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Chapter 6

AREA AND ,INTEGRAL

6-1. Introduction.
-to

Area, as we treated the idea in Section 1-2, was not defined analytically

but accepted as a geometrically understood concept. We did not question the

-;

idea that a region with a curved boundary has a definite area but began with

the implicit assumption that it does. Within the framework of our elementary

knowledge we saw no way to describe the-area of such a region except as a
limit. For this

HavinA_gone from

which determines

method to define

purpose we used a speciTic kind of limit, the integral.

the geometrical description of area to an analytical method_

its numerical value we are now able to use the analytical

the concept a: 'rea. In this chap!rqer ve'shall take the con-.

cept of area arrived at intuitively and express it_in precise analytical terms.

Underlying_our.Method for determining the area of.a region, there are a
few elementary ideas. These ideas are cofamonly accepted properties of area

which we Postulate as the basis

The'area function oi"-...which

'real nuMber, the area Of

Property 1. a(R) > 0

.property 2:

for the forthal analytical definition of area.

associates with each region, R of the plane a.

R , shoufd satisfy the following properties.

If S and T. are two regions and_if S is contained in T,

(every-point of S is'also a point of T) then
-

a(s) <:01:(T) .

Property 2L. If R is the union of two nonoverlapping regions

(every point of R- Mies in Ri or R
2

and only

their common boundary lie in both Ri and R2 ),

Property 4.

a(R) =a(R)) a( +R2)

If R is a rectangle of height

Property 2 i; called the order property of area and Property 3 the -

additive property. Properties 2-4 are illustrated in ftgUre 6 -la.

R1
the

and R

points on

then

h and width w then a(R)

A
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Property 2 -Property 3

Figure 6-la

Property 4

We do not expect to be able to define an area for every set
of points in the plane. Consider the sets

S = ((x,y) : 0 <x <l , 0 <y < g(x))

T = ((.x,y) : 0 -(:)c < 1 , 0 < y < f(x) )

where g is the Weiel-wstrass function' described in Section A4-3, and
f is the function given by

f(x)
1 yu,-for x irrational

0 , for x. rational

(Exercises A6-2, No. 4). For the present, it is far from clear that
an area can be assigned to either of these regions in.a meaningful
way.

Exercises 6-1

Read Section 1-2 carefully and locate the places in the aiscussion where

the four properties of area are used.

2. Prove from. Property 3 that if a region R is the union of n nonover-

-lapping regions then

a(R) = a(R1) + -a(R2) + + cx(R
n
)

3. Show that Property 2 is actually a consequence of.Property 3.given that

area is nonnegative.

4. (a) Using the given properties of area obtain the area: of a-triangle-by

elementary geometrica]. arguments.

(b) Do the same for a trapezoid.

368

44'



6-1

5 Estimate the area of each region described below.

0) r) ((xly) : y < 1 - x2 )(a) flx,y) : y

(b) ((x,y);-: 0.< y < 1 2 ) n ((x,y) : 0 < x < 1)
1 x

6 If Property 4 is replace by -1*

Property 4'. The area of7a unit square is one,

ProDerty.5. Congruent regions have the same area,

show that.the-area of a square wiose side is of lengpa. -a is a2 .

7 Using Number 6, show that the area of a rectangle of height h and width

w is hw.

369 r
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6-2

-.:--2. Evaluation of an Area.

Section 1-2 we reduced problem of calc'ulating the area bounded by:
a curve

Let f be a nonnegative bounded function defined on [a,b'] . We recall that

to the problem of determining the areas of certain standai-d regions.

the standard region R under the graph of f on [a,b] is the set of pbirfts
bounded above by the graph o.f f , below by. the x-axis, on the fiLft by the
vertical line' x = a and on the right by x = b ; that is,

('igure 6-23).

R = a < x < b and 0 < y < f(.x))

To estimate the area of R we subdivided the standard region
into smaller standard regions by subdividing the base interval [a,b] .

Figure 6-2a

We subdivide the Interval into n parts, setting x-
0

= a , xn b and
_choosing points of Subdivision

xl , x2 ,
xn-1 such that

)0 < x1 < x2 < xn-1 < xn

x

-rhere.
_On each interval = 1 , 2 . . , n , we have a standardExk-1/xkl

region F. where

((x,Y) : x, < x < x, and 0 < f(x) 3

We then estimate the area _of each subregion R, from above and below by
. -

rectangular aunroximations. In each interval [x.k..1,x1c.] we obtain a low&.
bound In, and an upper bound Mk for f(x) :

< ( x) < M,

10

(y- < x < x.



-The region .Rk is therefore contained in a rectangle of height Mk and, in

turn,contains'a,rectangle of height m1c7 on the 'common base [xk_i,xk] . We

Concludefrom Property 2 and Property.4 (Section 6-1), that

6(1c) Mk-( xic xk-1)

Using the additive property, Property 3, we then have

It follows that

and

a(R) = a(R1) + a(R2) + +.a(R
n

) .

a(R) > ml(xl
+ . m

n
(x
n

x
n-1

)

de(2) < M1(x1 x0) .4" M2(x2 xl)
. M

n
(x

n n-1 )

In abbreviated sum notation (Section A3-2) we have

) < a(R) < ivTk(xk Y-_1)rak y-1)
k=1 k=1

In Section 1-2 we were able to represent the standard region

under a curve as a limit -of sums of areas of recta -les -- we were able-to

estimate that-limit prom above and below within a E.Lven tolerance of error.

So far we lack means for evaluating such limits- in simpler terms. Here we

show for a simple nonlinear case, the function f : x x2 on -10,1] .

- -

how to obtain such an evaluation using special summatin techniques. In

.Secticms'A3-2.and A6-1 we show 1=4 areas . _7ions under other graphs can be

evaluatd-by summation techniques; in sc are only demonstrating that

a direct attack on the Problem .tf :ea :s feasible and that we are

. not compelled to use the subtler, ±-.:t often simtIer. methods developed in

Chapters 7 and 10.

Consider the region R uncle...-. the gre7,-r. x
2

on [0,1] , (the

shaded region in Figure 6-2b(1)). f -7 an increasing function on

[0,1] i will be. easy to approximate from above apd below in the:

manner of Section 1-2.

371
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- b-2

We conclude that' the standara region R,, based on th-e interval {),--...ic,i,xk]
.:c

contains the rectangle Sk of height f(2, , ) and - is ,conta,i.-ned' -in' the rec-
-,..r....,... - -- -

tangle Tk of height - f(x..1) - _both on the same_ base. -T. e -, ion of. the non-'\'.-.a- r.
overlapp.ing rectangles Sic' forms a regiOn S Which is ::cOntained:wit- hin

-.
and the union of the rectangles T .% contains R -. Fxoih e Properties

-
. -.....47-c_.;.-.

of area we may then, obtain upper and lower estimates for ,-41-,..,.e: area a(R)
:. ,- -_

and

We have aS) < a(R).. < ce(T). , where
.....-

7 .

a(s) E-f ) ( xk xk_i)
k=1

n
(k - 1)2 1

n n
k=1

E
(k
2

- 2k + 1)=
n 3

k=1

"n

1 k
2

.

n3
1,4=1

We recognize the seceiona. sum in the braces within the formula for a(S)

as the sum of an arithmeti progression, the .first n odd natural numbers,

whose. sum is n2 . The sum of of the first n squares appears in both

22c. - 1)

v..

the formula for a(S) and that for a(T) . A general treatment of such sums

is- given in SeCtion A3 -2. For this marticular sun: we have (Example A3 1g)

373
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Consequently,

1 r 3 nn 2,a(S) -L + +T -n2]0

," rn
2

3 2.
a(T) = 77L-T - 4 ;17]

n
.

T .+

1
2n 2 0

on,-

.
on_

2

Since S is-contained in R and R is contained in T ; Property,2 of
area states that

or

a(S) < a(R) < a(T)

a(R) 13 a(-1 2h +2n 2 2on on

As we increase the number n of subdivisions, both a_(S) and -a(T) become
steadily better approximations to the number 1

'
and we'conclude that

3

a(R) = 4 . Formally, given any tolerance e 5.0 we choose n to satisfy
the inequality

Sn
6n

sr
.

.
.--,then a(R) differs from a(S) or a(T) by at most e and the estimate

a(S) from below and a(T). *fram above differ from each other by at most 2E .

.. r
-1-' ..-".. Special summation techniques can be "used to obtain the areas of standard

j
.

regions for other functions. In Section A6-1 such summation technioues are
used

.
.T or the power function x --0.- xn and the circular function X ---.0 cos x .

t Often it is not convenient, sometimes not Possible, to represent the area as a
-limit of sums which May be easily evaluatyd. The calculus offers simpler and
mFe 'general technioues (Chapter 14) but-these, too, may fail. The idea of
approximation is.thefandamental one, and if all else fails we can always
resort to obtaining approximations from above and below to the area of a
standard region.

C.
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exercises 6-2-:
4. . . , 76 %,

A r - ;.
. Z da . 4

. Use the siirrmPtion method to find the area) of the- stanil:_tegion defined
by
(a) f : , 0 <x <b > 0 .

(b) f :x--0.-cx,0<x<b c>0.
(c) f : + 2x .z 0 <x < b .

. -.",(d) f i x --sin '(ax + b) ; 0 < x < c ; a , b_, c
-

such that ,i
,. -,

sin (.x + b) >0 -on LO.,c] ..' ,
--.,,

. _ .

"(e) f: x 0.- coat x, 0< x < c .

2. The; problem posed in Section 1-2 was to determine the apea,of the
standard region far f : x 17: on [+0,1] . The summation -- encountered
there was similar to the one encountered in this section. Use thiS 17,act1"-

.-

O

to solve the problem of Section 1-2. _. I-. - ,i..
,

3. Obtain the result of Exercise 2 using y the fact that the .ar,082.under-
:

the graph' of f .. x --11- x2 on [0,11 .is_ ,1 together with the-k-basic
properties of area, without resort to summation techniques. _

- -,
.1 r- _z

4. Show how the upper estimating sums for It.x. are related term:by-term to
the lower estimating swas for x2 . (Hint: Sketch a graph .of y =7 x2
Use this graph and the y-axis tom represent the standard region defined
by -/Tc .)

TIf sn = ,rf lira show that,.
. -

2 2 j_ /17
< <

.

i-N

N.,

0

fa

375 -
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6-3

6-3. The Concept of Integral_ Integrals of Monotone Functions .,'
. .

(i) Definition of integral.

. In the computation of the 'area of the, standard region under the 'gra of a
bOunded function -f on a closed. interval we gave-upper and lower estimates of

the area in terms of upper and lower'bounds for_ f, op each interval of a sub-
.

division. If the function f takes on maximum,and minimum values on each

subinterval, as it would if .f were continuous or monotone, then these would

give the sharpest possible'boUnds. When f is continuous it may'be easier to
.

use'slacker btunds than to attempt to determine theextrema. For monotone

function's,lhqwever, the situation is especially. simple: The extreme values
=

on an interval are taken on at, the endp.oints.

We may Rilow f -to take on negative values So that the interpretation of
the upper and lower sumsas upper and lower estimates of an area may not be
immediate. Still these upper and lower'sm-1.9 may serve as upper and lower

estimates for Some unique number.which lies below ELI upper estimates and above

all lower estimates; if such a unique number exists it is called'the integral
of f over the base interval. The Idea of integral has far-reaching appli-

cations, and its internretation'as area, although useful for visualizing the

concept of integral, is not necessarily the most imnortant realizatibn of the
corcept.

We consider a bounded function f defined on a closed interval [a,b] .

A subdivision of [a,b,.] into n intervals is defined bya set of points

.(x0 xi x2 ,
'

X
n-1 "' xn

)

where x
0

a , x = b -and

x O.< x
1
< x2 < < xn-1 < xn .

.:4We shill call a set -a of points satisfying these reauirements a partition

of [a,b] . On the k-th subinterval [ xk-l'xkl defined by the partition c' ,

let =lc be a per bound, Mky an upper bound for f(x) , so that
,

i

fOr all

<HMk

x in the subinterval. We define the lower sum over cr.-1-

bounds at, as

376
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14.

9

L .E rak x.k - Dtk

k =11

and. 'the upper sum over a for the upper bounds .as

k=

6-3

If -f is a nonnegatIVe function then the lower and ipper sums cOi-respono

to loVer.and Upper estmates, respectively, for the area under the graph of f

on [a,b] . -More generally, without restricting the sign of f we use the

lower and upper sums to define the integral of f , if.it exists.

4

DEFINITION 6 -3. Let f be defined on [a,b) . We say that the

number I is the integral of f over [a,b] if there exists just

one number I such that for each choice of partitions ai , a2 and

all lower sums L
1

over a
1

and upper sums, 'U over a2 , we have.
.

r L1 - I < U2 . -

We raise the question of existence of such a number. I because it is not

immediately clear. It is possible ta.provethat no lower sum is greater than

any upper sum. Still, there may be a'gap separating the values of the upper

slims_ from those of .the lower If so, there is more than one number be-

tween the lower and upper sums and the integral is not defined.

-of the function f ,of' Section '6-1. See Eicercises A6-2, 4o., 4.)

41and;. if for each e-> 0 it is possible to find lower and upper

(This, is

On the otherV

sums which

differ by less than e , there'is such a number I which theseI7ower and

upper sums approximate within the error tolerance. e in other,words, we are

able to define I as the limit of upper and lower sums. We leave the proof

.
of,4existence (under appropriate conditions) to the appendix (Section A6-2) but

state t principal result here as a theoreTm.which we shall use.
-; *:
,R4-d

z

377
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THEOREM 6-3a. Let f be a bounded function on [43,-;10] If_ for every
positive c there exists. a partition u of [a,b] and lower and
umpe sums and U over c which differ b;- 'less than c , then
there exitsa. number I Which is the integral of over [a,b] .

Conversely, if .f is integrable over -[a,b] then_ there exists 'a
pa!^ti ti on Q with lower and upper sums L and U such that
U - L < .

' If -f has an integral I over [a,b] we say that f is integrable
over [a,b] . 4

A. proof of Theorem 6-3a reauires a verification of the conditions of
Definition'6-3.' First we must have a demonstration that no upper sum is less
than any lower sum (Lemma A6-2b). In that event, there exists at least one
number which is both a lower bound for the Set of uniaer sums and an upper
_bound for the set of lower sums (Separation Axiom, Appendix 1-5). It, must7
'theri'be shown that there is at most one number I between the =per and lower
sums. This-follows_ from the existence of an upper and a lower sum which are
closer together than any prescribed tolerance *c (Lemm A1-5). Thus the
integral :is determined by a squeeze between and lower sums; For the
details see Section A6-2.

o -

(ii) Integrability of mono tone functions.

For monotone hinctions we may choose M. and N[,, as function valuesM ;%. ,,., tat the endpointS7of [xk
_.
1/xl and it is particularly lzyy to obtain ani ti

estimate of the difference oetween the upper sand lower

the; error of approptiations to the integral( We picture the situa-bion in terms
standard

-of the areaof.a standard region for a nohnegative increasing function C .

.

,

y = f x )

0 = x0 X xk xn=b

Figure 6-3a .

373
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6 -3

, > -

In Figure 6-3a, the shaded rectangle over the interval xk-l'xk ] has height

- = and' m. f(x.. 1)K

.

The total area of the shaee 4-d rectangles is the difference
r

between Qt.iie

tipper and lower:sams for the given partition..

Since the function f is monotone we can imagine sliding. these rectangles

parallel to the x-axis into an- -arrangement w-1-7,heirrig:ht ideg ..aligned. In

thi6- arrangement the rectangl stare contained without overlapping ina.singl

rectangle of height f(b) - ) and base*aual to th'e length of the largest

interval of the subdivision. The length of.thelargest interval,

v(c) =.max(xk ,

is .a measure of the coarseness of the subdivISion and is called the norm of the

partition c . We have depicted a bound on the_difference between the upper

and,lower sums:

U L < [1*(b) f(a)]v(c) .

7

Clearly,. we can make the difference between U and, L less than any error

talerance- c by making the subdivisibn fine enough, namely, by choosing .-(7

4
so that

v(c)_ '< f(b) f(a)

-Since.th& area I must then Iie,in.the interval of length et-most e between

U 'and- L its value cannot differ fraM either by more than e and we have
/

kN
satisfied ` ^e .condition of Theorem 6 -3a. , 1

12 Although we ha-,.-re obtained the last result by a geometrical-argument we'''.
_ .

can obtain the, sameresult:inalyticelly with more generality: 'any functiOn

monotone on a closed intervalis integrable.

THEOREM 0-30. is monotone on [a,b], th-en f is integrable over la,b1.

Proof:, We show that for,each positive- E it is 3cossiblt to find a .

Partition c of [a,b1 for which the difference between the upper. and lower

sums on the partition can be made less than :

U - L < E 7

./

A- For this purpose we let Mk be the maximum and mihirjum of on

. We a:nall prove that it is sufficient to use a subdivision c with

a norm watisfyin-

379
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when f(b) L f(a)

The case) f(b) = f(a) is 'trivial since the function f must'thenbe a
constant functibn.. In this case, we have 1.11c. mk and

f(b) - f(a)

U - L = 0

/for allsubdivg_sions c

We-consider the case of .a weakly increasing function f (the weakly
decreasing case is similar). The-maximum and minimum on
".ven by the endpoint values

irk
1.(xld

and r = f(x,-k
(I

Summing over 'the-intecrvals of the subdivision we have

Consequently,

We ?bserve that

10

and

n

n .

f(x3,)
f.(x

2
). ) f(x )

k=1.

-1 )

mle( -

k=1

Txk_1,),k1

f(xk_i) xk Xk-1)

L [f(xk ) f(xk..1)](xk..- xk_i)

k=1

[f(Y ) - f(xlc._-1)]v(6).

k=1

< v(c)

k=1

ff(xk)-_- f(xk_1)] -

; 4
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n

--f(xk..1) '("0)
k=i

..

Subt2actihgte seeond Q1-7 therl:e sums from the first, we have

4414E , .f.., , f, ), = ,(. , _ f(x ).= f(b)
-....._ 1, 0 f(a)

1

consecuently,

L < ;:i(c)[-f(b) f(a)]

6-37

To make the difference le,ss than e. we need only-cliose v( c)= as indicated

above. We have satisfied the condition of Theorem 5-a -and _t follows that
f is integrable over -Ca,b1.-

(iii) afemann.sums. Notation.

We have ea nloyed a -Po- ^e-ri,ling area by approximation from above

and below and extended our approach to define the more general concept of

integral; This method has the great advantage of logical simplicity in the

derivation of properties of the integral.

A more direct-metod, but one which requires somewhat more complicated

argament,_is to utillze.valucs of the function in the intervals of a subdivision,

instead of upper and lower bounds for approximating the area. Thus, for a
5

function 17_ def-ined:on [ a,b] _and a partition 6 = (x )
0 '

x1
x2 '

x

of [a,b] we introduce sums of the f

(1) _ _ )

k=1

where
1

is any value the subinterval jxk_1,xk]. . TIPse are called
-,-

.
aiemann sums '. For a general Riemann sum the rectangle over [xic...1,xj- will

usually not include all or the standard region under the graph and will usually
1.

Be---r",:ard-Riemann, .a German mathematician of the early 19th century,

a pioneer in the. Careful study of the concept of integral and in other important

areas.

C-
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Include some region above the curve (Figure 6:3b) so that there will be a ,

-partial cancellation of errors. Since m..'' < f( ) < M_k k -k
, no matter how

k
" is.chOsen, we see that the Riemann sums are sandwiched between the-upper and

.

lower sums

L < R < U .

If f has an integral I , we can therefore approximate I by Riemann sums.
In fact, the approximation'to I by Riemann sums can be kept within any pre-

.-

scribed toleranceof error for every sufficiently fine subdivision a and

corresponding choice of (Section A6-2). We all then have determined
7the integral as a new kind of limit, a limit of Riemann sums:

lim R .
3 v( a)-0-

Figure 6 -3b
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It .is natural to suppose that if this limit of Riemann sums exists, then
, -&b. does the integral I of Definition 0-3, and to suppose that the two are

the same. This is not an obvious Proposition but it is true (Exercises.

A6-2, No. 3). These remarks are summarized in the following theorem.

THEOREM 6-3c. The value I is the integral of f-,over , in the sense

of Definition 6-3, if and only if-it Is the limit. of Riemann

I = aim R .
v(..c)-0

The proof is left to Section A6-2.

The integral I of f over [a,b] is usually written in the elegant

notation'of Leibniz. In Leibnizian.-notation, the Riemann sum '(1) is written

-

where Lx
-k

represents

n

R f

k=1
A 4

the'difference
xk xk-1

4

In representing the

integral Leibniz used a fotm reminiscent of the Riemann sums,

b

I
f(x) dx .

a

We shall call the endpoints a and b of the interval of integration, the
...-

lower and upper ends of integration, respectively2 .

/-r-Ithough, as we shall see, the Leibnizian notation for integral nicely

compliments the Leibnizian notation for derivative, it stems from conceptions

which cannot. abide the light of logical reason. In the thinking of Leibniz

and most of the early users of the calculus, the integral sign which is

an elongated Roman "S" is a special summation symbol which replaces the

corresponding Greek symbol "Z " . The integral. f(x) dx was thought of

as the sum of the areas of the infinite set of "rec glesU having

"infinitesiMal or-_"immeasurably small" base dx and height f(x) for

-There are concepts of integral which are more general than the one we
consider here. For example the functions of Exercises 3 -7, No. 12 are
integrable in a more general context,"but not in the sense'of Riemann.

c

_t is customary to call these values the lower and upper limits or bounds
of integration, but the terms "limit" and "bound" are used so often in other
senses in the discussion of integral that we chooseto break with tradition
and introduce a new term.
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6-3

F

ra < x < b .(the Roman "d" in "ax" replaces the Greek "-Y of the finite

Riemann sum). These ideas are nonsensical on their facet, as the redoubtable

metaphysician Berkeley made plain to his contemporaries.

Only Newton among the mathematicians of his age had some slight success

in clarifying the basic limit concepts involved, and even hq used the idea of

dnfinitesiiial freely when it suited his purpose. The task of providing a

eoundatioh for the calculus .was effectively begun by mathematicians of
the nineteenth century. Nonetheless, the idea of summation of "infinitesimals"

was_both suggestive and fruitful. In ancient times, Archimedes in "The Method"

wade ingenious use of it to discover (,not prove) formulaS for the areas of
conic sections. Euler used this nonsense without question and managed ItO

develop vast areas of analysis without a clear-cut definition of'limitl On

the other hand, the imprecise ideas of Leibniz and his contemporaries have

their pitfalla'and mathematicians were not always successful in avoiding them.

(iv) Arclength

We have already made some use of particular Riemann sums. In estimating
the. integral of a mpnotone function we used. upper and lower Riemann sums formed

by taking as bounds ;,he maximum and minimum values of (f in each interval of a
subdivision. We could also use upper and lower Riemann sums for the continuous

fur!etions since they Share with the monotone functions the property of having

a mshtimum and minimum value on each closed interval (Theorem 3-7b). For con-

tinuous,functions, however, the estimates by upper and lower Riemann sums are... -

not the appropriate general tool because the extrema of a continuous function
on an arbitrary closed interval m be beyond simple analysis, as.would be the

gcase for the Weierstrass functio or' Section A4-3. In other caSes, the

Plemann-sum may be the appropriate device because it is inherently impossible

to obtain the necessary bbunds on every subint rval,as the following example

shows.

1The concept of . "infinitesimal" requires the existence of quantities which
are smaller in absolute value than any positive number and yet not zero. For
real numbers such a conception is inherently self-contradictory (see Exercises
Al -3, No. 13b).

2
See Boyer, C.B. The Concepts of the Calculus, ColumbiaUniver

Press. New York. 1939.
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:Example 6 -3. The length of an arc of a continuous curve is another

quantity which can.be defined in terms of an integral. Given a continuous

function f_ on [,a,b] anda partition

Q of ja,i3j it is natural to attempt
a

to-approximate the length L of the

arc of the graph between' x = a and

x = b by the length P of the poly-

gongl arc joining the successive points

of the graph corresponding to the parti-

tion pcDints. yk = f(xk) /-

ock = xk - xk_i , and 4rk = yk -

Figure 6-3c

Yk -12
the length of this polygonal arc is

)(xk)2 (6rk)
2

This sum can be put in the form of a Riemann integral. We observe if f is

differentiable that, by the Mew of the Mean,

(1)

6ky

x ft(k)6k

satisfying xk_l < k < Consequently,

11 + (k2 Lxk

for some value'

that is, P is a Riemann sum for the function Dr + ft (x)2 We

then a'efine the length L of the arc by the.formula

(2)
b b

L j g(x)dx S ± f2(X)2 dx ,
a a

if the integral exists:

There is one peculiarity of this treatment of arclength which you should

know. Since the segment has'the shdrt t length of all arcs joining two

points (this is assumed here, but i n be proved), it follows on summing

-over the intervals of a subdivision that (1) is ar-lways.a-lower sum for (2).

Without an obvious geometrical way to describe corresponding upper sums, we

must abandon our idea of approximation from above and below- Thus we nre

compelled tb use the Riemann sum approach to arclength.
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Exercises 6-3
,

1. Evaluate the integral of each function over the indicated interval.

f(x) = a - x2

I-

x

5
2

5 - x e
Find the minimum and

0 < x <1

1 x <2.5
2.5 <x < 3

3 < x < 5

the maximum values of f(x) .- 2 4- 2x , x
2

on
the'interval [0,1] , and use them to

1
below and above the value of c f(x) dx .

find

0

two numbers respectively

(b) Check your result by evaluating the integral.

Find = upper and lower;sums differing by less than .1 -for the area Under
the graph of f x 1

on [1,2] .

Evaluate each of the followirig- integrals.

- 1

J_1
x3 dx.

J -1

(See Exercises 6-4, No. 4)

5. Annroximate 1
dx by Riemann sums.

6. A function

function on

interval,

f defined on the interval [a,b] is said to be a stet-
_

[a,b] if for some partition 'a = {?(0,x1,...;xn of the

f(x) is constant on each open subinterval , k = 1

sgn x is a step function'on [-1,1] , where sgn x2 , n . This

is defined by

(a) Prove that

(b) Find

1 , X < 0
sgn x = . '0 , x = 0

1 , x > 0 .

a step function is integrable.

sgn x dx" .

-



7; Evaluate each of the following integrals:

(a)
5 a. [3x

] cax 7/

10
(b) S

0

xl7
-1

dx
7

(c)

(d)

iTrj7ET dx .

"dx

6-3

2
& it = (xo,x1,2,...,xn) be a partition of [a,b] , and f , a function

which is'integrable over each interval [x.k_i,xk] , k . 1 ,.2 , , n

Prove that f' is integrable over the entire interval Ca,b1 an'd that
4

/

n

f(x)dx f(x)dx a=

a
k=1 xk- r

(a) Prove for 0 < xk_1,.< xk- tbat

3 3
. 2 xk xk-1 , 2

.xk-1 (xk xk_i ) < 3 < xk ( xk -- xk- )

(b) From Pert - (a) prove that for 0 < a < b

2 3- a3xax
7-3-a

(-c) Generalize this method to obtain

x dxn

for 0 < < b .



Elementary FrOnerties of Inter:7=1s.

( -7 ) Geometrically suestednronerties.

a

Beginning with the nostulated properties area in Section we

form7,:lated the geometrical concept of area 'of a standard region in tezrus, of'

the analytical concept of-integral. The-coneent df interrral -1:3 somewhat more

:-eneral than that of area; not onl ma;>- the integral be defined for negatve

functions, but the inteL]ral may also De defined-for functions for intuin

ion suggests no interpretation fOr a-,-ea under the P.ranh (Exercises
. ,

1To. rontheless, the nostulated:nronerties of area suggest pronerties

true of integrals in general.

Let, and be nonnegative functions with f(:.7) g(x) on a,b] .

Since the standas region under the

graph of f is co-tained in the

standard region-unde the gram of

g, (Figure 6-4a), from Property 2 of

Section 6-1.-the area of the former

must be no greater than the area of

the latter.- A similar ineauality holds

for integrals in general.
a

Figure 6-4a

TFEORE,4 and g are integrable nd

then

f(x) < ex)

Lf(x)dx < g(x)dx .

t a a

-
on -[a,b]

"Proof. Let denote the integral-of over [a,b] , and 'J the

integral of s . We know (Theorem 5-3a) tha;. for every nositive. e there

exist unner and lower sums U and L for g such that U - L < a . Since

L < 5 < U (Definition 6-3) we conclude that Ti J < a . Thus we can find

upper sums as close as desired to J . At the same every upper sum for

J is an unner-aum-for I since f(x) < P.(x).. We have I < J , for if we

had 1 >5 w e could take e =I- J.).0 and.from U-J<I-J it would
follow that U < I , a contradiction, since U is an unner sum -170-7.. T



Consider the decomposition of the standard region_dizer [a;6] into the

two standard regions over [a,b] and

[b,c] where a < b < c (see Pigure

6-4b). The additive property of area

'(Property 3 of Section 6-1) states

that the sum of the areas of the two

subregions must be thelarea of the

yr-ftx):

entire region. This corresponds to

1
a ge7ral statement for integrals.

a

THEOREM 6-4b. If f is-integrable over [a,c }\ then, for a < b < c,

Figure

(1) f(x)dx f(x) dx
b K fa

f(x) dx

-Proof. From the integrability of f over [a,c] it follows that f

is integrable over the subintervals 1a,.1)] and [b,c] ; (Lemma A6-2c). Con-

sequently, for any e. > 0 according to Theore 6-3a we can find subdivisions

at of [a,b] and &! -of [b,c] with corresponding upper and lower slims,

UT. , L2 and U" , L" such that

Ut - Lt < E and U" - < e .

Clearly, U = UT U" and L = L2 L" ere upper and lower sums) over [a,c]

for the partition a con*tructe_ y taking.the-two partitions CT and c"

toge .er as a partition of Fa;-,_ Furthermore,

U - L = (UT - 1,2) (ir - L") <-2s .

For the integrals I ,

res)Rectively, we have

It I" over the intervals , [a,b] , [b,c] ,

U - .< 2s ,

whence; for every positive E

I' < E , U" - I" < c

)I" - 1[ I(IT - UT) + (I" - U")'- (I - U) 1

< e + 2e ,

< 4

' It follows that 72'-1-

.,..

as we sought
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"4.

b ( .-
...'

Up to this point the symbol 'f(x)dx has been efined only for
a

:s,
e; a <:b . We now define the integral So as to make (1) universallyRialid.

Formally substituting a for b and c in (1) we obtain
.a

..\

a a
f(x)dx f(x)dx = f(x)dx

a a a

';

which can be satisfied only if S 4"( x x) =d 0 .
a

accordirigl y :

We define the integral),

DEFINITION 614a. If a is any point of,the domain of ,ewe

.define

a
f(x)dx = 0

l
_

,

Furthermore, if we formally set c = a in 1), we obtain

a a
f(x)dx + S f(x)dx = f(x)dx = 0

a a

this eauation suggests the following definition.

DEFiNITION 6-4b. olf is integrable over [a,b] we define

J

a
f(x)dx = - f(x)dx

a

With these definitions, Equation (1) becOmes valid independently

of the ))rder of a , b , c .

Corollary. If a , b , and c are any points of an interval over which,

f is integrable, then

Ar

f(x)dx + f(x)dx = f(x)dx
a a

The proof is left as, an exercise.

al?
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faEX le 6-4a. Consider x
2

dx where a > 0 . Since x
2

is
t 0 .

,

-

monotonelltor x > O the integral.exists. We consider a subdivision of [0,a]
I

4,into
n equal parts and in the manner of Section 6 -2, obtain upper and lower

Bo Sums .- I'

-

and

U. =

k=1

L .E
k=1

)

2 .a
= a3

k2

n3
k=1

xo

(k - 1 )ai

n

2

U -
a

n

We utilize the same summation formula as in Section 6 -2 and ob-tain by the
same arguments,

a
2 a3m dx =

0 3

.t

This is,a general formula, Valid for all positive values ,e (and negatilk

values'also, Exercises 6:74, No. 2). Now, applying the Corollary'to Theorem

6-4b, we can obtain the'l-fntegral of f bet-ween any positive ends of integre-

{
tion whatever:

0
f(x)dx = j f(x)dx + f(x)dx

a a 0

Sb
f(x)dx.-

a
.-f(x)dx

b3 a3

3 3

Example 6-4.b. Property 4 of area, that the area of a rectangle is.the

product of the lengths of two adjacent sides, tells us

c is a positive constant,

c(b - a) (Figure 6-4c).

y=c'

0 b

Figure 6 -1-c

for f(x) = c where

that the area of the standard region on [a,b] is

More generRily, whether c is positive or not, and

no matter what the values of a and

391

b , it is true that

rb
c dx = c(b - a) .

a

b.



We need only prove the 'result for a <: b if a >b the result follows

by the Corollary to Theorem 674b.
a

In every interval, c Is both an upper bound and a lower bound for

f (x) = c . For every partition of [a,b] , then,'we take

= c(b - a)

Example 6-4c. Consider -Le-area under the 'graph of f(x) = x on [a,b]

a > 0 (Figure 6-4d). This region is a trapezoid with'naraliel bases

length a- and b and altitude b - a . We know from elementary geometry

- Figure 6-4(d.

that tie area:of such _a trapeiOid is

1.(b - a)(b + a
2

b2 a
2

2 2

More generally we prove for all a and b that

x dx = 2 a2'

2

2 2

am.

Again, is sufficient to prove the result for b > a ;.for other cases the

result follows-from Definitions 6-4a and 6 -14-b. We subdivide the interval

EalbI into n :equal narts and obtain upper and lowr sums
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U =2:: (a + kh)h*

k=1

L =E[, (k.- 1)h]h = U - nh2

k=1

-where h =
b a

We have ,from the rule for summation of an arithmetic

Trogresdlony

n a P

U = hE (a + kh) = 41j2a + (n +1)10

k=1.

= + (b -b
2 +',11] -%

b
2

a
2

2
a.

2 2

For the lower sum, then

b
2

a
2

- a)hL = U - nh2 = U - (b - a)h 7
2 2 2

Combining these results and taking the limit as n. approaches infinity we
obtain the anticipated value for the integral.

(ii) Linearity of Integration.

For positive constants a and integration is a linear operation:.

b
De(x)-1- ag601d):: =' f(x)dx +

. a Ja
.

g(x).dx

for if U' and L' are upper and lower. slims for f U" and L" for g,it is immediate that U = au, ou" and L = oT + pL7 are upper and lower
sums for the linear combination af(x) + Pg(x) . This result does not depend.
on the signs of a and 0 as we*now prove.

THEOREM 6-4c. If f -and g are integrable over [a,b] ,thenlny linear
combination of pig is integrable over' [ab] and

b b
[Oef(x) 6g(X)1CIX f(x)dx g(x)dx

a a. a

To simplify the considerations which depend on the signs of a and
we divide the proof into two parts.
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temma 6-4a. If f is integrable over then for any constant a

the functtMt af isintegrable,and

b
af(x)dx = a f( )dx .

_I a

Proof. Let a be a partition of [a,b

!b"Ver a ,

for which U - L < e .

If a > 0 , then

and take upper and lower sums

U =En Mk(xk xk-1),
k=1

L =E 113k (xic xk-1)
k=1

ck(x1 xk-1)
and

n

aL :=Eank(xk xk-1)
k=1

are upper and lower sums, 'respectively, for of . It follows that

CXU - aL < CC E

and hence tha the _difference between, upper and lower sums for of car! be

-made less than any desired tolerance. It-follows,that of is Integrable.
r'

mk.

(Dd. over La b3( we haveFUrthermore, for the integral I -of,

- I <':e

from which it follows that

Ic7 -

f and J of

J < a

aIl- I(J - + a(U - I) I

< - aU I + alU - If .

< 2ac .

Since this result holds for all positive E ,,we conclude that J = aI .
4

If a < 0 then aU is a lower sum and aL an upper sum for of

Proof is thus,reduced to the precedingt(Exercises 6-4, No. 3).

If a.= 0 , the lemma follows trivially.
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:01.1774.

We have not attempted to-give an. i ja of the integral in terms

of area for functions which take on negat1ve Ypaues. If- f(x). < 0 on [a,bl
then -f(x) > 0'. We have, in'the light ofLemma46-4a,'

f(x)dx -. = - [-f(x)]ax

6-4

a' a

/-

7..-.0..r.P..e...r..-4.47tev...... 4P 4P4P 4064' 4P4. AP. 04, 4P. 04,
040.P "" 410, *4.,g, IP. O..

41p 41. 4P.
pot.o.

y=f (x) '''*.1!
-..

4..
4,

--Figure 6-4e

The integral I of f over [a,b]

is, therefore, the negative of the

area'of the standard region under theN

graph of -f (Figure 6-4e).. Alter-

natively, we may consider I aa. the

negative of the area of the region

((x,y) : a < x <b , O> y > f(x)) ,

the region bounded below by the graph

Of .f and above by'the x-axis. ,

In general the integral may be interpreted as the signed area between

the graph of f and,44 xIaxiS,zwhere the, signed area is positive and equal

to thethe area under the graph for the part of the graph above the x-axis, and

-where the signed area'IS negative and equal to' the negati4e of the area

between the graph and x -axis for the part below. .T./"particular if the graph
°of f is symmetric with respect to the origin we have f(eirx) = -,f(x) and for
any interval [-a,a] centered at the origin the signed area of any standard°

regaidh above the x-axis on one side of the origin is the negative of the
signed Brea of- the symmetrilY situated region.belOw-the x-axis on the

a
other side of the origin; in this case f(x)dx = 0 . ( &cercises 6-4,

-a

No. 4.)

Lemma 6 -fib. If f .and g *are integrable over [a,b] , then f-+ g- is

integrable over [a-c] and

[ f ( x ) .g.(x)] _ f(x ( )di)dx g x x
a

". a
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We make use of an auxiliary result (Lemma A6-2d): Given a fixed

tolerance, for any integrable function A.11 sufficiently fine partitions have

upper and lower sums- closer then that tolerance. Thus for each positive c ,

there 'exists some 5 such that any partition a will have an upper sum U .

and a lower sum L 'satisfying

whenever

1U -LI <E

v (a ) < 5 .

.

Let 3
1

and 5
2

be the controls corresponding to the given c for f

and g , respectively, and take 5 = min(51,52) . Let a bd any partition-

with v(a) < 5 . There then exist upper and lower sums over a , U2 andover

L' for f , and U" and L" for g such that

1U2 - L21 < E and IU" - L"1 < E .

Recall that

1 and

where

Since

U2 Mk (xk xk-1) LI

n -

U
.1.c"(xk

k=1

mk(xac xk_i)

xk-1)'' L" =E (xk xk-

. < f(X) < 4 1 and. .< g.< x )

mkt + mk" f(x) + g(x) <Mkt +iv

it follows that U = U2-+ U" is an upper sum and

for f.+ g over a . We conclude that

L=

U - L = (U2 - L') + (U"..- -L") < 2c

and it follOws that f÷ g

I2 , I" and I of f g

a

L2 + a lower sum, .

is integrable. Furthermore, for'the integrals-

and f + g ,

<I - UT' + II" - U71 + II -'1J1

< E+ E + 2E

respectively, we have the estimate

!(II - U') + - u") - (I - u)[

. \
< /4-c

for each positive c . It follows that I = I2 + I"
396
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The derivation of Theorem 6-4c from the preceding lemmas is simple and is

left as an exercise.

In Exampl s 6-4a, b , c we have shown how to integrate x2 , a constant,

and x, . Emp oying Theorem 6-4c we' now have the means to integrate any

quadratic function without further resort to estimates by upper and lower

b
2

S (Ax
Bx + C) dx = A S

2
dx + BS x dx CS dx .

a a a

An immediate application of Theorem 6-4c gives the area between the

graphs of two functions f and g on [a,b] , where f(x) g(x) , as the

integral of their difference. If f(x) >0 as in Figure 6- then the area

between the two graphs is simply the area of the standard region under the

graph of g less the area of the standard region under the graph of f ,

that is,

gb)dx
b

- f(x)dx = [g(x) f(x)]dx .

a a

There is no reason to restrict these considerations to.nonnegative functions,

for if f(x) < 0 for some, x in [a,b] , and m is a lower bound of f(x.)

on [6.,b] , we:translate the x-axis vertically kfl units.in the negative

direction so Vast

a

x;Y) (x,Y f I m )

In the new coordinate system the region lies between the graphs of the non-

negative functions f : +. Iml and g : x --ow.g(x) Iml. (Figure

6-4f.)

yr-f(x)

Figure 6-4f
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Since g(x) - F(x) = g(x) - f(x) the definition of the area of the region
between the graphs of f and g as the integral of the. fuhction g - f is

clearly appropriate whenever f(x) < g(x) on [a,b] '.. Thus, the area of the
standard region under the graph of F : - f(x)-. on [ab] '(Figure
6-4g) is equal to the area of the region between the graphs of f and g on
[a,b] (Figure 6-4f).

Figure 6-4g

Ebcample 6-4d. Consider the area of the region between /he graphs of the
functions f : x-4E-cos2 Ax and g : x - sin

2
x on [0,4] . (Figure

6-4h.)

We might attempt to represent the area of the region as the limit of sums
of areas of rectangles. On the other hand, we know that the area is given by

4 .

[f(x) - ex)1dx ,

0

since f(x) > g(x) all x in the interval [0,4]
0' Ets

-7--
''''1;

But
,

* [f(x) - (x)]dx = (ix = 4 ,
0

.
t

since
JJJ

(f(x)-g(x)- os 2x - (-sin2 x) = 1 for all x . (The graph ofj
F : x---0.-f(x) - g(x) is shown in Figure. 6-4i.) In conclusion we no-de that

the area of'the region shaded in Figure 6-41 is equal to thehe area of the

region shaded in Figure 6-4h.
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6-4"

Figure.. 6-4h

y

Figure 6-4i

Exercises 6-4

1. 7-zethe corollary. to Theorem6-4b.

2. (a) Show that f :
2

is integrable over [a b] j no matter what

the values of a and b .

(b) Prove that
So
a vax2 dx for a < 0 .
0 3

5 a

2
(c) Prove that

a3

3
for all values of a and b
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.6-4

3. Exhibit the details bf the proof of Lemma 6-4a when a <.0 .

o 4. (a)_ If t graph of f is symmetric with respect to the origin, then

f is odd. Prove that if f i.A odd and integrable on [-a,a] ,

5.

then

a
f(x)dx = 0

J-a
.-

(b) If. the graph of f is symmetric with respect to the y-axis, then
f is even. Prove for .an even function f which is integrable on
[ -a, a] that

a a
fyrx)dx = 2 1t(x)dx

-a CT

Interpret this result geometrically
1:::1;.:.;c!1.- 7

Prove Theorem 6-4c as a consequence of Lemmas 6-4a and 6.-4b. Conversely,

derive- the Lemmas as corollaries of Theorem 6-4c.

6. Prove: If f and g are integrable where g : x----1101f(x)1 on [ab]
then r r b

I)

b

f(x)dxi 3_ If(x)Idx
a a

Compute the values of the given integrals using Theorem 6-4c.

3 9

(a)
2

(3x - 5x + 1) dx
) 2

(b)
S 0

( x - 1) ( x 2) d..x

3
(c) (x .-4-'"2Y(x - 3)dx

5-2

8. (a) Find the area of the region below the parabola. y = *2 - 3

the x-axis and between the lines x = -3 ,. x = 3 .

above

(b.) Find the area of the region between the graph'of

f 6 the lines x =

the

: x - x - ,-the x-axis, and x = -2

First draw a rough sketch-of f and iridicate'(byyshading)

region whose area is to be computed.

d9. Find all values of a for which

t.
(x + x')

0
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.10. .omp-ute

.6-4,

3
f(x)dx where

Verify that t he following property, hold's-for f :

b' c-a
j f( - x)dx =

c-b
f(x)dx- . t

a

0 < x <1

1 <x

1.

Explain the, property geometricslly in terms of areas. Do you think that

the property holds for-other functions that are - integrable? Justify

your answer.

If a function f is periodic with period X.

show that

f(K)dx = n
la .

Interpret geoMetriclia'lly..

13. Evaluate

and integrable for alb x

a+).

f(x)dx , (n; integer) .

a

1.00n
(1 sin 2±)dx

0

(assuming sin 2x s integrable).

15. Interpret

14. Prove -that if f

x in [a,b] , then

is integrable on [a,b] and if f(x) > 0 for aJ1

f(x)dx
a

posi
i

ve- and negative

16. Interpret Cg(x) -
b

V a

that f(x) > g(x) for

17. Prove that if f and

!eh

13 a -cg(x)
f(x) dxf

Sb
f (x ) dx > 0

a

In terms of area if f'(x) may take on both

values in .[a,b] .

f(x))dx in terms of area if we admit the possibility

some values of x in [a,b] .

g 'are integrable over [a,b] , then

.1 lex) b If(x)ldx
a a

r
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18. Let f and g be integrable and suppose that f(x) <g(x) on [ab]-.

(a) If the'strong,inequality f(x) + c < g(x) , for some e > 0 , holds

,on any-subinterval of. [a,b] , prove the strong inequality

b
f(x)dx < g(x)dx .

a

(b) If .f and .g are continuous,at x = u [a,b] and

f(u) <g(u).- prove that strong inequality holds as above.

19. If funct.144-7 -and g are integrable, and f(x) h(x) < g(x) on
[a,b] it follow that

dr' b
f(x)dx

a

Illustrate by an example.

20. (a) (Prove the Mean Value Theorem of integral calculus: If f. is con
tinuous and integrable on. [a,b] , then there exists a valUe u in

.E h(x)dx< j" g(x)dx ?
-a. a

the open interval. (a-b)- such that
_Jr

b-
S f(x)dx = f(u)(b

e

(b) -Shaw that the value f(u) in

f0 1
f + + fnf(u) = lim

n +-I

).

(a) satisfies

h-0

-where h. -
(b a)

n
and f "lc = f(a '+ -kh)- for k = 0 / p a ,

n . Thus f(u) can be ,interpreted as an.extension of the idea of
i

mean or arithmetic average to the values of a"fUnctiOn'on aneinterval.

1

a0 1'
21. If +

1-
show that'n 1. 2

a
0
xn + aix + +

an -1
+ an = 0

has at least one root.in (0,1)

7

22. (a) Prove that if f(x) is integrable over [a,b , then if(x)i is_

integrable over la,b1 .

(b) Show (t t the converse is not true.
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23. If f and g are integrable over [a,b] then both Max (f,g1, and ..,

min [f,g] are also integrable over [a,b] .

24. Na) f and .g- be bounded and integrable over [a,b].

Prove (a) The function fg is integrable over [a,b]

(b) If g is bounded away from zero, then is integrable on [a,b] .

g -
b

25. If f and g are bounded and,integrablel-then (af(x) ÷ /3-dx))2cbt,
_

a
exists and is >0 for all constant a and $ .

Show from this that , '4

b
2

b 2

S .

f(x) dx
ga

)dx > j f(x) .. g(x)dX
a . a

, .

..'
.

. .

with ecillnlity if and only if. (for:f- and: g' ccntinuOus)

f(x) = ci(x) , a <x <b .
dr

(Buniakowsicy-Schwart Inequality. This is,the integral analog of Cauchy15

Inequality - Exercise,A1-2, Number 16.)

-26. If f is integrable and its graph is flexed mpwardon an interval [A)la] ,

show that

,S.0 f(x)dx-> of (.1-1.)

Interpret geam6tricP1ly.

27. =Show that

28. 'Show that

--- < dx1 3-if

0
(a)

(b)

v{ a2 1:1(.02 41:1

31

1 .1 -/-5 ax 2:15
÷ >

0 5

2

o. 4
403 41' t_J
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4-4

29. Find a continuously differentiable function F (i.e., F' is continuous)

in [OM which satisfies the three

(a) F(0) = 0 ,. F(l) = a,,

(b) J..
1
F(x)dx =

2

0 3

1
(c) Fqx)2dx

0
is a minimum.

to.
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6-5. Further Applications of the Integral.

The interpretation of integral as area is but one of its-.many applica-
,

-tions:,:.,A;-In this section we shall give two -other applications.

(i) Volumes of solids of revolution.

The general problem of evaluating the volume of .a solid can be reduced to

a succession of integrations: We shall not attack the general problem of

volume, but -.s1 11 solve the problem in terms off integration for a simple

speci.al case, that of a solid of revolution.

Let f be a nonnegative function on [a,b] (Figure 6-5a). We define

the solid of revolution generated by f on ta,b] as the set of points

swept over by the standard region under the graph of f in a complete rota-
,

tion about the x-axis (Figure 6-5b).

el

Figure 6-5a

Figure 6-5b

405



Figure 6-5c
. -

If we choose a z-axis in a direction perpendiclner to-the 'x y-plane this
'solid can be described as the set of po'ints --,

._
.\ t

((x,Y,z) : a < x <13"- - ,
.Y
-2 + z2 < r'(x)12)

L -I-

We can easily obtain upper and 'lower estimates for the volume of this
solid. In Figure 6-5a we have depicted f as a function which takes do the
maximum value M and the minimum value m on I a, b j . The solid of revolu-
tion genex:ated by f on [a,b] is contained in an outer cylinder with a base
of radius M and contains an inner-nder with a base of radius m . Taking

.

1.

the formillP for' the volume of a right circular cylinder from elementary geo-
metry, we have .-

Trm
2(

- a) < V <
7

where V is the volume of the solid.

