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. . Chapter & -
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. ccoRﬁ&NATES, IN A PLANE®# =~  « 7 .
* A ; & - _
8-1. . Introduction. S s A

== LY N

In ccnnect;g; with our #lscussion of éistaﬂﬁe we 1n€£éduced
the Ldea ‘of a coordinate system on a line. A cgordiphte Eystgm

,’ on a liné 1s detfermined djy any pair of paints on 1t; with one )

'pﬂiﬁt of this.pain designated as the Qriggn and the other e
designated as the unit-point. A coordinate system oh. a line'
is a one-to-one carfespandence between the set of all real -
numbérs;and the sat of all pgints in the 1line, such that the
Gacrdinateé, i.e., the numbers aggociated with the péinta, can
“be used to deéérmine distanceg between points.

. ) .
- — S S— .
-2 . ~0 I
%
" . . ' \ 5
Phoblem Set 8-1 - »

On.line 1Z§E assume a coordinate system which assigns the
coordinate O to A, and 1 to B . F 13 a point on
“AB” with coordinate x . For each listed condition plot
the set of all points P determined by that condition.-

(a) x=5." . : .
(b) x = -3 )
(¢) x = 3AB .
(d) x = 4aB .
(e) x =% AB . | . '
(f) x =1t - AB and t 1s an elemént of (1, b, 0, %)
-7 (). x=k + AB; k<1
. (h) x=Xk - AB; k>0 . “~ ’
(1) x=k-AB; 0Ck<1 . .
* U (§) x=% - AB; k>0,
\ ,
> Y

€
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¥ ) L 2{ ‘A coordinate system on iigﬁgassigns ccgrdigates 0, 1, x
o to points- A, B, P respectively. ; Plot the set of a&l P
w : . Buch that x satisfies the given conditions. ~ '
- (2) x >0 and x "is an integer.: Describe the set. _
(b) x <0 and x 1s real. s o . b
T (¢) -2¢x < 5 ; X 1is an 1nteger How many points
‘ R belong to this set? E
[ (d) -3 <x <1 ; x.'is real. How many points belong to
' this'set? - '
‘e 1‘(83 5<x<-1;x is real. ,
(f) Using mathematica?® terms destéribe® the point sets in 7
(b)), (a), (e). .7
3. If A, %g-c, P éreicn ray . AP= and have i%spectfvé\ }
coordinates O, 1, 3, x, what is the vaifie or valuwes of
X determined by each of thégfollowing conditions?
“(a) AP = 2aC’. © (d) BP = 3BC .
(b) AP = 5AC . (e) BP =k - BC
(c) AP =1k - AC . ., (f) BP = 2AC )
4, Sﬁppase a coordinate Eysﬁem on a line m 1s given
N ]?lgarid Q are pc:ir‘lts in m .with coordinates and q g
respecti 1*e ely, find the distance from P, to Q \if
L g s! ) i
) (a)» p=5, qg=8." (e) p=r-3,q=r+ g\\
\ . (bfp;f—T;qf-B, (f)psr‘%-f;,q;‘ril-lax/
: y (¢) p=3,a="-5. () p=ag=-a,a>0., ™
‘ - (d) p=-9,aq=4. *(h) p=a,qg=©0b .
\ ' 5. Suppose a coordinate system is established on line m ,
X and P and Q are points on m with ca@rdinate§4 P .
and q respectively. If P, T, M, T, Q are collinear

in tpat order and represent the mldpoint and trisection
- points of PQ , find the coordlnates of M, T, T, in
the following. Record your results for each problem on

a separate number line. (Refer to Theorem 3-6.)
(S \:

v (a) p=3,q=12, () p=a,q=b,b>a
\ (b) p= -10, g = -1 " (¢) p=r+a,q=r -a,ac<o
\. (¢) p=-2,q=13 .- (f) p=(r+0b)-2 '
. : g qs; (r + Db) + U4
\ :
(. s




8-1 .
6. 1In each of the following péableﬁs 1ndicéte theilacatidn>
of:- the objects lettered from ‘A through H by using
.elther a pair or a triple of symbols. :

(a) Seats in an auditorium. » R

OO SN
~er — Y - — ' .
R o o s o

®

OO

[

1P|

T - 3 _
y 'SEATS

{Es* “(b) Houses at the intersection of stréegs=an§yévenues.

N4

= N o
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. (e) Tables in rows in thé floors in a store.

2 - : ) 2 _ u
e - . ’ . 4 :
O . . u - L e T

L3 T =

— == s

1 S —
I ——————

K
-
[-%

o

G A’%-. — 1‘;“:!‘ ﬁ"‘; }-3 ‘
T 3 T=_ =~ € 2nd -

T X — < H

i
L~

Ist FLOOR

S . . INL— 2 3 ' - E
. . R TABLES

. - “,%\1 (d) Polntd on the surface of the earth. - . -

. ; _ .
4 : A ' .
T, .PRIME ‘MERIDIAN

. 45° NORTH—

R- ) o - 20°WEST
r %

- S S ;

o
45° WE!

m

4 (e) Using the data of Part (d), indicate the position
_ of' airplanes which are above each of the listed
- points. Assumg the one aboves A} has 'an elevati@n!
o 5000 %;i; hnd that the elevation of each ong ;,
from A to H is 200 -ft. more than the preceding .
, , i .

7 one. - r'

-,
%,
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8-2. A Coordinate Syatéy in a Plané.

e

Su po se:thatia plane ds given and, Enﬁil further notice, ﬂé»f;

L

\ that all palnts and® lines undep consideratian 1ie in this plane

¢

- Suppose further that a unit-palr of points [A;A}] , a

E&f diacussed—in Chapter 3, is given. All distances are tcfbé

£

¥

T s

i

considered as neasures of distances relative to this unif paif;

Let ox and DY be any two perPEﬂdicular lines with D "

thelr point of infersection. ELet T and J be points in BX. /
and iEf‘; respectively, such that 0I = 1 = QJF . There is a--i
coordinate systém on EX with the point’ O as origin and the . ’
.point I as unit point. We call this the x-coordinate
- system and the coordinate in E‘his system of a point of iﬁ?ﬁk
1ts x-coordinmate. Similarly 0 and J are the origin .and
urilt paint af a ccafdinate system on *Ef‘i We call this system‘ .
the y-caordinate gsystem and the‘coordinake in this system of
a point on qé_Y- its y-coordinate. -~ : ,
. Thds 1n the diagram ‘I and J are the unit poigj_ss of
their rezpective coordinate  sys stems. Point 0O 1s the DfiginP
of bcth the x- and . . :
y- coqrdinate gygtems . ' y
The chrdinate of point } B ' 1
P 1s 3 -with respect. o =
to the x- comrdinate NS ‘ L 3l ,
system and the _ R ST e
:-ccordinare of H with 2tR d .
respett to the yfcoordi— ) ; ;.hFd ’ 3
nat§ systém is 2 . ‘ ‘.,” s ol 1 p .-
Namé the coordinates of "
points S iand T. Is - ik o y
1t neces 58ary to ;pe&ify . . .
the coordinate system 1in -2t : ' N
each éése? Why? e 7 ‘ R~
v
. v -
D J
£ _
: 509 1. o o
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The 1liné . 0X 1is called the x= axis and QY 1s called the
l éxia thelr point, of interQEEtion, 0, is called the O?igln,,
= and the plane determl ed by them is called the Xy-plane. )

‘ Becauge of the way ‘these ‘axes us ually are shown in pilctitres on
a chalkboard it i cugtamary ta. call lines pafallel to ‘the -
«x-axls. harizantal llnes, and linea parallel to- the Ve axia

T vertical lirés. It &g customary to think of 1 as lying to

the right of the origin and of J as lying above the origin.

This means, then, that the points on the x-axis with positive

coordinates lle to the right of the origin, while the points

on the x-axis with negative c@@rdiﬂates lie to the left of the

origin. #here do the poilnts on the y-axis with pogitive
coordinates lie? Where do the’ p@intg on the y-axis with J—

5 negative coordinates lie? - i _—_

dP We are now ready to define a coordinate system in the
VF . Xy-plane which 1is detggﬂéned by thé x= dhd the y-coordinate

systems. We aansidEP a particular point firs t%z Suppose that
Q@ 1s a point, that the vertlcal line ?nraugh Q cuts the
x-axls 4p the péint whose x- COﬁrdiﬂaté is 3 , and ghe hori-
zontal 1iné through cuts the y-axis in the- péint whose_
y-coordinate 1s 2 . We Bay in this case ‘that the xfgaardinaﬁe
of Q 1s 3, that the y-coordinatg of Q 1s 2 , and we call
the ordered pair of numbers (SJEégﬁkhg coordinates of Q§

M
A m
A
-
- 7‘12 _ Q(3,2) kﬁ
o
i = — T T T O L = - X
- - o I 2 3 4
»,/»_\»_
L= % N
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S We are nqw ready for the general Qaééi "Let P be any
point in the Xy-plane. From our prguious,WQPg-wa‘kn@w that
- thE?é‘is”exaﬁtly one line:thréugh B pérpénﬁicular to tﬂe
Y- axigiand Exagtly one line through F Pevpendicular to the
y-axls. Why? The point P, @ax an x- ccnrdinate and a’

y- Zcoordinate which we now deiine " The x- COGPdiﬂaté of P ia

rthé 4 X- EDGPde&tP of tHe pfajé?tion of/- F iﬂtg the x-axie and

s

‘the y-coordinate of P 15 the y- ﬁanfdinita‘gi the projection

of P into the y-axis. We sometimes call the x-coordinate of

P and the y-coordinate of P the coordinfités of P . The

odérdinates of the y-coordinate of P are considered an @rdered

c
l pair of real numbers in which the x-coordinate 1s the [first
numbg: of the pair and the y-coordinate is the second. If the
x-coordinate of P 18 a -and the y‘coordinate of P iz b,
the coordinates of P ane written as (a,b)'g Notg that the
numbers in an ordered pair nééi not be distinct. Thus (5,5)
15 an ordered palr of real numbers. Of course (8,3) and
13,8) are different ordered pairs. In fact, (a,b) = (e,d)
if and only 1f a =c¢ and Db = d
y
'O A A
}
Play) plB_ - ;E““b) DE P@,m
H il s
jf
il
[ It I+
- i [ L il e - _ HA, -
=} o |' ‘ 7 X <2} 0 | = X 0 | e = X
\] At | \
/ /
In the diagrams A 1g the projJection of P into the
x-axis and B 15 the proJection of P l1ntosthe y-axls. “Fhus
the x-coordlnate of P 1&g a and the y-coordinate of P 1s

b . We call the ordered number pair (a,b) the xy-coordinates
s

ERIC
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Since the pféjecgipn of a point into a line is u?}que, it
follows that there is exactly-one ordered- pair of rea numpers
aagigned to each point as 1its coordlnates. aégnnf rse iyg ir
(a,b), is any ardsred palr of neal numbers there iz e; 1
point P 1h the xy plane whicn has (a,b) assignhed to
1ts coordinates. lndeed there is a unlque vertical .llne

7 " through the point on the x-axis with x- eoafdinate a , and a

unique horizontal 1iné thraugh the pgint on the y-axils with
y-doordinate b . And P 1is the unique point in which this
vertical line and this horizontal line intersect, Thergfore
therée 1s a one-to- one correspondence between the* set of all
points in the xy-plane and the set of all drdered palrs of real

numbers.
Corresponding to any three points 0, I, and J s such
| S
that 0I | 0OJ and 0I = 1 = OJ there is a coordinate system .
in the xy-plane. This coordinate system 15 the oné-to-one

m

correspondence which we described above. Although there are
many xy-coordinate systems in a plane, we usually think of

- only one of them in a given problem or theorem. Once a

coordinate system has been set up we may use ordered pairs of
real numbers as names for polnts. The coordinate pair of a°
point 1s a good name for a point in,view'af the oné=to—@né>
correspondence described above. Thus we may say that the
point Q has coordinates (-2,4) , or that Q = (-2,4)
Sometimes we simply wrilte  'Q(-2,4) . Occasionally we use the
symbol Xp to denote the x-coordinate of the point A and
the symbol Ya to denote the y-coordinate of the point A
Thus (xA,yA) 1s another name for the point A .

We' have used "below," "right," "left," to
escribe the position of a p@iﬁt These words were intfoduced

'above,’

for convenlence and we can get along wilthout them if we are
challenged to do so: Furthermore, there are situations (not
in thls book, however) in which it 1is convenient to take the
positlve part of the x-axis as extending to the left, or the
posltive part of the y- axis as exteﬁﬁiﬁg downward, or some

other varidtion. sgjj



Lg !
b -
. F= |
X - T — —— r'—'fl“
2 1 5 -t -2
o '
i L2
+ . # 1 o
- s Y
In describing the locatlon of a point in the xy-plane 1t
is sometimes .convenlent to specify the portion of the pla%e in
which it lies. The lines .0X and 0Y form four angles.
. L . -, L ) i
Every point in the plane lies in 00X or in. 0Y or in the
B . i,ﬂ',,ﬁ
) interior of one of the four angles whose sides lie on 0X and
- - , . L . : ) )
0Y . The interilors of these angles are called quadrantg. The

first quadrant 1s the set of all points whose x- and y-coordi-

‘nates are both positive. The second guadrant 1is the set of all
points whose x-coordinate 1s negatiVe and whose y-coordinate

is positive. The third guadrant 1s the set of all p@ints\\

whose x-coordinate and y-coordinate are both negative. The

fourth quadrant -is the set of all points whose x-coordinate 1s
positive and whose y ordinate 1s negative.. We denote these

=C0
quadrants as I, IT, III, IV.

£

ny
(N1
=
Toal
—,
:f
L9
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"gr‘aph o
and to mark a dot in the proper plaéé as a plcture of the-

r:::) ) 3 \e‘i“g!\ " £
- ‘ | v
- ' ¥ s Y
& A & 1 B
=+ : (+,4) @ .
:if . — i = .

B jII ;Eﬁ ) * . -

) el :

\1«

Suppose we wish to describe the locatlon of the point
(5,-3) "right," "left,"

"nelowi“;waimight'say that P 1s in the fourth quadrant,

without using the words "above,"

"that 1t . is in a vertical line whlch cuts the x-axis in a péiﬁt

5 Xunits from the ﬁﬁi&in, and that 1t 1s in a horizontal line

whilch cuts the y-axis in a pgint which ig 3 units from the

Drigin S v

;
L _ 5 = f"r" L = 2 . N _ _ =
In the following problems 'we use the words

_ H . .
To plot a point means to draw®a plcture of the axes

"plot"'and

point. A name for the point is frequently wriltten beside its
‘plcture. We use tjle word graph to mean a set . 5? points. To

draw (or plot) a graph 1q to draw a pleture which shows the
axes and the QEF/oI p@intﬁ If there are infinitely many
its graph 1is sometimes drawn by drawing line

The pigtgre

points in'a set,
gsegments, or by ghading the appropriate region
of a graph always ahgws the axed, but they are not a part of
the graph unless 1t 1s so stated. The label X 1s placed
along ggé poslitive part of the x-axls; the label, Y’ 18 placed
along the ppsitive part of the Z;Ei}si It is usually iasirable
to lapel at least one point on O0X other than the origin with
and at least one point on i6§§‘éthEF than the
‘If we wish to Eepre;entAa line

1ts x-cobrdinate,
origin with its y-coordinate.
segment including its endpoints, we sémetimes emphasizé the
endpolints as in the follawing plcture.
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If we wish to represent a

segment except its endf

y of a line
endpoints az in ghetf@llawing pifeture , .
2=l

' Ifwgﬁé axes,. or a poertion of them, are a

we may indicate thils by makingA"béatier Tines

Example iil Plot the polnts 4A(-2,0) ,

-

Draw the graph of the line zegment with

endpoints (3,-2) and (3,1)

W
!
%
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1
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Tl
O
po— |
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pas]
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pad
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r
hol
o

(E;E),;'E (O:E) » C = (O:O) »
T of the set -of all points wnhith belong
D or its interior. '

1
e

N —
“*+c0,0 =X

Mz,

If Q 1ia the point in which the vertical line
through P intersects the x-axls, what are the
Q 7-

If R -is the polint 1In which the horizontal line
through P

coordinates of

intersects the y-axis, what are the

coordinates of R ?
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8-2 \ - wer e ' :

"3, Without plotting, name the quadrant. in=which each of the
.follaowing polints lles: 7

“.(Tf:=1 ;(v’_f);

.

Detwﬁen the set Qi_@fdéred pairs
‘set of points in.a plane.- o
rjﬁ : - B * Y

5.,

&, Describe the set of all points in a plangé or which the
%x-coordinate 1s 3 ; for which the y- co&rdin&te is”® -5
Deseribe the intersection of these two ﬂetag‘

7. Plot the set of all "points (x,y) for which “x -and vy
are both Integers and x and y satisfy ﬁhélfgllgwing
condltions: -

, A

(a) x=2, -1 <y <5 How many points belong to this
set? ¢

(b) y=-3, 2 ﬁ-x < 6 How many polints belong to this
set? -

. v

(e) -4 <xg-1,-2<y <3 . This set contains now
many polints?

(d) o<x<e2e, -b<y<o This set contalns how many
points? . ¥ ‘

8. Plot the set of all points (x,y) ‘'in a plane satisfying
the following conditions. Describe each set using
s o
mathematlcal terms.

(ay 1 ¢x<5,y=2 (e) x=4,2<cy <5,
(b) x>1,y=2 (f) x=-3,y<2.
(¢) x=1,y>¢2 () x <3, y<-1
(d) = >1 (h) vy <o. -~
. . . i
*9, (a) If A= (3,0) and B = (7,0) , what i the length
of segment AB ? Justify your answer.

(? L) , what is

the distance -



B2~ i

v 10. Without plotting, arrange the following points in order
from lowest to highest, Ignore the variation in their

. distance from the y-axis, - _

= - ) ' (S:Ei) :(2:53)2 ( 1:‘“1) H (E:D) 1 (“51“) H] (le)

11. Without plotting, arrange the following points in order
from left to right, . (Ignore the variation in their- o
distance from the x-axis.) o '

(E:D) E (=3rh‘) ;‘»J(_Ov:;g) i (l‘tg’_’g) x.: (’77:6) L] >(77T,r”i‘:—)');

*12. - What is thé length of the segment’ AB -, given the

. ’ . 7 = L,
coordinates of 1ts endpoints as follows: »»
(a) (3,8) , (3,-5) . (d) (a,r) , (b,r)
‘ (b) (7,12) , (-6,12) . (e) “(m,t) , (m,5) .. % o
(i) (szé) H (J£§=1O) h i ’ '
g . 13 Dezcribe the set of all point with coordinates v(x,y)
which satlsfy the: éonditi_@n; in each of the following:
b (&) x>a,y<o0 o
(b) x 4is positive, y 1is non-negative,
(¢) x and y are both negative.
e (d) x> -2, o )
' y is any real number,
. (e) x 1is any integer and y is any integer.
. (f) x 18 any real number and y 1s any real number:
_ *14, Plot the points listed and 1n each part give the
/ coordinates of the mildpoint of’ the segment determined by
\ “these points '
) (a) (0,0) , (0,8) . (e) (-5,-3) , (-10,-3) B
(b) (3:7) H (3:11) (d) (1(‘:);1&) H] ("10;4) .
*15. Give the coordinates of the mldpoints of the segments
! {hose Eﬁﬁ;?iﬂts are:
2 ’ . ‘ ' .
(a) . ,(iébf,!a;):‘i'i;g (102%1)'- (Q) (Easg) s (a,i!) .
(b)‘j (1;3) ) (1:b) LI (d) (}il’yl') : (}ig*yl)
16. Describe t osition of ‘tHe point (-7,-8) without
using the words "right," "lefrt," "above," or. "below."

ERIC

Aruitoxt provided by Eic:
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use the symbol “|a - b| , read "absolute value of a - b ." .
Of course we want Ia - b] = |b - al and for this reason we

[ D‘
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and. ]D - a] =a - b .

=
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o
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e

ot
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=
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hnat if X > 0 then | |-x] = % .

|-x - 0O Since 0O > -%X ,

=]
b
R
| =
E‘
et
\ Iy
o
ug
i
L2
-t
oy
I
s
g —
L™
'
o
h
L

gulut;@ﬁ ‘:6 B jl = [=4| = 5 .
Note how the ept of absolute value si mpllifies the
statement of the next theoren.
, .
THEOREM 8-1. If P and Q are points on tne same vertiecal

g
"
o
O
Iy

P and @ /are on the y-axis, then .he theorem 1s

F
proved by the use of

[
=
ety
T
m
o3
s
o oot

e
i .
are not on the/y-axis, let A and B
¢ )

be the Mespectivé projec
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>1;i_;‘i:} ;Y - fﬁi:%:i= ‘}' ‘_} . ; _Y-; 

;8,2 . - o .

. . ) B B 4
Then by ourgdefinitilon of y-coordinates we know that

and yo = yg . Now y, and y, are the same as the

y-goordinatés of A and B andsﬁherefage ABs= ]yA
Since ,ABQP 1s a parallelogram, it follows that AB

-and hence that 'PQ = IyP - le

|

AP (XpyYp)

3

Br——————Q(xqQ,yQ)

THEOREM

o0

[

line, then PQ =

7

Yp = Yy

- yBl,s .
=, PQ H

. If P "and Q "are points on the same horlzontal

e

&

e

Prool: ., A proof similar to that for Theorem 8-1 can“be

i
[
<
VT
-

*

THEOREM 8-3. Every vertical line is perpendicular to every

horizontal line,

3

Proof: This is

We have seen how to use Xy-coordilnates to measure

]
pri
I
T
i
¥
e
i
b
hed
T
b
jd
Cr
i
D]
i
e
R
et
[
iy
i
e
i
I
LT
|
W

the

distance between two points when those points are on horizontal
[s]

r ‘vertical lines. We now proceed to develop a method
inding the dlistance between two points that are on an

P
line. We iIntroduce the method by means of two e

for

oblique

. examples.
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., Example 1. Find

_ Sglutilon:

(0,0)

A(3,4)

=

and

A

Let B
B=23 and BA

the Fythaé@réaﬁ Theoren we

=4 But

o

|30

I

be the projectlion of

Q(8,n)

P(1,-7)

O

ERIC

Aruitoxt provided by Eic:

W1
i

© A

R(B,-7).
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Let R be the point (8)-7) Then .PRQ 1s & right trlaﬂg}
PR=[8 -1 =7 ; QR = [8% .(-7)] = 15 ; and

e,

' 2,2 NS ;2' 2 e o v
., , (PQ)* = (PR)T + (QR)" = 7% + 18° = 49 + 325 = CACT : A
. Pa = 278 . .. LT e -EL?; .

We proceed to thé tneorem, which, ‘once proved, will enalbile ys

to find the distance between: any two p@lntg witngut fgﬁerﬁme

] tc:?‘a right triaﬁgjle The rédault of ‘this tneor&‘m 1s c;\isten ;, ’
? I‘;‘iEPI‘E‘(j to a.J “the dlatanre Iafmul’a for points :Ln a pléine -
1 * C“ i‘ L i\/‘ =
% . ) = : . ) \; !'*"o/,
and P,(x,,y5) are two points-
f{lj) + (yg - yl) \
Proof': Let R = (Xl,yj) ir ’1P§ is an Dmliqu&
segment, then P,RF, 1s a right triangle. Then
(P1Po)" = (PR)T + (PB)° , PyR = |y, - vyl , PoR = |x, - x|
and since . F
(lxn Hll) = (XE = xi) ‘ ] .
\2 2
v (ny‘x - y1|) - \yg = yl) 2
v . Elk‘g = '1/(}{;} Xl) i (yg = Yl)
T F(x,,yl .
~
1‘&%
~_ P
— P (xp,y.
R(!ii)é) E(XEJE)
e S - —f X
oy -
o

L
wn
[
M
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- i w§ s,
g3 : A i
- If ?i?é 15 ‘norizontal, then Y= Vs TR = Pl s a?g‘
Jo - vy, = 0 It PiPZ ’isxvertical, thg?'_xl = Eg , R=FP
ané X, —¥Xy = 8] ' . ' L
4 e S * T
- . In either case the relationships . S LR
. .. o ’Eé'ﬂ o '7:77’, 7 . -y
= (1) _ (E’lfi) = (E:LR) +. (PSR -, and
- . ok ) 15 = -, r_ 7\2‘ ] N )
:I . 1 4 : —— ')::3 ki — = E . Kﬂ
i T . (;) E%ES = AV/(Kgf\i’i)A + (yg = yl)i ¥ \
- are still valid ‘
Example 1., Fifid AB if A = (7415) and B = (7,13)

R
o
)
o
ot
y
S
=g
it
I
—
1
— |
X
4
—
=
L
i
I,._I
b7
S
X
il
N
I
2
o
b
I
]

Example 2. Find CD if C = (-1,5) and D = (5,-1)

. Solution: . ' : .
i Y et A L
D ;4/(5 -~ (F1))° + (-1 = 5)° =¢/30 ¥ 36 = 4Z X 36 = 654/2

s of AABC are A( 1, L—,)
> i 308

e

Example 3. The vertlc
B(4,0) , €(2,5
triangle.

"Proof: We have to prove

(1) AAEC 1is isosceles
(2) AABC 1is a rignht triangle
s We can prove both 1f we know AB , EC , gﬁ

L
uet
il
N
[t
I
—
[
e
K
o
1
N
L
]
\
Pt
W=
W]
‘1\
_i_
:l
H‘
J
)

We can see that AB = BC and thé?éf@?é AABC 15 isosceles
We can see that (AB)® + (BC)® ='(cA)? and therefore A‘ARC

iz a figﬁﬁ trliangle.

(|
(W
L
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iﬁg@ﬂgm 8-5. If P *and Q are two points in the same
wertical line, then the midpoint M. of TPQ 1is tne point.
- N : E s B =

. 9 A
Proof: Since P, @, and M 'lie in tne same vertilcal
line Xp f‘xQ = Xy - ‘Let A, B, and C be thE'reﬁpecﬁive
projections of P, Q, and M into the y-axis. Then
B and yMls Yo - S8ince M 1s the midpoilnt

yngA"yQ

of PQ it follows from Theorem 7-2 that C 1is the® midpoint
of KB . It then follows from the definition of a midpoint
v Y§ *¥g

\ + ¥y
A" YB - - _"F ¥7Q o
— . Therefore yM = T and

that IYC

THEOREM 8-6. ,If P and Q are two points on the same’
horizontal line, then the midpoint M ,of TFQ is/ the

R point

Proof: A proof si

i}
s
=
jurt
'.—l\
L
H
¥
0 %,
o
5
iy
o
=y
o}
H
fac
=3
i
[o}
ke
@
.3
rfg‘
W
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o
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glven.
wo : -

LA
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THEOREM 8- T If P and Q are distinct pglnta on a line:
which is naither vertlgal nor herlsnnta; then the midpalnt -

?Q M of Pq; 1s the pcint . L
(e, X YQ)

» M = .
, v M= - B =T

] >~

y - .
8 /Q A . 7 u
c o 1
- A I £ ] o P/ oo
& )
o
| ;
el - - e <
i % — —= X - / D — —F 3 X

Proof': Let A, B, C be the re3pe:tive‘prajectians of
P, @, M into the y-axis. Let D, E, F be the respective
projections of P, @, M iﬁta thé x-axls, .It follows from
Theorem 7-2 that C 1s the midpoint of B and F 1a the

midpoint of TDE . It follows from the definition of a midpolﬁ"c
that

7 7 ,xp + xé
Sincg xD = xP 'and XE = ;é then Xy =7
/ : X + X Vo + ¥
o Y A ) P YQ\ . 5
Therefore M= (T?’- e ) -
, . : *p ¥ Xy '
Since in Theéorem 8*5431P = ——— when" Xp = X and in
y* + YQ | )
combline the

Theorem 8-6 yF ess=§sse when y, = Vg s we may

results of the three preceding theorema as follows:
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THEOREM 8-8. If P =

§ distinct paints Ln aaplané,\then thé miépeint “M: ai
15 the paint \ z
T TR BN
- = . R .
= — ! ?ﬁ’"&.,s 2

If P = (3,8) a;'ﬂd Q= (7,4) , find the/

TERY ’ /

: : . .;ff T . ’ //

- . MSolution: Let M 'be the midpoint of FQ - / -

Example 2. Ir

If
— LN
midpoint M of RS . .

Solution:

(% )@ 9- (-'a,‘j.)i

, S N
if A = (0,0) , B = (0,6)

nd C %5(8 s0) , »
find the length of the median from A to Ec’ .

M

\.

, Example 3.

[N

]
A8

Solution: let. D be ﬁhe midpoint of T .

_ B+ 0 -0+ 5
- 2. 7 2

Then -’

o

(4 3) .

‘U‘
]

-3 - : -
V75 =

&
]

'l
e
"
"

526
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'THEOREM 8-9, 'Let a " be any real number. Then the set of all
points ;ﬁ the xy-plane each,of which has x-coordinate

'« a 1s @ vertical line. : - S -

v " w3 : . . L

—

. . # .
. Efégfé et m be the vertical line which cuts the x-axis
at the point A whose xscc@r%inaté ls ‘a . We must establish

two statements:
!

i
W

1. If a point lies in m ,, then its x-coordinate

a
2. 1If a point has x-coordinate a , then it Iies m .-

s
=

_Ihe first of these statements fOilDWE immediately from the
défipiticﬁ of x-coordinate. The second statement 1is pfcvéd
indirectly. Suppose, contrary to Statement (2), that there is
a point P whose x-coordinate is a and which is not in m
Then the vertical line through P. contains A . Then we have
two vertical 1lines containing A : m and PA . Bt this is
impossible. Why? Therefore every pbint with x-coordinate a
Ites in m . . . -

.

‘ THEOREM 8-10. Let b be any real number. The set pf all ~

points in the Xy-plane with y-coordinate b 1is a

horizontal line.

‘Proof: A proof similar to that for Theorem 8-9 can be

%

! . it

527 .
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| L Problem Set 8-3
S 1. TUse the'distaﬁeé formula to find the éistance between ﬂ;
" '(a) +(0,0). apd (6,10).. () (10,1). and  (49,81)
() (0,0) and (-6 lD) (h) 6 3) =and (4,-2)

*o v (e) (1,2) and (6,14) . (1) (33,%4) and (-13,0)
| 5 (d) (8,11) and (15,35).. (J) "(0,3) and (-A,0}. -,
(e) (3,8) and (-5,-7) . (k) (8.1,6) and (5.9,4.9) .

f@’ o (f) (-2,3) and (-1,%) . (1) (3m,7) and (-2m,ew):.
E . 2. Find the midpoint of AB if A and B have the = _.Y
' ' respectlve gonrdinates . . g
(a) (0,0) and (6, 10) . (e) ( -5, = 2) and (-5,6)
© (p) (0,0) and (-6,10) . (£) '{(3,7) and  (3a,-3)
fffc) (1,2) and. (6,14). . (g) (r{s) and (-3r,5s) .
(4) (-2,3) and. (1,4) . g
3.. (a) wvrite a farmula for the square of the distance
> between (xl,yl). and (xg;yg) /.
(b) Write th€ following statement as an equation: The
square of the distance between (0,0) and (x,y)
is 25 . ‘

+. Show that the triangles with vertices as given are fight
trian%;es Use the distance formula ta find the 1engths i

of the sides of each triangle, . =
(3) (0,00, (3,4, (3,00 . AR |

(b) (-6,2) , (5,-1) , (4,%4) . _ o )

(E) ér('EQ;B) H (4;5) H (*411) . » :

(d) (133) 3 (5;5) » (4;‘1)'J T

(e) (13,-1) , (-9,3) , (-3,-9)
‘(f) (f%;D)éj'(Dxé)i! (9;0)

5. The vertices of a quadrilateral are A(0,0) , B(5,0)

c(5,4) and D(0,4) ,;
N ~ (a) Show that AC = BD . ‘
I (b) Show that the midpoint of «AC and the midpoint of
BD 1s the same point.
L
528 L | —
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6., The vertigeé of a triangle aré A(-2,1) , B(0,5) and

¢(2,-1) . Find the midpoint Qf BC . Find the length of

. . . - he median. to BO ..o e

7. The vertices of a triangle are R(- hisE) 5(5,10) and - .-
. T(4,-2) . Find the lengths of the medians to ST and
8.',Find the coordinates of the midpoint C of ZB 1if

. = (-1,0) and B = (7,4) . fThen use the ‘distance
*  formula to verify that AC = CB = §AB . £ 7

9. (a) Show that A(é;ll) is equally distant from B(-1,2)

and C{3,0) . o
(b) Show that two of the medians 1n éLAEC are equal in..
’ -length.

10. Use the distance formula to show that A(D 2) , B(4,8)
and- C(6,11) are collinear. (Hint: Shcw that
. AB + BC = AC .) '
~11. If the distance between E(6,-2) and F(o,y) 1s 10 ,
~ find the possible y-coordinates of. F .
12, Find the coordinates of the points on the x-axis whose
'tstance from (1,6) 1is 10 . ’
1: 1 ing the distance fcrmulas, prove that AD = BC ir
.A=(0,0) , D=(b,e) , B= (2,0) , and cC = (a + b, e)

14, The vertioés of a square RSTP are R(a,a) , S(-a,a)
: 'T(-a,-a) , P(a,-a) . Show that its diagonals are

- congruent.

E

529 i,
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15 Tha;e are two coordlnate Eystems in this diagram Qne has

) axes labaled x and Y . The other has axes labeled X!
and Y' . All axes have the same scale, Eatimgte the "
coordinates of P and of Q 1in the xy—ayétEm and then
calculate the length of- P& . Then estimate the
cpardinates of P and Q 1in the =x'y'-syatem and agaln
calculate the length of PQ . Do you think that the
length of PQ is independent of the cholce of axes?

8-4%, The Set-Bullder Notation.

In our discussion of sets in Ghapter 2 we considered the
set of all positive integers. The underlined phrase clearly
defines a certain set of numbers. In general, a set is
defined by a list of 1its ElEméﬂtg or by a property of its
elements. If a set ngs an infinite number of elements, we

» cannot 1igt all of 1ts members so we use a property or
- prmpérties of 1its elements to define it.

Consider the following property of a real number:
between 3 and 5 . Some real numbers which have this

-prégerty are 3.5, 4, 4.5, 3.1, 4.9, 3.001 , and 4,999 .

B i’} Jg" )
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.
Some real numbers whieh do not have this property are 3 , 5,
-7, 46, 0, k.35 5. 7, 5.001 , and 2 The set of all
real numbers between 3 ahd 5 1is a claariy defined set, A
symbol which denotes this set 1s {x : 3 < x < 5} . We read
1t: the set of all x such that x 18 between 3 and 5
There are three parts within the braces: the set of all of
samething, before the -colon; the colon which i1s read "such

that;" and a stated property after the colon. xtf

Conslder next the following property of a point (x ,y) :

i its x-coordinate is 3, and its zacoordinate is a real number,
Some points in this set are (3,5)., (3,-137) , (3, D)
(3,105732.4) , and (3;3) Some polnts not-in this set are
(5,3) ", (4,0) , (=7.2).. A symbol which' denatea this set is”
[(x,&) : x =3} i We read it: the set of ;all g@intg (x,y)

f;ad;hvﬁhat x =.3 . Frequently, as in this example, we under—,'
s8tand that fx and y are real numbers even if it 'is not
indiaa%ed 1n the symbol. ;%, s st

. In general tHe symbol {a : property]) , which we call -
tﬁé et builder gymbal or notation, denotes the set of all e
elements a‘ each of which hai the stated property.
e T ,
E;gggigrgg Use-a set-builder symbol to denote the set of
_all points in the first quadrant.
Solution: (P : P 1s a point in Quadrant I}

Alternate solution: ((x,y) + x>0 and y >0}

Example 2. Use a set-bullder symbol to denote the set of
all points whose x-coordinate 1s 7 and whose y-coordinate

18 a number greater than 5 . : .
Solution: . H(x,y) : x=7 and y > 5) )
Alternate solution: {((7T,y) : vy >5) .

7 ] .
»
L)
.. 5
(W) '4.
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- Example 3. ,Eiatfthe.gfaph of the set

© 0, ({%,¥) 1 3 £ ¥ £5) . . The set includes all points  in the
infinite strip between the two horizontal lines and on these

= .

lines.

-2

. Example 4. Plot the set ({(x,y) : x<1 or x >3],
The set contains all points in the two halfplanes which are
suggested by shading, and all points in the edge of one of
these halfpiénea ‘




»

N - . . 1
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In Example 2 above, the set {((x,y) : x =7 and fﬁ}vEJ
was discussed and in Example 4, the set
((x,y) 4 X<1l-or x> 3}. . In the set-builder notation used
to indicate these sets we ﬁgte_that the property listed in each
“case 1s a composite-condition, that 1is to say, a combination of
conditions. 1In Examéie 2 the conditions xX=7, ¥ >5 are
' connected by the word "and"; in Example 4 the conditiqns
o x <1 ,;x > i3 are connected by the word "or."

our puripose 1s to illustrate brlefly how these aomposité

conditions sh

" our. work. Let cl be the statement x

;;é statement . .y } 5 . Let j = ((x,y) ¢ cl] .

Sg = {(z JY) g] and 8375“ ,(f—:,Y) : G,l ﬂ ng

\\\aﬁﬁg o Tos Y “osp

= 7 and cg the

.
—
i
e,
.

e

- ‘1(?‘(3)1“ -— = x - _— I_EWD) - x
v
- L/ (S) 51 _ {V (b) Sg if ({i) S
As shown in the diagrams above 51 13 a“vertical line
and S5, 1s a halfplane. Do you.see the speeial relationship
which ;SB has to 5, and ‘Sgﬁ? 3 i« the interior of a ray,

. . 'is the 1ntersection of S; and 'S, . Now let ¢y be the
' statement x < 1 and ¢y, the gtatement x >3 . Let

 ((0¥) : eg) 4 Ty - (Gy) ¢ o)) and
= {(x,y) : ¢y or c,l .

k—"




(b) . T,

Describe T
case 'TB 1

o - Now describe T3 . Notice that 1in this

the unlon of Tl and T;

Shoula PemembEP the fallowing:

(1) A set whose defining property 1s a composite eandit;on
using the connective "and" can be considered the intersection
"of the sets determined by the individual conditions of the

‘composite. ;

(2) A set whose defining property is a campo,lte condition
uslng the connective "or" can be considered the sunion of1§he
sets determined by the individual condltions of the c@mposite

Example 1. What are the pointa ln the set

((x,y) : x ¢« > 0 cvr y}D]'?

‘This 1s the set of all points (x,y) such that x > 0 , or

Yy >0, or both x >0, y >0 . The set contalns all points
in the plane except those in the third quadrant in the »
negative x-axls,, in the negative y=-axis, and the origin. Note:
“that the graph fé the union of the graph of x > O and the
graph of ¥ > 0 . ;



b WL W
]

L ae

Exanmple 2. ((x,¥) : 3 <x <5 and 1<y <4)
- THis 1s the set of all points inside and on the .
rectangle whose vertices are (3,1) , (3,4) , (s5,4) , 4nd .
(5,1) . .

When dealing wilth sets defined by a c@mpcsite'cgﬁaitian
using the c@nﬁgaﬁive "and," a comma often 1s used i@fplage of
the word “"and." Thus the set {((x,y) : x = 51;'yi}?33'*is
understood to be the same as the set \ &

((x,y) : x =5 and y > 3)

kY

.t
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h ?Poblem Set{B =5
g 1. Iaeqtiiy the. quadrant with the preper Raman numenal.‘
(a) [(x,y) x>0 and y <o) 1is Quadvant ¢ .
(0). [(x,¥) : x <0 and y <0} 1s Quadrant ____
(¢) ((x,y) : x <0 and .y > 0) 4s Quadrant I
(d) ((x,y) : x>0 and y >0} 1s Quadrant ____,
(e) ((x,¥)': y>0 and x <0} 1s Quadrant _
(f) ((x,y) : xy > 0} .is the union of Quadrants .
e - e B L L LR —_—

h : (&) ((x,y) : xy < 0} 1s.the union of Quadrants
, - and . ‘ 7 '
(h) [(x y) xy # 0).-<1s the union of *jf‘;,.
(1) ((x,y) : x >0 and 0) 1is the union of
(1) ((x,y) : E >0 and 0]} is Quadrant .

(k) ((x,¥) : x < 0 and x|} 1is Quadrant =~ . .

el ot
A N

s 2. Find the coordinates gf the endpoints of all possible
segments which satisfy the glven conditions.
(a) KB 1ies on the y-axis with the origin at its
. midpoint; AB = 7 .
(b) AB" is a subset of the x-axis; A, @, B are collin
in that ordér and AO = 30B ; AB = 12 . -
(c) AB 1is either horizontal or vertical; A 4is at the

origin; AB=1r . ' . ,
(d) AB || to the x-axis and B is 5 units above the
x-ax1s; the y-axls bisects AB ; AB.= 8 .
(e) AB='5; A 1lies on the x-axis; B 1lies on the
‘y-axla; O0A = OB . '
(f) FB 1s in the y-axis; A 4s at the origin; AB = 6 ;
Ch || AB"; CDXAB; ¢ 1s 2 units above A and
3 units to the right of A.. 5 o
3. Find the coordinates of the vertices of the 1ndicatéd
, . .polygons: . " : )
(a)rkA coordinate system places 1sosceles triangle ABC
so that the origin is the midpoint of base AB , EE
1s a subset of the x-axis, cklees above the
x-axis, AB=6, OC = 4 ..




(b)"

(c)

(a)

‘A parallelogram ABCD for which AB

An isosceles triangle ABC whose altitude is 3

~and whose base has length 5 . The base 18 a subset
of tﬁe y- axisg and the appgslte vertex, C , 1s om
the positive x=axis " o A

An 1sosceles triangle- ABC has AB =6 ,

AC = BC =5, The origin 1s at the midpoint of the
,base, the x-axis contains the base, and C iS}éhave

the x-axis. - - o
?s;A— Eﬂd
D hnave coordinates (0,0) and (3,5)  respectively,
and AB' is on the x-axis.

In each of the follawing find -the cogrdinates of the

vertices of the palygon ' - o

(a)

(v)

A right triangle ABC has /C a right.angle,
CA =21 and CB = 10 A coordinate system places

C at the arigin and B in the ﬁegative x-axis. -

An isosceles triangle ABC 'has base . AB of length
4 and altitude to: AB of length 3 . A coordinate

. system places A" at the origin and B In the-

~(e)

(d)

positive x-axis. 5

Same as (b), except that C is at the origin. A ¥+
is in Quadrant I, and AB is perpendicular to the:_f
Xx-axls. - ,.,xé_ <. S

An equilateral triangle AEG has side of length ;D .
A coordinate system 1s established with the x-ax{s :
containing AB and the positive y-axis containing(

c .- . -

Find ﬁhéféagféinate' of the vertlces of the polygon ;/
determined .in each of the fﬂllawing . Q
“(a) A,right triangle ABC has 4@ a right ‘angle,

CA=a and CB =b . A coordinate system places C
at’the origin, B  1n the negative x-axis, and A in
tﬁe pesitive y-axis.

b
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(b) An isosceles triangle ABC has base AB of length

guﬁbﬁ”% , and altitude of length a . A coordinate system

; piéges A at the origin, B in the positive x-axis

- and C above the x-axls. ‘

(¢) The triangle in (c) 1s placed so that C 1is at the
origin and the altitude lies along the positive
x-axls.

(d) Ain equlilateral triangle has side of length s and
a coordinate system is established so that one side
lies along the x-axis and the opposite vertex is in
the positive y-axils,

8-6. Eqdations and fﬁgqualities.

((x,y) : x =3} 1s a line. It contains all those points
and only those points in the xy-plane whose x-coordinate is 3
and whose ﬁécaordinat; is any real number. We say that Xx = 3
is an equation of the line or think of x =3 as a condition
impoged upon (X,y) . The condition x = 3 places a
restriction on the x-coordinate but no restriction on the
y-coordinate. Thus the line {(x;y)‘; x = 3} contains
infinitely many points, such.as (3,-173.447) , (3,-2) ,
(3,-1) , (3,0) , (3,25) , (3,127.3) . Of course there are
infinitely many points not on this line, such as (2,3) ,
(2.999,-7) , (0,-3) .

((x,¥) + x >3) 1s a halfplane, We say that x > 3 1is
an inequality for the halfplane. This halfplane contains all
those points and only those points in the Xy-plane whose
x-coordinate 1s a real number greater than 3 and whose
y-coordinate is & real number. Is (5,-5) 1in this halfplane"
Is (-5,5) 1n this halfplane? 1Is (3,3) 4in this halfplane?
What set-builder notation could you use for the edge of this
halfplane?

In some textbooks the set ((X,y) :x = 3
locus of the equation x =3 ; ((x,y) § x> 3
locus of the inequality x > 3 . 1In general a locus is a set

determined by a conditlon or & combination of conditions,

} 1is called the
} 18 called the

-
L]

e
b
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Thus the locus of all points in the ¥xy-plane which are equil-
distant from the lines ((x,y) : y = -7} ,and ’

{(x,y) :+ y =13} 1s the line ((x,y) ;‘? 33 . In our text
"however we wlll use the expresslon "the seticfﬂallﬁﬁaints auch

]

that" rather than the term locus.

, Consider the sets & and T given as follows:

S = {(x,y) :»x=5}) and T = {(%x,y) : x+1 =6} . A;péint )
(x,y] les the conditlon x = 5 1if andonly 1if 1t k
satlsfles the condition x + 1 = 6 , 1In other words!lif {a,b)

- in 5 and conversely.

il
i
o
i
'_l
-
ot
F_.
pd
1
Y
=
Lan
e
oy
u
=
L
iz
®
e,
i
e
o
ba s
=

Herice wé€ may write S = T . The equation 8 = T 1s an equation
invelving séts {of points in the xy-plane) and you should recall
that two sets are equal il and only if they have exactly the
same members. This occurs if the Seté are defined by
and x + 1

I
by

I
W

equivalent equations. The equatliona x
are examples of equivalent equations. In algebra you learned

how to derive equivalent equatilions 1in the process of solving

[}

equations, Thu
2% + 3 = bx + 13
3= 2x + 13

=10 = 2x

x = =5 ' -

i N . .
nt equations. Each of them becomes & true

each of them becomes a

[

e
if x 1is replaced by -5
false sentence 1f x 15 replaced by any number different from

Problem 3Zet 8-6

[ . .
ok between lines ((x,y) : x =/} and

o

[(}E,Y) pox o= =
Wrilte the coordi:
((x,y) : ¥y =3}

i

tes of three polnts on the line

A

ERIC

Aruitoxt provided by Eic:
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. /3. Plot thes sét

(a) ((x,y) : x =2)
“(0) ((x,y) : y =3)
4. Describe the union of the two sets in Problem 3. May
this be written as the set ((x,y)ix =2 or y = 3} ?

gESi What 1= the intérseation of the twb sets in Problem 3?\
May this be written as the set ((x,y) : x =2 and y = 3)°?
As the set  ((x,y) : x =2, y =3} 2
-a(2) Plot the set ((x,y) : x =2 and 0<y < 3)
 {b) - What geometric object does this set form?
(c) How many elements does 1t contalin?

gt

Plot the set of “points whose coordinates are given voiow

~

and describe the graph in each case,

(a) (x: x < 3)
(p) ((x,y) + x <3}, : : .
(¢) (y:y<2 or y>4)

(@) (x5y) ry<2 or y >4

8. Plot and describe each of the graphs gilven below:

(a) The union of ([(x,y) : x >3} and ((x,¥) : vy < 3]
Express this union with one set-bullder symbol.

(b) The intersection of ({(x,y) : x < 2} and
Y)Yy > -2) . Express; this set with one set-
bullder symbol. ”

(¢) 'The set ((x,y) : x>0 and y < 3} .

(d) The set ({(x,y) : -4 <x <2 and -2<y< 5)

9. Express in set-builder notation the set of all points in

[the xy-plane which satisfy the following conditions:

(a) A set of points at a distance of 5  from the line
whose equation i1s y = 2

(b) K set of points 4 wunits from the y-axis..

(¢) A set of points 3 units above the x-axis and

| 5 units to the left of the y-axis.

(d) A set of points.the same distance from the .point

’ A(0,3) as from the point ,B(0,-3) . "If P 1s any
: 1f P - is any
in thias set.

point 1n this set, prove PA
point such that PA = PB , prove

1]
m o
[wal
fav]
e
o
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10. Which of the sets?

(a) ((x,y)
(b) ((x,¥)

f@ll@ﬁing are pairs of equal
[(I,Y) : 2x = 2)
((x,5) + x > 4}

((x,y) + 7x <21} .
and {(x,y) : x < 2}

6 > 3x])

: 3x + 6 = x + 8} and
x+ 3 >7} and

(¢) ((x,y) : 5% - 2 < 2x .+ 4]}
(a) ((x,y) : -2x + 4 < 8)

L (e) [;i: % ; 3} ‘ [i : ‘ |

Answer the questlons Indicated by'filllng in the blanks

in each of the following: * '

(a)

and

and
*11.

Irf 1i§q?E§ MA afé
parallel and AB = 3 ;
BC=6; MN =2 ,
BC =k AB; k =
NO = £t MN ;
AC k! AB ;
and MO =

Then

ot
1]

- o
Ir (ﬁA‘ ||

then AP =1
AVP! =
and

(b)

—
L]
L

AlC!

-~

AiEl =
AlCl = A'B' . - P(8,7)
AP = ___ AB .
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(a)

(f)

_.AiPi = 2 ATB!

= F

L

If a coordinate system
on assigns the
coordinates 0, 2, 8
te A, B, P

fespegtively,

x "
The (A,B)-coordinate
system on line
assigns coordinate k
to point P
AP = k AB . ‘Then
A'PY = k A'B' =k
Why? '
OF' = ?

[Ny

=

2
[EF%
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coordinates of P

7 \ - .
(g) Aigaordinate system on line ,i? assigns coordinates -
0,1, k to A, B, P Where doeg P

lie if 'k has values as indicated below?
(%) x
(5) &

respectively.

(1) *>1
(2)
(3)

)

0
0

8-7. Finding the Coordinates of the Points of a Line.

a vertical line.

i

We have seen that {(x,y) : 3} 1is

It is undersﬁood that y "may be any real number,

‘ﬁatural to ask if there is an expression something

like this Yor an oblique line. Actually there 1s, and 1t is a

ugeful tool in geometry. +

To -show' how to find such an expression we consider a
particular line, the line AB where (1,2) and B = (3,5)
!%Ef!is determined by the points A and B,
it seems reasonable that we shog;d\be able to find the
céordinates of other points in AB. TFor example, if P 1is
in KB and if AP = 2AB we should be able to find the

Since the line
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—

. — M b DO

Y
[ e
—

o i

AB , we should be able to find
AR

Il
rof

If Q 1s in AE and AQ
the coordinates of Q . I R 13 in the ray opposite to
and if AR - AE , we should be able to find the coordinates of
R . Actually, P = (5,8}, Q = (2, 3%5) , R= (-1,-1) . Ve
can get these coordinates by working an individual problem for
each polnt. But our objective here 1s to derive an expression
., from which %he ca@rdinatesrof ¥P, Q, R-or for that matter any
other pepint on QA_EE can be cobtained by simple replacements.

4

[l
I

in Chapter 3 we studled a coordinate Syatém on a line.
At the beginning of the present chapter we defined an
xygcéordinatémsystem in terms of two coordinate systems on
lines: the isca@rdinate ayatem on the x-axls and the
{ y-coordinate system on the y-axis. We wish now to consider a
coordinate system on the line i.lEE We call 1t the
(A,B)-coordinate system. In this coordinate system, the
gcoordinate of A 1s O and the coordinate of B is 1 . For
the pointf A, B, P, Q, R we have coordinates as tabulated.

X

ERIC
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=1 ~ x-coordinate

the x- and y-coordinates

k<0 . Let P', A', B
P, A, B into the x-axis.

-

(A,B)- c@ordinate

. ¥y-coordinate

2
o)

1

\ 3 5 T
8

‘rp‘

\3

O o
M
et

\JWQ

=
i
—
i
M,_M
!
=

| [

i

- The expression which we shall derive~5h@wz us how to compute

of' a point in terms of 1ts

(A,B)- caardinatpga

P —— (=]
4!1 )
B ¥
| Y
A"7A
— e —————f X

]
ot
[
=]
C
o}

The (A,B)-coordinate sy
one correspondence between the set of
the set of all points in. BB. If k > 0 , the corresponding
point is in - AB (but not A 1tself); if k =0, the corre-
sponding point 1s A ; and 1f k < 0 , the corresponding point

all féaléﬂumbEPﬁ k and

is 1n the ray opposite to EEE

be any real number and P(x;y) . the corresponding
Then AP = k AB 1if k > 0, AP -k AB if
be the respective projectiona of
Let p", A", B" \ve the respective
A, B 1into-the y-axis. (A P 1is in the
x-axls, then P ' ; 1f P is in the y-axi%, then P = p"
From Theorem 7-3 1t follows that the segments formed by A7,
B', P' on the x-axis and the segments formed by A", B", P",
on the y-axis aﬁe proportional to the (orreuponding segments

let k
point in AB

il

projections of P,

]
\P—U‘

. F

Therefore
A
!

in the line AB .

W
g
[

- S ,
AB established a one-to- -

2)
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AB = ((x,y) : x =1+ 2k, y

8-7 if k>0 if k<O
AP = k AB ) AP-= -k AB 7 B
(1) A'P' = k A'B! (1) A'P' = -k A'B
% - 1] = k|3 - 1] ]xl- 1| = -k|3 - 1
Since x 5 1 Slnce x <1
x - 1= 2k -X + 1 = -2k
3 =1+ 2k ®x =1 + 2k
(2)  afpr o g v (2) -, A"P" = -k A"B"
ly/- 2| = kgg - 2| ly - 2| = -x|5 - 2]
3lnce y > Eixh Since y <2
yo- 2= 3K N Sy o+ 2 = -3k
y = 2+ 3k ] Yy = 2 + 3k
It follows that P = (1 + 2k, 2 + 3k) and that

2 + 3k, k 1s real} .

The equatians- x =1+ 2k, y,= 2 + 3k are called
parametric equations for the line ‘iﬁkgs the symbol k 1is
called the parameter. Each value of the paraméter Yiélﬂ;r
exactly one point on the line, the point (1 +. 2k, 2 + 3x) .

The value of k 13 the (A,B)-coordinate of the point it te

us fhat the point 1is in jE?iif k > 0, in the ray opposite to
AR if k £ 0, and that P 1is ||
B 41s. The following table shows several values of k and

times as far from A as

their corresponding points.

771§71 ir x,zggr%iék _ ,,Y,%:E **3§:,r 77£(xgil -
0 ’ 1 2 (1,2)
1 3 5 (3,5)
.1 -1 -1 (-1,-1)
2 : 8 (5,8)
7 15 23 (15,23)
-3 (- 4.0
1000 2001 3002 ! (2001,3002)

546 40
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If we think of A(;,E)S as (xl;yl) and B(3,5) as=-
(xg,yg) » then the parametric equations for AB can be written
as ) _

yl + k(yg = Y1) =

I

X

Xy + k(x2 - xl) s ¥

¢

Note how these formulas resemble that of Theorem 3-6.

v Are these formulas true for any oblique line determined

by two points (x,,y;) and (xg!yg)f% Although we could

. for BB in the above illustratian;ﬁﬁe shall not write 1t out
here. It 1s natural to ask whether we can write parametric
equations for horilzontal and vertical lines. You will Find
that we can in the next problem set. Thede fesulfs are con- .
solldated in the following theorem.

THEOREM 8-11. If El(xryl) and PE(;&EJE) are any two -

L)

polnts, then

Png = [(3JY) P X = xl + k(xg = xl): y Yl + E(yE = Y1):

il

k 1is reall .

!

According to Theorem 8-11 every line én the xy-plane can.
be "represented" by a pair of parametric equations. A natural
question 1s: Does every pair of parametric equations represent
some 1line? The answer to this‘quéstion 1s no. Consilder, for

example, the set

S=[(x,y) : x =1+ k0, y=2 + k:0, k 1s real}

It 1s easy to see that x =1 and y = 2 -for every value of
k and hence that S 41s a set whose only element is the
; 5 4
point (1,2) .
However there is a method of identifying those parametric

équations which do represent a line in'a plane. We state it

as our next theorem.

<

ERIC
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THEOREM 8-12. 1If a, b, ¢, d are real numbers such that b

and d are not both zero and 1f -5
S={(x,y) : x=a+ bk, y=c+dk, k is real) ;” ¥}
3

then 5 135 2 line. "y
¥ (

Proof: Taking k.= 0 and k =1 we get two points in
A(a,c) and B(a % b, c + d) . From Theorem 8-11 it

Lo

follows that:

]

AB = ((x,¥) : x = a + bk, y¥ c+dk, k 1is reall;

therefore AB =35 and 5 13 a line.
B
k'Y N
x)

, K | / 7
T= {(x,y) : x=-2+3k, y=7+ 2k, 'k 1is real} ,
j_ .

SBPPODf: If k=0, then x= -2, y=7 . If k = 1,
then x =1, =9 . Thus A(-2,7) , and B(1,9) are two

AB = ((x,y) : x=-2+3k, y=7+ 2k, k 1is real) .
- . C o . '
Therefore AB =T , and T 13 a line.

We can use parametric equations for a line in expressing
the coordinates of the points of a line segment or a ray. If
ki, ky, kg correspond to Py, Py, Py , respectively, theh
15 between "k; and ky 1f and only if P, 18 between

Pl and PB .;'Thié f@llgwé from the propertiles of coordinate
systems on a -line as diacussed in Chapter 3. Thus we get
segments or rays simply by restricting the values which k
may have, For example, &AB , where A = (1,2) and B = (3,5)
1s ((x,y) : x=1% 2k, y=2+3k 0<k<1) . Similarly,

RE 1s ((x,y) : x =1+ 2k, y =2+ 3k, k> 0}

]

i

e
L=
hee]




xample 1. ‘ - ~ R

Given A = (3,0) , B = (-1,2) . Using Theorem 8-11
express, using set-bullder notation, ’
R

AB ,
(b) 7B, /
7B

¥

(d)  the ray opposite AB ; also find )
- {e) the midpoint of A&B , and
(f) +the point P such that A 1s between P and

and  PA = AB .,

sl

= 3, YI =0,
-V = 2 . Then

-, k i3 real)
¢, 0<k 1) .
c, k>0) .

c o lxy) s x =3 - hk, y = 2k,

(e) the midpoint of ; .
(3 - b - % ) 2

(f) the point P &

ﬁdebm
Py m
It
=
[
(-
S~
N
F

L]
i

Example 2,

i

Given A = (0,4) and B = (3,0) . Find the point ¢ ‘on

-
AB whose x-coordinate 13 -2

Solution: In this problem we take x; =0, y; =4,

= 0 . Then Xy = Xy = 3, Yp = ¥y, = =% and

3k , ¥y

=
3
W
]
<
[

(

Y - 4k , k 48 real)

i

(X;Y) P X

=]
v}
il

. i [
We set x = -2 . Then =3k, k = - % , and

-2
L 4+ = = %% = 6x , Therefore C = (=E;5§)

G

[

oIo ¥

]

y =4 - (- j)

oy
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In Example 1, Part (e), we found the midpoint of a

particular segment AB . The midpoint of AB. 1s obégined by
setting k = % in the parametric eqaatiang In general

1 . . X, F X

x 1, x ) = % + A oL, Lo 1. _TA 7B
X=Xy + 3lxg - X)) =x) 4 5xp - SRy = FX) 4 By = S

=y, + 2y, - = i, i. i1 _ YAt VB
V=t 3p m V) =yt =W Wt

and therefore the midpoint 1s

(xA + Xg YA + yB)

2 T B
Notice that this result checks with the result derived in
Theorem 8-8, . .

. Problem Set 8-7

1. Using péfametrig equatians and set-builder nctatian
- _

express AB , AB , AB , and the ray opposlte to AB if

(a) A= (1,4) , B= (2,6)

(b) A= (-1,3) , B= (2,0)

(¢) A= (0,0) , B= (3,2) . o -
(d) A = (1,1) , B= (4,4) .

(e) A=(-1,3), B=(1,-2)

(f) A = (=3,?2) , B= (0,1) .

(¢) A= (a,b), B=(c,d) , ¢ #a

(h) A = (a,aa) (Ba ha) , a # 0 .

2. Find the coordlnates of the midpoint of AB 1in
Problem 1(a) ; 1(b)

+3, Using the midpolnt formula find the coordinates of the

midpoint of the segment with- the gilven endpiinta.

» (a) (5,7) and (11,17) .
(b) (-9,3) and (= -6) .

(c) (5,8) and’ (5,-3) .

(d) (3.5,-6)'and (1.7,-6)

(e) (a,-b) and (-a,b)

(f) (r+ 8, r-s8) and (-r,s) .

55
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L, In each of the following the endpoint and midpaint of a
segment are giVen-.in that order. Find the coordinates-
of the othef>endpointi ) ’

(a) (4,0) and” (9,0) . (d) (6,2) and (2,-1) .
(b) (3,0) and (5,2) . (e) (a, ) and (5a,3b)
(¢) (-2,3) and (3,5) . (£) (3r,8) and (0,4s) .

5. Find the cdordinates of the trisection polnt of &B -
nearer A 1in Problem 1(c) ; 1(4d) ’ _

! 6. Find the coordinates of the trisection point of " AB
/ nearer B 1in Problem 1( ). o
/! , R

7. Find thé coordinates of P in AB in Problem 1(b)
“(a) AP = 2AB . - (e) AP =4/3 AB .

(b) AP = 100AB . (d) AP = 7 AB .

] _ : i ) . S
8. Find the coordinates of P  in the ray opposite to AB
in Problem 1(e) 1if

(a) AP = 2AB (c) AP = 3.5 AB
_(b) AP =20aB . (d) AP = % AB
9% Find the coordinates of P in “WB™ if A= (-1,5) “;ncﬂ
*\\ B = (3,-2) , and “ ,
(a) AP = 3PB . (c) BA =% BP
?(b) BP = 4PA . (d) PA = 5BA
10. (a) Let C = (-1,2) , D= (5,2) . Is "GP vertical,
~ h@rizontal; or gbllque? Use Theorem 8-11 to expres
“D". Try three different values of k to see if
the three points are on 5™ '
‘ (b) Using ¢ = (xl,a) = (xg!a) y Xy # X5 , show that
Theorem 8-11 1is true for h@rizontal lines )
(e¢) Using E = (a,gfl) , F = ,y,:,) » ¥y # Yo » show that

 Theorem 8 111 15, true for vertilcal lines.

«©
11. Using pafamet:r‘fg equations and set: builder. notation
express the sides of the triangle whose v,\erti};s are:

(2 A(0,0), B(0,3) , e(1,0) .
(pb) D(-3,0) , E(0,3) , F(3,0) . .

P i ":j o |
ﬁ" | 551
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12. Draw the graph: i
(a) ((x,y) :
i(b) [(x,y) :
(¢) ((x,7)
':(d) [(1jy) :
(Ez I(x:y)i=

\ 13. Given A = (-1,3) , B= (2,52) , and C 18 on &P,

=1+2k,y=2-k ,(Pk is real)-,

2k , y =k, 0<k<2).
=-1+k,y=-k, k0)

=k, y=-k, kg0). , .
3,y=k,-2<kg3) . '

-
] I now

(a) find the y-coordinate of : C 1f its x-coordinate _

1s 5 ., .
(;/%\ (b) find the x-coordinate of C if its y-coordinate
18 8 . o
(¢) find the y-coordinate of C if 1ts x-coordinate
is 29 , ] .

(d) find the coorddnate of C 1if it is on the x-axis.
fﬁ ‘(e) find the goa§§in&té of C 1if it ia on the y-axis.
“I%.  The vertices of a triangle are A(0,0) , B(9,0) , ¢(3,6) .

Find the coordinates of D , the midpoint of KB ; E ,
the midpoint of B H and F , the midpoint of CTA . Show
that a trisectlon|point of each median of triangle ABC -
18 G(b,2) . ) ’ ’ '

15. Given p= ((x,y) : x=a +ck , y=b+dk, k 1is real) .
0

(a) Show that p 1s a vertical 1line if ¢
(b) Show that p is a horizontal line 1if
(¢) Show that p contains the origin if a =0 =D .

jo N
Il
O

8-8. slope.
We are now ready to study one of the important propertiés
of a line which corresponds to the idea of the steepness of
inclination of a line in the world of everyday affairs. The
steepness of a stairway depends on the relationship between the
rizse and the run of a step.
&

AP =RI5E
PB = RUN




8-8 .
If one stairway has steps with a certain rise and run and
another stalrway has steps with rise and run éééh twice as
large, 13 1t clear that the stéépnéss of the two stairways 1s.
the samé? In athér words, a run of 2 with a rise of 1 glves
the same steepness as a run of U with a rise of 2 , .

.The steepness or pitch of these stairways may be defined as
the number obtained by dividing the rise by the run, % in
elther case,
The concept of the slope of a line is based on the idea
of "rise divided by run." If we think of one step connecting
 two points Pi(xl,yl) and Fg(xggyg) on a non-vertical line,
then the rise 1s |y, - y;| and the run is |, - xq |

—

IXz =Xi|  pp

(x21¥2)




8-8

- ' We could define the slcpe of the. segment P P as rise divided:
, Lo e Yll - o .
i ' 1;&., lx — Irli But we do nat. g
~ ' 2 1 T
\ Yo - ¥
't _F P + 18 definedsas §§=fs§£ . The formula without
; 2Tt . s

.. .. ‘more useful Thé absalute value af the Eicpe conveys iny the
magnitude of" the glapei ‘The sign of the alope,cagveys the
additional idea of "slopes up or down" as suggested in ‘the

- figure.,-, . : . C
. - %Yw S A?‘H . ) v
| S e (7 !
. 7 asgi N
stopg = 73 3
(SLOPES DOWN)-
“(4,3)
= :: V' N V ;
- '¥ — — - - >

~Starting with the concept of the slope of a segment we
now develop the concept of the slope of a line. Consider the
- . o
. 1ine. AB where A = (1,2) and B = (3,5) . Then

:x=1+2k, y=2+23k, k 1s real]

-—
AB = [(-’5:?)
slapes of several segments FiFE on 58"

Let us campute the
as the

Take P, as the point correspcnding to El' and éEE

polnt correaponding to kg

w
L

%)
W
=g




'B?é . f ; ) ) . b o . -
| D

. *;_ i
slope o E

1}
|

]
I

o (-3 | (1,2) , (-5,-7) |, =2

TR (9,14) - (-7,-10) | :—7'? 95'&"

Ky | kg (1 + 2Ky, 2+ BIfl) (1 + 2ky, 2 + :31{2) =

Note that the' slope of every segment of AR is »% .” Note also
that 3 and 2 are the coefficients of k 1in the equations for
y and x resgecﬁively: Let us check the last line of the table,
Suppose kl and kg are any two .distinct values of k'. _ Sub-
stituting in the parametric equations we get o
1f k= ky, X) =1+ 2k, yl = 2 + 3Ky, Pl\z (1 + 2k), 2 + Ekl) H
P, = (1+ 2k,, 2 +.31{2) .

kE* Xy = 1+ Ekgg

li

if  k
Then

- x - (1+2k,) - (1 +!Ek,)

X5 1 a(kE - kl) ,

Yo = ¥ (2 + 3k;) 3 = k)

(2 + 3k) 2
y

3(k, - 1{1)
Xy - X 2K, - ki)

n
fi
L]

ot

]

T

Mo

]

Does every nonvertical line have the property that all of its
segments have the same slope? We show that this is indeed the
case.

Let ¢ be any line and let Cl( ,

xl’yl) and Cg(xgsyg) be
any two poeints on ¢ . Then .

H _ ~ - - B ~ . - bt . N <
Glcg = [(I;Y) X o= xl + 1{(){2 = Kl)s y = yl + l-c(yg = yl)s

k 1is real].



© As in the example above we take two distinct values of ¥ ,

\\ say p and .q , corresponding to two distinect points P and
) -~ o

.Q ¢n C,C, , and find ‘ . .

y1)

i

Xp xl + p(i2 - #1) and yE vy t P(YE

n
It
N

KQ Ii

vy, +alys - vk

+ q(#E - x;)" and Yg-

vp - ¥g = [y + Plyp - ¥))) < [yy + alyy - ¥))) = (p - Q)lyp - ),

\KP—KQ
Before we divide Yp - yQ - by Xp = Xg wé should éssuré our-
xQ 0, then 3? = XQ

i ' . _
and C.C 1z a vertical 1line. ir ClCE is a nonvertical

ry + Pty = 1)1 =[xy + alxg = 3)] = (p - @)(xp -1y )

selves that IE - % £0 . If xp -

line, Xp = Xy 40, X; = Xp # 0 , and

YP = yQ yg = yl
Xp ~ Xy xp 7 X

This proves that all segments of a non-vertical line have the
same slope., We may then write the following definition and

theorem.

DEFINITION. The slope of a non-vertical line'is
eéual to the slope of any of 1ts segments; the
slope of a non-vertical ray is the slope of the
line which contalns the ray.

! _ L -
Notation. The slope of AB, AB, AE

by m*‘A—EF, mﬁgl‘; Mg respectlvely.

* THEOREM 8-13. The slope of a non-vertical line p 1s

yg = yl . N . -
-~ _— , Where P 5 is any segment of p and

5
o

T X,

X5 1
EW : (Ilpyl) 2 PE = CXQJYE) - Lo '

I

(AN




8-8 e ,g

B 1ine which passes th;augh two given pcints. In the fallawing

theorem we pee how ta write parametric eqpatiana for a 1ine
passing through a given point and having a given slope.

: /

THEOREM 8-14. If p 1s the 1ine through (x1,y,)  with
]

% 8lope m = é s, then
1. = ((x,y) : x = X, +kg , y= y, +kf , k is'réall
and - .
2. p={(xy) : x = Xy +k,y=y, +km, k 1is real)

Proof: Suppose h 1s a number such that (xl +8, ¥+ h)
is a point on” p . Then the slope of p -is .

‘mnn
]
‘mHH

Since theAslape is é by hypatheaia, it follows that
and h=7, Therafaré (xl,yl) and (x + 8, ¥+ f)
two points on ,Jg and 1t follows from Theorem 8-11 that
(1) p=0(xy) : x=x; +k& , y=y, +kf , k 1s real} .
Next let n be a number such that (% + 1, ¥y, + n) isi
a point on p . Then the slope of p 1is

(yl"fn)=i
(xl + 1) - %

o
\H\

=n .

Since the slope 18 m by hypothesis, it follows that m = n .
Therefore (x,,y,) and (x, +1 , y, + m) are two polnts
191 B 4!
on ilf and 1t follows from Theorem 8-11 that
(2) p={(x,¥) : x = X +k,y=y, +km, k 1is reall} .

%

fJL! $§)
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" We now consider three possibilities for the slope of. a
line; it is positive, 1t is zero, or it is negative.r Let
P (xl,yl) and Pg(xg,yg) be twadpginta of a line;’ We .

¥

A,

suppose that the points are named so that PE has the larger
x-coordinate. We disregard the pcssibility Xy = X, , since
- g . =
this would imply that PlPE is a vertilcal line.
) E ]

Possibility 1. The.slope is positive. Then Vo - ¥q
and ¥, - x; - are both positive or both negative. . Since we
named the points so that Xy > %y it follows that Xy - Xy
- and - Yo - ¥y, are both positive. This means intultively that,

1 -— ) . .
as a particle moves along P 1P5 from left to right (from the
point with x-coordinate Xy to the point with =x-coordinate -

X5), 1t 1s going uphill,

Possibility 2. The slope 1s zero., Then yé -y, =0.
This means intultively that, as a particle moves along the
1lﬂe'§?1¥§r it 1s moving on "level ground." (The y-coordinates
!‘Qf all the points of the line are the same.)

Possibility 3. The élope is negative. Then one of the
numbers,rrﬁéri vy and Xy - X 18 positive and the other
one 18 negatlve. Since we named the points so that Xg > X
it follows that X5 = Xy is positive and Yo - ¥, is
negative, that 1s, yé < vy - This means intultively that, as
a particle moves along P 2 from left to right, 1t 1s golng

downhill.

by

%]
4T
o
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8-8 , - .
' Thls aectian ‘closes with, several examples involving the
: Elape idea. : . e
’ . ) 7-1 7.::‘
R ' Given A (5,-=8) and B = (-2,8) . Find n;z?
- Sal};ﬁé.gn. “'m = - }ﬁ% .
Example 2. A line r passes through (1,3) and has
slope 5 . Find the point on r whose x-coordinate 1s -3 .
, Solution: r = {(x,y) =1+k,y=3+5k, k 1s real)
Set x=-3.. Then -3 =1+k, k=-4;y=23-20=-17.
‘Answer: (-3,-17) ' 1
[ ]
Example 3. Find the slope of the line
((x,¥) : x =3 + 4k, y=2, k 1s real)
Solution: ‘Set k=0 and 1 to get two points on the
line. ' T
k = 0: (st) = (332) H ' . ) g
, k=1 (QC:Y) = (7;2) . '
o . 2 - 2
Then the slope 1s —7 = o .
Alternate solutdon: By Inspection of the parametric
equations, Xy - Xy %4 and y, - y; = 0 . Therefore
m = % =0 . : '
-“;;51 Problem Set 8-8a )
1. Find the slope:Af the segment Jjoining the pDiﬁtE in each
x of the falla:ﬁng pairs.
- Lt ) 1 . 1
(a) (0,0) amd (6,2) . () (3,3) and (3,3)

(b) (0,0) and (6,-2) . (g) (-2.8,4) and (4.2,-1)

(¢) (3,5) -and (7,12) . (n) (%,0) and (0,- ) .

(d) (0,0) and. (-4,-3) . (1) (1000,-500) and (1001,-499)
(e) (-5,7) and (3,-8) . (J) (a,b) and (b,a); (a £ b)

(%l

W

[¥s)
~




' .. 8-8 . : . o .'. _ ‘
ys ‘ 2., Replace the mow by & number so that the iine thraugh
7 «.the two points will have the siope glven. (Hint:
Substitute in the slope formula.). ) '
(a) (5:2) and (7,§) , m=4 ‘
N o g N 1
: S () (3,1) ana (W) meg
C - (e) (6,-3) and (99?) , m = - T - 7
: (d) (?,12) and (5,12) , m=0 ..- ' .
) 3. Plot the points A(-1,0) , B(6,2) , C(4,5) , D(-3, 3)
. 3
,:Eraw ABCD . Find the slope of each side of ABCD : N
. Which two sides have the same slape?
4., Plot the quadrilateral PQRS with vertices é(D,h)
Q(2,3) ', R(-1,-2) , S(-3,-1) . Which pajirs of sides .
"have the same slope? '
5. Without platﬁing tell whether the slope of the segment _
Joining the points in each of the fellowlng pairs has a
positive, zero, or negative slope. Then tell how you
would interpret the sign of a slope,
(a) (-3,4) and (2,0) . (a) (3,2) and (5,0)
~——— ’(b)( ( 3,4) and (2,4) . (e) (5,0) and (3,2)

T (e) ) (-3,4) ‘and (2,8) . (f£) (-1,4) and (0,10)
6. Which of the segment§ joining the points -in each of the
‘following pairs 1s steeper? :
(0,0) and (100,101) or (0,0) and (101,100) ?

7. Find the slope of the line segment joining (a,%) and
) 1f a#b ;

8. Given: = ((x,y) : 3'5 2k, vy = -1 + 3k, k 1s reall

H
What 1s the, slape of AB ?
9. Parametric equations of a line are useful in plotting the
graph of a line when one pgint and the slope are given,
Consider, for example, the line ,i? through P(1,2) with

jeo

2
4?; ((x,y) + x=1+2k, y=2+ 3k, k 1is real)

If k=0, then (x,y) = (1,2)
If kx =1, then (x,y) = (3,5)
560




* * v!;’
If k=2, then (x,y) % (5,8) .
A I k=3, then (xy)=(7,11). - -~
‘Note that as k 1s assigned values - 01,2, 3, ...,
(successive increases of - 1)% the corresponding .
fég?:x valuea are 1, 3, 5, 7, w. (successives increases of
S 2), and the corresponding y-values are 2, 5, 8, 11, ...
. (successive increases of 3). Note that 2 and:.3 are
the coefficlents of k 1in the parametric equations, and
that % is the slope. The numerator and denominator
of the "slope fraction" tell us how “to get from one point
to another on the line as suggested 4in the figure.
:‘
- -

-— < :-x)
Use this methgd to plot the lines determined in each of
the following; ‘

. B T 5Y . ot e g ; .

