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S STUDY GUIDES ON 'CONTEMPORARY PROBLEMS

Since.1970 the American Association for the Advancemeilt,Of Science has

conducted the DAV Chautauqua-Type Shor rse or College Teachers O'rogram;

with the support of_the Education Directorate of the-National Science Founda-

Mdre than college teachers of undergraduate students par-
,

, .

ticipated in the course which have, dealt With either,broad interdisciplinary

protqpmsVFsciencebrtfieapplicaiTtionsofsenceandmothematicstn college

teacting: All of the courses are designed to make_631ilable the (most current '

information. in v.few of the growing demand for course materials in published

-form and thereby availableto larger numbers of college teachers and their

students, the HAAS STUDY,.GUIDES ON CONTEMPORARY-,PROBLEMS, a part of the 1974-75'

NSF Chautauqua -Type Short Courses for College Teachers Program,_are being

prepared totest the feasibility of publication. After testing and revision, the

following titles will be available from WS in the late fall of 1975:

1. Behavio.r-Genetic Analysis by HirSch
Pattern in Problem Solving by Rubinstein

3. Public Policy Analysis by Ostrom
4.-Alternatiyes in Science t6,6-e-h11-1§by Creager
5. Water Pollution by Kidd
6. Atmospherict6cience-by Schaefer and Mohnen'

7. 6onflict,Retulation by Wehr
8r MatheMatical Modeling:and Computing by Cohen and Dorn

9. Thinking with models by-Saaty

The Study Guides serfesjs in keeping with the. overall objectives of-the
. , :..,, ..;.

American Association .for the Advancemeeliciencesi ". . . to furtheis the

,

wark is)ofcientists, to facilitate cooperation among them; to increase, public

un t. zding and appreciation of the importance and promise of the methods

=of science' in human p&gress."
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PREFACE FRO1.MAAS

TO STUDY lGUIDE REVIEWERS:

The test editions of the initial set of eight Study Guides were prepared on

relatively short notice by the course directors during the summer of 1974. To

provide as much information as possible to the authors for use-in revising this
C

study guide.for publication, we ask you as a participant in the NSF Chautauqua-Type

Short Course, or a colleague or student of'a participant, to test these materials

(as if they had beeh published) andXprovide your reactions. Your efforts will con-

bute significantly to the quality of the revised Study Guide.

If this Study Guide has been successfully prepared, upon. completing it, you

will: (i) ,)have an overall comprehension of the scope of the problem, (ii) under-

stand the relationships between aspects of 'the problem and their implications for

Pk
human welfare , and (iii) "possess a reliable guide -for studying one or more aspects

.
.z.,

of thecproblem in greater depth... We ask you to evaluate the study guide' on the

basis f how well each of these objectives are achieved. Of less importance but-
, \ .4 t.

,._.,,
1 N

most welcome are your specific editorial suggestions, including punctuation, syntax,
e

vocabulary, accuracy of references, effectiveness of illuStrations, usefulness and,

organization of tabular materials, and other aspects of the draft that are related

to its function. Three CopieS-of an evaluation form follow this page and additional

copies may be reproduced if needed. Each ev,1Aator should return a completed form

to: NSF ChautaUqua-Type Short COUrse Progr , 1776 Massadhusptts Avenue, NW,

Washington, D.C. 20036.,_,Pleas1 type or print legibly. Feel free to include any

additional corents you-care to make. This.evaluation is in addition to any evaluative

requests made by the study guide authors; however, we do encourage you to cooperate,

with all requests from authors.

8 - vii
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We hope that having used this guide will provide some remuneration to you

*Id that if you were able to participate in the sessions of the Short Course, you

.gained satisfaction from that. Your efforts in evaluating this study guide are

a worthwhile contribution to4the improvement of undergraduate education and we

express our appreciation to you. Apart from this, we can only'-offer to include

-your-name among the evaluators in tike revised.edition.
ti

hereby gratefully acknowledge the services of Joan G. Creager, Consulting

Editor, and Orin McCarley, Production Manager for this series.

3

Arthur H. Livermore
Deputy Director of Education
AAAS

Howard F. Foncannon
Associate Director-of Education
AAAS

8 vi ii
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AAAS EVALUATION FOM

After completing thi. study Fuide, tear aut ante copy of this sheet, coLipJete
it, fold, ad nail. No envelope is needed.-
Circle the response that hest match your feeling about the study guide. Also,
please make specific suggesions- wh everpossible.

Sails-
factory factory

1. Did you achieve an overalissamprchension of the scope
of the problem?
Suggestions for improvement:

2. Did you achieve arf understanding of relationships
between aspects of the problem and their implications fot
human welfare?

. -(...

Suggestions r improvment:

1011

1- 2 3 4 5

1 2 3 4

3. Is this a reliable guide for studying one or more
1 2 3 4aspects of the problein in gre'eter depth?

Suggestions for improvement:

4. Wase content of this' study guide clearly presentAg? 1 2 3

Please comment on specific pages and paragraphs, if

4
appropriate. ,. Use the back )f this page and additional
pages if necessary. Pleas type or print clearly.

5. Did you find the study guide in rmative?
Please comment as specifically as po

1
sible.

1 2 3 4 5(

6. Are there any topics ill' this _study guide that you think should have been
modified? . . . any- that should have been added?.. . . deleted?

7. Rate the study guide as a whole for the following situations:
independent study by college teachers-, 1 2

independent study by college students - 1

a basic text for a conventional course
.

1 . 2

a supplement in a conventional course -4. 1 2

3 4 5

3 4 5

3 4 5

3 4 5
,

other:
.

PLEASE DO NOT WRITE IN THIS'

SPACE

f 7.



f 8. What was your background in the subject, before using this, study guide?
( ) none or little ( ) college courses ( ) 'teaching the subject
( ) other:

9. Your present position is: ( ) college teacher. ( ) college, student
( ) other:

.10. What specific changes are needed to make this study' guide more useful to
college students?

11. Please make any other comments you feel would be helpful (regarding
illustrations, tables, accuracy and availability of references, extent to which
objectives were met).

Please fill in, your name and institutional address below, fold, staple, and mail.
Thank you for your assistance. -

1

9£00Z 0 -a guo3SuTysem
-N 'anuaAv sllosnyoesseN igza

azuatzs go
luataaouvApv ay3 aoj uoT1rToossy uejTiamy
tuvi2oad asinoo adAy-unbneznego asN

dTZ S

40,

-1sui

ZUSHW
20)Pid amrN



PREFACE FROM THE AUTHORS

The Preface From The AAAS, whip immediately precedes this preface, contains

-8 general evaluation form applicable o all study guides. That preface also asks

you to complete and return the evaluation to the AAAS offices: The authors urge

you-to do so at your earliest convenience. The, responses to those questions will be

of immeasurable value in revising this study guide.

In addition the authors have prepared some evaluation forms designed specifically

for thispatticular study guide,on Mathematical Modeling and computing. A rather

a

broad evaluation form which covers the manuscript s at the close of

this preface. In addition there are Chapter evaluation forms at the end of each

Chapter. We would appreciate your completing and returning as many of these forms

as you feel are apprOpriate. They have purposely been kept brief in ord73;,66E--to.-,....

make an unduly large demand on your time. If you wish to make any other comments

or criticisms, be assured that they will be taken seriously when the rewriting

process begins.

AlaPlease 9end -all of% your responses (exc pt fdr the evaluation form in the

preceding preface) directly to:

ProfessorSJack K. Cohen and William S. Dorn
Department of Mathematics,
University of Denver
Denver, Colorado 80210

You may wish to remain anc-nymous, and the authors respect your right to do so.

Our sincere thanks for yovr assistance and cooperation in this difficult task.

Jack K. Cohen
William S. Dorn.



STUDY GUIDE EVALUATION

1. Did you participate in a short course in 1974 -75? Yes

2. Which one or two chapters were the most interesting?

I. Which one or two chapters were the most useful to you in your teaching?

4. Which one or two chapters were the easiest to read and understand?

5. In general were the descriptions too detailed?

6. Should there have been more space devoted- to

(a) Modeling

(b) Mathematical-Analysis

(c) Computer programming

7. Is the level of"mathematical difficulty

(a) Too high?

(b) Too low?

(c) About right?

Yes

Yes

YeS

Yes

No

No.

No

Yes No

Yes NO.

YeS No
4

8. . What general suggestions do you have for improving the study glides?
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POPULATION MOTTS'

STIC AND DISCRETE MODEL

Two, Simple Models

-
;

.
.2-

; -"--i. ";

Cobsidet .ingle ,1.1;.#4.esrf life.`in, a closed'eagiron ment.. Assume-'thae:the
i_ -..

1Krgulation of this spe cies can be measured at various points in time. .Yor example,-,....- '. 4

*
tir

,.. .. .

United- States is counted every ten years throughvcensus:'the population of the United-
..

.:
../

,

We will_ca41- the time between ountings-a pelaiod.
""'-',

Lee Nh. 'be the numh of-individuals aliVe.auhe -end. of:the kt.h.:144eriod for

. . .

:= 1,.2, . The begioning of the Sk. + 1)st period coincides with the ehd

of the -kth period so tlit N. is the population at the beginning 6f the 1) st
-

k

period. We assume throughout part I that the change in population; Nkr". - Nk

during-the (k + 1)st
p6riod

depends only upon We ask' the reader tlY-Suspered

Judgmenton the validity. of this assumption until-Part II of these notes, where,it ,

will be critically examined.
.

-,As,sume now that the nunber of births (deaths) in any period is proportiOnal to

za,,

rt
of the period. The increase in population is the excessthe population at the te

of course, be_negative. ,--
,

of births over deaths which Suppose the increase in--ich may,

populati6n is AZ of the population. If A is a decimal form then the increase
-:,'

.. A

-in the (k + 1) st period is .

A,...

BUt this increase is also given by

Nk+1 Nk

8-1.1
1 :.))
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SO

(1.1)

,where 19r now we assume that

- Nk = ANk

.A >

Given an initial'Spulation-No we can

in nASIC.to-do so is1

a

Calculate N1, N2, . , A program

100, PRINT "TYPE VALUE FOR A"
- I Ma UT A

. . 100.\ . PRINT- "TYPE I N I T IAL. POPULATION"

r 500 PRINT "TYPE NO. OF FUTURE PREDICTIONS"-----
400 INPUT N

4 600 NPUT M
700 i 141TNT . 4

- 130 0 7 PINT "PER I OD" ..*POPULAT I ON"
900 . , OR, I -1 TO M
10 :' PRINT Is N
110 LET N C1 + A )*N
I .. * NEXT I 0
300. IOW

SELF-STUDY: PROBLEM #1.1

Run the above program with the values A =-.5 ,

for A arid No and re-run the program. Select the

which will enable you to make a conjecture about the
4

model. Try to prove,,by analytical means, that your

No = 1000 . Choose values

additional values in a way

nature of the solution to this

conjecture is correct.

47.



it
Solution to self- Stud : Problem 11.1 4

7hedresults.of running' the program with 11 = .5 'and No. = 1000 are

)sh54n below.

r

i

TrE VALUE POE A
7.5
TYPE INIT=IAL POPULATION

TYPE OF FUTURE PREDICTIONS
725

PERIOD POPULATIONrt. IOD
1000

2 1500
3 2250
4 3375
5 5062.5
6 7593.75
7 11390 .63
8 17065.94
9 -25628.91
10 38443.36
11 57665.-04
12 86497. 56
13 129746.3
14 194619.5
15 291929.3
16 -437893.9
17 656840.8
18 985261.3
19 1477892.
20 2216838.
21 3325257.

4987885
23 7481828
94 11222741

. 16834112

"8-L3

r

e correct conjecture is that (1).. for- A > ., the population grows inTh

an obouzlded (geometrix).way. (2) For A F-0 ,.. the population does not change

at a_11.
(3)

For -1 < A < 0 , the population gradually becomei extinct.

(4) For A < -1 2 the population immediately becomes extinct.. Since Nk is

I



_
.

,intrinsically positive, we shall Interpret the first negative value of

d

Nic

as indicating extinction,

The first three conjectures can be established by using induction to

demonstrate that

Nk = (1 + A)1(

(see alo 'edtioil. 1.2 of the appendix) and observing that, while
J

+

0

for A > 0

for A = 0

for -1 -< A < 0

The last conjecture,*(4),tmay be verified by direct substitution into (1.'

r.

J

8 -i.4



We now turn to a discussion-of the appropria&ness of this model,

It bear any resemblance to reality?

For the values

population will grow

short term,

individuals

ie,
:8-1-5

does

A = .5 and No = 1000 , this model <1.1) predicts that'the

in an unbounded way., While this may be satisfactory in the

It is not acceptable as a long term-solution since eventually the
,

. -

in the population will occupy all of the available space. One passible

solution.to this dilemma is to choose

-1 .

does'not change orThecomes extinct.

'Itr'better'

A < 0 . In this case the population either

solution ir to discard the assumption that the change in .population
j_

is some fixed_ percentage ofthe'current populition. As-log. as there is ample

. . ;

room to place newly born individuals, then the assumption we have made may be quite

all right. When the

L

]p.tion becomes large, however, then,the individuals consume

all of the food supply, pollute the
. -

environment and in other ways:make it difficult

to maintain life. .Thg result of this overcrowding is to reduce the birth rate and.

increase the death rate. Both of these rate changes will decrease A . From this

argument it follows, rather than

population itself. The simplest

lay

where A > 0

person which

B14lc- crudely

(1.2)

or

being a constant, that A should depend upon the

way to achieve such a dependence is to replace- 'A

A B'N.k

and B > 0 . If we do so= -then A. will represent the growth rate per

would exist in the absence of over-population pressures, while the term 2,

models the effect of such pressures. Equation (1.1) is replaced by

Nk4.1 - Nk = - BNk) Nk

Nk+1
+ A - BNk) Nk

A Program which reads A , B and

if

,,the initial population,and computes



-f-

Ni, N2,

400 PRINT !TYPE
200 INPUT AV
300 PRINT."TYPE
400 INPUT B
500. PRINT "TYPE

WILDS re* A. ,..
'VALUE FOR ift

INITIAL POPULATION"
600 INPUT N.,
700,. PRINT "TYPE NO.. OF PREDICTIONS"
800 INPUT N
900 PRINT
1000 PRINT "PERIOD."POPULATION"
1100 FOR I sw.0 TO N
1200 PRINT IAN
1300 LET N ma-(1 A 8111*N
1400 NEXT .I
1$S0 IND

The results of i-uaning this program m-for one case are:

171ALUIR FOR A.
7.5 ,

TYPE VALUE FOR 8
1.0001,
TYPE INITIAL POPULATION
71000
TYPE NO. OF PREDICTIONS
725

PERIODo"
2

4
3

5
6
7

9
AO
11
12
13
14
15

POPULATION
1000"
1400
1904
A493.478
118.474

3705.223
4184.967
4526.056
4740.565
4863.552
4929.914
,4964.466
4982.107
4991.021
49951103
4,97.749

A 4.



17
18
19
20
21
22.
23
$4
211

Notice that the population

4901111.1174
4999.437
4999.718
4999:859.
-4999.93

".4999.965
4999.982

I4999.991
4999.!!6
4999.9911

grows rapidly at first

approaching 5000. We will return tb'a di7scusion

Section=1.3.
-"'_

.

_f

but then tapers off and seems to be
.%1

of,the 1:;6havior of this solutiOn in

.

f Study: Problem # 1.2

It turns out that our second model, (1.2)®, has a much wider variety of solution

types than the first model, (1.1): In this proble511_,,we ask you to 'explore there

behaviors and make conjectures about the conditions on A , B and N0 which produces
2'

these behaviors. To do thi s, use equation.(L.2) to derive formulas for A and B

given N0, N1, N2. Thed use the,fozmulas which you have derived to compute A and

B for the - N1,. N2 "values given. below.

to Compute the population for 25time periods. You may find it

Next use theSe values.,.in the program, above

convenient to combine

these steps by suitably modifying the'given program.

Consider the cases ,in which No, NI, N2

N0 N1

are given by

N2

(a) 1000 1400 1900

(b) 1000 2400 5500

(c) 1000 4900 22100

(d) 1000 2900 7900

(e) 1000 2900: 7800



8-1.8

N0 'Nf N2 .

4.

(f) ' 1000 .._ 1900 14000' ,.

.(g) : 1000 3900 14100 -

,
1

Noting 04= N0 and B were essentually fixed A!'the Above cases, vary A and

-reiunthe program until you Caemake suitable conjectures about the behavior of

.,the solution for N0 and- B fixed. Next systematically vary B to see if `your

conclusions are.. affected. Finally, vary N0

41.

414

jr
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Soluiton to Self-Study: Problem # 1.2

and

The solutions for A and B are

A = -1 + -NIL= NO2 N2
NO N1 (N1 No)

B =
N12 NO N2 \/'

No N1 (N1 NoY

For the specific values given for N , N1, N2, we have:

(a) A = = 1.07 x 10-4 , solution approaches 4738:3 in a

monotone manner.

(b) A = 1.477, B = ,77 x 10-4 , solution >approacfies 19181.8 in

an oscillatory manner.

) A = 4.000, B = 1.0 x 10-4 ;

(d)' A = 1.993, B = .93 x 10-4 ,

(e) A.= 2.011, B = 1.11'x 10-4

convergence.

(f) A = 3.007, B = 1.07 x 10-4.

(i) A = 2.998,
k

B.= .98 x 10-4

convergence.

8-1.9

\.

solution beComes negative (gxtinction).,

solution oscillates to 21522.7.

, solution oscillates without

solution becomes negative:

solution oscillates without

The correct conjecture for N0 = 1000 and B = .0001 is that for
t ,

0 < A < 1 , we have monotone convergence (to A/B); for 1 < A < 2 , we 3.

have oscillatory convergence (to A/B); for 2 < A < 3 , we have finite

oscilrations;. and for 3 , the solution becomes negative-(extinction).

These results for A hold in general, so long as

1 + A
No <



If, however,

1 + A
No >

f-

then the populationbecomes extinct egardless of the value of A . A,

proof of these and related results May be found on page 74 of 'the Quant..

J. Math. (Oxford), 1936, in an article by T. W. Chaundy and Eric Phillips.

In the text, below, we give only a heuristic derivation to these results.

Hoc/ever, our methOds also apply to more difficult difference equations.



1.2 The United State Census

Hbw good is this model, (1.2)? One way to test the model is to use data from

an actual population. To this end we look at the United States census. We start}

in 1890 (the first census witht48 states). The census figures (in millions) for the

48 contiguous states

1890

19 00

1910

1920

. 1930

1940

1950

1960

1970

62.948

75.995

91.972

105.711

122.775

131.669

150.697

178.

199.208

where Alaska and Hawaii have men subtracted from the 1960 and 1970 figures; A

program which asks for values of A' and B , the initial census'year and its

population, and a final year to be predicted follows:

100 PRINT "TYPE MAL= FOR A"
.200 INPUT A.
300 PRINT "TYPE-VALUE FOR 8".
400 INPUT B,
500 PRINT "TYPE YEAR- OF INITIAL CENSUS"
600 INPUT Y
700 PRINT "TYPE POPULATION IN YEAR JUST TYPED"
SOO INPUT N-

...900 PRINT "TYPE YEAR OF FINAL CENSUS TO BE PREDICTED"
1000 INPUT F
1,100 PRINT
1200 PRINT "YEAR","POPULATION"
1400 PRINT Y.04
1500 IF Y>=F THEN' 2000
1600 LET_ N=C14-A-B*N)*N
1700 LET Yi,Y+10
1900 40 TO 1400
2000 END'

23

A



We.. use values of

A = .2329121 B = .0006710713 k

and start with 1890 and .a population of 62.948. The results through the year
.1-.-

2200 are: TYPE VALUE FOR A

.2329121
TYPE VALUE FEW B

6.710113E...4
TYPE YEAR OF INITIAL CENSUS.

.
1

18%0
TYPE POPULATION IN YEAR JUST TYPED

'?
62.948
TYPE YEAR OF FINAL CENSUS TO BE PREDICTED

1.

-S. 3000 .

YEAR
1890.

POPULATION
62.948

1900 74.95026
1910 88.63732
1920 ,104.0097
1930 120.9752
1940 139.3306
1950 -158.7549
1960 178.8177
1970 199.0085

1980 218:7626
1990' 237.6184
2000 25S0722
2010 270.820S
2020 284.679
2030 296.5991
20-40 306.6458
2050 314.9654
2060 321.7522
2070 327.2199
2080 331.5798
2090 335.0277
2100 337.7363
2110 .339.8529.
2120 341.5
2130 342.7776
2140 343.7662
2150 344.5295
2160 345.118
2470 345.5713
2180 345.92
2190 346.1881
2200 346.3942
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Notice that through 1970 the predictions are reasonably accurate: On the basis of

this agreement with the actual census figures then we.can, at least tentatively,

accept the model as being representative of the United. States population with the

given values of A and' B .* We then use the same equation to predict the future

population of the United States. The figures_ from 2210 to 2400 are:

2210
2220
2230
2240
2250

346. 55241
346.674
346. 7673
346.8389
346.8939

260 34675-36
. 2270 34609684
2280 346.9932
2290 347.0123
2300 347.0269
2310 347.0381
2320 347.0467
2330 347.0533
2340 347.0584
2350 347.0623
2360 347.0652
2370 347.0675
2380 347.0693
2390 347.0706
2400 347.01716.

* The values,of A wind B were actually chosen in a way which produces good
estimates of the population itigureS through 1970. For---an'arbitrary population
it is not always possible to make such a judicious choice.

2



Notice from these last results that the population seems to be leveling off at

about 347 million, and
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it reaches that value by 2290. Theie are some modest gains

In population thereafter but one. century later the population has only increased

by another .06 million (about 1/50th of 1Z).
I

or

Self-Study: Problem #1.3

were:

The U.S. Census population of Colorado and Alabama (in thousands of people)

Year Colorado Alabama

1890 413 1513

1900 540 1829

',,..1910 799 2138
et.

1920
....

940 2348
.?,

1930 1036 42646:t.

-.,-;:9_940 1123 2833

,.. 1;50 1325 3062
-4.1..N.

1960 1754 3267

1970. 2207 3444

. .

(a) Using A = .3165 and B = 7.82 x 10-5 and No = 413, calculate the

successive populations of Colorado? What is the equilibrium population?

Comment On the appropriateness of the model In this case.

(b) Using A = ,3155 and B = 8.394 x 10-5 and No = 1513, calculate the

successive populations of Alabama? What is the equilibrium population?'

Comment on the appropriateness of the model in this case.



Solution to Self-Study: Problem #1.3

(i), Colorado Calculated Population

1890 413.0

1900 530.4

1910 676.2

1920 854.5

1930 ,1067.9

1940 1316.7

1950 1597.8

1960 1903.9

1970 -2223.0

Equilibrium population = 4047.3 thdusand,

The-model doe not appear to be satisfactory. Colorado

has had considerable immigration and-apparently over

8-1.15

population presumes have not seriously affected growth

to date.. Not1ce that in recent decades the actual population

exceeds the calculated population. 'Of course, different

- -
values for A and B might improve matters, but the values

used lieredwere chosen in a way which makes them a good choice.

In particular, the values.of A and B are least square

approximations.

(b\ Alabama Calculated Population

1890 1513.0

1900 1798.2

1910 . 2094.1

1920 2386.7

1930 2661.6

1940 2906.7

1950 -3114.5

2i



Alabama Calculated Population

1960. 3282.9

1970 3414.0

Equilibrium population = 3758.6

The model' appear& clisite good. The popdlation of Alabama is
111.

relatively-stable and overpopulation forces are starting to

be felt..
. .
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Self Study: Problem #1.4

In 1920 Pearl and Reed (see Proceedings of National Academy of Sciences, Vol. 6,

%
p. 275 and also Lptka, Elements of Mathematical Biology, Dover, 1956, pp. 60-69)

used the following census data.tO Predict the equilibrium population of the United.

States:

Using

.ft

A = .3641

Year

'--

B = 2.209 X 10-3

Population x 100;000)

aRe

, estimate the U.S.

1790

1800

1810

1820

1830

1840

1850

1860

1870

1880

1890

1900

1910

and and

3.929

5.308

7.240'

9.638

12.866

17.069

23.192

31.443

38.558

50.156

62.948

75.995

91.972

No = 3.929

population. What is the equilibrium population? Compare these results with those

given in the text here. Explain the discrepancies.

e



Solution to Self-Study: Problem #1.4

Year . Population

1790 3.929

1800 5.325

1810 7.202

18 20 9.709

1830 13.036.

1840 17.407

1850 23.076

1860 30.302

1870 39.306

1880 50.205
r

1890 62.917

1900 1%
Po-

/
77.080

1910 92.020

1920 106.820

1930 120.507

's
1940 132.305

x 100,000)

The equilibrium population is 164.8 .

These results, are much lower-than those in the text. Moreover, this

equilibrium population was exceeded in fact before 1960. Hence the results
_

in the%text seem more appropriate.

.- A glance at the census data will show, that Peatl and Reed did not

include territories in their data. In 1790, for example, only 17 states

were talc& into account while the 1910 figure included 48 states. Hence

the area whose population was counted changed from census to census thereby

contaminating the:data,..

tf,
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Self-Study: Problem #1.5

Lotka (see above p. 70) gives the following data fbr g owth of a bacteria

colony.

Age of Colony (in days)

0

1

2

3

4

5

Using A = 6.525 and. t = 0.1609 and

Area Covered (in cm2)

0.24

2.78

13.53

36.30

47.50

49.40

No = 6.24 , calculate the size of the

colony in square centimgters." What is the equilibrium size? Explain the results.



i

Solution to Self-Study: Problem #1.5

Abe Size

O. 0.24

1 1.797

2 13.001

3 70.636
-o

4 -271.269

5 e -13881.390

The equilibrium.size is 40.55'. The difficulty lies in the rate at which

the population reproduces.- The observations were made in days but the

reproductive span for bacteria is much shorter. Thus the discrete model

is inappriate (see Section 2.1).

'Different values of A and B might-improve the agreementbetween

the calculated and actual values. See also Self-Study Problem #2.1 in

Chapter-II.

C r

-

4.

32
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1.3 Equilibrium and Stability

The value which the polAulation seems tobe approaching is called the

equilibrium We will discuss how to compute this equilibrium population

in this.section. It will turn out that if the population ever reaches its

. .

equilibrium value, it will remain there.

Another interesting question which arises in connection with equilibrium

populatiOn is: Suppose a population is in equilibrium and some catastrophe (such

as a flood) kills a significant portion of the population, will the population
4

return to its equilibrium valued We could' ask the samequestion with regard to a

certain influx of,people through say immigration. That is, if a population in"

equilibrium is increased by a sudden flood of immigration, will the population

decrease to its equilibrium-value? Populations which do return to their equilibrium

value when subjected to a sudden, but reasonably small change, are called stable.'
0

Populations that, when disturbed, do not return to equilibrium are called' unstable.

Now if the population is in equilibrium then the population is not changing,

If we set

(E for "equilibrium")

4

N
k-1

= N
i k

k+1 Nk 7 NE

then from (l.2)

0'= (A - B NE) NE

o

From this it follows. that either

(1.4). = 0



9 .

or

(1.5) N,, = A/B

These are the two equilibrium populations. If No equals either 0 or A/B

then all succeeding populations also equal either 0 or A/B . For the United

States census we used A = .2329121 and B = .0006710713 so A/B = 347.0750

8-1.22

which is quite close to the numbers produced by the computer program for the years

2300 and beyond.

To test the stability of the _solutions we could try starting the population

either above or below A/B or above 0 and see if the population seems to return

to the equilibrium value. We should, of course, try different combinations of A

and B since stability may depend upon the choice of A. and B . The computer

A

programs in the previous section are ideal for conducting such experiments of stability.

Suppose for example we let A = .5 and B = .0001 then NE = 5000 . The

results of this program have been shown on pages 6 and 7 . A sketch of the

.

population growth as indicated by these-results is shown in Figure 1.1. The sketch

is an S-shaped curve and-is typicl of the behavior of populations in'which there
a

is a braking effect. The°equilibrium, 5000, appears to be stable.

Will the population always follow on S-shaped curve if the equilibrium is stable ?,

We Ty A = 1.5 and B = .01361 . The equilibrium population is ,15000 . The

numerical resUlts are-not shown, but a sketch of :Ole results is given-in Figure 1.2.

This certainly is not an S-shaped curve, but equilibrium appears to be stable. -Thus

both A = .5 and A = 1.5 produced a stable equilibrium. Is the equilibrium always

stable in this model?

For A =-44 and B = .0001 , the equilibrium population is 40000 . If we

start with No = 1000 the BASIC program produces the following results:



figUre 1.1

,r-
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Figure 1.2
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to Figure 17p5.
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a
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2 RUN
N01

TYPE VALUE FOR A
74
TYPE VALUE FOR B
?.0001
TYPE INITIAL POPULATION
?1000
TYPE NO.
78

PERIOD

.

OF PREDICTIONS

POPULATI ON
0 1000
1 4900
2 22099
3 61 658.4
4 -71884.
5 -8 761 51.
6 -8 11448 E+07
7 6..588 53E+11
8 -4.34087E+19

DONE
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A sketch of these results appears in Figure 1.3. Notice that at point 4 the

population is negative, i.e., the species has become extinct. In one sense this

again represent% stability -- zero population. But the violent behavior is a clue

that all is not well with our model.

Where is the source of the'clifficulty? The only parameter)which we have
-

changed is k. )For A= .5 or 1.5 , the equilfbrium A/B was stable. For A = 4

it decidedly was not. A reasonable course pf action is to try some values of A

between 1.5 and 4 . If we use A = 2 with B = .0001 we will produce Figure 1.4.

'A. value of A = 3 yields Eagure 1.5- Neither is stable.

