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Transforming a Family of Curves‘intg a Family of Curves with a Single Shape

31

. ":

/\: e o
' : ' Abstragy
SN ' : “ -

The rglatively hard problem of tranéforming a given set of curves
: o ‘ ,

to curves with thF same shape can sometimes be ﬁéqgged to ‘the easier . a

{

e .
Ve . . ) X
problem of rendering curves parallel: In this paper a grouj‘is

A

associated with the given curves, and it is shown that-thé|reduction .
: - . « : ¥
S - :

from the hard problem‘toithe easy problem is valid whenever fus group

Y

o o = - ' T R
.is nonabelian. A comprehensive review of éarl%;? work is ;ncluded 50
y

. N L ' .
\ » . - A2 K_? ).'" ', ) .
that this Féper can/ be read alone. Applications to psychological
o . ? o o

Ce
3
- -~ 1

. 4
measurement are cited briefly.
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-. Transforming a Family of Cﬁfveslinto a Family of Curves Qith a Single Shape
I.' Introduction
A proBlem of considerable importanée in psychological theories
| . .
and numergus applicdtfgns is this: Given the graphs of several
continuous,’strictiy increasing functions, fi?d (if possible) a trans-
formation of the independent variable that car?ies the graphs-into
curves having the '"same 'shape." Curves have'the.same shape when they
differ in location and srale only, i.e., when any th can be superimposed
by’a horizontal translétioﬁ and change of scale. Examples are discussed

in my earlier papers, especially Levine [1972; l975,la§pgndix] and

-\Levine and Saxe [1976]. kg

S

N\

It turns out that some of the mgst interesting and important
S

aspects of the problem remain whe7/£ mathematically idealized version
of the problem is considered. Furthermore, a recent successful

+
application of related work [Levine, 1975; Levine and Saxe, 1976]
. : R

indicates that the difficulties which have been removed in the idealized

‘version are quite tractable in practice.
I ’ .

We consider collections of strictly increasing real functions.

' “The.familiar notion of "same shape" is formalized, along with the

1)

vr 7 -3 T s 2

3

A
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important auxiliary notion of "parallel" and of what it means to trans-

form the x -axis by an increasing homeomorphism 50 as to make a
family of curyes the same shape or parallel. At this point it becomes
possible to introduce group theory and obtain a fruitful algebraic
reformulation of the original geometric problem¢ A procedure is
specified for associating a group wiph a family of functions, and
the original problem is translatgd info‘a problem about the
group. , ' . . L.

:It was shown in an earlier paper [Levine, 1972, see also Theo?em 2

of this paper] ‘that if the associated group has certain special

¢ P .
&

properties, then the problem of transférming given functions into

A .

functions with the same shape, can be reduced to another problem,

( . .
namely transforming a related family of functions into parallel functions. -
This result has important pradticalfimplicationé, for it
::\a. . . _ - )
.is far‘simplef to transform teo parallel functions than totransfo(fiﬁo

-

, ®functions with the same shape. For parallel functions there is anEE%}ensiv#

.
\

literature containing practical procedures of proven merit, while for

s
N

© _ ° the original. problem, there is no such literature. , N
- ’ ¥

, ‘ , - 7 5
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The reduction to parallel functions raises a mathematical question
that is énSWered in this paper: How restrictive are the Bpec":ial~
assumptions.made about the associated group in order to obtain the
reduction? The answer, given in Theorep b velow, is that the assumptions
can generally be ignored; the reduction can be used wheneve£ the
associatedigroup ;s nonabelian. The proof involves a theorem (Theorem 5)

about groups~of real functions which may be of independent interest.

#1
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II. Notation and Definitions
When the domain of function F is contaihed in the range of G ,

the composition of F. and G, x - F[G(x)] , will be denoted by FG .

.3

When F 1is 1 - 1 and onto its range, the inverse function G satisfying

X = GF(x) will be denoted by : rt.

Frequent use will be made of the fact that composition is a group
operation in the set of all increasing real homeomorphisms. All of the

groups of functions considered in this paper are subgrgups of the group

of all increasing homeomorphisms. u

v

The following notation conventions will be used. F, G, H are used -

/

to denote functions in a given set of functions (F) or F. f, g h are

generally used to denote elements in a subgroup G or H of the group

»0f all increasing homeomorphisms. The symbol e will be reserved for

! >

the identity homeomorphism x -»xl.

