AUTHOR TITLEE

IHSTITUTIOH
SPOAS AGEBCY
pUB Date
GREAT
HOTE
avallable proa

- EDRS PRICE DESCRIPTORS

ABSTRACT

procedures have been developed for estirating the costs cf graduate

 degree programs based on nse of defitriticns and data generally available in U.S. graduate schools. Graduate degree progran costs are: taken to be the sum of three elements: departmental, coste, allocated from departmental budgets: institutional support costs, apportioned from.institational expenditure reports; and gracuate student appointment costs. Research prograp costs are afprcximated as the sum of unrestricted.fund expenditures for departmental research, and restricted fund expenditure for sponscred testarch: the fcrner' is counted as a cost of both the departmefrtal reséarch and instruction programs, and the latter for the research progran only. The depeloped procedures. are applied to data collected frca 14 Uं. S. colleges and universities in the fields of biochemistry, celu.bicicgy, chemistif. "economics, Engiish, mathematics and psycholggy. average, upper, and Iower quartile graduate degree progran costs per enrciled gitaduate student and per graduate degree avarded ate estimated. E.timated departmental costs. ar'e correlated to soné'Extent with certain characteristics' of individual'departents and institutions. The procedures and results are discussçd, and certain recomendations are set forth. The. supplement contains a sumary of the farent report; $\Rightarrow a$ glossary of terns, institutional questicnnaire and departmental questionnaire for chenistry. procedures for calculaticns, iliustrative calculations, and correlaticns. (Authcr/SRG)

* : Reproduction's siupplied by EDBS are the best that can be sade, from the original document.

Inquiries concerning additional copies of this and companion doclments should be addressed to the Council of Graduate Schools in the United States, 1 Dupont Circle, Washington, D.C. 20036.

A supplementary report,
The costs and Benefits of Graduate Education;
Estimation of Graduate Degree Progłam Costs;
Supplememt with Detailed Procedures and Illustrative Calculations
by Jobsep̣h L. YcCarthy and William D. Garrison The Council of Graduate Schools, 1978
is being offered as a record document to the. Educational.Resource Information Center, Washington, D.C. 20202 .

Preparation of these papers was carried out in the course of research sponsored.by Grant lumber no1-RG-4-2176 of the Hational Institutes of Health and by the Council of Graduate Schools.

Copyright: The Council of Gràduate Schools, 1978

TABLE OF CONTENTS

Page
Preface i
1: The Gradcost Study: Abstract/and Introduction 1
2.: Objectives 3
3. General Approach 4
4. Institutional Fupds: Unrestricted, Restricted/and Capital 8 \$
5. Departmental costs General andiProcedural 12^{*}
Alternativès: CLASSCUT, CCREDCUT, and COMPCUTComparíson of Esfinated Costs\because.
6. -Departmental Costs - Application of the 18
COMPCUT Prodedure: Definitions; DepartizentalCosts by Leprel, Costs per SCH, 'Total Costs,Unit Costs, COMPCUT MB; COMPCUT-TP, Cell
Biology Costs; Cogts for Suçessive Years
7. Institutional Sapport Costs: Library; 44
Studefit Services, Plant Operation, General And fotal costs
8. Sfudent Appointrent coses: Fellokships 48
Mraineesh ps, Teaching and Research
Assistantstips. Tuition Waivers, TotalAnd Allocated Costs
University Research; Role of Riesearch; 53
Joint Costs; Deparimental Reşearch Costs; Spozsored Research Costs and Comentary;
Total Costs; Research Universities
10. : Total Estimated Graduate Program Costs; ${ }^{\circ}$ 64
Presentatión, Correlations and Comentafy
'11. . Sumary 80
12.. Recommendations 84^{\prime}
TABLES
4-1. Total Annual Institutional Expenditures 9
4-2. Definitions of Acronyms and certain abbreviations 10
5-1 Outline of ELASSCUT, CREDCUT rand COMPCUT 14
5-2 Comparison of ${ }^{\circ}$ CLASSCUT, CREDCITT and ${ }^{\circ}$ COMPCUT Costs 15
10-1' 'Estimated Costs per Graduate Student 64
10-2 Average Values of Departmenial Factors 67
10-3. Correlation;Coefficients Relating ,Variables 68
10-4, : Coefficients for Kodel Equation , 69

FIGURES

$$
\text { A : } \quad 1
$$

Figure Page
3-1 Conception of the Function of a University. 5
4-1 Institutional Expenditureswer Faculty Member 11
6-1 Number of Graduate Students per Faculey Member 11
6-2 Departmental SCBYTaught per Faculty Yember 286-3
Faculty Activity Analysis Percentages 29 *
6-4 Faculty Activity versus SCH Genexation 306-5
6-7 6-7
Total versus Parent Departoent SCH - Yasters Students 31
Total versus Parent Departwent SCH - Doctors Students 32
6-6
\becauseSCH Enrollments per Serester - Yasters Students33
6-86-9
SCH Enrolinents per. Seiester - Doctors Students 34
Departzental Expenditures per Faculty Hember 35
6-10 Departwental Cosits per SCH 36
6-11 Departmental Costs by field.per Yasters and Doctors Student 37
6-12 Departicental Costs by Field per Yasters and Doctors Student 37
6-13 6-14 38
Departmenta行 qosts by Field per Student per Year6-15
6-166-17.6-18
38
38
Departwemt Fosts by Field per Student per Yea
Departmental Costs by Field per Awarded Degree 39
Departwental Costs by Field pez Awarded Degree 39
Crossover Analysis versús Typical Prográm SCH - Hasters* 40
Crossover Analysis versus Týpical Rrogran S SCH - Doctors -41
6-19 -Departrentz1-Type Doctors Costs for Cell Biology 42
-

- Certain Departrental Costs Lor Successive Fears 6-2078
9-1Institutional Support Costs per Student per Year47
Stựent Appointeent Costs 52°
Research Expenqitures per Faculty Member 62
9-2 Research Expenditures per Graduate Student 63
10-1 Total Annual Costs per Masters and Doctors Students 78
10-2 Total Annual Costs perr Graduate Student 7910-3
Total Annual Costs per Doctors and Hasters Degree 79

Studies on costs and benefits of "graduate education wert béguh in 1968 in response to a resolution adopted at the Annual Meeting of the Comeil of Graduate Schools in the United States, fCGS). T\%o investigations have been completed, and a number ${ }^{*}$ of paperishave been
 report.

This "Gradcost III"study was initiated in 1974 , frith the assistance

General guidance for the project has been provided by the, gradcost III Conittee: ?
© David R. Deener ${ }^{\text {i }}$ Chairman Tulane University

Charles Lester
Emory University
Joseph L. Kacarfhy
University of Nashington

夫̇̇J. Chester YcRee
Mississippi State Enizersity

University of Rechester.
J. Boyd Page

Council of Graduate Schools
3
xDeceased, 1976. $\dot{x} \times$ CGS. Chairman -1977.1 GGS Chairmen who served in prior years as membrs of tife GradcostanI comittee are: Senford E. Erberg, University of Califotifa-Beekeley,
S. D. Shirley Spragg; and Jacob E. Cobb, Indigha State Univergity.

The CGS nade contracts with the University of Mashingtpa wherenis. Joseph L. KcCarthy and Hillian D. Garrison of Washingion functioned as Director and Associate, respectively ${ }^{\text {sfon }}$ the study, and with Tulane 'Tniversity where Dr. David'R. Deener'served as 'Coldirector. Foliowing . the untimely death of Dr. Denner, thot As initial step a number of colleges and universities electing, to participate in the study were identified.and, an acadepic and"fiscal. officer from each institution served as rembet of an Advisory Comittee.

- The Council trusts that these reports do. make important contributions to the understanding and development of concepts and procedures for' estimation of the costs of graduate education. Specific estimates of costs have been made ${ }^{\prime \prime}$ but we emphasize that these are ingtuded simply to. illustrate the utility of the developed concepts and procedures. The report sets forth a number of recommendations which we hope will be carefully considered by those having an interest in this complex and important. subject.

This statement has been endorsed in principle by the Executive Committee of the Council of graduate Schools in the United States. It its not 'an official statement of the CGS, "port' of any of the individual colleges or universities participating in the study. The authors carry personal responsibility for the contents of the reports.

Significant contributions have beer made by representatives of the National Institutes of Health; by Dr. Stephen Hatchet prior to his death in September, 1976, and thereafter, by Dr. Carl D. Douglass, Jr.

