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The standard statlstlcal analy51s of data. classified

in two ways (say into rows and columns) is through an analysis of
variance that splits the total variation of the data into-the main

effect of rows, the main effect of columns, and the interaction
between rows and columns. This paper presents an alternative Bayesian
analysis of the same situation that is appropriate for certain types
of prior knowledge. It leads to a rather different treatment of the
three factors just mentioned. This analysis proposes a four stage
‘model. The first stage describes the dependence of the x's on the
thetas; the second, that of the thetas on the alphas and betas; the
‘third describes the structure of the alphas and betas; and a fourth
stage is necessary to describe the prior distributions of mus.
Appendlces provide derivations and a numerical example.
(Author/CTn)
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. A BAYESIAN SOLUTION FOR TWO-WAY

‘ ANALYSIS OF VARTANCE'

by S

Dennis V. Lindley’ g ' . ;

University College lLondon - C _ ’\‘/. ‘
i SUMMARY
. \ The standard statistical analysis of data classified in two ways (say

into rows and cplumns) is through an analysis of variance tha;.Spléts the
total yariation‘of the data into the main effect of rows, the main effect

of ¢columns, and tﬁe interaction between rows and columns. This paper
presents an glfernative Bayesian analysis of the same situation that is. \\_//
appropriate for certain types of prior knowledge. It leads to avrather

R different treatment of the three factors just mentioned. y

o

‘\1The research reported herein was performed pursuant to Grant No.
OEG-0-72-0711 with the Office of Education, U.S. Department of Health,
Education, and Welfare. ‘Contractors undertaking such projects under:

. Government sponsorship are encouraged to express freely thelr professional
judgment in the conduct of the project. Pointd of view or opinions stated
do not, therefore, necessarily represent officlal Office of Education
position or policy.
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In this paper, we consider the analysis of data (x_ ., ) having the

: _ ‘ 11k A
/f . following ?robabilityustgucturé.,-For piven parameter values (eij) and (oij),
y . the random vériabﬂes k;jk are independent ?and norﬁally distributed with
E(xijk)l= eij and var(xijk) = Oij : here 1.=1, 2, ;5.,‘m;_j =1, 2, ..., N0}
) and k = 1, 2, ..lf ryy - |
' An example where this model for data might be approbriatg iéi&here Xk
L is the performance of a subject in an educational test, the subject haying
' “' ’Begnfto School 1 and College j, there being ?1jlsucH subjects aﬁd the |
’ suffixlk sgfvipg to enumerate them. ;here,.eij—would correspond to the
qtrue ?core of subjects f?pm.School 1 and College j on ;he:Fesf, and ofj .

would measure their variability. Any analysis of the dat% would investigate

what effects the school: and college “attended had on perfofmance. At first,

3
) '

. .we shall confine attention to the case where the variabilities oij are all
the same, equal to 62;‘and there are the same numbers of subjects in each
group, so that rij =r, say - This 1s usually referred to as the orthogonal
case, and its analysis is rather simpler than that for the general sitdation

.

which is discussed toward the end of the paper. Rather than refer to

schools and colleges, we shall use the neutral terms "rows' and "columns";

f xijk is then the kth observation in Row i and Column j, the data being

5 conveniently laid out on the page in such a row and column formation..

~

Let us first recall how such data are traditiohally analyzed. Any
good textbodk on statistics thate deals with the two-way analysis of variance,

with {nteraction, will provide details beyond the sﬁﬁmary which follows:

-

for example, Snedecor (1956, Chapter 11). We use the familiar "dot"

N notation for averages. Thus, x, = =7 xi.k/nr,‘the mean of the data in
. v j,k '
Row i, the dots replacing the suffixes j and k over which summation has

The usual analysis breaks up the tatal sum of squares about
: ’

' , )
- x_,.) , into at least four componcnts.

/ \ 3 all mean, z (
i,i,k
Firstly, thHere is the main-.effect of rows

*49k




neZ(x, -x ) s (1)
i.. ne
i .
and Secondly..’l that of columns ) .‘\ -
» 2 ) 4
mrr(x , - x,, ,)» - - (2)
j <j- : . ,

The third is the interaction beryeen rows and columns
Sy .

o

- : Tl (Xi~ ~x, - -x . %t X...)z' , (3)
- S,y L "3 - ‘ B
. ' l.~
and the last is the Fegidual, or within grouPS, SUM of gquares - /
N |2 R : -~
™
Tk, %, ) . (4)

2

4

On division by theif appropriate degrees of freedom, each of the firsg

i A
three pay be tested 38ainst the last using the familjsr F-test. If, for

example, only the fiTSt test ig significant, then the column, and interaction
effects are supposed zero and Oij’ for all j» 1S estimated by X,

Compayjsons between these meayg are effected by Wultiple-combarison procedures

of which Scheffé;s is, perhapg, the most popular. | }

‘. -This analysis, apart frop being opén tO the usyg] criticisms that canp

be leyeled against SiS“ificance tests, is unsa isfacfory in that it forces

one ingo the position of ‘havipg to be dogmatic about yhether ajpartiCU1?r

effecy exists, or not. ThUS) several escimatés of éij are available_depénd?ng

on the res@%ﬁs of the tests, \Two‘are X .. (mentioneq above) and .

Xio.o + x5, C x..; {i{ TOW and columﬁ, but no interacti‘on, effects GXiSF)T

A better procedure ¥ould be go estimate tﬁe size of each of these effeéts

and egpimate 01,'aCF°rdi“glv- The methods developed pelow do just this and,
L1

for example, weight the row ip which;.{)ij apPEGYS.heavi}y if the row cffecg

appears to be. largé- Sig“ifiéanée tests are, ther8by,'évoided:

For the one-waY classification, where E(Xik) = 0., such an analvsis has

been gjven b& Lindley (1971) and extended to other sjtyarioms in the contexe

J
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of a geperal theory by Lindley and Smith (1972). In this paper, we apply’
the regylts of the latter reference to obtaiq an estimate of eij that usés

xij_, Kivor X 500 and X in a balance that depends on the relative sizes

of the main effects and interaction. In order to utilize this theory, it is

necessary to describe the prior probability distribution of the (eij)

(and .a1g0 02, tut in the first analysis this will be supposed known). In
the One-way case, it was suggested that the joint distribution might

)

reasonably have the PTOPerty of exchangeability; that is, be invariant
A

under any permutation Of the syffixes. This propertv is clearly inappropriate
in the two~way case aS is seeq by considering the joint distribution of a

pair, g _ and Under exchangeability, this distribution is the same
ij r :

S

for any pair of (diff?tent) 8's, whereas it would be reasonable for the

s

relatiop between aii and Bis (j # s) in the same row to be different from

that berween o,: and 8., (1 # r) in different rows (and columns). In our
. ij .

example, knowiedée of the performance of subjects at School i and College j

ﬁight affect knowledge of Subjects from the §§gg;school at another college,
whereas it might say little about those %rom a different school at the
college, We, therefoTe, have to express the priqr ideas other than through
exchangéability- We use, instead, a modified form of it.

