
DOCOREIT RESUME
ob.

ID 166,403 4 ,( TN 007 712
.

MOOR Jovick, Thomas D.
TITLE A Monte Carlo Investiciation of Spuriously Inflated' '-

Regression Estimates.
'PUB DATE Bar 78
NOTE 37p.; Paper.presented at the.Annual Meeting of the

American Educational R search Association (62nd,
Toronto, Ontario, Canada, March 27-31, 1978)

IDRS PRICE ..MF-49.83 HC-$2..06 Plus Postage.'..
DESCRIPTORS *Correlation; *Critical-Path Method; Goodness of Fit;

Hypothesis Testing; Mathematical Models; *Multiple
RegressiOn Analysis; Predictor Variables; Sampling;
Simulation; *Suppressor Variables

IDENTIFIERS *Monte Carlo Methbds

ABSTRACT
A Monte Carlo simulation was used to ascertain the

degree of inflation that can occur in regression estimates when
samples contain randomly occurring instances of a pattern among
correlations called cooperative suppression. Sep thousand samples of
scores on three variables were randomly drawn from a population ii
which the correlations among the variables were prespecified such
that cooperative suppression Aid not exist. Cooperative suppression
occurred in.nearly 48% of the samples but the incidence of regression.
coefficients that *fere grossly dAscrepant from the population
parameters.,was rare. The impliettions for'multiple linear regression
and a method of causal investigation called path analysis are
discussed. (Author/CTC) _

****211***************f**************************************************
* . Reproductions supplied by EDRS are the best that can be mad *

* from the original document. *

**********************************i***********************************,



nA

U S D1PAUwU miOP HIALTt1;
liDUCATIONIII*11LPA011
,NATIOPIAUINITITUTO'OP

UDUCATION

THIS DOCUtENT HAS BEEN WEPRO-
oucED EXACTLY AS RECEIVE() FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESS ILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE 91
EDUCATION OOSIT ION 0 POLICY

:PERMISSION TO REPRODUCE THIS
MATERIAL HAS tEEn GRANTED BY

'1116t#X4S

TO THE EDUCATIONAL RESOURCES
INFORMATION, CENTER (ERIC) ANTS
USERS OF TIIF ERIC SYSTEM "

A Monte Carlo Investigation of'

Spuriously Inflated Regression Estimates

Thomas D. Jovick

March 1978

Center for Educational Policy and Management
University of Oregon

. ,

^ 4
4

r

vr-

Prepared'for presentation at the Annual Meeting of the American Educational
Research-Association, March 27-31, 1978, Toronto, Canada.

MA



Table of Contents

Introduction 1

. , r,

Cooperative Suppression andIts Fffects on Regression Fstimtes'-
Examples of COoperative Suppression

Randomly Occurring Cooperative Suppression:, Hazards to 6

Causal Inference

Cooperative Suppression: Theoretical and Mathematical Considera. ns: . 7 -

Effect of Cooperative Suppression on the Total of Proporti
of Variance Explained

. . . 7

Effedt0f.Coo perative Suppresson on the Beta Weights (Path
, .

13

Coeffidients)

Procedure i..? 14

Resultst ( 16

Characteristics of,the 'Overall Distribution 16

:Incidence of Cooperative Suppression . ... 19'

Discrepancies Between Betas, and Correlations 19

Magnitudes of the Regression Estimates 21

Magnitudes of the Correlations 23

Summary 26

Illiplications for Path Analysis 28

Implications for Future Research. 29

Bibliography 30

Appendix A 32

Population Values for ryl, ry2 and r12



A MONTE CARLO INVE4TIGATION OF
SPURIOUSLY.INFLATED REGRESSION ESTIMATES

J/Tftomas.D. Jovick
4

Introduction

The fields of educational research and evaluation have.recently'elcpressed

interest in the method of path analysis aS a means- of determining causal relar

tionships among, variables in survey data. Like any'other statistical procedure,

it possesses properties- which have not yet been fully as'sortained.: In usink

multiple linear regression as its basic analytical tool, path relies

heavily on sample regression estimates tcy.reflect the validity of, and make

causal interpretations about, a hypothesized model orcausal relationships
A

among variables. Little has been documented-on the likelihood of obtaining
;

regression estimates spuriously inflated beyond their popitlation counterparts.

Such inflations 'may occur when'the pattern of positive and negative signs of

, .

the correlations among the variables produces a statistical phenomenon called'

cooperative suppression (Cohen and Cohen, 1975).

This study provides documentation bearing on spurious instances of

cooperative suppression and the resulting inflation of regression coeffi.cients

in three - variable regression equations, and discusses iinplicatilps of the

results for path analySis. It attempts to provide such data by addressing

four concerns:

1. How often will the pattern among pirrelations_ that is" charattbristic

of cooperative suppression tend to occur in a sample just by chance?

Most simply the answer involves a record of; he proportion of time

one expects to find samples in which r
12

is negative and r
Yl

and r
Y2

are both positive.

)
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In thoSe instances where the pattern does occur:

2. How often will the neative correlation, between independent variables

be, significant, allowing one to infer the presence of genuine cooper-

ative suppression?

3. How much overestimation can be expected in the estimates Urheri the

%

pattern comprising cooperative suppression appears? This would.

tell how much the inflated estimates in general tend to deviate

from their respecti4e population values.

4. What size irvflationi 'generally occur by chance and how much of a

problem are they? Do researchers have much reason to be concerned

about those estimates being grossly inflated and therefore g ssly

misleading?

