DOCUXENT RESUME

¥

©h

ED 1687302 - . " - SE 025 457 '
AUTHOR Beck, A.; And Others : - ‘
« TITLE Calculus, Part 2, Student's Text, Onit No. 67,
g - — Rev1se&‘Ed1tlon.
. INSTITUTION StanforﬁtUnlv., calif. School:Mathematics Study
, Group.u
SPONS LGENCY Nationa .Sc1ence Foundatlon, iashingtcn,‘D c.
PUB DATE 65 o
NOTE 304p.; For related documents, see SE 025 u56-u59;
. Contalns occasional light and broken type
EDRS PRICE HF-$0.83 HC- $16.73 Plus Postage.
DESCRIPTORS *Calculus; *Cdrriculum; *Instructional Materials;

*Mathematical Applications; Secondary Educationg;
*Secondary School Mathematics; *Textbooks
IDENTIFIERS *School Mathematics Study Group
ABSTRACT . o P : . )
This is part two of a thrée-part SMSG calculus.text
for high school students. One of the goals of the text is to present
calculus as a mathematical discipline as well as presenting its
practical uses. The authors empha51ze the importance of being able to
interpret the concepts and theory in terms of models to which they
apply. The text demonstrates the origins of the ideas of the. calculus -
in practical problems; attempts to express these ideas precisely and
. Gevelop them logically; and finally, returns to the problems and
applies- the\ﬁheorems resulting from that development. Chapter topics-
include: (1) area and integral; (2) basic integral theorems; (3)
logarithmic and exponéntial functions; (4) growth; decay, and
competition; and (5) integ:atiog. (MP) ’

®
oW
.
[

.

*********************i************t********t*******:***:***:**&****:***
* ' Reprodnctlons snpplled by EDRS are the best that- can be made L
* from the origiral document. o ~ *

ﬂ********** **************** ****‘********************** ****** ****S*******

— e . .
: . u A ' -

Q ‘ : ' ’ : N o ' ;/,, .




-

~

-

Calcii]lu_s_' o S

‘Part 2 Student’s Texr . | .
. C IS A o~
REVISED EDITION | N ) -

e

The following is.a list of all those who participated in

" the Preparation of this volume: b N
A.Beck ' - - Olney High School, Philadelphia, Pa. =~ °
A. A. Blank ‘ New York University, New York, N.Y.
F.L. Elder ;. West Hempstead Jr., Sr. High School, N. Y.
C.E. Kerr ' Dickinson College, Carlisle, Pa.
M. S. Kiamkin Ford Scientific Laboratory, Dearborn,’ chh
I. I. Kolodner : ‘Ca.rnegle Institute of Techpology, Pitesburgh, Pa.
M D.Kruskal | © = Princeton University, Princeton, N. ] =

C.W.Leeds, Il °  Berkshire School, Sheffield, Mass,

M A. Linton, fr Willianr Penn Charter School Pl'uladelphxa, Pa.
H.M. Marston Douglass College, New Brunswick, N.J.
"“‘ 35 Marx - |, Purdue University, 'La_fayetie, ind.

R.Pbllack . ‘ New York University, New York, N.Y.
T. L. Reynolds " College of William and Mary; Williamsburg, Va. _
R.L Starkey " Cubberley High School, Palo Alto, Calif.~ '
V. Twersky Sylvama Electronics Defense Labs., Mt. View, Calif. :
H Weu:zner New York University, New Yor}c, N:Y. oo
= . j N

[}

Stanford, Cahforma
. Distributed for the School Mathemarics Study Group o
<« by A. C. Vroman Inc., 367 Pasadena Avenuc, Pasadena, California

-~

/‘-J



L -—

ot

o

Financial support for School Mathematics -
Study Greup has been provided by the
Narional Science Foundation.

_Permiission to make verbatim wse of material in this

book must be secured from the Director of SMSG.

Such permission will be granted except in unusual ~

circumstances. Publications incorporating SMSG -
materials must include both an acknowledgment of

- the SMSG copyright (Yale University or Stanford

University, as the case may be) and a disclaimer of
SMSG endorsement. Exclusive license will not be
granted save in exceéptional circumstances, and then
only by specific action of the Advisory Board

of SMSG. : - F

© 1965 by The Board of Trustees

of the Leland Stanford Jurior University.
All rights reserved. - _

Printed in the United States of America.

or



- 1 rr "
. TABLE OF .CONTENTS
Crzpter ¢, AREY AND INTEGRAL o 4 o o o o o o o o o a « o o o o o o o » 367
=l INCTOUUCTLICIL ¢ o o o o o o o o o o o o o » e 0 o 8 o v s e o = o 36T
S22, Zmaluvation o oan drea e e e e e e = s s s s e s s e s e s . 370

Yoole The Concept of Integfall Integrals of Monotone Functions . . . . 2375
€5 OFf IntegralsS. o o v« o ¢ o o s« o« « o'« o « » 388

5-5. IFurither Applicztions oF Lz Integral. o o o o o o o o ¢ e o o e Los

Chapter 7. BASIC INTEGRAL THICAZS 4 v v v o o o o o o'e o o o oo o o L15

?—l. Integfability - - - - - - - - - - - - - - - - - - - - - - - .'. - hls
T-2. The Integral and its DerivativVe e o « o o o o T o o o o o o o o o« L21

7-2. Thne Tundamental THEOTEM « o « o o o o o o o o = o o o o o « « « « U25

7=k, Formal IntegratiON. ¢« « ¢ o o o « o 2 o o e ele e e e e e . L33

-5. Estimates Of Integrals. @ o o o o o o o o o o o o o« o, 6 oca o » o 37

. Miscelloneous - ZXerciSeS v o v o o o s o o o o s o o o o & o o o o 4L

Chepter 8. LOGARITHMIC 21D EXPONENTIAL FUNCTIONS o o o & « « « o o » o LbS

8-1. InNtroductiOn. « o o o e.2 o o o o & a.e o o o o o o o « e.a o o LbLs
8-2.  The Logarithm as an Integral. « « « « v o o« o o o o o o « « o « = 452
8-3. The Exponential Function. General POWETS « o o o v o o o » e . . 45§
8-L,; Differéntiation of the Logarithm and Related Functions; e e e o o LBS
S. The Differential Zguations of &~ 5 SIN X , COS X o o o o o o » . b7l
BeB. THE TUTDET € oo o o o o o o o o o o o o o o 06 o o o o o o o o 'Jlli'r'r
3-7. The Hyperdolic Functions. . . . s e e e e e e e e e e e e .. bBS

:’Iiscel:Laneo".‘;s E:‘:ercises - * @ e e * e ¢ o » ., o‘.‘- * e e e s e o b‘go

Chapter ©. GROWIHE, DECAY AND COMPETITION . & e e e s e e e e o d & & «>k35

A‘-:‘_ . IntroduCtion e e o o o e . *» o e o e e = e ® o @ & ¢ ® v . ® o o o L}.95
¢ . . e . :
T-2¢ B Model Tor Growth. The Spread of a.S5t0TF. o+ o o o o » o o s LgT
:\"'3 . I‘de e.-'_' fO::‘ DECa:-' - - - e e o » a a - a & a o e e« o a 1:. e o o a » 1;99

q-5- CDnCluSiO“. - - - . - - e .= L] - - - - L] - L] - - T_. - - - - L - 519
c

»iSeS . . - L - L] L] L L] L L4 - o e .® -'. i - ; ; L c‘o e o' » - 521

i Q . : ,
ERIC ' ] R
e T . o T e

i



Chapter 10.

lo-1.
10-2.
lO-Sgr
10-4.
10-5.
10-6.
10-7.
10-8.
10-9.

Appendix 6.

AL,
AB-2.

Appendix 7.

AT~L.
AT-2.

Appendix 8.

Appendix Q.

>

h ,\
.

Appendlx -10.

Integratio
Existence of the Integral.

INTEI}RATION L) . o o . ’

[43

Introduction « « ¢ o+ . . .
‘The Substitution Rule. . .
Substitutions of Circular Functions.
Integration by Parts . . .
Integration of* Rational Functioms.
Definite Integrals . . .
Linear Differential Egquations of First Order

EXISTENCE OF INTEGRALS

Covers. of Closed Intervals

z“

ANATYTTCAL DEFINIE;ON OF THE CIRCULAR_FUNCTI@NS.

THE STORY ABOUT AL .

CONVERGENCE OF IMPROPER INTEGRALS

-

*

.

by Summation Technigues.

.
.

The Integral of a Contlnuous Functlon.

Linear Differential Equations of Second Order
Separable Differential Equations

Miscellaneous Exercises.

INTEGRABILITY OF CONTINUCUS FUNCTIONS.

*
.

[]
.

638

o

B



A

) _real numher, the area of 3 R should satisfy the following propertles.

Chaepter 5
'AREA AND INTEGRAL - {

N\ . -

6-1. .Introductiqn.

Area, as we treated the idea in Section 1-2, was not defined analytically

t accepted as a geometrically understood‘concept. We did not question the

idea that a region with a curved boundary has a definite area but began with _

the implicit assumption that it does. Wlthln the framework of our elementary

e

Kknowledge we saw no way to describe the area of such a region except as a
limit. For thie ‘purpose we used a spec;flc kind of limit, the integral.
Having gone f;om the geometricel descriptidn of area tec an analytical method.
which determines Its numerical valus we are now able to use the analytical

method to define the ‘concept o =rea. In this chapfer we shall take the con-

cept of area arrived at intuitively and express it_in precise analytical terms.

- ) - . s - )
Underlying our method for determinin& the area of. a region, there are a
few elementa”y ideas. These ideas are commonly accepted properties of area
wblch we uOSUulate as the basis for the formal analytlcal ‘definition of area.

The area functlon d\\whlch assoc*ates wlth each region. R of the plane a -

-

. . =

-
. . .
.

Property 1. a(R) =20 . S N L~

% : . .
-

Property 2. If S and T  are two regions and .#f S 1is contained in T,
m
T

(every point of S is also a point of T) theh . a(S) S;a(f)

Prone}tz 2. If R is the union of twd nonoverlapping reégions Rl ‘and ‘%2\
(every point of R. %iee in 31' or R2 and only the points on
 their common boundary lie in both R and R, ), then

+ -

a(R) = a(Ry) + al®r,) . . ) S

Pronert& E, If R is a rectaﬁgle of height h and width W then a(R) = hw

¢

T Pronerty 2 1is called the order Dronerty of =zrea and Property 3 the -

additive property. Properties 2-4 are illustrated in Figure 6-1la.
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* -Property 3 " Property 4

‘. .- > .
. !

- Figure 6-la

o . . ;
.

[ Ad -
- We do not expect to be able to define an area for every set
..of points in the plane. Consider the sets <

S ={(x,y) : 0<x <1, 0<y<g(x)} o
T = ((x,¥) : O <ix <1 , 0 Sy <f£(x)]}
* where g 1is the Welerstrass function described in Section A4-3, and
I 1s the function given by . - . ., . -
0, for x, rational ’

£(x) =: { _

1l afor x dirrational -

' (Exercises A6-2, No. 4). For the present, it is far from clear that
' an area can be assigned to either of these regions in' 2 meaningful

way. .

-

-

e ' Exercises 6-1

1 Read Section 1-2 carefully and locate the places in the discussion where

the four properties of area are used. )
: . L e ' ) -
2. Prove from Property .3 that if a region R is the union of n nonover-

-lapping regions then o
-t ’

-

a(R) = a(R)) +<(R,) + ... +a(R) .
. 3 : P

3. ©Shkow that Property 2 is actually = cbnsequence of . Property 3 given that
P

area is nonnegative.

L, (a)- Using the giﬁen properties of aréq obtain the area'of a -triangle-by

elementary geometrical arguments. . .
. (b) Do “he same for a trapezoid. = v _ -
. 5 . . : - ¢ - : <
, -368
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5. Estimate the area of each region described below.
(a) y’X,y) :y 201N ((x,y) : ¥y <1 - x7)

pi
(0) {(x,¥)-: 0 £y £ —>5] N ({x,y) : 0 <x <1}
- ~ 1+ x - :
6. If Property 4 is replace by * ‘
Pfoperty L. The_érea-ofTa unit square is bne, .
Property. 5. Congruent regions have the éamg area, :
- show that .the-area of = square'whose side is of leng;h--a is ae.

-

7. Using Number 6, show that the area of a rectangle of height h and width

w 1s Thw.

. .
N Loy
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©-2. Evaluation of an Area. i ‘ .
In Sectlion 1-2 we reduced “He problem of calel ating the area bounded by
1 curve to the problem ol determining the areas of certain standard regions.
Let © be a nonnegative bounded function de;1qed on [a,bﬂ - We recazll that
the standaré rezion R under the graph of £ on [a,b] is the det of poimts
- cr s L \ . . ; - .-
pounded ocve by the graph of [ , below by. the x-axis, on the left by the
vertical 1i # =a and on the right by X = b ; that is, - -
- - R={(x,v) : a<x<b ani O0<y < (x)} .
(Figure ©-2a). To estimate the area of R we subdivided the standard region
into umalle“ standard regions by SLOul iding the base irnterval [a,b] .
v ~ L
- - -~ -‘
4
~
’ * ) i / -
/ - - i c i
— f\ .t — -
O=XO ° X X2 .- Xy TR Xn-1 Xn—b x
i
- - \
- . )
' ' Figure 6-2a ’
W& subdivide the interval into n rarts, setting xb =&, x = o and
choosing points of subdivision Ky 2 Xy 5 eee X, 3 such that .
<= t
- ’ C Ky € X, € o aee € X < x .
] © 1 2 -1 n
. _ _ _ .
On each interval fﬂk_l,xk] s Where k =1 , 2‘, +-- , n , We have a2 standard
‘region R, where .
| N ™ = { v = . - = Fad .
PR = {({x,7) : .\g-_:ISX_S;i( and 0 < 2(x)7} .
\ o ." . -
We then estiimate the area of each subregion R“ f_om above and below by
rectangula? approximaticns. In each interval [xk 1 2% we obtain a lower
bound m_  and =n upper bdound M for £(x) :
m o< f(x) < M x <x < .
=" ) - "% ( k-1 = = xk) .
. 370
o : '
RIC Lo .
oo o _1 -
v .
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-The region .

turn, contains a,rectangle of height

conclude- from Property

-omplne =) SAR) Sl - x ) -

Using the additive property, Property

- . R a(

" It follows *that

-

-

Y

and -

.

2

R)

n, J -Oon the common base

- 5

is therefore ~ontained in a rectangle of height Mk and, in

Dieprgd - e

and Property L4 (Section 6-1), that

a(R) érnl(xl - X,

2
-2

we then have

d(Rl) + a(RE) + oie. + a(Rn) .

N

-

- s -
Sy - )+ s (

X

n Xn-l) .

AR =y - xg) F o - ) e MO -k )

In abbreviated sum notaticn (Section A3-2) we have

. ka(xk -
R k=1

- -

In Section 1-2 we were

under a

curve as a liqit-of

x5, <al®) € D M (e

k=1

~

able to represent the ==

sums of areas of rectazr-L

“

’

- g q) -

e

standard region

es ~- e were able.to

estimate that limit from above and below within a glven tolerance of error.

L
So far we lack means for evaluating such limits in simpler terms. Here we

show for a simple nonlinear case, the function

how to obtain sueh an

¢

Sections' A3-2 .and A5-1

« evaluet

a direct attack on th

1

not compelled to

Chapters 7 and 10.

Consider th
shaded region in
0,1}

‘manner qf Section 1-2.

QO

ERIC

Aruitoxt provided by Eic:

- . 3
ted by surmation

f

evalustion using special summat

we Show

technigues; 1w

the region

the problem zIf e-ralu

use the subtler, =

R

Tigure 6-20(1)).-

it will be. easy to z2pproximate

By -

ZIW o arezs T

SC Lewnnid
ting - 28 I3
2t clften simpler.
unces the gra»nn yooo=
Slone £ 7= oan
s -
¢ R frem zoo
— - -
o
371
-
-«
<

x

%= .on -[0,1] .

izcn zTechnigues. In

_zicns under other graphs can be

2re only demonstrating that

feasiple and that we are

methods developed in’

~ .

2 on [0,1] , (the

X

_mcreasing function on -

ve apda below in the’
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e a subdivisdon of

n points Xy = o,
rval of the subdivis
T ince

X =

n
gion, x

(0,11
: 1

into

£ 1is increasing.

LU3)

RV

n

nooegual lrwoeroe My
1 - L !
X = . - = 1
-1 n - ol
LXK, we hove
X
L]
y
y=x
T
O=|x, x, X, Xy Xg=|
(3)
=29
- ~
r

X



v " x -

) We conilude that the standard region R,
_ ‘contains the rectangle s, of height ‘(2

. tangle' - of height- (Xk) both orf the

overlabplng rectangles s &orms a region S

- k

1)

same pase.

pased on tie intervel l’xk]
and ﬁs contq;ned in the rec-
T e.

Fhich 1s-conﬁained-witbi“ R,

> . -

fon of the non-

2nd tde Lrlon of the rectangles T‘ conmtains R . Haomfﬁge b*onertﬂes
of area we maj tnen'ootawn upper and lower estimates for-qbe area a(®) .f B
. T Wenhave a(s) S af( R).. < a(T), where . o R
| ) _—a : T N . . & - B - . . .
* o ’ ’ V- T on< . ) S
£ . ) - i £ - - -
- - N . " \ . 4 R - - »
‘ (8] ‘E :,f(’ﬁ;;j_)(’ﬁc T %) p '
. e k=1 i, ' ' .
. Lt ': . . 7
) n_ _ ..
; - N k - 1.2 1 . N
- . :.‘» ::"‘l‘}-n.‘_, - ) ( n ). n : ) .
' . (2 ' k= . N
. . . N o n ’ )
Lo, -, - —_— = 2§ E (k2 - 2k + 1) - : 7
- .~ - . . e - . -
i - 1%=1 - . . e <
. n_ - n . L .
I - =—-3-'§- 2 - 9. (2x - 1) B
a =1 =1 4
- -
and - v
; ‘n )

- ’ ‘ k=1
- ' n
— . _5331 2
.- N>~ do

J
. We recognize the

. as the sun of an arithmeti
. . n
- . 2 2 F= I o, ) Fa iy -
whose sur is nn . The sum i od of the first n
- N k:
tHe formula for «&(S) =and that

for a(T) .
is-given in Section A3z-2. t

-

ERIC ¥ R 20

Aruitoxt provided by Eic:

ec?nq_sum in the braces within the formuia

A generai

S I RO
S <Z w{E

for «{S)

Y
F progression, the first n odd natural pumoers,

s -

sgquares appears in both
= -

“'*'eatmenu of sucn sums

r
Ior this particular sum we have.(Example A3-lg)

-

.



- . ~
Cohseqﬁently, f _ - - )
. A i n3 n2 n- é 1 "i l- - ‘ -3:
. L ‘ .a(S)‘ = n—3{-3— + '2— +Z - 1’1' ] L '3"-‘-5 + 61-1_2 s 1—-‘
. L lrn3 ..ﬁ§} ’l ’ 1 . - -’ B} :
. AT = SE R s INC
v Slnce S ﬂs-contained inJ R',‘and R is cont;ined in T ; Property,Qiof E ;_ .
area States that 3 il ‘ ' ' ) i ;ffer;_ -
e _ “a(s) £ al®) <oT) o
or ‘ ‘ﬁ. o - ' ' - ﬁzi--’.
S . o .2, 1L < a(R) }£+L_.}- 1 . . .
J. ,Ai R - =3 2n g2 :

As we increase the number n of subdivisions, both a(s) and -a(T) become

s»eadlly better aoproxmmatlons to the number % » and we conclude that

3 S~

a(R) = %-. Formally, given aqy tolerance .¢ > 0 we choose n to satisfy’

the inequality ~‘ ) i »
' 1 -1
r e 6n2 <€

- ' ) F . - . .
. . S~ - - >
then a(R) differs from a(S) or a(T) by at most e > and the estimate

a(S] from velow: and a(T) from above differ from each other by at most 2e .

H -~ -

+ .

A

-

~ Special summat ion tecqn*oues can be used to obtain the areas of standard

-,

_gregwons for other functions. In Section Ao-l such summation technloues are

n

. used f%r the power functicn X — x- ‘and the circular functwon X =—aCOS X .

Often it is not convenient, sometimes not nossmole, to represent the area as =
- 1imit of sums which‘may be eeszly evaluated. The calculus offers simpler and
mgre general technlcues (Chapter 10) bu"tnese, too, may feil. The idea of
approximation is, uhe ‘undamental one, and 1f all else fails we can always
resort to obtalnlng approx1maulons from above and below to the area of a

T

standard region.
- t . -

; . . ) - - -

-

.- : S
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- bl - 1:' i ..
. . ) 6-2
. - ) . ' L o . . ": .. ) \_'g‘,__. -
\i\ e . Exercises 6-2 I T
1 Use the'suﬁm%tion method to £ind the ares! of thefgtanéérd;fég;pn.defined'
C by | . . . _»} K.>_;‘_ .
(a) £ : Xe—wemec ,0<x<b ,c>0. : i
(b) £ : xX—eecx ,0<x<b,c>0. ) ' ' RSP
- -_— -_— . . . . . ‘- ‘ N, -
T (e) T o X e 3+ 2x : 0<Zx<Db .- -7 - o o
A(d) £ ! X—asin fax + b) ; O<x<ci;=a,b,c 'sﬁgh.that K
sin (ax + ) >0 on [O,c]‘.‘ s T 'j T -3 -
N : : . e o
) . ’ ! . » g
A(e) £ : X'-——.-coé:2 x,0<x<c. - oo L r;%‘:x
‘ _ . RN TR
2.° The-problem posed 1n Sectlon 1-2 was to determlne the area of the :‘
standard region for f:x —vx on [0,1] . Thre summatlon~encounterea
there was similaer to the ore encountered in this section. Use thls facﬁ‘ t '
to solve the problem of Section 1-2. . . 3 o N N
: « ‘.’ .

3. Obtaln the result of Exerc1se 2 u51ng 6ﬁiy the fact that the a:ea under‘
AN

2
the graph of f£': x —_— X on (o, Ij 1s %-, together wmth ﬁhetbaS1c
properties of afea, w1thout resort to summatlon techniques. - - f:

P

4. Show how the upper estimeting sums for VF' are related ue*m-by-term to
fpe lower estimating sums for x2~. (Hint: Sketch a graph of- & ﬁ:xg‘.f
Use uhlS graph and the y—ax1s to, represent the standard region deflned

>;by .f_ ) ‘ .- . . . \‘

5. If S_=+I+ 2+ ...+ /a, show that. . L

S ‘-2—/n€<s <_g/n_§+f£.'
3 n 3 .

»
>y
v

7



6._ 3 - . _ ) B . i ) . ‘ f . ,,

h _ - . . : ]
6-3. The Concept of Integral. Integrals of Monotone Functions.® . b .
X g . - ~ -'4 \ =
(i) " Definition of integral. . C .

- *_.Tn the computation of the ‘area of the, ‘standard reglon unden the graph of a'!
bounded function "f -on a closed. 1nterval we gave upper and lower estimates of
“the area in terms of upper and lower bounds for bl op each 1nterval of a sub—
division. If the funculon f takes on. maxlmum,and minimuam values on each

-

subin ferva_, as it would if f were continuocus Or monotone, then these would

give the sharpest possible’ bounds. When_ £ is contlnuous it may be ea51er to
gl

use ‘slacker b%unds than to attempt to determlne the extrema. For monotone

functlons,,however, the situation is espec1ally 51mple°' The extreme values
. - hadld XN
on an 1uterval are taken on at,the endpoints. b . -

We may allow f -to take on negative values sSo th%t the interpretation of
the upper and lower sums-as upper and lower estimates of an area may not be
immediate. Still these upner and lower’ sums may serve as upper and lower
estlmates for some unigue number. whlch.lles telow alT upper estlmates end above
231 lower estimates; 1f such a unlcue number exists 1t is called the integral
of f over the base 1nterval. The idea of ;ntegral has far-reasching appli- -
cations, and its interpretation'as'area, although useful for visualizing the
concept of integral, is not necessarily the most importeﬁt realization of the
conpept. - ; -

' We consider a bounded function f defined on a closed interval La,b] .

_A subdivision of [a,bi into n intervals is defined byia_set of points -

) - _ 0'=.{xO,’ Xy s Kp s oeee s Xy > X }

-~

where x5 = a , xa = b -~and N -

xo < xl < x2<<‘ < xn—l xn 2.

We shéll_call a set g of n01nts satisfying these requirements a partltlon
of [e,b] . On the k-th sublnterval [xk-T’xk] defined by the partition o,
let m  be a ;pwer boéund, /Mk an upper bound for £(x) , so that p

I3

N F s L - -
EREEECET 2

for all x in the subinterval. We define the lower sum gver © - for the, lower

bounds . as -

1
.

PR E A



’,

=3

L g

n

E 2 ml m) ’ - " ‘.

-

s

and 'the upper sum over ¢ Ior the upper bounds Mk .as

~

_1 E ;Mk(xk ‘x l " | )

If “f is a nonnegatlve functwon then the lower and ypper sums correspon

to lover .and unoer esu,mates, resnectlvely, for the area under the graph of f

lower and upper sum

. DEFINITION 6-3

on [a Bl . More genera_ly, w1uhout restricting the sign of 'f » We use the

-~

s ‘to deflne ‘the integral of £ , if it exists. .

- . .

. Let £ ©be defined on [a,b] . We say that the

number I is the integral of f over [a,o] if there exists just

one number I

‘all lower sums

such that for each choice of partitions o » O and
Ll over oy and upper sums. Ué= over o, , we have,

- - T L, <I<U. . N : - x

. We raise the guestion of existence of such a number I Dbecause it is not

lmmedlately clear.

It is possibvle te prove that no lower sum is greater'than

-any unper sum. ulll there may be a’'gap separating the values of the upper

sums from thpse of .the lower sums. If so, there is more than one number be-

uween the lower and

~of the functicon £

-hand, if for each
‘differ by less than

upper sums and the integral is not defined. (This is ﬁru
of Section 6-1. See Exerczses Ao-2 §p, L. ) On the other‘
e >0 1t is DOSSlDle to find lower and upper sums whlch

€ , there “is such a number I which theseé lower and

uppér sums approximaté within the error tolerance.’ € ;. in other words, we are

able to define I

\  ofs existence (under

state ti¢ principal

as the limit of upper and lower sums. We leave the proof

appropriate conditions) to the appendix (Section A6-2) but
result Here as a theorem which we shell use.

'e.)t: - . - ‘ B

(3]
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THEOREM 5-3a. Let f be a bounded ?unchon on [e,p] . If for every ,
/ positive € +there exists a partition o _of [é,b] and lower and '
"upgep sums _i and U ofe* ¢ “hich’ dlffer by 'less than € , then < .

there exi¥ts-a ngmbér T whlch is the In-egral off-.f over [a,b]
Conversely, if £ is _nteg*able over [a,b] then there exists a N -
i partition o with lower and upper sums L and U such that .

U - L € . -

*If °f has an iIntegral I over [a,b] we say that £ is in tegrable

over [a,p] . - ' : _ : *

o N 5 -
-

A proof of Theorem &-3a reguires a verification of the conditions of _
. Definitiom 6-3. First we must have a demonstration that no upper sum is less
“than any lower sum (Lenma 56—25). In that event, there exists at least one’
number which 1s both a lower bound féf the §£t of upper sums and an upper o
Ddouné Tor the set t of lower sums (Separation Axiom, Appqndix 1-5). It must
'then be shown that there is at most one number I between the unper and lower
sums, Thls';o*lows f*Qm the existence of an upper and a lower sum whﬂch are
-close* together than anv n*escrvoed tolérance - (Lemma Al-5). Thus phe

-ntegral ﬁs det e”mlnec bj a squeeze between upper and lower sums. For the L

. Vo

details see Sectlon AbS-2. : Sk L o ‘ .

- - . NER .

o

(iil Ingegrao lltv of meribtone functlons.

.
.

For monotone Pant"ons we may choose m, and - Mk as “unctlon values‘

at the endpoints of [xk lkaT and it is particularly gsiy to obtaln an
estlmate of the dﬂ:fe”encg oeuween the upper and lower" J
the error of apn*ok~matlons to the 1ntég*al(, We picture the 51tuablon in terms

=2
. -

of the area of ﬂisuandi*d reglon for a nonnegaulve 1ncreaswng functlon £ .

ary

s . .

> £(b)- f(a) .

'
s

. a=xg
: B - Figure 6-3a . -
- . . . ‘ 378 k_ . )
Qo L - L - ! o
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T S ‘ ) -~ . T . . : Toe
T . X . . o
In FPigure ©-3a, tqv-sraced *ecbangle over the 1nterval [xk 1,xk] has height
- M -1 wnere. M, = T(x ) Qaﬂd m = (= . ) . ]
% T M 2 oM o= 2l Doy ( 1«,-1) , o
The total ared of the shnaded rectangles is the difference'be*"eenesﬂe ) «
. . . ) - -
upper and lower sums for the given partition. S ' ; _ 'y

.~
-~

Since the function £ 1is monouone we can -magwne slﬂd:ng theése rectangles

arallel to the x- axvs into an "arrangement with “Their right svdes aligned. In _.
. N ~

this arrangement tne *ectenbl s ‘are contained without overlanning in a single

. rectangle of ‘heig "(b) - £fa) and base‘eqgual to thé length of the Iargest
interval of the subdivision. ”he lengtb of the largest 1nterval, i

¢ .

) ' . v(c) = maxi;xk - Xk-lj > _ - <¢jf

.

1

~

of the coarseness of the subdivisio% and is called thﬁ norm of the

Y

is a measure
pax zition G . We have depicted 2 bound on the difference between the upper
and.loﬁer sums : ' _ IR - . -
U-Lsif(b) z () 1o - . o
Clearly,.we can ﬁa%g the difference between U and . . less than eny error —:~é§?”f
tolerance - € by?ﬁékiﬁé the subﬁivisibn fine enough, namely, by choosing'-b AL
. ' 4
so that . & = : .
N o y i ‘ Y . -
. v < ey S .
s ~a
Since.the€ area I must then lie. in.the interval of length et-most € between
U and& L its value cannot diffe; froﬁ-ei;her by more than '5\ apd we have
, Satisfied the.condition of T@éoreé 6-%&. i .:% 5

' £ aArtn ugh we haﬁé obteined the last resuit by a geometrlcal a*gumenv we J*
-

he same resul=s dnalyticelly with more ge“erallty: ‘any function
v N . x-

monotone on a closed interval’is integravle. . - . ' )

THEOREM &-3b. %f £ is monotone on [a,b], then integrable over la,b].

CHy
'J-
[
'__l

Proof: We show that for .each positive - € it is possibl€ to find a

partition ¢ of [=2,b] for which the difference between the upper and lower

: sums on the partition can pe made less than <€ : . : s

[x, zju] . We zana nrove that it is sufficient to use z subdivision ¢ -with
a norm setisfying : o
“~ - -
- . : - £ £

(93]
1
\O
.
f

\)‘ o ~ ". :
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- - i - oo ) ) - b -
~ e C A : A € ’ _
o L~ Y < T
when £(b) #£ f(a) .o - i R ' .

. M [
‘The case; f(v) = £(a) is trivial since the function I must then be a

constant function.,K In this case, we have Mk‘= m, and

. o . U-L =0 ) R
g b e *,q“.' . . . Q e )
/ Zor all subdivdgsions o . . . ) - L.

-
Fal

We .consider the case of 2 weakly increasing function £ (the weakly
. . . . - z . . ~ .

ey

degzeesing case 1s similar). The maximum a2nd minimum on [xk—l’xk? are

f§;ven by the endpoint values
PN

- M =¥ and m_ = f(x_ .) .
\ » . K (xk)- k L(Ak—l’ .
-3 / - - T :
N -7 2
Surming over the intervals of the subdivision we have
- ‘la - - l

- i : . n n

,‘ - o Cw =Z A D =§ : f(:".t':,)(xk " )

ozt

- | ‘ i ; _ - - n o ) » 2
. ‘ ‘ »F f5k=1 R IKT;? ) k=1 f(Xk_l)(XR ) xk-i}¢f

LU m ) I -y D10 -x ) )
. =l ‘ "
S V‘r? ; . -

| <) lelx) - 20x, )V,
’ - k=1

) . . E “ . ‘ ‘ T a
B .= V(G)Z [f(:f.k}-- ‘C:{k—l)l - Lo
T k=1 . _ o s
. . : s ’ . -
We goserve timt . ot . - .
’ . - . - . . "{ -
. o : S g i . : T : ‘
. . - - o K . . . el . 1;.‘ .
- ‘ E f(Ak) f(Xl) + -(Xgl Foe-- _\xn_13 + f(xn) g
s/  k=l. - - ) . ‘ ’ - :
¢ . - . - - i
and . . - o .
<. . -
. ‘ .
' - " . -




-A

-~ - . -
.. : - : 7
’ =< -
- ’ n b .
E ~ - L oef o Y - + :
I( ’k-l) = f(,-.o)' + f(}..: +oee. + f\‘{n-l) - .
k=1 - / - s '
- ¥ Ve _ . . D
Subtfactihg'fﬁe sedcnd Qf these sums from the first, we have -
. N / N . ,
. - -‘i - - . } v
E (20 = T 5)) = 2(x) = £(xg)-= £(0) - ©(a) ;
. o - =4 . - L
k=1 - . R -
- ) ° t
cengeguentliy, K = , y
g U -L < Uc)[s(o) - £(a)] /
. . - - T i
To mzke ihe difference lgss than € we need only-chose ¥(c) as indicated
above. We have satisfied the condition of Theorem £-3a2and it follows that -
£ iz integrable over - a,bﬁ*. \
- - ~
(iii) Riemann .sums. Notation.
B
N We have employed a2 method for defining area by approximation from above
ancd bvelow =2nd extended our zpprozch to define the more general concept of
integral, This method has the great advaniage oI logical simplicity in the
derivation of properties of the integral. -
L more direct meiiod, dput one which reguires somewhat more complicated
arziment,_ is to utilfze . alugs of the function in the intervals of a subdivision,
- - - X . .
instead of upper and lower pounds for approximating the arga. Thus, for a
P LA - ) .
£, P < Zets ol b 3 i = >
function £ _defined.on [=z2,b] 2nd 2 partition o = {xo > Fq s Kp s oeee s xn}
of [a,»] we introduce sums of the f%?n . .
n T
1 R = (&, - o -
(1) E z (B )0 - 1) .
‘:"\‘ k=l i -
where §&. is ary value infthe subinterval '[xk 1’xu].' T se are called
- - - - = A
- —_ - - ’ g .
Riemann sums Y. For a general Riemenn sum the rectangle overx,[xk 22 ). will
[] T EeS R
usually not include all of the standard region under the graph and will usually
’ /
[ -
-, — N 5 . ) e - N N
slter Zernnard Riemann, .a German mathemeatician of the early 19th century,
a plcneer in the. careful study of the concert of integral and in other irmportant
. . - .- -
areas. - -
- 2 .
~ . ~ v -
. - — -
) - £y - - .
Q & <~ .
RIC C + .
rorecrosieio enc) : < - -
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-

include some reg‘on .abdve the curve (Flgure 6 3b) so that there will be a

pa rt*al cancellatlon of errcrs.

Gy o

lower sums

T

scribed tolerance”of error for every sufficiently fine =ubdivision

corresponding choiée of (Section 26-2).

ERIC

Aruitoxt provided by Eic:

the approx1matlon to I by Rlemann sums can ve kept within any pre-

Rl

-

<

-

Since m£ < f(g ) < Mk , no magte* how

is: chosen, we see that the Riemann sums are sandw1ched oetween the upper and

3
L<R<U.

l

N lim
o y(c)~0

R

S

R

>

-

— o S s, s s . o St S S —

bt s s b

[y

T ot S - T f— i — —

-

f has an integral I , we can +he*efore approx1maue I
In fact,

-

fx

by Rlemann sums.

¢ and.
We/shéll then T'iave determined’

*he integral as a new kﬂna o‘=~ limit, a limit of Riemann sums:

&

"

N
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k3 . . -
- - . ) .

'J-

e 5. It 1s natural to suppose thet if this limit of Rlemann sums exists, then

R

ntegral I of Definition 5-3, and to suppose that the two are

!Jc

50 does the

1

7 .
the same. This is not an obvious proposition™, but it is true (Exercises.

A6-2, HNo. 3). These remarks are summarized in the following theorem.

N -~
.
-~

.

THEOREM ©-3c. The value I is the integral of f- over [a,b] , in the sense

.

of Definition €-3, if and only if it is the limit.of Riemann gums,

. . - .

“ I = %im R. ' .
v(,o)~0 v - ®

The proof is left to Section A6-2.

The integral I of f over [a,b] is usually writtén in the elegant

notation’ of Leibniz. In Leibnizian notation, the Riemann sum (1) is written

. - . ¢ .
~ ’ : on

. . - 3.= E f(gk)ﬁxk : ] N -
-~ k=1 ‘ o :

Lo - T - - . -~
L I |

where Axk represents the difference xg -‘xk—l . In representing the ’ .
' iniegral Leibniz used a form reminiscent of the Riemann sums,

-

-

. b - .
I =j £(x) ax . i
~ - a ’

We-shgll call the endpcints a and b of the interval of integration, the
-

lowéer and upper ends of Integration, respectively2 .

-

/ﬂ/izithough, as we shai; see, the Leibni;ian notation for integral nicel&
complééents the Leibnig}an‘notation for derivative, it stems from ccnceptions
which cannot.abide‘the light of logical reaéon. In the thinking of Leibniz
and most of'thé‘early usérs of the calculiis, the integral sign JP which is

Vah elongated Roman "S" is a special summation symbol which replaces the

corresponding Greek symbol "I ¥ . The integral £(x) dx was thought of .

[VE 4
v

as the sum of the areas of the infinite set of "rect®gzles! having

"infinitesimal", or- !'immeasurably small” base dx andé height £(x) for

—lThere are concepts of integral which are more generzl than the one we
consider here. For example trhe functions of Exercises 3-5, No. 12 are
integrable in a more general context, but not in the sense of Riemann.

4

2. -, . . - - i N L.
It is customary to call these values the lower -and upper limits or bounds

of integration, but the terms "limit" and "bound" =z2re used so often in other
senses in the discussion of integral that we choose to brezk with tradition
and introduce a new term. 5 -

\\} ‘ ) B o 383 .
ERIC < - -
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- : . < '3 . -

& < x <b .{the Roman "d" in "dx" replaces the Greek "A" of the finite o

- . . o . - 1 : s
Riemann sum). These ideas are nonsensical on their face » 8s the redoubtable
. , : -

metaphysician Berkeley made plain to his contemporaries.
-~

Crly Newton among the mathematicians of his ag

had some $light success

(0]

in clarifying the basic limit concepts involved,‘end even hg used the idea of
Anfinitesimal freely when it suited his pﬁrpose.2 The +tasi of prdvidiné a
'log;cél foundation for the calculus -was efféctively begun by methematiciaﬁs of
tie nineteenth century. Nonetheless, the idea of summetion of "infinitesimals"
was,both'sugges;ive and fruitful. In ancient times, Archimedes in "TheMethod"
rade ingenious use of it-to discovef Qnot prove) formulas for the areas of

conic sections. Euler used this nonsense without guestion and managed ito
On

s e

develop vast areas of analysis without a clear-cut definition of limit.
. - :
the other hand, the imprecise ideas of Leibniz and his contemnporaries have

”  their pitfalls "and mathematicians were not always successful in avoiding them.

-

(iv) Arclength ’ ' , .

We have already made some use of particular Riemann sums. In estimating

the~integral of a monotone functior we used.upper and lower Riemann sums formed

by taking as bounds the maximum and minimum values of {f 4in each interval of a
subdivision. We could also use upper and lowér Riemann sums for the continuous

fugftions since they share with the monotone functions the property of having

~—

. 1 . <
a maximum and minimum value on each closed interval (Theorem 3-7b). For con-

tinuous functions, however, the estimates by upper and lower Riemann sums are . -

not the appropriate general toolég;?ause the extrema of a continuous function

k3 ; i . .
on an arbitrary closed interwval be peyond simple analysis, as .would be the
bl e
case for the Weierstrass functiod of Section AL4-3. In other cases, the

Riemann- sum may. be the appropriage device because 1t is inherently impossible

to obtain the necessary bounds on every subint rval, as the following example

‘shows. - .
.- i . ] H

a

-

lThe concept of."infinites%pal” requires the existence of guantities which
are smaller in absolute value than any positive number and yet not zéro. For N
real numbers such a conception is inherently self-contradictory (see Exercises .

Al-3, No. 13b). | : .

2See Boyer, C.B. The Concepts of the Calculus, Columbia Univerds v ‘f;
Press. New York. 1939. . 3

V4 ~ y ' . .
: ) 384 :
Q . : ‘ ’
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Example 6-3. The length of én arc of,é continuous curve is another

guantity which can.be defined in terms of an integral. Given a continuous -
- function £ on [a,b] and a partition
o of [a,b] it is natural to attempt
To‘apprdximate the len%th L of the
arc of the graph between x = a and
X = b by the length P of the poly-
gonfl arc joining the suUccessive points
. of the grafh.corresponding to the parti-
tion pbints."For Yy = f(xk) 5. -

B = X T Xy 0 804 LV SV < Vi
the length of this polygonal arc is

n -
2 2

- Figﬂe £-3c § . : P = Z_ /(Axk) + (L\Yk) :
= ™ _

This sum can pe put in the form of a Riemann integral. We observe if £ -is

I3 y .
- differentisble that, by the Law of the Mean, fE— = f‘(gk) for some wvalue ’

. Ae*

gk satisfying Fk-l < gk < xk\. Conseguently,

(1) P=2‘~/l+f'(§l§-2mﬁki ._ .

k=1 .

v

that is, P 1is 2 Riemamnn sum for the function g : x—e= J1 + f'(x)2 . We

-3
then define the length L of the arc by the.formula

. ) ' b ~b
(2)‘ \ | - L = Sa» g(x)dx = Sa Y1 + f"(x)z dx ,

- N l R
if the integral exists, . T . '
There is one peculiarity of this treatment of arclength which you shogld'

-

know. Since the segmént has®the shdrtest length of all arcs Jjoining two s k\\\'
tkgzi be proved), it follows on summing AN

points (this is assumed here, but 1
- over the intervals of a subdivision that (1) is always.a -lower sum for (2).
Without an obvious geometrical way to describe correspording upper sums, we

,must abandon cur idea of approximation from above and below. Thus we nre

compelled +0 use the Riemann sum approach to arclength.

o | - 20
L)




Exercises 6-3

-‘ zt
1. XEvaluate the integral of eac¢h function f over the indicated interval.
Ta) £(x) =2 - x5 | 0O<x<1
(v) £(x = x 1l gx <2.5
() £(x) =2 2.5 <x <3
(8) £(x}) =5 - x- ; 3<x<3
: A . ,
2. (a) Find the minimum and the maximum values of f(x) = 2 + 2x = * on )

therinterval [0,1] , and use them to find two numbers respectively

. 1 . N
below and above the wvalue of S <f(x) dx .
- } 0 .
- - (b) Check your result oy evaluating the integral.

3. Findwpper and lower.'sums differing by less than .l .for +he area under _
. ~ N 3 ! -

the graph of £ : x—-—;{l- on [1,2] . .

- =

4. Evaluate €ach of the following integrals.

- . -

PR X e . Lo . 2 R
- (2) j X3 dx . .
-1 : L~ ‘ N@ ) . ’ . .-
: 2 - . ] L .

-2 1]
. 1 > ) : . .
(e) '.S x~ dx. ) (See Exercises 6-4, No. 4)s

-1 . S

1

5. Approximate j. 7—;;—5 dx by Riemann sums.
. 01l + x

-

6. A function f defined on the interval [a,b] is said to be a step-
- b4 ) —_—

function on [z,b] if for some partition ‘o = {xo,xl,.:.;xn; of the
%nteryal, (x) %s constant on each open subinterval ’{xk_l,xk) s k=1,
2, e« ,n . Thus sgn x 1is a step Ffunction on [-1,1] , where sgn x -
. is defined by ' ‘
) - : . . -1, %<0 :

R

sgn x= . 40, x =20
1, x>0.

(a) Prove that a step function is integravle.

. D . . .
() Fing jﬁ sgn x 4dx . . . ' .
. a ) -




Evaluate each of the- following integ*als'

() S_l [3x + 1] dx‘/

L]
i
<

. 10 qx : - )
(o) S [] ax . (a
o py 5
. ’ *
Let = {x xl,x oo Xy 3 be a partit

which is 1ntegrable over each interval

Prove_that £ is 1ntegrable over the e

e 3

k=1

‘(a) Prove for 0 < X 1. < X - that

. 3 _ .3
1 0% 7 5en) <73

(b)  From Part - (a) prove that for O

- NG
() erenerélize this method toéobtain
) - . o
. - S X7 dx
._‘- : a
for O<a<h?d \‘\\-
< -~ \

% T %1 a2

.. P 3
O jxedx—.'b_

S 20 ax

ion of [a,b] , and f , a function

[xk l’xk] yk=1,2, ... , n.
ntire interwal [a,b] and that

"x _f(x)dx.;- .
k-1 g‘ A 7' ’ ‘

. . - ] !/ '
R T
<a<b |

3

a
T
-

c



v

s f must be ng greater than the area of
- . the latier.- A similar inequality holds
X for integrals in general.
- p
. .
o -
. . -

) i = \ N - .

TEEQREM ¢~ka., If £ and g are integrable znd T(x) <glx) on. [a,b]
- ) - r'd
then -
e "‘V
- ’ ' z - ke s
.. f{x)dx < al(x)ax . ) <
’ ’ T g oa a
3 .

. Proof. Let I denoie the integral of & ov fa,0] , and 7 the
integral of g . VWe know (Theorem £-3z) thai for every positive . € <there
exist upper and lower sums U and L for g wen that U - L < e . Sinc
L <J <U (Definition &-2) we conclude that U - J < = . Trnus we can fin

— — - . -
upper sums as close as desired to J . At the same time, every upper sum
J is an upper-'sum.for I since 1(x) < g(x) . We have I < J , for if we
had I>J we cou la take =TI J.>0 and.from U - J < I - J it would
. Tollow that U < I , a contradiction, since U iIs zan upper sum for. I .
<
. . .
L3
. oy 333 . _
o : N ..
ERIC . 28
i , , : Lo .

standard

g, (Figure

.
region unde

-
~
<

-La), from

Section &-1 the area of




. ) - R - -

. i . . . .

Consider the decomposition of the standard reglon, Cvyer fémd] into the )
two standard regﬂons over [a,b]

[o,0] where a <b < ¢ (séé_Figure

6-Ub). Tﬁé additive property of area

!
|
i
! .
l ; (Property 3 of Section 6-1) states
! | l r that the sum of the areas of the two
t - ~
: | ! subregions must be the 'area of the
l .
! i ) } - entire region. This corresponds to
‘ : ! l‘ a generzl statehment for integréls.
1 ! I . i
a b c . \ :
Figure 5-Lb : \ ) . Ve
, X . ) - . \ B . :‘Z’
THEOREM 6-4b. If £ 'is integrable over [a,c}\ then, for a<b <c,
: ‘D c o ’ . . -
(1) j f(x)dx + £{x) dx = j f(x) ax . N
- a b B a )
- - ) @
-Proof. From the integrability of f over [la,e] , it follows that £
is integrable over the subintervals [{a,b] and [b,c} ; (Lerma A5-2c). Con-
seguently, for any € > 0O according to Tbeorem 6-3a we can find subdivisions
.ot of [a,b] and & -of [b,c] with corresponding upper dnd lower sums,' .
U , L* _and U" , L" such that . . : .
" U' -Bt' <e and U' -LV< e .
Clearly, U =1U! +U" and L = L?! + L" are upper and lower sums\over [2,c]
for the partition ¢ constructe. - taking the two partitions ¢' and ¢t
together as a partition of [a;- . Furthermore, «.
U -L = (U’ - L) + (U" - L") <-2¢ . ‘
» .,\ .- t 1t L
_ For the integrals I , I' , I' over the intervals [ajc] , [a,b] , [b,c]
respectively, we have 2 -
— . . '
X U-I<2¢ ,U*-I"<e ,U'-I"<¢€, .
whence, for every éositive € , - 3 -
ATT + I" - I} = [(I* - uT) + (" - U") - (T - U)| )
- ’ < e+ e+ 2e , ) o
\/ . Sl{'e - - . . s .
* It follows that I' '+ " = I ,qas we sought to prove. ’ B p
: T ) - .
28 .
i .o
- - - 4-._ > -
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= ADO=H . o . &

4
4.
- T . : i . b ( . ? -
: Up to this point-the symbol '5. P(x)dx has been_ efined only for
~ o8 - . . -
a <b . We now define the integral so as to make (1) Lnive*sallfx%al*d.
N\ . ;
.~ Formaelly substltuting a for b and c¢ in (l) we obtain ‘ e
v - ‘a a a o
Co S f(x)dx + S Cf(x)dx = J. f(x)ax .
a a _ a )
. . N : T a ﬁ
which can be satisfied only if S f{x)dx = O . We define the integral
. ’ t ' » : . a . /
accordingly: » : boE
ﬂ R ) . ‘ R *
X DEFINITION 6-4a. If a is any point of\the_domaii of
, define _ ) e
g . .
% Ry -} .
_ ‘ S fl{x)dx = 0 .
’ : a

Furthermore, if we formally set ¢ = a in (1), we obtain

b a a
S f(x)dx + j. f(x)ax = S. f(x)dx =0 .

a b a

This equation suggests the following definitian.

DEFINITION 6-4b. &f f is integreble over [a,b] , we define

S? f(x)d_x'= -Sb £(x)dx .
: a

o]

=

2 - - .
With these definitions, Equation (1) becbmes valid independently
. . ~ -
of tggfbrder‘oz a , b, ac .

- . .
. « .
. -

Corollary. If a , b , and ¢ are any points of an interval over which.

is integrgble, then

Hy

-

- ff Sb f(x~)dx + Sc £(x)dx .= Ic ftx)dxk‘.

a b a

The proof is left as, an exercise. - = = . ‘ : o

.".'

.
.
N

'
\

’ > . 390 : | S
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- a . - . ' . '
ple 6-La. .Consi&er j- ® ax where a >0 . Since x°  is-
7 o . ‘ -

monotoneh!or x >0 the 1ntegral .exists. We consider a subd1v1510n of [O a]

i
into n ! equal parts and in the manner of Section 6- 2, obtalr upper and lower

ﬁiﬂ sums - \\\\ | . .
h - oo = 2 a’ . 2

n
: U = ke 2 2 &l - K
L n n - n3
v . k=l - k=l
and - .
- . . . :
S ‘ ! '( Y 5 “ . 3
i k - l)al™ a _ a”’ )
- ‘ L= E j n } n =Y n ° . T
r ' ' k=l ' - (
§ . ) . . :’
“We utilize the same summation formula as in Section 6<2 and obtain by the -
same arguments, ' - , ) . uk
. ~ . = .
. j'a 2 a3 )
.’/ - X dx = -3— . )
- d o . “

- “

) " . ) . I ~ .
This is- "8 general formula' valid for all positive velues g (and negative
. e
values also, Exercises &6 h No. 2). ©Now, applying the Corollary to Theorem -

T 6- kb we can obtain thea*h earal of T be;ﬁeen any positive'ends of integra-

Pl

1thn whatevers: - .

"D : , 0 . 7 fo) | ‘
S f(x)dx = j f(x)dx + { £(x)ax T
o - - -

a 2
- ) ' B " .a'Q: - ~ 7 i
. 5. = S fx)ax - S of(x)ax 7 -
e S L, 4o, [
R _2d &’ o - : :
T3 3 ° ' .

Example 6-Lb. Property 4 of area, that the area of a rectangle is the

product of the lengths of two adjacént sides, tells us for f(x) c where

¢ 1is a positive constant, that the area of the standard reglon on [a,b] is

c(b -a), (Flgure &- kc) Mbre generally whether ¢ is positive or not, and

o - ¥YFe . ' - .. no matter what the values of a and

- . - = .~

»

) b » it is true that

B - . .
S c dx = c(b - a) .
a )




- N ) &9’

—

We neéd only prove the Tesult for a <b ; if a > b thé result follows

by the Corollary to Theorem 6;&b. . . . -

t

:f(x)

<

In every interval, c¢ 1s both an upper bound and a lower bound for

c . Por every partition of [a,b] , then, we take

-~ ) : . . n

."- U=L=Zi‘:c‘(ﬁ;;ﬁi;l) e ‘. ] |

-

- =c(p - 2a) . - _
. e o
- \‘\“ L

~

a >0 , (Figure 6-4d). This region is a trapezoid with parallel bases of.
length & and b and altitude b - a . We know from elementary geometry

.

L . - n . . L o i T
‘ o ) . K "" N . - | l/ L
e T =c;‘}<ﬁ-xk-l>_ ST

Example &-Lc.  Consider #he area under the graph of f£(x) = x on [a,b]

y A . o -
- ”*’
. 3 1 -
-
o
. L x .
S a b .
” - . d . | n l \ _ 3
~ ) @ - ;'j, Figure 6-44d _ : ‘-
that the area of such e trapezbid is ‘ ' . ) "_’ Lo T S
. o - 2 2 .. : . L
;(b -a)(o +a) = b o2, - o E?t}
2 - : 2 2 . =48
More generally, we prove for all a and b that Lo
b .2 2
x dx = = - =, - :
L 2 2 <
a -

“Again,
%ésult

fa,v]

,it'is sufficient to prove the result for b > a 5. for other cases the

follbws-from Definitions 6-ka and 6-kb. We subdivide the interval
into n equal varts and obtain upper and lower sums

.

_ 7 392 -

»



6k

U = (a + kh)n~ .o _ ' L

. “. “ . ) \
< . k=1

>, | ' T n : ' ) '
' \ _ ) . L=E [a-"-(k'-l)h]h——lU-nhe\v
' k=1 ' )

— -

b -~ &

where h = o We have . from the rule for summation of an aritlmetic:
progression, | _
. - ..on Q L i R :
. . nh ; .
" U=nh (a+kh)-—=?[2a+(n+l)h]-
. k=1 ' | '

TR ) be;a[za + (b -'a) +.n] . | ’»<
¥ 2% (b2 a)n o '
-F - Haeibpak, -

2

" For the lower sum, then ' o
1] , X ~

< o . ]

“ ., 2 2 . . )
L=U-nh _=U-(b-a)h_=?-?-——2—. .

Combining these'results end taking the 1limit as n approaches infinity we
obtain the anticipated value for the integral. ' ' .

-

-~

(11i) Linea}ity of integration. -

Y

For positive conspants é and B 1ntegratlon ‘is a linear qperatlon .

b o . " b .
5 [ar(x) + pa(x) Jax =:oc‘j - f(x)ax + s'{ alx)ax , |
da i . - a ) .

for if U? and L? are upper and 1ower sums for £ , U and IL" for g ,
it is immediate that U = oU! + pu" ‘and L =aol® + BL" are upper and lower
sums for the llnear combinetion cof(x) + Bg(x) . This result does not depend.

on the 51gns of @ and B as wesnow prove, . - <

} T e
THEOREM 6-4c. TP f -and g are integrable over [a,b] ‘theg:eny linear

combination of + Bg is integrable over  [a,b] and
o . B . - .,_..b: ’ »b_'; - -‘ N -
L j lae(x) * pelx)lax ;a-j f(x)dx + sj g(x)ax . o e
: To sempllfy the considerations Wthh depend on the 51gns of a  and
B we divide the proof into two parts.

393
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Lemma &-4a. If £ is integrable over [éj%?“ then for any constant « ,

] o

the functfom of is_in%egrable~and g

' | - b . (D :
p . s af(x)dx = f(x)ax .
- _ a a ‘ _ ' -

-

" Proof. Let o be a partition of [a,b] and take upper and lower sums

¢

“Over o, )

_fcr which U - L < ¢ . | N
If @ >0, then = : . L _- f
- ) n o n L .
QU = g aMk(xR - xk-l) and oL = E mﬂk(la; - JCK_]_)
* . K= k=1 ’

are uppér and lower swums, fespectively,‘for ‘af . It f£Sllows that

U -l <ae ' - ' . jﬂ\y

O. * .- A
and hence'thg? the difference between upper and lower sums'for ot caﬂ be
‘made less than any desired tolerance. It- follows that of is 1ntegrq3}e.

.. . Furthermore, for ‘the 1ntegra1 I .of f-and J of of over [a, b}t ve have

-

S \ N ¢ A o <e'\i; A ST
from which it follows that . L.
|F = aTl-= (T - e0) + (U - 1) .
<|J-aU| +alu-1|].. : i’

A&

<2xe .
° 1

.

Since this result holds for all positive € , we conclude that J = ou'ii .

-

If a <O then AU is a lower sum and ol ar upper sum for of .

& The proof is thus reduced to the Drecedlng((Exerc1ses 6=k, No. V. .
If a=0,. the lemma fo_lows tr1v1ally;-*i £ : )
. 39L .
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We have not attempted to -give an i?;;{ §'¥f~%p of the integral in terms
of area for functions which teke on negative values. If f(x) <0 on’ [a,b]
then -£(x) >0'. We ‘ave, in‘the light of Lerma. 6‘-4a, : _
’ - b b . . A. . .
5 Cr(x)ax, = -j' [—f(x)]dx .. ) : . .
' g8

a:

. The 1ntegrel I of f over {a,b]
‘}s, therefore, the negative of the
area’ of the standard region under the™
graph of -f (Figure 6-Le). Alter-
natively, we may conslder I as. the

negetlve of the area of the reglon

({x,y) : a<x<b, Oéyzf(X)} ,

a

: . _ the reglon bounded below by the graph
Cos | of -f and above by the x-axis.

-Figure 6-le

.t In‘ enera- the 1ntegral may be 1nterDreted as the signed area between
the grapn of f and;¢hé xaxis, *where the, signed area 15.3051t1ve and equal
to the area under uhe graph for the part of the graph above the x-exis, and
-where the signed area“is negative and egual to the negative of the area
between the graph and x-axis for the part below. In particuler, if the graph
"of f is symmetrlc with respect to the origin we have f(kx)f— -f(x) end for
any iﬁtervai [—a a] centered at thée orlgln the slgnﬂd ‘area of any standard
"reg;on above the x- axls on one szde of the orlgln 1s the negatlve of the

“Sﬂgned é&ea of tne symmet 1céf1y 51tuated reglon below*the x-axis on tRe

. R . : a
" other side of the origin; in this case jﬁ f(x)dx = 0 . (S«ercises 6=k,
) —a ’

No. h.j - h .
c - : . -\\\;

Lemma 6-Lb. Tf f and g ,are integrable over [a,b] s then £+ g 1is

-

integrable over [a,b] ang - ¢

- ' . o] _ _ b _ b 7 ‘ <0 " i
. E . ,?_‘S [£(x). +.g§x)ldx.=;j._ £(x)ax +'§7f g(x)dx_f .
- 395 (',l-—. :
. s




6-L : - ' : L

) ) We make use of an auxiliary result (Lemma A6?2d): Given any/;ixed
- °
tolerance, for any integrable function 411 suffgciently fine partitions hawve
. upper and lower sums ckoser then that tolerance.. Thus for each positive ¢ >

there ‘eXists some & such that any partition ¢ will have an upper sum U .

and a lower sum L -satisfying . . -
lu -] <€ g : ..

[0

whenever
vig) <8 .

Let Sl and 82 be the controls corresponding to the given € for £
and g , respectively, and take D = min{&l,Sa) . Let o be any partition

with v(g) <& . There then exist upper and lower sums o%§§ c , U and

L' for f , and U" and L" for g such that il
] U - L' <e and [U" -L"| <€ .
B . . ) 5
Recall that o <
A n . n ’
1 4 .
r _ _ T — -
U —Z ,Mk(xk Xe-1) 5 D g;mk(ﬁ *p-1)
.. N B T 3 - _
/} and
j‘;:. - ' ) , , . - >,
v Nk Cﬁ 1) e e (’H{ 1) '
- k=1
where '
m t<f(x) <4t end m".<alx) M I A
" Since , . .
m}cf N m}{" S f(x) 4+ g(x) SM‘[{’ + bﬁ(" '- -
it follows that U = U?.+ U" ° is an upper sum and L = L? + L" a lower sum,
for £ + g over o . 'We conclude that
. . U -1 = (Ur - L) + (U" -1") < 2¢ -, Y .

and it follows that f + g 1is integrable. Furthermore, for ‘the integralsi
Ir , I" ané I of £, g and T + g , respectively, we have the estimate

P g e SU) (T - T - (1 - 0
- ' I A R

- ‘ - : T < Le A

for each positive € . It follows that I = I + I" ..
Q . 396
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-

LY

-

The derivation of Theorem 6-Lc from the preceding lemmas is simple and is

left as an exercise.

.

In Exa.mpj_?s 6-ka, b , ¢ we have shown how to integrate x2 » a constant,

and x . Employing Theorem 6-Lc we now have the means to integrate any

quadratic flunction without fu-ther resort to estimates ’by upper and lower

sums : . »

b2 b b
X dx+BS _xdx-i-CS dx .

a | a

L
S (Ax +Bx+c)d-x=AS
. ’ a

a
An igpmediate application of Theorem 6-kc gives the aresa befween the

graphs of two functions f and g on {a,b] , where £(x) g(x) , as the
integral of their difference. If £{x) > 0 as in Figure 6- then the area,
between the two graphs is simply the area of the standard region under the '
graph of g less the area of the standard region under the graph of £ , - -
that is, ) ' : _ L
’ . b . b b - :
- S g(x)ax - S £(x)ax = Sa (e(x) - f(x)]dzf . )

a a

-

There is no reason to restrict these considerations: to .nonnegative functions,
‘for if £(x) <O for some x in [a,b] , and m is a lower bound of F(x)

on [a,b] , we translate the x-axis vertically |m| wunits.in the negative

-~ 3

direction so fhat e ) . ’ < Lo \,\

K . . .
¢ (x;y) —==(x,y ¥ |m|) .
In the new coordinate system the region lies between the graphs of the ron-

regative functions T : x ——e=t(x) +. lm| and g : x —eeg(x) + |m|. (Figure

6-4f.)

y _ . ‘ , y

s N



6-4
Since g(x) - FT(x) = g(x) - £(x) the definition of the aree of the region
between the g:jé.phs of f and g as the int;egral of the function g - £ is
clearly appropriate whenever f(x} < g(x) on [a,b]’. Thus, the area of the
standard region under the greph of F : X ——ag{x) - £(x)" on [a,b] YFigure
6-Lg) is equal to the area of the region between the graphs of f and g on
[a,p] (Figure 6-4f). ' \,, ‘

y=g(x) -f(x}

LS

Figure 6-iig’

~
-

Example 6-4d. Consider ‘the area of the region betweenﬂbe graphs of the

R 2 A
functions f : X——emcos” X and g : X —e- sin® x on_ [0,4] . (Figure

6-4h.) - ‘ ' ;
We might a‘t't:emp‘t to represen‘t 't:he area of the region as the limit of sums
of areas of rectangles. On the o‘t:her hand, we know that the area is gn.ven by
L -

R /S [£(x) - g(x)]ax ,
N , 260 .

'all x in the interval [0,L4] . S
e ' : S =
Aok R u .
But . S [f(x) - &(x)]dx = S dx = kL , N ' since
_ o . _ O ) v (
£f(x) - g{x) = cos® x - (-s:i.n2 x) =1 for all x . (The graph of
F : x—af(x) - g(x) 1is shown in Figure 6-4i.) In conclusion we note that

the area of "the region shaded in Figure 6-4i is egual to ghe area of the

since f£(x) > g(x)

fegion shaded in Figure 6-hLh.




x
L3 v )
4
3 - « -
N o -
- Figure.6-4h
b4
y . ) )
: )
N .
| . ) -
y= Fix)=! .
: . . .
0 i 2 " X
.ﬂ -
5>
- Figure 6-4i . ‘
. Exercises 6-4 . SN 0
1. \?‘fe@,the corollary to Theorem -6-Lb. ., | ' ’ '

2. (a) Show that f E X X2 is integrable over [a,b] , no matter what -

~

the values of a eand b . | )
’ & » v a
(p) Prove that S xT dx =,—§- for a <O . S
) - ’ ‘O \\__/

b 5 b3 a3 -
S x,dx:—-B—-—? for all values of a and b .
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64 | K L

v ‘,’ . ! L[ .
N 3. Exhibit the details bf the proof of Lemma 6-4%a when o <.0 .
- L. (a) 1If tEs graph of f 1is symmetric with respect. to the origin, then .
f is“odd. Prove that if £ ig odd and in‘tegrable on [-a a] ,
then '
. . -a -.
. I f(x)dx = 0
-a t )

(b) If. the graph of f .is symmetric with respect fo the y-aiis, then
’ f 1s even. Prove for .an even function £ which is integrable on

[-a,a] that . ‘ :
) . - . . ' b . N e .
. S J(x)dx=es r(x)dx. : , \\\ .

Interpret this result geometrically. B

5.° Prove Theorem 6-kc as a consequence of Lermas 6-ha and 6-bb. Conversely,

derive- the Lemmas as corollaries of Theorem 6-bc.
6. Prove: If f and g are integrable where g : X |f(x)]| on [a,p] ,

then

|jb (x)ax]| < S: l;c;))ax : |

7.A Compute the values of the given integrals using Theorem 6-Lc.

- : 3 3 '. - - ) . - e
' ~J 2 : o o R ‘ \
(5) S (x - 1)(x + 2)ax . _. . |
° ) - : ‘ L | .
‘ 3 s ' ’ - P . ) ‘
@ [ oo o L
) -2 -

-

8. (a) -Find the area of the.region below the parabole y = X~ - 3 above

the x=-axis and between the lines x = -3 , x =3 .

() Find the area of the region between the graph of
f @ x —-----x2 -x -6, “the x-axis, and the lines X =-2, x=3.

First draw a rough sketch’of f and indicate (by,shading) the

region whose area is to be computed.

‘3. Find 81l values of a for which
. ‘8 . . 2 N . -
ji (x + xT)ax- =0 - .
O ) -. ’ . - . .
* koo . . - R




10. TComp‘ute S f(x)dx where e T

o RN
3 o 3@5 =h3 o<x<1_.~ |
A é\ . : . . ‘}t,’% - > - - - ) “.,
. Cf(x) = §tET SRR

' ' 5-4:: ,_'_1<x<3 .
- ’- A -7 -
1l. Verify 'tha't: “the follow:.ng property holds “for f ! X——eX

~

_ b c-a ‘ 4
L j f(c"— x)dxr= S f(x)dx- . ¥
4 g c-b

-

Ex'plain the property geometrically in terms of areas. Do you think that
- . the property holds for'other functions tha‘t are- mtegrable" Justify

your answer .

¢ . N . - -
‘. 12, If a function f is periodic with period A and integrabile for =l1i» x »
- $how that | : '
a-iﬂV v a+\
. S . Px)ax = S
. d-a .

f(x)ax , (n;.in‘teger)

a

<

Interpret gedziietric%.‘liy. i
13. Evaluate

{1 + sin 2%)dx

~

o o
(assuming sin 2x is integrable).
14, Prove-that if £ is in't:egrable on~ [a b] and if £(x) >0 for all
" x in [a ,b] , then A :

_ .o b .
- : | S f(x)dx >0 . L

- - 7 - a .. ) . : T
- T ‘ '

b - - , R :
15. Interp /ret S .f(x)dx in terms of area if f(x) may teke on both . ..
a: R . . : . . -

posi ve- and negative values in [a b] . 7
D B - ! ) ;

-

-

SR b R ‘
16. In'terpret S - {glx) - f(x) }_dx in terms of area 1f we admit the possibility
N 2 E .

-~ e o
-

LV B
the.t f(x) >g(x) for some values of ' x in fa,p]

17. Prove that i:f' by and g &are integrable over [a,b] » then

X ) b .
. . - . IS {g(x) - 2(x) ]dJCI < I |g(x) lax + % [£(x)|ax .
. N a T a . a .
. i ' < r - )
_ r
N ~  _ . R
- . ~ 4o1




g : . ] .
18. Let 'f ‘and g be in‘begréble and suppose that £(x) Sg(x) on [a,'b]

(a) If the’ strongJinequa.lz.ty £(x) + € < g(x) for some € > 0 , holds
>on eny. - subln‘t:erval ofe [a.,b] s Drove 't:he s‘trong 1nequal:.‘ty

- > S ' b b :
L= . ' j £(x)dx <~_S gx)ax .
_ o o T

{(b) If f end _g are continuous,at x = u in [a,b] a;\ﬁi

f(u) < g(u) prove that strong inequality holds as above.

19. If f‘unction?‘ i.‘ and g are integrable, and f(x) < h(x) < g(x) on
[=2,b] ,,~$€s it follow that
rd :

-

J.b_f(x)dx S-S bh(x)dxs' J-b g(x)ax 2

a a a ' -

-

" Illustrate by an example.

r

| 20. (a)-f Prove the Mean Value Theorem of integral calculus:. If £ is con-
’ timaous and 1n‘tegrable on. [a b] 3 +then 't:here exists a va.lue u in L
the open interval. ( a.,'b) such thet ’ b '

: | “‘Sb;)dxzf@')zb-a)‘_. ‘ \\

. .. . Cof a © e . - , .
' \ R . ‘ 3 N e ] !
(v) -StroWw that the value £(u) in (a) satisfies
' " ESUESE S . -
o) 1 n. ' a2t
£(u) = | i.m — T . . .

