed )
distribution or by true score methods (Lord, 1970). The integration
required to compute (5) can be intractable. A more easily computed
type I index begins with the observation that the function of © ,
log f(U*|9) s is ordinarily unimodal and roughly symmetric about

© = © . This suggests the second order approximation of log £(U*|6)

1 A2
;\IO+§(9’9)12

where [, 1is the second derivative of log £(U*|6) evaluated at
® = 0 . If the ability density is given by the unit normal

density, we then obtain the approximation of marginal probability
2

1 A2 1
{ 5 (-8)[, 56
_:L_j;oee 282 de

A2 l

% £
= :! (1 - 12)

l\.)li—‘

or equivalently

1 a2

{
fy+5° (l—_—zg)-%los(l'lz) .

Type YI: Likelihood Ratios

In order to use a likelihood ratio as an index of aberrance, we
first maximize f£(U*|@) given in formula (5) over © . In logarithmic

form, the likelihood ratio index is

‘-h“
&
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max log £(U*|@) - 10 .
C)

Our representative of this type of index is obtained from the

Gaussian model, where f£(U*|g) = f(U*lOo,og) as given in formula (4).

Type III: Degree of Aberrance Estimate

Our best index of this type was obtained from the ‘Gaussian model by
maximizing the probability f(U*|0°,02) . The index © is the square

root of the maximum likelihood estimate of the ability variance.

13
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THE SIMULATION

The indices were evaluated with a simulation of tﬁé Schblastic

Aptitude Test using Hambleton and Rovenelli's (1973) programs. To simulate

a "normal" candidate, first an ability © was sampled from a normal, zero
mean, unit variance population. Then the item scores for the examinee
were simulated as a sequence of independent Bernoulli trials. The success
probability on the i -th trial is Pi(G) as in formuléA(ls where the
Parameters a8 bi y Cy in the formula were obtained from Lord's
(1968) fitting of an SAT-V administration.

Examinees with varying degrees of aberrance were generated by
modifying the item. scores of normal examihees. 'To simulate a spuriously
high examinee cheating on, say, 204 of the test, first a normal
examinee was simulated. Then 204 of the items were sampled without
replacement. The sampled items were then scoréd correct whéther they
Previously were correct or not. .In this way_files of candidates with
44, 104, 204, and 40% aberrance were generated.

To generate a spuriously loy examinee forced to guess on, say, 20% of
the test we again begin by generating a normal examinee and sampling 26% of
the itemﬁ; Since the simulated test is a five-alternative multiple-
choice test, we rescore thé item as correct with probability 1/5 and
incorrect with probability 4/5. 1In this way files of spuriously low-
scoring candidates having 4%, 10%, 204, and 404 aﬁerrance were generatea.

See Appendix I for details of the simulation and methods for fiﬁding
maximum likelihood estimates. See the discussion section fs; cémmenté on

‘the tegtfmodél'and the modelling of aberrance.
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RESULTS

The analogy between an observer in a psychophysics experiment
trying to detect a faint signal and our problem of trying to detect
aberrant candidates from equivocal patterns of item scores led us to
use ROC curves (Green and Swets, 1966) for evaluating indices. To compute
an empirical ROC curve for an index, say for concreteness [b , and a given
group of aberrant examinees, the index is evaluated for a sample of normal
'and aberrant examinees. The sampled examinees are then ordered from lowest
to highest appropristeness score. The empirical ROC curve is the
set of points < x(t),y(t) > where

x(t) = the proportion of normal examinees with f, <t ,
y(t) = the proportion of aberrant examinees with [b <t.

A random rule or a rule based on a poor appropriateness index will
give an ROC curve close to the diagonal x =y « A good appropriateness
index gives a curve well above the diagonal. The empirical curve
provides an estimate of the probability that normal candidates
will be incorrectly classified by a rule sufficiently stringent
to detect a given percent of a particular kind of aberrant examinee. For
éxample, suppose we choose t so that 5% of the population is classified
as aberrant. Further suppose that 104 of the population is aberrant. Then
the intersection of the curve with the line .9x + «1ly = .05 gives the
proportion of aberrant examinees correctly identified and normal examinees
misclassified.

In Figure 1, marginal probability ( () ) RbC curves are given for
the verious spuridusly low groéps. Each curve is based on 3,000 examinees:
:200 examinees wifh the same percent aberrance and 2800 normal candidates.

The same normal examinees are used for all ROC curves in this and the

"_,ov_t‘he?l.l_yfj‘.’g'ur'és; . . 15



Only the lower parts of the curves are relevant to our immediate
purpose since a rule improperly classifying more than 30% of the normal
candidetes is not likely to be used in aptitude testing. The curves show
that 204 aberrance is surprisingly well detected. They also show fhat
marginal probability does only slightly better than chaﬁce for 4% aberrance.
The expected net changé in total test score for 44 aberrance turns out to
be very small, although an occasional very bright and very unlucky
candidate maymbe detected.

