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TransforMing a Family of Curves i ti a Family of Curves with a Single Shape

Abstrac

The relatively hard problem of transforming a given set of curves

1

tOcurves with the same shape can sometimes be iiedifed to the easier
. ,

..-;,'

problem of rendering curves parallel. In this paper a grou is

1
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associated with the given curves, and it is shown that the-reduction
.

4 '

from the hard problem to the easy problem is valid wheneverth: group

-tc

.is nonabelian. A comprehensive review of bar t work is incldded so
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that this per can(be read' alone. Applications to psychological

measurement are cited briefly.
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__Transforming a Family of Curves into a Family of Curves with a Single Shape

I. Introduction

A problem of considerable importance in psychological theories

and numerous applicati this: Given the graphs of several

continuous, strictly increasing functions, find (if possible) a trans-

formation of the independent variable that carries the graphs_into

curves having the "same 'shape." Curves have the same shape when they

_differ in location and scale only, i.e., when any two can be superimposed

by a horizontal translation and change of scale. Examples are discussed

\
in my earlier papers, especially Levine [1972; 1973, appendix] and

Levine and Saxe [1976].

It turns out that some of the most interesting and important

aspects of the problem remain whenia mathematically idealized version

1

of the problem is considered. Furthermore, a recent successful

application of related work [Levine, 1975; Levine and Saxe, 1976]

indicates that the difficulties which have been removed in the idealized

version are quite tractable in practice.

We consider collections of strictly increasing real functions.

The familiar notion of "same shape" is fornalized, along with the
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important auxiliary notion of "parallel" and of what it means to trans-

form the x -axis by an increasing homeomorphism So as to make a

family of curves the same shape or parallel. At this point it becomes

possible to introduce group theory and obtain a fruitful algebraic

reformulation of the original geometric problems A procedure is

specified for associating a group with a family of functions, and

the original problem is translated into a problem about the

group.

It was shown in an earlier paper [Levine, 1972, see also Theorem 2

of this paper]'that if the associated group has certain special

4

properties, then the problem of transforming given functions into

functions with the same sOpel can be reduced to another problem,

namely transforming a related family of functions into parallel functions.

This result has important practical implications, for it

)
is far simpler to transform to parallel functions than to transfo --to

lifunctions with 'the same shape. Fbr parallel functions there is an

N.

tens

literature containing practical procedures of proven merit, while for

the original problem, there is no such literature.
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. The reduction to parallel functions raises a mathematical question,

that is answered in this paper: How restrictive are the special,

assumptions made about the associated group in order to obtain the

reduction? The answer, given in Theorem 4 below, is that the assumptions

can generally be ignored; the reduction can be used whenever the

associated'group is nonabelian. The proof involves a theorem (Theorem 5)

about groups of real functions which may be of independent interest.

1'
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II. Notation and Definitions

When the domain of function F is contained in the range of G ,

the composition of F. and G , x F[G(x)] will be denoted by FG .

When F is 1 - 1 and onto its range, the inverse function G satisfying

x = GF(x) will be denoted by F-1 .

Frequent use will be made of the fact that composition is a group

operation in the set of all increasing real homeomorphisms. All of the

groups of functions considered in this paper are subgr9ups of the group

of all increasing homeomorphisms.

The following notation conventions will be used. F, G, H are used

to denote functions in a given set of functions (F) or F . f, g, h are
aly

generally used to denote elements in a subgroup G of H of the group
N

rof all increasing homeomorphismn. The symbol e will be reserved for

the identity'homeomorphism x .

Two increasing homeomorphismB f,g are conjugate if for some

increasing .homeOmorphism u.(0 f = u
-1
gu Two subgroups of homeo-

morphism G,H are conjugate if for some increasing homeomorphism u I
Me AO

the mapping g maps G onto' H .



Two subgroup:: that piny an Important role in this paper are

I. the group or all translations, where a translation

is a mapping or form x /(x) = x 4 b ;

the group of all (increasing) affine functions, where

an affine function, is a mapping of form x _.1(x) = ax 4 b

where a is positive.