(a) P = (-3,2) ; slope = T .
() P = S =3
(v) P, = (0,0) ; s,lgpe =z .

. , L 4 o
(¢) Py = (2,-4) ; slope = - T *\\
(d) P, = (-1,-3) ; slope = 2\.
(e) P, = (0,0) ; slope = 2

: 21 e R » 21D PE a p

10. Plot the graph of lines through the orligin having the

following slopes:

(a) 3. i (¢) & . ‘
(b). - 2 . (@) Fsr<o.
561 .
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11. "-Write the parametric equations for the lines in
Problem 10. ; ‘ -

Our next theorem gives us a relation between the concept

of pargliel lip?é and the concept of slope. ‘- ‘J

THEGREM 8-15. Two non-vertical lines are parallel 1f and only
4 if theilr slopes are equal.

Erpgf; qé; two distinct non-vertical lines p and q
We ‘

beé given. 1ave two things to prove: R

iy T

..
(1) If p ll;qx, then thelr slopes are equal. qfa
(2) 1If the slopes of p and q are equal, then p E ‘B

(1) sSuppose p || a.

, g — * x%‘ﬁa!_ ——————#X
_ q :
v

Let él(xi’yl) and P,(x,,y,) be two points in p . Let

vertical lines through P, and P, intersect q in X

Ql(xl,yl + h) and QE(xE,YE + k) , respectively. Then

P,Q,Q,P, 18 a parallelogram. Therefore P,Q, = PEQE

(&)

Since PQ; = Ih] , PyQy = |k| , and since h and k are

both positive or both negative, it follows that h = k .

566
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and the slope of q 1is
ZE + k)ij' (yljjk h)ﬁ - B e
: XX 2% X2

Therefore the slopes are equal., - 7 .

Yrg"’i]"yl‘h YEE

| e
[ '

(2) Next, suppose there is a number m which 18 the
slope of both p and q . We wanﬁ to prove that the lines
are parallel. We do-this by showing that 1f they have one .
point in common, then they are the same line. Suppose then
that they have a point, say R(xl;yl)Tj in common. Since p
is not vertical, it contains a point P(x,,¥,) such that )
X5 # X, - Since g 1s not vertical, it intersects the line
({x,y) : x = X5} ; that is," g contains a point Q(x5,¥5)
such that Xy = X, . Since the slopes of PR and %QR are

the same, o - ﬁ*\

Yo - ¥y Y3 - | )
) ,

Since x, = X, , the denominators KE‘; x, and x5 - X ,
are the same: Hence Yo - Yy =V¥3 =Yy 0:, ¥y = Y3 - This

- means that Q P . In other ﬁé?ds, if p and q 1nteg§ee§;“=
then p and q are the same line and therefore parallel. If
p and q do not intersect then they are parallel by
definition. This completes the proof that if the slopesa of
p and g are equal, then p and gq are parallel.

A natural question to ask 1s the following one. _If the
slopes of two segments are equal, and have a point in common,
are théy collinear? This suggests the test for collinearity

8tated in the next corollary. fﬁﬁ

~— 563
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-

Corollary 8-15. Three points A, B, C are collinear
if and only 1f m__ =m__ , or they lle on a vertical line.

-AB

This "if .and only if" statement 1s a short statement
combining the two atatements: ’

(1) If m_ =m__ , then "A, B, C are collinear.

AB ' , ,,
(2) 1f A, B, C are collinear, and do not 1lie on a
vertical line, then m m_-.
iB

BC

-

Proof: Let A, B, C be three points and let my = mﬁ ,

= Xg+ k, y=yg+kn , k 1s real} .

[}
oy
™
-
<
Mt
b
(

y) + X = x5+ k, y = yg + kmy ;. k is reai]\i\\
, then BA”-"%c" and A, B, C are collinear. If \

B, C are collinear, then it follows directly from

\E\
]
:::
b

L]
N
4
I

4

f m, = m,
¥

A
Theorem 8-15 thg.ti* m; = m, l l

2 _, 564 ¢ S
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y . . Problem Set 8-8b
1. Sshow that DY || CD and that ~AD ||:EC if
T (a) K=(-3,-2)%, B=(51),C= (6,6), D= (-2,3) .
(b) A=145,-3) ,B=(15,-2), C = (26,-2) , D = (16,-3) .
(e) A= (-3, o) B=(1,5) , C = (10,2) » D= (6, 3)
2.1 Shgw that AB is not parallel to -CD ‘if A's (6, 2)
(14) ¢ =(-1,2) , D= (8@)
3~ (a) 1Is ¢%% ‘point B(4,13) on the 11ne Joining aA(1, 1)
¢(5,17) 2’
(p) Is the point (2,-1) collinear with (-5,4) and

(6,-8) 2 _
Given: A = (}01,102) , B = (5,6) and C ( -95,-94),

(¢) = ,
' Determine whether AE iﬁﬁkg .

(d) Given: A = (101,102) , E = (5,6) , C = (202,203)
and D = (203,204) . Are “AE and “CD" parallel?
Are they equal? _

4. (a) Given: A = (3,8 And the slope of line p

containing A 1is % . Fi@d the coordinates of
three more points on p .

(b) Given B = (-1,0) and the slope of line q
containing B 1s - % . Find the coordinates of
three more points'on gq . ’

5. (a) Write a pair of pafametrigyequaticng of the 1line

. ~ contalning (3,4) whose slope 1is % ‘ y

"(b) Write a pailr of parametric equations of the line
contailning (-1,3) whose slope 18 -1 . -,
(g;gg: 1= )

6. Given: =-((x,y) : x=3-2k, y=-1+3k, k 1is reall
What 1s thejalope of fEﬁ‘% Express €D in parametiic
equations if D || AT &nd'_‘(ﬁ% contains (0,0)

7. {Given a={(x,5) : x=1+2k, ¥y =2 -k , k 18 reall} ,

b={(x,y) : x=3%2h, y=-1 ahoh is reall ,
show that a || b . As part of your proof, show that

a#b ¢ ' -

b
=W

565
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+ 4k, ¥k 1s real} ,
- 8h, h 1s real)

8. "Given p = ((x,y) : x
a= [(x,y)
Show that p = g

D
-
[
b+
W]
S
Kox
U
[

2 + 3k, k is real} ,
2+ 3h, h 1s real) .

9. Glven m = [(x,y) : x =1 + 2k, y
((x,y) : x=1-2n, y

1]
H

n

(a) Show that m and n intersect 1n one point.
(b) Find the coordinates of that point. '

10. Four points taken in pairs determine six segments. Which
pairs of distinct segments determined by the following
four points are parallel? A(3,6) , B(5,9) , c(8,2)

X D(ésﬁl) -

11. Show by considering slopes that a parallelogram is
formed by drawing segments Joining in order A(-1,5)
B(5,1) , c(6,-2) and D(0,2)

12, Show that if one of two parallel lines 1s-vertical, then
the other is also.

13. Given A(-2,-%) , B(4,2) , c(6,0) . lLet D be the
midpoint of AB and E the midpoint of BC . Show
that DE 1s parallel to AC

H‘L

14 It 1s asserted that both of the quadrilaterals whose
vertices are given below are parallelograms. Without
plotting the points determine whether or not this 1s true.
(a) A(-5,-2) , -4,2) , ¢(4,6) , D(3,1)

(b) E("2§’§) ¥ Q(MJE) ] ( ) ] Q(EJ’E)

15. Show that the line through (3n,0) and (O,n) is
parallel to the line through (6n,0) and (0,2n)
: © Assume n # 0O
16. P = (a,l) , (3,2) , R = (b,1) , S = (4,2) . Prove
that *?a*g*‘g*’and that PG II*E’F if and only if
a=>b -1

ERIC
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8-9. Other Equations for Lines.

In the preceding sections we have used parametric equations
to express the cacbdiﬂates of the points of a line. In this
section we find another expression which "represents" a line.

We illustrate with a particular line.

o
]

,,,,, (4,8) .

Then ’P{xjyi- 15 collinear with A and B 1f and only if.
P = =m__ . Since m_ = %%Z=% and
\ B ar -

i , , -— i .
Consider the line AB where A = (2,5) and

1,

il
p=g
fa
]

"
=
=]
o
Il
I
el
™,
o

linear with A and B if and

=
]
]
|
-
\h-u
e
1]
K
L3
—
[
T
D]
o)
—

10 ¥ =2 .32 | then

o]
=
e
=t
P“
=y
]
1
I
1}
)

Lol
i
——
-

Tt
<
o ——_
[}
o
L
W
o —_
%J
I
MO

=B - - o
—— = Y s 2 If (%x,y) = (2,5) then x -2 =0 ,
-2 - 5 - x - 2 -5
y-5=0, and = s = 373 = Conversely if = - =L 3 =
y-o_3 = (2.6 Tt fol .
then $———s = 5 or (x,y) = (2,5) . It follows that P(x,y)
ta aollinear with L foamd emlw 4 X -2 ¥y -5
is collinear with A and B 1f and only 1f = s = Sy
Therefore
.- , f - o _ E
AB = j(g{’y) : }; ~ E = J i ")]
If we think of A as (xA,yA) and B as (xB,yE) , the
expresslon appears as ’
_ X - X y =y
=i —— A A
AB = 0(x,¥) @ g——p= = i
E A B A
Thls suggests the Fallowiﬂg theorem
e e e - - . i
THEOREM 8-16. If P = (x,,y,) and Q = (x,,y,) and if PQ
is an oblique 1line, then
PR = {(x%,¥) K _ *{177 = y j ylf .
' Xy = Xy Yo = ¥y [

ERIC
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Proof: The point R(x;y)i is collinear with P and Q
if and only 1f R =P or g _=1p _, that is, if and only 1f
(x,¥) = (x5,y;) or R

that 18, 1if and only 1if

H
M
(]
1
—
g
W
i
e
—

Corollary 8-16-1. If PQ 1s the line_of Theorem 8-16,

then

-
A

PQ = ((x,y) : ¥y - ¥y :—:ﬁq(x - X

: 1))

3|

Proof: To prove this we show that the equation of the

S S|
x I 'y

1s equivalent to the eguation
1 Y2 Ny

-theorem, -

T b

¥

el

=1

of the corollary,

“\_\‘%
[
!
m

«
n
I

¥

?;§T=?;(K - %)
Xg = Xp° 1

Y,‘yl

M

et the second form from the first, multiply both sides of

J

o] ,
he first by vy, - ¥y 5 to get the first from the second
1vide

et
et
i

both sides of the second by y, - vy -

Corollary 8-16-2. If p 1s the line which passes through

6
P(xl,yl) with slope m , then

(gl
12T
el

ERIC
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?Eoof: 1rf

Corollary 8-14-1 since p
(xl + 1,y o+ m)

(X§;y§)
a e

it

, the equation

DEFINITION.

The equation

also passes through

and then

is called the two-point form for the
-

of an oblique 1line

Py o= (xuyy) 5 By =

DEFINITION.

P, , Where

The eguatlion ¥y - ¥y =

m{x

equation

- xp)

is called the point slope form for the equation

of a non-vertical line wlth slope

passing through

Example 1. If C =

(x1,¥7)

Example 2. Write
(-5,-2) with slope 4 .

If A =

Lo% T
I

an equatlion

Answer: y +

3 (2,1) , B =
(0,-1) , find the point of lptersectlon o

4

W T
P a

S
o™ .

{(x,y) :

[(XSY) :

m and

m# O , this follows immediately from

he line through

(3,4) , ¢

by

b(x + 5)

‘E,’\”“-w
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il —
AB =

Alao

Solution:

((x,¥) : 3 = 5]}

¥y

| e

]

* 5y = -

b

[(I;Y) . 6:~¢§ =

Lo-1 ] .
! = = % . Since these

N5y

:J

. I .
8lopes are unequal thelines interzect in some point (Iljyl)

? Then

‘ﬁultiplying both sides

3%y -y, =5, 5y, =45

[

of the first equation by 5 and ac ing to the sides of the

second equation we get

. Therefb?é

O

ERIC
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== point
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Set 8-

&

Problem

[{Xed

Write an equation in two-point form for the line
determined by the glven pailr of points.
(a) (1,4) (4,3) . (d) (-3,2)
(b) (c 5) (-3,0) . (e) (0,0)

(¢)~.(0,-5) (3,0) . (£) (-1,1)

Write an equation 1in point-zlope form for the line which

and and (5,-4) .
(7,-8) .

(1,-1) 4

and and

and and

containsg the
(a)
(b)
(c)

given polnt and has the given slope.
. (a)

(e)
(-2,7) , - % . ()

v

(DED) 3 (,3;‘%2 .

P

ro

(-3,5) , - (-3,2) , -1 .

L

(DSIS) H 3

\

Write an equation in point-slope form of the line that
contains the given point (5,8) and 1s parallel to the

line found in Problem 2(c).

)
= (l;

In triangle A= 6) , and C (5,2)

(a)
(b)
(c)

ABC ,
“ac”.
for the line that contalns

Write an equation for
Write an equation for
Write an equation the

medlan from A
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= ‘a’/

(a) Write an equation for the line that contains the
midpoints of AB and AC .

= Write an equation for the Iine 5™,

(£) 1f - (7,7) , find the coordindtes of the point
of intersection of iﬁk and *E_ék

(o)
I

Below are equations of lines. Which of these lines

contains (2,3) 2

(a) 2y = (a)
(b) 3y = 2x . (e)
(¢) y-3=2(x-2). (£)

I
L
k]

il
[
b

i
[}

< N
-+
il

]

[}
(%
P

Write an equation of the line that contains- (-2,4) and
whoae slope 18 the given number. : 7

(a) . (a)
() 1. (e)
(¢) 0. - ()

[

v

3
= -
Glven below i3 a set of four 1lines. State which pairs
of lines are parallel.
p=((xy):x-2y =8}, ag=(({xy): 2x+y =1},
r=.((xy) : bx +2y =3}, s

It

For each palr p and q determine whether p l[ q ,
and q intersect in one point, or p=q .

I
v
+

((x,y) : x -2y =8} and q= ((x,y) :
((x,y) : x - 2y = 8} and q = ((x,y) :
a
b

+ Yy
x -ty

L= s ]
Mt N N
ko B o Bl v
i1
PO
W
=

]
2
L=
o
I
]
1
=
~
1}

((x,y) : x - 2y = = ((x,y) :

Given two non-zero numbers a and . , Bhow that
B ; .
% + % = 1 18 an equatlon of the line that contains

(a,0) and (0,b) . This form of a linear equation is
called the intercept form.

Glven two numbers m and b , show that y = mx + b 1s
an equation of the line whose slope 13 m and which'
intercepts the y-axls at a polnt whose y-coordinate 1is

b . This form of a linear equation is called the slope-

intercept form.

4Tt
=
=

((x,y) : 2x - by = 11)

)

N -
Ry



810, Perpendicular Lines.

We have seen that two non-vertical lines are parallel 1if
and -only 1f their slopes are equal. In this section we develop
a conditlon in terms of slopes for the perpendicularity of two
lines. 1If one of two lines is vertical, then a necegsary and
sufficient condition that the lines be perpendicular is that
the other one be horizontal. The following theorem is a state-
ment about the perpendicularity of two non-vertical lines in
terms of thelr slopes,

! .
THEOREM 8-17. Two n@ﬂg%éftiéal lines are perpendlcular if and
7 oﬁly if the product of thelr slopes is -1 .

o
Proof: Let the given lines'be detoted by p; and p,
£ and let their slope; be my and m, , respectively. We have
two statements to p%ovég B

(1) 1r D, 1 p, , then mym, = -1 . ;

i

(2) 1Ir mm, = -1, then p; 1 P, -

We prove both atatements together as follows.

Let g, bDe the line containing (0,0) which is parallel
to p, . Let q, be the line containing (0,0) which 1is
parallel to P, . The slope of ay 1s my and. the slope of
dls m, . Let q. and g, intersect the vertical line

Q2 . 2
((x,y) : x =1) in R(1,r) and S(1,8) respectively.

™2

&

P

ERIC
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Il
m-j;
L]

mgfmg;:ﬁ——‘ - = 5

Then p, 1l p, 4if and only if gq
'only 1f ©OR ] 0S5 .

From the Pythagorean Theorem

follows that
E

Py | p, Af and only if
Using the distance formula we get

-

¥

2

1

(0R)? = 1 +m

Il

Then p, 1 p, 1f and only if

if and only if 2 + m

if and only if 2 = -2Zm.m

(OR)S + (08)° -\(Rs
/

¥ (OS) =1

la, , and a; | a, if and

and 1ts coniérse it then

]
=

M

-
+
=

m™J

——
s
Iy
——
i
-
=

[t

]
=

[

L
I

=
+
=]
4
]
+
g
il
I
E)
i
=
Jiv]

if and only 1f m.m, = -1 ,

which completes the proof.

L‘
3
Pl

v
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i

L)
(%]
R
L)
o]
———,
!
—
L]
-
o
ot
m .
I
———
=
"
=
o
L

Example 1. Given A = ,
D = (8,7) , show that ﬂE?JE' -,

Lo
o]
=t
i
|t
[ o
o}
a]
o ‘
i
fl
I
:l
I
it
i
Lt mo
A,

%T!'
j |
1]
J:m @v
1
MO

Since - £ - 3 = -1 1t follows that

‘M o

Example 2. Given P = (4,-15) , Q = (-17,3) , R = (0,5) ,

determine whether or not PQ 1s perpendicular to &R .

3 + 15 18 6 3 -5 2

Solution: m STr—— I = &==/=-%,0 = =— =37

-1

L M

- _ - -
# -1 . Therefore PQ 1s not perpend?

-]
[
el

to QR .

AT

Example 3. If A = (0,0) , B = (4,3), C = (8,
D = (-5,11) , prove that the diagonals of quadrilater: ABCD
are perpendicular. ®

, m_ = %% :,3 = - % d slnce

Solution: Since m =
—_—— D =

AC

{'_’;diw o)
[

() = -1, 1t follows that AC | BD .

*,

k)

Example 4. Given A = (5,-7) , B= (0,0) , C = (7,5)
determine whether or not triangle ABC 18 a right triangle.

- E
Solution: Since m__ = - % ,M_ =6, m_ = % , 1t
- B v: AC BC
follows that AB |. B andihence ABC 1s a right triangle
with right angle at B .
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Example 5. Given A = (-1,3) , and B = (5,-1) , find an
equation in poilnt-slope form for the peﬁbendicular bisector of
AB 1n the xy-plane.

Solution: Since the slope of AB = —p——v

follows that the slope of the perpendicular bisector 1is % .

The midpoint of KB 1s (’1 2, 3;1)

I
)
[
-
3
=
]
o
it
=
[¢]

M 4

equation of the perpendicular bissctor 1z y - 1 = %(x -2y,

h

(=

or 3% - 2y

[

Alternate solutidn: The médpoint of AB 1s (2,1) ande
the slope of the perpendicular.-Bise 5
the above solutlion. Then parametric equations for tgé_

perpendlcular bilszector are

Then 3x =6+ 6k , 2y = 2 + 6k ; 3x - 6 = 2y - 2 ;
' ] . )

3x- 2y = & . It follows that 3x -
for the perpendicular bisector of AB 1n the xy-plane.

¥y =4 43 an equation

¢

=

Problem Set 8-10

l. Lines p, q,?r, and &8 have slopes % Y 61% s, and

B
[

T respectively. Whilch palrs of lines are perpendicular?

The vertices of a triangl
c(0,0)

2 B(gxg) ¥ and

%

i
Vm
i
N
.
-
b__l
oy
-
i
p——

(a) Wnat is the sjope of AB ?
(b) What 1s the siape of a line that is perpendicular

s

et gt
=,
o
W‘
ot
=
]
[l
5
o
[y
et
o]
e
it
]
]
\mw
9!

s the slope of a line that 1s perpendicular

3. Show that the line containing (0,0) and (3,2) 1is
(

.perpendicular to the lipe containing (0,0) and (-2,3) .
3

/
e

#
e
-

W
—~1

o ‘}'.,Nw i
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(b)

Show that “RE[EC™ if A
C = (-b,a) a # 0, and

(a:b) ; B = (O!D-) , and
b #£ 0O

Glven the points P(1,2) , @(5,-6) , and

so that /PQR

where

R(b,b) ,
determine the value of b is a right
angle.

Given BB - ((x,y) : x =
k 15 real) , and €D = ((x,y) : x =1
y=2+ 2k, k 1=

1 +2k and y =2 + 3k ,
- 3k and
reall .

- -
Prove: (1) AB and CD intersect in
L .
(2) AB ] CD .
Given AB = ((x,y)+: x = -1 + 4k , y=2 -3k, k 1is real
L - , U S ,
If CD | AB and CD contains (-2,2) , express CD with

set notation symbols and parametric equations.

ABC A{0,0) , B(3,2) ,
C(4,-1) . Using parametric equations express:

The vertices of triangle are

and
(a)
(b)
(c)
(d)
(e)

-

AC . 7

is Perpendi{jular to !‘:A:EF-

7 ] -

y barallel to BC |

perpendicular to _‘EE
-

The
The
The

=

that 1s parallel to
_that
line through that
The. line through that

The coordilnates of D if
AD | BC.

ine through B

line through B

=

and

Using slopes, show that the quadrilateral A(8,0) , B(6,4) ,

C(-2,0) , D(0,-4) has four right angles.

Express 1n set notation the perpendicular pisegtér of the

segment that -joins the followlng pailrs of points.
(a) (c) (3,5) ©
() (a,b) .

(a,b) (c,d) are distinct

containing them 1s perpendicular

and (~3,-1) and

(050)

(3,3)
(;Ssg)

(1,1) .

and (3,-1) and

Show that 1f and

the line p

line g Joining (b,c) to (d,a) |

points,
to the

Given A = (3,-3) , D= (x,-2) .

(a)
(b)

(QJD) ; B = (}4;2—) » C=

Find x
Find x so

101
]
T
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- o A _A L ] . .
13. Given: A(3,5) and B(xl,-2). Calculate the slope of the line
perpendicular to AB thtough A and draw the line.

14, Given P(-3,1) , Q(0,-5) , and R(5,0) . Calculate m
, - , . o - PQ
(a) Through R draw a line parallel to PQ

: T ] -
(p) Through R draw a line perpendicular to PQ .

T

,,fgsf i} . . =
15/7 The slope of a line p through (2,3) 1= T

(a) Give the coordinates of two other points on p
(b) Give the coordinates of two other points which are
contained in a line throuch (2,3) perpendicular
to p
16. Given a quadrilateral A(a,b) , B(a + c¢,b) , C(a + ¢,b + c),

D(a,b + ¢) /

2
|

L
E

(a) - Prove that &C
(b) Prove that &AC

(¢) Prove that AC and BD have the same midpoint.

-This sectlon wontains several deflnitions and theorems
relating to parallelograms. In Chapter © we defined a

parallelogram as a quadrillateral each of whose sides i=
parallel té the side opposite 1t and proved two theorems.

They are

[

congruent to the

[y

1. In any parallelogram each side 1
slde opposite 1t. (Theorem 6-6)
. If two 8ldes of a quadrilatera: are parallel and

2

congruent, then the quadrilateral 1is a parallelogram.

(Theorem 6-7) ‘
In Problems 2 and 5 of Problem Set 6-7.and Problem 5 of
Problem Set 6-8b, we proved statements which we now introduce

formally as theorems.

ERIC
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THEOREM 8-1 E A quadrilateral 1s a parallelogram .Af eath of
1ts sldes 1s congruent to the side opposite it.

-

THEOREM 8-19. A guadrilateral 14 \a parallelogfam if and only
if egch angle 1s congruent to ﬁhéaan:le opposite 1t,

We ﬁow conslder cases of Special parallelograms which
have properties not common to all parallelograms.

- DEFINITIOR. A parallelogr&s a rectangle 1f
and only if it has a right angle.

Perhaps you think of a rectangle as a quadrlldteral having
Tour right angles. It is possible to start with this as a
definitlion or the one given above. In either case the other ,”

statement becomes a theorem. S /
1 : /

Qg;; NITION. A parallelogram is a rhombus 1f and
nl e

y 1f two consecutive sldes are congruent.

§

DEFINITION. A parallelogram is a square if and
only if it has a right angle and two adjacent

- 4
sldes that are congruent.

You should notice that every square 1s a rectangle and
also a rhombua. We might say that the set of squares 1is the
intersection of the set of rectangles and rhombuses., We can

-pictufe roughly the set relations as follows:

- ( !
578~
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=
In this diagram the region marked P represe ents the set
of parallelograms; the region marked él » the set of
rectangles; the reglon R, , the set of rhombuzes; the réglon
marked - S , the set of .squares. i
' The iollowing theorem 15 a direct congequence Df our
. .deiinitian of a rectanglé and Theorem 8- 19.
THEOREM 8-20. A quadrilateral Is a rectang gle 1f and only if -
it is equiangular, v
' The proof 1s left as a problem.
) As a .direct conseduence of the definition of a rhombus
and Theorem 8-18," we also prove:’ : . .
A THEOREM 8-21. A quadiilateral is a rhombus if and only if 1t
\ /" 1s equilateral. : :
f .
Prpblem Set 8-11
' - <1l. Does a rhbmbus have all the propertles of a paf%llel%gramﬁ
‘Does a parallelogram have all the propertles of a rhombus?
Explain.
2. Define a squgfe in terms of: (a) a rhombus,
" (b) a rectangle.

ERIC
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g 3. (a) vrite the'qﬁo parts of Theorem, 8-20.
’ (b) Prove both parts of the theorem.
4, (a) Write the two parts of Theorem 8-21.
(b) Prove both parts of ‘the theorem,
5. Identify the following statéments as trué or false.,/Be
' able to Juatifyrycur answer for each statement.
(a) If a quadrilateral is a Péctangie,’if is equiangular.
(b) 1If a quadrilateral is equiangular, it is a rectangle.
(¢) 1If a a quadrilateral is a rhombus, it 1s equilateral.
% (d) If a quadrilateral is equilateral, it is a rhombus.
(e) If a'quadrilateral 1s regdlar, it is a square.
(f) The two triangles determined by a diagonal of &
' '.;parallelagram are congruent. '
(g) If the triangles determined by one diaganal of a
quadrilateral are congruent, the quadrilateral is a

*

8-12. Hé;;g Coordinates in Proofs.
We have seen that the xy- coordihéﬁé syatem 1s a uééfﬁl

tool in Ealving problema in geometry. As we pointéd out in
the béginning of this chapter, there are many gcardinaté
Systems in a plane. It is natural to expect that a coordinate
system selected to "fit a problem'. . might be a better tool than
one set up wlthout reference to the préblemg And this is

« 1indeed the case, as we now illustrate. ; :

‘Example. -Prove that if‘a 1ine segment joins the midpoints
of two sides of a tr‘iangle, its 1ength is half the length of
the third side. :

%
Proof

I:

: 'Sgbpgse a triangle and a line segment Jéiﬁing the mid-
s pointa of two of its sides are given. Label the gilvén triangle
ABC =0 that the given segment Jolns ,the midpoints of sides
AC 'and BE . Call these midgbints D and E "respectively.

Y

w ) ) . ‘ \ 5&@ PRy




8-12 , ) .
- We now aset up an xy caardinate system in the pla of
triangle ABC which seems to fit the prablem We choose line
“ox" as the line BT, we choose- point A as the origin. The
line ié?ﬁ’is taken as the line‘iﬁ_ﬁhé plane ‘AEC which is
perpendicular to OX at A . Then A = (0,0) , B = (b, ;0)
C = (c3d) , for some real numbers b, c, d . (W% know that
b #0 since A and- B are different polnts. We know that
d £ 0, since A, B, C- .are noncollinear points,)

. Then we use the midpoint far@nla to get

13

) ) ~0+c 0+ad c d
® o :ﬁgg;j’”g cé; 7 ) = (§ i S)
b+c. O0+d b+ ¢
E = (=%, quzvff’!g)
Y
} : !
2 Cle,d)
D E
k-3
) )
- olAtc,0 - Blbe = *X
) -

Then “DE and BB are horiggntal lines and

e b+ c rcy b|
DE = |—%— -5l = lgl s \
_ 4B = |b - 0| = |b] |

, ’ 1 , N )

It follows that DE = 5 AB , and this completes the proof.
‘Proof II:. ,

— —_—— = 3
e

In the above proof we labeled our figure and sét up a
cabrdinate syBtem to fit the problem. We now give a proof
using a coordinate.system wﬁ%ch is not set up to fit the
prcblemr qcan this praoi to~see how 1t compares in difficulty

1581 ¢, .
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Suppose a triangle ABC 1s given and that D,-E, F are the ",

" midpoints of AC, BC, &B, respectively. Then using the (F‘
~_midpoint formula we find that : ’ j
. Xp + Xy ¥y * Vg (gt Xg  ¥g * ¥
Del=2— > =) » B~ ——

Using the distance formula we get

e fTB e Xat %\, (YB Yo  VatVc\ @

i
j ] 1
b
1
bl
.-
v
+
<
o
[}
L
h-d
| —
A

fi
\I"DM—‘
M
Wik
1
-
k=4
~—
+
<
o
LS
=

]

88 = 4f(xg = )2+ (vg - ¥,)°

rof
g

3

Therefore DE = % AB.. B3imilarly EF = % AC and DF =
3

¢
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As you can see from these two proofs an xy-coordinate
system which 1s set up to fit the problem simplifies the
expressions involving coordinates which are used 1n the proof.
In Proof I we fPund that y, ;e% =Yg - Thls proves that DE

is horizontal and hence that TE || B .

It might appear in our first proof, that we are proving
only a speclal case. Actually the proof applies to all cases.
The x-axis and the y-axis can be chosen anywhere in the plane
80 long A3 they are perpendicular to each other.l For con-
venience we chose AB as the x-axis. We cannot then choose

“AC” as the y-axis. For then AG ] BB and this would mean
that the proof is for the special case of a right triangle.
After selecting a line for the x-axis we may select any point
in it as the origin. We chose’A as the origin. Then iD_S,EE
is/taken as the unique line in the plane of triangle ABC
which 1s.perpendicular to X at A . The proof 1s general
‘since we can set up such a coordinate system starting with.
any triangle and the segment Jéining the midpoints of two of

1'ts sides: '

»

We state as a theorem what we have proved. p

¥

sldes of a triangle 1s parallel to the third side and its
length 1s half the length of the third side.

THEDEEﬁ;ﬁ?EEg A line segment which Joins the mldpoints of two

Problem Set 8-12

1. Prove Theorem 8-17 if the coordinates of the vertices of
AABC are: A = (0,0) , B= (2b,0) , and C = (2c,2d) .

.. Is there any advantage in choosing these coordinates
rather than the coordinates in Proof I, of the example?
If there is an advantage, explain,

2. Given AABC with AB'= 6 , BC = 8 , and AC = 10
Find the perimetér of ADEF , if D, E, and F are
of

midpoints of the sides of the triangle. i Lf\:

]

H—l:l\




8-12
"~ 3. It 1s desired to measure the distance between two trees on

‘opposite sides of a buildinéi : <y
If the two trees are represented
by pointg X and Y , then
locate a third point- Z from
which both X and Y may be

’i‘ 'iseem Place stakes at M and
‘N , the midpoints of XZ and
¥Z . How can you find the

after measuring MN ? ’ - , i;ff;i,
Explain. ’

4. In Problem 1, 1f ¢ = O , then AABE 1s a
triangle. Explain. a

*5,. Prove that the midpolnt of the hypotenuse of a right
triangle 1s equally distant from the vertices of the
triangle. e '

6. Given isosceles triangle ABC . Set up a coordinate
system with the vertex of the triangle on the y-axls and
the corrésponding base of the triangle on the x-axis,

. . . A
7. Prove the statement: If a triangle 1s 1sosceles, the
-medians to thé'twd?gongruent‘sides of the triangle are
congruent. . [ﬂ;ﬁt; Let vertices A and B be contalned
1qg%he x-axis and vertex C be contaired in the y-axis.]
e"‘f{ 1
8. Prove the statement: If the medlans to two sldes of a

triangle are congruent, the triangle 1s isosceles.
' =
9. Write a single :atatement which comblnez the statements in

- Problem 7 and Problem 8.
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THEOREM 8-23. Given quadrilateral ABCD with A = (0,0) ,
B=(a,0), D= (b,c), then ABCD is a ggrallelagram if
and only if C = (a + b,e) .

Proof: There are two things to prove:

(1) If ABCD 1is a parallelogram, then C = (a + b,c) .
“ (2) 1Ir C = (a + b,c) , then ABCD is a parallelogram.

§ %Y
D(bye) __ Clx,y

’{‘ B YO T Bl 8 - X

: (1) sSuppose ABCD 1is a parallelogram. Let C = (x,¥y) .
T« A P = RN o
Since AB s hgrigkntalg then DC 1s alsc horizontal. There-
v I e - - A
fore y=¢ , If b # O then neither AD nor BC Iis
verticdl. Since AD || BC it fal;Efs that m_ =m__ and
o " - AD BC
. hence that ¢ = ié%ég .+ But y =¢ , Therefore x - a
Xx=a+b,and C=(a+Dbe). If b=0, then D 1is in

the y-axis and AD is vertical. Since BC || 0 , B 1is
(

also vertical and. X = a , x = a + b., and again C =

Y /
- 4 /

O(b,e) ~ Clatba)

&
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8-13 “ .
" (2) 1f~C = (a + b,c) then DC 4is horizontal and hence
parallel to AB . Also DC = |la+b - b| = |a] ,,

AB = |a - 0] = |al . Then DC = AB and TC || ji . It
follows that ABCD 1s a parallelogram.’

HI Ik

A kY .
Corollary 5;2311- If the coordinates of the vertices of
- a parallelogram are A = (0,0) , B= (a,0) , C = (a + b,e) ,
eand D = (b,c) , then the parallelogram is a rectangle if and
only if b =0 .

Proof: There are two things to prove:

. i
(1) If ABCD 1s a rectangle, then b = 0 .

(2) If b= 0, then 'ABCD 1s a rectangle. : -

! 7
A

Dibyg) o Clo+b,e)

— : — X

FPART (1)

\ ° Do) _ L ____Cloe)

. '] _ . _
- ~ |Ate,0) ’\\” o Blo,0)
J PAR

——X

587 &



(1) If 'ABCD is a rectangle, then /A 1s a right~--
gle and AD | BB . Therefore, D is in the y-axis and
Q -

(2) If ABCD 1is a parallelogram and b = Q , then _
(0,c) . Since D 1s on the y-axis, we know that iﬁfjfﬁﬁ
/A 18 & right angle. Therefore, 'ABCD is a rectangle.

Corollary 8-23-2. If the coordinates of the vertices of
.a parallelogram are A = (0,0) , B = (a,0) , ¢ = (a + b,c)

and D= (b,c) 'where a > O , then the parallelogram is a / /
rhombus if and only if a =4/ bE +,_c:§- . . /

Proof: There are two things to prove:

— (1) If ABCD 1s a rhémbus?gghen a =4 bY 4 ¢

(2) If a =?f|/b2 + c2 , thenXABC-{) is a rhombus,

Y

Co -

Dibe) Clavbyo)

- o[A,0 Bl




8-13 Y _
(1) If ABCD ,is a rhombus, ‘then by definition AB = AD .
* By the distance formula AB = a , and AD = 4b° + ¢2 . By the
substitution property of equality a =4/b° + o
(2) It is given that a =+b% + ¢2 . By the distance
formula AB = a , and AD ;:ng r 2 . By the substitution
property of equality ¢B = AD . Since two adjacent sides of
D

" the parallelogram ABC are congruent, the- parallelogram is a

T

rhombus.

‘

éégF \\%;e shall use thé results of Theorem 8-23 and its
- corollaries to prove certain properties of thé diagonfils of a
parallelogram, a rectangle, and a rhombus, The following

experiment will help us to discover these relations,

Experiment

.o

Draw several pictures of a parallelogram, a regtangle; a
rhombus, and a Bquare. Use a protractor and a ruler to .
discover the properties that appear to be true with respect to
the diagonals of each of the given quadrilaterals. Record
your findings 1in the chart by checking the quadrilateral which

. has the listed property.

Diagonals Diagonals Diagonals blsect
bisect each other | are | the angles

Parallelagfam ) -

Regtaﬁglé

Rhombus - f T . FE

Square b -

THEOREM 8-24. A quadrilateral is.a parallelogram if and only
if the diagonals blsect each other.

- 589




8-13 .

Proof: There are two things to prove::

(1) If ABCD is a parallelogram, then AC and BD
bise.c‘\t each other. y -

‘(2) 1t A and BD bisect each other, then ABCD
1s a parallelogram, 7

£

D(b,c)

77::(3(a+p ,€)

e E— —————— ‘, e X

[+]
ol
—
E)
[»]
~1
1
o
—
[
=]
=

Y PART (1)
%

D(bse) _ Cxyy

~o[A(o0) Bloo)

PART (2) .

590() "E
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8-13 S .
: (l? You will be aSked to prove Part (1) of Theorem 8-2li
in ihe next prablém Eet

(2) 1Ilet the caardinates Qf the quadrilateral be
A (D 0) , B = (a,0), = (x,y) , ‘and D = (b,s) Since
A and éﬁ bisect each ather they have the same midpoint .
Thus . .o o

I

*

x $-5- - |

”a + b and ¥y =c¢ . Therefore

.and

v ES
W
_~m1+,
rofe<d
i

From thls we see that ,x
= (a + b,c) and by Thgarem 8 23 ABCD 1is a parallelggram

You will be asked to prave the foliawing thearems in the
next problem set. You should note that there are two parts
to the proof of each theorem. Yau should write out the two
paftg iof the statement which must be pPOVEd bEfﬂPE beginning
your proof. _

Theorem 8-23 and the two corollaries will help you set up
the coordinate gygtem for Theorems 8-25 and 8-26. ‘

5\ kS

THEOREM 8-25. A parallelogram 1s a rectang,l,e if and only if
.the diagonals are céngruentg » % :

THEOREM 8-26. A parallelogram 13 a rhombus if and only if the
diagonals are perpendicular. ’ i

~ THEOREM 8§-2 -27. A parallelogram is a rhombus if and only if a
V diaganal blsects one of 1its angleq

Problem Set 8*13 . ‘ #
Y T I fﬂgyé
Prove Part (1) of Thearem 8- 24

Prove Theorem 8-25{ N

Prove Theorem 8-26

Prove Theorem 8-2°




;";
Lo Tw e ' - ]
' " 8-13. T
- 5+ ‘List the properties of a rectangle that are not true of.
‘ *oall paralielagrams. ‘ i :
e. Liat the preperties of . a fhambua that are nat true *all.
/ . parallelagrama ’ ;
; = -'igff Jp—
r 3 7. Keepiﬂg in mind 1tiidefinltian, may a squgre be considered
a a régtangle° ' a rhombus? Then a square "inherits" the
praperties gf,!fiiimf, o ) and -,
FO —_—
8. Make a chart ilke the following and check which figureg
' have the listed prapertieg - ‘a\ . .
T :”7’77, parallelo- fec{a?{glé rhombus square
.| gram N B -
oppogitexideg are || e
opposite sides ars x° . |
d Qpﬁb%iééﬁié} are ‘g .
éons’ecut;ve 71? are supp. f ,_
diaganala blsect gagh cher ’
diagonals are = - . ot ( L
diaganals are |
diagonalg bisect angleq
.1t is Eequilateral
it is equiangular' 7
iﬁ is PEgular L . o .

9, Starting with the set of all quadrilaterals exp¥ain how
~“the set of parallelograms, rectangles, rhombuses and
squares may be consldered as subsets.




8-14,

Trapezoids.

DEFINITION. A quadrilateral with onte ‘pair ‘of Eidesf '

parallel and the éther palr of sidés not paﬁallel

£ is c:.alled .a I‘E‘;EEEE e
L ;f ' //‘ | EAsE
ALTITUDE ~ L — -
S . MEDIAN T
LEG
i
) . . BASE )
DEFINITION. The parallel sides of a trapezold. are'
called the bases of the trapezgid the other two:
peases
sides are called the leggraf the trapezoid.
DEFINITION,” If B 1s a base' of trapezoid ABCD
then A and B are a palr of base angles cf the
.trapezoid. T . .
DEFINITION. A line segment which 1s perpendicular
to the lines containing the bases of; the trapezold .
and which has its endpoints-in‘these lines 1is
called an altitude of the trapezoid. d
* ——— ® ;’ i
DEFINITION, The line’ segment which connects the
midpaiﬂts of the legs of a trapegaid ia called
the @g?ian of the trapezaid . et &
Dgsggii;gg, A frapezold whose legs are ccngruent
1s called an Jmosceles trapescid
v 593
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8‘14 i 5 . . ' "‘ié
. : , g ‘
: Problem Set 8:14+ L
1. 'Pfgve that the median of a trapezoid is parallel to 1t3(
- bases and that it*\léngth is half the’'sum of the lengths
. e of 1its base§! Hint: Lét ABCD be the trapezaid with )
A= (0,0) , B= (2a,0) , C = (2b,2c) ; = (24, Ec) o,

2. Using the result of Problém 1, find the length of the
segment mafkéd x ar ¥y in the fallawing diagram

« ° Parallel 1ines are indicated by arraws lengths by
numbers, and congruent segments by dashés /

‘gﬁu

¢ @ L (b) ) E
3. One angle of a trapezoid measures 100 .. Can you find
‘the measures of 1ts remaining angles? If, in addition,

you were told that the opposite angle has a measure of
75&3 could you then find the measures of the two
remaining angleg? What are they? g

4. Prove that a pair of base angles of a trapezoid are °

. congruent 1if gﬁd only 1f the trapezold i1s lsosceles,
* ‘ (Declde first whether you will or will not use

ccardinates )

' 594 .




8-15

. Prove that. the diaganala '\

of a trapezoid are)cgngruent
l: and only 1f it 1is T,
1soséeles. (If you use
éoardinates you might

. ¢
éhcoae cgordinates as-

shown. * Then' yéu have to

prove: two st&tem&nﬁsg)

(1) If d = -b, then the

(d,lg)’ -

(b,c)

diagonals are cangruent

4 ¥(2) IE;Ehé diagonals are

6.

_ 8}15i

cgngruent then d = =B

Prove: The segment Jjoining

the mldpoints of the
diagonals of a trape*&id
is parallel to. the bases
and equal in length to
half the difference of
their Iengths. . -

—

(aiﬁ) iy (ﬁ,ﬂ)

= X

&

lgqgggrrent Lines.

L In‘this section we prove geveral statements which contain

the phrase "the set of all points."

determined by a condition or a cambinaﬁian of conditions.
_proof of such a statement consists of _two parts. We must

hfgve that:

1.

Membership in the set is
.The

Any point belaﬁging,ta the set satisfies the glven

condition.
J

Any point that satisfies the giveﬁ condition belongs

to the set.

#

595 ¢, )
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8-15 : : ,

THEOREM 8-28. The set of all poiAts in a plane ‘which are_

‘ -equidistant from two given poInts 'in the plane is the
perpendicular bisector of the segment Joining the given

pointa, .. .
N
J

\ E?QQf: Given two points A and B and‘a plane which

contains them. Choose AB as.the x-axis and thé midpoint of
‘AB as the origin. - ' ’
I\ / )

Px,y)

Aca,0) . 9 Bla,0) .
, ™
_Then there \1s a real number a , a #¥ O , *such that .-
“A=(-8,0) and B = (a,0) . Then the y-axis is the
perpendicular bisector of BB . There are two pabts to the
proof. ’ '

(1) If P 1is in the y-axls, then AP = PB .

(2) If AP =PB, and P 18 in the xy-plane, -then P
" 'is in the y-axis. . K '

' (1) If P 4s in the y-axis, then P = (0,b) for some
., number b and
(AP)Z = (-a -:0)% + (0 =B)* =

(BP)2 = (a - 0)% % (0 - b)?

Ii

o]
[

+

o
[

i
m
+
o

and AP = BP . . -

< 6(2)5 If P(x,y) s any point ‘such that’ AP = PB , then

it follows from the distafce formula that :
‘ . ' ]

v Co(x+a)f ey (x - a)2 + y°

s { xg + 2ax + aE + yg xg - 2ax + aE + y

2

bax = 0 , and since a ¥ 0 ,
Tk o % =0 .

' Therefore P 18 in the y-axis. . L N

g -/ | . | %, e

o




For the purposes of the next corollary it is convenient to
- have a definition of concurrent lines. '
DEFINITION. The lines 1n a set of lines are called
concurrenﬁ if and only 1if theregis exactly one paint
'which lies in all of them; the segments in a a set of
segments are called concurrent if and only if there -
is exactly one pc;ntiwnigh lies 1n all of them. -
/ : L. P ( .
] According to this definition and our earlieér definitidns, &
we note that cohecurrent rays lie on cancurrent 1ines, or in the 7'-;
special case of two opposite rays, they lie on the same line.

Corollary 8-28 -1. The perpenﬂieular’ﬁiaeetors of the sides

of a triangle are concurrent at a point equidistant fgam the

vertices of the triangle.

Given triangle ABC . ILet p, @ and r be the

perpendicular bisectors of AB, BC and AC , respectively.
Either p and r intersect or p 1s parallel to r . If
we assume p || r then AB | r .. But r | AC by hypothesis.
What theorem does-this contradict? The assumpticn that p 1is
parallel to r 1s false. Therefore p Iintersects r at a
‘point. '

If 0 1is the point of intersection of p and r , then
OB = OA and OA = OC by Part (1) of Theorem 8-28. Therefore,
OB = OA = OC by the transitive property of equality. There-
fore, O is in q by Part (2) of Theorem 8-28. This proves

597




815 | ( |
that p, g, .and r are concurrent at a point.equidistant
frcm A, B, ‘and C, the vertices of the triangle:

THEOREM 8-29.

The set of all paiﬂts 1

1 the interior of an-
anglé which are equidistant frcm the lines which contain

the sldes of the angle is the interior of the midray of
the angle.

Proof: We eans%ruct a prgaf without coordinates. Let
‘an angle ABC and ;ts'miir:g‘if BD be given,

We have two things to'prove,

(1) If P 1is in the 1nterior of BD", then the distance.
from P to AB equals the distance from P to
(2) 1If 1

-
If P 1s in the interlor of /ABC and if the
distance from P to PEA
P to EC

equals the distance from
, then P 18 in the interior of BB
(1) Suppose P 1s an interior point of BD . Since

m /ABC < 180 , then m /PBC < 90 and it follows that the foot
of the perpendicular from P tg'iﬁﬁk is some point on !Eﬁk
call it F’ Similarly, the foot of the perpendicular from P
BA 1s some point in EA call 1t E .

ABPE £ A BPF
by .A.A. and PE = PF . Hgnce the distances of P
H
and BC are equal.

e

from BA .
(2) since P
PE |"BA", PF |™BC", and PE = PF

/FBP = m /EBP . Therefore

is in the interilor of the angle and

, then APBE ¥ APBF and
—- . N e
BP 1s the-midray of /ABC .




8-15 _ o
Corollary 8-29-1; The 11nés which cantain the angle‘

bisectors of the angles of a triangle are concurrent at a point _ -

equld;stant from the slides of the triangle.

Let A ABC with angle bils ectérs ﬁ:ﬁkc_ﬁk be -given.. Now

AQ.iFnd CF (except for the p@ints A and c) lie in Ehez;
ae .-8ame halfplane with- edge AC v TAlsc AD and CF are not

parallel (since the measurgs of /CAD and LFGA ‘are each less

than 90 ). Let I be their point of intersection. From

Part (1) of Theorem 8-25 1t folldws that I is equidistant

!fram AB and AC and also equldistant frgm AC and (3

It follows that I 1is equidistant from Y and *5” and by
Part (2) of Theorem 8- 25 that I 1lies in 'BE. This means
that ﬁ, EE' and “CF" are concurrent in the point I , and

I 1is equidistant from ™iB, Ac, and CB". ‘

Problem Set 8-15

1. Given A(-3,0) , B(0,4) , ¢(5,0) . Plot points A, B
and € and show by a drawing how to locate a point D
such that DA DB = DC . Explain your drawing and state
the theorem (or eércilary) that suggested it.

g8

Given -A(-2,0) , B(0,-6) , and C(3,0). Using a protractor
find a paint D such that the distanges from D to “AB,

*BC* and YA are equal. State the theorem (or corollary)
that suggested your drawing. . '

3. Glven A(_B;D) H E(E’;D) , and C(D!LL)_ Use a ’rﬁlEP E{ld
protractor to: 4 _ : .
(a) Find a point X such that AX
) from X to AC and BGC arefequél_

'BX and the distances

599 ] 70 »



7 c(h)’ Find a paint on the x- axis that 15 equally distant

" way PB = BR and RC

from A and B .. o

(¢c) Find a pcint on the .y-axis that is equally distant

frcm AC and BC .

-

In triangle’ ABC , D 18 the midpoint of BC , E the
midpoint of TA , and F the midpoint of &B .
10 , find DE, EF,

(a) If AB=12 ,,CB=9, and AC =
., -ED . | | i
(b) Prove that TDE || BB ; that EF || BC ; that .

"(c) The perpendicular-bisector of AB 1s also
perpendicular to __? . The perpendicular Jbisector

of BC .1is also perpendicular to ? .. The -
perpendinular bisectcr of CA 1s also perpendicular
L ' )

(d) Are the 1ines that contain the altitudes of triangle

i

DEF concurrent? Explain.
E)

We sketch two proofs of the following statement: :'The
lines that contaln the altitudes of a triangle are
concyrrent. You are [to fill in the missing parts 3f each -
prOOZZ§sIhen decide which préaf seems to be more

satisfying. ’

Y

Pﬁgg§,£:

Let” ABC be the triangle. Consider the line through A
parallel to BC ; the line through B parallel to AC ;
the 1line through C parallel to AB . Let these lines
meet 1n P, Q, R as shown in the diagram. Shcw that
APAB ;’ ACBA and that PA = CB . Similarly sht:w that
CB = AQ . It follows then that PA-= AQ . In the same
CQ . The altitude from A to
BE 1s contalned in the perpendicular bisector of PQ .
Q

Complete the proéf, A

v




) : , . ' - ‘

/" Proof II: o ‘ i

- Let the triangle be ABC
and choose axes 8o that
A= (E;G) s Ezg(osb) ¥
and C = (¢,0) . Then the
y-axls contains the 2
altitude from B to AC :

? Therefore the slope
of the altitude, h. from
A is and the slope of

Il

1
afor

_ .8

W

1
wjo

g
b

is £ . why?

The line-that contalns h_  1s ~L

{(x,y) : x=a + bk, y=0+ck, k 1is real} ;

the line that contailns nc is
((x,y) : x=c +bp , y=0+ap, p is real)
- % we find that (0, - 2%) 4s contained.

b
J ) - e . , , ac
in ha & Why? Setting p = - — we find that (0, - T

Setting Kk

ol

is also 'contained in hc . Why? Since the x-coordinate

- of thls peint is 0 , the péintpis on the y-axis, which
) contains hb . Therefore the lines which contaln the
SSS! ‘altitudes are concurrent.

Prove Corollary 8-28-1 by coordinates.

o

i




In this chapter‘we defined caardinates in a plane and we

. used them as a tool in formal géometry. We have seen’ some

"neat" proofs lnvglving coordinates. 1In other situations we
hé%e declided to write preofs without coordinatea. 1In i
congtrugtlng & proof using coordinates 1t 1s usually wlse to
set up a cégrdiﬁaFé syétém which makes the expressions involwv
coordinates as simple as possible:.’ ' -

!E develaped several éxpressians‘fcr the coordinates of
the points of a 1ine, with Qpnsiderable _emphasls on the use of
set-buillder notgticn and parametric edﬁations We defined the
slope of a non- vertical llne and used 1t to get condiltions for

perpendic l Pitygand parallelism of ﬂblique lines:

p_Lq ifandcmlyfif,mpai my = -1, A \f’;

f ly.if =m_ .
|| q i and on y Wp mq

=

We developed;Seueral.equatipné for lines:

“the two-point form,
the point-slope form.

We developed several formulas: ) : T R

the Wi§tance formula,
thebmidpoint formula. '
The chapter includes seY%ral theorems on triangles: .

,one about a line Joining midpoints of two -sides,
yone about concurrence of angle bisectors, -,
one about concurrence of perpendicular bilsectors .oft sides:
The followlng table summarlzes several definitions and theorems
which are concerned with quadrilaterals. Each line in the
table yields a statement of the form: An A is a B 1if and
only 1f C ., Proofs for statements with no referen;e_listed

are easy. -

ing -




C

—————

quadrilateral
Jquadrilateral
qua&rilaterai
{quadrilateral
quadrilateral

guadrilateral

guadrilateral

= V, F‘Xﬂ
quadrilateral

parallelogrgm

parallelogram
parallelogram
parallelogram

. |rectangle

parallelogram

parallelogram,

parallelogbam

paral%elogram

parallelogram
rhombers

square-
trapezoid

rectangle.
rhombus
rectangle
rectangle
rh@mﬁus
rhombus

square

.all

square

opposite sides

cpﬁasitE»sides

are parallel

are congruent

two sides are parallel and

.congruent
‘diagonals
all

Xsides
all

bigect each athebgk'
sides are gongruent

are congruent and
angles are right angles

exactly one pair of sides

1z parallel.
all angles are
11

ides are

i)

i

diagonals are

11l angles -are

3

diagonals are
diagonal bisec

all sides are

congruent

congruent

congruent

right angles

perpendicular

ts one angle

congruent

,a2ll angles are congruent

rhombqﬁ

1. Plot thg’
(a)
(o)
(c)

i

soa o
1]

Lo
i

[=4

(d)
(e)

Review

Problems

graph of
((x,y) ¢
((x,¥) & 3
((x,y) :
integer
((x,¥) :
((x,5) :

B
I
M

I

MY

E
it

X +y

each of

and --
X+ ¥y

o oM +
Wt A
- . = 1
O M
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6..

i-, B ‘!*5\77 o LI
Is the following informatio

qua@rllateral ABCD a pa ielagram? L7

(a) AB = IC ; BB || ©C . .

(b) AB=DC ; AD ¢ BC . e :

(c) BB || BC ; AD*|| BC
. () Aé’:D%; ED || BS )
o) MILBED. N
(f) AC bisects TP . - _ " .
Eg) AC bisecﬁgi§E§ ; BD bisects T\ |,
(n) AB | AD ; DG | AD ; BC | CD . ’

(1) AABD ¥ ACED . .
(3) AABD S ACD -

(x) /A% ZC;BABHE, - \

(1) /a2 L .. . .

The diagonals of a rhiombus are 16 and 30 . Find

the perimepér;of'the rhombus. ) ) - .
The ratlo of thé 1engths‘§f two éides of a reétaﬁgle

is 3 i 4,,. The length of the diagonal of the rectangle-

{ 1s 40 ; find the lengths of the sides of the rect ngle.

Three vertices of rectangle ABCD are A(-1,-1)

B(3,-1) , and SC(3,5) ey

(a) What is_the fourth vertex? '
(b) - Wwhat 1is the midpoint of AB 2 - . F
(¢) Qhat is the miépoint of AC ? " ¥
(d) Wnhat is AB ? .

(e) What is AC ? Show that AC = BD .

(£) wWrite “AE" using parametric eqqﬁtigné.

(g) Write ™A™ uging parametric equations.

(h) Find Q on AC such that AQ = 4AC g :
(1) WPitE parametric equations for the line through ¢

tfat is perPEﬁdiaulaé to AC .,

An isosceles’ triangle has verticeg/ (0,0) , (4a,0) , r
(2a, Eéﬂ ’ :
(a) What is the slope of the median from (0,0) , if any? .
(b) What.is the slope of the median frem- (4a,0)., if any?
(c) Find the slope of the megian from (2a,2b) , if any.

SO

% ) . . . .
.* 3 . ety

=

sufficient to prove-

5@41 Ly B ; ,



; .4 . L .. L
T E 2] B ‘\’ f 4 . 7 ) —— . ’ =
lid ! 7 : = . = - = - i"\j

~.'T. 1In square ABCD , R 1s the midpoint of BC and S . _
/f‘ " 13 the midpoInt. of ﬁﬁ . { R Jinterseets BS in T . ’

E : © s - h
' E a - = - "

-~ (d) Prove that

(b) Prove that
*(c@gf?fave thgt :

. - “Hint: Let‘'A = (0,0) and B = < (22,0) .

EEL
i I'— it

AR . .
| R ./ SN
AB . ‘

. 8. Prove thatithe medlan of-a tﬁgpesaid bisegts a diagenal _ \f

9. (a) wnhat is an équatian of the x-axis?

(b) What 1s an equation of the ¥- -axis? . -
. (e) Show that all paints of both axes- satisfy the
" quaticn Xy =0

10. A rhombus ABCD hak * A at the arigin ‘and B 1n thaf
) positive x-axis, m /A = , AB=6, C 1is in

. Quadrant 1. o, : - , .
o - ot :
h (a) What are the coordinates of " C ? -

{ } (b) What are the.coordinates of D ?
) o
(
AN

(¢) Find AC
o __
7 (d) Show that AC =4/3 BD . B
f ‘ (e) Using parametric equations express AC . .

"1i. 'Write an equdtion for the set of points s

. (2) Wwhose distances t§7'(§3,D) vand (5,0) are equal. o
{}h)l whss% diafances to the x-axis is., 3 ' '

(c) whose distgnces ta the x- and y-axes_are equal.

» (d) whose distances to thé horizontal lines y = -2 e

L]

and y = 8 are equal.
(e) whose x-coordinates are 12
- (f) whose y-coordinates are -8 .
12. Show that triangle ABC. 1s a right 1sosceles triangle
if- A= (3,4) , B = (-1,5) , ¢ ='(-2,1) .
13. U%ing paraﬁetric equations éﬁpréss the ;et of pgidﬁs
equally distant from A(0,4) . and B(-8,0)

oy

©14. fThe point A(c,6) is equally g@istant from B(1,1) v

and- €(3,5) . Find the value of ¢ .  * ‘




< : 15 The distaﬂcé"fmm .(h,3) to the x;égzis is twice 1ts
: distance tc: the y-axis. Find h . (Two answvers. )

— , 16, AECD is a par'allel@gram Show that the segment that
- Joins D- to the midpoint of KB trisects AC
17. 1In triangle ABC , D 1is .

in &B , and' E 4is in ﬁ o —

AD = 2DB = and CE = Z2EA
.BE and TC 1intersect in
F . Show that
SBF 3 DF 1
FE G F and fe g
&
& i ‘31
[ . .
.
'\'\:‘

LK
lo]
g}
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- Chiapter 9
PERPENDiCULARiTY, PARALLELISM, AND CQQRDINﬂgE IN SPACE

4 L

g9-1. Intréduction. : - )

Our first contact with p@lnbg, lines, and plane \1n space
‘was 1n Chapter 2, but s{ince then our work has’ béen %;maut
completely restricted to points and lines inh a alngle plane.

~ Now, having'inveStigated plane geometry 1n some detall, we are

reafly to turn our attention to space geometry. In particular,
in this chapter wé extend the ideas of perpendicularity and
Farallelism to Iigureg whicn may not be contained in a plane.

Most of ghe résults we are going to discuss are familiar
o us from our past expafien:e + However, we often miss the

gsentlal features c,rfxthingu we have Séii a hundred times, and

~ertain results which are true in the plane are not true in
pace. Moreover, without practice it 1s hard to visualize
geometric relations in space and harder still to. represent théﬁ
by drawings on a sheet of paper. To save time, 1t therefore
seems wlse to omit the proofs of most of our theorems and
concentrate instead on getting a thorough understandiﬁg of the
results themseiyesi Fortunately, the proofs of the theorems
in thils chapter are quite similar to the deductive arguments
we have seen 1in previous chapters, and a few samples will be
an adequate indicatioq of how the rest can be constructed. Of
course at any time you are free to use any theoﬁem that has
been pfeviously stated, whether it h%a been proved in the text
or not.

In preparation for the work whlch follows, 1t will be help-
ful for you to review tié simpre” space relations introduced in
Sections 2-5, 2-6, and/ 2-7, and then to go carefully through
the exploratory problems which are given below. The abllity to
make ‘and interpret drawings of three-dimensional configurations
wlll be of great value to you through the rest of thls course.

;
N Sy
Dﬁ%iw‘



Be sure that you can do these two things. Appendix V offers-
maﬂy suggestions which may be-helpful to you.

. .. ' .
A
Exploratory Eroblem¥ 3
§! 1,) In the following sketch of a rectangular block, certain

combinations  of edges, considered geparately, guggest

7 * certain configuratiions of lines and planes.
>
T N ,
| J - $
1 -
o ——— e ——e———y
; sffs
In each of the followlng, copy the drawing of the block
and darken the appropriate edges to suggest your 1ldea of
the indicated configuration. :
(a) Two distinct intersecting lines. y
(b) Two distinct parallel lines. '
(c) Two lines which are neither intersecting nor
parallel. ‘
) (d) Three mutually perpendicular lines.
g 3 (e) Three parallel lines which are not coplanar.
) (f) A 1line intersecting one of two parallel lines but
not thg other. ’
" (g) Two diStinct lines which are perpendicular to the
same line and parallel to each other.
(h) Two lines which are perpendicular to the same line
at different pointq but are not parallel to each oth

(1) A 1ine pafallel to a plane.
Two distinct 1ines which are parallel to’ the same
plane and parallel to each other, 4 '
(E) Two lines which are'parallel to the same plane but
not parallel to each other.
(1) 'Two distinct parallel planes.
608 ’

11,
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*lines. In this sectlon we are going to discuss the D

“define this formally, hQWEVFF, you snould study;thé follo

“(m) Twé perpendicular planes,
(n) Three mutually perpendicular plane

M‘

(o) A plane . perpendicular to each of two distinct
parallel planeg_ -
(p) ° Tvo distinct 1lihes perpendicplar to the same plane.

(q¢) Two distinct plants perpendicular tg the same line,
2. “Without including any unnecessary lines, make dfawings of
. your own to suggest the coniiguratianu in Parts (4), (h)
1), (3), (k) (1), (m), , o), (p), (a) of the
preceding problem. ‘

&

9-2. Pér rpendicularity Relations.

T

In Section 4-8 we defined what we mean by two perpendicular
"pen -
we /

i

er
dicularibty relatlon between a line and a plane. Befor

m

experiments and frém the clues they gilve yuu y@u;sh@uld try

to make up a definltion of your own. i

,EB{pHI‘lmEﬂtq o '

1. 1In 3e ction 4-10 we learned that in a plane tnere is a

uﬂique line which 13 perpendicular to a given line at a
ﬁgs“given point. Is this true in space? Hold two pencitls so )
that they appear perpendicular to each other. Can you holds
ore ni the penclls 1n a different position and inll have
1t appear perpendicular to the other at the Same point?
ng many different positions can one pencll assume and
remain perpendicular to the second pencill at the same
point?: Do you think these "perpendiculars" might lie in
the same plane? Would sucnh a plane be perpendicular to

the other pencill?

s

Place a sheet of pa p r on your desk. Huld ’@" pencil so

M2

that 1t appear® perpendicular to the paper. With a second
pencll, draw a 1ine on the page that appears t@jbe ’
perpendirular ta the first pencil.



AN
g9-2 - — T : ) | .
(a) can you shift your first pencil so that it remains’
perpendidular to the line at the same point\ but is
not perpendiéulaf_ta the paper? .
(o) Draw another line, iﬁtersecting}thé first. Now,
7 place your pencll so that it appearg perpendicular
+ ) to both lines at their point of intersecti@n. Does
' the péncil appear to be perpendicular-to’ the plane
of tpe paper? .Can you hold your penail 50 that 1t
Y - perpend;cular to =he paper? .
(é) Draw additional lines through the point Diﬁff;éﬁ— _
o section., Does the pencil appéar tg be perbendicular
to each of thgm at that point? Is it still perpen-
dicular to the plane? . i
Zd) What do you think would be a good deiiﬁltion of a

line perﬁendicular to a plane@

The precéding experiments lead us to the followlng definition:

DEFINITION. A line and a plané are perpendiéular to
each other if and only if they intersect ahd every
line lying in the plane and passing through the poilnt
of intersection 1s perpendieular to the glvep line.

] N The following figure suggests the relations described /by .
: ’ this definition: . . ‘ 3 Q
)
. "
s .
!é f
® : 4
FA , PEVj*Pé y «:. all lying in plane ¢§ are perpendicular
- .
to PQ .
: .
610 .
ll\;‘
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' ’ The results which we obtain ingﬁhis chapter can all be
derived without additional postulates. However, our develop-
ment proceeds much more easlly 1f we accept as postulates two

theorems whose proofs are long and rather involved.

¢  The first, Postulate 24, should remind us of Theorems 4-21
and 5-11 which.deal with the existence of a line containing a
givém-noint and perpendicular to given-1line, This postulate

a
is all tyat we need at present. "The +second, Postulate 25,

]
LI

we 51411/ introduce in .Section 9-4, . -

_Fostulate 2. There 18 a unique plane which

contains a given point and is perpendicular to a

given 1;né

. We ould understand clearly that in thisz postulate no
restriction 1s placed on the given point. It can equally well -
be a p@int on the given line or a pecint which\iz not on the
given line. The postulate says simply that wherever the point
may be, there 1s always one and only one plane which contains
the polnt and is perpendlcular to the gilven line.

m the def ini\tiuﬁ of’ perpendicularity, we know that 1if a
plane ?S is. perpendihsular to a line ,,Z at a point F , on
£ : y@ , then every line &n ;i? which passes through F is
X perpendicular to ,Af . However, we do not yet know whether
there can also be llnes perpendicular ta gg at F which dc'
not lie in ﬁ . The following theorem answers thls quesation

for us,

THEQOREM 9-1. The plane which 1s perpendiculaf to a given line
.at a glven point contains every llne which 1s perpendlecular

_ to"the given line at that point.

Proof: Let fig be any line and let 7 be'the plane which
is perpendicular to __,é? at the point F . What we must show 1s
that 1if ,é?‘ i1s any line perpendicular to ,,éj at ¥, then

ﬁv lies in’ 75’ . : ::5?:

ERIC
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Now the 1intersecting lines / and ;22 determine a plane, say
7' , and by Postulate 9 this plane intersects the plane 2
in a line, say:i?"
. F\ =
Moreover, since Af" ‘lies in the perpendicular plane ~ .,
it must be perpendlcular, to ,{? at F .  Hence, in the plane
7/ ' *both 2 and 4" are perpendicular to Af at the point

fer]

But by Theorem 4-21, in a given plane there is exactly
one perpendicular to a glven line at a glven point. Hence
42‘ and Z" must be the same line. That«;Q,égg' must lie
in the perpendlcular plane ;ﬁjﬁj as asserted. -

According to our definition, before we dan say that~
line Jg is perpendicular to a plane,}ﬁ at a point F , ie
must be sure that Agfis perpendicular to every line in }ﬁ
which passes through Fj. The next theorem tells us thaf we do
not need neafly this much informatien tib be sure thatﬁ 1line 1is

perpendiculaf to a plane. P

THEOREM QEE; If a line 1s perpendicular to each of two 1lnter-
secting lines at their point of interaection, it isa
perpendicular to the plane determined by the two lines.

ERIC
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Proof: Let m and m' be twp distinct liges witten” -
intersect at the point F and let Z ve a line which' .is«

perpendicular to both m and m' at F . Let 77}~
plane determined by the intersecting lines, m aﬁd-
1et & be the plane which 1is perpendicular to yan

AQ

According to the last theorem both m and m' must lie in s;
?? . Hence the planes /77 and / have both m and m' in

common. Therefore, by Theorem 2-10, 777 and Eﬁ?xmjzt be the

same plane; that i1s, the plane determined by the two lines,

m and m' , is the plane which is perpendiculafg%é égf at F ,

&

&

asserted.

T
P

Postulate 24 assures us that there 1s a unlque plane which

perpendlcular to a given line at a given podnt, but it does

oy =

i
not answer the correspondling questlon of the éxistence of a
line which 1s perpendicular to a given plane at a given point.
However, this 1s settled by the following theorem. ‘

B

THEOREM 9-3. There 1s a unique lipe which 1s perpendicular to
a given plane at a given pofﬁi in the plane.

‘We shall omit the proof of this theorem. The general

by the following flgure. A& 1is the plane

o

out™Me is suggeste
which 1s perpendicular at the given point, F ;, to any
particular line, p ;“Wﬁich 1ies in the given plane, 7 ,
and passeg through F . The required perpéndi;ulaﬁ ng iz the
line in A7 which is perpendicular at F to the line, r ,

in whicnh Z and &2 intersect.
s Lal 3,
O
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The .corresponding theorem dealing with the existence of a
line which passes through a given point not in a plane and is
pe%pgﬁdicular to the'plane 1s more conveniently handled a little
later aftep 'we have discussed parallel relations in space.

i Problem Set g-2

’ In each of the following problems, draw your own diagram

as part of the. proef.

o]

1. In the figure, if /PQH is a
right angle and Q and H

are in é ; 8hduld you infer
from the definition of .a line
pér—pendiculaf to a plane that
4 -‘E‘l E,"»’ Justify your answer.

un]

In the figure, points
B, R, K and. T are in
plane & ,:and “iB | &.

Whlch of the following ’ . )
angles must be riggﬂt?\ - . Ly

anglesi /ABR , */KBK

/RET , /TBA , /KBR ? }y?

ERIC
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3. In the figure, plane /77
contains the noncollinear’
points R; s, P, but /W :
does not contain T

(a) Do points R, §, and

T determine a plane?

: Why? ey
(v) 1f TSP {s prerpendicular to iﬁe plane of R, 5, T,

& . which angles in the figure must be right angles? «

Why? B

O]

--4, In the figure, the point A
and the square FRHB are
not coplanar; 'AB | FB .
(a)  How many planes are Lok e _H
determined by pairs of

segments in the figure?
Name them.

(b) At least one af the segments
in this figure ié perpendicﬁlar to one of jthe planes
asked for in Part (a). Which segment? \hich plane?

Justify your answer.

5. 1In the figure, point R
and triangle ABF  are not
coplanar, A ABF 1s 1sosceles
with vertex B, H 1s the
midpoint of AF , and
(a) How many different planes
. are determined by palrs

of segments in the figure?

Name them.
(b) Find a segment that 1s
perpendicular to a plane,
State the perpendicularigy
and the theorems which Hustiiy your statement,

"

x I
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6. In the figure, Qb | C at P
and "QF"[*PR”. Must PR 1le -/
: : - 8.

'in plane é 7 Why? L

s -

&

shown 1n the %figure .

i

, , €
plane ABR "intersects 7 in

=

m ]

Lm:l =

, o
—
%I
-3
=
o
]

]
o

[

PI

m

EI I
U
5

e

R

8. 1In this figure, FB | plane
and in A RAB , which lies in

plane ; BR = BA . Prove
AABF £ ARBF and /FAR .5 /FRA

BR BL . Does KR = KL ?

\ Prove that your answer 1s

correct.
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9-3 * =
(Since;wa have not yet given a precise definition of a
cube, we statégheré; for use in your proof, the essential
propertles of the edges of a cube: '

, ' The edges of a cube consist of twelve congruent %J
segments, related as_shown in the pleture, such that any
two intersecting segmehts are perpendicular.)

e

-
£ ]

9-3. —Rarallel Relations. N :

b -

! -

"In this section we are going to investigate parallel
relations q%tween lines and planes in space, and this requires
that we riPfst define what we mean by saying that a line and a
plane, or two planes, are parallel. The following definitions
are natural extensions of the definition of parallel lines
which we gave in Section 6-2, ‘
DEE;E;E;DN_ A line and a plane whose intersection
does’ ot consist of exactly one point are parallel

to each other.

DEFINITIONS. Two planes (whether distinct or not)
whose intersection 1s not a line are parallg;'planes,

and eacn 1s parallel to the other.

. With théée definitions 1n mind, the following experiments
A, : . . . C
should help you to visualize the properties we are golng

to discuss-

- Experiments
1. Draw a liné\on a sheet of paper on your desk. Now hold
. NG : -
two pencils apove your desk so that each appears parallel
to the line. \;b the penclls appear parallel to each
other? Can you hold them so they are parallel to the

.line and not to each other?

ERIC
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(a) If two distinct lines are parallel to a plane, are

they necessarily parallel o each other? The
Parallel Postulate tells gsithat there 1s a unique
line which contains a given point and is parallel to
a given line. Do you %hink there is a unique llne

. which cortains a glven péint andlls parallel tc a
given plane? Hold two penciIs so that they "interseat

Can you hold them so ‘that both of them are alsa

s :, - F*3
‘parallel to the desk top? . ]
(b) Hold the two pencils so-that “they re;regent quw Ve

(noncoplanar) lines. Can you hold them so that gney%s

are both parallel to ‘the desk-fop?

(a) We have learned that, in a plane; 1if a line intersects
one of two parallel lines lé a pélnt, 1t intersects
the other in a point also. Is this true in space?
Draw two distirict parallel lines on a sheet of
paper. Can you hold a pencll so 1t will intersect
one of the parallel lines but not the other?

(b) Suppose a pléne intersects one of two parallel lines

“in a point. Do you think it must intersect the other
alsa?

(¢c) Suppose a line intersects one of two parallel planes
in a point. Do you think 1t must intersect the
other plane also? :

(d) Sketch diagrams to illustrate Parts (a), (b);

Do

L\'

uppose a plane Intersects one of two parallel planes.
ou think 1t must Intersect the other plane also? If a
plane 1intersects each of two parallel planes, what can you
say about the lines of intersection? In your clasaroom

consider the parallel walls "intersected" by ‘the floor.

]

Are the lines of intersection parallel? Think of a book-

case. The shelves are parallel planes, the end panel an
intersecting plane. What about-the lines of intersection?
Draw a dlagram of two distinct parallel planes lntersectéd

by a third plane.
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=l . . .. S
s of two parallel lines it must meet the other ome also. However
- there are analligous theorems whic h are true in space, and to
“these we now turp our attention. _ C
THEOREM 9-4. If a., ;plage Intersects one of two distingdt parallei
lines in a polnt.# 1t intersects the other line in.a point
.also. : , , o
- ) - \g;] ‘ R 2., . i
Proof: Let j, and £, be two distinct parallel 1ines,
contalned in a plan égf , and let Z# be a plane which inter-
'sectsfone of the 1liriés, sayﬁf?{’; in a single poist, Pl .
.ﬁfCleaFly; ?i? cannot contailn 4f@ " because otherw wise, by
' Théorem 2-9, 1t would coilncide with e , and hence contain
S contrary to the hypothesis that 1t meets ”‘éj?L in Just
one point. Therefore /ij can have at most one point in common
with £,
Now by Postulate 9, since o and /2 have a polnt, Py
iy common, ] ’
k]
4
5 )
L‘%\
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As Experiment 3 (a) in the preceding 1list suggests, in

space geometry 1t 13 not true that if a third line meets one

they must have a 1line, say p , in common. Moreover, siﬂéegﬁ

méets each of ééi and jéz in at most one point, p must be

distinet from both ,éyl and Jéij



-
S

¢ . -
£

Now ir the ‘plane ézi , the line p meets one of the two
parallel lines, ‘é’l andi,é’ » in a single point, El . Hence

1t must #lso meet the other line &, , in a point) say P,
- - 2

Since the line p 1s contained in the plane /2 , the

point: P, .18 also contained in 7 . Therefore 7 intersects

,é’g in a single point, as asserted,

"The next theorem follows easily from the preceding one,

and we shall 1dave 1ts proof as a problem.

- THEOREM 9-5. If a plane+ls pdrallel to one of two parallel

lines, 1t is also parallel to the other.

THEOREM 9-6. If a plane intersects each of two distinct
parallel planes, the intersections are two distinct
y g ) : 5

paral 1é,l lines.

Proof: Letf and &  be two distinct parallel planes
and let F? be a plane which int‘exsegts both g:? and eétf
Since /& and & do not intersect, /& must be distinct from
both &2 and é?g By Postulate 9 the intersection of 2’5;? v

and & ‘is a line, say’ r . Likewlse the intersection of 2

and € is a line, say s . [\

7!”’])
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9-3.
- Moreover, these lines lie in the same plane, namely iﬁﬁ'; and
‘have no point in common, since the planes A and é?!have no
<" point in common. Therefofe, the intersections, r and s ,
‘are distinct parallel 1lines as asserted. o ) "'ﬁ;ﬂjf
. : v
We should observe that the preceding thecrem.coﬁtains the'
hypothesis that the plane iéﬁ intersects each of the parallel
planes, /& and &~ . Actually, it is possible to prove the
' stronggr-%esult that if a plane interseets gne of two distinct -
paraliel planes (and does not coincide with it) then 1t inter-
sects the second plane also and the intersections are paralleli*

lines.

THEOREM 957;¥>If a line intersects one of two distinct parallel
planes in a singlé polnt, it intersects the other plane in
a single point also. ' ‘ )

~

THEOREM 9-8. 1If a line is parallel to one of two parallel

planes, it 1s parallel to the other also.