'Where b. u 8.nd fk = f(a '+‘ kh)- fOI‘ k = O s l , 2 s0es o
n . Thus f(u) can be interpreted as an ex'tensmon of 't:he n.dea of

] I
mean or arlthmetlc average to the values of a’ functlon on an- :Ln't:erval e

' B9 . B Bp g AL :-'f o LT AN _-
21. If - l.‘*‘»:-n + hee + = + T = VO‘\, .§how_ that o LT
v g - : a xn + xn—‘l";— -+ a‘ ~ t+ a — O- - o --' ‘
Lo ' O g1 T m-1 - n P -

has at leéast one root in (0,1) . _
22. {a) Prove that if f(x) is integrable over. [a,b]., then [f(x)] is

integrable over [a,b] .

(b) - Show %}ae converse is not true.

> .

. - - . -
- i:-‘- . . . L
. 5 - . - .
[ - T N . . -

&
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23; If £ "and g are integrable over [_a,'S] 3 then both max [_f,--g}'. and .
gmn {f,g} are ‘a.lso integrable over {a,b] . : '

,211— \"(a) et f and .g - be bounded ahd integrable over [a,bl.
°  Prove (2) The func'blon f+g is integrable over [a,b] ;

(b) If g is bounded avay from ze.ro, ‘chen % is :Lntegrable on [a, b]

N _ . 5
25. If f and g are bqunded andyintegrable,-theﬁ S (a f(x) + Bg(x)) dx
. ' : a
exists and is >0 for all constant « =and g .
Show from this that e T T
b o b 2' b 2
S . f(x)%ax - S g(x)ax 2 S - f(x) e glx)axyt , .
B M - N ) . a N . )

a 4 a

Q'

T with equallty if and only if . (for f- and g continub'ué) :

_‘ f(t):cg’(x) ,a<x<b .

! £l L4
(Bunlalcowslqr-Schwa:t In-equallty. Thls is. uhe 1ntegra1 analog of Cauchy'
Inequality - Eb:erc:.Se Al-2 Number 16. )

~

-.26. If f 1is integrable ahd its graph is flexed upward on an intervel [O,a] s

show that
g : - é - ‘ ) T .7 'a .o '\’..— } . N .
S' f(x)dx-‘n_z-af(g) o T - *
= -, T ' O . . o . .-
_Interpret geome't:r_;.cally Ce e e -
o o -
27. -'Snow that L - * . S T
o / 2 . 1.,.2 .1 _tt ,/‘.2 ‘-2?'2 2 -
AP D +,§)3S- (2 + &) (5@ +02) ax .
28. ‘Show that | - o SR
. 1 = ' ' L
(a) L-f-'3"/2_< ~ A+ x3 ax <’/—§ . ‘
2.8 o . , a2 S
. L} . N
_/9— .l : P > - 4
() .;:. + _é);. S dx > 235/5 . ‘
- . C 6 + i
- - -*.. -
. . ‘ -,:
PR N _ < ;
. 7




o~-4 _ S : ' : <
1y N ) . - : . v -
S L S
' 29. Find e continuously differentiable fundtion F (i.e., F' is continuous)
. _in [0,1] which satisfies the thiee conditions . - léﬁf“;‘

- (a) F(0) =0, F(1) ==a,, o C ; " g
(1 2 2 - > | o .
’ (b) : S . F(x) dx = 2 F S and o . o .v'
S o - 3 g | _ A

-

Y-

& minimom. : .

-

. 1
(e) S F'Lx)gdx is
0 e

-

* . s ]
.
t. ’
[
. .
- - ,.
. -
- ~—y
. 3 ‘ -
- T .- o < _ .
. o = - - - _ -
’ - ) -7 -4 - . Pt
. ) . i « R S
.7' [ : ] @ ‘_‘
A S . - I .
I ‘-f.l . - - . ; . . “’
a7 «* r~ : 4+
LY -~ 3
V ‘l " ) - . - -~ .
T L~ .
v ) B . -
*
/ ' \l) . . .
N L]
3 -
7 XY %
- kY
. , N
.
.
' .
LY .
’ - ~
P ) "
-
. -
. \ .
&
. . . .
.. % . e . »
o . ) . a . "
" 4 - -
- &
- : a
T . Lok 2
e
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6-5. Further'Anplications of the Ehtegral.

The lnterprétat on of 1ntegral as area is but one of 1tsumany applwca-

ftion§.«w1n this sectlon we shall give two other appllcatlons.

)

{i) Volumes gi solids of revolutien.

[}

The génerél problem of evaluatiné'the volﬁmé of '‘a solid éan be reduced to
a succession of integrationsf We shall not attack the general problem of
volume, but-shall solve the probliem in terms of'lntegratlon for a sihple

speciel case, that of a-solid of revolution.

‘ Let I be a nonnegative furiction on [a,b] , (Figure 6-5a). We define
- the solid of revolution'gene*ated by £ on la,b] as the set of points
swept over by the standard region under the graph of - £ in a complete rota-

~

" tion about uhe X~axis (Flgure 6-5b)..
Y.

P
-

6-5
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Figﬁre é-5c S T

~

If we choose a z-axis in a directlon perpendlcular to-the "Xy y-plane this

‘'solid can be.described as the set of points 7

AR R |
) . '{(x,y,z) :a'sxsb‘,y2+z <[f( 12 3

¢

We can ea51ly obtain uppeg and lower estlmates for the volume of this
col é. In Figure 6-5a we have deplcted f as a functlon yhlch takes ©n the
maximum value M and the minimum value m on Ta, b] ' The solid of’revolﬁ-:
“tion generated by £ ‘on [a,p] is contained in an outer cylinder with a base
'of radius ‘M and contains an 1nner—cyl%nder with a base of radius m . Taklng

+the formula fo* tbe volume of a right circular cylinder from elementary geo~
5

metry, we have S . - .
- . . . "\.
- m (b - a) < V < an(o - a)
, . J
‘where V is the volume of the solid. '
e -
. e -~ L
. -;.‘. N ) = /—/
- - . h . . ' ' - -
S - 4c e |
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" We can divide up the solid by means of a partition of [a,p] in a fashion
smmllar to the subd1v151on of a standard planar reglon. The solid islcut into
sllces by barallel,planes x =X through the successive points of uﬂe-parti-

tion. By obtaining upper and lower bounds for f in each interval of the

subdivision of [a,b] . we can estimate the volume of each slice from above and
. 1Y p

below. Let. Mk be an upper bognd andl mo 2 lewer bound for £ on [xk-l’xk]

A cy}xnder with a base of radius .Mk ‘and -height X T Xy contalns the slice

of the seoclid between*the plares x=x 4 and x xk s and the slice in turn -

coutalns a cyllnder w1th a base of radius- m, and height X T X - Adding

the volumes of such cylinders we obtain estimates for the volume V 1in the

Z"‘Mk(xk ’9:-1 )

k=1

ka ‘xk 1)

(Figure &- 5¢).. These are upper and lOWer sums for the funcplon" . .
g : x.———-x[f(x)] . If g is lntegragge we must have ' :

form of upper and lower sums:

a

‘-Ll

b
V=u=x ‘[ £{(x)< dx

Example 6-5a. We shall obtaln the volume Vv of the segment of a snhere

of radius r -intercepted by a plane at distance a- from the cenuer (°ee
- y , Figure 6-54). ThlS is the solid of

revdlution\generated‘ty the- c;rcular

-~

arc £(x) = Vr 2 -‘;? on the interval

- ) .

[2,r] . We have S

AY

7 S: [£(x) ]de-

. _ ] | R . ,
v T S '(r?_~ xg)dx .
N 'a . o s .

' Figure 6-5d

<

In partlcula-, if £ 'rs nonnegative and monotone, g wiil_be monotone
and tbererore lntegrable. . o

. ko7,

. = . - ’ . -.i'd
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Employingffgg;rem 6-lLc end the special results of Examples 6-ba, ¥, we obtain
- V ) '- r LY . r- ) ‘»_. ..‘ - '-_
} szt‘j r_edx rﬂj x2dx ) ‘ -
‘ a o I ‘ -
- ) - = xr?(r - a).--g{fs - as)
= %{r - a)(2r? - ar -.a

=‘%(r —vé)2(2r +a) ,. ' -

\

(ii) Calculstion of displacement from a known veloecity function. .

Let us consider the sﬁiaight-line motion of a-bﬁdy for which we know the
‘. veloc+ty vV - as a function-of time, v = £(t) , and for which we wish to
-determine _the positlon s of the body as a funchion of time, s = ¢(t)
"Given the velocity of mdtion for ‘a given tlme interval fa b] it should be .
_'_p0551blg-to determlne the total displacement or. signed distance moved by the‘
h body in the given - 1nterval. Intultlvelj, if we divide the time interval 1nto
sublntervals so small that the velocity does not change appreciably in each, -
.then we can estlmate the dlsplacement in- each subinterval. The sum of these.

estlmates is an estimate of the total dlsplacement. h
 Specificelly, let ) B
.» : o - c = [to,tl,tz,.t.,tn} 5
. : . FO .. _ ) )
be a partiticn of f[a,b] .- If in the interval [tk _1oty -]  we have approx1-
métely' £(t) = vy where vy is constant, then the dlsplacement for that time

interval should be- approximately w. (t —'tk l) . If we take for Vk an
upper or lower bound for the veloc1ty on the intervel [tk l,t ] we can form
upper or lower sums and estlmate the total dlsplacement from above or below .

In this way,§we argue that the total dlsplacement can be expressed as an
integral ) »

v d% h

L a. NoL W

(1) Sb‘ W —

r

. 1] . .
wheré. v is given as a function of time, . v = f(%)
We have made out a plauszble case for .the expre551on of the total dist
placement as the 1ntegral (1), and”ﬁe shell go on to prove it. Given the
~known functaon £ : t —_— v > we wlsh to determine the total.dlsplacement, -
#(b)" - @#(a) where ¢ is the functlon wHich glves the posmtlon of the body
cat time +t , Since £, is the derivative of ] w;th,respect to t-
‘ . o _ . ",

- T E '

<\
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(Definition of veélocity, Section 2-4), we have by the Law of the Mean .

.

where tk_l_<>1k < tk « It follows that

90 - o) cht) Be, )]

k—'l

- - ' n . - —_—

o . C ‘_ .=Z :f('rk)(t;;-tk-l) - .

In this way the total displacement @$(b) - $(a) .is” expressed as a Riemann
sum over any partition of [a2,b] . If £ is integrable over [a,b] it
_follows (Theorem 6-3c) +that ' . .

b
¢(‘o)oj ¢_(a_) =j‘ £(t)at .

a

which is the result we sought to prove.

S In actuallty we have establlshed (2) for any function ¢ which hes en
integrable derivative on [a,b] s .

-

-

: o ‘ SRR b _ : ST
(3 . T B - #a) = S gr(vdat . .
L . : + . S e o ,
This general'result is the most iﬁportant application of the concept of
integral- In Chapter T, 'we shall-examine this and relateq results in detail. ° é}:
Ex ample 6-5b. As an 1mmed1ate appllcatlon of (3) we shall descrlbe the
motion of =a body in free vertlcal fall near the shrface of the earth. For

tha.s purpose we utilize the concept of acceleratlon, "Wh_'!.ch is gieflned as the

derlvatlve of velocity vlth respect. to tlme. We are given that the accelera-

tion of & body in the grav1tatlonal field near the earth's surface is, for all

-

practical purposes constant about 32 ft. /sec2 . If 2 denotes the helght
of a freely falling body above the earth we have for the velocity v, ’

(l'[-) L : ' .g_z-' Vo,

- . .
. -

and for the accelearation =z ,
i° : . . - ’

L T - 3

i
o

[l . -
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- ~

' Here we have_takén the ﬁcsitive sense of displacement, velocity, and accelefa—
tion as upward; thérefore we must sét ‘a = -32 'q Equétion (5). we take -
t = O as the time the motion.is initiated .and seek the veloczty v =£(7)
and position = (1) "at each subseguent instant T of the motion.: From .-

(3) we have (f"'om Example 6-4b)

£(t) - £(0) = j'; (-32)dt‘; -3217;

Setting Vo = £(0) above we obtain

Vv - v, = =321

or
'.v_'=vo-32'r,

where Vo 1Is the initial veloc1ty, thus f£(t) = Vg = 32t . Entering‘phis -
result in (4), we have : N '

%%{:o'&et' . )
‘From (3) we conclude that . ‘
- i . ) T h . .‘,_. - » ‘ )
g(<) - (o) = S (vg - 32t)at . . . .
‘ . ‘ o . ‘ ‘ o

P

Employing the results of Examples 6-L4b, c, and using Theorem 6-kc, we have

. N | | | : - B . . -
Z .~ 2= VT - 32 = s _ :

where 25 is the 1n1t1al n051t10n of the body. At time -t after the initia;—

tion of the motlon the position of the body.is
s . 2
(6)~ L ‘ z .= zO + vo‘t‘- .l6t . .
By successive dﬂfferentlatlonc we may check that Equatlons (4) ‘and (5) are -
satlsfled. . We have nbt verified that (6) describes the only motion which is
' p0551ble under the glveh initial -conditions, but we shall see later thet the

1n1t1al condltlons do uniquely determlne the ensulng mbtion.




S.

If the acceleration of a particle moving along

‘.d*opped from the Lower. T _ . -

?fyéj |

Find- the volume of the SOlld of revolutlon generated by f.. X —— %
on [0,1] .

Use the procedure of this section to find the volume of a right circular

cone of altitude ‘h” and base of radius r.

btain the formula for the-volume of a sphere of radius r by first

showing that the'ephere'is a solid of revolution.

Find the volume of the ellipsoid ‘generated by rotatihg the ellipse

xe . 2 . . * N
= + 15 = 1 sbout it!%&ejor axis. (Assume a > b .)

a. b -

Find.tﬁe volume€ of the segment of a sphere of radius r bounded by two
parallel plaﬁes if the bases of the segment are at distances a2 and b

from the center and are on the sdme side.

-
—

line is 3t - 2 in

ct P

centimeters per §econd per second at any time in seconds and if thr-

velocity is 2 centimeters per second when t = 0 , find the distanc-

_covered'during the first second.

A parLlcle moves along & line so that its velocity at any tlme is given
oy v ht - 14t + 6 . Find the dlstance covered by the particle between

-
>3

the instants when it is at rest. : . ,

With what upward velocity must -2 ball "be thrown if it ie to. reach a,
height of 100 feet above the point from which it  is thrown?

A stone is thrown down from the top of a 200 foot tower with an initial

velocity of hO feet Der second How long will it take the stone to -

reach the 5round? Wlth-what velocity wzll 1t hit the ground? .

Answver uhe ouestions~asked in Number 9. rg.tbe case where +the stone is

—

If the stone is thrown stvai’h* up with a velocity of hO T8¢t per
second from the top of the 200 foot tower, with whaq_veloclty will it

strike -the ground?: -f

Find the velusfe of the SOlld ob tained by revolving the region bounded

oy the parsbola. y2 = hy and “the line 'y = x about the‘k—axis.

oo

~
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13. A cylindrical hole :of radius l-lnch ls drilled out along =a diameter of a
solid spnere of radxus h .nches. Find the volume of the materlal cut out.

1%. Find the volume o*" the por’thn of a sphe*e remaining after a cyln.naric_al' 1
‘hole is drilled out along its diaméter if the length of*the hole is H .

- Check your answer by conSLderlng som ecial cases.
. L. _ e ‘
. . ’ o ‘r’." ) > - . .’/ - \.
. Miscellaneous Exercises T - ' Ny
“oo ' ) - cosT .
. 1. If K -is a constant prove that® S A Kdx = K cos 2t .
T .sin” t : : ‘

-
- . r

2. Find the area of the régiop bounded by the graph of f : x ——b5 + X - x2

and the line'"y + X = 3 . ‘ 1 -

3. Over what intervals is the given fgpction integrgblel . . »

- ’ [ . o

w
' . ) . . }_& . ot s . - - . .
. ) (&) bl ', X .—f-x | Co . - .,
. ({9) -& < x _‘::iﬁi -

_ L. For which of the functions of TNﬁmber 3 is it possible to'extehd the |
- © domain so 'that tﬁe function g defined on the extended domain is
. : iﬁtegrable over every closed, 1nterva¢° Does the value of the lntegral
.of g over any,inte*va_ which cortalns a peint of the extension depend
fupén thd way in'whlch the domaln of f is extended? In the light of

your conclusion suggeSu a generallzatlon o; the qeflnltlon of integral.

~5a. . The'area of the standard region of a function . f. over. [a,b] is given.

by : . . ) » " .' _‘ .l . ) } .
H2a3 - 207 - 9a® + 96%) . -

Find a function f for which this is true. Is there more than one such

function? Inte 'ret our answer-geometr*cally.
Ip

6. A poznt moves on a line. sucn that after t- -séconds 1ts velocity is

v = t2 - 9t + 20 . TIf-its$ position is s =0 when +t#= 0 , how far does

-

. the pomnt move durlng the time when uhe veloc;ty is nonpositive?‘u

-

- - - N -
8 . - . " -




8.

AN

-

9.
“10.

11.

12,

For a monotone function £ on- [8,b] we have found tHat the upper and .

“when f£(b) £ £(a) . Since the integral I of £ over [a, b] lies

estimate of I -within the finer tolerance = ;

o

Show that - _ - T N o
» - i ‘1;2:' .-2 - .
(=) :|.'<I-."2+a ax <e° , "(a >1) .

Ox +1 . ‘

| 14 2. 2 ‘
() 1< S "‘T*xz""a ax <a® , (a>1)
O x +x=+ 1 . )

lower sums over a. partitlon c safisfy - : 73

-

' {'“ U-L <e .

e ; :
N : . . . - -

prqvided the norm (o) is sufficiently. small,

. v( ) <-Tf(b7 f fTa)T.

between L =and U we can estima‘te I by either sum within the ’
tolerance & . -Show that the *rthmetic mean —[L + U] 1_s an .
: - . :

Find Riemann sums differing by less than O.1 for the ares of the

= over [-l,d]

§ta._ndé.i‘d r_egion of £ : X —e ——"%

If when one a.ppl:.es the brakes of an automob:le a consta.n 'deceleré.tign
of o f‘t/secgh resu.l’ts, detemlne the va.lue of c necess vy to ensure ‘-
that an automobile travel:.ng at 14-0 mi. /hr will stop 50 feet from

the place where the 'bra.kes are applled T A

Show that S ) | | R . o
o o b ~ &y a +b / s o .
S £(x)ax = B52ie(a) + 22(BET) + £(b))
< a . ot

where . £(x) is any quadratic function.

-

(a) Iet £ be contlnuous ‘ena lncreasing on [a ‘b] » 8 be its inverse, .

and set B f(a) a = f(b} Prove , B -
e B : b - '
S g(y)dy = gb - aa - S £(x)dx .
(o4 . ' a ' .

Interpret this result geometricaiL‘Ly when - --a - and are positive.
{(Eint: Compare with Nos. 2-4 of Exercises 6-2.) ‘

(b)Y Prove the formula and find a similar interpretat:.on when f is
R

decreas:.ng on {a;b] . SRR
L1z &,
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-
-

Check the arc lengtb formula by apply;ng it to a segment of a straight
. 1iné and comparing with the formula for the dlstance between two p01nts

-

on a straight Iine. . : :
3 " o - A
. .
N >
- + -
L2 - -
\\ r P .
” -
-
. 3 i .
. .
.\
. X
_,-'_‘ _ g
.o . i N
: - kY
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¥
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-
:{,‘_;, , ) )
e S L 2
- - - . - s ’

-

Ty ii“""‘”u



Chapter 7

. -  BASIC* INTEGRAL THEOREMS

7-1. Integrability. o -~ T ?f

v

"Our purpose in this aection is to settle'tha questioa af integrability
for the functigns which .concexrn Us most in this text. We have already shown
(Theorem 6- 3b) that a function £ which is monotone on ;[a,b] is integrable”
over [a,b] « In addition, we know tha§ any linear combiaajion of integrablel
functions is integrable (Theorem &-lLc). -Coupling these results, we obtain a

- . . . a . - -
genergl class of integrable functions, thé‘finear combinations of monotone

' functions. “Fhis class contains most functions atudied in the calculus. —
We generally require that a functioﬁ be continuous and differentiable.
Its derivative will usually have at most finitely many zeros in any closed
1nterval (with the tr1v1al exception of a constant functlon) Such =& functlon '
-has finitely many*ﬂa/ ima and minima separatlng intervals in which the functlon
is mondtone... Tt <5 2 member of the generzl class of p;ecew1se moﬁo%dﬁa R v
fﬁgctions.... . : - : S .
- . A R , e . “'.‘“
- DEFINITION 7-la. A function }f” is said to be piecewise or , . f;_
.. °  sectionally monStone onn [a,b] if there is a partltlon : e
o = {x ,Xl,xe,...,x 3 of [a, b] such that the function £ ' A ':*f;\
o is monotgne on each su:lnxerval [xk 1051 - 2 \ o S ‘f‘
Y ) . o | B » - : ’ e
- ‘'The direct approach to the prob’em of showing that 2 plecewise monotone . | -
function’ls integrable would ‘be to use the methoq of Theorem 6-3b of estima- Co
tlon from: above and below for each interval wheﬁgg#ha funétion is monotone. N
- That anproa%h is left as an exerc1se. Instead we show ‘that a piecewise - ' e
‘;onotone function can be d§§cr1bed as’ a llnear<comb1natlon of'monotone_:_ . - .
e . P * : - - - s S
' R : g :
‘ e B . . ~ ’4-15 5’_ ) - "
: . e e S ]




" functions . The idea is to decompose the representatlon of f. as a p:.ecew:.sé
= monotone function into the sum of a. .Wweakly increasing functlon constructed
from the ascending sections of 't:he ‘graph and § weakly decreasing function
constructed from the descehding sections. 'I_'He' me't:hod. is illustrated Vin the

following example.

j Example 6-5. ‘Consider the function f : X —ee X° o an interval [2,b]
where a <0 <b , (Figure 7-la). On the interval ‘[a,0] the function is

‘decreasing and on the interval ' [O, b] P 1ncrea51ng. We can represent f as

the sum oftthe two functions g and h where .. _
' . ] v

{O ,a<xSQ, ] K

A
b

g(x)
L X s O0<x<b,

' (x , a<x<o0, - . T
n(x) = ¢ . ‘ A

} o L0 -, 0<x<b,

Y

and the functi-: g 1is weakl - ir~reasing and h weakly decreas:.ng on [=a b}
Since ;c_2 Jis tr= lin. - combinstic~ f(x)/ g(x) + n(x) of monotone func't::.or;s

- we conclude <her £ is integrable : [a b] )

i)

..
-t
1

g . ’ - . 3 .
n A {linear combination of monotone functions may” have bizarre properties.
We show that a sum of two monotone-functions need not be piecewise monotone.
- Consider the function S ' T :

v ’ . . -6.
-. . : ’ [2x+ x2 sin% for © <x<-%_‘- )
-~ - . g : x__'-_ R . ’ .
oL | O . for x =0,
which has the derivative L o : .
E | S SN RPN B _ 1
y o R . ( ? - cos. T+ 2x 511.1_;;;:;_ for O<x <z,
. o - Tgt s ox e ) - ) - -, - . -
o o SRR ! o ‘  for x =0 .
© " 'Thus g'(x) >0 for %0 < x '<% , end g. is- lncreas:.ng.  Certainly
) <L : ~ 4 :
h : X =—e-2x . is decre351ng, ‘Qu’c, 't:he Sum o= ﬁ fg:.ven by ‘4
- .‘f(x) x2 % L is not plecewise moncidne . on\*[O,—] Y SR
S \ " Py : < e
e e o N Lie - . B h




v

- Y |
glx)+h{x)=x? Y |

o R Figure T-ler 0 S -\
In general let .. be monotone on each 1nterval,of the subdlv~ ion of .

[a bl deflned'by the partltion g = {xo,xl, 2,...,xn] We shgll represent

the function f in the form f =g + h~ where g is weskly increasing and
h is weakly decreasing. If f is ‘weakly increasing oB [xo,xl] ,"set
g(x) £(x) and h(x) = on [x 02Xy ] . If- £ is wesKly decreasing set
g(x) O and h(x) = f(x) on [XO’XIJ Now as x ipCreaseg, if £(x)
increases (weakly) add the increment of f£(x) to g(x) &nd keep H(x)
fixed; if £(x) decreases keep g(x) fixed and let hn(X) decrease by the
same amount as £(x) . Thus, we proceed récursively if P ig w in-
creasing in ' [xk 1,xk] we define~ g(x) g(xk l) -+ (f(x) - f(xk leaéizna

:‘ hix) = h(xk l ; otherwise we 'define.g and h in [xk-l’xk] by ,f/ﬁ\ e
S(X) = g(x__{) and WX) h(xks) + (f()i) - f("k l)) A construction of_

*this kind is depicted in Figure T-lb.
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Lemme 7-1. A plecewise monotone function f can be represented in the
form g+ h where g is weakly increasing/end h is weakly decreasing.

Gofollagz. Any function which is pilecewise monotone on a.closed interval
is integrable over the intervel. ’ '

\‘The last result is the basic integrabil;ty theorem employed in this text.
For anziysis and its applications, two classes of integrable functions have -
-major signifi"ance: the piecewise g@notone functlons and the contlnuous
functions. Mbst of . the functlons we are concerned with are in both classes,
but a functhn can be in one class and not the other. For example, the useful
functlon X =——Sgn X (Sectlon A2-1) is monotone on [-1,1] but not con-

tlnuous, the Welerstrass functlon of Section AL-3 is contlnupus hut has

R

infinitely many strong local max1ma and minima in every lnterval and therefore\,

cannot be monotcne in any 1nterval, no matter how small. We see, then, that a
contlnuous function may not be plecew1se monctone. Furthermore, it is not
always possible to express a continuous function as a linear’ comblnatlon of )
monotone functlons (Exercises A7-2, Nos. 1, 2) The proof that _every continuous.
functlon is 1ntegrable must then be a new venture. We do not have to prove
1ntegrab111ty for all contlnuous functlons to.develop t%&.calculus. Since itw
;requlves elther the development of nev zoncepts or a degree of analytlcal

complexi ty, the proof is left to the appendix (Theorem AT-2)

-

Exercises 7-1

1. Show that anyllinear combination of monotone functions .E} c,f. can
b » ) I . . _.. i: : N
» . o ‘ ] -

be written as' a sum of two functions g +h where g is Weakly"
- increasing and h is weakly decreasing. % . _ R

©
-

e e - .:_ . .
A local extremun £(u) 4is said to be strong 1f Qor all x in some
deleted nelghborhood of u we have f£(x) # £(u).. .




'T-l
. _ .
2. For each of the followin_g express® £ as the sum of monotone functions
) g and ‘h and give formulas for g(x) and h(x) in each of the. su‘b-
intervals where f 1s monotone. '

(a‘). £ : x —earc sin (sin x) , - < x < n (Exercises i&-5, No. l(a))
() "£f : x —s=are sin (cos x) , -t <x <= (E:xegzises L.5, No. 1(ec))
) . {(e¢) £ : x —-:-hxs +-5xh - 20::3 - 50)(2 - Lox (Eb:ample 5-8a and. Exercises
. ) - ‘ - 5-8,.No. 1)

(d) £ : x —= -x ¥3 - x> (Exercises 5-8, No. 5)'

'V(e)' f @ x —-—xe/s(x - 2)2 (Exercises 5-8, No. 7(®v))




7-2. The Integral and Derivétive. s

its
‘ - A function f£ which is integréblerver [a,b] 4is also integrable over
any interval [a,x]“wkere - a <x <b , (Lemma A6-2¢c). If f 4is integrable
over [a,b]’ we may then define a new function F on [a,b] whose velues
are defined as iy;egrals,
Voo N

\. (1} .; . , Fo: x——I: (t)dt ..

-

The formulas obtained in Examples 6-&3, b, ¢ immediately yield the
integrals

"

" In each'case,'we observe that the derivative of the inﬁegral is the integrand
(the function being integrated). In Section 5-5 we found other evidence of a -
reciprocal relation between gifferentiation and integration: if the function

"¢ nas the derivative £ on [a,b] and f is integrable over .[a,b] ; then

, b ’_\ o A
 'fQKb) - @g(a) = S'Qfo)dx . Is it t:u) in generq}/%hat the derivative of an

a
_ . ) . :j' . .»
+ integral is theé integrand? ' : . . .
- - ‘ - " T - - ) .,_ .‘._ - . R . . N . S \-

We pose the problem: toj?;fferentiate ti:z integral F of £ .if .the de- . ‘;?E
rivative  exists and, incidertally, to find cc-diions inder which the derivative
exists. Thus, fTrom (1) we wish to evaluate _ - .

- ¢ ’ . ~ - - ~ N ‘ : '.'- R N .
- . + n) - 7 Co ..
(2) - / F,(X) = 1lim F(X 11)1 = (X) - Lo :
: A : n~0* . R ,
] / - . \--.__. N < . "< )
- 7 - o .
© We havey . . . - - L . .
6‘)\2 ) : 7 xX+h l - X - . T . ) -.
(3) =~ - Flx+n)-F(x)= S - £(t)at -\b_J" £(t)dt ., = |
. . . - e . a _." o ) . " ) . ¥y«
. N . B . . - - 4 . . - ) ' ' - - I.
and, for h >0 , if the two integrals’ are interpreted as areaét their -« - A
\\__\gifggfénce i% the area of the standard region under the graph of £ "on the s

\ interval [x,x + n] ; (Figure 7-2). If f 'is continuous.then for small n’

the velues £(%¢) vwill'approximatq f(x) for t in [x,x-+ h]-; the area

~- ) Lo

O

: S {
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.

of the standard region on [x, x + h] mey be expected to be cloge to that of-
the rectangle of height £(x) on +the same base. For a continuous function £

we have the approximstion h

F(x + h) - F(x) = hf(x) ' ' -

. § <,

y=f(1)
- bl
< -l'
a - N )
) ) . .
) ) ¢ “ . . TPigure T7-2 R
If we lelde in (3) by h. » and take the llmlt as h approaches qu,_we ©
ant1c1pate that . - S - -7,{“
. . - .‘ ‘ - c . . “' - te . ) - ° ,‘
{_ oy d (T s " .
Frix). = - |7 £lthar = £(x) . - _

eyt
N

o, Thls rgsth whlch we have found 1ntululve1y,'1s now proved by a careful

- | elaboratloq of these arguments. S s .
Lepma 7-2. Ig f is 1ntegrable on an 1nterval -containing the pblnts

- 2 and x , and continuous at x , then i ' o

- : ‘4 x . : L .
i f(tr)dt = flx) . - . .
7 a ]
Proof. Let F(x) = £(t)at , sc that by Theorem 6-kb, ‘
. a - . N ) . N -
F{x + h) - F(x? -1 S £(t)dt .
- : h . h -
. Ix -
. . 3 » -~ - = - 4
\‘1 2 - "422 ~

Aruitoxt provided by Eic:



7-2

From the continuity-of £ it follows that for any positive € , we can ensure

S ' . () - e <1(t) < f£(x) + €
for'all t . in a sufficiently small neighborhood of x , say
It - xl < S .«

. Q .-
If we choose O <h < & the inequality (4) is satisfied fér all values t

in [x,x + h] . From Theorem 6-%a it follows that

‘(5) i : ‘ (f(x‘) - )h < j

+ Similarly, if -h is negative, O >h > -5 ; on employing Definition 6-4b, we

x+h

—-a

£(t)dt 5<f(x) + e)n . /
% j

obtain (5) with the inequalitités réversed. In éither case, on divisicn by

h , we have

 x+h S
.[ Cf{t)at < £(x) + €
P ~ v

ag I

6 - : f(x)"-e's
whence - ;'

’%th £(t)at - f(X)‘ <e.

Wé'conclude that

- 1 x+h : . ,
Fr(x) = lim = = 1i H.S £(+)at = £(x) .

' n) -
F(g + h F(x) m
h~Q o ~ L heQ x

Lemma T7-2 states -that differehtiation inverts the. operation of integration.
" From a continuous function f we obtain.a new function F by integration and
the derivative of this new function is just the function f with which we

started.

Exercisea 7-2

1. Prove the ireguality (&) for h <O .

. 2. Prove

ST NECES R




T-2 - T . S

3. (a) Differentiate _
glx) - -
I £(t)at

a

N 'undef suitaeble restrictions on f and g .- (Hint: Consider the
integral as a composition of functiohs).
(v) dﬂfferenpiaﬁe T . <,

- g(x)
- I £{t)a
h{x)

-

under suitable restrictions.

L, -Frcm the Law of the Mean and Lemma T7-2 derive the_Meah Vélue Theorem.
i (See Exercises 6-4, No. 20(a)); that is, prove if f is continuous on

[a,b] , tnen

b e -
I £(t)at = £{u)(p - &)

a

~-- --for.some u  in the open interval (a,b) .

. '.."42#"_"’»



T-32. .The Fundamental Theorem. o
2 —_

If the effect of differentiation is to undo the work of integration it

is natural to enquire about the performance of the two operations in the .

opposite order, ﬁhethef'integration_revérses’the‘opgration of differentiation.

. . 3
Suppose that F 1is differentiable and that F' is coantinuous on an

interval contalnlng the points a gnd  x . We wish to compare the integral

of \F' with F . F*om Lemma 7-~2 we know that f

‘-:x- : . N
. Ft(t)ag = F'(x) . ‘

dx

We have already proved (Corollary 2 to Theorem 5-L4a) that if two (Functions .
1 have the same derivative they differ by a constant. It follows that

> . o - .
. . . '

| * - a . . -
B S AL COL TS TEO R ,
<, a o )

-

where C 1s constant. Setting x =a in this eguation, we obtain
. » N ]
4 -
2 .

.;5___;11/ : _ : T -
- _' - ; I FH(t)at = 0 = F(a) + C T ,\/

. a
whence
C = -F(a)
and ' . LR
. A T v “ /
x : -
; J' Fi(t)at = F(x) - F(a)-.
o
Coupling this result with that of Lemme 7-2 we have -

-

' THEOREM‘7¥3}‘ (The Fundamental Theorem of the Calculus). If £ is contirmuous

N

on an interval containing the points a and x ., then
i [ i .

(1) 20T yas - o
| o & [ oswer =200 .
- ' . B -a . X .
. * . '
If ¥!' 1is continuous, then it is 1nuegrable (Theorem AT7-2). ually,

as we have seen in Section 6- -5, the result we now prove follows WLthout
assuming continuity solely from the integrability cof _E’ on the geﬁund that
* the integral is the limit of Riemann sums (Theorem A6-2), :




.

7-3

£

Conversely, 1f F has a continuous derivative F!' on an interval
containing points a and X then
: . | ) - |
(2) I . F'{t)dt = F(x) - Fla) . ‘.
: . g - g <. _

“

In this remarkeble result we have exhibited the intimate relation between
derivative and; integral. With this link the differentlal calculus and the

integral calculus are seen not as two separate subJects but as aspects of =a.

. single dlsclpllne. . B o : ’ T

. The great role of the.Fundamental Theorem is to provide the means of

"t*ansform*ng the formal calculus of derivatives, into a formal calculus of

integrals. leferentlatlon, as we—have seen, ;L%olves much simpler analytical

technigques than lntegratlon by’ summatlon. When the Fundamental Theorem can

be applled to a problem of 1ntegratlon it ré@resents a. considerable economy of
labor. For example, in Section 6-2 it was .necessary to be ingenious ih the

art of summation to obtain the formula

. - S b,3, f~a34_a

@ - | ; xed“_-? I

was valid for other than positive values a and b .

the differentiation formule
. = _’.‘E)
. dx* 3

that Formula (3) is correct and that it holds fcr -7 values a and b ..

o

The formﬁla, . o . _ A

n o a .
® DI I cos X dx = sin a , -
‘o - . o .
‘L\- ) - .
~whi¥ch requires even greater ingenuity to integrate by summatlon uechnlques,'

g

© now follows Glrerlj from . o= e o

Ed

- -

0 . -Dx sin x = cos x . : IR

We have devised no summation technique for obtaining the formula -
- ' .

-

D
I x-sin x dx = sin D - P cos b - sin a + a cos a

- a

but we can verify its correctness by calculating the derivative - o
d, . ’ .
55{51n X - x ¢os x) = x sin x .

S ‘ (5’“ Lo6 A - ;_ ; N
- . - D ‘ .



Accordlng to the Fundamental Theorem any . integral of f is- a solution of .

the functional equation

(h) - / .DF=f.

. . - - * . ) . ) ! R
- A solution ‘F of (4) is called an antrderivative of f . An integral of f

must be an antiderivative; an antiderivetive of f may not be an 1ntegral
but can always be expressed as an integral plus a constant (Exenc1ses 7 3,
No. 4). . e

._0 % i ) z

-

Since tHe distinction between antiderivative and integral is so slight we
shall not sttempt to preserve the distinction in later’sections but refer to

any solution F of (4) as an integral of f .

The .class of all antiderivatives of f gs denoted by an integration sign

without ends of integration,

-

f f{x)ax .

% . e

This clsssr;s_called'the.indefinite’integral of £ .. We put

o : , f £(x)ex = F(x)-+ C
where F ‘1s any particular antlderlvaulve._ This notation calls attention to
the,fact'tha the indefinite 1ntegral is' a fam;ly of functions whose members

are given by assigning values to the parameter C . Thus | | .

- 2 x"\ L :‘v . ) .
- ax = = + ¢ .
[ a2 |

If the co-*ext does not make‘sie distinction clear we shall sometimes refer to

. b . ~
the fnw e I f(x)dx =as a definite integral. .
a

3 .
From any differentiation ﬁormula we may obtain a corresponding integra-

tion forrmila. In general, we h%ve -f £f1(x)dx = f(x) + C ; for ekample, the

formula
AN a .- )
—— sin X = cos x
dx
rields -
~ . - J.cos x dx = sinx + C . .

/

-

B % . o . .
An antiderivative F 1is called 2 primitive of fe¢ in many texts. The
woxrd, primitive,-is opposed to "derivative', "primitive" denoting an original -
function from which the derivative is &derived. - ’
.o . . H -

. - (‘1 ’ . '. '
g_' L @ . - ' R -

S . l;.27 At -7 : .

-—
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" . We can 1wwedlauelj apply eve:ythlng we& know ;rom.ChaDte* L to integrate a e

,7-3 e
The formula ‘ . \\

NE(x) = S Sm‘(x)dx o L

R . dx . o t ’
d ) -
= A Ix S f(x)dx ]

yields, T~ : o : ‘ - '
(5) . - . I AE(s)dx = A J.f(x)dx . ;

¢

One of the most important integration formulas corresponds to thé chain rule of
) ]

differentiation.. Let =z = g(y) anéd y = h(x) and set £(x) = g h{x) . From

v ks - N .
hi - = - - . - . -

- ¢ v

In Leibnizian notation,.the.chain rule and the. correspond ng integral formula .

take on a simpler appearance:

dz _dz dy
dx . dy &x - .
and X
‘(' .d'_zdx- Eéidldx—z*_c
' 7 dx a dy dx T

r

In Chépter 10 we snall make extensie use of this result (Subs?itutioﬁ Rﬁle).

fnl]

I we recognize the funciion f as the derivative of ¥ on [a,b] then
We can-obtain the integral off £ over [a,bp] without appeallng to gummatlon

technigues: .- g

L7 fex = 7o) - F(a)

b*oad class of fhnCulOﬂS.- ‘With ﬁhls xnowledge ve have the power to calculate

‘simply areas and’ volures Tor an é;o*mous varﬂety of figures beyond the realm’

[ 3

of elementary géometry. _~ _ : RQ§ . ;

~—

. M - o

-~ . i
-

L28 __. ' g

’ .

o

- the differentiatipn:formul&_; ‘ i _ : . T j
£1(x) = g* B(x). 57 (x) . . ‘- R ﬁé
- . - PG & S T . . .o
.ﬁe’obtain - ' TiLQI. T fﬁ . ) ‘
- [ & B0 miadex <26 v c o
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. . .‘ b - ) , ... - . L l‘ e . M 'T_—B
.-—--b~ LR - : . / . ' < 2oL > “.- o
L Bqua‘tion (lx-) IF = £ , s “a differential equatn.on :f‘or = t'*za‘t :Ls, a - . :
. he . ;{'\
_ﬂ.,.condition ‘on the function gi ‘V.'en in £he form of an ec'ru..?.‘t:'1 on whwcn wnvolves one. -
or more derivat:.ves of F ._ Often in appln.ca‘t::.ons the most convem.enu forﬁ?nu- ‘ )
"lat:Lon of a problﬁm is one glven in terms of a .differential equation.™ .Perhe.ps v
the most s:.gn"f:.ca.n‘t applica‘t:ion of the concept of. 1n‘tegral is its interpr\'eg.e;f .
_' ‘tlon as ‘a- solution» of a dlf*‘e*'entlal equation. ) ’ ) S
T - ‘o, S L ™
. - S . Exercises 7=3 ‘ o -
. 1. For each of the follown.ng ulf'ferentlatlo{l formulas write the cor*'espond:.ng Q
1ntegrat10n fo*m;a- : . . T . ‘ e
.. T o ' ' .
- d, 3 - 2 . A -
(a) "=~ - 3X) = 3%~ -3, . _
[ CS N B U S W -~ S S BT
= -, : ~
| N\ + 2 22 T
" (e) -g;_"i o o . ‘
x 2 - 2 . . - ~ -
2vx .o
2.y -dlsin® x) . . i sz
(d) ax = sin 2x . _ ) ) - _
2. Find the given derivative and then‘-:write the corresponding in‘tégration formla:
. - : . r
(a)’ i-va éos bx ) o )
& ax ’ s
" a 2 | s ]
(®) I ten X 2NN :
- L) = a;rétan e T A
A dx =2 - . S e Co I
- P : - -
(d) a Y1l - cos é_ . ) . . ;_:. N - B
. . - . . . P < .N-- B )
3. Verify the following integratidn -formulas. - =" -
g '(a);_J sec2 ax dx = % tan ax + C .
B - - +1 s :
- Y r.. {a +ux)¥ P ’ : ' o
(v) J (a™+ bx) dx = Y CIES YR cC,r £ -1 . , _ B
(¢ f —2X— ax = /ax® + v +C. | - : B _.
) s a ) . : C e -
) Yyax + b ’ _ ’ _ - ) -
(d) »2"‘ s n°x 'sin 2x dx = sinl}x‘-!- c. -
o . R _ - t ) N AR,
- (e) — dx-= 2 arcsin Jx.+C. ul & . .
T e . ] . D . . .. . ‘; - . . o
- x = x ) : ; - . ) B - -
S o S R
| © k25 e s T )
O e - 6

A

'.‘ .
. -- -- . A T . . . . . .'.
] . . B . . - < . R
a . - o T : . - - _' > - . -
anaoy e [ - . . .
"

R . .
. . - - .
. - i‘ . . .
. - - -
L - o » . - -



- . L= .
“ ‘ i L
(2) We have o o ) ' _
3 . - N = - > .« ’ -~ P,
. S - ‘,ix1+x2 _(l+x‘?)2 oo -
- l : 2_}{ [ "‘
hence. —-—-—é“- is an antlderlvatlve of - _22—}‘
‘ 1+x ~ I {1+ X)X -
IR T e AT T 2% -
- .~ . Prove that : — although it is -an antiderivative of - ————
- 27 = - . g 227
1+ x o o (1 + x7)=
N 2]{ . . L " - . - T
. :.-.s not an 1ntegral 535 ax . . : -
. ‘ (1 + X ) i : .
P ) -

8_0‘.

,g,”
: f’amounts only to a lateral shlft for the standard reglon under the graph

(v) Give a necessa;&_and sufflclent condition:that an antiderivatives

F" of a functionh f continuous on the domain [a,b] be an integral.

. P -

The -initial value problem Ffor th. Jifferentiel equation SO
. - F=x - L
is to determine "the function F when f is given and enw"initial e

F(a) is specified. Show under suiteble conditions that there exists just

One function F satisfying these conditions. .. ;\ -
Do No. 5 for the differential‘equaﬁion_ _ -
r o xF(x) + Flx) = £{x) . L )

pr £ has an'integrable derivative on [a,b] » prove that f can be
represented as’ the sum of two monotone functicns, £ ;'g[+ h ..(Hint: -

Consider theiintegrals'of fr(t), f‘lf’(t)|..

a L. Y

s

Use the Fundamental Theorem to: derlve the llnearlty ‘of 1ntegratlon
(Theorem E~ hc) from the llneariﬁy of—d;fferentlatlon (“heorem L-2a). o

i

v’

A horlzontal translatlon of & graph in the planev'(x,yﬂ — (x + ¢ ,y)

(Flsure 7- 3)

. .t * . - -.- J"l < N . .
| A L » | ot - ' » o N
e - b a+c - ﬁke. A\\l R
| ) ) . N
i 7 Figu_r:e 7=-3 ) ‘ - o
. ’ Py 7 J+30 - N
: v (U ]
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Verlfy that the express:.on of thls geometrlce.l prope'r’by rn terms’ of :

v 1n‘begrals is glveh by the formula

w ST bt+e T _ T o
. ° S. f(x)dx = J L f(x - c)dx

- ' e .a ' . ate :

3

—— (a)' Derive -the p*’eced:_ng formla usn.ng only ‘the methodS\of sectlons

6—1 to 6- L, : g ’___-

(‘6) Derive the formula using the Fundamentel -Theorem-_‘ S

~10. Equation (5) can be interpreted geome‘t:ricallj bas statinlg that g wniform

change cf v'ertice.'.L scale.by the factor - A > 't:ha‘t: is;. 2. transformatlon
(x,y) —-— (x,ky) 5 rrmf‘tlplles ereas by A . Since there are no '

preferred directions in the plane--the choice of coordiha'be axes is Only

a useful cOnvention--the same result nrust be true of 2 un:_form change of
scale irn any direction. - In part" cular, a scale transfol'ma‘tion
. (x,j) : (A.x,.Y) in the x direction mst multlply areas by the factor
D Verlfy that the expression of this- geo:ge‘t:r:.cal prODer‘Cy in terms of .
Q.:Ln‘tegrals 1s g:.ven by 't:he formula :
. b . ba N o -
~'J'ﬂﬂa=j”%ﬂ§u, N R o

a an -

(&) Derive thﬁ.s' formula using only 't:he methods of Sec‘blons 6-.1 't:o “6- 4,

() _ Derive ‘this :t"orlm;la uzsdg ...he Fundamen‘tal Theorem- - .

-

(¢c) The number - = is defined as ‘the area of & circle of ra.dius 1» ',

- 2
c:.rcle of radius r _‘:1.s rcr .

(a) .By the method of (c) £ind the area of the eJ._'L:Lpse B

1 * x2 : __2 1
- > ‘_2 + :—é' = l - - ’
d 2 b .
' s & ' . ) . i»-~ - ‘
11. Prove that. = = o ) N R
o - b - (b+edn, — ' R
I f{x)dx:'f —f(x-c)dy, »~ #£ O .
a- (a-i-c)K -
".'f ’ : X
N, R _ o . )
‘-:‘ - B - ° o T ' °
L. .i, .tf- P,y - -
431 1 ¢

Lo . : . - . O
S .- ¥

Bedionl

,Pro've from-, the résuits of this exercise alone that the area of 8- S

'
J
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. ' )
- oL . -

. 12. Using .No. 1I, show that . -

i s T~ . . . - 7{ o
(g) '] “xf(sin x)dax = % S f(sin x)ax
- oo O - 1 ‘ 0 s
. '(a,ssu;ning.ti'le integrals exist).
(p) Evaluate I','. x sin x dx .
_ o - Ox

'
hd -
a .1
~ T .
3 . -
-
R SO - - ?
LRSS e )
‘ i{ ;o - 3
« ) M -
- - .
14 c . -
- s -
. M
~ - . L
) T - . -~
) & -
- _‘ T s o T
R -
. ; ~
"\~ ..
N - :
w f : -
L -
>: -
.-

) 1;-3_?.
b ™ ‘ _—
- I Y ST R B
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T-b. Formal Integma%ion. - ‘,__‘ . “5u=;: e
N : .

enormous. Given a functlon whose integral we w1sh to evaeluate tnere is a
good chance that it is expressible—as the derivative of some known functis
If so,*the integral can be evaluated easily The approach to the Dneble o:
evalpating integrals through the Fundamental Theorem is subtle and 1nd1:ect
but tire gain in.fo*mal simpllclty is- remarkable.

. o

-It.is eonvenlent when F(x) is glven by a long express:on to use tkr:

-

abbrev1ated notat_on . L S : I

-

_-_\ . L . .- o

- | "j‘_?':_ . - F(x) ] = F(b) - F(2)-. . : ) T

b : _‘

The variety of functions which ‘we know how to dlfferentlate 1s already'-

for .[ '??(t)dt‘, We sh~ll gggerally'uselthis notation for specific -numerical

a
1ntegrations.'- ',' - -

~

functlon with slight. algebraic manipulations. For example,_ ’ hx5 apart from

.a ‘constant factor is the derivative of x6 . _We have; then, .« .. -

67? a6)

I i hxsdx 2f 6x5d}‘r %— ——.'%’(b

~ " a - i .A'

- -

A

T e T - !

of ‘sin 2x F thus, - o * ’ : o o
- bn | 1 (" - 1 sin 2b - sin 2a
,_J‘g COS'Ede=§J 2 cos 2x dx = é-sin2x[ = 5 .

a - " Tooea .

- . . - A
Such, manipulations with constant fectors are so_eabyfthat we shall usually

employ them without comment from now on.
A more interesting_example.igé

A /2
‘I'l

3
«*

. ‘ , . (l-ax)g'dx.
} - . - o \' . _,A-:

. . . ) -

" We'may evaluate this integral by taking the binomial expsension of thé integr

and 1ntegrat1ng term-by-term. The more insightful approach is to recognize

.that apart from a constant factcr, the 1ntegrand is the derlvatlve of

.,.-(1 _ 2x)lo .-

. 1 L
: % -}f %ft". _Dx(l _ zx)lO F;;Q(l _ Eij?(f2) § . ; . 53?

-t
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Some 1ntegrals can be broughg into the form of the derlvatlve of a2 known

;2(

7f‘Agaln,,apart from a constant factor,. cos 2x  is recognized as the derivative

and



We then have: )

S-S - . -
. ~ -
- L -
= ———
& A = . 20 ) . £

%‘cher "gene;‘al“peehni'c_rixes‘ef fqrinalt-in_t’e‘g;‘a_fién Wil be_‘tfeated.in"ch'apter-'
) -In applylng the fomulas to evalua.te defin:.te 1ntegrals we musd: be care- -
‘ ful t.o 'be Ssure that the J.ntegrand £ is conuinuou‘s i'h some 1ntewal conte.ln:.ng
. tbe ends Qf 1ntegrat1c>n. OthE’rW1Se the mtegratlon is mea.znngless. . In L
‘ evaluat:.ng f x- dx- for exa.mple, if the ratloha.l number r is negatlye_;b‘nen

P 1s not contj.nuous at x =0 . The ln‘tegra'tlon

el S S ij b xi;d%’ pTHL . 2T+ v o L " o ,- o
L - . r‘ :"‘- l’. L _. . ) ) ;'-.* - \
'“for--.negative\f\‘.'{ wlll be mean:.ngful in general only lf a and b _are pos:.tlve

| The same caveat applles to J- sece.x dx ~ and’ I L __ ax . "In the first the

ends of 1ntegra‘tﬁ on must lie oet‘ween %onsecutlve zeros\:f CcOos X and; in the

second, between ‘1. and '.—l.- .

' The Funda;nental Tbeorem is an extremely powerflﬂ. tool for solv:.ng pro‘blems
of- 1ntegratlon5 but it shou_'l.d not be thought that the Fu.ndamen‘tal Theorem lS

the answer to all pro‘blems of 1ntegrat3_on. Consider
> P . N -

-
. 1 h
- | fex, S -

.

(wheJ_:'e a‘-and' b lie in an interval.where i_- is deflned i. e., ab > O)

: Lo - -
Since % is monotone, the integral exists > but the problem of fomal :.ntegra—
tion is apnother questlon.' We have found ro function F for whn.ch F'(x) Jl{ .. -

Furthemore 5 although the reasons for th:.s are not ev:l.dent we . could not find
such a functlon 'by dlfferentlatlng any of the functions treateéed in Chapter Y,
1nclud1ng all functlons wh:_ch can be :f‘ormed from them by rat‘ional comblnatlon,

Anversi on, and compos:.t:.on. The 1ntegral F('x) j -%- dt ‘is. an importa.nt "-bﬂt
_ function ang we shall investigate its.pz:'épe;jtie_s._i Cﬁapjt:e;'_S..,_~ N . :
: Fag.ts N . ~ b
B 4 4; . . »
- . he - - -




1__.,'-' »

) ] 2x sip xT dx

L () | P _3x3_)_‘2/3A ax

~i'f_‘(a) j' '; i

. o L Lo s ' . - o -
_‘ T T Exerc-"'ses T-4 - . Lo Lo T e

Use knowleﬁ'ge:"qf de vat‘l:1 ves previously oﬁtalned to find an express:.on for_

each of the’ follom.ng. T - . -
‘f-f + o dx - . (1) J tan® bx dax ’ S -,‘-,; .

,’ RS (J) J./l_-_x__

f‘.(k) IJI—:B? ax : "-

a+x) ", 1/1+xf‘1.

(a) jsiri (ax+ "o?d;:

© .[cose(va}:) : LT «~"l":!-_x+ Con

~ . . R - E R . 3 . ’ -r . 2 . ) - h .
Sax: . (m) | X==x _ T

Ejra.luate. each: of the following ‘integrals.

: T B T "
(a) j' |cos | dat S -‘/; 2(a) j D sin® x ax
. 7o ) , 70 ' ' -
1/2 | It o . . - - h_‘ -
(b) f 7 ;2 ax - (e) I % sin® nx"dx > n an integer
=0 "1+ hx '

_ 0 o : P .
_ (c) j (—=2)2 at (£ x c_osh'x dx- .

. el
() S'(x’-;)2/3d.

nwt "cos t
o _ - Jd.0

Evaluate the following integrals: _ . o .

- l@ . .
(a) . f . /3 ax ¥

O

What are the restrmctlons on a2 and Db ?



- k. Consider.the statémént -

5

-
. »

(d)g 5' “ten x sec x dx - ) - oD T ‘
a : : ' o .

WWhat.éfé»the restrictions on a and b 2 . L N -
(e) 5 (x2 - 1)1/2 ‘x dx . . - -- . - . - . \ '/-\ 'I' L i’,..‘l A_-‘ ’
o da Lo . - . B

) L - . | . el
- (£) _" “nt(gr(x)) gi(£(x)) £ (xdax .o T

.. b . . - - - ~-7 - DR o
- (g) _j ~sin %3 coé.x3"x?.Qg .
o S CTE . SR
- ' (¥ .1 el '_ . .
| o eyt MR g o
Jo

M B

-k
-

By obtaining the . corresponding indefinite integral, show how we might be

led to believe this statement. Explain why the statement has no meaning"

<N‘1n the present context and show how it can be given a meanlng.

!

- ! i S :
5. _Find the lengths of the following curves between the indicates points.

.(a) ¥ %(x - 1)3/2 > (1,0) to (10,18)

. _ .3 L 193
) xk Ax'z ' ‘
‘(C)- Y=+ ,Ifrom x=a to. x=b, where 0 < a<b.
S
' 836 -

~F .
cy -

&)
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‘;{'»—5} Estmates of Integ"als. T . ' L
o When ..aceﬁ wrt:h a “unctlon f ‘for whlcb a fomal ﬁ'bearal can be
'o'btalned only with dlfflcul'ty if au a].'L we may yet obtain a practlcal estima-
tion of 't:he integral of £ Dj :.ntegratlng approx_mai:.ons to £ for wn_.c‘-x o
integration is: simple. If we can- es‘t:;.mate £ from above and Delow tben ,we may ’

apply-'.,['heorezg 6-%a to obtain upper and .lower bounds for the integral.

- Example 7-5a. The inequality . '
s b 1 —
(1) Tex < —=— <1,
_ . 1l +x .
. -’ ’ ) N ' .- . . . - ,
© is a direct consequence of the relation
SIEEANININT ¢ "o SR C RUP [ RFUPT IS N I -
" From (1), we conélude that -, .- - S
- et j (1 - x-e}dx <t d—x2 < S dx , I R
I o - 01+ x7 s o. - . . -
- and, D arctan x = 12 5 (Seétibr;‘ Ls) , o _
LT P " ‘t—-—3-<arcuant<£ ' : S 7 :
-We approximate arctan t by the value t - —3- - The error ‘can be no greater
3 :
than -3— . ZFYor small values of t we can therefore o‘btan.n an excellenu
aPPI'OXima“c,ion 't:o arctan t o ' Y . )
B o a " ~
Such an estma‘te can be used a't:b- es‘t:a.maue st . For example, we have / ]
/ - ,.l 7T : : :
N arctan =g = 3 - ) oo
i -\‘\ R @ ' '
‘Consequently . \ : _ - : - C,/
i e | LAy SR -
. - - . toe ol g . ’ . !
c~t ° .'-. -- 3 '1/—_ T .. : %._ N 7_ i ! . h ’ i : ‘-';. . .
> . . N i ...'...._.t“. " v-v- . 'l -_ 7-..
’ ‘ — K l S -,l R N . ST . - -
where, for the error e, we have |e 5 = ./_ have' *37: 1.732., [l v
i - P
. - { . H .
anprox;mately. . The’ *qax_,mum ‘LOssi ole ‘error in tbe es't:,.maue of :r Ts given 1
anﬁroyuﬂ.ate_y by - ’ . Ceel _
53T :
3 - L= o
’ *__'- - . P ! ¢
i . s - . / . |2




. 31 5, - s
. %8 [—J: (-l—) ] =2 (—J-“-) -85 -S— X 1.70= 0.k .
RS ER-LAN Y- | |
'Fbr N  we have a:ppx_'oxi_matély

T 6 21 &/3..8 - e
C e . . ) i . Tt = l - _( ) 3 - 5 e -\ o - . I '
S R S Y )(1.73) 3 CB ol ;;;,} o~
S | ' <e.\ ~ .
: Acc‘ent‘ina 5T 3 lL ceey wé see ‘t:ha‘t: the actual error 1*.5 ,cons:.dera'bly sm&ller
than the estn_mated ma.x:.mum error. ' ) '

o 'mcaznple 5b

I

[Y

.’\_‘.

' From the inequal'ifj ' " Lo T 7

OS‘_co‘s_xslf, for .. O L '

IA,
v U
IA

X . we obtain by Theorem &-La - o S .

. ) o J' 'desj--'cosxdxs.r 1 adx -
' 0 0 T ’ .
whence, by D sin x = cos x P S e .
- } =~ B oo . T
oO<sint<t, (o<t =3 .
Integrating now from O +to x ; wWe obtain for x. ln T[O,-g- N
: % R x ~
. j Odtg/f%fsintdtgs t'at ..
o ..7Y o -0 ot
P o | o o ) -
. : O<-cosx+ 5%3 - T ’
whence - ° R : -
L o xe . T ST S _", . -
. o .y . ‘_l_,- £ <cos x <1, Lo 7 (QS_X 55) . .
. - < 7.-. ) o 1 ‘ L : o . . .‘ . . _- . ) '- - - '_.". \".“ .
On integrating again from O to + we Obtain oL e ) - ’
K .‘._J . ] . = - v . - -

. 4 N : “ . .o
Sl t‘zﬁsmtét: e (o2 <E)
(Compare the result of Exercises 5- 7, I\To. Clo) '

A further integration, yiélds

; o -._~-\ . -a' ' o . oo .- . 1




ot

"w{with.an error of at most one unit in the X*ast place. Values of the trigono-

B}

. these.

.than 1 and the error is accordlngly small. For exarple, from the last

<= o \ - >
- - - + —_
- . -3 "3 <.- cos x 1< 5 >
-whence, L - ; ' . . - . ..
' . <2 ' N ' ' >
- l--Z—Scos..xSl-_E—-l-EE’ = L(O<x<§ - 7
’ - - ' T ° ! . - . .7 i "
Integrating once more, we have, . . . St - - _
E R S 30045 T T,
-t . .t Tt ; T o
B t =g SsintStiz i, (o=t < 3. -
| ) - . . ) . . P L ._,;\ . s - . L . R . BN =
*Continuing in this“way, we can get. bounds/for cos x.-and- sin 1t , where at -
each stage we adc terms of succe551vely ngher degree._ It is possible to’ show B }.;'
for & fixed valué of x, .or -t tha‘(t—h\e/se est:Lm.ates can be made to apnr‘.-
mate —ESE“E“anﬁ——sln t. wlthln-any glven POSIULVE uolerance :m '51mply oy

continuing the process far enough. However, the estlmates are espec1ally

useful for the - approx1mate numerlcal calculatlon of the 51ne and cosine when
x and t are smaller than "1 .. The- dlffeggnce between the "’ upper and‘lower
estimates is proportional to a high power of a p051t1ve number vhich .is less_

inequality, we have approximately .
sin 0.1 = 0.0998333

metric functions for larger x and t can be calculated in terms of the

values for lesser. x and t by use of trigonometric 1dent1t1es, e.g.,

51n O 2 = 2(sin O. l)(cos 0. l)

The tables of the trlgonometrlc functrons are computedrby methods 51mllar to

SN S | e
"In. higher analysis. and applications, approximations and estimates such as
we have exhibited‘here are often far more important than'explicit representaé
taons ever when they’ are obtalnable. For the examples. glven here e have, in

. the first lnstance, a famlllar functlon, arctan, but no- 51mple way to calculate

-
~ .-

; 1ts values._ We. represent the functlon ‘as.an in egral of 'a rational function, -« i

approximate the ratlonal functlon by pQ@lynomials and 1ntegrate to obtaln 51mple _
'nproximations are far ‘more convenlent L

polynomlal approx;matlons to arctan. "The
for numerlcal purposes than the expll

-’»~ In the second instance we push he concept of estlmatlng an 1ntegral from

'estlmates of the integrand in a very aworable c;rcunstance. We use the -1~x4 ;;mf

cycling of the sine and.cosine runctjons unger;repeated 1ntegratlon_uo 1mprpyé . -
11'-397-’f T SRR

Y

. . o B N -




-

our initial estimates.. (Thls is done again in Chapter 8 for the exponentlal
function.) However, ba51c.1dea 1n general is not-that of an 1ntegration
cycle, but the use of bound on a hlgher order derﬂvatlve to obtain, estimates

for‘a functﬂon, thls idee will be exp101ted ln the proof of Taylor s Thecrem
(Chapter 13). . s ' ‘ '

.. : " I .- Exercises 7-5". - ‘ B -
. e - : =" . . ]

e . -

1. (a) Obtain good approxiﬁations to sin %- and. cos fa “and glve a

b tolerance within which yod—are sure of the accuracy of these velues, :
.. _Cb) Prov*de .a general formula for these estlmates and prove by methe-
matlcal 1nductlon that the gerneral formula is correct. .
T 2. Evaluate-' if_, - ‘f‘ . o . . S
6 san x = 6x + x3v< g - se R —
(a) 1im =— Toe , - Ca .
. . x....o . - x5 ’- . M L ) . '
SRR iim‘cos,g’ffhl = | i
. e -.- x~0. -_> ! B 'x.‘— :_ b - . R ) . B - ) - . B
A sinx - x.° - - ' - ;%‘ : 7
- (c) lm x(l - cos.g s, T - Bl
3. (a) ._ Prove - _"—'.‘ /, _ i . . '-‘; . . . ,_ '_; .
- ST s T e xS - \\\ )
' '(b)!lPr0ve,'in general ,thet - v o ;Tf _ g T e -
. > »'_l:._—';"z.f_e + xl" .,: Jap-l _I;E)S 1= x? & th- + ,g,°‘+-(-,}_c2'.}.2_% i
i . o ’ Ao e ) . S ]_ + x Y - . ~
e T 5z . SRR S T
’ where P . and q,.are any natural numbers. . T "
j-ch 'Use the results of (a) and: (b) o obtaln upper and lower estlmates .
2 . l/:f‘or_' arctan X . ‘ ‘ £ CoeL T ;j\; ::.

(a) Ootaln a- better aoproximatlon to T x- than that of Example 7 -5a and
show that tbe approxlmatlon is accurate w1th1n a cloger tolerance.

U
Ld M "4 - - ,’
Lo T R R
- o H o PSR -
- - - - »
~ DR . /‘ v - ~ -
- - - - - . . -
v - e ,
4 - . - ‘ s
- -3
n . v - ,‘ 7 I').- -l
3 g ‘
. - ) -
. . ~
Lho . -
. . . ;
~ .y g - : ,'_
Fi .. ’: -
. e ) . ) Ll < -
¢ O . : /' .
- - 4
. e ) <,
- s . \
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) : . Miscenanqu Exercises S -

) ine-a. number X for whlch each of the followlng ;Lntegration
1 *'xmﬂ.as is c‘:“o*'recu. IR o R

i)
\J
»
+
o'
~
S
]

3(5x sy el o e

- & () _f k /3x - 2 dx = {3x - 2)3/-2 + C.

fe) f Sin ax dx = k cos ax + C.
(d") I cos 2x dx=ksinx_césx+c'.. . : ’ . TS

_ 2. ,Compute-\each of the foj.lo_wing ih‘tégra:ls . .

e “ "J'f'/LI- .- . ‘: 5 :Tf/e . . BRI ) - 7 - * -
(a}. I o seczfx X o . (e} j COS‘* X 3% . .
5/2 ' - _ R
(v) I/ sin x cos x dx , . (£) J' % cos99~x dx ﬁ .
/0 , , .

S 3n/2 | o _ . _j Hint:- See Eb:erc1ses 6-4, No. h-.... '
- () j - |sin xlax - .
0

’ - ﬂ/""* L 3 , .-
(g) I sin x cos” x dx . -
T[/2 : ~ - . O . . . -
: (a} I - 1 + sin 2x dx
o] ’ n/2 '
M (n) f xs:.nxcosxdx.
. - - Hint: Use Exercises 7-3; No. -12. -
N ‘_ _-}~ -~ - ~~ _.j, x iﬁj’_ ':_ ‘_ =T .— . : ’-__-,, - N I s, _g\ T s - .
) ' 37 P:Lnd the area of. the g:.ven standa:rd reglon. . 4T S .
—_ ) - - -

SR (a) _f : x—-—{ -+ 1 over 02] S o _ N

- B : ) l —_ ;o - : \,' > SR st % h e

: (b) £ —- pver [O 2] S S S I
L S J2x FE LR T T e e ~

(c) = _': X — x"1/2x + 1 over ] [O 2] . .
x

- : (_d)--_f ' —-.——— -o_ve;c' <[O,2]‘
R . - . Y2x +‘]_-' S . -

- - _' ‘ @
- . - - - PR -~ - \
~ LI
. LMY L3 - .




T-M -
L, Comz;ute each of the following intégrals. .
- ’E/E -: . R 3 7. —-_=7 . \ . . _ .
(a) I - "(sin x - 2. cos x)dx | . o S _
. ‘ 1 ’ . ’ 2 - . . . .
(v) I + (2% + esc® x)ax .7 R o R
- :rr/2 - : )
: () J ' ”Sln(x + mr)dx (n an integer) ? ,
S e T - - o .
T (a). J' \/1 + cos 2x x - . "‘_;,
e ' 1007 _ . § 50 - : - : S
) (e) J' . :(Z\Sin x - sin 2x)}77 ax ) o -"" o .
.. O . . ) - - ' ,7_ R . .
) : E . ‘ ' - . ) . -
5 e F:Lnd the area ‘of" the s..,andard reglon o x \/l aa gos 2X over

'»6.. Solve each of the fol‘low:.ng dlf‘ferentlal equatlon.s suo,ject to the pre- .

~

s crlb ed cond :.tn.ons o

X -
(a) gt - % VLo X s x =0,y = -3 .

iy, Ay —_— L ‘ ~
) GFSOEETFI, £ 0 v =y -
S ‘  ds- _ g_( ; b3 3 _ T s - . )

. () F= etf%)_ STV T E A0, s=sy . R

" 7. Solve the differential equation ' .
N T S +2 % + 2ty = cos wt
IR subject to the condition - t =1 , y=0. o T \
- . IR . L, S ) -

2

-~ .

8. " The-standard region of ! X —— % over.” [2,5] is rotated ‘about the

.- y-axis. Find the 'volune-' of. ‘the solid grene:‘ra'ted : co . -
g, F:Lnd the area of the region bourded by tne para.oola x = _(3} _-' 1)2 and -
T the‘llne_y-x+1 o . N . ' /
10. Flnd ube area of the region -bounded by the grapn of DX —- -x¢3 - x2
- e
. and ‘bhe x- axn.s. (See Exerﬂ:.ses 5-8, No. 5. ) - -
E ll. tuind ube ai‘ea of the reglon oounded oy the curves X vy = x5 i and Y = x3
SR S ST S -
» \\ - - ”, ..l . .“‘h’ 2,;q - . - s - -
1.~ - - 7 8‘—"’- N - .
- - . - 4 - A . -




1z2.

13.

1k,

15.

e

-

- w

'I’he reglon bounded by the curves y = x5 and "y = x3 is rotated aboht

- thé x-axis. Find-%the volume of the solid gennra.ted. F:Lnd the volume of

so

the -solid generated by rouat:mg the regi on about 't:ne y-a.xn.s. N

- )
Wha‘t is the mean. valuc- of the function £ ¢ X —e sin x over the
1n‘t:erval [O_,2 ?7 Of g Xx-—- s:l.n2 x over [O,%

No. 200.) " .

