. where 55 4nd 2, are the 1iquid levels on tha inside and outside respectively, referred to

" some arbitrary point. The difference in the vacuum capacitance, and the (small) vertical
offeet, ere conta!ned in the factor AC(0), which 1s the capacitance difference measured
while the outaide and nside are {1 equilibrium,

The vapor inside the capacitor was assumed to be at the temperature of the 1iquid.
This was cbviously true for the insids capacitor, and was assured for the outside capacitor
by placing 1t inside a copper tube whose lovar end was immersed in the iiquid. Any re-
sidual radiation leak to tha capacitor could ba absorbed by thu high conductivity of the
superf?id helium f{im,

, The capacitance difference was meas.red directly by the use of the system shown in
Fig. 9, which incorporates the use of a commercial cepacitanca bridge of the ratio-trans-

former type. The outside capacitor was connected to the "unknown" ports of the

bridge, and the inside capacitor was connected to tha "external standard" ports of the

bridge. With the appropriate settings, the indicated capacitance at balance {s equal to

the differance of thase two cepacitors.

In order to maintatn a #ixed levs. differance between the inside and the outside, the
desired capacitance difference was set on the bridge, then the corresponding level dif-
ferance was approximated by manual adjustment of th. vertical ievel of the vacuum can, and
then the level contro! feedback system {ndicated in Fig. 9 was activatad. The signal
conditioner produced a signal derived from the error signal and its time integral. This
was combined with a large manually controlled offset signal to form the velocity command
for the motor-controllar system. - digital volt-meter at this point served to monitor the
vertical speed of the vacuum can. A gain-of-one amplifier (not shown) was used to float
the velocity command voltage so as to meet the input raeguirement of the motor-controlier.
When running smoothly, the system was capable of maintaining & set capacitance difference
within 30-50 ppm. The main trouble encountered was rough movement in the pulley used to
counterbalance the weight of the moving system. It was quite obvious when the system
became stuck, and so the data could be retaken. _

The configuration of Fig. 9 was altered slightly for the aquilibrium data points.
First, as mentioned earlfer, the inside heater was turned off, then the cortrols on ihe
bridge changed so that the off-balance signal was determined by the differance of C, from
a set value, and then the control system was activated. This had the effect of maintaining
the outside level fixed relative to the vacuum can. When transiants had died away, this
allowed measurement of several parameters with the iniide and outside at complet2 equili-
brium, {.e., no mass or heat flow, no temperature or pressure differance. As mentioned
eArifer, the temperatures were recorded as a check on their stability. Alco measured was
the ame1l downwerd velocity necessary to maintain a fixed outside level, because this
a11owed determination of thie evaporation rate of the outside He bath. Ther the velocity
was ©' .4 at this value, and the bridge controls changed back so that AC(0) could be meas-
ured,

The dieleciric constants were at first computed from the Clausius-Mossott{ equation
and polarizabiifty found in NBS Technical Note 631 [26], the 1iquid densities taken from

1
h



] ' TACHOMETER
1
MOTOR
CONTROLLER »  MOTOR
|
REDUCT1ON
VELOCITY comanp [ o
|}
TORQUE
LIMITER
SIGNAL
CONDITIONING <= MANUAL OFFSET
LEAD
SCREW-
ERROR SIGNAL

PHASE SENSITIVE

DETECTOR
- f4}1—A ;
DETECTOR Cof]
CAPACITANCE BRIDGE VACULM CAY

H o

Figure 9. A schematic drawing of the system used to maintein a constant
difference between the inside and outside lavals,

0

EXT. STD. UNKNOWN ’ !
| F_I

22
<8




the text of Donneliy [7], and the vapor densities from the ideal gas equation of state.
Thay. could also be derived from full vs. empty measurements, which were found not to agree
with the calculatioss. The reason was found to be inconsistent units in the Clausius-
Mossotti cquatior as found in the above reference, which had the effect of making the
polarizability too small by a factor of 4n/3M = 1.047 (M = molecular weight). With this
correction, the agreement was excellent betwesn the calculated value of ¢ at 1.92 K of
1.05736 and the measured value of 1.05740. It was found that while the values of ¢ and &'
varied significantly with temperature, their difference was constant to within a part per
thousand over our temperature range. Therefore, the calculated value of ¢ - ¢' = 0.05714,
appropriate for the highest temperature, where other results depend most sensitively on its
value, was used for ali temperatures. C /2 was taken to be 0.5599 pF/cm, the average of
the values measured for the two capacitors. Combining all these factors leads to the
expression for 2,°2 actually used in equation (21),

—

cm
2y = 2y = -31.2 BF (AC(zz-zl) - AC(O)) (25)

where AC(0) was slightly different for the different temperatures.

This single simple calibration served for the entire long run, because the capacitors
proved to have excellent stability and 1inearity, as determined by the regular measurement
of AC(0). By varying the point at which the outside level was fixed during an equilibrium
point, the two capacitors could be compared with each other over a significant fraction of
their lengths. It was cusirable to keep equilibration times short, so that equilibrium
points were taken only where the inside level was sti11 in the narrow section, thus limit-
ing the comparison to the lower 2/3 of the inside capacitor and the lower 1/3 of the out-
side capacitor. Within this range, AC(0) was found to be essentially independent of
height and time. Expressed as a height difference,via equation (25),the standard deviation
of AC(0) for all the equilibrium points was 0.01 cm. It is thought that the good stability
and linearity of the capacitors is due in part to several design features arrived at by
trial and error. They are: (1) a mounting for the inside tube that allows some small
axial movement. which prevents compression and bowing of this long slender column, and (2)
the rather wide gap, whose proportions appear to be about the optimum compromise between
sensitivity to level change and insensitivity to dimensional errors, particularly lack of
coaxiality.

A remark should be made about the limitations that the experimental method placed on
the pressure difference measurements. They are due to the vapor pressure difference caused
by the temperature difference between the inside helium vessel and outside bath [the first
term in eq (21)]. If this term was large, then the 1iquid level difference had to be
large and of opposite sign for those flow regimes in which the total pressure difference
was small (essentially flows for which V was small). For an extreme example, at T = 1.92 K
with AT = 0.047 K and V = 0, the inside level zp was 25 cm below the outside level, 2.
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3.5 Mass Floy Rate
The volumetric flow rate through the flow tube was determined from the geometry of the

apparatus and from the vertical speed of the vacuum can that wes necessary to maintain a
fixed level difference between the inside and the outside helium spaces.