The asser"ions of Theorems 9-7 and 9-8 are illustrated by
Figures (a) and (b), respectively. We shall omit their proofs,

however. -y
f

4
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Problem Set 9- 3/

Make a’ Eketch ta illustraté the hypathesis of eacﬁ af z
- fallowing statements. Indicate whether eacn statement is '”
= True (T) or False (F). o

(a) If two distinct lines aré parallel, every plané
o ' containing only one of them is parallel to the .
‘ e ‘ other line. o - "5
P V : (b) 1If two distinet lines are. par‘alﬂi‘i‘j every line
o o intersecting one of them inteirsécts the other.
1ine in one of the

(e) I two planes are pardllel, any
‘ Tplanes is paral el to the other
(d) If two i Jar: the
oL piaﬁes 18 parallel tazany line in the other plane.
,(é) If a plane and a line afe bath perpendicular to
:the same 11ne, they are parallel to each other,
(f) 1If a plane and a line are both parallel to the ‘same
line they are parallel to each other.
(g) If each of twd distinct parallel planes intersects a
third plane, the lines of intersection are

perpendicular, . N
(h) If two planes are parallel to the’same line they
are parallel to each other. :
(1) - Two lines parallel to the same plané are’ parallel
to each ather ' - . -
(J) If a plane intersects two intersecting planes, thé
lines of -intersection may be pardllel.

2. Hypothesis: Planes %, &
and " are parallel as
shown, with TE in 2’”’
and A in 2 . K
intersects §§§at B and
- AE 1intersects /ééat D .

o .+ AC = CE

~ . 4
© o . - Prove: - BD = BA .




9-h R :
Prove Theorem QQEQE (Hint‘ Let jé? be a plene whieh 18
parallel to one ef two- parallel lineeg,afz endi4§

say 4? Then eﬂe of the fallowing?muet be true. (th%) -

(a) 73 ;Le pere.llel te%z

(b) ;i?ainﬁefeeete &, 1in a single point.

w

'Use Theorem 9-4 to prove _that (b) 1is impossible.

9-4, Eelegione Involving Ee;gendieule:}ﬁyrend‘gege;leliem;

In Sections 9-2 and 9-3 we congidered relations in space
which ihfolved, respectively,/only perpendicularity and only
parallelism. In this section we shall investigate configura-
tions. which 1nvol§e-both gerpehdieulerity and parallelism.
Sinee we ehell omlt ‘the preofe of most of our tneereme, you

sure thet you understand and can vieueliee the reletione they

suggest.
: /
ExPerimente : ‘ w
1. If two plenee are pere;lel to a third plane, do you think

they are parallel to each other? Illustrate by holding
. two books so that each i1s parallel to the top of your desk.
Do the books appear to be parallel? Draw a dlagram of

three parallel planes. .

2. Do you think there can be more than one plane @Eieh
.contains a given polnt and 1s parallel to a glven plane?
Why? ' : » B . N

3.‘@If two distinct planes are perpendicular to- the same 1ine,

' do you think they can intersect? Illuetfete your

’ eonélusion by plercing two sheets of cardboard (or small
sheets of paper) with a pencil, Draw a diagram of two
Aistinct planes perpendicular to a glven line.

62f 0




4. Take a pilece of cardpoard, plerce it with your pencil and
" place it so.that it appears perpendicular to the pencil.
: _at the midpgint ﬁf the pencll. Mark a point Qﬂrthéxﬂard—
board and find the: diﬁtance from that point to each,énd
of the pencll. Are the distance$s appraximately the same?
Sl _ P Choose another point and make a aecond measuré%ea% Draw_
tf;ﬁgﬁ ~,ﬁ:a diagram of a plane perpendicular ta a segméqt at the"‘7 *
S midpoint of the segment. :

5. If a line 1s parallel to a plane and is not contained in
the plane, do you think all the perpendiculars Jjoining. 4
the line to the plané Ere caplanarﬂ Are these perpen-
dicular segments: equal in length? Are segments whilch are
perpendicular to each af two distirct parallel planes’ and
have their endpoints in the planes equal in length?
Illustrate with a diagram.

!

THEOREM 9-9. Two planes which are perpeéndicular to the same

line are parallel.

Proof:. "Let }i? and;)z? be two planés each of which is
perpendicular to a line £ . There are two possibilities to
consider: » ' :

. s ! ’ 5 7

(a) / 1is parallel to 2 .

(b) ;‘f? intersects ,é? in a line.

If we can prove the second case impossible, the theorem will, ¢
be established.
~ Suppose theri, that /2 and & interéegt in a liﬂe. Thus .
# and A are aistinct. By Postulate 2l the points, say P
and R, in which iiz intersects the res pective planes Z and
‘ Z , must be “a1stinct. ’

"Let L be a point in both of the planes 7 ana
but not on ﬁ From the definitian of a pléne perpendicular
*to a line, At follows that ‘E?"is parpendicular to Ji at F
and IR 1is perpendicular td Z st R. Hefice, since P and
R are distinét points, we have two lines each containing L
. and each perpendicular to ¢ '
L ]

624
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This 1s impossible, according to Theeorem 5= 11 "herice the

" *possibility that ;z? and.jég intersect 1n a line leads to.a
:cantradlctian and must be rejected. Thus ii? and EE? are
parallél, as asserted.

-

THEOREM 9&1@. If a line 1is perpendicuiar to one of two

alsa,

625 £
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Preef.i Let ?ﬂ and é@? be two perellel ‘planes, and 1etJ§

be a 1ine whieh is perpendi’culer- to one of them, ee’g: ,Z?, A
at the point P . Then by Theafém §=7,.é? must also intereent-*
/ 1in a point, say R . o i

Let R' be any point of Z distinét from R and let Q/
be the plane determined by R' and e-é’ Then @ intersects -
é’ in the 1line RRi and; by Theorem 9-6, muet intersect ;:J

i H
in a line, PP' , which 18 parallel to RR' .

Thus In Q/ 34 is perpendicular to one ef‘ two parall
lines,. namely ? (Wwhy?) and hence, it must-be perpendieule’
to the other also. Slhce R' was any point in A& distinct
from R , it folleﬁe that sé is perpendicular to every 1;ne,‘
in A which contains R . Hence, by definition, £ 1 ‘
perpendicular te the plane A , as asserted. ‘

/ We shall-omit the proofs of the remaining theoremsa in thj
.%.etition, but” einee some of them are asked for in the next f’
pProblem set, it is necessary for us to introduce here the ‘
second of the postulates we referred to in Section 9-2. You
will f‘ind that with this peetlzlete, the missing pr'eefe are net
d;ff.ieult “to construct. :

Poetulete 725 'I‘wo 1;nee whieh ere perpendieuler
o the same piane are perellel <.

B

i‘]-I;EQég:gT 9-11. If a plane is perpendicular to one of two
distinct parallel lines, 1t 1s perpendicular to the other

1"ine also. ‘

The assertion of this theorem is illustrated in the following
f‘ig’erez T ., A

w




9- 4‘1 .
THEDREM g- 12 If two lines are each parallel to a third line,
th@ are parallel to each other. . ' '

This theorem gompletes’the discussion we bégan in Chaptér 6.
There we showed that in a plane 1f each of two llnes 1s parallél
»ta>a third line, they are paralle; to each other. The present
theorem aSEUPES that this result is true without the restrictign
that the three linhes lie in the same plane.

i

£
5,

THEDREM 9513. Given a plane aﬁd a point not in the plaﬁei

is perpendicular to the plane

LA - g E N

This theéfem ¢ompletes-the discussion wegbégan-in
aTheorem 9-3. ., These two theorem$ together tell us that Ehr@ugh,d:
any point there iz a unique line which is perpendicular tog a
given plana

5

‘are obvious ccpgterpafta Df famlllar properties ‘of lines.

ERAT .. The next two theorémg describe pr0pért1eg of planes which

THEDREM 9 -14, There is a uﬁique plané pérallel to a given
" plane through a given paint : ’

’ THEQREN 9-15. 1If two planes are each parallel to a third plane,
: they are parallel to each other,

Theorems 9-12 and 9-15 provide the final steps in
establishing that the relationship of parallelism has .
Qharagteristicgproperties like those of equality, congruence,
and simllarity. The relationghip of parallelism for lines in
space has the reflexive, symmetric, and trangitive properties;
Likewlse the relationship of parallelism for planes has the
réflexive, symme?rlc, and transitive prapertiésf, A

line.- We proved that the shortest segment jaining the point
to the line I8 the segment perpendicular to the line. As we
might expect, a similar result holds in space.

& L
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9-4 ' . ' R
7 lLet E; be a plane and P %ppint ‘not on ‘£ . There -are
.many segmentg Joining P to éi:; in fact one for every point
on é By Thecrém g-13, e;ﬁa;‘tly one of these segnents is

perpendicular to E; . B ) .

Cs
=
= %

THEOREM 9-16. The shortest segment joining a point to a plane
" not containing the point is the segnént gerpéndicular to
the given plane.

N

The proof of this theorem we shall leave as a problem.
On the basis of this theorem, we formulate the following
definition.

DEFINITION. The distance between a point and a
pls;lgr’ﬁi?\cantaining the polnt 1s the length of T,
tZ{Eegment ,jaining the given polnt to the glven
plane and perpendicular to the given plane.

I Chapter 6 we proved that two parallel lines are every-
where equidistant, and the same property holds for parallel
planes. More preclsely, we have the following theorem.

sl

’ . 6g8,
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pA THEOREM 9=1?”' All segmentsgwhich are perpendicular to each of, *
< two distinct parallel planes and have their endpaints in
the planes ?;Fe the same length,
: ] o L
In Chapteffa we showed tngt in a plane the set, of aill B

points which are équidistant<fT@m two given points }P and Q
. 1s. the line which is perperndicular to the segment P4 at its
midpoiht. The corresponding result in space geometry is the
. foliawing; ' . ;
" THEOREM 9-18. The set 6f all points which are equidistant from
" .. the endpoints of a given segment is the plane which
' contains the midpaiﬂt of the segmént ‘dnd s pérpendicu;af

_ ts the line which contains the segment .

e

Ty .

 The proof of this theorem is deferred to Problem Set 9-7
where it,will be an exerclse in the use of caafdiﬁatés in proof.

Problem Set 925

[

Assuming here that

' AX = BX ,
AY = BY ,
AW = BW ,
AZ = BZ ,

N

why are W, X, ¥, and
Z coplanar?

2. Hypothesis:
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3. Hypothesis: In the figure
-z, w7, B
o : ?ﬁ 17. ‘ } : c ;y?f :
[ a

CB'i

toe Prove: AD

B D
’ @
F-
4, Plane ég is the perpen-

dicular bisecting plane A

of BB, as shown in the

- figure. ’ '

(2) AW =

fﬁ,:: | .
’ S SR
N -
[AKF =
(b) Does FW = FK = FR ? B ’
Explain
Problems 5-8 are concerned with geometric prajqu}an; The
following definitions are needed. ' % ~
"DEFINITION. The projection of a point inta a plane
18 the point of intersection of -the given plane and
the line which contains the given point and 1s ™
perpendicular to the given plane.
Y

135
v )

’ - 630




B

Consider two examples in the diagram P 18 the projection
A into & j;ghepoint Q 1s in & , and the projection
Q into & 1s Q itself. '

rojection of a set of points into

a plaﬁe is the set of all poilnta which are projectiona ' '

DEFINITION. The
into the plane of points contained in the given set.

Using projection as defined above, answer the following..
(a) Is the projection of a point always & point? -

(b) Is the projection of a segment always a segment?
(c) Can the projection of an angle be a ray? a line?

] an angle? ‘ .
(d) Can the projéctioﬂ of an acute angle be an obtuse
~ angle?
(e) 1Is the projectlon of a right angle always a right
angle? '

(f) Can the length of the projection.of a segment be
' greater than the length of the segment?
(g) If two segments are congruent will their projections
. be congruent? - S
(h) 1If two lines do not intersect can their projeetiana
be two parallel.llnes? .
(1) 1If two lines do not intersect can their pfajections
be two intersecting lines?
(J) If two segments are parallel and congruent, will

their projections 'be congruent?

1,



]

: .-6. Let the prcjeeticﬁ of p’ésint A ini:éplane Z2C be A' .
T distinct from. A . Let I -be the ray appnsite to ' RAY
' Let 'B be‘a’point such that the length of K. is 6 -+

inches. Draw a diagram showing the projection of AB .. '

into ZZ , and find the length of the projection’ Qf 1B

into 7Z . in each of the following aituaticnag W
(a) A8 ||72. v | .
(v) 7B | 71. ‘ = o

, (¢) m /PAB = 30 .

t (d) m /PAB = 45 ,
(¢) m /BAB = 60 .

7. Gilven the figure with . . 4

AB not in plane 7L ,
XY the projection oi‘
AB into plane 2 , ,

0 the midpoint of 7B ,
and N the proJection
of 0 1into XY .

Prove that N is the mid-
point of XY ..

8. Hypothesisy BD is the
. projection of BC into
Z o plane 2 . KB 1ies in
plane X and /ABC 1is
a right angle.

Prove: /ABD 1s a right
angle. (Hint: ILet BE
be perpendicular to

" plane 2 .) o

9. ‘Prove Theorem 9-16,

- 632




9-5. Dihedral Angles. AR
fgn Section 4-13 we introduced the notion of a dihedral '

angle via the following definition:
| DEFINITION. A dihedral angle 1% the untoh of a line. LT

"and two halfplanes having this 1iné as. edge-and #ot
1y1ng in the same plane *

At that time we were unable to assign measures to dihedral

) angles, ‘but now that we have discussed perpendicularity and
parallelism 1n space we can do 3o easlly. First, haweve,f; we
must reduce the problem to cne invclving #lane angles, for
which measures have already been. defined. - '

The following figure shows a dihedral angle, namely
LP!QR:S s and a plane, é s which ip perpendicular té the
edge of the dihedral angle. We observe, in the dlagram, t‘hiit
e intersection of the plane and the dihedral angle is the
union of two. raya, and furthermore that these  two. cancurrent
rays, namely BA and EC ; are not collinear. Thus the
intersection is an angle, : ) o . L

4

!’ - s : 3, 5 I . 2l
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DEFINITION. The intersection of a dihedral angle
and any plane perpendicular to the edge of the
glven dihedral angle is called a plane angle of
the dihedral angle. 7 '

If all plane angles of a dihedral angle were congruent,
i1t would be natural to take thelr common measure as the measure
of the dihedral angle itself. The next theorem guarantees that

this can be done.

THEOREM 9-19. Any two plane angles of a dihedral angle are

Proof: Let S and V be the vertices of two distinct
plane angles of the dihedral angle /A-PQ-B , (Figure (a)).
Let U and W be points distinct from V on different sides

/V . In plane UVS , apply the Point-Plotting Theorem and
te point R on /S such that

RS .

1
e
2

In plane WVS , locate point T on /S such that

(a) (b)

To prove the theorem, we must show that /V = /S . 1In order
to do thls, we shall apply the 5.35.85. Congruencgy Postulate to
show that AUVW = A RST
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9-5

Since /V and /5 are plane angles of the dihedral angle,
each of the planes UVW and RS3T is perpendicular to P3,.
By Theorem 9-9, the two planes are parallel to cach other. . By
- al— - L _ ,
Theorem 9-6, UV and RS are parallel., 'Thils fact, together
with - (1), shows that UVSR is a paralleclogram. Hence the
segments UR and VS are both parallel and congruent.

=

A slmllar argument shows that WVST 1s a parallelogram,
and therefore that the"segments VS and WT afe both parallel
and congruent. By the transitlive property of parallelism and
congruencé, the segments UR and WT are both parallel and
congruent. In @ghéf words, UWTR 4is a parallelogram. Hence

]

(3) UW =FRT
Combining (1), (2), (3), the S5.5.8. Congruence Postulate tells
us that n
AUVW
Finally, /V = /S , and our proof is complete.
w;ggaghe last theorem estavllshed, the measure of a

dihedral ané}g can now be defined.
S

i

]

DEFINITION. The measure of a dihedral angle is the
of’ any of its plane

angles.

DEFINITION. ‘A right dihedral angle is a dihedral

angle whose measure is 90

r

o

- DEFINITION. The planes determined by the faces

i

a right dihedral angle are sald to be perpendilcular.

@ tiheorems about perpendicular

]

he proofs of t
planes are not diffilcult. Song

ave. been left as problems,

THEOREM 9-20. If a line 1s perpendicular to a plane, then any

plane containing this line is perpendicular to the glven

plane.

ey
tl;’%@g

.
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, THEOREM 9-21. 1If two planes are perpendicular, then any line
’ in -one of the planes which 1s perpendicular to their line
, of Intersection 1s perpendicular to the other plane,

THEDREM 9 22, If two planes are perpendicular, then any liné

pérpendicular to one of the planes at a point on their
-t 113? of intergegtion lies in the other plane,
7 THEDREM 9= “3 If two interuecting planes are each perpendiculaj
to a third plane, then their line of 1ntergection ia

perpendiﬁular tc this plane

" ‘The- assertion of the preceding theorem 1% 1llustrated in
the following figure. Planes ii? andK;¥§ are each perpendicular
. to the plane ,E¥§ , and their line of 1nterﬂecticng sg s 1s

%, therefore perpendicular to o’ .

Problem Set 9-5

-, 1. (a) How many dlhedral angles are formed by the floor,
i walls, and celling of your classroom?
(b) If two plames are perpendicular, what kind of
dihedral angles are formed?

(¢) Give a definition of an

(jﬁ acute dihedral angle,
(2) obtuse dihedral angle.

636 Lo
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=

5

3.

b4,

(d)

_Each of AT, BP,. and TP
is perpendicular to the
other two.
m/a=m/b=m/e
What is the measure of
/C-PA-B % of /CAB?

=

Draw three flgures showlng, respectively, an acﬁte,
a right, and an obtuse dihedral angle.

Give a definition of adjacent dihedral angles,
Illustrate with a drawing.

‘Give a'definition of supplementary dihedral angles..

Illustrate with a drawlng of a palr of adjacent
supplementa%y angles. . PR ) ]
Give a definition &f c@mplementafyrdihédral angles.
TIllustrate with a drawing of a paif of adJjacent

compleméntary angles.

.

* : c

e

1]

W
"

Prove Theorem 9-21.
Hypothesis: Referring to
the flgure on the right,

7 -
F1 & ana TaB | PQ .
Prove AB | é; .

(Hint: Take “BC | PQ in G .) P

J

Prove Theorem 9-23.

(ﬂin;; Referring §¢§§EE\§1lustrative figure in the text,

in plane @/ draw “XN | NC and YN | NB .)

!
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‘with AR twd planea

AD and AC . Certain

Planes (f and jare
perpendicular to 1E§Ei
Lines'§§§5 and i%ﬁ‘; in
plane 77 , determine

which intersect & in,

lengths are given,®as in
the figure, Are BKDA -
and BACH parallelograms? ,

Can you give a further
description of them? 1Is
ABHK £ AACD ? Can you

TD 2

glve the iength of

#

Prove: ;;‘a plane 1s perpendicular to the edge of a

dihedraf'angle; then it 1s perpendicular to each face

of the dihedral angle.

Review Problems

[nn

Chapter 9, Sections

I'ta

1t

In this problem, the symbol gf always denotes a llne and
the symbol 7~ always denotes a plane. Fill in each
blank with the one of the following words

. always, sometimes, never
whilch makes the resulting staterment true. In each case
make a sketeh to Justify your answer,
(a) 1r ;éi 1s parallel to gga and ,éi is parallel to
423 s, thén féa 1ls _parallel to ség

(b) - 1If séZf is pefpendicglaﬁ to ,iz and sé; is
perpendlicular to ,éi s then £y is
perpendicular to géi .

s
[
o



(¢) 1Irf 75)1 is\}perperidicular 57, - and ,iz?g is perpen-
dicular to Z?B ;» then 4 is
to ﬁB . ' ; ?

(a) 1f ﬁ is perpendicular to .?i‘jl and ;jl is parallel

perpendicular

to 2, , then £ 1s ______ perpendicular to ;jg

M

o (e) 1f,g§1 1s parallel to /& and Z is parallel to
j,’g ; %hen 'ﬁl . 1s parallel tc; j‘.’% .
(r) 1If ;é? is parallel to ig’l and F;_.'L is perpendicular
- to 2, then 545 is " parallel to 7,
(g) 1If ,i?l 1541355{1:‘311&13\413? to & ana 2 1s
. perpendit:uiar to ;’59 , then F'?l 1s
perpendicular -to }5?2 ) 7
(h) 1If jﬁi is ’péfpend%cular to s&éj and ,ff ia parallel

to. ii?g , then ﬁi is - perpendicular to ;572
s S~ - -
(1) If‘ﬁl is perpendicular E@ ;3’2 and 7‘5?2 vis
peérpendicular to ,25’3 , then ;f?l is
) par—al}el to ﬁB _
(3) 1Ir # 1is perpendicular to "é’l and géfl is

perpendilcular to £§ ., then * 1s
F

parallel to jg

2. Mark each of the following statements true (T) or
false (F) .. ) }

(a) If a line iérﬁgrpendiﬁular to each of two distinct

_ lines in a paane, it 1s perpendicular to the plane.

(b) 1If three distinct lines are perpendicular to the
same line at the same point, thé& three 1£%és are
coplanar. 5 [

(c) Through a point not on a4 line, more than one plane

A A
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(d)
(e)

(£)

(8)

(k)

(1)
(m)

(n)

b
Through a polnﬁ‘not on a plane, only gn/ line can be
drawn parallel to the given plane. ¢

Through a point not on a plane, only one plane can

be passed berpEndieulaf\ta the givegn plane.

If a plane 1s perpendicular to the edge of a dihedral
angle, 1t 41s perpendicular to each face of the
dihedral angle.

If two planes are perpendlcular, a line in one of

the planes 1s perpendicular to the other plane.

If two planes are perpendlieular, a line perpendicular
to one of the plénea will lie in the other plane.

If a plane intersects one of two distinct parallel
lines, it intersects the other also. o )

If two distinet lines are parallel, one and only one
plane can be passed through one of;tnése lines
parallel to the other. .

If'a line is parailel‘to one of two intersecting
planes, 1t 1s parallel to thelr intersection. -
Two planes parallel to the szame line are parallel.
Through a line not perpendicular to a plane, a plane
perpéniiculér to the given:plaﬁé can be- passed.

The projection of a segment into a plane is a’
seggenti ‘ v

3. Which of the followlng lines or planes must be parallel?

Which of them must coincide?

a (a)
(v)
(e)s
(d)
(e)
(f)
(&)
(h)
(1)
(1)

(k)

Lines through the same point parallel to the same line.
Lines perpendicular to the same plane. '
Lines perpendicular to the séme line.
Lines parallel to the same line.
iLines parallel to the same plane.
Planes perpendicular to the same line through the
same point. . . T .
Planes parallel to the same plane. ﬂ
Planes perpendicular to the same plane.
Planes through tg§ same paintﬁg@rallel to the same
plane. o . : T
Planes through the 5ame$ppint perpendicular to the
same plane. ; ' ‘
Planes parallel to the same line.

6ho
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9-6, Coordinate Systems in Space.

In. Chapter 3 we introduced the iundaméntal ldea of a
coordinate system on a line, or a one- d;megg;onal coordinate
system, as it is sometimes called. In Ghébtef 8, we extended
thils d1dea to coordinatke systems in a plane, or twq=dimehsiona1

coordinate systems. Now that we have the necessary information

about perpendicularity and parallelism in space, we are in a
position to discuss coordinate systems in space, or three-

dimensional caéfdinat systems, As we should expect, our

devel@pment here will be very much like the develapment of
two- dimen;imnal coordinate systems in Chapter 8 and for this
reason we shall omit many of the detalls and concentrate instead

on the results themselves,

- - . . ' B}
Let OX and 0Y be any two perpendicular lines and let

. ) . .
0Z be the unique line (Theorem 9-3) that is perpendicular to
! - - , ) .

the plane of O0X and ‘0Y at thelr intersection, O

Clearly, then, each of the lines 0X , 0Y , 0Z 1is perpen—
dicular to each of the other two, so that we have in fact three

mutually perpendicular lines. Let I, J, and K ©e points on

-

oxX OY and 5 respectively such that

01 OK = 1 .

0J

il

one-dimensional coordinate system

On the line DX there is a
origin and the point I as unit point.

with the point 0O as
- . . . )

On 0OY , there 1s a one-dimensional coordinate system withh.the

point O as origin and the point 'J as unit point. On 0Z

there 15 a 6ﬂe=dimensional coordinate system with the/péiht 0

\"\

as origin and the polnt K as unit point. We shall refer to
hese coordinate systems as the x- , y- , and z-coordinate

r‘i‘

systems, respectively.
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The line 0X 4is called the x-axis, the line 0Y 1is
) . - ) . L ./
called the y-axls, the line 0Z 1s called the z-axi$.
. e e e L ) ) T
Collectively 0X , 0Y , 0Z are called the coordinate axes,
The point 0 , which 18 common to the three coordinate axes,

is called the crigin. The plane containing the x-axis and the

y-axis is called the xy-plane, the plane containing the x-axis

and the z-axis 18 called the xz-plane, the plane containing

the y-axis and the z-axls is called the yz-plane., Collectively
00

these planes are called the coordinate planes.

From the theorems we proved in Section 9-U4, it is clear
that all lines parallel to the z-axls are perpendicular to the
xy-plane. Similarly, all lines pdrallel to the. y=-axis are

Lo

x-axls are perpendlcular to the yz-plane. Using the convenient
set-bullder nctatian; thesze important observations can be

summarized as follows:
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"Pictorial" "Parallel" "Perpendicular"
) 7 description description ~ description

2

—
—

{nin || z-axis}|{n:n | ;cy;planél'r

o | ,

-
=
M
-—

-— — > h, {n:n || y-axis}|{n:n | xz-plane}

/ (n:n || x-axis)|(n:n | yz-plane}

A
A
\

'
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It should be clear also that (a) all planes parallel to
the xy-plane are perpendicular to the z-axls, (b) all planes
'pérallér to the xz-plane are perpendicular to the y-axis, \
(c¢) all pla’néé parallel to the yz-plane are pez?éﬁgiﬁj?cg;a? to j
the x-axis, 7 ) ‘

H \»«
.Y
'!
uu
.

"Pictorial "para
description desor

5 R

F &1

L

(L:Z || };ziplans][izéii v-axls]

L7 || yz-plane] (Z:Z | x-axis)

o

iZF
=
2 .
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- .
, | : §§
As you will remember from Chaptér 3, a c@ordinaté syetem on
a line 1is a one-to-one correspondence between the line and the ¢
-get of real numbers.. Similarly, as you learned in Ghaptér.a, a
:;Erdinate system 1in a plane 1s a one-to-one correspondence

.. between the plane and the set Df"ordeféd pairs of real numbers,.

Now we are golng to establish a coordinate sygtem 1n space as a
one-to-one correaspondence between space and the set of ordered
triples of real numbers.

To do this, let P be any pdint in space. Then through
P there passes a unique plane which 1is perpendicular to the
x-axls (Postulate 24), This plane intersects the x-axis in a
point which has a coordinate, say x , in the one-dimensional
coordlnate syatem established on iaszby the ordered palr
(0,I) . This number, x , we define to be the first coordinate,
r

H

bed
e M

-coordinate, of P

Z# E;ZA . | | ' ZA

L]

perpendicular to the y-axis and this plane intersects the y-axils
in a point which has a coordinate, say y , in the coovdinate

[

-~ . . .
system determined on 'OY by the ordered pair (0,J) . The

number y we define to be the second coordinate, or
=X;cgg§§%§§§e,aﬁf P . Finally, through P there passes a
ﬁniéué plane perpendicular to‘;he z-axis, and this plane
intersects the z-axls in a point which has a coordinate, say

z , 1n the coordinate gsystem determined on iEEE'by the ordered
pair (0,K) . The number =z we define to be the third

coordinate, or z-coordinate, of P

646
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Conversely; if any arderééxirigle, say (x',y',z') 1is.
given, there 1s a unique pdinté Pj having (1',y',z') as 1ts
coordinates.# In fact, there is a'unique plane perpendicular to
the x-axls at the polnt whose x-coordinate is x' , and there
is a uﬁ;qué plane perpendicular to the y-axis at the point »
These two planeg cannot be
parallel (Why?), hence they must intersect in a line, m
which by Theorem 9-23, 1s perpendicular to the xy=pléne.
Finally, there 1s a unique plane which is p2§péndi@ular to the
z-axls at the point whoss z-coordinate is z! . Slnce m 1is
perpendicular to this plane (Why?), it must intersect it in a
point P' , whose coordinates are clearly (x5 y,27), as
reduired.

whose y-coordinate is y!

2

d T L

] :;"’:f N
I -~

1 - Pix)y,z)

iih{

Figure (a)

As our efforts in thils chapter have already illustrated,
1t 1s difficult to represent space configurations by drawings
on a sheet of paper. You ought to .practice plotting in a three-

.- s . H \ R .
dimensional coordinate aystemgga that you can make drawings and

visualize the space relations{ihich they suggest. . or course,

you should begin your practice with simple situations, such as

plotting a single point, % palr of points, a segpint, @F\a line.

) s

1]

Ty B

S S
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Figure (a) shows how a single point may be plotted. Figures
(b) and (c) below show a segment and a line. Notice that an
essential technique‘iq plotting 1s the abiiity to draw a 1iné
parallel to a coordinate axis. Notice also the significance of

Appendix V for further help.
i

E

——=

By Postulate 24, 1t 1s clear that the procedure\which

E;gietETmines the coordinates of a point, P , works just as well
when P 18 in one or more of the coordinate planes as 1t does
wﬁen P does not lle 1in any of the coordinate planes. Hence,
it ‘shguld be easy for you to verify the results which are
summarized in the following table.

"%

B




™

Set of |Form of the coordinates | Equation(s) satisfied by the
points of any point of the set coordinates of any point of
the set "

origin  (0,0,0)

(o
]
(o]

X=0 and y =0 and

o \‘

x-axis (x,0,0) ] 'y =0 and z =
y-axis (0,¥,0) x =
z-axis’ , (0,0,z) x=0and y =0
Xy-plane (x,y,@) - 7 - Z = 6
xz-plane (x,d,2) . - y=20

(0,y,2) X =0

L
o
5
.
M

I
e

yZz-plane

From the definition of the x-coordinate of a point, P,
it is clear that all points which lie in a particular plane,
;i? » perpendicular to the x-axls have the same X=coordinate,
séy X =x . It 1s also clear that, conversely, any point
whose x-coordinate 1s Xy must lie in the plane ji? : 1n
other words, the coordinates of every point in a plane which
is perpendlcular to the x-axis satisfy an equation of the form

X = xi , and cénversely, any polnt whose coordinates satisfy

this equation lies in this plane,

Similarly, we can say that all points which lie in a pPlane
perpendicular to the y-axis have the same y-coordinate, say
y=y,,o0r in other words have coordinates which satisfy
the equation y = ¥y s and conversely.

What do these observations tell us about the coordinates
perpendicular to the x-axis and a plane perpendicular to the
y-ax1s? Do you see that if a point P 1liles simultaneously in
é planelwhose points have coordinates satiafying the equation
X =X and in a plane whose points have coordinates satisfying
the equation y = ¥y, » then the coordinates of P must satisfy
both ‘of these conditions? If you understand this, it should
not be hard for you to-verify the assertions in the following
table.

150
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Set of polnts

|Form of the coordinates

of any point of the set

‘any point of the set

.

Equatiori(s) satisfied.
by the ‘ceordinates of -

X=X

plane ] v-axis (x;yi:z) : y=vy; . .

plane | z-axis (x;y,zl) ' ‘'z = 51;

line | xy-plane

Il

L]
o]

A

"

N
e

line | xz-plane (xliy,zl) x = x; and z :

line | yz-plane (x,¥49,24)

Problem Set 9-6

P .
1. Using the same set of axes, plot the points P, Q, R, S,
T, U, V: P(D;l,O) H Q(——B;D,O) H R(—S;l,@) H S("’B:l:g) H
T(Bxlsg) H U(B,sl,‘—u) H V(Bxilj":}’})'- )
2. Using the same set of axes, plqt the points A, B, C, D, E :
A(O;!l,B)Vg B(S:L‘:é) H C(’Q—';E:*?) H D(l;!B,Q) H E(S!ESEL") .
3. Describe the location of all the points in space for which
(a) x=0.
- (b) x =2 .
(¢) x= -3

T

Illustrate with a sketch for each part,

Sketch the set of all points in space which satisfy the

o
S

given condition.

() y=0. (¢) z=o0.
(b) y=2. (d) =z = -4

5. Descrlbe the set of points represented by each of the

following:

(a) ((x,¥y,2):
() ((x,y,2):
(¢) ((x,y,2):
(d) ((x,y,2):
(E) [(x’y},g)f

B ) ((x,y,2):

A
]

LS
i
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‘ 6. Suggest & EﬁﬂVéﬂiéni_set,éf coordinates for thé§§i§ht
vertices: = -~ - - . o

oy

(a) of a cube each of whose edges has length a ;

(b) of a rectangular solid (parallelepiped) having
mutually perpendicular edges gf-lengtns a, b, ¢,
respectively. ' : - .

7. Where are all the points in space for which x +y = 2 7
Sketch the graph. ’ . A

9-7. The Distance Formula in Space.

In Section 8-2, we proved. two theorems (Theorems 8-1 and
8-2) which enable us to determine the distance between any two
points on a line parallel to either of the coordinate axes.
iimilar results hold in space, and we have, specifically:

THEOREM 9-24. If P, and P, are points on a line parallel

to the x-axis, then P P, = |x; - x,| , where x, and

X, are the x-coordinates of . Pl and PE , respectively.

THEOREM 9-25. If P, and PE are points on a line parallel

to the y-axis, then PP, = |y, - y,| , where y, and
y, are the y-coordinates of Pl and PE » respectively.

&

THEOREM 9-26. If P, and P, are points on a liné parallel

to the z-axis, then P P, = Igl - zg] » where 2z, and

are the z-coordinates of El and Eg; respectively.

(kv

SEy




in the following figures,
If A= (6,3,1) and B = (3,3,1) ,

[ (a)

then' AB'= |6 - 3| = 3 .

(b)

9-7 : ' '
. ‘The proofs of these thearems are very easy and we shall
, omitythem. Two applications of these theorems are illustrated

. . - .

!
e 7‘-,

g
If ¢ = (3,5,1) and B = (3,3,1) ,
then BC = |3 - 5] = 2
dz

652



. . i
As one of the impgrtant applicgt;ons af plane €oordinate
syatems, we develgped the so- called distance formula

/N R
oFy ;‘ﬂx - 3‘1)‘ + vy -y

P )2

wéich enables us to find the diastance between any two pointa,
P (xl,yl) and P. (xg,yg) » In a plane. It is now gatural to

- seeka farmula, analogous to the distance formula in a plane,

which will e;press the distance betwgen any two points in space
in terms of the coordinates of the points.

To do this, let P. (xl,yl,zl) and P. (xg,yg, E) be any ’
twoe points in space, and cansider the figure which is formed
by the three planes throygh Pl which are respectively
perpendicular to the cqordlnate axes and the three planes
through P2 which are respectively perpendicular to the
coordinate axes. Let A and F be the points (xz*yl’gl)
and (XESY2;31) '

y4 e i
AT ~
_ . !fé% P
g‘gs Ql}r
| - 252
R I P ,,_=§=,§|Efll
[} fFﬂmM;ﬂ ﬁﬁ
s
| ¥ ¥
7 f —_— — , A&z . _
Al Y,2) F(xz,y2,Zi) r [Y2-%1 F
- — ————Y - — —— =Y
! '
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First, buppose that P, and P, do not-lie in a plane
which 1s perpendicular to Qne of the coordinate axes. Clearly,
i§’ip is perpéndicular to the yz-plane. (Théorem 9- 23) and hence
parallel to t%g_x—axis (Postulate 25) Similarly AF is T
perpendicular.io the xz-plane and hence parallel to the y-axis,
_'§§g§rpendieular to the xy-plane and hence parallel
L Therefore AP AF and /P FPE are right L
: Hence, applying the Thgorem of Pythagoras to
t.he two righ;-t?;;anglea QPIFEE and APlA,F 5 We gbtain‘
reapectively - ' )

\ 2
+ (PEF)
and

(AP))® + (Fa)2 .

]

I

- . s ’ o
Now substituting for (FEI); from the second of these equations
into the first, we get

r

(BoPy)® = T(aR))Z & (FA)%) 4 (p,F)

PoPy ;1/(951)2 + (FA)E + (P.;FSE

But according to Theorems 9-24, 9-25, and 9-26, respectively,

Therefore, substituting,

~ , 2 2 , 2
PéPli‘/'XE’xl' oy -y 1T+ zp - 2y
) A - e
or, since IqlE = q° for every real number q ,
R : 2 ., Y
PP, E’ngg - xl) + (v, - yl) + (2, - 31)
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. ;f P,  and PE lie in a plane which is perpendicular to
) one of the coordinate axes, then either Xo = X3 =¥
'y OT 2, =2, , and one or more of the terms:under the radigal in
: the last formula is zero. It 1sieasy to see that the formula
is stii% valid, For' instance, 1if sg'; zy then PE =F,
and clearly the correct expression for PEEI is .

]

I:EPl ﬁAPi)g + (FA)2

= ‘/}EE *7351)2 + 7(3"2 = y:)é

Likewlse, 1ir Fl and FE determine a line which is perpen=

dicular to one of the caardlmaté planes, then two of the

coordinates of El must equal the corresponding coordinates

of EE" and only one of the terms under the radical in.the

formula for FEPl is different from zero. Again the formula
* 1s valid. For instance, if Yo =¥y and z, = 2z, , then

PE = A and the correct expression for PEPL is

P,P; = AP, = IxE - xll

%
Finally, if‘.“P2 = Pl ; then Ko = %Xy 5 ¥p = Yy 5 2, = z, and
every term in the formula for P

oP; 1s zero., Thus P,P) =0,
Pl =
three-dimensional distance gggmulg

as of course 1t should if Pg Hence, in every case, the

N o P r—

gives us the distance between the points P. (xl,yl,z ) and
P. (xg,ye,zg) We state this result as a theorem

TﬁE@REM 9-27. The distance between the points P, 1(X1,¥7,2;)

i, | 7and‘ P,o(X,,¥5,2,) 18 glven by

By =g - x)® 4 (- ¥))P 4 (2, - 2,)°

o
iv]
o
i
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Examp;é‘i :

v

What Is the distance between the points *Plﬁggkjc) and
’Pg(l:?:‘g)’? . . > '

. By direct substitution infc the ‘three-dimensional distance
‘a\' ‘formula, we obtain ' -

Exanple 2

Find the points which lie on the 1inel§érpendicular to
the xy-plane at the point (2,3) and are at a distance of 7
from the origin. 3 .. :

Clearly, any point whigh‘iies on the line perpendicular to

the xy-plane at the point (2,3) has x-coordinate 2 and

yzecordihate 3 . Hence, a point on this -1line 1s determined

as soon as its g-cqordinate is known. Thus, we must determine
- the value, or valugs, of 2z such that the distance from the

origin, 0(0,0,0) , to the point P(2,3,2z) 1is 7 . Using the

distance formula we thus have .

7 .
=7 ,, o P(2,3,2)

]
+
T
o
[ []
=
e -~

- if.), i

]
W

L
W
b

[
C




9-7

. Thus there are two points which meet the requirements of the
problem, namely P, (2,3, ,6) and PE(E 3,-6) , as can be checked
immediately. -

»

Problem Set 9-7

Find the distanceibetween the points '?l and P, if the
coordinates of P, and P, are.as follows: ’ :

(a) (4,-1,-5) ; (7,3,7) . (@) (3,8,5) ; (8,4,1) .

(b) (0,4,5) ; (-6,2,8) . (e) (0,1,0) ; (~1,-1,-2) .

(e) (3,0,7) ; (-1,3,7) . (f) 11,2,3) ; (0,0,0)

A line m is pérpendicular to the yz-plane at the point

P(0,3, 4) " Find the points which lie on line m and are
at a distance of 13 from the origin. ; f

A line q: 1is perpendcular to the Xy-plane at the point

"~ P(6,8,0) . Find the points which 1lie on 1line ' and are

at a distance of 10 from the origin.

A line iég is perpendicular to the xz-plane and contains |

the point P(1,-2,1) . Find the points of £ which are

at a distance of 4 from the origin.

Show that A ABC with vertices A(2,4,1) , B(1,2,-2) ,

C(5,0,-2) 1s a right triangle.

Is the triangle with vertices A(2,0,8) , B(8, -4,6)

C(-%,-2,4) 4sosceles? Justify your answer.

Given the vertices of two triangles, AABC and A DEF ;

for each of the triangles, determine if it is equ;laggfali

A(1,3,3) , B(2,2,1) , €(3,4,2)
D(6,2,3) , E(1,-3,2) , F(0,-2,-5)

(a) Show that the opposite sides of the figure ABCD
with vertices A(3,2,5) , B(1,1,1) , c(4,0,3)
D(6,1,7) are congruent,

(b) Does this prove that the figure is a parallelogram?
Explain.

657 S‘“’)
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9. (a) Show that the opposlte sides of the figure ABCD
: . ) . , 7
with vertices A(5,1,1) , B(B,l,o) , C(4,3,-2)
- D(6,3,-1) are congruent., -
.(b) Show that the angles of the flgure 1n Part (a) are
all right angles. - R
(c) Do the results in (a) and (b) prove that’ the flgure
e is a rectangle? Explain.
10. Using,oordinates, prove Theorem 9-18. ' (ﬁint; This
‘ follows claaely theﬁﬁrccf of” the corresponding theorem
in a plane.) : » -
- i
9-8. Parametric Equations of a Line in Space. /
In Section 8-7, we obtained what we called parametric
equations of the line determined by two distinct pointas, -
P (xy,y;) and P,(x,,¥,) , namely o
X =X + k(x, - xl)
« y;¥1+1{(yE‘y1)
- For every value of k , the corresponding numbers, X

and y , are the coordinates of a point on P, P, and,

- S e T
conversely, to every point on P, PE there corresponds %:}
unigque value of the parameter k 8such that these equatlions
give the coordinates of the point. By an argument similar to
the one which establishes the result in the plane, 1t 1is=s
possible 'to establish the corresponding result for space.

THEOREM 9-28. If El(xl,yl,gl) and P, (xg,yg,zg) are any

two distinetvpaints, then for every value of k the
point whose coordinates are o

Xy + k(xg - xl)

X =
y =y, + k(y, - vy)
z = 2z, + k(z, - 31)
lies o PlPE and, conversely, to every -point on 'PlPE

. there corresponds a unique value of k such that these
eduations give the coordinates of the point.
658
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, Example 1 _
- What are the coordinates of the point 4in ﬁhich the line
determined by 'P,(3,7,2) -and P5(1,1,-2) intersects the

LY

\[1e 7

Zz-coorjdinate 1s zero. Our problem is to find the point on

-, S . : L . L.
ElPE,'%hase z-coordinate is zero. Now, by’ the last theorem,

the coordinates of any paint on PP, are ﬁauen'by the
equations L :
' 3+ k(1 -3)=3- 2k,

is]
-~

X

‘m‘

7T+ k(1 -7)=17- 6k,

2 4+ k(-2 - 2) =2 - bk . .

y

W,

2

Hence, for the point whose z-coordinate is zero, we must have

P

- 2 -4k =0 or k =

- Substjtuting this value into the formulas for x and ¥, we
find.

X 3

-

= 2(
y=7-6(xzFr=

)221
4

- nfe

The required point is the point with codrdinates (2,4,0)

. &t

< !
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Example 2 ' C et

- B Aar .
Show that the diaganalé of a cube (a) have equal lengths,
oisect each other and (c) are not perpendicular to each

(0,020 _H

?:

()

other.

4

e
m

B(20,20,20)

N v
aoooull —  JF oy

o.” 1A
v D(26,20,0)

: Eraaf: Let the length of each Eﬂgéséf the cube be 2a .
Ghaéﬁé the caa:dinaté axes so that one vertex, A , is at the
orlgin and three edges lie in the pasitiﬁé X- , y=- , z-axls,
Then, the endpoints of diagonal AB are A(0,0,0) and

B(2a,2a,2a) . Another diagonal, CD , has endpoints  C(0,0,2a)
and D(2a,2a,0) .

(3) 15 - ylea - 017 7 (22 - 0)F v (2a - 0)F = e

2y,
2a /3 .

cp = 422 - 0)2 + (2a - 0)° + (0 - 2a)? - Yia?

Therefore, AB = CD , Similarly, AB = GH = EF .

The length of each dlagenal of a cube 1s 43 times the

- length of each edge. &7 ‘
(b) “AB = ((x,y,2):x = 0 + 2ak ; y =0+ 2ak , z = 0 + 2ak ,

' k 1s a real number]} .
By taking k = 3 , we find the midpoint of AB to be

(a,a,a) . o - :

Similarly, CD = [(x,y,z):x = 0 + 2ah , y = O + 2ah ,

z =2a - 2ah , h 1s a real number] .

* By taking h = % , we find the midpoint of *.TD to be

. . L (a,a,a) . l . :’A

7 . 660 . ‘

150
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(c)

';/;; ﬁ

Similarly, we find that the midpoint of EF is

and the midpoint of GH 1is (a,a,a)

If M 1is the ccmmgn midpoint of the diagonals,

Part (a), AM = E ; AB = a3 and CM=ayJ .
(aM)? = 3a® and ‘(gm) = 32, but (ac)2
Therefare; (AM)2 + (MG)2 # (AC)2 . Hence, T

are not, pér—péndieu'iar

= (2a)? = 432 |

(a,a,a)

_Thus, any ﬁwa of %hé diagonals bisect each other.

then, by
Thus

and "M

By this same reasoning all other pairs of ﬂiaggnals can

be proved not perpendicular

\ chi .

!

Problem Set 9-8

In Example 2 above, prove GH = EF = ABD .
Given points A(-2,0,4) , and B(8,2,-2) , use set
notations and paraﬁétrie equations to express

- . R —
(a) AB . (b) 1B . (e) AB .
(a) Find the midpoint of AB in Problem 2.
(b) Find the trisection point of AB nearer A
(¢) Find the trisection p@int of AB nearerr B .
(d) Find P if P is in AR and AP = 3AB .
(e) Find P 1if P 1is in the ray opposite to AB

and AP = 3AB . :
(f) Find the coordinates of the point in which “AB . \

intersects the xy-plane; the xz-plane; the yz-plane.
‘(g) Find the coordinates of the point in which “AB" inter-

sects the plane whose equation is 2z = 3 ; whosé

equation 1s y = -2 ; whose equation 1z x = -3
Prove that the diagéﬁals of a reétangular solid are equal
in length and that they bisect each-other.
Show that A(-1,5,3) , B(1,4,4) and c(5,2,6) are
collinear. Y

) £
f -
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10.

11.

9-9.

What are the coordinates of the point P in which the
line determined by Pl(EQLQB)‘ and PE(B,EE,l)
intersects the yz-plane?

What are the coordinatesjyof the point ©P- 1n which the
line d “ermined by Pl(%i,g,él) and P,(3,-2,2)

intersects the xzZ-plane?

2

A rectangular solid has three adjacent faces in the
coordinate planes, One vertex is at the orlgin and
another has coordinates (2a,2b,2c) . What are the
possible relationshﬁps among a, b, ¢ 1f two of the
diagonals are perpendlicular to each other?

(a) Given the points A(7,1,3) , ¢(4,-2,3) , find the
coordinates of the midpoint, M , of A&C .
Consider the points B(5,0,0) and D(6,y,z) .
Find y and 2z -so that the midpoint of. BD 1is

(b)

the same point M as in Part (a).
(¢) Is figure ABCD a parallelogram? Explain,
Uslng ideas of mildpoints, as 1n Problem 9 above, show
that the figure in Problem 8 of Problem Set 9-7 is a
parallelogram.
Using 1ideas of midpoints, as in Problem 9 above, show
that the figure in Problem 9 of Problem 5
rectangle,

Equation of a Plane.

k4

dimensional coordinate systems ralses the guestion of whether

‘or not planes in space can likewlse be characterized by

equations. The answer is Yes , and we shall conelude the

chapter by finding an equatlon corresponding to a plane. i

First, however, 1t is convénient to introduce the following

definitien.

I

..P
b
AR
0,
i

l A
N

e
e



9-9
DEFINITION. If # 1is any plane, then an equation
’ of 7’ 1s any equation with the following properties:

(a) The coordinates (x,y,z) of every point of &7
satlsfy the equation; E

(b) Any values (x,y,z) which satisf

are the coordinates of a point of 2

Consilder the followlng example,

Let F be the point (3,2,4) and let #Z

e ~ L -—
be the plane containing F and perpendicular to OF .

P

A
,,};‘g g ;X"‘xxx
(3.2 4) ™.
L e =1 - -
Xs_% [—=J x“‘s = X‘g/
e %“‘»«@ ;? “’*a,,,
- S T e ] XE‘}
~._ Ryz)
@] ;-“::j -
- — - — — —- Y

A point R(x,y,z) 1lies in X 1if and only 1f R = F or

b

B , . . ,
FR | OF . By the Pythagorean Theorem, épFR 18 a right angle
1f and only if
(1) (OR)" = (OF)° + (FR)®

f A\ 2 2 , 2 2 2 2 2
Now (OR) = (}: = D) + (y - D) + (E - O) = x4+ y + z
2 = o r
and. (0F)° =3 - 0)%+ (2 -0)% 4 (4 - 0% =9+ b+ 16 = 2
2 o 2 2 o Lo o
and (FR)® = (x - 3)" + (y - 2)% + (2 - })° = x" + y° + 2
- 6x - by - 8z + 29 .
Hence, (1) becomes
/ = = 2 2 3 )
= ! & = 3¢

Thus

2
b
T
w
+
(o]
[t
il
g
R
W

or

ERIC
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‘point R(x,y,z) 1ies in the plane # if and only if R = F

9-9 | ‘

As a check, we observe that the coordimates (3,;,7) of F
satlisfy this equation, asince 3 ¢ 3 + 2 - 2 + L - 4 = 29 |, . A

Note that the numbers 3,2,4% which appear as the
respective coefficlents of x,y,z 1in the equation of the plane
are the same as the coordinates of the point F jﬂand that the
number 29 18 the sum of the squares of the coordlnates of F .

We use the discussion in Example 1 as a gulde in treating
the general case. Suppose that 2’ 1s any plane not containing
the origin O Let F(a,b,c) be the point where 2 :
iﬁtersects the line

% ~
/(f\n\\
F(a,b,c) y
. - Fj’\\\i”a& J
|/ -
‘ - O — -y
;;;
‘1—«“";;  J

containing O and perpendicular to >~ By Theorem 9-1, a

ér [OFR is a right angle. But by the Pythagorean Theorem,
A QFR has a right angle at F 1f and only if

[

=
(0R)? = (0P)® + (FR)®
Since we know the coordinates of 0, R, aﬁd F, 1t 1s a simple
matter to obtaln the distances OR , OF , and FR by means of
the three- dimensional distance formula, Hence the last equation

can be wrltten

ot

(x -0)% + (y - 0%+ (2 - 0)



or, squaring the binomials and collecting terms,

-

rno
[
rd
M

i ) 2 2
- 2ax +a” +y° - 2by + b + z

i

2 2
2  =a + b +c +x

F
+

e
+
b
]

2
- 2ez + ¢” ,

e . e . a2 2 L. 2
2ax + 2by + 2¢z = 2a” + 2b" + 2¢° ,

or finally,
: =}
ax + by + ¢z = a“ + b° 4 o .
This equation 1s satisfied by the coordinates of every point of-=
?? including F , and by the coordinates of no other points.
In other words, this equation 1s an equation of the plane.

If Z’ contains the origin, the above derivations must be
modifled a little. 1In this case, let m ©be the line which 1s
perpendicular to Z at the origin and let L{(a,b,c) be any
point on m except the Drigini A point R(x,y,z) will now
lie~in # if and only 1f R 1s the origin or /LOR is a
right angle.

[

-

. L{a,brc) 7?

;—ﬁ:
?‘ ,;;: i
= ‘-P‘“"‘;
- =
ﬁfi_&_{—f‘*“‘s

e

@\
ot
D
=
e
|
T
ot
i

will have a right angle i}f and only if

) - -
2 \ 2 2

=

(LR)“

= (LO)° + (OR)

ERIC
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9-9 ‘i
_ Evaluating these distances bx.méans or' the three-dimensional
distance formula and &implifying as we did in the previous case,

we now find that the coordinates (x,y,z) of any point in 2 ,
including the origin, must satisfy the equation, .

ax + by + c2 =0

The only distinction betwe%n this equation and the equation of
a plane Which does not contain the origin 1z the value of the

constant term, : e b

Our discussion thus far has not touched n the related
question: 1Is every equation of the form
ax + by + a7z o

an equation of some pi ne? 1ne answer to this 1 Yes , but
we shall not take time to prove this fact. Instead, we merely

summarize our observations in the following theorem.

THEOREM 9-29. Every plane has an equation of the form
d , where one or more of the numbers

ax’+ by + cz

a, b, ¢ 1s different from zero; and every equation of

this form 43 an ¢ uatlion of a plane.

Example 2.

What 1s an equation of the plane which 1s determined by
the points P,(2,0,0) , P,(0,1,0) , P4(0,0,3) »

By Theorem 9-29, we lnow the required plane has an
equatlon of" the form

ax + by + cz =d ,

whlch 1s satisfied, in particular, by the coordinates of Pl s
, and P, . If the coordinates of P, satisfy thig ejuation,

v]

pngling

en substituting, ’ .

fon (N

o
I
b
o)
)
ik
I
nof 2

a. 2+ Db =0+ ¢

i

pocs)
ik
o
-

P
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Similarly, since . the cécri&nates of P, satisfy

y
a-+-0+b--1+¢.:-0=4d or b=4d

the eguation,

and, since the coordinates of PB also satlisfy the equation,
3

a-0+b*-0+2¢ -

Substituting for a, b, and

or, multiplying both members

=d or c =

¢ we obtain

This is the’ required equation.

Example 3.

What is an eguatilon of Fhe plane whose points are equi-

distant from the points A(1,-3,0) and B(2,0,-5) ?

=

Let P(x,y,z) be any point. The condition that
on the required plane 1s expressed by the equatlon PA

That 1s,

[

a

oo
[
]

Ml

Vix - 1)E + (y + 3)

or
(x = 1) + (y + 3)° + 2°
or

™
o

(x° - 2x + 1) + (y% + 6y + 9)

or (by rearranging terms)

(x e

N

$
Finally, b§ combinling terms,

plane in simple form:

g £ 2 -~ = . - £ 7;;:’ : _ A -
+ ¥y 4+ 2%) - 2%+ 6y + 10 = (x5 +y° o+ 2°) - hx + 10z + 29

) ~12 £ 2
= (x - 2)" +y" + (2 + 5)
Fzt o= (x° - bx 4+ By + ¥°
K 2

we obtaln the equation of the

667



= (x,y,2):2x - y + 32 = 6)
The coordinates of each point of intersection between
and a coordinate axis are readlly determined, as follows. If
a point is on the x-axls, its y-coordinate is zero and its
z-coordinate 1is zero; thus the intersection of 2 and the
x-axis 1s the point (3,0,0) becanuse 2x - 0+ 3 - 0 = 6
ylelds x = 3 . Similarly, the faxis i ({x,y,2):ix = 0 = z)
and it Intersects & at the point (0,-6,0) . The point of
intersection of # and the z-axis is (0,0,2) . A "sketch"
of the plane @ 1is conveniently made by pi@ttiﬁg ghe tfianglé
. ‘whose vertices are the three points (3,0,0) , (0,-6,0) , ‘

=

v “

(0,0,2) . ( .

? ;
(0,0,2)
AS;;‘
(06,0) — _ B -
Il — y R s
/

DI '

A

a;?g;»e
gxxxa%%xg
(3,0,0)
,, X v
Example 5.

t Find an equation of the plane which contains the three
points (1,2,3) , (2,1,-3) and (-1,-2,1)
A point in the plane must have coordinates (x,y52) such
~that ax + by + cz = d . That is, 1f the point (1,2,3) 1is
In the plane, then :

a.l1l+b.2+¢c.:.3=4d

ERIC
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Similarly, if the point (2,1,-3) 1s in the plane then,

A

a + Db+ 1+ ce(-3)=

and, if the point (-1,-2,1) 1s in the plane then

a(=1) + b(-2) + ¢ - 1 =4d .
We find values of a, b, ¢, 1n terms of d , which
satisfy all three of these equations, to be

- %g , C - %% . Substituting these values in

52}
I
o
1]

the equation ax + by + cz = d yiéldé

Ir
jol)

)x + (- 4 )y+( d),

Q #
11x - 7y + 3z = 6,

an equation of the required plane.

Problem Set 9-9

I;E?WTite an equation of the plane determined by three pﬁints

whose coordinates are

“(a) (1,0,0) , (0,1,0) , (0,0,1) .
(b) (3,/5,1) , (0,1,0) , (0,0,2)

() (3,0,1) , (1,2,0) , (0,2,4) . /
(a) (1,-1,0) , (2,0,3) , (0,-3,1)

2 Determine an equation of the plane whose points are
equidistant from Pl(lgﬁjé) and E(S 5,4) .

Ls]

Sketggia dlagram of the plane represented by each of
the eqﬁations:

(a) 5% + Uy = 20 ;

(b) x+ 2y + 2z =5

4, Find an equation of the plane which contains the point
Q(1,-2,2) and is perpendicular to the line contalining
Q and the origin.

ERIC
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il

' oy

Find an eguatlon of the plane which contains the three
polnts whose coordinates are:
(a) (Dj=2jl) H ( ; ¢ ; .
(p) (1,-2,1) ; (2,0,-1) ; (-2,-3,2) . .
(C) (ls'Egl) H ( 2
Find the coordinates of the point of intersection of
the plane 2 and the line & , if

gz?
and

L

{((%,y,2):3%x + 5y + 1ldz = 11)

{((zx,y,2):x =2 -3k, y=1+%, 2z=4 -2k, kreal)

In this chapter we have studiled properties of parallelism

and perpendicularity for lines and planes, The relationship
of parallelism for lines in space 1s reflexive, Eymmetfic; and
transitive. The same three fundamental properties hold for

parallellsm of planes. The relationship of perpendicularity

for lines in space 1s symmetric, but neither reflexive nor

trarisitive. The same three remarks applyjta perpendicularity

for planes.

(d)

(a)

(b)

If a point and a line in space are given, there are:

a unlgque line contailning the given point and parallel to
the given line,

many planes containing the given point and parallel to the
given line,

a unique line containing the glven point and perpendlcular.
to the given line, »
a unique plane containing the giv%n point and perpendicular
to -the given line. i {

|

If a point and a plane -in space lare glven, there are:
many lines containing the glven polnt and parallel to the
given plane,

a unique plane contailning the given point and parallel to
the glven plane,

L.

1.4

T
-~
[}
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to the given plane,
(d) many planes containing the given point and perpendicular
to the given plane.

Given a unit-pair, a postulate in Chapter 3 described for
us the distance between two points. In Chapters 4, 5, 6 our ,
theorems on perpendicularity and parallelism enabled us to
Introduce tne distance between a line and a point and the
distance between two parallel lines. In Chapter 9 our study
of perpendicularity and parallelism permits us to extend the
notion of distance agailn. We can speak of the distance between
a point and a plane, the distance between a line and a plane
that are parallel to each other, and the distance between two
parallel planes. :

The 1deas of parallelism, perpendicularity, and distance
play a basic role in developing a éhﬂeesdiménsional coordinate
s5ystem. In a one-dimensiocnal system a p@iﬂt is identified by
a single real number, in a twésdimensional syéEém bi an ordered
pair of numbers, and in a threendimensi@nal system b& an’Drdered
triple of numbers. The formula for the distance between two
points in space 1s a natural extension of the formula in
two-dimensional geometry. The parametric equatlons of a line
in space are a natural extensiéﬁ of’ the parametric equations
in two-dimensional gecmetryﬁ The first-degree equation in
X; ¥s 2, representing a plane in space, is a natural extension
of the first-degree equatlion in X, y, representing a line in
two-dimenaional geometry. The cagrdinage method for pr@ving
theorems or analyzing problems isgfullybas ugeful and

convenient in three-dimensional tuations asz in two.

e



VOCABULARY LIST

parallel planes
perpendicular planes
plane angle of a dihedral angle \
measure cof a dihedral angle
coordinate system (in space)
coordinate plane ‘

o distance formula (in space)

equation of a line (in space)

equation of a plane .
- /
|
Y
1,
672
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Review Problems
Chaptér 9, Sections 6 to 9

Plot the points A, B, C, and D -if the coordinates of
the points are:- A(2,-2,5) ; B(2,3,4) ; C€(2,3,-U4) ;

D(-2,0,4) .

Find thggéi%taneés between the followlng pairs of points:
(a) (0,4,5) and (-6,2,8) .

(p) ¢3,0,7) and (-1,3,7) .

Findgthe midpoint of each of the segments determined by
the pair of points in Problem 2, *

‘erte parametric equations of the line determined by gach"

peirs of points in Problem 2. /

Thgﬂéocrdinatés of the midpoint of a segment are
(8,-4,1) . If the coordinates of one of the endpoints
of the segment are (4,-1,3) , find the coordinates of .
the other endpoint of the segment.

The coordinates of the vertices bf a triangle are given

'in each of the following problems. Classify the triangle
s
“in each of the problems-.

H (G;-1;=4) H (5;‘1111) .

fi (.5?; 9;’4) ¥ (‘?;3;2) .

¥ (i{kli’u) ¥ (ulgll) *

The coordinates of three points are listed in each of
the following problems, Tell whether the poirits are

collinear or noncollinear.

]

iven four distinct points A, B, ¢, and D . 1If
AB=CD and AD = BC , 18 ABCD a parallelogram?

Explain.



O

ERIC

Aruitoxt provided by Eic:

~ 10.

g

Glven four necncollinear pointe

the midpoint of &C

a parallelogram?

is

. e
A, B, C,/ and
e

the midpoint 6f | ED ,

Explain.

X+y+z=14

Does the plane whose equation is

contain the polnt whose coordinates are (3,=1,2) 2

What 1s the intersection of the

whose equation 1s 2x - 3y + 2

Describe the following: [((x,y,z

Xy~

6

)y

plane and the plane
9 .

- 5 .

What 1s the equation of a plane wh@seiggints are
equidistant from the endpoints of a line segment with

coordinates (-2,-4,7) and

(4,5,1) 2

M .18 the midpoint of an edge of the rectangular solid

shown in the figure below,
Prove by means of coordinates
that MB = MC

-
-
=
,"g‘g

S PN g
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L REVIEW PROBLEMS
& - i
= Chapters v-9
Write + 1f the statement is true; 0 1if the state-
e~ ment 1s false: - -
1 The measure of an exXterlor angle of a triangle 1s
greater than fthe measure of any interior angle
of the-triangle
2 Two antlparallel rays are dlstinct
3. The angle opposite the longest slde of a triangle is
ptie angle that has the greatest measure
y
s - = -
4, A set of parallel lines intercepts congruent segments
E on any transversal
N ST BC, then AB ¢ AC
W
N
Yo, There 13 a triangle whose sldes have lengths 351, 513,
~ and 135.
. N ]
7 Two lines are parallel 1f each of them i35 perpendi-
cular to the same llne i
o) Glven two lines and a transversal of the lines, if one
pai?ﬁmf alternate interior angles are congruent, the
other palr are alsb congruent, ‘
9. Glven two intersecting lines,and a transversal Of those
N ] hy .
* lines, no palr of corresponding angles determined by
- the given transversal are congrueant
4
“10. The bisectors of a pair of consecutive interlor angles
are pa rallel
11. At a polnt oen a 1line, there are infiﬂitelj mﬁhy lines
perpendicular to the line, )
12. The distance between a line and a polnt not on the
line is_the length of any segment connectlng the
point and the line.
13 The planes which contain the respectlve faces of a
right Jdihedral angle are perpendlcular.

ol
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15.
10,

17.

If two angles of one triangle are congruent resgecﬁiv;
ely-to two angles of another triangle, then the third.

angles are congruent,
&

The acute angles of a right triangle are complementary,
An exterior angle of a trilangle ia the supplement of
one of the interior'angles of the triangle.’

One of the angles of a rigfht triangle may be an ob--

tuse angle.

ng{fight triangles are congruent if the hypotenuse and
a8 leg of one are congruent respectively to the hypoten-

&

use and a leg of the bther,

If a line’ intersects one of two parallel lines, 1t

intersects the other.
I

Two lines that are equal are not parallel.
Any two consecutive angles of a pafallelogﬁém are

supplementary.

In A ABC, if‘lem.,L,:A = 50 and mlB = 40, thens BC
13 .the longest sldé of the triangle. -

If x, y, and z are three lines such that x || ¥
and y || 2z, then x || z.

If x, yi and 2z are three lines such that x | y;
and y | z, then x4 z. ‘

 The contrapositive of a statement 15 logically equil-

valent to the converse of the statement,

A triangle has a right angle 1if the. lengths of the
sldes of the triangle are proportional to 7, 24, 25,
If one palr of opposlte sldes of a quadfilaté}al are
parallel and corfigruent, then %he quadrilateral is a
psrallel@gréma , ’
Ry

'.

‘The length of the dlagonal of & square can be found by

multiplying the lerigth of a side by 2.
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29. " A dihedral angle 1s the union of two halfplanes.

30.

34,

35.

37.

38.

39:

Given three distinct coplanar parallel lines and twé

4

distinct trangversals, the segments formed on one of

the tramsversals are propor
+ing segments formed on the other transversal.

In A ABC,

tion

if mlLA < mLB,

then

AC { BC.

and 31, the trilangle 15 a right triangle.

"If the lengths of the sides of a triangle are

EQ, 21,

al to the correspond-

If the measure of one.of the aﬁgles of é right triangle

is 30
angle
tenuse,

, then th& .length of the leg opposite that
i3 equal to one-half the ‘length of the hypo-

Given a correspondence between two triangles, if two
]

' angles of one trlangle are congruent to the corres-

ponding angles of the other, the correspondence 1ls

aasimilarityg_‘

If a, b, ¢,

triangle, If k 18 a pgsitivé number,- and 1If
ak, bk, ck, are the lengths of the sides of another
triangle, then the triangles are simllar.

Given two triangles,

congruent to an angle of the other,
one triangle are proportional to-two sides of ‘the
other, the triangles are similar, '
If the legs of.a right triangle have 1
and if the hypotenuse hasxlength ¢,

b = (¢ - a)(c +a).

are the lengths of thé sides of one

if an angle of one triangle 1s

and two sideés of

1
5

Jgpechs
‘ then

a

and

Glven a correspondence between two trlangles, if?,twc
angles and a side of one trlangle are congruent to

the corresponding parts of the other, the corres-

pord®€nce is a congruence,

)

R
.1

a

Given a correspondence between two triangles, if two

sides and an angle of one triangle are congruent to

the corresponding parts of the otMer, the corres-

pondence 1s a congruence,
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4z,

43!

Ly,

he vertex

Two 1sosceles triangles are congruent

r..'f

angle and the base of one triangle are co E
respectively ta the vertex angle and the bhse of the
other.

Any two rectangles are similar,

if (a, x) = (x, b), then ab = X2,

Xcahgruent convex polygoﬁs are slmllar with a prapérg

tionallty constant of 1.
Any two equilaﬁeral=tria§glgs are simlilar.
- ,
If x and y are two distinct positive numbers,
1f the lengths of two sides of a rectangle are x and

Y, and 1if the lengths of the sides of a second
rectangle are X + 0 and y + O, then the rectangles

-are simlilar,

If a, b ETE$pr§pQPt10ﬂal to e, d with propor-
tionality constant k, and ¢, d are proportional
to e, f with proportionality constant g, then
@, b are proportional to e, f with proportion-
allty constaht 5 . '

. B
If a line intersects the in

a trilangle 80 that carrespgn‘ing segments are propcfg
tlonal, the 1line 13 paralleljto the third side.

teriors of two sildes of

The ratio of the perimeta@e of two similar triangles
is equivalent to the ratio of any._ palr ‘of corresa-

ponding sides,

3 X
If “p, 4 are proportional to a, b with propor-
b a

tionality constant k, -then

A

Any real number 1is permitted to be a constant of
proportionality.

The lines which contain' the respective bisectors of
the angles of a triangle aré concurrent at a point
equidistant 'from the vertices of the triangle.

| 3



.53,

b4,

55.

56.

58.
59.

60.

62,

63.
64,

67.

e
s

Any pair of gppésite angles of an isosceles trapezoid
are supplementary.’

If the diagonals of a quadrilateral are perpendicular

If the coordinates of a quadrllateral ABCD are*
qgadrilateral is a parallelogram, )

=

The points (0, b, -2), (3, 4, -2), and (1, 4, =5)
are the vertiles of an equilateral triarigle.

If two segmeﬁts are congruent, their projectiaﬂs

on a given line are vongruent. '

If a plane 13 parallel to one of two distinct parallel
lines, it 1s parallel to the other,

atven £(-1, 0), B(v, 2), c(4, 5), D(-3, 3),

then AB || €D.

The distance between any two distinct points in a plane
is a positive number. -

The intersection of a line and a plane is a point.

If a diagonal of a convex quadrilateral separates 1t

parsllélogfém.

If each palr of opposite sides ‘of a guadrilateral
are congruent, the quadrilateral is a parallelogram,
The opposite angles of a parallelogram are congruent.

A diagonal of a parallelogram bisects two of 1ts

angles.

The plane whose equation iz x + y + z = 4 contalns
the three points (1, 2, 1), (3, -1, 2), and (5, -3, 2).
The perimeter of the trilangle formed by Jjoining the
midpoints of the sides of a givén triangle 1s half the
perimeter of the glven tiiéngle. (

'If the diagonals of a quadrilateral are perpendicular

ajhd *ongruent, the quadrilateral 1s a rhombus.

679l £



69.

?E!
73.

Th,
75.

‘given line,

If a line intersects one of two parallel planes 1in a

single point, it intersects the other plane in a

single point.

If the coordinates of points A, B, C are (b, 9, 11),
(0, -1, =4), (», -11, 1), respectively, then A ABC
1s a right triangle.

[(S‘E; ‘- X = IQ'L”‘:.i yi
the point (3, -1).

-3 R
1-2k, k. 12 real} contains

((x, y): xe=1 - 3k, y= 7Tk, kis real} and
((x, y): x =9k, y =1+ 21k, Kk is . real) are

parallel lines.

[(x: y): x=3k, y
ing through the origin.

3-k, _k 1is real) 1is a ¥ine pass-

If each of two planes ls perpendicular to a third
plane, they are parallel to each other,

The projection of a line into a plene 13 a line.

If a ray in one face of a dihedral angle is perpen-
dlcular to the edge of the dihedral angle, the line
c@nﬁaihing the ray 1s perpendicular to the plane
Eantaining the other face of the angle.

i

Through a polnt not in a plane, there 15 exactly one
line perpendicular to the plane.

If a plane igﬁjfsects two other planes in parallel

lines, respectively; then the two planes are parallel.

If a line 1s perpendiculasr to g plane, then any plane
containing this line 1is petpendfcular to the given

plane. :

A quadrilateral with three right angles 1s a rectangle.
Iir A (-2, -4, 7), B=(2, 2, 3), and C = (4, 5, 1):
then A, B, and .C are colllnear.

{(x, ¥y, 2): 2x - by + z = 4} contains the point
(3, 2, -1).

There are infinitely many planes perpendicular to a

{
#



83. 1If a plane is perpendicular to %ich,af two lines, the
two lines are coplanar.

84, If each of three noncoll nea} points of a plane is

) points P and Q,

then PQ  1s perpendicular to the plane.

85, If each of two planes is parallel to a lihe, the
planes are psrallel to each other,

86, If eéach of two intersecting planes is perpendicular to

" a third plane, then their Iine of intersection is

perpendicular to this plane.

87. The 1ﬁgérséct1ah of the xz-plane and.the plane whose
equation 1s 2x - 3y + z = © is
((x, y, z): 2x+ z =06 \and y = 0},

88. If A, B, C, and D are four distinct points in
space such that AB ® CD and BC ® ED, then ABCD 1is
a parallelogram.

89. "((x, y): x

90. ((x, y): x =2 + 3k,

line having the slope

u]

31{! y =

k, 0< k< 1} 1s a segment.

2k, k 1s reall 1is a

91. {(x, y): x=3+k, y=1+ 2k, k> 0] 1s contained
in Quadrapt I.’ - '

3k, v =2k, k 1s real] and
3) intersect at the point (3, 2),

92. ((x,'y): x
((x, y): «x

93. The intersection of {(x, y): X
and {(x, y): x=2h, y=3h, h 1is real} 1s the

origin. '
g4, {(x, y): x= 3k, y =2k, k 1is real] 1s perpendi-
3k, k 1is real}.

cular to ((x, y): x =2k, ¥y
95. If two angles have the property that the sides of .
one are antiparallel to the corresponding sides of

*

the other, the angles are supplementary. ' B
96. If ABC 1s a right triangle and OD- 1s the altitude -
to the hypotenuse of the triahgle, then A ABC 1s

simlilar to A ACD. o -

68l &,

3k, y = 2k, k is real}



97. The union of the set of all rhombuses and the set of
all rectangles is the set of all squares. Y
98. If ABCD 1is & quadrilateral and EE = TD and AD || BC,
© then ABCD 1s a parallelogram.
99. If ABC 1s a right triangle and CD 1is the altltude
to the hypotenuse of the trianglep then the square of
the length of €D 1s equal to tHe product of the
length of AD and the length of| DB.
100. The altitude of an equilateral triangle each of whose
sides has length s 1is g—«/Eﬁ

|
-
¥ -
7 /
J
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’ ) ' Chapter 10
DIRECTED SEGMENTS AND VECTORS ‘
. 4
10-1. Introduction. |

Many;of the quantitlies whilch we encounter in life afe
Expressions of thig'scrt, such as 5 inches, 20 dégrges,
75 cents, 2 hours, 10 cubic feet, or 15 milles per
gallon, can be represented as the dilstance between two points

scalars. On the other harmd, there are numerous quantities
auch as digplacément, velocity, accelératign, and force, for
adequately speciﬁiéd!

Consider the simple 1dea of a displacement, for instance.
If we are told that a boy walked two miles, we really don't
‘know very much_aboﬁt what he did unless we are also told the
direction in whilch he walked. Even if we know that he waiked
two miles northeast, =ay, we don't have a complete description
of what he did. He might have started at school and walked two
511&5 northeast, or he might have started at hls home, or any

- number of other polnts:

-

" Sehool

Heme

683l i)



S
' WEEhave an adequate description af the boy's walk only if we
know e
(a) "the point from which he started,
(v) dhe direction in which he walked,
(c) the distance he walked;

ulvalently, if ﬁe know
. "(a) the point from which he started,
(b) the point at which he ended.
Speaking in somewhat more abstract terms, it agpea?s that
a displacement can be represented in eilther of two Ways;

v "(a) By a segment extending a given distance in a given
1 ' direction from a given point.
0 (b) By a pair of points, ome identified as a starting
7 poilnt, the other as a terminal_peint.
A segment, as we defined it in Sectioﬂéaaé, is just a
. set of pglnts*ﬁnd has no direction associated with it.
Similérly, the set consisting of the endpoints of a segment
has no direction assoclated with it. Henee neither the
segment AB nor the set [A,B) 1s adequate to, describe the

displacement from A to B because neither distingulshes
between this displacement and the dilsplacement from B t A,
which 1s quite a different thing. Clearly, we can specify

the displacement which starts at the point A and ends at

the point B by using the ordered pair of points  (A,B) .
_However, iIf we wish to deécfibe a diépiasém&nt by means of a
segment we muyst extend our original definition:

DEFINITION. A segment 1s a directed segment if
and only if one of its endpoints 1is designated
as its initial pointj or origin, and the other
endpoint 1s designated as 1tsife;m;nal point or

terminus.

-




~10-2
Notation. The symbol ( B) 1s used to denote the
directed segment whose origin is A and whose
termlnua 18 B . In a drawlng a directed segment
is shown by placing a half arrow-head at its terminal
point, thus:
S s *’g e ———— L
A B -
DEFINITION. Directed segments whlch have the same
1nitial\§;1nts and the same terminal points are
saild to bé equal.

i

In the next sectlon we develop some of the properties of
directed aegments, using ﬁhe concept of displacement to motivate
our work. Then in later sectians we 1lntroduce the important
generalization of a dire§ted segment known as a vector,

10-2. Directed Segments. : .

