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S STUDY GUIDES ON ‘CONTEMPORARY PROBLEMS . . -

Ly
-
.

S1nce 1970 the Amer1can Assoc1at10n for the Advancement of Sc1ence has.

1Y ~ RS

conducted the M§F Chautauqua—Type Shoty rses-for Co]lege Teachers Program oo

w1th the support of.the Education erectorate of the Nat1ona1 Sc1ence Founda-

LS

tion. More than 7 000 college teachers of undergradﬂate students have par-
' — .
t1c1pated in the courses wh1ch have dea]t with either broad 1nterd1sc1p11nary >

P
prob1ems of science or the app11cat1ons of scwence and mathemat1cf to coT]ege

lv

. teaching-. A1l of the courses are designed to make available the‘most current

< » F

information.: In view ‘of the grow1ng demand for course mater1a1s in pub11shed
form and thereby ava11ab1e to 1arger numbers of college teachers and the1r
students, the AAAS STUDY*GUIDES ON CONTEMPORAPY PROBLEMS, a part of the 1974 75 -
NSF Chautauqua Type Short Courses for College Teachers Program, are be1ng

prepared to test the feas1b111ty of piblication. After testing and. rev1s10n, the

IS

fo11ow1ng t1t1es w11] be ava1lab1e from iAAS in the late fall of 1975

-
7 -

Behaviar-Genetic Analysis by Hirsch

Public Policy Analysis by Ostrom .
,Alternat1ves in Science Té&ehing by Creager o a7
Water Pollution by Kidd - ~° o “.\
Atmospher1c/5c1ence by Schaefer and Mohnen ' . )
€onflict .Regulation by Wehr
. Mathematical Mode11ng_and Computing by Cohen and Dorn
Thinking w1th_Models by Saaty

~

W00 N 01 ) Ry=at

.

~

‘? .
/K, The Study Gu1des ser1es _is in keeping w1th the.overal] obJect1ves of the
i q’*¢

hmer1can Assoc1at1on for the Advancementxof‘$c1ence5° ". . . to further the
work of/sc1ent1sts, to facilitate cooperat1on among them, to 1ncrease pub11c

undekstaad1ng and apprec1at1on of the 1mportance and promise of the methods

of sc1ence in human progress." o . K
- ~ o . b . ) - . -~
< t B -

Patterns in Problem Solvirig by Rubinstein ‘., - -y



1]
P
o
2
w
. zl
N
.'.
- .
= -~
)
]
]

O

'ERIC

Aruitoxt provided by Eic:
s

r
\3» .

.’“;'. ) -";w. . i ‘. .' T
\. :-‘\
N _ . /
. _. Lo oy
. H S o _f . ‘
e . . MATHEMATICAL MODELING o
J.»\::\ - o ~ . . N P ,
> - O
- > ('- { / L ‘-
: - COMPUTING (e
’ : o Tw
' - E -~ .
"‘.J. . T . o | ) !
: m;' X . ‘ . . ) , .
N |
i b )
., By
- i (
A ) L ' N ,
L - Jack K. Cohen oo
. ‘ ‘ . and ‘ .
_ ' - ’
X%Q\ L William S. Dora’ - .
> / ) . ' ’» . -
- ) - .
ot ‘ s
- ‘\;\
- - )
- ' « - - . .i
- Study Guide No. 8 L ‘
- AAAS STUDY GUIDES ON CONTEMPORARY PR\?BLEMS
| - . ) , . ] : :

~
-

v
i

-
N
’
N
g
«
2
’ -~
-
.
-
".
-
.
-,
-~ .
-
-

U



- | " | " - - ' | ,
. (:) ‘Copyrighted by Jack K. Cohen and William S. Dorn, All
rights reserved with the following exceptions:

d 1. Publicationz&ay'ﬁé quoted without specific ﬁermissiqn
’ in works of original scholarship for accukate citation

~ of .authority -6t for criticism, review, or evaluation, v @
~ subject to the conditions listed below. . T
: N

.2. 'That appropriate credit be given in the case of each &
: quotation. ' : o -

3% That waiver of the Tequirement  for specific permission
does not extend to quotations that are complete units
o " in themselves (as computer programs, poems, letters,

1‘3 short stories, essays, journal articles, -complete chapters,
or sections of books, maps, charts,’graphs, tables,
drawings, or dther illustrative matgxials) in whatever
form they may be reproduced; nor does the.waiver extend

1 to quotations of whatewer lengﬁh presented as primary.. ° .

* "%, material for its own sake (as in anthologies or. books of

o Lo #%%%@Trgﬁdings). : it

[
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¥
d¢,

B . J 4 .
4.. The fact that specific permiss;onffor quoting of material

. may be waived under this agreement doe. ot relieve the .
quoting author and publisher from the responsibility of

. determiningf"fair use" of Buch material.
. . ~ :
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. . " PREFACE FROM AAAS . ’ .
. . ( i ’
. . F\ ,, /}

.. TO STUDY GUIDE REVIEWERS: . Y

-

The test editions of the initial set of eight Study Guides were prepared on

relatively short notice by the course directors during the summer of 1974. To
. , . - N . p

<. ) K
provide as much information as possible to-the authors for use ‘in revising this
\) ( -

study guide for publication we ask you as a participant in the NSF- Chautauqua-Type R

l\

Short Course, or a colleague or student of'a participant to test these materials >

(as if they had been published) andkprov1de your reactions. Your efforts will con-—

3

" tfibuté significantly to the quality—of the revised Study Guide. . .
If this Study Guide has been successfully prepared, upon.completing it, byOu

zwillz (i) /have an overall comprehension of the scope of the prnblem, (ii) under—

stand the relationships between aspects of the problem and their implications for

human,welfare, and (1i1) possess a reliable guide for studying one or more aspects

-3

of theiproblem in greater depth.’ We ask you to evaluate the study guide on the

basis Jf how well each of these objectives are achieved. Of less importance but .
. \ o ’\. ’ . . -
~ 3 >

most welcome are your specific ediforial suggestigns, including pumctuation, syntax,

.-

vocabulary, accuracy of references, effectiveness of illustratiOns, usefulness and.

- R / . } . . e -
organization of tabular materifls, and other aspects of the draft that™ are related

[ " N

to its function. Three copies of an evaluation form follow this page and additional
o ~ -

copies may be reproduced if needed. Each eua;nator should return a completed form

s

to: NSF Chautauqua-Type Short Course Progré? 1776 Massachusetts Avenue, NW,
Washington, D.C. 20036. - Please type or print legibly.l Feel free to include any -

additional co lents you ‘care to make. This,evaluatiOn is in'addition to dny evaluative

requests made by the study guide authors; however, we do encourage you to cooperate

~

with all requests from authors.

- -

Cal
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We hope that having used this guide will provide some remuneration to you

‘gnd that if you were able to participate in the sessions of the Short Course, you

.gained satisfaction from that. Your efforts in evaluating this study guide are
a worthwhile contribution td}the improvement of undergraduate education and we

. - ) \ ¥ . .
express our appreciation to you. Apart from this, we can only“offer to include )

-~ your -name among the evaluators in tRe revised. edition. - .

Al
“~We hereby g{?cefully acknowledge the services of Joan G. Creager, Consulting-

~

Editor, and Orin McCarley, Production Manager for this series. 1€}

o . ' -
Arthur H. Livermore (‘

Deputy Pirector of Education

P N
.

: , - AAAS .
, | R

L ; . Howard F. Foncannon
g : ) ’ Associate Director - of Education
AAAS -

~

(e

’ - 8 - viii




. ) . = TAAAS EVALUATTON LONM E
- - . ‘—?: . -
Afror completing this study guide, tear aut one copy of this sheet, conplete
fold and nmnail. Wo envelope is nceeded. i )
Clrclv the response that best matches your fecling about the study guide. Also,
please make specific suggestions whayever pousible. X .
: _ \ ' - _ Unsdtis-- Satis-
™ <o factory {factory
1. DJd you achiceve gn overa]J\erpruhcnsion of the scope : :
of the problem? .
Suggestions for improvecment: L\

¥ 2 3 & 5

4 *j

2. Did you achieve arl undcrstanding of relationships

between aspects of the problem and their implications for :

human welfare? . " 1 2 "3 4 %
Suggestions ‘r improvement: {

hd . ' . f

. - - ) \ 5
3. Is this a raeliable guide for studying one or more ’ i
aspects of the problem in greater depth? : 1 2 3 4 5%

Suggestions for improvement:
iy ' . BN ’ b j.%"‘
4. Was the content of this' study guide "clearly presentid? 1 2 3 . Akggﬁsc‘

Please commuent on specific pages and paragraphs, if 1 f
appropriate. .Use the back ¢f this page ond additional
pages if necessary. Please” type or pnrint clearly. )/‘ﬂ
s v
5. Did you find the study guide inflormative? 1 2 3 4 5¢

Please comment as specifically as pogsible. ‘ . \
» \! -

«
Y -

6. Are there any topics-iﬁ this study guide that you think should have been
modified? . . . any that should have been added? . . . deleted?

. -

7. Rate the study guide as a whole for the follow1ng situations: -

independent study by college teacherSJl 1 2 3 4 5
independent study by college students ' 1 2 3 4 5
a basic text for a2 conventional course S 1 .2 3 4 5
~ " a supplement in a conventional course - fe 1 2 3 4 5 -
other: - '
PLEASE DO NOT WRITE IN THIS® i > ' A
N L . : J
SPACE - - ‘& - . ,
NG \
g -
v . T —




. What was your background in the subject before using this study puide?
none or little () college courses ( ) tecaching the subject
other: <

. Your present position is: () college teacher. ( ) college student
) other: '

~ O ~~
N

-

.10,  What sbccific changes are nceded to mhko this study guide more useful to
college students? . ‘

A

11. Please make any other comments you feel would be helpful (regarding
illustrations, tables, accuracy and availability of references, extent to which
objectives were met).

N

-

T

Please £fill in your name and institutional address Selow, fold, staple, and mail.
Thank you for your assistance. : ‘ .

. : e
| ~
Pl
<
{ » fT ’
9€00Z D °@ ‘uo3l3urysepy
*M °N ‘enusay sS339SNYdESSER 9/l 1T - N
AOUITOS jO
JUBWIDUTAPY 9Y3I I0J UOTITIOOSSY UBSTIswmy - , ' -
weidoxg 9sINo) 3aoys ad{3-enbneaneys JFSN \\\\\//
y
~ ' drz "< . .. -3s £31
- = .QSuI :
TI3IH i . : ‘ ~ cadog’
dVIS : ~ .
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PREFACE FROM THE AUTHORS o

. The Preface From The AAAS, whi immediately precedes this preface, contains
- & general evaluation form applicable to all study guides. That preface also asks’

you to complete and return the evaluation'po the AAAS offices: The authors urge

you -to do so at your earliest convenience, The responses to those'questions will be

N

of immeasurable value in revising this study guide.

v

In addition the authors have prepared some evaluation forms designed'specifically

for this particular study guide_ on Muthematzcaz MbdeZzng and Computing. A rather
B
broad evaluation form which coveréﬂzhe antire manuscript z: - s at the close of

this preface. 1In addition there are;?hapter‘avaluation forms at the end of each
Zhapter. We would appreciate your completing and returning as many of these forms

as you feel are appropriate. They have purposely been kept brief in ords;/ﬁgz\fb\_

make an unduly large demand on youn!time. If you wish to make any other comments

or criticisms, be assured that they will be taken seriously when the rewriting

process begins. ,

Please send -all of: your responses (exé&pt for the evaluation form in the

preceding preface) directly to: 1' _ E . ’ ] ’ o
— ) P ) ’
Professors Jack K. Cohen and William S. Dormn
Department of Mathematlcs‘
University of Denver
Denver, Colorado 80210 ;i -

You may w1sh to remain anmnymOus, and the authors respect your right to do sSO.

Our sincere thanks for y%#r assmstance and cooperation in this difficult task.

G ) ‘Jack X. Coher
- . " William S. Dorn.

,Q"



STUDY GUIDE EVALUATION

Did you participate in a short course in 1974-757 ’ Yes 'No

Which one or two chapters were the most interesting?

>~
Which one or two chapters were the most useful to you in your teachihg?
Which one or two chaptérs were the easiest to read and understgnd?
' . 7 —=—
In general were the:descriptions_too detailed? - . Yes " No.
Should there have been more space devoted to -
(a) Modeling . I ) " Yes No
» (b) Mathemaéical‘Analysis " Yes No
/} " (¢) Computer prcgramminé -, Yes No
Is the level of mathematical difficulty - . . ) - ‘
(a) Too high? A .\_ o Yes No
(b) Too low? . . Yes No*
(c) About right? - o /_'#'Yeé : No
. - )
. What general suggestions do you have for improving the study guides?
) ] =

]
7
—
\

) |
1%

,O\
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- 1 Two, Simple Mbdels

' k =0, 1 2, . The beglnnlng of the (k + 1)st Period co:anides W’.Lth the end

"of the kth period so that N is the population at the beginnlng of the (k i l)st

FaNERS

L} 1
< : L ;T
- o * h N
- E - > ’
N - . - . - . <L N - - -
] L ¢ : - ; S ~ ’ /
e e - E - . / ) N - o . N -
. . : o= - B ¢ te - ‘
.- ) e, . . CHAPTERI e I,. ] ¢ T . P -
. . . * . . . - R S v
. ’ . ’ ,z, | N .o, 4 ‘g v
-' . ~ ) . . / ¢ . ) ’ . 1 . . . ~
TN - . : POPULATIONHOD B S - n
. L t .- N T .
) N _\' - ) ' ) . - . o ‘;
~. . -
LN - . .
M. *
1 ..
" . “ i ot
- . \ °
N - . x ~
J - ‘ ~°"»
. - e
-~ - y -‘ "
kol "

-

Cofsider a’ single gf les\of life‘in a closed é'%ironmaent.-:Assixme-'that"",‘t«he

3 . .
- . . . s * N .
Al .. - - : " . -
. - d Vo Pt . B
. . R i
2 . 9 . s . : P - e S ‘ Sl
- : A - - Ot Rl . AR

pgpulation of this SpecleS canwbe'measured at various p01nts 1n time For examPle,

h » w \‘-

the population of the Uhit d states is counted every “ten years through 8<census. ,
We will call the time between countlngs -a pefzod . ~

-

Lef Nk *be the Dumbey of 1nd1v1duals alive a& the end of the kth’ petlod for -

C
v

W
RN

W

period.’ We assume througho t Part I that the change in population, Nk+L L

‘ during"the (k + l)St Period derends only upon . Wé ask' the reader tg° éuSpeﬂa

r—"“ LS

judgment on the validity of thls assumption untii'Part II of these notes, where it .

- -

will be critically eXZmlned. : | . S ! R ... -

2 s
o Assume now that the number of births (deaths) in any period is proportional to

the population at the g%art of the period.  The increase in population is the excess

of births over:deaths which mays of course, be negative. Suppose the increase in
. PP . .
population is’ AZ of the population- If - A -is fin a decimal form then the increase
e T ;- & -~ | | : \
-in the (k + 1)st periog is Al — f? o .

But this increase is alsOAgivén by T -

*

L By N o

- , 8-1.1 -'13



80 ‘l- . . ) ' —.' N . . - . - . -
.1 ) ,‘, LT Mgy TN = AN o e

- where’TQZ;now we assume that
. .

- e ‘ o ' -.A>?J'

- . . . Ty

7 . - . ‘ -

+ - Given an 1nitial i‘apulatlon ‘Ng we can caleulate Nj, Nz, aee .o A prbgram

- .
. a

in BAS/IC todo so is- . e . ~e o : s
T _ o . . B
T . L e
PR 100 . PRINT "TYPE ¥ALUE FOR A™ s e
. .. 800 INPUT A . I S
- . 300" PRINT "TYPE INITIAL POPULATION™" - -
< 200\ INPUT N _ : S
g ",—w s00 { PRINT "TYPE NO. OF FUTURE PREDICTIONS"
', 600 NNPUT M . - -
“ 700 /PRINT R - ' .
, - 800/ PRINT "PERIOD",”POPULATION" - | S
P ’ o FOR. I =-1 TOM - o
SO - PRINT I.N . - ) TN
, LET N = C1 + A)*N 5
NEXT I g , ; )
END o .

SELF-STUDY: PROBLEM #1.1

Run the ‘above program with the values A =.5 .» ~Np = 1000 . Choose values

F

for A and Ny and re-run the program. Select the ac_lditior_zal values in a way

which will ernable you to make a conjecture about the ﬁatufe of the solution to this

* -

4

model. Try to prove, .by analytical means, that your conjecture is correct.

-
- v o o wr e e wr = e am e e e e e e e em Em e e e e o e e wm e wm e e e e e e W e = = =

A

1
4
N
| )
Ha
<




- § A
- . | N . "8-1.3
Ay - ’ ‘ : ° ’ :" ‘.‘ * - B . - ~ ?; ’ :
o Solution ., gelf-Study: Problem # 1.1 ‘ff%: * \ S ' J/(
- - _ il -

.

The resultS ©f runping the program with A = .5 ‘and Ng = 1000 are
- £ . ‘

 shoW2 bejgy, - - L
- A~ ' - h ’ ) : '( t
-~ o : R TYPE VALUE FOR A
. . 7.5 . _ - P ,’«"f
: " TYPE INITIAL POPULATION
- 71000 . _ .. ’
) ~  TYPE NO. OF FUTURE PREDICTIONS
_ o 7-1 e - -
- . . .. PERIOD POPULATION S
s & : i- : 1000 ‘ LT
1 & 2 . 1500 o /
3 £250 _
a ' 3375
- 5 8062.5
6 7593.75 oo
7 1139063 R
. 8 . 17085.94 : , /\'
Lo . .9 - -25628.91 - - 2
) ‘ . 10 38443+36 : -
Y D . 5766504
, , 12 ., 86497.56 *
- ' 13 . Y 129746.3
- 14 : - Y 194619.5
' _ o . 15 . 291929.3
o E 16 . 437893.9
17 - 656840.8
18 : 9852613
19 | 1477898« s
280 - 2216838. -
= et : 3325257. «
A - . .28 4987885 ' L
T 23 7 7481828 o
- 24 11288741
88 16834118 .
” R

The .orrect ¢Onjecture 1s that (1) for- A > 7', the population grows in

-

an vboungeq (geometric) way. (2) For A # 0 , the population dd%s(not change
at all. (3) FOr -1 < A < 0, the population gradually becomes extinct.

(4) For p < -1 5 the population immediately becomeé_extinct.; Since N is

r.,

< . - - - -

Lo
1 -

‘i

- T '
- . \ s .
- N ‘2
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f;\r'-'... kS ':_v,intrftns

itally positive, we shall interpret the first negative value of N
"= ¥ ag indicating extinction. S - _ .
. The first three gﬁon‘jectui‘es can be established by using induction to ‘
demonstrate that . & ] .
- - o ) . . ) k ] ) -
) ) . < ’ Nk = No(1 + &) . . . . .
' (see also Sedtion 1.2 of the appendix) and observing that, while .
- - : ' -~ £
)‘IJ - . ' ’ R \ . > .
. ‘. & T+ for A > 0 )
k - - )
- K a + A4a) > 1, for A= 0 . )
" i . : : i e
. . o . " o . for -1< A <O ‘ e
The last conjecture, ' (4);imay be verified by direct substitution into (Z_L.l)f. .
2 R . . ' r . . ’ o~
. Q/\ . T T ! R ’ ‘ "
(O ’ . ) \ ) -
- : f“‘ o
¢ . . ' . .
'< 4 ‘;
- 2 a‘i - ~ ‘-
.;_?‘w. . ) . - -
- Y . )
S . p < -
- 0 ~ . s <
.\f ) . . ¢
, N 5
J' ‘:" = \n X
K "_,’: . h > .- ™~ *:ﬂ’.’
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We now turn to a discussion- of the approprlateness of this model, i.e., does 2’

[y

it bear any resemblance to reality?- = L
- AU

.For the values A = .5 and Ng = 1000 , th1s model {1.1) predicts that the

population will grow in an unbounded way. While this may be sat1sfactory in the
» > L] .
. - .
short term, it is not acceptable as a long term-solution since eventually the '

- - Y

individuals in the population will occupy all of the anailable space. One possible:

- . g

. solution to th1s dilemma is to choose A<O. In this case the population eitherz;

v

‘}

does not change or“becomes extinct. . '3 , . . :
R . " . R . ‘";Q-

wr'better solution rs to discard the assumptlon that the change 1n populatlon

v - - .

is some flxed Dercentage of-the ‘current populatlon. As loﬁg_as there 1s ample

-

room to place ﬁewly bormn 1nd1viduals, then . the assumptlon we have made may be qulte
=
- all rlght. When the peggvatlon becomes large, however, then the 1ndiv1duals consume
AN
N 7 .
all of the food supply, pollute the environment and in- other ways ‘make 1t d1ff1cult

~ e

‘to maintain life. THB result of this overcrowdlng is to reduce the birth rate and.

——

increasé the death rate. Both of these rate changes will- decrease A . From this

argument it follows, rather than being a constant that A should depend upon the

population itself. The s1mplest way to achieve such a dependence is to replace” ‘A
v . :

by ’ o g Ny : o
N CA-BN - - o

where A >0 and B >0 . If we do>so“then~ A willlrepresent the growth rate per

Y ¢

person which would exist in the absence of over-population pressures, while the term s °
£y - . -

Bﬁk crudely models the effect of such pressures. Equation (1.1) is replaced by

an L N RGN g

P

or - .

N+1{._=‘,"‘(.1+A-7 BN N - S

-

A program which reads A , B  and 5N§'32the injitial populatioh,_and computes

- -

ERICT - © 1

wll Toxt Provided by ERIC
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- The results of running this program for one case are:

N;, Np, .-

- Ay

RS

is -

|

200
300
400
500,
600
700. -
800
900
1000
1100
1200
1300
1400

1900

Fl
PR
[y o
“h
v

‘.-'op{,-y
-PRINT

INPUT
PRINT
INPUT .
PRINT
INPUT
PRINT
INPUT
PRINT

varz VALUE ren P f

"TYPI 'VALUE FOR B'

B
N

“TYPE NO..

or~?akbxctxous‘ '

’,

<

/‘\.

~TYPE INITIAL POPULATIO“"

PRINT ”P!RIOD”:?POPULATIOH"

‘FOR 1 =-0 TO M

PRINT I,N
LET N =(Cl +4A - aau:ou

NEXT
D

1

-

. {v

TYPESUALUE FOR A

1S

rvpz'vaLuz-roa B
2.0001 -
TYPE INITIAL POPULAT!ON

71000

TYPE NO.

PERIOD

VANONDWN-O

OF PREDICTIONS

POPULATIOU

1000
1800
1908, -
2493.478
118.474
3705.223

- a4184.967

4526-056
a4740.565
4863.552
4929.914
4964.866

e

24982.107 °

4991 .021
A499S.303
"9701‘9

he 4
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..T’-.‘ . N . M F ' . . -
. \ £ . 1,_ e N 8'_1.7..‘.

¢ ‘ .. ¥y C
16 LT 4998.874 )
- 17 T, ' 4999.437 T : )
- ’ c 18 S - 4999.718 - ; : o~
s 19 -t A4999.8%9 N ’
o 20 .  4999.93 . 5 \
‘ el - 4999965 .
- 82 ° - - 4999.988 . .
e v a3 ' 8999991 . e )
IR ' 28 499_?.’“ . * S . - . -
2 - T= . - ,

Notice that the populatien grows rapidly at first but then tapets‘off and seems to be
. _.. - o~ R { .._- ]
approaching 5000. We will return to ‘a dfiscussion of,the behavior of this solution in

~ - ) . ) . ] ) ./ . - . - . . . _
Section-1.3. - . i : .
“ .o . ’ - . ) R - : ’

“S€Lf Study: Problem # 1.2 . | ' ,- .

"It turns out that our second model, (1.2), has a ﬁuch wider variety'df solution

types than the first model (1. 1) Fn this probley3,we ask you to.%iplofe there

behaviofs and make conJectures abcut the conditions on A , B and Ny which produces

) ).\ ' [ R . "
these behaviors. To do tﬁis, use equationn(l.Z) to derive formuIas for A and B

o
\\

.givenj Nof N;, No. Then use the-~ fozmulas which you have derlved to compute A and

-

B for the. ib, Ny, No ~ values given Below. Next use these values An the program above =

7
to compute tbe population for 25‘time periods. You may find it convenient to combine

-these.steps by suitably modifying the given program. : 7 . . '\
- . Con31d2r the cases'.in which No, N1: N2 are given by .
. - gf T e ) o
"  Ng SR 51 T ‘
-t . | - — - T? = -~
.. @ -1000 1400 - 1900
o (). 1000 2600 - 5500 g
- .. () 1000 " - . 4900 22100 :
(d» 1000 : 2900 _ 7900 ?
(e 1000 . 2900, S 7800 s




< .-
’ o, 8-1.8
] - :
' ) .- L N *
_ , ] 1 | . 2 |
«® 1000 . -~ ° 3900 14000 %
(g) . 1000 73900 14100 o .
. S .' ‘/‘ . | . . . .
. : i

Noti;:xg that Ny and B were essentually fixed i® the above cases, vary ‘A and
. -Te—run_the program until you cagpmake suitable conjectures about the behavior of

- -the solution for Np and- ‘B fixed. Next systematically vary B to see if ‘yo;.lr
conclusions are affected. Finally, vary Ng - S .
N ! ) -~ : . M i) . : . ;

-_ e e em Er e em mr e e Er mm - - wm = o m e e e = e e == =t = e em emf = = S =

4 . - L]
s w o Ps
3 g
L 4 -
h)
< . &
~ o S
4 5 .-
- ~
. .
3 s
~
. B .
-
J 2
b
2 ~
i »
@ 6T - .
- ’\\ k4 \ .
MR = Y : »
. - N - -
~ 3
& - ¥ } P B '
~ 14
u - . T - <
- N * .
2
e/ - i
4 - - X4
B
a / N -
R A 7 - -
. P f
k K
. 4
s
L Y
- " = ¥
¢ - \ < 0 o
. G
X - T~
) %
r\' .'-.- - -
< -
. . L4 - -
< &l
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G Ve ' e : E’( b
_ Soluiton to Self-Study: Problem # 1.2 &
B - g N
_ The solutions for A and B are . e -
i ’ e : SN : .
' A= -1 + - N;3 - Npg? No CL- )
. Ng N (N3 - Np) ‘
{.” S X
[\ * -
- and ’
B ' 2 2 . . -
B= —N1° - Np N> x~ . s -
p Ng N; (N} - Ng) .
Dt i . %
. | R “
For the specific values given for Njg, Nj, N,, we have:
. ’ . S ' ~
(a) A= .507, B=1.07 x 107% , solution approaches 4738.3 in a
monotone manner. . ) -0
(b) A=1.477, B = .77 x 10°% , solution>appfoa¢hes 19181.8 in
- ' - B ~
‘. an oscillatory manner. U o -
) (é) A = 4.000; B= 1.0 x 10~* ;, solution becomes negativé (gktinction);
: ¢ . ; . ’ '
Lo _ (@ A=1.993, B = .93 x 10~* , solution oscillates to 21522.7.
(e) A=2.011, B=1.11"x% 107" , éqlupion oscillates without
L convergence. .
d ‘ " (£) A = 3.007, B = 1.07 x 107%. solution becomes negative.
i \ M . N . -
‘ (8) A =2.998, B'= .98 x 10°* °, solution oscillates without -
5, R . T -8, s
"--.% convergence.

0 <A §_l~,.wevhave mondtone convergence (to A/B); fo; 1<A<2, we

The correct conjecture for Ny = 1000 and B = .QOOi' is that for

N

3=

have oscillatory convergence (to A/B); for 2 <A 5_3h, we have finite

oscillations; and for A _> 3 , the sol&gzbn becomes negative (extinction).

Thesé results for A hold in general, so long as

’”

-
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. . . F | "
If , however, : - .

1+4 ]

. Ng > —3 .

: ' ° 3 : .
then the populatlon?becomes extlggg/regardless of the value of A . A -
’ . .5 N .

proof of these and related results may be found on page 74 of ‘the Quant.

T
}

J. Math. (Oxford), 1936 in an artlcle by T. W. Chaundy and Eric- Phllllps.

In the text, below, we glve only a heuristic derivation to these results.
L

However, our methods also apply to more difficult difference equations.

/

4
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N
¥

1.2 The United State Census

-

How good is'this model, (1.2)? One way to test the model is to use data from
an actual population. ' To this end we look at the United States census. We start ;

in 1890 (the first Eﬁnsus with*48 states). ;pe census figures (in millions) for the

48 contiguous states .

¥ 1890 i . 62.948 .
. 1900 Tl L75.995 .
- 1910 T - 91l972 _
L 1920 - - - _ 105.711 .
- ‘- 1930 122,775 -

. o 190 - © 131.669
. 7 10 150.697 7

. 1960 o 178. °

1970 ' : ' 199.208

. n ) \ L ) E
where Alaska and Hawaii have Béen subtracted from the 1960 %Ei’£970 figures:. A

program which asks for values of A and B , the inftial census year and its

population, and a final year to be predicted follows:
C{-’ . . i . . .
: 100 PRINT ”TYPI VALUE 'Cl A"
. 200 INPUT A.
300 PRINT "TYPE VALUE FOR B"
. 400 INPUT B,
' S00 PRINT ”TYPE YEAR’OF INITIAL CENSUS” .
600 INPUT Y N
700 PRINT "TYPE POPULATION IN YEAR JUST TYPED"
« 800 INPUT N. . :
. g ~ 900 PRINT "“TYPE YEAR OF FINAL CENSUS TO BE PREDICTED”
‘ 1000 INPUT F : . _ o B
1100 PRINT T
1200 PRINT "YEAR™,"POPULATION"
1400 PRINT Y.,N
1500 IF Y>=F THEN 2000
1600 LET. N=(l1+A~-B*N)*N
1700 LET Y=sY+10
1900 60 TO 1400
2000 END'

T

23
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We. use values of ) T

A = .2329121 B = .0006710713 .- *_
- and start with 1890 and. a population of 62.,948. The results through the year:

K g -
»

2200 are: T TYPE VALUE F¢R A
. .2329121 : ,
. TYPE VALUE FER B » :
. ? -~ &
6+-T10713E~-4 -
, TYPE YEAR @F INITIAL CENSUS.
? > * b
. 1890 . ) L
TYPE POPULATI@GN IN YEAR JUST TYPED
r? A ¢
: 62.948 . -
- TYPE YEAR OF FINAL CENSUS T@ BE PREDICTED
'S . ? 'i. - R
o 3000 .
YEAR _~  POPULATION : ‘ . -
1890 y 62.948 . :
1900 7 74.95026
1910 88.63732
1920 . . 104.0097
1930 T 1209752
1940 139.3306
1950 .158 . 7549
1960  178.8177
1970 . 199 .008S
o 1980 218+ 7826
1990 " 237.6184
2000 25%.0722 :
2010 © 270.8208
2020 2844679 _ , N
2030 296405991 : : '
2040 306+.6458 ‘
2050 314.9654
2060 . 321.7522 ,
2070 .  327.2199 .
2080 . 3315798 - - ~
2090 . 335.0277
2100 . 337.7363 . -
2110 339.8529. :
2120 .. 34l1e5
. 2130 - ~ 342.7776
) : 2140 343.7662
‘ 2150 . 344.529S
2160 ~ 345.118
2170 ~ 345.5713
2180 345.92
2190 346.1881

. - 2200 346.3942




8-1.13

Notice that through 1970 the prédictions are reasonably accurate. On the basis of

* -

-

this agreement with the actual census figures then we_can, at least tentatively, \
N -~ ~ i .

accept the model as being representative of the United States population with the

: r . .

. ' o * - . .
given values of A and" B . We then tse the same equation to predict the future
~ » - s - '

population of the‘Unitgd States. The figures from 2210 to 2400 ére:

f\ b “ [y
) 7
" N
0 2210 . . 346.5524 :
2220 346.674 ;
2230 . - '346.7673 S
2240 346.8389 - ) —
, 2250 ‘ 346.8939 )
2260 - - 3463936
| 2270 . 346.9684 -
S 2280 _ T 346.9932 -
2290 347.0123 h .
i 2300 . 347.0269
‘ - - 2310 347.0381
- | . 2320 . 347.0467
. _ 2330 347.0533
. S 2340 347.0584
o 2350 " 347.0623
B 2360 347.0652
2370 347.0675
| 2380 347.0693
; : 2390 347.0706
N 2400 - 347.0716
R $
: |
; /
i

-* The values -of A ~and B were actually chosen in a way whidh produces good
estimates of the population #egures through 1970. For~an ' arbitrary population
it is not always possible to make such a judicious choice.

ERIC 25

Text Provided by ERI R
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}Notice from these last results that the population seems to be leveling-off at

<

B

' about 347 million, and it reaches that value by 2290. .There are some méﬁest'gains
) ¥

in population thereafter but one. century later the population lkas only increased

by another .06 million (about 1/50th of 1%Z).

Self-Study: Problem #1.3

-

The U.S. Census pépqlation of Colorado and Alabama (in thousands of people)

'\f; - Colorado

‘were:

A

Year

189q

-3 . . 1900
%1910
<>
* 1920

., -

221940
1950
E'Y
1960

1970 -

413

540

799
940
1036
1123
: 1325
1754
2207

-

- Alabama

1513

1829
. 2138
2348

. < 2646

2833
3062
3267
3444

- e em em e em e, en en e m— ke Sm em em am en e wm eE em e em em e = wm == W

(a) Using A= .3165 and B = 7.82 x 10"5 and Njp = 413, célcq}#te the .. - ﬁ;

successive populations of Colorado? What is the equilibrium populationi

(b) Using A = .3155 and B = 8.394 x 10~5 and Ng

Comment on the appropriateness of the model in this case.

= 1513, calculate the

successive populations of ‘Alabama? What is the equilibrium population?

Comment on the appropriateness of the model in this qase;

-~
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. Solution_to Self-Study: Problem #1.3 A )
' S I ' \\\ ‘ '
. . "(d).. Colorado . ‘ Calculated Population
- 1890 . 413.0 e
T 1900 . " . 530.4 ’ |
1910 . .676.2 '
1920 - 854.5
- 1930 - - - +1067.9
1?40 ' - 1316.7
o 1950 © 7 '1597.8 . - E
Sl . i < - . . e
e f 1960 . 1903.9 -
- .. 1970 _ 2223.0 - '

) . Equilibrium populationv= 4047.3 thousand. .

N ' The- model does$ not appear to be satisfactory. Colorado - T(T; ’
has had considerable immigration and apparently over £
popdiation presumes have not seriously affected growth
to date. . Notice th;E'in recent decades the actual popuiation

_") ‘ : excqedé the calculated-population. ‘of course, different
. values for A aﬁd B- might_imﬁ:6Ve matteié; but the values
. used Heie;werejchosen in a way which makes them a good choice;
. In particﬁiarg_the valyes.of A and B are least square
. ’ RN B o A S . o -
. approximations. '
(b)\_ Alabama ' Calculated Population
1890 ~ 1513.0
1900 ' .. . . 1798.2
1910 o | . 2094.1 .-
1920 ‘ "2386.7 | . 7
| -7 1930 - TN 2661.6 >
. 1940 7 ¢ . 2906.7 "
: . 1950 - - 3114.5
. : . - . '
.o _. ‘./. 2{ . -
M . (\J 3 ; -
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. . Alabama ' . Calculated Population ' T

1960. = 3282.9

- e

‘1970 | s 7 3414.0

- Equilibrium populg.tion = 3758.6 "\‘_zw:«ﬂ o=

N~ ’ The model appears qgite good. The poPulatlcm of Alabama is N
. relatively stable and overpopulation forces are starting to )

be felt.. )

<
- . .
N
- 7 \'
¢ \
2 o
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Self Study: Problem #1.4

. In 1920 Pearl and Reed (sée Proceedings‘ongationél Academy of Scignces; Vol. 6,
pP- 275-and_aléo Lotka, Elements of Mathematical BioZogy, Dover, 1956, pp. 66—6§)

used the following census data to predict the eqﬁilibrium population of the Uni;ed.;

States:
. ¢ \ . .
) Year . Population (x 100 ,000)
1790 - 3,929 S ;
. 1800 o 5.308 N -
| 1810 | ’ 7.240° . .
ot 1820 o  9.638
1830 : 12.866
. 1840 . 17.069
1850  23.192
" 1860 _ ' 31.443
1870 . ' _ .38.558 ’ B )
1880. .7 50.156 S
- 1890 62.948 -
. 1900 75.995 ‘

1910 o 91.972

P

.

Using A = .3641 and B = 2.209 x 10~3 and Ng = 3.929 , estimate the U.S.

. population. What is the equilibrium population? Compare these results with those

"giﬁén in the text here. Explain the discrepancies.

¢ ) . - . - ° N

o
O
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.+ Solution to Self-Study:‘ Problem #1.4 ‘

- . T

Year @ - - . Population (x 100,000) -

R ] . ey | _
1790 - ©3.929
_ 1800 - 5.325 -
e - 1810 Lo 7202
- T 1820 PR 9.709
- - 1830 S 13.036. _ °
= 1840 Y 17,407
7 1850 - . 23.076 E“g : ;
L 1860 = .+ “30.302 s
1870 - - 39.306 P
- 1880 50.205 . . |
1890 - 62.917 i S \"
1900 ffsf _ ' 77.080 | . >
1910 -  92.020
1920 - . 106.820 " - N
_ | 1930 - - 120.507 ‘ |
oA " 1940 ‘ . 132.305 )

- . . <

The equilibrium population is 164.8 .

-

Ihesé kesults,are mﬁch loweg.than thosg in the Eext. Moreover,ithiS.
équilib;iuﬁ popul?qibn was exceeded in fact gefbre 1960. Hence the results
in“the'texf seeﬁ mérg appropriate. |
s —_ A.glanée at.;he census data ﬁill‘sﬁow_thﬁt Pe;rl and Reed did not
include terri;o;ies in their.data. In 1?90, for éxample, only 17 states : .
wefé takén into account while the 1910 figure included 48 states. Hence
the area wﬁose ?opuiétion‘was counted changed from census éo_census thereby -

contaminating the ‘data.
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Self-Study:. Problem #1.5

s
A

Lotka (see above p. 70) gives the following data for g&éwth of a bacteria

S _
colony. *
L Age of Colony (in days) - ° Area Covered (in ¢ 2y
0 0.24
~1 ) ' 2.78 N
_ 2 13.53 )
53 S 36.30 o -
J. 4 -‘47050 ~'
5 ’ 49.40 -
Using A = 6.525 and. B = 0.1609 and Ng = 0.24 , calculate the size of the
colony in square centimeters.’ What is the equilibrium size? Explain the results.
é-
—r




-~

Solution to Self-Study: Problem #1.5
o . T

Y

Age . SBize

' L 0.24 .
11.797"
13.001

' 70.636

. =271.269

: -13881.390 - .

w e WM RO

7

The equilibfium.size is 40.55°. The difficulty 1ié§.iﬁ the rate at whié£'  ‘
the population reproduces. - The oﬁée;vations were méde in déyé'but the “
reproductive span for Bacterié'is.ﬁucﬁ shorter. Thus the di;crete,model
is inappﬁgiriate (see Section 2:1).

' ‘lpiffefent v;lﬁes‘of A ‘and‘_B might -improve the agreemenﬁ_bétween

<he ¢alculated and actual values. See also Self—Study‘Problem #2.1 in

<

Chapter "II.

LY

o

¢
o
.

v
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1.3 Equilibrium and Stability ’ o . . 7

The value which the poJLlatlon seems to be approaching is called the
_equzltbr}um population. We will discuss how to compute this equilibrlum popuIation i

in this.section. ‘It will turn out that if the poPulation ever reaches its

equilibrium value, it will remain there. I .
Andther intefesting question ﬁhicp anises in connection with e@uilibrium

populatiGn is: Suppose a populatlon is in equlllbrlum and some - catastroPhe (such

" as a flood) kllls a 51gn1f1cant portion of the population, will the population
,’ -

o return'to its equllibrlum value?§»We couldrask the same questlon with regard to a

- |. v

_'certain 1nf1ux of people through say Immlgration. That is, if a population A’
equllibrlum is 1ncreased by a sudden flood of 1mm1gration w111 the population

decrease to its equillbrlum—valuez Populations which do return to their equilibriun :
. o ' ‘ ‘ , ‘ AN
value when subjected to a sudden, but reasonably small change, are called stable.’
- ; J - . ' )
Populations that, when disturbed, do not return to equilibrium are'called wunstable.

<

Now if the population is in equilibrium then the population is not ehanging,_.

-

i.el, e , ‘ ' : - -

If we set

SN ar T T . -

(E for "e@ﬁilibriumﬂ) then from (1.2)

7

a» T o=a-sm |
». T . . 4

Fronithis-itvfollows.that eithet'

- T "! S

./Q
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(1.5 o - . No = A/B

.

These. are the two equilibrium populations. If Ny equals either 0 or A/B

. then all succeeding populations also equal either 0 or A/B- . For the United

vy
>,

States census we’used A= .2329121 and B = .0006710713 so A/B = 347.0750

which is quite close to the numbers produted By the computer program for the years
. < - : \ o

B

12300 and beyond. ' - L o

To test the stability of the .solutions we could try starting the population

either above or below A/B or above 0 and see if the population seems to return

to the equilibri&i value. We should, of course,ktry different combinations of A

-

and B since stability may depend upon the choice of Aa andi_B . The computer .

programs in the previous section are ideal for conducting such experiments of stability.
Suppose for example we let A = .5 and B = .0001 then N = 5000 . The

results of this program have been shown on pages 6 and 7 . A sketch of the

populatlon growth as indicated by these “results is shown in Flgure 1.1. The sketch

is an .S~shaped curve and ‘is typlcal of the behaV1or of populatlons in- which there

-

.is a braklng effect. The equlllbr;um, 5000, appears to be stable.