.(
We could, of course, continue to experiment with'different values of A , but

-

even with these results we can begin to make some 'educated guesses'., and it would

seem appropriate to delay any further experiments until we have'analysed the.

results already obtained a little more thoroughly.

3;
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It appears that if A > 2 , stability is lost. On the other hand, for

A < 1.5 , the-equilibrium is stable. For values of A between 1.5 and 2 ,

the question of stability is unanswered. But remember -- we have restricted

ourselves to one value of B (B=.0001) and have always started with No = 1000.

111,c1 task of varying A , B and No to determine which combinations. of

values produce stability appears hopeless due to the large number of cases which

must be examined. For example, if we use five different values of A' (as we did

here) and also five different values of B.and No then there are 125 cases.

The volume of data would become overwhelming and extremely difficult to analyse.

Therefore, we look for some more profitable way of studying stability. However,

our experiments'have noe been wasted. They have given us quite a few. clues which

we can use in our analysis. In particulaf, from our numerical results we expect

. 'to find' stable equilibrium for the smaller values of 'A .

1.4 Determination of Stability

Suppose the population at some point,is disturbed from its equilibrium value,

Suppose1/4further that the disfurb'ance is "small".
*

Then

6.6)

where

(1.7)

Nk = NE + nk

is small. Similarly then let'

N = NE + n
k+1 E k+1

lb

where nici.
1

may or may not be small. Using (1.6) and (1.7) in- (1.2)

nk+1
= (1 + A - B (NE n ))(N

E
+ n

k
)

*
We will say shortly what we mean by "small".



or

NE. +
nil (1 + A - BNE)NE.+ (1 + A - BNE)nk BNkNE - Bnk2

Now NE iatisfies (1.3) so this last equation reduces to

or

(1.8)

Now since
nk

this is the d

nki.i -= (1 + A - BNE)nk: - BNEnk *- Bnk2

nk+1,12- (1 + A - 29NE)mi:
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is small, we will neglect terms in nk2 campared to nk . ;11 fact

ition of the word "small" asused here, i.e., that Bnk2 can be

neglected compared to the terms in

and write

nk
In any case we will ignore the term

(1 . 9)
nk+1

(1 + A - 2BNE)nk

.

This is a linear, first order difference, equation for nk . If.

11+ A 2BN
E
1 <1

Bnk2

"v
then nk approaches zero as k increases. In this case N

k
approaches NE as

k- increases and the equilibrium population is-stable. If, on the other hand,

.1. +. A - 2BN
E

1 >

.-?

then nk does not decreaSe as k increases and the'equilibrium solution is

unstable.

We now examine the two equilibrium populations O. and A/B for stability.

First if



then (1.9) becomes

= (1 + A)nk

and since A > 0 it follows that I Al > 1- so the solution 0 is unstable.

Next consider

N
E
= A/B

then (1.9) becomes

if
5

(1.10)

then

.nk+1
- A) nk

0:< A < 2

I - 1 < 1

and the solution-is stable. Otlierwise-it is-unstable. The conclusion then is:'

The equilibrium population 0 is never stable. The equilibrium population A/$

is stable for 0 < A < 2 and is unstable for A > 2 .

This certainly agrees with the numerical experiments which we performed at

the close of' the previous section: Just to be sure, however, we should try some

other values .of B and/or No,. Suppose we return to'A'= .5 and B = .0001.

This produced the S-shaped curve in Figure 1.. Rather thamstart with No = 1000,

we use an initial population which exceeds NE . We will try'No = 15000 .

The results.are::
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4
RUN
Nell

TYPE VALUE FOR -A
?.5
TYPE VALUE FOR U
7. 0001'
TYPE.INITIAL POPULATION

*315000
.

TYPE NO. ,OF PREDICTIONS,
710

PERI OD POPULATI ON
'0 15000

0
2 0
3 0
4
.5 0
6 0

'7 0

8 0
0

10 0

DONE

These results are somewhat surprising. The value of A is considerably less

421a 2 , yet stability does not result. Apparently 0 < A < 2 is not sufficient

to guarantee stability. Is there a flaw in our analysis?
4

Recall that in the argument which led t 0 < A < 2 , we neglected terms in

In (1.8). We justified neglecting these terms in nk2 on the basis th%they

were aslnallt compared to the terms in nk . We now examine what neglecting these.

terms implies about the validity of our stability condition.

Returning .to (1.8), rif we are to neglect the term Bnk2

.

-small compared to the terms in n, , i.e.,.

For NE = A this becomes

Bnk2 « 11 + A - 2BNEI

I<< 11 Al
B

then it musts be



Since we have concluded that

1 - Al,< 1

is necessary for stability, this condition may be rewritten

From this and (1:6) we obtain

Or

=N
E-

B for all k.

N « 1 + A
for all .k .
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For A = .5 and B = .0001, the right side of this last inequalitys 5000 as is

API so, Nk « 10000 . '.Since this must hold for all k , it must hold for k = 0,

i.e.,
No << 10,000

Thus when we used No = 15,000 we violated (1.11), i.e., we allowed no to be

so large that we could not-safely neglect the term Bnk2 in (1.8):

The conditions (1.10) and (1.11) are necessary conditions for stability of

the equilibrium value, A/B . But some unanswered questions still remain., Are

they also sufficient to guarantee stability? How are we to verify (1.11), since

it must hold for aZZ k ?

The rather complex analysis of Chaundy and. Phillips cited above shows that

the stability condition (1.11) can be strengthened to

(1.12) 0 < <
+A

This together with (1.10) are both necessary and sufficient conditions for convergence

42



to the equilibrium value A/B . Moreover, the convergence is monotone for

A < 1 .

'The analysis we have given here was confined to 'small' distui-baaces from

A equilibrium [recall (1.11)]. Such an analysis, therefore applies only tolocal

stability,' i.e., not too far away from-Viallibrium. Tipicailyit also produces

only necessary conditions which may be overly restrictive. lgevertheless the

analysis ii straightforward and does at least produce conditions which, if

satisfied, guarantees stability.

chaundry and Phillips have used-a more powerful analysis which avoids the

- question of 'smallness' of nk Bence they deal with global stability. Such

an analysis usually is impossible to carry out. Even a brief glance at their

paper will-indicate the difficulty for even this relatively simple equation.

Yet when a global analysis can be carried out, it produces strongir and more

useful results.

Local stability is easily verified using the procedures described:above, i.e.,

add a. 'small' disturbance, neglect all non-linear terms,. solve the resulting linear.
. . _ ,

equation and, finally, investigate the 'size' of the neglected terms to determine

what 'small' means. 'Global stability follows 'me such pattern and, indeed, cannot

be?carried out at all in most cases.

1.5 A Mare Refined Model

o far we have discussed a constant rate of population growth, i.e.

R = A

which lead to (1.1). We also have discussed a rate of growth which decreased as

the population increased

R A BN



.

with > 0 and- B > 0 . This lead to (1.2). If we plot these rates of. growth

is functions of the population we obtain the curves in Figures 1.6 and 1.7.

We observe that in Elgure 1.7 the rate of, growth R is negative for

8-1.32 -

N > A/B. One Interpretation of this negative growth rate. is tilde overcrowding

puts ,a brake on the growth. Indeed, we could have motivated (1.2) by Postulating

that for N greater than some positive value N
E

, the effect Of over_ crowding

should make the rate of growth negative. The simplest rate of growth which is

AF positive for N < NE

so the model would be

If we write

d negative for N > N the line function

= B(NE N)

N = A/B
E . 4',

We can extend this model by assuming that there is-some minimal population, Ne

below whieh the rate of growth'is again negative because there are so few individuals

that they cannot survive in their environment. If we retain, the assumption that.

for N > N
E

, -overcrowding causes a negative rate of growth, then R must be

negative for N < N. ,.positive for dg < N < NE and negative for N > NE . The

simplest such function R is the quadratic

(1.13)

Where

R = -C (N. - N
E e) (N - N.)

0 < Ne < NE



Figure 1.6

Figure 1.7
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and C > 0 . We depict this

for "equilibrium" and, as we

fr
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rate of'grawth intFigure 1.S. The e and E stand

Sall see, they are indeed equilibrium solutions. We'

'also label the maximumsvalue of R

Nk+1(1.14)

. The difference equation is

- C(N - N )(N - N ))N _ 0 <'N < N
k e k E k- e E

The equilibrium solutions are the valued of N, such.that

Thus either

or

k+1
= N

k
= N

N = (1 - C N - N (N - Ne))N

N = 0

whiCh'leads to the values

populations:

Die and N There are, therefore three eqnilibrium
E

Of the three parameters C ,

interpretations. It is desirable

quantity. Thas we introduce

-111f.we set

BM

0; Ne and NE

- .

, NE the latter two have direct' biological

to alsO replace C by a biologically'meaningfUl

N-
e

the maximum rate of growth shown in Figure 1:8.

NM 2
= (N

e E
+ N')

4 3



Thus we may write

R = =:.C(N - Ne) (g - NE)

= -C (N - NM (NM -,\Ne) ) (N - N M NE) )

= Nm NE Ne

)2]

NE Ne )
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Figure 1.8

In this, latter fortr, it is clear that the maximum value Em of R occurs for

- N = NM and is given by

N
E- e- N )2

4Rm
C -

(NE - Ne)



and our model may be written as

(1.16) N - 4R1,1
(ik N,)(Nk NE)

1 Qg - J k .

-44- e

8-1.36

A
-Using an analysis quite similar

* to the one in Section 1.4 we find that the three- .
4

equilibrium values are stable under the follawing conditions:

Equilibrium Value Stable When

2Rm NE Ne

(NE Ne)2

N
E

)-.

211._ NE
E

NE - Ne

,Never

<1

< 1

While these do not appear'to be very enlightening, let us consider the case when

N
E

is much larger than Ne (the largest equilibrium population is much larger

than the smallest non-zero equilibrium population). Then write

2Rm NE Ne.

Ne) 2

Ne

2RM.NE

(1 e )2

The'denominator on the right is close to 1 so we replace the left hand member by

the numerator on the right: The numeratoritthen shOuld, be less than 1 for stability.

Thus

.1 Ez
Ne

In this case we let N.
k

NE +-n and neglect terms in nk2 and nk3



Since N
E

is much larger. than

8-1.37

, the right side is very large. It follows then

that under these conditions 0 is always stable.

}Dare interesting is the equilibrium value Rewrite
. .

2RM NE 2Rielf

NE - Ne Ne
1 R-

E

Again this should be leSs than 1 forstability or

Rm < 1/2

This says that if N
E

>> N
e

then if the maximum rate of growth does not exceed 1 2,

N
E

is a stable equilibrium value. On the other hand, if Rm > 1/2 then N
E

is

unstable. Qualitatively this says that a high degree of correction in the system

(steep parabola) renders NE unstable, while a low degree of correction leaves

NE
stable.

1.6 Some Numerical Experiments

.

We now write a program to test the model described in the. previous section

Nic÷1

The progrm is as follows:.

= [1 - 4 Rm
(N
k

- N e) (N
k

- NE)

(11
E

- N
e

N
k)2



100
200
300
400.
500
600
3o0
soo.
9Q0
1000
1100
1200
1300
1400
1500
1600
1700

PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT
INPUT
PRINT OF
INPUT M

_

PRINT
PRINT "PERI00","POpULATION"
FON 1=0 TO M
PRINT 1..N.
LET N=C1-4*R*CN-N1)*(N-N2 VCN2-N1)12)*N
NEXT I
END

"TYPE
NI
"TYPE
N2
"TYPE

"TYPE
N
"TYPE NO.

SMALLEST EQUILIBRIUM POPULATION"

LARGEST EwUILIBRIUM P3PULATION".

MAXIMUM RATE 3F GROWTH"

INITIAL POP'UL'ATION"

FUTURE 'PREDICTIONS"

We will use this program to
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verify the stability behavior predicted

we will take N
e.

<< N
E

and try values of

the solution should be stable.

We try first- Rm = 1/8 . The

for N
E

Thus.

Em below and above 1/2 For Rm < 1/2

results are:

TYPE SMALLEST EQUILIBRIUM POPULATION
1?

100 '

TYPE LARGEST EuUILIBRIUM pOPULATION.

10000
TYPE MAXIMUM HATE OF GROWTH

.125
TYPE INI IAL POPULATION
?

750
TYPE NO. OF rUTURE PREDICTIONS
?

40'

5

Tel



PERIOD
0
1

2

POPULATION
750
773.0047
797.4931 r:

. 4 851.5064
5 88.1.3719
6 913.4084

947.8493.
8 984.9609
9 1025.049
10 1068.464
11 1115.412
12 1166.966 ,
13 1223.073
14 1284.576
15 1352.233
16 1426.937
17" 1509.748

_18 1601e934
19 1705.0.14
20 1820.8184
21 1951.550
22 2099.923
23 2269.181
24 2463.31
24 2687 141
26 2946.497
27 3248.299
28 3600 543
,29 4012.021
30 4491 472
31 _5045.758
32 5676.478
33 6374.672
34 7114.44
35. 7849.061
36 8516.474.
37 9058.955
38 9448.579 '-
39 9697.061
40 9840.886

A graph of these results starting at the 21st period is shown in Figure l.9.

Notice that NE = 10,000 is stable and that NE >> -Ne .
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Notice also that the populatibn increases in each period. gradually approaching NE

much- as our earlier model. with R = A - BN did.

Next we try a larger value of .RN ; i.e., Rm = 3/8 . This is still les%

than 1/2 and thus NE should be. a, stable solution. The results are:

TYPE.SNALLEST'EQUILIBRIUM PaPULATkON.

?

100
TYPE .LARGEST EWUILIBRIUWPOPULATION

10000
TYPE MAXIMUM_ RATE OF GROWTH

.375
TYPE INITIAL. POPULATION

750
TYPE NO. OF FUTUKE PREDICTIONS,

ao

PEKLOD, POPULATION
0 - 750
I - .819014,
2 ,901.7585
3 1002.431
4 1127:002,

1264.1781
6. 1487.026
7 1755.75
s 2122.549
9 2640.113
10 3395.496
11 4526.555
12. 6205.032
1.3 6405.226
14 10109.03
15 9940.19
16 10029.73
17 9984.418
18 10007.95
19 9995.884
20 0002.'12



a
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_21. 9998.909,_ f

22 10000.56
:23 ,9999.711
24 -10000.15
25 9999.923
26 10000.04
27 9999.98
28 '10000.01
29 9999.995
30 10000.
31 .9999.999
32 10000.
33, '1,0000.

34 10000.
35. . 10000.
36 10006.
37 -10000
38 10000
39 10000-

.240. 10000

'A.graph of these results is shown in Figure 1.10. In this

:oscillates about NE: and:eventu4ly-reaChes N
E

r'N

case the solutiOn

Finally we :try
"

= 5/8 which exceeds 1/2 . Thus we `would expect' NE to
- -

--beunsiable. The numerical results are:

TYPE; SMALLEST, EQU,IL1BRIUM POAULATION''
?

TYPE 'LARGEST EQUILIBRIUM POPULATION
?%. . .

10000 -,..

:TYPE M-1111AI SATEAX OF GROWTH
-?- ... L._ -

-: TYPE 'INITIAL POPULATION
.. . .

75-0 . %;

TYPE NO. OF FUTURE PREDICTIONS

5 5

a-
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PERIOD-. POPULATION
0 750

865.0233
2 1019.222
3 1233.843
4 1546.661
5 2029.119

06 2624.989
7 4233.868
8 6806.103
9 10526.4
10 9052..727
11 11011.03
12 7912.706

11204.1
14 7382.966
15 10972.34
16 6013.59
17 % 11226.8
18 7317.763
19 10931.43
20 8118.356
21 j 11242.71
22 7271.692
23 10900.97
24 8195.097
25 11249.31
26 7252.492
27 .

10687.9,--
28 6227.'69/
29 11250.8
30. 7248.147
31 10684.91
32. .8235.121
33 11251.03
34 7247.479
35 -10884.4$
`36 6236.264

11251.06.37
38 7247.387
39 10884.39
40 6236.422
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A graph of these results is shown in Figure 1.11. Notice 'that the solution oscillates

about
!NE

with varying amplitude. Our analysis would seem to indicate that the

oscillations should increase in amplitude. However, that analysis assumed that

I
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where n was small. Clearly in thys case n
k

is not small. -Nevertheless once

nk does become small (N
k

becomei close to N
E

), the oscillations will grow.

Therefore, the solutions never settles down to N
E

.

* * * * ** * * * * * * )* * * * * * * * * * It- * * * * * * * * * * * * * * * * * * *

Interim Project #1

Examine the rate of growth curve shown in Figure 1.12. The equation of that

curve is

R = A - C IN -

where 'A > 0, B 0, C 0 and BC > A . The equilibrium values are

N = 0

= B - (A/C)

= B + (A/C)

The stability of these equilibrium populations can be carried out both analytically,

and numerically quite analogously o.the development already given here.

R

B

AM.

Figure- 1.12

Ne.

6



CHAPTER I

ADTHOEVALUATION.

(Please circle one of the responses to each question)

1. Did you attend the short course in 1974-75? Yes No

2. Is this chapter

(a) Too short

(b) Too long

(c) About right

-If (a), which topics should be expanded?

8-1.47

. can you suggest topics to-be added?

If (b), which topics should be abbreviated?

whiich topics shOuld be7eliminatedi,

3. Could .You:read and understand the computer programs/

(a) always -(c) seldom

(b) sometimes -.(d) mever.:

4. Did the interim projects seem reasonable? Yes . .No

Were the self-study problems

(a) Too, easy

6. Was-the number of self-study problems

(a) Too large

(b) About right

.(c) Too small

(b) Too difficult



7. Did you attempt any of the selfstudy problems? Yes No

Ai
8. Are the solutions to the self-study probleMs properly f

. placed (on overleaf from probleM)? Yes No

If4no, where would you suggest the solutions be placed?

-1.48

9. For each topic, how solid an understanding do you think you have-

Excellent Good Fair Poor

Difference equations in general

.44/rModels of population growth.

Assumptions in the population models

Stability

Equilibrium

Feedback

a



CHAPTER II

POPULATION MODELS

DETERMINISTIC AND CONTINUOUS MODEL

2.1 Differential Equations

In ehapter"I we made the assumption that the change inpopulation,

during the (k

N Nk

_period was a function of Nk alone. There are

circumstances where this assumption fits'the biological situation quite well. This

is the case, for example, when the breeding group as a whole has a fixed season for

matingsand the effects of the external environment are fairly constant from time

period to time period. In such cases it is reasonable, to select the unit of time

to be the period between mating seasons or some others'naturalf period. However,

we have not explicitly indicated the time period in the models examined in Part I.

Assuming that the period between observations, t
k+1

- tk ,.is a constant, At ,

our general model,

(2.1)

becomes

(2.2)

= .N R(N )
k+1 k k

N
k+1

- N
k

= Nk R(Nk) At
.

This model, (2.2), is appropriate when there is a natural period which the

observer regards as 'long'. In such cases, we speak of the 'nearly discrete' case.

The reason for the adjective'nearly' is that (2.2) is rarely, if ever, exactly true.

Even some 17-year locusts appear after only 16 years!

We now wish to consider the opposite extreme; the 'nearly continuous' case.

By this,-we mean a situation in which growth takes place (almost) continuously.

Again this idealization is never precisely true, but examples do exist where

6
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populations change over very short periods of time.

Suppose for example, we wish to study a caterpillar invasion. At the height

of such an infestation, one can almost see the larvae_come to life and begin to eat

the leaves. From our human point of view, at least over a span of a few days,-cater-
.

. -pillars are created continuously. This example, therefore, raises the following

point. If, as indicated, we study the caterpillar population for,the few days of

the infestation, then the nearly continuous model is appropriate. However, if we

studfthe same population making one observation a.year (at the appropriate time),

the 'nearly discrete' model applied. In these two cases (two day and yearly

observation) we are studying two different growth processes. (larvae-to-moths, and

of caterpillars) even though the same population is studied for both..annual amounts

In other words the observer's frequency of observation,provides the scale against

which we decide whether the process is nearly discrete or nearly continuous.

Chapterwas concerned with the nearly discrete case. WV-now turn our

attention to the nearly continuous case. To study the nearly continuous case, we

as followd:'recast (2.2) in continuous notation

and find that

t = k At, Nk = N(k At) = N(t) ,

N(t + At) - N(t) = N(t) R(N(t)) At
.

Since the process jis. taking place almost continuously, we commit a negligible

error by letting At approach 7,2ro. Recall-from.the-calculus_that the derivative,

dt
is defined by

dN
lim

Thus on dividing (2.2) by At

N(t + At) - N(t)
At

letting At approach. zero, we find that the

appropriate model.for the nearly continuous case is:



(2.4)
dN
dt

N R(N)

8-2.3

Before studying the nearly continuous model (2.4), we pauSe to examine the

'borderline' case. Commonly, we wish to study a situation in which growth can occur

at any instant, but does not occur at every instant. In such situations either (or

neither, if you a 'essimist) of tNe models might seem reasonable, and we wish

to sele e one which is better. The correct choice basically depends On the period

between observations. Suppose this period is fixed for_a moment: If the number

births less the number of deaths within successive time periods is. 'small', we

would expect that,the continuous growth effect is negligible and that the difference

equation model is satisfactory: Thus if

IN- N 1

k+1 k
Nk

1N(t + At) - N(t)
N(t)

« 1

we would be justified in using the difference equation models of Chapter I. In this

regard, let us return to the U.S. census data'cited in Section 1.2. For the decade

1890-1900,

N - N
k+1 k 76 63

.21
N
k

63

while for the decade 1960-1970, we have

Nk+1 Nk

Nk

199 ------ -178

178
.12

Thus the difference equation should-give-a reasonable fit. As we have seen in

Section 1.2, it indeed does give a reasonable fit.

On the other hand, the relative, grow h
/
between periods (.21 and .12 shown

above), is not altogether negligible, therefor'e it would seem that-the-differential

equation could also be applied. at is to say, the,)U.S. census data is almost
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'too close to call', and we probably should study both models since both seem to

apply equally well and each represents a different type of approximation to reality.

In a case, such as the U.S. census data, where the continuous and discrete
. .

models both seem to apply, we would naturally expects the solutions to the models to

be similax( This is easily seen to be true since (2.2) is the classic Euler

appioximation to the differential equation (2.3) (See e.g.,- pp. 366-367 of Numerical

Methods with FORTRAN Case Studies by Dorn and McCrackin, Wiley, 1972).

In part I, we studied the discrete model (2.2) for the following particular

choices of R :

(2.4)

(2.5)

(2:0"

R =A .A> 0

R = B (NE - N) , NE = A/B , A > , B > 0

R = -C (N - Ne)(N - NE) , C = 4Rm/ (NE - P1 e)2, C .> 0, 0 < Ne < NE

The reasoning behind the choices-(2.4), (2.5) and (2.6) for R(N). made in

Part I is equally valid for the continuous mode/ (2.3) and so we proceed to-the

study of these three choices.

Self-Study: Problem #2.1
.

If the .data of Self-Study: Problem' #1.3 ccnstrued as arising from a 'border-

line' case, decide whether one should-use the difference model or the,Continuous

model.



8

Solution to Self-Study: Problem #2.1

The successive values of- (N
k+I

- N
e
) /N

k
are 10.58 , 3.867 ,-1.683

0.309 and 0.040 . Since most.of,these-are greater than 1 , the difference

model does not appear to be satisfactory. This was borne out by Self-Study:

Problem #1.5. The relative growth,is far from negligible so the continuous'

k

model appears to be most appropriate.



2.2 ScE.atin of the Differential Equations
.

7 .

The reader -mho is. famyil ar with the .elementary, theory

4

.es

f first order differential
equations will observe'titat equation'(2.3) is ofd the type with separable -variables.

c."Thus we f-olvaly write

dN dtN. R(N)

and upon integrating_on both:sides, we obtain they formal solution

(2.7)
N(t) r,

cix

N

- t
O

x R(x)
_

where N0 = N(0) .

Although the Integral-on the left side of (2.7) can be evaluated explicitly for
.

the choices of R (2.4), (2.5) and (2.6) for it 'is more instructive to examine the

corresponding differential- equation directly and obtain a geometric understanding of

the nature of. the'SOlutions. To do this we need only the most rudimentary fact

from the DifferF:ntial Cal-culu , namely that the derivative of N(t)- at a point, to ,

/ _:. 7---
gives :_"-:e slope of. the graph of N(t)_. at t = to . Thus

dN
dt .t= to

-dN
dt t = to

dN
1.dt' t = to

> 0 implies the graph of N is rising at t =

< 0, implies the graph of- N is falling 'at?

implies the graph of_ N is45 flat -at t = t .

Consider first-the case.(2.4), the corresponding differential eqUation is

IJ



"
, A"'

p,posg, that at

' :N(0) ='No

Then the initial slope (
dN
dt

) is AN 0 whiehas positiVe, so N But
t=0

now the slope is even greater so N rises even faster. Thus we see that N rises

faSter and faster as t increases and so in this-case, we, hAve the same type of
._ ..

behavior AS- occurea in the disCrete case, i,e.,iunbounded growth.
,:

rf we recall that .the antiderivative of is In x , then we can verify our

geometric conclusion by setting R = A in- (2.7) to obtain-

Thus' -

(2.8)-

:9)

A r

1000' 1 N(t)
In

N
0

x

N(t)
eAt

We next consider the 'choice (2.5) for,

dN
= - BN) N

dt
, B , NE .= A/B

1

4'4* .

Just as in the discrete case, we have the two equilibrium solutions

- That iS, if any time t , N = 0 ,.then

N6 0: for all time asyell,.and N is :the 'Solutici

A-
any time' t N = A/B N -=. is the solution -to

B

dN
dt - -0 for all time.. It follows that

(2.9). Similarlyjakat

for all time. If Initially

NO # -0 and No. i' A/B , 'then the -solution can never attain these values. Suppose then

(2.10)

we.conclude at once that for all time



Iforeover,_since the right band side of (2.9) is poSitive in.view of (2.11), .the

,

solution is increasing. The only-additional fact we need to establish 'in order'to

complete -our geometric...picture of the solution is that N' approaches NE as t -4-00

To'establish this, we appeal to a -monotone convergence theorem:

If a functiOn "N(t) is:increasing and. bounded from abOve, it has a limit..

If the limit were less than A/B the iight.hand side of (2.9) would be positive

and hence N would continue to rise. Thui the limit is A/B . Typical graphs of

are sbown in figures 2.1 and 2.2 for initial value Satisfying (2.10).

Self-Study: Problem #2.2

By differentiating ) and recalling -the test for an inflection point, show

that the graplis shown in figures 2.1 and 2.2 are essentially the only cases that can

occur when (2.10) is satisfied.

f



Solution to Self- Study: Problem #2:2

daN6.-77.7 A - 2bN

At a Of inflection -

I. c

/2 , then one inflecticin point exists (Figure 2.1).

then since N(t) > No , no inflection point- exists (Figure 2,,2).



Figure 2.2

41.



We now turn to the case in which-the initial condition` satisfies
O

No > NE

8-2.11

4,

. .

*nce.by-the 4bove reasdning, we-see that the solutlan

i) buivremain above N
E

ii) is decreasing

iii)
approaches NE

at t -4- m .

ThUs In all cases for-Which No z 0 , the solutionloanotonically approachet the
. .

4
0

. . ,

lirum value- Alla.. That is, for the continuous model (2.9) N = A/B. is.a

globa y stable equilibrium point.

Noiice-that in contrast to, the discreteianalogue, the value of A has no

effecton the nature of the solution!

This fact gives rise to the question: Suppose we have a situation in which the

discrete end continuous models both apply (borderline., case), how can the results be

so different? In fact, the two sets of results -are not different. In the notation

of this section, the conditions (1:10) and (1.11)*formonotone convergence ta -A/B

in the discrete case become.

0 < A At < 1 , 0 < No <
1 + A At (1/At) +A

B At -

These conditions are obviously satisfied when the two models-both-apply.

What ac ounts for the existence of oscillatory and divergent behaviors

(figures 1.2, 1.3, 1.4-and 1.5) in the discrete case and their total absence in the

continuous case? The answer lies in qie rate at-which the population itself'feeds

back information about its own size into the growth process- _When that information

is fed-back quickly (the continuous case), violent behavior does not occur. On the

other hand, an appreciable-delay in supplying information can be catastrophic. To

better illustrate this idea of feedback we will use aA analogy due to..HiChard Hamming.

Suppose you aretaking.a shower and the water is too Cold: You open the.hot.
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water faucgt. If additional- hot water is added immediately in response to your
-

turn, the, water temperature gradually warms. This is the continuous case.

Suppbse, however, that there is .some delay in the additional hot water's arrival

at the shower head. Fgr example, if the hot water .pank'is empty, some time may be

.

requir'ed to 1.;eat:the water. Since'. the shower Water remains cold,.you continue to open.-

the hot.waterrcat!cet. ._The result is that when the hot water does arrive, it arrives

In a rush an your shower becoMes scalding hot::.So'yOu frantically turn the hot

waterfaucet-backwards (or turn onthecoId:maier): -.Thus you produce violent

.oscillitions in the shOwer'S temperature fore too ---apld to too hot to too cold and

r..so on. Thefeedback is slow; .i.e. temperature' shower responds slowly,.

-fo the turning of the faucet. ,This is the discrete case, the response (hot

water) comes only after some length of time. Clearly it is thisiowness-of response

that causes the pr461em.
. .

.

We return now to the population problem. :A-large popUlation retards growth.

But if the growth-process itself is not aware of the large, population, it continues

unretarded and may produce a huge population,-one in excess of the equilibrium Value.-

This can happen in the discrete-case since a large population in the middle-of a

period goes unnoticed. Indeed, information flows into the system only at period

endingS, Therefore oscillatiOns, and violent ones, can occur. On the other hand,.

in the continuous case the infortion or population size flows continuously into

the growth process thus preventing scillations. 410'

We close this portion of the discussion -with one final remark. In the-14iscrete

case the greater the reaction to feedback, the greater the oscillations- In terms

of the hot water- problem, the hotter the water in the storage tank, the worse matters

will become. In terns of the population model giVen by Figure 1.8, the stronger.the

reaction to over- or under-population, hence the more-_ violent the oscillationThis

of course, -is born out by the instability when the peak of the curve (IM) exceeds

-=-IThe oscillatory and divergent behaviors which are possible in the discrete model, can



occur only in the ''nearly discrete'. case.