~

Find the area '_‘:Jou,;aded by the graphs. of £ 3 X —e c052 x - sin 2x +- 1

35

S .2 . . el
and § : X —e CcOS 2X - sin x + 1 -between the lines x = iy and X = sl

- -

. - ; ‘ .
(a) Find the volume of be paraboloid generated by rota‘t: ng the region
ﬂn the flzgsu ouadvant bounded by uhe 'oarabola y = x2 , the y-axis,
and‘thellne y:h, >O. = - '

(o) . Co"roa*‘e the’ v’o'uﬂe of the parabolo:.d w::.‘th the volume of a {1gh‘t

‘ cn.rcular cone of” equa.l oase-rad:.us and he:.gh‘t:. ‘ e

Find the voiume of a gobleu in tne fom of a paraboloid of revolution -

" which is 4 inches in di ame“%'r' and 3 inches deep. .

. P Y L. . -
tarting with _ . T /‘»

7 85”— arctan —_— arctgn = ' '
II. 16,000 AT 585,200

.

R . . . ) ‘ '.‘s . ’ l 3 . ) ’
(a) lim l 1 + 1 T + ce e ’i‘/\ l }o ,
o ~/n2 + n- ~__¢2 +2n  YhP+h . nd "
n: " e ‘ N ..
o) 1imy < ——. = -
T N~ F&’
r= /0 + r/n 2
e 2n ' - - i ' -
(c) ll; l- ‘ r - . - - \
n 2 ~ 2—__. N «
R =1 n- + r - %
- .. B o7 n n ’ -
(d) ~1m. > > + Foese ¥ 2. 2 *
oo n + 1 n He n +n .
q: . 4 - -

-

7 ;(See), Exercises &-%4,

T



Chapter 8 . . L -

LOGARITHMIC AND EXPONENTIAL FUNCTIONS

@

3

- 8-1. " Introddction; - . o -

»

In +his chapter we shall exhibit the strength of the integral theorems of.
Chapters 6 - and 7 by ustng them to frame precise definitions of power, exponen -
tial and logarithmic functions and to derive-the properties of these.functions
in simple but logical fashio
algebraic propertles of power:

. First we proceed intuitively from the famaliar o

properties which have’ yet to be.conclusiveLy s

proved in all generallty. Beginn _with the intuitive concept of power, we.

consider functions based upon that concept- powers, exponentials, and '

'?'Lf logarithms When- we attempﬁ'to differentiate t e functions we shall see

. ‘that derivatives of logarithms are especially sizile. ‘Tt.is tempting then to

‘use +the fundamental theorem and treat logarithms as antiderivatives rather .

than define them in terms of their algebraic properties. We d? so, and Irom

* ‘the definitiqn of th iogarithm.as an integral obtain the properties of
' logarithmic, exponential and power functions simplyg naturally, and con-~

vincingly. . - .
- e .

_ First we explore the properties of—exponentials and logarithms based on
an intuitive approach to th idea of power. As we proceed, déffiéhlties arise-'“
in"defining these functions in comp ete generality, but’ re s]:ua-.l'l be’ content“
Hhen'we obtain the .

to these problems. With‘

P

-The original meaning of aan » the ‘n-th power\of ‘a’; was’ confined toa'

3 positive irntegral values of n\\ for each natural number- n , a ‘is defined

‘as the produect of n  factors o ?f ' . 'i‘t’d' : , L
o~ . ; \ - - A o :
- ¢ - . . - . ¥ a o . . . RN . . .
O S .4?_ a® = a‘:a-.a P eesca : s >
2 4 ’ . \ » -'., ) g-\? .3 . : . : B )
) E . A v z - —z"\ 14 o s
- In particula?“\\\‘/is the, prodpct" of ‘one, lagtor =a . In the symbol .
a? , a is; called‘the base—and “n ‘thb gnghent ' For pos1tive integral
?xponents m and n we have the gene l-lawsp_ i ﬂ'_ ‘_.3 . S
< . -!. - ‘j. QT - . 'A, ‘s : -
- - . _ v . € ! “ - [-““ - .
. L bls - '

. >
. “’. . -.



. - b -
. (l) 1 am- an =\am+n N -
i L s )
(2) (2™ = 2P
3 d“ .—‘.. ) ) . .~;- l. B n n .
/(3) E % (ab)™ = ap" . : .
: 'The obsérvation -that ,_ .
- . -- . i ‘ an n-‘ﬁ | . - °

.- . . .. g =4 .o - - - @>m, a #0)
o . - -- ..' . . - M . . a . ; - - : .

- S . . .- B .
- " -

leads_to'the deflnltlon of powers Jlth zero and negatlve exponents slmpLy.by -

.—‘p' an:ExtensiOn of thls formula to the cases wne*e n=m and n<m:
. : ' : - - a% =1 O - (a £ 0)
r;‘.. . and e ‘ - - S - ' ) ! . " :
. ST ,; : - . T . . s
- v-\_§ - a-n = _.L . B ) .(a % O) .
. H‘an -_ _ o
" ; : ) _ ' ‘ -8 -

If we require al¥ 0- and b £ 0 then the laws (l) (2)51(3) far positive .

.exponents become .valid for all 1ntegral exponents.

We may” think of the 1ntroduction of negatlve exponents af an extenslon of
the range of valdidity of rule (l) to ‘include the additive identlty and in-
_ verses, that.is, we define 2™t and a° so that - C 1

hr 4

- - : _.-n_ n --n+n% ) ~
) : : O - ca = a. ==z . .
. .- - o . J&B .

v

- In exactlJ the same sp§r1t we are led to fractlonal exponents i? we extend

: e I T
‘.rule (2) by 1ntroduc1ng the multlpllcatlve 1nverses, that 1s, we' deﬁ;ne ‘al/h.}

.- so’'that . _ - o L - ;ﬂw . ;
oL e - (al/n)n = _al-'= a . - .
’ . ' ' _-h' 7." . s . - - . ’ B - - ' ._ _-.'_ ’ -
. Thus . a /n is to be defined as some solution of the equation °© - o
- ' - B e
- n ®
> X = a . ) .
- n

When n #s odd, the/function x -——m x°- is eontinﬁous‘anﬂ’monotone and -ranges_

- over all real m efst It follods'that x7 = a s precisely one soiutlon,i>:

the”'n-th :xo ofi_a whlch we have. denoted.as% Jy— (Sectlon A2 l) "When n.
' Y _, the functxon .X -—’-xam_ is only pleceW1se monotone, de-
I negatlve values and 1ncreas1ng for pps1t1ve values of‘ X . The ok

range of x -—---x2m is the set of. all nonnegatﬂve numbers and every p051t1ve,-

number. a ypears a's a,value of x2m» twlce, once for a posltlve value of ‘x ang .

2 _
nega$1j?}ga%ue. In order to glve the symﬁol U= a def ite B ﬁ P}

. ~ .
. vl .
- . . X - . - »
- - .- N K - -

o ;_;.Lpus;»: HP
8@_;__ e -

- . - -~

e




. »,_‘1.- ) . - ‘,_5 b ) B . - o ‘ - : » ;8_’3- o
'unambiguous meaning for a > O we defined the 2m thv-root of ‘a as the

| nonnegetiye solution of x2g =a T rinally, when - "is negative ne has

r'no meaning as a: real number, we evoid complications caused by this fact by
"be positive in all subsequent discussions of az ‘Where

requiring that
al/n for a > 0 -as the unigue

z is real.. With this restriction we define
v .o - E— -~

positive solutfon of x2 =a . - _ _ =
. s,
- N

- . . ot i
" We have defined al/n for a >0 and positive integral n . We now

define;fractional-pdwerf in general by .

a -

I o ap/q='(aL/Q>P=cQ/aP-- . (@30
where » and- g are inteéers and'”quis restricteé to be pbsitive. The
dlgebraic properties (1) ;;(3) still hold for this larger class ‘of powers.

(The proof is straightforward and is left to you as an exercise. )] Consequently

_the. concept of power function: x —_— (x " O) 3 firSt defined_ only for

natural numbers 1, has been generalized first to all integral powers, then
to all rational pavwers. The derivation of the properties of these ‘unctions,
theirualgebraic properties (1) - (3) , their monotone character, their -

'differentiability, raises no serious difficulties (Exercises 8—1,°Nos. 1l and 2)

Complicated guestions first arise when we attempt to generalize thé‘&dea
| +of power further to .irrational exponents. It seems. natural uO define 2
-+ for an irrational number ﬂgn terms of approx1mations to x- by rational o
numbers, For example’ we wdﬁ&d expect to get successively better appro:vc:’t.:mti"r

tions to 3%5 by using successively better decimal approximations to the

ekponent, e'g. -31 » 31.% 3 3l h} ; 3l S41b - However, if we were 1o pursue

'this idea and define real powers-as limits of rational powers, the proof°that
all*the general properties of rational powers carry over to all real povers .
‘would require prolonged formal argument. Instead, let us assume for the pre- -’
sent that these pronerties actually hold. We shall come back to the prohlem

. .’"

of deLining ax when we~ obtain a mori\sonvenient insight into its solution. -

beied
: Once we have defined the powers a,—jfor each real r and each positive :
a wg?are free to introduce the power function X ——x , (x> O) for any

. real exponent T .',Furthermore, we may also ‘conisider the exponential function |
N - s ] . - . , . o . . . . .

, &lven by _* - ‘ —— L, : : . -7 S
7 -; I [ “ ] .-. i < ) . . ) ~ . . i 9,
A I o . Ea(x)\= a”

. . ~ P- - X - ) -

e o . (‘. ~— A . N - |
. wheiq the base a .is positive and the domain is the set of all real numbers.

- - . - 3
. . - ) S

oS- -
S




L L% W ] o R < - o _ c. . ;

if E_ has a derivative, then

.

. - ' - 7 = . . V x+h X . - - - .-‘:‘ .’ ..-:..':
. . , ) ‘ R - . ’(x) = lim h . A \'“‘n LT - - -
' | h~0 - NS e
A ' --i!r s r+s : - Nl -
. Assuming the.prcperty a = a' to_holdrfor all exponents, we have
- }'. | - ; ) BT .axah_ = : i {
s h~0 rc.h .
_ :fTaotoringjena-reoalling_the limit.tpeorem'for:a product we get
R - . L . /r'\_ v L .
_ T e B -1 — o Jbh 1 .
= e CE(0) = eMm 2o 5 () [2im 2Ly |
‘ o : h~0 _ haO i
: aBl ’ | : : »
But lim T — (we assume the “limit exists) does not depend on x ; it is
- h~0 - ’ . . _ ' e . -
constant. In fact, . . . o
e ¢ . ’ R e ah _-l'
' (%) , . lim =<== = E_?(0)
' _ ' h~0
and consequently,' .
(5 T EMx) =B (B0 .

(At this time we are nqt-concerned ‘about the value of the constant E, '(O)
In this discussion we have assumed only -that E ‘is differentiable at the
one point x'= O and satisfies the "functional ecuatlon

E, (x + y) =.E (x) + E, (¥) . Compare Exercises 5-1, Mo. 4.)

We see then that the derivative or rate of ,change of an exponentlal
fanetion is proportional to the function ditself. This fact is typical of
="'“unregulated growth and decay processes and makes exponential funcblons the
key to an understanding of many natural phenomena. T . I

The inverse of the power functlon x.——a-x (r # 03 is the power function
) x -—;—xl/r; with EéciprocaL exponent, so thaet by taking lnverses of power |
functions we obtaln nothing new. The inverse of zthe exponential function
x‘——-a with base a , for ‘a # 1 is a new klnd of functlon, the logarlthmic

i function with base a :

~

T “ R 'jx-——-log&x s .for a > O and x >0 ,7 ' iﬁ(a_#_l)_,

where iogé; is defined in terms of‘exponentials by *

E&(logaf)




3
J

-

o

. o _ . J, £dt = log x log & = loga( O:)

accordingly.

'_i S 8-1

.

Lo "log.x
. SR ~O8X e
: ca L =xo.
3 . . ,

. Thé'pfope_rft:f:es .of l}garithmic functions follow from those of 'th_é ‘exponentials,

in particular, correspondlng to the formula a *aY = 8:x+y ‘', we'have on setting

x . . ' - .

w=a ,.v = a’-,

,-,'('6')' o log, »(uv) = log_u + leg v -

[EYSEN

To determine 't:he derlva't:.ve of the loga.rl’thmic function we employ Theoz%

. ) ~~y

4-3 on the differentiation of ing:se functions. The derlvative Dulogau
.where u = a~ is ,jus’t the. recip

al of the der:.va’t:.ve Dan(-x) on the

assump'tlon that the la‘tter der:.vative exists. From ‘ .
D lo u. = L m;here' x '-‘blo -u
u &g '—Ea’ij o : T 81 »

~
-~ . . ~

and from (5), we have

g 1 : .
. D log u = T - o
- | u ~a E, (O)EaGcT B :

Since the exponentlal and logerithmic functions are inverses we 'conéltde 'thg:b'

» . 4 . .

. : N c
- | I?ulogau =3
.where ‘the constant is recogniz.ed from (L) as ¢ = -—(—T%‘l - Thus. th Terivative
' . Eaxo., .-’~e';

of 'logax, is Pproportional to '.x-]l . We expect, then, for posi’tivé cz 'and '
x that » | ‘ : Ny T

« _ = BN
for some as yet unspecified basef a .. For simplicity, then, we fix o =1

and define the function L by

. - * X ’ ' .
. L(x) =\S at-. -
- 1 . . s

where we anticipate that L(x) = log x with the value of a to be fiﬁ;ed

ot ol
.

cH-

~

av



8-1 » R R

In thit section-we heve used a heur;stlc development to treat arbitrary -

LN ’

'powers, expOnentlals, and lOgarlthms, that 1s, we have used an argument aimed - . -
‘at discovering the truth about these matters without concern fon/the detailed”ﬁéa
;;3confirmatlon needed fo; absolute conviction. Thls is’ often the way a mathe-
matician develops a new’area- he explores,tentatlvely, not necessarily..
proving every point as he.goes, but framing conJectures for whlcn he has ..
.reasonable groundf'for beliéf. In this wa} he often comes upon some unlfylng
‘prlnclple'or 51mple 'fact which can then be used to justlfy loglcally and
—completely what had before been’ accepted only prov151onallyga Just so, in our*~
discu551on we have 615cover&%1imt the derlvatlve of a 1ogar1{?m is propor-
tlonel to %-. .I'n other worq%, a logarlthm is an lnteg 81 of a very simple
fﬁnction; "This fact now caﬂzbe taken as a.sprlngboard for the development.of
the entire subject. We shall define the logafithm as an integral of .%-3and,
with information of Chapters. & and 7 about integralz, we shall be able to
derlve all the properties of logar >',.exponentiélS‘and powers encountereﬁ

in our heurlstlc dlscussion.

-

v

. . Exercises 8-1
1. Prove that properties (1) - (3) hold for rational exﬁonents, a >0 .

; 2. Establish the monotone character and differentiability of the power
functions X —ex (x>0, T rational)
3. Let f De defined for a%l real numbers and let f ‘se}isfy the functional

ecuation

(1) . £(x + y) = f(x)f(y) » for 211 x and 'y .
(a) Prove that if £ is a solution of Eqguation (1) then either
£f(0) =0 or f£(0) =1 .

(o) Prove:that if f£(0) # 0 , then.there is no value of. x for which

\ o f(x) =

Lk, Let T satlsfy the punctlonal ecuatlon
P
3 . . ) ¥
) ST L 2y = #x) +ee(y)

for all x , y inr its domain. E L

(a) Prove tlhpt the € jetion f : X —=0._ is the only solution of (l)
B ' " that id3(defirned for 2ll real numbers k_j' B ‘

(b) Prove that if £ is a.solution of (l)'anﬁ the domain of £ - _
i * . includes 1--and -1 but not O , then f£(1) =0 'and £ 1is an

even function. . - S IR - : ' .

-

82 uso e
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Prove that if f is a solution of (1) then.-f(xr) = rf(x) ,

‘.

r rational.

+

Prove that if f_ is a solution of (1).and if f  is di’fferentiable
at each x.#£0 , then f£'(x) = g—iil for each x # o

Uolhg (5) show that any - solutygé of (l) which is dlfferentlable at
each Cx o is. 1ntegrable on any- closed 1nterval [a, b] where
ab_>{).'f‘_-9“ | o e

) o : s Ty T
. ‘ 'F({
gy
T :
S N -
- - >
i~
i
\\\ ’
s ——
<3
//// ' - ,
.
N - .
. . .
s f «
| -i‘ ' | ‘
Y
’ - S . ‘\ -
- = = ¥ :
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- 2 T
Rt = Lo T o Y

-, " . 5 . - -~
8-2.. e L thm as an Integral. . . )
. 2__ The ogari as 5 oy y S .
Pursuing tl;g lead of the preceding section w6, jntroduce the function I
L given by 4 : - T KV . ‘..'.
‘ ‘ hr foa T
- . . - . . - ) . e x l . .‘.‘ i - s ] ) . &
. (1) T Y L(x) = J’ =4t ,. CoNY e (.x“'> o),
N . e A _ 1 t.. TN AR
- and embark on the pro.jec't Qf showing that L 4is actually a logarithmic- i 0
T *‘unctlon in the sense of Sec‘tion 8-1. . ‘

Since = is continuous for t+ >0 the :Lntegral of (l) exists, and by . ,\

t T
‘t:he Fundamental.Theorem of Calculus. SR . Ty *ﬂ. o ‘ N
e S SIS N S

%
[y

. :

Since the derivative L!? exists 1t follows 't:hat L is gon‘timﬁus and, since 5

S Li(x) >0 ‘on’ the domain of posi‘tiVe x , that L 1s an increasing ﬁmc‘tion:?»
Vs . N

'Further, since N

. - _ N | _ 3
(3 - - - Lu)ﬁj Tat =0 I 3
N . e O o 1 A . - .
Bt follows that L(x) is negative for O <x < I and positive for x > 1
R 2
N
T
“ él \ o . o ’ .
L ks2i- - % -
& 5L - :




¥4

T'us, in Vigure 8-2a 1“or «% > 1 ,’L(x) is the area of the shaded_reéioﬁ“uﬁder‘-
fﬁe graph y = % and in. rlgure 8-¢b'for x <104t 1s the negative of the '
area of the shaded-reglon under the graph. e o s : ' T

We. observe for- the sign. of the second. derlvatlve that 5 B o .J’
S TN 1 - P T :-"‘ ) ',‘ o Ay
R lL__(:x, = - "-i< o, . T < (= >O) ..
R C ' ' * . oL, o

" - e
~, ; L

It foliews-that the graph vy = L{x). is flexed downward.

RS

Next we prove that L satisfies. the. same addition property as logarithms.

.« " - - B ','

THEOREM 8-2. The func¥ion L satisfies the’ equation

< (W) -~ L(ab) = L{a) + (b) .

. for all values . 2 .and b in its domain.

) Proof. If we consider L(ab) and L(b) we see that they ciffer by the
‘constant IL{z) anad should have; the same derivative with -respect to b - )
In fact, by thé Chein Rule Bnd Equation (2), . B

. » ° - . ) l l - . -
’ _ . _ =y .=
) DtLFat) = aL'(at) _ a(at) £ .

"ﬁhence, . i <

D*L(at)'='D+L(t) .
L -

.

If we lntegrate wi tn respect to ‘ﬁ from t =1 to t =" we,pbtainépy t@e;&

lFundamental Theorem

‘.,’ ¥ L(ab) - L(a) ﬁ,(‘o) - ﬁ(l) . B o

 The acdlulon property (h) ¢ollo~s ‘at once from (3)

- . AS an 1mmed1aue coqsequence o Theorem 3-2 we oota1 a rule having the

. 'same form as uhatv-or *he logarztr* ot a quo‘lent' T R
Corollary. 1. _ 'L(%J = L{a) -L(p) . -

Proof. From Theorem 8-2, we have

L(%) = L(%f4b)bl

—) + L(v) , o

from which the result follows 1mmedla€ely._

.  - o ; 153 ‘9- . ' _
s : _ Tl o .

e



The proofs of the fqllowipg_cofollarie;'are 1eft ‘as exercises.
' T S T = T e ST
' " ‘Corollary 2. For all'integers. n , S e e
: L(a”) .= nL(a) .
» - ... ) L . »J-:N_) . .
_Corollary 3. For all ratiopal values «r -
!.f - n(z") = rufay .. - . o
\} R - v : - . o I
_ ,cd‘n these results we a*'e equlpped to plot the graph of‘- L r-end to o
examine some of “ts propertles. Using e5c1matlon by’ ubper and 1ower sums
" (or the more- reflned methods dlscussed in thé. chapter on numerlcal methods)
-we can obtaln e ,:a v e BT : a
TR > R ;. - ) ‘._' : : ! T - TN
: « ., o -, L S ) A - . - ~ -
S f’*.‘-. S L(e) . o o93... . s
s To calculate the values of L at\ouher points we simply use thejresults
above, e. 8’) . B .
- -1 o R - 5 ¥
_ . L(3) = -L(2) = -0.593... ", = ;i
_ ' . '\’ L{4) = 2L(2) = 1.382... , . . ’
- ’ ’ - . . P
) _ : ) L(v/2) = _%1:(2) = 0.3k6... , etc.

By sucH means we canxplot an adequate graph of T (Figure-8-2c).
we See that the values of -L{x) have no bound -

Since L(2™) = nL(E).
by taking n positive and sufficiently large

_either from above or bslow:
we can ‘make. . L(2n) ’arger then any gﬂven pOSﬂtlve number; oy " taklng n

'negatlve and absolutely large we can. meke L(2®) 1ess thahn any gived
. follows from the INtermediate

-

N -“-gqtlve number Sinhce L is CODulﬂUOhS, it
Value Theorem that L{x) ranges ovew ‘all real values. - ' 2} .
. . - - . b )
B . . ‘g N - / - .
Y ‘ K - )
R . X,
L *
: ¥ #
- q’\ ‘ . ’ ' :
A -
- ~ f hd - s
. .
.~ - - > ¢ _ ’ :@h
g - : . ;
.. v V ~ 'n(
: : : —~
kS 9"’ 45L. i - ', - . ~
L z
‘ .
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A- .
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; cg? _ . ‘ Flé‘l—lre 8—2c. -

N

. N Exercises 8-2 - N
e 1. Prove Co::;ol‘l"a_ries 2 and 3 'to Theorem 8-2.
2. (a) ow that the area A ‘of the standard region of f : x-——% _

» O};eﬁ:' the interval [1,2] ‘satisfies the félibwing ‘inequalitys:
ot - - L 1 S R B : . . s
= + < A = ¥ = -
' - 37k 25 3 , .

*+ ’ . -
~ (b) Approximate A +o the nearest % . . (You need not carry.out the. -
7 . calculation; i.e., represent A as a sum.) o
. : > . . - o .
- &
' %7 T - : “ -

‘ s
X L 4
o
[}
-~
a




)/“, ." ' N - - - A o ) ( L ‘ . ‘.- . } . - )
- - . . . - . N

T ?ﬁ’ " (aY For .a >1 show that thé area A of the standard region of

BEdE x _—.-%- over {i1,a] satisfies the.inequalitiesi

hx- A "3:~< A < g = 1l . 4 -
a o T o ) .
" % (b)) Por 0 <a <1l show thet A satisfies o

ot 1-al<a ‘<5-_1 .
(a) Make a\hareful plot of the graph of L u51ng L(2) = 0.693, and
- :interpolatlng further values between those already glven. o

-

o "(b) Draw the tangent to the graph of L et each of the points
R o x =.% 5 %-, 1’3:2 ,'h-? 8 -~ Do these_t&ngents cqﬁform“to,the plot -

£ in.part a ? L L L : ‘ g
(¢) ~ Obtain" the solutlon &% the ation L(x) = ﬁ;ﬂﬁwﬁ the accuracy

available from your‘u' _\- : _fxg::i:\ﬁa( o V.€(,::>

5. (a) USing est_mates by means éf upper and lower- sums, how many values
of the integrand % are’needed to calculate L(2) wippln.th__

s . . - . ..

tolerance maicatéd L(2) = o. 693 % AT B ' o
- e ' . _’_ - \

(b) Ueing'the:method om/ébproxlmating %' by a linear functiom - (ske -
. Sections 5-3( ix)-a

‘.

—7) on eagh interval of a’ subdivision of

R Ll . S .
R . [1,2] ,show hOg/t“ estlmate L{2) “and determlne the number of
R . values of %“1nee d to give L(2} -accurately to three dec1mal
- ‘places.. ' K 4?
5. (a) 'Starting from . T o . ' - 4
» - . ) - o . - '.. .
. o A AR B B
. show that - R o - — -7
. : T x2‘f x3 . )
-L(1 - x) = x % > +.?r Foeea + Er-f‘ﬁm - -
y . - X m - °
- s . . — N . - £
. where o Rm-" T y_dy .. . 4
© °o" LT - :
A _ _ : ‘ . I
(p) For the interval O <x <1 , show that. “\ ;
. U . 5 ... S L Lo -
. O<.,R <(l-x)(~m.4_-=l}; _. _ o
‘ - o w7 Y
) o anqﬂfo;‘ - - I <xx<o0 «~.  .show that .
- e . mtl s - .
o BN IR i
’ .. m' = m+ 1 ° _ . .

S T P «\3
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5..

(a)

(e}

{6)

(c) ‘prove that . 1lim 2:‘

Einq._DfL(}ax‘¥ by)i and ob*a’n the corresp01d1ng 1nuegratlon formul

RS i - U

Show that _
1
1l -1 + x '
2 L(l - X : o
> F
|x| <1 , where . - _
Using part (c), obtain a value for L(2). accurate to four decimal
places. ' ‘ : ' s )
‘seﬁtiﬂg x = % in Part (c), we could obtain a value for L(3) .
However, it is more efficient to calculate L(3) by settlng ) -
%—:-i-- %-_and using both Parts (c) and (d). Calculate L{3) this - )
- - - - ’ fammb . o
. way accurate to four decimal' places. . o - : R
. ~ — )2 C . ; _
Ob‘t:ain s valye/for. L(5)" by set,_ting" i_‘—*’—z =A% . - S
T - - \_, - . ’ S
lee seyeral ways of obtaxnlng a value for log ll .Jgalch is most -
efficient? ' : T : : ‘ :
Using upper and lower sums as éstimates for S. % dt , obtain the
_ N S i - o 1 ’
.inequality,_. , —— oL - -
° - - : ,‘- -fv. - ‘\ .
< =+ L(n),é ; *.E + 3 *ew+ =< l:+.§ﬁn) . TP
| - 10190 L ;. .  5 o i L
ktimate E - . : , . ” ' s
.. . - . : - -
: o=l - R o7 _ o
sl ’ - - . "

bli—'

does not‘exist.
-N~e n=1 ' :

.- - . A\ -

- -

over any';pterval.;[h,k]., where ax + b % O for any - - [n, k]
. T g R A o . . ‘ .
< ‘
- e - : \‘_‘\ ‘1
:-—‘ - - t rd )
- e N - . - 4 ] 71 ~ o ..
. ~ i ) Y
) QE Y \
Ls7” T ST
£ - . .
- 1 -. » , r - . \-
: T ? L
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: ) o
The Exponential Function.
_“n._____—/,' o

Gerneral Powers.

veriried that L(x) defined as an integral of % has properties

is an lnereasing function it has an inverse

vet comblete.

»

- E : L(z) —_—z

N

We must show that L is

for some value a (a #1) ,

-

. % . -
oniS in tyrn st be.comﬁéxlble with a definition of. 2"% for irrational

continusus ‘exgBrision of the function defined for rational
-~ ’ e

(z > 0) .

in of. © is the range of L , the domain of "E 1is the set of

-3 7
wE bQVe
of loga“lthm put the story is not
x

. inVETse of an- exponentlal function x —ea’ .
wne !
and P
exnoﬂeﬂts 28 a-
T nts. ‘
“expon® -

gince g,

(1) . , . ,
S.npe the dOm

1 o

11 rewl Numbers. Silce the range of
2 » 5 .

15 the set of all Positive numbers. We obtain

B - e ] .

sers€ Tunctions in &eneral, by reflecting
in
- . .

_ x (Figure 8-3). Y ‘
v =

<
H]

oW

O

“"ERIC

Aruitoxt provided by Eic:

¢

4

E is the domaird of L , the range of.
the graph y = E(x) , as for
the graph "y = L(x) in the line

~
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The properties of L can'immediatély be translated into propefties of
E . Since L 1is continuous and increasing, so also is E . Putting ‘ .
,L(}) =0 in (1) we obtain ) ) - -

oo (2) ' . E(0) = 1 .

-
1 -

Setting ' u.= L{a) , v. = L{b) n Theorem 8-2 we. obtain .
) u + v = L(ab) , .

and Gonsegquently,

(3) . E(u + v) = ab = E(u)E(v) . ;
It follows that v
N . : a2 B(u)

(L) - . jE(u-v) =3 —W.(\ . '

Furthermo:e,for any rational exponent r , : .- T

(5) . o BT =R . - o

The details of verification for Equations (3) - (5) are left as an exercise.’
For- a > 0 and r rational, we obtain from (5) . -

T e e = (EE)))T S B(eL(=)

where we tecall that E(u) ='a and wuw = L(2) . This formula is varticularly s
\ ~
interesting because its left side has been.defined oﬁly.for‘rational values

of r , whereas its right side is defined for all real values of r . XIt is

therefore natural to: use this-formula to ex{end the defiinition of a® to
’ irrational values. In this way we £ill the gap of Section 8-1. in the

extension of. the power functions to powers with real exponents.

1 LN
Y

.
- . ‘ » . . \ -«

DEFINITION 8-3. The power a* is defined for all real values x . .
N J - H
- and all positive values a by ' . no

a* = B(xL(a)) . T

¥ . ’ . i
Since E 1s comptinuous it'is clear that

v ' ) :
-, : , lim a® = lim E(rL(a)) . T S
. T T~X T : : . "
) 8% =3E(lﬁﬂ rL(a)) o (from Theorem 3-6e)
. T r~X . N .
” = E(xL(2)) . (from Thearem 3-U4b)
, x . :
i = a’ . >
Ve - . N
) k59-




~

- a

e ceiaz
¢

’

.

- In this way, we have establlshed1the contwnulty of tne exponential ﬂunctlon‘ .

x -—--—ax as arm extra dividend. Furthermore, if r is y'es‘t::r'n.c't:ed to rat;onal

f

values we see that the def1n1t10§ of a™ fulfllls the condltﬂon thut—mowerS'-
w1th -:*at:onal °xnonents shall be the anp*onrlate limits of powers with .L__..L,_
rational exnonents. Nonetheless{ we shall be completely satisfied” only if we L.
- can verify the laws Sor exnonents' Section 87“. Tzuations (1) - C%) for»the

< more general class of powers. ;p;_the,proo; I the first law, we have

~ -

P Cefa¥ - EG(a))E(yia)) |

R | ¢= E(xL(a) + yL(a)) - . from Eguation (3)
- . : fe - ' oy *"""
f L= B(6x + y)L(a)) ; cu P
. ; : . .Y 4 s
; Co . - : + : 3
: ) , . = [E(L(a)) 7Y from Equatlon (5)" 1?%
. . ° . : o - . ) '-_ 2 -;:
- ) = a v C .. from Equation (1), - -
- The proofs, of{the two remainipgﬁgaws are left as exercises. . .
- ‘ =~ i - R " D } : e o] ! ’ 1.!' ) . ’- a
The monotone p rop *uy of tge Dower functlon bd is easily established.
., Since E =znd/ L are ﬂnc”ea51ng functlons we have for O0'<x <y ,'usiné .
~ - [0 4 a «
. ) Gy -x o= E(aL(y))_f E(aL(X))_,
“that ~ : - f .o
- ; s
| : .
N ; >0 , if- x>0 .
[ Wen® o0, i a=0" , h
: ; <0 ,-if a <O0..
~ F L “" .

- Tn-wo”akr xa‘ *s-iqc*easing f6r>po§iti§e‘ &« ., constant (and equal toi_l) for /f

. -/O B decyeaszng for negauwve a/. .

- [
Finally, we verify the continuity of the rower function

exnonen.. o

ratlonal or iﬁraulonal. We have
2 . :

N

.

' Lim x” = liw B(aZ(x))

*

.

o . z L x~E *~E _ _
. , y | ) g = E{1lim aL’x» " (from Theofem 3-6e)
:/ . ) . 0 X~ £ . : i
_ ’ {' : o =KL(aL(g}) i (from Theorem 3-k¥b) -
‘ .'é , ' Do o | . ] . //~- <

% . -

. A siméle oroof suffices to establish the strongly mopotone char ctev of

~

x
the exnonentlal ?antlon x -—y—a for positive a when a £ 1 it 1s left

asaan exercise. Once 1t.ai'35uablished that the function

i ’
PO

. { -

) P . 460 .
o T . } .
.-ERIC 5 T gz :

s : i
4
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X g (a #1)

is a strongly monotone function, we may introduce the inverse function

Jlog, = a? —a'z - ' (a ;é 1) -
' ) | \- o :
From Definition 8-3 we have ‘

- >

L{a%) = zL(a) - - ]
A ] - - .
from which it follows thdt , ' : -
log (aZ) L(a )
a . L(a *
We- conclude that .

. | : L(x) _ -

() . A . ) . log x = —m

To clmplete the discussion, we must show that E is itself an éxponential

L"

function with g definite base. We set : ) s

4 -

e = E(l) . ) A
) . . >
Thus e 1is the unique walue for which ' 3 '
(7) : : Tt Lle) =1 e ‘

We obtain from Definition 8-3 - o . . '

v

; e* = E(xL(e)) E(x)-.. o )

The constant- e defined by Equation (7) is one of the important numbers
of analys:.s, it appears in an astonishing wvariety of con‘tex"s, many of them

seem:.ngly quite remote from the 1dea”s being discussed here. The value of e

is given spproximately by o S o
T e = 2,718 ' '
- ¥ @ . a n
(Exercises -2} No. 4(c)). The function E : X —» &> is cé{'e:d the Ty
exponential function in distimection to all other exponén@ial fun tiona.\_T}e’u
exponential function E is often denoted by exp. The inverse ffunc'tion- L

“is now definitely established as a logafi‘thm -

!

' ’ L:x —»logex - . .

The function L 1is referred to in this text and in all more advanced Wworks -
as ‘t;hg_logarl‘thm.c function and denoted simply by lok w:_thout subscrn.pt.
Common logarithms (logar:.‘t:l’ms w:.‘t:p base 10) are still useful for hand-

-

L S : - S o -
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v

compu@ation“but with the'adveﬁt of mabhine computation they have lost much of
- 3% . .
their once great importance. The logarithms used .in analysis are almost in-

variably logarithms with base e .

[ -- - For ﬁany purposes it is eésential to have some idea of the rélative_
ofders'of ﬁagnitude of the nowefz logarithmic and exponential functions. Wé
show that any power functlon ‘with positive exponent 1ncreases more rapldly than
the logarlthmic function ard more slowly than the exponentlal functlon.

~ ‘

‘Lemma 8-3. For each positive « ,

. . 'limkclg_x=o . » : -

) p & x ' ’ -"
and ¥ " y
. ) R .

. tim =— =0 .
X~o e -

, | : o 7 -

L. - Proof. We begin by obtaining estimates for log X « For 1 <t<x,

we have i’-s%sl , whence, . ‘ '

x -1 1o S ‘ -
OS‘TSlOgXS Sdt <x-1<x. 7 E
. 1 v, a " \- .'

‘Thus, log x < x for x-2 1- and, cOnsequentfy, log J;'S vx » Wwhence - -
log x = 2 log vx < 2Vx .
-We conclude that T
. 0 < lo;&c.x.S 2 . ' R ,
- ) . . i _/; o - . e -

-

Jonn Napier (1550—1617) is Jjustly regarded as the 1nventor of the
> logarlthmlc finetion.- Although the basic idea was deflnltely 'in the air” of .
his times, he was #he first to publish a table of a lggarithmic function (161L)
and his ideas about logarithms were more insightful and efficient for the con-
struction of tables than those of his contemporarles. Napierian logarlthms
are logarlthms to the base e . : .

Henry Briggs (1561 -~ 1631) was largely responsible for the }ntroductlon of
logarlthms with base- 10 for the purposes-of computation. ]
, Gregorius a Sancto Vlncentlo,, oJe (1584-1667) made the remarkable dis-
» , covery of the addition property (Theorem 8-2) for log x interpreted as the-

area of the standard region under the graph of a hyperbola based upon its
.asymptote~~this before systematic develoPment of the cealculus. -

i v

-a
[}

) 'lU.Z_ "1;6_2 | ‘ ' .
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> : S ,
- It follows from the Squeeze Theorem for limits as x approaches infinity

. (compare Corollary 2 to Theorem 3-4f) that

(8) 1im E’%ﬁ =0

p -]

-

This is the result from which the other order of magnitude estimates follows.

,//// For « > O Wwe obtain .
. N .
04

1im 108 X lm_égeai'zlmé_aas_xzo,
X~ X K00 x  y~e” 4
where Yy = & - . . )

- Now' we compzare the -values of power and exponential functions:

o o o\ Q -
X _ ( x ) _ (lo z .
. : - | RS ex?a . 2}701
:  where z = e~ . Employing the préeceding result we obtain
- ) . » . Xa s ’ 4 lo ) z : O . ‘
_ | ‘ lim = = Iim (—%—l 'a) =0 .
. . - Xmed € - A=~ z ) - -

Exercises 8-3

1. Verify properties (3) - (3) .

©

2. Prove Eguations (2) and (3) of Secgion 8-1 for real powérs in general.

3. ?ﬁove. that the expogen“cigl function X ——aa . > for positive a , a 74 1,

“
is strongly monotone.

l'f.‘? ¥ind thefl—argest pbssible domain for each of the follo_wing functions.
. i . L *
(a) ‘f/: X et EL( x)

. (o) £ o: x—TLE(x> i . . - S
(e) £ : x —*EE(x)
) : X ——eLL(x)

oy
N
H

. - 5. Sketch the graph of the function given by T e(x) =

(a) 2° (£) 2% + 2% 7

j(b 2-3{_ . . ’ (&) X - 5=X _ . . i
(& 2 S w2t : '
(a) . 22/* (1) 2H/* +‘2‘l/3v .

(&) 27L/x - () et




?

6. Sketch the graph of - ] .
(a) £ s x —EE( x) ,- .
— - (b} f :.x —eIL(x) . -

7. In eai;h of the 'foJ_‘Lowing sol;fe for x in terms of y .

I

- (a) y. L(tan 2x) ' . i

(®) v = 2% <.1) :

(e) ¥ = E(x -:L(yF)’ _ .
(8) x = log (x - /%% - 1) T J
(e) = EJ(X) - E('-X) "
A
) ' 1 & ' 1 1
< ‘ - -1 z ) - . -—
8¢ Show that if » = gl-log = and z = et 108 X , then x = ot log. y

9. Prove that if £ sat: fies ‘the functional quation f£(x + y) = £(x)2(y)
for ell x’ and y , and if f(x) =1 + x g(x) where lim g(x) =1 ,

Co

- . x-ue .
i % then f£I(x) ‘exists for ewery x eand f1(x) = f£(x) . >
(See also Exercises 5-1, No. L.) : .
Al =3
- .‘. "
rs e »
. R . . s -
) ¥, - A </
Al - o |
1] b d -
. - A
- > ¥
. ’ v
¥ :..
’— , ’/1 - 1 - .g‘:;
s / : 4
o

RN
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8-4. Differentiation of the Logarithm and Related Functions.

The differentiability of the eiponential and power functions follows at
once fiom—;he differentiability of the logarighm. We have a;?eédy.fOund\
(Equation (2), Section 8-2Y SR . - .

(1) D, log x =

-~

(x><5)- .

S

-4

We apply the rule for dlfferentlaulng inverses (Section L- 3) to Obtain the
derlvatlve of the exponentlal functlon. If. y = E(x) we have

- E'(x)-: E%%;y =y = Bfx) ;

The "exponential function has the remarkable property of being its own deriva-’~

tivé; Tt is the prototype of functions describing unregulated processes of

" growth and decay in which.a quantityiphanges at a rate proportional to_ the’

quantity itself. This property accounts for much of the great importance of
ph ;

" the exponential function in mathematibs and its applications.

We now &btain the derivative of the power function for any éxponent,' A
ra}idhal or irrstional. From Definition 8-3, we have b
I . : . ’
vxa = E(aL(x)) 5 (x > 0)
Applying the chain rule, we Obtailn - ',_
) R :
2 a a,a .
Dxx = E(aL(x)) (;) = x (EJ .

whence

(3) : px® =ax®F . 3

In this way, we have obtalned in all generallty a result whwch we could prove
. -~

earlier only for ratlonal exponents (Sectlon h 3). ’ i >
- An exponentlal with any base a can be written in uhe form (Definition
8-3) s ~ ) _ -3
e ‘ N 'y -
- T . ax = E(xL(a)). 7
’ - - - - -
It follows from the chain rule and Equation (2)fthat



d-

el o _ ) . Dxa% = E.'(XIL(a))L(ay -
. = E(x L(aZ)L(a) .
.’QhenC{ ’ \j . | ~
. (L) ~ %“Dxax = a* log a . -

- N - ay R

We recall from Section 8-1 (Equatlon 4) that for the function E : X —=a
1
: - J 3 . n -
E,7(0) = 1im 222 | o ‘ :
h~0 ’

Tekxing the derivative at 3= 0 in (4) we obtain

Dxax . =1loga , - : 7
x=0 ' !
. s -
an interesting representation of log a as a limit:l PQ -
% { -~
h S
(5) | log a = lim 2——§—£ .
. 1%

h~0 -

Exponential functions with bases other than e are not much used since any
. o -~
given exponentizal function is easily given in terms of exp by a* = e

where ¢ log a .

Since a loga*lthm with any base a is simﬁ%& proportional to- the

logarlthm with base e (Section 8-3, Equétion (6)), ' - o k:
™ tos % = 1355
. . . a - log a:
we have, at once, N <
- o l{ M
- Mo ® k N -
T \ & SN = —1
, 'Dx losg aX = gl . where ‘c = Tog & £

It is for this reason that logarithms with base e are often called "natural"
logarithms, natural in the.sense that.the choice c¢ = 1 yields the simpYest
possible expression for the derivative. - '

2 t

[ "

lEquaulon (5) could hasve served to define the logaxithm, -but the necessary

/7
analytlcal approach differs con51derably from the one we have adopted here.

In hany intermediate texts, the symbol In x is us for the natural
logarithm, but its use in profe551onal literature is rare.

T - L AT ; % -

4=
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The properties of logarithms may be used to simplify the differentiation R )
of complicated products and powers. For example, consider the problem of
differentiating a produé% // _ ) ' o

B( =) =53
‘.: p’_ )
We assume that the derlvative is taken at a point where

ees 5, n . (If fk(x) < O we can replace fk(x) by its negative and change

£,(x) EXOR

Loy

“ - -

7 )
fk(¥)>0,k=l,

.

the sign of @ accordingly.) "~ We have .
. . n~ ) . , “ \ .
) . log @(x) = Z’ log £ (x} - a : ’
( _ k=L

"and from

/}, / D, log Blx) ‘=‘ ')((x)
oprais ‘ ! . | |
T (x) = Bx) D#/_los B(x) - |
an,d, ‘th née ‘?ﬁ . ’ i
n_ . Ex)
1 Z e
i ¢ (X) ) ¢(X) fk b

- jk=1
!

, | \ '

Example 8-4. To differentiate - -
- \ -
_ (x2 + 1)3/2 (1 + sin“x)25

Bx) =
- 2x(x2 + x + 1) .
we 'first obéain _ 1-
3 2 o L e
log @(x) = 5 log(x * 1) + 25'1og(l + sin 'x@ - x log 2 - log{x" + x + 1) ,°

N

-

then differentiate, and find .
< . . .o -

t(x _ 3x + 100 sin3x cos x _ log 2 - 2x + 1 s
VXL %Z + 1 1 + sin x X+ x4+ 1

which yields ¢'(x) on miltiplication by ¢Cx) .




- - s : .
. Exercises 8-4 o i .

. !
l. Use logarithmic differentiation to evaluate eath of the follo*nring\?\

'

N (o2x + % - | .
- (~5) D_X((sz _ l)l/é) : ST . : . . -

20 - b - ]
- 3x . e «
1yx - ‘ )
2 b . "
. -
() ~y = %% .
il \ - . ,
(@) v = log(l + x2)
3. Find’ Dy . | jffﬂj
- }
Y (a) oy = (292
- x2 a—
(v) y =2 S : . ‘ g
(¢) 5 = %95 % 7 ’ g ﬁ\‘“’
(a) v = elog-/:?

(e) ¥ = log 4™ '

-

L. Differentiate.

N
(2) y == iog x - % 7 i
(b) -y = e’ sin x ' . . X .
(c) Yy = arctan ex
(d) ¥y o= log(c052 x)

P Y]



5. Diffgrentinte.

{a)
« (o)

—~
[@]
~

(a)
(e)

(a)
(v)

. (e)
. {&)
(e)

8. Show

:j'

y’

H

5. Differentiate.

)]

w
It

X

{« Zvaluate eac

tha

-9. Prove:

1im

. X~0
. (p) 1lim
- \_\_.\ p O

1im
x~0

x /

—el U

*(First

S
(&)

k {r)
(1)

‘(J)
s;mplLfy, if §

log (sec x + tan x)

log (x + Jaa~+-x2)

3
F\-\‘

£

’

e
v

e
1

[
~
|

sec x uan ‘x + log (b‘s_féf tan =)’

*og 4/3. ? 2 x2

cn Of_uh

T if e + e

log(l + %) _

}_l

-

c consta

¥

L)

nt.

- 2X + x2

W

following *nteg*als.

-(e).j
L
(S)J‘-

log log(x)

log log log(x)

’

L + x

x lo~

dx

X

l

[
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S o : bd ) ’ . . - .- B ) ~ ".
. ';O.-‘Assuming the éxistencé of the lim*ﬁ'in Equation (5); use.the fepresenta—
- - tion of . log a as a limit to derlve the” adaltlQn preperty of logarlthms.
- (Theorem 8-2) ST . IS \‘:‘ ,ﬁ"fl -
. o ;\ - ) * - -s' ’
. 1. -Apperiméte the difference between a> - and hz‘%gg(a >'O and a £ 1)
) . for large _|x| _where x'< o°. . RN :3 oL ) . -
. 12:eProve that-e* >'1 + X for all x #0 and pser tPlS result to derive
) - .7 _the following Anecualltles. A . e \ ’f _f
hd e ‘-q . , i v - - - )
uCOR >‘.rl -x, £or all x £ 0. .
- c - - . "
. . x 1 . - - : .
'(D) e ‘> m s for x >1. -7, ' - . .
Ca « . l . B - . . >
(c) le,<l_-_£’. for x<1l, X#O..& - )
| -x* 1 . g -
. (d)~ e: < m , for x>-1 , x #0 . i )
b ' ) - o o S
13.r Prove’ % ;:fﬁk?ﬂ_ <, e S
- ) lim ea = 0 ] .
- - . am - . . ’ :
1k, Examine the behé%ior of ; f for small fx] ,and very lgrge x| « TUse )
the information obtained fo sketch the graph of £ . v -
J-/\‘ - 1 # R . .
Ca) f: x —*--————jzr— -
- 1 - e x £ .
N o S el/x '
= . (b) £ :x lfx !
1l + e ) ‘ ~
- » : . ‘ i * é -
15. " The velocity v of a fallling body at time 't is given by - 5
. ' . i ‘ , T - . -
) v ! (\,a v = £(1 - e—kt) : : o T
; . . k . -
IR : - 3 ’
" - where g and X jare positive constants and the positive sense of

-

" motion is directed downward.

‘. -~
(a) Find the acceleration a at any time t . Show that a = g - kv .

.(a) On the same set of, axes,. sketch the graprhs of the functions

>

ct
it
A
.

(b) Find the distances that the body travels between t = 0 and

‘(e¢) If & =and t remain fixed [determine

L . - -44 lim v llm % l - e-kt) . b__ . - '

ct
n

a

t —ev , 2nd t m—eez .
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8-5. The Differential Eguations of gi > sin x , ¢cOs X% ..

Tre exponentlal functlon is bpasid to;analy51s and its anplﬁcatlons, its

-

1mpo”tanee can hardly be Ov°r5tressed.f The nroperﬁy wnlcn glves the exnonen—

- -

tlal function its unigue Dlace *s 1nvavlanif under tpe oreraulon of differen-

x x - . ! .
tlatlon- D e’ =el [ . - . . >
- [d -

We remarked that the class of funculons which are D*ono*tﬂonal to tb

-

derlvaulves is 1mportant in the study of growth and decay nrocesses. .ﬁb%.
exgmnle the rate of 1ncrease in weight of = bacte*lal colony under favorable
conditions is rrovo*tlonal to the weight already n“esept.- YOur cup of coffee
cools and 3 our cold. lemonade {assuming no ice) gets warm at rates nronortlonal
to the dlfPerence in temperature betweén your drink and its surroundlngs. In
Dterz9 we shall discuss such phenomena in detall. We shall study the n*o—

perties of such a function through 1its dlfferentlal equation y?! = cy . In

»
[

tne same snlrwt we cen study periodic phencmena in- “terms of the dﬂffe“entlal

equatlon £6r the sine and cosine functions and study the properties of the ’

2=

functﬂons themselves through the dﬂfPerenulal equatlon.

- L .
Wt e -~ . -

TEEQREM 8-5a. ~'A function £ _ given Ry ¥ = £{x) 'satisfies "the differential

T
Y

> equation - _
i (v - R . ytt= oy ’
. subJect £0 the initigl condition "
N A £60) =a - ¥ ~
, "3 i£ and only if ) ) _ Q o .
. e ] | ]
PN ) .ty = £(x) = ae™* . o
' BT :' ) . - i N L.
= Proof. ;t'fs immediaté ﬁngt theffunction defifred @y (3) satisfies the
. ‘donditions (1) and‘(2). To éOmDiete +the proof we must show that the solution

p

(3) is unigue, that no other sunctlon satisfies the differential egquation and

the initial condltlop. . T e
- _ : . . & : '
& Let u = g{x) be any solution of (l) and (2). Since e? >0 for.all
- . e cx - - : N _=CX
* Z wWe may Suppose u is leen in ghe fo*m u =v e whedre v = g(x)e L.

Entering fhis expression for " u _in the dlfferential Equation (1) we obtain

-

o Du =D [v e = v'e™ £ cv e* : ‘
x x .
= cu {Ffrom (1))
A ; ) CcX - : . L.
. : - ' = CV e [ R ~
# L - -
- . v s - ~
. : _g L7 ’
3 = N - ) ) . l .: - - ,
o L L e YRy
D . . . ’ : -,
ERIC T ' ' ¢

P v | . ; . .
[ & . ] ~
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~

" . - L4 . . - .ot Ny B .
3 : : _ e 2
- - - - LI - -
. - g .

A}

-y ~

S ) * h e - . :. ol n
Y folléws that vte®* =0, hence .that vl =0 aﬁdetgatf:V;‘ié-constant.
O _ P4 . " . _ . LT ) - .. - .
Stpee §(P T wemsthave waoa. LT N AT .
~ * .- - ; ) - V‘ ': ?\'Q -b . . . .

As & Conseguence of Theoren 8- 5a we see that the. exnonentlal function

B, x - e*.“could heve been deflned orlglnally as the solutlop of the Lo
diéfereﬂt al Equatlon (1) which satlsffes the initial condltloni f(Q) .’f‘
Agguming the existence °F such e solutlon, .we might then. define’ powers,f-',' {
loggrm¢wgs and EXP0nentlalS with any base ln terms of e . The catch %s the ‘.

- ag umpflon or ‘existence Of the solution of the dlfferent;al equatlon. _g: -

" Beperal Proof of existence for sOlutlons of d“fferentlal equatlons requlres

- .
Sabarate treatment and would be a dlgre551on for us. : Nonetheless’“#fé idea’
op deflnm ng€ & fupction &S the solutlon of” a dlfferentlal equatlon has SPEClal

or us because the c1rcular'functlons siy x and cos x* -y whlch nave

ingerest
Ny, béen de flned analytlcally, both satlsfy the simple dlfferentlal equati?n .
. ‘ . .

-
" -

’ y +7¥ ='O'. , i_

%
-~

- The dlfferentlal Equation (h) is as 1mportant for analy51s and its N

-

as the Eauatlon (1) for-the exgonentﬂal functlons. ‘Tt is the -

QDbllcatI
€ of the equatlons Whlch describe perlodlc rhenomena, the osclllatlons

IShy +
Sroto
gr“ sprlﬂg’ the electromagnetlc v1bratloné which we percelve as color, t?e$
oS .” ¥ : .
c - 3 - : - - - - .
Drggpure illations which-we perceive as sound o S h

- o €€ how “gin x @nd géé x ~are characterized as solutions of (k) wea

= d ;‘upiqueness theorem like that ol Theorem 8 -Sa. i o
e‘ | 7 -
THEoBEM‘,/i_ Tﬁere exists at most one solutlon ‘v = £(x) of (4) which -
sat'sfles the initisl conditions 3 . _ |
R -. . = 1 _ ) i : . . ..
2 ' : ' ,af(o) a , £1(0) = Ry
- s | I |
i - o, ;‘_ V:\t; ?{a\""f‘;{ . -
. _ ‘

: chls case eXIStence happens to be a consequence of a special property_

Of e dlf erential Egquation (1? it is séparable (Chapter lO), but tke

S b on as a Separable equation leads back to the “logarithm and the
lutd denarture adoptea in th;s text. .



»

R »

Proof. Let u and ‘v be solutions ‘of (L)

thet y = u - v is a solition of (L) which-satisfies the initiel conditions °

(85 £ 0) =0, £1(0) =

On multlplylng in (4) by y' we obtain

.
"

— -

T 1 ;v 2
coy'yt + vty = 5D0(yT)
It ﬁ?llcws thet :

* - ’ ‘o - . s . ) .
A E -‘(y-')_? s+l

8-5

which satisfy (5).. We sée

ra

{
A

where~ C is conetant. From the initial condition (8, 'hbwever, wel conclude

-

that C must be zero, hence, both terms on the left in (7) must be'zero. We

conclude +that ¥y = 1u - v =0 and that .u = v .

’

T -

From this theorem we see that the sine can be defined as the unigue
' - 5 5 ] ,

. -

solution u = $(x) of (h) which satisfies the‘initial. conditions .

(8y 5 - : g(o) =0, gr(0)

.and the cosine as the unigue solutien v = ¥(x)

initial. conditions : oo
REI S ¥(0) =1, y1(0) =

. Observe that if u and - v - are solutions of (%),

of (h)‘chich satisfies the

2

then so is the linear com-

bination, av + bu ; énd the ungque-solution satisfyingéthe general-initiel

. -

conditions (5) £E\Eh§ linear combination

(10) . - Yy =av + bu.
. . _ ., - . \

These ideas permit us to dispenée with geometry in defining the sine“and.

c051ne, but before we can make thls approach meanlng“ul we must show thau

solutions u and Vv satlsfylng the initial conditions (8) and (9) do ex1st.

A dl?ferentlal eouatlon may nct have a solutlon.

Equation (7), for example,

"has no sclutions when C is negative. To/prove existence we work;wlth the
. g :

inverse functions.

-

) ‘ ‘.x=g(u)=<su_l
. e | 0L E

. This integral defines g : u —s 2arcsin u as dag increasin function of u
& £

"

' . Recelling the rule for differgf?iating‘the arc sine, we seir-‘

R R & 5

2 ..

s .~

- - -

dt -’ . [

Ny

i

R |

‘¥t



Q=D . -9

for -1 <u <1 since the integrand is continuous and positive on the open

interval (-%,1) . It follows that the inverse function

g : glu) ——su

is a continuous and increasing'function;_ Since’ gf(u) # O anywhere on the

*ﬁterval (1, l) : we see Jthat’ ¢ is differentiable, and by the rule for
dlfferentlatlng 1nve*ses ’ F

‘s . i LT -

-
-

- T ; L -2 ? " ' -
' - gy L1 S B ' PR
(12) T W) sy A m

- . . u . s
. - o 'S [} ,
P

. Yhere x.= glu) -. ,Siﬁée,tﬁe'functionﬂoh.the‘rightiis differentiable, it
G foLlows_that fu’,”is differentiable end 36 obtain by the chain rule angd

Equation (12). -. o _ - el . e
- -' . ‘v._-'-.
' R U 4 ; — . -
T G w? -
v u! = « —m——— = Iy . R
. 6 2
.- . - u -
a. ‘;- N . » R - o

(Sincé- u  is restrlcted to the open 1nterval (¥1,1) the possibility of ;
zexro d1v1so“ does not arlse ) We see that u satlsfles the dlfferentlal ‘
Equetion (4).° The’ value x =0 in (1%) can.only occur wken u # O since »
g ii)ah'incfeasing function. It follows on setting x = O éin (11) ?ndj§l2?
that @(x) satlsfles the “initial condition (8). o - :

-

It is true that (ll) ‘defines the fumction ¢ only on a neighborhood of
x =0, But the dif ferential ecuatlon 1tself can bé used to extend the.

) :solution to all values of X .- -

-

- Since u .-1is dlffe*entlaole it follows from (h) that u" is differen-
'!tlable and on sett ting Vv = u' that ) o ~ . '\
- Y" +' v = Dx‘(-ull E u) — o e ;N‘T_u . . - N - \
Conséquently, v = ¥(x) = @g7{x) is also a solution of (h).; Furthermore, from
) . > - - . A

"(12) . w0y = A ‘[¢go)]2 -1, anafrom (8) wi(6) = - §7(0)"- $(0) = 0 . The

. ‘function v is tne*efore the unique solutlon satisfying the initial condi-

.tioms (9)- T | : T . )

A

We may now aba®don all- our doubts; the solutions ¢(x) and ¥{x) -exist-

;“: and are unigue. The familiar circuler functlons may now be deflned by
- oy} ‘ M
. . , - '(sin : x_——w-ﬁ(x) - -
. ; . cos : x—av(x) . _ %
- L4 - - ] - '
A Yo i, - ] . ‘ *
< S LTk :




. . - : .
. - : .. , ] ) R—_— ¢
L3

- -

We Stlll have - work ﬁo do. The familiar rules gomerning the circular
functlons must now be’ derlved. For the most part this is a simple matter and

is left to Lhe éxercises. ;ne 1nuebrale(ll) for the arcsine yields defini- - .

-

tions of sin x *mnd- cos x only on a neighborhodd of the origin. It is

necessary to show that the leferent"al equation and 1nﬂt1al conditions. deter--

-5

mine solutions def¢ned on the domaln of all real values. t is also necossary

N

*

to prove that uhese solutiorns are nerﬂodlc and’ to establishi the roie of the

number x . The technical details. of these proofs are given in Appendlx 8.

Af«J : . - . o .
_ .. Exercises 8-5 i - ' B

1. :For each of *he followmng find uhe function f whlch satisfies the

;: given djfferentlalnaquatﬂon subaect to the gﬁven initial conditions «

- . (a) y¥=2y; £(0) =5 A - )

Ky (o) y" +y=0;£(0) =2 ,°£1(0) = -2 - . . ‘ - .
2. BShow that the function gﬂven by y = f(z) =b sin ax + d.cos ax satisfies

the différenulal eguation ¥+ a y O and the initiel conditions
£(0) =4 ,.£8(0) = a» . ' . , - o

PR '\ . g K - )
;3.  Show %that the function £~ given by

. ' -l > y:f(x)::exsinx ’ 7. - -1

- - .

-
Pl

-

satisfies the differential eguation

s e hvd . L L
N P LS
:

~ [ , - - ' ' - 2 + 2 = Q0 *
Y, y? Y : ::3 ..
"and the initiel condltlcﬁg f(O) 1 , £3(0) = 1 . Show also that the
Iourth cerﬂvamwve 4’(x) is propor&i nal +to f(x) - : _? -

/

L. A particle. moves alghﬁ a line for 2 “hours so that i¥s.velocity at any

t is ‘given by vV = §-e3t

ment _at the end.of- 2, hours and- the distance'ﬁravéled-during the-last
{ .

hour. ’ : - , - & o *

{ - ' . : ' : :
5. Der*ve Formula (ll) for tbihlnverse of. ¢ dvrectly from Equatlon (7)

time 5 in miles per hour. —Find the diaplace;

-~ - -

6. Prove the 1deru1tj

-

>, > . . -
. U + v = l : ]
- ) v N - .
. where u = @{x) and v = ¥(x) as defined in this section.
- . - S e T ~ “
: : . u , ‘ : .
7. rove that u < arcsin u £ — 5 for 0 <u<l.
: 1 -u ' -
i d .
v - N L -
° - ‘!‘“75 ’ T . :




10.

. - . ‘“\\ N ‘
: ST, a0

. .- i N . ) - ~ ~ - -8
Prove lim 22R % _ 15p Q%EL_= 1. ) I

Tx=~0 - x~0 S

. N : ! ’ ':“ T s .
Prove the rule for differentiating the cosire; that is,- -
. . vi(x) = -#(x) . po :

Prove that” ¢ and V¥ as defined in this section are differentiable +to

all orders.

-

~

~

Prove -that the sine.is an odd fumction: and that- the coslne is even,_i.e.,

"that * g(-x) = -¢(XD and W(-x) = ng) .

LY

rove tpe.égdltlon theorem for the sine:

1
e

T T Ba s b)) = Bla)u(e) + - Fo)uta) ]
(Hint: Use the fact.that ¢(a + x) «is ‘e solution of the differential

Equatlon (%)) ,

e

State and prove the corresbonding eddition theorem.for the cosine.
Interpret the constant C in Egquation (7) in terms of the amplitude of
. > . 4 L . R . . PR
osciliation;
- - - —
. 5. ¥ - )
. Dlscuss +the exlstence and "uniqueness of the solution of the folloﬁiﬁg?gr"///f
1nltlal value problem PO .
o 2, - : e : . -
. D°f + wor = 0 ; £(0) =2 , £31(C) =Db . - ",
< o B ’ = ' g
. : T - ot
V‘J N ,}E‘\’-.
r. - %L .
.~ . . ra o .
5 N -
. t v ”
- ] )
g > N - . h e ) -
= - S .
7
h . .
’ e ) T oy, : -
- S -
- “L_(. ‘e ”
. i S
. 476 o T
) .
. = ° .7
J
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8-€. . The Number e -

N B -

The'propertieé—sf\‘gf_gzﬁ the exponentisl function can be derived from
~ simple estimates obtained in the same manner as the estimates of- Section T7-5

for =sin-x and cos X

. We consmder values of x in the closed 1nterval

[O,a] . From the monotone property of the exponential function, we have

3

{

™~ -t
Integrating we obtain

»

whence,

@

* In general, if

- we have

v

< ) : _ \ -
éo_s ex_s éz . .

r
'1
Sy

X I C X ) : . .
- S £(t)at < S e“dt < S g{t)at , - (0<x<a),
. % - Jo. 0 - -
whéﬂee; “ /7 Be ( ' : : -
- . - 7?‘ . ° * s
L L x T R e -
(2) 1+ S £(t)dt <e” <1 + S _glt)at 7 v (o <x<a).
- Jo ) .

APplying the result of

2 .3 .
(3) 1‘+ x + %; + é%rg

.

A similar result holds

S~

-

& r"he number e is
(1.707-1783) who recogni
many of  its properties.

¢

In three prodigiou
Differentfalis (1755);,

(2) to (1) and integrating repeatedly, we obtain

-, o~

: x> b -'x2 xé’ L A S
+ G.. + = + X + ==+ + epe + :
y nt S€ SLEXFEF AT e T T 0
-~
, : (osx<al).
Kd

for‘hegat;ve values of x (Exércises 8-6, No. -b3

- - el
- . . ~ - Iud
Justly called the Euler number after Leonard Euler'
zed iIts pervasive role 1n analy81s and established

- - . N
__., J‘.

s treatlses Analyszn Inflnltorum {1788), " Calcull
Calculi Integralis . (1768 TO) Euler opened and developed

-

vast .areas of analysis.

tude of his work are unmatched. T¥ere is scércely

without its “"EBuler?s Th

o _ 477 e 11 .

The . fertlllty of hi% ims ation and the “sheer magni--
area of mathematics

eorem” or "Buler?®s Formula.”

€ )

- -~

-
[

L3
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- .

+ - .s ‘ e - A
’ From Formula (3) we can e3511y obtain nreclse estlmates for., e ,' We - (ﬁ
" . observe “first, on teking X =@ =1 aund B = 3 that . '
‘ i Do A L, e S )
RS - M-S S-S

.o ) .
-
. Y

-From this inegualipy we Obtain %?'jf%j:.Whénce e <3 . Entering this result

in (3), we find - . . ] ] ' o o
: - R 2 . n L& )
~/(h) > e =1+ x+ %? + .. + Ef + e(x) } (x > 0)
" where for the error term, e(x). we have - : - ) ] ///
: _ '" s n
(5) ' - 0 - <e(x) < (2 ';,l) .
S N ) ] '\’- R

In particular, setting x = 1 .we obtain

. 2 -‘ - - 2. . L
_O_<_€(l) Sn—,-.

= <

Since n! increases extremely raplQlV.W“th n (thus 14t = 8.7 x 107 , so

that (L) gives e to 9-place accuracy wh?F\/n = lh) and the Xx-th term of » .
the sum for e 1is ootalned from the preceding tegm "upon division by k , it -

is easy to obtain tne valize ‘of é -to a large number of decimasl places. We v
‘1llustrate by calculatlng e accurately to‘nine places. We carr§ the calecu-~

°latﬁon to eleven places to allow for the error in rounding off.

. l -
T . - n =7 Q ‘ _
- "~ 0 1.00000 00000 0 ' ‘
1 “| 1.00000 ooo00  © \ -
. : 2 .5000C . 0000C 0 _
; ©3 | asess . eesss T oy
L -0L165 66666 To. .
" 57| ".00833 33333 . 3 o
: ' 3 .00138 88888 9 r
- 7 -00019 - 8L127 o} .
8 100002 48015 9
9 .00000  _27557 3 -
¢ 10 | . .00000 02755 7 . n '
\ 11 .00000 00250 5. .~ )
- ~12 |- .00000 00020 . 9 7
13 .00000 ‘00001 -6
, FESE Fo .00000 06000 1/ -
s * _Total ' e =2.71828 1828k 6 ;

S R I T |




-
L4 s

Roundlng off to nine pl&ces we obtain tﬁe 6a51ly ‘memorized result

(e . o, e _@ 71828 1828
(A more accurate computatlon would show that the total aoove was actually
accurate t0 all eleven places. Y We leave as an exercise the problem of\

-
-

verlfylng thet the sum of ‘the error from rqundlng .off and from cutting off the

calculatlon at n.= 14 1is less than half a unlt in'the ninth place. ] ,
. L - ‘ ) . . X
For a g*ven x it is easily seen that we ¢an bring the error e(;) in

tbe estimate for e belpw any given‘toleréﬁce by teking o} large enough.

For this purpose we_set n = r'+ m -and chogse r > 2x . Setting

X r -
e = Lé__:_lli; , Wwe obtain from (5)

ri _ . : :
. ' o X x XN : o
(D - e(x) ez 52 --- (&5 )
. X X 1
Since T <z 5T <5 > (k =1,2, ..., m) , we have
c
- . v 0 < e(x) S:E . i -
2
Wé conclude, tﬂén, that .
- - f
-‘ . " x ‘,\- o xk 1 )
(8).. - : - e” = lim T - - (x 20) P
. ey ) ) ‘
b - -
From the estimate - §
. . i . )
. B
oge -y v )< H L
rd
-« !
-

it is easy to show that e is hot a rational number. ‘The number

(-r(reriFede i)

is an intége“ If e = g- where p and g are integers then the preceding A
T » oo

u

R estlmate tales the formy . : L

. ) . D v - . 2 “ ¢
- <2 _ =) < =
oy °=3 @ - 1) n!) S SN

whence, for the integer’ w=(n-1) p - vg E .
- ’ 3( <i‘. i ) .
n — - n
If we let n be any natural number bigger than 3g we obtain A -
] o<u<1.
5 )_',_79 -




[N 8.6 ' S

The assumption that e 1is rational leads to the faise conclusion that there

is ‘an integer between O and 1t . It,follows that e is not rational.

-~

Prom L'(k) = %- we can obtain another repfesenﬁation of e as a limit.

We ‘have L ' ‘ :
.oT ) A Li(1) = lim ‘log(l + hr)1 - log(l) \
- . h:vo
- = 1lim log(i + h)l/h ,
i 1{‘0 - <
whence, since L*(1) =1, - -
! | ' log lim (‘l+h)l/h=1 .

. h~0 - ‘ .

where at the last line we have used the contlnulty of the loganzthmlc functlon.
From the definition of e (Sectlon 8-3, Formula (7)) we hgvé?/he fundamental

result

LN
¥

(9) 3 e =1im (1 + w)t/B
/ T L ,

-If we restrict "h  to values '%- where n 1is a natural number we cobtain

2 ST : | )
{10) . - e = lim (1 + ;)n .
. T~eco n

-

i The qﬁantity‘ (1 + %)n can ée interpreted as the value at the end of
‘one vear of a deposit of one dollar left to acguire interest at an annual’
interest rate of 100% compqunded n times a year. If the inteEigf is .

) compounded continuocusly, that is, if the interest is calculated as the 1imit |
.///\>in which the nﬁmber‘ n.of interest periods approaches infinity, the value of
-/Jthe principal at-the end of one year will be e dollars, $2.72-. Dis-

- appointingly smallsy isn?t it? (Exercises.8-6, No. 5a) ' : .

Sinée the graph of* X —wlog x* 1s inecreasing and flexed downward it
follows that h —a (1 + h)l/h 'is a decreasin nction. (Exercises 8-6,
No. 7). This result gives us another way of e ting e from above. For

h->0 , g1‘+ h)%/h' must be no greater than its limit, e , and for h <
(1 +_h)l‘h mist be no smsller than its- limit. In summary, )
{11) (1 + h)l/h < e'g (1 - h)“l/h . (o<hk1l) .
~ Y 1 . e
Thus, setting h = 5 Wwe obtain ' ' ~
b
180 .