Although path analysis may employ equations involving several independent

variables, this paper will limit itself to those with only two independent

variables. The immediate tie to path models, then, is with those using a

series of three-variable relatirships.

As an attempt to inform these concerns, this study focused on the random

occurrence of the cooperative suppression pattern among correlations in a two-

independent-variable regression equation and the ensuing,influence on the

regression estimates. The analysis. involved d two-stage process. First, a

Monte Carlo simulation-program generated 10,000 samples of 100 "scores" for

each variable randomly drawn from a population in which the correlations among

thek.,,three variables had been pre-specified such that cooperative suppression

did not exist. For each sample the program calculated correlations and regression
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estimates and recorded their signs and if they were significant for alpha =

.05 (One-tailed). The second stage involved inspecting the data gen;nted

by the Monte Carlo. program. This was done using.prpgrams in the Statistical

Package for the Social Sciences (SPSS) to examine in moxe detail particular

.1samples in which cooperative suppression effects occur.,

.Cooperative Suppression.and Its Effects on Regression_Estimates

Path analysis has been used quite extensively in cross-sectional sociol-

ogical research as a means of testing theories. .Although it cannot prove

causality, it des purport to determine whether a pattern of intercorrelations

among a set of variables can be meaningfully expla4ed-by a particula

retical'formUlation about ordered.relationships. The causal validity of the

model itself rests primarily upon substantive. empirical and conceptual con-

siderations (Kerlinger and Pedhazur, 1973; Amick and Walberg, 1975; Namboodiri,

et al, 1975).

The basic inferential tool crucial to the method is multiple,linear,

regression which allows one to examine the magnitudes and cir?bctions of effects

and their statistical significance while controlling for mutual infl,uences

' among independent variables. The hypothesized causal model itself can be repre-
.417

sented by a set of multiple linear regression equations.*

*Because variables in the behavioral sciences are often expressed in
arbitrary, ,scales, not much substantive information about a path analytic
model is conveyed by non-standardized regression weights, which specify that
a 1.0-point change in the independent variables causes b points change in the
ependent variable. This is because the different scale ranges of the indepen-
dent variables obscure the importance of different variables relative to one
'another when the nonstandardized b- weights are used. t

For this reason the standardized regression weights, Vs or betas, are
used as path coefficients tR represent the direct effect of independent on
dependent variables. Each coefficient estimates the amount of change in
standard deviation units of the dependent variable that is produced by a I-
standard deviation change in the respective independent variable (Amick and
Walberg, 1975).
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It is crucial to realikze that although the R
2
and'betas for any equation

in the model are' central to the analysis, their values 'rely on the correla-

tions among the variables, The way in which correlations of different

k'

magnitudes and signs form different patterns ofr0lationshipS will dictate the

/

character of the regression estimate variety of patterns of correlatAns

among dependent and independent vfariables can exist, each of which has
0

'cations for the magnitude of the regression estimates and their'substaritive

interpretation.

:14
ofien and Cohen (1975) describe the pattern characteristic of cooperative'

suppression as one of.the most attractive for researchers to find.* Its appeal
4

iS in the .charactertic way the estimates get enhanced beyond what one would-\

expect from the correlations between y and each independent variable alone.

For the two independent variable case, cooperative suppression comprises cases

, in which the independent variables correlate positively with Out negatively

wig each _other.

Cohen and Cohen (1975) describe three "attractive" .

, .patterns whose appeal is in the characteristic way the regression
estimates get enhanced in magnitude beyond what the correlations between
Y and, each independent variable would lead one to expect. The pattern
come under the general label of suppression and are conveniently identified
when each beta weight falls outside the range 0 to 1.11.

Classical suppression occurs when ry2 = 0,,ry1 >0, and r.,2 = 0.
Although X2 is unrelated to Y, using it in the regresSipn equation increases
R
2
beyond its value had only X

1,
been used. The absolute value of the bet

are larger than the simple correlatiOns 4th Y; in particular', although X 1
is uncorrelated with Y, its beta weight does' not equal zero.

I net suppression, although all correlations are positive, X2 sup-
'presse -a portion of the variay in Xi that is irrelevant to (uncorrelated

. with) Y and therebf increases R beyond what it would be if only,Xrwere used
in th equation. The beta weights will fall outside the range 0 to ryi, with
the a dition.that the beta fQr the suppressor variable will IDe opposite in
sign of its ryl.

AMY
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Examples of Cooperative Suppression

Cohen and Cohen (1975),describe an in ance-arising in personnetsalec--

tion. A Director of\F"onnel, as'an atte to establish a means f selecting

sa es persons from Among a pool ofolapplicants, draws a sample of crrent sales-

.
:

persons and ebtainS ratings of their overall success in sales performance.
.

Interview datasuggest that social.. aggreSsiveness and habits and skilltAn

record keeping each constitute a major determinant bf Sales. successes.

,

Measures of these two,variables ate administered to the sample, Results

reveal that' the correlation between social aggressivene6-(X1) aftd. sales

success, (Y) between record keeping (X
2
) aid sales success (Y) is

,
. .

:24, and r
12

= -.30 'indicating that those high on social aggressiveness tend

to be low on record keeping skills. /-

. .1

In .this example, high social aggressiveness Aids ,to'gd along With

high sales success but alSo with low record keeping skills, which itself is

incompatible with high sales success.. When a person is high op social

aggressiveness, he also tends to register low record keeping, skills; that low

standing contaminates or suppresses the true relationship (correlation)

between social aggressiveness and 'sales success. In order to determine the

unique relationships to the dependent variables one must control for the

suppressihg influence of the low standing on the other independent varialke.