Figures 2 and 3 give ROC curves for‘£he likelihood ratio test and
the degree of aberrance index. These curves show the same pattern as

the Figure 1 curves, at least over the. lower part of the curves.

Figures 4, 5, 6 give the corresponding ROC curves for the spuriously
high group. It can be seen that spuriously high aberrant candidates
are more easily detected than spuriously low candidates. This is to
be expecﬁed since the process generating spuriously low candidates
necessarily contains a random component iacking in the spuriously high

process. The spuriously low candidate is forced to guess, but the




-14-

spuriously high candidate "knows" the right answer. Simulating high
spuriousness typically results in changing more item scores than

simulating low spuriousness.

We recomputed the likelihood ra%io ROC curve for the 209, spuriously
low group using only those candidates with more than 104 of the item
scores actually changed. The resulting curve, computed from 102 examinees,

(Figure T) appears comparable to the spuriously high curves.

The curious crossover in Figure 4 arises because according to the
standard model the probability that a very able examinge answers all
items correctly is nearly one. Thus if we begin with an able candidate
with item score vector U* and sample ﬁO% of his items and make them
correct, we obtain a new vector U¥* vwhich may have all or all
but a*few very hard items right. When this happens the probabillty;
lb(U ) will be very nearly one and frequently larger than elO(U )
The larger the proportion of sampled items the more frequently [O(U**)
will be abnormally large. In fact for some large proportion of sampled
items, the ‘0 ROC curve should pass, as observed, beneath the diagonal.

Since rules that improperly classify large numbers of normal_candidates

cannot be used, the observed anomaly is inconsequential. Furthermore,

17
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. it does not appear with the likelihood ratio test. This is probably

attributable to the fact that the increment in [b(U**) is accompanied

by a comparable increment in [n(U**) » the likelihood under the

Gaussian model.

1§
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DISCUSSION

We consider our work important because it demonstrates that in
at least some cases there is internal evidence in an examinee's answer
sheet for the appropriateness of a test. We QO not,‘however, feel com-
mitted to our present indices or aberrance models. We might have just as
well worked with the posterior mean of 02 from the Géussian model as an
aberrance index or an aberrance model in which the examinee fluctuates
between two abilities. For example, there is the aberrance model in
which the examinee has constant probability p of cheating on an item

and performing as if he has infinite ability defined by the equation

u,
1

u, 1-
(6) £(ul <p,0 >) =1 [(L - p)P;(8) + 2] *[(1 - p)q,(0)] ’
o<p<1

The observation that item characteristic curve theory--with its
local independence assumption--may be too rudimentary to provide an
adequate-dQScriptjon of the stochastic structure of the SAT is by no
means fital to our main point, the point that ansﬁer sheets contain
internil evidence of aberrance. In fact it can be argued that dqpartureé
from a more specific model could be more easily detected.

In addition to studying other indicators and types of aberrance

we feel that the following questions should be explored:

19
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What is the effect (on aberrance indices) of using estimated
item pa;ameters?

What is the effect of estimating item parameters from sampies
containing aberrant examinees?

Can omitted and not reached items be used to increase the
power of aberrance indices?

Can the interrelations between various items and subtests be
incorporated in the test model and used to detect aﬁerrance?
Do aberrance indices indentify a relatively large proportion
of examinees in samples of candidates speaking English as a |
second language, in samples of candidates with moderately high
test scores but very low socioeconomic status, in éamples

of known cheaters?

These questions form a rich and fertile area for future research.

20
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Aggendix

Technical details on the computations are collected and listed below:

1. During the simulation of normal examinees a Tausworthe generator
(Whittlesey, 1968) was used to generate item scores. To obtain
Gaussian distributed abilities Pike's (1965) algorithm was applied
to numbers obtained from the Tausworthe generator.

2. During the simulation aberrant examinees Learmonth and Lewis's
(1973) algorithm was used to generate numbers uniformly dis-
tributed on the unit interval. To sample a proportion of
items without replacement, 1 + (number of items) x (uniformly
distributed number) wﬁs truncated to obtain an integer. This
process was repeated (with new uniformly distributed numbers)
until the desired number of items was seleéted. The uniformly
distributed numbers were also used to modify the item scores
of the sampled items for the spuriously low scoring aberrant
candidates. A sample item was scored "correct" if a uniformly
distributed number was < .2 .

3. To compute Ib 5 © was first estimated with IOGIST (Wood,
Wingersky and lord, 1976). Estimated © 's less than -5
were Set equal to -5.

4. To compute L, and o, the steepest descent method in
Gruvaeus and J8reskog (1970) was used to maximize the likelihood
function for the Gaussian model. The starting point was .

© = IOGIST estimated © and o0 = .l , Only the Steepest descent
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