In the last section we int?@duced the idea of a directed
segment by considering the displacement of a single object
from one point to another. Let us now consider a .pumber of
gbjécts which move equal distances in the same directilon along
parallel lines, as for example a group of planes flying in
formation or the linemen of a football team charglng down the
field together 1n theilr pregame %grmeup:,




10-2 .
The displacement of the planes, in the first case, and of the
players in the second, are all different Eecause no two begin
and end at the same points. . None the less, in each of the two

- cases there are characteristics common to all the displacements;

specifically, the displacements take place in the same direction
along parallel lines and 1nval§é movement fhraugh equal distances
In many applicatiaﬁs 1t 18 convenient to be able to refer ’
concisely to difegted segments with these characteristics, and
to provide for this we introduce the following definition:

DEFINITION. Two directed segments, (A,B) and

(C,D) are equivalent if and only if AB = CD
and AB || CD .

' (We suggest that you review Section 6-7 regarding parallel
s -

rays at this point.) Thls definition is illustrated in the -
following figures:. ’

figures, are tp

equilvalent?

= e

(5,B) ¢ (&5D)

v




B : = ' = R
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If you understand the détzfitian of equivalent direéted
Eegments you should have no trouble verifying the fallawing

e By

: EtateméﬁtE . SR S -

%rapertiés of Directéd §§§ment Equivalgnce _‘f S O
l. Directed Eagment equivalence 15 reflex%f§$ E
(A, B) = (R, E)

1
'

2, Diregted segment equivalenge 15 aimmetrici
If (A B) + (&,D) , then’ {c D) (A B) : -
3. Directed segment equivalénse is transitive:
1f (K5B) = (G,D) and (c,n) (E,F) , RS
then (A,B) = (E,F)

A fundamental property of directed segments is glven by
the following theorem: ’

THEOREM 10-1. There is one and only one directed segment which
ig Equivalent to a given directed segment dnd has 1its

origin at a given point.

Proof: By definitlon, the directed segment which has its
origin at P and 1s equivalent to (K;B) must lie on the
unique 1ine _Z , which contains P and is parallel to “AB .

- Moreover, the required directed segment must lie on the unique
ray of gg which has P far 1ts endpoint and 1s parallel to
AE Finally, on thls ray, the terminal point, Q , of the.
réqu;red directed segment must have the property that AB = PQ ,
and by“the Point Plotting Theorem, there is one and only one

Hence the theorem 1s proved.

neturn to the idea of displacement for a moment, aﬁa
conslder the \problem of getting firom one point to another in a
celty, 1t 1= clear that only rarely can ané'go diréctly from )
one’ point to/another. Usually, Because of the buildings which
are 1n the way, one must walk do one street a certain
distance, then turn a corner, and continue on another 5tre§£

If we

to reach his destination.

)
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. ' Instructions for géttiggsggiund in a city reflect this fact,
. and we are all accustomed to being told to go so many blocks
in one direction and then go so many blocks in another to get

ta;some desired address.

The observat;cns suggest firgt of all, that any dlsa
placement can be achleved in various waya by a successlon of
‘other displacements.  In the second place, they suggest that
it may be convenient when speaking of dispiacements to use a
cosrdinate system 1n describing simple diaplacements which
together produce a glven displacement - For 1ngtance, it 18
clear from the following figure that the displacement from the
point A(2,1) to the point B(7,4) can be achleved by first

performing the displacement from the initial point A(2,1) to
,i q:-"* ' i B -

e Com ¥




)’ n

the point C(7,1) and then continuing with the displacement.

from C to the terminal point B(7,4%)-. It cén also be ﬁ,‘

accomplished by first performing the displacement from the
initial point A to the point D(2,4) and then continuing =
with the displacement from D to the terminal point B . A
displacement to the right of 7 - 2 = 5 -and an upward dis-
placement of 4 - 1 = 3 ,. regardless of the order in which
they are pgrférmed,vthus combine to give precilsely the dis-
placement from A to B . In terms of the given coordinate

' system, the numbers 5 ’agd 3 assoclated with the displace-
Parallel to ray OX  and the ray 0¥, respectively, fre
amentally rélated to th

A

LJ.
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. DEFINITIONS. If Py(x,y;) and_ By(m,,y,) ave ..
points in the xysplane the number Xy - xl"is | "
’ _ ealléd the x-com ’nengiaf (P PE) and the .
) ﬁ%umber Yo - ¥, 1s called the zscqmppnegt pfi
. The ordered pair. af'numbéfs (x5 = % Yo ~.y1].—
) # ;ﬁ;;,
are called the camponents of (P P,) . (Note
) the use of brackets to indicate campcnents ) {;5

Althcughga giben directed segment. determinés a unique
pair of éompopentsl it 1s not true that a given pair of . .
éomponents debermines a unlque directed gsegment. For instance,-
——————af-We have-just seen,. the points _A(2,1) and B(7,4) ) \
determine s directed segment with components [5:3] , but 20
do the points C(4,2) and D(9,5) W£§§ is another directed’
segment with components [5,3] ?° There are many more, but it
is possible to derive the following theogem.

e o . N —_—
THEOREM 10-2. Two directed segments (P 7, ) and Q;a,Eq)

are equivaleht 1if and only if they have_the same
components-,

: : : g
To establigh thfs theorem, wWe must show two things:

e . ;e
JIf (P1,EE) and (EE’PA) have the same components,

b

théy are equivalenti

£

2. If (Pl,P ¥ and (PB’?L) . are equivalent, they

nave the same components.
- &£

To prove these assegtibns requirésfthe consideration of’
. two cases, according as the‘féur points P, s Py » Py, P,
- are or are not collingari To save time, we shall glive only
the outline of the pfgof in the general case where the points
are noncollinear.

i ,_lin'\
=+ L oJ

- - 630
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1. Let the coordinates of Py Py, Py, P, beiq
~" . respectively;

J i v
(3{1;31); (-}EEQYE)S (3{3:3’37)13 "(xq}Y.L;) - Then the
hypothesis of the first part of the‘thégreﬁ is that
e T X
f Xp T X =X - ?3

=

X)= X%y - X3 and y,U-y) =y, - ¥,

7 = 0. then the lines "‘?l'?g‘ and
are vertical and ﬁéﬁcéhparaliél. If x
then byj@%ﬁisi@n

4

2
2 1"1,; Xy = %5 fé 0,
o : -;.
- Aoy v - g

1 Xy = Xg,

xz'aa

_ 'PBPA are equal and. hence,

are paralilel. In every case, then,

_ when the given points are not llinear, PIPE 1s parallel to
» ﬁgﬁh . Now from the hypothesis that——— e e e
*g T ¥ T Xy - Xy and y, -y
we obtain at once

Y1 = YL‘ = yg ’
= N _ ~ B - . ¢ _ N _ \\
. X3 - X =X - X5 and yS ¥y f Yy yg . ~
-Hencej by an argument analogous to the one we have Just gilven,
it follows that PlPé i3 parallel to :

TPy

Fa(xq,¥4) - - '
(PP Il’FBPZ) )

(PP5 |I7F,P})

oy’
vm‘
T
o e i
i

e
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Thefefore, ir Pl 2 PB’ P4 are naf collineér,rthey form é
parallelogram, P,P,P;P) . Hence ) -
T T Pafo = BgPy N
and P, and Py, 1lie'on thé same side of the line i 3
. .2, ¥ : 1
Therefore (Pl’PE) " and (PB’PM) are equivalent, as asserted.
P 2. Now suppose that (F.P,) + (F;,P,) . Idt
> Py = (x5 - Xy + Xy, y2'= &l + ya) . Then the componehts of
e W <.
. E(xg = xl + QE ) 3 : (YE yl + yB) - ¥4l
2. :W,,,,,”J,hﬁ , S < LA S
or . i i - v
T, - ; ] |
- B .- Bt A T ‘ e
et el » . .
But these are also the components of (EQ P,) . It follows, <
: : then, from the first part of this thebre (which we have proved)
f that ' ~
%
(PB:P ) 13 2) . '

But the hypothesls of this'part tells us tﬁat
hY

(F58,) = (75 F)

P F,)
' Because of the transitivity propérty of directed segment
equivalence we conclude that '

—m e )
(EBJEE) = “'(PB: P),l,\"
By Theorem 10-1, it follows that P5 = %E}; or
« . If + xg = Xy and- ygr¥iy1 + yB = yd R
or ; & : -
= ? =
e Xp = % =Xy - X3 and ¥, -y =Yy - V3
This camﬁhetes the proof of the theoremn. \

ASgéﬂ immediate chsequence of this last theorem, tagethéf




i lQ—E : L= . o )
THEDREM 1023, 1If ‘P, and 'PE have coordinates (x,,y,) and'
(xE,yE) » Peepeet;vely, the length of eny directed
segment equivalent to (P 2) is .

Y T 2 .
4 ‘ 4/(12 = ——1) ’F_(Yg = Yl) »
J ’ .

We heve, in effeet defined equivalent direeted Eegments=

regardless of theilr 1nltiaﬂ peinte Anothef intereeting class .
of directed eegmenteweoneleteaef those having the same initial
L~ point and direction, regardless of their lengths.. This leads
to the ldea of the product of a directed eegment<end e number,
——_Which 1s_ medetpreeiEE in the fellewlﬁg definition: ,;T,eﬂm;_e_"ea__,t

%

DEFINITION. ' Let (ji%ﬂ be any directed eegment and
let k be any real number. The ﬁreduet (A , B) ,

is the directed segment (A,X) "wheré X isthe . '~
point whose coordinate 1s k 1in -the coordinate :
eyetem on ifﬁﬁ, with origin A and unit point B .

PEFINITION. The directed segment -1 - (K;B) = - (&) B)
is called the opposite of. the direeted segment (%,B)

The following figure illuatfetee the multiplication of a
directed segment by the numbers 2 and -2 : . )

. & ) e
(k=2) - (k=-2) S
-—— — e e -t Y A S
© A B - X X A B
_ " AX=2-AB : . " AX= 2AB= ~(-2)-AB g
= : :
We note that, 1f k >0 then X is in AB; if k <O,

then X 1s in.the ray opposite to AB ; df k = 0 , then' ,
X = A- . This last result introduces the possibility of (A,n) ,
a zero directed segment. '
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et As we might expégt, when a° diteeted segmant is multiplied

'S;\V? by a number, k', the camponents of the directeé segmént gge

s both multiplied by the Eame number. More precisely we have the
follawirig t.heax‘eql oo B T -

=

e

.

THEOREM 10=4, If the coordinates of ' P, and P, are (xl,yl)

iy
Carid (xg,yz)s, resﬁeetivelyf the én the components Df thé

'directed ségmént (E P ) which is k times thé directed
segment (P 2) are l{(xE - %) and k(y, - ¥;) .

o 7 o ;_W._ili = ] o o . )

~ Proof: Let (Ping) 2 [x3 %X, ¥y - yll . -

R Eagthe@c .Palnr. ThEOTEM -« o g o e e e

1l
I

XE X

1+ k(xg - %) and yy =y, + k(yy - ;)

or

Xq - X) » k(x, - xl) and y, iiyl = g(yg - yi) .

A f— o .
Thus (P,P3) = [k(xy - xp) , k(y, - yy)) .
~
Problem Set 10- Ea

l1.. A 'and B are two points. List all the directed line
segments they determine. .. o :

(3™

A, B, C are three points. List all the directed line
segmenté they determine.: g :

3. In the figures belaw list the equivalent directed 1ine
segments. -

A B c D

G

~ FIGURE o e FIGURE b

\ c F '
)
C J@\ o \
s ] B8 DO :

FIGURE ¢
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4, If A, B, C, B are distinct points and (é,E) + (G,D) ,
show for each of the follawiﬁg cases that (K,¢) = (B,D) :

(a 4, B, C, D are callinear in that order.
. (5) A, C, B, D are collinear in that ordér.
(¢) No threé of A, B, U, D 'are collinear,
(d) why did we not ccnsider three points éallinear )
“in Part (c) °? _ '
(e} Why do we not consider A, C, D, B collinééivin
that order? ) w{
5, If B, F, G, H are distinct points, (E F) (Eéﬁ)’
’ and a line Jgjiﬂ not perpendicular to“iﬁfﬁgand does ngé
intersect BF , show that the projections of (B,F) - an !
--—»~-»-~*—»—~{ﬁ})—-- o~ - are -equivaTent “directed Segments: ~Letthe
projection of B on J? be B' , and consider three

cases:
(a) G 1s contained in ~EB'
(b) G is in the same halfplane as F with respect
' -— :
to BB' . :
(¢) G 1is in a different halfplane from F with
respect to BB!
6. Determine k so that each of the following statements’ {
is true. - '
7
G -
Uy JR. _ — . J
(a) (A,C) = k(A,B) o (£) (A,D) = k(A,F)
(p) (AE) = k(A,B) (g) (A,F) 2 k(A,B)
(e¢) " (A,F) 2 k(A,E) . (h) (B,C) = k(A;D)
(d) (D!A) = k(A F) (1) - (E:C) = k(AsF)
= e
(e) (A,E) = k(A,C)
8.
.




. . ¢ ' ) ! - : .
_ : , N
10-2 )

7. A, B, &{» are call;near points.: Find-r &u
(A X) : r(A, B) and s such that (‘E,x);-;

(a) is the midpoint ;
' (b) 1s the midpoint of segment AX ;
) (e) 1s the midpoint of segment BX ;
(a) is two-thirds of the way from A B
(e) of the way from A to X};
B X

1s two-thirds
T (£) of the wgi fron B to X .
X 13 the midpoint of AC and Y )

1s two-thirds
8. 1In triangle
Determine Kk 8o that each of

L

o o»d >

=

ABC ,
is the midpoint of BX .
the followlhg statements is true. )

(B;X)

(a)" (B,

(b)

(e)

(a)
(e)

(£)
(g)

(B,¥)
(7€)
(K;0)
(5.X)
(C5K)

(5;B)

2 k(BY)..
= x(5;X) .
+ k(CT;R)

L k(T7X) .

: k(GA) .
= k(KX) .
2 k(BY) ..

" 9.. In the pardlTelogram ABCD , E 1s the midpoint of D
.~ and  AE 'trisec t.g *ﬁ 'at F as indicated below.
| C LT e

I g _\\f}l'

so each of the followlng statements 1is true.
RCB}DQ

‘ Determine k
oo (a) (5;F) = k(5,B) . (e)

fhe

(F,B)

(b) (D,E) = k(C,D) (£) (5B = k(D50 .
(c) (B,D) * k(5,F) (8) (KD) = k(GBY. .
(d) (F,B) = k(P,B)

e " o
696
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Having now dlscussed briefly the product of a directed
segment and a number, i1t i1s natural to ask 1if the sum _of two

directed segments can be defined. Sincé the displacement from
B to C following, or in a sense "added to," the displacement

10-2 - « .

from A -to B accomplishes exactly the same thing as the

displacement froMl A to C , N
e O .

it seems nptural to write
N — —_— ., e
(A,B) + (B,C) = (A,C) .
However, as a possible definition of the sum of twagﬁirecgédé
segments, this expression has serious limitations, for it

of the first 1s the origin of the second. With the idea of
equigglént directeféiegmentsVEfkéind, we might go further and
say that to add (C,D) to (A,B) where B and C are
different points,/first determine- the unléué directed segment,
' (é:fﬁ) , which 1is\equivalent to (ETE) (Theorem 10-1) and
then add 1t to (3?%) , according to the above geometric
definitions. ‘ ’ -

]

D




"10-2
This procedure ﬁermlts us to form the 8um of any twa dlrected
segments. ngever,atﬂg Pesulting praéess is a very curiaus

- typé o additién, for, as the folléwing flguré shows,
(A B) + (C D) 1s not the same as (G;D) + (A,B)

From the preceding figure, it appearg that althaugh ]f
[}
(A B) + (C D) is not the same as (C;D) + (A,E) , these two
directed segments are equivalent. That this is actually ‘the

case follows from the next theoreﬁ:

THEOREM 10-5. The components of (Fl,F )+ (PB,PA) arge the

—y _
ums of the carresp@nding components of (Pl’"g) and
E‘k ~
(P3,Py) . &

. ] .
To prove this, let theefonrdinates of Pl’ Pg, PB’ Py be

M

(x95¥1)s (x5,¥,), (EB,yE), Xy,¥y) » respectively. Then the
égﬁpanenfs;of (P ) are :[xg =X, Vs - yll and the

_components of (Egng) are [34 - X3, ¥y - YBJ . Now to add
. .~ —_— e _ -

,(PEQPM) to (Pl’PE) we must first determine the directed
segment, (E@;Pq') which 1s equivalent to (PE’PH) . Since

equlvalent directed segments have the same components
¢ (Theorem 10-2) it follows that the components of (PE’PH') are




=

10-2

L o , ' " P (x4-x3+x2,y4-y3ty3)
. ) . Pa(x4,y4) ' ‘ 4 .o
f
~
YR -/
. Palx2.y2) 7
x[f E'i =X, - X, and V' - Y. =9, - ¥ - -
, p = Xy - X3 and y), Yo =¥y - 93 -
— Hence the caardinatea of FA are
| - . 7 3 I = - i *
Xy Xy ;3 + KE' and ﬁy% = yu> eyB + y2 1
Therefore the componenta of the aum
. ;—;’7735'— s - fammmmdmy s - o e e emm s e e i
- - R B oy, ) o
S (%) - x5 + xé) - % o= (xy - x3)+ (%, - xl) )
and )
& . 7l o ) ) B i T C
(YL; = YZ + yg) = yl = (Yu = YS) + (yé = Yl) .
o = i . —
- Clearly, the cqgmponents of the sum, (Pl’PE) + (PBPPM) are
the sums of the corresponding components of (P s P ) and
—_— J 1
(PB’PL) , as asserted. | - ¥ }
— N
From this theg?ém, it is apparent that (Pl’PE) + (PB’EQ)
and (PB’PM) + (Fl’PE) have the same compdnents. Hence, by
! Theorem 10-2 they are equivalent. Thus we have the following
theorem:
56 P,P.) + . and 5P, & ?geé%' are
g‘I;EDREM 10-6. (P;,F,) + (EE,EA) and (PB,PA) * (F,P,) are
equivalent directed segments. ’ T
4
I . éf‘! ?
PR x L 699
) . - o
i
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( . . The following theédrem 1
Theorem 10-5;
o ) oS f SN A N
THEOREM 10-7. If -(P,P,) £ (3),Q;) and (F;7,) ¢ (&5,Q,)
] o 7 gé‘ E!B;i - s 7?""‘ SO b
then (P,P,) + (P;;F,) = (Q,Q) + (Qa,%) ..

-y -‘F T . , "
On the basis of tke - ‘preceding discussian, 1t should oceur
to us that instead of fo 4 our attention on directed
’ segments, it might be*bette? to consider as fundamental
entities the various sets of .equivalent directed segments.
. This 1is really not 'difficult to do, even though each set.
f ' contains infinitely many members, for according to The rem 10-2
I!' each such set is cha a;gerised by a unique pair of cozganents,
and canversely. other wards, there is a one-to-one corre<

' &

each set of equivalent directed segments Mcreover, Af %e

define the sum of two seta of equivalent directéd segments,
.8y and Sg,: to be the unique set which contains the sum oi)

any dirdcted segment from Sl and any directed segment frc
agggg » we have a process of addition in which, by Theorem 10-=5.

ant:i@heorem 10-6, 1t in\tme that

Sl + SE = SE + Sl
S —

« In the rest of this chapter we shall adopt the point of
view we have just described. Sets of equivalent directed
segments, or the ordered pairs of components which are in
!DDEEtGiGﬁE corréspandence with these seta, we shall eall.
vectors. A diregted segment is thus not a vector, althcugh it

v clearly determines the vector consisting of all the directed
segments equivalent to the gﬁgen one. (Each directedgsegment 1is
thus a representation of a-vectcr,,invggiewhat the same way that
each member of g set gf_equivalent fractions such as

; - 'l 2 9
' s\ /‘\§Jﬁ;%lfgl

ies a representation of a unigue real number.
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LS ’ - .t . K

A

*

—In the néxt se:tian we shall 1ntrgduce formal derinitians

3
fsbectars and their praperties chwever, these are all
motivated by the properties of directed segmerits which we have

discussed iIn this sectian. If you keep the latter in mind, the N

work ahead gﬁgyau should seem a natural extension of what we
have alweady done, - o '
-
4 - ,

=

Problem Set 10-2b

You may recall from the algebra of real numbers the
following definition: ) )

DggingIoﬁ; If a, b are two real numbers, then
a - b 1s the real number ¢ “such that b + ¢ .= a

The operation of fipding c¢ Where a, b are
given 1is subtraction. :

=

Using the above definition as a gﬁlde write a definition

,far_theAgubtractign of two dirégtédiliﬁg segments. !

In triangle ABC c’
L] A e C
() . (5,B) + (BC) = 2
(b)) (B,A) + 2 = (B¢C) ‘
(e) 7+ (BR) = (B;C)
(@) 2+ (&D) = (K1) : \
(e) (KB) + (BC) + (TR) = 2 - ;
(f) (BA) + (KC) + (5;B) = =2
(8) (GR) + 2 = (5B )
X
e
= g ~ —

I3

L



lD_:E 7 * kY

- L] -

3. In parallelogram ABCD

- ~(a) (EB)
o . P “4
(b) ~(A,D) =. 2 -
. —_— e N
(c) (EB) + (BC) + (TD) = 2 f
(d) (A,D) + (B,B) + (B,A) = *
- . S . —a s
%. Given two directed line segments (&,B) , (C,D) and
‘ horizontal 1ines .¢ ‘and 451 , s indicated ,below.
. . B ! - e

)

?

+

£

, i gg .
Find.gfaphigally. -
(a) (EB) + (5,D) :
() (©D) + (KB . ‘ |
7 A WEathiS true .aboutthe two sums?
, 5. Given (KB) , (T;D) , (E;F) ~as, shown velow; £, 421 ,

JZE are horizontal lines. ) Q¥§§? ’

Find graphically
JRa—— N
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« «b., ILetting 1.

miles due north then

5g

- What appears to be true of

inch represent
s - 7 . - i = .
the resultant displacemént if an automobile tiavels , &

7. ABCD 1is a parallelogram.
AC 'amd’ DE trisgct each other at F
B b

E

- *(}f)' (5B) (@® + &) -

(&) (75 + @B)r &)

2

the two

miles, find
J

this by adding the‘ sum

o

sums) in (d) and (e)?

5 milles no;theastg

158 the midpoint of

v (a) (DR) + (KE) = 9

(b)) (BE) ¥ 2(5B) = (

,(G) %(ffﬁ)
(@) 2(&, %)

(e) 2(K;B)

W ,
10-3. Vectors,.

—_
A,F)

— - ?_gé)

+ 2(A,C)

+(ET) = (R,

f,_:'_ 1

[l
o

)

v 2(E;D) = 2K

e

AB ;

g?aph;call¥
& 3

Motlivated by our discussion at the end of the preceding

definitions.
DEFINITION.

DEFINITION.

Any real number 1s called a scalar.

A vector 1is an ordered palr of real -

numbers, called the components of the vector.

I



10-3
1
Notation A vector will often be denoted by a
single lower case letter with a half arrow above
it, thus: W . If a and b are the components ~3

of a vector we may also denote the vector by.the

’ symbol [a,b] . 1If the components of a vector ~-
- are the same as the components of a directed
seéﬁent (P Q) we may denote the vector by the
symbol PQ . ' , ,
: @ : ‘ :
- ‘We should note that square brackets, rather than parentheses

are used in the Sygbol [a%b] s fpr the vector whose components
are a and b .- This-1s done to avoid confusion with erdered
pairs of real numbers such as (x,y) ~which are the
coordinates of a point. We should also be careful rot to
confuse the symbol, ?6 ,,&n;the v§552; determined by the _
point P and Q wilth the symbol, PQ , for the ray determined
by P and Q . The former has only a half arrow above the
. letters; the latter has /a full arrow.

DEFINITION. If O =Ja,b] , the number #a® + b° .

s called thF magnitude, or length, of .

Notation. The mégnitude, or length, of by is
denoted by the symbol |T]

DEFINITION. The ordered pair [0,0] 1is called
the zero vector.

fa,b] and if k 13 any

"DEFINITION. If 1
real number, the vector

=

[ka, kb] = kla,b] = ki@

is called the product of tha vector u and the

scalar k .

‘DEFINITION. Two vectors are equal 1f and on3¥y
if theilr respective-components are equal,

704 ?
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DEFINITION. Non-zero vectors whose components are

proportional are sald to be parallel.

of parallel vectors and the coneept of slope.

¥

Egﬁ@ﬁEﬂ ;Q;@, if P.P, and P3P4 are parallel vectors, then =

12
oal——— | a -
and PBPQ %re parallel™

"—Za - . 3
The=folla&ing simple Dutrvery important theorem iéjaﬁ
immedliate consequence of the definition of bar?llel vectors, ‘
the definition of tne product of a vector and,a scalar, and

the definition of fie mégﬁitude of a vector. T -

5 s

THEOREM 10-9. If U and ¥. are parallel vectors, then
V= ki ”

i

where

-
[z]
"z}
I
=
=
=
=
2
2
=
]
=
il

[a,p] and V = [e,d] ,

[a+c, b+d] =[a,b] + [c,d] =T+ ¥

igcalled the sum of U and V .

DEFINITION. The vector 1
the difference between U

Notation. The difference between ij and
1s written U - V .

. !
The following lmportant théarémfis,an Immediate conse-
quence of Theorems 10-2 and 10-5. '

€
%

o

ERIC
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THEOREM 10-10. The sum of the vector PlPﬁ and the vector

P3P, 1s the vector P,X where X 1s the unique poi%t

!’ — —_ ’ L1 -
# ) . such that P.X = PgPL ) . }
’ : { .
- . ‘\ .
< The "geom&@trical significance “@f this theorem is illustrated

]

in the”following figure.

' -

. ’ i A
5 ? ir =
i
. -2 . I o -
V. ) o
v Ej_ 5 = [agb]
. G
PPy = [c,d]
s \
3 ;o PX = Pgp, |
PR Py X PP, + PBPM
- I J = =
; ‘3 i ' [a + ¢, b + d]
P

Since vectors are not numbefq, there 1s no reason to
believe that they ahey{jﬁe same laws that govern the operations.
ef arithmetic. Actually the addition of vecters and the
multiplication of vectors by Sgalafs do obey the familiar laws
of arithmetic For this reason we shall merély 11st thes
pf@peftié
do, indeed, hold for Véctor“

it
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. - Properties of Vectors

—_ . . B . Pl == P
; Vv are vectors, then u + Vv 13 a vector.

ot
o |

)ty

="

=

u, V, W, are any three vectors then

(T

- 3. There exists a vector, O , such that for any végtif a
\\‘s‘

n
e

oy
o il

V) W=u+ (V+wW) . o

=] "
+

= —== ==
u+ 0=u
"4, For every vector U there exlsts a vector -u such that

U+ (=)

o=

0

i

-—= o _ N . = e
v-,are any two vectors, then u + v = v + u

wn
[
(o

= =k

, V are any two vectors and k 1s any scalar, then

iy
[
by

k(T + V) = kK0 + kv .

1s any vector, then ki = U when k =1

-
.
Iy
|
e
L

]
b
[
ot}
s
i
el
it
O
i
i
joi}
po
o
E
]
H
s
1)
=
&
o
E
2
o
D
g
[t
ks
]
i
ot
Fag
wm
o

any vec

WL
[aa}
[
el
-
[y}

any vector and h , k are any s&scalars, then’
h(k@) = hk@ = k(hid) . .
10. if u 1s any vector and RA is any =calar, then .
- Bl = el - (8] .
Property 1 13 an immedlate consequence of the definition “}
of the sum of two vectors.
To preve Property 2, let u = (a,b] , V = [c,d] , and

=
W

- = [E,f} R Then 2
(T+ V) + W= ([la,b] + [e,d]) + [e,f]

=[a+c, b+.d] + [e,r]

= [(a+c)+e, (b+d) +r)

=[a+ (che), b+ (d+ )],

= [a,b] + [c + e , d + f]

= [a,b] + ([e,d] + [e,f])
. R =T+ (V+ W), as asserted. 3

] <
707
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Properties 3 and 4 follow immediately from the definition
of the sum of two vectors and the definitions of the Zero
vector and the-difference between two vectors.

=

To prove Property 5, let U = [a,b] and

<

(c,d]
Then

asserted.

i
<y
+
= .
w
]

The proofs of Properties 6 to 10 are very much like the
-two proofs we have given, and to save time we omlt them. In
each case, 1t 1is the corresponding property of the real numbers
which appear as components that plays the declsive role in the

proof,

Problem Set

0-3

b

Lo

- 1. If A, B, C are respectively (1,2) , (4,3) , (6,1)

express each of the followlng vectors in component form.
. (a) AB . . (e) CB .
(b) BA . (f) €A .
—T —
(¢) AA . - (g) BC .
(d) AC
2. BSame as Problem 1 if A, B, C are respectively (-1,2) ,
(4,-3) , and (-6,-1)
3. If A, B, C are respectively ~(1,2) , (4,3) , (6,1)
¥
find X so that
(2} AB = CX . (c) XA =CB
3 —= P . . —_
(b) AX =CB . (d) XA = EC
4. Same as Problem 3, if A, B, C are respectively (-1,2) ,
(LL,:;E‘) H] (’63:1) H ’
7
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5. Given g: [3: J » ‘S: [54:3] ) E;; [5:’6] o ‘Qz

2
Determine the followlng.

(a) 2+ 0 () -0 -c¢.

. (») &-3T (f) ©+¢ -3,
(¢) © -2 (g) a-b-¢
(d) 2+ -3

6. Using the vectors 1n Problem 5, determiné

-

(a) 28 + 2B . (e) b -~ 2F
(b) 2(2 + b) . (£) -a +

a
(¢) -37 .

N,

+

ol ok
F"’T \nu}lgr‘

3
1
|

y 3= >
N (g) 72 - b +
(d) 2b - ¢
7. Uslng the vectors in Problem 5, find the real number i
: e
which expresses each of the following.
(a) 18] . (e) 1&-28]. -
(b) |® + c]| . () |a + b| . )
- . == : == :
(c) 1Bl . (g) 12 +78+ 2|
(d) I<] :
8. Determine a and b so that
%
(a) [a,b] + [3,4] = [3,1] .
(b) [a;b] + [E;l] = [1;’3] =
(¢) [1,0] = [2,4] + [a,b] .
(d) [Dgl] = [fajl] + [a;b] N . Fa
(e) [(a,p] + [3,1]= [3,1] .
9, Physlicists have found that forces and velocltles obey the
law of vector addition. Physicists call this sum the
resultant., Using this knowledge and a scale of 1 inch
' to represent 2 miles per hour, solve the following
problem graphically. '
%
7Q9 *°
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£ - A river has a 3 mile per hour current, A motor
- boat moves directly across the river at 5 miles per
hour. How fast and 1n what direction would the boat be.
traveliﬁg if there were no current and the same power
and heading were used in crossing the river?

= 3

10-4. The Two Fundamental Theéreg@.

Many of the.applications of vectors depend upon one or
the other of two theorems, which we shall now prove.

You willl note in the proofs of these theorems that we -

refer to diagrams of geometric‘figures when we speak of vectors,

While a vector 1a an ordered palr of numbers and not a set of
polnts,, the fact that a directed segment determines a vector

“and “that a vector together with an initial point determines a

directed segment, enable us to think of a directed segment as

a vector.

’ — —2u
THEOREM 10-11. If OA and OB are two non-zero vectors

which are not parallel and if oF 1s any vector in the

plane’ OAB , thén there exist gcalars h and k such
[ . :

that : : : r

kY

3 s
OP = h@A+ kOB .
e Ty ]

z

parallel to either g or OB , the assertion of
—_—
em follows immediately from Thegorem 10-9, If OP
—=

If 5§ is the zero vector, it is obvious that h = k =
3
em
r the zero vector nor a vector parallel to OA or

e

710
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OB , let m be the line which contailns P and 1s parallel to
- . .
OB and let n be Ltue line wnich contalns P and is parallel

-
to DA .

OA and let N ©be the

5 by Theorem 10-10 tha}/

—
= kOB ,

an interesting algebralc interpretation.

3
pa
g
i
i
=]
[t
iz
f
-
b
jp
]
]

- - e F b N —= - - ] S - |
aj,a,l , OB = Lulst‘g] and OP = [pl ng] , then the

—_— -
assertion OP = hOA + KOB 15 true if and only 11 there exist

numbers h and k such that

[pyspy] = nlag,ag] + klby,b,]
= [haljhagl + [Kbl,kibg]

= [ha + ko ]

(&

+ kbl , ha.

I
s

1

This in turn requlres that

and Y

I
=7 i I
{1l ~ 1 i
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Now we know that theée equétians have a unique solution for
h and k unless their coefficients in one of the equations
i arg zero or unless-thelr coefficients in’thestwo équations are
prbporti@nalﬁgkif the %pefficients are proportional, then
i e AN
i —= = == or equlvalently

a b
2

#],
1}
M

‘ﬂ:\‘ ‘

' . - H

But this 1z precisely the conddition that OA and 5% should

— —= . S
theorem. Thus, 1f OA and OB are non-zero, non-parallel
vectors, whose components are known, It is possible to express

_ e -
a third vector, OP 1in terms of OA and OB 1in a purely

algebraic way.

Example -

=
W

ks
o
®
]
e

{(5,2] 1in terms of W = [2,3] and V = [-1,4]
To do this, we must determine h and k so that

(5,2] = n(2,3] + k[-1,4] -,
* = [2h,3h] + [-k, kK] |
[2h - k , 3h + bk] .

Thls requires that

5 and 3h + 4k =2 ,

)

2h - k

Solving these two equations simultaneously, we find

s k=-1.

]

h =

! The second of our fundamental theorems is the followlng.

THEOREM 10-12. If W and V are non-zero, non-parallel
: vectors, and 1f X, y, 2, w are scalars such that

=5 —= et —w
XU + yv = ZU + wWv ,
then

=z and y =W .

s
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To prove thié, we observe that by adding the vector
-(z0 + yV) to both sidesvof the given equation,
— =% Y
Xu + yv = zu + wy

or, using Property 9

(x-a z)u

<

If x - 2z # 0 we can write

(w = y)V . ,

=

= —_— == i
e U = % v . ,
, : - .

)

=

From this we conclude elther that U 1s the zero vector

(1f w -y = 0) or else that W and V are parallel (since
one 1s a scalar multiple of the other.) However each of* these
alternatlives contradicts the hypothesis of the theorem. Hence
X - z cannot be different from zero and so x = z . But if

z , then ié follows that | )

—

0

Xx =

(W~ y)v

and since Vv 1is not the zero vector, by hypothesis, it follows

that w =y . Hence

x z and w =y , as asserted.

‘Problem Set 10-4

Determine " x and y 80 that each of the followlng state-

ments 13 true. /

1. [-6,-1] = x[3,4] + y(4,3] |

2. x[3,-1] + y[3,1] = [5,6]

géi x[3,2] + y[2,3]) = [1,2]
" .

. x[3,2) + y[-2;3) = [5,6]
5. x[3,2] + y[6,4) = [-3,-2] .

]

~
-

'
[



10-5 ™~ .
A 10-5. GeometricAl Application of Vectors.

3 u
Marfy theorems in geometry can be proved by means of*

vectors. In this section we uhaki preuent s@varal typical

. i
Vexamplés i vector proofs of geometrical theorems. » .
\ THEOREM 10-13. The midpoints of the sides & of.any quadrilateral
© are the vertlices of a parallelogram. ) .*
¥ - - _ _ A . 1 ’ B _
Proof: Let A, B, C, D be the vertices of the quadri- .
lateral and let P, Q, R, 8 be the miép@intg Df the sides |
AB , BC , TD, DA , respectively. ¥
[ ~ -'--,__Z’R »
P L \’:\j"'—_%-—’_
5 - == P T ==,
By hypothesis, 3D = %ﬂﬁ , 7 o= %DF , P oo %K% , P = %Eﬁ .
! Hernce SK = 8D + D = g(Au + QL)
I — —= 1 N
and PQ = PB + BQ = §(AE + EQ) .
Moreover AD + DC = AB + BC , since each 1s equal to AC
. i = == ’
Therefore SR = PQ ,
. R - . _ . e < - - -
which 1mplies that SR = PQ and 3R I] PQ .. Hence PQRS
is'a parallelogram, as asserted. -

'rﬁ"t:
-

L
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THEOREM -10-14. The segment Joining the midpoints of two sides
.~ of a trlangle is parallel to the ' third side and the length
= of the segment, 1s one Palf the 1ength of the third side.

%

Prooft Let_ A, % C be the veztiéeg of the triapgle and

let D and -E be the midpaint of . :?E and BAC re spectiv V.
-—Afi .
Tt A

¥

E
' ; & f -
/ B — — > N
f’ E =
&
. — 1=— T
By nhypothesls DA = =BA and AE = =AC
- —= —= 1, —== =
DE = DA + AE = =(BA + AC)
Hence - '
# - 7 3 =
which implies that DE =-=BC and DE || BC as asserted.
THEOREM 10-15. A quadrilateral 1s a parallelogram if and only
)

ERIC

Aruitoxt provided by Eic:
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G T G = ' .
Let AD'=u ‘and DC =.v.. Then AC =u +7¥ and

=V -1 . Slnce A, M, C are: aallinaar, Eﬁ ia some
salar multipia of AC , say x(u + v) Similarly
= y(v_— u) .. :Since’ AD + DM = AM » we have

=) a’ =

T+FV-U) =x(T+V)
or, callacﬁing 1ika terms,

(1-y-x)d+(y-K¥=5.

li
o

'ﬁzjera_f‘or‘a l1-%x-y=0 and y - x :

,#_Saiving;j:haaa aimultanacualy we find

-y L /
e ‘=Y T3
- Hence L R
L ’ | =18 ena DR - 15D
‘i‘i A :’\ th .7 E o q - § *
R These imply AM = %AC and DM = %PB , as asserted,
Now let ABCD be any Quadrilataral with lta diagcnala
biaacting aach ather at M aa that 'BM = MB and AM = MC .
— é —
Lat t = A MC and w a DM = MB . Than AB =t + w and
DC = ﬁ§+ef§; therefore Eﬁ = EE , which implies that AB DC
and ¥;; Il . Hence ABCD 1s a parallelogram .

Problem Set 10-5

1. The segment jﬁfhing'the midpointa of the non-parallel .
sldes of a trapezold is called the median of the
tfaﬁaacid. Prcva thaﬁﬁtha‘madian éf a trapezold 1s
parallel to the bases and has a langth equal to one-half
the sum'.of the lengths of the bases, ’

2. let ABCD be & trapezold, with B ||*CD", and E, F

the midpointa of AC s BD , respectively. Prove that

/

EF = glAa_f c| . ' ~

3. Prove that fha mediana of a triangle are concurrent at
the pcint which trisects each median.

716 1
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4. Let ABCD be a parallelagram, with E the midpofnt
' "EB , and DE intersecting A at P . Prove th
" 18 a point of trisection’of AT . - -

B T L e

5. Let ABCD be a parallelogram, with E the point on TB
‘such that AE —AB , with DE intersegtlng i at F..

[}

~ Prove that AF = ————IAC .

10-6. The- Scalar Product of Two Vectara

In Section 1®§3 we defined what we meant by twa-pérallél
‘vectors. It 1s now EOﬂVéﬂiEnt to introduce the ideas of

perpegdicular vectors.

. L ; = .
DEFINITION. Two vectors, P1Q1 and PVQE are
L . - ' \
sald to be perpendicular ifr 'PlQi %a perpendlcular_

- b
to EEQE .

In many applieations it 1s important to be able to tell whether
or not two ve~toras are perpendigular. To develop a procedure
-for deciding this queatiaﬁ, consider two non-zero vectors

OF = [gl,pg] and - 0Q = [ql,qgl . These will be pergggﬂ%cular
if and only if APOQ has a right angle at 0 . By the 2
Pythagorean Theorem, this\willibe the case

if and only if

el

15912
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- > A
Now s OF +

. T

i

THEOREM 10-16. Two non-zero 3
” only if the sum of the products of their respective

”m vigj
ﬁﬁ F 2l
o=

Now, recalliﬁg the deflnltian of the magnitude or length of a
in the form

vector, we can write IPQI IDPI* + IGQI

* 7(‘;1 - Pl)g + (qE = P2)7 =

* or, expanding and calieéting&térmg, .

2 o\ 2
1

Hence, N
-2(pyqy + pyd,) >0

or .
P393 * P4y =0

Thus, since the preceding Steps are all reversible, we have

established the followlng important theore

componenta is zZero.

£

The number P19y + Py, obtalned fram the components sf

{ql = pj.'*’ qE =

i

2 /2

LN

m.

Pl -

0 2 . .2 ;
(%1 + Py ) +iﬁql€ +t 9

3

%)

3

2

2

2 B . _ .
Q- = qupl + Pl :f QE = EQZPE + pg = pl + Pg::-; Fh;ql, + q? T

4 ctérs are perpendicular if and

the vectors [pl;pg]i and [qqug] 15 a very 1mpartant quantity

—

'DEFINITION, If U = [py,p,) and ¥

‘and itqis convenient to have a nameﬂfor it.

= [qlqu] I

the number P19; + Pyl is called thé scalar

—i —_—

product of u -and

Notation. The scalar product of "%

denoted by the symbol, u - v (rvead
Ey iy -
<24

wand ‘?
Mu o ddt

is

‘ivii) .
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We should understand that the stalar product of 'twa'
vectora is a scalar and not a vector. .The name scalar produc:t
is used to emphasize this faet. .
There are aeveral'imparit:aﬁﬁ alsdbraic properties of the
© . scalar product of two vec’,mrs wlth which we should be familiar
L % These are not hard to prov®, and we leave the proofs of the
+ Flrst two as exercises, _ -

Property 1, U V=7V -0 .

Property 2. U - (V+ W)'=T . V+0 W
Property 3. If k is.a scalar, -4 - (ki) = (ki) - W
2 Sy f - )
= k(U - W)
Property 4. U «'U = ITTIIE . e ~

\E We have already seen’ (Tﬁea%em 10-16) that two no},\-zero

ectors. are perpendicular if and only if their scédlar product

- 1s zero. However, whether two vectors are pe}‘pendicular or
‘not, thelr scalar product has an interegting geometrical inter-
pretation. To diacover this let OP and 0Q ,ée two non-zero

vectors and let OF be a scalar multiple of OP say
" Then :

%3
L
%\

E%L

3

.

=

5
We note that Fé =0 if and only if 6(3 = 1{5_% , which means
that. OQ and OP are paraliel. Now if F_‘?g # ] , FE and 0P
will be‘perpendicular if and only if

—

OP - FQ = OP - (0Q - kOP) = 0,
or, using répertieé 2 and 3 for scalar products,
, /

P .
OFP » 0@ - kOP - QF = O

L4




2 1"?{_
Let k!

ThE‘ﬁ%-,% v 7

-

L”

be the vd4liué o6f "k determined by thi

} equation.
1 | [ Ix'3P| 10B] 1f ki >0
DE’!DQ.;}:'QP-DP ,|D|§ 0o - if k' =0
P -1x'0P| |GB| 4ir k' <o
Tﬂ interprét this: result it is convenlent to introduce
thé fallawing definiticn.
, . . DEFINITION.

By the projectign of a veector AB
a vector CD we mean the- veetar

on
—
MN:; where M
and N are, respectively, the feet of the perpen-
diculars from A and B to.the line ™.

# L
The following figure 1llustrates this definition

MN is the prajectlon
. of iB

on CD
4

Néw k1

: A
is the value assumed d by k when FQil oP .
k'OP 1s the projection of 08 on OF and
length cf this prajecticn. Moreever
is parallel to
Hence in all cases,

Hence
|k10P|

is the v
A
if EQ 0 , then QQ
OP ’ and DQ 1s itz own projection on OP .

derived above, and noting

k'DP "Is the prajectian of OQ on
Returning now to the ex

—
OF .
expression for QP DQ which we
oting the symmetry of the Ecala? product
guaranteed by Property 1, 1t follows that, .except for sign,
.. _ k. o
the scalar product of two vectors; OP and 0Q » Aa equal to
elther: _ ’
.
FE A

720
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,lgié i-;. v . et s a3 ) |

(a) The length of 6§',multiplied by the 1Ength of the
projection of 63 on OP s OT

(b) . The length of OQ multipl;l.ed b;r the length. af‘ the
projection of 5§$;an Q. .

The sign of the scalar prﬂauct is poaitive if k' >0,
-+ thdt 1s, if P’ lles on the ray OF", and negative if k' < O ,
that 1s, if F 1ies on the ray opposite to OF .
As an example of the use of the scalar praduet in coordinate

geometry, let 0{0,0) and F(a,b) be two distinct points in

the xy-plane and let _& be the line which is perpendicular to
CF at F . If P(};,y) ';E any point of ﬁ distinct from F ,

;i? will be perpendieula§ to “oF" if and,only if

F(Liﬂ

Fla ,0)

£

(a,b] and FP =[x -a, y - b] .
O c¢an be written

=
£

ur

1]

— R .

Op-- FP =0 .: Now
(Why?) Hence OF
a(x - a) + b(y -'b) =0 or.- .
ax + by = ag + b2 .

By direct substitutian, it 1is eagy to verify that this equaticjn
.18 also satisfied by the coodrdinates of F ., Hence this
equation 1s an equation of the line Af . By an almost
identical argument 1t can be shown that if j contains O ,
an equation of gé’ is %:-; :

ax + by = 0 .
It 18 interesting to compare this discussion with the derivation
of an equation of a plane in Section 9-9.
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TF : s

:

: In each of the followiﬁg prablems detefmine the Scalar
- product and from 1t tell" whether the two vectors are
perpendicular. . s
1. [-5.2], [6,15] (7,31 , (3,-7] .
E- ] [6;3] % 3 2] [E:ELL] H [4;6] =
3. (-5,-2] , [3,5] . [12,2] , [-4,-24] .
)""i [‘2;3]; [5:”“4] [6:E3] ] [2:1] .
5 [3:*2]‘; [;3,2] = l [9:2] 2 [52,9]

11. Using the scalar-product; show that the line through
P(3,5) and Q(7,-1) 1s perpendicular to the line-
through R(0,0)  and 5(12,8) .

Loy

‘Cﬂ W oo =~

12, Using the scalar product, show that P(5,7) , Q(8,-5) ,
and R(0,-7) are the vertices of a right triangle. ’

13. By using Properties 1 and 2, show that ' -

_:s. N - A A
3) 7

(@-9) =~ (¥- - T -Z-V -W+V -2

14, Show that an equation of a 1iné!fhfougﬁ,the<origin is
ax + by = 0 .

‘1%- Prové Properties 1 and 2 of the élgébraic properties of

scalar~ products.

*

‘
10-7. Summary.

A directed segment 1s the mathematical entity which
corresponds to a displacement in the physical world. It dlffers
from a segment in that one’ of its endpoints is identified as an
origin and the other as a terminus. A directed segment there-
fore tells both a length and a direction. After défininé
equivalent directed segments we introduced a vecetor as a set of
eﬁuivalent directed segments. 3Since equivalent directed
segments hé&e thé'same components we can conslider a vector to
be an ordered pair of numbers, and this 1s how we defined a
veator. We used vectors to prove some geometric Fhecrems!

These proofs were sometimes simple due to the fazt that the
algebra of multipiyiﬁgiveetars by scalars is simllar to the
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‘ algebra we studied in previous grades. The chapter ended
with acalar multiplication which. enablaa us to prove twa
11naa parpaﬁﬂiaular and to find tha projection of one vaatar

-on another,

Review Prablama

1. Given. ABCD la a parallalagfam and E and +F trlaaatlan
painta of AC , such that E 1s aatwaan A and F .

= .2. Given parallelogram ABCD , and E and F =0 choasen --*
that AB + BE = AE and CD + DF = CF iand - BE = FD .
Shaw that AECF is a pafallalagram : '

3. Saaa that’ the points P(E 8).,4(0, -2) , R(-3,-7) are
collinear, ’ . N R

4, show that P(4,0) , Q(7,8)", R(0,10) and S(-3,2)

' are the verticeés of a paaallelagram.

5% 1f. & = [(4;0] , B =(-3,2] , ¢ = [7,8] find
(a) 2+ 1 ol "(a) § + §'+ T .

- . (b) &-¢ (a)- B -¢ .

»."6. In the figure D and "E are

midpoints of AB and ic ,
respectively.
(a) (KD) = 2(KB) . e
(o) 2(A,D) + (B,C) = *(K,E) .
(¢) (ED) + (D,E) = 2(K,C) .
(@) (BC) + (TR) = » B - —C

I
—
=
[
—
+
o
—
=
L]
L

(e) (5;B) + (B;T) =
7. A, B, C, D are vertices of a parallelogram. List all
the directed line segments they determine, and indicate

i

which pairs are a?uivalenti
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10.

A

o

-
=
-

If ABCD is a parallelogram, express

(a) (D5;C) and (5;R) .~ AQ) - (& B)

—

(v) (D;€) and (5;B) . - (e) (BK)

(¢) (5B) and (50) .

ABCD 1s a parallelogram and P, Q, R, S are the

= .

midpoints of" the sides.

(D,B) in terms of
and-(B,C) .

S —/Q

A

,Cl

For each of the following directed line segments, find -
an equivalent directed line segment of the form

r(5,8) + s(5;P) .

(a) (5,B) . : (e)
(b) (55%) . - (£)
(c) (T7D) . . T (g)
(d) (&) .~ (n)
Determine x and y 5o that
(a) =x[3,1] + yl[2,-1] = [13,1]
(v) x[2;3] + y[3,1] = [7,0]
(¢) =x[3,6] + y(4,2] = [4,2]
(a) =x[-3,2] + y(1,1] = [0,0]
(e) =x[1,2] + y[-1,1] = [6,6]

1]

724

(5;B) .
(K,0) .

(GR) .

" (B,D) .
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SR,

12, If A, B, C ape-zespectivety. (4,2) , (6,3) , (2,1}
express the following vectars; in component formm— - -
(a) (d) CB.

. (b)- BA . (e) BC . »

Bl &

13. Determine the scalar product of

(Eii.LE;E]'E [e,-1] ... (a) (3,61 , f1
(b) [1,1] ;7 (3,2] .~ (e) (2], I
“(e) [3,21, [4,2] .~ '

14, In a cube what is the maximum number af;equiva1§nt
directed e segments? ‘

d what is the maximum number of equjvalent

He welghs 200

pounds. Represerit as a vector each of the followlng:
(Use a scale of 1 1inch = 200 pounds.)

(a) The downward pull of the earth's gravity on him.
(b) The upward push of the hill on him.

17. An object is suépéndéd by ropes as shown in the figure,

. w

I

ANNANANNNN

If the object weighs 10 phounds, what is the foroé
exerted on the Junction C by the rope CB ?

ZOE :;"’i:"‘
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' 18. A weight of 1000 pounds isisuspendédsgrcm wires as
shown in the figure. o '

r

— e %‘hﬂriiﬂﬂ'féi ¢

_-—-
T

) What force does the wire AC exert oh the Junction
c?
(b) What force does the wire BC exert on, C 2

O

—

=1

5000 pound weight 1s suspended as shown in the figure.
ind the tension in each of the ropes CA , CB , and CW .

19.

e |

-3

|
|
|
|
1
I
|
|
|
|

90

by

T

AEEHERE

N 2 S ' e .
20. A ship salls east at 20 miles per hour. A man whlks
... across 1ts deck toward the south at 4 miles per hour.
What 18 the man's velocity relative to the water?

704




Chapter 11
POLYGONS AND POLYHEDRONS .

&

11-1. ;gtrqdugéiogi ' : .

In the physical world nature abounds in geometric shapes.
Many of these shapes are.representations of polygons and poly-
hedrons. For example, the sections of a hcneyéamb are hexaganal-
each sngw crystal is 1n the shape of a tiny hexagon, diamands
are in the farm Qf regulg; actahedrcns, salt crystals appear to

yrémids' 7

Man uses the shapes of regular polygons in designing
formal landscapes,; in making bolt heads, éhickenwire, stop
signs, and linoleum tiles. Box cartons, bulldings, and sky-
scrapers take the form of prisms and other polyhédrbns.

In this chapter, we continue our study of polygonB with
special emphasis on the area of polygonal-regions. It is
interesting to note that one of the firat practical uses of
geometry was that of finding area. Mahy people ‘think that
geometry had its origin in the faurteenth EentufyiE_;Gl along *
the banks of the Nile River At that time. the king of Egyﬁt
divided the land into plmts and obtained his revenue from the
annual rent which the landholders were required to pay. Each
year the Nile River overflowed and carried away portions of
soil. This necessitated a remeasurement of the land so that
the rent demanded of an individual that year would be
) pféportianal to the land whieh he held. N -

It ls also interesting to nate that the word geometry
comes from two Qreek words ge meaning Earth“ and metrein
meaning "to measure." -Hence' the first meaning of the word

‘geometry was "earth measurement.”

Today the study of area is also important. 1Id4nd is bought

and sold by the acre; the floor space of a bullding is
4

iy~ _

. l,JL) ’ [

Il
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gcnaidered in determining the rent of an offiig, factory, or
atareraﬂm, thg area of: the wlng of an~airplgne is 1mpartant ir

'fdeaigning the airplane, painters, br;cklayers, aurveycrs, map

area cf aimple geametrie figures.

. In the latter part of this chapter, we intraducé figures
- 1n three dimensions which are claEaly analagous to the polygan
we have studied ih two dimenaiana. Each of these figures is
';called a Ealzhed:mn. We shall mvestigate some of the <inter-
ésting properties of this set cf surfaces. Hawever; the study
of the measure of & polyhedral-region will be deferred.

11-2. Polygona 1-Regions.

A triangular reglon consists of a triangie ‘and 1its
interigr Each of the fallcwing diagrama répreEEﬁtE a
triangular-region.

o~

23

=

iy
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A palygnnal)regien is a figure in a plane, like one of these
four: ’ :

Notice in particular that a polygonal-region may have one or

more "holes" in 1t. A polygonal-region can be "cut up" into

triangular reglonsa. For example, each of the first two .
" polygonak-regions shown above is "cut up" in the diagrams

below: , o - Lot




E

DEFINITIONS. A triangular region is the union of
a triangle and its interior. :

- , 4 ,
A polygonal-region 1s the union of a finite number

of coplanar triangular regions.

Each of the following figures pictures a polygonal-region as

union of triangular regions.

)
£
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Aruitoxt provided by Eic:

n\"

s

[

The preceding two pairs of plctures suggest that a poly-
gonal-region can be consldered as a unlon of triangular-regions,
in more than one way.. Note that we often do not shade a- |
polygonal-region in a picture; in case the context makes clear o7
that we are ccnsi&ering the polygonal-region rather than the R
polyg@n which is the "boundary" of the palyganéliregian,

Dng of the above dlagPému shows five diagonal of a convex
polyggn wlth eight sides. These flve dlagonals nave a common
endpoint and they "cut up" the polygonal-region so that we see
the polygonal-reglion as a unilon of six trlangular-regions.

Noting that 5 =8 - 3 and 6 =8 - 2 , we are ready to

consider the general situation.

Conslder any convex polygon, say ElP,:,ig,Pn . We wish to
nbserve that the unilon of the convex polygon and its interilor
is the union of n - 2 +triangular-regions and 1s therefore’'a

polygonal-reglon.

{(In the figure; the dots indlcate other poszsible vgrtlces and

‘sides, because we do not know wagt the number n_1s.) The

number of sides of the polygon s T1hH . “STnce the polygon 1a3 a
o N . s P ™ FP* —
convex polygon, the n - 1 rays ,P;}, Pl 3y e ;
are concurrent in that order. Twar:; the correapund
““hamely Py Pf and EiPﬂ , are side

remaining n - 3 segments, PlPB ;;,1P4 PR P1§n¥1 , are
all of the dilagonals with one endpoint at P, . (Some of

¥

l&—‘w
\Uq et

these diagonals are shown in the figure, and other possible

dlagonals are suggested by _ ——" .)
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Aruitoxt provided by Eic:

1

1=

[

Thesa diagonals and the sidgs of the polygon gilve us triangles,.
&PlPE 3 QP1P3£4 ¥ oses 3 APan 1 ;» the number of which -

is n - 2 . The union of these trianglés and their interiors
1s the union of P, Pq..,Pn and its interior. Thus the union
of a convex polygon and its interior is a polygonal-region,

) Furthermoye; we observe that the n - 2 triangles
mentioned abofe have the property that the interiors of no two
of them intersect. Hence, if a convex polygon hasg n sides,
the union of the polygon and its interior is the union Qf
n - 2 triangles and their interiors such that the 1nteriors of
any two of the trianples do not intersect. )

DEFINITIONS. 1If a polygonal-région is the union of a
convex polygon and its interior, Ethen the polygon is
called the baundary of ‘the palygonal Pegion and the'

interior of the polygon is dalled the %nteriar of the
- =%

pmlyganal ~-region.

In this chapter, we make use of triangularsreéions in two
ways: (1) to determine the sum of the measures of the angles
of a convex polygon, and (2) to study the areas of varlous
polygonal-regions.

Problem get 11

. 1. Show that each of the following 1s a polygonal-region,

More Specifically, show that each 1s a union of triangular-—
regiq&s such that the interiors of any two of the triangulan
regimna do not intersect. Try to find the smallest number
of triangular-regions in each case. (Note: The boundary
=" in Part (d) 1s a star-shaped polygon, and each side of the
polygon 1s collinear with another side of the polygon.
The boundary in Part (g) is a polygon having two noncon-
secutive sides which are collinear.) ’ ‘



" (a)

e)

(

>

b
;}T
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. : 2. 'In the following figure, A, B, C, D, E, F, : are callec
vertices, the segments %B, BC, CD, DE, EG, GA, EF, TD, 1
are called -edges, and the polygonal-regions ABE, FED,
BCDF are called faces. The exterior of the figure will

also be considered as a face.

: " Let the number of faces be f -, the number of vertices be
v , and the number of edges be e . In a theorem which
was originated by a famous mathematician, Euler, and
which refers to figures of which the above figure 1=z an
example, there occure the number f - e + v . U%ing the -
figure, let's compute f - e + v . You should see that
f
Using the two figures below, compute f - e + v . Notice

b, v=7,e=9, and this glves us f - e + v = 2

that the edges are not necessarlly segments.
' (a) o (b) Suppose this figure to be
a sectlon of a map show-
ing counties:

- ' A
= 7345~ .,

ERIC

Aruitoxt provided by Eic:



(¢) What do you obsefve in the results of»theléiree,
computations? ! {’ .

(d) 1In Part (a) take a poir¥t in the interior of the
guadrilateral and draw segments from each of the
four verticea to the point. How does this affect
the.number f - e + v ? Can you explain why?

(e) Take a point in the exterilor of the figure'of
{Part (a) ahd connect 1t to the two nearest vertices.
How does thié affect the computation?

If you are interested in this problem and would like to
pursue it further, you will find 1t discussed in "The Enjoyment
of Mathematilcs" by Rademacher and Toeplitz and in "Fundamental

-

i

Concepts of Geometry" by Meserve,

a Convex Polygon.

11-3., Sum of the Measures of the Angles

%1%

: the measures of the
angles of a{tﬁianéle 1s~.180 ..  As an application of this im-
portant thecrem;ﬁg studied the sum of thejmeasures of the

angles of a convei quadrilateral.- Let us review the method.
which we used (see Théorem 6-13 and its proof), but let us
express the "ideas with the ald of the new terminol@gy_iﬁ%r@duced

In Chaptéer 6 we proved that the sum

L

in the preceding section. ‘ ;

If the quadrilateral ABCD 1s a convex quadrilateral,

;then polygonal-region ABCD 8 the union of the two,tril-

i
| angular-regions ABC and ACD .

——

We showed in the proof of Theorem 6-13 that the sum of the
measures of the four angles of the quadrilateral 1s the same
as the measurgs;of glx angles, three from each of the two

)

/

A

s d

2
735
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trianglés Thus we obtained the number 2 . 180 , or 36@ S
as the sum of the measures of the angles of the convex Quadri—
lateral. i
| n xt
We wish to extend this discussion to the case'of a convex
polygon of any number of sides. The following exploratary
problem utilizes our observations in the preceﬂing sectlon
concerning the representation of a polygonal-region as the
union of triangular-regiona, no two of whose interioras inter-

gect.

E;plorgtory Problem

Y

Consider the diagonals from A 1n each of the convex
polygons pictured below. By a procedure similar to the one we
used with the quadrilateral, find the sum of the measures of
the angles of each polygon. Summarize the results in a data
table as shown. - ‘

736 7))




H

11-3

Number of sides[ Number of diagonals| Number of | Sum of measurcs
of convex from A triangular | of angles of the
polygon Y1V EC

4 1 \ ' 2

e

b
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e
i
|
]
|
|

o

-~ |
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e
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Proof: Let V be any vertex of the given convex polygon

; and let the polygon be VABEC...GH . There are
n - 3 dlagonals from the vertex V . The union of the tri-

s AVB ; BVC , ... , GVH 1s the polygonal-region
VABC...GH . There are n - 2 of these triangular-regions, and
the interiors of no two of them
intersect. The total measure of
all the angles éf these triangles
is (n -2) - 180 . On the
other hand, the total measure of
all the angles of these triangles
8 the same as the sum of the

-

meagures of all the angles of

polygon «€...GH . (Why?)

L

Corollary

1,
polygon of n sid

s
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Proof: A regular polygon of n sides has n anglesd,

and all of these angles have the same measure. Hence eaeh has

measure %(n -'2)(180) . Now

(n -2) 180 _ (1 _2y . 180 = oC
e (1 - E) 180 = 180 - = .

- The notién of an exterlor angle of a triangle as described
in Chapter 5, may be gxtended in a natural manner to polygons
of more than three sides. ’ - Y.

DEFINITIONS. Let V be any vertex of a convex
olygon.

D
The angle of the polygon with vertex V 1is some-

times called the interior angle of the polygon
at Vv .

Eilther angle which forms a linear pair with the

-

interior éﬁgle of the polygon at V 1s called

an exterior angle of the.polygon at V .

THEOREM 11-2. For any convex polygon of n sidesjufhe'aum of

.. .the measures of exterior angles, one at each vertex of

‘the polygon, is 360

Proof': t each vertex of the

The chosen exterior angle and thés
interior angle at that vertex are
supplementary; the sum of their
measures 1s 180 . The sum of the
! measures of all the interior angles
. and all the chosen exterior angles.
) 1s n - 180 . T%e sum of the
measures of the interior angles 1s
A (n - 2)180 . By subtraction, the
‘ sum of the measures of the selected

m

exterior angles 1s

|\“
jui
I
—
-
|
T
o
[
Lot
‘o‘
]
(¥
.
o
‘D‘
It
%)
payd
O

n - 180 - (n - 2) . 180
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§
'Gprgllary 11-2-1. The measure of each exterior angle of
e ma 360

-a regular polygon @fi n s8ildes 18 =— ,

n <
, f
. %

Proof': Thils statement 1s an immediate consequence either

of Theorem 11-2 or of Corollary 11-1-1. Why?
»

Problem Set 11-3 P

i

Find the sum of the measures of the interlor angles and
the sumof the measures of the exterior angles ¢f a
polygon, one exferior angle at each vertex, if the number

of sides of the polygon is:

(a) 12 (b) 22

o
e
w

The sum of the measﬁres f the 1interilor angles

Q
certain regular polygon is 1080 . By Theorem

=
(-
!
=
M

(n - 2)180 = 1080 .

Hence

I

I
|

64 ‘
o

n -

and (

n = -
Thus the number of sides of the polygon 1s 8 .’
Find the number of sides of a regular polygon if the
sum of the measures of the interilor angles 1a:
(a) 540 (b) 900 (¢) 2700
Conslder a regular n@nagoqi(ﬁine aldes). The measure of
360 or 40 . The interior angle

5
and an exterior angle at each vertex are a linear pair

each exterior angle 1s

of angles,

(a) What 1s the measure of each interlor angle of this
polygon?

(b) What 1is the sum of the measures of all the interior

angles? ‘Y

L



Use two methods to find the measure of each interior

angle of a regular polygon of:

1z

sides.

We know that an 1ﬁtgflar angle and an exterior angle at a

vertex of a polygon are a linear pair of angles. Thus 1if
the measure of an interior anéie of a regular polygon is
120 , the measure of each exterior angle is
Corollary 11-2-1, it follows that

ne==56

~Fin@ ghe number of sides of a regular

360

= 60 .

60
Therefore

From

olygon 1if the

measure of each interior angle of the polygon 1is:

(c) 1biu

"
(d) lES?

3

Complete the fallawigg chart:

Name of
regular

“Sum\of the
measlires of

‘Sum of the
measuresa of

Measure
of each

Measure of
each

polygon the interior | exterior interior| exterior
angles | angles, one | angle angle

at each

vertex
Equi-
lateral
Triangle| -~ | A _
Square
Regular
Pentagon
Regular -
Hexagon
Regular
Octagon
Regular
Decagon

oAy
?“Q 3; FaRw)
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"a regular pentagon. Find the measur® of the

Consider a regular polygon of twenty gideg, Find the

measure Qf

(a) Eacnlinté§1ar angle of the polygon;
(b) Each exterior angle of the polygon;
(¢c) The sum of the measures of the intlerior angles of
the polygon; CF
(d) The sum of the meas of all the exterior angles
of the polygon. : ’
In a certain regular polygon, the measure of an exterior
angle 13 one-fifth the measure of an interior angle.
Find the number of sides of the polygon.
The sum of the measures of eleven angles of a polyegon of
twelve sides is 1650 . &
(a, What 1s the measure of the remaining aﬁ%lei
(b) Do you have enough information to deciﬁ; whether
the polygon is regular? Explain. ' /
Is it possible to have a regular polygon with the measure

i

of each Interior angle equal to 153 ?  Why?

The star-shaped figure is formed by extending thégﬁidea of

gle at each
point of the star. )

s
‘T,_q'i

Given a pentagon ABCDE such that m /a = 150 , m /b = 60
and the measures of /Jc , /d , /e are proportional to
4, 3, 4, Prove that BB ||TCD".

E)
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m /DCX , and m /XBD . .

‘

In a regular polygon ABCDE...J of at least 5 sides,

prove that diagonal AD 1s parallel to side BC .,

In the figure, we have given

T . _ - N ‘ D
a regular pentagon ABCDE ’ )
and a rectangle ABXY , where s{fsffffjiixié?%x '
E L ——=C

C, ¥ Y, E are collinear in
tHat order. Find m /CBX ,

A B

Conslder the problem of how to cover a polygonal floor

with non-overlapping tiles such that any two adjacent

tiles have a side in common.

(é) Suppose that each tile has the shape of a square and
all tiles are congruent to one another. How many
tiles are needed to cover the surface around a point
which 1s at a corner of tiles? -

(b) If the tiles are in the shape of congruent equiiateralr
tfiangles;xh@w many are needed to cover the sunface
around a point which 1s at a corner of tiles?

(c) Could the tiles be shaped like other regular polygons
of the same number of sides and cover the surface
around a point without any overlapping? How many
tiles of any one polygonal shape wéuld be needed?

(d) If two tiles have the shape -
of a regular octagon and
another has the shape of a
square, the three’tlles
would Eéver the surface -
around a point without
overlapping. What othér
combinations of three

r regular polygons (two of
which are alike) will do
- thils?

The ‘ -

'y
.
“



Hint: Find solutions bf;th;%géﬁa%ién 2x + y = 360
where x ’and y- are the ﬁ%asures of the interior

* angles of regular polygoﬂs having a different numbéf
of sides. 1In the illustration x = 135 and
¥y = 90 .

(e) Investigate the poss;bility of other combinations of
tiles shaped like regular polygons which would be
sultable for use in covefing a floor,

16. Consider a sequence of regular polygons with the number of

sides as follows: 3, 4, 5, ..., n, ... Choose the

expression which correctly completes each of the following

¢ . sentences.

(a) The sum of the mex

sures of the interior angles of the
polygons (increasel, decreases, remains the same.)

(b) The sum of the mehsures of,the exterior angles, one

at each vertex of

i

the polygon, (incféasesirdecfeasesj
remains the same|,)
jc) The measure of ah interior angle of the polygon
S (1ncreases, decyeases, remains the same.)
(d) The meaégﬁ, 5T an exterlor angle of the polygon
(increases, decréases, remains the same.)
f<d

11-4. Area.

Iin Chégter 3 wé Introduced into our fo§mal geometry the
notlon of the distance between two points. Guided by our
experiences from the physical world, we selected postulates
and defihitions which describe precisely the basic properties
of distance in our geometry. We then deduced by logical
Peéggniﬂg other properties o%\distam;e ang the cénnectiogs
between distance and related topics.Y In particular, we
discussed segments. A segment 15 a ééftain set of points;
its "size," commonly called 4its lengtl, we defined to be the
same as the distance between 1its endpoints. The notion of e
congruence for two segments we déécribed in terms of their -
lengths. ‘ '

ERIC
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In a similar manner in Chapter 4, after describing a
‘diffarent type of set of points, namely’ an angle, we stated,
by means of pastulates and derinitions; exactly what ;a meant
by the measure of an anglér Additional pragigties of angle

We now wish tg discuss. how to measure a polygunal -region,
that 18, how to determiine its "area." A paiygonal region 18 a
' set of points of a quite different type from the segment or the
_angle. We follow an approach like that used before; namely, we
select postulates>and.definitions which formalize in our
" geometry the corresponding notlon from everyday life. Notice
Ithe resemblances bétweeﬁ the postulates in thls sectlon and
those describing distancé or angle measure. The first one
says that every pclygénalsregian has a unique measure relative
to any standard "unit." e

2

S

= Pcstulaﬁe 26, If R 1s any'giﬁéﬁ pclyéonals
reglon, there is a correspondence which assqé;gtésJ
to each polygonal-reglon 1n space a unique pasifive
number, such that the number assigned to the gilven
polygonal- region R - 18 one.

DEFINITIDNS.L The given polygonal-reglon R

mentloned in Postulate 26 1s called the unit-area,

Relative to a glven unlt-area, the number which
carreéponds to a polygonal-region, in accordance
with Postulate 26, is called the area of the
polygonal-region. '

Postulate 26 does not tell us what number the area of any
particular polygonal-region is (except the unit-area), nor
doeg it tell us how the areas of various polygonal-reglons
compare. We need more postulates to give us this information.

If a segment 1s the union of two segments whose ihtéfiors
do not intersect, then the measure of the given segment 1s the
sum of the measures of the other two segmenta In the figure,

AC = AB + BC .. - ——
¥ A B C
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Recall the aarraapanding sltuation for anglaa, as shown 1n the
diagram, where VB 1= between VA"
and VC . The interiors of the
two adjacent angles, - /AVB gnd
/BVC , do not intersect, and the
measure of /AVC 1is the sum of
the measures of the two.angles
/AVB and /BVC . We wish to have a similar proParty for the
areas of polygonal-regions. Thus, for example, 1f R 18 the
polygonaiaragion conslsting of the parallelogram ABCD and
its interior, as shown in Figure a , then we want the area of
R to be the sum of the areas of the two triangular ragiona
R, %nd R, . The following
postulate guarantees this.

Paaaulata 2? ~ Suppose that the polygonal-
region R 18 the union of two polygonal-regions

El and RE such that the intersection of Rl

and RE 13 contained in a unilon of a finite

number of segments. Then, relative to a glven
unit-area, the area of R 1s the sum of the

V]| areas of Rl and EE .

In Figure a, the two triangular-regions Rl and RE
intersect in a segment. Other illustrations are given in
Flgures b and c.

T
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In Figu;e b, the intgrsectign_ef the p@lygenalsregianav R; and
R, 1s the unlon of three segments. In Figure ¢, the inter-
section (marked heavily) consists of one segment and two other
, points; it is contained in the union of a finite number of
i segments. In each case thé sum of the aféas of Ei and RE
is the area of the entire polygonal-region.
On the other h@nd; conslder the polygonal-region shown in.
Figure d. It is the union of triangular regions T, and T, .
Flgure d
Thelr intersection 1s not contained in a union of a finite
number of segments, but instead 1s the cross-hatched polygonal-
reglon whose boundary 1s a quadrilateral.  Thus Postulate 27 is
not applicable to thls case. If we trled to calculate the area
of the entire polygonal-region by adding the areas of Tl and
T5;\y_khen the area of the polygonal-region which is the inter-
section/would be counted twice. Of course if we cut the
entire polygonal-region in a different way, we may be able to
apply Poatulate 27. :
- We recall that two segments are congruent if and only if
‘ they have the same measure. Two anglas are congruent if and
gzixg only if they have the same measure. We wish to compare the
i) notions of congruence and area for polygonal-regions. Since a
polygonal-reglon 1% the unlon of triangular-regions and since
we have extensively studiled congruence for triangles, we
consider triangular-regions in particular. On the basis of oﬁf
experlience 1in the physiéal world, two triangular-regions whose
‘ respective boundaries are congruent
triangles have the "same size and
shape." Being of the same "size,"
their areas seem to be the same.
The Etﬁ postulate guarantees this. -
) | 746
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PEEtUiEﬁE,EB LJIP two triangles are éongruent -
then the réspective triangular regicns consisting N

of the triangles and their interiors have the same ‘
area relative to any given unit-area.

Thus two triangular—regiang with congruent boundaries A
have the same area. Notice that the converse is not valid. If
two triangular-regions have the sam;férea, we do not know '
whether the triangles which are thfir respective boundaries are &
congruent or not. The picture shaﬁi two triangles which have
different "shapes," although the ;

"sizes," that 1is, areas, of the
corresponding triangular-regions
appear to be the same.

For any convex polygon, the union of the polygon and its-
interior 1s a polygonal-region. This polygonal-region has an
area relative to a given unit-area. It is customary and very
convenient to speak of "the area of the polygon" when we really
mean "the area of the assoclated polygonal-reglon." Thus, as
examples, we speak of the "area of a triangle" when we mean the
area of the union of the triangle and its interior; the "area
of a parallelogram" 1s a conveniently short phrase for the
"area of the polygonal-region consisting of the parallelogram
and its interior."

In the physical world the notion of area 1s closely
related to the notion of dlstance. If an inch i1s chosen as a

unit of distance, then the customary choilce ] "
"

or a unit of area 1is the "square inch."

This is the area of a polygonal-reglon "
consisting of a square and 15 interior

such that each slde of the square 1s one

inch long. Although some other type of
polygonal-region can be chosen as the unit-area in our
geometry, we prefer, in this book, to adopt as our unit-area
the so-called "unit-square," which 1s defined as follows:




uit-pair for measuring distance,
a unit-area is called a unit-square if and only Af the
A ) uniiiarea‘écnsigts of a square and its 1ntériargsuéh
- ¢ that the measure of a side of the square is one.

The . diagram pictures.a unit-square
relative to the unit-pair . {A,A']) ..

-~ A A

Our fourth postulate concerning area tells us how to
determine the area of certain polygonal-regions. It connects
the concept of area with thé concept of diatance developed in
"Chapter 3, :

Postulate 29. Given a unit-palr for measuring

distance, the area of a rectangle relative to a

unit-square is the product of the measures (relative

to the given unit-pair) of any two consecutive sides
 of the rectangle.

DEFINITIONS. Any side of a parallelogram 1s a base

of the parallelogram.

An altitude of the paralleélogram relative to the

tage 18 any segment which 1s perpendicular to the
.ev and whose respective endpoints lie on the

parallel liﬁes containing the base and the slde

opposite to the base.

In particular, any side of a rectangle 1s a base of the
rectangle, and any side which 18 consecutive to the base of
the rectangle 1s an altitude of the rectangle (relative to the
base).

Our work in the following sections is largely concerned
with the areas of certaln polygonal-reglons and the lengths of

748
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certaln segments related to thérpoiygona;¥régiénsi It 1s
customary to shorter the phrase "the length of a side" of a
polygon and say simply "the side,' whenever the context makes
clear that we mean a number rather than a segment. In a like
manneR, a base of a parallelogram or a diagonal of a polygon
is a segment, that is,:-a set of points; sometimes, however, we .
use the word "base" or "dlagonal" to mean"the number which 1is

the lengfh of the segment; we do this only in case there is no
danger of confusion between the two different uses of the same
word. :

= If the lengtha of two consecutive
sldes of a rectangle are 6 and .3 ,
then we may consider the bage- to be
6 and the altitude 3 ; or-we may
choose 3 as the base, in which
case 6 1s the altitude. For

elther cholce, the area of the

rectangle 1s 18 . S N y

Using the terminology given by the last definitions,
s
Postulate 29 tells us that:
The area of a rectangle is the product of
its base and its mltitude.
If the area, the base, and the altitude of a rectangle
are denoted by A, b, h, respectively, then
‘ A = bh
49
As a special case, the area A of a square each of
whose sldes has length s 1s given by

1]

A

I
]
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questions pertaining to each.