To all of the many persons associated with departmental, institutional research, fiscal, graduate, school, and other offices of the colleges and universities participating in the study, gratitude is ' 'expressed for their indispensible help and advice.

The leadership of the late Dr. Degner in helping to, initiate the project, and•in collaborating with Dries. McCarthy and Garrison in advancing the investigation up until his death, is' deeply appreciated by his máhy : friends and associates within and outside of the CGS.:

The continuing involvement, and wise counsel of those who have served on the Gradcost III Committee is gratefully acknowledged.

Finally, the Council is particularly appreciative of the major contributions of Joseph iL. Mççarthy and William D. Garrison in carrying the significant study through to completion and publication.

Council of Graduate Schools in the United States

ESTIMATION,OF GRADUATE DEGREE PROGRAM COSTS (1a, 16)

In the "Gradcost III" study, relatively simple procedures have been developed for estịnating the costs of graduate degree programs based on use of definitions and data generally available in the graduate schools of the Unitear States. Colleges and universities are considered to. offer three types of programs: Instruction, Research, anđ allso Public Service which is not of present significance. Insfructipnal programs lead to Bachelor, Masteŗs and Doctors. degrees. Graduate degree program costs are taken to be the sum of three elements: departmental costs, which are allocated from departmental budgets; institutional support costs, apportioned from institutional.expenditure.reports; and graduate student appointment costs. Research. progiam costs are approximated as the sum of unrestricted fund expenditures for departmental reseärch, and restricted fund expenditure for sponsored research: the former is counted as a cost of both the departmental: research and instruction programs, and the latter for the research program only. The developed procedures have been applied to data collected from fourteen United States colleges and universities in the. fields of Biochemistry, Cell. Biology, Chemistry, Economics, English, Mathematics and Psychology. Average, and upper and lower quartile graduate degree program costs per enrolled graduate student and per graduate degree awafded have been estimated. -Estimated fegartmental costs have been correlated to some extent with certain characteristics of individual departiments and institutions. The procepures and results are discussed, and ceirtain recomendations are set forth.
(1a) This statement has been endorsed in principle by the Executive Committed of the Council of Graduate Schools in the United States. However, it is not an official statement supported by the university with which the adthors are associated, nor by any of, the colleges and uniyersities which have participated in the present study. The authors carry personal responsibility, for the content of the reports: (b) For the important advice and assistance received, the authors are deeply grateful to our deceased friends and colleagues, Drs. David R. Deener and Stephen Hatchett; to each of. the members of the CGS Gqadcost Comittee, and the Advisory Comittee; to the departuental, research, fiscal and graduate school officers of the several participating colleges and universities; and to the National Institutes of Health which provided funds to assist in its support, J.L.M. and W.D.G. (ic) Dean Emeritus of the Graduate School and Professor of Chemical Enofneering and Forest Resources, University of Washington. (1d) Resgarch Associate, University of Washington, Seattre, Washington.

Graduate education has dome under intensive scrutiny during the last few years, and special attention is now being paid to, its costs and benefits:

The basic questions are: What is the nature of graduate education? How and where should it be offered? What are its costs and benefits? Whoa receives these benefits?. Who should pay its costs?

Several years ago, the Council of Graduate Schools inithe United States initiated the "Gradcost" studies in order to help find answers to these questions. Gradcost I produced three publications, and was assisted by substantial funds provided by the National Science Foundation. In:two papers ${ }^{(2,3)^{\prime}}$, our colleagues John H. Powell and Robert D. Lamṣon analyzed the costs and benefits of graduate education after, a comprehensive $\because \quad$ review of all the available literature and documents in, the field. "In the third publication, Joseph., L. McCarthy and the late David R. Deener summarized these reviews and provided ac commentary with recommendations as to hor questions relating to the costs and benefits of graduate education might be viewed in the light of the presently prevailing . graduate school arrangements and attitudes ${ }^{(4)} \cdot$. Further studies were conducted with funding assistance ${ }^{\text {from }}$ the Council of Graduate Schools. in the United States, and these results have been described in the Gradcost II report ${ }^{\text {(5) }}$ recently transmitted to the CGS by MCCarthy and Deener.
(2) Pøẁel, John H., J́́., and Lamsón, Robert D., "Elements Related ${ }^{\circ}$ to the Determination of Costs and Benefits of Graduate Education." "The Council of Graduate Schools in the United States, Washing ton, D.C:, March 1972. (3) Rowel, John H., Jr.., and Lamson, Robert D., "An AnnoyLated Bibliography of, Literature Relating to the Costs and Benefits of Graduate Education." The Council of Graduate Schools in the United States, Washington, D.C., March 1972. (4) McCarthy, Joseph L., and Deener, David R., "The Costs and Benefits of Graduate Education; A Commentary with Recommendations." The Council of Graduate Schools in the United States, Washington, D.C., March 1972. (5) McCarthy, Joseph L., and Deener, David R., "The Costs and Benefits of Graduate Education:

- A-Preliminary.Study of Two Approaches to Estimation of the Cost of Chemistry Ph.D. Programs at Two Universities." The. Council of Graduate - Schools in the United States', Washington, D.C., November 1975.

The now-reported Graḍcost III study, initiated in 1974, is concerned with alternative methods for estimating the costs of Masters and Doctors programs, and the application of surch methods in a numbef of representative fields at fourteen universities and colleges in the United States;
A "Supplement" giving procedural details and illustrative calculations
 The study has recerved major funding assistance from the National Institutes 'of Health'.

2. OBJECTIVES

Our main objective has been to identify one or'more rélativély simple procedures appropriate for estimation or approximation on a consistant basis.of graduate degree program costs in several fieldsoat a number of differént cdleges and universitie"s.

A second objective has been to apply the identified procedure or procedures to the severfil selected fyelds at a number of different colleges and universities, and for each of a number of years.

We have. sought geneqally applicable procedures, based upon the definitions prevailing and data available at most institutions offering graduate degree programs, for̀ securing estimations or approximations of gxaduate program costs. It has not been our object to develop detailed .measurements following the methode of accounting.

Of interest have been orly those procedures.providing for "closure" whereby the total annual expenditures made by the institution would approximately equal the sum of the annual expenditures made in each department and other unit,if, the same selected procedures were applied to all academic and other yafls throughout the university.

A further objective has been to identify and call attention to those primary sources of data for estimation of costs which need to be made more precise in order to permit better approximation of costs to pe 1. obtaimed by.application of the developed or other procedures.

[^0]"Our concẹption of the overall. working of a university or college"is sumparized pictorially in Figure 3-1 (7) in relation to itis students, faculty, staff and administration and the commulty, and also, in relation to the sources and expenditures of its furids. We visualize that a college of university úsuffy conducts three main typesi of programs Instruction, Researcin, and Public Service - and that these ordinarily ovellap, substantially.
' 'The structure of this study is based 'on recognition of' a graduate "degree program as defined by the Council of Graduate Schools in the United States ${ }^{(8)}$:
"That the essence of graduate education is in the graduate. degree program and, "therefore, the graduate degree program. is the appropriate. basis for consideration. . : of graduate work;
"That a graduate degree pragram should be defined as, that set of academic experiences offered to a graduate student which are to be satisfactorily completed in order to make appropriate the award by the academic instituition to the student of a graduate degree such as Master or Doctor;".

The second basis of our approach is the longtime and widéspréd..... agreement that the primary objective of Doctor of Philosophy. (Ph.D.) degree programs is to select, and train men and womeñ to find new knowledge. This, proposition has been reaffirmed rẹcently by both the Association of Graduate Schools in, the Association of American juniversities, and the Council of Graduate Schools in the United States ${ }^{(9)}$. The objectives of Masters 'programs, are, more diverse.

- 'The graduate program cost literatüré published up to aboue' 1972 was reviewed and summarized by Powel and Lamson $(2,3)$, and a few papers published more recentiy are discussed below.

For present purposes; we define the graduate degree program annual Total fost as the total monies experided during a twelve month
year by or throdoh a college or university to provide for the operation of a particular graduate, degree tprogram, irrespective of source of the funds:" The graduate degree program Unit Cost is "the graduate
(7), All figures generally follow the Chapter to which they relate. "Policy Statemegts." The Council of Graduate Schools in the United States, Washington', D.G., (1970). (9) "The Doctor of Philosophy Degree, ff a foint "statement by the gouncil"of Graduate Schools in the United States, and by. the Association of Graduate Schogls in the. United States, I Dupont plaza, Washington, D.C.; (1968); now revised and republished by the Council of Gradurate Schöols (1977).

degree program annual Total Cost divided by some númber representing a program unit such as the number of enrolled graduate students.

