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SIMULATION HIGHER ORDER LANGUAGE
REQUIREMENTS STUDY

" Section 1

“INTRODUCTION

In most aplhhations, the use of higher order languages (HOLs)
for software development is common. - However, in a few ereas the use
of HOLs is rare. In general, such areas are characterized by stringent
. computer resources. HOLs have recently made substantial inroads into
< these application areas. In the avionics software area, where size,
speed, performance and reliability of the software for the on- -board
computer have always been vital, HOLs have been used with success. :
The B-1 offensive avionics software is written in JOVIAL J3B; the software
for the F-16 Fire Control Computer is zl1so written in JOVIAL J3B.

The real-time mission software for the Digital Aviénics Inforrnatmn
System (DAIS) and the Electronically Agile Radar (EAR) is being written
in JOVIAL J731. Portions of some flight training simulators have

been written in FORTRAN. . The experience with the use of HOLs in
avionics pro_]ects as well as some recent simulator pro_]ects indicates =
the use of HOLs ih real-time flight training simulators is feasible..

Given that this is the case, an important question must be answered:
which existing HOL, if any, is most suitable-as a potential standard for
developing real time training simulator software? What modifications to,
an existing language must be made to make it suitable? The. study
described m[th1s report defines simulator HOL (SHOL) requirements

and analyzes PL/I, FORTRAN, JOVIAL J3B, JOVIAL J73I, and PASCAL
for su1tab111ty in rnéetmg these requirements.

In de/terrmmng HOL requ1rements for simulator programming, -
we considered not only simulator needs but also work currently underway
. within DoD leading to the possible development of a common high order
programming language for embedded computer systems applications,
Embedded computer systems are defined as systems "mtegral to a
larger military/'system or weapon, «including technical ‘weapons systerns
communications, command and. control, avmmcs simulation, test '
equipment; trairing, and systems programming apphcatmns” [ Fisher,
1976]. Clearly real-time flight training simulators fall within the class’
of embedded computer systems. .

The goal of the common language effort.is "'the adoption of a very'
few (possibly only one) common programming lapguages to be used for
the design, development, support, and mamtenance of all digital computer
software for embedded computer applications ih the DoD'" [ Fisher, 1976].
This means that if the programming of flight:simulators has unique
characteristics not shared by other embedded computer applications and
if these characteristics imply that a SHOL must contain features not needed
in other embédded computer applications, then a- spec1J}-—purpose
_s1mu1ator programming language w111 be Just1f1ed undeT the common

t ) : . — . ~
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programming language effort. Our approach to defining the required -
SHOL characteristics was designed, to help decide how specialized
simulation programmmg requirements really are, Given the high
level DoD interest in minimizing the number of distinct programming
languages, itis reasonable to assume that developing a new or

modified language for simulatér programming will be possible only
if the need can be clearly’ Qemonstrated

:Considering this bac'kg__round, the main objectives of this study
were: - . B
e  to define simulator HOL requirements in a way that can

be related to the DoD common language effort;

. to deterrmne which of PL/I, FORTRAN, J'OVIAL J3B,

: JO VIAL J73I, and PASCAL is most suitable for use or _
modxﬁcatmn as a simulator programrmng language

. to recommend methods for 1mp1°ment1ng and enforcing
the use of a standard simulator HOL.

The remainder of this report describes our findings and the methods we
used in obtaining them. ’

-,



Section 2 - _ .-

OVERVIEW |
' x
In this Section we d_iscu'ss the general. nature of our study, the
methods we employed to-reach the conclusions reported later, and
give an overview of the remainder of the report. : . -

‘Although the main objective of our study was to define simulator
HOL requirements, a subsidiary objective was to, devel.op a ger\eral
approach for determining HOL requirements in a given application area-
and to then apply this, approach to the csimulator area. The general
‘approach we have. dev1sed focuses on three sources of language requlre- '

. ments: . :
e thé programming environment, i.e., factors pertaining tc
o the development and maintenance env1ronment of a
* particular appl1cat1on area, e,g.; g
) o . Y’
2 ° long or short prog*am 11fet1me
‘e programmer background
o ' .potential for 'program portabi-_lity
® compller eff1c1ency reqmrements .
® functional requ1rements i, e., the programs developed
for a given application. These programs can be subcla531f1ed
into two groups: :
‘. '.prograrr'i's that perform app‘lication"funCtionS; and
° programs that ass1st in developmg other programs,
i . e.g.{ data file generation ‘programs, debugging
programs, etc. . ,
» &S o . . ! ‘
° lanpuage design principles, i.e., -accepted and emerging

program development-methodologies and principles, . 3
independent of any parti¢ular application area and reflecting
current thinking about what the properties of a ”good"
programming language are, e..g.,

. e linguistic simplicity and uniformity” ,
® support for structured fzrogramming
e _ support for modular programming”
° R
4.




The first portion of our studyj\yvas devoted to describing the simu- ,
lator programming environment and simulator functional requirements.
The Link Division of the Singer Company, as subcontractor to SofTech,
was our principal source of information on simulator requirements.

Link provided simulator programs and documentation for our analysis.
They later reviewed our characterization of the environmental and o
functional requirements to confirm that they accurately reflected simu-
lator needs. Although Soffech was responsible for the language analysis,
Link was responsible for ensuring that our language conclusions were
based on an accurate understanding of simulator requirements.

~ Our findings regarding environmental requirements are
described in Secticn 4; functional requirements are described-in
Section 5. To guide and support our analysis of-functional require-
ments, a benchmark model of a generic flight training simulator was
developed. The benchmark model is a key part of our analysis because
it represents the entire. set of programming tasks relevant to simulator
development. Our analysis 6f language requirements is keyed to this
.model. Because of the importance of the model, it is discussed |
separately in Section 3. ' ' =

Our analysis of the simulator programming environment, simu-
lator program functional characteristics, and language design principles
resulted in the specification of simulator HOL requirements given in
Section 6. This specification of requirements serves as the definitive
basis for evaluating how well existing programming languages could”
serve ‘in programming simulators. * It serves to document the key
" implications of our study of programming requirements concisely and

" rigorously. ‘ L . ‘

To fagilitéte comparison of si: wlator requirements with the .
“proposed Common Language requirements, the requirements specifica-
fion in Section 6 has a structure similar to that of the IRONMAN T
[U.S. DoD, 1977]. The IRONMAN requirements specification is the .
latest in a series of evolutionary language requirements documents
issued as part of the Common Language effort, "It is the require-
ments specification being used to'direct preliminary language design -
efforts completed in Februrary 1978, The IRONMAN specification
is the most recent specification of language requirements and thereby
most suitably represents the current DoD position on embedded
computer application requirements, - '
, . Based on our modification of the IRONMAN requirements specifi- -
cation, we selected a set of language features satisfying the requirements
using a computerized database of 2267 language features [Sof Tech, 1977).
This list of features was also used to describe each of the programming
. language s being-evaluated, namely, PL/1, FORTRAN, JOVIAL J3B.
JOVIAL J73I, and PASCAL. By analyzing which fea tures satisfied the
SHOL reguirements specification and were present or absent in each of
these languages, we decided how well each language satisfied the SHOL
requirements, T :

4
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Section 6 contains both the SHOL requ1rernents spec1f1cat10n and

. our evaluations of the candidate languages with respect to the require-
ments. The value of comblmng the requirements specification and

the evaluatmns in this way is ‘twofold:

»

@ ‘a particular evaluation is most understandable when

preceded by a statement of the requ1rernent under
consideration.

° a requ1rement can frequently be understood more readlly

by reading the discussion of how’ well the varxous languages
o meet that requirement. . :

An, over¢11 summary of how well each language satisfied the rethrements
_is given at the end of Section 6. PL/I and JOVIAL J3B were judged to be
the languages best satls1fy1ng the requirements without madifications,
_although only FORTRAN is’ clearly the leasc suitable language. b

Since all the 1anguages failed to satisfy some of, the simulator
language requirements, we considered what 1anguage modifications
would make them 51gn1f1cant1y more useful as simulator orogramrmng
languages. To assist in this analysis, we divided the simulator require-
. ments into two classes: those considered essential both to accomplish
all necessary simulator, programming functions and to meet the more
general SHOL design goals of reliability and maintainability, and those
considered beneficial in a new language-but not of sufficient importance
that it is essential to modify a language to satisfy them. In essence,
if the non-mandatory requirements can be satisfied with a minor
language modification, then the modification should be made, but if the
modification is complex or changes the fundamental syntactic and -
semantic constraints of a language, then its impact as a change outweighs
its benefits to simulator programming. For example, changing PASCAL's
semicolons to statement terminators instead of separators would be a
non-mandatory modification.

Modification issues are discussed further in Secti’(')n 7, and the
modifications selected for each language are presented in Section 8.
Based on the extent of the modifications and the usefulness of the modi-
fied Ianguage we selected PL/I as the language most suitable for
raodifications. Th1s dec1s1on is discussed at the end of Section 8.

1

~

As the final part of our study, we addressed how to support the
use of a standard SHOL. Section 9 discusses these issues, which
include language design and implementation approaches as well as
recommendations for 1ntroduc1ng and establishing SHOL usage.
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THE SIMULATOR BENCHMARK

\
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A significant part of this study involved familiarization with the
programming requirements of.flight simulators. To assist in this
analysis a benchmark simulator problem was developed. This bench-
mark models a generic flight training simulator, i.e., it does not
describe the operation of a particular simulator, but rather incorporates
the characteristics typical of simulators in general. The benchmark
served.twe major purposes in the study: '

. e It provided an-overall framework for the entire analysis of
simulator functional requirements.

. It provided a frame of reference for presenting results.
v 'The material describing language requirements (in Sections
4, 5, and 6) is cross-referenced to components of the
benchmark model, allowing the reader to: '

é) " Determine the simulator area(s) from which a
particular requirement derives.

b) Determine those requirements which derive from a
particular similator area.

Development of the Benchmark

The basis of the benchrmr ark development was our analysis of .
simulator programs and desig::documents. The purpose of this effort
was to determine the types of processing required when programming
flight training simulators. A midjor concern was to determine what
functions must be performed rather than how they are currently imple -
mented, since the goal of the SHOL is to permit programming the
required functions rather than duplicating the programming techniques -
_which are currently used to realize these functions. Thus, the effort
had.to go beyond a simple investigation of the programming techniques
currently employed. For this reason, the benchmark developed is a
functional, rather than an operational, representation of a generic
flight simulator. ‘

The primary inputs-to the programming analysis effort were
provided by the Link Division of the Singer Company, serving as a sub-
contractor to SofTech. At the start of the study, Link presented a two
day orientation briefing to SofTech personnél. The briefing included
presentations by representatives of each of the major simulation areas"
as well as discussions of the overall application. The briefing provided

.a general framework for the subsequent programming analysis and also
highlighted issues of particular concern to simulator personnel regarding
the use of an HOL.

| )
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- A
Subsequently, Link provided extensive documentation to. SofTech
for study. The mater1a1s studied were:

® UPT (Undergraduate Pilot T’rainer) - 26 volumes of design
- documentation plus listings, representing the entire system

° F-14 - documentatmn and l1st1ngs from fhght and nav1gat10n
subsystems

) 214A - documentation and listings from the visual (camera/
model board) subsystem .

| SMS (Shuttle M1ss1on Simulator) - documentation from the
visual (digital image generation) subsystem

° other tactics programs - listings (names of systems were
not provided to SofTech)

The fact that a single complete system (the UPT) was studied was
important to the effort, as it guaranteed that no major functional aspect
of simulator programming was overlooked. This would not necessarily
be the case if only isolated programs selected as ''representative! were
studied; the selection of representative programs would have required
knowledge that was net available prior to the analysis effort. Certain
areas not included in the UPT materlal were covered by the other
simulator documentation. These were:

° "‘camera/modela’board visual (The UPT visual system was
done by a subcontractor to Link,.Redifon, and was thus
not included in the UPT documentation)

° computer 1rr§_age generat1qn-V1sual

e tactics

~

Other material wds studied which duplicated UPT areas, to‘help‘ensu_re
that the analysis concentrated on the functions to be performed, rather
than on a single-approach to programming those functions.

Other important advantages to the study of actual simulator
programs were: _ .

° It was possible to make judgements concerning the degree of
efficiency actually required of the object code which the.SHOL
translator must generate. That is, if a certain algorithm
not displaying the maximum ef{ieien;:y is observed to be .
adequate, .it is possible to conclude that comparable code ‘
generated by an HOL compiler will also be adequate.




. e It was possible to isolate certain areas of potential
- inefficiency which occur frequently and which it is thus
particularly important that an HOL compiler avoid.

. Areas where use of an HOL would have a pa'rticularly
beneficial effect on program readability could be observed
and highlighted. v

As the program analysis proceeded, informal written observations
on the programming requirements of the various areas were prepared
and submitted to Link for comment. This helped guarantee that.no
erroneous conclisions were reached. Similarly, Link reviewed the
benchmark model as it was developed + as did the Air Force. Based
on comments received, the model was reworked. Thus model develop-
ment was an iterative process, with each iteration reviewed by
simulator experts.

Presentation of the Benchmark . i ' —

"~

The benchmark model, contained in Appendix A, employs ‘
SofTech's Structured Analysis and Design Technique (SADT }(Russ, 1977].
SADT has been found to be a valuable technique for communication:
.between individuals performmg analysis in a given problem area and
individuals who are experts in thatsarea. The simulator benchmark -
model assists in commumcatmg the findings of the SHOL" investigation
to 51mulator experts.

‘Thle model consists of a set of diagrams Wthh form a hier- -
archical decomposition of a generic flight simulator. Thg diagrams
are ,made.up of boxes represent1ng activities (functions performed), .and
arrows representing-data which is an input or an. oufput of these functions."
Each diagram is itself an expansion of an activity box.which appears as

-one of the boxes on a preceding higher level diagn; m (its parent).” The
arrows entering and exiting a diagram exactly match the arrows
! attached to the box on the parent diagram. F1gure\3—1.\shows a sample
\SADT diagram and explains the notation used.

The first dtagram of the benchmark model, node A 0, contains
a single box representing all functions which must be programmed in’
developing a flight simulator. The decomposition of this diagram
appears in the second diagram of the model, node A0, which consists
of three activities: : ' ‘

° build simulator
. test simulator

. N -
. simulate




A

The diagram shows that the specification of the aircraft operation, and
performance requirements which must be met by the simulator, control
" the building and testing activities. It also shows that building and -
testing are an iterative process. The "simulate' box shows the student
actions as an input, the simulated aircraft reactions as an output, and
the mstructor mputs as a control of the activity. An additional output
_of t}us activity is the )q;.formatxon on student actions wh1ch is displayed
“to the instructor. : »

.. . - Subsequent diagrams further decompose these activities. In
particular, diagram-Al decomposes box 1, diagram A2 decomposes-
box 2, and diagram A3 decomposes box 3. The remaining diagrams’
further decompose boxes of diagram A3, ''simulate, ' which is the.
major part of the model, particularly box 3 of A3, ''model aircraft
functions. " _— '

I
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Seét_ion 4

PROGRAMMING ENVIRONMENT OBSERVATIONS

‘ - Part of our general approach to defining HOL requirements in a
given application area is to evaluate the effects of the environment
in which programs are developed and maintained. Environn.ental
factors discussed in this Section are: R IR

& 5

° program developrﬁent meth()dvs'(gr'oups.v.s. individuals)
° progr@mmer‘ baékgroﬁnd_ and expefiqnce :
. %
.o compilation. size and épeed r_eqqirel.‘hents'
° -Jobject-codé size and si)eed require’m-ents
° pfogram life"til;n.e and stabiiity ‘
] progrém reusability poteﬁtial 'l
¢ program portab‘,ility potenti%;l

-

Each of these factors has some influence on what language features are
most suitable for simulator programming: In subsequent subsections,
we discuss the environmental factors for simulator programming and
their relation to language featires. The information presented here on~
the simulator programming environment was obtained primurily from
discussions with simulator personnel. The findings presented in this
.and the next Section were used in defining the detailed language
requirements specified in Section 6. ’

)

4.1 | Program Development Methods

Simulators are very large systems programimed by many
programmers rather than by a single individual. Coordination between
these programmer’s should be supported by the SHOL. In particular,
programmers must be able to interface their programs with those
produced by others and must be able to.access system data in a consis-
tent manner. The SHOL should diagnose conflicts in'these areas. It
might also be desirable to control (or at least be able to detect) access
to data by a program which should-not read and/or alter that data.

' Section 5.1.1 discusses the methods currently used to support data
' coordination in simulator development. ’

\
i

The large number of programmers implies a requirement for
separate compilation of programs, i.e., individual programmers must
be able to separately compile, modify, and test their programs and

i
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then integrate them to form the complete system., Some support for
the 1ntegrat1on process and for system level testing is also essent1a1

Use of system data by 1arge numbers of programmers requires
libraries of data definitions and subroutine declarations, These
facilitate consistent access to global data and allow inconsistent
assumptions,about forms of data structures and parameters to be
detected at compile time. Such inconsistencies can ea sily arise when
groups of programmers are involved,

~

v

4,2 Programmer Experience
Simulator programs are produced primarily by\1nd1v1duals
trained in an engineering specialty rather than in computer science.

. This results in a programmer prefe?ence for language notation which

reflects the engineering notat1on uséd in the simulator design descr1p—
tions. An example of this is"the use of conditional expressions in
program documentation, as disc¢ussed in Section 5.4.1.1. Inclusion of .
this feature in a SHOL is primarily justified by this documentatxon
practice, ,
‘\

Another cons1derat1on based on programmer exper1ence {s a
strong preference for fixed po1nt as opposed to floating point. (The
redsons for‘this are discussed in Section 5.2.2.1.) A SHOL should
provide programmer control of real number representations. Much ,
programmer, concern about the ‘use of floating-point comes from fear of

.loss of control ‘over 51gn1f1cance in computat1ons Concern about the

space requ1red by certain real number representat1ons is also apparent,
The SHOL should provide access to the various representations available
on the target corrputer :

Most s1mu1ators are currently implemented in assembly 1anguage
with occasional uses of FORTRAN. Most simulator programmers have

. not been exposed to other languages. In select1ng/de51gn$ng a SHOL,

. i(a

consideration should be g1ven to the problem of retraining programmers -,
in the language, espec1a11y in view of the large number of individuals
involved. When a choicé is to be made ‘améng several language features
sat1siy1ng a particular functional requirement, programmer background
indicates that the choice be ‘made on the grounds of 51mp11c1ty of use and
similarity to commonly-used programming languages.

Another connderation at least in the L1nk env1r””\ament is the

~use of a Quahty Assurance group to optimize the prograabms. produced by

the engineers. This dictates a requirement for program understand-
ability, to ensure that changes made by this group do not alter programs
Iunctlonally Language features supporting understandability are
dlscussed in Section 4.5,

Ky



4.3 Compilation Size and Speed Requirements

_ In simulator develapment, constraints on compiler performance
are imposed by the computer being used for compilation. Conventionally,
compilation is done on the target'computer, i.e., the computer on which
the simulation programs will execute, Typically, these computers are
of moderate size-and speed. Examples of machines ‘used are:

"o PDP11/45
© Honeywell 316, 516
e - Interdata 8/32
N SEL 3250
® Harris DC 6;02‘4/4 \

This practice of compiling on the target machine would require that fhe

. SHOL be compilable on machines of this size. (Note that disk storage

.. is available with all of the systems.) Thi triction would also dictate
" that the SHOL compiler be implemerited in a Enguage supported on the
target machine. Clearly, development of compilers in each of the
various target machine assembly languages would be costly. An-alter-
"native to this would be implementation of the SHOL compiler in the SHOL
(bootstrapped). This would require that the SHOL contain the capabilities
required for the compiler implementation, This would probably require
no features not also needed to produce the various offline simulation
support programs, several of which are special-purpose compilers.

Constraints on compiler size and speed might also affect the
amount of optimization performed by the compiler. A language offering
: programmer -controlled optimization allows the programmer to limit ‘
the amount of opti_nization performed by the rompiler, thus increasing
compiler speed and'decreasing core requirements. The programmer
"will then perform optimization explicitly through appropriate use of the
HOL. . ~ @ :

The constraints described above could be avoided by use.of a
single, larger-scale host computer for compilation., A depacture of
.this sort from the current practice involves considerations which cannot
be fully addressed here. Among these is the requirement for program
modification in the, field, discussed in Section 4.6, o :

4.4 Object Code Size.and Speed Requirements

Object code size constraints are imposed by the available core
on the target systern. A typical simulator might occupy 100K words of
core -- 80K for program and 20K for data. An additional constraint
stems from-the requirergiepb to deliver spare core. (Though core can

[ WA
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be _added, it is desirable to keep costs down and to stay within the
addressmg capacity of the machine.) Simulator programs studied
reflect a desire to conserve core (e.g., packmg of loglcals, use of
fixed point for large data tables when floating point would require dquble
words), but not at the expgnse of cperating speed,

Speed of object code execution is of primary importance in simu-
lation. Clearly, the simulator must respond to pilot actions as quickly
as the actual aircraft. Simultaneously with this realtime response,
other functxons such as performance recording must occur. Not only is
speed itself important but coordination of the various system components
is vital. Small discrepancies between the visual and motion systems,

. _for example, are d1scern1ble to the pllct.

i3

[3

Study of the sxmulator programs has verxfxed the concern for
“time efficiency over: space efficiency., For example, Section 5.2.9.2
discusses the use of inline subroutines to increase speed of e¢xecution.
The ability to specify inline expansion of subroutines-(as opposed to
calling the subroutine).allows the programmer to trade space for
execution speed. The specification should be part of the subroutiné
definition, and calls for both types should be written the same way.

This fac111tates changmg the method used (i.e., only one definition, not
numerous calls must be changed) when tuning for the best time-space

" balance, - . '

Another feature reqLured to provide object code efficiency is
programmer control over packing of data. This feature allows the
programmer to choose between the space savings possible with packed
data (e.g., packed Boolean items) and the speed of accessing provided
by unpacked data. : A choice of parallel or serial table allocation also
.provides control over executxon speed, since data can be arranged to
support efficient accessmg '

- The nced for. execution speed has dictated the need for multi=
processmg More than one CPU (typically three or four) are requxred
to obtain the desired performance, Multiprocessing requires that a
SHOL support inter ~-CPU communication and sharing of data, Section
5.4.2 discusses language features directly supporting multiprocessing
In addition, conditional compilation (Section 5.5.2) is useful in adapting
programs to the CPU on which they will execute. It allows gssentially
the same program to operate on different CPUs., .

4.5 Program Lifetime and Stabxhty

In general simulator programs have a long lifetime, since
simulators can'be used for years before becoming obsolete. This
1mphes that the programs must be understood and modified by
programmers who did-not produce the original program or make previous

- modifications. A SHOL should.assist in making programs\understand-
able so changes can be made quickly and correctly by programmers

14




unfamiliar with the program. Thus, program readability should be
stressed over programming ease (whlch might be preferred for programs
with a short 11fet1me) : ,

Simalator programs are fairly stable once they are put into use.
Changes are most frequent in the tactics simulation programs, e.g.
the programs emulatmg the onboard computer software. Frequently
the simulator user (the customer) make3 program modifications in the
" field. Modification by individuals not involved in program creation and
also not primarily involved in simulation. engineering d1sc1p11nes demands
program understandability and readabn1ty

Among the kinds of language features that foster understandability
" areé, for example, “he -..atus, or enumeration, data type. Section 5.2.3"
presents several examples of the use of status data in programming
simulator functions. Explicit data declarations are also important;-

The type of each wvariable'should be stated explicitly (and in a readlly-
findable location in the program text) In additien, the ability to assign
mnemonic names to constants (e.g., the use of the name PI for the
constant 3.1415...) enhances understandability. To prevent modifica-
tion errors, such constants should be a d1st1nct 1anguage entity, not just
variables 1.11t1a11zed to desired-values.,

Error prevention and error detection features also help to reduce
modification errors. Among the features facilitating error prevention
and detection are strong typing and range declarations, Strong typing
means that implicit type conversions are forbidden(e.g., when assign-
ing a value to a variable). Forbidding implicit type. conversions helps
to flag errors when programs are modified. Similarly, range declara-
tions, i.e., the specification of the intended value range of a variable,
helps to prevent and detect errors.  Range information is readily avail-
able for simulator data, so a requ1rement for-its specific inclusion in
programs should not present a problem. -

Many of the language features dictated by general language
design principles also contribute to program readability and modifiability.
For example, uniformity in language syntax, structured programming
- constructs, and simplicity of the language all make programs easier to
understand A comment facility which is flexible and convenient to use
“also encourages production of understandable programs.

"The implications of onsite simulator program modification are
twofold. If the modifications are made by patching, thé SHOL compiler
must provide listings of machine code representatlons\of programs and
possibly other loading/relocation information. If modification is dore
by recompilation, it is necessary that the” compiler operate on the target
machine (see Section 4. 3) since the users would not necessarily have '
access to the host machine used by a cross-compiler.

[
15



4.6  Program R.eusability

Program musab111ty (as opposed to program portability, which is
-discussed in Section 4.7) is concerned with the ability to reuse a program
for different purposes for the sarme'target computer family. An
example of reusability is the generation of slightly different subroutines
adapted to the different simulation capabilities of the cockpits in the
Undergraduate Pllot\ Tramer simulator. s

Features supporting reusability are essentially program genera —r/'f/

tion features, i.e., 'they permit different versions of a program to be
easily compiled. ,Cond1t1ona1 .compilation is an essential language
feature for fac1htat1ng program reusability since reusable routines are"
often too general purpose for efficiént, special purpose use. Conditional
compilation is used. to remove unneeded generality from such a routine.
Use of constant names is another way of adapting a program to different
-~eonfigurations, " These constant names can be used to specify configu-
' ration-dependent constants for reusable modules, : N

fe)

Neither conditional compilation nor the use of constant names
permits onsite patches to programs as a means of adapting to new con-
figurations (e.g., if code has been cond1t10nally dropped out, a patch
cannot access’it). The use of patches to make the kinds of changes.
achievable throygh conditional compilation and use of constant names does
not appear to be.a significant practice in simulator environments, Con-
figuration changes often require recompilation/assembly because of
their complexity.

1

4.7 Program Portability

Program portab111ty is concerned with the use of HOL source
code for different target computers. There is greater need for port-
'ab111ty in the simulator applications area than in most. Many programsgs
change very little from one simulator to the next; e.g., the navigation
and communications programs; simulation of radio stations does not.
depend on the particular aircraft involved, A similar situation exists
in the tactics area when simulating radar emitters and various types of
weapons. Even in simulation areas more dependent on thé*aerodynamics
of the aircraft, portablhty is possible (e.g., solving six degrees of
freedom equations). Visual systems also have much the same proces-
sing from one system to the next (e.g., probe.and gantry control,
altitude limit, v1sua1 effects, and cultural lighting controls). Such
systems are qeldom 1dent1cal but have considerable processing in
common. S&nce there is significant potent1a1 for portability in the
simulator area, a SHOL should encourage development of portable
programs. Indeed this is one of the major advantages of using an HOL
as opposed to assembly language..




5 / .

A truly porcable program of course, must not be target machine
- dependent. This goal is probably-\mreahzable for simulator systems as
a whole, though it may be poss1ble for some modules, However,
mach1ne dependent code can be isolated, thus fac111tat1ng the changes '
: required to transport the program,

Mach1ne dependency arises /J.n several ways. The most obvious

"is in the programming of funct).orxs whick cannot be 1mplemented in the
. HOL, and must be implemented in assemH.y language. {Section 5.7 -
discusses these functions;. as required in simulator programming. )

- Assembly language code should not be intermingled with"HOL source

. def1mtc1y necessary to

" code but should be encapsulated to ease its replacement. The HOL
should. probably require that assembly codé be used only in separate
‘assembly language subroutines. In the programs studied, most furictions
. requiring assembly language occur in the monitor area, whmh might
well be an area where not too much portability <can be atta1ned due to

the nature of the functmns required. = - . A

‘Another instance of mach).ne dependency is in programmer-'
specified ddta packing. As indicated in Section. 4.4, this feature may
be necessary tao attain r quired time and space eff1c1ency It is

Eescnbe I/0O data, as discussed in Section
5.3.4.1.1. -However, it implies that-programs cannot be’ ‘transportéd
to a machine with a d1fferent word Yength (at least; not to a smaller °
word 1ength --a 1arger would s1mp1y mean a waste of space)

- Machine- dependent paekung can bé avo1ded by the use of mach1ne-
independent packing attribuites when contral’over packing is needed just
to make time-spacetradeoffs. Packing attribates allow a programmer
a choice of several degrees of packing {e.g., unpacked, medium, dense,
tight) without-requiring actual specification of bit positions. The packing
attributes are then compiled appropriately for tl;zjrget ‘computer. :Data
packing specifiédin this way does not hamper pottability. Fer I1/0 inter-
face data, programmer specification of actual bit-level packing is
necessary Such specifications, which are machine-dependent, should
be encapsulated in some way to support isolation and change. They
might, for example,’ form a separate block or module of the global data -
base . . -

- A third source of machine dependency is programmer rehance
on 1nt'erna1 representations of data, e.g., on the available range and’
precision of real (fixed or float1ng) values for a particular target
machine. A SHOL can assist portability by prov1d1ng built-in operations
to access implementation information, such as -precision, radix, and
exponent range of floating point values A related language feature is

. the ability to spec.fy machine conﬁguratmn constants reflecting, for
example, machine model, word sizes, etc. These can then be used -
with conditional comp11at1on to 1nc1ude/exc1ude machine- dependent code.



Section 5

PROGRAM ANALYSIS OBSERVATIONS

Part of our general approach to defining HOL requirements
is to analyze how the functions to be programined (as opposed to
the environment in which the programming tikes place) affect the
choice of language features. In this Section, we present our
observations of simulator programming character1st1cs as revealed
by our study of simulator programs and discussions w1th simulator
personnel. Thes€e observations are part of the basis for the detailed
language requirements specification given in Section- 6.

The simulator program functions and support program

. functions are described in Appendix A in the form of an SADT model.
This model describes the functional components of a simulator and
demonstrates our understanding of the simulator programming tasks.
The remainder of this Section contains an analysis of how the
functions to be programmed can be supported by various HOL
featuTes. Our observations about the relation between simulator
program functions and HOL features are cross-referenced to the

" relevant parts of the SADT model (e.g., a reference to ''diagram
A33" is to diagram A33 in Appendix A). Similarly, the model
diagrams reference this Section of the report. For example,

-

compute
—p| altitude }——P»
' limits

T 3.4.4., 5.1.1

indicates that language requirements for '"compute altitude limits'' are
discussed in Sections 5.3.4.,4 and 5.5.1.1. (Since the first digit of
all section references is 5, this digit has been omitted from refer~
ences in the model.) '

The analysis presented here is grou’ped by language area.
The overall organization is:

\5. 1 Storage Management
5.2 Data Types and Operations
5. 3 . Aég regate Data Types
5.4 Control Structures’
SJS. Prog.ram Development Aids
5.6 1/0

5.7

Machine Dependency




5.1 Storage Management

5.1.1 Global Data

The primary storage management facility in the Link simulators
is the 'datapool', or system symbol dictionary. System data in
this global data base is used and/or updated as required by the simu-
lation programs and by the cockpit and instructor station I/O
processing. Diagrams Al, A3, and A33 illustrate datapool use.
The datapool is similar to the JOVIAL COMPOOL. When programs
reference datapool items, the address and type of the item is
" retrieved during assembly/compilation by the database system (see
Section 5. 5).

Datapool items are grouped into blocks. Each item's location
is defined by its displacement within the block. This group1ng
facilitates relocation as well as allowing related 1tems tc be grouped
together. The data is broken up into 5 groups:

/
private - cockpit dependent arithmetic
private - cockpit independent.
common - cockpit dependent logical
common - cockpit dependent arithmetic
common - cockpit irdependent
'Common' and ‘private’ refer to the common and private memories.
.Cockpit dependent data is data of which there are several copies,
one for each cockpit. To provide the user with access to the current
cockpit data, the monitor (in the foreground dispatcher - diagram
A312) initializes index registers to the base addresses of the data
areas for that cockpit. In the UPT simulator, for example:
register I = private - cockpit dependent arithmetic
register K = common - cockpit dépendent arithmetic
register V = common - cockpit dependent logical
The V register is a base register used for bit access instructions.
Its contents here will actually be the same’ as the K register,
since the common cockpit dependent logical and arithmetic data

occupy the same data area. There are actually only two areas,
private and common. : : :

The programs which access the cockpit dependent data then
can reference, for example:

var, K

i T
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and obtain the value of 'var' for the current cockpit. Ordinarily the
index register will be dedicated to this purpose. However, the
monitor also places the current values in global variables in

case the user has to destroy the register values and must then
restore them. The programmer need not zctually know whether a
particular item is-in common or private memory. Cockpit
dependent variables are referenced by

var, R R

and the assembler (as medified by Link) substitutes either 'I' or
'K' for "R', based on inforr ition from the symbol dictionary.

An HOL implementation might group the data into large
tables, one for private data and one for common data, where each
table has 4 entries, one for each cockpit. This table could then be
indexed by-the numbet of the active cockpit, so that

-var(CKPT)

would refer to the value of 'var' for the current cockpit. Such large
tables, however, are rather unwieldy, and their elements would not -
all be simple items, but would sometimes be tables, arrays, etc.,
leading to confusing subscripting. A much better representation
would be something like the based block of PL/1, i.e., a block
based on a pointer variable established for the current cockpit. In
any implementation, it would be desirable that the compiled code
dedicate an index register to the block. (Typically, most statements
in the program will reference data in one of the two blocks, so a
good compiler should come close.) Statements explicitly dedicating
an index register are also a pos sibglit’y.

The datapool as used by Link is an important toc: for program
‘reusability. The concept is used in each simulator, and many data
items are the same in various simulators. Some such global data
definition facility seems essential in a simulation HOL, howevgr it
be provided. It might he desirable to restrict unauthorized access
to global data more directly in this facility. Currently this can be
done only indirectly through examination of the cross-reference
listings. ' '

5.1.2 Local Data
The simulator programs also make use of a temporary

storage area (50 words in the 214A simulator, for example). These

are shared by all the programs. Programs using them cannot call

one another, but this is nof a problem. Generally programs are

initiated from the monitor and return to it on completion without calling

other programs ( diagram A312 illustrates task scheduling). Programs

using the temporary storage area cannot be reentrant but reentrancy is

required only in a few monitor subroutines. 4
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Use of these temporary locations can make programs unreadable

if the temporary storage names are not equated to more meaningful
names. As an example of this problem, see Figures 5-1 and 5-2,
which illustrate storage usage in display system processing (Box 4
of diagram A35). A simulation HOL with a similar local stqorage
strategy would have to provide some means of assigning meaningful
names to these locations in the various programs which use them.

