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The scientific ilpliﬁ;%ions and, practical
applications of the Stein estimator a oach for estimating
scores from observed scores are of 'p tentially great ilportance. The
-conceptual complexity. “is.not much greater than.. hat refuired for aore

h‘conventional ragression podels. e.eapirical B yesian aspect, allows
the examiner to ingorporate his/her. own degree of'prior information
about -selected exaainees, Thiz  approach allows for- a more accurate.
. estimation “of true scores, th the corollary -of ng fewer test
items to achieve those trye scoxe estimates. Efron* afid. ¥orris make
the. point that there is. Xittle penalty for using’ the ‘ules discussed
here- Decause they cannot'give larger %{otal mean squar error than
the aaximum likelihood estimate. This. assurance may be a ‘sufficient
rhason for more careful exasination of the utility of. the Stein
estiq&tor and its 1i ited translation estimators as they apply to
behavio:al and soc - gscience research, A-numerical example is given
of prediction of a season's batting averages om the basis of a sanplet
of abaut 10 perqgﬁt of the times at bat. . (luthor/CT&)
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* USING s'rzm's 'ESTIMATOR TO, PREDICT UNIVERSE SCORES
FRDM OBTAINBD SCORES oo .
-, . -~
. _ » o ' Coe
The purpose of this paper is to introduce and apply a recently
developed statistical:method ggx estimating true (popylation) scores
from observed (sample} goores. Provided th t least three scores
" are avazlabié this method overall will give more accurate true score -
estimates than the, in tvidual{maximim. 1ikelihood ‘betimates (MLE}, .
regardless of the trup abilaéies of the examinees ‘(Efron & Morris,
- '1977). The method can be used without knowledge of the {Bayesxan)
‘prior distribution, and normility of the true scores being estlmated
need not be assumed. The thefretical and practzcal 1mplicatxons of
the method extend beyond pgsychological measureﬁent'tQ the very founda-
tions of statistical inference .and have.caused some tumult in rhat dis-
cipline during the past decade..q_\ . .

3

- 'HISTORICAL OVERVIEW . . —

. For the Gaussian distribution., the-average is the”best estimater
of the true mean, 8. The average is said to be "unbiased" betause no
szngle value of B is favored pver any other value.” That’'ig, the ex-
. pected value of 'the average, X, equals the true value of 9, regardless
of thelvaiue of 8. How many upbiased estimates of ® are there? An
infinite number. But, none of them estimates © perﬁéctly. "The expedted
squared error of estimation fbr the average is lcwe: than that for any
other llnear or nonlinear and unbiased function of the Gdata.. ,

[ QIR

A departure from this ‘classical approach assumes t unbiased esti-'
mates of 8 are not the only methods by which to infer population values.
For example, other possible estimates of 6 could be the-median, x/2 2x,
the mode, etc. All such estimators.can be comparéd through a risk func-
tion, which is the expescted value of the squared erro§ for everY pOBSible
. yalue 8. Plots of risk functions show that there is no estimator
with a risk function that is everywhere lower than the risk function of
the average, X, provided that a single mean is being estimated. .But in *
the more general case, a Score is available from each of many examinees
who have taken a test, for example, and it is the true score of each p
examinee that is to be' inferred. Thus, the MLE is merely a specific
.case’ of the more genmeral situation where the mean Scores. {9'3) are
-sought for each examinee. ) _ v

- Theoretical work conducted by Stein {1955) and’ by James and Stein
) {1961) concentrated on estimating sevefal unknoyn means, through’ methods
other than maximun likelihood estimation. The authors assumed t the
means ‘are independent of eich othér and' that the goodness of vai‘ious Wt
estimators can be assessed by a risk function:” the sum pf the expected
valiues of the square&'errozs‘bf estimat;gn for all of the individual




means. Also, it is not necessary to assumg that the means being-esti-
mated come from normal distributions. - Whdt James and Stein proved is
that when three or more means (© values) ,are heing estrmated, it is &
*-less than optimal selution ("inadmissible") to-estimate each @ from its
© own average. That is, estimation Tules can be found with smaller total
risk regardless-of the values of the true means (8's) for each examinee,
As Efron and Morris (1875) express this accomplishment- .7

