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FOREWORD

The research presented in this report was conducted under Project
METTEST (Methodological Issues in Criterion7Referenced Testing), in the
Unit Training and Evaluation Systems (UTES) Technical Area of API under
Army RDTE Project 2Q62722A764. The goal of Project METTEST is to pro-
vide quanti ive methods for evaluating unit proficiency. The means
for achievi this goal include basic research in test construction

.

methodolo measurement and scaling models, and decisionmaking imoli-
,,,c4tions of test score interpretation.

Related, ongoing prograMs within the UTES Technical Area include
evaluation of small combat units under simulated battlefield conditions
(REALTRAIN, ARTEP), qualification of tank crews and platoon gunnery
(IDOL), and improvement of the reliability of ARTEP evaluation.

Anticipated future research under Project METTEST includes the de-
velopment of a computer model for pe?formance evaluation, and deyelop-
ment of measurement, scaling, scoring, decisionmaking, and quality
control models for use in performance evaluations when criterion-
referenced testing procedures are employed.

API research in this area is conducted -as an in-house research ef-
fort augmented by contracts with organizations selected as having unique
capabilities and facilities for research in a specific area. The pres-
ent study was conducted in collaboration with personnel of the ,Univer-
sity of Maryland under Contract No. DAHC19-75-M-0003.
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CRITERION-REFERENCED TESTING: A CRITICAL ANALYSIS OF SELECTED' MODELS

BRIEF

Requirement:

To develop a theoretical base for research and eventual application
of methods for assigning pass-fail scores in personnel and'Unit evalua-
tion using the criterion-referenced testing approach.

Procedure:

Relevant literature for each of five approaches to criterion-
referenced testing was reviewed. The approaches were compared on the
basis of the following: assumptions and rationale, the interactive ef-
fects,of test length and passing criteria on classification accuracy,
and areas of applidtbility. A computational example was prepared for
each model, and strengths and weaknesses were also evaluated.

Findings:

.Four of the five models were able to specify an "optimal" test
length and cutoff score, although they differed as to:the required
parameter estimates from "the test developer. For example, expert
"prior" information can be used to reduce test length, Each of the
models also provides an estimate for misclassifications, or Type I and
Type II errors. The models are neither redundant nor interchangeable.
No "best" method was identified. Rather, the selec'tion of a model de-
pendg upon.the particular measurement requirements and constraints as
identified by the test developer.

UtilizatiOn of findings:

This research provides-qualitative and quantitative guidelines for
developers of criterion-referenced tests. The models have been applied
to analyze data from the handgun qualification course at-the U.S. Army
Military Police School. Application of the models has also been ad-
dressed to revision of Table VIII tank gunnery.
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CRITERION -I FERENCED TESTING: A CRITICAL
ANALYSIS OF SELECTtD MODELS

INTRODUCTION

Scoring and decisionmaking models for criterion-referenced testing
deal with two questions of practical and theoretical importance: (1)
how much test information should be collected to provide a basis for
confident decisions about the mastery or nonmastery of trained skills;
and (2) what are the methods of establishing statistically valid stand-
ards of achievement. Criterion-referenced testing (CRT) requires that
the data provide information about performance capabilities measured
against some external criterion (Glaser & Nitko, 1971; Carver, 1974).
Such criteria are properly derived from an analysis of the requirements
for performing specific tasks successfully.

Measurement of.mastery implies that CRT's should represent the skills
to be measured with high fidelity. However, serious constraints are
imposed by requiring high fidelity: (1) the time needed to administer '
the test may be more than is readily available; (2) the number of exami-
ners needed to administer the test and collect data may be excessive;
(3) the expenditure of materials used in testing may be prohibitively
high; and (4) the appropriate testing materials deapparatus may not
be available for a long enough time. These constraints place a premium
upon limiting test data to the minimum amount sufficient for the d&sired
quality of decisionmaking. Statistical models offer one means of accom-
plishing this goal.

Two problems arise in establishing achievement standards on CRT's.
The first is related to the congruence betweeK CRT performance and real-

. world requirements. - The second is related to the statistical inferences
applied to observed CRT scores.

Before any statistical model can be used.in a CRT situation, the
requirements for mastery over the domain in general must be specified.
The requirements usually describe the capabilities of persons who can
Strocessfully perform the tasks included in the domain. Glaser and
Klaus (1963) suggest that "proficiency standards can be established
at any value between the point where the system will not perform at
all and the point where any further contribution from the human com-
ponent will not yield any increase in system performance (p. 424)."

These system requirements may include the human performance com-
ponents of industrial-vocational tasks, minimal competencies in an
educational system, or basic literacy skills. System requirements
may also reflect manpower needs, the criticality of the task, or the

1
consequences of poor performance. Such idealized standards must then
be converted to standards on a particular CRT. The conversion process

1
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FOREWORD

The research presented in this report was conducted' under Project
METTEST (Methodological Issues in Criterion- Referenced Testing), in the
Unit Training and Evaluation Systems (UTES) Technical Area of ARI under
Army RDTE Project 2Q62722A764. The goal of Project METTEST is to pro-
vide quanti ive methods for evaluating unit proficiency. The means
for achievi this goal include basic research in test construction

.

methodolo measurement and scaling models, and decisionmaking impli-
ations of test score interpretation.

Related, ongoing prograMs within the UTES Technical Area include
evaluation of small combat units under simulated battlefield conditions
(REALTRAIN, ARTEP), qualification of tank crews and platoon gunnery
(IDOC), and improvement of the reliability of ARTEP evaluation.

Anticipated future research under Project METTEST includes the de-
velopment of a computer model for pe ?formance evaluation, and deyelop-
ment of measurement, scaling, scoring, decisionmaking, and quality
control models for use in performance evaluations when criterion-
referenced testing procedures are employed.

ARI research in this area is conducted -as an in-house research ef-
fort augmented by contracts with organizations selected as having unique
capabilities and facilities for research in a specific area. The pres-
ent study was conducted in collaboration with personnel of the ,Univer-
sity of Maryland under Contract No. DAHC19-75-M-0003.
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CRITERION-REFERENCED TESTING: A CRITICAL ANALYSIS OF SELECTED' MODELS

BRIEF

Requirement:

To develop a theoretical base for research and eventual application
of methods for assigning pass-fail scores in personnel and'Unit evalua-
tion using the criterion-referenced testing approach.

Procedure:

Relevant literature for each of five approaches to criterion-
referenced testing was reviewed. The approaches were compared on the
basis of the following: assumptions and rationale, the interactive ef-
fects,of test length and passing criteria on classification accuracy,
and areas of applidtbility. A computational example was prepared for
each model, and strengths and weaknesses were also evaluated.

Findings:

.Four of the five models were able to specify an "optimal" test
length and cutoff score, although they differed as to:the required
parameter estimates from "the test developer. For example, expert
"prior" information can be used to reduce test length, Each of the
models also provides an estimate for misclassifications, or Type I and
Type II errors. The models are neither redundant nor interchangeable.
No "best" method was identified. Rather, the selection of a model de-
pendg upon.the particular measurement requirements and constraints as
identified by the test developer.

UtilizatiOn of findings:

This research provides-qualitative and quantitative guidelines for
developers of Criterion- referenced tests. The models have been applied
to anallYze data from the handgun qualification course at-the U.S. Army
Military Police School. Application of the models has also been ad-
dressed to revision of Table VIII tank gunnery.
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CRITERION-NFERENCED TESTING: A CRITICAL
ANALYSIS OF SELECTtD MODELS

INTRODUCTION

Scoring and decisionmaking models for criterion-referenced testing
deal with two questions of practical and theoretical importance: (1)
how much test information should be collected to provide a basis for
confident decisions about the mastery or nonmastery of trained skills;
and (2) what are the methods of establishing statistically valid stand-
ards of achievement. Criterion-referenced testing (CRT) requires that
the data provide information about performance capabilities measured
against some external criterion (Glaser & Nitko, 1971; Carver, 1974).
Such criteria are properly derived from an analysis of the requirements
for performing specific tasks successfully.

Measurement of.mastery implies that CRT's should represent the skills
to be measured with high fidelity. However, serious constraints are
imposed by requiring high fidelity: (1) the time needed to administer '
the test may be more than is readily available; (2) the number of exami-
ners needed to administer the test and collect data may be excessive;
(3) the expenditure of materials used in testing may be prohibitively
high; and (4) the appropriate testing materials deapparatus may not
be available for a long enough time. These constraints place a premium
upon limiting test data to the minimum amount sufficient for the d&sired
quality of decisionmaking. Statistical models offer one means of accom-
plishing this goal.

Two problems arise in establishing achievement standards on CRT's.
The first is related to the congruence betweeK CRT performance and real-

. world requirements. - The second is related to the statistical inferences
applied to observed CRT scores.

Before any statistical model can be used.in a CRT situation, the
requirements for mastery over the domain in general must be specified.
The requirements usually describe the capabilities of persons who can
Strocessfully perform the tasks included in the domain. Glaser and
Klaus (1963) suggest that "proficiency standards can be established
at any value between the point where the system will not perform at
all and the-'point where any further contribution from the human com-
ponent will not yield any increase in system performance (p. 424)."

These system requirements may include the human performance com-
ponents of industrial-vocational tasks, minimal competencies in an
educational system, or basic literacy skills. System requirements
may also reflect manpower needs, the criticality of the task, or the
consequences of poor performance. Such idealized standards must then
be converted to standards on a particular CRT. The conversion process

1





a
Involves issues oftest'VaJidity whiCh are'beyond the scope. of this'
paper. Meskauskas (1976) discus:tes several methods that have been-used
tb bridge the gap tetween operationai4-tests and real-world requirements.

/
,

If the.L.CRT inclUdes they entire fidelity task-, such as disas-
,

seMbling
,

and .cleAninola parricblar piece of machinery, then setting
Mastery standards is .relatively 9.1ear'and-unambiguous However, if the
CRT includes only a sample of;:sthe full fidelity task, -or if fidelity is
decreOed for practical purpoSed, thelpinasery standards for the CRT
are n8tef.e'arctit. Heretofore, the use of arbitralricutoff scores has
kept...thisproblem'at a manageable level. Fpr example, objectiV&s-aftecn
ncliidea statement of standards requiring a certain minimum percent
correct fdi attainment of matery status. Two criticisms can be di-
rected t'this concept of mastery.

First, any percentage correct is a relative standard. The defini-'
tion of mastery has been shown (Millman, 1912; Novick & Lewis, 1974;
Epstein & Steinheiser, 1975) to be a function both of the percentage
correct and of., the number of trials or items that comprise the test.

-A more comprehengive definition could be based either upon (1) an ideal-
ization,4such as the proportion of correct answers of all possible test
items, or (2) the position on an underlying continuum of ability hypoth-
esized, to score 49:-examinee on a given test. By stating standards in
-terms of such an idealization or ability continuum, it is possible to
expli tly define masitery cutoff scores forwany test length.

second criticism refers to the level of ability required for
mastery. For example, why should one standard (such as 80% correct)
be set rather than another (such as '70% or 90%)? Perhaps this question
could be answered by empirical studies showing the relationship between
CRT scores and the transfer or retention of training. The required
level of mastery could also be determined by system requirements, criti-
cality, and similar factors.