1. SYT02 - CCL WORD 1 ADDRESS

2. SYT93 - CCL WORD COUNTFER

3. SYT04 - CAB RANGE

4, SYT05 -"CAB WORD 1 ADDRESS

5. SYTO06 - CAB WORD 2 ADDRESS

6. SYT07 - CAB WORD 3 ADDRESS'

7. SYT08 - FIELD WIDTH

8. SYT09 - NUMBER OF FRACTIONAL DIGITS

9. SYT12 - INTEGER TO BE CONVERTED

10. SYTI13 - FRACTION TO BE CONVERTED

11. SYT15 - ANSWER STORAGE

12. SYT17 - CAB WORD 9 ADDRESS

13. SYT24 - RETURN ADDRESS
T

Figure 5-1. Temporary Storage for Conversion
Control Program
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1. SYTO00 - RETURN Address

/_l

2. SYTOL - CCL Address

3. SYTO07 - Cockpit Nufnber

4. SYTO9 - Address of CAB Word 1
- 5. SYT21 - .Address of CAB Word 2

6. LSYT23 - Address of CAB Word 4

7. SYT24 - Address of CAB Word 5

8. SYT25 - ‘Address of CAB Word 6

9. SYT\26\ - Address of CAB Word 7

{0. SYT27 - Address of CAB Word 8

11. SYT10 - Field Width

~ -
| "12. SYTI1l - Number of Fractional Digits
13. SYTI12 - Sign Flag, |
14, SYT20 - Deci;nal Ilspint Flag
15. SYT13 - Integer
16. SYT14 - Fraction
17. SYT17 - Input
18. SYT19 - Answer
19.  SYTO03 - Private Cockpit Base Address
20. SYTO04 - Command Cockpit Base Address
Figure 5-2. Temporary Storage for Parameter
Insert Program '
:\\_7 | . 22 o




5.1.3 OWN Data : .

OWN data is data local to a subrout1ne whose ~value must be
retained between invocations of the subroutine. Some uses of OWN
data were observed in the programs-studied. For example, the
214A program which verifies data -on the modelboard contour map

“(Box 1 of d1agram A3353) retains location information between calls.
Another example "8 the Monitor TTY output driver, wh1ch must extract
a'buffer address and character.count from the parameter table

_on the first invocation, then maintain them by incrementing the
address and decrement1ng the count through subsequent invocations.

/ A third example is the timer data (fire and overheat timers,
indicated by the two-way output of Box 1 of d1agram A33135, and
¥cing txmers, Box 2 of the same diagram) used in the Miscellaneous

_Accessories area. These timers are used to keep track of the time.
since the indicated p~oblem (e. g.. engine overheat) was-initiated-
so warnings, étc. can be turned on after the appropriate interval.

’5. 1.4 Ove'rlay' Programs

Overlay programs are used in several instances in the UPT
simulator. For example, system initialization (Box 1 of diagram -
"A31) makes use of programs that are replaced in core after
initialization. Overlays are also called in as required to process
debugging and display handling functions. Some offline programs
(e.g., Math Model Test, Box 2 of diagram AZ2) are also organized
in overlays

. , er

Ord:manly overlay handling is an operat1ng system (OS) functxon
(of course the OS should be implementable in the selected HOL) but
in some machinés the program must call the OS to bring in overlays;
in others, it can be effected automatically. If the program has to
request overlays, the language must make this possible. To be
usable in real-time applications, overlay handling must be
efficiently implemented..

5.2 Data Types and Operations

5.2.1 Integer Data Type

The programs stud1ed show few uses of integers to represent
actual simulator numeric data. Some uses were observed in the
Miscellaneous Accessories area (d1agra_m A33135) for fire, over-
heat, and ice timers. Another use was observed in a weapon
jettison program (Box 2 of A334). In general, however, most
integer variables are used for loop indices, Booleans, enumeration
types, array 1nd1ces, etc. The use to represent Boolean and
enumeration values would disappear in a' language that supported
these data types directly. The remaining uses are not pecuhar to
simulators, (array indices, loop. 1nd1ces, etc.) but are found in almost

any use of a language.
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5.2.2 REAL Data Type o .

7

~
/ REAL data is used throughout t 1mu1ator for numeric
values. Areas in which mathematical processing is particularly
heavy are Aerodynamlcs (diagram A3312), Visual (diagram A335),
and Tactics (diagram A334) modelling and the offline -Map. Plate
Compiler (Box 5 of diagrant A35). Most a1r raft data (speed, roll,
pitch, yaw, altitude, drag, etc.) is REAL d ta,

~,

5.2.2.1 Fixed Point vs Floatmg Point h

Both fixed and floating pomt -are used to represent REAL
values. Link has indicated that fixed point is always selected
unless contract requirements spec1fy floating point. (When
FORTRAN is used to program’a simulator, "however, floating'’
point is used. No attempts at fixed point ar1thmet1c with FORTRAN
integers have been noticed.) This preference fox fixed point comes
partly from a desire to continue using the same data definitions,
scaling, etc. used on previous simulators. Of course, once floating
point is established. the new deflmtlons cohld be reused. Other =~ . -
considerations are the programmers' unfam111ar1ty with floating '
point and concern about loss of control over slgmf,mance in computa-
tions. A third problem is that floating point is sometimes slower
than fixed point (see [Babel, 1974]). Another paper [Goldiez, 1976]
compares the relative speed of assembly language-and FORTRAN pro-
grams; the FORTRAN programs took almost three times as long. The
autfiors blame this:discrepancy at least partially on the fact that the
FORTRAN versions used floating point while the a‘ssembly language
versions used f1xed point.

The UPT simulator, one of the systems studied, uses .
. primarily floating point. On the UPT computer, the Harris DC
6024 /4, floating point is all double word, with 39 bits of mantissa.
in the 214A simulator, also studied, all arithmetic data used is fixed
point. Much of the data in this simulator is two-word (i.e., 32 bit)
“~  fixed point. As two-word arithmetic is not supported by the instruc-
tion set, handling such data takes a lot of code. For example,
subtract1ng one ‘value from another requires five instructions.
Addition, if it is necessary to test for overflow, takes nine
instructions. A high-level language which supported such a data
“type would result in much clearer programs. Certainly, support
of 16-bit fixed pomt only is not adequate.

Reasons for the various scale factors used for fixed point
data are not always-"clear, since the range of data items is not - . .
always apparent. Presumably scale\factors are selected toallow
retention of maximum significance durmg calculations. In all.
instances where the units, represented by fractional values are
—apparernt, the step size is a power of two. Much rescaling occurs
during calculations. Some uses of fixed point fractions occ,_ur when
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1nteger data is being used, resulting in some loss of efficiency.\..‘
For example, the code used in the Z214A simulator to multiply an

integer value of 1, 2, 3, or 4 in RO by a constant 3 is:

MUL #3B2,R0 _ constant 3 scaled with 2 integer,
13 fractional bits
" ASHC #3,R0 shift register pair left 3 to get

‘ result’ in RO

Multiplying by an integer 3 would have given the desired result in
Rl in one step. If it-had to be in RO, a move instruction, more
efficient than a doublé shift, could then be used. Presumably this
sort of thing is due to programmer habit and illustrates that some
inefficiency can be tolerated in some fixed point computations.

Several 1nstances of fixed pomt data occur in the UPT
"simulator. For example, latitude and longitude are often expressed
in BAMs (Binary Angular Measurement), or degrees/360. Some-
times BAMs are represented in double word fixed point, e.g., in
the Navigation Environment area (diagram A332, Box 2 outputs).

The documentation (UPT Product Specification, Vol 1, Navigation
Environment, p. 31) describes the reason:

/s "Since Lat and Long are defined in BAMs (Deg. /360)
* the 23rd bit in the single word is equivalent to 7. 82 ft
which is not enough resolution to maintain required
accuracy. The 48th bit in the double word will be-
equivalent to 4,7 x 10-7 ft."

The UPT also uses one-word fixed point in certain tables to
save space as compared to the two words required by floating point.
This occurs, for example, in the LFI (linear function interpolator)
routines, which are described in more detail in Section 5.3.4. The
‘LFI subroutines atcess a table of values in‘fixed point form. Once
the correct value is found, it is converted to floating point before
being returned. The reason for having the table in fixed point form
is economy of space, since the fixed point values take only one word
while two are required for floating point. The precision allowed by
the single word is adequate for the values. The breakpoint table,
used in the LFI search routines, contains floating point values. The
breakpoints require greater precision. In the case of a two or three
variable LFI, of course, the value table is much larger than the

breakpoint table, so there is more motivation to save space. (In
" the 214A visual system, which is'all fixed point, the value tables
are 21l single precision; the breakpoint ta.:les are sometimes single
and sometimes double precision. Altitude breakpomts, for example
are double precision.)

¢



Fixed point values are also used in the display system
(diagram A35). These are generally values that appear in large
tables or disk files (e.g., saved track data, Box 6 of diagram A35).
Fixed point is apparently used to save space over the two words
required by floating point. - ‘

5.2.2.2 Operations on REAL Data .-
~ The standard mathematical operations. (+, -, * / %) are of
course required. Othear operations, performed by macvos (inline

functions) or by subrou _pes, are described in subsequent subsections.

’5 2 2.2.1 Trlgonometrlc Functmns

The functmns used are SIN, COS, and AR.CTAN The map

- plate compiler (Box 5 of diagram A35) uses secants and cosecants,

but since these are simply inverses of COS ‘and SIN, no separate

functions are used. The F-14A and 214A 51mulators include a single

routine to compute both SIN and COS, thus saving time when both are

required. The UPT has only the two separate . routines. T
. . !

! In the UPT simulator, the routmes use-fixed point (BAMs) :
for the angles and floating point for the functional values. Some
routines that call them, e.g., Aerodynamics (diagram A3312),
maintain angles in floating pomt and must convert to BAMs to use
them. Calls to the SIN and COS routines are preceded by float-to-
fixed conversions, and calls to the ARCTAN routme are followed by
fixed- to- float conversions. :

5.2.2.2.2 LFIs

Linear Function Interpolation is the calculation of a functlonal‘.
value by linear interpolation of its arguments in a predefined table of
arguments and associated values. Two routines are used. The
1search' routine looks up the argument in the predefined argument
(or breakpoint) list, obtaining the interpolant. The 'value' routine,
with this interpolant as a parameter, computes the function value.
The data structures used are discussed in Section 5. 3. 4.

5.2,2.2.3 Limit Functions
]
A common operation m the programs studied is a limit
operation of the form: o

I¥d

-

MAX (M.IN(expression, upper bound), lower bound)

MAX (MIN (TEMPO02 * 512., 400.), -400.)
or ) _
MAX (MIN (. 95238 * (. 525 - HAIFLP), «. 999), 0.)
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Th1s is frequently wr1tten in the documentation in notation of the
" form:

[.95238%(. 525 - HAIFLP)] * 70~

0

This func.tlon arises from a need to limit a value to an.acceptable
range, frequently for output to analog hardware. It is particularly
prevalent in the Aerodynamics (diagram A3312), Flight Controls
(diagram A331, Box 1), Hydraulic System (diagram A33133), and
Navigation Radios (diagram A3323) areas.

5.2.3 Status Data Types

N

There are numerous instances in the simulation programs
studied where a status (i.e. enumeratmn) data type would enhance
program readability. Status types would be useful for flags, for
table and array indices, and for CASE alternative selectors (see
also Section 5. 4. 1. 2). '

5.2.3.1 Status Data as Flags

Examples of flags that could be represented by status types
occur in the monitor area (diagram A31), in the demo/record/
playback area (Box 1 of A35), in the instructor area (Box 2 of A35),
and the visual area (diagram A335). In the monitor area, flags are
used to synchronize the various processors and to coordinate 1/0O,
the CPU number and cockpit number used by the foreground task ,
dispatcher (diagram A312), etc. In the derno/record/playback area,
- flags are used to avoid playing a demo which is currently being
recorded. In the instructor area, status variables would be useful
to describe many of the initial condition settings, e.g., day-dusk-
night. In the visual area, subroutines are used with integer
parameters indicating X, Y, or Z values are to be processed. The
X, Y, Z enumeration type would enhance readability here also.

5.2.3.2 Status Data to Index Tables and Arrays

Throughout the simulators examined, readability would be
greatly enhanced by grouping related data items into tables and
arrays, even when the resulting structure will have only two or three
entries. In such cases, an enumeration or status type is the logical
choice to index the structure. Consider, for example, the set of
items connected with the DME dial (Nav1gat1on Radios, diagram
A3323, Box 3): ' «

NDMUNT - DME units wheel
NDMTEN - DME tens wheel -

NDMHND - DME hundreds wheel 2
NDUNTX - DME units output x

Yy o
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. NDTENX - DME tens output x
NDHNDX - DME hundreds output x

NDUNTY - DME units output y
NDTENY - DME tens output y
NDHNDY - DME hundreds output y - }

NDUNTl’ - DME \.’mxts wheel previous pass -
NDTEN1 - DME tens wheel previous pass
NDHNDl - DME hundreds wheel previous pass

which could be represented by a’ 3- -entry table (perhaps indexed by
"an enumeratmn type UNITS, TENS, HUNDREDS)

»TABLE DMEDIAL (UNITS: HUNDR_EDS)

. BEGIN

ITEM DMWHEEL  wheel value’

ITEM DMOUTX ' output x

ITEM DMOUTY output y

ITEM DMWHEELI previ:)us pass wheel value
" END -

~ Then for example, the item currently called NDMUNT, would be
referred to as DMWHEEL(UNITS), Similarly, engine data (diagram
A3313, Box 4), wing d~ta (diagram A3312), etc. could b&
organized in tables indexed by LEFT and RIGHT, or nose position
in a table indexed by (UP DOWN, CENTER)

-Many flight data items are actually vectors of X, Y, and
Z values. These are all represented by sets of three variables, e.g.,

4

VXGMI, VYGMI, VZGMI
or . . ‘
VXPFB, VYPFB, VZPFB

These would be best represented in an HOL using 3- element arrays,
which could be indexed with an enumeration type using the identifiers
X, Y, and Z, e.g..,

VGMI(X), VGMI(Y). VGMI(Z)
or , .
VPFB(X), VPFB(Y), VPFB(Z)




Similarly, there are numerous sets of values for roll, pitch, and
heading, e.g.,

VCPHI, VCPSI, VCTHTA *

which might be represented by 3-eiement arrays indexed by PI—II
PSI, and THETA.

5.2.3.3 Status Data as CASE Alternatives

. In the programs studied, there are numerous instances of
CASE-like, control structures. 'In some of these the various cases
could be most understandably represented by status or enumeration
type values. For example, one subroutine in demo/record/playback
(Box 1 of diagram A35) has as a parameter an integer indicating
the type of processing to be done: .

disk read initialization data

0=

1 = disk read demo data
2 = unpack disk data

3 = playback

4 = flyout

Clearly mnemonic values would be more understandable than integers
as parameters.

Other examples of CASE alternatives best represented by
enumeration types occur in the monitor area (diagram A31). These
include the function specifications for the intercomputer communi-
cations and background scheduling routines, 2nd the I/0O dev1ce
selection for the input/output control coordinator.

5.2.4. Bit Data Type

: Most occurrences of bit data in the simulators studied corres-
pond more logically to the set data type discussed in Section 5. 3. 1.
The major use of bit data is in machine- or device-dependent code.

Instances of bit operations (bit insertion and extractxon)
could ger*erally be avoided through the use of programmer-defined
tables to access the desired bits. These are discussed in
Section 5. 3.4. . Some such instances may be rather forced, however.
An example of this occurs in the Math Model Test program (diagram
A2) of the UPT simulator in the part of the program which formats
instructions for the trace, translating them from binary to wunemonic
form. The UPT computer has a very complicated instruction format
for this purpose. For example, register|specifications are part of

ry -
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the opcode mnemonic rather than operand fields. Thus there are 42
ADD opcodes, for instance. This translation program involves a
main routine and 46 subroutines as well as three tables of opcodes.
Processing is-roughly as follows:

a. Based on the first six bits of the opcode, one of
the three tables is selected, for prefix - 008"
778, or 'other',

b. Within the selected table, an entry is-chosen by index-
ing by the first six bits of the opcode for the 'other!
table, and by the second six bits for the 008 and 778
tables. . :

4

c. The table entry consists of two words, containing:

.~ opcode mnemonic

sub sub sub
no. no. no.

The (possibly temporary) opcode mnemonic is obtained
from the first word. The second word contains three
8-bit numbers.between 0 and 46, which are sutroutine
numbg‘rs indicating one of the 46 subroutines, or 0.

d. The indicated subroutines are executed in the specified
order. An entry of 0 terminates the list.

For example, consider the instruction 00230220,. Based on the first

'six bits; the 00g table is selected. Rased on the next six bits, the

23g entry is selected. ~This entry is:

PRR

The opcode, 'PRR', is extracted. Subroutine 2 is executed. It
extracts the last six bits, 204, determines that this indicates
'register A', and replaces the third character of the opcode by 'A’,
obtaining 'PRA'.  Then subroutine 1 is‘called, looking up the next-
to-the-last six bits, 024, translating this to 'register J', and obtain-
ing the opcode 'PJA' (Positive of J to A). The various subroutings

" might also construct the operand field (PJA has no operands). This

T ATaaiem
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implementation is unusual, so sich compblexity- may not be
‘required. The method, however, should be implementable in an
HOL, using an array of subroutines or a CASE statement to select
the subroutine calls. With a simpler machine, this sort of prgcess-
ing can be done nicely using a programmer-specified table to define
(or overlay, really) the instruction word. The table will have variant
record types, i.e., different definitions of the word, based on the
~various 1nstruct1on formats. The necessary fields can be accessed
~directly without explicit bit extraction. The DC 6024/4 machine,

* however, might have too many instruction formats for th1s to be
'pract1ca1

Another area where bit man1pu1at1on is necessary is in"some
types of number conversmns These usually involve 'logical or’
and shift operations. "It is possible to do this without shifts,
technically. One UPT FORTRAN program for formatting display
_screen images (Box 4 of diagram A35) does conversion'using addition
instead of logical or's, and multiplication,and division by powers, of .
two insiead of shifts. This does not enhance readability,-however,
and could be very inefficient if the rnulnnhcatmns and divisions do
not compile as shifts. :

Bit accessing is occasionally used in 'coding tricks” to\"gain'
efficiency. For. example, in the 214A Visual System (diagram A"’35)
the code used to ims plement the test .

I cockp1t 2 or 3, return to caller"
is:
BITB #2,QCKPT . test bit ‘2 of cockpit. number
" BEQ V$560A if off, execute program
JMP: V$5602Z otherwise, jump to last gtafement
A compiler could p'robabiy not be expected to generate such a test, ‘even
if it was.-known that the range of QCKPT was 1-4, However, only

two instructions are saved over a more exp11,c1t translation of the
IF -statement. :

5.2.5 Boolean Data Type

Certain simulator areas involve large quantities of Boolean,
or logical, data. This is particularly true in the Navigation and
Communications area (diagram A332!. Much of the data corresponds
to hardware input and output values. Tn fact, the datapool aliows
specxflcatlon of 10 different types i K uolean items;

logical bit

VB -
DI - discrete digital input -
LO discrete lamp driver level output

<
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DO - discrete logical level output

WI - hardware bounded digital word input -
£ WL - hardware bounded lamp driver level word output
WD - hardware :oanded logic level word output
PI - software bounded dig?tal word input
PL - softwﬁ re bounded lamp driver level word output
PD - | software bounded logic level word output

)
L

A major issue with Boolean data is the degree of packing used,
with a tradeoff between space used and speed of access. One objec-
tion to FORTRAN expressed at Link was the necessity of allocating
full words to logical values. The programs studied allocate logicals
to bits, bytes, and words, dependmg on the type of efficiency required.

The 214A Visual System (dragram A335) uses many

Booleans for flags and indicators. THese are all represented
by bytes, the minimum addressable unit on the PDP-11. Two
"xcept1ons were noted where bit data was used for flags. In one
1stance, three bits in one byte were used as flags indicating that

.ne roll, pitch, and heading of the probe are in sync’with the aircraft.
There is no particular use made of the fact that the flags are stored
this way - it is just done to save two bytes. Since the machine has
bit set and test instructions, there is no additional cost in processing.
In the other case, the four top bits of a word are set to indicate which
of four cultural lighting boxes are to be turned on. The code which
turns on the boxes is a loop which shifts this word left and tests if it
becomes negative (sign bit set) to determ1ne whether to turn on each
box. An array-of Booleans, which could be accessed by the loop
index already in use, would support this concept equally well. Pack-
1ng would be requirea if only one word was to be used.

\{any packed Booleans are also used. In the Hydraulic Systems
area (diagram A33133), for example, 14 flags dealing with landing gear~
and landing gear door positions are packed in a single word. Communi-
cations Booleans are also often packed. These are hardware inputs, and

- the packing is-thus ‘determined by the hardware. If the packing could be
__specifiéd appropriately, orgarization of this data into tables would
improve clarity. For example, consider the actual-input layout
described in Figure 5-3. For logical purposes, this data should be
treated as a table indexed by operator and cockpit (except NOlPTT
and NO2PTT, which correspond to operator only). This could
be represented by a PL/I structure (see also Section 5. 3.4) such as:

DECLARE 1| NRADIO (1:2), indexed by operator
2 NOPTT, operator push to talk
2 NCKPT (1:4), indexed by cog:kpit
. /*\‘
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NOZWOI

10S #8

NO24UX
NO24UR
NO23UX
NO23UR

. NO22UX

WORD 0

Figure 5-3.

NO1W1I

10S #8

NO14UX
NO14UR
NO13UX
NO13UR

NO12UX

WORD 1

NO2W3I

1I0S #8

NOZ22UR
NOZ21UX
NOZ21UR
NOZ‘iIS

NO240S
NO231S

NOZ230S
NO221S

NO220S
NOZ21IS

NOZ210S
NOZ24XV
NO22XV
NG22XV
NOZ21IXV

NOZ2PTT

-WORD 3
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NO1W?2I N
1I0S #8
high-order
NO12UR BIT 15
NO11UX 14
NOIIUE 13
I\'IOI4IS 12
NO140S 11
NO131IS 10
NO130S 9
NO12IS 8
NO120S 7
NO111IS 6
NO110S 5
NO14XV 4
NO13XV 3
NO:i2XV 2
NO11XV 1
NOIPTT BIT O

WORD 2

Communications Input Word Layout

low-order



NOXV, VHF xmit selected

w

3 NOOS, override selected

3 NQIS, instructor selected

3 NOUR, _UHF receive selected
3 NOUX; UHF xmit selected

The only problem with this is that there is no apparent way to describe
how the bits are actually packed. (It is possible that the data could be
repacked appropriately by the executive, or that the packing coming
from the har@ware could be altered.) The program currently must:
perform complex bit manipulation to access data inthe order desired,
anyway. For example, one sequence of code, with the objective of
obtaining NO14UX, NO13UX, NO12UX, NO11UX packed into the right-
most four bits of a single word, proceeds as.follows:

a. load word 2

b. mask tvo zero all bits except bit 14 (NOllUX).

c. shift left 3 (into bit 17)

d. save result |

e. load word 1 |

f.  rotate right 5 (to get the 5 bits into the {'ﬂgh-order
bits) -

g. mask to zero all bits except the top 5

h. add the word previously saved (bits 23, 21, 19, 17

now contain desired values)

i. clear the accumulator extension (extends on high-
order end)

3. do 4 times:
il.  shift left double 1 bit (shift desired bit into
extension)

j2. shift left (single) 1 bit (drop unwanted bit)
k. extension now contains desired result

The amount of processing involved makes reformatting in the

executive seem like a reasonable alternative.
: : -



Various documentation techniques are used to describe
Boolean equations. Some programs use English; as in this example
from the 214A Visual System (diagram A335), determining if the

~

aircraft is above the clouds: , ™

AP;OVE CLOUDS IF
OFF“MODEL AREA OR
OUT OF TOLERANCE OR
LIGHTS NOT READY OR
COMMANDED POSITION CHANGE TOO BIG OR
PROBE NOT IN SYNC OR
A/C ALT > CEIL+FIELD ALT +CLOUD THICKNESS
" Some use FORTRAN or pseudo - FORTR_AN as in th1s example from
Flight Controls (diagram A331): ©
FELTRD = TMPLO] . AND. .NOT. (UMLTRE.LT. UMLTC.E) .OR
.NOT. FELTRD .AND. (FTRIME .LT. 25) , AND.
UMLTRE .OR. UMLTCE . AND. (FEELTRD .OR.
' TMPLO1 . AND. .NOT. FELTRU) - ,

1

A decision table representatlon (see Section 5. 4. 4. 1 for exarnples)
would be more readable but might require some sunphﬁca.tmn by the
programmer. A leéss unwieldy notation than that of FORT RAN#vould
also be helpful. Use of longer and more descr1pt1ve names might
also improve readability, though it would make the expression even
longer. :

Another documentation technique, from the Communications
area (diagram A332, Box 1), using data from Figure 5-3, is:

OlVXN = O1PTT - O11XV - O110S - Ol1IS
= O1PTT 2 2 2
= O1PTT 3 3 3
= O1PTT 4 4 4

In this assignment, the COCkplt number (1-4) is used to deterrrune wh1ch
of the four lines applies. The implementation of this expression is
interesting, and represents a degree of efficiency which might be
difficult to obtain in an HOL. For exarmiple,

OVXN(1l) = NOT (OPTT(1) AND OXV(1,CKPT) AND NOT

0OO0S(1,CKPT) AND NOT OIS(l, CKPT))

35 '
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would be a reasonable HOL expression of the equation using the data
structure described previously. (See Figure 5-3 for allocation, of
the bits; these are the same variables without the initial 'N's.)

The actual implementation is:
‘. a.  Set OlVXN = true.
b. - Using a mask obtained from a table of four masks -
indexed by-cockpit number, mask input word 2 to

clear all bits except O1PTT, OlnXV, O1nOS, and
Ol1lnlS. (nis the cockpit number)

c. Compare result to another value, also oii'i;_\a”'ined from a
—_ ' table of four indexed by cockpit, which has bits set in

the O1PTT and OlnXV positions only.
d.. If 'equal, set O1VXN = {false.

This sequence takes advantage of the fact that only one possible set of
values, : .

O1PTT, O1nXV, Oln0OS, OInIS
will result in a value of false for the equation. It uses only seven
machine instructions, However, a programmer who has done the
' necessary analysis to discover that this is possible could instead
write: )

- OVXN(i) = (NOW2I(1) AND MASK(CKPT)) NE MVAL(CKPT)

maskihg and comparing to the desired masked value. Unfortunately,
the intent of the operation is no longer clear.

Another example (from the same program) of efficiency
gained by explicit knowledge of the Boo’ean packing is the implementa-
tion of thqjthree successive equations:

-~

NOISPR = . NOT. (NOSPON .AND. NSPROI1 . AND. . NOT.
NO1PTT .AND. .NOT. NO2PTT)
NO2SPR = . NOT. (NOSPON .AND. NSPRO2 .AND. . OT.

NO1PTT . AND. .NOT. NO2PTT)

. NMONSR =".NOT. (NOSPON .AND. .NOT. NSPROI .AND.
.NOT. NSPRO2 . AND. .NOT. NOIPTT .AND.
.NOT. NO2PTT) '

o
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The variables that the equations have in common, NOSPON, NOIPTT,
and NO2PTT are tested first. If NOSPON is false or NOIPTT or
NO2PTT are true, all three expressions are true. To obtain the
same degreg of efficiency, an HOIL implementation would f)‘robably
have to make this test explicitly, e.g., - '
IF NOIPTT OR NO2PTT OR NOT NOSPON THEN . (
BEGIN ' o
NOISPR = 1;
NOZ2SPR = 1; _
NMONSR = 1; : (
END : "‘"\ﬂ:}
{ - . - .
BEGIN
NOI1SPR = NOT NSPROI;
NO2SPR = NOT NSPRO02Z;

NMONSR = NOT (NOT NSPRgl AND NOT NSPRO2);
END - .

ELSE

The IF-THEN-ELSE expression of the problem seems more under-
standable as well as more efficient, That, and the fact that it.is
actually implemented this way, indicate that the equations were
probably derived this way and then converted to the ''single assign-
ment statement for each variable' form for documentation purposes.
Therefore, it doesn't seem-tha’ "xpressing the equation in the more’ -
efficient form in an HOL weculd be a protlem for the programmers.

5.2.6 Character String Data Type

[

Character processing is not significantly used in the main
aircraft modelling portion of the simulator (i.e., that processing
illustrated by diagram A33). However, it is required for display
I/0O in the Training or Instructor area (see diagram A35), for
numerous offline support programs (which create data files used
during simulation) and for debugging support (e. g., Math Model
Test, Box 2 of diagram A2).

5.2.6.'1 Offline Character Processing Requirements

The ofﬂine.aprogr'ams process card image input and some
produce printed output. Programs which create offline data files
include: :

radio station file creation (Box 4 of diagram A332)

malfunction compiler (Box 3 of diagram A35)



initial condition file creation (Box 2 of diagram A35)
screen image file cre:'action (Box 4 of §i§gram A35)
map plate '.'compiler (Box 5 of diagram A35)

tactics scenario file creation (diag)ra.m ‘A334)

 radar emitter data file creation (Box 3 of diagram A334)

These offline programs have the text processing requirements
characteristic of compilers. Operations such as the PL/I INDEX
and SUBSTR functions seem desirable. However, no uses of varying
length character strings werg noticed. '

’ 't.

As an example of text prccessing requirements, the radio
station file creation program fBox 4 of diagram A35) requires interpre-
tation of input commands, testing of individual characters in strings,
and insertion of individual characters into strings. This processing
‘is implemented in FORTRAN using octal equivalents of the characters.
Direot language support of character hahdling would result in much
more readable code. .

- s

In the I/O performed by the offline prograr\ifls, conversions

‘between numeric forms and ASCII character strings are required.
Some of these conversions could perhaps be supported by the I/O
features of an HOL, 'particularly in output conversions. Input con-
versions are more difficult. To process a statement like

INPT var, value R

from the Math Model Test program (Box 2 of diagram AZ2), the variable
- would-have to be read and looked up in the datapool. Then the value
would have to be read based on the variable type. (The input format
might also have to be more fixed.) In an HOL, this could probably
best be done by simply reading the card as a character string and .
then invoking an explicit conversion of the appropriate substring. -

- (Another problem with trying to read or write with the variocus for-
_mats is that fixed point formats involve scaling information as

well as type’. )

5.2.6.2 Display Character Processing

Display character data is constructed end output by the
 Instructor System programs (diagram A35). Typically a different
character set than that of the CPU will be used by the display. In any
.case, some of the display characters will be display commands or
orders, and these would not be representable as characters of the
computer. An HOL should provide some means of defining bytes
representing .these characters by specifying the bit equivalent and
then using tﬁgs,e"‘tﬁ"éharacter ma'.nipul.aticpn expressions.

o
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Display I/0 ordinarily involves a block transfer, i.e., a
movement of blocks of characters by a hardware operation to the
display memory. The display memory may have a different word
length than the CPU. In the UPT system, which uses an Aydin
display, for example, the Aydin memory has 16-bit'words, while
the computer has g4-bit words. On input from the Aydin, each”
16-bit word is stored right-justified in a 24-bit word. On output,
however, the 16-bit words are packed into the 24-bit words as

follows‘: L,

r o | AYDIN 0 AYDIN 1 (MSH)
| 1 | AYDIN 1 (LSH) AYDIN 2 |
2 AYDIN 3 AYDIN 4 (MSH)
3 |AYDIN 4 (LSH) AYDIN 5
' 4 .

v
24 -bit words

Construction of Aydin data involves conversion from the Harris ASCII
code to the display code, as well as insertion of 16-bit display
commands. "Packing of the Aydin words into Harris words also
requires some bit handling, i.e., shift and logical 'or'. Some
programs .cnstruct the entire Aydin image with 16 bits/word and
" then.cali a routine to pack it. Interpreting Aydin input as character
strings recuires extracting the rightmost 2 bytes of each word and
packing th¢m) into a string. l

N

5.2.7 Pointer Data Type

In the programs studied, which are primarily in assembly
language, uses of address data must be examined to determine poscible
riquirements for pointers in an HOL. Most address data is
simply use (v point to a table element, and thus it corresponds to
array or ¢ “le indices (or subscripts) in an HOL. Some addresses
are «. ... subroutine parameters to indicate the address of an input
table. In an HOL this could be accomplished through call-by-
reference parameters rather than with explicit use of addresses.

Some uscs of addresses for list processing functions correspond

more logically to HOL pointers. Another use, which is not precisely
a use of pointers, is the accessing of a memory location given its
address,

~
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5.2.7.1 List Prc-cess'ing Pointer Usage

The UPT monitor (box 1 of diagram A3) uses queues in which
the elements are linked by pointers. There are two types of queues
used: 1/0 request queues and an error request queue. The error
request queue is circular, ‘while the I/O queues are FIFO queues,
Both queue types are constructed by request handling routines. These
routiffes receive an input parameter that is the address of (pointer to)
a parameter table for the request, They then insert this table into the
appropriate chain. (Figure 5-4 ilbustrates an I/O re uest parameter
table.) Queue elements are removed (unlinked) aft€r being processed
by the appropriate request handler. Note that the I/0 request chain
uses variant record types; the record type is determined by the: TYPE
field in word 0. (see Section 5. 3.4 for a dlscussmn of tables and v
records. ) . T »

1

|
In the tactics area (diagram A334) pointers are used to cham
dlsplay data. Also, data is sorted by sorting a list of pointers to the
data rather than sorting the actual data ,

5.2.7.2 Accessing Memory by.Address

The accessing (either reading’'or setting) of a memory location
given its gddress is one function required in the testing areas, i.e.
Math Model Test (Box 2 of diagram AZ) and Remote Decimal Readout
(Box 3 of diagram A2), and in the programs associated with the instruc-
tor display/setting of datapool values (Box.4 of diagram A35). For _
example, the Remote Decimal Readout program provides access to core
locations based on octal address, Similarly, the Math Model Test prc-
gram provides a symbolic debugging capabllzty, i,e., setting of data-
pool variables or printout of their values.

In a system written using an HOL, some such debugging
system would still be useful. It might be available as a general tool
provided with the HOL, i.e., a general-purpose symbolic debugger .
based on the global data base facility, or it might be implemented
by the user. In either case, it should be possible to program the
debugger in the HOL. Implementation of a debugger requires the
same use of addresses as required by the display programs.
Specifically, a symbolic datapool' name specified by the programmer
is looked up in the datapool and its address is obtained. The address
must then be used to access the value of the symbdl in order to
display or alter it. '

Thxs function is probably. not required in general- purpose HOLS,
and it can lead to security problems. However, it is required in
~ order to implement these simulator support programs., Som¢€ HOLs
support it, but not very directly. For example, a PL/I pointer
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Figure 5-4. 1/O Parameter List Structure
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variable could be overlaid with an integer containing the correct

. address. Alternatively, in PL/I and in some JOVIAL implementa-

tions, an array cohld be overlaid to location zero, and accessed
using the address as a subscript. Neither of these methods is

. particularly desirable, however. Some means of providing symbolic

debugging, etc. (perhaps using another technique) should be available -
in a simulation HOL.

