
where ix end sl ON the liquid levels on the inside and outside respectively, referred to

ION arbitrary point. The difference in the vacuum capacitance, and the (small) vertical

offseto are contained in the factor AC(0), which is the capacitance difference measured

While the outside and inside are iv equilibrium.

mne vapor inside the capacitor was assumed to be at the temperature of the liquid.

This Wes obviously true for the ins10; capacitor, and wes assured for the outside capacitor

by placing it inside a copper tube whose lover end was immersed in the liquid. Any re-

. sidual radiation leak to the capacitor could be absorbed by Ow high conductivity of the

superf!"41 helium film.

The Capacitance dif4rence was meaCred directly by the use of the system shown in

Fig. 9, which incorporates the use of a emmercial capacitance bridge of the ratio-trans-

former type. The outside capacitor WAS connected to the "unknown" ports of the

bridge, and the inside capacitor was connected to the "external standard" ports of the

bridge. With the appropriate settings, the indicated capacitance at balance is equal to

the, difference of these two capacitors,

In order to maintain a fixed leve'; difference between the inside and the outside, the

desired capacitance difference was set on the bridge, then the corresponding level dif-

ference was approximated by manual adjustment of tit, vertical level of the vacuum can, and

then the level control feedback system indicated in Fig. 9 was activated. The signal

conditioner produced a signal derived from the error signal and its time integral. This

was combined with a large manually controlled offset signal to form the velocity command

for the motor-controller system. 7, digital volt-meter at this point served to monitor the

vertical speed of the vacuum can. A gain-of-one amplifier (not shown) was used to float

the velocity command voltage so as to meet the input requirement of the motor-conirolier.

When running smoothly, the system was capable of maintaining a set capacitance difference

within 30-50 ppm. The main trouble encountered was rough movement in the pulley used to

counterbalance the weight of the moving system, It was quite obvious when the system

became stuck, and so the data could be retaken.

The configuration of Fig. 9 was altered slightly for the equilibrium data points.

First, as mentioned earlier, the inside heater was turned off, then the controls on the

bridge changed so that the off-balance signal was determined by the difference of Co from

a set value, and then the control system was activated. This had the effect of maintaining

the outside level fixed relative to the vacuum can. When transients had died away, this

allowed measurement of several parameters with the inside and outside at complete equili-

brium, i.e., no mass or heat flow, no temperature or pressure difference. As mentioned

earlier, the temperatures were recorded as a check on their stability. Also measured was

the small downward velocity necessary to maintain a fixed outside level, because this

allowed determination of the evaporation rate of the outside He bath. Then the velocity

was Al at this value, and the bridge controls changed back so that AC(0) could be meas-

ured.

The dielectric constants were at first computed from the Clausius-Mossotti equation

and polerizability found in NBS Technical Note 631 (261, the liquid densities taken from
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the tort of Donnelly [7), and the vapor densities from the ideal gas equation of state.

They, could also be derived from full vs. empty measurements, which were found not to agree

with the calculations. The reason was found to be inconsistent units in the Clausius-

Mossotti equation as found in the above reference, which had the effect of making the

polarizability too small by a factor of 4n/3M = 1.047 (M = molecular weight). With this

correction, the agreement was excellent between the calculated value of c at 1.92 K of

1.05736 and the measured value of 1.05740. It was found that while the values of s and t'

varied significantly with temperature, their difference was constant to within a part per

thousand over our temperature range. Therefore, the calculated value of t t' = 0.05714,

appropriate for the highest temperature, where other results depend most sensitively on its

value, was used for all temperatures. Cv/i was taken to be 0.5599 pF/cm, the average of

the values measured for the two capacitors. Combining all these factors leads to the

expression for z2-z1 actually used in equation (21),

cm
z2 - zi = -31.27 7 (Ac(22-zi) - AC(0)) (25)

where AC(0) was slightly different for the different temperatures.

This single simple calibration served for the entire long run, because the capacitors

proved to have excellent stability and linearity, as determined by the regular measurement

of AC(0). By varying the point at which the outside level was fixed during an equilibrium

point, the two capacitors could be compared with each other over a significant fraction of

their lengths. It was f.'sirable to keep equilibration times short, so that equilibrium

points were taken only where the inside level was still in the narrow section, thus limit-

ing the comparison to the lower 2/3 of the inside capacitor and the lower 1/3 of the out-

side capacitor. Within this range, AC(0) was found to be essentially independent of

height and time. Expressed as a height difference, via equation (25),the standard deviation

of AC(0) for all the equilibrium points was 0.01 cm. It is thought that the good stability

and linearity of the capacitors is due in part to several design features arrived at by

trial and error. They are: (1) a mounting for the inside tube that allows some small

axial movement, which prevents compression and bowing of this long slender column, and (2)

the rather wide gap, whose proportions appear to be about the optimum compromise between

sensitivity to level change and insensitivity to dimensional errors, particularly lack of

coaxiality.

A remark should be made about the limitations that the experimental method placed on

the pressure difference measurements. They are due to the vapor pressure difference caused

by the temperature difference between the inside helium vessel and outside bath [the first

term in eq (21)]. If this term was large, then the liquid level difference had to be

large and of opposite sign for those flow regimes in which the total pressure difference

was small (essentially flows for which V was small). For an extreme example, at T = 1.92 K

with AT = 0.047 K and V = 0, the inside level z2 was 25 cm below the outside level, z1.
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3.5 Mass Flew Rate

The volumetric flow rate through the flow tube was determined from the geometry of the

apparatus and from the vertical speed of the vacuum can that was necessary to maintain a

fixed level difference between the inside and the outside helium spaces.

The functional relation between these quantities was determined by application of the

macs conservation relation to the geometry sketched in Fig. 10. The upward velocities of

the outside liquid surface, the inside liquid surface, and the vacuum can (all with respect

to some fixed point in the laboratory), are designated by Vo, Vi and Vb respectively. The

areas of the inside liquid surface, the outside liquid surface, and the dewar are desig-

nated as A
i'

A
o

and Ad.

The small amounts of mass entering or leaving the vapor phase can be ignored, so that

mass conservation can be expressed in terms of the liquid volumes as

volume added outside + volume added inside

+ volume evaporated = 0

During the small time interval dt, the volume added inside is (Vi-Vb)Aidt. If we designate

V
e
(< 0) as the velocity of the vacuum can during an equilibrium data point, and assume that

the evaporation rate is not time dependent, then the volume evaporated in time dt is -

VeAddt. (The correct area is Ad and not Ao because the volume displaced by the vacuum can

remains constant during the equilibrium point.) The volume added outside has two contribu-

tions: the added volume on the surface area of VoAodt, and the volume that has been

vacated by the movement of the can = Vb(Ad - Ao)dt. The result is

V0A0 + Vb(Ad - Ao) + (Vi - Vb)Ai - VeAd = 0 (26)

But under the conditions of the experiment, the level difference between the inside and the

outside remains constant, therefore

Vi = Vo (27)

The average velocity of net fluid flow through the flow tube (V) is expressed as

V = (Vi - Vb)Ai /Ax (28)

where A
x

is the cross-sectional area of the tube. Combining the above equations gives

V =
Ai Ad

(V
b
-V

e
)A- ATA

o

As defined, V is positive for flow toward the inside.

24 r)

(29)
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Figure 10. A schematic diagram of the main variables of the experiment.
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In order to cover a wider range in flow rates, the inside helium space was construct-

ed with a wide cross-section for the top one-thi.d of the inside capacitor, and a narrow

cross-section for the bottom two-thirds. In order to allow large level differences for

inflow it was often necessary to have the outside level well above the top of the wide

section of the inside space, hence well above the top of the vacuum can. In all then,

there were four different combinations of inside and outside surface areas for which data

could be taken; the parameters, and the "mode" identification numbers used on the data

sheets, are listed in Table 1.

3.6 The Flow Tube

The flow tube used in this experiment was a commercial quality stainless steel tube

with an o.d. m 0.160 cm, and an i.d. determined to be 0.1149 ± 0.0006 cm. It had a length

(14 of 60 cm and was wound in two turns of 10 cm diameter. The'inside end was mounted

about 3.5 cm above the outside end. The ends were cut off square.

The inside diameter was determined by room temperature gas flow measurements performed

after the experiment, but while the tube was undisturbed in its mounting on the apparatus.

The results seemed inconsistent until it was realized that, in laminar flow, even the

rather mall curvature of the tube could have large efects on the gas flow. Helium gas

and nitrogen gas were used to cover a range in Reynolds' number (Re) from 55 to 1930. The

volumetric flow rate of gas was measured by a we test meter whose calibration against a

bell prover had a standard deviation of 0.6%. The pressure drop (AP) across the flow tube

was measured by the commercial capacitance manometer used in the experiment. The

volumetric flow rate was multiplied by the factor (1 - Ps/Po) to correct for the water

vapor added by the wet test meter (where Po is the ambient pressure, and Ps is the vapor

pressure of water at the ambient temperature). The idea* gas equation of state was used,

the temperature taken to be ambient, and the density of the gas taken to be the mean of the

values calculated for the ends of the tube. The fractional pressure drop never exceeded

0.18. Thus we obtain the equivalent volumetric flow rate (1 of dry gas.

The data were analyzed by using the laminar flow equation for a straight tube applied

to the lowest RI data to deduce a diameter D. This was then used to calculate the (Fanning)

friction factor f as a function of Re. The equations used were

f n2 D5
' 32 n2 2Po

4P,,0

Re = -r2-
nUn

(30)

where P
o

44 the mass density of dry gas at ambient temperature and pressure. The viscos-

ity n was taken from [26] and [27]. We have plotted in Fig. 11 the experimental friction

factor divided by the expected values for a straight tube in laminar flow; the solid line
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Figure 11. The results of the room temperature gas flow measurements
on the flow tube.
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Table 1.