Our prior opinions Mmight lead us to think that the value of Gij is

influepced both by the Tow and the column that it is in. If these effects

are asgumed additive, We might suppose

where u is an overall mean, (Qi) and (B,) respectively describe row -and

]

column effects, and (Yij) Tepresent independent error terms, say, normal

2

with zerc mean and variance ¢ Alternatively expressed, we could say;

2 .
given U, (ai)’ (Bj), and O.» the 9's are independent and normally distributed

with

(J .



E(e =p + a

13 ity - (s)
o/ ‘ 2 <
and variance cc . The rows and columns might reasonably be exchangeable;

2

P

and hence, givén Has Hyo» 90 oi, we might suppose the a's and R's

;fndependent and normally distributed with E(ai) =M E(Bj) = |

2
b

b’

var(ai) = Uz, #hd var(B,) = o

3

This -model fits conv%niéntly into the framework developed by Lindley

‘and Smith. 1In their terminology, it is a four-stage model; the first stage

¢

describes the dependence of the x's on the 8's; the second, that of the
- /

.

. \
9's on the a's amd B8's; the third describes the structure of the a's and
) & - |
B's; anq a fourth Stagggis necessary to describe the prior distributions

As iﬁlﬁérlier examples, this distribution can be supposed

v

of ua and Ub

. diffuse [and tﬁe variances for Wy and My allowed to tend to Lnfinity: 1t

is possible to proceed with the analysis of the four-stage form, but it

is convenient to reduce it first to a three-stage version with a diffuse
prior at the third and final stage: the two analyses are equivalent, except
- . Y

for one point to be discussed later in considering the variance estimation.

To derive the three-stage model, consider the distribution of the 4's,

&

given b, but not the 's and B8's. From (5), it is clear that the covariances

/

ar? given by . : ) ‘x

cov(Oij, Ors) =0, . ’i $r,j#s . (6a)
cav (8 6, ) = 02 : j # s (6b)

i3’ is/>: a’ J ’

— 2 )
cov(Oij, Orj) =0 itr . (6¢)
and '
' : 2 2 2

= + + )

cov(Oij, Oij) ' 9 9 oC (6d)

Y

(The last is just the variance of ¢,, .) For example, the difference between

ij
(6a) and (6b) is just the distinction we were discussing above concerning

- -~




\ ‘ .
. - ' C .

subjects from the same School (row) i . Consequently, a second stage,

which replaces the second and third étqges of the first model,,suppoées

(eij) has .amwltivariate norpal distiibution with covarii;ig sgrucfure

given by equatiop (6) and cqnstant\eea9 {.(now incorpora 'nﬁ My aéd pb):'

Thé third (and.f)nal) stage says Ehe‘knogledge ofell is diffuse.

' IThis is‘the\modgl we suggest might be abpropriaté for some two-w§§

analyses.‘ Wé'mUﬁt gmphasize'thqt there may well exist two-way situations

in which‘the above prior Speciﬁicationi(in the second and third staggs)

is quite unsuitable. Before performing an analyais of the type suﬁgested'

below, it must first- be checked that the mddel is reasonably suitable. Our

second- and third-stage forms are assumptions that may not always be. rbalistic.

1
For example, suppose the rows (schools).weyre of two types, say urban anl .

> ” N
rural, then the a's (in the four-stage form) would not be exchangeable for

™

t ‘

‘all i--perhaps, only within-urban and within-rdral schools.® '1;

With this cautiony let us summarize the model:

First stage. ..Given (Oij)’ 02; the (Xijk) are normal and indqpendent

.
’

2.
with'E(x,., > = 6 and variance ©
1jk ‘

ij
. 2 2 -~ 2 . .
Second stage. Given H, Oa, Ob’ Oc; the (9ij) have a multlvariatp

) ¥
normal distribution with dispersion matrix, given by equations (6), and

E(Qij)_= Mo ‘
Third stage. The prio} knowledge of u is diffuse.

2

. . . 2 . .
Our first object is,' for given g , o » and 02, to find the posterior

2
)Ob
‘distribution of the (Ui{)' It i: 18y to see that it will be multivariate
normal; the means will then provide estimates of the (ei.), and the dispersion
matrix will enable standard errors to be attached to these estimates. We

' @ .
later relax the conditions on the knowledge of the four variances and show

how they too may be estimated, merely prqviding revised estimates

Q

—~—



o . .

‘ and standard errors for the 6's. Finally, we discuss the more general first
. 1

'stage whefe va;(xijk) = Oij’ aiﬁ tif number,\rij, of observations varie?
from cell to cell. N i o/ : 4 . !
. Thg algebraic_perivatidﬁ of the estimates ﬂtj of Oij is given In
Appéndix.lz, It 1is gheré shown that .
/o . 02 :
©0* = ——TPL———~; (<,. - x -x ., +tx )
‘ij. r/o’z + G 2 i] . i.. . .J . )
’ ' 2 ! ! . K \
’ + r/o (x -x,..) - ’
, r/o2 + 1 (O2 + n02) i-» .
"~ o ‘a
) *r/oz :
. ﬁ» > 5 D) (x.,. - x...) + x . (7)
' /o 4+ 1/(0° + mol) ] . ) L4
. ‘ . c . b . A )
This is the main result of this paper. The form of this e&éim§te is L

interesting. Lt depends on four aspécts of the data: xii" the mean of the
1 : ) . ) '
obgervations in cell (i, j); X and x.j., the corresponding row apd:column

, the overall mean. It is a weighted combination of 'this

last, §i X , the effect of the row, x - X , the effect of the
N i el .

.. . 3. e

k) |
column, and Xii - Xy - X 3 + x , the interaction effect. The weights
) ) K .. e .o ’

2
depend on :the variances 040 O

b and ai in addition to thx‘residual variance

(from the data) 02 . Some special cases are interesting. Suppose oi =0

so that, equation (5), © is a 1inear combination of the row and column

ij

. . .S :
effects and no interacg;on exists. Then, the first term in (7) vanishes,

there is no contribution from the data-interaction effect, and é?. uses only

X, , X and X . This is a& extreme case corresponding to the assumed °

[ vy

“lack of an interaction as indicated in the usual -approach by a non-significant

F-test for. the interaction. If, in addition to oi = O, 02 = (), the second

term in (7) also vanishes and only the column effect appears from the data.