5.2.8 Label Data Type =

In the simulators studied, only one instance was observed
which might best be implemented with a label data type, specifically
with an array of labels, though other alternatives are possible. This
is task dispatching using the foreground task table (diagram A312),
which would most likely not use the same table representation in an
HOL. The current task table entries are of the form:

0 program ID &4—used in reporting errors
1 cockpit/frame mask 4——described in Section 3.1
2 start address &— address to which to

transfer control

3 worst case time «4—longest time used by this
program-tested and
updated if necessary
after each execution of
the program

In an HOL implementation, program start addresses stored in a
table would not be convenient for executing the programs in sequence.
On the other hand, a sequence of calls cangot be used because of all
the checking that must be repeated, e.g.: \\
IF PROGRAMI1 IN THIS COCKPIT AND FRAME THEN
BEGIN _
CALL PROGRAMI
IF PROGRAM1 TIME >PROGRAM]_WORST-CASE-
TIME THEN PROGRAM1 _WORST CASE_-
TIME = PROGRAMI]_ TIME '
END
IF PROGRAM2. ..

etc.

S
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Another example is the '"conversion control list, " a list of
values to.be converted to Aydin form in the Instructor System (Box 4
of diagram A35). Included in the table is a word specifying the

humber of entries. This word is actually used "y the conversion

subroutine to determine table size. An HOL implementation could
use this same approach, in which length is actually included in the
table and explicitly extracted by the routine using it. Alternatively,
it could provide varying length tables, which might be implemented
the same way, but invisibly to the user. -

5. 3'.4.,1. 4 Variant Record .Types

One. possible use of variant recard types was discussed in
Section 5. 2.4, in connection with'the Math Model Test trace formatting
(Box 2 of diagram AZ2). Other ¥ses occur in the files containing sur-
face radio station data (Box 4 of diagram A332) and radar emitter data
(Box 1 of diagram A334). These files contain different record types
for each radio type or emitter type.

5.3.4.1.5 Non-Distinct Component Names

There are many instances in the programs studied where
several tables have the same organization and kinds of components.
Some convenient notation for this would be useful, e.g., {rom the
214A visval system visibility effects program (Box 4 of diagram
A3354):

TABLE UICDATA 7; "old instructor inputs"

BEGIN _

ITEM CCLG : "cloud ceiling"

ITEM CCTH ; "cloud thickness"

ITEM CDDN . "day/dusk/night indicator"
ITEM CMIN . "minimum lighting"

ITEM CRND _ . “random lighting"

ITEM CSTG .; ''stagefield 1igh'ting"

ITEM CVIS : . Uvisibility”

END ’

TABLE VICDATA LIKE UICDATA; "new instructor inputs’

Of course, some means of distinguishing between components of the two
tables is then required. There are instances where one such table is
assigned to a corresponding.one. A convenient notation for this, e.g.,

ENTRY(UICDATA,0) = ENTRY(VICDATA, 0)
or simply ’ )
UICDATA = VICDATA

would be useful. oo
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data ready bits

word O p_ |logical complement of note: signals are
: R [15 msb of x feedback ] inverted
1
word 1 DR same for y feedback
word 2 Dp\ same for z feedback o -
word 3 14 |44 # ///////‘

- _ ‘ LL—-— logical complement of z 1sb

same for y

te— same for x

It would be difficult for a high-level language to support direct
extraction of the 16-bit feedback values. (However, perhaps the data
organization could be changed as discussed in.Section 5.2.5.)

Another use of programmer-specified tables is described in
connection with the Math Model Test (Box 2 of diagram AZ2) trace
~ feature {Section 5. 2.4).

.5.3,4,1,2 Serial vs, Parallel Organization

~In tables constructed to match hardware inputs or cutputs, as
discussed above, the choice of serial or parallel organization should
probably be left to the programmer. For example, the UPT system's
AST Linkage requires parallél organization. Most tables which would
be constructed from what are currently separate data items cculd
- equally well be represented logically by either organization and both
* are used in current implementations. The major reason to select one
method over the other is to facilitate data accessing as it is done in the
particular table. Since simulators have significant efficiency
requirements, this option should probably be made available to
programmers. :

5.3.4.1.3 Variable Length Tables

Little use of tables with dynamically varying lergth was
observed in the programs studied. An example of such tables, however,
occurs with the foreground task table (Box 3 of diagram A312)
illustrated in Section 5.2.8. This table is preceded in core by its -
number of entries. This number is reset to zero if the operator, at
initialization, specified a ''maintenance and test'' load {(Box 1 of diagram
A2). ‘It could potentially be changed dynamically to any value and’
then be used by the foreground dispatcher. However, it should not
be because the task table is preset and not changed during execution.
There is no reason this special case couldn't simply be implemented
with a flag indicating ''maintenarice and test."

']
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FOURTH |
7 CHARACTER USER- NUMBER
OF PASSWORD

14 Entries per MDD Sector

Figure 5-7. Master Disk Directory Entry -
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If desired, an enumeration type describing the corditions
reprcsented by the flags (GPUPRP, GPUBST, etc.)
could be used to index the arrays. A table could be
used to combine the two arrays, c.g.,

TABLE DCLOAD(1:N)
BEGIN
ITEM FLAG Boolean
ITEM LOAD Integer .
END

The second method would probably result in more efficient generated
code, and its intent is clearer.

5.3.4 Structure Data Type

As mentioned previously, much simulator data could logically
be organized into structures (or tables) which group related items
together. Several examples have already been given, for example
in Sections 2. 3.2 and 2.5. Most structures would replace many
data items )thch now all have individual names, with indexable
structures, thus using fewer names. The following sections discuss
structure organizations used, structure operations required, and
examples of major simulator structares.

5.3.4.1 Structure Organization

5.3.4,1.1 Prozrammer-Specified Allocation’

Allocation of components within a structure may be
accomplished automatically by a compiler or may be specified
explicitly by the prcgrammer. Programmer specified packing seems
necessary in cases where tho table déscribes data for an I/O interface.
Examples of this are the master disk directory, illustrated in Figure
5-7; the construction of I/O command words by the I/O routines, and
the interpretation of device status words. (Perhaps a status word
‘could be represerted as a set (see Section’'5. 3. 1) rather than as a
programmer-specified table, since in general each bit represents a
discrete condition.) One example of 1/O ‘ata which might be’

" difficult to handle in this way, however, occurs in the 214A visual
system gantry feedhack prncessmg (Box 1 »f diagram A3352), which
has as an input the table: ,
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30%: MOV VXPFBI1(R4) VXPEFBT(RS5) “"'move'

ADD #2,R5 "update indices"
ADD #4,R4
SOB R3, 30% "subtract one and branch"

A better implementation is simp!y:

MOV VXPFBI1, VXPFBT
MOV VYPFBI1, VYPFBT
MOV VZPFBl,VZPFBT

An HOL implementation of operations on vectors shoul” b= sophisticated
enough to use loops when more efficient, a- in the first examplz, and
repeated code when this is preferable, as in the second.

Another possibility of matrix or array use occurs in the
computation of DC bus load in the Electrical-System (Box 2 of
diagram A33132). Here the bus load is initialized to 15 and then
various device flags are tested; appropriate values are added to the
bus load for each device which is on, i.e.

<

LLDBUS = 15
IF (GPUPRP) LLDPBUS = LLDBUS + 3
IF (GPUBST) LLDBUS = LLDBUS + 17

There are quite a number of tests, leading cne to look for a simpler
representation. Possibilities are:

a. ' The flags could be considered a 1 x n matrix of 1's
and 0's, and the loads ann x 1 atrix of values.
Matrix multiplication will then 1ﬁ the sum of
selected loads, e.g., “--

LLDBUS = 15 + [[LAGS] [LOADS]

b. If tﬁe flags are an array of n Booleans, and the loads
an array of n values, a loopcanbe used, e.g.,
LLDBUS = 15;
FORI=1TON;
BEGIN
IF FLAG(I) THEN LLDBUS = LLDBUS + LOAD(I);
END |

&
w
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A simulation HOL should provide some support for vector
and matrix operations. One program, the 214A Visual Position
and Velocity program (Box 2 ~f diagram A3351), performs matrix
and vector operations almost gxclusively. It could be rewritten in
about 20 lines in a language supporting these operations (instead of -
its curren. 409 lines of assembly language). Such operations would
have to allow different scalings of the operands as well as operations
in which onv operand is single-word and the other is double-word
(oper: ads are of different precisions). Operations used are:

ad-lition and subtraction of vectors
multiplication ¢f a vector by a scalar —
multiplication of a vector by a matrix
cross product of vectors

dot product of vectors

In one example from the visual programs, a vector is
multiplicd by a rotation matrix of the form:

-SIN Y -COSs

LO 0 - IJ

The code used takes advantage of the 0's and-1 in the matrix and does
not perform the full multiplication. In a high level language, the
programmer could obtain this result by writing the multiplication

out explicitly on an element-by-eclement basis. Possibly, though,

the multiplication provided might include checks for zero elements.

COS ¢ -SIN ¥ O~|
|

Efficient compilation of matrix operations is important. Some
possible difficulties which might be er.countered were observed in the
way the 214A visual programs are currently implemented. For
example, the programs frzquently fail to use loops when performing
the same operation ¢« 7 the three elements of a vector. This can result
in a considerable increase in program size with little saving in speed.
In one instance, a 2l-word operation is repeated three times, rather
than using a lnop. Tf{ a loop setup requires 5 words, a loop imple-
mentation would require 26 words rather than the 63 used by the actual
i.nplementation. On the other hand, there is one instance vhere a loop
is used to accomplish the equivalent of three MOV instructions. The
code used is:

MOV #3,R3 “counter"
CLR R4 "two different offsets required”
CLR R5
-
w
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Files created offline and used online during simulation
Anclude: '

radio station file (Box 4 of diagram A332)~“
initial condition file (Box 2 of diag'ram A35)
malfunction file (Box 3 of diagram A35)

CRT screen image file (Box 4 of didgram A35)
map plate file (Box 5 of diagram A35)

— : Files created offline and used online during simulator
testing only include:

datapool, or symbol dictionary: used’d{uring Math Model
Test (Box 2 of diagram A2) in support of symbolic debugging; -

maintenance and test input file: used in executive I/O test
(Box 1 of diagram A2); this file contains names and
displacements within blocks for the maintenance 4nd test
load analog and digital input variables;

hardware cross-reference file: lists the names of the
symbols which are irput and/or cutput variables used by
AST Master Controller to communicate with simulator .
hardware (see Box 4 of diagram A3); this file is used for
error diagnostic printout during AST test runs;

-y

Files created‘.ofﬂine and used offline include:

datapool: used offline to obtain éymbol definitions during
compilation/assembly (Boxes 1, 3 of diagram Al)

;/system cross- reference file: maintained throughout system
developmept (diagram A1)

various data files (airfield data, etc.) used by éhe map
plate compiler (Box 5 of d1agram A35)
i

5.3.3 Array Data Type

Throughout the simulators studied, readability could be
much enhenced by grouping various related items into data aggregates.
.In general, most of these groupings would correspond to tables or
structures, as described in Section 5.3.4. One exception is the vector
and matr1x data which i5s heavily used in the -Aerodynamics (d1agram
A3312), Tactics (diagram A334), and Visual (diagram A335) areas.
These vectors represent flight data (e.g., the accelerations and
velocities computed in the equations of mot1on program -- Box'5
of diagram A3312), and contain three elements corresponding to X,
Y, and Z coordinates.

oy
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Figure 5-6. Indexed File Structure
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In the UPT training system, a demo;request mask is used
‘in conjunction with the frame masks. (See demo/record/playbacl-\,
Box 1 of diagram A35.) The demo request mask contains 15 bits,
one of which is set to indicate the demo requested by.the instructor.
A correspondmg 15-bit value indicates which of the demes are
available in the file. A set data type could also be used for this.

Bit strings are also used as parameters to the background
dispatcher and to the intercomputer communications routine. The
parameter to each routine is a string of bits irn which each bit position
‘represents one of the functions requested. -The bit is set to 1 for each
requested function. The sign bit is always 0, and the bits immediately
to its left represent the functions in order of decreasing priority (see
Figure 5-5). The routine must determine the leftmost 1 bit which is
"set. This is implemented by a floating point normalize instruction,
which shifts the rightmost 23 bits left until bit positions 0 and 1 differ
(i.e., bit 22 = 1) and returns the shift count. The parameter word
could certainly be implemented as a set in an HOL, and priority of
functions could be represented if this set is a power set of an ordered
enumeration type., It isn't clear, though, how the operation 'find
the highest element'' could be represented so that it could be expected
to compile to a floating point normalize, or even a ''find the leftmost
1 bit'" instruction. . '

Another use cf bit string data occurs in malfunction simulation
{(Box.3 of diagram A35}. E‘{D165510115 from the malfunction data set
are evaluated, and when one is found to be true, the indicated mal-
function is turned on by s sletting one of 96 bits in a packed 4-word
array of bits. These bits might be specified as a set data type.

s

5.3.2 File Data Type

This section describes the disk files used in the simulators
studied. Other I/O issues, as well as the actual disk I/O,processing,
are discussed in Section 5. 6.

The simulator monitor provides disk I/0O capab111ty supporting
both direct and indexed files. Figure 5-6 illustrates the indexed file
structure. The functions provided are direct read and write, indexed
read (writes must be made by trbating the file as a direct access file)
and extended index read (in which two contiguous subfiles of an
indexed file may be recad into dlfforent parts of memory in one
requcst)

I

Disk files created and uqed during simulation include:

demo recording file (Box 1 of diagram A35)

track history file (Box ¢ of diagram A35)

€.
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‘The cockpit mask includes a 1 bit for each cockpit to which the task
applies. Some programs must be called for each cockpit, while
others are non-cockpit dependent and need be called only once per
rame. The visual programs are called for only two of the cockpits.
The frame mask here indicates during which frames the task is to be
executed. The simulation programs will execute at 20, 10, 5, 2, or
1 frame/cycle. Some training programs do not require equal spacing
.and use rateg other than these. The sequencing through the fore-
ground task table for a given frame is essentially:

FOR COCKPIT = 1.TO 4 "SEQUENCE THROUGH COCKPITS"

BEGIN _ )
IF COCKPIT ENABLED
BEGIN
FOR TASK = 1 TO N "SEQUENCE THROUGH TASKS"
BEGIN __ |
IF TASK THIS COCKPIT AND FRAME "MASK"
CALL TASK |
END -
END
END

This is actually somewhat mor¢ complicated, because cockpits 3 and

4 are 1/2 cycle out of phase with cockpits 1 and 2, so that their frame -
10 is at the same time as cockpits'l and 2 frame 0. This is reéquired
to prevent buffer use cont'icts during record/playback (Box 1 of
diagrarn A35). Thus, inr : above loop, the frame mask (the one
indicating which frame is currently active) is shifted 10 bit positions
after cockpit 2 processing.

" 'With all this shifting going on and the need to check for a shift
out of bit 19 each time, this ccde doesn't seem so efficient that an HOL
need replicate it. Besides it is dependent on the fact that

word size p # of cockpits + # of frames/cycle

An HOL implementation could use a set data type te¢ represent the cock-
pit and frame indicators in each task table entry and to represent the
set of enabled cockpits. The active cockpit and frame would be loop
indices, which would be tested fcr inclusicn in the sets of cockpit and
frame indicators for each task. :



The first and third cases here could certainly be handled other ways,
either using flags or a different grouping of functions. The second
case is a little more complicated because a subroutine is used. (Actually
an interrupt handler is used, but interrupts here cause execution of
one of a table of subroutine calls;) The subroutine must be able to
return either to the routine which invoked it or to the routine which
invoked that routine (the dispatcher). Other interrupt handlers do not
return at all to the routine which was interrupted (e. g., for an
interrupt caused by the key used to stop TTY output). This is related
to the problem of describing mterrupt handling in an HOL (see
Section 5. 7).

I

5.3 Aggregate Data Types

5.3.1 Set Data Type -

As mentioned in Section 5.2.4, some uses of bit string data
in the simulators studied correspond more logically to an HOL set
type. An example is the use of bit strings in the monitor for frame
and cockpit masks (see diagram A312). The frame mask is a string
of 20 bits, one of which is on to indicate which of the 20 frames is
active. The cockpit mask is a string of four bits, one representing
each cockpit. A bit in the cockpit mask is on if the cockpit is in use
during the particular simulation run. The cockpit mmask is constructed
at initialization time, based on operator input in response to the
question 'COCKPIT ENABLES” ', and remains constant throughout the
run. The frame mask is updated each frame by shifting. When the
1 bit is shifted out of bit 19, it is put in bit 0. These masks are used
in determining when to execute a task from the foreground task table.
Each task entrv inciudes a 24-bit (1-word) cockpit/frame mask of
the form:

L,

e

23222120 19 0
4 3 z 1 9 18 o9 9 000 v 04
\..___V___) ~ —/
cockpit . frame

(\ -~
PN
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5.2.9.3.3 Internal Subroutine Calling

SELRA

There is conside .&‘fgle variation in the methods used to invoke
internal subroutines. echniques appear to be selected based on
individual programmer preference. Most such routines are called
directly. Various parameter passing methods are used. Sometimes
parameters are passed in registers and sometimes in local storage.
Sometimes the-value is passed and sometimes its address (even in
cases when it is not a table or array). Occasionally the address
where the output is to be stored is passed to the routine, while in
other cases the routine returns the output in a register.

" *Most internal subroutines do not save and restore registers.
A few of the subroutines within the monitor (background dispatcher,
I/0 request handler) must be reentrant and these do save and restore
registers, using a local stack.

Some internal routines have multiple entry points. For example,
a display program (Box 4 of A35) has two entry points (indicating
start/stop refresh). This could be implemented differently, e.g.,
with a flag as a parameter. An HOL multiple entry point capability
seems unnecessary and undesirable.

The flow of contrel between monitor routines is handled in
a variety of ways, Some routines have multiple entry points while
others use instructicn modification to alter control flow. For example,
from the UPT monitor:

@  One group of initialization routines (Box 1 of diagram
" A3l)are to be called only on the initial start and not
on restarts, when other initialization is repeated. The
calling instructions are changed to no-ops after the
routines complete, .
® A few interrupt handlers must (conditionally, not
always) return to.the foreground dispatcher rather
" than to the application program which was interrupted.
They do this by replacing the return address, saved
in the first location of the interrupt handler at the
call, by the desired return address in the dispatcher.

e The Aydin’interrupt handler (as one example) is entered
at the top as a result of an interrupt and at an internal
entry point for the first Aydin request. When this .
internal entry point is used, the calling routine inserts
the desired return address in the first location of the
interrupt handler, and then makes a direct transfer to
the entry point.
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5,2.9.3.2 System Subroutine Calling

In the UPT system, a single convention is used for all system
subroutine-calls, as illustrated in the exarnple in the previous section.
Subroutines are called indirectly through pointers, perhaps to facilitate
relocation. (This is not true in the 214A simulator. )

Almost all parameter passing is in registers. In cases where
a parameter is an array or table (e.g., LFI routines, I/0 request
handler) the parameter address is passed (call-by-reference in an
HOL). In the LFI routines, there is a need for array parameters of
varying sizes. In this implementation, the length is in a word preced-
ing the array. A table parameter of varying length is also used by
the display conversion routine (Box 4 of diagram A35)., This table
is a Conversion Control List - a list of values to be converted tc
Aydin form.

None of the UPT system subroutines save and restore
registers. The UPT machine does not have many registers and most
are taken up with parameters. The routines do leave the dedicated
cockpit index registers (see Section 5.1.1) intact.

In the 2i4A system, calling of system subroutines is less
consistent. The stack convention of the PDPI1I] is rarely used.
Gerierally, input parameters and returnied values are passed in,
registers, e.g., firom the 214A Visual Systemn (diagram A335):

MOV TEMP+2, RO

MOV  VNRPTC, RI1 inputs

MOV  VNRALT,RZ2

JSR PC, Z%LFI2 call {(note call is direct, unlike UPT)
MOV R2,VBDELN output

One executive subroutine is called with parameters passed in the
temporary storage area (described in Section 5.1.2) and with one
parameter a global variable. For example, also from the 21+A
Visual System:
MOV #1,VALTTRB set datapool item to table #
MOV O #VEFECIT, TEMP \_'alue table pointer (focus)

MOV #VTLIT, TEMP:2 other value table pointer {tilt)

MOV  #VNRMPI, R3 breakpoint table pointer (in register)
JSR Z$VNOR normalize for LTI
MOV RO, VNRPTC store result

Apparently the routine Z$VNOR looks for parameters in the appropriate
temporary and datapool locations. ~ \

(,..
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Thé use of inline functions inicates a choice of speed over
space efficiency. Some fairly large subroutines are expanded a
- number of times. For example, in the UPT aerodynamics system

(diagram A3312):

LIMFL - floating point limit - 8 instructions - expanded
24 times

LIMI1I - limit to +1.0 - ¢ i~structions - expanded
9 times

LIMZN - limit to 2.0 - 1! instructions - expanded
8 times

LFIL - LFI linear search - 17 instructions - expanded
8 times

An HOL should allow the programmer a similar control over time-

space tradeoffs. Ideally, the specification of inline expansion

should be part of the subroutine definition; calls for both types should

be written in the same way. This facilitates changing the method

used (i.e., only one definition, not numerous calls, must be

changed) when tuning for the best time-space balance.
In sorme cases within individual simulation programs studied,

internal subrcutines are used for operations which could be done

much rnore efficiently inline, or with macros. Perhaps this reflects

2 desire to save space, but in at leact one example, from the 214A

Visual System (diagram A335), the extra code required to set up

the subroutine call is such that this does not happen either. The

use of the subroutine saves only one word of storage, and 34 more

words are. executed than would be required in an inline implementation.

~

5.2.9.3 Subroutine Calling Conventions

5.2.9.3.1 Main Simulation Program Calling

As discussed in Section 5. 2.8, these programs are called
from the foreground dispatcher (diagram A312) with an indirect
transfer to the task table address. No parameters are passed;

a >communication is through the datapool. '



I~ addition to these routines, which are regarded as part of the
monitor, the UPT system employs two general routines which access
the surface radio facility data files (see Box 4 of diagram A332).
These area: 4

DDP - (Digital Data Preselect) These subroutings are
given a radio type and frequency from the air-
craft dial. They search the preselect file to
determine whether a station has been tuned. If
one has, the.data for the station is. read into
core from the real time radio data file. There
are 4 DDP subroutines, which correspond to
TACAN, VOR, . DME, and ILS radio types.

RECEIVER . This subroutine uses the data that has been
‘read into core and the aircraft data to compute
ranges and bearings from the aircraft to the
radio facility. "

Various system macros are also provided (see Section 5.2.9. 2).
Functions provided by these include an LFI linear argument search,
absolute value, and various limit functions (see Section 5.2.2.2. 3).

-

5.2.9.2 Inline Subroutines

Both general purpose functions and functions specific to the
various simulation programs are frequently implemented by macros,
i..e., inline subroutines, rather than by actual subroutines. Some
conditional assembly is employed-in the macros. For example, in
‘one macro, omission of the first parameter indicates that the

. parameter is slready in the correct accumulator and need not be
loaded.

Actually, all UPT system subroutines are accessed through~
macros. In the case of thes& subroutines, the macros set up the
- parameters, call the executive routine, and store results. For
example, the routine LFI2 (double variable LFI) is called by a macro
of the form: °

LFI2 F200T,F200F,R,FMAOQILI, R, FCLOLI, R
which expénds to:

TME FCLOI1I, R |

TMA FMAOIL, R input parameters
TOJ F200T
BSL+ ZLFI2 call
' TXM = F200F,R store result
~/




5.2.9 Procedure Data Type

- There are three main classes of procedures in the simulators
studied. These are:

a. The main simulation programs invoked through the
' foreground task table (as illustrated in diagram
A312). "These programs do not call oné another; each
returns to the foreground dispatcher on completion.
H
b. System subroutines, which are invoked by the various
simulation programs tc perform general-purpose
‘service functions. .
c. Subroutines internal to the main simulator programs.
} <
Varicus subroutine calling and parameter passing techniques are
used, as discussed in Section 5. 2.9. 3. Particularly in the subroutines
internal to the main programs, there is a lack of cons;stency in.
methods used.

5.2.9.1 System Subroutines

The system subroutines provided in the UPT system are
characteristic of those used in all simulators studied. These are:

LFI argument search

single variable LFI

two variable LFI

three variable LFI

sine function

cosine function (calls sine routine)

arctangeht function

random number genefafor

I/0 request handler

The F-14A and 214A simulstors, unlike the UPT, include a single routine
which computes both sine and cosine, as discussed in Section 5.2.2.2



Alternatives would be an array of subroutines or an array of labels,
e.g.,: .
FORI=1TON
BEGIN
IF PROGRAM(I) IN THIS COCKPIT AND FRAME THEN
BEGIN .
CALL PROGRAM(I) or GOTO LABEL(I)
IF PROGRAM TIME(I)> PROGRAM_ WORST_CASE

TIME(I) THEN PROGRAM_ WORST_CASE_
TIME(I) = PROGRAM_TIME(I)

END
END

or a CASE statement (see Section 5.4), e.g.:

FORI=1TON

B EGIN &%
IF PROGRAM(I) IN THIS COCKPIT AND FRAME THEN
BEGIN |
DO CASE I
CALL PROGRAMI
CALL PROGRAM?2
'CALL PROGRAMN
END
IF PROGRAM TIME(I) etc.
END
END

Something like a JOVIAL SWITCH or FORTRAN computed GOTO could
also be used. In any of these methods, the three task table elements
other than program address could still be in a table organization.

3N
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5.3.4.2 Operations on Structures

5.3.4.2.1 Table Assignment

As mentioned above, assignment of one table to another of
corresponding layout is sometirnes required. This cccurs, for
example, in assignment of current velues of variables to previous
pass values, as in the example above from the visibility effects
program (Box 4 of diagram A3354). In another cxample, from the
Navigation Environment area (Box 2 of (lagram A332), the sequence:

NUE = FUE

NVE = FVE
NSPSHD = FSPSI . . >

NCPSHD = FCPSI

NSINNP = FSTHET

NCOSNP = FCTHET

NSINNR = FSPi.i

NCOSNR = FCPHI

NGALT = FHGED

NTAS = FVPKTS

NROT = FRA

NSLEW = SNLSLW

NRESET = UILRF
represents assignment of a set of ''nav freeze' values to a correspond-
ing set of navigation variables, and could be written as one table

assignment (with greater clarity and less chance of errof). Perform-

ing operations on entire corresponding tables in one statement, e.g.,
~

TABLE] = TABLE2 + TABLE3

indicating addition of all components, would also be useful.

5.3.4,2.2 Substructure Selection

Many simulator operations which might use table data for
clarity would bene”it from the ability to perform operations on
substructures. For example, in the 214A visual system gantry feed-
back prog-am (Box . of diagram A3352) much o! the data could be
organized into structures with 3 entries indexable by X, Y, and Z.

-
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For example,

TABLE VGNTRY (X:Z) 5; "gantry data"

BEGIN

ITEM VVGMF single fixed point; "'velocity"

ITEM VVGMI double fixed point; ""position"

ITEM VVPEB double fixed point; ''position feedback"

END
could describe much mere clearly a set of data which currently uses
15 cifferent identifiers in the datapool (two names are used for the
two hz'.ves of the double fixed point values). With such data structures,
it -would be ne-essary that the X, Y, ana Z values of a given compon-

ent could be treated as a vector in whatever vector operations are
provided, e.g., in the above example, the nssignment

VVPFB = VVGMI* 2.5
should be possible.

In another example, from Electrical Systems (diagram A33132),
comparable operations are frequently performed with 'left' and 'right!
values. Grouping th» values into a table or array with two entries
index ~d by "LEFT" and "RIGHT" could allow a single operation to be
used. For exar ple, the code used to se: left and right generator
relay indicators is:

LRYGNL = ((EARPML. GT. 40.).OR. LRYGNL. AND.
(EARPML . GT. 38.)) . AND. LSGLON . AND. . NOT.
(EBRYGL .OR. UMLLGF) |

LR GNR = ((EARPMR.GT. 40.) . CR. LRYGNR.AND.
(SARPMR .GT. 38.)) . AND. LSGRON . AND. . NOT.
(EBRYGR .OR. UMLRGF) R

Comuvuining these in a single operation, e.g.,

",}./GN = ((EARPM.GT. 40. .OR. LRYGN . AND.
‘ (EARPM .GT. 38 }) .AND. LSGON . AND. .NOT.
(EBXRYG .OR. UMLGF) '

could improve understandability and decrease the vossibility of
typographical error.



Another instance is the assignment in the Communications
area (Box 3 of diagram A332) documented by:

NO11CL = (MPX + NOI11IS + NO211S)- ISPRI

2 = 2 2
3 = ~ 3

4 = 4 4 : i
i . ) . . : "/.' . ' ‘
This operation, which uses data illustrated in Figure 5-2, uses four
assignments, one for each cockpit. If the data is in a doubly-indexed
structure (by operator and cockpit) as proposed in Section 5. 2.5, this
assignment might be written:

NOCL(1, *) = (MPX + NOIS(1, *) + NOIS(2, %)) . ISPRI

5.3.4.3 LFI Structures

A type of data structure required throughout a simulator is
that used by Linear Function Interpolation (see Section 5. 2. 2. 2. 2).
- The data tables used to represent LFIs consist of tables of brelk-
points and tables of values which correspond to the breakpoints. The:
programs studied employ both single and double variable LFIs.
Three-variable routines are mentioned but not used. The breakpoint
table(s) and the value table“are both defined in the program as lists
of constants. However, they appear in separate parts of the program
(separately compiled modules) and are used separately.

Typically, several different LFI functions might have a
variable in common, and thesé variables might have breakpoint lists
in common. For example. the UPT aerodynamics LFIs / ee diagram
A3312): -

F100 (&, M)
F805 (at, & .y
F807 (o )

all have @ as an independent variable. In F805 and F807 the break-
point list for & is the same, while F100 has a different.« breakpoint
list. '

. When the value of an LFI variable is first determined .
~(e.g., ¢ above), an "LFI search' routine is called to search forits
position in any associated breaxpoint iists. The resulting value,

the interpolant, is us€d in later processing as a parameter to the
"LFI value' routine. Thus one routine uses the breakpoint list and
one uses the value lict. For example, in the UPT aerodynamics sys-
tem, most breakpoint lookup occurs in the Equations of Motion module
(Box 5 of diagram A3312), while value computation using these
breakpoints occurs throughout the system. ‘
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A double variable LFI is allocated as two breakpoint lists,

. X and.Y, and one value list, F(X,Y). The value list is allocated as
a FORTRAN two-dimensional array would be, with X increasing
faster. In the UPT simulator, the breakpoints are two-word floating
point values but the values are one-word fixed point. The value
lookup subroutine, however, converts the fixed point value to floating
point before returning it., The reason for this is economy of space,
and one-word floating point is not available on the UPT computer.
The precision allowed by the single word is adequate for the values.
In the 214A simulator, which uses only fixed point, the value tables

_ are all single precision; the breakpoint tables are sometimes single
and sometimes double precision. The altitude‘breakpoints, for example,
are dguble precision. -

" A more readable presentation of LF1s \:'lould dictate that the
breakpoint and value lists be specified together {(and thus presumabRy
be allocated together). There appears to be no logical reason why
this could not be done as long as the definition of the structure was
made available to both routines. A problem in supporting LFI
representation in-an HOL is that each LFI does not have a unique-
breakpoint list, but rather several LFIs share lists. (There are,
of course, unique value lists for each.) It would be wasteful to repeat
the breakpoint lists, and repeating the lookup process would_\be
intolerably inefficient. Perhaps the best approach would be to define
the lists separately in'a global data base and simply attempt a more
readable layout which.makes associations clearer, e, g., value lists
sharing a common breakpoint list could be grouped together under
the breakpoint list definition; this would not work for double variable
LFIs, however. ‘

One simulation HOL study [Goldiez, 1976] gives statistics on
relative speed of assembly language and FORTRAN LFI routines. The
FORTRAN programs took almost three times as long. This is '
clearly unacceptable. The author's ‘comments suggest that the
FORTRAN code generated was very inefficient because it recomputed
array subscripts excessively.

%.3,4.4 Modelboard Contour Map

The most complex data structure observed in the programs
studied is the 214A Visual System modelboard contour map (Box 1 of
diagram A33%3). This table gives a maximum elevation indicator
(a 3-bit value) for every 4-inch square on the modelboard. The actual
elevation corresponding to the 3-bit value 5 Jound in an 8-element
array, to which the 3-bit value 1s an'index. Because many 4-inch
squarcs will have the same elevation value. each dces not have a
distinct 3-bit value associated with it. The squares are grouped
into larger blocks of 5 by 6 5 .uares (20 x 24 inches). The modelboard
contains 468 such blocks. C..'y those 20 x 24 blocks which are distinct

N ~A
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have an associated bit map. A 468-byte vector maps each block
into the associated bit map. The program allows up to 256 distinct
blocks. The bit map consists of 6 words, each containing 5 3-bit value
thereby covering the 30 4-inch squares in the block. The best data
structure arrangement for accessing this information would be -
§omething like:
:3 e ( ‘ . :
‘ ARRAY BLKPTR (0:38,0:11) BYTE; "indices into BITMAP

B . for each block"

TABLE BITMAP (0:255) 6; i

BEGIN |
ARRAY BITARY(0:4, 0:5) bit 3 packed;
END . | o

//

The double indexing {for X and Y coordinates) is desirable to support
calculation of the correct table value - otherwise the program would
have to compute a single value from the X and Y values. The bit
map could be represented without too much loss of clarity.as a

‘three-dimensional array having dimensions (0: :255,0:4, 0:5). Itis
necessary that the bit values e packed. The partlcular size chosen
for the blocks, leading to the 5 x 6 grouping of bits, is clearly based
on the word size of the machine (i.e., 16/3 = 5). Other‘numbers
could certainly.be used, but the decision of what size of block will be
optimal must be based on some knowledge of the particular model-
board -- it is clearly not random.

5.3.5 Union Data Type (or Overlays)

In general, any necessary overlay capability required in
simulators can be logically provided through the use of structures
with variant record types, discussed in Section 5. 3.4.1.4. There
are instances where overlays might be utilized to obtain a capability
not explicitly provided by the language, for example accessing
memory locations by address, as described in Section 5.2.7. 2.
These cases should really be handled m a rnanner which makes the
inten* more understandable. ¢
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5.4 Control~S{ructures

=

There are I;\any; instances in the simulators studied in which
program understandability could be greatly improved through the use
of modern HOL control structures. In some cases, the program
documentation,reflects an awareness. by the programmer that such
control structures arc needed, but frequently even the documentation
does not take advantage of the enhanced readability that would be
provided. The following subsections present examples of potential
uses of various control structures in the rimulators studied.