Node Number

Inside Interface Location

Narrow Wide

Outside

Interface

Location

Vacuum Can 1 3

Support Tube 2 4

A
i (narrow)

A
i

(wide)

Ao (VC)

Ao (ST)

A
dewar

4.96 cm
2

78.4 cm
2

Adewar
- 105.2 cm

2

Adewar - 2.8 cm
2

219.4 cm
2

is the formula of White [28] for curved tubes calculated for our diameter of curvature D,.

The good agreement makes us confident that the correct value of the diameter has been

food. The principle uncertainty in its meaurement is the uncertainty in the volumetric

flow measurement and its corrections. The deviations from the calculated values over the

entire range of the measurement indicate a standard deviation for D of about 0.5%.

Precautions were taken to prevent or reduce any effects on the flow due to the

presence of frozen air. The first was the protected location of the outside end of the

flow tube; it was in a chamber which was recessed about one inch into the bottom of the

base plate (see Fig. 7.). Such a locetion appears inaccessible to condensing air or

falling air particles. Of course, only helium gas was allowed to be present in the dewar

during the cooldown. Another precaution was the addition of a filter (which used ordinary

chemical filter paper) onto the transfer line used to fill the helium dower, in an effort

to reduce buildup of frozen air during the long run.



The only problem which could not be definitely eliminated was 4 cumulative buildup of

those particles small enough to remain in suspension in the liquid helium; they might be

expected to accumulate from air introduced during the insertion of the transfer tube, etc.

There was mo way to mmure their concentration, nor are we aware of any data on the sizes

of particles that might be expe_ed to remair in suspension. However, the lack of any

significant cumulative shifts in data points that were repeated during the 35-day run, we

take to be good evidence that suspended solic particles were not a significant problem.

See, for example, the good reproducibility (N I%) of the T = 1.39, AT = 0.019 data taken

at the very beginning and end of the long rur (e.g., data points 9 422 and 10 515).

That evidence is reinforced by a mishap that took place early on October 1. A

technician working nearby accidentally knocked off a large rubber vacuum hose used to pump

on the helium dewar. At the time, the liquic helium was probably warm enough to be at a

vapor pressure above atmospheric pressure, but still, in the 30-60 seconds it took him to

replace the hose, we would guess that more air should have been introduced than during all

the previous activities. Again, no significant changes in the repeated data can be seen

following that dAte.

3.7 The Energy Flow Measurement

The inside helium vessel and the flow tube were surrounded by an insulating mcuum.

Thus the energy flow through the tube could be determined from an energy balance

calculation. The essential elements of the situation are shown in Fig. 10. The unusual

feature of this calculation turns out to be the large influence of the vapor that is

present.

The energy balance is done in two parts; first we calculate the change in total

energy of the helium in the inside vessel (the control volume) from thermodynamics applied

to a small change in its mass. The conditions of the change are that the temperature, and

hence the vapor pressure, remain fixed and that the total volume is fixed, even though the

total mass is changing. Designating the specific volumes of the liquid and vapor as v and

v' (not to be confused with the velocities "
n'

v
s'

V), and the specific internal energies

as u and u', we find that the increases of total mass M, of total volume, and of total

energy U are given by

dM = dm + dm'

d(Vol)IT,p = v dm + v' dm' = 0

dUl
T,P,Vol

= u dm + u' dm' (31)

where dm and dm' are the increases in the 1:,quid and vapor masses. Combining these

equations gives

dUl_ v'u - vu'

T,P,Vol VT (32)



We can use the definition of the chemical potential, eq (16), and the well known fact that

the chemical potentials of the liquid and vapor are equal in equilibrium, to find that

u' = u - P(v' - v) + T(s' - s) (33)

Substituting into the previous equation and using the Clausius-Clapeyron equation for the

slope of the vapor pressure curve 2.1:
svp

and the definition of dM in terms of the tube
cu

cross-section and the average veld t'

dM = pVAxdt (34)

we find

= [pVh - VT (g) eve)Axdt (35)dUIT,P,Vol
V

In the second part of the energy balance calculation we express dU in terms of the external

sources.of energy, i.e., in terms of the energy that flows through the boundaries of the

control volume. They are the heating rate Q of the internal heater and the energy flux

JnAxdt that enters through the flow tube. As discussed in section 2, this energy flux can

be expressed in terms of the enthalpy flux and the heat current 4, using eqqations (10b) and

(19). Equating this to the previous equation gives

+ (pVh 4)entAx = (pVh2 - VT.
UT
(")

svp,T211tx
(36)

The energy flux on the left hand side is to be evaluated at the entrance of the flow tube

to the inside helium vessel. The energy change on the right hand side is to be evaluated

at the temperature and pressure that prevail within the inside vessel, whose values are

indicated by the subscript 2. Let us define the heat flux density q2 by

q2 = - - VT.(0csvp,T2 (37)

If the temperature and pressure are essentially continuous at the entrance, which we expect

to be true in most cases, we have hent = h2, and so gent
= 42 In any case, by application

of eq. (20), we can find 4(x) at some location x, if we know q2 and the temperature

and pressure at x. For our case the relation is

4(x) = q2 + p42-h(x), (38)

We shall quote all our results for the energy transport as values of As As defined, the
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sign convention of q2 is consistent with the one for V [eq. (29)], so that heat flow away

from the (higher temperature) inside vessel has a negative sign.

The second term of eq (37) is readily interpreted as the heat of condensation (or

evaporation) that must be absorbed by the liquid in order to change the vo;ume of vapor.

Its presence is due to the particular configuration used to perform the experiment. At the

higher temperatures of this experiment, it becomes nearly as large as 0/Ax fer the larger

valuers of V, and thus its presence causes a significant deterioration in the measurement

accuracy of q2. It is the quantity 42 that is most significant (not 0/Ax) because it is

the quantity to be compared to the 0/Ax of section 2.

This heat of condensation also introduced an extra limitation in the range of veloc-

ities for which data could be taken. For fixed AT, it was often found that for inflow

(V > 0), when this term acts like an extra heat source, that its magnitude increased more

rapidly with V than the heat conducted out (q2). Therefore, it was not possible for

eq (37) to be satisfied with positive values of 0 if V was greater than some particular

value. When encountered, this limiting value of V is indicated on the graphs of q2 vs. V

(figs. 22-25) by a vertical bar.

We have neglected the kinetic energy terms in the total energy balance because they

can be shown to be quite small for all the conditions encountered in this experiment. We

have also left out gravitational potential energy terms, because a careful accounting of

them fcand that they just cancelled the work done on the fluid by the movement of the

container. In Appendix 2, we rederive eq (36) with a full accounting of potential energy

terms and the work done on the fluid in raising or lowering the vessel.

3.8 Extraneous Heat Flows

The energy balance equations

correct only if we have accounted

extraneous heat flows between the

plained the precautions taken and

were small.

that have been given for determining the heat flow are

for all the energy exchanges, i.e., only if there are no

inside and the outside helium vessels. Below are ex-

the tests made to ensure that these extraneous heat flows

The poor thermal conductivity of the stainless steel walls of the vacuum can dictated

that it be surrounded by a heat shield, HS of Fig. 5. This took the form of a thin (0.04

cm) copper sheet fitted to surround the sides and top of the vacuum can. Its lower end was

always immersed in the liquid, and its upper end was soldered to the support tube ti 10 cm

above the top of the vacuum can, thus intercepting the heat conducted down the support

tube, On the inside of the support tube, the lower 10 cm was stuffed with coarse brass

wool to act as a radiation shield.

The inside helium space was supported by three long, thin-wall stainless steel legs

that attached to the bottom (or base plate) of the vacuum can. The rather close fit sug-

gested the precaution of mounting three sharpened nylon screws on the legs just below the

wide section of the inside space; they could be extended so as to maintain a fixed spacing

between the inside space and the vacuum can. All electrical leads that went to the inside

31 37



space were first thermally "tempered" to the base-plate and were of low thermal conduc-

tivity wire.

It was not practical to maintain a good vacuum at all times in the vacuum space,

because this prevented the inside helium space from ever cooling dawn enough to fill with

Therefore the inside space was filled before cool-down with hydrogen gas at a

pressure of a few Torr.* This xted as a thermal exchange gas, as long as the vacuum can

remained above % 10 K. Once the vacuum can was cooled below % 3 K, the hydrogen gas was

frozen to the walls or adsorbed onto about 3 cm3 of "molecular sieve" that was present

After the first transfer was completed and the vacuum gauge outgassed, the seals were

checked by monitoring the vacuum space for several hours with a He leak detector; it was

checked again several days later. The vacuum was monitored throughout the long run by

a Phillips-type vacuum gauge mounted on the top of the support tube. It registered

2-5 x 10
-5

Torr during data taking, except for jumps of an order of magnitude (which

lasted 1-2 min es) that were caused by the sudden withdrawals of a good fraction of the

vacuum can from the liquid; this was almost certainly due to slight desorption of hydro-

gen from the suddenly warmer walls.