Will the poppiation always follow on S-shaped curve if the equilibrium is stable?.

We try A=1.5 and B'= .0001 .  The equilibrium population is 115000 . The

~ T -

numer1ca1 results are not shown, but a sketch of the results is’ glven in Flgure l.2.

_This‘certainly is not an S—shaped curve, but equilibrium appears to be stable. ‘Thusl
-both A= .5 and A= 1.5- produced a stable equilibrium. 1Is the equilibrium always
stable in this model? | o |
Fotv A=4 and’ B = .bOOl ; the equilibrium population is 40000 .‘ If we

‘start with Ng = 1000 the'BASIC=program produces the following results:
, : STV . _ P : N

v
-

_»;}4 a h _-C
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4
A=2
2 -
.
»
<
»
3 -
! .
3
. J ~
-

g




. ) 8-1.25
7 g RUN. -
’ NO1
TYPE VALUE FOR A
. 24
TYPE VALUE FOR_B
?.0001 .
TYPE INITIAL POPULATION
71080 S -
TYPE NO. OF PREDICTIONS _ N o
28 . v
. 6 PERIOD g POPULATION
2 1000
1 49080
2 22099
3 \ 61658.4
4 -71884.
5 _ =876151.
6  =B8.11448E+087
~— 7 ~6+.58853E+11 .
8 ~4.34087E+19 .
DONE .

)

A.sketch,of these reéults appearé_in‘Figure 1.3. Notice that at point 4 the

. population is negative, i.e., the species has become extinct. In one sense this

&

. again represent® stability —- zero population. But the violent behavior is a clue
that all is hOthell'with our model. - = o . B

Wheré'is.theﬂsourée_ofathe{diffichlty?'-Thefonif parameter ‘which we have -
. . L. . P . .

chpngéd.is '&5.'quF A=.5 or 1.5 , the equilibrium A/Q was stable. For A = 4

IRy 3
- -~

\

it decidedly was not. A reasonable course pf action is to try some values of A

»

between 1.5 and 4 . If we use A =2 with B = .0001 we will produce Figure 1.4.

"A value of A = 3 yields Figure 1.5.- Neither is stable.

;/ " We could, of cqurse, continue to experiment with 'different values of A , but
' even with ‘these results we can begin to make some Yeducated guesses', and it would
seem appropéiate to delay any further experiments until we have analysed the.

results alread§ obtained a little more thoroughly.

~

37
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. It appears that if A > 2 , stability is lost. On the other hand, for

A< 1.5 , the-equilibrium is stable. For values of A between 1.5 and 2 ,

Al

the question of stability is unanswered. But remember -- we have restricted -
ourselves to one value of B (Bgé’.OOOl) and have always started with Ng = 1000.

Théﬁtask of varying A , ﬁ_ and Ny to determine which combinations- of :
) . ' n::r% B . |
values produce stability appears hopeless due to the large number of cases which

must be examined. For example, if we use five different values of A° (as we did

here) and also five different values of B..and Ng then there are 125 cases.

'

The volume of data would become overwhelming and extreﬁélf difficult to analyse.

Therefore, we look for some ﬁore,profitable-wéy of stﬁdying'stability. However,

our'gxperiments;have not been wasted. They have given us quite a few. clues which

wé can use in our analysis. In particular, from our numerical results we expect

g . -

. to find stable equilibrium for the smaller values of 'A . )

’

1.4 Determination of Stability

.

Suppose the population at some point .is disturbed from its equilibrium value.

b v v - *
Suppoé%.further that the disfurbance is ''small". Then )
f) . . ' - . . .
) g - .1:" S i B . - N |
(1.6) S N = N+ ' T
where nk is small. Similarly then let™

(1.7) - : . Nk+1 = NE + n .

=

where nk+1' may or may not be small. Using (1.6) and (1.7) in (1.2) °
T . ‘ .

NE“+ nk+1 = (1 + A - B<NE_+Lnk))(NE + nk)

* ' : ry -
We will say shortly what we mean by ''small'. .3\)

ERIC
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or - ,

. = _ ‘ | -— ) - -— 2 »
NE + nk+1_ ‘(1 + A BNE)NE_+ (1+A BNE)nk, BNkNE Bnk

Now N ' satisfies (1.3) so this last equation reduces to

PEEAN

Ppy = (L+ A - BNm - B, - Ba,
- or _'-! ] . . . “
(1.8 - o, = QA 2BNp)ny = Bn.kz

Now since o, is small, we will neglect terms in nk2 compared to n, - In fact

this is tﬁe_ﬁe ifiition of the word "small" as -used here, i.e;; that Bnk2 can be .

.
-~ ~

neélécted compared to the terms in o, - In any case we will ignore thq'term Bnk;2

and write = ' , o .

(1.9) - . , m,, = (1+A- 2BNJn

This is a linear, first order difference equation for n# . If

-

|1{+ A~ ZBNEI <1 -
- - .v.. - .

then . ~approaches zero as k _incféases. In this case Nk ~approaches NE- as

-

k. increases and the eqi_.xil:\ibriun_n poi)ulation is stable. If, on the other hand,

- T - B

- -

*- l1+ A - .ZBNEI 21
'theg oy does not decrease as k increases and théiequilibrium solution is

" unstable.

'We now examine the two equilibrium populations 0 and A/B for stability.

First if -
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theé (1.9) becomeé

o -n'ld'l = (1 + A)nk

E)

. ' : ' \) . - -
and since A > 0 it follows that - |1+ A| > 1- so the solution O is unstable.
Next consider

S - N_=A/B

o o E ' , 3
then (1.9) becomes ) . ’ o - . , - T
~ . \ N - . -
[ ’ ‘ \! A nH‘l = (1‘ - A) nk
I :
"(1.10) ‘ ’ 0< A <2 . . | !
then .
N ' : L) '..: . . - (. ¥
‘ “ = J1-al<1

and ﬁhé solution is sﬁable} Otﬁér@ise;it_ié;uﬁétabie. The conclusion then is{:
The equilibrium populatéﬁn g %é-never‘stdee. The equilibrium~popﬁlation A/B
. »ié é%able for :0 <A <2 and is unétabie fgr A é_é . 3 L _i

B This-cert;inly agrees with the'nqmerical‘expefiments which we performed at
thé_élose ofathe pre%ious section: 'Jﬁst to bé sure, hqwevef, we‘ghbéld tryvgomé:
_other values of _B . and/or Nog.; Supéose.wé return tof'A'=.;5~ and B = .0001;
Thié produéed.the S-shaped curvénin Figure 1. . Rathér tbﬁnstarf with Np = 1000,
we use an‘iﬁitial populaéion.which gxﬁegds _NE . Wé;willvtry)'No =-i5000 .

N
-

The results are::
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. " : . - . Rw.
- e .. Nel
TYPE vm.us 'FOR A . -
2 > ‘ T ' S
v TYPE VUALUE FOR B - ;
" 2.@081 N ) | |
. _ . .. . . TYPE INITIAL POPULATIOIJ R
- T/ Q215008 . - }
R o ( . 'TYPE NO. OF Pm-_:mcnqns,
T 8. = -
" PERIOD © ' POPULATION - . 1 -
8 " 15000 S |
A 1 ) 8
1 o
- ’ 3 . T ¢ 0_\
: : °.
s 7 @
6 9
- 7 9 |
8. - o .
. % 9. ]
. 19 e .
- " DONE .
: “ £ . * .

. These results are somewhat SquIlSlng- The value 6f A is considerably less
tgan 2 » yet stablllty does not. result. Apparently 0 <A< 2 is not sufficient

to guarantee stablllty. Is there a flaw 1n»our analy51s?
~

. . . N
P
©o

Recall that in the argument which led to 0 <A< 2, we neglected terms in

nk in (1 8) " We Justlfled neglectlng these terms in nk2 on the baSis tﬁg%fthey'

’

were small' compared to the terms in - n, - We now examine what neglecting these -
a &

. terms 1mp11es about the valldlty of our stablllty condltlon.

‘ Returnlng to (1.8), ifhwe are to neglect the term _-Bnk 3 then At mustAbe

'smEll compared to the terms in o s 1 e.,. 'g?"

-

- Bnk2.<< 1+ A~ ZKNEI . [nkl g
For >NE.= A/B this becomes M'F - - A\f"‘\ oo C . J

- A . ) i . — :
.-;.‘. . ..';; . . " “ ' ‘ ) Ink[ << .Jl_.;_é.l_ - - 4?
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- ’ ~
- Since we have concluded that - N '
. = - N . )
J1~-al.<1
is necessary for stability, this condition may be rewritten . , ‘

- C o~
~ N . . :

o | << & forall k.’

€. .
- B . .- . -
S  — . n
<> . . - -

From this and (‘1:6) we obtain

; - A 1 h
~ : = -
- Nk N_ + nk << N_ + CBa v .
- \"“k .. -°>§,‘ :Ji
or d r?;
- / '
(1.11) S N, << 1+8  for a1l k. N .

o i v P

For A =.5 aad B'= .0001, the right side of this last inequality.is 5000°as is

' A]E'.so, Nk << 10000 . 1Since this must hold for all k , it mustthold_fcr k=0,
_i.e., \ - ' : o . . S - S I -
‘ Ny << 10,000 - \ o

. P <
-« . >,

Thus when we used Ny = 15,000 we violated (1.11), i.e., we allowed’ ny to be
;sb large that we could not—safely neglect the term Bnk2 in (1.8)~
The condltlons (1 10) and (1 11) - are necessary condltlons for stabillty of - ';;

the equll;brlum value, A/B . But some unanswered questlons stlli remaln.‘ Areg .t
. : ,e B

'they also sufflclent to guarantee stab111ty7 How are we to verify- (l 11) s1nce.

it must hold ‘for aZZ 'k ?

The rather complex analysls of Chaundy and . Ph1111ps c1ted above shows that

the stab111ty cond1t10n (1. 1l) can be strengthened to - i _ o o

71+ A -
B . -

(1.12) ' _ ] -._ » 0 < Ng <
- T - I
This together with (1.10) are both necessary and sufficient conditions for convergence

EKC" T P
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: useful results._ B o P S

. -be. carried out at all in most cases. = - .-

. . . ”

S . L 8131

‘to the equilibrium value A/B - Moreover, the convergence is montotone for
0<A<l. ' < :
The analysis we have given here was confined to 'small' disturbances from
».

equllibrium [recall (1.11)]. Such an analySis, therefore* applies only to local

'stability, i.e., not too far away from ﬁuilibrium. -Typically it also produces

=¥ . o
only necessary conditions which may be’ overly restrictive. ‘Neverthéless the
P
analysis is straightforward and does at least produce conditions which, if o A
satisfied guarantees stability. f~' b

P

A

Chaundry and Phillips have used a more powerful analy31s which avOids the
question of smallness of - -Hénce,they'deal with gZobaZ stability. Such

an analysis usually is impossible to carry out. Even a brief glance at their'\"‘

paper w1ll ‘indicate the difficulty for even thls relatively 31mple equation.'

2

. Yet when a global analysis cap be carrled out, 1t produces strongér and more

]

: Local-stability is easily verified using the'procedures described‘above, i.e.,

add a . 'small® d1sturbance neglect all non—linear terms; solve the resultlng linear

' equatlon and, finally, 1nvestigate the 'size' of the neglected termsfro determine

»

' what small' means. GIobal stability follows ne such pattern and Indeed, cannot

o, . . Coe
7 ARSI SRS

. =X

o

,_>':‘_ c' . .- o - o

1.5 A More Refined Model

.o

.So far we have discussed a constant rdte of population growth,:i.e.

"R= A

which lead tof(l.l); We also have discussed a rate of growth which decreased as

.
>

the population increased . - ]
| . o B '_.‘. S .
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‘w. With A->.0'_aﬁa- B> 0 . This lead to (1.2). If we plot these rates of growth

~as funptions_éf the population we obtain the curves in Figures 1.6 and 1.7.

We 6b§e:ye that in F!gure 1.7 the rate of growth R is negative for

- "N > A/B . One interpretation of this negative grbwth rate.is théf'oﬁer.crowding

N

puts .a brake on the gréwth. ‘Indeéd, we could have motivated (1.2) by bostuléting

that for N greater than some positive value NE , the effect of over crowding
should make the rate of grpwth'negatiVe; The.simplest'rate of gfbéth which is
"¢ positive for N < N_ ~ and negative for N > Np fis the lineagp fumction
R = B(NE - N)
so the model would be g .

. . . . . .t : A
o . . . . . N . .
- . . . . - .- X . .
R - .o - . A T - .
. . - - - . ]

'If_we_write

“ .
] : N_ = A/B, -
E - le : et . : s -
R o . . "o . hs ) R ,’
7 We can ektendfthis model by ‘assuming that'thefe_is;sdﬁé_mihigal pgpplatidn, N, s
. below whieh the rate of growth"is again negative because there are so few individuals
B tﬁét they canpot_éurvive in their environment. If we retain_ the aséuhptionathat-
for N > NE -, -overcrowding causes a negative rafg of growth, then R must be
négaﬁive for N < Né > -positive for ‘Ne-< N < NE and negatiVe for N >.NE . The
simplesf'sﬁch function ‘R is the quadratic
(1.13) L " R=-C(N - N W -N) o .
where o . S o
' L e 4 ' s )
» . O<N <N : - c . T
] - e E S~ s
32 o )
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and C>0. We depict this rate of* growth in:Figure 1.8. The e_'and E -stand .

for "equilibrium" and, as we Sh;ll see, they are indeed equilibrium solutions. We"
“also label the maximum.value of R as RM . The difference equation is

t

) - o . J o ’ . 4 B .
C(1.14) o Ny, = - CNy = NN, - Ng}IN, ., 0 <N < Nge.
The‘equilibrium solutibns are the ;alqu of N suchxthat‘ L
Nerr = N TN
‘or - - . .
' N=(1- C(N‘—‘Ne) N - Ne))g
Thus either ;
N=0 .
- //
or . _
o emo Ny s =0

=4

R 'which leads to the values ?e-and N

. There are, therefore three equilibrium .

E
. populations: ' : Aw"; A' _ _
0, Ne and NE . -
s . B - . . b-l\ ‘ L~ ) . - -
Of the thrée'parameters c , Né ,..NE ' the latter two have dire;t'biolOgical

interpretations. - It is desirable to also replace c by a biologically'méaﬁingfﬁl

quantity. -Thts we introduce RM- the maximum rate of growth shown in Figure 1.8.0 &
'lffwe set o : RO
N, = l.(N +‘NV'.)‘ ’.
M 2 e E
~ -
. 40
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L L’
Figur;a 1.8

1

oy

e

Thus we qay write o
. R=zemM-oN) G-
' ", = —C(N - N,, +. (N / ).(N - N+ (N —‘N )) 3 ‘“ 2
- ST M \ MU E T

= —cM- N, Ng'- Ne )y N -Ny - JE-Ney
| ‘ . 2 o <2 '
- o erlow w2 'y 2 )
T =l Wy - NE - (N -y 1.
‘ i . . )

In this latter form- it is clear that the maximum value Ry of R occurs for
- N=N, and :I.s given by '

i

B Ry g g - NP




- and our model may be written as

(1.16) -

>

- Using an analysis quité'similaf* to the oné_in Section 1.4'we‘fina that the three - .

eduilibrium values are stable unde

-
-~

. 8-1.36

-~

¢ [

r the féllowing conditions:

Stable When

Equilibrium Value

@

While these do not appear to be very‘enlightening, let us consider the ‘case when
- - . : :

NE” is much larger than Ne (the

»

2R, N N_ -
m, -§)2
Pe o \\—\\
) g
i
- NE

~

<
- N
e

gNever

%

N

N

lafgest'équiiibrihm‘population is much lérger

: than the smallest non-zero eﬁuilibrium populafion). Then write

'ﬁ 2RM,NE Ne

4

. -

®g - se>2.

N
...
i 2Ry . N .
. Ne ) .
a2
N

. The ‘denominator on the right is close to ‘1 'sovwe %gplaceithe left hand member by

. N . K / . . _ ‘
the numerator on the right. The numerator/then should be less than

-

Thus

*_ - - .

In this case we let Nk = NE +n
Q : -
RIC
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(RM<,

~

1 for stability.

s

1 Ng
2 Ng -
1
" ; 2 3 .
k andlneglect terms.ln n, and _nk .
4a) \'
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Since NE is much larger. than 7Ne » thebfight siﬂe_is very_large; It fplloﬁs then

that under these conditions 0 is always stable.
- More interesting is the equilibrium value Ng-.. Rewrite

.-

L 2&1'[ N, - 2R, . .
N E -

E

1
]

A

" Again this should be le$s than 1 for7sfabilityvo:f'

@

E

' This says that if N_ >> Ne then if the maximum rate of growth does not exceed 1/2,

E

N is a stable equilibrium value. On the other hand, if RM-i 1/2 then NE “is

unstable. bQualitatively thistsays that a high degree of correction in the system

(steep parabola) ren@efs N unstable, while a2 low degree of correction leaves

-

NE stable.

~

1.6 Some Numérical-Expéfiments

We now write a program to test the

4
2

TN, - N, - N
_ v k. ek E* . o .
Nk-i-l_"u-l‘RM. (;sz-Ne)2 ]Nk'

J

P
The progrém:is as follows:.

§

T

model &Egcribed in the. previous section



100
200
300
400.
500
600
700
800
900
- 1000
1100
1200
1300
1400
1500
1600

Y 1700

8-1.38.

PRINT “TYPE SMALLEST EQUILIBRIUM PaPULATxGN"

INPUT N1

PRINT “TYPE LARGEST EuUILIBRIUM PZPULATIGN"'

INPUT N2 | h

" PRINT "TYPE MAXIMUM RATE 2F GR@WTH"

INPUT r . - S L

PRINT “TYPE INITIAL P3PULATIOGN®

INPUT N o . ) =

.PRINT "TYPE NO. BF FUTURE - PREDICTIONS" . !
INPUT M _ . & » ) - T §
PRI o - . . R '
PRINT "PERIJD","PORULATIZN" : SR

FAR 1=0 TO M
PRINT I»N~

_ NEXT
'END

-

LET N=C1-4%R&(N-N1)*(N-N2§ (N2=N1)12)#N

1

v/

We will use this program to verify the stability behavior predicted for NE . Thus.

© we will take N_
the solution should be stable.

We try first - RM = 1/8 . The results are:

-

<< N,

E _and try values'of SM :below and above ;/2'_ Fo; RM < 1/2

'TYPE SMALLFST EQUILIBRIUM PaPULATIJN
27
? i “’ \/—-.
100 * S o ‘ ,
TYPF LARGEST EWUJILIBRIUM POPULATI3N .
? - ) ‘ .
10000 -
TYPE MAXIMUM RATE QF GHGHTH
')
«125 : :
TYPE IN}XIAL POPULATION .
s B . - ~ o
- 750 o
TYPE N2. BF TUTURE PREDICTIANS
40"

“



?.; ;. _ . f | . - oo SR | ‘ - . .-; o ge1.39

: PERI®D PBPULATION
. o 750
. { -1 773.0047
2 797.4931
N < ~_823.607 :
TR 4 . 851.5064
- S 7 .- B8831.3719 .
T 947.8493 )
’ § 8 984.9609
9 . 1025.049
18 Y. 1068.464 : ]
- 11 1115.612 . <
12 1166966 - i
# 13 : 1223.073
14. 1284.576
o .. ‘ 15 1352.233 - .
. o 16 1426.937 - B
U ' 17" | 1509.748 . -
. i 18 . 1601:934
- o 19 - . 1705S.014
20 -, 1820.818,
21 . 1951559
22 2099.923
23 . 2269.181
24 : 2463.31
2% 2687.141
26 29466497
27 - 3248.299"°
. 28 ‘ : 3600.543
: | .29 , 4012.021
: 30 . 4491.472 - . :
= 31 | 5045.758 . o
. 32 5676-.478 . o .
.~ 33 6374.672 7
b . - 34 7114.44 - ‘ //
: R ' 35 . 7849.061 "
36 8516+474
37 ~ 9058.955
38~ . -, 94484579 - B
39 - 9697.061 A S

40 : 9840.886
A graph of these results starting at the 2lst period is shown in Figure 1.9.

*  Notice that N. = 10,000 .is stable and that’ N_ >> N .
S N f ‘ E e

AV
¢
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. Notice also that the pOpuIatlon 1ncreases in each perlod gradually approaching N

-

., much as our earller model w:Lth R= A - BN dld.

Next we try a larger value of RM , i.e., RM 3/8 . -T'his is still lssg

(L

- than 1/2 and thus NE should be. a. s;table solutlon. 'I'he results are:
 TYPE SHALLEST EQUILIBRIUH PaPULATIaN
-y
. ’ R i ,
100 o0 ’ ' 7
TYPE LARGEST EUUILIBRIUM PGPULATIBV
2
- <t e ‘ 10000 P ’ S FR . )
N TYPE MAXIMUM RATF BF GROWTH S <
? . o 2 .
«375 . '
TYPE INITIAL PQPULATIGNV
. : ?
- . 1750 . 1 S ST
S TYPE N@. @F FUTURE PRED}CTIONS« e
: S . , ‘ ,
. Y _PERI®D. . .  PBPULATIeN ‘ ' -
o o i . 750 ST v
819.014 . . o .
. -2 . 901.7585 ., T
N 3 1002.431 : e ey
! ° 4 - 1127002, . . ..t T
5 . 1284.178% S ; .
) . 1487.026 -~ . C ]
‘. T 7 175575
"8 2122.549 ’
9. . .- 2640.113 } .
10 . " 3395.496 -
11 . .. 4526555
12. ’ 6205.032
13 . 8405.226 -
14 10109.03
15 9940.19
16 o 10029.73
17 . 9984.418
18 ' © © 10007.95
19 . 999S.884
20 ~-.10002.12
S




o . . . -

- ) : . b : . _:;‘ ._, -., e ..' ) » s, 7.- . c g 2 | N ) -.8_1.'42
T T s 9998.909_ gh R '

CoE T 22 . 10000.56 -
o oy - .23 - % .l9999.T11 S .
L e T 2a e 1000015 - < TN
R - SPE 9999.923 L«
, .o o 26 T 10000.04
T, . ~ .o eT LT 9999.98
R _ oo, 28 - ©.10000.01-
W _ - 29 . .' . 9999.,995 . .
eco o -e 300 7 ~* 10000. : : . ' e
B - § Lo 09999.999 - N
e S 32 .y 710000.
CEL T T . 33 - T *.1,0000.
Sy el el 3a. . . - 10000.
‘... ) - - " . T e ,\; o h oo 35 v ' . 10000+
Ph e, T e 36 10008. .
SRR 37 . . .10000 SR
o Syt 38 ‘ - too00 ' : ot
S U a9 ~ 10000 . B
~ - ~u;,;;“{~*'_-_i;uo_“ " . _1o000

i . - - P L. -
LA N~ .l - PR ~ . - . .

1

A graph of these results is shown in Figure 1.10. In this case the solutidn
L . .

~.

oscillates about NE; and eventually reaches 'NE .

X ;: Flnally we try RH = 5/8 whlch exceeds 1/2 . - Thus we would expectf Np to

be unstable.’ The numer1cal results are: =

- ° - - v N r.
. o ST T ,

-

R SHALLEST EQUILIBRIUM PBBULATIGN
A T -
S Cipp - L. . | .
@ - TYPE LARGEST EQUILTBRIUM PGPULATIGN - _

,‘_';' ) o . ) - . R _—
R 10000 . : LT
.. L -TYPE MAXIMUM RATE oF GRewvH < o &

e e : : e ST ' . A
- : 1‘625\ . . A o g - - ) ‘ .

4 S TYPE INITIAL P@PULATIGN . S )

) " t . ’ - . L - . . EN .

R 750 ' o ' R e
... TYPE'NG, oF FUTURE PREDICTIGNS ~ T

-~
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o '.r\r— - 0 . 150 . ' ’
3 | 865.0233 . : o
2 - 1019.222 :
> 3 1233.843
4 1546. 661
5 2029.119
T 56 2824.989 : |
Y 7 & . .. . 4233.868 ) _ Y
. - 8 F? , . 6808.103 A -
L 9 TR 105264 ° ' . : o
v . to 9052.727 -
' 1 T 1101103 | .
12 . = T1912.706 _ Lo
e .. 13 . 11204.1 '
. E 14 ) 7382966
: _ N ‘ 15 , 10972.34
e S 16 8013.59
T - 17 N ' 11226.8
18 . . 7317763
19 i 710931.43
20 . 8118356
21 B S 1124271 . ,{
22 . . 7271.692 -
- o 23 - 10900.97
d - . 2a . 8195.097
S ' 2s B 11249.31
. 26 7252.492
- , . oer "~ 10887.9
R L i28  T0 0 8227.697
Lo ' S 29 - r 1125048
30 Lo 72486147
31 . . 10884.91
TP . 32 . .8235.121 .
o T o033 0 7 =T 11251.03 T .
R B < L - 7247.479 ‘ :
- ' s 35 - 10884.45 B : -
36 8236.264 . .
T 37 1125106 ‘ .
e - 38 : 7247.387 )
S ] s 39 , 10884.39 . . ;
- , Y 40 ( T 82360822 ~

v . v . . N : : - S
A graph of these results is shown in Figure 1.11. Notice ‘that the solution oscillates

gbout N with varying amplitude. Our analysis would seem to indicate that the

oscillations should increase in amplitude. However, that analysis assumed that

*a, - - : - . . . - ) o . }«/D

Ne = Ng e o s ’
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2
“

- - where 'nk was small. Clearly in thjys case ny, is not small. "~Nevertheless once

does become small . (N

n becomeg’ close to Np ), the oscillations will grow.

k k

* Therefore, the solutions never settles down to NE .
*****'*******)**'********k*******************

-R/’ E | u o

Interim Project #1

0. e | .
R Examine the rate of growth curve shown in Figure 1.12. The equation of that

>
curve 1is

' R=4-cC IN - B} <:§ ‘

y - _ A .
 where A> 0, B > 0, C>0 and BC > A . The equilibrium values are-
: BT X
"N=0 )
= B - (A/C)
v = B+ (4/C) )

.The stability of these equilibrium populations can be carried out both arin-alyticaliy .

and numericaily quite analogously~to the dev_e_ﬂ:opme;xt already given here.




‘ﬁere the seif—study problems

.7 (a) Too easy o (b) Too difficult

VW?s'the_number of sel%-séydy frobiems | )
~ - .'. ',\

~ (a) Too,largq\ ’

(b) About right . VR ,
G - Son
~(e) Too smal o . 75 : o
. ~

t

.. CHAPTER I 8147
AUTHOFé'iEVALUAIION'
" (Please circle one of the responses to each question)
Did you attend the éﬁort~course in 1974-75? ' Yes No
Is this chapter . _ G o
(a) Too short ) .
(b) Topilong S o ) - 1
) About right ’
“If (a), which topics should be expanded?
] : ) . J
4
. R . ) - 2 . -. \ I
. can you suggest topics to be added?
e e - e ,
If (b), which topics should be abbreviated?
. v. . . ‘- ~ A . i " .‘..A ., N & -
" which topics should be-eliminated? . >
Cguld.Ybuiréad'aﬁd understand the computer p;ograms?- .
(aj’always. R ‘ 5 ' A ' (c)'éeldom
‘-(bj-sometimes : ,-_' - ©.(d) mever . = -
Did the interim projects seem reasonable? | ~ Yes No
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7. Did you attempt any of the self-study problems? ' Yes No .
N
8. Are the solutions to the self—study problems properly _ g

. placed (on overleaf from problem)’ . Yes No

If no, 'where would you suggest the solutions be placed?

9. .. For each topic, how solid an understanding do you thir_lk you have?-

'F o > ' ‘ Excellent Good Fair Poor

'~ Difference equations in general

Models of population gtowt’ﬁ d " ) ~

Assumptions 1n the population modéls T , ,

Stabili ty o . ’ a
Equilibrium
Feedback

~




CHAPTER II
POPULATION MODELS

DETERMENISTIC AND CONTINUOUS MODEL

¥
“p
2.1 Differential Equations , o | ,\

- 1In éhapterfl we ma&e the assumotion that the change ;n-population, E;;lli Nk s
during the (k + l)st ‘time-period was a function of N# ‘alone.“.There are
circumstances where this assumptlon f1ts the blologlcal situation qulte well. This

r is the case, for example, when the breeding group as a whole has a fixed season for

'-»,. .
mating .and the effects of the external environment are fairly constant from time -

perlod to- t1me perrod. In Such cases it is reasonable to select the unit of time
to be the perlod between matlng seasons or some other 'natural' period.‘ However,
we have not exp11c1t1y indicated the time perlod in the models examaned in Part I.
Assuming that the period between observations,' tk+1 ;htk ,‘is ajconstant, At .,

our general modei,

(2.1) . . ‘ . -Nk'*'l ‘?"Nk = Nk R(Nk) , e -o
. . . - q. . - . . i
‘becomes . I g
. . ’/‘; l
@ N, - N = N R(N) At .

E This model, (2.2); is'appropriate when there is a natural period which the
observer regar&s.as '1ong'. In such cases, we_aoeak of the 'nearly discrete' case.
I'The reason for the adJectlvel 'nearly' ishthat (2.25 is rareli, if ever, exactly true.
Even some 17—year locustsappear after only 16 years' T . 0
We now w1sh to con51der the opposite extreme, the 'nearly continuous' case.

By thls, we mean a 51tuatlon in which growth takes place (almost) contlnuously.

Agaln this 1deallzatlon is never preC1sely true, but examples do exist where

ERIC o sagy

wll Toxt Provided by ERIC
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._populations change over very short periods of time. .
Suppose for example, we wish to study a caterpillar invasion. At the height

of such an infestation, one can almost see the larvae_come to life and begin to eat
i o . _ : ? i . .

tHe leaves. From our- human point of view, at least.over a span of a few days, cater—

pillars,are created continuously. This'example, therefore, raises the following

point. If, as indicated, we study the caterpillar population for the few days of

the 1nfestation, then the nearly continuous model is appropriate. However, if we

/\ )
study-the‘same population making one observation a year (at the appropriate time),

the 'nearly discrete' model applies. In these two cases (two day and yearly
observation) we are studying two different growth processes~(larvae—to-moths, and
annual amounts of caterpillars) even though the same population 1s studied'for both..

In other words the observer's: frequency of observation prov1des the scale against

which we decide whether the process is nearZy discrete or nearZy continuous. “l”

Chapter"l“was concerned with the nearly discrete case. Wé%hqw ‘turn our

<. »

attention to the dearly continuous case. To study the nearly contipuous casé, we

‘recast (2.2) in continuous notation as follows: S

- ¥

N(k At) = N(t) ,

li

. ' . t=kat, N
" and find that .

| (2..39r - N(t + At) - N(t)

N(t) R(N(t)) ot . - -

Since thé process Ps taking place almost continuously, we commit a negligible

error by letting At approach ~oro.  Recall” from the calculus .that the derivative,

. dANA ,
3¢ 1s defined by

<

At>0- .

Thus an dividing (2.2) by At -and letting At approach zero, we find that the

appropriate model,for the nearly corntinuous case is:

o

[Kc'- e .65

wll Toxt Provided by ERIC
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. - -

Before studying the.nearly continuous model (2.4), we pause to examine the
'borderline' case. Commonly, we wish to study a situatim in which growth can occur

at any instant, but does not occur at every instant. In such situations either (or

-~

-neither, if you a a essimiét) of the models might'séem reasonable, and we wish

" to sele e one which is better. _Thé correct choice basically depéndsién Ege périod

between observations. Suppose this period is fixed for .a moment. If the number of.
- births less the number of deaths within_sucéerive time periods is 'small', we

would expect thanfhg continuous growth effect is negligible and that the difference

-

equation model is satisfactory: 'Thgs'if

v .
. . -

lNk-t—l --Nkl . _ INCt + At) - N(t)l '<<. 1'- o o f
N, - . N(t) . - _ T

we. would be justified.in'using the difference equation models of Chapter I. 1In this

regard, let us return to the U.S. census data cited in Section 1.2. For the decade

1890-1900, - o ' N
Berr "M . 76-63 0,
Nk 63 T -

o Mern "M L o199 S@8 0,
’ . N o178 <. T ‘ .
. k / . ‘. o o . .
"-'.. . ;\— o . ‘ . . '  1\»
Thus the difference -equation should give a reasonable fit. As we have seen in . .
i _ S - . o .&. e ,
s

i . C e . . L. -
Section 1.2, it indeed does give a reasonable fit.

‘On the other hand, the relative,groﬁ ﬁ/between periods (.21 and .12 shown

-

v

J
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;too close to call', ané we probably should study both models since both seem‘to,
. ~
apply equally well and each repre%ehté a different tyhe of approximation to reality.
| In a case, such as the U.S. census data, where the continuous and discrete
" models hoth seem‘to apé;y, we would naturaliy expect;the soiutioésjto’thefmoaels to
;be similag. Thi§ is easily seen to be true. since (2.2) ie'the clessic Egler
approximation to the differential ‘equation (2.3) (See e.g., PpP- 366-367:of Numericall
-Méthods with FﬂRTRAN Case Studzes by Dorn ard McCrackln, Wlley, 1972)
In part I, we Studled the dlscrete model (2 2) for the following partlculat

~

choices qf 3 ::“

L (2.0 R=A,  A>0
(2.5) R=B(Ny - N), Ny = /B, A>0,B >0
2-6) . R = o0 - Ne)‘(N g O =t/ - T D2, €2 0, 0 <N <N .

The reasoning behind the ch01ces (2. 4), (2 5) and (2.6) for R(N) made in
Part I is equally valid for the continuous model (2.3) and so we proceed to the

study of these three choices.

a

'Self-Study: Problem #2.1 -

. c:nstrued as arising from a 'border-

\n

If the .data of Self- Study. Problem #1.
o
line' case, decide whether one should usé the dlfference model or the~cont1nuous

-_____——____'_——____-___—_.-.-——_—____..._—__—_—_
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Solution to Self-Study: Problem #2.1 ' o L

‘ - o . _
The successive val?es of- {Nk+1 - Ne)/Nk are 10.58 , 3.867 , 1.§$3 . J

0.309 and 0.040 . Since moSt‘othhésejare greater than 1 , the difference
_ model dées not appear to be satisfactory. - This was borne out by Self-Stﬁdy:
H \ .

"' Problem #1.5. The relative growth,is far from negligible so the continuodus *

L o
model appears to be most appropriate.
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-.;f2.2-*$olutav of the”Differential"EQuationsi'“q L .vl-,;. 'j' A .
_ BN - RZ Sl RN - N - ‘ -
“The. reader who 1s famibiar with the elementarx;theory of first order differential

;,a.equations will observe that equation (2 3) is oggthe type with separahle variables.':]'g?

> ~
T

Thus, we fogially write - : i .“i"ft p _:W R - -';\: L;f
- i N—R(NT dtm S
_‘_va . . :~ ,I‘. - - ‘ ‘» . : - ] R B _ ..' (}

and upon integratlng on. both 31des, we obtain the formal solution

. s ~
o e . N(t) N AN '
o , * . dx T _
L@ . f -
. ; Jng x R(x) N - -
- N - ) * -' .0‘>

.where No = N(O) .

~

Although the 1ntegral on the left 51de of (2 7) can be evaluated explicitly for
the choices of - R (2. 4), (2 5) and (2 6) for it ‘is more 1nstruct1ve to examine the

corresponding differential equation directly -and obtain a geometric understanding of

N the nature of. the solutions. To do this we .need only the most rudlmentary fact .
. from the‘DifferPntial Calculu%, namely that the derivative of - N(E) at a point, tg s .
- gives _e slope of.the graph of N(t). at t =t . Thus -.- - -
P . ) - Fs . X ’ . - - .
. - dN " - -" - . ) | . ) ; . ‘_. _. -
L. TS - > 0 implies the graph of . N is rising at t = tg
Ele =1t o R T .
1%% .. <0 ‘inplies the graph of- N is falling at’ tffi;o.
| _ e’ ey . == ; e
X .:_CIN _ S L 8 2 A L _ _
Tl e = 0 implies the graph of. N isiflat'at t = tg . .
. t = tg o Coe '
ﬁ}.- Consider first the caae.(254), the corresponding differential equation is )

A_d_N_
d

L . - N
oot . : . : : .
- I . A ? - . ~




R 99 H ."_:_ . \'l: 5 ¥ 1-_ e ¢ . v.[‘.?.,a?‘
7 . t h '¥J>§*:$' SR
N ’ N . N I ) ) < - L
- wl T .'.‘ - , : !" - ¥ -
- . ‘ = - ;"\\\ : : ‘ )
- ,,',"7j_'-l"‘ : ' Rl . et T * . b . . .
' e , : ‘N(O) N0>O e e
S e g ., . . . : K =~
"‘Then'the initial‘slope ( SE ) Cis ANO which‘iS'positiﬁe; so N rises.; But -
: . t=0 S . ' L ‘ : R

. ° - - . . ’.
§£ now the slope is. even greater so N rlses even faster. Thus we see that N rises

. faster and faster as t vincreases and so in thiS~case we. have the same type of ;
ey o
._b.._'; - . . "o . . .-.

behav1or as. occured in the dlscrete case, i. e.,'unbounded growth o ?“? .

-

.. 1 _ L . ,
If we recall that ‘the antlderlvatlve of ;f.ls ln x 3 then we ‘can verify our

) ;geometriéQconclusion by settihg"R = A in- (2.7) to obtain

' f oLl J"‘"_,;-—--’ ax _ 1L o N® T - '
A NO x A I‘ v .
Thus' - : ._ _ - _ . . )
2.8)- - ' N(E) = T &Pt
. - ' . : . 3
We next considerrthe bhoice_(Z.S) for., R , ™ ' _
@.9 N_a-m0 N AS0,B>0 ,N =A/B. . o
Y . o - . , : B o
Just as in the discrete case, we have'the_two equilibrium solutions ' 7
o'v - . »_
, ‘N=10 and N=N;=4/B >

T‘nat is, if'any time t , N =0 then %Iti ‘0 for all time. It follows that

(2.9). “$imilarly ]@at S

e

=0 for all t1me as welI and ‘N = 0 1s the solutlogk
. S e \’
any_time t - A/B \thenv N = %’ is. the solutlon -to

NO_¥:O and ‘Ng_fiA/B:,“then\thé:splution;Can*never attain these valyes. -Supposejthen T

ifor.ail timeQ-wif-Enitiail}L f

(2.10) - L . 0<Ng<Ng : '
-we.eénelude at once thatffpr'ail time ) )7:) - o o ':f;;f
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Lo 3 K . o - .‘.. E - '_. U -t.‘. . o o ‘-. . ) 8-2.8
@R RO e oL e
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.t v - ‘
Mbreover 51nce the right hand side of (2 9) is p051tive in v1ew of (2 11), the -
- ”'solution is increa51ng.‘ The only. additional fact we need to establish in order to -
; complete-our geometricspicture of the solutlon is that N approaches Nﬁ .sf t >+ ® .
" To establish this, we appeal to a monotone convergence theorem _ L;:ﬁ(;
2: =f T If a function N(t) is. increasing and. bounded from above,_it has a. limit._g

If the limit were less than A/B the right hand side of (2 9). would be positive”

i and hence N Wbuld continue to rise , Thus the llmlt is A/B Iypical graphs of

N are shown in figures 2.1 and 2.2 for initial value satiSfying (2 lO)

- e e e wm e e e e wm wm wm mm e e v e wm mm an mr mr e e mmEm e e e e e am wm e e e em we e = =

‘Self-Study: Problem #2.2

- By differentlatlng 239) and recalling ‘the test for an inflection point, show

'+ that the graphs shown in figures 2.1 and 2.2 are essentially the only cases that can

Lol

_occur when (2.10) is satisfied.
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' Solution to Seif-Study: Problem #2.2 . .- . . ‘
LT ’ '( .9 o R - - -
e g‘;?N'F'A'; 2BN )
At é';péi'nt'_bf 1nfleéﬁion" e ' LT ,> ' )
. Q"{ ) B o ." .. . -, ~.-'.. - - . _ . e . -
- . é,»:-_:; 2 > ol
. ’ ;3. - d N - i . ot
ST : d—t-z. 0 ~ -
e ¢ v

>If‘" Np < ,NE/2~ A'_thenr one in:flec'tio'n vpbi'nt--_e'xist_s -(F:_I_,gﬁre 2.1)_.':_' If -

- then since N(t) _>_ No » NO inflectfién point exists (Figure 2.2). .

Wt . 2 ot q .
- L
- R
-
- x
- . :
- < .
. . .
SR Lo . oo ' VTN
. & .~ - . LT A c o
. 'k-
- . - - i .
R
. - s - ‘J) o
i S ; x -
. N AR
. & - .
Ed
-
-
-
s
s .
o
»
*, .
.)
-
- Al -

o



R

) . . .

‘R = B(H V) = A-—.BN_

- ~

. Figure 2.1 ST
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We now turn to the case in which'the initial condition satisfies ' - ¢
Hence by the abqve reasoning, we' see that the solution T ik %% '
~
'-fz.-f “fijf_must remain above NE | o - - o _; .
. i) is decreasing T S L R ‘ :
»l | o | iﬂ) .approaCheS NE ~at t..). w .. '. - ‘. _': L -x._ o -- ‘ - ‘..‘1". .