4

- a)
;



6-5

We can divide up the solid by means of a partj.tioil of [a,b] in a fashion

similar to the- subdivision of a standard planar region. The solid is cut into

slices'by parallel, planes x = X. through the successive points of the marti-
-

tion: By obtaining upper and lower bounds for f in each interval of the

subdivision of [a,bL. we can.estimate the volume of each slice from above and
below. Let Mk bean upper bound and mk a lower bound for f on [xk xk]

A cylinder with a base of radius .24k and -height xk - xk_i. contains the slice

of the solid betweentheplanes x = and x = xk , and the slice in turn .

contains a _Cylinder with a base of radius. mk and height xk - xk . Adding
the volumes of such cylinders we obtain estimates for the volume V in the

form of upper and lower silmc-

n

U =

k=1

2(
xk-1)

n

L -E7riiik2cxk
k=1

(Figure 6 -5c).. These are upper and lower sums for the function
16 *

g . If g is integralN;e we must have

V - S f(X)2
a

Example 6-5a. We shall obtain the volume V of the segment of a sphere

of radius r. -intercepted by a plane at distance a- from the center (see

Y Figure 6-5d). This is the solid of

Figure 6-5d

In particular, if f is
and therefore integrable.

revolution generated%Zy the circular

7-- 7arc f(x) = 1r --7x 2 on the interval

[a,r] . We have

V = 7r
Sr

[f(x)] 2dx
a

.nonnegative and monotone, g will be monotone

407
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1
EMployingtheorem 6-4c and the special results of Examples 6-4a, tr., we obtain

V = r
2
dx j x2dx

a a

2
(r - a) - -/31(±.3 a3),

3
7 a) (2r - ar 7-a2)

5
2-

f(r
a) (2r a)

(ii) Calculation of displacement from a known velocity function.

Let us consider the straight-line motion of a body for which we know the
velocity v as a function-of time, v = f(t) , and for which we wish to
determine the position s of the body as a function of time, s = 0(t) .

Given the velocity of motion fora given time interval [A,b] it should be
possible to=:determine the total displacement or signed distance moved by the
body in the given interval. Intuitively, if we divide the time interval into
subintervals so small that the velocity does not change appreciably in each,

\-theri we can estimate the displacement in each subinterval. The sum of these
estimates'is an estimate of the total displacement.

Specifically, let

a= t t t )0' l' 2' 1 n

be a partition Fe .- If in the interval [t t we have approxi -k
mate1Y f(t) = vk where vic is constant, then the displacement for that time
interval:should be-approximately vk(tk -'tk-1) . If We take for vk an

. -

upper or lower bound for the velocity on the interval [tic-1' tk we can .form
upper or lower sums and estimate the total displacement from above or below,
In this way, we argue that the total'displaCement can be expressed as an
int#gral

b.
(1) v dt

where. v Is given asa function of time, v = f(t) .

We have made out a plausible case for.the expression of the total diOL

placement as the integral (1)., andNe shall, go on to prove it. Given the
known funCton f : t v , we-wish.to determine the total. displacement
0(b)-- 0(a) where 0 is the function which gives the position of the body
at time t . Since I:. is the derivative of 0 W-ith respect to t
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(Definition of velocity, Section 2-4), we have by the Law of the Mean

95(tk) 93(tk-1) f(Tk)(tk tk-1)

where tk-1T < tk . It follows that

.0(10) O(a) =E-E95(tk ) '- O( )]-1
k=1

k)(tk tk-

In this way the total displacement - 0( ) .1s-expressed as a Blemann

sum over any partit n of [a,b] . If f is integrable over [alb] it

follows (Theorem 6- ) that

(2)

b
0(b),- 0(a) = f(t)dt .

r

a

which is the result we sought to prove.

In ac-b-uailty we have established (2) for any function

integrable derivative on [a,b]

( ) 0(b) - q5(a) = 01(t)dt .

.a

0 -which has an

This general result is the most important application of the concept of.

Integral. In Chapter 7,'we shP31-examine this and related results in.detail.

Example 6-51). As an immediate application of (3),we she31 describe the

motion of a body in free'yertical feji near the s'ilrface of the earth. For

this purpose we utilize the concept of acceleration, which is Oefined as the

derivative. Of velocity with respect to time. We are given that the accelera-

tion of a body In the gravitational field near the earth's surface is, for all

practical purposes constant, about 32 ft./sec2 . If z denotes the height:

of a freely falling body above the earth, we have for the velocity v ,

(4) v
dz

and for the accelearation a ,

45) dv
a
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Here we have taken the positive sense of displacemeht, veionty, and accelera-
tion as upward; therefore we must set a = -32 it Equation (5). We take
t = 0 as the time the motion.is.initiatedand-seek the velocity v =f(T)
and poSition z = 0(T) at each subsequent instant T of the Motioa. From
(3) we have (from EXample 6-4b)

f(T) - f(0) ( -32)dt = -32

Setting v0 = f(0) above we obtain

v - v0 = -32T

or

. v'= v
0 - 32T ,

where v
0 is the initial veldcity; thus f(t) = v0 -, 32t . Entering this

result in (4) , we have

dz
32tdt

From (3).we conclude that

O(T) 0(0) = E T (Vo - 2t)dt'.
0 .

Employing the results of Examples 6-4b, c, and using Theorem 6-4c, we have

.

zo.= voT 32 ,

where z
0 is the initial position of the body. At time t after the initia-

. tion of the motion the position of the body.is

(6)s Z = Z + V t 6t2 .0 0

By successive differentiations we may check that Equations (4) 'and (5) are
satisfied. We have-rift verified thst,(6) describes the only motion which is
possible under the given initial conditions, but-we shall see later that the
initial conditions do uniquely. determine the ensuing motion.
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6-5

ExerAlt6-5

1: Find the volume of the solid of revolution generated by f.: x

on [0,1] .

2. Use the procedure of this section to find the volume of a right circular

cone of altitude and base of radius r .

3. Obtain the formula for the volume of a sphere of radius r by first

showing that the'phere is a solid of revolution.
_

1. Find the volume of the ellipsoid 'generated by rotating the ellipse

2, 2 *

L2-. + Z.-- = I about itkkajor axis. (Assume a > b .)
a b

2
--,r

45. Find. the volume of the segment of, a sphere of radius r 'bounded by two

parallel planes if the bases of the segment are at distances a and b

from the center and are on the same side.

6. If the acceleration of a IpartiCle moving along a line is 3t - 2 in

centimeters per second per second at any time' t in seconds and if th

velocity is 2 centimeters per second when t = 0 , find,the distan-.2

coveredoduring the first second.

7. A par-t.icle moves along a line so that its velocity at any time is given

by v = 4t2,- 14t +.6 . Find the distance covered by the particle between

the instants when it is at rest.

8. With what upward velocity must a ball-be thrown if it is to reach a,

height of 10Q feet above the point from which it'is thrown?

A stone is thrown down from the top of a 200 -foot tower with an initial

velocity of 40 feet per second. How long will it take the stone to

reach the ground? With what velocity'will it hit the ground ?.
.res

10. Answer the questions *asked in Number 9. the case where the stone is

dropped from the tower.

'.11. If the. stone is thrown strait up with a velocity'of 40 fNet per

second from the top of the 204 foot tower, with what velocity will it

strike -the ground?

12. Find the 1.7-A of the'Solid'obtained by revolving the region bounded

-by the parabola, y
2

= 4x and-the line 'y = x 'about the x -axis.
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13. A cylindrical hole-of. radius 1 inch is drilled out along a diameter of a
solid sphere of radius 4 inches. Find the volume Of the material cut out

14. Find the volume:of.the portion of a sphere remaining after a cylindrical-
'hole is drilled out along its diameter if the length of&the hole is H .
Check your answer by considering som ecial cases.

.
MiscellaneaQs

,e
Exercises

cos
2 t

1'. If' K is a constant prove that'
2 K dx = K cos 2t .

.sin t

2. Find the area of the region bounded by the graph of f : x + x - x2

and the line "y + x = 3

3, pVer what intervals is the given function integrablel,

x

ix
mr., X

4. For which of the functions of Number 3 is it possible to extend the

domain so-that ,the function
. g 'defined on the extended domain is

, .

integrable over every closed interval? 'Does the value of the'integral
_of g over any, interval which contains a-point of the extension depend
. upon the way in'which the,domait of f is extended? In the light of

your conclusion suggest a generalization of the definition of integral.

The area of the standard region-of a function . over--[a,b] is given..
by

1e2a3
- 2b3 -9a2 9b)

Find a function f' for which this is.true. Is there more than one_sudh
function? Interpret your answer geometricslly.

6. .A point moves on a line. such that after t- seconds its velocity is
v = t2 - 9t + 20 . If -its- position is s =,0 when to= 0 , how far does

the point .move during the time when the velocity is nonpositive?



Show that

(a) 1 <

(b) 1 <

1 2 2
.dx < a2 (a > 1)

2O xx +4- la

S
+x2 +a

2
< 8:2

, (a > 1)
x4 + x2 + 1

6-M

8. Fora monotone function f on [8.,b] we have found that the upper an

lower slims over a.partitiota a satisfy J-;

U - L e

provided the norm v(a) is sufficiently, small,

v(a) < !1(b) f(a)i

when f(b) / f(a) . Since the integral I of f over [a,b] lies

between L and LP we can estimate I by either sum within the

tolerance E . Show that the.arithmetic mean -
1

1,4 + Ul is-an
2

estimate of I .within the finer tolerance
2

Find Rieman sums differing by less than 0.1 f9or the area of the
-standard region of f x _1i. over [71 6] .

10. If when one applies the brakes of an automobile a constan deceleration
/ , . .

of o ftisecv2 results, detertine the value of c necess to ensure

11.

n

that an automobile traveling at%40 mi./hr. will stop 50 feet from

the place where the 'brakes are applied.

Show that

b
f(x)ax .)17F-(f(a) + a +

+ f(b))

where f(x) is any qUadratic function.

12. (a) Let f be continuous and increasing on

and set $ f(a) , a = f(b) . Prove

ta,b] , g be its inverse,

b
S g(y)dy = ab - f(x)dx .

a a

Interpret this result geometrically when. -a and Cr are positive.

(E±nt: Compare with Nos. of Exercises 6-2.)

(b) Prove theformula and find a similar interpretation when f is

decreasing on [a,b]
_ ,



6-m

13. Check the arc length formula by applying.it to a segment of,a straight

. line and comparing with the formula for the diStance between two points

on a straight line.
5

S
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Chapter 7

BASIC'INTEGRAL THEOgEMS.

7-1. Integrability.

MP.

s X7_1

Our purpose in this section is to settle the question of integrability

for -elle functions which ,concern us most in this text. 14e have already shown

(Theorem 6-3b) that a function f which is monotone on ,[a,b] is integrable"

over [ab] . In, addition, we know that any linear combination of integrable

functions is integrable (Theorem 6-4c). Coupling these results, we obtain a

gener41 class of integrable functions, thest-linear combinations of monotone

functions. -This clais contains most functions studied in the calculus.

We generally require that a functioh be continuous and differentiable.

Its derivative will usually have at most finitely many zeros in any closed

interval (with the trivial exception of a constant function). Such a function

has finitely manYmaxima and minima separating intervals in which the furiction

is mon4tone- It is a member of the general class of piecewise mo25.0-ttile

functions.
cr

DEFINITION-7-1a. A function f is said to be piecewise or

sectionally monotone on [a,b] if there is a'partition
.

a = (x0,x1,x2,...,x;1) of [a,b] such that the function f

is monotone on each suinterval [x _,x11 . .. k... --,c_i

The direct approach to the problem of .showing that a piecewise monotone

functio..m--is integrable would-be to use the methol...of Theorem 6-3b of estima-

tion from aboveend below for each interval whetP-the funCtiOn is monotone.

That amproEi'Lh is left as an exercise. Instead we show "that a piecewise -

'monotone function can be dtscribed as `a linear combination of -monotone .

;

g
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7

.functions . The idea is to decompose the representation of f as a piecewise

monotone function into the sum of a.weakly increasing function constructed

from the ascending sections of the graph and g weakly decreasing,function

constructed from the descehding sections. The method is illustrated in the

following example.

Example 6 -5. Consider the function f x x2 °Man interval [a,b]

where a <0 <b (Figure 7 -la). On the interval qa,0] the function is

decreasing an& on,the interval .[O,b] increasing. We can represent f as

the sum of the two functions g and h where
41

g(x) =

{ x02

h(x) = : I

; 0 , 0 < X < b ,

and the functi:-:1 g is weak77- ir,-.reasing and h weakly decreasing on [alb]

Since x2 ,is 4,:. lin. cztz,....natic..-1 f(x)4 g(x) + h(x) of monotone functions

X

a < x < 0 ,

0 < x < b

a <x < 0 ,

we conclude -fnaz is integre:1,1e .[E1,13] .

*
A (linear combination of monotone functions may'have bizarre, properties.

We show that.a sum of two monotone functions need not be piecewise monotone.
Consider the function

g : x

which has the derivative

I

*g

2x x2 sin 1
--x for 0 <x<2

2

0 for x = 0 ,

1 1 1
,

1

cos ±-2x sin -for 0 < x <

2 for x = 0 .

x 72-

. ,

.
. .- 1

. 'Thus. gt% J > 0. for',0 <x <-7,.T , and g. is-Increasing. Certainly
..'

,.... .1 . t

--..,

h : x--;--411.-2x- is decreasing, 11:u the sun; f'= g 71--h igiven by
2 :- 1 .

. z . ., .

tf(x) =' x. - is not piecewise motadtdne:on--T[ .0,7]x
..:-

g
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f

Figure' 7-1a-

In general, be .monotone on each interval, of the subdivision of.

18:-,1:11_ defined by the partition a = ,x2, We shall represent
the function f in the form g+ h where g is weakly. increasing and

h is weakly decreasing. If f is weakly increasing ors [x0,xi] ,-set

g(x) = f(x) and h(x) 0 on [x0,x1] . If- f is weekly decreasing set

g(x) = 0 and h(x) = f(X) on Ix0,x11 . Now as .x ircreases, if f(i)

increases (weakly) add tee increment of f(x) to g(x) find keep h(x) .

fixed; if f(x) decreases keep g(x) fixed and let h(x) decrease by; the

same amount as f(x) . Thos, we proceed recursively: if f :is weakly in-

creasing in.:'[xkl.1,xk] we define g(x)01,= +. (f(x) - and .

h(x) = h(x.1;_1) ; otherwise we:define, g and h in [.xx_ilx.x] by
7.g(x) = g(xk_i) and qtrx? = h( c;21)- + (f(i? . A construction of

..this kind is depicted in Figure 7-lb.

7-1



4

,Fl.gure.7 -lb
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7-2.

Lemma 7-1. A piecewise monotone function f can be representecl.in the

form g f h where g is weakly increasinAnd h is weakly decreasing.

Corollary. Any function which is piecewise monotone on a.closed interval

is integrable over the interval.

4111.

The last result is the basic integrability theorem employed in this text.

For analysis and its applications, two classes of integrable functions have

major significance: the piecewise ponotone functions and the continuous

functions. Most of.the funCtions we-are concerned with are in both classes,

. but a function can be in one class and not the other. For example, the useful

function x x (Section A2-1) is monotone on [-1,13 but not con-

tinuous; the Weierstrass function of Section A4-3 is continupus but has
*.

infinitely many strong loCal Maxima and minima in every interval and therefore,_

cannot be monotone in nny interval, no matter how'small. We see, then that a

continuous function may not be piecewise monotone. -Furthermore, it is not

always' possible to express a continuous function as a linear'combination of

monotone functions.(Exerciaes-A.7-2 Nos. 1;2). The proof that,every continuous

function is integrable must then be a new venture. We do not have to prove

ittegrability:for all continuous functions todevelop t Calculus. Since it:

requires either the development of neY concepts or a degree of analytical

compleity, the proof is left to the appendix (Theorem A7-2).

Exercises 7-1

1. Show that any linear combination of monotone functions c.f. can

i=1'
A

be written as'a sum of two functions g h where g is weakly

increasing, and h is weakly decreasing.

A local extremtim f(U) is said to-be strong if for all x in some
deleted neighborhood of u we have f(x) kf(u)...

il
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2. For each of the following-express, f as the sum of monotone functions

g and h- and give formulas for g(x) and h(x) in each of the.sub-

intervals where

(a) f : x

(b) f : x

(c) f : x

(d) f : x

(e) f : x

f is monotone.

...arc sin (sin x) -g < x < g (Exercises 4-5, No. 1(a))

ft-arc sin (cos x) -g < x (Exeises 4-5, No. 1(c))

0- 4x5 + 5x
4

- 20x3 - 50x
2

- 40x (Example 5-8a and Exercises

5 -8,, No. 1)
7---

--0.- -x 3 - x
7

(Exercises 5-8, No. 5)

2/3
(x

N
2)

2
(Exercises No...--x - 5-8, 7(b))



7-2. The Integral and its Derivative.

A function f which is integrable over [a,b] is also integrable over

any interval [aIx]-'where a < x < b , (Lemma A6-2c). If f is integrable

over [a,b] we may then define a new function F on [a,b] whose values

are defined as integrals,

(I) F : x f(t)tt
a

formulas obtained in Examples 6-4a, b, c immediately yield the

integrals

x

3
a3tat -
3 ,

a

x

a

a

Cdt = Cx - C4 ,

2
a
2

t dt
22,

In each case, we observe that the derivative of the integral is the integrand
2

(the function being integrated). In.Sect-ion 6-5 we found other evidence of a

reciprocal relation between differentiation and integration: if the function

'0 has the derivative f on [a,b] and f is integrable over .[a,b] then

0( ) itrf(x)dx . Is it tru in genenythat the derivative of an
a

integral is the integrand?

We pose the problem: to::414:ferentiate tL--; integral F of 'f .1f.the.de,

rivative.exists and, incidentally, to find cc---itionslUnder which the derivative

exists. Thus, ,from (1) we wish to evaluate

(2)
F ( x + h) - Z(x)

F2(x) lim
.

h-Oy
h

(3)
S

x÷h

a
f(t)at. f(t)dt

.\\_a

. -

and, for h >0 , if the two integrals'are interpreted .as' areas, the..1,r.-

if9er..f.'f-e

....1nce it the area of the standard region under the graph of f on the-

interval [x ,x+ h] (Fig7ure 7-2). If f is continuous.then fbr small, h'

the values, f(t) will approximate f(x) for t. in [x, x-+ h]-; the area

421



of the standard region on [x, x + h] may be expected to be close to that of.

the rectangle of height f(x) on the same bdse. For,a continuous function f

we have the approximation

F(x + h) - F(x) hf(x)

Figure 7-2

If we divid in (3) by h and take the limit as h approaches we

anticipate t

-Ft(x)=

* ,

d
dx

This rt.5.7,1t, which we have found intuitively, is nCes:, proved by a careful

elaboration of these arguments:

a.
'Lemma 7-2. 1; f is integrable on an interval .containing,the points

a and x , and continuous at x , then

x
f(t)dt = f(x)

a

Proof. Let F(x) = f(t)dt , so that by Theorem 6-4b,
a

a

h

422
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From the continuity-of f it follows that for any positive we can ensure

(4) f-(x) - e < f(t) < f(x) e

for'all t in a sufficiently small neighborhood of x , say

It - xl <5
1

If we choose 0 < h < 5 the inequality () is satisfied fdir all values t

in [x ,x h] . From Theorem 6-4a. it follows that

(5) S <,

x+h
(f(x) - e)h f(t)dt (f(x) + e)h .

Similarly, if -h is negative, 0 > h > -5 , on employing Definition 6-141p, we

obtain (5) with the inequalitites reversed. In dither case, on division by

h we have

(6)

whence

We conclude that

f (x) E < f(t)dt < f(x) c

F ( ) = lim F

x+h
Sf(t)dt - f(x) 1 < E

X

x +h)
n

X+11
- F(x) 1

- lim f(t)dt = f(x) .

Lemma 7-2 'states that differentiation inverts the operation of integration.

From a continuous function f we obtain.a new function F by integration and

the derivative of this new function is just the function T With which we

started.

Exercises 7-2

1. Prove the inequality (6) for h < O .

2. Prove

dx
f(t)dt = -f(x)

423



7- 2.

3. (a) Differentiate

Jg(x)
f(t)dt.

a

under suitable restrictions on f and g (Hint: Consider the

integral as a composition of functions).

(b) differentiate

under suitable restrictions.

4. From the Law of the Mean and Lemma 7-2 derive the Mean Value Theorem

(See Eicercises 6-4,-No. 20(a)); that is, prove if f is continuous on
ra,b1 , then

f(t)dt = f(u)(b -

a

-for some u in the open interval (a,b) .

a

424



7 -3

7-3. .The Fundamental Theorem.

If the effect of differentiation is to undo the work of integration it

is natural to enquire about the performanOe of the two operations in the

opposite order, Whetherintegration reverses the,operation of differentiation.

Suppose that F is differentiable and that Ft is continuous on an

interval containing the points a and x . We;wish to compare the integral

of Vt with F . From'Lemma 7-2'we know that

.

d r
j

a
Ft(t)d- = Ft(x) .dX

We have already proved (Corollary.2 to Theorem 5-4a) that if two functions

have the same derivative they differ by a constant. It follows that

where -C

whence

and

t) ( C

is constant. Setting x = a in this equation, we obtain

et
a
FiCt)dt = 0 = F(a) C

. , a

C = -F(a).

Ft(t)dt = F(x) - F(a) -.
a

Coupling this result with that of Lemma 7-2 we have MN.

THEOREM-7-3: (The Fundamental Theorem of the Calculus). If f is continuous

on an interval-containing the "points a and x then

(1)
f t dt =

dax r c )
a

C x-)

If Ft is continuous, then it is integrable (Theorem A7-2). Actually,
as we have seen in Section 6-5, the result we now prove follows without.
assuming continuity solely from the integrability of F' on the ggiWand that
the integral is the limit of-Riemann sums (Theorem A6 -2).



Conversely, if F has a continuous derivative F' on an intervIl

containing points a and X then

(2) F1(t)dt = F(x) FL(a) .

In this remarkable result we -have exhibited the intimate relation between

derivative and; integral. With this link the different al calculus and the

integral calculus are seen not as two separate subjects but as aspects of a.

_single discipline.

The great role of the Fundamental Theorem is to provide the means of

transforming the formal calculus of derivatives *into a formalcalcults'of

integrals. Differentiation, as we-have seen, 16olves much-simpler analytical

techniques than integration by:summation. When the FtndaMental Theorem can

be applied to a problem of integration it rAeresents, a:considersble economy of

labor. For example, in Section 6-2 it was.necessary to be ingenious'in the

art of summation to obtain the formula

(3)
10-

I2
x dx =

a

Without further investigation, we could not -even be sure that,- the formula

was valid for other than positiVe values a and b . Now we see at once

the differentiation formula

that Formula

The formUla.

(3)

3

dx(3)
x2

dx` 3 '

is correct and that it holds -7 valUes a and b . .

a
cos x dx = sin a

J o

-.-wh:gch requires even greater ingenuity to integrate by summation techniques,

now. follows directly from
F

Dx sin x = cos x .

We have devised no summation technique for obtaining the formula

x sin x dx = sin b - b cos b - sin a + a cos a
a

but we can verify its correctness by calculating the derivative

d . x - x cos x) = x sin x .
dx

e,

/
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According to the Fundamental Theorem any :integral of f' J.:sTasolution of.

the functional equation

(4) .DF = f

A solution -F of (-4) is called an antiderivative of f . An integral of f

must be an antiderivative; an antiderivative of f may not be an integral,

but can always be expressed as an integral plus a constant (Exericises 7-3,

No. 4) .

. Since the distinction between antiderivative and integral is so slight we

shall not attempt to preserve the distinction in later sections but refer to

any solution F of (4) as an integral of f .

The.class of all antiderivatives of fs denoted by an integration sign

=WithoUt ends of integration,

f(x)dx

This class ia.cnlled the - indefinite imtegral of

ff(x)dx F( C

where F is any particular antiderivative.
- This notation calls attention to

A

the fact that the indefinite integral is'a family of functions whose members

are given by assigning values to the parameter C . This .

We put

, x3x2ax
3

+ C

If the.c.ext does not make the distinction clear we shall sometimes refer to

the fr7-
$

f(x)dx as a definite integral.
a.

From any differentiation Aormula we may obtain a corresponding integra-

tion formula. In general, we f fl(x)dx = f(x) + C ; for example, the

formula

..yields

d

dx
sin x = cos x

fcos x dx = sin x + C .

An antiderivative F is called a primitive of I', in many texts. The
word, primitive,-is opposed to "derivative", "primitive" denoting an original
functionfrom which the derivative is derived.

'427
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7-3

The formula

yields, 411.

( 5 )
, .

Xf( )

=

d.

dx

d

dx f(x)dx

%.,fWdx f(x)dx

t
One of the most important integration formulas corresponds to thZ chain rule of
differentiation. Let z = g(y) and y = h(x) and set f(x) = g h(x). . From
the differentiationformulA

ii

we obtain

f.1 (x) =,g1 h(x). 1712 )

fg= hcx) h )dx x ) C .

In- Leibnizian notation,. the-chain-rule and the- corresponding integral formula
take on a simpler appearance;

and

dZ dz lz
dx 7 dy dx

dx
(112 dx = J dz ay

dx = z + C
,J r dy dx

In Chapter 10 we shall make extensi-:e use of this result (Substitution Rule) .

If we recognize the function f as the derivative of F on [a,b] then
we can-obtain the integral of J.

_e over la,b] without appealing to summation
techniques.:

A.

b
5' i(x)dx = F(b) - F(a)

a

We can immediately apply everting we know from-Chapter 4 to integr te a
4f

.broad.Class-of functions.With is knowledge ire have the power to calculate

simply areas and volumes'for an 4ormous variety of figures beyond the ,-ealm

of elementary.geometry. Nilbk
%.;.4



6 N.

that is, aati.Equon' (4), DF = , --is a differential eqUation. for IF-f
_ .

. _condition on the function given in the form of an .equation which involves one
- ,- )'pr More derivatives of F . Often in applications the most -onvenient fomm-

,, , 4-.
lation of a.-problsm is one given in terms of a .differential equation. :Perhaps

"the,taost significant application of the concept of. integral is its interpeta-
.

. . ,.. .

. .

tion as .si- solution- of a differential equation.

-

Exercises 7-3

- _

1. For each- of the following'different1ation formulas write the corresponding 40

integration formula:
, .

.

(a) a(x3 - 3) 2
- 3,

(b) dx
1

= -
2x(

x

)
2

(1 + x2
)2

I
(c) -7c -

217k

(d).
(sing
dx = sin 2x ;

2. Find the given derivative and then write the corresponding integration formula:

-d
(a)' dx--- a cos bx ,

(1a) --- tan x2
dx

. .

() arctan x ,

(d)
d
dx

3. Verify the following
-

integration - formulas:

(a)-.5
1

s ec
2

ax d =
a
- tan ax + C -

4
,

a + bx1)) r+1
(b) S (a C.--- bx

(r
= + C

,b
. .)

(c) .r_
ax dx = 2....:17-71, +--C

.,

ax2

(d) 2 sin:2x 'sin 2x dx = sin4x + C
J

.

(e) dx -= 2 arcsin T. C .

-
x - x

by



.7L3

. (a) We have

2x
dx

+
2

x (1 + x2)2

. .._._ ..

2xlience
1

2 is an antiderivati4e of -
2 21 + x (1'+ x ) , -

-- .-

Prove that .--2----6 , although it is -an antiderivative of
1 -I-. x` (1 + x2)2

f' xis not an integral 2x
2 2 dx

a (1 + .x )
.

(b) Give a necessery,and sufficient condition-that an antiderivativer

F' of a functioh f continuous on the domain [a,b] be an integral.

.- The initial value problem for differential equation

DF = f

is to determiEe'the function F when f is given and an "initial e"-

F(a) is specified. Shol.), under suitable conditions that there exists just

one function F satisfying these conditions.

6. Do No. 5' for the differential equation.

r xFt(x) +. F(x) = f(x) .

7.If f has an 'integrable derivative on [ab] , prove that f can be

represented as the sum of two monotone functions, e = h (Hint:-

Consider theintegrals of ft(t). t If2(t)1
4 . 4-

Use the Fundamental, Theorem to: derive, the linea.rity of integration

-(Theorem 6-4c) from'the lihear*y of-,4Wferentiation eTheoz4m 4-2a) .

A horizontal translation of .a graph in the planeg (x,r) (x + c , y)

:amounts only to a lateral shift for the standard region under the graph

.(Figure 7 -3).

ro Figure 7:3
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4
Verify that the expression of this geometi'ical pi"ope±Y in terms,:of

integrals is giv*h by the formula

. b+c
f(x)dx = I f(x - c)d.x.

.a . a+c
I

----- (a). Derive the preceding formula

6-1 to 6-4.

(15) Derie the formula using the Fundamental Theorem

10. Equation (5) can be interpreted geometric/111,y as-statint. that a uniform

731

using only the metilPaof. SectiOns

change of vertical scale-by the factor .:X , that 9. transformation'

(x,xy) , muttiplies areas by X .. Since e-ther are no

preferred directions.in the plane--the choice of coordinate axes is only

a useful convention- -the same result must be true of s unifoi= change of

scale in aay.direction. In particular, a scale transfoz-mation

(x,y) --+- (Xx,y) in the x direction must multiply areas by the factor

X . Verify that the expression of this geovetrical property in terms of

*integrals is given by the formula

X fx
7.1 f(x)dX = 1D

fkKvdx ,
a a%

(a) Derive this formula using only the methdds of Sections

(b) Derive this formula um-4g the Fundamental Theorelil-

(c) The number'ir is defined as the area of a circle of radius

Prove fromthe results of this exercise alone that the area of

circle- of radius r is 1-r2 .

. (d) . By the method of (c) find the area- of the ellipse

/,0 .

6-1.t

1

. 1)-
11. Prove t1.2at

_2 .2

x
2 2

a . b
= 1 .

b 4,"

f r (11"-c)x,1(x)dx
J (a -i-c)x

f (x c)dy

14-31
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7-3

12. Using No. 11, show that

7r,- i
(a) "S sin x)dx= i 1 f(sin x)dx

0 . 0
"(assliTning the integrals exist).

) Evaluate f x sin x dx .
0

r.

RIP



7-4. Formal IntegwAion.

11`ha variety of functions which we know how to differentiate is already

enormous. Given a function whose integral we wish to evaluate there is a

good chance that it-is expressible-as the derivative Of some known functlor.

If so,'the integral can be evaluated easily. The approach to the proble of
.

eva4;ating intgrals.tlirough the Fundamental Theorem is, subtle and indirect,

but the gain in: formal simplicity" is remarkable.

-It. is convenient when F(x)' is given by a long expression to use thf_
, -

abbreviated notation
:-

F(x) la = F(b) - F(a)

for if Fs(t)dt . We shr,11 generally use this notation for specific- numerical
a

integrations.

Some integrals can be brought into, the form of the derivative of a known

function with slight.algebralc manipulations. For example,.'4x5 apart from

a constant factor is the derivative of x
6

. We have, then, . ,

b b.: qb 0'. 4
6N-

.1 4x-d = f 6x'dx = '-- x I ='=.(b- - a )
.3

a a 3 a

Againl-apart from a constant factor,. cos 2x is recognized as the derivative

of sin .2x ; thus, -

a
cos. 2x dx 32.

ib

2 cos 2x dx = 2,sin 2x sin 2b
2

sin 287
.a

Such, manipulations with constant factors are so_ea'sy that we shall usually

employ them without comment from now on.

A-more interesting example ist.

1/2

J. (1-o
2x)9' dx

We'may evaluate this integral by taking thebinomial eiPansion of the integrand

and integrating term-by-term- The more insightful approach is to recognize

.thatl'apart'from a constant factor2.the integrand is the derlvatiye of
2x)10

1

D(i - 2x 0
=.- 10(1

433
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We then have

Other general techniques-of forMal integration will be treated in Chapter

In applying the formulas to evaluate-definite.integrals we must be care-ful to be sure that the integrand f i's' continuous ih some interval containingt:the ends of integration. Otherwi5e-the 4..ntegration is meaningless. In
evaluating- x dx -for example, if the,ratidhal number is negative then,

x---0.-Xr is not continuous x F The.integration.

x dx'
.a

. .

.

-foe.negative will be-meaningful in genera.l only if
The same caveat- applies to 5 2

sec _lc dx and 1 dx . the first the
..

x2 .

ends of integration mast lie between consecutive-ierof cos x and, in the
second, between -1_ and

The Fundapental Theoreth is an extremely powerful tool for solving.problems
4 --

of integrationb, but it should not be thought that the Fundamental. Theorem is
the answer to all problems of integration. Consider .

. -r+1
- a

r'147 1"

and b are positive

S

b
dxxa

(where a--and b lie in an interval 1where ---_ is defined; i.e., ab > 0)x
1Since is monotone, the integral exists, but the problem of formal integra-

tion 1

x

tion is another question.' We have found no function F for which- F1(x)'.
Furthermore, although the,reasons for.this.are not evident, we could not find
such a function by. differentiating any of the- functions treated in_ Chapter 41'
including all functions-W4ch can be---fOrmed from them by. rational Combination,

x
.inversion, and composition. The integral F(.x)

t
dt is an important

-.-function and we shall investigate its properties_in
_ .

.43'4
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Exercises 7-14-

Use knOwleUge-Immif derivatives previously ottained to find an expression for

each of 'the- following.

(a) f sin (a..* + -b)dx

(b) dx

-S

f

(e)

ir 1
dx

- 24X2

tang bx dx

(j) I
x

dx

(k)
3177 x dx

x-

f'2x dx

X
4.

2. EValuate each of the following-integrals.

(a) .1' ,cos ,..r dt.
(b)

1/2 1 dx
.0 ,1 4- 14-}C

0

y 'cos ti
( 2 )2

(c)

Evaluate the following integrals:

(a)
1:

Z/1-rdx
_I

2 (x-- 1)2/3 dx
0

dx.
a: 117.7c2

(d) D[ siri x45.x
0

(e)

(f)
o

x sing nx , n an integer

x cos x dx-

What al-e the restrictions on a and b ?



41)

( tan x sec x dx
a .

What .8.1.4e the restrictions on a and b ?

2
(x2 1)1[2

1

b.
-hI(gf(x)) te,(f(x)) f2(x)dx

12.

sin x cos x-3-x2 .

'Consider--the stgtement--'

- 1/2 -af

By obtaining the corresponding indefinite integral, show how we might be
led to believe this statement. Explain why the statement has no meaning
in the present context and show how it can be given a meaning.

Find the lengths .of the following

(a) Y =
3

- 1)3/2 , (1,0) to

(b)
Y x3 4- 12X

4 -2x xY =- ,(c)

, (141)

cur.6res between

(1o,18)

to (2,43) .

from x = a to x = b

the indicates points..

, where 0 < a < b .



7 -5. 'Estimates of Integrals.

When faced with a function f for which a f6rmal 11-?rbegral can be

'obtained only with difficulty, if at all, we may yet' obtain a practical estima-

tion of the integral of f by integrating approximations to f for which

integration issimple.. If we.can.estimate f fran above and below then:,we.may

applyTheorem 6-4-a to obtain upper and.lower bounds for the integral.

..

(1)

Eample 7-5a- The inecuality
_ -

I x < 1 ,
4- x2

Is a direct consequence of the relation

) = x2) (1

Fran kl- ) , we conalUde that

arctan x =

o

1

1+X2.

dxx <
j,0,0 1 +

(Sedtion 475) ,

t3 <arctan t
3

3
We approximate arctan t by the value t -

3
The error 'can be no greater

<-6 .

t3than -7 . For snpil values of t we can therefore obtain an excellOnt

approximation to 'a-ratan t

Such an estirrPte can be used -torestimate -sr . For example,
/------..- - .

arctan -es- = -7-
- ;.,

Consequently

-3
=..... 1

-.3 k/5/

'1 t- )

-.

we have
1 :1 1\ /milWe.have

-

1 < -5 = l.732 ., .fr,,;-.

s givenapproximately. :The'maximumlpossible-error: in the estimate of
-,.. .

approximately by

where, for the error



(*)
For n we have approximately

6 2
n = 1 (7') I 3

2
9 9

2

x = 0.4 .

(-16) 3-9

Accepti± t 3,14 we see, that
than the estimated maximum error.

the actual error zssconsiderably siiiikaler

Example .7-5b: From the inequality

0 < cos x <1

we obtain by Theorem 6-4a

for O. X < -

if -0 dx S-:cos x dx < J 1 dx
0 0

whence, by D sin x = cos x

0 < sirl t < t

Integrating now from 0 to x , we obtain for x in

x _
x

0 dt
J

sin t dt < S t dt
0

or

whence

2x
< cos x <

2

On integrating. again-from 0 to t we obtain
-;? ,

J

i. .) w_

Le ..' ': < sin t -. t' (0 < t <-11-)
,

2

Compare the result of Etcercises 5-7,_DO. 9b). A further integration, yields
..,_,

. - _..

(0 <: t <
2

2

3

a

438
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whence,

2 4 ,

X . x <- cos x 1 <
2 e

2 2.
1 - < cos x < 1 - 0 < x <Lt)-

2 2 f7.'

Integrating once more, we have

t
.5t3 3

2
- < sin t < 4-)

120-
(0 < t <: E)_ 7

/

Continuingin this :way, we can get.bounds/for cos x and sin-t where at
. .

each stage we add terms of successively higher-degree. It-is possible tO-show

for a fixed value of X( or .t that thdse estimates can: be made toappriO4. .

Mate -------Zpos::--A-Tm177--iin giver-Cpositve tolerance: e simply by -

-cOntinuing'the processfar enough. .However, the estimates'arees1.4eCiPlly
.

Irseful for-the-approximate:Nrmerical calculation of the sine.and cosine when

x and t are smaller than '1 -., The.difference, between the
.

.estimates is proportional to a high power of a positive number which,is less,.

than, I and the error is accordingly small. For example, from the Iasi

inequality, we have approximately

sin 0.1 ='0.0998533

with an error of at most one unit in the last place. Values of the trigono-

metric funcWs for larger x and t can be calculated in terms of the

values for lesser_ x and t by use of trigonometric identities, e.g.,

sin 0.2 = 2(sin 0.1)(cos 0.1)

The tables of the trigonometric functions are computed. by methods similar to

these.

1/4

In higher analysis and applications, approximations and estimates such as

we have exhibited here are often far more important than explicit

Lions. even when they'are obtainable. For the examples givenhere we have, in

the first instance,-a familiar function, arcta.n, but no simple way to calculate

its values. We represent the function 'as an integral of a rational function,
.

epproXimate.the rational function by polynomials and integrate to obtain simple
, -,

i.polynomial approkimations to arctan.7-'The pproximatons are far more convenient
. .

....... ..

arctan.fox numerical purposes than the expli

In the second instance we push"

estimates of the integrand in a very

he concept of estimating an integralfrom.
yorable circirm'stance. We use the

cycling of the sine and.cosine functipris undex:Tepea'ted integration.to improve
.

.



our initial estimates._ (ThIS is done again in Chaptei- .8 for the exponential,
function.) However, t basic.2dea in general-is not that of an integration
cycle, but the use of bound on a higher. order derivative to obtaiestimates
for^a.function; this idda will be exploited in the proof of Taylor's Theorem'
(Chapter 13)%

Exercises .7-5
-

1. 1 1..(a) Obtain good approximations to sin 5- and cos 37 and 'give a

tolerance within which yal.1"&re sure of the accuracy of these values.

(b) Provide,a general formula for these estimPtes and prove by mathe-.

matical induction that the general formula is correct.

2. Evaluate:

! -

(40 l 6 s iri x 6x
5x

cos .2x a. -3-,
, .

.

(b). Prove, in general, that

42'x +x -x < '< 1 x. -
1 + x

where p, and
_
q are any natural numbers..-:

Use-he'resuAs ot(a).and'(b) to obtain upper

11.

4- X- ( ?.)?(3

for arctan x .

(d) Obtain a. better approxima:tion tO 7 Ir than that

ShoW that the:approximation isaccurate within

and lower. estimates

of-,-ExaMple 7 -5 and

a closer.tolerance.



4
Miscellaneous Exercises

1. Deti i.ine a number 1 fdr which each of the following integration

formulas is dorrect.

(5x +2)7 dx = k(5x + 2)8 + C.

(b) j k iTT-77f dx = (3x 2)3/ + C.

2.

,(c) San ax dx = k cos ax +' C..

(d) cos 2x dx = k sin x cos x + C..

Compute.each of the following integrals

(a),

r v/2
(b) J'

(c)

. 3v12

(c) 0

0

sec
2jfX dx .

sin x cos x dx

!sin xjdx

sin 2x dx

(e)
/r/2

0

4
cos x dx .

-..
0 TC

tr) j sine
001

x cos99 x dx 7:1

0

Hint:- See Exercises 6-4, No.

f It/4

sin
4
x.cos3 x dx

O

+

, 7E/2

` (h) j x sin x cos x dx .

0

Hint: Use Exercises 7-3, No. 12.

Rind the area of. the given standard-region. /

(a) f : x --I.- 127.:T77.17 over 0,2] /
;ve'

(b). ;i-' r .....
1 ,

, e. r , ,20 ]

71-

over [ 0,2]

x
over [0,2]



4. Compute each of the following integrals.

(a) f
0

/2
(sin x 2.cos-x)dx

(2x csc
2
x)dx

-1/2 -

7c/2

(c) + , an integer)

(a) f V1 cos 2x
2 dx

O.

1001:

(e) . x - sin 2)0-99 dx
. 0

Find the area-of the'standard region f : x
, [0,27c]

6. Solve each of the following differential equations subject to the pre-

l + cos 2x
2 over

scribed conditions.

(a) =dx s 1 + x2

t =

2t ± 1) 4/3 ,+
ds.

' dt

Solve the_differential equation

x = = -3

=
v0

, = O S s0"

+2
dt-
dY + 2ty ='cos. Trt

6'

subjeCt to the condition- t = 1 ,

is.

3:_.-The'standard region of 1x =:; over 2,5j is rotated abOut the
1, , ,

x-
y-aXis Find the -vo/ume:,ofthe solid generated.

Find the area. of the region;bounded-by the parabola x =
the Mine y -.x ± 1=.- 0 .

.

10. 'Find the area of the regionbounded by the graph of f : x
and the x-axis.' (See'Ekercises 5-8, No. .5.)

Find the area'of the'regign:_bbunded by 'the carves.

-,

and



7-M
, .

-:'

12. The region bounded by the curves y = x5 and -y = x3 is rotatedabbbt
.

-th6 x -axis. Findf.the volume of the solid generated. Find the volume of

the solid generated by rotating the region about the y-axis.
t - %--,

.-

a3. What is the mean.value oi7.th6 function f:. x --..- sin x over the
c ,

r IT,' .interval [0 1] ? Of g :',,x--a--sin
2

qc over LO --j ?' -kSee,Eercises 6-4,
'2 ,2,

No. 20b.)-: \

14. Find the-area 'Dounded by the graphs. Of f x cos2 x sin 2x 4-2.

3Trand g : x -.cos 2x - sin2 x + 1 -between the lines. x = - and =

4
15. (a) Find the volume of the parabol'oid generated 'by rotating the regio,

n the first quadrant bounded by the parabola y = x
2

, the y-axis,-

n

A

And the line- y = h h > 0

(b) Compare the 'Voludeof the paraboloid with the volume of a right

circular cone of equal base - radius and height.
,

16. Find the volume of a goblet in the form of a paraboloid of revolution

whIch is 4 inchs in diamq-Ar and 3 inches deep.
Q

17. Starting-with
dZ3

E E5). arc tan arctan 1Tr

-:-- 10 000, ,/. 545;261
---.

D.H. Lehmer)i.,

approxlrv;

O

15. Evaluate:

use

to

(a) lim
n-m- Tircf-.77,

Number 3(c) of EXertes 7-5 to find a rational
..

,

:scorrect. to a' le.q..t 15 decimal places.

. 4.

1 1
'

:

n
2

n n2 + 2n

SO

1,2 12 n2 4422

44-4

n2 -f- n2

.111-

4/.

ti



Chapter--8

LOGARITIlklO AND EXPONENTIAL FUNCTIONS'.

- 8-1. Introduction.

1n this chapter we shall exhibit the strength of the integral theorems of.

Chapters 6and 7 by uskg.theM to frame precise definitions of power, exponen-

tial and logarithmic functions and to derive.'the properties of -11.ese-funCtions

in simple but logical fashio . First we prodeed intuitively from the familiar

algebraic properties 'of power properties which have yet to be conclusively

proved in all generali, Beginn wfth the intuitive concept of power, "we..

-dOnsider functions based upon that -concepi: powers, exponentials, and

logailthms. When we a-&Q.zmiltddifferentiate. t e functions we shall see

'that derivatives of logarithms are especially si ple. It.is tempting then to

use the fundamental theorem and treat_logarithms as antiderivatives rather

defj.ne them in terms of their algebraic properties. We d? so, and i'rom

the definit n Of th ogarithm as an integral obtain the properties of

logarithmic,

vincipgly.

exponential and power functions simply., naturally, and con-
.

.1

First we explore the properties of-e5d5onentials and logarithms based on
. - -

an intuitive approach to th idea of power. As we proceed, d*ffiulties arise-
. -

ib-defining tl}ese fundtions in come ete generality, but ve shall'be.montentf,
-,,-

to leave these difficulties unreso ed for . ,-.%....1: . When-'w obtain the
;,,46:-definition of- logarithm as an integre.. a '05. ..). . . ,(7, to these problems. With

.
,.. .

the resources of the intee.al theorems of 01.-7: 6 and,7 the resolution of
-, -,,c

these,difficultie.will turn out to be quite s-...., . .

:
nf t

..\'
'o

,-

. if': The original meaning, of -an , the ' n -th power f a i was coined _o--.
. , . . -

4 'positive integral_valued of n !, for each natural number- n , An is defined

as the product, of n ,factors

1 )
In particulaY7".....ajis

a

-1-4N
the:"prodIrct" of one fwtor.,Ift-al = a . In the symbol

an , a is.called -the base =and n "the..expobent: For positive integral

'exponents m and n we have the-gene al. laws
..

C.

.0.



The observation that

m n m+n-a a =)a

'(am)n = E;73311

(ab)n = anb

an = n-m

a
m

leads to the definition of powers- with' zero and

an'extension. of-this,formula to the cases where

and

If we require a./ 0 and b 0

..exponeni.s become_valid for alI integral exponents.

.

a
o

= 1

-n 1
a

n

then the laws

(p
a 0)

negative exponents simpl:y_by

n = m and n. < m

(1) , (2)j; ( 3)

(a 0)

.(a / 0) .

fbr-

We may'think of the introduction of negative exponents aT an extension of
the range of validity of rule (1) to include the additive id4ntity and in-
verses; ,triat.is, we define a

T-ri
and a

o
so that

..11\-n n -1a+n'k,a a = .

1,1

1

In exactly: the same spyrit we are led to fractional exponentSi:e we extend

.rule (2) by introducing the multiplicative inverses; that is; we define al / n

so 'that

. . Thus a
V

(al/n)n
= al -= a .

is to be defined as some solution of the equation

'When n s odd4

overall real n

the 'n-th

is even, 2m

creasing

range of

number a
)

once for

xn = a

th x
n
- is

ers. It follows, that xn = a has precisely one solution,

Which we have denoted_ ask- 1!1;- (Section A2-1). When

the function .x x is only piecewise monotone, de-

cant iritious a ndi monotone and -ranges.

r negative values and increasing'for gpsitive values of x . The 4"

x is the set- all nonnegative numbers and every positive

pears El's a,value of x2m twice, once for a positive lialue of x
y .

.r-neggt.ivrV4 2ue. In order to_ the symbol a deftite



-unambiguous meaning for a > .0 we -defined- the 2m. th", ;root: of
- - -nbnnegatie solution of x = a .* 'Finally, when a 'id negative

as the

29/7. has

'no- meaning as a real number; we ;avoid complications caused by this fact by

requiring that:a be positive in all subsequent discussions of a
z

where

z is real.- With this restriction we define a
1 / n for a> 0 as the uniqUe

positive solutfon of xn = a . -

4s

We have defined al/n for a 5 0 and positive integral n . We now_

define, fractional POwerf in general by

aP/g = (aI/g)P = ( (a > 0)

where p and' q are integers and'-q is restricted to be positive. The

algebraic properties (1) -:(3) still hold for this larger class of powers.

(The proof is straightforWardand is left to you as an exercise.) Consequently

-the, concept of power function x --*-x , (x " 0) ; first defined,only for

natural numbers h has been 'generalized first to all integral powers, then

to all rational powers. The derivation of the properties of these functions,

their:Leigebraic properties (I) .-(3) , their monotone character, their

differentiability, raises no serious difficulties (Exercises 8-1-Nos.-1 and 2)

Complicated questions first arise when we attempt to generalize thg"I:dea

.of power further to.irrational exponents,. It seems. natural to define ax

for an irrational number x _sin terms of approximations to by, rational

numbers. For example', we walld expect to get successively better approximallor.

tions to 3
if

by using successively better decimal approximations to the
1 1.4, 1..42: 1.414ex- ponent, 3 Howevery if we were to pursue

thiS idea and define real powers as limits of rational powers, the proof-that

all-the general properties of rational powers carry over to all real powers.

would_ require prolonged for14.1 argument. Instead,. let. us assume koi. the pre-

sent that these Properties act-on-11y hold. We shall came back to the problem
x --'1.-of defining .a whenn-we obtain a more convenient insight into its solution.

Once we have.defihe the powers a,---Ifor each real r and each positive

a w >are free to introduce the power fuLtion. , (x >0 ) for any

real exponent r Furthermore, we may El.lsO'coOsider the'exponential function,_
#

. given by

-5.-
E a(x)' = a

whew the base a is positive and the domain is the set Of allreal numbers.

147



If E
a

has a deri;rative, then
2,

x+h
E
a2(x) = lima h--=h-O

Assuming thesrcneriy ras
= a

r+s
to hold_for all exponents, we have

x h. -
(x)

a
h,

11-0

''Factoring recalling:the limit theorem for .a product we get

E
a 1(

ax[lim ah -

h
11._

a%
(

JL
x)rilm

h
a - 11

h-O h-0

But lim all- 1
(we assume the'limit exists) does not depend on x ; it is

.h-0 h
constant. In fact,

h
(4) a .- 1

- Ea' (o) ,

h-O

and consequently,

(5). Ea 7(x = Ea(x)EaT(0) .

Noe

(At this time we'are ngtconcerned about the value of the constant E
a
!(0)

In this discussion we have assumed only that E
a is differentiable at the

one point .x.= 0 and satisfies the "functional equation"

.E (x + Y) =,E
a (X) + Ea (y) . Compare Exercises 5-1,4o. 4.)

