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s I. Background and Motivation

|The "answer sheets" for multiple choice aptitude tests are commonly

\ ' .
considered to be generated by a two stage process. First, an examinee

with some (unobs®rved) ability © is sampled. Second, the various items

\

are answered independently so that the conditional probability of a

randomly selected person with ability © having a specified pattern of
: ’ ' ?.

: /
right and wrong apswefs on the first n items of the test can be expressed

M

in theée form

n ui ., l—ui
n P.(e) (1 -p ()]
¢ s 1 i
1=l‘ X . N . ‘
. \_ . ‘}

where u, = 1 or O according to whether item 1 is correctly answexed . TR
‘ . PR
or not and Pi(O) is the conditional probability of passing the 1 -th M

item. > .

~

The conditiona} passing probabilities or "item chpraétegistic

fﬁnctions" Pi are generally assumed to have one of three forms

]
“

1y . kﬁﬁsch model) Pi(O) = P(® _'bij"

-

(2) (Two parameter model) Pi(Q) = P(aiO - bi)
(3) (Guessing model) P.(8) =c, + (L - c.)P(a,® -b,) .
; . -1 i i i i’ .
' N w
P 'is-usually specified to be the logistic functiod .o
P e et

]

or the normal ogive

A

- ———
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Our results will be applicable to a much wider class of functions P

and Pi -.

For é“discussion of these models and basic parameter estimationw
results, see Birnbaum (1968).

Throughout this paper\we assume that the distribution of ability is
unknown. For comments on this point see section IT.h.1.

_'Our basic resulp prodees a mathematical justification for a
distribution-free method for estimating poipts on item-item'curves, a
method which is currently being used [Leviné'and Saxe, 1976]. (Item-item
cu}ves'are definéd below. iThey play an esseﬁtial role in the application

. -

of functional equations and group theoretical methods to psychometric
problems [Levine, 1970, 1972, 1975; Levine and Saxe, 1976].)

Our results also have implications for pargmeter estimation, \\
\ . . : ) K

\ ' . , .
especially with equation (2) and (3). The extra generality of equations
(2) and (3) seems to be needed for such important applications as the
design of optimal tests, computer supported individualized testing and

the detection of bias in tests. However, the éstimation of item parameters

( IPLIPEN )} is considerably more complicated for (2) and'(B) than for (1).

In fact, it is not known whether any of the parameter estimation procedures

that are now used (that is, used in applications in which the ability

. 1
distribution is not specified) are consistent.

L \.

o~
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Our resultsdgan bé used to show that a simple, common-sense way to,“
estimate parameters (for (é) as well as (1)) is consistent. The results
may be applicable to (3) as well, but an elementary step in the €
verification for (3) has not been proved. | |

It is unlikely that the estimation technique suggested in this‘ q‘
paper will be applied in its present form as it uses data inefficiently.
However, the technique seems intrinsically intéresting.as gn abplication
5f P - P plots [Gnanadesikan and Wilk, 1968]. Furthermore, it seems

important to show that at least one consiétgnt estimation procedure is

available for the general models.
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IT. Tme Model and an Informal Discussion of the Basic Result

Since the result is complicated, we first present the
central finding informally, in outline form, together with some

explanatory* comments.

II.1 Model and Notation

-

We assume that the "abilities" or © 's are obtained by sampling
o/
from a population with a continuoué density dq@pted by £ . The i -th

has the interpretation: u, =1 {if

item score random variable u 1

i .
[}
item 1 1is answered correctly and zero othervise. Pi is called the\\\\\

i -th item characteristic funct »n.
We assume that for each n , each vector of zeros and ones

< MTACTEERTA M > and each interval of numbers T,

‘ ’
Prob{u.l = V), Uy =Vp, +ee u =V . and ? € T}

v

’ n ‘ v 1- ]
==./’II P, (t) 1y . P, (t)] Trr) & .

T i=1

This model will be used throughout the paper.

II.2 Basic Result . .

. We assume that each Pi is strictly increasing and.continuous, that

f is continuous and that these functions satisfy technical conditions

»

detailed in sec¢tion IIT. ) - ‘ -

"~

4,

S
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Consider any two items, say item 1 and 2. The item-item curve

for these items is the point set C = c(1,2) given by
AN

. S
C={(<xy>c¢ d | for some t, x-= Pl(t7 and y = P2(t)]

-

Let d be the usual distance fron a point < X,¥ ~ 1in the plane

to the curve C, i.e., /
J !

a( < x,y > ) = inf ‘ﬂx - Pl(t)]2+ (y - P2(t)]2 .
t

r

Denote by z, the average

N, : ‘ :
This is simply the usual average score or proportion correct score on the

first n items.