Thus in all cases for whlch ‘Ng 2 0 , the solution @onotonically approaches the

. : QGili' iumivalue- A[B-.VnThat'ls, for the.contlnuous_mpdel{(?.9?,?r-Ea- A/B is a

T globai y stable equillbrlum point. M?L" T: ; '5:'f¥%f; ‘1f1;-" ,._,l'i'_ ;“:‘“
: Notice that in contrast to. the.dlscrete analogue, the.value of Ahoasfn;";iﬁigt s
effect on the nature of the solutlon'."- "2f€5: ;1;” ;,;;fv‘ffgzﬂ/il-.“’;'l J'{‘

e _4..

This fact glves rise to’ the questlon' Suppose we have a s1tuat10n in whlch the"

discrete-and continuous models both apply (borderline case) how can the results be__:

o

In the notation

. so different° In fact, the- two sets of results are not d1fferent.

of th1s sectlon, the condltlons (l 10) and (l ll) for monotone convergence to A/B

in the discrete case become;. S . ,'- . ':;.

_ _ 1+ AAt _ (A/At) + A
0 <No <. T3ac - »~ B |

. < - . .
v - . . .
3 - h . ' .

These conditlons are obviously satisfied when the two models both apply.

s

0 < A At <1,

-

What accCounts for the exlstence "of oscillatory and dlvergent behav1ors

(figures 1.2, 1.3, 1.4 -and llS) in the discrete case and their total absence in the-

<

continuous case? The answer lies in the rate at. whlch the populatlon itself” feeds;

back information about 1ts own size into the growth process.. -When that informatlon

. is fed back quickly (the continuous case), v1olent behav1or does not oceur. - On the

To

-

other hand, an appreclable.delay in suppiylng 1nformat10n can be catastrophlc.

better illustrate ‘this 1dea of feedback ‘we will use an analogy due to Rlchard Hammlng.

Nt

Suppose you are. taklng a shower and the water is too cold. You open the ' hot

/

v ) . . . AR
-

{»Lu

-



_ - gsay

.'ohlwater faucet.. If additional-hotrwater is-added~immediately in response to your

turn, the water temperature gradually warms. fThis~isfthe»continuous‘case.

- f’p; Suppose however, that there is some delax in the additional hot water s arrival
:;ihxatﬁthepshower head. Fgr example,’if the hot water Lank is empty,dsome time may be
Z?lrequifedvto heatﬁthe water. Since the shower water-remains cold, you continue to open.
.;the hotnwaterdfaucet. .The result is that when thebhot water does arrive, it arrives

.

'u. ® . .‘,

'gin a rush and your shower becomes scaIding hot. . So you'frantically turn. the hot -

~ Lo’

water faucet backwards (or turn on. the cold‘water)..-Thus you produce Violent o

<
-

-Aoscillations in the shower s temperature —— for too CQld to too hot to too cold and q.

‘7;”;§o‘on. The feedback is slow, i. e., the temperaturevof the shower responds slowly

s - -

to the turning of the~faucet.h This is the discrete case, i e., the response (hot

water) comes only after some lengthiof time." Clearly it is- this/’lowness .of response

- - e - .

that causes the préblem. e . : .-jn o

Y

We: return now to the population problem. A large population retards growth. o
Jr,a.- .- )

But if the growth process itself is not aware of the large population, it continues

-~

unretarded and may produce<a~huge population ‘one in excess of the equilibrium value.'.‘

This can happen in the discrete case since a large population in the middle of a
. - R
period goes unnoticed. Indeed information flows into the system only at period

»

"endings. - Therefore oscillatibns, and Violent ones, can occur. On the other hand
in the continuous case the informétion or population size flows continuously into
the growth process thus prevent‘ing[gscillations. | T %X’-
':We close this portion of the_<'scussion‘with'one final remark: In thegdiscrete
case the greater the reaction to feedback,_@he'greaterrthe oscillations, In terms
. of the hotjwater‘problem, the<hotter the water inethe storage—tank the worse matters‘

oo
.

will become. In terms of the population model given by Figure 1.8, the stronger the:

v

reaction to over— or under—population, hence the moTe: violent the oscillations. This
. R A)_ . z

.- of course,'is born out by the instability when the peak~of the curve (RM) exceeds 3

‘I*dIhe oscillatory and divergent behaViors which are possible in the discrete model, can:

) ) ST . ,'Aj . . N . -
© . L : - R -~ [
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'»occur only in the nearly discrete' case. -

~

Notice also that the above 1nequalit1es may be satisfied regardless of the value

”Lof A simply by Choosing, Atj,suffiCLently small. A
| V'ﬂ-"---.*_*f_';-'-.---" ------------------ L
'@:fSelfésto&}:“fPrbbleﬁh#g;3k;,

Using the method of partlal fractions, and equations (2. 1) and (2 5),,obtain ;

. a soiﬁtipn to (2 9) and verlfy our geometrical results. o H' .
- — i e e e e o o - - — - = B U U —_——— = = - - - — =
<
'f -
e . i ¢ a P
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) S_olut;l.orf to Se-lf-Study:' Problem #2.3 -
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~~> | These results

Solution to Self—Study} Problem #2.4 - . _.f L

N=20 -- 1s stable

2
"
2

. is unstable .

N=N is stable. . .

-

- N . -

i

are easy to obtain geometrically, but .are not so easy

to obtain from the explicit’solution (2.14). T ‘ .
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—_— . - i .. rl
- - . o .
'

'Interim P:gject #2'_’

. .~.\- ! “ ~r T . 7~ ) . . .
Consider the following modification of (2‘4) Suppose that due .to mEdiéiL"dl’
. advances the equilibrium increases. time increases, e.g. T 'rf_. R R
B _ o %Td B . s : s .
I : . - B l - ". . \Neq = FE + kt _’.’ ] » ; RN
where k > G . Now our model ecomesf : o R _h..’“df' T -;:j.

S qE Ry ke - N

B R | § R P P
ﬁ},_ 1___.._‘; 13"‘1-75.'f£-<dt : B(N ,NQJN +k B‘gt_’ R g _: L

: Use some numerical algorithm (e, g5 the Rnnge—Kutta MEthod) starting with N(O) - No '

to analyze the solution of - this(model. '*ﬂ' *’_;7 L _"/ {;;':
 k k k k Kk k Kk Kk k k kok k k k k Kk &k Kk * % tdk * * % % * * % * * * * *.* *ok ok %k * x:
Interim Project #3._ . L *;i o e T e

= _ _ . SR - B § .

Reconsider the u. S. census problem d1scussed in part I.. First use'the'squtgon

_ (2 l3) for the continuous analogue and the values ‘ A
_ A ,4t_‘=?.'2329 C.o B At'= :000067LL ¢ - ot wcoa

to compute ‘the predicted population for -each- decade from 1890 to 1970 ' Decide .

S 3 -

whether the discrete or continuous model glves a better fit (say in the sense .that |

N

the maximum relat1Ve eerr is smaller) ln Lotka's book EZements of Mathematzcal -

Bzology, Dover, 1956 the values

.- s o .. )
s A”?-503134"“' ST A/B l97 273-. R ﬁ"f L

- ",-. . . ] ..."— - - ! » 7w
’ 'are cited as'giving‘the-best'fit\forbthe continuous model for the years l790-lQl&¥ .
EKC Ao T
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Cowpare the Lotka values‘for>the parameters with the ones givenfabove’for_the_ ;.}”Qﬁlq

>
»

S ' . ’ , ¥ ' -
continuous model during 1890-1970. By examining ‘the_ two sets of results_for the

A

continuous model try to find values for the parameters A and B , that are better

than e1ther Lotka's or ours for 1890-1970. -Finally make comparisons between:the

discrete case and the continuous casé. ) : 1 - SR
Sk ok ok ok ko k Kk ok Rk ok ok ok ok Kk k ko k k' k Kk ok ok ok R ok ok k k ok ok ok Ak k ok ok k Kk k k k.
—~p . . '4. St c . - .- K .
Interim Project-#4 - ’ T ' R : - =
sting a.decfeasing linearffunction'for R'"is only the crudest attempt to
characterlze the effect of population pressure.“‘A_more general foru1?or. R would
) ) . X - o~ - _ : . . ‘
be = - T : i ' . ' . e
- ST 0 R(NY = A - f@) .
In the absence .of population pressure, the. growth law ‘ . :
y- N : '_ B ' Ny ' . A R
| ‘ S : R(N)}\A' o o .
-is reasonable and therefore we would expect that f(0) = 0 . Since we want’ R to
“ - A . - - - oo T - o
eventuallyfbecome negative, we want R to be a decreasing funttion.of N . Thus
we would expect f(N) to be an increasing functlon whlch also qatlsfles f(NE5
0 oo ' . '
for a unique argumentf Np > 0.. Thus Exc )N mlght be' BN2 or BN3 or BN + CN2
- . . ' E . : . > . 2
Cor B2 and S0 on. Investlgate some £unct10ns whlch?you feel have some blologlcal
. PR -3.?.-. *hﬂ— _“‘ W 0 e N - N
justiflcatlon. Rememberithat ,f' should be increaslng, f(O) 0 and f(N ) Al
- 3 " \- - L4
Use e1ther the dlscrete model (2 1) or the contlnuOus model (2 4), or bothf \ e
S * % * * * *., % K ok K kok % * * xk ¥ kK * % K i * % * %ok * & & Ell " * * x % K
.. o . . X - i - . . : . 9 .
_ S . e JURA . . , . N , ,
:‘-[ - . - -4“ ~‘ "\—I\.'_ i~ /\’" . ~ : . )
o . > - a 2 e e . g R
.., - - i 7
% - - . R i ,-
3 : . . -~ e

s X . Vo= . O L. . : E -
- ’ - ' ’ c . .o - oy . ’ e . e AT o R oL
I D Y : . N oL S N S AR
. RN . . v - . L. . K . L 7 . Z . .
P - PRI : > . . PN N . . H “. . - - -
PR . i . . L L A . . . . o
. . - ) i -~ . . o * - v . - .

;)



: T o CHAPTER IT . I
. o - AUTHORS" EVALUAIION o -

(Please c1rcle one of: the responses to each questlon)

Y . ) . v

R4

1. -Did you attend the short course in 19742752 - o Yes
s | D ; -, ! - )
*:,T..Z.';IS this chapter . f T

\(a) "Too short
(b) - Too long | _ ‘
‘ . . . . (c) About rig}k . . . ' . . - R

- ‘If (é), which-topics shoui&lbe-expanded?' ﬂl_ >':_-' o 7

N ) . .

”,. < . ~

~ can you.suggest topics to be ad&ed? IR

" If (b),bwhich topics shoold oe.abbreriated?i ‘ L -

i which topics should be eliminated? - i B
R -
3. Could you read an&'updersteﬁ&'the»compﬁtervprpgrams?“ ’ -
e »(a)ﬁalwa?s . . (o) seldom
- | ; _: (b) sometlmes - f oL@ never?,u

'-jﬁ. D1d *he 1nter1m pIOJeCtS seem reasonable’ A -_;\ " Yes i
'g . ,4 e - . - T ’ . L :

R v T

«« 5. Were the self-study problems

- ca ) ' ‘_ (a) Too easy fl-' j":' . ‘(b):Tod diffiéhlt"

“fﬁe Was the number of self—study problems

;-'{;( ”-s;'“. ‘;,‘ (a) Too large.,g ‘} oo

- L NN C s Tl e r:ﬂt s '
Lo T (b) Abouc Tight: L sm oS
) iemessan e v B2 oot
- : Lo ) . '. . T - . T ) ° "“4 cn ’ -~ -- ' . -
W UIRE BN STa ol
- r -
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Did you attempt any'of the self-studyvproblems? S _\Yes\‘ No
, Are the solutlons to the self—study problems properly .
placed (on overleaf from problem)” - . Yes No
illflno, where-would you suggeét the'solutione be placed?
' o 't 5 ' . - : . )
. ’ - . i 2 — ., S
N A ": B . -
= For each topic, how solid an understanding do zou think . you have?
Excellent _ Good _Fair_ Poor
Relation between discrete and - )
‘Continuous models . ‘/ . _ N
Geometrical'analysis of solution = o
_‘of differential - equations S K 4 -
_igEquiIibrium L '_ - o
-Stability . . - E y - _ N
. ‘ , - . C - T .
- L ) . . ) ’.\J ) . ~
3 / L ; - S
. N - ’ ‘\ .
Ed .- K a
' | b M ! . T .
’-p ‘- . ; . )
- co =83 :
. ) ' o-’ .u". ‘ > - '
. Lo w : sz "
’ RO \ <
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.3.1 & B'irth-Déath Model . _ ) o

"procESS., In some sense thlS new model will also be more realistic. Rather than

P, W -

'of'probabillties shows that the probability of exactly k birs?s %n a population of

CHAPTER 'III

- .~ .. POPULATION MODELS -~ . °

- . STOCHASTIC MODELS

~ o . - . i ‘

In Chapters I and II we assumed’a birth and/or death rate which was proportional '_:

to the nu?ber of living ind1v1duals. Thus (1 1) and 2.1 both assumed that the

difference between births anf*deaths in a time At wa3a7ANAt where N is the “

B

population, At is the time interval and A is the rate: of change.' We could have

arrived at this result by assuming that each individual " gives birth to AAt new - .

3.
individuals in time At and that for each individual .theTe are uAt deaths in the

sameltlme. Then the ‘met change in the»population per zndzvzdual is lAt“r uAt.  If
. . — - . -
<therefare N 1ndividuals’che net change for the entire population is

-4

I3
M

.@ -4 e=woNae .

’ w
1

If we let A A - u we arrive once more at our earlier model.

v

U31ng this as a guide we w111 now . con51der a similar but less deterministic
- =

-4

assume that each 1ndiv1dua1 gives birth to AAt individuals in & time A e

7 -

Since the probabillty of a birth,from any individual is. AAt ,uthe binomlal law .

)
.-

4'5\7 %=

- . L ‘J . o , . .\: ;;L _,“' 1. =
. . . = . * e [ - ,
. . - = e . ‘J Cadiiny

L%

Mbre pnecisely Alt + o(At) Those who wish a more rigorous derivation should
similarly ‘modify the probabilities derived below. The ©0(At) ' terms will ultanﬁf
be removed because we shall later d1v1de by At and let At > 0 L _

- - . S - -

L 8—73.1 ) g

o



I_.s‘i'z'e N is  p(K) - S Gan* (@ -2 . R

"'“-iS.l' 20 - . | .t N o h

:?probability'of n change in a population of size N is approx1mately

FGIL.N = O' there-cannot be ,N —‘1 individuals alive-at—time'.t --At -'so onlzggheH;

L r)

¥ Q ; . : ,
ol . . , . R - . " < t
AF l(;h; T o _@(_ o
g = ” .. » o ! ’ ’ . 3 ‘Y . . ’

.ltWO or more deaths or a combination of births and deaths occur with such a small

v " o . . . ' ) - “‘ R - - ’ : A “ - ) 8_3‘2 .

4

N! : k N - k B - ' o

prowens

. k! (N - k)!
Thus p(l) = NXAt(l - Aht)N-l z NAAt for At small. Similarly the probability

of precisely two births is. p(2) = ’/zN(N—l)(AAt)2 (l—AAt) . ,/ZN(N—l)(-AAt)2 =

'for_ At _small.-,Ih 4 like manner we can show that the probability of 3, 4,5, ...
births'is also:iero. Thus we conclude that-the-probabilitj of two'orfmore births

Similarly we will assume that on the average each indiv1dual is: responsibile ’ '{ .
for uat. deaths. This leads us to assume that the’probabillty of one indlvidual .

| is. . \§ i?‘

dyinggin time- At . pAt . In a population of size N then the probability of

one‘death is z NuAt .' Once again we w1ll assume that At is smal enough so that_:

~

» . P

prdﬂﬁbility in time At that these events may be neglected.

-

Of course, it is poss1b1e that neither a b1rth nor a death will occgr in time N

Fl

.At Ef Since this is the only" possibility other than -one: birth or one death, the

e

T 1ot - mae =1 §O+ wee | o

< ' 5 ' v

Now let pN(t)“ ‘be the probability that ‘there are N indivzduals alive at time t‘.

- -

. From our‘discussion_<§//ind1v1duals\where N 3_1 can -be aiive at time t in only

three"aysx T S “ o SN ‘;;

ht,‘.(l) _ﬁﬁLtime; t‘— At .there.were N - l individuals and a birth occurred )
R (Z)E'Atdtine' tl-At .there were N + 1 Aindividdals and a death ocourred

) 3 :Atﬁtimé'ft'- At there-were N 1nd1v1dua1s and neither a birth nor'akdeath

. .
‘A_ LN

«

1ast two are possible in this special case. }f:E ; et -'k SO
S ~s - : \\) :.. .
ance these three evepts are mutually exclusive, the probability’sf:?py one f -

- >~

these occurring is the sum of the individual- pngbabilities 3£e proba 1lity of ‘\\\" :
‘}\ . . .. /

a . : -";L‘__”‘ L E;L) @'Z} ’J'l-i; . '}”}f. .o Y

-~
Ry »

A ruiToxt provided by ERl




{'Subtracting' o (t -.t)

in Section 3.ﬁ

individuals ‘being a,live at time I is, therefore, the sum of . the probabilities that

4
each bf these three events ocecurs. 1

. k3

&

a
-

for.- N=1,2, 3,.... and -

P

(3."2)‘._ 3 Q(t) l uAtpl(t

In Section 3 3 we w1ll determine
method of characteristics tb solve tg

w1ll use a computer

estimate»some of -the probabilities.

(N = 1) A_Atp,,-_l(t -

oo

8-3. 3

s Y
LT
b" w0

At) ) R

+ (N-+ l)uAtnN+1 (t -

e

”_k;

g T v

@

- At) + po(t - At)

- o 1t

from both sidesmof:(3fl),aiuidingJBY‘ At"and taking‘the"limit

. as, At >0 v o -
.:: 3 ds ‘
Q-3 ' —Rth X(N 1)1:'N N u(N + l)PN+1  + u)}lp
‘or N 1, 2, 3 . ' Carrying out this same process fof-(3.2) then
3.8, - o t dpo o - .
& ) - . dt _lepl
- _ i . T! R
This is a system of differential—difference equations. 4 2
Now suppose at time 't = O. the population is: I . Then
. (3.5) 4 - /~ PI(O) = 1' . . )
.._' R ~ ’
e R L :
. o N ST ﬁ\\ Voo R
3.6 o p(0) =0 for 5 #T - -
Fa ; R - . R . . &: - t’ N .
. - ‘ N &
With these initial condltions ‘the system of equations (3 3) and (3. 4) may be solved. .
- b - : S .

".

the solution using gﬁ' rating.functions and the

-

e resultlng partiaﬁ:differenﬁial equation. Later
) . e
program to 51mnlate the process and thereby

-In particular we w1ll estimate the probability

Sf

o

Y. .
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. of extifc¢tion fn time T , i.e., we will compute an approximation to 'ﬁoeffﬁ.__w;
. . 'r .. ., . : .. N R

. We turn next to the computation of the expected value of the population at - -

<

-time 't and to"an estimatidn of the deviation of the population from this expected
value. .
Self Study:. Problem #3.1 CL . - - o
‘ S . - £ ' L= SRR
o Carry out a derivation amnalogous to thaﬁ of‘;he.s:?sectionwforféur.secgpd model.
That' is, assume ‘ e PR - S R S S 9_
A . . R o , . . )
“ pr(birth) = N(a; - by N)
S - : e Pr(death) = N(ap + np N) ) )
. . - . .V B K .. . ~
and assume that o g
; 7 :
N Q/‘Pr‘(two or more births/deaths) = 0 .
vo,o" - X P "
- . . - </

Generglize your result to the case in which . : /1\ ' .
- . . _’.. ‘ - ‘ . . ' . i ’ M .’ . - i

Pr(birth) = N Ay » - * Pr(death)

H
=
j o

2

. -
. +
- -
-
.
S . 4 .
L a - *
.
. A4 :
1 b | ae . -
‘ - - . . . N e~ -
) ¢ ' .&c 5
- . . s
. . . -~
- . . .
. . . - .
- N .
- - ’
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-

-

Solution to Self Study: ’Pzgplem #3.1

i
-
/e
‘t
-

s
S

.

.fl// .

ra)

rat

doy
d -

=

K%

(n‘- 1)

Lo =Y
< -
-’ -
s
e

)
-
/:*
2

.

N-1

>

-

pN;_lﬁt)-. - Nlxg :uﬁ] pN(t) + (N + 1)uNF_*‘_1 pN:*_1 (t) .

v



. N A v - .
~— > U - .
St ’ : - : . ) . &
- . ~ - . ) . . N

S : . =- 8-3.6

1 - . . - C- .- .
. . S A

_.>*3.2 Expected Value and Variance of ‘the Population \;\ - . e '

Let E(t) be the expected vaZue of the population at time t '} Since a vf

. h 'y . Lo oy
population df size N OCcurs at ti e t with probability pN(t) and sincekany ,
. ...‘-_"- h'. - 4 » - }—
population of size-“O_, 1,2, ... is possible, the expected value- of the population ’
3.7 ' S CE(®) = ] Npy(t) SR S

Differentiating both sides of (3.7) with respect to t

Notice that the term N 0 Jwvanishes due ta the factor N in each term of the sum.

e 7 R
c - -~

dE . % d : -
; =LY n SBN
-y . dt Ne1 dt ’
) -From (3.3) then S i =
<3.8) 'gi A Z NGN l)pN 3 ; u E N(N+l>PN+l -’tX + u)'.z N2 pﬁ . .“f o
: . . N=1 N1 0 i N=1 .
f n . -' . . j i . -“ -
But S o - . v _
ot T C . ) s e s : . _ .
i Z N(N Vpy_; = L. (K+1)Kp; ‘ i
= | N- lﬁ X=0 s K e “ _ R
. -7 S ) - < -
. The first term in the sum on the right vanishes so ) oo ?
= . s i
The notior of expected value is analogous to the arithmetic mean of a frequency o -
. destribution. Suppose the, values xj, X2, ... ¥, Occur reSpectively ki, koy -5 K
\\Eimes. Then the relative frequencies are k;/K, kp/K, ..., ky/K ‘where K =1I k; and
=Xk /K . The notion of expected e arises for theoretical destributions and
" the relative frequency k. /K of xp . ¥s replaced by the probabjlity” Pxj " of X;, SO
that E Xj Px; - In equation (3N} the x; are the positive 1ntegers and the
31tuation is madelsomewhat more complidated by the fact that the probabilities depend
on time. Thus the expected value of #£he populatlon can be interpreted as the mean
® value of the population. , . , : . )
. 3 . . - : R E4 Q'
4 . . * . ; ~
- ® V-*.;'




(3;9) . N(N-l)p . .‘ (N+1)Np. -
A . NZI K N:% NZI N, .

v ~, .. o °'_' . ) i ' 4__‘_3,‘{,.‘. B B ;"- '
‘.@._. ) ) ,':~-f. D—'\ ‘ . S I‘ . .

T NP, = [ RDRey .
SR o PR Kzz R //// |

Ly

" But wyén;.x-s R S -,5;ﬂf,u
B T PR E :
S A+ ST TS LS AR c

B l gy e ‘. = . C e .{_J
¢ 1)Kpy 0. T

4

~

SO we mayjextgnd the sum‘oﬁ the right_from VK =ii to T so that
(3.10) 3 N(W)P,, = 1 (N-1)Np

A : : +

R . Nel Moy N

e

Using (3.9) and (3.10) in (3.8) | C e

g’
& Ty =t =

The coefficient of N2 ﬁanishes and we are left:with
=2 Z Np - u Z Np
e L e L

But from (3.7}_

L@y . a T M T EEe

Moreover for  t{="0 " from (3.7)

-3 3 (WNpy + u 5 CN—l)NpN o+ 7 szN |

8-3.7



“"But from. (3.3) and_(3.6)_;pN(0) =0 exceptﬂyhen N=1 _so" ¢
NS ) REE R < COULEOY=I .
Lt o T = T O
The solution of (3 ll) and (3. 12) is LT ?\\ .‘.” -
" 1* . { L : e 3
. o .‘ ) t:;:' i R
(3.1 S B - PO L

Recalling that A = ¥ - u this is identical with the deterministic solution (2 8). ¥
’ Hd '#‘:‘ - . ) o
We can conclude fr '(3 13) that if ;A.?‘u (birth rafEQEEEeeds death rate) that -
On the other hand

the expected value of the population grows as time increases.

Af the death rate exceeds the birth rate (u > A) the expected value
' B S hﬁ‘. . '
\ decreases to zerO'as]tpeatime.becJEes large,? Finally if A=u 3 the

B -

of the population  is I for all time; i,e.,
N i .

(3.16) . o o E=1

These results-certainly agree with our intuitionfahd, therefore,

.-

our model.

of course the actual value of the‘population will vary from.the

in -any ope case.

deviation from E should be expected.
’pbpulation. The: variance V(t). at time £ is - | ' )
| -..;.‘. - . . -v‘. o . , » .
. (3.15) - V(e) =} N2 p (r) - {E(t)}° K ’
: I N=1 : Y '

)
o -

 We ﬁill-derive a differential equatidn{for :V(t)'

.o

~derived for :E(t)'. <o PN

ces . - -
——— .
/

lend.

in much the_same Way.as_(B.ll) was

of the population

'expected,value;- -

N
for A =u. . "¢

credence to

expected value

9

It would be helpful to ‘have some estimate regarding how much of a

To that end we compute the varzance of,the

- .

N
it
R

The variance of a sample can be defined as X xi2 ki/K - (x)2 - where the k /K

-~ are the’ relative frequencies of the observed values X, o

relative frequenéies by the probabilities P, >
arrive at (3. 15) . 1'

© - o o ' .94

-If we again replacé the
and the mean- by the expected‘value
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o

Using’tﬁ‘s) f§> -

»f :‘ ‘,_ . o

. But

- i ,',,\‘ t

o4

Using (3 11 to rePla

\‘1

4

cf'wﬂﬁ(N‘

\1)_p1;1‘/1 =

E

*l)PN*l

_ From (317) and (3-8

(3.18) . . “ég‘ T

’ *w‘Flror'n (3.15) .5&45;\67_'\

Yap

qg/dt

%
u 2 enAL)

) @ p
P

R

L.

Kx

L -~

=1
=Y

, )2
0 (1(44-

KPK

(K~1)2 KPK

7

Nﬂl

3

- N 1

1’.

(N-—l) 2 Np

- r .
R o
- b—’
. ‘.
v
.
~
J Y
o
N, <
. -
-‘ .
>
- -

" N=g

N+1)2 N
(IpN

'N-

(}\+¥J) 2 N3 pN

w

.
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-~ .
. i
s
i
-
-
-
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S From (3.18) - 0. o R

L. %%fv?.Z(h = yQ H + tl + u) E —‘2(1 - ) E?
e _ifﬁit‘} i_ir.f, L "‘f T .. I , 5
"7 Daing (3.15) and .(3.16) to repldce H © . ‘.- T

;g-’€3j;9)_\‘; S %%; - '2(1_¢'u) v+ tk-+:u)“E 'VTE:: . ..“.j'i:. N

.

N

. i 2
- -

i;This is a~aifferentié1 equatiég for. .V , the .variance. ~For an‘initiai condition we
note that at . t = 0';the'population is I with ¢ertaiﬁty'éo )

(3.20). T R e e
: "‘< be.- B O S :f ::A}'*;“."' | o |
The solution of this differential equation for A # u is’

| B . L - S X - K
.. V.= Cezck - wt _ l%—%—ﬁ. Ie({ N u)F ,:t_.: R .

o

- Using (3.20) to détermine C .

-

*Thig. follows from Setting t = 0 in (3.15) -and using (3.5), (3.6) and (3.12).: = =

w
¢
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°.'Integrating this ~differential equation.'with"_th'e initial condition (3.20) . _ -
V=21t R
In Summary thep L S . -, K _.
SRR e ; f 3 Ieo‘ . ")t qeem Wt 3y a4
(3.22) - T we= ST - T e
\ e-‘i o ‘_ .. . . Lo .' - _\ _'} - . " v ’\- » ) . ,‘ . ) . . ' . ‘_ ) . . - )
ST el P e
. % We now examine the behavior of - the expected'value‘and variance'for-large“timé;”
g o . : . - F o
i ‘-For A > u’ (birth rate exceeds death rate) both E and V become large.» Thns while

..the expected value of the population grows without bound the variance also becomes

I
Lo e

/////&nfinitely large. We should therefore expect the dev1ations from the expected

. L
i value to be large as txme increases. S L N .- S
ORI S . B
\] ’ For ”u > A (death rate exceeds birth rate) the expected value and “the variance

R

approach zero-.a thentime increases. - For large t1mes then the population should_bé
\‘

. Later we shall see that the probability that the population is zero

N

close to ze'
-for large tiges is l . : _ : . i N fi;

Finally for A - (birth rate and death rate.are equal) the expected value is.

-~
/

constant for all time but the.varianceugrows linearly without bound for increasing

. H- ) . . e . . - » . . ) L . i
°  ‘time. 'Thus as time becomes large the deviasions from the constant expected value will
\ . .

_ become large. At large times then we'should expect the opulation to deviate markedly
< A e

from Ik. Indeed we should expect that in a sigaiflcant number of cases,,the

s
o
Y

;poPulation will,differ‘from—fl by ;i'l + If the deviation is -I then;the population
oy o . - L :
- is-zero and the specias becomes extinct. The interesting fact is that even when the
birth rdte and death rate are identical we should“exBE&t‘the;species to become extinct
. . - ~-». ) . > . -

'a significant number of times for large time. 'Later we will see that_the”probability:*_f
- -. . - ._ . - . ) _:"/ - . . . . = . e - R - , ‘ @ . -
EKC - | e 19 . -

uilToxt Provided by Enic [ . . .
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> € 1 that ‘the population will eventually become extinct when " A = p (despite the

.

iact that the expected'value is T !3. . : ' e v S co ',ﬂ
‘.‘ . , ) - . : .. - .
~‘3 3 SQlution-of the’Stochastic Model - ,- “

The'solution‘for'the exnected value and variance of the population was obtained

by elementary mpthods. ‘These statistical parameterS'were'useful in'our'study of the ’
. mathematical model. In order to obtaf% additional information we will need to

_.analyse the differential—difference equations (3 3) and (3 4) in more detail The

"-';nalysis while relatively straightforward is more sophisticated than development in _/f

. RN
- -

thhj?revious sectiOn - . -
- \ . L . . .
; We turn then to,the problem of £inding the solution pN(t) o- (3k3).and{(3.4) o

given the initial condiﬁions (3 5) and (3. 6) .To do so.we ‘fntroduce & generating - 'Q%L

_. . . . ' Voo T ) N _ : - - . . o
(3:23) - - BN f(x, £) = L pg(ed . R
N o N=0 A L L

: o e 8 - N : ST i

!, - <

| We will use some of the techniques of the last section tg/ogtain ‘a partial differential
-equation which the function f(x, t)- must satisfy, We will then solve the partial '

differential equatlon and from the solution obtain pN(t)

- - 'Multiplylng (3.3).by xs and summing from 1 to w;." )
© ) t. cx:' . ‘o ' . K " : ? e . ‘e ,‘-‘ .
- dpy N - i~ N-2 En N ‘ N o
I gt x = 2ak? ] (8=Lpy_-x . +u ) (WMD) pe x (A +Wx ¥ NpN 1
N=1 N=1 - . . ’ . N=1 oo ; N—l
SRR | ‘ » . _ o . -
‘Adding (3.4) to this last equation 5 7 - . N o VT
. . [-- T d N K- N‘_z @ ® . ’ N v ’ ‘coQ o ."‘.N_ .'-
(3.3 ] Fx.= w2 3 (N—l)pN X O+ ] (p. x = (dx I Npg x b
-t N=0 <% ¢ .- CON=l T N0 - | | N=1 O
. - ° - . - o . ) ;.'. n‘ . , . ‘v- 'v~ } n‘.'
From (3.23) however ** & -~ - A - . 7 Rl L
Tl . . . . . . Sy R & "o
a7 ) . ,'- .-»‘- Vv . ' . - ‘. e ','_.»'
- > 'kv . . v ‘ ) . s )
» ) . < \;(JJ
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o: .~-‘ ) . . ! . ) o I"-. ’-E

. When N=1 then N=1

Using (3.25), through (3.28) im (3.24) = = T g

(3.26) ~* L= =) Nplx.

~a

~(3.’27) . . _ — 7= z - (N#L) EN;'- x

(N 1) PNy & o B | R

.o ) ’ c - -

~ - . : [

N : . - i ' . o '
of - y . N=-2 ' 2.

I (N-1) py_, x , L 2
N=1 v - _ a S

-

9x

« . . . . . . : L4

<

af .
ax

n%{-— (A x2 +u-4x + u} x)

B L
\ R

- * . P T

T‘his is the pa\f*sial different:.al equation ‘which f(x, t) must’ satlsfy. -Fo‘r

BN

(3 23) becomes.. S ) ,/ .- . o -

e f(x, O) I Py (0)":=:N

T ‘ ., N0 -7 S
Using the initial conditions (3 5) and (3i6) .. - -
/ . > ~ .

0 so the \lalst sum can be extended to N =1, 1.e.,’
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. {(3.30) ) . ; - f(x, W) = x ) . )
,”:Self Stﬁdy: Problem #3.2 j“‘ ; ) ) )

L)
- -

s N

Derive Qhe cﬁrrespéa?ing ;ﬁrtialadifferential equatiaﬁ“fbr\sif first models of
- 4 -, / ~
L :\’C/ - ) o ' - -

Self Study Problem ¥3.1.
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. Solut?og to Self Study: PRroblem #3.2 ‘ ' - A

. N ‘/‘ [ : az'f '.
- L2 = (x - 1) {[(ay —by1) x - (az +b2)] %;ﬁ-;_—"(b-l X+ by) 374 .
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_The ution of\(372§) with inftial condition (3.30) can be obtained by applying
‘v - . ; ) . .- -
- the "method of characteniégics , which is the standard technique of solving first order
partial differential equations. However, once- again,-important infdf@atioﬂ can be | .

obtained withqutksoiﬁing the equation. Rather we simply Egemihe'the diffefentiai,
-equatton €3.29) iteelf. We shall, in fact, _be‘abie te derive the single most

i important fact about our stochastlc mggel in this way — the "long run probability

of extinction, lim po(t) ,° which we denote by po(w) . First we note that from ,

ot Y oty o) ¢ ) . - .
(3.23), po(t) = f(o, t) , thus : . B
(3.3D) - Tippt=) = 1im E(x, ) |

) : i .. e :

W S x0 . 7 -

~ - - ¢
N . .

Next recall that in the model v

\

~
L

dN ..’. - ' -
it - BN(N - KYB) | .. | o

i - . -
.(. )
of Chapter IIL, the values M= 0 and N A/B (the zeroes of the right hand side)

played a crucial role. Now examine (3. 29) Ihe value://;/g 1 and x = u/A , are
- N J' s . -
x , we see that Iéf- =0 ..

clearly crucial ones. 1In fact,\for these .two values o T

2.

. - v *
That is f does not vary in time,swhen x:¢ takes on either value so
: .o S - . . o .
v R . . 2 ) ] . . N N . 3
fﬁ'tf=;’constant, ?  f(ufA, t) = constant .

LR 4
o

-

(3-32)

-

FQ, B =1, EQu/r, £) = /T

. : /

- J : }' -
for all values of t . ' N
. - . ~ ~

<

- Now if there is to be an equilibrium .distribution as t + « , then, f must

~
-

settle down and stop changing as t™ « . Thus we assume that

T . ’ 7 _— \
(3.33) _ .  1im %% '=-0 : “ , ’
a D o Al ) T
- . | :




- ~ a2 .-
. - -~ . . - ‘ . 3 .
- < :
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~ Let ‘lim f(x',_{) ‘= F(x) s ‘then using (3.31) the ‘quantity, ; pPo(=) » which we seek - //"
I ; . e Co ) .o = L '
v ig given by .. - ° , SN [ S s
- . b AP_o(‘”) = F(0) T e , - )
‘. #h ) '4 ! ~ - . : ' . . 7 B - /j‘ -') B ]
Eom* (3.32) know that;. ' . - : . : T
- ] * ) . . . ’,r . . - - . ,
cE ,-' : : P
e ‘A - . . | e : 1
RN FQ) = 1im £(1, t) =1, aipd\F(.u/A) ~ lim £/A, t) = (/)
e . A, oo A the - : .

Moreover from (3.33) and the diffet&ntia'l equation (3.29) we f£ind _

. - .
/ 3 | v | .
. . R

. Do - w & -nEE -0, ‘
~ . . T - ' ! X i > V; L4
: S e st = -7 g
“~. oo T L S ‘ _ xR ‘
1 Hence F(x) <s a constant except possibly at x = 1, x=u/)x "where it might jump.
s SR - .- - . s . ) ; V
- o N _J ) ' . —‘ ‘e
gl Case"l. u =221 ) 1 " { < .
T Ll 3 N . o . ) . (]) _ i ./‘l 4 X -~
. - - S .0 u/x o
Since F(x) = conlstan't; for O <x <1 , and since F{l) =1 , we have™ " | “
8 : o 8 - s : R
. . ‘ _ ' ' o R
3 'F(:‘:g}_zl — 0<=x<1.. -
~ . ) v.r’ V R . . R . - . ‘.A.-'
(3.38) “po(=®) = F(O =1, BERIETRES .
- . A - . . i ‘ L. 3y
. . Y ’. . :
Extinction is  certain in this case. This result is intuitively ,reasonakge‘for
1‘:_’ A 5:but is"som\ewhét startling for eu = A (in which case the expected value is 4 1),
- ~ : # . L - R YL T C i
Case 2. <Xk . ' ] ] 1* . 5 X
: ST 1 T > : .. K
v R “\q ' u/l l )
T S : S - : ‘ . Y
. f ~ We have F'(x) =0 for O i*x_< u/A , hence as above, F(x)!= constant for. N .
*
We are assumn.ng conti‘nu:l.ty from the 1eft at x = 1 This can be established by o
noting that since the pn's are probab;[ilties, 0 i . and - :
- ' Co B’ . - <
‘ L B g;/ 2* Py = 1 and using some “standard Fesults of analysis‘.,

R n=0 . o . .

wll Toxt Provided by ERIC
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) b ‘ . PR
’ T2 T dx : . i -
\ @)L - T e A - W& D)
. ) R s .
' Lo - .
: e oHgRT & - . _
«+(3.37) ) o x(0) = & N ”
and BN ‘ . . ) > ' L S .
de oL o 7 )
(3.»38) “ .- 'd:—é" =1 ) , . k"(
(3.39) £(0) = 0 ’
- ] , _ R ‘ _ !'f
. .- fos s K . : .
By the chain_;d;e then - - / : < : -
- I . ; .. ‘ ‘ - ) -, ‘ . ‘ . .
Af "_ -9f dx - 3f dt - .
¥ . ds 9x d?' .9t ds- §L ’ ' ~
_ From (3.36)5 (3.39) and (3.29) = = . ' '\ - . ﬁ
R . B S ) { - b ' .‘- A !Q" )
. . N R v s > LN
. (3.40) - : & 0 - ‘ - o
S A - ds ) T «
. : R '
) : : . L ! /f . .- _.\.\' ] _ )
3.4 - © f(0) = E N o Ln .
* g IS . NN )
See previous footnote. ' T : - - \
| _ . 1oz : ‘ \

‘EKC S &

= ) - N - ' . . . . ," ( ) ' l’
P y n - ) C . ’ 8-3.18
N ' .. .
Q < x < uJA . Sihpe* F(u/2) = (u/l)I , we conclude, as in Case 1, that - .
_F(O) - (u/l) » SO - . .
-~ * I_‘ L)

(3.35) - . pe(=) =T/A) for u < A‘

- . _ . . . o -_/.. . - O‘
Thus even when the birtﬁ rate is higher than the death rate, the probability of:
extinction, in the long run, 1s positive. ' ) . ;

o - For those, who are equipped with}the nece$§aty prerequisites, we conclude

this sectici by sqf%ing (3.29) by a spec1al‘ver§imn of the method of characteristics.

N -

Consider f_ as a function of a single parameter s and let

IText Providad by ERIC.
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.~

t

Now (3.40) is the‘ partial differential eqnation (3.29) and fthe initial cendlt?on
(3 41) is the initial onditlion (3.30). Therefore .if we can find a sci_lution .‘x(;,\E) .
to (3. 36) and (3. 37) then we can easily integrate (3 38) to replace s by t , and
then integrate (3 40) to replace E by f . Thus having x(t f) .we can "invert':

this function to. find f£(x, t).. With this in mind wé . ceed to integrate (3.36).
, A\t

The solution of (3.36) using partial fractions is /\

-, : 1 -log (x_—l_) = -s'+ K .