The functionel relation between these quantities was determined by epplicetion of the
macs conservation relation to the geometry sketched in Fig. 10. The upward velocities of
the outside 1iquid surface, the inside 1iquid surface, and the vacuum cen (all with respect
to some fixed point in the laboratory), are designated by Vo. V1 and Vb respectively. The
araas of the inside 11quid surface, the outside 11quid surface, and the dewar are desig-
nated es Ai’ Ao and Ad.

The small amcunts of mass entering or leaving the vapor phase can be ignored, so that
mass conservation can be expressed in terms of the 1iquid volumes as

volume added outside + volume added {nside
+ volume evaporated = 0

During the small time interval dt, the volume added inside is (Vi'vb)Aidt‘ If we designate
Vo(< 0) as the velocity of the vacuum can during an equilibrium data point, and assume that
the evaporation rate 1s not time dependent, then the volume evaporated in time dt is -
VeAddt. (The correct area is Ad and not Ao because the volume displaced by the vacuum can
remains constant during the equiifbrium point.) The volume added outside has two contribu-
tions: the added volume on the surface area of Vvodt. and the volume that has been
vacated by the movement of the can = Vb(Ad - Ao)dt. The result is

Vvo + Vb(Ad - Ao) + (V1 - Vb)A1 - VeAd =0 (26)

But under the conditions of the experiment, the level difference between the inside and the
outside remains constant, therefore

V, =V _ (27)
The average velocity of net fluid flow through the flow tube (V) is expressed as
V=(v, - Vb)A1/Ax (28)
.;h;re Ax is the cross-sectional area of the tube. Combining the above equations gives
v=- ;-:: ;-:TA? (Vp~Ve) (29)

As defined, V is positive for flow toward the inside.
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In order to cover a wider range in flow rates, the inside helium space was construct-
ed with a wide cross-section for the top one-thi*d of the inside capacitor, and a narrow
cross-section for the bottom two-thirds. In order to allow large level differences for
inflow it was often necessary to have the outside level well above the top of the wide
section of the inside space, hence well above the top of the vacuum can. In all then,
there were four different combinations of inside and outside surface areas for which data
could be taken: the parameters, and the "mode" identification numbers used on the data
sheets, are listed in Table 1.

3.4 The Flow Tube

The flow tube used in this experiment was a commercial quality stainlesc steel tube
with an 0.d. = 0.160 cm, and an 1.d. determined to be 0.1149 £ 0.0006 cm. It had a length
(1., of 60 cm and was wound in two turns of 10 cm diameter. The inside end was mounted
about 3.5 cm above the outside end. The ends were cut off square.

The inside diameter was determined by room temperature gas flow measurements performed
after the experiment, but while the tube was undisturbed in its mounting on the apparatus.
The results seemed inconsistent until it was realized that, in laminar flow, even the
rather small curvature of the tube could have large effects on the gas flow. Helium gas
and nitrogen gas were used to cover a range in Reynolds' number (Re) from 55 to 1930. The
volumetric flow rate of gas was measured by a wet test meter whose calihration against a
bell prover had a standard deviation of 0.6%. The prescure drop (AP) across the flow tube
was measured by the commercial capacitance manometer used in the experiment. The
volumetric flow rate was multiplied by the factor (1 - Ps/Po) to correct for the water
vapor added by the wet test meter (where Py 18 the ampient pressure, and Pg is the vapor
pressure of water at the ambient temperature).” The idea® gas equation of state was used,
the temperature taken to be amtient, and the density of the gas taken to be the mean of the
values calculated for the ends of the tube. The fractional pressure drop never exceeded
0.18. Thus we obtain the equivalent volumetric flow rate Q of dry gas.

The data were analyzed by using the laminar flow equation for a straight tube applied
to the lowest Re data to deduce a diameter D. This was then used to calculate the (Fanning)
friction factor f as a function of Re. The equations used were

_n2 DS AP [y, AP
f= gz T (1 * 2Po) (30)
a0
Re = 7om-

where P° f% the mass density of dry gas at ambient temperature and pressure. The viscos-
ity n was taken from [26] and [27]. We have plotted in Fig. 11 the experimental friction
factor divided by the expected values for a straight tube in laminar flow; the solid 1ine
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Table 1.

Inside Interfece Locetion

Mode Number , Nerrow Wide
——— ——————
Vecuum Can 1 3
Outside
Interface
Locatien
Support Tube 2 4

Ai (narrow) = 4.96 cnz
Ay (wide) = 78.4 cal

- - 2
Ao (vC) = Adewar 105.22cn
A, (ST) = Adewar -22.8 o
Adewar = 219.4 cm

is the formula of White [28] for curved tubes calculated for our diameter of curvature Dc‘
The good agreement makes us confident that the correct value of the diameter has been
found. The principle uncertainty in its mearurement is the uncertainty in the volumetric
flow measurement and {ts correcticns. The deviations from the celculeted values over the
entire range of the measurement indicate a standard deviation for D of about 0.5X.

Precautions were taken to prevent or reduce any effects on the flow due to the
presence of frozen air. The first was the protected location of the outside end of the
flow tube; it was in a chamber which was recessed about ona inch into the bottom of the
base plate (see Fig. 7.). Such a lccetion appears inaccessibla to condenaing afr or
falling air particles. Of course, only helium gas was allowed to be present in the dewar
during the cooldown. Another precaution was the addition of a filter (which used ordinary
chemical filter paper) onto the transfer 1ine used to fi1) the helium dewer, in en effort
to reduce buildup of frozen air during the long run.
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The only problem which could not be definitely eliminated was a cumulative buildup of
those particlies small enough to remain in suspension in the liquid helium; they might be
expected to accumuiate from air introduced during the insertion of the transfer tube, etc.
There was no way to measure their concentration, nor are we aware of any data on the sizes
of particles that might be expe. .ed to remair in suspension. However, the lack of any
significant cumulative shifts in data point: that were repeated during the 35-day run, we
take to be good evidence that suspended solic particles were not a significant problem.
See, for example, the good reproducibility (~ 1%¥) of the T = 1.39, AT = 0.019 data taken
at the very beginning and end of the long rur (e.g., data points 9 422 and 0 515).