. 11\
/ -

W



or -

2.25 <e <L .

The estimates (11) for e are not particulariy useful for calcwlating e ,

but they have value in theoretical discussions. -~ .

.. Setting h = % on the left and h = on the right in (11) we obtain

£ .

. n+ 1
) : ln o - 1 n+1 .
1+ 2e< (1 +D) — - -
‘or ) o - ’ ,
~ -
n : n+l
. . n+ 1 n+ 1\
.(12) () fes (B .
: o .
This estimate has extremely interesting consegquencés. Note for the product
. . 14 . : .
of the terms (-}%-J-'-), , k=1, ... ,n, that - -~
T TPee N eyt et et
127 '3 Tt n 1-2-3-4 ...n . nl N
K - 1,5 - : | A :
Since each factor (T) »k=1,2, ... ,n, in the-‘prodyct is mo
greater than e by {12), we have, C‘/ ) T
- n
. o > (n ;!l) ?
whence - .
. S n - n : . '
+ -1 . n 1 7
a : n‘Z(n—n),-Z(ﬁ (1+2) . o
- ~ V e .L -~
R . ’ l n - ‘.l- ] ) | - _
Since (1 + -I-T-)* increases to the limit e ,)we see that it hag its least

value at n 1l and therefore

n n .
ni > 2('5') . ’ .

This formula gives us some idea of the prodigious rate of increase of nt ;

for large values of -n .it increases faster than any exponer_ltieil a? .

S~
PN
. N
Y
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"It is possivle tc obtain an upper estimate For nl by using.the right

. . k+1 ‘
side of (12)." We form the product of the terms’ (“—'}:-—l) for x =1, 2,
3, <oy n . From (12) it folTows that P
L . P .
I E NN TN CET b st
? 1’ 27 3 T B nt’ .= 0
whence
7 - -
( - n+1
' n+1 1
s . (n + l)n+l n A (l H) -
n! < < .
— n —
e - e
) 1 n+1 - .
_ Since (1 + ED decreases to its limit, its greatest value is attained at
_ . .
. 1,371 .
n.=1; hence (1 + 3) < L4 ana
. ‘ 7 0

. - e - ' - .
In stmmery, - ' R

(13) | | e(g)ng_'naguncg)n. S -
It is posgibie to improve the numerical factors in (13) by leaving out the
early terms im each product, those for which the g@pproximation to " e is not
particularly good. (See Exercises 8-6, No. lO). By means of subtler tech-
.ﬁechniques it is possibie to do much better. There 1s a bedutifully simple

ésymptotiC‘representation #(n) for =n! , thas is, a function @ such that

%
’

nl

- ’ | /

this is the famous Stirling’s Formula, N

;\\_ ' o @(n) = ¢2zrz"1 (%)n ’

which involves not only the constant e , but somevhat mysteriously, gihce\:

' present considerations seem totally unrelated to ‘the circle, the cbnstaﬁb\\F'.
. \ -~

N

£

Tk
o
=

O
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Aruitoxt provided by Eic:

-
‘ -
- . ~ i -
- Exercises 8-5
(a) Using matheémastical inducticn prove the result of Forrmila (3).
; . . . - ‘ ) Lo .
(o Obtain a result similar to Formula (3) for negztive wvalues of ‘x

- and®obtain an ergyor estimate for vour result like that of (5).
(e)
11> in the q;%ails to show that Formulas (L) and (5) follow
ormala {3).

Use the result of b to prove (7) for negative values of x .
. P , )

from

iz
b

ij

Prove that the wvalue for e given by (&) is correct to the indicated’

number of decimal places; i.e., show that the error in (6) is legs than

one half 'unit in +the last place.

- . N P .
Use (3) and (10) to evaluate each of the followilng limizs. ~ ..
: . x . - ' .
(a) 1im (1 + gJ ) . '
X~ | * - -
’ . 1 X/B ’ ! 3
- . 1+ L ] .
) = trE N/ '
.z e - .
(e)- 1im (1 + Eh)j/h ‘ g - . i
’ _h"o- -’
(&) 1im (1 + sin n)2_cscin
. h~O ) ) . -
N 1/2n° . X
(e) 1im (L - =) .
2 .
hewco . -

Evaluate 1im x( %A - 1) . .
. XmwO - . ,

(a) A California savings and loan association offers an interest rate

of L4.85% compounded continucusly. What is the'equivalenﬁ annual

interest rate for money left on deposit one year?

(v) How long does it take for an amount of monéy at tﬂejSame interest
‘ rate (4.85% compounded continuously) to‘double itself?

a

“
3
[

S

8-6
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(a) Prove that x ——e (1 + x)l/x is a decreasing function.

(b)- Which is greater

. 200009 or 100077 ¢
{c) Wnich is greater - : _ g
1,000,000-799%:%L o1 1 7000,0007700%,0%C o
Yo+l e T
Show that for- n>9 , /o >/ +1 . - -, .
Show how to obtain an approximation of N
£ e : et L2 o
oo S e” dx’, , (0<t <1) #
- 0 ] .
Use Equation (4) to obtain a}z.qesgimate of the error of approximation.
n : B
Prove that n! >3(§) for n>1 .- fg' e S L N
- 7 _ , ‘
(Hint: Use mathematical induction.] _
. - _\ . . .’ . .
\ _ _
‘ / ‘
- ‘ .
’ : ;
| - . .
- - = . <, -
* 2 (\ - }
~
, T . K
. . .
DS
Az2C
= & 484
. - - & ® '- . * o
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8-7. The Hyperbolic Functioﬁs.

For reference we lnclude here a

- X B-7

brief ‘discussion.of the leple combina-

tlons of exponential. functions known' as hyberbollc functions. These functions

have properties which parallel those of the circular functions. In analogy -

*
with the circular functions: we define

gent, respegtively, as follows:

_sinh x
- N & .
v cosh X

. tanh x

el

the hyperbolic sine, casine, and tén=-

\

x
e - g - B
z -7 - .
x -x
e + e
2 2
e o X -X o=
sinh x._ e. - e ) ]
cosh x = X -X p : ' .
OSZ X "Xy ey

Fi

The analogles between the circular functions and the hyne%bolic Tunctxons are

exhibifted in E\é ;ollow1ng formulas (note carefully the dlﬁiifences in 51gn

from kthe parallel-formulas for the’ circulkar functions)

4/’;?;3/ , cosh® x - sinh® x = X,

’,

-

S
-

(2) , sinh (x + ) = sinh Xx cosh’y + coeh x-sfgh Y o. -
(3)._ ' j'eosh (x +.y) L cosh x cosh y—+\sinh x sinh y . ¢ ’ -
(4) . .-+ D sinh x = cqshax . . - -

- (5) © D cosh x = sinh x . h o
8y . D tanh x = 1 -- eapha-x . -

The derivation of these _ormulas is left as an exercise.

<

The principle'featdree'of'these functions are easily descriPbed. The ~

hyperbolic sine and tangent are odd functions, the hyperbolic cosine an even:

Dunctlon. The 1nuercepts of their graphs are given by sinh O = 0', cosh O =

tanh 0 = 0 . For all x , cosh x > 1.

-

. -X
lim e
X~

N

g
q
sy

A

-

="1im
K =00

and _[tanh x|‘< 1 . Since

~ .

o

e# =0

S © ' . . :
* In the theory of functions on the domain of complex numbers it 1is

" established that the circular functions are related tg the exponentlal func-
the hyperbollc functions.

. tion by formulas similar to those of

1,



demonstration of the propert:.es of 't:hese functions is’ left as an- XY
P

)

' * < v 7 e i {ge
. cosh x approximates %— e" from above and sinh'x  from below fof 2 N 587
. ) ' ' . R T . =
tive values of, x . Similarly, cosh x spproximates g.e‘ x » and 53 ‘
- . . ) e - 5 2
1 -x £ o . . : T . p
- 5e s»for large negative values of x .. The graph vy = tanh # la\}\
asymptotes. y = 1 for large positive values of x , and y = -] £°0Y ’fh\Qe/
negative values of x . These features are depicted in Figure 8_ 74 - ' i8 .
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. £h€ : Qil“ ctiOnS L
.- x2 ')ust g% e Q3 ar fﬂpfmct Are a550Clateg with the unit circle
i
hyp ¥l é E 13Ql-bol c oint Shs gre assOelated with the rectangular
Qbh - = ) e I
: . Lp ( wher, = co =
is a Dla n‘ ghe oy 1 H ne poing ’C,y) e x= s & and Yy sin 8
is  doint © ne .h Toxe; T (Figure (x,y) ;’here x =coshu and y = sinh u
DNoyiph o . Qinals 8 8_7p, ¢)- _
in rbo b )
. { Yy

X
(coohu,-sinhuy)
z :‘ I )
Figure 8-Tc -
®n yne P8Tameter 6 and the parameter
not &5 an gngle but as the area of a
as , th 26 (shaged region in Figure 8-Tb);
e 8 e
a s€ et o QE’. nte
coer Shald- re&ioy Dz rant n yp Tbo-,n be iPUErpreted a&s the area of the
%bondiﬂg /th - Tor thé =1 (shaaed reglon in Figure 8 Te).
: . pe” the’ ~xhe _ _
‘ the t"et g try. Rveg of 3 ang Tholic Se"—‘tor in question. In terms of .
e, Q .
) Qbeawof " - h&;e th@ ) tar‘dard region under the graph -
Yy = er ve . . -
M ov [lax] we °F : :
. - * _ . _
(?) 5 ' =z X7 ";32 - ¥ /5\ N -
- c . ’s tT -1 at '
’ L] :- - l_ i ; = -
= cosh : cosh u- -
o _.uSiﬁh-‘U‘ES ' Ja-ldt.:
. - ’ o 1 - . .
On Copdng .. ct to S ' et -
_ P : ] )
5 ‘ . kg7 1. ' T R
B ). R .
] ‘<‘ LR . -
, - o I
] ) . £
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&2 _ cosh®u +'siph2u - 24cosn2u_4 1 sinh u

d’ ' -

cosh%u + sinh2u —-2_sinh2u - . .

'=.cosh2u - siﬁh?u
U - | =1 .- - )
Tt follows that a =u'+ c , and on taklng u =0 in (7) that the constant
C is.zero. We conclude that @ =z u ,, or that u is the area of the hyper—
~ bolic séctor. : L ‘ . . ' ‘
N . ) \\\jfxercises 8-7 : -
: ) .

1. Derive Formulas (1) - (6) from the definitions.of: the hypérbolic functions.

e

T2, Apply the methods of Section 5-8 to discuss the graphs of the ﬁyperbollc

functions. B ) .
/ .7 3. Sketch‘the graphs of ¥y = ESE%_E (that is, y = seckh x) and y = L >
- on the same set of axis. C ® .L: l_+ x
b, Fing 1gm S2EBX . 0 - " ‘ ,
x~o ) . ' rd ’ - ,
. : a ' - S
5. Differentiateée. -
. e - _ _ S
(a) ——‘%5—— ' : (¢) & simh x . )
tanh~ x : _ . , ] . ) KR
- . . - ' . 4. .. ~ 7 . -
: N - . .-COoSk x + sinh x. : -
. (e) simn (21;08 x) . (q) coshx - sinh x ° - N

o . . . - A P } - - .
g - . ..

S.f Show that sirh y + cosh'y = e , for éach y , and verify that _ .,

L n . ) . & .
(sinh x + cosh x)~ = sinh nx #'cosh nx . .
7. Show that arctan (sinh x) = arcsin (tanh x) ..
8. Show that D&(2 arctan e*) = D arctan (sinh x) .- i

Does 2 arctan e~ = arctan.(sinh x)

Justify your answer.

R 9. " Calculate thé inverse functlons of sinh , cosh , and tanh in terms

E ~
.7 -

of logarlthms ) ' -

)

12y ;0




- 10.” Obtain the derlvatlves of the inverse hyp
noue-how they dlffer from the derlvawlves
;trlgonometrlc functlons. QObserve that th

s o hyperbollc furctvons are algebralc ‘functi

1i. H:Lnd the«length of the catenary y = a ¢o

2. Use (3) of Section 8-6 to f£ind upper and
A+ sinh x and césh X .
- (a) Obtain a fomuia for tanh (a + b)

-(p) Give 't&nh hx in terms of tagﬁ/x .
é -
14. The dlffgrentlal equation

. (a) p f - £ =0 is satisfied by ' cosh

_ £ - .
Prove the unigueness of the“solution of

-

B (=) £(0) =2, £1(0)

erbolic functlons u51ng (1) ‘and
of the corresnondlng inverse
e derivatives of the inverse

ons. - .

A

il

sh E between X.,=0 =and x =10

lower polynomial bounds for

in terms of’ hyperbollc tanf;nts.

e o ’
and sWgh . -

(a) under the initial condition

and . exn*ess the solutlon in"® tevms of sinh and cosh . -

//// & (H__t:'_ahow that if F is 'a sclution of
-solution of Dg + g = O .)

L4

(a) ,.then._g =Df - £ is a

v [

v

R

-
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. Miscellaneous Exercises 4 . - e
‘ cell _
(/ »1. Evaluate: - \ - _
- ._. I{ . n . . : [N
1 _ 1 N - \
@ =D a2 () ; o
' k=1 T k=1 n ' . 4
. s [Hipt: Use Theoregki-3c.]
C T N

. 1 ' ‘ -
(b)»h:E n+a+oBE’ 22P20. S :
. i~ k_ ' . . - . -_ . ‘

2. -Find_the_mean"valﬁe'(Exercises‘6-&,~No. 20) of the function

- 3 f:ox — . \
- - X )
on the interval [1,2] . ‘
. - T
. 3. If F(x) = e”” dt , x>0, find F'(x) . /
< . J O ' et . o ' -

" 4. The region bounded by the curve ¥y ='e—xj and the lines y =0, x =0 »
x = 10 is rotated about the x-axis. Compute to three significant digi%s
the volume of the solid of revolution so generated. Justify any approxi-

- . mations you use.

5. Find-all.solutions of the-equation’ e’ = e « Justify your answer.

o

6. Find an equation of the tangent line to the graplf of y = e

(a)' at (d,l)‘- S - I - . - .

(o) at- (a;e%) o o A S T

(c) . that passes through the crigin. -

7. Find an equation of the only -tangent line to the graph of y = log x
that.passes through the origin. ©Show that there is only one such line.

t

. . - . - .
8. Find zm eguation of the tangent line to the curve y = lqg(tgn x) at

the point of inflection (xo,yo) where O <:_xQ <f% .. ;

-

- - i ! wn

490
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9. Find equations of the tangent line and normal line, r%spectivély, to the

graph of f at the given point. 2 S
-‘5‘: R ”l o ' TER
(a) £ : x > = >’ at x = O . .
’ 1l + e .
- (b) £f : x —-a—xx , a8t x = é ‘ .
~ - . . .

10. At any point where two curves intersect, the angle between their

respective tangent lines is called their "angle of intersection." For

each point of intersection of the graphs of f o x -—--e-x and

g : x —;—e * find the corresponding ang_le of intersection.
11. - Show that the curve y = log|sin 2x| is everywhere flexed downward.'

Sk‘e'tch the curve.

12. Find the area of the standard region under the graph of £ over the
given interval. 4 ,

] (a) £ : x=—ee* , [-1,1]

) (b), f: x —hel'.-x 3 -—l l] Lo ,

c b . - -

(). = | | .

13. Find the volume of the solid of revolution gener_a‘t:ed oy f on the

: X ——etan x , [O

given interval.

(a) £ ¢ x ——we’ , [-1,1]

_ (5) £ : xe—ee= X [ T-1,1] 4 ‘ o (__};

1L, Derive a formula f£or 't:hc-;j volume: V of the $olid of revolution genersted

by . £ X —wa> (a >O) 6n [o, b] Noe
. . 5
'I.S.. Find the volume © _ the sol:n.d generated by, revolw ng the region bounded - _
.77 - py tHe curve v = y/2 't:he x-a.xt.s, the y-axis and 't:he line’ _':_c =1 \
about the line yv + 1 =0 . : .ot . R o K -

16. Sketch the graphs of each of the fcldowing, indicating exirema, points of

inflectiln, intervals of downward and upward flexure.
A -

tlv{_u

{a) £ x —=(log x)2 - x
(0) £ x—e—E—s - - y
- (Log %) - '

b -

w91
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18. Integybte XEemx

B . o
- A
< K
e - -
- & - .'_ n-
.

by assuming ‘the integral has the form-

(ax® fr bx + c)e™ +. k . Generalize this result. . . ;
19. (a), Verify that the derivative .of :
_ f(t) =" (a cas. t +’b sin t)ekt LT
is gp@xpression Of the same general form. ’ -
) - () Integrate eaxis;j.n bx .
o . ax . -
- (c¢) Integrate e cos bx .
(¢), Show that £(t) in (a) is a solution of thé qifferential equation
D°r - 2kDr + (k% + &2)f = 0 . - ¢
o .20. Establish phe following limits: ’
(a) 1lim x™ 3og(l + x) = O s m >l .
x~0 : ' : ;
(b)) lim x* log(l + x) =0 ,n<0© . -
Xm0 ‘;:?." . - _
(@ 1im x®log x =0, p >0 . - o . A
x~0 - S -
& . ’ Ve * -
°° 21. Show L 5 ‘ x: o~
- - . {x)” v - . " .
_ llmﬁgﬁc)uc =L ,L >0, . "—g .
. . - _ : TXem 2T o A
. Foar . ‘_ - - . X - ) . R
e £f ‘and only- if - S . Co
R . . - " lim ¥(x) log $(x) = log. L -
. X~a : ' -
22. Using the previous exercise, evaluate each of the limits in Exercises 8-6,
’ Number 4. 4
- ) / < -
. . E " - !
]‘Q
P e 1;92 .
~ - . - .
. - . “ﬁ
B -




“_7F§§- Evaluate each of the following limits if it exjsts:

' | : -(sin x)l/x . ’ ( . ./

) (a) 1im ‘ .
x~0 X i ¢
: 2
P T l/x - !
(b} 1lim (§3§—5) ..
x~0 - ) . i . .
' l/x3 ; e - - )
(e) 1im (22X " . | .
x~C ) E . .

2k, Thg formula for the normal probability curve used in statistics is

. ‘5
. 4{ Ly = 1 e-(x-m) /2c2 .
where & is the average {or mean) value of x and © is the spgndara"
deviation and measures the spread of the curve. .Find tﬁe extremum and

points of inflection andgsketch the cprve; For simplicity let m =20

and ¢ = 1 wso that ° ) -
¥ ~ : o>
vy = £(x) = L e .
42ﬂ
/25. Determlne the rectangle of largeSU area with base along the x—ax1s and
- 2
N two vertices on the graph of £ : x=—*c¢ X,
hd - -
26. \\Prove that the functior™ £ given by = o :
. Elé%x > X # O\J <JR - %i
£(x) = ' ' )
“ ’ - l - €. = 0 L& .t
o . U T . ST
(a). is continuous for all x ;
(b) is differentiable for all x . oL -

[}
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Chapter S

. GROWTH, DECAY AND COMPETTTION

Introduction.

Mathematics enriches science by providing system and organization -=S0
ve claim in the introduction. Yet until now we have exhibited the calculus
only as an appropriate language in which a few of the concepts of the sclences
may be couched. That 1t sérves to reveal larger patterng.of thought remains

to be shown. ' : ¥ ; .

i s
One way of demonstrating how mathematics organizes owledge is’to

examine one of the mature aregs of today's science, an area which has under-

- gone g long ﬁistorical developrment to reach its present systematic deductive

_stage. Such an area can¥e presented as a completel& mathematical system with

sto organize the COmplicated phenomena observed in nature,

Q

its own axiomsand theorems. But this is only one aspect of mathemetical

thinking.

Mhthematics plays & role in every stage of the development of a scilence
into a deductive system-—from the initisl classification ©f related phenomena
to the seaxch for therleast numbex,of fundamental principles on which they
depend--from the estgblishment of - the laws of nature which serve as the-aXioms . h

for a deductiveisystem to the unfolding of the consequences implicit in such -

~

mathematicel models of §<tural phenomena.. Science deals 'with phenomena-—with
observations, experiments, and measurements on nature. Spec1al areas of
science require spec1al equipment, and spec1al measurement techniques. All

areas require mathematical vhinking, mathematical tools and mathematical models.

< All tre sciences, from aerodynamlcs +to zymology-u mathematical models

To construct a
model, we isolate the effects¥that appear to b gréntal, and we define
relevant varisbles, parameters and functions. s suggesteo by our observa-
tions and measurements, we seek appropriate equa the dependence of
the functions on the essential variables. These will often take the form of
differentigl equations completed with auxiliary conditlons that specify, ‘for
exdmple, the intial values of the functions and variables -at the start of a
process. The solutions of the eqguations subject to the auxiliary restrictions

mey then be compared with additional measurements to determinék@peir domain of

'
< -

Los & | ; - .
“135 e

35

applicability 1n nature.

KA



) Underlying a bewildering variety of natural phenomena there seem to be
but a few basic processes. The same mathematical models appear again and .
again in areas which bear no evident relation to each other. The edﬁatione
-are the same, but the functions and variables, like charagter actors who
change their nameslbut not their roles from play te play, represent different
measurable quantities in each science. This is one wayjﬁé%hematiCS can

organize knowledge, by revealing a common basic structure; a unity amid

// diversity.

-

.H”\\En Chapter 15 we shall see how mathemetics can be used to Systematically
. develop a.Single area of.science. But here we shall see how mathematics can -
cut across the sciences, how one mathematical model reveals a basic pattern -
which crops up in a multitude of a- different contextéf We shall treat pro-
cesses of "growth,“ "decay" and "competition" and see hew the samei%asic

process governed by uhe same dlfferentlal equation is given different dlsguises
in the different sci ences. As we encounter such special hnstances of a general .
principle, we cannot help in retrospect %ut see a touch o the comic in how

for each spec_alty we veil even the basic mathematlcal terms in esoteric -°
labels, and a touch of the patheu}f.c in how laboricusly we re'elop the same _
basic mathematlcs within special ‘desciplines’ through izmorance of the generality

of the ideas. -

The dissem:nation. of a good story by word-of-mouth will be our primary
example of a growth process. 5S¢ we shall take up the threads of the Intro-
duction (1-3) and see how the story of Helen of bey'may have been passed
along until you heard of $t--or how you could have heard-about the calculus

. We take up other threads of the Introduction and see bow the b351cxgathemat1cal
T, model fo“ the sp*ead of storles ‘is a pattern for other processes like that of
‘rememberlng and _orgettlng ﬁsolated facts. We go on to shpw how the model may

be altered to give more realistic d;scrlpulons of phenomena.

- - -~ Y
We are telliing a story, a story about stories. We are not trying to .

.teach science or méﬁhematics, but to tell how the two are inte;related. Read
our sto*y through at one sitting. You should pay little attention to the
spec1flc fine points of the mathematlcs or the - -nd1v1dual 501ences.* The
mathemgdtics will be made pré%lse in the exercises and the scaence may Be learned
at your own need ané pleasure. WeP*cannot alweys be amusing; tge same equation
which descrit the*broadcasting of a good joke serves also to éeécribe the '

propagation of vicious gossip or the spread of an epidemic.
_ _ )

) The exercises for this section are placed at the end to avoid inter-
rupting the train of thought. )

2 . s S )

*
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9-2. A Model for Growth. The Spread of -2 Storyv. ) .
- - - . ' Pl

_ i Omce upon & time, (time to) I:tol§ & number (NO) of friends a story
about my good friend Al. "Months later (time +t) someone came up and asked
\\ "Did you hear the one about Al?" Since T had started ‘the whole business, I .
di"'t have to listen. Instead I asked myself, ."How many [N(t)] people have
no%ard the story about ALl?" | ' '

" How manf people know the story aboué Al? Good. storie§ SPreadv and this
was a good one, ?he number of people who know it grows with tlme._ The number
N(t) of people who know it at a2 time t should be proportlonal to the
original number No"dﬁo-were toid the st®ry at time to --to the .NO story
tellers who couldn?t keep a good thing +to -themselves. The older the sfgry,
the more people know it. Théreforg N(t) increases with the length of time
.t - to +hat the story has been circuléting, as well as with the.number of

péople available to spread it. If N(t) people know. the story at tin® t ,

how many N(7) know it at a slightly later time < 2 Tt~is plausible to ex-

pect that the number N(<) - N(t) of people who learn the story in the inter-"
val [t,7] is approximately pr0port10nal to both N(t) and to the small time
interval - T - t . We accept these ideas as the 1n1tlal assumntlons, and express

them mathematlcally in the form -

(1} L . N(t) - N(t) = AN -] 5 - 2 W(x) =Ny

wheré A is a positive constent-- +the growth coefficient. (Have we left out
s ‘

~

anything? Yes. We?ll discuss that in a later section.)

Accepting (1) as an adequaxe model for the change in N over a small
tlme 1nterval still does not tell us now N(t) is related to the 1n1ulal
value NO . To determine this, we let the time 1nte*val aoproach zZero and
thus replace *l) by & differential eguation, and then integrate over:® t

to obtain N(t)' in terms of K, .

Fronm (i) we have . -.‘ . o o~
\?;.)\’ . - M=) - 12(5‘—) - A N(v) . B
. . T =

If we discount the fact that friends come in integral packeges (usually) end
g0 to the limit as T approaches t , we obtain = )

| ;' ;oaN(e) _ o el =
(3) S - \\// - = AN, N(tgy) = Ny -
Equatlon (3) states that the instantaneous rate of change of N is propor-

‘ tional to N thls is the basic eguation for growth. Late“ on, we will also

R - ’ 1+97 1('~_ . | “ -




t

=1

)

sider the case wﬁere A 5 negative; wiph LA -negative we havée the basic -

equation for decay. (If A “is zero, then N is a constant, and there is

nothing'to talk about=--neither for'potenti&l story tellers nor for us.)

A

For convenience in all that follows we take to =0 as the original time.

ThuT (3) becomes ‘ - ey
T(W) ante) . N(+) | N(O) = N
. dt 4 ) o "
But the conditions of Theorem 8-5a are precisely those of (u) We conclude e
that
(5) | T N(t) =N N N_ = N(O)’
< . - . 0 ke . ’_..:_ .. '[

where t 1is +he time that as elgpsed since”the start of the process, - p

From: Equation (5) we se *E N increases beyond any bound as t

approaches 1nf1n1ty, which is not reallstlc for what we know about story

telling (and other growth nrocesses) Later on we consider a mcre realistic
“model. The present model is 1ncomplete and shquld be rest rlcted to moderately
? .

small time intervals., % ' K . .

We have told a story about stories to get to (5). Now that we have (5),
- we *ecognlze that the result has other 1nte*pretatwons and that the analy51s
has other apnllca%f%ns. Equatlon (5) provides an elementary model for the

growth of timber and vegetatlon, the growth of populatlons (people, bacterla),
to

e

\ .

the grbwt of mopey in banks (generous banks where they credit +he .interest.

the capital 1nsuanuaneously) the growth of a substance in the course ofia™

chem;cel reaction, and seo on. -

a

" We can - now answer such questions as: Do -

- If I tell 2’ people the story at t.=0 ,’end ir the constant of Dro-
portlonallty in (3) is A =1, then how much is N{%) at tlme t = 7 days?’
.The answer from (5) is 2e7 or approximately 2193 ; thus more than 2000 .
people know the onry a- week after I started IELspread it. _ )

—-—

JIf I Gebos’t $10 at 5% interest per year and the bank adds the
interest %o the o*lg’nal amount- contlnuously, then when will it reach $20 2

- - =_z.
For A E%B‘” it follows from (5) that 1og(lo) lOO) Thus

20 log 2 = 20?0.693..)).z 13.9 years.

b
[

I



é

-

s

9-3. Model for. Decay. ‘ ' e, T '
'7 s ) o

= -

(1) Radﬁoactlve dlslntegrat GQThe .same consldera ions that led us to

our slmple model for growth ennly eqnally to the analogous model for decax

e take a negatlve,gonstant proportionality -A in (3) of Section g-2- to
. : K L ’ p—

" correspond to ﬁ(t) 'deereesing ig“time, and apply ® N
S ante) | i -
w T = AN, M0) = Nog
- - ) V _ \ ".-
O O I S S A

to the problem of=radioac£ive decay.  Different radioactive substances dis-

1ntegrate at different rgtes cor*espondlng to dlffe*ent values of the ecaz

.

coeff1c1ent A, It is convenient to express the coefficient A

- the halfelﬂfe of the substance, the time it ‘takes half of the initilel amount\
l\

of substance to dlsappear. (Why not the whole-llfeV) If « is the half-life

I3

then £ _*/(IT we h&y

- 1
= e =3

- I

, N |
. "985 10g 2 » 0.693
) T = A - A A

/ . 4 - ’
Helf the materlal N will be left at time ~ , one-guarter will be left at

time 2t , etc.. When will it all be gone? We see from (1) thet in order for

N to annroach (O] t must abproach infinity (and tHis is whj the whole-life

© is e useless measure) X

-

. -. Let us consider a speblflc example. The half-ldife of radium is about

1500 yea*s, and tbe corresnondlng decay coeffmczent A . is

. : ) . ‘6 .
~ - A ?l 2= = Qu000h33 Pper~year.

If we start with some given amount (NO) and wait a hundred yeafs, we get

%?g éi = -o:ok33 , and conseq&ently N = O.958N6 is the amount left. Thgsf
0] : ) . ) . C . :
only 4.2% diseppears in-oﬁe'huﬁdred years. Q\~;’/

The basis for. applying (1) *o radloactlvlty is statlsulcal, i.e., it

boids in the sense of an average. Although the Dhyslcal process 1is governed

" oy prooaollluy, and- we cannot tell when any cne atom wilil dls1ntegrate, it is

guite useful to determine the meap life-time per atom. We start with %3

4 .

_-« N N\ -~ . Co e 7 - - ' ’ |

-

%99 -
A3 -

3 T O - o Vs
. ) . ) . - ‘Qﬁ
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atoms. at t = 0O and end up>with O -atoms as t approaches 1nf1n1ty,~and we

' are 1nteresuéd in the average length of tlme that an atom exists. -

If nl'Aatoms dlsappear at time tl_, n, atoms at time t2 , etc., where

‘ : - 'tl < 't2 < oo <tk ‘.‘ i . . /

‘;'then'the mean life-time of an atom is the average value

) k
Sy = mg
i=1 . O e ) = - .
CeesTR k. .
= ‘qx;‘ - - . 1 £ ~Y
. "’-;‘:,'?’;’ ) . T = 'ﬁ."o" - ni i }
- ]

e 1=1 1

’

If the total number of atoms present in the interval (tl 10t )
N,,, 1is the number present‘in\the intervael (ti’ti+l)" and\

r

is N, , then
i

»

-' . . ¢ = - - ) ,-
. Ry =N - NGy -
We‘then have’ ) - o . e . ' ’
: . .
_ L =) (Ni,_- N -
- . : Q d= . .
: . i=1
-~ : - : : - : -« -7

-, . - -

“Now, as we did in setting down the differential Equation (1), we blur the
conceptlon of radiocactive decay ‘as the result of indiv1dual lnstantaneous <
dlsapbearances and treat the relation~between + and "N as though t - were z“

-

given by a continuous functlon of a real varlable N 3 although in fact, Ns__

is a dlscrete varzable and the relation is not a functlon." If t were glven

o

S e

.’»-- - x ” . 3 - T
If we consxder N as a functlon of t -and take a mlcroscqpic approach e

in which the ‘disintegrations of individual atoms are observed, then N - is

plecewlse constant and Jjumps dlscontlnuously at time ti. from N to 'N +1

-~
If we. microscopic app?oach in which the amount of substance is measured
in gr even in millimicrogrems, the disintegrat®®n of siggle’ atoms is

1ns1gn1f1c§n and the difference ‘between the true function t-—= N(t) and the

eontinuous decrea51ng function t-———-NO -At is ignored: Thus, we take here a

point of view which should be considered in the light of the example of Seetion
2-1. 1In Section 2-1 we pointed out that a poor .choice of scale may conceal '
features which concern us. Here we observe. in contrast that a proper choice,
of scale may help us disregard small features which distract and may permit us

to treat by simple analysis aiprédblem which might otherwise b remely .
difficult. For many applications, a suitable choice of scale s vital. _
\ 3 ' ; - »
;o 4
S )
g 500
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y a contlnuous function of, N we couldzregard the preceding sum as a )"
i (wf%h the oartztlon roints Ni glven 1n the reverse of the usual ofder

ww .-
Thus }n our contlnuous model we define the hean lifetime as

() - - =‘-—j o
S No o N R

-

N

_ : b
Now we can express the mean llfetlme T  in terms of the decay coerfieleﬂt
From (1) we have - A B , oo : -
: 8 = : . o
(%) ‘ R L log N . ) ‘
A Ny, - .
- ) v‘ - V,
Using this exp“ession for.'t“ln (%) we may 1ntegraue (Ekerclses 9 3, Na‘ 3
also see Example 1o-2f and Example lO ha) to obtain’ -
.. )
N . ] ’ . £ T : :
T N S
Thus the mean llfetlme ls the reC1procal of the decay coefflclent. M

- : v
We have a model for simple radloaculve decay. What is left aftex 9ﬂ @ .

disintegrates? Many .things, 1nclud1ng "daughter atoms which can also- 513}

'tegrate. Later we- dlscuss the decay-of the daughte: populatﬂon as well.

The s1mple,decay model ve have been conslder;ng also descrlbes essentlgi
features -of many other phenomena.x For examnle, w1th;n the Same mathema&icay
structure we need change only “the names of - the.characters in order for ﬂhe',i
*esults uO apnly to ‘the molecules: of air in your lungs. Suppose that ﬂo d

4
the totalfnumher of molecules present N(t) " the number that have ’jﬁ-b .
colllslons by time te+, and that the mean ‘time between collisions 1s T vl
Then Nﬁ#)-, the probability that any one molecule goes for time 't g tHOY
0 : : : : !
a collision, follows directly from (1) and (5): -
" (6) AR 1‘2%_‘0)=e-t/T.
We have the same eguation as before, But,the simbols'moﬁ play different, - y
physical roles, and of course the over-all plet is qulte different. wefe V,f
/4

to continue the present: stagy we would requlre mach addltlonal strucUure’ .
phe mean ve;pclty of the molecules is v, then L =Tv is called the gB8Y .
free path-—the average distance a molecule travels tween colllslons~,ﬂ coﬂ
cept basic to statistical mechanics, the theory which bases the nhyslea} Prd

-perties of matter on the motion of molecules. = ' : i N

. : | . //‘\ .
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- atteny, St | L _
N (ii) oft 81 e'tion ;1GN TBe mogel for a p*‘ocess that @ecays M.

. C 3 Q
L im€ 45 ,I_'Q g vari BrocesseS that attenuate (weaken)’ w:.th dis- =~
t Q 6‘ =}
€ N 11 Sle t ©of Section 9-3 (1), cell it “distance,"

Qe . as -~ bel
g it " eeP th )
Qﬁ. Wri‘be‘ * ) : :‘tl! 1;0 K L < new role 1;1 V.lew . We thus have o V z_\.O-

(1 - Q _an(x) '

. l) ) @ ﬁv' > N(O) = NO.; nence N(x) - Noe Ax
- ‘V th)e . . Lt;’ion eQ .

R N T "
i seTRat e €8Iy : . .
at o is +h‘s atmosPhere with altitude is approximately
o ’ “here ?:’t vo'lhe height 3Pove the earth's surface, N(x) +the
usr %E {the densj ty) of atmosphere at height x 5
Yy ot B < eVQ:L. The atmggphere contains different kinds

.- 7 Sau .

Q_ifféferl ' oS m , S° ‘that m should be introduced as a

%ﬁ‘:cal P nd; ¥¢ Tite

. ) _ e 7 \‘ O ‘ _ P e -}"
o - _gcles < e- U ' : .
© ¢ Op e ‘n‘ieb_ more detaa_lea study it turns out that -

ST
A Sach 7 e a ra_ol?,,’- depeng
&Qs no™ - °1'1 .m (nut Jepends on temperature and the
R -

> e

&efa‘t” - N 1ty) / | o 2 l_ - .-:— B ’ --‘ . o 5 '. . R ? ., _‘
o - . E‘-j‘tez\:)te.'t-\' ‘b{’l g fQ‘h _ .
L -as 27 . Sl s€
"y lﬁén‘b ok . o8 of & -. .. ) < more LASSS ;e na”‘blcles as- :.n F_gure 9-—3.

(l) vn-SuaJ_lze a narrow oegm of- oar-r:.lcles B
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.There are. No particles per unit volume of the incident peam and nothing

happens to theﬁ ‘until they encounter the medium that starts at x = O . Then

T as than%eam.penetrates,'lts lighter particles hit the ﬁeav1er ones of “the

. -medlum and go off in other dlrect}onS' particles of the incident beam are

lost to other directions’ by. scatterﬂng " Thus. N(x) , the density of particles

_in.the incident beam at a distance. X within the medium is less than N_ ;

O

this attenuation 1s governeq‘by»the scattering coefficient per unit length A .

(For other processes, density along the beam may attenuate because its particles

combine with the heavier ones cof the medium.T

-

The prvnclpal characters in the above are’ Dartlcles—-a loose characteri-.
zation than can stand for electrons, nrotons, etec. If we now relabel N as

energv,dens;_l_per unit volume or 1ntens1tv, then the same Dlot also holds for

llght—rays, X-rays, Y-rays, and all other kinds of waves meetlng apnroprlate

obstacles. For the part’cles, we mentloned one physical parameter, the mass

m , and spoke of. ‘some partlcles belng scattered by those of more mass. For

. waves, the approprﬂate physlcal paraméter is, the wavelggst x , e.g., for
equally spaced rlpples on a lake the wavelength is the dlstance.between

‘successive crests. The longest wavelengths assoelated with v1s1ble light give

" the sensory lmpresslon ‘called "red" and- they are about . tw;ce as long as ~the

' shortest of the wavelengths assoc1ated'w1th visible "blue. From blue- 11ght

“to ultra-violet t0 x-rays to T-rays we go to shorter and shorter electro-
sgetlc wavelengths, from red light td 1nfrared to mlcrowaves to radic waves
we go to longer electromagnetic wavelengths. The wave plcture is not conflned
to electromagnetic effects, we can also talk about sound waves, water waves,

and even the waves of ''probability. amplltude assoc1ated with electrons,

neutrons, and other fundamental partlclesa ) _ . "_.‘.' 7?1 e

-

With N for 1ntens1ty, (l) in terms of an approprzate A describes the
attenuatlon of .a beam of sunlight penetratﬂng a cloud or a layer of fog, etc. -

We can use (l} to determine the thickness of lead shields to be used with

: medlcal Xx-ray eqﬁlpment or with a nuclear reactor to reduce stray radietion
" to a> tolerable value. We could discuss any of the above in greater deta;l but

_instead let us talk about something more colorful.

Let us conslder Raylelgh’s theory for the color of the sky. The'essentlal
feature of sunlight is that it is made up of llght of different colors from .

red to blue (the visible spectrum) with assoclated wavelengths Kr to hb

-

- where apnroxlmate y)

(3) o L Ap =2y _ : ’



=t

(5) - Yy - = =16 | , o
e o B ? My ; o {

9--3 - - - s o L -. ’ 1N
The wavelength A of an. 1ntenmed1ate color (orange, yellow, green) satlsfles

ﬁk >N J-Xb . Raylelgh showed that when a beam of light of wavelength X is

scaf%ered by the molecules of the earth’s atmosphere (malnly nitrogen and
oxygen) lntenslty N{x x) along the beéam ;s governed approx1mate1y by
(J._)_wlth & ' .- o .
o o - c . . < T,
() - AN) =% -

. > . - . X o . -
where C is iadependeht of AN . (In the chapter'on optics and waves we .

* discuss this in detail.) L -

7
L
s

From (4) and (3) we have - : - o J"h

g . T

~

'and‘cohsequently

T R I U LR T-oNs S IRl I

Thus the blue component of white 11ght 1s 16 . .tlmes more- strongly attenuated
than the red.- A beam of. white sunlight reddens with- penetratlon Into the_
earth’s atmosphere because it loses its blue comnonent'more rapldly‘thaﬁ its
red. The olue that is lost from the sunbeams by scatterlng glves the sky its

blue color in directions away from the sun. The dlrect beams from the over-

head sun are stlll relatively whlte ‘because they ‘havé not lost that much blue. -

The reddenlng of the dlrect beams is-best seen ‘when_the’ sun is low on the
horizon and its'rays traverse maxlmum dlstance through the scat terlng atmos-~

'effects and other scatterlngfnhenomena ar1s1ng from water drops, dust partlcles
' and other 1mpur1t1es in the atmosphere are more fully dlscussed in the deeper

researches of the poets. . )

P
ra

(iii) ‘MOther;daughter reaetions. As mentloned nrev1ously, when a radio- -

actlve atom (the mother atom) dlslntegrates 1t may give rlse to a daughter

:atom whicn can. also dﬂslntegraze. Let us now consider such mother-ﬁaughter

relatlons.. e . : : ;
- oA . - -

sov e %

F‘;.
N
M

-

_- .phere; the. élouds in the pat h of these rays are bathegd in red. Such colored .f_.
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Suppose we have Ni' mother atoms which decay at .the rate N
: T S aN, s,
(1) T i e A L M0 =T, -

- \~.‘ n\ -
The rate at which the mothers decay equals the ﬁ££e at which the daughters
are cxeated., But. the daughters also decay on their own. I1f N mothers with
blrth coefficient A glve r1se to Né daughters with decay coeff1c1ent A2 >
the rate of change of the number of daughters ‘is glven by

‘ : . . éN' - .
(2) . | A_LN - AN, , ) N2(o)=,o.
"Equations (1) and {2) form a pair of simultaneocus eguations for determining

”Nl and pé . _ . | i .

Let us first conSﬂder a. llmlklng ease such that the mother§ decay very
slowly compared to the daughters, that is Al is very much smaller than A2
This corresnonds, for example, to the behavior for the pair radium-radon. For .

"~rad1um mothers, the half-1ife is approx1mate1y 1600 yearS°: '
l
A, = 5250 - per year. The radon daughters have a half-life of about L days

1 4
, . . H 7
A2 = %- per day = 360 . %-per year £ 90 per year. Thus A2 = 14k, QOOA and .
we may hold the.mumber N, of mothers constant for the purpose of obtalnlng '
" & first approximation of N gt) @m\\ _; | S
'_,"j, Egquation (2), W1Vh Nl constant has the general form which appears
repeatedly in this chépter: R , _' e ‘ : T - .
ay _ '
o - &) .
”;This:caﬁ easily be recast as an equation for the inverse function:
“ﬂ. - ax . 1 S i
S dy —-gryyr. | N,

Applylng the Fundamental Theorem we obtalni_ ‘ ; S

where a” This method

Lt 505 142
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Thils we regroup the“terms in (2), replace t by u , and integrate from

t'l=0>to_tl-=}. . | : _ .
L t ang t _— o

. - 3 2 ) -
- . o - -A - = -A ~du >
s 2 so ANy = BN, 2 j_o

e

_subject to the approximetion that N, ' is constant. We obtain

, 19g K(AlNl --Aena) = -A2t , - o N o

whence : ] , ' -
. . qut _ . . .
K(A Ny f_Azné) =€ S
whére the Integration coqétant, K is to be determined from the initial con-
ditions 8t t = O . There are no daughters at t = O : L.
L ' -Agt - . ,
KM -0 = % | 5=1,
: whemce . ) ‘

- 1

. ' K==,

. . . _ | _ AlNl .
'Cénséqﬁently, the number of daughters at time <t is given appnpximately by ~
: ' ‘ - /A v =A_t

: 1 i 2 .
. (3)- R - N2 = (g) Nl(l - e . ) . .

- " - A
. . " | .h b - . . . - - A 1Nl . . - .
Ifﬂ Aét iswery large, then Né approximates Ag » i.e., the number oﬁ

daughter atoms approaches & fixed fraction S% the relatively inert mother -sub-

stance. l(This is called long term or .secular egquilibrium.) What does this
mean? It corresponds, for example, to the case where N2 is a gas (such as _

'radon)_in a,closedAéontainer, and, &, situation where Just as much N, isg .-

- . ~ . - . 2 ‘ . -
{S:'reated (from Nl) as*“Ts destroyed by radioactive.decay. The birth rate of’ .
I - o - - 2 an : . ’
N . . . _2 . . .
Né equals its death rate, so that _—EE-;is_ger07 our result as t approaches
infinity. in (3) is thus the seme as that obtdiéed by“eguatin%:fz) to zero. )
Equilibrium,corresponds to. = ' ' ’
- . . ) dN . A ) . : L
. ' 2 _0;sw. =2 SN ; -
- h ‘ , . ‘. ] ) .
. ) .
. s g . .7 - . - Co- f
, . : L . ‘ ' o -
o - 506 .
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Now we taxe into account the decay of the ‘mother pbulation,in the

orlglna_ problem. We SLbStluUue the solution of (l) l.e.,
‘ eAlt ‘ -
N, =N;4e = into (2) to obtain : :
o - aN -A_t
) 2 1
- (3) . = + AE;{Z = AlNlo .
”he SOldulOn of (3) for Né is left as-an exercise (Exerc1ses o-3,
'Nb. lT) Taking _ (O) = 0., we have ST
: A -&A0t ~A_t - .
(6) . N, = —=— N, (e e 2.
‘ . ol Ay - Al 10 . ) .. _ -
which reduces to (3) 3 AJ ﬁs very muc¢h less than Q2 , and A t =0 <« In

- . . _ dNE__ AlNlO (-a é-%lt.+ . A2t)' » - ‘/
S o & TR -al ™ “p0 y
: 1 "2 - N '
‘This vanishes, and N, has a maximum, when .-
o -agt o oeALtT AL (A AQ)E "
- - fje = Ase, s B = e - o
From the:logarithﬁic form, we oObtain -
8‘ _ , log A, - log A, : -
® - I e o

-

distinction to the approximation (3), the present complete form N2' of (6)
vanishes ooth for % =0 and as + approaches infinity; conseguently N2'
must have a2 ms&imum at a specific value of +t . -

If we differentiate (5) with respect to + we obtain

1'2‘-',-

as the time when the numbe” of daughte*s is la”gest. The' maximum number of

S L iAt gAN L -Bit AN L '
daughters is N, = N_ e 2" (A e * =(EW. ~as in (L¥,
] . o A )N10% . Ny n

. . 2 2
R . F . .

(iv) Biology. The basic neural proeeSS”is'the excitation and propaga-

-tlen of nerve impulses initi ated by a stirmilus, One way of studying this

process is to excite the nerve TLeers S; an electrical stirmlus V (the

voltage associated with a direct current, the dlschafge of a condenser, oOr an

alterﬂatlns current) and to medsure the characberlstlc effects. The voleage__

V must be greater than a threshold value vV, » the minimum value of . V. that

is just sufficient to cause the effects. A simple model descridpes the onset';,

L8

. -

o . . ‘ 50714: . ) ,
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9-3
of the effects in terms: of a local latency N(t) (also galled the "excitatory
funetion") such that ' . . ' a N

(1) o d{jtt.? = KV(t) - AN(E) , . .

Vhere’ K is the growth of the latency per second per unit stlmulus, and A
is 1ts decay coefflclent.- Thus the growth. of N 1ncreases w1th the magnltude
.‘0* the stirmulus’ and decreases with N . (The functlon 0§ may represent the
difference between the concentration of an excltlng ion at an electrode while
v 1szapp‘ied and its concentratiod for V=0 ) If 1[0t) reaches (or
exceeds) 2 threshold value N; s then the nerve becomes excited (and a .
characterlstlc phy51cal chemical wave with an assoclated electric potential

propagates along the fiber) ' . <

. <

The simplest applicatioh of (1) is to the situation-
(2y ‘ N(d) =0, V(it) =V = constanf . ?

whlch corresponds to the apnllcatlon of 'a constant stlmulus at time t =0 .
A comparison with Equatlons (2) and (3) of -Section 9- 3(111) ylelds +the solu-
‘tion of (l) and (2): ’

. R e g O

Thus as t apprqaches lnflnltv, we see that' N approaches its larges ‘value

_ KV
N == .

Consequently excitation will occur if

() i .

v

or equivalently if, the stimulating voltage satisfies

(5) - o vs=S-v_,

, '

=where V is the threshold stimulyus mentloned prev1ously. (The value vé—'is
- known as the rheooase, the threshohd or liminal value of the. constant voltage
necessary for exg}tatlon.) - L. .
Assumlng that V > V (so that excitation must occur), then the nerve
' becomes excited at the tlme t., when the value N- in (3) reaches the

threshold value;

_ » - -At

(& o me"a T, .
on‘equivalently, o » o . P o
- . ‘. .l B "a‘

2 & ~ T D
508 . . o
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. o - , - e h - ‘ - .
. ’ - ) .~ » l v B V -,
(?L ‘ .t =T log —V — ’
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which is' the latent period that elapses between the establiskment of the con-
»

7§ stant stimulus and the release of excltatlon. If V’<'Ve s no value of te

exists. If vV = V > then the latent perlod to approaches infinity; however,

this is an 1nconven1ent length of time for measurement. A more convenient

measure is the val?e of te.‘correspondlng to V = av, s i
R - 0.6
(8) ) - ’ : T = lOg 2 jj-

A , . . -

Thie is kno;n as the cgabnaxie T =—the latent time before excitation for the
case of a stlmulating -voltage equal to twice the threshold value.

~ i

What have we been doing in the ebove? Essentlally we ‘have- changed the
names of the concepus "introduced for radicactive decay and showed that much
of blology, phy51cs and chemist*y involves the szme simple ideas. Let us'now
generallze the mathematlcal development to nonconstant velues of V’;E}(l)

Ir v is a functlon of tlme, we solve Equation (1) in terms of 7 -+ V{t)
- by proceedlng essentially as for Equation (5) of Section 9r3{111) (see . 17)
to obtalh-

T e

. , . t v At /
(9) n=ePin x| v(£)e tat . )
. o) o 1 ke

et

r N(O) = No =0, and V 'ia_a>constant, then (9) reduces to (3).

If we stimulate the process by discharging a condenser of initial charge

., @ capsc ity C', through a resistance R ; then (see. Exercises 9-3,. No. &(a))
(x0) . ’ : v(t) = (-9-)e"t/CR .o .

Substltutlng in (9) and 1ntegrat1ng, we obtain, for - ry = o, .

) - N—[z—%ﬁl [’t/CR "At] _ - I

which is simply Equatlon (6) of Sectlon 9= 3(111) with dlffere‘% labels. Thus
the excitation function N has a_maximum when .

G e [ et -

If the maximm velue of N 1s‘prec1sely the threshold value, then t cf 'fu“—
. {12) is the corresponding latent tihe from onset of etlmulus V to release
."of‘a wave of activity in the nerwe,s The corresponding 1n1t1al'voltage

&
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v(o) = C _is the threshold initial voltage of the condenser for excitation to
occur. If the maximum’' does not equél the threshold then we relate the con-
> %egser’s characteristics to the threshold by equating RS in (11) to N, in ‘l
_ ) . AN —_— : ,
(6) "and using v, = —Eg' to eliminate K .'_ Y , .

If we stimmulate the process by a sinusoidal alternatlng current, then

~. o

'!:he applieqd vol‘ta.ge is _ . - 7
(13) . , , V(%) = ¥ sin wt, - S -
. = - . - - o o . 0 ’ - v e
g where Vo 1is the cqnstant ampiitude.. Substituting in (9) for N(O) =0 we
. _have 3 : N ‘
B : : ' t At - '
(1&) . N(t) Aty sin wtldtl,. : T

Fl

. WE shall learn how to handle the new 1ntegral in Chapterslo (hlso see Chapter
8, Miscellaneous Exerc1ses, No. l9b) here we slmply quote the result:

*

. - : t . At At |
- R .S PPoin wtat .o Swe cos Zt¢+ ge Sl?]wt ;
0 w4+ A .
o < : o . g LT
"this formule may be checked by diffe;entiation{ Consequently the solution of
- (1%) is T ; T s )
- ST ‘s’ SU " |
(15) N(t) = S 0 S (A sin wt - wcos wt w-we'Aﬁ) . .
: A - ‘ ‘

..
- o .

<
The exponential term of (15) is significant only <€or smell values of t .

PO -

As’ t increases, e T pecomes negligible'and (15) reduces to

. ' XV, SRR . o
- (16) . - ' N(t) = = (4 sinwt - wcos wt) . :
. o w2 +a . ‘ .
. .-
This periodic approximation has egually spaced extrema in time, which-occur
when : .= :
B} . KV ur. ‘ - .
(17) a_ 9 (A cos wt + wsin wt) = 0, t = L ban-l (:;c".. .
. : - . dt w2~+,A2~ — Ix
Substituting these values of t into (16), we figd-thaﬁ_the maxima of N
equal . ‘, . R : ‘ | o . T=
| . _ \A . . . KVO . - .. T
. (18) ) S N =
. e ~ max @9‘ + )172 ‘
510 k
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If we eduate B to the tnreshold value N_ , then V, of (18) corresponds
to the threshold va.lue of the amplitude of the s:.nuson.dal s‘tmulus, say VO

V-
however the prcportlon between V2 and QF +.A2 has very iimited valldlty

in nature. : - N

- These examples cover most of the modes of stimilaetion which are llkely

-

to be used in the laboratory.

Coa
Lk




$-k. Bounded Growth. Competition. . : .
. , . ‘ T L, ] >
S (1) - A more reallstic story for Tke spread of stories. . Let us reiturn to

‘our model for the -spreading of stories (or of diseases, or of ink blots), and

_ '»introdpce more structuvre. Previously we assumed that the rate of chamnge of
. - ) . R . . . -
’//;;;/4{’the number of pecple who knew the story at time t was proportional only to

~the number itself: . . ' .

(1) . . %L)=AN(*:) > | x(0) =No'.

-
- . . . -

4

This is =ll right as. 1“a:r' as 1t goes but it ignores the fact fh@t thgre is-an
‘ upprer bound (say K) on uhe number avalﬁable to hear it: there-are finitely

mapy pecple on earth, some don’t talk your lgnguage, some don’t talk at all,

and sorme never listen. Tur*hermore, althougp we may tell the, same person the

same story a dozen times, each listener should be counted oply once.

In view of these considerétions, we replace (1) by,

. | . | aN._ ex-m T e | *_
) o at - ANT ’ : : n(o) = No >
where X = N{%) knoﬁ-tbe étory at time t and are- available to spread it,
.and *X - N do not know the stOVy, have good hear1n5, and are enthusiastic

listeners. and potential gOSSlpS. Tbe factor Lé_%_ﬁl is the’fractlon of” the'

populaulon avallable IO” +the ?urther sn”ead of the- Story. DlVl&ing both 51des
of (2) oy K, e 1ntroauce T = %‘ 4 the fractlon of the avallable popula—,

. ‘tion that know the story, and WOrkK Wluh the copdltlons B N
« . . ‘Q o .
S - - ar - No

./ - - - ._- — ¥ - . = —_— . A

7 (3) - . Jat - Ar(l .‘r) > rO X 2 k L

where - rb is the fraction at .t ='OA. Our original modél.(l} vielded an
unbounded increase in ‘N as. t approaches infinity. What -does the present

model give?: We exnec% that‘Jllm r =1, that 1s that eventuailfhéferyone'
Lm0
knows the story. (Even -this model is far from ccmpleue, but at least tnls klnd
of result is accéptable.) From (3) we see that %E approaches 0 eas r
" approaches 1, i\e,, tha~ r stops. changlng when everyone knows the story.‘
From the discussion for Equation (%) of Section 9-3(iii) we.may surmise that
'%%7 approaches O- as t approaches = , but.let us solve (3) and see the
: details. ~ i - o ) R
| . dr, ng : o -
From (3), we write J: ' f
k r, 1 r
variables, -Since : L.
_ - o o .‘l . _
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. . P
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(forﬁ?ﬂ?h decompositions of fractlons into partial fractions sée Section.10-5),

o we. have . : C S -
. . e T o ‘ ' - - )
LT 1l . 1 a4 ! - r 0 _
. - + I -z drl‘— log f— = log T - F - log T - = At .
1 1 . . - 0
. —o - _ -
Solving for 'r , we obtain , . '
AN ’ y : - < -
h r éAt
; . : 0 .
(4) v L r = At - -
o ST . 1+ ro(e - 1) S i
- - : ) ¢ s A .
- If t Is small, then the denominetor approximates unity and r = r e © R
in accord with the simplest model (l)._ On the other hand if t -is large, we.
-~ . o . . -
rewrite (L) as - "
. - A . r - o L]
oo _ Ty
(5) - R — At
: _ ry + (1 - ro)e
from-ﬁhich we see that r approacheé 1l .as t eapproaches e, i
= . : “
4, - . :
The above mciel indicates some of the essentials but it is still. in- ‘
complg%e. ‘However, it is good enough to show that although you may still T
{ have nat heard the story about Al (see Apbendlx 9), you should by now have
s -
heard gbout Helen of Lroy. = : -e ~.
(ii) Growth and competition. A more general eguation, which includes « 'f'J- :
_as spec}gl cgses Egugtlons l) and (3)_of Séctionréuh(i),'is_‘ 'Q\\‘
(1) S i . gif AN —BN2 B 5(0) .
This is-celled the logistics eguation. We stlll, call A the growth coeffil . = .
clent and we may call- B the oraklog cooff*c;eh*’because uhe'uerm -BN?' o <.j~ﬂ

slows L,ne growth The equation of unregulgted growth, %% = ANi, permits: N.-.

to increase beyond any boupd as t approaches Equay;onwfl)_doﬁs not.

What bound does (1) impos%'bn‘ N ? We see thet g¥-=>o' wﬁen ‘ﬁ.=;BN' és‘ ki L
"in-Sect*dn 9-4(): ‘the correspondlng value N %- must be the- equlllbrlum 9_4;* % ‘g
value whlch N approaches as t approaches :Lnfv nl‘ty. - - ;- R .

. = . . 3 '
- - .q. Al . ‘ _-’ |
- - o . - . . - ( .
. o . = 513 ¢ . \“ . -
g . : 1:. - s .- — X
. . 5 . ’ '
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A model for the growth of populations of different eountries use;f:%\one

time was essentially ar _ AN , and this led to dire predictions as to the’
at 2

fate of mankind (Malthus)? Then a more refined model, essentially (1), was

introduced {by Vermlst) and apjropr*gge A's and B?s ‘for various countries

were obtained from their earlier census records, the projected growth curves
were remarkably. accur&te (at least for all countrﬂes except Verhulst’s--
‘Belgium). The build-up of population growth arlslng ™om A has been in-
terpreted as\du& to cooperation between people, ‘and_-the slow-down associated
w1th B as d e to competition betveen people.for limited resources." The -
competﬁ‘ion gssumption can be made quite plausible: 1if p 1is the probability
that a person wants a‘partieular thing, then. p2 is the prébabllltg that two

_ persons waﬁt it simltanecusly; if there are X persons, since there are,
ngj%'Ll POSSlble competing pairs then the total probablllty of competltlon ’

€

2 E£—————l- is gpproximately proportlonal to Nzﬂ which then becomes a

plauSIbleymeasure cf the 51multaneous des;re or of the. competltﬂve urge.

%

However, the regs-~ fnr *egardlng AN ‘as a measure of cooperation is ‘not
clear. A prcaapility izters; ~station similarx “to “thet for BNE indicates that

AN corresTonds > N .p - one acting g 4‘}te 1ndependently of each other; this .

may*weli e % ¢cloie D cooperation as one can expect from a‘group, and SMSG
duthors z=ve Trerefore texer thi: as the guldlnébp;lnc1ple for preparing thelr

[

© textbooks. ] : C A .
- " | . -~ - . ~' . - - - . b
Let u= solve (i) by tre saze proceddrefﬁe\gfed.£or_(3l of Seetion 9-L{i).
_ , < . . ‘ : o . -
The steps ar- essentially the ss:e,tandgwe_get. o & .. B "i' '
. R SN h !
. e . : . N - 0 _ 3 _B_
e log ————l‘_CN_—_log—l._CNo—:A‘b ,/{-,L\‘=.A
. e ' : P )

and consecueudg

. ' “ NbeAt -
(2) - - o N = - e T
. - . At B ° - -
' - ‘ ‘ L Note o - 17
' i N,tB' -
If t is small, ‘then the denomlnator is approx1mately l + N tB = e o

and (2)~Iedﬁtes A - : - 5 . -

T ) - 4(A-D)

"Note that tne Llnear Tterm. can oe subsumed 1n the g*owth serm of *he
dlffe entlal eqnatlon.

-
' ; . .- e .
LY e - - A e P B ) ' :
. *\,/ T = . . ,
N 2l d - - . i
- AN . J - -’ SR - ) R
- - . . 7 V3B ’ ’ . ’

- . . .
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) Q; Conference on Cybernetics, 1950, JPP- 112-13%4.

it 4

wWhere D = BNb is introduced as an abbreviation. Thus for small ¢t , the
-result has the same form as for the simple model in terms of. the growth
coefficient A - D . On the other hand e
: ; o A Aho
(&) . C lim N = = = —5—
! -‘t~oo

in accord with our gness that N = %- must represent the long-term equilibriuﬁ
7

»

of the population.”

(iii) . Forgetting and learning. The previous gectioqs alSo“provide a

simple model for forgetting and learning, at least of unconnected chains of

nonsense syllables 1nvented by psychologlsts for test’ purposes.‘7Thus (as

' proposed by Von Foerster ) we conslder - . .

. ) '- dN B . . P } .. : ._.
(1) o = .:‘..-AN,+ BN(NO -m Y, - - né@) =N,

where N. is the initial number of ite£§ memorized {dates, telephone numbers,

unconnected: theorems, etc.)., A is' a forgetting coeff1c1ent, and "~ BNO. is a

memorizetion coefficient. The ndtlon behind (1) .is that your head lS
originally fllled with TO "carriers™ of information; é@me carriers(’(AN)

Just lose their 1nformatlon forever, some (BN) iose informatlon in the

‘sense that they ﬁ%és 1nformatlon on to the empty NO - N carrlers-

. Integratlng (13 (the present (1) is the same as Equation (1) of éection o
- 9- h(li) wlth a new-growth coeff1c1ent BN -.Aﬁ‘, we wrlte the solutlon of (l)

O ) Lo

ras o S ‘
5 . N = p-4£

(2) ~ S . (DA)t’D'NGB

-

»

' _ D -A D .
(3) ) R = 5 = i - » ) (A >l)..
— . . ? b
. ‘. _ R 3
.On the other hand, if D <A , then 4
" . : . %

= 2 ;. .

H Von_ roerster, 'Quantum_Theory of Memory,' Transactions of Sixth

1

’

l’\i}‘ '
a
o

.
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'concent*atlon of the solutlon) 1s'

(%) ‘ . R=0, . T (E<n

<1l , and then increases

|

Thus the remembrance of things past is zero for

-

towards unity as g» increases from unity. :

-

(iv) Chemical reactions. Suppose we have a chemical substance with

initial concentration C (gram-mglecules per -unit volume) which is reacting

in time with something unimportant and plentiful to form another substance -

' with,concentration ‘N . The rate of change of N 1s proportional to the

concentration” of the original substance at time t » that is,-to C - N':

. R - dN - E _
(1) . e & " A(C -N) , Ny =0, ‘ o
vhere' N is the concentration of the new substencé and A is called the i 5

“eaction rate. Equatlon (l), which is known as the law of mass action, is

essentlally the special case of (2) in Section 9-3(iii) .for A, much smaller

than A, : by 1nspection of (3) in Sectloﬁ 9-3(iidi) the solution (i. e., the

eAt) - R -

- 4

1

(2),/ o N=0(1-e

Equlvalentlyf’ﬁquatlon (1) is =& shlfted version of the 51mp1est decay equatlon-'

settlng M.= C - N in (l), we obtain - SR

S aM _ . I L . .
4E_I-AM.I,MO—C-NO_C,

-

which is the same as Ecuatlon (1) of Section 9 -3(i) and leads dlrectly to (2)
for NA— C - M. S : ) B

- From (2), we sée that if t = O , then N = O . Further, lim N = C
sQ that all of the orlglnal substance eventually reacts. We may -« 1solate A

- .

in the form ' . P 2 ' Lo

1

which you may well use in a later chemistry course to &eiermine .A Dby
_ T .

measuring C , N ,-and t© . . y B e

. In a bimolecular reaction, we have tyo different’subStances with ipnitial

concentratlons ;Cl and C " which 1"ezac‘t: at a rate determlned by- A to pro-

duce a chird\sdgstance whose concentration is TN : ; .

- . - ﬂ. . ~‘ . ) dN » Y . ) ) e

(%) SRR I = Alcg -N)(CE-N) > .7 Ng=0..
SR 16 | A
4 5 e

- ’ - s} < . , _ i e

] 4
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s"form

()

.
’

This is just another variation 6f the logistics equation (Equation (1) in

Section 9- h(ll)}, and the solutlon can be obtained from the prev1ousﬁones.

However, to emphas*ze this basic 1ntegrat16//procedure, we again integrate

using a-decomposxt;on into partial

fractlons:

-

dN
at

The ecuztion for Oppesing unimeolecular znd” bimolecular

= A(C - W) -

.

J' + . AN 1 - l _ . ]dN - logcl - ¥
(91 - NT(CE - N) Cl - C2 C2 - N C1 -:N _ Cl - 02 C2,- hos
where the integration constant K 1is obtajined from the condition N =
“t =0 : - ' '
& o
- - C
. ]_og C_l.
: '  _ 2
S ™ '
- har [ )
. Thus ; >
. c,(c, - M)
. 271
(5) . A = .3 l.Og t4
» . =(C; - C, > T (C, - 7
and ~ S
- f-,":',', " N e(qlic2)At .
(&Y N =¢C — _ .
| R F=0 (,,1) (C,-C,)A § )
1 -{=—1e '
PRI ng . .
. . - .. .
The case C;, = C, = C may be obtained from the llmlt of (6) as
apﬁroaches C, . Equivalently, we start with s
' : N 2 T -
(- = = Alc-m5, e
o - . : . - . ) (&
vagd integrate: - ., '
. . . :
O j S s ego gt K=an )
: (c - m) ,
e . *" » '—l - \? -
The constant equals X = —% , and therefore :
: o 1 x o cPat
- (8) T ) B Rl o Tl

J==

~
3

at’

=A't‘f'K,

A
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" We do not discuss

this case but merely reduce it to a previous form. Thus
we introduce . ' T , - S 5 .
1+ K 1.k LGB - '
(lo) Dl = - -2_B » ‘2 - - -QE 3 K — + ‘—‘ﬁ— )
. ' A T Iy .
o . 8 - N
in order to rewrite (%) as -~ 7 '
. ] : - dN.._ s " - , )
o (1) | _ 3z = *B(D; - M(D, - N) .

[

: - -
We now have the form (4) with the prévious A,

Cl 3 02 replaced by -B ,
D, ,\D, , and the corresponding results. may be written down by inspection.

could go on to higher-order reactions of the form
anN - '
(12) ' = ;1 - M(c, - ‘\I)%C3 -0 ...,

(Exerciégs 9-5, Nos. 1-3), but we must finish the‘story.

~ . E
- . F S b
il
!
o
.
Fommm
Y.
= 1
-
- .
« ) -
-4
o. ¥ _—
. 4 -
; . ™
- X
- o N
, -
L3
L=4 - -
?‘ ~ Fl - -
- 4
[ O
. }
- 3
" -
T
—
19 . .
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D .
- ~ : o
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— - Xog :
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9-5. Conclusion.

~

]

(1) Sociology. Now we could rehash everything. We could change the
'names of the symbols in the previous equations and talk.about profound
sociologicel problems. Instead we introduce a more_ general model for the

‘growth of populations, one which includes practically all.of our previous

' speci + -all.
equations as special cases, and scsrielx,qa%k at all
In Section 9- L(ii) the growth of a population of N individuals Yas
described by - - L : !
4(1? 3 = AN - BN ,
where A 1s the growth coefficient; and B is the braking'coefficient. Let
us now introduce, more structure. We‘may write A =& - B , where «a 1s the
~birth coefficient (the birth rate per:individqal) and where B is one of
two death coefficients. If we assuqe that the population is confined to an
area S , then we may write the other death coefficient as % s 1e€.,. the
. death rate per individual -%? , 1lncreases as S decreases or as N increases
. (no room to live). Thus the totel death rate is (B %.%?)N . ’Usiné 7 = g- : .
instead of B (merely for estﬁetic reasons) we rewrite.(l)-as ' o 4“ i J
. . . ) dN _ ' T
s (2) . ?JL’AN - (B + 7N)N . L :
A more genéral model (conSidered by Rashevsky ) is tha* for uhe growth
“ 7 of a populatioﬁ consisting of two types of imdividuals with different birth
. 'and death characteristics. The total population is _ - o
o . . - ' ’ T . NE . /
,,( ) . . R ) - o . N =N +Nh ) 7 X ‘- - ES .
. . - : : . - -
and N, and N,. are specified by the sim:”tazeous- equations _ . ;
N i , dN'c 'f\ . . . i . 3 -
S 1°_ c o - |
S T = Oy vy, 0By e N e INg,
(L) . . " an ) o - - g
- C T T Gt Gpplip - [By (N F NN, .

where tke. a's , B's , and r*s are all constants. --The terms pro ortional to,
(o4 renresent the contributions of the two grodps to the birth rates, the death
‘rates that depend on Gi. (with. i =1 or 2) denend‘not only ©on N ' but -
also on the total population N, +&, =N . The systed of. Equations (L) ‘generas

,\\‘_Eigés praé%icall" all the other eguations conSicered preViously in this chapter. LT

,

N. Rashevsky, Mathematical Theory of Human- Relations Prihcipiaf?ress, :

indiana, 1gk7. ] r _ _ ) L , BTN
519 ' B .
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We do ncthing with (4) in the text, but as an exercis€ obtain aTl the
previous equations that we considered and that can be obtained from (4} under
suitable restrictions. Talk about active ingividuals and pass1ve 1ndiv1duals,

talk about actlve and passive dlsobedlence, talk about social aggregates,

f;eedom, crime, war, propgganda, etc. Write a book about it; call it *War

‘ e,

and Peace.? . 7 ’ {

(ii). gggé. We ‘make observatlons, we create models, we make predlctlons,
we make more observatlons more models more predictions;.we day-dream and
Jump to conclus1ons, we seek to verlfy our guesses, and‘%eep the very-.few -
that pass the tests. By such means, by -a mlx%ure of measurements, mathematics,
and mysticism we~seek to "understand" what is going on around us, /If we ean
predlct and describe a process and relate it to analogous processeé that we

~

know about, we areKCOntent—-for a whlle.