We recognize that manydifferent costs can formed and estimated with respect to graduate degree programs, such fo costs to the students, -including foregone opportunity costs, to the insṭitution, to the State Eegislature, to private donors, to the national government, and to society, but our concern fras been with graduate degree program costs as defined abóve.

We have taken the costs of the first year of graduate work to correspond approximately to the annual costs associted_with offering a Masters program, and the costs of subsequent years to represent the costs of the Doctors program. This approach hàs the shortcoming of not fecognizing first year graduate studentstas participants in a Ph:D. program in spited of the fact that ail or many such_students at some universities aspire toward the. Ph.D. and indeed were selected on this basis by admissions committees. Certain two year Kastèrs programs are - also not recognized. However, the choice permits useful comparisons to be made irrespective of differences in institutional policies and/or nomenclature.

Seven typical graduate program fields were selfcted for study: English, a non-laboratóry huizahity; Economics', a sócial science; Psychology, a socíal science with, a significant laboratory invólvement; Mathematics, s, non-laboratofy science in which sponsored research is oftep important; Chemistry, a laboratory seience\in which sponsored research is of ${ }^{\prime}$ zajor importance; Biod chemistry; a laboratory science often furiationing ks a depártmient within a mędicál school in which sponsored research is also 'Af major importance; and finally Celf Bjology, a non-departmentaiized field for which resuits from studies of other departmentalized fields may be used to generate estimates of graduate program costs.

Representatives of fourteen colleges and, universities agread to, collaborate in the study. Thése institutions are geographically dispersed throughout the United States. Eleven and two, xefpectively": grant, Doctor of Philosophy and Masters degree. as their highest awards. : One grants only the Bachelors degree: Half are pubilc institutions: -Student enrollmento range from a few thousand to over forty thousand.

As a condition of participation, yepresentatives of most institutions asked that the cost data provided by their universities and the resultant"cost pistimatès be considered confidential. Thus, cost data and estimates are not identified with individual institutions.

An Advisqig comittee consisting of one academic and one fiscal representative or qach participating institution gave valuable guidance and assistance to the Grac̃ost III stirdy

Data were setured in part from formal all-institutional reports ${ }^{(10)}$ which we reeeived from each participating unversity. Some all-institutional dáa and most departmental. date were collected using a number of questionnaires which were completed by persons associated with individual departments, the fiscal offices, and/or the office of the Dean of the Graduate offiool.

The procedures for carrying out cost-estimations, as well as the text ${ }^{2}$ of the several questionnairas, were proposed by the futhors, revieved by the Advisory Comintee, then written in final form, and are set forth in detail in the Supplement ${ }^{(6)}$

- Generally, we have allocated ta graduate programs three types of costśs - departmental expenditures, institutional support expenditures, and student appointment expenditures. Departmental. expenditures comprise. the most mportant cost element, and thus, severaz alternative procedures for making allocations from̀ departmental budgets have been studied. Graduate work conducted in departments is given "institutional support" to provide for operation of libraries, student services, plant operation and maintenance, etc., $\overrightarrow{\text { and }}_{\text {and }}$ this cost element is covered mainly by allocatiops from
* which provile for Fellowships, and Assistane éhips. comprise the third element, and these, although usually small, may be significant relatise to" the recruitment and retention of able graduate. students. Special. attention is given below to Researob Program expenditures, including
(10) Examples of such repoxts are: (1) Tulane University Financial Report. 1973/1974 (Tulane University, New Orleans, 1975). (b) Indirect Cost Computation, 1973-74 (Tulane University, New Orleanis 7 1973-74). \therefore, (c) Financial Report 1974 (University of Washington, Sefattle, 1975). (d) University of Washington Financial Statements for the Year Ending June' $30,1974{ }^{\circ}$ (University of Washing̣ton, Seattle, 1974). (3) University of Washingtion Annual Study de Indirect Costs; July 1, -1972-June 30, 1973 (University of Waskington, Seattle, 1973.).
both departmental and sponsored fesearch funds, since these are closely related to graduate degree programs. Finally, appropriate elements are brought together to yield our estimates' of graduate degree pragram costs.

4. ${ }^{-1}$ INSTITUTIONAL FUNDS -

The funds: expended each year bey a college and university, as described in Annual Reports
(10) are usually presented in two separate categories; "unrestrícted", and "restrictéd" funds.
4.1 Unrestricted Fund

Unrestricted funds. thome to an instétution from student fees, state legislative appropriations, éndowment income, and private gifta, and these cmonies may be used fot any purpose deemed appropriate by the administration and trustees' 'to' advance tife central purposes of the institution. Unrestricted fund éxpenditures are usually reprorted in certain categories as illustrated in Table $4-1$ for a fictitious institution which we shall call Learned University. These categories have , become nearly standardized mainly as a resuilt of the effective activities of the Mational Associatioñ of College and Universify Business Officers. (${ }^{\prime}$ (NACUBO).
 the several participating conleges and universities wete divided by the reported numbers of full time equivalent facult 'members to obtain the results shown in Figure 4-1 (12).

The largest institutional expenditure category is instruction and ' departmental research, and 'allocalions from this category are made to départmental budgets, which, in turn, provide basic funding for, graduate programs. Other major expenditures provide for plant operation and maintenance, sfudent services, libraries; general operation and administrakion, and these comprise the "institutional support" for the academic activities of the departmental units.
, Certain other unrestricted institutional fund expenditures shown in Table $4-1$ have not been considered as graduate degree program cost elements because" they aré concérned with fictivîties which do not bear
(11) Acronyms and certafp abbreviations are defined in. Table 4-2.
((12) In this report, results ake represented as histograms with tabulations of numbers súperimposed. The horizontal bar and the numbers written thereon rexpresent the mean of the values available. . To suggest the -range of values considered, just above and below this mean are shown number of values dealt with is shown in parenthesis following the mean
\# : value. The "total" values are the sums of the "mean values. Sometimes avérages are larger than upper quartile valaes because of skewed data.

${ }^{\text {a }}$ Exclüding transfers; D' b Restricted funds expenditures include only the Direct Cósts of Grants and Contracts, and not the Indirect Costs.' .The approximate pergentages of the total for each colum are shown within the parentheses with a dasn indicating less thañ, fine percent.

cGs^{3}
 Classcít

 COMPCUI COIPCUT-YD COHPCUT-TPSection Council of Graduate Schoois in the United States 1
\because Procedure for Estimation of Departiontal Costs 5.1
Procedure for Estimation of Dppartmental, Costs" 5.3
Procedure for Estimption of Departmental Costs - Mulifi-Department 6.8
, Procedure for Estimation of Departmental Costs - Typical, Program 6.11
CBEDCUT
DCOST
DISSProcedure for Estination of Departmental Costs5.2
Annual Departrental Costs per Graduate Student 10.2.1
ECE
Dissértation for the Doctoral Degree 6.2
Equal Credit Equivalent 6.9
Educational Resofyces Information Center 2
fá Faculty Activity Azelysis 6.3
FACT Faculizy Cost per Graduate Student Per Year $10.2 .1^{\circ}$
GC
GSCH - Graduate Credit Hours per 1000 Department Total 6.2
Gull Time Equival 10.2 .1
GRADCOSTIS
ISTH.- LDNIH
\qquad

\therefore FIGURE 4-1: AVERAGE INSNTUTIONAL EXPENDITURES. + . P能 FACULTY MEMBER.

- (*UNRESTRICTED FUHDS IN THOUSAḰOS OF DOLLARS)
$1=$ TOTAL' $2=$ INSTRUCTION A AND DEPĂRTHENTALEPRSEARCH - $3=$ OPERATION AND'GAINTENANCE OF PLANT?
$4^{\circ}=$ general institutional and administration

d.