N A -y Ax - u Y . )
\ ﬁsing (3.37)Tt3 determine K3 ' P ‘ ‘ : . - .
g ’ v N R . . .‘ . ) S )
N | | ‘ - s = _&-1 Ax — U - ) .
J - p @ 11.) s 7 log(lf,’ uooc % — 1 l) - _ .

i - o

o-r d ) a 4 ‘ < . _/ N 7 . ] ,
. ~ . - ,x‘

4 T . S
5, (E-1) (x-w _ _(=us ‘
(3-42) - E-wW &x-D e ‘
| i} ¢
.- From (3.38) and (3.3%) - ' . . . \ ‘ ) ’\ .-
“ ) ' b . - v u:: A ° ) ' '
- .- S‘:'\f_rt
T4 _ . . : ...;v_ .l I
_ 5 . - J
Using this in (3\42) and solving for £ «Q\_a)junction \;f x and -t~ ' R
™ )\ Y 'l ’ — s
. (3.43) £ = xue X T WET ) - ( G /u)t = 1)
y 4
B v . : _ 5 - )
. ’ - A . - N . ) N
-Now the solution of (3.40) “is - _ / i - -
L R £ =K S ;
. C 2 . ; -
o R B . : .
- But from (3.41) * L 1 ~ K\/ -
oo . K2 = g S N
.80 - ) “ rs : '-,1_ * ;
v e 102 '
/ .f = £ .
P N o)




T s § B N 5320

P;om (3.43) then , ' . ‘ f . Lo - = |
i : - ‘ :
g i o . I !
@A) Ex, o) = x(ue e A - u(ﬁ(\L -
. ‘ T Ax(e(x‘;;u?t -1) - (Ae(A - Wt - u) - .
. . ‘ . . ) = . » '~\>

-, -

. . .
= N -
i B .

@hié ig the solution of (3.29) with the'inifial condition (3.30),as_may be verified

. . i ‘ .

by substitution. vy . ‘ g . HYe
LN — T ‘ ! . - N. b .- v
From (3.23) thgn p&(t) is the coefficient of x %pv(3.44) . In particular

. ! ‘ ' . ' ' .
the probability of extinﬁpion (zero. population) is pg(t) which is the coefficient a\

of 30 ih’(8.44). Thus% . ' S £
i N B c;\ — u)t‘ I R
: - 1)
(3.45) p(r) = | 2 .
. o : . - )\e(l - U)t -qu . . . \

We will consider three cases:, XA > u ; "X < u ‘an% A =fu . . X ) .

e

For X > u (birth rate exceeds death rate) - : {
) . ’ .
) N // o u I . ..
(3.46) ) . \ : . _lim' po(t) = e ) 1 .' )
‘) . \/t")@‘ - E . -
which is in agreéhent_wiph (3.35). . ‘ - BN
- - . . - .. .

For u .> X ‘(death rate gxceé&s-birth rate), we again fipd_'

- - . . /_ »v - ’ o .l:/‘
(3.47) . ' - lim po(t) = 1 : -
- ] - ¢ too — ) :
vhich agrees with the previous result (3.34). . _
_Finélly for = u  (birth- rate and death rate are equal)w he right hand side of -
(3.45) is indeterminété.xTTo evaluate po(t) in this case we replace (3. 36) by
| ’ . dx. 5 H <
(3.48) : s i = ‘— Alx - 1_) ) a .
S 4o | L
.and repeat -the steps above arriving [t - . ‘ .
" . . . + . -
- - » s » 4
. | i » . ' . -x - l I - J
(3.49) - . - - f(x, t) = [1 + T- (x - Dt 1 ‘
-— 1(23 .
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It follows that _ o e .

. : I
3.\§0) : po(t) = ( .u_i 1) :
. . ) t y
- o WS

when X = u . .Finally then

[N

(3.51) . ‘ lim pg(t) =
- . * t-roo a
.Y
A~
With this as background we now turn to a computer simulation of this birth-

.’ ) i

death process. We will compute an estimate of the probability of extinction § R
wili’u ) (3.45) or (3.50) to compute the theoretical probability. We will also use

(3 A6), (3).47) > (3.51) to compute the limiting value of this theoretical probability.

-
We will en’"compare the three results for;y pg(t) : computer s1mu1ation, theoretical _

_result 'and the limiting valuelas t > oo [, . ‘

v L :

3.4. Monte Carlo Simulation : - N

We now turn to a computer simulation of the stochastic birth-death process. We

/,ﬁill use the simulation to estimate the probability of extinction for augivep initial
3

population, given time and for given probabilities of birth and death.

-

The simulation proceeds as follows. First a maximum time, M , is ‘specified. If

the population remains alive for this _length of time, it will be;said to have )
- survived. If, on the other hand the population is- reduced to zero’‘before a time
"of M has elapsed, the population becomes extinct. We w1ll examine identical

populations over and over again an&,count the humber which survive and the number which

become extinct. The ratio of the number of extinctions to-the total number of
AN X v ' L . A
populations examined is an estimate of the probability of extinction.

a I T /
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— . -
e - L

L4 -

To th¥s end we generate a randem number™ unifoé}ly distributed between. 0 and 1.

. v

If this random number, R , is between O and XNAt , then a birth is declared, and

N 1s increased by one. If R 1is be twes ANAt and ANAt + uNAt a.ﬂeath is declared,

\

and N 1is decreased by .1 . If R, exceeds ANAt + uNAt , then neither a birth nor

o

S . . .
a death occurs, and N is unchangedi) In any case the total time elapsed, X , is

. ) .
incré%ented by At . o f . L\

7 -

‘At this point twd checks are made . (1) 1I1f the total time exceeds the time for- -

survival, M | a survival is-recogded. The variable S records the number of \

& ’ 5
survivals, so S 1is increased by one. (2) If the population, N , has reached fggo,

i ) : ( > . 8

an extinction is recorded. The number of extinctions, E , is increased by one. , |

If neither of these checks are satisfied, we generate another random number, R ,
o 1Y

and proceeégﬁs beig;g. Since each time we generatle a random number we increase "the

time, X eventg’ally either X >M or N=0. Thus the pr‘&_cess must stop with

e : | { )
either survival or extinction. , { ' k\\

-

This entire procedurelis repeated a number of times,‘ T , and the ratio of the

number 6f extinctions recorded, E , to T is'used as an estimate of the probabilitf
C a .
of extinction. -ﬁ? J‘ —_—

LA -
There is oné technical problem yet. to be considered. The probabilities of birth

]

and death, A and u , are specified as is the time iﬁtervall At . It is possible,

~

therefore, that the podpulation could become so large<£hat ANAt ®exceeds 1 . Thus

R would always'be less than <ANAt .. To prevent this from happeinin
e - N - 1} . : . )

. .to vary. Imn particular we choose \ e
s . . b ~

o>
(a4
i
2=
ld
|
¢

A .
j . : :
L2 . ” hd

. : . AN

wh7me N iq“the population 51ze. {This allows us>td use the follow1ng criteria:

- ) B '
. . . '
~ Y .

The computer generates a sequence of ﬁ)eudo-random numbers/xi e., 2@ sequence which
"behaves" randomly in the sense that the sequence satisfies a set of statlstlcal

tests: for randomness.

*

-

-
(

EKC' ' 10
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1 3

R < A implies a birth o ~

. 5%

A<R<XA+u implies a death

A+ p <R . } Q:melies no birth or death_

1
-

As the population becomes large, the time increments decrease but never reach zero.

”»

A program to carry out this simulation and print the Monte Carlo estimate of

po(M) 1is given in Figure 3.1. In thid program:

L

K

b

4

SO

&

I

o ) \
A = probability of a birth in a time At .. ////)

u = probability of a death in a time At .
time required until a survival is declared.

nupber of trials experiment is to be conducted (the larger T 1is,
the better the estimate of po(M).

number of extinctions.
\

.
Pa

number of survivals.

elapsed time at any given point in the calculation.

population at any given point in the calculation. [
random number between 0 and 1 -y
' L

index which indicates number of trial beihg conducted (K < T).

t LY

At the same time as the Monte Carlo simulation is being carried out, we can

-

« calculate .pg(t) from (3.45) or (3.50) where T =M. To accomplish this we let

s ¥
F = EXP(M* (L-U) -
TRl = E-D/AYTF-D) 4T o .



If A =u them

El = AW a™+ 1)) +1
In either case the value of El . is printed as the “THEORETICAL" value.
We also will calculate the probability pp(t) as t »> = . This is given

by (3.46), (3.47) or (3.51) . We let "LIMITING VALUE" be lim po(t) .

_ toe
Then
LIMITING VALUE = /Ly +1 . U<tk
-1 U>L
) } ‘
- \ o
¥
-
- > > -
/ , i :
G
> -
i




2 . L.

100 PRINT "TYPE STARTING RANDOM N2.*

200 INPUT @

300 PRINT "TYPE BIRTH rATE"

400 INPUT L ’

SO0 PrINT ""TYPE DEATH RATE"

600 . INPUT U -

700 IF L+U<=1 THEN 1000 ,
800 PRINT "BIRTH RATE PLUS DEATH KATE EXCEEDS 1"
900 G3 T@ 300 ) _— =~
1000 PRINT "TYPE INITIAL PQPULATION"

11Q0  INPUT 1 : ‘

1200 LET P=I

1300 PRINT “TYPE TIME REWUIRED FJIR SURVIVAL"™
1400 INPUT M - .

1S00 LFT X = Q ° - . . e
1600 PRINT "TYPE TATAL N3. 3F TRIALS"

1700 -INPUTJ i .
1800 = IF L<=U THEN 2100 '
1900 LET E2=(U/L)rl

2000 GZ T@ 2200 ” .

2100 LET E2=1 _ B
2200 PRINT .

2300 PRINT "PR@BABILITY OF EXTINCTION'

2400 PRINT "LIMITING VALUE",E2 T
2500 IF L=u THEN 2900

2600 LET F=EXP(M*xC(L-U)) ,

2700 LET El1=CU*(F=1)/CL4F-uUldJ>rl

2800 G2 T2 3000

2900 LET El=C(L*M/C(L*M+1))r1" =
3000 ‘PRINT "THEJRETICAL',El

3100 LET E=0 - -

3200 - LET S=0 - .

3300 F?R K=1 T3 T

3400 IF P=0 THEN 4500 ’

3500 LET X = X +(1/P)

.3600 LET R=RNDC(Q)

3700 IF R<L THEN 4000

3800 IF R<L+U THEN 4200

3900 G@ TQ 4300 ‘
4000 _LET P=P+1 —

4100 GO T 4300

4200  LET P=P-1 '

4300 IF X>=M THEN 4700

4400—69--T3 3400

4500 LET E=E+1

4600 G3 T3 4800

4700 LET S$=S+1 S

4800 LET P=I ’ .

4900 LET X = 0O

S000 NEXT X o .

5100 PRINT *"MONTE CARLO",E/(E+S)

5200 - PRINT X .

5300 PRINT “EXTINCTI@NS",E»"SURVIVALS">S
5400 G? TO 100 )
SS00 END ’

FIGURE 3.1

1035
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’ SuPPOSg/yd\Etaft with A = 1/2 » an initial Gepulation of' 20 , and,require
Survival fotr a time of 100 in order for survival ‘to be, declared. We will’ repéat the -
- RN . N
Simulation SDf times and estimate the probabllity ofﬂextlnction. The-results_are- U'
: , ’ - B - . . TN .
: | ‘PypE STARTING RANDIM N3 BN T e T
& ail T = P R
e R - 3 e : e - _— _ C
TYPE. BIRTH RATE ’ A - —— S SRR
. . ?.g\;' e N '_ R :’ L : e \:' A O
R ﬁ‘_IYgF{DEAny R?TE--;;-jﬂ . R e
- T T 2.5 N D L e e e e R
LT TYPFJTNITIéL PIPULATION - - : . W e
)-' - ' .j . = ?% ) A ﬂ/“‘ . ;‘-. ~ . N . . . i -“ \'ﬂ;: J‘:‘_
. OTYPE TIME Rruuzxad\gae’suayIVAL N | T e
AU - 21007 4() : s =T oy ' T -
L Tx?g_rarag NO S oF . TdIALs" LT } P \ I %
VR | , . ST ;;/f
-, PR®BABILITY OF EXTINCTION =~ = | EXEER A
" LIMITING VALUE 1 SR ‘ T . L
- .  THEORETICAL . 67297133307 N : . ' -
- MANTE CARL2 0+66 o ‘ : . -
e , e . < - L
i EXTINCTINS "33 ////.  SURVIVALS .- . 17 R S

. .Notice that the Monte Carlé resﬁlt'is quiterEIOSe to pgp as calculated from (3 50)

—~ see THEORETICAL. ' We now repeat the experlment for a longer time periOd-V In;,

Particular we require 200 time intervals for survival. The results are ¢ X
. \\ Y | T
" TYPE STARTING RAND@M N@. , o o .

287? - o e
-451 : . _ -t
TYPE BIRTH RATE . . ) } B el

." ?.S ) . ) ) - . .. - s
TYPE DEATH RATE C S .
2.5 - - : - _ .
TYPE INITIAL POPULATIZN o : L .
?20 T - T ~ . '
" TYPE TIME REQUIRED FOR SURVIVAL —
2200 . IR ‘ !
TYPE TOTAL N@. 3F TRIALS o
250 - o E
PROBABILITY @F EXTINCTION
LIMITING VALUE 1 SR .
THEQRETICAL .81954447028 S S ]
MONTE CARLJ . 0.8 _ C e . .

©  EXTINCTI@NS a0 . SURVIVALS ©. . 10 g

4: ‘ j

o o _ | Li):y' - _
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Once again the Monte Carlo result is quite accurate. Notice also that the oo
- z‘__/ N

THEORETICAL value 1s closer te the LIMITING VALUE.. Sinke the total time, M,

is 1azger, we shétld expect threse" twovresults, (3. 50) and (3 51), to be closer s ,

5
r\

togethert:han they were in - the first tr1al.

-
- o __— »
,Nbxt we try l < u . In partlcular we. let. P = ;4_ ahd n = ;g . If we start

with a popﬁlation of ZSM.and requlre 100 time perlods for survival the results are~

.
i
. - . . . .
- : -
3 . N .

. - W
. .

.- TYPE, STARTING RAND@M N@ . PR S
v -/?#’ _'.. e ... . e 4 ¥
N e 5 a ) a o ’ . . ‘ ) .
.o “-TY?E-BJRTH RATE =~ C e . .
; ! ’ . _~'.;‘.. 04 g .- - ‘. . »& " = . .
TYPE(DEATH‘heTE £ - > -
2?46 .o - . . .
* TYPE IVITIAL boPuLATION .
. ] ?22S . - ‘ . o ';
e © TYPE TLME RES RED FARrR -SURVIvVAL S0
' 2100 e e A A
* TYPE TOTAL ZFR TRIALS | -
. 250 -

- ‘4 PR : :
EXTINCTIGN‘ e N -
uE 1 T . .
©99999998286 . , _
l .o - .

PRABABILITY
LIMITING \".

\

SO : SURVIVALS 0

Somewhat surprlslngly, all three probabllltles are ‘1 .

With these same blrth and death rates, we start with a larger 1n1t1al populatlon
B A - 4

(50).but require only °50 time periods for surv1val. The results are:

)

O
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' ' ¢ : . - ' .
. TYPE STARTING RANDBM NG . o - o - - I
- 05 o i . - . _j\%‘ik.g*f' " . ‘
TYPE BIRTH RATE SN /// R v
| 2.4 » : - . Ce -
TYPE DEATH- RATE . R |
26 v Vs st . ’ - \ o . . : . :
TYPE -INITIAL POPULATION’ v . oL TN
- 950 - ' 3 ] . e e . -., ,_" ) . ._:,—
TYPE TI RE@UIR@Q FBR SURVIVAL' ’ :
250 c
S TYPE T3TAL N9. 3F TRIALS
~.. ° 2?50 o : e N
) PRzBQBLL1¥Y oF EXTINCTIBN . .
LIMITING VALUE 1 . ' . : \ s
THEJRETICAL .99924359218 - .o e DD S
MAINTE CARLA. 1 - T : ST
o . s . y
’EKTINCTIGNS SO SURVIVALS 0 T T

%Fain the Mbnte Carlo results are qulte good

Finally we try A > R We lét X = .501 and yu = .?99 .
»jTYPP STARTING "RANDZM NO. B ’

"-7#9 ) : ' - SN
.5 . ‘ e - 15_
TYPE BIRTH RATE : ' o o SN

. 501 R : ’ . ‘ s &
L _TYPE DEATH RATE ' -

2499 ‘ IR ] . R

! TYPE INITIAL' PaPULATIaN > ’ - :

-.220 '.?’ -

TYPE TIME REQUIRED FOK SURVIVAL
2100
TYPE TOTAL N3. OF TRIALS
250 '

- . PR2BABILITY 23F EXTINCTION - © S

* -, LIMITING VALUE 0.9231162479 a3
*, THE3REFICAL < 64571382048 - . B
. M3NTE CARL3 -~ Q.64 . . -
- EXTINCTI3NS 32 SURVIVALS 18 :

One note of caution. Monte Carlo simulations can consume an. 1nord1nate

amount of computer time.. They should‘be used only as a last resort. In general if

there is any way other than’MBnte Carlo to solve a problem, use the other way.
. i , ) N

In particular for this” birth-death simulatfon, one should beware of increasing

either tie time required for survival on'thqubtal number of trials beyond those used
i;\zﬁevdﬁove_examples. _ ' o ©
L1g
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L= . (Please/circle ome of the responses to‘each gquestion)
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S

1. . Did yopu-attend the short course in 1974-75? * . Yes No SO
- i *
lf" *(a)® Too short ) ‘ . e
= ' (b) Too long - | g —_— -
e o - : o >
7 (e)- About right \\:) . =
- <" . & T ; - '
1f (a), which topics should_be expande@? T .
. o : ' i - - . - .4
. . N =
P o
If (b), which topiés should be abbreviated?
. l ]
A .

. which topics should<be eliminated? . - J

‘\'T- .- j >) _ ~ - : \ - - - ‘ _ —

."-f3f, Could you read and understand the computer programs?

Lo T (a) always . B . - (c) seldom o
N e e . . ’
R IR (b) sometimes ' (d) never

o - ¢, ..
4. -Did the iqﬁeriﬁbproieéts'seem reasonable? . Yes No -
- v o - \ T " . \-- . - “
' .5." Were the self-study-problems )
v . - " S " . . :
i; o ~¥i . (@) Too easy K ‘ ‘ .(d) Too difficult
1%6. Was the-tumber of.séaf-study problems ’ %
(a) Too largeé . " B
3 (b) About right N A
. ! " . ’ ' N
- . (c) Too small s v~
.o - : '1-1*4 R



NE

e

Did you attempt any of the self—study problems’ - Yes No

-

Are the solutions to the self-study- problems properly

placed (on overleaf from problem)’ : Yes - .No

If no, where would you suggest the solutions be placed’

L

- - ”

. For each topic, how solid an understanding do you think you have?

-
-

~

.. Y ‘ . Excellent_ ‘Good * Fair Poor

. ‘i'
Stochastic model of birth—death
‘. process ) -
/- e
Differential difference equation- N R
" formulation | - ;

solving partial differential

Method of characteristics for .’ o .- N .
equgg}ons ,J

I / . i “»
~ .

; Monte Carlo simulations : , - o - ' _ -

.,k- ~ - T

q

o

&



7consider foxes as the predator which preys upon pheasants. In the absence of

-

is Cp,:

- S _— -T-\‘ o - . '
\’ \ ’ ) “ ’ I ’
) . « . , CHARTER IV .
¥ . 3 N
4 . o s -
> "71: : (% .
- . - \ -
2 : - 4
v - '—— A ? ‘
é A PREDATOR - PREY MODEL
~ \.\ D . v &
. - » ! ‘ - . o= .l\\</
4.1 A Simple Model - - 5 _ i o : I
. , . . - )

- - : \ T :
Consider two species one of which preys upon- the ‘other. For definiteness .

s

‘

foxes the pheasants grow as described in Section.l.1l {see eq. (l 2)). That is R
T CL L. N

(étl)h L _ Pk+1.= (;'+-AT- BPkng ;

where -Pk is the pheasant populatioQ§g§ the end of the kth period However, if

fokés are present they will retard the growth of the pheasants. we will aSSume that

é
eac‘“fox a!!ve at the start of the kth/’period w111 consume some pheasants.i The

more pheasants there are the easier it is for a fox to find a pheasant on which to'

prey. Therefore,\we assumé that 'the number of pheasants consuﬁed bz/hny one fox is

directly_proportional to thepnymher of pheasants alive;at the -start of (the kth

.k o Co- . o o BN
period. Based ‘on these~assumptions the number of pheasants consumed by one fox

- \ 2 .
. The total number. of pheasants conSumed F foxes is CP.F. Vhere
k ) - k k
cC>0 .t The constan&'(l depends upon the. search capability ‘of the foxes and the -

ground cover prov1ded for the pheasants. If there is a large amount of foliage thea

the pheaSants'can hide more é%silyvand fewer are killed by foxes. Thus good ground,
. ‘ . - : !

cover reduces C . Similarly large values of C correspond:to'poor ground cover. .

-

4 - K
N

=

* . : ~ : S ’ : T
. Foxes born.during the kth period are too young to be predators.

Fek
This assumes that foxes do not prey upon very young pheasants or upon eggs.

\
8—4. l
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wll Toxt Provided by ERIC

Fal

r

-/

)

W<



_ - . 8-4.2
- * . . LN &

» E \r R \ 3 R {';__
‘4 - Equation (4.1) then becomes A L T
D ' s P —_ C
- .4.2) - Py, =@ tAs BP, )P, —'CP.F, - . A , ) SRR
- R . - . . ?; : \\
3

We now turn ouraattention to the fok_%bpulatio?:. We. w1ll let Ek be the

A ! s

number -of foxes ‘alive at the start of the kth per{od. Suppose pheasants prov1de <
7 o . ;

the s$ole food supply for the foxes. ;In the absence of pheasants then the fox
.. - < .
population will vanish, Ve w1ll dssume’ that if thquheasant population becomes

rd

-

zero, the fox population will die out in ane period. Ihus k.— 0 implies that
- - - . . e

o - C o e e i :
'ﬂ‘g,fox population at the end of the kth .period wanishes, i.e., Fk+1 =0 . We _
? P 3
‘U“ 11 also assume that the fox population at the end of a period is directly X
proportional.to,the populatron at the beginhing of the period. These two assumptions
lead to ' : .- .- ’ v ?\;;’
4.3) ot  Fyy = DPRF | _ . '
. ‘.
where D >0 and represents the rate at which foﬁes convert their food supply. into
population growth If the food conversion process is, efficient then D is large.
- - - -]
4.2 Equilibrium and Stability. . B - - s
o - ~ . o.toT
. H r. . A.,j; ‘ @
. ) Before carrying out some numerdcal experiments we tu\\ ro a discussion of W2
'equilibrium populatxons and the stability of these equilibrium populations.
i ) . \
. Will the pheasant ‘and- fox populations reach equilibr:n.um'2 he A
If we "wish to 1ns5*rute predator control (kill foxes), when should we do so,
and.how many preadators should be eliminated. ) ‘
If we wish to allow pheasants to be hunted, when should we do SO, and how mamy-
.pheasants should we allow to be killed7- . | o : o b
% o .’ What would bé e effect of periodically adding more pheasants to the population°‘

e >

" We will attempt 1n what’follows and in the exerc1ses to answer these questions.

{- The reader is once again urged to think of other similar questions which might be of
[:R\!: . - ’ . : -l.l

il Toxt Provided by enic [
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- 5 . ’ N - -
. - __— : f:,\ . ,
interest .to him or to ecologists and“to use mathematics and/or computing to search o
A . a _ . ‘ X X . N [4 N o .
. for the answers. “The Tollowing should provide a guide for such answer-seeking )
.act:ivi,:ies.‘ ’ _ ' oo ) Lo - ‘ : . .
- .
- We fj,rst determine what the eﬁilibrlxm}/populatiorzs are. If both pheasants
g [§
Y . .
" and. foxes are to ‘reach equilibrium then for k —sufficiently large .both _ .
o , _ Pre1 = B = Pa . & _ - -
- i = - - } 1N
/
!
and ’ . Y
) A} ” H -
7 : 1 = B = By : :

- a i ) .. v ) - Qv
"wberef ,P, and F, are the équilibrium populations. Using these‘in (4.2) and (4.3). ~
. : ®F]oo00 . , v A * .- :

XA " "Be= (I +A-BRJR, -CFER, . L
(o 1 ‘ \\‘ A : 2 - N R
(4-5) ) /q__}a«,; i . /:\ - 4 F* =D P* F* ~ . [N
v . b ' o e
o o T T
“These are two algebrdic equations in two tmlm':)wns P, and/'E’*\& ..
From (4.5) either ' : T
$ T QF*‘. =0 k] ‘ ’ -
ua ~ o4 ;
- . P - <
or P N -

o . 1/D N ’/ 3 “a

Consider first F, = 0  then (4.4) becomes . , 1
) L ¢ £ A - BRO B
| T |
this is the same equilibrium equation we met in the single species model.‘ Our
earlier analysis then tells us there are two solutions: P,=0 or P, = A/B .
We have then found two equilibrium conditions. Either . ’ e
- . . . - . - R ) .
| S T~
_ 115 =
i S . &l



8—404 [
. e - ‘
S . - R
& . - v / - ,
4 : : “V: Fo =0 T
(4.6) - and y ;
- ' . ) . P, =D :
- ‘ *
or . ro ’ _ ‘ —
N F, =0
1. (4.7 - - - and : \ : .
- of. - P, = A/B . . . -
- e ’ b .. ’ R _ B

There is, of course, sti}l the case where P ="1/D to be considered.’ In this

_ case (4.4) 'lé'ads to . \\ vy ' .
. : W -

v : . _ AD-B
_ \ = The . ’

A third 'Z-‘:_quflibrf%mn condition then is d - »
’ ’ ‘ : S T
B IS ‘\ _F* - A‘D - B ’ . . ) , . .‘
. S o . . <P Co= l/D : °

»

The first condition, where both populations vanish, is not- of much interest,
. / ’ : - " . : ~

!

- . / : . - ! . 3 - 3
but we shall investigate the other two._  For ease of reference we will define -

Iy s . . . =
o e

4.9) * t . Py =A/B
\ : v : -
o \(-4.‘10) _— ) P, =1/D . ~
(4.11) 4 N o F.= A-B ’
AL s e’ DC

4

The two equilibrium conditions then are (i) O foxes and. PE phéésanté, and (ii) _' %

.

Fe foxes and Pé - pheasants. The subscripts- E and e derive from the word

"equilibrium". - As we shall see, ‘the lower case “e refers to a lower value of the

pheasant population than does the upper case E .-
» . M ) .« - .
To investigate the stability of these equilibrium conditions and, in more general .

terms, the behavior of the fox and- pheasant populations, we will turn to a computer

,

. 1~
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4 »

program and some numerical experiments. In order tQ\dQ so, however, we would need

to assign values of A , B , C and f/;//It is unlikely that we could obtain the

values of all of these parameters even %ere we to ask an experienced- ecologist. Om

the other hand, an ecologist mightfbé able to estimafé tpe values_ of PE R Pe; and Fe'
is just?the number o@gﬁheasants which the environment can suppor'tlzw

bl

For example, 'PE

if no foxes are present.. Similarly Pe and Fe are thg,numbers of pheasants and

foxes which would be present in a qompletely'balanced situation.

‘Could we compute A , B-,‘C and D if we were given ;ﬂé values of P ‘, Pe

éﬁd Fe ? The answer, unfortunately, is no. Recall that in the single species

problem we could not computé both A and .B from';NE . However, from N_ and A

we could compute B . That is to say, we needed one of the original parémeters in

[

addition to the equilibrium population. The same is true here in the Qrédator-prey
problem. Given values of the equilibrium populatiohslhnd the vglue.of say A , we

can compute all of the other parameters. Indeed, (4.9), (4.10) and (4.11) can be

solved to obtain

! t
Y
5

, A _ \
4.12) - _ p= A - .
) ) . .PE. , o
| \ - B
4.13) C = éﬁgg__fgel
’ Ee ° “
. S - V _ l i
(4.14) - , L D= P -
. e - ;

b

We have assumed that none .of PE ; Pee or Fe are zero. More&yex; since our original
- - . : 7 .
equations assumed that B , C and ‘D are positive, it follows that PE > Pe , 1.€., .

- . e &

_ the pheasant gquilibrium~in the ‘absence of foxes is larger thén the pheasant equilibrium

4

. ‘° ta
population if foxes are present.
» . - % ) . . . . . .
We now construct a comp&ter program which takes PE R Pe s Fe and A as input.

~

(A “is tHe unrestricted.pheasggt growth rate). The program computes B , C . and D

G 3

then asks for starfing pheasant and fox populations afid for the number of periods to be

IToxt Provided by ERI
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predicted. . The program is shown in Figure 4.1. I; should be self exglanatory‘
except-perhaps for the statementé numbered 2400 and 2600. - Each of those checks to
see if oné,of the'two species has dropﬁédrbélow -i*. .if sé that popﬁlation is set .
equal to zero. Numerically, of course, we could obtain negaéi;e values for the
populations, In the siﬁgle speciés case fhis was’pf little .concern since we merely

assumed, after the f?&;:;ﬁhaé negative values meant zero populatioms. In this two
 species case, however, if the fox population became negative it would affect the "

=

pheasant population in an unnatural way.ﬁ Therefore, it is crucial that we prevent,

negative populations. Finally we note that it may seem more natural to set a
~ By - -

populatloqagqual to zero if its value drops below 2 or even some larger number.

Our choice of 1 1is somewhat arbltrary and»codl& be changed without affectlng the

- ’aa

generalwkehavior of the ‘populations.. e

dloo PRINT “'TYPE PHEASANT EwUILIBRIUM POPULATIAN IN ABSENCE 9F FgAE3"
0200 INPUT P1 : _ o )
0300 PRINT "TYPE PHEASAVT EQUILIBRIUM PZPULATION WITH F3XES PRESENT
0400 INPUT P2 :

0500 PRINT “TYPE FOX F\UILIBKIUM P@PULATION"

0600 INPUT F2  oae _ S

D700 PRINT "TYRBSPHEASANT UNHESTRICTED GROWTH RATE"™ |

0800 INPUT A . N

0Y00 LET B=A/Pl

1000 LET C=AX(P1=-P2)/(P1¥F2Y

L1000 LET D=1/P2 .

1200 PRINT "TYPE INITIAL PHEASANT PAPULATIIN

1300 "INPUT P

1400 PRINT "TYPE INITIAL F3X quULArlav"

1500 INPUT F )

1600 PRINT "TYPE N3 oF PERIZDS T@,ss REDICTED"

© 1700 INPUT N g -

1800 PRINT - _ . .

1900 PRINT "PERIJD","PHEASANTS'»""FEXES" .

2000 F@r I=0 T3 N

2100 PRINT IsPsF .

2500 LET P3=(1+A-B*P)*xpP=CHF*pr
- 2300 F3=D*P*F

2400 IF P3>1 THEN 2600

2500 LET P3=0

2600 1F F3>1 THEN 2830 - ot . K

‘2700 LET F3%=0

2800 LET P=P3

2900 LET F=F3

3000 NEXT I

3109 ETN") . 11y | Figure 4.1
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We now use this program and examine some specific examples. One case ie
exhibited in Figure 4.2. The pheasant and fox populations are started %elatively

.close to the equilibrium values. In particular the inftial number of pheasaﬁts‘

N

.. (9,000) is somewhat less than the eouilibriun value (10,000), and the initial
number of fg;e;w(l,IOO) is somewhat larger than the equilibrium value (1,000). .
In each case the difference between the initial population and the equilibrium

population is 10Z.

Notice that for all practical purposes each 20 periods the populations return
3 -

to the same values. 1In order to study these results more carefully we draw a graph
bof the populations. We could, of course,.plot each of the populations of the two
species as functions of time (number of periods) However, we w111 find it more )
useful to plot the number of foxes as a function of the number of‘pheasants The
graph is shown in Figure 4.3.- The initial point is 1ndicated by the large circle.
The arrows indicate the order in which the points appear as time prog;esses. The
equilibrium solution FE = 1,000 and PE =_10,0§8 is indicated by theflarge X .

From the cyclical nature of this pehavior it appears that the equilibrium Pe

and Fe is unstable. Indeed this is the case. | |
Let us noﬁ try another example as shown in Figure 4.4. .Notice that'in»this:

case even thouéh the foxes start at twice the equilibriﬁﬁlyaiue,'the pheaaant‘ |

population 1is insufficient to sustain the_foxes and the latter become extinct rather

quickly. Thereafter, the pheasant population continues to thrive and should eventually

reach 10,000. |

We could continue such numerical experiments, but we shall not do so here.

Rather we turn our attention to a discussion of hunting seasons. and predator control.

Self-Study: ‘Problem #4.1

Assume that the growth of the pheasant population is not affected by over-
crowding. Simplify the model discissed above accordingly éng discuss the equilibrium
and stability questigcnm.

EKC_I' o

wll Toxt Provided by ERIC
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TYPE PHEASANT EQUILIBRIUM POPULATION IN ABSENCE OF FOXES

122

7260080
TYPE PHEASANT EQUILIBRIUM POPULATION WITH FOXES PRESENT
210000
TYPE FOX EQUILIBRIUM POPULATION
71000 ' s )
TYPE PHEASANT UNRESTRICTED GROWTH RATE~ -
T2 < .
TYPE INITIAL PHEASANT POPULATION
79000 .
> TYPE INITIAL FOX. POPULATION
71100
TYPE NO- OF PERIODS TO -BE PREDICTED
740 S
' _PERIOD  PHEASANTS FOXES
) 9008 1100
1 9000 . 99@.
-2 90899 . 891.
3 928017 810.722
4 1 9522.62 752.383
5 98063-9 - 716.447
6 101r01.1 702.397
7 . 18391.5 709.5
8 10652.7 737.278
9 10863. . 785.4
10 11002.4 853.184
11 11853%7 938.708
12 11004.9 - 1037.62
13 18853, 1141489
14 10606.4 1239.29
15 - 109288.3 1314.44
16 9935.12 1352.33
17 9591.52 1343.55,
18 .9301.18 1288.67
19 9097.68 1198.62
20 - 8999.08 1090.46
21 90087.74 981.318
22 9113.95 *  883.945
23 9300. 47, 805.623
24 9546.31 749.268
25 9828.98 715.274
26 10125.7 703.0842
27 10413.6 711.876
28 10670@.6 741.32°
29 10875.1 791.032
38 11007.2 860.252
31 11850-1 946.892 “
32 10992.8 1046.33
33 10832.7 1150.2
34 10579.8 1245.98
35 18258.2 1318.22
gg- 9985.29 1352.26
956, 1339.45
38 928 128128 Figure 4.2
39 9088.07 1189.36 o
49 - 8998.85 1088.9
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i

. TYPE-PHEASANT EQUILIBRIUM POPULATION "IN ABSENCE OF FOXES

710000
TYPE PHEASANT EQUILIBRIUM POPULATION WITH Foxss PRESENT _
'+ .25000 ﬁ‘
TYPE FOX EQUILIBRIUM POPULATION ‘
.- 71000 |
~ + TYPE PHEASANT UNRESTRICTED GROWTH RATE
Tel
" TYPE INITIAL PHEASANT POPULATION
. 71000 - ‘
TYPE INITIAL 'FOX POPULATION -
72000 | ' ~
. TYPE NO. OF PERIODS TO BE PREDICTED -
220 o -
© PERIOD PHEASANTS FOXES
> ) | 1000 . 2000
1 990 . *  400.
2- 10594 . 19.2 _
'3 1149.92 . 16.7809 g
4 1250.72 7. 385933 B3
5 1359.91. e . )
6 1477.41 ) |
7 1683.32 0 -
- 8 1737.95 ] -
9 : 1881.54 e
S 10 2034.29 2 -
o111 . 2196.34 .0 <
- 12 : 2367.73 ¢ 0 f' -
13 2548.44 @ - -
14 - . 2738.34 o
15 _ 2937.19 e \
T 16 3144.64 e
- 17 3360.21 9 :
& 18 . 3583.32- o -
19 3813.25 9 - g*‘f‘
20 ‘ 4049.17 9 :
. : - . \ /

s
.
]
o
v
P it Y]
\v

Figure 4.4

X
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Solution to Self-Study: Problem #4.1 s . . S \
) _‘ - B . N . ) . z
If ctowding is neglected them B = 0.. Then the(moael becomes
- g _ .
) oy . :
Pl "B T AR T C R B '-,g"Ai°’°>°
o Fepr =D B By e . D>0
Letting P, and F, be the équiiibrium populétions
P* (A - C F*)‘ =0 N ‘ B
F, (1'-DP,) =0, - T
.. The équilibria are
q*’= 0, P, =0 .
. a . ,_ -
o FeT T B 3 L | B (
* The stability of these equilibria can be investigated either by means
of a computer program similar to tﬁat'of5Figure 4.1 or by techniques similar
to those employed in Part I of these,ndtes. The changes,required in Figure 4.1
] ' . f ‘ N . ._
are N . <
7 - 100
- . “- 00 .
- | - 900  LET. B.= 0 -
8 f__-‘_' \ lQOO LET"C =,A/F2. /
The equiliﬁrium, F,=0, P, = 0 ‘is easily seen to be unstable. For if
_ .
we consider .the starting values Fp = 0 , Py arbitrary, we find Fk'= 0,
. o ¢ '
P = 1+ A)k By . (See e.g.- Section 1.1 of the appendix).
Thus no matté: how small Pg 1is, as long as Py and. A . are positive, Pg > «
: To investigate F, = A/C-, P, = 1/D , we set
— ) N » o
d v - e }}=fk+A/c s Pk=Pk+lllD

. . ' P

-
~s .

. . : R . U .. ,','

125
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=

-and drop terms in- fk P + Om eliminating fk' from the resulting equations,

) 3

;;< " we find

0
o

- (1 +
Proz ~ 2 Py HET A By .

‘ | b ] , .
' : . : ‘fk =’ T (Pk_ pk+1) .
.- . .The second order difference eduation may be solved using the techniques

described in Section 2.2 of the.appendix- . The solution for Py is,

-

<y
W

pk?a(l+A)k/2 cos(k 9 + 8) : e
-_‘.where - o e /————Z
o < =T = ¢os 1+ A :
e - LY 4 t . . b .
and where ‘a and ° B° are dbnstan;s'detefmiﬁed by the initial values pg
and .fb . Tﬁefsolution oscillates and the amplitude increases if A > O .
Therefore the equilibrium is unstable.
-/ . ~
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: Se1f-Study: Préblem # 4:2. e

consider weakening the assuhptién that in the absence of pheasants\at pefiod'

k _ the foxes are extinct at-period k + 1 to thé.assumption that in the absence

. - of pheasants, the foxes obey a simple (negative) growth law. Find the equilibriumw,
N .

Populations using this new assumption and modify the. program in Figure 4.1 in order E

-

‘“to study the stability of the equilibria. Check ‘your results by noting that the
. R

model discussed in the text is a special case of this one.

—
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. Solution to Self-Studyx Problem #4 % '
. ; s o YE
~ . 1In the absence of pheasants o
P . .
. . ; :
S S R

. ) ' . ’ ' {

" Thus, the full model is y ) .

Proy ~ B T A BRIR 2 C R Ty
’ Flgg ~ Fe =~ CF +D P F *

- v : ) Y
; .

"~dete that & = 1 gives the model -discussed in the\rext. The equiliBrium

. N .. . .
populations are . / i
of
‘ j . - B
(b) Fp =0 and Py =A/B : - ) ' :
or S : ‘
' , = _ AD - BG - _ G. ‘
(e Fsa = o) and P = g3 ‘ X
. Thus -
B = A/P;.
c - A(e - By ’ w i
) PpFo o
) e e R A P . -
' = 8 = S .
. D= P
€
h = e, - .

thice’thet the fifét two-of these are identical w?thi(4.12) and (4.13) and

o

(/\
that»the las% reduces to ?@\14) for G=1 .

The only changes required in the BASIC program in Figure 4 l are.

s e ; . . 820 PRINT “TYPE FOX UNRESTRICTED DEATH' RAIE"
- R - 830 INPUT ‘G -
- , 1100 LET D =-G/P2 . .
7 . . -2300 LET F3 = (1-G)x F + D«PxF : SN ¢

123




4.2 Predator Control - ’ o

]

-

ﬂe continue our study of pheasants and foxes, and assume the two populations are
governed by (4.3) and (4.4). We will consider the particulay example shown graphically
in Figure 4.3 although our discussion is applicable to more general cases as well.

Suppose that a decision has been made to institute predator control. Such

a decision might result from one or several of the‘folloﬁing policies: s A
: (1) The pheasant population‘should be keptiabove some. minimum dé:;e,
. say 10,000. . \ \ ‘ -
(2) - The fox ;opulation should be kept below some maximum value, say
1,200. ' ) |
(3) It is desirahle to allow foxes to be hunted and killed.
' . ~
- As has been our habit, we ask the reader to try to-think‘of other policies which;_ ”%;%

might lead to a decision to institute predator control. Mbreover, we encourage the
: S _ 2

reader to think of more fundamental problems which might in turn give rise to the

" above policies. By way of example, it may be that if the fox population exceeds .

~

1,200; the animals are so numerouf_that they create'a‘nuisance to the human inhabitants

[3

and thus policy (Z)Vis instituted. ' . \ ;

Be that as it may, we nowrtry to decide upon a sensible way of implementing
predator control w1thout upsetting thetecological balance. Our first inclination
wOuld be to kill foxes when the fox population was relatively high. Thus e look
towards the upper part of the graph in Figure 4, 3.' As a start, supnose we decided
to kill foxes at the end of period 18 when there are approximately 9,300 pheasants-
and 1,290 foxes. We will'assume that the control season (time during which foxes
are killed) is quite short compared with the time periods in our computations;v Thus
. when we kill foxes, the pheasant population remains unchanged. _This- means that‘on
our graph (Figure 4 3) we,wbuld travel downward on a vertical line from period 18.