. , gﬁg oAy

A8
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If oi = () without 03 vanishing, the [irst and sccond

to give a multiple of (xll - X j°)°

LY

comhinations ovccurred.

variances and, hence, the welghts, . /

To gbtaln the posterior variances and covarianc

¢ A
write the weights in (7) as

-

S y r/d2 .
. /C r/'”2 + ”‘.2

.

I}

.

A

x . B B - - . r/02

.-, .. % l;/,o2~

e/l 4 176% + ne?d)
e a

! )

+ x.'
nWa ie- b

N

+ mW, x t
an

B

‘ b r/O2 + 1/(02 + m02
Then, (7) becomes
n¥. = - - s +
o wc(xij. X, X5, x ) wa(xi..
If we furtherhpﬁt ‘
nwd = wa - W, mwb = wb - wC, mpW
and put wé = WC, for symmetry, (7) can pe written

+ mnWx

, .
terms ko (7) combine
Thesge gesults generalize Jdn a' natural

" way those of Léndley (1971) for the one~way case In .which similar wgightbd .

Later, we*shall see how to estimate the four

¢ of these estimates,

(9)

(10)

For reasons given in Appendix 1, the dispersion matrix fér;oi]:is given bv

[compare equations (6)]



h) . . : <
) ; .
2, 9 1
. - Cnv(“lj’ ”rs = Wo /r, ' Ldr, |48 , l(llu)
< ' * ' .
‘ Cov(d s Do)y = (W o+ W)mz/r ' | £.1 | a (llb;
A L] is’ * A ' !
‘ } 2 . . )
’ ceov(0 0 ) = (W Wy 0 by, ‘ (L1c)
SR S R o b
and ) S ‘
. 2 . -
ok (., 0, ) = W +UW + W + Wo/r . (11d) -
1) fj a b ¢ o ,

These expresslons are somewhat cumhArsnme since the #'H’urv fairly
complfcated, but some results are a.little casier. For example, constgér
the posterlor’vnriunub of Qll - Uis (J #s), that Is the difference between

v . - . L
Columns | and s In the same Row i . It is 2 var(Hij)'~ 2 cnv(Ui]. “1%)’
which, from (11 d (11d) is (Wh'+ Wc)ioz/r . For th4 means of rows ~
“(or columns), the res Its are easter still. For example, the variance of
\ . .
k2]

Ui - “r » the differdnce hetween two rows (schools) averaged over columns

- v

(colleges) is (I v, § #°3)

LY
r(h, -0 )= n“zvar(xo . )
{- r. Iy L] rs
1y 1 S
-2 é ( (
= . E ) - D, ., .
n ~Vn vnr()ij) n cov()iJ ;rJ)

2 ~e - - .
.+ 2u(n L)LOV(ﬂLj' Uis) 2n{n L)covﬂuij. Urx)

N

2 v e
23 WoHW, +W +H - (W 4+W) +-(n-1) (W +W) - {n~-1)W
a b ¢ b -a

/ m

from (11), and using (9), this is finally equal to

i

iRy h¢
Bt
zgw . . N .
2 2/r I \ . :
Loy ==y . : (12)
rn a ol 2 2 + . 2 .
o oney
/
p ’
~ (
¢ 14
.
‘ e
.i */L ’-."‘ - i
g T \"I"\.- §
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. v M 4

- ~
'

Slnce’f)tI [equation (7)} Is the posterior mean, the mean of 0i is
) Ot‘, which, from (7), is easily seen to be .
o \ - '-.l . .
' - x + x = R - Y .
l wa(xl" x"') x"' w(’lxl" + (] wa)x‘-.. ’ ‘

a welghted average of x and X . Had x -been used as an estimate,

fe- i

as standard theory would suggest, then the variance for 0i - Or quoted

would be'202/rn rather than this times v given by (12). Hence, our

! .

> .

estimate Is pulled toward the overall meanfand hdas smaller variances when

. compared with other'valuess It follows that thgﬂusual multiple comparison

. - ) '
procedures, such as Scheffé's, are unnecessary in'our approach.’ The
. ’ : .

R L)

shift toward the mean and glie reduced standard errors perform exactly the
A . > ~ . . .

functicon that these orthodox procedures are designed to provide.’

These estimates (and standard errors) depend uponmqowledge of the

v

~r
e

four variances 02’ oé, Oy and oi'. In any application; these are typically
unknowa but can bqyfstimated from the data. This is obvipus for 02 but
. s ‘also. true for the otherk since there is replication of rows.and columns.

We -prbceed to discuss their estimation. B S

Lindley and Smith, in discussing the general theory, shew that if we-

are content with posterior modes for estimdtes (rather than posterior means),

‘we can continue to estimate § by equations (7) provided we insert, for the

i3
+ N .
four variances, modal estimates of them. "It will, therefore, suffice to
find the posterior modes for the variances. It is inconvenient to do this
within the context of the three-stage model because the compression of two

' . : 2 . . :
_stages into one results in Ie (for the original second stage) being combined

with 02 and 02
a

b (from the third stage) in expressions like bi + noi, and we

have the diffthltiés famillar in components of variance problems (or what

,

4o
O

[ERJ!:‘ . " . . B
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v

» 1s sometimes called Type II analysis of variance) of having to estimate

) o~ N ) . - o
2.+ nai separately, and hence oi by subtraction, so leading

Zldnd o
c .

-

‘ o the
c B

- .
possibilfty of negative estimates for ij, or even within the Bayesian
framework, to difficult Célculations. This can be ‘avoided by using the
fourfstage'ﬁodel, when the procedure is essentially to estimate (ai) and
. *2 o N 2 '
(Bj) and, hence, Oa by a multiple of X(ai - a™"; similarly, 9 - Also,
. ) [.‘i * : -

9 . )
OC can be found from the sums of squares of'e’;j - ¥

* .
. — B [s uation
i BJe[ ee eq

(5)%]. Finally, 0" can, be found, although the usual within sum of. squares
v S ~
is not enough since eij is, within the present theory, not estimﬁted by

xij as is usual. Hence, the within-sum underestimates the total varidtion

‘ s 2 7 _ .
that contributes to ¢” . All these ideas are straightforward generalizations

of ideas contained in the papers to which ref Fence-{\ already been made.