That evidence is reinforced by a mishap that took place early on October 1. A
technician working nearby accidentally knocked off a large rubber vacuum hose used to pump
on the helium dewar. At the time, the liquic helium was probably warm enough to be at a
vapor pressure above atmospheric pressure, bit still, in the 30-60 seconds it took him to
replace the hose, we would guess that more air should have been introduced than during all
the previous activities. Again, no significant changes in the repeated data can be seen
following that dite.

3.7 The Energy Flow Measurement

The inside heiium vessel and the flow tube were surrounded by an insulating ‘acuum.
Thus the energy flow through the tube could be determined from an energy balance
calculation. The essential elements of the situation are shown in Fig. 10. The unusual
feature of this calculation turns out tc be the large influence of the vapor that is
present,

The energy balance is done in two parts; first we calculate the change in total
energy of the helium in the inside vessel (the control volume) from thermodynamics applied
to a small change in its mass. The conditions of the change are that the temperature, and
hence the vapor pressure, remain rixed and that the totai volume is fixed, even though the
total mass is changing. Designating the specific volumes of the 1iquid and vapor as v and
v' (not to be confused with the velocities Vo Ve V), and the specific internal energies
as u and u', we find that the increases of total mass M, of total volume, and of total

energy U are given by

dM = dm + dn'
d(Vol)'T p=Vvdn+ vidm' =0
dUIT P yoy = U dm+ u' dn' (31)

where dm and dm' are the increases in the 1iquid and vapor masses. Combining these
equations gives

= vu- w'

U1 p vor = FFv - oM (32)
13 Yee
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We can use the definition of the chemical potential, eq (16), and the well known fact that
the chemical potentials of the 1iquid and vapor are equal in equilibrium, to find that

u' =y = P(v' = v) + T(s' - s) (33)

Substituting into the previous equation and using the Clausius-Clapeyron equation for the
slope of the vapor pressure curve g; svp and the definition of dM in terms of the tube
cross-section and the average veloci

dM = pVA, dt (34)
we find

9P
U7 b yor = [V - vr( )svp]A dt (35)

In the second part of the energy balance calculation we express dU in terms of the external
sources -of energy, i.e., in terms of the energy that flows *hrough the boundaries of the
control volume. They are the heating rate ( of the internal heater and the energy flux
jqudt that enters through the fiow tube. As discussed in section 2, this erergy flux can
be expressed in terms of the enthalpy flux and the heat current q, using eouations (185) and
(19). Equating this to the previous equation gives

Q + (pVh + d)gp4h, = [pVhy = VT, (gg)svp,Tzle (36)

The energy flux on the left hand side is to be evaluated at the entrance of the flow tube
to the inside helium vessel. The energy change on the right hand side is to be evaluated
at the temperature and pressure that prevail within the inside vessel, whose values are
indicated by the subscript &. Let us define the heat flux density &2 by

G = - %‘ VT, ST)svp T, (31

If the temperature and pressure are essentially continuous at the entrance, which we expect
to be true in most cases, we have h ent hz. and so q. t qz ‘In any case, by application
of eq. (20), we can find q(x) at some location x, if we know qz and the temperature

and pressure at x. For our case the relation is

000 = d + pV(hy=h0) (38)

We shall quote all our results for the energy transport as values of &2. As defined, the
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sign convention of 62 is consistent with the one for V [eq. (29)], so that heat flow away
from the (higher temperature) inside vessel has a negative sign.

The second term of eq (37) is readily interpreted s the heat of condensation (or
evaporation) that must be absorbed by the 1iquid in order to change the vo.ume of vapor.
Its presence is due to the particular configuration used to perform the experiment. At the
higher temperatures of this experiment, it becomes nearly as large as Q/Ax fer the larger
values of V, and thus fts presence causes a significant deterioration in the measurement
accuracy of 62. It is the quantity &2 that is most significant (not Q/Ax) because it is
the quantity to be compared to the /A, of section 2.

This heat of condensation also introduced an extra limitation in the range of veloc-
fties for which data could be taken. For fixed AT, 1t was often found that for inflow
(V > 0), when this term acts Yike an extra heat source, that its magnitude {ncreased more
rapidly with V than the hea® conducted out (&2). Therefore, it was not possible for
ec (37) to be satisfied with positive values of () 1f V was greater than some particular
value. When encountered, this limiting value of V is indicated on the graphs of 62 vs., V
(figs. 22-25) by a vertical bar.

We have neglected the kinetic energy terms in the total energy balance because they
can be shown to be quite small for all the conditions encountered in this experimert. We
have also left out gravitational potential energy terms, because a careful accounting of
them found that they just cancelled the work done on the fluid by the movement of the
container. In Appendix 2, we rederive eq (36) with a full accounting of potential energy
terms and the work done on the fluid in raising or lowering the vessel.

3.8 Extraneous Heat 510!5

The energy balance equations that have been given for determining the heat flow are
correct only {f we have accounted for all the energy exchanges, i.e., only if there are no
extraneous heat flows between the inside and the outside helium vessels. Below are ex-
plained the precautions taken and the tests made to ensure that these extraneous heat flows

were simall,

The poor thermal conductivity of the stainless steel walls of the vacuum can dictated
that it be surrounded by a heat shield, HS of Fig. 5. This took the form of a thin (0.04
cm) copper sheet fitted to surround the sides and top of the vacuum can. Its lower end was
slways immarsed in the 1iquid, and its upper end was soldered to the support tube ~ 10 cm
ebove the top of the vacuum can, thus intercepting the heat conducted down the support.
tube. On the {nside of the support tube, the lower 10 cm was stuffed with coarse brass
wool to act as & radiation shield.

The inctde helium space was supported by three long, thin-wall stainless steel legs
that attached to the bottom (or base plate) of the vacuum can. The rather close fit sug-
gested the precaution of mounting three sharpened nylon screws on the legs just below the
wide section of the inside space; they could be extended so as to maintain a fixed spacing
between the inside space and the vacuum can. A1l electrical leads that went to the inside

31 37



space were first thermally "tempered" to the base-plate and were of low thermal conduc-
tivity wire.

