
ED .162 661

AUTHOR
TITLE

INSTITUTION'
SPONS'AGENCY
REPORT NO
PUB DATE
NOTE

AVAILABLE FROM'

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

DOCUMENT RESDEE

IB 066 666

Goodenough, John B.; Eraun, Christine I.
Simulation Higher Order ,Language Reguiresents
Study.
SofTech, Inc., Waltham, Mass.
Air Force Human Resources Lab., Broca
AFHPI-TE-78-34
,Aug 78
229.; Not available in hard' copy due to iarginal
legibility of parts of document
Superintendent of Docusents, U.S. Government Printing'
Office, Washington, L.C. 20402 (1978-771-122/53)

MF-$0.83 Plus Postage. EC Not Availatle from EDRS.
*Comparative Analysis; Computer Assisted Instruction;
*Computer Programs; Evaluation Criteria; Military
Training; *Needs Assessment; *Prograaing Iangbaqes;
*Simulation
FORTRAN; IRCNMAN; JOVIAL; PASCAL

_ APE,' Texas.

ABSTRACT
The definitions provided for high order language

(HOL) requirements for programming flight/ training simulators are
based on the analysis of programs written fcr.a variety of
simulators. Examples drawn from these programs are used to justify'
the need for certain HOL capabilities. A description of the general
.structure and organization of the TRONEAN requirements for the DOI)
Common Language effort IS followed-tyditailed specifications of
simulator HOL requirements., pvi, FORTRAN, JCVIAI J3E, JCVIAL.J73I,
and PASCAL are analyzed to see how well" each language satisfies the
simulator HOL requirements. Results indicate that PL/I and JOVIAL J3D
are the best suited for simulator programming, chile TOBIRAN is
clearly the least suitable language. All the larguages failed to
satisfy some simulator requirements and improvement modificationsare
specified Analysis of recommended modifications shows:that
PL/I is the m st easily modified language. (CMV)

'K.

Reproductions suppliid by EDRS are the best that can be made

from the original dccumett.
***********************4************f***********.***********************

AFHRL-TR-78-34

AIR FORCE ...P.

H

U.S DEPARTMENT OF HEALTH.
EDUCATION WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN-
ATING IT POINTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPREI
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

SIMULATION HIGHER ORDER LANGUAGE
REQUIREMENTS STUDY

By

John B. Goodenough

4°4.
Christine L. Braun

r\I Sof Tech, Inc.
460 Totten Pond Road

Waltham, Massachusetts 02154

r-1

C-

-c-

r

C
E

S LABORATORY

ADVANCED SYSTEMS DIVISION
Wright-Patterson Air Force Base, Ohio 45433

3

,B ST COPY AVAILABLE

August 1978
Final Report for Period 1 February 1977 31 January 1978

Approved for public releJ\e: di\ trilmtion

AIR FORCE SYSTEMS COMMAND ,

BROOKS AIR FORCE BASE,TEXAS 78235'

NOTICE

When U.S. Government drawings, specifications, or other data are used
for any purpose other than a definitely related Government
procurement operation, the Government thereby incurs no

responsibility nor any obligation whatsoever, and the fact that the
Government may have formulated, furnished, or in any way supplied
the said drawings, specifications, or other data is not to be regarded by
implication or otherwise, as in any manner licensing the holder or any
other person or corporation, or conveying any .rights or permission to
manufacture, use, or sell any patented invention that my in any way
be related thereto.

This final report was submitted by SotTech, Inc., 460 Totten Pond
Road, Waltham, Massa.chusetts 02154, under contract
1:33615:77.C-0029, project 6114, with Advanced SysteMs Division. Air
Force'lluman Resources Laboratory (AFSC4. Brooks' Air Force Base.
Texas 78235. Mr. Patrick Price was the contract monitor.

This report has been reviewed and cleared for, open publication and/or
public release by the appropriate Office of Information (01) in .

accordance ith AFR 190-17 and DoDD 5230.9. There is no objection
to unlimited distribution cart this report to the public at large: or by
DDC to the National Technical Information Service (NTISI,;

This technical report has been reviewed and is approved for publication.

GORDON A. ECKSTRAND, Director
Advanced Systems. Division

ROtiAI.1) W. Ft RRY, Colonel, USA I:
Com tti:uttier

lJ

Unclassified
iECuRITY CL ASSiFICATION OF THIS PAGE (H:heri Dora Fr-ter-d)

DOCUMENTATION PAGEREPORT DOCUMENT,READ INSTRUCTIONS
BEFORE COMPLETING FORM

I REPORT NUMBER I2. GOVT ACCESSION NO

AFIIRL-TR-78-34
i

...

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
SIMULA.TION WU IFR ORDER LANGUAGE ,

REQUIREMENTS STUDY
.

. -
r..,

5 TYPE OF REPORT & PERIOD COVERED

Final ,

I February 1977 31 January 1978
6- PERFORMING ORG. REPORT NUMBER

7 AuTHOR(s.

';John lit. Goodenuugh
Christine L. Braun

.

8 CONTRACT OR GRANT NU1ARER(s)
.

1:33615-772C-0029
.

9 PERFORMING ORGANIZATION NAME AND ADDRESS

SofTe.ch. Inc. .

4b0 Totten Pond Road ,
Waltham. Massachusetts 02154

10. PROGRAM ELEMENT. PROJECT. TASK
AREA a WORK UNIT NUMBERS

...

62205F
63140709f

ti. CONTROLLING OFFICE NAME AND ADORESS
N.,

HQ Air Force Iluman Resources Laboratory (AFSC')
Brooks Air Force Base. Texas 78235

12. REPORT DATE

August 1978
13. NUMBER OF PAGES

... .

226

14. MONITORING AGENCY NAME & ADDRESS/if different from C.introlltnP Office
. .Advanced Systems Division

Air Force Ilunian ResourcesLaboratory'
Wrigh,t-Patterson Air Force 13ase. Ohio 454f.3

15 SECURITY CLASS. (of this report)

UnclaSsified
I. DECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of :his Report)

Approved for public release:distribution unlimited.
, .

4

17 MS' RIBLITION STATEMENT (of the abstrect entered In Pinch, 20, if different from Report)

/

. .

18 SUPPLEMENTARY NOTES

' .

19 K Ey WORDS (Continue on rev..., se side if necessary and identify by block number)

DoD common language JOVIAL -

embedded computer systems PASCAL
flight training simulat ors. PL/1

high order languages prugrammirTianguages
, .

20' ABSTRACT (Continue on everse side If nrcessary and identify by ts:ocli numbv) .

This report defines high order language requirements for prograniming (light training simulators. These
requirements were determined by analyzing progiams written for a variety of simulators. Examples drawn from
these programs arc used to justify the need for certain,HOL capabilities. A detailed specification of simulator HOL
requirements is given, following the general structure and organization of the IRONMAN requirements for the DoD
Common Language effort. PL/I, FORTRAN, JOVIALJ313. JOVIAL J731, and PASCAL arc analyzed to see how
well each language satisfies the simulator 1-10L requirements. Although PL/I and JOVIAL J313 were found to be best
suited for simulator programming, only FORTRAN was dearly the least suitable language. Since all the languages
failed to satisfy some simulator requirements, we specified modifications. to each language that would make them

DD
FJOAN

1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS,PA (When Data Entered)

Unclassified
Se r'LIRITY CLASSIFICATION OF THIS PAGE(When Data Entered)

item 20 (Continued)

more useful as simulator program' ,
was the most easily modified lam

`re

:!s. Our analysis of recommended modifications indicated that PL/1

Unclaisified

SECURITY CLASSIFICATION OF TfiIS PAGE(When Data Entered)

TABLE OF CONTENTS

Section Page

1 INTRODUCTION 1

2 OVERVIEW 3

3 THE SIMULATOR BENCHMARK 6

4 PROGRAMMING ENVIRONMENT OBSERVATIONS 11

4.-1 Program Developmept Methods 11

4:2 Programmer Experience 12

4.3 Compilation Size and Speed Requirements 13

4.4 Object Code Size and Speed Requirements 13

4.5 Program Lifetime and Stability 14

4. 6 Program Reusability 16

4.7 Program Portability 16

5 PROGRAM ANALYSIS OBSERVATIONS 18

5.1 Storage Manage-ment 19

5.1;1 _Global Data 19

5.1.2, Local Data 20

5.1.3 OWN Data 23

5.1.4 , bverlay Programs 23

5.2 Data Types and Operations 23

5.2.1 Integer Data Type 2,3

5.2.2 REAL Data Type 24

5.2. 3 Status Data Types 27

5.2.4 Bit Data Type
5.2.5 Boolean Data Type 31

5.2. 6 Character String Data Type 37

5..2.7 Pointer Data Type 39
5.2.8 Label Data Type 42

5:2. 9 Procedure Data Type '44

5.3 Aggregate'Data Types .49

5.3.1 Set Data Type 49

5.3.2 File Data Type 51

TABLE OF CONTENTS (Continued)

Section

5.3.3 Array Data Type
5.3.4 'Structure Data Type
5.3.5 .,Union Data Type (or Overlays)
Control Structures
5.4.1 Conditional Control Structures.
5.4.2 Multiprocessing Control
Program Development Aids

Page

5.4

5.5

54
57

65

66.
66

72

76

5.5.1 Compile-Time Assignments 76

5.5.2 Conditional Compilation 77

5.5.3 Symbol Dictionary 77

5.5.4 Debugging Support 78

5.5.5 Onboard Computer Simulation 80

5.6 I/O 80

5.7 Machine Dependency 83

,.

DETAILED SHOL REQUIREMENTS AND LANGUAGE
EVALUATIONS 88

6. 1 _General Design Principles 90

6.2 General Syntax 95

6. 3 Data types 100

6.3.1 Numeric Types 100

6.3.2 Enumeration Types .106

6.3.3 Boolean Type 108

6. 3. 4 Character Type 110

6. 3.5 Bit String Type 113

6. 3. 6 Pointer- Type 116
6. 3.7 Procedure Types 120

6.3..8 Array Types 121

6.3.9 Record Types 126

6.4 Expressions 129.

6.5 Constants, Variables, and Declarations 132

6.6 Control Structures 138h_

6. 7 Functions and Procedures 146 "'

TABIIE OF CONTENTS (Continued)

Seetion,- Page

6. 8 Input-Output F.cilities 152

Parallel Processing , 154
\

6, 10 Specification of Object Representation and
Optiznizatior 157

6. 11. Libraries and Separate Compilation 162

6. 12 Language Evaluation Summary 165

. 7 LANGUAGE MODIFICATION GOALS.
7. 1 - Minimal Cost 167

7.2 Syntactic Integrity 168

7. 3 Non-Interference with Existing Language
-Features 168

7.4 Upward compatibility -169

8 LANGUAGE EVALUATION AND MODIFICATION
SUMMARIES

9 IMPLEMENTATION CONSIDERATIONS' AND
` RECOMMENDATIONS

10 SUMMARY AND CONCLUSIONS

Appendix A SIMULATOR MODEL

REFERENCES

BIBLIOGRAPHY

(1.

Em

170

1

190

191

218

219

LISTOF ABBREVIATIONS

AST Asynchronous Trap
BAM Binary Angular Measurement (degrees/360)
CRT ,Cathode Ray Tube 4g-e'nerie.ally, any display device)
CPU, Ceritral Proce.ssing.Unit (generically, a computer)
D 'ME Distance Measuring Equipment
DoD Department Deferfse
DRU :Digital Readout Unit,
EOM. .EqUatiails
FIFO First In First Out
'HOL High Order Language
ILS Instrument Landing System
IOC Input/Output Control
110 Input/Outp`ut.-
LFr Linear Function Interpolator ..
OS Operating System:
SMS Shuttle Mission Sigrulaeor
TTY Teletxpie

UPT Undergraduate Pilot Trainor
VOR VHF Omnidirectional Range

iv

SIMULATION HIGHER ORDER LANGUAGE
REQUIREMENTS STUDY

Section 1

INTRODUCTION

In most applications, the use of higher order languages (HOLs)
for software development is common. However, in a few areas the use
of HOLs Is rare. In general, such areas are characterized by stringent
computer resources. HOLs have regently made substantial inroads into
these application areas. In the avionics software area, where size,
speed, performance, and reliability of the software for the on-board
computer have always been vital, HOLs have been used with success.
The B-.1 offensive avionics software is written in JOVIAL 33B; the software
for the F-16 Fire Control-Coxnputer is also written in JOVIAL J3B.
The real-time mission software for the Digital Avionics Information
System (DAIS) and the Electronically Agile Radar (EAR) its being written
in JOVIAL J73I. Portions of some flight training simulators have
been written in FORTRAN.- The experience with the use of HOLs in
avionics projects as well assome recent simulator projects indicates
the use of HOLs in real-time flight training ,simulators is feasible,
given that this is the case, an important question must be answered:
which existing HOL, if any, is most suitable-as a potential standard for
developing real-time training simulator software? What modifications to

o an existing language must be made- to make it suitable? The_study
described in,this'report defines simulator HOL (SHOL) requirements
and analyzesPL/I, FORTRAN, JOVIAL J3B, JOVIAL J73I, and PASCAL
for 'suitability in meeting these requirements.

1In determining HOL requirements'for simulator programming,
we' considered not only simulator needs but also work currently underway
within DoD leading to the possible development of a common high order
programming' language for embedded computer systemi applications.
Embedded computer systems. are defined as systems,"integral.toa
larger military system or weapon, .including technical -weapons systems,
communications,, command and control, avionics, simulation, test
equipment,- training, and systems programming applications" [Fisher,
1976]. Clearly real-time flight training simulators fall within the class
of embedded computer systems.

The goal of the common language effort is "the adoption-of a very
few (posiibly only one) common programming languages to be used for
the design, development, support, and maintenance of all digital computer
software, for embedded computer application.s in the DoD" [Fisher, 1976].
This means that if the programming of flightasimulatbrs has unique
characteristics not shared by other embedded computer applications and
if these characteristic'S imply that a SHOL must contain features not needed
in other embedded computer applications, then a;speci9purpose
simulator programming language will be justified urNer the common

1

programming language effort. Our approach to defining the required
SHOL characteristics was de signedtto help decide how specialized
simulation programming requirements really are. Given the high
level DoD interest in minimizing the number of distinct programming
languages, it is reasonable to assume that developing anew or
modified language for simulator programming will be possible only
if the need can be clearly demonstrated.

',Considering this background, the, main objectives of this study
were:

to define simulator HOL requirements in a way that can
be related to the DoD common language effort;

to determine which of PL/I, FORTRAN, JOVIAL J3B,
JOVIAL J73I, and PASCAL is most suitable for use or
modification as a "simulator programming language;

to recommend methods for implementing and enforcing
the use of a standard simulator HOL,

The remainder of this report describes our findings and the methods we
used in obtaining them.

t,

2

Section 2

OVERVIEW

In this Section we discuss the general nature of our study, the
methods we employed to--reach the conclusions reported later, and,
give an overview of the remainder of the report.

Although the Main objective of our study was to define simulator
HOT, requirements, a subsidiary objective was to,develop a general .

approach for determining HOL requirements in a given application area
and to then apply this, approach to the simulator area. The general
approach we have devised focuses an three sources of language require-
ments:

the programming environment, i, e. , factors pertaining to
the development and maintenance environment of a
particular application area, e. g. ,

long or short program lifetime

e programmer background

potential for program portability

compiler efficiency requirements

functional requirements, i.e., the programs developed
for a given application. These programs can be subclassified
into two groups:

'program's that perform application'functions; and

programs that assist in developing other programs,
e.g.f*.data file generation programs, debugging
programs, etc.

language design principles, i.e., accepted and emerging
program development-methodologies and principles,
independent of any particular application area and reflecting
current thinking about what the properties of a "good"
programming languagb are,, e.g. ,

linguistic simplicity and uniformity.

support for. structured programming

support for modular programming/

-

The first portion of our study)vas devote'd to describing the simu-
lator programming environme-ht and simulator functional requirements.
The Link Division of the Singer Company, as subcontractor to SofTech,
was our principal source of information on simulator requirements.
Link provided simulator programs and documentation for our analysis.
They later reviewed our characterization of the environmental and
functional. requirements to confirm that they accurately reflected simu-
lator needs. Although SofTech was responsible for the language analysis,
Link was responsible for ensuring that our language conclusions were
based on an accurate understanding of simulator requirements.

Our findings regarding environmental requirements are
described in Section 4; functional requirements are desc.ribedin
Section 5. To guide and support our analysis of-functional require-
meints, a benchmark model of a generic flight training simulator was
developed. The benchmark model is a key part of our analysis because
it represents the entire set of programming tasks relevant to simulator
development. Our analysis Crf language requirements is keyed to this
-model. Because of the importance of the model, it is discussed
separately in Section 3.

Our analysis of the simulator programming environment, simu-
lator program functional characteristics, and language design principles
resulted in the specification of simulator HOL requirements given in
Section 6. This specification of requirements serves as the definitive
basis for evaluating how well existing programming languages could'
serve in programming simulators. It serves to document the key
implications of our study of programming requirements concisely and
rigorously.

:To fa,cilitate comparison of si: lulator requirements with the
proposed Common Language requirements, the requirements specifica-
tion in Section 6 has a structure similar to that of the IRONMAN
[U.S. DoD, 1977]. The IRONMAN requirements specification is the
latest in a series of evolutionary language requirements documents
issued as part of the Common Language effort. -It is the require-
ments specification being used to direct preliminary language design
efforts completed in Februrary 1978. The IRONMAN specification
is the most recent specification of language requirements and thereby
most suitably represents the current DoD position on embedded
computer application requirements.

Based on our modification of the IRONMAN requirements specifi-
cation, we selected a set of language features satisfying the requirements
using a computerized database of 2267 language features [SofTech, 1977].
This list of features was also used to describe'each of the programming
languages being,evaluated, namely, PL/1, FORTRAN, JOVIAL J3B,
JOVIAL J7-3I, and PASCAL. By analyzing which features satisfied the
SHOL requirements specification and were present or absent in each of
these languages, we decided how well each language satisfied the SHOL
requirements.

4

Section 6 contains both the 'SHOL requirements specification and
our evaluations of the candidate languages with respect to the require-
ments. The value of combining the requirements specification and
the evaluations in this way is 'twofold:

a partiCular evaluation is most understandable when
preceded by a statement of the requirement under
consideration.

a requirement can frequently be und4stood more readily
by reading the discussion of how'well the various languages
meet that requirement.

An,overall summary of 'how well each language satisfied the requirements
is giiren at the end of Section 6. PL/I and JOVIAL J3B were judged to be
the languages best satisifying the requirements without modifications,
although only FORTRAN is clearly the least. suitable language.

Since all the languages failed to satisfy some of, the _simulator
language requirements, we considered what language modifications
would make them significantly more useful as' simulator programming
languages. To assist in this analysis, we divided the simulator require-
ments, into two classes: those considered essential both to accomplish
all necessary simulator, programming functions and to meet the more
general SHOL design goals of reliability and maintainability, and those
considered beneficial in a new language-but not of sufficient importance
that it is essential to modify a language to satisfy them. In essence,
if the non-mandatory requirements can be satisfied with a minor
language modification, then the modification should be made, but if the
modifida:tion is complex or changes the fundamental syntactic and
semantic constraints of a language, then its impact as a change outweighs
its benefits to simulator programming. For example, changing PASCAL's
semicolons to statement terminators instead of separators would be a
non-mandatory modification.

Modification issues are discussed further in Section 7, and the
modifications selected for each language are presented in Section 8.
Based,on the extent of the modifications and the usefulness of the modi-
fied language, we selected PL/I as the language most suitable for
modifications.. This decision is discussed at the end of Section 8.

AS the final part of our study, we addressed how'to support the
use of a standard SHOL. Section 9 discusses these issues, which
include language design and implementation approaches as well as
recommendations for introducing'and establishing SHOL usage. .

5

Section,3c.,
THE SIMULATOR BENCHMARK

A significant part of this study involved familiarization with the
programming requirements of.flight simulators. To assist in this
analysis a benchmark simulator problem was developed. This bench-
mark models a generic flight training simulator, i.e., it does not
describe the operation of a particular simulator, but rather incorporates
the characteristics typical of simulators in general. The benchmark
served two major purposes in the study:

It provided an overall framework for the entire analysis of
simulator functional requirements.

It provided a frame of reference for presenting results.
The material describing language requirements (in Sections
4, 5, and 6) is cross-referenced to components of the
benchmark model, allowing the reader to:

Determine the simulator area(s) from which a
particular requirement derives.

b) Determine_ those requirements which derive from a
particular sim-ilator area.

Development of the Benchmark

The basis of the benchn ark deNielopment was our analysis of
simulator programs and desig7 documents. The purpose of this effort
was to determine the types of 1.rOcessing required when programming
flight training simulators. A major concern was to determine what
functions must be performed rather_ than how they are currently imple-
mented, since the goal of the SHOL is to permit programming the
required functions rather than duplicating the programming techniques
which are currently used to realiZe these functions. Thus, the effort
had-to go beyond a simple investigation of the programming techniques
currently employed. For this reason, the benchmark developed is a
functional, rather than an operational, representation of a generic
flight simulator.

The primary inputs to the programming analysis effort were
provided by the Link Division of the Singer Company, serving as a sub-
contractor to SofTech. At the Start of the study, Link presented a two
day orientation briefing to SofTech personnel. The briefing included
presentations by representatives of each of the major simulation areas
as well as discussions of the overall application. The briefing provided
a general framework for the subsequent programming analysis and also
highlighted issues of particular: concern to simulator personnel regarding
the use of an.HOL.

6

Subsequently, Link provided extensive documentation to.SofTech
for study. The materials studied were:

UPT (Undergraduate Pilot Trainer). - 26 volumes of design
documentation plus listings, representing the entire system

F-14 - documentation and listings from flight and navigation
subsystems

214A - do,cumentation and listings from the visual (camera/
model board) subsystem

SMS (Shuttle Mission Simulator) - documentation from the
visual (digital image- generation) subsystem

other tactics programs - listings (names of systems were
not provided to SofTech)

The fact that a single complete system (the UPT) was studied was
important to the effort, as it guaranteed that no major functional aspect
of simulator programming was overlOoked. This would not necessarily
be the case if only isolated programs selected as "representative" were
studied; the selection of representative programs would have required
knowledge that was not available prior to the analysis effort. Certain
areas not included in the UPT material were covered by the other
simulator documentation. These were:

camera/model board visual (The UPT visual system was
done by a subcontractor 'to Link,\Redifon, and was thus
not included in the UPT documentation)

computer image generation visual

tactics

Other material v,4s studied which duplicated UPT areas, to help ensure
that the analyiis concentrated on the functions to be- performed, rather
than on a single approach to programming those functions. .

Other important advantages to the study of actual simulator
programs were:

It was possible to make judgements concerning the degree of
efficiency actually required of the object code which the,SHOL
translator must generate. That is, if a certain algorithm
not displaying the maximum efficiency is observed to be
adequate, .it is possible to conclude that comparable code
generated by an HOL compiler will also be adequate.

7

It was possible to isolate certain areas of potential
inefficiency which occur frequently and which it is thus
particularly important that an HOL compiler avoid.

Areas where use of an HOL would have a particularly
beneficial effect on program readability could be observed
and highlighted.

As the program analysis proceeded, informal written observations
on the programming requirements of the various areas were prepared
and submitted to Link for comment. This helped guarantee that .no
erroneous conchisions were reached. Similarly, Link reviewed the
benchmark model as it was developed,s as did the Air Force. Based
on comments received, the model was reworked. Thus model develop-
ment was an iterative process, with each iteration reviewed by
simulator experts.

Presentation of the Benchmark

The benchmark model, contained in Appendix A, em loys
Sof Tech's Structured Analysis and Design Technique (SADT)[Russ, 19771.
SADT has been found to be a valuable .technique for communication,
between individuals performing analysis in a given problem area and
individuals who are experts it thatJarea. The simulator benchmark
model, assists in communicating the findings of the SHOL investigation
to simulator experts.

Tl e model consists of a set of diagrams which form a hier-
archical decomposition of a generic flight simulator. TIT diagrams
are,made,up of boxes representing activities (functions performed), .and
arrows representing-data which is an input or an ou)put of these' functions.
Each diagram is itself an expansion of an activity x. which appears as
one of the boxes on a preceding higher level dia.gr\am (its parent).' The
arrows entering and, exiting a diagram exactly match trie arrows

/attached to the box on the parent diagram. Figure-Lkshows a sample
`SADT diagram and explains the notation used.

The first diagram of the benchmark model, node A-0, contains
a single box representing all functions which must be prograrryned.in'
developing a flight simulator. The decomposition of this diagram
appears in the second diagram of the model, node AO, which consists
of three activities:

build simulator

test simulator

simulate

1

The diagram shows that the specification of the aircraft,operation, and
performance requirements which must be met by the simulator, control
the building and testing activities. It also shows that building and
testing are an iterative process. The "simulate" box shows the student
actions as an input, the simulated aircraft reactions as an output, and
the instructor inputs as a control of the activity. An additional output
of thifS activity is the information on student actions which is displayed
to the instructor.

Subsequent diagrams further decompose these activities: In
particular, di.a.grarn:Al decomposes .box I, diagram A2 decomposes
box 2, and diagram A3 decomposes box 3. The remaining diagrams
further.decompose boxes of diagram A3, "simulate, " which is the
major part of the model, particularly box 3 of A3, "model aircraft
functions."

SAnTi(-401ArtilAM r ORM S r110/1 9/75

r (tim n 1975 Sof Tech, Inc , 460 thirn Pond gall, Waltham, Mass 02154. USA

SED AT. AUTHO:
PROJECT:

NOTES: 7 8 9 10

DATE:

REV:

WORKING

DRAFT

RECOMMENDED

READER DATE

PUBLICATION

CONTEXT:

10 E:

13

TOP: D,4rA ostO To
cownfor.. swe

Acoviry

ztxr \side: PAM 7-NAT is
r.f44(1,ORP150 1Y
olf AcriviTy mro

ourpor .DATA.

O Numaell of rN,/s ept 04 M6F.

PostrioAl Or rills PAU-cork/a rile,
MODet- AWE' /5 Me Nor

NelO1SER or me PARENT, Y is nit
evuleaft OF me fox aN 7w PARewr

PA1Q amosezecompavrioN Is
.5/Yeam dy oda P.46E.

ACr/Virr

Ax/Yy

TITLE:

,sAmpi,E 5.449r ?WE

0

CI
C, Ala 0 Copes ,,,,QpicA rp/6. rNE dasir/od,

LEFT. ro.Avoter, roP To aorrom, Tiro'
AtA'oetIS i 41 Foe rtils Bo/ ow

r/iE eAte4r .bm64Am.

RI6lir ,Poi: DATA PRODUCED
By PIE ,4cTielrY

,SEOVLrAlrIAL P46(ID OF 7-NE
liEcon1POSir/Ool' OF THE AcrIvirf

' f

NUMBER:

6D/

0S6004AITIAL
PAGE ID

(.1

Figure 3-1. Example SADT Diagram

L,

Li
C

r.

Section 4

PROGRAMMING ENVIRONMENT OBSERVATIONS

Part of our general approach to defining HOL requiernents in a
given application area is to evaluate the effects of, the environment
in which programs are developed and maintained. Environniental
factors discussed in this Section are:

program development methods (groups. vs. individuals)

programmer background and experience

compilation. size and speed requirements

:object code size and speed requirements

program lifetime and stability

program reusability potential

program portability potential

Each of these factors has some influence on what language features are
most suitable for simulator programming. In subsequent subsections,
we discuss the environmental factors for simulator programming and
their relation to language featdres. The information presented here on
the simulator programming environment was obtained primarily from
discussions with simulator personnel. The findings presented in this
and the-next Section were used in defining the detailed language
requirements specified in Section 6.

4. 1 I Program Development Methods

Simulators are very large systems programmed by many
programmers rather than by, a single individual. Coordination,between
these programmer's should be supported by the SHOL. In particular,
programmers must be able to interface their programs with those
produced by others and must be able to,access system data in a consis-
tent manner. The SHOL should diagnose conflicts in'these areas. It
might-also pe desirable to control (or .at least be able to detect) access
to data by a program which should-not read and/or alter that data.
Section 5.1.1 discusses the methods currently used to support data
coordination in simulator development.

The large number of programmer's' implies a requirement for
separate compilation of programs, i, e., individual programmers must
be able to separately compile, modify, and test their programs and

then integrate therm to form the complete system. Some support for
the. integration process and for system level testing is also essential.

Use of system data by large numbers of programmers requires
libraries of data definitions and subroutine declarations. These
facilitate consistent access to global data and allow inconsistent
assumptionsiabout fbrms of data structures and parameters to be
detected at compile time. Such inconsistencies Can easily arise when
groups of programmers are involved.

4.2 Programmer Experience

Simulator programs are prOduced primarily by' individuals
trained in an engineering specialty rather than in computer science.
This results in a programmer prefence for language -notation.which
reflects the engineering notation usetd in the simulator design descrip-
tions. An example of this'irthe use of conditional expressions in
program, documentation, as discussed, in Section 5.4.1.1. Inclusion of
this feature in a SHOL is primarily justified by this documentation
practice.

Another-consideration based on programmer experience 's a
strong preference for fixed point as opposed to floating point. (The
reasons for this are discusSed in Section 5.2.2.1.) A SHOL shoUld
proyi,de programmer control of real number. representations. Much
programmer,concern about the 'use of floating-point comes from fear of
loss of control over significance in computations. Concern about the
space required by certain real number representations is also apparent.
The SHOL should provide access to the various representations available
on the target computer.

Most simulators are ,currently implemented in assembly language,
with occasional uses of FORTRAN. Most simulator programmers'have
not been exposed to other languages. hi selecting /designing. a SHOL,
consideration shoulei be given to the problem of retraining programmers
in the language, especially in view of the large_number of individuals
involved. When a choice is to be made 'arrvong several language features
satisfying a. particular functional requirement, programmer background
indicates that the choice be 'made on the grounds of simplicity of use and
similarity to commonly-used programming. languages.

Another consideration, at least in the Link environment, is the
use of a Quality Assurance group to optizraze the progranis produced by
the engineers: This dictates a requirement for program understand-
ability, to ensure that changes madeThy this group do not alter programs
functionally. Languages features supporting understandability are
discussedlin Section 4.5.

12, 4.,

Compilation Size and Speed Requirements

In simulator development, constraints or compiler performance
are imposed by the computer being used for compilation. Conventionally,
compilation is done on the target' computer, i.e., the computer on which
the simulation programs will execute. Typically, these computers are
of moderate size-and speed. Examples of machines used are:

PDP 11/45

Honey'well 316, 516

Interdata 8/32

SEL 3250

Harris DC 6024/4 .,

This practice of compiling on the target machine would require that the
SHOL be compliable on machineS of this _size: (Note that disk storage
is available with all of the systems.) Thi triction would also dictate
that the SHOL compiler be iriiplemented in a nguage supported on the
target machine. Clearly, development of., ompilers in each of the
various target machine assembly languages would-be costly. Analter-
native to this would be implementation of the SHOL compiler in the SHOL
(bootstrapped). This would require that the SHOL contain the capabilities
required for the compiler implementation. This would proliably require
no features not also needed to produce the various offline simulation
support programs, several of which are special-purpose compilers.

Constraints on compiler size and speed might also affect the
amount of optimization performed by,the coMpiler. A language offering
programmer-controlled optimization allows the programmer to limit
the amount of oph_nization performed by the compiler, thus increasing
compiler speed a:nd'decreasing core requirements, The programmer
will then perform optimization explicitly through appropriate use of the
HOL. .

The constraints described above could be avoided by use.of a
single, larger-scale host computer for compilation. A departure of
this sort from the current practice involves considerations which cannot
be fully addressed here. Among these is the requirement for program
modification in the field, discussed in Section 4.6.

4. 4 Object Code Size_ and Speed Requirements

Object code size constraints are imposed by the available core
on the, target system. A typical simulator might occupy 100K words of
core -- 80K for prgram and 20K for data. An additional constraint
stems fromNthe requirerrient to deliver spare core. (Though core can

13

be added, it is desirable to keep costs down and to stay within the
addressing capacity of the machine.) Simulator prOgrams studied

flreect a desire to conserve core (e. g. , packing of logicals, use of
fixed point for large data tables when floating point would require 'double
words), but not at the expense of operating speed.

Speed of object code execution is of primary importance in simu-
lation. Clearly, the simulator must respond to pilot actions as quickly
as the actual aircraft. Simultaneously with this realtime response,
other functions, such as performance recording must occur. Not only is
speed itself important but coordination of the various system components
is vital. Small discrepancies between the visual and motion systems,

,,for example., are discernible to the pilot.

Study of the simulator programs has verified the concern for
time efficiency over- s-pace efficiency. For example, Section 5.2.9.2
discusses the use of inline subroutines to increase speed of execution.
The ability to specify inline expansion of subroutines (as opposed to
calling the subroutine)-allows the programmer to trade space for
execution speed. The specification should be part of the subroutine
definition, and calls for both types should be written the same way.
This facilitates changing the method used (i.e.,- only one definition, not
numerous calls, must be changed) when tuning for the best time-space
balance.

Another feature required to provide object code efficiency is
programmer control over packing of data. This feature allows 'the
programmer to choose betWeen the space savings possible with packed
data (e.g. , packed Boolean items) and the speed of accessing provided
by unpacked data.. A choice of parallel or serial table allocation also
provides control over execution speed, since data can be arranged to
support efficient accessing.

The need for. execution speed has dictated the need for multi=
processing. More than one CPU (typically three or four) are required
to obtain the desired performance, Multiprocessing requires that a
SHOL support inter-CPU communication and sharing of data. Section
5.4.2 discusses language features directly supporting multiprocessing.
In addition, conditional compilation (Section 5.5.2) is useful in adapting
programs to the CPU on which they will execute. It allows essentially
the same program to operate on different CPUs.

4'. 5 Program Lifetime and Stability

In general, simulator programs have a long lifetime, since
simulators can`be used for years before becoming obsolete. This
implies that the programs must be understood and modified by
programmers who did-not produce the original program or make previous
modifications. A SHOL should assist in making programS\understand-
able so changes can be made quickly and correctly by programmers

14

unfamiliar with the program. Thus, program readability should be
stressed over programming ease (which might be preferred for programs
with a short lifetime).

Simulator programs are fairly stable once they are put into use.
Changes are roost frequent-in the tactics simulation programs, e.g. ,
the. programs emulating the onboard covnputer software. Frequently
the simulator user (the customer) mak'e:i program modifications in the
field. Modification by individuals not involved in program creation and
also not primarily involved in simulation, engineering disciplines demands
program understandability and readability.

Among thekinds of language features that foster understandability
are-, for example, the .,,atus, or enumeration, data type. Section 5.2.3
presents several examples of the use of status data in programming
simulator functions. Explicit data declarations are also important;
The type. of each variable` should be stated explicitly (and in a readily-
findable location in the program text). In addition, the ability to assign
mnemonic names to constants (e. g. the use of the name PI for the
constant 3.1415...) enhances understandability. To prevent modifica-
tion errors, such constants should be a distinct language entity, not just
variables initialized to desired values.

Error prevention and error detection features also help to reduce
modification errors. Among the features facilitating error prevention
and detection are strong typing and range declarations. Strong typing
means that implicit type conversions are forbidden qe. g. , when assign-
ing a value to a variable). Forbidding implicit type. conversions helps
to flag errors when programs are modified. Similarly, range declara-
tions, i.e. , the specification of the intended value range- of a variable,
helps to prevent and detect errors. Range information is -readily avail-
able for simulator data, so a requirement for its specific inclusion in
programs should not present a problem.

Many of the language features dictated by general language
design principles also contribute to program readability and modifiability.
For example, uniformity in language syntax, structured programming
constructs, and simplicity of the language all make programs .easier to
understand. A comment facility which is flexible and convenient to use
also encourages production of understandable programs.

The implications of onsite simulator program modification are
twofold. If the modifications are made by patching, the SHOL compiler
must provide listings of machine code representations,,a programs and
possibly other loading/relocation information; If_modification is done
by recompilation, it is necessary that the compiler operate on the target
machine (see Section 4. 3) since the users would not necessarily have
access to the host machine used by a cross-compiler.

4. 6 Program Reusability

Program eusability (as opposed to program portability, which is
discussed in Section 4.7) is concerned with the ability to reuse a program
for different purpoSes for the same'target computer family. An
example of reusability is the generation of slightly different subroutines
adapted to the different simulation capabilities of the cockpits in the
Undergraduate Pilot Trainer, simulator. ;.

Features supporting reusability are essentially program genera-
tion features, i.e. , .they permit different versions of a program to be
easily compiled. ,Conditional.compilation is an essential language
feature for facilitating prograM -reusability since reusable routines are'
often too general purpose for efficient,: special purpose use. Conditional
compilation is used. to remove unneeded generality fr,pm such a routine.
Use of constant,names is another way of adapting a program to different

--configurations.' These constant names can be used to specify.configu-
ration-dependent constants for reusable moduleS.

Neither conditional compilation nor the use of constant names
permits onsite patches to programs as a means of adapting to new con-
figurations (e.g., if code has been conditionally dropped out, a patch
cannot access it). The use of patches to make the kinds of changes
achievable through conditional compilation and use of constant names does
not appear to be ,a significant practice in simulator environments. Con-
figuration changes often require recompilation/assembly because of
their complexity.

4. 7 Program Portability

Program portability is concerned with the use of HOL source
code for different target computers. There is greater need for port-
ability in the simulator applications area than in most. Many programs
change very little from one simulator to the next; e.g., the navigation
and communications programs; simulation of radio stations does not
depend on the particular aircraft involved. A similar situation exists
in the tactics area when simulating radar emitters and various types of
weapons. Even in, simulation areas more dependent on th4'aerodyna.mics
of-the aircraft, portability is possible (e.g., solving six degrees of
freedom equations). Visual systems also have much the same proces-
sing from one system to the next (e.g., probe and gantry control,
altitude limit, visual effects, and cultural lighting Controls). Such
systems are seldom identical bu't have considerable processing in
common. Since there is significant potential for portability in the
simulator area, a SHOL should encourage development of portable
programs. Indeed, this is one of the major advantages of using an HOL
as opposed to assembly language..

16 GJ

A truly portable program, of course, must not be target machine
dependent. This goal is probably 'unrealizable for simulator systems as
a whole, though it may be possible for sonic? modules. Ho Weyer,
machine-dependent code can be isolated, thus facilitating the changes
required to transport the program.

Machine dependency arises in several ways. The most obvious
is in the programming of functioi-orwliich cannot be implemented in the
HOL and must be implemented iri-as.seml-qk language. (Section 5. 7
discusses these functions;. as required in simulator programming.)
Assenibly language code should not be intermingled with-HOL source
code but should be encapsulated to.,ease its replacement. The HOL
should probably require that assembly code be used only in separate

`assembly language subroutines. In the programs'studied, most functions
requiring assembly language occur in the monitor area, which might
well be an area where not too' much portability Scan be attained due to
the nature'of the functions required.

. /.
'Another instance 'of-machine dependency is in programmer-

specified data packing. As indicated in Section -4. 4, this 'feature may
be necessary to attain required time and space efficiency. It is
definitely necessary to describe I/O data, as discussed in Section
5.3.4.1. 1-. r:However, it implies that-programs cannot-be transportesd
to a machine with a different word length (at least; not to a smaller
word length -- a larger Would sirnply mean a waste of space).