The details of the calculation of the pdsterior modes are given in

-

Appendix 2. Equations (2.3) and (2.4) provid
. \
respectively. Notice that only theédeviation

estimates of (ui) and (Bi)’

. ~
rom the mean is estimated,

which is all that is necessary. Distinction should be made between the

estimate of; f%r example, oy by [equation (2.3)] B
‘ ' 2
. o
- * =
(ui u.) 2 Qﬂxl X, )

and that of Oi- by

rnoj + roi
G I 7 (gl )
rnoa +ro_+ 0 ’

2
<

[from (1.18), or (7) on summing over j, and a little simplification.?] The
difference is that Oi is the average for Row 1 over the columns uscd in the

experiment, whereas o, is a similar average not confined to the columns of

i

!
‘the experiment. / In particular, Oz is shrunk more toward the overall mean

A J
™

‘ B O ,



) is smaller

than is GI., since the cogfficient of the deviation (xi - x

~

in the former. ‘ : 7

Equations (2.5) provide the estima&es of the variances, using the
estimates for (ai) and (Bj) jus& obtained as ;ell as those for (oij) already
calcqlated. Those estimates, in turn; dgpend on the variadces, and so some
iterative proceéure has to.be used. VWe  suggest the following} Obtain
initial estimates of the four variances from the usual analysis of variance
qxpfessions, expressdons (1) to (4), d;;idedrby'their respective dégreesroﬁ
freedom. These will be unsatisfactory estimatgs but will serve go provide
weights to be used to estimate the 0's [equation (7)] and the o«'s and 8's.
With these gstimatod, new values for‘the variances can be found from equutionﬁ
(2.5) and the cycle repeated until convergence.

Notice that the estimates (2.5) in{élve quantities derived from the

. prior distributions of the variances.. There is no objection to putting

N 2 . ., ¢ L. .
v, corresponding to 07, equal to zero; but the remaining values Vo Ve Ve
: . , _ , o2 2 2 .
cannot be ignored. The difficulty is that if Oa, Ob’ or OC are small in |

. 2 “ 2 . . .
comparison with o7 (or more correctly o“/r), there is little information

in the data from which to estimate them since the variation in the (Xij-) is

-

R

mostly due to o7 . Ia this case, the prior knowledge is clearly important
- 2
and so naturally ariscs in any estimatien procedure. If O for example,

is large; its estimation is easicr, and in (2.5b), the sum of squares for
u? will dominate vuxaaunless the latter is large: that term and v in the
denominator may be iénored.

Whilst the estimates for Uij’ given the varianges, are almost certainly
satisfactory; it may be possible to improve the esti&ation of the variances
in combarison with the methods given in this paper; and we_hopé to study thes

problem in more detail 1ater. In the meantime, it might be reasondable to

ERIC | {

Aruitoxt provided by Eic:
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guess fhat‘the term mn’ in the denominator of (2r5d)‘might be replaced by
the degrees of freedom (m - 1)(n - 1). Iﬁ deriving modes, rather than

means, the usual integrations that -remove degrees of freedom do not take

* ~

plaée, and hénce, the divisor always involves the total number, here mn,
of.parameters. Another way of looking at {t is to appreciate that the
modes of marginal distributions aré not the components of the modes of
the wﬁoie distribution. . - .
The discussion ha; so far been confined to the case where there is
the same pumber,.r, of observation in each cell. Suppose now that there
are rij observations in the cell in the ith row and jth column. TIn this
.
it is not possible to obgain simple expressions for the estimates Oj. as
equation (7). Instead, we have tb be content with linear cquations for
them which can then be solved numerically in any particular case. The
éstimates of (ui) and (uj) follow with Tipor modific;tions as do the
estimation of the variances. Details are given in Appendix 3.

The last generalization we make is to the case where the within-cell

2 . . . .
variance Olj is not constant. In most applications, rij will not be

Y

. ) 2 ' . )
large enough to effect a pood estimation of Oij; but if the latter are
assumed connected in some way, then sensible estimation may be possible.

. 2
We have been able to make progress in the case where all the (oi]) are

exchangeable. Ideally perhaps, once could make a modified exchangeability

assumption as we have with the means, but I have not been able to develop

case,

in

a satisfactory procedure. Details with the full exchangeability assumption

are given in Appendix 4. Appendix 5 summarizes the calculations requircd

in the general case. Finally, Appendix 6 provides a simple numerical example.
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APPENDIX 1: Posterior Distribution of the Cell

Means Assuming the Variances Known

When writing oué vectors of elements ’'depending oh two or more suffixes,

we shall use a lexicographical order: thus, § //

T
) 6

= (ell, 12° e, D, B8, B 8

In? 7217 7227 "7 mn)

3

The three—stége model is exactly in the linear framework developed bv Lindley
and Smith, and their corollary 2 [equations (16) and (17)] shows that the

posterior distribution of (Oij) is normal with first and second moments

.there stated. Their notation is

First stage. E(§) = 519

1’ dispersion matrix C

Second stage. E(@l) = Ay, dispersion matrix C

2

Then, the posterior distribution of g, is N(Dd, D) with

1
-1 _ T -1 o IS DU O DS By S
D == 81078 Gy = Cya,(8,C,08,) TALC IR
~and
T -1
d = 5191_§1 : (1.2)

We proceed to evaluate (1.1) and (1.2). The matrix C2 is given in equations
(6): thus, the element in the row corresponding to Oij and column corresponding,
2 . . . .
to 0, (i # s) 1is oa,.and others similarly. The inversion required for (1.1)
< R

is most easily accomplished by solving the equations in z, sz = a . Written

out in full, these are I

2 2 2 f oF
gz, ., + no Z . + mo. 2 o= a, . (1.3) “;:‘,“/
¢ 1ij ai-. b™.j ij o
using the "dot" notation. Summing over i and j, we have _v,wfV’“

Lo



o, 2 2 2
(0C + no + mob)z..