Suppose F: IR IR is a real function, and u: IIR-+IR is a

homeomorphism. Geometrically, transforming F by u means applying

u to the x coordinate of every point in the graph of F and changing

the graph from the curve ( <x,F(X)> : x is real) to the curve IK.1(x),F(x)> )

While this definition is strongly motivated by a geometric approach in

which we visualize the actual curves, it turns out that 'it is easier

to prove theorems algebraically. Consequently, the transformation

I

of- F u is defined to be the function Fu
-1

. This definition

eXpresses the geometric notion of transformation'because the curve

(<u(x),F(x)>) is the same as the curve (<x,Fu
-1

(x)>) .

r

Two real functions F and G are said t9 be parallel if there

is a translation 1(x) = x + b that transforms one onto the other,'

so that FA -1(x) = G(x) fpr all real Equivalently, F = Gt .



Geometrically this means that the shift along the x -axis

<x,y .4<x F b,y> carries the graph of F onto the graph of G

This merely formalizes the idea that F and G differ only by a change

of origin.

F and G have the name shape if some affine ,( transforms

,- 1
into G and FA = G ; i.e., F = GI . Geometrically, this means

a shift along the x -axis followed by a, dilation of the x -axis

carries the graph of F onto the graph of G and this formalizes the

notion that F and G differ only by a change of origin and Scale.

It is easy to see that "having the same shape" and "being parallel"

are each equivalence relationships, so that We'may talk of a family

of curves having the same shape or being parallel. Thus a.family

or set of curves (F) has the satir shape if every pair of curves in

(F) hasJthe same shape.

Let (F) Ipe a (finite or infinite) set of strictly increasing

real-valued functiOns of a real. variable. A hpmeomorphism u iu

said to transform (F) into functions with the same shape if

(a) the fatily (FU-1) has the same shape.

9



This formalizes the idea that n single homeomorphism trans forms all

the e!urves into curvet which dl fro r only by change of origin and

change of scale. It, is easy to show that (a) is equivalent to

(b) for every pair F and G in (F) , there 1.:; an

affine transformation f(x) = ax f b such that

F Gu

Analogously, u transforms (F) into parallel functions if

(a9 the family (Fu -1) are parallel,

or equivalently if

(b') .for every pair F and G in F , there is a

,
translation f(x) = x + b such that F = Gu

-1
Au .

A well:developed theory exists for functions transformable to

parallel functions, and several different procedures are available to

find u given (F) or to approximate' u from approximations of the

functions )of . For'a review of some of the mathematical literature

on parallel functions and some recent results, see Levine [1970]



and Levine [19751. For a recent application to mental test data, arc

Levine and Saxe, 19761. Additional areas of application are discussed

in Levine [1910, 190. Data analysis procedures of proven merit (which

were developed for other purposes but are clearly relevant to parallel

functions) are discussed in Box and Cox 11964] and Kruskal iI9651.



III: Review or Results on Relations between FamiLies and Group!:

!iota that t the functions of F can be transformed to the same

shape, the range of any function of, V(ititt I to t,111 range of any

other. This is_44eom.(1_!tricaL1y obvious and an immediate consequence r

(b). Consequently we may, without Loss of generality, restrict attention

to families F of strictly increasing, continuous functions mapping
AO

the reals onto a common range-
,

Let F be a non-empty set of strictly increasing continuous func-

tions mapping the reals onto a common range. The associated group G(E)

is the group of real homeomorphisms generated by the set of

functions

(F-1G: F,G is in F)

with group operation given by function composition.

Since (F-1G)-1 is G

of form

-1
F , G(P) is simply the set of functions

-1 -1 -1
f = F1 F2F5 F4 Fr1-1Fn

where each 'F
i

is F .
AO
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2

AssociatedAroupg are often easier to study than families of

.

functions, and ,the properties of families.of-central interest in

this paper can easily be translated into ipOperties of groups Fbr,

example,

Proposition 1: Let F be a set of increasing continuous functions

and u a real homeomorphism. Then u transforms F to functions

with the same shape iff u transforms G(F) to functions with the

same shape.

Proof: If for each F,G in. F is some affine such plat

Fu-11-1 = Gu- then G = u-liu . Thus the generators of G(F)

,
have the form u

-1
Au . Since composites and inverses of functions

having this form also have this form, gi,g2 in G(F) implies that

t

for some affine
2 '

t4

gl =
-1)(

1

u-ii2u

g uH
1.-1

1,
u- 11201 12)

-1
has the same shape as g2u

-1

and u transforms G(F) to the same shape.