. , .
Machine - dependent paking can be avoided by the use of machine-

independent packing attributes when control-over packing is needed just
to make time-space tradeoffs. Packing attribiites allow a programmer
a choice of sev.eral degrees of packing (e. g.', unpacked, .medium, dense,
tight)-without.requiring actual specification of bit po istions. The packing
attributes are then compiled appropriately for the rget -computer. Data
packing specified in this way does not hamper p tability. For I/O inter-
face data, programmer specification 'of actual bit-level packing is
necessary. Such specifications, which are machine-flependent, should
be encapulated in some way to support .isolation and change. They
might, for example,' form a separate block or module of the global data -
base.

A third source of machine dependenck is programmer reliance
on internal representations of data, e.g. , on the available range anti'
precisiOn of real (fixed or floating) values for a particular target
machine. A SHOL can assist portability by providing built-in operations
to access implementation information, such as-precisiOn, radix, and
exponent range of floating point values. A related language feature is
the ability to specLfy machine configuration constants reflecting, for
example, machine model, word siies, etc. These .can then.be used
with conditional compilation to include/eXclude machine-dependent code.

17
r

'tz

Section 5

PROGRAM ANALYSIS OBSERVATIONS

Part of our general approach to defining HOL requirements
is to analyze how the functions to be programmed (asp opposed to
the. environment in which the programming takes place) affect the
choice of language features. In this Section, we present our
observations of simulator programming characteristics, as revealed
by our study of simulator programs and discussions with simulator
personnel. These observations are part of the basis for the detailed
language requirements specification given in Section 6.

The simulator program functions and support program
functions are described in Appendix A in the form of an SADT model.
This model describes the functional components of a simulator and
demonstrates our understanding of the simulator programming tasks.
The remainder of this Section contains an analysis of how the
functions to be programmed can be supported by various HOL
fe.atu'res. Our observations about the relation between simulator
program functions and HOL features are cross-referenced to the
relevant parts of the SADT model (e.g., a reference to "diagram
A33" is to diagram A33 in Appendix A). Similarly, the model
diagrams reference this Section of the report. For example,

compute
altitude
limits

I

3.4.4., 5.1.1

indicates that language requirements for "compute altitude limits" are
discussed in Sections 5.3.4.4 and 5.5.1.1. (Since the first digit of
all section references is 5, this digit has been omitted from refer-
ences in the model.)

The analysis presented here is grouped by language area.
The overall organization is:

5.1 Storage Management
5.2 Data Types and Operations
5.3. Aggregate Data Types
5.4 Control Structures'
5.5 Program Development Aids
5.6 I/O
5.7 Machine Dependency

18 n4

5.1 Storage Management

5.1.1 Global Data

The primary storage management facility in the Link simulators
is the ' datapool', or system symbol dictionary. System data in
this global, data base is used and/or updated as required by the simu-
lation programs and by the cockpit and instructor station I/O
processing. Diagrams Al, A3, and A33 illustrate datapool use.
The datapool is similar to the JOVIAL COMPOOL. When programs
reference datapool items, the address and type of the item is
retrieved during assembly/compilation by the database system (see
Section 5.5).

Datapool items are grouped into blocks. Each item's location
is defined by its displacement within the block. This grouping
facilitates relocation as well as allowing related items tc be grouped
together. The data- is broken up into 5 groups:

private - cockpit dependent arithmetic
private - cockpit independents
common cockpit dependent logical
common - cockpit dependent arithmetic
common - cockpit independent

'Common' and 'private' refer to the common and private memories.
Cockpit dependent data is data of which there are several copies,
one for each cockpit. To provide the user with access to the'current
cockpit data, the monitor (in the foreground dispatcher - diagram
A312) initializes index registers to the base addresses of the data
areas for that cockpit. In the UPT simulator, for example:

register I = private - cockpit dependent arithmetic
register K = common - cockpit dependent arithmetic
register V = common - cockpit dependent logical

The V register is a base register used for bit access instructions.
Its contents here will actually be the same" as the K register,
since the common cockpit dependent logical and arithmetic data
occupy the same data area. There are actually only two areas,,
private and common.

The programs which access the cockpit dependent data then
can reference, for example:

var, , K

1 9 4

and obtain the value of 'var' for the current cockpit. Ordinarily the
index register will be dedicated to this purpose. However, the
monitor also places the current values in global variables in
case the user has to destroy the register values and must then
restore them. The programmer need not actually know whether a
particular item is-:in common or private memory. Cockpit
dependent variables are referenced by

var, R

and the, assembler (as modified by Link) substitutes either 'I' or
'K' for 'R', based on inforr 3tion from the symbol dictionary.

An HOL implementation might group the data into large
tables, one for private data and one for common data, where each
table has 4 entries, one for each cockpit. This table could then be
indexed by.the number of the active cockpit, so that

var(CKPT)

would refer to the value of 'var' for the current cockpit. Such large
tables, however, are rather unwieldy, and their elements would not
all be simple items, but would sometimes be tables, arrays, etc. ,
leading to confusing subscripting. A much better representation
would be something like the based block of PL/1, i.e., a block
based on a pointer variable established for the current cockpit. In
any implementation, it would be desirable that the compiled code
dedicate an index register to the block. (Typically, most statements
in the program will reference data in one of the two blocks, so a
good compiler should come close.) Statements explicitly dedicating
an index register are also a possibielity.

The datapool as used by Link is an important toe for program
reusability. The concept is used in each simulator, and many data
items are the same in various simulators. Some such global data
definition facility seems essential in a simulation HOL, however it
be provided. It might t}e desirable to restrict unauthorized access
to global data more directly in this facility. Currently this can be
done only indirectly through examination of the cross-reference
listings.

5. 1. 2 Local Data

The simulator programs also make use of a temporary
storage area (50 words in the 214A simulator, for example). These
are shared by all the programs- Programs using,them cannot call
one another, but this is not a problem. Generally programs are
initiated from the monitor and return to it on completion without calling
other programs (diagram A312 illustrates task scheduling). Programs
using the temporary storage area cannot be reentrant but reentrancy is
required only in a few monitor subroutines.

20
n40

J

Use of these temporary locations'can make programs unreadable
if the temporary storage names are not equated to more meaningful
names. As an example of this problem, see Figures 5-1 and 5-2,
which illustrate storage usage in display system processing (Box 4
of diagram A35). A simulation HOL with a similar local storage
strategy would have to provide some means of assigning meaningful
names'to these locations in the various programs which use them.

1. SYTOZ - CCL WORD 1 ADDRESS

2. SYT03 - CCL WORD COUNTER

3. SYTO4 - CAB RANGE

4. SYTU5 -.CAB WORD 1 ADDRESS

5. SYTO6 - CAB WORD 2 ADDRESS

6. SYTO7 - CAB WORD 3 ADDRESS'

7; SYT08 - FIELD WIDTH

8. SYTO9 - NUMBER OF FRACTIONAL DIGITS

9. SYT12 - INTEGER TO BE CONVERTED

10. SYT13 - FRACTION TO BE CONVERTED

11. SYT15 - ANSWER STORAGE

12. SYT17 - CAB WORD 9 ADDRESS

13. SYTZ4 - RETURN ADDRESS

Figure 5-1. Temporary Storage for Conversion
Control Program

21

1. SYTOO - RETURN Address

2. SYTO1 CCL Address

3. SYTO7 Cockpit Nuriaber

4. SYTO9 - Address of CAB Word 1

5. SYT21 -.Address of CAB Word 2

6. SYT23 - Address of CAB Word-4

7. SYT24 - Address of'CAB Word 5

8. SYT25 - Address of CAB Word 6

9. SYT'26 - Address_ of CAB Word 7

10. SYT27 - Address of. CAB Word 8

11. SYT10 - Field Width

12. SYT11 - Number of Fractional Digits

13. SYT12 - Sign Flag

14. SYT20 - Decimal Point Flag

15. SYT13 - Integer

16. SYT14 - Fraction

17. SYT 17 - Input

18. SYT19 - Answer

19. SYTO3 - Private Cockpit Base Address

20. SYTO4 - Command Cockpit Base Address

Figure 5-2. Temporary Storage for Paxarrieter
Insert Program

22 9
t.)

5.1.3 OWN Data

,OWN data is data local to a subroutine whose (value must be
retained between invocations of the subroutine. Some uses of OWN
data were observed in the programs' studied. For example, the
214A program which verifies data on the modelboard contour map
(Box 1 of diagram A3353) retains location information between calls.
Another ,examplesi-sr the Monitor TTY output driver, which must extract
a buffer address and chara.cter.count from the parameter table
on the first invocation, then maintain them by incrementing the
address and decrementin the count through subsequent invocations.
A-third example is the timer data (fire and overheat timers,
indicated by the two-way output of Box 1 of diagram A33135, and
king timers, Box 2 of the same diagrain) used in the Miscellaneous
Accessories area. These timers are used to keep track of the time
since the indicated p-oblern (e.g., engine overheat) Wasinitiated
sowarnings, etc., can be turned on after the appropriate interval.

"5.-1.4 Overlay Programs

Overlay programs are used in several instances in the UPT
simulator. For example, system initialization (Box 1 of diagram
A31) makes use of programs that are replaced in core after
initialization. Overlays are also Called in as required to process
debugging and display handling functions. Some offline programs
(e.g., Math Model Test, -Box 2 of diagram A2) are also organized
in overlays.

Ordinarily overlay handling is an operating system (OS) function
(of course the OS should be implementable in the selected HOL) but
in some machines the program must call the OS to bring in overlays;
in' others, it can be effected automatically. If the program has to
request overlays', the language must make this possible. To be
usable in real-time applications, overlay handling must be
efficiently implemented..

5.2 Data Types and Operations

5.2.1 Integer Data Type

The programs studied show few uses of integers to represent
actual simulator numeric data. Some Uses were observed in the
Miscellaneous Accessories area (diagram A33135) for fire, over-
heat, and ice timers. Another use was observed in a weapon
jettison program (Box 2 of A334). In general, however, most
integer variables are used ,for loop indices, Booleans, enumeration
types, array indices, etc. The use to represent Boolean and
enumeration values would disappear in a language that supported
these data types directly. The remaining uses are not peculiar to
simulators, (array indices, loop indices, etc.) but are found in almost
any use of a language.

5.2.2 REAL Data Type
---.. '.

.1 REAL data -is used thr ghout t rnulator for numeric'
values. Areas in which mathematical proc ssin is particularly
heavy are Aerodynamics (diagram A3312), isu (diagram A335),
and Tactics (diagram A334) modelling and th offline.Map,Plate
Compiler (Box 5 of diagram A35). Most air raft data (speed, roll,
pitch, yaw, altitude, drag, etc.) is REAL d&ta.

b (5.2.2. 1 Fixed Point vs. Floating Point

Both fixed and floating point are used to represent REAL
values. Link has indicated that fixed point is always selected
unless contract requirements specify floating point. (When
FORTRAN is used to program a simulator, however, floating'
point is used. No attempts at fixed point arithmetic with FORTRAN
integers have been noticed.) This preference fo.r, fixed point comes
partly from a desire to continue using the same data definitions,
scaling, etc. used on previous simulators. Of course, once floating
point is established. the new definitions cold be reused. Other
considerations are the programmers' unfamiliarity with floating
point and concern about loss of control over'significance in computa-
tions. A third problem is that floating point is sometimes slower
than fixed point (see [Babel, 1974]). Another paper [Goldiez, 1976]
compares the relative speed of assembly languageand, FORTRAN pro-
grams; the FORTRAN programs took almost three times as long. The
authors blame this discrepancy at least partially On the fact that the
FORTRAN versions Ussed floating point while the assembly language
versions used fixed point.

The UPT simulator, one of the systems studied, uses
primarily floating point. On the UPT computer, the Harris DC
6024/4, floating point is all double word, with 39 bits of mantissa.
In the 214A simulator, also studied, all arithmetic data used is fixed
point. Much of the data in this simulator is two-word (i.e. , 32 bit)
fixed point. As two-word arithmetic is not 'supported by, the iristruc--
tion set, handling such data takes a lot of code. For example,
subtracting one s-trcih value from another requires five instructions.
Addition, if it is necessary to test for overflow, takes nine
instructions. A high-level language which supported such a data
type would result in much clearer programs. Certainly, support
of 16-bit fixed point only is not adequate.

Reasons for the various scale factors Used for fixed point
data are not "alwayscclear, since the range of data items is not
always apparent. Presumably scale\ factors are selected to allow
retention of maximum significance dUring calculations. In all.
instances where the units>represented by fractional values are

_apparerit, the step size is a power of two. Much resealing occurs
durip,g calculations. Some uses of fixed point fractions occur when

24

integer data is being used, resulting in some loss of efficiency\
For example, the code used in the 214A simulator to multiply an
integer value of 1, 2, 3, or 4 in RO by a constant 3 is:

MUL #3B2, R0 constant 3 scaled with 2 integer,
13 fractional bits

ASHC #3, RO shift register pair left 3 to get
result in RO

Multiplying by an integer 3 would have given the desired result in
RI in one step. If it had to be in RO, a move instruction, more
efficient than a double shift, could then be used. Presumably this
sort of thing is due to programmer habit and illustrates that some
inefficiency can be tolerated in some fixed point computations.

Several instances of fixed point. data occur in the UPT
simulator. For example, latitude and longitude are often expressed
in BAMs (Binary Angular Measurement), or degrees/360. Some-
times BAMs are represented in double ward fixed point, e. g. , in
the Navigation Environment area (diagram A332, Box 2 outputs).
The documehtation (UPT Product Specification, Vol. 1, Navigation
Environment,

13

. 31) describes the reason:

"Since Lat and Lohg are defined in BAMs (Deg. /360)
the 23rd bit in the single word is equivalent to 7.82 ft
which is not enough resolution to maintain required
accuracy. The 48th bit in the double word will be
equivalent to 4,7 x 10-7 ft."

The UPT also uses one-word fixed point in certain tables to
save space as compared to the two words required by floating point.
This occurs, for example, in the L'FI (linear function interpolator)
routines, which are described in more detail in Section 5.3.4. The
'LFI subroutines access a table of values in-fixed point form. Once
the correct value is found, it is converted to floating point before
being returned. The reason for having the table in fixed point form
is economy of space, since the fixed point values take only one word
while two are required for floating point. The precision allowed by
the single word is adequate for the values. The breakpoint table,
used in the LFI search routines, contains floating point values. The
breakpoints require greater precision. In the case of a two or three
variable LFI, of course, the value tale is much larger than the
breakpoint table, so there is more motivation to save space. (In
the 214A visual system, which fixed point, the value tables
are all single precision; the breakpoint ta.-les are sometimes single
and sometimes double precision. Altitude breakpoints, for example,
are double precision.)

25

Fixed point values are also used in the display system
(diagram A35). These are generally values that appear in large
tables or disk files (e. g. , saved track data, Box 6 of diagram A351).
Fixed point is apparently used to save space over the two words
required by floating point.

5.2.2.2 Operations on REAL Data

The standard mathematical operations (+, / **) are of
course required. Otbe operations, performed by mac os (inline
functions) or by subroutines, are described in subsequent subsections.

5.2.2.2.1 Trigonometric Functions

The functions used are SIN, COS, and ARCTAN. The map
plate compiler (Box 5 of diagram A35) uses secants and cosecants,
but since these are simply inverses of COS and SIN, no separate
functions are used. The F-14A and 214A simulators include a single
routine to compute both SIN and COS, thus saving time when both are
required. The UPT has only the two separate ,routines.

In the UPT simulator, the routines.usefixed point (BAMs)
for the angles and floating point for the functional values. Some
routines that call them, e. g. , Aerodynamics (diagram A3312),
maintain angles in floating point and must convert to BAMs to us.e
them. Calls to the SIN and COS routines are preceded by float-to-
fixed conversions, and calls to the ARCTAN routine are followed by,,
C:xed-to-float conversions.

5.2.2.2.2 LFIs
Linear Function Interpolation is the calculation of a functional

value by linear interpolation of its arguments in a predefined table of
arguments and associated values. Two routines are used. The
'search' routine looks up the argument in the predefined argument
(or breakpoint) list, obtaining the interpolant. The 'value' routine,
with this interpolant as a parameter, computes the function value.
The data structures used are discussed in Section 5.3.4.

5.2,2.2.3 Limit Functions

A common operation in the programs studied is a limit
operation of the form:

MAX (MIN(expression, upper bound), lower bound)
e. g. ,

MAX (MIN (TEMPO2 512. , 400.), -400.)

MAX (MIN (. 95238 (. 525 - HAIFLP), . 999), 0.)
or

26
ti cJ

This is frequently written in the documentation in notation of the
form:

[.95238 *(. 525 - HAIFLP)] 999
0

This function arises from a need to limit a value to an acceptable
range," frequently for output to analog hardware. It is particularly
prevalent in the Aerodynamics (diagram A3312), Flight Controls
(diagram A331, Box 1), Hydraulic System (diagram A33133), and
Navigation Radios (diagram A3323) areas.

5.2.3 Status Data Types

There are numerous instances in the simulation programs
studied where a status enumeration)Idata type would enhance
program readability. Status types would be useful for flags, for
table and array indices, and for CASE alternative selectors (see
also Section 5.4.1.2).

5.2.3.1 Status Data as Flags

Examples of flags that could be represented by status types
occur in the monitor area (diagram A31), in the demo /record/
playback area (Box I of A35), in the instructor area (Box 2 of A35),
and the visual area (diagram A335). In the monitor area, flags are
used to synchronize the various processors and to coordinate I/O,
the CPU, number and cockpit number used by the foreground task
dispatcher (diagram A312), etc. In the demo/record/playback area,
flags are used to avoid playing a demo which is currently being
recorded. In the instructor ,area, status variables would be useful
to describe many of the initial condition settings, e. g. , day-dusk-
night. In the visual area, subroutines are used with integer
parameters indicating X, Y, or Z values are to be processed. The
X, Y, Z enumeration type would enhance readability here also.

5.2.3.2 Status Data to Index Tables and Arrays

Throughout the simulators examined, readability would be
greatly enhanced by grouping related data items into tables and
arrays, even when the resulting structure will have only two or three
entries. In such cases, an enumeration or status type is the logical
choice to index the structure. Consider, for example, the set of
items connected with the DME dial (Navigation Radios, diagram
A3323, Box 3):

NDMUNT -
NDMTEN
NDMHND -
NDUNTX -

DME units wheel
DME tens wheel
DME hundreds wheel
DME units output x

27

NDTENX

NDHNDX

NDUNTY

NDTENY

NDHNDY

NDUNT1

NDTEN1

NDHND1

- DME tens output x
- DME hundreds output, x

- DME units output y
- DME tens output y
- DME hundreds output y
- DME units wheel previous pass
- DME tens wheel previous pass
- DME huridreds wheel previous pass

which could be represented by a- 3-entry table (perhaps indexed by
an enumeration type UNITS, TENS, ,HUNDREDS):

END

TABLE DMEDIAL (UNITS:HUNDREDS):

BEGIN
ITEM DMWHEEL wheel value
ITEM DMOUTX output x
ITEM DMOUTY output y
ITEM DMWHEEL1 previous pass wheel value

Then, for example, the item currently called NDMUNT/would be
referred to as DMWHEEL(UNITS)°. Similarly, engine data (diagram
A3313, Box 4), wing c1.ta (diagram A3312), etc., could b'ef
organized in tables indexed by LEFT and RIGHT, or nose position
in a table indexed by (UP, DOWN, CENTER).

-Many flight data items are actually vectors of X. Y, and
Z values. These are all represented by sets of three variables, e.

or ,
VXGMI, VYGMI, VZGM1

VXPFB, VYPFB, VZPFB

g..

These would be best represented in an HOL using 3-element arrays,
which could be indexed with an enumeration type using the identifiers
X, Y, and Z, e.g..,

or
VGMI(X), VGMI(Y), VGIVII(Z)

VPFB(X), VPFB(Y), VPFB(Z)

Similarly, there are numerous sets of values for roll, pitch, and
heading, e. g. ,

VCPI-EL, VCPSI, VCTHTA

which might be represented by 3- element arrays indexed by P1-31,
PSI, and THETA.

5.2.3.3 Status Data as CASE Alternatives

. In the programs studied, there are numerous instances of
CASE -like, control structures. In some of these the various cases
could be Most understandably represented by status or enumeration
type values. For example-, one subroutine in ciemoirecord/playback
(Box 1 of diagram A35) has as a parameter an integer indicating
the type of processing to be done:

0 = disk read initialization data
1 = disk read demo data
2 = unpack disk data
3 = playback
4 = flyout

Clearly mnemonic values would be more understandable than integers
as parameters.

Other examples of CASE alternatives best represented by
enumeration types occur in the monitor area (diagram A31). These
include the function specifications for the intercomputer communi-
cations and background scheduling routines, -1.nd the I/O device
selection for the input/output control coordinator.

5. 2.4. Bit Data Type

Most occurrences of bit data in the simulators studied corres-
pond more logically to the set data type discussed in Section 5.3.1.
The major use of bit data is in machine- or device-dependent code.

Instances of bit operations (bit insertion and extraction)
could generally be avoided through the use of programmer-defined
tables to access the desired bits. These are discussed in
Section 5.3.4. .Some such instances may be rather forced, however.
An example of this occurs in the Math Model Test program (diagram
A2) of the UPT simulator in the part of the program which formats
instructions for the trace, translating them from binary to vinemonic
form. The UPT computer has a very complicated instruction format
for this purpose. For example, register specificatiOns are part of

29

the opcode-mnemonic rather than operand fields. Thus there are 42
ADD opcodes-, for instance. This translation program involves a
main routine and 46 subroutines as well as three tables of opcodes.
Processing is -' roughly as follows:

a. Based on the first six bits of the opcode, ,one of
the three tables is selected, for prefix - 008,,
778' or 'other'.

b. Within the selected table, an entry is-chosen by index;
ing by the first six bits of the opcode for the 'other'
table, and by the second six bits for the 008 and 778
tables.

c. The table entry consists of two words, containing:

opcode mnemonic

subno.
I

subno. I sub no.

The (possibly temporary) opcode mnemonic is obtained
from the first word. The second word contains three
8-bit numbers.between 0 and 46, which are subroutine
numbers indicating one of the 46 subroutines, or 0.

d. The indicated subroutines are executed in the specified
order. An entry of 0 terminates the list.

For example, consider the instruction 002302208. Based on the first
six bits, the 008 table is selected. Based on the next six bits, the
238 entry is selected. This entry is:

PRR

2 0

The opcode, 'PRR', is extracted. Subroutine 2 is executed. It
extracts the last six bits, 208, determines that this indicates
'register A', and replaces the third character of the opcode by 'A',
obtaining 'PRA'. Then subroutine 1 is'called, looking up the next-
to-:the-last,'six bits, 028, translating this to 'register J.', and obtain-
ing the opcode 'PJA' (Positive of J to A). The various .subroutin9s
might also construct the operand field (PJ.A has no operands). This

30

implementation is unusual, so such complexity -may not be
required. The method, however, should be implementable in an
HOL, using an array of subroutines or a CASE statement to select
the subroutine calls. With a simpler machine, this sort of prweess-,
ing can be done nicely using a programmer-specified table to define .

(or overlay, really) the instruction word. The table Will have variant
record types, i.e., different definitions of the word, based on the
various instruction formats. The necessary fields can he accessed
directly without explicit bit extraction. The DC 6024/4 machine,
hnwever-, might have too many instruction formats for this to be- .practical.

Another area where bit manipulation is necessary is in some
types of number conversions. These usually involve 'logical or'
and shift operations. \--It is to, do this without shifts,
technically. One UPT FQRTRAN program for formatting display
screen images (Box 4 of diagram A35) does conversion using addition
instead of logical or's, and multiplication ,and division by powers, of
two instead of shifts. This, does not enhance readability,,however,
and could be very inefficient if the multiplications and-divisions do
not compile as shifts.

Bit accessing is occasionally used in 'coding tricks' to gain
efficiency. For example, in the 214A Visual System (diagram A335)",
the code used to implement the test .

is:

"If cockpit = 2 or 3, return to caller"

BITB #2, QCKPT
BEQ V$560A
JMP V$560Z

test bit 2 of cockpit. number
if off, execute program
otherwise, jump to last oetatement

A compiler could probably not be expected to generate such a test, even
if it was known that the range of QCKPT was 1-4. However, only
two instructions are saved over a more explicit translation of the
IF statement.

5.2.5 Boolean Data Ty;.e

Certain simulator areas involve large quantities of Boolean,
or logical, data. This is particularly true in the Na.vigation and
Communications area (diagram A332. Much of the data corresponds
to inrdware- input and output values. Tn fact, the datapool allows
specification of 10 different types of Roolean items;

1713 logical bit
DI discrete digital input
LO discrete lamp driver level output

31

DO discrete logical level output
WI - hardware bounded digital word input
WL - hardware bounded lamp driver level word output
WD hardware rounded logic level word output
PI - software bounded digital word input
PL - software bounded lamp driver level word output
PD software bounded logic level word output

A major issue with Boolean data is the degree of packing used,
with a tradeoff between space used and speed of access. One objec-
tion to FORTRAN expressed at Link was the necessity of allocating
full words to logical values. The programs studied allocate logicals
to bits, bytes, and words, depending on the type of efficiency required.

The 214A Visual-System (diagram A335) uses many
Booleans for flags and indicators. These are all represented
by bytes, the minimum addressable unit on the PDP-11. Two
-xceptions were noted where bit data was used for flags. In one

istance, three bits in one byte were used as flags indicating that
.ne roll; pitch, and heading of the probe are in sync"with the aircraft.
There is no particular use made of the fact that the flags are stored
this way - it is just done to save' two bytes. Since the machine has
bit set and test instructions, there is no additional cost in processing.
In the other case, the four top bits of a word are set to indicate which
of four cultural lighting boxes are to be turned on. The code which
turns on the boxes is a loop which shifts this word left and tests if it
becomes negative (sign bit set) to determine whether to turn on each
box. An array of Booleans, which could be accessed by the loop
index already in use, would support this concept equally well. Pack-
ing would be requirea if only one word was to be used.

Many packed Booleans are also used. In the Hydraulic. Systems
area (diagram A33133), for example, 14 flags dealing with landing gear
and landing gear door positions are packed in a single word. Communi-
cations Booleans are also often packed. These are hardware inputs, and
the packinL, is--thu-sde.terriiined by the hardware. If the packing could be

____s_pecifie`d appropriately, orgarizatiOn of thf s data into tables would
improve clarity. For example, consider the actual-input layout
described in Figure 5-3. For logical purposes, this data should be
treated as -a table indexed by operator and cockpit (except NO1PTT
and NO2PTT, which co,rrespond to operator only). This could
be represented by a PL/I structure (see also Section 5. 3. 4) such as:

DECLARE 1 NRADIO (1:2),
2 NOPTT,
2 NCKPT (1:4),

32

indexed by operator
operator push to talk
indexed by cockpit

NOZWOI NO1W1I NOZW3I NO1WZI

IOS #8 IOS #8 IOS #8 IOS #8

high-order

NOZZUR NO1ZUR BIT, 15

NOZ1UX N011UX 14

NOZ1UR N011UE 13
.:3

N02415 NO14IS 12

N02405 N01405 11

N02315 NO13IS 10

N02305 N01305 9

NOZZIS NO12IS 8

NOZZOS NO 120S 7

NO21IS NOilIS 6

NO210S NO110S 5

NOZ4UX NO14UX NO24XV NO14.XV 4

NOZ4Utt NO14UR NOZ:XV NO13XV 3

NO23UX NO13UX NOZZXV NOIZXV 2

NOZ3UR NO13UR N.021XV NO11XV 1

NOZ2UX NO1 ZUX NOZPTT NO1PTT BIT U

low-order

WORD 0 WORD 1 -WORD 3 WORD 2

Figure 5-3. Communications Input Word Layout

A ,

33

3 NOXV,

3 NOOS,

3 NOIS,

3 NOUR,

3 NOUX;

VHF xmit selected
override selected
instructor selected
.UHF receive selected
UHF xmit selected

The only problem with this is that there is no apparent way to describe
how the bits are actually packed. (It is possible that the data could be
repacked appropriately by the executive, or that the packing coming
from the hardware could be altered.) The program currently must
perform complex bit manipulation to access data in the order desired,
anyway. For example, one sequence of code, with the objective of
obtaining NO14UX, NO13UX, NO12UX, NO11UX packed into the right-
most four bits of a single word, proceeds as.follows:

a. load word 2

b. mask to zero all bits except bit 14 (N011UX)

c. shift left 3 (into bit 17)

a. save result

e. load word 1

f. rotate right 5 (to get the 5 bits into the ugh -order
bits)

g. mask to zero all bits except the top 5

h. add the word previously saved (bits 23, 21, 19, 17
now contain desired values)

i. clear the accumulator extension (extends on high-
order end)

do 4 times:
ii. shift left double 1 bit (slaift desired bit into

extension)

j2. shift left (single) 1 bit (drop unwanted bit)

k. extension now contains desired result

The amount of processing involved makes reformatting in the
executive seem like a reasonable alternative.

34

Various documentation techniques are used to describe
Boolean equations. Some programs use English; as in this example
from the 214A Visual System (diagram A335), determining if the
aircraft is above the clouds:

ABOVE CLOUDS IF
OFF MODEL AREA OR
OUT OF TOLERANCE OR
LIGHTS NOT READY OR
COMMANDED POSITION CHANGE TOO BIG OR
PROBE NOT IN SYNC OR
A/C ALT > CEIL+ FIELD ALT + CLOUD THICKNESS

Some use FORTRAN or pseudo FORTRAN, as in this example from
Flight Controls (diagram A331):

FELTRD TMPLO1 . AND. . NOT. (UMLTRE. LT. UMLTCE) . OR.
. NOT. FELTRD . AND. (FTRIME . LT. 25) . AND.

UMLTRE .0R. UMLTCE . AND. (FELTRD .0R.
TMPLO1 .AND. . NOT. FELTRU)

A decision table representation (see Section 5.4.4.1 for examples)'
would be more readable but might require some simplificsAion by.the
programmer. A less unwieldy notation than that of FORTRAN-Arould
also be helpful. Use of longer and more descriptive names might -\\
also improve readability, though it would make the expression even
longer.

Another documentation technique, from the Communications
area (diagram A332, Box 1), using data from Figure 5-3, is:

O1VXN = OIPTT 011XV 0110S O11IS

= OIPTT 2 2 2

= OIPTT 3 3 3

= O1PTT 4 4 4

In this assignment, the cockpit number (1-4) is used to determine,hich
of the four lines applies. The implementation of this expression is
interesting, and represents a degree of efficiency which might, be
difficult to obtain in an HOL. For exarriple,

OVXN(1) = NOT (OPTT(1) AND OXV(1,CKPT) AND NOT
00S(1, CKPT) AND NOT OIS(1,CKPT))

35 A

1

would be a reasonable HOL expression of the equation using the data
structure described previously. (See Figure 5-3 for allocation.of
the bits; these are the same variables without the initial 'N's.)

n.

The actual implementation is:

a. Set OIVXN = true.

b. Using a mask obtained from a table of four masks
'indexed by-cockpit number, mask input word 2 to
clear all bits except O1PTT, O1nXV, 01n0S, and
01n1$. (n is the cockpit number)

c. Compare result to another value, also oiii0ined from a
table of four indexed by cockpit, which has 'bits set in
the,01PTT and O1nXV positions only.

d. If equal, set OIVXN = false.

This sequence takes advantage of the fact that only one possible set of
values,

O1PTT, O1nXV, 01n0S, OlnIS

will result in a value Of false for the equation. It uses only seven
machine instr),Ktions. HOwever, a programmer who has done the
necessary analysis to discover that this is possible could instead
write:

OVXN(1) = (NOW2I(1) AND MASK(CKPT)) NE MVAL(CKPT)

masking and comparing to the desired masked value. Unfortunately,
the intent of the operation is no longer clear.

Another example (from the same program) of efficiency
gained by explicit knowledge of the Boolean packing is the implementa-
tion of the three successive equations:

NO I SPR = . NOT. (NOSPON . AND. NSPRO I . AND. . NOT.
NO1 PTT . AND. . NO'

NO2SPR = . NOT. (NOSPON . AND. NSPRO2 . AND. -0T.
NO114T . AND. .NOT. NO2PTT)

NMONSR = NOT. (NOSPON . AND. .NOT. NSPROI . AND.
. NOT. NSPRO2 .AND. .NOT. NO1PTT .AND.
. NOT. NO2PTT)

36

The variables that the equations have in common, NOSPON, NO1PTT,
and NO2PTT are tested first. If NOSPON is false or NO1PTT or
NO2PTT are true, all three expressions are true. To obtain the
same degres of efficiency, an HOI, implementation would probably
have to make this test explicitly, e.g.,

IF NO1PTT OR NO2PTT OR NOT NOSPON THEN
BEGIN
NO1SPR = 1;
NO2SPR = 1;
NMONSR = 1;

END

ELSE
BEGIN

NO1SPR = NOT NSPROl;
NO2SPR = NOT NSPRO2;
NMONSR = NOT (NOT NSPR 1 AND NOT NSPRO2);
END

The IF-THEN-ELSE expression of the problem seems more under-
standable as well as more efficient. That, and the fact that it_is
actually implemented this way, indicate that the equations were
probably derived this way and then converted to the "single assign-,
ment statement for each variable" form for documentation purposes.
Therefore, it doesn't seem-tha' xpressing the equation in the more'
efficient form in an HOL would be a problem for the programmers.

5. 2. 6 Character String Data Type

Character processing is not significantly used in the main
aircraft modelling portion of the simulator (i. e. , that processing
illustrated by diagram A33). However, it is required for display
I/O in the Training or Instructor area (see diagram A35), for
numerous offline support programs (which create data files used
during simulation) and for debugging support (e. g., Math Model
Test, Box 2 of diagram A2).

5. 2.6.-1 Offline Character Processing Requirements

The offline.1)rogra.ms process card image input and some
produce printed output. Programs which create offline data files
include:

radio station file creation (Box 4 of diagram A332)
malfunction compiler (Box 3 of diagram A35)

37

initial condition file creation (Box 2 of diagram A35)
screen image file creation (Box 4 of diagram A35)
map plate compiler (Box 5 of diagram A35)
tactics scenario file creation (diagram A334)
radar emitter data file creation (Box 3 of diagram A334)

These offline programs have the text processing requirements
characteristic of compilers. Operations such as the PL/I INDEX
and SUBSTR functiohs seem desirable. However, no uses of varying
length character strings were-noticed.

As an example of text processing requirements, the radio
station file creation program ffBox 4:of diagram A35) requires interpre-
tation of input commands, testing of individual characters in strings,
and insertion of individual characters into strings; This processing

'is implemented in FORTRAN using. octal equivalents of the characters.
Direst language support of character handling would result in much
more readable code.

In the I/O performed by the offline prograths, conversions
between numeric forms and ASCII character strings are required:
Some of these conversions could perhaps be supported by the I/O
features of an HOL, particularly in output conversions. Input con-
versions are more difficult. To process a statement like

INPT var, value

from the Math Model Test program (Box 2 of diagram A2), the variable
wouldhave to be read and looked up in the datapool. Then the value
would have to be read based on the variable type. (The input format
might also have to be more fixed.) In an HOL, this could probably
best be done by simply reading the card as a character string and
then invoking an explicit conversion of the appropriate substring.
(Another problem with trying to read or write with the various for-
mats is that fixed point formats involve scaling information as
well as type.)

5.2. 6. 2 Display Character Processing

Display character data is constructed and output by the
Instructor System programs (diagram A35). Typically a different
character set than that of the CPU will be used by the display. In any
case, some of the displair characters will be display commands or
orders, and these would not be representable, as characters of the
computer. An HOL should provide some means of defining bytes
representing, these characters by specifying the bit equivalent and
then using thes.e-irci-Taracter manipulation expressions.

38

Display I/O ordinarily involves a block transfer, i. e. , a
movement of blocks of characters by a hardware operation to the
display memory. The display memory may have a different word
length than the CPU. In the UPT system, which uses an Aydin
display, for example, the Aydin memory has 16bit`words, while
the computer has ?4-bit words. On input from the Aydin, each'
16-bit word is stored right-justified in a 24-bit word. On output,
however, the 16-bit words are packed into the 24-bit words as
follows:

0

I

2

3

AYDIN 0
,

I AYDIN 1 (MSH)

AYDIN I (LSH) AYDIN 2

AYDIN 3 AYDIN 4 (MSH)

AYDIN 4 (LSH) AYDIN 5

24-bit words

Construction of Aydin data involves conversion from the Harris ASCII
code to the display code, as well as insertion of 16-bit display
commands. Packing of the Aydin words into Harris words also
requires some bit handling, i.e., shift and logical tor'. Some
prograrns nstruct the entire Aydin image with 16 bits/word and
then cali a routine to pack it. Interpreting Aydin input as character
strings requires extracting the rightmost 2 bytes of each word and
packing El(rn into a string.

5.2.7 Pointer Data Type

In the programs studied, which are primarily in assembly
la.-,ng,uage, uses of address data must be examined to determine possible
.z.iquirementF. for pointers in an HOL. Most address data is
simply use «) point to a table element, and thus it corresponds to
a :-ray or .

indices (or subscripts) in an HOL. Some addresses
are .

subroutine parameters to indicate the address of an input
table 'In an HOL this could be accomplished through call-by-
reference parameters rather than with explicit use of addresses.
Surrae uses of addresses forlist processing functions correspond
more logically to HOL pointers. Another use, which is not precisely
a use of pointers, is the accessing of a memory location given its
address-

39

5. 2, 7. 1 List Processing Pointer Usage

The UPT monitor (box 1 of diagram A3) uses queues in which
the elements are linked by pointers. There are two types of queues
used: I/O request queues and an error request queue. The error
request queue is circular, 'While the I/O queues are FIFO queues.
Both queue types are constructed by request handling routines. These
routines receive an input parameter that is the address of (pointer to)
a parameter table for the request. They then insert this table into the
appropriate chain. (Figure 5 -.4 illustrates an I/O re_suest parameter
table.) Queue elements are removed (unlinked) aftti- being processed
by the appropriate request handler. Note that the I/O request chain
uses variant record types; the record type is determined by the TYPE
field in word 0. (see Section 5.3.4 for a discussion of tables and'y
records.)

In the tactics area (diagram A334) pointers are used to chain
display data. Also, data is sorted by sorting a list of pointers to the
data rather than sorting the actual data.

5.2.7.2 Accessing Memory by. Address

The accessing (either reading'or setting) of a memory location
given its address is one function required in the testing areas, i.e.,
Math Model Test (Box 2 of diagram A2) and Remote Decimal Readout
(Box 3 of diagram A2), and in the programs associated with the instruc-
tor display/setting of datapool values (Box.4 of diagram A35). For
example, the Remote Decimal Readout program provides access to core
locations based on octal address. Similarly, the Math Model Test pro-
gram provides a symbolic debugging capability, i.e. , setting of data-
pool variables or printout of their values.