We see then that the derivative or rate of,change of an exponential

function is proportional to' the fUnctionitielf. This fact is typical of

unregUlated growth and decay processgs, and makes exponential functions the

key to an understanding of many natural phenomena.

. The inverse of the power function. x r
/ 0), is the power function

lirX with Eciproca1, sxponent, so that by taking inverses of power
4,

functions we obtain nothing new. The inverse of the exponentiL.1 function

x sax with base a , for 1, is a. new kind Or function, the loiarithMic

fiinction with base a :

, for a > 0 and x > 0 1

where logax is defined in terms of'exponentials by

Ea(logax) = x

448



or

log-x
-a = x .

8-1

a

The'properties-of 19garithmic functions follow-from those of the exponentials,

in-particular, corresponding to the formula ,axaY'. we 'have On setting
= a a37-u 1

(6) loga(uv) = logau + lc:gav

_To deterMine the derivative of the logarithmic function we employ Theor
4-3 on the differentiation of in erse functions. The derivative D

ulogau

:where u = ax is just the. recior al of the derivative D E
a

( ) on the

assumption that the latter derivative exists. From

D logau.- E=(x)

and from- {5), we have

1D
u
log

a E
u -

t(0)E
a
(x)Ea

.

where x = logau

Since the exponential and logarithmic functions are inverses we conclUde that

Dulogau =

where the constant is recognized from (4) as

of logax

x that

ropOrtionAl to x-1 We. expect, then-, for positive a 4nd

1
(0) . Thus, the

a " rivative

1

fa
xt dt = log

a
x log = log

a
r

a
.

for some as yet unspecified base a For simplicity, then, we fix a = 1
and define the function L by

4

x
L(x) Ai 17 dt-',

,-- 1

where we anticipate that L(x) = logax with the value of a to be fixed

accordingly.

a



'In,thl's.sectionve have used a heuristic development to-treat'arb,itrary

powers, expOnentials, and logarithms; that is, we have used an argument aimed
_

at disCovering the truth about these matters without concern for(the detailed-

confirmation needed for absolute conviction.iy

matician develops a new "area:

proving every point as he -goes,

reasonable groundS for belief.

principle' or simple fact which

-completely.what had before been

This is often the way a mathe-

he explorestentatively, not necessarily..

but framing.Conjdctures for Which he has-

In this wa2r he often comes upbn some unifying

can then be used to justify logically and
--.

accepted only provisionally' Just so, in our

discussion_ we have discoverec7ithat'the derivative of alogarithm is propor-
..

tional to 1
. .Th.other word, a logarithm is an integral of a very simplex

function. This fact now caelbe taken as a springboard for the development.of

the entire subject. We shall define the logarithm as 1an integral of and,

with information of Chapters.6 and 7 about integrals, we shall be able to

derive.all the properties of logarthms,.exponentials and powers encountered

in our heuristic discussion.

Exercises 8 -1

1. Prove that properties (1) - (3) hold for rational exponents, a >0 .

2. Establish the monotone character and differentiability of the power

functions

Let f be defined for all real numbers and let f 'satisfy the functional

x
r (x > 0 , r. rational).

equation.

(1) x + y) = f(x)f(y) for all x and y .

(a) Prove that if f is a solution of Equation (1) then either

f(0) = 0 or f(0) = 1

(b) Prove that if f(0) i 0 , then there is no value of- x for which
f(x) 0 .

4. Let

1)

f satisfy the functional eauation

f(xy) = f-(x) +.f(y)

for all x , y its domain.

(a) Prove t the f

that -defined for all real

( b)

tion f : is the only solution of (1)

numbers x

PrOve that if f

includes 1-.and

even function.

is a solution of (1) 'crd the do7In of -

-1 but not 0 then f(1) 0 and is an

. 4.50
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(:c) Prove that if f is a solution of (1) then f(xr
,q, . 3

r rational.

(d) - Prove that if f is a solution of (1).and if f is differentiable
fl(1)at each x = for each0 then f/(x) x 0'.x

= rf(x)

Usfftg ,(a)' ShOW that any solution of (1) which is differentiable at

each.:xi- 0 is:integrable on any closed interval ja,b] ,-where.

.f

Ca



:

.8-2.. The Logarithm as. an Integral.
1`

'.. .- ,
.

Pursuing the lead of the preqedingsectiOn 14: troduce the function

L given by

( 1 )

/

: 4 X

..
.at'

TJ(x) = , 7t-; .

.%;

and'embark Jz)n the project ctf1Showing.that L is actually a IOgarithmic

function in the sense of Section 8-1.

1Since 7.7
is continuous for t > 0

the Fundamental-Theorem of Calculus-

.(2) -

the integral of (1) exists-, and by

1
x x>0)-.4t

Since the derivative L' exists it follows-that L is continuous and,-since
L'(x) > 0 on the domain ofpOSitive x , that L is an increasing functionir,.

Further, since

(3)
1

L(1) = 1
ir dt = 0t

1

rt follows that L(x) is negative for 0 < x < 1 and positive for x > 1

Figure 8-2a .

ti
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. .
11 s,.in Figure 8-2a for .,,)s > I L( )- is the. area of the shaded_regionunder

. -

g.,hegraph y = and in.Figure.'8-2-o. for. x <1.-:it is the negative of the
.

area. of the :shaded-region under,the graph

We. observe-for,the sign of the second:.derivative that

Cs

L. C

It follows that the graph y = L(x). is flexed downward.
sv-

I'Text we proV'e that L satisfies_the_same addition property as logarithm

THEOREM 8 -2. The function L satisfies the equation
cs/

L(ab) = L(a) + L(b)(4)

for all values. a .and b in its domain.

Proof. If we consider L(ab) and L(b) we see that they differ by the

-constant L(a) and should have -the same derivative with respect

In fact, by the Chain Rule land Equation (2),

D L(at) = aLT(at) = 1 1
ati

whence,

DtL(at) = D.,L(t) .

If we integrate with respect to

,Fundamental Theorem

to

from t = 1 to t = b we obtain-by the

L(ab) - L(a) = L(b) - 1.f(1) .

The addition property* (4) .d.ollows at once from 3) .

'same

*111;

As an immediate 'consequence of Theorem 3-2 we "obtain a rule'hav g the

form as that .for the logarithm of 'a quotient:

Corollary. 1. L(P = L(a) --L(b) .

Proof. From Theorem 8-2, we have

L(a) = b

= 1,3(1-) + ( b)
b

from which the result follows immediately.
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3 -2

The proofs of the following corollaries are left as exercises.
-

4.
Corollary 2. For, all. integers

nL(a)

Corollary For all ratiopal values

L(a ) rL( )

h these results we are equipped to plot. the graph-.o.f: -12- and to

examine some of 'its properties:, Using estimation by upper and lower sums

(or the more-refined methods discussed- in the chapter on numerical methods)
. .

.

we can .obtain

To calculate the valuea

above, e.g.

of. L at;other Points we simply use the results

L(4) = 2L(2) = 1.385...

L(11Z) = ;L(2) = 0.346... , etc.

By such means we can.mlot an adequate graph of Z (Figure 8-2c).

Since L(2n) = nL(2) we see that the values of -L(x) have no bound
either from above or below: by taking n positive and sufficiently large
we can make_ L(2n) larger thin any given Positi7ie,nuMber;.'by'taking n

I.
-.,.

negative and, absolutely .large we can make L(2n) less that any giveri
negative number. Since -L is continuous; it follows from the 7Termediate

.

Value TheoreM that L(x)7 range's over .all real values.-
so
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8-2

L. :

Figure 8-2c

Exercises 8-2

1. Pi-ove Corollaries 2 and 3 to Theorem 8-2.

2. (a) that t the area

(b)

.

A of the standard region of f :
1

over the interval (1,2] satisfies the following-inequality:

1 1 1 , 1
r+

,+ < A < 7 1-

1. , ,
Approximate A to the nearest I5 . Cfou need not carry.out the_ ..

, .

calculation; i.e. .., represent A as a sum.)
,

Y5.5

am.



(a) For .a >1 show that the area A of the standard region of
f 1

over [1,a] satisfies tflesinequalities

(b)or

e.

r ,t

,. 1
1
-< A <_a - 1

a

< a < 1 show that A satisfies

l- a.< 1
a

Make a' areful plot ofthe graph of L using. L(2) = 0.693, and

interpolating further values between those already given.

Draw the tangent to the graph of L at each of the points
1x .

, 1- Ji,..72 ,' 4 , 8 .-7Do these tangents conform-to-the plot-

in.:part a 7
... ,. ,

..T e!Obtain-the solution Of ation L(x) = idtpliajgg the accuracy'
....,.....--------_it, z!----available from your

--\,-....../ ... -,..-- e

5. (a) USIng estimates by means upper r and lower-sums, hot./ many values
,..

1 -,.

of the integrand' sE ares.7.'needed to calculate L(2) withithe..
tolerance indicated L(2) = 0.693 ?

.7
- -.1%(b) Using the. method of .approximating by a linear function' (siee

Sections 7-3(ii) 5-7) on eaih Interval of a',subdiyision of

[1;21 .,show how/A estimate ..L(2) '-and determine, the numberof,

values of l'-'nee d to. give L(2) .:-accurateiy to three decimalx
places. , 0

6. (a) -Starting from

= + x + x2 + ... + x . +
x -

I.-
1 m- 1

1 - x °

.

show that

-L(1 - x
x2

xra= x 4; . +.

m
where d

1 y
'82

(b) For the interval 0 x, < I show that

andWo

0 <
m-- (1 - x}(m.--t1)

< X < 0

m+.1

lx1M+2.

m + 1

456
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( c) Show that

1 x
7 L(I7:-c)

3 5X
+ .

x
2n-1

3 5- 2n - 1
+ Rn

* x
2n

:fl acl , where IRn 2n max (I 1 x ' 1) . .

.
-

(d) Using part (c), obtaln a value for L(2) . accurate to four decline/

plaCes.

I
(e) setting x = .T in, Part (c), we could obtain a value for L(3) .

}

}However, it is more efficient to calculate. L(3) by setting
+1777 .1 and using both Parts (c) and (d). Calculate L(3) this.'

way accurate to Sour decimal'-places. ..

'%.

(f)
1 + xObtain a vallieifor. L(5) by setting 1 - x

(g) Give several Ways of obtaining a'value for log 11 . _which is most

efficient?
ti

7.,=.(a) Useing upper and lower-sums as estimates for
. .

.inequality

II 1 dt obtain the

) < 1 .4- +321 + 1 + n < l + n)

10
100

1
)

n=1 n

t,
(c) -Prove-that. lim 2.g.

1 does not exist.
n=1,n .:

, ....

8.- ,,'''Ind DAL( Fax '4-- b!)- and obtain the corresponding -integration formul

over any-interval [1.-1 lc] where ax + b 0 for any.x in [h,k] .

z
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B-3

The Exponential YunctzLon. General Powers.
5 - 3 - - -

.
-yle have verified that L(x) defined as an integral of

17 has properties

of
logarithm, but the story is not yet coM-blete. We must show that L is

'""

4/1-Frse of an- e''tponentiai_function x.-.....-ax- for some "value a (a / 1)
trle J- -__

..;1-11 min turn must becolAila:le..with a definition of. ax;- for irrational
anu

n'erlts as acontinueus e sion or.the function defined for rational
eXID° -

ents.
e;(10°n

;ace
r

is an increasing .function it has an inverse

since
r,he clomain of

E L(z) z

E is the range of L , the domain of E is the set of

( > 0) .

re.,31_numbe,-s. since the range of E is the domain of L , the range of.

4s 'she Set of all'Positive numbers. We obtain the graph y = E(x) , as for

`unctions in

(Figure 3-.3)-
Y

general, by reflecting the graph 'y = L(x)

z

in the line

/C)

-

e.

3 4 X

Figure 8-3
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8-3.

The properties of L can immediately be translated into properties of

E . 'Since L is continuous and increasing, so also is E . Putting

L(?.) =O. in (I) we obtain

(2) E(0)= 1 .

Setting u,= L(a) , v = L(b) 2,x1 Theoreth 8-2 we- obtain

and consequently,

(3)-

It follows that

u + v = L(ab)

E(u + v) .ab = E(u)E(v) .

b

Furthermore, for any rational exponent r

( 5 ) [E(1-1)]r =-;F(ru)

The details of verification for Equations (3) - (5) are left as an exercise.

For a > O. and r rational, we obtain from (5)

e ar .-(E(L(a)))r E(rL(a))

where we 1-ecP11 that E(u) ='a and IC= L(a) . This formula is particularly o
1

interesting because its left side hasbeen.defined oAly.for,rationalvalues

of r wheras its right side, is defined for all real values of r . is

therefore natural to use this-fbrmula to extend the definition of e
r

to

irrational values. In this way we fill the gap of. 'Section 8-1,in the

extension of the Power-functions to powers wIth'real exponents. ,

DEFINITION 8-3. The power ax defined for all real values x

and all positive values a by

Since

ax = E(xL(a)) .

is continuous itis clear that

1tm ar = lim E(rL(a))
r-x r-x

.6=e. rL(a))
r-x

" = E(xL(a))

459-

(from Theorem 3-6e)

(from Theorem 3-11-b)



8-3
1

In this Way, we haye establisheddthe continuity of the exponential eunction-,
x J

x ---0.-a as arr extra dividend. =Furthermore, if r is restricted to rational
J

1 .value's we see that the definition. of a fulfills the condition that movers
1,

withational exponents shall be the appropriate limits of _powers_ with ....____

rationalTexponents. Nonetheless we shall be Completely satisfied'only if,;we
I

can verify the laws aof exponents/, Section S -1, 1 ,7uatians (1) - (3) , for the
1

1

.

. , .

more general Class of powers. For the:eproof of the first law, we have
! ,

( -

1

r

axaY= E(xL(a))E(yL(a))

:= ECXL(a) + yL(a))

E((x + y)L(a))

[E(L(a))]x+Y

x+Y= a

from Eauation

from Equation

from Equation

'The proofs, of [the two remaininOlaws are left as exercises.

I
4F .

The monotone property of the power function pFe is easily established.
Ht I

Since E and/ L are increasing-functions we have for 0'-< x <:y , rusing.
. -

-

-Y
cx a

= E(a-E,())

. ..,t; L . .i!q.-
f

In.wor4; x is
,

I

, ,,, ..,

a =,,O , decreasing` :or negative a .
1

1,- ,.--I. ce wl-
Finally, we verify the continuity of the power funation ,x fbr any

exponent al., rational or irrational. We have
.,!

- E(aL(x)).,

> 0 , if a > 0

= 0, if a . fo

<. 0 , -if a 0 . .

fOr positive. a constant ,(and equal to 1) for

= lit E(041,(x))

= E(lim

='E(661,(0)

It

. // _

(from Theoem 3-6e)

(from Theorem` 3 -D)
/

= Eq. .
/

,

A simble proof suffices to establish thd strongly monotone char cte of
. . ,

the exponential function x --..-0- a x positiveositive a when I ;a is left

asan exercise. Once it'ii established that the funct7ion.

460



x a
x

(a 1)

is a strongly monotone function, we may introduce the inverse function

From Definition 8-3 we have

froM which it follows thaTt

We. conclude that

(6)

toga : a
z

z

L(aZ) =zL(a)

L(aZ)
loga(a) L(a)

L(x)logax -

To dbmplee the discussion, we must show that E is itself an exponential

/1)

function with a. definite base. We set

.e = E(1) .

Thus e is the unique value for which

(7) L(e) = 1

We obtain from'Defirlj.tion 8-3

ex = E(xL(e)) E(x)-

The constant e defined by Equation (7) is one of the important numbers

of analysis; it appears in an astonishing variety of contexts, many of them

seemingly quite remote from the idea's being discussed here: The value of e

is given approximately by

(Exercises

e = 2.718

No. 4(c)). The function E : 'x ---11.- eX is ca ed the
/

exponential function in distinction to all other exponential fun tions. The,
.

"..---___-/

exponential function E is often denoted by exp. The inverse function. L

is now definitely established as a logarithm

x ---0-logex

The function L is referred to in this text and in all more advanced works

as the logarithmic function and denoted simply by log without sv,bscript:

Common logarithms (logarithms with base 10) are still useful for hand
-4
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8-3. O

,computation but with the advent of machine computation they have lost much of

their once great importance. The logarithms used-in analysis are almost in-

variably logarithms with base e .

-For many purposes it is essential to have some idea of the relative

otders of magnitude of the powers logarithmic and exponential functions. We

show that any powerfunction'with positive exponent increases more rapidly than

the logarithmic function and more slowly than the exponential function.

and

Lemma 8-3. For each positive a ,

- 0lirn
xa

xa
= 0 .

x e
x

-Proof. We'begin by obtaining estimates for log x . For 1 < t < x ,

we have 1 < 1
1 whence,x t

x .1 10 <_x < log x < dt <: x - 1 < -Pc .:

x" _ _ --,
1 ' ,

..

Thus '1 g x < x for x-> 1- and, consequently, log 1:7 < , whence

log x = 2 log 17c. < 21-x- .

We conclude that

0 < log x 2
x

TC

IjOhn Napier (1550-1617) is justly regarded as the inventorof the
logarithmic function.- Although the basic idea was definitely "in the air" of
his times, he was ,the first to publish a table of-a lggarithmic function (1614)
and his ideas about logarithms were more insightful and efficient for the con-.
struction of tables than those of his contemporaries. Napierian-logarfthms.
are logarithms to the base e .

Henry Briggs '(1561 - 1631) was largely responsible for the Introduction of
. logarithms with base 10 for the purposes-of computation.

GregoriuS a Sancto Vincentio,.S.J. (1584-1667) made the remarkable dis-
covery of the addition property {Theorem 8-2) for log x interpreted as the-
area of the standard region under the graph of a hyperbola based upon its
asymptote--this before systematic development of the calculus..

4

Oi 462



8-3

It follows from the Squeeze Theorem for limits as x approaches infinity

(compare Corollary 2,to Theorem 3-24-f) that

(8) lim
to

- O .

This is the result from which the other order of magnitude estimates follows:

For a > 0 we obtain

wnere y = xa .

lim log x lim
1 log xa 1 log y

x-00 x
-a

--xm a xa y-m . a y

-

Now-we compare the values of power and exponential functions:

Xa

ex
(
775'

)a
z

z:1 ia

where z = e Employing the preceding result we obtain

a .

lim
x lg

/
=

o
0

2.cx

z

xce e z

Exercises 8-3

.,.

1. Verify properties (3) - (5) .

2. ,'rove Equations (2) and (3) of Secon 8-1 for real powers in general.

.3. 'Prove, that the expoqential function x---..e.
x

, for positive- a , a / 1 ,
'''Z ,

is strongly monotone.

.. Find the
/
largest possible domain for each of the following functions.

(a) fj: x ---.-EL(x)

. (b) f : x --...LE(x) -i

/

.

(c). f : x --\)E2(x)

(d) f : x ---17,(x)

5. Sketch the graph of the function given by f(x) =

4(a) :2x (f) 2x 2
-x

)(b) 2-N- (g) 2x - 2-x 4

( ')
X-1

'-' 'c ( h) 2x +1/x
.

-

21/X 21/x 4-- 2-1/x(a) _ (i)

2
-1/x 1/x -1/x

(e) (j) 2 - 2

463
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6. Sketch the graph of

(a) f :.x ---P-EE(x)

..(b) f :.x .

In each of the-following solve for x in terms of y .7.

(a) y = L(tan 2x)

(b) Y = E(x2

(c) y = E(x -L(y))

(d) x = log (x 7 17737)

(e) y = El(x) - E( -x)

1 1 1

8 Show that if e
1 log

and z =_ e
1-log x , then x = el -log y

9. Prove that if. f satf.fies-the functional ;equation f(x + y) = f(x)f(y)
for nl, x" and y , and if f(x) = 1 + x g(x) where lim g(x) = 1 ,

x-S
then fr(X) 'exists for every x and fI(x) = f(x) .

(See also Exercises 5-1, No. 4.)

1.)



8-4. Differentiation of the Logarithm and Related Functions.

The differentiability of the exponential and power functions follows at

once from -the differ .entiability of the logarlhm. We have alreadyfound,

(Equation (2), Section 8-27

(1) D
x
log x

We apply the rule for differentiating inverses (Section 4-3) to obtain the

derivative of the exponential function'. If. y = E(x) we have

that- is,

(2)

E' (x)
-=

1717r- = y = E(-x)

Dxe
x

= e
x

.

The exponential function has the remarkable property of being its own derive-'

tive. It is the prototype of functions describing unregulated processes of

growth and decay in which.a quantity changes at a rate proportional to.-the.

quantity itself. This property accounts for much of the great importance of

the exponential function in methematiCs and its applications.

We now Obtain the derivative of the pmier function for any exponent,
*b.

rational or irrational. From Definition 8 -3, we have

xa = E(aL(x)) ,

Applying the chain rule, we obtain

Dxxa = E(aL(x)) (2-) = xa (a)

whence

(3) D x
a

= axe
-1

x

In this way, we have obtained in all generality a result which we could prove

earlier only for rational exponents (Section 4-3.
A,

An exponential with any base a can be written in the form (Definition

8-3)

ax = E(xL(a)).

It follows from the chain rule and Equation (2) that
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I- .

Whenc

(4)

\.;

We recall from Section

D
x
ax = Et L(a))L(a)

E(x L(a))L(a)

D ax = ax log a .2, X
*

8-1 (Equation 4) that for
1

Taking the derivative at

E
a
'(0) = lima - 1lim

h

x = 0 in (4) we obtain

D axx . = log a
x=0

an interesting representation of log a as a limit: 1

(5) a
h

h
- 1log a =lima

h-O

function E
a

x x

Exponential functions with-bases other than e are not much used since any
given exponential function is easily given in terms of exp by a

x
= ecx

where c = log a .

Since a logarithm

logarithm.with base

we have, at once,

with any base a is situp pi-oportionaI

(Section 8-3, Equation (6)),

It is for this reason that

logarithms, natural in the.

possible expression for the

log ax,
log x
log a,

Dx loA
a
x = c

x

logarithms with base_

sense that. the choice

derivative.
2

7
1where c

7- log a

e are often called "natural°

c = 1 yj_elds the simplest

lEquation (5) could have served to define the logarithm, -put the necessary
analytical approach differs considerably from the one we have adopted here.

2
In Many intermediate texts, the symbol In x is us3 for the natural

logarithm, but its use in professional literature is rare.
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The properties of, logarithms may be used to simplify the-differentiation

For example, consider the problem ofof complicated products and powers.

differentiating a product

0(x) = f
1

( )
2

x) f
n
(x) .

We assume that the derivative is taken at a- point whpre fk(x) > 0 , k = 1

; n . (If f
k
(x) <.0 we can replace f

k
(x) by its negative and change

the sign of 0 accordingly.) 'We have

log 0(x) =2log fk(x)

k.I

D. log 0(X)

0'(x) = 0(x) D/log 0(x)

Example 8-4. To differentiate

(x
2

+ 1)
3/2

(1 + sin
4
x )

25

2x(x2 + x + 1)

we-first obtain

4

4
to 0(x) log(x2 +1 -+ 25vlog(1 + sin x - x log 2 log(x2'+ x + 1) ,'

then differentiate, and find

which yields 0' ( x)

2 4
3x 100 oin3x cos x 2x + 1log 2

X + 1 1+ sin x x
2 + x+ I

on multiplication by

467
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Exercises 8-4

1. Use 1ogariticimic differentiation to evaluate eaell following:L\

(a) D (2x + 3)4

x (3x2 - 1)1/2)

(b) Dx
1 x

1/2

(d) D x 1.7717 VI + 6x3'

2. Firid DX y .

(a)' = 3x

(b). Y = (1)x2

(c) = eax

(d) y = log(1

3. Find Dxy .

(a) y = (2x)2

-
2x

2

(c)
ecos x

.(d) elogi7

(e) y = log

1

x2)

Differentiate.

(a) y = x log x - x

(b) -y = ex sin x

(c) y = arctan ex

(d)' y = lag(cos2 x)

L

4-

"".

N..

"7-



5. Differentiate.

(a)
xx

1/x
r- (b) y = x

y
= Y-

(d) y = (s-Tri x)x

( = x
cos x

c

(f)

(g)

( h)

ci)

Y

y

y

xx
=-e

xx

e-xx

= log log(x)

= log lou, log(x)

6. Differentiate. (First- simplify, if bossible.)

(a) y =1og (sec x + tan x)

(b) y = lo-
a - x

2'a x

(c)

(d) ry = sec x tan x o C X + tan x)

= log (x
1e2 x2)

(e) y - log x3 +
.7in2(x2

e

7. Evaluate each of the following integrals,.

(a) .e2x dx

(b) dx
1

(c)

(d)
0

8'. Show that

-9. Prove:

eax dx

2x dx

f

a 2
(e) 2x e dx

0

a.,

(f)
2x

2
dx

0 1 x

fee dx
(g)

e. x log x

ex + ey = e then y2 = -x

log(1 x)
x

(b)
x~0

e
cx

x
- c , c constant.

_ . 2 (1 + x) - 2x + x-
2

2
( C ) = -

xx,-0 x3 3



r

10.- .Assuming the existence

Lion of, log a as a limit to derive- the admit;

of the limit in Equation (5) use_tkie

(Theorem,

11. -.Apprpximate the _diffetence between a- and 'a
';Z* > 0and a 1).

preperty

representa-

of logarithms

for large ,Ix1 where x"< 0'.
, - q

-, . .. . .

22:*-Prove ;that- ex >:1 -1-- x for ell x 0 and se this restlt to deriye
. .,the followirig d.nequ'alities- c-

. .
. . -

sw(g.)- e-x >1. - x for 0.,c o ,

(.0) ex
1

1
x , for x > 1 =', .

I

1 ,

x < 1 , x / O 414:

y
e.

(c)

( a ) , + for x > -1 , x / 0 .

13.7.- Prove"

lim e
a

= 0
a- -0.,

14. Examine the behavior of f for srP-11 ix and very large

the Information obtained to sketch the graph of f .

1_
(a) f': x

- e
-1/x

e
1/x

(b) f : x

15.' The velocity v of a fabling body at time 't is given by

r V = 1 - e -kt)

lxi

where g and k are positive constants and the positive sense_of

motion is directed downward.

Use

-(a) Find the acceleration a at any time t . Show that a = g - kv

(b) Find the- distances that the body travels between t = 0 and t = -r

(C) If g and t remain fixed determine

<4 lim v = lim
k-O k-O

-kt,- e )

(d) On the same set of, axes,_ sketch the graphs of the functions t

, and t .
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The Differential Equations of ex , sin x cos L..

The exponential function is basid toianalysis and'its applicationS: its

importance can hardly be overstressed., The'property which ,gives theexpOnen-
__

_

tial function its unicUe placeis.inVarianci, under the operation of dif eren
..:- -

tiation: D e
x = e- ;x -

1

We remarked that the class of functions which are proportional to theii-

derivatives is important in the study of growth and decay processes. T6r. .

example, the rate of increase_in weight of a bacterial colony under favorable

conditions is proportional to the Weight already present. Your cup of coffee

cools and your cold lemonade (assuming no ice) gets warm at rates proportional

to the difference in temperature 1:7etwe&L your drink and its surroundings. In

Cgapter 9 we shall discuss such phenomena in detail. We shall study the pro-
.

nerties Of such a function through its differential equation y2 = cy . In

the same spirit we can study periodic phenomena in terms of the differential

equation.fOr the sine and cosine functions and study the properties of the

functions themselves through the differential equation.

yr

T.M _REM 8-5a. 'A function given 12y y = f(x) satisfies'the differential

equation

(1) y2-= cy

sUbjet-t&-the initial condition

.4.

f R)) = a(2) .

'if and only if
- -

( 3 ) = f'.(x) = a.ecx

6

Proof. It fs immediate thpt the/,function defined by (3) satisfies the

Conditions (1) and.'(2), To pmplete he. proof we must show that the solution

(3) is linique, that no other'functionSatisfies the differential equation and

the initial condition.
.

.
.

.

Let u =g(x) be any solution of (1) and (2)- Since e
z
> 0 for.al

:- cx _

-cx.z we may, suppose u is given in the form u = v e whre v = g(k)e .

. -
.

Entering Phis expression for u in the differential Equation (1) we obtain

. a

D
x
u =-D [v e x] = v'e

CX cv e
CX

cu
cx

= cv e ,

2471

-(from (1))



4

sas that

Since g(0) = 0

v r
e = 0 Fence.that-

,

we must have v = a .

vl = 0 and that" v. Is constant.

AS
g consecuence of Theorem 8-5a we see that the.exponential function

e-,-cou1d have been defined originally as the ,solutiop_of the

dIfferenial Equation Li-) which satisfies the initial condition
f4N

the existence :of such a solution,.we might then.define powers,

arld exponentials with any base in terms of j'.'The:catCh is theogari

zsption-Of existence of the solution of the differentIal equati9n.

1,,eral proof of existence for solutions of differential equations requires .

epara.t'
treatiztent and would be a digression:for us. NonetheleSe4the.idea

as the 4olutio-of'a differentialetio4:hacialdefi6illg a function
for us becatzse the circularfunctions sin x and cos x', which have

defined.analytically, both satisfy the simple differential equationof beell

(4)

5,11-a differentipo Equation (4) '.is as important fbr analysis 'a. -rid its

ons

ArototYP
of

I I Y = 0 S

,

as the Equation (1) for.the exponential functions. It is the

the equations which describe periodic phenomena,
1the electromagnetic vibrations which we perceive

QS C 1.1 1 .
17:q.esoure --1-atfons which-we perceive as sound.

the osCiller&IonS

as color, the.

To See how 'sin x and cds x are characterized as solutions of-(4) we-- -
.

.,

7:zia %sliquen-ess theorem,:like that of Theorem 8-5a.

. .

. ,

11'11:11....2.----1113

.352.1L. TAre exists at most one solution
41., .

Y = f(x)

sa
ti...fies the initial conditions

(5)

....:.

44-TiVferentfal

pile of (I) asL'Qlutioll departure
PoloInt,gf

f(0) = a f2(0) = b
- 1,

lb

of (L) tghich

existence happens to be a consequence of a special property
Equation (1); it is separable (Chapter 10), bUt the
a separable equation leads back to the'logarithm and the
adopted in this_ text,.
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Proof. Let u and 'v be solutions'of (4) which satisfy O.)._ We
tr

that y = u - v is a solution of (4) which-satisfies the 'initial conditions

(6)
.

f(0) = 0 , ft(0) =

On thUltipliing in (4) by yl we obtain

-Y Yt

It follows that

(7) (37-Y)- + Y2 -L
d.

%

where' C is constant. Froth the initial condition (6),-however, wei conclude
1

that C must be zeros hence; both terms on the left in (7) must be'zero.

conclude that y = u - v = 0 and that .0 = v

yty =
2

[(yi)2 r y2) =.

From this theorem we see-that the sine can be defined as the unique

solution u = 0(x) of (4) which satisfies the'initIal.conditions

(8). 0(0) = 0 , 01(0) 7

.and the cosine as the unique solution v = *(x) of (4) which satisfies the

initial conditions

'(9) 4r(o) = 1 , 4rt(0) = 0 .

Observe that if u and v are solutions of (4), then so is the linear com-

binatiOn,_av + bu ; and the unique-solution satisfying'the general-initial
4 conditions (5) i;-"be linear comblnation

(10) . y = av + bu

These ideas permit us to dispense with geometry in defining the sine--and

cosine, but before we can make this approach meaningful we must show that

solutions u and v satisfying the initial conditions (8) and (9)'-do exist.

A differential equation may not haire a solution. Equation (7), for example,

has no solutions when C Is negative. To,prove existence we workl,witli the

inverse functions.
Je.

Recalling the rule for diffe2eritiatingthe arc sine, we set

x = g(u)

- t2

dt .

This integral defines g : u --0-arcsin u as Aq.increasing function of u
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for -1 <..0 <1 since the integrand is continuous and positive on the open
interval It follows that the inverse function

"*. 0 :

is a continuous and increasing fUnction: Since. gr(u) / 0 anywhere on the
interval (1,1), We see.thatv 0 is differentlable and. by the rule for

differentiating inverses-

A

(12) 121 4P(X) = 4

givu)

there ;s.= .Since,tefunctionon.the'right.is differentiable, it
follows that is differentiable end obtain by the chain rule and
Equaiion (12).

uul '4";-
-u .A 2.

(Since -u is restricted to the open interval (-=.1,1) the noSsibility of d
zero divisor does not arise.) We see that u satisfies the differential

Equation @O..' The'valUe x = .0 in-(1.1) can_ only,, occur when u = 0 since
g ds ah increasing function. It follows on setting x = 0 in (11) and 12)

that 0(x) satisfies the- initial condition (8).

It is true that (11) defines the function .0 only on a neighborhoo of

x = 0 , but the differential equation itself can be used to extend the.

solution to all Values of x

Since u -is differentiable it follows from ('4) that u" is differen-

tiable and on setting v = u' that .

v" +,v = D (u." + u) =

Consequently, v = *(x) = 07.(x) is also a solution of (4). Furthermore, from

(12) . t(0) = - [00)12 = 1 , and from (4) *t(0) 0"(0)'_.-_- 0(0) . 0 The

-function * is therefore the unique -solution satisfying the initial condi-

tiolas (9). 3

We may now abandon all-our doubts; the solutions 0(x) and *(x) -exist'

and are unique. The fl-Friliar circular functions may now be define d by ,

(13)

sin x ---0-95(x):

tcos



.8-5

We still have-Work --eo,do. The familiar rules governing the circular
4

functions mist now be' derived. For the most part this is a simple matter and
.

.

is left to the exercises. The-- integrale(11) for the ar,csine yields defini-

tions of sin x =end cos x only on a neighborhodd of the origin. It is

necessary to show that'the differential equation and initial conditions deter-;

,mine solutions defined on the doMain'of all real values. It is also necessary
2

to proVe that these Solutions are periodic and'to establish'the role of the

number Tc The technical details, of these proofs are given in Appendix 8.

Exercises 8-5

1. For each of the following find the function f which satisfies the

given di erential equation subject to the given initial conditions.
o

(a) Y = 2Y ; f(0) = 5

(1,)_ y" y 0 ; --f(0) = 2 ,-f7(0)

2. Show that the fUnction given by -y =,f( ;) -='b sin ax d. cos ax satisfies

the differential ecuation y "'+ a -y,= 0 and the initial conditions

f(0) -= dt , ft (0) = ab .
e

/ .3 . Show tha.t the function f""' given by

y = f(ic) = ex sin x

satisfies the differential eauation

" - 2y7 + 2y = 0

and the initial cOrIditi _ f(0) = 0 , fS(0) = 1 . Show also that the

fourth derivative QC ,if (x) is proportnal to f(x) .

. . 1. .

zi
.

on .

.,
4. A marticle-moves alg a line for 2 .'hours-so that i -s-velocity at any

1
time_ t' is-elven by v .= eat in miles-ppi- hour. Find the displace-

-
ment_at the end-of- 2, hours and -the distance .traveled -during the last
A ..

hour. .,

5.
.

4

Derive Formula (11) for the- inverse of. 0- irectly from Equation (7).
5 '\..

. .

,
..

.
.

6. Prove the identity

-u2. v2 =1 3'

where u = O(x) and v = 11,1(x) as defined, in this section..

7. Prove that u < aresin u < 2
for 0 < u < 1 .

1 - u
at.
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sn x.
=, ',8. Prove lira

iDC

Z-O x-0
a. .

9. Prove the rule for differentiating the cosine; that is,-

= -0(x)
10. Prove that' 0 and 1:.r as defined in this section are diffeirentiable to

all orders.

Prove -that the sine. is an odd flmctionand that-the -cosine is even; i e
that' 0C-x) -0(4 and 1;f(-x) = 14r(x)

-

12. Prove the Additiontheorem for the sine:

0(a b) f6(a)*(1)) 4 0(b),,V(a) .

(.Hint: Use the fact.that 0Ca + x) solution of the differential'

Equation (4).)

13. State and nrove the corresponding addition theorem,for the cosine.

14. Interpret the constant C in Equation (7) in terms of the amplitude of

oscillation;

-

1 ,. Discuss the existence and%Iniquemess of the solution of the following

initial value problFm

w2f-= f(0) f?(0) b

I

a

".
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8-6. -The Number e .

The propertiesaARt the exponential function can be derived from

simple estimates obtained in the same manner'as the estimates of-Section 7-5

for in-x and cos x . We consider values of x in the closed interval

[0,a] . From the monotone property of7' the exponential function) we have
,

.
. . ,

.

)
<:ex < e

a
./

Integrating we obtain

whence,

(1)

Ir'In general, if

'ma

-we have

x

eox, < et dt < eax
0-

< e
x - 1 < eax

2e-

1 + x < ex < + eax (0 «

f(i) < e < g(t) ,

f(t)dt < So e
tdt < 5

x
g(t)at

O 0

. - - 1
wherice,

-N. '1
'7*

X e X
(2) -1 + f(t)dt < e

x < 1 + g(t)dt , 4 (0 < DC < a) .
0

sy

Affiplying the 'result of (0 to (1) and integrating repeatedly, we obtajx.

x
2 ,3 + < ex < 1 + 2

x -'eaxn .._ .

x
n 3

(3) 1 + x + ?c2 ' 2 -3 + "' nr. + 2 .2 3 n.!. : '
A

( 0 <x < C5 ) 41

A similar result holds for negative values of x (Exercises 8-6, No. 1--b).

(0 <X <d) y

( x < ar,

,

,.
The number callede is justly the Euler number after Leonard Euler

..

0..707-17S3) who recognized its pervasive role in analysis and established
. .

many of its-Properties. _ -,
v.

. .. .-

4 . N-

In threepredigious treatises .sin-Infinitorum,(1748), Caloull-
DifferentTglis (1755); Calculi IntegraIis. .31768-70), Euler opened and developed
vast .areas of analysis. The .fertility of hirs_ima ation and the 'sheer pliagni-'
tude of his work are IrmAtChed. Terre is scarcely a area of mathematics
without its "Eulerri Theorem" or "Eider=s Formula.'
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' From Formula (3) we can easily obtain precise estimates for, e We
.observe'first, on taking x =q7 = 1 and 21. = 3 that

e </(.+ 1 + + e
2 o

*-?
, whence e < 3 . Entering this resultFrom this inequality we oo ait

in (3), we find

(4) + x- +
2 .

x. x.
2 - nt

where for the error term, e(-x). we have -
. .

(5) 0 <E(x) < (3
!

1)xn
n

In particular, setting x.= 1 we obtain
.

20 < e(1) < .

n!

Since, n! increases extremely rapidly with n (thus 14! = 8.7 x 1017° p so
that 4) gives e to 9-place accuracy wh 14) and the k-th term of
the sum for e is obtained ,from the preceding tea - upon division by k , it

is easy to obtain the value of e -to a large .number of decimal places. We
'illustrate by calculating..e accurately to'nine places. We carry the calcu-

lation to eleven places to allow for the error in rounding off.

0

1

2

3

4

'

1.00000

1.00000

.50000

.16666

.04166

00000

-00000

0000a

66666

66666

0

0

0

7

7,

5 .00833 33333. 3

6 .00138 88888 9

7 .00019 84127 o

8 :60002 48015 9

9 .00000 _27557 3

4.
10 .00000 02755 7

11 .00000 00250 5 ,

12 .00000 00020 . 9

13 .00000 00001
- ...

-6

,...

14 .0000,0 00000 1'

Total e = 2.71828 1828.4 6

.e"



a

(6)

IA

Rounding off to nine Places we obtain the-..

e =12.7182e1828 .

easily memorized result

(A more accurate computation would show that the total above was actually

accurate to all eleven places.) We leave as an exercise'the problem og,

verifying that the sum of -the error from rounding .off and from cutting off. the

calculation at 14 is less than half a unit inthe ninth place.
.0=4

x it

8-6

the

For

c -

(7)

For a given

estimate for

this purpose

(3x - 1)xr.

ri

is easily seen that we can bring the error c(x) in

e
x below any given, tolerance by taking n large enough.

we,set n = r'+ m -and choose r > 2x . Setting

we obtain from (5)

Since + k 2x +

x x
e(x) c(

r + li')( r +2) `r + mi

1
, (k = 1 , 2 ,

We conclude, then, 1-,hat

0 < e(x) <
2

:
>(8) e

x = lim
k

m) , we have

From the estimate

1-+
3- 1

it is easy to show that e is not a rational number. The number

= Cn + 1

11..03

+
n. n:
1 2

is an integer.

estimate tales

a

If e = D.

the-formi'

. .

whence, for the integer'

If we let n

1 I
3=

where p and q

1
.(n -

are integers then the preceding

17)
0 <q ( (n - 1): riiJ
a = (n - 1): p'- vq

< u < 34-1n n

<- 2--r
n

be any natural number bigger than 3q we obtain

0 < < 1 .
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The assumption that e is rational leads to the false conclusion that there

is an integer between. 0 and lt . It,follows that e is not rational.

From 1,*(X) = we can obtain-another representation of e as a limit.

We 'have.
0

L=(1)

whence, since Lt(1) = 1

log lim (I + h) 1/1-1
= 1

h-O

log(1 + h) - log(1)

h-0-

= lim log(1 + h) l/h

where at the last line we have used the continuity of the logaF,i,thmic function.

From the definition of e (Section 8-3, Formula (7)) we he.yehe fundamental
result

(9) e = lim (1 + h)1/h

If we

"1-1-0

restrict h to values 1- where n is a natural number we obtainn

e = lim (1 + 1)n .

The quantity (1 + can be interpreted as the value at the end of

zone year of a deposit of one dollar left to acquire interest at aannual-

interest rate of 100% compounded n times a year., If the intee< is
compounded continuously, that is, if the interest is calculated as the limit.,

in which the number n< of interest periods approaches infinity, the value of

the principal at-the end of.one year will be e dollars, 52.72 . Dis-

appointingly isn2t'it? (Exercises-8-6, No. 5a)

Since the graph of x---owlog x' is increasing and flexed downward it

i
Nfollows that la (1 + h) 1/11

is a decreasing 'unction. (Exercises 8-6,

No. 7). This result gives us another way of esating e from above. For

h-> 0 , + h)31h must be no greater than its limit S e and for r h <
(1 +h)1111 must be no smaller than its- limit, In summary,

(1 + h)
1/h < e <(1 h)

Thus, setting h = 1 we obtain
6

-. 48o
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(1)2
1

1 (-12

`2

or

.2 8_76

2.25 <e <4 .

The estimates (11) for e are not particularly useful for calculating e

but-they have value in theoretical discussions.

Setting h =
1- on the left and h -

n 1
on the right in (11) we obtain

+
.

or

-(12)

n n+1
< e < 1 +

n - _ n

(n + 1)
n

(n +
±l+1

` n n
A

This estimate has extremely interesting consequences. Note for the product
k

of the terms (k 1) , k = n that, ,

2 3.2 4'2 3 n + 1 (n +-1)n (n + 1)n
(-1 )(-2). (-3) () -

k +
k

Since each factor (--37--) , k = 1 ,

greater than e by Z12), we have,

whence

n , in the:product is no

e
n > (n + 1)n j

nt.

(n
t k.rIN

n
1N

n
.n: > --) + -)

n e

n
Since (1 + )` increases to" the limit e )we

,

see that it has its least

value at n = 1 and therefore'

nt > 2(- e

n

This formula gives us some idea of the prodigious rate of increase of n! ;

for large values of -n :it increases faster than any exponential
n
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;

It is possible to obtain an upper estimate for _lit by using,the right
k+1

side of (12).' We form the product of the terms

3 ,

whence

f.

n . From (12) it folYows that

n+1
Since (1 +

2 3

(i)

k + 1
k for k = 1 2

(n 1)n+1 (n + 1)/1+1 "dc.>
n:'

e

1
)(1 + n(n + 1)n+1 n

n+1

<
n n

e .e

n+1

decreases to its limit, its greatest value is attained at
a

n+1
n ,= 1 ; hence (1 + < 4 and

< .

In summary,

n n
(13) 2(E) < -

rii < 4n(n) .
e e

It is possible to improve the numerical factors in (13) by leaving out the

early terms irr each product, those for which the-approximation to 'e is not

particularly good. (See Exercises 8-6, No. 10). By means of subtler tech-

techniaues it is possible to do much better. There is a beatutifully simple

asymptotic representation 0(n) for n! , that. is, a function 0 such that
6

1im m( n) - 1 ;
n-m Y"k

this is the famous Stirlingls Formula,

0(n5= 1:7-171 Ca)

Which involves not only the constant e , but somewhat mysteriously, sihce.

present considerations seem totally unrelated to'the circle, the cbnstar
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Exercises 8-6

1. (a) Using mathematical induction prove the result of Formula (3).

(b) Obtain a result similar to Formula (3) for negative values of 'x

and °obtain an error estimate for yourresult.lfke that of (5).

(c) Use the result of b to prove (7) for negative values of x .

.2. Fill in the details to show that Formulas (4) and (5) follow from

Formula (3).

3. prove that the value far e' given bar (.6) is correct -1-o the indicated"

number of decimal places; i.e., show that the error in (6) is leis than

one half'unit in the last place.

1.. Use (9) and (10) to evaluate each of the following limits.

(a)

2 x
.(1

x/3
(b) lim (1

2x)
_ .

{c)- lim (1 + 21.1)3/h

h-G

(d) 1im (1 4: sin i-1)
csc h

1/2h'
,(e) lim (1 -

-h-oo
2

Evaluate lip -x( x-rn-
X~CO

(a) A California savings and loan association offers an interest rate-

of 4.855 compounded continuously. What is the equivalent annual

interest rate for money left on deposit one year?

(b) How long does it take for an amount of money at the-same interest

rate (4.8550 compounded continuously) to'double itself?



.2.

8 -6

7. (a) Prove that x x)1/x is a decreasing function.

(b) Which is greater

10001901 or 10011000.E

(c) Which is greater -

1,000,0001'600'001 or 1,000,
0101,000,000

i;i77-27

. Show that for- n > 9 , 1:07 > ./E477f .

9. Show htw to obtain an approximation of

St 2
e
x

dx , (0 < 1) .0-

in

Use Equation (4) to obtain an imate of the error of approximation.

10. Prove that > 3$ for n >1 .

[Hint: Use mathematical induction.],

""'s

40.0
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8-7. The Hyperbolic Functions.
1.

8-7

For reference we-inClude here a brief'discuss-ion.of the dimple combina-

tions of exponential.fUnctions known'as hyperbolic functions. These functions

have-properties which parallel those of the circular functions. In analogy --

with the circular functions we define,the hyperbolic sine, cosine, and tan-

gent, respectively, as follows:

sinh x

.

cosh x -

e
x e-x

2

e
x + e-x

2

tanh x -
sinh x. e_ - e

-x

cosh x
e
x -x

+ e

The analogies between the circular functions and the hyperbolic functAons are

exhib ed in t following formulas (note carefully the diferences in sign

from he parallel formulas for the' circular functions)
.

(1) cosh
2

x - "sinh
2 x 1.

'(2) sinh (x +y) = sinh cosh'y + cosh x sinh y .

(3) cosh (x + y) = cosh x cosh y +,sinh x sinh y

(4) -D sinh x = cosh x

(5) I), cosh x sinh x

(6) D tanh x = 1-- tanh-
2

x .

The derivation of these'formulas is left as an exercise.
t

The principle efeatlires of these functionS are easily deScrbed. The

hyperbolic sine and tangent are odd functions, the hyperbolic cosine an even-

function. The intercepts of their graphs axe given by sinh 0 = 0', cosh 0 = 1,

tanh 0 = 0 . For all x , cosh x >1 and ,Itanh xl'<1 . Since

lim e-x = lim e
x

= 0
x-?3 x-

In the theory of functions on the domain of complex numbers it is
established that the circular functions are related tc; the exponential func-
tion by formulas similar to those of the hyperbolic functions.

O
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c

lain1 xcosh x approximates -,.-,. e from above and sin.h.);. from rot 1P'
i.-c ..

lz:,

'1 -x si, -;tivevalues of, x . Similarly, cosh x approximates -g.e. ,arld
7 5- le -x ;.Nfor large negative values of x .. The graph y=tan
Y .

,c j,a02
-...

ro,....asymptotes. y = 1 for large positive values of x , and y = -1

negative values of x . The,se features are depicted in Figure 8../5" .s

demonstration of the properties of these functions is"left as an.e-

Figure 8 -7a
.
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0

dia
.= cosh

2
u + sinh2u - Scosh 2u - 1 sinh udu

ID 2
= cosh,u + sinh2u - 2 sinh2u

= cosh2u - sinh2u
2

= 1
5

It followsythat a =1.2. + C , and on taking u =.0 in (7) that the constant

C iszero. We conclude that a = u or that u is the area of the hyper-

bolic sector.

Exercises 8-7
(

1. Derive Formulas (1) - (6) from the definitions. of: the hyperbolic functions.

2. Apply the methods of SectiOn. 5-8 to discuss the graphs of the

functions.

erboli c

.
,Sketch the graphs of y = 1 (that is, y - ''sech

-

x) and y - 1
cosh x 2

... 1 + x
I--

on the same set of axis.

14- Find 15n sinh x

x -O x

5. Differentiate.

a

(a)
1

.tanh
2
x

(c) sinh x

(b) sinh (2 lOg 30 (d)4 coscos4: + sinh x_
cosh - sinh x

-._ -.-
Show that sirih y + cosh y = e , for each y , and verify that

(linh x + cosh x) n
= sinh nx +,,cosh,nx . .

.

7. Show that arctan (sinh x) = arcsin (tanh x) -

._8. Show that D i (2 arctan ex) = D arctan (sinh x)

Does 2 arctan ex = arctan .(sink x) ?

Justify your answer.

9. Calculate the inverse functions of sinh , cosh , and tanh in terms

of logarithms.
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10." Obtain the derivatives of the inverse hyperbolic functions using (1) and

note, how they differ from 4.1e derivatives of the corresponding inverse

trigonometric fazictions. Observe'that the deriyatives of the inverse -

hyperbolic functions are algebraic functions.
. .