Two increasing homeomorphisms ,fbg@ are conjugate if for somd

r

- -

increasing homeomorphism uyg f = u-lgu « Two subgroups of homeo-

3

morphism G,H are conjugate if fbf’some iﬁcreasiqg homeomorphism 'u R

1
Ay

the mapping g —»u 'gu maps G onto H . -
. T -~ .
i A \ ’ . . | 7 \\

v



Two S‘legr()up:: that play an Important role in this paper are

l. the group of all trdnslutinns, where a translation

is a mapping of form x o [(x) = x + b ;

M

2. the group of all (increasing) affine functions, where
an affine function, is a mapping of form x — [(x) = ax ¢+ b~

where a 1s positive.

Suppose F: R 5 R is‘a real function, and u: R—- IR 1is a
homeomorphism. Geometrically, transforming F by u means applying

u to the x coordinate of every point in the graph of F and changing

-

the graph from the curve { <x,F(x)> : x is real) to the curve 'nﬁu(x),F(x)>']

Ay

While this definition is strongly motivated by a geometric approach in

which we visualize the actual curves, it turns out that 'it is easier

to‘prove theorems algebraically. Consequently, the transformation
{
? n

22- F by u is defined to be the function Fu—l « This definition

eiﬁresées the geometric notion of transformation'becéuse the cufve

>

o {<u(x),F(x)>) 1is the same as the curve’ {<anu-l(x)>] .

- r I
Two real functions F and G are said to be Earaliél if there | ’//;f
, : | | oty
is a translation [(x) = x + b that transforms one onto the other," o
, . | . ' SN
! - B T \ ’ .
so that Ff Y(x) = G(x) for all real x . Equivalently, F =G[ . ’

!

N ol '
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Geometrically this means that the ghift alohg the x -axis
<X,y +»<x + b,y> carriea the graph of F onto the graph of G .
This merely formalizes the ides that F and G differ only by a change
of origin.

F and G have the spame shape if some affine [ transforms F
into G and F[-l =G ; i.e., F =‘Gl . Geometrically, this means
a shift“alopg tbe x -axis followed by a dilation of the x -axis
carries the graph of F onto the graph of G and this formalizes the

. » . .

notion that F and G differ only by a change of origin and scale.

It is easy to see that "having the same shape" and "being paraliel"'

4 ' -
are each equivalence relationships, 80 that we may talk of‘a family

A ,
of curves havidg the same shape or being parallel. Thus a.family

or set of curves {F} has tﬁe same shape if every pair of curves in

)

(F)} hasJthe same shape.

L

Let (F) bve a finite or infinite) set of strictly increasing

real-valued functions of a real variable. A homeomorphism u iu

1

“w

said to transform (F} into functions with the same shape 1if

(a) the family {Fu-l] has the same shape.

P

»
»

~ 9
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This formallzes the iden that o ningle homeomorphism transforms all

the curves Into curves which differ only by change of origin and

-

change of scale. Tt is casy to show that (a) is equivalent to

(b) for every paulr F and G in (F} , there i; an

affine transformation f[(x) = ax + b such that

l‘l‘
' Y

FeGu ' fu.

Analogously, u transforms {F) 1into parallel functions if

(a') the family [Fu-l] are parallel,

or equivalently if
P

(b)) .for every pair F and G in F , there is a

translation f(x) = x + b such that F = Gu ' fu .
A welledeveloped theory exists for functions transformable to
parallel functions, and several different procedures are available to

find u given ({F} or to approximate’ u from approximatigns of the

| \
functions ‘of (F)} . For'a review of some of the mathematical literature

A

on parallel functions and some recent results, see Levine [1970] "
)

» N '/ )
- \ .

.

4’ N
s 1 U X



)~
and Levine [;l9'l‘,')J. For a recent .npplicntion to mental test data, uaee
Levlrxf» and Saxe, 1976]. Additional areas of application are discusued
in pevine (1970, 1972). Data analysis procedures of prn);/en mer it (which

were developed for other purposes but are clearly relevant to parallel

‘

(28

functions) mre discussed in Box and Cox [1964] and Kruskal [196%].