When that is done, the relationship between Xi and Y increases beyond the

size of their zero under correlation.

The argument about cooperative suppression applies also to X2. That

is, the relations'hip between X
2
and Y is also suppressed by the negative
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correlation between X
1
and X

2
and skiniiarly becomes enhanced when controlling

I(

Randomly dccurring Cooperative suppression: Hazards to Causal 'Inference

If cooperative suppression does not exist in the population, a chance,

still exists that it %'41.11\be found in saMples. nut -of a very large nunibb.;

4..por independent samples drawn from the same population, a number will exhibit

cooperative suppression by chance alone. A certain proportion of those

instances will contain significant inverse correlations between the indepen-

dentvariables, and lead dne to infer that coOpPrative suppression indeed

does exist in the population and that the inflated regression estimates reflect

the true relationships. The remainder will contain nonsignificant negative

r
12

's and not suggest any such inference. In eitheer case, the negative corre-

lations will still occur' and act td inflate the estimates even-though the
tl

parameter for the correlations is zero.

The potential for hazardous inferences in such samples is obvious.

The enhanced values of the estimates give the investigator the false impression

his independent variables explain a good deal of the variance in the depf en-
c...

dent variable and are important and major causal influences because of the

large betas they exhibit.

The prospLts for path analysis are,disturbing for a variety of masons.

Those using the metlitraditiontilly appear indifferent to the magnitudes of

the total proportions' of variance explained by the independent variables in



-7--

eaah,regression equation. However, what looks like large path coefficients

may in total explain little of the variation in the dependent variable,

rurthermore; the analysts tend, to accept at face v6lue the relative magni-

tudes of the math coefficients as a basis for assessing the causal importance'.

or unimportance of directAaonnections,between variables. More disturbing is

the fact that some equations in the model may contain enhanced estimates,

vtiereas others do not. As a consequance, Rae pant of the model may contain

inflated estimates which,appear,large and substantial in contrast to-uninflated

ft estimates in another part of the model. The researcher's interpretations will

0
then reveal "important" relationships among certain vacriables.whose estimates

occurred Merely as alunction.of chanCe fluctuations in sign and magnitude

in the correlation.

Cooperative Suppression: Theoretical and Mathematical Considerations

'This srtion will. demonstrate how the,partialling process in multiple

linear regression enhances the R
2 and beta weights to their proper magni-

tude -s, In order to provide a more encompassing perspective on the problem,

the discussion will deal with the instances for which the independent variables

are uncorrelated, then ose foi which they ,are positively correlated, and

.,finally to the focus of the study, those'for which they are negatively-

correlated.

affect-of:Cooperative Suppression on the Total Proportion of Variance Explained

When,a dependent variable is regressed onto two uncorrelated indepen-

dent variables, X1 and X2, the total proportion of Y variance explained is

ft



a

,

simply the sum of the squared correlations of each X1 with Y or

2

rY2.
(1)

Because X
1
and X

2
are uneorrelated, each squared correlation reflects

.the u ique contribution of the variance in the particular X to the Y variince

(Ker nger and Pedhazur, 1973; Amick and Walberg, 1975).

Normally on., findscecrelations greater than zerobAlreen- the indepen-'
4

dent ,variables, in which cast, formula (1) no longer applies. When all *54

2
Correlations are positive, ry.21 and no longer reflect'unique contributions

of X
1

and X
2

to the Y variance. Rather,,part bf the proportfOn of Y variance

expi n d by one als6 involves part. of th0 proportion explained by the oth.
i' -,--

By notfrtiallng out this redund9nt variance, one risks inferring that

each is' )explaining a greater proportion of Y than it really is.

...
, .

Essentially, the partialling procpss is one of extracting from one of

the independent variables all information in it contributed by the ether

independent variable; then, .the proportion explained by one independent

variable plus the proportion explained by the other after the first has been':

partialledrom it combine to give the total proportion-1'6f Y variance

explained. Inspection of the formula for the total proportion of variance

demonstrates how this happens. i

When a correlation exists between the independent variables'.formula (2)

or (3), whidaro equivalent to each other, must be used (Keflinger and

Pedhazur, 1973), although each reduces to formula (1) when r
12

= 0. _Formula

(2)

=

'/

2 2

1.1
+ rt(

,1)
(2)
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.where r is. the squared semi-partial correlation between X2 Y controlling

40
'for. X; It gives the proportion of variance added by ,X explaining Y after

1. .

taking into account that amount contributed by. Xl. Alternately, R
2

is also

given by the following formula:

2 2. 2
R, r + r

Y(1.2)Y2 (3)

where,r is the squared semi-Ortial,carrelation of Xi With Y controlling

fbrtX The formulas for the semi-partials themseiyes are the key to_ how
...-

and where this shared variance gets extracted.

r
Y(2.1) 2 rY14r12

41" r
12

rY(1,2) rY1 2 1

2
1 r

12

(4),

(3)

4

In formula (4.) for example, when r12 is positive, ryirili is also posi-
t

tive and gets subtracted from ry2 thus taking into account the sharing of

variance in Y due to the correlation between the independent variables

(Kerlinger and Pedhazur, 1973).

With cooperative suppression') the presence of a negative"correlation

lends a peculiar twist to thisiTtion of extracting variance shared between

independent variables. When r.
12 Y

is negative, r
2

1 Y
and r

2

2
agano longer

-reflect unique proportions of Y variance explained by X
1,

and X
2

respectively.