5. 4.1 Conditioral Contrel Structures

5.4.T.1 IF THEN_ELSE Control Structures

w

~ Simulation programs contaia complex conditional expressions
controlling the assignment of values to variables. Any sirnulation
language must provide a readable way of writing such assignments.” ~
The exampies in this section illustrate the range of conditional
assignment control that must be supported by a suitable HOL.

The programs studied contain numerous examples of complex
conditional assignments to variables. These are frequently expressed
in the documentation by multiplying-a iogical variable or expression
by the various operands, e.g., from Flight Controls (Box 1 of
diagram A331):

X = (15.08 = FPE * WPLAY) + (15.08 * F ERYB * WPLAY) - 4.0,

Expressed in FORTRAN notation, t- 5 - .- hecome: -
X = 15.08 * FPE - 4.0
IF (WPLAY) X = 15.08 &  3X¥2 . 4.0
A better representatbn, which mo«~e cluzneir resembli:s the docu-

mentation, might lhe the ALGOL-)" =2

BN

¥ = 15.08 = (IF WPLAY TRIN ' KPB ELSE FPE) - 4.¢C
This {orm might also compile more .ficiently.

" Another conditiona' expreséion example i-s. (alsb ffong
Flight Controls): '
I’ (.NOT. (FELTRU .OR. FELTRD)) GO TO 04
TEMPOQCO = 2.25 = QTM
IF (FELTRU) TEMPOO = -TEMPO00
FTEIME = AI\'HN}.(AMAXI(FTRIME * TEMPOO, -86. 0. 25. 0)

{
i
;




where FELTRU and FELTRD /which are f‘s;s indicating '"nose up or
down'') may both be false, but cannot both k= true. This might be
expressed using IF-THEN—-ELSE, as
IF (FELTRU OR FELTRD) THu®¢
BEGIN
IF FELTRD THEN TEM&i0 = 2,25 \* QTM
ELSE TEM:"0 = -2.25 % QTM
FTRIME = AMINI(AMAX 1(FTRIME * TEMP00, -8.0),25.0)
END

or, with a conditional expression, as
IF (FELTRU OR FELTRD: THEN FTRIME =
AMINI(AMAXI(FTRIWVE * QTM * (¥ TELTRD THEN
'2.25 ELSE -2.25),-8.%;,25,0)

The 214A Visual Syster: {lagram A35 ) has many expre ssions.
similar to: ' ‘

VR = .1744 © UP - . 1744 - DO
or, alternatively:
VR =, 1744 (UP - DOWN)

In these cases, UP and DOWN aze siri le bits in the test box input.
Both may be off or exactly or¢ w2y be on. " A

Many of the conditional 2ssignments are documented in
pseudo-FORTRAN, which le24s to inconsistent and error-prone
statemeris. For example, {:om the Communications area (Box 1

of diagram A332):
{

f

YHAUL =« ((VHVCL/2) + .499)) IF LDOPP + (0.0) IF

{(LDOPP.+. RAiNT + VITUNE}-

Here the test of RAINT and YVTUNE serves no purpoé"e, but the \
flewchart indicates that the it ient is:

VHAUL = IF {{IOT LDOPP OR RAINT OR VTUNE) THEN 0.0
ELSY VHVCL/2 4 . 499

-
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Some very complex conditional assignments occur in the
Navigation Radios area (S}agram A3323). Some assignments are so
tomplex that both the documentation .and the pseudo-FORTRAN are
frequently incomprehensible and often clearly incorrect. An example
is the description of the setting of variable VGRE:

VGRE = (NAVR-VGRI) IF [(VGPWR .OR. .NOT. ERCOT) . AND.

‘- .NOT. FSTER]
VGRE = (-VGRI) IF [(VGPWR .OR. .NOT. ERCOT) . AND.
. FSTER : . o
VGRE = (85-VGRI) IF [(ERCOT.AND. (VGPWR .OR. (ERTIM?\\
260))) .OR. .NOT. VGPWR .AND. (ERTIM £260)]
VGRE = (C )\AC*K*C "/’HDG’ IF [(ERCOT .AND.‘ (VGPWR . OR.

(ERTIM > 260))) .OR. .NOT. VGPWR . AND.
(ERTIM > 260)]
In this example, the conditiong specified for the four different

assignments are not mutually exclusive. For example, the set of
conditions -

VGPWR, ERCOT, FSTER, (ERTIM > 260)

~

P

satisfies the f’irét, third, and fourth. Examination of the flowcharts
suggests that the intent is simply:
IF VGPWR OR NOT ERCOT
THEN IF' FSTER THEN VGRE -VGRI;
ELSE VGRIZ = NAVR - VGRI
ELSE IF ERTIM S 260 THEN VGRE = 85 - VGRI;
ELSE YGRE = C)\AC*.K*C UHDG;

One problem that also occurs in the documentation of these
conditional assignments is that the same logical expression appears
in numerous equations, instead of being tested once preceding them,i.e.:
A - BIF COND CIF NOT COND
D = EIF COND F IF NOT COND

G- HIF CONDIIF NOT COND



instead of:

IF COND THEN

BEGIN

A = B;

D = E;

G = H;
END “~

ELSE

BEGIN

A =C;

D = F;

G’= I;

END

If the programmers were actually using FORTRAN rather than
assembly langvage, we assume they would not 1rnp1ernent this the
- way it is documented., It is not only less clear, but it is in all
likelihood much less eff1c1ent

Ancther instance in which the lack of IFP<THEN—-ELSE control
structures has a severe negative impact on readability'occurs in the )
following sequence, used to set item LNBUS (from Electrical
Systems - diagram A33132):

F (.NOT. LBUSDC) GO TO 24
F (LPWEXT .OR. UQLBSE) GO TO 17

IF (LBAT .AND. LSWBAT) GO TO 19

LNBUS =

GO TO 25

19 IF (UMLBTY) GO TO 20
LNBUS = 0.9
-
GO TO 22
20 LNBUS = 0.8 7
22 IF (LRYGNL ,OR. LRYGNR) LNBUS = LNBUS + 0.1
GO TO 25 '
17 LLNBUS =
GO TO 25 ‘ !

~
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24 LNBUS = 0.0 |
25 IF (EBRYGL .AND. EBRYGR) LNBUS = 0.5 * LNBU.

Evidence that this is error-prone may be found in the fact thai the
logic does not match that in the flowchart for the operation. A more
readable representationis:
'IF NOT LBUSDC THEN LNBUS = 0. 0;
ELSE IF LPWEXT OR UQLBSE THEN LNBUS = 1. 0;
ELSE IF NOT (LBAT AND LSWBAT) THEN LNBUS = 0. 1;
ELSE BEGIN
IF UMBLBTY THEN LNBUS =0.8;
ELSE LNBUS = 1.9
IF LRYGNL OR LRYGNR THEN LNBUS
= LNBUS +0.1;
END
IF EBRYGL AND EBRYGR THEN LNBUS = 0.5 * LNBUS;
Alternatively, a single assignment of a logical expression go LNBUS
could be used, ¢.g.,:
LNBUS = (IF EBRYGL AND EBRYGR THEN 0.5 ELSE 1. 0)*
(IF NOT LBUSDC THEN 0.0
ELSE IF LPWEXT OR UQLBSE THEN 1.0
ELSE IF NOT (LBAT AND LSWBAT) THEN 0.1
ELSE ((IF UMLBTY THEN 0.8 ELSE 0.9) +
(IF LRYGNL OR LRYGNR THEN 0.1
ELSE 0. 0))) '

The previous examiple seems more readable, though this one makes
it clearer that a'ssignment to LNBUS is the intent.
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Another approach to the description of conditional a551gnments
is the decision table. Fcr example, a dec1510n table describing the
preceding assignment is:

LBUSDC
LPWEXT
UQLBSE
LBAT
LSWBAT
UMLBTY
LRYGOL
LRYGMR

o O
- o o©

o

o g

o Ol

Qo o -

L]

[

1]

1

s

o O O

’
(=3

'

LNDBUS -

5.4.1.2 CASE Control Structures

Conditional processing corresponding to the CASE construct
occurs primarily in the simulator support programs (mc 11to.,
debugging, etc.). Instances of this include:

foreground task table processing, described in Section
8 (diagram A312)

selection of function based on input parameter by inter-
computer communications or by background dispatcher
(see Section 5.3.1) ’

transfer based on interrupt number in monitor
interrupt handlers

I1/0O device routine selection by IOC coordinator
(currently only one device is connected to this, but the
program allows for more) (see Section 5. 6)

I1/0O conversion processing based on symbol type in
Math Model Test (Box 2 of diagram A2)

selection of correct function based on function

select knob in processing Remote Decimal Readout
Unit*(DRU) inputs
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An interesting type of CASE-like conditional assignment
occurs in the ground control display program (Box 6 of diagram A35)
when selecting messages for the instructor. For example, a message
describing how close the pilot is to the desired glideslope is '
selected as follows: : ) ‘

-0.14° $SGTANG <0.14° "ON GLIDE PATH"

0.14° < SGTANC <0.42°  "SLIGHTLY ABOVE GLIDE PATH"

-0.42° < SGTANCG =-0. 14°  “SLIGHTLY BELOW GLIDE PATH"
SGTANG 2 0.42°  "WELL ABOVE GLIDE PATH"
scleNcs-o.'42°’ "WELL BEILOW GLIDE PATH"

2 CASE statement with ranges

An HOL representation for this rnigh .
1w selection.

(rather than single values) for alternati¥v

‘ A similar assignment occurs in the Aérodynamics area
(diagram A3312), here expressed in the "multiplying by Booleans"
notation: . : .
X = {(. 1155556‘+,. 000154074 * (X-750.)) * (RC .LT. 750.)
4 (.1969444 + . 0001085184 = (X-1500.)) * (RC .GE. 75C. S
.AND. RC .LT. 1500.) \
.+ (.275556 + .0000786112 = (X-2500.)) * (RC:. GE. 1500.
.AND. RC .LT. 2500.) .
+ (.370833 + ,000635184 * (X-4000. ')) = (RC .GE. 2500.
.AND. RC .LT. 4000.) ’
+ (.4775 + .00005333335 * (X-6000.)) * (RC .GE. 4000‘.
.AND. RC .LT. 6000.) -
+ (.4775) = (RC . GE. 6000.’ % (-1, 0)%(FRCIND .LT. 0)

' 5.4.2 Multiprocessing Control

Multiprocessing is required in the simulators studied since all
use more than one CPU. This section describes the overall flew of
control in the UPT simulator in order to illustrate multiprocessing
reguirements. : '

The UPT system uses three CPUs, each of which has private
memory. There is also common memory accessea by all three.
The application programs are distributed among *he three CPUs so
as to provide the necessary speed of execution. A single application
program (e.g., flight)uses only the one CPU to which it is assigned.
Application programs operate in parallel on the different CFUs, but
do not interact directly with one another. All inter=<tion and



sequencing is controlled by the monitor. Necessary synchromzatmn
between the CPUs is provided by the monitor through the Equations
of Motion (EOM) Syncing Function, described later in this section.

Some monitor routines exist in identical form in all three

CPUs, while others exist in only one. Duplication of a routine
allows more efficient processing {(by elirninating a need for inter-
CPU communication) and allows the routine to access private
memory data. A single routine, on the other hand, allows a saving
of core. In some cases, a single function (e.g., disk I1/0) is per-

_ formed partly by a single routine in a master CPU and partly by
"duplicated routines in the other two 'slave' CPUs. For example,
this organization is used when only one CPU can communicate
witha particular peripheral. '

Monitor executlon begins with system initialization, in which
the individual CPUs periodically halt themselves and wait for restart
by another CPU. Upon completion of initialization, the basic execution
cycle is initiated by a Real Time Clock interrupt in CPUl. (Count-
down was initiated by the initialization process.) This interrupt
causes execution of the Master Timing Routine, which in turn interruots
CPUs 2 and 3, passing control to the Slave Timing Routines in these
CPUs. (The different interrupt levels control the selection of the
routine to be executed, through a vector of subroutine call 1n<truct1ons )

‘All three timing routines initiate the foreground dispatchers
(see Section 5. 2. 8) by interrupting their respective CPUs. The
dispatcher calls each of the required simulation programs from its
task table. FEach program returns to the dispatcher when it completes.
The dispatcher then calls the next required program. After the last
simmulation program completes, the spare time subroutine is called
to compute the spare time for the cycle. Then the foreground
dispatcher is exited and the CPU returns to a.wait state until the next
Real Time Clock interrupt occurs to restart the cycle. (Diagram
A312 illustrates this sequence?)

Other vrocesses, such as I/0 and background processing, are
initiated by interrupts (either hardware or software triggered) which
occur asynchrenously with the basic cycle. For example, I/0O to the
simulator hardware occurs twice per frame on countdown of the
Interval Timer, while TTY output, if active, is triggered by the
120-Hz clock interrupt. :

\‘z:-;,.

Cormunicaticn between CPUs is performed via 1nterrupts or
via common memory. Data may be communicated through the
common memory. Control flow is handl«d by interrupts into one CPU .

.. triggered by another CPU. For each CPU interface (6 in all), there
is a word in common memory in which bits are set ifidicating, in
priority order, the functions requested (sce Figure/5-5). 'Thus one




CPU requests a function of another by setting a bit in the appropriate
word and triggering the interrupt. The functions which may be
requested are:

-
P

° halt - requested if a fatal error or power f~il occurs
' in another CPU

e arm/trigger disk ingerrupt - used by the slave disk
handler to indicate to the master that a slave disk
transfer is complete '

° disk transfer request - sent by the slave disk handler
to the master when a disk request has been made in the
slave; sent by the master to the slave when the master

—~ has completed setup for the transfer

) TTY/CRT output initiate - sent by IOC coordinator in
CPUI] to a slave TTY/CRT driver to grant TTY/CRT
output privilege

® release monitor wait state - sent to release the
receiving CPU from a wait state; used only during
initialization, where CPUs are coordinated via wait/
release

® EOM wait freeze ~ used to release EOM sync wait,
described below

Three of .hr se functions are in support of the I/O structure of
the simulator whilc three support other control coordination between
CPUs. As 'halt' is used only for exceptions and 'release' only during
initialization, only the 'EOM wait freeze' function is used during
regular execution. :

The EOM syncing function is required to keep the simulation
programs running on the three CPUs properly synchronized. In
particular, the reiationship of the Equations of Motion (EOM) program
to the flight programs must be kept constant, since EOM inputs are.
generated in flight. Similarly, the motion primary cues program
must execute after the EOM program since it uses output from EOM.
Figure 5-8 illustrates-the desired sequencing. Note that the flight
programs are in CPU3, while the EOM and motion.primary cues
(MOT) are m CPUl. The correct 6rder of the EOM and MOT
programs is assured by their position in the CPUI1 task table. The

EOM Sync programs are used to delay the EOM programs until the
flight programs finish.
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The CPU3 sync release program immediately follows the
flight programs in the CPU3 task table. It invokes the inter-CPU
function listed abc'e which transfers control to the CPU1 sync
release program. This program computes spare time expended
while waitirig in CPU!, and then terminates the CPU] monitor wait
state.

) Program Development Aids

5.5.1 Comp.le-Time Assignnients

Values are assigned to identifiers at compile time for two
purposes -- creation of program constants and initialization of pro-
gram variables. This section illustrates the requirements for
program constants and initialization. '

5.5.1.1 Constant Definition

The simulators make use of numerous constants. An HOL
should allow some method of defining identifiers which will have
constant values, as oppcsed to the use of ordinary variables for this
purpose. The constants used are primarily numeric, both fixed and
floating point. For example, the 214A visual system altitude lirnit
program (Box 1 of diagram A3353) uses fixed point constants with
values of 1/5 and 1/6. The program uses octal constants and must
describe in comments what they are. An~lglOL should permit an
understandable definition of suca constant/s. :

In another example irom the 214A visual system, the offline
data verification program, which checks the modelboard contour
map (Box 1 of diagram A3353), uses four constants preset to model-
board dimension information, XSTART, XEND, YSTART, YEND.
On the first execution of the program, the following initialization
occurs:

XLOW = 4%CEIL(XSTART/4)

XHIGH = 4“FLOOR (XEND/4)

YLOW = 4:CEIL(YSTART/4)
~ YHIGH = 4*FLOOR(YEND/4)

o
+This is an operation which could be more logically done at compile time.
If compile time e.pressions are provided, the relationship between the
thwo sets of walues can still be expressed.
(S "

Most constants used are i1n large data tables. Examples of this
are the modelboard contour map (Box 1 of diagram A3353) and the
LFI tables, both described in Section 4. A simulation HOL should
provide a convenient and readable method for establishing such tables
of constants. '
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5.1.2 Variable {nitialization -

T A

Use of compile-time initialization of variables occurs only in
the offline programs. All initialization of realtime variables is done
dynamically. None of the instances noted invelve setting of large~
tables of data. ‘

5.5.2 Conditional é?)mpuation

Condltlonal assembly (comp11at10n) is used in the simulator
support programs to attain the reusability of one program on several
CPUs. In some cases, conditional assembly is used to provide
variations betwéen the versions. For example, the device codes
actepted by the I/O request handler depend on the CPU. The data
presetting in the ''system description modules'' “also employs conditional
assembly based on CPU. Conditional assembly is also used in the
remote digital readout (DRU) program, to adapt the program to its
.CPU." (There is a copy in each CPU.) Its main use is in the code which
tests the CPU select knob to see if that CPU ha¥ been selected I SRY-T
CPU2 compares the knob value to '2', etc.

5.5.3 Symbol Dictionary - -

As discussed in Section 5.1.1, the simulators use a global
data base facility, the svmbol d1ct1onary or "'datapool.,! Offline
programs-are pr .viued to support the use of this dlctlonar*ya. The basic
capabilities o. the data base system include:

° creauor v date, printout, etc. of the symbol
dictionary i disk file) :

) . . 2val o/ mbols defined in the symbol dictionary
during asser oy B

ot

e creation, update, 'printout, etc., of a system cross-
reference file

Various error detection capabilities are included in these programs.
For example, a list of symbols not referenced in any module may be
printed. ""‘"\

The offline programs used to create simulator data files
(e.g., the malfunction compiler; see Section 5.3. 2 for a complete
list) are also sensitive to the symbol dictier ry, allowing use of
program symbols in their inputs. For example, in the malfunction
compiler (Box 3 of diagram A35), an input expression might be:

LEF = ALT(19500/20200)*AIRSP(200/210)+T(50/)

~
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indicating:

‘turn on malfunction LEF when 19500 < ALT < 20200 and
200 < AIRSP <210 or T > 50"

The compiler translates this to a binary representétiori, looking up and
inserting the location and type infc rmation for the datapool symbols
.LEF, ALT, AIRSP, and T.

5.5.4 Debugging Support

The majbf debugging aids provided to support simulator
debugging are the remote decimal readout unit JRU) program and
the Math Model Test program.

The remote decimal readout unit (DRU) is a peripheral device
which allows control of the CPUs fror.~ remote locations in the simu-
lator complex. The functions it provides are:

° reading or setting of any core location in octal, scaled
fixed point, floating point, or BAMs (Binary Angular
Measurement) '

° sctting of a tran address at which a specified register's
contents will be printed (on first execution of trap address
only) '

] display of a selected bit (only} of a selected location

° halting of all other tasks (i.e., except the remote

decimai read-ut task), and restart
Figure 5-9 illustrates the DRU control panel.

The DRU program ruans as a task in the foreground task table
(Box 3 of diagram A312)., The program tests the various switch
settings, etc. and responds accordingly. , No I/O is performed in the
program. The DRU I/0O is done in the twi§e/frame update performed
by the AST Master Contrpller (see Section)5.6). This program,
when implementing the Halt function, rpakes itself the only task.
I

The Math Model Test progr\am‘(Box 2 of diagram AZ2) is an
offline program used for testing and debugging simulation programs.
It executes a card stream of input commands, which request such
functions as: .]

/

® loading a program
° setting of datapool variables or printout of their values.
_ ' (variables are referencéd by name, values are specified
or printed according to their type as indicated in the
datapool)
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[ setting or printout of memory™ocations speciiied

in octal
® tracing execution
° timing execution
® testing of » datapool variable to determine whether itis

within a s.ecified tolerance of a specified value; (the
test occurs when the command is encountered -- it is
not a check during execution).

5.5.5 Onboard Computer Simulation

A mmajor issue in the Tactics simulation area is the method
used to simulate other onbcard computer systems (e. g., avionics,
stores management, etc.; see*Boxes.2,3, and 4 of dxagram A3345.
The basic approaches available include:

) actual use of the onboard computer
° hardware emulation of the onboard computer
e ' translation of the flivht softviare to the simulator

computer

¢ furnctional modellir g of ine flight software cii the
simulator ccmputer

Combinations of theselapproaches are 1lso . .ed. The trade-offs
involved are discussed in [18] This .5 an wrea where use of u single
standard HOL would have a significant impact.

-

: ( - .
5.6 L/C: /
o This s'ection describ.s the I/0 sty trre of the UPT simulator

. toillustrate simulation I/O requiremer ;.

Through the UPT monitor, applicatior pro-rams are provided
access to the following devices:

° disk .
e  Aydin CRT
® TTY/CRT ' .

& 80 &5
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All requests are made through the I/O request handler, using a
parameter table as illustrated in Figure 5-4. This request handler
passes control to the individual device request handler based on the
TYPE field. Each request handler maintains a request queue, into
which it links the request. (Actually, the disk handler has two chains,
high and low priority.) Other processing depends on device type

and will be described briefly below. Each CPU has an I/O request
handler, a disk request handler, and a TTY raqquest handler. Only
CPU2 has an Aydin request handler, and }:;’ydin requests are invalid.
in other CPUs. -

The Aydin handler first tests the status of the Aydin device.
Assuming there are no error conditions (in general, errors are
! handled by setting an indicator in the I/C parameter table), the

request is tested to see if it is a status check, in which case the
routine returns with the completion bit set in the parameter table.
The status is in a dedicated memory location from which it may be
obtained by the caller. Otherwise the request is added to the Aydin
request chain. If it is the only request, it is processed immediately
(by efitering in the middle of the interrupt handler). Otherwise, the
request handler returns and the chained request will be processed
after an Aydin completion interrupt, Wies.itsturn comes. When a
request is processed, the appropriate I/O command is constructed
and initiated. If it is a block transfer, control is then relinquished '
and it will interrupt when complete. Then the completion bit is set
in the associated parameter table and the next request on the chain is-
processed. If the request to be processed is a read of the Aydin
register, the command is made, and the status repeatedly checked to
wait for completion since this function does not interrupt when complete.
Then the completion bit is set in the parameter table and the next
request is processed.

~

The disk I/O process, if in the master disk CPU (#2), proceeds

similarly to the Aydin I/O process. The processing required,
however, is more complex. Both direct and indexed files are supported.
Figure 5-6 illustrates the indexed file structure. The functions
provided are direct read and write, indexed read (writes must be

. made by treating the file as a direct access file), and extended index
read (in which two contiguous subfiles of an indexed file may be read
into different parts of memory in one request). Because of the com-
plexity of this process, only CPU 2 contains a driver to handle disk
request chaining, error handling, interrupt servicing, bgilding of
command words, and indexed file/subfile searches. (CPU 2 was
selected because it does the most disk I/O.) CPUs | and 3 contain
slave disk drivers which pass the parameter table to CPU 2, and then
pick up from CPU 2 the command words to initiate the actual block
transfer. This ..llows a saving of core and processor time in CPUs 1
and 3. Domg the actual transfer in the individual CPU allows the buffer

used to be in private memory. (Note that the parameter table must
be in common memory.) Figure 5-10 illustrates the disk I/O control
flow.

-
v,
[
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The TTY/CRT 1/0O is performed through a device called the
IOC coordinator. This device controls I/O to any device which uses
single word/byte transfers exclusively., Although in this configuration
only the TTY/CRT is attached to it, this would also include a card
reader/punch or line printer. Only teletype output is a callable
function. It runs as a background task, which is scheduled for the first
character by the TTY output handler and thereafter whenever an output
.. interrupt occurs. ‘The input routine is scheduled when an input
interrupt occurs. TTY input is used primarily by the debug routine,
which ties in directly to the input routine.

The IOC coordinator itself resides only in CPU 1. Its "/execution
is triggered by the 120-Hz clock interrupt. {An output request to the
teletype does not result in immediai~ initiation of the output. The
request is simply added to the chain, to be processed at the clock

interrupt.) The actual input and output drivers and interrupt h- - “lers
exist in all three CPUs. Figure 5-11 illustrates the TTY I/O ‘rol
flow.

Another type of 1/O also occurs in the monitor. = his is the

input and output between the sirnulator hardware and the data base.

This transfer is done through a special device called the AST Master
Controller. This device can perform analog to/from digital ccnversions.
Figure 5-12 illustrates this system. This I/O is not requested by
programs. It is performed twice per frame on countdown of the interval
timer. At 20 msec into the frame, special updates (visual and remote
decimal readout unit) are made. At 45 msec, normal updates
‘(everything) are made. A datapool module contains a collection of
pointers which define a chain of data to be transferred, and transfer

of the entire chain is made with a single invocation. Each update
operation, or transfer, is preceded by the transfer of a test data chain.
The test data transfer interrupts when complete, allowing verification
of a successful test. The actual data update does not interrupt on
completion. . All this occurs in CPU 1.

5.7 Machine Dependency

-

Certain types of processing 'performcd in the simulator -
monitors (as in most executives) require low-level, machine-dependent
code. Examples of these functions are: .

® setting of the system clocks (Real Time Clock, 120-Hz
Clock, Interval Tirmner) - :

' enabling, disablin’gv, intercepting, and triggering of
interrupts

° memory protection
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© specification of a location for the hardware address
- trap

® I/0O (at the lowest level)

It isn't clear how functions such as these can be provided in a machine-
independent HOL. The traditional solution is to allow use of assembly
language subroutines, possibly expanded inline for efficiency reasons.
Encapsulation of machine-dependent code is desirable, in order to
facilitate reusability. (The UPT monitor uses a macro to perform
software triggering of interrupts.)

Other machine-dependent processing occurs in the debugging
areas. An example is the Math Model Test (Box 2 of diagram A2)
trace implementation.. Instructions are not interpreted but are
execrted with an Execute Memory (EXM) instruction. Prior to the
EXM, an interrupt is enabled so after the instruction is -executed,
control will always return to the trace routine (i.e., oranches will not
be taken directly). Registers are recorded so changed registers may
be printed out. The recorded program counter is used as the address
for the next EXM. This sort of processing could be done in encapsulated
assembly language., A m‘schine—independent HOL implementation of
it seems improbable. '

——— Another example is the processing of the Remote Decimal
Readout (DRU) register displiay trap function, which works as follows:

a. = When trap is request-d:
1. Save indication of which register is requested.
2. Obtain trap address.
3. Extract contents of tralp address and save.
4. Insert at trap address a 'BSL trap routine'

instruction, defined as a constant in current
program. (BSL is a subroutine call.)

' 5. Exit.
b. When tra; address is encountered, the BSL to the trap
voutine is ex=cuted, whereupon:
1. Register contents are saved.
2. The adcress following the BSL, which was stored

by thie BSL in the first word of the trap routine,
is decremented.




3. The saved previous contents of the trap location

are restored by an indirect store through the e
first word. (
4, The desired-register is displayed as 1t was stored
/ on entry to this routine.
£ 5, A standard subroutine return, indirect branch

through the first wotd, now returns to the
interrupted routine to execute starting with the
trapped instruction.

This routine is not reentrant since registers are not saved in a stack
and single memory locations are used for the various indicators. The
only implication of this is that instructions within_this routine.may not
themselves be trapped. HOL subroutine linkage mechanisms would
not provide this sort of linkage, i.e., decrementing the raturn address
and using the saved return address as a pointer.




Section 6
DETAILED SHO™, REQUIREMENTS
AND LANGUAGE EVALUATIONS

This Section presents the high-order language (HOL) require-

ments which should be met by a language for programming flight training
simulators and evaluates the candidate languages with respect to these
requirements. The requirements were derived by analyzing the func- - )
tional and environmental factors relevant to simulator programming.

This Section describes the specific simulation language require-
ments determined by our detailed study of the application area a. <~s-
cribed in Sections 4 and 5, ‘It is intended to serve.as a definitive basis
for evaluating how well existing programming languages could serve in
programming simulators. The'benefits to be derived from this presen-
tation of language requirements are these: ’

- a, The key implications of our detailed study of pfogram%ﬁing.
' requirements are presented concisely and rigorously,

b. " Use of the document as an evaluation guide guaranteeé
. that no simulation programming requirements will be
overlpoked. "
- B //. .
c. The document addresses specific SHOL requirements as_

~ well as general principles which must be considered
throughout language design or evaluation.

There is one area of requirements that is not addressed in this

. document -~ exception handling (i.e., specification of -the program action
to be taken when a routine encounters sore condition it is not prepared
to deal with, e, g., overflow, time-.out, or inconsistencies in someldat'a
‘base). The current state of the art with respect to exception handling
language features is quite undeveloped; not much of significance can be
said with confidence about what minimal exception handling require-
ments should be. Moreover, to accurately assess these requirerments
in the simulator area would require a more:detailed .study of coding and
design practices than was possible in this study, Consequently, we
have chosen to leave requirements specifications open in this area,

This Section is organized with an outline similar to that of the
IRONMAN [DoD, 1977]). However, the purpose this document serves is
somewhat different than the purpose the IRONMAN serves. ‘In particular,
this documentaddresses just HOL requirements for design, implementing,
and maintaining flight simulator software as opposed to requirements of all
embedded computer systems. Consequently we have deleted some IRONMAN.
requirements that are inapplicable to simulator programming, added others’




that are consistent with the IRONMAN but more specific, and finaliy,
changed some IRONMAN requirements because they were inappropriate
for the simulator programming environment and application. Another
$ource of differences between this document and the IRONMAN is that
this document is intended to describe requirements rather than to guide
a language design effort. Consequently, unlike the IRONMAN, language
capabilities not specifically required or forbidden may be provided in
a language, although it is not expected that such capabilities will make
the language more suitable for programming flight simulators. If this
document were to be used to guide a language design effort, some ’
requirements would be specified in greater detail and some would be
rephrased to ensurefa uniform language. Other modifications would .
depend on whether the design was to proceed by modifying a particular’
language or was to be created without such constraints, AN

. Some requirements specified here are considered essential to
support simulator programming -- i.e,, a language 'would have to have all
these features to be usable in programming all simulator functions. These
requirements are marked with an asterisk (). Other requirements are
congidered desirable but not essential, These are features recommended
for inclusion in any language specifically designed for this application.

In recommending modifications to the candidate languages te attain a

usable SHOL, only thé marked requirements were judged to be necessary,
Other features, however, were weighed in determining the overall suitablity
of the particular language. ' '

Each language requirements section begins with the statement
of a goal that describes the overall objectives to be met by the SHOL in
that Tanguage area. Following the goal are several supporting concepts
that aid in the attainment of the stated goal. Finally, following each.
stated concept are one or more specific language requirements that
realize that concept. Following each set of requirements for a particu-
lar concept, PL/I, JOVIAL J3B and J731, PASCAL, and FORTRAN are
discussed with respect to those requirements. At the end of each section,
languages éTe ranked according to how well they meet the goal of that section.

A precise and consistent use of terms has been attempted in
stating requirements, Potentiall"y ambiguous terms have been defined
in the text, Care has been taken to distinguish between requirements,
given as text, and comments about the requirements, given as bracketed
notes. :

The following terms have been used to indicate where and to
what degree individual requirements apply:

rnust irdicates a required capability to be provided
is required by a language or its translator.

«:
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\ ‘not required indicates a language capability that, if present
' ' in an existing language, need not be used, A
language having such a capability is usable for
simulator programming, but is less desirable
than a language not having the capab111ty.

_ not desired indicates a language capability that must be
must not absent from a language (generally because its
presence, even-if not used, would degrade
.object code efficiency or the ability of the
translator to detect program errors).

need only indicates a minimal required capability., A.
. ' language providing a more extensive capability ,
is acceptable even though the additional capa- P
bility is not needed in the simulator application,

should indicates a des ired goal but one for which there
is no obJectne, test,
N
. shall attempt indicates a desired goal but one that may not

be achievable given the current state-of- the-
arf, or may be in conflict with other more
isnportant requirements. :

must require . indicates a requirement placed on the user by
" the language and its translators (language is
subject). \ ‘
‘must permit indicates a requirement ‘placed on the language
to provide an option to the user (language is
subJect)
may indicates a requirement placed on the language
to provide an option to the user (user is
subject),
6.1  General Design Principles
Goal
@

By analyzing the functional and environmental requirement of
thc simulator application area, the general principles to be observed
in SHOL design were determmed These principles are to'be followed

in meeting each of the specific requirements detailed in subsequent
sections, ' ’,




Supj)orting Con cepts

1A,

software,

.

1B.

Application Suitability,

The SHOL must sﬁpport the programming of simulator

Regquirements

l1A-1. The language must provide the fun'c':tio'vnal‘capa_
bilities necessary for the production of flight training
simulation online and support programs,

1A-2, A language containing only features required by the
application is considered more desirable than a language
containing additional features. [ The intent is to:permit a
subset of an existing language to be used if it satisfies the
requirements and if use of the subset can be administra.
tively controlled, ] '

Language Evaluations

Subsequent sections discuss the degree to which each of
the languages meets simulator programming require-
ments.. The only one of the languages which provides a .
significant number of unneeded features is PL/I. Some
of these (e.g., PICTURE attributes) have no interaction
with features which would be used by the simulator pro-
grammer, while others may require that the programmer
be aware of them in order to ensure correct use (e.g., '
specifiable lower array bound). Excess capability, of
course, increases translator size and implementation
cost, and may impact translation speed even if unused.

Correctness,

The language must aid in the development of properly-

orking programs., _ -

-
-
Y

&

Requirements

2

1B-1. The language should avoid error-prone features
\ . . .

[i.e., features that are difficult to use correctly] and

maximize automatic detection of programming errors.

1B-2, Translators musf produce explanatory diagnostic
and warning messages, but must not attempt to correct
programming errdrs, [ Such corrections are seldom
appropriate and encourage undisciplined programming
habits, ]
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1B-3. Thére must be no langl,age restrictions that are
not enforceable by translators.

Language Evaluations ' -

sach of the languages contains some error-prone con-
tructs, which are noted.more explicitly in subsequent
ectxons The excess generality of PL/I makes it more
difficult than the othér candidates to learn to use cor-
rectly. On the other hand, PL/I provides good facilities
for error detection at t"anslatlon and execution time, as
does PASCAL, '

1C. Maix{taiinabuity ,, \

As discussed in Section 4.5, the long lifetime of sxmulator
programs makes ease of maintenance a major design goal.