In a system written using an HOL, some such debugging
system would still be useful. It might be available as a general tool
provided with the HOL, i.e. , a general-purpose symbolic debugger
based on the global data base facility, or it might be implemented
by the user. In either case, it should be possible to program the
debugger in the HOL. Implementation of a debugger requires the
same use of addresses as required by the display programs.
Specifically, a symbolic datapool.name specified by the programmer
is looked up in the datapool and its address is obtained. The address
must then be used to access the value of the symbiol in order to
display or alter it.

This function is probablynot required in general-purpose HOLs,
and it can lead to security problems. However, it is required in
order to implement these simulator support programs. Some. HOLs
support it, but not very directly. For example, a PL/I pointer

40

23

,6" (2j \ e II 1 .4 -nil0 .111----7,
0 Q5 Beigk,A 0.114ESS40.-----11.

Wo . ouN
0 11---.-- 95 W0,0 0 JE'r /DATA AtELD

4 Fil pize-it.---,..
03-i.

_SQB

(47E-NP6-,p urpet Amers..s
eym-#Dez.- 04.D ccastr> o

C
P

CPU
PT

TYPE

CHAIN
BUFFER

COMPLETION FLAG
PENDING FLAG
REQUESTING CPU (1,2,3)
PRIORITY LO a

HI a 1 (RESERVED FOR DEMO /RECORD /REPLAY)
TRANSFER TYPE (INCLUDES DEVICE CODE)
ERROR FLAG

inkPOINTER TO NEXT PRAM f'etd,Fifled in by .1 /a

ADDRESS MEMORY ADDRESS OF BUFFER TO/FROM WHICH DATA WILL BE
TRANSFERRED

WORD/BYTE
COUNT - MAXIMUM NUMBER OF WORDS/BYTES TO TRANSFER

AYDIN ONLY

DATA FIELD a ADDRESS OR REGISTER ASSOCIATED WITH TYPE FOR AYDIN
COMMAND

5

DISC ONLY

ALL

err
DISC
trAZ

re?urst handler

WORD OFFSET OFFSET INTO FILE (MUST BE SECTOR BOUNDARY FOR WRITES.)
OFFSETS INTO SUBFILES ARE NOT ALLOWED.

SUBFILE I NUMBER OF SUBFILE TO READ FROM. INDEXED FILE.
AFN ASSIGNED FILE NUMBER

BUFFER
ADDRESS

WORD
COUNT:

EXTENDED INDEXED READ ONLY

= MEMORY ADDRESS OF BUFFER TO WHICH DATA WILL BE TRANSFERRED
ON THE EXTENDED INDEXED READ

'MAXIMUM NUMBER OF WORDS TO TRANSFER ON THE EXTENDED
INDEAED READ

Figure 5-4. I/O Parameter List Structure

41

variable could be overlaid with an integer containing the correct
address. Alternatively, in PL/I and in some JOVIAL implementa-
tions, an array could be overlaid to location zero, and accessed
using the address as a subscript. Neither of these methods is
particularly desirable, however. Some means of providing symbolic
debugging, etc. (perhaps using another technique) should be available
in a simulation HOL.

5. 2. 8 Label Data Type

In the simulators studied, only one instance was observed
which might best be implemented with a label data type, specifically
with an array of labels, though other alternatives are possible. This
is task dispatching using the foreground task table (diagram A312),
which would most likely not use the same table representation in an
HOL. The current task table entries are of the form:

program ID .4 used in reporting errors

cockpit/frame mask 4described in Section 3.1

start address

worst case time

4address to which to
transfer control

4----longest time used by this
program-tested and
updated if necessary
after each execution of
the program

In an HOL implementation, program start addresses stored in a
table would not be convenient for executing the programs in sequence.
On the other hand, a sequence of calls cantot be used because of all
the checking that must be repeated, e. g. :

IF PROGRAM' IN THIS COCKPIT AND FRAME THEN
BEGIN
CALL PROGRAM'
IF PROGRAM1 TIME >PROGRAM' WORST-CASE-

TIME THEN PROGRAM1 WORST CASE
TIME = PROGRAM' TIME

END

IF PROGRAM2...
etc.

4 25

Another example is the "conversion control list, " a list of
values to.be converted to Aydin form in the Instructor System (Box 4
of diagram A35). Included in the table is a word specifying the
number of entries. This word is actually used ',y the conversion
subroutine to determine table size. An HOL implementation could
use this same approach', in.Which length is actually included in the
table and explicitly e?ctracted by the routine using it. Alternatively,
it could provide varying length tables', which might be implemented
the same way, but invisibly to the user.

5. 5. 4,1. 4 Variant Record Types

One.possible use of variant record types was discussed in
Section 5.2.4, in connection Withthe Math Model Test trace formatting
(Box 2 of diagram A2). Other uses occur in the files containing sur-
face radio station data (Box 4 of diagram A332) and radar emitter data
(Box 1 of diagram 'A334). These files contain different record types
for each radio type or emitter type.

5. 3.4. 1. 5 Non-Distinct Component Names

There are many instances in the programs studied where
several tables have the same ornization and kinds of components.
Some convenient notation for this would be useful, e.g. , from the
214A visual system visibility effects prograni (Box 4 of diagram
A3354):

TABLE UICDATA 7; "old instructor inputs"
BEGIN

ITEM CCLG ; "cloud ceiling"
ITEM CCTH ; "cloud thickness"
ITEM CDDN ; "day /dusk /night indicator"
ITEM CM1N ; "minimum lighting"
ITEM CRND ; :'random lighting"
ITEM CSTG ; "stagefield lighting"
ITEM CVIS ; "visibility"
END

TABLE VICDATA LIKE UICDATA; new instructor inputs"

Of course, some means of distinguishing between components of the two
tables is then required. There are instances where one such table is
assigned to a corresponding. one. A convenient notation for this, e. g. ,

ENTRY(UICDATA, 01 = ENTRY(VICDATA, 0)

or simply
UICDATA = VICDATA

would be useful.
60

word 0

word 1

word 2

word 3

data ready bits

p
,r-

R
logical complement of 1

15 msb of x feedback
D

R same for y feedback

PR same for z feedback

t / Zf../ Ar

note: signals are
inverted

logical complement of z lsb
same for y

same 'fo'r x

It would be difficult for a high-level language to support direct
extraction of the 16-bit feedback values. (However, perhaps the data
-organization could be changed as discussed in. Section 5.2.5.)

Another use of programmer-specified tables is described in
connection with the Math Model Test (Box 2 of diagram A2) trace
feature (Section 5.2.4).

5.3.4.1.2 Serial vs. Parallel Organization

In tables constructed to match hardware inputs or outputs, as
discussed above, the choice of serial or parallel organization should
probably be left to the programmer. For example, the UPT system's
AST Linkage requires parallel organization. Most tables which would
be constructed from what are currently separate data items could
equally well be represented logically by either organtiation and both
are used in current implementations. The major reason to select one
method'over the other is to facilitate data accessing as it is done in the
particular table. Since simulators have significant efficiency
requirements, this option should probably be made available to
programmers.

5.3.4.1.3 Variable Length Tables

Little use of tables with dynamically varying length was
observed in the programs studied. An example of such tables, however,
occurs with the foreground task table (Box 3 of diagram. A312)
illustrated in Section 5.2.8. This table is preceded in core by its
number of entries. This number is reset to zero if the operator, at
initialization, specified a "maintenance and test" load (Box 1 of diagram
A2). 'It could potentially be changed dynamically to any value and-
then be used by the foreground dispatcher. However, it should not
be because the task table is preset and not changed during execution.
There is no reason this special case couldn't simply be implemented
with a flag indicating "maintenance and test."

59

WORD

0

4

5

7

FILE NAME ,- 6 CHARACTERS

INITIAL SECTOR NUMBER

II
If
r
R
0
T.

20
D

r
R
0
T.

11

FINAL SECTOR NUMBER

23 16

FILE TYPE
15

MEMORY REQUIREMENTS

PACK NO. ABSOLUTE PROGRAM ORIGIN

FIRST 3 CHARACTERS OF PASSWORD

FOURTH

CHARACTER
OF PASSWORD

USER° NUMBER

14 Entries per MDD Sector

Figure 5-7. Master Disk Directory Entry

58

If desired, an enumeration type describing the conditions
represented by the flags (GPUPRP, GPUBST, etc.1
could be used to index the arrays. A table could be
used to combine the two arrays, e.g.,

TABLE DCLOAD(1:N)
BEGIN
ITEM FLAG Boolean
ITEM LOAD Integer
END

The second method would probably result in more efficient generated
code, and its intent is clearer.

5.3.4 Structure Data Type

As mentioned previously, much simulator data could logically
be organized into structures (or tables) which group related items
together. Several examples have already been given, for example
in Sections 2.3.2 and 2.5. Most structures would replace many
data items which now all have individual names, with indexable
structures, thus using fewer names. The following sections discuss
structure organizations used, structure operations required, and
examples of major simulator structures.

5.3.4.1 Structure Organization

5.3.4.1.1 Programmer-Specified Allocation.'

Allocation of components within a struc:ture may be
accomplished automatically by a compiler or may be specified
explicitly by the prcgrammer. Programmer specified packing seems
necessary in cases where th-2 table describes data for an I/O interface.
Examples of this are the matter disk directory, illustrated in Figure
5-7,- the construction of I/O command words by the I/O routines, and
the interpretation of device status words. (Perhaps a status word
could be represerted as a set (see Section' 5. 3. 1) rather than as a
programmer-specified table, since in general each bit represents a
discrete condition.) One example of .:./0 ,.ata which might be,
difficult to handle in this way, however, occurs in the 214A visual
system gantry feedback processing (Box I Df diagram A3352), which
has as an input the table:

30$: MOV VXPFB1(P.4) VXPFBT(R5) 'move'
ADD #2, R5 "update indices"
ADD #4, R4

SOB R3, 30$ "subtract one and branch"

A better implementation is simply:

MOV VXPFB1, VXPFBT
MOV VYPFB1, VYPFBT
MOV VZPFB1 , VZPFBT

An HOL implementation of operations on vectors shouP b2 sophisticated
enough to use loops when more efficient, in the first exampla, and
repeated code when this is preferable, as in the second.

Another possibility of,matrix or array use occurs in the
computation of DC bus load in the ElectricalSystem (Box 2 of
diagram A33132). Here the bus load is initialized to 15 and then
various device flags are tested; appropriate values are added to the
bus load for each device which is on, i. e.

47.

LLDBUS = 15
IF (GPUPRP) LLDBUS = LLDBUS + 3
IF (GPUBST) LLDBUS = LLDBUS + 17

There are quite a number of tests, leading oneNto look for a simpler
representation. Possibilities are:

a. The flags could be considered a 1 x n matrix of l's
and O's, and the loads an n x 1 atrix of values.
Matrix multiplication will then gib

4-
the sum of

selected loads, e.g. ,

LLDBUS = 15 + [FLAGS] [LOADS]

b. If the flags are an array of n Booleans, and the loads
an array of n values, a loop -can be used, e.g.,

LLDBUS = 15;
FOR I = 1 TO N;

BEGIN
IF FLAG(I) THEN LLDBUS = LLDBUS + LOAD(I);
END

56.

A simulation HOL should provide some support for vector
and matrix operations. One program, the 214A Visual Position
and Velocity program (Box 2 diagram A3351), performs matrix
and vector operations almost exclusively. It could be rewritten in
about 20 lines in a language supporting these operations (instead of
its curren, 409 lines of assembly language). Such operations would
have to allow different scalings of the operands as well as operations
in which one operand is-single -word and the other is double-word
(oper .-ids are of different precisions). Operations used are:

ad-lition and subtraction of vectors
multiplication of a vector by a scalar
multiplication of a vector by a matrix
cross product of vectors
dot product of vectors

In one example from the visual programs, a vector is
multiplied by a rotation matrix of the form:

COS -SIN 01
-SIN 1". 0

L'
0 -1]

The code used takes advantage of the 0's and-1 in the matrix and does
not perform the full multiplication. In a high level language, the
programmer could obtain this result by writing the multiplication
out explicitly on an element-by-element basis. Possibly, though,
the multiplication provided might include checks for zero elements.

Efficient compilation of matrix operations is important. Some
possible difficulties which might be encountered were observed in the
way the 214A visual programs are currently implemented. For
example, the programs frequently fail to use loops when performing
the same operation c the three elements of a vector. This can result
in a considerable increase in program size with little saving in speed.
In one instance, a 21 -word operation is repeated three times, .rather
than using a loop. If a loop setup requires' 5 words, a loop imple-
mentation would require 26 words rather than the 63 used by the actual
iinplementation. On the other hand, there is one instance where a loop
is used to accomplish the equivalent of three MOV instructions. The
code used is:

3, R3

CLR R4

CLR R5

counter"
"two different offsets required"

r"

Files created offline and used online during simulation
(include:

radio station file (Box 4 of diagram A332)
initial condition file (Box 2 of diagram A35)
malfunction file (Box 3 of diagram A35)
CRT screen image file (Box 4 of diagram A351
map plate file (Box 5 of diagram 235)

Files created offline and used online during simulator
testing only include:

datapool, or symbol dictionary: used during Math Model
Test (Box 2 of diagram A2) in support of symbolic debugging;

maintenance and test input file: used in executive I/O test
(Box 1 of diagram A2); this file contains names and
displacements within blocks for the maintenance band test
load analog and digital input variables;

hardware cross-reference file: lists the names of the
symbols which are input and/or c-,,tput variables used by
AST Master Controller to communicate with simulator 7
hardware (see Box 4 of diagram A3); this file is used for
error diagnostic printout during AST test runs;

Files created offline and used offline include:

datapool: used offline to obtain symbol definitions during
compilation/assembly (Boxes 1, 3 of diagram Al)

system cross-reference file: maintained throughout system
development (diagram Al)

various data files (airfield data, etc.) used by the map
plate compiler (Box 5 of diagram A35)

5. 3. 3 Array Data Type

Throughout the simulators studied, readability could be
much enhanced by grouping various related items into data aggregates.

In general, most of these groupings. Would correspond to tables or
structures, as described in Section 5.3.4. One exception is the vector
and matrix data, which is heavily used in the 'Aerodynamics (diagram
A3312), Tactics (diagram A334), and Visual (diagram A335) areas.
These vectors represent flight data (e. g. , the accelerations and
velocities computed in the equations of motion program -- Box 5
of diagram A3312), and contain three elements corresponding to X,
Y, and Z coordinates.

.r;

54

It.

.INDEX a126-
apAR- 3744 r C.

tev.r3.z-o,v .DA7
308- crz-f" -7 rAer hoc.

3.r26-
C ArECKJ UM

DATE

.....

J

a5 (AL WAYS

DATA /hes-Ay

Jut-A-2u-
#1

ZA,De

3'S-FILE
-z

,INDEX

sue-A-x.0 c
.03--N1

.r.dvAr ces

.2Go - ie.r.4.0

ON
INDEX

308 - r.I.I.L.
A4711

HEADER: lst WD ALWAYS
2nd WD size of allowable sub-file entries

3rd WD Location of first available data spare

4th WD Latest date of file revision

INDEX: Sub-File Indicics are order dependent (i.e., 1st Index
Sub-File 01,

0
2nd Index 1. Sub-File 02, etc.)

1st WD Start location of sub-file data (0 NO ENTRY)

Ind WD Sub-file size
3rd WD Sub-file checksum
4th WD Latest date of sub-file revision

DATA: Sub -file Data areas are non-order dependent thus allowing
sub-file additions in any order without having to restructure
file.

Figure 5-6. Indexed File Structure

53

131.21.1.017.0111111111fifil1-111125
10 I .e 3 4 S' * 4e- *

i-Arme-ecifriAtireR 6o-pzcle6-aoesr xecrsarz £aiAr
N #6.fr CPO
P I4 Pie,YremiS CPU

re4 CommaateirrmiS Atc..s.raucb
,ecac-EV7-- LEYELs

ifrivs-7- .8E owlssza(i62) (Al_JuAys= 0)
WALT CPU

2 4 Emb-42-ceeZ 40..rse zitnr,eeehorf
3 Ar3e X.&EZ deraeo-57" AlTA AIAATIPtIrrotrZ
4 rrY ker Ijorpeir,pizrzAlret
S ,ee-LEASE fr10.4/2"7-4e WA.I. T C TATE"

eon wAzr RELEA3E3
* ,}4ecisca cove -Zs ergyA4z.b)

1 cA,2 egzs, (C1)01,a rovvAIL.n)
cie04S(WCY (eACII IA/ a 1.1-b3
CA Cid ohity (C Pa2, 3 zWyAZ

Figure 5-5. Intercomputer Communications Parameter Word

52

In the UPT training system, a demo; request mask is used
in conjunction with the frame masks. (See demo/record/playback,
Box 1 of diagram A35.) The demo request mask contains 15 bits,
one of which is set to indicate the demo requested by.the instructor.
A corresponding 15-bit value indicates which of the demos are
available in the file. A set data type could also be used for this.

Bit strings are also used as parameters to the background
dispatcher and to the intercomputer communications routine. The
parameter to each routine is a string of bits in which each bit position

.represents one of the functions requested. The bit is set to 1 for each
requested function. The sign bit is always 0, and the bits immediately
to its left represent the functions in order' of decreasing priority (see
Figure 5-5). The routine must determine the leftmost 1 bit which is
set. This is implemented by a floating point normalize instruction,
which shifts the rightmost 23 bits left until bit positions 0 and 1 differ
(i.e. , bit 22 = 1) and returns the shift count. The parameter word
could certainly be implemented as a set in an HOL, and priority of
functions could be represented if this set is a power set of an ordered
enumeration type. It isn't clear, though, how the operation "find
the highest element" could be represented so that it could be expeCted
to compile to a floating point normalize, or even a "find the leftmost
1 bit" instruction.

Another uae ef bit string data occurs in malfunction simulation
(Box.3 of diagram A35). Expressions from the malfunction d,a'ta set
are evaluated, and when one is .found to be true, the indicated mal-
function is turned on by stetting one of 96 bits in a packed 4-word
array of bits. These bits might be specified as a set data type.

5. 3. 2 File Data Type

This section describes the disk files used in the simulators
studied. Other I/O issues, as well as the actual disk I/0,processing,
are discussed in Section 5.6.

The simulator monitor proyides disk I/O capability, supporting
both direct and indexed files. Figure 5-6 illustrates the indexed file
structure. The functions provided are direct read and write, indexed
read (writes must be made by treating the file as a direct access file),
and extended index read (in which two contiguous subfiles of an
indexed file may be read into different parts of memory in one
request).

Disk files created and used during simulation include:

demo recording file (73ox 1 of diagram A35)
track history file (Box 6 of diagram A.35)

51

The cockpit mask includes a 1 bit for each cockpit to which the task
applies. Some programs must be called for each cockpit, while
others are non-cockpit dependent and need be called only once per
frame. The visual programs are called for only two of the cockpits.
The frame mask here indicates during which frames the task is to be
executed. The simulation programs will execute at 20, 10, 5, 2, or
1 frame/cycle. Some training programs do not require equal spacing
and use rates other than these. The sequencing through the fore-
ground task table for a given frame is essentially:

FOR COCKPIT = 1-TO 4 "SEQUENCE THROUGH COCKPITS"
BEGIN
IF COCKPIT ENABLED

BEGIN

FOR TASK r: 1 TO N "SEQUENCE THROUGH TASKS"
BEGIN
IF TASK THIS COCKPIT AND FRAME "MA,SK"

CALL TASK
END

END

END

This is actually somewhat mon: complicated, because cockpits 3 and
4 are 1/2 cycle out of phase with cockpits 1 and 2, so that their frame
10 is at the same time as cockpits' 1 and 2 frame 0. This is required
to prevent buffer use coni14..ts during record/playback (Box 1 of
diagram A35). Thus, in above loop, the frame mask (the one
indicating which frame is :.:urrently active) is shifted 10 bit positions
after cockpit 2 processing.

`t,

With all this shifting going on and the need to check for a shift
out of bit 19 each time, this code doesn't seem so efficient that an HOL
need replicate it. Besides it is dependent on the fact. that

word size? # of cockpits + # of frames/cycle

An HOL implementation could use a set data type to represent the cock-
pit and frame indicators in each task table entry and to represent the
set of enabled cockpits. The active cockpit and frame would be loop
indices, which would be tested for inclusion in the sets of cockpit and
frame indicators for each task.

50

The first and third cases here could certainly be handled other ways,
either using flags or a different grouping of functions. The second
case is a little more complicated because a subroutine is used. (Actually
an interrupt handler is used, but interrupts here cause execution of
one of a table of subroutine calls.) The subroutine must be able to
return either to the routine which invoked it or to the routine which
invoked that routine (the dispatcher). Other interrupt handlers do not
return at all to the routine which was interrupted (e. g. , for an
interrupt caused by the key used to stop TTY output). This is related
to the problem of describing interrupt handling in an HOL (see
Section 5.7).

5.3 Aggregate Data Types

5.3.1 Set Data Type

As mentioned in Section 5.2.4, some uses of bit string data
in the simulators studied correspond more logically to an HOL set
type. An example is the use of bit strings in the monitor for frame
and cockpit masks (see diagram A312). The frame mask is a string
of 20 bits, one of which is on to indicate which of the 20 frames is
active. The cockpit mask is a string of four bits, one representing
each cockpit. A bit in the cockpit mask is on if the cockpit is in use
during the particular simulation run. The cockpit mask is constructed
at initialization time, .based on operator input in response to the
question 'COCKPIT ENABLES? ', and remains constant throughout the
run. The frame mask is updated each frame by shifting. When the
1 bit is shifted out of bit 19, it is put in bit 0. These masks are used
in determining when to execute a task.from the foreground task table.
Each task entry includes a 24-bit (1-word) cockpit/frame mask of
the form:

2322 21 20 19 0

4 3 2 1 19 18

cockpit frame

49

s. 2. 9. 3. 3 Internal Subroutine Calling
...e.There is conside able variation in the methods used to invoke

internal subroutines. techniques appear to be selected based on
individual programmer preference. Most such routines are called
directly. Various parameter passing methods are used. Sometimes
parameters are passed in registers and sometimes in local storage.
Sometimes the.value is passed and sometimes its address (even in
cases when it is not a table or array). Occasionally the address
where the output is to be stored is passed to the routine, while in
other cases the routine returns the output in a register.

Most internal subroutines do not save and restore registers.
A few of the subroutines within the monitor (background dispatcher,
I/O request handler) must be reentrant and these do save and restore
registers, using a local stack.

Some internal routines have multiple entry points. For example,
a display program (Box 4 of A35) has two entry points (indicating
start/stop refresh). This could be implemented differently, e.g.,
with a flag as a parameter. An HOL multiple entry point capability
seems unnecessary and undesirable.

The flow of control between monitor routines is handled in
a variety of ways. Some routines have multiple entry points while
others use instruction modification to alter control flow. For example,
from the UPT monitor:

One group of initialization routines (Box 1 of diagram
A31), are to be called only on the initial start and not
on restarts, when other initialization is repeated. The
calling instructions are changed to no-ops after the
routines complete.

A few interrupt handlers must (conditionally, not
always) return to.the foreground dispatcher rather
than to the application. program which was interrupted.
They do this by replacing the return address, saved
in the firSt location of the interrupt handler at the
call, by the desired return address in the dispatcher.

The Aydin interrupt handler (as one example) is entered
at the top as a result of an interrupt and at an internal
entry point for the first Aydin request. When this
internal entry point is used, the calling routine inserts
the desired return address in the first location of the
interrupt handler, and then makes a direct transfer to
the entry point.

48

5,2.9.3.2 System Subroutine Calling

In the UPT system, a single convention is used for all system
subroutine-calls, as' illustrated in the example in the previous section.
Subroutines are called indirectly through pointers, perhaps to facilitate
relocation. (This is not true in the 214A simulator.)

Almos,t all parameter passing is in registers. In cases where
a parameter is an array or table (e.g., LFI routines, I/O request
handler) the parameter address is passed (call-by-reference in an
HOL). In the LFI routines, there is a need for array parameters of
varying sizes. In this implementation, the length is in a word preced-
ing the array. A table parameter of varying length is also used by
the display conversion routine (Box 4 of diagram A35). This table
is a Conversion Control List - a list of values to be converted tc
Aydin form.

None of the UPT system subroutines save and restore
registers. The UPT machine does not have many registers and most
are taken up with parameters. The routines do leave the dedicated
cockpit index registers (see Section 5. 1. 1) intact.

In the 2-14A system, calling of system subroutines is less
consistent. The stack convention of the PDP11 is rarely used.
Generally, input parameters and returned values are passed in,
registers, e.g. , from the 214A Visual System (diagram A335):

MOV TEMP2, RO
MOV VNRPTC, RI
NIOV VNRALT, R2

JSR PC, ZSLFI2
MOV R2, VBDELN

inputs

call (note call is direct, unlike UPT)
output

One executive subroutine is called with parameters passed in the
temporary storage area (described in Section 5. 1. 2) and with one
parameter a global variable. For example, also from the 214:
Visual System:

MOV VALTTB set datapool item to table

MOV \71--C1T, TEMP value table pointer (focus)
MOV #VTL1T,TEMPj-2 other value table pointer (tilt)

MOV VNRMPI, R3 breakpoint table pointer in register)

JSR Z$VNOR normalize for LFI
MOV RO, VNRPTC store result

Apparently the routine Z$VNOR looks for parameters in the appropriate
temporary and datapool locations.

47 CL)

The use of inline functions indicates a choice of speed over
space efficiency. Some fairly large subroutines are expanded a
number of times. For example, in the UPT aerodynamics system
(diag-ram A3312):

LIMFL floating point limit 8 instructions expanded
24 times

LIM1I limit to +1.0 9 7-.4.tructions - expanded
9 times

L1M2N - limit to 4 2. 0 - 11 instructions - expanded
8 times

LFIL - LFI linear search - 17 instructions - expanded
8 times

An HOL should allow the programmer a similar control overtime-
,. space tradeoffs. Ideally, the specification of in:lne expansion

should be part of the subroutine definition; calls for both types should
be written in the same way. This facilitates changing the method
used (i. e. , only one definition, not numerous calls, must be
changed) when tuning for the best time-space balance.

In some cases within individual simulation programs studied,
internal subroutines are used for operations which could be done
much more efficiently inline, or with macros. Perhaps this reflects
a desire to save space, but in at least one example, from the 214A
Visual System (diagram A335), the extra code required to set up
the subroutine call is such that this does not happen either. The
use of the subroutine saves only one word of storage, and 34 more
words are executed than would be required in an inline implementation.

5. 2.9. 3 Subroutine Calling Conventions

5. 2. 9. 3. 1 Main Simulation Program Calling

As discussed in Section 5.2.8, these programs are called
from the foreground dispatcher (diagram A312) with an indirect
transfer to the task table address. No parameters are passed;
a.\communication is through the datapool.

E_'

46

In addition to these routines, which are regarded as part of the
monitor, the UPT system employs two general routines which access
the surface radio facility data files (see Box 4 of diagram A332).
These area:

DDP (Digital Data Preselect) These subroutines are
given a radio type and frequency from the air-
craft dial. They search the preselect file to
determine whether a station has been tuned. If
one has, the ,data for, the station is read into
core from the real time radio data file. There
are 4 DDli'subroutines, which correspond to
TACAN, VOR,.DME, and ILS radio types.

RECEIVER This subroutine uses the data that has been
read into core and the aircraft data to compute
ranges and bearings from the aircraft to the
radio facility.

Various system macros are also provided (see Section 5.2.9. 2).
Functions provided by these include an LFI linear argument search,
absolute value, and various limit functions (see Section 5. 2. 2. 2. 3).

5.2. 9. 2 In line Subroutines

Both general purpose functions and functions specific to the
various simulation programs are frequently implemented by macros,

inline subroutines, rather than by actual subroutines. Some
conditional assembly is employed'in the macros. For example, in
one macro, omission of the first parameter indicates that the
parameter is already in the correct accumulator and need not be
loaded.

Actually, all UPT system subroutines are accessed through-
macros. In the case of these subroutines, the macros set up the
parameters, call the executive routine, and store results. For
example, the routine LFI2 (double variable LFI) is called by a macro
of the form:

LFI2 F200T, F200F,R, FMAOJI, R, FCLO1I, R

which expands to:

THE FCLO1I, R
TIM F ivLAO1I , R
TOJ F200T
BSL ZLFI2
TXM F200F, R

input parameters

call
store

45

result

5. 2. 9 Procedure Data Type

There are three main classes of procedures in the simulators
studied. These are:

a. The main simulation programs invoked through the
foreground task table (as illustrated in diagram
A312). 'These programs do not call one another; each
returns to the foreground dispatcher on completion.

b. System subroutines, which are invoked by the various
simulation programs to perform general-purpose
service functions.

c. Subroutines internal to the main simulator programs.

Various subroutine calling and parameter passing techniques are
used, as discussed in Section 5.2.9.3. Particularly in the subroutines
internal to the main programs, there is a lack of consistency in
methods used.

5. 2. 9. 1 System Subroutines

The system subroutines provided in the UPT system are
characteristic of those used in all simulators studied. These are:

LFI argument search
single variable LFI
two variable LFI
three variable LFI
sine function
cosine function (calls sine routine)
arctangent function
random number generator
I/O request handler

The F- 14A and 214A sirnul.,,tors, unlike the UPT, include a single routine
which computes both sine and cosine, as discussed in Section 5.2.2. Z. 1.

Alternatives would be an array of subroutines or an array of labels,
e. g. , :

FOR I = 1 TO N
BEGIN
IF PROGRAM(I) IN THIS COCKPIT AND FRAME THEN

BEGIN
CALL PROGRAM(I) or GOTO LABEL(I)
IF PROGRAM TIME(I)> PROGRAM WORST CASE_

TIME(I) THEN PROGRAMWORSTCASE_
TIME(I) = PROGRAM TIME(I)

END

END

or a CASE statement (see Section 5.4), e.g.:

FOR I = 1 TO N
BEGI.1\14-;.

IF PROGRAM(I) IN THIS COCKPIT AND FRAME THEN
BEGIN

DO CASE I
CALL PROGRAMI
CALL PROGRAM2

CALL PROGRAMN
END

IF PROGRAM TIME(I) etc.
END

END

Something like a JOVIAL SWITCH or FORTRAN computed GOTO could
also be used. In any of these methods, the three task table elements
other than program address could still be in a table organization.

U

43

5.3.4.2 Operations on Structures

5.3.4.2.1 Table Assignment

As mentioned above, assignment of one table to another of
corresponding Layout is sometimes required. This occurs, for
example, in assignment of current values of variables to pi evious
pass values, as in the example above from the visibility effects
program (Box 4 of diagram A3354). In another example, from the
Navigation Environment area (Box 2 of i'agram A332), the sequence:

NUE = FUE
NVE = FVE
NSPSHD = FSPSI
NCPSHD = FCPSI
NSINNP = FSTHET
NCOSNP = FCTHET
NSINNR = FSPLI
NCOSNR = FCPHI
NGALT = FHGED
NTAS = FVPKTS
NROT =FRA
NSLEW = SNLSLW
NRESET =

represents assignment of a set of "nav freeze" values to a correspond-
ing set of navigation variables, and could be written as one table
assignment (with greater clarity and less chance of error'); Perform-
ing operations on entire corresponding tables in one statement, e.g.,

TABLE1 = TABLE2 + TABLE3

indicating addition of all components, would also be useful.

5. 3. 4,2.2 Substructure Selection

Many simulator operations which might use table data for
clarity would benefit from the ability to performoperations on
substructures. For example, in the 214A visual system gantry feed-
back prog am (Box of diagram A3352) much or the data could be
organized into structures with 3 entries indexable by X, Y, and Z.

61

For example,

TABLE VGNTRY (X:Z) 5; "gantry data"
BEGIN
ITEM VVGMF single fixed point; "velocity"
ITEM VVGMI double fixed point; "position"
ITEM VVPFB double fixed point; "position feedback"
END

could describe much more clearly a set of data which currently uses
19 c4ifferent identifiers in the datapool (two names are used for the
two haves of the double fixed point values). With such data structures,
it would be nezessary that the X, Y, and Z values of a given compon-
ent could be treated as a vector in whatever vector operations are
provided, e.g. , in the above example, the assignment

VVPFB = VVGMI ='- 2.5

should be possible.

In another example, from Electrical SyStums (diagram A33132),
co- reparable operations are frequently performed with 'left' and 'right'
values. Grouping th-3 value.i into a table or array with two entries
inde3. d by "LEFT" and "RIGHT' could allow a single operation to be
used. For exai. pie, the code used to se, left and right generator
relay indicators is:

LRYGNL = ((EARPML. GT. 40.) . OR. LRYGNL . AND.
(EARPML . GT. 38.)) . AND, LSGLON . AND.. . NOT.

(EBRYGL .0R. UMLLGF)
LR GNR = ((EARPMR. GT. 40.) .OR. LRYGNR.AND.

(7ARPMR.GT. 38.)) . AND. LSGRON . AND. .NOT.
(EBRYGR .0R. UMLRGF)

CoMoining these in a single operation, e.g. ,

ZGN = ((EARPM. GT. 40. .0R. LRYUN . AND.
(EARPM . GT. 38)) . AND. LSGON AND . NOT.

(EBRYG .0R. UMLGF)

could improve understandability and decrease the possibility of
typographical error.

62

Another instance is the assignment in the Communications
area (Box 3 of diagram A332) documented by:

NO11CL = MPX + NO1 lIS + NO21IS) ISPRI
2 = 2 2

3 = 3 3

4 = 4 4

This operation, which uses data illtistrated in Figure 5-3, uses four
assignments, one for each cockpit. If the data is in a doubly-indexed
structure (by operator and cockpit) as proposed in Section 5.2.5, this
assignment might be written:

NOCL(1,) .= (MPX + NOIS(1,*) + NOIS(2,*)) ISPRI

5.3.4.3 LFI Structures

A type of data structure required throughout a simulator is
that used by Linear Function Interpolation (see Section 5. 2. 2. 2. 2).
The data tables used to represent LFIs consist of tables of breg.k-
points and tables of values which correspond to the breakpoints. The
programs studied employ both single and double variable LFIs.
Three-variable routines are mentioned but not used. The breakpoint
table(s) and the value table are both defined in the program as lists
of constants. However, they appear in separate parts of the program
(separately compiled modules) and are used separately.

Typically., several different LFI functions might have a
variable in common, and the.se variables might have breakpoint lists
in common. For example, the UPT aerodynamics LFIs ee diagram
A3312):

F100 (a, Ml
F805 (a, 6 Fw)
F807 (a)

all have a as an independent variable. In F805 and F807 the break-
point list for a is the same, while F100 has a different a breakpoint
list.

When the value of an LFI variable is first determined
(e. g., a above), an "LFI.search'' routine -is called to search for- its
position in any associated breakpoint lists. The resulting value,
the interpolant, is used in later processing as a parameter to the
"LFI value" routine. Thus one routine uses the breakpoint list and
one uses the value list. For example, in the UPT aerodynamics sys-
tem, most breakpoint lookup occurs in the Equations of Motion module
(Box 5 of diagram A3312), while value computation using these
breakpoints occurs throughout the system.

A double variable LFI is allocated as tWo breakpoint lists,
X and:Y, and one value list, F(X, Y). The value list is allocated as
a FORTRAN two-dimensional array would be, with X increasing
faster. In the UPT simulator, the breakpoints are two-word floating
point values but the values are one-word fixed point. The value
lookup subroutine, however, converts the fixed point value to floating
point before returning it. The reason for this is economy of space,
and one-word floating point is not available on the UPT computer.
The precision allowed by the single word is adequate for the values.
In the 214A simulator, which uses only fixed point, the value tables
are all sitigle precision; the breakpoint tables are sometimes single
and sometimes double precision. The altitude'breakpoints., for example,
are double precision.

r ,

A more readable presentation of LFIs would dictate that the
breakpoint and value lists be specified together (and thus presumaEPy
be allocated together). There appears to be no logical reason why
this could not be done as long as the definition of the structure was
made available to both routines. A problem in supporting LFI
representation in-an HOL is that each LFI does not have a unique.
breakpoint list, but rather several LFIs share lists. (There are,
of course, unique value lists for each.) It would be wasteful to repeat
the breakpoint lists, and repeating the lookup process would.be
intolerably inefficient. Perhaps the best approach would be to define
the lists separately ina global data base and simply attempt a more
readable layout which makes associations clearer, eg., value lists
sharing a common breakpoint list could be grouped together under
the breakpoint list definition; this would not work for double variable
LFIs, however.

One simulation HOL study [Goldiez, 1976] gives statistics on
relative speed of assembly language and FORTRAN LFI routines. The
FORTRAN programs took almost three times as long. This is
clearly unacceptable. The author's 'comments suggest that the
FORTRAN code generated was very inefficient because it recomputed
array subscripts excessively.

;. 3.4.4 Modelboard Contour Map

The most complex data structure observed in the programs
studied is the 214A Visual System modelboard contour map (Box 1 of
diagram A 3 353). This table gives a maximum elevation indicator
(a 3-bit value) for every 4-inch square on the modelboard. The actual
elevation corresponding to the 3-bit value round in an 8-element
array, to which the 3-bit value is an index. Because many 4-inch
squares will have the same elevation value each does not have a
distinct 3-bit value associated with it. The squares are grouped
into larger blocks of 5 by 6 uares (20 x 24 inches). The modelboard
contains 468 such blocks. 0.. y those 20 x 24 blocks which are 'distinct

64

have an associated bit map. A 468-byte vector maps each block
into the associated bit map. The program allows up to 256 distinct
blocks. The bit map consists of 6 words, each containing 5 3-bit value
thereby covering the 30 4-inch squares in the block. The best data
structure arrangement for accessing this information would be -
omething like:

ARRAY BLKPTR (0:3 8,0:11) BYTE; "indices into BITMAP
for each block"

TABLE BITMAP (0255) 6;
BEGIN
ARRAY BITAR:X(0;4, 0:5) bit 3 packed;
END

;r:

The double indexing for X alid Y coordinates) is desirable to support
calculation of the correct table value - otherwise the program would
have to compute a single value from the X and Y values. The bit
map could be'represented without too much loss of clarity. as a
three- dimensional array having dimensions (0 :255, 0:4, 0 :5). It is
necessary that the bit values to packed. The particular size chosen
for the blocks, leading to the 5 x 6 grouping of bits, is clearly based
on the word size of the machine (i.e. , 16/3 = 5). Other'numbers
could certainlybe used, but the decision of what size of block will be
optimal must be based on some knowledge of the particular model-
board -- it is clearly not random.

5.3.5 Union Data Type (or Overlays)

In general, any necessary overlay capability required in
simulators can be logically provided through the use of structures
with variant record types, discussed in Section 5.3.4.1.4. There
are instances where overlays might be utilized to obtain a capability
not explicitly provided by the language, for example accessing
memory locations by address, as described in Section 5.2.7.2.
These cases should really be handled in a manner which makes the
inten' more understandable.

65

5.4 Control Structures

There are t-any.' instances in the simulators studied in which
program understandability could be greatly improved through the use
of modern HOL control structures. In some cases, the program
documentation,)reflects an awareness by the programmer that such
control structures arc needed, but frequently even the documentation
does not take advantage of the enhanced readability that would be
provided. The following subsections present examples of potential
uses of various control structures in the Firrulators studied.