~

If we then abandon predator control the two populations woﬁld continue around thaf;f

.- . ‘ | | . ':::> | .
EKC - ~ . dzs .

wll Toxt Provided by ERIC
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oval as before. The result would be the pattern indicated in Figure 4.5(a). This
_ a, _ . _
assumes, of course, that thf predator control is relnstftuted each time we reach . .

. -

9 300 gheasants and l 290 foxes. : S - .
. ‘ - k &

~ Y
'

)"

‘ ' "

Phus-u\'*s X pl\easa\d's

)

< v .
Figure 4.5 ~ . S

Y
-~
»
~./

o . -
.

.

Rather than use control at period 18, suppose.weikili foxes at the close of

N . L . .
périod 14 where tM€ pheasant population is 10,600 and the fox population is I,240.
‘x o . . » e o

Once again we travel vertically downward and then resume the oval. = The result is

v
- . 1y

PO S

'._shown in Figure 4, S(b) . LI e

L ‘Lét ‘us niow examlne these tvo: alternatlves and make some‘obserVatlons.' The:firstj
- - 3 - ' .
alternatrve has relatively litéle effect overall. "The pheasant and fox populatioms

both vary between approximately the same limits. Therefere if our goal was to satisfy
policy (3) above, this’ mlght be a reasonable cholce. _The second choice which leads

to Flgure 4. S(b), on the other hand has considerable effect.  While the fox population

stlll varies between w1dely separated values, tpe pheasant populatﬁgn changes very ’

;'llttle.‘ There is. yet another observatlon to. be made.’ In Flgure 4. 5(a) the t1me

' between huntlng seasons is about 15 periods since we<wlll drop_from perlod 18 to

CERIC )
v P o~ .. 11?:)' o . s o
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period 3 conditions. In Figure 4.5(b), however, the time between hunting seasons is

only 6 periods (period 14 to-period 8).

- Ta ~—

What conclusions can we draw from these observations. The second course of
. action, the one in Figure 4.5(b), is bette¥ adapted to policy (1), i.e., keeps the
pheaeant"populapion high. Neitﬁer‘solution does much for policy (2) since ,[in both
eaees theéfex ﬁop@latidn giowe quife‘large. Eveelso, the second alternative doces
keep the magim&m fox population a little lower than does the first choice. 'Fiﬁally
if an osjective is to have frequent hunting %eaeons en foxes then the;seeond choice

is clearly preferable. On the other hand, if predator control is an expense, and we
T N . . .

wish to use it as infrequently as possible, then the first choice is the better one.

r . . B
On balance then the second choice as shown in Figure 4.5(b) seems a wise one,

and we shall choose it.  We will concentrate on policy (2) of keeping the fox

population below 1,200. Before devising a detailed strategy,of predator control,

%

. . - ! .
however, we reexamine the assumptions we have made and discuss the consequences of

~

any variations in these assumptions.

We assumed that the predator control season was quite small compared to. the
, , - o .

. - g ) ‘ T

- time periods in our calculations. This led to vertical lines in the graph. Suppose

[

this is not so. As control‘is started in either of the cases ‘in Figure 4.5 the :
. . \/ -
pheasant poEulatlon is decrea31ng. Therefore, the populatlons would follow a line, *~~

'perhaps with slight curvature, down~but sllghtly‘to the left., One p0551b1e pattern

is shawn in Flgure 4. 6(a) It corresponds to predator control at period'14, i.e.,,

-

the ségond course of actlon.

-

A second assumption was that our control was so accurate that we killed

precisely the number of foxes necessary to bring us back to our oval curve. This
. . R . . - .l . -

deg#ee of pregisiqg.g$ quite unlikelya and we are more likely to overkill or underkill.
" .In either case; provided we do not égss our target number by too much, we simply end
on another similar shaped curve. The case of two successive overkills are shown in

. Ty . ‘ ‘ o
Figure 4.6(b) where the pattern moves\from left to right. Of course, upon observing

N : >

[Kc | - 13; .

wll Toxt Provided by ERIC . | [




Foxes

. -

F;xcs

P‘\&s-ud S
(a)

such a pattern, it is likeiy that an adjustment to.produce an underkill would be made

for one or two hunting seasons.

> L

Pheasants

. ()

Figure 4.6

. 8-4.18

We now return to the detalls of our predator control and to the program in

F1gure 4.1. _We will change the program so that if the fox population exceeds

of the equlllbrlum fox populatlon*, the program will (a) tell us what the two

202

populations would be in the absence 6f congrol, (b) allow us to determlne a number

of foxes to be'killed and (c¢) continue the computations with the same numbers of

oo
s

pheasants but a reduced number of foxes.

<
s

To accampfish thlS we add the program sfeps in Figure 4.7 to the BASIC program g

7

in Figure 4.1.

s - 2800
2810
A - . 2820

o , . . 2830

7 2840
\ ' - - 2850
2950

IF F3 < 1.2 * F2 THEN 2900

PRINT ''HOW MANY FOXES SHOULD BE KILLED?"

INPUT X

LET F3 = F3 - X
LET P = P3
Figure;4.7

*
Tn thls case thlS means if the fox populatlon exceeds 1,200.

ljR\ﬁj S

wll Toxt Provided by ERIC
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132

'PRINT "PREDATOR CONTROL WITH NO CONTROL THERE WILL BE"
PRINT F3; "FOXES AND"' P3; "PHEASANTS". '

L3
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The first statement checks to see if Fk+1-< 1.2 F, - If so we still bypass

f

control even though the ﬁheasaqt populatién is on ﬁhe decline. Stateme;t 2820 to
2850 should be self explanatory. Statemeﬁt 2950 is néceSsary siﬁce we &életed the .°
‘previoﬁs LET P = P3 by oﬁr ﬁew statemeng,éSOO. |
An gxample of running this revised program is shown in Figure 4.8. Some
explanation of this figure is in order. The first predator control is atvperiod 14,
Since there are 10606.4 pheasants we look back in time for a season with apﬁroxiﬁately;
the same number of pheasants. If wé couia find a period with precisely that number
of pheasants, we would kill a number of foxes VhiCh wéul& return us tofth;t state.
The best we can do, however, ijs season 8 ‘where tﬁere_are 15652.7 pheasants. The
fox population there is Fg = 737.278 .'.To reduce the foxﬁ?opulation to thi; latter
figﬁre we would need to kill 502.012 foxes. Howevér,.since_the pheasant pppulation'
. at period 14 is slightly less thah Pg ,-we choose to kill more than 502 foxes. Im
fact we kill 520. | - m
Thé secon@'time that control is exerted is six periods later where“PZQ;= 10707.3.‘
Thié pheasant poéulation is about midway between iPlu énd "P1s so we kill a nuﬁber

 of foxeéxwhich will leave thé fox population about midway between F;y and ‘Fls .

] X

Ibis&%eads to.a kill:of 480 foxes. ' .

At period 26 we killl 530 ‘fdges and arrive at populations slightly less thaﬁ
period 8 so that we aré‘slightly inside the oriéinal oyal.. At period 32 we kill'
465 foxes co-?épieve populations slightly larée£ tﬁan period'.8 so we. are slightly
o;tside of the 6rigiﬁal oval. The remainder of the computer printout aqd the strategy
used to achieve it should be self evident. ' . L .

'Oﬁr strategy has been simple enough. At eaqh'point~whefe the fox population.
._exceeds. 1,200 we look back in history for a state in which the pheasant population
is.close'to the present pheasant population. Upon finding such a state we make note
.ofrtheifox éopulagion of that past st%te. We then kiil ehough foxes to bring the

&

present fox populatjon down to the lower value of the past state. O0f course, we are

IToxt Provided by ERI
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not able to find the preciserﬁheasant population in any pést season. Havihg'cﬁosen

the nearest one, we make some compensating adjustment in the ‘fox kill.

-
i

/

TYPB PHEASANT EQUILIBRIUM POPULATION IN ABSENCE OF FOXES

"

220000
TYPE PHEASANT EQUILIBRIUM POPULATION WITH FOXES PRESENT
710000 '
TYPE FOX E UILIBRIUM POPULATION
4000 -
TYP PHEASQNT UVRESTRICTED GROWTH RATE’
72
- TYPE INITI PHEASANT POPULATION . . -
79000 : L o )
TYPE INITIAL FOX POPULATION , s
, 21100 - . . .
~ . TYPE NO. OF Pzﬂions TO BE PREDICTED
735 - -
PERIOD PHEASANTS FOXES .
"9 9000 " 1100 . g
. 1 90003. 990
i 2 9@99. ° 891.
- 3 9280.17 818.722 i
. 4 9522.62 - 752.363
5 9803.9 716.447
6 10101.1 702.397 .
7 103915 ‘709.5 ,
8 - 10652.7 - 737.278 3
9 - 19863. © 1854 o
10 "11002.4 " 853.184 P
11 110537 938.708
12 11804.9 1837.62
. 13 10853. 1141.89
Figure 4.8
(Part 1)



PREDATOR
1239.29

HOW MANY

2520
14
15
16
17
18
‘19
PREDATOR

1220.99 -

- HOW MANY
2480

20
21
22

23 .
24

25 -
PREDATOR
T 1259.28
HOW MANY
2?2530

26

27

28

29

30.

31
PREDATOR
1205.65
. HOW MANY
2465

CONTROL .

8-4.21

VITH NO CONTROL THERE WILL BE'

FOXES AND-10606.4 - PHEASANTS
FOXES SHOULD BE KILLED?
18606-4 719.287
18839.8 762.904
11005.8 826.973 1
11085.5 910.149 -
11064.8 1208.95
10937.1 1116.38
CONTROL. WITH NO CONTROL THERE WILL BE
_FOXES AND 10707.3 PHEASANTS
FOXES. SHOULD BE KILLED? ‘ ’
190707.3 - 740.993
10908.9 793.494 o
11@3S.1 '865.516 ‘
11069.3 53955410 . ,
11000+ 6 1057.24 : -
10827.6 . 1163.03 ' N .
CONIROL- WITH NO CONTROL THERE WILL BE e -
FOXES AND 10561.5 - PHEASANTS : o
FOXES SHOULD BE KILLED? _ _ -
- 105615 - 729.279
190788.1 778.225
18950.9 830.926
11032. . : 909.943 -
11817.5 " 1903.85 -
109081.1 1105.98 °

CONTROL. WITH NO CONTROL THERE UILL BE
FOXES AND 10687.4 - PHEASANTS ..

FOXES SHOULD BE KILLED?

-

- Figure 4.8 .

(Part 2)
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Self-Study: Problem #4 3 S

4 - . o B L .‘ . . : - -

- .

Devise other stratégies for predator coﬁtrol and modify the BASIC program
. . A "-- | .l . ) " L

.

-in¢Figure 4.1 to imﬁlement that .control. 1In partlcular, when the fox population

1s more than - 20% above equlllbrlum reduce the fox populatlon .to egulllbrlum

- <
>
1 2 -
k 14 .
.
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1Y
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T

L -';-:élﬁfidp to Self-Study: Problem #4.3
. ‘ " The r"-_‘_liu,iféd‘._modi'fications to Figure 4.1 are

) U072 2800 1 IFCF3 < 1.2 *F2 THEN 2900

- - . . 2810° PRINT "PREDATOR CONTROL'
L. , S .. 2820 --IET ‘X = F3 - F2 '_ L _ B
) ©...h.. 7 2830 ' PRINT "RILL"; X.; "FOXES" . . . . .
. ©. 2840 1ET F3 = F2 ‘
2950 LET P ='P3 -
— . KR °‘f*" o
_ s
4

: .
. —
-
. .
- - B >
-
‘— ] (
- -
- . ‘
s
N
.
. N i -
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Self-séudy: Problem #4.4

. ~
.7 -

.' 1 Re.ferring back to Self—Study Problem #4. 2 write down a pa:f.r ofu—first—order

(
differentlal equatlons which " represent the continuous model for the pheasant—fox

- .
p;roblem., . .
¢ E
: -3 _ :
- W .
s
~ r
.-
!
“ i
R .
’
- ; \ ’
y
. . i ‘ - -
s
T
-
¢
- v -
.
: 3
- - ;! . .
2 . R - s -
» o - . : \h
. \ 3 o .-
. . - .. -
- Al ' ~ ’- .
- - - - ~ - ; - ,
. ’
B . - . -t AN
) D ) ' K .
- . -~ ) 2
.
5. o - .
5 .
-~ <
: N N
-
.
)- <
-
- N -
3
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. Solution to Self-Study: Problem #4.4 o ..
- ‘ -
dp - .

(A - BP)P = CFP.

oo . ar E //"(\
& = - + .-
. ' S de GF + DPF o / rL .
" Notice that G = 1 no longer implies the model used in the text since
this ‘G is. At times the G in Self-Study Problem # 4.2.
| T \
e~ o ~ ) _
-./~ . ) °
i * B -
4 - _‘
- . AR o :
R . . N .
; - e . 1 :
~ v .’ N . dL &S0 .
4 . ’ | &
- oy - “ - a?
. - « | ‘
o 135
e, K . _ :
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. CHAPTER IV

AUTHORS' EVALUATION o

(Please circle one of the resPonses to each questiog}I‘

~

(a) aiwéyé

'(b)'sometimes

4.’ Did the interim projects seem :reasonable?

5. Were the self-study problems .
o |

. (&) Too easy
‘6. Was phefnumber\of self—study problems.
‘(a) Too.large . - :;~_f

- (b). About right

+ (e¢) Too small-

140

" (c) seldom -

(d)  never

Yes

(b) Too difficult

. L 3,
‘1. Did ybp_atteqd the short course in 1974-75? Yés No
2. ~1Is this'chapteff o £;'” _ .
| . \ ) NP - . -;;$-€: .
_-%f(g) Too short e s
: o _ bk
- (b) Too long N > ]
; (c) ~About right - .
. . B K " o - ‘. ' . . R "' . " :
If (a), which topics should be expanded? ‘
can jou suggest;topics:tq.be added?f L.
- ) 19
Ifﬁfb95.which topics should bé!abBreQiated? ' :
. v g K P A
. P T .
' which topics shdul& bé-eliminated?"
3. Could yoﬁ:féad and'understand tﬁe'cémphter prdgrams?

- No

//,
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~ P .
. ) {
~'7_.' Did yOufattempt any. of the Self-study problems?" “_ Yes No
8. Are the solutions to'the self-study pfoblems properly A T
placed (on overleaf from problem)? . Yes No
If no, where,would yop suggest the solutions be placed? ’
e A t -
— - & 2 .
9. TFor each topic,'hOW'solid'an'understénding_do you thiﬁk‘you,have? : )

_Excelleng- Good ° - Fair

'gycliCAl Nature of population

Poor

. Predator -Control Methods .

. Effects of Over (Under) kill

‘Multiple Species Models in General .
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- . AN ECONOMIC MODEL. .

5.1 A Simple Model S ' _ ' gb
T S ) - ] P : ' .
.- Assume that-the total national income, T , can be separated into three parts::
consumer expenditures,‘cb; private-iﬁvestment, I ; and government'expenditures,-G .
Thus

=C+I+6G _

"Ailiof.theSe quantities-vary with time. Usually the values of each. of these’ are knowni

only at spec1f1c ‘times -— the end of a year or the end of a quarter of a year. We

~

will assume then that" each of ‘these four quantities is measured and known at fixed

points in time. Let Tn s C_ In and Gn be~the values of the total income,

R,
consumer expeﬁditures; private investment and'government expenditures for the  nth
Ah period where ‘n =0, i,~2,,..._."Then

‘0‘

'@Dp_ - . T =C +I +6

J - -~ - . . [

. Next we assume that con§mers' buying habits are affected favorably by the
total mational income. However, consumers only know the value ‘of the national income
, : ons : : 2t -
c . , o -~ ,
for the periods prior to the current one. We will assume that consumers have a short
: : R The . ’ . : .

hémory'so their buying.habits-in the nth ‘period are only affected by theitotal

natlonal income "in the (n - lfst period. Moreover, we will assume that C is some

_percentage (perhaps greater than 100%) of. Tn—l > i.e.,
_(5.2) B Ch = A.Tn_1 ‘ ; n=1, 2, 3,




"% ‘ -. : o . L B R 8=5.2
The constant of proportionality is called the marginal prbpénsity to .consume.. We

assume that ' L : . .

' . L. . SN ' Y,
Next we assume that an increase in consumer spending will increase investment of private
N E . : : : : A

. . = . . .~ . o v:‘.&_‘" . . . . .
capital. We suppose that investment is proportional to'a change in consumer spending

'so that : ST T - ,
(53) L : In = B(Cn - Cn41) n = 1,k2,_ 3, ---
. = . EY )
We assume that .
i‘ v . ‘6\ : . o - ‘\ . | et L] B
- '. B > 0' S . N . -
. . : . . . __ : . - -
Finally we assume that govermment spending is constant
. ) z ' ) . . ’ .:_ (:"
(5.4) ’ G =1 -§\ . - - a=0,1, 2, ... ;
R ' . N ' ' : , .
' Using (5.2), .(5.'.3) a;ﬁd (5.4) in (5.1). we- arrive at
(5.5) } 'I_'n = A(1 + B)Tﬁ_l - ABTn_z’ +1 _ n=2, 3, 4?
which.can be rewritten . . o - -
- (5.6) Tm_z-’A(lﬁ-B)Tn_*_l+ABTn=1 S .n =0, 1,‘ 2, ..
Ci\lren Tg and T; we can calculate‘f“/suécessively,‘,Tz‘, T3, Ty  and so on. d_
o R Ly - . 2 . . "
.(/:.‘
5.2 ' Numerical Solution . , o

'We will write a BASIC program which takes as inpixt. A,B, Ty énd_ ‘Tl
‘together with the final period to be predicted. 'If M <is this final period then
M

the program 'compu_teé and prints. T,, .T3’,‘ N ) o ¢

-

Fulr

IToxt Provided by ERI R ~
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The program is

100

. £200

: - 300
400

. S00

- - 600
' 700
800

- mo

1000
1100
) - 1200

PRINT
INPUT
PRINT
INPUT
PRINT
1NPUT
PRINT
1NPUT
PRINT

INPUT M

“TYPE VALUE FOR A"

A

“TYPE VALUE FOR B™

-

. s
: o b
/ e

" 8-5.3

B 5

“TYPE uattoﬂnL xuconz I z:aorn PERIOD™

T0

'TYPE NATIOHAL INCOHE IN IBST P!BIOD'

T1 ..

“TYPE. FINAL PBBXOD TO BE PREDICTID”

PRINT

PRINT *Psaxonﬂ.euarxouas 1uconz~
'FORK =2 TO M
LET T2 = ASC1+B)sT1 - ASBSTO + 1

1300
1400
1500 PRINT
1600 LET TO
1700 LET T1
1800 NEXT KX

1900 END

f

This program was run several times each time with Ty

1
2

———

~ output on the following pages.).

The first case

=2 and T; = 3 . (See computer

(A=.5 and B = 1) shows an'economyﬂwhich~oécillates'about

2 and eveotually—setﬁles.éown to 2 . Do;you‘think changing Ty aﬁd/or_ T; would

The second case

> . . . i ~<\} .',
(A= .8 and B =:i2) also oscille;es

_effect the long run behavior of this economy?

2
L

(about. 5 .mot 2)

but the oscillations become Quite large. Indeed T12 is negative" From an economist's

point of view the national economy has collapsed at perlod 12 and the solution

" theres¥Ter is meaningless.

The thii@_solution'

We return tO thlS case in the next sectlon.

(A= .5 and B =

steadily decreases_tovthe'value

éhange this long run behavior?

‘l) produces a-natlonal income which

S

2 . Do you thlnk a change in T and/or T; would

Try values for To and Ty

tban 2 and where both are smaller than - 2 .

1

where both are larger



TYPE WALUX FOR A

73

TYPE VELUE FOR B

21
22
73

TYPE NATIONAL INCONE IN ZEROTH PERIOD
TYPE NATIONAL INCOHE N ?IRST PERSOD

TYPE FINAL PERIOD TO BE PREDICTED

740

PERIOD

.', a -
2.000244

NATIONAL INCOME

3
2.5
2
175
175

> 1.875
e

2.0625

2s+0625
2.03125

e .
1984375
1.98437S5
1.9928168
e
2.003906
2.003906

2.001953 -

2
1.999083
1.999023
1.99951¢8

£.000244
2.000122
o

1.999939
1.999939
1.999969
2

" £.000015"
£.000015 |

2.000008
2 A .
1.999996
1.999996
1999998
2

145
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TYPE WALUE POR A e
T8 . ' ) :
. TYPE VALUE FOR B .
e |
_ TYPE MATIOWAL INCOME IN ZEROTH PERIOD
72
. TYPE HATIONAL INCOME IN FIRST PERIOD o .
) |
TYPE FINAL P!RIOD TO BE PREDICTED ‘ )
- . ?” )
.o " PERIOD NATIONAL INCOME
' 3 8.2 ]
s 18.312 |
6 . . ‘8246608 -
7 © 30.88672
) '8 . 35.67085
s . -  37.19128
T 10 - 33.18572
\ - 11 £1.13968
o 12 . -1.36192 =,
o 13 ' . ~36.0981 i
14 | ~83.44197 N
1s ~141.5134 5
16 . -205.1249
17 - -264.8764
\ 18 -306.5084 .
19 - ~310.8146 L - .
‘80 - . -8s4.5416 - ' L
Y

)




" TYPE VALUE FOR A

7.5

TYPE VALUE FOR B

Tel

TYPE NATIONAL - INCOHE IN ZEROTH PEBIOD

72

73

TYPE FINAL PERIOD TO BE PR!DICTED

720

" TYPE uArxouAL xuconz IN rtasr anxon .

IATIONAL IlCOHE
.. e 58S

2.252%
2.11137%

20048631 -
" 2.021178

2.009817

. £.00401
" £.001745

2.000759
2.00033

2.000144 .

2.000063

£.000027

2.000012

- 2.000005

2.000002
2.000001

H £

' 8-5.6
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; :
S
. e
'm“ma ‘

_‘, 7 . . R ._ ?.s ‘ ‘ (
. a _17!: VALUE FOR B+ p
‘ m Mflm Ilcw! Iﬂ ZEBOTK PERIOD
22 e
TYPE MTIOML Im IN FIRST PﬂIOD _
23 S
- TYPE FIRAL PEBIOD '1’0 8‘ Pmlcm
720 : : .
. "~PERIOD - MATIONAL ‘' INCOME
’ e T - B5eS :
3 U 11.885
a . 23.87S5 : .
s . 50.8125 . - ~
e ©  107.2188 o
_ T | 283.8281° o -
. 8 462.7422 ‘ T
\ 9 L 9491133
' 10 . 1934.67
11 ' . 392%.005 .
12.  7934.507 .
13 15996.76 : i
14 . , 32186-14
1S - - 64668.21
) 16 1297603
17 260175.5 -
18 - =+ S31334.2 - e
EEEET T 10441440 s
~ 20 T 2090503. e ’ -
" The f:.nal case shown above (A .5 and B- 6) bioﬁuces-é natioﬁ;!:i o
1n<;ome wh:.ch grows without bound. Economists call this an expand::.ng
\ e'cénomir. ~ Again try different initial conditions, 'ro and T,, to see .
if the behavior changes. L ) '
..lj

145




Self-Study: Problem #5.1 '~ ~ . . L -

-

»

-

.Ihe_examples have*eihibitéd the foliowing'bghavibfs:i oécillatiné with

' 5‘.decféasiﬁg amplitﬁde,'osciliéting with %hcreasing.ampiitude, exbdnéntial5decay and’

‘ equnentialAgrcwth:i‘?or the-fdllowing vélue§ off A and B determine the-béhévior."‘

of the eédnomy : - o . A_A t S B _ R o
(a A=.5,B=.5,Tg=2,T; =3 <i_
(b)) A=.5,B=2,Tg=2,T; =3
() A=.5,B=4 ,To=2,T =3~ - = e
| “.(d) 4=0.75, B=6,Tg=2,T; =3 IR
; . . . i - . o . .
(e) A= .5,B=4,Tg=2,T =2 . e
~ () A=.5,B=6,Tg=2,T =2 |
() A= .75,B=6,Tog=4 , T =4
(k) A=1,B=.5,Tpg=2,T; =4
L. .7, (i) A=1,B=.5,Tp=2,T, =35 '
~ , é -
/. - <z .
IEN _ |
-~ ):




Self—Study:

o -

e

o

(-]
v
1
<!
s
-~
~

. Solution to

cwe
(a)

,(cs.

(d)

(e
)
®
. %(h)_f

emey
. ,

~

Ed
<

‘Problem #5.1 -
e

-

Decaying osciliatioﬁs‘,T10.=.2.002391

.

T¢ = 0.594

T3
Tis
T20

~ Tay

3.505 "

0. 506

3.436.

3 Oscillations with 'neariy‘ constant amplitude

0.492

N—

Exponential growth
Cons;anﬁ |

Constant -
Constant
Linear growth

J'Almost' linear growth

-
. /
. i 2t
b E
a N ’
e
* 2 :
< -
“-
LR :
J . =
\‘” . L.
. “
% N \
P .
-
<

Tyo = 596,859

Tk‘f ?

Ty =2 .

T, =4 y

Tip = 22, |
L

Tio = 23.998

Increasing oscillations -Tj3; = *52.827

“y
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N

- 5.3 Governmeht . Priming , '

. In the second case of the previous section (A = .8 and B =2)

income became negative at period 12.

R

the nationals

by increasing government spending to avoid such a‘collapse of the economy " Some

natural questlons which arise are:

the economy back on schedule? .

-t -
‘government spending?

T6 answer these qnestipns we modify the program as follows:

‘100

200
300

© 400

S00
600
700
800
S00
1000
1100
1200
1250

* 1300
- 1400

1410

" 1420

1440
1500

1550
- 1600

1700

1800
1900

-

S

Will such pump primlng for a few periods put

If not, does this policy lead to ever increésing

PRINT "TYPE VALUE FOR A" T
INPUT A 5 . - \
PRINT "TYPE VALUE FOR B"

INPUT B o : R

PRINT “TYPE NATIONAL INCOME IN ZEROTH.PERIOD™

INPUT TO
'PRINT “TYPE NATIONAL INCOME IN FIRST ?tnxon~

INPUT T1 o

PRINT "TYPE FINAL PERIOD TO BE PRLOICTED" -

INPUT M ‘x\

PRINT :

PRINT “PERIOD”:“TOTAL xucont-,”aovw SPENDING™ -
LET @ =°1 B

FOR K-= 2 TO M -
LET T2 = A#(1+4B)*T1 ~ A*B+TO + @

IF T2>=0 THEN 1500 >
LET G = i - T2 . .

LET T2 = O

PRINT KsT2,6

LET &=1. ., - -

LETTO=T1 . . . \

LET Tl = T2 . . e

NEXT K - b

-~ =
X ‘ ' s - - . .
L \ ~
R |3
5 ; .

Suppose we decide to prevent a negative income @



Ty

"(5.7) |

‘To find G,

-
-

If

set

G. =1

hy (5.7) and let Tn

PN

and then sets

. \

IG'
n

0

and compute _Tn

T =
n

= A(1l + B)T
. n-

from

(5. 5)

"~ ABT
1

n—-2

then we compute the rlght 51de of (5 7).

The program actually'computes

AQL + B)T__

-G
n

3
~

this is less'than‘zero,'then the program sets

=1 - T,

The number of the perlod, the value of T

.

/.

TUTTUILES Th'K'Of'we‘inCreese'grovernment-SPending so that’ T =70

',If not, we let 'Gn

P

» 1.e.,

&

an&'thelvalueéof .G::

results of runnlng this .program are shown on the followlng page..

l4‘perlods, government sPendlng'must-lncrease above
Notice ﬁlso that th1s pump prlmxng does not 1ncnease with-tlme
government 1nvestment of 52 47875

normal spendlng ‘of 14).

x .

T

ce

>

8-5.11.

are:printed."

If this is less than "1 we .

be the value defined

-The

Notice that every -

PP

rd

1 .for two_conseoutive.periods.

A total‘additionalf'“

is’ requlred in each l&nyears (plus of course the i

Tk ok kok ok Kk K ok Kk ko k K Kk k Kk k % * Kk ok & * % * ok ok Kk K X k k k k Kk k k Kk k k k K Kk %
Interim Project #5.1 '

“

s

.
e P

it

See Aif you can reduce the total government expendltures by making government

is abnormally high.

Try dlfferent strategles to see/how well you can 40.

o

T e

:-'

= spending negatrVe for several perlods in between the perlods where government spending

******************#************************

L.

.“

P

~ B “ (SR
-
s
<

-’

3



TYPE vn;qs rom &

78

TYPE VALUE ’08 B
72

Coaw @,

TYPE ﬂATIONAL INCOHE IN ZEROTH PEBIOD

72

TYPE NATIONAL INCOME IN FIRST PERIOD

73
rvvf?wxuag pgax&p 10 BE PREDICTED
748 _ o
PERIOD = TOTAL INCOME

2 - L3
3 8.2
a - 12.68
s 18.312
~6 . 24.6608
7 «88672°
8 5.67089%
9 37.19128
.10 33.18572
20 & U 21.13968.
12 o B
13 | 0o
14 . - - 1
‘15 3.4
16 . o . TeS6
17 . 13.704
18 21.7936
19 .. 31.37824.
20 .- . Al1.43808
-3 SR 50.24605
ge . . 55.2897

- a3 . -853.3016

24 - 40.46032 -
25 . 128 ﬂ
26 T
27 o
28 ‘ | 1
3.0“‘ 2 '1‘56 .
31° | . 13.704 (-'
32 : 21.7936 | -
33 31.37824 "
34 A 41.43802
3s . S0 +24605-
36 ' '55.2897
37 : 53.3016
38  a0.46032
39 - 12.82221

- 80 . T o
Al 0
a2 ‘1
a3’ " 3e4
x "’ : 756
as 13.704

*
[ ]

'GOVT SPENDING

-nu-no-noiﬂu-p
. . )

*f~a.36192

33.82349

G bt 0ut o P Gub Dub Dub Pt P et Pue

33.96322
. 20¢51553

- 33.96322
2051553

1
o
3

8;5012 b
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' ’5.4 - Analytical Solutiom . ' - P L

From Part II of the appendix on "Difference Equations" we can find a sqlutihn
of (5.6). .As we hgxe seen, we may have solutions which oscillatenﬁith increasingkpr
decreasing amplitudes, and we may have solutidns'which'decey or grow exponentially:

~ Actually we may also obtain constant sblutions or solutions which increase or decrease

‘linearly. , . T o S Lo
To determine the:nature of the solutions we examine the homogeneous equation

8 -

T | : 7 - ‘ CamE = « .
(5.8) IR Tnj_z A(ll/+ B)tn+1+ABTn 0 |

-

Recall that in this equatlon A>0 and B > 0 . The characteristic equatioﬁ‘of,

'(5 8y®is ' o,
(5.9 . x2 - AL +B)x+AB=0
If the disériﬁinant of this equation is negatiye;then-the general solution oscillates
.and. the particuiaﬁiéolution‘willfbe.a-éonstant..~For oscillation then

Y

(3.10) T A2 (1 + B)2 = 4AB < O

"Suppose A is fixed. - Then the'disefiminant is-a function of B , i.e., -

-

E

‘(5.11.) ‘ o 3 -£(B) = A? B2 4 2AXA - 2) B + AZ

o

. “For B=0, £(B) = A2> 0 . Slmllarly for B large, the term A% B? domlnates‘

2

in (5.11) so 'f(B)'> 0. Consequently since B > 0 it must be that £(B) < 0

only between the roots of f(B) ' These roots are v‘—\\l;g 4

2-Az22/T-& -
* A ..

I\l

(5.2) . B =

,If A>1 then both of these roots are imaginary so the dlscrimlnant of the )

-

[

'characteristic equatlon 1s never negatlve. If A= l then the two roots given in

- T~

wll Toxt Provided by ERIC
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vp(5.12),are.ieal and equal. Indeed in this case B = 1 . Thus we arrive at one

conclusion:

If A >1 ‘then the solution of‘the différence eéuation (5.6) does not

o

osdzzate. - ) . B

The only possibility for oscillating solutions is:
‘ , . 1 .

 0<A<1

(5.13) o |
. . \ o

The solution. oscillates if B is between the roots (5;12), i.e., if B satisfies

2 -A-24/1-A 2 -A+ 2 /1 - A

(5.14) . Y <B {’ A

Notice that both bounds on B’ are positive.
We now have a second conclusion: The solution of (5.6) oscillates if and

only if A ad B satisfy both (5.13) and (5.14).

The complete solution is ) . .
. : - R  'T* = Cyr" cos(n 8 + Co) + L
- . T 1 2; 1-A .
T =i¥K§iFf ' o e ;'7.f,‘, ;;
% ' - - N . ) . 2 : ‘ v Co ’
) . - - :: -1 -A(1 + B)
. - o | o 6 cos - ( 2YAB \

" The amp;itudé of‘theaoscillatibn is given by' (VAB)n . Now_ A E'Q "and B >0

hence AB > O .-;Tﬁ#stye can conclude EEiF ifi. N

{a) AB > 1-;@{ﬁé amplitude of the oscillations increase as n increases.

(b) AB;=”1',iﬁhe'amglitudé of the oscillations is constant.

.y

(c) AB < 1’;,the gmpiithdg‘of‘the oscillations decreases,as n 'increésés.

e -

‘Of course if Tp and Tj are such that Cj = O then’ the solution is a. constant.

Q ‘.,-,i’ | - - '., .'Q‘ . ;:4'lf5i}"-'. o . . . e

L e

IToxt Provided by ERI
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e

;i'Example. 1: Recall that for A= .5 and B = 1 the solution ogcillated with

decreasing amplitude. Clearly (5.135 is satisfied.. The bounds on B: are

- -
-

1823 -2vV2<B <3+ 2 /2.2 5.82
L N L
.So B =1 -satisfjes (5.14). Thus the solution sheuld oscillate. Since AB = 1/2

-the amplitude should decrease as n increases.

Example 2: Recall that for A = -8 and B = 2 ' the solution oscil;aﬁed'with
increaéing‘amplitude. Agéin (5.13) is‘satisfied. The bounds (5:14);are_‘
- S | o

»
.38 < B < 2.62

Since ‘B 1lies between ‘these bounds, the solution oscillates. Then since AB = 1.6 > 1,

the amplitude of the oscillations should increase with increasing . n -as it does.’
Notice that the long run behavior of the solution is independent of the initial

values, Tg and T;

Now A may satisfy .(5.13) and the solution may not oscillate. If either -

2 - A+ 2 V1I-A o ) ' ) . SR
 (5.19) o B> = ry - e L
or- 3 ) ’ - ) v . 7 . . :
~N ’ o A - ATK o -~ .
(s.16) - . B< ZoA-27lm4 o _ ~. . -

. A
. ; ' - ‘-, :;y-r.
“ then f(B) -.given in (5.11) is positive and the roots of the characteristic equation

-

Ji‘(S.é)'are positive. The largest root of (5.9) -is

. ' ‘ . | . | 2- - Z _ o | ; - {
..(5.3:7) | . ‘ x= A(1+ B) + /A.z(l + B) 4AB | SR

-
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~--Suppose ' (5.15) holds then
‘ \
B>2—A+2/1—A , 2-4A ' T
A : A
so _ I e ‘
Al + B)
2 > 1 . :
" Thus . ) ‘
. AL+ B + .7/ A2 (1 + B)2 — 4AB- )
- ~ 2 > 1
] L

Qg

ﬂt

. . - 7 . .
- Therefore, at least one root of (5.9) exceeds 1 and the solution gIOWS exponentially.

On the other hand, suppose (5. 16) holds.

-

. Then AU .
< 2-A-2/1CA . 2-a
, A A
S0
(5.18) L ‘ 2 -AQ 5 B> O

Now if (5.17) is:to-be-less than 1 then- .

8 (5;19) | B 2 —-'.A(l_ + B) > /A2 (1+ 3)2’_— 4AB

of course, (5 18) does not guarantee that (S 19) is valld but (5 18) is certalnly

necessary if (5.19) is to hold. The only other condltlon requlred to assure (5 19) is

{2 - A +B)}2> A2(1 + B)2 - 4AB

P

-.:vhich reduces to

A<]/',
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X ' o _':.. - ‘ -
- Therefore, both roots of (5.9) are less than 1 if (5.16) holds. In this case the

solution decays exponentially to 1/(1 - A).

We now have another conclusion: The solution of (5.6) decays exponehtially to
i/(lzé A) if A satisfies (5.13) and B satisfies (5.16). The solution of (5.6)

grows exponentially if A satisfies (5.13) and B satisfies (5:15).
EXAMPLE

For A= .5 and B = 6 the solution grows exponentially. A satisfies (5.13)
and ‘ : ' , - .. T .
3 -A+2Y1 -4

.A = 5.82

L

s0' B satisfies (5.15). Thus we should expect the solution to grow exponentially
.;as it ‘does.

Finally we look at

' ‘ : 2 -A+2V1-A | ,
(5.20) - B = =% o .

and

o v 2 -A-2A<4&
(5.21) - : .~ . B= . A .
,In;eithér case the discriminant of (5.9) is zero, and there are two reai, eqﬁél»rdots,

:boch'éQuél to
-7 , A(1 + B)
e 2

The;complete solution of (5.8) then is R

-

(5.22) : SRRy (Af12+:3i)n . . .

1
>

ot
o
¢
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If (5.20) holds then SR ' o &‘ |
2 - A
- . B > A
., A@ + B) > 1 il
R

L
o

‘Therefore, the solutidns given by (5.22) grows éxponentially. On the other hand,

A
hand, 1f (5.21) holds | Y . ) L.
. . 2-A
B < y
and o
- A$1'+zB! <1

‘ Thus the solutlon in"(S 22) ‘decays exponentially to 1/(1 - . A).
This leads to our final conclusion. The solution of (5.6) decays e:::ponenmaZZy
. to /(1 - A) if A satwfzes (5.13) and B satzsfws (5.21). The solumon gzws

exponentzally zf A satisfies (5.13) and B sausfzes (5.20).

All of these conclusions may be summarized as follows -,
If" C D B 2
0<A<1
then if ‘ | o
N S ‘ 2-A-2/1<4
~ Bx< 2

The solution oecays exponentially to 1/(1 — A). If however,

2-A-2Y1I-A "B'<.' 2 -A+2/1-A B vj
. A . ’ /\ : A , _
the solution oscillates. . 1f : - : _ 4
. AB <-1 : ' :
1575
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\

_'“théréhpiitddé"of'éhé oscillations decays; 1if

AB.= 1

[}

the amplitude of the oscillations is constant; ff.’

o s

AB > 1

tﬁgfggplitude of the oscillations increases.

'Finally if S -

2-A+2 /1A .

B >

A
the solution grows exponentially without bound. .
Self-Study:, Problem #5.2 - B
- Show that if A > 1. then the solution of (5.6) iqueases.ﬁithout bound.
B e e e e am = e ae mm me e ae = amiea e Em Em e e e e e e = - S ow v o m e o e o e o ae -=
o -
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Solution to'Seif—Study; Problem #5.2:

- 3

If A>1 the 0> 4(1 -~ A) adding WA2(1 4+ B)2 - 4AB to both sides

of this‘inequaliny -
A2 (1 + B)2 - 4AB 5 [2 - A(1 + B)]?

or

VA2(1 + B)2 - 4AB > 2 - A(1 + B)

or

"A(L+B) + VA2 (1+B)2 - 4AB. - L
2 . -

:LBuf the left-side of this inequality is a root of the characteristic equation{f
 (5.9). Hence the solution increases (or decreases without bound depending

upon the sign of the coefficient .of this term. See also Case I in Section

2.2 of the Appendix.

4




4.

5.

Did'you

Is tLis

if (a),

' CHAPTER_ V

-

AUTHORS* EVALUATION L

(Please circle one of the responses to each question)

. ' s . r .
-at;end the_short course in 1974-757

%

chapter
| (a) Too short
() 'Too long
(c) About right
Qﬁiéﬁ fopiés shb?ld'ie expanded?

>

Ygé

No:

can you

suggest topics to be added?

—L

If (b),

which topics shoﬁid.befaﬁbrev&atéd?

)

~which topics should be eliminated?

-Could you read and und

Was the

(a) always -

(b) sometimes

'Did the interim projects seem reasonable?

Were the self-study problems

(a) Too easy
number of self-study problems
(a) Too large

(b) About right

(c) Too ‘small- 1 £D

erstand the cvompu::r -rograms?

(c) seldom

t

. (d) hever

Yes

(b) Too difficult °

‘No



- : - » .) ’ :
S 85,22
7. Did you aﬁtemtp any of the seIf—study problems? Yes No .’
8. Are the solutions to the self-study probleéms 4 ‘ 3
. properly placed (om.overleaf from problem)? . : Yes No '
If no, where would you suggest the solutions be placed?
N 4 o
; \- »
9. Por each topic, how solid an underétanding do you_think you have?
Excellent Good * Fair Poor
5 Components of Total Income
Types ‘of Economics, e.g., expanding
Pump Priming . o S | 3 S i
Analysis of Second Order __V;'. S ) _: ‘ 4. .
Difference Equations .  ¢.. " . ;-f”?-_ ~ o .
Econéhic Models ‘in General
~ '9, - i)
’ € S ’_‘. -
. 163 :
(>
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7ﬂ'aspects to the fore.