=a.
or
\‘ %
z = a '/vmn (1.4)
. where
2 2 2
Vin = oC + nqa + mob . ] (1.5)
L . .
Summing (1.3) over j, we similarly'obtain o | .
2 2 2
(oC + noa)?i_ + moz, —.ai_
which, on using (1.4), can be written //fn
&
z = (a - m02a /v Y/v : (1.6)
i- i. b " 'mn n
where
v =‘02 + noz . (1.7)
n c a
Similarly,
2
z ., =(a,, -n0"a, /v )/v (1.8)
i . a mn
f
where
' 2 2
= + . 1.9
vy S 0. T moy i (1.9)
Substitution of (1.6) and (1.7) into (1.3) gives
i‘ 2 2 s
no mo
2 o=ofla., - =2 (a. -mola v ) - —L(a . -nola /v ) . (1.10)
g8 c %45 v b2+ Vin v 0] af. '

-1
Since z = Qzlg, identification of terms on the right-hand shows that QZ has

. the same structure as Q2 itself [equatiOns (6)]. For example, all the terms

in rows (i, j) and columns (r, s) with i # r, j # s are the same. From (l.10),

the terms are
%




1, ) #s: 4, (1.11a)
3 : ¢ = \ r.3
i=1r, j#s: f+h, ) (1.11b)
s : .
i#r, j=s: g +h , ' . (1.11¢)
i=r, j=s: . e+ f+g+h N jjfl.lld)
where h is the coefficient of mna in (1.10). That is,

0202 kd .
ab ! 1 ’
h = > <—‘7—+v—> , - (1.12a)

g v n m
¢ mn ‘

f is the coefficient of na, in (1.10); namely,
f=- oz/ozv . (1.12h)
a c¢cn
o« .
Similarly, g is the coefficient of ma 3 SO

2, 2
¥ g = - Ob/ocvm s (1.12¢)

and e corresponds to aij; namely,

-

e =0 . . (1.124)

v

We note for future reference that summation of (1.10) over 1 and j pives

z = a..'(e + nf + mg + mnh) so that, on comparison with (1.4),

e + nf + mg + mnh = vio. (1.13)
mn .

Naving evaluated C—lﬁﬂwa now return to €1.1). A,  is easily seen to be a

) . ¢ 2
fﬁﬁ, ¢ c ' ) T -1

vector, all of whose elements are unity. Hence, 5292 is a (row) vector, all

of whose elements are e + nf + mg + mnh = v;i [from (1.13)]. Hence,

R SN ‘ -1 -1, Tl
~2C2 A, =mnv . Simple calculation shows that 92 _Z(QZCZ A, ) A,C," 1is a

I'e

matrix, every element of which\is (mnvmn)

\

\
\

N | | L |
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1

" . . y : o T
Reference to the first stage of the model ?hQWS casily that AJC, Ay

~1-1
is a dihgonal'matriX‘With evgfy diagonal clement equal (o r/02 . Consequent1y,

—

D Tequation (1.1)] is u matrix of the same fOTm as C;l [equat ions (1.11)7;

-1

but Qith e re?laced by e + r/o2 = 9" say, and h by h - (m“an)r - b, say,

The valyes of f and & are unaltered. Further consideration of the first

: i ‘ b . . 2 .

Stage of the model shOWs that q jg a vector whose (i, §) element is Xij_r/o .

If 9*. denotes the estimate of O.j, that is, the posterior mean of
ij X |

their j,ipt digp{ibution; the corollary quoted about shows that Q* _ pg’ or

-1. ’ ) | !
° Q* S d . Insertin® the valyes of D 1 and d juSt obtained and writing

these equations out ig full, we have

: r _
R .* . } 2
e'efj Fooffy 4 mgofj +mah'07 = Xg. r/g a4

1

[Compare equations (103)]' ?hese equétions are most eagily solved by

writing
S R R I L
R A ] N
- 7
o .= - et , ( (1.15)
i -\i. *
l* * '
Yo, =0 )
.3 S ox ]
and
= o _ _ + X "
Vlj Xij- ; X'J i ) )
Vi. = Xi\' - X y ‘() (1.16)
| )
y.f = X - x
] ] j
\j7 We canp then rewrite (1.14) as
g : . *
Q‘¢Ij * (et H nf)¢i’ Tole + m?)¢fj + (e' + nf + mg + mnh')ﬂ,.
= Oy e Y yr/o” . (1.17)
1j 7 .. |
O

ERIC | | 1
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We note, from (1.13), a@nd the fact thag e' = e + r/gz’ h' = h - (mov_ )L

b

mn
that e' 4 nf + mg + moh' = r/o?
Summation of (1.17) over i and j gives 8% = x , over j alone gives
2
(e' + * 2 g~ or
nf)ey, = v;.r/
N |
\ 4;, = ———QILE—jI* Yy, (1.18)
A r/o” + v
\! n

e + r/oz, éf/(1-12d) and f, (1.12b).

on inseféing the values for e’

it

Similarly,

* r/o2
a ¢~j = —— Yy ., (1.19)
r/o” + v ]

and ingerting these values into (1.17),
1 . 2
A , o¥ o tle
P 1] 2 -2 i]
r/o” + o

(1.20)

RetUrning to the original form in terms of G?j and xij’ we easily obtain the
eXpressjons given in (7).

The dispersion matrix for these estimates (Qhat is, the disperSiOn matrix
of the posterior-noémal distribution) is, by the corollary, D . The equations
just sglved are Q* = Dd, so D may be found by taking the coefficients of the
elemeneg, % r/5%, of d in the solutions. For example, to obtain the
covariapce of O;, and O:S with i # r, j # s, it is only necessary to take the
COEff%Qient of xrs'r/G in the expression for ezj . In the notation given bx
(8) a;d (9), this is €8S1ly to be seen from (10), W since x__, only occurs in
X_ .., these with coefficient W .| All the expressions given in equations (11)

can 3f’obtained in the same way,



. APPENDIX 2: Estimation of the Varianée'CompOnents

- R .-

In the fourfstagé model, descr%bed by (5) and the follow%ng seﬁtence,
the joint probability distribution of all the :andom_quantitieé (Xijk)’

(eij)’ (ai), and (Bj), after integration with respect td the diffuse-priors

of u, Wy and My is easiiy seen to be préportional to “
~mnr -mnt+l -m+l -n+l ‘ 1 2/ 2 .
o o o, o, exp|=’ z ,(xi_k - Xi'-) o SR
1,3,k " |
- 4|-L - _ 2 1 B b- - ; - N2
X exp {_ 2['2,2,(xij- eij) + 5 'Z’( i 0., o, +a, Bj + @.)
G 1,] 0 1,] -
: c
21 ) : )
+—;z’;(ui—a_) +— (B, - 8_)2 . : (2.1)
o i oy ] ]

There, the total sum of squares for the data has been broken into the two
components within- and between-cells. Differentiation with respect to the
8's, u's, and 8's, and equating the results to zero gives modal estimates

for these parameters. It is not difficult to verify that for eij

G;j given by the three—stqge model in equation (7). We proceed to find the

is exactly

corresponding modes (ut) and (8;). The result of differentiating (2.1) with

respect to w is easily seen to be

-

n _n
> pi. - ((1i t) 2 + > , (2.2)
r’J O O
C C a
where bi = Oi- - [ecf (1.15)]. Equating this to zero and using the
estimate of mi. [equation (1.18)], we easily obtain
2
rou_
(o, = a)* = = (x. =-x ). . (2.3)
t rno. + rdz + 02 1-- e
a c
Similarly,
% Emay
' (b~ ) = 5 5 (x . - x ) (2.4)
b ‘e
rmo, + ro + O .
b c



4
With these estimates, it is an easy matter tq obtain equations forx the

) : 2 2 .2 2.
modal estimates of the four variancé components ¢ , 0.1 Op and o. - Suppose

these have independent prior distributions which are all inverse - ¥

@
.