The thermal isolation was checked directly at the beginning of the run by measuring

the total thermal conductance between the inside and. the outside at temperatures above the

lambda point. This was done by maintaining a fixed outside temperature T2 = 2.31 K, pro-

viding a small heat input with the inside heater, and waiting 1-2 hours for the temperature

to equilibrate at a value 0.5-1.5 K higher than the outside temperature. The vacuum can

was completely immersed for these measurements, but the higher temperature of the inside

prevented liquid from entering. (It was found that this type of test can be very misleaL-

ing if there exist any pockets on the inside that can trap liquid; the relatively large

latent heat of the liquid that is being evaporated on the inside and condensed en the

outside can cause a large and long-lived false conductivity).

Assuming that the thermal conductance linking the inside and the outside is tempera-

ture independent, the three data points that were taken yielded a value for the thermal

conductance of 1.5 x 10
-3

W/K. This value is about 1 1/2 orders of magnitude larger than

was calculated for conduction through the legs, electrical leads, etc. It was found that

conduction through the low pressure hydrogen gas could account for the conductance, if the

indicated pressures at the Phillips gauge were taken at face value. Still, this value for

the conductance was low enough so that we could choose to ignore the unexpected persistence

of unchanged indicated pressures (2 - 5 x 10'5 Torr) at the lower temperatures, where the

calculated vapor pressure of hydrogen should be considerably smaller.

These same measurements indicated that a heat input of 2 x W remained at AT = O.

This could represent a real heat leak (e.g., incomplete radiation shielding), or it could

reflect a small temperature dependence in the thermal conductivity. This heat leak, if

real, would require that all values of q2 be corrected by the addition of -0.019 W/cm2.

Since data could not be taken at low enough AT's to distinguish between the two alter-

natives, we have not made this correction to the data, and instead view this as an upper

limit to the possible systematic error in 42.

*1.0 Torr - 133.3 Pa.
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3.9 Error Estimates

The errors of this data are not always as email, nor as accurately known, as might be

wished, primarily because of the exploratory nature of the experiment. The method was new,

the results could be only crudely anticipated, and it seemed more desirnble to emphasize a

broad range for the measurements rather than concentrate on their accuracy. Given these

conditions, they seem satisfactory. The errors for quantities given in Appendix 1 vary,

depending on the conditions, and are summarized in Table P.

A pert of the random error in the temperature and pressure difference measurements

could be evaluated quite reliably from the variation of the equilibrium point data. This

variation should include the effect of electronic noise, intrinsic sensor resolution, drift

in the sensor characteristics, and inaccuracies in the data reduction. Including all the

equilibrium point data, we find that the temperature difference had a standard deviation of

(4, 3, 2, and 4) x 10-5 K at the four temperatures of 2.10, 1.92, 1.65 and 1.39 K respec-

tively. The standard ueviations for the height difference were 0.016, 0.012, 0.009 and

0.011 cm respectively. Through eq (21), these figures imply a standard deviation for the

pressure difference of 0.4, 0.2, 0.1 and 0.1 Pa respectively.

For the regular data points there may exist an extra source of random error that is

not included in the figures given above; it is the fluctuations that might be introduced by

the control systems that are used to maintain a "constant" temperature and pressure dif-

ference. The short term fluctuations in the altitude and temperature differences (time

constants of a few seconds) were judged by the error signals of the feedback systems to be

rarely more than 0.02 cm and 0.0001 K. However, because it is the time-average values that

count, it is the longer term fluctuations (the drift during the 3-5 minutes it took to

record the data) that determine the real error. For the altitude difference, we estimate

that this source of error was negligible. Unfortunately, the temperature sensors of the

control system (but not the temperature measuring system) were found to drift. On bad

days, these drifts caused progressive shifts in the measured AT of 2-3% over the course of

the day. In the worst cases, the rate of drift suggests that AT should change by an amount

somewhat less than the errors given above. Somewhat arbitrarily then, we increase the

error estimates of AT by 50%. Our final estimate of the random error (one standard devia-

tion) in aT is (6, 4, 3 and 6) x 10-5 K, and in AP is 0.6, 0.3, 0.2 and 0.1 Pa, respec-

tively, for the four mean temperatures.

The systematic error in temperature difference is determined by the systematic error

in the pressure measurement during calibration as discussed below. This leads to a system-

atic error in temperature difference of between 0.5% and 0.7%.

The pressure difference is subject to systematic error, due to uncertainties in the

capacitance-to-altitude conversion. Estimated at 2 parts per thousand, it implies a

possible systematic error of N, 2.8 x 10-2 x (z2-zI)Pa, where z is expressed in centimeters.

This error becomes significant only for the large AT., small V, data at the highell. tempera-

tures.

The errors in the mean temperature are determined by the errors in the vapor pressure

measurements used to calibrate the thermometers. We could evaluate the random errors in
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Table 2. Estimated Errors

Rand mo Error (10)

Systematic Error

Measured
Quantity
(Units)

Temperature

2.100 1.919 1.650 1.395

T (K) 0.2 mK 0.2 mK 0.3 mK 0.4 mK

1.1 mK 1.1 mK 1.1 mK 0.8 mK

AT (K) 0.06 mK 0.04 mK 0.03 mK 0.06 mK

0.005 AT 0.006 AT 0.006 AT 0.007 AT

Az (cm) 0.01 cm 0.01 cm 0.01 cm 0.01 cm

0.002 Az (cm) 0.002 Az 0.002 Az 0.002 Az

AP (Pa) 0.6 Pa 0.3 Pa 0.2 Pa 0.1 Pa.

0.03 Az (cm) 0.03 Az 0.03 Az ^.03 Az

V (cm/s) 0.02 V 0.02 V 0.02 V 0.02 V

0.02 V 0.02 V 0.02 V 0.02 V

q2 (W/cm2) 0.01(42+0.047 V) 0.01(42+0.030 V) 0.01(42+0.013 V) 0.01(42+0.004 V)

0.01(42+0.047 V) 0.01(42+0.030 V) 0.01(42+0.013 V) 0.01(42+0.004 V)
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the calibrations at 1.92 ,..nd 1.39 K, from the standard deviations for data taken on several

different occasions; they were 0.2 and 0.4 mK respectively. A few simple tests indicated

that systematic errors due to placement of the pressure probe could not be too much larger

than this. The absolute calibration of the pressure gauge could not be confirmed in the

region of interest; if we take manufacturer's estimate and .increase it by a factor of

three, we arrive at a systematic error in pressure of about 0.3%. This implies a syste-

matic error of about 1 mK in mean temperature rn the T58 scale.

The random error in V is determined from he standard deviation in the voltage-to-

speed conversion (1.5%), the estimated accul y to which the voltage fluctuations could be

averaged by eye, (1%), and the non-uniformity in the geometry (1%). Combined in quad-

rature, this gives a random error of 2%. An estimate of the error in geometry suggests

that each mode might have a systematic error as large as 2% of V.

The relative error in q2 (both random and systematic) depended rather strongly on the

conditions of the mRasurement, oecause of the sometime large value for the vapor's latent

heat correction (second term of eq (37)). Assuming an error in V of 2%, we find that the

error in 4, is given by 0 (V in cm/s), where u has the values of (4.8, 3.0, 1.3 and 0.4)
-4 '2

x 10 W/cm for the temperatures of 2.10, 1.92, 1.65 and 1.39 K respectively. At the

most extreme utlue of V (70 a/s), this corresponds to errors of 6.033, 0.020, 0.009 and

0.003 W/cm2. When V is small, and q2 is large, this error is not too significant, and we

must include the estimated random and systematic errors of the first term in eq (37) of

1% and 1% respectively.
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4. RESULTS AND DISCUSSION

Data were collected at four values of the mean of the outside and the inside tem-

perature. Using the formulas given in section 3, each data point was reduced to give

values for the actual pressure and temperature differences between the ends of the flow

tube and the resulting steady state values for the net fluid velocity V and the heat flux

density 42. These results are presented in tabular form in Appendix 1, along with some

other data and derived quantities of interest.

4.1 The Net Fluid Velocity

Nearly all the results for the net fluid velocity V (the actual mass flow rate di-

vided by the total density and the flow tube cross-sectional area) are shown in Figs. 12-

15. The absolute values of V have been graphed there as a function of the absolute value

of the pressure difference, so that data for both directions of flow are superimposed.

The value of the nominal temperature difference is indicated by the symbols; the measured

temperature differences may differ from the nominal by as much as 3%, due to the drifts

discussed earlier.

More than half of the results might be summarized in a very simple statement: they

are largely indistinguishable from those of an ordinary fluid in fully developed turbulent

flow. This statement applies for those flows at the larger velocities or Reynolds num-

bers, which are the ones most likely to be of Interest for applications.

These graphs of IAPI vs IVI reveal quite distinctly one of the important results of

this experiment: V depends primarily on AP -- its dependence on AT is significant only at

the lower velocities. This result is oily to be expected for an ordinary (single-phase)

fluid, because the temperature gradient does not appear in the equation of motion of the

fluid (we are excluding indirect effects due to buoyancy forces). In contrast, the tem-

perature gradient appears explicitly in the (simple) superfluid equation of motion,,

eq (6), as part of the chemical potential gradient. Even though that simple equation for

vs is not expected to remain valid for our conditions, it suggests the possibility that vs

might be a function mainly of p; this would make V also a function of Ay, at least if ps/p

is not too small. This possibility is completely excluded (for our conditions) by the

weak dependence of V on AT. To make a numerical comparison, we can use the expression

phy = AP - psAT

which we have included in the data listing in Appendix 1. We find that under most con-

ditions, the temperature difference dominates the chemical potential difference, and that

neither one has much influence on the net mass flow. As a typical example, we can examine

the data for T = 1.92, AT = 0.019; not until AP is about 50 times smaller than

psAT (1, 2150 Pa) do we see much effect of the latter on V.
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Figure 12. The pressure difference vs the net fluid velocity at 2.100 K.
The dashed [solid] line is eq (41) [(42)].
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Figure 13. The pressure difference vs the net fluid velocity at 1.919 K.