[T1: Keview of Kenultn on Kelntions between Families and Groupn

Note that tf the fanctions ot F can be tra sformed to the same

~

shape, Lhe range of any tunction ot F I8 equal tu the moge of any

other.  Thisg i::_A&egAQm)qui(‘:uLJ\y obvious and an immediate consequence of
(b). .Consequently we may, without loss of generality, resitrict attertion

to families F of strictly increasing, continuous functions mapping

~

the reals onto a common range.

[et F be a non-empty set of strictly increasing continuous func-

-

tions mappiné the renls onto a common range. The assoclated group G(E)

is the group of real homeomorphisms generated by the set of

9

functions

(F : E,G is in F)

7

with group operation given by function composition.
Since (Fleyt is olF , G{) is simply the set of functions

of form

i -1, -1 -1
szl F2F5 FL{ ce 0 Fn_an

where each ‘Fi is F .

~
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Asaociated\groups are gffen easier to stu&y than familieg of

A
~

\

functions, and the properties of families.of central intereést in
this papér can easily‘Be translated into properties of groups. For:

example,

Proposition 1: Let F be & set of incre'a‘éj.ng continuous functions

~.and u a real homeomorphism. Then u transforms F to functions

with the same shape iff u transforms G(F) to functions with the

. 13
same shaEe .

3
I3
!

Proof: If for each F,G in F is some affine [ such ’:ha’t

Fu-ll-l = Gu™ ,» then G-LF = u‘l[u . Thus the generators of G(F)

have the form u-l[u . Since composites and inverses of functions

5

" having this form also have this form, 858, in G(F) implies that

s

lfor éome qffiqe‘.ll,l2r;

-1 VA o
B g =u '{lu >
B .q ‘l — . ' . - - fon

" oo 82 = u 121). - . N —
.. ( :'|' “ . ' .
. : v-":,‘., e -l ' __l .‘
Thus gu =1 Ly =

-5

~
[

. and_. u’ transforms G(F) to the same élhape.

13

oo

-1 =1, y=1 , -1 -1,
}’j 2(11 12) » has the same shape as g4 = u ‘2
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. o -

¢ . .
, Conversely, let F,G be arbitrary elements of F . If u  trans-

L

forms G(F) to the same shape, then for each f,g in G there is

3

: - -1, 1. ‘ .
some affine [ such that fu 1 gu l[ . 'In particular, f =€ and
g =¢F_1C ‘are in G , so for some [, ut = F_lGu-l[ , i.e., Fufl = gut

-~

“«

There is an analogue of Préposition 1 for pargllel functions.

Préposition 2:. let F be a set of increasing continudus functions

b3

Y

and u an increasing homeomorphism. Then u transforms F to
I B} | N
parallel functions iff u transforms G(F) %o parallel functions.

~ . . J - '.
Proof: Same as proof for Proposition 1, except [, ll s [2 are

translations rather than affine.

¢

K3

\ ~ 'The question of the existénce of a traﬁszrming'homeomorpﬁism u

can be' concisely expressed in group theoretical terms as folléws; X
. . ’ : I
< “"v,

&

. Proposition 3: Let F be & set of strictly incressing real functions

-

-
. ~
g \

with common range. There exists an ihcreasing,homéomorphism trans-

forming F to the same shape iff G(F) 1s'coqjugate to a subgroup
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/,’; J - ,
7
;/ | . .
' of the affine group. There exists an increasing homeomorphism
transforming F to parallel functions iff G(F) is conjugate to a-
- subgroup of the translations. . 3 ) S
.=l - : C a1 -
Proof: Fu =.Gul{.iff.e e u .
Associated groups can be used to study the uniqueness'of homeo-
n morphismsvrepdering functions parallel. in~a sense made precise in

L

Theorem 1 below, Buch homeomorphiéms may be unique except for a ‘change
of origin and scale. This result is needed for reducing~que§tipns about
functions with the same shape to questions about parallel functions.

The proof uses the following well-known,,easily'proven facts about
| | ) . \ . ".
the addit{ve group of real numbers. :
-~ B
( 1. If G,H‘"'ke two subgroups of additive reals and ¢ : l

« G oH is a strictly increasing homomorphism, then for
v {

f ’ l:‘v s e
some positive number a , ¢(g) = ag for all g in G .
: More- concisely, an additive,:ipcreasing function defined

on a subgroup of the additive reals s linear.

e

b
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2. A subgroup of the additive ?Qals either has €xactly

one element, has a least positive element;:or i6 Qense

in the reals. ‘ ' N

In the proof and throughout’ the remainder of the paper, "eyclic group"

]

includes infinite cyclic groups such as the integers.

