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. . Chapter & -
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. ccoRﬁ&NATES, IN A PLANE®# =~  « 7 .
* A ; & - _
8-1. . Introduction. S s A

== LY N

In ccnnect;g; with our #lscussion of éistaﬂﬁe we 1n€£éduced
the Ldea ‘of a coordinate system on a line. A cgordiphte Eystgm

,’ on a liné 1s detfermined djy any pair of paints on 1t; with one )

'pﬂiﬁt of this.pain designated as the Qriggn and the other e
designated as the unit-point. A coordinate system oh. a line'
is a one-to-one carfespandence between the set of all real -
numbérs;and the sat of all pgints in the 1line, such that the
Gacrdinateé, i.e., the numbers aggociated with the péinta, can
“be used to deéérmine distanceg between points.

. ) .
- — S S— .
-2 . ~0 I
%
" . . ' \ 5
Phoblem Set 8-1 - »

On.line 1Z§E assume a coordinate system which assigns the
coordinate O to A, and 1 to B . F 13 a point on
“AB” with coordinate x . For each listed condition plot
the set of all points P determined by that condition.-

(a) x=5." . : .
(b) x = -3 )
(¢) x = 3AB .
(d) x = 4aB .
(e) x =% AB . | . '
(f) x =1t - AB and t 1s an elemént of (1, b, 0, %)
-7 (). x=k + AB; k<1
. (h) x=Xk - AB; k>0 . “~ ’
(1) x=k-AB; 0Ck<1 . .
* U (§) x=% - AB; k>0,
\ ,
> Y

€
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¥ ) L 2{ ‘A coordinate system on iigﬁgassigns ccgrdigates 0, 1, x
o to points- A, B, P respectively. ; Plot the set of a&l P
w : . Buch that x satisfies the given conditions. ~ '
- (2) x >0 and x "is an integer.: Describe the set. _
(b) x <0 and x 1s real. s o . b
T (¢) -2¢x < 5 ; X 1is an 1nteger How many points
‘ R belong to this set? E
[ (d) -3 <x <1 ; x.'is real. How many points belong to
' this'set? - '
‘e 1‘(83 5<x<-1;x is real. ,
(f) Using mathematica?® terms destéribe® the point sets in 7
(b)), (a), (e). .7
3. If A, %g-c, P éreicn ray . AP= and have i%spectfvé\ }
coordinates O, 1, 3, x, what is the vaifie or valuwes of
X determined by each of thégfollowing conditions?
“(a) AP = 2aC’. © (d) BP = 3BC .
(b) AP = 5AC . (e) BP =k - BC
(c) AP =1k - AC . ., (f) BP = 2AC )
4, Sﬁppase a coordinate Eysﬁem on a line m 1s given
N ]?lgarid Q are pc:ir‘lts in m .with coordinates and q g
respecti 1*e ely, find the distance from P, to Q \if
L g s! ) i
) (a)» p=5, qg=8." (e) p=r-3,q=r+ g\\
\ . (bfp;f—T;qf-B, (f)psr‘%-f;,q;‘ril-lax/
: y (¢) p=3,a="-5. () p=ag=-a,a>0., ™
‘ - (d) p=-9,aq=4. *(h) p=a,qg=©0b .
\ ' 5. Suppose a coordinate system is established on line m ,
X and P and Q are points on m with ca@rdinate§4 P .
and q respectively. If P, T, M, T, Q are collinear

in tpat order and represent the mldpoint and trisection
- points of PQ , find the coordlnates of M, T, T, in
the following. Record your results for each problem on

a separate number line. (Refer to Theorem 3-6.)
(S \:

v (a) p=3,q=12, () p=a,q=b,b>a
\ (b) p= -10, g = -1 " (¢) p=r+a,q=r -a,ac<o
\. (¢) p=-2,q=13 .- (f) p=(r+0b)-2 '
. : g qs; (r + Db) + U4
\ :
(. s




8-1 .
6. 1In each of the following péableﬁs 1ndicéte theilacatidn>
of:- the objects lettered from ‘A through H by using
.elther a pair or a triple of symbols. :

(a) Seats in an auditorium. » R

OO SN
~er — Y - — ' .
R o o s o

®

OO

[

1P|

T - 3 _
y 'SEATS

{Es* “(b) Houses at the intersection of stréegs=an§yévenues.

N4

= N o
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. (e) Tables in rows in thé floors in a store.

2 - : ) 2 _ u
e - . ’ . 4 :
O . . u - L e T

L3 T =

— == s

1 S —
I ——————

K
-
[-%

o

G A’%-. — 1‘;“:!‘ ﬁ"‘; }-3 ‘
T 3 T=_ =~ € 2nd -

T X — < H

i
L~

Ist FLOOR

S . . INL— 2 3 ' - E
. . R TABLES

. - “,%\1 (d) Polntd on the surface of the earth. - . -

. ; _ .
4 : A ' .
T, .PRIME ‘MERIDIAN

. 45° NORTH—

R- ) o - 20°WEST
r %

- S S ;

o
45° WE!

m

4 (e) Using the data of Part (d), indicate the position
_ of' airplanes which are above each of the listed
- points. Assumg the one aboves A} has 'an elevati@n!
o 5000 %;i; hnd that the elevation of each ong ;,
from A to H is 200 -ft. more than the preceding .
, , i .

7 one. - r'

-,
%,
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8-2. A Coordinate Syatéy in a Plané.

e

Su po se:thatia plane ds given and, Enﬁil further notice, ﬂé»f;

L

\ that all palnts and® lines undep consideratian 1ie in this plane

¢

- Suppose further that a unit-palr of points [A;A}] , a

E&f diacussed—in Chapter 3, is given. All distances are tcfbé

£

¥

T s

i

considered as neasures of distances relative to this unif paif;

Let ox and DY be any two perPEﬂdicular lines with D "

thelr point of infersection. ELet T and J be points in BX. /
and iEf‘; respectively, such that 0I = 1 = QJF . There is a--i
coordinate systém on EX with the point’ O as origin and the . ’
.point I as unit point. We call this the x-coordinate
- system and the coordinate in E‘his system of a point of iﬁ?ﬁk
1ts x-coordinmate. Similarly 0 and J are the origin .and
urilt paint af a ccafdinate system on *Ef‘i We call this system‘ .
the y-caordinate gsystem and the‘coordinake in this system of
a point on qé_Y- its y-coordinate. -~ : ,
. Thds 1n the diagram ‘I and J are the unit poigj_ss of
their rezpective coordinate  sys stems. Point 0O 1s the DfiginP
of bcth the x- and . . :
y- coqrdinate gygtems . ' y
The chrdinate of point } B ' 1
P 1s 3 -with respect. o =
to the x- comrdinate NS ‘ L 3l ,
system and the _ R ST e
:-ccordinare of H with 2tR d .
respett to the yfcoordi— ) ; ;.hFd ’ 3
nat§ systém is 2 . ‘ ‘.,” s ol 1 p .-
Namé the coordinates of "
points S iand T. Is - ik o y
1t neces 58ary to ;pe&ify . . .
the coordinate system 1in -2t : ' N
each éése? Why? e 7 ‘ R~
v
. v -
D J
£ _
: 509 1. o o
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The 1liné . 0X 1is called the x= axis and QY 1s called the
l éxia thelr point, of interQEEtion, 0, is called the O?igln,,
= and the plane determl ed by them is called the Xy-plane. )

‘ Becauge of the way ‘these ‘axes us ually are shown in pilctitres on
a chalkboard it i cugtamary ta. call lines pafallel to ‘the -
«x-axls. harizantal llnes, and linea parallel to- the Ve axia

T vertical lirés. It &g customary to think of 1 as lying to

the right of the origin and of J as lying above the origin.

This means, then, that the points on the x-axis with positive

coordinates lle to the right of the origin, while the points

on the x-axis with negative c@@rdiﬂates lie to the left of the

origin. #here do the poilnts on the y-axis with pogitive
coordinates lie? Where do the’ p@intg on the y-axis with J—

5 negative coordinates lie? - i _—_

dP We are now ready to define a coordinate system in the
VF . Xy-plane which 1is detggﬂéned by thé x= dhd the y-coordinate

systems. We aansidEP a particular point firs t%z Suppose that
Q@ 1s a point, that the vertlcal line ?nraugh Q cuts the
x-axls 4p the péint whose x- COﬁrdiﬂaté is 3 , and ghe hori-
zontal 1iné through cuts the y-axis in the- péint whose_
y-coordinate 1s 2 . We Bay in this case ‘that the xfgaardinaﬁe
of Q 1s 3, that the y-coordinatg of Q 1s 2 , and we call
the ordered pair of numbers (SJEégﬁkhg coordinates of Q§

M
A m
A
-
- 7‘12 _ Q(3,2) kﬁ
o
i = — T T T O L = - X
- - o I 2 3 4
»,/»_\»_
L= % N
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S We are nqw ready for the general Qaééi "Let P be any
point in the Xy-plane. From our prguious,WQPg-wa‘kn@w that
- thE?é‘is”exaﬁtly one line:thréugh B pérpénﬁicular to tﬂe
Y- axigiand Exagtly one line through F Pevpendicular to the
y-axls. Why? The point P, @ax an x- ccnrdinate and a’

y- Zcoordinate which we now deiine " The x- COGPdiﬂaté of P ia

rthé 4 X- EDGPde&tP of tHe pfajé?tion of/- F iﬂtg the x-axie and

s

‘the y-coordinate of P 15 the y- ﬁanfdinita‘gi the projection

of P into the y-axis. We sometimes call the x-coordinate of

P and the y-coordinate of P the coordinfités of P . The

odérdinates of the y-coordinate of P are considered an @rdered

c
l pair of real numbers in which the x-coordinate 1s the [first
numbg: of the pair and the y-coordinate is the second. If the
x-coordinate of P 18 a -and the y‘coordinate of P iz b,
the coordinates of P ane written as (a,b)'g Notg that the
numbers in an ordered pair nééi not be distinct. Thus (5,5)
15 an ordered palr of real numbers. Of course (8,3) and
13,8) are different ordered pairs. In fact, (a,b) = (e,d)
if and only 1f a =c¢ and Db = d
y
'O A A
}
Play) plB_ - ;E““b) DE P@,m
H il s
jf
il
[ It I+
- i [ L il e - _ HA, -
=} o |' ‘ 7 X <2} 0 | = X 0 | e = X
\] At | \
/ /
In the diagrams A 1g the projJection of P into the
x-axis and B 15 the proJection of P l1ntosthe y-axls. “Fhus
the x-coordlnate of P 1&g a and the y-coordinate of P 1s

b . We call the ordered number pair (a,b) the xy-coordinates
s

ERIC
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Since the pféjecgipn of a point into a line is u?}que, it
follows that there is exactly-one ordered- pair of rea numpers
aagigned to each point as 1its coordlnates. aégnnf rse iyg ir
(a,b), is any ardsred palr of neal numbers there iz e; 1
point P 1h the xy plane whicn has (a,b) assignhed to
1ts coordinates. lndeed there is a unlque vertical .llne

7 " through the point on the x-axis with x- eoafdinate a , and a

unique horizontal 1iné thraugh the pgint on the y-axils with
y-doordinate b . And P 1is the unique point in which this
vertical line and this horizontal line intersect, Thergfore
therée 1s a one-to- one correspondence between the* set of all
points in the xy-plane and the set of all drdered palrs of real

numbers.
Corresponding to any three points 0, I, and J s such
| S
that 0I | 0OJ and 0I = 1 = OJ there is a coordinate system .
in the xy-plane. This coordinate system 15 the oné-to-one

m

correspondence which we described above. Although there are
many xy-coordinate systems in a plane, we usually think of

- only one of them in a given problem or theorem. Once a

coordinate system has been set up we may use ordered pairs of
real numbers as names for polnts. The coordinate pair of a°
point 1s a good name for a point in,view'af the oné=to—@né>
correspondence described above. Thus we may say that the
point Q has coordinates (-2,4) , or that Q = (-2,4)
Sometimes we simply wrilte  'Q(-2,4) . Occasionally we use the
symbol Xp to denote the x-coordinate of the point A and
the symbol Ya to denote the y-coordinate of the point A
Thus (xA,yA) 1s another name for the point A .

We' have used "below," "right," "left," to
escribe the position of a p@iﬁt These words were intfoduced

'above,’

for convenlence and we can get along wilthout them if we are
challenged to do so: Furthermore, there are situations (not
in thls book, however) in which it 1is convenient to take the
positlve part of the x-axis as extending to the left, or the
posltive part of the y- axis as exteﬁﬁiﬁg downward, or some

other varidtion. sgjj



Lg !
b -
. F= |
X - T — —— r'—'fl“
2 1 5 -t -2
o '
i L2
+ . # 1 o
- s Y
In describing the locatlon of a point in the xy-plane 1t
is sometimes .convenlent to specify the portion of the pla%e in
which it lies. The lines .0X and 0Y form four angles.
. L . -, L ) i
Every point in the plane lies in 00X or in. 0Y or in the
B . i,ﬂ',,ﬁ
) interior of one of the four angles whose sides lie on 0X and
- - , . L . : ) )
0Y . The interilors of these angles are called quadrantg. The

first quadrant 1s the set of all points whose x- and y-coordi-

‘nates are both positive. The second guadrant 1is the set of all
points whose x-coordinate 1s negatiVe and whose y-coordinate

is positive. The third guadrant 1s the set of all p@ints\\

whose x-coordinate and y-coordinate are both negative. The

fourth quadrant -is the set of all points whose x-coordinate 1s
positive and whose y ordinate 1s negative.. We denote these

=C0
quadrants as I, IT, III, IV.

£

ny
(N1
=
Toal
—,
:f
L9
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"gr‘aph o
and to mark a dot in the proper plaéé as a plcture of the-

r:::) ) 3 \e‘i“g!\ " £
- ‘ | v
- ' ¥ s Y
& A & 1 B
=+ : (+,4) @ .
:if . — i = .

B jII ;Eﬁ ) * . -

) el :

\1«

Suppose we wish to describe the locatlon of the point
(5,-3) "right," "left,"

"nelowi“;waimight'say that P 1s in the fourth quadrant,

without using the words "above,"

"that 1t . is in a vertical line whlch cuts the x-axis in a péiﬁt

5 Xunits from the ﬁﬁi&in, and that 1t 1s in a horizontal line

whilch cuts the y-axis in a pgint which ig 3 units from the

Drigin S v

;
L _ 5 = f"r" L = 2 . N _ _ =
In the following problems 'we use the words

_ H . .
To plot a point means to draw®a plcture of the axes

"plot"'and

point. A name for the point is frequently wriltten beside its
‘plcture. We use tjle word graph to mean a set . 5? points. To

draw (or plot) a graph 1q to draw a pleture which shows the
axes and the QEF/oI p@intﬁ If there are infinitely many
its graph 1is sometimes drawn by drawing line

The pigtgre

points in'a set,
gsegments, or by ghading the appropriate region
of a graph always ahgws the axed, but they are not a part of
the graph unless 1t 1s so stated. The label X 1s placed
along ggé poslitive part of the x-axls; the label, Y’ 18 placed
along the ppsitive part of the Z;Ei}si It is usually iasirable
to lapel at least one point on O0X other than the origin with
and at least one point on i6§§‘éthEF than the
‘If we wish to Eepre;entAa line

1ts x-cobrdinate,
origin with its y-coordinate.
segment including its endpoints, we sémetimes emphasizé the
endpolints as in the follawing plcture.
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If we wish to represent a

segment except its endf

y of a line
endpoints az in ghetf@llawing pifeture , .
2=l

' Ifwgﬁé axes,. or a poertion of them, are a

we may indicate thils by makingA"béatier Tines

Example iil Plot the polnts 4A(-2,0) ,

-

Draw the graph of the line zegment with

endpoints (3,-2) and (3,1)

W
!
%
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1
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Tl
O
po— |
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pas]
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pad
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r
hol
o

(E;E),;'E (O:E) » C = (O:O) »
T of the set -of all points wnhith belong
D or its interior. '

1
e

N —
“*+c0,0 =X

Mz,

If Q 1ia the point in which the vertical line
through P intersects the x-axls, what are the
Q 7-

If R -is the polint 1In which the horizontal line
through P

coordinates of

intersects the y-axis, what are the

coordinates of R ?
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8-2 \ - wer e ' :

"3, Without plotting, name the quadrant. in=which each of the
.follaowing polints lles: 7

“.(Tf:=1 ;(v’_f);

.

Detwﬁen the set Qi_@fdéred pairs
‘set of points in.a plane.- o
rjﬁ : - B * Y

5.,

&, Describe the set of all points in a plangé or which the
%x-coordinate 1s 3 ; for which the y- co&rdin&te is”® -5
Deseribe the intersection of these two ﬂetag‘

7. Plot the set of all "points (x,y) for which “x -and vy
are both Integers and x and y satisfy ﬁhélfgllgwing
condltions: -

, A

(a) x=2, -1 <y <5 How many points belong to this
set? ¢

(b) y=-3, 2 ﬁ-x < 6 How many polints belong to this
set? -

. v

(e) -4 <xg-1,-2<y <3 . This set contains now
many polints?

(d) o<x<e2e, -b<y<o This set contalns how many
points? . ¥ ‘

8. Plot the set of all points (x,y) ‘'in a plane satisfying
the following conditions. Describe each set using
s o
mathematlcal terms.

(ay 1 ¢x<5,y=2 (e) x=4,2<cy <5,
(b) x>1,y=2 (f) x=-3,y<2.
(¢) x=1,y>¢2 () x <3, y<-1
(d) = >1 (h) vy <o. -~
. . . i
*9, (a) If A= (3,0) and B = (7,0) , what i the length
of segment AB ? Justify your answer.

(? L) , what is

the distance -



B2~ i

v 10. Without plotting, arrange the following points in order
from lowest to highest, Ignore the variation in their

. distance from the y-axis, - _

= - ) ' (S:Ei) :(2:53)2 ( 1:‘“1) H (E:D) 1 (“51“) H] (le)

11. Without plotting, arrange the following points in order
from left to right, . (Ignore the variation in their- o
distance from the x-axis.) o '

(E:D) E (=3rh‘) ;‘»J(_Ov:;g) i (l‘tg’_’g) x.: (’77:6) L] >(77T,r”i‘:—)');

*12. - What is thé length of the segment’ AB -, given the

. ’ . 7 = L,
coordinates of 1ts endpoints as follows: »»
(a) (3,8) , (3,-5) . (d) (a,r) , (b,r)
‘ (b) (7,12) , (-6,12) . (e) “(m,t) , (m,5) .. % o
(i) (szé) H (J£§=1O) h i ’ '
g . 13 Dezcribe the set of all point with coordinates v(x,y)
which satlsfy the: éonditi_@n; in each of the following:
b (&) x>a,y<o0 o
(b) x 4is positive, y 1is non-negative,
(¢) x and y are both negative.
e (d) x> -2, o )
' y is any real number,
. (e) x 1is any integer and y is any integer.
. (f) x 18 any real number and y 1s any real number:
_ *14, Plot the points listed and 1n each part give the
/ coordinates of the mildpoint of’ the segment determined by
\ “these points '
) (a) (0,0) , (0,8) . (e) (-5,-3) , (-10,-3) B
(b) (3:7) H (3:11) (d) (1(‘:);1&) H] ("10;4) .
*15. Give the coordinates of the mldpoints of the segments
! {hose Eﬁﬁ;?iﬂts are:
2 ’ . ‘ ' .
(a) . ,(iébf,!a;):‘i'i;g (102%1)'- (Q) (Easg) s (a,i!) .
(b)‘j (1;3) ) (1:b) LI (d) (}il’yl') : (}ig*yl)
16. Describe t osition of ‘tHe point (-7,-8) without
using the words "right," "lefrt," "above," or. "below."

ERIC

Aruitoxt provided by Eic:
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use the symbol “|a - b| , read "absolute value of a - b ." .
Of course we want Ia - b] = |b - al and for this reason we

[ D‘
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and. ]D - a] =a - b .

=
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o
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e

ot
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=
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hnat if X > 0 then | |-x] = % .

|-x - 0O Since 0O > -%X ,

=]
b
R
| =
E‘
et
\ Iy
o
ug
i
L2
-t
oy
I
s
g —
L™
'
o
h
L

gulut;@ﬁ ‘:6 B jl = [=4| = 5 .
Note how the ept of absolute value si mpllifies the
statement of the next theoren.
, .
THEOREM 8-1. If P and Q are points on tne same vertiecal

g
"
o
O
Iy

P and @ /are on the y-axis, then .he theorem 1s

F
proved by the use of

[
=
ety
T
m
o3
s
o oot

e
i .
are not on the/y-axis, let A and B
¢ )

be the Mespectivé projec
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>1;i_;‘i:} ;Y - fﬁi:%:i= ‘}' ‘_} . ; _Y-; 

;8,2 . - o .

. . ) B B 4
Then by ourgdefinitilon of y-coordinates we know that

and yo = yg . Now y, and y, are the same as the

y-goordinatés of A and B andsﬁherefage ABs= ]yA
Since ,ABQP 1s a parallelogram, it follows that AB

-and hence that 'PQ = IyP - le

|

AP (XpyYp)

3

Br——————Q(xqQ,yQ)

THEOREM

o0

[

line, then PQ =

7

Yp = Yy

- yBl,s .
=, PQ H

. If P "and Q "are points on the same horlzontal

e

&

e

Prool: ., A proof similar to that for Theorem 8-1 can“be

i
[
<
VT
-

*

THEOREM 8-3. Every vertical line is perpendicular to every

horizontal line,

3

Proof: This is

We have seen how to use Xy-coordilnates to measure

]
pri
I
T
i
¥
e
i
b
hed
T
b
jd
Cr
i
D]
i
e
R
et
[
iy
i
e
i
I
LT
|
W

the

distance between two points when those points are on horizontal
[s]

r ‘vertical lines. We now proceed to develop a method
inding the dlistance between two points that are on an

P
line. We iIntroduce the method by means of two e

for

oblique

. examples.



-3
., Example 1. Find

_ Sglutilon:

(0,0)

A(3,4)

=

and

A

Let B
B=23 and BA

the Fythaé@réaﬁ Theoren we

=4 But

o

|30

I

be the projectlion of

Q(8,n)

P(1,-7)

O

ERIC

Aruitoxt provided by Eic:

W1
i

© A

R(B,-7).
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Let R be the point (8)-7) Then .PRQ 1s & right trlaﬂg}
PR=[8 -1 =7 ; QR = [8% .(-7)] = 15 ; and

e,

' 2,2 NS ;2' 2 e o v
., , (PQ)* = (PR)T + (QR)" = 7% + 18° = 49 + 325 = CACT : A
. Pa = 278 . .. LT e -EL?; .

We proceed to thé tneorem, which, ‘once proved, will enalbile ys

to find the distance between: any two p@lntg witngut fgﬁerﬁme

] tc:?‘a right triaﬁgjle The rédault of ‘this tneor&‘m 1s c;\isten ;, ’
? I‘;‘iEPI‘E‘(j to a.J “the dlatanre Iafmul’a for points :Ln a pléine -
1 * C“ i‘ L i\/‘ =
% . ) = : . ) \; !'*"o/,
and P,(x,,y5) are two points-
f{lj) + (yg - yl) \
Proof': Let R = (Xl,yj) ir ’1P§ is an Dmliqu&
segment, then P,RF, 1s a right triangle. Then
(P1Po)" = (PR)T + (PB)° , PyR = |y, - vyl , PoR = |x, - x|
and since . F
(lxn Hll) = (XE = xi) ‘ ] .
\2 2
v (ny‘x - y1|) - \yg = yl) 2
v . Elk‘g = '1/(}{;} Xl) i (yg = Yl)
T F(x,,yl .
~
1‘&%
~_ P
— P (xp,y.
R(!ii)é) E(XEJE)
e S - —f X
oy -
o

L
wn
[
M
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- i w§ s,
g3 : A i
- If ?i?é 15 ‘norizontal, then Y= Vs TR = Pl s a?g‘
Jo - vy, = 0 It PiPZ ’isxvertical, thg?'_xl = Eg , R=FP
ané X, —¥Xy = 8] ' . ' L
4 e S * T
- . In either case the relationships . S LR
. .. o ’Eé'ﬂ o '7:77’, 7 . -y
= (1) _ (E’lfi) = (E:LR) +. (PSR -, and
- . ok ) 15 = -, r_ 7\2‘ ] N )
:I . 1 4 : —— ')::3 ki — = E . Kﬂ
i T . (;) E%ES = AV/(Kgf\i’i)A + (yg = yl)i ¥ \
- are still valid ‘
Example 1., Fifid AB if A = (7415) and B = (7,13)

R
o
)
o
ot
y
S
=g
it
I
—
1
— |
X
4
—
=
L
i
I,._I
b7
S
X
il
N
I
2
o
b
I
]

Example 2. Find CD if C = (-1,5) and D = (5,-1)

. Solution: . ' : .
i Y et A L
D ;4/(5 -~ (F1))° + (-1 = 5)° =¢/30 ¥ 36 = 4Z X 36 = 654/2

s of AABC are A( 1, L—,)
> i 308

e

Example 3. The vertlc
B(4,0) , €(2,5
triangle.

"Proof: We have to prove

(1) AAEC 1is isosceles
(2) AABC 1is a rignht triangle
s We can prove both 1f we know AB , EC , gﬁ

L
uet
il
N
[t
I
—
[
e
K
o
1
N
L
]
\
Pt
W=
W]
‘1\
_i_
:l
H‘
J
)

We can see that AB = BC and thé?éf@?é AABC 15 isosceles
We can see that (AB)® + (BC)® ='(cA)? and therefore A‘ARC

iz a figﬁﬁ trliangle.

(|
(W
L
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iﬁg@ﬂgm 8-5. If P *and Q are two points in the same
wertical line, then the midpoint M. of TPQ 1is tne point.
- N : E s B =

. 9 A
Proof: Since P, @, and M 'lie in tne same vertilcal
line Xp f‘xQ = Xy - ‘Let A, B, and C be thE'reﬁpecﬁive
projections of P, Q, and M into the y-axis. Then
B and yMls Yo - S8ince M 1s the midpoilnt

yngA"yQ

of PQ it follows from Theorem 7-2 that C 1is the® midpoint
of KB . It then follows from the definition of a midpoint
v Y§ *¥g

\ + ¥y
A" YB - - _"F ¥7Q o
— . Therefore yM = T and

that IYC

THEOREM 8-6. ,If P and Q are two points on the same’
horizontal line, then the midpoint M ,of TFQ is/ the

R point

Proof: A proof si

i}
s
=
jurt
'.—l\
L
H
¥
0 %,
o
5
iy
o
=y
o}
H
fac
=3
i
[o}
ke
@
.3
rfg‘
W
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o
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glven.
wo : -

LA
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THEOREM 8- T If P and Q are distinct pglnta on a line:
which is naither vertlgal nor herlsnnta; then the midpalnt -

?Q M of Pq; 1s the pcint . L
(e, X YQ)

» M = .
, v M= - B =T

] >~

y - .
8 /Q A . 7 u
c o 1
- A I £ ] o P/ oo
& )
o
| ;
el - - e <
i % — —= X - / D — —F 3 X

Proof': Let A, B, C be the re3pe:tive‘prajectians of
P, @, M into the y-axis. Let D, E, F be the respective
projections of P, @, M iﬁta thé x-axls, .It follows from
Theorem 7-2 that C 1s the midpoint of B and F 1a the

midpoint of TDE . It follows from the definition of a midpolﬁ"c
that

7 7 ,xp + xé
Sincg xD = xP 'and XE = ;é then Xy =7
/ : X + X Vo + ¥
o Y A ) P YQ\ . 5
Therefore M= (T?’- e ) -
, . : *p ¥ Xy '
Since in Theéorem 8*5431P = ——— when" Xp = X and in
y* + YQ | )
combline the

Theorem 8-6 yF ess=§sse when y, = Vg s we may

results of the three preceding theorema as follows:
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THEOREM 8-8. If P =

§ distinct paints Ln aaplané,\then thé miépeint “M: ai
15 the paint \ z
T TR BN
- = . R .
= — ! ?ﬁ’"&.,s 2

If P = (3,8) a;'ﬂd Q= (7,4) , find the/

TERY ’ /

: : . .;ff T . ’ //

- . MSolution: Let M 'be the midpoint of FQ - / -

Example 2. Ir

If
— LN
midpoint M of RS . .

Solution:

(% )@ 9- (-'a,‘j.)i

, S N
if A = (0,0) , B = (0,6)

nd C %5(8 s0) , »
find the length of the median from A to Ec’ .

M

\.

, Example 3.

[N

]
A8

Solution: let. D be ﬁhe midpoint of T .

_ B+ 0 -0+ 5
- 2. 7 2

Then -’

o

(4 3) .

‘U‘
]

-3 - : -
V75 =

&
]

'l
e
"
"

526
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'THEOREM 8-9, 'Let a " be any real number. Then the set of all
points ;ﬁ the xy-plane each,of which has x-coordinate

'« a 1s @ vertical line. : - S -

v " w3 : . . L

—

. . # .
. Efégfé et m be the vertical line which cuts the x-axis
at the point A whose xscc@r%inaté ls ‘a . We must establish

two statements:
!

i
W

1. If a point lies in m ,, then its x-coordinate

a
2. 1If a point has x-coordinate a , then it Iies m .-

s
=

_Ihe first of these statements fOilDWE immediately from the
défipiticﬁ of x-coordinate. The second statement 1is pfcvéd
indirectly. Suppose, contrary to Statement (2), that there is
a point P whose x-coordinate is a and which is not in m
Then the vertical line through P. contains A . Then we have
two vertical 1lines containing A : m and PA . Bt this is
impossible. Why? Therefore every pbint with x-coordinate a
Ites in m . . . -

.

‘ THEOREM 8-10. Let b be any real number. The set pf all ~

points in the Xy-plane with y-coordinate b 1is a

horizontal line.

‘Proof: A proof similar to that for Theorem 8-9 can be

%

! . it

527 .



r-’f N 8-3 r e '. _ )
| L Problem Set 8-3
S 1. TUse the'distaﬁeé formula to find the éistance between ﬂ;
" '(a) +(0,0). apd (6,10).. () (10,1). and  (49,81)
() (0,0) and (-6 lD) (h) 6 3) =and (4,-2)

*o v (e) (1,2) and (6,14) . (1) (33,%4) and (-13,0)
| 5 (d) (8,11) and (15,35).. (J) "(0,3) and (-A,0}. -,
(e) (3,8) and (-5,-7) . (k) (8.1,6) and (5.9,4.9) .

f@’ o (f) (-2,3) and (-1,%) . (1) (3m,7) and (-2m,ew):.
E . 2. Find the midpoint of AB if A and B have the = _.Y
' ' respectlve gonrdinates . . g
(a) (0,0) and (6, 10) . (e) ( -5, = 2) and (-5,6)
© (p) (0,0) and (-6,10) . (£) '{(3,7) and  (3a,-3)
fffc) (1,2) and. (6,14). . (g) (r{s) and (-3r,5s) .
(4) (-2,3) and. (1,4) . g
3.. (a) wvrite a farmula for the square of the distance
> between (xl,yl). and (xg;yg) /.
(b) Write th€ following statement as an equation: The
square of the distance between (0,0) and (x,y)
is 25 . ‘

+. Show that the triangles with vertices as given are fight
trian%;es Use the distance formula ta find the 1engths i

of the sides of each triangle, . =
(3) (0,00, (3,4, (3,00 . AR |

(b) (-6,2) , (5,-1) , (4,%4) . _ o )

(E) ér('EQ;B) H (4;5) H (*411) . » :

(d) (133) 3 (5;5) » (4;‘1)'J T

(e) (13,-1) , (-9,3) , (-3,-9)
‘(f) (f%;D)éj'(Dxé)i! (9;0)

5. The vertices of a quadrilateral are A(0,0) , B(5,0)

c(5,4) and D(0,4) ,;
N ~ (a) Show that AC = BD . ‘
I (b) Show that the midpoint of «AC and the midpoint of
BD 1s the same point.
L
528 L | —
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6., The vertigeé of a triangle aré A(-2,1) , B(0,5) and

¢(2,-1) . Find the midpoint Qf BC . Find the length of

. . . - he median. to BO ..o e

7. The vertices of a triangle are R(- hisE) 5(5,10) and - .-
. T(4,-2) . Find the lengths of the medians to ST and
8.',Find the coordinates of the midpoint C of ZB 1if

. = (-1,0) and B = (7,4) . fThen use the ‘distance
*  formula to verify that AC = CB = §AB . £ 7

9. (a) Show that A(é;ll) is equally distant from B(-1,2)

and C{3,0) . o
(b) Show that two of the medians 1n éLAEC are equal in..
’ -length.

10. Use the distance formula to show that A(D 2) , B(4,8)
and- C(6,11) are collinear. (Hint: Shcw that
. AB + BC = AC .) '
~11. If the distance between E(6,-2) and F(o,y) 1s 10 ,
~ find the possible y-coordinates of. F .
12, Find the coordinates of the points on the x-axis whose
'tstance from (1,6) 1is 10 . ’
1: 1 ing the distance fcrmulas, prove that AD = BC ir
.A=(0,0) , D=(b,e) , B= (2,0) , and cC = (a + b, e)

14, The vertioés of a square RSTP are R(a,a) , S(-a,a)
: 'T(-a,-a) , P(a,-a) . Show that its diagonals are

- congruent.

E

529 i,
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15 Tha;e are two coordlnate Eystems in this diagram Qne has

) axes labaled x and Y . The other has axes labeled X!
and Y' . All axes have the same scale, Eatimgte the "
coordinates of P and of Q 1in the xy—ayétEm and then
calculate the length of- P& . Then estimate the
cpardinates of P and Q 1in the =x'y'-syatem and agaln
calculate the length of PQ . Do you think that the
length of PQ is independent of the cholce of axes?

8-4%, The Set-Bullder Notation.

In our discussion of sets in Ghapter 2 we considered the
set of all positive integers. The underlined phrase clearly
defines a certain set of numbers. In general, a set is
defined by a list of 1its ElEméﬂtg or by a property of its
elements. If a set ngs an infinite number of elements, we

» cannot 1igt all of 1ts members so we use a property or
- prmpérties of 1its elements to define it.

Consider the following property of a real number:
between 3 and 5 . Some real numbers which have this

-prégerty are 3.5, 4, 4.5, 3.1, 4.9, 3.001 , and 4,999 .

B i’} Jg" )
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.
Some real numbers whieh do not have this property are 3 , 5,
-7, 46, 0, k.35 5. 7, 5.001 , and 2 The set of all
real numbers between 3 ahd 5 1is a claariy defined set, A
symbol which denotes this set 1s {x : 3 < x < 5} . We read
1t: the set of all x such that x 18 between 3 and 5
There are three parts within the braces: the set of all of
samething, before the -colon; the colon which i1s read "such

that;" and a stated property after the colon. xtf

Conslder next the following property of a point (x ,y) :

i its x-coordinate is 3, and its zacoordinate is a real number,
Some points in this set are (3,5)., (3,-137) , (3, D)
(3,105732.4) , and (3;3) Some polnts not-in this set are
(5,3) ", (4,0) , (=7.2).. A symbol which' denatea this set is”
[(x,&) : x =3} i We read it: the set of ;all g@intg (x,y)

f;ad;hvﬁhat x =.3 . Frequently, as in this example, we under—,'
s8tand that fx and y are real numbers even if it 'is not
indiaa%ed 1n the symbol. ;%, s st

. In general tHe symbol {a : property]) , which we call -
tﬁé et builder gymbal or notation, denotes the set of all e
elements a‘ each of which hai the stated property.
e T ,
E;gggigrgg Use-a set-builder symbol to denote the set of
_all points in the first quadrant.
Solution: (P : P 1s a point in Quadrant I}

Alternate solution: ((x,y) + x>0 and y >0}

Example 2. Use a set-bullder symbol to denote the set of
all points whose x-coordinate 1s 7 and whose y-coordinate

18 a number greater than 5 . : .
Solution: . H(x,y) : x=7 and y > 5) )
Alternate solution: {((7T,y) : vy >5) .

7 ] .
»
L)
.. 5
(W) '4.
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- Example 3. ,Eiatfthe.gfaph of the set

© 0, ({%,¥) 1 3 £ ¥ £5) . . The set includes all points  in the
infinite strip between the two horizontal lines and on these

= .

lines.

-2

. Example 4. Plot the set ({(x,y) : x<1 or x >3],
The set contains all points in the two halfplanes which are
suggested by shading, and all points in the edge of one of
these halfpiénea ‘




»

N - . . 1
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In Example 2 above, the set {((x,y) : x =7 and fﬁ}vEJ
was discussed and in Example 4, the set
((x,y) 4 X<1l-or x> 3}. . In the set-builder notation used
to indicate these sets we ﬁgte_that the property listed in each
“case 1s a composite-condition, that 1is to say, a combination of
conditions. 1In Examéie 2 the conditions xX=7, ¥ >5 are
' connected by the word "and"; in Example 4 the conditiqns
o x <1 ,;x > i3 are connected by the word "or."

our puripose 1s to illustrate brlefly how these aomposité

conditions sh

" our. work. Let cl be the statement x

;;é statement . .y } 5 . Let j = ((x,y) ¢ cl] .

Sg = {(z JY) g] and 8375“ ,(f—:,Y) : G,l ﬂ ng

\\\aﬁﬁg o Tos Y “osp

= 7 and cg the

.
—
i
e,
.

e

- ‘1(?‘(3)1“ -— = x - _— I_EWD) - x
v
- L/ (S) 51 _ {V (b) Sg if ({i) S
As shown in the diagrams above 51 13 a“vertical line
and S5, 1s a halfplane. Do you.see the speeial relationship
which ;SB has to 5, and ‘Sgﬁ? 3 i« the interior of a ray,

. . 'is the 1ntersection of S; and 'S, . Now let ¢y be the
' statement x < 1 and ¢y, the gtatement x >3 . Let

 ((0¥) : eg) 4 Ty - (Gy) ¢ o)) and
= {(x,y) : ¢y or c,l .

k—"




(b) . T,

Describe T
case 'TB 1

o - Now describe T3 . Notice that 1in this

the unlon of Tl and T;

Shoula PemembEP the fallowing:

(1) A set whose defining property 1s a composite eandit;on
using the connective "and" can be considered the intersection
"of the sets determined by the individual conditions of the

‘composite. ;

(2) A set whose defining property is a campo,lte condition
uslng the connective "or" can be considered the sunion of1§he
sets determined by the individual condltions of the c@mposite

Example 1. What are the pointa ln the set

((x,y) : x ¢« > 0 cvr y}D]'?

‘This 1s the set of all points (x,y) such that x > 0 , or

Yy >0, or both x >0, y >0 . The set contalns all points
in the plane except those in the third quadrant in the »
negative x-axls,, in the negative y=-axis, and the origin. Note:
“that the graph fé the union of the graph of x > O and the
graph of ¥ > 0 . ;



b WL W
]

L ae

Exanmple 2. ((x,¥) : 3 <x <5 and 1<y <4)
- THis 1s the set of all points inside and on the .
rectangle whose vertices are (3,1) , (3,4) , (s5,4) , 4nd .
(5,1) . .

When dealing wilth sets defined by a c@mpcsite'cgﬁaitian
using the c@nﬁgaﬁive "and," a comma often 1s used i@fplage of
the word “"and." Thus the set {((x,y) : x = 51;'yi}?33'*is
understood to be the same as the set \ &

((x,y) : x =5 and y > 3)

kY

.t
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h ?Poblem Set{B =5
g 1. Iaeqtiiy the. quadrant with the preper Raman numenal.‘
(a) [(x,y) x>0 and y <o) 1is Quadvant ¢ .
(0). [(x,¥) : x <0 and y <0} 1s Quadrant ____
(¢) ((x,y) : x <0 and .y > 0) 4s Quadrant I
(d) ((x,y) : x>0 and y >0} 1s Quadrant ____,
(e) ((x,¥)': y>0 and x <0} 1s Quadrant _
(f) ((x,y) : xy > 0} .is the union of Quadrants .
e - e B L L LR —_—

h : (&) ((x,y) : xy < 0} 1s.the union of Quadrants
, - and . ‘ 7 '
(h) [(x y) xy # 0).-<1s the union of *jf‘;,.
(1) ((x,y) : x >0 and 0) 1is the union of
(1) ((x,y) : E >0 and 0]} is Quadrant .

(k) ((x,¥) : x < 0 and x|} 1is Quadrant =~ . .

el ot
A N

s 2. Find the coordinates gf the endpoints of all possible
segments which satisfy the glven conditions.
(a) KB 1ies on the y-axis with the origin at its
. midpoint; AB = 7 .
(b) AB" is a subset of the x-axis; A, @, B are collin
in that ordér and AO = 30B ; AB = 12 . -
(c) AB 1is either horizontal or vertical; A 4is at the

origin; AB=1r . ' . ,
(d) AB || to the x-axis and B is 5 units above the
x-ax1s; the y-axls bisects AB ; AB.= 8 .
(e) AB='5; A 1lies on the x-axis; B 1lies on the
‘y-axla; O0A = OB . '
(f) FB 1s in the y-axis; A 4s at the origin; AB = 6 ;
Ch || AB"; CDXAB; ¢ 1s 2 units above A and
3 units to the right of A.. 5 o
3. Find the coordinates of the vertices of the 1ndicatéd
, . .polygons: . " : )
(a)rkA coordinate system places 1sosceles triangle ABC
so that the origin is the midpoint of base AB , EE
1s a subset of the x-axis, cklees above the
x-axis, AB=6, OC = 4 ..




(b)"

(c)

(a)

‘A parallelogram ABCD for which AB

An isosceles triangle ABC whose altitude is 3

~and whose base has length 5 . The base 18 a subset
of tﬁe y- axisg and the appgslte vertex, C , 1s om
the positive x=axis " o A

An 1sosceles triangle- ABC has AB =6 ,

AC = BC =5, The origin 1s at the midpoint of the
,base, the x-axis contains the base, and C iS}éhave

the x-axis. - - o
?s;A— Eﬂd
D hnave coordinates (0,0) and (3,5)  respectively,
and AB' is on the x-axis.

In each of the follawing find -the cogrdinates of the

vertices of the palygon ' - o

(a)

(v)

A right triangle ABC has /C a right.angle,
CA =21 and CB = 10 A coordinate system places

C at the arigin and B in the ﬁegative x-axis. -

An isosceles triangle ABC 'has base . AB of length
4 and altitude to: AB of length 3 . A coordinate

. system places A" at the origin and B In the-

~(e)

(d)

positive x-axis. 5

Same as (b), except that C is at the origin. A ¥+
is in Quadrant I, and AB is perpendicular to the:_f
Xx-axls. - ,.,xé_ <. S

An equilateral triangle AEG has side of length ;D .
A coordinate system 1s established with the x-ax{s :
containing AB and the positive y-axis containing(

c .- . -

Find ﬁhéféagféinate' of the vertlces of the polygon ;/
determined .in each of the fﬂllawing . Q
“(a) A,right triangle ABC has 4@ a right ‘angle,

CA=a and CB =b . A coordinate system places C
at’the origin, B  1n the negative x-axis, and A in
tﬁe pesitive y-axis.

b
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(b) An isosceles triangle ABC has base AB of length

guﬁbﬁ”% , and altitude of length a . A coordinate system

; piéges A at the origin, B in the positive x-axis

- and C above the x-axls. ‘

(¢) The triangle in (c) 1s placed so that C 1is at the
origin and the altitude lies along the positive
x-axls.

(d) Ain equlilateral triangle has side of length s and
a coordinate system is established so that one side
lies along the x-axis and the opposite vertex is in
the positive y-axils,

8-6. Eqdations and fﬁgqualities.

((x,y) : x =3} 1s a line. It contains all those points
and only those points in the xy-plane whose x-coordinate is 3
and whose ﬁécaordinat; is any real number. We say that Xx = 3
is an equation of the line or think of x =3 as a condition
impoged upon (X,y) . The condition x = 3 places a
restriction on the x-coordinate but no restriction on the
y-coordinate. Thus the line {(x;y)‘; x = 3} contains
infinitely many points, such.as (3,-173.447) , (3,-2) ,
(3,-1) , (3,0) , (3,25) , (3,127.3) . Of course there are
infinitely many points not on this line, such as (2,3) ,
(2.999,-7) , (0,-3) .

((x,¥) + x >3) 1s a halfplane, We say that x > 3 1is
an inequality for the halfplane. This halfplane contains all
those points and only those points in the Xy-plane whose
x-coordinate 1s a real number greater than 3 and whose
y-coordinate is & real number. Is (5,-5) 1in this halfplane"
Is (-5,5) 1n this halfplane? 1Is (3,3) 4in this halfplane?
What set-builder notation could you use for the edge of this
halfplane?

In some textbooks the set ((X,y) :x = 3
locus of the equation x =3 ; ((x,y) § x> 3
locus of the inequality x > 3 . 1In general a locus is a set

determined by a conditlon or & combination of conditions,

} 1is called the
} 18 called the

-
L]

e
b
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Thus the locus of all points in the ¥xy-plane which are equil-
distant from the lines ((x,y) : y = -7} ,and ’

{(x,y) :+ y =13} 1s the line ((x,y) ;‘? 33 . In our text
"however we wlll use the expresslon "the seticfﬂallﬁﬁaints auch

]

that" rather than the term locus.