The dashed [solid] line is eq (41) [(42)].

38 44



'1000

100

10

i

T1.650 K

o 0..0190

MED

%me

/
I I 11111 I 1 1111 11

rat

=MI

10

lv l(cm /s)

100

Figure 14. The prassure difference vs the net fluid velocity at 1.650 K.
The dashed (solid] line is eq (41) [(42)].

39 45



1000

Tal.395 K

0 AT=.0548

$ a Als.0197

A a ATs.0013

0
0 000

A

=NI

10 100

IvI(cm/s)

Figure 15. The pressure difference vs the net Quid velocity at 1.395 K.
The dashed [solid] line is eq (41)1(42)3.
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A related, but not-equivalent, observation is that neither vs nor vn becomes Solely a

function of AP in this same limit. This comparison is not quite as clear-cut as for V vs

AP, becalme vs and vn (unlike V) can vary significantly along the flow tube, as can be

seen from the expressions obtained from ego (1, 2, and 19).

v
n
= V + V

s
=

ps
Pn

psT (39)

The variation of both 4 and T can cause substantial changes in vn and vs. Nevertheless,

the average of the velocities at the ends of the flow tube, plotted against the overall

pressure difference, ought to give a good indication of whether or not the local valUe of

velocity is solely a function of AP. Such plots of the two worst cases of correlation

between v
n

or v and P are shown in Fig. 16 and 17. The data for a particular AT fall on

two lines, whose difference is correlated with the sign of AT (relative to AP). These

worst cases are also the cases where vn and vs differ the most from V. In those cases

where there is a good correlation of vn or vs with AP (e.g., vn at Ti 2.10, vs at

I 1.39, or all the small AT data) then it is also true that these velocities do not

differ significantly from V.

The final major observation to make is that the numerical results for V vs P are

largely indistinguishable from what we would expect for an ordinary fluid at these veloc-

ities. For an ordinary fluid, the flow is known to be turbulent for Reynolds numbers

greater than 2 - 4 x 103. The most reasonable choice (but not the only one!) of a coun-

terpart for He II might be the "total" Reynolds number, defined by

oV0
Re = (40)

"n

For all our conditions, this is equal (to within 15%) to 1.15 x 103 V, for V expressed in

cm/s. Then the range in velocities that we could cover corresponded to a range in Re of

5 - 85 x 10
3

, all apparently above the threshold for classical turbulent flow. If the

inside surface of the flow tube were smooth enough, Vitt know that the pressure drop for an

ordinary fluid should be given by the "Blasius Formula"

4L
APB = 0.079 Re-(1/4) ir [(1/2)OV

2
] (41)

This formula is shown on each of the graphs (Figures 12-15) as a dashed line. We see that

thb main trend of the data is reproduced. In the high velocity region, the formula under-

estimates the pressure drop, but for an ordinary fluid, a rather modest surface roughness

would be capable of making up the difference. We have no data on the surface roughness of

our flow tube, so that we are not able to determine if this accounts quantitatively for

the difference.
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Figure 16. The pressure difference vs the average superfluid velocity at
2.100 K. Cf. Fig. 12.
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This result is very appealing, because it suggests that the two-fluid dynamics re-

dWces to ordinary fluid dynamics in some limiting cases. It suggests, even if only fur-

ther experiment can provis, that the pressure drop should change with L and 0 in the same

we as the ordinary fluid results eq (41 ). It might be suggested that the superfluid

fraction has been reduced to zero by th t. large flow velocities but that can be ruled out

on a number of grounds, including the results reported in the next section, which would

display no heat transport above the "enthalpy rise" value if the heat current were only

the thermal conduction of He I. Actually, it presents a difficult problem, because there

is no obvious way to derive such results from the current versions of two-fluid hydro-

dynamics.

For the purpose of a more sensitive comparison of the data, WA have made a rough fit

to a constant friction factor formula, defined by

4L
APc = f [(1/2)pV

2
]

D- (42)

where f has the values 0.0062, 0.0062, 0.0067 and 0.0075 for the temperatures 2.10, 1.92,

1.65 and 1.39 K respectively. This formula is plotted as the solid line in figures 12-15.

The fractional deviations of the data from this formula have been plotted in Figs. 16-21.

This plot gives a more exact impression of the data coverage, scatter and departure from a

simple behavior.

We have not yet found any simple correlation for the lower velocity data, nor have we

been aide to specify what condition it is that determines just where that region starts.

Howaver, in all tne conditions encountered in this experiment, this ignorance is in re-

gions where the pressure drop is small enough so that it may be mainly of academic

interest.

No correction was made for end effects, because we have no experience that indicates

that they should be made. If such an extra pressure drop were present, of about the same

size as for ordinary fluid flow (say 1/2 pV2), then it would represent about a 6% correc-

tion to the data.

If the change due to the curvature of the flow tube were about the same for He II as

for an ordinary fluid in turbulent flow, then there would be about 1% extra pressure drop

at 10 cm/s, and about 12! extra pressure drop at V = 70 cm/s [29].

4:2 The Heat Current Deatty

We have shown in sections 2 and 3 thnt the quantity 42 represents the useful heat

(per channel cross-sectional area) that can be removed from a heat source by the fluid in

a cooling channel. We showed that for a heat source which is a small heated section in

the middle of a cooling channel of length 21, assuming the other conditions are matched,

our experimental result for 42(V), V > 0, would represent the heat absorbed tv the in-

coming fluid, and that the result for 42(V), V < 0 would represent an additional heat

conducted away by thc departing fluid.
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The results for 42 are shown in Figs. 22-25, where they are plotted as a function of

V. The symbols indicate the nominal values for AT, but the explicit dependence on AP is

not indicated; it can be inferred from the value of V.

Constructing a correlation for 4- data is not so straightforward as for the net

fluid velocity. In that case, mass conservation required that V be a constant, so that

once it was found that AP is mainly a function of V, we can infer that the local and

average pressure gradients are nearly the same. In this case, the temperature gradient

and the heat current deneicy can turn out to be strong functions of position along the

tube.

We proceed in a manner similar to that found in section 2.2 The one-dimensional

energy equation leg (20)j gives us an expression that relates 4(x) to T(x), and to the

velocity and the local pressure; the latter two quantities can be taken directly from

experiment. The model building comes in trying to devise a successful second equation

that will allow solution for the unknowns 4 and T.

The most natural choice we have come up with so far is to set the chemical potential

gradient equal to one of the mutual friction expressions using eq (10) with Ovs/Ot = 0.

This mounts to setting 4 equal to some simple function of Vp.

We used Vinen's expression Oh

Ns
= Apspn vn-vs I - ve) (en vs) (43)

and took the values for A from his graph. The value of vn (not very influential in the

calculation) was arbitrarily fixed at 0.5 cm/s, a value near his.

The equations were integrated numerically, the T at x2 fixed at T2, and 4 given

various starting values, until the temperature at the other end matched. The resulting

values of q2 are displayed as the solid lines on the graphs of 4 vs V, Fig. 22-25.

The calculations do reproduce some features of the data. First, they do a reasonable

job of doing what they were originally designed to do, i.e., predict the V e 0 data, the

poet- spots being T = 1.395 ana T = 2.100, where the calculated values are all about 10%

high. Second, for the higher l.'s they do a reasonable job of predicting the slope of 42,

near V = 0. Finally, one curve (Fig. 25) does 20 through zero (albeit much more steeply)

about where the data reverses sign, at the lowest 1. and AT. This last .eature, and the

other sharp drop at negative V, are found only 1% the conditions in which AP becomes

large enough to cause Ap to reverse sign; we have tht interesting possibility of a heat

current flowing toward higher temperatures. leefertunately, the experimental evidence for

this current reversal is not quite compelling. The data had a small &latter, and were

reproducible, but the possibility of a systematic error (an extraneous heat input) of

about the size needed to cancel the effect, cannot be excluded.

Overall, though, this simple theory does not work very well, the most striking result

beng tat for both V : 0 and V > 0 the observed q2 Is less than expected. As originally

formula, d, Vinen's arguments that lead to eq (43) clearly suggest that the equation

should remain valid when V 0 1. These results lead us to conclude otherwise.
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These results seem to be suggesting that we might retain Vinen's identification of

the source ofmutual friction with the presence of vorticity in the superfluid fraction,

If we now suppose that the net fluid flow Is capable of generating superfluid vorticity,

in aeraunts over and above that generated by the mean counterflow of the two components.

5. ENHANCEMENT OF HEAJ TRANSPORT BY FORCED CONVECTION

Without understanding quantitatively how mutual friction is increased by mass flow we

can still draw some qualitative conclusions which indicate that in some circumstances at

least, such more heat can be transported by forced convection than by "natural" convec-

tion.

Our reasoning is based again on investigating the limit as the heat current goes to

zero everywhere except near the heater. The energy equation for He II also integrates

immediately to give the now familiar result that the total heat absorbed by the fluid is

equal to the enthalpy difference times the flow rate. For the incoming fluid (V > 0), we

get q2 = pVCDAT; for the departing fluid (V < 0), we get 42 :11 O. The positive velocity

prtion of the enthalpy-rise-heat-current is given on the graphs (Figs. 26-29) of 42 vs

V. This value should, and does, act as a lower bound for the useful heat that can be

rejected by the heat source. If the extra mutual friction caused by the mass flow has not

"killed off" the heat current, then we an expect an extra contribution.