13>



Conversely, let F,G be arbitrary elements of F . If u trans-

/'

forms G(F) to the same shape, then for each f,g in G there is

some affine I such that fu
-1

= gu
-1

A . 'Ind particular, f = g and

g =,F-IG are in G , so for some 1,11 =F Gu-1,Ali.e., Fu
'1

= Gu
-1/

IRO

0

There is an analogue of Prdposition 1 for parallel functions.

Proposition 2:. Let F be a set of:increasing continuous functions ,

and u an increasing homeomorphism. Then u transforms F to

parallel functions iff u transforms G(F) to /parallel functions.

Proof: Same as proof for Proposition 1, except t 1 ti 1 t2 are

translations rather than affine.

The question of the existence of a transforming homeomorphism u

can be concisely expressed in group theoretical terms as follows.
e).

Proposition 3: Let F be a set of strictly increasing real functions

with common range. There exists an increasing homeomorphism trans-

forming F to the same'shape iff G(F) is conjugate to a subgroup
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of the affine rou . Theie exists an increali homeomo hism

transforming F to parallel functions iff I1(F) As conjugate to a-
AO PI

subgroup of the translations.

Proof: Fu-1 =, Gu ( iff .(11P = u-liu .

Associated groups can be used to study the uniqueness of homeo-

morphisms rendering functions parallel. Ina sense made precise in
4

Theorem 1 below,such homeomorphisms may be unique except for a'ehange

of origin and scale. This result is needed for reducing questions about

, .

functions with the same shape to questions about parallel functions.

The proof uses the following well-known, easily'proven facts about

the additive.gxOup of real numbers.

1. If G01.1 e two subgroups of additive reals and i :
«

`IG G -01 is a strictly increasing homomorphism, then for
eig

some positive number a , gg)-= ag for all g in G

More, concisely, an additive, increasing function defined

on a subgroup of the additive reals is linear.

FR.)
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2. A subgroup of the additive teals either has ,exactly

one element, has a least positive element,,or is dense

in the reals.

In the proof and throughoutgthe remainder of the paper, "cyclic group"

includes infinite cyclic groups such as the integers.

Theorem 1: (Uniqueness Theorem) If u and v both transform

F into parallel curves and the associated group G = G(F) is not

the trivial group tel or cyclic, then for some affine transformation

Proof: For each g in G there is some translation ( = t such

°

,
that g = u W u Lu(-) + b

g
j and ug(x) = u(x) + bg for all -

real x

In particular, for x = u-1(0) we .have ugu-1(0) = bg Thus

g -,$(g) 14gu- ( ) defines a function from G into 1R 6 Since

-1. -1. -
gh = u

. uu Ahu = u it
gh 1

u is a homomorphism into the additive

group of real numbers. Similarly g -4vgv-1(0) = *(g) also defines a

16



F

homomorphism. Since

and

0(g) > 0(h) iff g

-114-

(0)]> h[u-1(0)1

r(g) >*(h) g[v-1(0)1 > h[v-1(0)]

1/-
0 and * ,are in fact increasing isomorphisms and vis an increasing

isomorphism of one Subgroup of the additive reals onto another. Consequently

V

for some positive a , *(g) = *0 [0(g)] =

G

Vfg(0)] = V(0) + *(g)

= v(0) + agg)

= v(0) + a[ug(0) - u(0)]
A

= au400 + [v(0) = at40)]

ggY.- Thus for each g in

S

TtLun for x =.g(0) we have v(x) = au(x) + b . Since u' and v are

continuous, to verify this equation for all real x , it is sufficient

to show the oriAt of 0 , [g(0): geG) , is dense in the reals. Since

a

17
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(

G is not cyclic, its isomorphic image $4(G) cannot have a least

positive element and.thus is dense.- Since u
1

is a homeomorphism

and g(0) = u-1[u(0) + gg)) the orbit is also den-8e inIthe reals and

v(x) = au(x) + [v(0) - au(0))

for all real x .