, Consider the sets & and T given as follows:

S = {(x,y) :»x=5}) and T = {(%x,y) : x+1 =6} . A;péint )
(x,y] les the conditlon x = 5 1if andonly 1if 1t k
satlsfles the condition x + 1 = 6 , 1In other words!lif {a,b)

- in 5 and conversely.

il
i
o
i
'_l
-
ot
F_.
pd
1
Y
=
Lan
e
oy
u
=
L
iz
®
e,
i
e
o
ba s
=

Herice wé€ may write S = T . The equation 8 = T 1s an equation
invelving séts {of points in the xy-plane) and you should recall
that two sets are equal il and only if they have exactly the
same members. This occurs if the Seté are defined by
and x + 1

I
by

I
W

equivalent equations. The equatliona x
are examples of equivalent equations. In algebra you learned

how to derive equivalent equatilions 1in the process of solving

[}

equations, Thu
2% + 3 = bx + 13
3= 2x + 13

=10 = 2x

x = =5 ' -

i N . .
nt equations. Each of them becomes & true

each of them becomes a

[

e
if x 1is replaced by -5
false sentence 1f x 15 replaced by any number different from

Problem 3Zet 8-6

[ . .
ok between lines ((x,y) : x =/} and

o

[(}E,Y) pox o= =
Wrilte the coordi:
((x,y) : ¥y =3}

i

tes of three polnts on the line

A

ERIC

Aruitoxt provided by Eic:
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. /3. Plot thes sét

(a) ((x,y) : x =2)
“(0) ((x,y) : y =3)
4. Describe the union of the two sets in Problem 3. May
this be written as the set ((x,y)ix =2 or y = 3} ?

gESi What 1= the intérseation of the twb sets in Problem 3?\
May this be written as the set ((x,y) : x =2 and y = 3)°?
As the set  ((x,y) : x =2, y =3} 2
-a(2) Plot the set ((x,y) : x =2 and 0<y < 3)
 {b) - What geometric object does this set form?
(c) How many elements does 1t contalin?

gt

Plot the set of “points whose coordinates are given voiow

~

and describe the graph in each case,

(a) (x: x < 3)
(p) ((x,y) + x <3}, : : .
(¢) (y:y<2 or y>4)

(@) (x5y) ry<2 or y >4

8. Plot and describe each of the graphs gilven below:

(a) The union of ([(x,y) : x >3} and ((x,¥) : vy < 3]
Express this union with one set-bullder symbol.

(b) The intersection of ({(x,y) : x < 2} and
Y)Yy > -2) . Express; this set with one set-
bullder symbol. ”

(¢) 'The set ((x,y) : x>0 and y < 3} .

(d) The set ({(x,y) : -4 <x <2 and -2<y< 5)

9. Express in set-builder notation the set of all points in

[the xy-plane which satisfy the following conditions:

(a) A set of points at a distance of 5  from the line
whose equation i1s y = 2

(b) K set of points 4 wunits from the y-axis..

(¢) A set of points 3 units above the x-axis and

| 5 units to the left of the y-axis.

(d) A set of points.the same distance from the .point

’ A(0,3) as from the point ,B(0,-3) . "If P 1s any
: 1f P - is any
in thias set.

point 1n this set, prove PA
point such that PA = PB , prove

1]
m o
[wal
fav]
e
o
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10. Which of the sets?

(a) ((x,y)
(b) ((x,¥)

f@ll@ﬁing are pairs of equal
[(I,Y) : 2x = 2)
((x,5) + x > 4}

((x,y) + 7x <21} .
and {(x,y) : x < 2}

6 > 3x])

: 3x + 6 = x + 8} and
x+ 3 >7} and

(¢) ((x,y) : 5% - 2 < 2x .+ 4]}
(a) ((x,y) : -2x + 4 < 8)

L (e) [;i: % ; 3} ‘ [i : ‘ |

Answer the questlons Indicated by'filllng in the blanks

in each of the following: * '

(a)

and

and
*11.

Irf 1i§q?E§ MA afé
parallel and AB = 3 ;
BC=6; MN =2 ,
BC =k AB; k =
NO = £t MN ;
AC k! AB ;
and MO =

Then

ot
1]

- o
Ir (ﬁA‘ ||

then AP =1
AVP! =
and

(b)

—
L]
L

AlC!

-~

AiEl =
AlCl = A'B' . - P(8,7)
AP = ___ AB .
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(a)

(f)

_.AiPi = 2 ATB!

= F

L

If a coordinate system
on assigns the
coordinates 0, 2, 8
te A, B, P

fespegtively,

x "
The (A,B)-coordinate
system on line
assigns coordinate k
to point P
AP = k AB . ‘Then
A'PY = k A'B' =k
Why? '
OF' = ?

[Ny

=

2
[EF%
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coordinates of P

7 \ - .
(g) Aigaordinate system on line ,i? assigns coordinates -
0,1, k to A, B, P Where doeg P

lie if 'k has values as indicated below?
(%) x
(5) &

respectively.

(1) *>1
(2)
(3)

)

0
0

8-7. Finding the Coordinates of the Points of a Line.

a vertical line.

i

We have seen that {(x,y) : 3} 1is

It is undersﬁood that y "may be any real number,

‘ﬁatural to ask if there is an expression something

like this Yor an oblique line. Actually there 1s, and 1t is a

ugeful tool in geometry. +

To -show' how to find such an expression we consider a
particular line, the line AB where (1,2) and B = (3,5)
!%Ef!is determined by the points A and B,
it seems reasonable that we shog;d\be able to find the
céordinates of other points in AB. TFor example, if P 1is
in KB and if AP = 2AB we should be able to find the

Since the line
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—

. — M b DO

Y
[ e
—

o i

AB , we should be able to find
AR

Il
rof

If Q 1s in AE and AQ
the coordinates of Q . I R 13 in the ray opposite to
and if AR - AE , we should be able to find the coordinates of
R . Actually, P = (5,8}, Q = (2, 3%5) , R= (-1,-1) . Ve
can get these coordinates by working an individual problem for
each polnt. But our objective here 1s to derive an expression
., from which %he ca@rdinatesrof ¥P, Q, R-or for that matter any
other pepint on QA_EE can be cobtained by simple replacements.

4

[l
I

in Chapter 3 we studled a coordinate Syatém on a line.
At the beginning of the present chapter we defined an
xygcéordinatémsystem in terms of two coordinate systems on
lines: the isca@rdinate ayatem on the x-axls and the
{ y-coordinate system on the y-axis. We wish now to consider a
coordinate system on the line i.lEE We call 1t the
(A,B)-coordinate system. In this coordinate system, the
gcoordinate of A 1s O and the coordinate of B is 1 . For
the pointf A, B, P, Q, R we have coordinates as tabulated.

X

ERIC
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=1 ~ x-coordinate

the x- and y-coordinates

k<0 . Let P', A', B
P, A, B into the x-axis.

-

(A,B)- c@ordinate

. ¥y-coordinate

2
o)

1

\ 3 5 T
8

‘rp‘

\3

O o
M
et

\JWQ

=
i
—
i
M,_M
!
=

| [

i

- The expression which we shall derive~5h@wz us how to compute

of' a point in terms of 1ts

(A,B)- caardinatpga

P —— (=]
4!1 )
B ¥
| Y
A"7A
— e —————f X

]
ot
[
=]
C
o}

The (A,B)-coordinate sy
one correspondence between the set of
the set of all points in. BB. If k > 0 , the corresponding
point is in - AB (but not A 1tself); if k =0, the corre-
sponding point 1s A ; and 1f k < 0 , the corresponding point

all féaléﬂumbEPﬁ k and

is 1n the ray opposite to EEE

be any real number and P(x;y) . the corresponding
Then AP = k AB 1if k > 0, AP -k AB if
be the respective projectiona of
Let p", A", B" \ve the respective
A, B 1into-the y-axis. (A P 1is in the
x-axls, then P ' ; 1f P is in the y-axi%, then P = p"
From Theorem 7-3 1t follows that the segments formed by A7,
B', P' on the x-axis and the segments formed by A", B", P",
on the y-axis aﬁe proportional to the (orreuponding segments

let k
point in AB

il

projections of P,

]
\P—U‘

. F

Therefore
A
!

in the line AB .

W
g
[

- S ,
AB established a one-to- -

2)
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AB = ((x,y) : x =1+ 2k, y

8-7 if k>0 if k<O
AP = k AB ) AP-= -k AB 7 B
(1) A'P' = k A'B! (1) A'P' = -k A'B
% - 1] = k|3 - 1] ]xl- 1| = -k|3 - 1
Since x 5 1 Slnce x <1
x - 1= 2k -X + 1 = -2k
3 =1+ 2k ®x =1 + 2k
(2)  afpr o g v (2) -, A"P" = -k A"B"
ly/- 2| = kgg - 2| ly - 2| = -x|5 - 2]
3lnce y > Eixh Since y <2
yo- 2= 3K N Sy o+ 2 = -3k
y = 2+ 3k ] Yy = 2 + 3k
It follows that P = (1 + 2k, 2 + 3k) and that

2 + 3k, k 1s real} .

The equatians- x =1+ 2k, y,= 2 + 3k are called
parametric equations for the line ‘iﬁkgs the symbol k 1is
called the parameter. Each value of the paraméter Yiélﬂ;r
exactly one point on the line, the point (1 +. 2k, 2 + 3x) .

The value of k 13 the (A,B)-coordinate of the point it te

us fhat the point 1is in jE?iif k > 0, in the ray opposite to
AR if k £ 0, and that P 1is ||
B 41s. The following table shows several values of k and

times as far from A as

their corresponding points.

771§71 ir x,zggr%iék _ ,,Y,%:E **3§:,r 77£(xgil -
0 ’ 1 2 (1,2)
1 3 5 (3,5)
.1 -1 -1 (-1,-1)
2 : 8 (5,8)
7 15 23 (15,23)
-3 (- 4.0
1000 2001 3002 ! (2001,3002)

546 40
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If we think of A(;,E)S as (xl;yl) and B(3,5) as=-
(xg,yg) » then the parametric equations for AB can be written
as ) _

yl + k(yg = Y1) =

I

X

Xy + k(x2 - xl) s ¥

¢

Note how these formulas resemble that of Theorem 3-6.

v Are these formulas true for any oblique line determined

by two points (x,,y;) and (xg!yg)f% Although we could

. for BB in the above illustratian;ﬁﬁe shall not write 1t out
here. It 1s natural to ask whether we can write parametric
equations for horilzontal and vertical lines. You will Find
that we can in the next problem set. Thede fesulfs are con- .
solldated in the following theorem.

THEOREM 8-11. If El(xryl) and PE(;&EJE) are any two -

L)

polnts, then

Png = [(3JY) P X = xl + k(xg = xl): y Yl + E(yE = Y1):

il

k 1is reall .

!

According to Theorem 8-11 every line én the xy-plane can.
be "represented" by a pair of parametric equations. A natural
question 1s: Does every pair of parametric equations represent
some 1line? The answer to this‘quéstion 1s no. Consilder, for

example, the set

S=[(x,y) : x =1+ k0, y=2 + k:0, k 1s real}

It 1s easy to see that x =1 and y = 2 -for every value of
k and hence that S 41s a set whose only element is the
; 5 4
point (1,2) .
However there is a method of identifying those parametric

équations which do represent a line in'a plane. We state it

as our next theorem.

<

ERIC
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THEOREM 8-12. 1If a, b, ¢, d are real numbers such that b

and d are not both zero and 1f -5
S={(x,y) : x=a+ bk, y=c+dk, k is real) ;” ¥}
3

then 5 135 2 line. "y
¥ (

Proof: Taking k.= 0 and k =1 we get two points in
A(a,c) and B(a % b, c + d) . From Theorem 8-11 it

Lo

follows that:

]

AB = ((x,¥) : x = a + bk, y¥ c+dk, k 1is reall;

therefore AB =35 and 5 13 a line.
B
k'Y N
x)

, K | / 7
T= {(x,y) : x=-2+3k, y=7+ 2k, 'k 1is real} ,
j_ .

SBPPODf: If k=0, then x= -2, y=7 . If k = 1,
then x =1, =9 . Thus A(-2,7) , and B(1,9) are two

AB = ((x,y) : x=-2+3k, y=7+ 2k, k 1is real) .
- . C o . '
Therefore AB =T , and T 13 a line.

We can use parametric equations for a line in expressing
the coordinates of the points of a line segment or a ray. If
ki, ky, kg correspond to Py, Py, Py , respectively, theh
15 between "k; and ky 1f and only if P, 18 between

Pl and PB .;'Thié f@llgwé from the propertiles of coordinate
systems on a -line as diacussed in Chapter 3. Thus we get
segments or rays simply by restricting the values which k
may have, For example, &AB , where A = (1,2) and B = (3,5)
1s ((x,y) : x=1% 2k, y=2+3k 0<k<1) . Similarly,

RE 1s ((x,y) : x =1+ 2k, y =2+ 3k, k> 0}

]

i

e
L=
hee]




xample 1. ‘ - ~ R

Given A = (3,0) , B = (-1,2) . Using Theorem 8-11
express, using set-bullder notation, ’
R

AB ,
(b) 7B, /
7B

¥

(d)  the ray opposite AB ; also find )
- {e) the midpoint of A&B , and
(f) +the point P such that A 1s between P and

and  PA = AB .,

sl

= 3, YI =0,
-V = 2 . Then

-, k i3 real)
¢, 0<k 1) .
c, k>0) .

c o lxy) s x =3 - hk, y = 2k,

(e) the midpoint of ; .
(3 - b - % ) 2

(f) the point P &

ﬁdebm
Py m
It
=
[
(-
S~
N
F

L]
i

Example 2,

i

Given A = (0,4) and B = (3,0) . Find the point ¢ ‘on

-
AB whose x-coordinate 13 -2

Solution: In this problem we take x; =0, y; =4,

= 0 . Then Xy = Xy = 3, Yp = ¥y, = =% and

3k , ¥y

=
3
W
]
<
[

(

Y - 4k , k 48 real)

i

(X;Y) P X

=]
v}
il

. i [
We set x = -2 . Then =3k, k = - % , and

-2
L 4+ = = %% = 6x , Therefore C = (=E;5§)

G

[

oIo ¥

]

y =4 - (- j)

oy
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In Example 1, Part (e), we found the midpoint of a

particular segment AB . The midpoint of AB. 1s obégined by
setting k = % in the parametric eqaatiang In general

1 . . X, F X

x 1, x ) = % + A oL, Lo 1. _TA 7B
X=Xy + 3lxg - X)) =x) 4 5xp - SRy = FX) 4 By = S

=y, + 2y, - = i, i. i1 _ YAt VB
V=t 3p m V) =yt =W Wt

and therefore the midpoint 1s

(xA + Xg YA + yB)

2 T B
Notice that this result checks with the result derived in
Theorem 8-8, . .

. Problem Set 8-7

1. Using péfametrig equatians and set-builder nctatian
- _

express AB , AB , AB , and the ray opposlte to AB if

(a) A= (1,4) , B= (2,6)

(b) A= (-1,3) , B= (2,0)

(¢) A= (0,0) , B= (3,2) . o -
(d) A = (1,1) , B= (4,4) .

(e) A=(-1,3), B=(1,-2)

(f) A = (=3,?2) , B= (0,1) .

(¢) A= (a,b), B=(c,d) , ¢ #a

(h) A = (a,aa) (Ba ha) , a # 0 .

2. Find the coordlnates of the midpoint of AB 1in
Problem 1(a) ; 1(b)

+3, Using the midpolnt formula find the coordinates of the

midpoint of the segment with- the gilven endpiinta.

» (a) (5,7) and (11,17) .
(b) (-9,3) and (= -6) .

(c) (5,8) and’ (5,-3) .

(d) (3.5,-6)'and (1.7,-6)

(e) (a,-b) and (-a,b)

(f) (r+ 8, r-s8) and (-r,s) .

55
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L, In each of the following the endpoint and midpaint of a
segment are giVen-.in that order. Find the coordinates-
of the othef>endpointi ) ’

(a) (4,0) and” (9,0) . (d) (6,2) and (2,-1) .
(b) (3,0) and (5,2) . (e) (a, ) and (5a,3b)
(¢) (-2,3) and (3,5) . (£) (3r,8) and (0,4s) .

5. Find the cdordinates of the trisection polnt of &B -
nearer A 1in Problem 1(c) ; 1(4d) ’ _

! 6. Find the coordinates of the trisection point of " AB
/ nearer B 1in Problem 1( ). o
/! , R

7. Find thé coordinates of P in AB in Problem 1(b)
“(a) AP = 2AB . - (e) AP =4/3 AB .

(b) AP = 100AB . (d) AP = 7 AB .

] _ : i ) . S
8. Find the coordinates of P  in the ray opposite to AB
in Problem 1(e) 1if

(a) AP = 2AB (c) AP = 3.5 AB
_(b) AP =20aB . (d) AP = % AB
9% Find the coordinates of P in “WB™ if A= (-1,5) “;ncﬂ
*\\ B = (3,-2) , and “ ,
(a) AP = 3PB . (c) BA =% BP
?(b) BP = 4PA . (d) PA = 5BA
10. (a) Let C = (-1,2) , D= (5,2) . Is "GP vertical,
~ h@rizontal; or gbllque? Use Theorem 8-11 to expres
“D". Try three different values of k to see if
the three points are on 5™ '
‘ (b) Using ¢ = (xl,a) = (xg!a) y Xy # X5 , show that
Theorem 8-11 1is true for h@rizontal lines )
(e¢) Using E = (a,gfl) , F = ,y,:,) » ¥y # Yo » show that

 Theorem 8 111 15, true for vertilcal lines.

«©
11. Using pafamet:r‘fg equations and set: builder. notation
express the sides of the triangle whose v,\erti};s are:

(2 A(0,0), B(0,3) , e(1,0) .
(pb) D(-3,0) , E(0,3) , F(3,0) . .

P i ":j o |
ﬁ" | 551
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12. Draw the graph: i
(a) ((x,y) :
i(b) [(x,y) :
(¢) ((x,7)
':(d) [(1jy) :
(Ez I(x:y)i=

\ 13. Given A = (-1,3) , B= (2,52) , and C 18 on &P,

=1+2k,y=2-k ,(Pk is real)-,

2k , y =k, 0<k<2).
=-1+k,y=-k, k0)

=k, y=-k, kg0). , .
3,y=k,-2<kg3) . '

-
] I now

(a) find the y-coordinate of : C 1f its x-coordinate _

1s 5 ., .
(;/%\ (b) find the x-coordinate of C if its y-coordinate
18 8 . o
(¢) find the y-coordinate of C if 1ts x-coordinate
is 29 , ] .

(d) find the coorddnate of C 1if it is on the x-axis.
fﬁ ‘(e) find the goa§§in&té of C 1if it ia on the y-axis.
“I%.  The vertices of a triangle are A(0,0) , B(9,0) , ¢(3,6) .

Find the coordinates of D , the midpoint of KB ; E ,
the midpoint of B H and F , the midpoint of CTA . Show
that a trisectlon|point of each median of triangle ABC -
18 G(b,2) . ) ’ ’ '

15. Given p= ((x,y) : x=a +ck , y=b+dk, k 1is real) .
0

(a) Show that p 1s a vertical 1line if ¢
(b) Show that p is a horizontal line 1if
(¢) Show that p contains the origin if a =0 =D .

jo N
Il
O

8-8. slope.
We are now ready to study one of the important propertiés
of a line which corresponds to the idea of the steepness of
inclination of a line in the world of everyday affairs. The
steepness of a stairway depends on the relationship between the
rizse and the run of a step.
&

AP =RI5E
PB = RUN




8-8 .
If one stairway has steps with a certain rise and run and
another stalrway has steps with rise and run éééh twice as
large, 13 1t clear that the stéépnéss of the two stairways 1s.
the samé? In athér words, a run of 2 with a rise of 1 glves
the same steepness as a run of U with a rise of 2 , .

.The steepness or pitch of these stairways may be defined as
the number obtained by dividing the rise by the run, % in
elther case,
The concept of the slope of a line is based on the idea
of "rise divided by run." If we think of one step connecting
 two points Pi(xl,yl) and Fg(xggyg) on a non-vertical line,
then the rise 1s |y, - y;| and the run is |, - xq |

—

IXz =Xi|  pp

(x21¥2)
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- ' We could define the slcpe of the. segment P P as rise divided:
, Lo e Yll - o .
i ' 1;&., lx — Irli But we do nat. g
~ ' 2 1 T
\ Yo - ¥
't _F P + 18 definedsas §§=fs§£ . The formula without
; 2Tt . s

.. .. ‘more useful Thé absalute value af the Eicpe conveys iny the
magnitude of" the glapei ‘The sign of the alope,cagveys the
additional idea of "slopes up or down" as suggested in ‘the

- figure.,-, . : . C
. - %Yw S A?‘H . ) v
| S e (7 !
. 7 asgi N
stopg = 73 3
(SLOPES DOWN)-
“(4,3)
= :: V' N V ;
- '¥ — — - - >

~Starting with the concept of the slope of a segment we
now develop the concept of the slope of a line. Consider the
- . o
. 1ine. AB where A = (1,2) and B = (3,5) . Then

:x=1+2k, y=2+23k, k 1s real]

-—
AB = [(-’5:?)
slapes of several segments FiFE on 58"

Let us campute the
as the

Take P, as the point correspcnding to El' and éEE

polnt correaponding to kg

w
L

%)
W
=g




'B?é . f ; ) ) . b o . -
| D

. *;_ i
slope o E

1}
|

]
I

o (-3 | (1,2) , (-5,-7) |, =2

TR (9,14) - (-7,-10) | :—7'? 95'&"

Ky | kg (1 + 2Ky, 2+ BIfl) (1 + 2ky, 2 + :31{2) =

Note that the' slope of every segment of AR is »% .” Note also
that 3 and 2 are the coefficients of k 1in the equations for
y and x resgecﬁively: Let us check the last line of the table,
Suppose kl and kg are any two .distinct values of k'. _ Sub-
stituting in the parametric equations we get o
1f k= ky, X) =1+ 2k, yl = 2 + 3Ky, Pl\z (1 + 2k), 2 + Ekl) H
P, = (1+ 2k,, 2 +.31{2) .

kE* Xy = 1+ Ekgg

li

if  k
Then

- x - (1+2k,) - (1 +!Ek,)

X5 1 a(kE - kl) ,

Yo = ¥ (2 + 3k;) 3 = k)

(2 + 3k) 2
y

3(k, - 1{1)
Xy - X 2K, - ki)

n
fi
L]

ot

]

T

Mo

]

Does every nonvertical line have the property that all of its
segments have the same slope? We show that this is indeed the
case.

Let ¢ be any line and let Cl( ,

xl’yl) and Cg(xgsyg) be
any two poeints on ¢ . Then .

H _ ~ - - B ~ . - bt . N <
Glcg = [(I;Y) X o= xl + 1{(){2 = Kl)s y = yl + l-c(yg = yl)s

k 1is real].



© As in the example above we take two distinct values of ¥ ,

\\ say p and .q , corresponding to two distinect points P and
) -~ o

.Q ¢n C,C, , and find ‘ . .

y1)

i

Xp xl + p(i2 - #1) and yE vy t P(YE

n
It
N

KQ Ii

vy, +alys - vk

+ q(#E - x;)" and Yg-

vp - ¥g = [y + Plyp - ¥))) < [yy + alyy - ¥))) = (p - Q)lyp - ),

\KP—KQ
Before we divide Yp - yQ - by Xp = Xg wé should éssuré our-
xQ 0, then 3? = XQ

i ' . _
and C.C 1z a vertical 1line. ir ClCE is a nonvertical

ry + Pty = 1)1 =[xy + alxg = 3)] = (p - @)(xp -1y )

selves that IE - % £0 . If xp -

line, Xp = Xy 40, X; = Xp # 0 , and

YP = yQ yg = yl
Xp ~ Xy xp 7 X

This proves that all segments of a non-vertical line have the
same slope., We may then write the following definition and

theorem.

DEFINITION. The slope of a non-vertical line'is
eéual to the slope of any of 1ts segments; the
slope of a non-vertical ray is the slope of the
line which contalns the ray.

! _ L -
Notation. The slope of AB, AB, AE

by m*‘A—EF, mﬁgl‘; Mg respectlvely.

* THEOREM 8-13. The slope of a non-vertical line p 1s

yg = yl . N . -
-~ _— , Where P 5 is any segment of p and

5
o

T X,

X5 1
EW : (Ilpyl) 2 PE = CXQJYE) - Lo '

I

(AN
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B 1ine which passes th;augh two given pcints. In the fallawing

theorem we pee how ta write parametric eqpatiana for a 1ine
passing through a given point and having a given slope.

: /

THEOREM 8-14. If p 1s the 1ine through (x1,y,)  with
]

% 8lope m = é s, then
1. = ((x,y) : x = X, +kg , y= y, +kf , k is'réall
and - .
2. p={(xy) : x = Xy +k,y=y, +km, k 1is real)

Proof: Suppose h 1s a number such that (xl +8, ¥+ h)
is a point on” p . Then the slope of p -is .

‘mnn
]
‘mHH

Since theAslape is é by hypatheaia, it follows that
and h=7, Therafaré (xl,yl) and (x + 8, ¥+ f)
two points on ,Jg and 1t follows from Theorem 8-11 that
(1) p=0(xy) : x=x; +k& , y=y, +kf , k 1s real} .
Next let n be a number such that (% + 1, ¥y, + n) isi
a point on p . Then the slope of p 1is

(yl"fn)=i
(xl + 1) - %

o
\H\

=n .

Since the slope 18 m by hypothesis, it follows that m = n .
Therefore (x,,y,) and (x, +1 , y, + m) are two polnts
191 B 4!
on ilf and 1t follows from Theorem 8-11 that
(2) p={(x,¥) : x = X +k,y=y, +km, k 1is reall} .

%

fJL! $§)
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" We now consider three possibilities for the slope of. a
line; it is positive, 1t is zero, or it is negative.r Let
P (xl,yl) and Pg(xg,yg) be twadpginta of a line;’ We .

¥

A,

suppose that the points are named so that PE has the larger
x-coordinate. We disregard the pcssibility Xy = X, , since
- g . =
this would imply that PlPE is a vertilcal line.
) E ]

Possibility 1. The.slope is positive. Then Vo - ¥q
and ¥, - x; - are both positive or both negative. . Since we
named the points so that Xy > %y it follows that Xy - Xy
- and - Yo - ¥y, are both positive. This means intultively that,

1 -— ) . .
as a particle moves along P 1P5 from left to right (from the
point with x-coordinate Xy to the point with =x-coordinate -

X5), 1t 1s going uphill,

Possibility 2. The slope 1s zero., Then yé -y, =0.
This means intultively that, as a particle moves along the
1lﬂe'§?1¥§r it 1s moving on "level ground." (The y-coordinates
!‘Qf all the points of the line are the same.)

Possibility 3. The élope is negative. Then one of the
numbers,rrﬁéri vy and Xy - X 18 positive and the other
one 18 negatlve. Since we named the points so that Xg > X
it follows that X5 = Xy is positive and Yo - ¥, is
negative, that 1s, yé < vy - This means intultively that, as
a particle moves along P 2 from left to right, 1t 1s golng

downhill.

by

%]
4T
o
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8-8 , - .
' Thls aectian ‘closes with, several examples involving the
: Elape idea. : . e
’ . ) 7-1 7.::‘
R ' Given A (5,-=8) and B = (-2,8) . Find n;z?
- Sal};ﬁé.gn. “'m = - }ﬁ% .
Example 2. A line r passes through (1,3) and has
slope 5 . Find the point on r whose x-coordinate 1s -3 .
, Solution: r = {(x,y) =1+k,y=3+5k, k 1s real)
Set x=-3.. Then -3 =1+k, k=-4;y=23-20=-17.
‘Answer: (-3,-17) ' 1
[ ]
Example 3. Find the slope of the line
((x,¥) : x =3 + 4k, y=2, k 1s real)
Solution: ‘Set k=0 and 1 to get two points on the
line. ' T
k = 0: (st) = (332) H ' . ) g
, k=1 (QC:Y) = (7;2) . '
o . 2 - 2
Then the slope 1s —7 = o .
Alternate solutdon: By Inspection of the parametric
equations, Xy - Xy %4 and y, - y; = 0 . Therefore
m = % =0 . : '
-“;;51 Problem Set 8-8a )
1. Find the slope:Af the segment Jjoining the pDiﬁtE in each
x of the falla:ﬁng pairs.
- Lt ) 1 . 1
(a) (0,0) amd (6,2) . () (3,3) and (3,3)

(b) (0,0) and (6,-2) . (g) (-2.8,4) and (4.2,-1)

(¢) (3,5) -and (7,12) . (n) (%,0) and (0,- ) .

(d) (0,0) and. (-4,-3) . (1) (1000,-500) and (1001,-499)
(e) (-5,7) and (3,-8) . (J) (a,b) and (b,a); (a £ b)

(%l

W

[¥s)
~




' .. 8-8 . : . o .'. _ ‘
ys ‘ 2., Replace the mow by & number so that the iine thraugh
7 «.the two points will have the siope glven. (Hint:
Substitute in the slope formula.). ) '
(a) (5:2) and (7,§) , m=4 ‘
N o g N 1
: S () (3,1) ana (W) meg
C - (e) (6,-3) and (99?) , m = - T - 7
: (d) (?,12) and (5,12) , m=0 ..- ' .
) 3. Plot the points A(-1,0) , B(6,2) , C(4,5) , D(-3, 3)
. 3
,:Eraw ABCD . Find the slope of each side of ABCD : N
. Which two sides have the same slape?
4., Plot the quadrilateral PQRS with vertices é(D,h)
Q(2,3) ', R(-1,-2) , S(-3,-1) . Which pajirs of sides .
"have the same slope? '
5. Without platﬁing tell whether the slope of the segment _
Joining the points in each of the fellowlng pairs has a
positive, zero, or negative slope. Then tell how you
would interpret the sign of a slope,
(a) (-3,4) and (2,0) . (a) (3,2) and (5,0)
~——— ’(b)( ( 3,4) and (2,4) . (e) (5,0) and (3,2)

T (e) ) (-3,4) ‘and (2,8) . (f£) (-1,4) and (0,10)
6. Which of the segment§ joining the points -in each of the
‘following pairs 1s steeper? :
(0,0) and (100,101) or (0,0) and (101,100) ?

7. Find the slope of the line segment joining (a,%) and
) 1f a#b ;

8. Given: = ((x,y) : 3'5 2k, vy = -1 + 3k, k 1s reall

H
What 1s the, slape of AB ?
9. Parametric equations of a line are useful in plotting the
graph of a line when one pgint and the slope are given,
Consider, for example, the line ,i? through P(1,2) with

jeo

2
4?; ((x,y) + x=1+2k, y=2+ 3k, k 1is real)

If k=0, then (x,y) = (1,2)
If kx =1, then (x,y) = (3,5)
560




* * v!;’
If k=2, then (x,y) % (5,8) .
A I k=3, then (xy)=(7,11). - -~
‘Note that as k 1s assigned values - 01,2, 3, ...,
(successive increases of - 1)% the corresponding .
fég?:x valuea are 1, 3, 5, 7, w. (successives increases of
S 2), and the corresponding y-values are 2, 5, 8, 11, ...
. (successive increases of 3). Note that 2 and:.3 are
the coefficlents of k 1in the parametric equations, and
that % is the slope. The numerator and denominator
of the "slope fraction" tell us how “to get from one point
to another on the line as suggested 4in the figure.
:‘
- -

-— < :-x)
Use this methgd to plot the lines determined in each of
the following; ‘

. B T 5Y . ot e g ; .

(a) P = (-3,2) ; slope = T .
() P = S =3
(v) P, = (0,0) ; s,lgpe =z .

. , L 4 o
(¢) Py = (2,-4) ; slope = - T *\\
(d) P, = (-1,-3) ; slope = 2\.
(e) P, = (0,0) ; slope = 2

: 21 e R » 21D PE a p

10. Plot the graph of lines through the orligin having the

following slopes:

(a) 3. i (¢) & . ‘
(b). - 2 . (@) Fsr<o.
561 .
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11. "-Write the parametric equations for the lines in
Problem 10. ; ‘ -

Our next theorem gives us a relation between the concept

of pargliel lip?é and the concept of slope. ‘- ‘J

THEGREM 8-15. Two non-vertical lines are parallel 1f and only
4 if theilr slopes are equal.

Erpgf; qé; two distinct non-vertical lines p and q
We ‘

beé given. 1ave two things to prove: R

iy T

..
(1) If p ll;qx, then thelr slopes are equal. qfa
(2) 1If the slopes of p and q are equal, then p E ‘B

(1) sSuppose p || a.

, g — * x%‘ﬁa!_ ——————#X
_ q :
v

Let él(xi’yl) and P,(x,,y,) be two points in p . Let

vertical lines through P, and P, intersect q in X

Ql(xl,yl + h) and QE(xE,YE + k) , respectively. Then

P,Q,Q,P, 18 a parallelogram. Therefore P,Q, = PEQE

(&)

Since PQ; = Ih] , PyQy = |k| , and since h and k are

both positive or both negative, it follows that h = k .

566
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and the slope of q 1is
ZE + k)ij' (yljjk h)ﬁ - B e
: XX 2% X2

Therefore the slopes are equal., - 7 .

Yrg"’i]"yl‘h YEE

| e
[ '

(2) Next, suppose there is a number m which 18 the
slope of both p and q . We wanﬁ to prove that the lines
are parallel. We do-this by showing that 1f they have one .
point in common, then they are the same line. Suppose then
that they have a point, say R(xl;yl)Tj in common. Since p
is not vertical, it contains a point P(x,,¥,) such that )
X5 # X, - Since g 1s not vertical, it intersects the line
({x,y) : x = X5} ; that is," g contains a point Q(x5,¥5)
such that Xy = X, . Since the slopes of PR and %QR are

the same, o - ﬁ*\

Yo - ¥y Y3 - | )
) ,

Since x, = X, , the denominators KE‘; x, and x5 - X ,
are the same: Hence Yo - Yy =V¥3 =Yy 0:, ¥y = Y3 - This

- means that Q P . In other ﬁé?ds, if p and q 1nteg§ee§;“=
then p and q are the same line and therefore parallel. If
p and q do not intersect then they are parallel by
definition. This completes the proof that if the slopesa of
p and g are equal, then p and gq are parallel.

A natural question to ask 1s the following one. _If the
slopes of two segments are equal, and have a point in common,
are théy collinear? This suggests the test for collinearity

8tated in the next corollary. fﬁﬁ

~— 563
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-

Corollary 8-15. Three points A, B, C are collinear
if and only 1f m__ =m__ , or they lle on a vertical line.

-AB

This "if .and only if" statement 1s a short statement
combining the two atatements: ’

(1) If m_ =m__ , then "A, B, C are collinear.

AB ' , ,,
(2) 1f A, B, C are collinear, and do not 1lie on a
vertical line, then m m_-.
iB

BC

-

Proof: Let A, B, C be three points and let my = mﬁ ,

= Xg+ k, y=yg+kn , k 1s real} .

[}
oy
™
-
<
Mt
b
(

y) + X = x5+ k, y = yg + kmy ;. k is reai]\i\\
, then BA”-"%c" and A, B, C are collinear. If \

B, C are collinear, then it follows directly from

\E\
]
:::
b

L]
N
4
I

4

f m, = m,
¥

A
Theorem 8-15 thg.ti* m; = m, l l

2 _, 564 ¢ S
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y . . Problem Set 8-8b
1. Sshow that DY || CD and that ~AD ||:EC if
T (a) K=(-3,-2)%, B=(51),C= (6,6), D= (-2,3) .
(b) A=145,-3) ,B=(15,-2), C = (26,-2) , D = (16,-3) .
(e) A= (-3, o) B=(1,5) , C = (10,2) » D= (6, 3)
2.1 Shgw that AB is not parallel to -CD ‘if A's (6, 2)
(14) ¢ =(-1,2) , D= (8@)
3~ (a) 1Is ¢%% ‘point B(4,13) on the 11ne Joining aA(1, 1)
¢(5,17) 2’
(p) Is the point (2,-1) collinear with (-5,4) and

(6,-8) 2 _
Given: A = (}01,102) , B = (5,6) and C ( -95,-94),

(¢) = ,
' Determine whether AE iﬁﬁkg .

(d) Given: A = (101,102) , E = (5,6) , C = (202,203)
and D = (203,204) . Are “AE and “CD" parallel?
Are they equal? _

4. (a) Given: A = (3,8 And the slope of line p

containing A 1is % . Fi@d the coordinates of
three more points on p .

(b) Given B = (-1,0) and the slope of line q
containing B 1s - % . Find the coordinates of
three more points'on gq . ’

5. (a) Write a pair of pafametrigyequaticng of the 1line

. ~ contalning (3,4) whose slope 1is % ‘ y

"(b) Write a pailr of parametric equations of the line
contailning (-1,3) whose slope 18 -1 . -,
(g;gg: 1= )

6. Given: =-((x,y) : x=3-2k, y=-1+3k, k 1is reall
What 1s thejalope of fEﬁ‘% Express €D in parametiic
equations if D || AT &nd'_‘(ﬁ% contains (0,0)

7. {Given a={(x,5) : x=1+2k, ¥y =2 -k , k 18 reall} ,

b={(x,y) : x=3%2h, y=-1 ahoh is reall ,
show that a || b . As part of your proof, show that

a#b ¢ ' -

b
=W

565
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+ 4k, ¥k 1s real} ,
- 8h, h 1s real)

8. "Given p = ((x,y) : x
a= [(x,y)
Show that p = g

D
-
[
b+
W]
S
Kox
U
[

2 + 3k, k is real} ,
2+ 3h, h 1s real) .

9. Glven m = [(x,y) : x =1 + 2k, y
((x,y) : x=1-2n, y

1]
H

n

(a) Show that m and n intersect 1n one point.
(b) Find the coordinates of that point. '

10. Four points taken in pairs determine six segments. Which
pairs of distinct segments determined by the following
four points are parallel? A(3,6) , B(5,9) , c(8,2)

X D(ésﬁl) -

11. Show by considering slopes that a parallelogram is
formed by drawing segments Joining in order A(-1,5)
B(5,1) , c(6,-2) and D(0,2)

12, Show that if one of two parallel lines 1s-vertical, then
the other is also.

13. Given A(-2,-%) , B(4,2) , c(6,0) . lLet D be the
midpoint of AB and E the midpoint of BC . Show
that DE 1s parallel to AC

H‘L

14 It 1s asserted that both of the quadrilaterals whose
vertices are given below are parallelograms. Without
plotting the points determine whether or not this 1s true.
(a) A(-5,-2) , -4,2) , ¢(4,6) , D(3,1)

(b) E("2§’§) ¥ Q(MJE) ] ( ) ] Q(EJ’E)

15. Show that the line through (3n,0) and (O,n) is
parallel to the line through (6n,0) and (0,2n)
: © Assume n # 0O
16. P = (a,l) , (3,2) , R = (b,1) , S = (4,2) . Prove
that *?a*g*‘g*’and that PG II*E’F if and only if
a=>b -1

ERIC
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8-9. Other Equations for Lines.

In the preceding sections we have used parametric equations
to express the cacbdiﬂates of the points of a line. In this
section we find another expression which "represents" a line.

We illustrate with a particular line.

o
]

,,,,, (4,8) .

Then ’P{xjyi- 15 collinear with A and B 1f and only if.
P = =m__ . Since m_ = %%Z=% and
\ B ar -

i , , -— i .
Consider the line AB where A = (2,5) and

1,

il
p=g
fa
]

"
=
=]
o
Il
I
el
™,
o

linear with A and B if and

=
]
]
|
-
\h-u
e
1]
K
L3
—
[
T
D]
o)
—

10 ¥ =2 .32 | then

o]
=
e
=t
P“
=y
]
1
I
1}
)

Lol
i
——
-

Tt
<
o ——_
[}
o
L
W
o —_
%J
I
MO

=B - - o
—— = Y s 2 If (%x,y) = (2,5) then x -2 =0 ,
-2 - 5 - x - 2 -5
y-5=0, and = s = 373 = Conversely if = - =L 3 =
y-o_3 = (2.6 Tt fol .
then $———s = 5 or (x,y) = (2,5) . It follows that P(x,y)
ta aollinear with L foamd emlw 4 X -2 ¥y -5
is collinear with A and B 1f and only 1f = s = Sy
Therefore
.- , f - o _ E
AB = j(g{’y) : }; ~ E = J i ")]
If we think of A as (xA,yA) and B as (xB,yE) , the
expresslon appears as ’
_ X - X y =y
=i —— A A
AB = 0(x,¥) @ g——p= = i
E A B A
Thls suggests the Fallowiﬂg theorem
e e e - - . i
THEOREM 8-16. If P = (x,,y,) and Q = (x,,y,) and if PQ
is an oblique 1line, then
PR = {(x%,¥) K _ *{177 = y j ylf .
' Xy = Xy Yo = ¥y [

ERIC
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Proof: The point R(x;y)i is collinear with P and Q
if and only 1f R =P or g _=1p _, that is, if and only 1f
(x,¥) = (x5,y;) or R

that 18, 1if and only 1if

H
M
(]
1
—
g
W
i
e
—

Corollary 8-16-1. If PQ 1s the line_of Theorem 8-16,

then

-
A

PQ = ((x,y) : ¥y - ¥y :—:ﬁq(x - X

: 1))

3|

Proof: To prove this we show that the equation of the

S S|
x I 'y

1s equivalent to the eguation
1 Y2 Ny

-theorem, -

T b

¥

el

=1

of the corollary,

“\_\‘%
[
!
m

«
n
I

¥

?;§T=?;(K - %)
Xg = Xp° 1

Y,‘yl

M

et the second form from the first, multiply both sides of

J

o] ,
he first by vy, - ¥y 5 to get the first from the second
1vide

et
et
i

both sides of the second by y, - vy -

Corollary 8-16-2. If p 1s the line which passes through

6
P(xl,yl) with slope m , then

(gl
12T
el

ERIC
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?Eoof: 1rf

Corollary 8-14-1 since p
(xl + 1,y o+ m)

(X§;y§)
a e

it

, the equation

DEFINITION.

The equation

also passes through

and then

is called the two-point form for the
-

of an oblique 1line

Py o= (xuyy) 5 By =

DEFINITION.

P, , Where

The eguatlion ¥y - ¥y =

m{x

equation

- xp)

is called the point slope form for the equation

of a non-vertical line wlth slope

passing through

Example 1. If C =

(x1,¥7)

Example 2. Write
(-5,-2) with slope 4 .

If A =

Lo% T
I

an equatlion

Answer: y +

3 (2,1) , B =
(0,-1) , find the point of lptersectlon o

4

W T
P a

S
o™ .

{(x,y) :

[(XSY) :

m and

m# O , this follows immediately from

he line through

(3,4) , ¢

by

b(x + 5)

‘E,’\”“-w
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il —
AB =

Alao

Solution:

((x,¥) : 3 = 5]}

¥y

| e

]

* 5y = -

b

[(I;Y) . 6:~¢§ =

Lo-1 ] .
! = = % . Since these

N5y

:J

. I .
8lopes are unequal thelines interzect in some point (Iljyl)

? Then

‘ﬁultiplying both sides

3%y -y, =5, 5y, =45

[

of the first equation by 5 and ac ing to the sides of the

second equation we get

. Therefb?é

O

ERIC

Aruitoxt provided by Eic:

/s 5

i

20. Then

1l

*1 4!

== point
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Set 8-

&

Problem

[{Xed

Write an equation in two-point form for the line
determined by the glven pailr of points.
(a) (1,4) (4,3) . (d) (-3,2)
(b) (c 5) (-3,0) . (e) (0,0)

(¢)~.(0,-5) (3,0) . (£) (-1,1)

Write an equation 1in point-zlope form for the line which

and and (5,-4) .
(7,-8) .

(1,-1) 4

and and

and and

containsg the
(a)
(b)
(c)

given polnt and has the given slope.
. (a)

(e)
(-2,7) , - % . ()

v

(DED) 3 (,3;‘%2 .

P

ro

(-3,5) , - (-3,2) , -1 .

L

(DSIS) H 3

\

Write an equation in point-slope form of the line that
contains the given point (5,8) and 1s parallel to the

line found in Problem 2(c).

)
= (l;

In triangle A= 6) , and C (5,2)

(a)
(b)
(c)

ABC ,
“ac”.
for the line that contalns

Write an equation for
Write an equation for
Write an equation the

medlan from A
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= ‘a’/

(a) Write an equation for the line that contains the
midpoints of AB and AC .

= Write an equation for the Iine 5™,

(£) 1f - (7,7) , find the coordindtes of the point
of intersection of iﬁk and *E_ék

(o)
I

Below are equations of lines. Which of these lines

contains (2,3) 2

(a) 2y = (a)
(b) 3y = 2x . (e)
(¢) y-3=2(x-2). (£)

I
L
k]

il
[
b

i
[}

< N
-+
il

]

[}
(%
P

Write an equation of the line that contains- (-2,4) and
whoae slope 18 the given number. : 7

(a) . (a)
() 1. (e)
(¢) 0. - ()

[

v

3
= -
Glven below i3 a set of four 1lines. State which pairs
of lines are parallel.
p=((xy):x-2y =8}, ag=(({xy): 2x+y =1},
r=.((xy) : bx +2y =3}, s

It

For each palr p and q determine whether p l[ q ,
and q intersect in one point, or p=q .

I
v
+

((x,y) : x -2y =8} and q= ((x,y) :
((x,y) : x - 2y = 8} and q = ((x,y) :
a
b

+ Yy
x -ty

L= s ]
Mt N N
ko B o Bl v
i1
PO
W
=

]
2
L=
o
I
]
1
=
~
1}

((x,y) : x - 2y = = ((x,y) :

Given two non-zero numbers a and . , Bhow that
B ; .
% + % = 1 18 an equatlon of the line that contains

(a,0) and (0,b) . This form of a linear equation is
called the intercept form.

Glven two numbers m and b , show that y = mx + b 1s
an equation of the line whose slope 13 m and which'
intercepts the y-axls at a polnt whose y-coordinate 1is

b . This form of a linear equation is called the slope-

intercept form.

4Tt
=
=

((x,y) : 2x - by = 11)

)

N -
Ry



810, Perpendicular Lines.

We have seen that two non-vertical lines are parallel 1if
and -only 1f their slopes are equal. In this section we develop
a conditlon in terms of slopes for the perpendicularity of two
lines. 1If one of two lines is vertical, then a necegsary and
sufficient condition that the lines be perpendicular is that
the other one be horizontal. The following theorem is a state-
ment about the perpendicularity of two non-vertical lines in
terms of thelr slopes,

! .
THEOREM 8-17. Two n@ﬂg%éftiéal lines are perpendlcular if and
7 oﬁly if the product of thelr slopes is -1 .

o
Proof: Let the given lines'be detoted by p; and p,
£ and let their slope; be my and m, , respectively. We have
two statements to p%ovég B

(1) 1r D, 1 p, , then mym, = -1 . ;

i

(2) 1Ir mm, = -1, then p; 1 P, -

We prove both atatements together as follows.

Let g, bDe the line containing (0,0) which is parallel
to p, . Let q, be the line containing (0,0) which 1is
parallel to P, . The slope of ay 1s my and. the slope of
dls m, . Let q. and g, intersect the vertical line

Q2 . 2
((x,y) : x =1) in R(1,r) and S(1,8) respectively.