FIGURE ST-1: NUMBERS, OF GRADUATE STUXENTS PER \therefore FACILTY MEMBER

$$
\begin{aligned}
& 1=\text { BIOCHEMISTRY } \quad 2=\text { CHEMISTRY } \quad 3=\text { ECONOHICS } \\
& 4=\text { ENGLISH } \quad 5=\text { MATHEMATICS } \quad 6=\text { PSYCHOLOGY }
\end{aligned}
$$

directly on academic programs (e.g., public service, etc.), or because ; they are conducted usually on an approximately self-sustaining basis. (egg., auxiliary activities such as student residences, food service, parking falsities, etc.), ox. with special funding (egg., hospitals,

Restricted fund are those dedicated, often exclusively, to the payment of al or some of the costs associated with -particular activities as specified by the donor, granter, or contractor, and agreed to by an appropriate representative of the institution. Such funds are often used to support scholarships, fellowships, or specified academic actin:pities, etc.
.Restricted funds of major magnitude provide partial support for\therefore research at some universities. These funds are of particular interest, because sponsored research bears a close relationship with graduate degree programs, and especially with research work . Conducted for Doctors dissertations and Masters theses, as is discussed below in Chapter 9 . 4.3. Capital Funds

Capital funds are used by colleges and universities to pay for institutional buildings and other fixtures, and permanent equipment. These funds have not, been included as graduate degree program cost elements becalise of the differing concepts and procedures relating to the handling of such funds at individual institutions, and because emphasis in the present study is on operating costs.
5. DEPARTMENTAL COSTS - GENERAL AND PROCEDURAL ALTERKATIVES

The departmental expenditures reflected in a departmental budget are assumed to be made, in favor of three types of programs - the fnstructional Programs (consisting, more specifically, of the Bachelors Program, the Masters Program y ard the Doctors Program); the Research Program and the Public Service Program (Figure 3-1).

Our examination of available departmental budget papers has shown that allocations to the Public Service Program are relatively small, and thus these have, been neglected ${ }_{\text {? }}^{*}$?

The unrestricted funds appropriate to allocate. fy om the departmental budget to the departmental Research Program, in our opinion, are included within those associated with the Instruction Programs as is discussed
below in Chapter 9, and; therefore, one central problem in the present study has been how most rationallf to make ailocations from the departmental budget. to the Instructional 'programs (i.e., the Bachelors, Masters, and Doctors programs) offered by the subject departmental facûlty.

Five allocation. procedures have been considered, and each is described in detail in thé Supplement along with illuătrative stepwise calculations for the Chémistry Department- of fictitious Learned University. '

Three procedures, identified as "CLASSCUT," "CREDCUT," and "COMPCUT," (these año other acronyms afe defined in Table 4-2) will now be described briefly, and their main advantages and disadvantages summarized.

5.1 CEASSCUT

The CLASSCUT procedure (Table (S-1) is based upon two propositions: that the cost of the faculty time used for preparation and presentation. of instruction to \dot{a} class k, about the same for every class; and that eaçh class can be assigned to a particular instructional program depending , upon identifiction of its main clientele ơr propoxtion of major enrolled Doctor, Master, or Bachelor students.

* To apply the procedure to "cut", or to allocate totall departmental budget "fpenditures, this sum is divided by the number of classes taught by the departmentifaculty to obtain the departmental cost per cias. This unit cost per cilass is then multiplied by the number of classes. deemed to be taught in favor of students in a particular degree program (e.g., the Masters Program) to obtain the total departmental cost of the subject program. The cost per student is obtained by dividing the total K. (by the number of students enrolled in the program.

This procedure offers the major advantage of simplicity, but suffers from three primary difficulties. Firstly, classes sometimes cannot
\therefore. \quad clearly be allocated to the Kasters vs. the Doctors Program, of to the Bachelors vs. the Masters program, since both may be served.' Secondly, faculty activity relating to individuai students such as Independent' Study; Masters Thesis and Doctors Dissertation supervision is difficult to equate to activity relating to formal classes. 'Thirdly, no recogatition is given to the presumed additional qualit's and/or. quantity of effort by professors in preparing.for advanced versus begiņning classes.- A modif-: ication of the CLASSCUT procedure called "CLADCUT," whereby some arbitrary weịghting in favor of advanced clasres was used, ;was studiediń a preliminaxy manner, as described in the Supplement. ${ }^{\circ}$

FOR ESTIMATION OF DEPARTMENTAL COSTS ${ }^{\text {a. }}$

CLASSCUTT

2. $\cdot[. \$ /$ class $] \times\left[\begin{array}{c}\text { classes taken by, enrollees } \\ \text { in program }\end{array}\right]$.
3. $\left[\frac{\text { Humber of Enrollees }}{5}\right]$
\$/program.
$=-\$ /$ student $:$

1. $\left[\frac{\text { Annual Dept:, Budget } \$ \overline{4}}{\text { Annual number Dept.. SCI }}\right]$. "
$\dot{x} \cdot[\$ / \mathrm{SCH}] \times\left[\begin{array}{l}\mathrm{SCH} \text { taken by enrollees } \\ \text { in program }\end{array}\right]$
$=\$ /$ prog
2. $\cdot\left[\frac{\text { S/protram }}{\text { Number of enrollees }}\right]$
\doteq. $\$ /$ student

COMPCUTS

2. $\because\left[\frac{\dot{\$ / 1 e v e l}}{\text { SCH/level }}\right]$
$=\$ / \mathrm{SCH}$ by level

4A.: $\quad\left[\frac{\text { S/prograil }}{\text { Number of enrollees }}\right]$
$=$ = $\$ /$ student

4B.

$=\$ /$ degree
, More specific descriptions of the CLASSCUT, CREDCUT, and COMPCUT procedures are given in Sections $5.1,5.2$ and 5,3 , respectively.

$$
6 \cdot 20
$$

INDIVIDUAL DEPARTMENTAL COSTS ${ }^{(a)}$ FOR CERTAIN FIELDS EATITATED"BY THREE PROCEDURES

 :fers the Masters as its highest degree,

5:2 CREDCUT

The CREDCUI procedure (Table 5-1) is based on 2 widely used quantity knownas the student credit hour ("SCH"; see Section 6.2): Here, the departmental cost per SCH is found by dividing the total departmental expenditures by the total number of SCH "generated" by the teaching activities of the departmentan faculty The students in a particular program, sueh as the Masters program, attend classes, and, thereby, (accumulate a certain nuiber of SCH . The departmental cost of thís program is estimated by miltiplying the total number of SCH generated by the student in the program by the cost of one SCH. The unit cost is Dbtained by dividing the total cost by the number of students enrolled in the program.

This proceduré, like CLASSCUT, offers simplicity as its major, advantage, but presents_similar difficulties. Thus, it does not take into account the possibly substantially greater time and quality of effort required by professors to prepare and present instruction for graduate coppared with , undergraduate students. Also, individual instruction of graduate students in thesis and dissertation work is difficult to represent in terms of SCH .

5.3-COMPCUT

The COMPCUTopiocedure is a composite method based in part on use of a Faculty Activity Andlysis. ("FAA"; see Section 6.3), in order to quantify, 'at leas't approximately, the proportion of time devated by the faculty in a department.to; the offering of formal courses at each of beveral levels, the carrying out of scholarly work and research, and compltee work, etc., and also in part on a Crossover Analysis ("XOA"; see seçtion 6.4), which gives information concerning the SCH "taken" in particular. fields and at specified levels by students enrolled. in a degree program.

The procedure is outlined in Table 5-1 and described below in some detail. Preliminary study was given to a FAACUT ("FAA") progedure whereby Scholarly Activity costs were allocated based on FAA ascribed to each level, $a i_{0}$ illustrated in the Sapplement. This approach was abandoned in favor of the weighting system embodice in 'COMPCUT.

- The fOMPCUT procedure avoids most of the difficulties described for the CLA'SSCUT and. CREDCUT procedures although it is legs simple ta
-carry out. It suffers from three main shortcomtngs: it relies cent́rally'upon FAA data which are frequently of limited reliability; it draws strongly on SC\& data which are sometimes used in dissimilar ways. in different departments and insfitutions, and especially in relation to independent study relative to Masters thesis and Doctors dissertation research; and it may utilize.the pumbers of" graduate students reported to. be enrolied in Masters or Doctors programs, and these numbers are often imprecise.
5.4. Comparison of-CLASSCUT, CREDCUT and COMPCUT
: Major variations are evident in the costs estimated for a particulargepartment by use of different procedures, as is exemplified in Táble 5.2. This shows departmental costs per year per graduate, student obtained by application of the CLASSCUT, CREDCUT and COMPCUT procedures for a number of departments of Chemistry, English, and Psychglogy, and also the ratios of GLASSCUT and CREDCUT to COMPČUT estimated costs for individual departments.