A necessary condition for a set of curves with associated group

,
2 to be transformable to curves with the same shape c n be obtain d

r"
by studying the derived group of G i.e., the subgroup* G' of G

F

generated,by the set of functions g and h are in G)

The proofs that follow uge the characterization of the derived group

for an arbitrary group G as the intersection of all normal subgroups

X such that the quotient G/X is abelian.

Theorem 2 (Levine, 1972): If u transforms F into functions with the

same shape, then u also transforms the derived subgroup of G(F) into

parallel functions.



Procift If u transforms F to functions with the same shape ,

then for g1, g
2

in G(F) there are affine
11112

such that g
-1#

iu= u A

If 411x) = aix + b then /
1
/
2
(x) = ala2(x) + alb2 + b

1
Consequently

the mapping given by

g = u l[au(.) + b] a = ugu- 1(1) - ugu
-1

(0) = 51(g)

is a homomorphism of G(F) into the group of positive real numbers

with multiplication as group operatio ince the multiplicative
7471

keels are abelian, G(FW-1(1) is also belian, and every element

of the deiived group is in the kernel of. Thus every function

in the derived group has form u- 1 [u() + ] -.- Thus the derived

group is conjugate to a subgroup. of the translation, and u trans-

\
forms the derived group to parallel functions;

If a non elementary assumption is made about the associated group, this

result can be strengthened by a simple application of the uniqueness

theorem, as proven below and in an earlier paper. The goal of this

paper is to dispose of this assumption.

19



Theorem 3: (Levine, 1972. ) If G(F). is nonabelian and its derived

ti

group. G' is hot cyclic then
6%0

u transforms G' into parallel functions

if and only if

u transforms F into,ftinctions with the same shape.

Proof: Theorem 2 gives the 'backward implication. o roVe the

forwa implication let g be an arbitrary element of G' .

g(.) 11-1[u(0 + b]

for some b . Let F,G be arbitrary functions F . Since GI is

normal and, f = F
-1
G is in G(F) fgf

-1
is also in

147

Thus, for some fgf.1(.) = u-1[u(.) + di ; i.e., g() = (uf) l[uf(.) + di ,

and v = of also transforms G' into parallel curves. Thus, by

Theorem 1, for some affine

v =4- = /u

2u
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But this is equivalent to Gu-1 =

shape as Gu
-1

.

'dnd Fu-1 has the same

° Before proceeding it may be worth emphasizing two facts abdut

the significance of the correspondence between groups and families.

Fire of all,." u transforms F to functions of the same shape;

implies that the functions in G(F) hayethe form u-liu . This

would seem to suggest that working with the group necessitates

consideration of geometric transformations of both abscissa and

ordinate of form <x, y> -*<U(x),u(y)> rather than the conceptually

simpler transformations of the x -axis alone, <x,y> ..)<U(x)ly> .

Fortunately, as Proposition 1 shows, that this conclusion is incorrect .

and transforming the associated group of a family can be handled in

the same way as transforming the fam14:

A second consideration that might appear to disdburage the use of

the associated group, especially in applicatlons, is that the group

G(F) is generally infinite whereas the family F may have only

21
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finitely many curves., Fortunately, it is generally possible to select

1 A_

two curves f,g in G(F) that are equivalent to F ;`in the followingg
sense:

u transforms F to parallel functions iff u
k°

transforms (f,g) to parallel functions [Levine, 1970,

In view of Theorem 3 of this section and Theorem 4 of the, next section

this means we may be able to specify two functions f,g of the derived

group such that u transforms F to the same shape iff u trans-
AO

forma -[ tb parallel functions. For further discussion of the

extent to which a group can be considered to be equivalent to a small

number of its curves see Levine [1972, Section .IV].
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IV: Strengthehing Theorem 3

'

The purpose of this section is to strengthen Theorem 3 by removing

the reference 0 cyclic derived groups to obtain the following result.

Theorem 4: If G(F) is nonabelian, then u transforms the derived

group G(F)' into parallel functions if and only if u transforms

F into functions with the same shape.

The restriction to nonabelian groups is acceptable because curves

with an
t
abelian group can either be transformed to parallel curves or are of

a special type. A well-developed theory for parallel curves is available

in the references given above, and the special other type of abelian

group has been treated in detail in Levine [1972, section V].