As we . apply mathematics o the varipus sc1ences, we’ soon discover that

'at a fundamental levet’there apnear to be orly a few dlfferent kinds oF pro-

cesses going on. The equations are “the same, only the ‘names. of\the functaons
and varlables change from science to sc1ence. The stages and settlngs are
_Very different and the over-all plots varys; but the sub-plots are.routlre,

the actors g0 *hrough tne same motions, and only the names of the characters

(

are changed. f' . B
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‘Exercises 9=-2

A colony of bacteria grows at a rate prOportional'to its populétion. In--
. itially there are 2,000 bacteria and one day later, 5,000 . What should

the populetlon of the colonj be after 5 days if it ETrows_ unrestrlcuedlyv
&,

The rate of productlon of a glven chemlcal in a glven reacﬂlon 1ncreases
by 2 for each degree of increase in temperature. What increase in

temperature is needed to double the production rate?

Show for any sclution of Equation (3) that over a fixed time period
T; the change in N is in comstant proportlon to the value of N at 1

the beglnnlng of the period, 1ndependently of the initial time t .

Write the differential equation for the grgwth of a bacterial population
which increases 2.5% every hour. If there are Nb ' bacteria at the

startﬂ how many are there at the end of IO hours? .

The population of a CItV'haS been Srowlng at a rate proportlonal to

:itself. If the nopulatlon is now h0,000 and 25 years ago it was

15,000 , find the ant1c1pated population lO years hence.

Semi-logarithmic coordinates represent the ordinate on a logarithmlc

scale and the abscissa on a uniform scale (see figure)
10

9

8
o
6




| EX9-3

{a) The graph of ¥ = Ae®® is given by e straight line on

-

semilogarithmic paper. Why? . .
- () The census figures for/jhe total population of the United States
obtained at ten~-year intervals from 1790 to 1960 are giﬁén in
millions as follows:. 3.93 , 5:31 , 7.2k , 9.64 , 12.9 , 17.1 ,
.23.2 , 31.4, 38.6 , 50.2, 62.9 , 76.0 , 92.0 , 106 , 123 , 132,
151, 179 .. S . _
- ’FPlot the population vs. time on milogarithmic graph paper. Overi
what time intervals do the points/ appear to lie on a straight line?
Use Formula (1) to obtain a reasconable average value.of b for
each of these periods. \
(c¢) Do the same for the census figures for the state of California for
the period. 1850 to 1960 (figures in hundreds of thousands):
©0.926 , 3.80 , 5.60 , 8.65 , 12.1 , 14.9 , 23.8 , 34.3, 56.8 ,
2 ©69.1 , 106 , 157. h ‘ ' '
. (d) Look up tk figures.for your own state in an almanac and study
its populaf;oﬁ‘growth'in the sanme fashion.“y

'Exercises 9~3

1. If the half-life * of a radioactive substance is given in seconds,

5how that the fraction of the substanqe decaying in one second is
approx1mate1y &9%_2 . (Hint- Assume ‘that . t . is.a large number.) .

-

T2, Verlfy that -the half-life of a radioactive substance is - independent of
the initial time and the initial amount of the substanee. ’ :

| 3. A 5000 cubic»foot garage containing a high concentration of carbon

. monoxide is being flushed out by an air punp whose capacity is
1000 ftB/min. Assuming that the air mixture in the garage remains
uniform (perrsct mixing), determine how long it takes for the concentra~
tion of carbon monoxide to fali to f% its initial %alue.

4, For'a small bodyuinJair or liquid, the rate of heat loss is approximately
proportional to the difference in temperature between the body and the

surrounding medium.
- ¢

A thermometer which registers 720 indoors is taken outdoors where the

‘"temperature is 12° . One minute later the thermometer registers h2°

(2) Obtain a formula for the thermometer reading r ‘at any time + .
(p) Wnat is the readlnk,at the end of two minutes?
N _ ' ' rg'




A veterlnarlan”about to engage in surgery ‘on a dog'éstimate

‘complete.

Consider a cigarette being used as a fi

(e)

If the the“mometer is left outdoors how long does . 1t take to

reach a reading of .. 18° - . - )

i

(@) On another day, 1t takes one minute out—of-doors for the
thermometer to drop from its indoor reading of 72
. lo}
of ?2 .

" thermometer to reach’an equillbrlum readlng,

Since it 1is too cold to stay out51de and walt for the

temperature.

which registers taken outdoors.. Five

65

| ) o .. 2 .
A thermometer TO 1o£oors is
o

minutes leter it registers and ten minutes after it was take$

. o e
outdoors it registers. 62 .

(a)
(o)

Calculate the outdoor température.

Assuming the thermometer remains  outdoors (where th temperature

is constant) when will it reglster 51

> -

will take him L5 mlnutes to complete the Drocedure If 20 mg. of

F

sgdium” pentooarbltol per kllograﬂ of body weight is needed to barely

maintain anesthesia, if the half-life of the anesthetic is five hours

. 1
in dogs,2and 1f .the dog weighs 20 kilograms, how much anesthetic

- - L. . ; _ 3
should tHe doctorr*administer initially to maintain anesthesia over

the estimated durédtion of the operation? At the end of the

period the doctor realizes that the dog is beginning to eherge from
anesthesia and that the surgery will take a half-hour longer to
What dosage of pentobarbitol should e administered at

= -

that point? ¢

ter for some component-{say

nicotine) in the smoke. For a linea? filter, the amount picked um b
. - - ’ - . . =

the filter over a small length is. _ - s =

proportional to the concentration : .
C and to the length Ax )
Show tha th ,:¢1 ra+ﬂon equatlon -
is the : amllla“ oecay eauatlon & - e —
o ac S -
. - _ . . . -d_x = -kC . - ) ’:‘"’:--
o
and that -t"éx
- _-kx

C. = Coe - ;
[Note: We are assuming here that the cigarette has not - oﬁrnt down |
appreciliably. For this case, we have a{m ving boundary proplem which
leads to a2 partial diffeFential eguati — - :

e - A . 523

that it
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calculate.the outside <
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- 8. Electrical circuits offer several examples of decay processesg. .The

fundamental eléctrical'qdantitieSVare charge - q , current

(1) - : T -9

and voltage or elect;omdfive;force_:& .* The. electrical circuit components,
résistors, condensers, and coils; have electrical propefties measured by
certain constants, resistance R » capaéity C», and inductance L }'
respectively. The capacity of a condenser is defined ss the ratio of the

nfcharge on the condenser to the voluage required to produce it:

.

S . c-g
(2) } ‘ . C =3 .
v The resistande of a'resistor is deflnei\aa the ratio of_thefimposed

- 5

voltage\f’ the current’ 1t produce

€3) - ; " Co _ . sti. , | . '

& .
In addition, we need to know Xirchhoff's rule, that the sum of the

voltages across the. elements of a circuit is zero.

(a) If a condenser at voltage V dlscharges across a re51stor, by_.

Kirchhoff's rule the voltage across the resistor is -V .. E%?{?
(1), (2), and (3) to obtain a differential equation for V af =

~solve for V as a function of time subject to the condition

V=V, at t =0 .

O
—~ (o A coil resists éhange in currenz - tne . ...2 way that a resistor
opposes the passage of charge. 2.7 =10 .:ltage V 1s applied to a
éoi; the current changes at the rate
. S . L
@ T E T
o dl Iir Qe-‘ifnboise an external voltage X (séy by '-means of a batter_y)
;5“:' upon a circuit consisting-of a resistor and a. coil then by
PR Kl*chhof"s rule the sum of »the voliages .is’ zero, namely, from (2)
ang (3)» Do | DR .

whence,, . _ : -—
- . : aI E [ ' .
. . — =2 .27 .
) (5) : =T SRS M
5214. 2 - -
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ERIC

Aruitoxt provided by Eic:

Solve (5) subject to th

(Hint: .Express the solution as the gum of twp terms, I = 3

where '%7‘{5 the steady cur}ent which WOuld be set up if the coil

were not present, and J(t)

the effect of the coil.
I theré is no external
- at t =0, verify that

and obtain the solution

e initial conditlion I - O at*

t =0

—

)

voltage and the current has tﬁq valye I = I

(5) is the equetion of &
of (5) undgr these conditions-

(d) Use Kirchhoff's rule to derive the equétion
"'\‘
- dE _ I 4z
L aw ST RE=o

where a source of elect

circuit to a resistor,

constant and the_curren

romotive force, E , is

R , and a condensSer, C -,

at ¢ = 0.,

~

t is O

Consider the%differential eguaticn

- —

subject toc the

x = x. at =0 - ot
o ‘ t. o
- 1 .
(a) Show that the solution is given by
‘ .a bty . . _-bt .
x ==1 - e ) + x e LN .-
. D ) O s .
(b) Show that if Xq = O then the result N2S the same fOT™Q as'that
'~ of Number 8(b). R
. zume that the rate of inversion of ra% sugar is proPortional to
2@ amount of raw sugar remaining. If 2fter L4 hours, 500
of raw sugar have been reduced to 200 DPounds, how much ray sugar
will remzin at the\end of 12 hours? '
(b) Consider a chemicall reaction in which the velogity of the reaction
for rate of change'|/in the amount of tne Substance-consumed)
N
pryportional to the guantity of the uncORsumed substance at
instent. Let xo be the guantity of the subsﬁance at t =
. X -the gquantity that has.been converted By time + . Show t
’ - ' -kt .
X = X 1 ~e -
o (T =™ .-
where K may be determined from ¢ amount. of gubstance xl.
consumed by time tl :
' ) c
:ﬂ - - . l -
T x = =~ log "
—_— + 2 A P .
. 2 L 3 .
. £ -
. 525 - h -
L “ @ - : .

initial condTtion

ax’ i - ~

o v == =a - bx

at ., } oo

is a "transien?" term which represents

connected ‘in a series

Determine I. in' terms of t if the el€ctromagnetic force B is

R 4

c

simple decay process
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o~
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in

Show how to date an ancient tlmber-
the specimen is known.
The continuous model for radioactive decay used.here replasces the
picture of discrete atoms disintegreting at random times.
the process.’

= 0

EX9-3 " T
< 4. - ‘ o _
;/ 1ll. One dellar silver certificates.(payable in silver on demand) are being
< retired from circulation and replaced by Federal Reserve notes (pure .
paper) Let N .be the number of-silver cexrtificates" and M the4rumbef
of Federal Reserve notes in ,circulation at time t and suppose that the
two varieties are unilormly nixed togetner. Suppdse that the number of
‘ dollar bills passing through the central banks each day isva constant -k E
and that. all silver certlficatee among these are replaced by Federal .
Reserve nq&es. Suppose that the process is initianted at-time
when N = NJ and M =2 O , and that Stz
' circulation is held constant. Deterﬁlne tgg.kay N andt
-‘\“‘:replace half the silver certlflcates.
lz2.

. .
the tdtal number of doller bills in
”ad“OﬁCuive carbon

¥

time (measured in banklng days) and find the number of dd&s it takes to

cosmic ray bomoardnent.
14
of . C

The D“lHCIDle of c@t ing organﬂc matter by radiocactive ca*bon con ent
Let

depend on
is ﬁ?sed on the oose“vatlon that tﬂc ratlo o* the concent“aulon of
14-
C
-

to. uhat of" ordlnary«ca“bon

3 12"
4
T

ct=
if <

N in atmospI
An o“banlsm througbout its life takes up
carbon ‘1~tde uame-oronortlons, but af er® death the relative amonnt
decreases .because of
be the halfZlife of C+@
the ratio of iclh‘

lc
carbon dioxide is nalnta-ned at a constapt 7evel because of contlnual

to C12

radloactlve decay without "enlenlshment
in t

‘ -
N
x tin The ufilluy
uch =2 mogel depends upon the involvement of a large number of atoms
Reflect realistically about the model. Is it true that
a mass O radioactive substance can never completely detay? If not
offer a-*easoneole ectimete o””tne time of complete disappearance of
suosuance. . PRI
r,
14, Comolnlng Eguations (
life-time in rad:io g decay )
~ . 7
i . T -l_
- = N
‘4
Th

’ H O» . ' .'n
e integral - . lo
shaded regi

i

§
ons bound
following.

is
ef;kykiil;' Dy
Tigure.
Q : |
ERIC .-
i o

4\-’

£ the
and (h) of Sectﬂon 2-3(1i) we obtain for the mean
.gNO

log N &K + % log N \_,__\
o]
o . ‘
the suﬁ of

-

the signed areas of
the aph.of

N
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: ‘fh—__ : ' L Tye el

L - ‘B '

-'_‘ 7 - N :

. . e . -
) - 1 ‘
[ }1/ »
“1.
-
= L . . - -7 ‘
-Jt is -geometrically clear that the areas of the shaded reglons are egual
to the areas of the hatched reglons‘éfunded partly by the 8T raph of :
Yy =.ex'. From ‘this, calculate the" 1ntegral and hence obtaln the mean
life~time glven in ﬁhe text. . ‘ v : . -

.l5. Bacterla and other cells reproduce by splitting in two. -What@is the
average time tween "blrth" and_cell division for a member of the
bacterial c;" of Exerclses 9= %; Nqﬁbe@ 12

<. . = “,,;_,‘— .
16. Here is”en example of decay which is not exponential.,
A snherlcel moth begl. in a closet evanorates awvay at a rate Droportlonal
T to lts surface area.- If half of-ith (1n welght) eveporates away in 10
days, determine how many more days it takes so that one quarter Of_uié
o . original amount is left. - ° o

]
ty

.

L ]
‘a



l_ 17. Considqr the dlff;IEDtlal equatlon - o ) )
oy T e (D, + a)u = ké‘b-“_‘ = s n o
- (compare Equatlon (5) -of Sectlon 9~ 3(111)) - B . ~j i
(a) Observe For any solutlon u éf:kl that Yo -
e (2) - SRR € N b)(D sau=0 = - %
| and shoﬁ Tor any solutlcns v',_w ‘of the equations o o -
Bk (;),7_7 \ _._(pt + b)v-f'o,, (D£ +a)w =0 | _ -
¢ : . . . . -
3 { ihgt R '>f' _ - 2
~4) I u=v+w Lo

£ 2D, ¥ )

I- “ . . . . 1 . ) , - . '- ) . " .
‘is a solution of (2). (Hi. . (Dt + b)(Dt_+ a) = (D
(p) Use the erm‘(h) taiobﬁain a solution of (1) satlsﬁylng the 1n1tlal

- condition . o 7 rf} | e
(5) . ) - u = uo at t =0 . . o lci-"

L3
(c) Show that the solutiom of (1) satisfying the initial condition

) (5) is wnique. o ' ™

18. The differential Equation (1) of the preceding problem may also be

solvéd as follows., Let v be & solutionfof the homogenepus equation

-

(Dt F Va_)v =0

. and determine w -such that u = v-w is a solutlon of (l) Fﬁllow;;g
uhlS Drocedure, determine agaln'the solutﬁbn of (l) satlsfylng the
] 1n1tﬂal cond1~;on (5) of the precedlng problem.' - 1 . P .
. S, ) ' A
;95_-(3) Emp oy uhe method of Number 18 to obtaln the solutlon (3) of S
' < "Equation (1) in Sectlon 9~ 3(1v) subject: to the, lnltlal condltlon
oo f:i; ;‘:a, 'N(O) O ; that 1s,‘seek a solution of ‘the form N(tO U(t}W(t)
- ;:_‘_3; where UCt) 1s a solutlon of the homogeneous equat‘on
T _¢'§§§-- 80 Ay o f o | I
RS o~ 3 ooaE T S
- (p) - Verify HR#N the so_lu'{:ion is unigue. o e,
. ‘ i s A ) . : \
. - ] .. ; ﬂé- . \>§g\‘
¢ ‘;_ - - ) - %,.)e-v >
- , 528 ) T AR
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» _ . ) . ' . Exerc15es 915¥= h-‘;;“ .
l. A reaction 1n@wh1ch one molecule each of the z'eagents".ﬂ;.I 5 A2 ;'Aé s ? <i
T L., An. combine to form one nolecule of the. product B is indicated
. e LA T - . ko ) ‘ ) - . LT
. Ay tAg T s AL R
“- . Lot .- . PRI oo - ~ . . . -
‘where "k 1is the rate constant in the dlfferentlal Eouatlon (12) of
Sectlon 9-&(1v) We write (12) 1n the form _ ) _" o -_j L
- » PR ) . db - _’ . ’ ‘. - s\ ‘. o - .
- L 3T .= kala233 ve- B - - : :
. . where the lower case letters denote the concentratlons of the
* cor*espondlng reagents and the, product. If more chan one molecule of
a given reagent enters into & reactlon as for the famllla* example .
(1) - ,'_. 2H, + Oy—> 2H,0
then the - concentratlon of a given reagent enters the law of mass action
in as many Places as the number of its molecules whlch are involved
- 1n building one molecule of the producc. Thus, for a reaction in S
- the form of (1) . - ‘ '
_ o —_— - T e
.L - . _ 251_+ Ag .B : ., g
“the law of mass acthn bakes the farm o
_ S db-_ .2 L [
. T AL T
. - (a) erte the law of ma‘% acthn (2) in the form’ correspondlng to (12)
. - S da da P
- of Sectlon 9-&(1v) - What are the rates-'dt and th'ﬁ_ f*ﬁ“a',r"
* . (Hlnt- .Use the fact that the amount of. each element is unaltered
e .in a chemlcal reactron). > . : , "'”gj\ﬂl
. (b) Similarly, for a reactlon in which vy molecules of the reageﬁt-_;i?s .
"”.f. : Ai' are comblned to form one molecule of the* pnoduct B, we wr¥}e f
gA + VAL R L.l vﬂA. __31;; B Tl fi‘j’ﬁ-:m-f
. 1 n - e
- . /~and obtaln the law of mass actlon in the. form ';jﬂiz {Gﬁ
g » v v Ty, ‘f_ef r“d: N o ' .
23 » db _ 1 "2 “n - A P S
'(3) : ] at kal By ree 8, . S - :
Write the law of mass action {3) in the faorm corrssponding to (12). - °
: da, . ; ’ -
Determine —= ‘in terms of a., . .
. dt ‘ s : .
+ . B : ". - )
\“ . L L‘. , . 5
.o~ ; -
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z. When a 1--eac:t:r.on Droduct is odtalned,as the result of 8’ chaih of e -

fj, t_' .-reacUlons the law of mass actlon cannot be applled dlrectly to obtain
the. retée of Droductlon. We rmast take account of +the 1ntermcdlate

l -

1reacc1ons.* The'51mplest examnle is glven by-a revers1ble unlmolecular

of B wlth one probablllty, ‘but a molecule of B may revert to A .

'reaction in whlch a molecule of A may be converted to = molecule

-w1th anotber probaolllty. This reaction is indigated by - -

. AP v -
: . ' A‘——'—_B ) v . - .
sl © - - . . . ke - i _ . . . -‘ - -
and the“react}on'is"governed'By the equation ' K ) "
-1 ab . ,
(l) ° - ’ 3 ) ) d-‘- - I{la k b LT . "- N n ' i : - - ) _ﬁ"
o where kl 18 the rate constant for convers;on of ~-A to MB, and"‘k2
e, e ) - .
ﬁff "is the rate constant for converslon of . B to A" Let . Co' denote = -

‘ : the injtial concentratlon §§ 'B and C the lnltl&l concentratlon,

1

of A ;> and wrfte (l)_-n {he - fbrm of - (12) of Séction 9-4(1v) ,'Descrlbe

the course of tne reactlon. _Wha state is approached as -t approaches

.-

1nf1n1ty7,

°7 . enhance the reaction. Lettlng 'E  denote the catalyst, the” fonn of :“,ﬂﬁ_‘{'

a

A catalyst is a comnound which. enters lnto a reactlon, but whlch lS not '; e

consumed 1n the process. The: effect of emp a catalyst lS to

a.S1mple %?talyzed reactlon 1s

E + A ___ELgs.E +3 . o - L -

-

Slnce the, catalyst is. not consumed in the reactlon, Ats concentratloni'

(-8

E;ﬂ;emalns constant and therefore we expect

-'fl') _"'-‘._-'z_-d—t-'-—-_ké.a k€(c-b)

where € “is the 1n1t1al concentratlon of A .

Llfe is never so s1mple, the actlion of trologlcal r'ata.'l.ysts or enzxg
does not follow the elementary law (1). It was conjectured by Mlchaells-
and- Menten that a reagent or substrate A enters into a loosely bound

1ntermed1ate comblnaulon with the enzyme E . The‘lntermedlate comblna—i

-

. tion may dissociate 1nto E.and A or i to E and the_react;on product

théory" 1n’vas1comathemat1cal Aspects of Biology, Academic Press, N. Y., 1962.

El . ' ’ ~ I3 '
."- ° PR

See Bar*holomay, A.F., "Physicomathématical foundations of reaction rate

-
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The system (3), {4) has .not been solved explicitly. Irn order to

‘obtain an expllc1t practical solution Briggs and Haldane assumed that

{the initial- amount of substrate .C 'is _very large compared to the

) near.equlllbrlum before an appreciable amount of the substrate is

converted. The equilibrium assumptlon requlres that to a good )

‘ approx1matlon . . : "t
' - ] d—:]'--- ._- X “ -_— '
(5) - & kg &'a 2+k3)1—0..

iﬁnorlng the very rapid 1n1tlal phase of the reactlon in which the

VAR . .. N D . — SEL
o ’; L S I ; . ’ ﬁr_- ' L
. B < Thus anyfnzymatically catalyzed. reaction is assumed to.take the form
B © o E+A - T 3 ~E+3B. )
. T k. -
- . . ) ' S X 2 .
R . ST .
V%rlfy that a reactlon of thls form satisfies tbe'algebraic reﬂatlz;s,-
(2) e T;n‘ ' é?+ I-= é%_,-a'+‘i fib': C,- ;..‘
ooy T . - L ' :
- where‘fa ,ﬁf?,*i » b denote the concentratlons of substrate, enzyme,
1ntermed1ate, and product resnectlvely, aﬁa at t =0 the_lnltlal
’concentratlons are glven by -7 ,A“
N _ ) — / -
. . o e ) a(0) = ' - ~ o ‘
(3 - N ( ) =C L, &) =&, , | . S
o H) =0, 8(0) =0 . : .
Sho?‘thst the ;eattioni;s»gqverned by\the differential squafions
| d = T ' . - -
a . ) r
- d€' . . . . . -
. = = - Ea + %k + k_)i . - :
) wIIREAT e TR
I - di 6 T [ - - . . -
ey a - (k, + k)1 : ;
] | 3t .H;-_ e T R3S S
’ ,  db. ’
°. - dt -k i - -

amount é?O of avallable enzyme,‘anq‘that the eoncentratlon i reaches

© equitibrium {5) is set up and the termlnal phase in which uhe concentra-

tion of substrate is not large compared to 62), we replace the

differential system (4) by .: -

;-} - ) - \ z"



L AT [ ‘ . o T : . - -
6 e . : dt ~ I%_ ga + ke 1 . o _i'
) PR dt‘—-‘B i, . L SR
.the’ algebzééc,reIgtions (2) by - .:.2 S ‘
: : (7) T éffli-#féb ,.a;+ i+b<C kM i
f ; h."ghere _ka is uhe Nichaelis constant kM klnl' and the last
equation comes from (5) i Compatinly with the first -of thg assumptions
: _ above we replace the -nitial conditions (3) by - :
e ’“._.‘f/."_va' - el _'- o, I ) ] - . . RS ~
S N U A -a(oa-e__-,- s(o) AR
N €5 ) Wotae A Tem Tt s : \‘ 5_ : '
LT .;.(o} = c3 N b(o) 0L
’ Here the constants Ci 5 02 > 63 mnst ‘be compatible; Thus,-the constant

03“ correspbnds to the relatively small amount of A which‘is consuﬁea ..

_ in reaching the equiliorium (5) . "’ A
o : The argument we ‘have given in ‘obt aining the modified system (6) (?)
(8) is not mathematicaYly complete. To. complete the story it is -

necessarg\:o show how well the solution of the modified system approxi-

.fjrﬂ; o tes th of the original system.- This is. ‘a’ more dlff‘cult question’
?; j/’::::;\§e.shall not attemptlto-answer here, The main point is that. the -

f,» modified system is easy tO'solve explicitly while he original system,

v' which incorporated all .the information at our alsQRE l, is not. 1In

practice\the modified system is therefore actually'more useful and

under the\stipulated assumption that a is much greater than éia it

SR has proved.to be adeguate. N .

Solye the system (6),}(8)- (Hint: .Use the first and third equations
in (7). to” eliminate '~ and then obtain the differential equation for ]

a ) AWhy is it unnecessary to ohtain the differential equation for b»

in order. to solve for b 2

L. A Soviet Statlelcal _yegrbook reports that the-birthrate was' 21 2 wper

1000 in 1963 and tnzﬁﬁeathrate 7. 2 per lOOO ;I ‘As of Jan. 1, 1965
the population was officially estimated at’ 229 million. The official

Soviet ~population progection predicts =1 population of 250 million in

v 1970 263 million in 19?5, .and 280 million in 1980. Assuming that T._ﬂf

. the progection is based- on a constant deathrate,—show that the published
- report Dredicts an immediate upswing ‘in the country s birthrate.

-

S ‘B g ) - . ,". 7 ) D-\f.-‘ Y oo
c e . T - IR . Y B g T
. .. d - . e - -

g d .o -

. ) ’\ -‘
. R R ; T .-'7 .-» T o -__ - t_' . AT
ST o T e - T e




<L LT ‘/ . ' - o .‘ \gk . . <- - .o ._-‘. .~ N . '._-~ - . B ._. - LA—=0 -
o T : : S . : : -

't5k; In thls broblem it may seem at. flrst that we do: not have enougn data for .

B 1ts solutlon, out the situation cari.be band‘ed in terms oP dlfferentlal
equatlons.:';,-u I R }" - - - LT
. < ) . o ’ - ) ) - s I . - ¢
L 4 -

'It begaq anw1ng sometlme bePore noon._ A snow piow set out to clear av_'
-, road .at noodn.. It traveled théerrst mlle in one hour and the second
e ‘mike 1ﬁ JLtwo hou.s. What time did 1t start snowing? (Assume the snow B

’alls at a, constant rate (ft/hr) and that the snow’ nlow remOVes snow

CsL at-a constant rate ’tB/hr) ;end eglect the compres51b111 cy of the .s»'
’ : : El e =

sno'..r) } /'- - . S 'ﬁ;ﬁ

- . -
: . . . P s s
- . -
- - "
-~ .o . - '
R “- -
N . P
» : . - - -
s
- . o )
~ . .. I - -
- N . 5 R - A s - . }‘ LN
-, - Ty - - F] .
-
. o .
’
- 2
T . s ) .
- .
A .
-
- > -
-
- -
A -
e Y
- - -t
-t Y -
N
- > .
- = " -
-
4 - .
- A . . . -
~— . N - \
- e
.. - - = - -
B - _
. - N ~
- “ -- -
’ B < =
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’ # - - l — A
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- for the dlfferentlal equatlon ‘ "

Chapter Lo, 'i B ;—”\1;lt

N0-1. Introductlon. S T 3 o T
o _ ’ ~ . - ' St

It is no accident that problems in the appllcat ons, like ﬁhose:of

v

- . Chapter 9, tend to be posed in the form of] dlfferentlal equatlons. leferentlal '

5=

. equations are relatlons between unknown functlons and tbelr der&vatives.' A'
differential equatlon refers to local propert1es~ it descrlbes evsnts in the D
'nelgthrhood oP‘aﬁgﬁven pomnt or a given instant of time. Local behav1or is.
_easy to obServe and. lends 1tself réadily to 1ntelllgent surmise. For example,
e might guess w1thout dlrect chservation that the rate ‘of spread of an- '
fepldemlc in a communlty is proportional to the number’of actlve lnfectlcus

'cases and to the number of individuals who have not yet been lnfected.

S

. Often our prlmary concern is not local, but global- lt may not be the .
dxfferentlal equation whlch interests us most but some propertles whlch depend

on a generai knowledge of the solution. Our interest in the rate of growth

- of & bacterlal populatlon may - be academlc, but not ocur interst in whether the

total population of bacteria in a host will reach a Jangerous size before the
host organism can marshal its defenses. Thus, the problems which concern us
most are likely to be'problems of integration, of obtaining the solutions of

differential equations, or at least.obtaining some specific'iﬁfonnation about

-these solutions. . ’ : - :'Q ' -

This chapter 1is devoted primarily to the problem of formal 1ntegratlon

(1) - . DF.=f -

where f is a known function. In priﬁcipr, this problem is solved by the
Fundamental Theorem. If~ £ is contiquous on an interval containing both

a and x then the solution of (1) subject to the initial condition
' : . 5 L

(2 o R f(a) =dCL' % ) - ‘ ~
-éx;steg"is ﬁniqﬁe, and  can be written in the form : Ca _
o S : . . : 5
S, : 7 -' - ’ } x [ ) . ' .
(3) A F(x) = C + j. £(t) dat . )
. . a _
- 535 - e
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 Formula (3) is no more- than ausymbollc representatlon of the solutlon.
If poss3 ble, we should llke to cbtain a simple- analytical formula for F(x)
in terms" of obgects w1th which we are famlllar. -Valllng that 5 - We should llke
<0 have a practlcallv useoul anprOX1matlon to T(x) . We seek then fo* a way
.of “en“esentlng the 1ntegrand 1n a form Vhlch is recognlgaole as’ the derlva-
ulve of some known func -ion. It is not always possible to do_so, but then '
In

LT we may seek a’ renresentatﬂon whlcn lS more. amenable to approx_matlon-
'uﬁls chapue“, we shall explore some of the methods for transformlng 1ntegrals

"+’ into more convenient formS' these methods' are the so- called "techn*ques of

=

integration."” P T T

-

V’x.'ﬁ.T There are two basmc analytlcal technlques *he metnods of - substltntlon;l
.end of 1ntegratlon bj nar*s. In applylng these‘methods we eluher transform i
the 1npegral,so that. tbe 1ntegrand is recognlzable as the derlvaulve of a ~

. égfamillar’functlon, or transform 1t into another 1ntegral whlch is more manage—

t-,ji able.: We ’hall see'uuat many lntcgratlon problems may e reduced to the

'1ntegratlon of rat_onal functﬂons. ror these there ex1sts a speclal algebralc

technlaue of’ decompos1tlon into nartlal fractlons whlch permlts an. lmmedlate
integratlon. There 1s a wealth of spec1al technlques but we treat only the

most 1mportant. - _ ; " —

The punctlons wé have dealt with in thls text are called elementary
fnnctaons.f What s or is not an elementary function is a matter of somewhat
‘arpitrary deflnltlon° it is a collection of functions which is useful, and :
wi ‘hich' we are familiar. For our present purposes, the elementary functions
ce§§§:t of the powers, the circular functions, the logarithmic and exnonentlal
functions,jand all 1c‘u:nct:Lons obtained f"om these by rational combination, ‘
inversion, and compos1tlon. We haue demonst*ated in Chapters L and 8 thét‘the
derivative of an elementary functlonrws aggin an elementary functlon. 42 :
indefinite integral of ay elementary,#unctlon i1s not necessarily an ele néary
functlon._‘Tbat fact 1s no pro¥ed bere, but it is emphasized so, that yo -w1ll
not be mlsled by our succe in representing many lntegrals in terms of ' ;;;;;/

elementary functions.'ﬁ/~

wr

o = ‘ - | lt t:" ;.f»~"' . p .fﬂj;.'_lf.
- - Sec. G.H. Hardy,.Tne Integratlon of “unctlons o- kS Slngle Varladle, R
Unlver51ty Press, Cambrldge, 1916 - R I I :
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e purpose of this chapter is not)thjEiE\you a mmaster in the art of
integra ion in, terms of elementary furctlons. It is erugh for you to make

use of one of the tables- of integrals whlch provzde solutlons of such 1ntegra-"

_ulon problems ca alogued in somé more‘or-less systematic fashion (Dut be sure

to check against possible exrrors and mlsprlnts).- Nonetheless, a knowledge‘or

-the uechrlques and reasonable Drofﬂc1ency in thelr use are deslrable to
fac:l;tate theoret’cal and numerlcal analy51s. Furﬁpermore, the tables contaln
fonly certain standard forms and eveﬂ 1f you w1sh only *to use ‘the tables

effiy}ently it is necessary to learn'how to transform ‘an 1ntegral of concern
. to you into one of’ tho standard forms L ';f'“ o S d
. S - . : E e : » " L T ".{'N .

- In thls chanter cur obJectlve 1s to glve a method for BxpresSﬁng ﬂntegr
'nffrom igg;&an nroad classes 1n terms .of a few baslc elementary 1ntegrals. For
.easy reference, we list here the prlnc1ple 1nteg atlon formulas at Cmiédls-

nosal from.Chapters L. and 8. - o - ~ . -
) - Table 10-la. : . L SO
- < _ _ » o x . -
£(x) =F'(x) L | Fx)=c +_S £(e)at
_ . . . . xo S
(1) a2 (e comstant) - : . : 'tf'h{- ex.‘__ E | -
- - = 3 } . . xr'ijl |
(2) x= (r -eel r # -l) . | T
(3) . %-, x>0. .. g 4-10g x R
(J.].) ex R ) L T ex . n
I (3) sin x _ A - - cos. X
. /——__/ ‘ . »
.| (&) cos x L. e sin x
(7) ‘—;5— =1 + taﬁex _ i o . - tan x ': ’
1 arc sin x ~ -
N arc ten x )
: eoT g TR
‘ N . LT .
. ) .-
1 _ T » T ‘
¢ - o
C T 537 LT
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- ‘We have not stressed the hyperbolic T neti ons and - ‘tnelr :ane*'ses, s:.nce
‘they can be- expressed inr terms of exponentials. and logarlthms However, these
functions appear commonly in tables and in mathemetical literature.- We in{:ro-l»

“duce the inverse hyperbolic functions

'arg sin h --s:.nh S ~ -
- R argcosh&cgshx-——-:f,xz.o;.' : .
arg tanh : tenh x—ex , |x| <217, i

etec., whexre ‘arg 1in each case denotes .uhe argumen‘t: of the correspond 4
-.hyoerbolic ;‘n:c\c:'t:1 on. The integrals of ‘spme mnoruan‘t algebra:.c functlons can -
be exnressed in te*'ms of 1*1verse hyperboln.c f'l.mc't::.o% These are l:r.s‘ted 'below 7

-

anéd left for :you to ver:i‘y. - R ";:-' E T 9 - X o
2 ~ Table 10-1o - - 0 e
.- coE@ em@ L e ae s | sna
[ * L . T - o ’-' 5 . :. - J xo - * .
oAy L2 ' ‘ 1- 1+ x|
() 2 o Besrt )
o 1l -x . .
= arg tanh x , if |x] <1 | -~
i = arg coth x ,, if |x| > 1
1 - / ' o
(13) log(x + x2 + 1) = arg sinh x
A ey + 1 -
° (12) — | 15 |x o+ A% -1
- - » i 2 - - 0 -
* +l . ' = arg cosh x , if x>1°
. = -argrcosh [x| , if x < -1
R O . '
* It is not essentlal to memorize the formulas of Table 10-1b, they can
be obta:.ned eas:.ly by the substltutlon of a hyperboln.c func-tlon for x - §o-‘ s
descrlbed in Sect:_on lO 3 e : , o B .
: ) 3 - ’ ) .
) N
- %\7 - 538 :
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_..xercn_sos 3.0- l O . N

i.  PFor each of the Po_l_'Lo?l:Lng sketc"l the graph of £ d-ef:.ned by the gn.ven

:Lntegr i\ ' L o . . ¢ . - -

o ) N

JOREIeS)

I
LN
"
dUU
. b
[}
ct
[e 1}
cF
b
vV
(@]

I

(v) E(x) S (e-)etar x>0 L.
. . - x ~2 R P - . : EN -
S 2 eY L £(x) = S‘_'(l; - t%)dt o _ S o

]

. . ' X . )
- (@) £(x) St log t dt , x> O
! . ° L. l . o B

~ bl

2. Improve the- ke‘bches of Number l by . employlng the follow:.ng 1nfomatn.on -

for correspond:.ng Darts (a) .- (d) .

| (a) " f-_(3) e

I
o,
'l

8 " . - . . ) . -
'—‘-z ; lim f(x) . . . L L .
e~ M __‘- L . '- - ot . N .

ST (e i’f(é.)-;l- XY =a * % , Tim £06) =1 . . N
e T S SR S .
.. } N ' . .

sup'oly any neeaed ex't:ra infomation bY evaluating the 1n‘23§ral. -

TR RY ¥ =D -Fe - -
x=0 o 4 e .. _ o -
. ;-- ) V ’ - - ) . C
R PR Sketch the graph of £ . [ \ o

. - .. o . _ ) ’h_ - . e~ .'3‘("' _ 3‘1::' - ’ _ A
k., Let. I(x) = S cos t:_dt . .Given that _,,;"(5). = % 204> £(x). = %5 5

R 7 Loe " - - ' ’:A: :‘-'_‘ o .- - o b . - o ‘—:-. ‘:’ ‘ ES 3. et R .,[ ) ) . - e - . . *;‘ . ‘
- -sketchi-'_tﬁe-*gf?piu of &£ . (Hint: ~ show _£i= tﬂg_t for all . x-, - ... N Lt

£lx +x) =2 w5(x) D) T 07 I O ST
S De:tei'miz’;e. 'ééns:ﬁp.nts,' xo *and E _ for the coélumn on jbhe‘rVighj; in Table -+ < -
. i ‘.-.-_-_ B A . - . h ) - . x..° . . C- -, - ) - - L

10-¥ for each function f ,.so that F(x) =C + .,S" CB(kdat . vt s
] . | e o % ) - o~ - R

. - ‘-._ - i o ) ‘: -' - e T (@) Ry O 1 e

- 6. Verlfy the 1ntegratlon formulas of Table lO lb and determ:.ne appropr:ua‘be .
constants ‘x(-) and .C . ‘(Compare the reSul‘t:.s of Exer‘c:Ls.es 8"(, No. 9 ) T
. R K . . -~ - “- *.* . /‘ e - ] . ? , B . S,

-

RN

b
Ry
e
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1Q-2. The Substitution Rule. - | . S . . .

The substltutlon rule is a rule for- changing the Darasmeter of lntegration. \
It is the integrztion formuls cofrespondlng to the cnaln rule Of dlfferentla’.-

ftlon (Sect“on L-6). e ] . _ L
THEOREM 10-2. -(Substitution Rule). Let . f be & continyous function and

let " F be an integral of f . Let g be 2 Qontlnuously differen-

igp- . tlable functlon WPOSe range lleo in the dom2in of £, and let «
‘ and .8 be. numbers in tbe domain o;_ g . Then S .
P o - ) . N : . .
-‘?’<J:A - - - N . ) b . - ‘i:.: . . . Y
=T S - f(g(t))g',(t)ap = 5 Fl®)ax _ IR
' o - a s, . N
o where ' . . S ' . A
(2) o B , a ='g{a) cand b = g(B) . o - . ‘P.
DTS i .
Proof. Set (t)»—zF(g(t%) . "Since ‘¥ is an 1ntegval of £ We have_
- by the 'chain rule ~ - f\-?, —~
H*(t) —F*@m)g( ) = (g(t>)~r(t) - .
I+ follows from the Fundagental Theorem that S e - |
_ | H(B) - H(a) 2(g(t) g (t)at | - ‘
< > - oY - . d T - . B
B < - ) ’ o0&
Now, we observe also that ) - ’
S ~ e
L H(s) fH(a) ﬁ(g(m) f(gm)) ﬁ(o) < Fla) < edax, e
LT Lo e ’ - T Ja- .
. - . N R - - . X j R T Lo °
e Bl - X, Toor e ‘ g o o e
R - from~whﬁch the deSLred resu.t follows. - R T - ‘ .
[ ‘é ._ i B o e . - . -—’;{J/ 3 ' . . . ‘ e "
The Leﬁbnlzlan notatlon 1s partlep%arly"apb for the gubstitution ruile,
. - . C _ . . R , <
.. as it is for une chaln.rule. I’ﬁwe put f,f fi _— 325 _ T ]
: oA Y. : S 75 I ¢ T
Dy Rt LR xse(e) L
, . - \E : . . . N T, . c
<~ -  we obtai quation (l) in uhe Lelbnlzlan form’ T e e .
- - ‘ . . ) : - T . ' . : TN e
s ..a ,.! . .' o - b. .- . ,. B - - A . .. - . - ] _E"-' '
Cowy S £(x)ax = S £(x) g%d"”v- T,
Here to replace the parameter of 1ntegretlon' x. by the pafﬁmeter t ; we
' substltute g(eX~'for x_; fo* tbe values of x; at the ends Jof. lntegratlon33'3-:7:'
- 'we-substltute -‘the correspondlng values of t'“ fof the dlfferential" 'dxf}gé . :? -
e . . a . . o 7 Y P -4 « -
~ . - -.. . - ,- .. -~ ) {" - '»'\a
- S (o . ) Le ko Ssko ERE e T
. R RO c _ S . )
- ‘. ’ _lw" N .; R . .
' T . - s -. ( i ‘
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” - . .
-

.substitute % dt . We use the symbolic relation ° -
.o - - - ,dx=9-’£_dt- o 4'

£

to remember th:.s substitution, “but at'tacn no meaning to th:.s equetion except -
as 'a formel rule of substitution. ‘ -

' Finally,. from (L) ‘we obtain the rule for.the indefinite “integrals, -

RO R '.'ff('x>ax..= ff(x) a, o (x= a0,

. .
: -~

‘ E:cample 10-2a. Consider the problem of 1n‘tegrating }% betyeen’ negative i-)
limits, say, a and B, where a<0,b<0 . For x = -t -we have by (4) !

- ) ~-n . - N
- . . - . ) €

{?q1 - b, ' _ ' -
s,de‘=- - £ dt = log (-2) - log (-2 . S
Ja o v -a T : : _— ‘ : .
R - - . =log |b| - 10g |a] . > )
-~ For the indefinite integral of % we therefore obtain, . -
R : = id:'-:=-loé Ix] + C’
x t o) x -7 o~

which genera.lizes Formula (3} of Table lO-le.. (The formula for the indefinite
_ integra.l of l,‘_ can be meaningfu_'l_ly applied to ca.lculate the ve.lue of the
deflnite in gral - only if .a and o ha.ve the same sign ) o =

.-

' The -substitution rule for. indefimte integrals is employed in two =
N @ifferent wa.ys. We lllustrate this wi'bh examples. ‘The firs‘b application-
. is direct. Suppose ths.t we recagnize the integral in the form If(g(x))g (x)dx
- vhere £ is one of the fu.nctions i Tebles 10-la, b whose a.ntiderivative is F.-

The subst%tution Tule tells us that this integral is equal to Ii‘(t)dt:F(t) +C
with t = g(x) s that is F‘(g(x)) +C o . i . |

- - 11 5
- . o iyl -
> R -

~ «

E;@mple lO—2b. Consider the problem of :Lntegra‘ting wé

" -that 2x = D(l + x-') - “For + = s(x)‘ TP, £(t) -% » we get

1+ x™ . . _ ' . ‘ (

_ It is importa.nt to recognize here that we seek a function H for which:

. F'(x) = f(g(x))g'(x) .. The problem is not complete,ly solved until the ‘answer
- ds” expressea ip’, cerms .of. the origina.l para.meter % H that is, the answer is’
ot F(‘c) + c but H(x) £ ¢ : F(g(x)) ~+. C_.! (In Exemple lO—Eb

| = 2- dx = f%g_)' ax ‘= f cu; log |t] +c "_F(t)‘+ c'="1lok(2 +x5) +c .

- . G L ._._ . / . ) .
: - e s R SRR ; ) . .
oy . - SN T A el - -{,»_"\ . . . . ‘ s - .
‘EKC ]' WL é\;-‘ -~ -5 2 » . 'u..-?"l‘: {‘&;.. .- '-M L . ‘; - e R
v : A e Lt - : g R . __ . . ﬂ -- ) . - o "“-.‘ L. . :
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/ . " Example lb-—2c. Next consider ’the problem of" lntegratlﬁg the functlon
x

J{ - x2' . Obrs'érving tha.t X is proportional to the derivative of 1 - x= "

; .2
.\ We set -th— 1 - x“_ and obtaln . : X .o o
N 1 =

C ' J’ J{—x dx J“-/ (-— )d =-—'J‘x?%zdt -

e - - . N L

. In the nrecedlng examnle One of the ¢actors depended unon the express:r.on

1l - x2 and the other factor, apar't: from a constant  multiplier, was the “

derivative of that express:bn, i.e., the integrand was given in the form =
,
R k f(g(t)’)g (Qt) k cons tant. In that case, if F is an integral of [ , we - _
- may 1mmed1ately recognlze the integral as k F(g(t)) - (Caution: always
check your :Lntegrat:z.ons by dlfa.erentlatlng, 1t is pathetlcally\easy to forget
a constant fac-f:,or.) : S : : .
x & 3 ' - sin &
= Ebcanrole lO-—2d. Let us :Lntegrate tan & . Observe that tan 6 = cos &
~so that +the nurmerator is 'bhe negat:.ve of the derivative of denomlnator. Con-
sequently, apnly:.ng t@ D*‘ecedlng remark any;nmloy:.ng the r'ault of Example .
10-22, we get ) T ,_7" - ) ;
’ . . ,4' S i _
/ . / ‘ j@an g de = -Jfos Icos 6[ + C . ' ' -
__/ ’ ,_' . %’V - Do - e
; " As the Drecedn.ng examples shoé 1n‘tegraltlon is based 'to a large extent
s .on the art of ohservatlon, L:Lke am,r other. elgorn.tl‘mu.c skili- it recdlres the -
. recognltlon of the st“uc*—ure of a fo“rmula beneatn its de%alls. S o ‘
. B ) - - -~ B 4‘ - . . : .
Examnle_lO-Ee.“ In 'exémini'ng the integral - s - -
- ' - S ' : xg : . i - LI .
SRS —- - 'I=j____-dx % \
- .t . - ] . - 3 . . . 2 . - L =
| ST S TooLa T - x : ST T L
< H “ 3 ; .ll' ‘ i s ’ 1 - A 3 - é
we recognize x~ .as the "structural umit.” Sfttlng u = x7 and du = 3x dx ,
L we obtain o S ) . S — T
. R % —_— =%—' aresin u + C = %_afcsi_n x?’ + C .
R / N . )
: .-_',% s - E . _ - -
- ,5‘]‘?2 - L~ T d
. . AR - o
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The second way of applylng the substltutlon *ule'lsrih-the reverse

direction to the *1rst and is an exploratory dev1ce. Suppose “we went-tq;find,

f(x)dx' but. £ does not look like afderivative of a function-ths “now.
T £ - - o > B .
Using an educated guess, we pick some differentiable function " w; o we
Tecognize as.a structural element in the expression £or- f(x) ) oo Y e hope :

that upon’ the substitution x = u(t) , f(u t))u‘(t) is the derivative of

Some known- functlon H . If u has an inverse V ,7'" aim is then acbleved

<

_ - jf(x)a;c‘ - jf(u(t))u'(t)dt H(t) *c H(\J(XD +ch

- R . o . ."-

-, i'

Since the substitution rule glves : .

A

Y

Y

- lntegrand in Proper form, as the f&llow1ng eyample. - o ~¢7 -~ '.\

- - B .
., . - )

L Example 10-2f, In EXerCLSes 9- 3, Number 1Lk’ we showed how to integrate

10g x with the ald of a geometrlcal argument and the known 1ntegral of the . —
f inverse fungt10n¢ We now attack:- the problein analytically using the substltu-‘

L £
tion x=e -, dx = e Tat We obtain -

‘-[ibg x dx = [t e at . : e t

We may not- immediately recognize - teE "as a | femiliar derlvativef but- we can

-

eiperimentq:'The derivative- of rtet ;s not‘qulte tet_ ltself but

oL, » ~ ’
- T. ) D('El,et) - Sl - . '
. : - . - " -
3,c°nsequentiY: o -
s > )
" With this observation our Problem‘;s solved"'“s\ S . R i
A - PR . ' ¢
.‘ - - .l - . -t '.,-t‘ A‘ . - _-; N R -' .‘ - '_- »a. - - o ..
o o ~..5te(dt= e’(t,-l)_:;‘-ﬁc:x(logx-q]_.) *.C. g .
é- ~ R S ’ ’vf:‘;.‘ o ) ; L & v .- ‘ s
- K : L U % R - -
‘Later uslng the methodﬁgf tptegratlon by . parts we shdll be able +o
“treat such_,roblems syhtemAt;gglly.‘_ PR e T . ‘ o
. a v . _.‘ - ‘ﬁ-:" *_&-_ .- L Q ) ]

- - - -
- -~ P I

Tn uslng the exploratory ﬁ”\hoa vie usuaIly do not substltute dlrectly

.. for . x s but plck ‘an- exnre551on 1n\the 1ntegrand,isay u(x) ) whlch appears

'_ P&rtlcularly tfbubiesome and set u(x) t5 assumlng that. ?/ykes an inverse

W » This’ amounts ér feéplvely to the substltutlon-ﬁ.j= w(t)/' ‘fn Example ;'

a 3oy . - . RN

10\2; the troublesome term was _loz x and we set log X =t .0 Ty ,

fet . o 543 e -
- - -0 e ) .- i ry 2
A - - B . % .
_ , : §l€3;J .




C10=2 - e .
. o . i

*Exemple 1042g;‘,ansider the integral -
S - ~ VF'+ < b

- >

'In order to eliminate the two radlcals in the. denomanator we set @§t=

'Then 'JEE%'tB and | 3/-<— " Since X = t6 , dx = 6t5 dt and we get ;%
N - ..‘, » . ] . - -: I 5 ot .-' Py
BN - - e I = —-———(6t)dt-6f - dt .

. : - . _Ite + £ » . l'+._t' '

-

-7 Still e do not’recognize a derivati?e of a known function. The troublesome
term is now. (t + l) in the denominator, so we make a- second substltution

t +,l = s from which "t =s -1 , dt =ds . Thus

-

- ' l, ’;-. . . 3 . . A - ! '.. ) N ’ . .
¢ I = 6I t dt = 6[-(—.%.2—-%'ds = GJ(S? - 38 + 3 _‘_;_)ds . .
j . ~ o LT . o . .
Y . ' ’

PR

%J 1+t
- '=_253_- 952 + 18s - 6'log |s| + o - s
. : ' : . . L 4
o =2t - 3t% + 6t - 6 log |Pwt] + 11 + c,
1 o =»2xl/2 J_3x}/3 + 6xl/6 6 log(l + xl/6) + C2 .
’ t:"’ «C . - 1
i . ) ’ Exerc1ses 10-2 -
l. Integrate in ﬁerms of elementary ’unctlons when p0551ble. i
. 2
x + 1
() =/——F . .
- é‘;
. (n) Lzl ";
o . - 1+ x B .
: (e) —==2 (1) —=—. .
Jgi:Q 2x + B2 RO :
- - . ’l . -» - .
- : ¥x . \ - /aE _ xE . ’
- . ‘\'Ili-l .&. 'JC-'
(e). ——Bo— g Fo(x) - .
- - ax™ + b - L >
. _ + x . - . . °
: - < '
- - 1 - . N x -
(D) 5, d#1 , (2) < )
. e X "X S e x %= 1
. - f/ T ) 1
: . R - 3"’!
. N 2 -3
P ' »
. s oo
'lb""- e € .

p¥



e . A L o B
2.. Integrate :Ln terms of elementary ﬁmctlons) : ' s o ‘
- (a) sinx % 3000 (£) sec”® ax tan ax - N j’
, (a+bcosx) - T T
(b) 3 cos x sin 2x L (g) == 2x ,
s T T g T ; o i .- ‘/; v A
' ‘ fod i Wy cos X o .
‘ ] _(F:) . sin” x cos x ) (h) "t*an " . .
. . . -
(a) -sin™x cos” x_ () = ;2 £.0 2
- . ’ 0{ . - L a + b cos x h
‘ - (—.e)~ sin~ 2% S T e o C :
3. Intesrate,g‘in terms of eleinen:tery fﬁnctions-: o . T ‘
- . - : l' 2 | R I
(2) axe* o (m) == /k@
(b) * (g +0 e (1) sfah® ax cosh{ax‘ : - : ‘
(¢ & (d +Db e x)3 (3) _coshB ax ® — '\
. " x . ' :
la) —BE—, 46 (x) +
5 + ce B sinh x + 2 cosh x . \\
(e) = s c#£0 7 _ (2) — 2’1" s—+, b.# O
. b + ce R . T oa sinh x + b cosh x
~ ST - D - o ¥
. . x . - )
() log x . - (m) a (a ) s . :
N . 1 .
. s - —————————
(g{)l x log x
:lll». Integ ate in térms of elementary functlons. - - T e -
- R 2 s . 7 L .
(a) '5 = . - - () _"‘*‘_l_x_ S . _
Yx a2 . - ' - x(e + xe™)
(p) "= I R e g) (arctan x)2 \ N
R T SRR S T T
_ & (5t 1 RO \(n) Zosllog x) - "
v - B, T ’ e : ' .
L (ay sin e o (2) (x + 1)e* ten(xe™)
\_/ . 1 + & cos” x _ . T : ' : -
- L o - L. . 2
. . L 2 % A ) S . F xS x s
() X" e (5) Xe=cos ldoale + 1)) :
o - . 'ex + 1 .
x 5. Use the idea’ Tor Example 10- 2f to 3_ntegrate 2 t P t3e" . Cén ybu )
ob.ta:_n and prove a formula for thHe indeflnn_te integra.l of - t® e _ ’
. . 5“‘5 ‘. ’ . . . B 4
. & : . —. . N .
- ) . h R 3 .
. . e . S - . 1 '52 o T, &
Ly 3 - B . T - : . . ) "‘,‘ ~
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10-3. Substitutions of Circular Functions. L

Although it -is not always posolble to inkegrate a given lunctlon ln

ue*ms of elementary functions, there are important briii classes og’expllcltly

integrable functhis All powers and hence, clearly, 1 polynomials are’
expllcitly lntegrable. It is not- +S0; Elear but it is true that’ all rational
functlons are explic1tly 1ntegrable (see Section 10- 6) f It follows'that all

_.1ntegrals whzch can be«transformed byesubstltutlon into. 1ntegrals of ratlonal
”unctlons are exp11C1tly integrable, In thls sectﬂon we 'shall ghow. that an

1ntegral of any rational combinatlon of }’~and Yalx 5 where . :
N , ; Qx) = Ax® + Bx + C , ' o

A ..

canvbe transformed into an lntegral of a rational combination of c;rcular
functions nd further that™an integral of a rational combination of circular

functions cangpe transformed into an 1ntegral of a ratlonal function.

-

We should consider the substltutlon of a circular functvon whenever\gg

. > .
integrand is a comblnatlon of X and one of the expressions vYa~ - x ,

Ja2 + x2 , ¥X 2 . a2 (a > 0) suggestive of the. Pvthagorean etpresslon for.

one of uhe sides of a right trlangle in terms of the other two.

~ - -

Example 10-3a. .Consider .

-

, ‘ : j __ax . S SN
- . . . = o . T
: . /2 _ X%ﬁ ' . . . S\
We utilize the substitution : .

~ . - . \

T .. , o . = . o L
. L x. = 'a'/sa'-.n‘-e s a2 - X = a cos 6B . (- ) <&e Sg) 3
) cdx = a cos;é ae.. :. R S . )

(See rlgure'ls -3a.) Observing that for x = 2‘, 6 = g » .We obtain by the
& IR substitution rule, ' T

: - ex/6 . ew/6 . .
- ST = E._ﬁoi_%de = ‘d@:%,
Yo = cosr. o :

0

4&.




R

) szF

2
-.a

‘n

. ~ L ;r .
Example 10-3b. For the in‘tegral ,Jz',
) e
- - 5 ’ ;
(x + a ; "
* . we employ -the ,subs'ti-tut_ipx} (see Figure,lo-3b) S
. ) X = a tan 8 (- %
! Ix = z ae
N » cocs & )
- 2 _ _.a
a ¥x =35s8 °
Thus .we obtain .
- B Ty -
c:os3 6 a 1
- ~_ I = . de = == Y cos 6 de
3 - - 2
_a cos €& a
= Sig g + C = X - -+ . R :
. a 82, 2 + XZ . *
S _ -~ " . —t
. Examplekxj. The Integration

. . ' ' . T
_is perforymed with the ai%oi\ the substitution-(see Figure 10-3c¢). €

- -

Figure 10-3c

E 3
Here take O < < =

a
'

- -~
a .
cos 6 °
a ~s;n e dé ) -
cos~ 6
.sz-‘a2=atan6-
B ’ ~-

and -

ELS
2

< 8 <3

av



E ST (GO N
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5 we 'ha.@ i . '- - T ‘ ., ’ .’.';— . ‘.l"‘ . - rl._/‘.
- ..I = .-j,(cos2 9)( 1 ) (a sin &. de- . /, - - 3¢;‘ ,
. aa a tan 87 \ cqsee' ! R T
. -. . .--'-- fe‘ 2 ) 3 5
‘ i \’ — ‘
o c-—-' S . a x U
- ERNCI. ,..—»‘ . L e P .. . =

It is frequently simpler to use hyperbolic fu.nctions rather than triogcno-"
metric functions for integrals of the ty‘pes considered a ve. If the substi-
tutdion of a circular ﬁ.nction 1eads to complications_, try a. h;yperbolic substi—-

tution instead. - } T o ¥
-, o o A . .- )
. ‘Example 10-3d. cgsider the integral T _ ‘ _ ' /a.

o ,I=J’____'.l_'_dx
L . e ”” . (‘X/Z__— a.2.

Using the substitution of Example 10-3c we obtain

' 1 a sin 6 _ P! '
-, : I—Ial. s(coge)de—jm—deo , ;

-

_ To complete the Jjob algebraic trickery is needed (the @b‘jective of the
' manitrulations will be clearer after Section 10-6 on decompositions into

partial fractions). We have ' : <. .
.1 " cos & " _cos @ _sos & 1 5 1 '] R
cos 6 2. o 2, 2 l-siné& . 1 + sin &' °

cos 8 1 - sin~@ . - ’ ’ v .

.Witﬁthis mich 2s a hind we lea}r:ﬁe integration as an exercise. N\

-5
d used the hyperbolic substitution

. : . ) ) - Ry w\:‘g . . -
) . _x=acos_h;b,._x,_-acasinht,__
\. - R %=asinhtdt - _ |
weswould have fou.nd :.mmediately, by Fornm.la- (12) of 'I'able :LO-l'b
. . e

- .’I=5t,_t+c_1og’x+'x'a)+c—--_:1.oglx+\/x -a|+D.
(See Ebcercissﬁ&-?, 1\To. 934\

Valid for' x> |lal . For x < -lal use x = -a cksht .

~
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tlon of x and J f 5

THEOREJ_IO -3a. An ,ntegral of. any ratlohal comblna

Wherﬂ . X - . . — o . .
. (1 %) = AxS + Bx + ', ' . -\ ;
_ (L) _ Q(x) AE B C o (A £0) T 7
'can be transformed by a ‘substitution x'= f(e) 3 where £ 13 a c1rcular
4ﬁf:;:‘ functfﬁn 1n£o an 1ntegral of = ratlonal somblnatlon of sin e and
‘ -“--.-." ) c% 9 ’: . q“’ - : -‘ " v - k - -f .. '-.. . -"f' -- : .“. . B
: 7 - _' ) ~ '-0 _.- 4,‘ ) , B . . - . { ) V . ' .
"~ Proof. We are concerned with integrals of the form . -~ . o
) ) . : / - . B " e T ‘.;- T"-,. Y
(2) _ o - I =J‘¢CX,"Q(xj>dXé : R i N
Q(x) 1is given by (1). For the proof -

where @ is 8 rational expression and

§-
we. flrst make a prel:.m:_nary linear transformation to replace Q(x) by one of

the standard formes - of Exaz@les 16- -3a, o, Ce. .o
We "complete the square" to obtain . :
—_— . -
S - a = [( ) + (z - %)] -
- La=7/: .
c B2 B’ ff—]- -
We set a = - =—xi,b=5r, c=+A] , and x =u - > in (3), and— a
( A 2 28 7. 2 2
‘\S ‘ P ‘ ’- | —
separgte the probvlem into three cases. - ' : : , 3 )
Case (1i). : ‘ L . ) ' LT B
. N o 32 . - . o :
If A<O d £ - == '<'C +we have . i . -
. A P -
: . ) La™ - . S
. VQ(X5 = c/a? - u2 ‘e .- ' :
" Since - ax = du ,: the substltutlon X =u - b yields. - . T L N : .

(l") Coen

Now, employlng the subs

v

X | N I—j¢(u-o, /a -u)du.',: ] ; k | ‘\\

u=a sn. 9.» of Ebcam'ole 10-3a, we transform

the 1ntegra.l -into the o o -
(3) ¢(a sin & - o s, ca cos 9) cos 6 d6 , & = aresin .x;-—?-_. . o
Since @ :_nvolVes ‘only rational operatlons, we have" estaﬁln.shed g theorem
in this se. T - ’ -
& , _ 5LS lr,‘ ('ﬁr
. ‘ -

wll Toxt Provided by ERIC




AT i | t ) o = ) J/A- )
. ot 4 > . . %:‘l y /
] Case’ (1i) o “ ‘ \
. ~ c 2 e R ) S .o
: If A>0 and - =5 <0, thd sybstitution R '
. 2 - ‘ bA' IR ) | | S
: " x+bsu-=atan’s e r . o
.- - H ‘.g v ‘ _‘
. as in.Example'lO—3b confirms thb theoremffor this casF. cos e
Case (£1ii). ;f o o o ’ T ~T Lo e . ~
N . . '_‘\ R ' - c" Be - ’ ot - . :v’ T
If A>0 and £ - — >0 the substitution : ) ) -
. . A 2 s ) . T P T
: / LA . _ L
= - Tl s . - ® . o P
, thou=gEe, UL T LT
- as in Examples 10-3c, vields the desired result. . s L TN
. . ; < . ) ) . ‘_.‘-. " S é . ""_ \
The 1ntegral (2) can be al

LN . b - ) A
is,t?énsformed into an integral of a rational

. comblnatlon cf sinh t _and cosh t ©bx -an appropriafewtransfbrmation

% ='f$t)
where £ is a hyperbolic function. The proof is left as an exercise. ;€f -
THEOREM 10-3b. An integral of a rational comblnatlon of sin x and ‘.-g
COS x can. be transformed into an ﬂntegral of & ratlonal function
S by & suitable substitutzon.g . , L
ST Proof. We consider integrals of the “form : _ ' T
- .: ) ~ . - . . . ‘.' . - - ] .'J ‘
ST (8) . : ¥(sin x , cos x)dx o . '
* -J . . . .g‘ V ‘, A.. : ’ ! .‘I 4
wvhere ¥ is a rational expression. We observe that sin é\“£53~\o are
. rational exprefsions’in t = tan gv;-namélyj :
. (92 a o .- sin x - -_2‘5_2 o cos-x = 'J;t— . A CT
- . ° ~ ) l'!'t o l"'?‘t e - » *
» Furthermore, * . . /f>‘ i - - - |
(10) ’ ‘“<- T dxr? a(2 arctan t) 2 = dt. . ’; S o )

_ : . /
onseouently we may transform the 1ntegral (8) into yhe lnteg*al ,of.a ratlonal

. function by embloylng the substluutlon . - T S o . —_
s () - . - ‘x = g arcten t - ' "




*.- -

"t:hus, enterlng (9) and (l&) 1n (8) we obtaig,;he integ“al in’ ‘the form h
- ' - A R 2. S
AR 1+t l‘*'t l"'t - .

Theorems lO 3& and lO 3b do no‘t: necessarily point 't:he way 't:o the sﬁplest

'method of in‘tegra‘tion fc‘r a functﬁz:l of one."of - the types%considered he:lf:eJ ‘they :
e simply :.ndica‘t:e a. line of" approach .w‘ﬂich is sure to wbrk but ‘mey lead. to . '

P

enormous .complica‘tion. Often some sPecial dev:Lce 1eads to ‘t:he solu‘t:ion far
- more simply and directly. ; E ’ S . o
E - N @ . ) * - * . * . . >
T i _?. ‘ o Exerc:.ses 10-_3

. 1. In‘tegrate. ée follow:.ng func't:1 ons, the nambers a and b béing positive.

"\/ 2"2 ",';-' o x + 2
.,/~%* (a) 2> - (g) ———=

= | | | . L
\ x : . _ G2 x> ‘
A.: o . - ! - - 2 :

' 1 . x +.&8xX + b .
(d) - (3) —>
' 2/2 2 x  + 1 .
- x /x -~ a ) :
o (e) — . (1) Ja%x o+ x" T .
(x +g)~/ o ) i N
@ = _ BN - :
. RS . (X2 -P‘a,)-/ 2x2+1 . ' '
2. Let R( x,y) denote a rationel functlon in x épd q\». Reduce the
' following integrals.to integ;-als of rational fu:ictib’h.g. , L
R 3 .‘ - | i ) - - B V . )
. (&) fRG¢,Yex +v)ax , - a f£O0. - :
r Aax'+br v ’ ) S : :.
. .(b)- R(x > xyc—;c_'_—d)_dx > " n a_'n integer, asi - bc # O . .
Coooes oS ) . - ‘ . . .
- . é + - - -
W - . A >
- * .Y sl |
- AN
185 -




10_3 o N ,:' " Lo ’ . . -
" 3. .Using the Tesult of Number 2, integrate - x. ‘ .
- o : Jax + B + flax +p)°>
e - X ’ 4‘ 3 _' "/ - . "}' - i EX
< N . . R ’

L, qeduce to vatlonal form

’ -*'-;r- /l"' x -u;l'- X - ’ ~
. . '..; - _w l""x . 1-+}.C . - L

-

5. Express as elementary unctions )
. Y
. . Jé + 1 + {Qg_p 1 ' h o L .
PUOP X J l + sin X’ b4 . -, ) . . .- o -\}//\-, 3
. (c) N - i. ! ~ é
S [T cos 2x = |
. -I .J_ . s o " . . (' l‘ ~ —~
= (. ax o - -
. SN G - , : ,
n d x%V{ + x
r .
- A(e) X . . ) ’ ~ ;3
X ) l;'l{—_!” 5‘:“ - n ) . . IL_--?:V -
R ~ . o
o i " P‘(X) o . ’ -. . -
R €. {a) The 1ntegral - dx , where P(x) is a polynomial of
R Jax®+ 2bx + o :
oo degree n and .a # O can be reduced to a rational trigonometric

;o“m as descrlbed in the text. It <can be also reduced to the .
1

. = ' 1ntegraulon of H namely for some polynomlal Q qo;__
_ Véx + 2bx + ¢ .
‘degree (n - 7) {-and constant k-. ’ , . S .-
- co PGX); . D(Q(x)\/ax + 2bx + c)-!- : £ —) - .
..t‘_ . ‘3/83(2 + 2bx+c _;' ,‘j . . /&xa + 2%‘C' -
- . s o BN . : . B
. Show how to find Q and Xk . e T
. " . . \ . . : . . ‘. -' « -
T o) U;e.v'vix: (a),; integigte 2o’ v e ' ‘
"." T -7 . ) . - a <
o ¥ L e ? )
N ' ’
T () Calculaue the 1ntegral of (®) by using trlgonometrlc substitut¢ons,
‘ ‘ and ccmpare the merits of‘the two methpds.' o, ‘
. _ _ a .
. - . 552 ' T
\ 1 53 . S




S T s LT s 103

7. It is Stated at the beginning of this section-that an integral of any
Tational comblnatlon of x and YQ(x) , where alx)y = Ax2r+ Bx + C,
""  can be transforned into a raolonal combxnatzon of c1rcular functions.

Yet Tkheorem lO -3a uakes up »he case_ A # 0 only. Prove the result is .

. true if A=0: . . : S o
3 o . S ' T
8. Thg proof of Theorem 10-3a does not treat the cases (i) "A <O,
. “.- . N . .< . ._. . ‘ > ) A ] . .
g -,.32 >0 ,or (i1) A =0 , or (iii)~ < _ —Bf—-sco--'. Why not? - ..
. A 2 < : . ) T A 2 T LTI .
o A e LLA . : .- L .
g T e } : ) : AT Ty
9. JState znd verify the result .correspond:_nw to Theorem lO 3& for, o
'hyberbol*c substitutions. . . : L - -

10. U51ng a hynerbollc subst;tutﬂon 51m11ar ta (8)- show how td’transform the

1ntegra_ of any rau;onal combinatf&pfof _51nh x and cosh X into an .