.Charles Stein showed that ;t is possible to make a uniform ¢
improvement on tge maximum, 1ikelihood estimate (MLE) in o
terms of total squared error .risk whenrestimatlng several
parameters, . . . This achievement leads, 1mmediate1y2t a
uniform, nontrivial ihprovemenzaover the least, | Squaxes

- {Gauss-Markov) estimators for e paremeters 1n the usual .
formulatlon of the linear moﬁel {p 311 ., -

. ) . . i

R _& /l
L ! THE STEIN ESTIMBTOR
b -3 .

The following. dlscu581on .8erves as an introdudtlon to the Stein

estimator. Assume that we have k parameters 91, -] ,.~.9 . k23, and

k
that for each 9 we observe an independent normal variate x with mean --

and variance Var, (xi) 1. Note thatlsach xi Msght be the

Ee-xi Qig i
Wn{Q 1 g } Then "k Nntet g /nV ’

: meep of n 1ndependent obserVations Yij

and a change of scale transforms 02/n to the moxre onvenient value of

' 1; Therefore, the above assumptlons often occur gs a reduction from

more compllcated ‘situations to this canonical:fo .,

L .‘ > L] .. P' . ‘ ] '
. mhe primary objective for applying the set o #?ptimation rules is
to estimate the unknown vector of means 9, 9 E {9 2,...9 ) The

i g pérEOrmance of ah estimation rule is assessed by Jjcomputing the sum of:

—

squa#ed component errors that is the squared errdr loés for that esti~
matibn rule. If J = (f J J ) is an est s tion rule, where f

. q,, 2:...

is’ tYhe estimate of Qi, then the squared error lo s L(Q, T) is defined
fi*as(e,-'f)s £ - o’ Ao L
T ' i=]l

. T .i- y = . , . 2\.
X . . 1 - ' I
- . . . L ;

-

:f’n In the case‘of the maximum likelihood estina tor, or the sample
.1 mea;, ensted byT" @, P e J2®, f°cx> ...f°&n 2 (xl,...xk).
I ‘
.i“
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‘there fs econstant risk, R, with R(8, 'f°(xn = R, ,x) = }:9 LI

(x -9 ) = k. (Note that Eg indicates the expectation over the dig- .
‘ tr:.but:.on x |9 mﬁ N(G . 1) introduced ‘above. Observe .that Egtxi - Gi)2
‘ i;.for each J.,J.-l,...k) c _ : . o

’ * ‘}
! 3 » -

‘I'he Stein’estimator may b_e.{ usad tq -estimate 9 Define the Stein
estmator, 'fltx Ultx), fltx),...fl(x), k23, as folldws' .

A o -2

where u 2 (u, ,...].lk) repg:esents a.n initial guess at the t¥ue mean, 9, .
and § is defined by s = E(x - u ) Th:.s _estimator_ thusvhas risk

. ) ) ./
. k X 2
RGPy s, 1 Ui G- 7 <k - k=2
RS k-2+ L,.(0 -
1=1 1

-
-

b ]

for. all 3. It 9 = My for all i, the. risk .'i.s 2, wh:.ch oompares qu:.te
T favora.bly o k q!itained for—the sample .mean, In any event ;- the. rlsk
for the Stein estimator is less than t:hat for the maximum likelihobd
estimator. A discussion of how the rié?f. for the Stein estimator was.
obtained is presented in the last segction Jf. this paper. o o

= L]
L] -
& 4 -
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The Stein estimator has a very npatural inte'rpre'tation in an empiri-