CREDCUT costs are seen, to be much lowet than the other costs, and mainly because the procedure does not recognize the significantly great faculty time which is usually associated with instruction and research at the advanced levels. In our view and that of the Advisory Comittee, the CREDCUT procedure does not merit serious consideratiga as a potentially useful procedure for making estimates of the costs of graduate "work."
"ClaSSCUT costs are sometimes surprisingly close to the COMPCUT costs, ,although major differences still occur 'in certain cases. The cause of these departures is not clear to us, but possibly is associated with inconsistent allocation of clasṣes to programs, e.g., to a graçuate instead of an undergraduate program, or vice versa, or elise:inconsistent FAA reporting. Within a particular ins'titution and with allocations暲 classes to programs made by well-informed persons, the CLASSCUT prôcedure may prove to be of value in view of its simplicity.

* Generally, the COMPCUT procedure is considered by us to be the most useful of "those studied because allocations are made using rationally based estimates of the disposition of expensive faculty time (via FAA) and of student use of resources (via $\$ C B ;$ and $X O A$), and because the procedure may be relatively straight forward and inexpensive to

In-the following paragraphs, certain definitions; data sources, and their interreláaionships will"first be discussed, and the several steps of the COMPCET procedure.will be described. Numerical yęsults are shown on the histograms assembled together following the end of the text of this report and subsequent chapters.
6.1 Numbers of Depaztmental Faculty Members and Graduate Students

The departments studied vary widely in size in terms of FTE faculty members; English and Mathematics ranged from around ten to more than one hundred; Chemistry, Economics and Psychology from about ten up to around fifty; and Biochemistry from five to about fifteen: 'The numbers of graduate students zosociated with the departments studied also varied highly.

The average numper of graduate students per FTE faculty ranged from about two to four (Figure 6-1).

Part-time graduate students were found to comprise only y to spme ten or twenty percent of the tofal population in the departuents studied when gtaduate students holding Teachíng Assístantship, Research \#ssístantships, and Fellowships were counted as full-time students. Because of these. relatively smalf percentages, and because of inconsistent definitions and policies, relating to full-time equivalent studento in different-institutions, we have used 'head count", mupbers of graduate stưdents in most cases as a basis for our estimates of cösts, rather than full-time ("FTE") students. .

6.2 Levels of Instruction and Student Credit Hours ("SCH")

An eight level system of words and numbers, was used in our datacollecting questionnaires (see Supplement) to describe the level or degree of advancement of academic courses.

As the study`progressed, it became evident 'that this system is too detailed, and therefore, some aggregations were made to provide the following five level system: $\mathcal{L D}=$ lower division undergradwate; $\mathrm{UD}=$ upper division undergraduate; $G C=$ graduate classes;

ISTH $=$ Ipdependent Study, and Masters thesis; and "DISS $=$ Doctors disserta-- tion. Data received from participating institutions were translated into this syistem.
Ji The student credit hour ("SCH") is a unit used in academic recoid keeping which usually is defined as the "quantity" of instruction offered by a professor and presumed to be received by one student during the period of time over which a particular lecture class is offered, e.g;, one academiq quarter or semester.

Thus, if a professor meets and lectures to a class for, say, one hour three times per week at an institution where the class offering continues over' one academic quarter' of the year, or three'months, then 'this activity mà be identified as a. three-quarter credit hour class, or usually a three-credit hour classy. If ten students are enrolled, then $10 \times 3=30 \mathrm{SCH}$ are "generated" oy this class.

Qưarter SCH have been rultiplied by 0.67 to obtain Semester SCH which are used throughout the following calculations.

The total number of SCH teaching activity reported for each participating department was divided by the number of dederimental faculty - members to secure the values given in Figure 6-2. Koderately good consistency in SCH per, faculty pember is found for the LD and UD levels, but only fair and less than fair, for the ISTH and DIsS levels, respectively, as might be expecited as a result of the diversity of the departments studied and also the relatively small numbers of braduate credits developed.

In ail fieldas except Biochemistry, the dominant rcomitment of faculty to teaching at the undergraduate and lower division level is noterorthy.
6.3 The Facuity Activity Analysis ("FAA") 'and its Relation to

Student Credit Hours

The FAA shows the fraction of total working time, as, estimated by
 in a department devote to formal instruction at each of several levels, and to Scholarly Activity ("SA") comittee meetings, and other activities. Forms differ somewhat at differént institutions, and information for the present study was collected using the questionnaires shown in the Supplement. $>^{3}$ The FAA data collected for each field ${ }^{2}$ (Figure 6-3) show fair consistency with respect to the fraction of faculty time ton the averages devoted to the several instructional levels and other categories, and
the " "service" load of lower division undergraduate teaching is indicated to be heavy in Chemistry, Engísh' and Mathematics, moderate in Economics and Psychology, and light in Biochemistry. Variances aré higher"among the smaller percentages associated with © \mathcal{C}, "ISTH; and DISS levels, as may bé expected. Again, one sees a major commitment by the several facuities to undergraduate teaching. Scholarly activity is a significant element in all fields.

A relationship between the reported faculty teaching activity and SCH was obtained by dividing the proportion of faculty teaching time devoted to instruction at a particular level, i.e.?
(FAA for lével/FAA for total teaching:) by the proportion of. SCH "generated at that level, i.e., (SCH finor level/SCH total)
to secure a ratio, "R" (Eigure 6-4).
The average values of R increase progressively in all fields for* the LD, UD, GC and ISTH categories, but sometires not for the DFSS category, and thus inđ̈icating a najor increase of faculty time associated with one credit hour as the level of instruction becotes more advanced.

For fields other than Mathematics and Psychology, values of R for殒ISS are substantially less than for ISTH, GC and soretimes even UD, These variations eare believed to arise naznly"as a result of differences in policies and practices, among the several subject fields and institutions with respect to DIȘS enrollments and SCH equivalencies, and to inconsistencies in assigning faculty titwe among" the categories of, DISS instruction, Scholarly Activity, and sponsored research activity. Generally, in the opition $\dot{0} \dot{\text { i }}$ the authors, the true values of R for the DISS category in most cases are equal to ot greater than those shown in Figure 6-4 for the ISTH category. The substantial variance found in K, as indicated by the spread of the qüartiles for a particular category, emphasizes the primary shortcoming of the COMPCUT method for comparisons among fields and/or institutions in that it relies primarily on the validity and * constifency of the FAA in allocation of departmental costs by level of instruction.
6.4 The CrossDver Analysis ("XOA") and Parent-ys. Extra-Departwental SCH Graduate students in a particular field often receive formal instruc, tion in classes offered by professors associated with departments other
than their "parent" department. Expenditures to provide for these extra-departmental courses must be considered as elements of graduate degree progriam costs:
fo present information concerning the nature and extent of.inter-" - and intra-departmental instruction; use is frequently made of a tabưlation know as a Crossover Analysis. ("XOA"). This is a conpilation; usually computer-generated, prepared by assembling data from the records of all indriviqual students enrolled in a particular program, such as an English Ph.D. program. The XOA shors the total ié field, and/or acadenic aréa, and by level, taken during a specific .. quarter or s' semestér by all laf the students enrolled in the subject prograre.

In the present study, a questiomaire shown in the Supplement was used to collect a limited amount of XDA data, This consisted of the total number of " SCH taken by the average Masters and Doctors students in a particular prógram, and also, for intra- and extra-departmental courses separately, the number of SCH taken at each' of the five levels of instruction. Thurs, extra-departnental courses were not identified by specific field or area, bút gnly as courses taken outside the parent. departzent.

- Conpilation of the data received showed, in most cases, that more than eighty and -sometines nearly ninety percent of the average Masters and Doctors program Sty are taken within the parent department (Figures 6-5, 6-6).
- Thus, one mày pake useor parent deparifent SCH coṣts to approximäte SCH costs for all courses, taken" by đepartizental graduate stuectes as is described below.

From the collected XOA data," the total and by-level numbers of SCH taken in a semester per graduate student in a particular progran have aiso been compiled for Masters (Figure 6-7) and for Doctors (Figure 6-8) students. Masters students on the average sometimes take more total, ${ }^{1}$ credits per semester than Doctors students; a fact of some significance in estieating unit departpental costs for Dóctors versus Masters students, on a heảd count basis. Vawations arë especially high for diss SCH and ISTH-SCH, reflecting the differing, policies and practices of the responding deparfaents.