11. Find.the-ilength of the .catenary y = a Cosh
a

between x.,= 0 and x = b .
-

32. Use (3) of Section 8 -6 to find upper and lower polynomial bounds for

sinh x and cosh x

13. (a) Obtain a fornaUla-for tanh..(a b) in terms of hyperbolic tai.gent's.-.

-(b) Give -tenh 4x in terms of ta9ix

14. The differential equation

(a) .D2f 0 is satisfied by cosh and swh

Prove the uniqueness of thesolution of (a) under the initial condition

(b) f(0) = a , ft(0) = b

. _

and.exPreas the solution in'ters of sinh and cosh .

(Hint: .Show that if l' is 'a solution of (a) , then .g = Df - f is a

-solution of Dg + g = 0 . )

-

r
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8 -M

ce

11; Evaluate:

(a)

N.

MTscellanegus Exercises

-

n n

limE
n + k iirnE(

n-00 n-00 +
k) 21

1 1 1

k=1 k=1 1 n

[Hipt: Use Theorems-3 .]
.

(b) lim
n-c*

a , b > 0 .

ti

2. Find the mean value- (Exercises 6 -1 , 20) of 'the function

f : x
1
x

on the interval [1,2] .

167

3. If F(x) = e dt x .> 0 , find FT(1)
1 0 -

4. The region bounded by the curve y ="e
-x

and the lines y = 0 , x = 0 ,

x = 10 is rotated about the x-axis. Compute to three significant digits

the volume of the solid of revolution so generated. Justify any approxi-

mations you use.

5. Find -all ,solutions of the--"equat.ion' ex = e Jugtify your answer.

6. Find an equation of the tangent line to the graph 'of, y = e

(a) at (0,1) .

(b) at ( ,ea)

(c) that passes through the origin.-

x

7. Find an equation of the only-tangent line to the graph of y = log x

that passes through the origin. Show that there is only one such line.

8. Find an equation of the tangent line to the curve y = log(tan x) at

the point of Inflection (x0,y0) wnere 0 : x <
9 2

SV
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9. Find equations of the tangent line and normal line, Aspectively, to the

graph of f at the given point.

(a) f : x
-x

at x = 0
e

(b) f : x
1

, at x =
e

10. At any point where two curves intersect, the angle between their

respective tangent lines is called their "angle of intersec2 tion." For

each point of intersection of the graphs of f x
_x

and

g : x
-x find the.corresponding angle of intersection.

11. Show that the curve y = log[sin 2x1 is everywhere flexed downward.'

Sketch the curve.

12. Find the area of the standard region under the graph of f over the

given interval.

(a) f .. : x 0- e ,
x

[-1,1]

1-x
(b), f : x ---....e , [ -1,1]

( c) f : x "---411- tan x , [0 , 73-1-]

13. Find the. volume of the solid of revolution generated by f on the

given interval.

(a) f 4 x -1 ,1]

(b) f :
1-X r

, ,l]

14. Derive a formula fbr the volume: V of the solid of revolution generated

by, f : x
x (a > 0) do [0,b] .

Find .he volume the generated revolving the region bOunded

by the curve- y =e .-.the:x.,a4s, the y axi gnd the. line. .x

about the line y 1 = 0 .

16. Sketch the graphs of each-of the ft:a-lowing, indicating extrema, points of

inflectiNn, intervals of downward and upward flexure.

(a) f : x (log x)2 - x

(b) f : x x
(log x)?

A ,
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17. If A is a constant evaluate

18. Integ to x2emx by assuming the integral has the form

(ax Tex + c)'em3c {:k Generalize this result.

19. (a). verify that the derivative .of

f(t) =*(8. cos.

is an-,;_.expression of the

(b) Integrate eax i Sn bx°.

t b sin

same

t)ekt

general fbrm.

(c) Integrate
eax

cos bx .

(d),, Show that f(t) in (a) is a solution of the differential equation

.D2f 2kDf +
2 2j f = 0

20 Establish Xiae folloWing limits:

(a)

(b)

21. Show

lim x
m

log(1 + x) = 0 m > .

m
x loG(1 x) 0., m <0 .

X . . ;y

lim xp log x = 0 p > 0
x -0

cif and only if

90y*(
X-.E.

) L >0

lim 1x) log 0(x) = log.L .

xa

22. Using the previous exercise, evaluate each of the limits in Exercises 8-6,

Number 4.

St



Evaluate each of the following limits if it exists:

(a) (sin x)
l/x

x-0
2,

(sin xv
1/x -

)

(sin x)1
/X3

x

e-*

24. The formula for the normal probability curve used in statistics is

1 e-(x-m)2/2,72

i/E73

where M is the average (or mean) value of x and c is the standard

deviation and measures the spread of the curve. .Find tie extremum and

points of inflection an4sketch the curve. For simplicity let m = 0

and a = 1 Tso that °

2)
1 e-x /2

1EW

Detet-mine the rectangle of largest area with base along
2

two vertices on the graph of f : x

26. Prove that the function~ f given by

.

sin x
x 0

\J

1. X:=

(a). is continuous for an x ; .

f(x) =

(b) is differentiable for all x .

.10

ti
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Chapter 9

GROWTH, DECAY AND COMPETITION

9:1. .Introduction.

1/14tithematics enriches science by providing system and organization"--so

we claim in the introduction. Yet until now we have exhibited the calculus

only as an appropriate language in which a few of the concepts of the sciences

may be, couched. That it serves to reveal larger pattern f thought remains

to be shown.

One way of demonstrating how mathematics organizes owledge is to

examine one of the mature areas of today's science, an area which has.under-

gone 4 long historical development to reach its present systematic deductive

stage. Such an areacan.lbe presented as a completely mathematical system with

its own axioms'and theorems. But this is only one aspect of mathematical

thinking.
r-
v.Nathematics plays a role in every stage of the development of a science

into a deduttive system--from the initial classificatim tif related phenomena

to the search for they least number_lof fundamental principles on-which they

depend---from the estplishment of'the laws of nature whiCh serve as the axioms

for a deductive /system to the unfolding of the consequences implicit in such

mathematical models of katural phenomena.. Science dealS\with phenomena--Ith

observations, experiments, and measurements on nature. Specipal areas of

science require special equipment, and special Measumement techniques. All

areas require mathematical thinking, mathematical tools and mathematical models.

All the sciences, from aetodynamics to zymology-u mathematical Models

;,to organize the complicated phenomena observed in nature. To construct a

model, we isolate the effectsIthat appear to b d..ental, and we define

relevant variables, parameters and functions. s suggested by our observa-

tions and measurements, we seek appropriate equa I dependence of

the functions on the essential variables. Th'ese will often take the form of

differentikl-equations completed with auxiliary conditions thiat specify, for

example, the intial values of the functions and variables-at he start of a

process. The solutions of the equations subject to the auxiliary-re-strictions

may then be compared with additional measurements to determin eir domain of

applicability in nature.
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Underlying a bewildering variety of natural phenomena there seem to be
but a few basic processes. The same mathematical models appear again and

again in areas which bear no ev- ident relation tb each other. The equations

are the same, but the functions and variables, like charaqter actors who

change their names/but not their roles from play to play, represent different

measurable quantities in each science. This is one way,' mathematics can

organize knowledge, by revealing a common basic structure; a unity amid

/ diversity.
.

. . .

.------\\In Chapter.15 we shall see how mathematics can be used to systematiCally

develop a Single area of_science. But here we shall see how mathematics can

cut across the sciences, how one mathematical model reveals a basic pattern

which crops up in a multitude of adifferent contexts. We shall treat pro-

cesses of "growth," "decay" and "competition" and see how the same -basic

process governed by the same differential equation is given different disguises

in the different sciences. As we encounter such special Instances of a general

principle, we cannot help in retrospect but See a touch the comic in how

for each specialty We veil even the basic mathematical terms in esoteric '
- .

labels, and a touch of the pathet ,Lc in how laboriously we relltelop the same

basic mathematics within specialdesciplines'through ignorance of the generality

of the ideas.

The dissemination. of a good story byword-of-mouth will be our primary

example of a growth,process. So we shall take up the threads of the Intro-

duction (1 --3) and see how the story of Helen of Tioy.cay hay been passed

along until you lieard of M - -or how you could have heard -about the calculus.

We take'uti other threads of the Introduction and see how the basic unathematical

model for the spread of stories is a pattern for other processes like that of

'remembering and forgetting isolated facts. We go on to show how the model May

be altered to give more realistic descriptions of phenomena.

We are telling a story, a story about stories. We are not tryineto

teach science or mathematics, but to tell how the two are interrelated. Read

our story through at one sitting. You should pay little attention to the
I

specific fine Points of the mathematics or the individual sciences. The

mathematics will be made prgise in the exercises and the science may learned

at your own need and pleasure. We*cannot always be amusing; the same equation

which descri' the broadcasting of a good joke serves also to describe the

propagation of vicious gossip or the spread of an epidemic.

The exercises for this section are placed at the end to avoid inter-.

rupting the train of thoUght. -t
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9 -2. A Model for Growth. The Spread of.a Story.

,

Once upon a time, (time t0) I told a number (No) of friends a story

abOut my good friend Al. Months later (time t) someone ,came up and asked

"Did you hear the one about Al?" Since I had started the whole business, I

d. Tt have to listen. Instead I asked myself,."How many [N(t)] people have

now h and the story about Al?"

How many people know the story about Al? Good stories spread, and this

was a good one; the number of people who know it grows with time. .The number
1

N(t) of people who know it at a time t should be Troportiongl to the
.

original number No who.were told the sttry at time to --to the N0 story

tellers who couldnTt keep-a good thing to .themselves. The older .the a4ry,

the more people know it. Therefore N(t) increases with the length of time

t - t
0

that the story has been circulating, as well as with the number of

people available to spread it. If' N(t) people know. the story at tiA t ,

how many N(T) know it at a slightly later time T ? c7t-,--is plausible to ex-

pect that the number N(-:) - N(t) of people who learn the story in the inter -'

val [t,-r] is approximately proportiop;ato both N(t) and to the smalltime

interval: T - t We accept these ideas as the initial assumptions, and express

them mathematically, in the form

( 1) N(T) N(t) = A N(t)fT t] ) N(t0) =

where A' is a positive constant-- the growth coefficient. (Have we left out

anything? Yes. WeIll discuss that in a later section.)

Accepting (1) as an adequate model for.the change in N over a small

timeinterlral still does not tell us how N(t),-is related to the initial

value N
0 . To determine this, We let the time interval approach zero and

thus replace (1) by a differential equation, and then integrate over -'t

to obtain N(t)- in terms of N0 .

From Cl) we have

( 2)

11(T) - N(t) A N(t) .
T - t

If we discount the fact that friends come in integral packages (usuplly)'and

go to the limit as T approaches t , we obtain

(3)
dN(t) - A N(t) ,dt

N(t0) = No

Equation (3) states that the instantaneous rate of change of N is propor-

tional to N this is the basic equation for growth. Later on, we will also
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9-2

aorcider the case where A is negative; with .A negative we have the basic
.equation for decay. (If A 'bis zero, then N is a constant, and there is

nothing to talk about--neither for potential story tellers nor 'for us,)

For convenience in all that follows we take to =°0 as the original time:
Thu? (3) becomes

d
- A N(t) , N(p) =(4)

dt
t)

NO

But the conditions of Theorem 8-5a are precisely those of (4). We conclude
that

(5)
0 I

N(t) = N eAt
0 N = NCO'

where t is t-he time that 5 el psed since'the start of the process.

-FroM.Equation (5) we se -- N increases beyond ahy bound as t
approaches infinity, which is tot realistic for.what we,know abOut story
telling (and other growth processes). Later on we consider amore realistic
model. The present model is incomplete and should be restricted to moderately
small time intervals:

We have told a story'about stories to get to .(5). Now that we have (5),

we recognize that the result has other interpretations and that the-analysis
c.has other apnlica,,ions. Equation (5) provides an elementary model for the

growth of timber and vegetation, the growth of populations:(people, bacter-ia)/

the growth of money in banks (generous ;banks where they credit the interest. to

the capital. instantaneously), the growth of a substance in the course of.a,_

chemical reaction, and so on.

We can-now answer such questions as:

IIf I tell .2r people the story at t.= 0 , and_if the constant of 'Pro-

portionality in (3) is A=. 1 then how much is N(t) at time t = 7- daySZ
The answer from (5) is 2e7 or approximately 2193 ; thus more than 2000
people know the story a-week after I started to spread-it.

. If I Ceposit. $10 at 5% interest per year and the bank adds the

interest to the original amount-continuously, then when will it reach $20'?
For A =

1 it follows from (5)-that log() = (-2-)-00 10 Thuslap

t = 20 log 2 = 20(0.693..,) .= 13.9 years.

a
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9-3. Model for Decay.

(1) 3adioactive,disinte
..-.-
s4-='.The -same considerations that led-us to

9-3

our Simple model for growth annly'lly to the. analogous model for decay.

We take a negative constant fProportiOnalitY -A in (3) of Section 9-2-to

correspond to N(t) 'decreasing 1n'time, an apply

(1)
dN(t)
dt

= -A N(t) N(0) =

N(t) = Noe-At !

to the problem of4radioactive decay. .Different radioactive substances dis-

integrate at different rates corresponding to different values of the decay

coefficient A . It is convenient to express the coefficient A it e-ms of

the half-life of the substance, the time it takes half of the initi I amount,

of substance to disappear. (Why not the whole-life?) If -r is the half -life

then f m/( t(e
-

so t

Ner) e-AT . 1
No

=

I

-log log 2 - 0.693
(2) T - -A A A

Half the material N O 1411 be left at time T , one-quarter will be left at

time 2T , etc. When will it all be gone? We see from (1) that in order for

N to approach 0 , t must annroaCh infinity (and this is why the whole-life

is .a useless measure):

Let us consider a spelbifiC example. The half-1.1fe of radium is about

1600 years, and the corresponding decay coefficient A ;is
.

0.6
= 0,..000433 per year.

00

If we start with some given amount (NO) and wait a hundred years, we get

log /77.- z -0:0433 and conseouently N z 0.958N:,u is the amount left. Thus

0

only 4.2% disappears in.one huridred years.

The basis for.annlying (1) to radioactivity is statisti$al, i.e., it

holds in the sense of an average. Although the physical process is governed

by probability, and-we cannot tell when any one atom will disintegrate, it is

quite useful to determd,ne the mean life-time per atom. We start with NO

14-99
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atoma at t = 0 and end up with 0 -atoms as t approaches infinity,: -and we

are interested in the average length of time that an atom exists.

:

. and

f n1 atoms disappear at time tI' n
2 atoms at time t

2 , etc., where

k

i=1

t
1

< t
2
< <.t ,k

n = N
0 then the mean life-time of an: atom is the average value

ru. 44',.. k

No a. a.

1=1

If the total number of atoms present in the interval (ti_i,t1) is Ni , then
N
1+1 is the number present in the interval (t. t ) and

We then have

n. - N-
I i+1

T, N1+1 ) -

'Now, as we did in setting down the differential Equation (1), we blur the

conception of radioactive decay as the result of individ.onl instantaneous

disappearances and treat tie relation'thetween t and N as though: t were
given by a continuous function of a real variable N , althouth, in fact, N.

-
is a discrete yariable and the.relation is nota function. If t were given_

If we consider N as a function of t and take a microscopic approach
in which the;:disintegrations of indi-Adflal atoms are observed, then N is
piecewise to N

i+1( .

If we microscopic approach in which.the amount 2.1- substahce is measured
in gr even in millimicrograms, the disintegratn of single' atoms is
insignific and the difference-"between the true function t=j-N(t) and the
continuous decreasing function t --0-N0e

-At
is ignored; Thus, we take here a

point of view which should be considered in the light of' the example of Section
2-1. In Section 2-1 we pointed out that a poor_choice of scale may conceal
features which concern us. Here we observe. in contrast that a proper choice,

uof scale may help us di'sregard small features which distract and may permit us
to treat by simple analysis &:problem which might otherwise b xtremely .

difficult. For many applications, a suitable choice of scale s vital.
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a continuous.function.of, N. we could:,X-Ogard the preceding sum-as 4 ;:°"

h"(w1th te partition Points N. given in reverse of the usual (:).del"'.c.

gc. .. , % l 1:
Thug 4111 our continuous model we define the inean.lifetime as

(3)

Now we can express the mean

From (1) we have

CIO

0
T = - 1 ir t dN .

N0

Pa.

lifetime T in terms of the decay coeffioiePt

,t

1
N
N

t - - logA
O.

Using this expression for t 'in CV we may integrate EXercies

also see Example 10-2f and EX'ample 10-4a) to obtain

(5)
1

= -

Thus the mean lifetime Is the reciprocal of the decay coefficient.

We have a model for simple radioactive depay. What.is left after, ell a
4q414

disintegrates? Many things, including "daughter" atoms which can also (3---

tegrate. Later we-discuss the-decay-of the daughter population as we2.1.

+-e'
The simple; decay model we have been considering'onSidering also describes erse-/

features of many other phenomeha.. For example, within the same Matherac'

structure we need chan.Ee only,the name of- the.cha.racters in order fox
.f

-11'e"0

,. ).'

resultS to'apply'tO-the molecUleS:Of air. in 'your lungs. Suppose .that PO 6

0

# ---
the total' number of molecules. present," ZF(t) is' the number' that have net

11

.

collisions by time t. and that the mean'time between collisions is T '.

Ne6):
.

,1-101
Then , the probability that any' one molecUle goes for time 't 141

No.
, .

a collision, follows directly frOm (1) and (5):'

N(t)
e .
-t/T

N
C.

(6)

4,

We have the same ecuation as before, but, the symbols now play 'differen,t _ .,

1,11/

physical roles, and of course the over -all plot is quite different. Wey'e ,f
. _

to continue the presentstlp we would require much additional structikre"
.

the mean velpcity Of the molecules is v , then .4k = Tv is called the pleall
,

-fi-ee path- -the. average distance a molecule travels between collisions._ cc"'
-

cept basic to statistical mechanics, the theory which bases, the physic .c-
11..--

perties of matter on the motion' of molecules.
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9--3

There are- N
0

-particles per unit -volume-of the Incident beam and nothing

happens to them until they encounter the medium that starts at x = 0 . Then

as .tal*Eleam penetrates, Its -lighter particles hit the heavier ones of'the

medium and go off in other directions: particles of the incident beam are

lost to otherdirections'byscattering. Thui. N(x) , the density of particles

in,the incident beam at a distance x within the medium'is less than N
0

this attenuation is governed by-the scattering coefficient per unit length A .

(For other_processes, density along the beam mar attenuate because its particles

combine with the heavier ones of the medium.)

The principal characters in the above are-particlesa loose characteri-,

zation than can stand for'electrons, protons, etc. If we now relabel N as

energy density per unit volume or intensity, then the same plot also holds for

light-rays, x-rays, ynrays, and all other kinds of waves meeting appropriate

obstacles. For the particles, we mentioned one physical parameter, the mass

m and spoke of. some particles being scattered by those of more mass. For

.waves, the appropriate physiCal param&ter is, the wavelength h , e.g., for

'equally spaced ripples on a lake the Wavelength'iSthe.diitance:between

successive crests. The_longest wavelengths'asSoolated with visible light give

the sensory impression called "red" and-they are about,twiceas long.as,the

shortest of the wavelengths associated7.with visible "blue." From bluelight-

to ultra - violet, to x-rays to -r-rays we go to shorter and shorter electro-

magnetic wavelengths; from red light tdinfrared ta microwaves to radio waves
. -

we go to longer electromagnetic wavelengths. The wave picture is not confined::

to electromagnetic effects, we can also.talk'about sound waves, water waves,

and even the waves of "probability. amplitude" associated with electrons,

neutrons, and other fundamental particlei.

With N for'intensity,(1) in terms of an appropriate A describes the

attenuation of.a beam .of sunlight penetrating a cloud or a layer of fog, etc.

We can use (11 to determine the thickness of lead_ shields to be used with

medical x-ray eqLpment,or with a nuclear reactor to reduce strayradlgation

to actolerable value- We.could diScuss.any of the above in greater detail but

.instead let us talk about something more colorful.

Let us consider Rayleigh's theory for the color of.the sky. The v'ssential

feature of sunlight is that it it made up of light.of different colors from

red to blue (the visible spectrum) with associated wavelengths 1..

r
to X

b

where ,approximately)

(3) -X =
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The wavelength N. of an. intermediate color (orange, yellow, green) satisfies

r .% >X.b Rayleigh showed that when a beam of light of wavelength N. is
scat:lered by the molecules of the earth's atmosphere (mainly nitrogen and
oxygen),

(1) with

the intensity N(X,x) along the beam is governed approximately by

(4)- .J5,(%) =

where C is independeht of X. (In the chapter on optics and waves we
discuss this in detail.)

From (4) and (3) we have

and consequently

(6) Ir(%b'x)
N.(N. )b

IF
A(kb) xr4 (2.13)4

_ =16
r

b b

-16A(x.r)x rXr'xi16
No(Kr)

Thus the blue component of white light is. 16 times more-strongly attenuated
than the red.. A'beam.of. white sunlight reddens with penetration into the

earth's atmosphere because -it IoSes its blue component more rapidly than its
. .

red. The blue that is lost from the sunbeams by scattering gives the sky its
blue color in directions away from the. sun. The direct beams from the over-
head sun are still relatively white because they have not:lost that. much blue.
The reddening of the direCt beams is-bestseen'when_the'sun- is low on the
horizon and its'rays traverse maximum distance through the scattering atmos-

1,pher the.clouds in the math-of these rays are, bathed in red. Such colored .7
effects and other scattering Jphenomena- arising -from water drops, dust particlei,
and other impurities in the atmosphere -are more fully discussed in the deeper .

researches of the poets.

(iii) Mother-- daughter reactions. As mentioned previously, when a

active atom (the.mother atom) disintegrates it may give rise -to a .daughter

atom which can. also-disintegra?. Let us-now consider such mother - daughter
re ntions.
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Suppose we have

(1)

The rate st which the

are cNeated., But.the

mother atoms which decay at the rate

mothers

dN
13,-;

=
dt 1 1

N (0)
1 N10

-4wf

decay equals the Agte at which the daughters

daughters also decay on their own. If N1 mothers with

with decay coefficient A
2birth coefficient A give rise to N2 daughters

1 2
the rate of change of the number of daughters is

( 2 )

Equations (1) and (2) form

-N1 and N2

Let us first consider

dN2
dt -.A2N2 '

given by

N
2
(0) = 0 .

a pair of Simultaneous equations for deters ining

t
a limfAing case such that the mothert decay very

slowly compared to the daughters, that is Al

This corresponds, for example, to the behavior

----radium mothers, the half-life is approximately

Al .1715:
per year. The radon dau*hters,have

A2 1: per day = 360 - it per Year 90.per year. Thus A2 2:'144,090A1 and.
2
we may holdthe_number.-Ni of moth6rs constant for the purpose of obtaining

a first approxlmetion of N2t)- .

. , Equation (2), with conStant,Thas the general form which. appears

repeatedly- in.this chapter:

is very much smaller than A2. .

for the pair radium-radon. For.

1600 years:

a half-life of about 4 days:

This can easily be recast

dx

as an equation for the inverse function:

dx 1
dY

Applying the Fundamental Theorem we obtain

x
SaY 1 u

where a and y lie in A interval'where g u is continuous.

will be applied throughout the chamter.(see-Son 109).
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This we regroup t4e`terms in (2), replace t by u , and Integrate from

= 0 to tl

dN.
- -A

2
du

.

0

2
-A2

O
A
1
N1-- A

2
N2

_subject to the approximation that Ni is constant. We obtain

log K(A1N1 --.A2N2) = -A2t

whence,

K(AiNi ) = e

where the integration constant. K is to be determined from the initial con-

ditions at t= 0 . There are no daughters at t = 0 :

wherrce

K(A1N1 - 0) = :e ,

1K - A
1
N1

Conseqi.kently, the number of daughters at time t is given appNoximately by

1
A t -A t

N
2 = --) N1(1 - e - .)

Ar- 1
N
1A2t is tvery large, then N

2
approximates , i.e:, the number of

2
daughter atoms approaches a fixed fraction of the relatively inert mother-sub-

stance. (This is called long term or- secular equilibrium.) What does this

mean? It corresponds, for example, to the case where N2 is a gas (such as

'radon) in a ,closed- container, and,a,situation where just as much N2- 15

/created (from N1) as'IS destroyed by radioactive decay. Thb birth rate of"

dN
N2 equals its death rate, so that

dt
2

our result as t approaches

infinity. in (3) is thus the same as that obtdl.ned by 'equatin 2) to zero.

Equilibrium corresponds to.

dN \
2

; 142 kdt
2
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Now we take' into account the decay of the-mother pppulation in the

Original Problem:. We substitute the solution of (1), i.e.,
Alt

1N1 = N10e Into (2) to obtain

(5)
d:N -A t

dt A2112 = A1710e
1

The solution of (5) for N
2

is left as-an exercise (Eiercises 9-3,

No. 17). Taking N
2
(0) = 0 we have

(6)
A -A t -A t

A2 Al
1 N10(e 1 - e 2 ) -
-

9-3

which red'uCes to (3) if Al is very much less than 42 , and Alt.= 0 . In

distinction to the approximation (3), the Present complete form N2, of (6)
vanishes both for t'= 0 and as t approaches infinity; consequently N2
must have a mBigmum at a specific value of t .

(7)

If we differentiate (6) wf.th respect to t we obtain

dN
2.

A
1
N
10

-Alt
2t-'

J-

dt Al A
2

(

-1311e
+ A e )

This vanishes, and N
2

has a maximum, when

t A, (Al A )t-A1 1 2
Abe =A2e , A2 e

From the logarithmic form,

(8)

we obtain

log Al - log A
2

A - A
2

as the-time when the number of daughters is largest. The'maxiMum number of

= N e -A2 t Al N eio-Alt
A1

2
A
2
)-n1daughters is N2 as in (4.

(iv) .Biology. The basic neural process is the excitation and propaga--

tion of nerve impulses initiated by a stimulus. One way of studying this

process is to-excite the nerve ft :beta -57 an electrical stimillus V (the

voltage associated with a direct. current, the discharge of a condenser, or an

alternating current), and to measure the characteristic effects. The voltage.

V must be greater than a threshold value V
e '

the minimum value of . V.-that
. .

is just sufficient to cause the effects.. A simple model describes the onset
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of the'effectsin terms of a local latency N(t) (also

function")

(1)

such that

4 ,

dN(t)
dt

KV(t)
I

AN(-)

called the "excitatory

Where K is the growth of the latency per second per unit stimulus, and A
is its decay coefficient. Thus the growth of N increases with the magnitude

of the stimulus'and decreases with N . (The function N may represdnt the

difference between the concentration of an exciting ion at an electrode while
V is_ applied and itsmconcentratiori for V = 0 ;) If li(t) reaches (or

exceeds) a threshold value Ne , then the nerve becomes excited (and a

characteristic physical-chemical wave with an associated electric potential

Propagates along the fiber).

(2)

The simplest application of (1) is to the situation-

N(0) = 0 , V(t) = V = constant

which corresponds to the application of'a constant stimulus at time t = 0 .

A comparison with Equations (2) and '(3) of-Section 9-3(iii) yields the solu-

tion of (1) and (2):

( 3 ) -

N = q(1 - e-±)

Thus as t approaches infinity, we see that' N approaches its largest'value

Nmax A= KV . Consequently excitation will occur if

( ) ,
max

.Icy

A . e

or equivalently if the stimulating voltage satisfies

(5)

,where V
e

is the threshold stimulus mentioned.previousiy. (The. value V
e

is

knoW.n as the rheobaZe the thresholid or liminal value of the- constant voltage'

necessary for extation.)

AN

K
eV > = V

Assuming talat V.> Ve :(so that excitation must occur), then the nerve
-becomes excited at the time t _ when the Value N- in (3) reaches the

threshold value:

-At
(6) N

e A= LE(1 e e)

or equivalently,



CT)
1 V

t =,1- log
e A V - V e

_ -

which is'the latent period that elapses between the establishment of the con-
,

start stimulus and the release of excitation-. If V < V e , no value of to

exists. If V = V e
/
then the latent period to approaches infinity; however,

this is an inconvenient length of time for measurement. A more convenient

measure is the value of te. corresponding to V = 2V'e-

(8) T
log 2 0.A 623

A

This is known as the Atnaxie r --the latent time before excitation for the

case of a stimulating .voltage equal to twice the threshold value. .

What have we been doing in the above? Essentially we.haVe-changed the

names of the concepts introduced for radioactive decay and showed that much

of biology, physics and chemistry involves the sane Simple ideas. Let us now

generalize the mathematical development to nonconstant values of V (1).

If V is a function of time, we solve Equation (1) in termS. of - = V(t)

by proceeding essentinry as for Equation (5) of Section 9r3(iii) (see 17)

to obtaih:

(9) N = e
- At N

o
K V(t)

t .` At

1)e 1dt

(9)If N(0) = NO = 0 , and V is a constant, then (9) reduces to (3).

If we stimulate the process by diseharging a condenser of initial charge

capacity C, through a resistance R .1 then (see'Exercises 9-3,,No. a(a))q

(.83e-t/CR
(10) v(t)

-- ...

Substituting 411"1 (9) and .integrating, we obtain, for N O = 0
c.,
?Do

(11) N = [ R
] ce-t/CR

e
-At

]

..,,,,,

which is simply Equation (6) of Section.9-3(iii) with different labels. Thus

the excitation function N has a maximum when

(12) t = [1.-CR
] log(.ETeCRA

.

, .

If the maximum-4alue of N is2recisely the threshold value then t of

(12) is the corresponding latent tiie from onset of stimulus V to release

of'a wave of activity in the nerd The corresponding initial' voltage
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V(0) = g is the threshold initial voltage of the condenser for excitation to

occur. If the maximum' does not%equefl.the threshold, then we relate the con-,

P denserss characteristics to the threshold by equating N in (ii) to.
e

in.

AN
(6).and using Ve = K.

to eliminate K

If we stimulate the process by a sinusoidal alternating current, then

the applied voltage is

(13). V(t)

312

where. V0 is the constant amplitude.. -Substituting in (9) for 'N(0) = 0 we

.have

At
1(14) N(t) e

-.AtKV e sin wtldtl. .

t- 0

We shall learn how to handle the new integral in Chapter _TO (blso see Chapter

8, Miscellaneous Exercises, NO. 19b); here we simply quote the result:

this formula

(14) is

(15)

e
tAt

sin cotdt
cos wtc--+ Ae

At
sin wt, A

i -
-.we

0 0,-12-i- A2
. .

may be checked by differentiation Consequently the solution of
r

N(t)
-

2
w -tqk

At,
CA sin cot - co cos cot +we ) .

(15)The exponential te'rm of c15) is significant only -For smR-11 values of t

As t increases, e t
becomes negligible: and (15) reduces to

_ (16) .

KV,.%

wcos cot)N(t) osin2 2
L., +A

This periodic approximation has equally spaced extrema in time, which-occur

when

dN 0
(17)

KV w

dt
(A cos wt + cosin wt) 0 ,

co
2 + A

-1 -A
(LT)

Substituting these values of t into (16), we find that the maxima of N

equal'

(18) ti

KV
0

max -

+ A
2 1/2



If we equate sax to the threshold value N
e

, then VD of (18) corresponds

to the threshold value of the amplitude of the sinusoidal stimulus, say Voe;'
..e .. .

however, the propoz7tion-between V206 and L? + A2 has very limited validity

in nature.

These examples cover most of the modes of stimulation which are likely

to be used in the laboratorY-

0

4 -
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9-4. :Bounded Growth. Competition.'

-(1) 'A more realistic story for

3

the spread" Of stories.. . Let. u-s return to

'our. model for the .spreading of stories (or of dIseases, or of ink blots), and

intro41;.ce more structure. Previously we assumed that the rate of change of

the number of people who knew the story at time t was -proportional only to

the number itself: -

(-2-)

aNCt)
A N(t) , N(0) = No .dt

Th;Trs is all right as,-far as it goes,. but It ignores the fact that there is'an

upper bound 'Csay K) on the number available to hear there,are finitely

malty people on earth, sothe dontt talk your language, some dontt talk at all,

and some never listen. Furthermore; although we may tell the, same person the

same story a dozen times, each listener should be counted only once.

In view of these considerations, we replace (1) by.

(2)
dN _.AN(K - N1
dt K'

N(0) = No

._.

where N = N(t) know the story at tine t an are-available to spread it,

and K - N .do not know the story, have good hearing, and are enthusiastic

listenersand potential gossips. The factor is the'fraction' of-the
. . K . .

. : .

Population available for the further spread of the stb-. 'tividtng both sides'

of (2) -by K , we introduce :r = 6.8' the fraction of the available popula-K . . ,

*tion that know the story, and, work with the conditions:
4

( 3 ) = Ar(1 - r) ,

N
0dr

'dt

c

where r
0

is the fraction at -t = 0. Our original model (1) yielded an

unbounded increase in -N as. t approaches infinity. What-does the present

model,give?, We expect that r = 1 , that Is, that eventuailyeryone

knows the story. (Even this model is far from complete, but at least this kind
drof result is accAptable.) From (3) we see that approaches 0 asdt

approaches 1 that r. stop's changing when everyone knOws the story.

From the discussion for Equation (4) of Section.9-3(iii) wemay surmise that
dr.
dt

approaches 0- as t approaches m but .let us solve (3) and see the

details.,

dr
From (3), we write f r ) - jrAdt1 , where r, and t

1 are dummy
r
1
(1

variables. Since

1 l
.r(1 r) r + 1 - r

512

3,
/7\



974

(for.. - fIth decompositions of fractions into partial fractions see Section.10-5),

we have

+ 1 1] dri = log
r
1

1r
I

Solving for ' r , we obtain

1 - r 1°6 1 r - log ,
0
r

- At .

(4) ,

r e
0

1 r
0'

e
At

- 1)f

rewrite (1+) as

If t is snall then the denominator approximates unity and r = r
t

in accord with the simplest model (1). On the other hand if t is large, we
o

4

0

(5)
0r--

-At
-0

(1 - r
0
)e

;

from -which we see that r approaches 1 .as t approaches 4J0 .

-4.

The above model indicates sone of the essentials. but it is stil in-

conpla1te. However, it is good enough to'show that although you may still
J

have not heard the story about Al (see Appendix 9); you should-by now have
: .

heard about Helen of Troy. .4

(,ii) Growth and competition. A more general equation, which

. as special ce.ses Equations :1) and (3) of Sectionr9-4(i)"is.
: =

.
.:-.dN-

(1)
dt

= AN - BN2 , N(0)
.

includes

This is- called 'the logistics- equation'. We stilall A the growth coeffi-
,

. . .0t.0 . ,cient, and we-may call.- B the braking coeffica.em-becauseth -13N2.term

growth.slows the ..growth. The equation of unregulated growth, = ANI, permits ..

N. 0

to increase beyond any b5)1.141d as t approaches co:; Equation-7(1) doffs not.

What bound does (1) impose on' N ? We see that = 0 when as'
.

-; dt' f

.the corresponding value- NI = must be the-equilibrium
-33 .

iin Sectioa 9-4(i):

value which N approaches as t approaches infinity.
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A model foz' the growth of populations of different countries useClone
dNtime was essent5.elly = AN ,-and this led to dire predictions as to the
dt

fate of mankind (Malthus): Then a more refined model, essentially (1), was

introduced (by Verhalst) and apliropriate Ats and B2s 'for various countries

were obtained tPOW their earlier census records; the projected growth curves

were remarkab1y.accurate (at least for all countries except Verhulst2s--

Belgium): The In1.111d-tip of population growth arising nom A has been in-

terpreted as)dtie to cooperation,between people, and-the slow-down associated
A

with B as die to competition between people for limited resources: The

competliion 4s1.111aption can be made quite plausible: if p is the probability

that a person 14AlltS a particular thing, then. p
2 is the probability that two

_persons want it eimaltaneously; if there are N persons, since there are.
N(N - 1) possible competing pairs then the total probability of competition

2
2 N(N 1)

2
is .approximately proportional to N217 which then becomes a

- . *
plausible meas74re of the simultaneous desire or of the. competitiVe urge.

However, the zeeel-- Trrr regarding:AN- as a measure of cooperation is not

Clear. A prc-z.)0f-lity ir..te.:-i-etation similar to 'that for BN2 indicates that

AN corres7...)nts Pc7--ons acting coquite independently of each other; this

may'well -7c:: - C:'::L 0 cooperation as one can expect from a;grouri, and SMSG

authors have -...::erefore taken the guidingTrinciple for preparing their

textbooks.

th as

==.

Let 1..7 solve (I) by the same procedUi-e w used gor.(3) of'Section
_re&a.The steps ar, e55ntially the s=e,:.and%we get.

loc.;

and conseauently-

(2) N

No
log -At- aN

0 -

, NB+ N e
At - 1)A0

N
0
tB -

If t is srml7, then the denominatof is approximately 1 + NotB = e ,

and (2).,rediltes to

(5) N e
t(A-,BN

0.
e
t(A-D)

-0

7 Note that tkqe 3-i7near term.. can be subsuMed in the-growth
differentiai:eciAti_od-.

erm of the'



where D = BN
0

is introduced as an abbreviation. Thus for small t' the

result has the same form as for the dimple model'in terms of the growth

coefficient A-- D . On the other hand

(20 lim
A=

AN
0

, .

Ain accord with our guess that N = 57 must represent the long-term equilibrium

of the population.- . 3

(iii) . Forgetting and learning. The previous ,sections also provide a

simple model for forgetting and learning, at least of unconnected chains of

nonsense syllables. invented by psychologists for test purposes..:Thus (as
*,

proposed by Von Foerster ) we Consider-

dN
at AN +'BN(N

0
-

where N
0

is the initial number of items memorized {dates, telephone numbers,

unconnected-theorems, etc:.),, A s a forgetting coefficient, and BN
0

is a
OP - .

memorization coefficient. 171-11e.taiobn behind (1) is that 'your head is.,
. /

originally filled with No ."carriers" of informat1on;Ame-caYriers (AN) 7'"
. .

just 1°Se-their information foreVer; some (BN) lose i_ nformation in' the

sense
. -,-- .

p.-
that theY IDY'ss information .bn.to the empty N - N carriers.

Q...
.

.

Integrating (1)-(the present (1) is `same: EquatiOn CI) of
.

9-4(i.1) with a newgrowth cOefficient. BN
0

-.Al we write the solution. of (1)

(2)
N D -
N D - Ae ' D NOB

The remembrance R = 1-im
N

defined by Von Foerster) depends critically
(3

on the magnitude of A . If D > A , then

(3) R =D-A=1-

,
.

On the other hand, if D _- A then.

,

H. Von.Foe'rster, "Quantum_Theory of Memory," Transactions of Sixth
Conferende on Cirbernetics,,1950, pp. 112-134.

8,
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CIO R = 0 , (31 <

DThus the remembrance of things past is zero for A < 1 , and then increases

towards unity as -1--A increases from unity.

(iv) Chemical reactions. Suppose we have a chemical substance with

Initial concentration C (gram-mAlecules per-unit volume) which is reacting

in time with something unimportant and plentiful to form another substance

with,...concentration N . The rate of change of N is proportional to the

concentration'of the original substance at time t 2 that is, to C - N :

dt
= A(C -N) No = 0

where' N is the concentration of the new substance and A is called ihe

4
reaction rate. Equation (1), which is known as the law of mass action, is

essentially the special case.of (2) in Section 9-3(iii).for ,A1 much smaller

than A
2

:.'.by inspection of (3) in Section 9-3(iii) the solution (i.e., the

concentration ,of the solution) is

(2,) 'N = C(1 - e
At

) .,
EquivalentlyYtquation cly is a shifted version of the simplest decay equation;

setting M.= C - N in (1), we obtain

cThi = -AM ,M0 = C-- N = C
dt 0

which is the same as Eauation (1) of Section 9-3(i) and leads directly to (2)

for N=C - M .

Fi-om (2), we see that if t = 0 , then N = 0.. Further, lim N = C
t-Tco

so that all of the original substance eventually reacts. We may isolate A

in the form

1A log,C - N(t

which you may well use in a later chemistry course to aatermine .A by

measuring C , N ,-and t .

In a -bimolecular reaction, we have to different °substances with initial

concentrations Cl and C2 which react at a rate determined by- A to'Dro-

duce a -third suSltance whose concentration is .N :

(4)
dN
c -A(C1 N) (C2 N)
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This is just another variation of the logistics equation (Equation (1) in

Section. 9-4(11)), and the solution can be obtained from the previousr.,:ones.

However,- tóemphasize this basic integrati6riprocedure, we again integrate

using a .decomnosition into partial fractions:

dN 1
- N)(C NT(C - Clf - C2

1 I 1
logC At K,

C
2

N C
1

-
1 dN -

Cl
2

C C
1

-
2

where the integration constant K is obtained from the condition N = 0 at

t = 0

Z.' ."

Ci
log --

K - 2

Thus

Cl - C 2

1
C2 (C

1
- N)

(5) A - log
"t(C

1
C
2

) C1 (C
2'

- N) '

and

- N = Cl (c -c )4.-,t
1

(c,

1 2.

- 7-1=.- .e
,...,

1-c
)At

- e
2

0

The case Cl = C2 = C may be obtained from the limit of (6) as. C

approaches C
2

. Equivalently, we start with

(7)

a& integrate:

/AP

The'Constant equals

(8)

K

ddN
= A(C - N)2 NO 0 ,

t
Q.7

jr dN
C - N

1 = At
(c - N)

= -1
'
and therefore

C

C At1 .11

t C(C.0 7 N) 1 -4- CAt

The ecuation for opposing unimoleoular and= bimolecular reactions has the

s form

(9) dNrt- = A(C N) BN?
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tIP
J'e-:

We do not diScuss this case but merely

we introduce ..-'

1 4- K
%

(10) D =2B ' 2 -.

A

lk
in order to rewrite (9) as

7-7 dN_
L:,13 N)(D2.- N)

dt

We now have the form (4) with the previous A , C1 , C2 replaced by -B

,\D2 , and the corresponding results. may be written down by inspection.

could go on to higher-order reactions of the form

(12)'

dN
A(Ci - N) (C2 -

N) C3 -
N)

(Exercises 9-5, Nos. 1-3), but we must finish the story.

(

reduCe

1 - K
2B
A

it to a previous form. Thus

, K =
4CB
A

e'r
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9-5. Conclusion.

(i) Sociology. Now we could rehash everything. We could change the

names of the symbols in the previous equations and talk.about profound

sociological problems. Instead we introduce a more_general model for the

growth of populations, one which includes practically our previous

eqltions as silbcial cases, and scarcely talk at-all.

In Section 9-4(ii), the growth of a population of N individuals as
. .

described by 1

( d
(1Y* - BN2

dt

where A is the growth coefficient, and B is the braking 'coefficient. Let

us now introduce,more structure. We'may write A = a - 0 , where a is the

birth coefficient (the birth rate per:individual) and where 0 is oneof

two death Coefficients. If we assume that the population is confined to an

area S , then we may write the otherdeath coefficient as 7 , i.e.,.the

deathrateperindividualCN increases as S decreases or as N increases
S

-(no room to live). Thus the total death rate is (155 +.S )N . Using 7 = 7
instead of B (merely for est, etic reaoons) we rewrite.(1) as

(2) ti
dN = AN - (0 7N)N .

A more general vodel (considered by Rashevsky ) is that for the growth

Of a pop171P.tio consisting of two types of iridividuals with different birth

and death, characteristics. The total population 'is

-(3)

and N
1

and

(4)

N = N
1

4. N2

are specified by the sim-_-taneous.equations

dNi.
a + a N

1
+- N )]dt 11 12 2 2

dN
2

.6 -dt--- a21 -'1- a22N2 [32 -1-72(N1 + N2)3112'
. .

where the. aIS , PIS , and 72s are all constants. -The terms proportional to

a represent the contributions of the two grolpS'to thd birth rates; .the death

ratesthatddpendony.(with. i = 1 or. 2)\3epend-not only till .Ni_,. but
. _

also on the total population N1 +.N2 = N '. The systeM of.E:quations_(4)generaz

-------_lia4 praAlcP17y all the other equations considered previously in this chapter.
_-----"

N. Rashevsky Mathematical Theory of Human-Relations, PrIncipla Press,
Indiana, 1947.
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We do nothing with (4) in the text, but as an exercise obtain all the

previous equations that we considered and that can be obtained from (4) under

suitable restrictions. Talk about active irvAividuals and passive individuals;

talk about active and passive disobedience; talk about social aggregates,

freedom, crime, war, propaganda, etc. Write a book about it; call it 'War

and Peace.' .

(ii) coda. We make observations, we create models, we make predictions;

we make more observations, more models, more predictionwe day-dream and

jump to conclusions; we seek to verify our gesses, and keep the very-few

that pass the tests. By such means, by-a'miAure of measurements, mathematics,

and mysticism we -seek to "understand" that is going on around us. (If we can

predict and describe a process and relate it to analogous processek that we
- tr-

know about, we areAtontent--for a while.

-As we.apply mathematicso the various sciences, we -soon discover that

at a fundamental levItthere appear to only'a few different kinds of pro-

cessesgoingon.Theequationsarethesame,onlythee functiOns
and variables. change from science to science. The stages and settings are

_ .

very different, and the over-all plots varybut the sub-plots are.routine,

the actors go through the same motions, and only the names of the characters

are changed.
.
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EX92

Exercises 9-2

1. A colony of bacteria grows at a rate proportional to its population. In-

. tttally there are 2,000 bacteria and one day later, 5,000 . What should
the population of the colOny be after 5 days if it grows_unrestrictedly?

2. The rate of production of a given chemical in a given reac-ion increases
by 2% for each degree of increase in temperature. 'What increase in

temperature is needed to double the production rate?

3. Show -for any solution of Equation (3) that over fixed time period

the change in N is in constant proportion to the value of N at

the beginning of the period, independently of the initial time t .

4. Write the differential-equation for the growth of a bacterial population
which increases 2.5% every hour. If there are N

0
bacteria at the

start", how many are there at the end of 10 hours?

5.. The population of a city has been growing at a rate proportional to
itself. If the pOpulation is now 40,000 and 25 years ago it was
15,000 , find the anticinated population 10 years hence. .

6. Semi-logarithmic coordinates represent the ordinate on a logarithmic

scale and the abscissa on a uniform scale (see figure) .

10
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(a) The graph of y
b is given by a straight line on

semilogarithmic paper. Why?

(b) The census figures for)he total population of United States

obtained at ten-year intervals from 1790 to 1960 are gii4n in.

millions. as follows:. 3.93 5:31 , 7.'24 9.64, 12.9 , 17.1 ,

:23.2 , 31.4 38.6 , 50.2', 62.9 76.0 , 92.0 ; 106 , 123 , 132

151, 179 .,

Plot the population vs. time on milogarithmic graph paper. Over

what time intervals do the points appear to lie on a straight line?

Use Formula (1) to obtain a reaso able average value.of b for

each of these periods.

(c) Do the same for the census figures for the state of California for

the period 1850 to 1960 (figures in hundreds of thousands):

-0.926 , 3.80 , .60 , 8.65 , 12.1 , 14.9 , 23.8 , 34.3 56.8 ,

69.1 , 106 , 157.

(d)" Look up the figures for your own state in an almanac and study'

its populatic-3h-gxowth in the same fashion.-

'EXercises

If the half-life T of a radioactive substance is given in seconds,

Show that the fraction of the substanco decaying in one second is
log 2approximately . (Hint: Assume that T is a large number.)

2. Verify that-the half-life of a radioactiVe substance; is independent of

the initial time and the initial amount of the substanee.

A 5000 cubic foot garage containing a high concentration of carbon

monoXide is being flushed out by an air pump whose capacity is

1000 ft3/min. AssUming that the air mixture in the 'garage remains

uniform (perfect mixing), determine how long it takes ,for the concentra-

tion of carbon monoxide to fall to its initial'alue.
10

4. For.a small body-in air or liquid, the rate of heat loss is approximately

proportional to the difference in temperature between the body and the

surrounding medium.

A thermometer which registers 72° indoors is taken outdoors where the

temperature is 12° One minute later the thermometer registers 42° 4

(a) Obtain a formula for the thermometer reading r at any time t .

(b) That is the readinijat the end of two minutes?



EX9 -3

If the thermometer is left outdoors. how long.does.it takes to

reach a reading of. 180 ?

(d) On another day) it takes one minute out-of-doors for the

thermometer to drop from its indoor reading of 72° to a reading

of 32
o

. Since it is too cold to stay outside and wait for the

thermometer to reach'an equilibrium reading, calculate.the outside

temperature.

A thermometer which registers 70
o in oors is taken outdoors.: Five5.

minutes later.it registers 65° and t n minutes after it was taki

outdoors it registers .6-,2c)

(a) Calculate the outdoor temperature.

(b) Assuming the thermometer.remains outdoors (where.. th -temperature

is constant) when will itregister ?

.

o. A veterinarianiabout to engage in Surgery on a dog estimate that it

will take him .45 minutes tb complete the ,procedure.. If 20- mg. of

sodium "-pentobarbitol per kilogram of body weight is needed to barely

maintain anesthesia, if the half-life of the anesthetic is five hours

1 in dogs,and if .the dog weighs 20 kilograms, how much anesthetic

should doctor'48.dminister initially to maintain anesthesia over

the estimated duration of the operation? At the end of the 45 minute

period the doctor realizes that the dog is beginning to emerge from

anesthesia and that the surgery will take a half-hour longer, to

complete. What dosage of pentobarbitol should be administered.at

that point?

i 7.. Consider a cigarette being used as a filter for some component - {say

nicotine) in the smoke. For a linear filter, the amount picked u-a by

the filter over a small length is_

proportional to the concentration

C and to the length Lx..

Show that the ftltration equation
.4 -

is p.zhe familiar. decaY eauation

and that

dC7 -c7 ke

C-= Co e-

1:4.5--

[Note: We are assuming here that the cigarette has not-_aarnt.down

appreciably. For this case, we have am

ii

ving boundary problem which

leads to a partial diffeiential eauat"a_bik

523



8. Electrical circuits offer several examples of decay processesii. .The

fundamental electrical 'quantities are charge q , current

(1) I
dt

and Voltage or electromotive. force The. electrical circuit components,

resistors, condensers, and coils, have electrical properties measured by

certain constants, resistance R , capacity C,., and inductance L

respectively. The capacity of a condenser is defined ss the ratio of the

charge on the condenser to the voltage required to produce it:

(2) C =2V

The resistance of a resistor is definetas the ratio of the imposed

voltage-S-the curreht'iteproduces:

(3) R =-"T_ .