Specificaliy, let

o ) g ’ t

&,

Multiplication of the distribution’(2.1), by this prior, give§ the

posterior distribution of. all the parameters, including the variances,
. ) .
apart from constant factors.x The modal equatibns for the variances are

Py
straightforward since the expression factors into four parts, each depending

. 2 2
. on one of the variances. The results are (we use s for an estimate of o©

rather than the asterisk notation used with the other parameters)

S2 = vl +S +r ¥ (x., - O’,E.)Z] /(mnr + v + 2) (2.5a)
w , . 1 ij
. 1,3 . '
- - !
Sz = |v A+ z(u’f - OL*)ZJ/(m + v 4+ 1) (2.5h)
a a a Rt . -a .
- i
52 = —\r A+ Z(H* - B’k)5 /(n + v, + 1) (2.5¢)
b 'b'b o . b
o] r ) i |
s o= fuo N+ (U#. - 0* - a* + o* - Hf + H*)ZL/(mn + v o+ 1),
c ¢ c 1] . 1 ’ ] ) ¢
L » 1,3 : :
(2.5d)
. 2 N
wvhere § = 7 o (x,, = x., )7, the usual within—-cells sum of squares. For

— W i,k ijk ije

. reasons given in the main text, mn in the denominator of (2.5d) can probably

he replaced by (m = I)(n = 1).

1] ‘L' “’
Q ,

ERIC

s .
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APPENDIX 3: Unequal Numbers of Observations in the Cells >:’

In this appendix, we consider the case where cell (i1, j) contains ri,

observations, not all equal. .Sincq the change fromgtﬁngtant rij = r only

?

affects the first stage of the model, the calculations iﬁ Appendix 1, on

the second stage, are unaffected. However,_ézgzlél will be a diagonal

matrix with diagonal enﬁrf’b 1"ij/02 . The result will be that D_L will not .

have‘a/const nt diagonal entry; and e in C-lﬁwill be replac%d, not by

) 2
/02, but by entries e + rij/o2 .  Equations (l.l&)\wi};, thercfore,

2. % * * * 2 ’
+ 0T, + )+ + ' = . .
(e! rij/o )Oij nfhi‘ mge.j mnh b7 Xij°rij/0 (3.1)

It does not seem possible to write down the solution to these at all simply
and resort must be had to numerical calculation in.dny particular case. The
i
. matrix on the left-hand side of (3.1) is the inverse of the posterior

-

l dispersion matrix, D, and this too will have to be found numerically. It
i - . ~
LI
. N ! .
is not, therefore,\gsssible to give formulae for the variances and covariances

of OTj,“generalizing eqhations (11).

With the 0's.estimated, the argument leading to (2.2) is unaffected and

the «'s may be found Qrom
: 2 : : )

//-\\ * "%y *

o, - = g, -~ 0 . , ..

(e, =) 2 7 Oy =00 (3.2)

. : OC+ Oa :
/
Similarly,
. -
mo ‘
(H, - 8 = ———5 ©, - DR SN . (3.3)
J ) g 4 mo ] . »
- ¢ b

Note that equations (2.3) and (2.4) are no longer available.
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. . - ! - . v “

Finally, the estimation of 02, 02 nd oi [equatioﬁs,(Z.Sde)] is

p> 23

unalt)%ed but the new estimation of 02 is . B o

= . ’ . , L.
+ 2 : .- x (2 // ‘ . ;
= + - + v + A4
s\ [}A + S .+ ierij(xij. Oﬁi):} (R+ v + 2) £3‘ )
. " N ’ . \"' )
replacing (2.5a). There, R="1 AT oy \ : S
‘ e ) i,j & . .
, . Notice the nonorthogonality problems that arise in the usual dpproach——

\ ‘ -
for .example, the nonlndependence of sum of squares——does not matter here.
Nevertheless, the complicated form of the.pqexerior.diSPerqion matrix does “*f
\? N ‘ % A - - .

< make it much more difficult to describe and understaad the .analysis; and for

this reason, the balanced design is much to be pref@ffed.
. | | 3 ‘
. —. o )

Y
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N ..~ APPENDIX 4! Exchangeability and Variance Estimation

. -

>

The main part of this appendix is virtually independent of the rest of

\

L] .
the paper, but the results\ohtaincd therein are then applied to the two-way

. . o 2
analysis when the within-cell variances ij are not constant.

v \
X}

The estimation of varianch has béen.disdussed by Lindley (1971), but

. Y i ' , »
.the analysis there contains some flaws; and we, therefore, agp}oach the
‘ ¢ ‘ .

\

; " problem afresh. The simplest case of variance estimation is where there are

m independent samples, each from a nompal distribution of known, zero mean

. . th v '
but unknown variance. Let the i sample have variance ¢i and denote the

P

.

N , 2 L
data sum ot wguaares about the mean (l.e., zero) by si: this will have n;
~ ‘ . 2 S
- degrees of freedom whare n, is the size of that gample. The (Si) form 4a

.set of sufficient statistics, and the likelihooM for the data is proportional

N

to . ) R ' . v
‘ / D . .
' m S “\s

'Qni
U olexpl- b — ] . : T (4

v
L] ’

+ . .
Supposce ngw that the prior opinions of the variances are that they are
exchangeable.  One way of achieving this is to suppose the.C$i) themse lves

N

Y -, . o i I3 " -
a random sample From some distribution: indeed, if the exchangeability is to
hold for.every m, then tivis is the only way to achieve it. ‘It is convenient

7
- . \
to supposu/thiw distribution to be of the form conjugate to (4.1), namely,
A) . l’
inverse —x~ . Specifically, we suppose the distribution of ¢i to be such

v

. ) 2
~that, for given v and 0, va/d . is xT with v degrees of freedom.  There, v

i
oo 2 . ; 2 . ¢ , - )i
and 07 are hyperparameters, o Weing a weasure of location for <pi (and

v

therefore, by the exchangeab{litv, of every variance) and v measuring the
4 - . o . R .
precision of that (istribution. The prior distribution of the $'s, wpiven
the hyperparameters, (s thereford,

"