1

cal Bayes context. If the 9 themselves are a sample fron;,a pr.prqdi‘s;- o
tri.bution, i j.:d N(u P 1 ), is= 1...k then the Bayes est:.mate of 9 :';

is the a posteriori mean of 0, given the data, and ) is~ defixled.'hry

i
o * '\4

. *i . 1 Yy . v . -’r. . ) .: .'\ .
AR AL TR (1 ‘m) *y ,”i" RN DS
_ G ; T - ".-C
In the empiri.cal Bayes situation, T is unkno:m, but*-it can be

esti.mated because marginally the X .'i. are independb.ntly normal with means
k ] Lo

2
and s = I (’fj - uj) (1 +-1 ) )(kr’ wheg,e xk is a~ Uhi-‘square distrib-

H
i =1 % .
ution with k degrees of freedom. Given th‘a.t k }: 3 ";he. unbiased estimate

-Mu . \F' . *
g -2’ RN S
—— —_;-‘1:2— is availa.ble. g "“’ﬁ
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"i=1,...12, wh&ha@: is the true season batting average, i.e,,

N .‘ k-2 - _. j. . e v
. Subdtltuting for the unknown 1+ 2 in the Bayes éstimate

S
f results in ui (1 . ; 2) {xi - ui)’ which is the Stein estimaéor,

4

- . . . ]
L

Predicting Batting Averages Using the Stein Estimator .

. -*

The following example .is addpted from Efron and Morris {1975, °

T 1977, Batting averages for major league baseball players, based upon

their first 45 times at bat, were obtainea. The objective was to Pre-

’ dict Sach player's battlng average for tha remainder ©f the sesason. A

cutoff after the flrst 45 times at bat was chosen because that number -
was large enough to insure a satisfactory approximation to the binomial
distribution by the notmal distribution and because the vast majority
"of "at bats" for the season would be estimated.” The model assimes that
hits occur according to a Yinomial distributidn with independence be-
tweep players. (Requiring the same number of trials for all players,

n = ¥5, assures equal variances; however, the Stein estimator can also
be used when variances are unegual.| See Efron and Morris, 1975.)

Let*? be the batting average of -player i, i= l,...k (k = 12)

after the flrst-ﬁs %imes at-bat. Assume that nYi 1£d Bin(n, P; },

EY

1 - Py ‘ .
- ) " . -,,s.-.’

Because the:variance of “1 depends upon the mean, the arc-sin.

tgansformation for stabilizing the variance of a biﬁomial distribution

: _. N .
is agplie;}: %, = f45{Yi), where fn{y) n arc-sin(2y .-,1). It can

be shown that this transformation results in X3 having nearly ﬁn%t

.variance independent of P;-
T i of’x is given by 91 =f {pi) values of Yi’ Pyr Xy .

0, f » and p; are lisged fo; playexrs 1.through 12 in Table 1. Batting.
averages for the first 45-timeg at bat are listed in column l. Each

The mean &

~ Player received from 270 to‘SQd.gdditional "trials" during ﬁhg seagdq.

~“The batting averages for ‘this seésonal trial number are listed-in

column 2, Recall that the- objective here is to predict each player s
column 2 {"tzue," "population") v&iﬁe using the initially obtaihed

column 1 {"sample”)} value.

4
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Example Using Batting,ﬁveragbs From 12 Players
. 5 . - . . .

pl
Ty

.

346 . -2.10 -2.49
298 . - =2.79 -2.60
.276 . . -3.11 | a=2,71
. ¥
222 . -3.96 C-2.82
270 -2.60° __ =3.20 ~2.93,
.263 .92 -3.32 3.0
269 . . -3.23 -3.26
2303 ' -9 -2.71 ~3.40
“~264 85 . . w3.30 - " 3.40
w7226 _a.9sl -3.89 -3 440 256
285 -—-frazl | <2.98 -3.53 .249

. .316 . ~4.70 -2.53 ~3.66 ‘.241-

~

a T

‘Listing of the MLE Scorés and Estimated Universe Scores {(columns
1tand 2), Score Transformations (columns 3, 4, and 5), and the
Estimated Universe Score from using.Stein's estimator (golumn 6).
- f Ll
Tyg x; values obtqined upon application of the arc-sin transforma-
tion to the column l batting averages (observed scores) are shown in

column 3. Similarly, the 9 values obt&ined'by applying the arc-sin .
* txangformation to the column 2.batting averages~are shown in column 4.