In addition, we need to know Kirchhoff's rule, that the sum of the

voltages across the, elements of a circuit is zero.

(a) If a condenser at voltage V discharges across a resistor, by
4

Kirchhoff's rule the voltage across the resistor is -V .

(b)

10

(1), (2), and (3) to obtain a differential equation for V

solve for V as a function of time subject to

V ="17
0

at t = 0 .

A coil resists change in aurren-:,

opposes the paisage of charge.

coil the current changes at the rate

dl -V
dt -L

the condition

the way that a resistor

__-:age V is applied to a

If we- impose an external voltage E (say by 'means of a battery)

upon a circuit consistingof a resistor and a:coil; then by

Kirchhoff's rule the sum of the voltages.is zero:, namely, from (2)

and ( 3)
. ,

whence,,

(5)

diE - IR -L
d

0
t

di E R 7
dt

524



Solve (5) subject to the initial condition I = 0 3t6' t =:0 .

(Hint: .Express the solution' as the sum of two terms,-I J(t) /

where is the steady current which would be .set upIf the coil

were not present, and J(t) is a "tralacten° term which represents

4c)

the effect of the coil.-)

If there is no external voltage and the current has the value

at t = 0 , verify that (-5) is the equation Of a simple decay

and obtain the solution of (5) under these conditions-
,

(d) Use Kii-chhoff's xule to derive the eqUation
. .

dE I dT
dt

- R crt, .= 0

where a source of electromotive force, E is connected in

circuit to a resistor, R , and a condenser, C

= I
0

process

a series

Determine I in. terms of t if the electroma-netic force 'E is

constant and the_current is 0 at t = 0 .

9. Consider the `differential equation

dx'
= a bx

dt

subject to the initial condStion

(a)

aX = x0 at t =

Show that the solution is given by

=4(1 e-bt) +x
0
e-bt

(b) Show that if x
0

= 0 then the result has the same form as- that

of Number-8(b).

10. .sume that the rye of inversion of raw sugar is proportional to

(b)

amount of raw sugar remaining. If after. 4 hours, 500 pounds

of raw sugar have been reduced to 200 bounds, how much ray sugar

will remain at the` \end of 12 hours?

Consider a chemically, reaction in 'hick the velocity of the reaction

(for rate of changeTin the amount of the substance consumed) is

portional to the quantity of the uncollsumed subStance at that

instant. Let
0

be the quantity of the substance at t = 0 and

quantity that has. been converted by time t . Show tha t

.x = x
0

(1 - e -k'))

where k may be determined from , aMount- of substance x
1

x

consumed by time

k = 1 log



EX9- 3

4

11. One dollar silver certificates (payable in silver on demand) are being

retired from circulation and replaced by Federal Reserve notes (pure

paper). Let N be the number of-silver certificates 'and M the.deumber

Of Federal Reserve notes in,circulation at time t and suppose that the

two varieties are uniformly mixed together. Suppose that-the number of

dollar bills passing through the central banks each day 1.5+- a constant k ,

and that.all silver certificates among these are replaced by Federal
.

Reserve notes. Suppose that the process is initiated at-etime t 0

when N N. and M = 0 , :and that the total number-of dollar bills in.0
circulation is held constant. Determine tl.:1,9.way N andtM depend on
time (measured in banking. days) and find the number of days-it takes tO
replace half the silver certificates.

12. The principle of dt..ting organic matter by radioactive carbon content

is Nsed on the observation that the ratio of the concentration of

radioactive carbon C
14-

to that of ,ordinarycarbon' C
12

in atmospl is
.

t
,

carbon dioxide is *maintained :at a constapt'lev"el because of continual
. _ ,

.-..

cosmic ray bombardment. An Oranismthroughout its life takes 1.1 '

_._... .

caron in,tisame. proportions, but after' death the relative amotrnt
,

of. C
1 ' ,, _

decreases.because of radioactive decay without replenishment.'

Let .r. be the half=life of C
14

. Show how to date an ancient timber-

if the ratio of CC2-4' to C
12

in the specimen is known.
4

13. The continuous model for radioactive decay used.here replaces the
.-

picture of discrete atoms disintegrating at random times. The utility,-

of such amo;e1 depends upon the involvement of a large number of atoms

in the mroCeSs.' Reflect realistically about the model. Is it true that

a mass of radioactive substance can never completely deCay? If not,

offer .a-reasonable estimate of 'the time of commlete disappearance of the

substance.

14. Combining Ecuations (3) and (4) of Section 9-3(i) we obtain for the mean

life-time in radtbactivf decay
4: .

1
rr+-

AN .A
log N dN N

0 0 .

, 4
The integral O 1og\.N ty.N is the suM of the signed areas of the

0
shaded regions bounded\ tl- by the graph., of y log x in the

following figure.'
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t

am

,as

(log No, N

/ Y
( N *loglog

y = log x

r

It is geometrically clear that the areas of the shaded regions are equal

to the areas of the hatched regions -4unded partly by the graph of

y =_ex . FroM this, calculate the-integral and hence obtain'the mean

Fife -time given in the text._

15. Bacteria and other-eells reproduce by splitting in two.: noa.tis the
,

. ,.-

average time . tureen "birth" and cell division for a member of the

bacterial c ., ... of Exercises'Numbet 1?
c.:.--% -.

16. Here ig.an example of decay which is not exponential.

A spherical moth bai_lin'a closet evaporates: away at a rate proportional

to its surface area. If half of,it;(in weight) evaporates-away in 10

days, determine how many more days it takes so that one auarter of the

original amount is left.



17. Consider the ai..rferential.equation,

(1) a)u e-bt

(compare EquaiOn (5) -of Section 9-3(1-ii)Y-

3

(a) Observe f01- any solution u of that

(a) (D + b)(Dt + . 0

and show Zor any solutions v , N.:-of the equations

(3) (D
t

+ b)v'= 0 , (D
t
+ a)w . 0

that

_-(4) u = + w

is a solution df (2). (11i. . (Dt + b)(Dt 4 a). = (Dtt.!a)(Dt + b).).

,

(b) the form (4) to obtain a solution of (1) satisfying .the.. initial

condition

(5) u = u
0

at t = 0 .

(c) Shoe that the solution of (1) satisfying the initial condition

(5) is unique.

18. The d4.fferentJAI Equation (1) of the preceding problem may also be

solved as falaOws., Let v 'be a solution,of the homogeneous equation

(Dt + a)v = 0

and determine w such that u = v- w is a solution of (I). 'Flirllow'2Z.
d.

this procedure, determine again the solution of (1) satisfying the

initial c6ndit5-04 (5) of the preceding problem.
.

19'. -(.a) Employ" tie raethbdof..Number 18.to-obtain_thesolution (9) of

Equation (1) in Secticn 9-3(iv) subject,t8rthe.initial condition

11(0) = No ; that is, seek a solution of the form N(t0 :=U(t)WCtY

a S'olution of the homogeneous:equat on

-a-7-t.

U
.+ AU 0

:.

-1.1here T..(t) is

--(b) Verify the solution is unique..
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Exer-61ses 9A5

1. A reaction in7which one molecule each of the .reagents Al
: ' 2 ' 3 ' ,

, A
n

combine to form one molecule,of the product B is indicated

.by '
Ai t,A2 . Ar;

where k is the rate. constant In the differential Equation (12) of

;Section 9-4(iv) . We write (12) in the form

db
"",

where the lower case letters denote the concentrations of the

corresponding reagents and the product. If more than one- molecule of

a given reagent enters into a-reaction as 'for the familiar example

(1) 2H2

then.the concentration of a, given reagent enters %he -law of mass action

in as many places as the number of its molecules which are involved

in building one molecule of-the pfbduct,. Thus, for a reaction in

the form of (1)

2A1

.the law of mass action takes the form

db 2
cr-c k al a2

.

.Write the law of magps action (2) in the form` corresponding to,(12.).
.d.a/ dal

---'of Section. 976-4(1v)..:. What are the.rates.-
dt.

and --- ?dt .-

(Hint: Use the fact that the amourit.bf.each element is unaltered

in a' chemical reaction).
*

(b) Similarly, for a reaction in which v1 molecules of the reagent

A. are combined to form one Molecule of thepr.oduct B ,.we write

'vlAi + ,v2A2 + + v- A
n

k

t.
and obtain the law of 'mass action' in the. form

-

()
db 1 2---.= :NEI, a
dt

-1- 2
- .. a

n
n -

Write the law of mass action (3) in the
da.

i
Determine dt 1

n terms of a. .

.:,

5 29

form corresponding to (12).

0--
g



Ex9-5

2. When-a reaction p'roduct is obtained_ as the result of .a'chalh of

reactions the law of mass action

the rate of production. We must

reactions.- The,simplest example

reAction in

cannot be applied directly to obtain

take account of the intermediate

is given by-a reversible-unimolecular

which a molecule of A may be*con:verted to a molecule
of B with one probability, but a molecule of B' may revert to A
with another probability. This reaction is indicated by

and the

(i)-

ki

A

.2

reac-y.on is governed by the equation

db
-s

dt kk1 a- b

where k
1 is the rate constant-for conversion of

is the rate constant for conversion Of B to Let- C
0

the initial concentration a B and Cl the initial concentration
of. A and write. (1) in the (12) of Section 9-4(iv). Dethcribe

thecaurse of the reaction. What state Is.approached as t approaches

to B and k
2

denote

infinity?

A catalyst, is a compound

consumed.in the process.
whiCh.enters into..a.re'action, but whiCh. is-not

The` effect` of erNalia-sying,a catalyst is to

E denote the catalyst, the ofenhance the reaction. -Letting

ya simple qtalyzed reaction is
.

E.

Since the catalyst is not consumed in the reaction,' ,its concentration
6%74;emains constant and therefore We expect

ef5 -

where

db.
-kdt

C is the initial

ea e (C

concentration of A .

Life is never so simple; the action of ttalogical catalysts or-enzymes
does not follow -the-elementary law (1). It was conjectured by Michaelis

. *
and'Menten that a reagent or substrate A enters into a loosely boUnd
intermediate combination with the enzyme E . The intermediate combina-.

tion may dissociate into E and A or Ato E and the reaction product

See Bartholomay, A.F., "Physicomathematical fotindations of reaction ratetheory" in'Thysicomathematical Aspects of Biology, Academic Press, N.Y., 1962.



.

an,,-,6nzymatically catalyzed_reaction is assumed to-take the form

Verify that a

(2)

kl 3+ A

k2

E + B .

reaction of this form satisfies the algebraic re±tios

eq.-I , eo +b.=
t'; -

where' a ,.-4xe,'i , b- denOte the concentrations of substrate,enzyme,
.... .

intermediate; and- p ,roduct respectively, an
,

.'d at = 0 the initial-
.. . .

cOn'CentrationS are giye.n by

44''!'

(3)

0 s

a(0)= C ,64(CO =60

i(0) = 0 , b(0) = .0 .

Show-that the reaction is governed by the differential equations

The system

da
(TT kie a k2

de
= 7 ki e a +

2
+ k

3)i

di-
dt kl,C a (k2 + k )i

db..-

dt '3 '

s'
(3),..(4) hasnot.been solved explicitly. In order to

obtain an explicit practical solution Briggs and Haldane assumed that

the initial amount of substrpte .0 is very lai-ge compared to the

amount eo of available enzyme,,and, that the eoncentation i reaches

near equilibrium before an appreciable amount Of the substrate is
.

converted. The ecullibrium ass;Imption requires that, to a good

approximation,

(5)
di
dt -1 6a - (k

2
+ k

3
)i = 0 -

anoring the very rapid initial phase of the reaction in which the

equilibrium (5) is set up and the terminal. phase in which the concentra-

tion of substrate is not large compared to e
0 ,.

differentialsystem (4) by .-.

t

531

we replace the



.theaIgeb_

-(7)

where
kM

db

(lc ations -(2) by

i b =

, N k-

is the Michaelis "constant- km k1 ..

and the last

:equation:comes-froM:45). Compatibly with thp first-of thi-assumptions
above. we replace- the initial conditions (3.) by

a(0)-°-= 0
'
(. 6) c

. . :L 1 . 2

b(0) '0

Here the constants Cj.,,.-C2; C3 .ml,zst'be compatible.
C
3 correspbnds7to the 'relatively small amount of A

,in reaching the equilibrium (5):

Thus, the constant

which is consumed

The argument we have given in 'obtaining the modified system (6)-, (7) ;

(8) is not mathematically complete. To complete the story it is
necesia .to-snoWhOw-well the solutiOnof the modified approxi-

.-

s thatof the Original system. This is a more difficult question
which shall not attempt.to answer here. :The main pant is that the

-

system

modified system is easy to solve explicitly while he original system,
which incorporated all.the information at our dispo al, is not. In
practicqthe modified system is therefore actually more useful and
under thestipulated,assumption that a is much greater than eb.

0has proved-to be adequate.

Solye the system (6), .(8)
in (7) to-elimiiiste and
a .) Why is it unnecessary

in order. to solve for b

(Hint: Use the first and third equations
then obtain the differential equation for
to obtain the differential equation for b

4. A Soviet statistiCalye:Arbook reports that the,birthrate was 21.2 per
1000 in 1963 and thIdeathrate 7.2 per 1000 . As of Jan: 1, 1965
the population was officially estimated at ',229 million. .The official
Soviet population projection predicts a population of 250 million'in
1970, 263 million in 1975, and 280 million in 1980. Assuring that
the projection is based-on a constant deathrate, show thatthepublished
report predicts an immediate upswing in the country!sbirthrate.



In this prbbrem- it may seem at f-irst that we do not have enough data for-

but.,.t-he situation cari -be handled in terms of differential

equatibps:
. *.

.

It bega.n. snowing sometime -before noon. . A snow plow set out to clear a

road .at nocin._. It traveled therirg't mile in one hour and the second,,

mile ..in two hours. What time did it .start snowing? (Assume the snow_

fP3 1 s at a constant rate (ft/hr) and that the snout plow removes .snow

at -a constant rate (ft3/hr),. and eglect the compressibility of "the.. y
. ... , , , z Iv .v

snow.)
... hir.0=4

. ...

53';
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0-1. Introduction.

Chapter 10.

IlVT ION

4,

o.

.10-1

1

It is no accident that problem's in the applications, like those' of
. _

Chapter 9, tend to be posed in the, form of differential equations. Differential

equations are relations between unknown functions and their derivatives. A

differential equation. refer; =to local properties: it describes evgnts in the
.

neighborhood of a ven point or a given instant of time. Local behavior is
. -

easy to obServe and lends itself rdadily to intelligent surmise. For example,,

Owe might guess without direct observation that the rate of spread of an

epidemic in a community is proportional to.the number'of active infectious"

cases and to the number of individuals who have not yet been infected.

1,
Often our primary concern is not local, but global; it may .not be the

differential equation which interests us most, but some properties which'depend

on a general knowledge of the solution. Our interest in the rate of growth:

of a bacterial pOpulation may- be academic; but not our interst in whether the.

total population of bacteria in a host'will reach a dangerous size before the

host organism can marshal its defenses. Thus, the. problems which concern us

most are likely to be problems of integration, of obtaining the solutions of

differential equations; or at least.obtaining some specific information about

these solutions.

This chapter is devoted primarily to the problem of formal integration

for the differential equation

(1) DF = f

where f is a"known function. In principle, this problem is solved by the

Fundamental Theorem-. If f is continuous on an interval containing both

a and x then the solution of (1) subject to the

(2} f( a) = C,

.exists, is Unique andcan be written in the form

( 3)

initial condition

x
F(x) = C f(t) dt .

a

1 .4,-

ea.
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Formula- (3) is no more-than symbolic representation'of the solution.
.Iil_possibleo we should like to obtain a simple-analytical.forthula for F(x)
in terma-of objects with which we are fATY,Iliar. "Tailing that,'-we shoUld like

to have a practIcAily useful anproximation F(x) We seek then for a way
of representinge integrand;in a form which is-recognizable as the-deriva-

t

tive of some known function. It is not always possible to do_ so, but then
.we may seek a- renresentation:whIch is'more amenable to .approximation-. In

this chapter, we shall explore. some of the methods-for transforming integrals
into more convenient_ forms; these methods are the so-Called-"techniques of
Integration.."-

and

the

There are two basioanalytical.techniques, the methods of-substitution
.

of integration by In applying these methods we either transform
integral: so that. the.integrand is recogiaizabie as the .derivative of a

familial-"functionor transform it into a.ndtherintegraI whieh'is more manage
. -

able. We shall see that may integration px:oblems'mair.be reduded to'the

For these thereexists a special algebraic

uial fractions which permits an immediate

special techniqUeS but we treat only the

integration of rational functions.

technique of decomposition into par'

There is a wealth.of

most important.

Integration'.

_

The -functions we .have_dealt with in'this-text are called elementary
functions. What "la or is not an elementary function is a matter of pomewhat.

. arbitrary definition: it is a collection of fUnctions which is useful, and.

wi h 'hich-we are frliJia-,... For our present purposes, the elementary functionsj<c .sist of the powers, the circular functions, the logarithmic and 'exponential
. ,

functions, and all functions obtained fram these by rational combination
inversion, and composition. We have demonstrated in Chapters 4 and 8 t t tli'e-

-,-,:-.
,derivative of.an elementary funcion4,.-IS-agb:in an elethentary function.

,.... (

indefinite integral of a;e-aementary4unction is -not necessarily an. elem ntary
R.

function. 'That.fact is not pro/ed here, but it is emphasized SO. tiabtt 5rill
- *

not be misled by our succe"SsLrenresenting many
elementary functions. 17 -

*
- 'Sec. G.H. Hardy, the Integration. of

'University Press, Cambridge, 1916.

Ir

integrals in terms of

536
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purpose of this chapter is not t e you a jma.ster in the art of

integration interns of. elementary -functions. It is e;tough for you to make

use of one of the tables of integrals -which provide-solutions of such integra-

tion problems catalogued in some more---o-less systematic fashion (but be sure

to check against possible errors and misprints). Nonetheless, a knowledge_of

the techniques and reasonable Proficiency in their use are desirable to

facilitate thebretical.and-nUmeftcal Analysis: Furie7MOre,'the tables_contain-_

-'*OnlY certain standard formiTs' and even if you. wish only to use. the tables
. _

efripiently it-is:necesSay to-learn'-how'to'transform:an integral of concern
.

to .you into one of'the standard-fOrms.
.

_,.

., -0 (
In this chapter our objective is to giVe'a method for'Sspressing integl-

. _ .

--.:frbm ce3-at4.n -broad clasSes. ih terms,af,a'few basic elementa7y- integrals. For
....,_

.

:..-
. .

.
. , .

.easy:reference,'Welist'heretheprinciplermulas -at. oudis--
-

.

mosal.from0haptersand 8. .

Table 10 -la.

f(x) = Ft(x)
,

F( x) = C + f(t)dt .

xo

(1)

(2)

(3)

(4)

(5)

(6)

(7)

a (a constant)

xr (r real, r

.

1x 2, x > 0
,

e
x

-

sin x

cos x

1
an
-2

-1)

_

,

,

.

.

,

_

.

.

,

-

.

...

ax.
-r-i-1-
x. .

,.

,-.-

r + 1
.

log

x
e .

- cos_ x

sin x

tan x
,

arc sin X
_

arc tan x

, - _

2
= + x

cos x -.

1' <7-

..'-(9)

.7

41E77 .

_
.

1 + x
2

a

5.37



We have not stressed the hyperbolic f :ctions and their inverses, since

they can be-expressed in-terms of exponentials.and logarithms. However, these
functions appear co-r Monly in tables and in mathematical literature.- We intro-
'duce the inverse hyperbolic functions

arg sin h :-sinh ,

arg cosh : cosh x x > .0

arg tanh : tanh , lx!
. /

ti

etc., where arg in each case denotes the argument of the corresponding

hyperbolic action. The integrals Of -some -important 'algebraid'funttIOns can.
.be expressed in terms of inverse hyperbdlic functionV These are listed below

-

---'-'-

_ Table 10-2b_

and left for y6u to verify.

.

,f(X)
.

= .1."(:x)
-

y. /
F(x) f(t)dt

,

r

(10 )
,..

.

(11)

.

(12)

i

. . .'.

.

-

,

.

1

.

1
g

=

=

log(x

log lx

=

=

.

1 -4-

- x
2

1

1 -,x

arg tanh x , if I x 1 < 1

arg coth x -, if lx1 > 1

-

-i- 4:2771) = arg Sinh x

+ 1417:77.1 .

_

arg cosh x , if x >-.1..

-arg` cosh ixl , if x < -1

+ 1

1

477727
_

.

It is not essential to memorize the formulas of Table 1.0-1b, they .can

obtained easily. by the substitution of a hyperbolic funCtion. for . x so
'described in Section 10-a.

`2

C.



Exercises 10 -1 .

1. For each of the folloring sketch the graph (De f defined by the given

integr
1\

".-.---

(a) f(X). = S: t e dt , x:> 0
3--t

.- .

(b) > 0.
0

S
.(C) f (x) = (14- - 2)dt

2

(a) f(x) = t Iogt dt , x > 0

Improve-the- sketches of NuMber 1 by employing

for corresponding parts (a) (d}:

. 4.

( a f(-3)

.. .

. ( b ) f ( 2 ) -= 2: f (...

-,i,:':.:- ""7e !If; .--

78 .

e-.

the following information

,

).' -2-- rim f(X)
x-co ,

s--4±
e3

- ':.-

.

,
supply any needed extra. inforMation by evaluating the int gral.

2.:
f (x 7) := 4- f(7) = 7(1

. Sketch-the graph of . ff-x

4. tet_f(x)
SO

,

cos t-dt . Given that
-

sketch=:the'''gi-a175'h of -X .- (Hint:
f(x + 7) .= a t.f.(x) .1

.- - .

,., - . . .
. .

'
. Determine 'constant- -x

0-
and p .fOr the column on the right In Table

1
, . .. . --''

16 -4,a=c1- fC11)..'
,

that f,or.a11 x ,
.

-

10-15,for each function f ,so that F(X) C f.(t)dt .

Verify t.,he .integration formUIas of Table 10-lb and. determiZe appropri,gte
.

constants x.6 and .c . ,"(Compare t4ereSults txetcises:8-1-7, No. ,9:)
7"

-
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1Q-2. The Substitution Rule.

.- .The substitution rule is'a rulefor"changirlgthe IDarameter-of iztegratiola. 1

It is the integration formula cc4respOnding to the chain rUIe of differentia-
. -tidn (Section--6).

THEOREM-10-2. .(Substitution

let F be an integral of f . Let

tiable function whose range lies in the
and 45 be .numbers in the domain of g .

Rule). Let f be a cont5jous

g be

:(4

where

function and
-

g contirmously differen-
dora0:41 of r , and let a

rrheh

Sf(g(t))g*(-1,:.)d-p jb -1-(x)dx
a

(2) a .-g(a),.and b = g(P

-/

Proof. Sete(
by the chain rule'''.

)-- (g(t)) . 7 is f. 'we have

H'(t) = B"((t)gl(t)_=f((t))gr(t)

It follows from the Fundamental Theorem-that

1.1(3) H(a)

Now, we observe also that

H(0) =',1-( ) Kg(P))

- from- v.Thich the desired result follows.-
..-.

f(g(t))gi(t)cit

= F(b)

I

The Leibnizian notation is partilp larly apt

as it 'is for the chain Ifiwe put '.
F

-x = g(t.)
we.obtain auation'(1) in the- Leibnizian form'

for

(4) S -f(x)dx 1 I, X I atdx
dt

Here, to replace the parameter of integration by the loa.Ameter we
. ,

b
fCx)d.

the .substitution rule,

s.

substitute x , ; for the.vmlues of. x ;the erici integration_
we substitute .the corresporidin values oft- dx we .--ec41 e



dx
-substitute

t
dt . We use.the symbolic relation

dxdx = dt
dt-

10 -2

.

-
,

't6 remember this substitution, -but attach no Meaning to this eqUation except

as \.e. formal rule of substitution.

(5)

Fi nA01y,. frana, we obtain the rule fOr -the 'indefinite integrals,

ff.( )dx.. ff(x) -a- dt
cix

a

..-

Example 10-2a. Consider the problem of integrating 1_ between negative i;

, x
limits, say, a and b where a < 0 , b : 0 . For x = -t we have by (4)

...

-.--_

a

1 =
-b

jr - 7_- d = log (-b) - log ( '114
4

1

Fbr the indefinite integral of
.

1

1
x.

= log fbl - log lal .

W 'therefore obtain,

a;c = log lx! C ,

which generalizes Formula C81 of Table 10-1a.'., (The formula for the indefinite

integral of be meaningfully applied to calculate the value of the
,

definite gralonly.if ,a and b haye the same sign.)- -

The Substitution rule for. indefinite integrals is employed in two

different ways. We illustrate this with examples. The first application-

is direct. Suppose that we recognize the integral in the form If ( g (x)) g (.5c) dx

where is one , Of the functions in: Tables '10-1a, b WhOse:entiderivative -is F .
_ .

The subst4tution' rule tells us that this integral is equal to It(t)dt=F(t) C

with t = g(x) ; that is, .:Eig(x)) + C .

Fa*mple..102b.- Consider -the problem of Integrating

-that 2x = D(1 + x2) For t = g(x)- = 1 + x2 'f(t) = we get

. We note

dx It! + = F(t) + C ="lok(1 + x2) +
il+ x2

= dxfix)
(

It is important to recognize here that we seek a function H for which'
Y t

... H' (x) ,= f(g(x),)gf(x) '.. The problem, is not completely solved until the -answer

Is expresses ig;_terms of ,-,the.:original parameter -x ; that is,, the answer is

;.not i(tY +-C but 11,(x) + C = F(F4(x)) -+ a . (In Example 10-2b,

1.1(-x) = log(1 .x?)_ -)
- ,



10=-2

Mb

+Is

- ,

Example lb-2c. 'Next consider "the problem of 'integrating the 'function :

x4 - x2' . Observing that x is proportionl to the'derivative'of i x _
,.

. 7

x.....we set ti,..= 1 - x2 and obtain
.- .

fx - .x
2

dx = PE-4
-2 dx)
1:141ndx = 1:frdt

'

3

1 3/2
3

(1-_ x2)3/.

In the preceding example one of the factoriTdepended upon -the expression
1 - x2' and the other factor, apart from a constant-multiplier, was the
derlyative of that expressolOn, i.e., the integrand was given in the form
k f(g(t))g'et) k constant. In that case, if F is anintegral of f , we
may imMediately"recognize the integral as k F(g(t)) . (Caution: always., .

check your integrations by -'differentiating; it is pathetically\-easy to forget-0

a constant factor.)
,

a

Example 10-2d. Let Ils.integrate tan e .
o _

so that _the numerator. is the negative of the derivtive

Observe that tan e =
cos 6)

of denominator. Con-

sin 6

sequently, applying tiairp'reCeding remark an mmloying the Alult of- Example
10-2a, we get

t.

-
,"an e de -. -log I cos e I + C ...

...-:._ . .- ;5'

As the--receding.exampies sho6, integration is based to a large extent
.On the art of observation, Like'a,/ny ot'her algorithmic skill-it reudires the
recognition of the struc-=i-e

._

of a fOtimula beneath its deirils.
.

.

Example.10-2e. In examining the integral

2
=

x
dx

- x6

we recogpize x3 .as the "structural unit." Setting u = x3 and du . 3)2ax
!.we obtain'obtainb_

, .

I =3
77712 3

- 1
du . -1 1

-_-, aresin u -i-- 'c = arcsin x3 +

.....-, ,
: .



The second way of applying the substitution rule- is in the reverse

direction to the first and is an exploratory device. Suppose-we want to find

.1.

F(x)dx' but_ f does not look like a.-derivative of a function---
,IP'

, ,
'-now.

Using an educated guess, we pick some differentiable fdnction- _, - we

recognize as .a structural element in the expression for' f(x) )... ,,,.,... hope

that upon'the substitution x = u(t)
, f(u(t))uT(t) is the derivative of

Somme known-function H . -If u has. an inverse 11, aim is then achi4ved

since' the substitution rule gives

j[f(x)dx . Irf(u(t))u.T(t)dt = H(t) + C = 11(1/(x) + C'.

0,/,
.

. ,

UsuP71Y, a furth-ir man ulation.is needed in-order to recognizethe

illtegrand-in proper form, as i 5the following example. ..--

- l -
.

EXample 10-2f. In Exercises 9-3, Number 14: we showed how to integrate

log x with the aid of a geometrical argument and the known integral of-the

inverse function. We now attackTale probleM analytically using the substitu-

tIon x = e
t

dx = etdt . We, obtain

Jr
log x dx = ft et dt .

. .

. -0

-..,,,g 7.

We may not-immediatelyrecognize to -as a familiar derivative., blit,we can
t 4,_b°- t

e5qIneriment.,-: -The derivative,of te
t Is not quite te- itSf, but

.:-,..,-. ..-r..- .-.

. DIrl:t) = e
t
÷ e

t
..--..,,.

t''
-1-. 111P.-e-:=- ...-

-. -

ColisequentlY,

With this

treat

.,/:

-t-e
t = D(t e .

,

,.z
observation our.prpblemj.s solved:.

-'1

- NNi

1

-

t et dt = d't ( t- 'L 2_). C = x ( log x -
, :.-. ..s

Later, using the metIlod,yf.1ntegrat:on oy,parts we shall'be able to

such_4problems u3r*tematit.paly:- /'- ''.1:%

.
,..i,.. _ilib..

.0

. . ,
I usingAhe exploratory met 1a`. usually do not,substitute'di.rectly

t) .1. ....f0/.. ,,X but pican,expression fn\the integrand,:ssay 1:1()O. , which. appears

Particularly tebubiesome and set .'u(x) = t, assuming that as an inverse

* . This'amountseff Lively to the substitutionX:= lirCtr Example
1.--,

01,

11.

10--2f troublesome_ term was ,lOg x and we set log x = t

543:
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'Example 10-2g. Consider the integral

= 1' dx
+

=

in orddr to eliminate the two, radicals in the . denominator we set _ = 't

Then VS-c":"_,
.t3 and t

2 Since x = t6 , dx = 6t5 dt and we get.

t'
(-6 t5)

f" t3
1777-1 dt .

1

Still ye do not.-recognize a deriyati/e of a known function. The trpublescare'

term is now_- (t + 1-) in- the denominator, so we make a .second substitUtion

+ 1 = s from which t' = s - 1 , dt = ds . Thurs

=
+ 3

dt = 6.1[(s 16
1 + t

r-
2s3- 9s2 -+ 18s - 6' log IsI 4- Cl

3t2 + 6t - 6 log f 11"+,--t1 + .11 + C1

2x1/2 = 73x1/3 +- 6x1/6 - 6 1dg(1.4- x1/6. ) _c
2 .

. Integrate in tri
1

(a)
2

Exercises 10-2

of elementary functions when possible..

x

(
)

x3,
_x4

- x - 1
( c)

/x2 ta.2

rT(a. +
.x),13

( )

ITC

. -m-1
.(e)_

x.
ffiax b

1-

x2 + 1
x - 1

.(h)
(1 + x)

2

1 + x2 .

1

x4 .

1

E.i)
x

/ 4 x4

(k)
/ 4 4

+ x _

x
x *

It



P

2.. antegrate in terms of elemehtary functions

(a) -

b cos

(b)

sin x

(c)

x)n'

3 cos x sin 2x

since x cos x

(d) -sin x cof3 xm.

ce) 2k

Integrat

(a) 2x3ex

(f)

(g)

(h)

5sec ax tan

cos Z,7

cos x
tan x

(i)
1

4

a + b cos
2
x.

In terms of elementary fUnctions:

log2 x

(e)

b + cex

a

b + cex

(f)
to x

(g)
r

'1
log x

b e-x)3

C a

, c 0

(k)

ax

1

a

s1nhm ax coshlax,

cosh3 ax

1
sink x + 2 cosh x

O

2
a sinh

2
x- + b

2
cosh

2
x

ax e(ax)

. Integrate in terms of elementary functions.

x2

5 a.

(f)

1

(d)
2x
21 +: 4 cost x

(J)

X + 1

X(a" + xe -)

(arctan x)2

1 + c2

log(log x)2
log x

(x + 1) ex ten(xex

Use the idea of Example 1O-2f to integrate
.

2-

cos [log( ex + I) ]

2 .

. ex +

t2
t

e , t3 et
".

obtain and prove a formula for tlie indefinite integral of

54.5

1 sz

. --
10-2



10-3

10-3. Substitutions of Circular Functions..

Although it.is not always possible to7inliegrate a given function in-'

terms of elementary functions, there are irportant bra 8, classes o explicitly
integrable funOtillp. All poweri and hence, clearlY;- 1__polynomials are
explicitly -ntegrable. It is, not-so.-n_ear but it is true that' all rational

. . functions are explicitly integrable (see Section 10-6).J: It f011owsthat all
integrals whd.ch Can be-transformedby,substitution into integrates of rational

deb

functions are explicitly integrable. In this section we shall show. that an
integral of any rational combination of 1/Q(x) , where

Q(x) = Ax2 + BX + C ,

can be transformed into an integral of a rational combination of circular
functions ',Kid further that'an integral of a rational combination of circular
functions cane transformed into an integral of a rational function.

We should consider the substitution of a circular function wheneuera

integrand is a combination of x and one of the expressions 42 - x
2

,

x2 h2
- a2 , (a > 0) suggestive of the Pythagorean expression for

one of the sides of a right triangle in terms of the other two.

Example .Consider

We utilize the substitution

(See Figure 10-3a.
g:4'"

/82 x2

a 2
dx=

0 2/
- x

.

x.= a. ssari
.
e ,

,./1.2

..'

X
2

= a cos e
,

dx = a cos ,e de .

Observing that for x = 7 , we obtain by -the
a,

substitution rule,

Figure 10 -3a 0-

546
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-It/6 a cos
de = de =

0 a
cos .e



Example 10-3b. For the integral

we employ -the ..9ubstitution (see Figure 10-3b)

a

Figure 10-3b

=
S cos3 e

a3

sin e
-I-

a
2 2/T----

a a -I-

x2

Example The integration

x a tan

a
-

2 de
cos

x =
2

cos e
.a

Thus.we obtain

10-3

< e < 2) .

2.

cost 0

x

de_ = 2 S cos e dea 1

I = 1

a2
.

is perfo ed with the aiof-the substitution-(see Figure 10-3c)**1 i ep

--.J)
-

a

2. 2
-

a

Figure'10-3c

x =
cos e

a G
dx - de

cos e

1--7-77
x - a

f
= a tan e .

:rr

Here take 0 < 8 < 2
for x > 0 , and it- < 6 < st for. x < 0 .

547



I = j'eos2 e) 1 A (a sin 0)

a
a tan el

cos20--

1 e /17---7T
-7Fircos a d

-2- t
. x- - a

'a a
2i

7

(-

It...is:frequently simpler to use hyperbolic functiOns --rather .than triogOno-;

metric functions for integrals of the types considered alive. If the FOisti-
tUtIon of a circular function leads to complications., try _a ..hyperbolic substi-

tution instead.

1

Example 10-3d. Consider the integral

.dx

x - a

Using the substitution of Example 10-3c we obtain

I = la tan 2
cos 0- cos

.1 (a sin d9 = de

To complete the job algebraic trickery is needed (the49bjective of the
maninufations will be clearer after Section 10 -6 on decompositions into
partial fractions). We have 4:7

1 cos cos cos e r 1 1
cos B

cos29 1 - sin2e 2 Ll - sin e 1.+ sin

.With this much as a we leaveNt e integration as an exercise.

On the other hand, if

47'

d used the hyperbolic substitution*

x = a cosh - a
2
= a sixth t ,

= a sink t dt:,

wezvwould have found Immediately, by Formula.(12), of Table-10-lb,

I = dt = -C = loglx
a

Valid forte x la{ .For x < use x = -a crush t .

D

\..



.1. I '

:THEOR An integral of, any rational 'combination of

(2)

Where

(1) Q(x) = A 2 Bx + C (A o)

can be transformedby a-substitution -x.= f(0) , where ..f it a circular

functi ny tni:o.an.integral of a rational combination of sin e and

c2p-.8

Proof. We are concerned with integrals of the form

I = 0 ( x , vcz( dx

40
where. 0 is 4 rational expression and Q(x) is given by (1. For the proof

we first make a preliTninary'linear transformation to replace Q(x) by one of

the staZdard forms of Examples 16-3a, by c.

We "complete the square" to obtain

( 3)

We set a

sep-alte

Case (1) .

Q(x) = A[(x t

=1/12
2

A 4A
2

B
c = 1/1.4]2A

the problem into three cases.

a

2

<'0 -e nave
4A

B2 )]
(AC

la
2

'

, and x

-1Q(x) c a - u2 -

Since x = du ,:the substitution x = u - b yields
7P-

Now, employing the sub

the integral-into the f

(5)

Since 0 involves

in this case.

I =.
1777--7

93(u 's,c a -u)du ..
.

I
..

u = a si of Example 10-3a0 we transform

in (3), an-d

a

I = 40(a.sin -b,cacos e) cosede = rcsix + b

only rational operations, we have es-E,atlislaed % theorem



Case' (11).

If A s> 0 and A B2 <
24.A

the), slibStitution

.x ÷ b 7,-. U ---= a' tax 8 ,
. .as in Example 10-3b, conf.irms the theorem for this gate-::.

.. ..., :

Case (Ili):
. .

If A > 0 and 2 -A

C

B2

2 > 0 the substitution
1A

a
cos -49

as in Examples 10-3c, yields'the desired result.

The integral (2) can-be'also r nsformed into an integraVl of a rational
combination of Binh t and Cosh t bi.an appropriate transformation x = f(t)
where f is a'hyperbolic function. The proof is left as an exercise.

THEOREM 10 -3b.10-3b. An-integral of a rational combination of sfn x and
cos x can-be transformed into ar&integral'ofa rational fundtion
by a suitable su:OstitUtion.

(8)

Proof. We consider integrals of the °form

f,x , cos x)dx

where is a rational expression. We observe that in

rational expressions in t = tan ; namely;

(9)

Furthermore, °

(10)

-
2

sin x 2t
cos x = 1 t

I -I- t 1 t2

= d(2 arctan-t) = 2

1 + t2 dt .

are

Onseouently we may transform the integral (8) into t'he;integral.of.a rational /
,

_functiOn by employing the. substitution.
----:.----

*x = 2 arctan_ t ;

4

550



-

thu, 'entering (9) and (10 in (8) we obtairS,..the integral the: foriri

1 - t- 2

1+ t 1+ t '1 +
: 1r

.

Theorems 10-3a and 10-3b_do
4s
not necessarily' point the way to, the Atiplet

.,-

method of-integration-far'a funct±top:of-;one:"Of thetiqbes.constderedhere; they

stmply' a_line 'of.approach-Ach is sure to -work but may leacitd-..indicate.
....

enormous -complication. Often some special device'leadd"to the solution Tar.,

more simply and directly.

ge>

Exercises 10-3

4-/
. 1.

._

Integrate. the:_following functions, the numbers a and b being positive.

(a) 'a (g)
x + 2

tir74_, x2

1/c. + x2
(b)

x.

( c) x2-7a77c2

(d)
1

x21.17:77

(e)

(f)

x

42)17717,
1-

{x2 a2)

(h) x3/(4 - x

(j)

2
ia x x

2

x2 + ax + b

x
2

+ 1

(k)
h2x- x2

2. Let R(x,y) denote a rational function in x and Reduce the

following integrals ..to integrals of rational f-unctions.

( ) R()f -1/7-7-170dx , 0 .

(b) 11(x
'
Vax

cx + d
d x , n an integer, ad - be

551



10-3

aft*

...Using the -result of Number. 2,- integrate

4., seduce to rational form
if7=7Te.

a x

Express as elementary, functions
- -

(a)

-141-c27-77:

dx

Co)1 + sin XP
ir

dx

(d)

'.(e)

6-'

dx
cos ax,

0.,

dx
N

x
4/' + x

dx

The integral

dx

x.

19.7.7"( 777

. -

1411 - x.-

1 +

a

1 F(x).2
fax + 2bx + c

a'
dx where P(x) is a polynomial of

degree n and _a 0 can be reduced to a rational trigonometric

form .as described in the text. It can be also reduced to the_
integration 'of 1

, namely for some polynomial -Q of
4x2 + 2bx .+ c

degree (,n - _1-and constant k- .

1)(Q(x)a 2 4- 2bx + e-)4-

.ax2 + 2bx.+ c
s0

- Show how to find Q and k ...

4,5 . - 3
4, - i., ÷ t(b) Using (a), integte ..1%

4
.

( -a) Calculate the. integral of (b) by using trigonometric ,substitutions,'
and compare the Merits of the two methpds.

,



(
7. It is ,stated at the beginning of this section -that an integral of any

.rational combination- of x and 1/Q(x) -,-where Q(x). = Ax
2

C ,

can be :t1'.4h-sformed into a rational combination of circular. functions.
_ . 7

Yet Theorem 10-3a takes up the case .A /.0 only. Prove the result is

true if A- = 0
- .

8.. The proof of Theorem 10-3a does" not treat the"-cases (1) 'A < 0 ,

c

A 1. 2 0.
A

2
C

2.
or (ii) A- = , or -

A
- Act

.

9. State and verify the result -corresponding

hyperbolic substitutions.

. Why not?..

lo-3- S..

to Theorem- 10-3b for

10. Using a hyperbolic substitution similar to C8)-shoW-how rbetransfOrmthe

integral of any rat1onal-combinatiNpof sink x and cosh x into an .

integral ,of a rational functg.on..

Integrate
.

1.

sin x

(b) cos
1

(by a method. other than that- of Example 10-3d).

O
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10-4. Integration by Parts.

(i)-5he'basic formula_, 'The method of integration by parts is used to

integ to certain kinds of products. The m thod corresponds to the formula

,..--ZT o- e de vative,ofa product (Theorem -2b)..

T} 4I 10-4 If and g are continuosly differentiable over a

common-interval containing a and b then

(1) (x)g'(x)dx = [f(b)g(b)- f(a)g(a)] - 1 f=(x)g(x)dx
a a

----

The thethrem follow. d4-ectly'from Theorem.4-2bt.and the Fundanptal

Theorem.

In*Leibnizian notation, for u = f(x) , du =010et(g)dx and v = g(x) ,

dv = g'(x)-d"g'I'we obtain for the indefiLteLrpee-mr,garresponding to -(1)

. (2) dv uv - v.dix .

S

Integration by. means of (2) is cal.led integration by parts

Example 10-4a..In Section 9-3(i) we encountered the problem'of

integrating log x which we solvedhopeCiaI devices (Exercises 9-, No*. 14,

Example 10=2f) . Now "we observe that log x has. an especially simple
;.

:derivative and we set u =.log x' and "dv = 1 -dx .. For v ,Ithen-; we

take v = x Consequently, from (2)

Slog x dx = x.log x -
x dx
x -

= x log x - x

the formula we have already obtained.

1.1

In application, (2) is. used as above for the integral of a product

the,:product of the .integral or one factor and the derivati-Zre of theothei0.s

formally integrable.
12 .

The Leibnizian notation-in (2) was.introdpeed as a shorthand forethe

exialicit-forrzula. But the notation suggests that we night interpret_ u as

a function of,v , and v- as the inverse'function of This "idea yields.

an Illuninating geometrtCal interpreatioh Of integration by parts. SupPOse
414,

that u Of'(x)- and v = g(x) where f and k haye inverses. Then we can

.554-



write = $(v) .-'-And
--

v = *(u) where 0 .and * are-inverses. (rhe'15roof. i
is left,to Exercises 10-4, No. 2). Set u0 = f(a) , ul = f(b) and vo = g(a)

. .

v
1

='-g(b) . We have .ui = 0(vi) and, _inversely, vi = quI) for i = 1 , 2 . -=

Now suppose 0 and -;r are incr asing and nonnegative. Then, from the famildiar

10-4

interpretation of integral as are

a

ulvl

0

ul

v du
uo

see Figure 10-4) we Immediately hove

cv,

u dv +

0

41,

vl.

Figure 10 -k

y du + u
0
v
.0 '

0

S'
II

.
. av f u 1.71 '''`IOu 0 I

'0 .

u
0 -.

. ,

1

from which we at once obtain

. -

'1-

From the Substitution Rvae-weimmediately recognize this equation as a'form
of .(.1i ; A-like-geometrical argament gives the same result when -0 and

are decreasing. (Compare Chapter 6, Miscellaneous axercises,-No: 12.

genenal, this'Interpretation of integrat2Lon by carts gives the rmal

integral of any fu.nCtion which has a formally integrable Inverse-
-4

z

. - (

. [1.:



10-4 .

1

E:xampl4" 10-2th. Consider

x
n

arcsin x dx ,

,..c,. '.

Since the ar has'a simple algebraic derivgtive we set u = arcsin x ,
..,

n- . . x
n+1\

srdv = -x-dx and` v_= we have
. . n + 1 For the domain 0 <:x .<

u = arcsin 1 1-N/(n +.1
n 1

sin
n+1and v = u . From Theorem 10-3b we know+

that v du, can be transformed into the integral of a rational function.

As we shall see (Section 10-5).rrational functions are always forma11y integrable.

It follows that sinn-1-1U is forMally integrable with respect to u and hence
- -

that xn arcs,inx is,formally integrable with respect to x . Reduction to

the integral.oT a rational function is not necessarily the most efficient way.

to carry out these integrations, but integration by parts can be used more

effectively in other ways to execute the integrations.
..

.

. (n integral , n/-1).

The idea of Example 10-4b, for u = f(x)dv = xn dx , establishes the

formal integrability of .xnf(x) where f is any inverse circular or hyperbolic

function, and, in view of Example 10-4a, if f(x) = log x .

_Eammle 10-4c. Consider

log x dx , (r real) .

Since- log x has a simple derivative, we'set u = log x , dv = xrdx . If
r+1

r
4- 1

-1 we take v = to obtainr

S x
r log x dx = 3;71 1

1
log x - _ix' dx

+

xr+1
r+1

7 r + 1 log x x
2
+C

(r 4- 1)
2

If r = , we may take v = log x to obtain

which yields

dx = (log x) 2 51c13-2-c dx,

556
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1

flog x dx (log
2
x)2 + C

. '10-4

s.

=a result which is obtained more directly from the substitution log x t .

_ .

The method ofExampie10-4c, for u = f(x) and alv =-xndx , exhibits

,-.11e f(*mal'integrai)ility of any function of the form xn f() , when- n / -1.,

where fi(xl. is any rational combination of x and ,/Q(x) and Q(x) is a

quadratic polynomial. Integration by parts expresses the given integral in
,

Xn+1terms c&' the integral of 1777T f'(x) which may be transformed into the

integral of a rational function by Theorem:10-3a. From the assumed

integrability. of rational functions, the result follows. 'It follows as a

slight generalization that P(x)f(x) is formally integrable for any poly-
,

iaomial function P . From this argument we ,obser.re again that if f is a

logarithmic, inverse circular, or inverse hyperbolic function, then "knf(x)

is formally integrable. In addition, for h(x) = 93(x.,-"Q(x)) , a rational

combination of x and IQ(x) , the expressions xn log h(x) ; xn arctan h(x)

_and x
n
arg tanh h(x) are all formallY integrable since the derivatives of

log, arctan and arg tanh are rational functions.
4

Example 10-4d. ConSid-er-the integral

fx ex .dx.

whose integral we found in Exartmle 10 -21' by other means. Now we integrate by

part's. Set ji u = x = e
x
dx and v = ex . Then by (2)

-as we four before.

x,ex dx = xex --
j

e
x

dx
.1

= xe
x

- e
x

+ C

Inte ation by parts may be used to produce a simplification rather than

a final c /u.lete integration as in Example 1074c when r = -1 .

*
S nce'.;arg tanh is-proportional-to the logarithm of a rational

functio it could be, omitted from this list:,
4

.
,11

Ii

19

A



s

'(- 10-4.

, Example 10 - '.et Zonsider

I. -.I = ebx sin' ax dx

For u = sin ax dv = ebx dx

where'

bx
e

ale.

b
we obtain

ebx a f
e
bx

.cos ax dx

r'f= 2-- ebx- sin ax
-40

- ,
.b;

4-

f b
e

5c-

cos ax dx

- .

r

T.-
. LA

presents the ,same difficul-ies of formal integration as I 'HOwever, by the

same techI:ague,' we can express J in terms- of I and hopefully may "obtain

an equation which can be `solved for I . Now take u = cos -nd
bx

eV = in (2) to obtain

4

1 b:x a f bxJ = e cos ax + e sin ax dx

b
bx a= cos ax + i; I .

Entering the expression for J abo-;-e in the expression foi- I and solving

for, we- obtain

./..' ..-.

1 bx , .z.-,:.,T e 0 0 sin ax - a n o s + C .-.
_

2 2
- + b

(ii) Recurrence relations. 'The idea here is to express an integral, of.

the general form ff (x) dx in terms of 'Ifn-k(x) dx

495
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1

Ekample 10-4f. Consider

I

= f xr(1 x)n dx

Set u = (1 -,x)n ,, dv rxrdx v = x
r + 1

r+1
Then

In -
xr+1(1 x)

n
+

n
x
r+1

(1 -
n-ldx

r + 1 r q- 1

-10-

(n > '0 , -1).