ERIC - o Do
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‘ L L .
' " r}? - vo? (uo?y 1
exp b, v + 1 kv, o ‘
[ i=1 i ¢i 28 (Me - 19
This may be rewritten
- m
\ 2. v '
\ _ _ 1. v (va7) v 1 . o ,
. exp T H Lv + 1 LV, , ce (4.2)
3 , 27 (v - 1)
. where
N
le.z m .
¢i H
and ) (4.3)
e, =¢"

so that G and H are, respectively, the‘geometric and harmonjic means of the

~

variances we are trying to estimate.
The next stage is the a;éignment of a prior distribution for v and 02

In the earlier‘paper, équatiOn (l6)’of Lindley (1971), we assigned a distribution

of qzyngjven v; thus, makiné these two dépeedent. It seems more naturalvto

thing of them as independent since they measu;e,quite different features of Y

cﬁé distributions of the ¢'s. Suppose then that Aoéyis distributed: as x2

-on & degrees of freedom, 6§ and X being known constantcﬁalues,.independent of

v whose distribution will be discussed below. Since the mean Of AOZ is §,

>

277 is our prior estimate of any ¢i . The value of § reflects the precision

. g
attached to this estimate and would usually be small., The density of o~ is

then proportional to

, 8- 1
@5 . : (4.4)

&

exp[; EXOZ

4 A

We have to multiply (4.2) by (4.4) and integrate the result with rcspoct.

3 2
to q2 . The only terms #hat involve ¢ are

L(J
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bt nt st s i sy s b e iram oY . e O R B SO SRS
v ;
n 1 .
: A, um + 58 - 1
Lo e exp[f b ( %3 + A)o%](oz) ,
v ‘ ’
and the {htegration gives
- T ! o7
’ 2%(v§'j 6)[%(vm + 8) - 1) : o
my L(vm + &) ‘

(g +M

Restoring’ the tems€§§o far omitted f'n (4.2), we get, apart from constants,

hed 4, \L_,!y ’ ) /
[l’ﬁj\)m + 5) - ].L ‘\)%\)m : 1 ‘ '

G(%? +“1)@ (ﬁg fix)%(vm + 8)

(4.5)

Gy - DT
'4--@ . o \

4

This complicated ékpressiOn can be simplified using Stirling's formula for the

5

factorial function. * Its most convenient form for our purpose is

log(av + b)! ~ c +.(a log a - a)v-+ av log v + (b + Y)log v

N

for constants a, b, and c ...The logarithm of (4.5) is then, apart from a

constant which does not involve the ¢'s, and omitting terms of order v-l

lsm log(H/G);v + !5(m -61)1og v - (m log G + %AH - %6 L\cfg/H) .

=

Hence, (4.5) is, approximately, equal to

. ‘ ' N
1 - _ - /
; exp(~ km log % ~V).v6(m 1)e %AHH%SG m . . (4.6)
. &> -
Finally, suppose v has a prigr density proportional to" .
, -
N e - )
exp (- %A'v)véd 1 . 4.7)

The product of (4.8) and (4.7) 1s then easily integrated with respect to v to

give . -

s ) Y. ?
- L
oA 58 . .

Y

Gm - 1D + %' (4.8)

¢™(m log % + ") . LT
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On multiplying by the likelihood, we have finally for the posterior
’ L

digtribution of the (¢i) a value proportional to

2 S | -1 '
s, ., . Als(m - 1) + %8
expl= %[z = + aH g2 n ) omf log &+ 2 . €4.9)
by ! \ " H ) s

We proceed to find the modes of this distribution .and to use these as

estimates of the variances. Taking logarithms and differentiating (4.9), we

have : . ‘ :
. 2 -
. S, - 2 n
S R
1 mey 4 moy 1 1
. 1 1 _H
T - [s(m - T) + %68') C — - \=0 .
~ . (m log =+ ') | ¢. ¢
\ R . H 1 i
(In obtaining this result, the derivatives
o0 H and G . G
L LI, 5 = =
, 9, mgy 2, m<i>.i

which are easily verified, have been used.) Consequently, the estimate ¢:
3 "

vof ¢i is given by

\

1. - st N\
+ 24 2m=1) + %6 = si ~ AHZ/m + SH/m +

m log %‘+ 2! m log %—+ Al

L L .
% (m 1) + &6 H

Tk
AL

(4.10)
B

This rather complicated expression for ¢: can be simplified. If we put~
A =8 =0, we are [equation (4.4)] effectively assuming that we have little
prior®* knowledge of 02, and we have the usual prior for a variance proportional
-2
g

to . Tﬁis causes no convergence problems in (4.10). We cannot do the

game for v [equatioﬂ (4.7)], but §' = 1 will simplify things a little [for then,




(m - 1) + %6' = lm], while avoidiné‘convergence problems and yet representing

.. diffuse knowledge of v . (4.10) then becomes

(n, + )8’ + —kt -
. 1 G " *
* log E + A
d)i = . - 1 (4.11)
. (ni + 2) + C
log: i + A"

noo gt 2 _ .2
whefe A A'/m and sy Si/(n1 + Z?N

The form of (4.11) is informative. ¢; is a weighted averége,of the usual

estimate, Si (apart from a di.visop)n1 + 2 instead of ni) and the harmonic mean

2

of the ¢'s. (In this mean, we can convenieptly replace ¢I by si .) Hence,

we see that the estimates are pulled toward the harmonic mean just as the

estimates of means move to the arithmetic mean. The welght attached to the
_ G ; ;

mean is the recipmocal of (log T + A") and increases as the geometric and

harmonic means become more disparate (note that G i_H). It is not possible
f -

to let A" = 0, since then, infinite weight is attached to the mean value with

G = H.
Now, let us apply these results to the two-way adalysis of variance. In

~ the four-stage model, the probability distribution will be as (2.1) exceﬁt

that the terms involving 02 will be replaced by

2

Mo Mexpl- % £ (e -‘xi.,) Joi =% L (x| - 81.)2ri./o§. . (4.12)
i 1 BRI hi ] 1,5 1 j 3713
On writing,
2 2 2
- - - , .1
sij(eij) i(xijk Xij~) + (xij~ e{j) rij (4.13)
this becomes
1o Stiexp|- 4% (0..)/0%.| . (4.14)
1,3 4 ij° 137 1]
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P

This is a likelihood of the same form as (4.1) with (bearing in mind the

~ |

double suffixes) Oi for ¢i, sij(e ) for Si, r fdr s and mn for m .