(a) [c=]Base TAItitude [ Area] _Consider a set of rectangles
. . a 3 2 6 | with equal‘altitudesi Ir '
e — — ~these rectangles are arranged
. b; 7:@7 o 2" - | so that the bases of any two
e | 12" 2 ' consecutive rectangles have
al o | =2 [ the ratioof 1°to 2, *
— B . then the"ratio of the areas
of any two consecutive
. rectangles 1s _to
(b) [=] Base [ Altitude | Area Conside set of rectangles
a o S : 6 with ’ bases, - If these”
- — ——1  rectangles are arranged so
b 2 2 |1 that the altitudes of aan,wd
e| 2 | 27 consecutive rectangles have
o T the ratio of 1 to 3 ,' then’
, the ratio of the areas of any .
two consecutlve rectangles 1s
A _ to
(¢) [=] Base [ Altitude | Area Consider a set of rectangles
a 5 _ ié@ with equal areas. If these
= — — rectangles are arranged so
b| 10 4 100 that the bases of any two
c 20 100 consecutlive rectangles have
'd AQ ";fﬁl‘fiéb the ratio of 1 to 2 , then
— e the ratio of the altitudes of
e gqf ;QQ any two consecutlve rectangles
is to 7 '
(d) [=9] Base [ Altitude | Area| What is the ratio of the bases
a 1 5 of any two consecutive
— ———t - — rectangles in the table? What
b 3 6 ) 1s the ratlio of the corre-
c 9 18 sponding altitudes? What is
::4,2%7, 51 T the ratio of the c@rrespgh§§
- T ing areas? The four

rectangles are members of a

‘o0 yeget of © rectangles.
* s B
Fai




A

n

=t

(e) Complete the following sentences: .

If the ratio of the lengths of & pair of corresponding

_s1des of two similar rectangles is 1 to 3 , the
" ..,ratlo of the areasis . to S, )

" If the ggggé-ﬁf‘the lengths'of a pair of corresponding
751&53 aié%%b similar rectangles is 2 to 3 , the
ratio of the areas 1s _to ... '

1 . e

| \ : This figure 1is
separated into

—16G twelvéfiectaggujar
regions. Let each”
—T — — IF small region be k

. f . o units long and one
‘ 2 unit high. .-

o = o —

A

L

B c . D

m

L

EWhatzis the ratio of the areas of each of the following pairs
of rectangles?

(2)

(b)
(c)

(d).

(e)
(£)
(a)

()

(c)

(d)

Rectangle AN to rectangle AK . (Here we name a -
rectangle by naming a p3ir of opposite vertices.)
Rectangle’ AJ to rectangle AH , |

Rectangle A0 to rectangle AF

Rectangle BI to rectangle CI

Rectangle BF to rectangle CF .

Rectangle BO to rectangle ND .

We are given two rectangles with equal bases. If the
ratio.of the altitudes is 1 to 3 » the ratio of
the areas is to

If the bases of two rectangles are in the ratio of 1
to U4 and the corresponding altitudes are in the ratio
of 1 to 2, the ratio of the areas of the

rectangles is to .

If the areas of two regtangléé are equal and the ratio
of the bases 1s 1 to 3 , then the ratio of the
altitudes 1s to .

If the bases of tﬁc fectaﬁgiés are equal, and the

altitude of the second 1s 25 per cent more than the
altitude of the first, then the ratio of the areas of
the first to the second 1is , to




4. The ratio of the lengths of two consecutive sides of a
'rectangle 48 4 to 5 . If the area of thEﬁrECtanESE 1s

5. Let a and b -be positive numbers. Show by ;>drawing
_that the area of a square whose side measures a + b 1s
N the same as the sum of the areas of: ' -
) '(a) a square whose side measures a ,
* ‘ (b) & square whose side measures b , and
! (¢) two rectangles each 'of which has sides measuring
‘a and b . - | .« '

' . — D ' .
6. In the figure, AC 1s a T —

diagonal of rectangle’ S - Ra

ABCD . The polygonal- R| ' :
region ABCD 18 cut
into 6 -poljygonal- " S o
regions: the boundary ' )

=l

a

of R, 18 a square; the - R2
1 . " Rg
boundary of R, 18 l

\m‘

rectangle; Ift;3iF .Rgg H5’ Rg Alg— o -

- are triangular regilons.

(a) The area of AABC 1s the sum of the areas of the

polygonal-regions s s —

(p) The area of AADC is the sum of the areas of the
polygonal-regions . _ , s

" (c) The area of AABC 1is equal to the area of AADC ,
Why? |
(d) The areas of Rg and Rg are equal.- Why?
(e) The-areas of Ry and R, are equal. Why?
(f) Therefore, the areas of R, and R, are equal.
Why? '
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'11-5. .Areas of Triangles and Quadrilaterals.

On the basls of the four pastulates concerning area in the-
preceding section, we can calculate the areas of trianglesg
parallelagrams, and variaus other quadrilaterals

TQEGREM 11-3. The area of a right triangle 1s one half the
product of the lengths of its two legs.

Proof: Let trlangle PQR have a right angle at R . Let
thé_lengtﬁs of 1ts legs be a and b, and let A be the
area of the triangle,. (The dlagram above shows two pictures
of the same triangle PQR .) Let T be the intersection of
he line parallel to “FR” through Q and the line parallel to
QR thfaugh P . Then QTPR 1s a rectangle, and
APQR AQPT . By Postulate 28, the area of AQPT is- A
By Postulate 27, the area of the rectangle QTPR 1is A + A ,
because -the two triangular reglons intersect. .only in the
segment PQ . By Postulate 29, the area of the rectangle is
ab . Therefore

il E

I

2A = ab ,

.\
S
,
A

¥

e i

/ A E" b

From thils we can derive the formula for the area of any
triangle. Once we obtain this férﬁula; it will include

Theorem 11-3 as a speclal case,

¥

iy
i
*




115 .
. ' THEOREM 11-4, The area of a triangle is one-half the product
o of any base and the altitude to that base,i
Proof: Let A be the aréa of' the glven triangle XYZ .
. Consider the altitude XD to the side ¥YZ . of the’ triangle

Iet b=Y2Z and h = XE . Let the distances, 1! and b R

between D, and the endpoints of the side opposite X be

chosen so that "Db! < b" , There are three cases to consider,
R : A4

i : x . x

(1) If D 4s between Y and Z , then XD cuts-the
given trlangle into two right trianglesfﬁgith bases
b' and " , as indicated. Furthermore,’
b = b' + b" . By the preceding thegrem, these two
\ . right triangles have respective areas g Th and

%b';h i N 3

Hence, by Postulate 27,

A = %b'h + 3b"h

]

(b1 + p")n

1,
(2) If D 1is one of the endpoints of YZ , then AXYZ
7 is a right trlangle. Therefore, A = %bh s by
Q;! ’ Theorem 11-=3.
—

iy

b
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. o : d )
(3) If D 1s not on the segment YZ ', there are again
*  two right triangles, namely AXDZ and AXDY . In
this case, - b' '+ b = b" ., Hence ‘

R .

F5'h + A = 3(b' + b)h .

Wh{? Solving the above equation for A , we obtain
S ’ .

bh ,

1]
mn oy

P A
Explain how: ;
Since the length of any side of a triangle can be chosen *
as the base, Theorem 11-4 can be applied to any triangle in
three different ways. The figure below shows the three choices
for a single triangle. Any of the three fprmulas, A = #byh

11
. 1. 1 . . . v .
A= §b2h2 , A= gpahs » Elves the area of the triangle.. .

Caral}a;y,il—Asl,"ThE area A of an equilateral triangle
whose ‘side has®® :

'éngth\’s is given by:

A = ¥i

s 7 7
The proof is 1ePt as a problem.

THEOREM 11-5. The area of a rhombus 1is one half the product
of the lengths of the dlagongls.

S




5. ‘ . ! g : ;:. »; C.

! Proof: Let M be the point of intersection of the:

. diagonals of the rhombus EFGH , hamely ¥G and TH .
. " - co

[PS

11

a

N E - F. i T
Let d S.EG and d' = FH . The diagonals are perpendicular té
each other. Since TM is the altitude to side EG of *
triangle EFG , the area of AEFG 1is . -
I

2d(FM) .
In a ‘like manner, we note that the area of AEGH 1is
, Lagm) .
Hence, by Postulate 27, the area of the rhombus 1s

24 ar.

il
1]

Loy « Larumy - Lo

2d(FM) + Zd(im) = 3d(FH)

Corollary 11-5-1. .The area A of the square whose
diagonal has length d ‘is given by

1.2

"~ .

A

1

The proof 1s left as a problem.

THEOREM 1;j§g The area of a parallelogram i1s the product of

any base and thg altitude to that base.

.,
T
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Proof: Let A be the area of the parallelogram PQRS .
Let b and h Dbe a base and the corresponding altitude.

PR

The triangles PQR and. RSP , which have the dlagonal PR of

the parallelogram as a common side, are congruent. Hence the

triangular-reglons PQR and RSP have the same area, by

Postulate 28. Hence the, aréa of PQRS 1s twice~the area of
"APQR,. Since b and h* are a base and a correspanding

altitude of APQR , the area of APQR 1is §bh . Therefore
‘the area of PQRS is 2(%bn) )

\ A= bhlg

ie/ ‘Since the length of any side of a parallelogram can be
taken as the base, Theorem 11-6 can be dpplied to.any
parallelogram in two ways. The fipgures following illustrates
the two cholces for a single parallelogram. In one case, we
obtaln A = bh , and in the other, A = b'h' ., Either of

these two expressions gives the, area of the parallelogram.

L~



11-5 ’
THEOREM 11-7. The area of a trapezoid 1s one-half the product

z
‘ " of its altitude and the sum of its bases.

Proof: , ILet A ©be the area of the trapezoid, h 1its
altitude, ard b, and b, 1its bases.

A diagonal of the trapezoid cuts the polﬁéanaléregion into two
trlangular-regions whose respective areas are %blh and

%bgh . (The dotted lines on the right .in the diagram indicate
why the two triangles have the same altitude.) By Postulate 27,
the area of the trapezoid is

b.h + =b.h

04 ofl

A=

I b
Piog b

-

Algebraically, this is equivalent to the formula

i 1, ... !

DEFINITION. The medlan of a trapezold is the segment
which Jolns the mildpoints of the two non-parallel sides.

Corollary 11-7-1. The area of a trapezold is equal to the
product of 1ts altitude and the length of its median.

4% The proof 1s left as a problem.

©  Summary of Formulas: _

Area of a rectangle: A = bh
Area of a parallelogram: A = bh .

Area of a triangle: A= o

1]

Area of an equllateral triangle: A

Il
»
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1]

Area of a rhombus: A

- Area of a sgquare: A =

i

Area of a trapezold: ‘ A

i
Problem Set

=

1-5

ey
| ‘ [Naf

1. Find the¥ area of a right trlangle 1f the lengths of the
legs of the triangle are € and 10 .

un]

Find the area of an lsosceles right trilangle 1if the

length ol each of the ruent sides of the trilangle

is 12

0
i
o]
put

2]
g
ot

3. Find the area of a !15-45-90 triangle if the hypotenuse
of the triangle is 12
k., Find the arsa of é 30-60-90 triangle i’ the hypotenuse

[yl
=
]

h 1s the_ﬁyp@tEﬁuse of a U46-45.90 triangle, find:

(a) The length in terms of h of the side opposite an

angle whose measure ls 45

pe

(b) The area of the trlangle in terms of h

is the hypotenuse of a 30-00-90 triangle, find:

poc
»

—
e
o

(a) The length in terms .of h of ‘the slde opposlite the
angle with measure of 30

(b) The length in terms of h of the side opposite the
angle with measure 60

(¢) The area of the triangle in terms of h

v

””u_

O 759 )
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“(b) AAYC ; AEYB (d) AEYB ; A

f/

Find the unknown in each of the following triangles if
A 1is the area, b the base, and h the altitude.

e A B b o B h
(a)  ° | R | 10 )
) 2 s | s
) 12 8
@ 12 | . T 6

In the diagram, the line containing A, C, D, E, B 1is
parallel to the line containing X, Y, Z, and is perpen-

dicular to AX. AC =3 ; CD

1]
-
&

I
o
=
iU
=

U AN R N T V4 6 N\ .

A C D B

mi

In each of the following, find the ratio of the area of
the first-named trilangle to the area of the second-named

triangle.

{a) AAYC ; AAYD (¢) AAYC ; AEZB

ZB

e

Refer to the diagrams
at the rlght and find
the area of each of
the following:

(a) AABC
(b) AXYZ
(¢) ARsT
(d) ADEF

L
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Prove Corollary 11-4-1.

In the dlagram to the right,
ABCD 4s a quadrilateral with

diagonals AC and BD A/ ——)C
perpendicularito each other.

BD bisects AC . AC = 20 and :

BD = 2k, Find the area of -

the quadrilateral.

If ABCD 1is a rhombus with-diagonals 20 and 24 , find
the area of the rhombus.

Find the area of a rnombus 1f the length of one side of
the rhombus is 15 and the longer diageonal of the
rhombus is 24 . .

The area of a rhombus 15 1600 . Find the length of each
diagonal of the rhombus if one 1s twice as long as the
other. '

Prove Corollary 11-5-1.

Find the area of a square if the diagonal of the square
iz 8 .

Find the area of a parallelogram if the base of the
parallelogram is 12 and the altitude of the parallelo-
gram 1s 7

The area of a parallelogram 1s 8430 and the altitude of
the parallelogram 1s 150 . Find the base¥

Find the area of a parallelogram ABCD if AB = 10 and
AD =14 , and:

(a) m /A =30 . (¢) m /A =60 .

(b) m /B =14 (d) m /D= 20

]

%]

761"
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11-5

M
']

%]
o)

It
It

)

!
.

The sides of a pafallalagrapajé% 8 and 10 respectively.
If the shorter altitude is ! , what iz the longer
altitude?

Find the uninown in each of the following trapezoids if

A 1s the area, h the altitude, and bl and b, the

bases of the trapezoid.

K

(a) }‘ ? 3 . 6 8

("g)‘ o o 6 ] 54 . ;L;i) i

(cz 72 . ? 7

1) 100 5 Y >
)

180 ? 11 9

ABCD 1s an isosceles trapezoid with AB || ©C and
= 30 . AB = 1 >

the trapezeid.

6 . Find the area of

=
DA
> 8
I
]
[
b
m
2
parh
=
o]
I

Prove Corollary 11-7-1.

Find the side of a squ re if the area.of the square 1is

“he
equal to the area of a rectangle 16 feet by 9 feet,
quadrilateral ABCD ,
|| BB and BE | ©C 5

AB = 10 , DC = 14 | —

=7 , find the areas
AADC  and AAEC . _ -

nE S EE

-
-
-

—~
o
I

'



g
-~

2
ool

29.

. The points

* Three of the vertices

"coordinates:

P, 5,.Q, R,
collinear 1n that order,
and the parallelogram
ABCD 1l1le in the
plane; and 2
TR and D3
dicular to

s

[

o

1l

ot

O r
™ '
Lo W
)

il

[k

The vertices of a triangle h§ve coordinates
(-4,1) , and (%4,5) . Prove that the triangle
right triaﬁgler Find the area of the triangle.

of a rhombus ABCD are:

B(-6,-2) , c(-8,-8) .
(a)
(b)
The vertices of a trapezold have the following coordinates:
A(0,0) , B(12;0) , ¢(17,6) and D(2,6) . Find the
altitude and the area of the trapezold.

What are the coordinates of vertex D 7

Find the area of the rhombus.

The vertices of a quadrilateral ABCD have the following
A(-3,0) , B(2,4) , ¢(6,0) , and D(3,-5) .
Find the area of the quadrilateral. Hint: Consider the

altitudes of AABC and AADC

The codf&isﬁtfs of the rgspective vertices of ractanglé
ABCD are ¥3,2) , (10,2) , (10,7) and (3,7) . 1In the
same coordinate Sysﬁemjéthé.VEFtiCES of AEFC are

(5,2) , (3,5) , and (10,7) . Find the area of AEFC

R
~ *]\J —

763 )
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32. In the quadrilateral ABCE , point D 1is between C and
E ; “EcT| | ™5 AB = BC = CD = DE = EA .

Prove: AC - BD = EB -+ AD .

m
lw]
Ly

()
C

A _ _
The hypotenuse of right triangle ABC

nct
[

is the altitude to the hypotenuse. .

[

' ol
.3

Prove: AB « AC = BC + AD

B D
Prove: If the-diagonals of a quadrilateral are perpen- /
dicular, the area of the quadrilateral is equal to orfe-
half the product of the lengths of the diagonals. .

A

,A\_,w’"“r' -

[wa]

C

764
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11-6. Area Relations.

In the study of area 1t is interesting and important to
compare the areas of two or more figures when they differ in
one or more dimensions. Proportionality 1s one of the most
effectlve methods of studying this change. Before continuing,
you may wish td review the definition and fundamental
propertles of proportionality and of proportions, as presented
in Chapter 7.

Consider two triangles. Suppose that one of the
triangles has base bl , altitude hl , and area Al ; Buppose
that the other triangle has base b, , altltude bg , and

(i

area A~ . Then
=

and

(5]
2

Hence, by division, )
ey f

2 2 k

=]
o
2

o

i

it

e

u,

ot

the two triangles have the property that b1 = b, , then >
%

h ‘
= Fi . In other words, the areas of two triangles with J

equal bases are proportional to the correspondlng altitudes.

I

> -
M [

as

71

nd !L1 =k hl , where the constant

of proportionality k 1is one-half tne base of each trlangle,

1

We note that A, = k h

%]

A4
namely Kk = ;bl

b

P

b. .

il
nfi=

(KN

If the two triangles under consideration have the

property hl = h., , then

g

LK

1n

I
|

= >
[
ag

In other words, the areas of the two triangles are proportional

to the bases.
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On the other hand, if the two triangles have the property
that Al = AE s then’ blhl = bghg . In other words, the product
of the base and altitude is the =

the cther. This situation suggests a notion which is related

ame for one triangle as for
to the concept of proportionallty and which we wish to discuss
now, namely "inverse proportionality." py

An important property of proportionality is the following,
exp:essed for the case of three numbers: If the positive
numbers g, r, s are proportional to the positive nﬁmbérs
a, b, ¢ than the largest of the numbers a, b, ¢ corresponds
to the largest of the numbers q, r, s . By contrast, as the
definition below shows, 1f the positive numbers q, r, & are
inﬁ@;sely proportional to the positive numbers a, b, ¢ ,» then
the largest of a, b, cv corresponds to the smallest of the
numbers qz r, With this introductien, we are ready for
the definition,

Do

DEFINITION. Suppose that to the positive numbers

0 t
4, r, 8, ... there correspond the positive numbers

(&
a, b, ¢, ... (that is, gqa—wa , re—wb,, se—wc , e )

The numbers g, r, s, ... are inversely proportional

to the numbers a, b, ¢, ... 1if and only 1f all the

0
pai
[o
ooy
et
[
o
o
=1
I
Wi
]
Lol
il
L
T
[ay
oy
o
xd
jad
=
m
o~
pacy
po
[

products of correspondi
18, ga =1rb = s¢c = ...).

U £
ko [
o
Toadt
-
=t

As an example, the numbers 2 , 6

AT
jal
L
m

inversely proportional to the numbers

]

=

g

I ’:‘WI

o
AT
o)
W
o
L]
]

each product of corresponding numbers 1:

As another example, find the numbers x and y such
that 2 , x , 5 are inversely proportional  to &, 4, v .
By the definition, the products 2 . 6 , 3 4

NS

LT
g

[

Y

3y ]
[

- \
g

hack

:

v

i

g

]

arz all the same. Thus 12 = Ux =

K

are x =3 and y = =

We now extend our preliminary remarks about two triangles

to the case of any number of triangles.
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THEOREM 11-8. Consider a set of two or more triangles.

(a) 1If the bases of all the triangles are equal, then
the areas of the triangles are proportional to the
corresponding altitudes,

(b) If the altitudes of all the triangles are equal,
then the areas of the triadgles are proportional to
the corresponding bases.

(¢) If the areas of all the triangles are equal, then
the bases of the triangles are inverssly proportional
to the corresponding altitudes.

Proof: For definiteness, we prove the theorem for a set

of three triangles; the method applies to any number; by
choosing three, we avoid complications of notation in discussing

Let the areas of the triangles be A , A' , A" ,

]
and let the corresponding altitudes be h , n' , n"

Now A =2h, A' =20t , A" = Bn" | Nence the numbers A , A' ,

A" are proportional to the numbers 4 , h' , h" , with the

)

15 the proportilonalilty c@nztantw-

y,j\““ [ng
ry

non-zero number

(b) By hypothesis, all the altitudes are the same number,
1 be A, A' , A" and

iy

say h . Let the areas of the triangle

let the corresponding bases be b , b! ,’b"

s

ERIC
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b, A' =zb' , A" =Zb" . Thus A, A' , A" are

n
k¥ o

Now A =

proportional to b , b' , b" , with the non-zero number %

as the proportionality constant. o

(¢c) By hypothesis, all the areas are the same number,
say A . Let the bases of the triangles be b, b' , b" and
let the corresponding altitudes be h , h' , h"

=

Now A =3bh , A =£b'h! , A ="' . That is, all of the

products bh , b*'h' , b"h" are equal, since each of them is
equal to 2A . Thus; b, b', b" are inversely proportional

i)

toe h, h' , n" .
Analogous to Theorem 11-8 is the followlng theorem for

parallelograms. 7
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THEQOREM 11-9. Consider a set of two or more parallelograms.

(a) If the bases of all the parallelograms are edqual,
then the areas of the parallelograms are proportional
to the corresponding altitudes,

(b) If the altitudes of all the parallelograms are equal,
then th%;gfeaé\of the parallelograms are proportional
to the Eorresp@nding bases,

(¢) 1If the areas p% all the parallelograms are equal,
then the basés of the parallelograms are inversely

proportional to the corresponding altitudes.

e

The proof 1s i=ft as a problem.
/

A speclal case of Theorems 11-8 and 11-9 occurs when the
number of triangles or parallelograms 1s two. In fact the
case of two triangles has already been mentioned. Nevertheless
it is worthy of repetition, If b, h , A are the basze,
altitude, area, respectively, of one triangle or parallelogram
and 1f b' , h' , A' pertain to the other, then the
respective parté of the two theorems tell us the following:

(a) If b =10b', then A , A' are proportional to

h , h' , and hence %T = %T .

pug
1]

(b). 1If h' , then Zy = pr

. A' , then bh = b'Rh!

=

4y

po=2
1]

(c)

Problem Set 11-6

-1. Prove Theorem 11-9.



4 | ¢

2. In the quadrilateral ABCG , ABDF 1is a rectangle, and
“ ABCE and ABEG are parallelograms. Compare the areas
of the three parallelograms. Explain your answer.

G F E D c

L 4

3. As shown in the figure, AD is divided into three

[

egments whose measures are proportional to 1

[iv]

3

L
P

‘ompare the areas of the three trlangular-reglons

1;]% ;RBi

o

ma

e}

4, It is gilven that in],ﬁl ilﬁE ; RC™] I™DF™; m /CAD = 30
AB = bx ; BC = 6x . What 1s the ratio of the areas of

ADEE and ADFC ¢

e /
- ; -
- — - i;—%"i — L -
P g /
= fg:j ; hl f*;f

B~ | )
-l - et E EEI
th =1
[ |
1 |

P D B =Lz

ERIC

Aruitoxt provided by Eic:



s
-
&

." ProVe: The diagonals of a parallelogram divide the
’(garallelogfam and its interior into four triangular-regions
of ‘equal area.

6,, Prové that each median ofsa triangle cuts the triangular-

fégion into two triangular-regions of equal area.

‘7. AE , CD, and BF are medlans of AABC intersecting at

‘point O ." Prove that the areas of AAOB , ABOC and
ACOA are equal. Hint: Use Problem 6 to compare the

3

areas ofi
(a) AACD and ADCB ; AABF and AFBC .
(b) AAOD and ADOB ; ABOE and AE0C .
- Then prove that the areas of AAOB , ABOC , and ACOA
' are equal. o ‘
8. \' The following experiment illustrates the fact that the
@
\paint of lntersectlon of thne median: of a physical
triangle 1s the center of gravity of the triangle.
Cut a model of a triangle from cardboard and draw
the three medlans of the triangle. Try to balance the
trilangle on tiie head of a pin at the point of. intersection
' of the med}ans. Use the results in Problem 7 to explain
why the Intersection of the medlans iz the balance point

or center of gravity. e

e
i
"

If the area of AABC din Problem 7 1s 216 , rind the
area of each of the following triangles: -AABO , ABOC ,
AAOC , AODB , ABOE , AAOF .

*10. Given: AABC ~AA'BICH

D

ERIC
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. ¢
. (a) 1f ABEZ’LE,A'B':’?;,@&h—m;ﬂ,nd‘hi.
(b) If h=9,h" =3, and /A'E' = 4, find the
b length of AB . // 7
(c) If AB=7,BC=8,AC=6, and A'B =3},
find the perimeter of ;;A!B'C' :
= 10 ;

*

11. In AABC , TG | BB ; DF || BB ; CF = 20 ; CE
v . CB=30,DF=18. . - =
; ) ‘ Find: . .
| (a) The length of GG ;
At(b) The area of -ADFC ;,

(¢) fThe area of AABC ;

L .
|
l . -
) plE :
(d) The area of quadrilateral /| v '
I ]
ABFD . ab— _ ~

3
1EZ§F;;E areas of two triangles are equal. What i1s the ratio
of the base of the-first to'a base the second 1f° ,the -
corresponding altitude of the second\is: !
(a) Three times the cdrrespanding altitude ofi;%e first.
'(b) One-fourth the corresponding altitude of the first,
(c) Three-fourths the corresponding altitude of the first,
(d) One hundred fifty per cent ogkthe corresponding
- altitude of tHe first. -
(e) Ten per cent more_ than the corresponding altitude
? _ of the first., sf//
13. _Are the areas of two triangles equal if a base of the
: second is 5 units more than a base of the first, and
. the corresponding altitude of t§ sécond ia 5 Tnits
T less than the aarre@pandimg a;figud of the f‘irst‘?
' Explain your ansper.

#

14. What is the ratio of the areas of P#o rectangles if the '
~ base-.of the second 1s . 25 per/cent more than the base of
the first, and the ;altitudé of th,c'f; second 1s :25 per

" cent less than the altitude of the firg#?.

kS ‘ ’ - \ -
. w \ 772 SR
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11-7
11-7. ‘Relations in Similar Polyggns.

THEDREM 11- 10. EvEfy aimilarity Eetween ﬁriangies haé the

\ measures of the c:orres;pondihg 8ides and the
.. altitude of the other triangle.

Proof: Let PQRHE'Q &} be a similarity between
tr;angles.- Let k be the proportion 1 1ty constant. Then

f

P=kp',qg=kq" ,.r=kr' ., Let .RD and K'D'T be the
respective altitudes from R in APQR and from R' in
AP'Q'R' . Let h = RD and h' = R'D'

If D # Q , then consider the correspondence .
RIQe—R'D'Q' between right triahrgles. Since /RDQ Y /R'DIQ
(why?) and /DR = /D'Q'R' , the correspondencé is a
similarity. The propartiaﬂality constant for the simi],arity

RDQe—RID'Q!' 1s also }c , 8ince RQ = lfp' = k + R'Q' .,
Hence h = kh' . )
On the other hand, if D =Q , then h =¢RD = RQ = p and
' h' = p' ; in this case algo, h, I{h' » sin:gﬁp = kp' .

Thus, in every case, p ,-q ,' r ,.h are prgportional to
p' , q' , r' , h' , with proportionality conastant k . =
' ‘ bad
THEOREM 11-11, ‘Every similarity between triangles has the

pr‘cpen—%‘ that the areas of the triangleu are proportional

to the squares of the lengths of any palr of corf&iponding

sides. N




Proof: Let PQR4—PIQ'R! be a similarity.Qetween

- triangles. Consider any palr of corresponding sidiy b0
and P'QT and let r and r' be the respective lengths of
these sigdes. Let h and h' be the lengths of the altitudes
to these sides in the respective triangles.

g,

P

Q F

r

Let A and A' 'be the respective areas of APQR and AP'Q'R!
'By Theorem 11-10, (x,h) (r';h'). Thus

SRR

o

" By substitution,

1:5'; :z>.

(rgxrlg)

Thus, (A,A') , as asée’iﬁ&ed,

il

As an exa,mple; suppose that DEFe—»IMN 18 a

similarity between, triangles such that an altitude of ADEF

1s three times as iOhE as the corresponding altitude of ALMN .
24 Then, by Theorem ll—io, every side of ADEF 1is three times as

long as the corresponding side of ALMN , and every altitude of

ADEF 1z three times as long as the corresponding altitude of

ALMN . By additlon, the perimeter of ADEF 1s three times

the perimeter of ALMN . Furthermore, by Theorem 11-11, the

We now turn our attention from triangles to polygons with

any number of sides. X

e <
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Theorem 11-12 1is concerned with perimeters and of course
applies to triangles as well as to other polygons. Theorem
11-13 generalizes Theorem 11-11 to the case of pcl&g@ns with
n sildes. v

i

THEOREM 11-12. Every similarity between convex polygons with
n sides has the property that the lengths of the n
sldes and the perimeter of one polygon are proportional
to the lengths of the corresponding sides and the perimeter

of the other pgljéang

Proof: Let the lengths of the sides of one convex polygon
be a, b, ¢, ..., and let the perimeter a + b + ¢ ... be s I
Let the lengths of the corresponding sides of the other convex
polygon be a'’, b' ., c! s =::, and let the perimeter »

a' + b!' + ¢t + _K, be p!' . Let k be the proportionality

constant for the similarity.

Then a = ka' , b = kb' , ¢ = ke' , ...: Hence
) p=a+b+e+ ..,

ka' + kb' 4+ ket + ...

k(a' + b' +¢c! + ees)

kp!

Lol
i

Thus a ,’b, ..., p are proportional to a' , b' , ..., p'

with proportionality constant k . ' '

THEQREM 11-13. Every similarity between{ednvex polygons with

o n. sides has the property that the areas of the polyéonal-
regions (ccﬂsistiﬂg of the polygons and their interiors,
respectively) are proportional to the squares of the
lengths of any pair of corresponding sides.

- -
2
<~

- )

J; . 775
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Proof: We outline the proof; you are asked to supply the
detalls as a problem in the next problem set. TLet
PQR... =— P'Q'R'... ©be a simllarity between polygons. with
n sides. Iet k be the proportionality constant. The
diagonals from P cut the polygonal-region PQR... into
triangular-regions; let the areas of these triangular-regions
LEE A, B, .. g In @ like manner, let .A'., B' , ..., be the
“areas of the gé’%esponding triangular-regions into which the
diagonals from P' cut the polygonal-region P'Q'R!'...

APQR ~ AP'Q'R!
AP'R'S' , ete!

2 2

A+ B+C+ ...=KkA" + kB + k°CY + ...

7 = K°(A' + B' + C' + ced) o
Thus -

SRR N )

T

"

Problem Set 11-7

1. The lengths of a pailr of corresponding sides of two
Bimilar trianglea are U4 and 5 . Wh§t is the ratio of
"™Whe areas of the triangles? '




wn

The areas of two similar triangles gre 64 and 100 .
What 1is the ratio of the 1§ngths Qéicorresponding sildes?
the ratio of corresponding Rltifudes? the ratio of
perimeters? -

Two similar triangles are such that the area of the first
triangle is 16 times the area of the other triangle.
What 18 the ratio of the length of a side of the first
triangle to the length of a corresponding side of -the
second?

The areas of two similar triangles are 64 and 100 . If
a side of the first measures 24 ;, find the measure of the
corresponding side of the second.

The altitude of an equilatefal triangleéis equal to the
length of a slde of a second equilateral triangle. What
is the ratio of the lengths of corresponding sides? the
ratio of the areas?

Cut a trigﬂglé into three polygonal-regions of equal area
*By'drawing lines parallel to a base,

By hypothesia, we have two
gsimlilar pentagons, ABCDE
and A'B'C'D'E! , We are
to prove that thelr areas
are proportional to the
squares of the lengths of
any two corresponding
sides.

o 2
area AEBCDE _ 5"
RE tatefﬂent afréa* = AjB‘C‘D‘E = 'Sjg *

(DTaw diagonals from A and A' ol the polygans.)
chblem 7 asks for the proof of Theorem 11-13 for the

case of pentagang. Use the same ideas and give a proof
of Theorem 11-13 for polygons with any number of sides.

*

. The areas of two similar paiygans are 144 and 256 ,

If a side of the firgt‘ﬁéasufes 9 , what iz the measure
of the corresponding side of the second?

K S,



10, The lengths of the carrespénging élaganalé of two similar
polygons are 7 and 10 ., What is the ratio of the N
areas? the perimeters? '
.. 1l Find the ratio of the perimeters of two regular octagons
if the areas are 25 and 50 .
the diagonal of a
rea of the given

12. Prove that the area of a square having
gilven. square as a side has twice the
square. k

13. Two similar polygons RSTUV and R'S'T'U'V!  are such
that /R colncides with /R' . The coordinates of

R=R'", of 5, of 8' are '(2,2), (2,11) , (2,8),
- respectively. Find the ratio ‘of the lengths of corre-
sponding sides of the/pélygana; the ratlo of perimeters;
“the ratio of areas. 1 5

4, The areas of two similar triangles are 144 and 81 . If

a side of the former measures 6 , what is the length of
the corresponding side of the'@atter?

[

15. In AABC , the point D 1is on side AC , and AD 1is

twice CD . Let the 1ine=§ﬁ§§’pafallel to “AB™ intersect
“5c™ at E . Compare the areas of triangles ABC and DEC |

16. How long must a side of an equllateral triangle be in order
that its area shall be twice that of an equilateral
triangle whose side measures, 10 ?

17. If similar trlangles are drawn having, respectively, the
side and the altitude of an equilateral triangle as
corresponding sides, prove that the ratio of their areas
is 4 to 3 .. -t

18. Two pleces of wire of equal length are bent to form a
square and. an equilateral triangle respectively. What is
the ratio of the areas of the two polygonal-regions
bounded by the respective polygons? ’
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11-8. Regular Polygons.

THEDREh 11-14, The bisectors of the interior angles of a
] 24
regular convex polygon of n sides intersect at a point.

Proof: Given a regular conveX polygon ABCDEF... with
EF , etc., and /A= /B¥ /c ¥ /DT /E 2 /F,

A

RE=ZBC =TD = DE

e
2

Let the bisectors of /A and’ /B 1intersect at point V .
Then AAVB 1is lsosceles, because m Jfa' = %m Z%E% %m /B=m/b

m /b' . Hence the corre-

Thus AV =BV . Now m /fa' =m /b
spondence AVB=+—#EVC between triangles 1s a congruence, by
S.A.S. (Why?) Therefore m /c =m /b % m /B ='% m /C .

That 1s, OV is the bisector of /C .. In a llke manner, we
can prove that ABVC 1s isosgeles, that the correspondence
BVC+—CVD 15 a congruence between triangles, and that ' Dv—
blsects 4D . The same procedure shows that E?bibisects éﬁ s
etc. In summary, all' the bisectors meet at the point V .

DEFINITIONS. The center of a regular polygon is

7 Xﬁhe point of intersection of the midrays of any
two angles of the polygon. 7
Any trlangle whose vertices are the cecenter and two
consecutive vertices of the polygon 1s called a
central triangle of the regular polygon.

A radius of a regular polygon is any Segmgnt Join-
ing the center and a vertex of the polygon.

An apothem of a regular polygon 1s any segment which
Joins the center and a side of the polygon and is
perpendicular to that alde.




As an example, the center

diagram is C .| There are six
central trianglas
is AABC . The =

e a radius apd the

! Eré regular hexagon.

an apothem of .
- Theorem 11-14 tells us that the center of a regular

polygon is the point of interseetion of all the bisectors of

angles of the polygon. ‘

THEOREM 11-15. Every central triangle of a regular.polygon is
1 isosceles and 1s congruent to every other central triangle.

Proof:  These statements, expressed now in the new language
of "central triangle," were actually established in the proof
of Theorem 11-14, 1Indeed, using the notation of that proof,
we showed that each of the central triangles AVB , BVC , CVD ,

e

etc., 1s isosceles and that AAVB = ABVC & ACVD 2 ...

THEOREM 11-16. The area of a regular polygon 1s one-half the
product of the apothem and the perimeter of the polygon.

Proof: Let ABC... be a regular polygon with n sides.
Let V be the center of the polygon, let a be the apothem,
and let e be the length of one side of the polygon. The
segments jciﬁing the center V and the vertices of the polygon
determine n central triangles.
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Each of these central triangles hgs base e and altitude a
and hence area %ea . The area of the regular polygon 1is

therefore n(%ea) f’%a(ne) . Since ne 1s the perimeter of
the polygon, the theorem is proved. - '

-

* {
1. Does a perpendicular segment from the center of a regular

=
=

Problem Set

polygon to a\fgde bisect the side? Why?
f

2. The apothem of7a regular hexagon is 1043 . What is the
length of each side of the hexagon?

3. The diagonal of a square has length 6,%Z . What is the
radius? the perimeter? the apothem? the area?

4, Given an equilateral triangle whose side measures s ,
find the radius and the apothem of the triangle in terms
# of 5 .

5. The perlmeter of a regular hexagon is 12 . Find the
apothem, the radius, the area.

6. The radius of a square 1s r . Find the apothem, the
length of a side, ,the perimeter, and the area of the
8quare all in terms of r .

7. The apothems of two equilateral triangles are 8 and 12

(a) What is the ratio of the radii? of the lengths of

* thelr sides? of the perimeters? of the areas?

(b) Find the area of the smaller triangle by two
different methods, -

8. (a) Each side of a regular hexagon isﬁ;éevéi_ Find the
area of the hexagon, _

(b) The apothem of a regular hexagofi is 12 . - What 1is
the perimeter of the hexagon? the area?

(c) Use another method to find the area of the hexagon
in (b) . W

—
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11-9. Polyhedrons.

Plctures of varilous polyhedrons look like the following:

LV R
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DEFINITIONS. A’polyhedron is the union of a finite .
number of polygonal-regions, each of which consists
of a convex polygon andli%s‘interior; such that {1)
the interiors of'any two of the polygonal-regions

do not intersect and (2) every side of any of the
polygons is also a side of exactly one other of the

pblygans.
Each vertex of any of these polygans is called &
vertex of the polyhedron. o ’
)
Each side of any of these polygcns is ;alled an
edge O0f the pdlyhedron. P
‘{ _
Each of the polygonal-regions is“alled a face of .

the polyhedron.

As an example, conslder the polyhedron in the above

‘diagram, It has five vertices. It has elght edges, two of

which are BC and AE . It has five faces, one Qf which is
the shaded triangular-region CDE .

A polyhedron is naméd aCEOTding to the number of faces
which 1t contains. gincé the number of sides of a polygon 13
the basis for naming a polygon, we expect some resemblance
between the names of polygons and the names of-polyhedrons.

The following table shows this analogy. - ¢
- -
i:’ - LJ‘
)
783




Prisms, pyramids,
special kinds of polyhedrons.

s ‘
‘Name of Polygon Number of || Name OfifélyhéafOﬁ ':ﬁumbeéfpf Faces
o ¢ Sides L N i

Triangle 7 3 (No po;yhedfon has three faces,)
Quadrilateral 4 Tetrahedron h
Pentaggn 5 . Pentahédr%& ) 5 4

. Hexagon 6 Hexahedrgﬁ 6
Heptagon 7 ZHeptahédron ol 7
Octagon 8 Octahedron . 5;\
Nonagon 9 Nonéhedrén 9‘}
Decagon 10 Decahedron 10
Dodecagon | 1éf> Dadegahédféﬁ 12
20-gon 20 }ﬁggghedrcﬁ 20 .

and frustums of pyramids are examples of
Other examples are the so-cdlled

regular polyhedrons.
= - I
DEFINITIONS. Any non-empty intérsection of a/pclys

hedron and a plane 1s called a sggpiog ofkthe

polyhedron. -

A polyhedron is a convex polyhedron if and iny 1f
every sectlon of it which contains at least three
¥ non-collinear points is either a convex polygon or

a face of the polyhedron.,

/A regular polyhedron is a comnvex polyhedron guch

_that: .
; -(1)7 each.face 1s the union of a regular polygon
’ and its interior;
(2) .all these regular pz;ggons have. the same
v numbef of sides; anc F
(3) 311 vertices of the polyhedron belong to thg Z:
* same number of faces. . A
s& 784




11-9 ,

It 1s interesting to note that there are only five types
af%begulgr palyhedgans;; the regular tetrahedron, the regular‘
hexahedron (also called the cube), the regular octahedron, the
regular dedeeahéﬁrén; the regular icésahedran. This fact will
be discussed agaln later in the chapter. Pilctures of these
five types of. polyhedrons are shown below. i ! ,

_ Tetrahedron

Hexahedron
dr cube

Dodecahedron
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E = N . \

t to make,

L Models of.regular polyhédrans’are not aifficul’
. and they are very helpful in studying the properties of the
~ *regﬁlar‘ paiyheérans. ,The plans for making these_models are
given below: They should be constructed from stiff paper,
using dimensiqns that are-%t least ﬁive times=asglargé'as the
e 3 B

dimensions of the pattern. '

o' TS
n, ELN

- Hexahedron

Dodecahedron : . Icosahedron

=l I " H 786
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[

1. Make a'table similar to the following ‘and fil} in the blanks
for the indicated regular polyhedrons,

Regﬂlar ggundary Number | Number | Number | Number
EOlgheir@n of of - of - of = 1 of Faces
i Face Faces | < Edges | Vertices | (or Edges)
L . C ' at @ B
h S . ] 1 Vertex
- i . e - —— — L=t
etrahedron- | * & ' :
. ,"'.' =
. Octahedron ; - R T
% )
.. Icosahedron )
" © Hexahedran Y . . ’
I 1 * .
Dodecahedron -
:;E, Frbm the preceding table, verify the formula f - af+ v =2,
, where f 1s the number of faces of the regular polyhedron,

e 1s the number of edges, and v 1s the number of vertices.
D3 you think the formula is also true for polyhedrong wh%gp
‘are not regular polyhédron

3. Explain why there 1s no polyhedron with three faces.

. If you would like to kriow more aboﬁt the relations that
exlist among Pegular polyhedrons, or 1f you are intefested in
constructing models that use regular polyhedrons as a basis
for their EOﬁStfHGﬁiOH; the followlng books will be of

s

Steinhaus, Mathematical Snapshots

Cundy and Rollett, Mathematical Models

p_—

ERIC

Aruitoxt provided by Eic:



PRlyhedral _Egleg.

In CQ\%ters I and 9 we studied plaﬁe angles and dihedral
( angles. In this section we introduce another type Qf angle
" known as the polyhedral angle. We also study some iﬁ?artant
properties of pélyhedgal angles,
A.picture of a polyhedral angle is the following:
. . v “ ~

This polyhedral angle is determined by the convex-quadﬁilaterai
- PyP,P,P)  and the point V not in the plane of the quadri-

lateral. The rays V?[; R VE"2 » VE'B s Vf; , are edges of the

polyhedral ‘angle. Each of four angles at V , namely LP1VP2 s
7 - Y e wrm B te oA £ - -

. [P,VP; , 4P3VP4 s 4P4VP1 1s a face angle of the' polyhedral
angle. A face of the polyhedral angle is the union of a face
‘angle and 1its interior; for example, in the plane VPP, , the
union of ZP4V? and its “interior 13 a face. The'pélyhedral

faces. This 1llustration leads us to thésfollawiqg definitions

3 : L . -

- DEFINITIONS. Let a convex polygon and a point V
& not in the plane containing the polygon be ‘given;
the uﬁion of all the concurrent @a which have
endpolnt V and which contain a paint of the

The pcint; V 18 the vgrte; of the polyhedral angle. 7

. = . . ~ ) .
~Each ray with endpoint V and containihg a vertex
of the polygon is an &dge of thegpolyhedral angle.

e : }:’ T
= . i (S
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An angle with vertex V and containing two '

;
|
consecutive vertices of the polygon is a face
angle of the polyhedral angle.

A face of a palyhedral angle 1s the unian cf a
face angle and its iﬁtéfié?

5.
A polyhedral angle af thréé\faces is called a
trihedral aggle. - : . _ ,;=

&

Notation. If a pélyhedraiAangle4ié determined by

the convex polygan’ PlPE . P and tHE‘VEftéx Vo,

Sif Ql is an interior palnt cf VPl ; 1T Q is

an intEEiDr point of V?E,..., and 1if Qn 15 an

interlor poimt of V?n ; then the pglyhedra] angle

.1s denoted by the symbol [V - QlQE.i,Qﬁ .

¥

In particular, the polyhedral angle may be denoted by

LV~ BBy | o

Other pictures of polyhedral angles are the following.

v
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1:‘

" of the face angles of a polyhedral angle 1is

Explaratary Prablems . g S

How many trihedral anglés are formed by the walla, flea?,
eeiling of your ;;asaraam? what dg you think i3 the

measure of each of their face angles?

' Can you make a model of-a trihedral angle with exactly:

one of the face angles a right angle? With exactly two of
the face angles as rignt ané;es? With every face aﬁglgfé
right angle? Is it passible'éa‘makeié model of a ﬁalyﬁ
heédral angle with four faces suech ‘that eaﬁh of the face
angles 1s a right angle? Explain. . S

Make a model of a polyhedfal angle with five faces so that
each face angle measures 60 . Can‘you‘make a model of a

-polyhedral angle with six faces if each face angle méa;ure&

60 ? Explain.
Do you think 1t is possible for a polyhedral angle to have
four face angles whose respective measures are 50 , 120 ,

90 , 100 ? Explain. ' | /

Complete the following statement: The sum of the measures

Construct a model of a trihedral angie, say /V - ABC ,
such that the measures of the face angles /AVB , /BVC ,
/CVA are 80 , 40 , 100 , respectively. (The pattern of
such a model is given in the diagram below. The suggested
distances are measured in inches. As you complete the
model by bringing A and A' together, keep the rays
"pointing downward from" the vertex V and keep face AVB

toward your right.)

Compare your model with those of your classmates. Do you
thinkfthat all the trihedral angles repreasented by these
models are congruent to each other?



I
5

7. Construct, as in Problem 6, a model of another trihedral
angle, say /W - DEF , where the measures of /DWE , /EWF ,
/FWD are 40 , 80 , 100 , respectively. 'Compafe your
model with those of your classmates. Do all these

" trihedral angles appear to be congruent? i

o

Does the trihedral angle whose model you consatructed in
Problem 7 appear to be dongruent to the trihedral angle
whose model you constructed in Problem 6 ?

an example of a pair of "symmetric" trihedral angles.
What do you think is meant by saying that two trihedral
angles are symmetric to each other? '
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10. Draw.pietuggg of a pain of vertical trihedral angles. Do
they appeaxr to be congruent? Do they appear to be
symmetric? (You should be able to guess the meaning of
"vertical” trihedral angles by analogy with vertical,

angles.) ‘ _
11. Try and make models of trihedraf‘angles,with\igyéfgngles
measuring: i T
(a) 40 , 50 , 100 , respectively; .
(b) 4o s 5@ s 90 , resgectivei&;*
(¢) 40 , 50, 80 , respectively.

12. Explain-the result of Problém 11. 3 )

13. Complaﬁe the following-sentence: The sum of the measures
of two face angles of a trihedral angle 1s"___

s e :<~«~The~pregediﬁg~expluraﬁg?yfprabiems~;éa§—us»ta—the~fallgwi--

Y
R

ing two thééremg, whose proofs we omit.
. T / ‘
~,  THEOREM 11-17. The sum of -the measures of any two face angles
of ‘a trihedral angle is“greater than the measure of the

%

third’face;§ngle, \L-

THEOREM 11-18. The sum of the measures of all the face angles
of any poélyhedral angle is less than 360 .

As an application Df the precediﬁg two theorems, conslder
the following situation. Suppqée that the méasurgs of two éf
the face angles of a trihedral angle are known to be 75 and
115 . We ask what information can be deduced about the
measure of the third face angle of this polyhedral angle., Let
the measure of the third face angle be denoted by x . ’

(1) By Theorem 11-17, we find that: o
L
X+ 75 > 115 , e

X + 115 > 7% , and
75 + 115 > x

752 <0
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&

—
—y .

o

‘The first of these inequalities tells us that
. xS 4o (Why?) ;
since x 18 positive, the second of the inequalities
gives us no new information; and the third of the
+ 1nequalities, namely g < 190 , also does not provide
. any new information about the number x * (why?) . 7
(2)- By Theorem 11-18, we find that
# x+ 75+ 115 < 360 . )
Hence :
x < 170 . 7
(3) sSince Part (1) tells us that x > 40 and Part (2)
tells us that " x < 170 , we finally ‘eonclude that
40 < x < 170 .
-

Problem ‘Set 11 10

., In eaoch of the fallowlng, the measures Df two of the face

angles of a trihedral angle are given. Find two numbers
auch that the measure of the third face angle is between
them, in accordance with the infgrmatlaﬁ provided by .
Theorems 11-17 and 11-18.

(a) 80, 105 () s, a7 (
(b) 100 , 125 (e) ' 50 , 135
(¢) 60, 135 ~ (£) 80, 95

‘True - False statements, Write + ifithe statement is

tfﬁé; write 0 1if the statement isifalse

* (a) Each of the three face angles Df a trihedral angle
can be obtuse. - B

(b) * A polyhedral angle can have fgur face angles that

are right angles,
(¢) The measure of the face angles éf a pclyhedral angle

with four faces can be 50 , 65 , 100 , and 110 .

S aE
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(@) The measures of the face angles of a trihedral angle
_ can be 140 , 130 , and 120 .
T : (e) If the measures of two face angles of a trihedral
' 7 angle . are \100 and 120 , the measure of the jhird °
. - face angle 1s less than 20 . x
A 'i (f) 1If each face angle of. a polyhedrai anglé measures'
) ' 60 , the polyhedral angle must be a trihedral angle.
i (g) If the measure of each face angle of a polyhedral
! o angle i;ssgo s the palyhedral anglé must have fﬂurﬁ

. faces,
' , (h) If a plane is perpendicular to one edge of a paﬁy-»
F ’ " hedral angle, it 1is perpéndicular tc two faces of
N ‘the polyhedral angle. ;

Correspondir@ to each vertex ' V of a cenvex polyhedron,
there 1s a polyhedral angle, whose vertex °
is V -and wHbse edges are the rays eon-
taining those edges of the polyhedron
that have an endpoint at V. 1In the
illustrative diagram at the right,
the polyhedral angle associated with
ﬁ\xéi vertex V of the polyhedron .VABCDE

_ ‘1s éy:f ABCD . The faees of the
T P yhedral angle with vertex V eontain the réspective faces

;lthe p@lyhedran that contain the paint ‘v,

’ /
4
In the preceding section we described fthe so-called
regular polyhedrons. By pictures and models we found five
types of regular polyhedrons The number of reaspective faces

is 4,6, 8, 12 .

" e length afkg%fedge of a cube (regular hexahedron) may
be any positive number. So, although cubes can occur in any
"size," they all have the same "shape," in other words, they
are similar to one another. In a like manner, regular
tetrahedrons of different "sizes" are nevertheless similar to
each other. In general, regular polyhedrons of any of the
flve t¥pes we haveg studied are simllar to one aneother., The

794 o ' -

o
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reriarkeble fact 1s that thegg*ﬁivéztypeslaqg the only types of
regular .polyhedrons that exist. We farmulaté this as the nexg‘
theorem, whose proof we merely sketch., -° - 4
" L oL L
THEOREM 11119, There are no more than five types of regular
polyhedrons. * '_‘ax « - ‘

-

/Qutline of proof: v

(1) A polyhedral angle has at least three face angles.

(2)Y :The sum of the measures of the face angles of a
polyhedral angle 1s less than. 36¢/. - (

) ’ » )

(3) The face angles of the polyhedral angle 'corresponding to
each vertex of a Pegular p@lyhédfon have the same measure.

(4) Therefore the measure of each face angle must be less
.than 120 .. )

(5) Thé measure of each angle of a regular polygon with 6
or more sides is at least 120 . ’

(6) Hence every face of a regular polyhedron has less than
6 edges; in other words, a face of a regular polyhedron
is a polygonal-region whose boundary Has eilther 3 on
b or 5 sides.’ '

(7) Suppose that each face has 3 eqges. Then, «

(a) each face angle has measure. 60 ; -
(b) each polyhedral angle can have 3 or 4 or 5
faces, by parts (1) and (2);

* (c) no more than thrég types of regular polyhedrons have

faces which are triangular-regions.’

*

(8) Suppose that each face has U4 edges. Then,

£

(a) each face angle has measure 90 ;

(b) each polyiedral angle has exactly 3 faces, bj
parts (1) and (2);

(c) no more than one type of regular polyhedron hds
faces which are squares and their interiors.

79511 )
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(9) Suppﬁpe qﬁat each facg\has 5 edges. Then,
(a) each faoe angle has measure 108 ;
- (b) each polybedral angle has exactly 3 rfaces;
£ (¢) - no more than one type of regular polyhedron has
C faces which are pentagons and their ;nteriors o
?" (10) In aummar‘y, thére are no more tan five types of regular
‘?\\;3 !'Pelyhedrans.- T Lo
) ; : A v
o ,‘- = o ikg
11-11. Prisms. ) : i . : o~
We now study another tyﬁé afgpo;yhédfan;*name;y the prism.
r; " DEFINITION. A prism’is ; polyhedron such that two
’ of its faces (called bases) have baundariés which*
are congruent polygons in gaqg;lel planea and each
! of the remaining faces has‘a boundary which 1s'a Y
paréllélagram with two sidg@ in the parallel plahds. %&
- Prismskare classifled acc@rdiné to their bases: A prism
each of whose bases 1s a triangular-region 1is cglled a o
%;triangglgg pﬁism} a prism each of whose bases 1s a rectangular-
reglon is called a rectaqular prism; and so on. Of partigular
~ \impartance among theéprisms each of whcse bases has a
quadrilatéral as a boundary are the falIEwing
- — Y, /
- ” I
= — —d —— 1
A
o ————
7 N e J
/ -
A ) 4
. Rectangular Paral elepiped
‘ T B ¥
(' -?. _ i =
\ |
!F!EEE f
¥/
& —
; Y Cube
¢ 5. (;
* Ty o -
i By '
A g 796 .~ ;
£ % ®
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. - DEFINITIONS. A parallelepiped is a prism such that
NN Y e
tﬁé boundary of each af its baae& is a parallelogram;‘

such that the bgundary af each of 1ts faces is a \
rectangle. ' q#; . i
A cube 13 a parallelepiped such that the boundary
. OF, eaéh of its facea is a. .8quare. . gf'éf’
[

Nobtice that each parallelepiped is.a p@lyhedron with six
faces, that 1s, is a héxahed:on;' In particular, the cube 1is
the regular hexahedron. ’

~ « An eordinary box 1is a model of a rectangu;ar’pafailélepipedi
A prism’such as a recééﬂgular parallelepiped has &hree pairs of
faces, each of which may be éanaidéréd as a pailr of bases. Is
this also true of@aiparallelepiped which is not rectangular?
Why? By cantrast anixggne pair of faces of a ﬁriangular prism
may be cansidered as the two bases. Why? . .

.DEFINITIONS. With reference to a selected pair of .
bases of a prism, we define the following:
- any one of the remalning faces is called a lateral
face of the prism; : '
the union of tHe lateral faces I's called the 1ateral
f -surface of the prism (sometimes known as a pr

surface); - ‘ -
any edge which 1s the intersection of two lateral.
faces 1s called a ;a@grggigdgé of the prism;

-

the prism is said to be a right prism if and:anl§¥if

a lateral edge is perpéndicular to a base

is not a right prism, Face AEYX is a 1ateral face and CgZ
.18 a lateral §dge of the tria.ngular pristh. Esach of the other
" two diagrams below is a plcture of a right prism.

o

s ‘\:”x.
q i \
k] _ # * &
- 7 ﬁl 2 B \
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¥ Problem 8et 1l-1lla

1. Explain why all the lateral edges of a prism are parallel -

to-one another.
"% 2. Prove that in a right prism every lateral edge 1s
igf%? perpendicular to each base,

DEFINITIONS. With reference to a selected palr of
bases of a prism, w& define the following:

: a ;;ossssegpign‘of the prism 1s any non-empty inter-
' section of the prism and a plane which 1s parallel
to, and distinct from, the planes contalning the

bases;

a right-section 1s any intersection of the prism and

L

a plane which is perpendicular to, and intersects
L the interior of, every lateral edge.

ERIC
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In the dlagram at the right,
piang ABCD , plane %EéH , and
plane QRST are parallel planes;
and plane 'WXYZ is perpendicular
to qﬁgk Quadriiatera$ QRST
ig a cross-section of the . .

Erigm and” quadfilateral ; o
WXYZ 1s a right-section
of the prism.

B

€

DEFINITIONS. With reference to a selected pair of bases

of a prism, WE define the following

any sengﬁt whose eﬁdp@intg lie 1in the two parallel

prism;

the sum of %he areas of all the lateral facea of
the prism 135 the 1atera1 area of the prism;

the sum of the areas of all the iaceu of the prism

is the total area of the prism.

A method of computing the lateral area of a prism is to
find the area of each of the lateraléiaces and then to add
thetr-areas. The following experiment; help you to recognize
??aimpler method for finding the lateral area of a priam.

ERIC
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’ Experliments s

Cut along one of the edg ’ 2 right prismatic surface.
Note that this surface can, De flattened into a rectangle as
shown in the next g\ e, "The base of the rectangle is the.
- of the _of the p'iam, and the altitude of

the rectangle fs the ____of the prism. Therefore,
the’ lateral area of the prism is the product of
and 7 )

A! i 7757]7 C! DI EI AI

. l . e

A B C D E A

Cut along the lateral edge of a prismatic surface that 1is not

a right prismatic surface. Flatten this prismatic surface

.into a plane surface as shown 1n the following figure.

Draw a 1line ‘An the plane perpendicular to one of the

a&dges of the flattened surface as shown. Does the length of

RS
are the lateral faces of the prism?

of

eqﬁal the sum of the altitudes of the parallelograms which
Why does the lateral area
the prism equal the product of the lengths of RS and a

lateral edge of the prism?

ERIC
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11-11 ; * - h

Change the flattened figure back to the original prismatic -

surface. The length of RS 1s the same as the perimeter of a
of the prism.

= .

THEOREM 11-20. The latéral area of a prism is e
product of the length of a latéral edge and

.

=qual to the

the perimétér‘

of a right-section.

Proof: We are glven a prilam wlith bases 1’:'11‘5';33“,1:}1 and

- N Ly ) 172" """n
RiR,...R, and right sectign} QQ...Q, . Let L be the
lateral area of the prism, e the length of a. lateral edge,

and p the perimeter of the gilven right section. We are

required to prove that L .= ep . 3 ’
¥ .

Statements ) ./ Reasohs

el Sum of ’E he areas of n- paz*allelagranxs iz h, WMy“
. y ==
h

©(Q9Qy + Qg t QR ke F Ry 8, Q)

5. Therefore, L =-ep.. ' ) 5. Why?
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Corollary 11-20-1, The lateral area d? fight prism 1s

the product of the length of a 1atera1 edgé and the perimeter-

of a base,.

L,

%l
»

(%

[ain]

10.

ERIC

Aruitoxt provided by Eic:

.base 1s an equllateral

fThe apothem of the base
843 P The altitude of

I

*

Problem Set 11-11b

:Supplyxthe reasons fgr the statements in the proof of

Theorem 11-20,
Pﬂgve5Cor@llary 11-20-1.

Find the area of the lateral surface of a right prism
10 if the sldes of the pentagonal bas

LI' L 5 L) ? ¥ E ¥

whose altitude is

measure 3 , respectively. ;
LS

Find the total area of a right triangular prism if the _
triangle 8 inches on a side and

the altitude of the prism is 10. inches.

cross-sectlon of a right trilangular
and 3 4/3 , then any other cross

If the sides of a

prism measure 3 , 6 3 s
sectlon will be a tpiangle whose sides measure .,
) s and __ » and whose angles measure

. _ > and whose area 1s 7' . .

—

. - k,
The length of a lateral
its 1atera1 area 1s h’/=2

edge of a right prism is 10 and
What 1s the perimeter of the
baae of the prigm? '

&
il

al prism 1s
Find the

of a right hexagona
the prism 1s 20 .
lateral area of the prism.

At one of the vertices of a certain, aquafe prigm, the
aauoaiated polyhedral angle has face angles which

measure 90 ,- , 30 , respectively. Each lateral edge
~of the prism 1s _QO inches long, and the perimeter of
the base 1s 48 1inches. Find the total area of the

prism,
Prove by the use of coordinates that. the dilagonals of a
rectangular parallelepiped have equal length.
. P .
Prove by the use of coordinates that the diagonals of a

rectangular parallelepiped-bisect each other.

oo
2
(%
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Pyramids.

Pyramids resempfe prisms in several, respects. Maﬁy of the

such as lateral face, lateral edge, cross-section, and

lateral area are the same, and we shall uge tnem without formal

definition.

' The face of the pyramic

R A

DEFINITIONS., A Elyamid is“‘a convex polyhedron which, -
except forrthe interlor of one-of 1ts faces, is can4‘%%\>
tailned in a polyhedral angle. .

The vertex of the polyhedral angle is called the

vertex of the pyramid.

which 1s not contained in

o

the.polyhedral angle is called the base of the

pyramid.

The segment wnhilch jolns the vertex and the plane

containing the base and is perpendicular to that
e

plane 1is called th

In the dlagram below, V 15 the vertex of the pyramid;

the pélygonaléfegion CDEFGH 18 the base of the pyramid; with
the exception of -the interior of face CDEFGH , the pyramid 13
contained in /V - CDEFGH .

ERIC
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DEFINITIONS. A pyramid is a regular pyramid if and
only 1if the boundary of its base 1is a regular
polygon and the center of the base 1s an endpoint

of the altitude of the pyramid.

The slant height of a regular pyramid is the
distance between the vertex of the pyramid and an

edge in the bask of the pyramid.
» @In the following dilagram, the altitude VQ of the
isosceles trlangle EVA 1s the slant height oféthe regular

¥

pentagonal pyramild.

Assoclated with the set of all pyramids 1s another
_important class of polyhedrons. If we imagine "cutting off
the top" of a pyramid, the remaining figure suggests a frustum
of the pyramld. In the diagram below, the polyhedron with
vértices A, B, C, D, P, Q, R, S 1s a frustum of the
ﬁyramid whose vertex s V and whose base is the polygonal-
region AEBCD .

ERIC
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(
\,
~
DEFINITION. Given a pyramid, a frustum of the
pyramid 1s a polyhedron such that: -
< _ N N ?( . 5
(1) one of its faces is the base of the pyramid;
: N
(2) another of its faces 1is in a plane parallel
to the plane containing the base of the
pyramid, and R '
(3) each of its other faces 1s contained in the
pyramid.
&

LY 2 .
The proof of the following theorem 1s left as a problem,

THEOREM 11-21. Let a trilangular pyramid be gilven.

(2) Every cross-section of the pyramid 1s a triangle
similar to the boundary of the base.

(b) If the distance from the vertex of the pyramid to
the plane containing the cross-sectlion 1s k and

area of the crogs-section and the area of the base -

are proportional to the numbers EE and hE

ERIC
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Problem Set 11-12

1. Prove that the boundaries of the lateral faces of g
regular pyramid aPQ isosceles triangies whiZh are
congruent to one another.

2. Prove that the lateral area of a regular pyramid is given »
by the formula A = %a? s> in which p 18 the perimeter of,
the base and a 1is the slant helght.

3. If p 1s the perimeter of the base of a regular pyramid
and a 1is the slant heignt, find the lateral area of the
pyramid, in each of the following cases.

, _ .a T
- 1 1, .
5 (b) p = 25 (vards) , a = 2% (feet; .- ;

Aﬁ Find the area of the lateral surface of a regular square
. pyramid if each side of the base 1s 8 1inches long and
the slant height of the pyramid 1s 5 inches long.
5. What 12 the élaﬂt height of a regular pyramid if the
drea of 1ts lateral surface is 80 and the perimeter of
! its base is 20 2
6. Find the altitude of a regular square pyramid with a
lateral edge measurlng 25 and a diagonal of the base

o ‘measuring 14 . . -
7. F1ll the blank: The boundary of each lateral fate of a
frustum of a pyramld 1s a __ s

806
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Derlve a formula for the lateral E

area of a regular frustum (such
as that shown in the diagram)
if p 1is the perimeter of

p' 1is the
perimeter of the upper base,

- and a 1is the altitude of-a
ilateral.racé of the frustum.-

the lower baseé,

The bases of a frustum of = régula; pyramid-are squares

8 inches and 6

lateral face of the frustum 1s 4 inches. Find the

inches on a side., The altitude of a

lateral area aﬁd'ﬁhE'total anea of the frustrum.

In a frustum of a regular. square pyramid, an edge of

lower base measures

measures 8 , If
find the altitude
In a pyramid wilth
altitude VO (as

the lateral area of the frustum is

of a late%al face of the frustum.

the
14 =znd an edge of the upper base
2 .

220

vertex , rectangular "base AEGDlﬁand
in the éagram), let EFGH be a dvoss-

"section similar to the rectangle ABCD such-that th?

=l

proportionality constant is %;,

(a) AFVG ~ ABVC

(b) V6 | ©C J wnhy?

(¢) AKVG ~ AQOVC

(d) Wwhat is the ratio of -

VK to VO'?

{e) Suppose the perimeter
of the rectangle ABCD
is 36 . What is the

perimetér of

. Wny?

the

rectangle EFGH ?

o
=

L



11-12. . -

(f) Suppose the altitude of a lateral face of the pyramid
is 18 . What 1s the altitude of a corresponding
lateral face of the frustum?

(g) What is the area of the lateral surface of the
pyramid? '

(n) What 1s the area of 1;‘,‘{zlﬁe lateral, surface of the

L frustum? o . * _

(1) Wwnhat is the ratlo of the lateral ar‘ég of the pyramid
to the lateral area of the frustum? Explailn.

13. Prove Theorem 11-21. _

Hint: Let AABC be 1n plane Eé and polnt V a distance
. . ol :

h from E . Let plane Eﬁ. » parallel to 5, and

at distance k .from V , intersect VA , VB , WC

in A' , B' , C' , respectively. Then show that

AA'BICY ~ AABC and that

- area of AA'B!'C!

i

area of “ARC
X kvrf . 5 '{,

Ij [l .
5 )
vl
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13. A point of light 1s 6 feet from a wall. A plece of
cardboard containing 24 square inches of surqgée area
1s held between the light and the wall 3 feet from the
wall and paﬁallel to 1t. - Find the afgé of the shadow of
the cardboard on the wall. '
14, A point of light 1s 10 feet from a wall. Howfgér from
’ the wall, but parallel to 1it, sﬁbuld a plece of paper’bei
he{d so as to cast a shadow four times the area of the 7

paper?

11-13. Summary.

There are four major types of measures 1n our geometry.
In Chapter 3, we discussed the measure of the dlstance between
two points, or equivalently, the length of the segment Jolning
the points., This 1s the basis for measuring a figure in one-
dimensional geometry. In the present chapter, we treated a
measure of convex polygons, or more geherally, the area of any
polygongl-région, This 1s the basis for measuring a figure in

eve

two-dimensional geometry. The next stage in this development
would be (if we only had time!) to examine a measure of a

convex polyﬁedr@n, or more generally, the volume of any
"polyhedralsregion_“ This would be the basis for measuring a
figure In three-dimensional geometry. In Chapter 4, we con- ' _s
sldered the measure of an angle, or 1f you like, a measure of
the "angular distance" between two concurrent rays. )

7
/

2
dihedral angle 1s defined in terms of the measure of arl angle.

In the next chapter the measure of an angle will permit us to
measure an arc of a circle. Also in the next chapter the area

- of a polygonal-region will permlit us to describe the areas of

circular-regions and of other two-dimensional reglons associated
wlth circles. The volume of a polyhedral-region would permit
us to discussg the volumes of spherical regions and other reglons

in space.

BDCJ)/L;
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: Theg;\%ypsg of megsure have certain prgpert es iﬂicomman@
(1) ‘A meas sureyls a real number that 1s not hegative. (2) A
‘measure depends upan a chosen unit, and the measyres of the
same g&ometric figure relative toidifferent units are related
= 1in a simplé maﬁyeri (3) The measures of twoaégﬂ Puent figures
= are the same. (4) The meagure of a "whole" is the sum of-the _
measures of its néﬂoverlapping ”partg,; tggt 1g, the ingth Qfﬁ
a segment 1is the sum of the measures of any éegmentu gugh that

- the interiors of any ;wo of them do not 1nter ect an&;thei?

. union 1s the givefi gegment the ared of afﬁol¥gaﬂal region is _
the "sum of the measures of any polygggaliﬁggiaﬂs such that the
interiors of any two of them do not intersect and thelr union
1s'the given polygonal-rerion; a similar remark would apply to
the volume of a polyhedral-region; the measure of an angle 1isa
the sum of the measures of any angles such that the inter;ors
of any two of them do not intersect and the union of the
angles and their interiors is the same as the union. of the

There are connectlons among the various types of measure.

The area of a two-dimensional region may be related to a product
" of two lengths. The vélume of a three-dimensional region’ﬁay

be related.fo a product of three lengths, or to a product of a

length and an area. These relationships are the familiar

formulas for calculating areas and volumes. Their practical
“importance depends heavily on the fact that in the physilcal

world 1t 1s often less convenient to measure an area or a

volume directly than to compute it from data obtained by

measuring appropriate distances and perhaps angles,

A similarity between two geometric figures eitherjhiregfly
“or indirectly prescribes many corresponding parts: sides,
angles, diagonals, altitudes, ﬁedians, facesjsbases, and so
forth. 1In & similarity, the 1ength%~of all segmént the

Kcube roots oi the volumeg of all polyhedral=regi@ns in one
geometric figure are proportional to the corresponding numbers
for the other geometric figure. For thé special case in which
the constant of proportionality i1s one, the similérity is a
congruence.

D
=
)

LI
el
-,
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- L Review Problems L
1. What is-thevmeasure of each interior angle of a regular
polygon of fifteen sides? What 1s the measure~of each
\ 5

exterlor angle? . L,

.

- 7 L 7 ~ ,

) 2. If an exterilor angle of a regular polygon has measure 10 ,

. hOW'ﬁéky sides has the pol¥§on? -

‘3. The sum of the measﬁres of the angles of* a ten-sided
polygon 1s 1440 .° 1Is the sum of the meagures of the
angles of a twenty-sided polygon twlce as much? Verlfy

your answer. ' ‘ Lo

..~ %. The hypotenuse of a 30 , 60 , 90 triangle 1s 16; and

the ‘shorter leg of a second 30 , 60 , 90 triangle is
13 . What-is the ratlo of their areas?
. I
5. Two face‘angles of a trihedral angle measﬁfe 56 and
100 . Between what numbers must the measure of the third
face angle of the trihedral angle be?

6, Which of~-the following triples of numbers can be the

measures ofJthe three face angles_of a trihgdral angle?

(a) 45 s, 9o . " (e) 1do, 171, 70 .

(¢)
(b) 60, 60, 60 . (d) 150 , 118 , 130

7. In choosing tile for a floor covering, would congruent
regular hexagonal tiles give a complete coverage? What
other regular polygons would it together? How do you

know? 7 T
8. By hypothesis we have an

equllateral triangle with -,

slde measuring s ,

altitude h , and area A .

il

(a) Show that h = 343 .

it
N; EE m
ie]

T

(b) Show that A =

o

LR
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9. Find the area of an equllateral triangle having the length
of a side equal to:

. o F ’
S, (a) 2 e . (e) 34 ,
o om s () 7%
10.. The area of an equllateral triangle 1s 943 . Find the

length of its side and its altitude.
11. The altitude of an equilateral triangle 1s. 8 4/J .
Determine the length of its side and its area,
12, A squéfe whose area.is 81 .has its ﬁérimeter equal to
7 the perimeter 9f an equilateral triangle. Find the area -
of the equllateral trlangle

. 13, If AECD i1s a square, find,
~ in téfms of 8 angd b,
“the area of the star
‘pictured here, The
segments farming the
bounda r%:i‘ the gtar;

are co ent.

14. Prove that the area of an 1isgsceles right triangle is
equal to one-fourth the area of a square having the
hypotenuse of the trlangle as a side.

% )
15. Given: Square ABCD with A { B E
points E and F as shown, "' B
so that EC | ¥C . Area of
ABCD 4is 256 . Area of F
ACEF 1s 200 ,
o/
Find BE .
b C




16, Find the area of each of the fallawing palygonalﬁregians,
Af pcssible_

4 — e
’ 30 /

L
Parallelogram

(b) @

(c) o . (g)

éé%éilelcgfam




18,

20,

21, "

i A S :
e, D Y 5 ¢
If W, X ﬁ Y and 2 TN\
. ave midpoints of aides N N '
of squﬁr& ABCD , as R Q ‘
shown in the figure, 7 N e M i -
compare the area of |
ABCD *with the area ]
of square. RSPQ . ' ; R
o ' ';F.' ~AT W B
The area of a cohvek quadrildteral-is .126 and the length

of one diaggﬁalfié;VEi . If the diagonals are perpen-

iddcular, find the 1léngth of the other diagonal.

. "*The diagonals of a rhombus haveé. lengths of 15 and 20,
" Find 1ty avea. 1If an.altitude of the rhombus is 12 ,

find the ;ength of one side.

Find the aresa of the polygénalaregion which is thé inter-
section of ((x,y): -7 < x < 5} and

{((x,¥): aS‘g ¥y £ -1} . (Draw and shade the polygonal-

= E

region.) -
Diagonal AD of the pentagon
ABCDE shown has length , 44

and the ‘perpenidiculars fromK

B, C, and ™ E- have lengths'f r
24 16 ;and 15,
respectiveiy AB = 25 ‘and
CD = 20 . What,1s the area
Df the pentagon? T

814
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e\
227 Giver: Parallelogram’ ABCD B - . ¢
. 'with X and E midpoints o ,
' 'oF<.AB and AD respectively /-

" Mo Mdve: Area of AECX 1s

*

(]

the area of ABCD . - .
‘ . A E D

nof

23. If AB 1is'a segment in plane & , what other positions
of P. in plane & will let the area of AABP remain

constant? . Describe the locatlon P
of 11 possible positions of P
 in plane ‘& which satisfy the
A ?gcndition. Describe the location
" of all possible positions of P
in space which satisfy the-

condition.

H , G

24, This figure represents a
cube, The plane‘determined
by points: A , C and F ' E
is 'shown. .If AB is 9 :
inches long, how long is
AC ? o A, A / oy
What 1s the measure of« / FAC ? - ;;/ gg;;**SS

What 1s the area of AFAC ? A —

25. Find the length of the diagonal of a cube whose edge 1s
6 units long. - _ ‘

© 26. Explain how to cut a polygonal-region bounded by a

trapezold into two polygonal-reglons having equal areas

by a line through a vertex éf'the’trapezcid.

]
A
»

w

i
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\27. In trapezoid ABCD , base .
~ 'angles of measure 60 include
a base of length 12 . The
ponrsparallel side AD has
length 8 . Find the area

of the trapezoid. A

28. Find the area of
. %rapezoid ABCD .

- AO,8)

b

29. (a) _Prove the following theorem: The median of -a.
trapezold 1s parallel to the bases and equal in.
length to half the sum of the lengths of the bases.

(b) If AB =9 and '
DC 7 , then
PQ = .

\
|
o
o

|

|

I

\

[
m\

P—

[
]
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A

In surveying the field

o shqwn here, a surveyor 1a1d

_,afr nazthﬁand-aauth line . T
'thraugh E and then lagated

ABCD -

[

.- the east- and west lines’ CE
iﬁ?,iﬁk He found that
CE = 5 (rods) = 12 (rods),
AG = 10 (rods) = 6 (rods),
" BF = 9 (rods) = 4 (rods).
Find the area of the field.

‘3.