MP'

r+1 .

where,: for n'= 0 , the result yields, correctly, I
n =

x
r + 1

. Now, observe
that, .'''----________----'

--.

whence,

xr+1(1 - x)n-1 = -xr[Z1 - - (1 - x)n-l]

----..+1
+xr (1 - x) n n -

n In,--,,... i- r + 1 r 4. 1 n-1 n .,'

This equation may then be solved for In in terms of I
n-1 :.,,

or

x 1 - x)n
I
n

-
n + r + 1 n + r + 1 in-1'

r
(1 xj dx

n + r + 1 x
r
(3 - x)

-1
dx

r+1
(1 - x n

n r + 1 f
n

4 , *

Now this formula may be applied recursively to express I
n-1 ih terms of

I
n-2 2 I

n-2 in terms of I
n-3 , etc., to yield

xr+1 n(1 - n(n - 1)(1 - x)n-2In n + r + 1 [(1 x)n +
n + r (n + r)(n + r - 1)

n(n - 1) ... 1
(n r)(n + r - 1) ... (r +1)]+

Sometimes it is necessary to prepare for integration by parts by some

-preliminary rearrangement, as we show in the following useful example.
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Example 10-4g. Consider.

n = f coS
' n

x dx

We write. cos
n
x = cos-

n-1
x cos x.,-set ;11. = cos x , dv = cos x dx ,

v = sin x , to obtain

Thus,

Solving or

n-1 2In =. cos x sin x + (n - l\) cos
n- x sin x dx

=-cOs
n-1

x sin x (n f cos
n-2

x (1 - cos 2 x)dx

In = cos
n-1.

x sin x +I

, we have

a

1)11._2

n
cos

-1
x sin x - 1

In - 4- In-2n
.

.

Sihce the subscript is lowered by 2 at each step we observe for n even
\

that the recursive reduction of the integral terminates'at --/1-= 0 With

u: u:1
0

Jr

r,= dx = x + C , and fo odd, at n = 1 with

1
= ( cos x dx = sin x + C .

Often the principle- use of a recurrence relation is. not to obtain the

formal integral in terms of elementary functions (which may not be possible)

but to obtain the original integral in terms of a simpler integral.
4

Example 10-4h. Consider

xn e x2 dx .

x2
2 .

- 1From u = xn-1 ,
.= x e dx v = - 727e. - , we obtain

or

I = - x1 n-le x
2

LL=1.1, n-
. 2 '

-x2
e dx

2-



10-4

1 n-1 -x2' n 1
In =

2
x e

2
In-2

If n is odd, the recurrence relation gives In
in terms of elementary

1
2

functions and , but II = - 7 e-x + C is elementary and .In is _ _ .

formally integrable in terms of elementary functions. If n is even, then

the integration of In is reduced to the integration of

2

I0= dx .

This integral is not elementary. However, it'iS well known and much used.

In terms of the error function erf (the area under the normal probability

curve) given by

we have

t
2

x
erf .x -

1
e

2
dt

0

I0'= erf (29 + -C .

The common tables of .the error function enable us to work with-it numerically

just as conveniently-as the circular~functions.

1. Integrate the following.

(a}4(9.

x sin

x 5x

x3 e-x

-47 log ax -

log
2
bx

c

log3 x

arc cos 7x

(h) arg sink ax

o (i) arg,t-inh bx

(j) atg tanh

(k) arctan

Exercises 10-4

(2) x'arc tan x

- arc Cos x/m

(n)
2

x

6) x
2 sin x'

(p) x
2 arcsin ax

(q) cos3 2x

(r) sins x
1

(s) sin (Log ax)

-(t) x tan2-x

(u) (arcsin x1:44""

(v) 'sin ax cos bx
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2. Support the geometrical interpretation.of integration by parts by

showing for 117-= f(x) and v = g(x) where f and g have inverses,

that u = 0(v) and v = 4r(u) where 0 and * are inverse functions.

3. Verify as FOleged after Example 10-4b that the method of the example.

does demonstrate the reducibility of 5 f(x)dx to the integral of a

rational function if f is any inverse circular or hyperbolic function,
or if f is the logarithmic function.

1.. .Establish recurrence relations for each of the following (in each case
in and n are positive integers)._

(a) 5sinn x dx .

(g)-., _I
n

x 'ems dx .,.
.

.

(1:0 Sx m logn:"X dx ....N(h) il- xn arc sin x dx

- ;c) Isinn x cosn x dx . (i) . f a. dx
n /

.

'.5
sin x

e
x

(d) j xn arc tan x dx
. (i) 5 --- dx .

xn

(e) fxn arg sin x .dx (k) f xn cos x dx
J

(f)
nx arg tares x dx .(Note the difference between

n odd and n- even) .

9.
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10-5. Integration of Rational Functions.

The applied problems of Chapter 9 and the problems of formal integration

in the preceding sections of tinis chapter were often recast in the 'form of

_the problem ,.of f.ntegrating a rational function. For a rational function there

always exists a formelintegral in terns of elementary functions-. The formal
.

integral is obtained by reducing the rational function to a sUE of e poly-

nomial function and functions defined by the elementary forms

(1)
(x - c)n

(2)
-

p

a)-

a
n (b > 0) .

[(x

It can be proved that such a reduction is possible, either from the

Fundamental Theorem of Algebra which .1?'eauireS the theory of functions,of a..

complex variable, or directly by new algebraic teChniques. In either case

a complete proof would take us outside the frame of this text.

The reduction of a rational function into thp sum7of a polynomial and

terms of the form (1), and (2) is called a decomposition into martial fractions.

We give one simple example. .

Example 10-5a. A common case (as in Section 9-4) is given by the

rational expression

(3) (x - a) (x - b) b - a x - b x a 1 '

From the decomposition (3) we immediately obtain the integral

dx 1 a(log lx -

=
o

1
a
log

O

.loglx al) C

x - bl
x - al +-C

a / b

Let R be any rational function. 3y long division it is always possible

to put R(x) in the form

where S T , Q are polynomials and the degree of P 'Is less than that of

Q . Since the Polynomial S is integrable, we may omit it from

consi:!eration. it follow'frOm the Fu:- al Theorem of,klgebra (Inter-

mediate Mathematics, pp. 2906'.) that -Dlynomial Q(a) with real
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coefficients has a unique factorization of the form

(4) Q(x) =A(x-ca.)7?-(x-c2)n2...[(x-"aa.)2 bi2]rril ( X

where the c
k are the distinct real roots of Q , and

imaginary roots (b
k

0) .

A,

Now suppose that R(x) -
P(x)

where the degree of P is less than that

of Q , and that P and Q have no>common factors. Then we *assert that

R(x) is the sum of ,,expressions of two standard forms: for each real root

C , an expression of the form

a2

ak

)2 2, 2+b
2

j

ibk , the distinct

(5)
r
2

r
n

(rnx

r

c c)2
(x c)n

where n is the multiplicity of c : for each pair of conjugate imaginary
roots a t 4 an expression of the form

t..

0

-1lo x + q1
p
2
x + q

2 Pxrtxf, gm(6) . + + ... +
(x - a)

2
+ b

2
[(x - a)

2
+ b

2
]
2

[(x - a)2 + b2]m
(pm2 + cim? 0)

where is their common multiplicity. We merely use this format as a guide

without proof-VITri each particlar se it can.be verified directly that the

decomposition obtained is correct. 'Once we have obtained and verified the

correctness of the Dartial fraction decomposition we have redUced the irate-
ti

gration nroblem to that of integrating the simple form (1) and (2).

Before we embark on the problem of integration let-us see what is

involved in the algebraic problem of obtaining'the partial fraction decomposi-

`tion. 'The first problem is to o tain the roots of the polynomial Q(x) . In
F.

general the roots of a polynomial icannot
be Obtainedfrom the coefficients by

1

a formula involving only rational operations and rational powers. There are

such formLilas for the roots of polynomials of third and fourth degree, but

these formilas are generFOly useless. For example, the formula for the roots

of a polynomial of third degree may involve complex quantities even when all

three roots are real. Fbr computational purposei it would be sufficient to

estimate the roots numerically, b t it usrPlly easier to estimate the

integral directly (see Chapter 13). Nonetheless, the method of decomposition

is valuable because oftenthe factorization of Q(x) is given VS,* the con-

ditions of the problem (compare Sec on 9-4(iv) Equation (12)) and often the

f,..-1-orization is easily obtained.
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Next, we turn our attention to the problem of obtaining the partial

fractiorrdecomposition once the denominator is given in factored form.

First we con ider the problem of obtaining the partial l'r'action decom-

position of -
'*s?

P(x) P(x)
cl) (x c2) (x cn )

where the roots of Q are all real and simple (of multiplicity 1) and the

degree-of P is_less tl)ar. that of Q . From the foregoing, ,there exist

constants Ak , = 1 , 2 , , n-) such ulAt

(7)

/ For
cl`

P(x)
Al A2 An

+777 x cl x c2 x - c
n

we obtain on multiplicationy (x - cl)

P(x)(x - cl)
Al

Q(x)
S(x)(x - c

1
= T(x)

where S(x) is the 5= of all the partial fractions but the first. In a

deleted neighborhood of x = cl this eqrntion states that the expression

T(x) defines the constant function T :
1

. Therefore

ti

whence,

(8)

P(x)(x ci)

Q(x)

P(x)
- c2)(x - ci) (x Cn)

r

P(ci)

- c2)(ci c3) (c1 - cn)

This lastxpression can b& written tidily if we observethat since

Q(ci) = 0

lim ,Q(X)
( - cl) x-c1

_(ol)
Thus Al = 777-T . Since c

1
is_simply a symbol for any one of the roots,

1

it does not-matter which for the purpose of this discussion, we have in i

general, _

Q(x) Q(ci)
X - cl Ql(c1)

(9)
ID(c)

Ak Qi(k)
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Example 10-5b. We obtain the partial fraction,decomposition of

x2 -1--x - 1
(x + 1)x(x 1)

2 -
Here P(x) = x - 1 , Q(x) = x3 - x , Q'(x) = x

=
:217e denominator

has simple'zeros at -1 , 0 , and 1 . From

P(-1) -1 P(0) -1 - P(1) -1

Q7 (-1) 2 '-77:75 -1 ' 777 2 '

we have

P(x)- 1 1 - 1-777 2(x + 1) x + 777=77 ,
. 4

+

. _

which is easily verified to be correct.

There are general techniques for the case of multiple real roots or

imaginsry roots, but in such cases it is often easier to determine the

decomposition by the -method of equated coefficients.

.Example 10-5c. -From-

x3 - 1
x

+ -1
p
2
x +

_ -

x(x2 + 1)
2

x
2

+ 1
+

'(x2 +

we obtain on multiplying both sides by x(x2 -1--.1)2

ci2
1)2

4 1,

= rfx .1) + p1(x x2) + q,(x3 + x)

= (r + ml )x' + (2r + p
1

+ p2)x2 +'(q1

p2x2

q2)x

q2x

+ r

provided x . t1-.s "coc::::_sients of like noWers on the rigl-it and left

must be ecul- Exercises 101-5, N.7.3). Thus we obtain the eauations

r pl

= 1

21 132 0-

q1 + a
-2

= 0

r = -1 ,
f

from which r = -1 , p1 = 1 , ql = 1 , q2 = -1 , p2 =. 1 . This yields

UsuP77y cP]led tAhe method of undetermined coefficients, an irritating
ml s

S
nomer since the conditions do determine the coefficients.
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x3 - 1 1 -x+ 1, x- 12-

x(x ,+ 1)- x- + 1 (x- + 1)

Which is easily verified to be correct:'

.-Given the partial fraction decomposition of a rational function we

complete the work of formal integration by showing bow to integrate. the

standard forms (1)-and (2). For (1) the inteErals. are already found. If

n > 1 , we have-

(I0a)

and ir n = 1 then

(10b)

r
dx

(x -
c)n

x - 1

(n - 1)(x - c)-1

dx = r log Ix - 11 + C -

For.(2) we introduCe the substitution
.11

(X - a) = b tan u (- < u (1.2)

+ C

where we assume- b > 0 (compare Example 10-3b).-Using dx = b

we obtain
7'

px +

a)2
.+ j

dx =
y tan u + pa + a,' b

/..
2

b
n

Lr

2 ,n
I + tan uj cos

2
u

2
cos u

du

du

2n-2
cos 3u sin u du + a cos -u du -2n-1 b2n-1

Or the last two integrals, the first is immediately folly zitegrable and

the second is given by the recurrence relation of Example 10-4g. We leave

as an exertise the problem of completing the integration and representing

the formal intet52 in terms of x . The resulting integral is a sum of terms

of the following types (plus a constant of integration),

(1.1-a)
Ax -4- 3

[(x - a)
2

b2 ]k

where"k is a positive integer, k < n
.

(11b) A log (x
,a)2

b
2

j

x a
A arctan



10-5

. .

Finegly, we observe that if we know the factorization of Q-(x) we know

the formOrtheantegi7t1 of ?(X) 'from-'41Q) and (I1)-:' Theref-ore it is

r

sufficient to. differentiate this fox .l determine-the constant'by tyre
method of eau4ted coefficients--

acampae10-5d. -'- Consider

"

.

J. (.
2 ax

The integral -must ,be of the form

a log x + x + a log (x
2

-+- ) +

- c
The derivative of this exoression is

arctan
r.

+
2 C.

/-- _a b RC= 213. (a + 2cx)x3 + (2p --b)x2 + 1-ax - 4b
x 7 2 + 2

+
x2,._..2

x .'.__,:x + 4- xa + 4
-,- ,, ,+)

Since the numerator of this expression should be x +-1 we have on equating
). .

r,

coefficierits s- C-, r
(

s.
a -i- 2a = 0 , 2D b = 0 , 4a = 1 , -4b = 1 /

whence

it is easy to verify that this yields the correct integral.

) ',..

Exercises 1b-5-

1. ptegrate the following

x + 2 x24) (e) (a / b / c),(x -,a}{x - b) (x - c)x + 3x + 1

x3 . x3 -I: 1
( b ) - ( f )

x2 + 3x --- 10a. r x3 - 1

(c)

(d)
(x-1-7, a) (x -

(Consider the cases

a / b and .a = b)

) (g) 3
+ a

2

(h)
+ 2)2

x(x - 1)2

2
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4 (i)

(j)

(k)

I

11,

2. Prove from Equation (3) .that If

( ) -e---
X- 1

x(m)
6 -- 1.

Q(x) = (x - al)(x - a
2

) (x - an
) Y

1
< a2 < <an , then ,Ti.77,7 has a deComposition into partial

fractions of the form

1
,..-

1
r r2

_El

(757 x - al x - a
2

x - an
%

3. Prove if

n-1 a- = b xn b xn-1anx x b
an-1 0 n-1 0

where

for all but finitely many numbers x , that the coefficients of like

(powers on the right and left are equal; i.e., ak = bk for k = 0 , 1

, n

4. Verify that

of the forms

I

(

nx q

[(x- - a)'2 b2]

(11a, 15, c).

'an be expressed as the sum of terms
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10-6. Definite Integrals.. . I`
- -..._

.
. -.7--

The preceding sections,of thj:s.chIptetwere deyoted primarily to the
,,- .

problem of finding the indefinite integral, la'., given -function; 'In--principle,

this solves the problem of evaluating 'any_ definite integral of the fuzaction.
. .,

In practice, it is often desirable or necessaryto evaluate a definite
integral, not by formal integration, but by some sthermethod altogether.
1,4 may-be impossible to obtain an explicit represeniation of the indefinite

.

integral in terms of elementary functi-ont, yet some special-symmetry may
yield the value of a given definite integral effortlessly. .Ev4n if the formal
expression for, the indefinite-in'tegral,is obtainable; the-use of a symmetry
condition may be

appropriate when

11,ecause the range

.cases, wechave to

a worthwhile shortcut. Often t15:& idea of integral remainsr
the Riemann integral, as-s-Erict*,defined, does not exist
or domain. of the integrand may- be unboundeAv 'In these
extend the.definition of integral- in meaningful way.

these-problems are treated.in this section.

(i) Symmetry. Watch.for

exists often provides a direct
9'3fication. We have already pointed out one-

symmetries;

solution to

If f is an odd

(l) :

ixEmple 10-6a.

0

It is hopeless to..?
I = =0 .

(2)

4'

theme observation that a symmetry

All

a problem or_at-important simpli-

use-Cul.symmetryin Section 6-4.

function and integrable 611. [-a ,then

Coniider

I

f(x)dx = 0

I Z1. x e
x2

sin x ax

find the indefinite integral, and it is not needed, since

f- is an integrable even function on [ -a,a] , then k

a a
f(x)dx = 2 f(x)dx

-a ,0
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Example 10-6b. -Consider
%

A

r i

.I = (a +alt +at ;i- ... +a t )at .

.-

`4,

0 2 :.

2 '

2n
2n\--,

-x .

. .
,

e odd powers contribute zero ai4for-the even powers we obtain

21
' ' t . %

=' 2
.(5t0-4 .)

I

a2t2;: t ....
+ a2n

t
2n dx

O; 1

ilk 4' -- 2n#1
' a

nx
! ..

= 2 a' x -!-.
f2x

Often an integral which exglibits.nOmobvious symmetry can be transformed

into a symmetric integral. Thin is specific for each case and
q

no general'rule

for discovering such symmetrie*
'-,..,,

can-be given. .

d
f

Example' 1Q -6c. Consider

5

II-- 5 3,-7.-2 dx
-1

.. 7

Since the ,graph y = 377777 as a center of symmetry at x = 2, we set

t

u = x - 2 ani,findl

3
3r- , = .

-3
4

Ate:other important symmetrysof a function is periodicity.

If the function f, is integrable and periodic with period
, then the integrals of f over intervals of length p are

all the same; i.e.,

a
,fa f(x)dx)dx =

bp
(

b

a-f-p -f-

for all a and b .

The s 44.ent -is geometrically obvious. The gx.loh 5r.= f(x) over.any
5

interval of lengthr re;resents the complete graph the sense-that the

picture '6rf-tfie ;Unction fi-om. a tb ."D is identical to the Picture from

asp to a + 1)15 where k- is,an integer., The-entire graph Can be

thought of as a secuence of identical pictures of width p end-to-

end ;Figure 10-6).' If a frame 'of width p is laid over the graph (the

- 571

k.



. . .. .
.

..
.. ,.

.

, . ., . ,

e-
a4-(k-l)p b a+Icp

,e
b+p a+(k +1)p

--.- .

.

- . ., .
. . .

ti Figure 3 0-6
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10-b

intervai'''fb,b + p] in the figure) thenthe part of the total graph within

the frame may be.cut along aline .a + kp and reassembled to form the

original picture.'by interchanging the two piece formed by the cut. This
! .

geometrical discussion is exactly paraphrased by the analytical proof:.

The proof is left to'Exercises 10-6a, NUMber 12.

Example 10-6d. Consider

n+ 1/4

I = (a0 + a1 cos 27rx + ... + ak cos
2k7cx)dx .

0

Since the integrand is periodic with period 1

1 k 1/4 k

I n :Elfav co 2v7rxdx +

:

a
v

cos 2v7rx dx

0 v=0 0 v=0

For v > 0 ,

and

1

0
cos 2v/rx dx

sin 2v't x

2vg

.

.1/4 ......

i
sin (-1S)

2cos 2vvx dx =
2v1r,

j 0 f
. .,

= O.
,0

Consequently,
-,.

- - .

1
a
1

a ,

v.
I = (n +

1
80

+ -
21T lOir

...2_

. .

(ii) Special reductions. The gene.=

for-a definite integral is

Quite

form of a recurrence relation

b

fn- 1(x)dx
a

n
a

often specific problems lead to integrals for which the "boundary" term

gn(x) gn(b) g:(a),

is zero for n > 0 , say. If so, we immediately have

'573
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b b
n
(x) c

n .c

..

n-1 1 f0(x)
a

.

Thus in Example 10-4f, we could conclude at once from

that

jim(1 - x)
n dx = xm+1(1'

+ S x111(.1 - x)n-1' dxm n 1

X(1 - x)1,2 dX
0

n(n - 1) ... 1 1
x
m

dx(n + m + 1)-(n + m) (m + 2) .c

n(n - 1) 1
(n + m + 1)-(n + al) (m + 1)

Thus we obtain an important-connection with the binomial. coefficients.:

m(1 - ) x = m + 1) (11-t-m) ]1.

Example -l0 -6e. A case of tpecial interest is

1"72
i I

v
= cos

n
x dx .P .

(:)

From the result of Example 10-4g, we have

t v-1 v/2
cos x sin x.I

v
-

For v > 1 this yields simply

V - 1
V v-2

For v even, v = 2n , we obtain

(2n 1)(2n
(5a) 12n 2n(2n -

odd; v = 2n + 1 , we ob",:_n

(5b)-

3)
2) ... 2

- 1
I

.1-f

2

2n(2n 2) .4. 2 -

i2n+1 (2n + 1)(2n.- 1) ... 3

_

Jr_

4



' From (5a), and (5b) there can be obtained a graceful represen-
*
2

Cation of - known as Wallis's Product. Observe that

Tr 22
42` 62

i

(2n)2.
I
2n

- f 1 - i,-- 3 - 5 5 - 7 (2n- 1)(2n-1-1) I
2n-I-1

v-I-
--Now, since 0.< cos x <1 on .[0,1] we have cosy. x < cos

v
x for- - 2

all v so that I < I It follows that I < I < T

VIN

v-F1 v - 2n -,-2n-1 '
4-and since 2n-1

2n
2n

1
I

'
that

2n +1

I2n 1< <1 .

2n
2n +1

From the Squeeze Theorem (Theorem 3-4f, Corollary 2) which is easily
extended to this kind of limit (the epsilonic proof i4pan exact parallel), -

Igo obtain lim - 1 , whence
n.-00

I

I2n

2n-I-1

it 22 L. 62
1 . 3 3 5 5 7.

where by tYis infinite'product, we mean simply

-,

2
-2

; - 4
2

6
2

(2n)
2

_LIZ - ----
1 - 3 3 - 5 5-7 .. (2n - 1)(2n -1-- 1)]

2

= Iim
1 r22n (n3,)2

n-

1
2n -I- 1 L (2n): j

00

The verifiCation that the two expressions in these limits are equal
is left as an exercf.se.

Wallis's Product is not useful for estimating * , but it will
be ;used (Chapter 13) to obtain Stirling's asymptotic formula for

1

:==--

John Wallis (1616 - .1703);-"glish.:
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10-6 .;

. -

. Exercises .10-6a

Evaluate the following definite integrals:
.

9,9Vx99 sin

2. l x3 e
-3x-2

-dx .

O

3-

14.

5

log3 x dx..
1

7c/2.
sin

0
x dx.,°(m, a positive

integer)

7r /2 -

sin
tr.

-x cos x dx
0

(m, a positive integer) .

-a 0

O I -a
Compare f(x)dx with f(x)dx when f is even or odd to

de-z-We' the results (1) and (2) of the text by a method other than the

one you employed for Exercises 6-4, Number

7.

8.

10.

0

dx
a b cos x a > b > 0 .

7e-sin x cos3 x dx

f 2
dx

j 1 x x5

- x2 dx
O

7r/4 sin5 e

-n/ -sin
2 e b

2
cos

a > 0 , b > 0

de-,

12. Prove if f is integrable and periodic of period then for all_

a and b

a+p b+p
f(x)dx = f(x)dx .

a

13. Prove that if n > 2 then

".14. Prove that

15. Show
2
2

42

-I/2

.505 .< 10 < .524
- to

(

2x(1 si

c os
2

62
1.3 3 - 5 5 - 7

Tr
2 .

(2n)
2

-1 22n(nT.)2
2]

- 1.)(211 + , 2n 1 (2n)!
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16. Determine the value exact to two.decimal places of

36:1

17. Evaluate

I1

sin(sr x)

ir/4- t +

2
cos 2t

dt .

(Hint: Express the Integra:id as the stun of a symmetric part and an

integrable part.)

I-

577 2
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. (iii) Improper integrals. Often a problem requires-the evaluation of a
f

definite integral over an-interval where the integrand may be-discontinuous or,
40.undefined at isolated points. For example, in Section 9-3(i) we sought to,

N'
0evaluate 1 = - log N dN . Although, log.N is not defined at N = 0 ,and-

46 c

is even unbounded in any neighborhood of b we found it perfectly reasonable
that the integral should represent a definite number I = N0 log N0 N0 0

N0
.(EXercises 9-3, NO. 14). We gave the symbol T 'a numerical value,' but In so
doing we de_ -d something new. On two scores, we cannot describe I as a
"Riemann tegral: .the_integrand is not defined and it is not bounded on the

interval [0,N0T of integration. Since
f

log N dN exists for
jx

0 < x <
0 it is appropriate to define the integral from 0 to. N

0
by

S

Nn
I = lim log N dN ..

x-O x

More generally, let f be anyTunction which has discontinuities on
the interval [a,b) . We say. that the integral of f over [a,b] is
improper,: We shall .interpret such an improper integral as a limit, as in
the cited example, provided the requisite limit exists. For this purpose
we use the idea of right- apd left:Sided limiti (cf. EXercises 3-4, No. i6).
Let 0 be defined on a domain which contains the'open interval (a,b) We
consider the function 0 which is the restriction of the function 0 to
(a,b) and define the right -sided limit of F

.
at

lim 0(x) = lim O *(x)
x.-a+ x-a

an the left -sided limit of 0 at b , similarly, as

lim 0(x) = lim 0 (x) .

x--b- x-b

16Now, let f be integrable over closed subinterval of (a,b) and let t,

be any point of (a,b) . We intrOduce,the-function 0 defined on (a,b) by

as

x
f(,t)dt

E

We define the generalized integral of f over [a,b] to be
6



I = lim - lira 0(a)
$-137 , a-a+

.f(t)dt
a--a+ a

(t)dt ,

Mb

10-6-

provided the limits exist, and the integrals in (I)-are defined in the sense

of Section 6-3.

This new definition includes the Riemann Integrals defined earlier

(Exexcises 10-6b, No. la) and extends the concept to include cases not covered

by Definition 6-3.

rte. 10-6f. Consider the arclength L of the upper half of the

unit circle y = i1 -77 for -1 x < 1 . From the definition of arclength

of Section 6-3(iv),

L = 1
dx .

-1 A - x2

This is an imoroper integral; the int(grand is discontinuous at Vth endi and

it is unbounded. To evaluate the inte'grdl-we apply the basic integration

Fermata (8) of Teble 10-la and obtain

L = lim arcsin - lim arcsin a .
P-1- - 1

Since arcsin is the continuous inverse of sin where the domain of sin

is restricted to [-I',1]

L =
2 2- (- =-Tc

as we expect from geometry-

This argument may appeer to assume whet is to be proved since sin and
arcsin were introduced geometrically. However, in Section 8-5 and Appendix
8 these functions were defined purely analytically. Since sin is everywhere
defined and continuous, and since arcsin is increasing on the open interval
( -1,l) , it follows that arcsin is defined ana'coniinuous on the closed
interval [-1,1] . From the definition of , Formula (9) of Appendix 8,

= arcsin 1
7

1/2

it was shown with the aid of the addition theor that

= arcsfn.1

Since sin is an odd function (Exercises 8-5, No. 11) at follows that if

arcsin(-1) = 2 and the argument is completed._ In this way we finally establish

the connection between the analytical and geomet conceptions of the
circular fu4actions.

rr
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10-6

In, Exercises 9-3, Number 14, by a geometrical argument, it was suggested

that the evaluation of the improper integral 0
log N dx could be accom-,

O

plished in terms o another kind of improper integral,

I =
log No

e dx .

. This integral is naturally defined by

and iseasily evaluated. 1

Example 10 -6g. Consider

log NO
exdx= lim

c

02

I = e dx
-x

,

Itris not obvious that the indicated limit exists but we may obtain, the

1
:-'2-_indefinite integral Jn = xne -xdx using integration by parts and explore

the question 'of existence afterward. Setting u = xn , dv -=.e-xd.x and
,....,

integrating by parts we obtain the recurrence relation

whence,

= -xne-x + ng
n-1'

= 0(x) + C, where

0(x) = -e-x[xn + nxn-1 n(n - 1)xn-2 + + n:1 .

Now, by Lemma 8-3,

Consequently,

1 e-pxk

p-co

I = lim'OCO) - lims0(a) = n:
0-00 a,-

Thus we obtain the representation

n: = .c xe
0

d
-x

x
03
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interesting because it suggests'the possibility of extending the definition of

the factorial function from the domain of nonnegatiVe integers in a simple way
t-

of a function on the domain of all nonnegative real numbers.

With these examples in mind we extend the definition of integral as -.

follows.

(2)

DEFINITION 10-6. Consider an inte-,re (a,b) , a partition

fx
0'
x
l' '

x
n

) and a function f ntegrable over ever, closed

subinterval of (a,b) which contains no moints of the partition.

Here we also include the possibilities that. a = xd = -* or

that b = x = co .

The'inte5ral (in the extended sense) of f over [a,b] is defined to be

- f(t)dt

where- each of the erms of the -sum-is defined by (,.), and each of the ind,itat4d

limits exists. To complete the definition we define.

and if b < a ,

a
f(t-..)cit = 0?

a

a
f(t)dt = f(t)dt ,

a b

O

. a
provided f(t)dt exists. (Compare Definitions 6-4a, b.)

fb

If a = -00 , or b = co or any of the partition. points xi is a point -

of disContinuity of f we. say the integral is improper.

The basic theorems for Riemannintegrals also hold for integrals in the

extended sense:

(a) If f and g are integrable over [a,b] in the extended sense, and

f(x) < g(x) , then

(Theorem 6-4a).

b
f(x)dx < -g(x)dx

a

581



(b) If a b and c are points of an 4nterval over which f is

integrable in the extended sense, then

(c)

b
f(x)dx

(Corollary

If f and

c c
f(x)dx f(x)dx

b a
I.

to Theorem 6-4b).

g are.integrable over

then

raf(x) pg(x).] = (4-f(k)dx
a a

(Theorem-6-4c) .

(d) Let f `be continuous n

t

a,b in the extended sense,

b
g {x)dx

a -

(a,b) and integrable over [a,b)
the domain consisting f an open interval I with elldpoints- a_

and .a (we permit a >-a), let g be 6ontinuouslytdifferentiable.
If the -range of

. gr'is in , (a,b) , and Itm g(t) = a and lira g(t) = b.,
t--ce t..3-..then

P
fg(t) g*(t)dt = f(x)dx .

S a a.

(Substitution Rule, Theorem-10-2.)

The proofs of ekl:(d)are.left'to Exercises 10-6b, Number 2.

In }general,

cance later. 'If each

D'
we write the symbol f(x) first and-question its signifi-

ofthe indicatedlimits in (2) exists we say' that .the

in!tegral converges on that it is a convergent integral. If any one of the
'limits .fails to exist, the improper integral is called divergent. It should

_-
be kept in mind that a divergent integral is not a number; it is a meaningless

symbol, and operations with meaningless symbols are likely to lead to meaning-

less results. For example, -7 =. -2
-1'x

Only aftert-it is proved that an improper integral is.convergent*can we
rely on the results of computationS in which the integral, is involved. We
need criteria to determine whether-an improper integ.La.1 converges or f-verges.

-^One of the most broadly useful criteria is comparison with a nonnegattve test

function for which the integral is known either, to converge or diverge.

532



10-6

4..,.THEOREM 10-6a. Let f Se Riemann integrable over every closed subinterval

of (a,b) A If If(x) I < g(x) and. g'(x)dx coverges, then

b
f(x)

a.

converges.

a

Corollary. Let h be Riemann integrable on_every closed subintervq1

b
h(x)dx diverges, then r(x)of (a,b) . If f(x) > h(x) -> 0 and

diverges.

a

-
0

tThe proof bf the theorem is given in Section A10.

Since f is Riemann integrable in any closed subintervel.of (a,b) ,

the comparison between f, and the test funkon g may be restricted, to any

one-sided neighborhoods of the endpoints. .See the proof of The'oremAl0a.)

One of the most'useful test fuiactions is the power function

THEOREM 10-6b. The integral

converges

g: x --P-
A

a)ar

fb dx

a Tx -

if p < 1 and diverges, if p.> 1

We prove the for a Cb

Proof. For a < G < b

dv

a ( x a)P

Also, lim+ (a - a )1-9

3

1
[(b 13a)1- - for p 1

1°5
( 1 °

e"'
a) log a) for

a)1 -p]

exists if' p < 1 and does not exist if p > 1 ,
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10L.--6

and lln+ log(a - a) does not exist. Thus, since
a-a

fb b
dxdx

limes

S a - a)P a-a a (X - a)P

the theoren'is proved._

Example 10-6h. Consider again

1
1 = dx

i.

1

1 - x

(Example 10-6f) . For -1 <:x < 0 we haye 1 - x > 1 , thus
. :

1 < 1
and

0 1
dx converges. SiMilarly, I. 1

1
dxA .2c2 kx + 1)1 -1 l---.1 - x 3 0 A.

O _ x2

can be. shown to converge, and _we conclude- that I Convergek by Theorem 10-613.
_ .

'

Implicit in-Theorem 10'...6b are the conditions a -cc and b cc , other-
wisewise the test functions' B

_and would not be defined. Ida,
- (x- a)- (b - x)P

need similar criteria for unbounded intervals.

=OREM 10-6c. The integral

S'a 5-
convene :_ if p >%.1 and diverges if p

)
<: 1 .

The is left as an exercise etxercises 10-4, Na. 6).

Example 10-6i. Consider

Fo'r u > 0 we

e
-u

=
1. 1

e
u u

)

2
P 2

dx' .

have from Section 8 -6, (3), eu > 1 + u > u ; consequently,

It fo1aws that.

all x . Taking f(x) = 2and g(x )
,
we conclude from2

d.



ti

TheOrem 10-6c that

e-x
2
/2

-20

cc- 2,
e
-x /2

dx and

1
dx =

-cc

converge. The indefinite

-elementary functions, but

ways and is known to be

2
e -x /2 dx

-1
er
-x /2

2
dx converge. - Hence

2,
e
-x /2

dx +
00

10-6

-x
2/

2 -\.

Integral of e
.

cannot be given in terms of

.the integral over [-=,co] can be computed in other

More refined tests than comparison with power functions may, be necessary

on occasion.

Example 10-6S. Consider
sr

i

/2
1 = . log sip x

o

The difficulty here occurs at x = 0 . However, since
fa

near x = 0 and we have evidence-that log x dx converge& (Exercises
JO

9-3,-No. 14), we have reason to believe that converges. F.or the proof we

in x behaves like x

observe for in [ ir-] that

2xsin x >

(see Exercises 10-6b, 13). Since log u negative for u < 1 and
_flog is an increasing function, we have

2xFlog sin xl = log 1- - log x .

_

Now, integration by parts yields

.ir - log x dx = x(1 -log x) + C ,

and

1-lim x log x = x log
x-0 x;40

.as-we know. from Lemma 8-3.

and applying Theorem 10-6b,

Z .

co

= 0

2xThus, taking g(x) -log as our test function

we establish the convergence of :r .
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Exercises 10-6b 1.-

.

1. (a) Let f be Riemann integrable over [a,b] . Show that the integral

of f in the sense of (1) exists and is equal to-the Riemann

Aintegral.,4, -.

-r.s

0') Show that. .4_f -f is continuous on (a,b) and the limits lim+ f(x)
_

x-a
c b

and lim f(x)dxf(x) , exist, then exists in the sense of N.
x-b' ) a

2. Show that the ba.A.c theorems for Riemann integrals hold also for integrals

in the extended sense:

(a) If f And g are integrable over [a,li] in the extended

"f(x) < g(x) , then

(Theorem 6-4a).

b
f ( x) dx < g(x)dx

a

(b) If a , b and- c are points of an interval over which f is

(c)

(a)

integrable in the extended sense, then

b

a

f(x)dx +

ir

c

b
f(x)dx = "f(x)dx

(Corollary to Theorem 6-4b).

If f and g. ane integrable over

then

a

[af(x) 0g(x)] = a S. f(x)dX + 0
fps -a

(Theorem 6-4c). .

in the extended sense,

Let f be continuous on (a,b) and integrable over [a,b] . On

the' domain consisting of an open interval I with endpoints Gr'and

(we permit a , let g be continuously differentiable. If

the range of g is in (alb) , and ltm g(t) =a and lim g(t) = b
t-0

then'

P b
fit) gl(t)dt = f(x)dx

a a

(Substit tion Rule, Theo ) The proof requires the demonstra-.

tion of existence for tie integral n the left.

-586
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For phis purppse it. is convenient to introduce the concepts

"neighborhood of infinity" ,and "neighborhood of minus infinity."

A neighborhood of co is-.an open ray of the form Cx : x > a) .

'Similarly, a neighborhood of -co is a ray of the form fx : x < a)

For a neighborhood of m or , the neighborhood and the deleted

neighborhood are the same. Furthermore a neighborhood of co is a

left-sided neighborhood; a neighborhood of is.a right-sided

neighborhood. We now extend thie meaning of.(

lim-f(x).=b ,

t-
x-a

so that a and. b may not be real numbers but co or -0D ; that

is, every'deleted neighlAfthood of a contains points of the domain

of and for each neighborhood J of b there exists atdeleted

neighborhood I of a wherein f maps the po' ts of its domain

'Into J .

Prove. the corollary to_Theorem 10-6a..

1 Prove Thebrem 10-6b when a > it .

5- Prove that
fa A

dx converges if p <1 and diverges if p > 1 .
JO ail)

6. Prove Theorem 10-6c.

7. Test for convergence and divergence,

-, I = x dx .

00

...
.-

-8. Evaluate- those of the following improper integrals which cohverge;

14_

(a) .-
dx .

- 7r/2

..

, :. i

-2 51( ..-x)3 0 -Vi - cos ',5)-
77--)

5

1/m
a m L-1

_<.

(b) j-

0 2 2m
, m > 0 (- )

co0

i
0

ax + e dx
x dx .2,-1,-......L

la x

( loe x dx.
.

(f) S x e-
l

dx
0

1 T 2
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(g)
0

O

n-1 -axx e dx ; a > 0 ; n , natural number.

dx"

+ x3

03
17-77

(i)
.1

/
x 1

37

(d)

b

a

dx

,/(b - - a)
Si

e

, a-< b .

.10

I

-Determine whether or not the follawing ,integrals are convergent and
evaluate when practical.

(a)
( ce x3 - 1

dx- (g)
x2 -

dx
3-1 x + 1 S x2 A x4

w log(x2 + 1)

1 x
(h) x2dx

+ x3 -÷ 11

e at
j,n1.17 (1)

03
ax

1 ti S i2;c4 3 2
- x + 1

('e)

C 2-
dt

O e 1

I :
-1Ogn x dx
O-

(f) e
-u

og e u du
0

10. Conside'r

(a) 1.1

dx

0 A

S sin-x

O 16,77771:777
dx

0

n

(:8)
. cos x

dx

`11172(>01 dx
-03 i

Where'-R(30--is a rational function, R(x) = P(x) where the polynomials
C7,57

P(x) and QUO have no common factors and Q(x) .has adn3,3r simple roots.
,

Determine the conditions under which I converg's or diverges.
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11.. Test for convergence.

(fa)

f e dx

j l x
m log x

d
(c

x
)

xm log x

e co
dx dx

(b) (d) ,m
1 x(log x)m e X(log x)

12. Using estimates in the manner of Example 10-6i, obtakn an.upper estimate

of

0o 2 ,
-x /2

m
dx .

vir 13. Complete the demonstra=tion of Example 10-6j that

converges by proving

2x
sin "x > 0 < x <- 7C

log sin x ax

(Hint: sin x is flexed downward on the given interval).

14. Give an example of a function f which is Riemann integrable over every

subinterval [a,b] of (0,1) and fox which the integrP1,s_are bourlded,

f(x)dx <M

--yet which. is not itself integrable. over [0,1] in the extended sense.

15. Prove that-if .f is continuous on (a and i

cbthen f"X.,dx exists.
a

b
dx

j a
exists,

7 "4

16. Show that If the generalized integral defined by (1)'exists, then it is

independent of the choice of . .

'17. Verify that.the value of the integral in the extended sense is not

affected if additional points are included'in the partition used in

Definition 10-6.
a

18. A function f is said to be piecewise continuous on la,b] if there is
-

a partition of.the interval such that f is .con-
y .

tinuous'on each open subinterval (xi_1,x1) and the one-sided limits,

aim f(x) , , exist (i 12,3,...,n) . Show that f is

x-x.
1

x-x
-1

integrable In the extended sense.
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10-7

e

- no' V-
10-.7. Linear Diff

.

uations of First Order.
,

The theory_ of, differential equations is, rich, deep and fascinating, with

ramifications spreading far into mathematics and the sciences. The calculus

lies at the, beginning of this theory. A differential equation defines a class
of functions, its solutions. We adopted this point of view,in Section 8-5 to

deflpe,the circular functions by means of the differential equation
D2u t-u = 0 . The solutions of differential equations form a far broader
class, of functions than those encountered so far. In this section and the

next,, we shall consider only such equations as may be solved in terms of func-

tions we know already, elementary functions and th.ear integrals. This is a
serious and artificial limitation: S-Edll, the few basic types of differential
equati6n we shall study, for all their simplicity, are quite versatile in

application to the sciences and mathematics:

The principal concern of this chapter is the integration of the simplest
differential equation,

(1) Du = f

where f is given, and the function u is to be determined. In Chapter 9,

although' the equatipns had diverse scientific origins, for the most part.they
ware. of thesimple.form

, (2) Du = a bu + cu2

where a b and c are constants, with various interpretations of function

u and the Constants a,b,c. It waethis basic similarity
structure 1.ilich_served as the unifying three

. .

we consider the differential equation
.

of mathematical

at chapter. In this section

SY.:(3) + f , r p(x)y f(x)dx

for all x in the domain of .0

where y = u(x) and -p and f are given continuous functions. This class
of equations includes the type (1) (p(x) = 0) , but includes only.those
eauations of type (2) for which c = 0 , with constant coefficients f(x) = a
p(x) = b (see Exercises "10 -7, ]1o. 2c).

It is convenient to introduce the idea o..adifferential operator which
mama a differentiable function onto another function (thus a differential
operator. call be considered as a function on the domain of differentiable.
functions). For our present purposes, we need not define the concept of

differential operator in all generality. We merely point out that for the

590..
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differential operator given by
2

(3a) L = D + p : 0 Lmm"."..-

Equation (3) can be written in the form

(3b) = f .

0 .7

For. example, the operator L[u] = Du + p .0 where p(-)0 = sin x takes

u(x) = x2 into L[x2.] = 2x + x2 sin x . Hence u(x) = x
2,

is a solution of

L[u] = 2x + x
2

sin x . The problem posed by Equation (3) or (3b) is to find

those functions u which have f as their image under L . The Operator L

of (3a) and the Equation (3b) are called linear since for any linear' combina-

tion of functions 0 and * in the domain of, L (differentiable functions),

L[a.96 plif] = aL[0] + F5L[1:] .

The operator and equation are said to be of first order since the expression

for L[0] involves no derivatives of 0 of order higher than the fist. The

function f in (3h) is called the forcing term om physical applications).

If the forcing term is zero the equation is said to be homogeneous. The homo-

,geneaas equation L[u] =,0 is called the reduced equation of L[u] =.f .

equation

(4)

The reduced equation.

This equation haS,

suppose the±ej.s-a

point x0 ; i.e.,

The solution of (3) begins with the-reduced

Du = Oli

the solution u = 0 , the socalled trivial solution. Yow,

solution u oif (4), which i nonzero at the

0 . Since u is continuous it must be

nontrivial

3Y6 u(±0)4
bounded away from zero in some neighborhood of.

is not zero we may divide by y , hence on some

of,(4) must satisfy

x
0

(Lemma '3-4). Wherever y

interval a nontrivial solution

2-" =
y dx

(log!y1).=
dx

On integrating from x0 to x y' we find

logl-L = - p(t)dt ;

To satisfy the differ

0 x0

tial equation, u must even be differentiable.
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thence,

(5) Y = u(x) =Y0 exp 1 p(t)dt} .

x
o

Formula (5) tells us what form a nontrivial solution of the reduced

equation must have if, one exists in a neighborhood of x
0

. Now we observe
_

that (5) defines a function u x on the domain of the given continuous
function p and that the function u

tial equation on this domain:

so-defined is a solution of the.differen-

d
dx dx [Y0 exp p ( t)dt

[exp - p(t)d-t}](-p(x))0
0

= -p(x)y

In'Particular, the initial value problem for the equation of unregulated-_
growth or decay,

y' = cy , y = at x= 0

where is constant, has. the unique solution

y = y ecx
0

as we ProYed before in Theorem 8-5a.

(ii) .The initial value problem for the reduced equation In applications,

Equation (4) typically describes the var ion of some quantity with time. In
Sections 9-2, 3 with a constant function p : , for example, the-

eugation was used to describe pro ses growth and decay. For phenomena

involving time variation one'of t e most gnificdht questions is to determine
and describe the future states of 'ri terms Qf a present initial state.

For

tild form of the initial value Problem: given the initial state yo of the
system at. time x0 , what is the state. y -of t4 system at any later t e

X > ?x0

phenomena governed by the differential equation (4), this question takes

2
592
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The association of a mathemati-cal initial value problem with a physical

problem leads to mathematical criteria of significance: the initial-value

problem is said to be well-posed if it satisfies the following. conditions,

'(a) A solution exists (there is a future).

(b) The solution is unique (future states are determined by the present

state).

To.these conditions it is usually appropriate to add a third.

(c) The soTilt"Ion depends continuously on the initial data (minuscule

causes should not produce iimiediate enormous effects).

We do not emphasize condition (c) here since it will follow from the explicit

solutions of the equations we shall treat.

It is quite reasonable to look backward 1,n time and inquire about the

earlier behavior of a system which produced idpresent state (e.g., EXercises.

9-3, No. 12). For the purposes of mathematical analysis it makes no signi-

ficant difference whether we are seeking a forward or backward solution'of a.

differential equatioS; that is, the parameter fcillgtime that' be denoted by

or -x., indiffereliply. The mathematical -oncept of initial value problem

includes all problems in which an appropriately described state.of a syStem

Is given for one value af a parameter--not always time--and the varia-fton.of

the state of the system in some parameter interval containing the given value

is to be determined.

( 6)

The ini-ftal value problem .17

L[u] = Du + p-.1.1 = 0

.12(xo).= yo,

in which u is to be determined as a solution of the differential equation

L[u] = 0 subject to the initial condition u(x
0
) =_y

0
is well-posed: the

solution given by (5) always exists; it depends continuously on yo ; and as

we shall prove next, it is unique.

Cr R2
THEOREM 10 -7. If p is continuous on an interval I ,containing the pqint

i._
x then the initial 'value problem (6) has,exactly one solution on 1 .0 ' .

-,.

..)/
Proof. We have already verified that (6) has the solution given by

In order to prove uniquenest we employ tigte method of Theorem 8-5a-p Let u be

any-solution of (6) within I on an interval containing x0 , and set
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(7) u(x)

where

x
(8) v(x). = exp p(t)dt1Jx

0

5

izice v(x) > 0 is defined on the interval'coMmon to the 'domains of u
-and v . At the initialipoint. x0 , we have

u(x0)
w(x0), .v "77r, yo'

and we shall shOw now that w" is a constant function, w : x--r-yo. on its
entire domain. Differentiating (7) we obtain (6) ar4. (8)

1.1*(x)'1x) - u(x)vt(x)

v(x)
2

,

t [-p(x)u(x)1v(x) - u( )1:-p(X)v(x)]

v(x)2

=0 .

Thus tw must be_a constant function. Since -/(x0) = yO , we'conclUZe that
w : x.--41-y

0 on its domain. The function u is given, by Formula (5) since.-. 4,

11 Yo v

The functiOn v defined" b§- (8) is called a fundamental solution of (4).
(There is a fundamental solution for each choice of x0 .) Any solution u
of (4) Is a constant multiple of v , namely u = y

0
v ; consequently the

fsrmily of solutions given by (5) is c-etled the general solution of (4). Since
the fundamental solution is everywhere positive we conclude that a solution 4.1

Amust be everywhere positive, or everywhere negative, or identically zero. The
. .

fundamental solution v Clearly increases where p(x) < 0- and decreases where

( x
p(x) >0 ; it is bounded if and only if p(t)dt is bounded below; it

0
,-

approaches a constant state, that is, lim v(x) exists, if as x approaches

2 S.

x...00

/ p(tItat either converges or approaches infinity. Since any solution

u is proportional to the fundamental solution, the 'corresponding properties
of u are immediately given

594
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Example 10-7a. Consider the differential equation

y' - y,sin x = 0 .

He-se p(x) = -sin x , and for x = 0
0

x.
p(t)6t =

x0
sin t dt = 1 - cos t .

-The fundamental solution is then

v(x) = exp(1 - cos x) .

Clearly, v'.. is periodic with period 27r , increases on the interval [0,7tj

And decreases on the interval T7r,27r] . Its maximum value v(3!)-=, e
2 is taken

on at the points x =(2k + 1)7t , its minimum v(0) = 1 , at the points

x ='2k1r- , where .k .is any integer.

(iii) The nonhomogeneous eauation. The solution of the nonhomogeneous

equation (3) is intimately. related t9 the-soluton-of the reduced equation.

If and u are any solutions of the nonhomogeneous equation Lru] ='f

then their difference u - u1 is easily seen to be'a solution of the homo-

geneous equation L[u] = 0 (Exercises 10 -7, No: 2a.). Consequently, given any

Solution z of (3), the general solution u can be written in the form.

(9) - u = z + cv
nie

where c is:a constant and v is a flindamental solution o'the reduced

Equation (,14).' Thus to obtain all solttions of ((.3) we have only to find "one

solution z , a particular:solution, of L[u] , and a fundappnialsolUtion

v- of the reduced equation.

From Equation (9) we see again that the Solutions of (3) fdrm a one-
.

parameter family; a single condition will serve to determine a value of the

parameter c and a member of the family. Specifically, the initial value.

problem

(10)
L[u] = Du +. p -1.1 - f

u(x ) = y
0

M 0 .

Y0 - z(x
0

)
-

is solved by (9) .with c for a particular solution z defined'
iv(x0-).-

in some neighborhood x0 -- provided such a solution exists. Furthermore,

this solution is unique for if !
1

and z
2

are solutions of (10) , then

595
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= z - z
1

is solution of the initial value problem '.

-.. .