NatIce also that the above inequalities may be satisfied regardless of the value

A -simply by choosing At sufficiently small.

el-f-,Studyfr.Problem' #2.3

'11rsing the-method of liartial fractions, and equatiOns (2.1) and (.2.5) ,pobtain

sort on to- (2.9). and verify our geometrical resultp.



*Solution to Self-Study: Problem #2.3
9

(2.13) N NE -BN t

.

1-1- )eENEE-

8-2.14

For the'ch-Cic .(2.9),-AiSe geometrical reasoning to.verify.the.graphs shown in-

Figur.OS 2.3 .an Use the method of.partial fractions'to deritre the implicit.

solution

(2.14)

NE N
- NE)

N .
4NE Ne Rm

(N.0 - NE)
e -N

e .
Ne) NO

e
(No N )

NE
-

e

N - N
E. -e

e -

Finally discuss thestability of the equilibriUm solutions-.
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Figure .2.4

I



.. °

Solution to Self - Study: Problem #2.4

1.

These results

N = 0 - is stable

N = N
e

. is unstable

N = N
E

is stable.

are easy to obtain geometrically, but are not so easy

to obtain from the explicitisolution (2.14),.

a

I

1°,, ,

1;
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* * * * * * * * * * * * * * * * * * * *. * r * * * * * *, * * * * * * * * * * * *

Interim Project #2
. 1". 4-7.0.

Consider the -following xmodificAktion. of (2.4). Suppose ,that due to medical

advances the equilibrium increases time increases, e.g.

N- N
B

+ kt

'Where k > 0 . NoW our model ecomes

dt 22-'13(NE -kt .N)N

Use some numerical algorithm the -Runge-ICUtta,Method). starting with -NO) . No
. _ ,

,
A

to analyze the solution of this-model.
* .* * * *. * * * ** * * * * * * * * * * * * * * * * * *,-**

Interim Project #3.

* * * ,* .*

Reconsider the U.S. census'prOblem discussed in part I.- First use the solution
.(2.13) for the continuous analogue and ,the values

.

A At = .2329 Bet = .00006'711

to.;.compute the predicted population for each- decade ftom 1890 to 1970:: Decide

whether the discrete or continuous model gives a better,fit (say in the sense that

.the maximum relative, ,error Is Smaller). In Lotka's book, Elements. of Mathematical

BioLogy-; Dover, the values:

A = - 03134 A/6 = 197.273-si

are cited as -giving the best fit for the continuous mcrdel for the years 1790-191N,
r-

!

7 T



,onesCompare the Lotka values for the parameters With the given above for the .. 3- .2

- -
:'

4

continuous model during 1890-1970. By eXamining;the_two sets of results for the

continuous model, try to find values for the parameters, A and B , that are better

than either Lotka's or ours for 18901970. -Finally make comparisons between the-

discrete case and the continuous case.

* * * * * * * * * * * * * * * * * * *'* * * * * * * * *'* * * * * * * * * * * * * *.

Interim Project-#4

:Using a .decreasing linear.function'for. R. "is only the crudest attempt to

characterize the effect of population preasuremore general form or R would

be

'R(N). = - f(N)

In the "absence.of population pressure, the, growth law

R(N)\A

is reasonable and therefore we_ would expect that 'f(0) = 0 Since we want' R to

eventually. become negative, we want. R to be a decreasing function -of N .' Thus

we would expect f(N) to be an increasing function, which also satisfies f(NE) = A

for a unique argument. NE > 0 . Thus .f.-(N) might be BN2 or BN3 or gN + CN2

or B--2
N

aid. so on. '.-Inestigate some functions which You feel have some biological
-1

_Relpember:,that.:f should be increasing, -f(0) 7 0

. .

.

Use either the discrete model (2.1) or the continuous-model

*-* * * * * * * * -* * *=* *.* * * *

and f(NE)- =

(2.4) or both: '.

*.* * ,* * -* *-* *



CHAPTER. II

AUTHORS' EVALUATION

(Please circle one of the respOnses to each question

/.Did you attend the short course 1V4L'75?-

Is thit chapter

(a) :Too short

\(b) Too long

0
(c) About

7fs No

If (a) , which-topics should be expanded?

can you suggest topics to be added?

If (b), which topics should be abbreviated?

which topics should be eliminated?

.

Could you read and understand the computer programs''

.(a) always

(b) sometimes

Did thdinterim projects seem reasonable?

Were the self-study problems

Was the

(a) Too easy

number of'self7study problems

(a) Too large
c

About right-

(C) seldom

, (d) nelraV

Yes. No:

(b.) Too diffiCult.

Too-small
_



ti

(
7. Did you attempt any of the self-study problems?

8: ;Are the solutions to the self-study problems properly.

placed (on overleaf from probleril) ?,

If-no, where would you suggeSt the-Solutions be placed?

,

8-2.21

Yes

Yes

9. For each topic, how solid an understanding do.Tou think:you have?

Relation between discrete and
continuous models .

' 7

Geometrical analysis of solution
of differenttal equations

'Equilibrium

-Stability

Excellent Good Fair -Poor

8.'")

'



CHAPTER :III

POPULATION MODELS

STOCHASTIC MODELS

.3.1 A Birth-Death Model

In Chapters I and II we assumed 'a birth and/or death rate which was proportional

to the n r of living individuals. Thus .(1:1) and (2.1) both assumed that the

in A time At ,wailANAt where. N is the

population, At is the time interval and A is the rate of change. We could have

difference between births-,anIrdeaths

arrived at this result-by assuming that each individual gives birth to At new
0,

-.Individuals in time At and ,that for each individual there are not deaths In the

same time. Then the net change in thetpopulatioil. per 'individual is XAt'7 uAt. If

- .

thereare N individuals 'the net change for the entire population is

(X.
1

If we let A = X - u we arrive once more at our earlier model.
,

-.Using this as ,a guide we will now consider a similar but Less deterministic

proc6s.. In some sense this new model will alsO be more realistic. Rather than

- assume that each IndividUal gives birth to XAt individuals in a time
.

Will assume that "on the a eraie" each'individual will give birth to 1

a

individuals in a time At way.to achieve this end is to assume that ea

individual gives birth to prec s0.y one other individual with a probability- of X-At

Since the piobability of a hirthfxom any individual is. XAt-'.....thd'binomial law

of probabilities shows teat the probability, of exactly k- hirVslna population of

.rar -.16'

b* a

ore preasely At + 0(At). Those who wish a more rigorous derivatioeShoUld
similarIy'modify the_probabilities'derived'below. The 0(At) terms will ulti9tely' .

lhe reMoved, because we 'shall later divide by At and -let At + 0

8-3.1
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size. N is p(k) =
k! (

(x At) (1
0N - kNN

- k) !

Thus p(1) = NXAt(1 - AAt)N-1 Z NAAt for At small. Similaily the probability

,gNI(N-1) z 0of precisely two births is p(2). = .1/2N(N-1 °) (1_AA0N-2 z

for. At small.. In likemannei we can show that the probability of 3, 4, 5, ..-

birthsis also Zero. Thus we conclude that the probability of two or more births

z 0

Similarly we will assume that on the average-each individual is responsibile

for .At deaths. This leads us to assume that the-probability of one individual

dying,in time At, is II-At. In a poPtlation of size N then the probability of

one death is z NuAt . Once aggin-we will assume that '-At- is sma enough so that

two or'more deaths or a .combination of births and deathsoccur with such a small

probability in time At that thege'events may berneglected.

At

probability of n

Of course, it is possible that neither a birth nor a death will occur in time

Since this is the only-possibility other than one birth Or one death, the

change in a population of size N is approximately

'p

1 Nast NuAt 1- N (a + u)At

Now let pN(t)"be the probability that there are N individuals'aliVe at time t .

0 -

From our-discussion X .individuals where- 1 can be alive. at time- t in only
. .

\

three aysn

A:e-time t - At, there were

At time t At there Were

At 'time t - At there-were

occurred.
.

F&r N = 0 there cannot be N 1 individuals alive-at time t - At so only the

individuals and a birth occurred,

+ 1 individUals and a death occurred..

N individuals and neither a birth nor 'a death

last two are possible in this special case.
-.

Sinee these three events

these, occurring is 'the sum of

are mutuallyexclusive, the probabilitfo

the individual prpbabilities. t proba
t t

85--
././Q

.

y one of

of
s

ility o



8-3.3

individuals being alive,at time t is, therefore, the sum of,the probabilities that

each ltf these three,events occurs. tis
.t-

(N 1)AAtp4_ (t

for N = 1,, 2, 3, ....

(3.2)-

+ (N-+ 1)1AtpN+1(t - At

N(A. + p)At-Ip14 (t? - -'At)

p.a)(t) PAtpi - At) + pc) (t 7 At)

Subtracting' pli(t - t)

as. At + 0 T

3)

for

-

from both sidesof-0.1 dililding'by and takingthe-11-01ft

, .

do-
-A-c4 =- 1)p

N-1
N + p(N + 1)P

N+1dt
A + u)NoN

, 2, Carrying out this same process for (3.2) then

(3.4)
dt rl

This is _a system of differential- difference equations.

Now supposeAt time' t = 0 the population is' T .

3

(3.5).

(3.6)
,1-

Pith these initial conditions the system of equations (3,.) and (3.4)- may be solved.
.. . .

.

an Section 3.3 we will determine,the sOlutiOn using gfit rating,functions and the

I
PIM

p.. = 0 for j 0 I

en

method of characteristics tb solve 1 resulting partiatdifferential,equation. Later.

.

in:Section -will use a computer program to simulate the process and thereby

estimate some of-the probabilities. In particular we will estimate the probability
-



pf eXtidctiOn in time T , we will compute an appiOximatian to

We turn next to the computation of the expected value of the,population at

time and to an estimation of the deviation of the population from this expected

value.

Self Study: Problem #3.1

-

Carry out a derivation analogous to that of the sub e9tion-for our.sec9nd

That is, assume

and assume that

-
Pr(birth) z N (aL - b1 N)

Pr(death) z N (az + n2 aq)

J7 r'(two or more births /deaths).

, -

Gen'erqlize your result to the case in, which

Pr(birth) = N AN , Pr(death) t N uN

t



Solution to Self Study: Problem #3.1
-

2/1 = (N 1)XN_1

ar

1c
tY. N[

XN
+ pN PN(t) + (N + 1)p

N+1
p
Nti

4

\

4

CL-



Expected Value and Variance of the Population
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Let E(t) be the expected value-of the population at time t. Since a

.

popUlatiom.W'size N occurs, as

population'of size- 1.,:2

is

(3.7)

t withprobabilitypii(t). andsince- 'any
.4 e

possible,' --the ekpectedValue-of the popUlation

. co

E(t) = Np
N
(t)

- N=1

,Notice that the term = 0 :vanishes _due to the faCtor

Tifferentiting.both.-sidsOf (3.7) -with respect t

'dE r.

dt
N=1

-prom (3.3) then

'dt

N. in each term of the sum.

CO

dE
(3.8) -.- = A. I N(411,7-1)p + p I N(N+1)p -` (X + p) - 2 N2 p._

at N-1 1
N=1 N=1

N
. li=li.

.14

But
05

,N(N-1)pii_.i = I. (K+1)Kpit

N=1 , K=0 r
.0,-.

The first term in the sum on the' right vanishes so

*
The notion of expected value` is. analogous to 'the arithmetic mean of a frequency. -

destribution. Suppose the, values x/, x2, ... xn occur respectively 1.1, kn

times. Then the relative.frequencies are ki/K, k2/K, kn/K where K = E ki and

= E x- k i ./K 'The notion of expected e arises for theoretical destributions and

the relative frequency ki/K of xi\ 5 replaced by the probabjaity' pxi of x., *so

that E =- E'xi.px. . In equation (3-7 the xi are the positive integers and the
situation is nadelsomewhat more compli ated by the fact that the probabilities depend

on time. Thus the expected value of he population can be interpreted as the mean

value of the population.



(3.9) 1 N(N-1)pN...= (N+1)Npti-

N=1 ' N=1

Similarly

But

'1 N(N+1)p = (K -I)Kp
1 K

N =1, K =2'

J
(1(.4)1(15 = 0

so we may.extend the sum on the right from K = -1 to .00 so that

(3.10) N(N+1)pN+1 (N-1)NpN
N=1 -. N=1

Using (3.9) aid (3.10) in (3.8)

dE
=

7444 2
co co

(M+1)Np
N + U (N-1)NPN - (X + -I PNdt

N=1 N=1 N=1

The coefficient of N2 vanishes and we are left-with

But from (3.7),

.CO

dE = I' Np - u .1 NP
At N =1 N=1.

N

dE
dt

Moreover for t'= 0 from ''(3.7)

- .

E(0) = Np (0)
, N
N=1 .



t from (3.5) and (3.6) - (0) = 0 except when = I so

-(312y 4. 0

The solution o 3.11) and (3.12) is

(3.13)

ReCalling that A =

''We can conclude f

ETO)'= I

.
t(t) = ie(x 4)t

8-3.8

this is identical with the deterministic solution (2.8).

(3.13) that if X, > p (birth raie-e'REeeds death rate) that
L

the expecteci.value of the population growS aa.time increases. On the other.hand.,

if the death rate exceeds the birth rate (u > X), the expected value of the populatiOmi.

decreases to zero as the time becdEes large. Finally if = p the expected ..value

of the population- is I for all time, i.e.,

(3.14) for X = p .

These results - certainly agree with our intuition-and, thereftre, lend credende to

our model.

Of course, the actual vane of the. population will'vary from the expected value

in any one case. It would be helpful to-have some estimate regarding how much of a

de' from 'E should be expected. To that end we compute the variance* of the

-population. The-variance V(t) at time t" is

(3.15) .17(t) = I- g2 -1)1.(t) - {E(t)

N=1

We will derive a differential equation for V(t) in much the same way as (3.11 ) was

de'riVed for 'E(t) .

The variance of a sample can be defined as xi 2 k-I /R - 602 , where the k /1

are the-relative frequencies of the observed values x. . If we again replace the

relatide frequendies by the prObabilities p , and tie mean-by the expected value,
_

we arrive at (3.15).



First
,

A

ico N2 PK(t)
Nei,

.4a

dt- .4Z dt

But

Thug

.1.12(N1)pli*
(A

+
u)

N3 pN
.

5 2 1C13k (N+1) 2 /1/3

2 Kft 1)2

N4,1;1714,..,1
1(41k44-

-o

3.17) ''becc;,"

From (1...7) and 6-1671 1:1

(3.18)

From (3.15) alai *ku
kt

Using (3.11) to Yep

N2 A. (X U) NI3N

1701

(k

dt

dy/0

dV
dt dt

ZE
dt



From (3.18)

ay( dH
2(X - E2

dt. -4"1 dt

ciV
. dt

.

2(A = $ +"(X +

3.15) and ,(3.16) to replice H

dv
dt

= 2(X h"--1.1) V + (X-4-11)-.E

8-3.10

This is a>differential equation for ,v , the.varlance. For an initial condition we

note that at t = 0 the population is I with certainty so
,

The solution of this. differential equatiati.for A i IS

: - -

V.= Ce2(A 'A Y. (X -
A Ie

Using (3.20) to determine C

V + e
X -

For X .=

This:yfoLicrws from setting

C

c =
A + u r

k -

41 t

E. = I

J.

= 0 in 3.15)-and Using (3.5), (3.6) and 3.12



7 :

--Integrating
A

and from v.19)

his differential equation with the init.4al condition (3.20)

In summary then

(3.22)

+
p

2.,1 .It

- t
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We now examine the behavior ofthe expected value-and variance for large time. .

\-1
-

(birth rate exceeds death-rate) both E and V become large.- Thus whileFor. A ->

the expected.value-of the poPulatiOngroWs withOut bound, .the variance also becomes

nfinitelysrge. We should, therefore,:expect thedeviations from the expeCted

value to be large as 'time` increases..
o

1, _-

For > A (death rate exceeds-birth rate) the expected value and the variance

approach zero:,a the time increases.. For. large times- then the population should b
. .

close to ze Later we shall see that.the probability that the population is zero

.for. large tines is 1

Finally for A it (birth rate and-death rate -are equal) the expeCted value is

constant for all'time but the.variance groWs linearly.' without boUnd for increasing

'trine. Thus as time becomes large the deviaiions frOt the constant expected value will
0

become large. At-large.times then.we-should eNfirct the opulation to deviate markedly

from I Indeed we should expect that in a sieficant
. ,

number of caieS',_the

_population will differ from' -I by I If the deviation is -I them the population'

iszero and the species becomes extinct. The interesting fact is that even when the

birth rite and death rate are identical we shoulc-eiCtthe species to become extinct

a significant number of times for large time. Later we will see that the probability
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is 1 that:the population will eventually become extinct when = 11. (despite the

igitt that the expected-value, is I r5that

3.3 Salution: of the-Stochastic Mordel

The solution for the expected value and variance. of the populatiOn was obtained

by elementary nthods. These statistical parameters. were useful in our'study of the

41-
mathematical Model, In..order'to obtalia additional information we will need to

,:analyse the differential- difference equations (3.3) and (3.4) in more deail. The

amalysi; while relatively straightforward is more sophisticated than develoPment in
,

the 'revious section..,

We turn then to,the problem of finding the solution p'(t) and.(3.4)

given the initial condiitIons (3.5) and (3.6) . To do so. we introduce a generating

funation,

1

We will use some of the techniques of the last section t obtain 'a partial differential-

f , t) = N(t)
N.

N=0

equation which the function f(x, t)- must 'satisfy, We will then solve the partial

differential equation and frdia thesolUtion obtain .

N

MUltiplying (3.3) by x
N

and summing from 1 to =

:,

t dt
(N-lYp -x

N-2
+ 1.1, 1 (N+1) pN

+1
x
N

- A + 1.1) X- 1 Np11. XN7s?'T- 1EN xN = Ak2 i
1N=1 N=1 -.. N=1 +N=1

....)

'Adding (3-4) to this last equation

. a 12N r
(3.24) I x = Xx2 A (N7 )pN-1 xN-2 N+1)p

N4:1
xN = 0.1-1.0x 1IpN'

Z.pit
N=0 N=1 N=0 N=1

From (3.23) however 4



(3.25),
- h

(3.26)

, .

3f 7 dt/ _N
at

N=L0
dt

of
3x

N=1
NpN x

NI

By changing indices the latter equation may be expressed as

(3.27)

When

(3.28).

L3x
L (N+1)^

N=0

co

-1 (N-1) p
N-1

2172
3..x

N=2

then N. 1 = 0 so the Iast sum can be extended -to N = 1 ,

7 (N-1)
3x PN-1 xN-/

N=1 r

Using (3.251 through (3.28) In (3.24)

;or

9-39

3f

8 -3.13

This is thePa'''rital differential. equation which f(x,-: -"must, satisfy. For t = 0
_ -

(3.23) becomes-

f(xi. I pil(0)-xN
. -N=0

,

Using the initial conditions ( .5) and (3:6)
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4

Self Study: .Problem #3.2 f

81-3.14

Derive he correspoding partial-differential equation the first models of

Self Study Ptob ela 1 .1.

1

J .

9

L

41

r-

a

'1,



-0" \

SolutiAon, tb Self Study: Problem 113.2

A 8-3.15

. o,,

' a2faf 3f,
(x - 1) Mai --b1) x - (a2 +b2)] --- (b./ x + b2) x -5-Tzt

4/.
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ution of,(3,29) with initial condition (3.30) can be obtained by applying

-the 'MethbA of characier41.cs", which is the. standard technique of solving first order

Partial differential equationg. However, once-again,-important irrfdrmation can'be

obtained without Solving the equation. Rather we simply examine the differential

equation (3.29) itself. We shall, in fact, be.able to derive the single most

important faCt about our stochastic mo4di in this way -- the-long run probability

of extinction, lim p0(t) which we denote by 'P0(co) . First we note that from
-

-.. t->W

(3.23), p0 (t) = f(o, t) , thus

,(3.31)

Next recall that in the model

of Chapter II, the values

'pot-) = lim f(x, t)
. t-)-00

dN
= 13N(N - 1/B)

0 and N = A/B (the zeroes of the right hand side)

played a crucial role. Now examine (3.29). Tae values 1 and x = 11/A., are

clearly crucial ones. In fact for these _two valueth o
af

, we see that = 0 .

at

That is f does not vary in time/when x; takes on either value so
,

=-:Constant, f(1.1/A, t) = constant .

.We_use the initial condition (3.30)-to'find these constant's, thus

(3.32)
,

for all values of t .

f(1, = f(U/A, t). = OM'

.

Now if there is to be an equilibrium .distribution as t co , then must

settle down and stop changing as t-74- ot! Thus we assume that

(3.33)
t-*

;f .

;t

A



;

= -3.17
. ,

Let 'Um f(x-, t) = F(x)., then using (3.31) the,
.

quantity,- PO (co) , which we seek -',/-
I t--)=2-

is given by
.

.
.

'

.,

.
---;-..

I

om'(3.32) know that

1Z

e

P0(') = F(0)

:Jr
F(1) = lim .f(1, t )'-= 1, and)r(41/X).= ltm f(p/X, t) = (p/X)I

t-)40
!

t-rod

2
Moreover from (3.33) and the differential- equation (3.29) we find

r

A(x - p/X) (x -1)
ddxF(x)

Hence F(x) is a constant except possibly at x = 1 , x = p/X -where it might jump:.

Case- 1,. u >. X

,

.
-

= constant for 0 < 'x < 1 , and since F(1) = ,.we have
*.

0 < x < 1 .

(3.34) -P0(=) = F(0) = 1 , ' p > X .

Extinction is-certain in this case. This result is intuitively reasonable for

P.> A y but is so what startling for sz.p-= X (in whiCh case the expected -slue is 'i

Case 2. p

- -

x

We hive F'(x)'= 0: for 0 < x. < p/X , hence as above,_ F(4:1= constant for.

)

* ,.... -..
.....

We are assuming contittuity from the left at x = . This can be established by

noting that since the p 's axe probab) ities and
n pn.

co

/t. Pn.= 1 and using some'standardiesults of analysis.
n=0 , .
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< x < u/A . Since* F(u/A) = (u/A)I , we conclude, as in Case 1, that

F(Q) '42 (11/A)11;14 so 7

. -

Z.

(3.3j): Po(=) for u < A
.4

Thus even when the birth rate is higher than the death rate, the prO&nbility of'.

extinction, in the long run, is positive.

For those, who are equipped with ihe necelary prerequisites, we conclude

this"sectic-1 by gring by a special ver§ion of the method of\tharacteristics.
-.. \-

Consider f as a function of a single parameter s and let

(3-.36).

(3.37)

and

(3.38)

(3.39)

dx
= _A (x - ji/A)(x L- 1)

ds

-

x(0) =

dt-

44

t(°) = 0

By the chain pile then

af dx af dt

_ ds ax .3t ds

From (3136) (3.39) and (3.29)

(3.40) _

See previous footnote.

r.

df
ds

/T

f(0) = E
I

1

re.

A

11'
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Now (3.40) is the partial differential equation (3.29) and ,the initial condition
-

(3.41) is the initial £ondition (3.30). Therefore, if we can find a solution .X(s,
4

to (3.56) and (3.37); then we can easily integrate (3.38) to replace s by t ,- and

r -
theil integrate (3.40) to replace by f . Thus having x(t, f) _we can'inveri

this function to,find f(x, t).. With this in mind we Nceed to integrate (3.36)..

The solution of (3.36) using partial fractions is if---

1 ((kx 1
X - u

)
lx -uu

'11

Using .(3.37)-Tlirdetermine K1

,

416

or

(3!42)

log = +

s =log - 1 Xx -

(i - 1) ( x - 11)
= e( X u) s

(aE - u) (x - 1)

From (3.38) and (3.39.)

;'
Using this in (3,42) and solving for E -asa_function

(3.43) E =
x(ue" 7.11)t%_ X) 11(e_X 211>t

(X u)t
Xx(e 1) - kAe

/

Now the solution of (3.40) "is

)

- But from (3.41)

SO

f =, K2

K2 = E
I

f =
I

x and -t



From (3.43) then

IT
(3.44) f(x, t)

[ x ( -; /1) t
,a)

1) I

Ax(e(A. 11)t - 1) - (Ae(A 11)t p)

8,3.20

is the solution of (3.29) wj.th the initial condition (3.30)as may be verified

by substitution. 1

,.

4.

,----

, . ,

Ftom_(3:23) then p 1(t) is the coefficient of x
N

in 0(3.4 . It particular
.... N

l

the probability of extinction (zero. population) is p0(t) which is the coefficient A

of x0 l'huS!

(3.45) p (t)
p(e

(X p)t-
- 1)]

Ae
(A - p)t

u

We will consider three cases:, A > p ; -A < u and A -=.1.1 .

. . .
,

For A > p (birth rate exceeds .death rate) ,

x

(3.46) lim PO (t) (±)
I

which-is in agreement with (3.,35).
.

.

For p.> A-(death rate exceeds birth rate), we again f441c1

(3.47) lim P0(0
P4c° .%

4% which agrees with the previous result (3.34).

Finally for A = p (14rth,rate and death rate are equal),the right hand side of

(3.45) is indeterminate... To evaluate P0(t) in this case we replace (3.36) by

(3.48)
dx
ds

- A(x - 1

and repeat the steps above arri4Ingcf,-

(3.49)

I

f(x, t) =

2

x - 1 I

± 1 - (x - 1) t

.



It follows that

3:0) Po(t)

when A = p . Finally then

(3.51)

4

I

ut
pt + 1

lim po(t) = 1
t- 4

With this as background we now turn to a computer simulation of this birth-

death process.

8-3.21

We will compute an estimate of the probability of eXtinction.r4t-

u (3.45) or (3.50) to compute the theoretical probability. We will also. use

/ ,
4>

(3.A6), (3t47) 21.011b(3.51) to compute the limiting value of this theoretical probability.

We will V-compare the three results for po(t) : computer simulation, theoretical

iesult'and the limiting value-3.s t + 00 .

,f

3.4. Monte Carlo Simulation

,We now turn to a computer simulation of the stochastic birth-death process. We

- _
Will use the simulation to estimate the probability of extinction for a given initial

.

population, given time and for given probabilities of birth and death.

The simulation proceeds as follows. First a maximum time, M , is Specified. If

the population. remains alive for this,length of time, it will be-said to have

survived. If, on the other hand, the population is-reduced to zero:before a time

f 1:1 has elapsed, the population becomes extinct. We will examine identical

populations over and over again and, ount the number which survive and the number which.

.

become extinct. The ratio of the number of extinctions to-the total number of
T

populations .examined is an estimate of the probability of extinction.

1
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To Oita end we generate a random number* uni*fo;Itiy distributed between_ 0 and 1.

If this random number, R , is between 0 and XNAt , then a birth is declared, and

N is increased by one. If R is between XNAt and XNAt uNAt , alpeath is declared,

and N is decreased by .1 . If EL exceeds XNAt + IINAt , then neither a birth nor

a death occurs,'and N is unchanged In any case the total time elapsed, X , is

incrAlented by At . a

*At this point two checks are made. (1) If th total time exceeds the time for

survival, M , a survival is recorded. The variable S records the number of
$.

survivals, so S is increased by on?. (2) If the population, N , has reached 7N
,

. ,,- ,
,

an extinction is recorded'. The number of extinctions, E , is increased by one. i ,

If neither of these checks are satisfied, we generate another random number, R

and proceedLas before. Since each time we generate a random number we increasetthe

A
time, X , eventu'ally either X > M or N = 0 . Thus the pracess must stop with

either survival or extinction.

This entire procedure'is repeated a rpumber of times, T , and the ratio of the

number of extinctions recorded, E , to T is used as an estimate of the probabilit4

of extinction.

i
..,

There is one'technical prob em yet to be considered. The probabilities of birth

and death, X and u , are specified as is the time interval At . It is possible,

therefore, that the population couldbecome so large that XNAt exceeds 1 . Thus

R would always'be less than -ANAt .-To prevent this from happeinin we allow

to vary. In particular we choose

At = N

whre N is the population size. ;;phis allows usto use the following criteria:

S

*
The computer generates a sequence of iiiieudo7random number sequence which
"behaves" randomly in the sense that the sequence satisfies a set of statistical
tests-for randomness.



4

k

R < A implies a birth

X <R<X+ p implies a death

A + p <it implies no birth or death

8-3.23

As the population becomes large, the time increments decrease but never reach zero.

A program to carry out this simulation and print the Monte Carlo estimate of

P0(M) is given in Figure 3.1. In thie program:

4

L = X = probability of a birth in a tide it

(
U = u = probability of a death in a time At .

M = time required until a survival is declared.

T = number of trials experiment is to be conducted (the larger T is,

the better the estimate of p0(M)).

E = number of extinctions.

S = number of survivals.

X = elapsed time at any given point in the calculation.

P = population at any given point in the calculation.

R = random number between 0 and 1 .

K = indSx which indicates number of trial beihg conducted.(K, < T).

At the same time as the Monte Carlo simulation is being carried out, we can

calculate .p0(T) from (3:45) or (3.50) where T = M . To accompliih this we let

1 4.

SO

F = EXP(M*(L-U)

El = (U* (F - 1)/(t* F - U)) + I

El = po(M)

O



If A u then )

El (L*Mf(LItM + 1)) +I

In either case the value of El.is printed as the "THEORETICAL" value.