Theorem 4 follows at once from Theorem. 3 and the following fact

about groups of real homeomorphisms.

Theorem 5: If G is a nonabelian group of increasing real homeomorzhisms

and its derived group G' is conjugate to a subgroup of the translations,

then G' is not cyclic.

23
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Ake proof frequently uses the easily verified fact that conjugates

have the same fixed point structure. More specifiCally, if two

increasing homeomorphisms are conjugate, then one has a fixed point

if and only if the other does. In particular, if f is conjugate

to a tranklation and has fixed points, then f is the identity e.

We also use the well-known fact that every fully ordered, Archimedean

group is abelian [Kurosh, 1965, p. 287].

Proof: Suppose G' is nonabelian with cyclic derived group G' generated

by some function p so that

2

G' = (ion: n is an integer), .

A. contradiction will be obtained by showing G' = (e) , i.e., G

abelian.

As conjugates of translations,the elements of G' are continuous

functions without fixed points. Consequently, if g is in G' and

g e , then either

x < g(x) for all real x

or
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g(x) < x for all real x

In the former Base g will be called positive, in the latter,

negative.

Since the functions of G' other than e are either positive or

negative, it is natural to introduce an order relation in G' Let

< be defined by

f < g iff

f(x) < g(x) for all real x

i.e., f < ggiff f = g or fig is positive.

It is routine to verify that (G', <) is a fully ordered group..

That is, in terminology needed later,

i. < is, a partial order relation in the set of

elements of G' ,
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ii. < is a connected relation; i.e., for.all f,g E G'
ONO

f < g or g < f

iii. (G', <) is an ordered group, i.e., for all f,g,h E G'

f < g implies hf < hg and fh < gh .

The generator p of G' can be assumed, without loss of generality,
ti

to be positive. For p and p
-1

generate the same group and, using iii,

p< e implies p-ip = e< p-le = p-1 .

The remainder of the proof is divided into short, numbered,

separately proven parts.

1. The positive generator p is the least positive element of G'.

Proof: e < p implies by iii p
-n

< < p
-1

< e < p < p
n

for

**-N

/

for each positive integer n . Each g( in cyclic G' is of form g = pm

for some integer m If g is positiv then 1 < m and p < g .

2C
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2. If a-real homeomorphism f has no fixed points, then for each

real x
o

the set' (Pn(x0):

(

is an integer) is unbounded above

and below. In particular, for each x0, (pn(x0)) is unbounded above

and below.

7

Proof: If f(x0) > x0 then f(x) > x for all real x . Consequently,

_-1 0

fn(x0) = f(r
11

(x
o
)] > f

n 1
(x
o

) and (f.(x01))- is an increasing sequence.

If the sequende were bounded, it would converge. But thqn by continuity,

lim fn(x0) = f[lim fn(x0)]. would be a fixed point of f .

The same argument proves that the sequence is unb)ounded below.-

If f( 0) < x0 then f-2(x0)> x0 and the set (fn(x0): n is an

integer)'. ((f- ) (x0 ): n is an integer) is unbounded above and

below.
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3. p is in the\senter of G .

Proof: Let g be any element of G . For some n , gpg-lp-1 equals

n-1
P To show p and g commute it clearlysugfices to show n

,

equals one. If n exceeds one, then p equals g
-1
p
n
g =

-1
pg)

1

-1
Since g pg is alSo in G' this contradicts the choice of- p as

AO

least positive element. is not zero since p is not e . If n is

negative, gpg
-1

equals p
-m

for m = -n > 0 But p(x) > x for

all x implies gpg
-1

(x) > p -111(x) > x (11-1)m(x) > x

-
p-

1
(x) > x and p(x) < x for all x . ConSequently n is 1 and

p cOmmutes with every element of G
OV

4. If feG has a fixed point, then f is in the center of G

Proof: Say f(x0) = xo . Then fpn

Consequently the fixed point set of f is unbounded above and below.