Now let us consider a comparison of "natural" to forced convection. Suppose we want

to use the flow tube from these experiments to cool some localized heat source. First,

let us estimate the best that we can do at 1.8 K with pure counterfloy, with two tubes

connected to the source, but no forcing of circulation around the loop. We suppose that

we have a pressurized system so that we can increase the AT to 0.300 K. At best, the heat

current per tube will increase as the cube root of T, and since 42(T = 1.92, AT = 0.047,

V = 0) = -1.11 W/cm2, the best we can do (ignoring the temperature dependence of the propor-

tionality constant in equation (P)) is

0300)1/3
(1.11) x 2 x(-E

7OX7
= 4.1 W/cm

2

Second, how well can we do with forced convection? The enthalpy-difference-heat-current

(the lower limit) for the same AT is

2.1

1.8 F
Cfl dT = V x (0.21 J/cm

3
)

If we have enough head (2.5 m) to force the flow at 200 cm /s, we get

42 W/cm2

which is 10 times larger, The pump work divided by the heat transported to
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APV 3.6 x103 Pa 3.6 x 103 -
1.7%

pVIC dT 151-37&?
p

If 17% pumpwork were acceptable, then another factor of 3 increase in heat absorbed is

possible.

While this example may not be typical of any prospective application, it does

illustrate how in some situations forced cooling might be of interest.

These experimental results for q2 show the transition from this purely classical

and predict2ble heat transport to the more or less predictable values for zero mass

flow -- the pure counterflow regime.

6. CONCLUSIONS

This experimental study enables the following generalizations to be made regarding

combined heat and mass flow in Helium II.

1. Velocity of flow is primarily a function of pressure gradient. Towards the higher

velocities encountered in these experiments, the relationship between velocity and

pressure gradient is independent of the temperature gradient and strongly resembles a

classical fluid. At lower velocities a complex relationship exists between V, AT and

AP, which needs further clarification.

2. At zero velocity, axial heat transport typical of the "mutual friction" regime is

again confirmed. Either positive or negative velocities reduce this heat transport

below what would be calculated from the Vinen theory, and, as the magnitude of the

velocity increases, classical forced convection heat transport is approached. For

strongly negative velocities there is some evidence that a reversal in the direction

of the heat current takes place as predicted from the Vinen theory. More definitive

experiments would be required to confirm this.

3. In practical situations, axial heat transport far in excess of the usual pure

counterflow values may be achieved by imposing mass flow or forced convection with

the usual classical pressure drop.
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9. NOMENCLATURE

fnolish

A Gorter-Millink constant

Ad, A A
o horizontal cross-sectional area

Ax cross-soctional Area of the flow tube

Cp isobaric heat capacity per unit mass
0
u,

0
v , C

1,
C
2

capacitance

O diameter of the flow tube

E total energy of the helium

g gravitational constant

h' hl, h2, hent enthalpy per unit mass

Ju (4) the energy (total energy) current density

active capacitor length

flow tube length

L
o length of quantized vortex line per unit volume

M (m, m') the total (liquid, vapor) mass of helium within the inner vessel

P' P11 P2' Psv pressure

P
o'

P
s (for gas flow measurements) the ambient pressure, the partial

pressure of water vapor

0 heat current or rate of heat addition

q, q1, 42' gent heat current density

Re Reynolds' nomlsor

s, s', si, s2 entr "oy per unit mass

T, Ti, 12, Tent temperature

U total internal energy of the helium within the inner vessel

u, u', ul, u2, uent internal energy density per unit mass

v, volume per unit mass

vn, vs normal and super component velocities (cross-sectional average)

V net fluid velocity (cross-sectional average)

Vb, Ve' Vi, Vo vertical velocities

x axial coordinate

zl, z2, zb, zent altitudes



Greek

A (indicates the difference of two values)

c, dielectric constant

q, qn coefficient of viscosity

p, pn, ps Miss per unit volume

p Gibbs potential per unit mass (chemical potential)

w vorticity

0 volumetric flow rate

Subscripts

1 (2)

or for the outside helium bath (inner vessel)

o (i)

e, (b, d) for evaporation measurements (the vacuum can, the dewar)

ent at the entrance of the flow tube to the inner vessel

SV, svp along the liquid-vapor coexistence line

u (e) associated with the internal (total) energy density

Superscripts

primed and unprimed quantities distinguish between the vapor and the liquid,

respectively



APPENDIX 1

The following tables give the important results for almost every data point taken

during the long rur. Listed are the average and the difference of the temperatures of tte

inside and the outside helium vessels (TMEAN,DT), the altitude difference calculated from

the preceed4 two quantities (DP), the velocity of net fluid flow through the flow tube

(V), and the nominal heat current density at the insi& end of the flow tube (Q2).

The sign convention is determined by taking the positive direction to run from the

outside toward the Inside. Therefore positive temperature differences indicate that the

inside was hotter than the out de; a positive pressure difference, that the inside end of

the flow tube is at a higher p.,!ssure than the outside end. The negative. values of Q2

indicate that heat is flowing towards the (cooler) outside, etc.

All temperatures are given in kelvins (measured on the T58 Ne4 vapor pressure

scale), the pressure difference is given in pascals (= 1 newton /meter2 = 10 dyne/centi-

meter
2
), the altitude difference in centimeterJ, and the velocities are given in centi-

meters/second. The reader should be alert to a practice that is cos-manly found in the

He II literature and this paper, and that is the mixing of MKS and cgs ,nits. Therefore,

when various quantities are multiplied together, further multiplicatioh by powers of ten

may be necessary to maii.tain consistent units.

Each data point is identified tqf numbers found in the ninth column of the table; the

month and day on which a data-taking s.-ision was star:=44 4' iocilated by the numborr under

DATE , the sequence number for that data point is irtc;; n- .016er XN, and the mode number

that indicates the location of the liquid interfaces given under MO (see Table 1). The

data points have been sorted: first by TMEAN, tnen by whether they are regular data points

or equilibrium points (Q2 = 0) and finally by chronolojical order.

In columns 7 and 8 are given the results for the two auxiliary thermometers TIB and

TOB. They were intended to measure the temperatures near, but not at, the inside and

outside ends respectively. (See the text for an account of the relatively large uncer-

tainties in this particular measurement). The temperature of the outside helium bath was

subtracted from the indicated temperature at each location to give the listed values of

DTIB and DTOB.

Several other quantities of possible interest can be calculated from the experimental

results by using known values for some thermodynamic properties and some formulas from

section 2 and 3. We have listed RDMU, the density times the difference in the chemical

potential, v.:lich is given by AP - p;AT. Also tabulated is Ql, (Ql E 41), the nominal heat

flux density at the outside end of the flow tube, defined by Ql = Q2 + (z2-zi)pV. Finally,

we have tabulated the nominal values for the normal- and super-fluid velocities at the two

ends from the formulas
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VN1 = V +

VS1 = - PS
sl

, etc.

Ps 1

The thermodynamic properties were taken from a power-law interpolation of tables A and E of

Putterman [8].
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Appendix 1. Experimental Data.
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Appendix 1 (continued). Experimental Data.
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'043 8096 9.03. 1200 12468

'004 '11.0 '11010 7.17 -7.11

.6446 642 646 11631 1144
'0079 '803 '9101 '5001 64,91

459 5.29 543 9.26 9.9
.6464 46 67634 3630 341
'007 3/72 3.75 7.62 7.16

'0195 '2.28 6200 107 1.86

.0096 2634 202 1.89 146
se325 22.46 22.65 25.57 2639
,362 .2144 28694 665 29646
94 662 447 3626 3.15

66399 43.97 4635 9694 4904
6414 4146 4621 41616 4664
'051 47,64 50.20 55051 53e17