We also will calculate the probability pp(t) as t . This is given

by (3.46), (3.47) or (3.51) . We let "LIMITING VALUE" be lim pp(t) .

t-÷01

Then

LIMITING VALUE

A

v

U < L

U > L



100 PRINT "TYPE STARTING RANDOM NO."
200 INPUT U
300 PRINT "TYPE BIRTH RATE"
400 INPUT. L.
500 PRINT "TYPE Dp4TH RATE"
600. INPUT U
700 IF L+U<=1 THEN 1000
800 PRINT "BIRTH RATE PLUS DEATH RATE EXCEEDS
900 G3 TO 300
1000 PRINT "TYPE INITIAL POPULATION"
IIQO INPUT I
1200 LET P=I
1300 PRINT 'TYPE TIME RE(JUIRED FOR SURVIVAL"
1400 INPUT M
1500 LET X = 0 7
1600 PRINT "TYPE TOTAL NO. OF TRIALS"
1700 'INPUT
1800:- L<=U THEN 2100'
1900 LET,E2=(J/L)I1
2000''G0 TO 2200
2100 LET E2=4
2200 PRINT
2300 PRINT."PROBABILITY OF EXTINCTION"
2400 PRINT "LIMITING VALUE",E2 o

2500 IF L=U THEN 2900
2600 LET F =EXP(M *(L -U))
2700 LET E1=(u*(F-1)/(L*F-u))TI
2800 GO TO 3000
2900 LET E1F(L*M/(L*M+1))t1
3000 'PRINT,"THEORETICAL".E1
3100 LET E=0
3200 LET S=0
3300 FOR K=I TO T
3400 IF P=0 THEN 4500
3500 LETX = X -4-(1/P)
.3600 LET R=RND(0)
3700 IF R<L THEN 4000,,..
3800 IF R<L+U THEN 4200
3900 GO TO 4300
4000 ,LET P=P+1
4100 GO TO 4300
4200. LET P=P-1
4300 IF X>=M THEN 4700
4404--GeTO 3400
4500 LET E=E+1
4600 GO TO 4800
4700 LET S=S+1
4800 LET P=I
4900 LET X = 0
5000 NEXT K
5100 PRINT "MONTE CARLO",E/(E+S)
5200, eRINT
5300 PRINT "EXTINCTIONS",E0"SURVIVALS".5
5400 GO TO 100
5500 END

FIGURE 3.1

8-3.25



/
f'Suipose_ye start with X = p = 1/2,au_initialrpulation o

.. 20 5 and require'

,
. survive/ fo, i time of 100 in-order for survival to be, dclAred. We will'repe6. -.the.

J. .

stMulatioh. 56- times and estimate-the probability of-4xtinction. The results are- j
---:-..:

8 -3.26

TYPE STARTING RANDOM NO;

.-451 --

TYPE: B_ IRTH RATE'
'N

TYPE DEAT -I RATE-
-?5" .

. TYPE tTNIJI4L POpOLATION
?21.3

TYPE I' I ME RE (7U IRF,D OR/ SU i3V I VAL

?100
Typg: T4TAL NOOF TRIALS
?50'

PROBABILITY''OF'EXTINCTION
LIMITING VALUE 1

THEORETICAL .67297133307.
MONTE CARLO 0.66

.

EXTINCTIONS

=7)

e .

SURVIVALS 17

Notice that the Monte CarlO result is quite:Close to po as calculated from, (3.50)

see THEORETICAL. We now repeat the experiment for a longer time period: _

Particular we require 200 time intervals for survival. The results are

)).

TYPE STARTING RANDOM NO.
?#?'
.451
TYPE BIRTH RATE
?.5
TYPE DEATH RATE
?.5
TYPE INITIAL POPULATION
?20
TYPE TIME REQUIRED FOR SURVIVAL
?200
TYPE TOTAL NO. OP.TRIALS
?50

PROBABILITY aF EXTINCTION
LIMITING VALUE 1

THEORETICAL .81954447028
MONTE CARLO _ 0.8

EXTINCTIONS 40 SURVIVALS 10



,
- Orice again the Monte Carlo result is quite accurate. Notice also that the

THEORETICAL value is closer to the LIMITING VALUE.. Sillte the to al time,,.1..

,o0
-

.is larger, we sh6ad expect threse'two 'results, (3.50) and (3.51), to Se closer
-

.

N, -,, . _ _. ,
together than they were'in-the first trial.

v
. .

.

Next we try
7.X

<.0 . In particular we. let X = .4
.

.

and u =
,-----

.6. If we start

with .a pomilation of 25 ,and require 10b time periods for survival, the results are:

8-3.27-

TYPE START I N,G ,RANDOM N0.
#

.5
T YRE g f3,lRTH. RATE

- .
TYPE\ DEATH RATE

- ,1

: TYPE INITIAL COPULATION
?25 - .
TYPE TIME RE D FOR -SURVIVAL
? 0 0
TYPE TOTAL TRIALS
?5O

PROBABrLITY EXTINCTION
LIMITING V LIE 1

THEORET I AL :99999998286
- MONTE ARLO 1-

EX NCT I2INS 50 SURVIVALS 0

Sotewhat.surprisingly, all. three probabilities are 1 .

With these same birth and death rates, we start with a larger initial population-

(50). but require only "50 time periods for survival.- The results are:

a

ef.
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..

TYPE STARTING RANDOM NO. ..

?*?
.5 , .

TYPE BIRTH RATE
?.4 ,

TYPE DEAT RATE ,

?.6 .

TYPE-INITI L POPULATION-
?So ,

TYPE TI REWIRED FOR SURVIVAL
?5O ,

TYPE TOTAL NO. OF TRIALS
?SO

PROBABLLIi"Y OF EXTINCTION
LIMITI.;16 VALUE 1

THEORETICAL 99924359218
MONTE CARLO 1

EXTINCTIONS 50 SURVIVALS

vain the Monte Carlo results-are quite good.

Finally we try .X > p . We let X = .501 and

:TYPE STARTING RANDOM NO.

-

TYPE BIRTH-SATE
?..501
TYPE_:DEAT-14-:,RATE

f.TYPE-INITIAL'OOPULATION
?20
TYPE TIME REQUIRED 'FOS SURVIVAL
?130
TYPE TOTAL NO. OF TRIALS
?50

PROBABILITY OF EXTINCTION
- LIMITING VALUE 0.9231162479

THEORETICAL .64571382048.-
.4.40N.JE CARLet - C(.764
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. .

u = .499 . The results are-4'

EXTINCTIONS 32 SURVIVALS 18
One note of caution. Monte Carlo simulations can-consume an inordinate

amount of computer time- They should'be used only as a last resort. In general if

there is any way other than Monte Carlo to solve a problem, use the other way.

In particular for thiebirth -death simulation, one should beware of increasing

either the" time required for survival onthe total number of trials beyond those used

in t ove examples.

1;
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CHAPTER III

AUTHORS EVALUATION.

(Pleas circle one of the responses to each question)
.

Did yo attend the short course in 1974-75?

2. Is this chapter

*(a) Too short

(b) Too long

(c) About right

If (a), which, topics shoul be expanded?

Yes No

p-

you surest topics o be added?. 4.

If (b), which topiet should be abbreviated?

which topics should'be eliminated?

Could you read and understand the computer programs?

(a) always (c) seldom

(b) sometimes (d) never

4. -Did the interim projects seem reasonable? 'Yes No

Were the self-studyApioblems

(a) Too easy

..,

Was the - number of sAf-study problems

(a) Too large.

(b) About right

(c)Too small 1

.(b) Too difficult



7. Did you attempt, any of the self-study problems? Yes No

8. Are the solutions to the self -study problems properly,'
pIaded (on. overleaf from problem)?. Yes .No

If no, where would you suggegt the solutions be placed?

9. . For each topic, how solid an understanding do you think you have?

,

_

Stochastic model of birth-death
process

J".

Differential difference equation
formulation

Method of characteristics for
solving partial differential
equagions

Monte Carlo simulations

As

ti

EXcellent Good' Fair Poor

ti



CHARTER IV

A PREDATOR - PREY MODEL

p
4.1 A Simple Model

/
%...

Consider two species one of which preys upon-the-other. For definiteness
. ,

4) . .

consider foxes as the predator which preys upon pheasants. In the absence, of

foxes the pheasants grciw as deScribed in Section,,I.1. (see eq. (1.2)). That is

(4.1) Pk. = (1-4-A-- BP ) Pk

where -Pk is the pheasant populati t the' end of the kth period. However, if

fotes are present they will retard the groT4th of the pheasants. We will assume that
i_

eac °fox aligve at the start of the kth/ period will consume some pheasants. The

more pheasants there are the easier it is for a fox to find a pheasant on which to

. )
prey. Therefore,tge assume that the number of pheasants consumed byAny one fox is

directly proportional to the number of pheasants alive-at the start of(the kth

I -*** .,

period. Based'an these assumptions the number of pheasants consumed by one fox
1. .

is CPk . The total number of pheasants consumed F
k foxes is C Pk Fk where

<-----,

C > 0 . The constant C depends upon the.searchcapability of the foxes and the
..1..

ground cover provided for the pheasants. If there is a large amount of foliage then
,

the pheasants'can hide more easily and fewer are killed by foxes. Thus good gro
u
nd

cover reduces . Similarly large values of C correspond to poor ground cover.

. Foxes born during the kth period are too young to be predators.

*This assumes that foxes do not prey upon very young pheasants or upon eggs'.

8-4.1
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Equation (4.1) then bedaMes

(4.2) . Pk+1 = (1 +'4 --, BPk)Pk
-' CP F

k k

,. .

We now tilt= ouriattention to the fok populatio
F
7.- We will let. Ek be the

, .

numberof foxes alive at the start of the kth period. Suppose pheasants provide

the bole foodood supply for the foxes. ci the absence of pheasants then the fox

populations will vanish: We will assume that if thegheasant pdpulation becomes

zero, the fox population will die out in one period. Thus k
= 0 implies that

, t

.tl population at the, end of the kth .pdriod vanishes; i-e., Fk.4.1 = 0 . We

11 also assume that the fox population at the end ofa period is directly

proportional iothe population at the beginning of the peridd. These two assumptions

lead to

(4.3) F
k+1

= DP
R
F
k

where D >40 and represents the rate at which fmees convert their food supply,into

population growth. If the food conversion process is,efficient,then D is large.

0

4.2 Equilibrium and Stability,

0

'op

/ Aa

Before carrying out some numerical experiments we tutn to a discussion of
\,

equilibrium populations and tie stability ofthese equilibrium populations.

.

...-- \

. , \Will. the pheasant and-fox -populations.reach equilibrium?
V

If wewish to institute predator. control (kill foxes), when should we do so,
NIEME,

andhow many preadators should be eliminated.

If we. wish to allow pheasants to be'hunted, when should'We do so, and how many-
-

pheasants should we allow to be killed?

What would b e effect of periodically adding more pheasants to the population?

We will attempt iii what-follows and,in the exercises to answer these questions.
-

The reader is once again urged to think of other similar questions which might be of

11'5
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interestto hil or to ecologists ancr%to use mathematics and/or computing to search 4,

for the answers. 'The 'following should provide a guide for such answer-seeking

. We fi,rst determine what the Oltilibrium/tlopulations are. If both pheasants
1.

and foxes are to reach equilibrium then for k ;Sufficiently large.both

CP

P
k+1

= Pk = P
*

F
k+1

= F
k
= F

*

A

44.

where', P* and F* are the equilibrium populations. Using these in (4.2) and (4.3)

("4.4) P* = (1 +.A - BP*)P* - C F*P*

.,

(4 . 5 )
,7-:4

\
r'''

'15 _ 1

'These are two algebraic equations in two unknowns P and,"-FZ-...,

From (4.5) either

or.'

5
trr'

P* = 1 D

-/

Consider first F* = 6 then (4.4) becomes

= (1 A -BP*) P* . -

0.

Cs.

this is the same equilibrium equation we met in the single species model.' Our

earlier analysis then tells us there are two solutions: P* = 0 or = A/B .

We have then found two equilibrium conditions. Either



or

ana

and

F 0*

P* =Ab

F* = 0

P = A/B

8-4.4 .

There is, of course, still the case wtiere. P* =NI/D to be considered.'L In tills

case (4.4) -leads to
tT

A third equilibrium condition then is

and

AD - B.
DC

AD - B
-F* DC

= 1/D

1

The-first condition; where both populations vanish, is riot of much interest,

but we'shali investigate the other two., For ease of=reference we-will define.

P
E
= A/B

P
e

= 1/D

AD - B
Fe\.. DC

The two equilibrium conditions then are (i) foxes and
:
P
E

pheasants, and (ii)

F
e

foxe's and P
e
. pheasants. The subscripts E and e derive from the -word

"equilibrium". -As we shall see,'the lower case "--e refers to a lower value of the

Pheasant population than does the upper case E

To investigate the stability of these equilibrium conditions and, in more general

terms, the behavior of the fox and pheasant populations, we will turn to a computer



program and some numerical experiments. In order to,,do so, however, we would need

tp-assign values of A , B , C and D . It is unlikely that we could obtain the

values of all of these parameters even ere we to ask an experienced ecologist- On

the other hand, an ecologist might be able to estimate the values.of PE , Pe_ and Fe.
. -

For example, 'PE is justthe number ofd pheasants which the environment can support

if no foxes are present.' Similarly' Pe and F
e

are the, numbers of pheasants and

foxes which would be present, in a completely balanced situation.
. -

-Could we compute A , B , C and D if we were given ,t0e values of PE , P
e

and F
e

? The answer, unfortunately, is no. Recall that in the single species

prOblem we could not compute both A and .B from N
E

However, from N
E

and A

we could compute B . That is to say, we needed one of ..,the original parameters in

addition to the equilibrium population. The same is true here in the predator-prey

problem. Given values of the equilibrium populatiOns and the value of say A , we

can compute all of the other parameters. Indeed, (4.9), (4.10) and'(4.11) can be

solved to obtain

(4.12)

(4.13)

(4.14)

B =
A
PE

A(pp - Pp)
C.= PE Fe _

D
'e

.

We have assumed that none.of PE , Pe< or F
e

are zero. Moreoyer, since our original

equations assumed that B , C and 'D are positive, it follows that PE > Pe , i.e., .

the pheasant equilibrium in the absence of foXes is larger than the pheasant equilibrium

population if foxes are present-
. .

We now construct a comper program which takes P
E '

P
e

,..F
e

and A as input.

(A is the unrestricted pheasant growth rate). The program computes
. ...,t

computes B , C \and D

then asks for starting pheasant. and fox populations arti-i for,the number of .periods to be
ts--.1
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predicted., The program is shown in Figure 4.1. It should be self exRlanatory

except-perhaps for the statements numbered 2400 and 2600.- EaCh of those checks to

see if one of the two species has dropped below 1 If so that population is set

equal to zero. Numerically, of course, we could obtain negative values for the

populations. In the single species case this was of little concern since we merely

assumed after the negative values meant zero populations. In this two

species case, however, if the fox population became negative it would affect the--

pheagant population in an unnatural way. Therefore, it is crucial that we prevent,

negative populations. Finally we note that it may seem more natural to set a

populatioqqual to zero if its value drops below 2 or even some larger number.

Our choice of 1 is somewhat arbitrary arid,,-godta be changed without affecting the

generalnkehavior of the populations._

0100 PRINT -"TYPE 'PHEASANT EUUILIBRIUM POPULATION IN ABSENCE OF FOXES"

0200 INPUT P1
0300 PRINT "TYPE PHEASANT EQUILIBRIUM POPULATION WITH FOXES PRESENT"

0400 INPUT P2
0500 PRINT "TYPE FOX EilyILIBRIUM-POPULATION"
0600 INPUT F2
0700 PRINT "TYR, PHEASANT UNRESTRICTED GROWTH KATE"

0800 INPUT A
0900 LET B=A/P1
1000 LET C=A*pl-P2)/(Pl*F2)'
1.'100 LET D=.1i2
1200 PRINT "TYPE INITIAL PHEASANT POPULATION"
1300 " INPUT P
1400 PRINT "TYPE INITIAL FOX POPULATION"
.1-500 INPUT F
1600 PRINT "TYPE AO. OF PERIODS TO. BE PREDICTED"

1700 INPUT N A!
1800 PRINT
1900 PRINT "PERIOD"."PHEASANTS"."FOXES"
2000-FOR I=0 To N
2100 PRINT
2200 LET P3=(1+A-B*?)*?=C*F*P
2300 F3 =D *P *F
2400 IF P3>1 THEN 2600
2500 LET P3=0
2600 IF F3>1 THEN 2800
2700 LET F3a0
2800 LET P=P3
2900 LET F=F3
3000 NEXT I
3100 EN0 ,1/3 Figure 4.1

O
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We now use this program and examine some specific examples. One case is

exhibited in Figure 4.2. The pheasant and fox populations are started4telatively

.close to the 711ibrium values. In particular the initial number of pheasahts

(9,000)'is somewhat less than the equilibrium value (10,000), and the initial

number of foxes (1,100) is somewhat larger than the equilibrium value (1,000).

In each case the difference between the initial population and. the equilibrium

population is 10%.

Notice that for all practical purposes each 20 periods the populations return

to the same values. In order to study these results more carefully we draw a graph

of the populations. We could, of course, plot each of the populations of the two

species as functions of time (number of periods). However, we will find'it more

useful to plot the number of foxes as a function of the number of'pheasants. The

graph is shown in Figure 4.3. The initial point is indicated by the-large circle.

The arrows indicate the order in which the points appear as time progresses. The

equilibrium solution FE = 1,000 and PE = 10,000 is indicated by the large X .

From the cyclical nature of this behavior it appears that the equilibrium Pe

and F
e

is unstable. Indeed this is the case.

Let us now try another example as shown in Figure 4.4. .Notice that in this

case even though the foxes start at twice the equilibrium value, the pheasant

population is insufficient to sustain the_foxes and the latter become extinct rather

quickly. Thereafter, the pheasant population continues to thrive and should eventually

reach 10,000.

We could continue such numerical experiments, but we shall not do so here.

Rather we turn our attention to a discussion of hunting seasons. and predator control.

Self-Study: Problem #4.1

r.

Assume that the growth of the pheasant population is not affected by over-
..

crowding. Simplify the model discussed above accordingly and discuss the equilibrium

and stability question.

12.1



TYPE PHEASANT EQUILIBRIUM POPULATION IN ABSENCE OF FOXES
?20000
TYPE PHEASANT EQUILIBRIUM POPULATION WITH FOXES PRESENT
710000
TYPE FOX EQUILIBRIUM POPULATION
?100.0
TYPE PHEASANT UNRESTRICTED GROWTH RATE-
7.2
TYPE INITIAL PHEASANT POPULATION
?9000
TYPE INITIAL FOX. POPULATION
?1100
TYPE NO.'OF PERIODS TO BE PREDICTED'
?40

_PERIOD PHEASANTS FOXES
0 9000" 1100
1 9000. 990.
2 9099. 891.
3 9280.17 810.722
4 9522.62 752.363
5 9803.9- 716.447
6 101-01:1 702.397
7 10391.5 709.5
8 10652.7 737.278
9 10863. 785.4
10 11002.4 853.184
11 1105317 938.708
12 11004.9 1037.62
13 10853. _ 1141.89
44 10606.4 1239.29
15 10288.3 1314.44
16 9935.12 1352.33'
17 9591.52 1343.55.
18 .9301.18 1288.67
19 9097.68 1198.62
20 8999.08 1090.46
21 9007.74 981.318
22 9113.95 ' 883.945
23 9300.47 805.623
24 9546.31 749.268
25 9828.98 715.274
26 10125.7 703.042
27 10413.6 711.876
28 10670.6 741.32-
29 10875.-1 791.032
30 11007.2 860.252
31 11050.1 946.892
32 10992.8 1046.33
33 10832.7 1150.2
34 10579.8 1245.98
35 10258.2 1318.22
36 9905.29 1352.26
37 956,1.74 1339.45
38 928.57 1281.28 Figure 4.2

39 9088.07 1189.36
40 8998.85 1080.9

121



1400

1300

,

9000 10,000

PHEASANTS



.TYPE'rPHEAANT EQUILIBRIUMHPOPULATION
710000
TYPE PHEASANT EQUILIBRIUM POPULATION
75000
TYPE FOX EQUILIBRIUM POPULATION
71000
TYPE PHEASANT UNRESTRICTED GROWTH RATE

8-4.10

IN ABSENCE OF FOXES

WITH FOXES PRESENT_

7.1
TYPE INITIAL PHEASANT POPULATION
.71000
TYPE INITIAL FOX POPULATION
72000
TYPE NO.
720

PERIOD

OF PERIODS TO BE PREDICTED

PHEASANTS FOXES.
0 1000 2000

990 400.
2' 1059.4 79.2
'3 1149.92 16.7809
4 1250.72 3.85933
5 1359.91, 0
6 1477.41 0
7 1603.32 0

8 1737.95 0
9 1881.54
10 2034.29 0
11 2196.34 0
12 2367.73 0
13 2548.44 0
14 2738.34 0
15 2937.19 0
16 3144.64 0
17 3360.21 0
18 3583.32- 0
19 3813.25 0
20 4049.17 0

Figure 4.4

VC



Solution to Self-Study: Problem #4.1

If ciowding is neglected then B = 0.. Then the
t

model becomes

P
k+1

- P = AP P
k

F
k

A > 0 , C > 0

Fk4
1
=DPF

Letting P* and F* be the equilibrium populations

The equilibria are

P* (A 7 C F*). = 0

F* (1- - D P*) =

- 0 P* = 0

A
C '

P
1
-D

D > 0

The stability of these equilibria can be investigated either by means

of a computer program similar to that of:Figure 4.1 or by techniques similar

to those employed in Part I of these notes. The changes required in Figure 4.1

C..

are C

100
.7-200

900 LET- B.= q
1000 LET' C = A/F2

The equilibrium F* = 0 , P * = 'is easily seen to be unstable. For if

we consider ,the starting values F0 = 0 , Po arbitrary, we find Fk = 0',

Pk = (1 + A)
k

Po . (See e.g. Section 1.1 of the appendiX).

Thus no matter how small Po is, as long as Po and. A are positive,.
ti

To investigate F* = A/C-, P* = 1/D , we set

Pk fk + ac , Pk = pk + D

;

Po co



and drop terms in fk pk . On eliminating

we find

8-4.12

from the resulting eqUStions

p
k+2

- 2 p
k+1

+*(1 + A) p
k
= 0

D
f = (pk pk C k k+1

The second order difference equation may be solved using the techniqu'es

described in Section 2.2 of the appendix. ,The sOlution for pk is,

where

and where

and fo

Therefore

p = a(1 + A)
k/2

cos(k 6 +

Ll.
= it cos' -

, 1 + A

and frieze constants determined by the initial values

The solution oscillates and

the equilibrium is unstable.

Po

the amplitude increases if A > 0 .
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`Self Study: Problem # 4:2.

aisider weakening the assumption that in the abSence of pheasants at period

k the foxes are extinct at..period k + 1 to the assumption that in the absence

-.of pheasants, the foxes obey a simple (negative). growth. Find the equilibrium

Populations using this new assumption and modify the,program in Figure 4.1 in order

Ito study the stability of the equilibria. Check your results.by noting that'the

model discuSsed in the text is a special case of this one. ti

L
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Solution to Self - Study Problem #4.214.

In the absence of pheasants

Fk+1 - Fk = - G 'Fk

Thus, the full model is

< G < 1

Pk+I-Pk=(A'-BPk )P
k
-CP Fkk

F
k+1

- F
k
= - G + D Pk Fk

8 -4,14

Nate that = 1 gives -the model discussed in the. text. The equilibrium

populationg are

(a) F = 0- and P = 0

(b) FE := 0 and P
E

=' A/B

or

- BG
(c) Fe AD

CD
and Pe

Thus

B = A/P
E

A(P_E - Pe)
PE Fe

D =

Notice that the first two of these are identical with (4.12) and (4.13) and

,c",
to (4\44) for G = 1 .that the last reduces

1

The only changes' required in the BASIC program in Figure 4.1 are

8.26 PRINT "TYPE FOX trNRESTRICitD DEATH RATE"
B30 INPUT G
1100 LET D =-G/P2
2300 LET F3 = (1.-G)* F + D*P*F
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4.2 Predator Control

We continue our study of pheasants and foxes, and assume the two populations are

governed by (4.3) and (4.4). We will consider the particular example shown graphically

in Figure 4.3 although our discussion is applicable to more general cases as well.

Suppose that a decision has been made to institute predator control. Such

a decision might result from one or several of the following policies:

(1) The pheasant population'should be kept above some.minimum Value,

say 10,000.

(2)- The fox population Should be kept below some maximum value, say

1,200.

(3) It is desirable to allow foxes to be hunted and killed.

As has been our habit, we ask the reader to try to think of other policies which
0

might lead to a decision to institute predator control. Moreover, we encourage the

reader to think of more fundamental problems which might in turn give rise to the

above policies. By way of example, it may be that .if the fox population exceeds.

1,200; the animals are so numerous that they create 'a nuisance to the human inhabitants

and thus policy (2) ig instituted.

Be that as it may, we nowtry to decide upon a sensible way of implementing

predator control without upsetting theecological balance. Our first inclination
-

would be to kill foxes when the fox population was relatively high. Thus we look

towards-the upper part of the graph in Figure 4.3. As a start, suppose we decided

to kill foxes at the end of period 18 when there are approximately 9,300 pheasants-

and 1,290 foxes. We will assume that the control season (time during which foxes

are killed) is quite short compared with the time periods in our computations. Thus

when we kill foxes, the pheasant population remains unchanged. _This means that on

our graph (Figure 4.3) we, wbuld travel]. downward on a vertical line from period 18.

If we then abandon predator control the two populations woad continue around the,

1 2 9



8-4.16

oval as before: The result would be the pattern indicated in Figure 4.5(a). This

assumes, of course, that tht predator control is reinstituted each time we reach .

9,300 pheasants and 1,290 foxes.

CA)

Fuxes

C.

Figure 4'.5

A

Rather than use control at period. 18, suppose. foxes atthe close of

period 14 where t1 pheasant populatiOn is 10,600 and the fox population is 1,240.

Once again we travel vertically downward and then resume the oval. The result is

shown in Figure 4:5(b).'

Let -uS now examine these tt.io alternatilies and make some'bibserVatiOns. The first

alternative has relatively little effect overall. The pheasant and fox populations

both vary between approximately the same limits. Therefore if our goal was to satisfy

policy (3) above., this-might be a reasonable choice. The second choice which leads

to Figure 4.5(b), on the other hand,- has considerable effect. While the fox. population

still varies between widely separated values, tie pheasant populatkn ;changes. very

little. There is yet another observation to be made. In FigUre-4.5(a) the time

between hunting seasons is about 15 periods since .wewill dropfrom period-18 to

1 .3
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period 3 conditions. In Figure 4.5(b), however, the time between hunting seasons is

only 6 periods (period 14 to period 8).
4.-

What conclusions can we draw from these observations. The second course of

action, the one in Figure 4.5(b), is bettewzadapted to policy (1), i.e., keeps the

pheasant population high. Neither solution does much for policy (2) since lin both

cases the fox population grows quite large. Even so, the second alternative does

keep the maximum fox population a little lower than does the.first choice. Finally

if an objective is to have frequent huntinglseasons on foxes then the'second choice

is clearly preferable. On the other hand, if predator control is an expense, and we

wish to use it as infrequently as possibleithen the first choice is the better one.

On balance then the second choice as shown in Figure 4.5(b) seems a wise one,

and we shall choose it. We will concentrate on policy (2) of keeping the fox

population below 1,200. .Before devising a detailed strategy of predator control,

1

however, we reexamine the assumptions we have made'and discuss the consequences of

any variations in these assumptions.

We assumed that the predator control season was quite small compared to the

time periods in our calculations. This led to vertical lines in the graph. Suppose

this is not so. As controltis started in either of the Cases in Figure 4.5 the

pheasant pofulation is.de

perhaps with slight curvature,

is shown in Figure 4.6(a). It

\./

creasing. Therefore, the populations would follow a line,

the skond course of action.

down but slightly to the left, One possible pattern

corresponds to predator control at period 14, i.e.,

A second assumption was that our control was so accurate that we killed

precisely the number of foxes necessary to bring us back to our oval curve.

degree of precisioacio quite unlikely4 and we are more likely to

In either case; provided we 46 not

This

overkill or underkill.

s our target number by too much, we simply end

on another similar shaped curve. The case of two successive overkills are shown in

Figure 4.6(b) where the pattern moveAfrom left to right. Of course, upon observing
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A

ftteitsAni

(a)

R c.5

Pkectu05

Figure 4.6

such a pattern, it is likely that an adjustment to produce an underkill would be made

for one or two hunting seasons.

We now return to the details of our predator control and to the program in

Figure 4.1. .We will change the program so, that if the fox population exceeds 20%

of the equilibrium fox population*, the program will (a).tell us what the two

populations would be in the absence Of control, (b) allow us to determine a number
, ft;

of foxes to be killed, and (c) continue the computations with the same numbers of

pheasants but a reduced number of foxes.

To accomplish this we add the program seeps in Figure 4.7 to the BASIC program

in Figure 4.1.

2800 IF F3 < 1.2 * F2 THEN 2900

2810 PRINT "PREDATOR CONTROL WITH NO CONTROL THERE WILL BE"

2820 PRINT F3; "FOXES AND"' P3; "PHEASANTS" -

2830 PRINT "HOW MANY FOXES SHOULD BE KILLED?"

2840 INPUT X

2850 LET F3 = F3 - X

2950 LET P = P3'

Figure 4.7

*
In this case this means if the fox population exceeds 1,200.

4
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The first statement checks to see if F
1

< 1.2 F
e

. If so we still bypass

control even though the pheasant population is on the decline. Statement 2820 to

2850 should be self explanatory. Statement 2950 is necessary since we deleted the

previous LET P = P3 by our new statement 2800.