™2

&

P

ERIC
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Il
m-j;
L]

mgfmg;:ﬁ——‘ - = 5

Then p, 1l p, 4if and only if gq
'only 1f ©OR ] 0S5 .

From the Pythagorean Theorem

follows that
E

Py | p, Af and only if
Using the distance formula we get

-

¥

2

1

(0R)? = 1 +m

Il

Then p, 1 p, 1f and only if

if and only if 2 + m

if and only if 2 = -2Zm.m

(OR)S + (08)° -\(Rs
/

¥ (OS) =1

la, , and a; | a, if and

and 1ts coniérse it then

]
=

M

-
+
=

m™J

——
s
Iy
——
i
-
=

[t

]
=

[

L
I

=
+
=]
4
]
+
g
il
I
E)
i
=
Jiv]

if and only 1f m.m, = -1 ,

which completes the proof.

L‘
3
Pl

v
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i

L)
(%]
R
L)
o]
———,
!
—
L]
-
o
ot
m .
I
———
=
"
=
o
L

Example 1. Given A = ,
D = (8,7) , show that ﬂE?JE' -,

Lo
o]
=t
i
|t
[ o
o}
a]
o ‘
i
fl
I
:l
I
it
i
Lt mo
A,

%T!'
j |
1]
J:m @v
1
MO

Since - £ - 3 = -1 1t follows that

‘M o

Example 2. Given P = (4,-15) , Q = (-17,3) , R = (0,5) ,

determine whether or not PQ 1s perpendicular to &R .

3 + 15 18 6 3 -5 2

Solution: m STr—— I = &==/=-%,0 = =— =37

-1

L M

- _ - -
# -1 . Therefore PQ 1s not perpend?

-]
[
el

to QR .

AT

Example 3. If A = (0,0) , B = (4,3), C = (8,
D = (-5,11) , prove that the diagonals of quadrilater: ABCD
are perpendicular. ®

, m_ = %% :,3 = - % d slnce

Solution: Since m =
—_—— D =

AC

{'_’;diw o)
[

() = -1, 1t follows that AC | BD .

*,

k)

Example 4. Given A = (5,-7) , B= (0,0) , C = (7,5)
determine whether or not triangle ABC 18 a right triangle.

- E
Solution: Since m__ = - % ,M_ =6, m_ = % , 1t
- B v: AC BC
follows that AB |. B andihence ABC 1s a right triangle
with right angle at B .
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Example 5. Given A = (-1,3) , and B = (5,-1) , find an
equation in poilnt-slope form for the peﬁbendicular bisector of
AB 1n the xy-plane.

Solution: Since the slope of AB = —p——v

follows that the slope of the perpendicular bisector 1is % .

The midpoint of KB 1s (’1 2, 3;1)

I
)
[
-
3
=
]
o
it
=
[¢]

M 4

equation of the perpendicular bissctor 1z y - 1 = %(x -2y,

h

(=

or 3% - 2y

[

Alternate solutidn: The médpoint of AB 1s (2,1) ande
the slope of the perpendicular.-Bise 5
the above solutlion. Then parametric equations for tgé_

perpendlcular bilszector are

Then 3x =6+ 6k , 2y = 2 + 6k ; 3x - 6 = 2y - 2 ;
' ] . )

3x- 2y = & . It follows that 3x -
for the perpendicular bisector of AB 1n the xy-plane.

¥y =4 43 an equation

¢

=

Problem Set 8-10

l. Lines p, q,?r, and &8 have slopes % Y 61% s, and

B
[

T respectively. Whilch palrs of lines are perpendicular?

The vertices of a triangl
c(0,0)

2 B(gxg) ¥ and

%

i
Vm
i
N
.
-
b__l
oy
-
i
p——

(a) Wnat is the sjope of AB ?
(b) What 1s the siape of a line that is perpendicular

s

et gt
=,
o
W‘
ot
=
]
[l
5
o
[y
et
o]
e
it
]
]
\mw
9!

s the slope of a line that 1s perpendicular

3. Show that the line containing (0,0) and (3,2) 1is
(

.perpendicular to the lipe containing (0,0) and (-2,3) .
3

/
e

#
e
-

W
—~1

o ‘}'.,Nw i
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(b)

Show that “RE[EC™ if A
C = (-b,a) a # 0, and

(a:b) ; B = (O!D-) , and
b #£ 0O

Glven the points P(1,2) , @(5,-6) , and

so that /PQR

where

R(b,b) ,
determine the value of b is a right
angle.

Given BB - ((x,y) : x =
k 15 real) , and €D = ((x,y) : x =1
y=2+ 2k, k 1=

1 +2k and y =2 + 3k ,
- 3k and
reall .

- -
Prove: (1) AB and CD intersect in
L .
(2) AB ] CD .
Given AB = ((x,y)+: x = -1 + 4k , y=2 -3k, k 1is real
L - , U S ,
If CD | AB and CD contains (-2,2) , express CD with

set notation symbols and parametric equations.

ABC A{0,0) , B(3,2) ,
C(4,-1) . Using parametric equations express:

The vertices of triangle are

and
(a)
(b)
(c)
(d)
(e)

-

AC . 7

is Perpendi{jular to !‘:A:EF-

7 ] -

y barallel to BC |

perpendicular to _‘EE
-

The
The
The

=

that 1s parallel to
_that
line through that
The. line through that

The coordilnates of D if
AD | BC.

ine through B

line through B

=

and

Using slopes, show that the quadrilateral A(8,0) , B(6,4) ,

C(-2,0) , D(0,-4) has four right angles.

Express 1n set notation the perpendicular pisegtér of the

segment that -joins the followlng pailrs of points.
(a) (c) (3,5) ©
() (a,b) .

(a,b) (c,d) are distinct

containing them 1s perpendicular

and (~3,-1) and

(050)

(3,3)
(;Ssg)

(1,1) .

and (3,-1) and

Show that 1f and

the line p

line g Joining (b,c) to (d,a) |

points,
to the

Given A = (3,-3) , D= (x,-2) .

(a)
(b)

(QJD) ; B = (}4;2—) » C=

Find x
Find x so

101
]
T
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- o A _A L ] . .
13. Given: A(3,5) and B(xl,-2). Calculate the slope of the line
perpendicular to AB thtough A and draw the line.

14, Given P(-3,1) , Q(0,-5) , and R(5,0) . Calculate m
, - , . o - PQ
(a) Through R draw a line parallel to PQ

: T ] -
(p) Through R draw a line perpendicular to PQ .

T

,,fgsf i} . . =
15/7 The slope of a line p through (2,3) 1= T

(a) Give the coordinates of two other points on p
(b) Give the coordinates of two other points which are
contained in a line throuch (2,3) perpendicular
to p
16. Given a quadrilateral A(a,b) , B(a + c¢,b) , C(a + ¢,b + c),

D(a,b + ¢) /

2
|

L
E

(a) - Prove that &C
(b) Prove that &AC

(¢) Prove that AC and BD have the same midpoint.

-This sectlon wontains several deflnitions and theorems
relating to parallelograms. In Chapter © we defined a

parallelogram as a quadrillateral each of whose sides i=
parallel té the side opposite 1t and proved two theorems.

They are

[

congruent to the

[y

1. In any parallelogram each side 1
slde opposite 1t. (Theorem 6-6)
. If two 8ldes of a quadrilatera: are parallel and

2

congruent, then the quadrilateral 1is a parallelogram.

(Theorem 6-7) ‘
In Problems 2 and 5 of Problem Set 6-7.and Problem 5 of
Problem Set 6-8b, we proved statements which we now introduce

formally as theorems.

ERIC
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THEOREM 8-1 E A quadrilateral 1s a parallelogram .Af eath of
1ts sldes 1s congruent to the side opposite it.

-

THEOREM 8-19. A guadrilateral 14 \a parallelogfam if and only
if egch angle 1s congruent to ﬁhéaan:le opposite 1t,

We ﬁow conslder cases of Special parallelograms which
have properties not common to all parallelograms.

- DEFINITIOR. A parallelogr&s a rectangle 1f
and only if it has a right angle.

Perhaps you think of a rectangle as a quadrlldteral having
Tour right angles. It is possible to start with this as a
definitlion or the one given above. In either case the other ,”

statement becomes a theorem. S /
1 : /

Qg;; NITION. A parallelogram is a rhombus 1f and
nl e

y 1f two consecutive sldes are congruent.

§

DEFINITION. A parallelogram is a square if and
only if it has a right angle and two adjacent

- 4
sldes that are congruent.

You should notice that every square 1s a rectangle and
also a rhombua. We might say that the set of squares 1is the
intersection of the set of rectangles and rhombuses., We can

-pictufe roughly the set relations as follows:

- ( !
578~
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Aruitoxt provided by Eic:



8-11

=
In this diagram the region marked P represe ents the set
of parallelograms; the region marked él » the set of
rectangles; the reglon R, , the set of rhombuzes; the réglon
marked - S , the set of .squares. i
' The iollowing theorem 15 a direct congequence Df our
. .deiinitian of a rectanglé and Theorem 8- 19.
THEOREM 8-20. A quadrilateral Is a rectang gle 1f and only if -
it is equiangular, v
' The proof 1s left as a problem.
) As a .direct conseduence of the definition of a rhombus
and Theorem 8-18," we also prove:’ : . .
A THEOREM 8-21. A quadiilateral is a rhombus if and only if 1t
\ /" 1s equilateral. : :
f .
Prpblem Set 8-11
' - <1l. Does a rhbmbus have all the propertles of a paf%llel%gramﬁ
‘Does a parallelogram have all the propertles of a rhombus?
Explain.
2. Define a squgfe in terms of: (a) a rhombus,
" (b) a rectangle.

ERIC
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g 3. (a) vrite the'qﬁo parts of Theorem, 8-20.
’ (b) Prove both parts of the theorem.
4, (a) Write the two parts of Theorem 8-21.
(b) Prove both parts of ‘the theorem,
5. Identify the following statéments as trué or false.,/Be
' able to Juatifyrycur answer for each statement.
(a) If a quadrilateral is a Péctangie,’if is equiangular.
(b) 1If a quadrilateral is equiangular, it is a rectangle.
(¢) 1If a a quadrilateral is a rhombus, it 1s equilateral.
% (d) If a quadrilateral is equilateral, it is a rhombus.
(e) If a'quadrilateral 1s regdlar, it is a square.
(f) The two triangles determined by a diagonal of &
' '.;parallelagram are congruent. '
(g) If the triangles determined by one diaganal of a
quadrilateral are congruent, the quadrilateral is a

*

8-12. Hé;;g Coordinates in Proofs.
We have seen that the xy- coordihéﬁé syatem 1s a uééfﬁl

tool in Ealving problema in geometry. As we pointéd out in
the béginning of this chapter, there are many gcardinaté
Systems in a plane. It is natural to expect that a coordinate
system selected to "fit a problem'. . might be a better tool than
one set up wlthout reference to the préblemg And this is

« 1indeed the case, as we now illustrate. ; :

‘Example. -Prove that if‘a 1ine segment joins the midpoints
of two sides of a tr‘iangle, its 1ength is half the length of
the third side. :

%
Proof

I:

: 'Sgbpgse a triangle and a line segment Jéiﬁing the mid-
s pointa of two of its sides are given. Label the gilvén triangle
ABC =0 that the given segment Jolns ,the midpoints of sides
AC 'and BE . Call these midgbints D and E "respectively.

Y

w ) ) . ‘ \ 5&@ PRy




8-12 , ) .
- We now aset up an xy caardinate system in the pla of
triangle ABC which seems to fit the prablem We choose line
“ox" as the line BT, we choose- point A as the origin. The
line ié?ﬁ’is taken as the line‘iﬁ_ﬁhé plane ‘AEC which is
perpendicular to OX at A . Then A = (0,0) , B = (b, ;0)
C = (c3d) , for some real numbers b, c, d . (W% know that
b #0 since A and- B are different polnts. We know that
d £ 0, since A, B, C- .are noncollinear points,)

. Then we use the midpoint far@nla to get

13

) ) ~0+c 0+ad c d
® o :ﬁgg;j’”g cé; 7 ) = (§ i S)
b+c. O0+d b+ ¢
E = (=%, quzvff’!g)
Y
} : !
2 Cle,d)
D E
k-3
) )
- olAtc,0 - Blbe = *X
) -

Then “DE and BB are horiggntal lines and

e b+ c rcy b|
DE = |—%— -5l = lgl s \
_ 4B = |b - 0| = |b] |

, ’ 1 , N )

It follows that DE = 5 AB , and this completes the proof.
‘Proof II:. ,

— —_—— = 3
e

In the above proof we labeled our figure and sét up a
cabrdinate syBtem to fit the problem. We now give a proof
using a coordinate.system wﬁ%ch is not set up to fit the
prcblemr qcan this praoi to~see how 1t compares in difficulty

1581 ¢, .
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Suppose a triangle ABC 1s given and that D,-E, F are the ",

" midpoints of AC, BC, &B, respectively. Then using the (F‘
~_midpoint formula we find that : ’ j
. Xp + Xy ¥y * Vg (gt Xg  ¥g * ¥
Del=2— > =) » B~ ——

Using the distance formula we get

e fTB e Xat %\, (YB Yo  VatVc\ @

i
j ] 1
b
1
bl
.-
v
+
<
o
[}
L
h-d
| —
A

fi
\I"DM—‘
M
Wik
1
-
k=4
~—
+
<
o
LS
=

]

88 = 4f(xg = )2+ (vg - ¥,)°

rof
g

3

Therefore DE = % AB.. B3imilarly EF = % AC and DF =
3

¢
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As you can see from these two proofs an xy-coordinate
system which 1s set up to fit the problem simplifies the
expressions involving coordinates which are used 1n the proof.
In Proof I we fPund that y, ;e% =Yg - Thls proves that DE

is horizontal and hence that TE || B .

It might appear in our first proof, that we are proving
only a speclal case. Actually the proof applies to all cases.
The x-axis and the y-axis can be chosen anywhere in the plane
80 long A3 they are perpendicular to each other.l For con-
venience we chose AB as the x-axis. We cannot then choose

“AC” as the y-axis. For then AG ] BB and this would mean
that the proof is for the special case of a right triangle.
After selecting a line for the x-axis we may select any point
in it as the origin. We chose’A as the origin. Then iD_S,EE
is/taken as the unique line in the plane of triangle ABC
which 1s.perpendicular to X at A . The proof 1s general
‘since we can set up such a coordinate system starting with.
any triangle and the segment Jéining the midpoints of two of

1'ts sides: '

»

We state as a theorem what we have proved. p

¥

sldes of a triangle 1s parallel to the third side and its
length 1s half the length of the third side.

THEDEEﬁ;ﬁ?EEg A line segment which Joins the mldpoints of two

Problem Set 8-12

1. Prove Theorem 8-17 if the coordinates of the vertices of
AABC are: A = (0,0) , B= (2b,0) , and C = (2c,2d) .

.. Is there any advantage in choosing these coordinates
rather than the coordinates in Proof I, of the example?
If there is an advantage, explain,

2. Given AABC with AB'= 6 , BC = 8 , and AC = 10
Find the perimetér of ADEF , if D, E, and F are
of

midpoints of the sides of the triangle. i Lf\:

]

H—l:l\




8-12
"~ 3. It 1s desired to measure the distance between two trees on

‘opposite sides of a buildinéi : <y
If the two trees are represented
by pointg X and Y , then
locate a third point- Z from
which both X and Y may be

’i‘ 'iseem Place stakes at M and
‘N , the midpoints of XZ and
¥Z . How can you find the

after measuring MN ? ’ - , i;ff;i,
Explain. ’

4. In Problem 1, 1f ¢ = O , then AABE 1s a
triangle. Explain. a

*5,. Prove that the midpolnt of the hypotenuse of a right
triangle 1s equally distant from the vertices of the
triangle. e '

6. Given isosceles triangle ABC . Set up a coordinate
system with the vertex of the triangle on the y-axls and
the corrésponding base of the triangle on the x-axis,

. . . A
7. Prove the statement: If a triangle 1s 1sosceles, the
-medians to thé'twd?gongruent‘sides of the triangle are
congruent. . [ﬂ;ﬁt; Let vertices A and B be contalned
1qg%he x-axis and vertex C be contaired in the y-axis.]
e"‘f{ 1
8. Prove the statement: If the medlans to two sldes of a

triangle are congruent, the triangle 1s isosceles.
' =
9. Write a single :atatement which comblnez the statements in

- Problem 7 and Problem 8.
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THEOREM 8-23. Given quadrilateral ABCD with A = (0,0) ,
B=(a,0), D= (b,c), then ABCD is a ggrallelagram if
and only if C = (a + b,e) .

Proof: There are two things to prove:

(1) If ABCD 1is a parallelogram, then C = (a + b,c) .
“ (2) 1Ir C = (a + b,c) , then ABCD is a parallelogram.

§ %Y
D(bye) __ Clx,y

’{‘ B YO T Bl 8 - X

: (1) sSuppose ABCD 1is a parallelogram. Let C = (x,¥y) .
T« A P = RN o
Since AB s hgrigkntalg then DC 1s alsc horizontal. There-
v I e - - A
fore y=¢ , If b # O then neither AD nor BC Iis
verticdl. Since AD || BC it fal;Efs that m_ =m__ and
o " - AD BC
. hence that ¢ = ié%ég .+ But y =¢ , Therefore x - a
Xx=a+b,and C=(a+Dbe). If b=0, then D 1is in

the y-axis and AD is vertical. Since BC || 0 , B 1is
(

also vertical and. X = a , x = a + b., and again C =

Y /
- 4 /

O(b,e) ~ Clatba)

&
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8-13 “ .
" (2) 1f~C = (a + b,c) then DC 4is horizontal and hence
parallel to AB . Also DC = |la+b - b| = |a] ,,

AB = |a - 0] = |al . Then DC = AB and TC || ji . It
follows that ABCD 1s a parallelogram.’

HI Ik

A kY .
Corollary 5;2311- If the coordinates of the vertices of
- a parallelogram are A = (0,0) , B= (a,0) , C = (a + b,e) ,
eand D = (b,c) , then the parallelogram is a rectangle if and
only if b =0 .

Proof: There are two things to prove:

. i
(1) If ABCD 1s a rectangle, then b = 0 .

(2) If b= 0, then 'ABCD 1s a rectangle. : -

! 7
A

Dibyg) o Clo+b,e)

— : — X

FPART (1)

\ ° Do) _ L ____Cloe)

. '] _ . _
- ~ |Ate,0) ’\\” o Blo,0)
J PAR

——X

587 &



(1) If 'ABCD is a rectangle, then /A 1s a right~--
gle and AD | BB . Therefore, D is in the y-axis and
Q -

(2) If ABCD 1is a parallelogram and b = Q , then _
(0,c) . Since D 1s on the y-axis, we know that iﬁfjfﬁﬁ
/A 18 & right angle. Therefore, 'ABCD is a rectangle.

Corollary 8-23-2. If the coordinates of the vertices of
.a parallelogram are A = (0,0) , B = (a,0) , ¢ = (a + b,c)

and D= (b,c) 'where a > O , then the parallelogram is a / /
rhombus if and only if a =4/ bE +,_c:§- . . /

Proof: There are two things to prove:

— (1) If ABCD 1s a rhémbus?gghen a =4 bY 4 ¢

(2) If a =?f|/b2 + c2 , thenXABC-{) is a rhombus,

Y

Co -

Dibe) Clavbyo)

- o[A,0 Bl




8-13 Y _
(1) If ABCD ,is a rhombus, ‘then by definition AB = AD .
* By the distance formula AB = a , and AD = 4b° + ¢2 . By the
substitution property of equality a =4/b° + o
(2) It is given that a =+b% + ¢2 . By the distance
formula AB = a , and AD ;:ng r 2 . By the substitution
property of equality ¢B = AD . Since two adjacent sides of
D

" the parallelogram ABC are congruent, the- parallelogram is a

T

rhombus.

‘

éégF \\%;e shall use thé results of Theorem 8-23 and its
- corollaries to prove certain properties of thé diagonfils of a
parallelogram, a rectangle, and a rhombus, The following

experiment will help us to discover these relations,

Experiment

.o

Draw several pictures of a parallelogram, a regtangle; a
rhombus, and a Bquare. Use a protractor and a ruler to .
discover the properties that appear to be true with respect to
the diagonals of each of the given quadrilaterals. Record
your findings 1in the chart by checking the quadrilateral which

. has the listed property.

Diagonals Diagonals Diagonals blsect
bisect each other | are | the angles

Parallelagfam ) -

Regtaﬁglé

Rhombus - f T . FE

Square b -

THEOREM 8-24. A quadrilateral is.a parallelogram if and only
if the diagonals blsect each other.

- 589




8-13 .

Proof: There are two things to prove::

(1) If ABCD is a parallelogram, then AC and BD
bise.c‘\t each other. y -

‘(2) 1t A and BD bisect each other, then ABCD
1s a parallelogram, 7

£

D(b,c)

77::(3(a+p ,€)

e E— —————— ‘, e X

[+]
ol
—
E)
[»]
~1
1
o
—
[
=]
=

Y PART (1)
%

D(bse) _ Cxyy

~o[A(o0) Bloo)

PART (2) .

590() "E
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8-13 S .
: (l? You will be aSked to prove Part (1) of Theorem 8-2li
in ihe next prablém Eet

(2) 1Ilet the caardinates Qf the quadrilateral be
A (D 0) , B = (a,0), = (x,y) , ‘and D = (b,s) Since
A and éﬁ bisect each ather they have the same midpoint .
Thus . .o o

I

*

x $-5- - |

”a + b and ¥y =c¢ . Therefore

.and

v ES
W
_~m1+,
rofe<d
i

From thls we see that ,x
= (a + b,c) and by Thgarem 8 23 ABCD 1is a parallelggram

You will be asked to prave the foliawing thearems in the
next problem set. You should note that there are two parts
to the proof of each theorem. Yau should write out the two
paftg iof the statement which must be pPOVEd bEfﬂPE beginning
your proof. _

Theorem 8-23 and the two corollaries will help you set up
the coordinate gygtem for Theorems 8-25 and 8-26. ‘

5\ kS

THEOREM 8-25. A parallelogram 1s a rectang,l,e if and only if
.the diagonals are céngruentg » % :

THEOREM 8-26. A parallelogram 13 a rhombus if and only if the
diagonals are perpendicular. ’ i

~ THEOREM 8§-2 -27. A parallelogram is a rhombus if and only if a
V diaganal blsects one of 1its angleq

Problem Set 8*13 . ‘ #
Y T I fﬂgyé
Prove Part (1) of Thearem 8- 24

Prove Theorem 8-25{ N

Prove Theorem 8-26

Prove Theorem 8-2°




;";
Lo Tw e ' - ]
' " 8-13. T
- 5+ ‘List the properties of a rectangle that are not true of.
‘ *oall paralielagrams. ‘ i :
e. Liat the preperties of . a fhambua that are nat true *all.
/ . parallelagrama ’ ;
; = -'igff Jp—
r 3 7. Keepiﬂg in mind 1tiidefinltian, may a squgre be considered
a a régtangle° ' a rhombus? Then a square "inherits" the
praperties gf,!fiiimf, o ) and -,
FO —_—
8. Make a chart ilke the following and check which figureg
' have the listed prapertieg - ‘a\ . .
T :”7’77, parallelo- fec{a?{glé rhombus square
.| gram N B -
oppogitexideg are || e
opposite sides ars x° . |
d Qpﬁb%iééﬁié} are ‘g .
éons’ecut;ve 71? are supp. f ,_
diaganala blsect gagh cher ’
diagonals are = - . ot ( L
diaganals are |
diagonalg bisect angleq
.1t is Eequilateral
it is equiangular' 7
iﬁ is PEgular L . o .

9, Starting with the set of all quadrilaterals exp¥ain how
~“the set of parallelograms, rectangles, rhombuses and
squares may be consldered as subsets.




8-14,

Trapezoids.

DEFINITION. A quadrilateral with onte ‘pair ‘of Eidesf '

parallel and the éther palr of sidés not paﬁallel

£ is c:.alled .a I‘E‘;EEEE e
L ;f ' //‘ | EAsE
ALTITUDE ~ L — -
S . MEDIAN T
LEG
i
) . . BASE )
DEFINITION. The parallel sides of a trapezold. are'
called the bases of the trapezgid the other two:
peases
sides are called the leggraf the trapezoid.
DEFINITION,” If B 1s a base' of trapezoid ABCD
then A and B are a palr of base angles cf the
.trapezoid. T . .
DEFINITION. A line segment which 1s perpendicular
to the lines containing the bases of; the trapezold .
and which has its endpoints-in‘these lines 1is
called an altitude of the trapezoid. d
* ——— ® ;’ i
DEFINITION, The line’ segment which connects the
midpaiﬂts of the legs of a trapegaid ia called
the @g?ian of the trapezaid . et &
Dgsggii;gg, A frapezold whose legs are ccngruent
1s called an Jmosceles trapescid
v 593
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8‘14 i 5 . . ' "‘ié
. : , g ‘
: Problem Set 8:14+ L
1. 'Pfgve that the median of a trapezoid is parallel to 1t3(
- bases and that it*\léngth is half the’'sum of the lengths
. e of 1its base§! Hint: Lét ABCD be the trapezaid with )
A= (0,0) , B= (2a,0) , C = (2b,2c) ; = (24, Ec) o,

2. Using the result of Problém 1, find the length of the
segment mafkéd x ar ¥y in the fallawing diagram

« ° Parallel 1ines are indicated by arraws lengths by
numbers, and congruent segments by dashés /

‘gﬁu

¢ @ L (b) ) E
3. One angle of a trapezoid measures 100 .. Can you find
‘the measures of 1ts remaining angles? If, in addition,

you were told that the opposite angle has a measure of
75&3 could you then find the measures of the two
remaining angleg? What are they? g

4. Prove that a pair of base angles of a trapezoid are °

. congruent 1if gﬁd only 1f the trapezold i1s lsosceles,
* ‘ (Declde first whether you will or will not use

ccardinates )

' 594 .




8-15

. Prove that. the diaganala '\

of a trapezoid are)cgngruent
l: and only 1f it 1is T,
1soséeles. (If you use
éoardinates you might

. ¢
éhcoae cgordinates as-

shown. * Then' yéu have to

prove: two st&tem&nﬁsg)

(1) If d = -b, then the

(d,lg)’ -

(b,c)

diagonals are cangruent

4 ¥(2) IE;Ehé diagonals are

6.

_ 8}15i

cgngruent then d = =B

Prove: The segment Jjoining

the mldpoints of the
diagonals of a trape*&id
is parallel to. the bases
and equal in length to
half the difference of
their Iengths. . -

—

(aiﬁ) iy (ﬁ,ﬂ)

= X

&

lgqgggrrent Lines.

L In‘this section we prove geveral statements which contain

the phrase "the set of all points."

determined by a condition or a cambinaﬁian of conditions.
_proof of such a statement consists of _two parts. We must

hfgve that:

1.

Membership in the set is
.The

Any point belaﬁging,ta the set satisfies the glven

condition.
J

Any point that satisfies the giveﬁ condition belongs

to the set.

#

595 ¢, )
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8-15 : : ,

THEOREM 8-28. The set of all poiAts in a plane ‘which are_

‘ -equidistant from two given poInts 'in the plane is the
perpendicular bisector of the segment Joining the given

pointa, .. .
N
J

\ E?QQf: Given two points A and B and‘a plane which

contains them. Choose AB as.the x-axis and thé midpoint of
‘AB as the origin. - ' ’
I\ / )

Px,y)

Aca,0) . 9 Bla,0) .
, ™
_Then there \1s a real number a , a #¥ O , *such that .-
“A=(-8,0) and B = (a,0) . Then the y-axis is the
perpendicular bisector of BB . There are two pabts to the
proof. ’ '

(1) If P 1is in the y-axls, then AP = PB .

(2) If AP =PB, and P 18 in the xy-plane, -then P
" 'is in the y-axis. . K '

' (1) If P 4s in the y-axis, then P = (0,b) for some
., number b and
(AP)Z = (-a -:0)% + (0 =B)* =

(BP)2 = (a - 0)% % (0 - b)?

Ii

o]
[

+

o
[

i
m
+
o

and AP = BP . . -

< 6(2)5 If P(x,y) s any point ‘such that’ AP = PB , then

it follows from the distafce formula that :
‘ . ' ]

v Co(x+a)f ey (x - a)2 + y°

s { xg + 2ax + aE + yg xg - 2ax + aE + y

2

bax = 0 , and since a ¥ 0 ,
Tk o % =0 .

' Therefore P 18 in the y-axis. . L N

g -/ | . | %, e

o




For the purposes of the next corollary it is convenient to
- have a definition of concurrent lines. '
DEFINITION. The lines 1n a set of lines are called
concurrenﬁ if and only 1if theregis exactly one paint
'which lies in all of them; the segments in a a set of
segments are called concurrent if and only if there -
is exactly one pc;ntiwnigh lies 1n all of them. -
/ : L. P ( .
] According to this definition and our earlieér definitidns, &
we note that cohecurrent rays lie on cancurrent 1ines, or in the 7'-;
special case of two opposite rays, they lie on the same line.

Corollary 8-28 -1. The perpenﬂieular’ﬁiaeetors of the sides

of a triangle are concurrent at a point equidistant fgam the

vertices of the triangle.

Given triangle ABC . ILet p, @ and r be the

perpendicular bisectors of AB, BC and AC , respectively.
Either p and r intersect or p 1s parallel to r . If
we assume p || r then AB | r .. But r | AC by hypothesis.
What theorem does-this contradict? The assumpticn that p 1is
parallel to r 1s false. Therefore p Iintersects r at a
‘point. '

If 0 1is the point of intersection of p and r , then
OB = OA and OA = OC by Part (1) of Theorem 8-28. Therefore,
OB = OA = OC by the transitive property of equality. There-
fore, O is in q by Part (2) of Theorem 8-28. This proves

597




815 | ( |
that p, g, .and r are concurrent at a point.equidistant
frcm A, B, ‘and C, the vertices of the triangle:

THEOREM 8-29.

The set of all paiﬂts 1

1 the interior of an-
anglé which are equidistant frcm the lines which contain

the sldes of the angle is the interior of the midray of
the angle.

Proof: We eans%ruct a prgaf without coordinates. Let
‘an angle ABC and ;ts'miir:g‘if BD be given,

We have two things to'prove,

(1) If P 1is in the 1nterior of BD", then the distance.
from P to AB equals the distance from P to
(2) 1If 1

-
If P 1s in the interlor of /ABC and if the
distance from P to PEA
P to EC

equals the distance from
, then P 18 in the interior of BB
(1) Suppose P 1s an interior point of BD . Since

m /ABC < 180 , then m /PBC < 90 and it follows that the foot
of the perpendicular from P tg'iﬁﬁk is some point on !Eﬁk
call it F’ Similarly, the foot of the perpendicular from P
BA 1s some point in EA call 1t E .

ABPE £ A BPF
by .A.A. and PE = PF . Hgnce the distances of P
H
and BC are equal.

e

from BA .
(2) since P
PE |"BA", PF |™BC", and PE = PF

/FBP = m /EBP . Therefore

is in the interilor of the angle and

, then APBE ¥ APBF and
—- . N e
BP 1s the-midray of /ABC .




8-15 _ o
Corollary 8-29-1; The 11nés which cantain the angle‘

bisectors of the angles of a triangle are concurrent at a point _ -

equld;stant from the slides of the triangle.

Let A ABC with angle bils ectérs ﬁ:ﬁkc_ﬁk be -given.. Now

AQ.iFnd CF (except for the p@ints A and c) lie in Ehez;
ae .-8ame halfplane with- edge AC v TAlsc AD and CF are not

parallel (since the measurgs of /CAD and LFGA ‘are each less

than 90 ). Let I be their point of intersection. From

Part (1) of Theorem 8-25 1t folldws that I is equidistant

!fram AB and AC and also equldistant frgm AC and (3

It follows that I 1is equidistant from Y and *5” and by
Part (2) of Theorem 8- 25 that I 1lies in 'BE. This means
that ﬁ, EE' and “CF" are concurrent in the point I , and

I 1is equidistant from ™iB, Ac, and CB". ‘

Problem Set 8-15

1. Given A(-3,0) , B(0,4) , ¢(5,0) . Plot points A, B
and € and show by a drawing how to locate a point D
such that DA DB = DC . Explain your drawing and state
the theorem (or eércilary) that suggested it.

g8

Given -A(-2,0) , B(0,-6) , and C(3,0). Using a protractor
find a paint D such that the distanges from D to “AB,

*BC* and YA are equal. State the theorem (or corollary)
that suggested your drawing. . '

3. Glven A(_B;D) H E(E’;D) , and C(D!LL)_ Use a ’rﬁlEP E{ld
protractor to: 4 _ : .
(a) Find a point X such that AX
) from X to AC and BGC arefequél_

'BX and the distances

599 ] 70 »



7 c(h)’ Find a paint on the x- axis that 15 equally distant

" way PB = BR and RC

from A and B .. o

(¢c) Find a pcint on the .y-axis that is equally distant

frcm AC and BC .

-

In triangle’ ABC , D 18 the midpoint of BC , E the
midpoint of TA , and F the midpoint of &B .
10 , find DE, EF,

(a) If AB=12 ,,CB=9, and AC =
., -ED . | | i
(b) Prove that TDE || BB ; that EF || BC ; that .

"(c) The perpendicular-bisector of AB 1s also
perpendicular to __? . The perpendicular Jbisector

of BC .1is also perpendicular to ? .. The -
perpendinular bisectcr of CA 1s also perpendicular
L ' )

(d) Are the 1ines that contain the altitudes of triangle

i

DEF concurrent? Explain.
E)

We sketch two proofs of the following statement: :'The
lines that contaln the altitudes of a triangle are
concyrrent. You are [to fill in the missing parts 3f each -
prOOZZ§sIhen decide which préaf seems to be more

satisfying. ’

Y

Pﬁgg§,£:

Let” ABC be the triangle. Consider the line through A
parallel to BC ; the line through B parallel to AC ;
the 1line through C parallel to AB . Let these lines
meet 1n P, Q, R as shown in the diagram. Shcw that
APAB ;’ ACBA and that PA = CB . Similarly sht:w that
CB = AQ . It follows then that PA-= AQ . In the same
CQ . The altitude from A to
BE 1s contalned in the perpendicular bisector of PQ .
Q

Complete the proéf, A

v




) : , . ' - ‘

/" Proof II: o ‘ i

- Let the triangle be ABC
and choose axes 8o that
A= (E;G) s Ezg(osb) ¥
and C = (¢,0) . Then the
y-axls contains the 2
altitude from B to AC :

? Therefore the slope
of the altitude, h. from
A is and the slope of

Il

1
afor

_ .8

W

1
wjo

g
b

is £ . why?

The line-that contalns h_  1s ~L

{(x,y) : x=a + bk, y=0+ck, k 1is real} ;

the line that contailns nc is
((x,y) : x=c +bp , y=0+ap, p is real)
- % we find that (0, - 2%) 4s contained.

b
J ) - e . , , ac
in ha & Why? Setting p = - — we find that (0, - T

Setting Kk

ol

is also 'contained in hc . Why? Since the x-coordinate

- of thls peint is 0 , the péintpis on the y-axis, which
) contains hb . Therefore the lines which contaln the
SSS! ‘altitudes are concurrent.

Prove Corollary 8-28-1 by coordinates.

o

i




In this chapter‘we defined caardinates in a plane and we

. used them as a tool in formal géometry. We have seen’ some

"neat" proofs lnvglving coordinates. 1In other situations we
hé%e declided to write preofs without coordinatea. 1In i
congtrugtlng & proof using coordinates 1t 1s usually wlse to
set up a cégrdiﬁaFé syétém which makes the expressions involwv
coordinates as simple as possible:.’ ' -

!E develaped several éxpressians‘fcr the coordinates of
the points of a 1ine, with Qpnsiderable _emphasls on the use of
set-buillder notgticn and parametric edﬁations We defined the
slope of a non- vertical llne and used 1t to get condiltions for

perpendic l Pitygand parallelism of ﬂblique lines:

p_Lq ifandcmlyfif,mpai my = -1, A \f’;

f ly.if =m_ .
|| q i and on y Wp mq

=

We developed;Seueral.equatipné for lines:

“the two-point form,
the point-slope form.

We developed several formulas: ) : T R

the Wi§tance formula,
thebmidpoint formula. '
The chapter includes seY%ral theorems on triangles: .

,one about a line Joining midpoints of two -sides,
yone about concurrence of angle bisectors, -,
one about concurrence of perpendicular bilsectors .oft sides:
The followlng table summarlzes several definitions and theorems
which are concerned with quadrilaterals. Each line in the
table yields a statement of the form: An A is a B 1if and
only 1f C ., Proofs for statements with no referen;e_listed

are easy. -

ing -




C

—————

quadrilateral
Jquadrilateral
qua&rilaterai
{quadrilateral
quadrilateral

guadrilateral

guadrilateral

= V, F‘Xﬂ
quadrilateral

parallelogrgm

parallelogram
parallelogram
parallelogram

. |rectangle

parallelogram

parallelogram,

parallelogbam

paral%elogram

parallelogram
rhombers

square-
trapezoid

rectangle.
rhombus
rectangle
rectangle
rh@mﬁus
rhombus

square

.all

square

opposite sides

cpﬁasitE»sides

are parallel

are congruent

two sides are parallel and

.congruent
‘diagonals
all

Xsides
all

bigect each athebgk'
sides are gongruent

are congruent and
angles are right angles

exactly one pair of sides

1z parallel.
all angles are
11

ides are

i)

i

diagonals are

11l angles -are

3

diagonals are
diagonal bisec

all sides are

congruent

congruent

congruent

right angles

perpendicular

ts one angle

congruent

,a2ll angles are congruent

rhombqﬁ

1. Plot thg’
(a)
(o)
(c)

i

soa o
1]

Lo
i

[=4

(d)
(e)

Review

Problems

graph of
((x,y) ¢
((x,¥) & 3
((x,y) :
integer
((x,¥) :
((x,5) :

B
I
M

I

MY

E
it

X +y

each of

and --
X+ ¥y

o oM +
Wt A
- . = 1
O M
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3?

6..

i-, B ‘!*5\77 o LI
Is the following informatio

qua@rllateral ABCD a pa ielagram? L7

(a) AB = IC ; BB || ©C . .

(b) AB=DC ; AD ¢ BC . e :

(c) BB || BC ; AD*|| BC
. () Aé’:D%; ED || BS )
o) MILBED. N
(f) AC bisects TP . - _ " .
Eg) AC bisecﬁgi§E§ ; BD bisects T\ |,
(n) AB | AD ; DG | AD ; BC | CD . ’

(1) AABD ¥ ACED . .
(3) AABD S ACD -

(x) /A% ZC;BABHE, - \

(1) /a2 L .. . .

The diagonals of a rhiombus are 16 and 30 . Find

the perimepér;of'the rhombus. ) ) - .
The ratlo of thé 1engths‘§f two éides of a reétaﬁgle

is 3 i 4,,. The length of the diagonal of the rectangle-

{ 1s 40 ; find the lengths of the sides of the rect ngle.

Three vertices of rectangle ABCD are A(-1,-1)

B(3,-1) , and SC(3,5) ey

(a) What is_the fourth vertex? '
(b) - Wwhat 1is the midpoint of AB 2 - . F
(¢) Qhat is the miépoint of AC ? " ¥
(d) Wnhat is AB ? .

(e) What is AC ? Show that AC = BD .

(£) wWrite “AE" using parametric eqqﬁtigné.

(g) Write ™A™ uging parametric equations.

(h) Find Q on AC such that AQ = 4AC g :
(1) WPitE parametric equations for the line through ¢

tfat is perPEﬁdiaulaé to AC .,

An isosceles’ triangle has verticeg/ (0,0) , (4a,0) , r
(2a, Eéﬂ ’ :
(a) What is the slope of the median from (0,0) , if any? .
(b) What.is the slope of the median frem- (4a,0)., if any?
(c) Find the slope of the megian from (2a,2b) , if any.

SO

% ) . . . .
.* 3 . ety

=

sufficient to prove-

5@41 Ly B ; ,



; .4 . L .. L
T E 2] B ‘\’ f 4 . 7 ) —— . ’ =
lid ! 7 : = . = - = - i"\j

~.'T. 1In square ABCD , R 1s the midpoint of BC and S . _
/f‘ " 13 the midpoInt. of ﬁﬁ . { R Jinterseets BS in T . ’

E : © s - h
' E a - = - "

-~ (d) Prove that

(b) Prove that
*(c@gf?fave thgt :

. - “Hint: Let‘'A = (0,0) and B = < (22,0) .

EEL
i I'— it

AR . .
| R ./ SN
AB . ‘

. 8. Prove thatithe medlan of-a tﬁgpesaid bisegts a diagenal _ \f

9. (a) wnhat is an équatian of the x-axis?

(b) What 1s an equation of the ¥- -axis? . -
. (e) Show that all paints of both axes- satisfy the
" quaticn Xy =0

10. A rhombus ABCD hak * A at the arigin ‘and B 1n thaf
) positive x-axis, m /A = , AB=6, C 1is in

. Quadrant 1. o, : - , .
o - ot :
h (a) What are the coordinates of " C ? -

{ } (b) What are the.coordinates of D ?
) o
(
AN

(¢) Find AC
o __
7 (d) Show that AC =4/3 BD . B
f ‘ (e) Using parametric equations express AC . .

"1i. 'Write an equdtion for the set of points s

. (2) Wwhose distances t§7'(§3,D) vand (5,0) are equal. o
{}h)l whss% diafances to the x-axis is., 3 ' '

(c) whose distgnces ta the x- and y-axes_are equal.

» (d) whose distances to thé horizontal lines y = -2 e

L]

and y = 8 are equal.
(e) whose x-coordinates are 12
- (f) whose y-coordinates are -8 .
12. Show that triangle ABC. 1s a right 1sosceles triangle
if- A= (3,4) , B = (-1,5) , ¢ ='(-2,1) .
13. U%ing paraﬁetric equations éﬁpréss the ;et of pgidﬁs
equally distant from A(0,4) . and B(-8,0)

oy

©14. fThe point A(c,6) is equally g@istant from B(1,1) v

and- €(3,5) . Find the value of ¢ .  * ‘




< : 15 The distaﬂcé"fmm .(h,3) to the x;égzis is twice 1ts
: distance tc: the y-axis. Find h . (Two answvers. )

— , 16, AECD is a par'allel@gram Show that the segment that
- Joins D- to the midpoint of KB trisects AC
17. 1In triangle ABC , D 1is .

in &B , and' E 4is in ﬁ o —

AD = 2DB = and CE = Z2EA
.BE and TC 1intersect in
F . Show that
SBF 3 DF 1
FE G F and fe g
&
& i ‘31
[ . .
.
'\'\:‘

LK
lo]
g}
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- Chiapter 9
PERPENDiCULARiTY, PARALLELISM, AND CQQRDINﬂgE IN SPACE

4 L

g9-1. Intréduction. : - )

Our first contact with p@lnbg, lines, and plane \1n space
‘was 1n Chapter 2, but s{ince then our work has’ béen %;maut
completely restricted to points and lines inh a alngle plane.

~ Now, having'inveStigated plane geometry 1n some detall, we are

reafly to turn our attention to space geometry. In particular,
in this chapter wé extend the ideas of perpendicularity and
Farallelism to Iigureg whicn may not be contained in a plane.

Most of ghe résults we are going to discuss are familiar
o us from our past expafien:e + However, we often miss the

gsentlal features c,rfxthingu we have Séii a hundred times, and

~ertain results which are true in the plane are not true in
pace. Moreover, without practice it 1s hard to visualize
geometric relations in space and harder still to. represent théﬁ
by drawings on a sheet of paper. To save time, 1t therefore
seems wlse to omit the proofs of most of our theorems and
concentrate instead on getting a thorough understandiﬁg of the
results themseiyesi Fortunately, the proofs of the theorems
in thils chapter are quite similar to the deductive arguments
we have seen 1in previous chapters, and a few samples will be
an adequate indicatioq of how the rest can be constructed. Of
course at any time you are free to use any theoﬁem that has
been pfeviously stated, whether it h%a been proved in the text
or not.

In preparation for the work whlch follows, 1t will be help-
ful for you to review tié simpre” space relations introduced in
Sections 2-5, 2-6, and/ 2-7, and then to go carefully through
the exploratory problems which are given below. The abllity to
make ‘and interpret drawings of three-dimensional configurations
wlll be of great value to you through the rest of thls course.

;
N Sy
Dﬁ%iw‘



Be sure that you can do these two things. Appendix V offers-
maﬂy suggestions which may be-helpful to you.

. .. ' .
A
Exploratory Eroblem¥ 3
§! 1,) In the following sketch of a rectangular block, certain

combinations  of edges, considered geparately, guggest

7 * certain configuratiions of lines and planes.
>
T N ,
| J - $
1 -
o ——— e ——e———y
; sffs
In each of the followlng, copy the drawing of the block
and darken the appropriate edges to suggest your 1ldea of
the indicated configuration. :
(a) Two distinct intersecting lines. y
(b) Two distinct parallel lines. '
(c) Two lines which are neither intersecting nor
parallel. ‘
) (d) Three mutually perpendicular lines.
g 3 (e) Three parallel lines which are not coplanar.
) (f) A 1line intersecting one of two parallel lines but
not thg other. ’
" (g) Two diStinct lines which are perpendicular to the
same line and parallel to each other.
(h) Two lines which are perpendicular to the same line
at different pointq but are not parallel to each oth

(1) A 1ine pafallel to a plane.
Two distinct 1ines which are parallel to’ the same
plane and parallel to each other, 4 '
(E) Two lines which are'parallel to the same plane but
not parallel to each other.
(1) 'Two distinct parallel planes.
608 ’

11,
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*lines. In this sectlon we are going to discuss the D

“define this formally, hQWEVFF, you snould study;thé follo

“(m) Twé perpendicular planes,
(n) Three mutually perpendicular plane

M‘

(o) A plane . perpendicular to each of two distinct
parallel planeg_ -
(p) ° Tvo distinct 1lihes perpendicplar to the same plane.

(q¢) Two distinct plants perpendicular tg the same line,
2. “Without including any unnecessary lines, make dfawings of
. your own to suggest the coniiguratianu in Parts (4), (h)
1), (3), (k) (1), (m), , o), (p), (a) of the
preceding problem. ‘

&

9-2. Pér rpendicularity Relations.