‘The Stein estimator values that*estimate thé &, are shown in “column 5,
M

s -




and the values obtained upon retransforn_tation; vfa thlé ;a'rc-sin tin'ﬁ—

" formation are given in colt;mn 6; The following calcuiations are’ exam=- :
ples of the type of computations required,’ ,Note that the'computatio
are not at all oomplex. IR,

2 - - e
[

‘For i = 2 f {Y ) = 451’arc-sin(2( 878) - 1}’= ~l.66. Therefore,

x2 -1.66, and is entered in column 3. s:.milarly, '_92 = f (p,z) =

4511

arc-sin (2(.293) - 1). This value is g:.ven in column 4.._Values

! 9 fooog

for X, Xgr...%;, and. 8, 3 12

are obtained through similar

substitutions.
) P

The bas:.c equat:.on for the Stein estimator f which allows us to

estimate the 1th component of 9, is slightly dJ.fferent from the expres-

*

" sion :.ntroduced p_revious..}y.‘ We estima}:e the mitial guess U = “1/]‘
by X = Exi'/k, which shrinkg all x, towdrd ¥, The resulting estimate
. of.the ith cou;:ponentlai of is“given by ‘
2
v

1l > P k-3 - L, -
) “'Jri(X) =X +(1 - ——)‘(xi -..,‘X}, where VvV =_E(xi '- X}

. / .
(k - 1) - 2, because one parameter is estimated. .
Y . ., . * i

In the empirical Bayes case, he appropriateness of-this formula-

tion follows if X is u3ed ag the unbiased estimate for p and k-3 ‘as

" the unb:.ased esta.mate for —-—7 Therefore ¢ in the cage of th_e ‘exam-
‘ple data provj.ded in Tdble 1, . : )

.
.

-

(-1.35) +...+ (-4.70)
12

X = Exi/k = -3.10.

L3

,

Tl}e value for ¥ may inm turn'be used to compute V:

I )

CIH2% e (41,35 - (32007 ek (4,70 - (£3.10))° = 13.80.

4

'
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‘are-derived by su.bstitiuting the.

i The étein esr.imates for 9, .. .912
obtained valqes for b ahd V¥ in - the computationd} equation:

.’ !" .

ML

<1 e ‘ 23\ o
Fi 3 =320+ (1.- —1_,7.—51—) (x; = (=3,10)) = 3SOx < 2,02

.. For example, fi (x) = ,350(-1:35) - 2502'— "-2.49.

the Values for '}_;",....}12 are listed in colu.mn 5 of ‘I'a.b'le } 'I'hese values -

' are finally retrans;oni’tbd to dbtéin the est:m}ates of the "true score"

i

at-
LY # e

- -
2

This value and

avérage for each player in column 6. .
. - 4

4
-

M
The total squared prediction error for J (x) is' défined as
U - 9 ) I ({:_'2'- 8,.) = 4,040, 'I'his valde is obtained by

su.btracting the column 4 Yalue from the cqlumn 5 value for each of
the 12 players, squaring the differences, and sumii.ng. 2

In the case of the sa.mple mean, X, the total squared p’i:ediction

error is defined as Z(x 9 ) - 15,,135 'I'h:.s value is obtained by

su.btract:.ng the column 4 ‘value from the caﬂ.umn 3 value for each of l:he
"12 glayea:s, squaring the differendes, and summing. ‘