6.1 Probability Models ST e

- - 4 - ‘ A ‘.
. . . Y A N . . E
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- o . . R T s T L
- . ‘ i
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. 3 ST : - o C- A
‘ In this chapter, our view point changhs somewhat since the models we treat here
/ - : ‘ﬂ- o :

are also treated at an’ elementary 1eve1 in a number of finite mathematics texts.

Y et g
Hﬁns ve shall give only brief gétroductions which.are 1nten4ed to bring the modeling

- o - B

_ 'Probabalistic models ohcur in many fields. In this section we shall not

attempt to survey the appliCations -of probability theory, but instead we shall try

to explain the nature of a. probability (or as it" is sometimes called a stochastic)

-

model.'

- Thetbasic notlan in probablllty theory. is that of- a randan experzment. A

random experiment is one for which the experimental ou;comes vary 51gnificantly (in -

the oplnlon of the mo&eler) from one time to another. It is customary to asséme

that the se’. of all p0531b1e experimental outcomes. (the sampZe space) is well defined

g

- anc that rhe relative frequency (probabzltty) of each collection of outcomes (events)

is kzown.’ For 31mp11c1ty we shall assume in the general d1scussion thatéxhe experiment
]
has only a finite number of outcomes, although we shall'later'present two models*7

which involve 1nf1n1tely many outcomes: 5 ' »
" ) SN I

- The sample space and the probabilities assoc1ated with the,experiment must be

coe

e

specified by- the modeler - they are.not supplled by probability theorybitself. For

R
example in the expetiment of fllpping a c01n, most modefers would assume that- the

,(' .\’.
sample space consisted of the two outcomes, "head" and "tail" Even in this simple
7 - .
situation other outcomes are conceivable for examplefb_c01n Iands jn edge ,""coin -
e - e , - * .
O T e S ,3_5,1 - T

EKC -~ ‘_ , . ‘?'. -, 18?_‘: . ) ) . "3.;1

wll Toxt Provided by ERIC -
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< qu. away and gets lost -Most.modelers would decidelthat*the,last?gWQ outcdmes .

~~u‘._ 5

ligwere so ‘rare that they should not be, consxd?gEd‘ btt inNany case, -an important.fadet:”‘ﬁ

- 2
-

of any probability model is ‘the careful speciflcatlon of the sample space. \."1jf'Q

2

The assignment of probabilit1e§ to the event; is usually made in one-or a

" - combination of the following ways:' P D
T ) . ) ' ‘ ‘ .'

N . '»fl)"'Aﬁpriori method — . For example, symmetry consideratlons or other

-,
prlor theoretlcal assumptions may lead to an assignment of probabllities to/the °vent$.

In ’olllng a die, the assumptlon of a,"Talr d1e" leads to the ass1gnment of probablllty

l/o to‘each of the'six outcomes-; In Chapter ITI certain theoretlcal assumptions led Lo

'to the.assignment of the.prohability,__ANAt 4+ o0(At)";, of a birth in a population of-

size N . - | - : T
2). A posteriori method - We observe many repetitions. of the random P

K . ~ .

' experiment and use these observations.to.estimate the probability of each outcome{

For example, we could roll a die several thousand times; record the number of times
each_event: curs; divide this number by the total number of rolls;.and then use:the

last pésult as an estimate of the probability of the event.

- 3. .Subgeetiye’method —'~We judge or‘we call in an expert.to judge the .

qtobaﬁilities-- This is often the method employed in dec1s1on theory problems.‘ For
example, the sales manager of a large corpora&lon may be called upon torJudge the .

relative probabllltles of having sales of $100 000 $150 000 or_ $200 000 next year ' .

1

, for some product llne.~

E . -

Regardless of the way in which tHe- probabllltles are ass1gned, the ass1gnment .

-

: s ) >
must satisfy the axioms of, probabillty theory which are: - - . ‘ ﬂ%’i

. . - i ; ' kR S - . 5 e
iy ’ e w7 c . %

B

;= ';fl) P[E] > 0 for every event E',
(6.1) __: . ,i‘Z)‘ P[S] l, for the,certain event S ,f4 - ' ;.
.3) PIE" Tr = P[E] + P[?] if ENF=6."

Y . . T - ..
. ‘ - .

“s axiom must be strengthened if the sample space is not finlte, see e.g., Parzen,ffﬁ

L}
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We can now makb the basic definiticn of this sﬁction. A probaszzty modeZ for
- =
"a random experiment is a set of assumptions which lead to (l) axwell defined sampl@’_

' i.
¢ space and (23 an assignment of probabilities to the events of that sample space.~

Naturally a given probahility model may apply to many different random eXperﬁments, 75"'

and we shall now briefly discuss four commonly occuring models and some applications
of each.'p T ’ 'u_ ‘ o - AA:. ' . '. ' o ) .\.Q;

1) Discrete Uniform Mbdel

This forbidding title is merely a fancy:/way of refering to’ the equally likely

model with which even non—probabalists are familiar. Concrete-examples‘are'- o ‘;
.‘a_~) Coin fhpping. “Plhead] = 1/2 » Pltail] = 1/2 '

b) Die tossing:  P[one] = 176 . Plewo] = 1/6, ... Plsix] = 1/6 . -

In general if " hsl _
= Axiom 1: Sanple,Space has, N elements, s1, S2, cees s,
and ' o by

Axiom 2: p[sij = Pls;] forall i and § R L

~ .,’-v-

are satisfied, then we speak of the equally likely" or "discrete uniform probability

model. In thlS model it is easy to prove the _ _ . L o R

Theorem: ' v - . . - . RS L
o ; oA Coe ) . . - R -

6.2) _ L o ‘P[S&]’= /N for all i-. .-

Proof: - .0

'which leads to (6.2)+ .This ° . -
£ \_/_(_ . '“

D '..'_ = d SN : ) “ ’ _ B . .
comple es the proof. o : . o

’f*This nsage differs;sligntly from-that'oﬁisome texts; See.Adams,fp._llS? for‘example.

. .S . .

¢

L T




T I ST - S

ﬂ,Itﬁisfnoﬁ.clear‘thaigthe(theorem andvprobabilitv axiom 3 lead'to,a;nnique'

Y

*:specificationafor the‘probahility of any event in.ourﬂsample-space;f Thus our two -~
- yaxioms do provide ‘a. probabllity model. -
Z)uBinomiaIModel S

>

Ax;qm 1. The samgle Space consists. of a. sequence of ‘. tr1als.

Axiomri. Each trialﬁhas only 2 outcomes, “denoted by s (success) and f (fallure)
Axiom 3.‘D P{S] p for eaeh tr1al independentlyvof:all-other trlalsf>
; 'a),‘RepeateoicoinltosseslwithbTs be;ng the event ;head"
- by Getting'v3;_4175, 6 (a "success") vs. ge 1ng l or Zp'(a ﬁfailﬁreﬁ):ln"l

1
Jjrepeated tosses of a die. .
) . el - .z : . ST o

c) . Getting a defect (success?!) égﬁﬁe examine a random sample of size -n

“of ome day s manufacturlng output (sampling w1th replacement)

Although it is not dlfflcult to show that the above axioms do spec1fy the

,probablllty of any event in the sample space "and hence are a probablllty model we

=

-conflne outselves to statlng the most 1nterest1ng result of this model. Let X
. Ye R _ :
2 S
denote the number oﬁ"uccesses in nl“trial;then we have the® : s
Th"'e'o—r‘_an: - "v 1:—-‘- : \ o : . ’.A . v \’.: C :3‘) _ ; ‘. - ) - ‘v": »
(6.3) - & "P[R =K] = x P {(t=-p) >, k=0,1,..i,n. © .
One also can show that the mean number of successes 1s ;:K = np. and that the
- . P 4 '
varlance-jls_c'-K np(l - p), .
3) Poisson Model o -
This'model concerns an experiment'in which certain*types of'events occur
repeatedly. The outcomes of the experlment are taken to be the number of these
events whlch occur in a flxed portlon of time or space: For def1n1teness, we shall
’ v - \. o ’ 1 vy - ‘ -
"X - - X T . . T . - b » .
- See Pggrzen, P. 5§ £f for the proof. - i
- /
v - . g ’
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- assume that we are interested in the nuﬁber of events ‘which. occur in the’ time 1nterval
'[0 t]. The sample points are the non-negative 1ntegers. The PoisSé; model applies

.”_vhen there exists a positive constant A such thaqf~\

r A
—-—l‘

‘1) . P[exactly one event willfeucu 1n At] AAt +-O(At) ;} At > 0 .

'(6:4) »Z)IVP[Z or more euents occur in 4 t] = o(At) as At > 0 .

e - s 3) The number of events occurlng\in non—overlapping sub—intervals
, o ,
T?of tﬁne-are 1ndependent of each other.,

£

RS LT co ' SRR f~ s -
motice that the Poisson model ls the one . used in Chapter 3 of the number ‘of

:births (and deaths) In fact that-model really was concerne@ ‘with’ the’ competition

- .- .
N

g 'between these two P01sson processes.

T : -

If we let K be the number of -events occuring in [0, t] , then we can prove

"the.,._ N
-Theorem:- - - ' ‘ Fa SR o

(6.5) ' p)' . PIK = ‘k] k—— =it., k=0,1, 2, ... .

. | I . 3 ‘fi L o | sr L 9

-

The probabllities expressed in- ﬁhe ‘*ebrem are'knbﬁnhas the Poisson law of

 >probab111t1es w1th parameter ul.” In our model u has the value At-.

B.‘ .
To establlsh the theorem, we can prbceed as in Chapterg3 .Let‘ t now vary

‘continuously and let® K(t) = number-of events that have;qccurred by time 't and ':vfﬁ
P, (t) = P[R(t) ='k] , k=0, 1,,2, «c- .

.

'Hence; as in Chapter i;_for k>0

Vel

.Cf o “p ) = v ~ \ - | b : .
- Pt +08) =B, At + B - at) +o(Ar)

‘- . . . oo - r

x . , : —_— ,
The expert will observe that: assumption (3) has been .employed.

-,
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";; That is, to within negligible error, we have k events at -t + At f&hen’ eithre;r L ;

o there were’ k - 1 ‘at’ time t and one more occured dunng (t, t +\At) oi‘ tﬁ_e'fe

i

’ were Kk .at time ot and none - occured dunng (t, 't + At) ' Di_vidirj;g by» .l_&_t " and

k

A
g

'letting At - 0 )y we, then have " - B E .. o ‘ ’
R CIL N EER _ 1

- LT : . : . . DS ST 3

."Simi;l._a'rlj'.for" k=0, we o_bta-i'n

(6.8) - - Pk_(O)-’=’-.1_’[k]event$ at t= 0] = N l lf k 0. - T |
B T I A

7
o

‘With these initial conditions we can’ recursively “solve for the Pk's‘.' For

example, for Pg from (6.7y - Tl Uit

~ v . . . P c. oL b .0 -

and the solution is -

+

. g , ) . . . . . - -

Then for P1° from (6.6) . e : . .

%%i,= AP + 2e T, P1(0) 0- )

s0 ‘ - . - ) S . D |
’ ' ' Y : - S
Py =At e . ‘ - /

‘ N - .

Hence an induction .argument will lead to the theorem. - o9
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) . : \ R .8=6.7
Lo 'S:elf-fSty..ld.y'., Problem #6 1: - . . - o . -
_ ' Establish the ab

e thpbrémvusing rhg;geneﬁating-funption approvach described L
iﬂChaPter 3. T e T

- ., . -
‘o ) - -
. -1 . = - .. i ' ’ -
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_' Sgﬁtibn, t'o‘ Self‘—st'ﬁdy 'Probi‘em #6.1:
Let P(x, t) = Z P (t) Multlply (6 6) by X and sum over k . Then

add (6 7) to obtain ’-

. S ) ]
- el Y i . e T e

| _Héce . | | Z | ‘

=\ x P - A P = A(x - l) P . Gl

dat
' «

y o

The initial condition for P is S C e

" pix, 0) - 3 2 (0) Xk—l

- N _, - k=0

- Co A(x-1)t _ =it Atx -t
R . = e T =e B ;

i

sSo

B (D) = e At Ok

x? -
‘for any fixed t , as the theorem asserts. T,
- . ~
%
f 4
!
.- @ 'y
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. The Poisson model has found wide application, some of the more well-known -

>

<

examples are.l.->'

l) Number of fatalities by horse—kick per annum in the Prussian Calvary,

- v

2) Number of alpha particle em1851ons per minute from a radloactive,

material

o

3) Number of certain blood components in a cc of blood plasma,

&) Number of vacancies per. year on.the U.S. Supreme Court (l ~'.5).

Parzen gives nany "t’book" examples for 1nstance "Suppose one is observ1ng

<

S -' ‘ .
the times'at-which autamobiles arrive”at'a‘toIl’booth;_‘Suppose_the_mean rate' A

-of théiarfiGAi'of automobiles'is-given‘bi"'l”ﬁ“l S‘JautoS/minutes 'Find'the*

- probability that k automobile drrive in a two minute period.

Here the assumptions (6 4) are .at least plausible. Setting A =:lf5i5-t'=r2 ,;'

- .
. -

~ Lo L i ., 3 ; P - - ' -
‘l-we find fram (6 S) that T o : : : . ‘
ok |
= e- > E £y k =0 ~‘, l ’ 2 3 *o e o i S
',The'binomi .'-aérand'the.Poisson law have a 31milar1ty in that they can be 1-'
[ ‘9/ : ) N T i A .
interpreted as p& ng-the probability of k ‘successes. The dlfference is that the

=

b}nomial law deals v1th the number of successes in a fixed number of trzals

. while the Poisson law 1nvolves the number of successes in a fixed time or space

. - ,.'-~_- . i . *

damazn.,- o R »Jx : : : ',,-'” : LA
. st . R - ‘>»

4) Exponential Hbdel

- o L. . o

Our final model.concerns'an»experiment in,éhichithe*Outcome;is.apvaiting time.

»Specifically, suppose we are observ1ng a sequence of events. oe#uring in time in ‘

~. . -_" . . \_ .

accordance with the Poisson Mbdel.L The experiment con31sts of meaggglng the'time“jli ﬂ 5

\ e

that elapses{before the first event occurs. The Qutcome can be anyrp031tive time -t~5,_f'

: so our sample space contains an uncountably 1nf1n1.te set of sample p01nts. In such

cases the’ probability of any one value occurring is zero that 1ntuitive prohability '

‘

would you 3581gn to-waitlng exactly 35 2 seconds”) ‘but it is poss1b1e to assign

wll Toxt Provided by ERIC
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lPoisson'MOQél.":Let. . R ' : el S
F(t) = P[time of first event is <t]

< ... 7 1-7F(t) = Pltime of first event-is > t} - . -

P[ﬁnmber of eventsgin'(O; t) is 0]

"

= efAEl, hence E

Again pursuing the Parzen example'3'
"?ind the probability that ‘a toll collector at a toll booth at which cars.
jarrive with,mean rate A = 1.5 auto/mlnute will have to wait |

a) less than three minutes,

b) between .3 and 10 minutgs;’v s
"¢c) exactly. 3"minutes; .
. for the first arrival." lhe solution iS,immediete:
| 'a)l,P[time of first event is;Q;3].= F(3)“= 1.—- e % S =“f98889 |
b) - P[3 < t < 10] = F(10) - F(3) -3 _ om10 = .04974:12. ;

c) VP[t 531
: T e0
- - . ‘ . .
' o R im [F(3 + ¢€) - F(3)] 7 -
S R e*0 ¢ L e

=0

i:l'fIn~conclusicn ‘we point out that all of the probability laws are models for \“-'

1. Soe

~varion$ situations; “The. modeling viewpoints towards a given probability law is to

€2 -

Y e

14

- positiée{pfobabilities_to time intervals.” This we now do, using our knowledge of the

lim P[3 <t<3+ e] T P T

-
“r.



RN

1) Wwhat are the unde:}ying axioms for the law? PR ) - .
.:)". e ’ . .
- 2) What are some of the real_world 51tuat10ns in which these axioms
“are’ (approximately) satisfied? s ‘ o

I . T e

Interterm Project:

'Work out an alternate Monte Carlo>s1mulation from that‘presented_in Chapter 3.

. . - -

This time‘hase the simulation on drawing 2 random numbers. » The -first number w111

.

be used to der1ve the time when the next event oc¢urs, whlle the ‘second random

I number will be used to dec1de'whether‘that_event is,a birth or death- fTo-flnd the -

time . T of;the next event, we use the exponential law:, .‘ o e
T e I T S B T A
Ll L peFwWT g o T

-are. the mean birth dnd death rates and R1 is' a random.number'between “

- S ’ - - : ~ :
A . . . ' o . - 4 N R

Oandl.<"~.r-—-'_.- o .

: ﬁﬁéfe 'l; u

Thus, the next event is assumed to occur after a lapse of time

loge (l - Ry)

- T = - ,
. Aoy ' . = -
Given that an ‘event occurs, the probability that it is a birth is
. f“;f' - - ' . - 2\
‘ ) L= 353 .

Thus we draw a second random.number Ry from the unit 1nterval and 1f R2 < L

declare a.birth and otherwlse declare a death. ,l:, T ' '<i
J‘By replaclng A and u- by A '*'Vd‘fun',V.Cn = size of population) we can
A{: 31mulate morxe . general Birth and death processes.f In;part1cular6 the analogue of
rthe determlnistlc.-A - BN case is~}_‘£'Xn'= a - hl oo, MO R %faélf_hz n-.o
(see Pielou). - - ' RERERE
vo.'z‘ x .
: 1 { a - )
. S 2
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~" 6.2 ~'Conditional Probabillty-aﬂd Bayes TheOrem. N

~ T

Suppose you dre an oil prospector You would like tf’EIB&\a gusher, but will

: be content with/a more modest ofr:depos1t. From past experience-you know that in

tbis partlcular geographical area dr1lling wells at random wiil produce a gusher '

10% of the_time_and a'moderate supply ZOZ offthe time. The other 70% of the borings

-

- arehdrym The-three ewents o - o S ' '_ B ,: T
| g = {gusher or large 011 supply} .-{iﬂ.ff_‘”.f'.*frkn
2 =. {moderate 011 supply& 'fbﬂvi f;il. '{-_. "d:l -fb-ﬁ
'-*;':f:* " = {no. oil} ;r i._ | |
PR | S | i. : .
5-are“a_complete,'mutuafly excluéiwetset.‘gMoreower jf, .

PGA) = 0.1 ¢ PGg) sz L P(A3) =0.7
“ /- -._ . -. - .-, ' : B . L . .. . .~ -. ) e .o ) B
. ) 'Q ! % ) - T . ' ’
* Now suppose that cost of drllllng wells 1s too hlgh to take the risk when the

‘ chances of flndlng .0t1 are so sllm as - this,.so xou‘decide to conduct sélsmic tests
’ = - \i\
‘to-inc*ease the chances of flndlng oil. Io determlne the effectlveness of these

3

tests, you conduct tests over ex1st1ng wells and -over- some dry borings. .When

‘conducted’ where a gusher 1s‘known to: be present, the seismic test produces ‘a

'positive'result 80% of the‘time,;i,e.,f R el - t_“' L

- o _ ‘ o L .
i o : : - s o O LT : .

L . IR IR P(X .'I-’Al)'v _ 0'_;.8 - _ - ‘ . -_:l{ \ -,'___.'_“ . :

o . . LT . s . - L.
. . R e P . . . i AN

. N ! . <. P A
s .. . L . , L
Ry - X . . . L.

-

the test is positlve GOZ of the time, and over dry borlngs it is positive'307 of the o

v . - ’ ~
. - . - PR

""..tiz_ne.,f.;'l'hus_?' L o T

; - ‘. ,'_.‘: PO{[ A5) =_0.6 B e P,,(X. [ Aé).="'0-3
- . - - . — - A -.-_~ ,"v - ":'; . '._ .' :“. - T~ .:-'.‘F.":‘:"-‘” ./.
But what we want to know is: If-a seismic test 1s pos1tive, is’ there oil- i
'nresentV Andlhow much7 In terms of the events‘descrlbed above we would llke to

_t&c N 5

IText Providad by ERIC.

where X is the event ﬁva pos1t1ve seismic test result . Where modest“wells exist-f.:¢

L s
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calculate P(A1 l X) and P(A2 l X) : The f1rst is the probablllty of a gusher and

-3 ) -

. the seceud is the probability of a‘moderate 01l supply. ’

© A}

To compute these probabllities we. turn to ‘Bayes' Theorem. We assume that the-

-

following are true: . -

-
-

1) A complete set of mutually excluslve alternatlveS’can be. found for |

the experiment, i.e., these, are events Al, Ao, -eey Am such that : o s

T . L A
- -, - . .

T P‘ﬁ’-?

‘ é)ijThe probabilities;of each event®n 'the complete set of mitually exclusive

-
]

"alternativee is known, i.e.zl‘ ' C ’”_ ‘ s .
S S N R
- | N T i=1,2, ..., m

are -given. IR o T

-
~

3) TFor a particular event X , the conditional probability for the.event

0 given that any one of th?- .' occur i§/known; ies,

v - L« : Lokl s :
A e e P(X ]«A,; :(:._;‘; i,.2, ‘s @ ] ; —
N ‘_'}" - -' 1 - . oo N - - - oA . ~ T
o [ r * -2 - y _
- § .4 " - ;_t } ) ‘ ) ) .
- are glven. ' ‘ o : : . ) C e
N ’ -, -

i
S
L

;rfjf These three assumptlons are satlsfled in: the 011 drlllxng gxample where m =,

oy .
* . /

Notice-that Zm probabllltles must be glven i:;general.; ' 3_ ,:“_

- (7.

o He'use thls lnformatlon to. 1nvert the con jional probabllltles and compute
T ‘ .. ; *P(Ai-' Ih X) .Y x = 1,. 2, RN m R a - ; '." -
ST gl AR | S . N
i B “a s L - - . 3
from: : . i - R T SO
-~ - it - v I3

] ERTE .o . - oo e -,_ . L. a . - L . 3
S T .- e T e P
L T .-;1 S e S e
B : R o . : . P - -
. . S , - . ) T [ -
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".BajES'Iheorem: S v T = : o ¢ )
6.9 .- . .gc‘Ai'] x) < P(X ] A_-L) . P(A-r)j
T e o | }: P(XIA) P(Aj) |
R __ =1 - - e
: The-proof may be found in’ most finite mathematics texts. N
_ We now use\this theorem to solve the oil drilling problem posed abové.’ Since
m=3, (5.9) becomea- - : . | | ' e

R, [ B =" PR A -P@AY
i B P(X ] AJ_) . P(K) + P(X | Ay) PZAZ) T P(X | A3) . P(Ag)

. ;- -~
. For i=1 (gueherj » S ._ N o )
L . 0.8'% 0.1 | .
SERIC IR 08x01+06x02+03x07
= o.iés | -
Similarly _ - 2 N N
) P, [ %) =0.203 . . T e o0 :
P(A3".] X) = 0.512 -
Therefore the probability of finding oil ~ gusher or moderate - is 0.488 . - -
A BASIC program to evaluate (6 9) is: ‘ '
- - . o -c g e
T
. . . ‘l,/:’
.. 3
e x SR R / g .
s . = ° ! ) % 3 ¥
. . . - '," ‘\# ﬂ’\\ ) , g
> A - . 4:', \ ~ -.,‘4 ey - -
- T - > ) - —

-l
r



LIST.

- ’ + ) . . ' o
100 PRINT "N3. 0OF MUTUALLY'EXCLUSIVE EVENTS;IS")
200~ INPUT' M . - . ' " .

300 PRINT - . : .
400 REM . *¢  DATA: PRG&ABILITIESr H(A(J)), PF SET 2F
500, REM . -~ MUTUALLY. EKCLUSIVE EVENTS N ' . kX
> 600 FOBR J=1 T2 M .
700 PRINT "PROBABILITY 3F EVENT";J5" 1s",,
‘800 INPUT ACJ) . - - E oL
900 NEXT J - o - & uh. . e :

1000 PRINT -
1100 REM ** DATA: CONDITIONAL PR@BABILITIES:P(X lesw ACJY) - k%

1200 F3R J=1 TO ™
1300 PRINT "PRGBABILITY aF EVFNT X leé\‘THAT EVENT":J;"accuas 15"-
1400 INPUT PCJ) - - . . ) )

1500 NEXT J ’ o - : ,

© 1600 PRINT S : : o
1700. REM' %% COMPUTE DENBMINATAR OF Ew. (6+9) **

"4800 LET D=0 o . - L
1900 F2R J=1 T2 ™ T - P
12000 LET D=D+P(JI*ACJ) o - ;
2100 " NEXTF-J. : S s -
2200  'REM ** DENIMINATIR OF Ede (6¢9) IS PCX) -*% S
2300 ~PRINT "PRadABILITY THAr EVENT -X 3CCUKS "ES"5D - o -
2400 T PRINT ®
2500 REM *x campurg UAYFS PK@BABILITY FaR-. A(J) FROM €6.9)  xx
2600 F2rR J=1 T3 M . o ‘ -
2700+ LET BCJ=PCJY*ACII/D, - o - .
52800 PRINT “PROBABILITY. 2F. EVENT - *3J5" GIVEN X IS"‘B(J)
~2900 ° NEXT J : o . I
3000 END- . - ,','_ : ' _' S
. . . o :‘._. . ‘ o . - s . P < B - ~\ N
oo A o e Ly R '
Notice that in this program - ‘7 - ) ’
b . ’ . . - - : | ‘.V . ' . - . o - ... . '\‘ . .
L a S ',1-ACD P(A ) SN - i=1,2, i, m -
2 : - " F' . - t&
R EIOE ch -4 i=1,2, e me Ty
%fd "both_ of thesoe are i’r}put to th,f program. _The output ia o ) |
BCJ) = P(Aj ]__X) . - 1, 2, <., m “
. In addi't“:ion th?' program couiputes and -printsj}, I o 7‘ £ .
: " B . - . . ' . e -— --. T ‘ ' - -
| P = .} P | AP . S
- S = P T e . R
—._" » @ ‘) | ) ) N - = 2
) - 1 A .
o) - - &
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which is mo more than the denominator of S6 9) L L S -

If the program 1s TUun for the oil drilling example the results are

-~ . L . . - _ -
. * . .

:\ Ll
- N3. 3F MUTUALLY EXCLESIVE EVENTS F3 > N
PRIBASILITY 3F EVENT 1t 13 20.1 ’ , :
< PrABAgILITY AF EVENT 2 15 - 20.2" . N
.. IPRIBASILITY oF EVENT 3 1S TroT .
" PrOBABILITY OF EVENT X GIVEN THAT EVENT /1 JCCUKS. 1520.8 -
PRIBABILITY 3F EVENT X GLVEN' THAT EVENT 2 2CCUKS 15?0.6 = &
- * Pr28ABILITY AF FVURNT X GLVEN TAAT EVENT "3 3CCURS 1520%3 - S
I PRIBABILITY THAT EVENT x‘accuxs 1S 0.41 _“’ . s
.’ bk3mASILITY OF EVENT 1. GIVEN X IS 19512195122 L. - -

. ) ‘ " . - I . " E p
Self—Study Problem # 612:-_(Kemeny,‘Snell'an& Thompson) .

-

1,
" PRIBABILITY 2F EVENT 2 GLVEN X IS .29268292683.
e« PRIBABILITY 2F EVEVr 3 GLYEN X 15,2512195;2195

I . - » t PR

If a person has tuberculos1s,'1ts early detection is important ‘in order to save

P

K3

the patient s life. Chest- x—rays afe one method of detectlng tubercu1081s when it -2%

“
is present.. If a patlent is healthy, the x—ray will indicate t berculosis.i3<present

.t/-"

1% of the" time.”- On the other hand, if a patient does have tuber~_,;' -
will fail to detect that fact 10% of the time. If tuberculosis is pre 1”t?“n'§55-bnt
of every 10,000 persons, what r§ the probability that an x—ray indicates*nd\l'g -

tuberculosis when in fact the patient does have the desease’

> 'y
- - ; T
“ ~ R .
4 - . \': :
Eac - e
h P
. -, et
- ) ) IR A
s e =
\ oAy AR
A " - ~ T L
~ R - . Y = L
AN - : > :
] : . - - - Ly
£ S .
. - . L -
- e - -
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; ST ' - <
Solution -to Self-Study Problem #6.2: '
) s
The mutually exclusive ‘events are 'tgberculbsis“-and "Yo tuberculosis".
Since we want to compute )
L  ?("tuberqﬁ19si$"“l ?hea}tﬁy x-ray") .- ) 41;\%§
we need to know . . . ( .
. » = ‘ A ~ . b‘- T _. . h -
P("healthy i—ray"ul‘"teberCulésis?) o S ) R \W T
. a-'nd‘ . J. - - \- "*" . . q'.' L . \ o - L
. T ' * S . e . : . .- ._ fs ’ ™
o P("healthy x~-ray"” | "no tuberculosis™) " ° . - 0
e . r ‘ CLT o 5f . : - -
- - The cemputer output is ' X e - :
» - S o ’ ‘ - - [ ~
o ’ ’ . A - . . . ’.‘-
a iNaif%i;%UTUALLY EXCLUSIVE EVENTS 1S .o e .
N S200 'ﬁ, ’ - S : - S
PROBABILITY 3F EVENT - 1. 15 . 2e0005 - -0 o
- PKGﬁABILITY ZF FVFNT: 2 - fb X°-9995 : ‘
' HKZBABILITY ZF EVENT X GIVEN T%zT FVFNT 1 JGCUK: I520.1 _
- PNZBAB;LITY BF EVENT X GIVEN THAT-FVFVT 2 gCCURS 15?0-99. -
- rs B N . . O

PnaaeleITY 3

a stiff penalty.

o~ 'healthy patient wi
e,
M RN

" 1N J T

o PRIBABILITY THAT EVEgg X. zccuxs IS 0.989555 5

N ]
F EV@NT i siven X Is 5.05277625-5 R

Therefor 7 if we are to err it should be1on thzéaide of aw

" UPRIBABLLITY 2FEVENT 2  GIVEN X IS 299994947224
- Since event 1 ' is "tubercylosis", o . .
: . P("tube;culdgis"'I*?heaiﬁhy'x;rayﬁy*= 0-0000505
”-—4 .\o_‘_ v . .. . . . . ) - . N 1 ) -
o Notice that tuberCU1031s is a rare disease, and the fallure to detect’ itqgarries,-



\ .

-: ‘probability that nonetheless abfailure exists?

.Self-Study Problem #6.3 . - - ! . U S

DL - oo - S - S S <

, R §
It is essential that flaws in the equipment of a spacecraft ‘be.- detected if the,

'

R

"™

" craft and its occupants are to survive an orbiting mission.q Elaborate electronic

sensing equipment dis installed to detect such flaws even though they rarely occur.
(' -
Suppose the failure- rate of a critical part in a‘missile is .I/lO -of 12,.' Suppose

also that if the- part fails that 22 .of the time the electronic sensing equipment
does not detect this fact. Finally suppose that if the part is functioning o ,
correctly Cnot failing) “the sensing equipment will say that it does fail SZ of

- the- time. If the sehsing'equipment does not detect a failure, what is the

e

e A . ,
./;k' 2 ';ii - , ’
-;' ‘ - }-\ .. é' ’ ~g £ °
) St T
] 4 @ S _
. - .o LT e )\</ -
. . i . i,‘ ﬁ o | ~. ‘
. [ . T & N . o 5
- 18: ) .
o . "’ s ! \ ~ -.4',.
. -..-' i - _V\-
~ -

- . .+ 8-6.18
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. » - o . L
‘. Solution to Self-Study Problem #6.3 R I

. The mutually exclusive events are | _5_A' - , s

. Aj = {part fails} . . \ -
| o ;2 =5.{~pa"rt:‘_c.loes'no_t:'lfa:i.l} ' . | _ ’
S } S 3 Ny
b2 i_‘ .1 S -f?(éi)i=.'9dif _3;355; ;999} h7‘ | R 'I, o
’ Tﬁe'gvéntl i 15.:"no.Eiiihfé ;é€éé;;dJ:?n&'wé wish'té‘éémpute f(Alli X)e-.
.Theréfore v€ nééd:§o know‘ ~ | | .

| P(X-[<%15 = P("no -failure detected" | "part fails") = 0.02

- P(X |-Az) -~ P("no failure detected" | "part does not £ail") = 0.95
- | _ B :
 The computer output is

NO. 3F MUTUALLY EXCLUSIVE EVENTS- IS = 22

IS5 ?20.Q01

PRIBABILITY 3F EVENT _ _
Is 202999

PRIBASILITY 3F EVENT

OVE I

- | PR@bAbILf?Y PGF W VFENT X CIVVV THAT EVENT 1 DCCURS 1570. 02
: " PRIBABILITY JF EVENT GIVVV "THAT FVFVT 2 JLCUQS 15?7095 °

PRISABILITY THAT SVENT X, ij)ﬁg IS 0.94707 . ﬁ .

X

pxIBA=LLITY 2F SVENT. o1 GIVEN'K"Ib -.1073?512 -5
- PrIBASILITY 3F EVENT 2 CGIVEN X IS .99997592673.- .
’..‘ . . /\‘,
e ] \&_ .‘ ) - . ' S a\ s “1‘}4_

e | | . |
P(A; | X = P("part fails" | "no failure detected"} = 0.000021 .

7

‘Notice that no failure ié detected (euent_X) about '95% of the -time.




i 6-3 *Decision Theory Models

. the theory of utlllty, game theory, probabillty, and classical and Bay351an\§tat1st1cs.-s-

operations research.,.-'-c s e ”1-- IR S .

J

“Theftheory of making decisteng draws upon many fields including ethical theory,

Certain branches of declslon theory have- become commonly used in the behaV1ofal and
. \\ . \
management .sciences in recent years, partlcularly in the grow1ng field known as
LI S : :

,».—
'S

. In general ‘we have 1mperfeqt knowledge of the factors from the outside: warld.d.
. el - Q‘.~'
Neyertheless' we wish to make the ‘best declslon\even in the face of these knowledge

gaps In this sectlon then we will develop several declslon theory models each one

\ taklng into account and u31ng as much knowledge of the world as there is avallable

~

. piecemeal Wlth each‘plece'being approprlate to some state of our knowledge

to us. As a pedagoglcal dev1ce, we shall develop a flow chart for decision maklng
-~

-as we dlSCUSS the varlous dec1S1on theory models. The flow chart w111 be developed

" At the

close of the sectlon you will be asked to integrate the pieces 1nto a coherent whole.

As in the earlier_sections, we,shall discuss flngte sets in the gemneral

: . e ] ‘
discussion, although some of our examples will involve infinite sets.

. : . o o N ’
R . . [ . - TART ] .
-~ 1\\ : o i . > - J . . ) A._ .5 . o
.e . e '\__LIS%'DECISI.ONS dy, d2, ---> dn | : ~, .
9_,‘1 o - ' | ‘Flgure 6. ‘f/ o ) ) s L
N - . g . e a .

- leads to a'uniquely_determined-outcome._ In-thls_S1tuat10n, we need .

As 1nd1cated';n figure 6.1, the f1rstfstep in a decision theory prohlem is to

define the set D {dl,...., dn} of pOSS1ble declslons. In some &a!FS’ each dec1s1on

"only" decide .
- ] ’ ) . o . . P -
which outcome we prefer-and make the appropriate decision. Of course,_deciding which

-
-

outcome we prefer may be either trivial or close” to impossible.
_._ - I 2 A_ : ...I i ) . » :
o K 0 SOE s . ) :
183 L

it PSS,

< ws



- e . ) »‘. \.. . ) ) -~ by
: ggple 1 (Feibes) ‘ ’

- "You may invest in one of A B, C.- Each‘%nvestment costs $500. The yearly S

3(" ,." T4

returns on A B C are 32 SZ and 62 respectively. Which investment will you\choose°
. . ‘ '- : “ -

zsis. The stsible dec151ons are d_‘E’invest in A s d invest in B , and T

.

' d3 = invest in C - The putcgme of d1_ is a- profit of ( 03)($500) $15 and

similarly the outccmes of‘.dz- and d3 are profits of $25 and $30 'r€spective1y.»:;.;
et T Sl -
‘Here the decision 19 presumably tr1v1al. Choose C toﬁ;yg,_. .

T Your father is 75 years old and needs an operapion. Without the operation, ‘he
wilI die within 6 months.' If he survives the operation (SOZ chance), he will |
- (t ¢

!t probably live for at 1east 2 years, but will be an 1nva11d. Do you recommend the

peratlon to him? - - _ o : ’ ; - - s

Anal zsis: 'The cossible decisions are dj; = recommend the operation, +d, = advise’

kS

‘against the operation. The outcomes are as gi .in the example. Here the decision

. . . s . . R
is far from trivial as it involves one's personal ethics ‘and emotions.

- .The rating of outcomes is one of fundamental- problems of ethical theory. . There

is a related mathematical theory known as utility theory (see Chapter II of Luce &
e

4-Raiffa-for-an introductlon o ut111ty theory). 1In any case, as we shall see below,

\ ° .
. N <

many decision theory models require that"one assign a utility (equivalently-a

~

payoff" or a "1oss") to various outcomes. Although we shall not emphasize this.
g

point belo:}(the poss1ble d1fficulty dn a551gn1ng such payoffs should be kept in m;nd

’

whenever utilities are required-(see e.g., example Z_above).

\ ' Formally we have the following axioms:.
. T -\ |
). A set D {dl, ey dh} of decisions is specified. o

- ' 2) Aset D= {01, 02, cens 0 } P = <n, of outcomes are sﬁecified.

(¥

} . . 3) For any.given decision, di 5 there is a unique outcome,_ Qj - T

P

. The mechanism for making the d%C1810n is to rate the outcomes using ethical

theory, utility theory or the like, and to select the dec151on which gives the most Sf

L 4
v . LA
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Thls branch of deciston theory is known as "dec131on under L

- LS ot
u"\ ‘“' - T

;favorable outcome.
We may'now furtheE develop our flowchart %s shown in Flgqt? 6 2._

certalnty .

G

p .
.- L. - . . L.
RN -Vl : E . . .-l .
- . . K . - e
N . . ) N .
.

,

matrlx whose ‘entries are ordered palrs representlng the utll‘tles to ea;h ol

ER\(]

S Ty

1 , $ .
LIST DECISIONS djy da, «+»» dy | . -
'."_‘ . ‘ ); - ) v . ) . -
IS8 ’ Nq. - '_[, .
OUTCCME . '_ - - ~
DETERMINED . v YES .. 'LIST.OUTCOMES 03,02, +=-» 0, i
SOLELY: BY e - G . SR T __.Aq
OUR DECISION . e . RN/ T .
§ . . -+ |-USE UTILITY THEORY TO RATE
o N L ... . .-} .~ THE OUTCOMES
_ NO _ o o .
- . [PICK THE® d; WHICH GIVES THE
- . BEST QUTCOME O
P - : 4 . °
_ GIop) ) SR
= " Figure 6.2 ' ' ' ) - - R

oY

In our next decision model, we assume that the outcome of a decision is

influenced by a rational opponent who has a set

> .
strategies available to him.

-

= .{Sls e sm}

We assume that to each decision d

of decisions or

i ~and opponent , P

7

. , o . N ;
strafegy s;' there is a definite gxtcome Oij . This situation and it generalization.:
- . - i

- to more than two ratlonal -agents is the subgect of game theory.

L

‘bBe found in most texts on fnnlte mathematlcs.

s ' o &
“We will assume that numerlcal utdlities for each opponent are known for each .

]

v

of the outcomes

’

- /\ -

0. r"The
ij <

'game]’ LS usually dlsplayed by means of

°

185

!
- Sy

The classic

¥

«

exp081tory text on game theory 1s that-of Luce & Raiffa, but elementary treatments may -

. 2.
Al

Tea ~

a payoff (utlllty)



l,-th°r\_‘«/exémlple o ' . \

e

'uistrategy 2 'then our payoff 'is .0 and cur opponent s payoff is 10 N Similarly

A ) ~ A o opponent o BRI S s
m'__,_ } JOTS R g R \strat_egies ) A S ,:
e + decisdons” ‘T, 1 T sy v ¥ sy e

d L (3, 2) | 's?‘,(d,";O) .
e | T ae ] ds

. L . - . . . . ~\,

‘. ‘\ . ) . s
“

. .Here the pair (0, 10) means ‘that if we make decision 1" and our*opponent employs e

v

o

ﬁffor the other entries in the matrix.