.466 4145 4341 .36686 .3622

...50. 32.49 34124 40.23 3642
1.031 659.62 63.05 566604 654,30

666652 -3.62 '4001 3428 3.16

'64351 3.42 4407 3.28 3e15



Appendix I (continued), Experimental Data,

1141111 01 UZ OP V 61 0108 OTI8 OAT ENNNO ROMU (11 VN1 YR VS! 1111

141 (41 (CM) IPA) (CM /S1 (11/CM1) (K) (K) (PAI WW1 101/11 (C11/31 1C11/11 (C11/0

1.11163 401129 7416 "11,d 32442 "4935 431064 41707 930 4 4 2263.9 496

1.91162 .01925 40 14141 '34151 '.364 .00176 401113 930 5 3 063I0 407/

1.91951 .01921 13,07 44.1 37,11 021 .40066 40110 930 6 4 22612 4695

1891961 011919 160 10,4 .it.e/ '.612 440159 401794 931 1 3 '1191141 '4916

1091961 .01914 1304 2.1 1.11 .932 .00067 .01715 931 1 4 '111143 "4651

1691910 41911 746 4711 '2449 '4641 400131 .01794 930 9 3 '111141 "4940

1491161 401911 '14411 145 0.00 's051 44012 401761 93119 1 '1156.0 '4151

1491140 111111 locl 140 0400 44911 .00015 .00246 10 1 4 1 33047 "4451

141944 441116 03426 '114$ 14.94 "4439 404011 440241 10 1 5 1 '376.7 "4410

109114d 041111 "412 2142 '16.24 '1405 .00019 .00243 10 1 6 1 '333.5 "4431

Ist.e61 111917 11s/5 300 6403 '4451 .J0093 .01775 10 34 1 '116540 '4051

611:44 411924 "12454 0249 11114 '.933 .J3067 .01733 10 3 5 1 193411 '4686

1.91911 441911 '446 10449 20467 "4604 4441142 401003 10 36 1 '113510 '.930

1.91963 41914 "11401 110 19417 "1930 410070 401745 10 3 7 1 "111947 .715

1.11963 41926 1.79 lb.'. 1740 .719 .00134 .01101 10 3 1 1 "214349 "4916

1411165 .31921 1003 111. 440 '.053 403094 1011111 10 3 9 1 '11654/ '4153

1.91971 141134 '11421 '940 11t12 '4916 404076 401757 10 310 1 '1111141 '066

1491970 .01129 '402 11.1 '11454 4747 o01115 .01795 10 311 1 '115443 402

1.91974 41913 '11434 "tots 14..1 '.912 .00073 401756 10 312 1 '117145 '.790

1.91970 141424 '94b2 13.4 6,46 094 '40072 4017921 10 313 1 '115646 "4194

1,91974 441923 '10.63 '3., 613 000 4011070 .01761 it 314 1 '216143 '4116

1491913 431920 '94b1 10.3 444 "4416 401105 .017119 10 315 1 '115941 417

1.91973 131931 '10.41 3,7 0.00 '053 44091 401711 10 316 1 '217143 1653

1491971 431325 'Usti '1.2 b109 ',o006 444061 401756 10 317 1 '116147 4114

1.91976 441931 '10435 6.2 "bsli '4021 401104 4317011 10 3111 1 101111 079
1.91931 .30317 1.61 .8 PM .498 oij017 .01244 10 321 1 '31643 "4496

01954 a0510 29.0 4150 09614 .031 .00026 460243 10 312 3 96.9 4194

1.91953 00310 11o13 31246 '56.56 4059 .00026 .00244 10 123 3 '4341 '4191

1.91955 .3031b 13494 21345 '49423 '4114 400014 400141 10 314 3 '139 "4119

1.91950 410311 1469 134,3 and! 4201 .00016 .00231 10 315 3 '11949 4.4171

1.91959 .00314 5.19 Mb '32.33 '4154 440011 402311 10 Z26 3 '15541 4319

1.91960 .30317 161 0.0u '.499 403116 .00241 ill 317 1 35544 '4499

690935.40033 .03 6400 OICIO M004.600052 921 1 341 1.110

1.9096i40001 o11 .1 Odi 0.000 40009.40M 9 3 1 1 141 LOH

140614 400003 .01 .3 0.00 0400 401011 '400044 91123 1 '145 0.000

/490500 .00003 -41 0.00 0,030 440010 '4000,50 91124 1 '246 0.100

14913t1 .00001 .80, 10 0.00 0.000 400004'MM 9/125 1 '1.5 0.000

1491221 413062 '.31 40 0.00 0.000 440004 '100051 91126 1 "240 0.000

149451 430006 401 .2 0.00 0,000 400002'400060 91117 1 '541 0.000

1,93911 440411 .01 6404 C.040 '.30001 '400066 91111 1 '149 follf

14437 .33033 .01 .1 0.00 0.030 "401003 400061 91129 1 '345 0.000

21.27 19,11 16,17 140
07,06 0,16 3f,06 011$1,9V

23.46 24.72 11411 IfeW
1401 3344 41.91 atioW
11011 11411 17411 61 0

'21.10 '19439 11,41 '114141,:.

"341 '4411 3411 34

'2021 '2.32 1.19

12.92 13.03 16.11 11614:.

'11410 '11417 14471 '14430.:

'3411 '4407 3411 4
16.95 OM 24,73 23A1;7

'13494 "15131 '11413 *PAU
14.11 14416 21.01 ZIlie

'10419 '21.46 '14433 1311t,"".

"3411 '4407 341$

1466 9.11 16430 1661:

14,93 '11.11 4654 61C
6.32 6.64 13i93 11434

'11401 "11473 '5140 1.14

3.99 4411 11449 11411'

'9470 '11411 "2491 "2.16`;

3,52 0107 3.29 3.16.1

1.11 2119 9449 MP
0,01 MI '1.11 '1441

'1,19 '1431 °411 .64Y:

69471 1004 19,32 .6(44k.

'51413 '19445 "51434 4.1174

'49476 '50416 41411 144;
'31494 49411 '1741ll '3611!:

'33450 '33411 '31436 '31,11'

"2430 '1431 1419 1.11

0400 0.00 0.00 0411?,

0401 1400 0.00 MI

1411

0.00 0400

0.00

04111,,,!

1101 0401

0.00 0.00 Q4011 1411

0.00 0.00 04110 1o01,

hoo hoe Los lisC

1411 0.00 0.00 0411',:

0.00 IMO 601



4111iN Of

4KI IKI

.011271 600002

'.111111 604001

01;141 .30003
ii:.:: ':

Iiiiilliol .00003
111106. .630041

1640 640001

halm 00001
P691910 604001
402114 t00342
a,...69,231 640001

Z1+91711 .00400
401712 .600003
p., .

3691771 630000

14691913 -630001

40$1119 '40064
1691901 '000446

A190981 '0000?

102914 '030044
146191 40004

1,91712 100141

161,101 .00001

1692910 .13000o

1694911 6.44J41

1691701 .404002

1.9110, 40002

1.66716 .42941

1.66769 1293 o

1.66792 632940

144977
1164976

1.64976

1.64971

1.64977

1464977

1.649N
1464976

144475
1464911

664473
1.64973

144104
104973
1.64973

14497?
1164977

1.64979

66497?
664971
1.64977

.11i02

.:11197

.2101

.31691

.41867

.41685

Ii1195

.21$93

.31194

0189*
.41566

.418f:6

.111:7

10162113

141666

.01881

441161

41674
31176

.01874

.01174

Appendix I (continued). Experimental Data.

Li

1CNI

OP

(PA)

V 42

(CN/SI III/C1121

0,00

1K/

0710

IKI

DAMON° RONU

(PA)

41 412

Mae; 1CN/$1
VN1

10/11

VU
ICN/3I

4641 61 600 0.000 .04609 .43046 914 II 267 0.000 600 loll
.41
.oi,1

60

41

040
0100

0.000

4.040

40010
43009

.800044

640046
914 21
914 31

0165

.365

0.000

0.000

0.01 I.01 III
loll

642 60 0100 0.000 600076 600151 928 11 364 0.000 loll Sell
ea a Oen 0.000 600056 600089 928 21 161 0.000 040 loll loll
6i1 62 0600 0.000 600041 601040 928 31 .67 0.000 loll 041
..1 61 1600 0,000 600014 .600002 928 4 1 66 0.000 600 loll 1110
$01 I0 040 0.000 603009 s00041 928 51 167 0.000 0401 141
600 ell 0.40 0,000 600008 6.00042 926 6 1 265 0.000 0101 1111
eCO 61 OM 0.300 .00009 el00041 928 71 0.300 0100
601 14 IWO 'MOO .J4011 6.00038 92$ 81 63 0.000 600 Os"
4t .1 0.00 0.640 .40016 6.00014 62629 1 363 0,000 hIS loll Ii
604 61 0.04 0.000 42003 6.00056 929 11 .60 MOO 0400 loll I,"
lei 6.11 0.40 4.000 00002 6.60057 929 21 67 0.000 loll
.64 .3 0.00 0.000 40001 6.40058 929 31 .5 0.000 I'll
004 a 01G4 0.000 .30004 6.00062 929 71 .2 0,000 Sell loll
.01 6.3 0.011 0.300 6.00000 00055 529 6 762 LOU 040 0.00 0611

60? 60 0601 0.300 6.03001 6.00064 930 II 3.8 0.000 0610 1600
.1 11 640 0.000 .20005 .60033 930 21 .2 0.000 MI hIS

4.40 .1 0.00 0.000 '00069 'm05? 10 1 3 1 67 0.000 0640 040

5311612 7642,1 6.06 0.030 6.44010 6.00187 10 3 1 4 764361 0.000 0200 0100 hOC
6602 645 0.000 6.40004 6.00070 10 32 1 4.1 0.000 0.00 0.00 0610
6.01 6.1 0.04 6.000 100005 6.04053 10 3 3 1 261 0.000 0400 0100 040
6.02 6.4 0.40 0.000 .43004 6640060 10 319 1 262 0.000 0.00 0100 0.00
6.4! 60. 0.000 6.04041 6.00062 10 320 1 116 0.300 040 040 600

dia u.03 .,660 .20161 42840 1 1 1 .132615 ee660 4619 .1607 1691
.5411 4C.5 622.62 6.511 40231 .02865 9 2 8 1 .147963 .e710 .26625 .31630 .21601
11.b '461 11.65 .008 .30121 602782 5 2 9 1 .1370.4 ..525 13693 15623 2301

"foli 312 0.00 .4544 .30016 .01837 925 6 1 .92761 6544 649 4600 142
lhd; 6133,4 35.76 . 501 .00076 J01785 925 4 105661 .420 29680 31666 3762?