It was not practical to maintain a good vacuum at all times in the vacuum space,
because this prevented the inside helium space from ever cooling dewn enough to fill with
liquid. Therefore the inside spuce was filled before cool-down with hydrogen gas at a
pressure of a few Torr.* This acted as a thermal exchange gas, as long as the vacuum can
remained above ~ 10 K. Once the vacuum can was cooled below ~ 3 K, the hydrogei. gas was
frozen to the walls or adsorbed onto about 3 cm’ of "molecular sieve" that was present.
After the first transfer was completed and the vacuum gauge outgassed, the seals were
checked by monitoring the vacuum space for several hours with a He leak detector; it was
checked again several days later. The vacuum was monitored throughout the long run by
a Phillips-type vacuum gauge mounted on the top of the support tube. It registered
2-5 x 10'5 Torr during data taking, except for jumps of an order of magnitude (which
lasted 1-2 minuces) that were caused by the sudden withdrawals of a good fraction of the
vacuum can from the liquid; this was almost certainly due to slight desorption of hydro-
gen from the suddenly warmer walls.

The thermal isolation was checked directly at the beginning of the run by measuring
the total thermal conductance between the inside and the outside at temperatures above the
lambda point. This was done by maintaining a fixed outside temperature T2 = 2.31 K, pro-
viding a small heat input with the inside heater, and waiting 1-2 hours for the temperature
to equilibrate at a value 0.5-1.5 K higher than the outside temperature. The vacuum can
was completely immersed for these measurements, but the higher temperature of the inside
prevented 1iquid from entering. (It was found that this type of test can be very mislea.-
ing if there exist any pockets on the inside that czn trap 1iquid; the relatively large
latent heat of the 1iquid that is being evaporated on the inside and condensed cn the
outside can cause a large and long-lived false conductivity).

Assuming that the therma) conductance linking the inside and the outside is tempera-
ture independent, the three data points that were taken yielded a value for the thermal
conductance of 1.5 x 10°3 W/K. This value is about 1 1/2 orders of magnitude larger than
was calculated for conduction through the legs, electrical leads, etc. It was found that
conduction through the low pressure hydrogen gas could account for the conductance, if the
indicated pressures at the Phillips gauge were taken at face value. Still, this value for
the conductance was low enough so that we could choose to ignore the unexpected persistence
of unchanged indicated pressures (2 = 5 x 1075 Torr) at the lower temperatures, where the
calculated vapor pressure of hydrogen should be considerably smaller.

These same measurements indicated that a heat input of 2 x 10°% W remained at AT = 0,
This could represent a real heat leak (e.g., incomplete radiation shielding), or it could
reflect a smail temperature dependence in the thermal conductivity. This heat leak, if
real, would require that all values of 62 be corrected by the additioq of =0.019 w/cmz.
Since data could not be taken at low enough AT's to distinguish between the two alter-
natives, we have not made this correction to the data, and instead view this as an upper
limit to the possible systematic error in &2.
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3.9 Error Estimates

The errors of this data are not always as <mall, nor as accurately known, as might be
wished, primarily because of the exploratory nature of the experiment. The method was new,
the results could be only crudely anticipated, and it seemed more desirzble to emphasize a
broad hange for the measurements rather than concentrate on their accuracy. Given these
conditions, they seem satisfactary. The errors for quantities given in Appendix 1 vary,
depending on the conditions, and are summarized in Table 2.

A part of the random error in the temperature and pressure difference measurements
could be evaluated quite reliably from the variation of the equilibrium point data. This
variation should include the effect of electronic noise, intrinsic sensor resolution, drift
in the sensor characteristics, and inaccuracies in the data reduction. Including all the
equilibrium point datii, we find that the temperature difference had a standard deviation of
(4, 3, 2, and 4) x 10'5 K at the four temperatures of 2.10, 1.92, 1.65 and 1.39 K respec~
tively. The standard ueviations for the height difference were 0.016, 0.012, 0.009 and
0.011 cm respectively. Through eq (21), these figures imply a standard deviation for the
pressure difference of 0.4, 0.2, 0.1 and 0.1 Pa respectively.

For the regular data points there may exist an extra source of random error that is
not included in the figures given above; it is the fluctuations that might be introduced by
the control systeéms that are used to maintain a "constant" temperature and pressure dif-
ference. The short term fluctuations in the altitude and temperature differences (time
constants of a few seconds) were judged by the error signals of the feedback systems to be
rarely more than 0.02 cm and 0.0001 K. However, because it is the time-average values that
count, it is the longer term fluctuations (the drift during the 3-5 minutes it took to
record the data) that determine the real error. For the altitude differenre, we estimate
that this source of error was negligible. Unfortunately, the temperature sensors of the
control system (but not the temperature measuring system) were found to drift. On bad
days, these drifts caused progressive shifts in the measured AT of 2-3X over the course of
the day. In the worst cases, the rate of drift suggests that AT should change by an amount
somewhat less than the errors given above. Somewhat arbitrarily then, we increase the
arror estimates of AT by 50X%. Our final estimate of the random error (one standard devia-
tion) in oT is (6, 4, 3 and €) x 1073 K, and in AP is 0.6, 0.5, 0.2 and 0.1 Pa, respec-
tively, for the four mean temperatures.