1ntegral of = *atlonal function. . - ... .- .4 ) ) . '
'11.  Tritegrate ’ L : : R
N a ' N . ) ol ) ) . L.
) l . . 3 ,V - B . - ) ) - . .
'.4\?_) . Sin x* . ) . . ] .' . _ ’ ' . . -
(b) 33%—; (by a method other than that- of Examjle 10-3d). R
~ /. _ . . - ) ‘. R
§ - . > -
S Q& .
. ) “ ! ~
i_ ‘l_‘ o g 3
- ' i .
, /o g .
° ’ ¢ N
7 - i ’ - -
- ) u _

X,

1 s | 553 _g%_\\;  ?_"_ D
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“10-5.

IntegrAtion by Parts.

(i)'.The’basic.formula.

-for—tgz de

e .
THESIEM 10-4.

. If

vative.of.

£

and g are continud éi& différentiable over a
and b then '

A"

The method of 1ntegration by parts is used to’
The m thoa corresponds to the formula

common .interval containing a

“+

a

~

-4

S
3t

© 'Tre tggg;em follows
v - .

Theorem.

In: Leibnlzlan notation, for u-

1 f." Do, . S
AT & Y j'-;f(X)g’(x)dx =

v

e

dv = gt (x)“(/’_;*obtal

(2) > .

n for the 1nﬁef1nite_£ntegrafgf

. : 'J
uv - 'Sv.

-

gd av"

»f'i teg te certain kinds of p*oﬁucts.
. p*oduct

~

{ Theorem

f(x)

[£(p)g(Dp) - £(a)gla)] - s

»

b!

a

4
-~

~ SN T

‘@< +ectly ‘from Theorem L4-2tr and the Fundamgntal

F0atoax .

r
-

du %?gg(§)dx and v = g(xs

-

-
au .

Integration by.means of (2) is called integration by parts. -

w

» Examp;e lO La.

integra ing log x

- Example lo=2f£).

-

corresponding to (1)

,
-

PO

N

In Section o~ 3(1) we encountered the problem of - .
whicb we' solved'by ‘3pecial devices (Exercises 9 =3 No. lh
Now ue observe that log x has an especially simple

derivative and we set u = log x* and dv

take v = x .

Consequently, from (2)

~

- S log x dx

-

=1 --dx ..

. % .
x log x - j_;—ox . =

X log X - x +,C

the forrmula we have already obtained.
- - ) ) + -

In application,

the’produc* of

- A

Por «w ,4then; we

(2) 1"s.used'as above for the’fntegral of a product.whére

-

the integral of one factor and the derlvatxve of the othe% is

oormallj 1ntegrable.

~

”~

_ -
-

.t -

Tbe Leibnizian notation.in (2) was-wntroduced as a shorthand for?Qhe
But the nosation suggests that we&glght *nterpret u as

e&p}lclt.formula.

a function of , v , and v as
an 1llum1nat1ng geometrical 1nterpretatloh of 1rtegratlon oy parts.f

at u "f(x}_

and

v

= g(x),

where

the anerse function of .u.’.

£ anc

g have inverses.

Thls 1dea ylelds_

Suppose

Then we can



- - = . 10k

. B N
.- S - -

‘write .u = @(v) <and v = v(u) where @ .and v are inverses.’ CThe'probf

X ~ / . : )
~ 1s left -to Exercises lo 4L, No. 2). Set Ly = £la) , ul = £(b) and Vo = g(a)
v, = g(b) . We have - u, = ¢(vi) and,_inve sely, vy (u ) for 1i=1,2. -~

1
Now suppose #-and v are Incrqasing and “onnegatlve.‘ ;heq, from the famili@r

interpretation of intcgrak as ared (see Figure 10-4) we immediauely hqve

' ) % R ¢
- u o - i _ ) - -
- ‘ \‘-_.- V)
. ~ - ¥ (u)
(- : E0 B K l - :
) Y1 I )
- ~ v : _
j‘ u 1
s C i
4 | -
- |51 e s e — — —— %
- Q 3 ' | ~t . - ot
‘g UV : VO" : r‘_ . -
> 08| ; _ .
‘ - - - - =
0 < N, o - Vi, Eu
T .‘\\1‘ - - -
é _ ~ Figure 10-& .
21 - oy .--. - . - N .
N e Y1 .. > |
R | u dv + | v du + udYO_j from which we at once obtain
' . o Ju - T o £y : o .
. 7 7e R e ] -4 -2 i ]
. . . - - o
] o | _ " 4.
- - .., .—— | vl - | . CL h ) B | - R X
AS ° =" 7 - -1 - - o : .
. - u_av fhlfl .douo] v du.
; Vo . cJd g -

- L s
~ P

. - - . . . . . N -
From +the Substitution Dgle'weflmmedlately recognlze tqﬂs equavion as a form .

. .-V
of .(1, n-ll{e geometrical a“gumenu glves the same 4§sul* when ¢ and "U-

are decreasing. (Compore Chapuer 6' %1scell_neous Exrercises,- No. 12.

-

S

. .- -In ge eral, this ﬂnue“nreuetlon of -nuegrau;on by narts gives the £
’ P - - -
intef>al of any funciion whickh has = formally lntegrao*e lnve“se-»
. B - - '
= . e ' ' .
- . » - N - - -
" . u'— .3 . -
. . - - ’ !
o’ ;- i ) ’ )
- . v*:
bl "' - . T - .
! A‘ K - ° i - - - h -,
. . - _ - Al ‘ ) » 4 . ‘-
- o . &
. . Ad - .\- . .
535 . 190 T O
Q . o 5 . t. ‘ ~ | . 3 s =t o
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ﬁ . . . . ) - -
Exampid 10-4b. Consider - - \ . . )

. _ .
.gxn arcsin x dx , . (n integral , n#-1).

-

Y . S
has® & simple algebraic deriv&tive we set u = arecsin x ,

. . R 7w . . n+l\ N .

: Cav =-x?dx’ and take v = §—:_I . For the domain O < x <'g-‘we have -
u:= arcsinrﬁq#in + l5v and v o= E—%;T sinn+l u . From Theorem lO -3b we know
that v du can be transfo*med into the integral of a ratlonal functlon.
As we snall see (Sectlon 10- 5) “rational functions are always formally 1ntegrable.
It follows that 51nn 1% 2 is formally integrable with respect to u and hence

that x° arcsin-x is formélly integrable with respect to x . Reduction to
“the 1ntegral ot a rational’ functlon is not ne%essarlly the most eff1c1ent way -
to carry out these 1ntegratlons, but integration by parts can be used more

effectlvely in other ways to execute the 1ntegratlors.
The idea of Example 10-4b, for ‘u =’f(x)dv = x" ax , establishes the
formal 1ntegrab111ty of X f(x) where I 1s any inverse circular or hyperbolic

functlon, and, in view of Example 10-ka, if £(x) = log x . .

_Example 10-Lc., Consider _ . oL,

1 A ) .
er log x dx , ‘ . {r real) .
Since- log x has a simple derivative, wé/set u=1log x , dv = x dx . if
r+1 :
X - . . .
r il -1 we take v = =T to obtaln

r xr+l 1l - r - :
JX logxdx:mlogx—mjx dx - -

. o L T .
s ) = log x - —————+ C o
; . r+ 1 . ( r + l) 2 . .

If .r = -1 s we ma)y take v = log x to obtain

' - (1 : 2 1 |
c | 252 ax < (108 007 - 2082 ax,
' y . .

which yields




-t

v . 1o-k

,'

i

F] It
h H N )
a result which is- obtained more directly from the substitution log x =t .

f :
; . ] . ‘ .
The method of jExample 10-4c, for wu = £f(x) and Qv = x"ax exhibits
.the formal integrability of any function of the form x” £(x) , when n £ -1,
where f'(x). is any rational combination of x and YQ(x) and Q(x) is a

quadratic polynomial. Integration by parts exprésseé the given igtegial in’

. T +1 _ i
terms of the integral of §n+ T £'(x) which may be transformed into the
From the assumed

" integrel of a rational function by Theorem 10-3a. o
integrability. of rational functions, the result follows. ‘It follaws as a :
slight generklization thaf P(x)f(xj is fo;pally integrable for any poly-
ﬁcmial funcfion P . From this argument we Qbsé;ve again that if £ 1is a
logarithmic, inverse circular, or inférée hyperbolic function, then 'xnf(x)
is formally integrable. In addition, for ‘h(x)'= ¢(x,J§T§T}_, a rational | ]

. combinetion of x and JQUx) » the expressigns x° log h(x) , x” arctan h(x)

.and xé arg tanh h(x) are all formall§ iﬁtegrable since éhe derivatives of"

- . -~

o

e ‘ py

) 2
J

Efa@ple 1o-4d. Consider‘the integral

u *
log, arctan and arg tarnh are rational functions. . -

’

. X .
_rx e .dx -~ o .

- -~ L -

we found in Examele 10-2f by other means. Now we integrate by ;,
* . Then by (2) ’

t
i
I

-

. parts. Sets u=x dv = efdx and v =e

. - -
ble ble ble .
Ix/e dx = xe - je dx

ation by parts may be used to produce a simplification father than

lete integration as in Example 10-4¢ when r = -1 .,
- - . . ) ’ i

.
S

\:::1§f a rational

: Since’ 'arg tanh is-proportioﬁal-to the«logariﬁ
functionf it could be omitted from this list. . '
. = : . 3

- . + - . /"‘,
- V!

/

!

”

4

. - 55? . 1 9 ‘;‘:' // . - . ’ v - . 5 .
. - 7 - . i /‘ - ' R , - . -
. . S 4 . -

-y,

L

- = * //‘ ’ v - <
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{~10-k - ;o RN - o
. Example 10-Le, Consider . - . P ;:' «
. ; R .
b - "< _ ' - : p ‘ Lo J a -
. bx , ) T, g ' .
‘ . I = e sin ax dx L .
e - R ' ’ ;
- - ~ J .
bx ebx ) " - PRI
For u =sinax , dv = e é@x , v » 5 » We Obtain LT =
.: . . - - B : ) - T .
; .- "l bx a b
. I ="=e sin” ax '-. < e .£COs ax dx N
‘ D - b
. N ) : -
{
I . o 1 bx . - @ - ‘
. 'f=B-e sin ax - &J , .
* e - 'd
. i y o
- e 1 —c)b WO w
'+ where’’ S
' . X ST = e s cos ax dx - > -

- N
- . ca

‘presents the same difﬁiculfies of formal integration as I . However, by the
same techrique,’ we cdn express J in terms of I and hopefully may “obtain

an equation which can be “solved for I . .Now take u = cos =- »nd
- bm . - - ’

-E . . . : ,
v =5 in {2) to obtain - - - . .

~u

i, - .L el.’b‘}c v a bx . . ’ -
: .o~ J=ge.cosax+—b- e sin ax dx . =

"L e "l bx L oa .
. - == &. cos ax + — 1 . -
: ~ b o . . . .
. r ’ - - . T . : . ) . " e
S Entering the expression for J above. in the expression for I and solving .

“for. I , we obtain ) . N ; T .
+ . - . . - .
. | /

I === = > ebx (b sin ax - a cos &E) + C . - e
- - . ’a‘ + D —:; . L , o .. . | | _‘.
" ) ! - - -t . ‘ l . ‘ . Y -

- . -

. -

s

. . » . . . L o
i) Recurrence xelations. The idea here is to express an integral of

) (

the general form £ (x) ax in teérms of *J £ (%) ax .

. .
. 3

-

e

.

A
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Example 10-4f. Consider

. I = J.xI:'(l - x)™ ax :(n>0, 1 £ -1).
C? . - -‘ - .‘r-+l "'
n r x
Set u = (1 -x)" , dv =xdx ; v = -+ - Then
~ o 1 ' , ’
. - r+ n
_XT (1 - x) n s LTl n-1
I, = — T J.x (l. x)} Tdx
- ) o r+l . "

where;:for n'= 0 , the result yields, corfectly, I . Now, observe

that - - S

- —~

I ] - . - -
T+lp . )P o T - 0° - (1 - %217 ;
whence, . .
- \\ ‘n
™~ n . : T
S X T - x) n - RN
I - Iy = r+ 1 TEE I EIn—l In] -

This eguation may then be solved for In in terms of In-l :

. k“:" ) v )
5 , .
r = x* %(i - x)" . n . T -
n n+r+1 n+r+ 1 n-1° ?
or ' N _ .
( r+l n : by
r n _ (L - x) : n r n-1 .
-[x (1 -x)" ax T hFr+1 TnFr+1 J:x (2 - x)7= ax .

& , .
Now this formula may be appliéd recursively to express In—l in terms of
I In-2‘ in terms of In_3 > etec., to ylgld ,

n-2 ?

)n—2

In Tn+rT+ 1 n+r (n+r){ln+r - 1)

' ' (pn -1) ...1 .
Foeee (h + r)(hn+nr - 1) eee (x + l)}'+ c

L [(l.- x)n n(l - x)?" -1 + 2o - lj(l - x

-

Sometimes it is necessary to prepare for 1ntegratlon by parts by some

~ preliminary rearrangement, as we show in the following useful example.




-
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Example 10-L4g. Consider. : .
. N - .
' ‘ ) in C _
" = x x . - »
2 . _In : f cqs a ' .
- . . - o ) S )
L o na A n- P x '
We write . cos™x =‘_c:osv-n 1 X COS X ., set 'u = cos 1 X 5, dv = cos x dx ,
v = 8in x , to obtain - : . o )
T 2 . n- .2
I = cos®t x sin x + (n - 1) J'cos 2 x sin® x dx ° .
7 ) - ' oY . .
- : - . "'2 T S e
=-cos® % x sin x + (n - l)_J.cosn x (1 - cos® x)dx . »
Thus, . . .
R I < cos®™ L x sin x 4?(n N . ]; |
n . n-2 n
Solving Zor I, s we have ' ) P Tt .
n-1 L ' ' -
cos x sinx ,.n- -1 : .
I = -+ I .
n . n n n-2

step we observe for n even

.

Since the subscript is lowered by 2 at each
of the integral terminastes at m = O with

that the rgcursivé‘reduction
. : . - oo o
v Io = -[ dx = x + C , and for u odd, at n =1 with _ -
Il = ‘. cos x dx =sin x + C . ’ . ,
" . ol \‘ L N ’ v l" . } .-
Often the principle use of a recurrence gelafion is not to obtain the
formal integral in terms of elementary furtctions (which may not be possible)
but to obtain the original integral in tgrms_df a simpler integfél} i '
. . . % .- N .. ’ - - <
Example 10-4h. Consider . . . = »
‘ n* -x2‘ Y | o i qﬂf-‘
I_.= ‘f X e dx . - A"
e i > -
) ° 2 i} 2 . , : :
- - . ~ v : .
From -u = x° 1 , dv = Xx'e * ax y V= = %-e xi;? we obtain | ; ‘i\\
' 1 n1 ox® (n - 1) P L
I =-=x e + - x e ., dx
n 2 2 v . :
. - .- g \../ ’
or T
e .560 : - 7

I~
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. o .
n-le—x + I 1 I .

- = - = n-1
o CIn= -5 2~ Tn-2

n

If n 1is odd, the recurrence relation gives In in terms of elementary
. o x2
functions and - Il 3

but Il = - % e + C is elementary and .Inﬁ,is
formally‘integrable in terms of elemehtary functions. If _n 1is even, then

the integration of I is reduced to_the‘integration of

. --X‘2 i
.IO=J-e dx.. - A

This integral is not elementary. However, it';é well known -and much used.

L

‘In terms of the error function erf (the area under the normal provbability

s

curve) given by - e . -

> : .

| I

. o erf x = f;— e 2 at
7 . v2n J O |

we have |

. . - ' o e\ :
. .y | - | Io =.4; exrf (759 + C .

v

The common tables of the error function enable us to work with™it numerically

-

Just as conveniently” as the circular fuictions.

‘ Exercises 10-4 - . .
1. Integfate the fbllowing.
. Fe .
(a) * sin“3x . (£) x-arc tan x X .

s i e ) arc_cos x/m o
- L . - JSsr @ : | -
- () x3 ;-éx . . - (n) Q@*S-in2 x _;
(3) Q§'log ax - S - {o) x? sin x° b
) S (e) .log2 bx ; - (p) x2 arcsin ax
. () log3 x ) - . ; (q) cqu 2x
{g) arc'cos Tx i (IJ? ?in5 x - ' )
) (h): arg sinh ax p (s) gin (Log ax) o -
;(i) arg, tant bx " -(t) x tan™ x ‘
'f:_;‘(j)' arg tanh vbx _ - (u) (arcﬁin Xﬁ?‘ >
* - (k) arctan 3% h - (v) 'sin ax cos bx

561 .
) : l \9: I

-

N

-

o e
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2. Support the geometrical interpretation.of integration by parts by
showing for w = f(x) and v = g(x) where £ and g have inverses,
that u = @(v) and v = ¥(u) where @ &and Vv are inverse functions.

3. Verify as alleged after Example 10-4b that the method of the example
does .demonstrate_the reducibili'ty of fg;n f(x)dx +to the integral of a

- rational function if £ is any inverse circular or hyperbolic function,
or if f 1is the logaritlmic function.

4. -Establish recurrence relations for each of the following {(in each case

. m and n ‘are positive integers).. .
(a) Ssinn x dx . - (g) Y J xn 'eafx“dx .
g o () S;«:m TogPx dx . ~(h) J x™ arc sin x dx .
. {e) siz™ x cos® x dx . (1) J. + dx .
o i sin” x !
: s 0
(&) x® arc tan x éx . - _ . (3) J. —dx .
. o . . n x
~ . ' _x s //
Afe) _an arg sinh x dx . . (%) an cos x dx . T
- () fxn arg ‘bang. X GX o mpa . , (Note the difference between

. el
. n odd and n ~even),

r

¥, 2 ) . _1: - </

o

“ = ' gt
.

[y
@
)
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10-5. Integration of Rational Functions. o .

‘The applied problems of Chspter § and the problems of formal'integrgtion
in the preceding séctions o? Jh‘S'chaptef were often recast in the form of
_the problem .of integrating a rational function. For a rational function there
always exists a formel intebral in’ terms of elementary functionsw The formel
integral is obtained by *educ1nb the rational ;unc ion to a sulm of =2 poly-

nomial function anéd functions defined by the elementary forms’///

) - . X + a
2 =
I - 2)® + 717

? : (o > 0) .
It can be proved that such a reduction is possible, either from the
?undamenual Theorem of Algebra which feguires the theory of functions. of a
complex warlaole, or directly by new algebraic oechn“ques. In ther case

2 complete proof would take us outside the frame of this text.

The reduction of a rational function into the sum’of a polynomial and

terms of +the form (1),and (2) is called a aecomn051ulon into partial fractions.

aa

We give one simple example. .

Example 10-5a. A common case (as in Section $-4) is given by the

rational expression

3 1 __1 1. 1 )
(3) (x - 2)(x - b) " b - a\x - b‘— x —’a) ? - 8 % b ..
From the decomposition (3) we immediately obtain the integral -
~ ' ax ' 1, . |. .
- 5 s =gt (log Ix -t -leglx -al) + ¢
N . “ ’ | -
- = = l lOS !K - D ‘T"'C . . . .
’ o - a X - aj .
A S i ) : . .

‘T.et R ©bpe any rational function. 32y long division it is always possible

to put R(x) in the form
. N
N P{x)

.. Rx) = S(x) + QT;T//” .

os

~ where S , P , Q are polynomials and the degree of P <1s less than that of
Q . Since.%he polynomial S is immgdi?‘ﬂiv integravle, we may omit it from
conszderavlon. It fOl*O"S\IrOm the Fur 21 Theorem of Algebré (Intgrf
mediate Maunemau_cs, o)1 290ff.) that . >1lynomial Q(z) wiph_reai : X

o 563 . | '
« : T S
ERIC : & C, > .

rorecrosieio enc) &
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1

-

_ . . . . .
coefficients has a unlque factorizatlon of the form
-y Ba L N2 L 2 m1 2.5
) _ _ - - _ - =
(%) Q(x) = Alx-c)) T(x=-cy) “ool{x-%8)%+ by [(x -a, )2 7] Tt

L
-

N .
where the ¢, are the distinct real roots of Q , and ak bk » the distinct

imaginary roots (bk o) .
. &, '
W 4 ) - - .
Now suppdse that R(x) = %%ﬁ% where the degree of P is less than that
of Q , and that P and Q- have no/common factors. Then we mwssert that .

R{x) 1is the sum of-exp*e551ons of twe standard forms: for each real root

C , an expression of the form

. ‘ ' rif‘ r2 | . rn . f
(3) — + s + + — (r #0)
(x-c)_ (x - ¢)

where n is the miktiplicity of ¢ : <for each pair of conjugate imaginary

roots & ¥ il an expression of the form
o _r" L] Ve
. - ld
Px + g PXx + g ‘ P XN )
(&) - : = = F Tt e * ’\;m i
(x - a)€ + b [(x - a)F + p°] ) [(x - 2)° + b ]
: St BN RN )

N
-

where m is their common multiplicity. We merely use this format as a guide

without Droofmvffﬁ'each narticularzﬁfsé it ¢can.be verified directly that the
decomposition obt tained is correct./”"Once we have obtained and verified the

corréctness of the partial fractlon decomposition we have reduced the inte-

gratﬂon problem to that of 1ntegrat1ng'the simple form (1) ana (2).

)
s

Before we embark on the problem of integration let-us see what is
1nvolved in uhe algetraic Droblem of obtaining the partlal fraction decomp051—
tion. *The flrst.problem is to taln the roots of the polynomlal Q(x) . In
general the roots of a polynomlal cannot be obtalned from the coefficients by
a formula 1nvolv:ng only rational operatlons and rat;onal powers. There are
such ¢0fmulas for the roots of polynomials of thlrd and feurth degree, but
these formilas are generally useless. For example, the formula for the roots
of a polynomial of third degree dﬁy ihvolvq complex qﬁantities even when all
three roots are real. Fbr éomputational purposes it would be sufficient to
estimate the roots numerically, but it i% usually easier to estimate the’
integral directly (seé Chapter 13). (Nonetheless, the method of decomposition
is valuable because often-the factorization of Q(x) is given by the con-
dltions of the problem (compare Sectlion 9-4(iv) Egquation (12)) énd often the

faoorization is easily obtained. . -

-«




~
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Next, we turn our attention to the problem of obtaining the partial

f“actloﬂ“ﬂecomp00itlon once the denomlnator is given in factored form.

First we congider the problenm of obtaining the partial fraction décom—
position Of? . :
Y -
P(x) ' P(x) .
Qlx) (x - C‘lj (x - CE) des (% - cnj -

- L.

" where the roots of Q@ are all real and simple (oflmultiplicity 1) and the

degree.of P is less tgah that of Q@ . From the foregoing,ﬂthere exist

constants A, (k =1, 2, ... , n-) such that .
(7) B(x) = Al + A2 — 4+ L.. + _;ﬁE__ : - » *
/ . Q(x) X - Cl X - c2 ‘ x - cn .
For x # cll we obtain on multiplication vy (x - cl) i
VP (x)(x - cl) ]
) Al = 515 - S(x)(x - e;) = T(x) .

where S(x) is the sum of 2ll the partial fractions but thezfirst. In a
deleted neighborhood of x = ¢y this equation states that the expression

" T(x) defines the constant function T : X—=A_ . Therefore -

- l .
P(x)(x - cl)

‘ : A = 1im
- 1 . Qlx)
1
— 1= : . P(x) . .
- if:i (x‘— cz)(x - céjf... {(x : ?nj . o
whence,
5 . P(clj '
(8) Al = (cl - c2)(?l - c3) eee (cl - cn7 ° -

* R .
This last ®xpression can be written tidily if we observe that since

Qey) =0 - )
o ;o i Q(x) - Q(e;) ~
Tim —2X) g4 L _qr(e)) .
7 X~e, (X7 Cp X~C * T e 1
o 1 ]
" Pley) « n
- Thus Al = T (e "« Since ¢4 is simply a2 symbdl forsfny one of the roots,

1
it does not matter which for the purpose of ﬁhis discussion, we have in

general, .

@,
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Example 10-5b. We obtain the partial fraction.decomposition of

a —_— S
. - o . o SN
- X~ +x - 1 .
- - . . . CoAx + 1L)x(x - 1)
> 3 R -
Here P(x) =x +x -1, Q(x) =x" - x , Q'(x) = 2x~ - 1 . THe denominator

2
has simple ' zeros at -1 , 0, and 1 . From

we have

P(%). 1 | 1 .‘ 1
ax) S T =+ ="

.

"
8]
!
|
vl
M
‘

. J

which is easily verified to be correct.

. .
There are general technigues for the case of rmuliiple rezl roots or
imaginary roots, but in such c¢ases it is often easiler to determine the
X.

decomposition by the method of equated coefficients.

'Example 10=-5¢c. - From

x2 + 1 ‘(x2

)2 T

Wt
+

X
x(x= + 1 +1)°

we obtain on multiplying both sides by x(x2 +‘.l)2

- ) R 2y 3 2 f
— w = T 7
x7 - 1 =1xr'x 1) o+ pl(x + x=) + ql(x + x) + Pox~ + gx .

)xT sgimt o+ (2r o+ Py * pg)x2-+"(ql + @ )x + r

R . - »
provided : # D . llow the Toelllclients of like powers on the right and left

A
must be egial (Zxercises 1045, N-.3). Thus we obtain the eguations

r + pl = 0O ) E
9 =1
- ::+P1+P2=O‘ / i
- : ql+q2=o . '
— 4 -
r=-~1,

-

from which » = -1 > Py = 1, g, = 1, Gy = -1, p, =1 . This yields
&

'S .
Usually called the method of undetermined coefficients, an irritating
misnomer since the conditions do determine the coefficients.

e By 586

ERIC - 295
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. h 3
; X =1 1 . -
[ . . = - ; +

- = =
x(x™ -+ 1)< x

o
(19
+ |+

which is easily verified to be correct:: .

. "Given the partial fraction décomposition of a rational function we

-

complete the work of formal integration by showing /how to integrate the

standard forms (1) and (2). For (1) the integrals, are already found. If

n>1 s W& have- --.. -. . .
(10e) . | —=—ax = - —= — + C
‘ (x - ¢) (n = 1)(x - c) .
ix ¥
and if n =1 , then :
r - . :
{10b) . ' ~—5— dx =r log |x - 1] + C . . .
‘ x - 17 . .
For (2) we introduce the substitution R
- .o
(x - a) =b tan v : (_-%5115_-"21)

Y

vhere we assume. b > O (compare Example 10-3b). “Using dx = 2 du

cos U
we obtain
7‘ -
DX + g dx = D tan u + pa + g b au < i

2 .2in - .2n 2 n 2
[(x - 2a)% + 7] : 5~ [1 + tan™u]” cos‘u

1= . - a 1=2

2n-3 Da + 2n-2

cos u sin uv du + —Ss—m—— cos u du -

‘ -———
- . ,02::-.1

. 2n=-1
b
F 3

OT the last two integrals, the first 1s immedistely formally. integradle and

the second is given dy the recurrence relation of Zxample 10-Lg. We leave
as an exertise the problem of completing the integration and representing
the formal integral in terms of x .

of the following types (plus a constant of integration),
Q

. x - _ Ax + 3 L
(lla) < \ N 2 2 1 .
. {x -2)" +27 1" - 2

vwherek is a positive integer, k <n , - | <.

' ) ' 2, .2 '
(11v) - - Alog [(x-2)" +27], )
(11e) A arctan = ,; 2 .

- = L ~
- -~
o .

- .
Aruitoxt provided by Eic: A
'

rd
s

The resulting integral is a2 sum of terms
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- ‘F‘:r.na:lly, we observe that if we knou the factorlzat:.o*l of @{x)  we know

the form of the: 1nteg1:°.l of g—,(—(;% \from~‘GlQ) and (11)7 Therefore it :.s-

sufflc:.ent to- dlf*‘eremtia‘be thls form»a‘n‘d detemlne -'tbe consta.nts by ‘bb‘e

~

-

method of equited coefflcients‘ ER . - N . ~ .
. . ] -“:_{- S ) . . e, .
- . _ . < ' ;gs:}.,' e S L
. - _ Example 1o-5~a.;-* Consider e, . i . B ' .
. - - . P Y N
3 L jf‘i+4;-«v; - e
N - -_— . ax 2 -~ - £
. - . R s L. x (x -+ j_:) ‘_&: . ) - J .
° ‘ * . t » r I
. The :r.nteg*‘al ‘must oe oft ‘the form - - ’
3 a - - - . ‘L
. o : 2 x )
» _ alogx+’-€+alog(x --r--la-)_+6arctan§+c. -
- The derivative of this expression is ) ~
!‘- ’ ) ‘ .- J ’ - N
: ~ =2 _b' Pox __28. _(a+2)x> + (28 =b)x> + bax - Ub
K X 2 - -
3 * x ,__-.Q:-c‘2 + L ::c2 + i o : XE(XE‘ +¢:l;.)
2 - Since the nlzneratdi' of this expression should be x\f!--l we have on equating '
coefficiernts ‘ " . s e N ’
- - - - , .
) T a+2x=0,28-b=0, L =1, -lb =1,
whence g . .
. 1 1 1 LT 1 -~ o
. E K b = - -E- > o =_- 8- 5 B = - 8— . .
It is easy to verify that +this yiel'd"s the correct Integrai. . -
) ER 3 - Exercises 10-5- )
) 71, F‘etegra‘te the following . - -
. ‘ _ ) -
- x + 2 . x
68) (e) - (a £ £ c)
, 2 4 3% o+ 1 Ax - arx.- p)(x - c) ) )
; 3 o -3y i ;
(o) - —= ‘ (£) 53_._1 A
X~ + 3x = 10< & _ T xT -1 2 -
’ 3 ' i . - ¢ .
x 1 ‘ <
(c) /(o > lal) (8) —————= _ :
2 ? 3. .2 -
. x= + 2ax + D T »xT toa
< 2 / - ‘ 2 R S
(e) F ot p ( Ex2
(x+z 2)(x - D) ; x(x - 1)2 _
(Consider the cases -
‘a #b =and .a = b)
568 : o~
& - A\? -




.. » .
< - 'Ll- - :
i 1 . X
3 (1) o - (2) ]
: x -1 ) . x- + 1 . )
. - X g .
. (J)""E_—ff Qs (m) . _ . . -
- - l:‘-s xg - 1. | . ‘
N i 7 _ o . ’ -
) i s N
) x + X ‘ - = - V - ~P' - -
2. Prove from Eguation (3).that if ' R
- : ‘ C ¢ N
s | | ‘— .
> Q(X) = (X - ‘aj-) (X - 8.2) Ceee (x‘ - an) 5e - Wh?re

a, < &, < e < g, then 5%;7 has a decdmposition into partial

s 2 . 5
“. ZLractions of the form i : - ’
~
r. Y I, r
1 1 2 . - n - .
G(x) " x - a tx T e treer Tx T
. ' 1 . 2 - n .
~ . * ~ % 4

3. Prove if

-’

%+ B P 8

- n .
i 2. X + a x + .ee + a; = b X
. ho) n -1 0

n-1 . (@]

~ - ’ ) AN ~
for all but finitely many numbers x , that the coefficients of like
‘powers om*the right and left are equal; i.e., & =b, for k=0, 1-, #

n . -
o & o b ] - ’ . .
!‘ B -

DX + . :
= dx “can be expressed as the sum of terms

L. Verify that
‘ [l -a)®+p°) L @ -

of the forms {(ila, b, c). —
~y » ¥
) - -
. / -
- . P - -
. . i . .
. -
‘ P Q_g
. )
S i - {. g
T - ) . » .
- - e . . L3
‘ B [ ]
4
—~—uy . % -
t‘ - I3
) ~ 5 ~
- [ - . -~
- . .t N
' 569 - <
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10-6. Definite Integrals.. ‘ =

@ - * The preceding sections. of this cHaot ’ﬂyere deJoted pri marlly té the

Droblem of finding the indefinite ;ntegral Of a- glven function: In/prlnc1nle,
thﬂs solves the p“ob em of evaluatlng any deflnite integral of. the fupctlon.'
~ In nractice, it is often deszrabWe or necessary to evaluate a deflnrte
1ﬁtegral not by formal 1ntegratlon, but bv some cher metnod altogether.
IE may be impossible to obtain an explicit renresejtatlon of the 1rdefrn1te .
integral In terms of elementary runctrons yet some soec1a1*symmetry may
yield the wvalue of a givén. définite 1htegral e? orulesslv. -Even if the formal

expression for the 1nde?1n1te lntegral is obtalneble,.the use of a symmetry
condltlon may be a wo*thwnlle shortcut.f O?ten the‘ldea of Antegral remalns
appromnriate when the Rlemann lntegral as strlctly aefwned does not exist
Peczuse the range or domain of the 1ntegrand may—be unbounqeﬁ» "In these

.caseg, wefhave to extend the. definition of 1ntegral 1n a meanlngful way. All

'these-proolems are treated ‘in this section. - a;' _'"E' 'L.%
] } - i o - "
S : (i) §XEES:£X' Watch ‘for symmetrles, the, 6bser§ation that & symmetry

exists often provides a direct solution to a problenm or aﬁ important simpli-
5

fication. We have alreadﬁ pointed out one use- ul symmetry in Sectlon 6-L.

PO o

~ - . -

| A . ~ L
If f 1is an odd function and integrablé obn’ [ a,a] .then

. J
A o - -
’ a ' '\ C e
(n f(x)dax = 0 . ) ‘ Y Te
L - - -a’ - . - N
v 1 - . .
. Example 10-6a. Consider . l ) . : L
. N ) i
. T 2 !
¢ I = x e sin4 x dx . - - . .
-7 ] . .

=

It is hopeless to find the indefinite integral, and it 1s not needed, since
» . : .
p . . : ¥ B LY
I=20. | » P Y
If f£- is an integrable even function on [-a,a] , then 'y o . >
; a T .o A

- (2) flx)ax = 2}, f(x)ax .

o
"
o

\




- T

S - I‘I" = 2 . (
LR

. Example 10-6b. -Consiger [ ]
< . - - ’ :’
% ]
) x — < . : ‘/. ‘,f
- I = (a. + a.t + a t2 AL+
| o %1 2v
-3 - - :F . .

i
a

2n

Often an lntegral which exgﬁblts nopobv1ous

et a
4 A ‘ -
n - .
a at . .
2n ’) | . h
3 ~

-2n¥l . o .

i ' x
! b . v
X = 2 (a X-'—L—+ e _2!1__

symmetry can be transformed

into- a symmeurﬂc 1ntegral Thﬁi 1s spec1f1c for each case and no general rule
for discovering such symmeurlei canvbe given. ’ “Q\\_
K R .
. ) ' "i ) ! N
Example 1Q-5c. Consider g
. ' i 8 S
" S ‘ . N
- 2
Iﬁ: “x -2 dx
4 -1 .
X . : :
) T ~ 3 i ; -
Since the .graph y = “x -2 ﬁas a center of symmetry at x =2 , we set
W =x -2 and.find" i ‘ e -
: . : 3
§ , .
. fZI'=? . %ﬁ: du = 0 - .
.oo1J-3
K «+ 1| - * - F‘
Another 1mncrtant symmetrylof a function is periodiCﬂty.
. If the function £ is| integrable and periodic with period -

P , then the integrals of f over intervals of lengih p are T
all the same; i.e., : “ - '
a-!-_':-) . b+p .
(3) - - f(x)dx = £(x)dx
e : . a S b ¥ -
for all a =ané B . ) T ) - -
The stéé; % -is geomeurﬂcally obvwous. The grerh & = £(x) bver.gix

- lntqrval of lengyn. é&_
Ve 3
+¥e function from. a

. picture B
’ 4 '_' - A
a + {x + 1)3

a8 + kp to where

represents

th .o is identical to

k- is an integer..

'uhe comblete grarh ln

the sense-that the
the picture from »

The--eptire grzph c¢an be

thought of as 2 seguence of 1den icel pictures of width p ,.laid end-to-
“end Figure lO—e). If a fram oP width p is lzid over the graph (the «
a - -\_;\‘_\ -.' N R ! N <
. .‘_ﬁ) Jf . - i “_
Y
, - —
o . .~ 571
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Figure 10-6
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\fa**(k +1)p f~>~( k+2)p
___________ - oo \'
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< -~ 10U=-0
- e -

intervai“’Eb b + p] in the figure) then the part of the total graph within i
the frame ma; be.cut elong a.line a + kp and reassembled to form the
original picture by iﬁterchanglng the two piece formed by the cut. This
geometrlcal dlscussion is exactly ‘parsphrased bv the analytical proof.

The proof is left to Exercises 10-63, Number 12.

A\

Example_lo-6d. ponsider ce

xa

n+ l/h . .
I =.S : (ao + a, cos 2nx +.... + & cos 2k§x)dx.. . } o

0.

- P 3

" 3 .
Since the integrand is periodic with periocd 1.,

1 k _ s 1/ x
T =-nS E a,, cos 2vrx dx + S ‘E nav'cos 2vnx dx .
O v=0 o] v=0

=h

For v>0, - " .
1 . ‘ 1
. ' - cos 2wrx dx = sigvivxx l = 0.
\ o] 0 5
and - o R ' ) oo °
1/ - : sin'(%?)
. o ; cos 2vmx dx = ———§;;f—_ . .
Qpnseeuently,
: - ., . 7 * o
al % - ) ’
, o I’fl."*;)‘ao’*ﬁ".f"loﬂ"”' )
N N Lo -

A ~

(ii) Speclal reductlons. The gener form of a recurrence relation

for.a definite integral is , . R o a .
i< P - b -
fn(x)dx.;-gnﬁx) . + cn: a(fn_l(x)eg -

a . .
~

.- - - R . . ~ .
Quite often specific problems lead to integrals for which the "Boundary" term
. - - N b . - - . - -
3 .
= g,(p) - g (a), - | e
a. ’

" B

-ED

[ AE

v

is zero for n>0, say. If so, we immediately have

4

-3



10-6- ' S : ~ ¢
- . . N .
b L b _
- — . .
P J.n(x) = ey see O fo(x) . ;
: , a a
- : - . a
Thus in Example 10-L4f, we could conclude at once from
. Com+l n 7 ) : o
- : ol n _ox (1. - x) n m n-1
R Jx(l-x) g 1 +.n+m'+ljx(.l_x) ax
that
T do1 : ' 1
, AN me oo n{n - 1) ... 1 " m
- S e T CR T -uny mwwn e SR
- E o . ’ - . O{
7 ‘ o n{n - 1) ... 1 -
Ky ' - "+ m+L)(n+tm ... (m+ 1)
Thus we obtain an impo::;tant- connéction with the binomial. coefficientss
. r l v » ) X '-l
' (L - x)® ax = [(m*— m+ 1) (n+m) :' T
s O, / : .
5.t Example 10-6e. A case of Special interest is -
. — .
_ /2 ' -
.‘ N n - . 2
. é & Iv = cos™ x dx . )
?_ » . 4 = o-\'.- i ) -
- '« From the result of Examplé 10-Lg, we have
- ., V=1 ‘]T/2 . .
' - cos X sin x° LoV -1 h
i, = v . T
) A . p ) -~
For v > 1 , this yields simply . ' g L B
I S . v -1 T
. * T = T - - -
S (4] N : v vre Ty=2 ) *
iFor v even, Vv =2n , we obtain _ ‘ .
: ’ - _f(en-1)(en -3) ... 1= .
(52) “on T 2n(2n - 2) ... 2 2 " .
- ) ‘ ,:2\‘_ ¢ '
- For~v- odd, v =2n+1 , we obtasn -
' 2n(2n - 2) 4. 2 - .
(50)- . Ten+1l = T2n + 1)(2n.- 3) ... 3 ° -
, . - . . - . .
- ' h b
: L. . .
- A .
<
21 2 4 2
. 1
- ' 7 5
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.. . - ’ . . * o 10—6 »

»

> From {(Sa), and (5b) there can be obtained a graceful represen-

. . . .
tation of 5 kdown as Wallis's Product. Observe that

2
SR - - (em)® Ton .
- 2‘ 1.5 3-5 5-7 {(2n - l)(2n4-l) 12 el |
.~Now, since 0. <cos x <1 on {O,g] we have cosY+lx <cos’ x for
= : X . T .‘ .-
all v so that. Iv+l SIV -, It follows that 12n+l < 12n 5‘_211_1 5
. 2n + 1 :
and ~,:Ln.c‘:e: Ien-l = Tsn 12n+l , that _ .
. | .
e e = .
2n+1 2
-

‘From the Squeeze Theorem (Theorem 3-U4f, Corollary 2) which is easily

_extended to this kind of limit (the epsilonic proof. 1gan exact parallel), -

I
we obtaln lim Iﬁ = 1 , whence - - 14\‘ : . ‘
2n+l . _ 5 S
~- 5 o o 4
T _ 27 . 4 6 \ .
’ 2713 3-5 5-7°°" ‘ -

o
.

where by thHis in_fini‘te'pr_'oduc‘t, we mean simply

-t

A il::mf[é.z . 142 ‘. 62 (2n)2 , .
l1*3 3.5 5-7°°° (2n - 1)(2n + 1) ’ '

- 2n 2 : s
llm 1 [ (n t) . - A
2n + 1 (2nj' - . ! -

Il~ Cw

»? N
‘\.

-

The verification that the two expressions in these limits are equal
is left as an exercise. i >

Wallis's Product is not useful for estimating -« , but it will - b
be used (Chapter 13) to obtain Stirling's asymp‘to‘tlc formula for
nt .

- . ..
- ’ s 3 -
i~ 5
~ 2 ‘
.
hd 4
s
. s - :
o~
- . . . .
-~ B _ L ‘
. S
Lt c > -
. B -7
Y i - u“: .. 2
- o2
* . PR - ’ ‘- : . ~ ) 2 ’ .
John Wallis (1616 - ¥703) ~English. - -
. ,.g . B - .
- : o . -
14 < - -
A .
575 : ) .
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. 10-61, - . - ) . - _ - ’x . / -
i . Sl 4 -
~ S ' Exercises .10-6a - o o -
Evaluate the following definite integrals: ' :
- o s . - : . & . = oL T -
<z - ;o 29 sin9 X " Tt % /2 ax
1.: 2—\29—2—61:: * 6. --a+bcosx a>b 20"
. : - -39 x + (9?) ife : ' J o . - , m
. Rl . b ‘ -
- [ 1 . 2 .- : " 7t /2
2. I %3 e ax. T, sin "% cosd x dx .
h J 0 . J 0 ‘
Y T e _ ’ . ) o ] r 2 a
. 3. loz” x dx.. . . 8. —=X .
J 1 ) ' J1ix+ x5 .
Py - . ot -, - .
O B/ - (b 5 =
h, sin” x'dx,Mm,a positive ' 9. - x dx.
J © integer) . - J o _
L3 .
. F /2 - _ o ) c/4 .5 -
5. » sin™ x co_sm x dx , - 10. S s;n g +2l ae.,
~J © ’ Jox/u @ Sin” 6 + D co% ] .
- (m, a p?Slthe integer) . : a>0,b>01 .

. -a . . o ’
11.. Compare f(x)ax with j - f(x)dx when f is even or odd to
; Y, O LT -z : . Sy
= B I . - )
dexiv€ the results (1) and (2) of the text by & method other than the

@

one you employed for Exercises 6-lk, Number /l,&.

. : £
“12. Prove if fiis integrable and periodic of period p , then for all. )

a and D

;w 7 [ a+p ‘ b+p ) - '
R . f(x)ax = f{x)dx . .
a ) A .b . . .
A13. Prove that if n > 2 +then
-~ . ‘i/2 -~ ° . . ¢
o .500 < J —at < son .
) : .0 A - tn j//
) T éx(l + siwm_X) 2 ' A
A 14. Prove that - S dx = . . -
: ‘ -t 1 + tos x\ L ' . -
. - - g . o ) ‘ 2
15. Show 2.k | € (em)® + -1 25%(n1) 2
_ * I 1L-3 3.5 5.7 “°° (2n - 19 (_gn + 1) , 2n + 1 {2n)! .

-

- oL, 576
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. X 7> 10-6
16. Determire tbe value exaéi to two. decimal places. of
. - ) 36.1 ' .
— " T € sin{x log x) : - oo p
. B o ax . : . . :
1
- - ; . )
.- v J
- 17. Evaluate
@ N . Tf/ll? ° t “+ %1— . * ’
R ' _._._..____—4 : dt - -
- o ' 2 - cos 2t * .
/b .
< . . - R ) N ’ ) . /t\
(Hint: Express the integrand as the sum of a symmetric part and an
integrable part.) T ’ ., . —
e )
. \_
i . .
N A
3 A
“‘ l ‘.
i o ! e e
» ‘/ _r/
5 . - y _ =
- \s\ = .
; / L.
2 . . o 4
° ’ ;
. » i R
— ;
- 577 -
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. (fi1) Imprqper integrals. Often a problem reguires the evaluation of a

definite 1ntegral over an- interval where the 1ntegrand may be-discont*nuous or

-

undefined at isolated poimts. For exemple, in Sectﬂon 9 3(1) we sought to
. evaluate I = j. - log N dN . Although-.log.N is not defined at N O .and-
o . S |

is even unbounded in any‘nefghborhood of 0 we found it perfectly réasonable
that the 1ntegral should represept a definite number "I = NO log Nb - No
{Exercises 9- 3, No. 14). We gave the symbol I a numerical value,  but in so
doing we defirred something new.- On two scores,. we czﬁnoﬁ describe I as a
'Riemann" teéral: . the integrand is not défined_and it is not bounded on the
-~ N

interval [O,Nb} of integration. Since ‘j o log N dN exists for
x . :

O <x <N, it is appropriste to define the integral from O to. ‘Noy

~

. No
I =1im S log W aw ..
x~0 x

-~ ~

More generally, let f be any ‘function ﬁhich has discontinuities on
the interval [a,b] . We say that the integral of f over [a,b] is
imgrogef.\:We shall intexrpret such an improper integral as a limit, as in

the cited example, provided the reguisite Iimit exists. For this purpose N
we use the idea of right- gnd left-sided limits (cf. Exercises 3-k, No. 16)
Let @ bve defined on e domain which contains the*open interval (a ) . Wé
consider the function ¢ which is the restrlctlonzof the function ¢ to
(a,b) =and define the right-sided limit of F at as » ’
' ‘ %
-~ . ’ llm B(x) = 1im @ (x)
x~at . X~8
and the left-sided limit of & "at b , similarly, as .
L. - A ¥ . h - B -
- lim @(x) = lim @ (x) . ]
X~b~ X~Db
Now, let £ He'integrable over-i%} closed subinﬁérval of (a,b) and let E
be any point of (a,b) . We introduce, thesfunction ¢ defined on (a,b) by
X ' ’ P - x )
. : . ﬁ(x)_=§ £it)at .
. | e
We define the generalized integral of £ over [a,b] to be
b
2

578 o ]
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(1) - | I =1im @(8) - lim $(a) ' o
- ) ° ~b— Fd O.'~a+ ] ’ ..
| - ) e B ‘ L7
-=Alim\\SL Elt)at + Lim- S £(t)dt ,
a~at ) o a.p” J ¢ '

provided the limits exist, and the integrals in (1) are defined in the sense

‘\‘ of Sectiép E~3. - . ) - =

This new definition includes the Riemann integrals defined earlier - E
(Fxercises 10-6b, No. la) and extends the concept to include cases not covered 5
‘ 73 - . : > -
-+ by Definition 6-3.

Example 10-6f. Consider the arélength L of the upper half of the

iY

1 - - -
unit circle ¥y = V1 - x2 for -L <x <1l . From the definition of arclength

e

1 -
L=\ —F—ax.
-1 2

N - X -

of Section &-3(iv),

. ™~
This 1s an improper integral; the intégrand is discontinuous at gpth'endé and
it is unbounded. To evaluate the integrEl-we apply thé pasic integration
Formula (8) of Teble 10-la and obtain )
L = 1im "arcsin B - lim + arcsin @ .
+ Bl . a~ -1 o

>

Since arcsin is the contirmious inverse of sin where the domain of sin

is restricted to [-1,11 P . .

>

3
1
NME

- (-3 ==, )

- .

kS -
as we expect from geometry.

- -
-

-

"

* : . . :
This argument may appeaer to assume whst is to be proved since sin and

arcsin were introduced geometrically. However, in Section 8-5 and Appendix
8 these functions were defined puqFly analytically. Since sin 1s everywhere
defined and continuous, and since " arcsin 1s increasing on the open interval
(~1,1) , it follows that arcsin 1is defined and continuous on the closed
interval [-1,1] . From the definition of t , Formula (9) of Appendix 8,

hd b

- %t g = arcsin £ » ’
it was shown with the aid of the addition theor that
e . g = arcsin. 1 . i ) S
" Since sin is an odd function (Exercises 8—5,'No. 11) 3+ follows that /!
arcsin(-1) = :% and the argument is ccmpletéd- In this way we finally establish -

the connection between tThe analytical and geoég?xical conceptioné of the
circular functions. 579
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" integrating by parts we obtain tﬁé'recurrence,relation

10-6-

"

t . - . ’. : ~
In: Exercises 5-3, Number 1L, by a geometrical argument, it was suggested
- T : . NO S .-
that the evaluation of the improper integral S leg N dx could be gsccom-
- . O —

plisked in terms of ancother kind of improper integrel,

(Y

log N. ] .
. . I-= / 0 e’ax . , )

-0 ~ -

This integral is na%uraily defined by = - .

log KN
I = 1lim s O eXax - .

Q= O

and 1s easily evaluated. . -

(B

Example 10-6g. Consider ,

n -x

- I = e Tdx .
, T Soﬁ

-

r

Ipris not obvious that the indicated'limit exists but we méy obtain, the
. _ : ' ) ‘ T
indefinite integral Jn==-fxpe *ax using integration by parts anrnd explore

the qﬁesﬁibn'of existence afterward. Setting u = x= s dv =°e-xdx and

ter

Jﬁ = -x"e ™ 4+ an—l;
whenée, J# = @(x) + C, where _ .
F(x) = - *[x" + L 4 n(n - l)xn-e Foee. + %5] . :
Now, by Lemma 8-3, , . y; J\\\ )
| A Bk _ o o

- . B ’ ' li.me—x =Oo
kﬁ& ‘ . Boo
Consequently, RER Y

I-= l:r_m @(B) - lim.@(a) = n! .
. B~eo ~0

Thus we obﬁain the representation -

-~ [--] °
- n_-x
: , n! = S. x'e dx ,

rd
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v

interesfing because 1t suggests the possibiiity of extending the defiinition of

the factorisl function from the domain of nonnegative integers in a simple way
o

of a function on the domain of all nonnegative real numbers.

With these examples in mind we extend the definition of iIntegral as-

- La Y
follows. R
A2

—

DEFINITION 10-5. Consider an intexya]l (a,b) , 2 partition
*{xo,xl,:..,xn} and = function £ _Jntegrable over every closed

subinterval of (a,b)' which contains no points of the partition.

Here we also include the possiblilities that a = Xy = = Or.
that b =x_ = . ' -
: n

<

The' integral (in the extended sense) of £ over [a,b] is defined to be

- -

) b as - aYi ) B -
(2 S c(t)at = E S £(t)at,
< | V U= T e BN | S

-

where each of the berms of the sum-is defined by Qi), and Sggh of the indditcatéd

limits exists.. To complete the definition we define.

A - : . ‘ a . - - .
: ) S £l)at = O

a2 . -

and if b <a , - I S .

b R a
S £(£)at = -S £(t)at , _
a ¥ b. _ 7 -

>

~N

-

a : .
provided S £(t)dt exists. (Compare Definitions S-ka, b.)
b B X ) ‘ ‘

- or b = 5, Or zny of the partition.points Xy is a point -

of discontinuity of f we.say the integral is improper.

The basic theorems for Riemann integrals also hoid for inﬁegrals in the

extended sense:

-

1 . . ' . .
(=) If £ and g are integrable over ~[a,b] ~in the extended sense, and

- ~

£(x) < g(x) , then

i, . : SU :
2 - S f(x)dx < S_ zZ(x)dx

a a

R

(Trheorem é—ha);




-

- {Theorem -5-Lec) .

integral converges on that it is a convergent integral.
g

10=6

- B
-

(b)_’If{ e , b"and c are points of an.;nterval over which f is

1ntegrable in the extended sense, then ) T _
‘ b c L re _ : . -
. S f(x)dx + L fx)ax = j £(x)ax T
- a b . a . ’ )
(Corollary to Theorem o hb) - . -.%. o

(¢) If £ and g are. 1ntegrable over [a,b] in the extended sense,

°
.

then . e ' N
. . b - : b : b ’ ' -
o S [of(x) + Bg(x)] = ozg-"f(ic)dx + a's g{x)dx
a -

a a N |

-
-

(@) Let £ 5e'continuops €n (a,b) and integrable over [a,b] “On

the domain consisting f an open interval I with endpolnts (04

and B (we permit a>B), let g be contlnuouslyrdl ferentiable.

If the -range of . g//;s 1pl,(azo) > and Iim g(t) = and lim g(t) b,

: . tx . B
then ‘ _ : / '

g Co . b :
s fg(t) gr'(t)at = S f(x)ax ..-
o4

a . .
. ) : 2
(Substitution Rule, Theorem -10-2.)
. w ' T . . ’ . -
, . - .
R ] . - - .
The proofs of (El:(d)‘are‘leftito Exercises 10-6b, Number 2. -
- _ ' 3 ’

-

flrst and - guestion 1ts 51gn1f1-

B - - B .o -
;Ig/general, we write the symbol & s. £(x)
. * - c a A
cance later. If each of\the 1nd1cated'llm_us in- (2) ex1sts we say that. the
-

If any one of the

'limits_faiie to exist, the 1mproner 1ntegral is called dlvergent. It should

e kept in mlnd that a divergent integral is not a number; it is a meaningless

symbol, 'and operatlons with meaningless symbols are llkely to lead to‘meanihg-

- - /
g

. ' 1 . : .
less results. For example,‘g ég = =2 . . -
. -1¢ x
Only afterr it is proved that an improper integral is, convergent can we
We

rely on the results of comnutatlons in which the integral is involved.
‘erges.

need criteria to determine whether-an improper integral cohvergés or
One of the mosu broadly useful criteria is comparison with a nonnegatlve test

functlon for which the integral is ﬁnown elther to converge or dlverge.

- .582 o ' :
218 - _
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~ . .
-

k i ¢ & ) ' 4 i :
g~ THEOREM 10-6a. Let f be Riemann integrable over every closed subinterval

-

- b )
of (a,b) o If |£(x)| <eglx) and s g(x)}dx coverges, then
. “ * a he .

b -

S £(x) converges. ' : . - - . -
a . - ' - .

Corollary. Let h be Riemann integrable on_every closed subintervgl

-

_ . : B Idls i .o b
of (&,B8) . If f£{x) > h(x) >0 and S n(x)dx diverges, then-S‘ i’(x)

a 3 k=5
diverges. S - ’ ' o

-

. The proof ®f the theorem is given iny Section AlO.
v _ Since f 1is Riemenn integrable in any cloged subinterval of (a,b) ,
the comparison between ) £- and the test function g may be restricted teo any
one-sided neighhorhoods of the endpoints. ( See the proof of Theorem AlO=.)

One of the most'usefyl test functions is the power function - -

-

=

- * I; X (x - a) ] . - —

N

. . r
THEOREM 10-6b. " The integral

- . b ax
ol ' a {x - a‘lp

converges if P <1 =and diverges, if p 21 . t

A

-
. N
-

We prove the-case for a <b

i L ;

Procof. Fer a < e < b 5 o
) 1 1- 1-
. . - [(b -a)~"P - (a-2a)""P] for p£1,
B - P
S _av , A
‘o (x .-_ a)p i ) ’ g
S log (b ~ a) - log (@ - 2a) for p=1 .
Also, lim, (a - a)*™®  exists if p <1 and does not exist if p > 1,
: CG~a ' . ]
- » ’ .{

~

: .
! - - .

| ) s 220 -
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; < . - . ) . <

and 1lim _ log(x - a) does not exist. Thus,. since
' a~a o o T

~ " b “ b -
. . dx . dx - ¥ .
| O S g .

a (x - a)?P- a~a a (x - a)P

.the theorem 'is proved.. C—— \

-

Example 10-6h. Consider again

¥

- . - . 1 1 @ |
- ' ' I = S dx ’
1A - XP S v

(Example 10-6f). For -1 <x <O we have 1 - x >1, thus

~

L converges. Similarly,

2_ +l)17é_ands s
~/{-'x ‘ -/l-x -/g-x

U can be. shown to con*g_erge , and we conclude that T bonverges by Theorem 10-6b,.
- oY 4

- -

Tmplicit in Theorem 10-6b are the conditions a # - and b # o , other- .

wise the test functions’ —-A—a .and —B_B would not be: defined. Wa,
- ~ . (x - a) (b - x) : :
need similar criteria for unbounded intervals. -
: -, - -
THEOREM 10-6c. The integral - SRS oL .

'\a- - oo g - . T . . .7 .

- . R ¥
a x® S

converzer if p > 1 and diverges if p <1 .

~" The pr-ir is left as an exercise ('ﬁxercises‘lO-G’g, Né- 6y % .
. . ' ’ . .. % £ .

Example 10-6i. Consider

. o 2 ) o . .
. i g .oe-x /2 dx—. . - - . ,
- .

»

!

For é O we have from Sect:.on 8 6 (3), e >1+u>u ; consequently,
-1 1. 1 .
e =0 < 3 It follows that: . . R
e -
] ~-x/2 _ 2
- a2
- E> _.
. L —<2/2 2
_for all x . Taking f(x) = e and g(x) = -5 - we conclude from .
. . . x '
. - i . .
o 584 .
. - T ’ ' N -
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v - - -
- - © -x2/2 ) -x“f2 .. )
Theorem 10-6¢ that e dx and s- ey ~~ dx converge. _Ilence
. 1 - -0 o0 ' ' \
- - 2 -1 2, 1 w 2, ~ ‘
. o e'x/edx=s e‘x/‘?dx+S 'x/gdxq-rex/gdx
. o -0 ’ - ’ -1 " 1 o .
’ ' 2ls R .
. converge. The indefinite integral of e cannot be given in terms of

‘_elementary ‘functions » but the integral over [—w,»] . can be computed in other

' ways and is known to be 2% .

3

. More ref:.ned 'tes't:s than comparison with power func‘t:ions mey, be necessax:y'

~ I - R
. . 0

on OCC&SILOD.- . ’
. . . ) . .

5 .'
¢

» Exampl.e lO-6,j“. Conslider -
. rx/2 ] .o

I = S . log sin x dx . .
. o ) - -

The difficulty here occurs at x = O . However, since sin x behaves like x °

. . [ a . ) )
near x = 0 and we ha'_ve evidence -that S log x dx converges (Eice;‘cises \
0 )
G-3a- -No. 14), we have reason to believe that I converges. Ior the proof we
observe for x in [O that o o '
'sin x > 2x ~

1 - 7 -

(see Exercises 10-6b, Noe 13). Since dog u is negative for u <1 and ¥

Ve

-

) Jlog is an increasing function, we have -

0 . .

log%—lagx. Co .

[log sin x| < -log =
b — s
Now, integration by parts .yields

-Slogxdx=‘x(l-{logx) +C,

-
- and = ‘ - . .
e - -lim " x log x = lim xlog%
. _ x~0 x~0 ) -
o o . o . ’ ’ ’ v © = lim 105 z " - ’
} . } A . o z . - . - .’
- ) - O . | R
; - 3 . ) . - T - . .« . - } ax g B .
.as-we know from Lémma 8-3. Thus, ta.k:.ng g(x) -log B as our test function
and =appliying Theorem 10-6b, we este.bl:.sh the convergence of ,I .
o . : . _ 585 _ S

o
o
(\
»




Exercises 10-6b ) y-

. 1. (a) Let f 'be Riemann integrgble over [a,b] . Show that the integral
of f 1in the sense of (1) exists and is equal to~the Riemann

. fﬁ : integral., . - _ o
. " (b) Show that 4f - is continuous on’ (a,b) and the limits lim_ £(x)
- N . . : X~a
. - - ‘ b
S ' and lim_ 'f(x) , exist, then f(x)dx exists in the sense of (*g.
: X~b" a : . - £

. 2. Show that the basﬁc theorens for Riemann integr%%s hold also for ihtegrals

o~

L in the extended sense: —z
Th . (a) If £ d&nd g are integrable over [a,b] iq\the extended
f(x) < g(x) , then ‘ i - ) o B
. ) b b ) -‘
c ! %S fx)ax < g(x)ax
» - a a . .‘ ) - o - .

' ) . . ) v
(Theorem 6-La). R

(b) If a , b and* ¢ are points of an inf%rval over which f is
integrable in the extended éense, then

-

b‘ c c .
S f(x)ax + g £f(x)ax = S “f{x)ax

a b

(Corollery to Theorem 6-4b). ‘ . .

(¢) If f and g anmé integrable over '[azb]' in the extended sense,

-

Shem e e

~ . * K -
. ‘ . o

. . p T b - ‘ -
3 S lastx) + Bg(x)] = °"-S

a .
' - ;

f(x)ax + B S’bkg(ic’)dic -
a 'a“ _ .

" (Theorem 6-Le).

~

(d) Tiet £ be contirnuous on (2,b) =and integrable over [a,b] . Onm
the domain consisting of an open intervel I with endpoints x ' and
g {(we permit o >B) , let g be contimiously differentiable. If

- the range of g is in (a,b) , and 1lim g(t)=a and 1im g(t) = b,
' ' - B P8 e ; - : -

then: 4 - ) o _ i 1 -

- -

a

- -

B ' bLx
S fgl(t) g'(t)at = s f{x)4x .
x .

L ‘ (Subsxiégﬁion Rule, Theo )._,The proof requires the demonstra-
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~ s

For'Fhis purppse it.is convenient to introduce the concepts
neighborhood of infinity"-and "neighborhood of minus infinity.

is' an open ray of the form {x : x > =a} .

;2 is a ray of the form

-o , the neighborhood and the deleted
-,
is a

[= -}

A ﬁeighborhood of
Slmllarly, a neighborhood of
For a nelgh?orhpod of « or:
€ ' Furthermore a neighborhood of o

'neighborhood are the same.
left~gided nelghborhood° a nelghborhood of -«» 1is = right sided

neighborhood. We now extend the meanlng of./f .

v

{x : x< a}-.

. /// iim f(x)'==b ’.
7 -~ 1  X~a . .
- : X _ ‘ ] )
so that a and. b may not be real numbers but e« , or Lm ; that
a - contains points of the dcmaln

b
is, every ‘deleted nelghbﬁnhood of
of b there exists a deleted

of # ard for each neighborhood J
nelghborhood I of a wherein £ maps the p?igts of 1ts domaln

"into J .

Proﬁe'the corollary to Theorem 10-6a.

" Prove Theorem 10-6b when a > v .

-
g

- N * a .
5. Prove that S ——JL———-dx converges 1
0 [x'- aIP . 3

-

6. Prove Theorem 1l0-6c.
.7.‘ Test for convergence and divergence, : o a
_.; o . °°b e ) -
S - . I = —, xr dx . - . .
el L - .~ YO ) ] \ . - oo . ‘ =
8. Evaluate those of the. following 1mproper lntegrals whlch converge.
-' 4-. e S N ﬁ/ﬁ? .o R (
. _d ' . -~ ’ ‘ . .
(a), S x (a) j
‘\' . -2 5(!4 X) L. cos: 6‘3 R
. , . - (
: m-ldx : ~-x
" (b) ,m >0 . (e) :g (ax + b) ax .
2m e,
z,. x } )
. - 5 ‘
S (£) 5  x3e™ ax | . -
S 1 S

(&} .S ”.log? x dx.
o

f p <1 and diverges if p > 1 .
~ -'l'f -

-

o
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-

(g)

T

(3) S

@ §o
@
BN

8

axa:é
0
o0
O 3
= /x lsb.c."
1 x+lx
b dx

a (b - x)(x - a)

- > 8 < b

L

-
.

1

"

~

9. ‘Determine whether or not the follorwing ;.n‘begra.ls are convergent and

evaluate when practical.

o 3
(a) S x_ -1 ax.
. 1 x + 1
VA , '
f(b) 5 ® log(x° + 1)
1 x3/_2
-~ .e .
(&) S —t
. L emeE e
27 .~
(a) . S. | J—ét
> o e_t -1
N O I -';'n_ S
- () S log  x dx -
. c - . -
(£) s e ¢ 'logn u du
0] .

-

10. Consid?ér

° where’
- P(x)

and- Q(x%)

dx

I

{

“R(x)” “is a rational function,

o

v(g)"

(n)

(1)

()

()

(2)

Y R(X

-0

S X t l. dx
»_ngxg + 1)J/1 + x
it xgdx

-1 -/Ix:? + x5 + 1j

(-]

dx

0 1/2)1:1",—. 2x3 - x2. + 1

-~

*

n
[
o
N.'
&

: P
P(x)

m}— » Where the. polynomials -

R(x)

have no conmmon factors -and Q(x) has only simple roots.~

Detemine the conditions under .which I converge.., -or d:.verges.

588
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18.
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Test for convergence. ‘ -

. e .
e ! %o -
d ' i B d .

(&) S m_x_ (c) m_x_ '

1 X log'x 5 e X log x ' ) :
(b) € dx : (d) ® dx -+ . L

v m . I ’ m, ‘. . -
‘ 1 x(log x) > : _ e ¥(log x) .

-a

U51ng estimates in the manner of Example 10-6i, obtalin an,upper estimate

T
of . ‘.

- - . - .
- < .

. oo 2 L ) ‘ \“.
, S e X /2 g . R

| ) n/f2 -
Complete the demonstration of Example 10-6j that 5. log sin x ax )
8] ) .
converges by proving "
) - 2x T v o
l- sin_xz? ‘OSXSE'.‘ . . -

(Hint: sin x is flexed downward on the given interval).

Give an exemple of a function f which is Riemann integrable over every
subinterval [a,b] of (0,1) and fog which the integrads are bounded, .

. —
b -
S f(x)ax| <M,
a - ’ T - S

yet which is not itself integreble. over [O,l]l in the extended sense.

*

4 N .

P

Kl

o y b L
Prove that if £ is continuous on. (a,b) and %f j‘ 1£2(x}] ax exists,
_ > 1 ‘ R I P dx e _

. o ) .
[ i3 g - PR . - .

then

f(x)ax exists. . Ce L S e
a : - . t K Y . ..
. y .

Show that if the generalized integral defined by (1) "exists, then it is

independent of the choice of £ . .
-7

Verify that. the value of the integral in the e#tended sense is not

(¥ ‘('r

affected 1f additional points are fncluded in the pertition used in
Definition 10-6. -

~ .
A function f 1is said to be pilecewise continuous on ~[a b] ‘if there is

‘a partitionm - {xo,xl, yee Xy } of the interval such that f 1s con- B
tinuous ‘on’each open sublnterval (xi l’xl) and the one-51ded llmmts,
1im f(x) 1lim f(x) , exist (1 = 1,2,3,...57) . Show‘that £ is’
XX : x~x. S 7 T - . S
.11 i : S o - 4
-1ntegrable in the extended sense. . =
589 . o s
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e.“ e o™,

The theory of differential equations is rich deep-and fascinating, with

ramifications spreading‘far into mathematics and the sciences. The calculus
‘lies at the;beginnihé_of this theorj; A @ifferentidl eguation defines a class
of‘fﬁnctiohs,‘its solutions. We adopted this point of view. in Section 8- 5 to
_ define the circular functions by means of the differential équation
,Peu +u =20 The eolutions of differential equations form a far broader

class:of functiohs than those encountered so far. In this section and the
‘;hegt» we shall consider only such equations as ma} he solved in terms of func-

- tions we know already, elementary functions and thealr integrals. This is a
\serious and artificial 1imitation. Still, the few basic types of differential

equations we shall study, for all their simplicity, are quite versatile in

application to the sciences and mathemauics.

The principal concern of this chapter is the integration of the simplest

differential - equation,

(1) - - ' Du = £

where f is given, and the function u is to be determined. In Chapter 9,

although' the eguatipns had diverse scientific origins, for the most part.they

were of the Simple form

- f‘sx
)

>f3(2) : | : Du = a + bu + cu® . .
where “a ., b ard c¢ afFe constants, with various interpretations of function
. . . e N
u and the constants a , b 5 C - It was® this basic similarity of mathematical
structure ﬁhwch served as tHe unifying threa at chapter. In +this section
< : . 4
we consider the differential equation _ ,' - s
-~ . A - F
; - = < T S . . : - “
(3 - ''Pu+p-u-=°Ff , or %% + D(x)y = f(x) R

for all x in the domain of "u ,.

y = u{x) and P and f are given continuous functions. This class

where
of equations includes the type (1) (p(x) = ) but includes only .those
equations of type (2) for which ¢ = 0 , with constant coefficients f(x) =a ,
p(x) = b (see Exercises 10-7, NMo. 2c). '

It is convenient to introduce the idea of.a, differential operator which
mans a different iable function onto another function (thus a differential
.operator can be con51dered as a function on the domain of differentiable
functions). For our oresent purposes, we need not define the concept of
< differential operator in all generality. We merely point out that for the

L4

o = > ' 590.

.(\3
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Ve . .
differential operator given by v v// )
? . -
(3) L=D+p:f—eDf+p ¢, o f
Equation (3) can be written in tke form (\ ’
() < ‘ . g Llul = £ . 7 i -
For. example, the'operator L[u] = Du + p u where p{x) = sin x- takes

4

u(x) = x° into L[xg] - 2x + x> sin x . Hence u(x) = x> 1is a solittion of

L{ul] = 2x + 2 sin x . The problem posed by Equation (3) or (3b) is to find

those functions u which have f as their image under L . The bperator L "
of (3a) and the Equation (3b) are called linear since for any linear combina-

tion of functions ¢ and V¥ 1in the domain éfj L (different;able functions),

Liag . gy} = aLl@g] + sL[w]‘.