Ly
-

The aﬂequacy of Stein's astimator relative to the sample mean may
be determined by computing their relative efficiency. -~ The efficiency
of Stein's estimator relative to ‘the "sample mean is defined as

*
. s =

\ 2
E(xi - Bi)

~1 > 2
E(fi(x) - 91)

In th:.s example, the efficiency is 3,746. 1In other words, Stein's esti+

mator is nearly four times as "efficient" in predicting "universe" ox )

"trie" gcores from observed {sample) scores as is the MLE,
I v N
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' L:l.m.t.ed ‘I‘ranslat:.on Estmators

Stein estimators. achieve um.fomly lawer' aggregate r:.sk tharf the
MLE (sample me'an) , as shown above, but may result_in. J.ncreased risk to
individual components of 4, In partioplar, the Stein est":.mator-may do
poorly in estimating Qi w:.th very large‘ or very small values. ‘]!herefore,
e\rery/though I l(x) provides better’ prediction in the aggregate, bne may-r o

’ grpssly err with indj.vidual canponents .A,désrrable »comprom.se would
" be to have hoth good aggregate and good ind:.vidual prédict:.on, where

.improved individual prediction wou].d occyy w:.th minmal if any .. loss

translation est:.mators (Efron & 'Morlris, 1972),"

Cin aggregate pred:.ction efficiéncy. This tradeoff may l?e achjeved by

using "limited translat:.on estimators that reduce indiv:.dual. ‘risk for

e

outly:;‘.ng cages and result rn minimal loss in aggregate prediction.

Limited translation estimators are introduced to reducé potentially

"

lakge mean squared prediction errors associated with individual compo~ *

nents. Sliri.rﬂcage of f i values toward x5 values is acccmplished through

the estimate fa,.0<s<1, ofe . (Here, }g“x and fl f]' fs is

defined to be as close to fi&a ss:.ble, sq long as j.t does not aiffer
- 1) (k)= 3}

by more 'than. = Dk _ 1{3.).‘ standard deviatj.ons of x

i
from xi Dk {e) is a constant, obt‘ained from a table of limited

3

3

Da.ta from the baseball example will now be used to illustrate,the
application of limjted translatie_n estimatorg. Notice in Table 1 that
the first player',eb 'eeason average far. exceeds the season averages of
the remaining” players, an example of an o tly:.ng case. In the baseball
example, k =12, and V was found to be i 1. Therefore, Jy obtaining*
valuee for D { 9) and Dk 1( .8) £ ’ -
it is found tﬁat 'gtx} may differ by no abre than :75 from x, and
I‘B(x) may differ by no more ;,6 from x, s In bther words, by apply-
ing f it means. that-if |f - % |< 75 then f is retained; but if
|f1 |> .75, f; "ig set egual to the value differing from x by .‘?5.

f‘v . . ;




‘I'able 2 oontains values for the 12 players for Pi’ Sy,

‘ and .p;a .Values for Pi and Pi are obtained as follpwa“ Consider 2u

{

= «1.35, andf = ~2. 49; ‘therefore I'x - fl-l =. 1 X

(A
g

the first pla.yer, xi

. . 1 14 > . 5: 9 -2 10; and ] - f I v14> 05‘60 Thus,; .-

~ i8= -1 9l.. 'I‘heser values are rhtxanslated to obtain ﬁ .3'46 , and -,
i+ ¢*_ .0’ o