An ample of running this revised program is shown in Figure 4.8. Some

explanation of this figure is in order. The first predator control is atiperiod 14.

Since there are 10606.4 pheasants we look back in time for a season with approxiMately

the same number of pheasants. If we could find a period with precisely that number

of pheasants, we would kill a number of foxes which would return us to that State.

The best we can do, however, is season 8 where there, are 10652.7 pheasants. The

- fox population there is F8 = 737.278 To reduce the fox population to this latter

figure we would need to kill 502.012 foxes. However, since the pheasant pppulation

at period 14 is slightly less than P8 , we choose to kill more than 502 foxes. In

fact we kill 520.

The second time that control is exerted is six periods later where P20_= 10707.3.

This pheasant population is about midway between Ply. and 'P15 so we kill a number

of foxe which will leave the fox population about midway between FILF and 'F15

Tilis4keads to ,a kill of 480 foxes.

At period 26 we kill 530 foxes and arrive at populations slightly less than

period 8 so that we are slightly inside the original oval.. At period 32 we kill

465 foxes to achieve populations slightly larger than period .8 so we. are slightly

outside of the original oval. The remainder of the computer printout and the strategy

used to achieve it should be self evident.

Our strategy has been simple enough. At each point-where the fox population

exceeds 1,200 we look back in history for a state-in which the pheasant population

is close to the present pheasant population. Upon finding such a state we make note

of the_fox population of that past state. We then kill enough foxes to bring the

present fox population don to the lower value of the past state. Of course, we are
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not able to find the precise pheasant population in any past season. Having chosen

the nearest one, we-make.some compensating adjustment in the-fox kill.

TYPE PHEASANT EQUILIBRIUM POPULATION IN ABSENCE OF. FOXES
720000
TYPE. PHEASANT EQUILIBRIUM POPULATION WITH FOXES PRESENT
710000
TYPE FOX ESUILIBRIUM POPULATION
?40L00
TYgEPHEASiNT UNRESTRICTED GROWTH,RATE'
?.2
TYPE PHEASANT POPULATION
?9000
TYPE INITIAL FOX POPULATION 4-
'11100
TYPE 00. OF PEAkODS TO BE PREDICTED
?35

PERIOD PHEASANTS FOXES
'0 .9000 1100.

1 9000. 990
2 9099.- 891.
a , 9280.17 810.722
4 9522.62 752.363
5 9803.9 716.447
6 10101.1 702.397
7 10391.5 -70945.
8 10652.7 737.278
9 10863. 785.4.
10 '11002.4. 853.184
11 11053.7 938.708
12 A 11064.9 1037.62
13 -.. 10853. 1141.89

'Figure 4.8

(Part 1)



PREDATOR
1239.29

HOW MANY
?520
14 's

15
-16

17
18
19
PREDATOR
1220.99

HOWMANY
?480.
20
21-
22
23
24

PREDATOR
1259.28

ROW MANY
?530
26
'27
28..
29
30,
31

PREDATOR
1205.65

HOW MANY
?465

CONTROL. WITH NO CONTROL THERE WILL BE'
FOXES AND-10606.4 PHEASANTS

FOXES SHOULD BE KILLED?

10606.4
10839.8
11005.8
11085.5
11064.8
10937.1

719.287
762.904
826.973
910.149
1008.95
1116.-38

CONTROL.. W/TH NO CONTROL THERE WILL BE
FOXES AND 10707.3 PHEASANTS

FOXES. SHOULD BE KILLED?

10707.3 740.993
10908.9 793.404
11035.1 865.516
11069.3
.11000.6- '1057.24

- 10827.6 1163.03
CONTROL. WITH NO CONTROL THERE WILL BE

FOXES AND 10561.5 - PHEASANTS
FOXES SHOULD BE KILLED?

10561.5
10788.1
10950.9
11032.
11017.5
10901.1

729.279
770.225
830.926
909.943
1003.85
1105 . 98

CONTROL. WITH NO CONTROL THERE WILL
FOXES AND 10647.4 PHEASANTS

FOXES SHOULD BE KILLED?

*a.

Figure 4 . 8

(Part: 2)

1 3 J.
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SelfStudy: Problem #4.3

Devise other strategies for predator control and modify the BASIC program

in,Figure 4.1 to implement that control. In particular, when the fox population

is more than 20Z above equilibrium reduce the fox population.to equilibrium.

DSO;P.

fi

1 33
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Solution to Self-Study: Problem #4'.3-

The required modifications to Figure 4.1 are

2800 IF F3 < 1.2 * F2 THEN 2900.
2810' ED810' PRINT "PREDATOR CONTROL"

2820 LET X = F3 F2

2830 PRINT "KILL "; X. ; "FOXES"

2840 LET F3 = F2
2950 LET `P = P3

13
7'

-L- t

.r
8-4.23
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Self-Stud*: Problem #4.4

-\ Ref-erring back to Self-Study Problem #4,2 write down a 'pair of-first-order

differential equations which represent the continuous model for the pheasant-fox

problem.,

fr
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Solution to Self-Study: Problem #4.4

15
dP
dt

dF
dt

- BP) P CFI'.

- 6F + DPF

,Notice that G = 1 ao longer implies the model used in the text

this 'G is..At times the G in Self-Study Problem # 4.2.

8-4.25

since
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..CHAPTER IV

AUTHORS gygmAtIoN

(Please circle one of the responses to each question)

1. Did you attend the short course in 1974-75?

2. Is this chapter.

(a) Too short

(b) Too long

(c) About right

If (a), which topics should be expanded?

Yes No

- .

can you. suggest topics to .be added?.

If4b), which topics should be_ abbreviated?

s

which topics should be eliminated?

. Could you read and understand the computer

(a) always

(b) sometimes

programs?

(c) seldom

(d) never.

4. 'Did the interim projects seem:reasonable? Yes

5. Were the ,self -study problems

(a) Too easy, (b) Too difficult

. Was the number,of self-study problems.

(a) Too large

(b). About right

(c) Too small

,

-No



Did you,attempt anyof the golf-study problems?

Are the solutions tOrthe 'self-study ptoblems properly
plated. (on overleaf from problem)?

If no, where-would you suggest the-solutions be placed?

Yes

Yes

No

9'. For each topic, how solid an UnderstAnding do you think you have?

pyclical Nature of population

Predator Control Methods

Effects of Over (Under) kill

Multiple Species Models i 'General

Excellent Good Fair Poor

8-4.27



CHAPTER V

AN ECONOMIC MODEL.

5.1 A Simple. Model

Assume that the total national income, T , can be separated into three parts:

consumer expenditures, C ; private investment, I ; and government expenditures, G .

Thus

T--=C+I-FG

L

Ally, of these quantities vary with time. Usually the values of each of these" are Ic;own'

only at specific. times --- the end of a year or the end of a quarter of a year. We

will assume then that each of these four quantities is measured and known at fixed

points in time. Let T
n

, C , In and G
n

be the values.of the total income,
A,

consumer expenditures, private investment and government expenditures for the nth

period where n = 0, . Then

(5.1) = Cn .-I- In -I- Gn

Next we assume that consumers' buying habits are affected favorably by the

total national income. However, consumers only know the value'of the national income

for -the periods prior to the current one. We will assume that consumers have a short

memory so their buying habits in the nth period are only affected by the total

national income in the (n - l)st period. Moreover, we will assume that C is some

.percentage (peiq-iztpsgreater than 1002) of. T
n- 1 '

i.e.,

(5.2) C
n

=
n-1

8 -5.1

142

, 2, 3, ...
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The constant of proportionality is called the marginal propensity to.consume. We

assume that

A>

_
Next we assume that 'an increase in consumer spending will increase investment of priVate

capital. We suppose that investment is propoitional to a change in ,consumer spending

so that

(5.3)

We assume that

I
n

= B(C
n

- C
n-1

)

B > 0-

Finally we assume that government spending is constant

(5.4)

(5.5)

G
n

=

n

Using (5.2), (5.3) and (5.4) in (5.1) we%arrive at

= 0, 1, 2, ...

= A(1 I- - ABTn-2. + 1 n =

whi5p,can be rewritten

(5 6) Tn.,.
2
- + B)T

n+1
+ ABT

n
= 1 n = 0, 2, ...

Given To and T1 we can calculatet4uccessively,-T2, T3, T4' and so on.

5.2 Numerical Solution

lie will write a-BASIC program which takes as input. A ,. B , To and T1

together with the final period to be predicted. If M is this final period then

the program computes and prints T2,.T3, TM .

143



The program is

100 ~NT "TYPE VALUE FOR A"
200 INPUT A
300 PRINT "TYPE VALUE FOR B"'
400 INPUT 8
500 PRINT "TYPE NAT/OiAL INCOME .IN ZERO* PERIOD"
600 INPUT TO
700 PRINT "TYPE NATIONAL INCOME IN FIRST' PERIOD"
BOO INPUT T1.
900 PRINT "TYPE,FINAL PERIOD TO BE PREDICTED"
1000 INPUT N
1100 PRINT

.

1200 PRINT "PERIODNerNATIONAL INCOME"
1300.117OR K ".2 TO N
1400 .LET T2 sig A*C1+8)*T1 A*B*TO 1,

1500 PRINT
1600 LET .TO
1700 LET T1

:4:
N41, 1

w 2
1000 111/2T K
1900 211D

:8,5.3

o
This program was run several times each time with To =.2 and T1 = 3 . (See computer

output on the following pages.).

The first case (A = .5 and -8 = 1) shows an econamy_which oscillates about

2 and eventually-settles down to 2 . Do you think changing To and/or. T1 would

effect the long run behavior of this economy?

The second case (A = .8 and .13 ==.2)" alsO oscillates (about.. 5 not 2).

but the oscillations become quite large. Indeed .TI2, is negative!. From an economist's

point of View the national economy has collapsed at period 12 and the solution

-theregeer is meaningless. We return to this case in the next section.

The thiidsoiution = .5 and B-= -1) precludes a national income which

steadily decreases tothe.value 2 . Do you think a change in To and/Or. Tl would

Change this long run bfthavior? Try values-for Ta and. T1' where both are larger

than 2 and where both are smaller than 2 .



TYPE OVUM FOR A
7.3
TYPE VALUE FOR 8
11
TYPE NATIONAL INCOME IN ZEROTH PERIOD
72
TYPE NATIONAL INCOME IN FIRST PERIOD
73
TYPE FINAL PERIOD TO HE PREDICTED
740

PERIOD
2
3
4
"5
6
7
8
9
10
11
12.

-13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30-
31
32
33
34
35
36
37
38
39
40

L

NATIONAL. INCOME
3
2.5
2
1.75
1.75"

41' 1.875
2
2.0625
'240625
2.03125
a
1.984375
1a984375
1.992188,
2.

2.003906
2.003906
2.001953
2
1.999023
1.999023
1.999512
2
2.000244
2..000244
2.000122

1.999939
1.999939
1.999969
2
2.000045'
2.0000157
2.000008
2
1.999996
1.999996
1.99999 0
a

143
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TVP$ P A
?
TYPE VALUE FOR II
12
TYPE NATIONAL INCOME IN ZEROTH PERIOD
12 ,.

TYPE NATIONAL INCOME IN FIRST PERIOD
73
TYPE FIN4L PERIOD TO BE PREDICTED
720

PERIOD NAT IONAL INCOME
2. 5
3 8.2
4 12.68
5 18.312
6 24.6608
7 30.88672
8 35.67085
9- 37.19128
10 33.18572
11 21.13968
12. - 1.36198
13 36 0921
14 - 83.44197
15 - 141.5134
16 - 205.1249
17 - 264.8784
18 - 306.5084
19 - 310.8146
110 ...SS.. 5416



TYPE VALUE FOR A
3.15
TYPE VALUE FOR B
T1
TYPE NATIONAL INCOME IN ZEROTH. PERIOD
?2
TYPE NATIONAL INCOME IN FIRST PERIOD
*13
TYPE FINAL PERIOD TO BE PREDICTED
?20

PERIOD liktIONAL INCOME
2
3
4

2.55,
8.2525
2. -111.375
2.048631
8.081'178
2.009217

8 2.00401
9 - 2.001745
10 2.000759
11 2.00033
12 . 2.000144
13 2.000063
14 2.000027
15 2.000012
16 2;000005
17 2.000002
18 2.000001
19
SO

14

a

Sty

8-5.6



as<

ray

TYPE MUNI 1,881
7.5 7

TYPE VALUE FOR 11f.
76
TYPE NATIONAL 'icon IN ZEROTH PERIOD

TYPE NATIONAL INCOME IN FIRST PERIOD
73
TYPE FINAL. PERIOD TO. BE PREDICTED
'MO

PERIOD NAT ZONAL ° INCOME
2 5.5
3- 11.25
4 83.875
5 50 .8125
.6 107.2188
7 223.8281

.462 7422
9 949.1133
10 1934.6,7
11 3925.005
12 . 7934. 507
13 15996.76

. 32186.14
15 64662.21
16 129760 3
17 260175.5
18 521334.2
19 19441440
SO 1090503.

The final'case' shown above (A" = .5 and B = 6) produces a national

income which grows without bound. Economists call this an 'expanding

economy. Again try different initial conditions, T-
0

and TI, to see

if the behavior changes.

4r



Self -Stuff: Problem #5'.l

The examples have exhibited the following behaviors:
,

oscillating with

8-5. 8

decreasing amplitude, oscillating with increasing amplitudeas expOnential.decay and

exponential growth. For the following values of. A and'

of the economy

(a) A = .5 , B.= .5 , TO = 2- , T1 = 3

(b) A = .5 , B, = 2 TO = 2 , T1 = 3

(c) A = .5 , B = 4 ,To = 2 ;T1, = 3

--(d) A = 0.75, B = 6,T0 --- 2 , T1 = 3

(e) A = .5 , B = 4 , To = 2 , = 2

(f) A = .5 , B = 6 , To = 2,, T1 = 2

(g) k= .75, B = 6 , To = 4 , T1 = 4

(h) A = 1 , B = .5 , To = 2 , T1 = 4

A = 1 , B.= .5 , T0. = 2 , T1 = 5

B determine the- behavior

(

, 4
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, Solution to Self Study: Problem #5.1

\ 8-5.9

(a) Decaying oscillations T10 = 2002391

(b Oscillation with 'nearly' constant amplitude

Te = 0.594

T11 = 3.505

-T15 = 0:51)6

T20 = 3.436,

T24 = 0.492

(c) Increasing oscillations. -T11 = 52.827

(d) 'Exponential growth T10 = 596,859

(e) Constant T
k

= 2

(f) Constant T
k

= 2

(g) Constant 2k = 4

,(2) Linear growth T10 =

(i). :Almost' linear growth T10 = 23.998

e'

4
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0

5.3 Government Pump. Priming,

/
In the second case of the previous section (A = .8 and B = 2) the national.'

income became negative at period 12. Suppose we decide to prevent a negative income

by increasing government spending to avoid such a....collapse-of'the economy. Some

natural questions which arise are: Will such pump priming for a few periods_put

the economy back on schedule?. If not, does this policy lead to ever increasing

'government spending?

To answer these questions we modify the program as follows:

100 PRINT "TYPE VALUE FOR A"
,200 INPUT A
300 PRINT "TYPE VALUE FOR B"
400 INPUT S
500 PRINT "TYPE -NATIONAL INCOME
600 INPUT TO
700 PRINT "TYPE NATIONAL INCOME
SOO INPUT T1
900 PRINT "TYPE. FINAL PERIOD TO
1000 INPUT PI
1100 PRINT
1200 PRINT "PERIOD"r"TOTAL INCON
1250 LET 6 mibt
1300 FOR K-am 2 TO N
1400 LET T2 A*C14.13)*T1
1410 IF T2>=0 THEN 1500
1420 LET 6 I T2
1440 LET T2 m 0
1500 PRINT-KoT2,6
1550 LET 6 = I
1600 LET TO T1
1700 LET T1 T2
.1400 XXX? X
1900 XIM

.y.

IN ZEROTH .PERIOD"

IN FIRST PERIOD"

BE PS1a1CTO

Eiss'60VT SPENDING"

A*1341;TO * 6

-6



Tn <

(5.7)

we increase grovernment spending so =that T

= A(1 + B)T - ABT
n-1 n-2

11:'°

To find G then we compute the right side of (5.7). If this is less than 1 we
..s,,

.set G
n

= 1 and compute' Tn from (5:.5). If not, we let G
n

be the value defined

by (5.7) and let Tn = 0 . The program actually computes

Tn = A(1 + - ABTn + 1

If thi's is less than zero:then the prograM sets

and then sets

= 1 - T
n

T
n
= 0

The number of the period, the value of Tn and thevalue,of Gn are-: printed. The

results of running this_program are shown on the following,page.. Notice that every

14 periods, government spending Mtist increase above 1 fbr two-consecutive periods.
.

Notice also that this.pump priming does not increase with-time. A total additional

government investment of 52.47875 is-required in each 14years (plus of course the

normal spending of 14)..

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Interim Project #5.1

See. .if you can reduce the total government expenditures by making government

spending negati 've for several. periods in between the periods where government spending

- A
is abnormally high. -TrYdifferent strategies to: -now well you can 4o

.

'

* * * * * * * 1 * * * * * * * * * * * * * * * * * * * * * * * *, * * * * ,*



sS.

TYPE VALI* FOR
348
TYPE VALUE FOR B

TYPE NATIONAL INCOME 10 ZEROTH PERIOD
?2
TYPE NATIONAL INCOME IN. FIRST PERIOD
43
TYPE-VI/1AL PERIO) TO SE PREDICTED
11445'"

PERIOD
2
3
4

7
8
9
10
11
12
13
14
"15
16
-17

18
19
20.
21

-23
24
25'
26
27
28
29

31-
32
33
34
35
36
37
38
39
40
41
"42 1

3.4
44 7.56
45 12.704

TOTAL INCOME GOVT SPENDING
1

8.2 1

12.68
18.312 1

24.6608 1

.88672 1

35.67085 1

37419128 1

33.18572 . 1

21.13968 - 1

'O. 2436192
O 33.88349
1 1

3.4 1

7.56 1

13.704 1

21.7936 1

31437824. 1

414438W 1

'50.24605 1

55.2897 1

-53.3016 1

40.46032 1

"12.8 1 1

O 33.96322
0 20.51553
1 1

*1

-7056
13.704 1

21.7936 1

31.37824 1

41.43808 1

50.24605- 1.

'55.2897 1

53.3016
40.46032
12.82221
0

1

1

33.96322
O 20.51553

1

1
,
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'5.4 Analytical Solution

8-5.1.3

From Part II of the appendix on "Difference Equations" we can find, a solutiOn

of (5.6). As we have seen, we may have solutions which oscillate with increasing or

decreasing amplitudes, and we may have solutions which decay or grow exponentially;

Actually we may also obtain constant solutions or solutions which increase or decrease

linearly.

To determine the mature of the solutions we examine the homogeneous equation
a

( 5 . 8 )
2
- A(1 + B)T

1
ABT

n
= 0

Recall that in this equation A > 0 and B > 0 . The characteristic equation of

.(5.8ris

(5.9) x2 - A(1 + B )x + AB = 0

If the discriminant of this equation is negativedthen the general solution-oscillates

and the particular.solutionwill be a constant. For oscillation then

(5.1o) A2 (1 + B) 2 - 4AB < 0

Suppose A is fixed. Then the discriminant is-a function of B , i.e.,

(5.11.) f(B) = A2 B2 244 - 2) B + A2

For B = 0 , f(B) = A2 > 0 . Similarly for B large, the term A2 B2 dominates

in (5.11) so f(B) > 0 . Consequently since B > 0 it must be that f(B)

only between the roots of f(B) These roots are

(5.2)
-2 - A ±2;777:71

B - A

If A > 1 then both of these roots are imaginary so the disCriminant of the

",

characteristic equation is never negative. If A = 1 then the two roots given in



(5.12).. are real and equal. Indeed in this case B = 1 . Thus we arrive at one

conclusion:

If A >1 then the solution of the difference equation (5.6) does not

oscillate.

(5.3.3)

The only possibility for oscillating solutions is:

4

0 < A < 1

The solution oscillates if B is between the roots (5.12), i.e., if B satisfies

5.14).
2- A- 2 11-77.i <B< 2 - A + 2 3/7.

A A

Notice that both bounds on B are positive.

We now have a second conclusion: The solution of (5.6) oscillates if and

only if A and B satisfy both (5.13) and (5.14).

The complete solution is

where

= Clrn cos(n 8 + C2) +
1-A .

r

6 ,cos-i. (-Aq + B)
21AB

The amplitude of the oscillation is given by (11-E)n . Now A >, 0 and. B > 0

hence AB > 0 . Thus we can conclude that if:

(a) AB > 1 , .the amplitude of the oscillations increase as n increases.

(b) AB Y= "I ;,the amplitude of the oscillations is constant.

(c) AB < 1., the amplitude of the oscillations decreases,as" n increases.

Of course if To 'and 1.1 are such that C1 = 0 then'the solution is a constant.
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EXAMPLES

Example. 1: Recall that for A'= .5 and B = 1 the solution oscillated with

decreasing amplitude. Clearly (5.13) is satisfied.. The bounds on B are

.18 = 3'- 2 Vi < B < 3 + 2 11...= 5.82

So B = 1 -satisfies (5.14). Thus the solution should oscillate. Since AB 1/2

the amplitude should decrease as n increases.

Example 2: Recall that for A = .8 and B = 2 the solution oscillated with

increasing amplitude. Again (5.13) isAsatisfied. The bounds (5.14) are

4
.38 < B < 2.62

. Since B lies between these bounds, the solution oscillates. Then since AB = 1.6 >

the .amplitude of the oscillations should increase with increasing n as it does.

Notice that the long run behavior of the solution is independent of the
s
initial

values, To and TI .

(5.15)

or

(5.16)

Now A may satisfy.(5.13) and the solutiOn may not oscillate. If either,

B <

2 -.A + 2
A

2 - A - -2
A

then f(B) ,given in (5.11) is positive and the roots of the characteristic equation

(5.9) are positive. The largest root of (5.9) -is

(5.17)
A(1-+ B) + A:?(1 + B)L - 4AB

2

15:



-Suppose- ((5:15) holds-then

SO

Thus

B> 2 - A + 2 VIII 2 - A
A A

A(1 + B)
2

1

A(1 + B)' -F. A2 (1 + B) 2 - 4AB
2

1

8-5.16

-Therefore, at least one root of (5.9) exceeds 1 and the solution grows exponentially.

On the other hand, suppose (5.16) holds.

SO

5.18)

B< 2 - A - 2 11-- 2 -A
A A

2 - A(1 >

Now if (5.17) is to be less than 1 then-.

(5.19) 2 - A(1 + B) > A2 (1 + B) 2 - 4AB

Of course, (5.18) does not guarantee that (5.19) is valid, but (5.18) is certainly

necessary if (5.19) is to hold. The only other condition required to assure (5.19) is

.which reduces to

{2 - A(1 + B)}27> A2(1 + B)2 - 4AB

A <

15:
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Therefore, both roots of (5.9) are less than 1 if (5.16) holds. In this case the

solution decays exponentially to 1/(1 - A).

We now have another conclusion: The solution of (5.6) decays exponentially to

1/(1141 A) if A satisfies (5.13) and B satisfies (5.16). The solution of (5.6)

grows exponentially if A satisfies (5.13) and B satisfies (5:15).

EXAMPLE

For = .5 and B = 6 the solution grows exponentially. A satisfies (5.13)

and

2 - A + 2 47-77 -=
5.82A

so' B satisfies (5.15). Thus we should expect the solution to grow exponentially

as it -does.

Finally we look at

(5.20)

and

(5.21)

/ - A + 2
B A

2 - A - 2 1/17771
B - A

In either case the discriminant of (5.9) is zero, and there are two real, equal roots

both equal to

.A(1 + B)
2

The complete solution of (5.8) then is

(5.22)
lis)

T
u

= (C1 +-C2 n)
(A(1

2

F
-.A



If (5-.20) holds then-

or

B
2 - A

> A

, A(i + B) >"i
2

8-5.18

Therefore, the solutidns given by (5.22) grows exponentially. On the other hand,,

hand, if (5.21) holds

A(1.+ B)
2

Thus the solution inCZ5.22)'decays exponentially to 1/(1 - A).

This leads to our final conclusion: The solution of (5.6) decays exponentially

to 2/(1 - A) if A satisfies (5.13) and B satisfies (5.21). The solution grows

exponentially if A satisfies (5.13) and' B satisfies (5.20).

All of these conclusions may be summarized as'follows:,

If 9

then if

B <
2 -

0 < A < 1

- 2
A

The solution decays exponentially- to 1/(1 - A ). If however,

2 - A - 2 if7=-Ji
A

the solution oscillates. If

2 - A + 2 . VT:=Ti
A

AB <-

15.5



the amplitude of the oscillations decays; If

the amplitude of the oscillations is constant; if

AB > 1

litude of the oscillations increases.

Finally if

2 - + 1,77=-17:.:

A

the solution grows exponentially without bound.

Self-Study:, Problem #5.2

Show that if A > then the solution of (5.6) increases.without bound.
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Solution to Self-Study: Problem #5.2:

If A > 1 the 0 > 4(1 - A) adding ,.A2(1 + B)2 - 4AB to both sides

of this inequality

or

or

A2 (1 + B)2 - 4AB > - A(1 + B) ]2

A2(1 + B)2 - 4AB > 2 - A(1 + B)

A(1 + B) + .A2'(1 + B) 2 - 4AB -
>

2

But the left-side of this inequality is a root of the characteristic equation

(5.9). Hence the solution increases (or decreases without bound depending

upon the sign of the coefficient- of this term. See also Case I in Section

2.2 of the Appendix.



CHAPTER V

AUTHORS' EVALUATION

(Please circle One of the responses to each question)

. Did'you attend the short course in 1974-75? Yes

2. Is ads chapter

(a) Too short

(b) Too long

(c) About right

If (a), which topics should be expanded?

can you suggest topics to be added?

tr

If (b), which topics should be abbreviated?

which topics should be eliminated?

3. -Could you read and understand the eompu:,ar. i-ograms?

(a) always (c) seldom

= (b) sometimes (d) never

4. Did the interim projects seem reasonable? Yes No

5. Were the self-study problems

(a) Too easy (b) Too difficult

6. Was the number of self -study problems

(a)' Too large

(b) About right

(c) Too small 16
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7. Did you attemtp any of the self-study problems? Yes

8. Are the solutions to the self -study problems
properly placed (on, overleaf from problem)?

. Yes

If no, where would you suggest the,solutions be placed?

No

9. For each topic, how solid an understanding do youthink you have?

Excellent GOod Fair Poor'

Components of Total Income

Types of Economics, e.g., expanding

Pump Priming

Analysis of Second Order
Difference Equations :

Economic Idodels'in General

163
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'-110DELIAR'IN..-15ROBAZILtET:
t.

this ..chapter, our view panechang6 sometlihat;since'the.models we treat-here

are also treated. at an. elementary ie'Vel in a number of finite mathematics texts.

'.'Thus we shall give. only brief d.troductions which aiejnten4ed:to'bring the modeling
.

aspects to the fore:

6:1 Probability Models

Probabalistic models occur in many fields. In this section we shall not
0

attempt to survey the appliCations-of probability theory, bUt instead we shall try:

to explain the nature of aprobability (or as it-is sometimes, called a stochastic)
,

Model.

The<basic notion in probability theory is that of -a random experiment. A

-.random experiment is one for which the experimental outcomes vary significantly (in

-
the of the'moAe/er) from one time to another. It 'is customary to as

that the set, 'of :all possible experimental outcomes (the samplepace) well defined

\

ane that the relative frequency (probability) of each collection ofoutcomes (events)

is knownkr. For simplicity we shall assume in the general discussion thatAhe experiment
o

. /f.. ......

- _
, -

.-, -,-
baS only a finite number of outcomes; although we shall later present two modes'.

which involve infinitely many outcomes:

The sample space and the probabilities associated with the experiment must be

specified by the modeler 7 they are.not supplied by probability theoryatself. For

-example, in the experiment of flipping a coin, most modelers would assume that the
c'

sample space consisted of the two outcomes, "head" and "tail". Even in this simple'

situation other outcomes are conceivable, for example, coin fends edge",' "coin -

a-6.1



)

VOZ1s AaaY'-and gets ;lost ":. MOSt:modeles:. would dedide)that-the.lasttWo outcomes

were so 'rare.that they should inot be: but Sany case, an important. facet
,

.

of any probability model is the careful specification of.the sample space.

The assignment of probabilities" to the event.s is usually made in one-or a

-Combination of the following ways:

1). A priori method - For example, symmetry considerations or other

rior theoretical assumptions may lead to an assignment of probabilities to/the events::,

-olling a die, the assumption of a,"Tair die" leads to,the assignment of probability

1/o to-each of the six Outcomes. In Chapter III certain theoretical assumptions led

to the assignment of the probability? .ANAt + 0(&t)", of a birth in a population of

size N .

2). A posteriori method We observe marry repetitions. of th. random

experiment and use these observations to estimate the probability of each outcat

For example, we could roll a die several thousand times; record the number of times

each event curs; divide this number by the total number of rolls; and then use the

1"6"-------9-c-sult aslast an estimate of the probability of the event.

3); Subjective' method - We judge or we call in an expert to judge the.

tobabiities This is often the method employed in decision' theory problems. For

example, the sales manager of a large corporation may be called upon to judge the

relative probabilities of having sales of $100,000, $150,000 or $200,000 next year.

for some product line.

Regardless of the way in which tHeprobabilities are assigned, the assignment

must.- satisfy the axioml.vof,probability theory which are
,.. 0

1) N 'P[E] >1) fOr every-.event

(6.1) 2) P[S.] = i..for the.certain event

.3) P[E' ] =-P[E] + P[F] if En F = cp.

*, .