The systematic error in temperature difference is determined by the systematic error
in the pressure measurement during calibration as discussed below. This leads to a system-
atic error in temperature difference of between 0.5% and 0.7%,

The pressure difference is subject to systematic error, due to uncertainties in the
capacitance-to-altitude conversion. Estimated at 2 parts per thousand, it implies a
possible systematic error of ~ 2.8 x 10'2 X (zz-z])Pa. where z is expressed in centimeters.
This error becomes significant only for the large AT, small V, data at the “righer tempera-
tures. '

The errors in the mean temperature are determined by the errors in the vapor pressure
measurements used to calibrate the thermometers. We could evaluate the random errors in
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Table 2. Estimated Errors .
Random Error (1)
Systematic Error
Measured Temperature
Quantit: —
(Units 2.100 1,919 1.650 1.395
T (K) 0.2 mK 0.2 mK 0.3 mK 0.4 mK
1.1 mK 1.1 mK 1.1 mK 0.8 mK
AT (K) . 0.06 mK 0.04 mK 0.03 nK 0.06 mK
0.005 AT 0.006 AT 0.006 AT 0.007 AT
Az (cm) 0.01 cm 0.01 cm 0.01 cm 0.01 cm
0.002 Az (cm) 0.002 Az 0.002 Az 0.002 Az
AP (Pa) 0.6 Pa 0.3 Pa 0.2 Pa 0.1 Pa
0.03 Az (cm) 0.03 Az 0.03 Az n 03 Az
vV (cm/s) 0.02 Vv 0.02 V 0.02 v 0.02 v
0.02 vV 0.02v 0.02v 0.02V

&2 (Wcmz)

0.01(&2+o.o47 V) 0.01(&2+o.030 V)
0.01(&2+o.o47 V) 0.01(&2+o.030 V)

0.01(&2+o.013 V)
0.01(4,+0.013 V)

0.01(q,+0. 004 V)
0.01(g,*0. 004 V)
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the calibrations at 1.92 7nd 1.39 K, from the standard deviations for data taken on several
different occasions; they were 0.2 and 0.4 mK respectively. A few simple tests indicated
that systematic errors due to placement of the pressure probe could not be too much larger
than this. The absolute calibration of the pressure gauge could not be confirmed in the
region of interest; if we take :he manufacturer's estimate and increase it by a factor of
thres, ve arrive at a systematic error in pressure of about 0.3%. This implies a syste-
matic error of about 1 mK in mean temperature rn the 758 scale.

The random error in V 1s determined fror _he standard deviation in the voltage-to-
speed conversion (1.5%), the estimated accui .y to which the voltege fluctuations could be
averaged by eye, (1X), and the non-uniformity in the geometry (1X). Combined in quad-
rature, this gives a random error of 2%. An estimate of the error in geometry suggests
that each mode might have a systematic error as large as 2% o? V.

The relative error in éz (both random and systematic) depended rather strongly on the
conditions of the measurement, pecause of the sometime large value for the vapor's latent
heat corroction (secoind term of eq (37)). Assuming an error in V of 2%, we find that the
error in q 1a given by oV (V in cm/s), where « has the values of (4.8, 3.0, 1.3 and 0.4)
x 10 -4 Wcm2 far the temparatures of 2.10, 1.92, 1.65 and 1.39 K respectively. At the
most oxtremo vaiue of V (70 cm/s), this corresponds to errors of G.033, 0.020, 0.009 and
0.003 V/cm When V is small, and qz is large, this error is not too significant, and we
must include the estimated random and systematic errors of the first term in eq (37) of
1% and 1% respectively.
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4. RESULTS AND DISCUSSION

Data were collected at four values of the mean of the outside and the inside tem
perature. Using the formulas given in section 3, each data point was reduced to give
values for the actual pressure and temperature differences between the ends of the flow
. tube and the resulting steady state values for the net fluid velocity V and the heat flux
density &2 These results are presented in tabular form in Appendix 1, ulong with some
other data and derived quantities of interest.

4.1 The Net Fluid Velocity

Nearly all the results for the net fiuid velocity V (the actual mass flow rate di-
vided by the total density and the flow tube cross-sectional area) are shown in Figs. 12~
15. The absolute values of V have been graphed there as a function of the absolute value
of the pressure difference, so that data for both directions of flow are superimposed.

The value of the nominal temperature difference is indicated by the symbols; the measured
temperature differences may differ from the nominal by as much as 3%, due to the drifts
discussed earlier.

More than half of the results might be summarized in a very simple statement: thay
are largely indistinguishable from those of an ordinary fiuid in fully developed turbulant
flow. This statement applies for those flows at the larger velocities cr Reynolds num=
bers, which are the ones most 1ikely to be of interest for applications.

These graphs of |AP| Vs |v| reveal quite distinctly one of the important results of
this experiment: V depends primarily on AP =- its dependence on AT is significant only at
the lower velocities. This result is only to be expected for an ordinary (single«phase)
fluid, because the temperature gradient does nct appear in the equation of motion of the
fluid (we are excluding indirect effects due to buoyancy forces). In contrast, the tem-
perature gradient appears explicitly in the (simple) superfluid equation of motion,
eq (6), as part of the chemical potential gradient. Even though that simple equation for
Vg is not expected to remain valid for our conditions, it suggests the possibility that Ve
might be a function mainly of Apy; this would make V also a function of ay, at least if ps/p
is not too small. This possibiiity is completely excluded (for our conditions) by the
weak dependence of V on AT. To make a numerical comparison, we can use the expression

pAy = AP ~ psAT

which we have included in the data 1isting in Appendix 1. We find that under most con-
ditions, the temperature difference dominates the chemical potential difference, and that
neither one has much influence on the net mass flow. As a typical example, we can examine -
the data for T = 1.92, AT = 0.019; not until AP is about 50 times smaller than

psAT (~ 2150 Pa) do we see much effect of the latter on V.
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Figure 12, The pressure difference vs the net fluid valocity at 2.100 K.
The dashed [sol1d] 1ine 1s eq (41) [(42)].
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Figure 13. The pressure difference vs the net fluid velocity at 1.919 K.
The dashed [so11d] 1ine is eq (41) [(42)].
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Figure 15. The pressure difference vs the net fluid velocity at 1.395 K.
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~ A.releted, but not-equivalent, observation is that neither v, nor v, becomes tololy e
function of AP in this same limit. This comparison is not quite ll c1.ar-cut as for V vs
AP, becausa v, and v, (unlike V) can vary significantly along the flow tube, as can be
seen from the expressions obtained from egqs (1, 2, and 19).