Assume ( 1is a proportion in the range of each ‘Pi . Than it is
possible to select a sequence of positive numbers sn decreasing to zero

such that the sequence of points < X ¥y > in the unit square with ce-

ordinates given by the conditional expectations ~ : i

i

»
]

- <
.lzn. ¢l Sn) |

C(ul

<
It
™
~~
s
N
=
!
LA
A
®
S

is evehtually close to C 1in the sense that

) T i ) . ’7
a( < xn:yn > ) —> 0

-t



II.3 Significance of Basic Result

The basic result implies that if a large sample of people is

administered an n -item test, the point in the plane defined by the sample

-

conditional proportions

A e ' :

b'4 proportion passing item 1 among those with proportion
n

correct within s, of ¢

A
+Y = proportion passing item 2 among those with proportion
" correct within 5 of 4 \
A
will be very likely to be close to a point on the curve C. For <§n,yn>
’ ’

can be made arbitrarily close tb <xn,yn> by ﬁaking a sufficlently large

ssmple. And <xn,yn> can be made arbitfaily close to a poinp on the item-
item curve C by taking Qﬁfficiéntly large n . ’

These curves can be used to obtain cohsistency results. For
>
suppose (2) is gprrect and P 1is, say, the logistic function
y = (1 + e-xf;l with continuous inverse 4

P Yy) = -10gl 51,- 1)

¢ -

\
Then the transformation ~ 4

\ i 4 . |
< x,y >—» <P l(x), P {y) > ‘ .
\ S ‘
carries C to the straight line ' .

alx - b1 =’§2y - b2

and the identifiakle parameters (e.g., the slope al/ag\ Qr intercept

(b, - b )/a )Afan be computed by Cramer's yule from any two distinct |
. 3

L

. 9
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points on C . G&ince the formulas of Cramer's rule are continuous,
"a sequence Of polﬁtn converging to two distinct points on ¢ could

he used to define a sequence of estimates converging to parameter

va lues. v,

The cagse on hand is somewhat more complicated. The technical
assumption made in section ITI will imply that if two different pro-

portions £ and {' are used ty define two different sequences .
AN A A
< xn,yn -+ and < x;,y; - , then both will eventually be arbitrartly

close to C . Generally neither sequences will converge (see section
II.4.3). But it can be shown that corresponding points in the sequence

will be "separated," i.e., for some positive ¢ , for all n

A A2 A A
\ - - > .
\(xn xn) + (yn yn) . €

This means that the line connecting (transformed) corresponding points
will converge to the transformed item-item curve line, and Cramer's

rule could be used to define a convergent séquence of parameter

-

_estimates. v

(We consider only two U 's here to keep the reasoning as simple

as possible. In practice it would be preferable to use many { 's and

%

estimatg parameters by fitting a Nne to transformed < I)\cn,g'n > 's5.9
The key points of the aboye scheme for estimating parameters for

equation (2) are: (i) There is at most one item-item curve passing

through two distinct points in plane and (i1) a continuous formula

(Cramer's rule) is available for expressing item parameters as functions
o -y
, ”
‘\\. ~ A - L

’ ' o ‘ ‘

- ‘ \
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of points in the plane. The scheme, thus, clearly could be used for the
"3

W

model in which P {s the normal Hglve, or any other such function

LN

appearing in (). ’ .
One would like to apply this estimation scheme to the commonly used
model In which P is logistde and each Pl" satistiea (3). Buf unfor-
tunately, T have not yv't, succeeded in verifying that for some n there is
at most one item-item curve consistent with (3) and the logistic assumption
pass}ng thgough n  distinct points in the plane. This elementary step and
the exhibiting of a continuous inversion formula presently blocks the
application of the basic result to the most commonly used model, the
Loglstic guessing model.
The item-item cur&es < Pi’Pi .. are interéséing in thedir own
right since they play a central role\in the use of group theoretical
and Fourier methods to analyze test data [Levine and Saxe, 1976]. The"
b ¢ =esult supports a distribution free method for estimating points

'n tiacie curves which is currently being used. (The method is to

AN - \
rorpite the X > 's for man 's and then compute e best
L ) nlyn y g b W w
N \
fi't'ing mcrootonic function to the - X 2¥ Se) L

‘ II.4 (omments

1. If f 1is assumed to be norﬁal, then éstimation problems
.can be greatly simplifjed. However large scale studifés )
have clearly disconfirmed normal and other guesses about |
f the form of f . Consequentiy we choose to make on
plausible reéularity assumptions about the form of ¢ .
2. Our method circumvents the cumplications »f simultaneocusly
introducing new ‘unknown "item parameters” by ;ncreasing test

w length and unknown abilities © by increasing sample size.

11 :




5.