Each of the models discussed in this paper, with the exception of
0 Block's (1972) approach to setting standards empirically, assumes that

a well-defined universe of items exists or can be generated. The authors
also assume that the role of the statistical model is to describe accu-
rately an examinee with respect to that universe. The validity of the
generalization from the universe of items to the real world 'is not in-
vestigated. The models further assume that a mastery' standard relative
to the entire universe can be established. Given. these assumptions,
the prqblem is how to interpret the observatiOns. The following section
discusses theoretical issues whic'h may produce possible solutions. Table
1 then introduces and summarizes the specific models.

The problem of setting standards arises because it is often imprac-
tical to insist upon complete mastery of a task, or even to require a
very high percentage of correct answers to the items comprising a CRT.
Furthermore, it is often impossible to listall of the potential items

a2
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Table,l,

Summary Comparison of Some Methods and Models Used idit5iterion-Referenced Testing

Theoretical observed

iNature of score: x = ,score,

performance tn = # items, A

Model' acquisition true abiDity.

True score

distribution

Cutoff score

specification

t'Y

.

Block Undefined Undefined

k

Crehan Undefined Pre-instr: x = 0

Post-instr:.x = n4

Emrick All-or-none

Dayton & All-or-none

Macready

Kriewall- Continuous

Millman

(Binomial)

Novick

et al.

(Bayesian)

lj

. Undefined Empiiit)., based upon

external criterion

Dichotomous, Empirical; pre-post

based on pre- instruction

post instruction,, classification

Nonmaster: x = 0'

Master: x = n

Dichotomous,

. master or

nonmaster

NOnmaster: x = 0 Dichotomous,

Master: x = n master or

nonmaster

A) = Undefined

n) Ax n x

Continuous p(x A) .

- x

Beta-binomial

-

Choose score that best dichotomizes

observed score distribution, assuming

guessing and forgetting errors.
,

Choose score that best dichotomizes

observed score distribution, assuming

guessing and forgetting errors.

Choose score such that the sum of

probability of achieving at least

that score for nonmasters, andrnot

achieving that score for masters is

minimized.

Calculate posterior probability

that observed score exceeds the

standard.



Table 1 (continued)
t

Summary Comparison of Some Metho4 ds and Models Used in Criterion-Referenced Testing
1

Theoretical observed

Nature of 0 score: x = score,

performance n = # items A = True score Cutoff scoreI)

Model acquisition .ktrue ability distribution specifidation

R4sch Continuous p(0) =

(logistic)
OD. A)

n e

(bi - A)

i =11+ e

b. =, item difficulty

Classical Continuous x = A - ei

where e =

error of

measurement

1 regression

Normal Choose minimum Rasch abi4ty

estimate. Calculate the ability

oestimaie'from observed scofe.

Choose minimum'utrue" score

criterion. Calculate estimated

true score from observed score. ,
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of a given task domain. For example, an indefinitely,large number of
multiplication items could comprise an item universe from'which a sam-
ple of items are selected. An arbitrary standard would determine.that
the examinee'ansiwering,a specified number (or percentage) of the sam=
ple correctly will be . clasSified as a "master" of multiplication. The
main purpose of the present paper is to evaluate several mathematical
models. that claim to. reduce the arbitrariness in setting criteria for
mastery on tests representing a sample of the test-item universe. The
motivation for deyeloping models by which criteria for mastery, can be
derived formally arises from the gOtil of trying eb-minimize'misclassifi
cations (i.e., designating a "true master" As a "nonmaster". or vice
versa). The more complex the skills assessed by the CRT, the smaller
the sample of items, and the more varied the type of perfprtance in-
cluded in the universe, the greater the danger of misclassification.

Theoretical Problems for CRT Models

Nature of Performance Acquisition. Is the attainment of mastery
an "all-or-hone"occurrence, or is there a continu m of. varying degrees
of skill acquisition? The widely accepted dicho my of master vs.
nonmaster may be °wetly simplistic. The altern tive is a continuum of
varying degrees of mastery. Both dichotomous,and colktinuous -CRT models
are available in the literature.

M surement Error. One type of error, similar to the classical
psychcetric notion of measurement error, refers to random inappropriate
respones due to temporary environmental distractions, lucky guesses,
lapses in attention, etc. The magnitude of,such error can be estimated
and included in the estimation of actual ability and in the determina-
tion of test standards and lengths.

A second type, klassification" error, refers to the (usually)
dichoto us classification of an examinee as a master or nonmaster.
Its magn tude and direction are primarily a function of how a cutoff
score is chosen. Classification error will tend to increase as the

.accuracy in estimating actual ability decreases, but a mathematically
,defined relationship between measurement error and classification error
,*has'not been derived (Guilford, 1956, pp. 380-384).

Test Length to Distinguish Masters from Nonmasters. One technique
to improve ability estimation and reduce the chanc6 fof misclassifica-
tion to increase the number of test items. In some situations this
may bepossib,le simply by repeating items until the desired level of
pfecision is attained. However, in most cases, ,test length cannot be
indetinitely increased. Therefore, a statistical model that provides
increased informati per item is highly desirable. Generally, a CRT
Model should provide sufficient information to decisionmakers so that
they will know the risks of committing false positive and false nega-
tive errors before the test is conducted.



Overview of Selected CRT Models

The CRT Models diScussed in this paper were c4osen to try to illus-
trate--the diversity-in approaches to the problems outlined in the pre-
ceding section. Methods developed by Ctehan (1974) and Block (1972)
are' asically empirical in that Cutoff scores are baSed *on empirically
derived requiregents.' Models derived by k (l971,f and by ,Macready and!
Dayton (1976) assume.a dichotomdus definition. f mastery and analytEcally
descAbe procedures for establishing cutoff score Ktiewall (1969) and,,,

-Millman (1972,_1974) assume, that responses to test items and examinee
ability can be described by the family, of binomial distributions. Their
basic models can be extended by,applying the theory of binomial error
movie's (Dord&.No'yick, 1968)0 Novick and Lewis (1974) discuss the ap-
plication of a Bayesian approach to CRT isues. A one7parameter logis-
tic model (Basch, 1960;. Wright, 1967) provides a practical example of

''"Lhow latent trait theorymav,be applied to CRT data analysisoi. Finally,
an'approach for CRT.'data anaysis derived from'classical regression
theory, is dispassoecti Each model is examined, in terms of rationale and-
assumetions,-empirical support and applications', illuStrative examples
ofthe type of input required and output provided, and critical
Valuation.

REVIEW OF MODELS

Block

. Block's (1412) reseA h provides an experimental approach to set-
ting mastery standards. He studied the relationship between the level
of, perfokmance required on each unit of a three-unit instructional se-
quence and five cognitive and affective outcome variables. The ration-
ale for this study was the intuitive notion that maximum performance on
an external measure of achievement would be observed in students having
the most stringent passing requirements in the instruction. .A second
question concerned the relationship between scores on an affective
measure of interest and atkitude'and passing requirements i instruction.

Block's experiment included four treatment groups that differed
from one instructional unit to the next with respect to the standard
required for advancement. If the strident did not meet the standard.
(65%, 75%, 85%, or 95% of the items correct on a 20-item test), reme-
di'al instruction was provided. Students in a control group proceeded
om one unit to the next with' no remediation,,tegardless of their test

core. Five outcome variables were-defined: achievement, learning rate,
ransfer, interest, and attitude.

I

Transfer was measured by a 10-item test which required the use of
the learned skills to solve a novel set of problems; It Was given both
as a pretest and after instruction. Interest and attitude were measured
using a 24-item questionnaire.

6
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Most of the resats suppOrteci,the intuitive hypothesis. The'eon
'trod group did consistent y worse on a hl ement, tr i-klemd reten-
tion, than any of the exile imental-qr_upse a d the rung curves sug-
gested that high standards early' in an ins r ctiomal sequence-may Produce
increased efficiency later in the sequence. owever,. several interesting
exceptions to the intuitive expectations sugges that 44pher standards

.are. not always better standards. For exampleethe 85% and 95% groups
did not differ from one another on retention oe achievement measures,7,
although they both differed from the'cOntiO1 group. Only, the :15% grohp
produced sustained high,levels 'of inteiest and attitude. J

44'
"4,

Bl'ock's research suggests that a unitary definition of an "optimum"
CRTCuttiw score may bequestionable. If uniformly,high achievementV
and transfer are required at the possible expenSe of,positive interest
and attitude, it may be that thehighest,pastety standard should be used.
Howeiier, if some "mix" 4"cognitive andaffective outcomes is desired,

P
khen a lower standard s6ems appropriate.

y
Similar studies could be conducted on a wide range of instructiephal

,.

programs for a wide variety,of outcomes., The results could lead to:
usable and meaningful-guidelines for setting cutting cores to optimize
a number of instructional outcomeb: Because the results may not be gen- '',

I e ,t-
era li zable ',,ac ro s s content areas and instructional programs, such an op-

i.timization strategy would'require coatly,and extensiveresearch. This
empitical verification of a decisiontaking strategy for finding optimal
Mixes of cogniti'Vend affective- Outcomes does not. mathematically model'
any of the problefils'outlined in the preVioUs section of this paper.. A
trul complete scoring and decisionmaking,CRT model would. take'Into ac-
coun both tithe, psychological variables that characterize,optimum learn-,t

,/` - .nd the constraints imposed by test length, cutting scores, and
misclassifiCation rates.

1.

u.

Crehan

ee

A method used;by,Crehan (1974) also.relies,heavily on a training
contextfor'its interpretatio . The method's rationale for specifying
cu't'ting scores is based upon he compariSon of the test gcores of stu,-.
dents who have completed tral-ing with the, test scores of'thoseWhOhave
not ,yet received training. This method provides a means of assesting

1the proportion of misclassified"students'within each group when vavOus
.

'cutting Scores are used.

Correct classification occurs when' posttraining students pass the
test and:Students with no training fail the test. Us.013 a 2'x 2 310triX
of pass-fail and training=no training for-each cutting score, the.,;,pro-'
portion of correct-classifications P can'be obtained as follows:

c

= [number who had training and passed +"number who had no train-
ing and failed] ÷, sum ofall four entries in the matrix,

7



A cutting score is found by choosing the score that maximizes the ro-
Portion of correctclatifications; v.

For example, assume that the diStribution,of scores on a
CRT for an untrained group and a group5that ha'Sk completed trai
as follows:

Number Corrects

ive-Lfem
inq is

No Training Completed Training

0

1

'2

3

4

5

1

10

5 ,

4

0

1

-0,

0

0

1

5

10

4

A series of fourfold tables in Table 2 displays the relationships be-
tween cutting sCore,,pass-fail decisions, and the amount of training.
PC, the proportion of correct classifications, is calculated for each
fourfold table. The highest, 'value of Pc in this example is found when
three correct resp:bnfes are used as the cutting score. Therefore, for
this training program, a cutting score of 3 would be recommended as the
optimal cutting: score. .