The operator and equation are said to be of first order since the expression

for L[$] involves no derivatives of. @ of order higher than the fi{st. The

"function f ‘in (3b) is called the forcing tenggﬁf?om physical applications). ¢
If the forcing term is zero the eguation is said to be homogeneous. .The homo-

_geneous eguation L[u] = O is called the reduced equation of L[u] =f .

. AN
~
. . P
x_, A A

(1) The reduced eguation. The solution of (3) begins with the -reduced

.

equation . ~ _ - L .

() . Du”a/p«u=0§ L .

»This equation has the solution u = O ; the so-called tr1v1&l solutlon. Now .
suppose there is a nontrlvxai solution u of {4), which 1% nonzero at the
-point Xg 3 i.e., yo = u(x DR # O . Since u is cqptlnuous* it must be
;bounded away from zero in some nelghborhood of. x5 (Lerma "3-4). Wherever ¥y

is not zero we may divide by y » hence on some interval a,gontrivial sodution
of .(4) must satiBfy

-

%-gﬁ- = (Logly[).z_~o(x) . & -
- * . s ~ ’ .o .o -
On integrating from 'xor to x , we find ’///'

' . i x : . ‘
(,,/‘\\\ ) log\JL = - S - plt)at ;
. B ‘ X5 . ' -

% - : ) -
To satisfy the differén&iii equation, u must even be differentiadble. .
- o ’ - .

FaY
)
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»

thence,

. l . . " x X
(5) : y = u(x) = Yo ©Xp { -S p(t)dt} . _ )
. xo <

Formula (5) tells us what form a nontrivial solution of the reduced

equation must have if one exists in a’ neighborhood of Xy * Now we observe

that (5) defines a function U ! X ==y on the domaln of the given continuous

function p gng that the function u -so-defined is a solution of the.differen-~
tial equation on this domain: '

. - dy a , %
ax = 3| Yo @ p(t)at
‘ , *o -

r

- LR

-

= -p(x)y . -

’

In’ Particular, the initial value problem for the equatlon of unregulated-

-

growth or decay,

Y'=cy , ¥y = yb at x =0 , . ' )

where. ¢ 1s constart, has' the unique solution - h
L~ , ‘ | - o '

-  f;/" s | =y

as We PIoved Before in Theorem 8-5a.
» o

-

(ii) .The initial value problem for the reduced equation. In appliéations,

ion of some guantity with time. In
: X=——ea , for e.xampie, the
growth and decay. For phenomena
gnificaht; questions is to determine
n te*ms Qf a present initlal state.
this question takes

Equation (4) typically describes the vari
Sections 9-2, 3 with 2 constant function P

For Phencmens governed by the differential equation (L)
_tn€ form Of the jinitial valué problem: given the initial state Yo o©f the
system 2t time Xy > what is the state. y - of th® system at any later tig:k }

- ) . .
k?xo' . . N R . . -

IText Providad by ERIC.

S | ;[y" exp { -.S'zo P(t‘)dt}].(:p(i_c))l ’_‘ | \

=

¢
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: " The association of a mathematital fnitial value problem with a physical
problem leads to mathematical criteria of significance: +the initial-value
problem is said to be well-posed if it satisfies the following.conditions,

L

{a) A solution exists (there is g/future)
(b) The solution is unigue {future states are determlned by the present

‘state).
To+these conditions it is usually eppropriate to add a third.

(c) The soluteen depends continuously on the initial data (minuscule

- causes should not produce immediate enormous effects)

We do not emphasize condition (c) here since it will follow from the explicit

solutlons of the eguations we shall treat.

It is qulte reasonable to look backward in time and inquire about the
earlier behavior of a system which produced deresent state (e. g. Exerc1ses
9-3, No. 12). For the purp0ses of mathematlcal analysls it makes no signi-
ficant difference whether we are seeking a forward or backward solution of a. .
differential equatio;ﬁ that is, the parameter fc.time may be denoted by x
or -x., indifferently. The mathemstical ~oncept of initial wvalue nroblem
includes all problems in whlch an appropriately described state of a system
is given for one value of a parameter—-not always time--and the varlatlon of

the state of the system in some parameter interval contalning the given value

is to be determined. . Py

The initAtal value problem - - L

Llu] =Du+p-u =0

(‘6) - R
u(xd) =y

in which u is_to be determined as a solution‘of the differential eéuation
Liul = 0 subject to the initial condition u(xo) ;T;é is well-posed: the
solutién given by (5) always exisrs; it depends continuously on yo’; and as
we shall prove next, it is unique. ‘ ) o .

-~ - P .
- . -

er =
THEOREM 10-~7. If p 1is contlnuous on an interval I containing the poinﬁ

%o » then the initial value problem (&) has exactly one solutlon an I .-

7 | | |

Proofs- We have already verified that (6) has the SOlUulOn given by’ (il\

In order to prove unigueness we employ t#e method of Theorem 8-53. Let u be

any’ solutlon of (6) withi I on an interval containing Xy and set

* .
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(n | BTSN €3
where : ‘_ . ' ; . . |
8) o " atoe } ‘ “
( o v =em - ptoyas) . ; -
‘ . l‘ { Sxo . ' ) _, g

y . . , 2

, Since v(x) >0 ,'w is defined on the interval ‘common to the ‘domains of u .

vvand v . At the initial point - xo » we have

u(x )
W(xo) ;T;—y - ) _
e LT
and we shall show now that ﬁ”\is'a constant function, w : X —+Y, On its
“entire domain. leferentie@ing,(?)'we obfain (6) ang (8) . '
_u (x)’\((x) - u(x)v'(x)

v(x)

" ~. . w’(x?

‘ - ¥ : [-p(x)ulx) Jv(x) - ulx){=p(x)v(x)]
. | g - . '_ - V(X)z

7 s .
-
v .

. o ‘=0 . ,‘ )

|
- Thus +w must be .a constant function. Since ijo) = yd , we'FOncldEe that
W : x.———-yo on its domain. The funch}oﬂ' u is given by Formula (5) since

U.— =V e- ) ‘ - - - . - . -
Yo : , _ . R

The function v defined b§ (8) is called = fundamental solution of (&).
(There is & fundamental solution for each choice of xo .) Any solution u -
of (4) 15 a constant multiple of v B namely u = Io¥ ,_consequently the
e family of solutions given by (5) is called the Eeneral solution of (4). Since
) the fundamental solution is everywhere positive we conclude that a solution
must be’ everywhere positive, or everywhere negatlve, or identically zero. The _

-

fundamental’solution v cléarly increases where (x) < 0. and decreases where

. : x
p(x) >0 ; it is bounded if and onmly if " p(t)dt is bourded below; it
- approaches a constant state, that is, lim v(x) exists, if as x approaches

XasOO

x . . .
@, s.f p(tlﬁt either converges or approaches infirity. Since any solution

u is Proporticnal to the fundamental solution, the corresponding properties'
of u are immediately given




_ - DA _
Example 10-7a. C?nsider the diffe;ential egu&tion '. : ,
. y' - y,sin x = 0 . .
-~ -
Hexe p(x) = -sin x , and for Xq = 0

' : x . ‘ .
- S p(t)dt = sin t dt =1 - cos t .

X5 o - o .

" The fundamental solution is then
. v(x) = exp(l - cos x) .

Clearly «'.1is periddic with period 27 > increases on the iﬁtérval [o,x] )
dnd decreases on the interval Tﬂ Zﬁ] Its maximm value— v(x)~1 92 ig taken
on at the pocints x = (2k + 1)n , its minimym v(0) =1, at the p01nts

x = 2k , where .k .is any 1nteger. o o,

(11*) The nonhomogeneous ecuatlon.‘ The solutlon of the nonhomogeneous

equatlon (3) 1s 1nt1mately related to uhe-solu 19n of the reduced equatlon._

If ul and u are any solutions of the nonhomogeneous eguation L{u] =&

.

-then their difference u - u, 1is easily seen to be'a solution of the homo-
geneous equation -L[u] = 0 (Exg;c:ses 10-7, No. 2a). Consequenuly, given any

- 8olution z of (3), the general solution u -can ve written in the form

-

. : - N

(2) : . w =2z + cv
- where ¢  1is-a constant and v 1is a fundamenbal solutlon of’ the reduced

Equation Gh) : Thus to obtain all solutions of (3) we have only to find~ one

solution z , a Dartlcula*.solutlon, of L[u] =f , and a fundamental solutlon
v of the reduced ‘equation. s , .
From Equation (9) we see again that the solutlons of (3) form & one-

parameter family; a2 single condltion will serve +to determine a value of the

parameter ¢ and 2 member of the family. ' Specifically, the initial value

problem

i -{L[u] Du+ p-u = £
- (10) -

u( ?co)

v -
' : : ¥o.~ 2(xg) - .
is solved by (9) with ¢ = <7 for-a particuler solution =z defined
- . ) . _. a o) . --, - .
in some neighborhood of - Xq --provided such a sdlution exists. Furthermore,

this solution is unique, for if il and z, ‘are solutions of (10) , then

T - ses Dao -




-4 . o . - <

-

-t = zy - zli%:r solution of the initial value problem '

A - . .
B Llgl =0, t(xy) =0,
’ LR . )
’ and‘therefore sé?:nust be identically zero;~hence, ‘zl =z, .

To show .that the inltlal value problem {10) is well-posed we need only
b ,;emonstrate the existence of a particular solutlon. For this purpose we apply
-an elegant dev1ce, the so-called method of variation of parameters, which
eapplies to higher order linear equatlons as well.% The general sclution of -
the reduced equation is c v(x) where +(x) is the fundamental solutlon.
We seek a solution of the nonhomogeneous eguation by ' 'varying the parameter’;
that is, we replace the constant ¢ by a function ¢ and seek = part;cular

solution of the nonhomogeneous egquation (3) 1n the form

(1) - zocev . = ] .
Taking the derivative in (11) we obtain
> .
— ;z‘~; cle v+ co vt | ' ’
l« In ®his relation we insert the conditions . , o® . -
) . : 2'_= f ~pez y vt ; -pev ~7 -
. . . - & :

from Equations (3) ang (%), respectively. This yields :., .
- . - b}

ct(x) = f;j(% :

"whence, “ . ' S

.-_ . x . . . - .
o _ C(X)':s: 5(: at +k .
k I} > .
For each‘value of X +this’ formula should deflne a partlcular solution of the
Y form (ll) and for simplicity we take Vk;= O . From (ll) e then obtain as our

candldate for a partlcular solutlon the. functlon z glven by

-

(12y - - a0 = c(x)V(X) = VC:&) J _ f(t) dt .

-

¥

-

It follows dlrectly on dlfferenﬁgatlon thet the function 'z defined by (12)
. is a solnﬁion of-(3) on %the comméﬁ”gterval of continuity of £ and P
(Exercises 10-7, No. h) From (9), the general solution "u’ of the nonhomo-.

geneous Equation {3) may be expressed. in +the& form

] *The - general method was invented by Je. L. Lagrange (173&51813), a Frendh
matheématician who contributed greatly to analysis and mechanics. The method
for first order equations was given in 1697 by John Bermoulli (166?-lTL8)
SWlSS, one of the most important early developers of ‘analysis. T

1506 - o .

EKC L 2,,,, ~ - R

wll Toxt Provided by ERIC - ~ -~
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w

. ' - x N
(1 .; . . (x) = v( )[ + PP (t) dt] . o~
D s @i e

- L 4

"here ¢ 1is constant. This is an explicit solution in the sense that it is
expressed in terms of 1n‘t:egrals of the. g:.ven functions, but in gen these -

integrals cannot be expected to have representatn.ons in terms of elementary
functions. - ! _ ) . n

'3' T e ' . - .
y S B > Example 10- To. Consider the differentiel equation for y = u(x)
'Qﬂa' ) : :
. ! : -bx .
L y' + ay = ke >

. where =2 , b and k are constants. In the notation of Eguation (3),
p(x) = a and £(x) = ke ¥ . Take  x =0 in (g) to obtain for the funda-

>
14

_mental solution

- - . . x ) - :
. : o v(x) :*_-"exp{ S .(-a)a‘t} = e 8%
_ - LT o R .
In the general solution (13) set ' ! . ‘
e (2 NCESPN,
~ e . _ t - a-b)t :
.' : ) IT(x) = S ;TET dt = k S<3¢3 _.d? . -
) - - » . . B ‘ . -
. We distinguish €two cases. If & = b , we get I(x) = kx and the general .
solution wu 'is given by - —  » . T o
Ty =ulx) =V(X)EC+I(X)} (c +1cx)e .
P - k (asb)x g col ' A
. If a#b, then I(x) = ;—:—; [ - l] ‘and here the general solution’is
‘ . L . . -‘-'-‘:. . ] 1{“ - \: . . _‘ | C . - _ﬁ S
- T “fax L.k (a-b)x —y S :
' -y_:I\‘e : {c-'-a_-—b[ -‘l]% : o
o ® C e aeT® 4 K RX Ll ‘
. o _ - o . - ) 8.-:' b # 4 ) .
where ‘A = ¢ - L3 is constant. )
L N a-»b _ ;
) | SN _ | o

For the pavtlcular solutlon of (3) which satisfies the initisl cond1t1on

u(x ) = yo' we obtain u(x Y = v(0)[ec + O] = or ¢ = yo This the
explmclt solution of the 1n1t1al value problem ( *is -
. _ N - r ’ ) } : xX.. f(t) - - S P - o=
(1ka) | \! | v = vx)yy + S.x- Sy el e .
f‘ - / ) ‘. O . .
ST .
N S - T 597 :




where R PR - , o ‘ _ .
R _- < - . ) i : . x .'7. -
(1¥p) : ] v(x) =.exp ; —S p(t)dts .- o
S - 7% R . -~

Thus we have established that the initial velue.prdblem,(le).is_well—posed.

-~ -

-Exampi.e 10f76. Consider a circuit con51st1ng of a resistor and a coil

subjected to an electromotive force, (see Figure 10-7). Let the resistance
be R , the inductance of tht coil be L and let the electrcmotive'fagce
‘ ' ' be E = g(t) .  We shall consider

RO L 7 , 8 . both constant and variable E . From

) NN _Qﬁﬁﬁa _ Exercises.9-3, Number 8, Equation (5),
) _ R the current I = u(t) satisfies the

ITﬁ—'-_' A o ﬁdlfferentlal equatlon o

‘ B . . N -r" _
_ I S ', dI B :
= . (15) | dt + al = f(t)
} ‘ . where
Figure;!.o-'Z R ' ' a’='_§ f(t) %:—i— )

- . . -~
¢

:quuathn (15) is . a linear first order equatlon of tHe Form (3) w1th x
'freplaced byt _and y by- I ; ror the general solutlon of (15) we have g

& - - . . [ -

- , DS

(18) .. T T = e e j e®Sr(s)as]..*
v A ; i . . 0 L

We now conszder some of the broblems which were left as exerc1ses in

-~

Chapter 9. - : . ; . o E : S

- - -
-

(a) ACon51der the. behavior of the circuit 1f the electromotlve force 4is
shunted out of the c1rcuit at t = O wherf the current.is- IO . Then
for t >0, E=0 and I is given by the solutlon of the initial

value problem ;or the homogeneigs equatlon, namely,a

. ' T =18 L1 o RE/L

‘g o . -0 0

.

. ' . - s - . - . L
s The current decays exppne;:§ally to O . The half-life 1 == log 2 ,
increases with I, and detreases with "R . In the llmlt of . 2ero- .

resistance the current is maintained. consiant at I . What happeps.

v in the limi of zero inductance, L o] ‘2\i -" ' o - -

r 598 S

P
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Let the electromotive force E be constant from t = O); on. If.
the initial current is I, *then the circuit Equation (15) is non-

homogeneous with a constant forcing term,

R

S .
T=e [Io“"fg

B E, -Rt/T,
+ (Io -_ﬁ)e - -

£(t) Then, by (1k)
' T

=E.

s Thus the currenﬁ'approaches the constant terminal value I°° = %- as

't approaches infinity. The system 1is said to approach the asymptotlc

steady ét&te .Im and time-decaying term I - I 1s called tran51ent.

The terminal wvalue 1s *ndependent of the initial state and is the

value of ‘the current that would ‘flow in the cﬁrcuIt.for v >0 “if
no coil were present. Thus the effect of the c011 is tb level out
. the tran51tlon from the initiel state to the asymptctlc steady - state.

apd_suppose-for,_tUE;Os theré is an

Let the 1n1t1al current be..Io

~

alternatlng eTectromotlve force E

-

.

£

" - .
RO

‘1 b(a ‘cos wt + wsin wt)

N 'at[I +b5-eas

= E

. . (0]
'_f(t) b cos wt . Fﬁom (14) we now have

cos

cos ws-ds] . e

..a-t( .

N

wt . Set b =-— and ..
SR L

Yo e T - - F fe

e

' Integratlon by parts, as in Example 10—4e, yields

IS

7 I - =)
.= 2 .2 07 B, Lz
. B -
- .70 -at :
=555 (R cos wt- +wL‘s:Ln wt) + e (T .
R® +w2L2 T

- We may choose @ satisfying

I = —grccs&ut - @) + ke

L

-

-

where k is constant (see Section A2—5)

e . |

a . ¢ 7w, LR .
cos ¢ =3 5 » S1in =735 = . R S A
s a + @ ) ’ ‘ a 4+ W . . P o c
“and write -
[ ]
E - -
-at

The asymptotlc state of-\‘_

,the c1rcu1t Q§ a 51nusozdal (alternatlng) current whlch has the

same frequency as the forclng term but lags beqznd by an emount pro-'

599

-~

it

2y
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. Upon‘investigating‘thelproperties of the soluti;n (1ka, b) of the initial
+ value problem ﬁe‘obse”ve that the solution as contlnuously denendent on the
initial datum Yo » 8S we mlght hope, but alsoémhat it is contlnuously depen-
dent on the given functions .p and T (Exerc1see 10-7, No. 9). This is an
important observation for appli&ations. The functions P and f may be
empirical functions subject to the usual errors of measurement and interpols-
tion. If these errors are kept small enough the error in the solution will be
tolerable. We, continually have drummed into our ears that a littlie knowledge
1s a dangerous thing, but in this instance we may take some consolatlon in

the thought that a little ignorance need not be harmful. -
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Exercises 10-7

1. .Verffy the/following properties of a linear operator L , . ) i
N _ . ) L{su] = aL[u]
-(l ' . Llu. + v] = L[u] + LEv]

2.

for all functions. u and Vv '1n the domaln of L .~ CShVereely, show if -

these~propert1es are satlsfled then -L is a llnear operator.

Let L be a linear operator. ' -

u'(éﬁ' Show-that the" ai*ference between any two solutions of equatlon

| ,'3'.‘.

L.

y De

¢

N

L[u] f is a solution of -the hoqogeneous equati Llu] =
Show 5lso that if u -is a solution of Liul = o:%a\

solution of the corresponding . reduced equatlon, that u + v 1is:

v is =

a solution of the original equatlon.

!p) Verify that any llnear combination of soluti ions of*the homogeneous

equation. L{u] = 0 , is again a solution. .

(e) Show if c # O that {2) cannot be put in the form of a linear

equation : . : R -

L[u] .

,

For the solutlon of Equatlon (h) in the Form (5) show that choice of a
dlfferent end of integration Xy # X5 Jin the domaln off p where'
u(x ) £ 0 'yields the same vakae of y .

Il

. Verify that.vhe functlon .z' dellned by (12) is. a particular solutlon of

-~ . E— .

Give the general solut*onéﬂaf the following eguations and solve the

: 1ndicated ln’tlal value. problem. .In-what‘doﬁains are the‘solhtions valid?ll

5.

Q | . _l ‘ f. - 601 r.f\ | | _'

" ) - . . - . - Y . . . . ) _
(a) vy 4y =43y =0 at x=0 .- ' ' . '

(p) y''=ay +b , (a , b constants) ; ¥y = - E- at x =_O , (a £ O)‘. : A
() xy*' - ¥ =.x2’;-y =L4 at x=2. ' .
) T ) : - )

b '

'2ex sy =e + 2 at x =0..
x ' 5
(a) Obtain tﬁe general solution, in terms of elementary functions of -

'l
the equatlon .- - N&
. . 3 ]
y' +xy = x .

- - . -

(b) Contrast with the‘general'selution of .

T, - = -

-~ TR ‘e . .
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Te Let u ard v saﬁisfy

-

u' + p.u=° , v +p-v=g e . .

where f(x) > g(x) fef x > Xy + Show that if u(xl) E:v(xl) for some
e xd » then u(x) > v(x) for ell x > X, -

8. The solution of.Eguetion (3) was obtained under the assumption that p
‘ ~ and 'f' are continuous functiqps. On the.other nand, Formula (13) is
. meaninéful when ‘p and f mey be only piecewise contimious (defined
_ in Exercises 10-6b, No. 18). Revise the theory so that it applies more i
. generally to piecewise continuoﬁs'functiens.' (Hlnt' vou will have to -
give up the requirement that solutions are dlfferentlable at every point,
but while relaxing this requirement, consider only solutions which are

continuous.)

9. In the light of Number 6, determine the current in the circuit of -
Exsmple 10-7c when the electromctive force is a "square wave" of pericd

> - | L
; Eo,for'2m5t<(2n-_+-l)7_\, . : - .
CE(E) = - -
\\ -E5 » for (2n_4.I)h‘S t < (2n + 2)n ,

~

n =0 ,,l'; 2 ,\.., .. What is-thevasymptetic:solution as t approaches

-

infinity?
A" . - )
10. Let p(x) = J%{ in the homogenecus. Equation (&). Discuss the possibility
“of ﬁinding'a‘solution ¥ = u(i) for x>0 such that 11m u(x) ‘exists.
- ' ‘ i ' - x~0"

L]

: What implications does this have .for the. 1n1tlal value problem.at x =07

/\l1. In the text it was stated that the solutlon depends contlnuously on the
1nit1al value yo- ‘and the functlons » and o « The 1dea of continuous

the initiel'values is clear: for a given value of x ,

dependence
¥ ontinuous (in this case, linear) function of Yo + 3But what a
: can’ meant by contlnuous dependence on p and f ? .Give your 1nter-:

" pretation. Then verify that (1L4) does satlsfy the continuous dependence
conditions. - o E. :

a,

\V]
»
(3,
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‘10—8. Linear Differential Eguations of Second Oraer. - 

n thls secﬁion we shall study dlfferential equatlons of the general type :

-
f

'(.l) | o .:—x%+p_(>d %x£'+ q($)y=f(x) T

where p ; 9 and £ are(all continuous on an interval I . . Equations .of

this type appear in many areas of science and their theory is a l&rge and

still growing area “of analysis. The Equatlon (1) involves the second deriva-
tive- i—%- and.no derivative of higher order; it is therefore an equation of
“dx ' N T : L -

second order. It is linear ‘because it can be put in the form

‘(2a) - ' Czfu] =2 ' .

where u(x) =y and L is the linear operator
(2p). ) _ L=DT+p+«D + g . -

(Exeroises 10-8(a); No. 1).

Even if p , @ and f are elementary functlons, it is not always
p0551ble (in contrast to first order equations) to express the solutions of a
llnear egquation of second order in terms of elem!ntary functions of » , g, and

hig and their derivatives and integrals. Thus,, a general discussion . of these

10-8

A

‘equatlons would lead us away from the theme of this’ chapter, technlcal integra-~

~tion and its uses. Here we shall discuss only the inltl&l value problem for -

the general equatlon, and treat in detail only the special case, an extremely
impor*ant one, for which p and gq are constant functions (you will recall

that ‘in Section 8- 5 we used an equatlon of this type, y" + y =0 , to define -

the circular func%ions )

We shall use the following simple properties of linear;operators.
(2) 1f u, and w, are solutions of theahdmogeneous equation L{u]
- then any linear ESEE}nat;on c Uy + c2u2 is also a solution.
(Exercises'lo-?,-No.‘gp). _ '
(b) £ w, and u, are solutfons of,thé%ﬁonhomogeneous eéuation‘ _
Lful] =, 1.e., L[ul],= and' L[uE] =f , then u, -u 1isa
solution of the reduced eguation; thus if we kmow one solution of
»the nonhomogeneous equation and all solutions of the reduced equa-
~tion,-we have 21X solutions of “the nonhomogeneous equation (Exercises

_ 10-7, No. 2a). ' 7
_.-." . - - ) . - - ' | o /

Y. : . 603 2,_“‘”‘ :

2



4

10-8

. ’ , (c) If £ =¢ 12, *+ <of lana u; is a solution of Liu] = £, while

272
u, 1is a solutlon of Llu] = £, , then e 1% *oou, is a solution
of L[u] H thls superpos1tlon principle often permlts us to

split a given problem into several simpler problems (Exercxsesxi518a,
No. 2).

(1) Homogeneous equatlons with constant coeff1c1entsk Consider the

reduced equation of (1) with constant coefficients which we write in the form

‘(33) _ ' L[u] =0 ’ : \ -1
,fwhere . .. - S » \§\~«”
. ~ 2 - qf§
(3p) : : . L=D +2aD+b .7

It is natural to attempt to reduce the_solution of Egquation (3) to the
" solution of linear first order equations.‘.This can be done if the operator
‘ L canuPe;expressed as the "product" of first order operators. By the "pfoduct"
. IM' of two differential operators we mean their composition: : first apply M ,
then L ; so IM{u] = L[Mfuﬂ] (see Exercises 10-8a, No. k). "We seek conStants

>
-’

& and f for which

(%) 7 L-(-a)D-p) =P 2D+ .

Once we succeed-in this enterprise we can solve Equation'(3i/?y solving

in succession the. equations

’ B o | (D - a)v O. : o .
(58-) . . ' ' - {(D B) - . i A . )
. - u =v Lo
| S Y

o

for which we nate'developed general methods in the preceéing section. (Comparer
- Exertises 8-7, No. 14). Since the general solution of each first order egua-
tions 1nvolves an arbitrary: constant, “the solutﬁon of (5) will yvielad two
arbltrary constants. This is true of éecond order equations in general. From_
: the solution of (5) we expect a wellsposed initial value problem to prescribe
both the 1n1t1a1 value Yo = u(0)  and the derivative yol = ur{0) (Exerc;ses..

10-8a, No. 5). -

-« -

Observe that the compdsition of the operators (D -'Q)> and (D - B)

behaves 1ike ordinary multiplication; -namely .

(D - &)(D - 8)a = (D - &) [u’, - Bul"

>

Dlu* - Bu}'- - c_z(u" ;-"B;i)

-
I

_ (ccr plur +opu - o

T
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or

(s8) - cn-am-E) ¥ -(@+8)DFos . - -

In particular, the result is the same ‘if @ and B are interchanged so tnat_

linear differential operators with constant coefficientsrcommute:
(D - a)(D -B) = (D -B)(D - ) .

The commutative property is usually not valid if o eand 5_“are not constants
(Exercises 10~8a, No. §). Comparing (5b), with {3b) we see that such a factori”

zation is possible if the characteristic eguation

(6) ' o . A" -2a +b=0

- has real rootsy; A =0 and X =8 . Consequently, for the purpose of solving,
‘Equation (3) we distinguish two cases: (l)? the characterlstlc equation (6fﬁ/

hes real roots, a® - b >-O : (2) .the roots }re complex, a2 -b <0 .

- ; _

W% consider flrst the eqLatlon with a -actored operator, namely
' (7) ' :-'. ' L[u] =(D -a)(D-8u=0".

Wé begln w1th the case o £ 8 ; the'eQuatlon.for which‘the roots of the
characcerlstic equatlon are éequal will require separate treatment. Instead of
solving (7) by means of uhe f%rst order’system (5) we shall emolov & method
which employs the commutat1v1ty of the first order factors of ,L . Observe

that the egquations (D - a)[vl] = and (D = B)lv ] = O have the solutions

vi(x) = e ang ‘va(x) = 35(3) respectively. 'But'clearly v, and v, are

‘both solutions of (7) since e ‘ -
Llvyl = (@ - 8)I(D - &)v; ] = (D = B)[O] =0

a hd -

ana

(D - a)[(D - a)véj =:(D - a)[oj =_o;;

Llvp]

'Slnce any linear comblnatlon of solutions of the homogeneous equatlon is agaln

a- §olution, we see that (7) has the two~oarameter family of solutlons

e -

(8

ﬁ(KI _ cjéax Bx
We have not shown that (8) includes all solutions, but we know that we need
two parameters to satisfy the two initial conditions sgggested by (3).. Furthef

more 'if the solution of the initisl valué\problem is unigue then no more than

~

two parameters are needed. Formula (8) is in fact the general solutlon, bu<t .
we offer no special treatment of the uniqueness ouestlon for the equation‘wlth

~constant coefflcients because we ‘shall prove unlqueness in general.

- - ~

Q ) R i 605 N _ .
2z S
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I the roots of the,charactéristic equation are equal, a =8 = -a ,
then the preceding method falls. The Solution of +the equation

-

(9) | , Liu] = (D ; a)eu =0

- £

1 2
- one P&rameter, k.— e, o, - (It 1s not always so easy to decide when a

,.8lven by (8) is ulx) = c,e ™" + ¢ 78X o ke~ , and we have essentially only

| parameter is nonessential.) To £ind another solution of (9) we again use a
‘technique’ from-Section 10-7 and seek a solution in the form u(x) - v(x)
(see’ Miscellaneous Exercises, Chapter 10, Nos 23). When the operator D - a
is lied to this Tunction, we get the szmplifylng result,

(D + a){e v(X?] = e D v(x) .

NOF,'aPply thexgperator agaih_to Oobtain . : .
' Tnlu(0 ] = (D + a)2lulx) > ST e
= (D + a)3[e™®Fu(x)]

. , = (D + ai[é—a%D vix, - .
| = e-gxbgv(x) . |

‘ x = z
Thus, if y is a solution of (9), then v . satisfies the differential equation
. ) A . Q

-
- -

e;§¥D2v"= o . o -

-

Since 78X g always positive, we have D2v = 0 . DNow we integrate twice to
obtain () !rcl‘+ Cyx  where ¢ - and ¢, are arbitrary constants. Thus we’
. obtain the general solution of (9) - S ST '
. 5 . '_ -ax, -
(10)‘ - ) . u(x) = e ey + opx) . |
. i w5 -
+ Now we turn our atention to the solution of (3) when the roots of the
charactevlstlc equation (6) are complex, il.e., when a2 - b <O . In that

-

.case we comgiéte the scuare to obtaln \-

"L = D® + 2aD + b = (D"+ e)2 + b - a" .

2 - w? ana write the differential -

1]

Since b - 32 is posSitive we may set ,b - a

ecuatlon in the fovm i

(1) J T ;('(D + a)é-.;l-wz)'l.; -o.

.
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- In the preceding case we saw that the substitution u(x) = e *v(x) is use-

ful in relation.<o sthe operator (D +_a)¢5; We use the same method here and

get the diffe:ential equgﬁion for . v '

e7a?c(D2 + 2v§ =0 ‘ ai

-

- -

R - —ax . . s s .
where we may factor out - e since it is positive. The ecuation for v 1is
14

cléaflﬁ kin to the equéfioﬁ' ¥y 4+ ¥y =0 for,the c1rcu19r functlons which we

investigated in Section 8-5; it haé'the solutions. sin w3 and €OS wX

-

" (Exercises 8-5, No. 15).* Thus (11) has the solutions e—ax Sin wx and

._ax . - . . .
e cos wx , hence any linear combination of these is a solution:.

. - ) .

(122) ulx) = e—ax(cl cos wx + ¢, sin wx) . -

.

-

It is ofteﬁ convenient to introduce  the parameters A = ¥ éla + c22 and, @
defined by . coa ¢ = ?T" sin ¢ = ?rf;.in'ferms of these parameters the solutio:

Qi has. the fonn" .

F) - -

i2b) . ' u(ﬁ? = Ae ™ cos (wx - &) .. o . SO

If. a >0 , the graph of this solution is an exponentially damped sinusoid

(F*gure 10-8), this case 1s ‘important in many appllcatlons and we shall make_
use of it in Chapter 12 (see Exerc1ses lO-8a, No. 9).

f .

\
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«
-

_ " 1In obtaining the general solutions of ‘all linegr;differeﬁtial equations’
of second crder we havé used a number of tricks, albeit more than once, whose
Iméfifétion'mdéﬁuSeem obscufe. There is an old saw smong mathemat1c1ans that
a device used once is a trick; used twice, it becomes a technique; three times

a2 method; more than that it becomes a rule and demands a theory. In fact, the

devices employed here all have more general uses in the further development of

the “heory of linear differentisl equatlons. o
- 5 N - - _
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. Exercises 10-8a. 3 5

T

2

1. Verify that the.operator .~ N

../ ' LT L=D2+p‘D+.q B . L~

" is linear. ‘ <
e ’ : ° '

2. Prove the superﬁoSition princiéle for linear 0perétors.

3. Prove that the reduced equatlon L[u] » I linear, always has“thé

trivlal sofﬁtlon ufx) =0 - . . S
L, If L ,and ‘M- are linear operators, show that ‘the composition LM-—isl»
r ) . ' ’ : ) -~ > ) ) ~

linear, . _ -

\s

5. Teke L ='(D'-'d)(D=- B) .- ‘ el . ‘_ o

(a). Solve the homogeneous equation L[u] 0 by the method ‘indicated

in (5). - R

»

{b) Show that’the initial value problem' L[u] ='0" with the prescribed

 initiel data, nA;o) =Yg 5 @ (xo) Yo' R ;s eell-posed.. ' .

s

6. Show' that the differential operators . D - p and D --q‘fcommute if and
‘only if ‘P and q differ by 8 constant. - 'n"_: cLL s :
A

&

7.. ¥ind the general solutlons of the following dlfferential equatlons and

1

obtain solutlons of the stated 1n1t1al value problems."

(a) D% = 03 ufo) = 1776 ; u'(6) = ig2g .

. : L [ s . ' . - _ .
(8) (0% 2D+ 2)u = 0 ;,,u(o)_g,,%"—g LW(0) =0 .

2 u(0) =0 , ur{o) = 43 . .

"

e

(¢) (D° + 2D - 2)u = O
‘ (&) (0% + D - 2)u = 0 ; u(0) = 1»,_ur(o) =2 .

8. In analogy with- (12) express the solution of (7) in terms of hyperbolic

functions.
* 9. Disduss t:re graph of the damped sinusoidal function ~u af (12) for a=1,
w=1, u(o) = > u' (O) 1. Pay particular attention to zeros, extrema,

points of 1nflectn.on and 'DOiI‘l'tS where the graph touches the curves ’
y =% e»x . Wf i - oo o ) : -

-

:'  . | . _-i | U o éog‘ 22.1!6: -_ . . L
- , : N - N -

{m
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S10. 7 (a) Show if the roots of the charact'éris‘tic equation (6) are complex L

than-all solutions of the’ homogeneous equation {3a) have graphs (\
- ob‘tained from some *nontrivial solution by a charge of scale along Y
_ the y-axis, (x,y) —=(x,Cy) , and a translation in the direction
of the x-axis, (x,y) —(x + E,¥) . . .
(p) Investigate the o't:her two-claskes of solutions of (3a) with respect’
. tO\ this geometrlce.l property
e ‘ - T v «
r-] . . - __.‘ )— .
',‘:‘ - -
e e \ .
R N
) N
; ) ; i - - .

™
]
L)
i
]
S

- - T s . "‘ -
Vg e
r Vi - B ?
s -Q_ . . e ‘&'
R D4\ A L -
[ - A
.i d . / ’éf
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i L]
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[

. (ii1)  The general homogeneous egquation. The question of uniqueness for .

~the homogeneous second order linear equation with constant coefficients was.
left unresolved. In this seption,,we_shall prove unigueness of thHe solution

of theuin§f1a¥ value preeigm for the reduced eguation of (1), ' A

_(iBa). - Llu] = Dou- + P-Du+g-u=0 o i?xL
with é ‘and g continuous, subject to the initial conditions . ' '

v -

’ 4 . t f —_ i - 7 -
_<‘1%‘P” | - _u\xo)_T- Yo o '.u\xo)l—yo . )

N

-

[N

‘Eﬁistencg'of a solutien is e%other'question. For the equation with eonstant
coefficients existence was settled simply by exhlblting an approprifte general
solution. For ‘Equation (13) it is known that there is generally no explic1t
*solution of the types, available to us by methods of this course. - It is possible
to prove that such . solution exists,inonetheless, without knowledge of an
explicit representation. In the gene€ral theory of 'differential eguations’ -

existence is demonstrated py the construction of a ‘solution as the limit of

FHlale v -L‘epprdximatidn scheme. Here-'we assume without proof that a solu-
.lon of the i:;.fﬂl value’ problem ex1sts and simply 1nvestlgate ‘the structure
o T solut N : ggﬂ o ; '

se=u2lly, ve on_y assume that on the intervel I,'qf.continuity of p and

g Zguation '13a) ha: solutions @ and ¥ which satisfy the, specific ipnitial
: (- . S T T

conci~ionz

S AL e - . o ..
“hat : . ( = @ =0 , I P
sel _ . ¢3xQ) 1o~ gzgxqq =0. . A T
(e Cwlx) =0 L, Frx) =1, .
~ - S0 AT
“or Jjust one point 'xo in I ., (Acuually, it is sufficient to-assume that

"13a) has any nontrivial solution on I (see Mlscellaneous Exercises, Chapter
10., Nos. 23, 25). A pair of fun‘:ions- {¢,w} satisfying conditions (lha,b)

is celled»a fundamental set of solutions of. uhe_reduced equatlon. If two such

'solutﬂoqs exist thehn the initial condlulons are satlsfled by the llnear com- f'
.~bination . ' - ‘ : - . R ‘k/

. - B . | . _

: w =y -y - - - : e
-~ i . . : 0 O :

i P .o : . - . SN .

. F X,

If un‘oueness is n*oved then each. solutlon is a linear combination of @ and™—




-

Now let us %upéose that the initial conditions - S

(15) - u(xl) > u'lx)
are nrescrlbed at some other p01nt X, of T . _Since u =-;l¢ + cew is a--

solution of (1%a) for any constants cy and e, we try to satisfy the initial

conditions (15) by picking suitable values of cl and 'cé . Therefore, we
:‘require‘ ; y

— (16) l¢(xl) - czv(xl) . ;
- ¢ (x ) +oegvt(x)) = .
- ‘ . X : ]

Ebuatlon (16) can be solved for 'cl and - ¢, 1if the determinant

. | CERHCRIEN 4 C.}L_L)Ilr(x}

is not zero. Since.we are.interested in solt&pg (16) for any. value x;  in I

- we are led" to con51der the function w given by

an. T ) = v - g (x)vix)

~

S T %
--and .to inquirg_whether w -ever takes the value zero. .

b2

-f'; From the-conditions of (1ka,b). gb have w(x ) i‘;"Since w  is cbn4§

tlnuousflt is’ p051t1ve on some nleghborhood of XO .. We can do mach be%ter.-A

Surprlslngly, even though we know nothlng much about the. solutlons ¢ -and w
‘beyond uhelr bare ex1stence, we& can write a\51mplé expllc1t fcrmula for w’. -
- For thls.purpose we comput& 'w’ ,'u51ng the differentlal equatlon‘§13a) to

A . .
: express #" and " . in terms ‘of lower order carlvatlves'

L e (Brewt By --c¢"--~¢4+¢i-w'>- ‘
o ey L
. ' . =fe(-p-v' “ge¥) - v .(-p-F - q- ¢) .
a : e R C RN LD . b

= -p-w . o ' ' : e e -

Thus w satigsfies the linear homogeneous eguation of first order.‘

< . I
. . -

' 18a) - ’ ! Dw -+ wi= Q
~.  (18e) N sx)w=0
‘and the initial coM@itipn- _ . ' .
‘ . . T —_ N % . .. - o,
Qx5p) 2 , cowlxg) =10
,'2 - 3 ’ ’g: - * ~ .

* / - | ‘ : ‘ - . .- .2
- Tho functlon W  is usually called the‘Wroﬁékian'of @ and ¥ - after
. H. Wronskl (ce 1821). ' .

.
LV
L

. T g . 612,
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From-Section 10-7, we have immedieteiy, | o . ’ . ' -

x
- ’ X ’ [P - O ) . r

- (18e) - . o w(i} = exp %wSJC p(t)dtg .

The explicit expression of w 1s less important to us thar the knowledge
derived from the exponential representation that w{x) > O for aii X . We
conclude that constants c, eand c2' satisfying (16) cen be found and, hence,

that the initial value problem (13a,b) has a solution for any point of I and
. .___ .“‘

any choice of initial values. - .

-

THEOREM 10-8. The initial falue;prdblem (13) has at most ‘one solution.

Proof. TLet u; and uy be distinct solutions of the ‘initial velue  #
problem (13). Since. u2(x) - ul(x) is not identically zerc, it follows that
= Uy - U is a nontrivial solution of the initial wvalue pioblem

| "_'(‘%9)  o - ‘L[l}i= 0 ; 'u(x(;)éO > ut(xg) = O.-_.'

1
- . -

NO‘W',‘- if. - | o ‘ . . Cov
wf(x) = ¢(x)u'(x5 —-u(x)¢’(x);

o~

-

where ¢ is the solution given in (lha), then by the same deriveation. as <that
of (18c) from® (1) '

. . ) x
vy (x) = wl(’Fo)- exp i—g p(x)ax % . s
. ) x, , :

-t .-

. From the initial conditions on u -given in (19), we have w,(x;) =0 and

B _ | TN
- Multiplying corresponding sides of (20&) ap@a(QOb)‘we obtain

'hence that w (x) vanishes,identically consequently,
(20a) ‘ ' S ¢(x)u (x) = u(x)¢ (x),.,
By exactly the same argument fon/ihe i:fjﬁlon V. of (lhb),

- Veuvs) - w(x)t (x) ~. o

7
vanishes identicelly; hence /. L i;" . ‘
- (20m). o (¥ (x) = *eu(x) . - -

. . - - .
R S . -0 . . ) - P - - -
., > . R - -
. N . - - - .~ -
~ N o - - ’ . .
A

S i‘ ~ 613 250 S S
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*lataer (D 1Fv ()T = w0 v 8 ()]

_whence, . ) - _ - P

[a()ut () 1[B6v () - $(D)F (0] = £ wlx) Dlu)?] = o .

Since w(x) > 0 for all. x-, it follows that D[u(x)e],= o, orsthat, u(x)2
is constant. Since u(ié) = 0 , we conclude that u(x) = 0 for all. x , in
contradiction to the“assumption that u was a nontrivial solution of (19) .

. & ] ,

- Corollary. Every solution of L{ul.=0 in I 1s a linear combination
of the functions ¢ and v def:.ned by the initial conditions (1&) '

Proof. Let E be any point of the domain of u and set u(g) =Yg »

(e} = Yo' + By the Theorem 10-8 we knoéw that u%is the only solu‘blon
with these initial. values. At the ‘same time we have eScainshed that there

. exists a linear combination -cl¢-f’céw which has the same initial values.

R

. P
— + I
Thus u = cl¢ /ceu fj.

~ Under the assumptlon of the exlstence of the two solutions @ and Y. _ .
which satisfy the 1n1t1al condltlo (lha b) at any one. point Xn of the. \\\
lnterval I wher~ »p and g are contlnuous, we have proved{that the inltiaij
-value problem (13) for the general homogeneous second order linear egquation is
‘well posed: a solution of (13a)° satisfying the 1nit1al conditions (l3b) exists

and is uniguely deflned. From the precedlng analysls 1t also follows that the

solution is a linear functlon of the initial data, hence- continugQus dependence

©on the initiel data 1s 1mmed1ate. o : L .

(lli) The general nonhomogeneous eqﬁ tlon. As for the flrst order linear
equatlon, the solutlon of t\@ggeneral nonhomogeneous second order llnear equa-

tion (1) can be exnressed enclrelv in terms of the reduced equation.

. First we shcw that the 1n1t1al value problem has at most one solutlon.

 Let ¥y = ul(x) and Yy = (x} be two. solutions of. tbe initial ue -
problem o . B ’ . — - . e s
. - - - - . . R o oy T . = : S N -

‘(21) . L{w) _‘fl,;u(xo) = ¥go 5 U (xo) Yo' : T

where L. is.the géneral linear second order operator (Eb). Then
v(x) = uE(x) ul(x) .is a solution of the initidl value problem (19) for the
homogeneous equatlon wmth zero inltlal data. But we have shown that v(x)

-
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must then be identically zero. It follows that o=y, o, hence that the
solution of the initial value problem is unique if any- solution exists.

Next, we show that if (1) has any solution ther a solution of the initial
" value problem (21) exists. Suppose Lfz] = £ where z(x ) =, z'(xb) =p .
There exists a solution v of the homogeneous equeation . L[v] O for which

v(xo) =Yy - Q@ =nd V' (xo) =¥o' - B - Conseguently, for w =v + z by the

superposition princifffe,  L[u] = L[{v + z] = £ ; furthermore,

ulxg) = vixg) + 2(x5) = ¥}
1s a solution of the initial

only possible one.

Now,_ ehow, we must find a single particulsr .solution of Eguktion (1)..
We know that i1f {@,¥} is a fundamental set of solutionms for the reduced
equation L{u] = 0, then any solution has the form l¢ + c ¥ . For con-
venience in solving the initial value problem (21) we choose {@,¥} as the
particular fundamental set satisfying conditions (lha,b) at the point x,
where the initial data are prescribed. Again we try Lagrange'’s rule of wvaria-
tion of parameters and seek a particular . solution in tﬁe form , i
(22) V(X) = c (X)¢(X) + ¢, (x)w(x)
We require L[u] = £ . Calculating L[u] from (22) and using L[¢] Llv]
we obtain

(23)  zlul.

e+ et ew) +2(cy g+ cy' Tyt) £ p. (cq? @+ cy" e V) ;-_

Since ﬁe:he;e'twb functions, ‘¢; and c, , to be determined we mey impose two
conditions;_‘Wé'élready"have imposed one, L[u] = f and we are free to lmposer
another so as to. simplify (23) insofar as we- can. Observe that the derivative
of the third parenthetic expression in (23) is the sum of the other twos

" D(eyr A N AR S NCARE LU AR

We irmpose the condition that c' . ¢b+‘c2'- ¥ = ; then the derivative vanishes

also, andi'L[quz’bl’- g + c2' «¥? . Thus, we impose the xwo conditions on

’

¢ =md ¢ 7 ‘ ]
| o .

8 .
A v -
. -

,L'*We.see.now thet Lagrange's method has become a ¥ule and demands a theory.
The thecry, a reiatively recent develophent, requires somewhat more subtle
apalytical techniques than we employ here. It is. based on the beautiful theory
.of linear’vector .spaces (usually found under the. headings of matrices or

"linear algebra . o S
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* Cl"¢+c2'-\'1{f=o
cl: _¢t + c2| W' = F .

S long as the determinant w = Doyt - ¢'- pi4 is not zero; this sysﬁem can be
olved for c,' and o’ .(compare the system (16)); namely, ' :

. . .

cl'(x) =§- %%ﬁ% £f({x) , c2'(x) = w(i) £(x) .

-

- We integrete.theee expressions from x, to x to obtain cl(x) ‘and cé(x)
- and -obtain a particuler solution in the form (22): . ' -

. _ o X s | - . ‘
(2%) v{x) = -@(x) s}{.;é%%-f(t)dt + ¥(x) S %%z%-q(t)dt .
. < - . o) L7 xo )
As an exercise, prove.this result and show that (24) gives a particular
solution by differentiating and verifying directly that Liv] = f (Exercises

10-8b, No. 3). r?urthermor this solution satisfies the initial conditions

- (25) ‘ R v(x)=0‘,v'(X)=0,

as you may easily check. Had we: not chosen both lower ends of integratlon to
be (as we are free not to do), we would generally not, obtain 1n1t1al con-
ditions S0 convenient as (25) for the solution of  the inttial value problem
(21) (Exe;cises 10-8b, No. L4). As it is, we obtain the solutlon of ‘the

initial wvalue problem at once in the fonn

(26)

u(x) —.yo¢(X) + yo’w(X) + V(x) -

. o 3 .
T Again it is obvious from.the llnear dependence of - u(x) on the initial .

" data thatuthe solution sztisfies the proPerty of’ continuous dependence on the
1n1t1a1 values. Furtherfore, cortinuous dependence on the forc1ng term £ is .
also apparent (see Exercisez -10- T, ‘No. 11). However, to prove contimous - ”
dependence on p -and q’ qulres ‘the- ex1stence theory whlch we are assuming.-

Anginteresting'form of (24) is obtaineéd by—comblning the two 1ntegrels:
e e el . _ =

O w(x) = * U(Xl¢(§) - ¢(x)v(§) fté)de-: ‘ o o
g o 0 __"’(g = ' S

The first factor,appeeggng in &he 1nuegrand : . -

(27 T Glee) = ”(X??’(g,}, g)ﬁ(x)w(‘é)

Is called the Green's function of 'L_;fit'has some's%riking.propefties:.

¢

r .

616 - '}' - .

255
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(a) For any fixed number E , the funcﬁ/;n U : X =w—eG(x,E) is a _
=

" linear combination of ¢(x) and w(x} ; therefore G(x,E) 1s a
- . solution of the reduced equatiqn L{u] = 0 . '
(p) Gl(g,g) =0 . ) - -~

~For the derivative u'(g) % D G(x 5) °§-, we obtain

_'w!(a)¢(&) 4¢(E,v (a) 7
x=£ = w(E) _

In summary, Gi{x, g) = u(x) is that sdlutign.of the reduced egquation which
_satisfles the initiel conditions u(t) =0 and u'le) =1 . Tt follows that
- G(x,b) is uniquely determined and does not depend on the process used to

(e) DG{x,e)

-

- construct it. ‘ ‘ / K .

| o
. The remarkable property of G(F,é) which  -we have just derived has great
‘value, since G(x,g) is the fixed obJect in the 1ntegral which defines the
-Apartlcular solufion v ; G(x ‘£) doee not- depend on‘the forcing term f or -

~ -

 the lower end of integration Xo o : ,
The integral - o o . >

. o : ) B - xX . - e
(28a) . ) o w(x) '=5 » G(x,e)r(g)ae
. - xo

i
b

‘deflnes an. 1ntegral operator . L L

(28v) ,"' o T f-;;ﬁuv‘f

which has the effect of uransformlng any forc1ng functlon 1nto that particular
SOlUulOn of L[u] f which has zero 1n1t1al values at 'x = xo . The. relatlon-

of the integral operator T +to the differential operator L generalizes the o

relatlon between the operatlon of integration and the operation-of differen—

:

tlatlon' ’1;' S denotes +the op rator for ordinary 1nuegratlon, that is,.
S[ﬂ;] T where r(x) S f‘(g

)dg , then for a continuous function s 5

. - " ’ ’ - . > \
(292) -  s[e] = BIF] - f\ ; |
and f9r any continuously differentiableﬂfﬁnction F,

(2'9b)‘ ‘ o sDIF(x)] = F(x) - F(x ) .

From (29a,b) we see “that s ‘and D "are almost, but not exactly, inverse
.,operators.. From (29&) we see that I undoes the work of S, but from (29b)
we see that S does not qumte invert the effect of D, but adds' a constant
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function. (If the domain of D 1is restricted to functions satisfying '
'F(;O) = O then the operators become exact inverses)- Simii%?ly, for any "oy

nd

continuous function £ ,
i sl o _
(30 . - ‘ .+ Lrif] = n[v]} = =,

and for any twice continuéusly differentiable function u y e

‘

(300) | : TLlu] =u - YoP - yo'ﬁ,

where "y, = u(xo) and yo' = u'(ko) . (Again the operators are exact inverses

if the dom=in of L is restricted to functions. having zerg initial data st \
i ?

xo) . - ‘ ‘ : j/}
Tn terms of the symbolic operator description, the problem L[u] :)f’ is
solved Tor a suitablejrestriction of the domain of L by finding an j '
~operator T such that TLEu] ;1TF-= u (see Exercises 10-8b, Kd.
symbolic formulation describes a general cless of problems whj
role in_highef mathematies. For linear operators there is an elegant well-
rounded theory contained in the areas of linear algebra and linear analysis,
but even these areas have not been fully expiored-and are still growing
rqbustly. The representation of inyérse-operators in terms of Green's func-

play a central

tions (or-analbgous forms) is a useful method in much of this theory.

et ‘ - 618
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Exercises 10-8b

Show for each of the special cases (7), (8), (9) of Equstion- (3) that
there exist solutlons ¢ and v~ satisfying the initial conditions -

g0y =1 ' S wo) =0
gr{o) =0+ .~ : vi(o) =1,

hence thatlthe initial‘¢E;ue problem is well-posed.
Flnd a rundamenial set off soluticns of
Llu(x)] = g;(x) +’xu'(x5 =0
and solve the initiel value problems
a). nlu(x)] =1, u(O) = ut(0) =0 ;-‘ ‘ | _ I /} . .
(v) Llu(x)] =x, L(O)

I

O- . . . i T

ur(o)

Verify directly by differentiation that (2L4) defines a particular solution

of (1) and show that the zero initial conditions (25) are satisfied.

Show how to solve the initial wvalue problem (21) when the lower ends af ‘

integration 1in the expression (25) for the partlcular solution may be

—t

PR P

different from Xq - - . - - _ -

Describe- the solution of.- the 1n1tlal value problem for the general second-
order linear ecuation Cl) in operator symbolism by sultabxy restricting
the domesin of the difrerential ooerator and giving the exact inverse ’

a4

integral operator. - S

w"

- Determine the Green's function or the operator with constant coefflcients.,

The uheory of Eguetion (lBa) is based on the assumptlon that p and g
are continuous. This theory can pe extended to piecewise contlnuous
functions P end a , if the regquirement that solutions. be twice con-
+inuocusly differentiable is weakened to require thau they be only once
continucusly dlfrerentiable. Assuming the wvalidity of this assertion,
construct the fundamental set of solutions at x =0 for the following

equations: : ' S . A
(a) ¥ + (sgn x)y = O .

(p) " + k(x)y = O , where

: - 1, if 2n=n <x < (2n + 1)m - .
_ 5 , if (2n + L <x < (2n + 2)x,

o,

o,* 1, T2, ...) .

s}
I



Ll
e N T Nl

: ? : » o : —
. 8. N(a) Construct the asymptotic solution,as X approaches infinity for the
: : equation ‘

g

y" + Ayt + 3 = k(X)
- where 'k 1is defined in Number 6

(b) Do the same for the equation
. Tt ; :
) I . y' o+ 2y' +2 = k(x).,
. ; :
. N, N .
£ .
» = -
’ h > )
3
¥ , .
. .
. ,
o h -
3 +
- R

N J/ - ’

- ’ 5 -

- ) \” -

’. - -
A ~ L)
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10-9. Separable Differential Eguations.

In this section we treat another broad class of differential equatlons

~which can be solved in terms of integrals, equations of the form

) N ‘p...' . . :gﬁ ='f(xjg(y)

. _ . . _ .
where g and f are given continuous,functions. This class includes the

equation y' = f(x) whose study is the principal objective of this chapter;

the homogeneous linear equation of first order, y' = -p(x)y , which-we
treated in'éection 10-7; and the. equation y?! ='a + by + cy2 which served as
. the prlnc1pal mathematical model for the processes of growth,’ decay; and com-

petltlon consldered in Chapter 9.

-

\Tif Equ-tion 1) contains only a first'deriveti%e and therefore is of _order

1 . VWe may then expect on the ground of our experlence with first-ord

equations .that it .is approprlate to pose the 1n1t1al value problem: +to”
determine that solution of (1) for which y = Yo when * x = Xq = Differential.
equatlons of this form are generally nonllnear (see Exercises lO 7, No. 2c)

Since they are easy to handle, we shall use them as a means of gaining some

-
.

1n51ght into some ‘of the questlons which arlse.;n connect with nonllnear
egquations. ‘ g

We solve (1) by a formal prOcedure and call attentlonﬁalong the way to

the difficulties which maey arise. I vy = u(g) is a solution of 1), then
v = ”’\g(u(x))

We may divide by . g(u(x)) , oo o7 zoat g(u(x)) # o , .to obtain

(2) . “ o ﬁ%—éf(x). :

A

Now, 1upon intégratirdg with respect to x-, we have
Wy BE b _ s

~

- & 3 -‘ . >

-or, 4An Leibnizian notation, : .

= . Sﬁ%: jf(x)gaé .

: and F any antideriveative of- f , then

If G 1is any antiderivative of

LR o

(3) is ecuivalent to . _
i . \

?“) = G(u(x)) e_F(x) +C .

(1)

. o 621

-—
<55

-
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This.equation does nét give y explicitly. In oréer'to determine .y we
. must find the inverse H of G 1if it exists; then we shall  have

(55.‘ o ’ oy o= ﬁ(F(x) + C) . ._ .9-

Then, so long ac- F(x) + C 1is in the domain of H s “quétion (5) defines a

solution of (1). If the value of u is ‘prescribed at Xg
) ‘.:(68} ) u(xo? = yo 5

jthg?;hbyr(h), C = G(yo) - F(xo) , and Trom (5) we obtain as the solubion of

this initial value problem

(6p) - ¥ = H(‘F(x) - F(xlo) + (_}(_yjo)) -

~

The method of obtzining (3) is called separation of variables and,

eccordingly, Eduation (1) is called separable.
* Agple 10-9a. 'Given a one-parameter family of"curves; its orthogonal

trajectorles are deflned as curves which cross tne members of the amlly only

at right angles. " Thus the st*algh* llnes t *oug the orlg n are orthogonal

trajectorles to the circles '2 i y, - a2 .

- L

Let us”con51der the- n*oblem of finding the orthogonal t*pjectorles to

the famlly of Darabolas

Observe first, thétﬁfor each point (&,7n) of the plane except for the points
of the y-axls, there is exactly one member of the family passing through the
point, the¥§arabola given by =a = l% . At this point, the parabola>has the

E
. 2 -
t slope 2at = E? - Thus an orthogonal trajectory passing through (£,7n) -must
have the'sfbpe é% . If y = u(x) is 'an orthogonal trajectory to the family

. i
of parabolas, we conclude that at each point of the orthogonal trajectory

(7) B ' | R

-Thus the or L.rﬁogona'r t*aJectorﬂes satisfy a sepa*able diff erenﬁial_equation,

’Separatlng-varlables, we have,

-

‘ 2yy' = -x ,
and integrating, we obtain -
R o v T
(8a) . 32 S %? + C . «
A : : s
¢ - L h - -
' c22 )
= € . ; . i A
€3 = o : P
- : 2 J - ’ -




or ' o ‘ .

[

» . x2 2 .
(8v) ?+y =C . °

o

This formula describes the family of ellipses-ceﬁpered at the origin'wiﬁh ratio

" of major axis to minor ‘axis egual to 2 . } . .- S

On -comparing (8a) with (%) we observe that_the function G -: y-———-y2

dags not have an inverse on the domain of real numbers. On wny interval wirere
'f # 0 , however, G does have an inverse. When Yy =0 , Equation (7) becomes
ﬁingular, although (8b) remains geometrically s!énificant; Finally, note that-*
not all values of the parametef C* are admissible; ‘only C >0 ‘yields a

solution. B

-
%

.
-P.‘l\“\
<
.
:
:
.

Example 10-9b. Consider-the .equatiod,
. . - . . o < - . ':‘ ;' Ce e ) . .

<« '. YT = XY . :
It y £ 0 (but, y =0 is definitely a solution), then  ° e
, . - ' e - : . ;7—3_' = X , . . B 1 . .
whence . . ‘ A - (
. 2 o Sy
- ) P - 108 ‘y = -}c—e— + C - q _'_ o - M 3 ) 7 N :;

Here, too, the function .G : y —e1log |y| ‘does not have an inverse on its
0"

|

R 4
domein of all nonzero reals. On any interval which does not contain ¥

we obtain the solution : _ -

e P -

: 2
. % )
¥y o= exp'{253+ C}-sgn Y
r

where sgn ¥y §;s constant under the restziction on y - We have lost the:n

solutién y =40 , but if we"set k = ecsgn-y s We obtain all solutions in the

form y_=’%ex'/2 . The method of separation of variables, 'however, does not

by itself necéssérily yield all solutions. T

-

- S ' ' e

M -

. Aside fr&%‘the speciél'éases arising from possible zeros and.%oints of .
discontinuity é}, g(y)‘,‘the theory of separable eguations is.exf;émely simple.;
, : - ‘ f . Yo , ) ) .

X -

3 . -

t,




B B i"f;., o ool ‘ e
N R - . - . .
- THEOREM - 1.0~ 9. Lep E4 ‘be conulnuous on” e ne*ghborhocd of X5 and g

: 8§
'Ebntinuoas on a nelghborhood of Vo - I g(yo} # ) s then the.

-

- o 1Bit1al value problem- for ¥ = u(x) - 3 .-
- . ’ T I‘\ 0 ,‘._ \',,:;"1 o . I e e ; .
- . .-J' * . '(ix _ . . oA L . - ) R oy
) N . dx - f(x)g(y) -\J{ ) -
hd - - - - u(xo). .7= yo z . -" N
S has’ exactly one solution. . - ¢
,Proof - Sigpde g(yo) # 0 , we know by Lemma 3 -4 that g(y - is bounded :
Ir .
- awg f*om zZero on. some nei hborhood "I of . We conclude that * . 1is
7 % Yo SO ic2
.cpntlnuous and has. constant sign on I . The function G given by ‘e :
. C o ) o K oo ' '
oy a N -
al’ : S - G = : d '
y 9 ) ' B _ (v Ey_‘s‘s s | | .
2- . ;- _ - .
is_s;;onglyfmonotone on I , because G'(y) —T_T % 0 . Observe also that
B . . N )E . B ‘
(sv) . ) F(x) = S £(t)at
S o . ¥ %
is contlnuous. Since F(x ) = G(yo) =90 it-folloﬁs that there exists a
neighborhood of J of xo"whlch is mapped by F into the range of G over
I , that is, into the domfin of the 1nverse functlon H . We conclu?e:that :
the functlon o i e o ﬂ. )
. - ~ - ’ - . . ~{
(9C) R g - ' u : x——-H(F(x)) :
. | - -~ _ |
_is\defined on J.. From the -differentisdtion’ tkeorems for compositions and
T . -.,-. . - . ' ]
- “ > - F,(x) . - - .
... , . furltx) = = = f(x)g(y) ; o
o s G {v) .
o - z
so that u 1is a solutlon of the differential equatlon. Furthermore, . }
oo B f“’ .

2 -

Thus the existence of 2 solution of the initial value °

-

since G(yo) =0 .

problem is proved. ' ) . _“.‘ - . .
< : - . P

On the other hand if a solutlon -of the initial value broblem exlsts, then

. tne method of separatlon of varlables 1s Just Tied and\gbe soluulon ls dlctated

. by Formglas (93 b, c) - Thus the solutlon ;s un*que.

i 63L \
. ST ) - } . ;o e -
- T . | ’2(’ - - " -
A A" S .
= I n ¢ . . ;e

e ) -,
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_ it is p0551ble 4o relax the condltlon thet g(yo) # 0 in. Theorem 10-9,

but then we must impose & strcnger conditlon on g , for example, that g have
‘a boundeg.derlvatlve rather than be merely coq;;nuogs.._We assume without proof
that this condition holds end ask what form, the solution may Have when g(yc)==OQ
The constant function u : y-——c—yo is then clearly a solutlon of the dlfferen-

2

“tial equation, and 1n view of the assumed unlqueness under the restriction on

g , it is the on_y one. . - . _" o K o .
- .- * - -
. A - )
. 2 ' - .
.‘- . )
. ) i .
. . i
¢ - - Wl '
- . - ~ s
5 . . i -
- @l . s .
v . Tl =
. ; o o>
. .
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Fu
'

b ]
~ hl
re
.
e b . .
. 2 - D
- ol ‘. : ./
R - . »
[ ’ : =~ B ‘ = -
-
™ - ~
1 \‘. -
P . - o .
hd T ’ L :
L .
‘ a4 -
- ‘ . .
. - .
~
1 -
.
-
<. .
~r . . n
: o ~
- r
L .
. v v v : =
. &
-
-
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-
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. -
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.fFlna the orthogonal traJectorles to each of uhe follow1ng famlllés of

'  d;'f';:.i.$f Enéroises 10-9"_-‘ ._l-h S j' '-ff<':
Solve tne equéﬁion' 'h' \_‘ " "'r o f ff .:‘ts ) ,;;,/;i{
by-eepareﬁing-variables. (Compare Exercises lO 7 No; 6) '

o

curves and sketch the. curves and thelr ort hogonal tregectorles.

= . ot : . -
e . . . : . . Fa
o ) . P . B -

(a) The rectangular hyperbolas, Xy =a i -
(b) . The ellipses centered'at_the orlgln with fixed_ratio'of-msjor_to

minor axis. - e )
(a) Show that the equation o S -
_ HE - -
. o
dy the
is transformec 1nto a separable equatlon in S by means of the
- subsuluutlon X = % . - _ L
‘(b) Find the ortnogonal uraJectorles to the famlly of c1rcles
: 2 2 2 .
(x - 2) +y7 =2 . . S > :
‘ ) - ]
- A
- . . J R ) .
“ - ! .'H‘ ) ‘. ~ —_—
"-_- (\\! :..
.' ’ -"\ ‘
3 _‘l' . '%; : e
& L
. RES
- 4 7 - -
2} "‘ Ib-"
- *
= <’ .
o i
- ) 626 -
- ~ - ,"
. - B 2 {‘ﬂ\ <
- : Du

N
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1.

-

B

5.

4
HER )

8.

9.

pIﬁteg;ate-

. Prove

, -

. -

-
i

Integréfe-

'.Evaluaté

Bvaluate

that

. . l
Comna*e
_ f O

valuate S

'Shoyfﬁhat‘

assurting that

Prove that

| 'So- oy
(Hint: Use No. 8.) ;//// -

>

(/2 + 1.- t)Rat -

L

. A N
S
J
- :
L Miscellaneous Exercises
LXK -
sa b dx .
L2 af x
e+ a
>
- o P
. =Y T
- - o x '
»
. - a “’_ ;
: S ax
0 N 2. - 2
4 - ' }: - a - x -

-

\ .

C .
25 Gt - ¥4% + 1)at
0

).

the integral-'exists.

1

-
»
.
-
-
B
-
-
a

(1 + ——JG(t)dt .

't

‘provided

~

n>1

at

T

ha



/ ~=i ‘. _ﬂ . “ K ,
4 R - o K . -
~«10. Compute - ) ) B
. ' : M r . 'vﬂ .

't

. . . - o B ) _' . . - : ,— -
e - dx - L :
R T = 5 22>0 ,b>0,a8fbp .. -

. ; 5(3_(x2 + 22) (%@ + b2y T o

s’

w ) N
: ST ' SR Ot : x dx ' ' ' 4 ‘
. B N — ;28>0 ,b ~0 . ° e
» o : : 50'(:{?—_&.— 82)():2 -f_-.bg) . . -t
t T . \ i S _ o :
-’ +l2. Show that the integrals ' . -
T fe 7 | |
2 kY Tt T ax” -
co ). s o .
: ) . dx
- (B e : a . S
~ ' e x(log x)(log log x) - e | |
- converge if a >1 and diverge if a-< 1, and evaludte the integrals.
o _ 1: - ’ e . . : .
~13.  Prove: that S sin = dx converges.
i o _ e . )
1Lk, (a) - :‘_P'r;‘cs-ve that if "f has a confinuou_s d.eriv.a“c,ive: then i

B 'Sx [ﬁﬂf'(‘t)dt'= I=x]5(x) -9 £(n) (ft] = integral gart of t ) .
T S :z;; . .

\\‘ - - . __"

. : ‘ b's > ’ .
(5) Evaluate S [ce2at .. NEEEE
_ . 1 o . . - T '
A _;‘. g . . )

<> z '. s : B - .
(e¢) Evaluate S E<]-t at . - -
: - 1

15. Find the maximm ang the minimum of the function
- N »‘ x. .
F(X) - . 2 2t + 1 .dt_
: 0t -2t +2
r in the interval " [-1,1] . . )
" 4
i "\ .
~ ‘ - ,
N 628 - - N = . -
) " e
- 255 .

v



ﬁ\S‘ © ways .show that

R S G- ST PRI SRR S
AT,  Prove that SJ f(x)dxﬂ:“g £{a + b - x)dx N S

&
[SAS
8]
)
gy
1') :
£

p-M

. . R

- .

~.+ X -

] - . .

= — QX' - - -

2 - - . F -7
.. .
. o . -~

~

C - - 2. . ~ .
e e e S .
T 18: {a) . ‘Compute - s _ '
ST . e . . T . o s
) ". ‘ . .,—\._._.. . . " ) ;.7- e \-x ) . -
. . Bt . o oo I lim+ == b~ > a =~ o
e T R - x .
L. T - . e~0)ac ' _ . . .
L, e . L ) . ) EEN B . .- . LB -
T RS L sl , R SToRe(x) . .
S 2 u/N(p)  Assume-that £ is continuous om [0,»] and == dx  exists.
= . ... - . -Show that ' ST s ‘ o
L T e -
N S ' Y ) ‘ (2x) e b -
- : - o f{bx) = Slax) .-
~ o ) . © I = = : . - OX = f(O)log z _ !

a

\\ \-.,_ “V

A1S. By evaluating 1.=S

- , . . B
dx , n a positive intéger, in two ¢ifferent

g (3 DD DD ,2n
T "3 T3 T T Tan w1l (8ny(p4 4 1) :

A 20. Let ¢o(x) = #(:) be = contimuous function defired on [O,x] . Define

.
s




-.=21. Prove that Por all 1ntagers ﬁ - j" ;'f:-,’ DR T : ;Q'

s ‘., ‘.‘ -_ -. - " _-._ . N _ i . - . ) - - . ;.- ..