,Requirements

1C-1. The language should emphasize readability over
writability, [i.e., it should emphasize the clarity,. under-
standability, and modifiability of programs over pro-
gramming ease, since programs are usually maintained

-

. by programmers ‘who were not involved in their (
develppment] .- : . g

1C-2. Explicit specxfxcatxon of programmer intent should
be possible and be’ encouraged [e. g., declarations of the
range of values a variable can have; see 3A-5]. g
1C-3. Defaults should be provided only for instances where
the default is stated in the language definition, is always
meaningful, reflects common usage, and can.be explicitly -
overridden,

Language Evaluations

FORTRAN is the least readable, and hence least main-
tainable, of the candidate languages. Specific deficiencies
(i;e., lack of features supporting readability) are noted

in the, following sections. Examples of FORTRAN deficien.
cies mclude numeric statement labels (which PASCAL has
also), implicit declarations, and limited identifier length.
The JOVIAL variants (J3B and J73I) are fairly readable,
though their data declaration statements have a somewhat
unreadable format, PL/I and PASCAL are probably the
most readable of the candidates, overall. .

T
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ID.~ Efficiency.
e ety

‘As discussed in Section 4, 4, the SHCL must support devel.
s opment of efficient object programs, o

Requirements

“ 1D-1. Where possible, features should be chosen to have
-a simple and efficient implementation in many object
machines, io avoid execution costs for.available generality
where it is not needed, to maximize the number of safe
-optimizations available to traaslators, and to ensure that
unused and constant portions of programs will not add to
- execution costs., ' co

1D-2. Unduly complex optirnization by translators should
not be required to obtain efficient object code.

1D-3. Programmers should be abie to control time/space
tradeoffs through appropriate use of language features
- [e.g., packing directives; see Section 6. 10].

Language Evaluation’s

The excess generality of PL/I can affec: object program
efficiency even if the unneeded features are not used, but
in most cases the impact of such excess generality is only
on translation efficiency. None of the languages make

. explicit to the ‘user which features are most costly,

Section 6.10 discusses the control provided over time/

space. tradeoffs by the various languages., In general, the -
JOVIAL variants are best in this respect, while FORTRAN
provides the least capability. ‘

1E., Simplicity,

Simplicity i's desired in the SHOL in order to enhance
readability and to make the language readily learnable by simulator
programmers (who are primarily ehgineers whose experience with
programming languages is not extensive, generally including only
assembly language and FORTRAN experience),

N ™

Requirements

1E-1, The lan'gqage should use familiar notations where
such use does not conflict with other goals.

1E-.2; It should have a ccnsistent semantic structure that
minimizes the number of underlying concepts,

A

/
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1_E-3. It should be as small as p0551b1e, consistent with -
the needs of the application. [See also 1A-2.]

1E-4. It should have few special cases and should be

composed from features that are individually sr*xple in-
their semantics. :

1E-5. The language shkould have uniform syntactic con- .
: ventions and should not provide several notations fotr the

sarne concept.

Language Evaluations-

The language which best meets these requirements is
probably FORTRAN, particularly because simulator pro-.
grammers are already familiar withit. Also it is a
relatively "small" language -- 1[ e., it does not contain

a large number of constructs or redundant features.
PASCAL is also a concise langhage, but it deviates from
familiar usages more than any/of the other candidates,
PL/I, because of its emphasis on generallty,”contams

a large number of constructs nd permits many varia-
tions in notation. /

!

IF. Im.pleme.ntab.'ility

Design of the SHOL must take-into account the implementa-
- bility of the language. As dikcussed in Sect1on 4.3, simulation program
translators haveé.traditionally been required to operate on machines of :
modest capacity.

Requirements

1F.-1. The semantics of each feature should be- shfﬁ'mently ‘
well specified and understandable that it will be possible
_to predict its mteractmn with other features

1F.2. To the extent that it does not interfere with other
' requirements, the language shall facilitate the production
.of translators that are easy to 1mp1ement and are efficient
during translation. [See also 1D-3,] [

Language Evaluations"

- As all of the candidate languages have been.implemented
and used, their semantics are well understood though not
.all are well dooumented Because PL/L has so many
constructs, there are many interactions between features
making the language more difficult to spec1fy and imple- .
ment than simpler ones. Its implicit conversion philos-
phy COmpounds this }groblem
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~ Language Evaluation Summary

Because of the general apd diverse nature of these requirements;
any attempt tq rank languages with respect to them would be inappro-
priate. . Since these géneral requirements form the basis for the spe-
cific requirements in' subsequent sections, in effect the remainder of

the evaluation document serves this purpose.

6.2 General Syntax

LI NN

Goal

.~ SHOL syntax'must be selected in keeping with the goals of sim-
plicity.and maintainability, and with general language design principles, -
Syntactic éonyentions must encourage the production of readable pro-
grams and must where pdssible eliminate opportunities for programmer
error, . - .

Supportingﬁ Concepts _ -

2A. Character Set.
" To allow_iardgram portability, all SHOL translators must
employ the same source character set, and the.character set should be

widely’ shpported.' E

" Requirements

. 2A-1. Every construct of the language must have a repre-
sentation that uses only the 64-character subset of ASCII:

PUHS%E T ()R, —. )/ ,
0123456789: ;<=>?
@ABCDEFGHIJI{LMNO
PQRSTUVWXYZ [ \] "

Langﬁage Evaluations

All of the candidate languages except PASCAL and PL/I
are compatible with 64-character ASCII, PASCAL uses
the character '!', and PL/I uses '—' and "', PL/I, how-
ever, is compatible with EBCDIC, as are FORTRAN and
J3B, but not PASCAL or J731. ;

2B, Grammi ' . o

The SHO'. grammar must contribute to program readability
and ease of learniny ‘b« language and must make common syntaxerrors
easy to detect and dizg-ose by translators.
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2B-1. The language must have a free form syntax [i.e.,
' the semantics of constructs should not depend on their .

. position within a line{] . T : Ve

2B-2.. Multiple occurrences of a language defined symbol
' * appearing-in the same context must not have essentially,
. ' different .mednings, [For example, the assignment oper-
’ ator should be.differént from the relational equality oper- .
B : ator; division of integers yielding an integer result should
) not'be represented with the samie symbol that yields a

real result. ] .- R
2B-3. The language must notbpermitaunmatched-bréckets
“of any kind [ e. g., BEGIN and END must be paired one for
’One ~ ~ ) AN B "

2B-4. All key word forms that contain declarations or
statements must be bracketed ~- that is, must have a

. closing-as:well.as an opening key word. [ This require-
ment and the previous one help avoid programmer errors
due to confusion.over the lexical extent of the various pro-
‘grain cons't)ruc,ts.] - '
ZB-5, : Therg. must be no control definition facility [i.e.,
no means of defining new control structures]. .

2B.6. The structure (i.e., syntax)‘of expressions must

B not depend on -the. types of their operands. [ This is, moti-
vated by a desire for language uniformity. ] -
2B-7. The precedence levels (i.e., binding strengths) .of
all infix operators must be specified in the language defini-
tion and must not be dlterable by the user.
. 2B-8. The precedence levels shduld be consistent with
standard practice, '
’ ’ {
Language Evaluations L -
Of the candidate languages, only FORTRAN does not have
a fully free form syntax. : ' :
None of the languages are consistent in always using differ- -
° ent symbols for different meanings. For example, all but
PASCAL usc the same'symbol for integer and real divi- _
. sion. Most also'use compdund statements in a . variety of
: ways in control.structures, rather than employing dis-
w tinctive syntax,
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2C.

PL/I, in permitting multiple closure of blocks, pern:its
unmatched brackets.s Most of the languages also use
compound statements to delimit the lexical extent of key-
words, rather than-providing individual closing keywords

‘for each,

None of tre languages allow the definition of new control
structures. None allow the user to alter precedence
levels of operators, :

“ All.langu.ége's employ a standard set of operator precedence

levels except for PASCAL, which has only four levels and
is not consistent with standard practice,

Mnemonic Identifiers, .

The language rnust allow the programmer to select

meaningful and informative identifier names. ' This is particularly
important given the large number of identifiers required in a simulator
systern and the use of these identifiers by groups of programmers,

2D,

Requirements

2C-1. Mnemonically significant identifiers [ more than
eight characters long] must be permitted,

2C-2, There must be a break character for use within
identifiers. [e.g., the underscore character, as in
RATE_OF _CLIMB], : ‘

A
“

Language Evaluations

Ali,languag'é s.texcept FORTRAN permit identifiers of more
than eight characters, "All excépt PASCAL allow a break
character in identifiers.’ ' . :

Static Tybing.

-

" In keeping with general language design principles and in

support of 'program maintainability and efficiency, 'the types of values
must be determinable from the source program. °

Requirements

(')

2D-1, The value type of each variable, j;rray or record
fg;ompbnent, expression, parameter, and function result
must be determinable at translation time. A& value type
specifies the set of values associated \l:ieéh/a program

elerment. "Type' is used in this document to mean value

type.]

97 11!



*2D-2. There must be no implicit conversions between
" value types .- explicit conversion operations shall be
provided.

2D-3. A reference to an idéntifier that is not declared in
the most local scope must refer to a program element that
is lexicallyiglobal, rather than to one that is global through
the dynamic calling structure. [ This is the normal block

. structure scoping-rule. ] ' : T

Loy

Language Evaluations

- .

Most value itypes are determinable at translation time in all
of the languages. The only exceptions involve the atirib-
utes. of formal procedure parameters. Only J73I requires-
a’specification of parameter attributes of such procedure
parameters, arid only J73F and PASCAL require specifica-
tion of their result attributes. (J3B does not allow pro-.
cedure parameters,) =
- . Implicit conversion is prevalent in PL/I, and, to a lesser
’ extent, in J731. There is little in FORTRAN, J3B, and
PASCAL: In general, it is restricted in these languages
to convergions between integer and real types. PASCAL
allows implicit conversion only of integers in assignment
to reals. Most of the languages restricting implicit con-
version, however, do not provide all of the explicit con-
version operations which might be necessary. For
example, only PL/I provides explicit conversion from
numeric types to'character strings.

As required all the langﬁuages bind free names statically
rather than dynamically. '

¥

2E, Comments

The SHOL must pr‘ovide a comment facility that is eésy to
use, so commenting is encouraged. The comment facility should allow’
comments to be used with maximum readability.

Requirements

2E-1, The language must allow comments to be embedded
within program text [e. g., a comment bracketed by special
left and right bracket syrbols, and preceded and followed
by program text on the same line, or a comment termi--
nated by end of line]. '

2E-2. Bracket symbols must be short -- n6é more than two
characters, :
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Language Evaloations

-

-

~ “‘ ) ;: . - . N .
Of the candidaie’languages, only FORTRAN does not pro-
vide the requiredflexibility in comment placement, All

s ~.languages provide short comment bracketing symbols,
' .. ' ' ' R .
Language Evaluation Summary . . - A

\

The candidate languages are ordered, according to.the degFee to
which they meet SHOL general syntdx requirements, as follows:

3
.

J3B- Most of the Are'qui‘rement's are met,
. . s

Deficiencies are;

o

e, use.of same symbol for different meanings

° 1.ack of closing keywords . ;

@ lack of explicit conversion operations
\ ) ' Ty B {
J731- Most requirements are met, Implicit conversions
‘can occur. : T ' :
" Deficiencies are:

e - use of same symbol for different meanings
_ symbo . ; ;

.® * lack of closing kéy,words

] implicit conversions
° 1a_c'1)< of explicit conversion oPératiohé
°.  PASCAL- Is not ASCII cpmpai.ilple. ) Operator precedence levels

v

are non-standard.

. .

.

Deficiencies are:
e use of same symbpl for different meanings
¢ . lack of closing keywords

e not ASCII compatible

. e non-standard precedence levels
~ . 1
e no break character, in identifier
- il
. "~ e lack of explicit conversior operatiors
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FORTRAN- . Comment facility and statement formatting are
inflexible. Mnemonically significant identifiers
< ~are not permitted. ’

Deficiencies are:

‘@, not free format

° use of_same symbol for different meanings
’ . identifier 1éng£h too .restricted )
™ commentuplacement inflexi._b%e
PL/1- . Is not ASCII cornpatible, Multigle closure and

implicit conversions are permitted.
Deficiencies are:

) not ASCII compatible

] use of same symbol for different meanings >
e multiple closure
e implicit conversions

6.3 Data Types

Goal

. The SHOL must provide the value types required to represent
simulator data, must suppor' efficient processing with them, and must
allow them to be used in a * cadable and understandable manner. Nota-
tion for and support of the various types should be consistent between
types and whenever possible should correspond to.common practice.

6.3,1 Numeric Types

Goal

The language must support integer and real (both fixed and float)
numeric types. Uses of numeric data in simulator programming are
discussed in Section’s 5.2.1 and 5.2.2. The SHOL must allow the pro-
-grammer to use the various real number representations available on
.'the target computer. Requiremen:s for this are discussed in Section
5.2.2.1 and in Section 4, 2. ;

~
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Supporting Concepts

3A.. Numeric Type Definitions,

Integer, fixed, .and’floating point types, with programmer -
control over precision, must be provided. '‘Representations should cor-
respond to standard usage. : - -

-

Requirements

“3A.1. The ?anguage must provide types for integer, fixed
point, and floating point numbers. [See Sections 5. 2, 1
and 5.2,2,] ‘ d
3A-2, The minimum accuracy of each floating point vari-
able [e.g., number of decimal digits] and the minimum
accuracy of each fixed point variable [e. g., maximum
value of the least significant bit] must be specified in
programs, - '

3A-3. Such accuracy specifications must be interpreted

- as the minimum. accuracy to be supported by an imple-
mentation -~ it is sufficient for implemented fixed point
accuracies to be limited to powers of two.

*3A-4. Various sizes of real number, representations are
- required, [Section 5.2.2.1 discusses the use of both
- . single and double word representations to allow accuracy
vs. space tradeoffs, ] :

3A-5, Declarations of the range of numeric variables must
be optional (see also Section 6. 10), and need anly be speci-
fied with constant values._ [Range specifications make °
programs more understandable and can improve object
code optimization, but there is insufficient experience

with their use to make range declarations mandatory.
Range declarations may also be used to specify (implic-
itly) the minimum number of bits occupied by fixed point
values. ] ’

Language Evaluations

Of the candidate languages, only J3B and PL/I provide
both fixed and floating point real number-types, Only J73I
and PL/I allow specification of floating point accuracy,

PL /1 allows specification in decimal digits, while J73I
requires specification-in bits. In neither case is the inter.
pretation of the accuracy implementation dependent, Only
PL/I allows specification of fixed point accuracy. Again,
accuracy may be specified in decimal digits, and inter-
pretation is not implementation dependent.
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Programmers may seléct various sizes of real number
representations in all of the languages except PASCAL
and J3B (for fixed point;. PL/I and J73I allow explicit
specification of the size. None of the languages allow
explicit declaration of read variable ranges.

3B.. Numeric Literals.

_ - The SHOL must allow the prograrhmer to specify numeric
literals (i.'e., numbers of the form 1, 5.6, etc.'). in a readable and
consistent manner. :

Requirements
*3B-1. Numeric literals are required. [ See Section 5.2.]

3B-2. Embedded-spaces must be permitted in real literals,
[ These would enhance readability in the long literals occa-
sionally used in simulator programming, a“s\%n»the example
in Section 5,4.1.2.] ‘ ‘

3B-3. Numeric literals must have the same value in pro-
grams as in data. [i.e., literal values input during pro-
gram execution shall have the same value as if they had
been processed by the translator. ]

Languawaiuations

All of the candidate languages provide numeric literals.
for both integer and real types,. Only FORTRAN permits
en »edded spaces. None of the languages appear to
require that program and data‘literals convert

° equiyvalently.

3C.” Numeric OEera_tiOns.

The lariguage must provide a uniform set of the basic arith-
metic and comparison operations for numeric types. Trigonometric
operations must also be supported. Section 5.2.2.2 discusses simu-
lator requirements for numeric operations.

A

Requirements

3C-1. There wmust be operations [i.e., functions] for con- .
version between numeric value types and for conversion
from other types (e.g., character, bit string) to numeric
types. [See Section 4. 5.]
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*3C-2. There must be operations for additiéh, subtraction,
multiplication, division with real [fixed point and floating
oint] result, and negation for all numeric value types.
See Section 5. 2, ] ’
3C-3. There must be operations for integer and fixed
point division with integer result and remainder. [A~
particular requirement for this occurs in the camera/
modelboard visual systems, for locating modelboard
positions, as discussed in Section 5.3. 4. 4. ]

3C-4. There must be operations for spefifying the accuracy
of fixed and floating point addition, subtraction, multiplica-
tion, ‘and division results. ' )

3C-5. Default scaling rules for fixed point operations need
not produce results more accurate than the accuracy (i.e,,
scale) of the least accurate operand. |[e. g., 1.1420.01

may yield 21, 1, ]

3C-6. Absolute value and max/min functions (allowing
more than two arguments) must be provided for all num. ~i=
value types, [ See Section 5.2.2.2. 3. ]
3C-7. For real value types, square root and trigonometric
functions are required, Trigonometric functions are used
in analog I/O handling and in various display-related
programs such as the map plate compiler; see Section
5.2.2.2.1.] -

#3C-8., There must be equality [i. e., equal and unequal]
and ordering operations [i.e. » less than, greater than,
less or equal, and greater or equal] between elements of
each numeric value type; [see Section 5. 4. 1. 1].
3C-9. There must be a means of explicitly testiné*whether
a numeric value is within a given range [e. g., the -hained
comparison; see Sec¢tion 5.4, 1, 2. ]

3C-10. Numeric values must be considered equal if and
only if they represent exactly the same abstract value,
[i.e., ‘accuracy specifications 'must not be taken into
account in testing for equality; othérwise A=B and B=C
.does not imply A=C. ] %

Language Evaluations

All of the languages allow explicit conversion'from real to
integer types, and all except PASCAL from integer to real.
Of the languages providing more than one real representa-
tion, all but J3B provide representational conversions.

R

r
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Only PL/I provides a11 desired conversions from other
types, but J731 and J3B provide some support, ' v

All of the languages provide the basu: arithmetic opera-
tions required, but only PL/I provides accuracy-defining
specifications for their results, Of the numeric functions
required, only FORTRAN and PL/I provide max/min func-
. tions, and only FORTRAN, PL/I and PASCAL provide
square root and trigonometric functions. (PL/I provides
more trigonometric capab111ty ) Al languages have an
absolute value function.

All of the languages have numeric relational operations
required, but none have a capability for range testing, such
as chained comparisons. In all of the languages, numeric
comparisons are exact, :

Language Evaluation Summary

)
The candidate languages ate ordered, according to the degree to
which they meet SHOL numeric data type requirements, as follows:

PL/I- Most major requirements are met.

Deficiencies are:

e accuracy specifications are implementation

dependent
° no range specifications\
* no embedded spaces in literals )
° program and data literals ndt required to

couvert equivalently

9

@ no chained comparisons
J3B- Control over numeric accuracy is inadequate., Not
all desired arithmetic operations are provided.

Deficiencies are: .
) o no""c'onversions from character .or bit to real
s no accuracy specifications
® no range 5pecificatgions
H ® no embedded spaces in literals .
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ERIC

Aruitoxt provided by Eic:

FORTRAN-

J371-

e . program and data literals not required to con-

Fixed point real numbers are not provided.

vert equivalently

no real representational conversions

no accuracy-defining bpec1f1cat1ons for results

t> of computations -

no max/min, square root,

functlons .

no chained comparisons

other requlrements -are met.

Deficiencies are;

i
\,

no conversions from other types to numeric

types

no.fixed point reals
b

N

AY . . . .
no range specifications

program and data literals not required to con-

vert equlvalently

no accuracy-defining specifications for results

I4

of computations

no chained comparisons

Deficiencies are:

L

no fixed point reals

accuracy specifications implementation

independent

no range specifications

no émbedded spaces in literals
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no accuracy specifications

-

or trigonometric

!

2

\

-,

Fixed point real numbers are not prbvided.
desired arithmetic operations are provided.

Not all

/



e program and data literals not required to con-
vert equivalently

° no accuracy-defining spec1f1cat1ons for results
of computations

B

. max/min, square root, or trigonometric
functions
; - - . no chained comparisons

PASCAL- Fixed point real numbers are not provided. Many
: required accuracy*controls, conversions, and
. numeric operations are not provided.

\
N

Deficiencies are:

@ no conversions from other types to numeric
types - '
P o
o e no fixed point redls

* no accuracy specifications

® no control over size of real number
representations

® no range specifications

® no embedded spaces in literals "
® program and data literals not requlred to con-
vert equwalently

° no integer to real conversions
< N - :
€ no accuracy- defmmg spemﬁcatmns for results

of computations
. \

® no max/min functions
e .no chained comparisons -
' . \ -
6.3.2 Enumeration Types L P
o c Iy C -
Goal _ = :

\(t'The SHOL must provide a status, or enumeration, data type. As
discussed in Section 5.2. 3, use of enumeraticn types to represent Tlags,
case alternatives, and array indices would greatly enhance program
understandability, ¢ )

ERIC

Aruitoxt provided by Eic:



Sug;Porting Concepté

3D. Enumeration Type Definitions.

Enumeration types are required for program readability,
. 5 ) . .

Requirements
¢

*gD-l. There must be value types that are definable in pro-
grams by ordered enumeration of their elements [e.g.,
type angle = (phi, psi, theta)].

Language Evéluations .

I

Of the candidate languages, only J73I and PASCAL provide
enumeration types. The J73I form is rudimentary --
essentially a sequence of integers with names. There are
no enumeration variables in J73I,

‘\3E. Enumeration Literals. . .

Enumeration values should be expressible in a readable and .
natural manner, ’ ’

Requirements - B ‘ o -

3E:1. The elements of an enumeration type may be
/iden_tifiers. ' ; :

3E-2. -'humeration value names of different enumeration
types - must be permitted to be 4dentical, :

-

Language Evaluationsv
In J73I, enumeration literals are lexically distinct from
identifiers. J73I allows duplicate enumeration names in

different lists, while PASCAL does not.

3F., Enumeration Operatidns.

Operations provided for enumeration types must allow their
use as flags, case alternatives, and array indices. '

" Requirements

*3F-1. There must be at least equality and inequality oper-"
ations between elements of enumeration types. [ This is
to ensure uniformity; equality should be an operation
defined for all types.’]
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*3F-2. There mx.ist_be successor and predecéggéor opera-
tions on each enumefration type. [i.e., operations pro-
ducing the next and preceding elements of ah enumeration
type's value set; these operations are inherent in the
notion of an enumeration type. ] ' S

.

I_;éng uage Evaluations

Both J731 and PASCAL support eQuality and inequality oper-
ations on enumeration types.  Only PASCAL provides
successor and predecessor operations,

Language Evaluation Summ3ry
The candidate languages are ordered, according to the degree to
which they meet SHOL enumeration data type requirements, as follows:

PASCAL- The basic requirements are met.
Deficiencies are:

] duplicate names may not be used
i . N e

J731- The capability provided is rudimentary.
Deficiencies are:

. no enumeration variables

s literals are lexically distinct from ijéntifiers

o, f;” . no successor and predecessor operations
- s IJ *
J3B, » - ,
., FORTRAN, i N
PL/I- Enumeration types are not provided.

6.3. 3 Boolean Type

.Goa!

Thé 'SHOL must provide a Boolean d?ta type. As noted in Section
5.2.5, Boolean data.is heavily used in simulators, particularly in the
Navigation and Communications-area,

-
P

.
Supporting Concepts

3G.  Boolean Type Definitions,

The Boolean data tfpe faci‘;ity- in the SHOL should contribute
to program readability and allow programs to be structured more clearly.

R R B




Requirements

*3G-1. A Boolean data type is required [ see Section 5.2, 5],
3G-2. Boolean expressions must be evaluated in short-
circuit mode [e.g. » A OR B must not cause the evaluation
of B if A is true], )

'~ Language Evaluations

Only FORTRAN and PASCAL support an actual Boolean

data type. The other languages use bit strings of length one.
. Only FORTRAN requires short-circuit evaluation of

Boolean expressions. (This is not specified in PASCAL., ]

:3H. Boolean Literals,

* A useful Boolean facili}y requires literals as well as
variables, ' ’

Requirements

*3H-1, Bvoolean literals (TRUE and FALSE) are required.

Language Evaluations

Both FORTRAN and PASCAL have TRUE and FA%LSE lit-
erals. - J3B provides built-in constant names TRUE and
- FALSE for the bit strings '1' and '0' :

31 Boolean Operations.

, -The standard Boolean operations must be provided in a
uniform manner. : g .

Requirements

) : :
*31-1. There must be operations for conjunction, inclusive
disjunction, and negation (i.e., AND, OR, and NOT). of
Boolean value types., [ These are the most frequently used
Boolean operations; see Section 5. 2. 5. ] ’

#31-2, There must be equality and inequality [i.e., exclu-
sive or] operations for Boolean types. [ The operations
are required for uniformity, ]

Language Evaluations

C ¥ Both FORTRAN and PASCAL provide the desired
/ . qperations, .

1 '
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Language Evaluation Summary

"

The candidate languages are ordered, according to the degree to
which they meet SHOL Poolean data type requirements, as follows:

. FORTRAN,

PASCAL- All desired capabiiities are provided. |
. J3‘B,‘ There is no Boolean data type (J3B doés,'provide'
> J731, PL/I- TRUE?nd FALSE bit string titerals).
6. 3 4 Character Type :i—;?i |
Goal . o (i{

. The SHOL must provide a character data type and associated
character operations to support instructor display programs and offline
sirnulation 'support programs. Simulator character handling require-
ments are discussed in Section 5.2, 6.

Supporting Concept{s I }

37J. Chara’cter 'I-"'f(pe Definitions. 1

A
”

The character data type should be supplied in a manner
which coﬁtributes_to program efficiency, and should not allow excess-
generality not required by the application. The feature should be natural

" and easy to use, : '

Requirements

#3J.1, A fixed length character string data type is requifed
[qs opposed to representing strings as arrays of charac.’
ters; a separate data type is needed to promote program
understandability] . .

3J-2. Explicit specification of string length vs required,
and the length must be specified with a constant value.
[Only use of fixed length character strings was observed, ]

*3J-3. It must be possible for the programmer to define
> new character sets, [Some simulator peripherals require
character sets other than the built-in ASCII. ] -

°

Lan gﬁag'e Evaluations

All of the candidate languages except FORTRAN provide a
character data type, In PASCAL, however, character
strings are represented as arrays of single characters,
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Neither PL/I nor J73I require e,xplicit specification of
string length, and PL/I permits strings of'non-constant
length, : o

None of the candidate languages support the explicit defini-
tion of new character sets. -
_ ‘

3K. Character Literals. ’ \

- A character literal facility allowing representation of
character constants for the various simulator peripherals is necessary,

Requirements

-*3K-1, Fixed length character string literals are required. -

*3K-2. The character code used for"a literal muSst be .
programmer-definable.. [ This is necessary to support
the concept of definable new character sets, i : )

*3K-3. It should be possible to include unprintable charac-
ters in string literals. [E‘ormatting codes in strings for
visudl displays are an example of the kind of unprintable
characters needed here. ] '

o Langua\‘ge Evaluations

All of the candidate languages (including FORTRAN) pro-
- vide character string literals. None allow the programmer
to defire the character code used. Only PL/T and J731
supports the inclusion of unprintable characters.

-

3L. Character Operations,

a

Character operations provided in the SHOL must support
the types of character processing performed in simulators, which are
primarily display formatting and offline data file compilation.

Requirements

*%3L-1. There must be operations for substring extraction
. and assignment (the substring length rr'ui?‘sg not be restricted
* to a constant value), access to string length, string replica-
tion by a-constant factor, and-location of a given sub-
string within a string (i.e., INDEX) [ see Section 5. 2. 6. 1].

*3L-2. Equality and inequality must be defined on character
types. :




3L-3. Ordering operations must be defined on the built-in
character set,

*3L-4. There must be operations for conversion from other
types (e.g., numeric, Boolean) to character type. [ These
operations are required for completeness; it should be
possi‘inle to obtain a printable representation of a built-in .
type. C . g e s

<

-

Language Evaluations

Substring extraction'and assignment is provided by J3B,

+.J731, and PL/I. Only,J731 and PL/I allow access to
string length, and onlyPL/I supports string replication
and substring location. Only PL/I provides conversior®
from other types to character. " C

> 5 ' : ) PN

« " All of the languages (except FORTRAN) support equality

and in€quality operations on character types, and all
\ but 73B provide ordering operations.

Language Evaluation Summary

The candidate 1anguagés are ordered, according to the degreé
to which they meet SHOL character data type requirements, as follows:

. "PL/I- Most desired functions are provided. Excess :
‘ capability is supported. _ - ' '

Deficiencies are: °

~

° explicit length specification not required

° non-constant length specification allowed
‘e definition of new character sets not suppé;‘ted
J731- Fewer of the desired functions are provided,

Deficiencies are:

) éxplicit length specifiéation not required

° definition of new character sets not supported
® no string replication or-substring-location

° no conversion from other types to character

i12
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T

ations,

3 -

J3B. - Fewer desired functions aré provided.

« rl ?
Deficiencies are: .
) :

° definition of new character sets not supported
® no inclusion of unprintable characters in ‘
literals 7/ - L

< - : > : . -

® o access to string.length, string replication,
or substring location .

e .no ordering operations

. no conversion from other types to character
PASCAL- Strings'are su/ppo.rted;as"arr.a.ys'.- Few of the
< desired:functions are provided. .

Deficiencies are:
Hele ]

. ) L/
- ] strings represented as. arrays

ot
[y

e definition of new character sets not supported

. no sub tring extraction or assignment,- accfess
to string length, string replication, or sub-
- string location : ‘

. ‘ N
® . no conversion from other'types to character

FORTRAN- . There is little support for character data, \
Deficiencies are:

. no character data type

1 - .
? ° no inclusion of unprintable characters in B
literals ‘
' ® no string operations or relations
] no conversion from\othe.zf type’s to character
Bit String Type - e ‘

Goal

ReN

*The SHOL must provide a bit'string data type and associated oper-

These are required in simulator programming foy maripulating

113 Io:



1/0 values and for representing vectors of Boolean’s such as the frame
and cockpit masks and the malfunction indicator vector. Sections 5.2.4
and 5.3, 1 discusses uses of bit string data.

Supporting Concepts

3M. Bit String Type Definitions.

_ The bit str{ng data type should be natural and easy to use
and should allow efficient implerhentation.

Requirements

=i=3M]-Q"15!. ¢ A bit string data type is required [ see Sections
5.2.4apd 5.3, 1],

3M-2. Explicit specification of bit string length is required
and must be specified with a constant value. | No use of

varying lengtl bit strings was observed. ]

Language Evaluations

Bit strings are provided in J3B, J73I, and PL/I. Neither
PL/I nor J73I require explicit length specification. PL/I
allows strings of non-constant length, (PASCAL provides
a capability similar to bit strings with the set data type. ;

3N. Bit/String Literals.

There must be a natural notation for specifying bit string
literals.

Requirements

#3N.1, Fixed length bit string literals are 'réquired.

3N-2..‘ Literals must be specifiable in'bases 2, 8 and 16,
[ Examples of literals in all these bases have been

'

observed, | - . Z

Language Evaluations

_All three languages which support a bit string data type
provide bit string literals, PL/I allows specification only
in base 2, J3B allows only base 16, while J73I allows all
three,

T




30. Bit String Operatiog /:’

N ™"

. The operations provided for bit strings must support the
construction and decomposition of _strings representing I/O values, as
well as the masking and shifting of strings representmg indicator
vectors.

Requirements

*30-1. There must be operations for bit-by-bit conjunc-
tion, inclusive disjunction;, exclusive disjunction, and
negation [ AND, OR, XOR, and NOT] defined for bit
strings. [ These are the normal bit string operations. ]

*30-2. There must be operations for substring extraction
S and assignment (the substring-length must not be
. restricted to a constant value), access to string length,
& string replication by a constant factor, and location of
a given substring within a string (i.e., INDEX). [ A use
of bit string extraction 1s«d1=cussed i Section 5.2, 4. ]

%*30-.3, Equality and inequality must be defined on bit
string. types,

|
30-4. There must be operations for left and right
shifting of bit strings.

30-5. There must be operations for conversion from
other types (e.g., numeric) to bit string type. [ Accessing
the representation of a value is necessary in I/O and other
conversions, |

Language Evaluations

All three languages which support bit string provide AND,
OR, and NOT operations. All provide the desired conver-
sion operations. PL/I does not provide XOR, while J3B
and J73I do. All three provide substring extraction and
assignment, J73I and PL/I provide access to string length,
and only PLY/I supports string replication and substring
location. Shift operations are provided only in J3B and
J731.

Only J731 and PL/I support equality and inequality
operations,




Language Evaluation Summary

The candidate languages are ordered, according to the degree to
which they meet SHOL bit string data typé requirements, as follows:

J73I- . ‘Most requirements are met.
Deficigncies are:
® e>.<pl‘icit length specification not required
® no string replication' or substring location
J3B- Fewer capabilities are provided.
“ Deficiencies ar.:a:

® no base 2 or 8 literals

) no access to string length, string replication,
or substring location

'@ no equality/inequality operations
PL/I- Several desired capabilities are not provided.
Excess capabilities are supported.
Deficiencies are:
° explicit length specifiction not required
° non-constant length strings permitted
s no base 8 or 16 literals
8 no 3(OR or shift operations
PASCAL- Sorr;e s?m'ilar capabilities are provided by the set
data type,
FORTRAN- Bit'strings are not supported.

6.3.6 Pointer Type

Goal

M

. A pointer data type (see Section 5.2.7) is needed to support
certain types of proeessing performed in simulator executives (e.g.,

?
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1/0 request queues) and for use with dynamically allocated storage,
which might be required in a digital image generation visual system,
The facility provided should meet these requirements without providing
excess generality at the expense of efficiency.

-

Supporting Concepts

3P. Pointer Type Definitions.

The pointer data type must be provided in a manner con-
sistent with the static typing cof the SHOL, thereby supporting program
maintainability and reducing opportunity for error,

Requirements

3P-1. A pointer data type is required,

3P-2. Explicit specification of the type pointed to must be -
required for each pointer definition.

3P-3. Explicit dereferenting of the pointed-to vaiue shall
be required. [Dereferencing is the operation of accessing
the object pointed to by a pointer value, e.g,, P—A in
PL/I, P1.A in PASCAL, or A(P) in J3B. Requiring
explicit dereferencing contributes to program understand.
ability: ] '

“3P-4. It must be possible to define objects which are
dynamically allocated. [See 3R-1 below. ]

Languaée Evaluations

A pointer data type is provided by all of the candidate
languages except FORTRAN. PASCAL pointer definitions
do not specify the type pointed to, and in J3B such speci-
fication is permitted but not required. The only languages
which require explicit dereferencing are J3B and PASCAL,
though it is available in J73I and PL/I also,

Only PL/I and PASCAL support dynamic allocation of data
objects, :

{Note that J73I pointers are declared and represented as
integers., There is not an actual pointer type,)

3Q. Pointer Literals.