5.4.1 Conditional Control Structures

5.4. r.-1 IF THEN ELSE Control Structure:

Simulation programs contaiA complex conditional expressions
controlling the assignment of values, to variables. Any simulation
language must provide a readable way of writing such assignments.
The examples in this section ililustrate the range of conditional
assignment control that must be supported by a suitable HOL.

The programs studied contain numerous examples of complex
conditional assignments to variables. These are frequently expressed
in the documentation by multiplying a logical variable or expression
by the various operands, e.g. , from Flight Controls (Box 1 of
diagram A331):

X = (15.08 * FPE WPLAY) + (15.08 * .F.ERICB WPLAY) 4.0,

Expressed in FORTRAN notation, 0- b }-..ecome:

X= 15.08 FPE - 4.0
IF ("WPLAY) X = 15.08 ;.0

A better representation, which rno,-e resembl.?.s the docu-
mentation, might l,e the ALGOL -]

= 15.08 (IF WPLAY ' <.PB ELSE FPE) 4. C.

This form might also compile more -.ficiently.

Another conditions.' expression example is (also fron,
Flight Controls):

(FELTRU .0R. FELTRD)) GO TO 04
TEMPO° = 2.25 * ATM
IF (FELTRU) TEMPO° = -TEMPO°
FTRIME = AT'vfiN1(AMAX1(FTRIME * TEMPO°, -8. 25.0)

1L)

where FELTRU and FELTRD /which are indicating "nose up or
down") may both be false, but cannot both i true. This might be
expressed using IFTHEN--ELSE, as

IF (FELTRU OR FELTRD)
BEGIN
IF FELTRD THEN TEMr.Th 0 = 2.25 QTM

ELSE TEM:-'90 = -2.25 QTM .

FTRIME = A.MIN1(AMA:'.....1(FTMME * TEM:EDO°, -8.0), 25. 0)
END

or, with a conditional expression, as

IF (FELTRU OR FELTRD FTRIME =
AMIN1(AMAX1(FTRI:.4E QTM * .FELTRD THEN
2.25 ELSE -2. 25), -8. ri 25,0)

The 214A Visual Systerr A3 ;::j has many expressions
similar to:

VR = .1744 UP - .1744

or, alternatively:

VR = , 1744 (UP - DOWN)

In these cases, UP and DOWN a 1' e 0j. r e bits in the test box input.
Both may be off or exactly opt, rr.a.:; be on.

Many of the coriditi,,na.i assignments are documented in
pseudo-FORTRAN, which lc ra to inconsistent and error-prone
statemerts. For example, the Communications area (Box 1
of diagram A332):.

`t-HAUL ((VHVCL /2) + .499)) IF LDOPP + (0.0) IF

. (LD.OPP.+.23.1').:NT + VTUNE)--

Here the test of wis,INT and VTUNE serves no purpos-e, but the
flc.wchart indicates that the is:

VHAUL = IF NOT LDOPP OR RAINT OR VTUNE) THEN 0. 0
VHVCL/2 4 .499

67

Some very complex conditional assignments occur in the
Navigation Radios area (diagram A3323). Some assignments are so
complex that both the documentation. and the pseudo-FORTRAN are
frequently incomprehensible and often clearly incorrect. An example
is the description of the setting of variable VGRE:

VGRE (NAVR-VGRI) IF [(VGPWR .0R. . NOT. ERCOT) . AND.
. NOT. FSTER]

VGRE = (-VGRI) IF [(VGPWR .OR. .NOT. ERCOT) . AND.
FSTER

VGRE = (85-VGRI) IF f (ERCOT.AND. (VGPWR .OR. (ERTI1)(17
260))) .0R. . NOT. VGPWR . AND. (ERTIM :5260)]

VGRE = (C AAc*1{.*C l'111-IDG) (VGPWR[(ERGOT' .AND. (VGPR .0R.

(ERTIM > 260))) .0R. .NOT. VGPWR . AND.
(ERTIM > 260)]

In this example, the conditions specified for the four different
assignments are not mutually exclusive. For example, the set of
conditions

VGPWR, ERCOT, FSTER, (ERTIM > 260)

satisfies the first, third, and fourth. Examination of the flowcharts
suggests that the intent is simply:

IF VGPWR OR NOT ER.COT
THEN IF FSTER THEN VGRE = -VGRI;

ELSE VGRE = NAVR - VGRI:
ELSE IF ERTIM < 260 THEN VGRE = 85 - VGRI;

ELSE VGRE = C AAC *K*C1,'HDG'

One problem that also occurs in the documentation of these
conditional assignments is that-the same logical expression appears
in numerous equations, instead of being tested once preceding them, i. e.:

A B IF COND C IF NOT COND
D = E IF COND F IF NOT COND
G , H IF COND I IF NOT COND

instead of:

IF COND THEN
BEGIN

A = B;
D = E;
G =H;
END

ELSE
BEGIN

A =C;
D= F;

= I;

END

If the programmers were actually using FORTRAN _rather than
assembly language, we assume they would not implement this the
way it is documented., It is not only less clear, but it is in all
likelihood much less efficient.

Another instance in which the lack of IFTHENELSE control
structures has a severe negative impact on readability'occurs in the
following sequence, used to set item LNBUS (from Electrical
Systems - diagram A33132):

IF (. NOT. LBUSDC) GO TO 24
IF (LPWEXT .OR. UQLBSE) GO TO 17
IF (LBAT . AND. LSWBAT) GO TO 19
LNBUS = 0.1
GO TO 25

19 IF (UMLBTY) GO TO 20
LNBUS = O. 9
GO TO 22

20 LNBUS = 0.8
22 IF (LRYGNL .OR. LRYGNR) LNBUS = LNBUS + 0. 1

GO TO 25
17 LNBUS = 1.0

GO TO 25

69

24 LNBUS = O. 0

25 IF (EBRYGL . AND. EBRYGR) LNBUS = 0.5 LNBT),

Evidence that this is error-prone may be found in the fact that the
logic does not match that in the flowchart for the operation; A more
readable representation is:

IF NOT LBUSDC THEN LNBUS = 0. 0;
ELSE IF LPWEXT OR UQLBSE THEN LNBUS = 1. 0;

ELSE IF NOT (LBAT AND LSwBAT) THEN LNBUS = 0. 1;
ELSE BEGIN

IF UMBLBTY THEN LNBTJS =0.8;
ELSE LNBUS = 0. 9

IF LRYGNL OR LRYGNR THEN LNBUS
= LNBUS +0. 1;

EN.L.;

IF EBRYGI:, AND EBRYGR THEN LNBUS = 0.5 * LNBUS;

Alternatively, a single assignment of a logical expression to LNBUS
could be used, c. g. , :

LNBUS = (IF EBRYGL AND EBRYGR THEN 0.5 ELSE 1. 0)*
(IF NOT LBUSDC THEN 0. 0

ELSE IF LPWEXT OR UQLBSE THEN 1.0
ELSE IF NOT (LBAT AND LSWBAT) THEN 0.1

ELSE ((IF.UMLBTY THEN 0.8 ELSE 0.9) +
(IF LRYGNL OR LRYGNR THEN 0. 1
ELSE 0. 0)))

The previous example seems more readable, though this one makes
it clearer that assignment to LNBUS is the intent.

70

Another approach to the description of conditional assignments
is the decision table. Fcr example, a decision table describing the
preceding assignment is:

LBUSDC I I t I I I t

LPUJEAT o 0 0 c) o 0 0

001 BSE o o o. o 0 o 0 0

LB AT

s tOBAT

0 I .1
I

I

I

I I I

UML STY 0 0 0 I I

LKYGiul. o

LitYakiR 0 1 0

1-k.1150S 0.0 1.0 I.0 0. I 0.1 0.1 1.o 1.0 0.(1 0.9 O.

5.4. 1. 2 CASE Control Structures

Conditional processing corresponding to the CASE construct
occurs primarily in the simulator support programs (mcnitor,
debugging, etc.). Instances of this include:

foreground task table processing, described in Section
5. 2. 8 (diagram A3] 2)

selection of function based on input parameter by inter-
computer communications or by background dispatcher
(see Section 5. 3. 1)

transfer based on interrupt number in monitor
interrupt handlers

O I/O device routine selection by IOC coordinator
(currently only one device is connected to this, but the
program allows for more) (see Section 5.6)

I/O conversion processing based on symbol type in
Math Model Test (Box 2 of diagram A2)

selection of correct function based on function
select kndb in processing Remote Decimal Readout
Unit (DRU) inputs

71

An interesting type of CASE-like conditional assignment
occurs in the ground control display program (Box 6 of diagram A35)
when selecting messages for the instructor. For example, a message
describing how close the pilot is to the desired glideslope is
selected as follows:

-0.14° S SGTANG <O. 14°
0.14° < SGTANC 0.42°

-0.42° < SGTANC 14°

SGTANG > 0.4Z°
SGTANG <-0.42°

"ON GLIDE PATH"
"SLIGHTLY ABOVE GLIDE PATH"
"SLIGHTLY BELOW GLIDE PATH"
"WELL ABOVE GLIDE PATH"
"WELL BELOW GLIDE PATH"

An HOL representation for this rnigh CASE statement with ranges
(rather than single values) for alternati selection.

A similar assignment occurs in the Aerodynamics area
(diagram A3312), here expressed in the "multiplying by Booleans"
notation:

X = ((. 1155556 + .000154074 * (X-750J)* (RC . LT. 750.)
4 (.1969444 + .0001085184 * (X-1500.)) * (RC .GE. 750.

.AND. RC .LT. 1500.)
+ (.275556 + .0000786112 * (X-2500.)) (RC . GE. 1500.

.AND. RC .LT. 2500.)
+ (.370833 + ..000635184 * (X-4000.)) * (RC . GE. 2500.

.AND. RC . LT. 4000.)
(.4775 + .00005333335 * (X-6000.)) (RC .GE. 4000.

.AND. RC .LT. 6000.)
+ (.4775) * (RC . GE. 6000.) * (-1.0)*(FRCIND .LT. 0)

5.4. 2 Multiprocessing Control

Multiprocessing is required in the simulators studied since all
use more than one CPU. This section describes the overall flew of
control in the UPT simulator in order to illustrate multiprocessing
requirements.

The UPT system uses three CPUs, each of which has private
memory. There is a-lso common memory accessed by all three.
The application programs are distributed among he three CPUs so
as to provide the necessary speed of execution. 1y single application
program (e. g. , flight),zises only the one CPU to which it is assigned.
Application programS operate in parallel on the different CPUs but
do not interact directly with one another. All inter 7tion and

72

sequencing is controlled by the monitor. Necessary synchronization
between the CPUs is provided by the monitor through the Equations
of Motion (EOM) Syncing Function, described later in this section.

Some monitor routines exist in identical form in all three
CPUs, while others exist in only one. Duplication of a routine
allows more efficient processing (by eliminating a need for inter-
CPU communication) and allows the routine to access private
memory data. A single routine, on the other hand, allows a saving
of core. In some cases, a. single function (e. g. , disk I/O) is per-
formed partly by a single routine in a master CPU and partly by
duplicated routines in the other two 'slave' CPUs. For example,
this organization is used when only one CPU can communicate
witha particular peripheral.

Monitor execution begins with system initialization, in which
the individual CPUs periodically halt themselves and wait for restart
by another CPU. Upon completion of initialization, the basic execution
cycle is initiated by a Real Time Clock interrupt in CPU1. (Count-
doWn was initiated by the initialization process.) This interrupt
causes execution of the Master Timing Routine, which in turn interrupts
CPUs 2 and 3, passing control to the Slave Timing Routines in these
CPUs. (The different interrupt levels control the selection of the
routine to be executed, through a vector of subroutine call instructions.)

All three timing routines initiate the foreground dispatchers
(see Section 5. 2. 8), by interrupting their respective CPUs. The
dispatcher calls each of the required simulation programs from its
task table. Each program returns to the dispatcher when it completes.
The dispatcher then calls the next required program. After the last
simulation program completes, the spare time subroutine is called
to compute the spare time for the cycle. Then the foreground
dispatcher is exited and the CPU returns to await state until the next
Real. Time Clock interrupt occurs to restart the cycle. (Thiagram
A312 illustrates this sequence.)

Other plocesses, such as I/O and background processing, are
initiated by interrupts (either hardware or software triggered) which
occur asynchronously with the basic cycle. For example, I/O to the
simulator hardware occurs twice per frame on countdown of the
Interval Timer, while TTY output, if active, is triggered by the
120-Hz clock interrupt.

Communication between CPUs is performed via interrupts or
via common memory. Data may be communicated through the
common memory. Control flow is handled by interrupts into one CPU
triggered by another CPU. For each CPU interface (6 in all), there
is a word in common memory in which bits are set ittidicating, in
priority order, the functions requested (see Figure/5-5). 'Thus one

73

CPU requests a function of another by setting a bit in the appropriate
word and triggering the interrupt. The functions which may be
requested are:

halt - requested if a fatal error or power f: it occurs
in another CPU

6:4 arm/trigger disk interrupt - used by the slave disk
handler to indicate to the master that a slave disk
transfer is complete

disk transfer request - sent by the slave disk handler
to the master when a disk request has been made in the
slave; sent by the master to the slave when the master
has completed setup for the transfer

TTY/CRT output initiate - sent by IOC coordinator in
CPU1 to a slave TTY/CRT dri.:er to grant TTY/CRT
output privilege

release monitor wait state - sent to release the
receiving CPU from a wait state; used only during
initialization, where CPUs are coordinated via wait/
release

EOM wait freeze used to release EOM sync wait,
described below

Three of ie functions are in support of the I/O structure of
the simulator whilt three support other control coordination between
CPUs. As 'halt' is used only for exceptions and 'release' only during
initialization, only the 'EOM wait freeze' function is used during
regular execution.

The EOM syncing function is required to keep the simulation
programs running on the three CPUs properly synchronized. In
particular, the relationship of the Equations of Motion (EOM) program
to the flight programs must be kept constant, since EOM inputs are
generated in flight. Similarly, the motion primary cues program
must execute after the EOM program since it uses output from EOM.
Figure 5-8 illustrates-the desired eeauencing. Note that the flight
programs are in CPU3, while the EOM and motion..primary cues
(MOTn) are in CPU 1. The correct order of the EOM and MOT
programs is assured by their position in the CPU1 task table. The
EOM Sync programs are us.ed to delay the EOM programs until the
flight programs finish.

74

CPO .

rawri k
se Fcrd/IT-1 SE FLECIir-3

WA
Merl

WAIT
it

^f"" ?sgimer-g
w ailir-4sigrit'6 ei

33

ieca-.436""

Coilt Ter
,10#27A

wrr rI I
4.111.1.

(
Figuie 5-8. E(JM Syincing Relationship of Flight Parameters to EOM,

Motion/Programs

The CPU3 sync release program immediately follows the
flight programs in the CPU3 task table. It invokes the inter-CPU
function listed abc e which transfers control to the CPU1 sync
release program. This program computes spare time expended
while waiting in CPU1, and then terminates the CPU1 monitor wait
state.

5 Program Development Aids

5.5.1 Comp±le-Time Assignments

Values are assigned to identifiers at compile time for two
purposes creation of program constants and initialization of pro
gram variables. This section illustrates the requirements for
program constants and initialization.

5.5.1.1 Constant Definition

The simulators make us,e of numerous constants. An HOL
should allow some method of de,ning identifiers which will have
constant values, as oppcsed to the use of ordinary variables for this
purpose. The constants used are primarily numeric, both fixed and
floating point. For example, the 214A visual system altitude limit
program (Box 1 of diagram A3353) uses fixed point constants with
values of 1/5 and 1/6. The program uses octal constants and must
describe in comments what they are. An OL should permit an
understandable definition of suc.i constant)

In another example irom the 214A visual system, the offline
data verification program, which checks the modelboard contour
map (Box 1 of diagram A3353), uses four constants preset to model-
boa rd dimension information, XSTART, XEND, YSTART, YEND.
On the first execution of the program, the following initialization
occurs:

XLOW = 4; ::CEIL(XSTART /4)

XHIGH = 4':'FLOOR(XEND/4)
YLOW = 4r'CEIL(ISTART/4)

< YHIGH = 4:::FLOOR(YEND/4)

This is an operation which could be more logically done at compile time.
Lt compile time expressions are provided, the relationship between the
two sets of -..alues can still be expressed.

Mast constants used are in large data tables. Examples of this
are the modelboard contour map (Box 1 of diagram A3353) and the
LFI tables, both described in Section 4. A simulation HOL should
provide a convenient and readable method for establishing such tables
of constants.

7(

5.5.1.2 Variable Initialization

Use of compile-time initialization of variables occurs Only in
the offline programs. All initialization of realtime variables is done
dynamically. None of the instances noted involVe setting of large.,
tables of data.

5.5.2 Conditional Compilation

Conditional assembly (compilation) is used in the simulator
support programs to attain the reusability of one program on several
CPUs. In some cases, conditional assembly is used to provide
variations between the versions. For example, the device codes
ac/eepted by the I/O request handler depend on the CPU. The data
presetting in the "system description modules"-also employs conditional
assembly based on CPU. Conditional assembly is also, used in the
remote digital readout (DRU) program, to adapt the program to its

-CPU; (There is a copy in each CPU.) Its main use is in the code which
tests the CPU select knob to see if that CPU ha-i been selected,
CPU2 compares the knob value to '2', etc.

5.5.3 Symbol Dictionary

As discussed in Section 5.1.1, the simulators use a global
data base facility, the. svmbol dictionary or "datapool.r" Offline
programs are pr iviued to support the use of this dictionary,., The basic
capabilities the data base system include:

a creatior i date, printout, etc. of the symbol
dictionary k i disk file)

a , -.val mbols defined in the symbol dictionary
during asser J.ty

creation, update, printout, etc. of a system cross-
reference file

Various error detection capabilities are included in these programs.
For example, a list of symbols not referenced in any module may be
printed.

The offline programs used to create simulator data files
(e. g. , the malfunction compiler; see Section 5.3.2 for a complete
list) are also sensitive to the symbol dictior ry, allowing use of
program symbols in their inputs. For example, in the malfunction
compiler (Box 3 of diagram A35), an input expression might be:

LEF = ALT(19500/20200)*AIRSP(200/210)+T(50/)

77

indicating:

"f-urn on malfunction LEF when 19500 < ALT < 20200 and
200< AIRSP < 210 or T > 50"

The compiler translates this to a binary representation, looking up and
inserting the location and type infc'-mation for the datapool symbols
LEF, ALT, AIRSP, and T.

5.5.4 Debugging Support

The major debugging aids provided to support simulator
debugging are the remote decimal readout unit -)RU) program and
the Math Model Test program.

The remote decimal readout unit (DRU) is a peripheral deviCe
which allows control of the CPUs froi, remote locations in the simu-
lator complex. The functions it provides are:

reading or setting of any core location in octal, scaled
fixed point, floating point, or BAMs (Binary Angular
Measurement)

setting of a tran address at which a specified register's
contents will be printed (on first execution of trap address
only)

display of a selected bit (only) of a selected location

halting of all other tasks (i. e. , except the remote
decimal read-ut task), and restart

Figurt. 5-9 illustrates the DRU control panel.

The DRU program runs as a task in the foreground task table
(Box 3 of diagram A312). The program tests the various switch
settings, etc. and responds accordingly. No I/O is performed in the
program. The DRU I/O is done in the twi)Ne/frame update performed
by the AST Master Controller (see Section)5.6). This program,
when implementing the 1-ta.lt function, makes itself the only task.

The Math Model Test progr\am (Box 2 of diagram A2) is an
offline program used for testing and debugging simulation programs.
It executes a card stream of input commands, which request such
functions as:

loading a program

setting of datapool variables or printout of their values ,

(variables are reference\d by name, values are specified
or printed accor,ding to their type as indicated in the
datapool)

78

Figure 5-9, Remote Digital Readout Panel

79

setting or printout of rnemory-\locations specified
in octal

tracing execution

timing execution

testing of P. datapool variable to determine whether it is
within a sl-,ecifj.ed tolerance of a specified value; (the
test occurs when the command is encountered -- it is
not a check during execution).

5. 5. 5 Onboard Computer Simulation

A major issue in she Tactics simulation area is the method
used to simulate other onboard computer systems (e. g. , avionics,
stores management, etc. ; seeBoxes_2, 3, and 4 of diagram A334).
The basic approaches available include:

actual use of the onboard compute.:

hardware emulation of the onboard computer

translation of the flirht softv:are to the simulator
computer

a functional rnodellirp, of the slight Lofiware oil the
simulator computer.

Combinations of theselapprotaches arc -Ilso The trade -offs
involved are discussed in [181. This an area where use of -a single
standard HOL, 'would have a significant impact.

5.6 I/O

This section describ..s the I/O str .trre of the UPT simulator
to illustrate simulation I/O requiremer s.

Through the UPT monitor, application pro-rams are provider;
access to the following devices,

disk

Aydin CRT

TTY/CRT

All requests are made through the I/O request handler, using s
parameter table as illustrated in Figure 5-4. This request handler
passes control to the individual device request handler based on the
TYPE field. Each request handler maintains a request queue, into
which it links the request. (Actually, the disk handler has two chains,
high and low priority.) Other processing depends on device type
and will be described briefly below. Each CPU has an I/O request
handler, a disk request handler, and a TTY request handler. Only
CPU2 has an Aydin request handler, and Aydin requests are invalid
in other CPUs.

The Aydin handler first tests the status of the Aydin device.
Assuming there are no error conditions (in general, errors are
handled by setting an indicator in the I/O parameter table), the
requestis tested to see if it is a status check, in which case the
routine returns with the completion bit set in the pa-r-aineter table.
The status is in a dedicated memory location froth which it may be
obtained by the caller. Otherwise the request is aged to the Aydin
request chain. If it is the only request, it is processse,d immediately
(by entering in the middle of the interrupt handler). Otherwise, the
request handler returns and the chained request will be processed
after an Aydin completion interrupt, '-iXII-reiiit-s-rturn comes. When a
request is processed, the appropriate I/O command is constructed
and initiated. If it is a block transfer, control is then relinquished
and it will interrupt when complete. Then the completion bit is set
in the associated parameter table and the next request on the chain is-
processed. If the request to be processed is a read of the Aydin
register, the command is made, and the status repeatedly checked to
wait for completion since this function does not interrupt when complete.
Then the completion bit is set in the parameter table and the next
request is processed.

The disk I/O process, if in the master disk CPU (#2), proceeds
similarly to the Aydin I/O process. The processing required,
however, is more complex. Both direct and indexed files are supported.
Figure 5-6 illustrates the indexed file structure. The functions
provided are direct read and write, indexed read (writes must be
made by treating the file as a direct access file), and extended index
read (in which two contiguous subfiles of an indexed file may be read
into different parts of memory in one request). Because of the com-
plexity of this process, only CPU 2 contains a driver to handle disk

.1request chaining, error handling, interrupt servicing, b :1i ing of
command words, and indexed file/subfile searches. (CP 2 was
selected because it does the most disk I /O.) CPUs 1 and 3 contain
slave disk drivers which pass the parameter table to CPU 2, and then
pick up from CPU 2 the command words to initiate the actual block
transfer. This ..11ows a saving of core and processor time in CPUs 1
and 3. Doing the actual transfer in the individual CPU allows the buffer
used to be in private memory. (Note that the parameter table must
be in common memory.) Figure 5-10 illustrates the disk I/O control.
flow.

81

sc A'FIstue-37-
77/tooC,/
toe
6.:J2

AtiC ,ee2c6^57"
,41,vble,e(StArE)

e-c.e It 4e4,Alaie
rAtrArrYk 367

.t,p.r// RA 3eia,
1ilez2104:1V494fsr

0114
Dj az-sc 446
iwzrJAre(11,A4
Alrpfir emoiMb
ZC bA74 wi.eas

bry
Opirril 3

c efril244-eatgrEl
ZuIe zvr: pscl

tscoseb £cvFZI le

421.14
PJG tirsC
icigetel_re&tx4

AVA1 Abbe.
texas argeza

Arc ,e615.0c51
rhteKicA9

_r

arse kicacesr
1,21-446dIsze4

eAccrie IRO yAe..arn)
foe nee; Wb. oitirsn;
ETC. alas a ii3/wo,
doimil.vbs To DzsCi

611413 /WO
YIP okr
AeAt Como A92.21 ZATA

Azie brsc felm Act

_a 1131S .01131. I
aye z ov011r DrSa
Td slArr Wo bs

3M_ 61141axve.
Als sEr um DX:Se riirkel T

A&PifA (AL& rieei
c/i1r# PeersszAC

F ,eFaciFS745 A4E
PEADX,VC)C1044e$

lallahvo

Pise rflreZt.

.21Arc
ICP01 ot CPU3_I _ P 4 _

-\"*- "Figure 5-10. Disk I/O Overview

82
Aka

The TTY/CRT I/O is performed thrOugh a device called the
IOC coordinator. This device controls I/O to any device which uses
single word/byte transfers exclusively. Although in this configuration
only the TTY/CRT is attached to it, this would also include a card
reader/punch or line printer. Only teletype output is a callable
function. It runs as a background task, which is scheduled for the first
character by the TTY output handler and thereafter whenever an output
inte.rrupt occurs. The input routine is scheduled when an input
interrupt occurs. TTY input is used primarily by the debug routine,
which ties in directly to the input routine.

The IOC coordinator itself resides only in CPU 1. Its 'execution
is triggered by the 120-Hz clock interrupt. !An output request to the
teletype does not result in immediat- initiation of the output. The
request is simply added to the chain, to he processed at the clock
interrupt.) The actual input and output drivers and interrupt h
exist in all three CPUs. Figure 5-11 illustrates the TTY I/O rol
flow.

Another type of I/O also occurs in the monitor. his is the
input and output between the simulator hardware and the data base.
This transfer is done through a special device called the AST Master
Controller. This device can perform analog to/from digital conversions.
Figure 5-12 illustrates this system. This I/O is not requested by
programs. It is performed twice per frame on countdown of the interval
timer. At 20 msec into the frame, special updates (visual and remote
decimal readout unit) are made. At 45 msec, normal updates
(everything) are made. A datapool module contains a collection of
pointers which define a chain of data to be transferred, and transfer
of the entire chain is made with a single invocation. Each update
operation, or transfer, is preceded by the transfer of a test data chain.
The test data transfer interrupts when complete, allowing verification
of a successful test. The actual data update does not interrupt on
completion.. All this occurs in CPU 1.

5.74' Machine Dependency

Certain types of processing performed in the simulator
monitors (as in most executives) require low-level, machine-dependent
code. Examples of these functions are:

setting of the system clocks (Real Time Clock, 120-Hz
Clock, Interval Timer)

enabling, disabling, intercepting, and triggering of
interrupts

s memory protection

83

-rry °or/VT e
___z/Move Jo

1-g1rZ 1 pf zerE
Ai clog

62111
Try ow-poriecez Aue
3c7.5 Peol).t/Ye
04,40 nbtS A-olacsr
(1) 7A rry cAlAz7/

620 20
..ro_C _co-pC2rAlgraL

/ TrIl EAZ), 777
07P07 ZIA; taci z'of

vot(,cEs Aub
ob-res awarlia Cr
IF 007AOT PeAJADVG,
ac120tA41-73.. X T

FAr,f4
(208-1

.tioot edre

CPuf agcy

0146
rry Our -1/1-rr

3c116-1. 9. -rill

aiiff
rrx our D.erY
avrpors AV",

obsee. -ro rry
Dok/EirrY

_rNnrAiteher

S. ((WI 46
zerallOrr----.1erat

_Zlif&doe Try
cAlooscs 1-Atica
°X oarIsor
ND solcbozes
-rw BACeeit,o40

tr

014.7
r ri_rN AWL__ Imy-Daa

.r&porr ewie. rri
,vd) xceb-AsesIr //Err

&Me. rir; rry scvbs
/iteede SeWbIlleS

C ouNh
Figure 5-11. TTY I/O Overview

84 !

L.

CoCarr 1 I
r -'1781

sYsrem CAW

Ciatif RIC/1r Jull
St,' Oat 3rs CA C.*7Z

c ileac
IIADr#1

Aot44
CUE

AC rroh,
EC ne IlitS

.111 WNW/.

ob. =Ng MM. M.

3u8
CHrL

.11111 IMM,

.= am* me.

Coci,rr 111 i

_ _

,1111. M.ml

offPUMP

J

ithisra
co# rlohi. ft.

CARD

811,

=11.. MNIIN

Ceakr

7 wigwait
ML boom
IrStlatssAW
Sys rem

MAU ria
0/410, Do

Figure 5-12. AST Master Controller I/O Overview

Cecm-

o specification of a location for the hardware address
trap

I/O (at the Lowest level)

It isn't clear how functions such as these can be provided in a machine-
independent HOL. The traditional solution is to allow use of assembly
language subroutines, possibly expanded inline for efficiency reasons.
Encapsulation of machine-dependent code is desirable-, in order to
facilitate reusability. (The UPT monitor uses a macro to perform
software triggering of.interrupts.)

Other machine-dependent processing occurs in the debugging
areas. An example is the Math Model Test (Box 2 of diagram A2)
trace implementation. Inutructions are not interpreted but are
exect"ed with an Execute Memory (EXM) instruction. Prior to the
EXM, An interrupt is enabled so after the instruction is executed,
control will always return to the trace routine (i. e. , J ranches will not
be taken directly). Registers are recorded so changed registers may
be printed out. The recorded program counter is used as the. address
for the next EXM. This sort of processing could be done in encapsulated
assembly language. A m'achine-independent HOL implementation of
it seems improbable.

Another example is the processing of the Remote Decimal
Readout (DRU) register display trap function, which works as follows:

a. When trap is requested:

1. Save indication of which register is requested.

2. Obtain trap address.

3.' Extract contents of trap address and save.

4. Insert at trap address a 'BSL trap routine'
instruction, defined as a constant in current
program. (BSL is a subroutine call.)

5. Exit.

b. When tray. address is encountered, the BSL to the trap
routine is ey,--.cuted, whereupon:

1. Register contents are saved.

Z. The address following the BSL, which was stored
by the BSL in the first word of the trap routine,
is decremented.

86

3. The saved previous contents of the trap location
are restored by an indirect store through the
first word.

4. The desiredregister is displayed as it was stored
on entry to this routine.

5, A standard subroutine return, indirect branch
through the first word, now returns to the
interrupted routine to execute starting with the
trapped instruction.

This routine is not reentrant since registers are not saved in a stack
and single memory locations are used for, the various indicators. The
only implication of this is that instructions within_this routine.may, not
themselves be trapped. HOL subroutine linkage mechanisms would
not provide this sort of linkage, i. e. , 'decrementing the r.-Aurn address
and using the saved return address as a pointer.

L. J

8

Section 6

DETAILED SHOT., REQUIREMENTS
AND LANGUAGE EVALU-ATIONS

This Section presents the high-order language (HOL) require-
ments which should be met by a language for programming flight training
simulators and evaluates the candidate languages with respect to these
requirements. The requirements were derived by analyzing the func-
tional and environmental factors relevant to simulator programming.

This Section describes the specific simulation language rcntlire-
ments determined by our detailed study of the application area a_ (os-
cribed in Sections 4 and 5, 'It is intended to serve -,as a definitive basis
for evaluating ho.w well existing programming languages could serve in
programming simulators. Thebenefits to be derived from this presen-
tation of language requirements are these:

a. The key implications of our detailed study of programMing.
requirements are presented concisely and rigorously.

b. Use of the document as an evaluation guide guarantees
. that no simulation programming requirements will be
overlooked.

/
c. The document addresses specific SHOL requirements as

well as general prineiples which must be considered
throughout language design or evaluation.

There is one area of requirements that is not addressed in this
document -- exception handling (i.e., specification of the program'action
to be taken when a routine encounters some condition it is not prepared
to deal with, e. g. , overflow, time-out, or inconsistencies in some data
base). The current state of the art with respect to exception. handling
language features is quite undeveloped; not much of significance car! be
said with confidence about what minimal exception handling require-
ments should be. Moreover, to accurately assess these requireinents
in the simulator area would require a more detailed study. of coding and
design practices thaniWas possible in this study. Consequently, we
have chosen to leave requirements specifications open in this area,

This Section is organized with an outline similar to that of the
IRONMAN [DoD, 1977]. However, the purpose this document.serves is
somewhat different than the purpose the IRONMAN serves. In particular,
this document addresses just HOL requirements for design, implernenting,
and maintaining flight simulator software as opposed to requirements of all
embedded computer systems. Consequently we have deleted some IRONMAN
requirements that are inapplicable to simulator programming, added others

88 (1--

that are consistent with the IRONMAN but more specific, and finally,
changed some IRONMAN requirements because they were inappropriatefor the simulator programming environment and application. AnotherIource of differences between this document and the IRONMAN is thatthis document is intended to describe requirements rather than to,guidea language design effort. Consequently, unlike the IRONMAN, languagecapabilities not specifically required or fOrbidden may be-provided in
a language, although it is not expected that such capabilities will makethe language more suitable for programming flight simulators. If thisdocument were to be used to guide a language design effort, some
requirements would be specified in greater detail and some would be
rephrased to ensure:a uniform language. Other modifications woulddepend on whether the design was to proceed by modifying a particularlanguage or was to be created without such constraints.

Some requirements specified here are considered essential tosupport simulator programming -- i. e. a language would have to have allthese,features to be usable in programming all simulator functions. Theserequirements are marked with an asterisk (*). Other requirements areconsidered desirable but, not essential. These are features recommendedfor 'inclusion in any language specifically designed for this application.In recommending modifications to the candidate languages to attain ausable SHOL, only the marked requirements were judged to be necessary.Other features, however, were weighed in determining the overall suitablityof the particular language.

Each language requirements section begins with the statementof a goal that describes the overall objectives to be met by the SHOL inthat language area. Following the goal are several supporting conceptsthat aid in the attainment of the stated goal. Finally, following each,stated concept are one or more specific language requirements thatrealize that concept. Following each set of requirements for a particu-lar concept, PL/I, JOVIAL J3B and 3731, PASCAL, and FORTRAN arediscu'ssed with respect to those requirements. At the end of each section,
rlanguages are ranked according to how well they meet the goal of that section.

A precise and consistent use of terms has been attempted in
stating requirements. Potentially ambiguous terms have been definedin the text. Care haS been taken to distinguish between requirements,given as text, and comments about the requirements, given as bracketednotes.

The following terms ,have been used to indicate where and towhat degree individual requirements apply:

must indicates a required capability to be providedis required by a language or its translator.

89

not required

not desired
must not

need only

should

shall attempt

indicates a language capability that, if present
in an existing language, need not be used. A.
language having such a ,capability is usable for
simulator programming, but is less desirable
than a language not having the capability.

indicates, a language capability that must be
absent from a langdage (generally because its
presence, even -if not used, would degrade
object code efficiency or the ability of the
translator to detect program.errors).

indicates a minimal required capability. A-.
language- providing a: more extensive capability
is acceptable even though the additional capa-
bility is not-needed in the simulator application.

indicates a desired goal but one for which there
is no objectiw.:' test.

ss,

indicates a desired goal but one that may not
be ac:hievable given the current state-Of-the-
art, or may be in conflict with other more
i.,.nportant requirements.

must require indicates a requirement placed on the user by
the language and its translators (language is
subject)..

must permit indicates a requirement placed on the language
to provide an option to the user (language is
subject).

may indicates a requirement placed on the language
to provide an option t6 the user (user is
subject),

6. 1 General Design Principles

Goal

By analyzing the functional and environmental requirement of
the simulator application area, the general principles to be observ.ed
in SHOL design were determined. These principles are to':be followed
in meeting each of the, specific requirements detailed in subsequent
sections.

90

Supporting Concepts

1A, Application Suitability.

The SHOL must support the programming of simulatorsoftware.

Requirements

1A-1. The language must prOvide the functional capa-
bilities necessary for the production of flight training
simulation online and support programs.
1A-2. A language containing only features required by theapplication is considered more desirable than a language
containing additional features. [The intent is to permit asubset of an existing language to be used if it satisfies the
requirements and use of the subset can be administra-
tively controlled.]

Language Evaluations

Subsequent sections discuss the degree to which each of
the languages meets simulator programming require-
ments._ The only one of the languages which provides a .
significant number of unneeded features is PL/I. Someof these (e.g., PICTURE attributes)shave no interaction
with features which would be used by the simulator pro-
grammer, while others may'require that the programmerbe aware of them in order to ensure correct use (e.g.,
specifiable lower array bound). Excess capability, of
course, increases translator size and implementationcost, and may impact translation speed even if unused.

1B. Correctness.

The language must aid in the development of properly-
1orking programs.

Requirements

1B-1. The language should avoid error-prone features[i.e., features that are difficult to use correctly] and
maximize automatic detection of programming errors,.
1B-2. Translators muStiproduce explanatory diagnostic
and warning messages, but must not attempt to correct
programming errors. [Such corrections are seldom
appropriate and encourage undisciplined programming
habits.]

1 0

1B-3. There must be no language restrictions that are
not enforceable by translators.

Language Evaluations

teach of the languages contains some error-prone con-
tructs, which are noted.more explicitly in subsequent
ections. The excess generality of PL/I makes it more

difficult than the other candidates to learn to use cor-
rectly. On the other hand, PL/1 provides good facilities
for error detection at translation and execution time, as
doe s PASCAL.

1C. Maintainability

As discussed in Section 4. 5,- the long lifetime of simulator
programs makes ease of maintenance a major design goal.

.Requirements

1C-1. The language should emphasize readability over
writability, [i.e. , it should emphasize the clarity,. under?
standability, and modifiability of programs over pro_
gramrning ease, since programs are usually maintained
by programmers who were not involved in their
develbpment] .

1C-2. Explicit specification of programmer intent should
be possible and be encouraged [e. g. , declarations of the
range of values a variable can have; see 3A-5].

1C-3. Defaults should be provided only for instances where
the default is stated in the language definition, is always
meaningful, reflects common usage, and can.be explicitly
overridden.

Language Evaluations

FORTRAN is the least readable, and hence least main-
tainable, of the candidate languages. Specific deficiencies
(ii e. lack of features supporting readability) are noted
in the.following sections. Examples of FORTRAN deficien-
cies include numeric statement labels (which PASCAL has
also), implicit declarations, and limited identifier length.
The JOVIAL variants (J3B and J73I) are fairly readable,
though their data declaration statements have a somewhat
unreadable format. PL/I and PASCAL are probably the
most readable of the candidates, overall.

92 1

ID. Efficiency.

As discussed in, Section 4.4, the.SHOL must support devel-, opment of efficient object pro-grams.

Requireinents

Where possible, features should be chosen to have-a siMple and efficient implementation in many objectmachines, to avoid execution costs for available generalitywhere it is not needed, to maximize the number of safe
-optiMizations available to translators, and to ensure thatunused and constant portions of programs will not add toexecution costs.

1D-2. Unduly complex optimization by translators-should
not be required to obtain efficient object code.

1D-3. Programmers should be able to control time /space
tradeoffs through appropriate use of language features[e.g., packing directives; see Section 6. 10].

Language Evaluation's

The excess generality of .PL/I can affec: object program
efficiency even if the unneeded features are not used, but
in most cases the impact of such excess generality is onlyon translation efficiency. None of the languages make
explicit to the 'user which features are most costly.
Section 6. 10 discusses the control provided over time/space, tradeoffs by the various languages. In general, theJOVIAL variants are best in this respect, while FORTRANprovides the least capability.