4,4i 1360 36176 .319 .04151 41638 925 33 48961 .5),5 .41.57 .43638 45681
3G.64 6.514 .30071) .41746 925 9 4 .101968 .457 24.51 26,01. 32616

106 133li 642.12 6.354 .00140 601633 92510 3 .82265 ..524 46.35 48686 41607
40 314 602 ..546 .00094 41819 9251/ 1 91669 .1546 4.52 .1602 1662

.4,41 111 0104 6.545 .00094 .01630 92516 1 123.7 6.545 .641 .7602 1662

.7.10 626.1 16.2? 6,546 .63075 601805 92517 1 15461 6.454 11673 12.1.3 19690

62.73 34.2 618.70 .$44$ 123122 41839 62518 1 892.0 6.546 .24604 .25612 .17637
.7.10 626.1 16.4/ .0d49 .20076 .01804 92519 1 .95463 6.453 11617 1248 20605

62.71 616156 .0.49 .00123 e0/635 92520 1 .88963 6.546 .23694 .25660 .17624

4.14 626.1 18.57 ..:51 .00078 601601 92521 1 .95164 6.455 11699 1217A 20620

.4.44 3{1 6.04 .1545 .20093 .31322 92522 1 11969 .4145 4651 .7.0Z lotl

66145 15.82 6.554 .20086 401805 92524 1 141.9 .64,3 9621 9674 17647

64134 25.2 61546 ,467 103119 41831 92525 1 97.4 6.547 42640 13697
.0.64 610.6 12651 .40085 .01805 9252/ 1 13066 6.494 5685 6616 1461?

.3sib 16.1 69.63 6.503 40107 .01822 92527 1 .90369 6.553 .15661 .16672 .8611

65464 60.7 12.54 ..559 600079 101799 12928 1 12864 6.494 5688 6619 14620

**oil 12,4 740 6.514 .00099 41818 92529 1 10563 6552 .13.34 .14650 4607
65.39 67.3 10.64 .6562 640060 601801 92530 1 .92367 6507. 3693 4.11 12631

64.8? 3,4 4.00 .145 644091 .01810 MU 1 .914.1 .6545 4650 .7601 1662

1:

1:11

lotl

0100
0410
Doll
0.6
0100

1696

.20612

23620

1661

3667t

45624
3149

.30658

1661

1611

19661

.17608

1906
. 16696

19691

1611

1%22

. 13.74

13697

4697
14600

.507
12614

1661

O-
tt!



Appendix 1 (continued). Experimental Data.

Yp

t$CAN OT 01 OP V 02

IKI (CM) 1P11 1CN/51 IM /M/

-.524

.560
6532
$556
.544

6546
.$471

9116
444
.$479

6394
4531
o529
-.095

.547
,547
.430

'614076 $01174 4141 9ob .5.53

:61417i $11674 4534 .367 1424

1,14907 $01072 4555 7,4 3018
'4'1.14 977 $011711 1516 also 6.48

...6141171 501189 401 3.0 060J

.614160 41904 OM 3.1 0600

1614110 501911 3.71 2830 91o5')

1614910 .01911 16,43 314.b 0.61
614170 .01911 1010, MO 48,55

664911 641901 1401 219.3 46.44

614991 101901 .27 69.4 u28.9,

1614190 501413 968, 43.0 15.74

614993 $31910 9144 0!.b 6118
664917 .J1908 24141 44707 7.54
611001 6.61413 46.4 11.1 21016

1063001 601413 66/4 261 01E1

1$19J07 0111! Oa i10)J

1.63216 sJ0063 .42 .1 4$J0

1.61352 610001 id 0.0.

148921 $00000 ta 0.0J

145461 600314 ..1J 4.64

1.64993 .16001 161 .1 4.44

1,64524 610061 $)1 .1 4.10

1664026 $111041 .01 .1 0.00

154024 630001 3,40 04 0.00'

1.64990 610001 ..40 .1 0.30

1.65941 40104 $1,1 .1 0,0J

1.61410 .30002 600 .0 0.00

1665921 400041 .10 60 0.00

664971 $00002 .116 0.00

10,4024 $00103 .01 .4 0.03

1663955 .1,40002 601 -.2 0600

663997 610041 401 -.2 0;00

1639517 .31926 1.40 349 0600

1.39520 ,01926 4,13 00,5 18.71

1.3954 .31925 1.33 45.3 '111625

1.39534 .31940 1,42 364 0.00

1.39539 .01944 8607 14o9 26.24

1639533 41949 0,0 .34.4 26.73

1.39539 .01949 st1.07 .44.4 25.97

1.39536 .31354 4,,3 41,4 30,87
1.39538 .01954 4.43 J201 27.20
1639538 .31354 4943 12.9 25.57
1.39561 .01983 14935 1730 37.15

1639597 6i1)83 10.65 18199 38.86
1639567 02003 23.16 WO .55e62

0.000

4.000

0.000

0.100

0.3.10

0.010

0.000

3$000

mao
0.030

,0.030

0.000

0.000

0.000

0.100

0.000

6231
.208
-.158

-.231

4182
$186
6181
,108
9118
-.122

6154
e664
..045

UM
(K)

OTI8

1K1

OATENNMO 1213110 1,11 VN2

111/0421

VNI

101/S1

VS2

ICN/S1

VS1

(CM /S)

.00100 .01818 92532 1 90669 -.552 11$76 -12.63 *3$91 .691

.03086 .01802 92533 1 -920.2 .518 1.55 1.58 9.90 8577

.00095 601814 92534 1 90865 6552 -10.23 1041 240 615

.J0083 .01790 92535 1 .9160 -.523 1116 .25 613 6.03

.00092 .01805 92536 1 -911.4 $544 .50 -7.00 1,62 1.61

.0111, 601892 927 4 1 93161 4546 .51 7.02 1$62 1.61.

.00075 .01844 927 5 4 1198.4 .6214 4 593 4660 52.99 52.19

.00219 .01920 927 6 3 20.3 -.481 -5 .59 62.80 612 619
,3006 .41903 327 7 3 109.2 .$499 4 .46 5247 45683 4600
$00379 4:60! 927 8 4 .11520 -.246 4 06 43.33 47.91 47.11

630139 $010.7 927 3 6441 -.537 .3 .69 33091 612 2640
600081 .01820 92710 3 .99863 +6398 1 .40 20.71 27.32 26.92

31080 .01820 92711 4 99863 .398 1 .87 20605 2605 2631
.30272 .01493 92712 3 41562 6419 6 A7 7300 "67.26 '6613
$13110 .01894 92713 1 977.7 .$433 1 .34 16.28 23.49 23.14

$0010.. .01870 92714 1 -933.5 -.547 .51 .04 1$13 1$62

$37111 437111 92719 1 8880 546 2 .03 28.92 20462 20629

.03001 .00014 9 2 6 1 .1 0.000 .00 0.00 0.00 601
$11047 141417 9 210 1 1.3 0.300 .00 0500 0500 0.00

$03001 0017 925 1 1 .2 0.300 .00 0.00 0.00 0.00

.13000 609316 925 2 1 .1.6 0.000 .00 0.00 0600 0.00

$03004 .00015 925 3 1 43 0.000 .00 0.00 0000 0.00

o0J003 400016 925 4 1 .64 0.100 .00 0.00 0.00 0.00

.40005 .00016 925 5 1 .62 0.000 .30 0.00 0,00 600

.31302 03023 92512 1 .64 0.000 .00 0500 0.00 0.00

.31002 .00020 92513 1 .2 0.100 .00 0.00 0600 600
.30004 .40021 92514 1 .166 0,000 IOU 0600 0600 0510

40004 .00018 92515 1 .69 0.000 .00 0,00 COO OM

.J1061 .00170 927 1 1 .7 0.000 .00 0.00 0.00 601

.00020 .00069 921 2 1 1.0 0.300 .00 0.00 0.00 0601

.03009 .00050 927 3 1 1.2 0.000 .00 0.00 0,00 0.00

603009 .00012 :0 1 1 1 .7 0.300 .00 0.00 0.00 0.00

.00011 .00009 10 1 2 1 64 0.000 .00 0.00 MO 601

.30102 601785 9 3 8 1 35746 $231 642 .9625 .69 .69

600101 .01768 9 3 9 1 402.0 .6169 1 $12 11.93 19.33 19.22

.43130 .01786 9 310 1 312.9 6198, .24602 26619 708 17.66

.33102 .01804 9 4 2 1 3604 6231 .8.41 945 .69 .69

.J0102 .01776 9 4 3 1 451.1 6127 19.62 21.14 2608 26.62

.00102 .01776 9 4 4 3 45141 6130 19195 21.49 27.25 27;09

00102 $01716 9 4 5 3 45161 .$127 19637 20687 26.51 26.00

130144 .01818 9 4 6 3 2744 6178 .34.81 .38601 4445 3634
610144 63/818 9 4 7 3 274.0 $/30 .31.50 -34.40 2615 6,66
600144 .01818 9 4 8 1 214.0 $180 .30.01 .3208 .2621 603
.03091 .01794 9 4 9 4 546.4 -.078 31.56 34.01 37.60 37.31

.00167 ,01858 9 410 3 -190.9 -.157 41.18 45.14 38661 38.39,

.00242 .01936 9 411 3 16.7 6152 .55.89 '61.69 55660 55616 .

77,



Appendix 1 (continued). Experimental Data.