The major strength of this.procedure is that it provides an esti-
mate of the optimal cutting'score for differentiating between trained
and untrained groups while-remaining relatively 'simple to implement.
However, these two groups do not necessarily correspond to the cate-
gories of "masters" and "nonmasters" in terms of the ability of group
members to complete an objective. Instead, one might expect the post7
training group to perform less well4than a.'group consisting entirely of
examinees who have mastered the objective, and the pretraininq group to
perform somewhat better than a group of examinees, none of whpethas
mastered the objective.

The simplicity of Crehan's procedureis partially offset by a num-
ber of weaknesses, including the following: (1) lack of a procedure for
estimating the minimum item sample size necessary to keep the probability
of misclassification at or below some specified level; and (2) lack of
statistical criteria for differentiating between Pc's which "seem" to
be similar (or different).

Macready and Dayton

Assumptions and-Rationale. Two related probabilistic models that
provide probability estimates of the 2n possible response patterns on
a dichotomously scored, n-item test are discussed in this section
(Einrick, 1971; Dayton & Macready, 1976; and Macready & Dayton, 1975):

,Both models assume that all examinees belong to one of two possible

8



Table 2

Example Data Matrices for the Crehan Procedure

Training experience

Cutting No Completed
score training traihing

0

1

2

3

4

5

Pass
Fail
Pc = 20/40 = .5

Pass
Fail

Pc = 30/40 = .75

20
0

10

10

20

0

20

0

Pass 15 20
Fail 15 0
Pc = 35/40 = .875

Pass 1

Fail 19
Pc = 38/40 = .95

19

Pass 1 14
Fail 19 6

Pc = 33/40 = .825

Pass 0 4

Fail 20 16
Pc = 24/40 = .60

9



-1"true score'types" for any given domain: masters, (M); and nonmasters,
(m)-. Masters are those individuals who have acauired'the necessary
skills to respond correctly to all items within the domain. Thus for
a three-item test with items sampled from the domain of interest, a
master's true score response pattern would be 111, where a "one" indi-
cates a correct response to an item. Conversely, nonmasters have not
acquired the necessary skills to respond correctly to any item within
the domain; thus their true score response pattern would be 000, where
a "zero" indicates an incorrect response to an item. This 'dichotomous
classification of individuals appears reasonable to the degree that all
items within a domain involve the same skill.

In general, it is assumed that the only way that any non-true score
response pattern can occur is for a nonmaster to make one or more cor-
rect "guessing" errors or for a master to make one or more forgetting
errors.-teor the first model (Macready & Dayton, 1975), the error prob-
abilities are unrestricted except for the usual 0, 1 bounds for proba-
bilities. ai an bi represent the probabilities of "guessing" and
"forgetting" error, respectively, for'item i. Furthermore, P(M). and
pqm) represent the proportions of examinees who are masters and nonmas-
ters, respectively, with the usual restrictions: 0 < P(M) < 1 and
P(M) + P(M) = 1. If local independence among responses is assumed,
then the probability of the jth observed response pattern on an n-item
test is

P(j) = p(i 111)P(71) + P(JIM)P(M)

n x, 1 x.

1] 13
a. (1 a.) p(M)

[i =

1 - -x.. x..

II
ij

b. (1
ij

b.) P(M) (1)

where x..ij = 10,11: is the score of the ith item fol. the jth response
pattern. Maximum likelihood estimates of these parameters are obtained
from test data by means of the Newton-Raphson iteration procedure
(Rao, 1965, pp. 302-309).

Because of the relatively large number of parameters (2n + 1)' under
this first model, there are circumstances in which it is desirable to
utilize a second model (Dayton & Macready, 1976) based on a more re-
strictive set of assumptions; guessing errors for all items are equal
(i.e., ai = a) and "forgetting" errors for all items areYequal (i.e.,..bi
= b). These assumptions. reduce the number of parametersvto be estimated
to three for tests composed of any number of items and allow for a

10



simplification of the formula defining the probability of the occurrence
ofthe jth responSe pattern on an n-item test to

s , . n
p()) = p(jIM) + p 01M) = a 3 (1 a) p(M)

n - s4

+ lb (1 - b) p(M),

(2)

where sj is the number,of correct responses (i.e., number of l's) in the
response pattern.

Macready and Dayton provide a discussion of how these models can be
used for making classification decisions with respect to mastery of spe-
cific concepts or skills, and .they provide several examples. The dis-
cussion includes the development of procedures for (1) assessing the
adequacy of "fit" provided by the models, (2) identifying optimal deci-
sion rules for mastery classification that incorporate utility functions
related to costs' of false negatives and false positives, and (3) iden-
tifying minimally sufficient numbers of items necessary to obtain accept-
able levels of misclassification.

Example. For the case of a three-item test, there are eight possi-
ble response patterns: (000), (001), (010), (100), (110), (101), (011),
(111). For the first model, the 2n + 1 necessary parameters correspond
to guessing (ai) and forgetting. (bi) parameters for each item and the
proportion of subjects in the examinee group who are masters.- Maximum
likelihood estimates of these parameters are 'obtained from the test
data.

For purposes of example for Model I, assume the following parameter
values: al = .01, bl'=- .20; a2 = .05; b2 = .10;,a3 = .10, b3 = .05; and
P(M) = P(M) = .5. This might correspond to a test in which the items
appeared to be growing,increasingly easy. For the second model, only
three parameters are found: a, b, and P(M). Again for purposes of
example for Model .II, assume that the_obtained estimates for the param-
eters are a = .06, b = .12, P(M) = P(M) = .5.

To find the probability of observing each response pattern in a
given examinee group, the probability of observing each response pattern
given mastery status must be multiplied by the proportion of the group
in that mastery status. For this example, each response pattern must
be multiplied by p(M) = P(M) = .5. Table 3 shows the results of these
calculations.

The mastery/nonmastery decision rule is based on the score that
minimizes the probability of misclassification. Probability of mis-
classification is defined as the probability that a master will not
achieve the cutting score times the proportion of masters in the group

11
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Table 3

Probability of Observing Response Patterns Under the
Mac-Keady and Dayton Models, Assuming P(M) = P(M) = .5

Model I Model II

Response

pattern

P(response pattern) P(response pattern)

Master Nonmaster Master Nonmaster

000 .0005 .423225 .000864 .415292
001 .0095 .047025 .006336 .026508
010 .00450 .022275 .006336c .026508d
100 .0020a .004725 .006336 .026508
110 .0180 .000225

b
.04 pil 64 .001692

101 .0380 .000475 .046464 .001692
011 .0855 .002475 .046464 .001692

111 .3420 .000025 .340736 .000108

P(M) = .5 P(M) = .5 P(M) = .5 P(M) = .5

a
p (M) =

b
P(M) =

cp(M)
=

dp(M) =

(.2o x

( .011

.122 x

.061 x

1
.81) (.1

0
x .91) (.05

x .99o) (.051 x .95°) (

.881 x .5 = .006336.

.942 x .5 = .026508.

x

.10

.95°) x

x .91)

.5

x

=

.5

.0180.

= .000225.
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plus the probability that a nonmaster will *ual or exceed it times the
proportion of nonmasters in the group. The probabil i ties for both models
and all possible cutting'scores.are given in Table 4:.

The final column of Table 4 indicates that for both model the op-
timal cutting score is 2 correct. Note that although the cutting score
is the same for both models, the misclassification under the richer
Model I is consistently smaller than Model II.

Emrick (1971) developed a procedure related to ,the restricted form
of the Macready and Dayton model. He generated a function for identify-
ing optimal cutoff scoresin terms of relative costs of incorrect
mastery/nonmastery decisions and the ratio of a to b,errors. The
optimized formula is

where

k

b 1
log

1 - a
+

n

(M)

L
log

174)]
1
P(

,

log
(1 a) (1 b)

ab

k = percentage of items correct required for a mastery
decision;

L1 = loss incurred from a false positive;
L2 = loss incurred from a false negative.

(3)

This cutscore value is the same as that suggested by Macready and
Dayton under their restricted model when the same parameter estimates
are used. However, Emrick suggests a different approach for parameter
estimation. He constructs a fourfold table relating true mastery state
and observed item responses to a single item, with the cell entries
being the error probabilities a and b. Emrick then treats a and b as
response contingencies and computes a phi coefficient to indicate the
correlation between observed single item responses and true mastery
state:

1 a - b
phi =

(a b) 2

(4)

He uses the average iteritem correlation of examinee responses to com-
pute an unbiased estimate of the reliability of a single item using the
Spearman-Brown prophecy formula.

Since reliability is defined as the proportion of total variance
that is true variance, it can be interpreted as an unbiased estimate of
the squared correlation between an examinee's true mastery state and his

13





Table 4

Probability of Misclassi,fication as a Function of Cutting
Score Under the Macready and Dayton MOdels,

Assuming. P(M) = P(M) = .5

Cutting P(False negative) P(False positive) P(Misclassification)
score Model I Model II Model I Model II Mode). I Model II

0 (all 0 0 .5 .5 .5 .5

pass)

1 .0005 .000864 .076775 .084708
d

.077275 .085572
2 .01650

a
.019872

b
.0032c .005184 .4197 .025056

3 .1580 .159264 .000025 .000108 .158025 .159372
4 (all .5 .5 0 0 .5 .5

fail)

a, b
The probability that a master will 139 misclassified when the cutoff

score is set at 2 correct equals the sum of the probabilities that a .

master will get only 0 or 1 itemporrect times the proportion of mas-
ters in the group. Fbr Model this probability equals .0005 + .0095
+ .0045 + :002 = .0165. For Model II, .000864 + 3(.006336) = .019872.

c, d
The probability that a nonmaster will be misclasSified when the

cutoff score is set at 2 correct equals' the sum of the probabilities
that a nonmaster will get 2 or 3 items correct times the-proportion of
nonmasters in the group. For Model I, this probability equals .000025
+ .0n2475 + .000475 + .000225 = .0032. For Model II, .000108 +
3(.0o 092) = ,,005184.

14



4

or her item response. Hence, item responses, true mastery state, and
error probabilities can be directly related through the test reliabil-
ity. If the ratio of a to b is known (or if it can be estimated),
values for a and b can be directly calculated.

For the Macready-Dayton model example values (a = .06, b = .12),
the value of phi is .821. Squaring thi)value and applying the Spearman-
Brown prophecy formula for a three-item'test indicates that the test re-
liability for this example would be .86. Assuming a loss ratio of 1 and
equal proportions of masters and nonmasters, the value for k in Emrick's
optimization formula 'is .4339. This implies a cutting score of 1.3on
a three-item test, or rounding up to the next higher integer, 2. Thus,
the final result is the same as the result obtained with Macready and
Dayton.

Evaluation. An important constraint of this approach is that the
proportion of masters and nonmasters must be equal. (The computations
for the preceding example and a more general forth of the Emrick model
are presented in Appendix A.)

Other possible weaknesses in Emrick's approach to parameter esti-
mation are the subjec'ivity required and the somewhat overly restric-
tive assumptions necessary to implement his approach. In addition, the
complexity of both conceptualizing and quantifying L1 and L2 may greatly
complicate "tlite derivation of cutoff scores under these models.'