Theorem l: (Uniqueness Theorem) If u and v both transform

]
)
/

F  into parallel curves and the associated group G = G(F) is not

4.

the trivial group {e] ‘or cyclic, then for

some éff;ne transformation

4

[ y V= [ﬁ .

Proof: For each g in G there is some translation [ = ‘g such

A

that g = u-l[u'r u-l[u(-) +,bg] and ug(x) = u(x) + bg , fbr all

real x .
3 -1 o |
In particular, for x = u (0) we have ugu (0) = bg . Thus

& —»#(g) = ugu "(0) defines a function from G into R . Since

gh = u-lléuu-l[hu = u-l[ghu » ¢ is a homomorphism into the additive

group of real numbers. Similarly g -9vgval(0) = ¥(g) . also defines a

v V ¢

l¢ oo

- N ’ ‘II »



‘ ﬂomombrphism. Since
§e) > $(n) iet glu ™ (0)> nlu o))

and

1

- -1
¥(g) > ¥(n) t£r alv'H(0)] > nlv ()] ,
¢ and ¥ are in fact increaging isomorphisms and ¢¢fl is an increasing

isomorphism of one subgroup of the additive reals onto another. ConseqQuently -

o

for some positive a ,. ¥(g) = ¢¢-l[¢(g)] = ag(g) .- Thus for each g in
G,

~ vig(o)l = V(O) + ¥(g)

v(0) + ag(e)

Y

v(0) + alug(0) - u(0)]

aulg(0)] + [v(0) - au(0)] .
xThuB for x =.g(0) we have v(x) =au(x) +b . Since u~-and v are
continuous, to verify this equation for all real x , it is sufficient

<

to show the orbt of O , [g(0): geG} , is dense in the reals. Bince
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G is not cyclic, its isomorphic image @(G) cannot have a least

\

positive elément and thus is.dense.' Since ul-:L is a homeomorphism
>
and g(0) = u'l[u(o) + ¢#(g)] , the orbit is also dense in‘the reals and

v(x) = au(x) + [v(0) - au(0)]

for all real X e

L
% .,

~

A necessary condition for a set of curves with associated group

B

E to be transformable to curves with the samevshaﬁi/jjﬁbe obtaingd

| ol i ‘ .
by studying the derived.group of G , i.e., the subgroup* G' of G -

h generated by the set of functions {ghg-lh-lzi g and h are in G} .

- N

[

The proofs that follow use the characterizafion of' the derived group

[ l Y. ’ . -

for an arbitrary group G as the intefsection of all normal subgroups

¢

X such that the quotient G/X is abelian.

~

a b

Theorem 2 (Levine, 1972): If u transforms F ipto-functions with the
)@,_' LI
same shapé, then u also transforms the derived @hbgroupﬁof g(g) "into

parallel functions.




~
O
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Prodf: If u transforms F to functions with the same shape ,

then for 8,58, in G(F) there are affine 11;12 such that g, = u Lu -

1f [ £x) = a,x + b, then [lle(x) = a.a,(x) + ab, + b, . Consequentky

the mapping ¢ given by

g=ulau(-) + b] 5 & - uga (1) - ugul(0) = fa) P

"is a homomorphism of G(F) into thevgfoup of positive real numbers ’ N

with multiplication as groupmgperatio vince the ﬁultiplicative ‘ T (’

) .

Mreals are abelian, G(F)/¢-l(l) is also dbelian, and every element
of the derived group is in the kernel of, #:.. Thus every function

‘ . N . 4&!' . -
in the derived group has form u-l[u(-) + b] == Thus the deriwed

group is éonjﬁggte to a subgroup of the yranslation; and uw trans-
v , 1 .

5

forms the derived group to parallel functions.

If a noﬁ;elémentgry assumption is made about the associated group, this
result can be strengthened by a simple application of the uniqueness
AL
theorem, as proven below and in an earlier paper. The goal of this

paper is to dispose of this assumption.

: 19
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Theorem 3: (Levine, 1972). If G(F). is nonabelian and its derived

-

~

group G' is not cyclic then : ~ 4

u transforms G' into parallel functions .

if and only if - S »» . / SR

\

u transforms F into functions with the same shape.