- the right; angle at C .,

By h:rpcthesis we have a
right triangle ABC with

We are to prove that the

area of square AKHB 1is
“equal -to the sum of the
" areas of square ACDE and
square EFGC . :
Hint: .Cohsider CK , BE ,
TH ' such that THM || 3K .
, Study AKAC and ABAE .
+ (Proof from Euclid.)
&

i

Yy




B - 32... A praaf of. the Pythagarean Thegrem by the fcllawing methad
e },; is attributed "to President Garfiel-i‘ Let AABC have
’right angle at C . On the ray oppagite ' e =
to AC, let T be a point such thhe : )
AT =a . Let U be a point on the
, ‘o - . s
same side of AC as B such\that
TU | AT and TU =b . '

e
L]
"

7
Find AU , express the area of
- ' the trapezold BCTU 1in two ways,

and deduce that a? + bg s‘cg’i

- 33.: In a cube with %A as one verﬁex, a triangular pyramid is
' formed by joining to -.A and to each other the midpoints.

of the three edges which meet at A g' Find: the tgtgl
area of the pyramid 1f each side af the cube 18 12

Y
Lk
e

A rggular’right pexagcnal prism 10 units high has a _
A lateral area 'of 480 .  Find the apothem of the base and
) the total area of the prism. ' ' ' o

818
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. CIRCLES AND SPHERES

-

12:1. . Basic Definitions.

~ In this chapter we begin theéétpay of sets of points not
made up of planes, halfplanes, lines, rays and segments.- The .
simplest such curved figures are the circle and the Sphere and - };f

~portions of these. We begin with some definitions. T f
. DEFINiTiQNS_ The setfafgéll points in a plane whaée
: &istaﬁées_ from a'g%véﬁ point in the plane are a
given number is called a cirdie. W w e me -

FUAE L, L aeF

" “The given point is called the center of the circle, - -

The given'numggf is called the fadius ‘of the circle. |

Circle T X2ry2s r2

- LA i

If we choose a two-dimensional coordinate system in the
plane whose origin is the center P and if Q 1s any point
. of the circle, then PQ = r . Using the distance formula of
Theorem 8-4, we can write s

. 2 - fE'

- — e =
Vix 202+ (y-0)°=r or 2+ .
Therefore the circle is ((x,y): x° + yE = r°) .

[V

L4

8 i . .
- %?x‘;p‘;) .
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:DEFIENI?’[‘II.‘!!'JS'a The set of all painta in ‘spacé. whose
S ' disééncea from a given p@int are a given number is
' 'caliéd a sphere.

R

The given point is Ballea the center Df the sphere,

. The given number ia called the radiusipf the sphere.

PQ, =PQp = PQg ch L

If we choose a thfee dimensional coordinate system whose
origin 1s at the center, P , and Q 41s any point of the
sphere, then PQ = r . Usling the three-dimensional distance

formula, we can wrilte

i

Vﬁx - G)E + (y - G)E + (z - D)g r or x° + yg + zE = pre
2 2 . _2

Therefore the saphere 1s [gxgy,z): xf_f yoo+ 2" = rE]

DEFINITION. Twa ar maré'spheraatmr circles with the




e

",

124

THEOREM 12-1, The intersectian of a sphere with a plane

tﬁraugh Ats center is a circle whose center and radius
. dre the ‘sdmé as thase of the sphere. ) L

i

Preof; We choose a threefdimensianal caardinate syatem

/

" with ihe-center of ‘the sphere P as origin (0,0,0) and the
glven plane as the/Xxy-plane (1n which every point has zero as
its z-coordinate), If r 1s the radius of the sphere, the
intersection of the sphere and the plane is o

R S

i

((x,¥,z): x° ¥ yg + 22 = 1% and z.= o} .

We recognize this to be the set of points 1n the xy-plane

, Eluen by . : - i
L > 2 -
. {($;¥): x° + y° = r°)

This is a circle whose center and radius are the same as those

of the sphere.

DEFINITION. The circle of intersection of a sphere

with a’'plane through the center 1s called a great
circle of the sphere.

There are two types of segments that are associated with

spheres and circles.’

DEFINITIONS. A chord of a circle or a sphere is a

segment whose endpoints are points of the circle or
the -sphere. The line containing a chord is a secant.

A diameter is a chord containing the center.

A radius is a segment one of whose endpoints is the
center and the other one a péint of the-circle or
the sphe-e.

The latter endpoint is called the outer end of the
radius.

The plural f)c:f radius 1s radii.

£



Notice that the single word "radius" is used to mean two;
.different objects--a certain segment and also thei%éngth Qf
that segment. This should nqt be confuging because ?nce we
know that the word has twa meaninga Wwe can easily decide which
‘one % intended wherever: ‘the word occlrs. SR

=T

The word "diameter" also has two meanings. In addition
to meaning a certain kind of chord it also 1s used to mean the
DEFINITIONS: Circles wlth congruent radii are
called congruent circles.

Lléﬁgth of such a chord.

- 8pheres with gcngruént radil are called congruent
spheres.

A direct outggme of these definitidns are the follawing twc j

theorems.

— T

THEOREM 12-2. The radli of a circle, or t:angr*uent circles, or
of a sphere or gangruent spheres, are congruent.

: -
THEOREM-12-3. The diameters of a eircle or congruent circles,
" or of a sphere or congruent spheres, are congruent,

It should be ciear that the radil and diameters referred
to 1n these theorems are segments, not numbers,

F
&
i
¥
§
%
Ny N
. = b
A
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"1, F1ll 1n the blanks with a word or words which will best
;name or deacribe the indicated parts. Assume that points
are where they appear to be.

Diagram (a) . . Diagram (Vbe)

(a) Refer to Diagram (a). — . .

Point 0 18 the center of the g?ri:-le_

EE

distance  from_ O AR f
(2) ©O5 1is a . .
(3) 1s the . |
(4) is a 7777;Wisa777'777i
() “RT

(1) Any point X on any subéét of the clrecle 1s3.a

is.a . s RT" 13 a . -

nts in the diagram which are ip (on) the

EEE

given circle are ) .
- (7) Points in the diagram which are not in the

\ circle are .
(8) S 1s the  of the radius

(9) Each point in the circle 18 theﬂ:ﬁ _ of one
and only one- radius. '

(1@) Any point X on the subsét of the circle
between R and M would in every possible
position be a distance _ from O .

L4

o



12-1

(b)

2. Tell

(a)
(b)

I

Refer to Eéggram (p).

Point o iE the center of the sphere.

(1) 31 1s, a 7--- . ’ ;,';

(2) Points ___are outer endpoints of given

radii, \
(3) If 0, A, and B 'are collinear, then AB
is a : . - ' sy

(4)- - If 0 1ies in plane <. , then the circle with
center 0 -and radius OM in A& , is a

~ of "‘the sphere. ‘5
(5) BM 1sa . '
(6) Every point on ghe ____ ° 1s the OHté?EEﬁd of
" radtus, o ,

(7) A1l points in Z2 which 1lie at a distance OB

from O 1l%e in with center . and
radius . B | o

(8) - How many planes may contain any given point
such as 0 ? How many great circles are there
on-any given sphere? All great circles on a '
glven sphere are _ to each other,

(9) 1In order to specify a unique sphere, wg must
be given ) - . .

(10)- With a given poiﬂt as center, it 1s posaaible
to consider (how many) All these

spheres are called _,spheresg

whether the following statements are true or false.

There 1is exactly one great circle of a sphere.

Every chord of a cirele contalins two points of the
cirecle, ‘

The center of a circle bisects cnly one af the
chords of the circle.
A secant of a circle may intersect the circle in

iny one paint‘



“(h)

.

(g) A chord of a sphere may be 1Dnger than ‘a radlus. of
the sphere, - - .o
If a Ephere and a‘cifclé have the saﬁe ééﬂﬁéf and
if they intersect then.thé intersection is a circle_
Tell whesher the fgllcwlng atatements are true or false b
‘(a) If a line intersects a circle in QDE palnt it 7
. intersects the circle in two. points S - f‘f
(b) The intersection of a line and a aircle ‘may be :
'empty. :
(¢} 'In the plane of a circle, a ling which passes
through the center of the circle has two paints in
. .common with the cireile, ]
(d) A circle and a line may havé three points-in common.
(e) . If a plane intersects a sphefe in at least two
points, the intersection i1s a line. )
(f) A plane cannot intersect a sphere in one pcint
(8) - If two circles iDtEFééEt their intersection is
two ppinta . . . -
(h) The radius of a circle 15 a subset of the circle. E
Consider a afw*system and yzacaordinatel
system as indicated in the diagrams below. Y
§ VSR
-LA(5,8) » *R(3,5)

g Y
A(2,0) /B(4,0)

Figure (a). B . Figure (b)




(a) Refer to Figure (a).

, (1) Express the distance between C and P 1in
N - terms of x and y . ;?
( Write an equation of the circle witn/cénter at
P and radius 5 . ° %
(3) Write the coordinates of 4 points which you
know 1lie on the circle in Part (2). ~
(4) Find the distance between B and P .
(5) Write an equation of a circle which has P as

AN
LY

_ a center and contains B .
(6) Write an equation of the circle which has P
as 1ts center and contains A

(b) Use Figure (b).

L]
[

What is the radius of the circle which has P

—
[y
Ynmast®

as center and containz B ?

Write an equation of the given cirecle,

Find the distance RP . How can you tell

wilthout a diagram that R 18 not on the circle?

(%) Write an equation of a circle with center P
and which contains A

L my
—

5. B 1s a point on the circle with center A and radius 3.
e

(a) Express the distance
between B and A . A

(b) Write an equation of
the circle which has
A as center and L5
radius 3 .

(¢) Write an equation of o
the circle which has M(x’z)// \
point (-2,0) as -y jkfé)_
center and which - |

contains the origin.

(d) Write an equatfon of
a circle in the xz-plane |
with center at point (h,k) $

and with r as its radius.

8

i




12

]
[

10.

=
bt

Glven cirele C = (x,y) x2 + yg = 25} .  Check whether
or not the following points are’points of C .,

(a) (0,-5) . (e) (/70,- 4/5)

(b) (-3,4) . _ (d) (12,13)

Write an equatiéﬁ of thé»sﬁhere with center at point
(0,0,0) and radius = 3 ., o e

Given sphere S = ((x,y,z): %2 + y + 2% = 169} . Check
whether or not the following pcintg are points of § .

(a) (0,13,0) . (¢) (/TC8,1,0)

(b) (-3,4,-12) . (£) (1'/1'*2'@,&@;3)

(c) (4,-12,3) . (5) (- 4/T08,2, - 4/59)

(d) (0,0,0)

2

Find 5 more points of § 1in Problem 8.

Using the set notatlon, write an expresslion for the points
of the circle whose center is (0,0) and whose radius isg

(a) 3. () 3. (¢) v/% .

=)

Given C = ((x,y): x° + y° = 25)

K%

(a) What restrictdion on x and y would give only the
portion of the circle in Quadrant I1?
(b) What portion of the circle would you be considering

under the reatriction, x >0 7

aifc)2iﬁﬁéfzfa§£;iéfion on x and y would give the

intersection of ga}iq Quadrant III?
, N s,
Given C = [(x,¥): x° Ng 9} .
(a) Find x 1f (x,2) 1is @& point of C .
; (3,y) 1is apoint of C .

A
y so that! (4,y) 1is a point of C ?

.
4

A

‘_j,t;’ i‘.“‘-‘
AT
i

I

7



3. Given S = [(x,y,z): x° + yg + 2% = 25} .
(a) PFind 2z 1if (B,O,z): 1s a point of S .
(b) Find y if (-4,y,3) 1s a point of § .
(c) Find x 4if (x,0,0) 1s a point of § .

(d) Can you find =z such that +(3,5,z) 1is a point of
S ? Explain. )

14, Prove: A dianeter 'of a circle is its longest chord,

Given: AB and €D
are dlameters.

*
%]

T = Prove: AC BD .

16. Prove: If AB and CD are distinct diameters of a
circle, then ACBD 1is =& rectangle,

17. Prove that the midray of the angle formed by two radii

F of a circle, PA and PB , lies in the perpendicular
. bisector of 4B .

18. Consider a sphere whose center 1s at 0(2,3,-1) . let
Q(x,y,2) be a point of the sphere. What 1s the distance
0Q , by the distance formula? Is 0O& a radius of the
gphere? Write an equation of the sphere which has
(2,3-1) as center and which contains Q , if 0Q = 5
(Eliminate radicals by aquaring both members of the
equation.) ‘ :
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12-2. Tangent Lilnes.

Anyone who looks at a drawilng of a circle sees that it
divides the plane into two regions, one consisting of the

points inside the -circle and the other of the outside points.
We now define these terms formally.

" DEFINTTIONS. The' intérior of a circle is the set\r;;f
all points in the plane of the circle whose distéﬂces
from the ceqtar are less than the padius.

The exferior of the circle 1s the set of all points
in the plane of the .circle whose distances from the
center are greater than the radius )

From these definitions 1t follows that 4 point in Ebé
plane of a cirélg 1s either in the interior of the cirecle, on
‘the circle, or in the exterior of the circle. (We frequently
-use the more common word "inside" for "in the interior of,"
ete.) 1In terms of an xy-coordinate system whose origin 1s the
center of a given circle of radius r

r , the interior of the
glrcle is ~ ’

- : 3 E) i 2
) ((x,y): x= +y" <r7}
and 1ts exﬁeri%@ is

E\
%)
9 I
Y
-

'y

f
-
e
e

+
e
™
My
b
[\
N\

Kyy2ar

Q 1s

an interior point Q 12 an exterior point
of C . G HE

‘m’lw



Problem Set 12-2a

(Exploratory)

1. Given C = {(x,y): x° + yg =16} and M = {(x,y): x = a) .
Find the set of pointsin the intersection of C and M,
T - AP a =3 ;1f a=k; if a 5

2.” Using the resul*s you found in Problém 1, complete the
1

"following.

(a) The intersection of C and’' M contains 2
point(s) if a < 4 , ’ )
(b) The intersection of € and M contains 2
épint(s) if a = 4
(¢) The intersection of ¢ and M contains 2
' point(s) if a > I ’ 7 i

3. What three relations between a circle and a line in the
plane of the circle are suggested by Problems 1 and 27

If a stone 1s twirled on the end of a string in a circular
path and then let go, it will "fly off on a tangent." Try to
see how thls use of the word tangent is related to the one we

now give. .

DEFINITIONS. A tangent to a circle 1s a line in the
plane of the circle which intersects the eircle in

only one point.
This point 1s called the point EEEEEﬁEEQEXE‘GP%innt
of contact, and we say that the line and the circle

are tangent at this point.

In the figure, ;é? 1s tangent to théinPGlé\at Q

.-

ERIC
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X Lines and, circles are important subsets of planes. Let us
ccnsid@ﬁ a single plane and study the relatiopns of lines and
circles to one another., It looks as if the following three

“figures 1ndicaﬁeva complete catalog of the possibllities:

. \ S s

- ~ ~ ~

T N 1\

P F P_ F

ey L] .

. o S

oS - S~ e Ny ;;ff

—— w —— v —
f

In each case, P 18 the center of the circle, and F is the

foot of the perpendicular from P to the line. We shall soon
see that this point. F , the foot of the perpendicular, is the
key to the whole situation. If F 1is outside the circle, “as

~ 1n the first flgure, then all other points of the line are also

outside, éﬁd thé line and the circle do not 1intersect at all.

If F 1s on the circle, then the 1ine is a tangent line, as in
the second figure, and the point of tangency is F . If is
inslde the clircle, as in the third figure, then th§4;fﬂé is a
secant, and the points of intersection are equidistant from the

jeal

polnt F , - To verify these ztatements, we need to prove the
following theorem:, ‘
¢
THEOREM 12-4, Given a line ;é and a circle ¢ 1in the same
. ] \ ~ . )
plane. - Let P be the cﬁnter of the circle, and let (F
be the foot of the perpendicular from P to the line.

{
(1) Every point of ggﬁ 15 outside C if and only 1if " F
1s outsilde g . _ | '
(2) QZ is a tangent .to .5 1f and only if F 1is on Cii
(3) Jz 18 a secant of C 1f and only if F 1s inside C



B
R
[
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]

/

Proof: Let r be the fadius of C and let PF = a

whose y-axls, i3 parallélito gg and whose pasitng?xiaxis
contains F . Then F = (a,0) , ¢ = {(x,¥): %2 + Yy =r°) and

Y

We introduce the xy- ccordinate system withggrigin at P

((x,y): x = a) or ((a,y)]

b

(1) F 1s outside C . (2) F 1son C . (3) F 1is insidecC.
i R : ¥ )
(1) Suppose F 1is outside  C , then a >r . Since a

=] -
and r are positive numbers, it follows that a° > r° and
2 2 £ . . : 5 -
a® + y° > r° . Therefore all points (a,y) are outside C .

stnce £ =((a,y)) , then all points of & are outside C .

Of course, 1f every point of gf is ocutside C , then F
is also outside C . This proves both parts of (1).

(2) Suppose F 1s on C . Then r =a , and the inter-
gectlon of gﬁ'and c 1s ((x,y): x + y = ag and x = al ,
or ((a,y): 0) :

But there 1is exactly one number whose square 1s zero,
namely zero. Therefore the only point of intersection of &
and C 1s F(a,0) . Therefore WA s a tangent to ¢

Ir Jg 1s a tangent, 1t can have only one point in common

with C . That poing is shown ‘to be F(a,0) . Thus, both
: 7~
parts of (2) are proved. T
T 5

o
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(3) Suppose F 1s inside C ,
section of _Z and C is [(x,y): x

] 5 2 2 2
al\< r}] or ((a,y): y°

a positlive number, ¥ can be eilther

Therefore the intersection consists of (a, 4/r° - ;g) and
o 2 24 . i , . ! ,
(a,re r = aé) . These are distinct points. Why? Therefore
£ 1is a secant.
If ;é iz a secant, 1t intersects ¢ in two distinct-
points, which we have shown to be (a, 4r° - a“) and
7 ——= N ' = 2 _
(a, - 41" - a“ This implies that r° - a >0 . (Why
z 2 i ;
can't r°~ - a° = 0 ?) . And because r and a are positive,
r >a . But PF = a ; therefore PF < r , or F 1is 1inside
C . Thls completes the proof of the theorem. '
The following table displays some of the facts abégF F
that we met in our proof. \ : *
Agaéegi o - Case 2 ~ | Case 3 T ; L
F(a,0)|{a >r a=r a<r -
2 2 . 2 2 2 2 2 2 2
a“+y“>r° |a“+y"  =1r a~ +y < r°
2 . 2

no y for if and only if and only if y = r°-a

which 1if y=0. | or
2 ’ R

a +y° =r-. y = -4r° -a -,

No point of |only F 1 4 and ¢ nave exactly

gl lies on on C . two polints in common.

. They are

M
It

c

Now we can proceed to our first basic theorems on
tangents and chords which are all corollaries of Theorem 12-l4.
To prove them, you merely need to refer to Theorem 12-4% and

see whleh of the three cases of the theorem applies.

ERIC

Aruitoxt provided by Eic:

s



Corollary 12-4-1. Given a circle and a coplanar line, the
line is a tangent to the circle if and only if 1t 1s perpen-
dicular to a radius of the circle at its outer end.

Corollary 12-4-2, A diameter of a circle bisects a non-
diameter chord of the circle if and only 1if it is perpendicular
to the chord. ‘

¢ Corollary 12-4-3. 1In the plane of a circle, the pé}pena

dicular bisector of a chord contains the center of the ecircle,

g

Hint for proof: Use Corollary 12-4-

Corollary 12-4-4, 1If a line in the plane of a circle

intersects the interior of the circle, then it intersects the

circle in exactly two points.

Case (3) applies. (In Case (1) and (2), the line does not
intersect the interior of the circle. )
Fs
THEOREM 12-5. . Chords of cangfuené c¢lrecles are congruent if and
) leﬁiif they are equidistant from the cehters.

Proof: Let P and P! be the centers of the congruent eircles,
let AB and ATBT be the chords, let F be the foot of the perpen-
dicular from P on AB and let F' be the foot of the

perpendicular from P' on A'B' . Then by Corollary 12-4-2,

we have FB = %AB and FiB' =
A

A'B!

A=

i

By the Pythagorean Theorem
(2B)° = (pF)® + (FB)?  (p'B")¥ = (p1F")? 4 (p1B1)?

(3A1B")% .

M
i

[
Il

(P1F')? 4

(PF)? + (3AB)°

ERIC

Aruitoxt provided by Eic:
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By hypothesis PB = P'B! so
(PF)® + (30B)% = (2'F1)2 + (3a1m1)? |

It: follows that PF = P'F! if and only if AB = A'R!

DEFINITIONS. Two cirgles are tangent if and Dnly

1f they ‘are coplanar and tangent to the sameLline

at the same point. Tangent circles are internally
; or extéfnally tangent accordingly as theif cenféré

11le on the same side or on opposite ’

common tangent line,

— P,
4 |
- [—
' I
— B N
|
- . I
Internally tangent | EXtéPnaliy tangent

/

Problem Set 12-2b

iy *
iT’U

1. Given: C = ((x,y): x° + y° = 36) . Tell whether each of

the following points 13 in the interior, bn, or in the

exterior of C

(a) (-6,0) . C (e) (- 4/77,-3)
(b) (-6,1) . (£) (5,5)
(¢) (-6,-1) . - (g) (%,-4)

(

. Given: ' (3,5) 13 on the circle whose center is (0,0)

™2

(a) Find the radius of this circle.
(b) Find four points on the circle.
(e) Find two points in the interior of the circle.
(d) Find two points 1n the exterior of the circle.

ERIC

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

State the number of the theorem or éorollafy whilch
Justifles each conclusion below, P is the center of a
elrele. F, H, B, K, A are points on the circle and
3, T, and R are coplanar wilth the circle. -
(a) If TA = TB , then PK | AB .
(b) 1f “RK"| K , then “RK"
1s tangent to the circle.
(¢) If T 4is in the interior
of the circlie, then KB
will intersé&t the circle
in exactly one polnt other
than point K . )
(d) The perpendicular bisect@v;
of FH contains P . !
(e} Ir KB and TFH are equi-
distant from P , then
AB = FH .
(£) 1f ®RS" 1is tangent to the circle, then ﬁflﬁk
(g) 1f AB , then AT = TB .
(n) 1f "FH , then AE and
from P

o
]

b

FH

e —

are equldistant

o= L |
mem

In a circle with radius of 5 units, how long 1s a chord
3 units from the center of the circle?

If a chord 4 inches long 1s 1.5 inches from the
tenter of a clrcle, what 1= the radius of the eircle?

How far from the center of a ecircle ‘with radius equal to
12 1is a chord whose length<is 8 2

Chord AB 1is parallel to JZ
which 1s tangent to the cilrcle
at Q . P 13 the center of
the circle. AB bisects FQ
at R . AB = 12 .

Find PQ .




8. Given: The figure below, with C the center of the circle
and KT | RS . 1In.the ten problems respond as follows:

Write "A" 1if more numerical-information is given
than 1s needed to solve the problem.
write / "B" 1if there is insufficient information to
solve the problem.
write "C" if the information®is sufficient and
there is no unnecessary information.
Write "D" if the information gilven is contra-
dictory. Y

(You do not need to do the computations.)

PC =1, CT =6, KT =7 & 4

(a) KP
(b)
(c)
(d)

Il

[ il
=
Lo QW]
L
L] L]
- ]
o B I
[ ] 0
[/
!
= wn
o
™
o]
[
il
o

e s = V- S o T
=3 g G xR o3
oo
i

(£) = 40 , RP = 36 ,
csle o g
(g) cs=8,9K =16 ,
- PC = 2
(h) RK = 2 ‘

(1) RS =
(3) er

9. 1In a circle whose diameter 1s 30 inches a chord 1
drawn perpendicular to a radius at a point on the radius
3 4inches from 1its outgr end. Find the leﬁéth of the

, KC =5, PT = 2

6
5, C85=6, RS =77

i

[

chord. o

10. Prove that the tangdnts to a circle at the ends of a
diameter are parallel. i

11. Write Corollary 12-4-2 as two statements, each the
converse of the 3i%eri Prove each.

/
L8379,

= A




12, TFor the concentric circles ;ffffifsfiﬂfﬁa P

of the figure, prove that

all chords of the lgrgeb

clrcle which are tangent

¢  to the smaller circle are

. blsected at the point of
contact,

B 13. One érrangemeﬁt of three circles
80 that any one is tangent
to each of the other two
1s shown here, Make
sketches to show three

‘ other arrangements of
three circles with each
. c¢irele tangent to each of
. the other two. ' _

14, Prove: The line of centeds of two tangent circles
contains the point of tangency. (g}ntf Draw the common

tangent. )
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15.

16.

17,

18.

--f'

et

- \%*‘ ) . v ) )

In thefigure, A, B
and™ C . are the »
centers of the cifcles.

J—

AB =.4% , BC = 10 , s
AC = 18 . Find the
radius of each circle.

e fj-
Prove: The mldpoints of all chords cghgfuént to a glven
chord in a given circle lie on a eirglé”ééncgﬁtric with
the original cirele and with a radius equal to the dis-
.tance of a chord from the center; and the chords are all
tangent to this inner circle.

(a) The distance from P , the center of a circle, to
T , an exterlor point, 1s 20 .. A tangent from T
to the cirele has a polnt of contact A ., Ef the
radius of the circle is 12 , find .AT . -

(b) A second tangent from T has B as a polnt of
contact.” Find AB

In the circle with center

at 0, AB 1s a diameter
and AC 1s any other chord
from & . If €D 1is the
tangent at ¢ ,andghDEDEI Iil\ﬁd!:
prove thatiqﬁﬁblis tangent at
B .

-

v

Cai;§der the circle C = ((x,y): x° + y° = 100} . A
(a) 1f liné*,lf, ((x,y): x =na} , is tangent .o circle
N . -
C , find the values for _a ,
(b) Find an equation for a line ¢t itangent to clrcle -

[N
e

c at T(542,5¢2) .

| 8§9=J s

= 4
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(Hints: What 18 the slope of the radius to t 2
What must be the slope of t ?
Must t contain (54/2, 54/2) ?)

20, Consider the set P = ((x,y): (x - 1)E + (y + E)E = 25} -,

- ™y

(a) cCan you interpret the equation as specifying that
- - the distance between (x,y) and (1,-2) 1s 5 ?
(b) 1Is the set a circle? If so, what are the
coordinates of its center and the length of its
radius? o
(c) Given P = [(x,¥): (x2-2x+1) + (y2+ hy+4) = 25)
Show that P = ((x,y): x° + FE - 2x + 4y = 20}.
If you were confronted with this last equation, could
you complete the squares to reproduce the original?
Demonastrate thils process,
(d) Find an equation of a line t which 1s tangent to.
' the circle P at the point (5,1) . (Hint: Find
- the slope of the radius to (5,1) . Use its
negative reciprocal as the slope of t . Tangent t
must contain (5,1).)

L

21. Consider the circle C = [(x,¥y): ;2 +-y2 =1} .
(a) Write an equation of the line tangent to C which
contains the point (-1,0) .
(b) Write an equation of the tangent line to C which
contains the point T(- _L_, - 1) ' (Hint: 1s

" the tangent line perpendicular to the radius of C

which contains T ?)

(¢) Find the coordinates of the point P on the x-axis
which contains the taﬁgent to T determined in (b)
above,

(d) Find the distance PT .

guo J i v
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Consider the sphere §
and the plane /7 such

that
S
7

((x,v,2): x° + yg + z°

((x,y,2): z =a) .

How is 7 related to the
Xy-plane?

How 1s 77 related to the
Zz=axis?

77 1intersects the z-axis at a point, say F , with

coordinates , (0,0,a) . Conmsider the intersection of

(2) Assum
geometric figure 1s this intersection?
(b) Assume aN\= 5 ,

How many points are in this intersection?
(c) Assume a =7 .

Hol many points are in this intersection?

]

(d) What appears to be the relation between the int

section of § and 72 and the distance FPF ?

Tangent Planes. -

We have Jjust studied circles and lines in a plane.

now going to study spheres and planes in aspace. We shall
that many of the definitions and theorems of the last section
resemble the definitions and theorems about spheres and planes.

DEFINITIONS. The interior of a sphere is the set of
of all polnts whose dilstances from the cfnter are

ess than the radius. e ? N

=

The exterlor of the sphere i1s the set of all(points
whose distances from the center are greater than
the radius,

5

*

er-

We are
gee



In terms of a coordinate system whose origin is the centér
of a given sphere of radius r , the interior of the sphere 1is -

((x,¥,2): x° + ¥° + 2% < r°)

and 1its exterior is ,
[(;;y;’g)g xE + y_E + 52 } I‘E] - . E .,‘JE

z

QQ(x,in)

, &
Q@ 1s an interior point Q 1s an exterior point

2 . v 2 :
X + yg + 32 < PE X + YE + 22 > rg

DEFINITIONS. A plane that intersects a sphere in

exactly one point 1is called a tangent plane to the

aphere,

If the tangent plane intersects the sphere in the
point Q then we say that the plane is tangent to
'ﬁhe sphere at Q .

Q 18 called the point of tangency, or the point
of contact.

_—’/’“
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12-3 : R
. “ Wnen we investigated circle-line relations in Theorem 18-4 -
we found that the key in each.phase ofr the study was the foot
of the perpendicular from the center to ‘the line. Our sphere-
Plane study alsoc has a Key:. It is the foot of the perpen=
dicular from the center of the sphere to the plane

The basic theorem relating gpkeres and planes is the
' fallawing
THEOREM 12-6. Given a plane <% and a sphere S with centep-
P. Let F be the foot of the perpendicular from P
to 27 . A
1. Every point of 27 1s outside S if and only if F
is outside 5 , i
2. 71 is tangent to 8 4if and only 1f F is on §
3. }5”? intersects S 1n a cirecle with center F 1if
and only if F 1s inside 35 .

Proof:” Let r be the radius of S and let PF =a .

We introduce an xyz-coordinate system with origin at P ,

whose xy-plane 1is parallel to /7 and whose pasitive z-axis
contains F, Then F = (0,0,a), C = {(x,y,2): X2 +y

and 77 = [(;c!y!z)a z-e a) or (x,y,2)].

E+ zgs PE]

(1) F 1is outside s




: (1) Suppase 'F 18 outside S , then a } r. It fallaws,
.8ince a and r are positive numbéra, that g > rg and

x° + y2'+ a’ > r°, This tells us thgt (x,y,a) 1s outside

S . But 277 ((x,y,a)] Therefore /77 15 outside § .

Of course, if every pDint of /77 18 outside S , ‘then F
15 alsg outsidEi S °." This praveg both parts.of (1. '

(2) Suppose F 1son S . Then r = a' and the inter-
hsectian of 7 and S8 1s . .

2, ,2_,2°, .- )

{(x,y,2): ;2 +y¥ 4+ 27" =8 and 'z = 5] or

1 [(ij.laj); xé + YE —ED} .

But there is only one pair of numbers, (x,y) , namely (0,0) ,
such that x> + y°.= 0 . Therefore and S have only

F(0,0,a) 1n common and it follows that /77 is tangent to S .

If 27 1s tangent to S , they have only one point in
common and it has been shown that (0,0,a) 1is that point.
Thus both parts of (2) are proved.

(3) Suppose F 48 inside C , then r >a . The

intersection of S?Z, and § 1s
((x,5,2): x2 + 3% + 22 = ©°
2 2 2 .
{((x,y,a): x° + y© = »° - a® , r>a}.

, 2 =8, 1 >a} or

Because r? - agi} 0 , we can see from the form of the equation
xg +y = rg - ag ; that we have a circle in the plane z = a ,

with center (0,0,a) and radius
On the other hand, if 2 intersects S it follows that

y2,= PE - aE has a solution. This implies that

or r >a , Therefore F(0,0,a) is in S .

(A

W+
1

Hoom

This ccmpletés the proof of the theorem.

Corollary 12-6-1., A plane 1s tangent to a sphere if and
only 1f it is -perpendicular to a radius at its outer endpoint.

Corollary 12-6-2. A perpendicular from the center of a
sphere to a chord of the gphere blsects ?he chord.

Corollary 12-6-3. The segment joining the center of a
aphere to the midpoint of a chord 1s perpendicular toc the
chord. 8uk L

)

o




Problem Set 12-3
1. The- sphere with center LD
is tangent to plane ﬁi
at A . Fﬁ aﬂd RT are .
, lines of & through A .

What 1a the relatianship,
-]
of DA to FE and RT ?

‘2, In a sphere having radius 10 , a segment from the center
to the midpoint of a chérd has length 6 . How long is
the chord? 7 F

3. A sphéfe has radius 5 . A plane 3 units from the
center Iintersects the sphere in a circle., What 13 the
radius of this circle?

4, Prove that circles on a sphere in planes equidistant from
the center of the sphere are congruent,

5. State Corollary 12-6-1 as two statements which are
converses of each other. Prove each.

6. Show that two great circles of a sphere intersect at the
endpolints of a dlameter of the SphérE—

7. Conslider the sphere S5 = [(x,y,z) x + yg + 22 = 9}

(a) What is the center of S ? What 'is the radius of S ?

(b) Write an equation of a plane tangent to § and
parallel to the xz-plane., How many such planes are
there?

(c) Write equaticns of all planes tangent to S and
parallel to the yz-plane,




8. 'Qansidér the sets:

i

((x,y,2): x2 4 y2 + 2% = 16) . : -
i(i;y,é)s [xl > 4} 5 N (kx;y;z)erly| > 4) “'; o
- ((x,32): 2] > 4) o
((x,3,2)¢ IxF < 4, Iyl <4, lz| < 4} ..
a) Describe the intersection of S and M ; of S and

~ Nj;of 5 and R .-
(b) Describe the set T,

3 m‘ . .-
[}

]

N
il

1]

—

(¢) What 1s the intersection of ‘S and T? = . = »

9. Two great circles are said to be. perpendicular if they lie
in perpendlcular planes. Show that, given any two great
eireles, there 1s one other gfeat cirele perpendicular to

' both. If two great circles on the earth are meridians
(through the north and south poles) what great circle is
their common perpendiculan?

10. Plane & 1intersects a
sphere whose center 1is
O. A and B are two

points of the inter-
section. F 1lies in
plane £ . ‘Eﬁ‘l =
AF | BF . If AB =5
and OF = AF , find the—
radius of the sphere
and m /AOB . If G 1is
the midpoint of &B ,
find 0G .

11. Gilven aisphere and three points on it. Describe the ‘steps
you would take to find the center and the radius of the
sphere,

12. Plane 5; i1s tangent to a sphere X at point T , and
‘plane -7 1s any plane other thin & which contains T ,
Prove:

(a) that plane F intersects sphere S and plane ;3
in a circle and a line respectively; ¥
846
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L

(b) that the line of intersection is tangent to the circle
’ of intersection. i

. A - L ) .

13. Cansider the sphere S = [(x,y,2z): x° + yE + 2% = 100} .

(a) Find theintersection of sphere S  with the plane

[(x,yﬁﬁi;gz = 10} . .
(v) consider the plane P [(x;y,z) = 8} . 1In order
) "~ for a point (x, y,z) to be in the intersection of

S ‘and P, certainly 'z = 8 ; what conditions, then,

must x and ¥y meet?

14;‘ Consider the girélé C = ((x,¥): x + f: - bx<+ 6y = 23} .
(a) complete squares and transform the eauaticn of C. to .
the form (x - h) + (y - R)E 2

[l

r~’' . What are the,

- coordinates of the center and the length of the
radius of C ? ‘ i .

(b) Write an equation of the sphere 8 whose radius has
the same length as the radius of ¢ and whose center
1s at (2,-3,0)

(¢) ‘Write an equation describing a plane tangent to sphere

e S and perpendicular to the z-axis. (Two answers are

passible )

12-4. Arcs of Circles.

So far in‘'this chapter we have been able to treat circles
and spheres in a simllar manner. For the rest of this chapter
we conflne ourselves exclusively to circles. The toples we
discuss have theilr corresponding analogies 1n the theory of
spheres but these are too complicated to consider in a beginning

course, -

DEFINITION. A central angle of a glven circle 1is

an angle whose vertex is the center of the circle.

ol
T




12-4 | . .
DEFINITIONS. If -A and B are two points of a cirole -
with center P and if A, and B are not the endpoints
_ of a diameter of that circle, then the union of A, B,
- ‘and all the points of the eircle in the interior of /APB
is a minor arc of the circle. ‘ -
The uniofi of A, B, and all points of the circle in \
the exterior of . /APB 1s a major arc of the circle.

. ~ N ™,

major

1f. AB 1s a dtameter, the union of A, B, and all
points of the cirele in one of the two halfplanes,
with edge AB , lying in the plane of the circle is

T

a gsemicircle.
An arc ia elther a minor arec, a majéféarc} or a
semi-circle., A and B are the endpoints of the

arc.

In some ways an arc of a cirecle 18 like a segment of a
line; for instance, 1t has two endpoints. However, unlike the
segment, an arc 1s not determined by 1ts endpoints. In fact
there are infinitely many arcs which have any given pair of
points as their endpoints, as the figure guggests. Thilis makes

1t hard to find a symbol to denote an arec, 111t up from the
symbols for 1ts endpoints. 1In spite of this\we often dehote

848
= i ﬁ -
Jgi
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an arc whosé endpoints are A and B by AB . We must be

sure we know what circle we have in mind for this to maké Eense,*
and also we must know which of the two .ares on that circle we
have in mind. Sometimes 1t will be plain from the context which
‘arc 1s meant. If riot, we will pick another point X somewhere
in the arc EE', and denote the arc by AXB . For example, in
,the flgure, AXE 15 a minor arc, AYB is the associlated major

ﬂ arc; and the arcs CAB and CYB are semicircles. ’

A

m

The reason for the names "minor" and "major" 1s hpparent
- )
when one draws several arcs of each kind. 1In such. drawings the
- major arc looks "bigger" than a minor are. This relation will -

be made more precise 1n our next definition. . .

measure, mAXB % 1s glven as follows:

DEFINITION. ZIf AXB 1s any arc then its)degree

1. 1If AXB 1s a minor arc, then mAXB 1s the

‘measure of the assoclated central angle.

mAXB = m /q

18 a semicircle, then mAXB = 180
If AXB 1is a major arc, and AYE is the corre-

X]
—
&)
o =%
5
t

sponding minor arc, then

mAXB = 360 - mAYB .




o

In the figure, m /APB 18 €0 . fTherefore miYH 1s 60,
and mAXB 1s 300 . — _ y :

Eerea%ﬁér,: mAXB will be called simply the measure of- the
arc AXB . Note that an .arc is minor or major according as its
measure is less than or greater than 180 . ) - -

If X 1is = point of an arc AB ‘ﬁifferent from ﬁb and B,
it determinés, with A and B , two other arcs, AX and IE .
It 1s natural to 1inquire how the measures of such arcs, Ei and
iE , are related to the measure of AB ; the answer is simple
and reasonable, namely, VmAXE = mAx + mXB . This can actually
be proved as a theorem but the pragf is surprisingly 1Qng:and

tedlous. We prefer to state the result as a post;late.

Pastulate 3@. If AB and EC are arcs of

the same circle having only the point B in
common, and if their union is an arc AC , then

mAXB + mBYC = mABC .

Notice that for the cases in which AC 1s a minor are or
a semlcircle the theorem follows from the Protractor Postulate.
It 1s the other case whose proof is difficult.

o+

850
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- In each of the figures below, the angle x 1is said tg be

—

1nscribed in the arc ABC

. Figuﬁg,abrx4~***“l " "Figure b
DEFINITION. An angle is inscribed in an arc if and
only 1f (1) the angle contains the-two endpoints of
the arc and (2) the vertex of the angle .is a point,
but not an endpoint, of the arec.

More concisely, /ABC 1is inscribed in ABC
; bl
In Figure a, the angle 1is inscribed in a major arc, and
in Figure b, the angle 13 inscribed in a semicircle.

In each of the figures below, the angle shown 1s said to
intere ept PQR .

0%
FIGURE ¢ FIGURE d

FIGURE e - FIGURE f
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In Figure e, the angle 1s inscribed; in Figure d, the vertex 1s

outslde the circlé, in .Figure e, the angle 1s a central angle; o
and in Figure f, one side of the- angle 1s tangent to the cilrcle.i
In Flgure d, the angle shown lntercepts not only §3§ but alsa_

—
£

ABC _ - : S -
These figures giﬁe the general idea of an 1nt3féepte§ arc,

We will now define what it means to say that an angle inter-'

cepts an arc. You should check carefully to make sure that the

definltion really takes care of all four of the above cases.

EEFIN;TiQH. An angle 1ntercep§s an arc if (1) the
endpoints of the arc 1le in the angle, (2) each
slde of the angle contains at least one endpoint
of the arc and (3) except for its endpoints, the

arc lles in the interior of the angle.

The reason why we talk about the ares intercepted by
angles 1s that under certain conditlons there 18 a simple
relation between the measure of the angle and the measure of

the arc.

In the figure above we see three inacribed angles, é; ’
/y » /z , all of which intercept BYC and are inscribed 1n
BXC . It looks as if these thrge angles.are ccngruenti That

3,

I 7
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~ THEOREM 12-7.. ,The measure of an inscribed angle is half the
- measure of its intercepted arc.
i ’

) tGiven: Circle with center P _
A _is an inscribed angle intercepting BC

1l =5

To prove: m /A = mmBEC .

.. There are three possible cases: (1) P 1is on a side of /A,
say AC , (2) P 1s an interior point of /A, (3) P 1s an
exterior point of /A .

case (1), P 1s on AC .

Let /x and /y be as shown. By Theorem 6-10,
m/A+m/x=m/y . By Theorem 12-2, AP ¥ BF and therefore
m /A =mi/x . By the substitution property of equality,

il

em /A =m fy . By the definition of the measure of an arc,
m /y =mBC . By the multiplication property of equality we
conclude that



O

ERIC

Aruitoxt provided by Eic:

Case (E). P 1s aﬁ‘ﬁ'ﬁt&gi@r point oi‘,fA

?

A
By the Eetwaenneus Angles Thggieqﬂ§m /A =m Z& +m fw

and by the Postulate 30,

mBDC = mBD + mDC

B
e -
A T,V -t D
W p
l‘il :/::j C Dg‘/‘;
N
1 5 } \.\
By Case (1), r /v = =mBD  and m Jw = éﬁf . Therefore

Case (3). P 1t an exterior point of /A

. ;;5
m /BAC = m t=m/s -m/fu
= %(mﬁﬁ - mCD) -
1 =
= émBC .

From this theorem we

L]

y

;

4

get two very important corollaries:

'

Corollary 12-7-1. An angle inscribed in a semicircle is

a right angle.

This 13 .30 because such

which haa measure 180 .

an angle intercepts a semicircle,



=
3
N

=

Llary 12-7-2. Angles inscribed in the same arc are

Coro

congruent.

b
[

This is so because all such angles intercept the same arc,

) 4

We now say what we mean by congruent arcs. Just as weé
already did for segments and angles, we state our definition in
terms of the appropriate measure, ~

DEFINITION. 1In the same circle, or in congruent

clrcles, two arcs are called congruent if they

have the same measure. -

Corollary 12-7-3. Congruent angles insecribed in congrfuent

clrecles intercept congruent arcs,

Problem Set 12-4a
1. 1In the circles in each dlagram, P 18 the center and

points A, B, C, D, M are contained in the circles as

indicated,

" Figure b

AB contains P | AC contains P mAB = 95 )

DF | 7B _ mDC = 40

(a) Refer to Flgure a.

(1) Name the central angles.
(2) The measures of all central angles are posltive

[

numbers less than what number?

(3) Name all the minor arcs in the circle.

ERIC

Aruitoxt provided by Eic:
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ERIC

Aruitoxt provided by Eic:

(4) 'Name all the major arcs in the circle.

(5) Name the pairs of congruehf arcs in the circle.
(6) Name two arcs which do not have central angles

assoclated with them.

n

(b) Refer to Figure b.

(1) \How many inscribed angles are shown?

(2) yame any 6 of these and for each name. the arc

/in which 1t is inscribed and the arc 1th
1nterceptgi W

--the degree measure?

(c) Refer to Figure c.

(1) Name the arcs intercepted by /A , , /¢,

s _(3) For which of the inscribed angles can you give

/D .

(2) @Give the degree measure of each angle in Part 1.

(3) Name two pairs of congruent angles. Justify

your statements in two Ways. Write the
. definition, theorem or cerollary used,

Consider angles formed by Secant=p§y5, tangent-rays,

and/or

chord-rays. Call the vertex gfrsuch angles. V . Make
diagrams which indicate all possible pairing of chords,

‘secants, tangents to form thése angles 1f:

(a) V 1is in the exterior Di\the circle.

(b) VvV 1is on the circle.

(¢) V 1s in the interior of the circle.

The center of an arc 1s the

center of the circle of : e

which the arc is a part. ;f§; XX\\\
How would you find the A;f 5

center of AB 7

Given: P 1s the center
of AC , m /C =45,

Prove; DBP | AP’

fael
ol
i




5. If mAB = mBF ,

(a) Prove AAHK ~ ABHF .

(b) What other triangle
in the figure 1is
similar to ABHF ?

6. In the ecircle with center P ,
let m /R =85, mRS = 40 ,
mTV = 90 . Find the degree
measuresg of the other arcs

ard angles 1lndicated in

ind

e
the figure.

&

7. An inscribed quadrilateral is
a quadrilateral having all of
its vertlces on a cirele.
Prove the theorem: The

opposite angles of an

inscribed quadrilateral

are supplementary.

8. The two clreles in thls flgure
are tangent at A and the

smaller circle passes through

0 , the center of the larger
cirele. Prove that any

Wwlth endpolnt A 13
bisected by the smaller

circle.

i
(|
~1

-
Lo

ERIC

Aruitoxt provided by Eic:



9. <mthe filgure, ACB is a C o~
semicircle and CD | 2B .

Prove that (CD)S = AD « DB

‘Refer to Corollary 7-7-Y. . Al — g

10. Prove the following converse
# of Corollary 12-7-1: 1If an
. angle 1nscribed In a circular
arc 1s a right arzle® then

-

the are 1 a sem ircle.

11. A, B, C, D are points on a circle

/BAD . Prove that mDC = mCB .
12. Prove: A diameter perpendicular

to a chord of a circle bisects

both arcs determined by the

chord.,

—_— A

14. In the dlagram 2B

Prove that mAB = mAC

DI
4Tl
[as]

ERIC

Aruitoxt provided by Eic:



15. Rrove Corollary 12-7-1 by using coordinates. [Hint: Let
an xy-coordlnate system assign (0,0) to the center of
the circle. Find therslopes of the rays forming the
angle. What must the product of these slopes be?)

16. XY 1is the common chord of
two Intersecting circles.
AE and TC are two
segments cutting the
¢lreles as shown in
the figure and con-
taining X and Y

e

(Hint: See Problem 7.) I ‘ p

17. In/this dlagram AB is a

diameter and DE | 7B .
(a) 1Indicate a corre-

spondence which 1s a

similarity between the

| triangle with vertices

A, C, B and the triangle
wlth vertices B, D, E .

(b) Express the relation ﬁa@ A

o

etween the corresponding
ilde
‘or a proportionality.

e: BD « BC = BA : BE .

]
eyl

of the two triangles in (a) using the symbols

by

"oV

]
[
s

ERIC

Aruitoxt provided by Eic:



12-4

18. In this figure, XB 1s a
diameter of the smaller of
two conecentric circles,
both with center 0 , and

iﬁb and QE_EE are tangent to
the smaller circle. CTO
and DO are radil of the

larger circle.

Prove that CD 1z a diameter

of the larger circle.

(Hint: Consider &AD and G5 ) R

- LSRN
We return to congruent arcs and related &hords.

i

.\\

Proof': Referring to the above figure, we need to show
that 1f AB = A'B' , then AB ¥ A'B' . By the S.S.S. Postulate
we have

AAPB £ AA'PIB!
Therefore /P = /P' . Since mwAB =m /P and mA'B' = m /P,
L o L
this means that AB = A'B' , which was to be proved.
The converse 1s also valid and the proof 1s very similar.
F

860
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Aruitoxt provided by Eic:



THEOREM 12-9. In the same circle or in congruent circles, 1if

two arcs are congruent, then so are the associated chords.
., . o . —_— T
That 1s, referring to the figure above, 1f AB E A'B' ,

then AB = ATB' ., If the major arcs are known to be congruent,

then the same conclusion holds.

asures

)

We now relate measure of other types of angles tonm

O

of intercepted arcs. The figures below show the types of

angles we consiter.

Flgure c¢ Flgure d

In Flgure a the one ray ls contalned in a tangent and the

other ray contains a chord. Describe the rays in Figure b,

in Plgure ¢, 1in Figure d.

DEFINITION. 1If the vertex of an angle 1s on a clrcle

and one of 1ts sides itained in a tangent, and

o I
I
o]
ju
o

its other side contains a chord, then the angle 1s

called a tangent-cnord angle.

ERIC

Aruitoxt provided by Eic:
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Aruitoxt provided by Eic:

po

DEFINITIONS.  If the vertex of an angle is an exterior
oint of a circle and its sides are contained in two

gecants, or two tangents, or a secant and a tangent,

then it 1s called respectively a secant-secant
or a tangent-tangent angle or a secan

the measure of 1its intercepted arec.

Given: Circle with center P ,

Q5 1s a tangent at @
)R 1s a chord. QR 1is

he intercepted argc of

). i
/RPQ 185 a right angle. Since mRQ =

ant-tangent

THEOREM 12-10. The measure of a tangent-chord angle is

)
e (2). P 1% an exterior point
3). P 1is an interilor point of

Case (2)., P 1s an exterlor point

of /RQS . Consider diameter QT .
he Betweenness-Angles Theorem

ot

By

m /RQS = m /TQS - m /TQR .
m /TQS = 2180 , m /TQR = “mTR .
- = - =
4
Therefore m éﬁgs = %(18@ - mTR) = %mRS
}

Il

angle,

one-half
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THEOREM 12-11. The measure of an angle whose vertex is in the

interior of a clrcle and whose sides are cantainad in two
Secants,

b

: one-half the sum of the measures of the inter-
cepted arcs
Proof':

Glven: A clrcle with secants
B and D" inter-
secting at E

. To prove: m /DEB = (mDB + mAC) .

P

The remalnder of the proof 1s
left as a problem.

(Hint: m /DEB = m /EAD + m /ADE)

THEOREM 12-12. The measure of a secant-secant angle, or a

tangent-tangent angle or a secant-tangent angle 1s one-
half the difference between the measures of the inter-
cepted arcs.

The proof of thils theorem
for a secant-szecant angle should
suggett the proofs for the
remaining two angles.

Let the secants be as shown
in the dlagram
m /ABC = m JE + m /BCD . Why?
or m /E = /ABC - m /BCD
The rest of the proof 1is dasily

I

s

completed by noting that

m /ABC = AF (Why?) and
/

mw

m /BCD = =mBD

I
KN ;_y—“ I”'

1T
ol
<o

' w4

I

ERIC

Aruitoxt provided by Eic:



Problem Set 12-kb

1. Consider the points in the following diagrams to be located
as the figures suggest. The degree measures indicated are
signed to the arcs.

a

i

Fiéire (4) Figure (5) Figure (6)

(a) Match the numbers (1) through (5) from the diagrams
with the appropriate angle-name selected from
tangent-tangent angle, tangent-secant angle, secant-
secant angle, tangent-chord angle, central angle,
inscribed angle.

(b) Give the measures of each indicated angle.

(1) Figure (1), m /AVB
(2) Figure (2), m /RVS
(3) Figure (3), m /AVB
(%) Figure (4), m /AVB =

(5) Figure (5), m /TVQ =

(6) Figure (6), mf /AVB

-
I e
17 .
=
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Aruitoxt provided by Eic:

Find the measures of each indlicated part. The ares have

degree measures as marked.

P 1s the center of the circle. E 13 in the interior of
the eircle, F 1s 1In the exterior of the circle. 5, T,

By, M, C, R are on the circle. A5 and AM are tangents

to the circle at 5 and M respectively. TR 1s a

dlameter,

(a) mBM . (f) m /ASP

(b) mET ‘ (g) m /TRM

(¢) m /FMR (n) m /SAR

(d) m /FAC (1) m /SPR

(e) m /CAR (J) m /CER

Prove Theorem 12-9: 1In the same circle or in congruent
cirzies, if two arcs are congruent, then so are the

assoclated chords.,
In the figure AF = BH .

Prove:

e
)

(a) FB
(b) ABMF = AAMH

el
W
R3]



5. ABCD 1s a square. E 1is

any point or oc s 43 shown
in this figure. Prove that
EA” and BB trisect /DEC .

W

6. 1In the figure, A, B, C, D
are on the circle and QE?E 1s
tangent to the cirecle at A
Complete the following state- 7

ments:

(a) /BDC =
‘ | (b) faDCc = .,
; (c) facBE % .

upplemeﬁtary to

W

- ! (d) /EAD 1s
(e) /DAB
(f) /ABC 1s supplementary to .
(g) /DAE = = .

(h) /DBA 1is supplementary to .

(1) /ADB 1s supplementary to

(J) /pAc = .

supplementary to

o
b

I

7. 1In the figure “CP" and “ig
are tangents, PR 13 a . P
diameter of the circle., 1If
mPB = 120 and 1f the radilus
of the cirele iz 3 , find
the length of AP .

)
"!

",
1)

o~
g
[0
‘%“\—/ '

ERIC

Aruitoxt provided by Eic:



8. Two cilrcles are tangent, eithgf‘internally or externally,
at a point H . Let u be ahy line through H meeting
the circles again at M and N .. Prove that the tangents
at M and N 'are parallel.

e

9. Given: Tangent PT and
secant PR . B 15 the
midpoint of PR . -
Prove:, B 1s eqdidistant

i -
from PFT

10. Prove the theorem: If two parallel lines intersect a

cirele, they intercept congruent arcs,

el

e il . .

__ B e ™

Caze II Cace IT1L

4“

A

—
i

w7y

(Two seccants) : (Two tangents)

ERIC

Aruitoxt provided by Eic:



12-4

*11.

*12,

" %13,

Consider the cirgie 0 ;.[(x;y):'xz + y° =25}, and

the point @(0,3)

(a) Find the 1ntersectignsr A B of the 1ine “QA  with

the circle O , given @A = ((x,¥): y =3} .

(b) Find the intersections -C,D of the line

= {(x,y): x = 0} , with the circle 0. -

(e) ‘What 1s the produgt of the lengths of segménts QA

and QB 7 of Eegmenta T and QP ? Are these.
products equal? (If not, check your work.)

Consider the circle 0 = ((x,y): x° + yE = 25] and the
, point P(8,3) . . -
(a) Find the points A,B which are the\intersectiona of
PA which equals ((x,¥): ¥y = 3} , with the circle O .
! (b) Find the points C;D whieh are the intersections of
T ((x,¥): y = x = 51 with the circle O .
(c) Find the product PA * PB ‘and the product PC + PD .

» - , e
Given AD tangent to the
cirelé at. A and the -
gecant igfﬁlinéerseeting
the circle at B and, C .

(a)

(v)

(c)

(d)

(If these products are not equal, check your work.)

What 1is the relation
between AADB and
ACDA ?  Why?

Why does AD (of QADE)
k « CD (of ACDA) ?
Why does BD (of AADB)
= k * AD (of ACDA) ?

i

Assune CD =6 , ~ B
Express AD 1n terms of 'k .
Express BD 4in terms of- k . A
Compare AD * AD with ' i
BD * CD . Would this relation ,
be . true for all values of  k ? D
Would itlke trué for every value C
assalgned to CD ? .
Ji,
\ 868




12-5. Lengths of Tangent and Secant Segments.

DEFINITION., If the line 'é_ﬁ 1s tangent to a clrcle
at R, then the segment TR 1s a tangent-segment
from Q to the cirecle. ‘

THEOREM 12-13.
external point are congruent, and form congruent angles
with the line Jdining the external point to the center
of -the circle. ‘ ' *

Proof: _
Given: QR 1s tangent to the circle C at R, and QS
is tangent to " C at S . - - ¢

To prove:

s \

By Corollary 12-4-1, APQRg,and APQS are right triangles,
with right angles at R. and S . Obviously PQ = PQ , and
PR'Z PS because R and S are points of the circle, By the
Hyﬁatenuse—l;egx Theorem, thlaf;’x}géns that

[” ‘ " APQR ¥ APQS .
Therefore QR = E’E‘T; and /PQR = /PQS , which was to be groved.

[

Y

SRR TN

I R
T S

iy




B such that A {BWStween Q and B, then QB 1s
called the secant-segment from Q to the circle and @A
18 called the extg;nél Becant-segment from Q to the
cirocle, B

THEOREM 12-14. The product of the length of a secant-segment
from a given exterior point and the length of its external
; secant-segment 1s constant for any secant containing the

-

given point.

© Proof: Let Q ©be the given point and let @I and T
be twéisécant=ségménts, having respective external. secant-
segments QR and QU . By the A.A. Theorem for similar
langles we prove '

- ASQU ~ ATQR . |

870

= . ‘3{;;;




- #12-5
’ It follows that
/(QS,QT)§(QU,QR)
and therefore /
QS+ QR = QU * QT .

We prove that the product QS : QR 1is equal to the praducﬁ
of the length of any secant-segment from Q and the length of
its external secant-segment. This proves the constant to be

g" Q5 * QR . - F.ﬁﬂpi-i
Notice that this theorem means that the product QR . QS
. . : . , N
is determined merely by the given cirecle and the gilven external
- point, and 1is independent of the choice of the secant. (The

theorem tells us that any other secant gives the same product.)
This constant product 1s called the power of the point with
respect to the cirecle.

The following theorem asserts that, in the figure below,
QR - @S = (Qr)° .

=0

THEOREM 12-15. Glven a tangent-segment QT to a circle at T
and a secant through Q , intersecting the circle in
points R and S . Then

. A oy 2
QR - Q8 = ‘QT)” .

The ma'in steps in the proof are as follows. You should

find the reasons in each case, .

1. m /S = iR . 4. AQRT ~ AQTS .
2. m /RTQ = iR . 5. (QR,QT)

.3, /S = /RTQ . 6.7 QR * QS = (QT)°,




12-5
The following theorem is a further variation on the
preceding two; the difference is that now we are golng to draw
two lines through a point in the interior of the ‘circle. The
thaorem says that in the figure below, we have

QR * Q5 =QU - QT ,

You will recognize this theorem as the generalization

‘-
arrived at in Problem 5 of Problem Set 1- 4, h

'THEOREM 12-16. If two chords of a cipfle intersect, the product
of the lengths of the segments df one 1s equal to the
product of the lengths of the segments of the other.

The main steps in the proof are as follows. You should
find the reagon in each case.

Problem Set 12-5°

1. Complete the following statements by replacing the blanks
with appropriate words or expressions,

{a) If M is any point in the exterior of a circle,
there are _ tangent-segments to the circle
from M and their __ are equal.
If P 1s the center of the circle, .

. ’ X/
L4
872 '
SN




thend MP" 1is the _of the __ containing

_the tangent-segments. 1iluatraté witﬁgé diagram.

f RS 4s a secant-segment, R .1s in the exterior
Jof acircle and S 1is ___  the circle., If HA

" 18 the external secant-segment and a subset of KGg, .
‘then A 18 ____the circle and _______ 1is between .
__amd . TIllustrate with a diagram.
(¢) If in a circle three chords AB , CD and EF
intersect at X and if AX « XB = 12 , then what

is CX - XD ? What 18 EX *« XF ?

2. Points P, R, M are in the exterior of the circles and
A, B, X, H, K, 8, T are on the circles as indicated in
the diagrams. R 1s the center of the cirele in Figure a.
A} B, and X ‘are points of contact of tangents in Figures
(2a) and (b), respectively,

Flgure a. © Figure b.
(a) Refer to Figure a.
(1) sSegments PA and PB are
(2) If PA =10, then PB= . VWhy?
) (State the theorem.) .
(3) If m /APR = 45 , then m /BPR =
Why? (State the théorem.)

33




12-5

“eircle. . QB 1s a secant-

(b) Refer to Figure b.

(1) The tangent-segment 1A .

(2) The secant- -segment 1s = .

(3) * The external secant- segment is . .

(%) \ + AB = _ . What theorem di&iyau use?

(5) If XR = 12 , could RA =8 when AB = 10 ?.
ustify your answer. .

, (6) Hf XR =12, could RA =6 when AB = 18 2
Given another pair of numbers which could be
the measures of RA and RB respectively.

(c) Refer to Figure c.

(1) If MH=a ,H'  =b, M=x, KS=1y i
then a - (_ )==x.( ) . 8tate the
theorem whieh'jﬁstifies y@urranswer!

(2) Could MH =3, HT =17 , MK =4 , KS = 11 ?
Explginia
In Ehe diagram P is the
center of the cirecle, @ A
is a poelnt in the ex- - _
terior of the circl® and A
A and- B are on the A - ,P' ————— Q

segment, QA 1is an external
sécant-segment and QA" 1s
a tangent-segment.
We want to discover the relatlon between Theorem 12-14
and Theorem }2-15 by noting relations in the. diagram,

(a) In what position does QB appedr to have its
greatest length? -

(b) In what. position does ghe external secant-segment
appeaf"ﬁﬁe shortest?

(c) Ir aﬁr'takés on a sequence of positions on tl the cirecle,
changing from position QPB to position QA" , the

length. of ~-QB appears to . . The lenggh of

the external secant-szsegment appears to _ ,
The length of the secant-segment appears to decrease

}

87:14 _
377
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and approach the length of the Q—JF « The
length of the external secant- afeé:méntf éppeaf-s to
increase and approach the length of ) .
(d) Since QB : QA = QB' - QA' , etc. for all positions
of B' and A' , when B' becomes A" and A!
becomes A" we would expect QB - QA to equal
() - (Q__) . Thus the situation in Theorem 12-15
is what we might call the limiting case af the

situation in Theorem 12- 14,

b, iﬁfﬁk, E and “EF are
: tangent to a circle at
B, D, and F
respectively.

~—t

e

»Prove: CB + EF = CE ,

Y .

5. Use .the data as it appears in the diagrams.

BA = 20 RA = 16 BA = 9

CE = 16° MA = & AP = 7

EA = 6 PC = 8

Figure (a) . Figure (b) Figure (c)
875,

S
-~ N
b
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(a) Use Figure (a) and compute DA . = -
(b) Use Figure (b) and compute AT .
(¢c) Use Figure (c) and compute PD .

6. In the figure DC =8,

CR = 6 ¥ RE = ? 13 e ’
Find BA . /—\ e ,

N, &

7. Secants “CA” ana “GE™ intersect
the eircle at A, B, and D, E
as shown in this figure. If
AB=8, BC=4, ED= 13,
find DC .

]
i

8. 1In this figure AB is tangent
to the circle at A anfl secant
.- . .
BW intersects the circle at{ K
and W, If AB=6 and
WK = 5 , how long 1s BK *?

9. Given a clrcle with intersecting C
chords as shown and with x < w .
If AB =19 , find x and w .

A —
10. Given a circle with a chord of length 12 whose distance
from the center 18 8, find the radius of the cirecle.




'11. In the figure, TD 4is a tangent-
segment to the circle at D and
AC 1s a sécant-segment which
contains the center of the circle.
If Cp =12 and CB = 4 , find
the radius of the circle, -

b :
12, 1If two tangent-segments to a circle form an equilateral

triangle with the chord having the points of tangency as
1€s endpoints, find the measure of each arc of the chord.

13, If a common tangent of two circles meets the line of
centers at a point between the centers it is called a

common internal tangent. If it does not meet the line
of centers at a point between the centers'it is called
a common external @gggent! ’

A

. - . . .
In the figure AER 1s a common internal tangent and CD

is a common éiternal tangent.

(a) 1In the figﬁre-abové, how many common tangents are
possible? Specify how many of each kind.

(b) 1Ir the circles were externally tangent, how many
tangents of each kind?

(c) If the ciricles were intersecting at ‘two polints?

(d) 1r the circles were internally tangent?

(e) If theScircles were concentric?

87




14, Giveri: The sides of quadrilateral
CDRS are tangent to & circle as
in the figure.

Prove: &8R + CD = SC + RD_,

15,FIAB: and *BC" are tangent to
a circle with center 0 at
A and C , respectively,

and m /ABC equals 120 ,

Prove that AB + BC OB .

16. The radii of two circles have
lengths 22 and 8
/ respeetivei&, and the
* distance between thelir
g\ centers 1s 50 ., Flnd the
length of the common external

tangent - segmeént .

(Hint: Draw a perpendicular
from Q to &AF .)
17. Two circles have a common external tangent-segment 36
inches long. Their radil are 6 inches and 21 inches
respectively. Find the distance between thelr centers.

LS
JT.




T 12-5

18,

19.

20!'

= . - ) 7 .
, 5 . e 7

El

In the accgmpanying diagram sg and sf are tangent tg
a clrclé ‘with center A at E and °C fespectlvely
Segcnd=cig;le with genter A? lieagin the ‘union -of é?PE,/
‘and’its intertor. 4, and £, are tangent to circle A!
at B! and C! PéSDéctiVély.; :

(a) Are PR and PAT™ distinct? Explain.

(b) 1If minor arc BC has a degree measure of 130 ,
: —

what 1s the degree measure of minor arc B'C' ?
Justify your answer.

Show that i1t 1s not possible for the
lengths of the segments of two
intersecting chords to be four
consecutive integers.

Ccnsi@ér circle C = {(x,y): l)E + (y + 3)2“2 Eﬁ}

and 1ines £ , 4t such that
= ((xy): y=5} and £ = ((x,y¥): x - y = 12}

(a) Find the coordinates of P , the intersection of
éz and gf' .

(b) Find the coordinates of T s, @ point o. intersection-
of £ with the circle. (There is only one point in
this case; £ 1s tangent to C .)

(¢) Find the coordinates of R and S' , two points of
intersection of Z' (a secant) with the circle.

(d) Find PT and sqﬁare it. _

(e) Pind PR and PS' and théfr product.

(f) Did you expect 83 PR - PS' to be equal?
Why? i '




7 21. Prove: The cammaniﬁtégnal - : .
A ; . tangents of two circles méet - :
the line of centers at the _
"same point. ’

(Hint: Use an indirect
& proof.)

22. Standing on the bridge of a .
i large ship on the ocean, the
. captaln asked a young offlser
‘to determine the distance to
the horizon. The young officer
'3} : took a’'pencil and paper-and in
a few moments came up with an
answer. On the paper he had
wrltten the formula

\F’

.da=24F niles.

Show that this formula is approximately correct if h is
the helght in feet of ‘the observer above the water and if
d 1is the distance in miles to the horizon. (Assume the
diameter of the earth to be 8,000 miles.) -

%

(Chapker 12, Sections 1-5) .
1. éqnaidér the problems below with reference to the fgﬁ},
N sets C , Ll » LE"and L3
) o Yoo
C = {(x,y): x° + y2 = 100} ;

((X;Y): x = =10} ;

Ly

il

" H‘
I

o = {(j{:y)- y 5];

-
X
__with radius _. .,  and .

= at @ﬁévééiﬁt with céafdiiates _
< \\Lb‘g .

((x,¥): ¥

ol
]
i}

880
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(b) A(S, 8): 5(7: ‘7): and (=8, 10) are three
- points in the xy-plane. For each point
‘@etermine whether 1t 1s on the circle, in the
interior of the eircle or in the exterlor of the ’
circle, Show your computations.
(¢) .Find the interséction of L, and C .
(d) Find’the.inQersection-of L, and C .

(e) Find the inte rsection of I, and C .

Consider a sphere S with rédiu%' 10 and an xyz-coordinate
system which has its Qrigin at the center of §..

(a) wWrite an equaticn

- of 8§, * g
(b) Give the coordinates ¢ )
' of the points of .
intersection of S - 7
with _ '
(1) the x-gxis S /{1 N\ _ N
(2) the y-axis ,%7 ;;3;.32 l§\k§\i N =Y
(3) the z-axis : ST =
(c) Give the intersection | { ] VAR

of S wlth the s , |/ .

_ xy-plane, that is, ' x® 7 L/ ]

- with {(x,y,2): z = 0} .

(d) Give the intersection of

' S with the Xz-plane,

(e) Glve the intersection 'ef $% with thé yz-plane.

(f) Given the points A(s, o'} 51ﬂ§) -5,7)
FTt9,6,1) . Fcr each point determiqg whether 1t 1is

(1) 1in S, (2) 1in the interior of S DB'(B)

the exter'ar of 5 . 5 ~

(a) Write an equation of a circle in the xy—plan§.which

has its center at (3 -2) d 1ts radius equal tc 3
(p): Write an equation of a aphere with center at .
(2,-1,3) and with radius equal to 3 .



& * * . ) L - - o “?
4, Prom the presantaﬁian in Sections 12-% tﬁraugh 12-5, we’
‘have several situations in which tvo angles, twa segments -
or two arcs are gaggruenﬁx

(a) Give 6 conditions under which® 2 segments related

to a circle are congruent, -
(b) Give "3 circumstances under which an angle related
‘ to gﬁc;rcle is a right angle. e
ot " (e¢) aGive U4 conditions upder which two angles related
' to a circle are congruent.
. ~ (d) Give 4 conditions under which 2 arcs have A
{ : the same degree measure, .
5. (a) Héw 19 the fegree measure of the arc in which an

angle 1is inscribed- related to the degree measure of
the arc which it intercepts?

(b) . Explain how the relation between the measure of a
central angle and the degree measure of its ’
assoclated arc might be considered a speclal case

* of the relation between the mehsure of an angle formed
by two chords wnich intersect in the interior of a
circle and the degree measure of its assoclated arcs.

6, TFor the circle céntered at 0,

(a) BC 41sa . -
(b) AD 1s a .
| (c) “Ac” 1s a o
(d) Ok 1sa
(e) iﬁfﬁiia a .

(f) €D 1sa _ .

(g) ADC 183 a s
(h) /BCA  1is aﬁ’:;s;zzsmzzz .
(1) fcopD 4s a .

7. Given: In the figure, "the
circle with center Q0 has
diameter AB . AF || OH ,

A m/A=55
Find*tqu and mAF .

‘F’rJ‘jL :




8. Gilven: AB is a dlameter )
of the circle with center C
XY
Prove: CY | B . ' A
_ ) { .

(Hint: Find m /AXY .)

bisects /AXB .

i

9. Indicate whether each of the following statéments is true .

or false,

(b)
(é)

(d)

- (e)

(1)

" If a pdint 1s the midpoint of two cherds of a circle,

(a)

" then the point 1s the center &f the circle,
If the measure of one arc\gf a clrcle is twice the
measure of a second arc, tﬁen the chord-of the first
arc 1s less than twice ?g long as the chord of the
second arc. .
A 1line which bisects two chords of a circle is
perpendicular to each of the, chords.
If the vertices of a qﬁhdrilatéral are on a circle,
"“then each two of f%s-épposite angles are supplementary
If each of two circles 1is tangent to a third circle,
then the two circles are tangent to each other.
A%ircie cannot contaln three collinear points. . _
If a line bisects a chord of a circle, then it
bisdcts the mlnor arc of -that chord.
"If PR 1s a dlameter of a circle and @ 1is any
point in the interlor of the circle not on ¥R ,
‘then /PQR 1is obtuse. '
A tangent to a clrcle at the midpoint of an arc ig~
parallel to the chord of that arc.
It is possible for two tangents to tﬁe same clrcle
to be perpendicular to each other.

Bé§;xi



10.

11.

12,

lai

1k,

tangent to the other circle
L dt Y .

Given: 1In the figure BX
is tangent to thé circle
at B . AB = AC ,

mCB = 100 . Find> m /C°,

m /ABX , -and m /CBA .

z

Given: Two circles tangent
at P with common tangent
AE . iiikgis tangent to one
circle at X and “AY 1is

o~
Frove: AY = AX .

" *

A hole 40 inches in diameter 1s cut in a sheet of
plywood, and a globe 50 inches in dlameter 1s set
this hole, How far below the surface of the board
the globe sink? ..

i
-

in
will

A wheel 1s broken so that only a portion of. the rim

remains. In order to find the dlameter of the whee
following measurements are made: three pointa C,

1 the
A, and

B- are taken on the rim so that chord AB 2 chord AC .

The chords AB and AC ar® each 15 inches long,
the chord BC 4is 24 inches long.' Find the diame
the wheel.

Diameter AD of a circle with center C contailns
B which lies between A and C . Prove that EE
the shortest segment Jaining E to the clirecle and
is the longest.

¢ - wh

‘and
ter of

a point
is

BD

A Y

*



;iﬁgi Given: Circle with center C ,

L BT, AW IR, and TR
tangent to the circle at H ,

. Prove: miE = m /RHN . |
(Note: The circle may be
consldered éasrepreaEﬁt the

. earth, Wlth*iﬁak the earth's -
axis, /RHN the angle of
elevéticn of the Nomggh Star,
and miE the latitude of a

16. Assume that the earth is a sphere
of radius 4,000 miles. A
straight tunnel AB 200 miles
long connects two points A and
B on thé surface, and a.ventl-
lation shaft CD 1s constructed
-at- the center of the tunnel.

What 1s the length, in miles, of
this shaft?

17. Desgribe the sets indicated below.
(a) T
(b) M
(c) N
(d) R
(e) The intersection of A = [(x,y,2): x° +y° + z
and B ((x,y,2): le = 1} - -
(f) The intersection of D x° + y° F z° = 16)
. and F = ((x,y,2z): x° + vo + z5 = 8]
(g) ' The intersections of T = {(x,
- . 3
and U = ((x,y,2z): x° + y =9

= {(x,2): XE + z° >4} .

(y): (x - 2)% + (v + 4)% = 19) .
((y,2): y° + 2° < 9) .

x° + yg + 2 = 25 , z = 3}

= ((X,Y,E):

1)

1]
®
<
B
N
'
+
>
+
¥
1]

25)

-
-
]
v
%
M w
+
<
+
]
[t

g
885

O
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_18. 1In the figure, AP i
' tangent to the circle
- at A, AP = PX = XY ,

A ~If PQ =1 and Qz =8 ,
find AY .

19. Given: AB , BC and CA’
are 120° arcs on a circle
and P' is a point on AB .
Prove: PA + PB = PC
(Hint:. Consider a parallel
to FB through A inter-
secting FC in R and the
cirele in Q .) i '
’ o
Prove that 1f two circles

[g¥]
L@

intersect, thé'cémman
secant blsects both common
‘. tangent-segments,

b}

"‘-..4‘"‘
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12-6. The Circumference of a Circle; the Number 7 .

It makes sense to ask of someon& who made a trip .how far -
he went. If he traveled in a straight line the answer would be
the distance between his starting point and arrival point. If
he traveled ih a curved path thé answer would not be so easy to
give.  If the path were a ciréular arc, the degree measure of
the arc is not a satisfactory’ way of describing its lergth.

Can you see that 1t 1s possible for two arcs to have the same
degree measure;?ﬁdfhavevdifferentAléngths? Can you also see
that 1t is possible for two arcs to have different degree
measures and have the same length?

mA, B, = 90 mA B, = 90 : mAE}CBEE 180
length of A.B length of : length of
= - - . —

(in mm.) = 93 AB, = 62 mASXEBS 62

Il

.We are going to try to say what we mean by the length of
circular arcs and to derive ways of finding such lengths. The

matics known as "calculus," where all kinds of curved paths

are discussed. We first proceed informally, referring to the
physical world. We imagline that we have made a complete circult
around a clrcular path and inquire how far we have gone. We

gad /.
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call this distance the circumference of the circle and denote
it by C . It seems reasonable to suppose that if we want to
measure C approxima%aly, we can do it by'iﬂSEPibiﬁg a‘
regular polygon with a large number of sides and then measuring
the perimeter of the polygon. That is, the perimeter p ought
to be a good approximation to C when n , the number of sides,
1s large. Putting it anothar way, 1f we declde how cloaa we
want p° to be to C , we aught to be able to get p to be
thls close to C mara%y by making n large enough. We
describe this situatlon in symbols bijriting! p—C , and
. we say that ﬁ has C as a limit,

We cannot prove, this, hcwavér; and the. reason why we
cannot prove 1t 1s rather unexpected. The reason is that so
_far, we have no mathematical definition of what 1s meant by
the ci%aumfaranaa 8f a circle. (We cannot get the circum-
ference mafaly by adding the 1engtha of certain aegmenta, the
dcea not contain any Sagmeﬂta Evafy arc of a circle, no mattaf
how short, 1is curved at least slightly.) But the remedy 1is-

easy: we take tha(;jatament \ p
N p—*C ]
as ou} definition-of C , thus: -
! 1 . ;;j

DEFINITION. The eircumfaranca of a circle is thes
limit of the perimeters of the inscribed ragular '

-,pclygons.

diameter. But to make sure that this dafinition maRa:g =

we first need to know that the number é%

circles, regardless of their size. Thus we need

following: i '»ih‘
THEOREM 12-17. The quotient of the circumference divided by."

the dlameter, éi, is the same for all circles, N

L g R

Jite
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Proof: We use similar triangles. @iven a circle with

center Q and radius r , and another circle, with center é'
and-radius r! , we lnscribe a regular n-gon in each of them.
(The same value of n must be used in each circle..)