The concept of a null pointer must be representable in a
distinctive and readable manner. Pointer constants specifying addresses
of data objects are also'required by the uses of pointers in simulator
executives [ see 3R-3],




B
. Requirements

3Q-1. There shall be a NULL pointer literal. [ This is the
literal normally provided for pomter types. ]

L i 1

Language Evaluations
4

Of the ldnguages supporting pointers, only J73I does not *
prov1de a NULL pointer literal.

3R. Pomter Operatmns.

Pointer 0perat10ns supporting simulator requirements, as
discussed in Section 5. 2.7, must be prov1ded in a2 ‘manner compatible
with the goal of object code efficiency.

-
B

Requirements

- » %*3R-1.. Theré must be-operations for the allocation and
: deallocatmn of dynamic storage. [ Explicit deallocation is.
required a's opposed to garbage collection, because of the
negative impact of garbac'e collection on efficiency. ] '

3R-2. Identity and non-identity relations must be defined
on pointer types. f These are the equality operations for
the pointer type. ]

*3R-3. There must be an operation for converting from
integer to pointer values, A program using this operation
& must be flagged by the translator, so use of this capability

can be administratively controlled. [ This capability is
needed to provide some SHOL support software, as
described in Section 5.2, 7. Since its use can impair pro-
gram understandability, its use should be highlighted.
Such highlighting would not be possible if the capability
were provided by an assembly language subroutine (see
mC).f ‘ -

Language Evaluations

Only PASCAL and PL/I pro- vide operations for allocation
and deallocatmn of dynamic storage.

All of the languages which h.ve pointers except J73I pro-
vide identity/non-identity operations. (J73I simply uses
integers as pointers, so . relational operators are available.

None of the languages support explicit conversion from

integer to pointer. (In J73I, since pointers.are integers,
the desired capability is, in a sense, provided,)

o 113 2y
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Language Evaluation Summary \

The candidate languages are ordered, according to the degree to
which they'meet SHOL pointer data type requirements, as follows:

PL/I- Most requirements are met,

Deficiencies are:

. explicit dereferencing not required
‘ ° no,yconversion from integer to pointer
. v ‘ /
PASCAL-- Most requirements are met., Pointers are not

bound to a type.

Deficiencies are:

® pointer definitions Ao not spec1fy the type
pointed to
® no conversion from integer to pointer
J3B. No dynamically allocated data objects are provided,

! ’ Deficiencies are:

® specification of type pointed to not required
° no dynamiﬁally allocated objects
e no convei-'éion,from integer to pointers
J731- Pointers are really integers, Dynamically allocated

objects are not provided.

Deficiencies are:

L pointers are integers .
° explicit dereferencing not required
. no dynamically allocated objects

° no NULL literal

[y

FORTRAN- There is no support of pointer data.

l A
R
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6.3.7 Procedure Types

Goalﬁv ) 4 - ) .

: The SHOL must provide procedure variables in order to support
current methods of foreground task dispatching,' as described in Section
5.2.8. This feature must be provided in 2 manner that does not increase
| the likelihood of programmer error nor add unneeded complexity to the
language, _ . .o~

Supporting Cencepts

. :
3S. Procedure Type Definitions.

Specification of procedure variables in the SHOL must
express clearly the intent of the programmer,

1
13

Requirements

3S-1. A procedure data type is required.

3S-2. Explicit specification of the number and ‘types of
arguments shall be required for each procedure variable
definition and must be considered part of the variable's
value type. [Hence, procedures hav1ng different numbers
or types of arguments cannot be assuz,ned to the, same .
procedure variable; see 2D.2, Specifying the argument
types helps to prevent error and makes programs more
understandable, ] -

Language Evaluations

Only PL/I supports procedure variables, Explicit specifi-
cation of parameters for such variablés is not required,
however,

3T. Procedure Operations.

Operations provided for procedure variables must nfieet the
requirements of the task dispatchinz operation (see Section 5. 2, 8) and
must be consistent with the rest of the language

Requirements

3T-1. There must be equality and inequality operations
between elements of procedure type, [ These operations
are required for uniformity,
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Language Evaluations

PL/I provides equality and inequality operations for pro-
cedure types.

Language Evaluation Summary

The candidate languages are ordered, accbrdi»ng to the degree to
which they meet SHOL procedure data type requirements, as follows:

PL/I- . Provides procedure variables,

Inadequacies are:
-

® parameter specificétion is not part of the
variable's value type -

FORTRAN,
J3B, J73I, o
PASCAL. Procedure variables are not provided.

6.3.8 Array Types
Goal

The SHOL must provide arrays, or composite data types with
indexible components of homogeneous type. Arrays must be supported
in a manner which contributes to program understandability and effi-
ciency, and which meets simulator programming needs as discussed in
Section 5. 3,3,

Supporting Concepts

3U. Array Type Declarations,

Arrays of the various data types must be specifiable in a
manner consistent with other type definitions in the language.

Requirements

*#3U-1. Arrays with components of any scalar [including
procedure] or cumg :site type shall he definable. [Arrays
'of procedures are required to support current methods
ot foreground task dispatching. ] ’

3U-2. Accdracy specifications [ see 3A] shall be requireél
for components of appropriate numeric type. :
. e :

3U-3. The number of dimensions for each arfay variable
must be specified in programs and shall be determinable
at translation time, No need for a variable number of
dimensions was observed. ]
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#*3U-4, At least three dimensions are required. ‘[_Rec‘luired '
for 3-variable linear function interpolation. ]

39

#3U-5, The range of subscript values for each dimension
must be specified in programs and need only be determi-
nable at translation time [i.e., specified with constant
values; however, see 7TE-2 for array parameters. No
need for arrays with varying bounds was observed, ]

3U-6. The range of subscript values must be restricted
to a contiguous sequence of integers, the elements of an
ordered enumeration type, or a sequence of.single char- -
acters. [ These types of subscripts are sufficient for
simulator needs. ] -

3U-7. The lowest bound of a sequence of integers defining
the range of subscript values must be language-defined,
rather than programmer-definable., [ This simplifies the
language, makes subroutine interfaces more efficient, and
is adequate for the simulator application. ]

Languagé Evaluations

All of the candidate languages provide an array data type,
and all allow at least the required three dirmensions. All
languages permit any of their. scalar types as array com-
ponents. (Hence arrays of procedures are supported only
in PL/I,) Only PASCAL and PL/I allow arrays of arrays,
J3B allows only one.dimensional arrays of records, while
other languages provide more general support. All .
languages require the same numeric accuracy specifica-
tions as are required for scalars of the same type.

The number of dimensions is fixed at compile time for all
languages. All require that subscript ranges be determin-
able at compile time except PL/I, which determines ranges
for automatic and controlled storage at time of allocation.

Of the candidate languages, only PASCAL allows subscripts
to be of enumeration type or to be single characters.
PASCAL also permits Boolean subscripts, which are not .
‘desired. Only FORTRAN and J3B have a language-defined"
lower bound. i ’

-

3V. Array Literals.

- ot <
The language must support the initialization of an array
with constant values.  This is necessary to create such data structures
as the LFI breakpoint and value lists, .

122 . *°
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Requirements .

3V-1. A constructor operation [i.e., an operation that
.constructs an element of a type from its constituent parts]
is required for array types.

Language Evaluations

None of the candidate languages provide an explicit array
constructor operation. (All except PASCAL allow initiali-
zation of arrays with lists of constants,)

3W. 'Array Operations,

Operations must be provided to allow the use of individual
array components and of subarrays of arrays of records, Operations on
entire arrays representing matrices and vectors are alsc required, for
reasons discussed in Section 5, 3, 3.

Requirerhents

#*3W-1. A value accessing operation for individual array
components is required. [ This is a fundamental array
operation, } i

*3W-2. Assignment to individual array components must be
permitted, FThis is a fundamental array operation. ]

#3W-3, Operations for value access and assignment of sub-
- arrays consisting of a complete dimension of an array of

record components are required. [ This allows grouping .
of related record data, all of which is indexible by the
same enumeration type, into a single array, while still
allowing vector operations on a subarray. Section 5. 3.4, 2,2
illustrates this concept. Note that a uniform language will
provide for selecting complete dimensions of any array
type as well, ]

3W-4. There must be array operations for matrix addition
and subtraction, multiplication of a matrix by a scalar,
multiplicaticn of a vector by a scalar, vector cross-product,
and vector dot product. [Such operations are heavily used
in simulators, particularly in the Aerodynamics, Visual,
and Tactics systems. ]

3W.-5. Equality and incquality cperations on arrays are
required,

1 NN

v o~

]23 N




Languége Evaluations

All of the languages provide value access and assignment
for individual array components. Only PL/I'permits selec-
tion of subarrays consisting of a complete dimension of an
array of.records. None of the languages provide equality/
inequality operations on arrays, ' '

Matrix and vector operations are supported onl'y.,by PL/I,
and it supports only.addition and subtraction.

Language Evaluation Summary .

The candidate languages are ordered, according to the degree to
which they meet SHOL array requirements, as follows:
. i t .

PL/I- Most requirements‘are met,
Deficiencies are:
. single characters not usable as subscripts

e *' lower bound of subscript range defined by
programmer

T ) no array constructor operation
¢ no equality/inequality
° no matrix multiplication operations

PASCAL- More subscript types are permitted. Fewer opera-
- tions are provided.

Deficiencies are:
® permits Boolean subscripts

e lower bound of subscript range defined by
programmer

o no array constructor operation

® no subarray selection

® no equality/inequality

° no matrix and vector operations
v 124
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J3B- Several desired capabilities are not provided,
More restrictions are imposed.

T

Deficiencies are:

' only one-dimensional arrays of structures
permitted

® no arrays of arrays
° single characters not usable as subscripts
® no array constructor operation

° no subarray selection

¢ ® no equality/inequality
® no matrix and vector operations
J731- Several desired capabilities are not provided,

‘Array lower bound is programmer-defined,
Deficiencies are:
] no arrays of arrays

! .
® no single character or enumeration type

subscripts

° lower bound of 'suBscript rar\hge defined by
programmer {

N X ® no array cbnstructo.r operation
® no subarray selection
® no eguality/inequality” ‘
® ' ' no matrix and vector op.raticns
FORTRAN- As structuz;es are not supp;)rted, there are no
‘ arrays of structures. Desired subscript types

are not provided as data types, Desired opera-
tions are not provided,




Deficiencies are:
e no arrays of arrays

e no equality/inequality

TTTe— @ no matrix and vector operations

6.3.9 Record Types S .

Goals . C ' \\
§ The SHOL must provide records, i.e., composite data .types with
labelled components of heterogeneous type [e.g., PL/I structures].
Simulator data organization could be greatly improved by the use of
records; as illustrated in Section 5. 3.4, ° : =

Sup)ortiﬁg Concepts

3X. Record Type Declarations."

Records shall be provided in a uniform and consistent man-
ner. A variant record type facility is required for some simulator
functions. N ‘

oa

Requirements

*3X-1. Records with components of any scalar [including
procedure] or composite type are required.: [Restric-
tions on component types degrade language uniformity. ]

3X-2. Accuracy specifications must be given for each
component of a real numeric type. [ This is for uniformity
with declaration of simple variables, ]

*3X-3. It must be possible to define types as alternative
recorg structures (i,e., variants), [Variants are used
in simulators, for example, in the radio station and radar
emitter data files, }

3X-4. The structure of each variant must be determinable
at translation time. [ This is inherent in the variant record
concept. ] ' .
'3X-5. Each variant must have a tag field (i.e,, a compo.
nent that can be used to discriminate among the variants

during execution), [ This is inherent in the variant record
concept.

N7
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- 3X-6. The tag field must not be directly assignable,
[ Assigriment to tag fields changes the type of the variant,
For reliabilitv and understandability, such assignments

must be restricted, ] .

’ .

3X-7. The tag field must be stored in the récord, and its-
s 4 o\

storage pcsition must be controllable by the programmer,
[ Since variants.are used to describe input data records, "\_. )
.the programmer must be able to specify the tag fi€ld po i-\\,( _
tion in the input record. No use of untagged record vari- . .
ants has been observed. ] _ . - -

v

-

Language Evaluations

-~

All of the candidate languages except FORTRAN provide a
record data type. All allow components of any scalar
type, and all except J3B and J73] allow components of
array and record types, All require accuracy:specifica-
tions as for scalars of the same type. Variant record oo
types are supported explicitly by PASCAL, and less.
directly'by J3B and J73I through an overlay feature,
(PL/I's overlay capability provides some similar functions,
but less explicitly. )’ o ; '

- Only BASCAL'S variants have a tag field. However,’ -
RASCAL does not require that the tag be stored in the )
r¢cord, and if it is, the programmer has only partial
coptrol over its position. PASCAL does not prohibit
assliignment to the tag field. ‘

-

3Y. Remu\-d Literals,

The language must support the initialization of a record with
constant values, in order to allow the creation of data tables such as the
camera/modelboard altitude limit bit map (see Section 5. 3, 4, 4).

Requirement:

3Y-1. % constructor operation [i.e., an operation that .
.constructs an element of a type from its constituent parts]
is required for all record types. [Such an operation is

used to initialize record variables, ]

Language Evaluations

¥

"None of the candidate languages provide an explicit record
construcior operation. ‘

o ‘ -
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3Z. Record Opérations.

.
#

The SHOL must provide operations to allow the use of
individual components of records.

Reauirements
a =24

*3Z-1. A value accessing operation for individual record
components is laqulred [ This is a basic operation of the
‘type. ]

*#3Z-2. Assignment to individual record components that
have alterable values [i.e., all except the tag field] must

be permitted, [ This is a basic operation also, ] ,

Language Evaluations

All of the candidate languages provide access and assign-
ment to individual record components.

¥

Language Evaluation Summary

The candidate languages are ordered, according to the degree to
which they meet SHOL record requirements, as follows:

PASCAL.- Most basic capabilities, including variant record
types, are provided.

Deficiencies are:

® tag need uot be stored
® lack of programmer control over tag storage
position : p
° tag field assignable
° no record constructor operation
J3B, J73I- Variants are not supported as requested. Compo-

nent types a~e limited,

Deficiencies are:

) ° no components of array or record type
° no variants (overlays instead)
128
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(

PL/I- "An overlay capability is provided.
Deficiencies are:
@ no record variants
FORTRAN- | Records are not provided.

Section Summary

. .Ranking the.languages by how well they satisfy the data type
requirements gives the following ordering:

- PL/I- acceptable support for all types but Roolean and
enumeration

PASCAL-  major deficiencies are lack of fixed point, bit ;

string, and procedure types; and poor character

support
J3B- acceptable support for all types except Boolean,
- enumeration, and procedire
J73I- lacks adequate support for fixed point, enumera-

tion, Boolean, pointer, and procedure types
FORTRAN- fails to meet most requirements

Expressions

o
ey

Goal

Expressions in the SHOL should be proviced in a uniform manner,
Appearance and interpretation of expressions should correspond to
common usage when this does not conflict with other requirements, The
FORTRAN background of simulator programmers is a consideration in
the design of this feature.

Supporting Concepts

4A, Side Effects.

-Expression evaluation should not alter the envirofiment of
the expression (i.e., repeated evaluation of the expressicn should pro-
duce identical results). If not, such programs are more difficult to
understand and, hence, maiuntain correctly. '

~




Requirements

4A-1. During expression evaluation, assignment must
not be permitted to any variable. [ Note that this pro-
hibits functions from having assignable (i.e, output)
parameters, ]

4A-2. A function must not be permitted to change vari-
ables that are non-local to the function. [ Note this
makes functions free of side effects -- two calls with
the same argument values will always produce the same
result. This means compiler optimizers can produce
much more efficient code for programs containing func-
tion calls. If a side effect is desired, a programmer
must use a procedure with input/output arguments,. ]

Language Evaluations

None of the candidate languages prohibit functions from
having assignable parameters, and hence from altering
the environment of the expression containing the function
call. -

4B. Allowed Usage.

Language uniformity dictates that expressions, variables,
and constants be usable in the same contexts as one another (wherever
such usage is sensible).

- Requirements

>

4B-1. Expressions of a given type must be permitted
wherever both congstants and variables of that type are
allowed. [ This is a uniformity issue. ]|

Language Evaluations

FORTRAN fails to meet this rec'fu‘irement. For example,
variables or constants are required as loop start, incre-
ment, and end values. '

4C. Constant Valued Expressions.

. Constant valued expressions support program understanda-
bility and coqditional compilation, as discussed in Sections 5.5.1. 1 and
5.5.2. .

-

130

- o 139




Requirements

4C-1. Constant valued expressions (i.e., expressions
whose operands all have a constant value or Boolean
expréssions havingaa constant value independent of the
value of variables contained in the expression, e.g. .

B OR C where C is a constant name having the value
TRUE) must be permitted wherever constants of the
types are allowed. Such expressions must be evaluated
at translation time, with target machine accuracy. [ The
use of co?stant expressions is discussed in Section
5.5.1. 1.

4C-2. Expressions containing function calls with constant
arguments need not be considered constant valued expres-
sions. [ This constraint is to make compile-time evalua-
tion of expressions simpler. ]

Language Evaluations

None of the candidate languages provide full constant
expression evaluation. J3B probably provides it to a
greater extent than the others. For example, only J3B
supports translation time evaluation of real and poinfer
expressions. None of the languages provide evaluation
of enumeration type or character constant e:/cpziessions.
Only J3B and J73I provide evaluution of constant bit
string expressions.

None of the languages appear to require that constant
expressions be evaluated with target machine accuracy,

Language Evaluation Summary

The candidate languages are ordered as follows, according to
the degree to which they meet SHOL requirements for expressions:

J3B-~

Provides more constant expression evaluation
than others.

Deficiencies are:
e functions can assign to parameters

® incomplete constant expression evaluation

\ 14p
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ERIC

Aruitoxt provided by Eic:

J731- Some constant expression evaluation is provided,
Deficiencies are:
) functi;)ns can assign to parameters
° incompléte constant expression evaluﬁtion
. PLA,
PASCAL,

FORTRAN-" Little or no constant expression evaluation.

Deficiencies are:

S

/ AN . .
e . functions can assign to parameters
K ° expressions sometimes forbidden where
constants and variables can be used
° no translation time evaluation of constant

expressions

Constants, Variables, and Declarations

o~
un

Goal

The SHOL must allow declaration of constants and variables in
a manner supporting program understandability, These features

- should be designed to facilitate translation-time detection of errors

and to allow generation of efficient object code. These issues are
discussed in Section 5.5, 1, - '

’

Supporting Concepts

¥

5A. Declaration of Constant Names.

A constant definition facility allows programmer intent
to be expressed more explicitly, enhancing maintainability, »

Requirements -~

“5A-1. The ability to associate identifiers with constant
values.of numeric, Boolean, character string, bit string,
array, and record tvpes is required. [ See Section
5.5.1.1.] :

5A-2. Type names must be interpreted as abbreviations
for their values [i.e., two record type names having the
same definition shall be considered equivalent. This
rule is motivated by language design considerations. It
leads to a sinipler use of a language. |
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Language Evaluations

Of the candidate languages, only J3B and PASCAL allow
constant names. Each allows them for the scalar types
of the language, but neither allows them for arrays or
records, ‘

5B. Declaration of Variables.

In the interest of program understandability and maintaina-

bility, all variables- should be explicitly declared.

Requirements

.
5B-1. The value type of ‘each variable must be specified
explicitly. [Readability.is more important than writability
because of maintainability considerations; see Section 6.1.]

5B-2. The value type of loop control variables must be
specified as part of the loop control statement. [ This also
is an understandabi%ity consideration. ]

Language Evaluations

All of the candidate languages provide a means to declare
the types of + ~riables, but FORTRAN and PL/I do not
require explic:t declarations for all variables, None of
the languages allow the type of the loop control variable
to be specified in the loop control statement, (PASCAL
and J73[ require that it be deciared .explicitly in the same’
manner as other variables, )

5C. Scope of Declarations.

Name scoping rules should not be more complex than
required by the simulator application, in order to allow efficient .
implementation.

Requirements

5C-1. It must be possible to declare variables whose scope
is at most an entire subroutine body.

5C-2. The scope of explicit declarations (except fcr loop
control variables) is not required to be a unit smallsr than
a subroutine. [This simplication appears to be adequate
to meet simulator needs, considering the current use of
FORTRAN. ]




5C-~-3. The scope of a loop control variable must be the
loop control statement and loop body [ see also 6F].
[Having this rule permits efficient loop code to be gen-
erated with less complex optimization processing. ]

Language Evaluations

-~

All of the candidate languages permit the declaration of -
variables whose scope is a subroutine body. PL/I pro-
vides-smaller fame scope units, a feature which is not

required. e

ANSI FORTRAN loop control variables are accessible

only within the loop. This is not true of any of the other
languages. ’

5D. Restrictions on Values. A

The types of values assignable to variables should be those
necessary to support simulator programming. (For example, as indi~
cated in Section 5.2.8, procedure variables are necessary for the fore-
ground task dispatcher.) Excess generality, at the expense of efficiency
and reliability, is not desired.

Requirements

5D-1. Labels and statements must not be assignable to
variables, computable as values of expressions, or usable
as parameters to procedures or functions. [Having the
forbidden capability encourages complex central flow,
making programs more difficult to understand. |

5D-2. \Procedures and functions are not required to be
usable a\.ls parameters to procedures or functions, or

returnahle as function values. [ The need for subroutines
as parameters was not observed in our examination of
simulator p rams, |

Language Evaluations

FORTRAN allows the assignment of labels to variables
in the assigned GOTO statement. J73I allows labels to
be used as parameters. PL/I provides a general label
“variable type, with use as expression values, parameters,

function values, etc., PASCAL and J3B permit none of
these undesired uses of labels.

J731, PASCAL, and PL/I aliow procedﬁre parameters,

which are not required. None of the languages allow pro-
cedures as function values,
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5E, Storage Classes.

As described in Section 5.1, both static and automatic
—-'storage classes are required to support simulator data organization
techniques., These }afé'ilities should resemble those in other commonly-
used languages and ‘should facilitate coordination between members of
the programming group, :
Requirements , ’\5

¥,

5E-1. The ability to statically allocate variables local
to compilation units is not required. [ Some simulator
‘. customers specify that static storage not be used.])

4 5E.2. It must be possible to statically allocate storage
. for variables which are external to compilation units,
[ Such data is required to support the 'datapool’ concept
used in simulator development, in which data is available
to the various compilation units comprising the system;
see Section 5,1, 1, '

5E-3. It must be possible to have storage for variables
local to a subroutine initialized (and possibly allocated)

on each entry to the subroutine. [Values of such variables
are not preserved from one execution of a scope to the
next; see Section 5. 1., 2, ]

Language Evaluations

~

All of the candidate languages except PASCAL provide

static storage external to compilation units, (The FORTRAN
COMMON and PL/I external data concepts are nct as sirmi.
lar tc the 'datapooi’xfacility as is the JOVIAL COMFOOL
concept, ) -

All of the languages also provide automatic storage local
to subroutines, (FORTRAN provides this only in the sense
that entities which are not initialized and which are
assigned to in the subroutine are undefined on RFETURN
from the subroutine. The storage is statically allocated. )

8F, ' Initial Values,

Since knowing the initial value of a variable is often
impertant in understanding programs, a method of specifying initial
vajues snould be provided. ‘
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« . Requirements

Kl

5F-1. There must be no default initial values for variables.
[ Default initialization can require unneeded object code. ]

5F-2. It need only be possible to initialize any variable
with a constant value. { Initialization with expressions
whose value is only known at run-time is an unneeded
capability.] '

\

Language Evaluations

None of the candidate languages include default initializa-
tion of variables (except in a few isolated cases, e.[g.,
PL /I AREA data). All of the languages except PASCAL
provide a means of explicitly initializing variables.

5G. Operations on Variables,

It must be possible to assign and use values of variables
in a uniform manner.

Requirements

#“5G-1. The assignment operation and an implicit value
access operation shall be automatically defined for each
variable. [Note that this includes scalar, array, and
record variables, This requirement is for language
unifor mity, ]

Language Ewvaluations

All of the languages provide assignment and value access
operations for scalar types. Only PASCAL and PL/ per-
mit assignment to arrays. These two languages also per-
mit assignment to record variab’es, which is provided

in only a limited manner in J3B and J731. (FORTRAN
does not have records.)

Language Evaluation Summary

The candidate languages are ordered, accorciing to the degree
to which they meet SHOL requirements for constants, variables, and
declarations as follows: °

J3B- Almost all major réqu_irements are met. Assign-
ment to composite types is not fully supported.

~ e 1l ‘




J731-

PASCAL.-

PL/I-

Deficiencies are:
] \no constant names for arrays or records

° loop variable not declared in loop control
statement

° loop %ariable not local to loop

° no assignment to composite variables

Constant names are not provided. - Label parameters
are allowed. Aﬁsignment to composite types is

not fully support\e\d.

° no constant names .
)
' \

® loop variable not declared in loop control
statement

° loop variable not local to. loop |

° label parameters permitted

® no assignment to composite variables
Constant names are provided. There is no static
Storage external to compilation units. There is
no way to initialize variables,

Deficiencies are:

® no constant names for arrays or records

® loop variable not declared in loop control
statement

° loop variable not local to loop

° no' external storage

® no initialization

Constant names are not supported. Implicit

declarations are permitted. Undesired capabilities
are provided.
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Deficiencies are:

no constant names
implicit declarations

loop variable not declared in loop control
statement

loop variable not local to loop
label variables (though some uses of these

provide a needed capability, in the absence
of 2 CASE statement)

FORTRAN- Few of the desired capabilities are provided.

Deficiencies are:

® no constant names
° implicit declarations
° assignment of labels to variables permitted
[ ] no automatic storage allocation
° no ass};gnment to arrays

- ° loop variables not declared in loop control

statement
6.6 °  Control Structures.

Goal

The SHOL must provide control structures for conditional,
iterative, and sequential control. These are required by the types of
processing performed in simulators. Conditional processing is_
particularly prevalent, as discussed in Section 5.4.1. Control struc-
tures should be designed to support structured programming and
enhance readability, and should allow programmers to express concepts
in a notation'which is natural to them. Each control structure should
provide a single capability.
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Supporting Concepts -

6A. Basic Control Facility,

: The set of control structures should be Vsimpl'e, under-
standable, and easy to learn to use effectively,

s Requirements

46A.41. Built-in control mechanisms should be of minimal
number and complexity. [.This is for simplicity. ]

6A-2. Each must be distinc.tive‘ly introduced and delimited
le.g., IF-ENDIF, CASE-ENDCASE; this tends to make
the structure of programs more readily perceivable, | .

6A-3. Nesting of control structures must be allowed.
[ This provides a natural program structure. ]

Language Ilvaluations

All of the candidate languages provide a reasonably simple
set of control structures, FORTRAN's control mecha-
nisms are the least complex, but they do not provide the
desired capabilities. FORTRAN is also the only language
which does not allow nésting of control structures (except
for loops).

"All of the languages are deficient in the syntax used to
define the lexical extent of control structures. PASCAL
requires a terminator for CASE clauses, but it is not
distinctive. PL/I requires.a non-distinctive terminator

for loops. All other control structures are defined by
compound statements, which are, of course, not distinctive.

6B. Sequential Control.

The method of indicating successive statements tc be exe.
cuted should encourage a iniform programming style and should mini-

mize chances for programmer error.

Requirements

6B-1. There must be explicit statement terminators [as
opposed to statement separators as in PASCAL, or no
statement delimiters a5 in FORTRAN, Staternent termina-
tors have been shown in experiments to be less error- .
prone than separators,. | ’




6C.

Language Evaluations

FORTRAN does not have any statement delimiters: In
PASCAL, the delimiter separates rather than terminates
statements, The other candidate languages, J3B, J73I,
and PL/I, all have the required statement terminators,

Conditional Control.

There must be facilities for selecting among various con.-

trol paths based on a condition. Such facilities should support struc-
tured programming practices and enhance program maintainability,
Complex conditional assignments are needed, for reasons discussed in
Section 5.4. 1. 1, :

3*

Requirements

6C-1. The conditional control structures must per mit
selection of alternative control paths depending on either:

° the value of a Boolean expression [ IF-THEN,
IF-THEN-ELSE: this is the basic conditional
structure] .

) a .computed choice among labelled alternatives

{ indexed CASE; see Section 5. 4. 1. 2].

6C-2. Thne language must specify the control action for
all values of the discriminafing condition used to select
alternatives. [e.g., in an indexed CASE statement,
there must be a language-defined action corresponding
to any pcssible value of the index for which the program-
mer provides no specific action. Specifying the action
ensures standardization among implementations. ]

6C-3. The user may supply a single control path to be
used when no other path is explicitly selected. [e.g., °
in an indexed CASE statement, an alternative may be
specified which is selected when the CASE index does
not match the label of anylabelled alternative; such an
alternative can contribute to program readability. ]

6C-4. Index values may be of an exactly representdble
scalar type [integers, enumeraticn elements, character
strings, or bit s_trings] and must be constant valuges.

[ The use of enumeration types as CASE indices is dis-
cussed in Section 5. 2. 3. 3. ¢



6D.

6C-5. Alternatives may. be associated with several index
values or with a range of index values. [ This capability
is often convenient and contributes to program readability, ]

Language Evaluations ' .

- Noue of the candidat® * .aguages provide all of the required

conditional control facilities. Only J73I and PASCAL have
a CASE statement. PL/I and J3B have no CASE state-
ment, and FORTRAN has neither a CASE statement nor
an ELSE component for IF-THEN statements. The indexed
CASE statement of PASCAL meets the requirements more
closely than 'that of J73I by requiring explicit labelling of
alternatives with the index value. Only the J731 CASE
statement allows spec1f1cat1on of a control path tc be taken
if no other CASE path is explicitly selected, but such a
specification is not required,
The PASCAL CASE statement permlts an index value of
any exac‘ly representable scalar type, whereas J73I's
_version does not. Specifically, character values are not
permitted as indices in J73I. Both languages allow an’
alternative to be associated with several index values, but
only J731 permits index ranges.

Conditional Expressions.

It must be posmble to clearly and eff1c1ent1y select alterna_

tive operands within arithmetic expressions, based on a condition. ‘
Simulator design and documentation involves exten51ve use of such a !
feature, as discussed in Section 5, 4, 1. 1. :

‘expressions,

Requu‘ements

#*6D-1, Conditional expressions, allowing selection of
alternative expression values based on the value of a
Boolean expression, are required, [See Section 5.4.1.1.]

6D-2. The language must require the specification of the
expression to be selected for all values of the discrimi-.
nating condition [i.e., IF-THEN.ELSE].

~

~.6D-3. Nested conditional expressions are not desued
[e.g., IF (IF...THEN...ELSE) THEN. ., K ELSE.

such expressmr,)s quickly become un:readable] .

Language Evaludtions

None of tLic candidate languages alicw conditional

12°
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6E.

Conditional Compilation.

As discussed in Section 5.5.2 and in Sections 4. 6 and

4.7, it should be possible to specify inclusion or exclusion of sections
of code based on information available at translation time,

6T,

4

Requiremnents

6E-1., When the selected case for any conditional state-
meut is determined by 2 constant expression [ see 4C], it
is required that only the selected path be compiled. [ This"
is a means of obtaining conditional compilation capability. ]
6E-2. When the selected alternative of a conditional
expression is determinable at translation time, it is
required that only the selected alternative be compiled,

*6E-3. A method of conditionally compiling declarations is
required, [ This supports program portability; see Sec-
tion 4. 7. ]

Language Evaluations

Some form of conditional compilation is provided by three
of the candidate languages -~ J3B, J73I, and PL/L. Only
J3B supports conditional compilation as specified in the
requirements, i.e, by normal conditional expressions
v.ith alternatives determinable at compile time. . J73I and

* PL/I provide special compile-time features for this pur-

pose. However, the J3B facility does not allow conditional
compiiation of declarations, while those of J73I and PL /I
do.

Iterative Control,

An iterctive control (e, g., loop) facility is necessary to

support the general iterative processing requirements of simulator pro-
gramming, and to provide a complete set of structured programming
mechanisms, ‘

Requirements

*#6F-1, There must be an iterative control structure that
permits a loop to be terminated before or after each
execution of the loop body. [ Termination at other points
may be useful but is not required; the need for this con-
trol facility is derived from general language design
considerations, ] ’
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*6F -2, There must be a control structure that iterates
over enumeration types or over subranges of irtegers
[e. g., the FORTRAN DO-LOOP; such a structure is
used quite commonly]. :

6F-3. The value of the control:variable must be accessible
only as a constant within the control structnre. [ 1his -
makes it easier tc optimize loops and avoius errurs )
dependent on knowledge of the control variable's value
when the loop is ex:ted. ] o
6F-4. The control structure must L 2rmiit zero iteraticas )
to be stecified [\\e. g., DO FROM 1 TO N, where N is less -
than one; not providing this capability is a significant
FORTRAN failure].

lL.anguage Evaluations

All of the candidate languages provide iteration over sub-
ranges of integers, and all but FORTRAN provide an ,
indefinite iteration facility (e.g., WHILE or UNTIL). Only
J731 and PASCAL have an enumeration data type, so only
these languages include iteratior over enumeration types.
Only PASCAL and FORTRAN loop control variables are
read-only within the lvops. In other languages, the con-
trol variatle may be assigned to explicitly. All candidate
languages except FORTRAN permit zero loop iterations

to be specified.

6G. Explicit Control Transfer.

A ''go to' statement is necessary, but its use should be
restricted to encourage programs with an understandable control flow.
Other types of explicit control transfers are not desired, for reasons
of language simplicity. ‘ o

DA

Requirements

*6G-1. There must be an explicit mechanism for control
transfer [i.e., the '"go to'; the need for this feature is
derived from general language design considerations].

- 6G-2. The "go to" must not permit transfer into loops or
out of procedures. [Permitting such transfe.s is error-
prone. ] '

6G-3. The '"'go to' must permit transfer from one case
constituent to anothei. [ This cz1 make it easier to get
efficient object code. ] '

15
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6G-4. Control transfer mechanisms in the form of switches,
designational expressions, label variables, label parameters,
or alter statements are not desired. [These are considered
to be error-prone in their use and contribute to complex
program -ontrol flows that are hard to understand. ]

Language Evaluations

All of the candidate languages include a '""'go to'' statement.
None lestrict its use to the extent required. In particular,
J731, PASCAL. and PL/I allow transfers out of procedures,
and FORTRAN and J3B allow transfers into loops.

Both languages with CASE -.':_ontvrbl structures (J731 and
PASCAL) allow transfers from one case constituent to another,

Only PASCAL and J73I limit explicit control transfer mech-
7 anisms to the "go to." FORTRAN and J3B allow switch or

indexed ''go to' constructs, and PI./I has label arrays.

These features are provided to supply the capability which

is supplied by the CASE. statement in PASCAL and J731,

so they are not redundant. '

<
Language Evaluation Summary

*

The candidate languag~s are ordered, according to the degree to
which they meet SHOL control structure requirements, as follows:

J73i- All major functions except conditional expressions
are provided. :

Deficiencies are:

° non-distinctive syntax

* explicit labelling-of CASE alternatives not
required <

° CASE indices of charaéter type not allowed

° no conditional expressions

® conditional compilatior:a_ not implemented in
required manner

) assignment to loop control variable permitted

° transfer out of procedures permitted

PASCAL- All major functions except conditional expressions

arc provided. Conditional compilation is-not supported.