~§'3 L2 360. Nobice mt Pj.= "\ 346." Therefore, ﬁ pi‘ovides better

. Jprediction for, this. individual- than ﬁi or ﬁi = klso néte that ﬁi is
close:r: to t.he Pi va-lue 'te'lan ﬁ}- AlY three pr.‘ediction estimates. are’
g closer than the M‘LE value of Yi 400, In thé case of the. second
playwer, though.. the Pi ‘value became farther removed"'frqmw
"'-.\. vﬁue bf s decreases from .l to .9 to~ .8. ’I‘herefore, the t.ranslations
- age increasing the squared prediction error for. that player rather
than decreasing it. I'n the case of - the fifth individual, |f - X | ® .75
" and [f - x | < .56, 8o theeestimated value remains the same under trans-
lations s = ..9 ‘and s = .8, ‘I‘he estimated \/lue will not chande um;_il
lf ] ' '"'{.33‘. Ih this’ parﬁicular example, the txanslation is in-
creasing the error for many ; individual comQOnents by indreasing the dif-

ference, between the estimate and the true score.

t

-t . r ~

v B gy L
Recall that the' efficiendy’ of Stein's’ estimator, &, re]sp.tive

7 to the sauqile mean was defined to be
£( "9132" “‘
—,3—2 = 3:746. .
B i " 91) . .
“The efficiency of the limited translation estimator I’ {X) rel’ative to
the pample mean is defined tosbe , o

. LY
- > . o ‘h
2

L]

E{x - j_) ,

Ek; 2-:”:.": . . "'_-.;:-; .‘. h

" [ .

. which équala 3. 077. Similarlg, , £or | f (x) the relative efficiency
. equals-z 462. ‘I‘hérefore, ,in ‘this. example f {x) has tHe greatest éffi~

~r-

ciency of the tjn:ee estimators, f al' 9 . d f

L




, .‘I‘able:-z-,A e

: B'atiiing ‘Averages ‘and Their Estimates .-

.-_ ,:':. a

- e ) ‘- ) - iy . b
. . - ' )\.9 09 Jo- vB
Yi(xi) - : " ' .. ' ,.I ] Pi (I,i ). "“ :fpi {fi )

- . . - D \l,_ N ..
;‘400 _(—1..351' T W31 "(-2._{19)' ) *.345.1-2«]. } .360 (-L.91)

.378 {;;:65)' 311 (-2.60) .35{'{-2.4 )y 338 (-2 22)

‘ | .356 (-1.97) ¢ 303 }%;l71) 1303 (-2. 1 316 (-2.53)
. (<7.78) .29 (-2.82)  .206 (-2.82) .295--(-2.32)
(~2.60) -.288 tfz.gai'f .288 (-2, - 288 (2. 03)

(Fg;?éi . .282 {~3.03) ;232v(-3.§§) 232 (-3, 03)

e . -
(-3.60)% ..265 (-3.28)  .265 (-3.28) .2_65.,-£r3_.23)-

(-3.95)  .258 (-3.40) 258 (-3.40)  .258 (~3.40)
264 .222'(-3.95) 258 (-3.40) .258 (13.40) © 258 (-3.40)
-226 .22 (<3.95) ,,:.'253‘ (-’3.4'0) .258 (-3.40)  .258 (-3.40)
.’235“ ;éoo (-4.32) .'249.(-'-3;'53)‘ .246 (~_3'.57') .23;1 (~3.76)
:.3:15 178 (-4:70) .24 (-3.66). . .222 (-3.98) \210° (-4.14)

e had kd

1Y . i
(k - 1) (k - 3) y
[ — ] _(.9):-;.75
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Relationshi;p Beﬁ m:_:ate and Individual_@onent Mean
Squa.red Preﬂiction Brroxs . k2

L

prior i.nfomaeion al:ut ;.'ertain examinees pan
modiﬁ.ed estimates of their truée -or univexse’ scores._
the estimator functions as an empirical Bayesian predi ;
progedure is mq’st effectively tised when the examinee has Righly credible
information about specific" ‘éxaminieds, which is tantmountgto having a -
hi.gh brior probability, in the usual Ba.yesian sense.. As %sult, foxr
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these part:.cular exam:.nees, the fit Gf test scores- to "true", sCoras may.

be improved cons:.derably by use of a limited transiatiomest:hmator.