This axiom must be strengthened if the sample space is not-finite, see. e.g., Parzen,

16-
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We can now make the basic definition of. this s'ction. A. probability mode'for
.

rauddn.experinent'is:a set of- assumptions which lead to (1)±a. well defined saMpA0
_. 3

space. and (2). an assignment of probabilities to the events of that sample space.-

Naturally a given probability model may apply to many different random experIMents,,

and we shall now briefly discuss four commonly occuring modelS.and some applicationS

of each.

1) Discrete Uniform Model

This title is merely a fancy, way of refering to the "equally likely"

model with which even non-prdbabalistS are familiar. 'Concrete examples "are

:and

a) Coin flipping: P[head] = 1/2 , P[tail] = 1/2

b) Die tossing: P[one] = 1/6 , Pftwo] = 1/6, ... P[six] = 1 6 .

In general if,

Axiom 1: Sanple, space has, N elements, si, s , , s

Axiom 2: Pfsi] = Pfsj] for all i and j

are satisfied, then we speak of the "equally likely" or "discrete uniform" probability

model. In this model it is easy to prove the

Theorem:,

(6.2) p[s:i] = 1-/N for all i-

Proof:

By axiom 1 of theodel and probability axiom 2, we have

P[si] = 1 :

i=1

PIs = 1 for any i , which leads to (6.2). -.Thisrr
By the::model;

completes the proof. r.

This usage differs slightly from that of some texts. See Adams, p. 118, for example.



It ii.naw clear that the theorem and probability axiom 3 lead to a unique

specification-Tor the probability of any event in our sample space. Thus our two

axioms do-prvide-a probability model., o.

Axiom 1. The sa4le spaCe consists of a sequence of trials.

Axiom 2. Each trial hos only 2 outcomes, denoted by s (success) and f (failure):

Axiom :3e- Pisi = p for eaeh trial, independently of all other trials.
L_;

EXamples::

a) Jkepeated coin tosses with s being the event "head".

b),_ Getting 3, 6 (a "success") vs. getting 1 or "failure.") in

frepeated tosses of a die.

c) Getting a defect (success?!) examine a random sample of size

-of one day's manufacturing output (sampling with replacement).

Although. it is not difficult to show that the above axioms do specify 'the

probability of any event in the sample space and hence are a probability- model, we

confine outselves to stating the most interesting result ..of this model.' Let

denote,the number olgpluccesses in n -trial then we have the*

Theorem: -

(6.3) P K =kJ

One also can show fhe mean number of successes i

variancejls .a- 2 = p)

3) Poisson Model

and that the

This'model concerns an experiment in which certain types of-events occur

repeatedly. The outcomes of the experiment are taken to be the number of these
. _

events which occur in a fixed portion of time or space: For definiteness, we shall

See Pfzen, P., 5, ff for the proof.



,

assume that we are interested in the number -of events which, occur in the time interval

[0, t]. The sample points are the non-negative integers. :Tfie POian Model -applies

When there exists a positive constant A such that

/'
?.) p [exactly one event will oecu in At] = AAt + 0 (pt) _At .4- 0 .

(6.4) 2) P[2 or more events occur in ] = o (At) as At -9- 0 .

3) The number of events occuring\in non-overlapping sub-intervals

of time -are independent ot each other.,

,Notice. that the Poisson model is the orte,used in Chapter 3 of the number of

'faCt that model 'really' was concerned.with the competitionbirths (and. deathi).
. .

'between these two Poisson processes.

If we 'let K. be the number of .events 'occiiring in [0, t] then we can prove

the

Theorem :

(6.5)

r
lc

P [15- = k] = e , u - At At , ,k = 0, 1, 2, .

The probabilities expressed in-tie '"-eorem are known as the Poisson law of

probabilities with' parameter 11

To ,.establish the theorem, we can proceed as in Chapter 3. Let' t now vary

In our model u has the value. At

continuously and let- K(t) = nurciber- of events that have occurred by time

,

P
k
(t) = P[K(t) =:k] , _k = 0, l,_2, .

Hence, as in Chapter 3, for k > 0

-'Pk(t + At) = Pk -1~ Aket + Pk(1 - AAt) + (At)

The expert will observe that: assumption (3) has been employed.

t and



That is, to within negligible error, we have k events at t + At . -When either

.

there were' k - 1 at time t and one more occured during (t, t +\At) or tfiere

were k at time t and none occured during (t, t + At) . Dividing by .At and
-

letting At + 0 we, then have

(6:6)

. Similarly. .f or

dt
..x cp )

k-1

= 0 , we obtain

4

With these initial, conditions we can recursively solve, for the P

example, for PO from (6.7)

and the solution is

For

dP0 ._,-
dt Ar0 P (0), = I .

= eat

Then for Pi- fiom (6 . 6)

_ga + Ae-at , P1(0) =
dt

SO

Pi = Xt e-at

Hence an induction .aiegument will lead to the theorem,

1 '1



Self-Study Problem #6 1:
or.

8-6 . 7

Establish the-above theorem using the generating function approach described

r
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Sc4Ution to Self -Study Problem #6.1:

Let_ P(x, ) = Pk(t) Xk . Multi-ply (6.6) by and sum over k . Then

add (6.7) to obtain ,

. ,co
7 I

dt
:k=1

Hence'

k=0

m
A P

k=0

dP
=.A'x P = A P - 1) P .

dt

The initial condition for P is

Thus

SO

P(x, = P
k
(0) Xk = 1

k=0

C
P = e

A x-1 t
= e

-At
e
Atx

=.e
-At (At)k Xk

k=0

P (t) = e-At
(Ak)

for any fixed t , as the theorem asserts.
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The Poisson model has found wide application,' same of the more...well-known-

examples are:

1) Number of fatalities by horse-kick per annum in the Prussian Calvary,

2) Number of alpha particle emissions per minute from a radioactive

material,

- 3) Number of certain blood components, in a cc of blood plasma,

4) Number of vacancies per year on.the U.S. Supreme Court (A .5).

Parzen gives many "tillbook" examples fcir instance "Suppose one is observing

the times at which automobiles arrive-at a toll booth. Suppose the mean rate

f the arrival of automobiles is given by J1 = 1.5 autos /minute. Find the

probability that k automobile arrive in a two minute period."

Here the assumptions (6.4) are least plausible. Setting a = 1. , t =-2

we _find from (6.5) that

-Pk = e73

The binomi

interpreted as

9

and -the- Poisson Law have a similrity in that they can be

g the probability of k successes. The difference is that the

bpomial law deals, with the number-of successes in i fixed number of trials,.

while the Poisson law invol÷es the number of successes in a fixed time or space
.--,

domain.

4) Exponential Model

Our final model concerns an experiment in which the outcome is .a:'waiting time.

Specifically, suppose we are observing a sequence of events ocuring in time in

accordance with the Poisson: Model. The exiieriment. consists of wea ring. thetime

that elapsesebefore the first event occurs. The outcome can be any--positive time-
r

so' our sample space contains an uncountably infinite set -of sample points. In such

cases the probability of any one value occurring-is zero (what intuitive pr.Ohability

would you asSign to.waiting exactly 35,2 seconds ?), but it is possible to assign

1 '-if)
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pos4.tivelprobabilities_to time intervals.- This we now do, using our knowledge of the

Poisson Hod-el.-Let.

F(t) = P[time of first event is < t]

- F(t) Pltime.of first event- is
. .

= Pr:in:ober of events in t)

Again- pursuing the Parzen example:'

hence

t
e

tj

"Find. the probability that'a toll collector at a toll booth at which cars.

arrive with mean rate A = 1.5 auto/minute will have to wait

a) less than three minutes,

b) between .3 and 10 minutes,,

c) exactly. 3 minutes,

for the first arrival." The solution is immediate:

a)P[time of first event is <1] = F(3) = 1 - e-4 5 = .98889

b) , P[3 < t < 10] = F(10) F(3) = e-3 710 = .04974.:

c) P[t .=;,- 3 = lim P[3 < t <3 +c]
c-00

I
= lim [F(3 + c) - F(3)]

= o

-In conclusion-we point out the't:ell .f.the.prObebiIity lewsAie models kor
, .

i v _ ..

^. . .

. .

:varioUS situations. The ModelingvIeWpoints towards a given Probability.lawds to
_.

'JP



8=6.11

1) What are the underlying map= for the law?

2) What are some of the real_ world situations, in which ibese axioms

are(approximately) satisfied?

Interterm. Project:

Work out an alternate Monte Carlo simulation from that - presented, in Chapter 3.

this

.

time base the simulation on drawing 2 random numbers. .The first number will

be used to derive the time when the next event occurs, while the second random

number will be used to decide whether that event is .a birth or death- To find the
. .

.

of the next event, we use the exponential law:

- -CA -i- .=

. . .

where. -are:the mean, birth and rates and
ti-

d I.

. ,

.

is' a ratuipm. number- between
. .

-Thus, the next event is assumed to occur after a lapse of time

T
loge (1 - R1)

A + 1.1

Given that an event occurs, the probability that it is a birth is

A
L -

+ u

1h:4S-we draw.a second. random number R2 from the unit interval and if ki < L

.

declare a birth and otherwise declare a death.

By replacing and 11- by ahe and-
n '

.-(n = size of population)- we can

simuiatemategenexalT4ith and death procesS'es. In:partidulai _the analogue of

the deterministic: :A -'BN case is A = an = alb bi n , u = un.=:a2 + b2 n:

(see PIelou).



6.2 Conditional Probability and Bayes Theorem.

'Suppose you are an oil prospector. You would like t f

be content with -a more' modest oil deposit.

gusher, but will

From past experience -you know that in.

this particular geographical area drilling wells at random will produce a gusher

102 of the time and a moderate supply 20% of :'the "time. The other 70% of the borings

are dry.. The three events

are

re

Al = {gusher or large oil aupPlY}
, .

.. AT =- {moderate oil. supply}

A3 = {do oil

a complete, mutually exclusive set. Moreover

-0.1

a

-P(A2) = P(A3) -= -0.Z

4 ..'

-

Now suppose that cost of drilling wells. is, too' high to take the
r ,

.risk when the
... .

chances of _finding" ,oil are so slim as -thisi.'..-ao yob.' decide, to conduct -seismic tests

to -inctease the chances of finding oil. To. the effectiveness. of these

tests, you conduct tests over existing wells and _over some dry borings. When

-conducted wh.eie a gusher iss.kno-wn to be present, the' seismic `test produces a

positive result 80% at the time,. i.e.

.P(X = 0.8 ?

where ."X . is the event positive seismic test result". Where modest -wells exist

the test is positive 60% of the time, and over dry borings it is positive -30% of the

P(X A2) =0.6 P(X- .3

But what we want to knoW is: :If -a seismic test is :poSitive,- is there: oil-

present?: And how.''much? In terms of the events -described above we would like to

,



calculate P(A4 1 X) and P(A2 X) The first is the probability of .a gusher and

the second is the probability of a moderate oil supply.

To compute these probabilities we turn to Bayes'. Theorem. We assume that the,

following are true:
a

1) A complete set of mutually exclusive alternatives= can he found for

the experiment , e., these are events A1, A2, ..., Am such that
7 .

P(Ai ) = 1
1=1

PGA r) A.) 1, .j = 1, 2,i
j

2) The probabilities .of each event 'the complete set of mutually exclusive

alternatives is known, i.e.,

are given.

4
P(Ai) = 2,

3) For a particular event X , the conditional probability for the event

given that any-one of th: A. occur is___kn

6

are given."

These three assumptions. are satisfied in the oil drilling ,example where

Notice that 2 -probabilities ,must be in 'general.

We:" use this 'information to, invert the don ional probabilities and compute



Sayes Theorem:

(6.9) I? Ai I X)
PCX I Ai)

P(X. A.) P(A )
jgol -
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The proof may be found in mos mathematics texts.

We now use\his theorem to solve the oil drilLing problem posed abcrvi. Since

(6.9) beccrthes

P (Ai I X) =

For i = 1 (guSher

P (Ai )

Similarly

P(X P( A.1)

P(X J Al) P( 1) + P(X. I A2) '-P(A2) + P(X A3) P(A3)

0.8 x 0.1
0.8 x 0.1 + 0.6 x 0.2 + 0.3.x 0.7

0.195

PcA2 1 = 0.293

P(A3 X) = 0.512

Therefore the probability of finding oil 'gusher

A BASIC program' to evaluate (6.9) 1 :

or. Modexate - is 0.488 .



LIST

100 kiRrmi- "NO.. OF MUTUALLY EXCLUSIVE EVENTS IS"-J,
200' INpUrN . .

300 PRINT :
-

400 REM -44 ,DATA: PROBABILITIES; PCACJ) ), OF SET OF
500, REM MUTUALLY EXCLUSIVE EVENTS **

600 FOR J=1 TO M
700 PRINT '"PROBABILITX OF EVENT ";J;" IS",
800 INPUT AIJ).,
900 NEXT ai
1000. PRINT

- r .

1100 REM ** DATA: CONDITIONAL pROBABILITIES2PCX GIVEN ACJ)) .***
1200 FOR J=1 TO M
1300 PRINT "PROBABILITY OF EVENT X GIVEN THAT EVENT";J;"OCCURS
1400 INPUT ?CJ)
1500 NEXT J
1600 PRINT
1700.- REM **, COMPUTE DENOMINATOR OF E@. (6.9) **

-4400 LET 0 =0 0
1900r FOR J=1 TO M

.'2000 'LET D=D+PCJi*ACJ).
2100 NEXT
2200 REM ** DEOMINATOR OF E. (6.9) IS ?(X) -*4

2300 PRINT "PROBABILITY THAT EVENT -X 0CICURS'iS";0
'2400 -PRINT

a
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2500 REM ** COMPUTE BAYFS PROBABILITY FORA(J) FROM -C6.9) **

2600 FOR J=1 TO Ni
2700- LET BCJ)=PCJi*ACJ)/D
-2800 PRINT "PROBABILITY*EvENT-"3J.;" GIVEN X _IS!';BcJ)
%2900-. NEXT J
30.0.0 END.:
N

Notice that in this program

. A(J) = P A.
35

P (X f- -Aj}

j =_ 1, 2,

j= 1,

inci both of these are input to the program. I The output is

B(J) = P(A. I X)

. 6

In addition' the program computes and-prints 1
/

m
pcx) = P(1 I.

2-3
P (A.),

3-*

= 1, 2, -..,



which .s no more than the denominator of S6.9) .
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If the program is run for the oil drilling example the results a 14:

a

Na.- 31" MUTUALLY EXCLtSIVE

PR3BABiLITY 3F EVENT 1 'IS
r'' :364ttILITY ,OF EVF1NT.,2 IS

aEs:4611_11"Y OF EVF4NT 3 IS

EVENTS IS ?3

?U.1
.?0.2. 2

76-.7
. Irri

Prt3iztAt3ILI TY OF .-EVc"Nr X GIVEN r)-IAT EVENT- 1 OCCURS_ IS?0.8
i

PrQbAfilLITY OF EVENT X GI.VEN- THAT EVENT 2 OCCURS iS?0.6
erOBASILITY: OF F.VENT X 6-11./F: si I HAT EVENT --3 3CCUriS IS?0:3

Yr2s3bAiILITY THAT EVENT X :3CCUR IS -0,41

PRO6AdILITY. OF EVENT L. GIVEN X IS .1'9512195122
-e1-?36481LIT.11 OF EVENT GIVEN X IS 2926292683.

...pkoi3At:kiLITy OF EVENT 3' 619EN x IS-., 51219512195
a

Self-Study Problem # 6:2: .(Kemeny, Snell an4 Thompson).

If a.peison has tubdrculosis,: its early detection is 'Important-in order-to save
..

the patient's life. Chest. x-rays ale one method of detecting tuberculosis when it

is preseAt. If a patient is healthy, the x-ray will indicate t berculosis, is<present

1% of thetime./-On-tfie other hand, if a.patieht does. have tuber _ray

will fail to deteci,tbat fact 10% of the time. -If tuberculosis is pre .5 out

of -every 10,000 persons, what'it-tbe probability that- an x -ray 1.ndicateS'lid\

tuberculosis when,in fact the patient does have the deseaSe?

rr04-

,

-s.



-

owe

Solution to Self-Study -Problem #6.2:

The mutually-exclusive

Since we want to compute

events are "tuberculosis"

,Petube'rculosis"'

we need to know

P-("healthy X-ray'

"healthy x-ray")

"tuberculosis")

J

'P("healthy x-ray" I "no' tuberculois")

- The computer output is

UT- LJALLY EXCL:JSIVE EVEJTS IS

PROBABILITY 3F EVENT 1 16
a;ta.titoctlE3ILITY '.3F'FifFNT. 2 -is% ?.9995

_P!.<218A$/LITY OF EVENT X. .GIVE.N1
eria8A13_1>LITY.:4F EVFN1T X GIVEN THAT -EVENT

/-'i9BABILITY

Pri08.6BILI
Y

Since event 1

r.

8-6.17

d "to tuberculosis".

1 0.4oUrtS.
2 *CURS IS?0.99

THAT EVEN4, X_ OCCLItS I-S 0.989555

EV,ENT 1 GIVEN. X._ IS, 5.05277625-5
0-F4 EVENT 2 GIVEN. X IS .99994947224

is "tuberciklosis",

P( "tuberculosis"

e

ealthy x-raj") -̀= 0.0000505

0

Nootkce that tubercblosis' Is a rare disease and'the failure to detece-tetarries.

a stiff penalty. .There:for if we are to err it should bei on 014e:tat:le of -a
lit

healthy .patient with tunihe lthy
a

-

18.1-4



.Self-Study Problem #6.3
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. # . .

It is essential that flaws 'in the equipment of a spacecraft be-detected. if the-,:-
_ .

craft and its oEcUP4rits are to survive an.orbrting mission. Elaborate electronic

sensing equipment Is installed to detect such flaws even, though. they. rarely occur.
I

Suppose the failure- rate of a critical part- in -a missile is . mo. of 1%, . Suppose

also that if the.'part fails that 2% of,the time the electronic sensing equipment

does not detect this fact. .Finally suppose that if the part is functiOning

:correctly (not failing) the sensing- equipment will, say that it doei fail "5%- of-

,
the time. If the selasing equipment does not detect a failure, what is the

-probability that rronetheleas a;;f-ailure exists?

z
se.



Solution to Self-Study Problem #6.3

The mutually exclusive events are

The'eventl

Al {part fails}

A2 = part does not fail }

= .001: P(A2) = .999.

.

is "no .failure detected" .and we wish to compute P(A1

.

Therefore we need to know.

r
POI I 115 = P("no,failure detected" 1 "part fails") = 0.02

P(X 1-.A2) - P("no failure detected" 1 "part does not fail") = 0.95

The computer out-put is

NO. 3F MUTUALLY EXCLUSIVE EVENT-IS ?2

FiC3EiABILITY ;3F EVFNT'l IS ?0.0131
iJi+AtcAILITY 3F ;-VEN1T 2 IS 7-( :999

PkObA6ILIfY :)FkF'vt7..\11- x GIVP.:THAT EVI_NT 1 OCCUriS IS ?0.02

?R3BAi-ALITY 3F Pl/g.,NT x GIVEN 'THAT 0..:LF.NT 2 ACCURS IS?0.95

IHAT.FVENT X,11pCjig IS 0.94907

'erBfLITY OF FVFNTH 1 GIVEN X; 13. 2.10732.1%1215

Prt.64r3ILITY 3F EVENT 2 GIVEN X.IS .99997592673

- #
PSk I = PC' part fails" 1 "no failure detected ") = 0.000021

Notice that no failure is detected (event_ X) about 952; of the -time.

18



6.3 Decision Theory Models

-The theory of making dec

the theory of utility, game theory,

8-6.20

draws upon many fields including ethical theory,

probability, and classical and Bayesian statistics.

Certain branches of decision theory' have become ci5mmOnly used,in the-behavioial and

a
management sciences ±n recent years, particularly, in the growing field known as

operations research:

In generall-Ave have imperfeqt knowledge ,of the factors from the outside: world.

Nevertheless; we wish to make thp 'best' decision even in the face of these knowledge

gaps. In this, section then we will develop several decision theory models each one

taking into account and using as much knowledge of the world as there is available

to us. As a pedagogical device, we shall develop a flow chart for decision making

-as we discuss the various decision theory models. The flow chart will be developed

piecemeal witheacpiece,being appropriate to some state ofour knowledge. At the

close of the section you will be asked to integrate the pieces into a coherent whole.

As in the earlier sections, we shall "discuss finite sets in the general

discussion, although some of our examples will-involve infinite sets.

TART

.LIS DECISIONS d1, d2,

Figure 6:e

4v?

3

11

As indicated din figure 6.1, the first step in a decision theory problem is to

define the set 'D = ...,dn} of possible decisions. In some pies, each decision

. 3

leads to a uniquely determined-outcome. In-this situation, we need "only' decide

which outcome we prefer-and make the appropriate decision. Of course, deciding which

outcome we prefer may be either triVial or elose'to impossible.

1S3
e



1T#

Example 1: (Feibes)
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"You may invest in one ,of Eachi.nvestment costs $500- The yearly
_

,.returns -on A,-B, Q are .3%',.5% and.bZ iespectively. Which investment will youkehoose?
_ .

Analysis z- The posSOle.-deciSions are aT"'invest in. A d2 =inyest in B -and

d3 = investA..n C The patcipme of d1 is a-profit of -(.03)($500) = $15

similarly the outcomes of d2- and d3 are profits of $25 and $30 'respectively%

'Here the decision is presumably trivial. Choose C .

_Example 2:

Your father is 75'yearg. old and needs an operation. Without the operation, he

will die within 6 months. If he survives the operation.(50% chance), he will

probably live for at /east 2- years, but will be an invalid. Do you recommend the

operation to him?

Analysis: The possible decisions are d1 = recommend the operation, d2 = advise

('

against the operaiion. The outcomes are as gi jn ihe example. Here the decision
Ve

, r .
is far from trivial as it involves one's personal ethics and emotions.

//

The rating of outcomes-is one of fundamental-prOblemsofethical theory. :There

is a related mathematical theory known as utility theory (see Chapter II of Luce &
-,---
5.

Balffa foran introduction ;o utility theory). In any case, as we shallsee below,

many decision theory models require that'one assign a utility (equivalently a

IIpayoff 11 or a "loss") to various outcomes. Although we shall not emphasize this

,

po nt beloethe possible difficulty in assigning such 'layoffs should be kept in mind

whenever utilities are required- (see e.g., example 2,-above).

Formally we have the following axioms:.

1). A set D= ..., of decisions is specified.

2) A set D = {01, Op} p < n , of outcomes are s15ecified.

,3) For any ,given decision, di there is a unique outcome, 01. .

The medhanism.
-

formaking the 4cision is to rate the outcomes using ethical-
.

theory, utility theory or the like, and to select the decision which gives the most
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favorahle outcome. This branch:of deciSion theory is, knoWn. as "decision under.
. -

' _

-.
.-. ,

., ,.. \\ ..- .,.; .

certaint'. We:may-now furtheIde*elop our floWchart .sshown in Fig4W6.2..r

IS
OUTCOME

DETERMINED
SOLELY BY

OUR DECISION

'Figure 6-.2

In our next decision model, we assume that the outcome of a decision is

influenced by a rational opponent who has a set S-= isi, sml of decisions or

5

.

strategies available to him. We assume that to each decision d. and opponent
i

strategy sj' there is a definite ittcame
ij

. This situation and it generalization.

to more than two rational .agents is the sub,ject of genie theory. The classic

expository text on game theory. is that-of Luce & Ralffa, but dieMentary treatments may

be found in most;-texts on finite mathematiEs.
'

We will assume-that numerical utilities foreach opponent are'known for each:

f the outcomes 0.. . The "game is
ij

matrix whose entries are ordered pairs representing the utilities to eap

185

usually.displaye4 by means of a payoff (utility).



For12fa51) :

decis ohs:

opponent
_strategies

si

(3, -2)

(10, 6

S2

(0, 10) .

)
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Here the pair (0, 10) means That if we make decision 1 and ouvopponent employs

'strategy 2 then our payoff is ,0 and oar - opponent's paioff is 10 . Similarly

for the other :entries in the. matrix.

Example 3: (Adams)

.\ Trio:dUOpolists, Cglumn corporations; are CompetingfOr shares of
e .

a Million dollar market. The following payoff matrix describes the profit (in

- .

hundred-thousand dollars) of the Row Corporation for various choices of strategy

of the two corporations. The ColuMn Corporation's profit for the given choices of

strategy is. the differende between .one million dollars and the.Row Corporation

ptofit..

COlumn Corporation

C14' C2 C3

Row Corporation R2

R3

4 4

3 - 3 5

6 4 3

Rows R1, R2, R3, correspond to the Raw Corporation selling '10,000 units, 12,000

units and -14,000 units, respectively .of its product.- ColuthnS C1,- C2, and,

correspond" to the Column.CorPorationfselling 1G,000 , 12,000.; and 14,00 units

respectiVely,



-

,Analysis: The ful/ utility matrix fb,
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(5, 5) (4, ) - (4, 6)

-(3,- 7) -(3,\ 7)- '(5,-5)

R3 (6, 4) (4, '6) .(3,

The Row 'Corpor reasonsfhs"follows. If we decide R1 , then no- matter what

the 'C rporatioridecides our profit is worst- 4 . Similarly the worst' we
4

--can,dow.). ithkis3and with R3 is 3 . Since theColumn Corporation wishes

_

-- ,
,

c-- / .

to maximize its profit; we dare note decide R2 if the COlumn Corporation is likely

to decide C1 or C2 , and we dare not decide R3 if the Column Corporation is

likely to decide C3..

Air
.

To decidewha the Column Corporation is "likely to do" we need only reason

vifrom their point of vi w. If'ihey decide CI the worst they can do is 4 ,

similarly the worst outcome tar C2 is 6 and the worst outcome for C3 is 5

A conservative-strgfty for the Column Corporation then is C2 since no matter

what the Row Corporation.does, the Column Corporation will realize $600,000 .

Thus the Row Corporation's conservative strategy is R1 , andthe Column

Corporation's conservative is C2 which leads to the utilities (4, 6)-. Now
a

' .

SuppOse_the Raw Corporation does not play' R1 . .Then if the Column Corporation

continues .its conservative strategy C2.,,the payoffs will be either 3 or 4. .'

4 .f
But with R1 ,'the Raw Corporation has a payoff of 4 already. Thus the R

0
Corporation has no incentive-to alter- its strategy from the conservative R1 .

Similarly the :;Column Corloioration has no incentive to,alter its st.rategy from the,

-

conservative C2. , since if the. Row Corporation continues R1 the payoffs are 5

or 6 as opposed to 6 ..
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4
/

The "rational behavior" for the`,ow Corporation'iS to decide R1 , i.e., sell

10,000 unitS.and for_the,CoUmn Corporation it:is tO'decide C2 , i.e., sell - .

12,000'Units._

In general, the conservative strategy for the "row player" is to compute his
4

ininum:payokfor each row and choose-the row with, the largest-minimum'payoff,(the

Itaximtim".strrategy).- Similarly the conservative strategy for the " player"

is to make a similar computation for the columns. If these considerations lead to

a payoff for the "row player" which cannot be improved even if he knows "that the

"column
... .

player" will-be conse rvative and to to -a payoff "for the column player which

,1 .
.

. _ .

.

.cannot be improved eve' if he.knops that' the row player will be conservative, then.

- .

the "maximum" strategy is taken to be,.optimal '.:

1:z!'

EXample.-4. (AdsmS).

.

Determine optiml strategies for the

defined by the payoff matrix"_

13d

^

_ R2.

row.and column playersfor

C2

,,(5, -5) (1, -1)

<2; -2) (3 -3)

the game

Analysis: Here if the row player chooses R1 , 'his worst outcome is I and if he'

chooses. 1R2 ,-his worst outcome is.. 2 '. Thus his maximum choice is R2 . Similarly;

the maximum choice for the column player is C2 . However, if the cOlumn player

knew that the raw player would choose R2 , he could do better by '.changing his

choice to C1 .

Continuing the analysis In this way,-we soon conclude that there is no rational
,

choice between and -R2 .The way out of this dilemma is to adopt a "mixed
A

strategy". That is, 'choose R1 with a probability p and R2 with a probability

1
,
- p.

-._-

,. It onlyO4.1y.in decisions against a rational opponent that one would'employ-

mixed strategies, since only in this case is one concerned with,d4e s decision being
. .
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. ,

discovered and exploited. 'It is a classic result-of game theory, that in "zero-sum"
- . ,

.

games (suchTas that in the ast table above), an optimal- mixed strategy can b

foUnd:. We refer the reader to. the sources mentioned agacie-for the theory of mixed.

. ,

strategy as well as for. the the .theory : -of COmpetitiorand cooperation among two. or

more rational agencies. The axioms for the game theory model of decision making

are.

..\

1)- - A set =

2) A;-set

'of-decisions is-specified.
-

s2, "of opponent strategies are- specified.

-

3) The outcomes are determined by the pair' (d. , s.3 ).

4) For each outcome (d , s.) each player has:a specified utility
3

\
and all of these utilities are laiociii"_to each plaYer,

Once again we remind the reader that the variaus_sets above need not be finite

ee Maki-Thompson, P. 60 ff, f- or an example)". .We can now extend our flow chart as

shown in Figure 6.3.

Xr

a

Figure 6.3

'GIVE OPPONENTIS UTILITIES
FOR THE PAIRS .(di, sj)

APPLY GAME THEORETICAL METHODS

(STOP) lr
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.In our -final group :'of decision models,. wa.assume that the outcome of a

dec4I.On,is influenced by.a "state of nature ". By this we mean any non-rational

agency: Fo example, we might bertrying to decide whether or notto carry an umbrella._

.

The decisions are

nature mightlEre

possible states
s -

There` are three

d1 = carry.uMbrella, d2 =

s1 = will rain today,

of nature 'S = Isi,

leave umbrella home. The states of

= won't rain today. -In any case the

are assumed to be specified.

types of knowledge that might help ua-make:a decision against nature:.