The negative correlation, however, indicates that the independent variables

A.

OA



are. mutually suppressing some of the variance in Y each explains by itself, IF.

Father than extracting shared variance, the partialling process adds this

"hidden" part of the unique variance back into each independent variable's

zero-order relationship with the dependent variable,

R4ferring to formula (4)" again for illustrative purposes, we see that

the influence of the .7.1egative correlation takes place.in the term ry1ri2 of '

the numerator. rp is negative, ryir12 .is also negative but its absolute

value gets Added to ry2, in effect increasing the correlation between X2 and

Y after controlling for X1.

Table 1 presents some fictitious data to illustrate the phenomenon

characteristic of cooperative suppression. The left half presents the

estimates when no correlation exists between the independent variables and

serves as a comparis-On for what happens to them as the correlation becomes

increasingly negative.

The table shows thati in all instances, the R
2
increases as a function

of taking into account the inverse relationship in the independent variables.

As the correlation becomes more negative, obviously a greater portion of the

unique relationship between independent and dependent variables is suppressed;

\
when that inverse relationship is taken 'Into account, the R

2
increases more

and more above what would be expected if no correlation existed between the

independent variables. For example, when r
Y1

and r
Y2

equal .2, one doesn't

expect the total proportion of variance to be greater than .08. Yet, as a

functl n of a negative r
12

the R
2
increases beyond this by a minute amount

to .088 when r ?
= -.1 and to a more substantial size of .2 when r

12
= -,6.

/



r12 .4 Zero

TABLE 1- (continued)

R2 0

Standard Error

rY2 Y1.2 Y2.1 of Betas
r
12

R
2

13 13

Y1.2 y2,I

Standard Error'

of Betas

4op .400, .32o .400 .400 1080 -,ioo .360 .440 .114 ,opo,

-.150 .380 .470 ,47o .080

-,200 .400 .500 .1fi0 .080

-.25o .430 .530 .530 .080

-.300 .460 1.570 ,,j70 .080

-,400 .530 .670 .670 .080

,150 .250 .090 ,150 .250 .100 -.100 .093 .180 .270 ,100

.150 .098 .190 .280 .100

-.200 ,104 .210 .290 .100

-.250 .111 .230 .310 .100

-.300 .118 .250 .320 ,100

-.400 .136 .300 .370 .100

.200 .400 .200 .200 .400 .090 .-.100 ,220 ,240 .420 .090

-.150 .230 .270 .440 .090

-.01D0 .240 .290 ,46o .090

-.250 .260 .320 .480

-.300. .270 .350 .510 .050

-.400 .310 .430 .570 .090



TABLE i

FICTITIOUS-DATA ILLUSTRATING INFLATIONARY CHARACTERISTICS IN COOPERATIVE SUPPRESSION:

INFLATION IN REGRESSION ESTIMATES DUE.TO NEGATIVE r12 COMPARED TO r12 = 0

HOLDING\r
Yl

AND r
Y2

CONSTANT

.11...1m.....r,
X12 = Zero'

Y1
R2

Standard Error

I3Y1.2 'Y2.1 of Betas

.200 .200 .080 .200 .290

r
12 Negative

2 Standard Error
r
12

R
Y1.2 Y2.1 of Betas

.097 -.100 ,088 .220 .220

-.150 .091- .240 .240

-.200 '.100 .250 .250

-.250 .110 .270 .270

-.300 .110 .290 .296

-.400 .130 .330 1330

-.600 .200 .500 :500

.097

.098

.100

.100

,100

.100

.120

.300 .300 .180 .300 .300 .090 -.100 .200 ,330 .330 .090

-.150 .210 .350 .350 .090

-.200 .230 .380 .380 .090.

-1.250 .240 ;400 .400 .090

-,300 .260 .430 1 .430 .090

-.400 .300 .500 ( .59 .090

-.600 .450 .750 .750 .090

L

4
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The phenomenon apparently occurs whether or not r
Y1

and r
Y2

are equal, For

example, when ryl equals ,2 and ry2 equals one typically expects to find

an R
2
not larger than ,2; but as r

12
becomes increasingly negative (-,1 to

7

-.4), the R
2
deviates increasingly above ,2 from',22 to .31, -Ghiselli (1964,

p. 311) rutted the same general trend as part of a discussion about prediction

studies.

Effect of Cooperative Suppression on the Beta Weights (Path Coefficients)

Table 1 suggests that, like R
2

, the beta weights also increase as a

fulction of partialling out the irrelevant portion of variance in the inde-

pendent variables. The increase appears to be more dramatic than it is for I-

R
2

. For example, in the absence of suppression effects when ryi and ry2 equal

.3, one would normally exptict each beta to be no larger than .3; but, as r
12

become; increasingly negative from -1 to -.6, each beta deviates above

expectation front .33 to .75. Similarly, when ryl = .2 and ry2 = ,4,' one

normally expects By1.2 to be no larger than .2 and By2.1.to be no larger than

.4; yet, as r
12

increases in negativity from -.1 to -.4, p
Y1.2

increases from

.24 to .43 and BY21 increases from .42 to .57. The formulas for the beta

weights provide some insight as to why this happens.

Fog' the two independent variable case,

P (6)
r rY1,2 Y1 Y2r12

2
1 r

12

s.

and
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PY2.1
= ry2 - ryir4 (7)

2
1 r

12

Note their similarity with the formulas.for the semi-partial cortelation

coefficients;. particularly, the numerators are identical to those for the

corresponding semi-partial.
4

,

When r
12

equal
s

zero, '13
Y1 2

reduces to r
Y3 -.A.
AT

and $
Y2.1

reduces to-r
12.