In the”figure we show only one side, of each n-gon, with the
assoclated isosceles triangle. Let ;e and e! be thelr
lengths as shown. Now /AQB = /A'Q*'B' , because each of these
angles‘has measure E%Q . Therefore, since the adjacemnf sides
are proportional, ' '

AARQB ~ AANQ!'B!

by the S.A.S. Similarity Theorem. Therefore (e,r) (e',rt)

&

or- (ne,r) § (neigr‘) . But ne 1is the perimeter of the first

ko ll]

L, { i . .
n-gon, and ne' 1is the perimeter Df the second. .We can write,
(p,r) 5 (p',r') . Now let C and C' be the respective
circumferences of the two circles. Then p-—=C and
p'—aéiﬁd' s by definition of cilrcumference of a cirecle, It is
pla;iégle that (C,r) 3 (Ct,r') . By alternation we can write
this€s  (C,c') = (r,r') . It follows that (C,C™) gé(gr-,gr‘)
The 1ast7pr@particnality shows the constant of propé%tigﬁality
to be %i . It is designated by w7 . We see that the
erence of any circle divided by 1ts diameter is 7 .

3R

circumfer
We express the conclusion of Theorem 12-17 in the

well-known formula

o
i
nJ
3
!
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It can be proved that .7 is not a rational number, that
is, it cannot be represented by an exprégsién' % ; Where p,
gnd é: are integersi‘ It can, however, be appréximatéd as
closely d8 we please by rational numbers. ‘Some rational

approximations to w7 are

3, %34, 2, same, 38, 3.1415926535

(As a ggneral rule, if there is a chaiee; you should leave

o

n terms of m .)

your answers' to problems

Corollary 12-17-1, The circumference of circles are
proportional to their radii,

s

Problem Set 12-6

.

. Which 18 the closer approximation to 7 , 3.14% or

radlus

2, 1In the following problems C = circumference, r
and d = diameter of a circle. Find the indicated parts.

(a)

=7, d = » C=V . A

r
(b) ¢ =236, d=__ r=______ .
() a=15, Qq=_ _, r=
(d) r = 6a , cC=___, d=___ .
(e) r==x43, C=___ . d = . '

; ,,; d — .
3. Cl and C, are the circimferences of two circles with
grédii, r, and r, respectively. Fill in the blanks wlth
the appropriate multipliler,

(a) 1r r, = 3r, , then C, = * C,

(b) If C,=5C , then d, = - . 4

n

(¢) If d, =24, , then C, = R

i1
e

2
(d) If r,=4d then C

-2

’ ’Li_
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Two concentric circles have
‘central angles /BOA as.
indicated.

(a) The mBA (in degrees)
equals how many times

(p) 1If OA = 20A' ,.then you would expect the 1ength ‘0
~ BA §e equal how many times. the 1ength of B'A' ?
[Lengths,of arcs will bé considered more precisely
in Sectiom 12-8. ] |

. OA
(3) 1f  OBT =
length of BA : ,
— . to equal?

léngth of BtA!

f , what would you expect'

Given” T = {(x,y): xg + yE = 36]

U = ((x,y): X2 + y = 16}

(&) What is the ratio of the circumference of T to
the circumference of U ? P

(b) What would you expect the ratio.of the lengths of
he sybsets of T and U which are in the union
Er theéﬁﬁgstive .X-axis, the pasitive y-axls and
Quadrangglkﬁo be?

The moon ia about E#D,COD} miles from the earth, and
its path around the earth 1s nearly circular. Find the
ircumference of the circle which the moon describes

every month.

L 'a

mB'A' (in degrees) ?

f

The earth is about 93,000,000 miles from the 'sun, The

path of the earth around the sun.is nearly circular.
Find how far we travel every year "in orbit." What is
our speed in this orbit in miles per hour?

A certain tall person takes steps a yard longs He walks

around a circular pond close to the edge taking 628
steps. What 1s the approximate radlus of the pond?
(Use 3.14 as an approximation for 1w .)

L

O
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9. A regular palyjébn is inscribed in a circle, then another
with one move side, than the first/ig inscribed, -and 80 -on

endlesgsly, eaeh time 1ncreasing the numbéf Df sides by one.

(a) What 1s the limit of{the length of the apathem?
(b) What is the 1imit ofj)the length of a side? .
(c) What is the 1@11—. of the measure of an angle?

- (d) what is the 1imit of the perimeter of the polygon? 1
"10. The figure Pepresénté\g§rt of a regular pélygén of which -
KB and B are sides, dnd R 1s the center of the
¢Ircle in which the paljgcn is 1nscribed Copy and <
ccmplete the table . . , j
T m AARB m /ABR |
Number or \
of sides|m LBRC m,/CBR | m /ABC
N 3 B l‘ ] . 7 ] ]
\ .
5 - X —_—
: - )
o ks i f
’-EE;_%!S —
=P bo - 70 140
hY
- _ 144
12 ) ! o E
15 3 T
18 . . ~
al 20 ;:ﬁ c o i
24 o - -
i X
— S, ——— — - — - } J:"
2 , ' ¥

‘ . ,
11. The sides Qﬂ‘a regular hexagon are each 2 unilts long.
If it 1s inscribed in a circle, find the radius of the / ‘
circle and.the apothem of the hexagon. -

ol
»
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12, The side of a square i8 12 4nches, What is the

cifcumference of, 1ts inacribed $ircle@ Of its clrcum—

: /scribed circle?r =

13. (a) Dne circle has a radius of lD feet & second.

' ' cirﬁgﬁfhag 8 radius one foot longer. How mugh:
long is ‘the circumference of the second clrcle
] < ' ‘than that of the first? D .
- (b) How much longer is the circumference of a circle =~
" whose radius is 1001 feet than that of a circle.
. * whose radius is one foot ‘shorter? ‘
‘A fegular octagon with EidEu ’i unit long 1is 1nscr1bed -
in a circle. Find the radius ‘of the circle.
15;' In the figure,_sq,ar < XYZW® 1is
D e " inscribed in a circle with center

o, aﬁd:square ABCD Zia circum-
fscribed about this cireie. The
- ,iagonala of both squades lie P

S “Tandgﬁﬁk Given fhat p

' fg square PQRS 1s formed when

7 ‘the midpoints P, @, R and S5
ofaﬁi,ﬁ,ﬁ;%nd DW are
joinhed, is the perimeter of this

+* square equal to, greater than,
; or 1esé=than,thé circumfevence a p
’ of the circle? Let QX =1 and juézijy your
answern by computation. — .

12-7. Area of a Circle.

In Chapter 11 we considered areas of polygonal-reglons,

.
' defined in terms of a basle region, the triangular-region,
which 1s the union of a triangle and 1ts interior. 1In talking
‘about areas assoclated with a GiPGIEQﬁE make a simllar basilce
definition.
893 - o
L N . H
¥ ‘j- 0
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interior.

ot "the area or

eglan 1

th

& ot o

unlon

vlarv-restlon' we fournd

1t convenlent to avoreviate thls tso "the area oo

= = n a R 3 yindg iF Foa = -y — 3 3 L

triangle. Similarly, we usually "tao area of a olrcle' as
. an abbreviatlon or "the area of a slireular-reglon."

We now get a rormula tor the area of A clroie, We already
nave a formula tor the oron of a0 Saseet o et nen
thias 1o
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Thus tne f'ormula that yvou have known forp years finally

aren ol o oelprole of r—arjix,,x,:—.\ r 1s  gr= .
L, The areas of two circles are

thelr radil.

L= _
— 77{ :.

oo Find to the nearest tenth the olecumtference and .area of a

clrolse witn vadius

(\fi) s (Lﬁ) 2.5
L o v

() L (i) 3

i Fhand exactly - (In tevms o ) the olreumference and area

A e de withy radias

plind toe eireamrsrenes ol a elpele whose apron

) St (L) T
L) o {da)

e

Phond tie coresin o7 00 ciee b whooe olroumtorence |

) Flhrnd e e ol one Caese
ol thilee Tron washer (0 iha
dlameter oo contimetors
NEITE B A PR B FRTITRD AR SENEE S N TS

hoote b Cocent tnet e,

U") Wb The aren e

T e twes e linels

D Y S NS AR

4

e
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6. The radius of the larger of two circles 1s three times tie
‘radius of the smaller. Find the ratio of the area of the
first to that of the second. -

7. The clircumference of a circle and the perimeter of a

square are each equal to 20 1inches. Which has the

- greater area? How much greater 1s 1t?

8. Given a square whose side is 10 ‘inches, what 1s the.
i

L e ‘! e o s A e
area DethEn its clrcumscribed and inscribed circles? -
2

9. An equllateral triangle is insgribed in a circle. 1f the
i

side of the trilangle i1z 12 1inches, what 1g the radius
of the cirele? The circumference? The area?
. L Y
10. The .cross 1inglde the circle -~
is divlisible into 5 squares.
Find the area“which 1s inside 4 7 A

the circle and ‘outside the

[l
b
s}

ross.

=
1
i
w

11. @iven: Two conceéntric cire
AC 1s a chord of the larger
and 1s tangent to the. smaller
at B
Frove: The area of the ring |

annulus) 1s 7(BC)°
( ) (RC)

1ls

[
[
=l
-
—
i
[}

ey J
oy
i
i
]
=
E\
b
1]

e
L
L
=
pan
pAd

..
%

10 1inches, sectliona are made

el

5

by planes 3 inches and
inches from’the center. Which

sectlon will be the larger?

Prove that your answer is

correct.

807 g
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13. In,the filgure, ABCD 1is
! a square in which' E, F, G
are midpoints of AD , AC , ’
" and CB , respectively.
_EF and FC are circular
. arcs with centers E and
G respectively. If the
. stde of the squarefig s , .
‘find the area of the shaded

~ portion. '
14. 1In the figure, semicircles
are drawn with each side
of right triangle ABC as
‘diameteri Areas of each
region in the figuré are
‘indicated by lower-case f
iétte?sg

‘Prove: r + 8 =%t .

A ) B
A special archery target, with which a jqovice can be

-
]
.

expected to hit the bulls-eye as often as any ring, ds
constructed in the following way. Rays oM and PN

are parallel. A circle with center 0O and radius r ,
equal to the distance between the rays, 1s drawn inter- '
secting OM at Q . QA | M . Then a circle with center
0 and radius QA>; or r, y 1s drawn intersecting oM

in R . This process 1s repeated by drawlng perpen-
diculars at R and at S5 , and circles with radii OB
and OC . Note that we'arbitrarily'stop at four

concentric circles.

(a) Find ry , Ty, Tq in terms of r .
B s < & %

“ (b) Show that the areas of the inner circle 'and the
three "rings," represented by a, b, ¢, and d

are equal,

uce]
o

11 ,?;

O
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16, An isosceles trapezold whose bases are 2 inches and
6 inches is circumscribed about a circle. Find the area

ez outslde the

[

~of the portlon of the trapezold which 1

circle.

8. Lengths of Arcs. Areas of Sectors.

Just-as we define the cilrcumference of a clrcle as the
limit of the perimeters of insecribed regular polygons, sb we
cdn define the length of a clrcular arc as a sultable limit.
i .

-
.
ﬁ‘ﬂm,‘,

ERIC
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1f AB is an arc of a clrcle with center @ , we take
n-1 points By , Py ..., P _ | oOn AE s0 that each of the
n angles AAQPI s LEIQPE 5 oeee éPn _ 19B has measure
L . WAB
n .

DEFINITION. The length of arc AB 1is the limit of

AP

1 + Plff + ... + P

. B as we take n larger

It

and larger.

Notation. We sometimes write " JfB" to mean "the length

of KB ." -

¥ It 13 convenlent, in discussing lengths of arcs, to

Ll

consider an entire circle as an arc whose degree measure 1
360 . The circumference -of a circle can then be considered to
be

5imply the length of an arc whose degree measure iz 360

We now have two types of measure for cilrcular arcs, their
degree measure and thelr length. There 1= a simple connectlon
between these measures, in the case of congruent circles,

namely, that the lengths of arcs on congruent circles are
proportional to their degree measures., It is possible to prove
this fact, but the proof 1is very difficult. We prefer ta state

it as a postulate.

Poqtulate jl. Thé lengtha of arecs 1in congruent

cifélEa are praportional to thelr degree measures.

N
[y r
Q Q
r T,
A N

(A5, LT

o]
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If we tgke A'B' to be a semleircle, then mA'B' = 180 ,
and sg<A'E' = 7r ,

ql;

Then we may write (Jgﬁﬁjﬁr) (mAB,180) . ' L
e \
150

1 P

Clearly the constant- of proportionality is

THEOREM 12-19., An arc of degree measure ¢ contained in a®

clrcle whose radius ié r has length.” L , where

L= - q

T

150
This result follows from the proportionality, ‘x
(L,mr) )

A sector of a ci

g

cle 1s a region bauﬂﬁéd by two radii gnd
an arc, like this:

More precisely: ‘

DEFINITIONS. If" AB is an arc of a clrcle wilth
n

ter Q and radius r , then the union of all

o

er

segments QP , where P 1s any point of AB ,

is a sector.

AB 1s the arc of the sector and r is the radius

of the sector.

he’ following theorem is proved Jjust like Theorem 12-18,

THEOREM 12-20. The area of a sector is half the product of

1ts radius and the length of its are.

piv]
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, Combined with Theorem 12-19, we get

THEOREM 12-21. The area of a sector Pf radius r and arc

[

measure g 1s o
T

Problem Set 12-8

The radius of the circle with
center A 1s 20 . The

radius of the circle with f;ffg;aza
center B 1is 10 d ) D
méD = 60 . mEF = 60 .

Is the length of TD IN
greater than, equal to,

or less than_the length § .

of EF 7 T

Which has the greater degree measure: an arc of one inch
on the equator of the earth or an arc of one inch on a
half dollar?

Are the degree measures of congruent arcs equal? Are

the lengths of Q@ngruent arcs equal? .

Supp@ié” FE on one circle has a larger degree measure

thanf €D on another circle. . Does this information permit
you to concludé that the length of AB is greater than
the iength of CD ? Suppose that you were also told that

the length of AB 1s equal to the length of TD ., Which

~circle has the greater radius?

The radius of a circle is 15 inches. What is the length
of an arc of 60°‘? of 90° 7 of 72° 2. of 36° 9
The radius of a circle ié”&é . What 1is the area of a.

sector with an arc of: 90° 2 of 1° 2 of 60°'? of 54@@

What is the area of a sector whose arc has degree measure
90° and arc length 37 ° ,



O
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10.

1

=

™

s
[

1.

What i1s the length of AB 1
if m /AOB = 60 and the are
60° are
_Also fin

If the length of a
radius of the arec,

the arc,

1
N = -
In a circle of radius 2 , a

thE'measure of its arc?

Given ;é = {(x, yj ): y
and P = (xjyjz): 3}

a Describe the intersecti

(a)
(b) Compare the circumferen
and P

'great clrele of & .

section of §

Compare the area of the

—
e
L

5 and P and the area

(d) Compare the arcs of the
such that all polnts of
conditions that x > 0O

Find the area of the sector

which has the paglti /e x-axis
partial boundries and which

x>0,y >0

=g

;Pgment of a QiFQlE 1z the

an are of the circle

area of a segment is=s
subtracting the area
triangle formed by the chord

and the radil to its endpoin

n the circle with center 0
a of the sector AOB 1is 61

is one centimeter, find the
d the length of the chord of

sector-

?

has area 7w . What 1s
o .
+ 27 = 25}
onof 8§ and P .

ce of the circle of inter-

and the cireumference of a

circle of intersection of

of a great clrcle of 35 .

in Parts (b) and (c)
atisfy the !

0 ] :

circles
the arcz =za

and ¥y

W

. - 2 2 5
of the cirecle x~ + y = b?@
g and the line vy = x,
satlsfies the condition that

as

ts

from the area of the sector.
In the figure, m /APB = 90
If ‘PB =6, then
Area of sector PAB = T 6 = Oy )
' 1 2
Area of trilangle PAB == - 6% =18 .
Area of segment = 97 - 18 or approximately 10.26
2
903 3
Q)

e,

Ay

R

¥



Find the area' of the segment 1f:
(a) m /APB
(b) m /APB
(c) m /APB = U5 ;

60 ; ri= 12 , » -
; / 3

¥y
It

I,

-

20 ;3 r -

]
)

1
b_.l\
M

i
i
Pocs)

14, - If a wheel of radius 10 inches rotates through an
angle of 36- , i
(a) how many inches does a point on the rim of the '
. Wheel move? :
(b) how many inches does a point on a spoke 5 inches
from the center move?

A continuous belt runs around two wheels of radii 6

C
Ny

inches and 30 1inches. The centers of the wheels are
48 inches apart. Find the length of the belt.

In this filgure ABCD 1s a square whose side is 8 inches.

=
i

With the mlidpoints of the sides of the Sﬁﬂﬂ%é as centers,
arcs are drawn tangent to tihe dlagonals. .Find the area

enclosed by the four arcs,. , 5\

]
10y
'

~
Z
el

ERIC

Aruitoxt provided by Eic:



O

ERIC

Aruitoxt provided by Eic:

12-9. 1Inscribed and Circumscribed Circles.

DEFINITIONS. A circle 1s Inscribed in a trlangle, or

- the triangle 1s circumscribed about tne circle, if

each slde of the triangle 1s tangent to the cirele.

A circle 1s clrcumscribed about a triangle, or tie

triangle 1s lnscribed in the circle, if eaci vertex

of the triangle lles on the circle.

e

In these filgures, A ABC 1s inscribed in clreale Cq Jand
O A'YB'CY ds cireumserlbed about circle C,. Clrele C, 'Is In-

K]

=5y
geribed in A AYB'C' and circle Cl 18 clrcumscrlbed about
4 ABC.

.The problem of findlng a clircle circumscribed about a

’given’trianglé can be stated In a slightly dliferent way. If

A, B, C are three polnts it is natural to lnqulre 1f there 1is

a circle which contains all three polnts, and 1f o, how many

such clrecles there are. We know that no clrecle has three

collinear polints, @0 we ought to restrict our attention to
three polints which are nDncglilﬁearé Can you S?Qbaﬁy dirtference
between the problem of clreumserlblingg a clvele about a plven
triangle and that of passing a clrele throupsh ench of three

glven noncollinear pointa?

‘b@%
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If we want to eclrcumscribe a circléfabout a gilven triangle
ABC, we would first have to locate its r . '
center O . Wg start with the reguire-.
ments that OA = 0B = OC . Whe
we look for O 1f OA and OB are
to be equal? If OB and- OC are to
be equal? If OC Aand 0A are to be

re do

Tt
[ea]

equal? By Theorem 8-:
the set of all polnts eqﬁally

we know that

distant from two points 1s: the
perpendicular blsector of a line
segment Joining the glven polnts. We are therefore led to find

the perpendicular bisectors or ARB , BC and TA . Will these
perpendiculars meet Iin one point? In fact, they do, as 1s

proved in Corollary 8-28-1, Since 0 1s the only polnt that

has the property that 0A = 0B = OC and since "OA 15 the

only radlus that we can use or our circle we therefore conclude
that there ls exactly one circle that clrcumscribes AABC

And thus we have proved

A triangle haa one and only one clrcumscribed

le, The center ot tihila clrele 1s the Intersection
of the perpendiecular bilsectors ot the sides of the

triangle. *ﬁss.j

Woe now turn Lo clreles Inocrlbed o trlangles,  We look

ror a clrele whitch hias Ghie Bhree sldes as tangents. The
segment from its center O' to a point aflgontact La perpen-
dlcutar to thia side.  Why?  Then the lenglh of thls segment
g the distance from OV Lo the aldes.  Why?  Slmllarly, the

tengthy of Lhe perpendicular cepmenta trom ' to the other sldes

-
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would be the distances to those sides,
find a polnt equally distant from the

b
[

Qur problem then 1is

ldes of a triangle.

to
By

Theorem Biég we know that thne szet of all polnts equally distant

1
;@rmilagy 8=29-1, we knew that the midrayz of the angles o
(5]

sides of anﬁangle 1% its midray.

FMurthermore, by
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because 1ts CélﬁEP and radius are

THEOREM 12-03 !
cilrcle. The center of thisg clrele

thie midrays of the angles of the trian

Ernl) lem et 12-¢

1. Investlgate whether the center otf ti

about a glven trliangle is In the 1n
exterlor of the triangle. Consider

trlangle wnose atyles are acute, a t

o

angle, and a triangle with an obtus

drawings or eacir case otate what

case, Then prove each stntement,

Munt the coentor ot the tnoeribed of
Lrlang e e Lo Ul Toborbor or thwe

aveument Lo dupport vour answer,

AL The genber o The civenmaeribed ol
o .
Jrlingglenila on oone atde and ta L2

ooovam e tee be be el rotmse ribed abvt
o o teete e bnsertbed e oo i tue
Your nwers,

oL dan sevirele be taerbiend oo grtve

answer,  dan oo cleele be s Lrcumserrd
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he clrcumscribed circle
terlor, on, or in the

three eas
riangle with a right
e angle. After makl

soems bto be true 1in ea
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o rhewtbng?  Prove your
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'Prcvc that an equilateral triangle has concentric
ancribcd and circumscribed circles. )

al

Prove that, if a tr;anglc has conccnfﬁf
circumscribed cirecles, then 1t 18 eq Y1ateral.

. 8. ProVe that a quadrilateral can be circumscribcd by'a
L circle 1f.a pair.of opposite angles are cupplcmEntary
‘(Hint: . Use the indirect method.)

'Q;VVGan a clrele be clrcumscribed about a glven isosceles
ftfapcsoid? Prove your answer. Can a cilrcle be inscribed
in a‘glven 1sosceles trapezold? '
.#:10. The radius of the 1nccr1bcd circlc of a riggt triangle 1is
2 ®nches long. The point of contact on the hypotenuse
divides it 1nto two scg’ncnts whose lengths have the ratio
- 3:2 . Find the length of the hypotenuse.

F2

11. Consider tpiangle XYZ with vertices X(0,0) , Y(8,0)
T 2(5,3)

(a) Find the midpoint and the clcpcxcf XY , and write
an equation of the 1line containing thls point and
having as itc slope the negative reciprocal of the
clope of XY That 18, write an-equation of thc

. perpendicular bisector of XY . »
P (b) Similarly, obtain an ccuation of the perpendicular
' bisector of XZ .

(¢) Find the point of intersection, C , of the '

respective perpendicular bisectors of XY and XZ .

(d) oObtain an equation gf thc'pecpendiculcr bisector of
¥Z . Do the coordinates of C obtdlned in (c), (
satisfy this equation? Are the three perpendicular

Diccctcfc of triangle XYZ concurrent in the point

C 7 (If you have not found this to be the case you

should check your work.) y

(e) Show that C 1is equildistant from the vertices of
triangle XYZ . What is the dlstance’ CX ?

(f) Write an equation of the circle having C as center
and contdining X, Y, Z . This 1s sometimes called
the "circumcircle,,' and C 1s the "circumcenter," —

of the triangle.
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12. . Consider, again, the triangle XYZ with vertices X(0,0) ,
L. .x(8,0) , 2(5,3) . L '
(a) Write an equation of tne 11ne contalning the midp@lnt
of XY and the opposite vertex 2 This line: -
contains the median to XY . ’

(b) Write an equation of the line contalning the median

to XZ .
(¢) wWrite an equation of the line ccntaining ‘the medlan
to TE o

(a) Express the three equations of Parts (a), (b), and (c)
above 1in parametriﬂ form. For the parameter k take
the value § s Or j 3 and find the coordinates of
*the trisectlon polnts Gf each median which is common
to all three medians. This point 1s aometimes called
the "centrold" of the triangle.

13. Conslder, agaln, the triangle XYZ with vertices X(0,0)

Y(8,0) , Z(5,3)

(a) Write an equation of the line which contains 2 and
1z perpendicular to ¥¥ . This line contalns the

altitud- to XY . -
(b) Write equations for the llines which contaln the
altitudes to XZ and %Y , respectively. &

(¢) Find the coordinates.of the point O which 1s commoh
to .all three of the lines contalning the altitudes.
This point is sometimes called the "orthocenter" of
the trilangle. Is the orthocenter of triangle XYZ
in the interior or the exterior of the triangle?
Sketch a trlangle for which the opposaite 13 true.
(d) It 1is perhaps surprising to learn that the cireum-
$\ 7 centerjfthé centroid, and the orthocenter; of dny
\g triangle are collinear. Use the results of Prablems
N 11, 12, and 13 to verify that this is the case for
triangle XYZ )




15 the key to undérstanding many Pelaticns between =

7 circles ahd tangents and between circles and chords. Similarly
\. . the foot .of the perpendicular from the center of a sphere tc a
ES w»fuihm__plane‘helps ta,explain the relaﬁlcns between a sphere -and -a’-

\ . WE Baw some interesting relatiaps bEtWEén the méaaures of
\ . certain angles related to a circie and the measures of

\ intercepted arca.f Theae relations are easily remembEred by -

'~ noting that-if the vertex of the angle.is an interier paint of
\\ the circle we use one- halr af the-sum of two arc m&asures, ir
"\  on the eirele;, one- -half of an’ arc  measure; if- an exterlor paint,

one-half the. difference between twa arc measuresi ‘

We defined the eircumferenqe of a cirecle, the 1ength*affan!
arc, the area of a cilrcle, and the aréa of a sector as limits
of certain measures related to regﬁlar polygons. This enabled
us to make plausilble the formulas used fér measuring giieum—
ferences, arc lengths, areas of circles and areas of sectors,

Review Préblems »" .

o ' . 2

(Chapter 12) - ) o

l. If C 1is the circumference.of a gircle and r is its
radius, what is the value of % ? Z~ o ‘
2. Define, (a) the area of a circle, \

(b) the length of an arc of a éircle.

3. 1If the circumference of a circle is. 12 inches, the
length of its radius will lie between what two
consecutive integers? ’

4

¥, If the diameter of two circles x and C‘ aré_-d and 2ad
respectively and C- makes 10 revolutlong in going a .
o distance ﬁ , how many revolutions will €' make in

5. What 1s the radius of a eircle if its e¢ircumference is

equal to 1ts area?




10.

11.

12.

13.

1h.

bisects /BCD . If mAB = 88

T

Y KA ) ?.;_&a

If the radius of.one ciFele 18 10 times the radius of
another, give the ratio of

(a) theif'diémeterg » 7

(b) their circumferences. - .3

(¢) their areas.. "»/ -

--If . a.regular hexagon. is 1nsgr1bed in a circle Gf radius
, 5 , what 18 the length of each s;de? What 1s8 the length

of the arc of each side?
Show that the area of a clrecle is given‘by the farmula
= jwd ; where - d 18 the diameter of the eircle.
(a) If both a squarghaﬁd a regular octagon are inscribed
in the same circle, which has the greater épathem?

_the greater perimeter?
(b). Answer the same questions for Gircum%gribéd‘figuresg

From what formula relating to regular polygons is the -

,formula for the area of a circle derived?

A wheel has a 20 inch diameter. How many revolutions
wlll 1t make in going 100 feet?

The angle of a sector is 10° and its radius is 12
inches. Find the area of the sector and the length of
1ts are.

Prove that the area of an equllateral trianglé clrcum-=
scribed about a circle is four times the area of’an
equilatefal trilangle iriscribed 1in the ecircle.

In the figure, EF 18 tangent
to the eircle at D and CA

and mCD = 62 , find the
measure of each arc and each
ahgle indicated in the figure,

a1 !
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15. The distance between the
centers of two circles

"~ having radii of 7 and
9 1s 20 . Find the
length of the common
iﬁ%efna; tangent-segment

16..  Given inscribed quadrilateral

" ABCD | with diagonals inter-

- secting at P .
Prove:

(a) AAPD ~ ABPC .
" (p) 4 - PC =PD - PB .,

17. Given the circle C = ((x,¥y):

(2) Are points A(4,0) , B(0,4)

Find the slope of “AB".
(b) Find the midpoint of 7B . :
. (&) vWrite an equation of the 1ine containing the:
/ midpoint of A&B and perpendlcular to
(d) Does the line of Part (c) contain the origin?
What theorem does this illustrate? .
(e) Find the point of ‘intersection of the perpendicular

bisector of BAB with C .

« of RB .

k3

18. Given: 1In the figure, P

is the center of the cilrcle,

and m /AEP.= m /DEP .

‘I:

!

Prove: AB = GD-.. "

on the circle?

This polpt 1s the



REVIEW PROBLEMS

Chapters 10-= 12
* Write (+) 'Af the statement is true and’ (c) 1f 1t 1s false.
Be able to explain why you ma;k each statement true or faise.
. ;ljx:Thére can be a regidﬂ whieh is completely surrounded by a
' polyggnal—région and which does not gontain a polnt of the.
polygonal- region
2. If a polygon.is equilateral 1t must be a regular pglygan
3? No polygon can be_a convex set, but Eomé polygons can

* enclose a convex set.

;Cd_h. Each interior angle of a regular. pentagon haszmeasufe 72 .

5. Every polygcnalerégién,is either a triangular-region or
the union of two or more coplanar triangular-regions,

6. The sum of the measures of the face angles of ar
polyhedral-angle can equal 360 .

. 7. The number of the diagonals from a given vertex of a
convex polygon is equal to the number of sides of the
polygon. -0

8. An exterior any: of a regular palygon 1s congruent to
the central’nmle f the polygon.

9. - The sum of the measures of the interior angles of a

" convex polygon of n sides 1is (n -2)180

¥ E

10. The sum of the measures of the exterior angles of a
convex polygon, consildering one at each vertex, 1s
equal to the sum of the measures of four right angles.

11. 1If a line intersects a circle in one point, it intersects

the circle in two points, ‘

12, It 1s possible for two triangles to be congruent and to
be the boundaries of triangular regions with different
areas, '

13. The area of a right triangular region is one-half the
product of the length of the hypateéuse and the length
of the shorter leg.




19.

20‘

21.

22.

23.

2k,

26,
27.

28,
29.

30,

.The area of tha 1ntariar of a parallalagram is the praduat

of tha 1angtha af any twareanaaeutiva aidaa.'

‘I A(0,0) and B(0,6) ara‘the andpainta of a diameter

of a airafé, then C(3,3) 1s a point on the circle.

If two parallelograms have congruent aititudaa, the areas
of thelr interiora are praportional ta tha 1angtha of

thair haaaa

If plane 1ntaraacta a sphere in at least two points,
the intersection is a line. ‘ S

If a sphere and & cirecle have the same center aﬁd if they

intersect, then the intaraactian 1a a a;rale. -
[~ .

"If a line 1s tangent to a circle, 1t ia parpandicular -to

the plane of the eirala
A l1line which 1= parpanﬂicular to and bisects a chord af
a circle contains ‘the aantar of the eircle. .- :

The set ((x,y,2): x2 + yE + 2% = 9) 1s a ‘sphere with

center at the origin and with a radiua aqual to 9 ..
If C = [(xgy)*-; + y = 25} , thaﬁ tha’lina i
{(x,¥):. ¥y = 5) 1s tangent to ¢

The distance betwaaA~tha point A(l a 3) “and tha point

ua(o -4,21) 18 4/B3." - -

Any quadrilateral aan be 1naar1bad in some airala.“

If the 1atara1 adga of a priam is aangruant to the

Any two great cifclea of a sphere intersect.

Two tangent circles are externally tangent only if their
centers lie on opposite sides of each common tangent line.
The point of tangency of two tangent circles 1s collineafb
with the centers of the two circles.

The areas of two simllar polygons are proportional to the
squares of the lengths of any two correaponding sides,

The apatham of a regular hexagon of side s 1is equal to
the altitude of an equilateral triangle of side s .

Q’HT
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37. If a line. 1ntersects the exterlor 6f a sphere, then it

ﬁl.'_Poiﬂt -(2,3) 1lies on the ¢ircle ((x,y): x° + y

s

31. The fédius of a circle is cangruent to the medfan’ aﬂsthe

hypotenuse of a a right triangle inscribed in the- gircle-
.-'l; " R =
32. 1In a circle of radius 12 , an inscribed angle of 135Q
) iptercepts an arc of measure 9T ..

33. A line can intersect a sphere. in exactly one point,

34,  Two planes tangent to the same’sphere must interseet. . .

"35. 1If two chords intersect within a circle, the differenﬂe

ih the lengths of the segments of one chord is equal to
the difference in the lengths of the segments of the ather

36. If the lateral edge of a parallelep;ped Whose base 1s a
T square 1s congruent to a side of the’qquare base, then
the paréiiéiepipéd is a cube.

< %

'must intersect the sphere:.

38. "Concentric circles have cancurrent diametera.

39.77K sphere has radius- 5 . If a plane 3 unitg from the .
center intetsects the Ephé?é 1n a circle, the Padius of
.-this Cirﬂlé is 4 :

"7} intersects the sphere

]

40, The plane . L(X;ygz)i

{((x,y,2): x° + y2 + 2% = 16) 1in a circle.
5]

42, The product of a secant-segment and its external secant-
segmegpt 1s constant for any given circle and exterior
point. '

43. A pyramid is a regular pyramid if the foot of the perpen- -
dicular from its vertex is one of the vertices of the
base. ’

L4,/ The formula A = %ap 1s the formula for the lateral area
of any pyramid, [

45, 7= 3.14159 .

als L}; -.)



59.

~1f they are all of the same circle.

I )

‘:The degree measure of a minor arc is the ééme as the

measure of the eentral anglé whicH‘intercePts it.

All ares with the same degree meaéure have the same 1ength

&5

Every circle forms with its interlor a pclyganalsregign.
The measure of a tangent- chord angle is one-half the
measure of its intercePted arc, . 'j

An arc whose degree measyre is 120 -has length §ﬁ

if the length of i1ts radius is orie,. L e

Iine y = 2x intersects the circle x° + y° ='100 4in

., the points with coordinates (245 , 44/5) and

(295, -4 /5) .

Py

(x.- E) + (y + 5)S = 25 1s a circle with center atfﬁ

- (2,5)

If the measure of the radius of a circle is one, its
circumference is 27 and its area 1s 7 .
Ty

it
base. -
If two chords of a circle bisect each other, then each
must be a dlameter of the circle.
The quadrilateral with vertices (0,0) , (4,0)., (4,4) ,
(o,4) 1s a square.
In a sphere the planes of great circles are parallel.
A unit-square must have a measure of one inch for each
side, .
Angles inscribed in the same arc are congruent.
The area of a circle 1s smaller than' the area of any. -
regular polygon in which-.-the circle is insecribed.
The area of a trapezoldal-reglon 1s the product of the
lengths of its altitude and its median.
A rectangular prism whose bases are squarésj and each of
whose lateral edges 1s twice as long asz the side of the
base, has a total surface area wnlch %g ten times the

area of a base,
. | 4! ) 916
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« If two triangles have bases of the same length and
altltudes of the same length, they have the same area
_ and are similar polygons. :
64, If a circle is inacribed in a parallelogram, than the
parallalogram must ba aquilataral . -
65. If the degree measure of one arc af a circle is twice.-
L4 _ . N -
the degree measure of a second arc, then the chord
associated with the first arc is twice as long as the
chord aaaaaiatad wlth the second arc. -
66. If a set of-points is a quadrilateral, then the points
are ca,planar i
67. It is pcaalble'fOf the incenter, the ciraumcénﬁarjzana
the orthocenter of a triangle to be the center of the.

same circle.

68. The square of the length of a tangent-segment from a.
given exterlor point 1a equal to the product of the’
lengths of any geaant -segment from that point and the
length of its axteraal segment,

69. The points of a circle are said to be collinear.

70. If the circumference of a circle is 12w , then the
area is 1447 . g i

71. The area of a sector of radius r whose arc has a degree
measure q 1s §%3 ™

:972; The point which is egually distant from all three sildes

of a triangle, 1s the intersection of the midraya of the

H

anglé, of the triangle.

... 73. The eircumference of a circle is the limit of .the

T4, If two paralleloframs have the length: of the base and
altitude of one proportional to the lengths of the base
and altitude of the other, the para llalograma are
similar.

. 75. A quadrilateral whose vertices have xy- aaardinatas (O;G) ’
(3,0) , (4,2) , (1,2) is a parallelogram. SO

) | 40
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76. All bisectors of the interior angles of a regular pclyggﬁ
intérsect in a aingle pc;nt .
77. The perpendicular bisectors of the sides of . a triangle
are concurrenﬁ :
.. 78. A triangle has one and only onhe circumscribed circle.
79. The center of a circle circumscribed about a Elght
’ triangle 1is not .in the interior of the triangle.
SQ., The least number of faces a polyhedron can have 1s threé,
8; If the pefimeter of a regular hexagan is .p , then the
' I‘adius of' the ;Lnscribed clrcle 1is %E- .
82. There are only five types of regular polyhedrons.
83. fThe point (4,-3) s a point of a circle whose center
is the point (0,0) and whose radius is 4
84, The radii of two circles are 3 and 5 ; the radius of
a circle whose area 1s equal to the sum of the areas of
these circles 1s 4/3%F . C '
85, The face angles of a trihedral angie may-have measures
120 , 2.5, and 90 . ,
86. A regular polyhedron héving as many faces as there are.
‘months in the year is called a dodecahedron.
87. If AB =CD, then (A,B) ¢ (G;D) :
88. The addition of directed line segments 1s commutative.
89, Vector addition is commutative.
90. The vector [6,3] determines a unique directed line .
segment, . * b
91.; The vector - [6,3] 1is.the afiditive ~inverse of [-6,-3] .
.92, If a#b, then |a] cannot equal |5
93. If a + b =b + a , we can conclude a.- b = b - a .,
94k, .The acalar prgduct of two vectors is commutative.
95, The scéiar prcduct of two vectors 1s not zero if the

vectors are perpendicular.

i - a1R



96.

97.
98:

99.
100.

If (K B)

" If (K,B) 1s not equivalent to

The origin of (K,B) 1s A .
The terminus af (5B) is B.

) = (;X) and
i

ir (A B) + (C,I
then (K?i) (
(c’fb) then A = C

ke

v

they represent cannot be equal.

!s

(T,;D), then the vectors




Appendix V'
HDW TO DRAVW, PICTURES OF SPAGE FIGURE§

A course 1in méchanical drawing isa cancerngd with precise
?r3§resgntatian of physical objects seen from differenﬁ positiaﬁg
in space.= In geamétry we are coqserned with drawing only to the
extent that we use sketches to help us q;f%athematical\thinking.
MThere is no one correct way to draw ‘pletures 1in geametry, ‘but

there are some techniques helpful enough to be in rather general
uge. Here, for example, 1is g'technlcally '
correct drawlng of an ordinary pyramid, ’ ’ '} +
for a person canfargue that he 18 looking
at the pyramid from directly above, But
caféfui ruler drawing 1s not as helpfﬁl
as this very crude free-hand sketch. The
first drawing does not suggest 3-s8pace;
the second one does, o T \

The firat part of this discussion offers suggésticns for
simple ways to draw 3-spdce figures. The second part 1lntroduces
the more elaborate teghnlqge of drawlng from perspectlve, The L
difference between the two approaches 1s suggested by these two

drawings of a rectangular box.

-

In the first dréwing the base is shown by an easy=-to-draw pafal--i
ielogfam. In the second drawlng, the front base edge and the
back base edge are gafalle;, but the back base edge is drawn
shorter under the belief that the shorter length will suggest

"more remote"

s » __ J B ‘i,t'!,?:‘ -
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No ma%ter how a rectangular box 1s drawn, some Eacr;fices
must be made. All angles of a reotangular solid are right angles,
but in each of the drawings shown on the previous page two="
thirds of the angles do not come close te’ 1ndicatlng nknety
degrees when measured with a protracfor. We are wWilling: to~ give
‘up the drawing of right angles that look®like right angles in
order, that we make the figure as a whole more suggestive,

You already knaw that a plane 1is genEPally pictured by a -

pa 1lelogram. V= _ R
. It seems reasonable to ] i /

draw a horizontal plane in eilther, .
of the ways shown, and td draw a vertical plane like this,

If we want to indicate two parallel planes, however, we can not
be effective 1f we Just draw any two "horizontal" planes. Notice
how the drawiling to the Pight below 1improves upon the one .to the
left. Perhaps ypu prefer s£ill another k1§d=cf drawing.

NN LT

Various devices are used to indicate that one part of a

figure passes behind another part. Sometimes a hidden part is
simply omitted, sometimes 1t i indicated by dotted lines. Thus,
a iina piercing a plane may be drawn in elther cf the two ways

I
.

A - N
/ \\ / /\
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Two intersectling p}anes are 1llustrated by each of these

drawlngs.

/\ AT
a4 /<>/// L7

i

e

~.The second 1s betber than the rlest because the Llne of Lntepraer-

tlon is shown and parfts concealed Urom view e douwted,  The

‘ third and fourth drawlngs are betler yel because the line or
intersectlion 1 visually tied In with plane 63 as well ao p}jnié(Q
by the use of parallel llnes In .o drawliy.

Here s aidrawlnp whlch Has the advanvage Y A

ere Lls a ¢ £ ‘;
of simplicity and the disadvantage of §;§§§> ééfg ;fs?

suggesting one plane and one halfplane,
a pavticulaviy lmportant

In any case a llne orf Interaectlon La
part of a figure,

Juppoge-that we wiah Lo draw two [onterseching planes each
perpendleular to a thivd plane.,  An efCecbive procodinee Lo shown
by this step-by=otep development .
. .

y

TS LD

Notive how the last two planes deawn are bullt oo the Line or
the hibdden TToeas o

Iunterasecction, A complete drawlng showling all

Jusal oo tnvolved Lo touedloe pl( asaunt ly . Phee pletanre below o

muely more mpgresttve,

ot
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A dime, from different angles, looks like this:

O®@

Nelther the first nor the last ls a good plcture of a clrcle 1in

ii R

':“T

d-gspace,  Elthel ot the others ls satisractory. The thinner oval

ls perhaps better Lo use Lo represe

m

] t the base of a cone.
Certalnly nobody should expect us to Intevrpret the flgure shown

Levlow as a cone,

A foew additional Jeawlings, with verbal desceripllons, are

showi,

A Tlne poeallel Lo a plane.

; -
i

A vylinder cut by a plane

E%él[‘fl Lleel b thiee byise,

A eytinder cut by o pline

not paral el Lo thie buane.,

cth

O
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A pyramid cut by a plan
parallel to th¥ basze.

m
A

It is 1mportant {5 remember that a drawing 1s not an end in
1tself buf simply an aild to our understanding of the geometrical
situation, We should choose the kind of pleture ﬁhat~ " serve
us best for Lhis purpose, and one person's cholce may be

different from anothor,

-

The rays a , b , ¢ , d, e , { 1n the left-hand flgure

below suggest coplanar lines intersectling at V ; the copres-
ponding rays 1n the right-hand tfilgure suggest parallel lines in a
three-dimensional drawlng. Think of a rallroad track and tele-

phone poles as you look at the right=hand filgure.

€ f :
The vlght-hand flgure, suggests certaln prinelples whilch are use-
ful in making pevapective drawings,

(1) A set of parallel Lines whlch vecede Crom the viewer
.are drawn as concurrent raygs; fov example, rays a, b, c,d, e, .
The polint on the drawlng wheve Che rays meet s known as. Bhe

"vantshing potat',

B PR
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further from the viewer. (Flnd examplesg in the drawing. ).

(3) Parall
sight of the view
in the drawing.)

(Find examples

el lines which are perpendicular
[=]

the line of

2 are shown ai’@éfallél lines in the drawing,

A person-does not need much artistic abilitx to make use of these
£y z il S $

three principles.

“The =te
shofin bel@w:

Draw the front face as a

v

L&, E=

L

rectan

]

‘Sélect a vanlshing point and

L

draw segments from 1t to the
vertlces. Dmit=5€gﬁéﬂt5 that

cannot be seen,

Draw edges parallel to those
1

of the front face, PFilnal

Under this teo

as the top race of the solld shown

]

above,

&

ps to follow in sketching a rectangular solid are

hnique a single horilzontal plane can be drawn

A single vertleal plane can be represented by the Cront face or

e

the cight<hand face of the solid,

-

et
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.Aftéf.this brief account of two approaches to the dra..ng of
figures in 3-space we should once agaln recognize the fact that
there 1s no one correct way to plcture geometrle ideas. However,
the more "real" we want ouﬁ%ﬁicture to appear, the more attentiomn
wve should pay to perspectlve, Such an artist as Leonardo da Vinei
pald great étténtion to perspectlve. Moat of uséfind thiz done

for us when we use ordirfary cameras,

] B
See some books on drawing or loolr up fgerspective“ -noan

opedia if you are interested in a detailed treatment.

02
b
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Appendix VII

SURFACE AREA AND VOLUME
Introduction.:

In your study of informal geometry you learned formulas [or
finding surface areas and volumes of familiar flgures. You may
récall that & sohere of, radius r has volume % Wf3; for in-
stance, and that its surface area 1is given by Qvf?- This
course in geometry that you have just completed covered formally
most of the other toples that you met In informal geometry,
and you may wonder why topiecs, of surface ares and volume were
omitted. The to #0 with a branch of higher mathema-
ties known as ulus,” Until the integral calculus
was invented, enth century, Lhe study of area
anda volume was re were no satisfactory ﬂefiﬁitiaﬂs
of area and v stematlc ways of finding them,

The subject cons discovery and study of formulas
> for the areas individual figures, Moreover

the derivatio ulas, in pre-caleulus geometry,

are almost wit glther very lané and difficult

to follow, or logically unsound. . It seemed uﬁféir to inflict

this kind of study on the high school student when (a) there

are parts of geometry from which he could profit more and

(b) he will see a sﬁitable development of this subject when

(and if) he studie# calculus,

&

Surface Area.

We sﬁall discuss surface area in an informal way, m@?e}as
though we were talking about physical objects than mathematical
ones, . :

k . - -

It 18 easy to find the surface area of solids such as
prisms and pyramlds, because thelr surfaces are cémpased of ”
plane figufes, namely polygons. There are a few other types
of solids, whose surfaces are not made up of plane filgures,
whose surface area can be found by finding an -equlvalent plane
figure. ‘
¥

O
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" The cylinder and the cone are such figures. - If you imagizé
slitting a cylinder and unrolling its surface onto a plang,

what/figure do you think is obtained?

A

ffr%‘_§§:j . i
~— B - 2nr

Can you see that 1t 1s a rectangle whose altitude 1s the al-
CLitude of the cylinder and whose base 1s the circumference of
the base of the cylinder? If x 1s the radius of the base of
a cylinder and h 1is 1ts height, then the surface -area of the
eylinder (called 1its lateral surface) is equal to the area

of the rectangle obtained by unrolling the cylinder. Thus,

1ts lateral surface is 2wrh.
Cones can be treated in a similaz
t

can be unrolled to 1

c
properly, 1

a sector of @ circle?

[ finding the surface area
of a cone to that of finding the area of a sector.
. : 4 EX !

30,
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This latter problem has already been solved (Theorem 12-20).

]
(]

All we need to know 1n any given case 1s the radlus of the

circle ahd the length of the L,Eeréeptéd arc., In the case
; ng cone, the radius of the

il

sector obtained by unroll

s
[¥N)

f

gector 1s the slant height of the cone and the length of the
iﬂt*rcébted arc is the circumference of the base of the cone.
Therefore, the formula for the lateral surface of a cone is
% £ C, where é}Z is 1ts slanft helght and C 13 the circum-
ference of 1ts base. Another mpDPgdﬂt surface for which )
there 15 an areag formula 15 the zphere The formuls is- ‘bwvr
where 1r 1s the rddiﬁa of the szphere.

It is natural to try to Gerive thls formula by slitting
r

the sphere and unrolling 1t onto some plane figure However,
it has been proved in higher mathematics that 1t 1s impossible
to flatten out the sphere in tnis way. (Can you see any con-

nection between this statement and the fact that maps of large
portions of the earth have to distort the shapes of the reglons
which they deplecty)

There 1is a simple experiment wnich you can perform to test

Q

the formula 47r for the surface area of a sphere. Wind a
t

m

sphere, in a apiral, until an entlre hemisphe

!
|1—-l-
pu
Dq
M
i
pad
i
ju}
1Z
NG
i
e
el

e
is covered, and measure the length of the string required. Then




O
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wind a string (bf the same diameter) in a planar splral until
it just covers the inside of a circle of the same radius as
the given sphere, and measure the length of the string required.
the hemisphere will be twice the length required to cover the

ol
circle. Since the area of the circle is wr°, a hemisphere

L 2 ; o L
should have surface area 2rr , and the whole sphere should
- .

=

have surface area lUwr™,

A more sophlsticated japproach to derlving the formula for

the surface area of a sphere ls to approximate the aurface

This makes 1t possible to find the surface of a sphere, ap-
f s
55 then yleld

proximately, in term

L]
Ie]

urfaces of portions of cones. A
. ' L2

limiting proc the formula Yrp for the

(]

e
surface area of a sphere.

Possible Definitions of Volume.

It is a strange fact that mathematicians dladovered for-
mulas for the volume of many flgures long before they knew
what volume was, or at least before they had *a formal defini-
tion of volume, One way of understanding this is to chserve
that they had some general notions as to what should be true
about volumes, which, in the case of some of the simpler flg-

ot

¥
ures, were sufflcient to lead to definite formulas.

93%;, s
-
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M X t
Let ua draw up a 1list of some requirements that dre

reasonable to!impoge on any possible deflnition of volume,
1. It iszréasoﬁable to expect that the volume of a solid. ﬁ

should be a non-negative real number.

iEi It 1s reasonable to exbect that 1f a so0lid 1s partitioned

iﬁté,sevefal parts and that if each of the solids involved
has a volume, then the volume of the original solid should
equal the sum of the volumes of the parts.

3. It is reasonable to expect that congruent solids ah«puld have

equal volumes .. ;

k. It is an important fact about volume (which may or may not
seem reasonable) that if solid S 1is simllar tézsdlid 3,
and if the proportionality factor is k, then the vdlume
of solld S' 1s k° times the volume of solild ,S. For

instance, conslder two cubes, S5 and S', such that the

edge of S5' 1is twice as long as the edge of 5. Then 3§
is similar to S5' and the proportlonality factor is 2.
. ] P
! Q—%;;‘*F' - /
I =1 | =L. ;
S;F’ra““ \
f ~— 1
| | g*“L_,Bi;?L -
;1;“, S,L:i, =y [
Notlce that 3' can be partitioned into eight cubes each

congruent to S. 1Is 1t not reasonable to expect that the
volume of 3' should be Ed times the volume of 37

5. It is reasonable to require that the volume of a rectangu-
lar parallelepliped should be the product of 1ts ‘altitude
by the area @fiits base.



Cavalieri's Principle.

1

*Even though we have ﬁétfbeen able to define "volume",
there are some situations in-which we can reasonably say that
two sollds have the same volume. We are going now to 1llus-
trate one lmportant case of this sort. It will help us under-
stand the case in question if we first think of a physical

model. We can make an approximate model of a square pyramid
by forming a stack of thin cards, cut to the proper size, like
this: A

The flgure on the left represents %he exact pyramid, and the
figure on the right 1s the approxlmate model made from cards.

Now, suppose we drill & narrow hole in the model, from the

1t goes through every card in the model. This enables us to

t1lt the rod in any way we want, keeping 1ts bottom end fixed
on the base. Such tilting changes the shape of the model,

but not 1ts volume, The reason .ls that its volume 1s simply

the total volume of the cards; and this total volume does not
change as the cards slilde along each other. )

The same principle applles more generally. Sélpaae we
have two sollds with bases In a plane whlch we shall think of
as horizontal, If all horizontal cross-sections of the twe
sollds at the same level have the same area, then the two solids
have the same volume. To see thls, observe that 1f we make a
card model of each of the solids, then each card in the first

e
1odel has exactly the same volume as the cérresPDnding card

=]
(o]
o

in the second model.

-
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Thepefore, the volumes '6f the two models ought to be the
same, The approximation gilyen by the models is as close as

we please, 1f only the cards are thin enough. Therefore, the

volumes
&
of the two solids that we started with ought to be the same.
The pFinLiplE Involved here 1s called Caval;ezi‘s Principle.

We have not proved it; we have merely been explaln lnh why 1t 1s

reasonable, Let us Staﬁe 1t explicitly.

- R = = — — S

s he S‘;C)llt‘is and gi
. =

] parsllél to the glven plane, the two 1nterseg}fﬁns
have équél'aréasj then the two solias have equdl

EEY

volumes,

:#i
Cavalleri's Princlple can be used as a key to the calcula-
tlon of volumes, as Wwe shall see In the next sectlon, ’

Prism3s and Pyramlds.

The formula for the volume of a rectangular paralleleplped

g

also appllies to general parallelepipeds.

[
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* "This can be seen by uslng Cavalleri's Principle to compare the
volume of a parallelepliped with that of the appropriate rec-
tangular parallelepiped. - oo '

|
I
& v| o

|
|

. |
I -
[
| 2
!
i
f
| PR

! ﬁ
2

The valume of any prlsm i3 the product of 1ts altitude and

s base.

fn

the area of 1

The volume of o pyramld ls given by %- hh where h 13 1ts

altitude and B ls the area of itz base. Notlee thoe ocour-

. - b . - - .
rence of the .factor 3 in thls formula,., Perhaps i1t reminds
- 1

you of the [Cactor = which occurs In the formula =5 bhh for

thke area of a trlangle, These factors are Indecd analopous, and

we now bry to ghow how.  [n the derlvation of the formula tor
A0
O
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. bagse b . an

t
auxliiary parallelogram was iztraducag,\,

7 lso having altltude

h and base b, and wich could be disssgtéq into two triangles,
each congruent to the orlginal one, Since the parallelogram
was Known to have area hb, the formula % hb. was readily . de-
duced In the case of a triangular pyra amid with altitude h
and base area B, the auxlliary flgure is a triangular prism
with the same base and éltitujé, and which can be dissected
into three triangular pyramlds, each flaving the same volume as
the given one. Since the prism has volume HB, the formula
% hHB  is réadily deduced,

The formula for the volume of any
trianng L3 alzo % hB. It can be

given pyra id into trlangular pyramids
figu

by

volume ot the original ‘ig”re i1s the
auxilldﬁv pyrimldui

Cylinders. Cones

Oric wa y af ar a cy-.wnaer ls to Introduce

a sultable priam and use Cavalleri's Frinciple.

¢

;\
By referring Lo a prism having the .Ams{% and oross-
gectlonal area B as our cyvlinder, we ggg that the volume of
the cylitde - La hi.
;-
937 w
&
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One way of finding the volume of & cone is to introduce
a8 sultable pyramid and use Cavalieri's Principle.

4 .
By referring to a pyramid having the same altitude h as our
cone, and equal cross-sectlonal area at corresponding levels,
we can infer that the volume of the cone 1s % hB, where B
1s the area of 1ts base.

Another important solid for which there 1s a volume formula
s the interiorgof a sphere. The voluma,of such a region’ 1s

wrg, where r 15 the radlus of the sphere,

Let us see 1f

[ =g

£

we can find some Justification for this statement
If planes are df;wn through the center of the iphere, the.

sphefe 1s partitioned 1into solids which are very mlch like

pyramida. These solids have curved bases, so the formula we

for finding.

thelr volumes, However, if enocugh planes are drawn; the base

of any one of these solids 1s almost flat, its altitude is

almost equal to the radiué of the sphere, 30 it is hot unreason-

able to believe that 1ts volume 1s glven by

have for the volume of a3 pyramid ought not be use

. %r * B

where B 1s the surface area of 1ts base. Therefore, the total
volume of the sphere appears to be the sum of all thesze volumes.
A little algebraic manipulatipn shows that thelr sum 1s %r
times the sum of all the areas B. Thus, the volume of the
sphere appears to be %TS, where S5 1s the surface area of the
Epé?fé-

93? N ; .

e ]



Since S 1is 411*:’-2; it therefore appears -that %_"Pg 18
the correct formula.

it

=

939




Appendix VIII
HOW ERATOSTHENES MEASURED THE EARTH =~

The clrcumferenée of the earth, at the equater, is about
140,000 kilometers, or about 24,900 miles. Christopher Colum-
bus appears to have thought that the earth was much smaller
than this. At any rate, the West Indies got theilr name, be-
.cause when Columbus reached them, he thought that he was
'slreaﬁyzin India. His margin of error; therefore, was
somewhat greater than the width of the Pacifie Ocean.

In the third century B.C., however, the circumference of
the earth was measured, by a Greek mathematician, with an
error of only one or two per cent, The man was Eratasthenes,‘
and his method was as follows: '




O

ERIC

Aruitoxt provided by Eic:

’ o . : ]
It was observed that at Assuan on the .Nile,
the Summer Stlatice, the sun was exactly overhead. That 1s, ..
at noon of thils particular day, a vertical polé cast ﬁa;g'
shadow at all, and the bottom of 'a deep well wasfcgmplet%ly
11t up. : ;

*

at noon'on %

In the figure, C 1s the center of the earth.. At noon on -,
the Summer Solstice, in Alexandria, Eratosthenes measured the
angle marked a on the figg?e, that 1s, the angle between a +

- vertical pole and the line of its shadow. He found that this

of a complete circumfer-

iy,
=
x
piir)
1]
s
i
W
]
o
e
=
ot
~
o
=
P
L]
fe]
3
W
o
o}
=
i
8-

ence.

Now, the sun's rays, observed on earth, are very close to
being parallel,. Assuming that they are actually parallel, 1t
follows when the lines Ll and LE in the figure are cut by
a transversal, alternate interlor angles are congruent.
Therefore, la = ;B} The:efoféj the dlstance from Assuan to
Alexandrig must be about é% of the circumference of the earth.

The distance from Assuan to Alexandria was known to be
about 5,000 Greek stadia. (A stadium was an anclent unit of
distance,) Eratosthenes concluded that the ¢lrcumference
of the earth must be about 290,000 stadia. Converting to
mlles, according to what ancient Sources tell us about what

Eratosthenes meant by a stadium, we get 24,062 miles.

Thus, Eratosthenes' error was well under two per cent,
Later, he changed his estimate to an even closer one, . 232,000
stadla, but nobody seems to know on what basis he made the
change. On the basis of the evidence, some historians believe
that he was not only very clever and very careful, but aslso

very lucky.

(oY
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_ 5 . Appendix IX
: . \ " RIGID MOTION
, ‘ ’ "
The General ‘Idea of a Rigid Motion.
N k’InmChspters 5 ai

and 12 we have defined congruence in
a number of different ways, dealitig with various kinds of
figures, The complete list looks like this:
(1) FB= GD if the two segments
that is; 1f AB -
(2) LA

LB 1if the two angles
that 1s, 1f m L A ’

CD.

[IH

have the same length,

have the same measure,

=mdi B, A

(3) AABC ¥ ADEF 1if, under the correspondence

ABC«—>DEF, every two corresponding sides are congruent
and every two corresponding angles are congruent.

: (4)

radius,

Two clrcles are congruent if they have the same
(5) Two circular arcs AB and CD ‘are congruent if

the circles that contain them are congruent and the two

arcs have the same degree measure,

The intuitive idea of congruence is the same %ﬁ all
five of these cases.

In each case,

two cardboard figures
are congruent if one of them can be moved so as to colncide
At the beginning of our study of congruence, the
acheme used ir "hapters 5
probably the

and 12 1s the easlest and

+. It is'a pity, however, to have five different
speclal ways o: descrilbing the same basic 1dea 1n five special
cases, And, 1n a way, 1t 1s a plty for thls basle idea to.be
limited to these flve speclal cases.



For example, as a metter of common sense, i1t is plain that two
squares, each of -edge” 1, must be congruent in some valid sense:
' B' N o B___ 1 ¢ '

b, I l |

© A al—v—Jp

The same ought to be true fcr!parallélogrsms,'if corresponding
sides and angles are congruent, like this: '
_ 7 _ |

b - C, B~ b

— -

AT b —D A~" B D
It 1s plain, however, that none of our five special definitions
of cangruence applles to elther of these cases.

n this appendix, we shall explaih the idea of rigid
Thls idea 1ls defined in exactly the same way, regard-

the type of flgure to which we happen- to be applylng 1t.
11 show that for segments, angles, triangles, circles

and arcs it means éxactly the same £hing as congruence, Finalim
we will show thatnthe squares and parallelograms in the figures -
above can be made to coincide by rigid motion. Thus, first,

the idea of congruence will be unified, and second, the range

L

of 1lts appllcation will be extended,

Before w: glve the general definition of a rigid motion,
let us look at some simple examples. Conslder two opposite
sides of s rectangle, like this:

P
I
|
|
|
|
|
P
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‘The vertical sides are dotted, because we will not be 'especially
cgncerned with them. For each point P, Q, +.., of the tpp
edge let us drop a pérpendicular to the battom Edge, and let
* the foot of the perpendicular be P', Q' ... . Under this;
procedure, to each point of the top edge there corresapohds
exactly one poinﬁ of the bottom edge. And conversely,
to each polnt of thé bottom edge there cgrresponds eXactly
one polnt of the top -edge. We can't write down all of the
matching pairs Pe—>P', Qe—»0', *.,., because there are
. infinitely many of them. We Gaﬂ;thWEVEFQ give a gengrél‘rule;
explaining what 1s to correspond to what;'anQQin féct, this
is what we have done. Usually, we will write down a typlcal
palr ' ‘
. Pe——>p! , . .

and. explain the rule by which the pairs are to be formed,

Notice thst the idea of a one- to-one correspondence is
Exactly the same in this case as 1t was when we were using it
for triangles in Chapter 5. The only difference 1s- that 1f we
are matching up the vertices of two triangles, We can wrilte
down-all of the matching pairs, because there are only three
of them, (ABC+—>DEF means that A€<—D, B<—>E and C<—F,)
At present, we are talking about exactly the same sort of
things, only %here are too many of them to write down.

It 1s very easy to check that if ~ P and Q are any
two points of the top edge, and P' and Q' are the corres-
ponding poilnta of the bottom edge, then

FQ = P'Q".
This 1s true because the segments PQ and P'Q' are opposite
sides of a rectangle. We express this fact by saying that the
gg;resgp§§2ﬁce P<—>»P' preserves distances, 5

The correspéndEﬂée that we have Just set .up is our first
“and simplest example of 2 rigid motion. To be exact:

Definition: Given two figures F and F', a rigld
motion begaeenrrF and F' 1s a one-to-one correspondence
] Pe—s>P'
between the points of F and the points of F!, preserving

distances,

945 q -

o
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. If the ccrreapandence Pe—>P! is & rigid motion between
F and _F17 théﬂ we shall write o
R Fss P,
Thia ns:nt.a-tian is 111:2 the notation ,AABC % AA'B'C' for
congruences between triangles, We can read F m» F' as "p

.is ilsometric to F'." ("Isometric" means "equal measure.")

[

Problem Set IX-1

1, Consider triangles ‘AABC and. -AA'YB'C', -and supp@se

: that AABC ¥ AA'B'C'.
Let F be the set consisting of the vertices of thé
first triangle,rand let” F!' be the set consisating of
the vertices of the second triangle. Show that theregis‘
a rigid motion

. . | PR P,

2. Let F be the set consisting of the vertices of a square
of edge 1, and let F' be the set c@nsistihg of the
vertices of another square of edge 1, as in the figure
at the beginning of this'Appendixs .Show th;t there 1s
a rigid motion

F = F”.
(First, you have to explain what corresponds to what,
and second you have to verify that distances are pre-
served.)

3. Do the same for the vertlces of the two parallelograms in
the figure at the start of thls Appendix.

b, Show that 1f F consists of three collinear points, and
F' conslsts of three non-collinear points, then there

is no rigld motlon between F and F'. (What you will
have to do 1s to assume that such a rigid motlon exists,
and then show that thls assumptlon leads to a contradic-
tion.)

Show that there 13 never a rigid motion between two
segments of different lengths.

%]

6, Show that there 1s never a rigid motion between a line
and an angle. (Hint: Apply Problem %4.)

g46
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"Rigld Motlon of Segments.

=

7. Show that given any two rays, there is a rigld motion be-

tween them. (Hinﬁ* Use the Point Plattlng Theorem., )

Ed

8, Show that there 1s néver a rigid thlQﬁ between two circles
-of different radius,.

Theorem IX-1l. If AB = CD, then there is a rigid motion
T - AB ®= CD.

Proof: First, we need to set up a carrespdndence Pe—a>Pp"
between BAE' and ©D. Then, we need to check that distances

are preserved,

By the Ruler Postulate,; the poilnts af the line iEF can

‘be given coordinates in such a way that A has coordinate -
zero and B the positive '‘coordinate AB. .
A P Q B
0 X Y AB:
1

Iﬁ the figure, we have shown typical points P, Q with
thelr coordinates x and vy.

In the same way, the points of CD can be given coordin-

ates:
c ., < Q' D
0 X y AB
~ e

Notice that D has the coordinate AB, because CD AB.

It 1S now plain what rule we should use to seggup the

correspondence

P<—=P!
betwe- 1e points of AB and the points of CD. The rule
1s that P corresponds to P if F ag% P' have the same
coordinate. (In particular, A<—>C because A
coordlnate zero, and B#<—*D Dbecause B and D

and C have
have coor-

dinate AB.) RWE .
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It 13 easy to zee that this correspondence 1s a rigid
motion. If P«—»P' and Qe—>Q', and the coordinates are
x and y, as in the figure, then PQ = P'Q', ' because '

PQ=. |y - x| P'Q'.
We therefore have a rigid*motion ,
and the theorem is proved. %

*Notice that this ri%{é motion between the two segmer

completely described if we explain how the end-points ag

be matvcned up. We therefore will call 1t the rigid mobt éﬁ

~induced by the Qérrespanﬁéﬁég (f ———

Ae—>C ' \\k
B<—>D. s

Theorem IX-2. If there is a rigld motion AB mTD between
two segments, then AB = CD. '

The proof 1s easy. (This theorem was Problem 5 in fhe
previous Problem Set.) -

*,

Problem Set IX-2 \

1. Show that there 1s another rigid motlon between the con-
gruent segments AB and CD, induced by the correspon-

4

As—3>D %

dence

B+==>C,
2. Show that there are two rigid motions between a segment .
and itself. (One of these, of course, if the identity _
correspondence P<—=P!', under which every polnt corres-

PQ

ponds to 1tself; this is a rlgid motion because PQ

for every P and Q.)

Rigid Motion of Rays, Angles and Triangles.

. . . — . — . .
Theorem IX-3., Given any two rays AB and CD, there is

a rigid motlion )
AB ~ CD.
The proof of this theorem is quite similar to that of
Theorem IX-1, and the détails are left to the reader.

s



Theorem IX-4. If L ABC ® LDEF, then there is a rigid
motlon _’ L : - '
 LABCw®LDEF

between these two aﬁglégﬂ
‘Proof: . We know that there are rigid motions

i

b A
and i
B¢ o EF

~ between thg rays whichgfarm the sides of the .two angles_

C:,- i E e — S F'P

Jj :
Let us agree that two inﬁfS P and P' (or @ and Q') are
to correspond to one another if they correspond under one of

B

these two rigid motions. This gives us a one-to-one corres-
pondence between the two #hgles. What we need to show 1s that

%

thls correspondence preserves dilstarnces. -

Suppose that we have given two points P, @ of . ABC
and the corresponding points P!, Q' of DEF. If\ P and
Q are on the same side of  ABC, then obviously ‘ '
P'Q' = FQ,

because dlstances are preserved on each of the rays that form
L ABC. Suppose, then, that P and @ are on different sides
of L ABC, so that P' and Q' are.on different sides of
LDEF, 1ike this: |

oY 4




By the S.A.S. Postulate, we have

APBQ ¥ AP'EQ'V -

Therefore PQ = P'Q', which was to be proved. .
ﬁext! we need to prove the analogous theorem for triangles:

Theorem IX-5. If

) : AMBC 2 AA'B'C',
then thére 1s a rigld motion

: ' AABC 8 AA'BIC!,
under which A, B and C correspond to A', B', and C'.

m

- Proof: Firsst, we ahall set up a @peat@=oﬁe corresponderice
between the polnts of A ABC and the points of AA'BIC'., We
have glven a one-to-one correapondence

ABC+—=A'BiC!
for the vertices, By Theorem VIII-1 this gives us the in-
duced rigid motions

LE s A'BT,

[k
i ’ﬁ_/l

AC s KTCT

BT = BTCT

between the sides of the trlangles, These three rigld motions,
taken together, give us a one-to-one correspondence Pe—sP!
between the points of the: two trignales. We need to show that

\

this correspondence preserves distances.

If F snd*iz !are on the same side of the trlangle, then
Wwe Know already that

PrQ’ PQ.

Suppose, then, that P and Q are on different sides, say,
AB and A’C, 1like this:

950



We

-,

know that

AP = A'P?,

because AB & A'B' 1s a rigid motion. JFor the same reason,

AQ = AQY,

and LA = L A', because AABC ® A A'B'C'. By the 5.A.S,
Postulate, : T . :

Therefore, «

whi

P =

T

"

’AF:AQ AP'ATQT.

PQ P‘Q‘;

ch was to .be proved.

Notice that while the figure does not show the case
B, the proof takes care of thls case. The proof is more

1mpaftsnt than ,the figure, anyway.

%]
»
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Problem Set IX-3

Let

'+ ABC—>A'B'C'
be a rigid motion, and suppose that A, B,
are collinear. Show that 1if B 1s between
then B' 13 between A' and C'. '
Given a rigld motion
- ' 'F & F'.

and ..C
A and C,

Let A and B be points of F, and suppose that F

contains the segment’ A’B., Show that F' contains the
.

segments A'B',
Given & rigld motion
- FmPF'.
_Show .that 1f F 1s convex, then so also 1is

W
L]

.Glven a rigld motion F'ss F'. Show that 1if
then so also 1s F!',

Show that there 1s no rigld motlon between a segment and

F'.

F

is a ray,

a clrcular arc (no matter how short both of them may be).




. R 1 ; . 14

Rigld Motion of Circles and Arcs,

' Theorem IX-6. Let. C and C' be circles of the same radius
r. Then, there is a rigid motion
- - .0 e : N .

L]

C = éi
o E
between C and (',

Proof: Let the centers of -the circles'be P and P!.
. Let AB be a diameter of the first.circle,™nd let A'B'
v be a diameter of the sécond. Let H,  and H, be the
% - s B i o {lf* =
" half-planes determined by the line-- AB; and let H'l and .
L. . s o e . _ £ -
H'2 be the half-planes determined by the line A'B',

We can now set up our éne;t@?one correspondence Qe—=Q!,
in the following way: (1) Let A' and B' correspond to
A ‘and B, respéétiyély, (2) If'}Ql i1s a polint of C,
lying in Hl’ let Qll be the polnt of C', 1lying in

H! such that

1!

LQ' P'B!

i
I~
En]
ol
[wi]




(3) 1r Qy, 1s a point of C, 1lylng in H,, let @', be

g
o

thé point of CE’ lying in H‘Ej such that /S

&t

™
A
o
hae]
jua
i
|
I

L Q- FB. h

jdiSE

We need to check that this cor

[

tances.

respondence preserves

I8

, - o

Thus, for every two points_ Q@, R of €, we must have

[
)
2
sl

.

. QIR!

s of a dlameter, then so are
R ] 2r, OQOtherwlse, we always

have AQPRZ® AQUP'R!', so that

ases to consider, accordlng as B is

Q'R' = QR. (Froof? There
/ g 1
or thelaxterlor of L QPR.)

n the Interior

You should prove the followlng two theorems for yourselfl.
They are not hard, once we have gone thls far.
<

Theorem [X-7. Let € and (C! be clreles with the aame

radius, as ln Theorem [X-L.

i

>

L3k %
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Let /XPB and /X'P'B' 'be congruent central angles of C

and C'. respectively.

Then a rigld motion C = C' can be choszen 1n such a way

that Be<—>B', Xe—>X', and DBX ™8 B'X'.

Theorem IX-8. Given any two congruent arcs, there is a rigld

motlon between them. The proof is left to the reader.

e

Ref'lectlions.

¥

The definltion of vigld motion glven in Sectflon VIII-1 i
a perfectly good mathematical definltion, but we might
¢lalm that from an intuitlive viewpolint 1t does not convey any
idea of "motion". We wlll devote this sectlion to showlng how

a plane figure can be "moved" 1lnto coincidence with any

lsometric lgure In the same plane.
Throughout this sectlion all flgures wlll be consldered

as lylng in a tixey plane.

Definitlons. A one-to-one correspondence between two

f'ipures is a reflectlion Lf therve la a line L, wsuch that for

any palr-of corresppnding points P and P', elther (1) P = P!

_ang lies on L or (2) L Lls the perpendlcular bisector of

fav]
aal

ts called the axls of reflectlon, and each flgure 1s sald to

—

be the rerflection, or the lmage, of the other flgure In L.

T A%y -
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In the plctures bel
e

tions of simple figure

L

Theorem IX-9. A reflectlon is a rigid motion.

Froof: We mu that 1if
Fl QI

ere are four cases to

and thelr

s5e 4 are

Q
A

ref'lection

and

at

P
L

of

1.
Intersect
gefinltion

QT | L and

T

=1

iy

Q"
FPT |

Hence

and

QB
L P'BA.

L) ArBg ™

3
(=1

L pPBQ!

QIB.
By subtractlon,
AP'BQ',

1R

L. PBA
{(by s.

It

e

-
I

Case The proof 1a the

L FPBQ = we add angle

3. L. Then
Q

L

Cnae
slnce
F L g

on &

O
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on the

same,

P

images 1in a line

conalder,

Intersect

L
A PAB

L PBEQ

and

eXx

Q= Q

the perpendicular blsector of

Just

and
"

game

and

cept

L,

then F3 =

oW are shown some examples of* reflec-

T

Let
By t

and

L.
B.

of

el

51d
L at

PA F'a,
AP'AB,
L PBQT.

PQ PIQT,

s

FB

then

and
We

ot

il

that in proving

L

T and PQ = P¥Q?

B'. The

Lax

the same.

PPT

he

measur<y instead of sublractlng.

are any two polnts,
Frgr.
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Corollary

[

chaln

F' determine

The proof will be glven In. two stag

volving only a very

—

each other

i

slmple figur
F' if F

use the notation

I3

Froof:

Step 1.

poth on
Pl@i

flgure F we

1

If we end up wilth a
we shall say that

n flectiansg

rigld motion between

>ur opening discus

B, C, A

Atct, B

by l, %

of reflections

obtalnable as

~1gid motion if of

carries

reflect 1t 1In

can pe reflected in

some

and oL = Q7

line to get

figure R

been

carrying

FPr,

sion in this se

motion,

n 1In a physlcal intEFpLETdLlDD.
: thi

carried

‘!1&

F 1into

=ctlon,; a
obtained
about the axls of
certain type of
a chaln of reflec-
What we

5 type.

he 31x polnts such

Then there 15 a

o

B, C 1into



Let L? be the perpendicular bis?ctar ot ;KV,# a
and Cé bé the reflections of B' and C' in L
Py By,Cy

S5tep 2.
Let Ly be the perpendicular bisector of BB,. Si
AB = A'B' and since by Theorem I[X-9, ETB! = AEE,
‘that AB = AB, Therefore A 1lies on Ly and 1s
image 1n the reflection in L. Thus, the lmage of
Ay By, Cp in Ly 1s A, B, Cy.

Step 3.

Lo

the

By arguments similar one

- ==
BC = BCI* AR is

1 , =

and Hence,

fﬁlj and the 1mage A, B, Cl in AB
We thus have,
AQE,cjlng}ajc:ilA;B
as was deslred.

i
“«]

O
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Any one or two of the thres steps may be unnecessary if the
palr of points we are working on (A 1in step 1, B 1in step 2,
C 1in step 3) happen to coincide.

We are now ready for the final stage of the proof.

Theorem IX-11l. Any rigid motion is the result of a chain

of at most thvee reflections.

Proof: We are given a rigid motion F ® F', Let

]

A, B, C be three non-collinear points in F, and A', B', C!

the corresponding points in F'.

(If all points of F are collinear a geparate, but simpler,.