Proof: Theorem 2 gives the Backward.implication. ToQrove the

forwalﬁ implication, let g 'be an arbitrary element of G

1

g(+) = u\'-l[u(-) +b] | . ' el

for some b . Let F,G be arbitrary functions F.. Since G' is
;{ ~

-

normal and f = riG is in G(F) , fgf-l is also in GQ .
~ \
\

Thus, for some d , fgf Y(+) = u ilu(-) + dl ; i.e., g(+) = (uf) Mluf(+) + a

and v = uf also transforms G into parallel curves. Thus, by

, Theorem 1, for some affine [

<y .
v =dF G=fu

i

20

&4

2
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. L

But this is equivalent to Gu™" = Fu">f ,‘dnd Fu ™' has the same

]

»
K

shape as Gu-l . ' _ : :

&

¢ Before proceeding it may be worth_emphasizing two facts about

\
e ~

the significance of the correspondence between groups and families.

First of all, " u transforms F to functions of the same shape'

implies that the functions in G(F) have the form o . This

would seem to suggest that working with the group necessitates
consideration of geometric transformations of both abscissa and

ording’te of form <x,y> - <u(x),u(y)> rather than the conceptually

simpier transformatiohs‘of the x -axis alone, <x,y> - <u(x),y> .

Fortunately, as Proposition 1 shows, that this conclusion is incorrect

'

and transforming the associated group of a family can be handled in
. ) . |
. ’ ) \\ ' { )
the same way as transforming the famidly. '
. L‘\h’/"

hd — N

A second consideration that might appear to discourage the use of

{
the associated group, especially in applicatdions, is that the group
. {
G(F) is generally infinite whereas the family F may have only
{

*

21

Y
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\, 7 -

: .. , \
finitely many curves. Fortunately, it is generally possible to select

1 ’ L8 o ¢ AN

? -
~

two curves f,g in G(F) that are equivalent to F ,™din the following
. ~ o~ ¢ ~ ’ o

sense: /
f . " .
u transforms F to parallel functions iff u
s ~ . .
transforms (f,g) to parallel functions [Levine, 1970,
. Sectio { V-)’F] . "'\
P ’ ’ *\‘

4
In view of Theorem 3 of this section and Theorem 4 of the .next section

this means we may be able to specify two functions f,g of the derived

group such that u transforms F to the same shape iff u trans-

~

$

forms'y[f,gj to parallel functions. For further discussion of the
extéhtlto which a group can be considered to be equivalent to a small

number of its curves see Levine [1972, Section IV]J. <

-

\
1

3

“
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e
.IV: Strengthehing Theorem 3
e o Ao <
¢ The purpose of this sect&on is to strengthen Theorem 3 by removing

the reference to cyclic derived groups to obtain the following result.

C.

~ ]

Theorem 4: If G(F) is nonabelian, then u transforms the derived

'
1

'

group G(F)' into parallel functions if and only if u transforms

F into functions with.the same shape. A;;

e
\

The restriction to nonabelian groups is acceptable because curves
' J.{"' , .
with an’abelian group can either be transformed to parallel curves or are of
a special type. A well-developed theory for parallel curves is available
in the references given above, and the special other type of abelian
group has been treated in detail in Levine [1972, section V].

Theorem 4 follows af once from Theorem 3 and the following fact

about groups of real homeomorphisms.

Theorem 5: If G 1is_a nonabelian group of increasing real homeomorphisms
P ~

and its deriveqd group G' 1is conjugate to a subgroup of the translations,

then G' 18 not cyclic. =

23
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The proof frequently uses the easily verified fact that conjugates

[

{ w7 :
have the same fixed point structure. More specifically, if two

increasing homeomorphisms ars conjugate, then one has a fixed point

T:
In particular, if f 1is conjugate

if and only if the other hoes.
—

to a tranglation and has fixed points, then f is the identity e.
We also use the well-known fact that every fully ordered, Archimedean

group is abelian [Kurosh, 1965, p. 287].

Proof: Suppose G' 1is nonabelian with cyclic derived'group g' generated

by some function p # e so that
S

G' = [pn- n is an integer) .

-«
[

A contradiction will be obtained by showing G' = [e] , i.e., G is
abelian. | | ' _
As conjuéatés of translations,  the elements of g' are continuous
functions withou£ fixgd points.. Consequently, if g 1is in 9' and

g # e , then either

x < g(x) for all real x

or

Ny
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g(x) <x for all real x .