. pn
o=V * 5s Vg =V - Py P8 (39)

The varfation of both q and T can cause substantial changes in Vi and Ve Novortholisi.; .
the average of the velocities at the ends of the flow tube, plotted against the ovoralI ."
pressure difference, ought to give a good indication of whether or not the local value of"
velocity is solely a function of AP. Such plots of the two worst cases of -correlation
Mvawvmpmmmmﬁmwmn.m«um.mmmuﬂmmg
two linos. whoso difference is correlated with the sign of AT (relative to AP). These
worst cases are also the cases where v and v, differ the most from V., In those cases
where there is a good correlation of Vy Or v, with AP (e.g., Vn at T = 2,10, Ve at

T = 1,39, or all the small AT data) then it is also true that these velocities do not
differ significantly from V. - | ‘

The final major observation to make is that the numerical results for V vs P are
largely indistinguishable from what we would expect for an ordinary fluid at these veloc-
{ties. For an ordinary fluid, the flow is known to be turbulant for Reynolds numbers
grester than 2 - 4 x 103. The most reasonable choice (but not the only one!) of a coun-
terpart for He 11 might be the "total" Reynolds number, defined by

Re = 2Y0 (40)
. Ny
For all our conditions, this is equal (to within 15%) tv 1.15 x 103 V, for V expressed in
cm/s. Then the range in velocities that we could cover corresponded to a range in Re of
5- 85 x 103. all apparently above the threshold for classical turbulent flow. If the
inside surface of the flow tube were smooth enough, we know that the pressure drop for an
ordinary fluid should be given by the "Blasius Formula"

apy = 0,079 Re”M/4) &L [(1/2)pV2) (41)

This formula is shown on cach of the graphs (Figures 12-15) as a dashed 1ine. We see that
the main trend of the data is reproduced. In the high velocity region, the formula under-
estimates the prassure drop, but for an ordinary fluid, a rather modest surface roughness
would be capable of making up the difference. We have no data on the surface roughness of
our flow tube, so that we are not able to determine if this accounts quantitatively for
the difference. |
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Figure 16. The pressure difference vs the average auperfluid velocity at
©2.100 K. Cf. Fig. 12. S
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_ This result is very appeaiing, because it suggests that the two-fluid dynamics re-
EQ,duces to ordinary fluid dynanics in sone 1imiting cases. It suggests, even if only fur-
‘ «ther experisent can p&ovt. that the pressure drop should chenge with L and D in the same
way as the ordinary fluid results eq (41.). It might be suggested that the superfiuid
fraction has been reduced to zero by th. large flow velocitias but that can be rulad out
on a number of grounds, including the resuits reported in the naxt section, which would
display no heat transport above the "enthalpy rise" value 1f the heat current were only
the thermal conduction of He I. Actually, it presents a difficult problem, because there
s no obvious way to derive such results from the current versions of two-fluid hydro~
dynamics.

For the purpose of a more sensitive comparison of the data, wa have made a rough fit
.to a constant friction factor formula, defined by

8 = f gt [(/2)V7) (42)

where f has the values 0.0062, 0.0062, 0.C067 and 0.0075 for the temperatures 2.10, 1.92,
1.65 and 1.39 K respectively. This formula is plotted as the solid 1ine fn figures 12-15.
The fractional deviations of the data from this formula have been plotted in Figs. 18-21.
This plot gives a more exact impression of the data coverage, scatter and departure from a
simple behavior.

We have not yet found any simple correlation for the lower velocity data, nor have we
been aile to specify what condition it is that determines just where that region starts.
Howaver, in all tne conditions encountered in this experiment, this ignorance is in re-
gions where the pressure drop is small enough so that it may be mainly of academic
interest. '

No correction was made for end effects, because we have no experience that indicates
that they should be made. If such an extra prosluro drop were present, of about the same
size as for ordinary fluid flow (say 1/2 pv ), then it would represent about a 6% correc-
tion to the data.

If the change dua to the curvature of the flow tube were about the same for He II as
for an ordinary fluid in turbulent flow, then there would be about 1%¥ extra pressure drop
at 10 cm/s, and about 12% extra pressure drop at V = 70 cm/s [29].

4.2 The Hoat Current Deysity

We have shown in sectfons 2 and 3 that the quantity 62 represents the useful heat
(per channel cross-sectional area) that can be removed from a heat source by the fluid in
a cooling channel. We showed that for a heat source which is a small heated section in
the middle of a cooling channel of length 2L, assuming the other conditions are matched,
our experimental result for q (V), V> 0, would represent the heat absorbed b, the in-
coming fluid, and that the rcsult for q (V), V < 0 would represent an additional heat
conducted away by thc departing fluid.
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The results for CZ are shown in Figs. 22-25, where they are plotted as a function of
V. The symbols indicate the nominal valuss for AT, but the explicit dependence on AP is
not indicated; it can be inferred from the value of V.

Constructing a corraiaiion for - data is not so straightforward as for tha net
fluid velocity. In that case, mass couservation required that V be a constant, so that
once {i was found that AP is mainly a function of V, we can infer that the local and
average pressure gradients are nearly the same. In this case, the temperature gradient
and the heat current dunsicy can turn out to be strong functions of position along the
tube.

We proceed in a manner similar to that found in section 2.2 The one-dimensional
energy equation [eq (20)] givas us an expression that relates q(x) to T(x), and to the
velocity and the local pressure; the latter two quantities can be taken directly fron
experiment. The model building comes in trying to devise a successful secund equation
that will allow solution for tha unknowns q and T.

The most natural choice we have come up with so far is to set the chemical potential
gradient equal to one of the mutual friction expressions using eq (10) with dv /at =
This amounts to setting q equal to some simple function of Yu.

We used Vinen's expression [9],

2
Pg g% = hogpy ('Vn'vsl ) Vo) (vpmvg) (43)

and took the values for A from his graph. The value of Yo (not very {nfluential in the
calculation) was arbitrarily fixed at 0.5 cm/s, a value near his.

The equations were integrated numerically, the T at X9 fixed at T2. and q given
various starting values, until the temperature at the other end matched. The resulting
values of q2 are displayed as the solid 1ines on the graphs of q vs V, Fig. 22-25.

The calculations do reproduce scme features of the data. Firsi, they do a reasonable
job of doing what they were originally designed to do, i.e., predict the V = 0 data, the
poar spots teing T = 1,395 ana T = 2.100, where the calculated values are all about 10%
high. Second, for the higher T's they do a reasonable joh of predicting the slope of qz,
near V = 0. Finally, one curve (Fig. 25) does 2o through zero (albeit much more staeply)
about where the data reverses sign, at the lowest T and AT. This last .eature, and the
other sharp drop at negative V, are found only fu~ the conditions in which AP becomes
large enough to cause Ay t0 reverse sign; we have th: interesting possibility of a heat
current flowing toward highar temperatures. Uafortunately, the experimental evidence for
this current reversal is not quite compelling. The data had a smal) s-atter, and were
reproducible, but the possibility of a sysiematic error (an extraneous heat input) of
about the size needed to cancel the effect, cannot be excluded.