If the assumptions are met, an optimal differentiation between
masters and nonmasters will result. Furthermore, a means is provided
to determine how many items are needed to keep the probability of mis-
classification at or below some specified critical level. The relation-
ships among test items may also be explored. A major potential weakness
concerns the assumption that learning occurs in an "all-or-none" manner,
with no partial learning or overlearning. Failure to satisfy this as-
sumption could produce a poor fit of data to the model, which will in
turn,produce a far less than optimal cutting score.

Binomial Model

Assumptions and Rationale. In contrast to t1}e all-or-none learn-
ing assumption of the Emrick and Macready models is the assumption that
11earning is a continuous process. -A binomial distribution model, first
suggested and derived by Kriewall (1969) and subsequently developed by-
Millman (1972),' defines proficiency as, the probability that a person
will correctly respond to any test item randomly chosen from a speci-
fied domain of items. Proficieppy may also be defined as the propor-
tion of items that would be correct if all items in the domain could
be adMinistered. Since the proficiency value can take on values from
zero to one, the model allows for partial acquisition.
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The following assumptions are pertinent: (1) dichotomously scorable
items, (2) local independence of items, (3) no systematic learnAg or
forgetting during test taking, and (4) items equally difficult for any
given examinee. The percentage of items answered correctly is taken as
a point estimate of the examinee's true proficiency. For ,a'siven,pro-
ficiency, the probability oP observing any score may be determined. The
hypothesis to be tested in this model involves the likelihood of,,a speci-
fic score, if indeed the examinee had the given level of`proficiency.

The basic equation for the binomial model yields the probability
distribution of scores. for an examinee with proficiency "p" for repeated
random samples of items of size "n" from a given domain of items:

where

f(x)
(nyx n x
x

x = the total /number of cotrect responses,
f(x) = the probability of test score x,
(n)

= the binomial coefficient:

.n !

(5)

The binomial model can be used to provide two types of information.
First, the proportion correct is the maximum likelihood estimate of an
individual's proficiency relative to the particular domain. Second, the
model can be used to invtstigate the interaction between to length and
classification error when individuals are divided into two. g ups. One
group will contain students with proficiency greater than or e ual to
some minimal proficiency criterion. The other group will have students
with proficiency levels less than or equal to some maximum nonmastery
criterion.

To calculate the expected error in decisionmaking, it is necessary
to specify two parameters. The first is the lowest proficiency level
required for an individual to be considered a master. The second is

4
the highest proficiency level that a student could obtain and still be
considered a no16 ster. When these values are set by the decisionmaker,
the probability b'f false negative and false positive errors for minimal
masters and maximal nonmasters, respectively, can be calculated for any
given test length and cutting score. This procedure, it should be noted,
is generally conservative. That is, if the group contains examinees
with abilities above minimal mastery or below maximal nonmastery, the
number of misclassifications observed will be less than that predicted
by the model.

16
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Example. Suppose that a cutoff score of 80% correct was selected
(i.e., in order to be classified as a master, a student must get cor-
ryct at least 80% of whatever number of items are included-on the test).
Assume also that a true proficiency of 90% is defined as the minimal
mastery level, and that a true proficiency of 70% is defined as the
maximal nonmastery level. The region between these cutoff scores is
an "area of indifference."' That is, if an examinee's true proficiency
lies between 70% and 90%, the decisionmaker would be indifferent as to
whether the examinee is classified as a master or as a nonmaster.

Values for misclassification error that can be tolerated must also
be specified. Continuing with the above example, assume that the de-
cisionmaker is'unwilling to accept more than 26% of the students whose
true ability is 70%, and he or she wants to reject not more than 19% of
those whose true ability is 90%. Thus, the probabilities of a false
positive and false negative are .26 and .19, respectively. Given these
values, it is possible to determine the minimal number of test items.

The following notation will be used:

n = the total number of test items,
c = the cutoff score (in this example c = .8n or the next highest

integer value of .8n since an 80% standard was chosen),
x = the observed score, and the formula for cumulative terms of

the binomial distribution is

n
n px n - x

x = 1
(6)

Specifying that the probability of falsely rejec ng a master must
not exceed .19 means that the cumulative probability f a master ob-
taining a score from 0 correct to c - 1 correct must ot exceed .19.
This constraint may be expressed as the inequality

Therefore,

F(x < c - 1) < .19. (7)

x = c 1

.19<
(n

(.1)n - x

c = 0

where p = .9, the minimal mastery level.

A similar relationship exists for nonmastery. Since the probabil-
ity of falsely accepting a nonmaster must not exceed .26, the cumulative
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probability of a nonmaster obtaining a score greater than or equal to
q must not need exceed .26. The inequality for nonmasters is

F(x > c) < .26.

Therefore,

.26 <
(.7)x (.3)n - x

x = c

where p = .7, the maximal nonmastery level.

-
(8)

Reference to a table of cumulative terms of the binomial distribu-
tion shows that the minimum value of n for which these relationships
hold is 8.

Since,.8 (8) = 6.4, a cutoff score of 7 correct is chosen. Sub-
stituting these values for c and n yields

x = 6
8 8 - x

.19 = E (.9)x (.1) and (9)

x = 0

x = 8
8

.26 = E (.7)x (.3)
8 - x

(10)

x = 7

These are the numerical,solutions for the above inequalities.

The conservative nature of the model results from-the fact that,
the calculations are based on two point values of true proficiency,
70% and 90%. The previous calculations reflect the probabilities of
false-positives and false negatives, assuming that the examinee group
is composed only of people with true proficiencies of°70% and 90%. How-
ever, if an examinee had a true proficiency of 95%, the probability that
he or she would obtain a score of less than seven correct out of eight
items, and therefore be classified as a nonmaster, may be expressed as

x = 6
E (.95)x (.05)

8 - x
= .06.

x =0

This value is considerably less than the probability of a false negative
as previously obtained, .19.

On the other hand, if a person had a true proficiency equal to 60%,
the probability that he or she would obtain a score of seven or more
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correct on an eight-i*m test, and therefore be classified as a master,
may be expressed as-

x = 8
-2---;; (8) (".6)X (.4)8 x = . 11.

x (12)

This value is much less than the probability of a-false positive as pre-
viously obtained, .26.

Millman (1972) has prepared tables which allow the decisionmakex
to reach these same conclusions without calculations. His tables also
give the expected misclassification error for a variety of test lengths,
cutoff percentages, and true ability lev,els.

Evaluation. The binomial model actually describes the worst pos-
sible situation. For most practical applications, the examinee popula-
tion will contain persons with true ability above the minimal mastery
level and below the maximal nonmastery level. To arrive at a more
realistic estimate of total misclassification, the equations would have
to be solved for each representative ability and be weighted by the
proportion of the group with each ability. Such 'a procedure is, of
course, feasible but its value is questionable. The values obtained
from the simple procedure are overly pessimistic; any decision derived
from empirical data could be no worse, and would probably be better.

A virtue of, this model is that it is relatively straightforward,
being based on the familiar binomial distribution. It is one of the
simpler quantitative models to deXive test lengths and cutting scores.
The model can be criticized, however-i--bpcause of its conceptual founda-
tions. Specifically, the output of the model tells us the probability
that a student will attain a certain test score, given his or her true
ability level. However, it is by no means,clear or obvious that the
decisionmaker would know the student's true level of functioning. In-
deed, if the true ability-level were known, there would be no need for
models to determine test length and cutting scores. In using the bino-
mial model, the decisionmaker has to set estimated (or desired) limits
on the true level of functioning of the student. This allows him or
her to infer the conditional probability of the observed tee score,
given the hypothesizedlevel(s) of proficiency. This binomial model
is most useful for initial apprqximations of test length and cutting
score before test data have been collectbd.,

1-* .

Bayesian Model

Assumptions and Rationale. If information can be obtained about
the quality of the examinee population (perhaps on the basis of pre-
vious similar populations) before the test scores are observed, then a
Bayesian model may be appropriate for deriving test lengths and cutting
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scores. The input consists of an estimate of-the ability distribution
in the examinee population, and the conditional probabilities that a
randomly chosen item ;could be answered correctly given some ability
level. The output is the conditional probability that an individual's
ability equals (or, in some cases, exceeds) some criterion ability,
conditiOnal upon his or-her_test score.

The Bayesian, like the binomial, model makes the following assump-
tions: (1) items must bedichotomously scored, (2) responses are inde-
pendent, (3) items are equally difficult for any given examinee within
a particular ability.group, and (4) there is no systematic learning or
fatigue during test taking.' As in the binomial model, ability is de-
fined as the probability of,Tesponding correctly to a randomly chosen
item from the domain. We will continue, to use the term proficiency
(p) when referring to this definition of ability.

Examples. The first model to be discussed assumes i > 2 discrete
states of mastery.

Epstein and Steinheiser (1975) developed a two-step algorithm based
on work by Hershma1 (1971). The first step yields the probability of
an examinee being in mastery state i, conditional on an item.score:

p(th,C) p(Mi)-

P(Milt) =

E P(tImi) P(Mi)
i =,1

where s = the number of states,
t = the item score (0 or 1),

Mi = the mastery state being considered,
p(Mi) = the prior probability that an individual is in mastery

state i, and
p(tIMi) = the probability of the score t, given the mastery state.

(13)

The second step in the procedure combines the decisions for each
item into a final probability of,being in: mastery state i, given the,
total test score:

n

j = 1 p(M.It.)
p(MilT)

n - 1
p(M.)

i=lj= 1
P(M. I t.)

s n

3
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where

j = 1, 2, ... 9 = the number of items and
T = the total 'test 4core.',

For example, consider the case previously described for the bino-
mial model. Two mastery states are assumed, minimal mastery and maxi=
mal nonmastery.

a

For the minimal mastery state (141), p(tj = correct (1)1141) = .9 and
p(tj = incorrect (0)1141) = .1, for all j;

,

. ,

For the maximal nonmastery State'(M2), p(tj = correct(1)1M2) = .7
and p(tj = incorrect (0) 1M2) = .3...

i
Values must-be given for the priors, p(M1) and p(M.2). Their value

may be determined on the"basis of past experience, or may simply re-
flect the beliefs or expectations'of the evaluator. Three cases will
be considered: p(M1) ---P(M2) = .5; p(Ml) = .12, p(M2) = ,88; and
p(M1) = .62, p(M2) = .38. These`oorrespond to little prior informa-
tion,, relatively low'expectations, and relatively high .expectations.

J
The example was computed for an observed score of seven correct on an .
eight-item. test.' The results are shown in Table 5.

IFof Cases 2 and 3, where prior information favored the nonmastery
and mastery states, the final decision can be made with a relatively
high degree of confidence. For the case of little prior information,
Case 1, the probabilities of misclassification.are greater. Theef-
fects on the final decision of the priors aralso clear. For the equal
priors case,-the weight of the observed evidence favors a mastery deci-
sion. However, where the nonmastery state is favored in the prior
probabilities (Case 2), the evidence does not overcome the priors and
a nonmastery decision is made.