NOrmally, with r12 positive, the betas will be less than their respective

correlations because the amount of variance shared between the independent

variables'gets partialled out of each. This is algebraically manifested in

the subtraction of rY2
r
12

from r
Yl

in (6) and r
Yl

r
12

from r
Y2

in (7). In

cooperative suppression the absolute value of the quantities ryir 12 and

r
Y2

r
12

get added in the numerator, in effect enhancing the magnitude of the,

betas beyond ryl and ry2, respectively. Thereby, the true magnitudes of the

relationships between independent and dependent variables are brought to the

surface.

Procedure

The-initial step was to generate, for three variables '(X
1,

X2, and Y)

a sample of scores which were randomly selected from a population in which

the three correlations, r12, ryl and r12, are of a pre-specified magnitude,

Kaiser and Dickman (1962) present a method for randomly generating a sample

correlation matrix from a given population matrix.

I'

#A-,
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Invoking their procedure for 10,000 samples of size n = 100 and

using the same population matrix of correlations, a Monte Carlo computer

program was developed to generate t ree sampling distributions, lone for each

correlation. The populatian parame ers for the correlations * *, their

2

respective beta weights and the total proportion of variance (R ) are:

r
12

r
Yl

r
Y2

Yl

P.
Y2

R
2

parameter value

.0000

.2000

.3500

.2000

.3500

.1625

For each sample, regression estimates were calculated and whether or

not each value was positive and statistically significant was checked. The

maknitude and direction of the differences ay, - ryl and 13y2 - ry2 were

also recorded to demonstrate the discrepancies'between the betas and their

respective correlations in ehch sample. All this informatiOn was stored

on tape for later access.

This study, Jimited the sample size to,100 to keep it in the realm of
sample sizes accessible to educational studies yet sill in the area normally

used.in path analytic studies. In view of the difficulties in obtaining
large samples in most educational research, an N of 100 seemed an appropriate

size.
**
For population values for r

Yl
r
Y2

and r
12,

see Appendix A,
,
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The Monte Carlo method therefore provided the basic data from which

to select out and analyZe the incidence of cooperative suppression'effects,

Canned programs in the StatistiCal Package for the Social Sciences (SPSS)

were then used to examine this data in more depth.

Characteristics of the Overall Distribution,

Across all samples, theamerag: for each correlation and regression

estimate nearly equalled the population parameters and the standard deviations

were quite small. Kurtosis and skewness deviated little froMzero indicating

close approximations in form to the normal distribution. These, data are

presented in Table 2.

TABLE 2

MEANS, STANDARD DEVIATIONS, KURTOSIS, SKEWNESS, RANGES, MINIMA
AND MAXIMA FOR CORRELATIONS AND REGRESSION ESTIMATES

ACROSS ALL SAMPLES (N ' = 10,000),

Mean

Standard Deviation

Kurtosis

Skewness

. Range

Minimum

Maximum S

c

2
r
12

r
yl

r
Y2

8Yl 13Y2

.002 .20' .347 .20 -.344 :176

.099 .097 .087 .091 .086 .066

-,045 -.103 -.011 -.092 .033 .052

-.017 -.111 -.193 -.099 -,172 .357

.759 .748 .629 .728 .626 .453

-.383 -.161 .014 -,172 .009 .004

.376 .587 .643 .556 .635 .457
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Table 3 presents the distributions in terms of the percentage of cases

falling into + 1, 2, and 3 standard deviation intervals around the parameter.

The midpoint for each segmented line has been set equal to the appropriate

population parameter and standard deviation units marked Off on each side,

The parameter values appear in parentheses adjacent to thb-name of each

estimate.' -Consult Table 2 for the appropriate value of the standard deviation

for the correlations and reeression estimates. Entries are the percentage

of samples' falling in the specified interval, e.g., 33.8% of the sample r12's

were within 1 standard deviation below the parameter aud 13.4% were between

-1 and -2 standard d viation.

When'correlations are sampled fro?a population in Which the relation-

ship is pther than zero, the sampling distribution tends to be skewed, as

suggested by Table 3. As a further check on the performance' of the Monte

Carlo program, distributional properties for r
Yl

and r
Y2

were compared with -

those for the normal distribution with mean equal zero and standard deviation(

e_equal 1, that is N(0,1). in order to express such distributions in terms of.

N
a normal distribution, first it was necessary to employ the Fisher r to Z

transformation of the correlations. The transformation is:

Z = 1/2 log 1 + r xy)

1 r
xy

The resulting sampling distribtuion will be approximately normal with a

standard deviation of 1

N-3

The distributions of.the transformed r
Yl

and r
Y2

values for the 10,000 samples

1

closely approximated the normardistribution.
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TABLE 3

A

PERCENTAGE OF ALL SAMPLES FALLING INTO f 1, 2 AND..3 STAND
DEVIATION INTERVALS AROUND THE PARAMETER FOR CORRELATIONS A

REGRESSION ESTIMATES (N = 10,000)

-2

S-2

1

-1 - Paramete'r' +1 +2

Value SD SD SD

(0.0r
12

(.20)r
Yl

r
Y2 (35)

(.20)

.31r2

(.35)

Ra (.1625)

2.1 13.4 33.8

tit

2.4 13.5
1

33.3

2.6 13.8 32.9

sr
2.3 13.6 33.3

2.6 14 33

.3
1

10.2 33.5

,1 1

34.2

2.0

34.5 14.3

35.4

34.3

13.5

14.3 2.0

35 13.3 a.6
1

t, 1

34.8 16.8
1

3.8
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Incidepee pf Cooperative Suppression

Out of the 10,000 samples, the pattern characteristic of cooperative

suppression occurred in 48% or r763 samples. Of these 91,2% e4,343) had

a nonsignificant r12, which is 43,4% of all 10,000;'-thus, abolf-43 out of

100 cases had the pattern characteristic of cooperative suppressibn but

would not allow one to infer it exists in the population. The remaining

-8.8% (420) or 4.2% of the entire 10,000 cases had a significant 1.12 for a

.

one-tailed test with alpha = .05; that i%, about 4 out of 10(1,samples did/
. . \ )

allow one to fer the prtsence of cooperitive suppression, even though it

did not actually exist in the population.