. c ) ; . 4 - - 1,10 = 0 , t(x
0
) = 0

'oprt!,.e

and therefore -.3FP:st be identically zero; _hence,
1

= z2

To show _that, the initial value problem (10) is well-posed we need only
demonstrate the existence -of a particular solution. For this purpose we apply
an elegant device, the so-called method of variation of parameters, which
applies to higher order linear equations as well. The general solution of.
the reduced equation is c v(x) where v(x) is the fundamental solution.
We seek a solution of the nonhomogeneous equation by "varying the parameter";
that is, we replace the constant c by a function c and seek a particUlar
solution of the nonhomogeneous equation (3) in the form

(11) Z = c v .

Taking the derivative in (11) we obtain

In Ighis relation we insert the conditions

vi = -p v

from Equations .(3) and (l), respectively. This yields

whence.

ci(x)
f()0
--r(-
vkxj

c{x) = dt k
v(t.x0

For each value of k this formula should define a particular solution of the
'forth (11) and simplicity we take .1-c;=- 0 . From (11) we then obtain as our

.

.
.

.

candidate fdr a particular-sdlution the.function- z given by

(12) z(x) = c(x)v(x)= vC,i) Cx . f(t)
1-777 dt .

x0

yr'

It follows directlon differentiation that the function defined by (12)
e -is a Solution of on =the commInterval of continuity- of f and p-

(Mcercises 10-7, No. 4). From (9), the general- solution 'u'.of the nonhomo--
geneous Equation (3) may be expreSsed.in the form

JO

- *
The'general method was invented-by J.L. Lagrange (1734,71813), a FrenCh

mathematician who contributed greatly to analysis and mechanics. The method
foi- first order equations was given in 1697 by John Berno1,73i (1667-1748),_Z'
Swiss, one.of the most important' early developers of analysis.
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.( 13) u(x) = v(x) [c
x

f(t).777 dt
xo

10-7

hei.e c is constant. This is an explicit solution in the sense that is

QC"expressed in terms of integrals of the given functions, but in gen these

integrals'oannot be expected-to have representations in terms of elementary

functions.

ti

lbcample 10-7b. Consider the differential equation for, y = U(x)

yt + ay = ke-bx.

where a , b and k are constants. In the notation of Equation (3),

p(x) = a and f(x)- = ke-bx . Take x = 0 in to obtain for the funda-
.

mental solution

v(x)--'exp

I 5
9)711 e

-ax

:
,

In the general solution (13) set

0 v
dt = k (lc e(a-b)t dt

0

.We distinguish two cases. If a = b , we get I(x).= kx and the generf
solution u is given by

If

y = u(x) = v(x) [c . 1(x)] = -± kx)e-ax

.),
k .re(b)x _ 1.. 1

i
.

,

- b L 1 and here the general Sqlution..is
.- .

-.,..._

a - b

bL-ax k -bx
= e -i-. - e

a b

, then I(x)

k

e

a - b
is constant.

Foi- the particular solution of (3) which satisfies the initial condition

u(x0) = yo' we obtain u(x0) = v(0)[c + 0] = c

explicit solution of the initial value problem

(14a)

-,r

Y

/

or

17:
dt]

597
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where

v(x) ..exp ) p(t)dt

0

Thus we have established that the initial value problem,(10) is well-posed.
5

.Example 10-7c. Consider a circuit consisting of a resistor and. a coil
subjected to an electromotive force, (see Figure10-7). Let the resistance.
be R the inductance oftA coil be L and let the electromotive f.a.ce

be E = g(t) . We shall consider .

both constant and variable E . From

Exercises.9-3, Number, 8, Equation (5),

the current I = u(t) satisfts the,

differential equation

Figure 1077

Equation (15) is .a linear first

replaced by' t and° y. by I

from (13).

(15) dI_
+ aI = f(t)

dt

where

R
f(t).a ,

L

order, equation Of the Form (3) with x
- ,

For the general solution of (15) wa have

(16) =
t

easf(i)cis]

o,05=

We now consider some of the T)roblems which were left as exercises in
Chapter 9.

(a) Consider the behavior of the circuit 'if-the electromotive force is
shunted out of the circuit at t = 0 wherf the current-is I0 . Then
for t > 0 , E = 0 and I is given by the solution of the initial

, -

value problem for the homogene?s equation; namely, ,

= I e-at = I e-Rt/L
Ae 0 0

The current- decays exponent to 0 . The half-life T = -pi log 2
, .

L

increases with L and dereases with R . In the limit of:zero-.

resistance the current is maintained cons t at I
0

. What happens
in the llylt of zero inductance,



(b) Let the electromotive force

the initial current is TO

honbgeneous with a constant

I = r-r
L-Lo

= (I°

E be constan4-

then the circu

forcing term,

E t
e
as

d

L)e-RtirjR

10-7

from.. t = 0 , on. If

Equation (15) is non-

= . Then, by (14)

r Thus the current approaches the constant terminal value I00 = R as

t approaches infinity. The system is said to approach the asymptotic
r

- steady state I
00 and time-decaying term I .1 I

00
is called transient.

The terminal ,value' is independent of the initial state and is the

value of the current that would flow in the circuit .for t > 0 if
no coil were present. Thus the effect of the coil is to level out

the transition from the initial state to the ay'taptotic steady state.

(c). Let the initial current be
0 and_Suppose -for

alternating e'lectromotive force. E = E
0

cos cot . Set b

we now havef(t)"" = b cos out . Fzom (14)

cr'
Integration by parts,

b(a cos wt rosin Wt)
2a

2 -

e cos (4s dsj

as 'in Facample'10-4e, yields

theke is an

= 0
and

0 --'

(R -cos cot
R2 4- 442L2

We may choose 0 satisfying

cos

and write

where k*

0
a

a2 012

e
-at

(±
8 )

0 2
co
21

a

0,Lk-sin c.-b)

c.sin 0 2 + co2

I.
0= cos(wt - 0) we-at

is constant (see Section A2-5) . The

o.

2
RL

21,2

asymptotic state
. the .circuit .414s a sinusg.dal (alternating) current which has the

same frequency .as the forcing term but lags behind by, an amount pro-
nortial to the nhase

of
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Upon investigatingtheproperties of the solution (14a,.,b) of the initial
value problem we observe that the solution -is continuously dependent on the
initial datum y

0 as we might hope, but'alsoLhat it is continuously depen-
dent on the given functions ,D and f (Exercises 10-7, No. 9). This is an
important observation for applAations. The functions p and f may be
empirical functions subject to the usual errors of measurement and interpola-
tion. If these errors are kept small enough the error in the solution will be

/-tolerable. We continually have drummed into our ears that a little knowledge
is a dangeous thing, but in'this instance we may take some consolation in
the thought that a. little ignorance need not be harmful.
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Exercises 10-7

1. . Verify the/-foliowing properties of a linear operator

L[au] -= at[u].

L[11+ v] = L[u] +

for all functions. u and v 'in the domain of L . Conversely, show if

thede-properties are satisfied then -L is a linear operator.

2. Let L be a linear operator.

(a) Show-that the difference between any two, solutions of equation

L[u] = f is a solution of-the homogeneous equati L[u] = 0 .

Show :els° that if u a solution of L[u] = f an
%

solution of the corresponding reduced equation, that

a solution of the original equation.

Is a

u + V is:

1r)) Verify that any linear combination of solutions of -the homogeneous

equation. L[ui = 0 is again-a solUtiOn.

Show if c 0- that (2) cannot be put in the form of a linear

equation

:(c)

L[u] = f .

For the solution of-Equation (4) in the Form (5) show that Choice of a

-differept end of integration xi-/ xo :in the doMain of p where

u(xl) / 0 'yields the same va.2fte of y

4. _Verify thatthe function z defined by .(12) is. a particular solution of

(3)..

Give the general solutions of the following equations and solve the

indidated initial value- problem. -In.whatidoains are the solutions valid?

f

(a) .Y' 4,YI = /4. Y

(b) y' = ay + b , (a , b constants) ; y = - a
at x = 0 ,

(C) - y = x2'; y = 4 _at x 2 .

(d) '2e
-x.

y' + ex y = 2ex ; y = e + 2 at x=0..

6. (a) Obtain tge general solution, in terms of elementary functions, of -

the equation

Y' xY =

(b) Contrast with the general solution of

xy = 1 .

6oi
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7. .Let u and v satisfy

ul+p-u=f,v +p-v. g

where f(x) > g(x) for x > xo . Show that if u(x1) > v(x1) for some
> x0 then u(x) > v(x) for all x > xi .

8. The solution of Equation (3) was obtained under the assumption that p
and f are continuous functions. On the other hand, Formula (13) is

meaningful when .p and f may be only piecewise continuous (defined

in Exercises 10-6b, No. 18). Revise the theory so that it applies more

generally to piecewise continuous functions. (Hint: you will have to

give up the requirement that solutions are differentiable at every point,

but while relaxing this requirement, consider only solutions which are
continuous.)

9. In the light of Number 6, determine the current in the circuit of'

Example 10-7c when the electromotive force is a "square wave" of period
2k :

E
0 , for' 2n\ < t t 1)% ,

-E-0 , for (2n + 1)% < t < (2n + 2)% ,

n = 0 ,, I) 2 , ... What is the asymptotic solution as t approaches
infinity?

a
10. Let p(x) = in the homogeneous Equation

xr
(1) . Discuss the possibility

of finding a-solution y = u(x) for x > 0 such that lim u(x)
- .

'

What implications does this have_for 'the initial value problem. at x,= 0 ?

All. In the text it was stated that the solution depends continuously on the
initial value andand the functions p and f . The idea of continuous

dependence the initial values is clear: for a given value of x ,

y is a ontinuous (in this case, linear) function:of
YO But what

can meant by-continuous-dependence.on p and f ? Give your inter-.

pretation. Then verify that (14) does satisfy the continuous dependence

conditions.

6o2.



10 -$. Linear Differential Equations of Second Order.

(1)

10-8

this section we shall study differential equations of the general type

2

p(x) dux q(x)y f(x)ddx

where p q and f are all continuous on an interval I . Equations of

this type appear in many areas of science and their theory, is-a large and

still growing area.of analysis. The Equation (1) involves the second derive-

2

2
tive and.no derivative of higher order; it i.s therefore an equation of

dx
0second order. It is linear because it can be put in the form

(2a) = f

where u(x) = y and L is the linear operator

(2b)

(Exercises 10-8(a) No. 1).

L = D2 + p D.+ q

Even if p , q and f are elementary functions, it is not always

possible (in contrast to first order equations) to express the solutions of a

linear equation of second order in terms of elemIntary functions of p , q'and,

f and their derivatives and integrals. Thus,,a eneral discussion of these

equations would lead us away from tbethene of

and its uses. Here we shall discuss only
or:

. t. the general equation, and treat in detail only

this'Chapter, techniCal integre-

the Initial.value problem for
p

the special case, an extremely

Important one, for which p and q are constant functions (you will recall

that In Section 81 we used an' equation of this type, y" + y = 0 , to defin

the circular functions.)

We shall use the following simpleproperties of linearoperators.
. .

(a) If ul and u2 are solutions of the homOgenedus equation -L[u] =,0 ,

then any linear combination clui + c
2
u
2

is also a solution,
".---------

(Exercises 10-7, No.2b). ,

v.
(b) If ul and u2 are solutiOns of the ftonhomogeneous equation

L[u] =.f., i.e., L[ul].= f and L[122] = f , then u2 ul .isa
solution of the reduced equation; thus if we know one solution of

the nOnhamogeneous equation and all solutions of the reduced equa-,

tion,- we have all solutions of -the ,nomhomogeneous equation. (Exercises

.10-7, No. 2a).

6" 4
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(c) If f
clfl

c2f2 and u1 is a solution of L[u] = f
1 while

u2 is a solution of L[u] = f2 ,.then clui 4- c2u2 is a solution
of L[u] = f ; this superposition principle often permits us to

split a given problem into several simpler problems (Exercises.--116=8a
2

No. 2).

(i)

reduced

(3a)

where

(3b)

Homogeneous equations with constant coefficients% Consider the
- ,equation of (1) with constant coefficients which we vrIte in the form

L[u] = 0

L = D2 4- 2aD b .

It is natural to attempt to reduce the solution of Equation (3) to the
solution of linear first order equations. This can be done if the operator
L can be expressed as the "product" of first order operators. By the "product".

LW of two differential operators we mean their composition: first apply M ,

then' L ; so LM[u] = L[Mrul] (see Exercises 10-8a, No.. 4).--We seek constants
a and a for which

(4) L= (D - a)(D -S) = D2 2aD b .

Once we succeed -in this enterprise we can solV"e Equation (
) 1py solving

In succession the. equations

(5a)
(D - a)v = 0

(D - 5)u v

for which we have'developed general methods in the preceding section. (Compare
EXerCises 8-7, No 14). S.3nce the general solution of each first order equa-

tions involves an arbitrary constant, -the solution of (5) will yield two
arbitrary constants. This is true of second order equatiOns in general. From
the solution of (5) we expect a wellrposed initial value problem to prescribe

both the initial value y0 = u(0) and the derivative yO' = 10(0) ( Exercises.

10-8a, No. 5).

Observe that the composition of the operators (D - a ) and (D -

behaves life ordinary multiplication; - namely

(D a) (D - )11 = (D d)[1.0, - Pu] '

= D[11' - 1311] a(u' 15.11)

u". - (3)u! ce6u.

604
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or

(5b)
7_

= D2 - -(a i3)D -f--cz13 .

In particular, the result is the same'if . a and a are interchanged so

linear differential operators with constant coefficients commute:

to-6

that

(D - a)(D.- a) 7 (D - a)(D -.a) .

The commutative property is usually not valid if a and a are not constants

(Exercises 10-8a, No..6). Comparing (5b), with (3b) we see that such a factory'

zation is possible if the characteristic equation

(6)
2

- 2aX b = 0

has real roots; X = a and X. = . Consequently, for the purpose of solvin

Equation (3) we distinguish two cases: (1)7 the characteriStic equation (6.

has real roots, a
2

- b >7-0 : (2) .the roots kre complex, a
2

- b <70 .
.

consider first ti* equation with a factored operator; namely
111.

(7) L[u] "= (D - a)(D - 3)u .= 0 .

W4 begin. with the case a (3, ; the equation for which the roots of the

characteristic equation are equal will require separate treatment. Instead of

solving (7) by means of the first order-system (5), we shall employ a method

which employs the commutativity of the first order factors of ,L . Observe

that the equations (D - a)[vi] = 0 and (D s)[-v.2] = 0 have the solutions

1
x) = ecxx and v (x) = ele(x) respectively. But.clearly v

1
and arev (

bath solutions of (7) since

L[vi ] = (D - ;3)[(D - a)vi] = (D 7 0[0] =O

and

L[v2j = (D - a)[(D - a)v2] = (D - a)[o] =

Since anSr linear combination of solutions of the homogeneous equation is, again

a"dolution, we see,that (7) has the two-parameter family of solutions

(8) - ax
c
2
eax= c

1
e

We have not. shown that (8) includes all solutions,.but we know that we need

two parameters to satisfy the two initial conditions wgested, by (5). Furthec
more, if the solution of the initial valud\problem'is unique-then no more than

two parameters are needed. Formula (8) is.in fact the general solution,hut

We offer no special treatment of the uniqueness question:for the equation with-
-- constant coefficients, because we'shall prove uniqueness in general.

605
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It the roots of the characteristic equation are equal, CY = 0 = -a ,

then the preceding method fails. The "solution of the equation

(9) L[u] = (D a)2u = 0

given by (8) ax WC axis u(x) = c
1
e- + c

2
e = ke

-
, and we have essentiallSr only

one parameter, k 7 el + c2 . (It Is not always so easy to decide when a
,parameter is nonessential.) Td find another solution of (9) we again use a

-ax , N. technique from-Section 10-7 and seek a solution in the form -u.(x) = e v.x.)

.(see Miscellaneous Exercises, Chapter 10, No: 23). When the operator D - a
is W`plied to this function, we get the simplifying result,

axv(x.)] = axD

Now, apply the.operator again to obtain

L[u(x)] (D

(D + a)2[e-aw(x)]

= (D a)re-axD v(x,_

ep-v(x) .

Thus, if u is a,solution of (9), then v. satisfies the differential equation

e ..Epo v = O .

Since e'er is always positive, we have D
2
v = 0 Now we integrate twice to

obtain v(x) 4rc 4- c2x where c andL -w
1. c2 are arbitrary constants. Thus 34e4.

obtain the general solution of (9)

(10) u(x) = e-'Le1 + c2x)

ft.

Nora we turn our aeration to the solution of (3) when the roots of the
7

characteri sticiequation (6) are complex, i.e., when a2 - b < 0 .- In that
.

case we covl.dte the, square to obtain,
Silt-

L = D2 + 2aD

Since .b - a2 is positive we may set

equation In the for=

L[u] + a

2 2
+ a) + b -

- a
2

=

2 Co2)u

606
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In the preceding case we saw that the substitution u(x) = e
-ax

v(x) is use-

ful in relatiOn_to:the operator (D + We use the same. method here and

get the differential equation for ,,v

where we may factor out -e
-1EIX since it is positive. The ecuation for v is

-ax, 2 2
e. kD v) = 0

clear;ly kin to the, equation' y = 0 forjthe circular functions which we

investigated in SectIOn B-5; Lt has the solutions, sin cox 'and cos cox

-(Exercises 8,5, No. 15) .' ThuS (11) has the solutions e in cox and

eax cos wx , hence any linear combination of these is a solution:.

(12a) u(x) = e -ax ( c
1

cos cox c
2

sin cox) . -

It is ofteh convenient to introduce-the parameters A =
1
2

and' $

0c . c
,, 0. 2. __,

defined by. cps, 50_=.77. , sin 0 = -- ;.in terms of these parameters the solutio:
,..:, A ,

,.,
c< has- the form

(12b) u(X) = Ae-ax cos (cox - 0)

If. a > 0 , the graph of this solution is an exponentially damned sinusoid

(Figure 10-8); this case is important in many applications and we shail'make

use, of it in Chapter 12 (see Exercises 10-8a, No. 9).

, . -x
J, : x--41-e cos .x

-Figlire.10-8

607:'.:'
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In obtaining the general solutions of:PP linear, differential equations
of second order we have used a number of tricks, albeit more than once, whose
motivation mist-seem obscure. There is an old saw among mathematicians that

a device used once is a trick; used twice, it become a technique;'three times

a method; more than that, it becomes a rule and demands a theory. In fact, the

devices employed here all have more general uses in the further develOpment of

the theory of linear differential equations.

4
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Exercises 10=8a.

1. .yerify that the .operator

L = D2 + p D +q

'is linear.

2. Prove the superposition principle for linear operators.

3. Prove that_the reduced equation L[ u] = 0 , L linear, always has-the'

trivial potation u(x) = 0'.

4. If L rand M- are linear operators, show that'the composition LM

linear.

5. Take L = (D --a)(D,- .

. (a). Solve th :homogeneous. equation L[u] 6 by the methdaindicated

in (5)

(b) Show that-the initial value problem L[u] = "0 with the prescribed

initial data, u(x0 ) ) = y0 , tC(x ) = y
0

,' is well-posed. .

. ShoW'ihat the differential operators . D 7 p and D - q 'commute if and
,only if p and q differ by a constant.

7. Find the general solutions of the following differential equations 4nd
. . _

obtain solutions of the stated initial value. problems.

N
(a) .D2u = 0 ";. = 1776 ; uT(6) = i929..

(b) (D2 + 2D 4.. 2)u.= 0 ; u(0)
lit

= _12*(0) =.0

(c) (D2

(d) (D2

2D - 2)u = ; u(0) = 0 , = Jr3 .

D - 2)u = 0 ; u(0) = 1-, u'(0). = 2 .

8. In analogy with (12) express the solution of (7).in terms, of hyperbolic

functions.

biSduss the graph of the damped sinusoidal function -u qf (12) for a =1 ,

= l., u(0) = 1 , uJ(0) = 1. Pay particular attention to zeros, eXtrema,

points of inflection and points where the graph touches the curves
-x

,

y e. .

6o9 2 16-.1x.)
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4-

10. (a) Show if the-roota of the characteristic equatioh (6) are ccimplex
N

than'all -solutions of the-homogeneous equation (3a) have graphs

-obtained from sOmenontrilrial solution by a charge of scale along

'the y-axis, (x,y) ---0-(x,Cy) , and a translation in the direction

or the x -axis, (x,y)-----...(x + , y)

(b) Investigate -the other two-clas-ses of solutions of (3a) with respect'

to-ehis geometrical. 'property.

&'
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(ii)' The general homogeneous equation. The question of uniqueness for

the homogeneous second order linear equation, with constant coefficients wes.

left unresolved. In this section, we shall prOy.p uniqueness of the solution

of the value problpm for the reduced equation of (1),

(13a) . L[ul = D2U-+ p- Du q -u = 0

with p and q continuous, subject to tRe initial conditions

(1?

'E5cistence of

coefficients existence was settled simply by elF.hibitiall an appropri(Lte general

u(x0) 7 Yo
-uf(xo) = Yo'

a solution is another.question. For the equation with constant

solution.

solution

to prove

explicit

existence

For Equation' (13) it is known that there Is generally no explicit

of the types_ available to us by methods of this course.- It is possible

that such:a solution exists, nonetheless, without knowledge of an

representation. In the general theory ofdifferential equations/

is demonstrated by the construction of a.solution as the limit of

approximation scheme. Herewe assume Without proof that a solu-
,

Jlon of the '?1 value problem exists

soLut

q Equation 13a)

and simply investigate -the structure

or.Lyassume that on the interval I of continuity of p and

ha.F_ aolutions 0 and * which satisfy the,, specific
k

:At P

for just one point x
0

in I (Actually, .it is sufficient to ,assume that

'13E0 has any nontrivial solution on I (see Miscellaneous Exercises, Chapter

10.. Nos. 23, 26). A pair of fun0...ions .4(0,*) satisfying conditions (l )#a .,b)

is called a fundamental set of solutions Of .the reduced equation. If two such

solutions theh the initial conditions are satisfied by the linear com-

-bination

If uniqueness

y095

is proved then each solution is a linear combination of

24=7-iL.,



. ,

Now let us suppose that the initial conditions

(15) u(xl) = y1 uicxi) = yie

are prescribed at some other point x1 .of I Since is a-eu = c
10 + c2 V

solution of (14a) for any constants c
1

and c
2

we try to satisfy the initial

conditions (15) by picking suitable values of c1 and 'c'-2 . Therefore, we
.

require
.

c10(x1) + 62xl) = yi
(16)

c201(x
1

) c
2
*'(x

1
) = y

1

Equation (i) can. be solved for 'c
1

and c2 if the determinant

95(x1)*1(xl) -4!xl)*(x1)-

is not tero. Since,we areAA-Iterested in solng (16). for anyvalue x1 in I
, we are leTto'Eonsider the: function w given by

(17) w(x) = 925(x)*' (x) 0'( )*(x)'

_and.to inquiry whether w -ever takeshe Value zero. _

. . . -
. .

From the-conditions of (iYab)_VhaVe w(x ) = 11: Since w is con,-
tinuous-it-'it.:-Positive on some nieghborhood

. of
0 We can <16 much better.e, . _ ,,.

n.Su.rprisingly,:eve thOugh we know nothing much about the.soluti6ss
.O. and Ili_

....d.

be y Ond their-barenis- te nce, -we, Can _write a simpld explicit formula fo w'-.
_ .

:For this-purpose We douipute---Wt ; using the 4ifferential equation 713a) to
.-

.

expeess ..0 and Ili"- in terms 'of lower order derivatives;
,..

4'9= (0' l'is + 0. *") - -(0" -.1V + 0' If')

= 0 (.-P q -11r) * -(-p-

= -P -(0 0' -40
= -p . w

0-1 q- 0)

Thus w satisfies the linear homogeneous' eauationof first -order

(18a)- 1 Dw -i- p(x)w7= 0
#1-

-and the initial coARitthn-
q

,01,) -? w(x0 ) = 1 :'
--

!

,

II

-

*
The funation- w is usrAlly called the Wronskian of

H. Wronski (c. 1821).
0 and 11.r after

ata



From-Section 10-7, we have immediate

x
(18c) w(x) = exp /- p(t)dt1 .

0

10-8

The explicit expression of w is less important to us than the knowledge

derived from the exponential representation that w(x) > 0 for all x . We

conclude that constants c1 and c
2

satisfying (16) can"be found and, hence,

that the initial value problem (13a1b) has a solution for any point of Z and

any choice of initial values. - a.

THEOREM 10-8. The initial value' problem (13) has at'mostone solution.

Proof. Let ui and u2 be distinct solutions of the initial value

problem (13). Since, u2(x) - ul(x) is not identically zero, it follows that

u = u2 - ul is a nontrivial solution of the initial value problem

(19). Lful = 0 ; -1.1(x ) = 0 , 11T(x0) = 0

wl(x) = 0(3)10(4 U(X)0I(X);

where 0 is the solution given in (1a), then by the same derivation as that

of (18c) from' (17)

c r x
w100.1,T1(2,co.expAp(x) .

x0

From the initial conditions on u -given ,in.(19), we have

hence that w1(x) vanishes identically; consequently,

(20a) 0(x),u1(x) = U(x)07(x),.._

By exactly the same argument for,the func ion -11r of (1)b),
,
w
2
(x) =

vanishes identically; hence

(20b)

Multiplying
S

U(

u(x)* (x)

)1.1ri(x) = *(x)10(x) .

\'4

corresponding sides of (20a) 9:14(20b) we obtain

= 0 and

7



:whence-,

[1.1(X)1.1!(X)1[95(X)V(201 = [11(X)14%(X)][41(X)02(X)]

[II(X)U1(X)][0(X)*1( ) *(X)01( )i = iw(X) biu(X)21 = 0 .

Since w(x) > 0 for ally x , it follows that D[u(x)2] = 0 , or .that ( )2

is constant. Since u(51-co) = 0 we conclude, that u(x) = 0 for all x , in

contradiction to the'assumption that u was a nontrivial solution of (19)

Corollary. Every solution of L[u].= 0 in I is a linear combination

of the`. functions 0_ and * defined by the initial conditions (14).

Proof. Let E be any point of the domain of u and set u(E) = y0
'

1-0(0 = yo' - By the Theorem 10-8 we know that uGis the only solution
with these initial values. At the same time we have established that there
exists linear combination -c10 2 which has the same initial values.
Thus u = c

1 Of--1--Ct2* .

Under the assumption of the existence of the two solutions 0 and *

which satisfy the initial conditio (14a,b) at anyone-point x
0

of the.
interval I wher" p and q are continuous, we have proved4that the initiaI?-

value problem (13) for the general homogeneous second order linear equation is
well posed: a solution of (13a).satisfying-the initial conditions (13b) exists
and is uniquely defined. From the preceding analysis it also follows that the

solution is a linear function of the initial data; hence-continuous dependence
on the initial data is immediate.

(iii) The general nonhomogeneous equation. As for the firSt order liilear

equation, the solution of the general nonhomogeneous.second order linear equa

tion (1) can be expressed entirely in terms of the reduced equ-ation.

First we shaw that the initial value problem has at most one solution.
Let y1. = and = u (x) be two solutions of. 4.einitial2 2 ue
problem

G

{21)- L[u] -4=

(5c0). 0 .1:1t(x0) .---.,
.

-

where L. is the genei.al linear second order operator (2b). Then
v(c) = /12(x) ulGx1 .is a solution of the initial value problem (19)-, -. 4 ,.

homogeneous equation with zero initial data. But we have shown that
. ' .

.

63_4

for the

v(x).
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must then be identically zero. It follows that ul = u2 ,.hence that the

solution of the initial value problem is unique if,any.solution exists.

Next, we show that if (1) has any solution then a solution of the initial

value problem (21) exists. Suppose L['z] = f where z(x0) = a , z,(X0) = S .

There exists a solution v of the homogeneous equation. L[v] = C for which

v(x0) = y0 - a and v'(x0) = yo' p Consequently, for u = v + z by the

superposition princi'e, ,L[u] = L[v + z) = f ; furthermore,

u(x0) = v(x0) + z(x0) = y ut(x0) = v'(x0) + zi(x0) = yo' , so that u

is a solution of the initial ue problem'(21). We already know it is the

only possible one.

Now, ehow, we must find a single particular.solution of Equation (1)..

We know that if 4,*) is a fundamental set of solutions for the reduced

equation L[u] = 0 then any solution has the form c10 + c2* . For con-

venience in solving the initial value problem (21) we Choose (0,*) as the

particular fundamcntal set satisfying conditions (1a,b) at the point xo

where the initial data are prescribed. Again we try Lagrange's rule of varia-

tion of parameters and seek a particular solution in the form

(22) v(x) = ci(x)0(x) + c2(x)*(x)

We require ] = f . Calculating L[u]g from (22) and using L[0] = LE*1

we obtain

(23) L[u]-__ .(clu 0 + c2" -*) + 2(c11 Or c2' 11,0) (c1' -.0 + c2'6*)

Since we have two fundtions, c1 and c
2 to be determined we may impose two

We--already'have imposed one, L[u] = f and we are free to Imposer

another so as to. simplify (23) insofar as we- can. Observe that the derivative

of the third parenthetic expression in (23) is the sum of the other two:

+ 4r) ,.(61"- 0 + c21' .*).+ (c1'. 0). c
2 ;175

We impose the condition that ct- 0 + c
2
' * = 0 ; then the derivative vanishes

also, and 1,[11j = c
1 0' + c

2
T -AV? . Thus, we impose the two conditions on

c and c
2

f"- 1

see.now that Lagrange's method has become a rule and demands a theory.
The theory, a relatively recent developPent.,-requires somewhat more subtle
analytical techniques than we employ here. It is-based on the beautiful theory
of linear vector ,spaces (usually found under -the. headings of "matrices" or
"linear als;bra").

4:1
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ca.' + c2I 2* _0

0' + c
2

I - .4r1 = f .cl

S as the determinant w = 0. lirT - 0'. * is not zero, this system can be
so ved for c1' and c

2 ' .(compare the system (16)); namely,,

c1 '(x) 2 lx) f(x) , c f(x) (x) (xw-x) 2 w96(x) f
)

We integrate these expressions from x0 to x to obtain c1 (x) and c2(x)

, and -obtain a particular solution in the form (22):

(24) v(x)= -0(x) wH f(t)at -i- *(x) ,xt w f(t)dt .

,.

x
w

O i x
0

As an exercise, prove .this result and show. that (24) gives a partic171P-r

solution by differentiating and verifying directly that L[v] = f (EXercises
10-8b No. 3). FUrthermor th s solution satisfies the initial conditions

(25)
0
) = 0 , vt(x0) = 0 '

.

as you may easily check.' Had we not ch6Sen both lower ends of integration to

be x
0 (as we are free not to do).; we would generally not, obtain initial con-

ditionsso convenient as (25) for the solution of the initial value problem

(21) (Exercises 10-8b, No. 4). As it is, we, obtain the solution of the

Initial value problem at once in the form

(26) u(x) = y00(x) y0' (x) v(x)

0

'Again it is obvious from. the linear dependence of- u(x) on the initial ,

data thatthe solution satisfies the property ofoOntinuoub detisendence On the

initial values. Further7-Dre, continuous dependence on the forcing term f is .

aiso apparent.(see,EXercisez-10-7,'No. 11). However; to trove continuous.

dependence on p and q -equires the existence theory which we are'assiming.-

Any interesting' form of (21...) is obtained by- ,combining the two integrals:

-

-v-(x) - *(x)0(g) 0(x) t(0
f(g)d

The first factor

(27)

,a.ppe ng in the integrand,

G(x,g) _ w()0(g) 0(N)*()
w(

is called the Green's function of L.;- it has some S'briking.properties:

r.

1616
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(a) For any fixed number E , the function u : x is a

linear combinatibn of '0(x) and ; therefore G(xE) is

solution of the reduced equation L[u] = 0

(b) G(E,E) = 0 .

For the derivative u'(E) DxG(x,E)1 xE '- we obtain

(c) DxG(x,E)Ix= *,(00(0 - 0(0v(0 1w(0
In Summary, G(x,E) = u(x) is that sOlutiinof the reduced equation which

satisfies the initial conditions u(E)= 0 and u'(E) = 1 . It follows that

- G(x,t-.) is uniquely determined and does not depend on the process used to

construct it. (
A. The remarkable property of G(x,E) which-we have just derived has great

'value; since G(x,E) is the fixed object in the integral which defines the

.particular solution v G(x, E) does not-ddpend On'the forcing term f or-

the lower end of integration

The integral

(28a)
x

v(x) = S G
x0

`defines an integral operator,

(28b) T : f v

which has the effect of transforming any forcing function into that particliinr

solution of L[u] = f which has zero initial values at x,= xo . The relation

of the integral operator T to the differential operator L generalizes the

relation between the operation of integration and the operation-of differen-

tiation: if S denotes the op rator for ordinary integration; that is,.
S[40 = F where F( ) = )dE then for a on inuous function

(29a)

and for any

(29b)

From (29a,b)

operators..

we see that

x0

DS[f] =-D[F]"=

continuously differentiable function F ,

SD[F(x)] = F(x) - F(x0) .

we see -that S and D are almost, but not exactly, inverse

From (29a) we see that a undoes the work of S bUt.from (29b)

S does not quite invert the effect of D but adds a constant

617
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10-8

function. (If the domain of D' is restricted to functions satisfying

F(x
0
) = 0 then the operators become exact inverses): Simila,r1Sr, for, any

continuous function f ,

(30) LT[f ] = L[v] = f,

and for any twice continu;N.sly differentiable function

(30b) TL[u] u - 3,00 yo

where y0 = u(x0) and y0' = ut(x0) (Again the operators are exact inverses
3if the domain of L is restricted to functions having zero initial data at

x0)

In terms of the symboliC operator descriptIon, the problem L[u] is

solved: for a suitable restriction of the domain of L by finding an verse-

operator T such that TL[u] = TF = u (see Exercises 10-8b, No This

symbolic formulation describes a'general class of problems whi play a central
role in higher mathematics. For linear operators there is an elegant well-

rounded theory contained in the areas of linear algebra and linear analysis,

but even these areas have not been fully explored and are still growing
robustly. The representation of inverse operators in terms of Green's func-

tions (or analogous forms) is a useful method in much of this theory.

618
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Exercises 10-8b

1. Show for each of the special cases (7) , (8) , (9) of Equation- (3) that

there exist solutions 0 and V satisfying the initial conditions.

0(0) = 1.

0*(0) = 0

4,(o) = o
=1

hence that 'the initial.V.4ue problem is wellposed.

2. Find a fundamental set o solutions of

L[u( )] = u.(x) + xuT(x) = 0

and solve the initial value problems

(a), L[Igx)] = 1 , u(0) = 11'()) =-0

(b) L[11(x)] ..x , u(o) = u''(0) = 0 .

3. Verify directly by differentiation,that (2!.) defines a particular ,solution

of (1) and show that the zero initial conditions (25) are satisfied.

4. Show how to solve the initial value problem (21) when the lower ends of

integration in the expression (25) for the particular solution may be

different from x0

5. Destribe-the.solution oft-the initial value .problem for the general second-
_ -

order linear ecuation (g.). in operator symbolism by suitably restricting

the domain of the differential operator and giving the exact inverse

integral operator.

6. 'Determine the Green's function for the Operator with constant coefficients.

7. The theory of Equation (13a) is based on the assumption that p and q

are continuous. This theory can be extended to piecewise continuous

functions m and q , if the reauirement that solutions, be twice con-

tinuously differentiable is weakened to require-that they be only once

continuously differentiable. Ass/Iiring the validity of this assertion,

construct the fundamental set of solutions at x = 0 for the following

equations:

(a) y" + (sgn x)y = 0 -

a

(b) y" + k(x)y = 0 , where

1
- k(x) = :

5 , if (2n + 1)n < x < (2n + 2)n.,"

(n = 0, + 1 , -±2

Th

1 , if 2nn < x < (2n + 1) n

619



8. (a) Construct the asymptotic solution, as x approaches infinity for theequation

y" kyt 3 = k(x)

where ,k is :defined in Number 6.

(b) Do the same for the equation

Y"

1.

620
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10-9. Separable. Differential Equations.

In thiS section we treat another broad class of differential equations

which can be solved in terms of integrals, equations of the form

(1)
It''' dx f(x )6(Y)

where g and f are given continuouswfunctions. This class includes the

equation y' = f(x) whose study is the principal objective of this chapter;

the homogeneous linear equation of first order; y' = -p(x)y , which we

treated in-Section 10-7; and the.equation y' = a + by + Cy
2

which served as

the principal mathematical model for the processes of growth; decay, and com-

petition considered in Chapter 9.
.

Equation '(1) contains only a first'derivatie and therefore is of .order

1 - We may then expect on the ground of our experience with first-orT.Nk

equations.that it.is appropziate to pose the initial value problem: to

determine that solution of (1) for which y = y0 when ix = xo . Differential.

equations of this form are generally nonlinear (see Exercises 10-7, No. 2c).

Since they are easy to handle, we shall use them as a means of gaining some

insight into some'of the questions which arise-in connecti -with nonlinear

equations.

We solve.(1) by a formal procedure and call attention7"along the way to

the difficulties which may arise.

We may divide by. g(u(x) )

(2)

y = u(x) is a solution of (1), then

-',g(u(x))

g(u(x)) / 0 , .to obtain

g(u(x)) -(x)

Now; upon integrating with respect to x-, we have

.or, Leibnizian notation,

(3)

12,(x) r

g(u(x)) dx = f(x)dx

dy
- i f(x)dx .

If G is any antiderivative of 1
, and F any antiderivative of f then

(3) is equivalent to

(4) 0(y) = G(u(x)) = F(x) C

621



10-9

This equation does not give y explicitly- In orderto determine
.rmast find the inverse H of G if it exists; then we shall have

(5), y. = qF(x) + C .

we

Then, so long as F(x) -F. C. is in the domain of -H , .7;qution (5) defines a

solution of (1). If thetvalue of u is prescribed at x0
'

(6a). u(x ) = v
0, -0 ,

C = G(y0) 17(xo) , and from we obtain as the solution of

this initial value problem

(6b) y'= H(F(x} F(x0) 4- y

The method of obtaining (3) is called separation of variables and,

accordingly, Equation (1) is called separable.

Example 10-9a. Given a one-parameter family of-curves, its orthogonal

trajectories are defined as curves which cross the members of the family only

at right angles. Thus 'the straight lines throlIgh the origin are orthogonal

trajectories to the circles x
2

o
2

y .

-

Let usAconsider.the-problem of finding the orthogonal trajectories to

the family of parabolas

y = ax .

Observe first, that for each point (,1) of the plane except for the points

of the y -axis, there Is exactly one member of the family passing through the

point, the parabolaarabola given by a = IL At point, the parabola has the2

slope 2251 = . Thus an orthogonal trajectory passing through (,71) Imust

have the slope

2TI

. If y = u(x) is-an orthogonal trajectory to the family

of parabola we conclude that at each point of the orthogonal trajectory

( 7) yT 2L
2y

Thus the orthogonal trajectories satisfy a separable differential

'Separating variables, we have,

and integrating, we obtain

(8e)

2yyt = -x

2 x
2

- c
_2

622
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or

(8b)
2

x
2

-4- y2 = C .

This formula describes the family of ellipses

of major axis to minor 'axis equal to if

centered at the origin with ratio

On comparing (8a) with (4) we observe that the -function. G : y y2

does not have an inverse on the -domain of real numbers. On"any interval where

y 74 0 , however, G does have an inverse. When y = 0 , Equation (7) becomes_

singular, although (8b) remains geometrically stgnificant. Finally, note that.-

not all values of the parameter C. are admissible;Jonly C > 0 yields a

solution.

Example 10-9b. Consider.the.equati
.

If y # 0 (but, is definitely a solution), then

whence

.v.,

x
3,"

r .

2
log 131 ,= C .2

O

Here, too, -the function .G : y Iyi does not have an inverse on its
41

domain of all nonzero reals. On any interval which does not contain y = 0'

we obtain the solution

2
exp

x
C } sgn Y ,

r

where sgn y s constant under the restriction on y . We have lost the

solution y =
( 0

, but if we-set k = e Csgn-y , we obtain all solutions in the

form y.= ikemi2 . The method of separation of variables, 'however, does.not

by itself necessarily yield all solutions.
, . .

Aside fro the special Cases arising from possible zeros and loints of

discontinuity 0, g(y) , the theory of separable equations is ext5hmely simple.
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-THEOREM-10-9. Le,,t

6antinuous on

iflitial value

cur

'f. 'be continuous onTEr neighborhpod-of
2-

.- -.
Y0 -' If g(Yot 0

u(x)

ccil = f(X)g(Y)

a neighborhood :of

problem-for 377 =

)g

has exactly one solution.

Stue
away from zero on.some

.u(x0) .= yo

g(yo) A 0 , we know by Lemma 3-4 that g(4 is
neighborhood I of yo . We conclude that

constant sign on I . The function G given by

Y
G(y) = -7-7 ds

-

Yo

continuous and has.

(90.

is strongly monotone on

bounded
. .

-F37-
is

1 ,I because Gt(y) = s-77- 0 . Observe also that

(9b) 1-(x)

is continuous. Since F(x0) = G(yo) =.0
neighborhood of J of xo,which is mapped

, that is, into the domlfin of the inverse

the function-

f(t)dt

it follos that there exists a

(9d)

by F into the range of G over
function H ,We conclude . that

.

u : x .-4.-H(F(x))

is defined on .1 From-the differentiation theorems for compositions and

51f

-
G' (Y) f(x)g(y)

so that u is a solution of the differential e4uation.

u(xO) =:H(F (x0))
=.11(0) YO

since G(yo) =2. Thus the existence of a
problem is proved.'

On the other hand, if

the method of separation

.by Formulas (9a,b,c)
of

a solution of

variables is

the solutiox i-
,

62'4

Furthermore,,_
(7

solution of the initial value_'

the initial value problem exists,-then
justified

is Unique:

0.0

an44he solution is dictated



-
. t). .

It is possible-to relax the condition that g(y0) 0 in.Th'eorem 10-9,
,

. .

but then we must impose a stronger condition on g', for example, that g have

a boundecl.derivative rather than be merely corpiiluous. We assume without proof

that this condition holds and ask what form the soluticin may ]ave when g(y
a.
) =0.

_

The constant function u : y---.y0 is then clearly a solution of the differen-
_

'tial equation, and, in view of the assumed uniqueness under the restriction on

g_, it is the only one..

-r

a



Solve the equatiOn

Exercises 10-

Y' xy-= x

by -separating - variables. (Compare .Exercises 10-7,:No. 6).

2.,'.. Find the orthogonal trajectories to each of the follbwing familids of
curves and sketch _the_curves and,their orthogonal'..trajectories.

(a) The rectangular hyperbolas, xy = a
. (b) .The ellipses centered at the origin-with fixed ratio Of major to

minor axis.

(a) Show that the equation

is transformed-into a separable equation in

substitution' x = .

.(b) Find the orthogonal trajectories to the family of-circles
2 2

= ay

-21 by means of thedv

(x - a)2
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1. Integrate.

2.. Integrate.

3. .Evaluate
-

4. Evaluate.

P:rove that

Curare

7. Evaluate

Miscellaneous Exercises

x,
a dx

dx

132 x2

CO

8 . Show :-tha."-

with

-I-
1 x

ca

2 G(t t 1)dt = (1 2)G(t)dt
O t2

assurling that the integral-.-exists.

PrOve that

S. k t
2 ,+ 1 - dt - provided > 1

0 n - 1

,
t)

n it

\

(Hint: Use No- 8 . )



. .

.,,t0. Compute

-
Compute

ft

-7 0_(.2 a2

dx

)(x

x dx
O. (x2, a2) (x2

12. Show that the. Integrals

().
20.1. dx-7

,i. e x(lo

dx

ee x(log x)(Iog log x)a

converge if a >1 and divrge if a .< 1 , and evaluate the integrals:

13. Prove that

-b2)

a > 0

01

. 1
sin dx converges'.

14. (a).: Prove that if f has a continuous derivative then

E[x]

fit3f, (t)d.t = gx3f(x) fcro (tit] = integral Rart of t ) .

(b) Evaluate - lit lit

x
lit

1
4

*I- t

( C ) Evaluate .i. Et211- t d- t .

I
_

15. Find the }:aaxiraum. and- the- Minimum of the function

.
in the interval

F(x) = x 2t + 1
.dt

0 t
2

- 2t 4- 2

628
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Compute

e .

0
e2 - sin '19-)de .

1-9 3_7
x.

-2 cos

1

7c

Prove -that
Lei

-.Show that

"19. By evaluating

ways .show that

b x) dx

c
cx

1...4-m+
x b- > .e. > 0

is. continuous on [0,c0 ] and

c
7 f.(bX)_ f(ax)

0'

(1 -
0

5

ux = f(0)log

-1

-

dx exists.

_

dx n a nositive integer, in two-dIfferent

(-1)n(n)

2n -4- 3.

2
2n

(2::::11)(2ri I

."20. Let- 00(x) =.0(:;) be a continuous function defined on [0,x] . Define

0,..,(x) by

that

x

0 (Y
0

0

my

. :



Prove'that.for all intogers.--. N
-"'

0 a
2 2

a + n

) Let &pacr:M be-linear operators and define, the sum
the operator,

L'.+ M : u L[u] + M[u

Ver'ify. that L- + M is linear.

(b) ,.how that linear operators satisfy the distributIvelaws:

- L(M + N) = 3eM +'LN

= t MN .

(c) Let f be .any real-valued function. The multiplication operator
f

- .

is defined by

-[u] f -u

Verify that f-- inear.

(d). FOr real- valued functions _an $ an
-1 ,,..., a0 'sho:W that the

differential operator L. of n-th 'order given by

23. (a)

L -n-= an Dn +
r

D 1
+ . + a.

1-1 0

is linear.
4

Prove ?or the-second order linear differential operator L defined
by L D

2
+ p -D + q that if u is a nontrivial solution of the

homogeneous equation L[u] = 0 , there is another solution. of the
form u -v whev', 'satisfies a linear - differential equation

Mtv'l = 0 ashd M is at most Of first order.

(b) Prove, in general, for the n-th order linear differential operator

L defined by L = ak(x)L k ,' a
n
(x) / 0 that if u is a

k=0
nontrivial solutionof the hothogeneous equation L[u] = 0 , there

is another solution' of the form where v'. satisfies a linear
differential equat,ion_ M[-vi] = 0 where- M- is. at\most-of- 1)4.-th

order,

4

c.

, -



.
.

Find an'n-parameter family, of solutiOns of the differential

equations

I

= (D - a)nu

(d) Obtain the general polutionof:

(x
2

+ 1)y" +

.

Wit: Try to find a prticular poIynbmiaI.sOlution-),

24. Two function's and v.- are called linearly independent pr-lan interval

I if:
t

au.(x) +-Sv(x)-:= 0 , for all x 1--,
..4

Ce implies that a', -and a are both zero; ite., if u and v pre not
proportional..""-Show that if two linearly independent 'solutions of a

second order homogeneous linear equation exist in p neighborhood (51-

thenthe initial value problem (13) of Section 10-8 can be solved.

25. Corresponding to the three classes of second order homogeneous linear

equation with constant coefficients, Section 10-8, we found the followin
pairs of solutions (eccc , et3x) where a ,

ax ax
(e cos- cox , e sin cox) where co / 0 .

ax
(e , xe , and

Prove th-At each of these pairs of solutions is linearly independent..

26. Let u be any nontrivial solution of the homogeneous second order

linear ecuation

I;[u] = D2u +,.p -Du -+ q u = 0 .

Obtain a second solution v in the form v = u z . Show that u and

v are lingarly independent.

be any linearly independent solutions-of,thesecond order_.

homogeneous equation. Verify that the Green's function is not

27. 'Let u and v

linear

affected if u and v replace the fundamental set

G(x,0 *95T4',Vol

745-11(0
11(0-vT(E)

28. Discuss the solution of equations of the type y".

6311.
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Appendix 6

EXISTENCE OF INTEGRALS

A6-1. Integration '2:L 5=3nation Techniaues,-.-

(i) Integral -of a polynomial. In. Section 6-4 we'prove that integration
.

is a-linear operaticin,-that the integral of a linear combination 4. functions
- .

.

'is the same linear combination of their integrals:

b.

11a.- 1 1 n
lc f (x) + (x) f- (x)]dx

.

- .

-b'= c
1

il- f
1
(x)dx -f--c

2-.
][13

.

-a-a

In. particular for:a polynomial, we have

err

dx' + ... + 6'
n

b .'

f

. .

In order to integrate a polynomial, then, it is sufficient to be able to

integrate positive integral powers.

From-the Corollary to Theorem 6-4b we have

a
J (x)dx =. ir %f(x)-dx
a

Li f(x)d

provided thatj integrable over an interval containing the points, a ,

In articular, for a polynomial we have

.e(
- ', x) dx.

.

I f ( 1-, dx.
6

4-

-i'. ; ..
.1, ,-

We need therefCre consider only integrals 'of the type . f

:

f (x ) dx

JOB.

Condider, in particular, the Integ,ral-of'xi over (0,a1-.:" Since:

0 <:.x.- the:. function xr is increasing-O the interval. We .take a.

partition c which subdivides the interval into 11 equal parts of length
-

,. a
n .

-h = v(a) = We 'form the upper sum U over c using-the maximum of.:xr

in each subinterval; thus

2



A6-1

o (i)

4

n"
= E1

k=1

.-According .to Equation- (4-)..sif-Sectolon (ii) shave
. .

where

(2)

where

( 3)

r+
: r+11r

. +--P(k).r + 1.

is a polynomial of degree r 1 . "It fAlows that

n
.1,r+1

_r-
kr+1+ 1

k=1

Q(h) = hrtl p(k)

k=1

Q(h)

and P is a polynomial of degree - 1 .

We recognize the sum. in (2) as telescoping (Section A3-2(ii)) and obtain

h
+

r+1
r+1 (r1 +1U = ----Ln - 01 + Q(h) nh )

+ Q(.h)-r r
-

Since , we have

S 4) Q(h)1

We can- show that Q(h)- "can be made closer to zero than any given '-erroi-

tolerance- using only that the degree of P(k) is-.at most r 1 We set .

r-1

P(k)
i=1

ID( k)

.

Since k < n it foltows that
O ,

r-1 r-1
r-1 r-1<E.ip: n < n E p.1

a.

i=1 i =1 _



O

In short; we have found

(5).