L)

needed. The detalls of this are left to the student.)

s
Y3
o]
Pad)
=y
[
¥

heorem IX-10, we can pass from A', B', C' to
‘oy a chaln of at most three reflections. By corollary
) , . / . ) ]
this chain determines a rigld motion F' m™ F'', and

t
b
Lo

constructlon of the reflections we have A' = 4,
B'" = B and C'' = C. Schematically the situation 1s some-

thing 1lke this: B

have
F
i1

m

We shall show that point P of F, w
P! = P, This will

that the given rigid motion F = F' 1is identical w
one deterﬁi?éqaby the chaln of reflectlons.

s and

F't colncldes with

th the

ket us conslder, then, any point P of F, 1ts correspond-

ing polnt P' In F' determined by the rigid motion F = Fr,

and the polnt PV in F" determined from P' by the
i -

chain of reflections. We recall that A" '= A, B" = B,

cr = C. 7\

.
e
[N

beiad
[Sers
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Since all our relationships are rigld motions, we have

AP" = A'P' = AP. Similarly, BP' = BP and CP" = CP. From
the first two of these, and AB = AB, we get that

AABP = AABP", and so [LBAP = LBAP". If P and P"
are on the same slde of iE; then by the Angle Construction
Theorem E?-:ifﬁ'! and since AP = AP" 1t follows frém the®
Point Plottihg Theorem that P = P", which is what we wanted
to prowe. 2

Suppose then that P and P" 1lie on opposlte sides of

AB.

Since PA = P'A and PB = P'B it follows that A and B
lie on the perpendicular bisector of PP". Since PC = P"C,
C .also liez on this line, contrary to the choice of A, B, and
C as nQﬂ!QilliﬂESP. Hence, thils case does not arise, and we

are left with P = P", thus proving the theorem.
| ¥ £



Problem Set IX-5

1. In each of the following construct, with any instruments
you find convenient, the image of the given figure in the
line L.

a.

2. find a chaln of three or fewer reflectiops that will carry
CD into A'B'C'D!'.

8 S ,

1

3. a, Carry AABC through the chain of four reflections %ﬂ
es

L

b. Find a shorter chain that wlll glve the same rigid

motlon.
4.,
960

O
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Definitions: A figure 1is ymmetric it 1s 1its own 1mage
in some axis. Such an axls 1s called an axis of symmetry of the

flgure,

4, Show that an isosceles trlangle is symmetric. What 13 the

axis?
9. A filgure may have more than one axls of symmetry. How many
do each of the following flgures have?
a. A rhombus.
b. rectangle.
c¢. A square.
* d. An equilateral trilangle.

5, The rigld motion defined by a chaln of two ref

ngth (twice the distance between

e f
parallel axes has the property that if P<—=PF' then
e n

FP? has a fixed le

ot
)
-
m\
.

o

uch a motion 1s called a translation.

7. The rlgid motlon defiined by a chaln of two reflections in
axes which intersect at Q@ has the property that 1if

P=—>P', then L FQF' has a fixed measure (twilc
e

e
measure of the acute angle between the axes). Prove thils.

3, Show how by using the results of Problems o and 7 the
Fundamental Theorem IX-1ll can be restated 1n the following

form:

Any rigld motlon in a2 plane 1s either a reflection, a trans-
a

tion followed by a reflection,

lation, a rotation, a transls

T

»r 8 rotation followed by a reflection.

b

#0611
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Lppendix X

TRIGONOMETRY

Trigonometric Function

1o

The el®mentary study of trilzonometry is based on the

Prosxf: In A &BC and A f'BICY let L ¢ and LcC
te right angles and let m L =m &L A', Then A pBC~A B!
[

We apply this theorem as follows: Let r be any
number between O and 30, and let

triangle with m L C = 90 and ML
5etT

= r. For convenlence

1
[
Wb

I we consiluier another such triangiﬁ A A'B'C' with

m LG = corresponding
numbers diffcfen&f}rﬁm

a, b, c. By alternation
e can then constant of

Thus, the particular
triangle of the acute
angle sine of FD,
written sin r” for short. The reason we specify that we are

t
using degree measure 1is that 1n m advanced aspects of

O
[

o
g

-
i
-
B,
Lo
,,
L]
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trigonometry a different measure of angl

Let us see what we c¢an say
5 H

e, radian measure,

B

apout sin 30 We know from
Theorem 11-9 that in this case
if ¢ =1, then a = %g Hence,
o O o8 1 )
sin 307 = T = 5 A
It is evldent that the number
b . ~ -
< can pe treated 1n the same way as
%i The number % 15 called the cosine
0

A 3
of r7, written cos r From the

Phythagorean Theorem, we see that if a

) L0 -
Hence, cos 30 3J4§_
¥ =

&

Of the four other possible quotlent

of the trlangle, we shall use only one,

the tangent of rc, «written tan r-. We see
"tangent" has only an
1ts use with relation

tan 30° = /5 - {This use of the word
unimportant nistorical connection with

1o 8 llne and a circle.)

These three quantlties are called

Problem Set X1

1 In each of the followlng give the
In terms of the Indicated lengths
a sin A = 7, cos A = 7, tan
b. =sin r° = 7, ¢cos P =7, tan
9@4 1 s

&
s of the three sides
a IR R
?; This i3 called
that

trigonometric functions,

required information

of the sides.

A = 7,




" cos

el
i
=
ja]
o
[]
w3
L]
s
I
-3
"

_s*"; _
tan A = 7§ tan B = 7
- "

2. In each of the following, find the correct numerical

value for x

a cos P = x 1

P 5 -

b. tan si = X
3. Find: sin DOQ, cos 00°, tan v0°,
A, Find: sin 45°, cos 45°, tan 45°,
2. By making careful drawings wlth ruler and protractor

determlne by measuring

a. sin EDQ, cos 20°, tan 20°;

b. sin 53°, cos 53°,  tan 53°.

ERIC
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p@léi Then

Trigonometric T@Piegrénd Applications.

“?Alth@ugh the trigonometric functions can be computed
exactly for a few angles, 'such as 30°, o00° "and 45°, 1in-
most cases, we have to be content with approximate values.
These can be worked out by various advanced methods and
at the Eﬁﬁ @f this Appendix, we give a table of the values

af the three trigonometrie functions correct to three decimal

places,

I
]
Wt -
WA
o3

ble", and @ device for measuring an
r's transit (or strings and a protractor) on

practical problems.

;f!ak;',; the angle between the
norizontal and a line to the top
of the pole 1s found to be 23
Let x be the -helght of the

X _ 099 _ Lo
100 = tan 237 = 25
Hernce, x = 42.5 feet. An angle like the one used 1in this
exemple 1s frequently called the angle of elevation of the
object

In o clirele of radlhr 4 em., a chord

B cm. What 1s trhe measure of an angle
nscribed in the major arc 1B? We have iC = 3,
Aka %f' 10 = 5. Hence, sin (/ACQ =
m L ACQ = 39°,
m(mindr arc iB) = m L ACB
C2(m L ACQ) = 78°.

1 From the table Pind: sin 17°, cos 46°, tan 82°,
cos BBJ, sin 00" Does the last value agree with the

sne found in Problem 3 of 3et ¥-17



Ty

2. ' ‘From the table find x to the nearest Eegree In each

_ 4
of the following cases: -~
T gos x =..731, sin ¥ = ,390, tap x = .300
- sin x = .413, tan x = 2, cos X :'%.
3. A hilker climbs for a half mile up a slope whose inclina-
tlon is 476. How much altitude does he gain?
4, When a six-fo ot pole casts a four-foot shadow, what 1is
the angle of elevatlon of the sun?
5 An isosceles Eflaﬂgle has base of o =lnches and an

The altitude of the triangle.

e

Y, The lengths of the altlitudés tdb the equal sides,

¥.c. The angles these altlitudes make with the base.

d. The point of intersection of the altitudes.

6. ° I regular decagon (10 sides) 1s inscribed.in a .
circle of radlus 12, Find the length of a side, the
apothem, and the area of the decagon.

7. Given, miA = 267, mLCBD = 42°, b

' BC = 50; find AD and AB.
- A™ B c
5 T
Relations Among the Trigonometric Egéﬁg;pp;i
Theorem X-2, For any acute LA; sin A< 1, cos A'<§§-

Proof: In the rlght triangle A ABC of 3ection X-1,
L ae

a<d e and b { ¢, Dividing each of these inequallties by

I

™
s
<
o
1
N

which is what we wanted to prové,

Q967
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Theorem X-3. For any acute angle A, *

tan A, and (sin A)2 + (cos ,A)E =1, °

| ol
O
wls
R b

1}

8in A e
Sos A = »="tan A,

L Y

o U"Hm |

7 . :7; ?72 _7{&
; 7 _ (81n A) + (cos A).E=§E+§§
a2 4 b2 _
e?

% =

f

¥
i
8

v Theorem X-4%, If A and B are complementary acute
angles, then s8in A = vos B, cos A = sin B, and

Proof: In the notation of the figure, we have
i X e
8ln A = Z = ¢os B,
o _ o cos A =% = sinB,
T x

tan A = X =
y

Problem Set X-3 . -

‘Do the following problgms without using the tables.
l. ., If s8in A = % whég,iﬁ the value of cos A? What is
‘the value of tan A? (Use Theorem X-3,) ’

“

i % | 4;,—‘ , ’ ) ‘ j%ﬁf}g . .




With ruler and compass construct LA, 1if-possible, in

n

%
each of the following. You are allowed to use the
results of earlier parts to simplify later on sa.

a, 'GOE A = igi

- 4Q
B
\

A N C

3 ' Solution: Take AC any convenient segment and construct
cQ | AC. ﬂith-eenter A  and radius é% congtruct an arc
intersecting CQ at B. Then cos{ LBAC)= .8.

Y

b. cof A

‘e, cos A

1]
P M\ L™,

d, 'sin A = .83,

e, s8in A

f. ftan A = %. .
E. tan A = é_
bt
' E\T S
2 9’




Table of Trigonometric Ratilos . e

Tan- Tan-
Angle 51 Cosine gent Angle  Sine Cosine  gent
0 0.000 1.000 %0.000
1 .018 1.000 .018 46 0.719 0.695 1.036
2 .035°  0.999 .035 Ag .731 .682 1.072
t 3 .052 .999 .052 N .743 .669 1.111
4 iogg .998 .070 49 755 .656 1.150
5 .087 .996 .088 50 .T766 .643 1.192
6 .105 .995 ° .105 51 g7gg .629 1.235
7 .122. .993 .123 52 T .616 1.280
8 .139 .990 141 53 . .799 .602 1.327
9 .156  ,988 .158~ 54 .809 .588 1.376
10 L1774 .985 .176 55 .819 .5T4 1.428
11 .191 .982 .194 56 .829 .559 1.483
12 .208 .978 .213 57 .839 - .5U45 1.540
13 .225 974 . .231° | &8 -.848 .530 1.600
14 242 .970 .249 59 .857 .515 1.664
15 .259 .966 .268 60 .866  ,500 1.732
16 < .276 .96l ,287 61 !8g5 485  1.804
1 .292 .956 .306 62 .883 470 1.881
1 .309 .951 7,325 63 .891 sy 1.963-
., 19 .326 .9u6 344 64 .899 .438 2.050
20 .34k2 .940 .36k 65 .906 .4e3 2.145
21 .358 .934 .384 66 .91k .hot 2.246
22 .375 .927 , Jhob 67 .921 .391 2.356
23 .391 .921 ; .uﬁgf 68 .927 .375 2.475
24 .407 914 o .4 69 .934 .358 2,605
25 .423 .906 . .h466 70w, .9UO .342 2.747
26 .438 .899 .488 71 .946 .326 2,904
27 .45y .891 .510 72 .951 .309 3.078
28 470 .883 .532 73 .956 .292  3.271
29 .485 .875 .554 Th .961 276 3.487
30 .500 .866 577 5% .966 .259 3.732
31 .515 .857 .601 76 L970 .242 4,011
32 .530 .848 .625 77 974 .225 4,331
33 .55 .83¢ .649 78 .978 .208 4,705
34 .559 .829 .675 79 .982 .191 5.145
, 35 .5Th .819 - .700 80 -.985 174 5.671
.36 .588 809  .727 81 .988 156 6.314
37 .602 .799 4. 754 82 .990 .139 7.115
3 .616 .788 .781 - 83 .993 .122 8.144
39 .629 T .810 84 .995 \ .105 9.514
4o -.643 .766 .839 85 .996 .087  11.43
41 ,658 .755 .869 86 .998 .070  14.30
Y2 . 669 .743 .900 | 87 - .999 J.052 19.08
43 .682 .731 . .933 88 999 F.035 28.64
4y .695 .719 - .966 89 1.000 .018  57.29
45 .70 . 707 1.000 90 1.000 y 000
i
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Solutions to Appendix

Problem Set X-1

oo
L]
W
L]
L
-
o

o
[
m._ym wIU"' vl
-
m-ﬂll—-
W | IO
L]
=
\M)I’UW\

e e ‘
‘ - ' 1
il o &= ‘

L ]
e

-
L]

-,

m‘
-
et
o
L]
U.i et
Mo

>
M QN <l
3

‘mkﬂﬂ“lw'd POt )
'ﬂ%llh—-

S 43%, 23°, 17°, 249, 63°, 719,

sin 17%= —2 X = .292 -

tanxa§§1,5i x = 56°,
mLA=30, mLB=mdl(C=7

a. %Ez tan C. AD =

[}
L
-1
g
L]

D
CE _ ... e .
b. TB.~ 8in B. CE =

c. m LBC = 90° - m LB = 15°.

8

“ﬁfd- DE o tan 153_51315' = ,268+3 = ,

age
"
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. oares =% 10 - 7.42 ¢ 11,41 = 423,
‘ch ' .

7. tan 429 = %5, OD = 45,0,
tan 26° = 22, “AC = 92:2, 4B = 42.2.

sin 26° = %, AD = 103.

[
LY

1. (sin A)E + (cos A)E =1, %+ (cos A)E = 1,
8 2.5 )
H A = = = —_
cos | %/1; .
3
N sin a3 _ 1 .
tan A = 58 8 = S = T oA
g%ég 2.2
2, (¢c) 1s impossible, - -
(d) A here is congruent to BY of ‘part (a).
f ‘(g) A here 1§§3ée complement of the A of part (f).

f




Appendix XI
VECTORS IN SPACE

In Chapter 10 our work dealt s¢le)y with vectors in a plane.
However, all that we did there can Be extended to space, and
in this appendix, we summarize, without proof, the exten- ;
sions of our results tc three dimensions. (Definitions, nota-
tions, and theorems which are not repeated here are the same
in two and three dimensions.)

Definitions. A vector in space i3 an ordered triple
of real numbers [a, b, ¢]. The numbers a, b, c
are called the components of the vector.

\ Cou .
Definition. The ordered triple [0, 0, 0] 1s called

the zero vector.

Definition. If T=[a, b, ¢] and h 1s a scalar,
the.véctor [ha, hb, hc] 1is called the product of

—

the vector u and the scalar h.

Definition. If T?z [ , b, c], the vector
ca

[-a, =b, -c] 1s u.

Definition. If T [s b, ¢] the numbera/ég + bg + cg

1s called the magnitude or length of T.

t

Definition. Two vectors are equal if and only if

they have the'ssme*camponents. ,

Definition, If U= [a, b, ¢] and V= [d, e, f],
the vector [a + d, b+ e, c+ f] 1s called the
sum of U and V. - .
e
Properties 1-11 hold equally well for vectors in a plane and N

vectors in space,

ERIC
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Definitlon., Thrée vectors AB, -CD, - EF are said to
be coplanar if there exists a plane to which AB,. CE,
ji? are all parallel.
‘. Thedrem XI-1. If T, ¥, W are three non-zero and non-
coplanar vectors, and 1f 2z 1is any vector, then there exist
scalars p, q, r such that

o ) 2 = pu+ qV + rvw.

w

are three non-zeroc and non-

cgplanér vectors, and if Pys ql* rl? Pps 9ps PE are gcalara

— — — Pee- — —
PiU + GV + W = pou + qyV + oW,
then - py = ng fil = QE; I‘l = Ip. .

Definition. If U= (a, b, ¢c] and V= [d,.e, f],
the number ad + be + cf 1is callﬁd the scalar product

i —
of ,u ‘and v,

5

The pfopérties of the scalar product are the same in two
and three dimensions. * '
Theorem XI-3. Two non-zZero vectors are perpendlcular if
and only 1f thelr scalar product 1a zero.
Theorem XI-4. If W and V are non-zero vectors, the
absolute value of thelr scalar product 1s equal to
(a) The length of T multiplied by the length of -
) - S
the projection of ™V on Tf; or, equally well,
(b) The length of ¥ multiplied by the length of the
projection of U on V.
?
o
4 ni u
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%FPENDIX Xi1
) APF CATIDNS OF GEGMETRIG THEORY

7" to the -
USE OF STRAIGHTEDGE AND.COMPASSES

|

DRAWING PICTURES OF PLANE FIGURES

in

L 4
In your study of informal geometry in previous mathematics
courses you may have learned how to use a straightedge and
compasses in dfawing plctures of plane geometric figures. The
pictures below suggest some of the basic operations in the use ]
.0f these tools. The comments givé some indication of the
related theory for the plane which?may be dapplied to "prove the
_?accuracy of the«picture. )
1. Given a ray AE and a a segment TD , to draw the point E
on AB " such ‘that AE

& o .
(The Point Plotting Thearem)
2. Glven two distinct points, to draw the line which contains

them. ®

(Postulate 3)
3. Given two distinet point# A and B , to draw the circle

=

with center A and radius AB .

(Definition of Circle)
’ 975
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. =

Given a segmént and a point, to draw the circle with

oint and radlus equal to the measure of

center at the
the segment.. j

7.

f ﬁi\&;x

(Definition of Circle)
Given a ray AB and a segment CD , to draw the point -B
RE =3 - CD .

P

on EEE such that

> D A

(Point Plotting Theorem)
To draw the mlidpoint of a given segment.

A

(An application of the Triangle Congruence Postulates)

To draw the perpendicular bilsector of a given segment.




T
8. To draw the bisector of a gilven angle.

oy

(An application of the S.S.S. Congruence Postulate)
9. To draw a 1ine\e;rpéndicdiar to a given line at a given
point on it. "

=
(An application of the 5.S.S. Congruence Postulate)
Given a line and a point nqt on it, to draw the foot of

10.
the perpendicular from the point to the line.

(An application of the S.S.S. Congruence Postulate)
Glven a line and a point not on 1it, to dmaw the line which
is perpendicular to the given line and_céﬂﬁains the glven

‘point. 3 .

&
“
L
1
B




Given an angle /ABC , a ray DE™ and a point G not on
DE , draw the ray DF such that F and G are on the
same side of “DE and /FDE ¥ /ABC .

-
L]

13. Given three segments PP! , QX' , RR' , such that the sum
' of the lengths of every palr of them exceeds the length
of the third segment, draw a trilangle AABC such that
"AB = PP' , BC = QQ! , AC = RR!' . ‘

P ] P!

(Some algebra involving caordinatés and equations may be
v used to show that the circles with centers at A and B,
with AB = PP'), and radii QQ' ' and RR' ; respectively,

painﬂs); one on each side of “AB.)

intersect in tuo

14. @Given two segments and an angle, to draw a tfiangleihaving
ineluded angle congruent to the given
le. )

two sides and a
segmentsy and an

T

(An application involving some of the incidence postulates
"and (12) above.)'

978
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15. Given a line g! a point P not on 1t, to draw thé line
' through the given point and parallel to the given 1line.

(An application involving (12) abave;g

z|

N
* Y i £ a
a .




Problem Set XII .
The following are exsercises in the use of stralghtedge and
compasses: 7 . = .
1. Given a =ircle with cénter M and chord RS not contain-
ing M-, to draw a chord AB. through M and perpendicular

to RS . : : ] : ’

~ the chord RS . .

The chord _
AB 1is a - of the circle.

The chord A

| &

s/

2. Given a cirecle and a radius which Joins 1ts center to a.
point P onglt, to draw a line perpendicular to the
radius at P . '

3. Given a circle withk center P and chord AB not contain-

. ing P , to draw thé chord AC perpendicular to &B ,
and also to draw the chord BC . %

The chord BC ~ the point P . j/

Given a circle with center P and chord TD not

This bisector contains the point - .
b ) I .
5. Given a clrcle with center R and chords MA - and &AC ,
to draw the intersectlon of the perpendicular bisgé%ors
of MA and 7T . ;

This intersection is . : o \
R ~

. ] : ) _ .- >
6. Gilven three noncollinear points A, B, C, to draw a I
. circle which contains A, B, and C .
!

{, ﬁow many distinct circles contaln these three polnts?

— e . b 4 &

7. Given a triangle ABC , to draw the triangle whose *
vertices are the midpoints of AABC

8, Given a convex quadrilateral ABCD to draw the
.gquadrilateral A'B'C'D' where Af', B!, ¢!, D' are the
midpoints of AB , BC , CD , DA-, respectively. -

9. Given a line segment B, to draw the point C @nﬁiﬁﬁ . ;
such that AC = 2+ CB .- : 4

980 ‘
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10. Given two distinct points A and B , to draw a point C
such that AC =43 * AB . ’ \

, to draw an'angié

i

11. Given two distinct points A and
'/CBA such that m /CBA = 60

12. Given two distinct points A and B , to draw a éeéu\arf
hexagon ABCDEF .» : -

13. @iven three noncollinear paints, to draw a par allelogram
having the given points as three of 1its vertices

1%. Given a triangle, to draw 1ts medians.; The medians
intersect in the centroid of the triangle.

15. " Given a triangle, to draw its angle bisectgrs.‘:Thése
angle bilsectors intersect in the 1qgenter-af the triangles,

16. Given-a triangle, to draw ité altitudes.» These altitudes
1nterseet in ‘the orthocenter &f the triangle.

F

17. Given a trlangle, to draw the perpendicular bidectors gf
its sides. These bisectors intersect in the ciraumcénteri

of the triangle. - , zaj‘
18. Given a trlangle, to draw 1ts incircle. -
19. Given a triangle ABC , to draw a triangle DEF similar
7 )
to ABC with constant of proportionality % .
20. Given three noncollinear polnts, to draw an equiiatE?al o 5;
triangle containing the three points. .

™,
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EENEY T U :

, -r' o . B & !

. The Meaning and Use of Symbols -

iceriera}\ ' : : :

= A =DB can be resd as "A equa%s' B", "A +s equal-to.
B", "A equal B" (as 1A "Let A = B"), and possibly
other. ways ‘appears. HOWEVéf; we should not use the

., symbol, = , in such z;?ms as "A and B~ ,are ="; 1its

. proaper use 1is between;twaxexpressicns, If ﬁwg expressicﬂ

[a]

—
-
"

oM

are connected by noil: it 1s to be under$tood that, these
two expressions are ﬁaméstof the same mathematical ob-
Jéﬂt; in our case elther a real number or a point set.

"Not equal ‘to" A'% B means.thet A and B do not

o e noL

FepPESEht tﬁe same object. Theé same variations and
=cautions apply to the use of ¥ as to the use of

L]

pfaperty} The set of.all elements .a each_of which

has the stated property. (The "set-builder" notation). '
= = These famlillar algebralc symbols for operat- .

ing with real numbers need no comment, . The basic
postulates About them are presented in AppEﬁdix II.

< > L. Like = , these can be read in various ways in

sentences, and - A { B .may stand for the ‘underlined part -
of "If* A 1s less than 7E" , "Let A__be less thdn B"
"A less than B implies" etc. Similarly for the
other three symbols, read 'gfeatef than", "less than or

equal to", "greater than or equal to". These inequali-
ties épply only to real numbers. Thelr properties are
mentioned briefly in Section 3-2, and in more detail in
Segtiaﬁ 3-3. o

"Absolute value of A", Discussed in Sections 3-2 and

8-3.

y) The coordinates of-a point. (an ordered pair of real
numbers); also used as the name of the point,

Proportionality. "(a, b, c) P (d, e, £)" is read "a, b,
are proportional to "d, ‘e, il
r"v 983 [
4.
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Geometric, ' ' ) .o

Point Sets. A single letter may stand for any sultable
) dESEPibEd polnt set. Thus, we may spesk of a pcint F,
- ) & 117 m, a halfplane M, a circle . c, ,ngle X,
' a 'segment b, ete. ~

iﬁ? The 1ine containing the two ppints A and B.

AB  The segment having A and ‘B as endpaints.
- %

é g’rr .
AB. The ray with A asxits endpaint and ccntaining point B,

e

LﬁEG The angle having B as vertex and vBA* and BG as sgides,

AABC The triangle having A, B, C as vertices.

El

™

. 1s a right angle.

, . . o o ) — - .
LA-BC-D. The dihedral angle having line BC as edge and
with faces containing A and D.

£
. (A;B) Directed segment whose origin 18 A and whose
a « terminus is B. Read "directed segment AB", .
o The vector o, resd u vegtor" r "the vectar u",
{a,b] The vectér whose components are a and Diﬁ Nate o
"that a and b form an ordered pair and in general
{a,b] 18 hot the same as [b,a].
l@j The magnitude, or length, of o ' ; SN
- ’ N
PQ The vectqr whose campcnentg are the same as those of
directed segment (P Q). Read "PQ vector" or "the
vector PQW. '
0 The zero .vector; -that is the vector whose components
are both gzero. - . ‘
UV The scalar product of ;the vectors U and V. Read
- "u. dot V", \
%
g > .
BN
Q 'y .
'-»,xl’»ﬁ
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L ; F;g . J B -t

= B R N

. ST
LVﬁﬁng!‘th The palyhedgggvapgle whose vertex is V and - &,
) ., — E%E?: . = ) . :
whose edges are VQI’ Vaos e VQn. - \

. =~ _
rc of a cirecle with endpoints A and B. Read

- i1 p -
AB". . ) 4 "

— = ¥

AB A

[i] d}
[T ]

r
- AXE . The are of a*;lrélé with endpoints A and B and -
containing the point X. Read "arc AXB".

1

mAXB The degree measure of the arc whose endpoints are A .
’ and B and which includes the point X. R

T The greek letter pl, used here and many other places
to denote the quotient of the circumference of a . ) o
circle divided by its diameter. The number W is the . e
-same for all circles.

N ) B L7

.

Real Numbers. K

AB The posltive number which 15 the distance between the

_ two points A and B, and also_the length of the . . ... ...

segment AB. -

m L ABC. The real number between 0 and 180 which is
the degree measure of [ ABC.

PQ(relative to. (A, A'}) The measure of the segment

. El

with respect to' thé unit-pailr (A4, AV}.

b

m ;5 The slope of segment, iB.

. = . = )
v m a2 The slope of ray 4B.
.A o \
I € , B
rnﬁgg The slope of line AB. . .-

Relations, &
a+—»b, a2 .15 matched with b, !

Congruence. A ¥ B 1s read "A 1s congruent to B",

113
o

but with the same possible variations sn@ restrilctions

_ 5_2 * *
ag ZE = B. 1In the text A and B may be segments, N .
-y angles, or triangles. . o : g,J

¢ 7
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. : o v o= s . . : . . :‘i\t
- s N i = - o 4
C Lo . ' P : : t C - ' s

ﬁﬂ'”‘L-‘: " Per Béndicular.. A{B 15 read ;"A is perpendigular
7;33;‘.. 1“ : Bl but w;ﬁh,tbe same comment as for . A ‘and

. segments) _ o

f B F' P is isamgtr;é to F'. ;(Appeﬁéixi ii); ,I } .
l]" ~PSF§lleliém. _We read "p || éﬁ as "11 ne is\parallei
to line g". - . . \\
a8

~’+ 'Similarity. - We read " AABC ~ A DEF"
_ABC is similar to trisngle DEF".

g triangle

: —— ;"7”7 -
s Equivalence for directed segments (2, B) = (C, D) 1is
= . read "directed segment (K, B). is equlvalent to directed
sggment (¢, D)". . ;o

l;t. #
U O S S



' The Greek Aipha?ét

>

nu

(n)

-alphai' a .(a)
(liis) .

beta b (b)

b
=
"

gamma g_‘ (g) - 7‘31‘?11«‘;:}'(31‘:1 o (o)
R .

(4)

o B -1 © > :
=
B
3
S

epsilon e (e) .tho ‘ r, rh(r). ’
si‘g,ma: 5 - (s)

zeta z (z)
‘ Ttau g ‘(t)

oy Dﬁ b

eta e (a)

V. e M o oD R
a-
&
o
i

‘upsilon’ y, u (u, oo)
lota 1 .(é) phi ph  (£) s
(k)
lambda 1- (1)X

(m) .-

o
=
i
o
kn]
]
»
b

cht.  ch (k, K)

psi | ps.  (ps)

2> ® oH O o= o
E € v B <

omega . o (o)

N

0

H

P

zZ

, T
theta  th . (th) = o
o

X

¥

L

R
2
3

oA, (
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. LIST OF CHAPTERS AND POSTULATES
,;? i . i B o
CHAPTER 8. Coordingtes 14 a Plane
CHAPTER Q.Q‘Perpendicular ty, Parallelism, and

Coordinates LniSpace
& - - = : .f—‘; e -

POSTULATE 2%, There is-é unique plaﬁeﬂﬁhich cenﬁ?iﬂs_é given
point and is ﬁerpendiéular to a gf%én line.

POSTULATE 25. Two lines which ‘are perpendicular to the same
plane are parallel. : - :

-

; . R : . ¥
CHAPTER 10. Directed Segmentd and Ved&fors

ii.

CHAPTER 11. Polygonsvand P@%yhedrcns

' POSTULATE 26. If R 1is any given paiyganalﬁ"gidn, there is
a correspondence which associatles ta each

polygonal region in space a unigue positive. PO

- “‘~-1<¥‘;2§:ig%, such that the numb®r assigned to the
given polygonal-region R 13 one. ) X

POSTULATE 27. Supppse that the polygonal-region R 1g the
’ union of two polygonal-reglons Ry and Ré

such that the intersectian‘of R and’ R

m
==
i}

cantained in a union of a finite numEgr of
segmen;s Then, relative to a glven unit -darea,
the area of # is the §um of the afeas of. Rlz

L . 1-
and RE . o L

s

2 28. If two triangles are congruent, then the
respective triangula%stéglons eonsist%§g of the
triangles and their intériors have the same

PDSTULA

3
]

area relative to any given unit-area.

- POSTUL

E
&

. 29. Given a unit-pair fo¥ measuring dispance, the
area of a rectangle reélasive to a ug€t=square

1s the product of the measures (relative to -the

given unit-pair) of any two consecutive sides

of the rectangle.
g

3 989
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+ . CHAPTER 12. Circles and Spheres ‘

POSTULATE 30.

If AB and BC afe‘afés:cf the same circle
having only the point B 1n common, and if
their union is an arc’ AC s then mEEiﬁ mBC
mAC . - - L ] |
The lengths af‘r’arcs in gangr‘ﬁéntﬁéireles are
proportional.to their degree megéirés.

g0
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BIST OF THEOREMS AND COROLLARIES
.
THEOREM 8-1. If P ¢and Q are points on theysame yertical

- line, then PQ = IyP - yQI .
' THEOREM 8-2, If P and Q iare pcints'gn the same hgrigéﬁ=
oL tal line, then PQ = |x - xql "

- THEOREM 8-3. Every vertical line 1is perpendicular to every
horizontal line. ' '
THEOREM 8-4, T If P 1(X1,¥;) and Po(X5,¥,) are ‘two points
in the xy-plane, thén L ) :
o~ P, =4/ (x 12 % (v, - 902 .
. L otite T Xy = Xy *YE yl
THEOREM 8-5. If P and 0 are two pqs§ts in the same
) : ~ vertical 1ine,rthen the midpoint M __of . _E R
. THEOREM 8-6, If P and Q are two points on the same
: horizental line, then the midpoint M of
J PQ 1s the point

IR LA

THEOREM 8-7. If P and Q are distinct points on a line
which is neither vertical nor horizontal,
then the midpoint M ®f TF§ is the point

) M = (xp + %o, Xpo+ yg)
1 = L % !' _ N . /
THEOREM 8-8. . If P = (x Y ) and Q = (xg,ya) are any
) two dis tim:t points in a plane, then the
midpoint M of PQ 1is the point
M ;(Ig + %, Y2 i 3’1) .




- ) - :
THEOREM 8-9. Lbt a be any real number. ?hen the set of
- : .. all polnts in the xy-plane each of which has
. ' x-coordinate a 1s a vertical-line.
. 'THEOREM 8-10. I8t b be any Peal numoer. The set of all

. points in t.e xy-plane with y-coordinate b‘
# 18 a horlzontal line. -
THEaﬁEM 8-11. If Pl(xlgyl) -and Eg(xgggg) are any two
- - points, then. . _

. 12%{(3{31)sxz%ﬁ‘f%——l{(};gisxl);y
5y ‘i + k(yg yl), k is real} .

' THEOREM 8-12. ~ 1If a, b, ¢, d are real numberg>gucn that b

i

, and, d are not both zero and if
. S = {(x,y) : x,= a + bk, y = c + dk, }g"is
real} , then S 1is a line. v
THEOREM 85;3; Théislope of a non-vertical 1ine p 1;
et e e ¥y 7YY here f’jf?i 1s any. gegment of P
X, - X
2 1 * -
. and Pl = (xl!yl) ) = C}{'EJYE) .
THEOREM 8-1k+ If p 1s the line through (x,,¥,) with.
i\é ] = £ 1°%1
. .Elope m == |, then
: i g 7
; -1 E = ({x,y) : x =%, +kag , y =y, +kt,
. . - = IR ¢
) 1s real} and ‘
“r | e p=Uxy) t x=x +k,y=y + kn,
k is ?Eal} - -
7 _ A
THEOREM 8-15, TWwo non-vertical lines are parallel if and
only if their slopes are equal.
¥ i !
COROLLARY 8-15. Three points A, B, C are collinear if and
only 1f m__ =m__ , or they 1lie on a vertical
line, AB BC




_ THEOREM 8-16. Ir :P = (xl,yl) and Q = (foye)‘ and if PQ .
. - - is an ohlique line, then I )

: . X=X ¥y-v ] :
i “?“= {(x,y) —s =2 {. -
*2 Yo = ¥, !

COROLLARY 8-16-2. If p 18 the 1line which passes -through
P(x, ,yl) with slope m , then

- -~ P‘((x:y) ;Y—figlﬂ(xéxl)]!' 7
. " :

THEOREM 8-17. Two non- -vertical lines are perpendicular if

o ' and only if the product of thelp slopes is -1 .
THEOREM 8-18. A quadrilateral is a parallelogram if eac '

—~ - of 1ts sides 1s congruent to the skde opbosite

' ' 1t. f
THEOREM 8-19. A quadrilateral 1s a parallelogram if and only

) if each angle is cangruént to the angle S
et e e =) o) =115 & - I K

THEOREM 8-20,. A quadrilateral is a rectangle if ané only
if it 1s equiangular.

THEOREM 8-21. A quadrilateral is a rhombus if and only if

it is equilateral. , -~
“THEOREM 8-22, A 1iné segment which joins the midpoints of
: ) :

two sides of a triangle is parallel to the

third side-and its lerigth 1s half the léngth
- ' of the third, side.
THEOREM 8-23. - Given quadrilateral ABCD ,with A = (0,0)
5 = (a,0) , D= (b,¢) , then ABCD 1s a

paral;elcgram_is and only if C = (a + b,c) .

COROLLARY 8-23-1. If the coordinates of, the vertices of a
parallelogram are A = (0,0) , (a,0)

(a + b,e) , and D = (b ¢) , then the

L C =
parallelogram 1s a rectangle if and only ir
! . b;Dg

L B
4

450

L

993 .
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COROQLLARY 8-23-2, If thé’eaag?ihatég of the yentices of a,
¥ "(0,0) , B = (a,0)
(a + b,e) and D= (b c) where a > 0,

a& the pafallela ram 1s a rhambus if and
+ only f a gqug + 32_

! ' THEOREM 8-24. . A quadrilateral‘is,ar%arallelagram if‘amd only
. \ T :\\if the diagonals bifect each other. .-~
THEORME 8-25, J:Féfallelagram is a reetangle if and only if

¥

\I&I‘

& S ) 4 pafallélcgramiéfe A

THEOREM 8-26. " A parallelogram 1s a rhombus if and only 1if
the dlagonals are perpendiculér,

THEOREM 8-27. A parallelogram is a rhombus--4f-and only If —~
e a,diagonal bisects one of its angles.

N SIS

s : * §r
- THEOREM 8-28, The set of all pgints in a plané which are
' equidigtant from two given points i? the.
- plane isffig perpendicular blsector/ of the

s

. ’ segment Jolning tne given points. .

COROLLARY 8=28¢1ﬁ7The perpendicular bisédtors of" theée sides of
: : a triapgle are congurrent at a point equil-
distant from the vertices of the trianglg.

=

-THEOREM' 8-29. The set of all points in the interior Df an
. angle whlch are equidistant from the lines
< which contain the sides of the angle is the

interiar of thé.midray’of<thé angle.

o
b

; 994 .
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misiFen -1,

4,

THEOREM 9-2.

g
=

THEQREM 9-L. .

THEOREM 9-8.

“THEOREM 9-9.
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triangle.

The’ lines which cantain the angle biseet@rs
of the ékgles of "a, triangle are concurrent
at a point 3quidistant‘fr@m the sides ,qf the

2 -
. # =,

Thé“glaﬂg‘which'is perpendicular to a given
line at a point contains every fine which is

' perpendirular to the given line at that

polnt.

If a 1iﬁe 19 perpendicular to each of twa'
inters egting lines at their point of inter—
secticn, it is perpendicular to the plane -
determinad by the two lines. -

- There is a quique line which is pérpendlcular

to a givaﬁﬁplane at a given point 1n the plane,

If a plane 1nter3§;ts one @fvtwo dlstinect
parallel lines -in a point, 1t intersects the
other line in a point.also. :

If aplane 1s parallel to one of two parallel,
lines, it is .also parallel to the other.

If a plane imtersects-each of twa distinct
parallel planes, the intersections are two -
distinct parallel lines. '

If a line intersects one of two distinct g

parallel planes 1n a single point, it intersects ’

the other plane in a single polnt also.

If aline is parallel to one of two parallel
planes, 1t is parallel to the cher_also-

Two planes which are perpendizﬁlar to the same

L4

line are parallel.

Oy

N
-
&

S

O
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"THEOREM 9-10. . If a~1linge is perpendicular to ane of two

THEOREM

THEOREM

THEOREM ¢

1 lell' If a plane 1s perpendicular to one of two

P idistinétlgirallel planes it 1s perpendicular

*

o
po]
i
"
T
m
o
2y
[l
o
o
et
s
ke

" distinet parallel linés, it 1s
/s to the other line—also. , ~

Lot

1 9-12, If two lines are parallel to-a third

line, they are parallel to each other.

1 9-13. Given a plane and a polnt not in the pléﬁé,

‘there 1s a unique 1line which passes'thr@ﬁgh

the pant and 1s perpendlcular to the plane..

1 9-14, There 1s a unique plane patrallel to a given

.plane through a glven point. .,
g-15, If two planes are each.parallel to a third
d plane, they are parallel to each other.

; @
9-16, . * The shortest segment joining a point to a
plane not containlng the polnt 1s the segment

perpendicular tor the glven plane.

g9-17. All segments which are perpendicular to each

. -of two distinct parallel planes and have thelr

oy

e same length.

S

endpoints in the planes have t

M 9-18. The set of all points which are equldistant

from the endpoints of a given segment 1s the
plidne whilch tontains the midpoint of the
segment and 1s perpendicular to the line ‘which

contalns the segment.

/

g9-19, Any two plane angles of a dihedral angle are

congruent. of



. THEOREM. 9-20. —1If a=line is peppendlcular tosa plane,
’ then any plane cgﬁk@ining this line is’
<J

=

e perpendicular to the given plane. 7
it ‘ ’ Y

]
o}

HEOREM 9-21. If two planes are perpendicular, then any
i

line in one of the planes’

et

, e
-Ji cular to their line of intersection 1s
perpendlecular to the other

If two planes are perpendicular, then any line

=
i
=
=
&
=
r@\
i
[
[0

perpendlcular to one of the.planes at a point

on thelr line of intersection lles in the
other plane.

THEQREM 9=Eé. If two intersecting planes are each perpendl-
cular to a third plane, then their line of

. intersection iz perpendicular to this plane.

0

THEOREM 9-24, If P, and P, are points on a line parallel
: s, A\ .

to the x-axis, then P_P. = [xl - %.1 , where
xq and x, ‘are the x- rdinates of P and

, respectively. " 1

=
[l
el
=
=
A
1
M2

]

s Where

I
of P and

T2

1

THEOREM 9-26. "< If F and P, are points on a line paral$él:?
to the z-axls, then P.P.

= |2,- 2,1 , where
'l 2 .

% 24 and z, are the z-coordlnates of P, and

F. respectively.

- " and Pé(xg,yg,zﬁ)

PP o= %, = x ) 4 (v, -y )2 4 (2, - 2)° .
PPy =)/ (xg = 50"+ (o, v )T ey 2"

[

o B e

[}

e

;.—J-

<t

m

o

[oa
<

ERIC

Aruitoxt provided by Eic:



+

THEOREM 9-28. _  If Pl(xl,yl;zl)' and Pg(xE,yE,gE)‘ are any ™

) - two distinet points, then for every value
’ ' of % the point whose coordinates are
=
- X =Xy + lc(xg - xl)
- ‘ ' Vo= oy ket ) .
£ o y=er e - Y3 .
z =2y + l{(gg—= zl) 7
' . . lies on ElPﬁ and, 'canveruely, to every point
on 575;' tirere corresponds a unique value
»of Kk ch that tthe equatlanr glve the,

b
coordinates of the point.

THEOREM 9-29. Every plane has an equation of the form
ax + by + cz =d 7, where one or more of the
: ' numbers a, b, ¢ is different from zerg; and
¥ every equation of this form is an equation of

a plane.

h
vh

=)
D’
[
]
i
s
=1
L

re
ch
ngﬁt and has 1ts origin at a gjven point

THEOREM 10-1. 1 only one directed segment

e

e
I

g )
s
<

lent to a glven directed

3
G T

—_
THEOREM 10-2. Two directed segments (Pl,Pg) and (PB’PA)
are equivalent 1f and only 1f they have the

same components. -
THEOREM 10-3. Ir Py ‘and P,  have coordinates (%1,¥7)

and (x g}y,ﬁ) s PéspéﬂtiVély,‘the length of

any directed segment equivalént to (PlgPE)

is . ) :
[ . \2 . . .\2
VX = x)" 4 vy - vy)"

THEOREM 10-4, I the coordinates of P, and P, are
(xljyl? and (xg,yg) , respectlvely, then
the components of the directed segment

R o ) . ,
(PI’P?) which 1s. k times the directed
segment (ﬁiiﬁé)vfare k(xy = Kl) and
k(yy, - vy) -
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THEOREM
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THEOREM
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10-10.
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ot
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E(Pi,?f) +:(P

The c@mponéﬂﬁé of (g?:Ffl + (Pé;Pu) are
the sums of the PDPPngDndinL-cDmpDnEntS )
of ( P,) and (P ) .

% i IS—L —_—
B ang (@5F,) + <>

aré equivalent dirécted jegmentgﬂ

@y 5
o
(P1,P5) + (PB,Ea), (Ql,Qﬂ) ¥ (QB,Qu) .

- —— —_— - =
ir P1PE and PBP,Jr are parallel vect@rsj
then Ple and ?BFu are parallel.
If w and Vv are parallel vectors, then
VvV = xu
wher g = :
k = b +
Hl

The sum of the vector P P and the vector

1
o . —_— _ B
PBPu is the vector Plx where X 1s the
: 3 —_— —
unique point such that P,X E_ngui
" S

If OA i%d OB are two non-zero vectors

. s
which are not parallel and if OP 1s any

vector in the plane OAB , then there exist
scalars h and k such that

OF = hOA + kOB .

If U and ¥V are non-zero, non-parallel -
vectors, and if x, y, z, W are scalars such
that )
wlt —= i
XU+ Yy = Zu 4 WV ,
then '
X =zand y = W .

The midpolnts of the gides of any quadrilateral

are the vertices of a parallelogram,
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. THEOREM 10216,

THEOREM 11-1.

COROLLARY 11-1-1.

COROLLARY 11-4-1.

The segment jolning the mldpoints of two
sides of a tr¥iangle is parallel to the third
side and the 1engﬁh of the segment 1s one
half th lengbh of thiithird’sidg}

¥

A quadrilateral is a parallelogram if and
only if fts dlagonals bisect each other,

TWo. non-zero vectors are perpendicular if
and only if the sum of the products of their

_respective\ components 15_%§?D_

"The sum of the measures of tHe angles of a

2

convex polygon of n dides is (n - 2) °
180 . ' ‘

The measure of each angle of a regular

s
jol
m
L
i
[

polygon of n a:
(n = 2)180

n D n
4

For any convex polygon of n sides, the.
sum of the measures of exterlor angles,

one at each vertex of the polygon,-is 360 .
The measure of each exterior angle %f a
regular polygon of n sides is 2%2 .

=

A

The area of a right triangle 1s one half ™~

the product of the/féagths of its two legs.

i

The area of a triangle 1s onk-hdalf the
product of any base and the altitude to that
base. : . : .

- F‘k,gﬁ ] B i
: :

The area A of an equilateral triangle

L]

whose side has length s 1s given by:

A :\ig 62 .



LY

o . / ' N
THEOREM 11-5. The area of a rhombus 1s one half the product
of the lengths of the diagénalg!
7

;
”.

COROLLARY 11-5-1, The area A of the square whose éiag@nal
has length d 12 glven by

v

1.2
;ﬂ " -
THEOREM 11-6.° The area of a paralle 13L”aﬂ 1s the product
. : , ! .
- ‘ol any base and the altitudé to that base,
THEOREM 11-7. " The area of a trapezoid 18 one-half the ’
, product of its altltude amd the sum of 1ts
i bases.

COMPLLARY 11-7-1. The area of a trapezold 1s equal to the
product of its altlitude and the lenhth of

3

1ts median.

nsider.a skt of two or more trilangles.
) If the lbases of all the triangles are
equal, then the areas of the trlangles

o
O‘“

THEOREM 11-8.

=

are proportional to the corresponding
altitudes. .

(b) If the altitudes of all the triénglég
are equal, then Ehe areas -of the
triangles are préportional to the
correaponding bases,

J/ (¢) 1If the areas of all the firiangles are
équal then the b”” of the triangles

o
i

corresponding altitudes,

- o F
5
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THEDHEM 11-9.

THEOREM 11-10.

THEOREM'11-11.

e
i

THEOREM 11-12.

-

THEOREM 11-13.

Fanﬂider a set of twa or more parallelagramg.
(a) - If the bases of all the parallelograms
I"

M,_l

are equal, then the areas of the parallel-
ograms 4re proportional to the corres-
poﬂdiﬂg‘é&titudésg
(b) 1If the altitudes of all the parallelograms
are equal, then the areas of-the parallel-
ograms are proportional to ghe corres-
-pjnding‘bdq es. - . ’ B
(¢) " 1f the areas of £11 the parallelogram

o e

. are équal, then the bases of the '

sparallielograms are-inversely propertional

to thé*gorrespéndiﬁg;altltudesi

Every similarity between triangles has the
propefty that the measures afmthe three sides
and any altitude of the one triangle are
proportional to the measures of the corres-
ponding Jidégaand the corresponding altitude
of the other tfianglé '

E

/

Every similarity between triang gl¢s has the
T ' i

property that the areas of the trlangles are

‘proportional to the squares of the lengths

of any pal? of corresponding sides..

1

Every simllarity between convex polygons

?,ﬁith n sldes has the property that the
‘lengths of the n sides and the perimeter
i ﬁf}éﬂe polygon are proportional to the lengths

af the corresponding sides and the perimeter

of Lhe other polygon.

Every aipilarity between convex polygons

wilth n as;des has the property that the areas

of the polgganal—regigns (consisting of the
polygons aﬂéltheir interiors, respectively)
are pragartigngl to the qquares of the
lengths of any pé;r of corresponding sides.




THEOREM 11-14,

THEOREM 11-15.

THEOREM 11-17.

|
:
<
B
—
i
-
] —
[
1

THEOREM 11-19.

THEOREM 11-20.

COROLLARY 11-20-1.

THEOREM 11-21.

ERIC
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the polygon.

éi‘

The bisectors Df the interiof augle@ QF a

regular canvex polygon Df nwzgidés 1nteraect

at a point. e VL

Every central triangle of a Pegw&a@“paiygan

£

/ <

1s isosceles and is congruent'ﬁ§$§;ery other

central triangle.

The area Df a regular polygon 4

kpraduct of the apothem and the pe@fmeter of

angles = trlhedral angle 1s Ereater than

the measure of the third face angle. AN

The sum of the &easures of all the faae angles
of any polyhedral angle 1s less than 360 .

There are no more than flve types of regular

polyhedrons. {

a prism 1s equal to the
ia

h of a lateral edge and

The lateral area of

product of the lengt

M

the perimeter of a right-sectlion.

The lateral area of a right prism 1s the
product of the length of a 1atef§; é%ge and

the péfimétEP of a base.

Let a triangular pyramid be glven.

(a) Every cross-section of the pyramid is
a triangle similar to the boundary of
the base.

(p) 1Ir the distance from the vertex of the
pyramid to the plane containing the
crosg-section 18 k and if the altltude
of the pyramid 1s h , then the area of
the cross-section and the area of the
base are propoztlondl to the numbers

K’ and h; .
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THEOREM 12-1.
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THEOREM 12-3.,

'THEOREM 12-4.

COROLLARY 12-4-1,

\

COROLLARY 12-4-2,

COROLLARY 12-4-3.

The intersection of a sphere with a plane

. through its center is a1 circle whz§e=center
i

and radius are thé same as those df the

sphere. iy

The radii of a circle or congruent circles,
or of a sphere or congruent spheres, are

cangruent.

&

The diameters of a circle or congruent circles,

or of a sphere or congruent spheres, are

‘ e

Given a line .€ and a circle C 1in the same
&
plane. Let P be the center of ;gg circle,

congruent,

~and let F be the foot of thgfi§~pendicular

from P to the line. T

(1) Every point of € is outside C 1if and
only 1f F 1s outside ¢C . ‘

(2) £ is a tangent to C 1if and only if

-
ol
o]
=)
m oy

. F s
(3) £ 1s
_—

Givem a’ circle and a coplanar 1line, the line
i - o

ls-a-tangent to the circle if and only 1if it

1s perpendicular to a radius of the circle

at its outer end,

A diameter of a circle bisects a non-dlameter
chord of the cirele if and only if 1t is péri
pendicular to the chord.

In the plane of a circle, the perpendicular
blgector of a chaéd contains the center of
the circle.



/

COROLLARY 12-5-1.

COROLLARY 12-7-1,

COROLLARY 12-7-2.

COROLLARY 12-7-3.

{
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If a line in the“plane of a circle intersects
tie Interior of the circle, theén 1t intersects

the circle 1n exactly two points.

Chords of c@@gruent clreles are cdngruent if
dnd only 1f they are equidistant from the

Given a plune 770 and a sphere §
Let ‘F be the foot
perpendicular from P to 7271 .

1. Every point of 770 is outside S 1if and

center P .

only if F 1is outside 5§
. 77U is tangent to S
s on 3 . 4

770 intersects S 1in a cirdle

i8]

I
.

center F 1if and only if P 1is inside

o
P

A plane 1s tangent to a sphere 1f and only
if it is perpendicular to a radius at 1ts

outer endpoint.

A perpendicular from the center of a sphere

The segment Jjoining the center of a sphere
to the midpoint of a chord. is pEprpdicular
to the chord.

The measure of an inscribed angle 1s half ‘the

measure of 1ts intercepted arc.
An angle Inscribed in a semlcircle 1s a right

angle.

Angles inscribed in the

same arc are congruent.

Congruent angles inscribed 1n congruent cir-

cles intgf%egt congruent arcs.

k3



1
oo

THEOREM 12 - In the same circle or in congruent circles,
if two chords, not dlameters, are congruent,

"then =0 are the associated minor arcs,

THEOREM 12-9. - In the same clrele or in congruent circles, .

—,

if two arcs are congruent, thén so are tne

- assoclated chord

[

v ‘ , '
THEOREM 12-10, The measure of a
‘half the measure of its 'Intercepted arc.
: &
THEOREM 12-11. The measure of an angle whose vertex i§ in

tangent-chord angle 1s one -

the Interior of a cirele and whose sides
are contained 1n two secants, is one-half

the sum of the measures of the Intercepted

arcsa,

THEOREM 12-12. The measure of a secant-secant angle, or a
tamgenp-éangent angle or a secant-tangent
angle 1s one-half the difference between the

measures of the Intercepted arcs,

‘The two tangent-segments to a cifrele from

%\
jea!
[o]
N
&
=
"_J
Mt
!
e
L

an external point are congruent, and form
congruent angles with the lilne Joining the
external polnt to the center of the cilrcle.

i

THEOREM 12-14, The product of the length of a secant-segment
from a given exterior point and the length of
1ts external secant-segment 1s constant for

any gecant contalning the given point.

F

=
tx1
2
B
=
[
[
L
W

Glven a tangent-segment QT to a circle at
T and a secant through @ , intersecting the
clrcle in points HraﬁE 5 . Then

* QR + @S = (QT)° .

If two chords of a circle intefaect;4the

=
8]
L}
Yot
5,

THEOREM .
product of the lengths of the segments of
one 1s equal to the product of the lengths

of the segments of the other,

ERIC
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THEOREM 12-17. The quotient of the circumfercnce divided by
' -the diameter, E? , 18 the same for all
clrcles. . .
f B

COROLLARY 12-17-1. The circumference of circles are proportional
to their radii. : ¥
- »

W

=

THEOREM 12-18. The area of a circle of radlus r 1is 7r° .

COROLLARY 12-18-1. The areas of two circles are proportignal
‘ ia g ] . . E:
{ to the squares of their radil.

*An arc of degree measure g contained in 5

=
s
=
g

1
=
b
o
A
5

, tircle whose radius is Y has length L ,
where 7
Tr |

L= 185~

L

THEOREM 12-20. The area of a sector 1s half the product of
1ts radius and the length of its arc.
- . -
JTHEOREM 12-21.  The area of a sector of radius r and arc

e
Y]

measure a
e .2

T o]

360

THEOREM 12-22, A(triangle has one and @nl% one circumscribed
' ) : circle. The center of thls circle 1s the
' - - intersection of the perpendlcular bisectors
. . ’ of the sldes of the triangle,

THEOREM 12-23, A triangle has one and only one inscribed
- circle. The center of this circle 1s the
Intersectlion of the midrays of the angles

A , of the triangle,

[ S

1007 *
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" For precisely defined geometric terma the refsrerce is to
the formal definition. For other terms the rafarence is to an

informal definition or to tae meat prominent discussilon.

A.A. elmilarity theorem, 413
absolute value, 81 ex., 51¢
acute angle, 182
addition property,

of equality, 235
« of order, 63

of proportionality, 398
adjacent angles, 181

alternate interior angles, 31¢

alternation property of
proportion, 35¢
altitude
of a paralleslogram, 748
.of a prism, 799
of & pyramid, 803
of & trapezagld, 553
of a trigﬁgla, 427 ¢
"éﬁ'd"j 53 7
angle(s), 145
acute, 182
ad jacent, 181
alternate interior, 319
»bilsector of, 157
- -central, 847 :
eamplumentary 189
congruent, 184
cénsagutlva interlior, 31¢
of a convex 20lygon, 213
correasponding, 319
dihedral, 21%
exterior of a polygon, 738
exterior of a triangle, 292
face, 789
inscribed, 851 -
intsrcepte an are, 8&2
interior of a polygon, 738
interior of a triangle, 292
linear pair of, 179
measure of, 154 :
obtuse, 182
plane angle ‘of a dinedral
angle, 634 3
* polyhedral, 788
of a quadriletearal, 204
raflex, 143
right, 182
secant-sacant, 862
secent-tang ant 862
alde of, 145
"atraight" 144
auéplamentary, 185
tangent-criord, 861

angle(s), (con't.)
tan.ent-tanzsent, 862
of a triangle, 20k
trihedral, 786
vertex of, 145
vertical, 154
"zero" 144 '
dngle canstructian tnaaram, 160
anslparsllel rays, 355
apothelh of regular polygan ?7&
src (2
congruent, 855
degree measure of, 849
endpoints of, 848
intercepted, 852
lengtn of, 900
major, 848
minor, 848 i
of a mector, 201
semicircle, 848
ares
of a circle, 845
of equilstersl triangle, 755
lateral, of a prism 7%%°
.of a parallelogram, 756
of polygonal' reglons, 744

of a rectangle, T48

of a regular polygon, 786
of . a rhombus, 755 ?

of a sector of a circle, 4Ol
of a square, T4Y, 756

of a trapezold, 758

of trianglea, 753
area relations
of congruent triangles, T47
of parallelograma, 76
of trlanglea, 767
A.S5.A. OStJlEtE, 252
axjoms, 10 R
baae(s)
of lsosceles triangle, 277
of a parallelogram, T48
of a prism, 796
of a pyranid, 803
of a trapezold, 5%3
base anglas
of 1isosceles trlangle, 277
2f a trapezold, 553
betweennesas
for solnts, (1

for rays, 165
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betweenness-additlon
thieorem, 240

betweenness-angles theorem,

betweenness-coordinates
theorem, 109,

- betweennessa~-dlstance

‘“theorem, 117
blseation _ - e

of an angle, 167

of a segment, 92
bgundary of = p@lyganal J
-~ _region, 732 )
center ]

of a cirele, 81¢ ’

of zravity, 771 ex. )

of a regular polygon, 779

of a sphere, 820

central angle of a clrecle, 847 °

central triangle of a
regular ;o}ygan, 779

chess, 34 v

chord, 821

circle (s), 819
area jf 845
area of gactgr of, =01
center of,,
central asmgle f, 847,
chor Df 821

h

circumsc
conicernitrl
congruent,

ncertr: ﬁéol
diametEf Qf 21 -

exterior of, 829
great, 821
inscribed, 905 .
interior of, 82¢
major arc of, 848
minor arc of, 848
power 3f a point with
- respect to, 871
radius of, 819, 821
gecant of, 821
gectyr. of, GO1

‘%\\ segment of, <03
+ tangent af, 830

"

tangent externally, 835
tangent internally,. 835
circular-region, 844 )
circumnference .f a clrecle, 8

clrcumseribed circlea, 05
cEkrcumscribed triansle, S0F
collinzar, 40

in tnat order; -1
common external tangsent, g77

common internal tangent, 877_

comnlement, 18¢

8

g

ax

x

ax

componentsa

i

., of directed segments,: 630
166 « of wectors, 703
composite condition, 533

concentiric, 820
conclusion, 10
concurrent linea, 597
concurrent rdys, 597
in tuat order, 166

concurrent segmants 597

conditionglia, 244

congrusnce between Lwo convex”

polygons, 460

congruence ocetween two

trlangles, 228
congruent - '
angles, 184

arca, 855
chords, 834
eircles, 822 -~
polygona, 405
segmenta, 115
spheres, 822
triangles, 22¢

conaecutive interior an.les, 319
constant of proportionality, 393

contrapositive, 328
property of, 329

nverae, 280
JER§ Pytaagorearn tneorgm, 434
onvex polygon(s), 211

anilea of, 213 .
canaecAgiva ansles
diazonals of, Elﬂ
1nteriqr Jf EL;

anVéx set of polnts

of,

134

coordinate .lanes, 643

"coordlinate of a point,
coordinate asysteu, 76
in a .lane, 50¢
in apace, 641
on a line, 585
origin of, 76 ™
unlt peint of, 76
coordinates of a poin
in a »slane, 511
in space, 645
coplanar, 44

correspoundence, une-to-one, 30

between triangles,
sorresponding an.les,
counter- axau1la 5
counting nummars 55

decagon, 210

76

t

227
316

sCrosa-section 2f a prisa,
-cube, 7.7

213

748

/

&



decahedroh; ‘784
deductive r-asaning, 10
dsflnitiena._l%
.6lrcular, 34
complete form, 241
formal, 15 -
if and only Af form, 242
: in proofas, 241
degree, 154 &
degree measure of an arc, 849
dlagonals of . a convex
. polygon, 212 -
dilameter, 821

v dihedral angle(s), 215

edge of, 215
[face of, 215
ﬁaagura of, 635
plane angla of, 634 -
rignt, 635
vertical, 216
directed ae ent (a), 584
equal, ng
QQuivalsnt 686
proPartiia of, 687
langth Of 5&55
opposite Gf 653
product with a number, 693
subtractlon of,” 701 ex.
sum of, 697
x=-component of, 640
y-component of, 690
displacement, 683
distance, . ¢
Between a polnt and a
+ line, 376
ocelween a point and a
plane, 628
betwe=n two parallel
lines, 354
batwaen two 3Dlnta, 522, 655
measure of, 70
distance formula,
in a plane, &22
in space, 655
dodecagon, 210
dodecahedron, 784
"dot praduct", 718 ‘ -
ad.a of . -
halfblaﬂe, 138
pilygonal-region, 734 ex.
polyhedral anzle, 788
polyhedron, 783
empty set, 26 2
endpoints of an arc, 848
equal directea Eégménts 685
equal vectoras, 704

A

‘hypotenuse, 36&#

equation(s), 538 °
equivalent, 539
intercept form
parametric, 545 .
of a plane, 663 ,

. peint-slope form, 569
slope-intercept form, 571 ex.
two-point form, 569,

equiangular trianglﬂ, 277

equilateral triangle, 277
area Jf, 755

equlvalent directed
‘segments, 686

aquivalent equations, 53G

Euler's theorem,. 734 ex.

axterior
.of an angle, 176
of a circle, 829
of a sphere, B41
of a triangle, 203

exterlor angle of polygon, 738

exterior angle -of triangle, 292

external secant segment, 870

externally tangent circles, 835

face angle of a
palydéhral angla 78¢

faces
of a polygonal-reglon, 734 ex.
of a polyhedral angle, 786
of a polyhedron, 783

foot of a perpendicular, 2¢4

frustum of a pyramid, 805

geomstrical applications
of vectors, 714 . .

grad, 153

Eraph, 514 :

great cirele of a EQhEPé, 821

gZreater tnan, 57 & .

halfline, 137

halfplane, 138

dge of, 138

halfspace, 139

hegtagon, 210

neptahedron, 784

hexagon, 210

nexahedron, 784

norizontal lirnes,

571 ex.

ol

_fs

510

hypotenuse-leg theorem, 367
hypotnesls, 10
icosahedron, 784
ldentity correapondence,
if and only if form, 242
if-then form, 17
lﬁﬂiuénﬁé ral tions, 35

35 ex.

palnts, linaar ana planés, 42



line(s), (con’t.)
parallel, 316, 343 o
parallel to:a plane, 617 :
paramgtric equations of, 545
perpendicular, 183 -
perpendioular td a plane, 610
. point-glope form of, 569
projectlion of a paint on, 428
projection of a
segment on, 428
‘ representation of, 35
- skew, 316
dlope of, 556
slope-intercept
form of, 571 ex.
transversal, 317 -
two-point f:rm of, 566

indirect method of proof, 325
indirect reasoning, 12

-+ inductive Feasoning,-ﬁ

inequalities, £38 .

‘ in the eanmg grdar, 370
initial point \684 :
inacribed angle 551
inscribed clrecles- 905 T
inseribed triangle 905 ~

~ Antegers, 56 :

- ~ negative, 56
* . positive, 55
‘intercept form of a linear
. squation, 571
‘intercepted arc, 852
interior
of an angle, 175

Y

of a circle, 829 undefined, 33

of a convex pelygon, 212 vertlical, 510

of a polygonal-region, 732 linear, pair, 179

of a ray, 90 Lobachevskian geometry, 34@ ;
of a aegment, 90 locua, 538

of a sphere, 841 1@313&1 equivalence, 325

of a trliangle, 202 logical system, 2

magnitude of a vector, 704
major arc, 948 ,
measure of an angle, 154
measure of an arc, 846G -
measure of a dihedral angle, 635
measure of diatanca, 70
median of a trajezoild, 553, 758
median of a triangle, 285
midopoint of a 6.

Eagmsn gl , 52 580
midray, 1 5#? %

interior angle
of a polygon, T38
of a trilangle, 292
+internally tangent cireles, 835
intersect, 27
intaragctlan of seta, 24, 534
inversely proportional, 766
inverslon property of
_ proportien, 399
isoaceles trapezold, 593
isosceles trlangle, 277

base of, 277

base angles zf 277
-theorem, 275
vertex of, 277

mil, 153

minor arc. 848

multiplication property

of equality, 236

lateral area of a prism, 799 of order, 63

lateral edge of a prism, 797 nonagon, El@ 7

lateral face of a prism, 797 nonanedron, 784 .

lateral surface of a prism, 797 non-zuclldean geometriesy 338

leg of a right triangle, 366 " null set, 25 ex.

leg of a trapezoid, 593 numbdbers

length of an arec, 900 counting, 55 e

length of ‘& segment, 11k inequality of, 57 .

length of a vector, 704 integers, 56 -

less than, 64 o irrdtional, 55

limit, 888 L natural, 55

line(s) negativa, 63 o
gonourrent., £9 ordér properties, 63

coordinate gystem on, 50 2
horizontal, 510 ;

positive, 632
rational 56

intercept form of, 571 ek. real, 56
opposlte sildes of, 138 obtuse angle, 182
octagon, 210

octahedron, 78h




ann-ta—ane egrrnspanﬂenea 3
bétwaan trlgnglaa, EEB

Lot Q’P 534 ’. - ¢ T

: ﬁmﬁir '

: far panl numbersa, 63

:0f collinear points, 91

ordered palr, 511

ordered triple, 646

origin, 76, 510, 684

origin and unit point
theorem, 78

-outer end of radius, 8217

parallel lines, 315, 343
distance batwaen 354
propertiaeas of, 347

parallel posatulate, 339
.'parallel rays, 355
parallel sagments . 350

. parallel vectors, 705 '
parallelepiped,. 757 .
_ rectangular, 797
parallellsm, 315
of a llne to a plane,
of two planaa, ‘617

617

gltituﬂa af 748
- area of, 755
base of, T48
_ propertlies of, 603
paraneter, 546
parametrie equations

in a.plane, 546

in a;hﬁgﬂ 658

pentagon, €10

pentahedron; 784 .

perpendicular, 183

- foot of, 2%4 \

lines, 183 =
planes, 535 . -
sets, 183 . :
vectors, 717

perpendlcularity of a line

and a plane, 610

pi, n_, B3y

plane(s),
coordinate system im, 509
equation of, 663
parallel to a line, 617
parallel to another

plane, 617

‘perpendicular, 635
perpendicular to a line,
representation of, 44
tangent, 842
undefined, 33

plane angle of a dihedral
angle, 634

plane ségaratianipaztulatag 1

0

10

[

r

: Si
plot, 514
paint(i)
line eaardinsti of, 76 -
-plane 6oordinates
space coordinates of, 646
distance between, 522 655
power of with respect to
a circle, 871
representation of, 35
undefined, 33
‘point. platting theorem, 116
point-8lgpe form of a
linear equstian, 569
point of tangency’
-~ of a eirele, 830
of a 8 heri 842
polyson(a§ o
--angles of, 213 Y,

g cansrugnea between, 405
consecutivé sides of, 210
conaecutive verican af 210
convex, 211
regular, 297, 779
aldes of, 209 : s
slmilar, 403 :
vertex of, 209 ¢

palyganalﬁragio, 8), 730
araa of, T4
baundary ., 132
Edﬁas Ef 734

1ntarlap ar 732
verticeas of, T34

‘polyhedral an a(a), 788 -
edgze of, 788 s F
face of, 789 - . |
face angla of, 785 - .

vertex of, 755 '
palfhedron(s), 783

convex, 784 ¥

edge of, 783

face af; 783

regular, T84

section of, T84

vertex of, 783
poatulate(as), 10

of Algebra, 57.

of congruence,

. A.5.A., 252 )

© BL.A. E., 251 ‘
. 8.8.8., 253 ,
of incidence, 35, 36, 42
interior of an angle, 174
parallel, 339 )
plane separation, 138 -
proportional segments,
pfotractar, 159
ruler, 77 -

412

Sty S1i



.k S o P -
£ P

pavar af a paiﬂt with rssaeet, proparticnnl aagmantl

to a cirala, 871 , postulate, 412
prime number proportionality, 392
orism(s), 7§é - : inverse, 766 }
altitude af,,?SE h . properties of, 397
base of, 796 y protractor, 151 -
craag-seatidn of, 798 protractor postulate, 159 .
latersl zfkea of, 759 : pyramid(s), 803 ..
lateral eige or, 797 altitude of, 803
lateral face of, 79?~f“ﬂemw-fwf~—ba§§faff;SQ§jf,~ e
lateral surface of, 797 frustum of, 805 ° ‘
rectangular, 796 N regular, 804
right, 797 $  slant helght of, 805
rignt-section of, 798 s vertex of, 803
total area of, 795 Pythagarean»tnaorem, 433
triangular, 796 quadrants, ‘513
prismatic surface, 797 quaarilataral\s),-294
product property af opposite sides of, 213
proportion, 399 " opposite vertices of, 213
projection, - sides of, 204
of a polnt into-a plana, 630 vertices of, 204
of a point' on a line, 428 radian, 153
- . "~ of a segment on a 1line, 428 radius ,
- of a set of points into a of a elrecle, 819, 821
- plane, 631 ‘outer end of, 821,
: of a vector, 720 of a regular polygon, 779
proof, 17 of a asctor of a cirecles, 501
finding of, 271 : ray(s), 84
indirect méthad 325 antiparallel, 355
paragrash form, 275 , » concurrent, 597
two column farm, 244, 276 - coordinate of, 159
using definitions 1n, 241 " endpoint of, 84
writing of, 260 ‘initial, 143 *
properties of . ~interior of, 90 (
congruence, 233 . - opposite, 85 B
for angles, 235 ordered pair of, 143
for segments, 234 ' : parallel, 355
for triangles, 235 : slope of, 556
directed segm:snta, 687 terminal, 143
) equality, 233, 235 ray-coordinate system, 159
" order, 63 real numbers, 56
parallel lines, 347 reasoning,

- parallel planes, 627 deductive, 10
parallelosrams, 603 indirect, 12 o,
proportion, 359 inductive, 5 o
proportionality, 3<7 rectangle, 578

: ractangles, 603 B area of, 748
. rhombuaes, 603 - properties of, 603
: acalar products, 71y ~ rectangular paralleleplped, 747
‘similar convex polyzons, 406 rectangular prism, -756
squares, 603 reflex angle, 143
trapezolds, 603 reffexive property

.vectora, 707 ‘ . of congruence,

property of the i for anglee, 235
‘eontrapoaitive, 326 ' " for segments, 234
proportion, 399 . ' for triangzles, 235

properties of, 359 : of equality, 233
proportional, 353 of equilvalent directed
\d sezments, 687
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reflexiva prﬂparty, {econ't. ) set(s),

* lof parallel 1ines, 347 - aﬁnvex, l§4
of parallel planes, 627 . elements of, 19
of proportionality, 397 - empty, 26 : *
of slmlldr convex - B & ¢ . equallity of, 20
polygzona, 406 ° LooE S 1ntersaction of, 24, 534
regular palygon(s), 297 , null, 25 ex.
apothem of, (79 . of real numbers, 55
area of, ‘75@ . union of, 25, 534
¢enter ﬁf T7<- - set-builder notatlon, 531
..~ -central trlangle of, 77% slde, 3
--. " “radius of, 779 of an angle, 145
Tregular zolyhedrcn 784 of a line, 138
regular pyramid, 804 of a plane, 135
- resultant, 705 ex. . of a quaarilateral, 204
- rhombusa, 578 y . .¢ ~ of a trianjle, 201
' area of, 755 7 - gimilar polygons, 403
prcpartiea of, 603 - properties of, 4058
Riemannian 5eomatry, 340 . Bkew llnes, 316 ;
rizght angle, 182 ) " alant naiaht of a pyramiu, 8@4
right dihedral angle, 635 slope,
.right prism, 757 : of a saément TEE4 o
right section of a prism, 795 of a non-vertical line, 556
right tfian le, 366 _ of a non-vertical ray, 555
rotation, 143 alope-intercest form of a
ruler postulate, 77 linear equation, 571
5.A,A. theorem, 361 space, 36 '
S.A.5. postulate, 251 . coordinate system in, 641
3.A.9, similarity theorem, 421 sphere(s), 820
scalgr(s), 683, 703 : center of, 820
scalar product, 718 chord of, 821
) properties of, 719 ‘goncentric, 820
secant, 821 i conzruent, 822
secant-secant angle, 862 dlameter of, 821°
secant-segmertt, 870 v exterior of, 841- .
external, 870 ) great ciprcle of, 821
gection of polyhedron, T84 . Interior of, 841
sector of a circle, 901 © radlus of, 820, 821
arc of, ! : secant of, 821
. area éf 01 tangent to, 842
radius cf 901 square, 578 -
Eégmént(s), 55 o : aras Qf, 74(:‘!! 755
of,a cireles, 903 ex. properties of, 603

eoncurrent, 597
eohgruent, 115
directed, 584 -

.3.3, postulate, 253
-5.5. similarity theorem, 420
straignt angle", 144

L0 4]

endpoints of, 85 subset, 22

;ﬂteriarraf.igD : prapar 25 ex.

length of, 114 substitution property, 233

midpoint of, ¢l, 526, 550 supplement, 18

parallel, 359 suuplement tneorem, 18¢

alope of, 554 : . 8symmetrie property

- tangent, SSC ~ of congruence, .
semicirele, 848 - ’ - for angles, 235
separation, 7 for segmsnts, 234

by a line, 138 for triangles, 235

by a plane, 13¢ of equallity, 233

by a point, 133 : o of equivalent directed
- Begments, 687

e
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symmetric property, icon't.)
Of .parallel lines, 347
: of parallel planes, 527
of proportionality, 39?
of similar convex
polygons, 406 -
tangent to a circle, 830
; @Qmmon external, 877 ex.
'eommon internal, 877 ex.
tangent-chord ang;a, 861
tangent circles, 835
tangent plane, 842
tangent-secant angle, 862
tangent-segment, 86G
tangent-tangent angle, 862
terminal polint, 55
terminus, 684
tetrahedron, 784
. theorem(s), 10
\  A.A! similarity, 422
arigle eonatryction, 160
betweenness-angle, 166
betweenneas-addition,
for polntas, 240
for rays, 240
- betweennesa=coordinate, 106
' -betweennesa-distance, 117
- hypotenuse-leg, 367
. - lsoceles trlangle, 275
rorigin and unit point, 78
, polnt-plattinﬁr 116
Pythagorean, 433
sunversa of, 434
3.A.A. 351
3.4.% simllarity, 421
8.5.3.. simllarity, 420
supslement., 18¢
- triangle inequality, 378?
= two-coordinate aysten, 3
“two-point, 108
total area of a prism, 7%9
transitive property
of congruence,
for angles, 235
for segments, 234
for triangles, 235
of equality, 234
-of equivalent directed
segments, 687
of order, 63 ,
of parallel lineas, 347
af parallel planes, 627
of proportionality, 398
- of similar convex "
polygons, 406 '
transversal, 317

P . .

trapezofd, 553 . 8
altituder of, 593
area of, 758
base of, 593
base anglas of, 593
isocelen, 593
legs of, 593
median cf 563, 758
prcpertiaa of, 603
triangle(s), 201
altitude of, 427
gngles of, 201 .
area of, T53: ¢
cireumseribed, o) ¢
congruent, 225
equlangular, 277
.equllateral, 277
exterior of, 203

exterlar angle of, 232
inascribed, 505
interior of, 202"
integpior angla of, 292

laocacelea, 277
median of,.25§
right, 366

sldeg of, 201
vartices of, 201

triangle inaquglity tneorem, 578

,,,,, 76
t;iangqlar-ragion 730
trinedral angle, 78¢
two-coordinate system
theorem, 103
two-point form of a linear
‘equation, 569
two=point tneorem, 108
unequal in the same order,
union of sets, 25, 534
unit, 70
unit’ area, T44
unit-pale, 70
unit-polnt, 76
unit aquare, 748
veetor(a), 700, T03
componenta gf 703
equal, 704
geometrical applica
lengtn of, 704
magnltude of, TO4
parallel, 705
perpendicular, 717
product with scalar,
projection of, 718
propertiaa of, 707
scalar product of,. 718
subtractlion of, 705
sum of, 705
zero, 704

tlons

\m\

704

370
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vertex '
of a nalyéanal-reﬁicn, 734 ax.
of a polyhedral an:le, 788 E
of a nolyhedron, 783 -

© 3o a pyramid, 803

-vartex angle of an 1sosceles
triangle, 277

vertlecal angles, 154

vertical lines, 510

x=axia, 510

x=-¢component of a direscted
segment, 6.0

x-@oordinate, 5:1, 545

xy-plane, 510, 543

xz-plane, 643 .

y-axig 510 S

. Y-component of a directgd
segment, 6%0 °

y-coordinate, 511, 6448

yz-=plane, 543 . .

Zrcoordinate, 546 - .

- zaro-ray, 1EC

zero vector, 704
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