Let g be any element of G . Since G' = (1)
n
) ,for some m

26



fg = p gf and- g .-equals p
m
f
-1
gf . Repliming g by p

m
f
-1
gf in the

product (pmf-i)g(f) n times and simplifying gives g = p
-ngfn

for all n . In particular g(x0) = p ng(x ) . Let
1

and x
2o

Let

be fixed points of f such that

fng(x
o
) < x

2
and

=

< g(x
o
) < x

2
. Then far all n

= =

<pnmeng(x0)-
o

<pr(x2)

Consequently m is zero and fg equals -gf .

Let H denote (feG: f has a fixed point) Then H is a normal

subgroup of. G

111047.; Clearly eeH and H is cloied under formation' of inverses and

s.
4

inner automorphisms. It remains only to show, feH and gebi implies

fgelf . If fg has no fixed points then (fg)n(x) diVerges to + co

si or - cct according to whether fg positive or negative. Let xo be a

fiXed point of g and let xl , x2. be fixed p?ints of f such

that xl < x6 < x2 . Then

[fn(x2);fn(x2)] = LKl' x ]
' 2

is bounded, fg is in H

=.ingn(x0)

Since this implies the sequence'

29

((fg)n
))
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6., Let f denote the typical element of 'G/H (fg: gelp .

denote the graph of f ( < x,f( ) : x is real) , and

t) 9.g. Then each g? is-a pathwise connected subset of the plane.
gef

Proof: Let (xily ) and (x2, y2) be points of 9f . 'Then there arer

f
1°

f
2

in f such that f (x ) = yi . Since f
1
if

2
is in H , it

has 'a fixed point xo satisfying fi(x0) = f2(x0) . Thereis a

path connecting (x.,
1
) and ( ) ( i.e., 'a continuous function

pf: `[0,3.] -4 R x It such that 9(0) = and 9(1) = (x2, y2) )

since there obviously are paths connecting

and (xolyo ) with '(x2,y2) /

v- 7. Let < on G/H be defined by

g iff

or

(xlai) with (xo'Yo)

P pi g for all fh
1

gh,e Ei and real .x

fh
1
(x) gh

2
(x)

Then G/H if fully ordered by"\ .

30
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Proof: Clearly < is a paCial ordering of G/H . It remains only

to show < is connected. Let f,g be arbitrary elements of G If

eig has a fixed point; then f - g and f < g . If fig doesn't

have a fixed point, then either for all x , f(x) < g(x) or for all

V
)p,

g(x) < f(x) For definiteness we assume g(x) < f(x) . To show

is connected it is clearly sufficient to show f
1
E f and x is

real imply ;art fl(x) . Suppose for some 'fl e f and real x ,
. -

f
1
(x) < g(x) . Since f

--. 1

1
g is not in H , fl(x) g(x) and

)

f
1
(x) < g(x) < f(x) . S $Ne Cli is pathwise connected there is a path

1 beginning at <x,fi(x)>ydId terminating at x,f(x)>.. More explicitly,

there are continuous real valued .functions z,v .defined on [0,1] such

that /(t) = <n(t),v(t)> e andand 1(0) = <ilfi(x)> 1(1) = <xlf(x)>

A

Since the continuous function g[u(t)1 - v(t) changes sign as t ranges

from zero to one, for some t
o

g[a(t
o
)] - 'v(to) is zero. Thus,

<u(to),g(u(to)]> is in 9.? , contrary. to the hypothesis Thus,

whether f
-1
g has a fixed point or not, f < i or Ai < f ,.and <

connected relation on G/H



8. G/H is an ordered group.

Proof: If I" < i and ke G, then fg and kfkg, or for all x,

f(x) < g(x) and kf(x) < kg(x) . In the latter case RI < since

< is a connected relation. Since kf = RI and kg = kg , kf < kg

Thus f < g implies fk < gk . Similarly i < g implies fk < gk .

9. VD is abelian.

\Proof: Since the iterates of functions without fixed points are unbounded,

Yu is Archimedean. Since every.fully ordered Archimedean group is

abelian, G/H is abeliaep

This leads to a contradiction that proves the theorem. For G' is

a subgroUp of ,every normal subgroup defining of an abelian quotient.

Thus Gi4=H , and every function in GI has fixed points., Since G'

is conjugate to a subgroup of the translations and e is the only

translation with 'fixed points, G' fe) and , contrary to hypothesis,

is abelian.

4
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