6.5 The Departmental Budget (unrestricted funds)

\checkmark To compare the major elements of the budgets of the departiments studied, the total budgeted expenditures, and those for the categories of faculty compensation, staff compensátion,' T.A. compensation, and "other;" were divided by the total numbers of full time equivalent faculty members in the deparment, and hese resulting average's have beens calculated for the several fields studied (Figure 6-9).

Total departmental expenditures averaged about $\$ 25,000$ per faculty , member in all fields.

Faculty compensation is the most important cost in all fields and may comprise sixty to eighty percent of the total departiental expenditures.
.- Tatàl expenditares for personnel often exceeds ninety percent of the departmental budget.
6. 6 Departrental Costs by Level of Instruction (COMPCUT Step i)

To estinate departmental costs for each level of instruction, departmental budgeted expenditures hảve been gepped into five categories: facuity compensation, staíf compensation, Teaching Assistant compensation, Research Assistant and Post Doctoral appointee compensation, and operations. Costs in each of these categories, with two exceptions, halve been assigned to levels of formal instruction in acçord with the exaction ("F") of time devoted"by the faculty to formal teaching, i.e.,
(FAA for level/FAA for total teaching)
as indicated by the FAA (Figure 6-3).
One exception is Teaching Assistantship costs: these have been assigned to lower and upper division undergraduate fork in the arbitrary proportions of 80% and 20%, respectively. However, "for a particular departwent, some other distribution might be appropriate.

The other exception is the allocation of the costs of faculty time devoted to S'cholarly Activity. The question is: how should Scholarly Activity costs be apportioned to the several levels of formal instruction, since we presume that rhese costs should be recognized as elements of the cossts of instruction?

One might plopose that Scholarly Activity costs should bydistribuited uniformly to each level of instriuction, or else uniformly by FAA and this appróach wâs considered as part of the FAACUT procedure (see Supplement).

Howdyer，we came to the conclusion that the cost of faculty time devoted tod Scholarly Activity should be assessed frore heavily on the advanced levels of instruction because of the increased requirement that professors keep up－to－date in their scholarly field as their teaching is ${ }^{\circ}$ offered at the more advanced levéls．＇，This selationship as suggested by．， the $R{ }^{\frac{\alpha}{v}}$ values of Figutre $\beta-4$ and is paxticularly significant for grad－ uate work where current research publications must be rfad，understood， evaluated，and incorporated into formal feating，and guidance in re－ search activity must must be given to graduate students who are working on their Masters theses and Doctors dissertations．

He conferred with Advisory Comittee memberis whose comments to our allocation of Scholarly Activity costs to the several levels of formal instrucyion．with weightipg factors in which the＂quantity＂of faculty time represented by a FAA percentage is weighted by a．quantity factor as follows：Lower Division undergraduate courses，weighting．factory $=1$ ； Upper Division undergraduates，3；＇Craduate Classes and Independent Study and Researčh，5；Mašters Thesis，7；and Dóctors disseřération， 10.

Wased on these considerations，total departmental costs by hevel of 落 instruction were obtained by taking the sums of the abovediscussed thrèe elemext．\quad ．

We：recognize that graduate studen＇ts incur inśtructionalo costs by taking courses outside their parent depatment．However，for simplicity we bave esti得持ed departmettal cosits by the above－stated procedure assuming that Scil costs at each level approximately the same in outside as in parent，departments．This assumption is believed to introduce 1 relatively little eryor；because the percentages of non－parent depart－ ment SCH relative to thin total SCH taken by graduate students are relatively small（Figures 6－5，gnd 6－6）；becanse the difference but not the absomute value of SCH cost is dealtwith；ind．because graduate studepts often take thẹ less expensive uqeicighatuate＇courses outside their parent department．

6．7 Department SCH Costs by wevel of instruction（COMPCUT Step 2）
＇The total departmental cost as estimated above for each level of instruction was divided by the total number of SCH provided by the departinental faculty at thatilevel to yield the departmental cosj per
SCH by level，and these costs，are deseribed in Figure to SCH by level，and these costs．are destribed in Figüre tro ${ }^{6}=10$ ．

Average costs per SCH increase progressively as the levels of in-: Struction increases, except for the cases of DISS SCH for Biochemistry, Chemistry, Economics and English. These departures, we belleve, result from anomalies in FAA reporting of DISS activities as pointed out above in Section 6.3.
6.8 Total Annual Departmental. Costs of Graduate'Programs (COMPCUT

Step 3, and COMPCUT-MD)

To estimate the total annual deparmental cost of a particular fro-" gram, the number of SGH at each level taken during a particular quarter or semester by the total students enrolled in the subject program, was multiplied by the cosit per SCH at each level, respectively. The several products were added to obtain the, costs for one quarter or` sémester, and appropriate further multiplication then yielded the estimated annual cost. of the program. These costs for a particular field varied widely because of the different numbers of faculty members and graduate students in the several reporting departments. Thus unit costs were calculated as described below.

As an alternative to the above-described procedure based upon use of parent department SCH eost only, it is possible and desirable to make estimates of total annual departmental costs of graduate programs based on multi-departmental data ("COMPCUT-RD") provided sufficient information is available.

To this end, the :XOA cań be employed to construct a listing of the. courses (\uparrow g., by fiede, level, and number of SCH) taken during a specific term by all students enrolled in a particular program. To simplify matters, academic fields can be grouped into a small number of areas for which SCH costs are simílar and available by such procedures as already described. By taking the sum of the products obtained by multipiying the coosts per SCH appropriately with the humbers of SCH taken in each field ${ }^{\circ}$ or area and at each ievel, the total departmental graduate program costs can,be.obtained. Such muitiple department unit cost estimates. *probably wili approximate actual costs more closely than single departurent unit costs, but insufficient XOA"data was available to permit such calculatiqns to be made within the present study , ir
6.9 Annuai Departmental Costs per Graduate Student (COMPCUT Step 4A)

- The total annual departmental cost estimeted for each graduate program was divided by the head count number of graduate students enrolled
in the subject program to obtain our approximation of the annual departmental cost per enrolled Masters and Doctors student, (Figure 6-11) $\%$

Here and in the above text, it should be noted that program -average unit costs, are discussed, and these are obtained by summing the individval 'program unit costs and dividing by the number of" programs studied,'" (egg., for English-Ph.D. programs in departments $A, B_{\gamma}, C-$

$=$ program average unit cost
Total number of programs studied
and this procedure gives equal weight to the estimated unit costs for each program studied, large or small.

To permit comparison, we have also calculated student average unit costs (Figures 6-12) by weighting the unit costs estimated for a particular departmental program by a fraction which is the number of students enrolled in. the subject departmental program divided by the total number. of students enrolled in all the programs studied in a particular field, ie.
$[\text { Unit Cost }]_{A}\left[\mathrm{~N}_{A}\right]+[\text { Unit Cost }]_{B}\left[N_{B}\right]+[\text { Unit Cost }]_{C}\left[N_{C}\right]+-$
$N=T o t a l$ number students enrolled in program studied
$=$ student average unit cost
and this procedure gives equal weight to the estimated unit cost for ." each student enrolled in the programs studied.

Generally, the student average estimated unit costs are lower than the program averages because the former weights programs more heavily as the number of enrollees increases to levels where lower unit costs tend to be obtained as a result of economies of scale.

Estimated costs per eñrolled graduate student are given in Figures 13 and 14.

Unit costs estimated on a head count basis in some cases turn out
to be not much different for Masters compared with Doctors'students', and this result is obtained in part because the, average number of SCH taken per semester py a Masters student is sometimes higher than the number taken by a poctors student. As an alternative basis for estimating unit costs, "consideration was given to use of a "full time equivalent" student defined in terms of ten SCH, but this did not seem appropriate in view . of the wide yariance found within a Eield among respoŕdiag departments in the numbers of SCH actually taken by enrolled students.
6.10 DepartmentaI Co'sts pex Awarded Degree (COMPCUT Step 4B)

The total annual departmental cost estimated for each graduate program was divided $\dot{6}{ }^{\prime}$ ' the five year average number of degrees awarded in the gubject program to obtain our approximation of the departmeatal cost. per awardèd Masterş or Doctors degree. For each field studied, program average and student average unit costs were obtained by the methods" described in 'Section 6.9, and results are shown in Figures $\dot{6}-15$ and $\dot{6}-16$, respectively. Biochemistry Master degree costs are anomalous because only a very small. number of Masteŕs degrees are awarded.