Defiricencies are:

¢ non-distinctive syntax

° statement scparators rather th. . terminators
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J3B-

. PL/I-

FORTRAN-

° nb-way to specify 'ELSE"' control pathvin CASE

™ CASE alternatives cannot be associated with
index ranges

° no conditional expressions
e "no conditional compilation

. ar
® transfer out of procedures permitted
CASE statements-and conditional expressions are
not provided. (Switches provide a capability similar
to the CASE statement.) Conditional compilation is

supported by the compile-time determination of
alternatives in regular conditional control structures.

Deficiencies are:

° non-distinctive syntax

° no CASE statements (switches incstead)

o no conditional expressions

) no conditional compilation of declarations

e iteration. over enumerzation types not available
(because there are no enumeration types)

L] assignment tH loop control variable permitted

e transfer into loops permitted

CASE statements and conditional expressions are
not provided. {Label arrays provide a capability
similar to the CASE statement,) Conditional
compilation is not provided in the required way.

Deficiencies are:

e non-distinctive syntax
° no CASE statements (label arrays instead)
) no conditional expressions

° conditional compilation\ not implemented in
the required manner

. iteration over enumeration types not available
(bccausc there are no enumeration types)

e transfer out of procedures permitted
CASE statements, conditional expressions, and IF-
THEN-ELSE structures are not provided and the

object of IF-THEN may only be a single statement.
Conditional compilation is not supported.
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Deficiencies are:

° non-distinctive syntax

° no statement delimiters

® no CASE statements (indexed 'go to's! instead)
® no ELSE component in IF-THEN

L) no conditional expressions

© no conditional compilation

® no indefinite iteration facility

° iteration over enumeration types not available
(because there are no enumeration typeg)

® specification of zero loop ite)rations not” " -
permitted L o

° transfer into loops permitted.

6.7 Functions and Procedures

Goal

The SHOL must allow the specification and use of subprograms
(i.e.,.functions and subroutines). This feature is necessary to support
modular programming and 'is required by simulator system organiza-
tion, as discussed in Section 5. 2. 9. It should be provided in a manner
which contributes to program understandability and which facilitates
the production of efficient object code

Supporting Concepts

7A. Function and Procedure Definitions.

?

The subprogram capabilities provided should support cur-
rent practices of simulator organization,

Requirements

*7TA-1, A means of defining and invoking functions (which
return values to expressions) and procedures (which can
be called as statements) shall be provided.
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7A-2, Neither recursion nor the nesting of function and
procedure definitions is required. [ Such usage was nat
observed and not considered necessary, ]

>,
7A-3. Reentrant procedures are required. [ These are
used by certain system subroutines in simulators, e.g.,

conversion routines, ] 3
d’v

Language Evaluations

All of the candidate languages provide function and pro-
cedure capabilities: All except FORTRAN provide more
capability than is required. In particular J73I, PASCAL,
and PL/I allow nesting of definitions; and J3B, J73I,
PASCAL, and PL/I allow recursion. (In J3B, only pro-
cedures designated as reentrant may be called recursively, )
Only J3B, J73I and PL/I have reentrant procedures,

7B, Function Declarations,

Functions need only return those value types required in
simulator programming, and should not add unneeded 1mp1ementa‘r1on
complexity to the language,

Requirements

7B-1, If a function result is a composite value or a bit
string, then restricting its size to a constant value is
sufficient to meet SHOL requirements. [ This significantly
simplifies a language. ] '

#7B-2, Function results of all scalar types except charac-
ter string and procedure are required. [ Functions
returning character string or procedures present some
implementation problems. The need for such functions
is mot signi-ficant in simulator programming. ]

7B-3, Funct1on results of label or procedure types are
not desired. [Languages permitting such types are sig-
nificantly more complex in their semantics and use of
these functions can easily lead to programs that are hard
to understand. ]

Langu:?.ge Evaluations

All of the candidate languages-except J731 allow function
results of all scalar types in the language (except charac-
ter string and procedure). (Of course, not all of the
languages have all of the scalar types required by the
SHOL. ) L

/.\ '
: ' 1%
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7C.

PL/I allews function results of label type, which are not
desired. . Many of the languages provide result types not
specifically required (e.g., character string).

Formal Parameter Cla sses,

Read-only and read/write parameters should be distinguish-

able from one another, in support of program readability and reliability.
The language should permit implementations to provide efficient calling
sequences for common cases,

Requirements

7C-1. Two classes of formal procedure parameters are

required:

a) input parameters, which act as constants that are
initialized to the value of the corresponding actual
parameters at the time of the call [i.e., assignment
to\such parameters is not permitted; this helps to
reduce errors and can contribute to object code
efficiency, |

b) input-output parameters, which enable access and
assignment to the corresponding actual parameters,

7C-2. For input-output parameters, the corresponding
actual parameter must be determined at time of call and
must be a variable or an assignable component of a

composite type. [ This is to reduce errors and ensure .
efficient implementations. | ‘

. 4
7C-3. The class of a parameter must be distinguishable
in the form of the call statement. [ This is to enhance
understandability. ]

7C-4. The language must permit input parameters to be
safely passed either by value or reference, depending on
which method is determined to be most efficient by an
implementation. [ This means that even when procedures
are separately compiled, it must be possible to determine
whether the value of an actual input argument can be modi-
fied by assignment directly to the variable serving as the
input argument. ]

Language Eval,gations,.

Only J3B, J73I, and PASCAL allow specification of formal
parameters as read-only or read/write (i.e., input or
input-output), . Inn PASCAL, the distinction is not apparent
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in the call statement, however. Only J3B permits'the
implementation to select between call by value and refer-
ence for input parameters, but it does not do this safely,

7D. Parameter Specifications.

Relationships between actual and formal parameters should
be expressed readably in the language. Barameter matching rules

should agree with the typing philosophy of the language.

Requirements’

7D-1. Pgocedure parameters must be positional [i.e,,

correspondence between formal and actual parameters is

determined by position in the parameter list, Optional and
- keyword parameters are not required].

7D-2. The syntax for declaring types and attributes of
formal parameters must be essentially the same as that
for variable and constant déclarations { to promote
uniformity]. ' ' '
*7D-3, Parameter: nay be of any type, buti procedure
parameters are not required. [See 5D-2, ]

7D-4, The ac~aracy of each formal pararneter of appropri-
ate numeric ¢ & must be specified, [ This is uniform with
the requiremunt for acc aracy specification in other ‘
contexts. ]

7D-5. The value tvpe of each actual parameter must match
that of the corresponding formal parameter. [ This implies
that the languag: must be designed so that this check can
be performed-at cempile-time, since type interface errors
are difficult to digcover during program development and
maintenance. |

Language Evaluations

All of the languages have positional ratier than keyword
parameters, and none allow optional pararneters. All
require a declaration format for parameters which is
similar to that required for variable ang constant declara-
tions. Similar accuracy specifications are alsc required,

In general, the languages aliow parameters tc be of any
type available in the language. All languages sscept J3B.
allow procedure parameters, which are not required. -




: All of the languages require some degree of correspondence
between the types of formal and actual parameters, PL/I,
which allows numerous 'implicit conversions between
parameter types, diverges most widely from the require-
ments in this area. J73I also allows such implicit conver-
sions. FORTRAN and J3B essentially require exact .
matching between formal and actual parameters. (The
PASCAL language specification does not define pararn«ter
matching requirements. )

-

7E. Formal Array Parameters

It should be possible to pass array parameters efficiently
as long as the flexibility necessary for simulator programming is
supported.

Requirements

..

7E-1. The namber of dimensions for formal array param- x
eters must be specified in programs and fixed at transla-
tion time., [See 3U.3.]

*7E-2, The language must allow the determination of the
subscript range {for forma) array parameters to be delayed
until execution time, and to vary from call to call. [ This

is required for Linear Function Interpolation, as discussed
in Section 5.2.9.3,2. ]

7E-3, Subscript ranges must be accessible within function
and procedure bodies without being passed as an explicit

argument. [To avoid errors. ]

Language Evaluations

All of the candidate languages require that the number of

dimensions for formal array parameters be specified and
T fixed at translation time. Only FORTRAN and PL/I permit
_[/ the determination of the subscript range to be delayed until
execution time, Only PL/I makes the subscript range
accessible within the procedure (through the HBGUND and
LBOUND functions) without requiring that it be passed as
an explicit parameter,

Language Evaluation Summary

The candidat#languages are ordered, according to the degree
to which they meet SHOL function and procedure requirements, as
follows: %



“FYEORTRAN- Parameter access restrictions cannot be specified,
- Array parameter subscript range can vary. Exact
5 parameter matching is required (though many types
rjqu_ired by the SHOL are not supported). Excess
cdpabilities are minimal. Reentrancy is not
provided, . .

B

Deficiencies are:

) no parameter access restrictions -
g ‘ ‘f ‘r/
) subscript range of array parameters must be

passed aS a parameter

° no reentrant procedures

“J3B- All major requirements except array parameters
of execution-time determinable subscript range
are satisfied., Kxact parameter matching is
required. Excess capabilities are minimal,

Deficiencies are:

° array parameter subscript range is fixed at
compile time

® does not permit safe selection between value
and reference parameter passing by the
implementation.
o J731. Array parameter subscript range is not determi-

nable at execution time. Implicit conversion
occurs in parameter passing,

‘Deficiencies are:

) implementation cannot select between call by
value and call by reference for input parameters,

* implicit conversion in parameter passing
° array parameter subscript range fixed at cons-
‘pile time -
PASCAL- Array parameéter subscript range is not determi.

nable at execution time.- Parameter. matching
rules are undeéfined. - Parameter access restric.
tions are not determinable in the call statement.
Reentrancy is not provided, '

‘I—\ ERT
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Deficiencies are:

® parameter access restriction not apparent in
call

o implementation cannot select between call by
value and call by reference for input parameters

) parameter matching rules undefined
® array parameter subscript range fixed at com-
pile time
® no reentrant procedures
PL/I- Arrayv parameter subscript ranges can vary,

Implicit conversions occur in parameter passing,
Parameter access restrictions cannot be specified.
Excess capabilities are provided.

Deficiencies are:

® labels permitted as function results

® no parameter access restrictions
° implicit conversion in parametér passing

6.8 Input-Output Facilities

Goal

Simulator programming requires file-level J]/Q as well as low-
level, primitive I/O. Section 5.3.2 discusses simulator file usage;
Sections 5.5.6 and 5.7 deal with low-level I/O requirements. File I/O
should be provided through the SHOL, tut low-level I/O is probably
best provided by the development of approprxate assembly language
Iibrary subroutines,

Supporting Concepts

8A. File Level Input-Output Operations,

Operations for manipulating logical files must be provided
in a manner supporting program portability,

Requirements

*8A-1. Standard library subroutines for logical ;‘118 1/C
must be provided. . These must include Operan?ns for

O
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-reating, deleting, opering, closing, reading, writing, and

positioring logical {:ies The need for all these opera.-
"™ tions was observed. ]

8A-2. Library subroutines for formatted I/O rnust be pro-

vided. [Formatted I/¢} i« useful in offline work; see Sec-

tion 5. 3, 2. ] '

8A-3. Binary record files of types sequential, indexed,
anc direct are required. [ Use of all these file types was
observed. ]

8A-4, Blocks of fixed or variabie length are required.
[ The need for variable length blocks is consistent with the

need for variant records, |

8A-5. Files must be accessible in read-only, write-only,
or update mode, [Use of these modes was observed, ]

8A-6. Shared file operations are not desired. [ Unneeded
"Jcomplexity.]

Language Evaluations

J3B and J731 provide no file 1/0 capability. The PASCAL
file I/O feature is a primitive one which does not really
meet any of the requirements.

FORTRAN and PL/I both provide file 1/0 facilities.
FORTRAN supports only sequential files, not indexed
or direct. Both languages support formatted 1/0.

FORTRAN supports only fixed length blocks and does not
allow specification of file access restrictions (i.e., read-
only, write~only, update).. PL/I supports shared file
operations, which are not desired.

8B. Operating System Independence.

In support of program portability, the SHOL must not
assume the presence of an operating system,

Requirements

3B-1. The form and meaning of built-in and standard
library definitions shall not be restricted to any given
operating system's capabilities, if one is present, [ Note )
that functions and operators of the language can be imple..
mented as operating system calls where the operating
system is compatible with the function or operator
definition.]

. 1 o
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Language Evaluations

None of the candidate languages I/O features require-the’
presence of a particular operating system.

Language Evaluation Summary

The candidate l:ang/ua.ges are ordered, acéording.to the degree
to which they meet SHOL I/O requirements, as follows:

PL/I- All required functions are provided.
Deficiencies are:
° support of share& file operafiohs
FORTRAN- Some required fur;ctions are movi\ded.

Deficiencies are:

. o indexed or direct files
s no variable léng-th blocks
ou ‘ no file access restrictions
PASCAL- I;,irttle file I/O support is provided (though the

. _ primitives could be used to build the desired
functions),

Deficiencies are:

e file I/O support is too primitive
J3B, J73I. No I/O is provided.

6.9 Parallel Procéssing

S

Goal

- 3
[ 4

. R y

The SHOL must support the use of multiple processors, as this is
necessary to.achieve the execution speed required for simulation. .Simu-
lator executives, which handle inter-CPU communication and data
sharing, should be programmable in the SHOL. However, since this is
an evolving area of language design with little consensus on how SHOL
‘requirements are best supported, satisfying both these specific reguire-
ments and the general requirements (Section 7. 1) may be beyond the
current state-of-the-art,
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Supporiing Concepts

9A. Inter-CPU Communication,

The language must support control flow between GPUs
necessary for simulators, as described in Section 5, 4, 2.

Y
Requirements

*9A-1. It must be possible to initiate execution of a speci.
fied procedure on another CPU, to halt another CPU and
to release another CPU from a wait state [ see Section
5.4.2].

Language Ewval uations

PL/I is the only one of the candidate languages to provide
any parallel processing primitives. They are, however,
perhaps too high-level to meet the specific requirements,

9B. Mutual Exclusion and Synchronization.

Processes executing on different CPUs must be able to
access system data in a non-conflicting manner. There must be support
for synchronization of processes executing on different CPUs, as dis-
cussed in Section 5. 4, 2,

Requirements

*9B-1. There must be mechanisms for mutual exclusion
and synchronization of processes executing in parallel,

[ These are the HOL forms of primitives currently defined
in assembly language. |

*9B-2. During specified portions of its execution, a

parallel process must be able to seize and release certain
progr:in declared okjects. [ This is to ensure that variables
are read and updated in a consistent state, |

*9B-3. The mechanisms provided must be sufficiently
general to permit user construction of more specialized
mechanisms that exploit knowledge of the vverall beh.yjor
of the system being programmed [ e. g.., that pre.emptir;
an executing process may not be required because inter.
rupts are treated on a polled basis; this rcguirement is
to ensure that the necessary level of executive eificiency
can be obtained].



.

Language Evaluations’ '

- Again, oril.y PL/I provides any support in this ares, through
. its EVENT variables and associated SIGNAL and WAIT
statements,

9C. Real-Time Clock.

Access to a real-time clock is hecessary to support the
cyclic operation of simulator programs. Access should be provided in
a machiné-independent manner, '

_Requirements

*9C-1. There must be means of accessing a real-time clock.
_[Real-time clocks are used for various purposes, as dis-
cussed in Section 5. 4.2, ]

9C-2. There must be translation-time constants to convert
between the implementation units and the program units

- - T for the clock [ supports program portability].

Language Evaluations

.The PL/I TIME function returns the time in machinec-
independent units (hours, minutes, seconds, and milli-
seconds)., However, this function presumably accesses

a time-of-day cli.ck, rather than a real-time clock (which
can be set to a specific time and will interrupt on comple-
tion) as desired in simulator programming. The PL/I
DELAY statemen!, allowing a task to be delayed for a
specified time interval, provides more nearly the desired
capability.

Language Evaluation Summary

The candidate languages are ordered, according to the lesree to
~which they meet SHOL parallel processing requirements, as follows:

PL/I- All requirements are supported to some extent.

Deficiencies are:

° support may be too high-level
° real-time features may not provide the desired
coutrol
1
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J3B, J731,

PASCAL,

FORTRAN- No parallel processing support is provided,
Deficiencies are:

° no support for inter.CPU communication

° no support for mutual exclusion and
- synchronization

® nc¢ real-time clock access

6.10 Specification of Object Representation and O,ptimi'zation

Goal \

The SHOL must provide programmer control of and access to
the object code representation of programs., Control of object repre-
sentation allows the programmer {0 make trade-offs between time and
space efficiency, as discussed in Section 4, 4. Access to object repre-
sentations facilitates the production of portable programs, as described

., in Section 4. 7.

-~

Supporting Concepts

10A. Packing of Composite Types,

‘ Control over packing of composite types must be provided
in order to allow ‘he programmer to maje time-space trade-offs. This
should be machine-independent when possible, to allow program porta-
bility. The logical grouping of record data components should be inde.
pendent of the record's physical structuring. :

~

. " Requirements

*10A-1. The language must permit, but not require,
programmer specification of degree of packing [e.g.,
tight, dense, medium, unpacked] in a machine-
independent manner for composite cata types [arrays
and records].

*10A-2. Forsrecord types only, the language must per-
mit, but not require, machine-dependent pazking speci-
fications [i.e., by actual bit positions. This is neces-
-ary to allow description of simulator 1/0 data. |

10A-3. It must be possible to specify the order in

which components of record types are sequenced in
storage, indepcndent of the order in which the components
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arg listed in the record declaration. [ This can con-
tribute to understandability by permitting logically
related components to appear close together in program
text even though they might be physically separated. ]

10A-4, For two objects to be of the same value type,
they must have the same physical reépresentation. [ Thus
packing changes the type of a variable for purposes of
parameter passing or assignment, i,e., a formal and
actual parameter must have identical physical repre-
sentation specification. ] '

10A-5. The default size of numeric data must be
dependent on the ra:ge specification, if given, and other-
wise must be implementation-dependent. [ This is a
consequence of making range specifications optional, ]

Language Evaluations

Of the candidate languages, only J5B, J73I, and PL/I
provide programmer control over packing of composite

- types. Of these, only J73I and PL/I permit specification
of array packing. Only J3B und J73I provide machine-

- dependent packing of record types. Neither permits

‘the sperified packing to be separated from the logical
structure of the record, though serial or parallel organi-
zation may be specified, ' : )
Both J73I and J3B require that composites have the same
packing to be of thé same type. PL/I does not meet this
requirement, o

10B. T'ranslation Time Constants and Functions.

- )

Environmental enquiri¢s, providing programmer access
.0 characteristics of the object program representation, are needed
to allow t".e development of more portable programs. - &

Requ.rements

10B-1. Tt : language must p=rmit the spec:ii:.uticn of
object macuine vonfiguration constants indicating, for
example, rnachine mod:l, peripheral equipment, memory
size, word leng.h, etc. [ These are used to state what
environment a p‘rogram is intendec to execute in. ]

i
10B-2. The language must supply translation .. me con-
stants and functions which access impleineniation informa-
tion incluc .ng:

l‘\»-c
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10C,

° maximum and minimum integer values

° negative number representation

® fixed point accuracy -

° floating point precision, radix, and exponent range
® maximum string length

° default character set

° bits per character

| Language Evaluations

Only J731 and PASCAL provide any environmental enquiry
capabilities. Specifically, J73I provides

L word length

° memory size

® bits /word

° bits/character (

° bits/pointer .
PASCA'. provides o~ly the maximum eger ;ralue;

Code Insertions.

Assembly language insertions are necessary-{o"implement

machine-dependent simulator functions (see Section 5. 7) and sometimes
to achieve the necessary efficiency in certain areas. Such insertions
should be easily isolated from other code, in order to support program

-portability,

~—
)

Requirements

*10C-1. The language must permit the definition of sub-
routines ir. assembly language. [See Section 5. 7.]

10C-2. ¢ 'ther assembly language insertions are not
desired. | &« <triction of assembly language to sub-
routines allows control over the data accessed within

the assembly coude. |

10C-3. The language must minimize the need for code
insertions [ by providing sufficient flexibility and power
in the HOL],

-~
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Lar;guage Evaluations

None of the candidate languages provide any assembly
language insertion facility,

Inline Procedures.

In order to support programmer control over space-time

eff1c1enCytrade offs, the language must allow subroutines to be either
expanded inline or called as actual subroutines., Section 5.2.9.2 dis-
cusses the value of such a feature in simulator programming.

10E.

Requirements

#10D-1. The language must:.permit subroutines to be

defined as 'inline' -- that is, the code is to be inserted
directly into the program at the point of call, rather
than called through a subroutine call mechamsm [ See
Section 5.2.9.2,

10D-2. The 'inline' specification must be part of the
definition or in a separate declaration rather than part

“of the call. [Identical calls for the two kinds of sub-

routines facilitate tuning for the desired time-space
trade-offs, as only the definition need be changed. ]

10D-3. Inline substitution must not change the logical
effect of a program, but where substitution of actual
for formal parameters permits conditional comp1lat1on
of inline code, this must be done. [e.g., if F(X) i
defined as IF X > 3 THEN...ENDIF, then F(2) would
result in no code being compiled. This encourages the
modularization of programs and suppor reusability;
sec Section 6. 6. ]

Language Evaluations

Only J3B provides inline subroutines. The 'inline' speci-
fication is not in the definition or the call, but in a
separate 'inline declaration.' This serves essentially
the same purpose as specification in the subroutine defini-
tion. J3B performs conditional compilation of inline
code when parameter substitutién permits, as required.

y :

Optimiz=tion. _ - . -

T}uc,[lb’tg_'agc shall permit efficient code optimizations,



Requirements

: ' , N
- 10E-1. Range specifications, when given, shall be
assumed to be satisfied when performing code optimiza-
tion, [.This will encourage the use of range declarations, |

Language Evaluations

The only candidate language with any range specification
capability is PASCAL, with integer subranges. The
effect of such specification on optimization is not defined

by the language. \

Language Evaluation Summary

The candidate languages are ordered, according to the degree to
which they meet SHOL requirements for specification of object repre-
sentation and optimization, as follows:

J3B- Most major requirements, including that for inline
procedures, are met, Array packing cannot be
specified.

Deficiencies are:

] physical structure of records not specifiable
independently of logical structure

® array packir.g not specifiable
® no environkmental enquiries
® no assembly language subroutines
J731- Major requirements, except that for inline pro-

Y cedures, are met.
Deficiencies are:

] physical structure of records not specifiable
independently of logical structure

® all desired environmental enquiries not
provided

e nc assembly language subroutines

& no inline procedures

161 17




PL/I- No machine-dependent packing or inline procedures
are provided,

Deficiencies are:
e 'no ‘machine-dependent packing

° physical structure of records not specifiable

i
independently of logical structure

[ records with Jifferent pucking are of same

‘ type (i.e., implicit packing conversions are

7 peifurmed)
® no environmental enquiries
o no assembly language subroutines
o no inline procedures
PASCAL- Packing specifications are not provided. Most other

functions are also not provided.
Deficizncies are: -
® ne panlt « specifications

‘

. ® lit'tle enyronmeatal enqairy capability
s no . aerssbiy linguage subrou;ihes
® ne inline wro. edures

FORTRAN- Few of the re¢irs . [unctions are provid -d.
FCeficiencie « »v
® no packing specifications
s no environmental enquiries
. no assembly language subrautines
® no inline procedures
o, bl Iibraries and Separate Compilation

Goal
Ac¢ discussed in Section 4.1, the SHOL must support development
of sitmulatur systems by large groups of progra.umer'ks,
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Supporting Concepts

11A,

Library Entries.

-

The language must rovide for the use of common {or

global) data definitions, subroutin:s, etc. by the various individuals
developing the system.

11B.

Requirements

*11A-1. The langusge must support the use of an external
library. [Such libraries are customarily in use today. ]

11A-2, Libra:y 2ntries mus: i:i..lude input-output
packages, corimec: peeis of shared declarations, appli-
cation oriented :r{*ware packages, other separately
compiled seg.nents, and m:-hine configuration
specifications.

Lianguage Eval::tions

The J3B and J731 CCM T OOLS meet this requirement
most closely. Other janguages provide some similar
capabilities through rheir support of separate compilation
{see 11B). FORTRAIN's COMMON facility provides
sharing of corimon fata definitions.

Separately Lomsiled Segments.,

The langu#z;+ must allow separate compilation of programs,

and must support their inizgration.

Require ments

*11B-1. The language must support the integration of
separsi«iy compiled program segments into an operational

© PrOgra:i.

#11B-2. Th« language must allow definitions made in one
segment tc s used in another. [ This supports the data-
pool concepr; see Section 5. 1. 1. | :

l.anguage Evailucations

J3B and J73I support the use of separately compiled seg-
ments via the COMPOOJ facility. The other candidatc
languages provide explicit 'external' declarations to access
external names (though in PASCAL this is an extension to - .
the standard language).

]
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11C.  Restrictions on Separate Compilation.

In support of program integration, the language must pro-
hibit inconsistencies among the segments being integrated, :

i

Requirements

*11C-1. Separate compilation must not change the meaning
of a program. [ This simplifies the language, making
separate compilation merely a development aid. ]

11C-2. Translators must be responsible for the integrity
of object ccde in affected segments when any segment is
modified.

11C-3. Translators must ensure that shared definitions
have compatible representations in all segments. [ This
is of considerable value in program development and
maintenance. ] ' A

Language Evaluations

J3B's and J731's checking of procedure parameters in the
COMPOOL and PASCAL's external reference checking
provide more enforcement of compatibility than do the
FORTRAN and PL/I facilities. It does not appear that
separate compilation affects meaning of programs in any
of the languages. It also does not appear that any of the
languages require that translators guarantee integrity of
object code in affected 'segments when a segment is
modified,

1

Language Evaluation Summary

. \
THe candidate languages are ordered, according to the degree to
which they meet SHOL library and separate compilation requirements, .as
follows: . -t

J3B, J73I- COMPOOL facility provides most of the required
functions.

Deceficiencies are:

? integrity of affected segments not guaranteed
when a segment is modified

PASCAL- There is no COMPOOQOL-like facility. Parameters
are checked in external procedure declarations.
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Deficiencies are:

o _ inadequate facility for sharing common
- definitions

] integrity of affected segments not guaranteed
when a segment is modified

PL/I, .
FORTRAN- There is no COMPOOL-like facility. Parameters

are not specified in external procedure declarations.

Deficiencies are:

° inadequate facility for sharing common
definitions
© integrity of affected segments not guaranteea

when a segment is modified

° external procedure parameters rnot checked

1

6.12  Language Evaluation Summary

A summary of the language evaluations is contained in Table 1.
For each area of the requirements, each language is given-an overall
rating based on how well it satisfies the requirements, Languages that
satisfy the essential (i.e., the starred) requirements are rated higher
even if they do not satisfy the non-esséntial requirements, since the
purpose of this evaluation is to decide which unmodified language best
satisfies simulator requirements. The Table indicates that PL7/I and
J3B are most suitable, although no language is perfectly suited (a p=rfect
language would have a score of 90). }AOf the two languages, PL/I is the
more widely known, although neither PL/I nor J3B is significantly
supported by manufacturers of com;ﬁlters used in training simulators.
Also, neither language is approved by DoD for use in new.embedded com-
puter application efforts. Only FORTRAN and JOVIAL J73I are approved
languages. From an Air Force viewpoint, JOVIAL J73I would there-
fore be the best choice if it were more widely available. On tecliical
grounds alone, however, PL/I or J3B are somewhat superior to J73I.
The only language that is clearly inferior is FORTRAN,

Since all of the languages have some important deficiencies, in
the next Section we will discuss what language is most suitable for
modification and how well the modified language would meet simulator
requirements,
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TABLE 1

EVALUATION SUMMARY

FORTRAN PASCAL J3B J731
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Section 7

LANGUAGE MODIFICATION GOALS

Since none of the languages are entirely suitable fo¥ simulator
programming, we will consider what language is best suited for modifica-
tion and what modifications should be made.  In selecting a language for
modification, in determining the modifications to be made, and in actually
raodifying the language, several goals must be given consideration. These
goals are discussed in the following subsections. Specific modifications
to each of the candidate languages are discussed in Section 8.

7.1 Minimal Cost

’

/

It is, of course, desir/a'Ble to minimize the costs associated with
language modification, i.e., /fhe design, implementation, and retraining
costs. This consideration dictates that possible modifications be evaluated
with respect to their value and necessity for simulator programming vs.
their cost before they are recommended. Each modification selected adds
to the cost of producing the SHOL. In addition to the individual cost of
implementing each modification, as the number >f modifications increases,
the complexity of the overall modification task multiplies. This is because
of the effect of each addition or deletion on the remainder of the language.
There are many interrelationships between the features of a language
which must be carefully considered when deleting a feature and which
must be defined when adding features. With a large number of modifica-
tions, interactions can become so complex that it might no longer be cost
effective to modify an existing language as opposed to simply developing
a new one. ‘

Another area of cost consideration is the availability/ of existing
support for the language selected as a basis for modi.ication. If trans-
lators for the chosen language‘for the desired target machines (or some
of them) already exist, the cost of implementing a set of SHOL translators
is greatly reduced. (Even if no such translators are available, however,
the cost of implementing the SHOL:through modification of an existing lan-
guage should be less than that of developing a new language. This is
because language design should be less difficult and because existing
knowledge about implementing the language can be employed. )

- Quality of existing documentation for the selected base language
»s another cost factor. In establishing the SHOL as the language used by
simulator programmers, a significant retraining effort will be required.
This will require tutorial and user documentation of excellent quality.
" e degree to which existing base language documentation can be adapted
. this purpose has a significant impact on cost. Another consideration
inveiving documentation is the availability of a detailed and accurate
language specification for the chosen base language. Such a document
facilitates the design (and specification thereof) of the language built on
that base, thereby recucing language design costs. :

L
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. In view of these factors, we have considered only language modifi-
cations satisfying =ither of the following criteria:

a. They are essential to satisfy functional requirements
" of significant importance in sirfalator programming,
e.g., fixed point arithmetic. These are the require-

ments asterisked in Section 6.

b. They are relatively easy to provide and are of
significant benefit, even through nct absoluteiy
essential to meet simulator needs.

A language that is modified according to these criteria will be optimal in

the sense that the benefits of the modifications probably outweigh the
difficulty of making them. - . .

7.2 Svntactic Integrity

It is necessary when modifying a language to conform to its exist-
ing syntactic conventions, i.e., added features must employ a syntax.
which is compatible and consistent with that of existing features. For
example, if conditiondl expressions (e. g., x = IF condition THEN y
ELSE z) are-added to a language, their synfax should conform to the
language's existing IF-THEN-ELSE construct as much as possible.

This would not be at all possible in FORTRAN, which does not have an
ELSE component in its IF statement. ' In general, the more the base k
language differs from the desired language, the more difficult it is to
maintain syntactic integrity. :

When selecting a language for modification then, it is important
to consider how closely the syntactic conventions of the language corres-
pond to those considered desirable for the SHOL. Furthermore, the
goal o: consistency with existing syntax must play an important part in
the actual design of the SHOL. '

=~
-~

e 3 Non-Interference with Existing Language Feaiures

A similar goal to that described above is the avoidarce of complex
or undesirable interactions between modifications and existing features.
As discussed previously, this problem is compounded as the extent of
modification increases. Deletion of feature: con~idered to be undesirable
can have a severe impdct, since the feature may be needed in the semantic
definitions of other aspects of the language, rerhaps in a marner which is
not immed:iately apparent. For example, deletion of a data type can have
an impact on the implicit conversion algorithn. employed in the language.

Additions must also be evaluated with respect to their interactions
with the restof the language. For example, if file I/0O is to be added to
PASCAL, it should be added in a manner consistent with PASCAL's exist -
ing I/O capability, which is very low-level. Perhaps the low-level
primitives would be uscd to build the file 1/O feature.
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Additions should not introduce excessive redundancy into the
language. For example, if a CASE construct is to be added to PL/I, it
might be desirable to eliminate label arrays, which now serve somewhat
the same purpose. On the other hand, it might be preferable to conclude
that PL/I's label arrays are adequate for the purpose of simulator
programming, thus avoiding both the addition and the deletion costs.

7.4 Upward Compatibility

A possible goal in developing the SHOL is upward compatibility
with the base language. This means that the base language is a prop: -
subset of the new language. (This, of course, rules out the deletion of
features from the base language.)

A requirement for upward compatibility increases the difficulty
(and hence the cost) of modifying the language. It is sometimes quite
complex to extend the language syntax to incorporate desired additions
without altering syntax of existing constructs, especially if any degree
of syntactic integrity is to be preserved. As an example of this problem,
consider the difficulty of adding to FORTRAN an IF-THEN-ELSE
construct which allows grcoups of statements as objects of the THEN and
ELSE, and which still accepts such FORTRAN statements as "If
(JLLT.10)Q =R+ S

The primary advantages to upward compatibility are that
programs in the base language wiil be accepted (and correctly translated)
by the translator of the new language and that programmers trained in
the base language can convert more readily to the new language. These
advartzges, however, are only realizable if there is a significant body of
existing <ode in the base language which is to be reused in systems built
with tre new language and if programmers are already experienced with
the basc ianguage. (Of course, it may be that programmers skilled in
the base language would show resistance to the new features, and hence
take longer to become proficient in the new language than those previously
unfamiliar with the base.) - :

The major impact of the issue of upward compatibility is on the
actual task of language modification. In general, it increases costs and
detracts from the uniformity of the resulting language and should only be
required if significant benefits will be obtained.

[
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Section 8

LANGUAGE EVALUATION AND MODIFICATION SUMMARIES

Since all of the languages would benefit from modifications to
make them more suitable for simulator programming, in this Section
we discuss the modifications considered most cost effective. For each
language, we will cite its major advantages and then discuss the modi-
fications that are recommended. - The modifications have been selected
based on the analysis in Section 6. In general, modifications needed to
make a language satisfy essential SHOL requirements are specified.
Other modifications that are relatively simple to make and that would
be of significant value are also proposed.

Each modification is evaluated in terms of its design and
implementation complexity. Design complexity is increased if the
modification requires changes to many parts of a language, i.,e., if
it affects the syntax and/or semantics of a significant proportion of
constructs in the language, Design compicxity is decreased if a
modification is localized with respect to the capabilities a language
provides and if the modification does not entail discarding existing
language features. Implementation complexity is concerned with the
amount of ~ffort needed to modify or create a compiler that supports
the modification. The design and implementation complexities are not
always the same, for reasons that will be noted in discussing the
modifications.. After recommending modifications-to all the languages,
we will summarize the estimated design and implementation compiexities
of the modifications and discuss which language is best suited for
modification and subsequent use.