1E. Simplicity.

Simplicity is desired in the SHOL in order to enhancereadability and to make the language readily learnable by simulator
programmers (who are primarily engineers whose experience`with
programming languages is not' extensive, generally including only .assembly language and FORTRAN experience).'

Requirements

1E-1. The language should use.familiar notations wheresuch use does not conflict with other goals.
1E-2; It should have a consistent semantic structure that
minimizes the number of underlying concepts.

1

1E-3. It should be as small as possible, consistent with
the needs of the application. [See also 1A-2.]

1E-4. It should have few special cases and should be
composed from features that are individually simple it
their semantics.

1E-5. The language should have uniform syntactic con- .

ventions and should not provide several notations for the
same concept.

Language Evaluations

The language which best meets these requirements is
probably FORTRAN, particularly because simulator pro-.
grammers are, already familiar. With it. Also it is a
relatively "small" language -- it e. , it does not contain
a large number of constructs o1 redundant features.
PASCAL is also a concise language, but it deViates from
familiar usages more than any/of the other candidates.
PL/I, because of its emphasis' on generality,-contains
a large number of constructs and permits many varia-
tions in notation.

1F. Implementability.

Design of the SHOL must take into account the implementa-
bility of the language. As digcussed in Section 4.3, simulation program
translators have.traditionally been required to operate on' machines of
modest capacity.

Requirements

1F-1. The semantics of each feature should be-sufficiently
well specified and understandable that it will be possible
to predict its interaction with other features.

1F-2. To the extent that it does not interfere with other
requirements, the language shall facilitate the production

,.of translators that are easy to implement and are efficient
during translation. [See. also 1D_3.]

Language Evaluations

As all of the candidate languages have been.implemented
and used, their semantics are well understood though not
all are well documented. Because PL/L has so many
constructs, there are many interactions between features,
making the language more difficult to specify and imple-
ment than simpler ones. Its implicit conversion philos-
ophy. compounds this t)roblem.

94
/ 'Th

Language Evaluation Summary

Because of the general and diverse nature of these requirements,any attempt to,rank lan.guages with respect to them would be inappro-priate. .Sincethese general requirements form the basis for the spe-cific requirements, in' subsequent sections, in effect the remainder ofthe evaluation document serves this purpose.
6. 2' General- Syntax

Goal

SHOL syntax-must be selected in keeping with the goals of sim-plicity.and maintainability, and with general language design principles.Syntactic conventions must encourage the production of readable pro-grams and, must where possible eliminate opportunities for programmer

Supporting Concepts

2A, Character Set.

To allow program portability, all SHOL translators mustemploy the same source character set, and the chara.cter set should 'bewidely supported.

Requirements

2A-1. Every construct of the language must have a repre-sentation that uses only the 64-character subset of ASCII:

!"#$%&'()*+,-./
0123456789:;<=?
$kBCDEFGHIJi:U1110
PQRSTUVWXYZ [\ J r`

Language Evaluations

All of the candidate languages except PASCAL and PLR
are compatible with 64-character ASCII. PASCAL usesthe character 'T', and PL/I uses '--I' and '1'. PL/I, how-
ever, is compatible with EBCDIC, as are FORTRAN and
J3B, but not PASCAL or J73I.

2B. Gramm

The SI101., grammar must contribute to program readability
and ease of learning .1, language and must make common syntax errorseasy to detect and diiiose by translators.

95

2B- 1. The language must have a free form syntax [i. e.
the semantics of constructs should not depend on 'their
position within a line]. s-

2B-2:_ Multiple occurrences of 'a language defined syrilbol
appearing in the same*context must riot have essentially(.
different meanings, [For example, the assignment oper-
ator should be.different from the relational equality 'oper-
ator; diviSion Of integeTs yielding an integer result should
not'be represented with-the same symbol that yields a
real result.] .

'2B-3. The languagemust not permit.unmatched brackets
of any kind [e.g., BEGIN and END must be paired one for
one].

2B-4. All key word forms that contain declarations or
statements must be bracketed -- that is, must have a
closing.as,well.,..as an opening key -word. require-
ment and the previous one help avoid programmer errors
due to confusion over the lexical extent of the various pro..
'grain consiructs.]

2B-5.. Thera. must be no control definition facility [i:e.,
no means of defining new control structures].

2B-6. The structure (i.e., syntax) of expressions must
not depend on -the, types of their operands. [This is,moti-
v'atea by a desire for language uniformity.]

2B-7. The precedence levels (i.e., binding strengths) of
all infix operators must be specified in the language defini-
tion and must not be alterable by the user.

2B-8. The precedence levels should be consistent with
standard practice.

Language Evaluations

Of the candidate languages, only FORTRAN does not have
a fully free form syntax.

None of the languages are consistent in always using differ-
' ent symbols for different meanings. For example, all but,

PASCAL use the same,symbol for integer and real divi-
sion. Most also-use compdund statements in a variety of
ways in control structures, rather than employing dis-
tinctive syntax.

96

PL/I, in permitting multiple closure of blocks, permits
unmatched bratkets.,? Most of the languages also use
compound statements to delimit the lexical extent of key-
words, rather than providing individual closing keywordsfor each.

None of tl-e languages allow the definition of new control
structures. None allow the user to alter precedencelevels of operators.

All.languages employ a standard set of operator precedence
levels except for PASCAL, which has only four levels and
is not consistent with standard practice.

2C. Mnemonic Identifiers.

The language must allow the programmer to select
meaningful and informative identifier names. This is particularly
important given the large number of identifiers required in a simulator
system and the use of these identifiers by groups of programmers.

Requirements

2C-1. Mnemonically significant identifiers [more than
eight characters long] must be permitted.

2C-2. There must be a break character for use withinidentifiers. [e. g. , the underscore character, as in
RATE OF CLIMB].

Language Evaluations

All languages-except FORTRAN permit identifiers' of more
than eight characters, All except PASCAL allOw a breakcharacter in identifiers.

2D. Static Typing.

In keeping with general language design principles and in
support of program maintainability and efficiency, the types of values
must be determinable from the source program.

Requirements

2D-1. The value type of each variable, array or record
'component, expression, parameter,and function result
must be determinable at translation am-evilTA value type
specifies the set of values associated wit a program
elerrkent. "Type" is used in this document to mean value
type.]

97

2D-2. There must be no implicit conversions between
value types -- explicit conversion operations shall be
provided.

2D-3. A reference to an identifier that is not declared in
the most local scope must refer to a program' element that
is lexicallyiglobal.,. rather than to one that is global through
the dynamic calling structure. [This is the normal b4....).5k
Structure scopingrule.]

Language Evaluations

Most value .types are determinable at translation time in allof the languages. The only exceptions involve the attrib-
Utes.of formal procedure parameters. Only J73I requires-
a'specificatidn of parameter attributes of such procedure
parameters, and only J731 and PASCAL require specifica._tion of their result attributes. (J3B Floes not allow pro..cedure parameters.)

IMplicit conversion is prevalent in PL /I, and, to a lesser
'extent, in 'J73I. There is little in FORTRAN, J3B, and
PASCAL. In general, it is restricted in these languages
to conversions between integer and real types. PASCAL
allows implicit conversion only of integers in assignmentto reals. Most of the languages restricting implicit con-
version, however, do not provide all of the explicit con-
version operations which might be necessary. For
example, only PL1I provides explicit conversion from
numeric types tor-Character strings.

As required all the languages bind free names statically
rather than dynamically.

2E. Comments
kThe SHOL must provide a comment facility that is easy to

use, so commenting- is encouraged. The comment facility should allow
comments to .be used with maximum readability.

Requirements

2E-1, The language must 'allow comments to be embedded
within program text [e:g. , a comment bracketed by special
left and right bracket *symbols, and preceded and followed
by program text on the same line, or a comment tereni-.
nated by end of line].

2E-2. Bracket symbols must be short - no more than two
characters.

98

Language EvalUations

Of the candida;:e'languages, only FORTRAN does not pro-vide the require' flexibility in comment. placement. All,
languages provide short 'comment bracketing symbols.

Language Evaluation Summary

The candidate languages are ordered, according ro,the degi:ee to
which they meet SHO general syntax requirements, as follows:

J3B- Most of the requirement's are met.

Deficiencies are:

use of same symbol for different meanings

lack of closing keywords,

'lack of explicit conversion operations

3731- Most requirements are met. Implici conversions
can occur.

Deficiencies are:

use of same symbol for 'different meanings

lack of closing keywords

implicit conversions

o lack of explicit conversion operation

PASCAL- Is not ASCII compatible. Operator precedence levels
are non-standard.

ti

Deficiencies are:

use of same symbol for different meanings

lack of closing keywords

not ASCII compatible

non-standard 'precedence levels

no break character in identifier

lack of explicit conversion operations

FORTRAN- Comment facility and statement formatting are
inflexible. Mnemonically significant identifiers
are not permitted.

PL /I-

6. 3 Data Types

Goal

Deficiencies are:

not free format

use of same symbol for different meanings

identifier length too .restricted

comment placement inflexible

Is not ASCII compatible. Multiple closure and
implicit conversions are permitted.

Deficiencies are:

not ASCII compatible

use of same symbol for different meanings

multiple closure

implicit conversions

The SHOL must provide the value types required to represent
simulator data, must suppor efficient processing with them, and must
allow them to be used in a ,adable and understandable manner. Nota-
tion for and support 'of the various types should be consistent between
types and whenever possible should correspond to,common practice.

6. 3, 1 Numeric Types

Goal

The language must support integer and real (both fixed and float)
numeric types. Uses of numeric data in simulator programming are
discussed in Section's 5.2. 1 and 5.2.2. The SHOL must allow the pro-
grarrrner to use the various real number representations available on
the target computer. Requiremem,s for this are discussed in Section
5. 2, 2. 1 and in Section 4. 2.

100

LEI porting Concepts

3A.. Numeric Type Definitions.

Integer, fixed, and floating point types, with programmer
control over precision, must be provided. 'Re-presentations should cor-respond-to standard usage.

Requirements

The language must provide types for integer, fixed
point, and floating point numbers. [See Sections 5.2. 1and 5.2.2.]

3A-2. The minimum accuracy of each floating point vari-able [e. g. , number of decimal digits] and the minimum
accuracy of each fixed point variable [e. g. , maximum
value of the least significant bit] must be specified in
programs.

3A-3. Such accuracy specifications must be interpreted
as the minimum. accuracy to be supported by an imple-
mentation -- it is sufficient for implemented fixed point
accuracies to be limited to powers of two.

*3A-4. Various sizes of real number, representations are
required. [Section 5.2.2. 1 discusses the use of both
single and double word representations to allow accuracy
vs. space tradeoffs.]

3A-5. Declarations of the range of numeric variables must
be optional (see also Section 6. 10), and need only be speci-
fied with constant values. [Range specifications make
programs more understandable and can improve object
code optimizatiOn, but there is insufficient experience
with their use to make range declarations mandatory.
Range declarations may also be used to specify (implic-
itly) the minimum number of bits occupied by fixed pointvalues.]

Language Evaluations

Of the candidate languages, only J3B and PL/I provide
both fixed and floating point real number-types. Only J73I
and PL/I allow specification of floating point accuracy,
PL/1 allows specification in decimal digits, while 3731
requires specificationin bits. In neither case is the inter_
pretation of the' accuracy implementation dependent. Only
PL /I allows specification of. fixed point accuracy. Again,
accuracy may be specified in decimal digits, and inter-
pretation. is not implementation dependent.

101

Programmers may select various sizes of real number
representations in all of the languages except PASCAL
and 33B (for fixed point/. FL /I and J73I allow explicit
specification of the size. None of the languages allow
explicit declaration of read variable ranges.

3B., Numeric Literals.

The SHOL must allow the prograriiMer to specify numeric
literals (i.e., numbers of the form 1, 5.6, etc!) in a readable and
consistent manner.

Requirements

*3B-1. Numeric literals are required. [See Section 5.2,

3B_2. ErnbedCled spaceS must be permitted in real literals.
[These would enhance readability in the long literals occa-
sionally used in simulator programming, as \n the example
in Section 5, 4, 1. 2,

3B-3. Numeric literals must have the same value in pro-
grams as in data. [i.e. , literal values input during pro-
gram execution shall have the same value as if they had
been processed by the translator.]

Language Evaluations

All of the candidate languages provide numeric literals
for both integer and real types.. Only FORTRAN permits
en)edded spaces. None of the languages appear to
reciaire that program and data literals convert
equivalently.

3C. Numeric Operations.

The language must provide a uniform set of the basic arith-
metic and comparison operations for numeric types. Trigonometric
operations must also be supported. Section 5.2.2.2 discusses simu-
lator requirements for numeric operations.

Requirements

3C- 1. There must be operations [i. e. ;functions] for Con-
version between numeric value types and for conversion
from other types (e. g. , character, bit string) to numeric
types. [See Section 4.5.]

c.*3C_2. There must be operations for addition, subtraction,
multiplication, division with real [fixed point and floating
point] result, and negation for all numeric value types.
[See Section 5.2.]

3C-3. There 'must be operations for integer and fixed
point division with integer result and remainder. [A
particular requirement for this occurs in the camera/
modelboard visual systems, for locating modelboard
positions, as discussed in Section 573.4.4.]

3C-4. There must be operations for speifying the accuracyof fixed and floating point addition, subtraction, multiplica-
tion, 'and division results.

3C-5. Default scaling rules for fixed point operations need
not produce results more accurate than the accuracy (i.e.,
scale) of the least accurate operand. [e. g. , 1.1+20.01may yield 21.1.]

3C-6. Absolute value and tnax/min functions (allowing
more than two arguments) must be provided for all num, rivalue types. [See Section 5.2.. 2.2.3.]

3C-7. For real value types, square root and trigonometric
functions are required. 1. Trigonometric functions are used
in analog I/O handling and in various display-related
programs such as the map plate compiler; see Section5.2.2.2.1.]

*3C-8. There must be equality [i.e. , equal and unequal]
and ordering operations [i.e., less than, greater than,
less or equal, and greater or equal] between elements of
each numeric value type; [see Section 5.4.1-. 1].

3C-9. There must be a means of explicitly testing whether
a numeric value is within a given range [e. g. , the 'hained
comparison; see Section 5.4.1.2.]. ,

3C- 10. Numeric values must be considered equal if and
only if they represent exactly the same abstract value,[i.e. , accuracy specifications'must not be taken into
account in testing for equality; otherwise A=B and B=C
does not imply .A.C.]

Language Evaluations

All of the languages allow explicit conversion`from real to
integer types, and-all except PASCAL from integer to real.
Of the languages providing more than one real representa-
tion, all but J3B provide representational conversions.

103
1 IN1. y

Only PL/I provides all desired conversions from other
types, but J73I and J3B provide some support.

All of the languages provide the basic arithmetic opera-
tions required, but only PL/I provides accuracy-defining
specifications for their results. Of the numeric functions
required, only FORTRAN and PL/I provide max/min func-
tions, and only FORTRAN, PL/I and PASCAL provide
square root and trigonometric functions. (PL/I provides
more trigonometric capability.) All languages have an
absolute value function.

All of the languages have numeric relational operations
required, but none have a capability for range testing, such
as chained comparisons. In all of the languages, numeric
comparisons are exact.

Language Evaluation Summary

The candidate languages ate order ed, according to the degree to
which they meet SHOL numeric data type requirements, as follows:

PL /I- Most major requirements are met.

J3B-

Deficiencies are:

accuracy specifications are implementation
dependent

no range specifications

no embedded spaces in literals

program and data literals not required to
convert 'equivalently

no chained comparisons

Control over numeric accuracy is inadequate. Not
all desired arithmetic operations are provided.

Deficiencies are:

no conversions from character or bit to real

no accuracy specifications

no range specifications

no embedded spaces in literals

104

program and data literals not required to con-
vert equivalently

no real representational conversions
,

no accuracy-defining specifications for results
?z. of computations

no max/min, square root, or trigonometric
functions

no chained comparisons

FORTRAN- Fixed point real numbers are not provided. Most
other requirements are met.

Deficiencies are:

no conversions from other types to numeric
types

no fixed point reals

no accuracy specifications

no range specifications

program and data literals not required to con-
vert'equivalently

no accuracy-defining specifications for results
of computations

no chained comparisons

J37I- Fixed point real numbers are not provided. Not all
desired arithmetic operations are provided.

Deficiencies are:

no fixed point reals

accuracy specifications implementation
independent

;is no range specifications

, no embedded spaces in literals

105

program and data literals not required to con-
vert equivalently

no accuracy-defining specifications for results
of computations

max/min, square root., or trigonometric
functions

no chained comparisons

PASCAL- Fixed point real numbers are not provided. Many
required accuracycontrols, conversions, and
numeric operations are not provided.

Deficiencies are:

no conversions from other: types to numeric
types

no fixed point reals

no accuracy specifications

no control over size of real number
representations

no range specifications

no embedded spaces in literals

program and data literals not required to con-
vert equivalently

no integer to real conversions

no accuracy-defining specifications for results
of computations

no max/min functions

no chained comparisons

6.3.2 Enumeration Types

Goal

The SHOL must provide a status, or enumeration, data type. As
discussed in Section 5.2.3, use of enumeration types to represent flags,
case alternatives, and array indices would greatly enhance program
understandability.

106 11J

Supporting Concepts

3D. Enumeration Type Definitions.

Enumeration types are required for program readability.

Requirements

*3D-1. There must be value types that are definable in pro-
grams by ordered enumeration of their elements [e.g.,
type angle = (phi, psi, theta)].

Language Evaluations

Of the candidate languages, only 3731 and PASCAL provide
enumeration types. The 3731 forth is rudimentary --
essentially a sequence of integers with names. There are
no enumeration variableS in 3731.

3E. Enumeration Literals.

Enumeration values should be expressible in a readable andnatural manner.

Requirements

3E1. The elements of an enumeration type may be
identifiers.

3E-2. /Enumeration value names of different enumeration
types,must be permitted to be-identical.

Language Evaluations

In 3731, enumeration literals are lexically distinct from
identifiers. 3731 allows duplicate enumeration names in
different lists, while PASCAL does not.

3F. Enumeration Operations.

Operations provided for enumeration types must allow their
use as flags, case alternati-ves, and array indices.

Requirements

*3F-.1. There must be at least equality and inequality oper-
ations between elements of enumeration types. [This is
to ensure uniformity; equality should be an operation
defined for all types.']

107 1 -L

711.:*3F-2. There must be successor and predece)oyor opera-
tions on each enumeration type. [i.e., operations pro-
ducing the next andekeceding elements of an enumeration

C-..ty-pe's value set; these operations are inherent in the
notion of an enumeration type.]

Language Evaluations

Both J73I and PASCAL _support equality nd inequality oper-
ations on enumeration types. Only PASCAL-provides
successor and predecessor operations.

Language Evaluation Stamm4ry

The candidate languages are ordered, according to the degree to
which they meet SHOL enumeration data type requirements, as follows:

PASCAL- The basic requirements are met.

J731-

3.3B, }
FORTRAN, ,

PL/I- Enumeration types are not provided.

Deficiencies are:

duplicate names may not be used
.1The capability provided is rudimentary.

Deficiencies are:

no enumeration variables

literals are lexically distinct from identifiers

no successor and predecessor operations

6. 3. 3 Boolean Type

.Goa)

The,SHOL must provide a Boolean drta type. As noted in Section
5.2.5, Boolean data is heavily used in simulators, particularly in the
Navigation and Communications area.

Supporting Concepts

3G. Boolean Type Definitions.

The Boolean data type facility in the SHOL should contribute
to program readability and allow programs to be structured more clearly.

j -IL"

Requirements

*3G-1. A Boolean data type is required [see Section 5.2.5].
3G-2. Boolean expressions must be evaluated in short-
circuit mode [e.g., A OR B must not cause the evaluation
of B if A is true].

Language Evaluations

Only FORTRAN and PASCAL support an actual Boolean
data type. The other languages use bit strings of length one.
Only FORTRAN requires short-circuit evaluation of
Boolean expressions. (This is not specified in PASCAL.]

. 3H. Boolean Literals.

variables.
A useful Boolean facility requires literals as well as

Requirements

*3H-1-. Boolean literals (TRUE and FALSE) are required.
Language Evaluations

Both FORTRAN and PASCAL have TRUE and FALSE lit-erals. J3B provides built-in constant names TRUE and
FALSE forthe bit strings '1' and '0'

31. Boolean Operations.

The standard Boolean operations must be provided in a
`uniform manner.

Requirements

*31- I. There must be operations for conjunction, inclusive
disjunction, and negation (i. e. , AND, OR, and NOT).of
Boolean value types. [These are the most frequently used
Boolean operations; see Section 5. 2.5.]

*31-2. There must be equality and inequality [exclu-
sive or] operations for Boolean types. [The operations
are required for uniformity.]

Language Evaluations

Both FORTRAN and PASCAL provide the desired
qperations.

109 1'

Language Evaluation Summary

The candidate languages are ordered, according to the degree to
which they meet SHOL Boolean data type requirements, as follows:

6. 3. 4

FORTRAN,
PASCAL- All desired capabilities are provided.

J3B, There is no Boolean data type (J3B does, provide
J731, PL/I- TRUE 9.nd FALSE bit string literals).

Character Type :f

Goal

The SHOT.., must provide a character data type and associated
character operations to support instructor display programs and offline
simulation support programs. Simulator character handling require-
ments are discussed in Section 5.2.6.

Supporting Concepts

3J. Character Type Definitions.

The character data type should be supplied in a manner
which contributes to program efficiency, and should not allOw excess
generality not required by the application. The feature should be natural
and easy to use.

Requirements

3J-1. A fixed length character string data type is required
[as opposed to representing strings as arrays of charac--,
ters; a separate data type is needed to promote program
understandability].

3J-2. Explicit specification of string length it_ required,
and the length must be specified with a constant value.
[Only use of fixed length character strings was obseriied.]

*3J-3. It must be possible for the programmer to define
new character sets. [Some simulator peripherals require
character sets other than the built-in ASCII.]

Language Evaluations

All of the candidate languages except FORTRAN provide a
character data type. In PASCAL, however, character
strings are represented as arrays of single characters.

110
1

Neither PLR nor J73I ;require explicit specification of
string length, and PL/I permits strings ofnon-constantlength.

None of the candidate languages support the explicit defini-
tion of new character sets.

3K. Character Literals.

A character literal facility allowing representation ofcharacter constants for the various simulator peripherals is necessary.
Requirements

*3K- 1. Fixed length character string literals are required..
3K -2. The character code used fora literal must be
programmer-definable. [This is necessary to support
the concept of definable new character sets.]

*3K-3. It should be possible to include unprintable charac-ters in string literals. [Formatting codes in strings for
visual displays are an example of the kind of unprintable
characters needed here.]

Language Evaluations

All of the candidate languages (including FORTRAN) pro-
vide character string literals. None allow the programmer
to define the character code used. Only PL/1- and J731
supports the inclusion of unprintable characteri:

3L. Character Operations.

Character operations provided in the SHOL must supportthe types of character processing performed in simulators, which are
primarily display formatting and offline data file compilation.

Requirements

3L- 1. There must be operations for substring extraction
. and assignment (the substring length must not be restricted

to a constant value), access to string length, string replica-
tion by a'constant factor, and.location of a given sub-
string within a string (i.e., INDEX) [.see Section 5. 2. 6. 1] .

*3L-2. Equality and inequality must be defined on character
types.

111

3L-3. Ordering operations must be defined on the built-in
character set.

*3L-4. There must be operations for conversion from other
types (e. g. , numeric, Boolean) "to character type. [These
operation,s are required for completeness; it should be
possible to obtain a printable representation of a built-in
type.] -

Language Evaluations

Substring extraction and assignment is provided by J3B,
j731: and PL/I. Only,S731 and pL /I allow access to
string length, and only:PL/I supports string replication
and substring location. Only PL/I provides conversiorib
from other types to character.

All of the languages (except FORTRAN) support equality
and inequality operations on character types, and all

J3B proVide ordering operations.

Language Evaluation Summary

VThe candidate languages are ordered, according to the degree
to which they meet SHOL character data- type requirements, as follows:

PL/I- Most desired functions are provided. Excess
capability is supported.

Deficiencies are:

explicit length specification not required

non-constant length specification allowed

definition of new character sets not supported

J73I- Fewer of the desired functions are provided.

Deficiencies are:

explicit length specification not required

definition of new character sets not supported

no string replicr..tion or s b-st-ri-rrg-location

no conversion from other types to character

112

J3B- Fewer desired functioils are Firovided.

Deficiencies are:

o definition of new character sets not supported

no inclusion of unprintable characters in
literals

no access to s:tring length, string replication,
or substring location

no- ordering operations

no conversion from other types to character

PASCAL- Strings'a.re supported as arrays. Few of the./desired:functions are provided.

Deficiencies are:

strings represented as. arrays

'definition of new character sets not supported

no subptring extraction or assignment, access
to 'string length, string replication, or sub-
string location

no conversion from other-types to character

FORTRAN- , There is little support for character data.

Deficiencies are:

no character data type

no inclusion of unprintable characters in
literals

no string operations or relations

no conversion from-other types o character
6.3.5 Bit String'Type

Goal

The SHOL must provide a bit string data type and associated oper-
ations. These are required in simulator programming fc,t manipulating

113 1

I/O values and for representing vectors of Boolean's such as the frame
and cockpit masks and the malfunction indicator vector. Sections 5.2.4and 5.3. 1 discusses uses of bit string data.

Supportting Concepts

3M. Bit String Type Definitions.

The bit string data type should be natural and easy to useand should allow efficient implerhentation.

Requirements

*-3M7.11: A bit string data type is required [see Sections
5.2. 4 apd 5. 3. 1].

3M_2. Explicit specification of bit string length is required
and must be specified with a constant value. [No use of
varying length' bit strings was observed.]

Language Evaluations

Bit strings are provided in J3B, 3731, and PL/I. NeitherPL/I nor J73I require explicit length specification. PL /I
allOws strings of non-constant length. (PASCAL provides
a capability similar to bit strings with the set data type.)

3N. Bit/String Literals.

There must be a natural notation for specifying bit stringliterals.

Requirements

*3N-1. Fixed length bit string literals are required.
3N-2. Literals must be specifiable in bases 2, 8 avi 16.
[Examples of literals in all these bas'es have been
observed.]

4

Language Evaluations

All three languages which support a bit string data type
provide bit string literals. PL/I allows specification only
in base 2, J3B allows only base 16, while J73I allows allthree;

30. Bit String Operations.

The operations provided for bit strings must support the
construction and decomposition of strings representing I/O values, as
well as the masking and shifting of strings representing indicator
vectors.

Requirements

*30-1. There must be operations for bit-by-bit conjunc-
tion, inclusive disjunction; exclusive disjunction, and
negation [AND, OR, XOR, and NOT] defined for bit
strings. [These are the normal bit string operations.]

*30-2. There must be operations for substring extraction
and assignment (the substring 'length must not be
restricted to a constant value), access to String length,
string replication by a constant factor, and location of
a given substring within a, string (i. e. , INDEX). [A use
of bit string extraction is(discussed in Section 5.2. 4.

*30-3. Equality and inequality must be defined on bit
string. type s.

L-'30-4. There musk be operations for left and right
shifting of bit strings.

30-5. There must be operations for conversion from
other types (e. g. , numeric) to bit string type. [Acces,sing
the representation of a value is necessary in I/O and other
conversions.]

Language Evaluations

All three languages which support bit string provide AND,
OR, and NOT operations. All provide the desired conver-
sion operations. PL/I does not provide XOR, while J3B
and J73I do. All three provide substring extraction and
assignment, J73I and PL/I provide access to string length,
and only PL/I supports string replication and substring
location. Shift operations are provided only in J3B and
J73I.

Only J73I and PL/I support equality and inequality
operations.

Language Evaluation Summary

The candidate languages are ordered, according to the degree towhich they meet SHOL bit string data type requirements, as follows:
3731- Most requirements are met.

Deficiencies are:

explicit length specification not required

no string replication or substring location
J3B- Fewer capabilities are provided.

PL/I-

Deficiencies are:

no base 2 or 8 literals

no access to string length, string replication,
or substring location

no equality/inequality operations

Several desired capabilities are not provided.

Excess capabilities are supported.

Deficiencies are

explicit length specifiction not required

non-constant length strings permitted

no base 8 or 16 literals

no XOR or shift operations

PASCAL.- Some similar capabilities are provided by the set
data type.

FORTRAN- Bit-strings are not supported.
6. 3. 6 Pointer Type

Goal

A pointer data type (see Section 5.2. 7) is needed to support
certain types of processing performed in simulator executives (e.g.,

116

J

I/O request queues) and for use with dynamically allocated storage,
which might be required in a digital image generation visual system.
The facility provided should meet these requirements without providingexcess generality at the expense of efficiency.

Supporting Concepts

3P, Pointer Type Definitions;

The pointer data type must be provided in a manner con-sistent with the static typing of the SHOL, thereby supporting program
maintainability and reducing opportunity for error.

Requirements

3P- 1. A pointer data type is required.

3P-2. Explicit specification of the type pointed to must berequired for each pointer definition.

3P-3. Explicit dereferening of the pointed-to value shallbe required. [Dereferencing is the operation of accessing
the object pointed to by a pointer value, e.g. P--'A inPL/I, Pi.A in PASCAL, or A(P) in J3B. Requiring
explicit dereferencing contributes to program understand-
ability.]

*3P-4. It must be possible to define objects which are
dynamically allocated. [See 3R- 1 below.]

Language Evaluations

A pointer data type is provided by all of the candidate
languages except FORTRAN. PASCAL pointer definitions
do not specify the type pointed to, and in J3B such speci-
fication is permitted but not required. The only languages
which require explicit dereferencing are J3B and PASCAL,
though it is available in J73I and PLR also.

Only PL /I and PASCAL support dynamic allocation of dataobjects.

(Note that J73I pointers are declared and represented as
integers. There is not an actual pointer type.)

3Q. Pointer Literals.

The concept of a null pointer must be representable in adistinctive and readable manner. Pointer constants specifying addressesof data objects are also'required by the uses of pointers in simulator
executives [see 3R-3] .

117

Requirements

3Q-1. There shall be a NULL pointer literal. [This is the
literal normally provided for pointer types.]

Language Evaluations
r

Of the languages supporting pointers, only J73I does not '
provide a NULL pointer literal.

3R. Pointer Operations.

Pointer operatiOns supporting simulator requirements, as
discussed in Section 5.2.7, must be provided in a manner compatible
with the goal of object code efficiency.

Requirements

*3R- 1.- There must be/operations for the allocation and
deallocation of dynamic storage. [Explicit deallocation is_
required as bpposed,to garbage collection, because of the
negative impact of garbage collection on efficiency.]

3R-2. Identity and non-identity relations must be defined
on pointer types. These are the equality operation's for
the pointer type.]

*3R-3. There must be an operation for converting from
integer to pointer values. A program using this operation

is must be flagged by the translator, so use of this capability
can be administratively controlled. [This capability is
needed to provide some SHOL support software, as
described in Section 5.2.7. Since its use can impair pro-
gram understandability, its use should be highlighted.
Such highlighting would not be possible if the capability
were provided by an assembly language subroutine (see
10C).

Language Evaluations

Only PASCAL and PL/I provide operations for allocation
and deallocation of dynamic storage.

All of the languages which ii,ve pointers except 3731 pro-
vide identity/non-identity operations. (J731 simply uses
integers as pointers, so relational operators are available.)

None of the languages support .explicit conversion from
integer to pointer. (In J731, since pointers are integers,
the desired capability is, in a sense, provided.)

13 1)

Language Evaluation Summary

The candidate languages are ordered, according to the degree towhich they 'meet SHOL pointer data type requirements, as follows:
PL/I- Most requirements are met.

Deficiencies are:

explicit dereferencing not required

no, conversion from integer to pointer

PA KCAL Most requirements are met. Pointers are not
bound to a type.

Deficiencies are:

pointer definitions do not specify the type
pointed to

no conversion from integer to pointer
J313.: No dynamically allocated data objects are provided.

Deficiencies are:

specification of type pointed to not required

no dynamically allocated objects

no converSion,from integer to pointers
J731- Pointers are really integers. Dynamically allocated

objects are not provided,

Deficiencies are:

pointers are integers

explicit dereferencing not required

no dynamically allocated objects

no NULL literal

FORTRAN- There is no support of pointer data.

1
119

6.3.7 Procedure Types

Goal

The SHOL must provide procedure variables in order to support
current methods of foreground task dispatching, as described in Section
5.2.8. This feature n-tust be provided in a manner that does not increase
the likelihood of programmer error nor add unneeded complexity to the
language.

Supporting Concepts

3S. Procedure Type Definitions.

Specification of procedure variables-in the SHOL must
express clearly the intent of the programmEilr.

Requirements

3S-1. A procedure data type is required.

35-2. Explicit specification of the number and types of
arguments shall be required for each procedui:e variable
definition and must be considered part of the variable's
value type. [Hence, procedures haVing diffeient numbers
or types of arguments cannot be assigned to the, same
procedure variable; see 2D_2. Specifying the argument
types helps to prevent error and makes programs more
understandable.]

Language Evaluations

Only PL/I supports procedure variables. Explicit specifi-
cation of parameters for such variables is not required,
however.

3T. Procedure Operations.

Operations provided for procedure variables must meet the
requirements of the task dispatching operation (see Section 5.2.8) and
must be consistent with the rest of the language.

Requirements

3T-1. There must be equality and inequality operations
between elements of procedure type. [These operations
are required for uniformity.]

120

Language Evaluations

PL!I provides equality and inequality operations for pro-
cedure types.

Language Evaluation Summary

The candidate languages are ordered, according to the degree to
which they meet SHOL procedure data type requirements, as follows:

PL/I- Provides procedure variables.

Inadequacies are:

FORTRAN,
J3B, 3731,
PASCAL-

6. 3:8 Array Types

Goal

parameter specification is not part of the
variable's value type

Procedure variables are not provided.

The SHOL must provide arrays, or composite data types with
indexible components of homogeneous type. Arrays must be supported
in a manner which contributes to program understandability and effi-
ciency, and which meets simulator programming needs as discussed in
Section 5. 3.3.

Supporting Concepts

3U. Array Type Declarations.

Arrays of the various data types must be specifiable in a
manner consistent with other type definitions in the language.

Requirements

*3U- 1. Arrays with components of any scalar [including
procedure] or crdmp -site type shall be definable. [Array's
of procedures are required to support current methods
of foreground task dispafching.]

3U-2. Accuracy specifications [see 3A] shall be required
for components of appropriate numeric type.

3U-3. The number of dimensions for each ar5ay variable
must be specified in programs and shall be determinable
at translation time. No need for a variable number of
dimensions was observed.]

121 4"-d

*3U-4. At least three dimensions are required. [Required
for 3'- variable linear function interpolation.]

*3U-5. The range of subscript values for each dimension
must be specified in programs and need only be determi-
nable at translation time [i. e. ,. specified with constant
values; however, see 7E-2 for array parametejs. No
need for arrays with varying bounds was observed.]
3U_6. The-range of subscript values must be restricted
to a contiguous sequence of integers, the elements of an
ordered enumeration type, or a sequence of, single char-
acters. [These types of ,subscripts are sufficient 'for
simulator needs.]

3U-7. The lowest bound of a sequence of integers defining
the range of subscript values must be language-defined,
rather than programmer-definable. [This simplifies the
language, makes subroutine interfaces more efficient, and
is adequate for the simulator application.]

Language Evaluations

All of the candidate languages provide an array data type,
and all allow at least the required three dimensions. All
languages permit any of their, scalar types as array Com-
ponents. (Hence arrays of procedures are supported only
in PL/L) Only PASCAL and PL/I allow arrays of arrays.
J3B allows only one-dimensional arrays of records, while
other languages provide more general support. All
languages require the same numeric accuracy specifica-
tions as are required for scalars of the same type.

The number of dimensions is fixed at compile time for all
languages. All require that subscript ranges be determin-
able at compile time except PL/I, which determines ranges
for automatic and controlled storage at time of allocaiion.

Of the candidate languages, only PASCAL allows subscripts
to be of enumeration type or to be single characters.
PASCAL also permits Boolean subscripts, which are not

'desired. Only FORTRAN and J3B have a language - defined'
lower bound. C-

._

3V. Array Literals.

The language must support the initialization of an arra.
with constant values. This is necessary to create such data structure:
as the LFI breakpoint and value lists.

122 .

Requirements

3V- I. A constructor operation [i.e., an operation that
,constructs an element of a type from its constituent parts]
is required for array types.

Language Evaluations

None of the candidate languages provide an explicit array
constructor operation. (All except PASCAL allow initiali-
zation of arrays with lists of constants.)

3W. 'Array Operations.

Operations must be provided to allow the use of individual
array components and of subarrays of arrays of records. Operations onentire arrays representing matrices and vectors are also required, for
reasons discussed in Section 5.3. 3.

Requirerhents

=','3W-1. A value accessing operation for individual array
components is required. [This is a fundamental array
operation.]

*3W-2. Assignment to individual array components must be
permitted, This is a fundamental array operation.]

;:3W-3. Operations for value access and assignment of sub-
arrays consisting of a complete dimension of an array of
record- components are required. [This allows grouping
of related record data, all of which is indexible by the
same enumeration type, into a single array, while still
allowing vector operations on a subarray. Section 5.3,4.2.2
illustrates this concept. Note that a uniform language will
provide for selecting complete dimensions of any array
type as well.]

3W-4. There must be array operations for matrix addition
and subtraction, multiplication of a matrix by a scalar,
multiplication of a vector by a scalar, vector cross-product,
and vector dot product. [Such operations are heavily used
in simulators, particularly in the Aerodynamics, Visual,
and Tactics systems.]

'3W-5. Equality and inequality operations on arrays are
required.

123

Language Evaluations

All of the languages provide value access and assignment
for individual array components. Only PL/I.permits selec-
tion of subarrays consisting of a complete dimension of an
array of.,records. None of the languages provide equality/
inequality operations on arrays.

Matrix and vector operations are supported only by FL /I,
and it supports only addition and subtraction.

Language Evaluation Summary

The candidate languages are ordered, according to the degree to
which they meet SHOL array requireMents, as follows:

PL/I- Most requirements are met.

Deficiencies are:

single characters not usable as subscripts

lower bound of subscript range defined by
programmer

no array constructor operation

no equality/inequality

no matrix multiplication operations

PASCAL- More subscript types are permitted. Fewer opera-
tions are provided.

Deficiencies are:

permits Boolean subscripts

lower bound of subscript range defined by
programmer

no array constructor opekation

no subarray selection

no equality/inequality

no matrix and vector operations

1 24

33B- Several desired capabilities are not provided.
More restrictions are imposed.

Deficiencies are:

only one-dimensional arrays of structures
permitted

no arrays of arrays

single characters not usable as subscripts
no array constructor operation

no subarray selection

no equality/inequality

no matrix and vector operations

3731- Several desired capabilities are not provided.
Array lower bound is programmer-defined.
Deficiencies are:

no arrays of arrays

no single character or enumeration typesubscripts

lower bound of ubscript range defined by
programmer

no array constructor operation

no subarray selection

no equality/inequality

' no matrix and vector op-rations

FORTRAN- As structures are not supported, there are noarrays of structures. Desired subscript types
are not provided as data types. Desired opera-.
tions are not provided.