-9_

Since proportion correct 1s a'fraction, z takes only

finttely many different values. Consequently we condition

< upnn z. being in an interval containing { rather than

'('.“ng. \
Convergence of proportion correct 7 to { does not
imply convergence of estimated ability. 1In fact since
blocks of easy and hard items may be interspersed even the

v

sequence, /
C(Olz?n = 1/2)
in which proportion correct is constant can, oscillate

indefinitely. A fortiriori, convergence of gn to

r’S

cannot imply convergencc.of either

C(ul ’z!l’ = Cn)

or
e(uylz = ¢ )

Thus neithep\\\

Yo = &y 12, -] <s)

need converge. All that can be proved without further
assumptions is that < XY > 1is eventually close to

t < P, > .
he curve Pl’P2 -
<
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~ is a constant k such .that
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+ . III. Technical Details

Is acsord with current practice we will generally'uSe
. U ) v@?
5 SN O [ S I S |
: . 1 n-1 i=ar/l - n" . _

I

rather than : o
@ . ' \
' I 1 n I W K .
= - < .
(5) . e(w| |3 Iy thss)

-

Thet is, we condltlon on the average score on the test without the item
being studied rather than on the first \n items. In applications (h)
is preferred to (5) because for short tests the quantities

e(ugl | %>g_u

1

obtaifed for different items J are markedly interdependent [Lord and
Novick 1968, Theorem 16 L, 1] Asymptotically (4) and (5) are the same,
but some of the. proofs using (4) are - simpler:, '

\ .
‘\‘
I11.2 _

It is wellgiﬁbwn that "true score" or proportion correct on a very
loné test is very nearlyAequal to a function of ability. We will use &

more specific result,, namely that under general conditions, if

g > 0O and nsi—’ © , then for a given proportion { there
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‘ . Sy ‘ o
e < - < - f i
<4(6g Prob[gsn < ability C __ksnl IPFoportion correct ;l E_sn] !

—_—

-
‘I'

where On\ is the unique solution to the equation

n

i Pi(gn)

i

- ijhe uniqueness of On will follow from the assumptions to be made
about the P, 's.) ’

This result will imply the key part of the basic result. For

denoting

z; = average sScore on the first n items of the test,

>except for the first item

3

and

we have

= = - . < ! - .
X, Prob[ul 1& |@ Qﬁl ‘kﬁﬂiwlzﬁ ¢l < sn]

+ Prob{u; = 1& | @ - o%f > ksn' |z - ¢] < sn);
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where @ = the ability rendom varisble and ' i -
&
, e n ’
O* satisfies i§2 Pi(Og) =t .

4

 Formula (6) implies that the second term tends to zero. The first term

~Prob{u]__fl& | @ -ogl Eksnl -Izg- ¢l <s]

b Y

equalé

Opke, |
* - < =
/ Pl(O)Prob{Izn ¢l < snl 8 = 0) £(6)ae
0%*-ks ' o
. n Il .
L - * - < L]
Prob[]zn l§| _'é;j

But since Pl will .be assumed to be continuous, this.will be very

nearly
Pl(O;"l)Prob{I 8 - Ogl‘:ksnl |z;+1 -‘;l f,sn] -
which by 46) is asymptotically equal to

¥
Pl(en) :

Our assumptions about the P, 's will imply that % -6 ———>0 .
‘ >

Thus x - Pl(On) will tend to zero. Similarly, if

.Y e(uel I (u tUup+ e ) -t] <s )

then y - P (@ ) also tends to zero, and the distance between < x ,y >
~ n 2''n o S n’Yn

[59
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and curve < Pl'(o),Pe(é) > will tend to zero. Thus to_establish the

result considered in'II.2 it is necessary only"to more precisely formulate

and prove (6). 5‘

IIT.?

L

In this section inequality (6) is stated more completely and proved.

Notation and Assumgtions
L] ‘ n 2 /‘\ .
f = "abllity" density, assumed to be continuous.
(a,b] & fixed interval with a <b .

k= min f(6) , assumed to be pMsitive.

oc(a,b]

P, = "item characteristic function,"” assumed to be continuous,

i
\
strictly increasing, differentiable.

N

N . .
o = igf infee[a,b]Pi(O) , assumed to be positive

= P! .
B s:p SUPg.fa b) i(9) , assumed to be finite

o

¢ = a constant in the range of each Pi . :

n
£ P(0) .
i=1

ISR

6_ = the unique solution to § =
.8 = "ability" random varisble. Has density f .

u; s 1 >1 = "item score" random\vafiabie, satisfies

Prop{ui =.1| @ =6} =P (0) f

<

-
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zn'z "proportion correct" random variable, satisfies
n

z = %-Z u .

1

¥

€ = 8 positive constant. We assume for all n

1

s

a+g<on'<b-g ..