_ The desig. and implementation complexities are evaluated on a
scale of 1 to 5, with 1 indicating that the modification is simple and 5
indicating the modification is complex. A modification of the form:

(3,5)* add fixed point
means that the design complexity factor is 3, the implementation com-

plexity is 5, and the requirement for fixed point was considered
essential in Section 6.

FORTRAN Modifications

The major advantages of FORTRAN are that it is available on
many simulator target machines, many simulator programmers are
experienced in its use, it is well documented (many tutorial publications
exist), and it is on the DoD list of approved languages (DoDI 5000. 31).
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Its m+jor disadvantages are its lac.. of fixed point and record types, its
lack of catrol over data representations and its weak control structures,

The recommended modifications 0 FORTRAN are:
(1, 3) inc-ease identifier Jength

The current length is inadequate to provide readable and
meaningful identifiers. Making identifiers longer is a
simple language change, but would require reorganization
of a basic part of a FORTRAN compiler, the symbol table.

(3,5)* add fixed point

Fixed point arithrmetic capabilities are complex to design
and complex to support because of optimization requirements.

(3,2)*% add enumeration types

As new data types are added to FORTRAN, the methods of
declaring variables gets more awkward, necessitating
perhaps more design effort than in other languages. The
implementation of enumnc ration types is relatively straight-
forward, however.

{3,3)* add character data type and operations

This should be straightforward in detail, although the number
of details to be designed rates in complexity as 3.

(2, 1)* unprintable characters in sirings

Deciding how to do this in a way that is consistent with the
rest of the language will require some thought, but its
implementation should be easy.

(3,2)% ability to define new character sets

The design is difficult (it has not bfeen done except in the DoD
Common Language designs) but singe the design decisions
are localized to one type in the langwage, we rate it a 3 in
language complexity. The impLg_{nentL‘;\tion ramifications are
potentially no more conplex than R ling packed arrays, a
capability required for other reasons as weli.
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(3,3)* add bitstring type and operations

We generally rate adding a completely new type and operation
as comp.exity level 3.

{2,3)*% add pointer type

The syntax and usage of pointers can be relatively straight-
forward to design as a modification.
(1,3)*% add dynamic allocation

l

Providing simple dyn:mic allocation operators poses no
difficulties, but the run-time support is more of a complication.

(4,3)* add record data type

The record type is complex and so we rate it 4.

(3.3) add constant expressions evaluated at compile time
Modifying syntactic rules so constant expressions are permitted
in every context currently permitting literals makes this
modification more complex than might otherwise be expected.
The implementation is complex because of the need to simulate
target machine arithmetic, potentially, or at least to compile or
interpret expressions being evaluated at compile time.

(2.1) correct no:.-uniformitiec in use of expressions

The constraints on use of expressions as subscript indices can
be easily removed, improving the uniformity of the language.

(2,2)%* add constant names

This is relatively straightforward.

t4, 3} add automatic storage class

This is a significant change to FORTRAN but is worthwhile in
simplifying storage allocation problems for what are currently
treatec as temporary common data locations.

(4,2) permit nested IF-THEN-FI1.SE statement forms

~This is a significant change to FORTRAN and requires deleting
the current FORTRAN form to avoid duplication of capabilities.



(2,3) add CASE statement

o~

This is a significant change to FORTRAN concepts, since it
adds the concept of a compound statement to the language,
but given that the concept is already needed for IF-THEN-ELSE
statements, the additioral effort for a CASE statement is not
great insofar as the language design goes.

(2, 2)** add conditional expressions

The semantic rules are straightforward if both;arms of the
conditional are required to be of the.same type, e.g., if IF B
THEN 3.0 ELSE 2 is forbidden.

(2, 2) add conditional compilation

Given that [F-THEN-ELSE statements are in the language,

this is not a significant amount of work to add and it is very
useful for reasons discussed in Section 4. 7.

{2,2)* add indefinite loop iteration
Adding DO WHILE loops is fairly straightforward.

(2, 1) add constant parameters

This is an easy change to the language specification even
though it is & signii.cant change to the capabilities of FORTRAN.

{2,4) add indered and direct access files

Tt e (.. eadd s library procedures and, indeed, have been
made available in { is wuy in some ¢ )RTRAN implementations.

(2, 3) add parallel processing support

Simple primitives can be added as procedural extensions.

(3, 3)% permit programmer packing specifications

The variety of packing specifications required and their use
throughout the language 1s complex because of the widespread
impact on the language.

(1, 2)% add assembly language and inline cubroutinecs

This is straightforward once the decision about how to do it
1s*made.

(3,2)% add facility for sharing common’'datapool definitions.
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' '
The FORTRAN COMMON racility is; usable for sharing data
locations, but a more reliable method of sharing definitions
similar to JOVIAL COMPOOL facilities would be a worthwhile
change,

-
The recommended modif’ :ations have an estimated design com-
plexity of 61 and an estim ~t~d implementation complexity of 63,

PASCAL iJodifications

The major advantage of PASCAL is that it is designed with
simplicity and reliable programming in mind. The number of PASCAL
translators is increasing, but they are not weut controlled, leading to
t—ranslator-dé“pepdent PASCAL dialects. Very little must he deleted
from PASCAL to make it acceptable as a SHOL, but many capabilities
must be added. The most significart PASCAL disadvantages are its
lack of fixed point arithmetic, its lack of separate compilation facilities,
and its lack of provision for vontrolling data representations, '

Recoinmended inodificatiors to PASCAL are:

(1,1) add a break charicter in identificrs

3redk characters permi: more readable identifiers to be used

in orograms The change i. a simple one to make.

(1, 1) add M "X /MIN and trigonometric functions

Providiré these capabilities in a library is straiightforward.

(3,5)* add fixed puint (see FORTRAN discussion)

(1, 1) permit duplicate names for enumeration elements

This is a relatively simple change requiring that some method

of resolving ambiguities be provided. Several language design

options are possible.

(2, 1)* unprintable characters in'strings (see FORTRAN)

(3,2)* permit new character sets to be defined (see FORTRAN)
)

(1, 1)* incorporate a String data type '

This is~just a syntactic change, since the representation of such

« type will be\fh«e\same as the curreunt string representatios,

namely, arrays of characters. _

(1, 1)* provide base 2 or base 8 literals

This is a simple syntactic addition.



vt ~

(1,1) type-safety of variant records

PASCAL currently permits tag fields of variant records to be
assigned directly. This capability is nc¢i required in simulator
programmi}g. Removing this carability is simple.

(3,3 add constan: expressions e.:i_-ated at compile titne
(see FORTRAIL,,

(1, 1) add constant records and arra -

Since PASCAL already supports constant .. s, extending the
capability to records and arrays is straigi. ©  ‘ard.

) (3,3) add external . '* : storage class
Since PASCAL does n-' - ipport separate ~- - la’ios  +his is

a significant change.
(1, 1) add initializatior o” +. sbnles

This is a simple languag~ s rnge. The implemeni:ition com-
plexity is also straightfeiw: od.

(1,1) add an ELSE aiternative in CASE ciatermen:is
(3,2) permit ranges in CASE statements
Permitting ranges ir CASE siatements will require altering the
CASE rtatement syntex in a way thai requires somre thought,
Adding an ELSE clause is straightforward, however.

(2,2)* add ccnditicnal expressions (see FORTPRADN)

(2,2)% add conditivnzl compilation (see FORTRAN) '

(3, := permit array parvameter subsct. ,ts to be non-constant

This 15 a sign ficant change to the language capability. Jis
int.zration with the rest of the tanguage requires careful design.

(1, 1) define parameter .na chiny rules
This corrects an oversight in the curren: language spe. “ication.

{
'

89
3t

,4)*¥ add direct and indexed access filus, (see FORTRAN)

oo

(2, 2)* add parallel processing support
p P g PF

Simple primitives can probably be added as procedu:l
extensions.

. B
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“(3,3)% permit programmer packing specifications (see FORTRAN)

(1,2)* add assembly langrige and inline subroutines (see
FORTRAN)

(4,4)% add facility for sharing common datapcol definitions
PASCAL currenily has no separaie compilation capability.
Designing one for PASCAL and implementing it is therefore

more complex than for the other languages.

The recommended modifications have an estimated design com-
plexity of 46 and ar implementation complexity of 49,

J737 Mcodifications

The .hajor advantage of J731 is that it meets muost of the essen-
tial SHOL requiren.onts and it is on the DoD list of HOLs approved for
use in developing new DoeD softwvare. Iis meaior shortcoming is the
lack of a fixed point data type ard variant records,

The recommended n')«‘-di.fica_ticns to J72] are:

{3,5)% add fixed point (+e }ITORTRAI\’;

(1, 1I}* add MAX/MIN and trigonometric fl‘.zncfinns {see PASCALY
{4, 3)% add enumeration pe ar . e;-:-er;tions

This addition is more duifizult than for the other ianguagr s
because the current status type capability musy be modifind,
i.e,, the modifica' on re Juires both a deletiiv. and an zddition
to the language.

~

7
{

!
(3,2)% add Boolean data type and operations

Adding the Boolcan data type . :11 require removing the present
method of computing Boolenn . esults from the languapge ‘namely,

the use of bitstrings o gel tac ¢ffect of Poolean opcrations).
Although adding the Booiean type to a language not having it -
would be rated a 2 in design complexity, since this change to

J731 requires modifying ¢a el isting czpability, we rate the design
complexity as 3, Tiplementation cceaplexity is 2 be ~use the
Boolean operations are already present in the lanzua.e; it's

Just the syntactic and semantic vonstraints “-L; must be changed.

(3,2)% ability to define new charactor set (see FORTRAN)

3,3) make pointers a distinct data Ly

ERIC
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Pointers in J73I are considered integers. This use of integers
does not contribute to reliable programming. Adding pointers
as a distinct data type is therefore equivalent to adding a new
type to the language. '

{1,3)* add dynamic allocation (see FORTRAN)
(4, 4) perfnit record variants to be defined

Adding this capability requires modifying J73I to forbid the use
of OVERLAYs to obtain record variants and so this change is
somewhat more complex than simply introducing record variants.

{

(4, 1} permit record components of array or record type

This capability requires a significant redesign of the JOVIAL
record capabilities,

(2,3} expand constant expression evaluation capabilities

No constant e>épression capability is currently provided except
for bitscring expressions.

(2,2)*% add constant names (see FORTRAN)

(1,2)*% permit assignment of arrays and records as a whole
J731 already permits such assignments for records that are
elements of arrays. Extending the capability to complete arrays
and records is not difficult,
(3,2)* add conditional expressions (see FORTRAN)

(3,3) require explicit labeling of CASE alternatives

Requiring that CASE alternatives be labelled explicitly will
significantly increase the reliable and understandable use of
CASE statements. However, it is a more complex change than
might be thought, since ranges of labels must be provided as

well as simple constants.

(3,3)% permit array parameter subscripts to be non-constant
{see PASCAL)

(3,5)+ prowvide an I/O capability
Even though I/O can be supported by defining procedures,

de_iding what the routines should be and implementing them is
a significant task,

1.
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(2,3)* add parallel processing support (see FORTRAN)

(1,2)* add assembly larg:age subroutines and inline routines
(see FORTRAN)

The recommended modifications have an estimated design
complexity of 46; the estimated irnplementation complexity is 49,

J3B Modifications

- The major advantage of J3B is that it has already been proved
suitable for use in applications requiring efficient object code., Also,
it meets most major SHOL requirements.

Recommended modifications to J3B are:

(1,1) add MAX/MIN and trigonometric functions

3k

(3,2)* add enumeration-types and operations

(3,2)* add Boolean data type and operations {see J73I)

(2, 1)* unprintable characters in strings (see FORTRAN)
(3,2)% ability to define new character se'gts (see FORTRAN)
(1,1)* add base 2 and 8 literals -

(1, 1)* permit bitstring equality/inequality

(1,3)* add dynamic storage allocation (see FORTRAN)

(4,4)* permit record variarnts to be defined (see J73I1)

(4, 1)* permit recori \compo.lents of array or record type
(see J73I1) Y

(1,2) extend expression eval.:ation

.
Change the language so relatinnal comparisons (e.g., A = B)
are considered constant expressions if A and B are constants.

{1, 1} add constant names for arrays and records

Since J3B already supports constant names, this is a simple
modificatior.

(1,2)% permit assignment of arrays and records (see J73I)

(3,3) add CASE statement and remove SWITCH

1787 fo -




o This modification will improve the control structure capabilities
of the language.

(2,2)*% add conditional expressions (see FORTRAN) <

(3,3)* permit non-consti~t array parameter s:ubscripts
(see PASCAL)

(3,5)* provide an I/O cap:bility (see J73I)

- (2,3)* add parallel processing support (see FO.RTRA‘

(1,1)* permiit specifiable array packing

(1, 1)* permit assembly language subroutines

The recommended modifications have an estimated design com-
plexity of 41. The estimated implementation complexity is also

41,

P1L /I Modifications

The major advantages of PL/I are that it is the most widely
used of the candidate languages other than FORTRAN, it is well docu-
mented, and it provides most of the features required. The major
shortcoming is that PL/I is more complex than is required.

 Specific recommendations for modifications are:
(3,2)* add enumeration types (see FORTRAN)
(3,2)* add Boolean data type and operations (sce J73I)

(2, 1)* unprintablg'{?characters in string literals (see FOR.TRAN)
“(3,2)*% ability to{de.\f‘me new character sets (see FORTRAN)

(1, 1)* add base 8 and 15 bitstring literals (see J3B)
(1,2) add parameter specification for proéedure variables

Since PL/I permits procedure variables, it is important to _
improve the reliability cof this capability by permitting the types
of the parameters to be specified.

(4, 3) permit record variants to be defined

Fitting the concept of record variants into PL/I will probably
require a complete redesign of the PL/I record type, but the
usefulness of variant records is sufficiently great to make this
change worthwhile,

I,
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(3,2} add constant expressicn evaluation (see FORTRAN)

(2,2)*% add cénstant names (see FORTRAN)

(3, 3) add CASE statement and remove label arrays (see J3B)
(2,2)* add conditional expressions (see FORTRAN)

(2,1) add constant parameters (see FORTRAN)

(3, 3)* permit prc_)grammevr packing specifications (sce FORTRAN)

(1,2)* add assembly language and inline subroutines (see
FORTF.AN) ’

The recomrnended modifications have an estimated design com-
plexity of 33 and an estimated implementation complexity of 29,

Overall Summary

The estimated design and implementation complexities for the
recommended languages are summarized below:

Language Design Implementation
FORTRAN 61 63
PASCAL 46 49

—_— J731 46 49
J3B 41 41

PL/I , 33 .29

After the recommended modifications are made, each of the languages
will be approximately\equal in suitability for programming flight simu-
lators. Since PL/I is the simplest to modify, it is a good choice as a
base, especially since it was also evaluated as a suitable unmodified
language,

Of the two languages approved by DoD for 'ise in implementing
new systems, namely, J731 and FORTRAN, J73I is clearly more suit-
able in both modified and unmodified form. Mor- programmers are
familiar with PL/I than J73I, however, and there are also more train-
ing materials for PL/I. On technical ground$. then, PL/I is the
optimal choice for modification. However, the choice of J73I would:
not be unacceptable and would be more likely to be & cepted within the
Air Force environment.

In the next’section we discuss implementation considerations
for a standard simulator HOL based on modifying PL/I.

Cy
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Section 9

IMPLEMENTATION CONSIDERATIONS AND
RECOMMENDATIONS

/

The following subsections discuss various approaches to
developing a workable SHOL facility to support simulator program-
ming. . Previous sections have justified the selection of PL/I as a
base and have described the modifications recommended to develop
‘the SHG{J.

Self-Hosting vs. Cross-Compilation

Flight simulator systems have traditionally been based on a
variety of different target machines -- generally commercially-
available computers of moderate size. It is assumed that this practice
will continue once the SHOL is in use. It has also been the custommn
to develop all software directly on the intended target machine. That
is, language processors {(assemblers and compilers) run on, the target
machine itself, and all program debugging is carried out on this
machine. The main advantages to this approach are:

° there is no additional hardware cost over that required
for the actual simulator

® programs may be modified (and reassembled or
recompiled) at field locations where only the target
machine is available :

Another approach to simulator software developr. ent would
be to use a single large-scale host. computer for translation and for
much of program checkout. This computer would have cross-compilers
and debugging support tools for the various target machines, There
are many advantages to this approach, including:

° the greater power of the host computer c:n be used to
’ advantage in the translation and support programs

® much of the code in the cross-compilers can be
reused in the various target machines

° more sophisticated debugging support can be provided
» more powerful facilities for editing, file maintenance,
: time-sharing, etc. are available for program
devclopment ’
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. hese advantages, of course, must be weighed against the
disadvantages of the added cost of the host computer and its
unavailability for onsite modification.

‘The decision made with respect to self-hosted compiling
vs. cross-compiling will have considerable interaction with other
aspects of SHOL development, which will be discussed in later
subsections. It is recommended that the cross-compilation approach
be adopted for the SHOL. The language to.be implemented is sufficiently
complex that a more powerful computer is desired to support trans-
lation. This will allow development of a more sophisticated translator
which can produce superior object code (in terms of space and time
efficiency) to that produced by a translator operating on a small
machine. This is an important advantage since efficiency is vital
in this application area.

Another major re"gson for cross-compilation is the decreased
cost of translzator development. Compilers for each of the desired
targets can share the same machine-independent portions (front ends)
and will require only the development of new code generators. Code
generator development is significantly less costly than total cornpiler
development. As will be discussed later, this approach also facilitates

‘language standardization by increasing the likelihood that all translators
accept the same langi age.

A major concern with this approach is the initial cos’ of the
host computer and of dev_lopment of the first cross-compiler.
Customarily simul :tor purchasers have not had to pay for separate
development comy-ters or for the production of language translators.
It would r.ot be reasonable to assume that the first purchaser of a
simulator written in tue SHOL should bear all of these initial costs.

If the re-ommended cross-compilation approachis to be adopted, it
will prohably be necessary for simulator developers to obtain some
spacific support for the creation of 2 SHOL facility. Another problem
i5 that onsite simulator modification cannot be readily supported
except through appropriate time-sharing interaction with :he host
facility. Both of these problems are significant, but the current trend
of DoD thinking, |as reflected in the common language effort, is to
provide such centralized support to DoD programming efforts.

—
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Language Development

We have recommended that the SHOL be developed by
modifying the PL/I language. Modifying an existing language leads
,to a simpler decign effort than developing a r.ew language. Reasons
for this include:

® Most needed features are already avai:able in the
base language and need not be designed explicitiy.

o Syntactic and semantic definitions of features already
in the language are available, and are (hopefully) free
of undesirable interactions.

® Existing language-defining documents can be expanded
to define the new 'anguage.

Implementation of such a language is also simpler than irmiplementing
a new language, as discussed in.the next subsection.

The rnodifications to PL/I which have been recommended were
discussed ‘n Section 8. All the =nodificatione specify additions to PL/I.
This indicates that design of a SHOL which is upward-compzatible with
PL/I might be reasonable to attempt, though it is not clear whether
this is a worthwhile goal. The usual motivation for upward-compatibility
is the reuse of existing code in the base language. As there is probably
little or no existing simulator code in PL/1, this.would not be a
significant concern.

However. it may be desirable to develop a SHOL whnich is
upward-compatible with PL/I for reasons of economy. As discussed
in Section 7, the cost of development increases when features are
deleted or when their syntax is altered, as well as when they are added.
Thus it is probably most cost-effective to leave existing PL/I features
as they are. This is particularly true if use can be made of existing
PI./I translator code in developing the new translator.

If = more extensive language design effort is to be undertaken,
a language satisfying more of the SHOL requirements can br grveloped,
Many of the fcatures of such a SHOL require significant chanzes to
the basic syntactic and semantic conventions of the PL/I language
(e.g., strong typing), and incorporation of such features into PL/I
woul ! not be practical. PIL/I also contains many features which are
superfluous for the SHOL. If a language exactly meeting the stated
requirements were to be developed, it would probably be preferable
tc design an entirely new language rather than attempting such drastic
modification to PL/I. Such an approach has not been recommended.
however, because it is very costly and so is not an optimal way of
providing a useful SHOL. .
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Translator Development

The recommended approach to SHOL deveijopment requires
adding features to PL/I. This indicates modifying an existing
translator is a possible approach. Factors influencing this decision

A

include:
® whether PL/I _cvompivlers for the desired host and/or
' target computers are available
° whether the language to be implemented requires
relatively few changes to the base '
° whether the compiler considered for modification

is well-documented and is implemented in an appropriate
language in a readable and modifiable manner,

We have recommended that SHOL translators execute on a
single-large-scale hdst machine. This requirés that the part of the
compiler which is independent of the target machine be implemented
only once, while machine-dependent portions (code generators) will
be developed for each target computer. This is a more cost effective
approach to the development of a set of SHOL translators for all
intended targets than is the development of a self-hosted compiler
for each target. Furthermore, it allows programming of the compiler
in any langudge available on the host computer rather than requiring
implementation in assembly language or FORTRAN, which are likely
to be the only choices available on most simulator target machines.

If a host is selected which already has a compiler for the base language
(PL/I), the SHOL compiler can be implemented in the base language.
(If the SHOL is designed to be upward compatible with PL/I, the
compiler would then effectively be written in the SHOL, and could
compile itself,)

Thus, if the compiler is ultimately to be written in the SHOL
itself and/or if it is deemed worthwhile to make use of existing
translator code, it would be desirable to seriously consider selecting
a host facility which already has a PL/I compiler (generating code for
the host machine). It is unlikely that the selected host would have
PL/I cross-compilers already available for any simulator target
computers, but existing compilers could be used for SHOL compiler
implementation and existing compiler frontend code could be adapted
to the various cross-compilers. ' Lo

. -

An implementation method which might also be considered
is to use a preprocessor that would translate programs written in
the SHOL into the base language. These programs could then be
compiled using.a compiler for the base language. However, this
approach is most valuable if compilers for the intended targets already
exist for the base language. Thus it might be reasonable if FORTRAN -
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were the selected base, but it is probably not for PL/I. (Of -
course, the large number of modifications which would be necessary
to extend FORTRAN to a SHOL make the use of a preprocessor
unreasonable.) S '

Another consideration in developing a SHOL facility is the’
possible initial implementation of a ""quick and dirty'* SHOL translator
to use in testing the feasibility of the language for simulator program-
ming. Such a translator would translate and execute SHOL programs
for test purposes only. This might be of some use in determining
whether the language includes the constructs necessary for the
programming of simulators. However, it would not test the single
most important requirement of the SHOL translator -- whether it 5
generates object code which is efficient enough for the application. It
is likely that a SHOL based on the suggestions in this report will meet
the functional requirgments of simulator programming, and basing
the SHOL on a widely-used language such as PL/I should guarantee
its overall usability, so the test translator approach is probably not
justified. - .

i

I

SHOL Programming Support

In addition to a language translator for the SHOL, certain
support tools are necessary to facilitate the development of simulator
systems. These tools generally aid in the integration of individual
simulator programs into a total system, and in the debugging and
_validation of individual programs and of total systems. Cection 5.5
“discusses some such tools currently in use at Singer-Link.

- Support programs may be divided into those which operate on the
the program development (host) facility and those which operate on
the actual simulator (target) facility, (Even if the same machine is
used for both, such a conceptual division is reasonable.) Itis intended
that'the SHOL be usable for the programming of all target-based
support tools as well as for the programming of the simulator

application programs.

Support tools which operate on the host machine should be
considered part of the overall SHOL facility. In some cases, they
- may be incorporated in the SHOL translators, though they are not
properly considered part of the language itself. Tools which might be
developed as components of the SHOL facility include:

e  editors

° program scatistics collectors (e.g., instruction usage
counts, time estimates for designated intervals)

° documentation aids

-
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° set/used file capabilities

® link editors (for creation of target machine load
modules} :
e program maintenance tbols ,
] application libraries
3 | program optimizers
’ . target machine sirr;ulaiors-

Target machine instruction-level simulators are a particularly valuable
program checkout tool made possible by the use of a separate host
computer. Many debugging features which are difficult to provide on the
actual target computer can be implemented easily in a target machine
sifmulator. Examples of features such a simulator can provide are:

° mnemonic tracing

) : interval timing

® interrupt modelling .
® display of values of specified variables at specified

t1me or location in ‘the program

® trapping at a specified time or location
® setting of values of specified variables

. ‘ .
° loading of test data sets :'r)

Debugging tools should encourage debugging in terms of symbolic
program entities rather than machine values and addresses.

Variables to be set or displayed should be referenced by name rather
than by machine address, and values should be entered or displayed

in units appropriate to the variable, rather than in octal or hexadecir .al
- form. Recognizing that machine-level debugging is sometimes :
necessary, however, some support for this should be included. A2

Though some of the host-based support tools will differ from
one target machine to another (e.g., machine simulators, link editors),
user interfaces to the tools should be consistent. This is dictated by
the goal of creating a unified SHOL development facility, rathe ' than
a miscellaneous collection of support programs.

186
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Language Standardization

One of the major reasons for the development of a SHOL is
the desire for program portability. As discussed in Section 4.7
there is particularly high potential for program portability in the
simulator application area. Though there are some difficulties in
attaining this goal (also discussed in Section 4.7), it can only be
approached if the SHOL is standardized. That is, all SHOL translators
(i.e., fot all target machines; must accept the same inputs and must
produce equivalent results for identical inputs. :

Complete language standardization is difficult to achieve. The
major prerequisite fpr language standardizaticn is a complete and
rigorous language specification document. -8r appropriate gyntactic
definition can be developed fairly straightforwardly, but, as indicated,
full semantic specification is difficult. Standardization of the SHOL
will be facilitated by selecting a base language with good defining
documentation, and by limiting modificaticn to that language. As
mentioned earlier, use of cross-compilers with the same machire-
independent part (front end) guarantees syntactic equivalence.

If language standardization is to be useful, it must be p0551b1e
to validate that translators do in fact conform to syntactic and
semantic specifications. This requires development of a rigorous set
of acceptance programs to be used with all translators. The tests
must not only ensure that programs compile without syntactic errors,
but also that their semantics is as specified. This set of tests must
be developed as a part of the SHOL design and specification effort.

Establishing SHOL Usage

Clearly there is little to be gained by developiug a SHOL facility
unless it will then be used. Also, though it will decrease develgpment
and mainterance costs on any single effort for which it i5s used, the
full benefits of the SHOL will only be realized if it is used in all
simulator programming. Only then will program reuse be a. ’
possibility, and only then will programmers become skilled in the

use of the language.
]

(While it is possible to guarantee use of the SHOL by simply
requiring its use when procuring simulators, it is desirable to back
up this requirement by making the SHOL facility a sufficiently attractive
alternative that programmers will prefer t- uce it. Once programmers
become: conversant with the language, the increased ease of program-
ming in the SHOL should be adequate motivation for its continued use.
Initially, however, other factors will encourage the transition, These

include:
-® - su.peri‘o'r program development and debugging tools
\

® apphcahon{hbrary programs avdilable through the
SHOL fac1hty

B e
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6 high-q ‘mentation oriented to programmer
sackgraa.,

° _well—,pianned ing effort

The importance of traic.ng and of user documentation in
easmg the transition to SHQ. usage cannot be overemphasized,
particularly ih view of the 1. rge nimber of programmers involved.
in addition to acquainting p. grammers with the use of the facility,

ra serious training effort as .. res thermn of managemeént commitment
"to the changeover. '

" All tutorial material for the SHOL should-include numerous
examples illustrating how common simulator functions can be
programmed in:the SHOL. This will not only make SHOL usage
easier to learn; it will also discourage excessive dependence on the -
assembly language subroutine capability. (It may be necessary, at
least initially, to attempt to limit the use of this feature to functions
for which it is ‘really required. 'Section 5.7 discusses these
requirements.)

£

Relation to the DoD Common Language Effort _ .

The DoD is currently conducting an-effort which will result
in a Common Language to be used for the programming of embedded
computer systems, including flight simulator systems. The
IRONMAN specification defines the functional requirements to
be met by the Common Language. The IRONMAN satisfies most
of the essential SHOL requirements. The significant discrepancies
between the IRONMAN and SHOL requirements are:

® IRONMAN does not 1'ekquire conditipnal expressicns.

® IRONMAN does not requ1re procedure variables and
’ arrays,

[ CA non-exact fixed point representation is preferred

to the exact representation required by IRONMAN.

° . IRONMAN requires garbage collection of dynamically
allocated storage, which adds.unacceptable overhead.
Explicit allocation and deallocation are desired .and
would have to be supported by extension to the
IRONMAN language.




e - IRONMAN does not require multiple fixed point
precisions (which allow space-accuracy trade-offs),

° IRONMAN does not restrict assembly la‘nﬂgu‘age use
to subroutines, t

© IRONMAN I/O and parallel processing features may not
' provicfg the required functions. _

. ] IRONMAN extensibility and encapsulation features are
considered unnecessarily complex for simulator needs.

A ianguage satisfying the IRONMAN, however, wiﬁ“\;)robably be usable for
programming most simulator functions and will satisfy more &f the SHOL
requirements than any of the modified candidate languages considered in
this study. Furthermore, the DoD backing should énsurc the development
of the support facilities and training efforts recommended for a smooth
transition to the SHOL in previous sections' of this report.

As of May 1978, work on two Common Language designs was in
progress. Some modifications to the July 1977 IRONMAN were being
made, based on the results of four preliminary design efforts completed
in February 1978. Although final designs are scheduled for test and
evaluation beginning in April 1979, it is currently unclear how suitable
these designs will be for embedded computer system programming.
Assuming that further redesign will be needed, it is unlikely that
production compilers for flight simulator computers will be ready for
use in less than 5 years. .
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. Section 10

SUMMARY AND CONCLUSIONS

. 5
. The main obiective of this study was to define higher order language
requirements for programming flight training simulators. A subsididry
‘objective was to develop a general approach for determining HOL require-
ments in a given application area and then to apply this approach to the
simulator area. The approach we devised analyzes three sources of lan-
guage requirements--the programming environment, the functions to be
programmed, and langmage design principles. Requ1rements pertammg
specifically to flight simulatorsvere determined by analyzing a variety of
simulators developed by the Link Division of the Singer Company. Using
.this-information, we devéloped.a generic. model of the pregramming tasks
relevant to simulator development. A detailed analysis of language require- .
ments was keyed to this model.

Basec. on this analysis, we prepared a detailed specification of.
simulator HOL requirements, using the requirements structure of the _
IRONMAN (a specification of HOL requirements for a common DoD program- .
ming language). We then analyzed PL/I, FORTRAN, JOVIAL J3B, JOVIAL
J731I, and PASCAL to see how well each satisfied the simulator HOL require-
ments we had developed. Our analysis showed that PL/I and JOVIAL J2B.
were best suited for simulator programmiing, although only FORTRAN
was clearly the least su1table language » S

. Y

Slnce all the languages failed to’ satisfy some of the simulator
.language requirements, we considered what language modifications would *
make them significantly more ‘useful as simulator pfogramming languages

Our analysis of the difficulty of modifying each language indicated that
PL/I was the most easily modified, and rew rnmended modifications were
described
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Appendix A
. ' _.SIMULATOR MODEL

(-

This Appenduc describes the var1ous program.mmg tasks pertam.mg'
to flight simulators. The tasks to- be performed and their relationships
’ _are descrlbed using SADT notation. [Ross, 1977] An index to the model is
. presented in the foll_omng pages. In this index, the notation A33l for
ex‘ample, represents a task composed of the tasks A3311, A3312, and A3313,
A page number is 1nd1cated for those tasks that are decomposed into more
detailed tasks The number 1nd1cates the page on which the decompos1t1on

will be found.
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o . Appendix A » -7~

0

Section

. Page
.AO Simulate an Aircraft’ 196 -
Al Build Slmulator 5 197
i A_ll Create System Data Base
A 12 ' Code Modules ' .
Al3 'Compile Modules i
“A14 - Link Modulés
A2 Test Si-mulator L, N 198
, A21 Test Execz'ut;xu.e
. AZZ Test Slmulatxon Programs
A23 Test Whole S1mulator
A3 Simulate N 199
A31 Monitor Execution 200

SIMULATOR MODEL

-t

A311 Control In1t1ahzat10n
A312 Cycle Through. Slmulator Tasks. 201
A3121 -‘Select Frame

A3122 Select Cbckpit

'A3123  Schedule

@}

Tasks for Frame & Cockpit

A3124 Sum Task Times for Frame

A3125 ‘Sum Frame Times for Cycle’

A313 Compute Spare Time for Cycle

A32 Initialize Data Base
A33 Model Aircraft Functions
A331 Model Flight

A3312 . Model Ae

202
203 )
A3311 Model Aircraft thht Controls
rodynamics ‘ 204

A33121
A33122
A33123
A33124
A33125
-A3313 Model Ac

Process Atmospheric Data
Compute Weight & Balance -
Compute Aerodyr:amlc Coefficients
Compute Ground Reactions

Compute Equations of Motion

cessory Systems , 205

A33131 Model Fuel System
A33132 . Mc;del. Electrical System 206

-
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A331321 Compute .II::lectric"al
Systemn Power

A331322 Compute Bus Loads



Section "/ Page
o . A33133 Modél Hydraulic- System 207

A331331 Compute Hydraulic -
Flow & Pressure

A33133Z Model Secondary
. . Hydraulic Controls

. * | A331333 Model Landing Gear
' ' A33134 Model Engine System

A33135 Model Miscellaneous )
. Accessories : 208

 A331351 Model Engine Fire
& Overheat System

‘A331352 Model Ice/De-Ice
System

P A331353 Model Canopy &
Ejection Seat System

A331354 Model Oxygen System
A332 Model Navigation & Communications 209
A3321 Model Communications
A3322 Model Navigation Equipment
A3323 Model Navigation Radios - 210
" A33231 Model Compasses
A33232 Model Attitude System
A33233 Model Radio Statlons
A3324 Look Up Radio Station
A333 Model Motion
A334 Model Tactics | | o
A3341 Model Airborne Radar .. )
A3342 Model Armamepts
A3343 Model Electronic Warfare
A3344 Model Weapon Delivery
A3345 Model Tactical Environment )
A3346 Model Avionic Displays
A335 Model Visual _ . 212
A3351 Process Flight Data . : 213
A33511 Compute Attitude, ‘
A33512 Compute Position & Velocity
A3352 Drive Gantry, o . 214
A33521 Process Gantry Feedback ‘
A33522 Control Gantry
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A3353 Drive Probe _ ' 215
A33531 Compute Altitude Limits
A33532 Control Prote

A3354 Produce Visual Image - 216

A33541 Process Instructor &
Student Controls

A33542 I?ete:ir'nine Image Focusing
. A33543 Produce Cultural Lighting
; o " A33544 Produce Visibility Effects .
A34 Do 1/0 to Simulated Cockpit
A35 Communicate with Instructor 217
A351 " Reécord/Playback Mission -
A352 Set Initial Conditions
A353  Set Malfunctions
_ A354 Display/Update Datapool Values
A355 Display Terrain Map,
A356 Plot Ai_r::raft Position and Traék'
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