1 25

Deficiencies are:

no arrayi of arrays

no equality/inequality

no matrix and vector operations

6.3.9 Record Types

Goals

The SHOL must provide records, i.e., composite data types with
labelled components of heterogeneous type [e.g., PLt /I structures].
Simulator data organization could be greatly.irrp:roved by the use of
records; as illustrated in Section 5.3.4. '

Supporting Concepts

3X. Record Type Declarations.

Records shall be provided in a uniform and consistent man-
ner. A variant record type facility is required for some simulator
functions.

Requirements

*3X-1. Records with components of any scalar [including
procedure] or composite type are required.' [Restric-
tions on component types degrade language uniformity.]

3X_2. Accuracy specifications must be given for each
component of a real numeric type. [This is for uniformity
with declaration of simple variables.]

*3X_3. It must be possible to define types as alternative
record structures (i.e., variants). [Variants are used
in simulators, for example, in the radio station and radar
emitter data files.]

3X-4. The structure of each variant must be determinable
at translation time. [This is inherent in the variant record
concept.]

3X-5. Each variant must have a tag field (i. e. , a compo-
nent that can be used to discriminate among the variants
during execution). [This is inherent in the variant record
concept.]

126

3X-6.. The tag field must not be directly assignable.
[Assigtirnent to tag fields changes the type of the variant.For reliability and understandability,- such assignmentsmust be restricted.]

3X-7. The tag field must be stored in the record, and itsstorage position must be controllable by the programmer.[Since variants.are used to describe input ctha records,the programmer must be able to specify the tag fieldtion in the input record. No use of untagged record var.-ants has been observed,]

Language Evaluations

All of the candidate languages except FORTRAN provide arecord data type. All allow components of any scalar'type, and all except J3B and J731 allow components ofarray and record types. All require accuracy-specifica-
tions as for scalars of the same type. Variant recordtypes are supported explicitly by PASCAL, and less.
directly.by J3B and 3731 through an overlay feature.(PL/1's overlay capability provides some similar functions,but less explicitly-.)

nly PASCAL's variants have a tag field. However,ASCAL does not require-that the tag be stored in ther cord, and if it is, the programmer has only partialc ntrol over- its position. PASCAL does not prohibit
'assignment to the.tag field.

3Y. Rec LIT&I -Literals.

The language must support the initialization of a record withconstant values, in order to allow the creation of data tables such as thecamera/modelboard altitude limit bit map (see Section 5. 3.4. 4),

Requirement,:

3Y-1. constructor operation [i. e. , an operation that,constructs an element of a type from its constituent parts]
is required for all record types. [Such an operation isused to initialize record variables.]

Language Evaluations

'None of the candidate languages provide an explicit record
constructor operation.

1 27

3Z. Record Operations.

The SHOL must provide operations to allow the use of
individual components of records.

Reouirements

3Z-1. A value accessing operation for individual record
components is required. [This is a basic operation of the
type.]

*3Z-2. Assignment to individual record components that
have alterable values [i.e., all except the tag field] must
be permitted. [This is a basic operation also.]

Language Evaluations

All of the candidate languages provide access and assign-
ment to individual record components.

Language Evaluation Summary

The candidate languages are ordered, according.to the degree to
which they meet SHOL record requirements, as follows:

PASCAL- Most basic capabilities, including variant record
types, are, provided.

Deficiencies are:

o tag need not be stored

lack of programmer control over tag storage
position

tag field assignable

no record constructor operation

J3B, J731- Variants are not supported as requested. Compo-
nent types a-e

Deficiencies are:

o no components of array or record type

no variants (overlays instead)

128

1.'

V.

(
PL /I- An overlay capability is provided.

Deficiencies are:

no record variants

FORTRAN- Records are not provided.

Section Summary

Ranking therlanguages by how well they satisfy the data type. -
requirements gives the following ordering:

PL /I- acceptable support for all types but Boolean and
enumeration

PASCAL- major deficiencies are lack of fixed point, bit
string, and procedure types; and poor character
support

.73B-

3731-

acceptable support for all types except Boolean,
enumeration, and procedUre

lacks adequate support for fixed point, enumera-
tion, Boolean, pointer, and procedure types

FORTRAN- fails to meet most requirements
6. 4 Expressions

Goal

Expressions in the SHOL should be provided in a uniform manner.
Appearance and interpretation of expressions should correspond to
common usage when thiS does not conflict with other requirements. The
FORTRAN background of simulator programmers is a consideration inthe design of this feature.

Supporting Concepts

4A. Side Effects.

Expression evaluation should not alter the environment ofthe expression (i.e., repeated evaluation of the expression should 'pro-duce identical results). If not, such programs are more difficult to
understand and, hence, maintain correctly.

13g

Requirements

4A-1. During expression evaluation, assignment must
not be permitted to any variable. [Note that this pro-
hibits functions from having assignable (i. e, output)
parameters.]

4A-2. A function must not be permitted to change vari-
ables that are non-local to the function. [Note this
makes functions free of side effects -- two calls with
the same argument values will always produce the same
result. This means compiler optimizers can produce
much more efficient code for programs containing func-
tion calls. If a. side effect is desired, a programmer
must use a procedure with input/output arguments.]

Language Evaluations

None of the candidate languages prohibit f,unctions from
having assignable parameters, and hence from altering
the environment of the expression containing the function
call.

4B. Allowed Usage.

Language uniformity dictates that expressions, variables,
and constants be usable in the same contexts as one another (wherever
such usage is sensible).

Requirements

4B-1. Expressions of a given type must be permitted
wherever both constants and variables of that type are
allowed. [This is a uniformity issue.]

Language Evaluations

FORTRAN fails to meet this requirement. For example,
variables or constants are required as loop start, incre-
ment, and end values.

4C. Constant Valued Expressions.

Constant valued expressions support program understanda-
bility and c6Q.ditional compilation, as discussed in Sections 5.5.1.1 and
5. 5. 2.

130
139

Requirements

4C-1. Constant valued expressions (i. e. expressions
whose operands all have a constant value or Boolean
expressions having_a constant value independent of the
value of variables contained in the expression, e. g.
B OR C where C is a constant name having the value
TRUE) must be permitted wherever constants of the
types are allowed. Such expressions must be evaluated
at, translation time, with target machine accuracy. [The
use of constant expressions is discussed in Section
5.5.1.1.]

4C-2. Expressions containing function calls with constant
arguments need not be considered constant valued expres-
sions. [This constraint is to make compile-time evalua-
tion of expressions simpler.]

Language Evaluations

None of the candidate languages provide full constant
expression evaluation. J3B probably provides it to a
greater extent than the others. For example,' only, J3B
supports translation time evaluation of real and pointe,r
expressions. None of the languages provide evaluation
of enumeration type or character constant expressions.
Only J3B and J73I provide evaluation of constant bit
string expressions.

None of the languages appear`to require that constant
expressions beevaluated with target machine accuracy.

Language Evaluation Summary

The candidate languages are ordered as follows, according to
the degree to which they meet SHOL requirements for expressions:

J3B- Provides more constant expression evaluation
than others.

Deficiencies are:

functions can assign to parameters

incomplete constant expression evaluation

3731- Some constant expression evaluation is provided.

Deficiencies are:

functions can assign to parameters

incomplete constant expression evaluation
k PLR,

PASCAL,
FORTRAN- Little or no constant expression evaluation.

Deficiencies are:

functions can assign to parameters

expressions sometimes forbidden where
constants and variables can be used

no translation time evaluation of constant
expressions

6.5 Constants, Variables, and Declarations

Goal

The SHOL must allow declaration of constants and variables ina manner supporting program understandability. These features
should be designed to facilitate translation-time detection of errors
and to allow generation of efficient- object code. These issues are
discussed in Section 5.5. 1.

Supporting Concepts

5A, Declaration of Constant Names.

A constant definition facility allows programmer intent
to be expressed more explicitly, enhancing maintainability.

Requirements

'5A-1. The ability to associate identifiers with constant
values of numeric, Boolean, character string, bit string,
array, and record types is required. [See Section
5. 5. 1. 1.

5A-2. Type names must be interpreted as abbreviations
for the -ir values [i.e. two record type names having the
same definition shall be considered equivalent. This
rule is motivated by language design considerations. It
leads to a simpler use of a language.]

132 111

Language Evaluations

Of the candidate languages, only J3B and PASCAL allow
constant names. Each allows them for the scalar types
of the language, but neither alloWs them for arrays orrecord s.

5B. Declaration of Variables.

In the interest of program understandability and maintaina-bility, all variables should be explicitly declared.

Requirements

5B-1. The value type, of-each variable must be specifiedexplicitly. [Readability is more important than writabilitybecause of maintainability considerations; see Section 6. 1.]
5B-2. The value type of loop control variables must be
specified as part of the loop control statement. [This alsois an understandability consideration.]

Language Evaluations

All of the candidate languages provide a means to declare
the types of -,.-riables, but FORTRAN and PLII do not
require explik...,t declarations for all variables. None ofthe languages allow the type of the loop control variable
to be specified in the loop control statement. (PASCAL
and J7 3I require that it be declared .explicitly in the samemanner as other variables.)

5C. Scone of Declarations.

Name scoping rules should not be more complex thanrequired by the simulator application, in order to allow efficient
implementation,

Requirements

5C-1. It must be possible to declare variables whose scopeis at most an entire subroutine body.

5C-2. The scope of explicit declarations (except fcr loop
control variables) is not required to be a unit small,r than
a subroutine. [This simplication appears to be adequate
to meet simulator needs, considering the current use of
FORTRAN.]

133

5C-3. The scope of a loop control variable must be the
loop control statement and loop body [see also 6F].
[Having this rule permits efficient loop code to be gen-
erated with less complex optimization piocessing.]

Language Evaluations

All of the candidate languages permit the declaration of
variables whose scope is a subroutine body. PL/I pro-
vides.smaller dame scope units, a feature which is not
required.

ANSI FORTRAN loop control variables are accessible
only within the loop. This is not true of any of the other
languages.

5D. Restrictions on Values.

The types of values assignable to variables should be those
necessary to support simulator programming. (For example, as indi-
cated in Section 5.2.8, procedure variables are necessary for the fore-
ground task dispatcher.) Excess generality, at the expense of efficiency
and reliability, is not desired.

Requirements

5D-1. Labels and statements must not be assignable to
variables, computable as values of expressions, or usable
as parameters to procedures or functions. [Having the
forbidden capability encourages complex central flow,
making programs more difficult to understand.]

5D-2. Procedures and functions are not required to be
usable ass parameters to procedures or functions, or
returna le as function values. [The need for subroutines
as para eters was not observed in our examination of
simulator p rams.

Language Evaluations

FORTRAN allows the assignment of labels to variables
in the assigned GOTO statement. J73I allows labels to
be used as parameters. PL/I provides a general label
variable type, with use as expression values, parameters,
function values, etc. , PASCAL and J3B permit none of
these undesired uses of labels.

J73I, PASCAL, and PL/I allow procedure parameters,
which are not required. None of the languages allow pro-
cedures as function values.

134

5E. Storage Classes.

As described in Section 5.1, both static and automatic--'storage classes are required to support simulator data organizationtechniques. These fa-ilities should resemble those in other commonly-used languages and/should facilitate coordination between members ofthe programming group.

Requirements

5E-1. The ability to statically allocate variables local
to compilation units is not required. [Some simulator
customers specify that static storage not be used.])
5E-2. It must be possible to statically allocate storagefor variables which are external to compilation units.
[Such data is required to support the 'datapool' concept
used in simulator development, in which data is availableto the various compilation units comprising the system;
see Section 5. 1. 1.]

5.E. -3. It must be possible to have storage for variableslocal to a subroutine initialized (and possibly allocated)on each entry to the subroutine. [Values of such variablesare not preserved from one execution of a scope to thenext; see Section 5.1.2.]

Language Evaluations

All of the candidate languages except PASCAL providestatic storage external to compilation units. (The FORTRAN
COMMON and PL/I external data concepts are as simi-lar to the ydatapooi1;lacility as is the JOVIAL COMPOOL
concept.)

All of the languages also provide automatic storage local
to subroutines. (FORTRAN provides this only in the sensethat entities which are not initialized -and which are
assigned to in the subroutine are undefined on RETURNfrom the subroutine. The storage is statical? y allocated.)
Initial Values.

Since knowing the initial value of a variable is often
important in understanding programs, a method of specifying initial
values should be provided.

1
135

. Requirements

5F-1. There must be no default initial values for variables.
[Default initialization can require unneeded object code.]

5F-2. It need only be possible to initialize any variable
with a constant value. ([Initialization with expressions
whose value is only known at run-time is an unneeded
capability.]

Language Evaluations

None of the candidate languages include default initializa-
tion of variables (except in a few isolated cases, e.g.,
PLR AREA data). All of the languages except PAS AL
_provide a means of explicitly initializing variables.

5G. Operations on Variables.

It must be possible to assign and use values of variables
in a uniform manner.

Requirements

=5G-1. The assignment operation and an implicit value
access operation shall be automatically defined for each
variable. [Note that this includes scalar, array, and
record variables. This requirement is for language
uniformity.]

Language Evaluations

All of the languages provide assignment and value access
operations for scalar types. Only PASCAL and PL/: per-
mit assignment to arrays. These two languages also per-
mit assignment to record variables, which is provided
in only a limited manner in J3B and J73I. (FORTRAN
does not have records.)

Language Evaluation Summary

The candidate languages are ordered, according to the degree
to which they meet SHOL requirements for constants, variables, and
declarations as follows:

J3B- Almost all major requirements are met. Assign-
ment to composite types is not fully supported.

Deficiencies are:

no constant names for arrays or records
lo\op variable not declared in loop control
statement

loop variable not local to loop

no assignment to composite variables
J73I- Constant name's are not provided. Label parametersare allowed. Assignment to composite types isnot fully supportd.

no constant names

loop variable not declared in loop control
statement

loop variable not local to. loop

label parameters permitted

no assignment to composite variables
PASCAL- Constant names are provided. There is no static

storage external to compilation units. There.isno way to initialize variables.

PL /I-

Deficiencies are:

no constant names for arrays or records
loop variable not declared in loop control
statement

loop variable not local to loop

no external storage

no initialization

Constant names are not supported. Implicitdeclarations are permitted. Undesired capabilitiesare provided.

137

Deficiencies are:

no constant names

implicit declarations

loop variable not declared in loop control
statement

loop variable not local to loop

label variables (though some uses of these
provide a needed capability, in the absence
of a CASE statement)

FORTRAN- Few of the desired capabilities are provided.

Deficiencies are:

no constant names

implicit declarations

assignment of labels to variables permitted

no automatic storage allocation

no assrgnment to arrays

loop variables not declared in loop control
statement

6. 6 Control Structures

Goal

The SHOL must provide control structures for conditional,
iterative, and sequential control. These are required by the types of
processing performed in simulators. Conditional processing is
particularly prevalent, as discussed in Section 5.4.1. Control struc-
tures should be designed to support structured programming and,
enhance readability, and should allow programmers to express concepts
in a notation'which is natural to them. Each control structure should
provide a single capability.

138

Supporting Concepts

6A. Basic Control Facility.

The set of control structures should be simple, under-standable, and easy to learn to use effectively.

Requirements

6A-1. Built -in control Mechanisms should be of,minimal
number and complexity. [.This is for simplicity.]

6A-2. Each must be distinctively introduced and delimited[e. g., CASE-ENDCASE; this tends to make
the structure of programs more readily perceivable.]
6A-3. Nesting of control structures must be allowed.[This provides a natural program structure:]

Language Evaluations

All of the candidate languages provide a reasonably simple
set of control structures. FORTRAN's control mecha-
nisms are the least complex, but they do not provide the
'desired capabilities. FORTRAN is also the only language
which does not allow nesting of control structures (except
for loops).

"All of the languages are deficient in the syntax used to
define the lexical extent of control structures. PASCAL
requires a terminator for CASE clauses, but it is not
distinctive. PL/I requires.a non-distinctive terminatorfor loops. All other control structures are defined by
compound statements, which are, of course, not distinctive.

6B. Sequential Control.

The method of indicating successive statements to be exe-
cuted should encourage a .iniform programming style and should mini-mize chances for programmer error.

Requirements

6B -1. There must be explicit statement terminators [as
opposed to statement separators as in PASCAL, or no
statement delimiters as in FORTRAN. Statement termina-
tors have been shown in experiments to be less error-
prone than separators.]

1'

1 39

Language ,Evaluations

FORTRAN does not have any statement delimiters: In
PASCAL, the delimiter separates rather than terminates
statements. The other candidate languages, J3B, J73I,
and PL/I, all have the required statement terminators.

6C, Conditional Control.

There must be facilities for selecting among various con-
trol paths based on a condition. Such facilities should support struc-
tured programming practices and enhance program maintainability.
Complex conditional assignments are needed, for reasons discussed in
Section 5.4. 1. 1.

Requirements

6C-1. The conditional control structures must permit
selection of alternative control paths depending on either:

o the value of a Boolean expression [IF-THEN,
IF-THEN-ELSE; this is the basic conditional
structure] .

e a .computed choice among- labelled alternatives
indexed CASE; see Section 5. 4. 1. 2].

6C-2, The language must specify the control action for
all values of the discriminating condition used to select
alternatives. [e.g., in an indexed CASE statement,
there must be a language-defined action corresponding
to any possible value of the index for which the program-
mer provides no specific action. Specifying the action
ensures standardization among implementations.]

6C-3. The user may supply a single control path to be
used when no other path is explicitly selected. [e. g. ,

in an indexed CASE statement, an alternative may be
specified whiCh is selected when the CASE index does
not match the label of any labelled alternative; such an
alternative can contribute to program readability.]

6C-4. Index values may be of an exactly representable
scalar type [integers, enumeraticn elements, character
strings, or bit strings] and must be constant values.
[The use of enumeration types as CASE indices is dis-
cussed in Section 5.2. 3. 3. 1

140
.1.

.6C-5. Alternatives may be associated with several index
values or with a range of index values. [This capability
is often convenient and contributes to program readability.]

Language Evaluations ti

None of the candidates ,nguages provide all of the required
conditional control facilities. Only J73I and PASCAL have
a CASE statement. PL/I and 33B have no CASE state-
ment, and FORTRAN has neither a CASE statement nor
an ELSE component for IF-THEN statements. The indexed
CASE statement of PASCAL Meets the requirements more
closely than 'that of J73I by requiring explicit labelling of
alternatives with the index value. Only the 373I CASE
statement allows specification of a control path to be taken
if no other CASE path is explicitly selected, but such a
specification is not required.

The PASCAL CASE. statement permits-an index value of
any exactly representable scalar type, whereas 373I's
version does not. Specifically, character values are not
permitted as indices in 3731. Both languages allow an
alternative to be associated with several index values, but
only J73I permits index ranges.

6D. Conditional Expressions.

It must be possible to.clearly and efficiently select alterna-
tive operands within arithmetic expressions, based on a condition.
Simulator design and documentation involves extensive use of such a
feature, as discussed in Section 5.4. 1. 1.

expressions.

Requirements

*6D-1. Conditional expressions, allowing selection of
alternative expression values based on the value of a
Boolean expression, are required. [See Section 5.4. 1. 1.

6D_2. The language must require the specification of the
expression to be selected for all values of the discrimi-
nating condition [i.e. , IF-THEN-ELSE].

_6D-3. Nested conditional expressions are not desired
[e.g., IF (IF... THEN... ELSE) THEN.... ELSE.... ;
such expressions quickly become unreadable].

Language Evaluations

None ot t112 candidate languages allc.w conditional

6E. Conditional Compilation.

As discussed in Section 5.5.2 and in Sections 4.6 and4.7, it should be possible to specify inclusion or exclusion of sectionsof code based on information available at translation time.
Requirements

6E_ 1. When the selected case for any conditional state-
ment is determined by a constant expression [see 4C]is required that only the selected path be compiled. [Thisis a means of obtaining conditional compilation capability.]
6E_2. When the selected alternative of a conditional
expression is determinable at translation time, it isrequired that only the selected alternative be compiled.

*6E_3. A method of conditionally compiling declarations isrequired. [This supports program portability; see Sec-tion 4. 7.]

Language Evaluations

Some form of conditional compilation is provided by threeof the candidate languages -- J3B, J73I, and PL/I. OnlyJ3B supports conditional compilation as specified in therequirements, i. e, by normal copditional expressionsvith alternatives determinable at compile time.. J73I andPL/I provide special compile-time features for this pur-pose. However, the J3B facility does not allow conditional
compilation of declarations, while those of 3731 and PL/Ido.

6F. Iterative Control.

An iterative control (e.g., loop) facility is necessary tosupport the general iterative processing requirements of simulator pro-gramming, and to provide a complete set of structured programming
mechanisms.

Requirements

*6F-1. There must be an iterative control structure thatpermits a loop to be terminated before or after each
execution of the loop body. [Termination at other points
may be useful but is not required; the need for this con-trol facility is derived from general language design
considerations.]

142

*6F-2. There must be a control structure that iterates
over enumeration types or over subranges of integers
[e.g., the FORTRAN DO-LOOP; such a structure is
used quite commonly].

6F_3. The value of the control.-variable must be accessil)le
only as a constant within the control structure. [1his
makes it easier to optimize loops and avoius errurs
dependent on knowledge of the control variable's value
when the loop is exited.]

6F_4. The control structure must i.ern-lit zero iteraticns
to be specified g. , DO FROM 1 TO N, where N is less
than one; not providing this capability is a significant
FORTRAN failure].

Language Evaluations

All of the candidate languages provide iteration over sub-
ranges of integers, and all but FORTRAN provide an
indefinite iteration facility (e. g. , WHILE or UNTIL). Only
3731 and PASCAL have an enumeration ,data type, so only
these languages include iteratior over enumeration types.

Only PASCAL and FORTRAN loop control variables are
read-only within the loops. In other languages, the con-
trol variable may be assigned to explicitly. All candidate
languages except FORTRAN permit zero loop iterations
to be specified.

6G. Explicit Control Transfer.

A "go to" statement is necessary, but its use should be
restricted to encourage programs with an understandable control flow.
Other types of explicit control transfers are not desired, for reasons
of language simplicity.

Requirements

*6G-1. There must be an explicit mechanism for control
transfer [i.e, , the "go to"; the need for this feature is
derived from general language design considerations].

6G-2. The "go to" must not permit transfer into loops or
out of procedures. [Permitting such transfe..s is error-.
prone.]

6G-3. The "go to" must permit transfer from one case
constituent to another. [This make it easier to get
efficient object code.]

1
143

6G-4. Control transfer mechanisms in the form of switches,
des4gnational expressions, label variables, label parameters,
or alter statements are not desired. [These are considered
to be error-prone in their use and contribute to complex
program :ontrol flows that are hard to understand.]

Language Evaluations

All of the candidate languages include a "go to" statement.
None estrict its use to the extent required. In particular,
3731, PASCAL, and PL/I allow transfers'out of procedures,
and FORTRAN and J3B allow transfers into loops.

Both languages with CASE control structures (3731 and
PASCAL) allow transfers from one case constituent to another.

Only PASCAL and 3731 limit explicit control transfer mech-
anisms to the "go to." FORTRAN and 33B allow switch or
indexed "go to" constructs, and PI/I has label arrays.
These features are provided to supply the capability which
is supplied by the CASE statement in PASCAL and 3731,
so they are not redundant.

Language Evaluation Summary

The candidate languages are ordered, according to the degree to
which they meet SHOL control structure requirements, as follows:

J731- All major functions except conditional expressions
are provided.

Deficiencies are:

non-distinctive syntax
explicit labellit.4-of CASE alternatives not
requi red

CASE indices of character type not allowed
no conditional expressions
conditional compilation not implemented in
required manner
assignment to loop control variable permitted
transfer out of procedures permitted

PASCAL- All major functions except conditional expressions
are provided. Conditional compilation is-not supported.
Deficiencies are:

.non-distinctive syntax
statement separa.tors rather th, terminators

I
.1.

J313-

PL/I-

no, way to specify 'ELSE' control path in CASE
CASE alternatives cannot be associated with
index ranges
no conditional expressions

o no conditional compilation
transfer out of procedures permitted

CASE statements and conditional expressions are
not provided. (Switches provide a capability similar
to the CASE statement.) Conditional compilation is
supported by the compile-time determination of
alternatives in regular conditional control structures.

Deficiencies are:

non-distinctive syntax
no CASE statements (switches instead)
no conditional expressions
no conditional compilation of declarations
iteration- over enumeration types not available
(because there are no enumeration types)
assignment t.:-) loop control variable permitted
transfer into loops permitted

CASE statements and conditional expressiond are
not provided. (Label arrays provide a capability
similar to the CASE statement.) Conditional
compilation is not provided in the required way.

Deficiencies are:

non-distinctive syntax
no CASE statements (label arrays instead)
no conditional expressions
conditional compilation not implemented in
the required manner
iteration over enumeration types not available
(because there are no enumeration types)
transfer out of procedures permitted

FORTRAN- CASE statements, conditional expressions, and IF-
THEN-ELSE structures are not provided and the
object of IF-THEN may only be a single statement.
Conditional compilation is not supported.

145

6. 7

Deficiencies are:

non-distinctive syntax

no statement delimiters

no CASE statements (indexed 'go to's' instead)

no ELSE component in IF-THEN

no conditional expressions

no conditional compilation

no indefinite iteration facility

iteration over enumeration types not available
(because there are no enumeration types)

specification of zero loop iterations
permitted

transfer into loops permitted.

Functions and Procedures

Goal

The SHOL must allow the specification and use of subprograms(i.e. functions and subroutines). This feature is necessary to supportmodular programming and is required by simulator system organiza-tion, as discussed in Section 5.2.9. It should be provided in a mannerwhich contributes to program understandability and which facilitatesthe production of efficient object code.

Supporting Concepts

7A. Function and Procedure Definitions.

The subprogram capabilities provided should support cur-rent practices of simulator organization.

Require ments

*7A-1..A means of defining and invoking functions (whichreturn values to expressions) and procedures (which canbe called as statements) shall be provided.

1.4 6

1

7A_2. Neither recursion nor the nesting of function and
procedure definitions is required. [Such usage was not
observed and not considered necessary.]

7A_3. Reentrant procedures are required. [These are
used by certain, system subroutines in simulators, e.g.,
conversion routines.]

Language Evaluations

All of the candidate languages provide function and pro-
cedure capabilities. All except FORTRAN provide more
capability than is required. In particular J73I, PASCAL,
and PLR allow nesting of definitions; and J3B, J73I,
PASCAL, and PLR allow recursion. (In :T3B, only pro-
cedures designated as reentrant may be called recursively.)
Only J3B, J73I and PL/I have reentrant procedures.

7B. Function Declarations.

Functions need only return those value types required in
simulator programming, and should not add unneeded implementation-complexity to the language. .

)1

Requirements

7B-1. If a function result is a composite value or a bit
string, then restricting its size, to a constant value is
sufficient to meet SHOL requirements. [This significantly
simplifies a language.]

*7B-2. Function results of all scalar types except charac-
ter string and procedure are required. [Functions
returning character string or procedures present some
implementation problems. The need for such functions
is riot significant in simulator programming.]

7B-3. Function results of label or pr-ocedure types are
not desired. [Languages permitting such types are sig-
nificantly more complex in their semantics and use of
these functions can easily lead to programs that are hard
to understand.]

Language Evaluations

All of the candidate languages-except J73I allow function
results of all scalar types.,in the language (except charac-
ter string and procedure). (Of course, not all of the
languages have all of the scalar-types required by the
SHOL.)

147

PL/I allows fund-tion results of label type, which are not
desired. Many of the languages provide result types not
specifically required (e. g. character string).

7C. Formal Parameter Cla sses.

Read-only and read/write parameters should be distinguish-able from one another, in support of program readability and reliability.
The language should permit implementations to provide efficient calling
sequences for common cases.

Requirements

7C-1. Two classes of formal procedure parameters arerequired:

a) input parameters, which act as constants that are
initialized to the value of the corresponding actual
parameters at the time of the call [i.e., assignment
to\such parameters is not permitted; this helps to
reduce errors and can contribute to object code
efficiency.]

b) input-output parameters, which enable access and
assignment to the corresponding actual parameters.

7C-2. For input-output parameters, the corresponding
actual parameter must be determined at time of call and
must be a variable or an assignable component of a
composite type. [This is to reduce errors and ensure
efficient implementations.]

7C-3. The class of a parameter must be distinguishable
in the form of the call statement. [This is to enhance
understandability.]

7C-4. The language must permit input parameters to be
safely passed either by value or reference, depending on
which method is determined to be most efficient by an
implementation. [This means that even when procedures
are separately compiled, it must 'be possible to determine
whether the value of an actual input argument can be modi-
fied by assignment directly to the variable serving as the
input argument.]

Language Evaluations.

Only i3B, J73I, and PASCAL allow specification of formal
parameters as read-only or read/write (i. e. input or
input- output). In PASCAL, the distinction is not apparent

148

in the call statement, however. Only J3B permits the
implementation to select between call by value and refer-
ence for input parameters, but it does not do this safely.

7D. Parameter Specifications.

Relationships between actual and formal parameters shouldbe expressed readably in the language. parameter matching rulesshould agree with the typing philosophy of the language.

Requirements

71D-1. Ppocedure parameters must be positional I i. e.
correspondence between formal and actual parameters isdetermined by position in the parameter list. Optional andkeyword parameters are not required].

7D-2. The syntax for declaring types and attributes of
formal parameters must be essentially the same as thatfor variable and constant declarations [to promote
uniformity].

7D_3. Parameter,; ;nay be of any type, but procedureparameters are not required. [See 5D-2.]

7D-4. The ac^,iracy of each formal parameter of appropri-ate numeric t must be specified. [This is uniform withthe requirement for accuracy specification in other
contexts.]

7D-5, The -v,z:.Llue type of each actual parameter must matchthat of the corresponding formal parameter. [This impliesthat the language; must be designed so that this check canbe performed-at compile-time, since type. interface errorsare difficult to dipcove during program development andmaintenance.

Language Evaluations

All of the languages have positional ratLer than keyword
parameters, and none allow optional parameters. Allrequire a declaration format for parameters which issimilar to that required for variable and constant declara-tions. Similar accuracy specifications are also required.
In general, the languages allow parameters to be of anytype available in the language. All languages e cept J3B.allow procedure parameters, which are not required.

149

All of the languages require some degree of correspondence
between the types of formal and actual parameters. PL/I,
which allows numerous "implicit conversions between
parameter types, diverges most widely from the require-
ments in this area. J73I also allows such implicit conver-
sions. FORTRAN and J3B essentially require exact
matching between formal and actual parameters. (The
PASCAL language specification does not define pararnAer
matching requirements.)

7E. 'Formal. Array Parameters

It should be possible to pass array parameters efficiently
as long as the flexibility necessary for simulator programming is
supported.

Requirements

7E-1. The number of dimensions for formal array param-
eters must be specified in programs and fixed at transla-
tion time. [See 3U-3.]

*7E-2. The language must allow the determination of the
subscript range for formal array parameters to be delayed
until execution time, and to vary,frorn call to call. [This
is required for Linear Function Interpolation, as discussed
in Section 5.2. 9. 3.2.

7E-3. Subscript ranges must be accessible within function
and procedure bodies without being passed as an explicit
argument. [To avoid errors.]

Language Evaluations

All of the candidate languages require that the number of
dimensions for formal array parameters be specified and
fixed at translation time. Only FORTRAN and PLR permit
the determination of the subscript range to be delayed until
execution time. Only PL/I makes the subscript range
accessible within the procedure (through the HBGUND and
LBOUND functions) without requiring that it be passed as
an explicit parameter.

Language Evaluation Summary

The candidattOlanguages are ordered, according to the degree
to which they meet SHOL function and procedure requirements, as
follows:

150
4C'

475...,ZORTRAN- Parameter access restrictions cannot be specified.
Array parameter subscript range can vary. ExactparaMeter matching is required (though many typesreiquired by the SHOL are not supported). Excesscapabilities are minimal, Reentrancy is notprovided.

33E-

Deficiencies are:

no parameter access restrictions

subscript range of array parameters must be
passed al-a parameter

no reentrant procedures

All major requirements except array parameters
of execution-time determinable subscript rangeare satisfied. Exact parameter matching isrequired. Excess capabilities are minimal.

Deficiencies are:

array parameter subscript range is fixed at
compile time

does not permit safe selection between value
and reference parameter passing by the
'implementation,

J731- Array parameter subscript range is not determi-,nable at execution time. Implicit conversionoccurs in parameter passing.

Deficiencies are:

implementation cannot select between call byvalue and call by reference for input parameters.
implicit conversion in parameter passing
array parameter subscript range fixed at com-pile time

PASCAL- Array 'parameter subscript range is not determi-nable at execution' time.- Parameter, matchingrules are undefined.- Parameter access restric-tions are not determinable in the call statement.Reentrancy is not provided.

1

151

PL /I-

Deficiencies are

parameter access restriction not apparent in
call

3'` implementation cannot select between call by
value and call by reference for input parameters

parameter matching rules undefined

array parameter subscript range fixed at corn-
pile time

e no reentrant procedures

Array parameter subscript ranges can vary.
Implicit conversions occur in parameter passing.
Parameter access restrictions cannot be specified.
Excess capabilities are provided.

Deficiencies are:

labels permitted as function results

no parameter access restrictions

o implicit conversion in parameter passing

6. 8 Input-Output Facilities

Goal

Simulator programming requires file-level I/O as well as low-
level, primitive I/O. Section 5.3.2 discusses simulator file usage;
Sections 5.5.6 and 5.7 deal with low-level I/O requirements. File I/O
should be provided through the SHOL, but low-level I/O is probably
best provided by the development of appropriate assembly language
library subroutines.

Supporting Concepts

8A. File Level Input-Output Operations.

Operations for manipulating logical files must be provided
in a manner supporting program portability.

Requirements

*8A-1. Standard library subroutines for logical rile I/O
must be provided. - These must include operatictns for

152

-,reating, deleting, oper.inig, closing, reading, writing, and
positioning logical f:les [The need for all these opera-"' tions was observed.]

8A-2. Library subroutines for formatted I/O must be pro-vided. [Formatted I/fl useful in offline work; see Sed:
tion 5, 3. Z.]

8A-3. Binary record files of types sequential, indexed,and direct are required. [Use of all these file types wasobserved.]

8A-4. Blocks of fixed or variable length are required.
[The need for variable length blocks is consistent with theneed for variant records.]

8A-5. Files must be accessible in read-only, write-only,
or update mode. [Use of these modes was observed.]
8A_6. Shared file operations are not desired. [Unneededcomplexity.]

Language Evaluations

J3B and 3731 provide no file I/O capability. The PASCALfile I/O feature is a primitive one which does not really
meet any of the requirements.

FORTRAN and PL/I both provide file I/O facilities.
FORTRAN supports only sequential files, not indexedor direct. Both languages support formatted I/O.

FORTRAN supports only fixed length blocks and does not
allow specification of file access restrictions (i. e. read-only, write-only, update). PL/I supports shared file
operations, which are not desired.

8B. Operating System Independence.

In support of program portability, the SHOL must notassume the presence of an operating system.

Requirements

3B-1. The form and meaning of built-in and standard
library definitions shall not he restricted to any given
operating system's capabilities, if one is present. [Note
that functions and operators of the language can be imple-
mented as operating system calls where the operating
system is compatible with the function or operator
definition.

153

Language Evaluations

None of the candidate languages I/O features require, the
presence of a particular operating system.

Language Evaluation Summary

The candidate languages are ordered, according to the degree
to which they meet SHOL I/O requirements, as follows:

PL /I- All required functions are provided.

Deficiencies are:

support of shared file operations

FORTRAN- Some required functions are provided.

Deficiencies are:

vio indexed or direct files

no variable length blocks

no file access restrictions

PASCAL- Little file I/O support is provided (though the
primitives could be used to build the desired
functions).

Deficiencies are:

file I/O support is too primitive

J3B, J731- No I/O is provided.

6. 9 Parallel Processing

Goal

The SHOL must support the use of multiple processors, as this is
necessary to achieve the execution speed required for simulation. Simu-
lator executives, 'which handle inter-CPU communication and data
sharing, should be programmable in the SHOL. However, since this is
an evolving area of language design with little consensus on how SHOL
requirements are best supported, satisfying both these specific require-
ments and the general requirements (Section 7. 1) may be beyond the
current state-of-the-art.

154

Supporting Concepts

9A. Inter-CPU Communication.

The language must support control flow between CPUs
necessary for simulators, as described in Section 5.4.2.

Requirements

*9A-1. It must be possible to initiate execution of a speci-fied procedure on another CPU, to halt another CPU and
to release another CPU from a wait state [see Section5.4.2] .

Language Evaluations

PL/I is the only one of the candidate languages to provirle
any parallel processing primitives. They are, however,
perhaps too high-level to meet the specific requirements.

9B. Mutual Exclusion and Synchronization.

Processes executing on different CPUs must be able toaccess system data in a non-conflicting manner. There must be supportfor synchronization of prodesses executing on different CPUs, as dis-cussed in Section 5.4.2.

Requirements

*9B-1, There must be mechanisms for mutual exclusion
and synchronization of processes executing in parallel.
[These are the HOL forms of primitives currently definedin assembly language.]

*9B-2.. During specified portions of its execution, a
parallel process mcist be able to seize and release certain
progn::rn declared objects. [This is to ensure that variablesare read and updated in a consistent state. I

*9B-3. Tile mechanisms provided must be sufficiently
general to permit user construction of more specialized
mechanisms that exploit knowledge of the overall beh...-,;or
of the system being programmed [e.g., that pre-emptiri;
an executing process may not be required because inter-
rupts are treated on a polled basis; this rquirement isto ensure that the necessary level of executive efficiencycan be obtained].

155

Language Evaluations'

Again, only PL/I provides any support in this area, through
its EVENT variables and associated SIGNAL and WAIT
statements.

9C. Real-Time Clock.

Access to a real-time clock is necessary to support the
cyclic operation of simulator programs. Access should be provided in
a machine-independent manner.

Requirements

t:,9C-1. There must be means of accessing a real-time clock.
[Real-time clocks are used for various purposes, as dis-
cussed in Section 5.4.2.]

9C-2. There must be translation-time constants to convert
between the implementation units and the program units
for the clock [supports program portability] .

Language Evaluations

. The PL/I TIME function returns the time in machine-
independent units (hours, minutes, seconds, and milli-
seconds). However, this function presumably accesses
a time-of-day cl,.ck, rather than a real-time clock (which
can be set to a specific time and will interrupt on comple-
tion) as desired in simulator programming. The PL/I
DELAY statement, allowing a task to be delayed for a
specified time interval, provides more nearly the desired
capability.

Language Evaluation Summary

The candidate languages are ordered, according to the ,le.::ree to
which they ?nect S1IOL parallel processing requirements, as fidluws:

PI_, /I - All requirements are supported to some extent.