.:f—_\_

ample 3: (Adams) ' IR . A . ' o ] - . 5?'72‘,i:_f

R S T -
o "Twofdﬁop01iStS,vthelRo;>and C‘lumn Corporations, ‘are competing for shares of
" - - - _“?_a
a million dollar marRet. The follow1ng payvoff matrix describes the profit (in .
* . e
hundred—thousand dollars) of the Row Corporation for various choices of strategy

of'the two corporations. The Columm Corporation s profit for the given choices of

.strategy is the difference between .one million dollars and the Row Corporation s e

—_—

profit. .. = ERS

-~ Column Corporation

_ Row Corporation . Ry |3 -7 3 .5 ) A L
o e e s T
Rows_ Ry, Rp, R3;' corresPond to the Row Corporation selling,'l0,000 units, 12,000 :

units and - 14 000 units, respectively of its product.- Coluﬁms 61, C2, and C3 B

- correspond’ to the~Column_Corporationfsellingﬁ 16,000 , 12, ooo , and 14 OSh\‘units -

" respectively.,




' h y >y . h
: : E v B, _
RS ; ’ _ B - 8-6.24
% 2 . B L o o SRY FIENE .
’ S - "v_ § -7 _' . . - - - " . (3
~ f \ B ) : : . - * ’ -~ . P - S "4
- . . . : ‘. <. e l:j; . . i e - L T % .
/An31151s.-“Theﬁfull-utllity.mairix W e e LT,
6 A T T R - Gy et T
« = '_\’ P . . ] . . ) - }. o . - . .~ - .
. . ‘~..“ e . T . . ' W e
o o Ry | (G5, Sy (4, &) - (4, 6) .
s . . . e .
X f;' {“ T Ro. (3 7) (3 7), (5,25) - = - N
L Ry ‘|45, % (4 ) . @,
: > '-?'_ ’ - ’ i ' ) \
‘ ; e : T e,
(/,/ A . . L N -
> . The ‘Row ‘Corpor tlon reasons!as‘follows._ If we decide 'R; ,.then no- matter what
- 55 < v : : * ~
?;“ the Column C‘rporanlon dec1des -our prof1t is at worst & . Similarly the WOTSt we
PR _ . " . . .
(’f;ean,do_q}th_ Rz is_’3 and w1th R3 is 3 . Since the Column Corperation wishes
;\4~e" l - 2 o

to maximize its profit, we dare not decide 'Rz ‘if-fhe Column Corporatlon is likely

to'decide C; or Co , and we dare not decide Ry if the-Column4Co;poration is

likely to decide Cj.. |
e . : - _ a , : . -
v To decidefwhat‘itz Co lumn Corporation is '"likely to do" we need only reason

- from their point of . If they dec1de Cl. the worst they'can do is 4 ,

simllarly the worst outcome: for C2 is 6 "and the worst outcome for C3 1is 35 .

~ . .

A conservatlve stréf!gy for the Column Corporation fhen 1S C2 since no matter
what the Row Corporatlon does, the Column Corporatlon will reallze $600,000 .

Thus the ROW'Corporatlon S conservatlve strategy is Ri , anduphe Column
(

Corporatlon s conservatlve is C2 whlch leads to the ut111t1es (43 6)“. Now
-1 .

- ’

' suppose the Row Corporatlon does not play Ry . Then if the Column Corporation

_ con!inues its conservatlve strategy' C2 _the payoffs wlll be e1ther 3 or 4 .

K | o e S . '
' But w1€h R1 ‘s the Row Corporatlon has ‘a payoff of 4 already._ Thus the Row f‘"
Corporation has no 1ncent1:e to alter 1ts~strategy from the conservatlve 31 .

Similarly theéC;lumn Corporation has mno incentiye{to_alter'its,Stfategy from the,

1
’

_conservative Cp , since if the Row Corporation continues R; the payoffs are 5

“or 6 as opposed to 6 . = . -




M = ..:' ; . . . .

... The ' rationaI behavior" for the\§ow Corporation is to decide' R; , i.e., sell

m

| 10 000 units and for the Column Corporation it is to decide 02 . i e., sell -
v12000units._ﬁ” ST T e , _ o .
In general the cbnservative'strategy for the "row player" is"to'compute his
,, H r 4

minimum payoff for each row and choose.the row with the largest minimum payoff (the

-~

Ny : » ‘_»

"maximum strategy) , Similarly the conservative strategy for thev

c‘ umn player

-

is to make a 51m11ar computation for the columns. If these considerations lead to |

' a payoff for the ‘row player which cannot be improved even if he knows that the

column player will be conservative and to a payoff for the column player which

cannot be improved even if he JKnaws that the row player will be conservatlve, then

- o . . < . >

the 'maximum" strategy-is taken to be optimal..

C . . B R ~
._\‘, . ,»- " S L L _..‘t‘
s - RN cos g . .
N -

. _am&‘i (Adams) S S U P

‘ "Determine optimal strategies for the row and column players for the game

defined by the-payoff matrix,_ e ' e
o Rl -(5, _-{5) o, -
s -“Rif'_"’f‘(z; ~2) - (3, -3)

[ “ . L I

Analysis: Here if the row player chooses Rj , his worst outcome is 1 and if he’
chooses.‘Rz ,;his worst outcome is 2. —Thus.his maximum choice"is Ry . Similarlyj

the maximum choice for the column.player_is 02 . However,iif the cOlumn player

knew that the row player would choose -R2' he could do better by changlng h1s'7—'

- . [N

choice to Cj - o .'f-‘ o . T V‘J
Continuing the analysis in this way, ‘we soqg.conclude that there. is no rational
oL . - . Yo~ b R . :
‘choice between R; and Ry . _The way’out of this'dilemma is to adopt a '"'mixed -
* - ¢ - 4 - - . ‘. -

strategy » That is;‘choosei Ry - with ‘a probability P and R2 with.a probability

1- p».. It is only Gdnc decis1ons against a rational opponent that one would employ
? * " -
mixed strategies, sinéz only in this case is one concerned with dhe s dec1s1on berng



Fl

games (such as that in the-

-

discovered and exploited

gt is a classic result of game theory, that in

K .

. ‘ o . ’ 8—6.26

ast table above), an optzmaL mixed strategy can be

zero-sum"

fonndlf We refer the reader to. the sources mentioned above for the theory of mixed

“:Esttategy as well as for the the. theory of competitionpand cooperation among ‘two. or

M

v

.are. -

.
see Maki—Thompson,>E. 60 £f,

h

| l);-A set |

~2) A_.set

. shown in Figure 6.3.

-more rational agencies.

D

S

o

The axidms for the game theory model of decision making

.{dl;Adzi :..,-dﬁ}

{sl, s2, ceis By 3

4) For each*outcome

.

'.3) The outccmes are determined by the pair’ (d > s ).

) .. »

"offdecisions-iS'sbecified.
- s _‘." .

of opponent strategies are-speciﬁiedu

’/(dl, S5 ) each player has a specified utllity f'

-

~f

and all of these utilities are known to each player. i

- # . .-_.

for an'example) We can now extend our flow chart as

e,

ES

‘\7

~e

L7

AR

B . ) -

.
N
\__\“
. . - N
. B 3 . B

N
4 .
) ~ -
]
- 9
J . ’ ‘gha'
e : -

Figure 6.3

LIST OPPONENT STRATEGIES
Sl, Sz,.-:., sm

+.,

1 GIVE OUR ULILITIES FOR THE

PAIRS (d,S)

| GIVE OPPONENT'S UTILITIES

FOR THE PAIRS (d;, sj)°

T VR

: Once agarn we remind the reader that the varlous sets above need not be fin1tev

-

o

ﬁPPLY GAME THEORETICAL METHODS

A i :(}:M._
o GToR) :

'p.

oo
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b, In our'final groupdof decision models,, we:assumeithat/the.outcome‘of a

Ldecisﬂon is influenced by a state of natore .‘ By this we mean ~any nonerational ~‘ E
;..a;;;Z}: For example, we might be’trying to decide whether or not. to carry an umbrella._
The”decisions are _d; é'carry umbrella,. d, = leave umbrella home.l The states of

»
1

) Tnature mightg?e s1'= will rain today, s, = won‘t rain today.';In any case the
possible states of _nature 'S = {s1, §2, +.%, sp} are assumed to be. specified. Z,@ .

.4

There are three types of knowledge that might help qumake a decision against nature:,

> .

T _: : 11)7 The utilities Ui’ for the outcome 0, i§ ° specified by a decision dj. and

a state of nature s. may be.specified.f

. j L 2). The probability' P; *thatfa'given state of nature wii. occur may be’

A B ~

- »~ - - -
B T .

given. R . v - L
T ,.‘,' - . .F

- 3) We may be able to carry out some experiment whose outcome is- influenced\\i/

(depends upon) the state of nature 1n effect at the time the experiment

e

.+ . was conducted. . : S - L ‘
s : ' ‘ e - e/

In a given case we might have any or all of these types oﬁ knowledge. Hence'there

[N

7are¢ 23'= 8 alternatives possible for'decision theory Ypeéé the decisions are against

-

nature.” The eight alternatives are: =«
‘. A) Utilities are Known, No Probabilities Known, No Experiment Available.
- .
B) Utllltles ang Probabilities ate Known, No Experiment Available.

.C) Ut111t1es and’ Probabilities _are Known Experiment is Avallable. e

-

D) Ut111t1es are Known, No Probabilities Known, but an’ Experiment is . ¢
AT Available. " e Co " - .
“ - ) L - > s/ . - R
B oM E) No Ut111t1es or Probabilities Known, but- an Experlment is Available. ;/
qQ S ) "No Utilities~Known but 13*obabn‘“},':z.ties are Known and an Experiment lS !
9 T . -avhilable. - S | | o Lo
) G) No Utilities Known and ‘No Experiment is Available 'but Probabillties, ’
T . N v 2 . ‘ .- ) A ‘% . A . oL B - ) .
- "~ . are Known. ' - o e : n R X —
o “ A : - A ’ ' o . S . L.
N -’~k-H)~vNothing_is<Known. . RV - L ' SR
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. : . N . . i T
- SN Ty . 9
:,;; A e [ ! ° . : ’ : ) 4 = 8_6‘28 .
» < . . ' . , )/
I‘A.b . . ’ . ' . .- - . s . b. . “ -
- o S . . - A _ : .
.. ~We consider each of ‘these in turn in the order shown above.-

. .
*

“ Al ~Utilities'are knoun,‘No Probability Known, No Experiments Available. Co s
] . i . . y - . B - .

. 1In decisions against nature ,the case when only utilitles are known is called

‘"decision under uncertainty". There appears - to be no universally acceptable solution

. to this problem, and a rather'thorough survey is given~in‘Luce-Raiffa, Chapter 13.

We shall confine ourselves here to‘a brief.presentation of some'of theiore common

-
.

methods of treating decisions under uncertainty
L 4

Examgle 5 (Luce—Raiffa) Conslder the utility matrix

’

. . . S t

e : L s1 s2 ,
[} - . ) . - ‘.x -~ ‘.
& o | 100 |
~ - s . [} "
: . T dy 1. 1 b - ) ‘
- N ™~ >~ .
.- - = ] X : . . @ :
Which’decision should we make? Co- BN X . 2 i
. . (5

The conservative approach is- to retain the gamevtheory cr1terion of Maxi - min

s -

-, .

\

- - -~

Utii%ty. Siné% the first row‘has minimum 0 and the second row has minimum.dj the

i ‘max1qggnun ch01ce is the second row, 1.e., dec1s1on do ,1i R L_; o _
1-: smnce—we are not competing ;lth a rational opponent,,.he maxi - min criterion ‘-\:
Q@y "be unduly pe551mist1c. This 1s especiallyégiue in a case&such as that shown “in
: & = . . . T
the above table wheré we pass up aIl chance of -a galn of . 100 ‘to assureva gain‘of‘ a ~
only i . An alternative decision criterion 1s 'ﬁihl— Max Regret" . ‘Again’referriné

‘e . . . -

to the above ‘exampile, 1f we make decision ~d; and s is-the true>state of nature,
. - . - b e o ) ; .’ S

- - .
St e s R

we hive a "regret"'of 1 , since we-cbuld have received;a payoff of 1 greater by

- LT -

‘deciding dj . Similarlyfif'we'decide- d, and s;  is the state, Wwe have no "regrets",

. ﬁbut if' ‘,‘turns out to be the trge state our regret is 99 . Thus we can replace *

~ -~

»

the utility matrix of;;xample S by the regret matrzx, ;',- L ;" T ' PR
\- ) . ‘ ] .-_ .~ __.' o -—/ ~, ;,:’ ‘ * ,) -
- . 7 -4 . ’
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Now if we decidéizdl our maximum fégret is 1 and if we decide d; our maximum

AJ

régret is 99 . Therefore, we ‘¢hoosethe smaller of these maximum regrets - (1)

and make decisiond'dl . ? : g;% : ~1.

DM .

In éeneral the regret rij corresponding to the utility. Uij is given by

r., =max(0..) - U.. . ' - ' .
1] - 1] . 1] : - N

1

vt the st < 2 e
Although e mini - max re&ret_criterion appears attractive in this example,

-

it is no ponacea as the following example shows. . - .

A\ Y]

¥
Example 6. (Luce-Raiffaﬁ» Consider the utility matrices

- . ' g
| él sz s3’
a0 10 | 4| B o
‘d, | 5 2 0f ° | ‘
) I
s s; Ss ~53 .
i . d 0 10 4 P
dy s =) 2v | (10 o, .
ds 10 | s | 1

-
N

Note that the matrices have the same first two tows - i.e., decisions ~dy; and ‘d2

have the same utilities in each matrix.
_ s . ‘ _
Analysis: For the first utility matrix, we have thqbfollowing regret matrix

w

192 o
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- . 5 - - \
N\ s .
-~ ‘\ - \-Q\l . k -
. & Y . sz ) -
. _ 1 2. 3o, -
r~ ) N 0 6 /\ [
- ‘ . dy ] ) 3
~ ' Fody | O 8 50 ® _

N - a
-

Hence dj -Bas waximum regret 6 and d; has maximum isgret 8 . Thus thg mips h

-

&rma§\regret criteria selects dj as optimal and ds is non—optimal.

“Now” consider the second outility matrix which in effect merely adds a new’

-

’ , .

‘decision d3 . The corresponding regret matrix is : v - !\
‘ a ‘ | \ Sl - Sz - S3 ) | - ) N - -“l — | N
d; 10 0 % \
' ) d; 5. 8 JT 0 ( ‘ N !
ds J 0. 5 9
(’ = . L s

\

Hence dl‘ has paximum regret 10 , d, has maximum regret 8 and .d3 has

- .
-
<

maximum regret 9 . Thus the m1n1 - max regret criterion_now selects d, as

-
. . . ,

optbmal' That is addlng an 1rre1eveut altemative" d3 has changed dz;ffrom -
: ‘ - ’ \
non—optimal to optlmal . - . o _

.

Luce—Raiffg (p. 288) give the’ follow1ng humorous 111ustrat10n of this type a ;

.

incongruous result:

;> DOCTOR: Well, Nurse, That's the eV1dence. slégé I must decide whether oT not hﬂ’

» -

is tubercular, I'1l1l diagnose tuDercular. © N ' ) - ]

. ) * - . o
- NURSE : But, Doctor, you do not have to decide ope way or the other, you can 59 .

3 . i ’ ’ o ~ . bt h
b R & - . P
- you are undecided. - S
A - A .

. DOCTOR: That's true, isn't it? In that case, mark him not tubercular. .

.

- /
<

- N |
NURSE : Please repeat that! az ) .
» / a

:}. * . - ; P - .
The final criterion we shall consider for making decisions under uncertaintf

the "principle of insufficient reason'. Here one assezés‘that if-one is '"'comp] &aly
P P, ST ; \ TPle

- - , : ) " . O il M ? ’
- /

EKC ' ) Fa . -- 4.."‘) . ] g
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¢~ ignorant" as to'which state SL, ..., sp obtains, then one should behave as if all

4 states are equai;§,1ikely- This means that we a531gn probablllty l/m. to each state

of nature. ° Since decisionS when both utilities,ﬁnd probabilitles of the stateés of

nature are given  is considered in the next section, we do not pursue this criterion
N ] . N .
, . .~ ;

- -

\ here- ' -J. ’.';‘ * . h ; ' : . -
To repeat the axioms for fﬂe,model of this séction are:

N L
. - 1) A set D= {gq;, dp, -.-»-dy} of decisions is specified.
- »

Y

t{

2) A set S={sy, sy, «.+» Sp} of states of nature is speciZied.

3) - Tﬁg cutcomes are détermined solely by the pair (di3‘5j)'

-4) TFor each outcome a utility ’Uij‘ is specified.
.o R ) . . . |
The procedure is tO Select and use a "decision under uncertainty"” c¢riteria

such as. those discussedgin-this section.
. o < ' .

. Our flow chart can be coptinuedias shown in Figure 6.4 .

YOU KNOW.
THE ITIILITI?

DECISION IS UNDER
UNCERTAINTY : USE
CRITERION SUCH AS
MAXT-MIN. UTILITY,
NO- MINI-MAX REGRET,
PRINCIPLE OF ©
INSUFFICIENT
REASON -

CAN YOU
. PERFORM AN
FXPERIMENT ?

NO

~ )
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- 3 “ . > :4 H o 4) -
“ e ‘ I . ) \‘&' .
'——‘Jigzlltiés and Probabilities are Known, No Experiment Available. o X' ST,
: s : ' : J

v, -

- ! .
PR
- + ’

In thlS case (known as "decis:_ons under, rlsk") we can éompute the expected

-~ : . . . . - .
uttzlty each decision d; + ‘ o : - - ;
) - : . @ Pl o S ‘ -
v ~ o R /,/ & - . - .
. . m . ,//N’ o ’
tTL E[d;] = Y U.. P.. / Y
- i P N / R
i N . j=1 f} J /o
3 P e .
whé;'.\ : . ' ;o . . ~
& P, = probablllty that state of nature\ s. dccurs and U, ij is the utility ..

'S

Lt' ' . -
| .

for -
the outCome Correspondlng to the dec1s1dh d and state Si'° A straights forward

and — - = -
-, 5.7 Sensible Procedure is to then choose“the decision . di “which has the-grea&egi\ki .
e - ' - . ' . . LT T
xPthation. ?BS axioms for this model are - - < . |

N . el .
1) ‘A set‘ b {d1,.da, <oy d } of decisions is shgcified,

[y ~

K - 2) A set Sfﬁ {sl, s2,:..., sm} of states of nature is speC1f1ed

3) The outcomes aré:ggtermlned solely by the pair (s., s )

4) Fgr ea;h outbome a utility Uij is specified, Q?'n., , \" !
| 5) for each state of uature s; a probahiiity_ Pj “of it beeurring_is )
- Rnown . -

-~ . I - .
/ . . .

- 4 i o - -

N < / <o - 4 - .
!

The rocedur is thé&n to choose the dec1s1on w1th max1mum expected ut111ty.

»/
-

'Ce the probailllty, Pj‘ mightuinvolvewsubjective judgments or mlght

- g-

Y

In prac

onl R ‘ g
Y be approx ately-known. Nevertheless 1n order to use this model, we must aecept

SN -

these probablllties as flnal‘!

{ -
!

S !
'EEEEEQS§Z, (Felbes) We return to our three 1nvestments A, B, C of Example 1.

{ o -

Each. liv stment costs $500 and they have respectlve returns of 3/,n5/ and . 6% .

Now, ) ) ¢ /
o hoWever, we a5sume thatythe returns are*nog,certarn. It is ﬁos31ble for each J/
inve / ' A S T
Stment to result in e1ther the given percentage return or a loss of $5. o
N
\ -
Speclflcally, the probabllltles of*a pos1t1ve return for’ A B, C are .9, .5,,\

'Y-and ’

2 respect1ve1§. Whlch ‘inves tment should we make9 . )
An . ’ : - N o RN
‘—é£2§£§; The UC111ty matrlx is oo o \ ) .
? . , -4 . - . - y\‘
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. A A B B c c
Sound(.9) Unsownd(.1) Sound(.5) ~ Unsound(.5) Sound(.2) Unsound(.8)
A $15 7o-s15 $0 $0 . $0 ‘$ 0
B '$ 0 ‘so0 $25 -5 - $ 0 $0 .
C $0 %0 .- $0 g $0 * “$30 =§5 ~+
s | N )
7 Expected value for A = (l?)(.Q) 4+ (-5)(.1) = $13-.00
Expected value for B'= (25)(.3) + (~5)(.5) = $10.00 ’
) Expeitegz value for C d GO (.2) + (=5)(.8) = $ 7.00
€ bt . ¢
e ) ; ' ~ .
. s . : ) A
Using expected value as a decision criterion, we choose investment A . N
. Our flow chart is extended as shown in Figul;e 6.5
*\. 5 % .
N .
GIVE PROBABILITIES P, N )
OF THE STATES oF J [ . | \TFF .
NATURE - S35 - . -
1 Y
s .
WILL | COMPUTE -
YOU 'PERFORM NO— " EXPECTED UTILITY
AN 7" ¢ | FOR EACH DECISLON .
EXPERIMENT ? : ’ d. ¢ N
4 1 -
. . QQ h’
N "e;e{
. A 3
. Voo PICK THE DECISION ™
! SERN : - d; WITH MAXIMUM °

- { | T .| EXPECTED UTILITY ‘ .
. . - Grop) ., - o T
. . N ’ ' ’ - ‘CE“

o

Vs
. . . . A
) ) - Figure 6.5 T i
¢ Y -
2 - ! 1 8 i
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C. Utility and Probabilities are Known, Expeximent  is Available. \

< ' - Y > * . - o

S, " In this case the experiment is-used to renise the'given probabilities of the

states of nature. gne may wonder why we should bother w1th the experiment‘if the

probabilities are "given" . There .are gwo reasons, first of all a9'mentioned aboze, o

. the given probabilities may only have been obtaigkd through subJective 5udgnents ¢
G

or approximations. Secondly, we may have the probabilities for a nopulation as a'?ﬁ'\°‘~\;
. . E ] =

whole, while we aré faced‘With.makiné'a decision inVOIViﬁéL? particular sample from
~ ) . -* v

this population. - . é& v .45“ N ;, . )
- L — x - . ﬂ L , . - Ml . -
,Example 8. . ‘ .. BN . ‘
_ . . ' / . ] Yy B
An organization wishes to decide whether or not pe0ple will succéed in a . :
N - ' A

) ’ v

certain job classi icatiom. It is known from pa§g>experiences that 407Z° of all
) ° . : B

people -who apply for this Job have been successfﬁl. A screening test has now been

' 1 4
developed, and it has been found that 707 of the successful candidates pass tﬁe

.-5 \

- test while only 30% of unsuccessful candldates pass the test. A new candidate
X

for the job passes the test. What is.the probability that he will be successful _

in the job? Lot . B _
. .y . 3 .
S .‘

Analysis: The candidate s probability of being successful prior to taking the test

» is 0.4. In the light of pass1ng the te;? his ( osterior) probability of success can

d . . - __\‘ s .
be evaluated by Bayes' formula (see_§ecfion 6.2, eq. (6. 9)) -
. v A I
P[Success | Pass] = ' R P[Pass | Sucecess]: P[Success]
i . PTPass | Success] P[Success] + P[Pass T-Not Success] P[Not success] ~
N o (-7)(-4)/ ) O . . ‘ o,
' a . - (7Y CAY + (3)(C.6) '(/\ - T
% - L7 R f . ' .
- - * : \ T or—— :

-~

I T . . . :
. o i — .
\wf'Thus passing the _testyraises the probability of eventual success from 0.4 to 0.61.

- «
~

The general procedure for re%estamating«the probabilities that vari states

bl -

of nat\_ur?e occur is similar to the procesl ~9a7eloped in Example 8. We a.ssum%; that a ¢ -

Fad

wll Toxt Provided by ERIC
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! - .- T
random experiment has a specified set o nthmes A = {ay, az,‘y..h.az} and that

~

o .
we know the conditional probabilities Plap | Sj] s, of a given experimental out come
ay if the state of nature is Sy - We then compute the revised probabilities,

> ij » that the state oftnature is - sj if the outcome pf an experiment is g -

From Bayes' theorem these rewvised prebabilitieazare: ‘ ‘&
Y o : . I
- ij =~P;Sj | akj - = Pla, | Sj] Py o |
o . ) Play I Sj] Pj ) l\ .

j=l t . . .

At this point, we have "improved“ estimates for the probabilities of the state
{
\

of mature s,  and can proceed‘as in Section B above to compute the expected

3
ut;lity of decision di given the experimental result a i *
- n ' : . - ’
- !
. . - : , m \
- Eld; | a4l = 1 Usis i
. j=1 _‘-&‘ Ned

Thenﬁ?bf a fixéd experimental outcome a » just as before, we choose the decision -

~ . ' . -

di .with greatest expection.' »
» .
Example 9. (Modlfled from Moore & Yackal) -t i

" M //gnlth has a congen1ta1 hearing defect, caused'by malg/rmatlon of the bones

of the 1nner ear. A surgeon gfates that an operation is available to.correct this

-

defect, but ‘the operation is not always suceessful. 1In fact, the operation ma%¥
] / N . .
- { S . ) / -
correct-Mr. Smith's hearing  (s3) , have no effgct (s,) , or destroy the partréi

— P

< hearing which he now has (s3) . Although the surgeénfcannqt predict in advance

—

which of these states of nature will hold, he can, ffom extensive medical data,
. - . . -~ .

state that the probabilitieé Py Fz, P3 of these three states of nature are .9,

.

.05, .05 respectively. Also there is a 1aboratory test which can be performed o
R .

which has three outcomes A, B, C ‘ Medical data is avarlable which gives the :

proba‘bilities of A, B, 'C when the states of nature (discovered after surgery) are

" . . [ ' /

/32’ S3 : ) . . -~ -
Rag , 19 |
K ; ' ’ . . ¥

wll Toxt Provided by ERIC \

-y



whether to hige the operation. (d;) or not have the

: /
STATE./OF NATURE

-

s1 <
sz

S3 .

6.36

TEST OUTCOME
A B. cC )
6 .2 .2 >
3 .4 .3
_Z 2
1.2 .7 -

The laboratory report on Mr. Smith turns out to be

B . . Mr. Smith must decide
-

operation (ds). _ ¥

After careful consideration of- the inconveniences of his partial hearing loss,
. N .

:
/)the expense of the operation, and the risk of total hearing loss; Mr. Smith draws

—

’ . 7 L .
up the following payoff matrix which reflects his psrsonal feelings:
: ]

e

Mr. Smith's Decision

v
Analysis:

S1s S2,

g |
Pls; ,]/B]

Plsp | B1, =

_4P183 | B]

STATES OﬁthTURE AFTER OPERATION

1

S) S2 S3 Ty

. - ) - ’
d; . 25 -15 -100 N

. dy | ~10 -10 -10 ,

™

. R
We first compute the conditional probabilities of the outcome B giveén

and s3 by Bayes'

theorem

,

(-2)(.9 .

'
i
\

(-4)(.05)

GG 9) + (-4)(05) + (.2)(.05)

.2).(-9) + (.

e

(.2)(.05)

4) (.05) + (.2)(.05)

Wermow use these piobabilg

result B

<

‘I:R\(].

wll Toxt Provided by ERIC

of the lab test.

T * (B 05) + (-7)(.05)

~

.858

-.095

© . 047

es as the probabilities of the.state of nature ginn the

Hence we can compute .

193
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Efd; | B] = 25(.858) + (-15)(.095) +(=100)(.047) = 15 ,

[y -

e E[d; | B] = -10(.858 + .095 + .047) = -10 . & - -

‘

Hence on the basis of maximizing his expected utility and knowd ing. that the lab result |

3
L]

was. B , Mr. Smith should decide to have the operation. - . "y
. ¢ “ -
The criterion used”here is known as theBdyes' Deczszon Crzterzon A Bayes
PO . §

Deczszon Strategy is to perform the same computatlon (1. eQ maximize expecﬁation) for

&
'each possible experimental outcome a, and use these Bayes' probabilitieg to specify’

v ~
LT . \ . o . LY
i the best decision for any outcome of the expériment:\\§\ SN ¢ . ﬁék o
. . - )

When an experimént is_performed, it is always the case that decision'strategies~‘q
(dn decision rules) are involved. A decision strategy is a function from tRe set

A of experimental outcome to the set D of decisignsa Thus if there are 7 -
- : ‘ - z S
experimental outcomes and n decisions there are n p0331bﬂe dec131on strategies.
: _ . ‘ N \
This number, n~. 4 can come exceptionally large. For example even in the relatively

'simple ear operation problem (Example 9) n = 3 and Z'= 2 is nZ = 9 . (This is-

to be compared with' the number of decisions, 2 . The.number of decision strategies

~;;—_¥Er\e§teeds the,numbegfof decieions. Hence there is thg/potential of" req;1r1ng a N
choice from among MZ lthings -(decision'strategies) rather then from among M thiné;

’ . ~ ., .
(decisions).‘ It is,.of course, to our advantage to try to evoid this increassvin the
number of poesible ohoicesz ‘
"In the case under coneideratidd here whed utiiities and prior probabilitiee areL'
availabie in addition to -the conditional probabilities resuitiag from an experiment, )

~
~

the Bayes' Decision’Strategy is usually taken to be the best of the mZ‘apossible-n

- . # ‘ <. . <
strategies. In this case, thezoptimal strategy is kaﬁﬁg,and the potential increased
- ~ .. . ¥ .

. - X 3 . . - .
difficulty of choosing dmong ’n; decision strategies instead of among the n decisions
aoes not occur. The axioms for afBayes-Decision Strategy Model are: — _ "

- A “ : \...;‘ . . .’ / ’ :
1) The set D = {dj, d2, ... dn}_ of decisions 1s\spec1f1ed, \(~ N

-
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J

’ s
. . 2) The set S = {sy} .., sn} of state of nature is specified,

3). The set A =_{a;, 321—..., 32} of experimental outcomes is |,

»-f - : specified, ! B L

.« 7 '4) The utilities U associated with the outcome of d} and s

13 h|

are specified.
53 Theé\ (prior) probabilities Pj of each sj are known,,
- 6) The éonditional probabilities P[ak l 3]' of the experimental

A N

- outcome a, when thdistate of nature is sj are known.

~

The procedure is then to compute ?[sj | ak] from eq (6.9) and for egch a chodse,
v !

- / ) . - -
the d; so that E[di | a, ] 1is maximized.

Our flowchart is now extended as shown in Figure 6.6. -

AN

. q - . . s - . -
‘GIVE THE OUTCOMES . ‘ .
21, 825 e+, @ OF

P

e ) THE EXPER o ’ .y
rd
GIVE 'P[si | a,] FOR , :
: EACH PAIR (54, 3) : -
COMPUTE P._ = Pla, | s.T
~ ) BY BAYE'& THEOREM FOR’ .
. , ' .THE EXPERIMENTAL OUTCOME i
. oA ag WHIGH OCCURS '
v - \,. . - * -

{

\ L
COMPUTE THE EXPECTED

-

UTILITY GIVEN FOR :
EACH DECISION d, .

T ¥ c

- SELECT THE DECISION WHICH : _ B :
‘ YIELDS MAXIMUM UTILITY | - -

- v .
GTop)  ~ _ . j’
: * Figure 6.6 ,

O ‘ . . ] ' . .
ERIC - « t 207 /
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b; Utilities are Known, No Probabilities Kmown, but an Experiment is Available.

M

This situation arises most coﬁmonly in statistical decision theory. .Sincé an

- experiment is involved, we must consider decision rules. Recall that a décision rule

assigns a decision to each experimental outcome. Since we do not have prior. :

»

probabilities, it will not be possible to reduce the selection of a deciSioh rule to:

LY

that of selecting a decision as in Section C.

In this case we know the values of the utilities - ' .

v

U(di’ Sj) \ -
. TN ’
and we know the condit%pnal prébaﬁilities ‘ ‘ K
‘ P[sj .| a, ] / . N
° & - ) ; ’ - <
. -
where a, is an outcome of the experiment. - -
Let" r denote a decision rulé and r(ak) denote the decision which r “
assigns to the experimental outcome a, ,‘g.g.
~ M d = r - -
e -~ -i \ (ak) \

IS

Then for each decision r(ak) and each state of nature sj » we know a utility
{ - : 3
: : ! : : , '
U(r(ak), sj). (recall r(ak) is some particular decision). Si: .2 the probabilities,

Pls ] aﬁd are known, we may average out the experimezta’ outcomes zand 3Ssisn'a

3

utility for the decision rule " r which is independent of :che particular <xperimental

outcome as follows

: oo Ly
' U(r, s.) = U(r S, Ps’ " i .
_ R o U, ) kzl"((ak)’ P JC N W .
- ot ) Y4
We -have now eliminated the outcome of the experiment and have only utilities.
: - &

However, the utilities are for decision rules, rather than utilities for the

-

chisions. Thus we have reduced the problem to the case of decision under uncertainty

ERIC . L oy

IToxt Provided by ERI



8-6.40

i
as treated in Section A, and creteTig, guch as Maxi—Min.utility may be used.
Notice, ho;ever, that what we will Progyce is a rule for making a decision, not
the decision itself. ’ B
For a fullef treatment of thiS Cage in statisﬁica% decision theory see ﬁéod,

Graybill and Boes, in particular PP- 297-299, pp. 350-351 and pp. 414-416.

Our flow chart 3 continued 3S Shg;n in Figure 6.7

GIVR XPERIMENTAL -
OUTCOMEg atls a2, «-v5 3y

¢ —~

K
. Y -

. | . _GIVE ?[Sj ] ék]
FOR EAcy pAIR (sj > &)

) v

L

| TOR pucH RULE R
) ; UNDER " ~oNSIDERATION ——)——-—@
| COMpyre UGR, s;) .

Figure 6.7

\

E. No Utilities or Probabiligigé,EEEEEL’EB; an Experiment is Available.

. «

The case when only an experimént (¢typically taking a random sample) is available
« is the subject of classical statistics‘ In this situation one adopts criteria such

aphamm

as the principle of maximum 1ik1ih©0d | _jnimum variance-— unbiased estimators, arbitrary
confidence levels, arbitrary size of type one error, in place of the missing utilities

and/or prior probabjlities to gvaluate decision rules. The flow chart continuation is

" - shown in Figure 6.8.

C
o
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N . Kt - .
( -
- v ‘5 o K ) fi ‘ 1S
R ’ ‘ DA NO ’. ' . -
- -\ - ".". °
» ~ . . - N -
- . '.n ] . . 4‘ \ A “ .-
T, LT g - "-\f"‘ -
. CUN » ,- TMATES - -~ T .
RS L EST oF . N~ USE METHODS OF Zia] .
g PROBABILTTIES OF./ | CLASSICAL’ STATISTIGS |- |
: . \STATE OF NATURE?,- = -2 NN
) ‘. . [ e : . - VY o a -."" o . .‘ .
i — ) . - - ) < 4, -
§ 3 PR . @ ; L, °,
- 3 - ] -, " -
. Figire - 6.8 . ,
{

<

.. ’ . * . ‘ . ’ . . & - » ‘ k: -
¥ P- No Utilities Known but Probabilities are Known and an Experiment is Avaliable.
.- s > - O n - N

=4 . . . R . - ' . S
Hereuwe can use Bayes' theorem to refine our knowledge of the-probgbilitieg. and

~  hence reduce the problem ‘to ‘one 1n which there is no experiment. This:case is,
et - -
considgred in the next sub-section - G. The flow chart addition‘i given in- -
.rFi_gure 6.9. - » 3 . - p—, - ; L. o e
. r ‘ " 5 - -
. - ]
< “‘ ,- - . s
REVISE PROBLEMS USING - : ' _
: BAYES ' THEOREM , . ‘ v s
.- ~ ; - — -
] )
o - ~
> - Figure 6.9 /ﬁ_
- . Tl
) s i R0 .
- . v <. L
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. No Utilities Known and No Experiment is Available, but‘Probabilities aze’Known.—
. ST . ' ' .
~ N j_' ’ - LN i ) - ’ h . )
Here ato global rules can Be.giyen,;put the general advice ;o“"beﬁave as if the .
‘e - : . < T s - “ 4 ¢ *
. most likely state of nature is in fact certain” may be helpful.  We reference Mood,
- \ ! . -
: Graybiil-& 36es Pp. 340-343 fOor am example involving point estimation. Additional
V- Lo - . N . -
. - - 4 L$ - . . ) -
.examples when this criteria is usefyl occur whenever, the ‘decisions are of the form:

d; = assert. s. is the true stat® of nature., The flow chart’ comtinuation is given

_ in Figure 6.10. , - ' | - I
: . : /“ .~ * N o ? . ] . - " . ~ . -
. -L .' ~.<' . . . ~ . . :""v . . . ~ - - i .
. o B ) Ct = T - . .
- ' N A ) e . o~ 7 o ’ - s ) -~
aa G o VE PROBABILITIES OF | o A
- | __STATES OF NATURE | - ' -
" Y. yEs J
ACT AS IF THE MOST
LIKELY STATE OF NATURE : 4
IS CERTAIN TQ OCCUR. . :
~
Y d
TOP)
. ; < .
* Figure 6:10 -
{ . . -
iix
H. Nothing is Known.' ' ]
Our only a&vicg in this case is to_gﬁess! See Figure 6.11.
EA) N v
-
¢ NO BASIS ‘FOR
* DECISION EXISTS )
&

o h ' (ETOP : A_ ) Figyre 6.11
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’ Interterm Project. B
— .

‘Piece together the flow chart deéeloped in th

FRIC .
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~ oy

N -

) 3 ¢

* % % % % £

. -~

AN a

BN

is section (Figures 6.1 to 6.

to give a com%;ehehsive set of tules for decision 1 g . _ . Ly
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“U%;‘Markov Chain Models.

-

We will begih this final topic of Chapter 6 by,presepting 3 simple demqgtaph;’«c

“model in.a form suitable for use in a matrix theory -course.

non—standard notation.

In order to do this;%

We cons1der the movement of ‘the, populatlon of the Unlted States.

will be over-slmpllfled but the generallzatlon to a mo
/

C
apparent.

'

Suppose that 1n any ngen year one—half of the ‘population 1n the East remalns thef
The other half moves as follows‘ 1/12 of the total mo%es to the Mi&hest 1/6 mové

to the Mbuntalns and If& of the total moves' to the West.

¥

We divide'the ﬁation .into four regions:

v PR

-

&

-

East; Midwest, 'Mbuntaiﬁs and West,

o,1/2 + 1/12 + 1/6 + 1/4 =

n

3

ang?us the entire population.is accounted for.

<&

cplumm vector .

(6.11) ;
: AN
West: . C -
FROM &
MIDWEST
" ‘ﬂ
. 0
] 1/2
SN
(61D Ty,
| 1/4

RN

We can express this movement as a

{

FROM EAST
East (1/2 ]
Midwest 1/12
Mountain { 1/6
West | 1/4

T AT

" FROM.

MOUNTAINS

f

le realistlc model should v

L3

“

1

-

~

WEST

p-

1/4
0

1/2

4

—

Notice that

. FROM

—

F

Our mode] .

S

">

Now suppose we’ have the similar column vgétors for the Midwest, Mountains and

'}we‘wili temporariig avoid the nomenclature of probability %heory-and use a slightjy



-

v

(6.13)

TO:

We

implied

Assume then that'the initlal populatlon is

can raise some interesting questions regarding the movement.of population

by this table.

For exagple:,

P

-

S

a) Given some {nitial populatlon dlstrlbution what is the -

3

’ »ﬁattern of movement continues ihdefinitely’

population d;stributlon after th

Assumlng that the move

year?

-\

first year’ .

a2

is the same for the secon& year,

then what i{s the population distribution after the-second’

TN

What Will the “iengafﬁh" population distribution be if this

Is there Some population d1str1bution which w1ll be unchanged»

3/4 in the East and the remaining

‘ by the movements dlscrlbed by the matrix T _?-

1/4 din the Mlduest (as in the early days of the nation's development)

orig nal population may be represented as the column vector

(6.14)

td
o
B

(3/4) - EAST

1/4|  MIDWEST
0°|. MOUNTAINS

(o) wesT _

-

-~

Hence the

e

(23

-

t.

&

e

v 8=6.45
\ - . -
-y _‘ C z£
‘Note that the éum Qf the compopentg of eeqh of these vectors is 1. We ehnfcomhine
these movement vecéofs into a 4 x 4 table: . o -
al .
FROM FROM FROM * FROM
- "EAST . MIDWEST MOUNTAINS WEST
EAST , 1/2 .| . 0 0 1/4 .
T — — -
MIDWEST 1/12 1/2 - 0 0
AN - —_ — :
[MOUNTAINS 1/6. 1/4 3/4 1/4
wzﬁi 1/4. ‘1/4 1/4 1/2



1/2 % 3/4 remalns in the East 0 x 1/4 move from the Midwest to the East, 0 x O

Ay

P P . o o ; 8-6.46
o o . . ) .
> To Compute . the proportion 6f the population ‘in the EastAafter the first year,

* 4 j d )
we observe fromrthe flrst r&w of our table and our populatlon vector Py that

o .-

move from the MOuntalns to the East and’ 1/4 x 0 move from the West to the East, -

AT 3

hence a total of I ' . g
1/2 x/3/4 +0x1/64+0xGC+1/4x0=3/8 ‘
g - |

are in the East after the first year. : ' o

A

-

simi;arly from the t?ﬁrd row of the table ." ' ~

. ) 1/6 x

are in the Mountains afte& the first-year. ) _ 7 - S
' f v o
TheSe calculations clearly correspond to ordinary matrix multiplication, where

o

3/4 ¥ 1/4 = 1/4 + 3/4 x 0+ 1/4 x 0 = 3/16 ,

we constl‘ue our table as a 4 x b matrlx.' Thus denoting the population after the

N
first Period by P1 > we have ‘
/ (1727 0 0 1/4] . 373 (38 \
| | 1 /4 v v
. 0 o | ] i/ ' :
(6-15) py = 1/12 : 1/2 R _ _
CL /6 1/4 3/4 1/4 ol ( |3/18]
G &M-aﬂ4flmfﬂé o RN Y ‘.
.which ' N
A8rees w1th and extends our prev1ous calculatlons. L -
This answers questlon (a) For brev1ty, let us denote our 4 x 4 - matrix by the
1ettef> T Then a symbolic ve;sion 'of our above result is =
N < . ' LI
‘ '('6"16). P; =T Py ’ . .

With this motation it is easy to answer our second questlon.. Denoting the
poPulatiOn vector %{ter the second year by P2 and assumlng the movement matrix T

remalns the same, we have i -7 : . ' : : .