A6 -1-

IP(k)1 <

where the constant C is simply the sum ,of the absolute values of the

coefficients of P(x) Entering' the, result'of (5) in_-(3) we' have

(6) loxfayi < hr÷1-1: Ip(k)1

r1-1 r-1h n n, )

Ca

.

Where again we use'th'e fact-that ,nh = a . It -f llows at once thet

lim Q(h) = 0 .

h-O

We could also form the lower sum L over c by taking the Minimum value

of -x
r

as Lower bound in each interval [x
r'
x
r-1 ] . In this way we could

fr

obtain a result for L .similar to (4) and so orbve

(7)
re

J
xrdx =

r 1

the details are left to the reader.

,coscos x over [0,a] where we suppose a <77r so that cos x is decreasing on

the interval. We take a subdivision of the interval into n- equal parts of

(ii) A cosine integral. Let us at:.e,Alot to find the integral of

lerigh h = a . Setting

we obtain a lower sure L over a

z
k=1

=

cos

6

(k=1, 2 , n)..

n

= h- E cos .kh

0

?ft



-.1 -an -u'o-ael- zum

we obtain

2.

COS
1";-, .

j

. T

on ,settinc

a -

sin( n - sln2

cos u(n) - u(0)

k==1

EtuatiOn (2".2 rmits

in_

. .

1,7quation

sin(n =
'1

12 sin 7 z
2

to eyaluate the Limit of the -lower sum. given

lam L = 1i i sin(a
-" sin h

sin uthat lim - 1 we have,

lira L = sin a
h-0

h

ince the f.-iffErence L aria has the limit we conclud.e that
_

. .

41
sLi.n a .t.bs

.

-, ,;-

1.

se

- - .Exercises A6-1
-

In subsection the text states. that' Lt :follows "

inequal-7ty- (r<2) tht
. - .

- 7 - .
.4" is

0 . -

h 0 4
.

used?
't ,

c-.

t ipi-1.6eYfrOe the.
- :



A6-1

2. Show simply, without .repeating the argument Of. text, tl:iat the lower

i. n

sum U.

7 ,

Eover C (x, also has the .limit (7) '

3-

k=1.
,

a
Employ Equation (8) of Section A3.-2(ii) to obtain sin x dx for

<
2
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A6-2. Existence of the Integral.

The pifrpose of this. section is to, establish neaessaryand_Sufficient

conditiOns-for the existence of the integral of a function f -over [s.,b]

-.Recall that the integral is defined as the-uniaue separation number be-t.?een

the upper and lower sums. We need first to establish that the upper and

lower sums are in ftct separated:
. that every lower'slirn is less than or-equal

to every upper sum. If it is pbssible to find an 'upper sum and a lowe::-sum"

closer-together than any given fixed tolerance e , than by, Lemma Al there-

integral-\of
: .

exist a unique separation number,.a number I which is' th,e. . .

...

/

over [a b] . \
,:-

i
i i

1

Lemma A6-2a. Let f be a'function defined' and-bourided on [ a,b] . For

any fixed partition c of [a,b]-, eae.1umper sum U over c is greater

than orequal-to each lower sum L over a .- -:.--

Proof. We recall that the partition a_ is simply a. set of points of

[a.,b]' which includes the endpoints a and b . To construct upper and

i.e.,lower sums, the Points of c are arranged in increasing

x
0

<xl <x2 < < xn = b ,

Anunner is defined 'as'

where f(x) <ti on

Ue= E
).

k.i.

where f (x) -:> rr-1, on

a lower sum as

1: 77k-1)
k=1

. .Thus mk < 1.4.k and term-for-,terra

TT v
-1 1-c-1

-1,4
-from which.t:irtis-= follows..

%...

It -is necessary to find a means of comparing upper and lower sums for
r.

any two partitions a
1

and a.; . For, this nurpocIe we introduce. the joint,
c,.

partition : . a 7 °.1 U - CY2 which consists
r.

taken:together. Let U
1

' be any =lny Per sum over
..- , ..- -,

. o...rej.- We Shall snow tnat / LI.1 is an upper
11:, c'2.

,-- ...--lec
- - .

of all points of the tl,rdpartitions,-

Q1 an L2_ any lower-sum

stir_ for the joint Subdivision

rui- 6-=3
. -



f

.

a- and d-thAt L2 , similarly, is a lowersum for.

then follow from the preceding lem.qm:

A6-2

The result we seek Will

Lemma A6 -2b. For any partitions a
1'

and a
2

of [a,b] and any upper

end lower 8Uns U
1 '

L
2 '

over the respective subdivisions,

U
1

> L
2

.
-

--.. Proof.- Let 'xka.. , x.1 be a pair of consecutive' points of subdivildh

'from. a
1 1

.(k = 1-, 2--, ... , n) . _There may be points of =the subdivision

a2- in the open interval (xk..1,.xk) sz say, u1 , ...., up_i, wi

xk_2:<u1 <: u2 < ..: <.up_a. < xic . Setting u0 = xk_l_ and 'up = xk we see .

4 that the set Jul. : i = 0 .... , p) is a partition of [.xk_i,xk] . Further

since Mk andmi are upper and lower bounds for f(x) in all of.

[xi;_i,x.i] they are:bounds-for f(x) in each of the subintervals [ui_i,u ]
,..

i :... 0,,- 1 , 2 , ... , i , (see Figure A6 -2).... Ifwe,form-the upper sum .

TEMP

-U
k-

over the partition of [xk...,,xk]

.r

Mk

using the upper bound N have

t
/.,
.'A

I-7/ y.= f(x)
.' 1 .- t t . ..

1. 1- t t
t t i ti 1

:,
-, .. - . -t I. 1 t

I

Xk

.

t
_1

1 A q I
i 1

1

I
I

I 1 I
I

1
! I

1 1 F
1 i V
r 1 1

1 r 1

Ul 1-J2

Figure A6-2

.
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.Ab.R

-n

tj"

k -1Lz
a

1.0:e.r. Ura
01. bot

P

_1,

rtltIO11
for the

Pa
cy1

is also

end a

()ck ),13) Thus the upper'sUm

sum for a . Similarly _

It follows from Lemma A6-2a th4t

.partitioris-
a andT2
1

.algidovez. wer-sim L2.

thell

there ex' a .+ion
.L,Jart5--

stz

satt

)

1 L2 < c

(72 of [a;b]. there. exist

over a' --satisfying2

6 which has upper and lower

U L < e

sums U and

Take c2 Since ij and L Upper
...Tie

joint c,11.7 the rest iM7ediate.
..

TIT.ZoIk41 Let boarded
c be

a D
linOrt5-ve s"ists

L
arld

there e'cOQnVerselY if

141110er 5

onion ta,b] . If for
c of a,j. and lower

011r1_,F.',..:Which differ by less than

and lower

10.

i. artyyOri a

.1

that u

boot"
1,1PAe4.

Sat slaa,

1;0We

Ich Is the integral-02- f over- [ aib]
gFable 0;er, [3-'1,1, then "there ekist a

ar.1(2.145Per slams L and

- T 7

U over -a such

17rTa1-1016.. 21.1aver31 lower sum is less than
;r1f. _fth

Q.

Toni:tqle

7 ° le-We exist lower And'-- -um:5=

- kunO'l
2 -s.eb4.z:t.7

t

,

et

6 1,-v.
rec1_5.the number sepang the set of

or equal to each

the

of upper s'ulc-s is unique- y Definition 6-3 this'

SUMS U.

of over Le b
r

t414.- a'. "-
- eagc

-

-
ZS.r

c1-471-e-
.then haxis . -y

-z10 zn gigue.

r arable
that is, i£ the integral of

--
f over

-t5P11 6.-'3.thAeparation
number b'etwegn lower a .

De32I II.

f/soill the converse statement in Lemma A1-5-



that.there exist lower and upper sums, not necessarily over-the same partition,
_

say L
l

over. a
1

and U
2

over a2 fbr which U
2

- L
I
< e . From the

corollary to Lemma A6-3b, we conclude that there exists a single partition a

having upper and lower sums U and L for which U - L < e .-'

Next,we-DrOve a useful corollary to Thebren'6-2a.

A
. 'Lemma A6-2c. If f is integrable over [a, then f is, integrable

over Any subinterval [a.,13]..

Proof-. There exists a partition a of [a,b] for which U - L
whe-Fe'.0 and L denote upper and lower sums over a . We may assume a
'and- p are points of a for if they were not so originally they coulUbe

introduced without affecting the values of U and L' (see'the proof of
r

Lemma A6-3b). With a. and included in

a partition a' of . Now in the sum'

U - L
,

e it follows that a contains

(m1c mk) (xlc xk-1)

all terms are nonnegative._ If we let U' and denote those parts of
the sums and L which are taken over a' it follows that

1

- < L < c .

_Accordrig-to"Theorem 6-3a, the function f is integrable over

4
Our method of defining the integral .has av _ d certain analytical compli-

cations associated with the definition of the integral as a limit Of Riemann
sums. Some appreciation for .the analytiCal diffictaties may be glIned from

_

[a 1371:,#

the following discuSSion.

In order, to establi;,sh the connection betWeen-Aapper and,lower sums and

the RiemannsUms of the'text (Section -6-3(iii)) we need one !Curtner result.

Lemma A6-2d. 7 is :integrable over [a,b] then for all sufficiently

fine subdivisions a there exist upper and lower sums closer than any fixed

:tolerance e .

..,

' ;
1

. 1:.
In othe.r terms, for. .every -- > 0 thei=e- exists a 5-> 0 such that for

i c
.

,

every partition . a with norm v( a) less- than 5 ,, there' exist both an upper.1..

-
.

sum U and a lower su.m L over a for -',i-hic-n. U. -7 L < e . --- ..

cl..

';'('. I

.2; b7641 _
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Proof. From the existen ,b7ethe Integral and the Xrollary to Lemma

A,6-2b we know 'that there exists a partition.. a = (x
0'

x
l'

xn 3, with upper

.and:loWer.silths U and L satisfying U - L < E . We let Flz and m denote

upper and lower-bounds for f in the subinterval , and let M and
denote'upmer and lower bounds in the entire interval [x-

0
x
' n

.4.
Let a =.(uou1...,u ) be any partion.of : .We separate the

for which a subinterval [U
1-1'

u.] contains ointi"of- -c in:its interica:.-
I

m;the case in which'it does pot._

If [u.
1,

u-] contains a. point of a in its interior .we choose the
I

overall boundb- and m 'of f on [a;b],:as bound's for the function in the

Subinterval. Since there are at most the n - 1. points x
1

x
2

, n 0*. ,

x
n-1 which could be interior points of intervals of c , there can be.no more

than n 1 such intervals pontaining points of a,. We forth the partial

upper su=e U p1 and partial lower sum L
I

over there-,_ ervals and find
1,7

1 - L, .< (n m)v(c),(1)

If [u. U.] does not contain a point of .a in its interior, thenI-1,
[ui_i,u1] must lie wholly within an interval [xkfi,xk] of a , We take-as

upper and lower bounds for f- on
i

the'-loounds. Mk and mk for f

on the 5.1,servai
[xk-l'xk] . For all the.intervals of .c7 contained in.

the total contribution to the difference between the upper and-[xk_i'xk]
lower sunsI1Fns is less than or eglIP1 to. (Pr - rm ) ( - xk_i) , Forming the

partial upper sum U
2

and martial lower sum L
2

over all those intervals of
.

C :'which contain no points of c we find
L o.

(2). y u, _ < xk:,

k=1

For the

L = L +
---22

L

< E .

commlete'iammer\sum U = U
1

+.0
2

and complete. lower sum

we haVe`Prey
0

= (- U2 7 (LI 12)

(U-;. L ) .

c.
)

1 2

< - 1).(M - m) v( .

642



We can. make the difference

last expression less than

5 -
2L(n - 1)(M - m) + 1.]

possibililly that (n - 1)(M - m) = 0). For v(.u) < the.Iemma is establiehed.

It is now easy to-prove that integrability implies Riemanr1 integrability..

A6-2

7

U L less than c by making .eachterth.in the
E

.It t is sufficient,the4,:to = and
J

(the denominator beingchosenlitoguard against the

_

TIIEOR.U4. 6 - 3 c . The value I is the integral of f

sense of 6-3, if and only if it

snmq

= lira R .
1.)( cr)-0

over [a,b] , in the

is the limit of Riemann

Proof. As before, consider' a partition 0.--= with

m, ft( x) <t1-k

xk -l'xk] 'we have

or

[xk_i,xk] . For any particular value
k in the interval

mk 5- f(k) Mk , whence,

n

)

k=1

n

xk Nik(xk )

k=1

R < U .

for all Riemann sums and all lower an- upper silra L and U over sc4 .

Using Le-i771rn A6-2d .we can obtain upre and lower s1.7m U and L for which
the difference' U - L is smaller than any givenpositive

partition is fine enough; v(c.).1-5

..have simUltaneausi

and

tTh'

E provided the

for a suitable positive 5 . We

L < I < U

L < R < U

for n11 Riemann :sums on c . It follows that

IR - I I .< < .

lrus we have satisfied the criterion that 'I is the appropriate 1.imit of

Riemann s.oms.

As a research problem complete the proof of -the theorem

No. 3).
Exercises A6 2,
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Exercise's A6-2
p ,

I. Let f be .a function which takes.bn a maximum' and minimum on every
. . .

Closed interval (e.g., f could :le.a.Continuous fungioni or monotone).
*

a)
_

- Let U .(a) and -L (c) be the upper and lower Riemann sums obtained by

using the maximum and minim.= values of f(x) as the appropriate bounds

in each intervalof the subdiviSion.

Let- a
3.

and c
2

be any partitions of [a,b] . Prove for the

-joint subdivision a = al U a2 that

> u*(a) > L*(a)-> L *(c2)

In, other terms,.by adding new points to a subdivision we may reduce

the difference between the upper and- lower Riemann sum ..nd we
- -

cannot increase it.

2. Show that if f is RieMann integrable (Section 6-4) over [a,bren
f is bourided on [a,b] .

Let f be integrable over [a,b]. and let R denote a Riemann

corresponding' to a partition. a elf . We have proved (Theorem

6-3c) that if f has an integral. I then'

I = urn R .

v( a)0

es.

Prove conversely-that if the limit of the Riemann -,sums exists then it is the

integral of f over [a,b] . (Hint: Show first for any partition and-
,

3463ft:dye e that the r exist at least one Riemenn sum R and -one upper

sum U over a such that -.1.1 - R-< e .) -

4.. Consider the function f defined on '[0,I] by

0 ", x irrational

1 , x rational

-Proe that'the integral of .f does not exist.

Consider *le funct'ion f defined on [0,1] by
0

0 irrational

t rational, x =

Prove that the integral of

T in lowest terms.

over [0,1] exists an find its v?"//e.

00"
A6.- GiVe an example of a nonintegrable function_, fg' where .f_ and g are

ch'integrable.
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Appendix 7

_ -INT RABILITY'OF CONTINUOUS FUNCTIONS

A7-:1. Covers of Closed Intervals.

In order to prove the integrability ollontinuous fundtiOns we introduc'e

theidea of cover of an interval. A'set C- of open intervals is said to

be a cover df an interval I if fOr every pc in I there is a membei'of
C which_oentains, or covers x f is continuous on. the- closed interval

[a,b] then for every positive e each point x in [a,b] has a neighbor-
hood N(x) with the property that

If(u) - f(x) i < e.

for all u in N(x) and in [a,b] . For each positive e , the set of such

neighborhoods is a-cover of the interval [a,b] . This cover is an infinite
set of neighborhoods. The remarkable pY-operty Which enables us to prove the

general integrability of continuous functions is that this infinite set of

neighborhoods can be replaced by a subset which is also a cover of [alb] .

THEOREM A7-1. The Heine-Borel Principle. Every cover of a closed interval

contains a cover consisting of finitely many open sets.

Proof. We shall use the Nested Interval Principle (Section A1-5) to

prove this result. Let C be a'set of open intervals which cover [a,b]

We suppose that no finite subset of C is a cover of [a,b1 and seek a
r rl,contradiciton. The lf-intervals La

'2
1,
--ka +.b.)] and L-ka + b),b]

2
' cannot both have finite covers within C for on combining the two covers we

should obtain a finite cover of [a,b] . Thus arINst one of the half-
interVals has no finite cover. Let [a

1'
b
1

] bia half-interval which has no

r% 1finite cover: Again, the half-intervals Lai
+

b,)1 and

l
L-.(a

1
+ b

1 17)

1
), I cannot both have s.finite covers. We can then choose a half-

intei'val without a finite cover and-denote it by [a2,b2] . In general, if
have an interval [a,,,b,] withbut a finite cover, we denote byr, r, sit c

\\\,,ak+1,bk+1] one af the half-intervals of lak,bk1 which has no finite cover.

645



A7-1

The Intervals. ak.pbk1 of the preceding construction are nested:

[ak+l'bk4-1] C: Eak/bk3

It ..ollows.from the Nested. Interval Principle that there is at least one real

Humber. s" in all these-intervals,

.Moreover,

b
k

-

.< s 1-<

3

-2

so that the difference. bk - ak is made less than any given tolerance for

sufficiently large k . It follows by Lemma Al -5, that the number a sepa-

rating the set of lower endpoints from the set of upper9endpoints is-determined

uniquely.

Since s 4s a point of [a,b] '., it is covered by some open interval in

C. say (u,v) . Ince u <S < v. it follows that Minfs -.,u, v - s) is
-positive. If: E = Mines - 11, v - s) , then b

k
-. ak =

b a
< c for any

, . .

2
sufficiently large k and [a

k'
b
k

] is contained in -(u, c. It was asserted

that [ak,bk] had no finite cover in C , but now we find that it can be

'covered by the one interval (u,v) . This is the contradiction we-sought-

Exercises A7-1

1. Show that tie Heine-Borel Principle fails for the interval .[1,-,10

that is, find a cover C of El,Z) such that no finite subset of

C is a cover of [Id-Z.

2. Prove that the Heine-Borel Principle fails.for oiler intervals; that is,

find a cover C of an open interval such that no finite subset of C

is a. cover.
f

3.:'ComPlete.the demotration that the Heine-BoreiPrinciple-is equivalent

to the Sep iom;.that.is, show in an ordered field that the

principle impli he axiom.

.

;1"



4. ,State and_prove the.converse of the Heine-BOrel-Principle.-

444.' Sitce the SeidrarEibn Axiom failit"or the field of rational numbers, so
.

also must the Heine.,Borel Principe,. State the -would -be Heine-Borel,.
/

, -- .

Principle for., rational numbers and-shol.rby example that it is not valid.

#

4
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A7-2 .
I

I
. 7

The Integral of"a ntinuous =='unction.

psing.te
- -

Heine-Barel Principle we derive the basic result:

THEOREM If -f it_cciat.inuOus on .the-interval_:[a,b] , then
_ .

integrable over {a,bi .

-Proof. Let. 1 be any point of [sa;b] For a given positive ,e let'

N(x) be a neighborhood of x for wi-fich

(1) If.(u) - f(x)1"" < e

whenever u is in .N(.4 . The neighborhood N(x)- consists of all the points
satisfyin

for some value. .

radius
2

5(x)

We

lu - x <8(x).

shall also make use of'the neighbrhood' with,'

Fx) = Cu lu - x) < ;"," 3(x) ) .

The set ..of neighborhoods 17(x.)- for 'x in [a,b] is a cover of [a.,b]

From the Heine-Sorel Principle it-fallow.s that there isafinite subset or
:neighborhoods N- (x

i
,) (i = 1 , n) which cover the interval. If

bi .is the radius of N(xl) then 7.3i is the radius of N(x) . We set

Now let a--.Cua, ul' u2' un) be any partition-w'ith norm vo") < 8 .

In each subinterval we'ShallNCind upper and lower bounds for

< f(

which'differ by at most .; .1.3.7.xed muItinle of

Let x by -any point of [uk_1,uk] .. Since- uk
-1

.g.: 8 <H
L.

3
2 i

_ .

1it follows -..- hat lx u-k 1 < -7 of 7Tow let Nxi_) be -a covering interval of

u_
K Since

1 11C i.-
is covered by an open interval N(x) we have ..

iu
,

x. !. 17" S. '. Consecuently
. -

43
lx - x

i
1 < 3. ;

i ,

that
-

.

x isAa'roint of N(x.) We conclude that (1) is satisfied:

648



or

Taking )5k. = f(

satisfying

f( x) )I < e-

f(Xi) E. < < f(x

e-,Ink=f(x.)-,e we have upper'.- and lower bounds

Mk-- mk = 25 .

A7-2

It follows ,,for the difference between the. corresponding. upper and lower sums

k =I

E(Ilk 7 uk-1)
k=1.

.

L

p

2e(b

Since we can find an upper sum and, 1oWer a lower sum which differ by less than

any prescribed tolerance, the integrabilitY of is nroved.

Exercises A7-2

1. Afunctiolon is said to be of bounded variation-on .1a,bj
. if there

exists a-boland M such-that for all c = (x
0 x x
' l' . . ja

- *-of [a,b]
..

df

k=1

(a> ProvAtif'the filnction -f is-monotone on [sib] then is of
. _ .

bounded Variation' on _La,b] .

(b)' Prove if f is'a'function of bound!edvariation then f can- be

represented a. a surn-f h where ,g is weakly increasing

and h is weakly decreasing. Prove converseIy.,.-Lsr f can be

represented as such a'sum'of mOnot6ne functions, then. f is-a,

function-of bounded variaPon.

649

At



A7-2 -

.7.

-
The preceding result enables ts,to prove that not all inter rable funciciOns

are linear combinations of monotone functions. Consider tA funCtron
defined.bSr

Trx cos
X , x / 0 1-<

f 0 c x = 0 .

Prove that -f is continuous, therefore_ integrable on [0,1.]

Prove also that f is 'not of bounded variation -on- '[0,1] .

Pi.ovd.if f is continuous on the closed interval ia ;b. T. and has a
.bounded derivative-in:the interior- (a,b) '-then- f- is of bounded

.-_-
.

f(x) =

- variation on .

4.:`Prove.that if the-function f is of bounded variation_ on" [a,b] and
if--a < c < d < b , then f is Of bounded varilion on [c,c1] .

The concept of length of-a. curve, like that of area, is not defIned in
general by-the methOds of elementary geometry.- By 'analogy with the

concent of integral, it is natural to attempt to expresS the length of,

-a curve a's a limit of the lengths of polygonal approximations.

Let a curve be given as the graph of a given funC-tion f on [a.,b] .

GIL

Given a partition x
'
x
n

) of [a.,b] . we -.construct an

e

Figure A7 -2

650
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. .
.

Inscribed polygon to the graph of f by joining tfle.successiVe points

(xk,3-0 'where yk = f(xk) ; for k =. 0 , 1 , 2 , ... , n (Figure A7-2

Let ,( denote the length of the graph-and L(a) the length of the

inscribed polygon. We have
,

n

L(c) = E /(x. 'ack
k=1

(Yk k-1
)2

where the general term in the sum is the length of the straight-line

-segment joining the-points (xk-I'Yk-1)' and (xmyk) Intuitively, the

straight path is the shortest path'betweeh the two points, so that the

path alo.._; the graph of f is never shorter thaM.the segment joining the

-two points. We .73111st-then haVe L(c)' < for all partitions c . ,We

can Only.estimate-Z from below4wOrikasing inscribed polygons. Further-

-more, here is no obviouser ±wayDf estimating m. above. For

this reason we define x as .the least mpper bound Of!'the engths ,L(a)

of-inScribed polygons, provided such a bound 'exists, -If the length -o.C°'

exists we say that f _J.'s rectifiable over, [6,b1- PI-07e that a.

necessary and sufficient conditionbr f. tobe-reotifiable.over _57:37\
-:Ls that f be -of'bo.arid1 ed variation on [a,b]_.

.

. Let a be a point of the domain of f for which every deleted neighbor-
1 .

hood_containa..other points Ofthe domain. The.funstion.f is said to be

increasing at the point -a .if ,there exists some'neighborhood wherein

x f(x) < f(a)
and

x > a f ( > f ( cif)

Show that if f is

(a,i3) then is increa
for .those poinf.sx in'the doMin:of f .

increasing at every point of the interval

.on (a-,b) .

7. By the Heine -Bare( Principle prove that if is-cafitinuous on ra,b1

then- f is- bounded on [a b] , (Theorem 424-1) .

Q.*

2
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Append ,x 8

LYTICAL DEFINITION OF THE .CIRCULAR FUNCTIONS

AB-

In Sec.;tion-5.we defined the sine and cosine functions as solutions of

the differential equation

(1) D
2
f f 7 0

where sin-: x--.1-0(x)' satisfies the initial condit*on

(2) 0(0) - ,-0'(°)
7.

and cos : x---0-V(x) satisfies the ,41:nitial condition

(3).

We wish to prove the results that the differential equ'ations define the two

'-(0) = 1 , t'(0) ='0

circular functions ft,r all real valuet of x andthat these fu
periodic with period 2:fr

We note -first that the inverse g of 0 , is defined by the integral

,(4) g(u)
J.

at

for:all'Velues- u in the open interval_ -1.: u 1 . From this fact we

conclude only that '0 is defined on some neighborhood of the origin by
.

(5)

Wherever

(6)

: g(u) 0- u

is dqined,'We,defi.ne by

may

Our'first'oroblem to extend these definitioris to.ih domain Of all real

411ritzmben. Once we have shown the existence of the sol dons 13 and :lir 'of the

4fferential-equation (1) on the domain of-all real numbers we are .free to

employ the addition, theorem (Exercises 85) wiLhout restriction 'since the

Sum,of two numbers in the dOmain will again be in the domain.- Using the ,.
ad-dii.ion 'theorems, we shall have no difficulty in establishing tha Periodicity
of- the functionS.

. - .
.

"Let
0

-be any
,

real number. 1t is easily verified that

7) f x --0-at(x - x ) b0(x,- x0)
0'

'65;

sZ;e7 .
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fp"

is a solution of 'the

r"blei condition

,.

case .x
0

= 0 .

Now let = g(n) where

differential equation (f) which satisfies the initial

the same argument as that of

x0) a , f'(x0)

solutj:cnsatisfy

the uni,queness'

0 < n < l so that 0 and * are defined by

b .

tae condition (8) by exactly

hem (21eorem 8-5b) for the

(5) and (6) on the closed interval -g < x < g . (Here we employ the

symmetries of the two functions, Exercises 8-5,-No. 10)7, In (7) and (8) we

take x
0

, a = 0(g) = rl and b-=.0'(0 . Thus the function 0 satisfies

the'same initial conditions as

theorem must coincide with f

The function f is therefore a

includes the interval [-g,g]

[x0. x0 4- g]..= f0,2g1 . The intersection

val ro,g) . We introduce the function

f at x = g and therefore by the uniqueness

where the domains of the two functions overlap.

natural extension of 0 . 'The 'domain of 0 .

and the domain of f includes the interval`

0(x) ,

f(x)

f(x) ,

.
Clearly 0 satisfies the differential eauation (1) on the interval [-g2g]

Finally we define the extension * of 7*

of two intervals is 'the inter-

x E.[-g,g]

, x E [0,g] ,

x £ [g,2g] .

and the initial condition (2).

on the interval [-g,20- by
/\
Vr : x 0 )

. .

tn-erderta keep the notation simple we no longer distinguish betweenA..7.., .". . ,-
the extended functions, 0 and * and the origin,.f7 functions '0 and i ;

this cannot cause any confusion since the extensions are uniauely deter-
_

a

mined.

We Nay now repeat the procedure to extend. the two functions further.

Since ck and * are defined on the interval [-E,2g] we may introduce the

solution (7) of the differen tial equation which satisfies the same condition

(8) at x
0

= 2g as the function' 0 "; that is, we take a = O(2g) and

b = 0,(2g) = v(20,. The function f --1.;_s defined on the.interval

[x0 - g ,x0 21 = [4t] whiCh overlaps the domsirr'of. 0

[2g] We extend the definitions of the functions 0 and * by setting

0 = f and * = f' on the domain of f . ."'

on tht interval

652±
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We proceed recursively. Once we have defined 0 and * on tiqe interval

[-,2N1 we introdUce the soliation f of the differential equation defined

by (7) and (8)_ where x = , = 0(x0) , b = (x0 n2. The function_ f is
0

7

,
-

then
_
defined on the interval Ix

0
- ,x

0
+ 2

k.0 = L(2k 1) ,2k 3-] wiiich

,.
overlaps the domain of 0 on the interval [(2k - 1)k ,2k4-11 . By the

uniqueness theorem, the functions 0 and f are the same on the ,common part

of their domains. We extend the definitions 0 and .* to entire interval

[-k ,2'
+1

k] by setting 0 = f and * = ft on the domain. of

Giveria.ny positive real number x , thereexists a value of/ k such"

that 2 > x . It follows that 0(x) and c(x) are uniquely defined for

every positive value x . A similar construction may beused to define 0(x)

and *(X) for all negative values...of x (see Exercises A8, No. 1). In this way

we extend the definitions of.the functions to all real values. fl

To shoes that the functions 0 and * are Periodic we mUst:find an

appropriaterwaysto introduce the numbe,c--- Tr and to exhibit its relation to
Tr

the period. We define ,the number Tr- icy the relation = g.(1 ) , tliat is,

from (4),,'
.

Eq4yalently, we hove

(9)

Since [0(x)
2

,TrN 4. 1
4

1

- t2

N2
1,',1(x) ,1

1
'= 1- we conclude

dt. .

7r)
2

that 1*(7 )

Weh to determine. the, correct sign%

4
-7FQM (4) we -know

. Since *T = -0

d

2
or that

tliat 0 is increaving.andanegative on'the
i0N(Exercises 8-5, No. u) and is positiveon

r r,
interval. 'SinEe 0(x) can not attain the*t. is decreasing, on the

in 10,F it follows that i(x) cannot be zero at any point of the

Observing that *(0) is Positive and that *

Tr
11;(.7) > 0 , hence

(1o)

interval

-6/1n

value 1 (

interval.

is continuous we conclude that

We leavr'e as an exercise the proofs of the details of this argument.
1.3
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Next we insert the results (9) and (10) in the "double-angle" fdrmulas

'(Section A2-5', (V and (10)) to obtain successively.

whence, finally

0* 7 2 0(77) c(7) =.1

*(72-1') -1 [\li:)]2 [0(1f)]2 0
, -

0(1t) = 2 0(2)*(2) = 0

*(71) = [111(2? 12 [0(2)]2 = -1

0(20) =.2 0(:c)*(sc) = 0

. v(2.7-c) =.Nr(10]2.- IWIT)12 W 1 :.

, . .
. ,
The periodicity pf the

s upon taking

(12)

x
0

= 21: a = 0,

sine function now follows icdmediately from

and b = 1 in (7) and (8) We have

4:( x) = 23-r).

where ,f satisfies exactly the same initial conditions

It-follows from the uniqueness-theorem that f =16 and

(13) 0(x) = 95(x - 27r) .

...-From13) we see that 0 is periodic with period 2:c .

proof we differentiate

haVe used

sin and cos in

.in (13) to obtain, the same result for yr .

-s`

at x
P

= 2:c as 0

from. (12) that

To complete:the.-

the-symbolS 0 and * throughout instead of the fAmillar,

or4V4avoid the possibility, of a logical slip through the
--__

inadvertent assumption'w12L'hout proof of one 44Othe well -known prOperties of

the circular-functions.. Now that these properties

,shr:111 return to tne customary notation;

Exercises A8

have been established we

1. (a ) ' Employing the method's of the text, extend the definitions of-

sin : x --410(x) and cos --...-*(x) given by (4),-(5) and

(6) to all negative values of x .

_,(b) Use the fact tat the furictiona 0 'and * have been defined for

x > , where 0 < <.1 , to extend their

set of all negativ2 numbers.

'

656
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sr

2. Prove:

(a) x5 = *(x)

(t)' 1'4 x) = 0(x) .

(c) 0(7c x) = 0(x)

(d) *(sr - x) = .4(x)

3. Sri-low:

(ea = z
(b)O = 2 .

(c) 0(i) .

(d) 1;() = 1

4. Show:

(a) 0 has no positive .period less than; 27r

(b) the function r : x,
IV

( )
l.de--1,- is -periodic, with period it

..

.

4' -
5. Derive the formulas 93( z + 27t-.) 7 0( z ) and 2.. + 27(1 = itr(z)

A8 -1

W frOm (13) - " r
.

(b) directly fripm (ii) and'ihe addition- theorems.

6.... Prove that if t is the arc length of the curve y = 477 between
.- .

-=. ,

x = -0 and, x = a then ra(t)% = a and * A_(t) = - a. .
2

ti

1.

292
657
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Appendix 9_

THE'STORY ABOUT AL

the story about Al may beUnder a ruling by the Director of

disseminated only by word of-mouth.

(

,

2 9

J

I

S.
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Appendix 10

CONVERGENCE OF IMPROPER-INTEGRALS
7

The main purpose of this appendix is to.prove the comparison test

Theorem 10-6a,'for the convergence of improper integrals- For the proof of

this result we first establish two useful preliminary.lemmas.

Lemma AlOa. If every interval (a.',x) contains points of the domain of..

0, and 0 is monotone and bounded within some such interval, then lim+.0;(x)
x-a

exists.

Similarly, if every interval (x,b) contains points of the domain of

0 and there is at least one such interval wherein f is monotone and.bounded,

then lim 0(x) exists.
x-b-

,

Proof.. Let I. be an interval (a x
0
) in which 0 is monotone and

pounded. Say that 0 is weakly increasing in I . Since. 0, is bounded in

I .f.it has.a greatest lower bound a . Thus 0(x) >a in I , and for every

positive' E , there exists a point in I such that

0(E) - a < E .

At the same time for a4,. x in theedomain of 0 within the interval (a,0
we have 0(x) <0q) 'by the monotone property of. 0, and 0(x) > a because
a is 4 lower boubd; thus 0r< 0(x)<, - a < 0(0 - a < e . We conclude that 1

lim+ 0(x) = a
x-a

The proofs of the remaining cases are left to Exercises A10, Number 1.

. .
...

Lemma Al0b. If f is Riemanxi.. integrable over [a,13] then If! is

Riemann integrable over [a,(3.1 (Exercises 6-4, No. 22).

In A2-11-, it was required that 0 be defined on an interval for the
definition of monotone function, but that requirement is not essential heraz

661
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Pro6f- Set

( x)

0 ,

if f(x) :> 0 ;-

if f(x) <0 ;

, if' f(x) < 0 ;

\r(x) =
0 , if f(x) > 0

Thus, = u + v . We show that u and v , hence Asfl , are integrable.

Given any e there exists a partition a of ra,01 and upper and lower sum,_
U- and L over a -' such that (in the notation of Chantei- 6)

n

E (11k mk)(xk xk_i) <
i=1

*
1,4t mk*. and ,mk denote upper and lower ds, respectively, for u(x) on

-
. * -'

Lk = [xk_i, xk] and let -U and L
_

.
denote-the corresponding upper and

. * *
lowe.s-tim'q. We shall show that Mk and mk can be chose so that

Mk ;11k 5- Mk In%
-There are three possible cases:

4

f(x) > 0. on Ik ; then u(x) =,f(x) on Ik and we take

MkI = klk ink Mk v

f ( X) < 0 on Ik ; then u(x) = 0! on Ik and we take
-7

Mk = mk = 0 on ik' .

(iii) there exist points- and t in Ik such that

f(t) < 0 ; then Mk > u(x) > mk and we take

= mk

In each case we have
*-

mk nix Mk "ik

*

so that.

E- xk_i)

E(Mk x_k_1)

.
There, are upper and lower sums for u(x) over [a,b'] ,which

any signed tolerance. It fcillows that v. is integrable over [e,b] .

f(s) > 0 and

Mk* Mk

are closer than

r

. 662
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)
' t

- Since -f, is'also integrable over [a,b] it follows on replacing f

Al 0

by -f , u by -v in the preceding argument that v is integrable over.

-ra,b1 . We conclude that If! = u + v is integrable over [a,b] .

THEOREM AlOa. Let f be Riemann integrable over every closed interval

[0] for fixed and c (.,b) . If Ifi(x)1 < g(x) and
4

.

.

,

. g(xd converges; then
. .''

f(x)dx 4onverges. Similarly, let f
. -,'

be Riemann integrable.over every interval [a,11] for

(Ti
If(x)I < g(x) and

J a

i

g(x)dx converges, then
f

r-f a

a c (a,11) . If

f(x)dx. converges.

b
irProof. Set K = g(x)dx . -Since g(x) is nonnegative the function

* given by

S,
*(0) F g(x)dx

is weakly increasing, and since * has a'left-s$ded limit at b that * is

bounded on (g,b) (Exercises A10, No. 2). In particular, since 17 is

bounded and monotone on (t,b). we conclude from the proof of Lemma AlOa that

0K = lim *(P) .= sup f*(0) : 0 cift,b))
0.-b- -

0

.i.e.,'K is the least upper bound (Section Al -5, of .* on (t,b) , so that

*co = ir g(x)dx <H1C.

t

Now, let u and v be the functions defined in L

we have

Thus,

$

O <: 12(x) < If4) I

O < v(x) < If(x) 1

-< g(x)

g(x)

p.

U(p) Jr ,i2(x)dx < *(S) < K
Sn /

(13) = v(x)dx < lr(S) < K

66,3
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Since u and v .are nonnegative, we'see that U and V are weakly increas-

ing, and since U and V are bounded, Lemna AlOa yields theAconvergence of

lim

lim

U(f3)

IrCp)

=
JE

=

b
Q(x)dx ,

rb v(x)dx'..

But f(x) = u(x) - v(x) implies the convergence of

b
it b

f(x)dx = r [u(x), v(x).]dx

1To prove the theorem for the convergence of 5 f(x)dx make the
a

substitution x = -t , dx = -dt , and 'observe that

. aim+ f (-x)dx lim f( -t )d,"

c...a -

(EXercises A10, No. 3).

Theorem 10-6a isa direct consequence of Theorem Al0a.

Sometimes a co sarison-teSt as defined by Theorem 10-6a is not adequate
S Y b ..

to establish the convergence of r f(x)dx . Theorem AlOa gives criteria for
a

establishing absolute convergence, that is, the convergence of bi If(x) I dx
a

However, it may happen that the integral of f(x) is convergent, but.not
absolutely-convergent: _

Example 10-6b

.

Consider

,/ F I = sin x
dx

4-
(the DI3ikrchlet-integral). SinCe lim s-xn = 1 f,

extended_continupaaly to .x = 0 . The difficultlies
for 'large x .

*a.

664

.-e

sin xx can bex

7
ixi the behavior of f



We obsrve that the graph of y
sin x

alternates-in Sign as x
x

1.ncreases and that the area under the arch of the graph over 12n71,(2n 1)7r]

is partly cancelled by.the signed area.below,the x-axis and abovethe graph
,

for (2n 4. 1)7r < <-(2n 2)n , (Figure 10-00).- It is this alternation which

yields cOnvergence;.

-Ala

y

k

sin x
x .

dli111111111111ffil

Figure A10

"

I

(

Theconvergence can be proved from this observation (Exercises Al0;)No. 5) but

the proof can be made simple using.w.integration by parts. To avoid the origin

consider

-.
sin .x

.J = dx .

7r/2
x

Set u - 1
, v - -cos x , dv = sin x dx to obtainx

29E
*66
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Now

so that

J x

t sin x dx = - cos t

Si

t

r t

J

lcos
2 2

cos x
dx .

x2

cos X rg

'

COS tis absolutely convergent over 1. az] Y t
and lim

. .

4.

03
cos xConserently, J =

2
dx converges and so does I .

g/2 x

Next we show that

Isi

O
x

diverges.. We have

x dx

n
ISix XI dx . 2: rim- isin xi7.

1 x ="1"
0

k--.1 J (k -1)g

c-

Now for x in r(k - 1)7r '+ i , kn- ii-j we have

Thus

(k -1)7r

and henci

Isin x dx >
x,

r,:c3r a

J0.

= 0 .

isin xi > and x r .2

sin
x

x >i 1>
3
k=1

dx , 2g --
3 .2 ky 'k

Now we employ a trick to ahot..T that this last aum can be made arbitrarily 1A-cge.-
1

From .on [k-3_,Id we have
x

-
'

_,,

i ric:

k k
d

..J1 k -1

> _i -j-'x
k-il 4,

_
.

Now sixrcraing from 1 ti k we obtain, .

at

666
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n'r sin x

0 > 3'

n
k

> >--: 7c dx j
1

k=2 k-1

1> 1- r
+ in dx]

3 1

1 r
1.1 -r- log n]

Froathe unboundedness of log n we conclude that the integral diverges.

f Exercises A10

A10

1. Complete the:proof,of Lemma A10-1.

2. Show -32 V weakly increasJmg.on (,b) and has a left-sided limit

at b , K = lim *('/3) ; then * "4is bounded on (,b)
pb

3. Complete the proof of Theorem AlOa for f(x)dx .

a

4. Show that the condition in.Theorem 10-6a, that f be integrable over

every closed subinte?Val of (a,b) , cannot be omitted from the conver=

gence criterion. More precisely, show that if If(lc)1 <rg(x) and

g(x)dx exists, then
1 (x)jdx exists but f(x)dx need

a a J a

not exist.

5. By estimating the absolute difference between the areas of successive

arches of the curve y = sin x
, i.e.,

show that

-converges.--

6. Prove.that sin dx
0

"

2rur

j -2(n-1

k

sin x

sin x
dx ,

x.

dx

(n= 1,2,3,...)
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acceleration, 409
antider4:va;iVe,'427
arccos, 144
ai-clength, 385
a -csin, 143 ,'
a±-ctan, 144
area function

-additive'procerty, 34t7
order property, 367

-asymptote,- 230
horizontal, 232) 234
.oblique- (slant), 233, 234
vertical, 232, 234

attenuation equation, 502 -*

Binomial Theorem, 338
'bounded'grawt197,512 .

bounded set o&P6ints;-261
greatest lower. bound, 266
least upper-bound, 265

bounded variation, 649
braking coefficient, 513
Buniakovi ky-Schwaztz inequality, 403

catenary, 4
CaucWs inequality', 253, 403
-chronaxie
composition of functions, 102,
conic section, 313

directrix, 313
-eccentricity, 313

. focus, 313
constrained extreme value problems,
continuity

. of coMposite function
(Th. 3 -6e), 103

of ,differentiable function
'(Th-

on the interiNt-168
intuitive idea, 62.
-of inverse function (Th.r3,6f),
piecewise),589'

ai5f

INDEX

a.

cosine integral, 631
cover of.7g.n intervdT;14.5

decay coefficent, 49p
decomposition into partial fraction;
decreasing function, 234, 299

weakly,. 126, 299,
derivatiKe

of ax, 466
of arccos x, 147
,o- ircsin x, 147
o &tan x 147
of c , _tic) (Chain Rule)

(Th. 4-6), 149," _2
of cos_x, 139 -

of cot x, 139
Esc,.,
of eX:,

117
465

of 118
of f:x---4.-xz 118
-of frx--4.-x, 118
of 118

1'
of fix-N.- 118

x'
of f:x4-1xl, 118
of ft, 117
of-a function at a,point, 49
of inverse of differentiable

functiOn (Th. 4-3) , 132.

of 'llnear,combination.(Th. 4 -2a), 120
of log x, 465 -
of polynomial (Th. 4-2cCor. 2), 125
of polynomial of differentiable

213 ' function (Th, 4-2c, Cor. 3), 125'
power rule for positive integers

(Th. 4-2c), 125
.(.2:f a product (Th. 4-2b)-, 122
of quotient of differentiable
function (Th. 4-2d, Cor. 1), 128

of rational function (Th. 4-2d,
Cor. 2), 129

of reciprocal of differentiable
function (Th. 4-2d), 128

of right-hand and left-hand, 121
of sin x, 139
successive higher, 159
of tan x, 139

differential equations, 429
ex (Th. 8-5a), 471
sin x, cos x (Th. 8-5b), 472

direction angle, 30
displacement, total, 408
domain of a function; 269

f' -

563

104.

of Productcontinp.ous functions
(Th. 3-6b); 99

of quotient-of-continuous functions
(Th. 3-6c), 100

of sum Of continuous functions,
(Th. 3-6a),-t9:9_

convex set, 207
convexity, 206

flexed downward, 207, 234
flexed uoward, 207, 208, 234

3



e 461; 480
properties of, 1477

ellipse, 313
focal chord, 31k
latus rectum, 314

energy density, 503
0. epsilonics, 67f,

. exponent
definition of zero exponen't, 446.
general laws - ?or negative
_integers, 446

generals laws fbr positive
integers, 445,

.Ational.exponents-,' 447
exponential function -44T

derivative of, 448
'Inverse functiOn, 11 0;8

exponentially damped sinusoid, 607
Extreme Vane-Theorem. 3-7b) , 109

proof, 347
extrer114", 173., -

isolated, 199
loclal, 176, 181, 200
on omen interval (Lamms. 5-2,), 178_
relative, 176

' field, .245
function

absolute value, 95,1 274
composite, 286

°'7 even and oaa, 276
'integer part, 57, 275
one-to-one, 290
periodic, 277 -

signum (sgn), 61, 62, 276
function definition, 269

circular, 137, 303
constant, 274
explicitl;rdefinea,, 162

implicitly defined, 161
Inverse circular, 143f

Fundamental Theorem of calculus, 425

,
.

global properties of f, 169
graph sketching, 229, 233

'-, Greenls 'function, 616
growt' coefficient; 497, 513

half-__ife, 499
Heine -Borel Principle, 645
hyperbola, 313
hyperbolic functidhs, 485

cosh x, 485
derivatives of, 485

ti

inirerse.488 .

sinhx,485
tanh X, 485

liy-pqrlziblic sector, 487

implic3 differentiation, a62
Implcit Function Theorem, 361
increasing.fUnction,.110, 234 299

weakly, 196, 299
indefinite integral, 427
initial value, 497 -

initial value problem, 430
integral

continuous function,.64 8,
-"definition, 377
estimates of, 437

.4;.)existence, 638
Exist ce Theorem (Th. ,6 -3a), 378
-g metric properties, .388
limit of Tiemann sum, .383, 643
of monotone function (Th. 6-3b},379

integral operator, 617
integrals

convergent, 582
definite, 570, 427
definition, 581

.divergent, 582
improper, 578-
Oyametric, 571

integration,. 535
of constant times integrable

function, 394+-
of linear-combination of integrable

functions, 393
by parts, 554
of a polynomial, 633
of rational functions, 563 )-

of sum of integrable functions, 395
'special reductions; 573
su&stitution of circular
functions, 546

Substitution Rule (Th. 10.-2), ---,40
Intermediate Value _Theorem (Th. 3-7a),

1Q9
proof, 350

Interval, 259
closed, 259,109
-interior poitt of, 259.
length off 259
midpoint of, 259
open, 109, 259
inverse function, 131.291f.

Lagrange.rul4 of
parameters,

latent Period, 509

varition of
j



Law of the
lemniscate
limit

of f at
right-
sin x'
x_ '

limit thedrems

MeRaa, 186, 190,
of-Bernouli, 313, 359

a, 58±'
and left -hand, 90, 578

138 .

constant function (Th. 3-4a); 79
constant mttiple of a function

(Th. 3-4b),,79
linear Combination of functions

(Th. 3-4c, Cor.) 81
nonnegative functi (Lem. 3-4,

Cor. 2), 84
product of.functions (Th. 3-4d), 82
rational function (Ti.a 3-4e,

Cor. 2), 86*
reciprocal of function

(m. 3-4e), 85;
Sandwich Theorem (Th. 3-.4f,

Cor. 1), 86
Squeeze Theorem (Th. 3-4f,

Cor. 2), 87
sum of functions (Th. 3-4c), 80

linear approximation_to f, 223
'linear differential equation of first

corder, 590 _-,
forcing term, 591
fundamental solution, 594
general solution, 594
'initial value problem 592-
nonhcirlogeneous e 595.
-reduced equatiorf, 591

linear differential equation of
second order, 603
homogeneous-equation, 604;'
superposition principle, 6O1

local property of a function, 108
lotiarithms
.base e, 461
base 10 (common), 461
derivative, 449
function, 448
as an integral, 452

logistics equation, 513
=lower sum over a, 376

mapping, 270 -

mathematical induction, 319
first principle; 323
-second_ principle, 327

maxi.. r_, local, 177, 181, 198, 205,
minimum,_ local, 177, 181, 198, 205,
mean life-time; 499 -

Mean Value Theorem of integral
calculus,4402

method of eqUa
model

for growth; 497
for decay, 99

monotone fiction, 299, 196, 415
inverse of strongly monotone-
.functioli (Th. A2-4), 300

linear combinations of, 415
piecewise, 415
sectionally, 415
strongly; 178, 299

ed. coefficients, 566

neighborhood, 58, 260
deleted, 58, 260
of cc, 587
radius of,' 260 .

nested interval principle., 265_,
nonhamogeneous equation, 595
norm of the partilion,'379
'Normal at a point, 226
notation

4 117
(dkfference), 156
(increment), 149..

.aye 156
dx
f','117
Leibnizian, 156..

orthogonal trajectories, 62?,

parabola, 313
Parameter, 44
partition of [ab], 376
miecewise continuous; 589
piecewise monotone, 415
point'of inflection, 230,_234
polar axis, 308
polar coordinates, 308
primitive of f, 427

radioactive decay, 500
rgdius.veCtor;.308

orange of a function269
real numbers-

algebraic pxoperties
order relations of, 249

rectifiable, 651
-recurrence Felatilis, 558

23i rheobase, 508
234 Riemann sum, 381

limit Pd., 383
." Rolle's Theorem (Lemma 5-3), 187

4
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,scattering coefficient, 503 .

_second derivative, 205 ,-

separable differential equation, 621.
Separation Axiom, 263 . ,.

,
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slope,-30 ..
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1
, lower bound, 370

upper bound, 370
Stirling's formula,-482
sun notation, 333, 371
summation, 339
superposition principle, 604
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symmetry, 570 ..J

tangent to the curve, 223
tolerance E (error), 32, 63
triangle inequality, 255

upper- sum over a, 37

' velocity
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