3

We now suppose the Oij

ij 1] v
to be exchangeable. This may not be appropriate
because it fails to exploit the row and column structure of the layout; but

: ; ’ {
as a first approximation, it might be reasonable. If we do this, the

appropriate estimate of 02 is given by the equivalent of (4.11): that is,

.1
2 * N
S,,(067.) + pH :
sij SRS B M (4.15)

- + 2 +

rij 2 p
with
p—l = log _G_ + A" ,

H

G and H being, respectively, the geometric and harmonic means of the (sij).
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~ APPENDIX 5: Methods.of Calculation

>

In this appendix, we deseribe in summary form the,steps to be carried

~out in calculating the estimates for the general case of unequal r, -and 02

. ] ij
(1) calculate from the data the basic statistics,‘(xij ) azf '

I(x,., = x )2 . Insert prior values for A' (4.7)--2" (in 4.19) 1is A'/mn--
K ijk ij. ' .

i

At(t = a, b, c) [for equations (2.5b-d)].

Vs
(2) calculate initial estimates of oi, oi, oi; and 4 pod%ii§?stimate
2 . 2 B
8 of,_Oij using : .
' 2 2 |
\ sy =i(x,, - x ) -1
i- -
52 = rmi(x , - x )2/(n -1) ,
b . *Je «oe
]
2 2 I
s_ = rZ(xij_ i O f x, ) /(m-D@-1) ,
and
2, 2
s*= L (x,,, =%, )7/ L (r,, - 1)
i3,k Ty

(3) With these estimates replacing oi, og, Oi, and 02, solve equations

(3.1) for e:j . In these equations,

=2 _ 2, 2,2 2 - 2y 2 2 2
e = oc., nf = noa/oc(oc + noa), mg, mOb/Oc(Oc + mob)
and
1{> mn0202 | '
nh' = ab . L + = -1, -1 (o2 + n02 + moz)
2 2 2 c a b
ls) o + no o + mo
c c a c - b

. *
(4) Still using these estimates, find (a1 - a.)* and (Bj - 8.) from

equations (3.2) and (3.3).

- % 2
(5) .With eij replacing eij, calculate Sij(eij)’ equation (&.}3) and,
hence, initial estimates, sij, of oij from (4.15). In this last formula, use

- . , R
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G and H as the geometric and harmonic‘méans [equatlions (4.3)] of

2, % '
Sij(eij)/(f1j + 2). ;

o

(6) cCalculate revised estimates of sz, si, and si using. equations

(2.5b-d).

] o - X
(7) With these new estimates of oi, oi, and oi and the estimates of

i

02 ; resolve equations (3.1) except that 02 is replaced by the estimate of

13

2 2 . 2 ,
oij where 0~ divides eij and xij .
{8) Repeat (4) using the new estimates for eij .

1

(9) Repeat (5).
(10) Repeat (6).
Repeat (7)-(10) until the resultg converge.

Notice that in the final solution of (3.1)--stage (7)--the matrix whose
ix of the (8%¥,) and
ij

-inverse is effectively obtained is the dispersion natrg
N /

..

should be made availabler
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APPENDIX 6: A Numerical Example
. . \

In this appendix, we describe the results of analyzing a simple case
’using the methods deVeloped in the paper. Richmers and Todd (1967) give
the following data;,in«their Table (8.21), taken from an experiment_ on. the

breaking strength of three fabrics at four temperatures with two replicates

at each of the twelve combinations. We, therefore, have the tase of constant

v " Temperature
Fabric S
210 215 220 225
| 1.8 2.0 4.6 ' 7.5
A ' : ‘ . ‘
) 2.1 2.1 5.0 7.9
2.2 4.2 5.4 9.8
B .
2.4 4,00 5.6 9.2
A\
2.8 44 870 13.2 B
C .
3.2 4.8 8.4 130

A - r

numbers of replicates, and we assume that oij is also fixed but unknown
at 02 . ‘We, therefore, have the simpler situation discussed in the bulk of
the paper. The prior distribution Suggested therein seems appropriate

except that exchangeability of the column values (temperatures) ignores the

1)
I

fact that they are in sequence. But such information on ordering is

,neglected in’ the usual analysis of variance technique, 80 we &0 the same
! '\\ ',
for comparison purposes. In the standard method,.the 3 degrees‘qf freedom
. ,e -
associated with temperature would be broken up into linear and pethaps

quadratic terms: ‘a parallel Bayesian analysis could easily be developed
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We took v-= 0, v

£ %V " 1 ¢t =a, b, c) in equations (2.5). These correspond

to weak prior knowledge without causing convergence problems. (Values vg = 3
were also tried with only a small effect on the results.)

The next table gives for eacb of the 12 cells the estimate BIj of the
cell mean obtained from equatién (7) wiﬁh estimates from (2.5)‘of the variance
coﬁponents replacing the.g's. Also, 1nc1;aed in brackets is the mean.of the
two original readings for that {cell for comparison purposes. For each row

‘ ~ * *
and column there are similarly given the estimates @, and Bf\f;qm (3.5) and

(3.3) together with the data means in brackets for comparison.

[
Temperature
Fabric
200 215 220 225
1.39 . 2.41  5.11 . 8.80 4.31
A : B '
(1.95) (2.05) (4.80) (7.70) (4.13) ‘
2.24 3.49 6.02 9.85 5.38
B T i . o
(2.30) " (4.10) (5.50) (9.60) (5.38)
: | 3.63  4.85  7.72  11.62 - 7.10
Y o f 1
(3.00) (4.60) (8.55) (13.10) (7.31)

2.53 3.66 6.26 9.95
(2.42)  (3.58)  (6.28) (10.13)
‘ : 2 2 2
The estimates of the variances are s = 0.495, 8, = 0.991, 5p

ai‘= 0.098, These show a large effect of temperature, a smallei effect of

= 5.591,

*
fabric, and a small interaction term. The estimates 6 are, therefore,

1]
dominated Hﬁhthe additive effect of the two factors. These; displayed in the

\)‘ ‘ ’ ' . ‘ 3 Cr;' 1




borders of the table, show the usual shift toward the overall mean. For

example, the value of BI, the mean breakihg strength at 210 1s 2.53, greater

than the observea mean of 2.42.% The shift with the cell means is greéter

vbecause of the almbst complete removaliof the interaction component. Thus,

fabric A at 225 is eStimgted at 8.80 against an observed value of 7.70

\’ which {s a shift'gggx from the mean. Notice that as a result of these
shifts, the estimate of residual variance is at 0.495, much. larger than the
conventionél value of 0.056 obtained from the 12 within-cell differences.

"1 am most grateful to David Christ’and Gerald Isaaés who wrote the

computer program and ran.the above example. Their enthusiasm and expertise

was most helpful and provided an illuminating insight into the merits of

interactive computing.

“y
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