.~ .

In the former case g will be called positive, in the latter,

negative.

Since the functions of G' other than e are either positive or
negative, it is natural to introduce an order relation in G' . Let

‘< be defined by

f=g , X
£ < g iff AR
‘ f(x) < g(x) for all real x

i.;., f < g}!}ff f=g or f-lg is positi;e.
It is routine to verify that (3', <) 1is a fully ordered group..

That is, in terminology n;eded 1atér,
i. < 1s a partial order relation in the set of

elements of G' ,

an
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ii. < 1s a connected relation, i.e., for.all f,g € G’

f<g or g< £
1. (9',5) is an ordered group, i.e., for all f,g,h € G’
f < g implies hf < hg 'ané fh < gh .
The generator p of E' cap be assumed, without loss of generality,
to be positive. For p and p-l generate the same group and, using iii,
p <e implies p-lp =e< ple =pt. '

The remainder of the proof is divided into short, numbered,

separately proven parts.

1. The positive generator p 1s the least positive element of G'.

Proof: e <p implies by 1ii p-ns...[Sp-lSeSps...pn for
T :

-

for each positive integer n . Fach g{ in cyclic G' is of form g = p"

for some integer m . If g is positigk then 1 <m and p<g.

26
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2. If a- real homeomorphism f hes no fixed points, then for each

i

13

real X, , the set” [fn(xo): n,(is an integer] 1is unbounded above

and below. In particular, for each X, (pn(xo)] is unbounded above

Ly

and below. .

‘ ] . ! L
Proof: If f(xo) > X then f(x) >x for all real x . Consequently,
» ' q

fn(xo) = f[fn'l(xo)] > fn-l(xo) ‘and [fp(xon- is an increasing sequeﬂ;e.

If the sequence were bounded, it would converge. But then by continuity, -

- 1im fn(xo) = f{1lim fn(xo)]_ would be a fixed point of f . : }
n n h
. N The same argument proves that the sequence.is unbounded beiow.-

If ,f(xo) < xo“ then f-i(xb)q> X and the set [fn(xoj: n is an

integer) = [(f—l)n(xo): n is an integer) -is unbounded above and

A

below.

s
A

[ !

Q BRERTY DY




3. p is in the‘center of G .

Proof: Let g be any element of G . -For some n , gpg’%p—l equals

Apn—l . .To show p . and g commute it élearly_suﬁfices to show n

\

equals one. If n exceells one, then p equals g-¥png3= (g—¥pg)n .

1

Since g_%pg is also in G' this contradicts the choice of~ p as :

least positive element. (n is not zero since p 1is not e . If n is
negative, _gpg-l equals p © for m =L-n1?y0 ... But p(x) >x for
L -1 . _em -1,m

ell x diuwplies gpg (x) >x35 p(x) >x, (0 )(x)>x,

prl(x) >x and p(x) <x for all x . Consequently n is 1 and

P commutes with every element of G .«

h. If feG has a fixed paint, then f is in the center of G .

»

oy - _ ‘ n, n _.n "%
; ?roof. Sax f(xo) —‘xo . Then fp (xo) = p f(xo) =p (xo) .

Consequently phe fixed poipt set of f 1is unbounded abave and below.

" Let g be any element of G . Since G' = {pn] , for some m

-y

L 28
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fg = pt_ngf and. g,»equals pmf'lgf . Repl&cing g by me-lgf in. the

4

product (pmf-l)g(f) n times and simplifying gives g = o gt

N

for all n . In particular g(ito) = anfmg(x_o) . Let X, and X,

be fixed points of f such that x, < &(x ) S x, . Then for all n

x. < f'“g(xo) <x, end

1
nm _ .nm_-n : - nm
P (x)<pf S(Xo)f g(x)) <p (%) - |

&

Consequently m is zero and fg equals "gf' .
. . P .

5. Let H denote (feG: f has a fixed point) « Then H is a normal

subgroup of . G . ‘ .