.1)- The utilities Ui, for the outcome Oij ,'specified by a decision

a state of nature s may be. specified.

2), The probability' p. that a given state-Of-nature

given.'

We may be able

(depends upon)

was conducted.

occur may be

and

to carry out some experiment whose outcome is ihfluenced----Z,-

the state of nature in effect at the time the experiment

C''

In a given case we might have any or all of these types o0 knowledge. Hence-there

are 23= 8 alternatives possible for decision theory

nature. The

' A)

B)

C)

D)

eight alternatives are:

Utilities

.Utilitied

Utilities

Utilities.

Available.

are Known,. No Probabilities

an4 Probabilities ate Known

the decisions are against
- ,

,

Known, No ExperimentAvailable.
e

I No Experiment Available.

and. Probabilities are Known, Experiment is Available.

are Known, Probabilities Known,.but.an.EXperiment is

E) -No Utilities

F) No Utilities Known

-Av&iiable.

No Utilities Known

are Known.

Nothing is Kn

or Probabilities"Known, but_an Experiment is Available.

but Probab 'ties are Known and an Experiment is

and No 'Experiment is Availaable,-but Probabilities
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A
. . .

We consider each of `these in turn in the order shOwn above.
,

A. -Utilities are Known, No Probability Known, No Experiments Available.

In decision's against nature,the case when only utilities are known is called

"decision under uncertainty". There appears to be no universally acceptable solution

to this problem, and a rather thorough survey is given in,Luce-Raiffa, Chapter 13.

We shall confine ourselves here to a brief .presentation of some'orthe---diore common

methods of treating decisions under uncertaintyy

Example 5. .(LuCe6-Eaiffa)' Consider the-utility matrix.

Which

si s2

cc/ 0 100-

d2 1 . 1

decision should we make?

The conservative approach is- to retain the game-,theory criterion of *Maxi - min

. Utility. Since the first-raw'has minimum 0 and the second row has minimum Du , the

`malci,-;min choice is the second row, i.e., decision d2

Since we are not 'competing with a rational opponent, the maxi - min criterion

...qff'be.linduly pessimistic. -.Thit, is especially true in a casesuch as that shown-in

the above table wher We pass .up all chance of -a gain of .100 to assure
_

a gain of-

only An alternative-deCiSion'criterion is Max.liegret" . Again refer4ng

to the above example, if we make decision d1 and s1 is the trim-state of nature,

we 1-1&ve a "regret" of 1 , since we could have received_a payoff of 1 greater by-
-

deciding d2 . Similarly-if we decide d2 and si is the state; we have no "regret9,",

`but turns out to be 'the true state our regret is '99

the utility matrix offcample 5 by the raY,et'lalatrix

Thus, we-can replace
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d1

sl S2

1 -0

d2 0 99

ito

4

-a

Now if we decide d1 our maximum regret is 1 and if we decide d2 our maximum

regret is 99 . Therefore, we 'ttioose'the smaller of these maximuriiregrets (1)

and make decision d1 .

In general the regret ".correoriculag tothettiLity
II.

is given by

r, = max(t..) u
ij

.

2.31J ,

Although 1:1e mini - max regret. criterion appears attractive in this example,

it is no ponacea as the following example shows.

*Example 6. (Luce-Raiffa. Consider the utility matrices
-,) e

d2

al

d2

C-13

Si S2 53.

0 10

5 '2 10

sl S2

0 10 4

5 ,, 2% , 10

10 5' 1
L

r-

Note that the matrices have the same first two rows - i.e., decisions "d1 and

have the same utilities in each matrix.

Analysis: For the first utility matrix, we have the following regret matrix

1



d1

d2

7

s2. S3

5 0

,
0 :0
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Hence di -Jamas tAaximumregret 6 and d2 has maximum regret 8 . Thus the md.0,V
"---ssa regret criteria selects di as optimal and d2 is non-optimal.

lgaWJPconsider the second utility matrix which in effect merely adds a new/
4,

'decision d3 . The corrfspondiftg regret matrix is

d1

.d2

d3

sl s2 S3

10 0 E6

5'. 8 ,t 0

(0, 5 9

Hence di has maximum regret 10 , d2

maximum regret 9 . Thus the mini - max regret criterion now selects d2

optimal' That Is addiri.g an "irrelevent aiteznative". d3 has changed d2 from

non-optimal to optimal.

has maximum regret 8 and 433 h

Luce-Raiffa (p. 288) give the following humorous illustration of this type a-

incongrilous result:

Alt
DOCTOR: Well,, Nurse, That's the evidence. Since I must decide whether or not

is tubercular, I'll diagnose tubercular.
N,1

NURSE : But; Doctor, you do not have to decide oie way or the other, you can ga.4

You are undecided%

DOCTOR: hat's true, isn't it? In that case, mark him not tubercular.

NURSE : Please repeat that!

,S

The final criterion we shall consider for making decisions under uncextaiatl

the "principle of insufficient reason". 43.5re one asserts that ifone is "colnpleelY



r ignorant" as to'which state

states are equail;17 likely.

NM.

sL,

This

of nature. -Since decisions when

sm

meansthat we assign probability to teach state

both utilities probabilities of the states of

obtains, then
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4C.

one should behave as if all

nature are given is considered in the next

here.

N. .

section,- we do not pursue this criterion

To repeat the "axioms for ece model of this section are:

1) A set D = {d1, d2,

2) A set S = s2, snl

3) Tha outcomes

-4) For each outcome

A

The procedure is to select and use

such as. those discussed j-n-this section.

are

of decisions is specified.

of states of nature is speciff.ed.

determined solely by the pair (d.s.).
3

a utility 'U.3. .' is specified.

Our flow chart

a "decision under uncertainty" Criteria

can be continuedkas shown in Figure 6.4

DO'
YOU HAVE

ESTIMATES OF
THE PROBABILITIES

OF THE
STATE OF
ATURE

DECISION IS UNDER
UNCERTAINTY: USE
CRITERION SUCH AS
MAXIMIN UTILITY,
MINIMAX REGRET,
_PRINCIPLE p.T. 0

INSUFFICIENT
REASON

(STOP-)



B.
D,
ttlities and.Probabilities are Known, No Experiment Available.
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0

Tn this case (known as "decisions under, risk") we can Zompute the expected

of each decision di :

O

E[di] = U. 1"...

.1 =1 3,)

2..
/wher

P. = probability that state of naturk s, dccurs_and Uij is the utility

for thee Outcome corresponding to the decisidil d. and state si . A straightsforwird

and sensible procedure is to then choose'the decision _ d which has the gre

expectation.
The axioms for this model are

1)

2)

3)

4)D-r"reachouecomeN

5)

,A set D = {d1,,d2, ...; do} of decisions is -sUecified,

A set S:= s2, sm} -of states of nature is specified,

The outcomes are15,termined solely by the pair (d., s.)

a utii x t3TI] -is specified, ,Cs

'For each state of nature s. a probability_ Pj of it 'occurring is
i

known.

- 'The rocedura is th&tiCto choose the decision --with maximum, expected utility.

III prac the prObatility P.' might involve subjective judgments or might
J .

only 1, -.
,

,...

-e apprOX ately-known. Nevertheless in order to use, this model, we-must accept

these
probabilities-as final. :

E"--S---P-1-,_e7ain

(Feibes) We return to our three investments 'A, B, C Of Example 1 .

1 -

Each 'I 4 i

,7estment costs $500, and they have respective returns of 37,5% and, 6% ..
,1 .

N11'14 .however, we assume that the returns' areCncit.cerealn. It is f.ossible for each
,

I

.% :_

/-inves1,,-ent to result in either the given percentage return or a loss of $5 .

'-1 ---;- _

Specifi
finally, the probabilities of4a. positive return for A, B, C are .9 , .5,

: , :z

-and , i

.

2 respective. Which investment should we make? -

211911Z:1..11: Thq utility matrix is
a



A

B

C

A A B

Sound(.9) Unsound(.1) Sound(.5) /..-ensound(.5)

C

Soundk.2)
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C

Unsbund(.8)

7
- . .

$15 -$15 , $ 0 $ 0 . $ 0 $ 0

$0 i

$25 -$ 5 $ 0 $ 0 .

,4..-

$ 0 $ 0 . $ 0 . $ 0 4 '$30 --$ 5 -

Expected value for A = (1) (.9) + (-5)(,1) _= $13:00

Expected value for B = (25)(.5) + (-5)(.5) = $10.00

Expettearvalue-for C (30)(.2)- + (75)(.8) = $ 7.00

Using expected value as a decision criterion, we Choose investment A .

Our flow chart is extended as shown in Figure

or

GIVE PROBABILITIES P.
OF THE STATES OF

NATURE Si

! r

COMPUTE
-EXPECIED UTILITY

NO FOR EACH DECIiION
di'

yI

PICK THE DECISION
di WITH MAXIMUM°
EXPECTED UTILITY

A

Figure 6.5

19
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C. Utility and Probabilities are Known, Experiment,is Available.

In this case the experiment is-used to revise the.given probabilities of the

states of nature. pine may wonder why we should bother with the experiment if the

probabilities are "given". There are \two reasons, firt of all ag' mentioned above,

the given probabilities may only have been obtaiNd through subjective judgments

or approximations. Secondly, we may have

whole, while we are faccd-with.making a decision involvi

the probabilities for a ntopulation as a

this population.

Example 8.

particular sample from

N.;

An organization wishes to decide Whether or not people will succeed_in a
\ .

, -
w

certain job classi catiok. It is known from p eiTeriences that 40%' of all1
people,Whp apply for this job have been successf 1. A screening test has now been

developed, and it has been found that 70% of th' successful candidates pass tie

test while only 30% of unsuccessfill candidates pass the test. A new candidate
#

for the job passes the test. What is. the probability that he will b-e'successful

in the job? 1

-
:

'1*.sir.

Analysis: The candidate's itrobability of:being successful prior to taking the test

is 0.4. to the light of, passing the tes his (17steriOr) probability of success can

be evaluated by BayesL formula (see Section 6.2, eq. (6.9)):
.

P[Pass 1 Suceess] P[Success]
P[Success 1 Pass]

P'[Pass [ Success] P[Success] + P[Pass 1 Not Success] P[Not Success],

(.7)(.4)
(.7)(.4Y + (-.3)(.6)

\;°61

__../

\J 'Thus passing the tesnraises the probability of eventual success fram 0.4 to 0.61.
- )

The general procedure for re-Istamating,the probabilities. that vari states
4, . .

of nature occur is similar to the procesi9lreloped in Example 6. We assum4 that a
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random experiment has a specified set oftgUtcomes A = {al, a2,
,_

and that

we know the conditional probabilities' P[ak
I
sj] ,* of a given experimental outcome

ak if the state of nature is sj . We then compute the revised probabilities,

Pik , that ,the state ofsgature is sj if the outcome pf an experiment is ak .

From Bayes' theorem these revised probabilities are:

Pjk = P
P[ali. 1 sj] Pi

P[ak
sj] Pj

j=1

At thisthis point, we have "improved" estimates for the probabilities of the state

of nature s and can proceed`as in Section B above to Compute the .expected

utility of decision d. given the experimental result ak

E[di 1 ak] .ui4 p4k
J.'

Then a fixed experimental outcome ak , just as before, we choose the decision.

d
i

with greatest expection.

,r..-

Example 9. (Modified from Moore & Yackal) .i

-
Mr

---'
. Smith has a congenital hearing defect, caused 'by malfsrmation of the bones

-

of the 'inne; ear. A surgeon gi-ates that an operation is available to .correct thiS

defect, but the operation is not always successful. In fact, the operation may
/

correctMr. Smith's hearing .(si) , have no effect (s2) , or destroy the paTt141

hearing which he now has (s3) . Although the surgeon cannot predict in advance

which of these states of nature will hold, he can, frOm extensive medical data,

state that the probabilities P1;72,P3 of these three states of nature are .9,

.-

.05, .05. respectively. ,Also there is a laboratory test which can be performed

which has three outcomes A, B, C Medical data is available which gives the

probabilities of A, B, IC when the States of nature (disCovered after surgery) are

S1p/s2, S3 / 9



STATEJOF NATURE

sl

53.

>

TEST OUTCOME

A B C

.6 .2 .2

.3 .4 ,.3

.1 .2 .7

_

The laboratory report On Mr. Smith turns out to be B Mr. Smith must,decide

whether to hilie the operation. (di) or not have the operation (d2).

After careful consideration of-the inconveniences of his partial heaAng loss,

the expense of the operation, and the risk of total hearing loss; Mr. Smith draws

up the following payoff matrix which reflects his personal feelings:

Mr. Smith's Decision
_ d2

STATES OrATURE AFTER OPERATION

7

s2

25 -15 . -100.

-1O -10 710

Analysis: We first compute the conditional, probabilities of the outcome B given

si, s2, and s3 by Bayes' theorem

3

Pis]. B] =

,
pls2

(.2)(.9) = .858
(. 2) ( . 9) + (. 4) (.05) + (. 2) (.05)

(.4) (.05)
= .095

(.2).(.9) + (.4)(.05) + (.2)(.05)

(.2) (.05)
= .047

-(.2)(.9) + (.4)(.05) +""(.7)(.05)

c

use these probabil es as the probabilities of the. state ofnature the

result B of the lab test. Hence we can commute

193



Eidi
1

Efd2.

B] = 25(.858) + (-15) (.095) +(-100)(.047) c 15

B] = -10'(.85.\+ .095 + .047) .= -10 . IR

18-6.37

Hence on the basis of maxlml.zing his expected utility and knowing that the lab result

was. B , Mr. Smith should decide to have the operation.
4 ..i -

r
.

The criterion used%here is kn wn as the-Rdyes' Decision Criterion. A Bayes'
k. -,, C

Decision Strategy is to perform the same computation (i.e. maximize expectation) for

lw

each possible experimental outcome ak and use these Bayes' probabilitiep
;

to specify-
-,

1 i

the best decision for any outcome of the experiment -
fi..-

.

When an experiment' is.perforMed, it is always the case that decision strategies-

(8 decision rules) are involved. A decision strategy is a function from the set

A of experiMental outcome to the set D of decisilons.- Thus if there are

experimental outcomes and n decisions there are n possibp.e decision strategies.

\,
This number, n canalOme exceptionally large. For example even in the relatively

simple ear operaticin problem (Example 9) n = 3 land Z'= 2 is n1 = 9 . CThis is-

to be compared with-the number of decisions, 2 . The.number of decision strategies

xceeds the.numbe;. of decisions. Hence there is thVpotntial of requiring a

'

choice from among Ml things .(decision- strategies) rather then from among M things

(decisions). It is,,of course, to our advantage to try to avoid this increase in the

number of possible ciloices.,

'In the case under consideratiOn here when utilities and prior probabilities are
.44,

available in addition to the conditional probabilities resuistlqg from an experiment,

--Zthe Bayes' DecisionrStrategy is usually taked to be the best of the n possible--

strategies. In thig case, theisoptimal strategy is kiT64.1i and the potential increased

.

difficulty of choosing dmong n decision strategies instead of among the n decisions

=
'

does not occur. The axioms for a Reyes .Decision Strdtegy Model are:

1) The set D = {dl, d2, ... dn } of decisions is specified,
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a

2) The set S n {slo, sn} of state of nature is specified,

3). The set A =.(al, 42,} of experimental outcomes is

specified,

',4) The utilities
Pij

associated with the outcome of (II, and s

are specified.

5) ill(priqx) probabilities of each are known,/

6) The conditional probabilities P[ak ]' of the experimental

- outcome ak when the state of natu is s. are known.

The procedure is then to compute P[s. I ak] from eq (6.9) and for e4ch al( choose.

the di so that E[di
I

ak] is maximized.

Our flowchart is now extended as shown in Figure 6.6.

A

'GIVE THE OUTCOMES
a1, a2, OF
THE EXPER

GIVE P[s. FOR
EACH PAIi s., ak)

COMPUTE P41, = P[al, I s.1
BY BAYEtt-THEORER FORD

..THE EXPERIMENTAL OUTCOME
a WHICH OCCURS

COMPUTE THE EXPECTED
UTILITY GIVEN FOR

EACH DECISION d
i

SELECT THE DECISION WHICH
YIELDS MAXIMUM UTILITY

(STOP)

20i
Figure 6.6
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D.' Utilities ire Known, No Probabilities Klilowp, but,an Experiment is Available.

3

This situation arises most commonly in statistical decision theory. .Since an

-experiment is involved, we must consider decision rules. Recall that a d;cision rule

assigns a decision to each experimental outcome. Since we do not have prior

probabilities, it will not be possible to reduce the selection of a decision rule to

that of selecting a decision as in Section C.

In this case we know the values of the utilities

U (di' s )

and we know the conditional probabilities

[si ak]

where ak is an outcome of the experiment.

Let r denote a decision rule and r(ak) denote the decision which r

assigns to the experimental outcome ak , e.g.

d,
1- kc

= It (ak)

Then for 'each decision r(ak) and each state of nature s. , we know a utility
/-

U(r(ak), s.) (recall r(ak) is some particular decision).. Si: fl-le probabilities,

P[s
j

ak] are known, we may average out the expecime=a7 outcomes arl.i assign" a

utility for the decision rule- r which is independent of :he particular c:perimental

outcome as follows

We have

However, the

decisions.

-
U(r, s.) = U(r(ak),

s.)
P[Si

k=f

ed.

now Pliminated the outcome of the experiment and have only utilities.

utilities are for decision ruZes, rather than utilities for the

Thus we have reduced the problet to the case of decision under uncertainty

A
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as treated in Section A, and creterio4 Such as Maxi-Min utility may be used.

Notice, however, that what we will Produce is a rule for making a decision., not

the decision itself.

For a fuller treatment of this case in statistical decision theory see Mood,

Graybill pnd Boes, in particular PP' 297-299, pp. 350-351 and pp. 414-416.

Our flow chart i15 continued as Shoff in Figure 6.7

GIVE 5alitRIMENTAI

OUTCOMES af, a2, .." aQ

GIVE
Frs.

FOR EAQ-4 FAIR (s. , a._ )

I el()

TCIR' EACH RULE R
ITNritR CONSIDERATION
COMptTE U(R, s,)

FIgure 6.7

E. No Utilities or Probabilities__Eabut an Experiment is Available.

The case when only an experiment (typically taking a random sample) is available

., is the subject of classical statisticz. In this situation one adopts criteria such

as the principle of maximum liklihood) minimum varianceunbiased estimators, arbitrary

.confidence levels, arbitrary size of type one error) in place of the missing utilities

and/or prior proba 'lities to evaluate decision rules. The flow chart continuation is

shown in Figure 6.8.

2v,,,,
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Fie= -078

(5-

F: No Utilities Known but Probabilities are Known and an Experiment is Available.

HeTe--we can use Bayes' theorem. to refine our knowledge of the.probabilitles and

hence reduce the problemto one -in which there is no experiment. This case is,

considgred in the next sub-section - G. The flow chart additian-given in,

..fFigure 6.9.

' REVISE PROBLEMS USING
BAYES' THEOREM

Figure 6.9

-04
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G. No Utilitie4112En?EximentislyAllahle21Probabilities are'Known
-

Here!fto global rules can be. given, but the general advice

most likely state of nature' is in fact certain" may be helpful. We reference Mood,

to. "behave as if the

Graybill & noes pp. 340-343 Mr ai example involving point estimation.

examples when this criteria is useful

d. = assert s. is the true state, of
'I-

in Figure .6.10.

0,.

-
Additional

occur whenever, the 'decisions are of the form:

nature The flow chart:cotinuation is given

HAVE pRoEABILITIES-OF
STATES OF NATURE

YES

ACT A$ IF THE MOST
LIXELY STATE OF NATURE

IS CERTAIN t9 OCCUR, .

H. Nothing is Known.'

Opr only advice in this case

TOP

Figure 6:10',

is to _guess! See Figure 6.11.
4

NO BASIS 'FOR
DECISION EXISTS.

J

Figure 6.11

7
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* * *.* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *05-4

'Interterm Project..
so

'Piece together the flow chart developed in this

to givegive a comprehensive set of rules for decisidi. g. ,
.. -;

* * ***,-.* * * * * * * * ;ki. * * -* * * .st * * * * * * * * * * * * * * * * If * * * *
. ,

. ,,.

,,

section (Figures 6.1 to 6.11)`

it

4



;;"6.4: Markov Chains Models.

-5

.1%

We will begin this final topic of Chapter 6 by.pre4nting 4 simple demography

'model in.a fotm suitable for use in a matrix'theory course. In order to do PAO

we will temporarily avoid the-nomenclature of probability "theory_and use a slightif
o

" .

non -standard.notatiom.

)

We consider the movement of 'the, population of the United States.., Our model

.-, .

will be over-simplified, but the generalization
I

_

Y

apparent.

We divide' the nation.knto four regions: East; Midwest,'Mountains and West.
P

Suppose that' in any g;Ven year bne-alf'of tfle'population in the East iemains thee

to a mole realistic model should 9

The other half moves as ..follows: 1/12 of the total moires to the Miakest, 1/6 mow
a oz-

2 >

to the Mountains and rie.t. of'2the total moves to the West. Notice that

4/2 + 1/12 + 1/6 + 1/4= 1

us the'entire population:As accounted for. We can express this movement as a

FROM EASTcolumn vector

(6.11)

West:

(6.12)

TO

East

West 1/4

M

Midwest 1/12

1/6

ow suppose we`have the Similar'column velptors for the Midwest, Mountains atd

FROM FROM.

MIDWEST MOUNTAINS

.0

1/2

1/4

1/4

0
A

0

, 3/4

1/4

2u

FROM
WEST

1/4

0

-'1/4

1/2
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A

Note that the sum Qf the comPortents of each of these vectors is 1 . We can - combine

these movement vectors into a 4 x 4 table:

FROM FROM
EAST. MIDWEST

(6.13)

TO:

FROM
MOUNTAINS

-

WEST

EAST ..., 1/2 O . 0 1/4
._.....--P---

MIDWEST 1/12 1/2 0 0
-...--

mouNTAIus 1/6, 1/4 3/4 1/4

WEST
/

1/4. 1/4 1/4 1/2

We can raise some _interesting questions regarding the movement.-of population

implied .y_this table. For example%

a) Given some initial population distrikution,"wbat is the-

population distribution after the. frst year?

b) Assuming that the move

then what is the population distribution after the- second

nt is the same for the second year,

,

year?

c) What will the "long, run" population distribution be if this

pattern of movement continues indefinitely?

"d) Is there same poPulation'distribution which will be unchanged

'by the movements discribed by the matrix-

Assune then that the initial population is 3/4 in the East and the remaining

1/4 in the Mi4West (as in the early days of the nation's development). Hence the

original population may be represented as the column vector

EAST

114 MIDWEST

(6.14) Po
0 MOUNTAINS

O...
WEST

203
.
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To
:,--- comp ProportiOn of the Population in the East afte the first year,

.

-) :.--

we observe from the first rbiciof our table and our population vecir. P0 that
. 4

1/2 x .1/ --1,..i
-(4 remains in the Edit, 0 x 1/4 move from the Midwest to the East, 0 x 0-

move fto...La i

the Mountains to the East and 1 /4.x 0 move'froM the West to the East,_

hence a
total of i

-

1/2 x 3 4 + 0 x 1/4 + 0 x Cr +.1/4 x 0 = 318

i 0:are in the East after the first year.

Si,: I

' ----,Jaarly from the th'rd row of the table

1/6 x 3/4 + 1/4 x.1/4 +,3/4 x 0 + 1/4 x 0 = 3/16

i

.

are in.
..

,
I

the mountains after the first year.
I

Th
ese calculations clearly correspond to ordinary matrix multiplication, where

Ile c°115tstrue our 'table as a 4 x,4 matrix. This denoting the population after the
,

first period by P1 , we have

(6.15) ...="

1/2.- 0 0 1/4' 1/4" /-3/8-'s

1/2 . 0 0 1/4 3/16

1/4 3/4. 1/4 -0 3/16

1/( 1/3i 0 1 /4J

which agrees with and extends our previous calculations. L

This answers question (a). For brevity, let us denote our 4 x 4 .matrix by the

lettee'
. Then a symbolic version of our above result is

(6:16) P1 =-T Po

With- this notation it is easy to answer our second question:

popula-tion-
vector ter the second year by P2 and assuming the movement matrix T

Denoting the

remains the same, we have



(6.17)

"4

P2 .=`T. =

We could also compute P2 as follows, taking advantage-of the fa'ct that

matrix multiplication is associative:

(6.18) ,P2 = T Pi = T(T Po) = T2 Po

(6.19) Pk = Tk Po

4;

'These results answer question (b) and its generalization to k years d also

shed some light on question (c). For ftom (6.19), we see that the "long run° behavior

is closely bound up with the behavior of T
k

-tor large k .

A BASIC program to successively compute P1, P2, P30 from

1

and to\print every tenth. res
.11

=T PkPk+1
k = 6,

10 DIM Tt4..4),X(4,,Y(411)
20 .MAT READ T(4,4)
30 MAT READ X(4,1):
40 F.OX J=1 T3 3 .t

50 FOK K=1 TO 10
60 MAT Y=T*X
70 MAT X=Y
80 NEXT K
90 PkINT
100. MAT Pt<INV"X
110 NEXT J
12*0 DATA .5i3O)025
130 DATA .0833333,5,0,0
'140 DATA .166667;.25).75,.25

.-

150 DATA .25...25...25'4.5
!AO DATA. .75,.25,0,0
170:.END

21 cs,
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IIL

the result of running this program is 16A91122716
.02851009612
47124620573

.33333325419

01666670912
.02777890753.
.47222154574
. 33333373890

fi

.4

. 16666693635
02."7777 1027.

.47222313116

.33333390557

as

Notice t:-at the population vector appears to be settling down to some unchanging

vector- The implication is that this vector will be the answer td question (c)

above.

Before pursuing question (c) further, however we answer question (d) in the

affirmative by producinga vector which remains unchanged. Consider an initial

population vector of °

(6.240

Then

(6.21).

and hence

(6.22;)v

Now if we-compute

resulting matrices tend

1/6-

P
1/36

17/36

1/3

P = R
k E

= PE=

k 2, 3/...

successive powers of the matrix T , we will find thA the

towards the following matrix

8-6.4g

(6.23) TE

116

1/36

17/36

1/3

,:' 1/6'

* 1/36

17/36

1/3

'

'1/36

17/36

1/3

1/6

1/36

17/36

1/3

Notice that each column of T
E

is,identical with every other column and in turn is

equal to the vector PE which remained fixed. Notice also that .

211
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5fi.24) erk PO = APE

for any column vector Po which consists of positive components,-summing to ane.

Thtis since
)

(6.25)

we have that

T
k

T
E

as k

(6.4) Pk = T
k

Po TE PO =Pi
t.4"

Thus question (c) concerning the long run behavior is settled for the particular

matrix T given by (6.13). Let us note that tfiere:,-was'no need to pull the vector PE

the hat". If we seek a vector P
F

which is unchanged (fixed) by T , we

N

I.
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"out of

have the equation

(6.27)4

p

(6.28 )
I

T -PF = P
F

.(T:- I) .PF = o.

where I is 4 x 4 identity matrix.

Since the equation is homogeneous, we have either just the trivial solution or

infinitely many solutions, The latter situation obtains and since we demand that the

components of PF sum to one, we can pick a unique poptilation'distribution vector

from the infinitely many solutions of (6.28). Thus the material at hand serves as

,application of the usual liftear equation solving that is performed in linear algebra

courses.

A BASIC program to form eqs. (6.28), replace the last equation (which in this

case is,dependent upon the others) by

p1.4-p2 + p3 +..p4 = 1

212



and find

If we

the unique solution of the resulting 4 x 4 system is

10. DIM T(4,4),I(4) DoR(4,4).X(4,1),B(4,1)..
100 MAT READ T
110 MAT I=IDN
1219, REM ** SUBTRACT'
130 MAT T=T-I
140 .RFM ** PLACE ALL
150 . FOR K =1 TO 4T `
160 LET T(4..K) = 1
170 NEXT K
180 REM ** PUT ZEROES
190 MAT.B =-ZER
200 LET B(4.1) = 1

210 .REM..._** COMPUTE AND PRINT SOLUTION **
220 'MAT R= INV(T)
230 MAT X = R*8
2.40 MAT PRINT X
300 DATA .5,0,0,.25
.310 DATA .0833333,.5,0.0
320 DATA . 1 66667.. .25, .75, .25
330 DATA -.25,.25..25,.5
400 .END

FROM DIAGONAL **

l'S IN LAST ROW. **

RIGHT SIDE EXCEPT

run this program the results arez

Notice that this isthe vector PE
Inany case we find that

6.29)

.1666A663333

.02777776111
. .47222233689
.33333326667

given in equation (6.20).

PP PE

8-6.50

FOR LAST ROW **

is our particular numerical example given by (6.13). That is, the vector which is

"fixed" is the same as the "equilibrium" on "liMiting" vector.

-
Before enunciating any general theorems, let us investigate some different T

matrices. First consider a model in which the country is divided into two parts:,

East and West. Suppose that all of the people in the'East m6ve to the West after

one year,and vice versa, then

(6.30)

21
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Thus the col
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4

0 1
T = T

1 0

f Tk do not become identical in this case and as a consequence

P- does not approach a fixed vector. For example, if

Then

A

and so on. Thus there.is no vector- P
E
-which aridtrary

However, theres fixed vector

(6.31)

...

PO `s will approach.

As a.third example, let there be three regions: East, Midwest and West. Of

those in the East, 1/2 stay there and 1/2 move to the West. All of the people in the

-Midwest stay in the Midwest. those ,in the West, 1/2 move ,to the Midwest and 1/2

stay in the West. Then T becomes

(6.32) T =

1/2

0

1/2

0

1

0

0

1/2

1/2

We find in this case that

2i



Thus it appears that

*(6.33)

(6.34) .