T

In Section 4-8 we defined what we mean by two perpendicular
"pen -
we /

i

er
dicularibty relatlon between a line and a plane. Befor

m

experiments and frém the clues they gilve yuu y@u;sh@uld try

to make up a definltion of your own. i

,EB{pHI‘lmEﬂtq o '

1. 1In 3e ction 4-10 we learned that in a plane tnere is a

uﬂique line which 13 perpendicular to a given line at a
ﬁgs“given point. Is this true in space? Hold two pencitls so )
that they appear perpendicular to each other. Can you holds
ore ni the penclls 1n a different position and inll have
1t appear perpendicular to the other at the Same point?
ng many different positions can one pencll assume and
remain perpendicular to the second pencill at the same
point?: Do you think these "perpendiculars" might lie in
the same plane? Would sucnh a plane be perpendicular to

the other pencill?

s

Place a sheet of pa p r on your desk. Huld ’@" pencil so

M2

that 1t appear® perpendicular to the paper. With a second
pencll, draw a 1ine on the page that appears t@jbe ’
perpendirular ta the first pencil.



AN
g9-2 - — T : ) | .
(a) can you shift your first pencil so that it remains’
perpendidular to the line at the same point\ but is
not perpendiéulaf_ta the paper? .
(o) Draw another line, iﬁtersecting}thé first. Now,
7 place your pencll so that it appearg perpendicular
+ ) to both lines at their point of intersecti@n. Does
' the péncil appear to be perpendicular-to’ the plane
of tpe paper? .Can you hold your penail 50 that 1t
Y - perpend;cular to =he paper? .
(é) Draw additional lines through the point Diﬁff;éﬁ— _
o section., Does the pencil appéar tg be perbendicular
to each of thgm at that point? Is it still perpen-
dicular to the plane? . i
Zd) What do you think would be a good deiiﬁltion of a

line perﬁendicular to a plane@

The precéding experiments lead us to the followlng definition:

DEFINITION. A line and a plané are perpendiéular to
each other if and only if they intersect ahd every
line lying in the plane and passing through the poilnt
of intersection 1s perpendieular to the glvep line.

] N The following figure suggests the relations described /by .
: ’ this definition: . . ‘ 3 Q
)
. "
s .
!é f
® : 4
FA , PEVj*Pé y «:. all lying in plane ¢§ are perpendicular
- .
to PQ .
: .
610 .
ll\;‘
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' ’ The results which we obtain ingﬁhis chapter can all be
derived without additional postulates. However, our develop-
ment proceeds much more easlly 1f we accept as postulates two

theorems whose proofs are long and rather involved.

¢  The first, Postulate 24, should remind us of Theorems 4-21
and 5-11 which.deal with the existence of a line containing a
givém-noint and perpendicular to given-1line, This postulate

a
is all tyat we need at present. "The +second, Postulate 25,

]
LI

we 51411/ introduce in .Section 9-4, . -

_Fostulate 2. There 18 a unique plane which

contains a given point and is perpendicular to a

given 1;né

. We ould understand clearly that in thisz postulate no
restriction 1s placed on the given point. It can equally well -
be a p@int on the given line or a pecint which\iz not on the
given line. The postulate says simply that wherever the point
may be, there 1s always one and only one plane which contains
the polnt and is perpendlcular to the gilven line.

m the def ini\tiuﬁ of’ perpendicularity, we know that 1if a
plane ?S is. perpendihsular to a line ,,Z at a point F , on
£ : y@ , then every line &n ;i? which passes through F is
X perpendicular to ,Af . However, we do not yet know whether
there can also be llnes perpendicular ta gg at F which dc'
not lie in ﬁ . The following theorem answers thls quesation

for us,

THEQOREM 9-1. The plane which 1s perpendiculaf to a given line
.at a glven point contains every llne which 1s perpendlecular

_ to"the given line at that point.

Proof: Let fig be any line and let 7 be'the plane which
is perpendicular to __,é? at the point F . What we must show 1s
that 1if ,é?‘ i1s any line perpendicular to ,,éj at ¥, then

ﬁv lies in’ 75’ . : ::5?:

ERIC
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Now the 1intersecting lines / and ;22 determine a plane, say
7' , and by Postulate 9 this plane intersects the plane 2
in a line, say:i?"
. F\ =
Moreover, since Af" ‘lies in the perpendicular plane ~ .,
it must be perpendlcular, to ,{? at F .  Hence, in the plane
7/ ' *both 2 and 4" are perpendicular to Af at the point

fer]

But by Theorem 4-21, in a given plane there is exactly
one perpendicular to a glven line at a glven point. Hence
42‘ and Z" must be the same line. That«;Q,égg' must lie
in the perpendlcular plane ;ﬁjﬁj as asserted. -

According to our definition, before we dan say that~
line Jg is perpendicular to a plane,}ﬁ at a point F , ie
must be sure that Agfis perpendicular to every line in }ﬁ
which passes through Fj. The next theorem tells us thaf we do
not need neafly this much informatien tib be sure thatﬁ 1line 1is

perpendiculaf to a plane. P

THEOREM QEE; If a line 1s perpendicular to each of two 1lnter-
secting lines at their point of interaection, it isa
perpendicular to the plane determined by the two lines.

ERIC
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Proof: Let m and m' be twp distinct liges witten” -
intersect at the point F and let Z ve a line which' .is«

perpendicular to both m and m' at F . Let 77}~
plane determined by the intersecting lines, m aﬁd-
1et & be the plane which 1is perpendicular to yan

AQ

According to the last theorem both m and m' must lie in s;
?? . Hence the planes /77 and / have both m and m' in

common. Therefore, by Theorem 2-10, 777 and Eﬁ?xmjzt be the

same plane; that i1s, the plane determined by the two lines,

m and m' , is the plane which is perpendiculafg%é égf at F ,

&

&

asserted.

T
P

Postulate 24 assures us that there 1s a unlque plane which

perpendlcular to a given line at a given podnt, but it does

oy =

i
not answer the correspondling questlon of the éxistence of a
line which 1s perpendicular to a given plane at a given point.
However, this 1s settled by the following theorem. ‘

B

THEOREM 9-3. There 1s a unique lipe which 1s perpendicular to
a given plane at a given pofﬁi in the plane.

‘We shall omit the proof of this theorem. The general

by the following flgure. A& 1is the plane

o

out™Me is suggeste
which 1s perpendicular at the given point, F ;, to any
particular line, p ;“Wﬁich 1ies in the given plane, 7 ,
and passeg through F . The required perpéndi;ulaﬁ ng iz the
line in A7 which is perpendicular at F to the line, r ,

in whicnh Z and &2 intersect.
s Lal 3,
O
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The .corresponding theorem dealing with the existence of a
line which passes through a given point not in a plane and is
pe%pgﬁdicular to the'plane 1s more conveniently handled a little
later aftep 'we have discussed parallel relations in space.

i Problem Set g-2

’ In each of the following problems, draw your own diagram

as part of the. proef.

o]

1. In the figure, if /PQH is a
right angle and Q and H

are in é ; 8hduld you infer
from the definition of .a line
pér—pendiculaf to a plane that
4 -‘E‘l E,"»’ Justify your answer.

un]

In the figure, points
B, R, K and. T are in
plane & ,:and “iB | &.

Whlch of the following ’ . )
angles must be riggﬂt?\ - . Ly

anglesi /ABR , */KBK

/RET , /TBA , /KBR ? }y?

ERIC
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3. In the figure, plane /77
contains the noncollinear’
points R; s, P, but /W :
does not contain T

(a) Do points R, §, and

T determine a plane?

: Why? ey
(v) 1f TSP {s prerpendicular to iﬁe plane of R, 5, T,

& . which angles in the figure must be right angles? «

Why? B

O]

--4, In the figure, the point A
and the square FRHB are
not coplanar; 'AB | FB .
(a)  How many planes are Lok e _H
determined by pairs of

segments in the figure?
Name them.

(b) At least one af the segments
in this figure ié perpendicﬁlar to one of jthe planes
asked for in Part (a). Which segment? \hich plane?

Justify your answer.

5. 1In the figure, point R
and triangle ABF  are not
coplanar, A ABF 1s 1sosceles
with vertex B, H 1s the
midpoint of AF , and
(a) How many different planes
. are determined by palrs

of segments in the figure?

Name them.
(b) Find a segment that 1s
perpendicular to a plane,
State the perpendicularigy
and the theorems which Hustiiy your statement,

"

x I
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6. In the figure, Qb | C at P
and "QF"[*PR”. Must PR 1le -/
: : - 8.

'in plane é 7 Why? L

s -

&

shown 1n the %figure .

i

, , €
plane ABR "intersects 7 in

=

m ]

Lm:l =

, o
—
%I
-3
=
o
]

]
o

[

PI

m

EI I
U
5

e

R

8. 1In this figure, FB | plane
and in A RAB , which lies in

plane ; BR = BA . Prove
AABF £ ARBF and /FAR .5 /FRA

BR BL . Does KR = KL ?

\ Prove that your answer 1s

correct.
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9-3 * =
(Since;wa have not yet given a precise definition of a
cube, we statégheré; for use in your proof, the essential
propertles of the edges of a cube: '

, ' The edges of a cube consist of twelve congruent %J
segments, related as_shown in the pleture, such that any
two intersecting segmehts are perpendicular.)

e

-
£ ]

9-3. —Rarallel Relations. N :

b -

! -

"In this section we are going to investigate parallel
relations q%tween lines and planes in space, and this requires
that we riPfst define what we mean by saying that a line and a
plane, or two planes, are parallel. The following definitions
are natural extensions of the definition of parallel lines
which we gave in Section 6-2, ‘
DEE;E;E;DN_ A line and a plane whose intersection
does’ ot consist of exactly one point are parallel

to each other.

DEFINITIONS. Two planes (whether distinct or not)
whose intersection 1s not a line are parallg;'planes,

and eacn 1s parallel to the other.

. With théée definitions 1n mind, the following experiments
A, : . . . C
should help you to visualize the properties we are golng

to discuss-

- Experiments
1. Draw a liné\on a sheet of paper on your desk. Now hold
. NG : -
two pencils apove your desk so that each appears parallel
to the line. \;b the penclls appear parallel to each
other? Can you hold them so they are parallel to the

.line and not to each other?

ERIC
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(a) If two distinct lines are parallel to a plane, are

they necessarily parallel o each other? The
Parallel Postulate tells gsithat there 1s a unique
line which contains a given point and is parallel to
a given line. Do you %hink there is a unique llne

. which cortains a glven péint andlls parallel tc a
given plane? Hold two penciIs so that they "interseat

Can you hold them so ‘that both of them are alsa

s :, - F*3
‘parallel to the desk top? . ]
(b) Hold the two pencils so-that “they re;regent quw Ve

(noncoplanar) lines. Can you hold them so that gney%s

are both parallel to ‘the desk-fop?

(a) We have learned that, in a plane; 1if a line intersects
one of two parallel lines lé a pélnt, 1t intersects
the other in a point also. Is this true in space?
Draw two distirict parallel lines on a sheet of
paper. Can you hold a pencll so 1t will intersect
one of the parallel lines but not the other?

(b) Suppose a pléne intersects one of two parallel lines

“in a point. Do you think it must intersect the other
alsa?

(¢c) Suppose a line intersects one of two parallel planes
in a point. Do you think 1t must intersect the
other plane also? :

(d) Sketch diagrams to illustrate Parts (a), (b);

Do

L\'

uppose a plane Intersects one of two parallel planes.
ou think 1t must Intersect the other plane also? If a
plane 1intersects each of two parallel planes, what can you
say about the lines of intersection? In your clasaroom

consider the parallel walls "intersected" by ‘the floor.

]

Are the lines of intersection parallel? Think of a book-

case. The shelves are parallel planes, the end panel an
intersecting plane. What about-the lines of intersection?
Draw a dlagram of two distinct parallel planes lntersectéd

by a third plane.
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=l . . .. S
s of two parallel lines it must meet the other ome also. However
- there are analligous theorems whic h are true in space, and to
“these we now turp our attention. _ C
THEOREM 9-4. If a., ;plage Intersects one of two distingdt parallei
lines in a polnt.# 1t intersects the other line in.a point
.also. : , , o
- ) - \g;] ‘ R 2., . i
Proof: Let j, and £, be two distinct parallel 1ines,
contalned in a plan égf , and let Z# be a plane which inter-
'sectsfone of the 1liriés, sayﬁf?{’; in a single poist, Pl .
.ﬁfCleaFly; ?i? cannot contailn 4f@ " because otherw wise, by
' Théorem 2-9, 1t would coilncide with e , and hence contain
S contrary to the hypothesis that 1t meets ”‘éj?L in Just
one point. Therefore /ij can have at most one point in common
with £,
Now by Postulate 9, since o and /2 have a polnt, Py
iy common, ] ’
k]
4
5 )
L‘%\
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As Experiment 3 (a) in the preceding 1list suggests, in

space geometry 1t 13 not true that if a third line meets one

they must have a 1line, say p , in common. Moreover, siﬂéegﬁ

méets each of ééi and jéz in at most one point, p must be

distinet from both ,éyl and Jéij



-
S

¢ . -
£

Now ir the ‘plane ézi , the line p meets one of the two
parallel lines, ‘é’l andi,é’ » in a single point, El . Hence

1t must #lso meet the other line &, , in a point) say P,
- - 2

Since the line p 1s contained in the plane /2 , the

point: P, .18 also contained in 7 . Therefore 7 intersects

,é’g in a single point, as asserted,

"The next theorem follows easily from the preceding one,

and we shall 1dave 1ts proof as a problem.

- THEOREM 9-5. If a plane+ls pdrallel to one of two parallel

lines, 1t is also parallel to the other.

THEOREM 9-6. If a plane intersects each of two distinct
parallel planes, the intersections are two distinct
y g ) : 5

paral 1é,l lines.

Proof: Letf and &  be two distinct parallel planes
and let F? be a plane which int‘exsegts both g:? and eétf
Since /& and & do not intersect, /& must be distinct from
both &2 and é?g By Postulate 9 the intersection of 2’5;? v

and & ‘is a line, say’ r . Likewlse the intersection of 2

and € is a line, say s . [\

7!”’])
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9-3.
- Moreover, these lines lie in the same plane, namely iﬁﬁ'; and
‘have no point in common, since the planes A and é?!have no
<" point in common. Therefofe, the intersections, r and s ,
‘are distinct parallel 1lines as asserted. o ) "'ﬁ;ﬂjf
. : v
We should observe that the preceding thecrem.coﬁtains the'
hypothesis that the plane iéﬁ intersects each of the parallel
planes, /& and &~ . Actually, it is possible to prove the
' stronggr-%esult that if a plane interseets gne of two distinct -
paraliel planes (and does not coincide with it) then 1t inter-
sects the second plane also and the intersections are paralleli*

lines.

THEOREM 957;¥>If a line intersects one of two distinct parallel
planes in a singlé polnt, it intersects the other plane in
a single point also. ' ‘ )

~

THEOREM 9-8. 1If a line is parallel to one of two parallel

planes, it 1s parallel to the other also.

The asser"ions of Theorems 9-7 and 9-8 are illustrated by
Figures (a) and (b), respectively. We shall omit their proofs,

however. -y
f

4
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Problem Set 9- 3/

Make a’ Eketch ta illustraté the hypathesis of eacﬁ af z
- fallowing statements. Indicate whether eacn statement is '”
= True (T) or False (F). o

(a) If two distinct lines aré parallel, every plané
o ' containing only one of them is parallel to the .
‘ e ‘ other line. o - "5
P V : (b) 1If two distinet lines are. par‘alﬂi‘i‘j every line
o o intersecting one of them inteirsécts the other.
1ine in one of the

(e) I two planes are pardllel, any
‘ Tplanes is paral el to the other
(d) If two i Jar: the
oL piaﬁes 18 parallel tazany line in the other plane.
,(é) If a plane and a line afe bath perpendicular to
:the same 11ne, they are parallel to each other,
(f) 1If a plane and a line are both parallel to the ‘same
line they are parallel to each other.
(g) If each of twd distinct parallel planes intersects a
third plane, the lines of intersection are

perpendicular, . N
(h) If two planes are parallel to the’same line they
are parallel to each other. :
(1) - Two lines parallel to the same plané are’ parallel
to each ather ' - . -
(J) If a plane intersects two intersecting planes, thé
lines of -intersection may be pardllel.

2. Hypothesis: Planes %, &
and " are parallel as
shown, with TE in 2’”’
and A in 2 . K
intersects §§§at B and
- AE 1intersects /ééat D .

o .+ AC = CE

~ . 4
© o . - Prove: - BD = BA .




9-h R :
Prove Theorem QQEQE (Hint‘ Let jé? be a plene whieh 18
parallel to one ef two- parallel lineeg,afz endi4§

say 4? Then eﬂe of the fallowing?muet be true. (th%) -

(a) 73 ;Le pere.llel te%z

(b) ;i?ainﬁefeeete &, 1in a single point.

w

'Use Theorem 9-4 to prove _that (b) 1is impossible.

9-4, Eelegione Involving Ee;gendieule:}ﬁyrend‘gege;leliem;

In Sections 9-2 and 9-3 we congidered relations in space
which ihfolved, respectively,/only perpendicularity and only
parallelism. In this section we shall investigate configura-
tions. which 1nvol§e-both gerpehdieulerity and parallelism.
Sinee we ehell omlt ‘the preofe of most of our tneereme, you

sure thet you understand and can vieueliee the reletione they

suggest.
: /
ExPerimente : ‘ w
1. If two plenee are pere;lel to a third plane, do you think

they are parallel to each other? Illustrate by holding
. two books so that each i1s parallel to the top of your desk.
Do the books appear to be parallel? Draw a dlagram of

three parallel planes. .

2. Do you think there can be more than one plane @Eieh
.contains a given polnt and 1s parallel to a glven plane?
Why? ' : » B . N

3.‘@If two distinct planes are perpendicular to- the same 1ine,

' do you think they can intersect? Illuetfete your

’ eonélusion by plercing two sheets of cardboard (or small
sheets of paper) with a pencil, Draw a diagram of two
Aistinct planes perpendicular to a glven line.

62f 0




4. Take a pilece of cardpoard, plerce it with your pencil and
" place it so.that it appears perpendicular to the pencil.
: _at the midpgint ﬁf the pencll. Mark a point Qﬂrthéxﬂard—
board and find the: diﬁtance from that point to each,énd
of the pencll. Are the distance$s appraximately the same?
Sl _ P Choose another point and make a aecond measuré%ea% Draw_
tf;ﬁgﬁ ~,ﬁ:a diagram of a plane perpendicular ta a segméqt at the"‘7 *
S midpoint of the segment. :

5. If a line 1s parallel to a plane and is not contained in
the plane, do you think all the perpendiculars Jjoining. 4
the line to the plané Ere caplanarﬂ Are these perpen-
dicular segments: equal in length? Are segments whilch are
perpendicular to each af two distirct parallel planes’ and
have their endpoints in the planes equal in length?
Illustrate with a diagram.

!

THEOREM 9-9. Two planes which are perpeéndicular to the same

line are parallel.

Proof:. "Let }i? and;)z? be two planés each of which is
perpendicular to a line £ . There are two possibilities to
consider: » ' :

. s ! ’ 5 7

(a) / 1is parallel to 2 .

(b) ;‘f? intersects ,é? in a line.

If we can prove the second case impossible, the theorem will, ¢
be established.
~ Suppose theri, that /2 and & interéegt in a liﬂe. Thus .
# and A are aistinct. By Postulate 2l the points, say P
and R, in which iiz intersects the res pective planes Z and
‘ Z , must be “a1stinct. ’

"Let L be a point in both of the planes 7 ana
but not on ﬁ From the definitian of a pléne perpendicular
*to a line, At follows that ‘E?"is parpendicular to Ji at F
and IR 1is perpendicular td Z st R. Hefice, since P and
R are distinét points, we have two lines each containing L
. and each perpendicular to ¢ '
L ]

624
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This 1s impossible, according to Theeorem 5= 11 "herice the

" *possibility that ;z? and.jég intersect 1n a line leads to.a
:cantradlctian and must be rejected. Thus ii? and EE? are
parallél, as asserted.

-

THEOREM 9&1@. If a line 1is perpendicuiar to one of two

alsa,

625 £
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Preef.i Let ?ﬂ and é@? be two perellel ‘planes, and 1etJ§

be a 1ine whieh is perpendi’culer- to one of them, ee’g: ,Z?, A
at the point P . Then by Theafém §=7,.é? must also intereent-*
/ 1in a point, say R . o i

Let R' be any point of Z distinét from R and let Q/
be the plane determined by R' and e-é’ Then @ intersects -
é’ in the 1line RRi and; by Theorem 9-6, muet intersect ;:J

i H
in a line, PP' , which 18 parallel to RR' .

Thus In Q/ 34 is perpendicular to one ef‘ two parall
lines,. namely ? (Wwhy?) and hence, it must-be perpendieule’
to the other also. Slhce R' was any point in A& distinct
from R , it folleﬁe that sé is perpendicular to every 1;ne,‘
in A which contains R . Hence, by definition, £ 1 ‘
perpendicular te the plane A , as asserted. ‘

/ We shall-omit the proofs of the remaining theoremsa in thj
.%.etition, but” einee some of them are asked for in the next f’
pProblem set, it is necessary for us to introduce here the ‘
second of the postulates we referred to in Section 9-2. You
will f‘ind that with this peetlzlete, the missing pr'eefe are net
d;ff.ieult “to construct. :

Poetulete 725 'I‘wo 1;nee whieh ere perpendieuler
o the same piane are perellel <.

B

i‘]-I;EQég:gT 9-11. If a plane is perpendicular to one of two
distinct parallel lines, 1t 1s perpendicular to the other

1"ine also. ‘

The assertion of this theorem is illustrated in the following
f‘ig’erez T ., A

w




9- 4‘1 .
THEDREM g- 12 If two lines are each parallel to a third line,
th@ are parallel to each other. . ' '

This theorem gompletes’the discussion we bégan in Chaptér 6.
There we showed that in a plane 1f each of two llnes 1s parallél
»ta>a third line, they are paralle; to each other. The present
theorem aSEUPES that this result is true without the restrictign
that the three linhes lie in the same plane.

i

£
5,

THEDREM 9513. Given a plane aﬁd a point not in the plaﬁei

is perpendicular to the plane

LA - g E N

This theéfem ¢ompletes-the discussion wegbégan-in
aTheorem 9-3. ., These two theorem$ together tell us that Ehr@ugh,d:
any point there iz a unique line which is perpendicular tog a
given plana

5

‘are obvious ccpgterpafta Df famlllar properties ‘of lines.

ERAT .. The next two theorémg describe pr0pért1eg of planes which

THEDREM 9 -14, There is a uﬁique plané pérallel to a given
" plane through a given paint : ’

’ THEQREN 9-15. 1If two planes are each parallel to a third plane,
: they are parallel to each other,

Theorems 9-12 and 9-15 provide the final steps in
establishing that the relationship of parallelism has .
Qharagteristicgproperties like those of equality, congruence,
and simllarity. The relationghip of parallelism for lines in
space has the reflexive, symmetric, and trangitive properties;
Likewlse the relationship of parallelism for planes has the
réflexive, symme?rlc, and transitive prapertiésf, A

line.- We proved that the shortest segment jaining the point
to the line I8 the segment perpendicular to the line. As we
might expect, a similar result holds in space.

& L
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9-4 ' . ' R
7 lLet E; be a plane and P %ppint ‘not on ‘£ . There -are
.many segmentg Joining P to éi:; in fact one for every point
on é By Thecrém g-13, e;ﬁa;‘tly one of these segnents is

perpendicular to E; . B ) .

Cs
=
= %

THEOREM 9-16. The shortest segment joining a point to a plane
" not containing the point is the segnént gerpéndicular to
the given plane.

N

The proof of this theorem we shall leave as a problem.
On the basis of this theorem, we formulate the following
definition.

DEFINITION. The distance between a point and a
pls;lgr’ﬁi?\cantaining the polnt 1s the length of T,
tZ{Eegment ,jaining the given polnt to the glven
plane and perpendicular to the given plane.

I Chapter 6 we proved that two parallel lines are every-
where equidistant, and the same property holds for parallel
planes. More preclsely, we have the following theorem.

sl

’ . 6g8,
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pA THEOREM 9=1?”' All segmentsgwhich are perpendicular to each of, *
< two distinct parallel planes and have their endpaints in
the planes ?;Fe the same length,
: ] o L
In Chapteffa we showed tngt in a plane the set, of aill B

points which are équidistant<fT@m two given points }P and Q
. 1s. the line which is perperndicular to the segment P4 at its
midpoiht. The corresponding result in space geometry is the
. foliawing; ' . ;
" THEOREM 9-18. The set 6f all points which are equidistant from
" .. the endpoints of a given segment is the plane which
' contains the midpaiﬂt of the segmént ‘dnd s pérpendicu;af

_ ts the line which contains the segment .

e

Ty .

 The proof of this theorem is deferred to Problem Set 9-7
where it,will be an exerclse in the use of caafdiﬁatés in proof.

Problem Set 925

[

Assuming here that

' AX = BX ,
AY = BY ,
AW = BW ,
AZ = BZ ,

N

why are W, X, ¥, and
Z coplanar?

2. Hypothesis:
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3. Hypothesis: In the figure
-z, w7, B
o : ?ﬁ 17. ‘ } : c ;y?f :
[ a

CB'i

toe Prove: AD

B D
’ @
F-
4, Plane ég is the perpen-

dicular bisecting plane A

of BB, as shown in the

- figure. ’ '

(2) AW =

fﬁ,:: | .
’ S SR
N -
[AKF =
(b) Does FW = FK = FR ? B ’
Explain
Problems 5-8 are concerned with geometric prajqu}an; The
following definitions are needed. ' % ~
"DEFINITION. The projection of a point inta a plane
18 the point of intersection of -the given plane and
the line which contains the given point and 1s ™
perpendicular to the given plane.
Y

135
v )
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Consider two examples in the diagram P 18 the projection
A into & j;ghepoint Q 1s in & , and the projection
Q into & 1s Q itself. '

rojection of a set of points into

a plaﬁe is the set of all poilnta which are projectiona ' '

DEFINITION. The
into the plane of points contained in the given set.

Using projection as defined above, answer the following..
(a) Is the projection of a point always & point? -

(b) Is the projection of a segment always a segment?
(c) Can the projection of an angle be a ray? a line?

] an angle? ‘ .
(d) Can the projéctioﬂ of an acute angle be an obtuse
~ angle?
(e) 1Is the projectlon of a right angle always a right
angle? '

(f) Can the length of the projection.of a segment be
' greater than the length of the segment?
(g) If two segments are congruent will their projections
. be congruent? - S
(h) 1If two lines do not intersect can their projeetiana
be two parallel.llnes? .
(1) 1If two lines do not intersect can their pfajections
be two intersecting lines?
(J) If two segments are parallel and congruent, will

their projections 'be congruent?

1,



]

: .-6. Let the prcjeeticﬁ of p’ésint A ini:éplane Z2C be A' .
T distinct from. A . Let I -be the ray appnsite to ' RAY
' Let 'B be‘a’point such that the length of K. is 6 -+

inches. Draw a diagram showing the projection of AB .. '

into ZZ , and find the length of the projection’ Qf 1B

into 7Z . in each of the following aituaticnag W
(a) A8 ||72. v | .
(v) 7B | 71. ‘ = o

, (¢) m /PAB = 30 .

t (d) m /PAB = 45 ,
(¢) m /BAB = 60 .

7. Gilven the figure with . . 4

AB not in plane 7L ,
XY the projection oi‘
AB into plane 2 , ,

0 the midpoint of 7B ,
and N the proJection
of 0 1into XY .

Prove that N is the mid-
point of XY ..

8. Hypothesisy BD is the
. projection of BC into
Z o plane 2 . KB 1ies in
plane X and /ABC 1is
a right angle.

Prove: /ABD 1s a right
angle. (Hint: ILet BE
be perpendicular to

" plane 2 .) o

9. ‘Prove Theorem 9-16,

- 632




9-5. Dihedral Angles. AR
fgn Section 4-13 we introduced the notion of a dihedral '

angle via the following definition:
| DEFINITION. A dihedral angle 1% the untoh of a line. LT

"and two halfplanes having this 1iné as. edge-and #ot
1y1ng in the same plane *

At that time we were unable to assign measures to dihedral

) angles, ‘but now that we have discussed perpendicularity and
parallelism 1n space we can do 3o easlly. First, haweve,f; we
must reduce the problem to cne invclving #lane angles, for
which measures have already been. defined. - '

The following figure shows a dihedral angle, namely
LP!QR:S s and a plane, é s which ip perpendicular té the
edge of the dihedral angle. We observe, in the dlagram, t‘hiit
e intersection of the plane and the dihedral angle is the
union of two. raya, and furthermore that these  two. cancurrent
rays, namely BA and EC ; are not collinear. Thus the
intersection is an angle, : ) o . L

4

!’ - s : 3, 5 I . 2l
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DEFINITION. The intersection of a dihedral angle
and any plane perpendicular to the edge of the
glven dihedral angle is called a plane angle of
the dihedral angle. 7 '

If all plane angles of a dihedral angle were congruent,
i1t would be natural to take thelr common measure as the measure
of the dihedral angle itself. The next theorem guarantees that

this can be done.

THEOREM 9-19. Any two plane angles of a dihedral angle are

Proof: Let S and V be the vertices of two distinct
plane angles of the dihedral angle /A-PQ-B , (Figure (a)).
Let U and W be points distinct from V on different sides

/V . In plane UVS , apply the Point-Plotting Theorem and
te point R on /S such that

RS .

1
e
2

In plane WVS , locate point T on /S such that

(a) (b)

To prove the theorem, we must show that /V = /S . 1In order
to do thls, we shall apply the 5.35.85. Congruencgy Postulate to
show that AUVW = A RST
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9-5

Since /V and /5 are plane angles of the dihedral angle,
each of the planes UVW and RS3T is perpendicular to P3,.
By Theorem 9-9, the two planes are parallel to cach other. . By
- al— - L _ ,
Theorem 9-6, UV and RS are parallel., 'Thils fact, together
with - (1), shows that UVSR is a paralleclogram. Hence the
segments UR and VS are both parallel and congruent.

=

A slmllar argument shows that WVST 1s a parallelogram,
and therefore that the"segments VS and WT afe both parallel
and congruent. By the transitlive property of parallelism and
congruencé, the segments UR and WT are both parallel and
congruent. In @ghéf words, UWTR 4is a parallelogram. Hence

]

(3) UW =FRT
Combining (1), (2), (3), the S5.5.8. Congruence Postulate tells
us that n
AUVW
Finally, /V = /S , and our proof is complete.
w;ggaghe last theorem estavllshed, the measure of a

dihedral ané}g can now be defined.
S

i

]

DEFINITION. The measure of a dihedral angle is the
of’ any of its plane

angles.

DEFINITION. ‘A right dihedral angle is a dihedral

angle whose measure is 90

r

o

- DEFINITION. The planes determined by the faces

i

a right dihedral angle are sald to be perpendilcular.

@ tiheorems about perpendicular

]

he proofs of t
planes are not diffilcult. Song

ave. been left as problems,

THEOREM 9-20. If a line 1s perpendicular to a plane, then any

plane containing this line is perpendicular to the glven

plane.

ey
tl;’%@g

.
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, THEOREM 9-21. 1If two planes are perpendicular, then any line
’ in -one of the planes which 1s perpendicular to their line
, of Intersection 1s perpendicular to the other plane,

THEDREM 9 22, If two planes are perpendicular, then any liné

pérpendicular to one of the planes at a point on their
-t 113? of intergegtion lies in the other plane,
7 THEDREM 9= “3 If two interuecting planes are each perpendiculaj
to a third plane, then their line of 1ntergection ia

perpendiﬁular tc this plane

" ‘The- assertion of the preceding theorem 1% 1llustrated in
the following figure. Planes ii? andK;¥§ are each perpendicular
. to the plane ,E¥§ , and their line of 1nterﬂecticng sg s 1s

%, therefore perpendicular to o’ .

Problem Set 9-5

-, 1. (a) How many dlhedral angles are formed by the floor,
i walls, and celling of your classroom?
(b) If two plames are perpendicular, what kind of
dihedral angles are formed?

(¢) Give a definition of an

(jﬁ acute dihedral angle,
(2) obtuse dihedral angle.

636 Lo
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=

5

3.

b4,

(d)

_Each of AT, BP,. and TP
is perpendicular to the
other two.
m/a=m/b=m/e
What is the measure of
/C-PA-B % of /CAB?

=

Draw three flgures showlng, respectively, an acﬁte,
a right, and an obtuse dihedral angle.

Give a definition of adjacent dihedral angles,
Illustrate with a drawing.

‘Give a'definition of supplementary dihedral angles..

Illustrate with a drawlng of a palr of adjacent
supplementa%y angles. . PR ) ]
Give a definition &f c@mplementafyrdihédral angles.
TIllustrate with a drawing of a paif of adJjacent

compleméntary angles.

.

* : c

e

1]

W
"

Prove Theorem 9-21.
Hypothesis: Referring to
the flgure on the right,

7 -
F1 & ana TaB | PQ .
Prove AB | é; .

(Hint: Take “BC | PQ in G .) P

J

Prove Theorem 9-23.

(ﬂin;; Referring §¢§§EE\§1lustrative figure in the text,

in plane @/ draw “XN | NC and YN | NB .)

!
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‘with AR twd planea

AD and AC . Certain

Planes (f and jare
perpendicular to 1E§Ei
Lines'§§§5 and i%ﬁ‘; in
plane 77 , determine

which intersect & in,

lengths are given,®as in
the figure, Are BKDA -
and BACH parallelograms? ,

Can you give a further
description of them? 1Is
ABHK £ AACD ? Can you

TD 2

glve the iength of

#

Prove: ;;‘a plane 1s perpendicular to the edge of a

dihedraf'angle; then it 1s perpendicular to each face

of the dihedral angle.

Review Problems

[nn

Chapter 9, Sections

I'ta

1t

In this problem, the symbol gf always denotes a llne and
the symbol 7~ always denotes a plane. Fill in each
blank with the one of the following words

. always, sometimes, never
whilch makes the resulting staterment true. In each case
make a sketeh to Justify your answer,
(a) 1r ;éi 1s parallel to gga and ,éi is parallel to
423 s, thén féa 1ls _parallel to ség

(b) - 1If séZf is pefpendicglaﬁ to ,iz and sé; is
perpendlicular to ,éi s then £y is
perpendicular to géi .

s
[
o



(¢) 1Irf 75)1 is\}perperidicular 57, - and ,iz?g is perpen-
dicular to Z?B ;» then 4 is
to ﬁB . ' ; ?

(a) 1f ﬁ is perpendicular to .?i‘jl and ;jl is parallel

perpendicular

to 2, , then £ 1s ______ perpendicular to ;jg

M

o (e) 1f,g§1 1s parallel to /& and Z is parallel to
j,’g ; %hen 'ﬁl . 1s parallel tc; j‘.’% .
(r) 1If ;é? is parallel to ig’l and F;_.'L is perpendicular
- to 2, then 545 is " parallel to 7,
(g) 1If ,i?l 1541355{1:‘311&13\413? to & ana 2 1s
. perpendit:uiar to ;’59 , then F'?l 1s
perpendicular -to }5?2 ) 7
(h) 1If jﬁi is ’péfpend%cular to s&éj and ,ff ia parallel

to. ii?g , then ﬁi is - perpendicular to ;572
s S~ - -
(1) If‘ﬁl is perpendicular E@ ;3’2 and 7‘5?2 vis
peérpendicular to ,25’3 , then ;f?l is
) par—al}el to ﬁB _
(3) 1Ir # 1is perpendicular to "é’l and géfl is

perpendilcular to £§ ., then * 1s
F

parallel to jg

2. Mark each of the following statements true (T) or
false (F) .. ) }

(a) If a line iérﬁgrpendiﬁular to each of two distinct

_ lines in a paane, it 1s perpendicular to the plane.

(b) 1If three distinct lines are perpendicular to the
same line at the same point, thé& three 1£%és are
coplanar. 5 [

(c) Through a point not on a4 line, more than one plane

A A
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(d)
(e)

(£)

(8)

(k)

(1)
(m)

(n)

b
Through a polnﬁ‘not on a plane, only gn/ line can be
drawn parallel to the given plane. ¢

Through a point not on a plane, only one plane can

be passed berpEndieulaf\ta the givegn plane.

If a plane 1s perpendicular to the edge of a dihedral
angle, 1t 41s perpendicular to each face of the
dihedral angle.

If two planes are perpendlcular, a line in one of

the planes 1s perpendicular to the other plane.

If two planes are perpendlieular, a line perpendicular
to one of the plénea will lie in the other plane.

If a plane intersects one of two distinct parallel
lines, it intersects the other also. o )

If two distinet lines are parallel, one and only one
plane can be passed through one of;tnése lines
parallel to the other. .

If'a line is parailel‘to one of two intersecting
planes, 1t 1s parallel to thelr intersection. -
Two planes parallel to the szame line are parallel.
Through a line not perpendicular to a plane, a plane
perpéniiculér to the given:plaﬁé can be- passed.

The projection of a segment into a plane is a’
seggenti ‘ v

3. Which of the followlng lines or planes must be parallel?

Which of them must coincide?

a (a)
(v)
(e)s
(d)
(e)
(f)
(&)
(h)
(1)
(1)

(k)

Lines through the same point parallel to the same line.
Lines perpendicular to the same plane. '
Lines perpendicular to the séme line.
Lines parallel to the same line.
iLines parallel to the same plane.
Planes perpendicular to the same line through the
same point. . . T .
Planes parallel to the same plane. ﬂ
Planes perpendicular to the same plane.
Planes through tg§ same paintﬁg@rallel to the same
plane. o . : T
Planes through the 5ame$ppint perpendicular to the
same plane. ; ' ‘
Planes parallel to the same line.

6ho
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9-6, Coordinate Systems in Space.

In. Chapter 3 we introduced the iundaméntal ldea of a
coordinate system on a line, or a one- d;megg;onal coordinate
system, as it is sometimes called. In Ghébtef 8, we extended
thils d1dea to coordinatke systems in a plane, or twq=dimehsiona1

coordinate systems. Now that we have the necessary information

about perpendicularity and parallelism in space, we are in a
position to discuss coordinate systems in space, or three-

dimensional caéfdinat systems, As we should expect, our

devel@pment here will be very much like the develapment of
two- dimen;imnal coordinate systems in Chapter 8 and for this
reason we shall omit many of the detalls and concentrate instead

on the results themselves,

- - . . ' B}
Let OX and 0Y be any two perpendicular lines and let

. ) . .
0Z be the unique line (Theorem 9-3) that is perpendicular to
! - - , ) .

the plane of O0X and ‘0Y at thelr intersection, O

Clearly, then, each of the lines 0X , 0Y , 0Z 1is perpen—
dicular to each of the other two, so that we have in fact three

mutually perpendicular lines. Let I, J, and K ©e points on

-

oxX OY and 5 respectively such that

01 OK = 1 .

0J

il

one-dimensional coordinate system

On the line DX there is a
origin and the point I as unit point.

with the point 0O as
- . . . )

On 0OY , there 1s a one-dimensional coordinate system withh.the

point O as origin and the point 'J as unit point. On 0Z

there 15 a 6ﬂe=dimensional coordinate system with the/péiht 0

\"\

as origin and the polnt K as unit point. We shall refer to
hese coordinate systems as the x- , y- , and z-coordinate

r‘i‘

systems, respectively.



9-6

L.

",

'r

W,

=

liv]
|

ERIC

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

The line 0X 4is called the x-axis, the line 0Y 1is
) . - ) . L ./
called the y-axls, the line 0Z 1s called the z-axi$.
. e e e L ) ) T
Collectively 0X , 0Y , 0Z are called the coordinate axes,
The point 0 , which 18 common to the three coordinate axes,

is called the crigin. The plane containing the x-axis and the

y-axis is called the xy-plane, the plane containing the x-axis

and the z-axis 18 called the xz-plane, the plane containing

the y-axis and the z-axls is called the yz-plane., Collectively
00

these planes are called the coordinate planes.

From the theorems we proved in Section 9-U4, it is clear
that all lines parallel to the z-axls are perpendicular to the
xy-plane. Similarly, all lines pdrallel to the. y=-axis are

Lo

x-axls are perpendlcular to the yz-plane. Using the convenient
set-bullder nctatian; thesze important observations can be

summarized as follows:
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"Pictorial" "Parallel" "Perpendicular"
) 7 description description ~ description

2

—
—

{nin || z-axis}|{n:n | ;cy;planél'r

o | ,

-
=
M
-—

-— — > h, {n:n || y-axis}|{n:n | xz-plane}

/ (n:n || x-axis)|(n:n | yz-plane}

A
A
\

'
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It should be clear also that (a) all planes parallel to
the xy-plane are perpendicular to the z-axls, (b) all planes
'pérallér to the xz-plane are perpendicular to the y-axis, \
(c¢) all pla’néé parallel to the yz-plane are pez?éﬁgiﬁj?cg;a? to j
the x-axis, 7 ) ‘

H \»«
.Y
'!
uu
.

"Pictorial "para
description desor

5 R

F &1

L

(L:Z || };ziplans][izéii v-axls]

L7 || yz-plane] (Z:Z | x-axis)

o

iZF
=
2 .
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- .
, | : §§
As you will remember from Chaptér 3, a c@ordinaté syetem on
a line 1is a one-to-one correspondence between the line and the ¢
-get of real numbers.. Similarly, as you learned in Ghaptér.a, a
:;Erdinate system 1in a plane 1s a one-to-one correspondence

.. between the plane and the set Df"ordeféd pairs of real numbers,.

Now we are golng to establish a coordinate sygtem 1n space as a
one-to-one correaspondence between space and the set of ordered
triples of real numbers.

To do this, let P be any pdint in space. Then through
P there passes a unique plane which 1is perpendicular to the
x-axls (Postulate 24), This plane intersects the x-axis in a
point which has a coordinate, say x , in the one-dimensional
coordlnate syatem established on iaszby the ordered palr
(0,I) . This number, x , we define to be the first coordinate,
r

H

bed
e M

-coordinate, of P

Z# E;ZA . | | ' ZA

L]

perpendicular to the y-axis and this plane intersects the y-axils
in a point which has a coordinate, say y , in the coovdinate

[

-~ . . .
system determined on 'OY by the ordered pair (0,J) . The

number y we define to be the second coordinate, or
=X;cgg§§%§§§e,aﬁf P . Finally, through P there passes a
ﬁniéué plane perpendicular to‘;he z-axis, and this plane
intersects the z-axls in a point which has a coordinate, say

z , 1n the coordinate gsystem determined on iEEE'by the ordered
pair (0,K) . The number =z we define to be the third

coordinate, or z-coordinate, of P

646
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Conversely; if any arderééxirigle, say (x',y',z') 1is.
given, there 1s a unique pdinté Pj having (1',y',z') as 1ts
coordinates.# In fact, there is a'unique plane perpendicular to
the x-axls at the polnt whose x-coordinate is x' , and there
is a uﬁ;qué plane perpendicular to the y-axis at the point »
These two planeg cannot be
parallel (Why?), hence they must intersect in a line, m
which by Theorem 9-23, 1s perpendicular to the xy=pléne.
Finally, there 1s a unique plane which is p2§péndi@ular to the
z-axls at the point whoss z-coordinate is z! . Slnce m 1is
perpendicular to this plane (Why?), it must intersect it in a
point P' , whose coordinates are clearly (x5 y,27), as
reduired.

whose y-coordinate is y!

2

d T L

] :;"’:f N
I -~

1 - Pix)y,z)

iih{

Figure (a)

As our efforts in thils chapter have already illustrated,
1t 1s difficult to represent space configurations by drawings
on a sheet of paper. You ought to .practice plotting in a three-

.- s . H \ R .
dimensional coordinate aystemgga that you can make drawings and

visualize the space relations{ihich they suggest. . or course,

you should begin your practice with simple situations, such as

plotting a single point, % palr of points, a segpint, @F\a line.

) s

1]

Ty B

S S
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Figure (a) shows how a single point may be plotted. Figures
(b) and (c) below show a segment and a line. Notice that an
essential technique‘iq plotting 1s the abiiity to draw a 1iné
parallel to a coordinate axis. Notice also the significance of

Appendix V for further help.
i

E

——=

By Postulate 24, 1t 1s clear that the procedure\which

E;gietETmines the coordinates of a point, P , works just as well
when P 18 in one or more of the coordinate planes as 1t does
wﬁen P does not lle 1in any of the coordinate planes. Hence,
it ‘shguld be easy for you to verify the results which are
summarized in the following table.

"%

B




™

Set of |Form of the coordinates | Equation(s) satisfied by the
points of any point of the set coordinates of any point of
the set "

origin  (0,0,0)

(o
]
(o]

X=0 and y =0 and

o \‘

x-axis (x,0,0) ] 'y =0 and z =
y-axis (0,¥,0) x =
z-axis’ , (0,0,z) x=0and y =0
Xy-plane (x,y,@) - 7 - Z = 6
xz-plane (x,d,2) . - y=20

(0,y,2) X =0

L
o
5
.
M

I
e

yZz-plane

From the definition of the x-coordinate of a point, P,
it is clear that all points which lie in a particular plane,
;i? » perpendicular to the x-axls have the same X=coordinate,
séy X =x . It 1s also clear that, conversely, any point
whose x-coordinate 1s Xy must lie in the plane ji? : 1n
other words, the coordinates of every point in a plane which
is perpendlcular to the x-axis satisfy an equation of the form

X = xi , and cénversely, any polnt whose coordinates satisfy

this equation lies in this plane,

Similarly, we can say that all points which lie in a pPlane
perpendicular to the y-axis have the same y-coordinate, say
y=y,,o0r in other words have coordinates which satisfy
the equation y = ¥y s and conversely.

What do these observations tell us about the coordinates
perpendicular to the x-axis and a plane perpendicular to the
y-ax1s? Do you see that if a point P 1liles simultaneously in
é planelwhose points have coordinates satiafying the equation
X =X and in a plane whose points have coordinates satisfying
the equation y = ¥y, » then the coordinates of P must satisfy
both ‘of these conditions? If you understand this, it should
not be hard for you to-verify the assertions in the following
table.