Y

4

A ' .
Asymptotic relation between proportion correct and ability:

4

: %
If s 0O and nsi—aoo » then

‘ * \
Prov(le - 6| >2s /o] |z - ¢l <5 )—>0 .

Proof: Let un(o) denote the conditional expectation

[ S

| o
s(znl ®=0)== 151 P,(0) .

Clearly un(e) is contiﬁuous, differentiable, strictly increasing and

satisfies a < ”A(O) <pB for-aif' n and © € [a,bl

The conditional variance of z satisfies
| .
10 1
= = m— - <
Var(znl 8 =0) 3 Ti Pi(O)[l Pi'(O)] e

Using fhis in Chebyshév'slinequality gives

1

(7) Pr0b{|zn - un(®})| > 8} 5 n g

Ele

|
I
|
|
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From the triangle dneqﬁgiity we have
-t _ >> _ _ _ _ A v
RUNCY Zﬂ,l; > lu ) -l -z -t .
Consequentiy ' P T ‘ ‘
‘ ‘ ' “ . e

(8) Prob{lz_ - ¢| < s| 8 =0} < Prob{|u (6) -z | >[u (0) - ¢l- s|e = 6}

For © ¢ (a,b) . and 0 < s < a|9n - 6| it follows from (8), the
mean value theorem and Chebyshev's inequality that
(9) Prov(fz_ - tl <s|e =0) < E [l -o| - sl
n - l -Ln n :
For s >0, put U = (a,b)n [0 ( 2s/a,8_+ 2s/al® . Then.

%) e'Un . implies 0 < s < 2s <q|® - 0n| ,\ks;(9).can be used to derive

(10) Prov{fz_-t| <s& e €U} 3

n

= E;;lr/ [alon -0l - s]-gf(O)dO
U
n

“?

l.>
2

IN

bns

19

-~

/Prob[|zn -t < s| & = 0}£(0)ae -
U . ‘
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" from (8) *,

e e ‘
YR L -17-
N ~ , B . .
"For /6 € (a ,b )° ana 0<s <agf2
~ . oot ..

5

L
rd
ot

o

A ) .

~

= PI‘Ob{-IZn -‘l-ln(é)l 2 l“n(o) ':Agl - 3| e =0} ,

o
Vg

&

S~ <eron(lz, - w @) 2 min lu(x) - 4l -s[ @ =0) {

'since p.n is monotonic

'
3

.
— .,

<
- (ce - s)

M

from Chebyshev's inequalfty and the-mean value theorem,
l N ~

< 1 1 '
& —In 32 ) N
since Qg > 2s. . "
Combining these results gives
for 8 < /2, t.= 2s/x
: 7
(12) Prob[l'.znv- b <sé& -lon -8 >t)

Ny

o

/ N ' Prob(lzn -t és' 8 = B)r(e)de
g .

an(le, 1>t)



A, ’
- -
i1
. .

. ~=-18- .
g S ., Provllz, -8l < sfe = o)e(e)es:
. wn(le. -6[> ) ok .
a < f £(0)ae & 12

bns

"8 [u,u(a,)°In(le_-0]>t)

, A : . .
Finally, we obtain a bound on Prob[lzn - §| < s} ‘as follows: For
2pe , |0 -0 ]<s/2p implies 6 ¢ (a,b) and |
] N

prob(|z_ - | < s)

s

> Prob{lz_ - ¢l <s& le, - el < s/28)

Q +s/2p : X\ )

= 'Prob[lzn -t < sle = 0)£(0)ao
On-s/2ﬁ i )

> f 1 Prob{fz, - u (0)] + [u(e) - t| <s|e=0)z(e)ae

ents/25 o
zf . Prob{lz, - w (0)] <5 - plo, -0l[e=0)e(e)e0

Onfs/25

¢ ,
' /
> f Prob{lzn - un(o)l"_<_ s/2| @ = 0)f(0)ae
j ® ts/2p
>(1-ﬁ.32-)f £(0)ae
0 _+s/2B
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i e 2 (1 - -%5-)' min Lf(O) - s/p -
t ns aod ‘ , A
. : 2 ‘
) _l »
= ( Ei_??_.b . k/ﬁ . .

ns \
; , \ : .
Combining this result -with (12) gives for s < ag/2, 2p/¢

)

Prob{| 8 - | z'zs/al EX N T<_SJ‘.. .

1
<
-s(nsz - 1) ’;E
. 3 ,

which' tends to zero as s———»0 and ns’ — > , as was to be

&3“ L

v

proved.

5X8)

&~
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Footnote

lI am indebted to Joseph B. Kruskal, Cheryl Reed, Donald Rubin
and Marilyn Shaw for useful comments on an earlier version.of this

paper.