T2

,1/4,

1/4

1/2

1/16

0

1

0

0

0

314

1/4

0
A

T4 11/16 1 15/16

4/16 0 1/16

1/256 0 0

Ta = 247/257 1 255/256

8/256 0 1/256

13o. \
1

o-

[6.1

PF

0

.1
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otice that all of the population is eventually "absorbed" into the Midwest region.

Rather then say _1/2 of the population in the East moves to the West in any

given year; we could have said that for any person in the East, the probability that

he will move to the West is 1/2 .'Had we done:so, we would have been led to the

same matrix equations and the same general results regarding equilibrium and fixed

vectors. Thus we now turn our attention to stochastic matrices (we can think of

(6.13) as one such matrix) and Markov chains.
215
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We will carefully state the axioms for the Markov Chain Model using the

standard probabilistic nomenclature and notation. We then will give some general
/

theorems about Markov Chains and finally cite some additional examples 'which Will

make the wide scope sf applicability of this (model more apparent.

The basic assumptions of the Markov Chain Model-are:

1) There /exists a sample space, consisting of a sequence of trials

(eg. the population distributions at periods 1, 2, 3, ...),

2) The outcome of each trial is one of a finite, set of states

sl, s2, sn (e.g., East, Midwest, Mountain, West)

probabilities pa, p2, Pn

3) The probability of each outcome s.

the immediately

8-6.5

with respective

depends upon the outcome si of

preceeding trial, but not on the earlier trial (e.g.,

the probability of a person moving to the. East depends on whether the

person is now in

he was earlier).

denoted by t.. .

3.3

the East, Midwest, Mountains or West but not on where
4

The conditional probability of

A

s given si is

We make two helpful definitions. A prg;:cbility vector is a vector (pi, Pn)

whose compouents satisfy

(6.35)

i) 0 < p <1

ii) Pi + P2 Pn ' 1

In the population movement example, the component

of being in state

represents the probabilitypi

i (or the proportion of the population which is in state i A

transition matrix T is a matrix whose rows are probability vectors. In the

populationmovementexamplethecomponentt.of a transition matrix represents the
ij

conditional probability of transition to state s. at the next trial, if the

the proportion which will move from state i to state j at thestate is s
i

(or

next trial).

current
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CAUTION: In adopting this interpretation for tij (as is standard in the social

sciences) we are dealing with the tra72p0se of the matrix used earlier - in particular,

it is now the rows of T which will sum to one.

We trust that the above remarks sere to make clear the notation and the two

possible interpretations of the Markov Chain model, and henceforth we confine

'ourselves to the probabilistic interPtetation.

The key result of Markov Chain Thehty is the one obtained earlier.
*

Theorem 1: 4 If the initial probability vector is Po then the probability vector

after k trials is given by

= Po, ,r1C.

Corollary: The conditional Probability that a system is state si initially

is in state si after k steps, is given by the (i, j) element of T
k

4

We now turno the investigation of the long-run behavior of a Markov Chain.

Markov Chain with .pransition matrix T 15 said to be regular if

T
k as k CO

where .TE is a matrix each of whose rozoe consists of a common probability' vector

ti

e =' (el, e2, e
n
) with positive (I.e., no zeros) components.

.

Recall that of our-three population movement,matrices (which now must be

transposed) only the first corresponded to a regular chain. The second failed to be

regular since T
E

did not exist, and the third failed because e = (0, 1, 0) had

zero components. The vector e i5 called the equilibrium or stable vector.

Theorem 2. T is regular if and only if there exists a power r such that. Tr

L" *Technically, we should check that Pk 15 actually a pTobability vector, that is,

satisfies (6.35).

21
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has all positive (i.e. no zeros) components.

Proof: That regularity implies'the existence of r ±I'Tffmediate (recall TE

has no zeroes in this case). The converse is fairly tedious, see e.g. Kemeny,

Snell & Thompson or Maki & Thompson.

Theorem 3:
*

Let T e'the transition matrix of an n-state regular Mafkov Chain
..,

-

\and let r be the smallest power such that Tr has all positive elements, then .

(6.36) - 1) 2 + 1

,

Theorem 4: If T. is a transition matrix of a regular Markov Chain then the

'stable vector,' e satisfies

i) p P
k

-> e for any probability vector p

ii).e P' = e (i.e. the stable vector is a fixed liesCtor).

, .

,...

Note that Theorems 2 and 3 allow us to decide if T is. regular while Theorem 4

part tell S us how to compute e . If any power T
r has all positive elements

.thezy 1f is easy to see that all succeeding powers have all positive elements. A

flow chart to decide whether. P is regular is given in Figure 6.

1

Reference: Makl & Thompson cite this result, on p. 101 without proof.
. 4

21:J.



((TART)

v.

INPUT N, T

Figure 6.12

Alternatively,T.lecouldtaattij ).0 after each iteration.

out to be regular, we can compdte the stable vector e by solving

e T = e

oideed, TturnS



Or

subject to

.1 ei =-1
i=1

by a Gaussian elemination routine..

, We now cite some of the better known results for non-regular chains. (again

Maki & Thompson and Kemeny, Snell & Thampson.giVesproofs and/or discussions). A Markov

Chain is ergodic, if for every.pair of states si and sj , there exists an integer

r such that a transition from s
i

to s. has positive probability (i.e. the
j)th

of TrIg is positive for some r - which now cam depend on i and j ). The ergodic

property means that we can get from any state to any other state in a finite number

ofatrials.
1

Of course, a regular chain is always ergodic since for regular chains there

exists an r which works for all pairs of states simultaneously. Haqiever, there are

ergodic chains which are not regular, for example, our second population movement

matrix

=

of

Here we can set from state 1 to state 2 and from state 2 to state 1 in only

1 step, while the transitions from state ,1 to state 1 and state 2-to state 2

take only 2 -steps. Hence T is ergodic, but not regular as noted previously.

Theorem 5: Ergodic Chains have a unique fixed vector, e = e T , where e

a probability vector.

Note that now the unique fixed vector is not necessarily a.stable vector.
i

In the above example e = (1/2, 1/2) but Tk does not converge, hence T
k

Po will

not converge (unless Po = e). However, the components of e -do have a useful

interpretatian:. if e = (el, e2, e
n

) then is the long run average
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probability of being in state si .

.-

FInally we briefly consider absorbing chafns. The -state s
i

of a Markov

I

Chain is an absorbing state if tii = 1 . A Markov Chain is said to be an absorbing

chain if there existsat least one absorbing state and if transitions from each

nonabsorbing state to some absorbing state are possible in a finite number of steps.

chird population movement matrix (now transposed) provides an example of an. I

absorbing chain. As we saw then,

T
k

0

0

0

ft.

1

1

0

,0

Which implies-that eventually we enter and remain in the absorbing state "middle"

with probability one.-

pmThis behavior .is typical, in fact 'if we write T in the Canonical fo (by

reordering the`states if necessary)

. .then

where

T =

yk
T

Theorem 6:

4.

Im

R

0.

Q

, Im = m x m identity-thatrix

R
k,
= R + Qk-I R.

+ 0

221
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This theorem means that we enteran absorbing state with probabilitrone.

Theorem 7: ,N = (I - Q)-1 exists and
ij

is the expected number of times that

i'
the system is in state s. given that it started in state

i
and continued until

absorbed.

We turn now to some additional examples of Markov Chains.

Example 10: A Learning Model for ,Simple Tasks (modified from Maki & ThOmpson).

We assume that such learning is all or none and thus there are only'2 states

"learned" ancOtignorant". We assume that the subject is "taught" in a sequence of

,learning sessions and that the probability of learning at any given session is c

where 0 < c < 1 . We assume that forgetting never takes place - that is once the

subject is in the "lkitarned"-state, he memains there.

Analysis: If we denote :learned".as state one and "ignorant".as state two, then our

assumptions lead to the transition matrix,

=
1-C

and the initial probability vedtor,

It is easy to see-that

k
T =

Pp -= (0, 1)

f

1 0.

[1 - (1 - C)k (1 - C)1
S

and hence if we denote the probabilities of being in states 1 and 2 at time

by the vector .Pk we have

Pk P°
= (1 - - C)

k
, - C)

k
) .

220



One consequence of our model is that the probability of learning at or before the

kth o tri al is 1 - - C) k

8-6.60

Example 11: Another Learning Model (from Dorn).

In this model we assume that learning is gradual. Specifically we assume that

46.)
.

it each trial, the subject learns a proportion A (0 <-A < 1) of the unlearned

material. Again we assume the subject is. totally ignorant of the material initially.

Analysis: Here the states have not been defined and a moment's reflection reveals

that there are infinitely many states of partial learning. Hence the Markov Chain

Model does not apply. An appropriate model is the difference equation

Lk+, Lk = A(1 Lk) , LO = 0

where Lk denotes the proportion of-material learned after k trials. The solution

of the equation is

Lk= 1 (1 Lo)_(1 -
k

.

Moore & Yachel, p. 65 ff present still another learning model which involves

two--step learning.

Example 12: (Malkeyitch & Meyer)

/in electric power company; checks its= main generator. once each quarter year to
. . .

for stall blackoutg due to equipment failure, Assume there are +outcomes,'

W = generator needs no repair, D = generator is defective and needs repairs.

.Repairs will be made only in State D. (It Is-natural to Suppose:that the transition

D 9-]) -is rare and W D more common). Assume that if a given inspection yields

W then the probabilities that next quarter's inspection yield W or D are .6

land .4 respectively, while if the current inspection yields D then these

probabilities are ..9. and .1 .

2 (),
,j



Analysis: The transiti

FROM

matrix is

'W

D .9

which is clearly regular. The Markov Chain assumptions are at least plausible here.

Example 13: (Kemeny, Snell & Thompson). -In predicting long termctrends in

Republican - DemOcrat transitions taking into account only the prior state

0

(Republican or Demottat) one would use a transition matrix-f the form

R

R ,D

[1-a a

'b 1 -b.

where a is the probability of a change from a Republican majority to a Democratic

majority (estimated from historical records) and b is the probability of the

Opposite transition. A refinement which allows a little additional past history to

be used is to consider the last two year's results i.e. the states are now

RR, DR, RD, DD where for example RR means voted Republican the last two times.

The transition matrix now has the form

RR

DR

RD

DD

RR- DR DD

1-a 0 a '0

J
b 0 1-b 0

0- 1-e 0

...
. 0 0 O.

:.

o
Note that certain transitions ame now, impossible. This device of enlarging

?a-x-7



87-6.62

,o

the set of states is commonly employed to partially circumvent the Markov

restriction that the transition probabilities can only depend on the current state.

Other examples abound: transitions between parents social states and child's

social states; transitions between job catagories; transitions between physical

locations; all can often be approximated by the Markov Chain Model. A particularly

intriguing model of small group-decision making is presented in Maki & Thompsori

p. 81

O

r



1. Did yoU

2. Is this

r,
AUTHORS'_EVALUATiOd

(Elense circle one of the respcinses to each question)

attend the short course in 1974-75?.

chapter..

(a) ToO short

(b) Too long

(t) About right

8-6.63

If (a), nich topics should be expanded?
'6

can you suggest topics to be added?

If (b), which topics should be abbreviated?

whi6h topics should be eliminated?

3.. Could yoq read And understand the computer programs?

(a),a10,1ays (c) 'seldom

A

(b).:SoMetiffies (d} never-

4. Did
.

the interim protects seem

5. Were the self-study problems

(a) Too easy

reasonable?

6. Was the number of self-study problems

(a) Too large

(b) About right

(c) Too'smail

Yes No

(b) Too difficult

23



7. Did you attempt any of the self-study problems? Yes
,.

._

8. Are the solutions to the self - study, problems v -
properly placed (on overleaf from problem)? Yes

, r% .

If no, where would you suggest the solutions be placed?

No

No

9. For each topic, how solid an understanding do you think you have?

Binomial model

Poisson model.

Bayes' Theorem-

Decision Theory (in general)

Maximum strategy

Mini-max regret

Maximum Expected Value
";;-

Use of posterior probabilities

Markov Chains

...111 22 -1

Excellent Good Fair Poor

ti
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A

APIFERIDpE

4

DIFFERENCE EQUATIONS

In this appendix we will discuss linear difference equations with constant

coefficients. We will tInd the general solution of such equations when the equations

are of-the first and second order and have constant coefficients. A fuller discussion

as well as a discussion of more general types of: difference equations may be found

in Introduction to Difference Equations by Samuel Goldberg (Wiley, New York).

PART I 7. LINEAR, FIRST ORDER DIFFERENCE EQUATIONS

.1.1 Definitions of Difference Equations and their Solution

The equation

fa:

(1.1)'

where .a

Conttant

a1 Yk+1 a0 Yk b

* 0 and ao * P

0, , 2, ... .

is a'linear, first order difference equation with

coefficients. A solution of (1A) is a function yk defined over the set

of non-negative integers (k = 0, 1, 2, ... ) which reduces (1.1) to an identity.

For a given value of yo , (1.1) has a unique solution.

As an example consider

For yo = --1 the function

IS a solution because

'2Yk+1 Yk 1

yk = 1 - (1/2)k-1

8 -A.1



for all k.

2v
k+1 -

- v
k

2 - 2(1/2) - 1 + (1/2)k -1 = 1
-

Self-Study: Problem #A.1

Match the difference equations on the left with the solutions on the right

(a) .(k +. l)
kyk ..2h - 3

(b) yk+1 yk k

(c) Yk+1' 437k 3

(i) = (k(h-1)) /2k

(ii) = 22k+1 /

(iii) y = (2/k)

22i



Solution to Self-Study: Problem #A.1

(a) - (iii)
(b) - (1)

(c) (ii)

A

O

r.

8-A. 3



1.2 Solution of First Order'Equations

Rewrite (1.1) as

or

(1:2)

Yk+1- a 'lc al

Yk+ 1 MYk C

Y

8-A. 4

where M = - a0 /al and C = b/a/ . Notice that M ¢ 0 although -C may indeed

vanish. Then

-and

Then

Yi = MY0 C

Y2 = 11:Y1 C = 21:(Myo + C) 4. C'

= M2y 0 + C (1 + M)

y3 = My2 + c = 14(m2yo + + m)) + C

= m3y0 + + m + mz)

Thus we might "guess" that

But

SO

+ m + 142 . . .

yo .+ C(1 + M + + . . . Mk- I)

23{

for M 1

for M = 1

C.



4

90: +C

4, yo+ k C

1 - M

for, M = 1

for M ¢ 1

8-A. 5

for

To verify that (1.3)is-indeed a solution of (1.2) substitute the function defined

by (1.3) in (1.2) and show thai (1.2) is reduced to an identity..

A'-

Self-Study: Problem #A.2
. .

Find solutions for the following difference equations

(a) Yk+1 7--Yk 2

(b) Y Yk+1 k

(q) Y' + 9k

(d) 4yk+1 - yk 7 2

(e) Ylc+L - 2Yk = 1

(f) Yk+i 5Yk +.8

702' 1

YO = 2

yo =,2

.30.-= 3.

. yo = 2

.-yo =.



FART II LIEWAR.' SECOND ORDER DIFFERENCE EQUATIONS

Definitions

The most general,second order linear difference equation-with ccustant

coefficients mai-be.writtem-

(2.1)
aYk+2 4'

byk}1 k
+ cy = d
_-

where a #.0 and c-0-0 .

For given values of yo and yl , has a unique solution.
,

the sum of the general solution of the homogeneous equation

k = 0, 1, 2,

(2.2) ayk + byk÷ + oyk = 0 k = ,

solution is

and .a particular solution of (2.1). The general solution of (2.2)
-.Id a Particularart icular

6

'solution of (2.1) are discussed below.

2.2.' General' Solution of the Homogeneous uation
^

The general solution of (2.2) isfound from the roots of the cbOacteristic

equation.

+ bx + c = 0'

Case -If b2 - 4ac > 0 , then both roots are real and unequal.
T00-Y are

Al =
b + )64 4ac

2d

The,geneial solution of (2.2) 'then is

A2 =

k k
Y = A.0.1) + BKA.2)k

. .,,.-.

_------
- b - Aoz -- 4ac

---..---.'
-42a

1.4

where - c
0114ition

and .B are constants to be determined from the initial s JO

and Yi -



Solution to Self- Study:' Prablem #A.2

(a) 24 = 1, C = 2 so from (1.3)

y = I + 2k

(13) M = 1, C = 0 so

yk = 2

(c) M =-1, C/(1-M) = 1/2 so

Yk = (3/2)(- + 1/2

(d) M = 1/4 , C/(1 - 24) =

= (7/3)(1/.4)

(e) M = 2, C/(1-- = -1

= 3.2k

(f) M = 5, C/(1'- = -2

-

=

+ 2/3 G.

t

1.1



L3 Behavior of the Solution

8-A. 8

Recall first that MO 0 . We will consider two cases: M < 0 and M > 0.

(1) If M < 0 , the solution oscillates. The amplitudes of th oscillations

increase as k increases if M < - 1 2--the amplitude is cnngtant if M = -1 ,

and the amplitudes decrease if 0 < M < -1 .

ii) For M > 0 IlLe em!"if 0 < M < 1 , the solution decays exponentially. If.

= 1, the solution is linear. If M > 1

Notice that for M ¢ 1 if

= C/(1 M)

solution grows without bound.

the solution is a constagt.

Finally we note that for 'MI < 1 then the solution approaches C/(1 -

for large k .
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Case II: If b2 - 4 ac = 0 then both roots are real and equal. They are

= - b/2a

In this case the general solution of _(2.2) is.

+ Ait) ),
k

Yk

Case III: If b2 - 4ac < 0 then both roots are imaginary-and are complex conjugates.

The roots are

Let

- b
+ i ./4ac - b2 b /7iE7=-1:12

- 2a 2a 2
. 2a\ 2a,

Then
4 the general solution of (2.2

70.

t,

r = rc7i-

8 = cos- (b/2)GC")

A rk cos (Ice B

: -

wfiere again A and B are constants to be determined from the initial conditions

YO 11120N Yl

2.3 :Particular Solutions

To find a particular solution of (2.1

three. cases. U

where d is a constant there are again

,Case If both roots of. the 'characteristic lquatiOn are real and distinct an
k

neither roatis 1., i.e., Al 0A2 and Al 1 and 'A2 ¢ 1 then

yk = d/(a b + c)

2 -



,Case II: If both roots are distinct and real but one, say Ai then

-(a + c) . The general solution is

Yk = A + BA2
k

The particular solUtion is of the form

J y
k

= dk/(2a + b)

,147

Case III: If both roots equal 1 , i.e.,

The general solutionis

yk = A Bk

8-A.10

= 1 , then b = -2a and c =

Both a constant and,a constant times k are included in the general solution.

The particular solution is

2.4 Examples

.Example 1:

= di2/2a

Yk+2 Yk+I 6Yic

The, characteristic equation is

whose roots are Al = X2 =

x2 + x 6 = 0

N4 .

so the complete solution is

y
k

= A.(2)
k
+ B(-3)

k
- 1

If the initial conditions'are -yo= and yi = 0. then

= ( )
k+1

+ ( -3)k 1

2 3 -1



Y'

Example 2: yk+2 + 3yk+1
- 4 = .10

The characteristic equation is

Whose roots are Al = 1 ,

x2 + 3x 4'= d

. The complete solution is

+ B(-4)
k
+ 2k

If the initial conditions are YO

Example 3:

and yi. =

(-4)k + 2k

yk+2 - 2y
k+i

+ yk -4

The characteristic equation is

With roots = =

For ye = 2 and yi 7 1

'x2 - 2x + 1 = 0

The complete solution is

= Bk.- 2k2.

= 2 + 3k- 2k2

then

Self-Study: Problem #A.3;

Find-solutions for.the following second order difference equations

-(a) 71c4,2 65rk+1 85r 1c= ;

(b) Yk+2 65rk+1 8 5k

3= 3 Yl = 2

Yo 5 9 Y1 = 4



8A.12
r.

(c)

(d)

(e)

(f)

4yk+1 + 4yk = 0

2 23rk-1-2 + .53Tic .

2 + Yic-I-1 2Yk = 12

2yk.4.1 Yk

;

;

;

Yo =.1 =-3

_ yo = 0 , yi = 1

Yo = 8 , Yi =,

Yo 5 ,`yi 12

s.



Solution to Self-Study: Problem 1A.3

(a). Roots of Characteristic equations are 2 and 4 ..

From Case I of Section 2.2

-;7

yk = 5-2k 2.4k

,0)- Roots of.characteristic equation are 72 and 4 .

From Case I of Section 2.3 the particular solution is

Trom Case I of Section 2.2 then

.Y.k=

= 3-2
k

- 4
k

+ 2

(c) Roots of characteristic equation are 1 ± 2i

From Case III of Section 2.2 then

where

80

= A(A) k co' (k 8 + B)

8 = cos-1 (375). From the initial conditions

,/-

= A V cos B

1 = A cos (8 + B)

sin k 6
Yk = 01-5-Yk-1 6

(d) Rpots of the characteristic equation are

Case II of Section 2.2

2 + k)2k -1

24

d 2 , so from



'(e) RbOts of the characteristic equation are .1 an

The' particular solution is from Case II of Section 2.3

Wyk = 4k.

From Case I of Section 2.2 tten

+ 3 + 4k

(f) Roots of the characteristic equation are 1 and 1 .

The particular solution is from Case III of Section 2.3

y
k
= 3k2

From Case II of. Section 2.2 then

y
k

= 5 + 4k + 3k2



APPENDIX

AUTHORS' EVALUATION

(Please circle one of the responses to each question)

Did you attend the short courqe in" 1574-75?

2- Is this chapter

(a Too short

(b) Too long

(c) AboUt right

If (a), which topiCs should be expanded?

8A.15

Yes, No'

can you suggest topics to he added?

If (b), which topics should be abbreviated2

which topics,should be eliminated?

3. Could you read and understand t puter programs?

(a)- always (c) seldom -.

(b) sometimes (d) never_

"-4-,-;id the interim projects seem reasonable? , Yes No

5. W re the self-study prob/ems

(a) Too easy (b) Too difficult.'

6. .Was .the number_ of: self-study problems

(a) Too large

(b) About right

(c) Too small 242



7. Did you attempt any of the self-study problems? Yes

B. Are the solutions,to the self -study problems
properly placed (on overleaf from problem)? 'Yes

-4.1f no, where would you suggest ,tie solutions be placed? 4

41.

9. .For each topic, how solid. an undertanding do you think you have?

I

Definition of Difference'Equitions

Solutions of 'First Order Equations

Solutions of Second Order EquatiOns

Analysis of Qualitative Behaiior
of Soluitons

c

3

Excellent -Good' 'Fair Poor

87A.16
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A. GeneralGeneral Textbooks

B1.

BIBLIOGRAPHY

In fhig list are author, title, pubiAsher, year of publication, difficulty

rating (1 = easy to 4 = hard), materal coVered and brief comments foi books that

might serve as undergraduate texts. We would appreciate receiving comments from

our readership concerning our'accuracy & judgment in these matters.

(k-1) Adams, William J.; Finite Mathematics, Xerox, 1974 (1). _Linear Programming
Markov, Game Theory, Matrices, Finance.. Excellent text, gives
extensive criticism of Elie models developed and also,survey uses of
the models.

(A-2) AUton, H. & Kalmon,,B.i Applied Finite Mathematics, Academic Press,
1974 (2). Sets, Linear.Programming, Matrices, Probability, Statistics.
Has some interesting applications; brief introduction to FORTRAN.

(A-3) Campbell, H.G. & Spencer, P.E.; Finite Mathematics, MacMillan, 1974(1)
Systems (in switching, circuits), Logic, Sets, Probability, Matriees,
Linear Programming, Game Theory; Has introduction to APL. If you
believe in the importance of logic and sets, this is your book.
gas interesting references to applications; the treatment of most
applications within the text are brief (but good).

{A-4) Dorn, W.S. & Greenberg H.J.; Mathematics and Computing, Wiley, 1967 (2)
Linear Programming, FORTRAN Programming, Computer Applications,
Probability- Modesty forbids. explicit comment.

hr

Feibes,- Walter; Introdnetion to Finite Mathematics, Hamilton, 1974 (1)
Probability, Decision Theory, Linear Programming"'; Game Theory,
Finance. Superb-treatment of elementary finite mathematics.material.
Uses examples to motivate general results.

A-6) Goodman, A.W. & Ratti, J.S.; Finite Mathematics with Applications, 1971 (1)
Logic, Sets, Probability,Matrices, Linear Programming, Game Theory;
Has applications to social-sciences. Should go well in the classroom.

(4-7) Kemeny, Snell, J.L. & Thompson, G.L.: Intronwition to Finite
Mathematics, Prentice-Hall, 1974 T2). The classic Finite Mathematics
textbook, new revised and more modeling oriented (see 'Chapter 6 for
further details).

2

".



(A-8) Malkevitch, J. & Meyer, W.; Graphs, Models and Finite Mathematics,
Prentice-Hall, 1974 (1). Modeling, Graphs, Computers, Statistics,

-Probability,'Games & Decisions, DifferenCe Equations. Best §ource
for.elementary graph theory applications. Good for developing the
modeling approach. Has chapter on the theory of elections.

(A-9). ----Maki, D.P. & Thompspn, M., Mathematical Models and Applications,
1973v(3). Models, Markov Chains, Linear Programming,

Graphs, Growth Models. A wealth of good material. Documents the ,:..

"respectability" of applied 'mathematics.

(A-10) Mizrahi, A. & Sullivan, M.; Finite Mathematics...14th Applicgtions, Wiley,:

1973'(2). Logic, Sets, Probability, Models,('Linear Programming,
Matrices, Graphs, .Markov Chains, Statistics, Finance. Has too many
rules.of thumb without motivation. Nonetheless, a good book -
especially the applications from Chapter 7 to thelend.

(A-11) Moore, D.S. & Yackel, J.W.; Applicable Finite Mathematics, Houghton
Mufflin, 1974 (2). Probability,-Markov Chains, Linear Programming,
Game Theory, Decision Theory. Exceptionally good .modeling
Best elementary reference on Decision Theory. Has, computer projects.

(A -12) "Negus, R.W.; Fundamentals of Finite Mathematics, Wiley, 1974 (1).
Sets, Logic, Matrices, Linear Programming, Probability, Markov Chains,
Nicely written text, no emphasis on models. Student oriented.

(A -13) Thomas, J.W. & Thomas, A.M.; Finite MathematicS Allen -& Bacon, 1973 (1).
Logic,'Sets, Probability, Matrices (with introduction to Markov
proceSses,and Linear Piogrammin.g). -ThoughtfUlly written;' brief
applications.

B. Specialized Reading List.

(B,71) Fai4ey,.N.T.J.; Elements ofStochasitc irOcesses, Wiley; 1964.

"(112). Bailey, N.T,J-..;-.Mdt7:tematidal. Theory of Epidemics, London: Charles

(B-3) Bartlett, IhS:;.Stochastic Population Models in Ecology and Epidemiology,
Metheuy London, 1960.

(B-4) Coleman, J.P.;'Introduction to Mathematical Sociology, MacMillan, London,

1964.

(B-5) Feller, W.;
Wiley,

(B -6) Goldberg, S.

(B-7) "damming, R,;

(B-8)

An Introduction to Probability,Theory and',Its Applications,
1968. .

Introduction to Difference Equations, Wiley (paperback)..

Computers and:Society, McGraw-Hill Xpaperback), 1972.',"

Kemeny, J.G. & Snell,,J.L.; Mathematical MOdeling..in the Social Sciendes,
Ginn and.Company, 1962. 2.-



(A-9) Kemeny, J.G. & Snell, J.1111.;nite Markov Chains; yap Nostrand, 1960.

Or'

(k-10) LagarSfeld,y.F; Mathematical Thinking in the:Social Free
Press'of Glenco, 1954.

(A-11) Lotka, A..J.; Elements of Physical Biology, Dover.

jA-12) Luce, R.D. & Raiffa, H.; Games and Decisions, Wiley, 1957.

(A-13)

(A -14)

Mood, F.A. SceBoes,'D.C.; Introduction to the Theory of
Statistics, 3rd'Edition, McGraw-Hill, 1974. .

;,

e, 0.; Graphs-and TheirlIsee, Random, House (paperback) , 1963. Excellent
elementary overview of graph theory.

(A-15) Parzen, E., Modern,Pt-obability Theory and its Application, Wiley, 1968.

(A -16) Introduction to MatheMatical Ecology, Wiley, 1969.

(A-17) Rainville, E.D. & Bedient, P.E.; Elementary Differential Equations, .

5th Edition, MacMillan, 1974.

(A -18) Rubenstein, Moshe F.; Patterns in Problem Solving (UCLA Notes) 1973 (2)

Somewhat engineering oriented. Coveis modeling, probability,
decision making and-tatistics. Computing is discussed from a
basic hardware point of view with a brief mention of FORTRAN.

(A -19) Saaty, T.L.' Topics in Behavioral Mathematics (Math. Assoc. of America)

1973. CO'Vers theory of model building; optimization problems,
disarmament and other conflicts, ;scheduling problems, inventory_
control, epidemics, linear programming, game theory, dynamic
programming, network theory, probability and decision theory.

,

;(A-20) Selby, Henry A.; Notes of Lectures on Mathematics in the Behavtibral
. Sciences (Math. Assoc. of America) 1973. Companion book to Saaty

book-(see above). Lectures on economics (H.E. Scarf), political

...

science (L.S.'Shapley)", anthropology (R.G. D'Andrade), sociology
(P.1. LaZarsfeld),-PiSchology,(R-D- Luce) and measurement (W.S-

tpr ) .gerson. ..' .,

.-;.(..

-

.-'

(A -21) ingleton, R.R. & Tyndall, W.F., Games and Programs, Freeman; 1974.-

A
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