:'1141AN

?itIKI

01

IKI

82

(COI

JP

IPAI

V 02

101/51 III/CM2I

0108

I()

0118

IKI

DATENNM6 ROMU

(141

GI VNZ

11/1CM21 ICN/SI

VN1

ICN/S)

VS2

1011$1

VS1

ICN/$1

1:39172 802007 12,73 235,5 43.71 ,44 43016 101806 9 412 4 61310 405/, 38141 41.43 44.14 43868
3,31969 .02001 16.91 271.0 °48814 8029 .03199 $01886 9 413 3 10584 .110 64941 54811 48810 41814
149111 001951 11814 12184 ilstb 8164 .30096 41/12 9 411 4 4960 1199 2509 2101 32421 32.06

4039113 .01964 16.95 271.1 46667 ..,4031 803191 801051 9 416 3 91.0 .141 47111 611.41 46611 4641
4111115 01961 1501 19584 39856 8152 803016 001782 9 417 4 16116 W3 34.03 31.63 40.02 3901
4,19141 08/161 7851 13787 42.91 8091 803156 801018 i 418 3 131.1 ,111 3641 39e11 3100 31.41
1.19131 $31945 1101 4811 4800 1233 83001 801114 9 419 1 36184 0133 1841 9012 .69 110

'611111 .1191V 6,50 62,4 2201 4194 843112 801191 1 410 1 43111 eau 11.69 16.91 23.30 13.16
1011113 036912 825 260 12814 8188 .00122 .01531 1 411 1 344.0 411 19161 61651 61146 12.19
631111 .01911 341 17.1 1341 .226 813104 .01824 9 422 1 319.4 .191 1.01 MO 1341 13417

1009114 111900 148 1181 22.41 1140 100141 801842 9 423 I 30181 .191 11.10 3611 011.19 41111
1119163 .11914 2844 482 8863 e23() .03115 801835 9 414 I 3114 411 .16 6.06 9.33 9.11

1,11101 41992 1819 130 06655 .216 $00115 801856 9 421 1 3169 .131 14.39 11.19 1.90 1411
611164 .02001 1.11 r

.., 4.57 8236 833108 801156 9 416 1 31641 '416 3.11 4.41 1.21 1411
4019915 .01004 *100 464 4,13 8223 800111 801868 9 421 1 161.6 .111 611.14 13.41 64011 3.43
141113 Iii001 100; 3,6 4,jd ,215 .33106 .01064 9 428 I 311.1 431 1011 69.39 .10 .10

1.39114 .11111 2.04 3.6 6800 1238 800115 801911 5 8 5 I 3914 .131 6141 1111 on .11

149111 811111 610J Job 4$03 8229 800098 .01764 9 8 6 1 313.4 6419 6611 10 al Al
1019131 .01911 68106 8582 27.08 8181 .00090 .01742 9 8 7 3 444.1 .116 10,41 11.14 17.11 MO
1,19131 031910 4045 92s4 21012 6011 .03134 861791 9 8 8 3 2690 0119 631191 63441 11,11 21111
619114 835111 5861 5,1 6800 '8326 atmes .05295 9 8 9 I 1032.9 .316 11.16 14.14 di .99

101911/ .31423 2111.45 2;11,5 47,46 8381 603158 604426 9 810 4 1300.6 .101 3404 43.00 41.19 4101
1.19110 801523 16802 22114 44$54 $104 .30963 $05371 9 611 3 111.1 .311 641000 061110 044.11 4341
1.11141 41113 2701 34589 49892 8381 803154 804890 9 812 4 134161 .196 36.99 4101 11.11 10.11

1119111 .11111 16.21 3160 53,5i 66059 801128 805391 9 313 3 2480 8406 691113 611431 611.31 011431
1.19191 111533 3.i? 1340 3400 $159 03804 805368 9 614 3 90350 8371 639896 11014 034.19 61311
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APPENDIX 2

The purpose of this appendix is to prove the assertion that the formulas already given

for the overall energy balance and energy flux -- in particular eq (36) -- are still

correct when the gravitational and work terms are taken into account. Our procedure is as

before, i.e., equating the change in energy calculated by two different methods.

In the first method, we calculate the change in the total energy E of the helium

contained within the control volume (the inside vessel), due to the increment in its mass,

when the temperature is held constant. It is

dE = dU + dEgrav (A2.1)

where dEgrav is the change in the gravitational potential energy, and dU is again the

change in internal energy of the helium.

We can prove that the variation of u within the liquid is negligible, by considering

its variation with depth,

du _ auN dT (0u) dP
27 5Tip 27 3V T 27

(A2.2)

For equilibrium within the control volume, with a gravitational field present, we still

have dT = 0, but now dP/di = -pg, i.e., the pressure varies with depth within the liquid.

However, using the measured values of expansivity and compressibility for the liquid to

evaluate the size of the pressure derivative, we find that

du _ /00
7 P319

T
g

is much smaller (< 1%) than he corresponding variation of the gravitational potential

energy density with depth (= d(gz)/dz = g), so that it can be safely neglected.

Since u everywhere within the liquid has nearly the same value that it has at the

surface, we can repeat the entire argumek used to eliminate from dU any explicit depend-

ence on the vapor; we obtain the same equations [eqs (31) - (35)1, as long as wc. realize

that the pressure in eq (33) is the pressure of the vapor. Therefore, eq (35) is still

valid if we evaluate the enthalpy of the liquid at the pressure of the uwface, ch we

designate as P'2.

We may evaluate the change in the gravitational potential, without loss of gent. ility,

by assuming the inside space to have a constant horizontal cross-section Ai, and by evalu-

ating the gain or loss of liquid at the surface (altitude z2) and at the bottom of the

inside space (altitude zb). It is

dEgrav = 9(z2pAidz2 - zbpAidzb) (A2.3) 4,1)



We can express this differently by using eq (28) and the identities dz2/dt = Vi and

dzb/dt = Vb, and then combine it with the result for dU, to obtain

dE = (put + p'2 - T2() AvdtV
svp,T;)

+ pg(z2 zb) VbAidt + pgz2VAxdt (A2.4)

where, as before, 12 is the inside temperature, and u2 is the liquid energy density at this

temperature.

The second method is to calculate the energy that passes through the boundary of the

control volume. It is the sum of the electrical heat, the work done on the fluid by the

walls of its container, and the energy that enterc through the flow tube.

dE = dQ - ced jeAxdt (A2.5)

The work term is evaluated simply by the p,41$ure-volume Ark done on the fluid by the

top and bottom of the inside space, taking into account the hydrostatic pressure dif-

ference.

-dW ,12VbAidt + (1)12 + g(z2 zb)) VbAidt

zb) VbAidt (A2.b)

The toti) energy current je contains, as before, the enthalpy current and the heat

current, but we must also add a gravitational pottgltial energy current, gzentpV, where zent

is the etitude at which the fluid enters the inside space. The enthalpy is to be evalu-

ated at the p-,ssure at which the liquid enters- which -is, by continuity in the pressure,

the local f1u'c .pressure at the altitude of entry, P'2 + pg(z. - )
ent-'

Collecting terms,

we find that the tent terms cancel to give

je (Puent P'2 gent Pgz2)V
(A2.1)

Then substituting into eq (A2.5), and equating it to eq (A2.4), we find that all the

retaining terms containing g cancel, and we recover eq (36).
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synems, and whole structures. The series presents research
results, test methods, and performance criteria related to the
nocteral and environmental functions and the durability

ant safety characteristics of building elements and systems.
Technical IsIntes--Stulies or reports which are complete in
themselves but restrictive in their iseatment of a subject.
Analogon.: to monographs but not so comprehensive in
scope definitive in treatment of the subject area. Often
serve as a vehicla for final reports of work performed at
NBS under the sponsorship of other government agencies.
Voluntary Product StandardsDeveloped under procedures
published by the Department of Commerce in Part 10,
Title 15, of the Code of Federal Regulations. The purpose
of the standards is to establish nationally recognized require-
ments for products and to provide all concerned interests
with a basis for common understanding of the characteristics
of the products. NBS administers this program as a supple -
ntent to the activities of the private sector standardizing
organizations.
Consumer Information SeriesPractical information, based
on NBS research and experience, covering areas of interest
to the consumer. Easily understandable language and
illustrations provide useful background knowledge for shop-
ping in today's technological marketplace.
Order above NBS publications from: Superintendent of
Documents, Government Printing Office, Washington, D.C.
20402.
Order following NBS publications NBS /R's and FIPS from
the National Technical Information Services, Springfield,
Va. 22161.
Federal Information Processing Standards Publications
(FIPS PUB)Publications in tide series collectively consti-
tute the Federal Information Processing Standards Register.
Register serves as the official source of information in the
Federal Government regarding standards issued by NBS
pursuant to the Federal Property and Administrative Serv-
ices Act of /949 as amended, Public Law 89-306 (79 Stat.
1127), and as implemented by Executive Order 11717
(38 FR 12315, dated May 11, 1973) and Part 6 of Title 15
CFR (Code of Federal Regulations).
NBS Interagency Reports (NISIII) A special series of
interim or final reports on work performed by NBS for
outside sponsors (both government and non-government).
In general, initial distribution is ,ar.dled by the sponsor;
public dish ibution is by the National Technical Information
Services (Springfield, Va. 22161) in paper copy or microfiche
form.

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The tohowing current-awareness and literature-survey bibli-
ographies are Woad periodically by the harem:
Cryegtenk Data Center Current Awareness Service. A litera-

ture survey issued biweekly. Annual subscription: Domes-
tic, $25.00; Foreisn, $30.00.

L1 ad Natural Goa. A literature survey issued quarterly.
Annual subscription: $20.00.
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Superconducting Devices and Materials. A literature survey

issued quarterly. Annual subscription: $30.00. Send subscrip-

tion orders and remittances for the preceding bibliographic

services to National Bureau of Standards, Cryogenic Data

Center (275.02) Boulder, Colorado 80302.