Discrepancies Between Betas and' Correlations

When the pattern of cooperative-suppression has been found, regardless

of whether or not r12 is significant, one expects the beta weights to be

larger than their respective correlations, and this proved to be true for the

present data. The information given below illustrates the general sizes of

discrepancies, even though none actually existed in the population.

In each sample generated during the Monte Carlo routine, the correla-

tions, ryl and r
Y2'

were subtracted from their corresponding beta weights,

Yl
and Table 4 presents the means, standard deviations, ranges, minima

and maxima for the resulting differences in estimates for patterns of cooper-

ative suppression only, The mean differences depict the amount of inflation

that tends to occur as a function of the randomly occurring negative correla-

tions between the independent variables. In general, the mean differences

across all patterns of cooperative suppression are slight.
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The range of differences in regression'estimates suggests .the possi-

bility that an occasional case may Kell marked discrepancies, but their

standard deviations suggest that the occurrence of maximut differences

attained in this study is rare (5 to 7 standard dei/jations above the mean-

differencelliL

TABLE 4

ALL, SAMPLES WITH PATTERN OF COOPERATIVE S PPRESSION: , MEANS, STANDARD
DEVIATIONS, RANGES, MINIMA AND1MAXIMA OR DIFFERENCES BETWEEN

CORRELATIONS AND RESPECTIVE BETAS (N = 4,763)

Mean

Standard Deviation

Range

Minimum

4
1, Maximum

-rY1
8
Y2

-r
Y2

.027

6

.l 6

.000

..146

.016

.015

.120

.000

.120

o.,
Table 5,presents the means, standard deviations,'ranges, minima and

maxima for the differences in estimates for patterns of cooperative suppres-

sion with a significant r12. Although their discrepancies were larger than

those for cases with a nonsignificant r12, these instances comprised only

about 9% of alip coopera ive suppression patterns. In light of the small

standard deviations, t is information_ makes it clear that the odds were low

for obtaining a sample with a cooperative suppression pattern in which the

r
12

was significant and in which the estimates'deviated markedly from the

par'ameter.
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. TARLE 5,

SAMPLES WITH PATTyIN OF COOPERATIVE SUPPRESSION AND SIGNIFICANT
r MEANS, STANDARD OEVIATI* , RANGES, AND

1
2'

MAXIMA FOR DIFFERENCES BETWEEN,CORRELATIONS

4

AND RESPECTIVE

Mean

Standard Deviation

Range"

Minimum

Maximum

BETAS'(NI = 420)

ry4.
R

Y2
-r
N2

.072-

.022

.124

.022,

446

.044

.018

.113

.007

.120

Magnitudes of the Regression Estimates

In conjunction with the expectatiOn that the betas would be larger than

the correlations, the regression estcunates in patterns of cooperative suppres-

sion were expected to overestimate their parameters. That is because of the

enhancing effect of the negative r,,, the mean f r the 0 's, E
Y2

's and the
lYx.

R
2
Is were expected to be larger than their population values. This was found

not to be true in the data -of this study.. The sets of information below

elucidate different aspects. of the data concerning the sizes of the sample

estimates.

Table 6 presents th means, standard deviations/, ranges, minima and

maxima for the regression estimates Or, lte 4,753.patterns of cooperative

suppression, The means for all t'h*ree estimates apptar to be quite accurate

approximations to thp,parampWs.

i4 '
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TABLE 6
a

ALL SAMPLES WITH PATTERN OF COOPERATIVE SUPPRESSION:
MEANS, STANDARD DEVIATIONS, RANGES; MINIMA°

AND MAXIMA FOR REGRESSION ESTIMATES
01 = 4,763)

Mean,

Standard Deviation

Range

Minimum

Maximum

Y.1 Y2

2

,.207.

.084

.490

.007

.497

,348

,087

.588

.047

.635 1,

.167

.065

,412

.015

,427

alAlthough the minimum and in imum values attained for all correlations
e

r!

and estimates deviate markedly from the population parameters, the incidence
,

.

of such extreme values was rare. Over all 4,763 instances of cooperative'

suppression, about 70% of the sample 8vi's, Outs, and R
2,

5 fell within + 1

. ii
standard deviation of their parameters and about 95-98% fell within\± 2 stan-

d,

)
dard deviations of their parameters.

When cast in light of all 10,000 samples, these percentages become

reduced by about half. Generally, about 3234% are within + 1 standard

deviation of their parameters and 45-47% are within + 2 standaYd deviations
......

of their parameters.