However, "even though the limited trarfslation, estimator yi J,ds;.a -lower
aggregate squared prediction error for the get of examinees as a whole

than does tHe MLE jsample mean).,: it may reduce the overall, eff:.c:.ency

from that ‘of - by increasing the mean squared prediction errors fdr
other exam:.nees in the population. Therefore, overall effa.uc:.ency ¢ ip-
d:.vi'dual ,Squared prediction ¥rror, and pr:.or ipnformation ava;lable on,

some examinees must all be considered simultaneously to determine: what Q\ r}‘fg;

trenslﬁ't:ﬁon, if any, is to be performed. , * i&l had
gl * .

-

if there is uniform prior :.nformation about all examinees ih the * g
score ch.str:.but:.on, it may be best to maximize the aggregate efficiengy.,.
If no information about true scores. is available, it is’ impossible. to @
aggess which individuals have the grpatest squared prediction efrors . -
associated with them. Therefore, a good strategy ,would be to achieve T
maximal aggregate eff:.c:.ency. . :
. . m informatibn is concentr ed, a'::. the extremes of the score
I dlstribution, translations may be applied to bring the predicted.score
* . more in line with the type of score that might be expected, based upon
‘Prior information. 1In accomplish:.ng this reduction, however, one must
. evaluate its effect on aggregate efficiency. First, the md:.v:.dual .
scoyes canbe adjusted until they are’in line with prior expectat:.ons,
and the. regulting dggregate effic:.ency then evaluated. Or, one gan.
focus on attaining.maximuni aggregate efficiency and then notice how" ,
@ the scores of examinees for whom prior inmformation is available are -
influénced by minor translations.- A major decision is to determine
. at what point score~fitting for par.t:.cular examinees becones counte‘r-
productive or inefficient, becayse minimal additional improvements are
achieved at -a high cost to the ﬁereﬂl aggregate efficiency.

/

;, . iy
' A cafe in point is when the "true"‘@’éore does;not fall between the , .
MLEvand (%), but when S1(%) falls between the trie score, and the sample °
mean. Shrinking the difference bétween the sa.mgle mean and sl (?) by ap-

. plication of a limited translation estimator, J (%: actually increases”
“the squared prédiction error for that examinee., The rea.eoning is the .
same when all prior informat:.on on an examinee does not fall between the - .
MLE (sample mean) and S (i) e - s

“There are a.lso several methodofogical considerations -in relating
.« obtained and “true" score estimbtes: Initial trials may underestimate
a‘“true" score if the learning curve has not yet reached asymptote ih
this number of test trials. Llkewise, fatigue' from the last group of

- test items could produce\ an underestimate of the “true" score. -

[ ' \ -
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; Many factors need to. be considered in relating observed soores and
. true scores,” in’ applying limited translations, in optimizing good indi-
“wvidnal amd good aggfegate prediction, and in using prior information on
spec::‘fic examinees productively. The usefulness of Stein's estimator
in behavioral and educational research largely depend2 upon how well
these considera;tions are addressed.

S . <
The scientific J.mpl:cations and practigal aPPlications of the Stein
e\stmato:s * approagh for estimating true scores from observed scoyes are .

“of potentially great, importance. The conceptilal complexity is not much

greé\ter thean that, required for more conventional regression models. The

* empipical. Bayesian .aspect allows the examiner to incorporate his/her own”

degre of ,prior information abouf. selected examinees. This approach

. allows fox, a more accurate estimation of true-sceres, with the corollary,

of 'using, fewdr test items to achieve those true score estimates. . Efron

e

and Morri'? (1975) make the point that "there is little penalty, for using ~

the' MLE. . . ." This assurance may be a sufficient reason fot

" more: careful sexamination of the utility of the Stein estimator and its =~

_l:.mited translation estimators as they .apply to behavioral and squ.al
'science researcn .
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‘the rnle}scussed heré because they cannot ‘give large total.mean s¢uared
- error th
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