Whereas the Epstein and Steinheiser technique seems to offer a
method for reducing the uncertainty in decisionmakingfor,a given num-
ber of test items, their procedure is limited by the constraint that
only discrete mastery groups are considered. The second model.to be
reviewed deals with continuous distributions of proficiency and classi-
fies examinees based upon the probability that Air proficiency equals
or exceeds some minimal criterion. Novick and s ( 4) achieve this
by assuming tha.' the distribution of examinee PlOiriciencies can be.ap-
proximated by a member of the family of Beta distributions. The'prob-
ability of achieving an score-of interest, given the proficiency,
remains binomial. The rm. of Bayes' Theorem is then a probability
density function' of the orm p(Tlx) = p(x1T)p(T), where T is the pro-
ficiency and x is the test. score.

If p(xIT) is binomial and p(T) is a Beta distribution, then p(Tlx)
will also be a member of the Beta family. In fact, if the prior
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Table -5

Chaliges in Posterior Probabinty of Mastery as a Function
of Changes in Prior Probability of Mastery

Prior

p(M1)

p(M2)

Af. .5

.5

.12*

.88

.62

.38

.k..' Posterior
. kt-,

p(MIIT), ,,,,,,i,

P(M2IT) .07

.66

.--.33

.205*

.796

.767

.242.

*Computatihnal p = 1) = .12 x .9 + .88 x .7 = .724

p(t. = 0) .12 .1-'+ .88 x .3 = .276

13(14 It. =.1) =.(V121rx..9)/.724 = .1491 3 ,
P(M1

It =.0) = (.12 x .1)/.276 = .043
3

Ilp(M
1

It.) -= .140\f.043) = 7 x 10-8

p(milT) = 7 x 1(0 141(.127) (7 x 108/.127 + .309/.887)] = .205 k,

.7.
P(1.421T)71= .309/ 8 (7/36 + .755)] = .296

p(M23...13

p (M
2

I t

111?(M2Itj)

= (.88 x .7)/.724 = .851

f= (.88 x .3)/.276 = .957

= .8517(.956) = .309
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distribution is Beta (a,b) (i.e., B(a,b)), and a core of x is ob-
served ii n trials, then the posterior distribution is B(a + x,
b + n - x).

Continuing with the previous example in the continuous framework,
we shall now consider three prior distributions. Integer values of
a and b, the parameters of the Beta distribution, will be used. We
may therefore use the Incomplete Beta function 1p(a, b), which has the
following relationship to the cumulative binomial distribution:

n

P q
x = x' x

(15)

where n is the number of test trials,. p is the probability of success
on a randomly selected trial, and x' is the observed' number of successes.

Tabled values are available (Beyer, 1966, Table 111.2). For non-
integer values of a and b, programed numerical methods may be required
(Noyick &_Jackson,,1974).

For the first example, assume that little is known about the exami-
nee population, i.e., a randoMly selected examinee may get a test score
that would place him or her in the mastery or nonmastery category with
equal probability. In terms of the Beta distribution, this means that
examinee proficiency would be rectangularly distributed, resulting in
a = 1, b = 1, or 13(1, 1) (Novick & Jackson, 1974, p. 114).

For the second case, assume that the prior, probability that a ran-
domly chosen examinee has proficiency greater than or equal to .8 is
.12, i.e., P(P > .8) = .12. 'Therefore, 1 p is.used to. enter the

'cumulative binomial table at the top (since tabled P values stop at-
p = .50), and .12 is the table value.

However, we cannot use the table until one more parameter Is speci-
- fied; so let us assume that 'the examiner's "certainty of prior belief"

can be quantified as being equivalent to the information that would be
available if a 10-item test were given (Winkler, 1972, p. 187). Withl
n ='10, we find that an entry with a value of .12 in the .20 column
for n = 10 has an associated x' value equal to 4. Unfortunately, x'
does not equal 4, due mainly to a limitation of the table, since p
values stop at .50 and do not extend to .80 or beyond. Note, however,
that if we let x' = 4 in the cumulative binomial, and subtract the
result from 1, we obtain

10
E ) (.2)

x
(.8)

n - x, which equals - .1208, or :88.

4 x
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If the table had extended to -P = .8, then the value .879 would have
been found as the entry correspondirig to n = 10.and x' = 7. Hence, the

value for .x' is 7. Substituting x' =,end n = 10 in equation (154, we
obtain I (7, 4) as the Beta distribution which represents the prio?
information that P(; > .8) = .12 is equivalent to 10 additional test
trials.

The third example considers that the prior probability of a ran-
domly'chosen examinee having proficiency greater than or equal to .8
is .62--which is also comparable to information that could be obtained
from a 10-item test. Again, entering the table with n = 10, 1 - p = .2,
we find that a tabled value of .62 this time corresponds to x' = 2.
Substituting x' = 2 in the cumulative binomial and subtracting that
result from 1 yields .38. Again, an extension of the table to P = .8

-would show that when n = 10, a tabled value of .38 corresponds to an
x' value of 9. Therefore, the parameters for the Beta distribution in
this case are I (9, 2).

Having thus derived the prior distributionS, let us now consider
some hypothetical test scores, and then derive therposterior distributions.

Suppose that a score of seven correct on an eight-item test were
observed. Then the posterior proficiency distributions will be B(a +
number correct, b + number of trials - "number correct). For the three
examples, we therefore have B(8, 2), B(14, 5), and B(I6, 3) .

The posterior probability that .an examinee with a score of seven
correct out of eight items has a proficiency greater than or equal to
.8 (i.e., P(17) > .8 1 7, 8)) can be folind by determining the area in the
upper tail of the appropriate Incomplete Beta function (Winkler, 1972,
Table 5; Schlaifer, 1969, Table T3; Novick & Jackson, 1974, Table A-14).
For the three examples, these values are: 1.8(8, 2) = .56; 1.8(14, 5) =
.28; and I

.8
(16, 3) = .73.

Since the origin of these values may not be intuitively obvious,
we shall outline the steps required to complete the first example, using
the Novick and Jacksol? tables.

Step 1: Since p > q, reverse the order, and enter the table with
p = 2 and q = 8.

Step 2: -The table gives the cumulative area (of proficiency);
however, since we want to determine the area in the upper part of the
Beta function, we need to subtract the stated proficiency of .8 from
1, and thereby obtain .2. This represents the symmetric area in the

lower 20% of the distribution.

Step 3: .2 lies between the tabled values of .1796 and .2723,
with associated probabilities (fractiles) of those tabled proficiencies
equal to 50%Jand 75%, respectively.
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Step 4: Interpolation yields the fact that a 20% or. less pro-
ficiency would occur 56% of the time; therefore, 80% or greater pro-
ficiency should also be observed 56% of the time.

Novkck and Jackson also provide a convenient set of charts (pp.
122-123) 'for rapid approximations, although it should be noted that for
the current example,'the solution is found to be .44 from their. chart
A. This value must be subtracted from 1, since the .44 represents the
cumulative area in the lower portion of the B(8, 2) curve.

If the probability of having a proficiency greater than or equal
to .8 must be at least .5 for an examinee to be classified as a master,
then a score of 7 out of 8 would lead to a mastery classification only
in the first and third examples previously described. The weight of
the low prior reversed the decision rule in the second example.

For another approach to deriving prior distributions, assume that
prior information can be described as equivalent to 7 correct on a 10-
item test. (This is an assumption not without criticism, as we shall
note in a subsequent section.) Assume also that proficiency is dis-
tributed as Beta--a helpful and reasonably appropriate assumption. The
mean of the examinees' proficiency then equals (x/n + 1) or 7/11 = .636.
The variance equals 'x (n - x + 1) /(n + 1)2(n + 2) = 28/1452 = .019.

'4Since the parameters are integers, we may once again use the cumulative
binomial as a means of obtaining the Incomplete Beta density function:

I (7, 4) =
= 10

P
x
q
10 - x (16)E

x = 7 x

Ina 4- b)
4.6 ua-1(1 - u)b-Idu.r(a)r(b)

'Equation (16) is the probability that a given proficiency is less
than or equal to p. We can compute this probability by assigning spe-
cific values to p, as shown in Table 6. The values for P(p > p) up
to the 50th fiactile may be found directly (Beyer, 1966, Table 111.2)
for x' = 7 and n = 10.' Values for .6 and-greater can be computed ac-
cording to the cumulative binomial equation (16). When the values
obtained (as in Table 6) are plotted, the result is a-smooth ogive-
like curve (Winkler, 1972, pp. 153, 186; Schleifer, 1969, p. 438).

To plot the proficiency distribution, we may use the Beta' distribu-
tion function:
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Table 6

Cumulative Estimation of Prior Pr9babilities for
Various Assumed. Proficiencies

p = Proficiency

I (7,4), or

P(P- < p)

.1 .0000

.2 .0009

.3 ,.0106

.4 .0548

.1719

.6 .3823

.7 .6496

.8 .8791

4.9 .9872
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Values of the proficiency (p) may be chosen, but a = x' = 7, and
b = n - x' + 1 = 4. Since (n + 1) = n! for integers, we can easily
solve equation (16) r(a + b) = r(1d) = 10! = 3.6288 x 106; r(a) =
P(7) = 6! = 7.2 x 102; r(b) = F(4) = 3! = 6. Therefore, r(a + b)/
r(a) r(b) = 3.6288 x 106/(720)(6) = 840. Table 7-shows how values of
f(p) may be obtained.

A plot of the tabled values for p onthd abscissa and f(p) on the
ordinate could then be made. Such plots may also be found in Winkler
(1972, sec. 4.3 and 4.4), Schlaifer (1969, sec. 11.1.2) and Novick and
Jackson (1974, p. 112). Note that this is a prior distribution of
hypothesized proficiencies in which we assumed at the outset that the
information could be characterized as comparable to the information
that would be obtained from observing a score of seven correct on a ten-
item test.

Evaluation. Bayesian models offer the possibility of enhancing
the assessment of examinee proficiency by using prior information, e.g.,
knowledge that content experts or examiners have about preVious similar
examinee populations. As the validity and accuracy of this prior in-,.

formation increases, fewer test items will be needed to achieve a given
level of classification accuracy in comparison to the binomial model
and in comparison to the Bayesian case of equal priors. As more is
known about the examinee population (i.e., the more that prior inforMa-
tion departs from a B(1, 1) distribution), the more the variability in
the posterior distribution is reduced, and the more the number of items
to attAin a desired level of accuracy is reduced.,

In comparing the binomial and Bayesian models, note that the former
produced as output the probability of observing a specific score condi-
tional upon some hypothesized true,ability level. In the spirit of
classical hypothesis testing, one need not know anything about an exami-
nee's proficiency, except that he or she is more or less likely to come
from the mastery side of the cutoff score. Since some true level of
functioning must be hypothesized, it is possible to determine the prob-
abilities of falsely passing a nonmaster and falsely failing a master
if the test score suggests a true proficiency level either above or
below the hypothesized true level of functioning.