Table 7 presents the means, standaxd deviatiOns, ranges, minima and

maxima for the 420-Cases of cooperative suppression with significant r12/s,
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The distributional data indicates that about 64-67% of these 420

estimates were with' standard deviatiOn of their population' parameters'

and 87-97%'were within +-2 standard, deviations, This suggests that the

estimates for what one wourd infer to be genuine cooperative suppre'ssion

situations still tend to fall close to their parameters even though they

are ,subject to inflationary effects due to statistically'significalitnegative

correlations between the independent variables,

TABLE 7

SAMPLES WITH PATTERN OF COOPERATIVE SUPPRESSION AND
SIGNIFICANT MEANS, STANDARD DEVIATIONS,

RANGES, MIIMA AND MAXIMA FOR REGRESSION
ESTIMATES (N = 420)

Yl Y2

2

Mean .214 .351 .152

Standard Deviation .078 .091 .064

Range .396 .466 341

Minimum .040 .110 .024

Maximum .436 .576 .365

Out of all 10,000 samples, about 3% had a significant pattern of cooper-

ative suppression with estimates within 1 standard deviation of their

population parameters and about 496rwith estimates within 2 standard deviations.

Magnitudes of the Correlation

Briefly, then,,the inflated betas in cooperative suppression patterns

were larger than their correlation counterparts but still tended to be rela-
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good estimates of their own parameters. This could mean only that

# the sample correlations, ryl and rY2, in these patterns of cooperative
m!

suppression tended to underestimate their respective parameters, In the

discussion'below, different aspects of the data concerning sizes of the

cor tions show this to be true.

Table 8 presents the. means, ,standard deviations, ranges, minima and

maxima for the correlations for the 4,763 patterns of cooperative suppression.
,. eir

The, mean for r
12

was about 1 standard deviation below the population para-
-),

meter, but that was expected since all selected cases had no positive r12's.

The means for r
Yl

and r
Y2

were somewhat lower than their parameters.

TABLE 8

ALL SAMPLES WITH PATTERN OF COOPERATIVE SUPPRESSION:

1

MEANS, STANDARD
AND MAXIMA FOR

.

Mean

Standard Deviation

Range

Minimum

Maximum

DEVIATIONS, RANGES, MINIMA
CORRELATIONS (N = 4,763)

r
12

r
Y1

r
Y2

-.077

.058

.340

-.340

,000'

.181

.086

.475

,000

.475

.331

.088

.604

.028

.632

Although the minimum and maximum values attained for all correlations

deviated markedly from the parameters, the frequency of such extreme values

was low. Over the 4,763 cases, about 70% of the negative r
12

's were 1 stan-

dard deviation below zero, 95% were 2 standard deViations below and 99.8%
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were 3 standard deviations below. About 67-70% of the sample ryils and ry2's

fell within + 1 standard deviation of their parameters and about 95-99% fell

within + 2 standard deviations.

When cast in light of the 10,000 samples, those percentages become

reduced by about half. For ryi and ry2 about 32-54% were within .+ 1 standard

deviation of their parameters and 45-57% within + 2 standard deviations. More

of the r
Yl

's and r
Y2

's that randomly occurred together with the negative r
12

's

were below than above their parameterli. Because of this slight discrepancy

in distributional properties for correlations and betas and the consequent

average underestimation by the correlations, the amount of inflation due to

the negative r12 was, on the average, sufficient to make the averages of the

sample betas accurate population approximations.

Table 9 presents the corrftlation means, standard deviations, ranges,

minima and maxima for the 420 cases of cooperative suppression with significant

r
12

'2 when using a one-tailed test and alpha = .05. The means for the correla-

tions are even farther below their parameters than they are for all instances
a

Atilt the cooperative suppression pattern or those with'the pattern and non-

significant r
12

's. This distributional data shows that 60-63% of the r
Yl

's

and r
Y2

Is were within + 1 standard deviation of their population parameters

and 91-98% within + 2 standard deviations. As before, these percentages suggest

the correlations tended to fall closely to theill parameters, but they are

somewhat misleading by themselves because a disproportionate percentage of ,

of cases fall at the lower end of the distribution. Although this observation

was noted above, it is more marked for these 420 instances.
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TABLE 9

SAMPLES WITH PATTERN OF COOPERATIVE SUPPRESSION AND SIGNIFICANT
r
12.

MEANS, STANDARD DEVIATIONS, RANGES, MINIMA AND
MAXIMA FOR CORRELATIONS = 420)

r
12 Y1 Y2.

Mean -.205 .142 .305 i

Standaiki Deviation .035 .080 . .092

Range .174 .393 .464

Minimum -.340 .003 .070

Maximum -.166 .396 .534

Nearly 3% Of all 10,000 cases had a significant pattern of cooperative

suppression with correlations within + 1 standard deviation of their para-

meters and about 4% within + 2 standard deviations.

Summary

From a population in which cooperative suppression was absent and ryi =

.2, r
Y2

=.35 anot4
12

= 0, 10,000 random samples of size 100 were generated for

a 2 independent-1 dependent variable system and correlations and regression

estimates calculated for each sample. Nearly,48% of the samples yielded the

pattern characteristic of cooperative suppresion, i.e. ryl and ry2 positive

in sign r
12

negitive. Only about 9% of these, however, were found to have

a statistically significant negative correlation between independent variables

for alpha = .05 (one - tailed tes't). This comprised about 4% of all 10,000

.sacples and reflects the overall incidence in which one would incorrectly
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infer that cooperative suppression exists in this particular population,

The remaining 91% of the samples with patterns of cooperative suppression,

or 43.3% of all 10,000, would not have allowed such an inference.