150
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Set of polnts

|Form of the coordinates

of any point of the set

‘any point of the set

.

Equatiori(s) satisfied.
by the ‘ceordinates of -

X=X

plane ] v-axis (x;yi:z) : y=vy; . .

plane | z-axis (x;y,zl) ' ‘'z = 51;

line | xy-plane

Il

L]
o]

A

"

N
e

line | xz-plane (xliy,zl) x = x; and z :

line | yz-plane (x,¥49,24)

Problem Set 9-6

P .
1. Using the same set of axes, plot the points P, Q, R, S,
T, U, V: P(D;l,O) H Q(——B;D,O) H R(—S;l,@) H S("’B:l:g) H
T(Bxlsg) H U(B,sl,‘—u) H V(Bxilj":}’})'- )
2. Using the same set of axes, plqt the points A, B, C, D, E :
A(O;!l,B)Vg B(S:L‘:é) H C(’Q—';E:*?) H D(l;!B,Q) H E(S!ESEL") .
3. Describe the location of all the points in space for which
(a) x=0.
- (b) x =2 .
(¢) x= -3

T

Illustrate with a sketch for each part,

Sketch the set of all points in space which satisfy the

o
S

given condition.

() y=0. (¢) z=o0.
(b) y=2. (d) =z = -4

5. Descrlbe the set of points represented by each of the

following:

(a) ((x,¥y,2):
() ((x,y,2):
(¢) ((x,y,2):
(d) ((x,y,2):
(E) [(x’y},g)f

B ) ((x,y,2):

A
]

LS
i
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‘ 6. Suggest & EﬁﬂVéﬂiéni_set,éf coordinates for thé§§i§ht
vertices: = -~ - - . o

oy

(a) of a cube each of whose edges has length a ;

(b) of a rectangular solid (parallelepiped) having
mutually perpendicular edges gf-lengtns a, b, ¢,
respectively. ' : - .

7. Where are all the points in space for which x +y = 2 7
Sketch the graph. ’ . A

9-7. The Distance Formula in Space.

In Section 8-2, we proved. two theorems (Theorems 8-1 and
8-2) which enable us to determine the distance between any two
points on a line parallel to either of the coordinate axes.
iimilar results hold in space, and we have, specifically:

THEOREM 9-24. If P, and P, are points on a line parallel

to the x-axis, then P P, = |x; - x,| , where x, and

X, are the x-coordinates of . Pl and PE , respectively.

THEOREM 9-25. If P, and PE are points on a line parallel

to the y-axis, then PP, = |y, - y,| , where y, and
y, are the y-coordinates of Pl and PE » respectively.

&

THEOREM 9-26. If P, and P, are points on a liné parallel

to the z-axis, then P P, = Igl - zg] » where 2z, and

are the z-coordinates of El and Eg; respectively.

(kv

SEy




in the following figures,
If A= (6,3,1) and B = (3,3,1) ,

[ (a)

then' AB'= |6 - 3| = 3 .

(b)

9-7 : ' '
. ‘The proofs of these thearems are very easy and we shall
, omitythem. Two applications of these theorems are illustrated

. . - .

!
e 7‘-,

g
If ¢ = (3,5,1) and B = (3,3,1) ,
then BC = |3 - 5] = 2
dz

652
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As one of the impgrtant applicgt;ons af plane €oordinate
syatems, we develgped the so- called distance formula

/N R
oFy ;‘ﬂx - 3‘1)‘ + vy -y

P )2

wéich enables us to find the diastance between any two pointa,
P (xl,yl) and P. (xg,yg) » In a plane. It is now gatural to

- seeka farmula, analogous to the distance formula in a plane,

which will e;press the distance betwgen any two points in space
in terms of the coordinates of the points.

To do this, let P. (xl,yl,zl) and P. (xg,yg, E) be any ’
twoe points in space, and cansider the figure which is formed
by the three planes throygh Pl which are respectively
perpendicular to the cqordlnate axes and the three planes
through P2 which are respectively perpendicular to the
coordinate axes. Let A and F be the points (xz*yl’gl)
and (XESY2;31) '

y4 e i
AT ~
_ . !fé% P
g‘gs Ql}r
| - 252
R I P ,,_=§=,§|Efll
[} fFﬂmM;ﬂ ﬁﬁ
s
| ¥ ¥
7 f —_— — , A&z . _
Al Y,2) F(xz,y2,Zi) r [Y2-%1 F
- — ————Y - — —— =Y
! '
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First, buppose that P, and P, do not-lie in a plane
which 1s perpendicular to Qne of the coordinate axes. Clearly,
i§’ip is perpéndicular to the yz-plane. (Théorem 9- 23) and hence
parallel to t%g_x—axis (Postulate 25) Similarly AF is T
perpendicular.io the xz-plane and hence parallel to the y-axis,
_'§§g§rpendieular to the xy-plane and hence parallel
L Therefore AP AF and /P FPE are right L
: Hence, applying the Thgorem of Pythagoras to
t.he two righ;-t?;;anglea QPIFEE and APlA,F 5 We gbtain‘
reapectively - ' )

\ 2
+ (PEF)
and

(AP))® + (Fa)2 .

]

I

- . s ’ o
Now substituting for (FEI); from the second of these equations
into the first, we get

r

(BoPy)® = T(aR))Z & (FA)%) 4 (p,F)

PoPy ;1/(951)2 + (FA)E + (P.;FSE

But according to Theorems 9-24, 9-25, and 9-26, respectively,

Therefore, substituting,

~ , 2 2 , 2
PéPli‘/'XE’xl' oy -y 1T+ zp - 2y
) A - e
or, since IqlE = q° for every real number q ,
R : 2 ., Y
PP, E’ngg - xl) + (v, - yl) + (2, - 31)
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. ;f P,  and PE lie in a plane which is perpendicular to
) one of the coordinate axes, then either Xo = X3 =¥
'y OT 2, =2, , and one or more of the terms:under the radigal in
: the last formula is zero. It 1sieasy to see that the formula
is stii% valid, For' instance, 1if sg'; zy then PE =F,
and clearly the correct expression for PEEI is .

]

I:EPl ﬁAPi)g + (FA)2

= ‘/}EE *7351)2 + 7(3"2 = y:)é

Likewlse, 1ir Fl and FE determine a line which is perpen=

dicular to one of the caardlmaté planes, then two of the

coordinates of El must equal the corresponding coordinates

of EE" and only one of the terms under the radical in.the

formula for FEPl is different from zero. Again the formula
* 1s valid. For instance, if Yo =¥y and z, = 2z, , then

PE = A and the correct expression for PEPL is

P,P; = AP, = IxE - xll

%
Finally, if‘.“P2 = Pl ; then Ko = %Xy 5 ¥p = Yy 5 2, = z, and
every term in the formula for P

oP; 1s zero., Thus P,P) =0,
Pl =
three-dimensional distance gggmulg

as of course 1t should if Pg Hence, in every case, the

N o P r—

gives us the distance between the points P. (xl,yl,z ) and
P. (xg,ye,zg) We state this result as a theorem

TﬁE@REM 9-27. The distance between the points P, 1(X1,¥7,2;)

i, | 7and‘ P,o(X,,¥5,2,) 18 glven by

By =g - x)® 4 (- ¥))P 4 (2, - 2,)°

o
iv]
o
i
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Examp;é‘i :

v

What Is the distance between the points *Plﬁggkjc) and
’Pg(l:?:‘g)’? . . > '

. By direct substitution infc the ‘three-dimensional distance
‘a\' ‘formula, we obtain ' -

Exanple 2

Find the points which lie on the 1inel§érpendicular to
the xy-plane at the point (2,3) and are at a distance of 7
from the origin. 3 .. :

Clearly, any point whigh‘iies on the line perpendicular to

the xy-plane at the point (2,3) has x-coordinate 2 and

yzecordihate 3 . Hence, a point on this -1line 1s determined

as soon as its g-cqordinate is known. Thus, we must determine
- the value, or valugs, of 2z such that the distance from the

origin, 0(0,0,0) , to the point P(2,3,2z) 1is 7 . Using the

distance formula we thus have .

7 .
=7 ,, o P(2,3,2)

]
+
T
o
[ []
=
e -~

- if.), i

]
W

L
W
b

[
C
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. Thus there are two points which meet the requirements of the
problem, namely P, (2,3, ,6) and PE(E 3,-6) , as can be checked
immediately. -

»

Problem Set 9-7

Find the distanceibetween the points '?l and P, if the
coordinates of P, and P, are.as follows: ’ :

(a) (4,-1,-5) ; (7,3,7) . (@) (3,8,5) ; (8,4,1) .

(b) (0,4,5) ; (-6,2,8) . (e) (0,1,0) ; (~1,-1,-2) .

(e) (3,0,7) ; (-1,3,7) . (f) 11,2,3) ; (0,0,0)

A line m is pérpendicular to the yz-plane at the point

P(0,3, 4) " Find the points which lie on line m and are
at a distance of 13 from the origin. ; f

A line q: 1is perpendcular to the Xy-plane at the point

"~ P(6,8,0) . Find the points which 1lie on 1line ' and are

at a distance of 10 from the origin.

A line iég is perpendicular to the xz-plane and contains |

the point P(1,-2,1) . Find the points of £ which are

at a distance of 4 from the origin.

Show that A ABC with vertices A(2,4,1) , B(1,2,-2) ,

C(5,0,-2) 1s a right triangle.

Is the triangle with vertices A(2,0,8) , B(8, -4,6)

C(-%,-2,4) 4sosceles? Justify your answer.

Given the vertices of two triangles, AABC and A DEF ;

for each of the triangles, determine if it is equ;laggfali

A(1,3,3) , B(2,2,1) , €(3,4,2)
D(6,2,3) , E(1,-3,2) , F(0,-2,-5)

(a) Show that the opposite sides of the figure ABCD
with vertices A(3,2,5) , B(1,1,1) , c(4,0,3)
D(6,1,7) are congruent,

(b) Does this prove that the figure is a parallelogram?
Explain.

657 S‘“’)
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9. (a) Show that the opposlte sides of the figure ABCD
: . ) . , 7
with vertices A(5,1,1) , B(B,l,o) , C(4,3,-2)
- D(6,3,-1) are congruent., -
.(b) Show that the angles of the flgure 1n Part (a) are
all right angles. - R
(c) Do the results in (a) and (b) prove that’ the flgure
e is a rectangle? Explain.
10. Using,oordinates, prove Theorem 9-18. ' (ﬁint; This
‘ follows claaely theﬁﬁrccf of” the corresponding theorem
in a plane.) : » -
- i
9-8. Parametric Equations of a Line in Space. /
In Section 8-7, we obtained what we called parametric
equations of the line determined by two distinct pointas, -
P (xy,y;) and P,(x,,¥,) , namely o
X =X + k(x, - xl)
« y;¥1+1{(yE‘y1)
- For every value of k , the corresponding numbers, X

and y , are the coordinates of a point on P, P, and,

- S e T
conversely, to every point on P, PE there corresponds %:}
unigque value of the parameter k 8such that these equatlions
give the coordinates of the point. By an argument similar to
the one which establishes the result in the plane, 1t 1is=s
possible 'to establish the corresponding result for space.

THEOREM 9-28. If El(xl,yl,gl) and P, (xg,yg,zg) are any

two distinetvpaints, then for every value of k the
point whose coordinates are o

Xy + k(xg - xl)

X =
y =y, + k(y, - vy)
z = 2z, + k(z, - 31)
lies o PlPE and, conversely, to every -point on 'PlPE

. there corresponds a unique value of k such that these
eduations give the coordinates of the point.
658
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, Example 1 _
- What are the coordinates of the point 4in ﬁhich the line
determined by 'P,(3,7,2) -and P5(1,1,-2) intersects the

LY

\[1e 7

Zz-coorjdinate 1s zero. Our problem is to find the point on

-, S . : L . L.
ElPE,'%hase z-coordinate is zero. Now, by’ the last theorem,

the coordinates of any paint on PP, are ﬁauen'by the
equations L :
' 3+ k(1 -3)=3- 2k,

is]
-~

X

‘m‘

7T+ k(1 -7)=17- 6k,

2 4+ k(-2 - 2) =2 - bk . .

y

W,

2

Hence, for the point whose z-coordinate is zero, we must have

P

- 2 -4k =0 or k =

- Substjtuting this value into the formulas for x and ¥, we
find.

X 3

-

= 2(
y=7-6(xzFr=

)221
4

- nfe

The required point is the point with codrdinates (2,4,0)

. &t

< !
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Example 2 ' C et

- B Aar .
Show that the diaganalé of a cube (a) have equal lengths,
oisect each other and (c) are not perpendicular to each

(0,020 _H

?:

()

other.

4

e
m

B(20,20,20)

N v
aoooull —  JF oy

o.” 1A
v D(26,20,0)

: Eraaf: Let the length of each Eﬂgéséf the cube be 2a .
Ghaéﬁé the caa:dinaté axes so that one vertex, A , is at the
orlgin and three edges lie in the pasitiﬁé X- , y=- , z-axls,
Then, the endpoints of diagonal AB are A(0,0,0) and

B(2a,2a,2a) . Another diagonal, CD , has endpoints  C(0,0,2a)
and D(2a,2a,0) .

(3) 15 - ylea - 017 7 (22 - 0)F v (2a - 0)F = e

2y,
2a /3 .

cp = 422 - 0)2 + (2a - 0)° + (0 - 2a)? - Yia?

Therefore, AB = CD , Similarly, AB = GH = EF .

The length of each dlagenal of a cube 1s 43 times the

- length of each edge. &7 ‘
(b) “AB = ((x,y,2):x = 0 + 2ak ; y =0+ 2ak , z = 0 + 2ak ,

' k 1s a real number]} .
By taking k = 3 , we find the midpoint of AB to be

(a,a,a) . o - :

Similarly, CD = [(x,y,z):x = 0 + 2ah , y = O + 2ah ,

z =2a - 2ah , h 1s a real number] .

* By taking h = % , we find the midpoint of *.TD to be

. . L (a,a,a) . l . :’A

7 . 660 . ‘

150
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(c)

';/;; ﬁ

Similarly, we find that the midpoint of EF is

and the midpoint of GH 1is (a,a,a)

If M 1is the ccmmgn midpoint of the diagonals,

Part (a), AM = E ; AB = a3 and CM=ayJ .
(aM)? = 3a® and ‘(gm) = 32, but (ac)2
Therefare; (AM)2 + (MG)2 # (AC)2 . Hence, T

are not, pér—péndieu'iar

= (2a)? = 432 |

(a,a,a)

_Thus, any ﬁwa of %hé diagonals bisect each other.

then, by
Thus

and "M

By this same reasoning all other pairs of ﬂiaggnals can

be proved not perpendicular

\ chi .

!

Problem Set 9-8

In Example 2 above, prove GH = EF = ABD .
Given points A(-2,0,4) , and B(8,2,-2) , use set
notations and paraﬁétrie equations to express

- . R —
(a) AB . (b) 1B . (e) AB .
(a) Find the midpoint of AB in Problem 2.
(b) Find the trisection point of AB nearer A
(¢) Find the trisection p@int of AB nearerr B .
(d) Find P if P is in AR and AP = 3AB .
(e) Find P 1if P 1is in the ray opposite to AB

and AP = 3AB . :
(f) Find the coordinates of the point in which “AB . \

intersects the xy-plane; the xz-plane; the yz-plane.
‘(g) Find the coordinates of the point in which “AB" inter-

sects the plane whose equation is 2z = 3 ; whosé

equation 1s y = -2 ; whose equation 1z x = -3
Prove that the diagéﬁals of a reétangular solid are equal
in length and that they bisect each-other.
Show that A(-1,5,3) , B(1,4,4) and c(5,2,6) are
collinear. Y

) £
f -
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10.

11.

9-9.

What are the coordinates of the point P in which the
line determined by Pl(EQLQB)‘ and PE(B,EE,l)
intersects the yz-plane?

What are the coordinatesjyof the point ©P- 1n which the
line d “ermined by Pl(%i,g,él) and P,(3,-2,2)

intersects the xzZ-plane?

2

A rectangular solid has three adjacent faces in the
coordinate planes, One vertex is at the orlgin and
another has coordinates (2a,2b,2c) . What are the
possible relationshﬁps among a, b, ¢ 1f two of the
diagonals are perpendlicular to each other?

(a) Given the points A(7,1,3) , ¢(4,-2,3) , find the
coordinates of the midpoint, M , of A&C .
Consider the points B(5,0,0) and D(6,y,z) .
Find y and 2z -so that the midpoint of. BD 1is

(b)

the same point M as in Part (a).
(¢) Is figure ABCD a parallelogram? Explain,
Uslng ideas of mildpoints, as 1n Problem 9 above, show
that the figure in Problem 8 of Problem Set 9-7 is a
parallelogram.
Using 1ideas of midpoints, as in Problem 9 above, show
that the figure in Problem 9 of Problem 5
rectangle,

Equation of a Plane.

k4

dimensional coordinate systems ralses the guestion of whether

‘or not planes in space can likewlse be characterized by

equations. The answer is Yes , and we shall conelude the

chapter by finding an equatlon corresponding to a plane. i

First, however, 1t is convénient to introduce the following

definitien.

I

..P
b
AR
0,
i

l A
N

e
e



9-9
DEFINITION. If # 1is any plane, then an equation
’ of 7’ 1s any equation with the following properties:

(a) The coordinates (x,y,z) of every point of &7
satlsfy the equation; E

(b) Any values (x,y,z) which satisf

are the coordinates of a point of 2

Consilder the followlng example,

Let F be the point (3,2,4) and let #Z

e ~ L -—
be the plane containing F and perpendicular to OF .

P

A
,,};‘g g ;X"‘xxx
(3.2 4) ™.
L e =1 - -
Xs_% [—=J x“‘s = X‘g/
e %“‘»«@ ;? “’*a,,,
- S T e ] XE‘}
~._ Ryz)
@] ;-“::j -
- — - — — —- Y

A point R(x,y,z) 1lies in X 1if and only 1f R = F or

b

B , . . ,
FR | OF . By the Pythagorean Theorem, épFR 18 a right angle
1f and only if
(1) (OR)" = (OF)° + (FR)®

f A\ 2 2 , 2 2 2 2 2
Now (OR) = (}: = D) + (y - D) + (E - O) = x4+ y + z
2 = o r
and. (0F)° =3 - 0)%+ (2 -0)% 4 (4 - 0% =9+ b+ 16 = 2
2 o 2 2 o Lo o
and (FR)® = (x - 3)" + (y - 2)% + (2 - })° = x" + y° + 2
- 6x - by - 8z + 29 .
Hence, (1) becomes
/ = = 2 2 3 )
= ! & = 3¢

Thus

2
b
T
w
+
(o]
[t
il
g
R
W

or

ERIC
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‘point R(x,y,z) 1ies in the plane # if and only if R = F

9-9 | ‘

As a check, we observe that the coordimates (3,;,7) of F
satlisfy this equation, asince 3 ¢ 3 + 2 - 2 + L - 4 = 29 |, . A

Note that the numbers 3,2,4% which appear as the
respective coefficlents of x,y,z 1in the equation of the plane
are the same as the coordinates of the point F jﬂand that the
number 29 18 the sum of the squares of the coordlnates of F .

We use the discussion in Example 1 as a gulde in treating
the general case. Suppose that 2’ 1s any plane not containing
the origin O Let F(a,b,c) be the point where 2 :
iﬁtersects the line

% ~
/(f\n\\
F(a,b,c) y
. - Fj’\\\i”a& J
|/ -
‘ - O — -y
;;;
‘1—«“";;  J

containing O and perpendicular to >~ By Theorem 9-1, a

ér [OFR is a right angle. But by the Pythagorean Theorem,
A QFR has a right angle at F 1f and only if

[

=
(0R)? = (0P)® + (FR)®
Since we know the coordinates of 0, R, aﬁd F, 1t 1s a simple
matter to obtaln the distances OR , OF , and FR by means of
the three- dimensional distance formula, Hence the last equation

can be wrltten

ot

(x -0)% + (y - 0%+ (2 - 0)



or, squaring the binomials and collecting terms,

-

rno
[
rd
M

i ) 2 2
- 2ax +a” +y° - 2by + b + z

i

2 2
2  =a + b +c +x

F
+

e
+
b
]

2
- 2ez + ¢” ,

e . e . a2 2 L. 2
2ax + 2by + 2¢z = 2a” + 2b" + 2¢° ,

or finally,
: =}
ax + by + ¢z = a“ + b° 4 o .
This equation 1s satisfied by the coordinates of every point of-=
?? including F , and by the coordinates of no other points.
In other words, this equation 1s an equation of the plane.

If Z’ contains the origin, the above derivations must be
modifled a little. 1In this case, let m ©be the line which 1s
perpendicular to Z at the origin and let L{(a,b,c) be any
point on m except the Drigini A point R(x,y,z) will now
lie~in # if and only 1f R 1s the origin or /LOR is a
right angle.

[

-

. L{a,brc) 7?

;—ﬁ:
?‘ ,;;: i
= ‘-P‘“"‘;
- =
ﬁfi_&_{—f‘*“‘s

e

@\
ot
D
=
e
|
T
ot
i

will have a right angle i}f and only if

) - -
2 \ 2 2

=

(LR)“

= (LO)° + (OR)

ERIC
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9-9 ‘i
_ Evaluating these distances bx.méans or' the three-dimensional
distance formula and &implifying as we did in the previous case,

we now find that the coordinates (x,y,z) of any point in 2 ,
including the origin, must satisfy the equation, .

ax + by + c2 =0

The only distinction betwe%n this equation and the equation of
a plane Which does not contain the origin 1z the value of the

constant term, : e b

Our discussion thus far has not touched n the related
question: 1Is every equation of the form
ax + by + a7z o

an equation of some pi ne? 1ne answer to this 1 Yes , but
we shall not take time to prove this fact. Instead, we merely

summarize our observations in the following theorem.

THEOREM 9-29. Every plane has an equation of the form
d , where one or more of the numbers

ax’+ by + cz

a, b, ¢ 1s different from zero; and every equation of

this form 43 an ¢ uatlion of a plane.

Example 2.

What 1s an equation of the plane which 1s determined by
the points P,(2,0,0) , P,(0,1,0) , P4(0,0,3) »

By Theorem 9-29, we lnow the required plane has an
equatlon of" the form

ax + by + cz =d ,

whlch 1s satisfied, in particular, by the coordinates of Pl s
, and P, . If the coordinates of P, satisfy thig ejuation,

v]

pngling

en substituting, ’ .

fon (N

o
I
b
o)
)
ik
I
nof 2

a. 2+ Db =0+ ¢

i

pocs)
ik
o
-

P
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Similarly, since . the cécri&nates of P, satisfy

y
a-+-0+b--1+¢.:-0=4d or b=4d

the eguation,

and, since the coordinates of PB also satlisfy the equation,
3

a-0+b*-0+2¢ -

Substituting for a, b, and

or, multiplying both members

=d or c =

¢ we obtain

This is the’ required equation.

Example 3.

What is an eguatilon of Fhe plane whose points are equi-

distant from the points A(1,-3,0) and B(2,0,-5) ?

=

Let P(x,y,z) be any point. The condition that
on the required plane 1s expressed by the equatlon PA

That 1s,

[

a

oo
[
]

Ml

Vix - 1)E + (y + 3)

or
(x = 1) + (y + 3)° + 2°
or

™
o

(x° - 2x + 1) + (y% + 6y + 9)

or (by rearranging terms)

(x e

N

$
Finally, b§ combinling terms,

plane in simple form:

g £ 2 -~ = . - £ 7;;:’ : _ A -
+ ¥y 4+ 2%) - 2%+ 6y + 10 = (x5 +y° o+ 2°) - hx + 10z + 29

) ~12 £ 2
= (x - 2)" +y" + (2 + 5)
Fzt o= (x° - bx 4+ By + ¥°
K 2

we obtaln the equation of the

667



= (x,y,2):2x - y + 32 = 6)
The coordinates of each point of intersection between
and a coordinate axis are readlly determined, as follows. If
a point is on the x-axls, its y-coordinate is zero and its
z-coordinate 1is zero; thus the intersection of 2 and the
x-axis 1s the point (3,0,0) becanuse 2x - 0+ 3 - 0 = 6
ylelds x = 3 . Similarly, the faxis i ({x,y,2):ix = 0 = z)
and it Intersects & at the point (0,-6,0) . The point of
intersection of # and the z-axis is (0,0,2) . A "sketch"
of the plane @ 1is conveniently made by pi@ttiﬁg ghe tfianglé
. ‘whose vertices are the three points (3,0,0) , (0,-6,0) , ‘

=

v “

(0,0,2) . ( .

? ;
(0,0,2)
AS;;‘
(06,0) — _ B -
Il — y R s
/

DI '

A

a;?g;»e
gxxxa%%xg
(3,0,0)
,, X v
Example 5.

t Find an equation of the plane which contains the three
points (1,2,3) , (2,1,-3) and (-1,-2,1)
A point in the plane must have coordinates (x,y52) such
~that ax + by + cz = d . That is, 1f the point (1,2,3) 1is
In the plane, then :

a.l1l+b.2+¢c.:.3=4d

ERIC
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Similarly, if the point (2,1,-3) 1s in the plane then,

A

a + Db+ 1+ ce(-3)=

and, if the point (-1,-2,1) 1s in the plane then

a(=1) + b(-2) + ¢ - 1 =4d .
We find values of a, b, ¢, 1n terms of d , which
satisfy all three of these equations, to be

- %g , C - %% . Substituting these values in

52}
I
o
1]

the equation ax + by + cz = d yiéldé

Ir
jol)

)x + (- 4 )y+( d),

Q #
11x - 7y + 3z = 6,

an equation of the required plane.

Problem Set 9-9

I;E?WTite an equation of the plane determined by three pﬁints

whose coordinates are

“(a) (1,0,0) , (0,1,0) , (0,0,1) .
(b) (3,/5,1) , (0,1,0) , (0,0,2)

() (3,0,1) , (1,2,0) , (0,2,4) . /
(a) (1,-1,0) , (2,0,3) , (0,-3,1)

2 Determine an equation of the plane whose points are
equidistant from Pl(lgﬁjé) and E(S 5,4) .

Ls]

Sketggia dlagram of the plane represented by each of
the eqﬁations:

(a) 5% + Uy = 20 ;

(b) x+ 2y + 2z =5

4, Find an equation of the plane which contains the point
Q(1,-2,2) and is perpendicular to the line contalining
Q and the origin.

ERIC
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il

' oy

Find an eguatlon of the plane which contains the three
polnts whose coordinates are:
(a) (Dj=2jl) H ( ; ¢ ; .
(p) (1,-2,1) ; (2,0,-1) ; (-2,-3,2) . .
(C) (ls'Egl) H ( 2
Find the coordinates of the point of intersection of
the plane 2 and the line & , if

gz?
and

L

{((%,y,2):3%x + 5y + 1ldz = 11)

{((zx,y,2):x =2 -3k, y=1+%, 2z=4 -2k, kreal)

In this chapter we have studiled properties of parallelism

and perpendicularity for lines and planes, The relationship
of parallelism for lines in space 1s reflexive, Eymmetfic; and
transitive. The same three fundamental properties hold for

parallellsm of planes. The relationship of perpendicularity

for lines in space 1s symmetric, but neither reflexive nor

trarisitive. The same three remarks applyjta perpendicularity

for planes.

(d)

(a)

(b)

If a point and a line in space are given, there are:

a unlgque line contailning the given point and parallel to
the given line,

many planes containing the given point and parallel to the
given line,

a unique line containing the glven point and perpendlcular.
to the given line, »
a unique plane containing the giv%n point and perpendicular
to -the given line. i {

|

If a point and a plane -in space lare glven, there are:
many lines containing the glven polnt and parallel to the
given plane,

a unique plane contailning the given point and parallel to
the glven plane,

L.

1.4

T
-~
[}
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to the given plane,
(d) many planes containing the given point and perpendicular
to the given plane.

Given a unit-pair, a postulate in Chapter 3 described for
us the distance between two points. In Chapters 4, 5, 6 our ,
theorems on perpendicularity and parallelism enabled us to
Introduce tne distance between a line and a point and the
distance between two parallel lines. In Chapter 9 our study
of perpendicularity and parallelism permits us to extend the
notion of distance agailn. We can speak of the distance between
a point and a plane, the distance between a line and a plane
that are parallel to each other, and the distance between two
parallel planes. :

The 1deas of parallelism, perpendicularity, and distance
play a basic role in developing a éhﬂeesdiménsional coordinate
s5ystem. In a one-dimensiocnal system a p@iﬂt is identified by
a single real number, in a twésdimensional syéEém bi an ordered
pair of numbers, and in a threendimensi@nal system b& an’Drdered
triple of numbers. The formula for the distance between two
points in space 1s a natural extension of the formula in
two-dimensional geometry. The parametric equatlons of a line
in space are a natural extensiéﬁ of’ the parametric equations
in two-dimensional gecmetryﬁ The first-degree equation in
X; ¥s 2, representing a plane in space, is a natural extension
of the first-degree equatlion in X, y, representing a line in
two-dimenaional geometry. The cagrdinage method for pr@ving
theorems or analyzing problems isgfullybas ugeful and

convenient in three-dimensional tuations asz in two.

e



VOCABULARY LIST

parallel planes
perpendicular planes
plane angle of a dihedral angle \
measure cof a dihedral angle
coordinate system (in space)
coordinate plane ‘

o distance formula (in space)

equation of a line (in space)

equation of a plane .
- /
|
Y
1,
672
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Review Problems
Chaptér 9, Sections 6 to 9

Plot the points A, B, C, and D -if the coordinates of
the points are:- A(2,-2,5) ; B(2,3,4) ; C€(2,3,-U4) ;

D(-2,0,4) .

Find thggéi%taneés between the followlng pairs of points:
(a) (0,4,5) and (-6,2,8) .

(p) ¢3,0,7) and (-1,3,7) .

Findgthe midpoint of each of the segments determined by
the pair of points in Problem 2, *

‘erte parametric equations of the line determined by gach"

peirs of points in Problem 2. /

Thgﬂéocrdinatés of the midpoint of a segment are
(8,-4,1) . If the coordinates of one of the endpoints
of the segment are (4,-1,3) , find the coordinates of .
the other endpoint of the segment.

The coordinates of the vertices bf a triangle are given

'in each of the following problems. Classify the triangle
s
“in each of the problems-.

H (G;-1;=4) H (5;‘1111) .

fi (.5?; 9;’4) ¥ (‘?;3;2) .

¥ (i{kli’u) ¥ (ulgll) *

The coordinates of three points are listed in each of
the following problems, Tell whether the poirits are

collinear or noncollinear.

]

iven four distinct points A, B, ¢, and D . 1If
AB=CD and AD = BC , 18 ABCD a parallelogram?

Explain.
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g

Glven four necncollinear pointe

the midpoint of &C

a parallelogram?

is

. e
A, B, C,/ and
e

the midpoint 6f | ED ,

Explain.

X+y+z=14

Does the plane whose equation is

contain the polnt whose coordinates are (3,=1,2) 2

What 1s the intersection of the

whose equation 1s 2x - 3y + 2

Describe the following: [((x,y,z

Xy~

6

)y

plane and the plane
9 .

- 5 .

What 1s the equation of a plane wh@seiggints are
equidistant from the endpoints of a line segment with

coordinates (-2,-4,7) and

(4,5,1) 2

M .18 the midpoint of an edge of the rectangular solid

shown in the figure below,
Prove by means of coordinates
that MB = MC

-
-
=
,"g‘g

S PN g
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L REVIEW PROBLEMS
& - i
= Chapters v-9
Write + 1f the statement is true; 0 1if the state-
e~ ment 1s false: - -
1 The measure of an exXterlor angle of a triangle 1s
greater than fthe measure of any interior angle
of the-triangle
2 Two antlparallel rays are dlstinct
3. The angle opposite the longest slde of a triangle is
ptie angle that has the greatest measure
y
s - = -
4, A set of parallel lines intercepts congruent segments
E on any transversal
N ST BC, then AB ¢ AC
W
N
Yo, There 13 a triangle whose sldes have lengths 351, 513,
~ and 135.
. N ]
7 Two lines are parallel 1f each of them i35 perpendi-
cular to the same llne i
o) Glven two lines and a transversal of the lines, if one
pai?ﬁmf alternate interior angles are congruent, the
other palr are alsb congruent, ‘
9. Glven two intersecting lines,and a transversal Of those
N ] hy .
* lines, no palr of corresponding angles determined by
- the given transversal are congrueant
4
“10. The bisectors of a pair of consecutive interlor angles
are pa rallel
11. At a polnt oen a 1line, there are infiﬂitelj mﬁhy lines
perpendicular to the line, )
12. The distance between a line and a polnt not on the
line is_the length of any segment connectlng the
point and the line.
13 The planes which contain the respectlve faces of a
right Jdihedral angle are perpendlcular.

ol
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15.
10,

17.

If two angles of one triangle are congruent resgecﬁiv;
ely-to two angles of another triangle, then the third.

angles are congruent,
&

The acute angles of a right triangle are complementary,
An exterior angle of a trilangle ia the supplement of
one of the interior'angles of the triangle.’

One of the angles of a rigfht triangle may be an ob--

tuse angle.

ng{fight triangles are congruent if the hypotenuse and
a8 leg of one are congruent respectively to the hypoten-

&

use and a leg of the bther,

If a line’ intersects one of two parallel lines, 1t

intersects the other.
I

Two lines that are equal are not parallel.
Any two consecutive angles of a pafallelogﬁém are

supplementary.

In A ABC, if‘lem.,L,:A = 50 and mlB = 40, thens BC
13 .the longest sldé of the triangle. -

If x, y, and z are three lines such that x || ¥
and y || 2z, then x || z.

If x, yi and 2z are three lines such that x | y;
and y | z, then x4 z. ‘

 The contrapositive of a statement 15 logically equil-

valent to the converse of the statement,

A triangle has a right angle 1if the. lengths of the
sldes of the triangle are proportional to 7, 24, 25,
If one palr of opposlte sldes of a quadfilaté}al are
parallel and corfigruent, then %he quadrilateral is a
psrallel@gréma , ’
Ry

'.

‘The length of the dlagonal of & square can be found by

multiplying the lerigth of a side by 2.
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29. " A dihedral angle 1s the union of two halfplanes.

30.

34,

35.

37.

38.

39:

Given three distinct coplanar parallel lines and twé

4

distinct trangversals, the segments formed on one of

the tramsversals are propor
+ing segments formed on the other transversal.

In A ABC,

tion

if mlLA < mLB,

then

AC { BC.

and 31, the trilangle 15 a right triangle.

"If the lengths of the sides of a triangle are

EQ, 21,

al to the correspond-

If the measure of one.of the aﬁgles of é right triangle

is 30
angle
tenuse,

, then th& .length of the leg opposite that
i3 equal to one-half the ‘length of the hypo-

Given a correspondence between two triangles, if two
]

' angles of one trlangle are congruent to the corres-

ponding angles of the other, the correspondence 1ls

aasimilarityg_‘

If a, b, ¢,

triangle, If k 18 a pgsitivé number,- and 1If
ak, bk, ck, are the lengths of the sides of another
triangle, then the triangles are simllar.

Given two triangles,

congruent to an angle of the other,
one triangle are proportional to-two sides of ‘the
other, the triangles are similar, '
If the legs of.a right triangle have 1
and if the hypotenuse hasxlength ¢,

b = (¢ - a)(c +a).

are the lengths of thé sides of one

if an angle of one triangle 1s

and two sideés of

1
5

Jgpechs
‘ then

a

and

Glven a correspondence between two trlangles, if?,twc
angles and a side of one trlangle are congruent to

the corresponding parts of the other, the corres-

pord®€nce is a congruence,

)

R
.1

a

Given a correspondence between two triangles, if two

sides and an angle of one triangle are congruent to

the corresponding parts of the otMer, the corres-

pondence 1s a congruence,
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4z,

43!

Ly,

he vertex

Two 1sosceles triangles are congruent

r..'f

angle and the base of one triangle are co E
respectively ta the vertex angle and the bhse of the
other.

Any two rectangles are similar,

if (a, x) = (x, b), then ab = X2,

Xcahgruent convex polygoﬁs are slmllar with a prapérg

tionallty constant of 1.
Any two equilaﬁeral=tria§glgs are simlilar.
- ,
If x and y are two distinct positive numbers,
1f the lengths of two sides of a rectangle are x and

Y, and 1if the lengths of the sides of a second
rectangle are X + 0 and y + O, then the rectangles

-are simlilar,

If a, b ETE$pr§pQPt10ﬂal to e, d with propor-
tionality constant k, and ¢, d are proportional
to e, f with proportionality constant g, then
@, b are proportional to e, f with proportion-
allty constaht 5 . '

. B
If a line intersects the in

a trilangle 80 that carrespgn‘ing segments are propcfg
tlonal, the 1line 13 paralleljto the third side.

teriors of two sildes of

The ratio of the perimeta@e of two similar triangles
is equivalent to the ratio of any._ palr ‘of corresa-

ponding sides,

3 X
If “p, 4 are proportional to a, b with propor-
b a

tionality constant k, -then

A

Any real number 1is permitted to be a constant of
proportionality.

The lines which contain' the respective bisectors of
the angles of a triangle aré concurrent at a point
equidistant 'from the vertices of the triangle.

| 3



.53,

b4,

55.

56.

58.
59.

60.

62,

63.
64,

67.

e
s

Any pair of gppésite angles of an isosceles trapezoid
are supplementary.’

If the diagonals of a quadrilateral are perpendicular

If the coordinates of a quadrllateral ABCD are*
qgadrilateral is a parallelogram, )

=

The points (0, b, -2), (3, 4, -2), and (1, 4, =5)
are the vertiles of an equilateral triarigle.

If two segmeﬁts are congruent, their projectiaﬂs

on a given line are vongruent. '

If a plane 13 parallel to one of two distinct parallel
lines, it 1s parallel to the other,

atven £(-1, 0), B(v, 2), c(4, 5), D(-3, 3),

then AB || €D.

The distance between any two distinct points in a plane
is a positive number. -

The intersection of a line and a plane is a point.

If a diagonal of a convex quadrilateral separates 1t

parsllélogfém.

If each palr of opposite sides ‘of a guadrilateral
are congruent, the quadrilateral is a parallelogram,
The opposite angles of a parallelogram are congruent.

A diagonal of a parallelogram bisects two of 1ts

angles.

The plane whose equation iz x + y + z = 4 contalns
the three points (1, 2, 1), (3, -1, 2), and (5, -3, 2).
The perimeter of the trilangle formed by Jjoining the
midpoints of the sides of a givén triangle 1s half the
perimeter of the glven tiiéngle. (

'If the diagonals of a quadrilateral are perpendicular

ajhd *ongruent, the quadrilateral 1s a rhombus.

679l £



69.

?E!
73.

Th,
75.

‘given line,

If a line intersects one of two parallel planes 1in a

single point, it intersects the other plane in a

single point.

If the coordinates of points A, B, C are (b, 9, 11),
(0, -1, =4), (», -11, 1), respectively, then A ABC
1s a right triangle.

[(S‘E; ‘- X = IQ'L”‘:.i yi
the point (3, -1).

-3 R
1-2k, k. 12 real} contains

((x, y): xe=1 - 3k, y= 7Tk, kis real} and
((x, y): x =9k, y =1+ 21k, Kk is . real) are

parallel lines.

[(x: y): x=3k, y
ing through the origin.

3-k, _k 1is real) 1is a ¥ine pass-

If each of two planes ls perpendicular to a third
plane, they are parallel to each other,

The projection of a line into a plene 13 a line.

If a ray in one face of a dihedral angle is perpen-
dlcular to the edge of the dihedral angle, the line
c@nﬁaihing the ray 1s perpendicular to the plane
Eantaining the other face of the angle.

i

Through a polnt not in a plane, there 15 exactly one
line perpendicular to the plane.

If a plane igﬁjfsects two other planes in parallel

lines, respectively; then the two planes are parallel.

If a line 1s perpendiculasr to g plane, then any plane
containing this line 1is petpendfcular to the given

plane. :

A quadrilateral with three right angles 1s a rectangle.
Iir A (-2, -4, 7), B=(2, 2, 3), and C = (4, 5, 1):
then A, B, and .C are colllnear.

{(x, ¥y, 2): 2x - by + z = 4} contains the point
(3, 2, -1).

There are infinitely many planes perpendicular to a

{
#



83. 1If a plane is perpendicular to %ich,af two lines, the
two lines are coplanar.

84, If each of three noncoll nea} points of a plane is

) points P and Q,

then PQ  1s perpendicular to the plane.

85, If each of two planes is parallel to a lihe, the
planes are psrallel to each other,

86, If eéach of two intersecting planes is perpendicular to

" a third plane, then their Iine of intersection is

perpendicular to this plane.

87. The 1ﬁgérséct1ah of the xz-plane and.the plane whose
equation 1s 2x - 3y + z = © is
((x, y, z): 2x+ z =06 \and y = 0},

88. If A, B, C, and D are four distinct points in
space such that AB ® CD and BC ® ED, then ABCD 1is
a parallelogram.

89. "((x, y): x

90. ((x, y): x =2 + 3k,

line having the slope

u]

31{! y =

k, 0< k< 1} 1s a segment.

2k, k 1s reall 1is a

91. {(x, y): x=3+k, y=1+ 2k, k> 0] 1s contained
in Quadrapt I.’ - '

3k, v =2k, k 1s real] and
3) intersect at the point (3, 2),

92. ((x,'y): x
((x, y): «x

93. The intersection of {(x, y): X
and {(x, y): x=2h, y=3h, h 1is real} 1s the

origin. '
g4, {(x, y): x= 3k, y =2k, k 1is real] 1s perpendi-
3k, k 1is real}.

cular to ((x, y): x =2k, ¥y
95. If two angles have the property that the sides of .
one are antiparallel to the corresponding sides of

*

the other, the angles are supplementary. ' B
96. If ABC 1s a right triangle and OD- 1s the altitude -
to the hypotenuse of the triahgle, then A ABC 1s

simlilar to A ACD. o -

68l &,

3k, y = 2k, k is real}



97. The union of the set of all rhombuses and the set of
all rectangles is the set of all squares. Y
98. If ABCD 1is & quadrilateral and EE = TD and AD || BC,
© then ABCD 1s a parallelogram.
99. If ABC 1s a right triangle and CD 1is the altltude
to the hypotenuse of the trianglep then the square of
the length of €D 1s equal to tHe product of the
length of AD and the length of| DB.
100. The altitude of an equilateral triangle each of whose
sides has length s 1is g—«/Eﬁ

|
-
¥ -
7 /
J
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’ ) ' Chapter 10
DIRECTED SEGMENTS AND VECTORS ‘
. 4
10-1. Introduction. |

Many;of the quantitlies whilch we encounter in life afe
Expressions of thig'scrt, such as 5 inches, 20 dégrges,
75 cents, 2 hours, 10 cubic feet, or 15 milles per
gallon, can be represented as the dilstance between two points

scalars. On the other harmd, there are numerous quantities
auch as digplacément, velocity, accelératign, and force, for
adequately speciﬁiéd!

Consider the simple 1dea of a displacement, for instance.
If we are told that a boy walked two miles, we really don't
‘know very much_aboﬁt what he did unless we are also told the
direction in whilch he walked. Even if we know that he waiked
two miles northeast, =ay, we don't have a complete description
of what he did. He might have started at school and walked two
511&5 northeast, or he might have started at hls home, or any

- number of other polnts:

-

" Sehool

Heme

683l i)



S
' WEEhave an adequate description af the boy's walk only if we
know e
(a) "the point from which he started,
(v) dhe direction in which he walked,
(c) the distance he walked;

ulvalently, if ﬁe know
. "(a) the point from which he started,
(b) the point at which he ended.
Speaking in somewhat more abstract terms, it agpea?s that
a displacement can be represented in eilther of two Ways;

v "(a) By a segment extending a given distance in a given
1 ' direction from a given point.
0 (b) By a pair of points, ome identified as a starting
7 poilnt, the other as a terminal_peint.
A segment, as we defined it in Sectioﬂéaaé, is just a
. set of pglnts*ﬁnd has no direction associated with it.
Similérly, the set consisting of the endpoints of a segment
has no direction assoclated with it. Henee neither the
segment AB nor the set [A,B) 1s adequate to, describe the

displacement from A to B because neither distingulshes
between this displacement and the dilsplacement from B t A,
which 1s quite a different thing. Clearly, we can specify

the displacement which starts at the point A and ends at

the point B by using the ordered pair of points  (A,B) .
_However, iIf we wish to deécfibe a diépiasém&nt by means of a
segment we muyst extend our original definition:

DEFINITION. A segment 1s a directed segment if
and only if one of its endpoints 1is designated
as its initial pointj or origin, and the other
endpoint 1s designated as 1tsife;m;nal point or

terminus.

-




~10-2
Notation. The symbol ( B) 1s used to denote the
directed segment whose origin is A and whose
termlnua 18 B . In a drawlng a directed segment
is shown by placing a half arrow-head at its terminal
point, thus:
S s *’g e ———— L
A B -
DEFINITION. Directed segments whlch have the same
1nitial\§;1nts and the same terminal points are
saild to bé equal.

i

In the next sectlon we develop some of the properties of
directed aegments, using ﬁhe concept of displacement to motivate
our work. Then in later sectians we 1lntroduce the important
generalization of a dire§ted segment known as a vector,

10-2. Directed Segments. : .

In the last section we int?@duced the idea of a directed
segment by considering the displacement of a single object
from one point to another. Let us now consider a .pumber of
gbjécts which move equal distances in the same directilon along
parallel lines, as for example a group of planes flying in
formation or the linemen of a football team charglng down the
field together 1n theilr pregame %grmeup:,




10-2 .
The displacement of the planes, in the first case, and of the
players in the second, are all different Eecause no two begin
and end at the same points. . None the less, in each of the two

- cases there are characteristics common to all the displacements;

specifically, the displacements take place in the same direction
along parallel lines and 1nval§é movement fhraugh equal distances
In many applicatiaﬁs 1t 18 convenient to be able to refer ’
concisely to difegted segments with these characteristics, and
to provide for this we introduce the following definition:

DEFINITION. Two directed segments, (A,B) and

(C,D) are equivalent if and only if AB = CD
and AB || CD .

' (We suggest that you review Section 6-7 regarding parallel
s -

rays at this point.) Thls definition is illustrated in the -
following figures:. ’

figures, are tp

equilvalent?