In contrast, the Bayesian model provides as output the probability
that a specific examinee has a true ability equal to or greater than the
criterion (minimal) ability, conditional upon the observed test score.
But since no true ability was hypothesized, false positive and false
negative error rates cannot be specified as was possible with the bino-
mial model. While both models give the probability that an examinee is
a member of some ability level group, the binomial estimate refers to
the probability of a score occurring conditional upon the-assumed true
proficiency; whereas the Bayesian estimate refers to the probability of
a'specific examinee being at Or beyond some proficiency level conditional
upon his or her observed test score.
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Table 7

Pooiint Values for Prior Proficiency Distribution

Proficiency
values

a - 1
(1 p)

b - 1
f(p) =

-7:
.1 7.29 x 10

.2 3.28 x 10
-5

.3 2.50 x 10
-4

.

.4 8.85 x 10
-4

_3
.5 1.95 x 10*

.6 2.99 x 10
-3

.7 ,3.18 x 10
-3

.8 r1.0 x 10
-3

.9 5.31 x 10-4

840(p)
a - 1

(1 p)
b - 1

-4
6.12 x 10

2.75 x 10

2.10 x 10
-1

7.44 x 10
-1

1.64 x 10
0

2.51 x 10
0

2.67 x 10
o

1.76 110° 0

4.48 x 10
-1

C'
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There are several difficulties confronting the potentialuser of a
BayeOian model for CRT purposes. First, the mathematics can become
rather cumbersome, since the Beta distribution must be used when ability
is assumed to be'distributed continuously., Second, a methodological
difficulty arises in the determination of prior probabilities (Winkler,
1972, sec. 4.8): It is methodologically unsound to merely ask the-exam-
iner orexpert to , "state his priors," since simple human' judgment of
,prObabilities is'Oftendnreliable, inconsistent, and distorted (Kaplan
& Schwartz, 1975): A method used in the present paper--equating prior
informatibn to comparable test length and score information--may be
suitable for_puipOses of illustration, but it may be difficult to im-
plement in applied settings.

There is at present a dearth of .research about howprior probabili-
ties can actually be obtained from experts. Perhaps a pir comparison
or forced-choice procedure could be used in which various combinations
of proficiency (or expected scores) and associated probabilities are
presented to the expert (Steinheiser, 1976). Thus, th. judge's prior
distribution would be directly obtained, and the bef:.t fitting Beta'
distribution used to provide the necessary parameter dues.

Rasch's One-Parameter Logistic Model

Assumptions and Rationale. The latent trait model developed by
Rasch (1960, 1961, 1966) is claimed to yield person-free test calibra-
tions and item-free person measurements (Wright & Panchapakesan, 1969).
The model attempts to reproddce an item 1y score group matrix in which
n items are ordered by their difficulties,,and n -'1 score grOups are
ordered by the raw scores. Cell entries represent th".robability that
item i will be passed by a person in score group j (Whitely & Dawis,
1974).

There are two parameters in the model. The first is person ability
A; the second is item difficulty D. The odds (0) Of a person correctly
answering an item are equal to the product of the person's ability times
the item's difficulty: 0 = A x D. If'we express the odds as a prob-,
ability, we find that the probability P of a person with ability A suc-
ceeding on an item with difficulty D can be expressed as A x D

P =
1 + A'x D

Replacing A and.D with their logarithms, log A = a and log D = d, we
may finally express P as a logistic function (Wright, 1967) :

P -
1

1 + e
(-a - (18)

This"model assumes that (1) all items measure the same unidimen-
sional trait; (2) all items have equal discriminating power and vary
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only in difficulty (the restriction
results in a set of nonintersecting
differ only by a translation along
and items are locally independent;
and (5) there is no time constraint

of a common discrimination index

item characteris.tie
which

the ability scale); (3,1 subjects

(4) guessing effects are
negligible,

on answering items (I: 1966).

Tests comprised of items all of which fit the plodel. the fol,

lowing properties (Wright & Panchapakesan, 1969; Whitely Dawis,

(1) estimates of item difficulty parameters will)nct dif fer signs f1-

1-974)

cantly forrany sample of examinees; (2) estimates of Petson ability
will not differ significantly for any sample of calibrated

items; (3)

individual ability estimates can be measured on at least interval,

and perhaps a ratio scale (Wright, 1967); (4) the scale of
anrabilities

is defined regardless of the characteristics of the subjec't popule1-on

who take the test; and (5) a unique standard error of measurement is

associated with each ability level.

The significance of the Rasch logistic model may be appreciated

by comparing it to "classical" models of test develoPment:

A psychological test having these general characteristics
would become directly an alogous to a yardstick that measures

the length of objects. That is, the intervals on the yard

stick are ect2, theindependent of the length of the obj
length of individual objects is interpretable wltholat

spect to whiC h partictlar yardstick is used. In contrast/

tests del'ieloped according to the classical model have neither

characteristic. The score obtained by a person 12 inter

pretable without referring to both some norm group
and the

particular test form used. . . No longer would ecilaivalent

forms need to be carefully developed, since measurerrient i5
instrument independent and any two subsets of the

Qalibrate
d

item pool could be used as alternative instruments. gimi-

- larly, independence of measurement from a Particular popula-
tion distribution implies that tests can be used for persons
dissimilar from the standardization population without the
necessity of collecting new norms (Whitely 6 Dawl. 1974'
163-164).

Examples. Calibrating a test using the Rasch model results in a

logarithmic ability estimate being assigned to everY possible
raw score

This estimate indicates the amount of ability required to achieve that
raw score. A comparison of the ability estimates assigile,4

given

the degree to

distriblatl'ons
indicate

raw score by two samples with different ability 2

which Rasch model calibrates a test independently of

the ability level of the calibration sample.

Wright (1967) studied the responses of 976 beginning lavi
students

to 48 reading comprehension items on the L.S.A.T. To obtain samples

with different ability distributions, he selected tWO contrasting
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groups from his total sample. The lower group included the 325 students
who did poorest on the test, with a top score of 23. The higher group
included the 303 students with the highest scores, with a bottom score
of 33. Wright compared the similarity between the two sets of Rasch
ability estimates and the two sets of percentile ranks. Figure 1 shows
the results, in terms of "person-bound test calibration," where a plot
of raw score against percentile rank clearly shows two different ability
groups. If a person is said to be in the nth percentile,'reference must
be made to which group that person belongs.

After subjecting these same data to the Rasch logistic analysis,
the test scores are transformed into ability measurements along the
ordinate. Figure 2 shows that the curves for the best and worst exami-
nees almost completely overlap.

The difficulty estimates based upon these dichotomous examinee
groups are statistically equivalent. Therefore, these estimates are
independent of the ability of the examinees in the calibration sample,
and maybe used over the entire range of ability. Comparing the call-

ibration curves of these figures shows the contrast between (1) calibra-'
tion based upon the ability distribution of a standardizing sample, and
(2) calibration that is free from the effects of the ability distribu-
tion of the examinees used for the calibration.

Can ability be measured in a fashion that frees it from dependence
on the use of a fixed set of items? If a pool of test items has been
calibrated on a commohscale, can any set of items be selected from that
pool to make statistically equivalent ability measurements?

Wright (1967) tested these hytmtheSes by making it as difficult as
possible for person measurement to be item free. He divided the origi-
nal test items into two non-overlapping subtests, tile easiest items
comprising 'one subtest and the hardest items. comprising the other sub-
test. The model predicts that ability estimates based upon the easy
subtest should be statistically equivalent to those estimates based
upon the hard subtest.

The solution required converting the scores to log abilities, .and
then standardizing the differences in ability estimates. First, for
each score, the corresponding log ability on the calibration curves was
obtained (see Figure 2). For each pair of scores (from the easy and
hard subtests), a pair of estimated log abilities was obtained. Then,
a standardized difference was found by dividing the difference between
the easy and hard subtest ability estimates by the measurement error
of the differences. If the ability estimates are statistically equiva-
lent, then the distribution of standardized differences should have a
mean equal to zero and a standard deviation equal to one. The obtained
values were .003 and 1.014, respectively.
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Applications. A more detailed example will show how the Rasch
model was used to analyze the results of a criterion-referenced test
(Kifer & Bramble, 1974). The data, were obtained from 201 college stu-'

denf taking an 84-item multiple choice examination in introductory
,edu--tional psychology.' After discarding items that did not fit the

el, the final test contained 68 items.

Comparison of the Rasch-derived ability estimates to a criterion
score can .proceed in two ways.

The first is analogous to determining the probability of committing
a Type I error in classical hypothesis testing. That is, if the cri-
terion ability corresponds to the null hypothesis, we must determine the
probability that an obtained ability could have arisen from random sam-
pling from a distribution with a mean equal to the criterion ability and
a standard deviation equal to the error associated with the criterion

ability.

The second is analogous to determining the probability of commit-
ting a Type II error in classical hypothesis testing. That is, given

an obtained ability estimate and associated error, (standard deviation),

we seek the probability thatthe criterion ability could have been ob-

served from random sampling from the distribution corresponding to the
obtained ability estimate.

Kifer and Bramble chose to define their criterion score as 80% of
the items correct or 54.4 items correct. Their cutoff score was there-

fore 55. A raw score of 55 yields an ability estaate of 1.69, with a
standard error of .33. Suppose a raw score of 60 were obtained. What

is the probability that this score exceeds the criterion score of 55?

t

The solution requires that we find the probability that this score
is part of the criterion distribution, with mean equal to 1.69 and stan-

0 .......224111g equal to .33. (1) Kifer and Bramble's parameter estimates
show that an observed score of tO has ,an ability value equal to 2.32.
(2)' 2.32 - 1.69 = .63 units of difference between the observed and cri- 1

terion abilities. (3) .63/.33 = 1.91 standard deviations of difference

between the ability values. (4) A table of the normal distribution

shows that 1 - F(1.91) F .03. Therefore, the ability value of 2.32
has a probability = 603 of coming from a normal distribution with^a
mean = 1.69 and standard deviation = .33.

Page 34, pare 6, line 3 -- (Bp) "deviation" -- not'devision"
There is a second method by which ability estimates may be com-

pared to mastery standards. This method requires the probabilit that

the criterion ability is part of the distribution which has a venvi
(observed) ability as its mean 'and the given ability standard error

as its standard deviation. We now need to find the, probability that
the true ability corresponding to a score of 60-does not exceed the

criterion ability. (1) Kifer and Bramble's parameter estimates show
that an observed score of 60 has an ability value equal to 2.32 and a

34
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standatd.error eqUal to .39. (2) 2.32 - 1.69 = .63 units of difference
'between the observed and criterion abilities. (3) .63/.39 = 1.62 stan-
dard deviaitons of difference between the abiliti9s, (4) A table of the
normal distribution shows that 1 - F(1.62) = .05. Therefore, the abil-

I$ity value of 1.69 has a probability of .05 of coming from a normal dis-
'tribution with mean = 2.32 and standard deviation = .39. Therefore,
the probability that an examinee with a score of-60 has a true ability

. below the criterion value = .05, which is the.Type II error analog that
the criterion score would not be obtained by chance given the obtained
ability:

Anderson et al.- (1968) investigated the hypothesis that Rasch item
easiness estimates are independent of the ability of the calibrating
sample, and that the item easiness estimates p.re more stable when only
items that fit the model are)considered. They lised the 45-item spiral
omnibus intelligence test for screening appligaits to the Australian
Army or Royal Australian Navy. Samples of 601. 4ecruit applicants to
the Citizen Military Force (CMF) and 874 recruit, applicants to the Royal
Australian Navy were studied. Twelve items we're deleted for zero or
for 100% correct responses.