[Kc}'_- 20U

IText Providad by ERIC.
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: g
- '  8~6.47
.oy . - . . ,
.‘ -, . . -~ i ¢ ) .
A : ot - ‘f[4% i .
:‘. ¥ e )
A 7 , s . .
(6.17) ‘ P, =T.P; . =% -
- , - . 5/16| _ . Y .
.. S . . - ':, L?/IQJ .. ’ .‘ ‘J\/;,‘» . ® »
. - . . . ° _\H ﬂ;-\ . . i , ._ | | ‘
L We could also compute Pj; as foilows, taking advantage-of the fact that
.. X T . .
matrix multiplication is: associative: . s
i T /-
(6.18) . T -Pp =T P = T(T Py) = T? Py
. 7(.:.. e -
N rfe'- ) R A ¢ .
Similarlyiwe find, for the population vector Pk after ¥ . years ;
A ) ik
- (6.19) L . a Pk = T Py

'shed Some light on question (c). " For fﬁpm (6.19), we see that the'"léng'tun" behavior
is closely bound up with the behavior of Tk:\for'iarge k. |

©

*

. . ) j_., , . .' .
A BASIC program to successively compute P;, P, ..., P3g from

P

. . ) . . .
) 5;PE+1 =?T_?k ~ k=0, 1,2, ec..
and to\print every :enth,resu{z/is . . -
. H S = R . . E R . . 2
- 7T 10 DIM T(C4,a)5sXC4,1),YCas1 A
: o 20 MAT READ TC4,4) .
-, . . i 30 MAT READ XCa,1ixn . \
. - 40 F3R J=1 T3 3  , & A ' ,
2 ' : 50 - FOR K=1 T2 10 o W
- T ~ 60 MAT Y=T*X
: P 70 MAT X=Y
" 7 80 NEXT K ‘.
90 CPRINT
SR 100 . MAT PRINTSX.
- : ) © 110 NEXT J
* . ' . 120 DATA .550,0,.25 _ ’
~ " 130 DATA .08333335+5,050 :
. - . 140 DATA <1666675:255755+25 . -7
- ¥ ) 1S0 DATA 225262522555 s
,_ P i .!60 DATAA07S)i25:O:O
) N 170 END - , X ..
o h “ & - : )
210 | -

a7



v

equal to the ﬁectorszE

which remained fixed. Notice also that’

d -

-

21

-~ =

= : 8-6.48 _
- i’ . : o
: | ! - . L ~ . .
The result of running this program is . o t "
. L <16A911227146  ° . -
L . RN - «02851009612 )
| . B - 47124620973 >
. ) 233333325419 .
. . . M ™ R
\ / - ., - R i
s 01666670912 .
«02777890753.
. 47222154574 .
S -33333373390 . ,
T3 . )
NN i -% :/‘ b
- < 16AA6693635 ./
y _ «J2%T77751027, >
- e 47222313115 .
. .333.3339_0557 .
Notice tTat the population vector appears to be settling.down to some-unchaﬁging
vector. The implication is that this vector will be the answer to question (c)
~above. i . -

Before pursuing question (c) furiher, however we answer qu§§tion (@) in the .
affirmative by prodﬁcing_a vector which remainé unchanged. Consider an initial
population vector of . -

. g C1/6 ]
(6.20) = * P, = 1/36 ; .
17/36) 7 ~ ¢
3 | ]
-L'l/ = T

- Then ’, ' - . ~

e -~ .

. (6.21) ‘-.‘ R, Pl =.T PE = PE

‘ \ .
and hence —" .

(6.22)¥ ) B =Bg > k=1,2,37.... o

- i - ' RS % <

.Now if we compute successive powers of the matrix T , we will find that th
resulting matrices tend towards the following matrix - %

KL‘\y - [ e 176" ° 1/6 ° 1/6 ] )
'.‘,\ . \/'? 7 A5
(6.23) g HTE _ 1/36 . 1/36 K 1/36 1/36
* . ] 17/36° 17/36 17/36 17/36 , h
1/3 1/3 -1/3 1/3 | )
Notice that each -column of T, is.identical with every other column and in tutn is . |

L4
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/) - . <
, «
- -
* K

deu

" (}.24) | o . : TE: Pg = {PE
for any column vecter Py which consist€ of positive components, ‘summing to one:.
—--.$ - . " . ) .
. \

* Thus since . . . . \ .
i . N
. {
. - k " O :
(6.25) \ T -> TE as k 9> « - RN
.n/«- ) : - b; A ’ *
we have that ' 1 , ~ : N . -
- < x N T
L - k . Y g . ~
(6026) . : P =T Po -+ T PO = Pt » * Al - —
b . !? k . , E & . . d
% ) ' -. ' j .

Thus questioﬁ\ssz-qoncerning the long run behavior is settled for the particular
matrix T given by (6.13). Let us note that tﬁerejﬁas‘no need to pull the vector PE

"out of the hat". Tf we Seek a vector 'PF which is unchanged (fixed) by T , we

- have the equation . ) . o - -
(602?)‘ \ . T PF = PF . -
. .
or - :
' '. A e | | R o ) X o ) )
- (6.28) (?:- I)_PF =0 : . . 8

-

. where I is 4 x 4 identity matrix.
: . . ; : .
'Since the equation is homogeneous, we have either just the trividl solution or

>

infinitely many

solutions, The latter situation obtains and since we demand that the

- @

" can pick a unique population distribution vector

~c6mponents of PF sum to ohe, we

from the infinitely many solutions of (6.28). Thus the matq;ial,at-hand serves as

,appiication of the usual lihear equation solving that ig rerformed in linear algebra

~

courses. .

-~

.A BASIC program to form eqs. (6.28), replace the last equation (which in this

(=9 ) »

S R4
-)r.. oo

case is_dependent upbn the others) by

< e P1-+* P2 +p3+ py =1 .

Co. 212




<

- and find the unique solution of the fesulting 4 x 4°
10, DIM T<4,4),1ij;ﬁo;ﬂca,4>,xca,1>,Bc4,i)

C ' 100 MAT READ T

8-6.50

system -is

110 - MAT I1=IDN h . - s

120, REM #*% SYBTRACT 1 FROM DIABINAL **

130 MAT T=T-I .

140 Rg_ *% PLACE ALY 1's IN LAST R2W. ** B

150 . FOR K=1 T@ 4% ~ J - - .

160 ° LET TCasK) =1 4 " - .

170 NEXT K , : ’ _

180 REM *% PUT ZEROES ‘2N RIGHT SIDE EXCEPT F2R LAST Raw *x

1950 MAT.B = ZER ‘ R
g - 200 LET BC2,1) = 1 g ,

S 210 RE ** COMPUTE AND PRINT SGLUTIGN * %
220 "MAT R = INV(T) = )
| 230  MAT x = rR*B A _ .

240 ° MAT PRINT X v '

300 DATA 05:0:01025 *

.310 DATA .0833333,.55050 t

320 DATA +1666675255+755.25 ~ « .
e - 330 DAT\A .25).25).25).5 -t
.o 400 _END - i

# .

If we run this program.the results are:

f

Notice that this is' the vector PE

&

. In any case we find that

\re\zs) & o

is our particular numerical ex@mple given by (6.13).

"fixed" is the same as the

«1666A663333
~ .02777776111 -
. 47222233889
7 433333326667

giﬁen in equation (6.20).

-
-

P_ =P, . -

F E _
That is, the ve&tor .which is

"equilibrium" on "limiting" vector.

Before enunciating any general theorems, let us 1nvest1gate some different T

" matrices..
East and West.

one year .and vice versa, then'’

(6.36) , ‘ v T

and

Flrst con31der a model in which the country is div1ded into two.parts:

Suppose that all of the people in the’ East méve to the West after

/7
o o1
I Y . ‘
213
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-.and so on. Thus there\%s no vector P whlch arbitrary Po s -will approach.

‘:\.-:

,)*' ‘ S ' '  .8-6.51
3 2
) 2 - 1 0] - ‘ o
AN 2 '
» \ -
* R .
Jo 17 g N
. . T3 = = T ’}
. B 1 0

- Thus the cdlui;s~6f Tk do not become identical in thls case and as d consequerce

Pi ~does not approach a fixed vector. For example, if

-~
. -

-

_P2'=’L$] B

v -

However, there'i”;a fixed vector . : ~

. (6.31) | \“ _ : e e e

As a~third'example, let there be }hrée regions: East, Midwest aﬁd West. Of

those in the East, 1/2 stay there and 1/2 move to the West. All of the people in the

‘Hi@west stay in the Mldwest.' f those in the West, 1/2 move ,to the Midwest and 1/2

stay in the West. Then T becomes
: : . . l

-

1/2 0 0 , -

(6.32) | , T = 0 1 1/2 e
1/2 0 1/2 i

‘" We find in this case that

xr



Thus it appears that

&=

- 46.33)

1/4
1/4

1/2 .

b

" 1/16
11/16

4/16

1/256

247/257

" 8/256

/

0 0

1 . 3/4

0 1/4

0 0o .
Y

1 15/16

0 1/16

0 0

1 255/256

0 1/256

1.
0 0
0
1= P
0

otice that all of the population is eventually '"absorbed" into the Midwest region.

Rather then say . 1/2 of the population in the East moves to the West in ény

given year, we could have said that for any person in the East, the probability that

he'will move to the West is 1/2 .7 Had we done:so; we would have béen led to the

same matrix equations and the same general results regarding equilibrium and fixed

-(6;13) as one such matrix) and Markov chains.

ERIC
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We will carefull§ state the axioms for the Markov Chain Model using the

«

standard probabilistic nomenclature and notation. We then will give some genmeral

. . . - /
theorems about Markov Chains and finally cite some additional examples which %E}l
make the wide scoﬁe.qf applicabiiity of thisfnndél more apparenf. ’ .
N £ . i
The.basic assumptions of the Markov Chain Model'aré:

. ° -
— 1) There?ékists a sample space, consisting of a sequence of trials !

(eg. the population distributions at periods 1, 2, 3, +.2)s

2) The outcome of each trial is one of a finite set of states

S15 S25 +++> S, (e.g., East, Midwest, Mountain, West) with respective

probabilities Bi> P25 «-+5 P 5 ~
) ) L - .
. 3) The probabilf%y of each outcome sj depends upon the outcome S5 of

the immediateiy preceeding trial, but not on the earlier tria%; (e.g.»

»

the probébility of a person moving to tle East depends on wheghgr the

person is now in the East, Midwest, Mountains or West but not on where
@ .

e ..~ - . he was earlier). The conditional probability of sj given s; is

. R #- . N

2 denoted by tij . __\\\ .

We make two helpful definitions. A robubility vector is a vector (P1s -.., P_)
14 Y a

yi whose compoments satisfy

(6.35)

In the po?ulation movement example, the component P; representé the probability
of being in state i (Or the proportion of thé population which is in state i ). A
transition matriz T is a matrix whose ;owS"ére probability ;ect;fs. Inlthe
population movement example the combonent tij. of a transition matrix represgnts tﬁg
con@itiqnal probability of tragsition to state si at the next tria1;~if thg current -
state is Sy (or the proportioﬁ_which will move from state i to state Jj at Fhe

next_triai).

IToxt Provided by ERI
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CADT;ON: In adoPting this interpretaﬁion fér tij_ (as is standard in the sociél
sqiences)'ve are dealing wi;h the 7% 8py.e of the matrix used Farlier - in particular,
it is now the rows of T which will Suy 4o ome. ' —
We’tfust that the above remarks SerVQ’to make clear the potatioh and the two
possible'intgrﬁretations of the Markov Chain model, and henceforth we confine

‘ourselves to the probabilistic inteTPTetg.jon.

_The key result of Markov Chain Theofy is the one obtained earlier.”

Theorem 1: 4 If the in;tial probabi{ity vecto; is ?O then the probability vector
after k trials is given by ‘ | - . g
—_— S
a . : ) . R ° M
Corollary: { gip? conditional Prababilit§ that a system is state s; initially
'}s in state sjjiafter )k 'steps,?s‘giv§n by tﬁe (i,‘j) element of ™ . .
~ = o ‘

We now turngfg the investigatiO®l Of .he long-run behavior of a Markov Chain. A~

. . . L, :
Markov Chain withggg?nsition matrix T 4. said to be regular if

where Tp is a matrix each of whos€ Poyg consists of.a common probability -vector

¥

e = (ey, ez> -+-, e ) with positivé (i.e,, no zeros) components.

' s . , - :
Recall that of our three pOPulatlQn gpovement matrices (which now must be i

transposed)'only the first corresponded to a regular chain. The second failed to be

regular since T; did not exist, and thy third failed because e = (0, 1, 0) “had

zero components. The vector e 1 ©alj.d the equilibrium or stable vector.
' . T . . ) r.
Theorem 2. T 1is regular if and iny if there exists a power r such that. T

~.

\«

&

b’ Techulcally, we should check that k is actually a probablllty vector, that 1s,
satisfies (6.35). .

(2l

EKC - ~ ~, C21i“ "  | ‘.
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has all positive ti.e. no zeros) components. \

B
\
\

.

-

. Proof: - That regularity implies’the existence of r ig™tmmediate (recall Ty -//r

has no zerges in this cases. ' The converse is féirly tedious,vsee.e.g;_Kemehy,7].

Sneli § Thompsan or Maki & Thompson.

. .
Theorem 3: Let T be the transition matrix of an n-state regular Mafkov Chain

3

\\and let r be the smallest power such that T "has all positive elements, then T

/!
.7
’ .

(6.36) ° o - ri(N-1D2+1 i | o .
- - ﬂ . > - L] .
‘Theorem 4: . If T is a transition matrix of a regular Markov Chain then the A

<

‘'stable vecto¥” e 'eatisfies

i) p Pk > e for any probabllity vector p

~ !

o - s ii){ze:P'; e (i{e} the stable vector is a flxed G‘tsor)
" ] - ',_, : . . N ' -, -

Note that Theorems 2 and 3 allow usg to decide if T 'is.regular while Theorem &

‘ﬁert (ii) tells us @bw to compute e . 1If any power T" has all pesitiﬁe;elemenfé

N

beQ/if‘is eesy'to-see that all succeeding'powersihave all posiﬁive\elements. A

flow chart to decide whether. P -is,fegular is given in Figure 6.12. .

% ) . ' . : . .
Reference:’ Mﬁki & Thompson cite this result on p. 101 without proof.

]:R\(: : ; . o " J. ' -;




GTARD . _ ) ;
) Y. 5 | .
INPUT N, T X A
i . |
y =L A
.- Nz e . .
R=®N-D1D2+1 |-
2 ¥ o
X=1
‘_?\m‘('?1 \
T« T*T’ < /
A 7
- 5 =K+ 1
NO ~ K K
- ty; > O NO > [erINT T 4s Noii‘?/_/:lamm
. . g - .
FOR'ALL i, j » 1
GT0P) .
‘ YES . _ ~_
, . , o
PRINT T IS REGULAR | SN
o T . Figure 6.12 ' - | s

. . : . d o L
- Alternatively, we could test tij > 0 after each iterationm. 1f jifdeed T turns -

out to be regular, we can compute the stable vector ‘e by solving




subject to R C - _ L

by a Gaussian élemination routine..:
| - we now eite‘some qf the better known results for.non—regular chains'(again

- Maki & Thompson and Kemeny, Snell & Thompson give proofs and/or’ discussions). A Markov
Chain is ergodzc, if for every.pair of states s; and Sj , there exists an integer
r ' such that a transition from sll to sj has pOS1tive probabilmty (i. e. the (4, j)
of T is positive for some r - which now can depend on i and j DR The ergodic
property means that we can get from any state to any other state in a finité number

' of’trials.
X

Of coursé, a regular chain is always ergodic since for regular chains there

exists an r which works for all pairs of states simultanEOusly. Ho@?ver,'there are

J

. ergodic chains which are not regular, for example, our second population movement

»

matrix - ‘ : ' : .
Lt s . [o 1] ;4"5

-

Here we can set from state 1 to state 2 and from state 2 to state. 1 in only

1 step, while the transitions from state -1 to state 1. and s-ate 2 to state 2

' take only 2 -steps. Hence T is ergodic, but not regular as noted previously.

_Theoren 5: Ergodic Chains have a unique fixed vector, e = e T , where e /§¥
g‘—————————— " K e
a probability vector. - T ) | " /.

Note that now the unique fixed veétor is not necessarily a stable vector.

In the above example e = (1/2, 1/2) but Tk'\does not converge, hence ‘I'k Py will

8-6.57

—_ . : ¢ _
not converge (unless Py = e). However, the components of e -do have a useful o

¥

» - : : .
interpretation: if, e = (e15 €25 +ee> en) then e, is the long:run average
b - _n" . L. .

ERIC. .- |
A . 220 e .
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probability of being in state s; - ) ° ,
L Finally we briefly consider absorb'z,ng cha'z,ns. The .state si' of a Markov °
. Chain is an absorbing' state if t.'. =1,I - A Markov Chain is said to be an absorbing v
chcnn if there exists ~at least one absorbing state and if transitions from each -
non-absorbing state to some abs%rbmg state are possible in a finite number of steps.
[ chird populat:Lon movement matrlx (now transposed) provides an example of an
. . o !
absorbing chain. As we saw then. - " - ' -
- ‘- S 7
o xeo] T
T - o 1 o : \
« Lo 1 0
which implies "that eveﬁ.tufal’ly we enter and remain in the absorbing state 'middle™"
with prob'ablllty one. - .
This behavior-is typ:.cal in fact if we_write T in the Canon1ca1 fo(?’ (by )
i*eox;dering the states if necessary) -
-» - -~ ™ '
I 07 -
m . , .
T = , I =m ¥ m identity thatrix
R Q
/ ~ A
FA
then - ,
|
I .0
% — A‘k m - N .I i _
- o T ] . v )
R o] ,
- o~ ¥
3 ¢ -
where .
k-1 -
R =R+ R . .
. N k _ .
. ; : .... . N Va N
Theorem 6: . : 7« ‘
. k . o )




W, . ' b2

N . . - o 8659

-

." This theorem means that we enter: an absorbing state with
. ' ‘ -
. L RN

probability- one.

R

T

Theorem 7: N=(I-Q ! exists and Dy is the expected‘ﬁumber of times that

the system is in state sj given that it started in state %i and continued until

~

absorbéd.

" We turn now to some additional examples of Markov Chainms.
EN ] . ~ . . .

Example 10: A.Léarning Model fof?Simple Tasks (modified from Maki & Thompson) .

-

We assume that such learning is all or‘ngne and thusf;ﬁere are oﬁly’Z:statés
"learned" andﬁ“ignorant". We assume that the subject is "taught" in.g sequence of
4 ' T ) - e T -
Jlearning sessions and that the probability of learning at any given session is ¢ ,

where 0 <c <1 . We assume that' forgetting never takes place - that is once the

subject is in the "lgarned" state, he remains there.
- - A . ‘. - T

Analysis: 1If we denote Mlearned”. as state one and "ignorant" as state two, then our

- aSsumptions'lead_to‘;he transition matrix,

| S ri 01 _ -
T = - A ‘. . o o ‘
C 1-C . . : - :
: Y 4 : _ .

and the initial probability vedtor,

A -

‘ ) - S PO':"= 0, 1 .
It is easy to see that. \\\7>'/’ < ’ \\ o
. -
) 1 0.
& .

1-@1-0f a-oF

Z

y ‘ ) ) | }

. and hence if we denote tﬁe probabilifigs of beiné<ip states 1 1and 2 at time ’k
. .. . . . \ Vel ‘ . . - N - . N ..

- bjjthe vector P, , we have

k.

P =P T = A-a-0f5 @-09.

220,
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.o ’ ) \\ M - , ‘ X

. --
Coa -
'_v -

One consequence of our model 1s that the probablllty of learning at or before the

kthotr.ial is 1 - (1—c) | | ; .

1

) izgggle 11: Another Learning Model (from Dorn).

In this model we assume that 1earning‘is gradual. Specifically we assume that
‘ - +

__nh each trial, the subJect learns a proportion . A (0 <A < 1) of the unlearned -

kf materlal. Agaln we assume the subject is. totally 1gnorant of the material 1n1t1a11y.
. ]

Analzsis: Here the states have not been defined and a moment's reflectfon reﬁeals

- that there - are 1nf1n1tely many states of part1a1 learnlng. Hence the Markov Chaln 'u'.

, ' ' )
Model does not apply. An approprlate model is the difference equatlon

L T T AQ LY L To=0. .

where Lk denotes the proportlon of mater1a1 learned after ® trials.- The solution

of the équatlon is

P L =1-@a-Lpa-ac. |

d

Moore &ﬂYachel, p. 65 ff present still another learning model which involves

-

'twdfstep'learning.

__Example 12:‘(Malkevitch & Meyer) © .

#An electrlc power company checks ltsvmaln generator once each quarter year to

ce

- u& “ .
foresﬁall blackouts due to equlpment fallure. . Assume there are two outcomes,

(s

W = generator needs no repair, D = generator is defective and needs repairs.
. - R ' co = e

}Repairsrwill be made only in State D. (It is ‘natural to'suppose“that the transition.
. D~+D .is rare and W > D more common). Assume that if a given inspection yields

W then the probabilities. that next quarter's inspection yield W or D are .6 :f.

lard .4 respectively, while if the»current_inspection yields D then these |
~, probabilities are ..9 and ..l .

ERIC -~ o
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.
..

Analysis: 'The.transitigh‘matrix is o - i
dTQ, - / [
"~ B . — P —
- W D :
W N 4
FROM : ’ .0 .
' D ' -?. N 01 ! . i
P

which is clearly regular. The ﬁa;ROV'Chain assumptions are at least plausible here.
Eggggle'l3ﬁ (Kemeny, Snell &‘Thompson); “In predicting long term(trends in
", Republican - Dembcrat tfansiticns.taking into account only the prior state

. 4
‘(Republican or Democrat), one would use a transition matfixvof the form

R " .D

/ R l-a ' a
L 4 . s
D "D . 1-b.

]
[S

'l_where a 'is the probability of a change from a Republican majority to a Democratic

' majority (estimated from historical records) and b is the probability of the

>

opposite-transition.' A refinement which allows a littlekadditional past history to

- <

be used is to consider ‘the last two_year's results = 1. e. the states are now

RR, DR, RD, DD where for example RR means voted Republican the last two - times.

The;transiticn matrix now has theufcrm" ?~ TR ;;": ,-"' :’ PR
RR - DR ., RD DD

RR (1-a 0 a o) .
> -7 3 Ser

M DR b 0] 1-b 0 —_ o

RD "o l-e 0 .e ' <:§j '
, DD Lo d 0. 1-d) )
‘ Tl 7

. Note that certain transitions are now .impossible. . This device of enlarging

.

ERIC S 224
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the set of states is commonly employed to partially circumvent the Markov

restriction that the transition probabilities can only depend on the current state.

Other examples abound: transitions between pa:ents social states and child's

social states; transitions between job éatagories; transitions between physical

4

locations; all can often be approximated by the Markov Chain Model. A ﬁarticularly

N4

- intriguing model of small group decision making is presented in Maki & Thompsoﬁ' A

p.-81 f¥. A ﬁ o .

)
v

=g
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AUIHORS',EVALUATIQN

(Please circle one of the responses to each question)

. . < o _ 2 '
s , ,
1. Did you attend the short course in 1974-757. ) -
2. 1Is this chapter it
v * ’ o : - » -
{ . : (a) Too short -
(b) Too long : ' . .
. ’ ’ . : :
\ib (&) .About right > ) oo -
1f (a), hich topics should be expaﬁded? ' S ' - "
. . - . .‘ . . : . -. . t
< . . D : -
.can‘yod suggest topics to beﬁaddedZ : CC
; 1f (b), which topics should be abbreviated?
: ; ]
v \ ‘ ‘- v. . | 4 .
whith topics should be eliminated? ) g . a ~
s ,,;\:,;- ] -
P o~ o T R ) ) .
3. Could yoy read and understand the computer progfams? % ,ﬁ
, ' . S . - . €
_(a).élways - e - . (c) ‘seldom '
ALt i 0b) dometimes .- Aee oo - (d¥ “never: . .l
- o > : 5 P L o o : N
4. Did the interim projects seem reasonable? Yes " No
5. Were qRe self-study problems ~ ' :
. ;(a) Too eésy - . (b) Too difficult _ ’/,>
6. Was the number of self-study problems

ﬁ-L f“(B)2Ab¢ut fighé
() To?‘smail" s . .

v




* b y .
. If no, where would you suggest the solutions be plgped?

. Use of posterior probabilities

oy

- . .
. ~

Did you attempt any of the self-study pfoblems? 4 Yes No
Are the solutions to the seif—stﬁdycproblemg - v
properly placed (on overleaf from problem)? Yes No

~

~

= < o '

{ ” .
. . . . . \ i

| 1
For each topie, how s0lid an understanding do you think you have?

Excellent Good Fair

Binomial model : ' . N
'Poisson model" ' |

Bayes' Theorem’

Decision Theory (in gegeral)

Maximum strategy |

Mini—max‘reg;ét’ o . . <
Max{ mum ﬁ;pected Value L ' ’ -

>

Markov Chains |

~

Poor

8-6.6%
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DIFFERENCE EQUATIONS '
.' " | : ) | \

In this.appendixlée will discuss linear difference eﬁuations with constant
coefficients.. We will £isd the general solution of such equations when the equations
aré’of'the first and secoﬂ% order and have constant céefficiehts; A fuller discussion
as well.as a discussion of more general types of "diffeérence equatioﬁs may be found _
in Introéuétion to Difference Equations by Samuel Goldberg (Wiley, New York).

ré

- 2
~ PART I - LINEAR, FIRST ORDER DIFFERENCE EQUATIONS

"1l.1 Definitioﬁs of Difference Equations and their Solution -

4

The equation _ o .

(1.1» , - a Ye4p T 30 ¥ =B ; - k=0,1,2, ... .

. where. 31 # 0 and ag # 6 ié'a"linear,‘first order différénce equatiou with
constant coeffiC1ents. A solutlon of (l'i) is a functlon Vi defined over the set
of non—negative integers (k =0, 1, 2, ... ) which reduces (1. l) to an identity.

For a given value of yo » (1.1) ‘has a unique solution.
As an example considér
Wiepr T Ve T 1

t

For yg = =1 the function

y = 1- /)5t

Ié a solutlon because

‘[KC o S | - Al 2

wll Toxt Provided by ERIC
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=12'_ 20/ -1+ @/t =1

et T Yk .
for 2all k .
e Tl el
Self-Study: Problem #A.l %

Match the difference equations on the left with the solutions on the right.

(@ (k+1)y,, v+ =28-3 W)y = (@-1))/2"
®) Yy "V = k- e Gy =27 -
(c) Ykl 4yk 3 (iidi) Y = 1 - (2/k)

- e em mm mm mm e s em e mm mm ) e mm e e mm e mm = mm Em em em e mm R em em e= mm Ep R es e= W am E== E= @




Iy - . * ’ CeT _- : 8-A-3
Solution to Self-Study: Problem #A.1l
(a) - (dii) | | )
(b - (1)
- 2

(e) - (ii)

S5
. -

A

e




1.2 _Solution of First Order Equations

Rewrite (1.1) as

- —é'-O 1—3- s
Teb1.m7 @y Tk T @
' .or' )
(1‘:2) Vg = M7 + C

W

8~A.4

where M = - ag/a; and C = bf/a; . Notice that. M # 0 although 'C may indeed -,

vanish. Then -

' ' y1 =Myg + C
-and
—~ , y2 = My1 + C = M(Mygo + C) +C’
= M2yg + C(1 + M)
. Then .
y3 = Myy + C = M(M2yg + C(L + M) + C
= M3y + C(1 + M + M%) ’
Thus we might "guess" that g T
'yk = yo.+ C(L + M+ M + +ka'I)
But ’ - ‘ . A .
1+ M+ M+ ..+ M = S ) ’
. k . “for M= 1
SO )

232
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—
x

e

Td'%erify that (1Q3)1is~indéed a sofﬁtion of (1.2) substitute the function defined

!.

)  8-A.5
y Hk\70;+ c i :'ﬁk- fqr1 M#1
{ _ v
#lyo+xe . for. M=1
- \ - T . .
- » iﬁﬁ;; ¥
| yotkC ' for M ='1
v ’ ~

~

by (1.3) in (1.2) and.Shcw;thaf (1Q2) is'reducedvpo an identity;§ﬂ'

- s R e T em e e e e e = an e e e e e e s e Ee =

Self-Study: Problem #A.2

.Find solutions for the following difference eduations

® v, =7

© gt =L

(e) y’&‘“" - ZYg

(£) 71&1 = 5%

-— e o = e - e

B

é .t

)

¥o:

Yo

Yo

Jo

4:'5 B

-—ee em = mm e G e e e = mr mm e e -

- e s wE em = am R am e am e wk | e am em e em e e = em e Em e an e e e e T e e

Ty

’
.
.
.
»
i 22:}’7
~
¥ i -
s Z . .
N
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'EABI IT - LINEAR SECOND ORDER DIFFERENFE EQUAiIONS . L

¢ ]
2.1 l).efinition:s .

The most general-second order linear difference equation with cofStant
. ° - - ' ~ ’

- coefficients maﬁ%be'vritten-f

) - - L o ’ ) _s ‘, /' : - . P
(2. 1) : r M ’_".sty'k__*2 + byk+l +'Cyk - d ) K k = 0, 1, 25 "~
 where .a ¥f. 0 and c#0.. - . : S R
. Por given values of yp and 1, (2.1) has a uniqué solution. The S%lution is
. N ’
the sum of the general solutlon of the homogeneous equatlon‘
B .y "; - . . . ' | .t . | . |_." qﬁ_’\: v ..
anﬂ a particular solution of (2.1). The general solution of (2 2) a8” 2 Particular
: solutlon of (2 1) are discussed below. .

-
‘ 2 - A » -

.~ -2.2 General Solution of the Hoﬂﬁgeneous Equation

Ly

.
-

”‘equation. S - ‘,. : N

ax? +bx + ¢ = 0

7

8-A.6

- T~ The general solution of (2.2) is found from the roots of the cb#Fitteristic -

Case If "If b2'_.4;c > 0 , then both roots are real and ungquél; Tbey“are.; e

~

' - A‘\ - = b + /% = Zac ' .'i _ -b - = 4?93‘
o : | ! - 2a ' 2 Y22 - L
" The.genegal solution of (2.2) 'then is o '
LR R . k. ... k- o
4 Y = A1)+ B(A2) . : -

. /

_ T : : o aditi
where -A and .B are constants to be determined from the initial Coﬂé_tlops

: 7 - e \
and " y; . : - v
- . - - = !
ry M
. . 235
L AY
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ST n A

;;Solutioh to~Self-Stﬁdg;”vPrdblém'#A.Z

- -

Vad B

:‘~Ki(5) ='l,.g = 2 so from (1.3) -
. ‘ Vyk=1+2k

(b) M=

'.
[
T
0
A
N =)
1]
(o]

i

ST () M=, ¢/ =1/2 so

s

¥ = (3/2 (D + 172

(D M=1/4,c/Q =M =2/3

Y yk = "(7/‘3)1(1/_4')1‘ + 2/3

@ M=2,¢c/QA-W=-1

<

. ’__

=3.2°-1

7k |

S M=5,C/Q-W = 2 T~

RN -  fu-<;-"1_'yk = -2 o

¢




L R W S

1.3 4ﬁehavlor of the Solutijf///;. | '

‘e _ ' Recall flISt that M # O . xWe will‘cogeider two cases: M < 0 and ﬁ > 0.
fi) If H <0 ;'the solution OSCIIIateS. The‘amplitudes-of fhe oscillafions
increase as k lncreases if M < ~ 1 .7 The amplitude is .conftant if M=-1,
and the amplitudes decrease if 0O<M<-1.

| (ii) For M> 0 ‘then if 0 < M < l , the solution decays exponentlally. If.

Hft 1 the solution 1s linear., ‘If H >1 ?he.solutlon grows without: bound.

>
-

'_Notice that fof M # 1 if : .
Sy, =¢C/a-M
. -, | ’ ) . ’ N : . ' .-. - .\ ‘ ’ . ) o ‘: ‘ ¢
»the solution is a constaqt "_ - R -

Finally we note that for [H[ < 1 then the solution approaches C/{l_j'H)r

-ffor large k .

Ao _— ’ S :
- ) : . Ao~ ‘ "
_ : A - - :
. ) . - v . -
. . - 4.
.” - . - N .
S . . :
Y .. ot .
- I % - H b )
Y . L4 ~
.. - ' @ & - ,
\//" v
. - . -
. . ~
. v
o - .
~
o o [ -
- : .
4 ? . )
235 -
- - - l.) Ld & .
. . :
: ' k4
¢ .
- & .




. Caég I1: 'If b2 - 4 ac = 0 then both roots are real and edpal: ‘'They are :
~ i = - b/ s
In this case the general solution of (2.2) is.

N oo . " -

~

' Cé@é_{ilz If b2 - bac <0 then both roots afq{imaginéry-and are complex conjugates.

.- . The roots are

b_ Yhac — b2 DA '_V b 1 Vhac - b2 .
28 2a - o : A= - -

" Let

\.,. B .8

A ™ g

.cps'l (b/ﬁ/EE) ii;v;_ : 3 ".}_:'

';.Thenkxhe general'solgtiOn-of (Z.Z)LiSi : "

v 'ﬁg-V-I‘Yk_%'AFrk'cos_(k9:+-B)
wﬁerqfagain A and 3. are constants to be determined from the initial conditioms

¢
-

- Yo ‘andy ¥ . o,

2.3 Particular Solutions. .= = '

'To ‘find a particular solutidg of (2.1) where d is a const;nt'theré are again
EE . . ) ‘ti_ o . : ’

three.cases. o - 7 : . -

" Case It IIf‘bdth roots of the characteristic equation are real and distinct and .

S S - )
~ neither root-is 1., i.e., A7 #2A; and A; #1 and Ay #1 - then.)ﬁ

’ ] -“21;,\ R R - ' =
- v R

> - . .

R
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 Lase 1II: If both roots are distinct and real but one, say A; , is 1 then °

b= -(a + c) . The general solution is : - ' _ i: .
. - 5. . o -
N v, = A+ BAS - T B

Iy . A

- The‘pérticpiér solution is of the form -
t

ti - J( . " y * Yk

' ) A

dk/(zé +b)

- .
¢ )

Case III: If both roots equal 1 , i.ei, A; = Az =1 , then b= -2a and ¢ =a .

The general solutionm-is

Y = A + Bk

. Both a constant andaa constant times. k are'inclpded in the general solution.

2 ‘

The particular solution is ’ ’
f~ L   ¥k_f dkzlzé.l , /i | .
".5_2.4 ﬁxampies C | " | B ' ‘-=”'v_‘ o - g .
S e VAP N o :
- Example 1: :;‘ '7':' yk+éf*.yk+1 - by, = 4" "5 :
['Tﬁé‘éhéradteristic eQuaEién is - ":‘ ." o o ,:
. | %2‘+ x -6 ='.‘0
. S B o _f'. LT L
whosg roots are A1 =2, % =-3 so the cémpletg soiution'is o "; R
o ) 7, = A + B-3* - 1
If.éhe.iﬁitiéi\gonditioﬁé}géé ’Yo:=' ]‘aﬁd  v = 0} then R i f (
B Yy = (2?k+1--%vé-3)k~éi}.
. # ) ’
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| Zxample 2: L Vg T 1 T 4T = 10

kd

The characteristic equation is

- . : . - -
- - . .

x2 +3x-4=0 o | . N

L3

. whose Toots are A} =1 , Ay = -4 . The complete éolutibn is

A+ B=&)K + 2 R

-4

-

il

If the initial conditions are ,yo 0. and yl.= 7 :then

ye=l- D | » -

. {¢§EEERLE_§= Vs ~ T FH =4 , _—

The characteristic equation is

-

L ' " ‘'x2 -2x+1=0

“ ¢

ﬁit?mrqbﬁs A = Ay = 1. The complete solution is-

¥ = A+ Bk -"‘21‘.2 - | e

[ SN

- -

= 2+ 3k = 2k?

Y

Self-Study: Problem #A.3.

Findfsqlutigns for‘thé following second order difference equations

L& s

() Fpyp T Oy F IR T 05 Q?:;;B >y =2
) gy T iy * 8y, = 6.5 Yo S, y1 =4

R o AT 235 . - | ) K




(c)

@

(e?
)
g

Vickz ~ Mpery T4 7 O
Verr ~ ey YO 50
Vigbo ¥ ey T T T 12
Vero ~ ey T T 6
"" 6\ - ﬁ
L
o

(") )
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1, y1 =3_‘.
0,y1=1.
8 , YI~'—-3

. 3
5 ’&y;lvc 12

*
«
¢
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Solution to Self;Study: ‘Problem»#A.3

-

-From Case I of Section 2.2 ' ‘ )
: . x ‘ .
S - = 5.2k ok

-

-%{b) - Roots of~characperistic equation are 2 ahd 4 .

From Case I of Section 2.3 the. particular solution is

- e .

~

=2

‘FromACase'I of Sehtion32;2 then
-

oy =325 - 4F 42

. From Case.III 6f SectiqP 2.2 then

:?yk = A(ngk. cog/ (k & + B)

<

where © = cos~! (¥/5/5). From the initial conditions
N . " ) ,'J} . . .

0=AY5 cosB

,  1=AY5 cos (8 +B)
./jj ’ - . ' Co
oo S _ s k-1 ' sink 6
T . Yk = F"/g—) ) . &~gin e:l

(a) Roots of characteristic equation are 2 and 4 .

(c) Roots of characteristic eqphtion are 1 % 2i

S .

(d) - Rpots of the characteristic equation are 2 and 2 , so from

Case II/of.Section 2.2,

v - - o l- k—l




R akd

=ie

<

s

.'(e) Roots of the characteristic eduation are .1 and -2 . -

'.Thé‘partiéular solution is from Case II of Sectioﬂ,2;3 -

.\yk.= 41(

From Case I of-Section 2.2 tfien : ' ‘i

8

B s5(-2)% + 3 + 4k

(£) Roots of the characteristic équation are 1 .and 1 .

.

'-The'particular solution is from Case III of Section-2.3:

Yy = 3k2

P

-

Frqm'Case II of Section 2.2 then

Yy = 5 + 4k + 3k2-
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T o APPENDIX - o
| L 'AUTHORS EVALUATION
o ' (Please circle one of the respoﬁsés to each question)
. o ' L ,
1. 'Did you a:ttendﬁ"‘the-svhor't course im 1974-75? .. Yes‘_‘. ' Np‘ "
C2. Is thls éha@‘t_;ef‘ | : - . |
_(a‘) Too short -
(b) Too lbhg )
: (e) About right “r
: _If_(a_); which topiés should be e;cpaﬁded? - [
) . caﬁ you suggest topic;_ to bé acidgdi’ _ ’ﬁ |
L If. (b), which top%csv should be'abbfeviatedé?'-‘- N
; . which topics.should be eliminated? ] N i
/
. ‘ | -. o : ' ~ .‘ -
. '3.». rCo'ul‘d you read and ur'lde'rstand thdg&uputériprograms? E v
| | (a) alw_z-lyg; ~ ) | . (c) seldvor_n .
(b)) sometimes T | (é) ‘r.xever_ . ' - E '_ L
£ ’al;?,\Did. the _J'.riter'i? prpject'é seem reasonable? . . Yes “No
5. | Were thé self-study problems | |
(a) Too easy N ] 'I‘oo;diffic:ulltf’ -
;6..' .Wés’.the. number, of. Vse_lf-stixdy'- problems X L '
| .‘ . (a) k'I'.oo large | ’
.. (b) About right B Co - - S ’- .
(c) Too »s‘xha‘ll : . | ) 242 ' ' | -




-

' 7.‘Anid you attémpt ahy of the self—study prdblems? '; _Yés

l 8. Are the solutions. to the self—study problems
properly placed (on overleaf from problem)? 3. “Yes

<

¥If no, where would you suggestafhe solutipns be placed?

No

No

8-A.16

—

’ \

9. .For each topic, how solid an understanding do you think you hEVe?”i ~

/ . " ‘ . . _Exce;lent -Good’ ‘Faig

P

e

Definition of3Difference’Equdfioﬁ§

Poor

" Solutions of'first Order Equatians

Solﬂtions of Second Order Equations

Analysis of Qualitative Behavior -

n

S of Soluitons. T SR o -
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(APB); Campbell ‘H.G. & Spencer, P.E.; Finite Mathematics, MacMillan, 1974 €8]
- . Systems (in switching. circuits), Logic, Sets, Probability, Matrices,

. Linear Programming, Game Theory, Has introduction to APL. If you I j\

believe in the importance of logic and. sets, this is your book.;.,“
Has interesting references to applications; the treatment of most
applications within the text are brief (but good) ‘
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(A-7) Kemény, J.G., Snell, J.L. & Thompson, G.L.: Imtroduction to Finite
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(A-—9) _Maki, D.P. & Thompson, M., Mathematical Models aid Applications,. .
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(A-10) Mizrahi, A. & Sullivan, M.;  Finite Mathematws mth AppZ'Lcat‘Lons, Wiley,
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Matrices, Graphs, Markov Chains, Statistics, Finance. Has .too many.
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-,

‘Sets’, .Logic, Matrices, Linear Programming, Probability, Markov Chains,
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Rubenstein, Moshe F., Putterns in Problem Svazng (UCLA Notes) 1973 (2)
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basic hardware p01nt\of view w1th ‘a brlef mention of F@RTRAN.

Saaty, T.L.3 Topacs in Behavzoral Mathematics (Math Assoc. of America)
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Selby, Henry A.; Notes of Lectures on Mathematics in the Behavzoral _
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