Proof: Clearly ecH énd H is closed under formatiom of inverses and

o ¥ g .
: o RN
a9

inner automorphisms. It remains only to show feH and gell implies
\ ~ ’ »~ .

fgeH . If fg has no fixed points then (fg)®(x) diverges to + w
[} or - o« according to whether fg -is pc;sitiVe or negative. Let X be a
, X,. be fixed ppints of f such

| thoE ’
. Then (f)°(x)) = £g"(x,) = £(x ) €

fixed point of g and let x

that x. < x. gx

l="0o 2

[fn(xi);fn(xz)]; [xl-,sce] . Since this implies the sequence {(fg)r._l(xo-‘)]‘v

El{fC is bounded, fg 'j.s’ in H . | 2 9
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.. let f denote the typical element of "G/H , T = (fa: geH) .
\, ~ V. L

¢

Let E}f denote the graph of f , ( < x,f(k) >: x is real) , and

W

E}f . Then each g}f is-a pathwise connected subset of the plane.
gef s _ ' , , _ :
. J .
Proof: Iet (xl,yl) and (x2,y2) be points of é?f - Then there aref
: . i

- ‘ “ 0 . | | .
f,,f, in f such that fi(xi)—yi - Since f,7f, is in H, it

has & fixed point x  satisfying fl(xo) = fé(xo) . There-is a

path connecting (xl,yl)' and (xé,yQ) ("i.e., a continuous function

| . §
g: ~[0,1] > R xR such that ¢(o) = (x,¥,) am_i #(1) = (x,,3,) )
| | 2\
since there obviously are paths connecting (xl,yl) with (x A ) ’
/
and (x )Y, ) with (x2,y2) .
’ At

7. let< on G/H be defined by

L

‘=é or

Hy

Fgg forall fhlef‘, gheeé ‘and real .x ,

fhl(x)”< gh2(x)

L~
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‘Proof: Clearly < is a parkt}ial_ ordering of G/H . It remains only

to show f_ is connected. Let f,g be arbitrary elements of G . 1f

f-lg has a fixed point, then f = g and f _<_é . If f—lg doesn't

have a-fixed point, then either for all x , f(x) < g(x) or for all
, ‘

»i

"x, 8(x) < £(x) . For definiteness we assume g(x) < f£(x) . To show

< is connectegi it is clearly suffi_cient\to show fl e f and x 1is

real imply g(iil‘z fl(x) « Suppose for some 'fl ¢ T and real x ’

, & isnot in H, fl(x) f g(x) and

. ) 7
fl(x)_ < gfx) < £(x) . Siqie 9»1-‘ is pathwise connected there is a path

fl(x) <g(x) . Since f

’ ¢ beginning at x,fl(x)>‘kxﬁa terminating gt"<x,f(x)>_;» More explicitly, :

I

there are continuous, real valued functions u,v defined on [0,1) such
s | ! . |
that #(t) = <u(t),v(t)> e ﬂf and 4(0) = <x, £, (x)>, ¢(1) = <x, 2(x)> .

- 4 ' ) .
~ Since the continuous function glu(t)] - v(t) changes sign as t ranges

.ﬁ; .
from zero to one, for some t_, g[u(to)] - fv(to) is zero. Thus,

<u(to),g[u(to)]> is in 9-? , contrary to the hypothesis g ¢ £ . Thus,
whether f-lg' has a fixed point or not, f S_é or g< f , and < is

~

connected relation on G/H

31
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8. G/H 1s &n ordered group.
p
* Proof: If f‘fé and .ke‘G, then f = g and f:f‘:ié, or for all x,

-

f(x) < g(x) and kf(x) < kg(x) . In the latter case kf < Et , since

< 1s a connected rele.tvion. Since kf = kf and E = kg , kf < kg .

- Thus f <@g dmplies Tk <gk . Similarly F<g implies Tk < gk .
N : &

9. G/H is abelian.
~~

\ Proof: Bince the iterates of functions without fixed points are unbounded,

NT

E/g is Archimedean. Since every.fully ordered Archimedean group is

4

ez

abe‘l}se?n, G/H. is abelu?{;}. 4

4

This leads to a contradiction that proves the theorem. For -G! 1is

) - subgroﬁp af every normal sub_group défining of an albelian qt\lotient.
Thus g'cg , and every funcfionlin"(i' has i“iixefl points. Since é'
1s conjugate to a subgroui) of the transla;.ions and ; i:s the only -
. translation with:fixed -poir;ts, 9' = {e} and G , contrary to hypothé;sis,

. .. is abeliah.

32
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