For the CMF sample, 30 items (91%) fit the model at the .01 confi-
dence level, and 25 items (76%) fit the model at the more stringent .05
level of confidence. (The level of confidence represents the probability
of obtaining the observed pattern of responses, assuming that the model
is adequate to explain performance on the item.) For the Navy sample,
the corresponding findings were 22 items (67 %) and 16 items (48%).

The correlation between the item easineSs' estimates from both sam-
ples was .958 (based upon 33 items). When:the items that failed to fit
the model at the .05 level were deleted, the correlation increased to
.990. It therefore appears that the item 4asiness ratios were indepen-
dent of the ability of the samples from which they were computed: It
should be critically noted that an intelligence test was used, and that
the two subject populationsdprObably did nOt differ significantly.

In a more recent study, Tinsley and Dawis:(1975) gave four types
of tests (verbal, numerical, picture, and item-symbol analogies) to four
groups of subjects: college students, high, school students, civil ser-
vice clerks, and clients of the state Division.of VocationalRehabilita-
tion (DVR) . If Wright's (1,567) findings pouldbe replicated, then the
ability. estimates of,.one group should correlate highly with the ability
estimates of another group for the same test. Of the 10 correlations
that were computed (e.g.,-college students and high school students for
the picture test, high school students and. DVR clients.on verbal analo-
gies), all reached +.999. The invariant relationship between the ability
estimates calculated for a 25-item verbal analogies test for 630 college
students and 90 DVR clients replicated the relationship reported by
Wright (1967) and shown in Figure 2. Tinsley and Dawis conclude that
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. . . Rasch ability estimates are invariant with respect to the ability
of the calibrating sample." (p. 337)

Tinsley and Dawis also investigated the degree to which the item
parameters (item difficulty estimates and z-item difficulty ratios) were
invariant when the analyses were performed on all items of the test.
The correlation of item difficulty estimates for a given test from two
examinee groups tended to be rather large (+.90). Interestingly, cor-
relations close to zeroArere obtained from the DVR group with both high
school and college students. This unexpected finding may be attributed
to the small (n = 89) sample of DVR subjects. Generally, the item easi-
ness ratios were invariant with respect to the ability of the calibrat-
ing sample of examinees, even though several of the comparisons used
samples of questionable size.

Evaluation. The studies cited have demonstrated that if the assump-
tions are met, or even reasonably approximated, then person-free test
calibration and item-free person measurement can be achieved by using
this one-parameter logistic model. Although Hambleton and Traub (1973)
report that a logistic model, with an item discrimination index as'a
second parameter provides a better fit to their data, the inclusion of
this second parameter violates\true "objectivity in measurement" (Wright,
1967) :

Several potential shortcomings may pose some difficulty in success-
fully implementing the model: (1) a pool of items must be developed
that conforms to this item-analysis model, and the items must be cali-
brated (perhaps 20% of the items will have to be either discarded or
revised); (2) the item calibration and standardization procedures re-
quire dozens of items and hundreds of subjects; (3) the* model does not
make direct predictions about optimal test lengths or cutting scores as
do the models of Macready and Novick and Lewis; and (4) the mathematics
of the model can become quite complex, posing problems for actually im-
plementing the model and for interpretation of output. However, recent
publications and the availability.of computer Programs (Wright & Mead,
1975, -1976) alleviate this difficulty.

The major virtues Of the Rasch mologel can be summarized as follows:
(1) Once a test has been standardized on any group of subjects, it can
be given again to a different group, without the need to create parallel
forms. For example, a test which had been developed by giving it to
"masters" could later be given to "nonmasters." (2) All abilities will
be on the, same scale, regardless of the subset of items from which these
abilities were estimated. Thus, person A can be measured on a hard test,
and person B on an easy test.
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Regression Theory

Assumptions ipd Rationale. The criterion-referenced testing litera-
ture has tended tWemphasize the supposed dichotomy between classical
test theo d the emerging CRT theory. The following discussion of
regression as a mean for assessing mastery is intended to point out
the similarities between several CRT strategiet and classical theory.
Specifically, both the Bayesian and logistic models produce estimated
distributions of ability, as does classical regression. A cutoff score
must still be set at some point on the ability (score) distributions,
regardless of what model is used to derive the distributions. This sec-
tion simply portrays classical regression theory in terms of CRT theory.

The regression-theoretic approach of the "classical testing model"
(Lord & Novick, 1968) describes the reason for lack of perfect mastery-
nonmastery observed scores in terms of specified or estimated errors of
measurement. The observed score is considered to be an unbiased esti-
mate of an examinee's true score. It is then possible to derive a
regression function that could be used to estimate true scores from
observed scores. The equation for the regression function is

R(TIX) = r
xx'

X + (1 - r
xx'

)m
x

, (19)

where R(TIX) = the true score T given the observed score X, rxx, = the
reliability of the test, and mx = the mean of the observed scores.

The magnitude of several types of error may also be determined.
The error of measurement is the error involved when, for a randomly
selected examinee, we take the observed score as an estimate of the
true score. This can be expressed as E = X - T, and the random variable
E, taking on values of e, is called the error of measurement. The
standard deyiation of this error of measurement, calleorthe standard
error of measurement, can be expressed in terms of the standard devia-
tion of observed scores and the reliability of the test:

S
E

= S
x rxx') (20)

The different between the linear regression estimate and the true
score itself is cal d the error of estimation, and is expressed sym-
bolically as e = r

xx
(x m) (T m ). (21)

The standard deviation of these errors, called the standard error
of estimation, is expressed as s

e
= s

x
./r

xx
.(1 rxx ). (22)

Example. A graphic representation of the regression technique for
a five-item test is shown in Figure 3. For each observed score, an esti-
mated true score is obtained from R(TIX), and the standard error of
estimation se is calculated. 'A cutoff score based upon true scores may
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Figure 3. Regression of true score on observed score for a five-item test.

rt)
J.d

then be specified. (In this example, a true score of 4 correct has

arbitrarily been chosen as the cutoff score.)

The output of the regression model, like
that for the Rasch model,

is a set of distributions.
The mean of each distribution is the value

for each R(TIX), and the
common standard error for all of the distribu-

tions is se. If the decision rule requires that all examinees be classi-

fied as masters when the value of HIT X1 exceeds the criterion, and that

all other scores should lead to
a nonmastery decision, then the probabil-

ity of misclassification can be calculated.

For persons with, observed
scores and estimated true scores below

the criterion value, the probability
that such persons might be misclas-

sified as nonmasters is simply the proportion of the distribution ex-

ceeding the criterion value.
For persons with observed scores and

estimated true scores above the criterion,
the probability that such

persons might be misclassified as nonmasters is the proportibn of the

distribution below the criterion.

TheSe probabilities of misclassification are represented as dotted

and crosshatched areas, respectively, in Figure 3. If we assume that

the,error of estimation is normally
distributed, then the probabilities

can be readily obtained from a table of normal probabilities.

Two final'comments are necessary. First, this procedure uses the

standard error of estimate, rather than the standard error of measure-

ment; se will always be smaller than
sE, since more information is used

in calculating the estimated true score with a regression function than

in estimating true score as the observed score. Thus, there is good

reason to use the estimated true scores R(TX) in any analysis of test,

data. Second, the assumption of normality becomes important only when

calculating misclassification errors. If the standard error of estimate

cannot be assumed to,be normally distributed,
it may still be reported,

and may prove to be useful, in obtaining
an estimate of the goodness of

the test.

Evaluation. The regression theory approach is not a predictive

model in the sense that the models developed
by Dayton and Macready,

Emrick, Millman, and Novick
are predictive of desired test lengths and

optimal cutoff scores.
However, the regressiou approach does give prob-

abilistic estimates of true scores, given the observedscores. The

assumptions of normally distributed
standard errors of estimate and of

,

equal standard errors for all abilities may also be difficult to meet,

although such departures may not pose a serious problem. And, since

this is a linear regression model, it
is assumed that the regression

of true scores on observed scores is linear. This is a generally rea-

sonable, though perhaps overly simplistic, assumption to make. Because

the regression model has been used for many years longer than the other

models reviewed in this paper, there is a greater theoretical and
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empirical literature to back it up than there is for the newer, less
established models. For a more technical critique of the use of re-
gression models for estimating true scores from observed scores, see
Appendix B.

SUMMARY AND CONCLUSIONS

Nature of Performance Acquisition

Performance acquisition is assumed to be an all-or-none phenomenon,
according to the models developed by Emriek and by Dayton and Macready
.(see Table 1). Hence, these models assume that error-free test per-
formance is also dichotomous. But the binomial, Bayesian, logistic,
and classical regression models assume that performance acquisition is
continuous. Performance on dichotomously scored test items must there-
fore be mapped onto an equivalent position on the uhderlying ability
continuum (Roudabush, 1974). It is not"possible to decide unequivo-'
cally that one assumption is more correct than the other, since the
naturelof,performance acquisition most likely interacts with the par-
ticular type of task. Some tasks tend to elicit unitary, highly prac-
ticed, sequential behaviors,, and would seem to be performed in an all-
or-none fashion. Tasks which require multiskilled performances would
more closely approximate the assumptions of the continuous skill
acquisition models.

Measurement Error

Measurement error, is defihed as the difference between observed
test score and true (unobservable) score that would be obtained if mea-
surement were perfect. It is most important when one tries to infer a
true "error-free" score from observed data. The Block and Crehan methods
do not estimate a true score( nor do they deal directly with measurement
error. Rather, they relate observed scores- directly to an external cri-
terion. Hence, any systematic error will not be a problem. But random
errors which affect the consistency of observed scores will disturb the
measurement process for individual cases. Fortuitously, such errors
will tend to average out across groups of examinees, allowing generali-n
zations to.be made which should IN\ valid in the "long run."

-The a12-or-none models deal with measurement error by stipulating
values for the probability of masters committing errors and for nonmas-
ters guessing correctly. These values are obtained by fitting the all-
or-none models to observed data. Responses from both mastery and non-
mastery groups can be described by binomial distributions.

The "continuous" models of Novick, Rasch, and regression theory
deal with measurement error by reporting a standard error for each true
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score estimate.. In particular, the Yt.asch model provides a check on how
rirwell the model's output approximates the observe score matrix '(Wright)
and Mead, 1975, 1976). "Best fit" techniques a required for the
Bayesian and regression models. The binomial models do not rely direct-
ly on observed data, and hence, do not deal directly with measurement
error. Instead, for any hypothesiZed level of mastery, the models pre-
dict the observed score distribution. Adequacy of the models' predic-
tions can be evaluated by_fitting data to the hypothesized distributions.
A more. complete comparison of how these models are affected by measure-
ment error must await either Monte Carlo simulation studies or consider-
able efforts of empirical research.