Overall, though, this simple theory does not work very well, the most striking result
being ti at for both V = 0 and V > 0 the observed &2 is less {han expected. As originally
formula. d, Vinen's arguments that lead to eq (43) clearly suggest that the equation
shouid remain valid when V # 9. These results lead us to conclude otherwise.
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These resulte seem to be suggesting that we might retain Vinen's identification of
the source of mutual friction with the presence of vorticity in the superfluid fraction,
if we now suppose that the net fluid flow %s capable of generating superfluid vorticity,
in amsunts over and above that generated by the mean counterflow uf the two components.

8. ENJANCEMENT OF HEAT TRANSPORT BY FORCED CONVECTION

Without understanding quantitatively how mutual friction is increased by mass flow we
can still draw some qualitative conclusions which indicate that in some circumstances at
least, much more heat can be transported by ferced convection than by "natural" convec-
tion,

Our reasoning is based again on investigating the 1imii ss the heat current goes to
zero everywhereq except near the heater. The energy equation for He II also integrates
immediately to give the now familiar result that the total heat absorbed by the fluid s
equal to the enthalpy difference times the flow rate. For the incoming fluid (V > 0), we
get 4, = pVC AT; for the departing fluid (V < 0), we get 4, = 0. The positive velocity
partion of the enthalpy-rise-heat-current is given on the graphs (Figs. 26-29) of 62 Vs
V. This value should, and does, act as a lower bound for the useful heat that can be
rejected by the heat source. If the extra mutual friction caused by the mass flow has not
"killed off" the heat current, then we _an expect an extra contribution.

Now let us consider a comparison of "natural" to ferced convection. Suppose we want
to use the flow tube from these erperiments o cool some localized heat source. First,
let us ectimate the best that we can do at 1.8 K with pure counterflor:, with two tubes
connected to the source, but no forcing of circulation around the Toop. We suppose that
we have a pressurized system so that we can increase the AT to 0.300 K. At best, the heat
current per tube will increase as the cube root of T, and since &Z(T = 1.92, AT = 0.047,
Vv=0)=-1.1 N/cmz, the best we can do {i1gnoring the temperature dependence of the propor-
tionality constant in equation (8)) is

1/3
(1.11) x 2 x(é‘-ggg) = 4.1 Wem®

Second, how well can we do with forced convection? The enthalpy-difference-neat-current
(the lower 1limit) for the same AT {s

2.1 3
pvJ' C. dT =V x (0.21 J/em®)
1.8 P

If wo have enough head (2.5 m) to force the flow at 200 cm/s, we get

2
42 W
/cm @0

~which 1s 10 times larger. The pump work divided by the heat transported 18 =
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APV _ ~3.6x103Pa~3.6x103~,
VST AT 0.21 J/em’ 2.1 x 10°
p

If 17% pumpwork were acceptable, then another factor of 3 increase in heat absorbed is
posgible. '
"~ While this example may not be typical of any prospective application, it does
i1lustrate how in some situations forced cooling might be of interest.
These sxperimental results for &2 show the transition from this purely classical
and predictzble heat transport (o the more or less predictable values for ero mass
flow == the pure courterflow regime.

6. CONCLUSIONS

This experimental study enables the following generalizations to be made regarding
combined heat and mass flow in Helium II.

7. Velocity of flow is primarily a function of pressure gradient. Towards the higher
velocities encountered in these experiments, the relationship between velocity and
pressure gradient is independent of the temperature gradient and strongly resembles a
classical fluid. At lower velocities a complex relationship exists between V, AT and
AP, which needs further clarification.

2. At zero velocity, axial heat transport typical of the "mutual friction" regime is
again confirmed. Either positive or negative velocities reduce this heat transport
below what would be calculated from the Vinen theory, and, as the maghitude of the
velocity increases, classical forced convection heat transport is approached. For
strongly negative velocities there is some evidence that a reversal in the direction
of the heat current takes place as predicted from the Vinen theory. More definitive
experiments would be required to confirm this.

3. In practical situations, axial heat transport far in excess of the usual pure
counterflow values may be achieved by imposing mass flow or forced convection with
the usual classical pressure drop.
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9. NOMENCLATURE

Gorter-Mellink constant

horizontal cross-sectional area

cross-soctional area of the flow tube

isobaric heat capacity par unit mass

capacitance

diameter of the flow tube

total energy of the helium

gravitational constant

enthalpy per unit mass

the energy (total energy) current density

active capacitor length

flow tube length

length of quantized vortex line per unit volume

the total (1iquid, vapor) mass of helium within the inner vessel
pressure

(for gas flow measurements) the ambient pressure, the partial
pressure of waier vapor

heat current or rate of heat addition

heat current density

Reynolds' nusoer

entrroy per unit mass

temperature

total internal energy of the helium within the inner vessel
internal energy density per unit mass

volume per unit mass

normal and super component velocities (cross-sec»iona] average)
net fluid velocity {cross-sectional average)

vertical velocities

axial coordinate

altitudes



2]

reek

bi

(indicatea the difference of two values)
e, &' dielectric constant

n, N, coefficient of viscosity

P: Pps 0y WasE per unit volume

M Ginbs potential per unit mass (chemical potential)

w vorticity

0 volumetric flow rate

Subscripts

1(2)

or for the outside helium bath (inner vessel)

o (1)

e, (b, d) for evaporation measurements (the vacuum can, the dewar)
ent at the entrance of the flow tube to the inner vessel

SV, svyp along the 11quid-vapor coexistence 1ine
u (e) associated with the internal (total) energy density

Superscripts

primed and unprimed quantities distinguish between *%e vapor and the liguid,
respectively
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APPENDIX 1

The following tables give the important results for almost every data point taken
during the long run. Listed are the average and the difference of the temperatures of tte
inside and the cutside helium vesseis (TMEAN,DT), the altitude difference calculated from
the precceding twe quantities (DP), the velocity of net fluid flow through the flow tube
(V), and the nominal heat current density at the insidc end of the flow tube (Q2).