Deficiencies arc:

support may be too high-level

ral-time feature-s mad. not provide the desired
cuntrol

156

J3B, J73I,
PASCAL,
I.'ORTRAN- No parallel processing support is provide°,

Deficiencies are:

no support for inter-CPU cJmmunication

no support for mutual exclusion and
synchronization

Tic real-time clock access

6.10 Specification of Object Representation and Optimization

Goal

The SHOL must provide programmer control of and access tothe object code representation of programs. Control of object repre-
sentation alloWs the programmer to make trade-offs between time andspace efficiency. as discussed in Section 4.4. Access to object repre-sentations facilitates the production of" portable programs, as describedin Section 4.7.

Supporting Concepts

10A. Packing of Composite Types,

Control over packing of composite types must be provided,in order to allow the programmer to mare time-space trade-offs. Thisshould be machine-independent when possible, to allow program porta-bility. The logical grouping of record data components should be inde-pendent of the record's physizal structuring.

Requirements

*10A-1. The language must permit, but not require,
programmer specification of degree of paCking [e. g. ,
tight, dense, medium, unpacked] in a machine-
independent manner for composite data types [arraysand records].

*10A-2. For record types only, the language must per-mit, but not require, machine-dependent pa =king speci-
fications [i.e., by actual bit positions. This is neces-
sary to allow description of simulator I/O data.]

10A-3. It must be possible to specify the order in
which components of record types are sequenced in
storage, independent of the order in which the components

I157

arp listed in the record declaration. [This can con-
trig'ute to understandability by permitting logically
related components to appear close together in program
text even though they might be physically separated.]

10A-4. For two objects to, be of the same value type,
they must have the same physical representation. [Thus
packing changes the type of a variable for purposes of
parameter passing or assignment, i.e. , a formal and
actual parameter must have identical physical repre-
sentation specification.]

10A-5. The default size of numeric data must be
dependent on the ra:ige specification, if given, and other-
wise must be implementation-dependent. [This is a
consequence of making range specifications optional.]

Language Evaluations

Of the candidate languages, only JiB, J731, and PL/I
provide programmer control over parking of composite
types. Of these, only J731 and PL/I permit specification
of array packing. Only J3B and J73I provide machine-
dependent packing of record types. Neither permits
the specified packing to be separated from the logical
structure of zhe record, though serial or parallel organi-
zation may be specified.

Both J731 and J3B require that composites have the Same
packing to be of the same type. PL/I does not meet this
require ment.

10B. Translation Time Constants and Functions.

Environmental enquiries, providing programmer access
.o characteristics of the object program representation, are needed
to allow t. e development of more portable programs.

gas

Requ rements

10B-1. T1 language must E-rmit the speclif....,.tion of
object maciiine onfiguration constants indicating, for ..

example, machine modA, periphPral equipment, memory
size, word len,6:.h, etc. [These .3.re used to state what
environment a program is intended to execute in.]

10B-2. The language must supply translation .nie con-
stants and functions which access ImpleinenLation informa-
tion inclui .ng:

158

maximum and minimum integer values

negative number representation

fixed point accuracy

floating point precision, radix, and exponent range

maximum string length

default character set

bits per character

Language Evaluations

Only 3731 and PASCAL provide any, environmental enquiry
capabilities. Specifically, 3731 provides

word length

memory size

bits/word

bits/character

bits/pointer

PASCA:, provides o-'ly the maximum eger value.
10C. Code Insertions.

Assembly language insertions are necessary-ter-implement
machine-dependent simulator functions (see Section 5. 7) and sometimes
to achieve the necessary efficiency in certain areas. Such insertionsshould be easily isolated from other code, in order to support programportability.

Requirements

*10C-1, The language must permit the definition of sub-
routines in assembly language. [See Section 5.7.]

10C-2. Cit'i .1-;.;(1-)bly language insertions are not
desired. j r. ,tri,:tion of assembly language to sub-
routines allow~ ci)ntrol over the data accessed within
the assembly code.]

10C-3. The language must minimize the need for code
insertions [by providing sufficient flexibility and power
in the HOL].

159

Language Evaluations

None of the candidate languages provide any assembly
language insertion facility.

10D. In line Procedures.

In order to support programmer control over space-time
efficiency trade-offs, the language must allow subroutines to be either
expanded inline or called as actual subroutines. Section 5.2.9.2 dis-
cUsses the value of such a feature in simulator programming.

Requirements

*10D-1. The language must .permit subroutines to be
defined as 'inline' -- that is, the code is to be inserted
directly into the program at the point of call, rather
than called through a subroutine call mechanism. [See
Section 5. 2. 9. 2.

10D-2. The 'inline' specificayi\on must be part of the
definition or in a separate declaration rather than part
of the call. [Identical calls for the two kinds of sub-
routines facilitate tuning for the desired time-space
trade-offs, as only the definition need be changed.]

10D-3. Inline substitution must not change the logical
effect of a program, but where substitution of actual
for formal parameters permits conditional compilation
of inline code, this must be done. [e.g., if F(X) is
defined as IF X > 3 THEN...ENDIF, then F(2) would
result in no code being compiled. This encourages .the
modularization of programs and suppor reusability;
see Section 6. 6.]

Language Evaluations

Only J3B provides inline subroutines. The 'inline' speci-
fication is not in the definition or the call, but in a
separate 'inline declaration.' This serves essentially
the same purpose as specification in the subroutine defini-
tion. J3B performs conditional compilation of inline
code when parameter substitun permits, as required.

10E. Optirniztion.

shalt permit efficient code optimizations.

Requirements

10E-1. Range specifications, when given', shall beassumed to be satisfied when performing code optimiza-tion. { This will encourage the use of range declarations.]

Language Evaluations

The only candidate language with any range specification
capability is PASCAL, with integer subranges. Theeffect of such specification on optimization is not definedby the language.

Language Evaluation Summary

The candidate languages are ordered, according to the degree towhich they meet SHOL requirements for specification of object repre-sentation and optimization, as follows:

J3B- Most major requirements, including that for inlineprocedures, are met. Array packing cannot bespecified.

Deficiencies are:

physical structure of records not specifiable
independently of logical structure

array packing not specifiable

no environmental enquiries

no assembly language subroutines

J731- Major requirements, except that for inline pro-cedures, are met.

Deficiencies are:

physical structure of records not specifiable
independently of logical structure
all desired environmental enquiries not
provided

no assembly language subroutines

no inline procedures

161

PL/I- No machine-dependent packing or inline procedures
are provided,

Deficiencies are:

no 'ma-chine-dependent packing

physical structure of records not specifiable
independently of logical structure

records with different packing are of same
type (i. e. , implicit packing conversions are
performed)

no environmental enquiries

no assembly language subroutines

no inline procedures

PASCAL- Packing specifications are not provided. Most other
functions are also 110t provided.

Deficiencies are:

pa,7q' specifications

little -,:7,,:: mental enquiry capability

no , .:inguage subroutines

no edures

FORTRAN- Few of the re,"!-ir, functions are provid d.

Deficiencie

no pacC:ng specifications

no environmental enquiries

no assembly language stibr:)utines

no inline procedures

6 . i 1 Libraries and Separate Compilation

Coal

Ar 3iscussed in Section 4.1, the SHOL must support development
of siT--31/1:-.,,, Jr sc(siems by large groups of progracAmer's.

162

Supporting Conceits

11A. Library Entries.

The language must ,-/..ovide for the use of common (or
global) data definitions, subroukri ,. s, etc. by the various individuals
developing the system.

Requirements

=1:11A-1. The lan ge must support the use of an external
library. [Such fibraries are customarily in use today.]
11A-2. Librazy ::retries rrius lude input-output
packages, ,cors:mcr. pools of shared declarations, appli-
cation oriented .1.(,Ctwai-e pa:..kages, other separately
compiled seg,'.''nts, and rn,...hine configuration
specifications.

Language

The J3B and J731 CO:',/:POOLs meet this requirement
most closely. Other ;;-:n.,uages pro-fide some similar
capabilities through 1.t-,Qir support of separate compilation
(see 11B). FORTRAN's COMMON facility provides
sharing of con lr-1. data definitions.

11B. Separately C,.»'H,iled Segments.

The langua,,.. must allow separate compilation of programs,
and must support their in..'.'gration.

Requirements

*11B-1. The language must support the integration of
separial7 compiled program segments into an operational
progranl,

*I 1B-2. 'D.:. language must allow definitions made in one
segment to used in another. [This supports the data-
pool concept; see Section 5. 1. 1.]

Lang' age Evaluations

J3B and J731 support the use of separately compiled seg-
ments via the COMPOOL facility. The other candidate
languages provide explicit 'external' declarations to access
external names (though in PASCAL this is an extension to --
the standard language).

163

11C. Restrictions on Separate Compilation.

In support of program integration, the language must pro-
hibit inconsistencies among the segments being integrated.

Requirements

*11C-1. Separate compilation must not change the meaning
of a program. [This simplifies the language, making
separate compilation merely a development aid.]

11C-2. Translators must be responsible for the integrity
of object code in affected segments when any segment is
modified.

I1C-3. Translators must ensure that shared definitions
have compatible representations in all segments. [This
is of considerable value in program development and
maintenance.]

Language Evaluations

J3B's and J73I's checking of procedure parameters in the
COMPOOL and PASCAL's external reference checking
provide more enforcement of compatibility than do the
FORTRAN and PL/I facilities. It does not appear that
separate compilation affects meaning of programs in any
of the languages. It also does not appear that any of the
languages require that translators guarantee integrity of
object code in affected 'segments when a segment is
modified.

Language Evaluation Summary

The candidate languages are ordered, according to the degree to
which they meet SHOL library and separate compilation requirements, as
follows:

J3B, J73I- COMPOOL facility provides most of the required
functions.

Deficiencies are:

integrity of affected segments not guaranteed
when a segment is modified

;)ASCAL- There is no COMPOOL-like facility. Parameters
are checked in external procedure declarations.

164

Deficiencies are:

inadequate facility for sharing common
definitions

integrity of affected segments not guaranteed
when a segment is modified

PL/I,
FORTRAN- There is no COMPOOL-like facility. Parameters

are not specified in external procedure declarations.

Deficiencies are:

inadequate facility for sharing common
definitions

integrity of affected segments not guaranteed
when a segment is modified

external procedure parameters not checked
6. 12 Language Evaluation Summary

A summary of the language evaluations is contained in Table 1.For each area of the requirements, each language is given an overall
rating based on how well it satisfies the requirements. Languages thatsatisfy the essential (i.e., the starred) requirements are rated higher
even if they do not satisfy the non-essential requirements, since the
purpose of this evaluation is to decide whicn unmodified language best
satisfies simulator' requirements. The Table indicates that PL/I and
J3B are most suitable, although no language is perfectly suited (a perfect
langdage would have a score of 90). kOf the two languages, PL/I is the
more widely known, although neith*er PL/I nor J3B is significantly
supported by manufacturers of comAters used in training simulators.
Also, neither language is approved by DoD for use in new..embedded com-
puter application efforts. Only FORTRAN and JOVIAL J73I are approvedlanguages. From an Air Force viewpoint, JOVIAL J73I would there-
fore be the best choice if it were more widely available. On tech,icalgrounds alone, however, PL/I or J3B are somewhat superior to J73I.
The only language that is clearly inferior is FORTRAN.

Since all of the languages have some important deficiencies, in
the next Section we will discuss what language is most suitable for
modification and how well the modified language would meet simulator
requirements.

165

TABLE 1

EVALUATION SUMMARY

General Syntax
Numeric Type
Enumeration Type
Boolean Type
Character Type
Bit String
Pointer
Procedure
Array
Record
Expressions
Declarations
Control Structures
Procedures
I/O
Parallel Processing
Object Program Cntrl
Library Facilities

P / I

0. 0.

J. J. J.

* **
J. J. J.,

0.n-

J. J.,
J. J. J.

54

FORTRAN PASCAL J3B J73I

-ens

0.0. J.. a.r
* ** *****

J. *****
.1` *****
*gr: g:

* J.
at

.,....J.. .1.0. J. * **...., J.

.1. .1..1. 0. 0.
.1.

J..1. 0..a.
29 47 51 46

***** = Good, *** = Medium, * = Poor, . = Nonexistent

1.
166

Section 7

LANGUAGE MODIFICATION GOALS

Since none of the languages are entirely suitable for simulatorprogramming, we will consider what language is best suited for modifica-tion and what modifications should be made. In selecting a language formodification, in determining the modifications to be made, and in actuallymodifying the language, several goals must be given consideration. Thesegoals are discussed in the following subsections. Specific modificationsto each of the candidate languages are discussed in Section 8.

7. 1 Minimal Cost

It is, of course, desirable to minimize the costs associated withlanguage modification, i. e. , Ae design, implementation, and retrainingcosts. This consideration dictates that possible modifications be evaluatedwith respect to their value and necessity for simulator programming vs.their cost before they are recommended. Each modification selected addsto the cost of producing the SHOL. In addition to the individual cost of
implementing each modification, as the number jf modifications increases,
the complexity of the overall modification task multiplies. This is becauseof the effect of each addition or deletion on the remainder of the language.There are many interrelationships between the features of a languagewhich must be carefully considered when deleting a feature and which
must be defined when adding features. With a large number of modifica-tions, interactions can become so complex that it might.no longer be cost
effective to modify an existing language as opposed to simply developinga new one.

Another area of cost consideration is the availability of existingsupport for the language selected as a basis for modi.icatio . If trans-lators for the chosen language for the desired target machines (or someof them) already exist, the cost of implementing a set of SHOL translatorsis greatly reduced. (Even if no such translators are available, however,the cost of implementing the SHOL: through modification of an ex.isting lan-
guage should be less than that of developing a new language. This isbecause language design should be less difficult and because existing
knowledge about implementing the language can be employed.

- Quality of existing documentation for the selected base language:.s another cost factor. In establishing the SHOL as the language used by'.rnulator programmers, a significant retraining effort will be required.
Viis will require tutorial and user documentation of excellent quality.

.e degree to which existing base language documentation can be adaptedo 'his purpose has a significant impact on cost. Another consideration
invciving documentation is the availability of a detailed and accurate
language specification for the chosen base language. Such a documentfacilitates the design (and specification thereof) of the language built onthat base, thereby recucing language design costs.

1

167

In view of these factors, we have considered only language modifi-
cations satisfying either of the following criteria:

a.

b.

They are essential to satisfy-functional requirements
of sgnificant importance in si lator programming,
e.g., fixed point arithmetic. ese are the require-
ments asterisked in Section 6.

They are relatively easy to provide and are of
significant benefit, even through not absolute]y
essential to meet simulator needs.

A language that is modified according to these criteria wilt 'be optimal in
the sense that the benefits of the modifications probably outweigh the
difficulty of making them.

7.2 Syntactic Integrity
It is necessary when modifying a language to conform to its exist-

ing syntactic conventions, i.e., added features must employ a syntax
which is compatible and consistent with that of existing features. For
example, if conditional expressions (e. g. -, x = IF condition THEN y
ELSE z) areadded to a language, their syntax should conform to the
language's existing IF-THEN-ELSE construct as much as possible.
This would not be at all Possible in FORTRAN, which does not have an
ELSE component in its IF statement. In general,- the more the base i

language differs from the desired language, the more difficult it is tomaintain syntactic integrity.

When selecting a language for modification then, it is important
to consider how closely the syntactic conventions of the language corres-
pond to those considered deSirable for the SHOL. Furthermore, the
goal 01 consistency with existing syntax must play an important part in
the actual design of the SHOL.

7. 3 Non-Interference with Existing Language Feaaires

A similar goal to that described above is the avoidance of complex
or undesirable interactions between modifications and existing features.
As discussed previously, this problem is compounded as the extent of
modification increases. Deletion of feature:; considered to be undesirable
can have a severe impact, since the feature may be needed in the semantic
definitions of other aspects of the language, perhaps in a rnar,-ier which is
not immediately apparent. For example, deletion of a data type can have
an impact on the implicit conversion algorithm employed in the language.

Additions must also be evaluated with respect to their interactions
with the rest of the language. For example, if file I/O is to be added to
PASCAL, it should be added in a manner consistent with PASCAL's exist-
ing I/O capability, which is very low-level. Perhaps the low-level
primitives would be used to build the file I/0 feature.

168 .

.

Additions should not introduce excessive redundancy into thelanguage. For example, if a CASE construct is to be added to PL/I, it
might be desirable to eliminate label arrays, which now serve somewhat
the same purpose. On the other hand, it might be preferable to concludethat PL/Ils label arrays are adequate for the purpose of simulator
programming, thus avoiding both the addition and the deletion costs.

7. 4 Upward Compatibility

A possible goal in developing the SHOL is upward compatibilitywith the base language. This means that the base language is a prop,subset of the new language. (This, of course, rules out the deletion offeatures from the base language.)

A requirement for upward compatibility increases the difficulty
(and hence the cost) of modifying the language. It is sometimes quitecomplex to extend the language syntax to incorporate desired additions
without altering syntax of existing constructs, especially if any degreeof syntactic integrity is to be preserved. As an example of this problem,consider the difficulty of adding to FORTRAN an IF- THEN -ELSE
construct which allows groups of statements as objects of the THEN andELSE, and which still accepts such FORTRAN statements as "If(J. LT. 10) Q = R+ S ".

The primary advantages to upward compatibility are that
programs in the base language will be accepted (and correctly translated)by the translator of the new language and that programmers trained in
the base language can convert more readily to the new language. Theseadvanti:.,_ges, however, are only realizable if there is a significant body ofexisting c:-Dde in the base language which is to be reused in systems builtwith 11 e t.:e.A.v language and if programmers are already experienced withthe base Language. (Of course, it may be that programmers skilled inthe language would show resistance to the new features, and hencetake longer to become proficient in the new language than those previouslyunfamiliar with the base.)

The major impact of the issue of upward compatibility i.s on theactual task of language modification. in general, it increases costs and
detracts from the uniformity of the resulting language and should only berequired if significant benefits will be obtained.

A.

169

Section 8

LANGUAGE EVALUATION AND MODIFICATION SUMMARIES

Since all of the languages would benefit from modifications to
make them more suitable for simulator programming, in this Section
we discuss the modifications considered most cost effective. For each
language, we will cite its major advantages and then discuss the modi-
fications that are recommended. The modifications have been selected
based on the analysis in Section 6. In general, modifications needed to
make a language satisfy essential SHOL requirements are specified.
Other modifications that are relatively simple to make and that would
be of significant value are also proposed.

Each modification is evaluated in terms of its design and
implementation complexity. Design complexity is increased if the
modification requires changes to many parts of a language, i.e. , if
it affects the syntax and/or semantics of a significant proportion of
constructs in the language. Design compislixity is decreased if a
modification is localized with respect to the capabilities a language
provides and if the modification does not entail discarding existing
language features. Implementation complexity is concerned with the
amount of effort needed to modify or create a compiler that supports
the modification. The design and implementation complexities are not
always the same, for reasons that will be noted in discussing the
modifications. After recommending modifications-to all the languages,
we will summarize the estimated design and implementation complexities
of the modifications and discuss which language is best suited for
modification and subsequent use.

The dcsig and implementation complexities are evaluated on a
scale of 1 to 5, with 1 indicating that the modification is simple and 5
indicating the modification is complex. A modification of the form:

(3, 5)* add fixed point

means that the design complexity factor is 3, the implementation com-
plexity is 5, and the requirement for fixed point was considered
essential in Section 6.

FORTRAN Modifications

The major advantages of FORTRAN are that it is available on
many simulator target machines, many simulator programmers are
experienced in its use, it is well documented (many tutorial publications
exist), and it is on the DoD list of approved languages (DoDI 5000.31).

170 1

its -)--99j,,y disadvantages are its lac.. of fixed point and record types, itslack ttrol over data representations and its weak control structures.

e

The recommended modifications Lo FORTRAN are:

(1,3) inc:ease identifier length

The current length is inadequate to provide readable andmeaningful identifiers. Making identifiers longer is asimple language change, but would require reorganizationof a basic part of a FORTRAN compiler, the symbol table.
(3,5)* add fixed point

Fixed point arithmetic capabilities are complex to designand complex to support because of optimization requirements.
(3,2)* add enumeration types

As new data types a re added to FORTRAN, the methods ofdeclaring variables gets more awkward, necessitating
perhaps more design effort than in other languages. The
implementation of enurric ration types is relatively straight-forward, however.

(3, 3)* add character data type and operations

This should be straightforward in detail, although the numberof details to be designed rates in complexity as 3.

(2,1)* unprintable characters in strings

Deciding how to do this in a way that is consistent with the
rest of the language will require some thought, but its
implementation should be easy.

(3,21* ability to define new character sets

The design is difficult (it has not bren done except in the DoD
Common Language designs) but sintse the design decisions
are localized to one type in the lang ge, we rate it a 3 in
language complexity. The implement Lion ramifications arepotentially no more co,nplex than h ling packed arrays, acapability:- required for other reasons as well.

171

(3,3)': add bitstring type and operations

We generally rate adding a completely new type and operation
as compiexity level 3.

(2, 3) add pointer type

The syntax and usage of pointers can be relatively straight-
forward to design as a modification.

(1,3)* add dynamic allocation

Providing simple dyna mic allocation operators poses no
difficulties, but the run-time support is more of a complication.

(4,3)* add record data type

The record type is complex and so we rate it 4.

(3, 3) add constant expressions evaluated at compile time

Modifying syntactic rules so constant expressions are permitted
in every context currently permitting literals makes this
modification more complex than might otherwise be expected.
The implementation is complex because of the need to simulate
target machine arithmetic, potentially, or at least to compile or
interpret expressions being evaluated at compile time.

(2., 1) correct not.- uniformities in use of expressions

The constraints on use of expressions as subscript indices can
be easily removed, improving the uniformity of the language.

(2,2)* add constant names

This is relatively straightforward.

(4,3) add automatic storage class

This is a significant change to FORTRAN but is worthwhile in
simplifying storage allocation problems for what are currently
treated as temporary common data locations.

(4,2) permit nested IF-THEN-F:1,SE, statement forms

This is a significant change to FORTRAN and requires deleting
the current FORTRAN form to avoid duplication of capabilities.

172

(2, 3) add CASE statement

This is a significant change to FORTRAN concepts, since it
adds the concept of a compound statement to the language,
but given that the concept is already needed for IF -THEN -ELSE
statements, the additional effort for a CASE statement is not
great insofar as the language design goes.

(2, 21* add conditional expressions

The semantic rules are straightforward if both,arms of the
conditional are required to be of the same type, e.g. , if IF B
THEN 3.0 ELSE 2 is forbidden.

(2, 2) add conditional compilation

Given that IF-THEN-ELSE statements are in the language,
this is not a significant amount of work to add and it is very
useful for reasons discussed in Section 4.7.

(2, 2)* add indefinite loop iteration

Adding DO WHILE loops is fairly straightforward.

(2, 1) add coi)start parameters

This is an easy change to the language specification even
though it is signiicant change to the capabilities of FORTRAN.

1,2,4) add indexed and direct access files
e , e add s library procedures and, indeed, have been

made available in way in some r.)12.TRAN implementations.

(2, 3)' add parallel processing support

Simple primitives can be added procedural extensions.

(3, 3)':' permit programmer packing specifications

The variety of packing specifications required and their use
throughout the language is complex because of the widespread
impact on the language.

(1, 2)* add assembly language and inline subroutines

This is straightforward once the decision about how to do it
is -made.

(3, 2)* add facility for sharing con-imon-datapool definitions.

1 43-

The FORTRAN COMMON facility is usable for sharing data
locations, but a more reliable method of sharing definitions
similar to JOVIAL COMPOOL facilities would be a worthwhilechange.

The recommended rnodif: :ations have an estimated design com-plexity of 61 and an estirnr-t-'.d implementation co.np'lexity of 63.
PASCAL Modifications

The major advantage of PASCAL is that it is designed with
simplicity and reliable programming in mind. The number of PASCALtranslators is increasing, but they are not well controlled, leading to
t-ranslator-de'pendent PASCAL dialects. Very little must be deletedfrom PASCAL to make it acceptable as a SHOL, but many capabilitiesmust be added. The most significant PASCAL disadvantages are itslack of fixed point arithmetic, its lack of separate compilation facilities,and its lack of provision for ;:ontrolling data representations.

Recommended modifications to PASCAL are:

(1, 1) add a break character in identifiers

Break characters ps,:rmi.: more readable identifiers to he usedin 'programs The change a simple one to make.
(1, 1) add M. X/MIN and trigonometric functions

Providing these capabilities in a library is straightforward.

(3,5)* add fixed point (see FORTRAN discussion)
(1, 1) permit duplicate names for enumeration elements
This is a relatively simple change requiring that some method
of resoling ambiguitieg be provided. Several language designoptions are possible.

(2, 1)* unprintable characters in'strings (see FORTRAN)

(3, 2)* permit new character sets to be defined (see FORTRAN)

(1,1)* incorporate a ttring data type

This is----j-tist a syntactic change, since the representation of such
type will be-th-e same as the current string representation,

namely, arrays of cli-a-racter-s,__

(1, I)* provide base 2 or base 8 literals

This is a simple syntactic addition.

174

(1, 1) type-safety of variant records

PASCAL currently permits tag fields of variant records to be
assigned directly. This capability is nc., required in simulator
programming. Removing this canability is simple.

(3,3', add constant expressions J.,:a.teci at compile time
(see FORTRAI,/

(1, 1) add constant records and arras

Since PASCAL already supports constant s, extending the
capability to records and arrays is straigL

(3,3) add external . storage class

Since PASCAL does r: `. 4Dport separate
a significant change.

(1, 1) add initialization o' ales

'-his is

This is a simple languai-4' The implemenitic,r, con-i-
plexity is also straightleiw:-....d.

(1, 1) add an ELSE alternative in CASE statements

(3, Z) permit ranges in CASE statements

Permitting ranges in CASE statements will require altering the
CASE -tatement syntax in a way that requires some thought.
Adding an ELSE clause is straightforward, howeve'r.

(2,2)* add expressions (see FORTRAN)

(2,2)* add conditiun:::1 compilation (see FORTRAN)

(3, permit array parameter subsci, ,ts to be non-constant

sir fican't change to the language capability. Its
int,:f4ration with the rest of the language requires t-are`ul design.

(1,1) define parameter ..)a chin.: rules

This corrects an oversight in the current 'Thation.

(Z, 4)* add direct and indexed access lilt. s, (see FOR".1 RAN)

(2,3)* add parallel processing support

Simple primitives can probably be added as proceduc;.1
extensions.

175

'(a, 3)* permit programmer packing specifications (see FORTRAN)
(1, 2)* add i;ssembly lang,,:ige and inline subroutines (see

FORTRAN)

(4, 4)* add facility for sharing common datapool definitions

PASCAL currenJy has no separate compilation capability.
Designing one for PASCAL and implementing it is therefore
more complex than .or the other languages.

The recommended modifications have an estimated design com-plexity of 46 and ar implementation complexity of 49.
J731 Modifications

The .iajor advantage of J731 is thzt it meets most of the essen-tial SHOD requiren.,-nts and it is on the DoD list of HOLs approved foruse in developing new DoD soft.vare. Its ma;,or shortcoming is thelack of a fixed point data type and variant records,

The recommended rri,.Oifications to J731 are:

(3, 5)* add fixed pint FORTF-An

(I, l(add MAX/MIN and trigonometric fenctions tss.:e PASCAL
(4, 3)* aor. enumeration tie operations

This addition is more diificu'A than for the other languagr.t;
because the current status type capability
i. e. , the modification re both a deleti.ir, and an additionto the language.

(3, 2)*, add Boolean data type and operations

Adding the Boolean data type 11 require removing the presentmethod of computing Boole:: ..esults from the languagz namely,the use of bitstrings to get Inc effect of Boolean operations).
Although adding the Boolean type to a language not having it
would be rated a 2 in design complexity, since this change toJ731 requires modifying z.h e...Isting capability, we rate the deSigncomplexity as 3. Implementation cor,,plexity is 2 br. -'use theBoolean operations are already present in tb, languai,e; it'sjust the syntactic and sematic .oristraints must be changed.
(3,:?.)::' ability to define new character set (see FORTRAN)
(3, 3) make pointers a distinct data tyT.:

1 76

Pointers in J73I are considered integers. This use of integers
does not contribute to reliable programming. Adding pointers
as a distinct data type is therefore equivalent to adding a new
type to the language.

(1, 3)* ad,d dynamic allocation (see FORTRAN)

(4, 4) permit record variants to be defined

Adding this capability requires modifying J73I to forbid the use
of OVERLAY to obtain record variants and so this change is
somewhat more complex than simply introducing record variants.
(4, 1) permit record components of array or record type

This capability requires a significant redesign of the JOVIAL
record capabilities.

(2, 3) expand constant expression evaluation capabilities

No constant e >pression capability is currently provided except
for bitscring dxpressions.

(2, 2)* add constant names (see FORTRAN)

(1,2)* permit assignment of arrays and records as a whole

J731 already permits such assignments for records that are
elements of arrays. Extending the capability to complete arrays
and records is not difficult.

(3, 2)* add conditional expressions (see FORTRAN)

(3, 3) require explicit labeling of CASE alternatives

Requiring that CASE alternatives be labelled explicitly will
significantly increase the reliable and understandable use of
CASE statements. However, it is a more complex change than
might be thought, since ranges of labels must be provided as
well as simple constants.

(3,3)* permit array parameter subscripts to be non-constant
(see PASCAL)

(3, 5) provide an I/O capability

Even though I/O can be supported by defining procedure::,
de-iding what the routines should be and implementing them is
a significant task.

177

(2, 3)* add parallel processing support (see FORTRAN)

(1,2)* add assembly language subroutines and inline routines
(see FORTRAN)

The recommended modifications have an estimated design
complexity of 46; the estimated implementation complexity is 49.

J3B Modifications

The major advantage of J3B is that it has already been proved
suitable for use in applications requiring efficient object code. Also,it meets most major SHOL requirements.

Recommended modifications to 33B are:
(1, 1) add MAX/MIN and trigonometric functions

(3,2)* add enumeration-types and operations

(3,2)* add Boolean data type and operations (see J73I)
(2., 1)* unprintable characters in strings (see FORTRAN)

(3, 2)* ability to define new character sets (see FORTRAN)

(1, 1);',' add base 2 and 8 literals

(1, 1)* permit bitstring equality/inequality

(1,3)* add dynamic storage allocation (see FORTRAN)

(4, 4)* permit record variar.ts to be defined (see J73I)

(4, 1)* permit recor.1\compoaents of array or record type
(see 3731)

(1,2) extend expression eval

Change the language so relati-anal comparisons (e. g. , A = B)
are considered constant expressions if A and B are constants.
(1, 1) add constant names for arrays and records

Since J3B already supports constant names, this is a simple
modificatior.

(1,2)* permit assignment of arrays and records (see 3731)

(3,3) add CASE statement and remove SWITCH

178

This modification will improve the control structure capabilities
of the language.

(2, 2)* add conditional expressions (see FORTRAN)

(3, 3)* permit non-const array parameter s:ibscripts
(see PASCAL)

(3,5)* 'provide an I/O cap-f7-iility (see 3731)

(2, 3)* add parallel processing support (see FORTRP:

(1, 1)* permit specifiable array packing

(1, 1)* permit assembly language subroutines

The recommended modifications have an estimated design com-
plexity of 41. The estimated implementation complexity is also
41,

PL/I Modifications

The major advantages of PLR are that it is the most widely
used of the candidate languages other than FORTRAN, it is well docu-
mented, and it provides most of the features required. The major
shortcoming is that PL/I is more complex than is required.

Specific recommendations for modifications are:

(3,2)* add enumeration types (see FORTRAN)

(3, 2)* add Boolean data type and operations (see J73I)

(2,1)* unprintable.:characters in string literals (see FORTRAN)

(3, 2)* ability to icifine new character sets (see FORTRAN)

(1, 1)* add base 8 and 16 bitstring literals (see J3B)

(1,2) add parameter specification for procedure variables

Since PL/I permits procedure variables, it is important to
improve the reliability of this capability by permitting the types
of the parameters to be specified.

-(4, 3) permit record variants to be defined

Fitting the concept of record variants into PLR will probably
require a complete redesign of the PL/I record type, but the
usefulness of variant records is sufficiently great to make this
change worthwhile.

'!
179

(3, 3) add constant expression evaluation (see FORTRAN)

(2,2)* add constant names (see FORTRAN)

(3, 3) add CASE statement and remove label arrays (see J3B)

(2, 2)* add conditional expressions (see FORTRAN)

(2, 1) add constant parameters (see FORTRAN)

(3,3)* permit programmer packing specifications (see FORTRAN)

(1,2)* add assembly language and inline subroutines (see
FORTRAN)

The recommended modifications have an estimated design com-
plexity of 33 and an estimated implementation complexity of 29.

Overall Summary

The estimated design and implementation complexities for the
recommended languages are summarized below:

Language Design Implementation

FORTRAN 61 63
PA'SCAL 46 49
J73I 46 49
3313 41 41
PL/I 33 29

After the recommended modifications are made, each of the languages
will be approximately equal in suitability for programming flight simu-
lators. 'Since PL/I is the simplest to modify, it is a good choice as a
base, especially since it was also evaluated as a suitable unmodified
language.

Of the two languages approved by DoD for use in implementing
new systems, namely, J73I and FORTRAN, J73I is clearly more suit-
able in berth modified and unmodified form. Mor programmers are
familiar with PL/I than J73I, however, and there are also more train-
ing materials for PL/I. On technical grourn; then, PL/I is the
optimal choice for modification. However, the choice of J73I would
not be unacceptable and would be more likely to be o ,:epted within the
Air Force environment.

In the next section we discuss implementation considerations
for a standard simulator HOL based on modifying PL/I.

180 1

Section 9

IMPLEMENTATION CONSIDERATIONS AND
RECOMMENDATIONS

Thefollowing subsections discuss various approaches to
developing a workable SHOL facility to support simulator program-
ming. Previous sections have justified the selection of PL/I as abase and have described the modifications recommended to developthe SHOL.

Self-Hosting vs. Cross-Compilation

Flight simulator systems have traditionally been based on avariety of different target machines -- generally commercially-
available computers of moderate size. It is assumed that this practice
will continue once the SHOL is in use. It has also been the customto develop all software directly on the intended target machine. Thatis, language processors (assemblers and compilers) run on. the targetmachine itself, and all program debugging is carried out on this
machine. The main advantages to this approach are:

o there is no additional hardware cost over that required
for the actual simulator

programs may be modified (and reassembled or
recompiled) at field locations where only the target
machine is available

Another approach to simulator software developr. ent wouldbe to use a single large-scalehost,,computer for translation and formuch of program checkout. This computer would have cross-compilers
and debugging support tools for the various target machines. There
are many advantages to this approach, including:

the greater power of the host computer czn be used to
advantage in the translation and support programs

much of the code in the cross-compilers can be
reused in the various target machines

more sophisticated debugging support can be provided

more powerful facilities for editing, file maintenance,
time-sharing, etc. are available for program
dev "lopment

hese advantages, of course, must be weighed against the
disadvantages of the ridded cost of the host computer and its
unavailability for onsite modification.

The decision made with respect to self-hosted compiling
vs. cross-compiling will have considerable interaction with other
aspects of SHOL development, which will be discussed in later
subsections. It is recommended that the cross-compilation approach
be adopted for the SHOL. The language to.be implemented is sufficientlycomplex that a more powerful computer is desired to support trans-lation. This will allow development of a more sophisticated translator
which can produce superior object code (in terms of space and time
efficiency) to that produced by a translator operating on a small
machine. This is an important advantage since efficiency is vitalin this application area.

Another major reason for cross-compilation is the decreasedcost of translator development. Compilers for each of the desired
targets can share the same machine-independent portions (front ends)
and will require only the development of new code generators. Code
generator development is significantly less costly than total compiler
development. As will be discussed later, this approach also facilitates
language standardization by increasing the likelihood that all translators
accept the same langi age.

A major concern with this approach is the initial cos' of the
host computer and of development of the first cross-compiler.
Customarily simul :tor purchasers have not had to pay for separate
development comp ters or for the production of language translators.
It would not be reasonable to assume that the first purchaser of a
simulator written in tile SHOL should bear all of these initial costs.
If the re,ommended cross-compilation approach is to be adopted, it
will probably be necessary for simulator developers to obtain some
specific support for the creation of a SHOL facility. Another problem

that onsite simulator modification cannot be readily supported
except through appropriate time-sharing interaction with ;he hostfacility. 13c,th of these problems are significant, but the current trend
of DoD thinking, as reflected in the common language effort, is to
provide such centralized support to DoD programming efforts.

182

Language Development

We have recommended that the SHOL be developed,by
modifying the PL/I language. Modifying an existing language leads
to a simpler design effort than developing a Lew language. Reasonsfor this include:

Most needed features are already avaLable in the
base language and need not be designed explicitiy.

o Syntactic and semantic definitions of features already
in the language are available, and are (hopefully) free
of undesirable interactions.

Existing language-defining documents can be extanded
to define the new language..

Implementation of such a language is also simpler than implementing
a new language, as discussed in the next subsection.

The modifications to PL/I which have been recommended werediscussed 'n Section 8. All the modifications specify additions to 'PL/I.This indicates that design of a SHOL which is upward-compatible with
PL/I might be reasonable to attempt, though it is not clear whetherthis is a worthwhile, goal. The usual motivation for upward-compatibility
is the reuse of existing code in the base language. As there is probablylittle or no existing simulator code in PL/I, this _would not be asignificant concern.

However. it may be desirable to develop a SHOL which is
upward-compatible with PL/I for reasons of economy. As discussed
in Section 7, the cost of development increases when features aredeleted or when their syntax is altered, as well as when they are added.
Thus it is probably most cost-effective to leave existing PL/I featuresas they are. This is particularly true if use can be made of existing
PI,/I translator code in developing the new translator.

If L. more extensive language design effort is to be undertaken,
a language satisfying more of the SHOL requirements can be developed.
Many of the features of such a SHOL require significant chani!es tothe basic syntactic and semantic conventions of the PL/I language
(e. g. , strong typing), and incorporation of such features into PL/I
woul l not be practical. PL/I also contains many features which are
superfluous for the SHOL. If a language exactly meeting the stated
requirements were to be developed, it would probably be preferable
tc design an entirely new language rather than attempting such drastic
modification to PL/I. Such an approach has not been recommen-led.
however, because it is very costly and so is not an optimal way of
providing a useful SHOL.

R3

Translator Development

The recommended approach to SHOL development requires
adding features to PL/I. This indicates modifying an existing
translator is a possible approach. Factors influencingthis decision
include:

whether PL/I compilers for the desired host and/or
target computers are available

wheth'er the language to be implemented requires
relatively few changes to the base

whether the compiler considered for modification
is well-documented and is implemented in an appropriate
language in a readable and modifiable manner.

We have recommended that SHOL translators execute on a
single, large-scale hdst machine. This requires that the part of the
compiler which is independent of the target machine' be impl.emented
only once, while machine - dependent portions (code generators) will
be developed for each target computer. ,T-his is a more cost effective
approach to the development of a set of SHOL translators for all
inte,nded targets than is the development of a self-hosted compiler
for each target. Furthermore, it allows programming of the compiler
in any language available on the host computer rather than requiring
implementation in assembly language or FORTRAN, which are likely
to be the only choices available on most simulator target machines.
If a host is selected which already has a compiler for the base language
(PL/I), the SHOL compiler can be implemented in the base language.
(If the SHOL is designed to be upward compatible with PL/I, the
compiler would then effectively be written in the SHOL, and could
compile itself.)