_ . - - RS * ' g ' E- B o
Sl A e o s <L o e
. ' ot o=y & *tn S - -

Lo 22, (a) Let ﬁQ,anJ’ M be linear operators’ and deflne the sum L + M as

“the operator R . - o o N \‘“”“\
' ‘QLH-M: U~ L[u] %bﬂﬁ}@ylo,:}._ . R
BN . '7_‘ - ] o - N oL l“._

e o Verify that L -+ M- is linear. - Lo

.. 7 (b) ,Show that linear operators satisfy the distributive laws:

'":i%u.y,; _:.;- ; L(M + N) ;.Eﬁ;¥'LN .ff.:fnt

K\,,ff:?fgff @fmnﬁm+m;;_ | .
(c) Let f be any real-valued functlon. _Thé ﬁultiﬁiioaﬁiop operator
U fei, is deflned oy - L :
J o _ £felul =f.u 2 ‘
s . - S ‘__»-‘A - L ' - i R L. . I/
I _"Verify4tha# - f e =is‘%inear, e T ' o . '

‘(d). For réai—Valuedffunotiéns _a;-, BL_q 2.0+ 84 ‘show that the
o differential operator L of n—th_ ordef given by . )

_ n ; . n-l - - RQ' R
L = a, D+ an—l D + . _-%0 . < s

. . n
L SRR : SV
- . is lineir.' . - L ) - N
23. (a) 1=’I'ove for the second orde* linear differential operator L defined
by L = D2 + p D+ g that if u - is a nontrivial solution of the

homogeneous.equation L[u] = 0 , there is another solution. of the

form u-v wh%i.jrv! ‘satisfies a linear dlfferentlal equatlon

.

M{vt] = © and M 'is at most Of first order.
. -"'*." ] ¥
(b} Prove, in general, for the n-th order linear differential operator
n

7 L defined}byﬁ L =»'E ak(x)D PR (x) # 0 that if u »is a

Coar : . k=0

nontrzvzal solution: of the homogeneous ecuatlon L[u] 0 , there -

- is another solutlon of the form u, -, where v‘. satlsfles a linear

" different ial ecuatlon M[v'} —-O where M is. at\most of (n—l)»th
. order. - ..L'3 BT : 3 ﬁfg_;j-' T T
’ 630 . g T
- - = A‘ { ) : -
Ty *ohey
oy ¥ 22' ‘o

r
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()

(a)

oo s 10-M

Find an'n-parameter family of_solutiéns;ofltne;differential o
equations : . R > ﬂi
. ' ' . R - . US
i s ‘..' \ E - » ) \&
\ IIu] (D - a) =0 . .- . -

\~—= ’ . T = - - !
Obtaln the” general solutlon of AT T LT
(x + l)y + xy \-(‘MS&:—‘ S

'QE“ht' Try to llnd a ggrtlcular polynomlal solutlon‘)

.'\J

Tvo functions u - and v” are called linearly 1ndependent on-.an 1nterval

I

if_.l___ - o . - . ..
“;?ra; au(x) +. Bv(x) = O s for all x in-rI‘!'. c ‘--: .

G’ 1mplles that a and 8 are both zero; i. e.,-1f u and v are not

25.

27.

28.

v

. proportlonal. Show that 1f two llnearly 1ndependent solutlons of a

" second oxrder bomogeneous llnear equatlon exxst in & nelghborhood of " xo

‘then the initial value problem (13) of Section 10-8 can be solved.

_Correspondlng to the three classes of second order homogeneous linear

egquation with constant coeff1c1enus, Section 10-8 we fcund the follow1ng

pairs of solutions (e, eP*} where o £B , (e X ' xe®™} , ana

{e®* cos wx ’eax sin wx] where £ 0 . i

Prove thit each of these pairs of solutions is linearly independent.. &
\ - ) e -

/ i .
Let u ?e any nontrivial solution of the homogeneous second order -

linear egquation

v Dlu] = Deu + p -Du '+ q:-n = Ol.

Obtain a second solution Vv in the form vV=u.-z . :Show that uw and

.are linéérly independent.

-~

Let u and v be any llnearly 1ndependent solutions- of. the second order .-

linear homogeneous equation. Verify that the Green's functlon is not
affected if u and:- v~ replace the fundamental set {Q,w} ; namely

Discuss the solution of equations of the type ¥y f(yff=f0-.

-

, v(x)B(e) - Bx)uls)
' C0e8) = GETeT(E) - WEIF (2

_ v-('svcs"):u(i) = u(x)v(E) - : R

Tu(e)vr(e) - v(E)u{e) °

,;g}i.
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Appendix 6
EXTSTENCE OF INTEGRALS & . = - SN
o Aé-;ig_Integration gx'Summation'Techniques;} ) .

' (') Tntegral of a no;xgbmiai., In-Sectionﬂé 4 we prove that inﬁégration
is. a linear operatlon, that the 1ntegral of a llnear comblnatlon Qf functlbns

-

1s the same llnear comb:natlon of thelr 1nuegralS'= - _ T L ;; v

- . R - . <

t{_;_;“[a [clfl(x) + chZ(X) e f;cnthx)ldx-;E _ o

SRR b* R N
R - =-¢l_[ fl(x)dx‘+:c2;[ fe{x)dx*f cew ngﬁ;I fn(x)dxjf

—an a

- A _a ,
In,baztibular £or.a polynomial,vﬁé'hh#é" o ) . ST - L
-In order to integrate a,polanmiél; then, it is sufficient to be able to
integrate positive integral powers. : '
. From the Corollary to Theorem 6-4b, we have A . C -
A . '\;3\ b A'\ b _ .a - ' /// < - .
'ﬂ{f:[,.:(xbdx =_;[ F{xYydx - ;[ CP(x)ax g . : ' a
T e a c c - j
= _
provmded that/ Ty is 1ntegrable over an ;nterval contalnln the points. a ,
by, e In ﬂiftlcular, for a polynomial we have o
T ... gD, ‘ b - ra o R o T
e L : z/ j ﬂ(,c)dx : f(x)dxe j f(x)dx ook
f . A'. : -'A SRR ke ‘: ' f I -
- LG . S : : ._‘. B
We need therefcre consider . only 1ntegrals f? the type_ J’ fggﬁdx ’_~ L -
. -_. . ..‘ . - A {__ ] . 3 r‘eA} -A
‘-Coﬁgider, in partlcular, the 1ntegral .of x*  over ~-[O'a"]—'_.-"Sinée‘ :

0 <Lx Pug- the function xr is increasmng Qn the 1nuerval. We take a
partltlon o which subdivides the 1nterval into 'n. equal parts of length
’_= v(c) . We form the upper sum U over ¢ using “+he maximam oﬂ. b4

o

in each sublnterval; thus

) T L B . . :
. Q . I . . EEE;f, B .

e
e

- g s,



T A6-1

< oo P . . ~r_+

e ; U Z"k"‘x xk-l

%
"l
EE
M
_:’\"
'o

.o 15}i" N '_ x=1
Accordwng to Lauatlon (k) of Sec@;on A3 2. (11) wehh&ve
. . - '_ R l ’ R - -\_ AT
cE e L "._ ’=~kr '-krﬂ-_ - (k - 1)r+1 '
T BRI SRR S

4

s .

R et L S SR :

(2 . uS B 3T - )r*l] Q(h)

- . - r ) ‘ k=l . - . ) ->_

where S : o S

- Lo . _ R | L
(3 T am =Y e
oo " - ) . - k=1

and P 1is é polynoﬁial of degﬁeef‘rf- 1l .-

We recognize the sum in (2) as telescoping (Section A3-2(ii)) and obtain

Y C . -

' } r+1 r

U =r=T - ._r_+l

» —

-

Since: nh = a , we have o : .

I‘-!- -
& 1

+ Q(h) — g

We. can-show that  Q(h) _can. be made closer to zero than any given error

' tolerance using only that the degree of P(k) 3131at.most r=1

. > . P Lol .
i - - - p .

r-1 LT ﬁu - -,_;\ T

_P(x) é':E: ;%5{1,17'Si§c¢. g f;n lt follows that
PR | : ’ '

EE

. ¥ l-- : -
lpcm <;: Ip l‘c <Z NS <Z

i=1 "

\I

R ¢ N

~
-

~
-

where P is a poly'nomia.l of degreet r-1 . Tt :fﬁleﬁs_thet

*agn) -

=

-
- -

We set |
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- In short,” we hmve found -
(5) | IR <™t S s
where the constant C is simply the sum ©Of the absolute valuesof“the///
coefficients of PB(x) .’ Entering the résult~of (5) in.(3); we have ,
o T o -
. EE s " . 1 o
©. B IIPSRa s SIS N B
- Y o _ e iw=L . oLl LT
-~ A . . . . . 7\ . .
v ' - . N .
ST ‘ o e % B¢ . ’ . -
P s = S S |
.‘ .. L e . .- ) . e -. Q‘ il 5 - i i - .
_;if '.;“,:'1;'fg. T L epTrL - ﬁ(Cn?-;) .0 s .
. Ty : . - . - .. b c ot . ; . ﬂ: .~ R - :’ e ..' .

. -Wherqﬂagain we use the fact ‘that »nh =a . It follows at once thet
.. 1lim Q(h) =0 . S R - : RV

h~0 - i , ‘ o -
] _ : : o

-

We could also form the lower sum L over ¢ by taking the minimum value
of x* as lower bound in each interval [xr,xr_l] . In this way we could

b4 A : .
-~ ~obtain a result for L esimilar to (%) and so prove

g . ar+l
_(7) o _ ‘ _[O x dx = T+ I’

the details are left to the reader. , -

(ii) A cosine integral. Let us =aticupt to f£ind the integral of

'y : . .

,cos x over [0,a] where we suppose = <= so that cos x is decreasing on .
‘the interval
lergih L =

. We take 2 subdiyision of ﬁhe'intéival,into_ n~ egual parts_qf_hﬁ

-

e

‘. Setting S .
- L ’ -.- 7 . .-' N : : ' o . - ! V ‘
St T T R ¥ =%n , . .. - (k=1, 2_{...\Ln)_,

& . - - . ) . . ST
ot ~ ‘:: 7 B v‘ . - . i -, i . . . *. . .. . :
we obtain a lower sum L over o .o ST ST ot S =T

TGy s Y i(ees R0y - g) = ) cos kn

k=1

ay o
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A6 - -
S0 =4 - T
[l - - .
an4d an Uoper suwm U over g ] &
- - ‘ - .
- ° -
-
.
- ~ - . -
) - a7
- . Frém Tguation >
-
- ~
. ;
; L . .
L g
< © cCo =1 -
24 -

]
¥
ey
i
g
w
n.Mn
'—-
0 -
. 0-
. m'
N
I
£
£
.8
g
|
e
N
o
o
I
N
H
1
[+
-
i

. Eguation (2] permizts Us to evzluate the Limit of the lower sum given
== 'in Bguation (1): : C ‘ ‘ - - . T .
a = L . - ./ : . : N ’ .
-
T -8
IR T -
- : " Usingtthe fa o
/-:- ) s - N
- T , : %, lim L = sin a .
; o Y . . n~0 - L~ - . o
-
i .? P
o
.
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2. Show simply, without .repeating the argument of ‘oée text, that the lower
N S T . . )

2 ~ o L:E T - x” ] has the. limit (7) . -
sm..n! L over 5 - (%’r\:-L J:k) 8J.§O has the.limit (7) . _
k=1. :

he 4 . . .
- a7 . i . .:\. x - . a . . s N
3. Employ Eguation (8) of Section 43-2(ii) to obtain J 'sin x d4x° for
. . . . . O . - . )
20 <. 2 E%"’ : el '
’ . - n - ,?' .
=}
! . ~ ( VR
e * ) o -
f -~ . 4
. N "‘\\. . - R
‘
=~ . ) .ﬂ_‘ . ‘
- ) - L > -
s - - -

- N ’
) o P Lo : - R o ~- - ;
- ) S . ',g) -
. . . Lo .
: . f . . . - . >
. - - 4 ‘
- - -4 . = < E -~ . - g -
B 3 ? - ¥ - A 4 -
- . e - .
- r hd s - - ~ * .
- N - . - >
- - 4 - -
* - - -
. - - v . E
& - SR
»
- - . EF LI Lo
w7 -
. .
- . -
- -t - -
- - . . 3 e '. a .' ~
- : de _ - ~
1) N . o . : 4 .
- - - - . - N , -
& - - o~ - - . Y ' r -
, d i - - . - . - - o o T
= .- . N e B _ ~ s _ « - - - h _ - - L
- . z . A ' e = & ST ~ - = N -
L-— " - - - P <

\) H_“ A : - '- . . '.- | N -I. o . -

- - L I . - T . SN .
. - v - \ -~ .-_._ - - . - s . P 1 ' ~ R v _1' .

A - - " f N M 5
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The purpose of ‘this.

condit th
Reecall th&

the upper and lowexr sums .

idns-for

-+
—

the integrél

lowe” sums are

to every-upper sum.

closer togetner than any

2

e;;sts
over [2,B] .

- Tet

Lemma Ao-2a.

any flxeu Daﬂtwtlon c

then or.equal

“ Prdof. We réca;l
fa,o7 which

lower sums,

£

-

U

LY

. , '-4\é_;
| 1)

< M-

M -
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~
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It .1is necessary
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.

two partitions
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the existence of
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section is

N
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We need first
R
[

given,
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~
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(2,5,

sum L over

o
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o
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endpoints a
o
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{
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2
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-
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ahd that L, ,

is =a lowerusum for .

similarly,

then follow from the preceding lemma., =

Lemﬁa A6 2b

and lower sums U

i
H
\- “
«from
o
e

Q,that the set
since M end. m  ave _upper and lower bounds for f£(x)
[xk l’xk] they are-bounds'*or £(x) 1in each of the subintervals [u
i=0,1 ,'2 5 see 3 D , (see rlgure A6-2)

.3‘*
k.

5

S

Proof." Let
o s (k =1,

Fdr any partitions o .

Ly

.0 A ) U

l 2

1 335

LN

27, eee 5 7} .

and
NS

- in the open‘}nterval (xk l?xk) < S8, uy

xk-l << u:L <‘u < eee <Iu -l < xk

H j_ = O 3 *re P] is a Pa*’tltlon of [)Lf( l’xk]

Settlng u

‘The result we seek W1ill

o ..

.-

2

-, over the respective subdivisions,

, ‘.‘.‘_’

T a1

o) of

- A6-2

-

-—'J )

[a,b] and any upper

A
e
-
-

be a pair of consecutive points of subdivisidn -

_There mey be points . oP ‘the subdivision

Yp-1.

wr%%
and up'= Xk

we see -
Further
in 81l of . " o

il,u]

_If we form. the upper sum

over " the partitlon of [xk l’xk] using the upper bound Mk we have |

=
T s -
y . i /-—;___ - ’ /
i % ~ ‘-;/.- 2 % . L
5 -
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. ) . P - X . ) ) A - _ R
‘E]’.*. p_ (U - Z g . . s - ‘. ) o
L3N Z ML ui*l = My i )—b&;(ﬁ{.- %1’ - Thus the upper’ sim -
. ez L . - L - N -
LU, ¢ foy n oo, s -
. s - g tlo O. ; : PR : - .
1 . Z Ug t_he parti® 1 .is also *  sum for o . Similarly .
w ; . .
< 1 10 Toy poth 2 o . It follows £rom Lemma A6-2a that
.. i N " 8 .
N .- 25U - : '
' Of: [avb] 't:here exist , ."': :
-~ 0‘2 - satisfylng -
‘r" LY
L they | ssts g . - ¢ Whiq R - x .
sa,t‘r‘l there e % Partitio® T TPich nas UPPET and lower sums U...and L -
) lgfyins _ - k B . o | X ) o
" U - - - . e . ""'.. 0
« ” L < € . ! -
) . . oL ~ -} L
o - Take S+ I
Stog Lol cin i 1-L) ihe “hee Uy end Le ‘are’ uPPer and lower ]
Lo £+ b€ J bﬁl‘tltlon’ reslﬂ:t is :meedla

. a . . . .o
- O - N . - - -

THEOQE, - . Leg - - ounded ¢ A
\ & e T pea® un‘jl?}mion Ia,b] .- If for every . -

. - i ve t ts Pa;t
S oL hebe xls o ltleﬁ o.0of ~fa >F] " and lower and T
up_pef s _ ,‘%{iv - Whlch dlffer by less 'than <, uh"en,.' .
- r - -
. anversely’;cl_f / f . le Q'\fer; {a b] then there ex:LSt a . ) -
~ b"=‘~r‘¢:j-'["j'on ' an an l‘)per sums L ang U ovér ‘¢ such . - E
) % U T N e Ty - ST . . .
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.}la . P - R ) . ~ - . 2 - L. - »
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- - : FFIOR L, .l every. 1 ¢
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' Accors ing to Tbeo”em 6= 3a, the funct“on T s 1nuegraole over [a ER. .

"tolerance € . B -~ - S B _ -

sum U and a lower sum' L. e;///'c',for which ‘U - L <€ . RS &
» . - R

RJK? . o o : ’:) . ) N C e D e e, »7-';-

T Lo T - . T _
Cal . _ ) - < . -
— ‘ . S . . Lo

‘ 7A6-2,.
. S . - T . S
uh&t there exist lower and upper sums, not necessarlly over the same; nartltlon,
I y - < e .  F ’
sayl.L over. &y and U2 over o5 fOr‘Jthh D2 Ll rom the
corollary to I.erma A6—3b, we conclude that there exists a siqgle partition o
having upper and lower sums U ‘and L for which U -L <€ .-

~ i . P . .
. - , o’

Next ,we -prove a useful corollary to Theorem 5-2a. — - )
. . - ) _

. Lemma A6-2c. fIf £ is 1ntegraole over [a,b] then  f. iy integrable

over ény sublntevval [Q-B]»-’- o R S MR
‘ . - - . : - CEI N

<

Proof-. There eylsts a partition o of [a ,b] f£6r which U -1 < €
fwbef"aU and L denote upper and -lower sums over o . We may assume
"end- B are p01nts of g:? Lorrﬁf they were ‘not so orlglnally they coulad ‘be

introduced without affecting the valuee,of U arnd L° (see” the proof Sf -
Lerma A5-3b). With & and 8 included in ‘o , it Follows that o contains
a parfiﬁion -o’ of [ao,8] . Tow in the sum °_'.

D Gn mmdle - m )

- . .
LN . -

all terms are nonnegative. If we let U'™ and I . denote those parts of

- . uU-1

Te

the sums .U and L which are taken over o' , it eollows that

- 1
U"’—_'L"SU‘L(EO

’:"" - .

£ o , : . ,_/o ' o
Cur method of defining the 'ntegral-bas a q certaﬂn aralytlcal compll-
catlons assoc1aued wluh the deflnltlon o; the 1ntegral as a llm; of Riemann

sums. Some appreciatidn fo*. the analytlcal d;fflcul* es may be gTeaned from

the -ollomlng discussion. v o L S

- - * .

In order to establﬁé‘ tne connectlon oetween upner and,lowee sumy and

the Rie?ann-sums of the'text (Sectlon 6 3(iii)) we need one ®urther resuit. 2.

- + » v

s Lemma Ao-2d '_if”‘f ?e_*ntegrable'o?er [a b] " then for. all saffLC1ently .

fine subdwv151ons o there exist upper and lower sums cloeer th&n any leeu

- - - . . - - -

- . . » Lo
-

In otn terﬁs for. every-fe > 0
57 terzs,

:?- ¢ 2 3

here exlsts a 5T> O "such that for

o T

evefv nartltlon _U with norm V(o) less than 5 ;-uhere expst both an- upper
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//N ,“ ol . e ‘ - - [ B
) R "v.-‘\ “ 7 L . - - =l .
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: Proof. From the existen%e of the 1nuegral and the é%rollary to Lemma
-.Ao-Eb we know that. there ex1sts a partltlon .o = {xo,xl,.._,xn]- with upﬁér
and.lower sdms ‘ﬁ"and T satlsfylng U-L <e ; We let ﬁ% and E& denote

upper and lower bounds for f in the buolnterval [x12 l’kk] and let M and

€ = denote upner and lower bounds in the entlra,lntevval [xo,x 1.

. ) ) < . ) - . Lol
o ~ Let o= {uo,ul,...,u ] be any part¥tion of Ja,b] . We sépgrate the{i
=y ‘;ije for which a subinterval [u 1Yy ] contains poinﬁé\oﬁ':; in its i?terior‘

" it m- tho caoe in. WPICD\lt does no?., 5. . S '__'g :

, Ir [ui l’u4J contains' a’ point of o in’its interior we choose the
.. . overall bound® M: and- m of f on fa;p]. .o as bounas for uhe function in the

- éubinﬁerval Since there are at most the n - 1 points X5 Kg 5 oeee
x 1 ‘which could be 1ntervo” n01nts of inte€rvals of o , therS,can be. no moro_
) than n - i such 1noervals gontalnlng Dolnts of T . ;ngﬁorm the partial

- =, upper sux U; and partial lower sum L, Oﬁ?” hosE?ih&gng}s and find -,

i S/(l) ' ;, ' | LUy QiLlFS (n:-,l)(M‘- mgv(c) SO B

It [u _1oy ] does not contain a point of G in its interior, then

[.1 oYy } must lie wholly W1th1n an 1nterval [xknl,xk] of o, We take as

-

.. upper and lower bounds for f£- on Tu l,u ] uhe~qounds Mk and . for by
_on the ifverval [xk l,xk} . For a.'L'L the. lntervals of ‘c contained in.
-'ka l’xk] the total contribution to the dlfferenceroetu.en the uppe* and

lower sums is less than or ecual to. (M mk)(x? X _ l . Forming the

par*ial upper sum U, and na*tlal lower sum L, over all.those intervals of

¢ ‘which co“u in no points of ¢ we £ind
- - . - R ° - - Lo

.

’

N

1Y)

YA
Mo

(2)', o Ttk (M‘c -y )i n) L g -
. k=1 - R '
~ . ' 4
- N - ;‘\ff' SUJ" L = ‘: .
YN < E . 3 - T ‘
. For the compléte\hppergfum T = Ul +.U2 and‘ooméléte.loﬁer sum .
- - o - : ) : . T : . 5
PLoly Ry qer T owe mave . . L 4
*e 7 . ;o1 = (1. 7Y - (L. + - h
BT U =0+ T) - (B D) | .
~ A . . ‘; = (U_, - ?_—_,l) ~-i- N (UE e LE) , . . -

T L < (F -1 - a)vo) £ 2.

. : - 6hz
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We can make the difference U - Ir 1ess than € by maklng each term in the -

last expression less than % . It is sufficient, then, to take g ‘; g- and
A
- - €
O = (o - (¥ - @y + 1T {the denomlnator-belng choseng,o -guard against the »
possibil@y that (n - 1)(M - m) = 0). -For (o) < 8. the lerma is establ:e;hed

T
+ is now easy to p*ove that entegrablllty 1mplles Riemann 1ntegrablllty.¢.

B

-

TH.EOREM o-;«.. The value I is the integral of f over [a,b] , in the
' sense of Definition 6-3, if and only if it is the limit of Riemann
sums . 7/ :

(3) - I= m =R®R. . .

SN Proof. As Dpefore, consider a partition o= {x eeesX_} with
L2002 . , > 3%5 R
m,

S %) <‘Mk on [xk l,Ak] . For any particular vulue gk in the %nterval-

[xk l’xk] 'me have mk < ©(e ) <:Mk whence,

Zjﬁﬁ Xk—l)’(Zi(g')("I xk1><Z Mdﬁ: X 1)

k=1 =1
- ) -, - . - ‘ .
or L : ' . -
. -
L'<R KU
for z11 Riemann sums and all lower ezf upper sums i and U over fé .o
and lower sums U and L fo* whlch

"Using pemma.ﬁo—Ed -we can obtain upre
the dlfference U -1 1is smaller ~hzn any given-positive € provided the-

”parfition is fine enougn, i.e., v(c)< 5 for a sultable positive & . We 55

s have s.multaneousWE/' e

=

IA
Ho

A

and - * g"
g\:g ) Y e , - LSRSU . '

for all Riemann sums on_ ¢ . It follows that

g -I|<vU-T<e.

- s e m b . . . | RA:S . A
‘Thus we have satisfied the criterion that ‘I 1is the appropriate limit of
Riemann sums. , . ‘ .

. < - . -
&5 a research problem complete the proof of the theorem (Exercises AS=2,
NO- 3). ' ; - ) - . -
} s B : ] ) _ ) -
. L,,'., ’ '
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Exerc:.sé's AS-2 S P ,

- . . P . .. 4

2 .- -

. Let £ Dbe a function which takes ‘on a maxa.nmm ana minimum on every

closed interva_'L (e.g., £ could be a continuous funegion, or mono‘t:one)

7 © . .. Let U{o) and L7(c) be the upper and lower Riemann sums obtained by -

. using the maximum and minimum values of f(x) as the appropri ate bounds

in each interval.of the subdivision. e

—- L4

; e

Let- o " ané S be any partitions of [a,b] .- Prove for the & .

Jolnt subdivision o = ol U O trat , \ S

(U) >U (G) >L (c)->L (g) R Pl §> o

In other terms, D é.ddin new points to a subdivision we may reduce
P

the difference oeuweep the upper and 1ower "-'h emann sums ﬁ..d we

canno*' increace it\ ' : .

2. Show that if f is Riemann integrable (Sec't:1 on 6-L4) over [a bl .,\.\r\en
f 1is bourded on [a,b] . - PR

3. Let £ be integrazble over [a,b]. and let R dencte a Riemann sum

. " cerresponding to z partition o d! [a,b} . We hawve nroved (Theorem

6-3c) that if f has an ihtegral I <then’ < ,
- I= 1lim R. - T ,
v{ g)~0 _ . .

- . 3 . : 1 . T ’. e 1 1 1 ‘ c
Prove conversely- that :".E:f the 1limit of the Riemann.sums exists then it is the
_integral of f over . [2,b] . (Hint: Show first for any partition and -
Qsi’c,ive € that thereg{exist at least one Rfemann sum R and ‘one upper

- S}.Lm U .over o such that U - R < e .) - . : Y

L4}

h. Consider the function £ defined on [0,1] by

. . (0% x irrationzl — -
I £lx) = . ) -
1, x rational
l“#\ ‘Prove that the integral of £ does not exist. _ .
A : ’ . . )
- 5. Consider he Tunction £ defined on [0,1] by . -
— ’ ) . - “ . “
- O ,,x irrational . .
T X rational, x = T in lowest terms.
- , T = N
Prove that the .integral of £ over [O,l] exists and. £ind its ve@uer.

AN\6.- Gite an example of a nonintegrable function.. £fg where f .and g are

o i *

ch integrable. . : : ’ .
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, - / . . AppendLX 7 o _ ,
. INTE%RABILITY OF CONTINUOUS FUNCTIONS '
- f_"g;>' '; o ‘ L .
-:t_-AﬁQii. Covers éi Closed Intervals. = - o | T .

-In order to prove the integrabiliﬁy ofﬁ*ontinuous fuﬁgﬁiOns we introduce
the idea 6" cover of an ipterval. A”set Cf of copen intervals is said to
_:be a cover ?f an interval I if for every x 'in I there is a member of
c whichfpohtalns, or comers X .. If f is continuous on.the closed interval
[a,b] <+then for every positive ¢ each point x in [a,b] has a'neighbbr;

hood N(x) with the property that

P T L ¢V T SO F A
for 211 u in N(x) and in [a, bj . For each positive € , the set of such
.nelghborhoods 1s g- cover of the interval [a b] . This cover is an 1nf1n1té
set q? HEIShDOrhOOdS. The remarkable p?operty which enables us to prove the
; general integfability of ‘continuous functions is that this infinite set of
neighborhoods can be replacéd by & subset which is also a cover of .[a,b] .

THEOREM A7-1. The Heine-Borel Princinle. Every cover of a closed interval

contains a cover consisting of finitely many open sets.
. . -

Prodf.‘ We shall use the Nested Inverval Pr1nc1ple (Seculon Al- 5) to
pro?e this result. Let C be a set of open intervals which cover [a,b]
We suppose that no finite subset of C is a cover of [a,b] and seek a
contradiciton. .Thi/zv-o\‘:ca\lf—ﬁ'ntervals [e, Ha +.8)] and [Ha + b),5]

o cannot both have Iynite covers_ within C for on combining the two covers we

should obtain a finite cover of [a,b] . Thus a#~13§ot one of the half-
intervals has no flnit¢ cover. Let ral, l] _b a*half—interval which has no

-

finite cover. Again, the helf-intervals [ai»,l a, + b )] and

- . .
~.

[%(al + bl)'bl] “cannot both- have. finite covers. We can then choose a half—

1nterval w1thout a finite cover and’denote it by [a ,b2] . In general, if

have an interval [ak,b 1. without a finite’ coveq,-we denote by -

7. ® R ' S
\\\\k+l’bk+l] ong‘o* the half—lptervals of _[ak,bk} whmch»ha; no finite cover.

" -.. o T i'  - i




AT=-1

The iﬁperva%s_i[ak,bk] bf.the preceding construction are nested:

-

A . T - o L B - - e - . . . .
.. N . o (L . ’/) e X . P ) e T : .
B . ot . v IR = 5 S T PG - . PN PR
D C : . - ~ - : > : .- > .-
. T . “k . R : ST
. - N - . ~ . - . -. - ) . B

...l'

“ lay 190, C [a, 0, ]
Zx+1? Pl -c:_- %%’ - n
It‘fallows from the Nested Interval Princ1ple that there is at least one ‘real
Lﬂ ffgﬁupbef. s in 8ll these intervals, ) ’ '
__q_"’. . ‘-'.',—- k - . ak< S‘Sbk > " 3" -.">-
. i . 4 -
Py ‘ .-
.Moreover, )
b, -"a, = ;Kb' -;‘a‘ 5 ¢
k T %%k T2 Tkl S f
I Y ’ 1.
= 5Pep = Bp) = cee =Py -2, /.
- _ b - a - - R
- 2 1)
" 2k )
“ sp that the difference bk - ai “is made less than any given telerance for .

sufficiently large xk . It follows by Lemma Al-5, that the number a sepa-

rating the

unigquely.

Since

set of lower endpoints_from the set of.upper;endpoints is-determined

-

4

it is covered by some open interval in

s mé\; point of [a,b]
c , say (u,v) . inee u'<'s < v. it follows that Min{s --u,v - s} 1is

positive.

If € = Minks - u,Vv - s} , then bk - &y =_§—:§3 < ¢ <for any

PO - . 2

sufficiently large k and [ak’bk] “is contained in (u, E; + was asserted -
that ‘

that .[ek,b

‘covered By

] had no finite cover in ¢ , but now we find it can be - .

the one interval -(u,v) » This is the contradiction we.sought. .

Exercises AT-1 . o .

///er 1. Show that tﬁg Yeine-Borel Priﬁciple fails for the interval _[1,J§) 5
that is, find a cover C of [1,V/2) such that no finite subset of

'C  is

2. Prove

a cover of [1,V2) . = ' e

that the‘Heine-Bofel Principle fails for open intervals; that-is,

'Afind a cover C of an open interval sueh that no finite subset of C

N

.

rd

. é
Y

3

is =a cover. e
N 4

3. Complete the aemoﬁgtratlon that the Heine-Borel Pr 1nciple is equivalen%

- to uhe Sep@kabigz}ffipm,.that is, show in an ordered field that the
T principle impll he axiom. P

v

£
=
(02
N
V4
f

. e
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W T _S;ate and prove the c?nverse of the Helne-Bo*el Pr¢nc1ple." e -

%i;ﬁ:Sinco the Separa ion Axiom fal' for the fleld of ratlonal numbers,‘so
' aise must the Heine-Bore* P*iﬂcip e. ate the would-be Heine-Borel

) Princlple for. rational numbers and’ sbow’oy examnle that it is not Vﬁlld.*
- -;' " - “ - : ﬂ. } ) ) .7 = . - ? o
: PR S [
. A . -
. _ e
P "7‘ e
o R ‘ )
, Y o R T s >
< - ~ ' - -v‘ i ( . : - *
. @ - .‘,:-. 4? ‘\ :‘\“
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- . X -
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’ oL
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.
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-t . . .- . .



AT-2 . - .
2 Yy -
. ;oo
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. . = L
" AT-2. The Integral of a

*’_f:Using,tﬁe Heine~Borel Princ

L

THEQREM A7-2. ' If -

.Integrable over {a,

.~

P

N(

(1)

_ . _
whenever u is in N(x)

w

satlsiying

®

Tontinuous “unction. -

. -

b] .
.’ )-;: R = -

} be a nefghborhood of x for wHicha

. B If.(_u) - £(x)l <e

lu = x| < 8(x).

-

ﬁ(x) = {u

.

iple we derive the basic result:

L i‘E_‘éQﬁtinuéps on -the. interval - {a}g]

The neighborhood N(x) "~ consists of

We shall also make use

a - x|-<

»

C s _
) .. '

, then £ i
L ST

. L e

o

¥
> o
[ o.-
ali the

-

<

~Proof.. @e@.f& be any point of ![a;b] . For a given positive e let:

r
BT
ST ‘
_f_' ‘f
. .. - -
Te
points

of ' the heighborhood® with

- -

S

1

<
=

“8(x)7 .

The set .of neighborhoods N(x). for *x in [a,p]  is a cover of La,b]

From the Heine-Borel Principle itwfallows that there is a finite subset or
© neighborhoods 'N(xi) , (i =172, ... , n) which cover the interval. If
e e e s . o ' 1 . . -
&> &, 1s the radius of N xi) , then §~Si is the radius of gN(X{) . We set
. | T ”
1 S .
& = =Min{s, - .
2 { 1} -
Now let;a‘.:-{uo.,ul 2 Up 5 one ,un} be any partitionwith norm +v(og) < & .
In each subinterval .[uk 1 ) Uy ] we ‘shallfind upper and lower bounds for
& - . . X -~ B .
] f_(x} ., PR . . > -
- -
. " . m, < ={ ’ :
which differ by at most 2 Fixed multinle of -
et x Yy zny point of [qv - .j :l Sincél G- < B <-£'6_ -
. Y% Yk T %k-1 S =22 %;
- -~ - . L - l - T - - e . ‘ . . . - )
it folléws that  |x = ukf,<.§-oi . llow let h\xi) be -a covering interval of
L] . - - — -
w, - Since Uy is covered by an open interval N(xi) we have ‘
ez emt et -
lu. - X.{ <=8, . Consecuently
= i 2 71 -
lx - x.| < 5. - T,
H 1 X T - ";é'-
.g'\ ) . . ?' -
that 1s, x is# point of N(x.) . We conclude that (1) is satisfied:
= - L 4
N ‘
. . s
L8 ' .
o 1 . . . - S
ERIC o Qo -
. ¢ 254

Aruitoxt provided by Eic:



SN
PR

- ’ . . AT{Q
. et - fcxi)[f< . . ‘ ;?;;{_.o_ i
) - . T oo T
. or - : ____-:f - T I ot

f(x ) -ve < +‘(:-*) < f(x )+ Er.'

~

_ — Taking “;M_ 2 f(x ) e, mk
._{,satiéfyiog

f(x ) - ¢ we have upper and lower bounds

[
.‘)
a

Mk'

for the difference

9

r

mk‘=

between the corresPonaing,upper and lower sums

N

iﬁ follows

that - S S _ i LR B e
. A ‘ A , TN
. - S n’ : . . . - i
- Z CACE Z wJ“k e e
T jf: =i SO -1 o
SDETE =Z<M=,< mls - g
. - . l ‘ N .
N Ee 2{: (uk uk-l , ' b - S ;
- | o, = AR
_ P
c . | - e 2€(b -p) S o -

Since we can flnd an -upper sum and lower a lower sum which differ by Tess than

any prescrﬂbed tolerance, uhe .ntegrablllty of £ 1s proved.

Exercises A? 2 -
1. A functhn is said to be of bounded varlatlon on [a s} if there
T ex1sts a bound - M  such-that for.a¥i/parf1t% s o = [xo,xl,:?h*,.,xn} .
Tor [2,0] . T e e : '
Py b L <n‘ ) . - / ) B P
7 . x(c}ff ZE: xk)" f(xk f <M. T
LA - k:l - =
. - " . . . ‘- . : N ) . - . )‘ ,’
{a) . Prov"if’the fuﬁction £ is- monotone on [a,b] then £ . is of
, UOunded variation on Ln b] ;_ ' f C
' (v) Prove 1f £ isa functlon of bounded: variation then f can. be
Pepresented as 8 sum . f =g + h wqeve 8 is weakly -hcrea51ng
. and h 1is weaklv dec*easzng. Prove oonversely, i% £ can be
renresented as such a ' sum’of monotOne ‘unctlons, then. £ is-a,
functlon of boarded varlaiabn. . P -
\ : . - . - - "" - -
O ., L ' 614’9 2 N - - ‘-
RIC / ~
[Aru » a3 . 3 ;_— 3 N | 3 "‘l
- -



ce . ~e .
FOREy : . - -

é.' The precedinb result enables f1s . to prove that not all inteé}able furc&ions

a*e llnea* comblnations of monotone Functlons. Con51der th funcﬂion(};
’ ﬂe?lned_by o f v.‘ e '7 o T A S
T R xcos X, x40 g 4
_ T f(x) = - |
L T T S 0 X =0 . T
A ) - & _'. s T R - N ‘
* Prove that f - isg continuous,'therefore integrable on [O,L}
‘ -

—_ Prove eleo thst f is not of bounded varlation ‘on- [O 1] . & ——
T3, ) Pr“ové if f vs contlnuods o.n uhe closed 1nterval Ia bf and has a )
~bounded derlvatlve 4n the 1nterior (a,E) s then £ is of bounded S

: 7 » .
. varlatlon on’ [a o] . ) "
o . \ '

.h.:f rove .that if the “unctlon f is of bounded varmation on’ [a,B] and

. ‘lf-«a <ec <'a < b » nhen f 1is of bounded’ varf‘%;on on [c aj ;

- - F! - L - 4

PS5 Tne concent of length of a curve, llke that of area, is not deflned in
general by the methdds of elemenuary geometry. - By Enalogy wlth the éj
coneebt oe'lntegral it is navural to attempt to expresé the length of

-  -a curve as a limit ol the lengths of polygonsl approx1mations.. - -

» Let a curve be given as the graph of a given functlon_ f on [a,b] .

. T Given a partition S\E_L§Q,xl,.1.,xn} -of [a,b]— we construct an -’

\ ¥

s T . . N .
= .
x - s . ) " ) . ,‘._:- S
- 650 . R <
Q - . ) ‘ ' B

.q._,,l



o

P

Let & denote the length of ‘the graph. and L(c) +the length of the
"lnscf}bed palygon. We have ) : : '

- segment joining ‘th re- points (hk 17V l)

-«more, J?ere ;s o obv10ui_§9ne:a3£;ay of esti matlng az;iijim above. For

ST < - ' e - A7-2

-

1'nsc:r':Lbe'q polygon to the graph of T by Joining the succe051wb p01nts
(xk,3 “where Y = f(xk) k=0,1,2, ... ,n (Fvgure AT- 2)

’ 4 . . - -
o= . . Y

o k=l R .

where the general term in the sum is the Wength of the straﬂgh+—11ne
(xk,yk . Inuultlvelj, the'

stralght pauh 1s the shortest path Betweeﬁ the two poimts, S0 that the ~

path zlo. ; the grapn of £ is néver shorter thaﬂ the segmenu JOlLlng the
L wo Downt:.‘ »e mast - uher have L(o) < Jf for 211 partltlons G . We
c°n only est“mate af from beXow . 51ng inscribed polygons. Further- -,

+rls reason we define aZ’ as. the least upper bound oR* the engths L(c)
\_/ < .
of. 1nscr1bed polygons, prov1dec such a bound GXlSuS- I the length a(’v‘

-.exisus we say that £ _is rectifiable over. [a,b1 "Prove that g v T .-
necessary ‘and suffiﬂien condition for . to be.rectifiaole over “fgjgj\\" '

'_Le‘ o be g po*ni o the domain of ¢ for which every deleted nelgbbof-

is tnat £ Dbe OP baanded vavleuion on Ia b] :\ _ T '{: ’ ) \

—

~

hood . conuains other p01nts of-the domain. The funetion .f 1is said to be -

: ~":1c~"t=.-aSﬂn‘.:5 at the Do’nu @ if.uhere ex15ts some nelghborhood whereln

. -

oy T x <a =®f(:\:) < f(a) . .
and . o ' . - - . S . o
11y _ X >a @ f(x., > £(a) S’ e e oo
fér.ﬁhése poinEsQ<x in the doma:n of . Show that if £ is L AT

-

-ncrea51ng at every nomnt of +the 1nuerval (a,B)-‘then £ is increaaéng_

on (a, b} . : . < N
By the Heine-Borel Principle prove that if £ is cofftinuous on [a,b] R :
i , LT ) ' ~ - R -
then  f is bounded on [az,b], (Theorem.AL-1) . : ¢ >
~ L4 * ’ i i
- e
as . N )
. [ , . :
~ N . . - .
N4 - h 'l, ~l-‘.
_“ - . *
> A s ”
" - )
- " -
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LYTICAL DEFINITION OF THE CIRCULAR FUNCTIONS

~ ~ . - f\
L - - * :“
In Seéﬁidh~ﬁ-; we dellned ‘the sine and cosine functions as solutlons of '

the differential equat on : . ’ .
(1) . D_2f + £ =0 )
where sin’: X = @{x)}° satisfies the initial condit#on” - ' . - .
(2) o ‘ B(0) = 9., ¢1(0) = 1 I
and cos ::(-fbdﬂxj satisfies the .nitlal condition . )

(377 " ) = (0) S '

3) . . . (o »w'o =10 . T ' :

-) ’ N . -

i “ B4 S
We wisk to prove the results uhat the dlffe*entlal equatlons define the tao . e
circular functlons for all real values of  x ‘and_that these fu onsgare
‘periodic with period 2x » ' N

" We note first §Hat the inverse g of @ , is.defined by the integral , .
L ‘a R . e - h . u ' h ‘e
- . - - } . : l - .
(&) . &% = g(w) = 1————"34t .

i o . K-

720 l-t?';«. R
for-all velues u in the open iﬁtérval_ “1 <u<1l1l. From this fact we may .
conclude only uhat ¢ is defined on some neigh%orhood ¢f the origin by oL
" (5) . . R g(u)—bu o To(lul <) .
.;Fherever "¢ is delﬂned, we define vooy - - S N -

(e L. S w x——¢">')

o T,

Quxr- first oroalen is to eytend bhese deflnlslons +o. ‘th ‘domain of all real

‘lnumbers. Once we have shown the ex15tence of the sol sions'-ﬁ and b fof-the‘_

N dlffé“eutlal ec mation (1) .on the domain of all real numbers we are .free to CoA
i ) e ; " _
employ the addition theorem (Exercises 845} without restriction 'sinee the ;
sum. o- two numbers in the domaln will agaln be 1A the domain. Using the - .
adhitlon uheorems, we shall have no dlfflcultj in establishing +the: pe”lOdlClvj
of. u“e luncvlons . . .. N ‘ : Cn e . » \:
R . R . . I - .
L * "Let xo “‘be any real number. t is easily verified that, - A T T\\ S
Ty - e ] ] E . s
(7 : T f i x ——eall(x - oxy) + of(x, - k). - & R S
. \¥-_ a CEE _
- . R - . . .
"\_ - el
65§ . e -

W . - . e

P
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hd -
- . . '

- . L ~
is & solution of ‘the differential. equation (I) which sztisfies the initial

i cSndition o ~ .
- . L i .
' - . ¥ - 3 - — £ (w — . C
. §8) . . ‘ f().o) a E) (-.o) b_ |
'=?r_~~r?urthe”mo"e (7} is ﬁhe—equ golut;oq—cdt*sfy - the conq1tlon (8) by examctly— -
the same argument as that oi the upxqueness rem LTHeoren 8-5b) for the
case x,. =0 . y » | - ‘
o - b < e
Now let & = g(n) where O <71 <X so that @ and ¢ are defined by <

(5) and (6) on the closed interval -t < x <& . (Here we employ the

symmetries of the two functions, Exercises 8-5,-No. lO)F In (7) and (8) we

take xg =t ,a=¢(E) =1 and b =_@'(e) . Thus the'functiqh @ satisfies
" the same initial conditions as f at xo = £ and therefore by the unigqueness

theorem must coinc1de w1th f where the domains of the two functions overlep.

The function T is uherefore a natunral extenszon of -+ ¢ . 'Tbe‘dombin of ¢
includes the interval [- -E, E] and the domain of f includes the interval~
[xo’; E 5 x5 * e}.= [0,26] . The 1nuerseculon of two inuervals is ‘the inter-
s
.val [0,6] . We introduce the function . . , . .’
. e | : N .
‘ . B(x) , x £ [-g,E] . .
o N .
. o ¢ DK — ¢(x)= f(x) sy X & [O g] ) _'
S
£(x) , - x € [5 25] .

Al - <

A :
‘Clearly @ satisfies the dif erential equation (l) on the interval [-£,2t]
and the ;niﬁi&l condition (2) ?1nally we define the extension u of 4&

on the interval [-£,26]- b
. ~ N
- . Vo1 X ——e@r(x) . .
- : - . ‘ S

T in‘d}der'td‘keep the notetion simple we no longer disﬁihguish between
. - AN A~ . *
the exténded functions, @ and ¥ and the original functions $ and V¥ ;

this cannot cause any confusion since the extensions are uniquely deter-
. -t . - oo~ ° -
mined. : N

P
We ray now repeat the procedure to extenq the two functicons further. <

7,

Since ¢( and- ¥ are qe¢1ned on the 1nterval [-¢, 25] we may 1nuroduce the

solution (7) of the differential equation whicgh satls¢1es the same condition ,/”

‘(8).at' xo‘=‘35’ as the function @ 3 that is, we “take a = @(28) and |,
¢ 0 B o= ¢'(2F) = v(28) . The function £ is defined on the interval . ]
[xo - ,xo + 28] = [g,h@] which overlaps th? domé}q'bf' @ on thg interval
o [e,2e] . We extend the definitions of the functions [ and ¥ by setting
. g=f and ¥ = f' on the domain of f . - i : " e ilﬂ_

» .
- - N ..

)
Lt}
F &

st



' 4 o - ' . : A8

We proceed recursively. Once we have defined @$ and ¥ on the interval

[-g,Ekg] we introduce tne solution £ of the differential eguation defined

by (7T) =nd (8)_wheré x 2%t , a = ¢{xo) , b= "02_. Tne function f is

0

then defined on tbe 1nterval [xO - E, %y F EKg]l= [(2k -1k ,2

. b4 . .
: k+1 e o
] which

- 5 . ; . : K k+1 ' .

overlaps the domain of @ on the interval [(2° - 1)e , 2 £E] . By the . :
unigueness theorem, t.he funct;pns- $ and £ are the same on the comron nart

of their domains. We extend the definitions ¢ and W to the entir e *ntarval

E] by setting P =f and ¢ = ! on_ the domain of I .

K .
- —~ . . -

leeﬁ apy positive real numpber x , there exists a value &£ k sSuch”
that 2 £ >x . It follows that ¢(x) and v(x) are unﬁouely defined for
every positive value x . A similar constructlon may be ‘used to deflne ¢(x)

and ¥{(x) for all negative values_of X (see Exercises A5, No. 1). In this way

z

we extend the definitions . of the functions to gll rezl values.

he functions @ and ¥ are periodic we must find an K

To show that t . .
w
appropriatefyay to introduce 'the number™ x and to exhibit its relation te
the period. We define<«the number = - %y the relation % = g(é—) , that is,
from (%), L
° . - : 1/1/-2- 1 - % -
s ¥ N - / 2 ' .
, ] © JL - ¢ '
% . -
Equivalently, we have N e o
et - _’ T 1 - , L-? P
(2) B3 = = .- ~
- s './5 . “
. ) L
“Since [@( x) '* f”(x)] - we conclude +that [u(—J] —- or that -
- W(gﬂ ;'; & . We mr*h to deternﬂne the correct 51gn. . . ﬁt
N /2 ) - % )
- - - i . .
- - cFram (») we know yhﬁu ¢ is increasing and ronreﬂatqve on the interval
[O,h_ . S&ﬁce y1 = -f (Exercises 8-5, No. 3) Jand 1s n051u1vedon [O,%} , then
vroois dec*easln& On the interval. 'S;nce ¢{x) can not auuavn the value 1 5 :
[O,r1 it ;Ollods that w(x) cannot be zero 3t any roint of the interval. | /
4 :
Observ1n5 bnay w(o) is positive @nd that ¥ is continuous we conclude that -
w(ﬁ) >0, heﬁce o ' _ » : - ' N
. Cocomy 1 o '
- (10) : _ . wig) == . : : : -
. . 42 - ; ‘
We leave as an exercise the‘groofs of the-details of this argument. \7 -
. ) N . .
. N N o . < < -~ . s,
I (/
- .k $ 555 G

Aruitoxt provided by Eic: ) ~ -, - L.
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. TNext . we insert the résults (9) and (lO) in the "double-angle” fdrﬁulas.
(Sectlon A2-5, (9) and (lO)) td obtain successive ly . R

oL c ¢(—) =2 ¢(1-)u(—)

wc,,—_,‘fﬁ--ww)]. - [¢c1;)32ﬁ=' o

~

. \_" . ¢('»_'r)' =2 ¢(§)w(§)—= o; S ‘
v s v @P - B =2

T - . - . . .
. . ' s .

o

“ﬁhenee; finally _
- oL (Blan) =2 B(x)u(x)
oy o | -
c Clu(E) = v 1® - (g0 =

.

* The Derlod;c1ty of the sind function now follows lmmedlately from (ll)
f'\upon taking x4 =27 , a ; O and b =1 in (7) and (8). We have

3

<

(12) - L £0x) = Plxam 20) .

- where .f satisfies exactly theé same initial condltlons at xo = 2%  as ¢ .
It follows from £he unigueness tbeorem that £ = ¢ and from.(lE) that

(13) S - B(x) = B(x - 2x) - _
3“ From<£l3) we see that ¢ is periodic Wlth perlod 2xr . To compietefthes
~ ) nroof we dﬂf;erentlate in (13) to obtain the same result for: S

. B
‘j&e have used the . symbols g and ¥ throughout 1nstead of the famlllar\
1nadvertent assuthLOn w1thout nroof of" one dg}the well .known pronertles of

the cxrcular functlons._ Now that these prqpe*tles have been estahllshed we
L . . . @

b

.shall return uO tne customary notatlon. £ -
< - ' -
. ol -
% . » . * .

Exercises A8

1. (é)T-Employrng the methods of the uext,.extend tbe deflnltlons of ~
sin : X% ——o-¢(x) and cos =X -—a-w(x) given by‘(h),-(5), ‘and

) (o) to all negative velues of x . | : )
//f ~{b) Use the fact tHat the furictions ¢ and ¥ - have been defined for -

o N x > —E 3 where O <¢§ <'1 , to extend thelr domaln to incliude the
. set of all negative€ numbers. ° - , c
< o ‘ '
’ | = . .
; ) ' 656 . ¢ %
7 i; .\\ 5“,

sin and cos ‘in order:éb av015 the DOSSlDlllty of a loglcal Sllp through the

~ -

an



u

o

(@) w(m = =} = ~¥(x) - -
Show: -~ ° )
7 1 ’ : '
(a). 8(z) =5 - S
14 _'ﬁ ) 2 _ ’ o
(v) w(é = 3= . . i .
N - _ ﬁ . ]
(C) ¢(3 - 2 d -
A Y = ; *
(&) w(3) =35. » .
. Show: ; . ' _ o N
- i v . ’ o 4
(2) _@#  has no positive period less than, 21 . ° -
(b) - the function T : X (x) is periodic,with period = .
) 0 Ylx ) AN
De:;":;ve th_e' _fornruiaé @z + 2n) = ¢(zj and -1{(;' + 2x) = {y(z) =
(a)  from (13) .. T . .

(b) diredatly from {11) and”The addition.‘theorems.

-
-

, P:r‘gére that if + is the ard length of the curvé y =41, -~ x2 between
X . - . - : 4

x =0 and X ="4 then ¢(’t)t =a eand ﬂr(ﬁ) - .- a? . .
. M . ) } - ] . , ) . .
. - ] “ . , . .
- < [ - i - |
3 = | . N - . .-
i <
- ¥
s . - -
. . :
: &
+. - -
3 ) - 290 : -
A g, ~ . )
657
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Appendix 10

N

co ENCE OF IMPROPER .INTEGRALS
: 4 ’ . N

-

The main purpose of this apﬁeﬁdix-is to. prove the comparison test,
Theorem 10-6a, for the cqnvergénce of improper iﬁtegrals,' For the proof of
this result we first establish ﬁ%o useful preliminary.lemmaé.

"

L ]
Lemma AlOa. If every interval ‘Fg;x) contains points of the domain of.
* . .
¢, and ¢ is monotone and bounded within some such interval, then lim_ @(x)
: X~a

exists.

-
- -

'Similarly, if every intervel (x, b) contains points of the domain of -
¢ and there is at least one such interval wherein £ is monotone ‘and. bounded,

then lim_ ¢(x) exists.
_x~b

)

Proof. . Let I be an intervai (a,xo) in which @ is morotone and
bounded. Say that @ is weakly increasing imn I . Since. $ is bounded in
I, it has.a é;eatest.lower bound « . .Thus> #(x) >a in I , end for every
positive: ¢ , there exists a péint E ‘in I such that '

: S ' #e) ~a<e . . -

At the same time for all‘ x 1in the,domain of ¢ within the intefval- (a,g)
we have @(x) < @(¢) by the ‘monotone property of . ¢ and @(x) > a ‘because
o is é lower bouhd; thus O < #(x), - o <@(t) -a<e . We conclude that 1
X~a ' . - . -
The proofs of the remaining cases are left to Exercis§§ AlO, Number 1.
Lemma AlOb. If £ is Riemanﬁ;inteéfable over [a,B] then ]f! is
Riemann integrable over [a,si’ (Exercises 6-4, No. 22).

.

. & ’ o
* -
In A2-L, it was réquired that @ Dbe defined on an interval for the
definition of monotone function, but that reguirement is not essential here.

T 284 »




A10

] . - . a <oy
Proof. Set . - - ’ BN
. - ' £(x) , 1f £(x) >0 ; . '
o 20 : ul{x) = _
: ' - 0 , if f(x) <0 ; g
-f(x) , if f£(x) <0 ; S
. vix) = : :
- .0 , if f(x) >0 . ~
Thus, ]f] =u+v . We show that u and v s hence }f[ , are integra‘ble.

_‘ " Given any € there exists a péx“titio‘n o of [x,B] and upper and lower sums .
U- and L over o - such that (in the notation of Chapter 6) -

-
- -

Vo) O om)l s n) <e s

i=l - .

- - . * * ’ '
. Let - and denote upper and lower b 3s, respectively, for u(x)- on
- Py s 2 y _

. ' : o= . * ' } : ..
Ik = [xk-l s xk] and l?t 18] ang 1%, de_goL,e u.he gorrespondlng .upper .and

. . % X% .
lower. sums. We shell show that and . can be chosernf so that

, . e —. - My o, , x;f"
.M, -m <M -m . There are three possible cases: - . N

f(x) on I}: and we take

(1) f-(xl)_,z_O on I, ; then ukx)

Y A T .

. - ~

-

(11)  #(x) <0 on I_; then u(x) =0: on I, and we take
2* * : B :
hﬁ{ = m‘K = 0 on Ik. - .
. s -\\,J.
(1i1) there exist paints’ £ and t in I, such that f£{s) >0 and .
‘ f(t) <0 ; then Mk_z ulx) 2\(3 > m  and we take Mk* =M,
EYS ) i N R ' :
m}{" = I!:LK ™ . P - . ' R o . )

i . ‘ * * = ». B
In each case we have M- o SMk -®m, SO thgt_

¥* *

- | v U —L = z (’M;: - m ) (g -x ) e

| IDWICAEERICHEE Y

i . ‘<e . . . ) F
- / -

- ) L g s . -
There, are upper and lower sums for u(x) over [a,b] .which are closer than
any a‘lésigned tolergnce. It foj_lows that =wu 1is integrable over [ ,b] . ’

, - . . - .
. . ST
. 662 7 . . . ;
2 S - i .
- s “ 1 . ‘-j; \Y_;’:\ _ £
T ie ‘ .03 3

A
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AlO

- » - - ) N '& - . g

L .
.
-} ) -

v » - - ) ’ N
" - Since -f,) 1s also integrable over [a,b] it follows on replacing f
oy -f , u by -v 1in the preceding argument that v is integrable overs.

"[a,b] . We conclude that [f| = u + v 1s integrable over [a,bv] .

THEOREM AlOa. Let £ *be Riemann integra‘ble over every closed interval
- [e,p] for fixed &t and.B « (E,b) . If [P(x)] < g(x) 2nd .
L] . e - e . T -

PP
~

<

.~ b o bl R ‘ .
. j gl x-}ci\-)f\l converges, then S f(x)dx apnverges. Similarly, let £
£ . ) - S ;

be Riemann integrable.over every interval [O!,Tl] for a e (a,n) . I1If

=

. : 1 7. :
. [£(x)] < g(x) and J g(x)dx " converges, tl;z_e/n J' f(x)dx. converges.
a . a - Lo

s

o

b . . .

Proof. Set K = J‘ g(x)dx . "Since g(x) is nonnegative the function

~ JE . . . . :

Y  given by :
" l“’ . .

- B - ) M

: L (e =.J g(x)ax ~
. , “JE .

is weakly increasing, and since V¥ has a'left-sdded limit at b that V¥ is
A . : . -
bounded on (£,b) (Exercises Al0, No. 2). In particular, since V¥ 1is

bounded and monotone on (E,'b), we conclude from the proof of Lemma AlCs that
. . ¥
K =1lim_ V¥(B) = sup (w(B) : B «&(E,P)} ; , ¢ ©

-

. f~b .
_;.e.,‘i{ is the(east upger bound (Se’ct_ion- Al-5) of & on (E,b) , so that

’ -
[

g . )
V() = J g(x)dx <K', : .
* - .. )
Now, let u and v “be the functions defined in Lemma Al0Ob., OCn (g,b),

‘we have 7 ) .
. . 0 <ulx) < l£(x) |- < &{x)
0 <v(x) < 1£(x)] <&(x)..
Thus, - - 8 . o - .
coo B o A e
<o) = [ poax s ue) s % | .
- . . §> / ‘_ = : » N ‘ ,
B T
> xe) = j vix)ax < ¥(B) <K ..
N =t g 4
L - -
i }
o LS. e L l2gl

‘ 8 ’\L h ‘ ’ . . ’ i
"'-7& 0\ R 8 ] .

\¥)

4
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Since u and Vv are nonnegative, we'see that U and V re weakidy increas-

ing, and since U and V are boﬁnd_ed,, Lemma AlOs yields thesconvergence of

N ' b
o 1im_ U(B) = J' a(x)ax
B~b . g T U -
. -~ b - b -
. < lim_ V(p) =J’ v(x)ax*. ‘
- p~Db £ ' . ‘
But £(x) = u{x) - v(x) implies the convergence of ~ -
b ‘D )
_ TJ’ f(x)dx = J [ulx), - v(x)]lax .
c g ' g ’
To prove the theorem for the convergence of J f(x)dx mzke the
- . . . a < el .
substitution x = -t , dx = -dt , and observe that ' . .

- r. . B
) . lim, j fx)éx = lim f(-—‘t)ud}
O~a o . Bx ~a J-7 ,

(Exercises Al10, No. 3).

8 ,

. _ 9 ‘
Theoren 10-5a is,a direct consequence of Theorem AlO=z. -

»
-

Sometimes a co\&p‘arison%est as defined by Thedrem 10-6a is not adegquate -
¥ b -
to establish the convergence of ‘J- f(x)dx . Theorem AlOa gives criteria for
- a - .- -
’ e ' ) b v
establishing absolute convergence, that is, the convergence of j . ]f(x) ]dx .
— ; P _ a

~

T

However, it may hapPen that the integral of £(x) .is convergent, but not

- N S .. -
absolutely -convergent. - \g = AN

- - -

Example 10-6b. - Con_sidez" -
Y ‘..' = . , - ’
o '«.‘I=‘JOSix#dX_ . o
- T - 4
(the Dimichlet. integral). Sinde lim E’-}ri—i =1, £': x —bs'lxﬁ can be
_ . | : .‘ %x~0- . - P /
Eextended_ gon‘t:_inu_o{:.sly to. . x =0 - The d-ifficulty?lies in the behavio.r of £
for large X . 2 o ‘
rF X ' | ]
[ ) 3 ) T ~ , -
. 864 . . .
S . LG g
- "y ) . / . - ,

.
\'ff
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. ‘ - A10
sin x
x
jncreases and that the area under the arch of the graph over [2nn,(2n + 1)x]

We obs€rve that the graph of ¥ = alternates. in 4ign as x

is partly cancelled by the sigﬁed area below the x-axis and above the graph

for (2a + 1)= 5’3 < (2n + 2)x , (Figure 10-5b).. It is this alternation which

N - ° - . - e
yYields comvergence.
B -
y - ’
- ) 1
il Ll
) » “ * | '
[ -
.~ sin x )
,“.' ) . B < - x . # .
£ ., - -
N - ‘ - R
'I ” - - Ll
3 ‘ - .
. .
. \ » 4
i . - , :
. 4 \.
. - 3 r
I - - - ' > )
i — gg,ﬂﬂﬂ" _ L n : X
14 3w ~ S
-
N - L)
. . ) -
1' ”‘
. ) .
. A - 1
~ A . ) -
- ’ . 37
- . i = -~ -' ~ *
. | : , . '
N Figure AlO J ST T

The "convergence cah be proved from this observation (Exercises Alo;)No. 5) but

. - - . . - .
the prool can QE made simple using.integration by parts. To avoid the origin

consider - : g" )
* ) ® sin x
- I
. Jd = = dx . . .
~ N Tf/2 ~ . - . -
L4
' 1 < L
Set u = T » V= -cos x, dv =sinx dx to obtain L
. ’ e, -
-~w - 9

O

.
Aruitoxt provided by Eic: . )

-

[
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t sin x cos t t cOs X -
= d T 5 dx . .
1 rt/2 11/2 x
Now . }
- - - e cos.x} ., 1
. 1 2 , =%
X x
- 'so that % is absélutely convergent over: [%, ] » and lim coi_t =0 .
X ) - S . .t~

-

.o -] "
_Conse uently, J = -,f c_ose_x dx. converges and so does I .
% . nf2  x

-

Hext we show that

.

-] L -
. - L : j --—-—--—S:Lf: xl' dx
- 0
o - ) .
diverges. We have . Al .
. . n -
. nrw . kr
. | ] f ii;l_’ildx = E J’ sixLXIdx . .
T - = o} . =y (k-1)m -
. . . L ¢

-

New for x in [(k—l)ﬁ'-’-_%,kﬂ.-%] we have ]sinx|2;:? and X - R .

’

Thus
- ) kx -% -
J’ s:.}:;xldxz N Sinxldx>2ﬂ--:l=-—l—>%- g
Ck-l)x ‘- ' - x = 3 2 kr =3k
- (k‘fl))‘x_'*'g - _—
and hencg
:f*' “~ T fsin x 1 K_' l
- . dx - .
) o x =3 4Lk _
> U . k l . . -

Now we employ a trick tq sho¥ that this last zum can be made arsitrarily large. i

From =>% on {k- 1,k] we have ’ : .
-k —x . - .
4’ ’ . - )
- . * . - - k k r
, . J T ax > J % dx .
X k-1 k<l 5
¢ Now summing from 1 tg- k we obtain, .
f..;T . - 3t - »
. Y, ‘

‘ F ~ <

. 666 "




Al1O

I

&
- n k
(1 + J x dx]

[1 +Jz%dx]

.

sin x.dx

(RY
W+
wH

e
© g
X

i

[

v
‘WlH WK

»

- . >

-

[1 + 1log n] .

A

Fromgthe unBoundedness of log n . we conclude that the integra; diverges.

AN
- . . * - -
- s i
.~ e , . " Exercises AlO

-~

1. Cbmpléte thefprgof,of Lemma AlO0-l.

. - ) o )
2. Shqy‘if ¥ _idls weakly increasing: on (&,b) and has a left-sided limit
) 3 ) ;
2t “b , K = 1im_ ¥(B) , then ’f bounded on (E,b) .
_ B~o o - - ’

-

=4
N N

- ) . N e n
3. ‘Uomplgte the proof of Theorem AlOa for ,[ £(x)dx .
- N . . a
L. Show that the gondition in Theorem 10-6a, that f be integxable over

every closed subintefval of (a,b) , cannot be omitted from the conver-

gence criterion. More precisely, show that if I£(%)] < egl(x) and -

b e - b Db -
.‘[ g(x)dx exists, then J- ‘]f(x)de exists but ‘[ f(x)dx need
a ’ o a . a N -

[

_not exist. ' ’ -

.
-

.

5. By ékéimatingathe absolute difference between the areas of successive
b sin X

arches of the curve y = 5 ieeo, . -
- P L 2nIt . f A . K
- 7oA = J o =X gy, (n=1,2,3,...)
- . n EE -
) o o \ 2(n-1)x - i

T show that

'convergés."
. S, |
6. Prove.that j L jnt

~n
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) -aneWeratlon LO9 - - . cosine 1ntegral 64§ '%%2%‘5 *
' antiderivative, 427 - | - N " cover of - an 1nterva;, L
" arccos, 1ik ' : ' - TEEL I
arclength 38% . . : Lo - ) - e
“aresin, 1k3 ., I , decay coef;lcient h99 ) -
arctan Lk - decomposition 1nto partial fract*on, 563
aresa functﬂon : : decreasang function, 23& 209 -
“additive prone"ty, 36?” oL weakly, 196, 299
order property, 367 | - . - derivative {

- asymptote, 230 - ’ . - of ax, L&6 o 0 _
horizont&l, 232, 234 . ) . of arccos x, 1k7 o AN
obligue (slant), 233, 23k .. -, ,of ¢ Ly :

-  vertical, 232, 234 ' . -0 147
.Y attenuation eguation, 502 - - - of cOmI (Charn Rule)
S o ; - (Th. 1+6), et .
. ' - , . of cos x, 139 . ™ :
Binomial Theorem., 338 ' of cot x, l39,»' ) -
“pounded growthy,, 512 g o : Dx "117 - , A
bounded set of~Ppoints,; 261 - ex, k65 , "
greatest lower bound, 266 of fix—ec, 118
least upper bound, 269 S "~ of fix—ex, 118 y
bounded variation, 649 . . ~of f"x—---xé 118 ..
. braking coefficient, 513 i of f: x—a—Jﬁ 118 o .
Buniakow'kyAScpwafz inequality, 403 of ¢"x_‘h%; 118 ) , )
i gf fixLe |x|, 118 B
catenary, L of £Y, 117 .
Cauchy's 1nequa~1ty§ 253, h03 of- a function at = point, L9
‘chronexie T, 502 R _ of inverse of differentiable
composition of functions, 102, 285F function (Th. 4-3), 132
conic-section, 313 ' i of 'linear. combination: (Th. 4- 2a), 120
- directrix, 313 ° - of log x, 465 » - -
= :eccentricity, 313 - . of palynomial (Th. h-2c,.Cor. 2},
focus, 313 ' - of polynomial of dlfferentiable -
constraﬂned extreme value DrobWems 213 = . function (Th. 4-2c¢, Cor. 3)
- continuity B . Dbower rule fo* Dosltlve 1ntegers -
of composite function . (Th. k-2¢), PN
(Th. 3-6e), 103 . of a product (Th. L-2b)y, 122 o
of LGifferentiable function of guotient of differertiable
] (Th 3-64d), 103 function (Th. 4-24, Cor. 1), 128 :
o +the inte = 108 . of rational function (Th. 4-24, '
- 1ntu1t1ve idea, 62 ; Cor. 2), 129
' of inverse function (Th.r3—6?), 104 of reciprocal of differentiable
" piecewise, 589" - function (Th. 4-2d4), 128
. of Droduct of continmous functions of right-hand and left—hand, 121
(Th. 326b),799 - - . of sin x, 139/ "~ '
of auoulent oI continuous Iunctions successive hlgher, 159
{(Th. 3- 6c), 100 of tan x, 139 . . '
of sum of contlpuous _urctlons, differential equations, 429
(Th. 3-6a),- . . eX (Th. 8-52), 471
convex set, 207_ ..  sin x, cos x {Th. 8-5b), 472 -
. convexity, " 206 : direction angle, 30 - - {
flexed downward, 207, 234 ' displacement, total, 403 : .4
flexed upwerd, 207, 203, 234 domain of a func‘b:.on, 269 - N .

3{,'1:. -
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~ e, 461, k80 L s inverse, 488 . - .~ ot

properties of, k77 ) . sirh x, %5 .
ellipse, 313 et tenh x, L85 ‘ et T
- focal chord,3lL . hyperPdiic seeior, 487 : ( i
- latus rectum, 31k o - e - N
o energy density, 503 R P A . . - :
'». epsilomics, 67f ‘ imptic™® differentiaticn, 162°
exponent Implicit Function Theorem, 361
definition of zero exponent, 4u46 . increasing function, 110, 23k, 299
i general laws- Tor negative weakly, 196, 299
.integers, 446 ! indefinite in’teg:c'-al , het
. generalk laws for positive * initiel value, 497 . ,
o : integers, 445 . initial value 'Dro'blem, )4-30 ) IR
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