The sign convention is determined by taking the positive direction to run from the
outside toward the inside. Therefore positive temperature differences indicate that the
inside was hotter than the out- de; a positive pressure difference, that the inside end of
the flow tube is at a higher . .ssure than the outside end. The negative values of Q2
indicate that heat is flowing towards the (cooler) outside, etc.

A1l temperatures are given in kelvins (measured on the TSB He4 vapor pressure
scale), the pressure difference is given in pascals (= 1 newton/meterz = 10 dyne/centi-
meter®), the altitude difference in centimeter,, and the velocities are given in centi-
meters/second. The reader should be alert ‘o a practice that is cormonly found in the
He II literature and this paper, and that is the mixing of MKS and ogs .its. Therefore,
when various quantities are multiplied together, further multiplication by powers of ten
may be necessary to maii.tain consistent units.

Each data point is jdentified by numbers found in the ninth column of the table; the
month and day on which a data-taking s.ssion was star:i=d i: (agicated by the numberr under
DATE , the sequence number for that data point is inc:. - o~ .nier #nN, and the mode number
that indicates the location of the liquid interfaces .. given under MO (see Table 1). The
data points have been sorted: first by TMEAN, tnen by whether thiey are regular data points
or equilibrium points (Q2 = 0) and finally by chronolojical order.

In columns 7 and 8 are given the resuits for the two auxiliary thermometers TIB and
TOB. They were intended to measure the temperatures near, but not at, the inside and
outside ends respectively. (See the text for an account of the relatively large uncer-
tainties in this particular measurement). The temperature of the outside helium bath was
subtracted from the indicated temperature at each location to give the listed values of
DTIB and DTOB.

Several other quantities of possihie interest can be calculated from the experimental
results by using known values for some thermodynamic properties and some formulas from
section 2 and 3. We have listed RDMU, the density times the difference in the chemical
potential, wiich is given by AP - psaT. Also tabulated is Q1, (Q1 = él), the nominal heat
flux density at the gutside end of the flow tube, defined by Q1 = Q2 + (zz-z])pv. Finally,
we have tabulated the nominal values for the normal- and super-fluid velocities at the two
ends from the formulas
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The thermodynamic properties were taken from a power-law interpolation of tables A and E of
Putterman [8]. ' :
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Appendix 1 (continued). Experimental Data.
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Appendix | {continued). Experimental Data,
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Appendix 1 (continued). Experimental Data.
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Appendix | (continued). Experimental Data.
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Appendix 1 (continued). Experimental Data,
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APPENDIX 2

The'purpose of this appendix is to prove the zssertion that the formulas already given
for the overall energy halance and energy flux -- in particular eq (36) -- are stiil
correct when the gravitational and work terms are taken into account. Our procedure is as
before, i.e., equating the change in energy calculated by two different methods.

In the first method, we calculate the change in the total energy E of the helium
contained within the control volume (the inside vessel), due to the increment in its mass,
when the temperature is held constant. It is

dE = dU + dEgrav (A2.1)
where dEgrav 1s the change in the gravitaticiaal potential erergy, and dU is again the
change in internal energy of the helium.
We can prove that the variation of u within the liquid is negligible, by considering
its variation with depth,

du _ f9u\ df du)y dP
@ - (5")9 @’ (57)7 @ (h2.2)

For equilibrium within the control volume, with a gravitational field present, we still
have dT = 0, but now dP/dz = -pg, i.e., the pressure varies with depth within the 1iquid.
However, using the measured values of expansivity and compressibiiity for the liquid to
evaluate the size of the pressure derivative, we find that

du _ _ fou
&= o{a), o

is much smaller (< 1%) than “he corresponding variation of the gravitational potential
energy density with depth (= d(gz)/dz = g), so that it can be safely neglected.

Since u everywhere within the liquid has nearly the same value that it has at the
surface, we can repeat the entire argumeﬁt used to eliminate from dU any explicit depend-
ente on the vapor; we obtain the same equations [eqs (31) - (35)], as long as we realize
that the pressure in eq (33) is the pressure of the vapor. Therefore, eq (35) is still
valid if we evaluate the enthalpy of the 1iguid at the pressure of the suiface, v 'zh we
designate as P'z.

We may evaluate the change in the gravitational potential, without 1oss of gene: .lity,
by assuming the inside space to have a constant horizontal cross-section Ai' and by evalu-
ating the gain or loss of 1iquid at the surface (altitude zz) and at the bottom of the
inside space {altitude zb). It is

G pay = 0(2PA 02, - 2,pAid2)) .3) fo




We can express this difforantly by using eq (28) and the identities dzZ/dt =V, and
dzb/dt = V,» and then combine it with the result for dU, to obtain

dE = fpu, + P, - T (‘P) VA dt
(: 2 2 AT svp,T,] ¥

+ pR(2y - 2,) VyA(dt + pgz, VA, dt (A2.4)

where, as before, Tz is the inside tempsrature, and Uy is the 1iquid energy density at this
teaperature.

The second methed is to calculate the energy that passdo through the boundary of the
controi volume. It is the sum of tha electrical hest, the work done on the fluid by the
walls ot its container, and the energy that enterc through the flow tube.

dE = dQ - d\ - j,A.dt (A2.5)

The work term is evaluated simply by the p:..zure-volume work donea on the fluid by the
top and bottom of the inside space, iaking into acrount the hydrostatic pressure dif-
ference.

The total energy current je contains, as before, the enthalpy current and the heat
current, but we must aiso add a gravitational potential energy current, gzentpv' where Zant
is the 2'titude at which the fluid enters the inside space. The enthalpy is to be evalu-
ated at the p~~ssure at which the liquid enters. which:is, by continuity in the pressure,

the local tluic sressure at the altitude of entry, P‘z + pg(zz - Zent)' Collecting terms,
we find that che 2y, teras cancel to give

I = 1 b \ . o
Je © (buent Pt Ggny * pgz%)v . (A2.7)

Then substituting into eq (A2.5), and‘equating it to eq (A2.4), we find that all the
redaining terms containing g cancel, and we reccver eq (36).
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