Classification Error

Unlike measurement error, classification error refers to assigning
individuals to inappropriate mastery level groups--masters....to the non-
mastery group, and nonmasters to the mastery level group. Such errors
could occur even with error-free measurement. However, measurement
error interacts with classification error, further complicating the
decisionmaking process of assigning examinees to mastery level groups.
Suppose that, because of measurement error, all estimates of true score
tended to be inflated. For a given decision rule, this would tend to
decrease false negatives and increase false positives. Unfortunately,
constant measurement error is the exception rather than the rule, making
it virtually impossible to correct for it, and therefore separate it
from classification error.

The Block and Crehan models deal with classification error empiri-
cally by comparing the decisions based on a test score with an external
criterion. Hence,..the classification error can be determined simply by
counting the number of observed misclassifications. If examinee groups
remain similar over time, these models probably provide useful and stable
estimates of misclassification error.

Because none of the other models incorporates an external criterion,
a diredt measure of classification error is not possible. Instead, the
models rely on the distributional information obtained for the estimated
true scores. With this information, it is possible to predict the prob-

, .ability of misclassification, given-various cutoff scores. Further em-
piric?' work which incorporates an external criterion is needed to

4 verify the accuracy of such predictions.

An essential ingredient of decisionmaking on the basis of CRT
scores is the concept of cost--both to the examinee and to the system
which he or she is being prepared tojoin. Consider the case of profes-
sional licensing, such as for new medical doctors: with an extremely
stricyriterion, many would fail, morale would be low, and the system
(society) would be deprived of much-needed medical service. However,
with a very lax criterion, more examinees would pass who may not
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(unfortunately) be qualified, and society would thus suffer the conse-
quences of having "nonmasters" in practice. A similar case could be
made for automobile mechanics, military medics, television repairmen,
etc. Emrick's model is the only one that directly incorporates monetary
costs of incorrect classifications into its procedures. However, an
objective cost factor could also be incorporated into the other models
quite readily. But none of the models, as developed, deals with more
complex kinds of cost, such as morale, costs to society (which may have
to bemeasured in terms of utility, not dollars), or even the cost of
testing as opposed to not testing (Nader, 1976).

a.

Test Length

For performance-oriented testing, where each item may require con-
siderable time and expense, it is essential to be able to approxi te
the minimum number of items needed for good decisionmaking.

Neither the Block nor the Crehan methods explicitly deals with
test length. These models were designed to show what happens when
existing test results are compared to an external criterion. However,
since the data are available, it would be possible to reevaluate the
results, assuming that only some of the test items were used. The
regression approach allows for shorter tests, but does not provide
for extrapolation to longer tests.

Since the binomial model does not rely or. observed data, .-7esults
for tests of any length can be predicted. This asp,ct of _Ae,nodel is
particularly attractive, since a first apprc:dr, tion to test Tergth can
be easily tried out.

The all-or-none models use observed data to heir- genc,rate t7-_e neces-
sary parameters. Once the values are available, it is possible 7_o pre-
dict the results for tests of any .length. As the Bayesian
such predictions will be valid only if the exami-lee groups' rema'm rela-
tively stable.,

The Bayesian models can also be used as a predictbr for test re-
sults of any test length. However, estimates of the values of several
prior probabilities must be specified. In order for the-predicted
results-to be applicable to real data, the estimated prior probabili-
ties must be close approximations to the priors as determined post hoc,
after data have been collected. The main feature of this model--to
reduce test length,as a function of increasing prior informationwill
be minimized to the extent that the prior information departs from cor-
rectly characterizing the population's proficiency underinvestigation.

The logistic model Of Pasch can only be used to predict the results
on a test that includes items that have already been calibrated. How-
ever, the logistic nature of the model makes it extremely powerful in

%
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this respect. Since the item difficulty values calculated as part of
the procedure are invariant across examinee groups 0f differing
any subset of items can be used with any group of egaMilles. Further;

more, the errors associated with each calibrated item avai
which can lead to precise predictions of classificatiori rror f°1- tests
made up of a subset of the original item pool.

Conceptualization of Mastery

Y models that explicitly define mastery are all_orThe only
models. Deviations from perfection or total lack ofobility .are

°f the0' the

specified definition of mastery.

defineclas measurement error. Mastery is not explicitly
other models. other perform`

or an estimated true score on a
Performance is related to sole

test
continuunl

isa

Either test
ance (Block and crehan)
provided. The models can then be used to evaluate result 0r1 ellY

These (continuous) models require that the tester be extremely sen-sitive to system requirements. If mastery is defined ill terms Of
very

high performance, then very few examinees are likelY to be classified
of demandingas masters; however, .if mastery is defined in terms

standards, the tester (and the system) runs the risk of having a mas-
tery group that is less than adequate. Thus, the velidit'l f the defi,

-----T\D Y_4-c ° crlICi.nition of mastery in terms of the system requiremen-- eomes a al
issue. Empirical studies are needed in specific content t(, deter

arean
mine "how much ability" a master should have.

Characteristics of Items

Only the Rasch in thislogiAtc model, of all the models di- ousnea
eli paper, is designed for item analysis. Other models relegate,

assumptions or as definitions, such matters as how iteme
are

a;-1_te e .

item difficulty, item homogeneity, and item independence, Certainly it

an item set can be shown to violate these assumptions or definitions,
the application of such a model would be questionable. T

cal or empirical work has been done to demonstrate the robustnessIof
theoreti...

these models to violations of the assumptions.
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APPENDIX A

A GENERALIZATION OF THE EMRICK MODEL FOR THE CASE OF
UNEQUAL PROPORTIONS OF MASTERS AND NONMASTERS

Kenneth I. Epstein
1

The phi coefficient is a legitimate measure of correlation for
data'expressed,as frequencies or proportions; it is not appropriate
for conditional probabilities. The entries in the table of measure-
ment errors proposed by Emrick and Adams (1970) and Emrick (1971a,
1971b) are conditional probabilities. A simple numerical example
illustrates the type of problem which may occur if conditional prob-
abilities are used to calculate ci5. Assume that a group of examinees
is made up of 80% masters and 20% nonmastprs, that 10% of the mastery

'group incorrectly respond to 'an item, an that 5% of the nonmastery
group correctly respond to the item. This situation is represented
n a fourfold table in Table A-1.

Table A-1

Hypothetical Response Data for
Masters and Nonmasters

True State Observed lesponse

Wrong Correct

Master .10 .70 .80
Nonmaster .15 .05 .20

.25 .75 1.00

,7

0'0
The phi coefficient for Table 1 is:

. .

(.70) - (.10) (.05)
= .5774

V'(.80) (.20) (.25) (.75)

above represents a valid use of the phi coefficient.

0.1My appreciation to Dr. George Macready for pointing out the problem
and suggesting the direction of its solution.

a.
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We may now calculate a and 13 for the above da2ta. a is defined as
the probability that a nonmaster responds correctly. (3 is defined as

the probability that a master responds incorrectly. For this example:

a = .05/.20 = .25G liA a = .750

= .10/.80 = .125 1 - S = .875

These data are represented in Table A-2.

Table A-2

Measurement Errors and Mastery State
for Hypothetical Data

True state Observed response

Mastery
Nonmastery

Wrong Correct

13 =

1 = a =
A

.125

.750

.875

1 - S = .875
a = .250

1.125

1

1

2

The phi coefficient for Table A-2 is:

(.875) (.750) - (.125) (.250)
(I) = = .6299

V(1) (1) (.975) (1.125)

J

Clearly the two calculated values of (I) are not in agreement. Table
A-2 is the sort of analysis proposed by Emrick and Adams. It does not
represent a valid application of the phi coefficient.

Fortunately, one can obtain a table of proportions similar to
table A-1 from a table of measurement errors similar to Table A-2,
simply by multiplying each entry in the mastery row of Table A -2 by the
proportion of masters, and by multiplying each entry in the nonmastery
row of Table A-2 by the proportion of nonmasters. The general form for
this relationship is represented in Table A-3.
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Table A-3

Table of Proportions for Observed Responses
and Mastery State in Terms of a,' P(M) and P(M)

True state Observed response

Mastery
Nonmastery

Wrong Correct

'C

P(M)T
P(M) (1 a)

P(m) (3 + P (M) (1 - a)

p(m) (1- 13)
P(M) a

P(M)a + P (M) (1 a)

P (M)

P(M)

1 . 0

The phi coefficient for Table A-3 is derived as follpw:

P(M) (1 - 13)P(M) (1 - a) - P (M) (3 P (F1) a

litip(m).4- F(17) (1 a)] [P(M)a + P(M) (1 -.13)] P(M)P(M)

P(M)P(M) [ (1 13) (1 a) (1)

V[P(m)13 + P(M) P(M)a] [P(M)a + P(M)- P(m)3) P(M) P(M)

P (M)P (M) [1 - 13 -

+ P (M) 2(3 - P(M)2 132 + Nib 2a + P(M)P(M)

P(M) 2a2 - P(M)P(M)a + P(M)P(M)a(3] P(m)P(F1)

P(M)P(M) [1 a 13]

P (m) P 6;10

+
P(M) P(M) ai P(M)

"3 1- P (A) 13 P(M) lj P(M)

[F (M) F (T) )2

[1 - a -13l

a + 1 - (3
P(M) a2
P(M)

241 - a - + 2a13 + P(m) (3 132) + P(M) [a aP (n) P(M)

+ as]

Finally, we note that for the case where P(M) = P(M), the formula
above reduces to the formula given by Emrick and Adams:
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11/1 - a - 13 + 2 as + 13 -a 2 + a - a2

[1 - a a]

41- [a 2
- 2 a6 + 132]

[1 - a - S]

For the example cited in the text,

.06 - .12 .82

- .0036 .998
.822.

If we have a three-item test, upon substituting into equation (3),
we obtain

k -

.12 1 L2
log (log

1 - .06 L1 (.5)

log (
(1 - .06) (1 - .12) )

.06 x .12

log .128 + 0
- .4339.

log .0087
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APPENDIX B

CRITIQUE OF THE SIMPLIFYING ASSUMPTIONS IN USING
REGRESSION MODELS FOR ESTIMATING TRUE SCORES

FROM OBSERVED SCORES

James McBride
Army Research Institute

Since R(Tlx) is not an unbiased estimator of T, the standard devia-
tion of the error of estimate e is not the same as the conditional
standard deviation of the true score for a given observed score. That
is, if e is an error of estimate (T - T), then C2(Elx) = c2(Tlx) + bias2.
Here, C2(Tlx) is the conditional variance of the true scores for given
observed scores, which is the dist ibution portrayed in Figure 3 and used
for inference to the misclassifica ion probabilities.

However, a2(clx) (or equivalen ly, q.2(E)) is then not the appro-
priate variance unless there is no bias; that is, unless E(TIT) = T.
And this latter relationship is generally not the case. Estimation of
classification error probabilities using C2(E) as the conditional vari-
ance would therefore be inappropriate.

Linear regression of T on x is a convenient simplifying assumption;
but in actuality, the regression may often be nonlinear. Also, the
distribution of errors may seldom be normal--or even symmetrical; the
same holds true for the conditional distribution of T. In sum, the
estimation of error probabilities from simplified linear regression
models may be considerably distorted due to the above complicating
factors.
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