Since several years of advanced study are required for completion' of the Doctors, degree, the unit cost per Doctors degree is several times the annual cost per year. By dividing the estimated cost peydoctorg degree by the k stimated annual cost, one might try to approximate the number of years beyond the first year of graduate work on the average whiek arerieeded to complexe a degree. However, such a figure would be unreiliable because account is not taken of students who. "drop out". along the way toward comple

For the Masters degrate, the situation is more complicated because, in addition to the drop out effect, in some fields and at some institutions, students working toward a Docto degree do not take the Kasters degree enroute.

For certain broad arèss, estimates have been pubished by the National Science Foundation (13) jf the average number of years needed to complete Ph.pr.degrees, and the "survival rate" of students who begin. the program. Sưch data might be used on alvery approximate basis to relate the estimated average cost per degree to the average cost per enrolled student.
(13) "Projections of Degrees and Enroliments in Science and Engineerin'g Fields to 1985 ," NSF Report 76-301, By Naomi A. Sulkin, National Science Foundation; Washịgton, D.C., Degenber (1975):

6.11 Departmental Cost Estimates by Use of a Typical Program

 ("COMPCUT-TP")If XOA data are not available, an estimate of department at cost per awarded degree can be made based upon a compilation of SCH information,. by field and by level, relating to the courses completed by, the typical graduate student who proceeds through a particular program (COMPCUT-TP). The needed typical program information is obtained by reviewing a number of transcripts of the academic records of graduate students with have completed the subject program, or else by consultation with the appropriate department chairman or a knowledgeable faculty member. The comparison of X9A and TP ${ }^{\text {Pa ta }}$. for SCH in Masters and Doctors , programs (Figures, 6-17 and 6-18) show fair agreement between typical and actual SCH associated with individual graduate degree programs. The estimated departmental cost per awarded degree is the sum of the numbers of SCH earned multiplied by the appropriate costs per SCH at each kevel.

To estimate annual departmental costs per enrollee, the awarded degree cost may be multiplied by the ratio of the average Stor taken in one year to the total SCH taken to complete. the degree program, and then this figure is adjusted to take account of the enrolled graduate students who do not complete. degrees.
1 Application of the compcut-TP procedure should provide "closure". on an approximate basis for the total of the academic programs of an institution iEmapplied in a similar manner throughout the college or university. 6.12 Departmental Cost. Estimates for $\dot{C e l l}$ Biology- an Interdisciplinary and Non-Depä̀trientalized 'Field (COMPCUT-TP)

Cell Biology was selected as one of the fields to be investigated in the present study because considerable research and doctoral dissercation work is being done in this eli eld, and because Cell Biology at most universities functions as an interdisciplinary non-departmentalized field! Thus, no departmental budget exists which pry be allocated as described above, ,

The cOMPCUT-TP , procedure has been applied to Cell Biology to illustrate how graduate program costs might be estimated for an interdzeiplinary and $\bar{n} 0 n-d e p a r t m e n t a l i z e d ~ f i e l d . ; ~$

Typical programs taken by students completing Ph.D. degrees with dissertations identified as being in the field of Cell Biology were

48^{\prime}

亏 \Rightarrow
$\because 1$

FIGUPE 6-8: सille

.
 A
\cdot
\cdot
\cdot
\cdot

\cdot
\ddots

FIGURE 6-10: DEPARTMEITAL COSTS PER STIDEIT CREDIT HOUR BY LEYEG

—

57

figure 6-11 prograh average

Figure 6-12 Student average

FIGURES 6-11 AND $6-12:$ DEPARTMENTAL COSTS BY FIELD PER MASTERS AND DOĆTORS STUDENT PER YEAR
1 = BIOCHEMISTRY $2=$ CHEHISTRY $3=$ ECOHOMICS $\quad 4=$ ENGLISH $\cdot 5=$ HATHEMATICS $6=$ PSYCHOLOGY
DOCTORS;

.58

FIGURES 6-15 AND 5-16: DEPARTMENTAL COSTS BY FIELD PER AHARDED DEGREE 1 . BIOCHEMISTRY 2 = CHEHISTRY 3 = ECOHOHICS 4 = ENGLISH 5 = HATHEYATICS 6 = PSYCHOLOGY (—— DOCTORS; $\therefore .--$ HASTERS) (*Thousands of Dollars)

$1=$ TOTRL $2=$ LOEER DIVISIOM $3=$ UPFEK DIVISIOM $4=$ GNOUHIE CLASSES

coliected and sent to us by academic Institutional Representatives asso-* ciated with a number of participating universities. These typical programs were defcribed in terms of the numbers of ' SCH , in particular' fields and entain levels; expected be completed to fulfilit the requírements for the Doctor of Philosophy degree. The SCH costs for the specified flelts were taken to be those estimated for similar areas, mainly Chemistry and Bipchemistry; but including ourzeosts for ahy six .Grädcost fields"at the appropriate levels at the particular university studièd.

By multiplying the applicable SCH costs by the number of SCH taken at each level, and sumsing these products, departmental costs ranged from about $\$ 1 \overline{2}, 060$ to $\$ 32, p 00$ per Doctor of Philosppiny, degree awarded in Cell biology as shown in figure 6-19 for each of the four C respondents.
6.13 Departmental Cost Estinates for the Yetrs of 1972-3, 1973-4, and 1974-5
Eftinates have been made of annual departinental costs per giaduate student enrollee by the COMPCUT procedure for successive years for a 2 - number of individual departments insofar as datà were avaílable (Figure 6-20).

7: INSTITUTUTORAL SUUPPORT COSTS

Graduate work in an academic departwent is "supported" by certain" extra-departmental actívities and facilities. These costs néed to be identified and allocated appropriately to the Bachelors, Masters, and Dof 'ito prograns offered in the subject departreit.

Two types of extra-departwental costs, need to be considered: one. is assotiated with general institutional, activities which are paid from the unrestricted funds of the institution and upually provide for the libraries, student services, plant op ation and maintenance, and general institutional and general administration seivices used. by the academic departmenis and service units (TabIe 4-1). The second type is associated with sponsored research and other grant and contract activities and is discusised in Chapter 9.

A nümber of methods wère considered for rich $^{\circ}{ }^{\prime}$ " expenditures to the academic departmenta, then to the'graduate and the Masters and Doctors support programs. To preserve símplicity' and because institutional support unit cösts are considerably smaller than depart-
mental costs, it was decided to make cost estimates using only that single procedures which promised to give, reasonable estimates by the direct and simple pathways:

For anil category of expense; "proxies" were established with the help of Advisory Committee members and others, and these have been used in the illustrative calculations set forth in the Supplement.

7.1 Library Costs

To us, it seems appropriate to weight Library costs more heavily against advanced students because of their presumed substantially greater need for and use of library resources. Thus, after consultation with Advisory Comaittee members and consideration of certain practices now -prevailing, "use was made of the ratio of the number of graduate students enrolled in the department- each given a weight of four - to the weighted total of registered s्रtudents enrolled in the institution; where number of freshmen and sophomores were weighted one, juniors and seniors two, 1 and graduate and professional students four. The total allocatable institutional library cost was multiplied by these ratios to yield an apptgximation of the Library cost associated with the department's graduatéprogram. Dividing this by the appropriate number of enrolled stitudents gave unit costs (Figure 7) which are similar on the average for the several fields studied.
$7 . \hat{2}$ Student Service Costs .
Student Service costs per student enrolled in the institution, including costs per Masters and Doctors student, were approximated by dividing the total win restricted student service funds to be allocate the number of students enrolíed in, the institution (Figure 7).

7.3 Plant -Operation and Maintenance Costs

- In accord with what appears to be common practice, Plant Operation and Maintenance. Costs have been allocated to the departments and other ${ }^{1}$ units using ret assignable area as the proxy.

Of the total insț̣tutional space, höwever, a substantial fraction . often occupied by auxiliary activities such" as dormitories, food services, parking lots; etc., which are usually intended to be self-- sustaining and are maintained by expenditures not represented in the Plant Operation and Maintenance accounts, or else are maintaingi at an insignificant net cost per' square foot, egg. parking space. This, from 1
the àmount of net usable space available in the institutions these areas - whish can be expectied to requifé zero. or minimum expenditures froil the Plant Operation and Maiftenance accounts - have been subtracted, leaving the square feet of space to be used for cost allocation purposes,

The cost of space used 立or Sponsored Research projects generally is accounted for separately. The fraction of the total Plant Operation and Maintenance expenditures allacated to Sponsored Research was taken to. bè the ratio, of the Sponsored Research" space to the total allocatable space multiplied by the allocatable Plant Operation and Maintenance expenditures..