= e

(5,B) ¢ (&5D)

v




B : = ' = R
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If you understand the détzfitian of equivalent direéted
Eegments you should have no trouble verifying the fallawing

e By

: EtateméﬁtE . SR S -

%rapertiés of Directéd §§§ment Equivalgnce _‘f S O
l. Directed Eagment equivalence 15 reflex%f§$ E
(A, B) = (R, E)

1
'

2, Diregted segment equivalenge 15 aimmetrici
If (A B) + (&,D) , then’ {c D) (A B) : -
3. Directed segment equivalénse is transitive:
1f (K5B) = (G,D) and (c,n) (E,F) , RS
then (A,B) = (E,F)

A fundamental property of directed segments is glven by
the following theorem: ’

THEOREM 10-1. There is one and only one directed segment which
ig Equivalent to a given directed segment dnd has 1its

origin at a given point.

Proof: By definitlon, the directed segment which has its
origin at P and 1s equivalent to (K;B) must lie on the
unique 1ine _Z , which contains P and is parallel to “AB .

- Moreover, the required directed segment must lie on the unique
ray of gg which has P far 1ts endpoint and 1s parallel to
AE Finally, on thls ray, the terminal point, Q , of the.
réqu;red directed segment must have the property that AB = PQ ,
and by“the Point Plotting Theorem, there is one and only one

Hence the theorem 1s proved.

neturn to the idea of displacement for a moment, aﬁa
conslder the \problem of getting firom one point to another in a
celty, 1t 1= clear that only rarely can ané'go diréctly from )
one’ point to/another. Usually, Because of the buildings which
are 1n the way, one must walk do one street a certain
distance, then turn a corner, and continue on another 5tre§£

If we

to reach his destination.

)
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. ' Instructions for géttiggsggiund in a city reflect this fact,
. and we are all accustomed to being told to go so many blocks
in one direction and then go so many blocks in another to get

ta;some desired address.

The observat;cns suggest firgt of all, that any dlsa
placement can be achleved in various waya by a successlon of
‘other displacements.  In the second place, they suggest that
it may be convenient when speaking of dispiacements to use a
cosrdinate system 1n describing simple diaplacements which
together produce a glven displacement - For 1ngtance, it 18
clear from the following figure that the displacement from the
point A(2,1) to the point B(7,4) can be achleved by first

performing the displacement from the initial point A(2,1) to
,i q:-"* ' i B -

e Com ¥




)’ n

the point C(7,1) and then continuing with the displacement.

from C to the terminal point B(7,4%)-. It cén also be ﬁ,‘

accomplished by first performing the displacement from the
initial point A to the point D(2,4) and then continuing =
with the displacement from D to the terminal point B . A
displacement to the right of 7 - 2 = 5 -and an upward dis-
placement of 4 - 1 = 3 ,. regardless of the order in which
they are pgrférmed,vthus combine to give precilsely the dis-
placement from A to B . In terms of the given coordinate

' system, the numbers 5 ’agd 3 assoclated with the displace-
Parallel to ray OX  and the ray 0¥, respectively, fre
amentally rélated to th

A

LJ.
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. DEFINITIONS. If Py(x,y;) and_ By(m,,y,) ave ..
points in the xysplane the number Xy - xl"is | "
’ _ ealléd the x-com ’nengiaf (P PE) and the .
) ﬁ%umber Yo - ¥, 1s called the zscqmppnegt pfi
. The ordered pair. af'numbéfs (x5 = % Yo ~.y1].—
) # ;ﬁ;;,
are called the camponents of (P P,) . (Note
) the use of brackets to indicate campcnents ) {;5

Althcughga giben directed segment. determinés a unique
pair of éompopentsl it 1s not true that a given pair of . .
éomponents debermines a unlque directed gsegment. For instance,-
——————af-We have-just seen,. the points _A(2,1) and B(7,4) ) \
determine s directed segment with components [5:3] , but 20
do the points C(4,2) and D(9,5) W£§§ is another directed’
segment with components [5,3] ?° There are many more, but it
is possible to derive the following theogem.

e o . N —_—
THEOREM 10-2. Two directed segments (P 7, ) and Q;a,Eq)

are equivaleht 1if and only if they have_the same
components-,

: : : g
To establigh thfs theorem, wWe must show two things:

e . ;e
JIf (P1,EE) and (EE’PA) have the same components,

b

théy are equivalenti

£

2. If (Pl,P ¥ and (PB’?L) . are equivalent, they

nave the same components.
- &£

To prove these assegtibns requirésfthe consideration of’
. two cases, according as the‘féur points P, s Py » Py, P,
- are or are not collingari To save time, we shall glive only
the outline of the pfgof in the general case where the points
are noncollinear.

i ,_lin'\
=+ L oJ

- - 630
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1. Let the coordinates of Py Py, Py, P, beiq
~" . respectively;

J i v
(3{1;31); (-}EEQYE)S (3{3:3’37)13 "(xq}Y.L;) - Then the
hypothesis of the first part of the‘thégreﬁ is that
e T X
f Xp T X =X - ?3

=

X)= X%y - X3 and y,U-y) =y, - ¥,

7 = 0. then the lines "‘?l'?g‘ and
are vertical and ﬁéﬁcéhparaliél. If x
then byj@%ﬁisi@n

4

2
2 1"1,; Xy = %5 fé 0,
o : -;.
- Aoy v - g

1 Xy = Xg,

xz'aa

_ 'PBPA are equal and. hence,

are paralilel. In every case, then,

_ when the given points are not llinear, PIPE 1s parallel to
» ﬁgﬁh . Now from the hypothesis that——— e e e
*g T ¥ T Xy - Xy and y, -y
we obtain at once

Y1 = YL‘ = yg ’
= N _ ~ B - . ¢ _ N _ \\
. X3 - X =X - X5 and yS ¥y f Yy yg . ~
-Hencej by an argument analogous to the one we have Just gilven,
it follows that PlPé i3 parallel to :

TPy

Fa(xq,¥4) - - '
(PP Il’FBPZ) )

(PP5 |I7F,P})

oy’
vm‘
T
o e i
i

e
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Thefefore, ir Pl 2 PB’ P4 are naf collineér,rthey form é
parallelogram, P,P,P;P) . Hence ) -
T T Pafo = BgPy N
and P, and Py, 1lie'on thé same side of the line i 3
. .2, ¥ : 1
Therefore (Pl’PE) " and (PB’PM) are equivalent, as asserted.
P 2. Now suppose that (F.P,) + (F;,P,) . Idt
> Py = (x5 - Xy + Xy, y2'= &l + ya) . Then the componehts of
e W <.
. E(xg = xl + QE ) 3 : (YE yl + yB) - ¥4l
2. :W,,,,,”J,hﬁ , S < LA S
or . i i - v
T, - ; ] |
- B .- Bt A T ‘ e
et el » . .
But these are also the components of (EQ P,) . It follows, <
: : then, from the first part of this thebre (which we have proved)
f that ' ~
%
(PB:P ) 13 2) . '

But the hypothesls of this'part tells us tﬁat
hY

(F58,) = (75 F)

P F,)
' Because of the transitivity propérty of directed segment
equivalence we conclude that '

—m e )
(EBJEE) = “'(PB: P),l,\"
By Theorem 10-1, it follows that P5 = %E}; or
« . If + xg = Xy and- ygr¥iy1 + yB = yd R
or ; & : -
= ? =
e Xp = % =Xy - X3 and ¥, -y =Yy - V3
This camﬁhetes the proof of the theoremn. \

ASgéﬂ immediate chsequence of this last theorem, tagethéf




i lQ—E : L= . o )
THEDREM 1023, 1If ‘P, and 'PE have coordinates (x,,y,) and'
(xE,yE) » Peepeet;vely, the length of eny directed
segment equivalent to (P 2) is .

Y T 2 .
4 ‘ 4/(12 = ——1) ’F_(Yg = Yl) »
J ’ .

We heve, in effeet defined equivalent direeted Eegments=

regardless of theilr 1nltiaﬂ peinte Anothef intereeting class .
of directed eegmenteweoneleteaef those having the same initial
L~ point and direction, regardless of their lengths.. This leads
to the ldea of the product of a directed eegment<end e number,
——_Which 1s_ medetpreeiEE in the fellewlﬁg definition: ,;T,eﬂm;_e_"ea__,t

%

DEFINITION. ' Let (ji%ﬂ be any directed eegment and
let k be any real number. The ﬁreduet (A , B) ,

is the directed segment (A,X) "wheré X isthe . '~
point whose coordinate 1s k 1in -the coordinate :
eyetem on ifﬁﬁ, with origin A and unit point B .

PEFINITION. The directed segment -1 - (K;B) = - (&) B)
is called the opposite of. the direeted segment (%,B)

The following figure illuatfetee the multiplication of a
directed segment by the numbers 2 and -2 : . )

. & ) e
(k=2) - (k=-2) S
-—— — e e -t Y A S
© A B - X X A B
_ " AX=2-AB : . " AX= 2AB= ~(-2)-AB g
= : :
We note that, 1f k >0 then X is in AB; if k <O,

then X 1s in.the ray opposite to AB ; df k = 0 , then' ,
X = A- . This last result introduces the possibility of (A,n) ,
a zero directed segment. '
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et As we might expégt, when a° diteeted segmant is multiplied

'S;\V? by a number, k', the camponents of the directeé segmént gge

s both multiplied by the Eame number. More precisely we have the
follawirig t.heax‘eql oo B T -

=

e

.

THEOREM 10=4, If the coordinates of ' P, and P, are (xl,yl)

iy
Carid (xg,yz)s, resﬁeetivelyf the én the components Df thé

'directed ségmént (E P ) which is k times thé directed
segment (P 2) are l{(xE - %) and k(y, - ¥;) .

o 7 o ;_W._ili = ] o o . )

~ Proof: Let (Ping) 2 [x3 %X, ¥y - yll . -

R Eagthe@c .Palnr. ThEOTEM -« o g o e e e

1l
I

XE X

1+ k(xg - %) and yy =y, + k(yy - ;)

or

Xq - X) » k(x, - xl) and y, iiyl = g(yg - yi) .

A f— o .
Thus (P,P3) = [k(xy - xp) , k(y, - yy)) .
~
Problem Set 10- Ea

l1.. A 'and B are two points. List all the directed line
segments they determine. .. o :

(3™

A, B, C are three points. List all the directed line
segmenté they determine.: g :

3. In the figures belaw list the equivalent directed 1ine
segments. -

A B c D

G

~ FIGURE o e FIGURE b

\ c F '
)
C J@\ o \
s ] B8 DO :

FIGURE ¢
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4, If A, B, C, B are distinct points and (é,E) + (G,D) ,
show for each of the follawiﬁg cases that (K,¢) = (B,D) :

(a 4, B, C, D are callinear in that order.
. (5) A, C, B, D are collinear in that ordér.
(¢) No threé of A, B, U, D 'are collinear,
(d) why did we not ccnsider three points éallinear )
“in Part (c) °? _ '
(e} Why do we not consider A, C, D, B collinééivin
that order? ) w{
5, If B, F, G, H are distinct points, (E F) (Eéﬁ)’
’ and a line Jgjiﬂ not perpendicular to“iﬁfﬁgand does ngé
intersect BF , show that the projections of (B,F) - an !
--—»~-»-~*—»—~{ﬁ})—-- o~ - are -equivaTent “directed Segments: ~Letthe
projection of B on J? be B' , and consider three

cases:
(a) G 1s contained in ~EB'
(b) G is in the same halfplane as F with respect
' -— :
to BB' . :
(¢) G 1is in a different halfplane from F with
respect to BB!
6. Determine k so that each of the following statements’ {
is true. - '
7
G -
Uy JR. _ — . J
(a) (A,C) = k(A,B) o (£) (A,D) = k(A,F)
(p) (AE) = k(A,B) (g) (A,F) 2 k(A,B)
(e¢) " (A,F) 2 k(A,E) . (h) (B,C) = k(A;D)
(d) (D!A) = k(A F) (1) - (E:C) = k(AsF)
= e
(e) (A,E) = k(A,C)
8.
.
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7. A, B, &{» are call;near points.: Find-r &u
(A X) : r(A, B) and s such that (‘E,x);-;

(a) is the midpoint ;
' (b) 1s the midpoint of segment AX ;
) (e) 1s the midpoint of segment BX ;
(a) is two-thirds of the way from A B
(e) of the way from A to X};
B X

1s two-thirds
T (£) of the wgi fron B to X .
X 13 the midpoint of AC and Y )

1s two-thirds
8. 1In triangle
Determine Kk 8o that each of

L

o o»d >

=

ABC ,
is the midpoint of BX .
the followlhg statements is true. )

(B;X)

(a)" (B,

(b)

(e)

(a)
(e)

(£)
(g)

(B,¥)
(7€)
(K;0)
(5.X)
(C5K)

(5;B)

2 k(BY)..
= x(5;X) .
+ k(CT;R)

L k(T7X) .

: k(GA) .
= k(KX) .
2 k(BY) ..

" 9.. In the pardlTelogram ABCD , E 1s the midpoint of D
.~ and  AE 'trisec t.g *ﬁ 'at F as indicated below.
| C LT e

I g _\\f}l'

so each of the followlng statements 1is true.
RCB}DQ

‘ Determine k
oo (a) (5;F) = k(5,B) . (e)

fhe

(F,B)

(b) (D,E) = k(C,D) (£) (5B = k(D50 .
(c) (B,D) * k(5,F) (8) (KD) = k(GBY. .
(d) (F,B) = k(P,B)

e " o
696
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Having now dlscussed briefly the product of a directed
segment and a number, i1t i1s natural to ask 1if the sum _of two

directed segments can be defined. Sincé the displacement from
B to C following, or in a sense "added to," the displacement

10-2 - « .

from A -to B accomplishes exactly the same thing as the

displacement froMl A to C , N
e O .

it seems nptural to write
N — —_— ., e
(A,B) + (B,C) = (A,C) .
However, as a possible definition of the sum of twagﬁirecgédé
segments, this expression has serious limitations, for it

of the first 1s the origin of the second. With the idea of
equigglént directeféiegmentsVEfkéind, we might go further and
say that to add (C,D) to (A,B) where B and C are
different points,/first determine- the unléué directed segment,
' (é:fﬁ) , which 1is\equivalent to (ETE) (Theorem 10-1) and
then add 1t to (3?%) , according to the above geometric
definitions. ‘ ’ -

]

D




"10-2
This procedure ﬁermlts us to form the 8um of any twa dlrected
segments. ngever,atﬂg Pesulting praéess is a very curiaus

- typé o additién, for, as the folléwing flguré shows,
(A B) + (C D) 1s not the same as (G;D) + (A,B)

From the preceding figure, it appearg that althaugh ]f
[}
(A B) + (C D) is not the same as (C;D) + (A,E) , these two
directed segments are equivalent. That this is actually ‘the

case follows from the next theoreﬁ:

THEOREM 10-5. The components of (Fl,F )+ (PB,PA) arge the

—y _
ums of the carresp@nding components of (Pl’"g) and
E‘k ~
(P3,Py) . &

. ] .
To prove this, let theefonrdinates of Pl’ Pg, PB’ Py be

M

(x95¥1)s (x5,¥,), (EB,yE), Xy,¥y) » respectively. Then the
égﬁpanenfs;of (P ) are :[xg =X, Vs - yll and the

_components of (Egng) are [34 - X3, ¥y - YBJ . Now to add
. .~ —_— e _ -

,(PEQPM) to (Pl’PE) we must first determine the directed
segment, (E@;Pq') which 1s equivalent to (PE’PH) . Since

equlvalent directed segments have the same components
¢ (Theorem 10-2) it follows that the components of (PE’PH') are




=

10-2

L o , ' " P (x4-x3+x2,y4-y3ty3)
. ) . Pa(x4,y4) ' ‘ 4 .o
f
~
YR -/
. Palx2.y2) 7
x[f E'i =X, - X, and V' - Y. =9, - ¥ - -
, p = Xy - X3 and y), Yo =¥y - 93 -
— Hence the caardinatea of FA are
| - . 7 3 I = - i *
Xy Xy ;3 + KE' and ﬁy% = yu> eyB + y2 1
Therefore the componenta of the aum
. ;—;’7735'— s - fammmmdmy s - o e e emm s e e i
- - R B oy, ) o
S (%) - x5 + xé) - % o= (xy - x3)+ (%, - xl) )
and )
& . 7l o ) ) B i T C
(YL; = YZ + yg) = yl = (Yu = YS) + (yé = Yl) .
o = i . —
- Clearly, the cqgmponents of the sum, (Pl’PE) + (PBPPM) are
the sums of the corresponding components of (P s P ) and
—_— J 1
(PB’PL) , as asserted. | - ¥ }
— N
From this theg?ém, it is apparent that (Pl’PE) + (PB’EQ)
and (PB’PM) + (Fl’PE) have the same compdnents. Hence, by
! Theorem 10-2 they are equivalent. Thus we have the following
theorem:
56 P,P.) + . and 5P, & ?geé%' are
g‘I;EDREM 10-6. (P;,F,) + (EE,EA) and (PB,PA) * (F,P,) are
equivalent directed segments. ’ T
4
I . éf‘! ?
PR x L 699
) . - o
i
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( . . The following theédrem 1
Theorem 10-5;
o ) oS f SN A N
THEOREM 10-7. If -(P,P,) £ (3),Q;) and (F;7,) ¢ (&5,Q,)
] o 7 gé‘ E!B;i - s 7?""‘ SO b
then (P,P,) + (P;;F,) = (Q,Q) + (Qa,%) ..

-y -‘F T . , "
On the basis of tke - ‘preceding discussian, 1t should oceur
to us that instead of fo 4 our attention on directed
’ segments, it might be*bette? to consider as fundamental
entities the various sets of .equivalent directed segments.
. This 1is really not 'difficult to do, even though each set.
f ' contains infinitely many members, for according to The rem 10-2
I!' each such set is cha a;gerised by a unique pair of cozganents,
and canversely. other wards, there is a one-to-one corre<

' &

each set of equivalent directed segments Mcreover, Af %e

define the sum of two seta of equivalent directéd segments,
.8y and Sg,: to be the unique set which contains the sum oi)

any dirdcted segment from Sl and any directed segment frc
agggg » we have a process of addition in which, by Theorem 10-=5.

ant:i@heorem 10-6, 1t in\tme that

Sl + SE = SE + Sl
S —

« In the rest of this chapter we shall adopt the point of
view we have just described. Sets of equivalent directed
segments, or the ordered pairs of components which are in
!DDEEtGiGﬁE corréspandence with these seta, we shall eall.
vectors. A diregted segment is thus not a vector, althcugh it

v clearly determines the vector consisting of all the directed
segments equivalent to the gﬁgen one. (Each directedgsegment 1is
thus a representation of a-vectcr,,invggiewhat the same way that
each member of g set gf_equivalent fractions such as

; - 'l 2 9
' s\ /‘\§Jﬁ;%lfgl

ies a representation of a unigue real number.
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LS ’ - .t . K

A

*

—In the néxt se:tian we shall 1ntrgduce formal derinitians

3
fsbectars and their praperties chwever, these are all
motivated by the properties of directed segmerits which we have

discussed iIn this sectian. If you keep the latter in mind, the N

work ahead gﬁgyau should seem a natural extension of what we
have alweady done, - o '
-
4 - ,

=

Problem Set 10-2b

You may recall from the algebra of real numbers the
following definition: ) )

DggingIoﬁ; If a, b are two real numbers, then
a - b 1s the real number ¢ “such that b + ¢ .= a

The operation of fipding c¢ Where a, b are
given 1is subtraction. :

=

Using the above definition as a gﬁlde write a definition

,far_theAgubtractign of two dirégtédiliﬁg segments. !

In triangle ABC c’
L] A e C
() . (5,B) + (BC) = 2
(b)) (B,A) + 2 = (B¢C) ‘
(e) 7+ (BR) = (B;C)
(@) 2+ (&D) = (K1) : \
(e) (KB) + (BC) + (TR) = 2 - ;
(f) (BA) + (KC) + (5;B) = =2
(8) (GR) + 2 = (5B )
X
e
= g ~ —

I3

L



lD_:E 7 * kY

- L] -

3. In parallelogram ABCD

- ~(a) (EB)
o . P “4
(b) ~(A,D) =. 2 -
. —_— e N
(c) (EB) + (BC) + (TD) = 2 f
(d) (A,D) + (B,B) + (B,A) = *
- . S . —a s
%. Given two directed line segments (&,B) , (C,D) and
‘ horizontal 1ines .¢ ‘and 451 , s indicated ,below.
. . B ! - e

)

?

+

£

, i gg .
Find.gfaphigally. -
(a) (EB) + (5,D) :
() (©D) + (KB . ‘ |
7 A WEathiS true .aboutthe two sums?
, 5. Given (KB) , (T;D) , (E;F) ~as, shown velow; £, 421 ,

JZE are horizontal lines. ) Q¥§§? ’

Find graphically
JRa—— N
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« «b., ILetting 1.

miles due north then

5g

- What appears to be true of

inch represent
s - 7 . - i = .
the resultant displacemént if an automobile tiavels , &

7. ABCD 1is a parallelogram.
AC 'amd’ DE trisgct each other at F
B b

E

- *(}f)' (5B) (@® + &) -

(&) (75 + @B)r &)

2

the two

miles, find
J

this by adding the‘ sum

o

sums) in (d) and (e)?

5 milles no;theastg

158 the midpoint of

v (a) (DR) + (KE) = 9

(b)) (BE) ¥ 2(5B) = (

,(G) %(ffﬁ)
(@) 2(&, %)

(e) 2(K;B)

W ,
10-3. Vectors,.

—_
A,F)

— - ?_gé)

+ 2(A,C)

+(ET) = (R,

f,_:'_ 1

[l
o

)

v 2(E;D) = 2K

e

AB ;

g?aph;call¥
& 3

Motlivated by our discussion at the end of the preceding

definitions.
DEFINITION.

DEFINITION.

Any real number 1s called a scalar.

A vector 1is an ordered palr of real -

numbers, called the components of the vector.

I



10-3
1
Notation A vector will often be denoted by a
single lower case letter with a half arrow above
it, thus: W . If a and b are the components ~3

of a vector we may also denote the vector by.the

’ symbol [a,b] . 1If the components of a vector ~-
- are the same as the components of a directed
seéﬁent (P Q) we may denote the vector by the
symbol PQ . ' , ,
: @ : ‘ :
- ‘We should note that square brackets, rather than parentheses

are used in the Sygbol [a%b] s fpr the vector whose components
are a and b .- This-1s done to avoid confusion with erdered
pairs of real numbers such as (x,y) ~which are the
coordinates of a point. We should also be careful rot to
confuse the symbol, ?6 ,,&n;the v§552; determined by the _
point P and Q wilth the symbol, PQ , for the ray determined
by P and Q . The former has only a half arrow above the
. letters; the latter has /a full arrow.

DEFINITION. If O =Ja,b] , the number #a® + b° .

s called thF magnitude, or length, of .

Notation. The mégnitude, or length, of by is
denoted by the symbol |T]

DEFINITION. The ordered pair [0,0] 1is called
the zero vector.

fa,b] and if k 13 any

"DEFINITION. If 1
real number, the vector

=

[ka, kb] = kla,b] = ki@

is called the product of tha vector u and the

scalar k .

‘DEFINITION. Two vectors are equal 1f and on3¥y
if theilr respective-components are equal,

704 ?
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DEFINITION. Non-zero vectors whose components are

proportional are sald to be parallel.

of parallel vectors and the coneept of slope.

¥

Egﬁ@ﬁEﬂ ;Q;@, if P.P, and P3P4 are parallel vectors, then =

12
oal——— | a -
and PBPQ %re parallel™

"—Za - . 3
The=folla&ing simple Dutrvery important theorem iéjaﬁ
immedliate consequence of the definition of bar?llel vectors, ‘
the definition of tne product of a vector and,a scalar, and

the definition of fie mégﬁitude of a vector. T -

5 s

THEOREM 10-9. If U and ¥. are parallel vectors, then
V= ki ”

i

where

-
[z]
"z}
I
=
=
=
=
2
2
=
]
=
il

[a,p] and V = [e,d] ,

[a+c, b+d] =[a,b] + [c,d] =T+ ¥

igcalled the sum of U and V .

DEFINITION. The vector 1
the difference between U

Notation. The difference between ij and
1s written U - V .

. !
The following lmportant théarémfis,an Immediate conse-
quence of Theorems 10-2 and 10-5. '

€
%

o
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THEOREM 10-10. The sum of the vector PlPﬁ and the vector

P3P, 1s the vector P,X where X 1s the unique poi%t

!’ — —_ ’ L1 -
# ) . such that P.X = PgPL ) . }
’ : { .
- . ‘\ .
< The "geom&@trical significance “@f this theorem is illustrated

]

in the”following figure.

' -

. ’ i A
5 ? ir =
i
. -2 . I o -
V. ) o
v Ej_ 5 = [agb]
. G
PPy = [c,d]
s \
3 ;o PX = Pgp, |
PR Py X PP, + PBPM
- I J = =
; ‘3 i ' [a + ¢, b + d]
P

Since vectors are not numbefq, there 1s no reason to
believe that they ahey{jﬁe same laws that govern the operations.
ef arithmetic. Actually the addition of vecters and the
multiplication of vectors by Sgalafs do obey the familiar laws
of arithmetic For this reason we shall merély 11st thes
pf@peftié
do, indeed, hold for Véctor“

it
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Aruitoxt provided by Eic:



. - Properties of Vectors

—_ . . B . Pl == P
; Vv are vectors, then u + Vv 13 a vector.

ot
o |

)ty

="

=

u, V, W, are any three vectors then

(T

- 3. There exists a vector, O , such that for any végtif a
\\‘s‘

n
e

oy
o il

V) W=u+ (V+wW) . o

=] "
+

= —== ==
u+ 0=u
"4, For every vector U there exlsts a vector -u such that

U+ (=)

o=

0

i

-—= o _ N . = e
v-,are any two vectors, then u + v = v + u

wn
[
(o

= =k

, V are any two vectors and k 1s any scalar, then

iy
[
by

k(T + V) = kK0 + kv .

1s any vector, then ki = U when k =1

-
.
Iy
|
e
L

]
b
[
ot}
s
i
el
it
O
i
i
joi}
po
o
E
]
H
s
1)
=
&
o
E
2
o
D
g
[t
ks
]
i
ot
Fag
wm
o

any vec

WL
[aa}
[
el
-
[y}

any vector and h , k are any s&scalars, then’
h(k@) = hk@ = k(hid) . .
10. if u 1s any vector and RA is any =calar, then .
- Bl = el - (8] .
Property 1 13 an immedlate consequence of the definition “}
of the sum of two vectors.
To preve Property 2, let u = (a,b] , V = [c,d] , and

=
W

- = [E,f} R Then 2
(T+ V) + W= ([la,b] + [e,d]) + [e,f]

=[a+c, b+.d] + [e,r]

= [(a+c)+e, (b+d) +r)

=[a+ (che), b+ (d+ )],

= [a,b] + [c + e , d + f]

= [a,b] + ([e,d] + [e,f])
. R =T+ (V+ W), as asserted. 3

] <
707
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Properties 3 and 4 follow immediately from the definition
of the sum of two vectors and the definitions of the Zero
vector and the-difference between two vectors.

=

To prove Property 5, let U = [a,b] and

<

(c,d]
Then

asserted.

i
<y
+
= .
w
]

The proofs of Properties 6 to 10 are very much like the
-two proofs we have given, and to save time we omlt them. In
each case, 1t 1is the corresponding property of the real numbers
which appear as components that plays the declsive role in the

proof,

Problem Set

0-3

b

Lo

- 1. If A, B, C are respectively (1,2) , (4,3) , (6,1)

express each of the followlng vectors in component form.
. (a) AB . . (e) CB .
(b) BA . (f) €A .
—T —
(¢) AA . - (g) BC .
(d) AC
2. BSame as Problem 1 if A, B, C are respectively (-1,2) ,
(4,-3) , and (-6,-1)
3. If A, B, C are respectively ~(1,2) , (4,3) , (6,1)
¥
find X so that
(2} AB = CX . (c) XA =CB
3 —= P . . —_
(b) AX =CB . (d) XA = EC
4. Same as Problem 3, if A, B, C are respectively (-1,2) ,
(LL,:;E‘) H] (’63:1) H ’
7
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5. Given g: [3: J » ‘S: [54:3] ) E;; [5:’6] o ‘Qz

2
Determine the followlng.

(a) 2+ 0 () -0 -c¢.

. (») &-3T (f) ©+¢ -3,
(¢) © -2 (g) a-b-¢
(d) 2+ -3

6. Using the vectors 1n Problem 5, determiné

-

(a) 28 + 2B . (e) b -~ 2F
(b) 2(2 + b) . (£) -a +

a
(¢) -37 .

N,

+

ol ok
F"’T \nu}lgr‘

3
1
|

y 3= >
N (g) 72 - b +
(d) 2b - ¢
7. Uslng the vectors in Problem 5, find the real number i
: e
which expresses each of the following.
(a) 18] . (e) 1&-28]. -
(b) |® + c]| . () |a + b| . )
- . == : == :
(c) 1Bl . (g) 12 +78+ 2|
(d) I<] :
8. Determine a and b so that
%
(a) [a,b] + [3,4] = [3,1] .
(b) [a;b] + [E;l] = [1;’3] =
(¢) [1,0] = [2,4] + [a,b] .
(d) [Dgl] = [fajl] + [a;b] N . Fa
(e) [(a,p] + [3,1]= [3,1] .
9, Physlicists have found that forces and velocltles obey the
law of vector addition. Physicists call this sum the
resultant., Using this knowledge and a scale of 1 inch
' to represent 2 miles per hour, solve the following
problem graphically. '
%
7Q9 *°
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£ - A river has a 3 mile per hour current, A motor
- boat moves directly across the river at 5 miles per
hour. How fast and 1n what direction would the boat be.
traveliﬁg if there were no current and the same power
and heading were used in crossing the river?

= 3

10-4. The Two Fundamental Theéreg@.

Many of the.applications of vectors depend upon one or
the other of two theorems, which we shall now prove.

You willl note in the proofs of these theorems that we -

refer to diagrams of geometric‘figures when we speak of vectors,

While a vector 1a an ordered palr of numbers and not a set of
polnts,, the fact that a directed segment determines a vector

“and “that a vector together with an initial point determines a

directed segment, enable us to think of a directed segment as

a vector.

’ — —2u
THEOREM 10-11. If OA and OB are two non-zero vectors

which are not parallel and if oF 1s any vector in the

plane’ OAB , thén there exist gcalars h and k such
[ . :

that : : : r

kY

3 s
OP = h@A+ kOB .
e Ty ]

z

parallel to either g or OB , the assertion of
—_—
em follows immediately from Thegorem 10-9, If OP
—=

If 5§ is the zero vector, it is obvious that h = k =
3
em
r the zero vector nor a vector parallel to OA or

e

710
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OB , let m be the line which contailns P and 1s parallel to
- . .
OB and let n be Ltue line wnich contalns P and is parallel

-
to DA .

OA and let N ©be the

5 by Theorem 10-10 tha}/

—
= kOB ,

an interesting algebralc interpretation.

3
pa
g
i
i
=]
[t
iz
f
-
b
jp
]
]

- - e F b N —= - - ] S - |
aj,a,l , OB = Lulst‘g] and OP = [pl ng] , then the

—_— -
assertion OP = hOA + KOB 15 true if and only 11 there exist

numbers h and k such that

[pyspy] = nlag,ag] + klby,b,]
= [haljhagl + [Kbl,kibg]

= [ha + ko ]

(&

+ kbl , ha.

I
s

1

This in turn requlres that

and Y

I
=7 i I
{1l ~ 1 i
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Now we know that theée equétians have a unique solution for
h and k unless their coefficients in one of the equations
i arg zero or unless-thelr coefficients in’thestwo équations are
prbporti@nalﬁgkif the %pefficients are proportional, then
i e AN
i —= = == or equlvalently

a b
2

#],
1}
M

‘ﬂ:\‘ ‘

' . - H

But this 1z precisely the conddition that OA and 5% should

— —= . S
theorem. Thus, 1f OA and OB are non-zero, non-parallel
vectors, whose components are known, It is possible to express

_ e -
a third vector, OP 1in terms of OA and OB 1in a purely

algebraic way.

Example -

=
W

ks
o
®
]
e

{(5,2] 1in terms of W = [2,3] and V = [-1,4]
To do this, we must determine h and k so that

(5,2] = n(2,3] + k[-1,4] -,
* = [2h,3h] + [-k, kK] |
[2h - k , 3h + bk] .

Thls requires that

5 and 3h + 4k =2 ,

)

2h - k

Solving these two equations simultaneously, we find

s k=-1.

]

h =

! The second of our fundamental theorems is the followlng.

THEOREM 10-12. If W and V are non-zero, non-parallel
: vectors, and 1f X, y, 2, w are scalars such that

=5 —= et —w
XU + yv = ZU + wWv ,
then

=z and y =W .

s
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To prove thié, we observe that by adding the vector
-(z0 + yV) to both sidesvof the given equation,
— =% Y
Xu + yv = zu + wy

or, using Property 9

(x-a z)u

<

If x - 2z # 0 we can write

(w = y)V . ,

=

= —_— == i
e U = % v . ,
, : - .

)

=

From this we conclude elther that U 1s the zero vector

(1f w -y = 0) or else that W and V are parallel (since
one 1s a scalar multiple of the other.) However each of* these
alternatlives contradicts the hypothesis of the theorem. Hence
X - z cannot be different from zero and so x = z . But if

z , then ié follows that | )

—

0

Xx =

(W~ y)v

and since Vv 1is not the zero vector, by hypothesis, it follows

that w =y . Hence

x z and w =y , as asserted.

‘Problem Set 10-4

Determine " x and y 80 that each of the followlng state-

ments 13 true. /

1. [-6,-1] = x[3,4] + y(4,3] |

2. x[3,-1] + y[3,1] = [5,6]

géi x[3,2] + y[2,3]) = [1,2]
" .

. x[3,2) + y[-2;3) = [5,6]
5. x[3,2] + y[6,4) = [-3,-2] .

]

~
-

'
[



10-5 ™~ .
A 10-5. GeometricAl Application of Vectors.

3 u
Marfy theorems in geometry can be proved by means of*

vectors. In this section we uhaki preuent s@varal typical

. i
Vexamplés i vector proofs of geometrical theorems. » .
\ THEOREM 10-13. The midpoints of the sides & of.any quadrilateral
© are the vertlices of a parallelogram. ) .*
¥ - - _ _ A . 1 ’ B _
Proof: Let A, B, C, D be the vertices of the quadri- .
lateral and let P, Q, R, 8 be the miép@intg Df the sides |
AB , BC , TD, DA , respectively. ¥
[ ~ -'--,__Z’R »
P L \’:\j"'—_%-—’_
5 - == P T ==,
By hypothesis, 3D = %ﬂﬁ , 7 o= %DF , P oo %K% , P = %Eﬁ .
! Hernce SK = 8D + D = g(Au + QL)
I — —= 1 N
and PQ = PB + BQ = §(AE + EQ) .
Moreover AD + DC = AB + BC , since each 1s equal to AC
. i = == ’
Therefore SR = PQ ,
. R - . _ . e < - - -
which 1mplies that SR = PQ and 3R I] PQ .. Hence PQRS
is'a parallelogram, as asserted. -

'rﬁ"t:
-

L
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THEOREM -10-14. The segment Joining the midpoints of two sides
.~ of a trlangle is parallel to the ' third side and the length
= of the segment, 1s one Palf the 1ength of the third side.

%

Prooft Let_ A, % C be the veztiéeg of the triapgle and

let D and -E be the midpaint of . :?E and BAC re spectiv V.
-—Afi .
Tt A

¥

E
' ; & f -
/ B — — > N
f’ E =
&
. — 1=— T
By nhypothesls DA = =BA and AE = =AC
- —= —= 1, —== =
DE = DA + AE = =(BA + AC)
Hence - '
# - 7 3 =
which implies that DE =-=BC and DE || BC as asserted.
THEOREM 10-15. A quadrilateral 1s a parallelogram if and only
)

ERIC

Aruitoxt provided by Eic:
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G T G = ' .
Let AD'=u ‘and DC =.v.. Then AC =u +7¥ and

=V -1 . Slnce A, M, C are: aallinaar, Eﬁ ia some
salar multipia of AC , say x(u + v) Similarly
= y(v_— u) .. :Since’ AD + DM = AM » we have

=) a’ =

T+FV-U) =x(T+V)
or, callacﬁing 1ika terms,

(1-y-x)d+(y-K¥=5.

li
o

'ﬁzjera_f‘or‘a l1-%x-y=0 and y - x :

,#_Saiving;j:haaa aimultanacualy we find

-y L /
e ‘=Y T3
- Hence L R
L ’ | =18 ena DR - 15D
‘i‘i A :’\ th .7 E o q - § *
R These imply AM = %AC and DM = %PB , as asserted,
Now let ABCD be any Quadrilataral with lta diagcnala
biaacting aach ather at M aa that 'BM = MB and AM = MC .
— é —
Lat t = A MC and w a DM = MB . Than AB =t + w and
DC = ﬁ§+ef§; therefore Eﬁ = EE , which implies that AB DC
and ¥;; Il . Hence ABCD 1s a parallelogram .

Problem Set 10-5

1. The segment jﬁfhing'the midpointa of the non-parallel .
sldes of a trapezold is called the median of the
tfaﬁaacid. Prcva thaﬁﬁtha‘madian éf a trapezold 1s
parallel to the bases and has a langth equal to one-half
the sum'.of the lengths of the bases, ’

2. let ABCD be & trapezold, with B ||*CD", and E, F

the midpointa of AC s BD , respectively. Prove that

/

EF = glAa_f c| . ' ~

3. Prove that fha mediana of a triangle are concurrent at
the pcint which trisects each median.

716 1
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4. Let ABCD be a parallelagram, with E the midpofnt
' "EB , and DE intersecting A at P . Prove th
" 18 a point of trisection’of AT . - -

B T L e

5. Let ABCD be a parallelogram, with E the point on TB
‘such that AE —AB , with DE intersegtlng i at F..

[}

~ Prove that AF = ————IAC .

10-6. The- Scalar Product of Two Vectara

In Section 1®§3 we defined what we meant by twa-pérallél
‘vectors. It 1s now EOﬂVéﬂiEnt to introduce the ideas of

perpegdicular vectors.

. L ; = .
DEFINITION. Two vectors, P1Q1 and PVQE are
L . - ' \
sald to be perpendicular ifr 'PlQi %a perpendlcular_

- b
to EEQE .

In many applieations it 1s important to be able to tell whether
or not two ve~toras are perpendigular. To develop a procedure
-for deciding this queatiaﬁ, consider two non-zero vectors

OF = [gl,pg] and - 0Q = [ql,qgl . These will be pergggﬂ%cular
if and only if APOQ has a right angle at 0 . By the 2
Pythagorean Theorem, this\willibe the case

if and only if

el

15912
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- > A
Now s OF +

. T

i

THEOREM 10-16. Two non-zero 3
” only if the sum of the products of their respective

”m vigj
ﬁﬁ F 2l
o=

Now, recalliﬁg the deflnltian of the magnitude or length of a
in the form

vector, we can write IPQI IDPI* + IGQI

* 7(‘;1 - Pl)g + (qE = P2)7 =

* or, expanding and calieéting&térmg, .

2 o\ 2
1

Hence, N
-2(pyqy + pyd,) >0

or .
P393 * P4y =0

Thus, since the preceding Steps are all reversible, we have

established the followlng important theore

componenta is zZero.

£

The number P19y + Py, obtalned fram the components sf

{ql = pj.'*’ qE =

i

2 /2

LN

m.

Pl -

0 2 . .2 ;
(%1 + Py ) +iﬁql€ +t 9

3

%)

3

2

2

2 B . _ .
Q- = qupl + Pl :f QE = EQZPE + pg = pl + Pg::-; Fh;ql, + q? T

4 ctérs are perpendicular if and

the vectors [pl;pg]i and [qqug] 15 a very 1mpartant quantity

—

'DEFINITION, If U = [py,p,) and ¥

‘and itqis convenient to have a nameﬂfor it.

= [qlqu] I

the number P19; + Pyl is called thé scalar

—i —_—

product of u -and

Notation. The scalar product of "%

denoted by the symbol, u - v (rvead
Ey iy -
<24

wand ‘?
Mu o ddt

is

‘ivii) .
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We should understand that the stalar product of 'twa'
vectora is a scalar and not a vector. .The name scalar produc:t
is used to emphasize this faet. .
There are aeveral'imparit:aﬁﬁ alsdbraic properties of the
© . scalar product of two vec’,mrs wlth which we should be familiar
L % These are not hard to prov®, and we leave the proofs of the
+ Flrst two as exercises, _ -

Property 1, U V=7V -0 .

Property 2. U - (V+ W)'=T . V+0 W
Property 3. If k is.a scalar, -4 - (ki) = (ki) - W
2 Sy f - )
= k(U - W)
Property 4. U «'U = ITTIIE . e ~

\E We have already seen’ (Tﬁea%em 10-16) that two no},\-zero

ectors. are perpendicular if and only if their scédlar product

- 1s zero. However, whether two vectors are pe}‘pendicular or
‘not, thelr scalar product has an interegting geometrical inter-
pretation. To diacover this let OP and 0Q ,ée two non-zero

vectors and let OF be a scalar multiple of OP say
" Then :

%3
L
%\

E%L

3

.

=

5
We note that Fé =0 if and only if 6(3 = 1{5_% , which means
that. OQ and OP are paraliel. Now if F_‘?g # ] , FE and 0P
will be‘perpendicular if and only if

—

OP - FQ = OP - (0Q - kOP) = 0,
or, using répertieé 2 and 3 for scalar products,
, /

P .
OFP » 0@ - kOP - QF = O

L4




2 1"?{_
Let k!

ThE‘ﬁ%-,% v 7

-

L”

be the vd4liué o6f "k determined by thi

} equation.
1 | [ Ix'3P| 10B] 1f ki >0
DE’!DQ.;}:'QP-DP ,|D|§ 0o - if k' =0
P -1x'0P| |GB| 4ir k' <o
Tﬂ interprét this: result it is convenlent to introduce
thé fallawing definiticn.
, . . DEFINITION.

By the projectign of a veector AB
a vector CD we mean the- veetar

on
—
MN:; where M
and N are, respectively, the feet of the perpen-
diculars from A and B to.the line ™.

# L
The following figure 1llustrates this definition

MN is the prajectlon
. of iB

on CD
4

Néw k1

: A
is the value assumed d by k when FQil oP .
k'OP 1s the projection of 08 on OF and
length cf this prajecticn. Moreever
is parallel to
Hence in all cases,

Hence
|k10P|

is the v
A
if EQ 0 , then QQ
OP ’ and DQ 1s itz own projection on OP .

derived above, and noting

k'DP "Is the prajectian of OQ on
Returning now to the ex

—
OF .
expression for QP DQ which we
oting the symmetry of the Ecala? product
guaranteed by Property 1, 1t follows that, .except for sign,
.. _ k. o
the scalar product of two vectors; OP and 0Q » Aa equal to
elther: _ ’
.
FE A

720
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,lgié i-;. v . et s a3 ) |

(a) The length of 6§',multiplied by the 1Ength of the
projection of 63 on OP s OT

(b) . The length of OQ multipl;l.ed b;r the length. af‘ the
projection of 5§$;an Q. .

The sign of the scalar prﬂauct is poaitive if k' >0,
-+ thdt 1s, if P’ lles on the ray OF", and negative if k' < O ,
that 1s, if F 1ies on the ray opposite to OF .
As an example of the use of the scalar praduet in coordinate

geometry, let 0{0,0) and F(a,b) be two distinct points in

the xy-plane and let _& be the line which is perpendicular to
CF at F . If P(};,y) ';E any point of ﬁ distinct from F ,

;i? will be perpendieula§ to “oF" if and,only if

F(Liﬂ

Fla ,0)

£

(a,b] and FP =[x -a, y - b] .
O c¢an be written

=
£

ur

1]

— R .

Op-- FP =0 .: Now
(Why?) Hence OF
a(x - a) + b(y -'b) =0 or.- .
ax + by = ag + b2 .

By direct substitutian, it 1is eagy to verify that this equaticjn
.18 also satisfied by the coodrdinates of F ., Hence this
equation 1s an equation of the line Af . By an almost
identical argument 1t can be shown that if j contains O ,
an equation of gé’ is %:-; :

ax + by = 0 .
It 18 interesting to compare this discussion with the derivation
of an equation of a plane in Section 9-9.
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TF : s

:

: In each of the followiﬁg prablems detefmine the Scalar
- product and from 1t tell" whether the two vectors are
perpendicular. . s
1. [-5.2], [6,15] (7,31 , (3,-7] .
E- ] [6;3] % 3 2] [E:ELL] H [4;6] =
3. (-5,-2] , [3,5] . [12,2] , [-4,-24] .
)""i [‘2;3]; [5:”“4] [6:E3] ] [2:1] .
5 [3:*2]‘; [;3,2] = l [9:2] 2 [52,9]

11. Using the scalar-product; show that the line through
P(3,5) and Q(7,-1) 1s perpendicular to the line-
through R(0,0)  and 5(12,8) .

Loy

‘Cﬂ W oo =~

12, Using the scalar product, show that P(5,7) , Q(8,-5) ,
and R(0,-7) are the vertices of a right triangle. ’

13. By using Properties 1 and 2, show that ' -

_:s. N - A A
3) 7

(@-9) =~ (¥- - T -Z-V -W+V -2

14, Show that an equation of a 1iné!fhfougﬁ,the<origin is
ax + by = 0 .

‘1%- Prové Properties 1 and 2 of the élgébraic properties of

scalar~ products.

*

‘
10-7. Summary.

A directed segment 1s the mathematical entity which
corresponds to a displacement in the physical world. It dlffers
from a segment in that one’ of its endpoints is identified as an
origin and the other as a terminus. A directed segment there-
fore tells both a length and a direction. After défininé
equivalent directed segments we introduced a vecetor as a set of
eﬁuivalent directed segments. 3Since equivalent directed
segments hé&e thé'same components we can conslider a vector to
be an ordered pair of numbers, and this 1s how we defined a
veator. We used vectors to prove some geometric Fhecrems!