Thus, if the compiler is ultimately to be_written in the SHOL
itself and/or if it is deemed worthwhile to make use of existing
translator code, it would be desirable to seriously consider selecting
a host facility which already has a PL/I compiler (generating code for
the host machine). It is unlikely that the selected host would have
PL/I cross-compilers already available for any simulator target
computers, but existing compilers could be used for SHOL compiler
implementation and existing compiler frontend code could be adapted
to the va rious c ros s -compilers.

5-

An irnpleMentation method which might also be considered
is to use a preprocessor that would translate programs written in
the SHOL into the base language. These programs could then be
compiled using.a compiler for the base language. However, this
approach is most valuable if compilers for the intended targets already
exist for the base language. Thus it might be reasonable if FORTRAN

184

were the selected base, but it is probably not for PL/I. (Of
course, the large number of modifications which would be necessary
to extend FORTRAN to a SHOL make the use of a preprocessor
unreasonable.)

Another consideration in developing a SHOL facility is the
possible initial implementation of a "quick and dirty" SHOL translator
to use in testing the feasibility of the language for simulator program-
ming. Such a translator would translate and execute SHOL programs
for test purposes only. This might be of some use in determining
whether the language includes the constructs necessary for the
programming of simulators. However, it would not test the single
most important requirement of the SHOL translator -- whether it
generates object code which is efficient enough for the application. It
is likely that a SHO'L based on the suggestions in this report will meet
the functional requirements of simulatOr programming, and basing

wthe SHOL on a idelY-used language such as PLII should guarantee
its overall usability, so the test translator approach is probably not
justified.

SHOL Programming Support

In addition to a language translator for the SHOL, certain
support tools are necessary to facilitate the development of simulator
syste`ms. These tools generally aid in the integration of individual
simulator programs into a total system, and in the debugging and
validation of individual programs and of total systems. Section 5.5
discusses some such tools currently in use at Singer-Link.

. Support programs may be divided into those which opeFate on the
the program development (host) facility and those which operate on
the actual. simulator (target) facility. (Even if the same machine is
used for both, such a conceptual division is reasonable.) It is intended
tha.Vthe SHOL' be usable for the programming of all target-based
support tools as well as for the programming of the simulator
application programs.

Support tools which operate on the host machine should be
considered part of the overall SHOL facility. In some cases, they
may be incorporated in the SHOL translators, though they are not
properly considered part of the language itself. Tools which might be
developed as components of the SHOL facility include:

editors

program statistics collectors (e. g. , instruction usage
counts, t;.n-ie estimates for designated intervals)

documentation aids
MP'

185

set/used file capabilities

link editors (for creation of target machine load
modules)

program maintenance tools

s application libraries

program optimizers

target machine simulators

Target machine instruction-level simulators are a particularly valuable
program checkout tool made possible by the use of a separate host
computer. Many debugging features which are difficult to provide on the
actual target computer can be implemented easily in a target machine
simulator. Examples of features such a simulator can provide are:

mnemonic tracing

interval timing

interrupt modelling

display of values of specified variables at specified
time or location in 'the program

trapping at a specified time or location

setting of values of specified variables

loading of test data sets

Debugging tools should encourage debugging in terms of symbolic
program entities rather than machine values and addresses.
Variables to be set or ,displayed should be referenced by name rather
than by machine address, and values should be entered' or displayed
in units appropriate to the variable, rather than in octal or hexadecir .al
form. Recognizing that machine-level debugging is sometimes
necessary, however, some support for this should be included.

Though some of the host-based support tools will differ from
one target machine to another (e.g., m;-,7hine simulators, link editors),
user interfaces to the tools should be consistent. This is dictated by
the goal of creating a unified SHOL development facility, rathe than
a miscellaneous collection of support programs.

186

Language Standardization

One of the major reasons for the development of a SHOL is
the desire for program portability. As discussed in Section 4.7
there is particularly high potential for program portability in the
simulator application area. Though there are some difficulties in
attaining this goal (also discussed in Section 4. 7), it can only be
approached if the SHOL is standardized. That is, all SHOL translators
(i.e., for all target machines; must accept the same inputs and must
produce equivalent results for identical inputs.

Complete language standardization is difficult to achieve. The
major prerequisite fpr language standardization is a complete and
rigorous language specification document. 4 ri appropriate syntactic
definition can be developed fairly straightforwa.vdly, but, as indicated,
full semantic specification is difficult. Standardization of the SHOL
will be facilitated by selecting a base language with good defining
documentation, and by limiting modification to that language. As
mentioned earlier, use of cross-compilers with the same machine-
independent part (front end) guarantees syntactic equivalence.

If language standardization is to be useful, it must be possible
to validate that translators do in fact conform to syntactic and
semantic specifications. This requires development of a rigorous set
of acceptance programs to be used with all translators. The tests
must not only ensure that programs compile without syntactic errors,
but also that their semantics is as specified. This set of tests must
be developed as a part of the SHOL design and specification effort.

Establishing SHOL Usage

Clearly there is little to be gained by developing a SHOL facility
unless it will then be used. Also, though it will decrease develOpment
and maintenance costs on any single effort for which it Di used, the
full benefits of the SHOL will only be realized if it is used in all
simulator programming. Only then will program reuse be a
possibility, and only then will programmers become skilled in the
use of the language.

(While it is possible to guarantee use of the SHOL by simply
requiring its use when procuring simulators, it is desirable to bad-,
up this requirement by making the SHOL facility a sufficiently attractive
alternative that programmers will prefer t, .ice it. Once programmers
become conversant with the language, the increased ease of program-
ming in the SHOL should be adequate motivation fo-r its continued use.
Initially, however, other factors will encourage the transition. These
include:

- superior program development and debugging tools

applic.ationflibrary programs available through the
SHOL. facility "

.1'187

high-qs
backgrou.

well-planned

Irientation oriented to programmer

ing effort

The importance of traiL,ng and of user documentation in
easing the transition to SHOT, usage cannot be overemphasized,
particularly in view of the 1 .rge number of programmers involved.
In addition, to acquainting pi. ;rarrirners with the use of the facility,
a serious training effort as res them of management commitment
to the changeover.

All tutorial material for the SHOL should-include numerous
examples illustrating how common ,simulator functions can be
programmed in,the SHOL. This will not only make SHOL usage
easier to learn; it will also discourage excessive dependence on the
assembly language subroutine capability. (It may be necessary, at
least initially, to attempt to limit the use of this feature to functions
for which it is 'really required. -Section 5.7 discusses these
requirements.).

Relation to the DoD Common Language Effort

The DoD is currently conducting an effort which will result.
in a Common Language to be used for the programming of embedded
computer systems, including flight simulator systems. The
IRONMAN ,specification defines the functional requirements to
be Met by the Common Language. The IRONMAN satisfies most
of the essential SHOL requirements. The significant discrepancies
between the IRONMAN and SHOL requirements are:

IRONMAN does not require conditional expressions.

IRONMAN does not require procedure variables and
arrays.

A non-exact fixed point representation is preferred
to the exact representation required by IRONMAN..

,IRONMAN requires garbage collection of dynamically
allocated storage, which adds.unacceptable overhead.
Explicit allocation and cieallocation are desiredamd
would have to be supported by extension to the
IRONMAN language.

1 8

IRONMAN does not require multiple fixed point
precisions (which allow space-accuracy trade-offs).

IRONMAN does not restrict assembly language use
to subroutines.

IRONKAN I/O and parallel processing features may not
provide the required functions.

IRONMAN extensibility and encapsulation features are
considered unnecessarily complex for simulator needs.

A language satisfying the IRONMAN, however, will\probably b usable for
programming most simulator functions and will satisfy more the SHOL
requirements than any of the modified candidate languages consate-red inthis study. Furthermore, the :DOD backing should ensure the development
of the support facilities and training efforts recommended for a smooth
transition to the SHOL in previous sections of this report.

As of May 1978, work on two Common Language designs was in
progress. Some modifications to the July 1977 IRONMAN were being
made, based on the results of four preliminary_design efforts completed
in February 1978. Although final designs are scheduled for test and
evaluation beginning in April 1979, it is currently unclear how suitable
these designs will be for embedded computer system programming.
Assuming that further redesign will be- .needed, it is unlikely that
production compilers for flight simulator computers will be ready for
use in less than 5 years.

189

Section 10

SUMMARY.AND CONCLUSIONS

The main objective of this study was to define higher order language
requirements for programming flight training simulators. A subsidiary
objective was to develop a general approach for determining HOL require-
ments in a given application area and then to apply this approach to the
simulator area. The approach we devised analyzes three sources of lan-
guage requirementsthe programming environment, the functions to be
programmed, and language design' principles. Requirements pertaining
specifically to flight sirnulatorscAvere deterinined by analyzing a variety of
simulators developed by the Link Division of the Singer Company. Using
thisinformation, we developed,a generic_ model of the programming tasks
relevant to simulator development. A detailed analysis of language require-
ments was keyed to this model.

Based on this analysis, we prepared a detailed specification of,
simulator HOL requirements, using the requirements structure of the
IRONMAN (a specification of HOL requirements for a common DoD program-
ming language). We then analyzed PL/I, FORTRAN, JOVIAL J3B, JOVIAL
J731-, and PASCAL to see how well each satisfied the simulator HOL require-
ments we had developed. Our analysis shOWed that PL/I and JOVIAL J3B.
were best suited for simulator: programming, although only FORTRAN
was clearly the least suitable language. ,;,

o

. SinCe all the languages failed to satisfy some of the simulator
language requirements, we copsidered what language modifications w(.7414\
make them significantly more useful as simulator programming languaged.
Our analysis of the difficulty of modifying, each language indicated that
PL/I was the most easily modified, and"reoommended modifications were
described.

L90

Appendix A

SIMULATOR MODEL

(
This Appendix describes the various programming tasks pertaining

to flight simulators. The tasks to.be performed and their relationships
are.described using SADT notation [Ross, 1977]. An index to the model is
presented in the following pages. In this index, the notation A331, for
example, "represents a task composed of the tasks A3311, .A3312, and A3313.
A page number is indicated for those, tasks that are decomposed into more
detailed tasks. The'number indicates the page on which the decomposition
will be found.

191

Section
.AO _Simulate an Aircraft'

Al Build Simulator

Appendix A ,

SIMULATOR MODEL

All Create System*Data Base.
A 12 Code Modules
A 13 Compile Modules
A14 Link Modules

'Page
196

197

A2- Test Simulator 198

A21 Test Executive
A22 Test Simulation Programs.
A23 Test 'Whole Simulator

A3 Simulate 199

A31 Monitor Execution 200

A311 Control Initialization
A312 Cycle Through:Simulator Tasks_ 201

A3121 .Select 'Frame_
A3122 Select Cbckpit
A3123 Schedule Tasks for Frame & Cockpit
A3124 Sum Task Times for Frame
A312"5 "Sum Frame Times for Cycle'

A313 Compute Spare Tin-,e for Cycle
A32 Initialize Data Base
A33 Model Aircraft Functions 202

A331 Model Flight 203

A3311 Model Aircraft Flight Controls
A3312 Model Aerodynamics 204

A33121' Process Atmospheric Data
A33122 Compute Weight & Balance
A33123 Compute Aerodynamic Coefficients
A33124 CoMpute Ground Reactions
A33125 Compute Equations of Motion

A3313 Model Accessory Systems 205

A33131 Model Fuel System
A33132 Model Electrical System 206

A331321 Compute Electrical
System Power

A331322 Compute Bus Loads

4:
192

Section Page
, A33133 Model Hydraulic. System 207

A331331 Compute Hydraulic
Flow & Pressure

A331332 Model Secondary
Hydraulic Controls

A331333 Model Landing Gear
A33134 Model Engine System
A33135 Model Miscellaneous

Accessories 208
A331351 Model Engine Fire

& Overheat System
A331352 Model Ice/De-Ice

System
A331353 Model Canopy &

Ejection Seat System
A331354 Model Oxygen System

A332 Model Nairigation & Communications 209
A3321 Model Communications
A3322 Model Navigation Equipment
A3323 Model Navigation Radios 210

A33231 Model Compasses
A33232 Model Attitude System
A33233 Model Radio Stations

A3324 Look Up Radio Station
A333 Model Motion

_ .

A334 Model Tactics 211
A3341 Model Airborne Radar
A3342 Model Armaments
A3343 Model Electronic Warfare
A3344 Model Weapon Delivery
A3345 Model Tactical Environment
A3346 Model Avionic Displays

A335 Model Visual 212
A3351 Process Flight Data 213 ,

A33511 Compute Attitude
A33512 Compute Position & 'Velocity

A3352 Drive Gantry,
A33521 Process Gantry Feedback
A33522 Control Gantry

)-'193 4 (

21.4

Section Page

A3353 Drive Probe 215
A33531 Compute Altitude Limits
A33532 Control Probe

A3354 Produce Visual Image 216
A33541 Process Instructor &

Student Controls
A33542 Deter Mine Image Focusing
A33543 Produce Cultural Lighting
A33544 Produce Visibility Effects

A34 Do I/O to Simulated COckpit
A35 Communicate with Instructor

A351 Record /Playback Mission -

A352 Set Initial. Conditions'
A353 Set Malfunctions
A354 Display /Update Datapool Values
A355 Display Teri:ain Map,
A356 Plot Aircraft Position and Track.

194

217

AI)1Pninc. AM F onmF.fink 'VP;
our, 0 1.4/,',..0)11,,h low 46111irtien Pindl U.nt 07)54, USA

USED AT. AUTHOR: C.9
PROJECT: 311+1.41aityr rnes14

NOTES: 1 2 3 4 5 6

DATE: ...C/16177.

REV:

7 8 9 10

Fa WORKING READER DATE

1

CONTEXT:

ftr,.4
.

DRAFT

RECOMMENDED

'PUBLICATION

.
,

,

.

.1

.

.

;

:

.

.

1 .

.
.

.5tuchnt.

ac.bon

sirriu.tatc.

.

Y

Ad

1

iwelict
turn

rinlifuLto
deso if

biersa

,

. ,

.

ethlrotsI

..,.

. ,

ii'rtrifi .
,

.rtntion
.
.

\

,

.

.

. ..

. .
I

,_.
.

.

. . .

.

..
4

1

..

.
.

.

c,

.

.
.

.

.

C15411

,

.

,

\

\

\i.
NODE:

. A-0
TITLE: .

1

Sitnulaie an lit trait'. (aVI-exi)
11

NUMBER:

Cb-Gol

I.

',AI i I 4111/11.11AM (11IM 5d($11.1 '11)5

r,I It, 1, I,,, 41,1) kip" I',,1111 Nn,wl W,dll am M.'c (1)154 IJCA

AUTHOR eb
PROJECT ilrnuldoi 'model

NOTES 1 2 3 4 5 6 7 8 9 10

DATE: t/14,/,,
REV:

Ic WORKING

DRAFT

RECOMMENDED

PUBLICATION

READER DATE CONTEXT:

117

c1

ircratt sfeciC,chon,

fieritArninct rruirtnifnfi

Student
icklant

C,2

Insbuctor conl-rny
rtfolh or> itwitni.

tool

CYR)!

riagnosis

build
simulator

TITLE

01

diTtUfi,
rt h

aleit en litti//t
NUMBER:

CD(01

SA(11 6- 4(11A()CIAM FORM ST04$14175

Fowl I) 1975 Sol TIr 11.1,11 1641 Tolten Pond f(141 Walit1/41101 Mac 02154. LISA

USED AT AUTHOR: C3
PROJECT: lem.AliFvf rno414

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE: Sill.177
REV:

DRAFT

RECOMMENDED

PUBLICATION

READER DATE CONTEXT:

0
CD

40

'

SAW 401/4111AM ronmsrogR9/75

txrrt 0 1975 So11016 61(460 1 tillva Pond Mud W4liti,un. Mast 3 ?154. USA

ISED AT: AUTHOR: C3
PROJECT: PiniAl) itsf mods!

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE: Siiii7
REV:

Y WORKING

DRAFT

_RECOMMENDED

PUBLICATION

READER DATE CONVEXT:

0

0

21

c I

Oz

di

4ODE: TITLE:

test strralf for

NUMBER:

71

01

SADIADIAGRAM FOAM STSIIR 9175

F nun () I971.) Sol Tech Inc 46(1 T town Pond Anal Waltham, Matt 02154. USA

USED AT: AUTHOR: tb
PROJECT: .1 irnulefof mods!

NOTES: 1 2 3 4 5 6 7 8 9 IO

DATE: 5iJ1/77
REV:

WORKING READER DATE CONTEXT:

0
0

DRAFT

RECOMMENDED

PUBLICATION

monitovi,)

execution

41 CAI'S

gecutim Crfl 1, (miroi difi buc

riZt trttor
IL boo Inv!'

.

date
beat deta igst

moaulr.
SeR4rneini
Controls
(itItyckAnd
lull sabtt,eIr.)

Niue
rnocizt gybedi,"

alreri f t
f u n c,tiomi

J

ti

11
student
attic";

do .j/ to picratt

IIWIcn/T

coCket

a
.3 7,

tj
tiati bast
updAci
b1scd tih

Student
actiru

........

C1

irrtructor
tvrtho 13

itoolt1 to
islitvockor of
rtvdent attio)

p Cl

NODE

A)

TITLE.

diffILAIaj e

NUMBER:

C09; (e874)

',/14;1 4111MMAM 1 (.111/1,1 c I 11qH girt

f (on 41)(1 11,111.it 1 W.11111.1)n Kitt 07114 I1SA

USED AT AUTHOR CB DATE. 4/1/77
PROJECT. Ji..1.144.crr REV:

NOTES 1 2 3 4 5 6 7 8 9 10

LWORKING READER DATE

DRAFT

RECOMMENDED

PUBLICATION

CONTEXT:

U
0 0

CI

ton trot

olttitir

tt I Chtliuies

,n1I1x11 tt tine 0, et.,

0

NODE

11.3

TITLE.

men for 1, e mut i

NUMBER:

dalis (celly) r j

SAO1(401AGRAM FORM ST098 9/75

F atm 0 1975 Sid Tel o.lor 4(70 intim) Pond Road, WalloAm, Mau 02154. USA

USED AT: AUTl10R:

PROJECT: mockr.1

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE: C./3/77

REV:

Inimmi.,...nnal
Ca

A TC

o;4'
trA)

t

urrtn1
frorle 0

cyclt =6100
seittt ,aratauxxif___

jirttligik

WORKING READER

DRAFT

RECOMMENDED

PUBLICATION

DATE CONTEXT:

o

0
11

er..+...+.'"""rvm..,...

v

C1

4ore

tYhi 'e4

caeibf111)

3chectult
rn

tasks for ot,talt ie40
f/ ATTIC it

4PC.)t? I /TN u5k

5,1

Loge

NODE:

1131.1

TITLE:

cidt thra, itmulaiti(tasks

Sum ,

ILA
ityr bang ill'Prtf

On!

cycle

eonfItitel

e

time
&3

NUMBER:

e0;17 (Celle

5AI/I -4(1ACIF3AM FORM ST0989/75

rpm 0 1975 Sollerh. Inr 460 horn Pond Road, Waliham, Mni 02154, USA

(71577ni N.---7F77.117Tx WORKING READER
PROJECT: Jimubior model REV: DRAFT

NOTES: 1 2 3 4 5 6 7, 8 9 10

DATE

RECOMMENDED

PUBLICATION A)

CONTEXT

0

frt
data ei

Ose

CI CA

cLtle r Can

.,....1

TITLE:

R33 model ftrclIons

data bale

LIN:tate,

_s
03107

7113.4,). S.?

;0.3.3,3,3

NUM-11R:

e69s (ci77)

1

USED AT: AUTHOR: a
PROJECT: Jouiaior model

r,nior4ninciimm f OW SW1119111)
1 pm 147b Sol in h Iir 4I,I f (1111,1111mA 110311 WaliImiti MaSti 021S4. I ICA

ENIMONI.11

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE; S
REV:

I

77 3 WORKING

DRAFT

READER DATE

RECOMMENDED

PUBLICATION

CONTEXT:

C3
O

A3)mrp =,....=wlNrimm.,./

051es (14,

Ci moth!
to9.1..ru, 0, chit

1cp941

el igAtiagr 111A, toITI-ob
au(4./04qt

el

Its 4tnt:IrtC afflirD4

trrei ruli Lo

r vint 4,01
pettit, ar.,

43411121121-41L4091

21:2:314:1 1

11

iwitratiors h
Jr% ry 11.),_s_ctiziby222_0,6i

mold ro 11) yt
OLIO Chi I ke- dijerodly,am'ic,

tu dot , ?eviler()
jiii_e_tts.4.

C if

. d I I

tr rPialkoldfas

NODE:

A33I
TITLE

rnoae. ht
NUMBER:

egg3 (WI

',A1)1"41)1/V,IIAM (1111M 1:T1;011(1/P1

(1rm h lu mat 1(ith.tv Pli,v1111,v1 071r.A. USA

USED At AUTHOR
PROJECT: iirruiWtit rtiodtt

NOTES 1 2 3 4 5 8 7 8 9 10

DATE irlq77
REV:

WORKING

DRAFT

RECOMMENDED

PUBLICATION
11011101.

tt

module .-' 'Attic n cottroli

READER DATE CONTEXT:

1
froLtr1

at rno,riAtqic

diti

,d1tIfticle_tilvrittej

11C41"4phal retie 703.7
Loci rAm ivaLt_LV11,

r. brikqb CuryLtit .11,11) pitclolitla illernernfi.i

iefidyninitt ride l furT

11 -401 cbei.iic:tenb

J

wIndrni

runt!)1mill
V

Th

t",'IStAlt3;
Ariteljiirt

I I t .L.L. acciltrrijorl

Imo'
tier

cvmputt
ct

Iciu4tichti 026,coil

victim tu_ani____44

13,3.4,3

N DE TITLE

3J1 model aeroainjr6 to

13

NUMBER:

MY (CM)

2

SADT 9D1AG RAM FORM ST C198 9n5

Form 0 1975 Sol Trii h, Inc 460 Tolinn Pond Roarl.iValinam, Mns, 02154, USA

PROJECT: simulslor model REV:

NOTES: 1 2 3 4 5 6 1/ 8 9 10

Cl

L mcLIe
. $

tow n

LWORKING READER DATE

DRAFT

RECOMMENDED

PUBLICATION

CONTEXT:

0

km?! modt1
1,4 Jrtditic.. ;Ad

ipttio

NODE:

02

irrCil alai) bpi

21 xtit;

indiaJor);qht
I 104meter

Modtt
tied fiCli

I ',stew+

Owl
j4.1.1

dais b;re

a.....191cois aentii.ior,Iporrt. f

;ruticikikt
,164t1

T

d(11

7.3.1

ircrbit data ,h0t

P I 01Di $14);+01.)
11

mode
mistell)iiptu
attessoYin

Calol
21

02

r441.c0104

TITLE:

A3313 rrlod.?J icassor 3 eery

r,

_iNUMBER:

Cnio (cBri)

AUTH7R71S
PROJECT: 4iniulain model,

USED AT:

SA1)161' MAI-10AM (OHM 109F1 9175

Form () 1975 Sol TIN It. lix". 460 Titi len Pond Road. Wallhem, Magi 07154 USA

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE: (0 1/77 .

REV:

WORKING

DRAFT

PUBLICATION

READER DATE CONTEXT:

0
0

AIM 0
1

C1 et

;
;ie Slid 1.1

411 4574
t I lit

r

refsiot bai+try.,

g._,Wo___Cxfabi I i

miiclus 100, ht114

I; ---12-014"
rsr, b

-nstiuPai

11.11co/ btu loasiLat

pC .bu4 _tett)

4SatliisL14 agiLai ea
acaAraster &UM 0 6141.

ME:
3313Z

TITLE:

model elecitic;1 ,s Mem

SA1)1 4111A(.;11AMi S 111111 WPI

linen 1975 SOLI h. l w r,..1 Mms 02154. USA

USED AT. AUTHOR: C

PROJECT: atmuJi4.0(modeJ

NOTES: 1 2 3 4 5 6 7 8 9 1.

c a

C1

DATE: 4/1/77

REV:
WORKING

DRAFT

RECOMMENDED

PUBLICATION

READER DATE CONTEXT:
0

A3313 0

Qrlglnito'
ulc ce 14trt rats

hychatAl simurmemi felorti",

hicte ic

1400Nlibti4 hydriAalc rri,/±r4rticLot 4

hrd214cguL:Lt
di

oil. 1notui 4.0!

NODE

A33I33

11 text secsniine131 1124a1

s ?oder cteea

la hyWit Urn

TITLE:

moat).
secaulbri
Fria pAltc

cvnt rots

immcloy swig," imete,

11
brAe'loils

hOtt UAtti *et
12 #-1-4111:11T.hrl----.

limclIng !fear, 4
'Sloisv nose
tr

dote

1J' di tear
Ihtilcftry
u>a'nlnq Lights

413

CI

model h artulIc s 5-1 em

NUMBER:

C6 ICI

SADTE4DIAMIAM FORM SIMI 9/75

F (WM ri 1915 5,0 Tot h Irs 4fr0 Troon Pond Hod WAtdlam Mai 02154 USA

USED AT AUTHOR. ca
PROJECT: sirnu.lb+or moat),

NOTES: 1 2 3 4 5 6 7 8 9. 10

DATE: N"
REV:

AINORKING

DRAFT

RECOMMENDED

PUBLICATION

READER DATE CONTEXT:

o
0

&&e3 Ibble

1"1212-1-41

C)

meal
Aorcdico! tn.qint (IN/1 osty, juhrisLip

oviriiers
fin 1, orlt di4ed

t1

Tf
JAL+ 1 ad ?lel

ty Kr wont 145kh 62

111 bona

41k 110,11 it. 41,

O2

ro 13

perolgi;cle tcww. 9 legult:7;c3").

"
mod&

^eP14°I)
ceo ict ;dick to

.1J

CanOry 414.1110)el
.atit 4%4 -lit

11 r Ws model

a ear Dili 6 ant
einopy 1

ejection Jut
11 glory todoc.1 NIC. f .enii

I1

Mogi fte;thm,
4411_442

jesi tec.4 -frter.
3.1

467

iX

rk:CCPLtrtTVT7766 yr
1.1=-121par-_-_

0 Pity.% orten
Li kb t

DATA relev.K.

btir, 9uje.hit
SI. 1 063

NODE

A33i3S

TITLE:

model rntscrilo1Pcui acCe..i 30c lek3

NUMBER-

cBto4

CAI -41')IAGRAM FORM STORR 9175

F am 1 1915 46(f loom, wmharn. M.j 071.54, USA

MD AT. AUTHOR: C0

PROJECT; ipritAlafor made!

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE: (41117
REV:

WUXI%
DRAFT

RECOMMENDED

PUBLICATION

READER DATE CONTEXT:
0

0
0

0 IA31 ,.

11+u ria.tor 66.004

0..itn t, u'iF

Ca

otniFolLtVstuAci

tC71111110itl
rretiv_2446I

I

Ira

d

4dio tilirtrument.

L.

4

cerIAa., 41,1 'L.
,,qaTivf, r

01

Cl

f-410chiLl t0-* -f,
cIIDO

raiOs

look ut
rata
stition 3tationiiiicra it ron Iterib 6

11)29 1,3 2)3 I

1- 3.1.) 2.14.1.1

TITLE;

mod el r1i4.1 'dor 1,) cornmunicli;orts
NUMBER:

calf

SAW ADIAGIUM 1011M S10%005

f °an 0 10550ln II liar Toltnn Pond

USED Al. AUTHOR: t13

PROJECT: Simu4for Pv,111.1

NOTES: 1' 2 3 4 5 6 7 8 9 10

DATE: 4]1/77
REV:

Mlis 02154, USA

MAKING READER DATE CONTEXT:

DRAFT 0
RECOMMENDED 0

PUBLICATION °

ca

Crff9103 slaving
1.3 ' ItQlidtrr mociti

11 "v-42-14"" trApliseS

fl +

2124Ltiutpendtn3 con-iro

n)w roll) pircAj row

(ittoits,pnbirs),.
re dr 'Urn)
iYanrfost

Ji CO ,

___121111o1;r13 63

et_npa_atipluti

.../*' jiyi cot of iriCtuoit

tatdelt
syrtem

AWaizza4TAL4 03

rat 63yro {Iv

MI

TITLE:

A33;3 na.itition ridtios

sh

1..fte
NUMBER:

MOO (70

; SAITT674()141GRAM FORM ST098 9/75
F coal eI 1975 S.,1 In h Inc 460 Toth., Potri Rnarl Waltham. Mess 02154. USA

USED AT: AUTHOR: CD
PROJECT: el...1.4101yr rslactei

NOTES: 1 2 3 4 5 6 7 8 9 10

DATE: 4/7/77
REV:

X WORKING READER DATE
DRAFT
RECOMMENDED
PUBLICATION

CONTEXT:
0

X133 0

il'acrft
data

c.
mo(81e sluenc-trta con tro

Tnodr_J
air bocnt
radar

f)

.radar
Sicna+urt
'N't4aciro

fl ht
daft.

Cs

Ca

model
rn a merits

3.1

tour, load,
an*, aelour 61

"-9ti U.ALL .4
il,stoats /.5.14 et&

to 1,

a .,,c, a(1.t1"-.P mold
silkiTrl'e eler-trrnic

el '9" '' 1.I (Lad art

t rat
sttraTio

74i,
S S

2"dlerr pel
chaff Ilmv,v+4.01
ein;trer,

n 1

ht

model
az 1 pun
delivery

0,0)07.,a rn 1.1A-;

et.,plisasTopir_.,,

C1

dee rip(on
hoffile

envirrnment

sr 0 4,(.6... 011

vim/el tx9tt A Cof

tactical Aogt;It An4 of

environment 4h-"".'" -.
s

nr crtecrn!.c

displays dupla
/ 6 otApZ111

NODE
A 3 3 Li

TITLE:
model tactics

NUMBER:

CO/?/

Al r (4111 Aqi AM j oFiM ST I% CM')

(gm Firi I III II hit ill) TIIIIPII Pprwl A,S,Its 07154 USA

USED AT AUTHOR. Cb

PROJECT: JImulOor model

NOTES 1 2 3 4 5 6 7 8 9 10

DATE; G11177

REV:

A WORKING

DRAFT

RECOMMENDED

{PUBLICATION

READER DATE CONTEXT:
0

0

A33

0

II h1

Ai

el 11(1

ruroriv,

atn TO 1J

01.,..

tnelkansi
CVOS 41031410-tyr

ivoctii/

rchukr4 y
tl
plifitoitchtl

9,1.7

81

itrerott roll)

EA

drive

rob! C1(4
I

I nell

probe IeIt
J

C.Dr0

cisckryiit`tluzatnzia--.
el 21,9.NLito,

11.,

sopa)/ floi;

fuws

filch), 'hap

11111=4

ea

NODE

ADS

TITLE:

model yowl
NUMBER:

C4107

SAI) ACM AM F(IIIM ST098 9/75

Form 1915sol I ff 460 To Pontl lin.40 I , 14311harn. Man 07154. USA

USED AT, AUTHOR. CO

PROJECT: .firkAlakirr moat{
DATE: 414/17
REV:

WORKING

DRAFT

RECOMMENDED
NOTES: 1 2 3 4 5 6 7 8 9 10 ,PUBLICATION

READER DATE

....=.1....-nn=mmi

ti

It

at

CL

CONTEXT:

0
0

_A335 °

NODE:

A3351

_E:

prooess data
NUMBER:

CSIOt

di

OS

SAPIPDIAGFIAM FORM s TITO 9/75

Foim U 1975 Sol Trch, 460 Toner, Pond RoArl, Walihrom. Mass 02154, US

USED AT: AUTHOR: CB
PROJECT: .rimuilaio7 medal

,

NOTES: 1 2 3 4 5 6 1 8 9

DATE: 4/2//7
REV:

10

(WORKING

IIIDRACTII

READER DATE

A

CONTEXT:

co.
o

'6
RECOMMENDED

PUB-I-AA-TM

11

C2

modules tAtnc.A crrtf

NODE: TITLE: NUMBER:

5r1lil nit,r,finNi 1(;11M SIO9E19/15

1471;.I ti 460 lotion Pond Rod Waltham MAI 07154 trtA
USED AT AUTHOR CD

PROJECT s;mALIbtof maki

NOTES: '1 2 3 4 5 6 7 8 9 10

DATE: 6212/77
XTWORKING READER DATE

REV:
DRAFT

RECOMMENDED

PUBLICATION

CONTEXT;

0
0

A335 0

C2

L..modIA 6 guefic,1n- cvnirols

ti

41

NODE

3353

TITLE:

,111.
drive robe

.)

NUMBER:

CDC 10

USED AT AUTHOR 777---
PROJECT ilrflul4401 rrt54.0

NOTES 1 2

',11dr4i)inr,HAm rwrar

{note Ito' 114) Liten huol 161.r1 NI,1%1 01154 IP;A

3 4 5 6 7 8 9 10

DATE

REV

(0/7/7) WORKING READER DATE

DRAFT 0

RECOMMENDED

PUBLICATION /1335

CONTEXT:

111154ni
int 401L11

,o,01). A/C ibba

tw°141/41ii/Jetr

CZ C,3

;11 11C,Irk cotrels

cows
'nit
h 3 end

controls

jtudfnt
Intl. Init.. of
1111 bAl

1%0 achrf .nrAt

day,duJi)*(ihr
jv.isbmije,1044

carer held
1111 sekstkies

NODS

ADS4

iqrrett

11.1_11.24.)

01

+04

ti

tdwit lirri it

FOCw

Icy I.

itln
biro

tultur4,1
h odi 0.1

o,

C1
4irttsit oilirt

4131611 eckgri
aft

JMIS,P471

rITLE

Octuct vlsuiI Irma

NUMBER'

COM

225

USED AT:

SADT9DIAGFIAM.FORM ST1S6 9175

Form 0 1975 Sof itCh, Inc , 460 Tuiten Pond Floar1. W611,4471, Han 02154, USA .

AUTHOR: CB
PROJECT: siintiieior model

NOTES: 1 2 3 4 5

wwinam~

6 7 8 9 10

DATE: 4/1s/77 X WORKING R ADER DATE CONTEXT:
REV: DRAFT

RECOMMENDED 0
PUBLICATION 1

IleMCA Cantft13

id(Yout

rlis3lom

NODE: TITLE:

earnmar:icalc with In.siruclor
NUMBER:

C8a7

REFERENCES

Babel, Philip S., "Crew Training Simulator Software",
Proceedings of the 2-4 April 1974 AFSC/ASD Software
Workshop.

Fisher, David A., "Tinman" Se't of Criteria and Needed
Characteristics for a Common 17oD High Order Programming
Language, Institute for Defenser Analyses papei P-1046,
AD/A004841.

Goldiez, B.F., and Braleski, L.P., High Level Programming
Language (FORTRAN) Applications in Real Time Simulation,
NAVTRA-EQUIPCEN, February 1976.

Ross, D. T, , and Schoman, K.E., "Structured Analysis for
Requirements Definition", IEEE-TSE-3, January 1977.

SofTech, Communications High-Order Language Investigation,
RADC-TR-77-341, Volume II, October 1977..

U. S. Department of Defense, DoD Requirements for High Order
Computer Programming Languages (IRONMAN), July 1977

218,

BIBLIOGRAPHY

Anderson, Christine -M. , Aerospace Higher Order Language
Processing, Technical Report AFAL-TR-73-151, AFAL,
Wright-Patterson Air Force Base, Ohio, June 1973.

Archdeacon, John L./and Wes sale, William D. , "Real-Time
Digitally Driven Graph lc-Display Systems in Aircraft Simulation",
NAECON '77, May 1977

Babel, Philip S., Considerations in High Order Language
Compiler versus Assembler for Programming Real-Time
Training Simulators, TM ASD/ENCT-75-2, ASD, Wright-
Patterson Air Force Base, Ohio, February 1975.

Dahl, 0. -J. , and Hoaie, C. A. R. , "Hierarchical Program
Structures" in Structured Programming, Dijkstra, E. W., Dahl,
0. -J., and Hoare, C.A.R., Academic Press, New York,
1972, pp. 175-220.

Engelland, J. D. , Operational Software Concept (Phase
Two) Final Report, AFAL, Wright-Patterson Air Force Base,
Ohio, July 1975.

Epps, Robert, "Automated Instructional System for Advanced
--- Simulation in Undergraduate Pilot Training (ASUPT)",

NAECON '77, May 1977.

Francis, J. W. , La Padula, L. J., and Mott-Smith, J.,
High Order Language Standardization: Perspective, Summary,
and Annotated Bibliography, MTR-3331, Mitre Corpor'ation,
September 1976.

Goodenough, John B., and Shafer, Lawrence H. , A-Study of
High Level Language Features, SofTech, Inc. , ECOM;-75-0373-F,
Vol. I and II, February, 1976.

Goodenough, John B. , An Exploratory Study of Reasons for HOL
Object Code Inefficiency, SofTech, Inc. , ECOM-75-0373-F,
August, 1976.

Hansen, Gilbert J., and Lindahl, Charles E., Preliminary
Specification of Real-Time PASCAL, Technical Report
NAVTRAEQUIPCEN 76-C-0017-1, July 1976.

La Padula, L. J. A Recommendation to Promote Programming
Language Standardization in Range Support and, Simulator and
Trainer Applications, Mitre Corp. WP-20433, October 1975.

La Padula, L. J. and Loring, P. L. , Air Force Programming.
Languages: Standards, Use, and Selection, Mitre Corp.
MTR-3169, January 1976.

Liskov, B. H. , and Zilles, S., "Programming with Abstract Data
Types", SIGPLAN Notices 9, April 1974.

219.

Moyen-van Slimming, Capt. Otto, "A Flexible Approach to On-
Board Computer Simulation", NAECON '77, May 1977.

Purdue Workshop en Industrial Computer Systems, Significant
Accomplishments and Documentation - Part II, The Long. Term
Procedural Language, January 1977.

Ross, D. T., Goodenough, J. B. , and Irvine, 'C. A. , "Software
Engineering: Process Principles, and Goals", Computer 8,
May 1975.

SofTech, Evaluation of Algol 68, Jovial J3B, Pascal, Simula 67,
and TACPOL. vs. TINMAN Requirements for a Common High
Order Programming Language, SofTech, Inc. , 1021-14,
October 1976.

U.S. Air Force,. Military Specification - Digital Computational
System for Real-Time Training Simulators, MIL-D-83468,
December 1975.

U.S. Army Research and Development Group (Europe), Imple-
mentation Languages and Real-Time Systems, European
Research Office (England), Tech. Rpt. No. ERO-2-75, Vol. 1,
2 and 3.

U.S. Department. of Defense, DoD High Order Language
Program Management Plan.

Warnier, John Dominiqu, Logical Construction of Programs-,
Van Nostrand Reinhold,lNew York, 1974.

Weinberg, G. M. , The(ZsycholOgy of Computer ,.'rograrnming,
Van Nostrand Reinhold, Nex--York, 1971.

.220 *U.S. GOVERNMENT. PRINTING OFFICE: 1978- 771-122/53