Although the betas were larger than their counterpart correlationso the

'Observation of Oyi's and $1,2's grossly discrepant from the ryils and ry2's

respectively was rare. FLqthermore, the betas did not, on the average, over-

estimate their parameters. On the contrary, the means for Oyi, 01,2 and R
2

quite accurately approximated their paraketers, and the majority of sample

values for each tended to cluster close to their parameters.

The means for r
Yl

and r
Y2

were lower than their parameters and their

distributions were somewhat weighted on the low end. Apparently, a dispro-

portionate number of r
Yl

's and,r
Y2

' falling below their parameters occurred

in samples with .negative. r12'"

The averages for the correlations were not f hly discrepant from their

parameters nor were the distributions highly skewed. The largest discrepancies

and unbalance in the distributions occurred in thosesamples of cooperative

suppression with significant ru's.

In general, then, there occurred a slight discrepancy in the distribu-

tional properties for correlations and betas, the correlations being positively

skewed, and an average underestimation of the parameters by the sample corre-

lations. The magnitudes of inflation attributable to the randomly occurring

negative ru's, though slight, were on the average sufficient to make the

means for the sample betas accurate approximations of their parameters.
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Implications for Path Analysis

The original concern was over the possibility of a path analyst empiri-

cally finding A pattern of cooperative Suppression among some variables in

the mddel although it did not exist among, them in the popilation. Tire related

causal effects which the!analyst would infer to be large would in faCt have

occurred as the result of inflationary effects attributable to the presence

of a randomly occurring negative correlation between the independent variables.

Unknowingly, the researcher would conclude that these relationships in the

model reflected causal influences much larger than actually existed. The

results of this study do have some implications about such ppssibilities but

tentatively must be limitel to causal models with two independent variable

equations and a population in which variables are moderately related and

Cooperative suppression is nonexistent.

The possibility of finding the pattern is good but the, need for concern

over grossly inflated estimates appears minimal. If the pattern occuried

among a set or sets of variables in the model, the betas would not tend to be

grossly exaggerated. This apparently is true regardless of the magnitude of

the negative r12. Although large estimates did appear as a function of the

randomly occurring negative r12, the vossibilityof obtaining estimates of

such magnitudes was low. Indeed, the majority of.values for the regression

estimates tended to congregate near their parameter values. Therefore, the

data suggest that the path analyst need not be concerned over the inflationary

effects on the betas and total proportion of variance explained should a pattern

of cooperative suppression unexpectedly appear in the sample data.



Implications for Future kesearch

To determine the generallzability of the results, two courses of.action

should be taken, One is to'perform a'variety of analyses of this same type

using a sample size of.100 and two independent-variables but with different

positive population correlations between independent and dependent variables,

Beyond tift., studies could alsb vary the magnitude of a negative population

correlation between independent varifbles. One would'then be investigating

the ncidence of suppression and magnitudes of estimatei that ensue when

cooperative-suppression does exist.in:the population,

The second is to repeat all those analyses with differing correlations

,-for different sample sizes. In particular, smaller sample sizes would be

more meaningful to educational research since researchers are often constrained

by the necessity to use units of analysis of which they can obtain only a=

small number, such as classrooms and schools.

32
7
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APPENDIX A

Population Values for ryi, r and r
12

It is interesting and pertinent to path analysis to look at a popula-

tion in which some degree of relationship between each independent variable

and the dependent variable actually does exist. The use of path analysis

presumably deals with a plausibly accurate model in which the relationships

have been formulated on the basis of Other empirical results in conjunction

with theoretical substance. Chances are that some form of the hypothesized

relationships do indeed exist in the population.

Other aspects of this study favored the use of population correlations,

for r
Y1

and r
Y2

greater than zero. For N = 100 and alpha = .05 (one-tailed),

the critical size for the correlation is .165; most r's generated under a

population correlation which equal zero would be con rably smaller than

this. The small sizes of a majority of the sample n's and r
Y2

Is would have

been substantively uninteresting and produced regression estimates whose mag-

nitudes would probably be ignored in a lot of path analytic studies., Therefore,

making the population parameters for r
Yl

and r
Y2

greater than zero was judged

appropriate.

From a purely technical standpoint, sampling from a population in which

these two correlations are positive and the correlation between the independent

variables is zero increase's the chances of randomly obtaining patterns of

cooperative suppression. Because the study intended to examine the incidence

of cooperative suppression in samples when in fact it did not exist in the
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population, the population parameter for r
12

was not made negative. Two

factors primarily determined the choice of parameter values for ryl and ry2,

In order to obtain.a majority of correlations in the neighborhood of those

typically found in studies, it was decided not to Take the degree\of relation-

ship in the population too large. To make the study more interesting, the

parameters for r
Yl

and r
Y2

were made different from each of

above considerations in mind,

With the

his investigatiOn used arbitrarily selected

'population parameters as follows: r
12

. 0,
1
= .20, ry2 = .35.
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A Monte Carlo Investigation of Spuriously Inflated Regression Estimated

THOMAS D. JOVICK:Center for Educational Policy and Management

This study used a Monte Carlo simulation to ascertain the degree of

inflation that, can occur in regression estimates when samples contain ran- .

domly occurring instances of a pattern among correlations called cooperative

suppression. Ten thousand samples of "scores on three Varia4les were randomly

drawn from a population in which the correlations among, the variable's were

prespecified suchthat coopeAtive suppression did not exist. Cooperative

suppression occurred in nearly 48% of the samples but the incidence of

regression coefficients grossly discrepant from the pppulation
9

parameters.

was rare. Discussion centers around the implications for.multiple linear

regression and a method of causal investigation called path analysis.
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