These proofs were sometimes simple due to the fazt that the
algebra of multipiyiﬁgiveetars by scalars is simllar to the
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‘ algebra we studied in previous grades. The chapter ended
with acalar multiplication which. enablaa us to prove twa
11naa parpaﬁﬂiaular and to find tha projection of one vaatar

-on another,

Review Prablama

1. Given. ABCD la a parallalagfam and E and +F trlaaatlan
painta of AC , such that E 1s aatwaan A and F .

= .2. Given parallelogram ABCD , and E and F =0 choasen --*
that AB + BE = AE and CD + DF = CF iand - BE = FD .
Shaw that AECF is a pafallalagram : '

3. Saaa that’ the points P(E 8).,4(0, -2) , R(-3,-7) are
collinear, ’ . N R

4, show that P(4,0) , Q(7,8)", R(0,10) and S(-3,2)

' are the verticeés of a paaallelagram.

5% 1f. & = [(4;0] , B =(-3,2] , ¢ = [7,8] find
(a) 2+ 1 ol "(a) § + §'+ T .

- . (b) &-¢ (a)- B -¢ .

»."6. In the figure D and "E are

midpoints of AB and ic ,
respectively.
(a) (KD) = 2(KB) . e
(o) 2(A,D) + (B,C) = *(K,E) .
(¢) (ED) + (D,E) = 2(K,C) .
(@) (BC) + (TR) = » B - —C

I
—
=
[
—
+
o
—
=
L]
L

(e) (5;B) + (B;T) =
7. A, B, C, D are vertices of a parallelogram. List all
the directed line segments they determine, and indicate

i

which pairs are a?uivalenti
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10.

A

o

-
=
-

If ABCD is a parallelogram, express

(a) (D5;C) and (5;R) .~ AQ) - (& B)

—

(v) (D;€) and (5;B) . - (e) (BK)

(¢) (5B) and (50) .

ABCD 1s a parallelogram and P, Q, R, S are the

= .

midpoints of" the sides.

(D,B) in terms of
and-(B,C) .

S —/Q

A

,Cl

For each of the following directed line segments, find -
an equivalent directed line segment of the form

r(5,8) + s(5;P) .

(a) (5,B) . : (e)
(b) (55%) . - (£)
(c) (T7D) . . T (g)
(d) (&) .~ (n)
Determine x and y 5o that
(a) =x[3,1] + yl[2,-1] = [13,1]
(v) x[2;3] + y[3,1] = [7,0]
(¢) =x[3,6] + y(4,2] = [4,2]
(a) =x[-3,2] + y(1,1] = [0,0]
(e) =x[1,2] + y[-1,1] = [6,6]

1]

724

(5;B) .
(K,0) .

(GR) .

" (B,D) .
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SR,

12, If A, B, C ape-zespectivety. (4,2) , (6,3) , (2,1}
express the following vectars; in component formm— - -
(a) (d) CB.

. (b)- BA . (e) BC . »

Bl &

13. Determine the scalar product of

(Eii.LE;E]'E [e,-1] ... (a) (3,61 , f1
(b) [1,1] ;7 (3,2] .~ (e) (2], I
“(e) [3,21, [4,2] .~ '

14, In a cube what is the maximum number af;equiva1§nt
directed e segments? ‘

d what is the maximum number of equjvalent

He welghs 200

pounds. Represerit as a vector each of the followlng:
(Use a scale of 1 1inch = 200 pounds.)

(a) The downward pull of the earth's gravity on him.
(b) The upward push of the hill on him.

17. An object is suépéndéd by ropes as shown in the figure,

. w

I

ANNANANNNN

If the object weighs 10 phounds, what is the foroé
exerted on the Junction C by the rope CB ?

ZOE :;"’i:"‘
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' 18. A weight of 1000 pounds isisuspendédsgrcm wires as
shown in the figure. o '

r

— e %‘hﬂriiﬂﬂ'féi ¢

_-—-
T

) What force does the wire AC exert oh the Junction
c?
(b) What force does the wire BC exert on, C 2

O

—

=1

5000 pound weight 1s suspended as shown in the figure.
ind the tension in each of the ropes CA , CB , and CW .

19.

e |

-3

|
|
|
|
1
I
|
|
|
|

90

by

T

AEEHERE

N 2 S ' e .
20. A ship salls east at 20 miles per hour. A man whlks
... across 1ts deck toward the south at 4 miles per hour.
What 18 the man's velocity relative to the water?

704




Chapter 11
POLYGONS AND POLYHEDRONS .

&

11-1. ;gtrqdugéiogi ' : .

In the physical world nature abounds in geometric shapes.
Many of these shapes are.representations of polygons and poly-
hedrons. For example, the sections of a hcneyéamb are hexaganal-
each sngw crystal is 1n the shape of a tiny hexagon, diamands
are in the farm Qf regulg; actahedrcns, salt crystals appear to

yrémids' 7

Man uses the shapes of regular polygons in designing
formal landscapes,; in making bolt heads, éhickenwire, stop
signs, and linoleum tiles. Box cartons, bulldings, and sky-
scrapers take the form of prisms and other polyhédrbns.

In this chapter, we continue our study of polygonB with
special emphasis on the area of polygonal-regions. It is
interesting to note that one of the firat practical uses of
geometry was that of finding area. Mahy people ‘think that
geometry had its origin in the faurteenth EentufyiE_;Gl along *
the banks of the Nile River At that time. the king of Egyﬁt
divided the land into plmts and obtained his revenue from the
annual rent which the landholders were required to pay. Each
year the Nile River overflowed and carried away portions of
soil. This necessitated a remeasurement of the land so that
the rent demanded of an individual that year would be
) pféportianal to the land whieh he held. N -

It ls also interesting to nate that the word geometry
comes from two Qreek words ge meaning Earth“ and metrein
meaning "to measure." -Hence' the first meaning of the word

‘geometry was "earth measurement.”

Today the study of area is also important. 1Id4nd is bought

and sold by the acre; the floor space of a bullding is
4

iy~ _

. l,JL) ’ [

Il
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gcnaidered in determining the rent of an offiig, factory, or
atareraﬂm, thg area of: the wlng of an~airplgne is 1mpartant ir

'fdeaigning the airplane, painters, br;cklayers, aurveycrs, map

area cf aimple geametrie figures.

. In the latter part of this chapter, we intraducé figures
- 1n three dimensions which are claEaly analagous to the polygan
we have studied ih two dimenaiana. Each of these figures is
';called a Ealzhed:mn. We shall mvestigate some of the <inter-
ésting properties of this set cf surfaces. Hawever; the study
of the measure of & polyhedral-region will be deferred.

11-2. Polygona 1-Regions.

A triangular reglon consists of a triangie ‘and 1its
interigr Each of the fallcwing diagrama répreEEﬁtE a
triangular-region.

o~

23

=

iy
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A palygnnal)regien is a figure in a plane, like one of these
four: ’ :

Notice in particular that a polygonal-region may have one or

more "holes" in 1t. A polygonal-region can be "cut up" into

triangular reglonsa. For example, each of the first two .
" polygonak-regions shown above is "cut up" in the diagrams

below: , o - Lot




E

DEFINITIONS. A triangular region is the union of
a triangle and its interior. :

- , 4 ,
A polygonal-region 1s the union of a finite number

of coplanar triangular regions.

Each of the following figures pictures a polygonal-region as

union of triangular regions.

)
£
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Aruitoxt provided by Eic:

n\"

s

[

The preceding two pairs of plctures suggest that a poly-
gonal-region can be consldered as a unlon of triangular-regions,
in more than one way.. Note that we often do not shade a- |
polygonal-region in a picture; in case the context makes clear o7
that we are ccnsi&ering the polygonal-region rather than the R
polyg@n which is the "boundary" of the palyganéliregian,

Dng of the above dlagPému shows five diagonal of a convex
polyggn wlth eight sides. These flve dlagonals nave a common
endpoint and they "cut up" the polygonal-region so that we see
the polygonal-reglion as a unilon of six trlangular-regions.

Noting that 5 =8 - 3 and 6 =8 - 2 , we are ready to

consider the general situation.

Conslder any convex polygon, say ElP,:,ig,Pn . We wish to
nbserve that the unilon of the convex polygon and its interilor
is the union of n - 2 +triangular-regions and 1s therefore’'a

polygonal-reglon.

{(In the figure; the dots indlcate other poszsible vgrtlces and

‘sides, because we do not know wagt the number n_1s.) The

number of sides of the polygon s T1hH . “STnce the polygon 1a3 a
o N . s P ™ FP* —
convex polygon, the n - 1 rays ,P;}, Pl 3y e ;
are concurrent in that order. Twar:; the correapund
““hamely Py Pf and EiPﬂ , are side

remaining n - 3 segments, PlPB ;;,1P4 PR P1§n¥1 , are
all of the dilagonals with one endpoint at P, . (Some of

¥

l&—‘w
\Uq et

these diagonals are shown in the figure, and other possible

dlagonals are suggested by _ ——" .)
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Aruitoxt provided by Eic:

1

1=

[

Thesa diagonals and the sidgs of the polygon gilve us triangles,.
&PlPE 3 QP1P3£4 ¥ oses 3 APan 1 ;» the number of which -

is n - 2 . The union of these trianglés and their interiors
1s the union of P, Pq..,Pn and its interior. Thus the union
of a convex polygon and its interior is a polygonal-region,

) Furthermoye; we observe that the n - 2 triangles
mentioned abofe have the property that the interiors of no two
of them intersect. Hence, if a convex polygon hasg n sides,
the union of the polygon and its interior is the union Qf
n - 2 triangles and their interiors such that the 1nteriors of
any two of the trianples do not intersect. )

DEFINITIONS. 1If a polygonal-région is the union of a
convex polygon and its interior, Ethen the polygon is
called the baundary of ‘the palygonal Pegion and the'

interior of the polygon is dalled the %nteriar of the
- =%

pmlyganal ~-region.

In this chapter, we make use of triangularsreéions in two
ways: (1) to determine the sum of the measures of the angles
of a convex polygon, and (2) to study the areas of varlous
polygonal-regions.

Problem get 11

. 1. Show that each of the following 1s a polygonal-region,

More Specifically, show that each 1s a union of triangular-—
regiq&s such that the interiors of any two of the triangulan
regimna do not intersect. Try to find the smallest number
of triangular-regions in each case. (Note: The boundary
=" in Part (d) 1s a star-shaped polygon, and each side of the
polygon 1s collinear with another side of the polygon.
The boundary in Part (g) is a polygon having two noncon-
secutive sides which are collinear.) ’ ‘



" (a)

e)

(

>

b
;}T
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. : 2. 'In the following figure, A, B, C, D, E, F, : are callec
vertices, the segments %B, BC, CD, DE, EG, GA, EF, TD, 1
are called -edges, and the polygonal-regions ABE, FED,
BCDF are called faces. The exterior of the figure will

also be considered as a face.

: " Let the number of faces be f -, the number of vertices be
v , and the number of edges be e . In a theorem which
was originated by a famous mathematician, Euler, and
which refers to figures of which the above figure 1=z an
example, there occure the number f - e + v . U%ing the -
figure, let's compute f - e + v . You should see that
f
Using the two figures below, compute f - e + v . Notice

b, v=7,e=9, and this glves us f - e + v = 2

that the edges are not necessarlly segments.
' (a) o (b) Suppose this figure to be
a sectlon of a map show-
ing counties:

- ' A
= 7345~ .,

ERIC

Aruitoxt provided by Eic:



(¢) What do you obsefve in the results of»theléiree,
computations? ! {’ .

(d) 1In Part (a) take a poir¥t in the interior of the
guadrilateral and draw segments from each of the
four verticea to the point. How does this affect
the.number f - e + v ? Can you explain why?

(e) Take a point in the exterilor of the figure'of
{Part (a) ahd connect 1t to the two nearest vertices.
How does thié affect the computation?

If you are interested in this problem and would like to
pursue it further, you will find 1t discussed in "The Enjoyment
of Mathematilcs" by Rademacher and Toeplitz and in "Fundamental

-

i

Concepts of Geometry" by Meserve,

a Convex Polygon.

11-3., Sum of the Measures of the Angles

%1%

: the measures of the
angles of a{tﬁianéle 1s~.180 ..  As an application of this im-
portant thecrem;ﬁg studied the sum of thejmeasures of the

angles of a convei quadrilateral.- Let us review the method.
which we used (see Théorem 6-13 and its proof), but let us
express the "ideas with the ald of the new terminol@gy_iﬁ%r@duced

In Chaptéer 6 we proved that the sum

L

in the preceding section. ‘ ;

If the quadrilateral ABCD 1s a convex quadrilateral,

;then polygonal-region ABCD 8 the union of the two,tril-

i
| angular-regions ABC and ACD .

——

We showed in the proof of Theorem 6-13 that the sum of the
measures of the four angles of the quadrilateral 1s the same
as the measurgs;of glx angles, three from each of the two

)

/

A

s d

2
735
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trianglés Thus we obtained the number 2 . 180 , or 36@ S
as the sum of the measures of the angles of the convex Quadri—
lateral. i
| n xt
We wish to extend this discussion to the case'of a convex
polygon of any number of sides. The following exploratary
problem utilizes our observations in the preceﬂing sectlon
concerning the representation of a polygonal-region as the
union of triangular-regiona, no two of whose interioras inter-

gect.

E;plorgtory Problem

Y

Consider the diagonals from A 1n each of the convex
polygons pictured below. By a procedure similar to the one we
used with the quadrilateral, find the sum of the measures of
the angles of each polygon. Summarize the results in a data
table as shown. - ‘

736 7))
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Number of sides[ Number of diagonals| Number of | Sum of measurcs
of convex from A triangular | of angles of the
polygon Y1V EC

4 1 \ ' 2

e

b
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e
i
|
]
|
|

o

-~ |
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e
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Proof: Let V be any vertex of the given convex polygon

; and let the polygon be VABEC...GH . There are
n - 3 dlagonals from the vertex V . The union of the tri-

s AVB ; BVC , ... , GVH 1s the polygonal-region
VABC...GH . There are n - 2 of these triangular-regions, and
the interiors of no two of them
intersect. The total measure of
all the angles éf these triangles
is (n -2) - 180 . On the
other hand, the total measure of
all the angles of these triangles
8 the same as the sum of the

-

meagures of all the angles of

polygon «€...GH . (Why?)

L

Corollary

1,
polygon of n sid

s
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Proof: A regular polygon of n sides has n anglesd,

and all of these angles have the same measure. Hence eaeh has

measure %(n -'2)(180) . Now

(n -2) 180 _ (1 _2y . 180 = oC
e (1 - E) 180 = 180 - = .

- The notién of an exterlor angle of a triangle as described
in Chapter 5, may be gxtended in a natural manner to polygons
of more than three sides. ’ - Y.

DEFINITIONS. Let V be any vertex of a convex
olygon.

D
The angle of the polygon with vertex V 1is some-

times called the interior angle of the polygon
at Vv .

Eilther angle which forms a linear pair with the

-

interior éﬁgle of the polygon at V 1s called

an exterior angle of the.polygon at V .

THEOREM 11-2. For any convex polygon of n sidesjufhe'aum of

.. .the measures of exterior angles, one at each vertex of

‘the polygon, is 360

Proof': t each vertex of the

The chosen exterior angle and thés
interior angle at that vertex are
supplementary; the sum of their
measures 1s 180 . The sum of the
! measures of all the interior angles
. and all the chosen exterior angles.
) 1s n - 180 . T%e sum of the
measures of the interior angles 1s
A (n - 2)180 . By subtraction, the
‘ sum of the measures of the selected

m

exterior angles 1s

|\“
jui
I
—
-
|
T
o
[
Lot
‘o‘
]
(¥
.
o
‘D‘
It
%)
payd
O

n - 180 - (n - 2) . 180
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§
'Gprgllary 11-2-1. The measure of each exterior angle of
e ma 360

-a regular polygon @fi n s8ildes 18 =— ,

n <
, f
. %

Proof': Thils statement 1s an immediate consequence either

of Theorem 11-2 or of Corollary 11-1-1. Why?
»

Problem Set 11-3 P

i

Find the sum of the measures of the interlor angles and
the sumof the measures of the exterior angles ¢f a
polygon, one exferior angle at each vertex, if the number

of sides of the polygon is:

(a) 12 (b) 22

o
e
w

The sum of the measﬁres f the 1interilor angles

Q
certain regular polygon is 1080 . By Theorem

=
(-
!
=
M

(n - 2)180 = 1080 .

Hence

I

I
|

64 ‘
o

n -

and (

n = -
Thus the number of sides of the polygon 1s 8 .’
Find the number of sides of a regular polygon if the
sum of the measures of the interilor angles 1a:
(a) 540 (b) 900 (¢) 2700
Conslder a regular n@nagoqi(ﬁine aldes). The measure of
360 or 40 . The interior angle

5
and an exterior angle at each vertex are a linear pair

each exterior angle 1s

of angles,

(a) What 1s the measure of each interlor angle of this
polygon?

(b) What 1is the sum of the measures of all the interior

angles? ‘Y

L



Use two methods to find the measure of each interior

angle of a regular polygon of:

1z

sides.

We know that an 1ﬁtgflar angle and an exterior angle at a

vertex of a polygon are a linear pair of angles. Thus 1if
the measure of an interior anéie of a regular polygon is
120 , the measure of each exterior angle is
Corollary 11-2-1, it follows that

ne==56

~Fin@ ghe number of sides of a regular

360

= 60 .

60
Therefore

From

olygon 1if the

measure of each interior angle of the polygon 1is:

(c) 1biu

"
(d) lES?

3

Complete the fallawigg chart:

Name of
regular

“Sum\of the
measlires of

‘Sum of the
measuresa of

Measure
of each

Measure of
each

polygon the interior | exterior interior| exterior
angles | angles, one | angle angle

at each

vertex
Equi-
lateral
Triangle| -~ | A _
Square
Regular
Pentagon
Regular -
Hexagon
Regular
Octagon
Regular
Decagon

oAy
?“Q 3; FaRw)
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"a regular pentagon. Find the measur® of the

Consider a regular polygon of twenty gideg, Find the

measure Qf

(a) Eacnlinté§1ar angle of the polygon;
(b) Each exterior angle of the polygon;
(¢c) The sum of the measures of the intlerior angles of
the polygon; CF
(d) The sum of the meas of all the exterior angles
of the polygon. : ’
In a certain regular polygon, the measure of an exterior
angle 13 one-fifth the measure of an interior angle.
Find the number of sides of the polygon.
The sum of the measures of eleven angles of a polyegon of
twelve sides is 1650 . &
(a, What 1s the measure of the remaining aﬁ%lei
(b) Do you have enough information to deciﬁ; whether
the polygon is regular? Explain. ' /
Is it possible to have a regular polygon with the measure

i

of each Interior angle equal to 153 ?  Why?

The star-shaped figure is formed by extending thégﬁidea of

gle at each
point of the star. )

s
‘T,_q'i

Given a pentagon ABCDE such that m /a = 150 , m /b = 60
and the measures of /Jc , /d , /e are proportional to
4, 3, 4, Prove that BB ||TCD".

E)
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m /DCX , and m /XBD . .

‘

In a regular polygon ABCDE...J of at least 5 sides,

prove that diagonal AD 1s parallel to side BC .,

In the figure, we have given

T . _ - N ‘ D
a regular pentagon ABCDE ’ )
and a rectangle ABXY , where s{fsffffjiixié?%x '
E L ——=C

C, ¥ Y, E are collinear in
tHat order. Find m /CBX ,

A B

Conslder the problem of how to cover a polygonal floor

with non-overlapping tiles such that any two adjacent

tiles have a side in common.

(é) Suppose that each tile has the shape of a square and
all tiles are congruent to one another. How many
tiles are needed to cover the surface around a point
which 1s at a corner of tiles? -

(b) If the tiles are in the shape of congruent equiiateralr
tfiangles;xh@w many are needed to cover the sunface
around a point which 1s at a corner of tiles?

(c) Could the tiles be shaped like other regular polygons
of the same number of sides and cover the surface
around a point without any overlapping? How many
tiles of any one polygonal shape wéuld be needed?

(d) If two tiles have the shape -
of a regular octagon and
another has the shape of a
square, the three’tlles
would Eéver the surface -
around a point without
overlapping. What othér
combinations of three

r regular polygons (two of
which are alike) will do
- thils?

The ‘ -

'y
.
“



Hint: Find solutions bf;th;%géﬁa%ién 2x + y = 360
where x ’and y- are the ﬁ%asures of the interior

* angles of regular polygoﬂs having a different numbéf
of sides. 1In the illustration x = 135 and
¥y = 90 .

(e) Investigate the poss;bility of other combinations of
tiles shaped like regular polygons which would be
sultable for use in covefing a floor,

16. Consider a sequence of regular polygons with the number of

sides as follows: 3, 4, 5, ..., n, ... Choose the

expression which correctly completes each of the following

¢ . sentences.

(a) The sum of the mex

sures of the interior angles of the
polygons (increasel, decreases, remains the same.)

(b) The sum of the mehsures of,the exterior angles, one

at each vertex of

i

the polygon, (incféasesirdecfeasesj
remains the same|,)
jc) The measure of ah interior angle of the polygon
S (1ncreases, decyeases, remains the same.)
(d) The meaégﬁ, 5T an exterlor angle of the polygon
(increases, decréases, remains the same.)
f<d

11-4. Area.

Iin Chégter 3 wé Introduced into our fo§mal geometry the
notlon of the distance between two points. Guided by our
experiences from the physical world, we selected postulates
and defihitions which describe precisely the basic properties
of distance in our geometry. We then deduced by logical
Peéggniﬂg other properties o%\distam;e ang the cénnectiogs
between distance and related topics.Y In particular, we
discussed segments. A segment 15 a ééftain set of points;
its "size," commonly called 4its lengtl, we defined to be the
same as the distance between 1its endpoints. The notion of e
congruence for two segments we déécribed in terms of their -
lengths. ‘ '

ERIC
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In a similar manner in Chapter 4, after describing a
‘diffarent type of set of points, namely’ an angle, we stated,
by means of pastulates and derinitions; exactly what ;a meant
by the measure of an anglér Additional pragigties of angle

We now wish tg discuss. how to measure a polygunal -region,
that 18, how to determiine its "area." A paiygonal region 18 a
' set of points of a quite different type from the segment or the
_angle. We follow an approach like that used before; namely, we
select postulates>and.definitions which formalize in our
" geometry the corresponding notlon from everyday life. Notice
Ithe resemblances bétweeﬁ the postulates in thls sectlon and
those describing distancé or angle measure. The first one
says that every pclygénalsregian has a unique measure relative
to any standard "unit." e

2

S

= Pcstulaﬁe 26, If R 1s any'giﬁéﬁ pclyéonals
reglon, there is a correspondence which assqé;gtésJ
to each polygonal-reglon 1n space a unique pasifive
number, such that the number assigned to the gilven
polygonal- region R - 18 one.

DEFINITIDNS.L The given polygonal-reglon R

mentloned in Postulate 26 1s called the unit-area,

Relative to a glven unlt-area, the number which
carreéponds to a polygonal-region, in accordance
with Postulate 26, is called the area of the
polygonal-region. '

Postulate 26 does not tell us what number the area of any
particular polygonal-region is (except the unit-area), nor
doeg it tell us how the areas of various polygonal-reglons
compare. We need more postulates to give us this information.

If a segment 1s the union of two segments whose ihtéfiors
do not intersect, then the measure of the given segment 1s the
sum of the measures of the other two segmenta In the figure,

AC = AB + BC .. - ——
¥ A B C
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Recall the aarraapanding sltuation for anglaa, as shown 1n the
diagram, where VB 1= between VA"
and VC . The interiors of the
two adjacent angles, - /AVB gnd
/BVC , do not intersect, and the
measure of /AVC 1is the sum of
the measures of the two.angles
/AVB and /BVC . We wish to have a similar proParty for the
areas of polygonal-regions. Thus, for example, 1f R 18 the
polygonaiaragion conslsting of the parallelogram ABCD and
its interior, as shown in Figure a , then we want the area of
R to be the sum of the areas of the two triangular ragiona
R, %nd R, . The following
postulate guarantees this.

Paaaulata 2? ~ Suppose that the polygonal-
region R 18 the union of two polygonal-regions

El and RE such that the intersection of Rl

and RE 13 contained in a unilon of a finite

number of segments. Then, relative to a glven
unit-area, the area of R 1s the sum of the

V]| areas of Rl and EE .

In Figure a, the two triangular-regions Rl and RE
intersect in a segment. Other illustrations are given in
Flgures b and c.

T
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In Figu;e b, the intgrsectign_ef the p@lygenalsregianav R; and
R, 1s the unlon of three segments. In Figure ¢, the inter-
section (marked heavily) consists of one segment and two other
, points; it is contained in the union of a finite number of
i segments. In each case thé sum of the aféas of Ei and RE
is the area of the entire polygonal-region.
On the other h@nd; conslder the polygonal-region shown in.
Figure d. It is the union of triangular regions T, and T, .
Flgure d
Thelr intersection 1s not contained in a union of a finite
number of segments, but instead 1s the cross-hatched polygonal-
reglon whose boundary 1s a quadrilateral.  Thus Postulate 27 is
not applicable to thls case. If we trled to calculate the area
of the entire polygonal-region by adding the areas of Tl and
T5;\y_khen the area of the polygonal-region which is the inter-
section/would be counted twice. Of course if we cut the
entire polygonal-region in a different way, we may be able to
apply Poatulate 27. :
- We recall that two segments are congruent if and only if
‘ they have the same measure. Two anglas are congruent if and
gzixg only if they have the same measure. We wish to compare the
i) notions of congruence and area for polygonal-regions. Since a
polygonal-reglon 1% the unlon of triangular-regions and since
we have extensively studiled congruence for triangles, we
consider triangular-regions in particular. On the basis of oﬁf
experlience 1in the physiéal world, two triangular-regions whose
‘ respective boundaries are congruent
triangles have the "same size and
shape." Being of the same "size,"
their areas seem to be the same.
The Etﬁ postulate guarantees this. -
) | 746
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PEEtUiEﬁE,EB LJIP two triangles are éongruent -
then the réspective triangular regicns consisting N

of the triangles and their interiors have the same ‘
area relative to any given unit-area.

Thus two triangular—regiang with congruent boundaries A
have the same area. Notice that the converse is not valid. If
two triangular-regions have the sam;férea, we do not know '
whether the triangles which are thfir respective boundaries are &
congruent or not. The picture shaﬁi two triangles which have
different "shapes," although the ;

"sizes," that 1is, areas, of the
corresponding triangular-regions
appear to be the same.

For any convex polygon, the union of the polygon and its-
interior 1s a polygonal-region. This polygonal-region has an
area relative to a given unit-area. It is customary and very
convenient to speak of "the area of the polygon" when we really
mean "the area of the assoclated polygonal-reglon." Thus, as
examples, we speak of the "area of a triangle" when we mean the
area of the union of the triangle and its interior; the "area
of a parallelogram" 1s a conveniently short phrase for the
"area of the polygonal-region consisting of the parallelogram
and its interior."

In the physical world the notion of area 1s closely
related to the notion of dlstance. If an inch i1s chosen as a

unit of distance, then the customary choilce ] "
"

or a unit of area 1is the "square inch."

This is the area of a polygonal-reglon "
consisting of a square and 15 interior

such that each slde of the square 1s one

inch long. Although some other type of
polygonal-region can be chosen as the unit-area in our
geometry, we prefer, in this book, to adopt as our unit-area
the so-called "unit-square," which 1s defined as follows:




uit-pair for measuring distance,
a unit-area is called a unit-square if and only Af the
A ) uniiiarea‘écnsigts of a square and its 1ntériargsuéh
- ¢ that the measure of a side of the square is one.

The . diagram pictures.a unit-square
relative to the unit-pair . {A,A']) ..

-~ A A

Our fourth postulate concerning area tells us how to
determine the area of certain polygonal-regions. It connects
the concept of area with thé concept of diatance developed in
"Chapter 3, :

Postulate 29. Given a unit-palr for measuring

distance, the area of a rectangle relative to a

unit-square is the product of the measures (relative

to the given unit-pair) of any two consecutive sides
 of the rectangle.

DEFINITIONS. Any side of a parallelogram 1s a base

of the parallelogram.

An altitude of the paralleélogram relative to the

tage 18 any segment which 1s perpendicular to the
.ev and whose respective endpoints lie on the

parallel liﬁes containing the base and the slde

opposite to the base.

In particular, any side of a rectangle 1s a base of the
rectangle, and any side which 18 consecutive to the base of
the rectangle 1s an altitude of the rectangle (relative to the
base).

Our work in the following sections is largely concerned
with the areas of certaln polygonal-reglons and the lengths of

748
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certaln segments related to thérpoiygona;¥régiénsi It 1s
customary to shorter the phrase "the length of a side" of a
polygon and say simply "the side,' whenever the context makes
clear that we mean a number rather than a segment. In a like
manneR, a base of a parallelogram or a diagonal of a polygon
is a segment, that is,:-a set of points; sometimes, however, we .
use the word "base" or "dlagonal" to mean"the number which 1is

the lengfh of the segment; we do this only in case there is no
danger of confusion between the two different uses of the same
word. :

= If the lengtha of two consecutive
sldes of a rectangle are 6 and .3 ,
then we may consider the bage- to be
6 and the altitude 3 ; or-we may
choose 3 as the base, in which
case 6 1s the altitude. For

elther cholce, the area of the

rectangle 1s 18 . S N y

Using the terminology given by the last definitions,
s
Postulate 29 tells us that:
The area of a rectangle is the product of
its base and its mltitude.
If the area, the base, and the altitude of a rectangle
are denoted by A, b, h, respectively, then
‘ A = bh
49
As a special case, the area A of a square each of
whose sldes has length s 1s given by

1]

A

I
]
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questions pertaining to each.

(a) [c=]Base TAItitude [ Area] _Consider a set of rectangles
. . a 3 2 6 | with equal‘altitudesi Ir '
e — — ~these rectangles are arranged
. b; 7:@7 o 2" - | so that the bases of any two
e | 12" 2 ' consecutive rectangles have
al o | =2 [ the ratioof 1°to 2, *
— B . then the"ratio of the areas
of any two consecutive
. rectangles 1s _to
(b) [=] Base [ Altitude | Area Conside set of rectangles
a o S : 6 with ’ bases, - If these”
- — ——1  rectangles are arranged so
b 2 2 |1 that the altitudes of aan,wd
e| 2 | 27 consecutive rectangles have
o T the ratio of 1 to 3 ,' then’
, the ratio of the areas of any .
two consecutlve rectangles 1s
A _ to
(¢) [=] Base [ Altitude | Area Consider a set of rectangles
a 5 _ ié@ with equal areas. If these
= — — rectangles are arranged so
b| 10 4 100 that the bases of any two
c 20 100 consecutlive rectangles have
'd AQ ";fﬁl‘fiéb the ratio of 1 to 2 , then
— e the ratio of the altitudes of
e gqf ;QQ any two consecutlve rectangles
is to 7 '
(d) [=9] Base [ Altitude | Area| What is the ratio of the bases
a 1 5 of any two consecutive
— ———t - — rectangles in the table? What
b 3 6 ) 1s the ratlio of the corre-
c 9 18 sponding altitudes? What is
::4,2%7, 51 T the ratio of the c@rrespgh§§
- T ing areas? The four

rectangles are members of a

‘o0 yeget of © rectangles.
* s B
Fai




A

n

=t

(e) Complete the following sentences: .

If the ratio of the lengths of & pair of corresponding

_s1des of two similar rectangles is 1 to 3 , the
" ..,ratlo of the areasis . to S, )

" If the ggggé-ﬁf‘the lengths'of a pair of corresponding
751&53 aié%%b similar rectangles is 2 to 3 , the
ratio of the areas 1s _to ... '

1 . e

| \ : This figure 1is
separated into

—16G twelvéfiectaggujar
regions. Let each”
—T — — IF small region be k

. f . o units long and one
‘ 2 unit high. .-

o = o —

A

L

B c . D

m

L

EWhatzis the ratio of the areas of each of the following pairs
of rectangles?

(2)

(b)
(c)

(d).

(e)
(£)
(a)

()

(c)

(d)

Rectangle AN to rectangle AK . (Here we name a -
rectangle by naming a p3ir of opposite vertices.)
Rectangle’ AJ to rectangle AH , |

Rectangle A0 to rectangle AF

Rectangle BI to rectangle CI

Rectangle BF to rectangle CF .

Rectangle BO to rectangle ND .

We are given two rectangles with equal bases. If the
ratio.of the altitudes is 1 to 3 » the ratio of
the areas is to

If the bases of two rectangles are in the ratio of 1
to U4 and the corresponding altitudes are in the ratio
of 1 to 2, the ratio of the areas of the

rectangles is to .

If the areas of two regtangléé are equal and the ratio
of the bases 1s 1 to 3 , then the ratio of the
altitudes 1s to .

If the bases of tﬁc fectaﬁgiés are equal, and the

altitude of the second 1s 25 per cent more than the
altitude of the first, then the ratio of the areas of
the first to the second 1is , to




4. The ratio of the lengths of two consecutive sides of a
'rectangle 48 4 to 5 . If the area of thEﬁrECtanESE 1s

5. Let a and b -be positive numbers. Show by ;>drawing
_that the area of a square whose side measures a + b 1s
N the same as the sum of the areas of: ' -
) '(a) a square whose side measures a ,
* ‘ (b) & square whose side measures b , and
! (¢) two rectangles each 'of which has sides measuring
‘a and b . - | .« '

' . — D ' .
6. In the figure, AC 1s a T —

diagonal of rectangle’ S - Ra

ABCD . The polygonal- R| ' :
region ABCD 18 cut
into 6 -poljygonal- " S o
regions: the boundary ' )

=l

a

of R, 18 a square; the - R2
1 . " Rg
boundary of R, 18 l

\m‘

rectangle; Ift;3iF .Rgg H5’ Rg Alg— o -

- are triangular regilons.

(a) The area of AABC 1s the sum of the areas of the

polygonal-regions s s —

(p) The area of AADC is the sum of the areas of the
polygonal-regions . _ , s

" (c) The area of AABC 1is equal to the area of AADC ,
Why? |
(d) The areas of Rg and Rg are equal.- Why?
(e) The-areas of Ry and R, are equal. Why?
(f) Therefore, the areas of R, and R, are equal.
Why? '
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'11-5. .Areas of Triangles and Quadrilaterals.

On the basls of the four pastulates concerning area in the-
preceding section, we can calculate the areas of trianglesg
parallelagrams, and variaus other quadrilaterals

TQEGREM 11-3. The area of a right triangle 1s one half the
product of the lengths of its two legs.

Proof: Let trlangle PQR have a right angle at R . Let
thé_lengtﬁs of 1ts legs be a and b, and let A be the
area of the triangle,. (The dlagram above shows two pictures
of the same triangle PQR .) Let T be the intersection of
he line parallel to “FR” through Q and the line parallel to
QR thfaugh P . Then QTPR 1s a rectangle, and
APQR AQPT . By Postulate 28, the area of AQPT is- A
By Postulate 27, the area of the rectangle QTPR 1is A + A ,
because -the two triangular reglons intersect. .only in the
segment PQ . By Postulate 29, the area of the rectangle is
ab . Therefore

il E

I

2A = ab ,

.\
S
,
A

¥

e i

/ A E" b

From thils we can derive the formula for the area of any
triangle. Once we obtain this férﬁula; it will include

Theorem 11-3 as a speclal case,

¥

iy
i
*




115 .
. ' THEOREM 11-4, The area of a triangle is one-half the product
o of any base and the altitude to that base,i
Proof: Let A be the aréa of' the glven triangle XYZ .
. Consider the altitude XD to the side ¥YZ . of the’ triangle

Iet b=Y2Z and h = XE . Let the distances, 1! and b R

between D, and the endpoints of the side opposite X be

chosen so that "Db! < b" , There are three cases to consider,
R : A4

i : x . x

(1) If D 4s between Y and Z , then XD cuts-the
given trlangle into two right trianglesfﬁgith bases
b' and " , as indicated. Furthermore,’
b = b' + b" . By the preceding thegrem, these two
\ . right triangles have respective areas g Th and

%b';h i N 3

Hence, by Postulate 27,

A = %b'h + 3b"h

]

(b1 + p")n

1,
(2) If D 1is one of the endpoints of YZ , then AXYZ
7 is a right trlangle. Therefore, A = %bh s by
Q;! ’ Theorem 11-=3.
—

iy

b
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. o : d )
(3) If D 1s not on the segment YZ ', there are again
*  two right triangles, namely AXDZ and AXDY . In
this case, - b' '+ b = b" ., Hence ‘

R .

F5'h + A = 3(b' + b)h .

Wh{? Solving the above equation for A , we obtain
S ’ .

bh ,

1]
mn oy

P A
Explain how: ;
Since the length of any side of a triangle can be chosen *
as the base, Theorem 11-4 can be applied to any triangle in
three different ways. The figure below shows the three choices
for a single triangle. Any of the three fprmulas, A = #byh

11
. 1. 1 . . . v .
A= §b2h2 , A= gpahs » Elves the area of the triangle.. .

Caral}a;y,il—Asl,"ThE area A of an equilateral triangle
whose ‘side has®® :

'éngth\’s is given by:

A = ¥i

s 7 7
The proof is 1ePt as a problem.

THEOREM 11-5. The area of a rhombus 1is one half the product
of the lengths of the dlagongls.

S




5. ‘ . ! g : ;:. »; C.

! Proof: Let M be the point of intersection of the:

. diagonals of the rhombus EFGH , hamely ¥G and TH .
. " - co

[PS

11

a

N E - F. i T
Let d S.EG and d' = FH . The diagonals are perpendicular té
each other. Since TM is the altitude to side EG of *
triangle EFG , the area of AEFG 1is . -
I

2d(FM) .
In a ‘like manner, we note that the area of AEGH 1is
, Lagm) .
Hence, by Postulate 27, the area of the rhombus 1s

24 ar.

il
1]

Loy « Larumy - Lo

2d(FM) + Zd(im) = 3d(FH)

Corollary 11-5-1. .The area A of the square whose
diagonal has length d ‘is given by

1.2

"~ .

A

1

The proof 1s left as a problem.

THEOREM 1;j§g The area of a parallelogram i1s the product of

any base and thg altitude to that base.

.,
T
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Proof: Let A be the area of the parallelogram PQRS .
Let b and h Dbe a base and the corresponding altitude.

PR

The triangles PQR and. RSP , which have the dlagonal PR of

the parallelogram as a common side, are congruent. Hence the

triangular-reglons PQR and RSP have the same area, by

Postulate 28. Hence the, aréa of PQRS 1s twice~the area of
"APQR,. Since b and h* are a base and a correspanding

altitude of APQR , the area of APQR 1is §bh . Therefore
‘the area of PQRS is 2(%bn) )

\ A= bhlg

ie/ ‘Since the length of any side of a parallelogram can be
taken as the base, Theorem 11-6 can be dpplied to.any
parallelogram in two ways. The fipgures following illustrates
the two cholces for a single parallelogram. In one case, we
obtaln A = bh , and in the other, A = b'h' ., Either of

these two expressions gives the, area of the parallelogram.

L~
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THEOREM 11-7. The area of a trapezoid 1s one-half the product

z
‘ " of its altitude and the sum of its bases.

Proof: , ILet A ©be the area of the trapezoid, h 1its
altitude, ard b, and b, 1its bases.

A diagonal of the trapezoid cuts the polﬁéanaléregion into two
trlangular-regions whose respective areas are %blh and

%bgh . (The dotted lines on the right .in the diagram indicate
why the two triangles have the same altitude.) By Postulate 27,
the area of the trapezoid is

b.h + =b.h

04 ofl

A=

I b
Piog b

-

Algebraically, this is equivalent to the formula

i 1, ... !

DEFINITION. The medlan of a trapezold is the segment
which Jolns the mildpoints of the two non-parallel sides.

Corollary 11-7-1. The area of a trapezold is equal to the
product of 1ts altitude and the length of its median.

4% The proof 1s left as a problem.

©  Summary of Formulas: _

Area of a rectangle: A = bh
Area of a parallelogram: A = bh .

Area of a triangle: A= o

1]

Area of an equllateral triangle: A

Il
»
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1]

Area of a rhombus: A

- Area of a sgquare: A =

i

Area of a trapezold: ‘ A

i
Problem Set

=

1-5

ey
| ‘ [Naf

1. Find the¥ area of a right trlangle 1f the lengths of the
legs of the triangle are € and 10 .

un]

Find the area of an lsosceles right trilangle 1if the

length ol each of the ruent sides of the trilangle

is 12

0
i
o]
put

2]
g
ot

3. Find the area of a !15-45-90 triangle if the hypotenuse
of the triangle is 12
k., Find the arsa of é 30-60-90 triangle i’ the hypotenuse

[yl
=
]

h 1s the_ﬁyp@tEﬁuse of a U46-45.90 triangle, find:

(a) The length in terms of h of the side opposite an

angle whose measure ls 45

pe

(b) The area of the trlangle in terms of h

is the hypotenuse of a 30-00-90 triangle, find:

poc
»

—
e
o

(a) The length in terms .of h of ‘the slde opposlite the
angle with measure of 30

(b) The length in terms of h of the side opposite the
angle with measure 60

(¢) The area of the triangle in terms of h

v

””u_

O 759 )
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“(b) AAYC ; AEYB (d) AEYB ; A

f/

Find the unknown in each of the following triangles if
A 1is the area, b the base, and h the altitude.

e A B b o B h
(a)  ° | R | 10 )
) 2 s | s
) 12 8
@ 12 | . T 6

In the diagram, the line containing A, C, D, E, B 1is
parallel to the line containing X, Y, Z, and is perpen-

dicular to AX. AC =3 ; CD

1]
-
&

I
o
=
iU
=

U AN R N T V4 6 N\ .

A C D B

mi

In each of the following, find the ratio of the area of
the first-named trilangle to the area of the second-named

triangle.

{a) AAYC ; AAYD (¢) AAYC ; AEZB

ZB

e

Refer to the diagrams
at the rlght and find
the area of each of
the following:

(a) AABC
(b) AXYZ
(¢) ARsT
(d) ADEF

L
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Prove Corollary 11-4-1.

In the dlagram to the right,
ABCD 4s a quadrilateral with

diagonals AC and BD A/ ——)C
perpendicularito each other.

BD bisects AC . AC = 20 and :

BD = 2k, Find the area of -

the quadrilateral.

If ABCD 1is a rhombus with-diagonals 20 and 24 , find
the area of the rhombus.

Find the area of a rnombus 1f the length of one side of
the rhombus is 15 and the longer diageonal of the
rhombus is 24 . .

The area of a rhombus 15 1600 . Find the length of each
diagonal of the rhombus if one 1s twice as long as the
other. '

Prove Corollary 11-5-1.

Find the area of a square if the diagonal of the square
iz 8 .

Find the area of a parallelogram if the base of the
parallelogram is 12 and the altitude of the parallelo-
gram 1s 7

The area of a parallelogram 1s 8430 and the altitude of
the parallelogram 1s 150 . Find the base¥

Find the area of a parallelogram ABCD if AB = 10 and
AD =14 , and:

(a) m /A =30 . (¢) m /A =60 .

(b) m /B =14 (d) m /D= 20

]

%]

761"
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M
']

%]
o)

It
It

)

!
.

The sides of a pafallalagrapajé% 8 and 10 respectively.
If the shorter altitude is ! , what iz the longer
altitude?

Find the uninown in each of the following trapezoids if

A 1s the area, h the altitude, and bl and b, the

bases of the trapezoid.

K

(a) }‘ ? 3 . 6 8

("g)‘ o o 6 ] 54 . ;L;i) i

(cz 72 . ? 7

1) 100 5 Y >
)

180 ? 11 9

ABCD 1s an isosceles trapezoid with AB || ©C and
= 30 . AB = 1 >

the trapezeid.

6 . Find the area of

=
DA
> 8
I
]
[
b
m
2
parh
=
o]
I

Prove Corollary 11-7-1.

Find the side of a squ re if the area.of the square 1is

“he
equal to the area of a rectangle 16 feet by 9 feet,
quadrilateral ABCD ,
|| BB and BE | ©C 5

AB = 10 , DC = 14 | —

=7 , find the areas
AADC  and AAEC . _ -

nE S EE

-
-
-

—~
o
I

'



g
-~

2
ool

29.

. The points

* Three of the vertices

"coordinates:

P, 5,.Q, R,
collinear 1n that order,
and the parallelogram
ABCD 1l1le in the
plane; and 2
TR and D3
dicular to

s

[

o

1l

ot

O r
™ '
Lo W
)

il

[k

The vertices of a triangle h§ve coordinates
(-4,1) , and (%4,5) . Prove that the triangle
right triaﬁgler Find the area of the triangle.

of a rhombus ABCD are:

B(-6,-2) , c(-8,-8) .
(a)
(b)
The vertices of a trapezold have the following coordinates:
A(0,0) , B(12;0) , ¢(17,6) and D(2,6) . Find the
altitude and the area of the trapezold.

What are the coordinates of vertex D 7

Find the area of the rhombus.

The vertices of a quadrilateral ABCD have the following
A(-3,0) , B(2,4) , ¢(6,0) , and D(3,-5) .
Find the area of the quadrilateral. Hint: Consider the

altitudes of AABC and AADC

The codf&isﬁtfs of the rgspective vertices of ractanglé
ABCD are ¥3,2) , (10,2) , (10,7) and (3,7) . 1In the
same coordinate Sysﬁemjéthé.VEFtiCES of AEFC are

(5,2) , (3,5) , and (10,7) . Find the area of AEFC

R
~ *]\J —

763 )
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32. In the quadrilateral ABCE , point D 1is between C and
E ; “EcT| | ™5 AB = BC = CD = DE = EA .

Prove: AC - BD = EB -+ AD .

m
lw]
Ly

()
C

A _ _
The hypotenuse of right triangle ABC

nct
[

is the altitude to the hypotenuse. .

[

' ol
.3

Prove: AB « AC = BC + AD

B D
Prove: If the-diagonals of a quadrilateral are perpen- /
dicular, the area of the quadrilateral is equal to orfe-
half the product of the lengths of the diagonals. .

A

,A\_,w’"“r' -

[wa]

C

764
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11-6. Area Relations.

In the study of area 1t is interesting and important to
compare the areas of two or more figures when they differ in
one or more dimensions. Proportionality 1s one of the most
effectlve methods of studying this change. Before continuing,
you may wish td review the definition and fundamental
propertles of proportionality and of proportions, as presented
in Chapter 7.

Consider two triangles. Suppose that one of the
triangles has base bl , altitude hl , and area Al ; Buppose
that the other triangle has base b, , altltude bg , and

(i

area A~ . Then
=

and

(5]
2

Hence, by division, )
ey f

2 2 k

=]
o
2

o

i

it

e

u,

ot

the two triangles have the property that b1 = b, , then >
%

h ‘
= Fi . In other words, the areas of two triangles with J

equal bases are proportional to the correspondlng altitudes.

I

> -
M [

as

71

nd !L1 =k hl , where the constant

of proportionality k 1is one-half tne base of each trlangle,

1

We note that A, = k h

%]

A4
namely Kk = ;bl

b

P

b. .

il
nfi=

(KN

If the two triangles under consideration have the

property hl = h., , then

g

LK

1n

I
|

= >
[
ag

In other words, the areas of the two triangles are proportional

to the bases.
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On the other hand, if the two triangles have the property
that Al = AE s then’ blhl = bghg . In other words, the product
of the base and altitude is the =

the cther. This situation suggests a notion which is related

ame for one triangle as for
to the concept of proportionallty and which we wish to discuss
now, namely "inverse proportionality." py

An important property of proportionality is the following,
exp:essed for the case of three numbers: If the positive
numbers g, r, s are proportional to the positive nﬁmbérs
a, b, ¢ than the largest of the numbers a, b, ¢ corresponds
to the largest of the numbers q, r, s . By contrast, as the
definition below shows, 1f the positive numbers q, r, & are
inﬁ@;sely proportional to the positive numbers a, b, ¢ ,» then
the largest of a, b, cv corresponds to the smallest of the
numbers qz r, With this introductien, we are ready for
the definition,

Do

DEFINITION. Suppose that to the positive numbers

0 t
4, r, 8, ... there correspond the positive numbers

(&
a, b, ¢, ... (that is, gqa—wa , re—wb,, se—wc , e )

The numbers g, r, s, ... are inversely proportional

to the numbers a, b, ¢, ... 1if and only 1f all the

0
pai
[o
ooy
et
[
o
o
=1
I
Wi
]
Lol
il
L
T
[ay
oy
o
xd
jad
=
m
o~
pacy
po
[

products of correspondi
18, ga =1rb = s¢c = ...).

U £
ko [
o
Toadt
-
=t

As an example, the numbers 2 , 6

AT
jal
L
m

inversely proportional to the numbers

]

=

g

I ’:‘WI

o
AT
o)
W
o
L]
]

each product of corresponding numbers 1:

As another example, find the numbers x and y such
that 2 , x , 5 are inversely proportional  to &, 4, v .
By the definition, the products 2 . 6 , 3 4

NS

LT
g

[

Y

3y ]
[

- \
g

hack

:

v

i

g

]

arz all the same. Thus 12 = Ux =

K

are x =3 and y = =

We now extend our preliminary remarks about two triangles

to the case of any number of triangles.
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THEOREM 11-8. Consider a set of two or more triangles.

(a) 1If the bases of all the triangles are equal, then
the areas of the triangles are proportional to the
corresponding altitudes,

(b) If the altitudes of all the triangles are equal,
then the areas of the triadgles are proportional to
the corresponding bases.

(¢) If the areas of all the triangles are equal, then
the bases of the triangles are inverssly proportional
to the corresponding altitudes.

Proof: For definiteness, we prove the theorem for a set

of three triangles; the method applies to any number; by
choosing three, we avoid complications of notation in discussing

Let the areas of the triangles be A , A' , A" ,

]
and let the corresponding altitudes be h , n' , n"

Now A =2h, A' =20t , A" = Bn" | Nence the numbers A , A' ,

A" are proportional to the numbers 4 , h' , h" , with the

)

15 the proportilonalilty c@nztantw-

y,j\““ [ng
ry

non-zero number

(b) By hypothesis, all the altitudes are the same number,
1 be A, A' , A" and

iy

say h . Let the areas of the triangle

let the corresponding bases be b , b! ,’b"

s

ERIC
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b, A' =zb' , A" =Zb" . Thus A, A' , A" are

n
k¥ o

Now A =

proportional to b , b' , b" , with the non-zero number %

as the proportionality constant. o

(¢c) By hypothesis, all the areas are the same number,
say A . Let the bases of the triangles be b, b' , b" and
let the corresponding altitudes be h , h' , h"

=

Now A =3bh , A =£b'h! , A ="' . That is, all of the

products bh , b*'h' , b"h" are equal, since each of them is
equal to 2A . Thus; b, b', b" are inversely proportional

i)

toe h, h' , n" .
Analogous to Theorem 11-8 is the followlng theorem for

parallelograms. 7
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THEQOREM 11-9. Consider a set of two or more parallelograms.

(a) If the bases of all the parallelograms are edqual,
then the areas of the parallelograms are proportional
to the corresponding altitudes,

(b) If the altitudes of all the parallelograms are equal,
then th%;gfeaé\of the parallelograms are proportional
to the Eorresp@nding bases,

(¢) 1If the areas p% all the parallelograms are equal,
then the basés of the parallelograms are inversely

proportional to the corresponding altitudes.

e

The proof 1s i=ft as a problem.
/

A speclal case of Theorems 11-8 and 11-9 occurs when the
number of triangles or parallelograms 1s two. In fact the
case of two triangles has already been mentioned. Nevertheless
it is worthy of repetition, If b, h , A are the basze,
altitude, area, respectively, of one triangle or parallelogram
and 1f b' , h' , A' pertain to the other, then the
respective parté of the two theorems tell us the following:

(a) If b =10b', then A , A' are proportional to

h , h' , and hence %T = %T .

pug
1]

(b). 1If h' , then Zy = pr

. A' , then bh = b'Rh!

=

4y

po=2
1]

(c)

Problem Set 11-6

-1. Prove Theorem 11-9.



4 | ¢

2. In the quadrilateral ABCG , ABDF 1is a rectangle, and
“ ABCE and ABEG are parallelograms. Compare the areas
of the three parallelograms. Explain your answer.

G F E D c

L 4

3. As shown in the figure, AD is divided into three

[

egments whose measures are proportional to 1

[iv]

3

L
P

‘ompare the areas of the three trlangular-reglons

1;]% ;RBi

o

ma

e}

4, It is gilven that in],ﬁl ilﬁE ; RC™] I™DF™; m /CAD = 30
AB = bx ; BC = 6x . What 1s the ratio of the areas of

ADEE and ADFC ¢

e /
- ; -
- — - i;—%"i — L -
P g /
= fg:j ; hl f*;f

B~ | )
-l - et E EEI
th =1
[ |
1 |

P D B =Lz
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." ProVe: The diagonals of a parallelogram divide the
’(garallelogfam and its interior into four triangular-regions
of ‘equal area.

6,, Prové that each median ofsa triangle cuts the triangular-

fégion into two triangular-regions of equal area.

‘7. AE , CD, and BF are medlans of AABC intersecting at

‘point O ." Prove that the areas of AAOB , ABOC and
ACOA are equal. Hint: Use Problem 6 to compare the

3

areas ofi
(a) AACD and ADCB ; AABF and AFBC .
(b) AAOD and ADOB ; ABOE and AE0C .
- Then prove that the areas of AAOB , ABOC , and ACOA
' are equal. o ‘
8. \' The following experiment illustrates the fact that the
@
\paint of lntersectlon of thne median: of a physical
triangle 1s the center of gravity of the triangle.
Cut a model of a triangle from cardboard and draw
the three medlans of the triangle. Try to balance the
trilangle on tiie head of a pin at the point of. intersection
' of the med}ans. Use the results in Problem 7 to explain
why the Intersection of the medlans iz the balance point

or center of gravity. e

e
i
"

If the area of AABC din Problem 7 1s 216 , rind the
area of each of the following triangles: -AABO , ABOC ,
AAOC , AODB , ABOE , AAOF .

*10. Given: AABC ~AA'BICH

D

ERIC
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. ¢
. (a) 1f ABEZ’LE,A'B':’?;,@&h—m;ﬂ,nd‘hi.
(b) If h=9,h" =3, and /A'E' = 4, find the
b length of AB . // 7
(c) If AB=7,BC=8,AC=6, and A'B =3},
find the perimeter of ;;A!B'C' :
= 10 ;

*

11. In AABC , TG | BB ; DF || BB ; CF = 20 ; CE
v . CB=30,DF=18. . - =
; ) ‘ Find: . .
| (a) The length of GG ;
At(b) The area of -ADFC ;,

(¢) fThe area of AABC ;

L .
|
l . -
) plE :
(d) The area of quadrilateral /| v '
I ]
ABFD . ab— _ ~

3
1EZ§F;;E areas of two triangles are equal. What i1s the ratio
of the base of the-first to'a base the second 1f° ,the -
corresponding altitude of the second\is: !
(a) Three times the cdrrespanding altitude ofi;%e first.
'(b) One-fourth the corresponding altitude of the first,
(c) Three-fourths the corresponding altitude of the first,
(d) One hundred fifty per cent ogkthe corresponding
- altitude of tHe first. -
(e) Ten per cent more_ than the corresponding altitude
? _ of the first., sf//
13. _Are the areas of two triangles equal if a base of the
: second is 5 units more than a base of the first, and
. the corresponding altitude of t§ sécond ia 5 Tnits
T less than the aarre@pandimg a;figud of the f‘irst‘?
' Explain your ansper.

#

14. What is the ratio of the areas of P#o rectangles if the '
~ base-.of the second 1s . 25 per/cent more than the base of
the first, and the ;altitudé of th,c'f; second 1s :25 per

" cent less than the altitude of the firg#?.

kS ‘ ’ - \ -
. w \ 772 SR
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11-7
11-7. ‘Relations in Similar Polyggns.

THEDREM 11- 10. EvEfy aimilarity Eetween ﬁriangies haé the

\ measures of the c:orres;pondihg 8ides and the
.. altitude of the other triangle.

Proof: Let PQRHE'Q &} be a similarity between
tr;angles.- Let k be the proportion 1 1ty constant. Then

f

P=kp',qg=kq" ,.r=kr' ., Let .RD and K'D'T be the
respective altitudes from R in APQR and from R' in
AP'Q'R' . Let h = RD and h' = R'D'

If D # Q , then consider the correspondence .
RIQe—R'D'Q' between right triahrgles. Since /RDQ Y /R'DIQ
(why?) and /DR = /D'Q'R' , the correspondencé is a
similarity. The propartiaﬂality constant for the simi],arity

RDQe—RID'Q!' 1s also }c , 8ince RQ = lfp' = k + R'Q' .,
Hence h = kh' . )
On the other hand, if D =Q , then h =¢RD = RQ = p and
' h' = p' ; in this case algo, h, I{h' » sin:gﬁp = kp' .

Thus, in every case, p ,-q ,' r ,.h are prgportional to
p' , q' , r' , h' , with proportionality conastant k . =
' ‘ bad
THEOREM 11-11, ‘Every similarity between triangles has the

pr‘cpen—%‘ that the areas of the triangleu are proportional

to the squares of the lengths of any palr of corf&iponding

sides. N




Proof: Let PQR4—PIQ'R! be a similarity.Qetween

- triangles. Consider any palr of corresponding sidiy b0
and P'QT and let r and r' be the respective lengths of
these sigdes. Let h and h' be the lengths of the altitudes
to these sides in the respective triangles.

g,

P

Q F

r

Let A and A' 'be the respective areas of APQR and AP'Q'R!
'By Theorem 11-10, (x,h) (r';h'). Thus

SRR

o

" By substitution,

1:5'; :z>.

(rgxrlg)

Thus, (A,A') , as asée’iﬁ&ed,

il

As an exa,mple; suppose that DEFe—»IMN 18 a

similarity between, triangles such that an altitude of ADEF

1s three times as iOhE as the corresponding altitude of ALMN .
24 Then, by Theorem ll—io, every side of ADEF 1is three times as

long as the corresponding side of ALMN , and every altitude of

ADEF 1z three times as long as the corresponding altitude of

ALMN . By additlon, the perimeter of ADEF 1s three times

the perimeter of ALMN . Furthermore, by Theorem 11-11, the

We now turn our attention from triangles to polygons with

any number of sides. X

e <
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Theorem 11-12 1is concerned with perimeters and of course
applies to triangles as well as to other polygons. Theorem
11-13 generalizes Theorem 11-11 to the case of pcl&g@ns with
n sildes. v

i

THEOREM 11-12. Every similarity between convex polygons with
n sides has the property that the lengths of the n
sldes and the perimeter of one polygon are proportional
to the lengths of the corresponding sides and the perimeter

of the other pgljéang

Proof: Let the lengths of the sides of one convex polygon
be a, b, ¢, ..., and let the perimeter a + b + ¢ ... be s I
Let the lengths of the corresponding sides of the other convex
polygon be a'’, b' ., c! s =::, and let the perimeter »

a' + b!' + ¢t + _K, be p!' . Let k be the proportionality

constant for the similarity.

Then a = ka' , b = kb' , ¢ = ke' , ...: Hence
) p=a+b+e+ ..,

ka' + kb' 4+ ket + ...

k(a' + b' +¢c! + ees)

kp!

Lol
i

Thus a ,’b, ..., p are proportional to a' , b' , ..., p'

with proportionality constant k . ' '

THEQREM 11-13. Every similarity between{ednvex polygons with

o n. sides has the property that the areas of the polyéonal-
regions (ccﬂsistiﬂg of the polygons and their interiors,
respectively) are proportional to the squares of the
lengths of any pair of corresponding sides.

- -
2
<~

- )

J; . 775
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Proof: We outline the proof; you are asked to supply the
detalls as a problem in the next problem set. TLet
PQR... =— P'Q'R'... ©be a simllarity between polygons. with
n sides. Iet k be the proportionality constant. The
diagonals from P cut the polygonal-region PQR... into
triangular-regions; let the areas of these triangular-regions
LEE A, B, .. g In @ like manner, let .A'., B' , ..., be the
“areas of the gé’%esponding triangular-regions into which the
diagonals from P' cut the polygonal-region P'Q'R!'...

APQR ~ AP'Q'R!
AP'R'S' , ete!

2 2

A+ B+C+ ...=KkA" + kB + k°CY + ...

7 = K°(A' + B' + C' + ced) o
Thus -

SRR N )

T

"

Problem Set 11-7

1. The lengths of a pailr of corresponding sides of two
Bimilar trianglea are U4 and 5 . Wh§t is the ratio of
"™Whe areas of the triangles? '




wn

The areas of two similar triangles gre 64 and 100 .
What 1is the ratio of the 1§ngths Qéicorresponding sildes?
the ratio of corresponding Rltifudes? the ratio of
perimeters? -

Two similar triangles are such that the area of the first
triangle is 16 times the area of the other triangle.
What 18 the ratio of the length of a side of the first
triangle to the length of a corresponding side of -the
second?

The areas of two similar triangles are 64 and 100 . If
a side of the first measures 24 ;, find the measure of the
corresponding side of the second.

The altitude of an equilatefal triangleéis equal to the
length of a slde of a second equilateral triangle. What
is the ratio of the lengths of corresponding sides? the
ratio of the areas?

Cut a trigﬂglé into three polygonal-regions of equal area
*By'drawing lines parallel to a base,

By hypothesia, we have two
gsimlilar pentagons, ABCDE
and A'B'C'D'E! , We are
to prove that thelr areas
are proportional to the
squares of the lengths of
any two corresponding
sides.

o 2
area AEBCDE _ 5"
RE tatefﬂent afréa* = AjB‘C‘D‘E = 'Sjg *

(DTaw diagonals from A and A' ol the polygans.)
chblem 7 asks for the proof of Theorem 11-13 for the

case of pentagang. Use the same ideas and give a proof
of Theorem 11-13 for polygons with any number of sides.

*

. The areas of two similar paiygans are 144 and 256 ,

If a side of the firgt‘ﬁéasufes 9 , what iz the measure
of the corresponding side of the second?

K S,



10, The lengths of the carrespénging élaganalé of two similar
polygons are 7 and 10 ., What is the ratio of the N
areas? the perimeters? '
.. 1l Find the ratio of the perimeters of two regular octagons
if the areas are 25 and 50 .
the diagonal of a
rea of the given

12. Prove that the area of a square having
gilven. square as a side has twice the
square. k

13. Two similar polygons RSTUV and R'S'T'U'V!  are such
that /R colncides with /R' . The coordinates of

R=R'", of 5, of 8' are '(2,2), (2,11) , (2,8),
- respectively. Find the ratio ‘of the lengths of corre-
sponding sides of the/pélygana; the ratlo of perimeters;
“the ratio of areas. 1 5

4, The areas of two similar triangles are 144 and 81 . If

a side of the former measures 6 , what is the length of
the corresponding side of the'@atter?

[

15. In AABC , the point D 1is on side AC , and AD 1is

twice CD . Let the 1ine=§ﬁ§§’pafallel to “AB™ intersect
“5c™ at E . Compare the areas of triangles ABC and DEC |

16. How long must a side of an equllateral triangle be in order
that its area shall be twice that of an equilateral
triangle whose side measures, 10 ?

17. If similar trlangles are drawn having, respectively, the
side and the altitude of an equilateral triangle as
corresponding sides, prove that the ratio of their areas
is 4 to 3 .. -t

18. Two pleces of wire of equal length are bent to form a
square and. an equilateral triangle respectively. What is
the ratio of the areas of the two polygonal-regions
bounded by the respective polygons? ’
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11-8. Regular Polygons.

THEDREh 11-14, The bisectors of the interior angles of a
] 24
regular convex polygon of n sides intersect at a point.

Proof: Given a regular conveX polygon ABCDEF... with
EF , etc., and /A= /B¥ /c ¥ /DT /E 2 /F,

A

RE=ZBC =TD = DE

e
2

Let the bisectors of /A and’ /B 1intersect at point V .
Then AAVB 1is lsosceles, because m Jfa' = %m Z%E% %m /B=m/b

m /b' . Hence the corre-

Thus AV =BV . Now m /fa' =m /b
spondence AVB=+—#EVC between triangles 1s a congruence, by
S.A.S. (Why?) Therefore m /c =m /b % m /B ='% m /C .

That 1s, OV is the bisector of /C .. In a llke manner, we
can prove that ABVC 1s isosgeles, that the correspondence
BVC+—CVD 15 a congruence between triangles, and that ' Dv—
blsects 4D . The same procedure shows that E?bibisects éﬁ s
etc. In summary, all' the bisectors meet at the point V .

DEFINITIONS. The center of a regular polygon is

7 Xﬁhe point of intersection of the midrays of any
two angles of the polygon. 7
Any trlangle whose vertices are the cecenter and two
consecutive vertices of the polygon 1s called a
central triangle of the regular polygon.

A radius of a regular polygon is any Segmgnt Join-
ing the center and a vertex of the polygon.

An apothem of a regular polygon 1s any segment which
Joins the center and a side of the polygon and is
perpendicular to that alde.




As an example, the center

diagram is C .| There are six
central trianglas
is AABC . The =

e a radius apd the

! Eré regular hexagon.

an apothem of .
- Theorem 11-14 tells us that the center of a regular

polygon is the point of interseetion of all the bisectors of

angles of the polygon. ‘

THEOREM 11-15. Every central triangle of a regular.polygon is
1 isosceles and 1s congruent to every other central triangle.

Proof:  These statements, expressed now in the new language
of "central triangle," were actually established in the proof
of Theorem 11-14, 1Indeed, using the notation of that proof,
we showed that each of the central triangles AVB , BVC , CVD ,

e

etc., 1s isosceles and that AAVB = ABVC & ACVD 2 ...

THEOREM 11-16. The area of a regular polygon 1s one-half the
product of the apothem and the perimeter of the polygon.

Proof: Let ABC... be a regular polygon with n sides.
Let V be the center of the polygon, let a be the apothem,
and let e be the length of one side of the polygon. The
segments jciﬁing the center V and the vertices of the polygon
determine n central triangles.
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Each of these central triangles hgs base e and altitude a
and hence area %ea . The area of the regular polygon 1is

therefore n(%ea) f’%a(ne) . Since ne 1s the perimeter of
the polygon, the theorem is proved. - '

-

* {
1. Does a perpendicular segment from the center of a regular

=
=

Problem Set

polygon to a\fgde bisect the side? Why?
f

2. The apothem of7a regular hexagon is 1043 . What is the
length of each side of the hexagon?

3. The diagonal of a square has length 6,%Z . What is the
radius? the perimeter? the apothem? the area?

4, Given an equilateral triangle whose side measures s ,
find the radius and the apothem of the triangle in terms
# of 5 .

5. The perlmeter of a regular hexagon is 12 . Find the
apothem, the radius, the area.

6. The radius of a square 1s r . Find the apothem, the
length of a side, ,the perimeter, and the area of the
8quare all in terms of r .

7. The apothems of two equilateral triangles are 8 and 12

(a) What is the ratio of the radii? of the lengths of

* thelr sides? of the perimeters? of the areas?

(b) Find the area of the smaller triangle by two
different methods, -

8. (a) Each side of a regular hexagon isﬁ;éevéi_ Find the
area of the hexagon, _

(b) The apothem of a regular hexagofi is 12 . - What 1is
the perimeter of the hexagon? the area?

(c) Use another method to find the area of the hexagon
in (b) . W

—
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11-9. Polyhedrons.

Plctures of varilous polyhedrons look like the following:

LV R
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DEFINITIONS. A’polyhedron is the union of a finite .
number of polygonal-regions, each of which consists
of a convex polygon andli%s‘interior; such that {1)
the interiors of'any two of the polygonal-regions

do not intersect and (2) every side of any of the
polygons is also a side of exactly one other of the

pblygans.
Each vertex of any of these polygans is called &
vertex of the polyhedron. o ’
)
Each side of any of these polygcns is ;alled an
edge O0f the pdlyhedron. P
‘{ _
Each of the polygonal-regions is“alled a face of .

the polyhedron.

As an example, conslder the polyhedron in the above

‘diagram, It has five vertices. It has elght edges, two of

which are BC and AE . It has five faces, one Qf which is
the shaded triangular-region CDE .

A polyhedron is naméd aCEOTding to the number of faces
which 1t contains. gincé the number of sides of a polygon 13
the basis for naming a polygon, we expect some resemblance
between the names of polygons and the names of-polyhedrons.

The following table shows this analogy. - ¢
- -
i:’ - LJ‘
)
783




Prisms, pyramids,
special kinds of polyhedrons.

s ‘
‘Name of Polygon Number of || Name OfifélyhéafOﬁ ':ﬁumbeéfpf Faces
o ¢ Sides L N i

Triangle 7 3 (No po;yhedfon has three faces,)
Quadrilateral 4 Tetrahedron h
Pentaggn 5 . Pentahédr%& ) 5 4

. Hexagon 6 Hexahedrgﬁ 6
Heptagon 7 ZHeptahédron ol 7
Octagon 8 Octahedron . 5;\
Nonagon 9 Nonéhedrén 9‘}
Decagon 10 Decahedron 10
Dodecagon | 1éf> Dadegahédféﬁ 12
20-gon 20 }ﬁggghedrcﬁ 20 .

and frustums of pyramids are examples of
Other examples are the so-cdlled

regular polyhedrons.
= - I
DEFINITIONS. Any non-empty intérsection of a/pclys

hedron and a plane 1s called a sggpiog ofkthe

polyhedron. -

A polyhedron is a convex polyhedron if and iny 1f
every sectlon of it which contains at least three
¥ non-collinear points is either a convex polygon or

a face of the polyhedron.,

/A regular polyhedron is a comnvex polyhedron guch

_that: .
; -(1)7 each.face 1s the union of a regular polygon
’ and its interior;
(2) .all these regular pz;ggons have. the same
v numbef of sides; anc F
(3) 311 vertices of the polyhedron belong to thg Z:
* same number of faces. . A
s& 784
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It 1s interesting to note that there are only five types
af%begulgr palyhedgans;; the regular tetrahedron, the regular‘
hexahedron (also called the cube), the regular octahedron, the
regular dedeeahéﬁrén; the regular icésahedran. This fact will
be discussed agaln later in the chapter. Pilctures of these
five types of. polyhedrons are shown below. i ! ,

_ Tetrahedron

Hexahedron
dr cube

Dodecahedron
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E = N . \

t to make,

L Models of.regular polyhédrans’are not aifficul’
. and they are very helpful in studying the properties of the
~ *regﬁlar‘ paiyheérans. ,The plans for making these_models are
given below: They should be constructed from stiff paper,
using dimensiqns that are-%t least ﬁive times=asglargé'as the
e 3 B

dimensions of the pattern. '

o' TS
n, ELN

- Hexahedron

Dodecahedron : . Icosahedron

=l I " H 786
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[

1. Make a'table similar to the following ‘and fil} in the blanks
for the indicated regular polyhedrons,

Regﬂlar ggundary Number | Number | Number | Number
EOlgheir@n of of - of - of = 1 of Faces
i Face Faces | < Edges | Vertices | (or Edges)
L . C ' at @ B
h S . ] 1 Vertex
- i . e - —— — L=t
etrahedron- | * & ' :
. ,"'.' =
. Octahedron ; - R T
% )
.. Icosahedron )
" © Hexahedran Y . . ’
I 1 * .
Dodecahedron -
:;E, Frbm the preceding table, verify the formula f - af+ v =2,
, where f 1s the number of faces of the regular polyhedron,

e 1s the number of edges, and v 1s the number of vertices.
D3 you think the formula is also true for polyhedrong wh%gp
‘are not regular polyhédron

3. Explain why there 1s no polyhedron with three faces.

. If you would like to kriow more aboﬁt the relations that
exlist among Pegular polyhedrons, or 1f you are intefested in
constructing models that use regular polyhedrons as a basis
for their EOﬁStfHGﬁiOH; the followlng books will be of

s

Steinhaus, Mathematical Snapshots

Cundy and Rollett, Mathematical Models

p_—

ERIC

Aruitoxt provided by Eic:



PRlyhedral _Egleg.

In CQ\%ters I and 9 we studied plaﬁe angles and dihedral
( angles. In this section we introduce another type Qf angle
" known as the polyhedral angle. We also study some iﬁ?artant
properties of pélyhedgal angles,
A.picture of a polyhedral angle is the following:
. . v “ ~

This polyhedral angle is determined by the convex-quadﬁilaterai
- PyP,P,P)  and the point V not in the plane of the quadri-

lateral. The rays V?[; R VE"2 » VE'B s Vf; , are edges of the

polyhedral ‘angle. Each of four angles at V , namely LP1VP2 s
7 - Y e wrm B te oA £ - -

. [P,VP; , 4P3VP4 s 4P4VP1 1s a face angle of the' polyhedral
angle. A face of the polyhedral angle is the union of a face
‘angle and 1its interior; for example, in the plane VPP, , the
union of ZP4V? and its “interior 13 a face. The'pélyhedral

faces. This 1llustration leads us to thésfollawiqg definitions

3 : L . -

- DEFINITIONS. Let a convex polygon and a point V
& not in the plane containing the polygon be ‘given;
the uﬁion of all the concurrent @a which have
endpolnt V and which contain a paint of the

The pcint; V 18 the vgrte; of the polyhedral angle. 7

. = . . ~ ) .
~Each ray with endpoint V and containihg a vertex
of the polygon is an &dge of thegpolyhedral angle.

e : }:’ T
= . i (S
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An angle with vertex V and containing two '

;
|
consecutive vertices of the polygon is a face
angle of the polyhedral angle.

A face of a palyhedral angle 1s the unian cf a
face angle and its iﬁtéfié?

5.
A polyhedral angle af thréé\faces is called a
trihedral aggle. - : . _ ,;=

&

Notation. If a pélyhedraiAangle4ié determined by

the convex polygan’ PlPE . P and tHE‘VEftéx Vo,

Sif Ql is an interior palnt cf VPl ; 1T Q is

an intEEiDr point of V?E,..., and 1if Qn 15 an

interlor poimt of V?n ; then the pglyhedra] angle

.1s denoted by the symbol [V - QlQE.i,Qﬁ .

¥

In particular, the polyhedral angle may be denoted by

LV~ BBy | o

Other pictures of polyhedral angles are the following.

v
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1:‘

" of the face angles of a polyhedral angle 1is

Explaratary Prablems . g S

How many trihedral anglés are formed by the walla, flea?,
eeiling of your ;;asaraam? what dg you think i3 the

measure of each of their face angles?

' Can you make a model of-a trihedral angle with exactly:

one of the face angles a right angle? With exactly two of
the face angles as rignt ané;es? With every face aﬁglgfé
right angle? Is it passible'éa‘makeié model of a ﬁalyﬁ
heédral angle with four faces suech ‘that eaﬁh of the face
angles 1s a right angle? Explain. . S

Make a model of a polyhedfal angle with five faces so that
each face angle measures 60 . Can‘you‘make a model of a

-polyhedral angle with six faces if each face angle méa;ure&

60 ? Explain.
Do you think 1t is possible for a polyhedral angle to have
four face angles whose respective measures are 50 , 120 ,

90 , 100 ? Explain. ' | /

Complete the following statement: The sum of the measures

Construct a model of a trihedral angie, say /V - ABC ,
such that the measures of the face angles /AVB , /BVC ,
/CVA are 80 , 40 , 100 , respectively. (The pattern of
such a model is given in the diagram below. The suggested
distances are measured in inches. As you complete the
model by bringing A and A' together, keep the rays
"pointing downward from" the vertex V and keep face AVB

toward your right.)

Compare your model with those of your classmates. Do you
thinkfthat all the trihedral angles repreasented by these
models are congruent to each other?



I
5

7. Construct, as in Problem 6, a model of another trihedral
angle, say /W - DEF , where the measures of /DWE , /EWF ,
/FWD are 40 , 80 , 100 , respectively. 'Compafe your
model with those of your classmates. Do all these

" trihedral angles appear to be congruent? i

o

Does the trihedral angle whose model you consatructed in
Problem 7 appear to be dongruent to the trihedral angle
whose model you constructed in Problem 6 ?

an example of a pair of "symmetric" trihedral angles.
What do you think is meant by saying that two trihedral
angles are symmetric to each other? '
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10. Draw.pietuggg of a pain of vertical trihedral angles. Do
they appeaxr to be congruent? Do they appear to be
symmetric? (You should be able to guess the meaning of
"vertical” trihedral angles by analogy with vertical,

angles.) ‘ _
11. Try and make models of trihedraf‘angles,with\igyéfgngles
measuring: i T
(a) 40 , 50 , 100 , respectively; .
(b) 4o s 5@ s 90 , resgectivei&;*
(¢) 40 , 50, 80 , respectively.

12. Explain-the result of Problém 11. 3 )

13. Complaﬁe the following-sentence: The sum of the measures
of two face angles of a trihedral angle 1s"___

s e :<~«~The~pregediﬁg~expluraﬁg?yfprabiems~;éa§—us»ta—the~fallgwi--

Y
R

ing two thééremg, whose proofs we omit.
. T / ‘
~,  THEOREM 11-17. The sum of -the measures of any two face angles
of ‘a trihedral angle is“greater than the measure of the

%

third’face;§ngle, \L-

THEOREM 11-18. The sum of the measures of all the face angles
of any poélyhedral angle is less than 360 .

As an application Df the precediﬁg two theorems, conslder
the following situation. Suppqée that the méasurgs of two éf
the face angles of a trihedral angle are known to be 75 and
115 . We ask what information can be deduced about the
measure of the third face angle of this polyhedral angle., Let
the measure of the third face angle be denoted by x . ’

(1) By Theorem 11-17, we find that: o
L
X+ 75 > 115 , e

X + 115 > 7% , and
75 + 115 > x

752 <0
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&

—
—y .

o

‘The first of these inequalities tells us that
. xS 4o (Why?) ;
since x 18 positive, the second of the inequalities
gives us no new information; and the third of the
+ 1nequalities, namely g < 190 , also does not provide
. any new information about the number x * (why?) . 7
(2)- By Theorem 11-18, we find that
# x+ 75+ 115 < 360 . )
Hence :
x < 170 . 7
(3) sSince Part (1) tells us that x > 40 and Part (2)
tells us that " x < 170 , we finally ‘eonclude that
40 < x < 170 .
-

Problem ‘Set 11 10

., In eaoch of the fallowlng, the measures Df two of the face

angles of a trihedral angle are given. Find two numbers
auch that the measure of the third face angle is between
them, in accordance with the infgrmatlaﬁ provided by .
Theorems 11-17 and 11-18.

(a) 80, 105 () s, a7 (
(b) 100 , 125 (e) ' 50 , 135
(¢) 60, 135 ~ (£) 80, 95

‘True - False statements, Write + ifithe statement is

tfﬁé; write 0 1if the statement isifalse

* (a) Each of the three face angles Df a trihedral angle
can be obtuse. - B

(b) * A polyhedral angle can have fgur face angles that

are right angles,
(¢) The measure of the face angles éf a pclyhedral angle

with four faces can be 50 , 65 , 100 , and 110 .

S aE
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(@) The measures of the face angles of a trihedral angle
_ can be 140 , 130 , and 120 .
T : (e) If the measures of two face angles of a trihedral
' 7 angle . are \100 and 120 , the measure of the jhird °
. - face angle 1s less than 20 . x
A 'i (f) 1If each face angle of. a polyhedrai anglé measures'
) ' 60 , the polyhedral angle must be a trihedral angle.
i (g) If the measure of each face angle of a polyhedral
! o angle i;ssgo s the palyhedral anglé must have fﬂurﬁ

. faces,
' , (h) If a plane is perpendicular to one edge of a paﬁy-»
F ’ " hedral angle, it 1is perpéndicular tc two faces of
N ‘the polyhedral angle. ;

Correspondir@ to each vertex ' V of a cenvex polyhedron,
there 1s a polyhedral angle, whose vertex °
is V -and wHbse edges are the rays eon-
taining those edges of the polyhedron
that have an endpoint at V. 1In the
illustrative diagram at the right,
the polyhedral angle associated with
ﬁ\xéi vertex V of the polyhedron .VABCDE

_ ‘1s éy:f ABCD . The faees of the
T P yhedral angle with vertex V eontain the réspective faces

;lthe p@lyhedran that contain the paint ‘v,

’ /
4
In the preceding section we described fthe so-called
regular polyhedrons. By pictures and models we found five
types of regular polyhedrons The number of reaspective faces

is 4,6, 8, 12 .

" e length afkg%fedge of a cube (regular hexahedron) may
be any positive number. So, although cubes can occur in any
"size," they all have the same "shape," in other words, they
are similar to one another. In a like manner, regular
tetrahedrons of different "sizes" are nevertheless similar to
each other. In general, regular polyhedrons of any of the
flve t¥pes we haveg studied are simllar to one aneother., The

794 o ' -

o
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reriarkeble fact 1s that thegg*ﬁivéztypeslaqg the only types of
regular .polyhedrons that exist. We farmulaté this as the nexg‘
theorem, whose proof we merely sketch., -° - 4
" L oL L
THEOREM 11119, There are no more than five types of regular
polyhedrons. * '_‘ax « - ‘

-

/Qutline of proof: v

(1) A polyhedral angle has at least three face angles.

(2)Y :The sum of the measures of the face angles of a
polyhedral angle 1s less than. 36¢/. - (

) ’ » )

(3) The face angles of the polyhedral angle 'corresponding to
each vertex of a Pegular p@lyhédfon have the same measure.

(4) Therefore the measure of each face angle must be less
.than 120 .. )

(5) Thé measure of each angle of a regular polygon with 6
or more sides is at least 120 . ’

(6) Hence every face of a regular polyhedron has less than
6 edges; in other words, a face of a regular polyhedron
is a polygonal-region whose boundary Has eilther 3 on
b or 5 sides.’ '

(7) Suppose that each face has 3 eqges. Then, «

(a) each face angle has measure. 60 ; -
(b) each polyhedral angle can have 3 or 4 or 5
faces, by parts (1) and (2);

* (c) no more than thrég types of regular polyhedrons have

faces which are triangular-regions.’

*

(8) Suppose that each face has U4 edges. Then,

£

(a) each face angle has measure 90 ;

(b) each polyiedral angle has exactly 3 faces, bj
parts (1) and (2);

(c) no more than one type of regular polyhedron hds
faces which are squares and their interiors.

79511 )
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(9) Suppﬁpe qﬁat each facg\has 5 edges. Then,
(a) each faoe angle has measure 108 ;
- (b) each polybedral angle has exactly 3 rfaces;
£ (¢) - no more than one type of regular polyhedron has
C faces which are pentagons and their ;nteriors o
?" (10) In aummar‘y, thére are no more tan five types of regular
‘?\\;3 !'Pelyhedrans.- T Lo
) ; : A v
o ,‘- = o ikg
11-11. Prisms. ) : i . : o~
We now study another tyﬁé afgpo;yhédfan;*name;y the prism.
r; " DEFINITION. A prism’is ; polyhedron such that two
’ of its faces (called bases) have baundariés which*
are congruent polygons in gaqg;lel planea and each
! of the remaining faces has‘a boundary which 1s'a Y
paréllélagram with two sidg@ in the parallel plahds. %&
- Prismskare classifled acc@rdiné to their bases: A prism
each of whose bases 1s a triangular-region 1is cglled a o
%;triangglgg pﬁism} a prism each of whose bases 1s a rectangular-
reglon is called a rectaqular prism; and so on. Of partigular
~ \impartance among theéprisms each of whcse bases has a
quadrilatéral as a boundary are the falIEwing
- — Y, /
- ” I
= — —d —— 1
A
o ————
7 N e J
/ -
A ) 4
. Rectangular Paral elepiped
‘ T B ¥
(' -?. _ i =
\ |
!F!EEE f
¥/
& —
; Y Cube
¢ 5. (;
* Ty o -
i By '
A g 796 .~ ;
£ % ®
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. - DEFINITIONS. A parallelepiped is a prism such that
NN Y e
tﬁé boundary of each af its baae& is a parallelogram;‘

such that the bgundary af each of 1ts faces is a \
rectangle. ' q#; . i
A cube 13 a parallelepiped such that the boundary
. OF, eaéh of its facea is a. .8quare. . gf'éf’
[

Nobtice that each parallelepiped is.a p@lyhedron with six
faces, that 1s, is a héxahed:on;' In particular, the cube 1is
the regular hexahedron. ’

~ « An eordinary box 1is a model of a rectangu;ar’pafailélepipedi
A prism’such as a recééﬂgular parallelepiped has &hree pairs of
faces, each of which may be éanaidéréd as a pailr of bases. Is
this also true of@aiparallelepiped which is not rectangular?
Why? By cantrast anixggne pair of faces of a ﬁriangular prism
may be cansidered as the two bases. Why? . .

.DEFINITIONS. With reference to a selected pair of .
bases of a prism, we define the following:
- any one of the remalning faces is called a lateral
face of the prism; : '
the union of tHe lateral faces I's called the 1ateral
f -surface of the prism (sometimes known as a pr

surface); - ‘ -
any edge which 1s the intersection of two lateral.
faces 1s called a ;a@grggigdgé of the prism;

-

the prism is said to be a right prism if and:anl§¥if

a lateral edge is perpéndicular to a base

is not a right prism, Face AEYX is a 1ateral face and CgZ
.18 a lateral §dge of the tria.ngular pristh. Esach of the other
" two diagrams below is a plcture of a right prism.

o
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¥ Problem 8et 1l-1lla

1. Explain why all the lateral edges of a prism are parallel -

to-one another.
"% 2. Prove that in a right prism every lateral edge 1s
igf%? perpendicular to each base,

DEFINITIONS. With reference to a selected palr of
bases of a prism, w& define the following:

: a ;;ossssegpign‘of the prism 1s any non-empty inter-
' section of the prism and a plane which 1s parallel
to, and distinct from, the planes contalning the

bases;

a right-section 1s any intersection of the prism and

L

a plane which is perpendicular to, and intersects
L the interior of, every lateral edge.
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In the dlagram at the right,
piang ABCD , plane %EéH , and
plane QRST are parallel planes;
and plane 'WXYZ is perpendicular
to qﬁgk Quadriiatera$ QRST
ig a cross-section of the . .

Erigm and” quadfilateral ; o
WXYZ 1s a right-section
of the prism.

B

€

DEFINITIONS. With reference to a selected pair of bases

of a prism, WE define the following

any sengﬁt whose eﬁdp@intg lie 1in the two parallel

prism;

the sum of %he areas of all the lateral facea of
the prism 135 the 1atera1 area of the prism;

the sum of the areas of all the iaceu of the prism

is the total area of the prism.

A method of computing the lateral area of a prism is to
find the area of each of the lateraléiaces and then to add
thetr-areas. The following experiment; help you to recognize
??aimpler method for finding the lateral area of a priam.
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’ Experliments s

Cut along one of the edg ’ 2 right prismatic surface.
Note that this surface can, De flattened into a rectangle as
shown in the next g\ e, "The base of the rectangle is the.
- of the _of the p'iam, and the altitude of

the rectangle fs the ____of the prism. Therefore,
the’ lateral area of the prism is the product of
and 7 )

A! i 7757]7 C! DI EI AI

. l . e

A B C D E A

Cut along the lateral edge of a prismatic surface that 1is not

a right prismatic surface. Flatten this prismatic surface

.into a plane surface as shown 1n the following figure.

Draw a 1line ‘An the plane perpendicular to one of the

a&dges of the flattened surface as shown. Does the length of

RS
are the lateral faces of the prism?

of

eqﬁal the sum of the altitudes of the parallelograms which
Why does the lateral area
the prism equal the product of the lengths of RS and a

lateral edge of the prism?
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11-11 ; * - h

Change the flattened figure back to the original prismatic -

surface. The length of RS 1s the same as the perimeter of a
of the prism.

= .

THEOREM 11-20. The latéral area of a prism is e
product of the length of a latéral edge and

.

=qual to the

the perimétér‘

of a right-section.

Proof: We are glven a prilam wlith bases 1’:'11‘5';33“,1:}1 and

- N Ly ) 172" """n
RiR,...R, and right sectign} QQ...Q, . Let L be the
lateral area of the prism, e the length of a. lateral edge,

and p the perimeter of the gilven right section. We are

required to prove that L .= ep . 3 ’
¥ .

Statements ) ./ Reasohs

el Sum of ’E he areas of n- paz*allelagranxs iz h, WMy“
. y ==
h

©(Q9Qy + Qg t QR ke F Ry 8, Q)

5. Therefore, L =-ep.. ' ) 5. Why?
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Corollary 11-20-1, The lateral area d? fight prism 1s

the product of the length of a 1atera1 edgé and the perimeter-

of a base,.

L,

%l
»

(%

[ain]

10.
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843 P The altitude of
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Problem Set 11-11b

:Supplyxthe reasons fgr the statements in the proof of

Theorem 11-20,
Pﬂgve5Cor@llary 11-20-1.

Find the area of the lateral surface of a right prism
10 if the sldes of the pentagonal bas

LI' L 5 L) ? ¥ E ¥

whose altitude is

measure 3 , respectively. ;
LS

Find the total area of a right triangular prism if the _
triangle 8 inches on a side and

the altitude of the prism is 10. inches.

cross-sectlon of a right trilangular
and 3 4/3 , then any other cross

If the sides of a

prism measure 3 , 6 3 s
sectlon will be a tpiangle whose sides measure .,
) s and __ » and whose angles measure

. _ > and whose area 1s 7' . .

—

. - k,
The length of a lateral
its 1atera1 area 1s h’/=2

edge of a right prism is 10 and
What 1s the perimeter of the
baae of the prigm? '

&
il

al prism 1s
Find the

of a right hexagona
the prism 1s 20 .
lateral area of the prism.

At one of the vertices of a certain, aquafe prigm, the
aauoaiated polyhedral angle has face angles which

measure 90 ,- , 30 , respectively. Each lateral edge
~of the prism 1s _QO inches long, and the perimeter of
the base 1s 48 1inches. Find the total area of the

prism,
Prove by the use of coordinates that. the dilagonals of a
rectangular parallelepiped have equal length.
. P .
Prove by the use of coordinates that the diagonals of a

rectangular parallelepiped-bisect each other.

oo
2
(%
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Pyramids.

Pyramids resempfe prisms in several, respects. Maﬁy of the

such as lateral face, lateral edge, cross-section, and

lateral area are the same, and we shall uge tnem without formal

definition.

' The face of the pyramic

R A

DEFINITIONS., A Elyamid is“‘a convex polyhedron which, -
except forrthe interlor of one-of 1ts faces, is can4‘%%\>
tailned in a polyhedral angle. .

The vertex of the polyhedral angle is called the

vertex of the pyramid.

which 1s not contained in

o

the.polyhedral angle is called the base of the

pyramid.

The segment wnhilch jolns the vertex and the plane

containing the base and is perpendicular to that
e

plane 1is called th

In the dlagram below, V 15 the vertex of the pyramid;

the pélygonaléfegion CDEFGH 18 the base of the pyramid; with
the exception of -the interior of face CDEFGH , the pyramid 13
contained in /V - CDEFGH .
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DEFINITIONS. A pyramid is a regular pyramid if and
only 1if the boundary of its base 1is a regular
polygon and the center of the base 1s an endpoint

of the altitude of the pyramid.

The slant height of a regular pyramid is the
distance between the vertex of the pyramid and an

edge in the bask of the pyramid.
» @In the following dilagram, the altitude VQ of the
isosceles trlangle EVA 1s the slant height oféthe regular

¥

pentagonal pyramild.

Assoclated with the set of all pyramids 1s another
_important class of polyhedrons. If we imagine "cutting off
the top" of a pyramid, the remaining figure suggests a frustum
of the pyramld. In the diagram below, the polyhedron with
vértices A, B, C, D, P, Q, R, S 1s a frustum of the
ﬁyramid whose vertex s V and whose base is the polygonal-
region AEBCD .
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(
\,
~
DEFINITION. Given a pyramid, a frustum of the
pyramid 1s a polyhedron such that: -
< _ N N ?( . 5
(1) one of its faces is the base of the pyramid;
: N
(2) another of its faces 1is in a plane parallel
to the plane containing the base of the
pyramid, and R '
(3) each of its other faces 1s contained in the
pyramid.
&

LY 2 .
The proof of the following theorem 1s left as a problem,

THEOREM 11-21. Let a trilangular pyramid be gilven.

(2) Every cross-section of th