After subtracting the auxiliary activity costs and the Sponsored Research costs from the total Plant Operation and Maintenance expenditures, the amount remaining was allocated to the institution's educational programs.

- To estimate Plan't Operation and Majntenance institutional sppport costè for a department, the area of the departwental instructional space was divided by the area of the total institution's instructional space, and the resulting fraction was multipliesi by the total costs remaining to be allocated.

To allocate departmental Plant Operation and Maintenance Costs to Masters and Doctors programs, the number of full time equivalent (FiE) students in each departmental program was ascertained, and then the ratios of Masters and Doctors students to the department's total FTE students were computed and wultiplied by the department's-alloçation. The unit costs for Chemistry and Biochemistry, the laboratory seiences stiudied, , are found to be much higher than the cost for other fieids although in 'general the variances are quite great (Figure 7):

7.4. General Instfeutional Costs and General Administration losts

The General Institutional expenditures and the. Teneral Administration expenditures" (Table 4-1) were added to yield "General" costs". From thesè, the costsjof Auxiliary Enterprises plus Hospital were subtracted to yield an approximation of the costs to be allocaked. ir

Allocationg to departments were bade based upon the ratio of the number of Fie faculty in a subject departmerk to the total FTE faculty of the university. Alhocations to Bachelor's, Masters, and Xoctors programs from departmental costs were made based on ratios of stug̣ent credit hours* . (SCH), weighted onè and trio for undergraduate and graduatể SCH, respectively, on the presumption that more advanced students consursed relatively

more general institutional resources and more administrative time. The program costs were divided by the numbers of enrollees to secure unit costs (Figure 7).

The estimated total annual unit institutional support costs are shown in Figure 7 for the Masters and Doctors programs averaged for the departments. \mathfrak{f} or each. field studied.

For's estimation of institutional support costs, representatives of the cooperating institutions had little difficulty in supplying fist of the data requested. A fer participants had trouble in evaluating the departmental space occupancies winch are needed to guide allocation of Plant Operation Maintenance Costs.

These procedures for estimation of institutional support costs embody a number of weighting factors which nay or may not be appropriate for use within a particular department or institution. The described procedures preferably sinquld be used only to make comparisons on a relative basis.
-8. STUDENI APPOTHIEENT COSTS
In graduatéand especially in PhD. programs, intellectually able, knowledgeable, sensible, hardworking and creative graduate students are needed, and a university may_ find it desirable to provide financial . assistance to help recruit and retain such graduate students.

A highly, able graduate student usually will complete his course work and select his dissertation topic earlier, will advance more rapidly through his graduate program, will require less guidance from his professors, will proceed with a lower probability of dropout, Will complete a better dissertation sooner, and finally, will make more significant contributions to society during the course of his career.

On this basis, fe believe that the costs of recruitment and continuation of graduate students, who are believed by the university to be desirable enrollees in order to provide'for Masters and/ar Doctors graduates of . the desired quality and number, should be considered to be part of the costs of the graduate program.

Consideration may be given to graduate rident appointment costs in a number of categories such as fellowships, traineeships, and research
assistantships and teaching fellowships. Of these, the first two do not require service, and thus may be considered as gifts provided on the condition that' the awardee continues as as student in good standing and. making good progress. The latter two usually require service, and. thus , are a type of employment. Tuition waivers may be awarded in either category, Figure 8 shows our estimates of the program-average student appointment monies expended per graduate student in sever categories for each of the fields studied.
8.1 Fellowships and Traineeships

<

Fellowships, 3s.mell as scholarships and gifts; often go to marticularly promising students irforder to encourage and assist such students ${ }^{r}$
 given to attract graduate students into particular fields. Financial did * nay also be provide fro ethnic minority students - often on a basis of - financial need - it order to attract such students, into graduate programs. Financial aid to veterans sometimes is also provided. Such awards, whether from either unrestricted $\dot{\tilde{i}}$ or restricted funds; seen to us to be: approriate elements to include as costs of graduate programs. These were found to amount to about $\$ 1,000$ per graduate student in Biochemistry, around $\$ 500$ in Chemistry and Psychology, and only $\$ 100$ to $\$ 200$ in other fields. 8.2 Teaching Assistantsinips

A Teaching Assistant is a graduate student who is appointed by a university to assist in carrying out the. Instructional programs of his. - institution, usually at the undeforaduate level, and ordinarily is paid from uni restricted funds. Teaching Assistantship compensation, which is often a major element in a departmental budget (Figure 6-9), was mound on the average to among to about $\$ 1,500$ per graduate student in Chemistry and Mathematics, around \$750 in Economics, English and Psychology, and \$200 in. Biochemistry (Figure 8).

One might conslacr-that a fraction of the stipend of a Teaching Assistant should be included among the costs of a departmental graduate degree program, because the level of this'stipend sometimes is designed

- in part to 'attract and retain graduate students of high ability, and/or because the Teaching Assistant's experience to helping with the depart-. mont's teaching activities is a valuable part bi his overall graduate
degree program.
For present purposes, however, we have chosen not ta include any part of the Teaching Assistantship stip.end as a graduate program cost element in view of the semice nature of these appointments. Instead, this cost hás been allocated entirely to the undergraduate program. 8.3.Research As̄sistantshíps

Research Assisțantships are awards given to enroilledzgraduate stūdents in recognition of their service in helping to carry out the research work of the iniversity. The research is usually conductea under the supervision of a professor, and often the activity and findings are used by azgraduate to satisfy some of the requirements for completion of his Masters thesis or Doctors dissertation.

When. Research Assistantship monies come from the unrestricted funds of the university, we belieye they should be included as costs of departmental graduafe programs and also of departmental research programs be= cause the-àllocation. represents a positive choice to make this expenditure for graduate work and researich instead of one of the many alternative choices. Such funds were found to amount to about $\$ 100$ to $\$ 200$ per graduate student in the fields studied.

Whether to include Research As'sistantship expenditures funded by a sponsor's grant or contract monies, wholly or in part, as cost elements in graduate degree programs is a difficult question. While thest ReF search Assistantships often are highly important in relation to both the department's graduate program and its research program, we have chosen not to incluce these costs as elements in graduate programs,' because grant and contract funds are phid through the university to graduate student Research Assistants for resparch services rendered, and because such funds come to universities dedicated spectfically for research rather. than instructional activities. Sponsored Research Assistantship monies ranke from about $\$ 300$ per graduate student in Chemistry down to almost zero in Englzah.

8.4 Tuxtion Waivérs
 At certain'institutions ${ }_{3}$ tuition fees, 'sholly or in part, are

 waived for spme graduate students, and one might consider that the value "of such watvers thould be included as an element of the cost of a graduate degree"program.However, most of the costs discussed above have been clearly identifriable as specific expenditures of institutional funds. Tuition waivers are different r They do not involve any transfer of money, but, on the other hand, they do involve transfers that may be equivalent to exchange of money.
. This ${ }^{+}$ambivalence gives rise in some institutions to simply ignoring tuition waivers. in their accounting system, but maintaining control over the distribution of waivers through entirely different procedures than those used to control flow of money. Other institutions include tuition waivers in their financial accounting systems and treat them in just about the same way" as any other. money is treated.

For purposes of this study, the authors finally decided not to include tuition waivers as a cost of graduate education partly for the above-stated reasons, but mostly because the tuition waiver data provideed from the participating departments and institutions were not suficiently complete to permit confidence to be placed in any figures which. might be calculated s.

8.5 Total Graduate Student Appointment Costs

The above-described expenditures for graduate student appointments, including both service and non-service types, are important elements in graduate programs, because they are of major assistance to a university . in the recruitment and retention of graduate' students on high ability and promise.

Thus, as a reflection of the inducements offered to prospective and .; actual graduate students, the average total expenditures per graduate `student for"each scholarly field have been estimated and are‘shown in Figure 8. These are highest in Chemistry ($\$ 2,400$), and Mathematics $\%$ ($\$ 1,900$), less in Biochemistry and Psychology ($\$ 1,500$), and lowest in Economics and English ($\$ 1,000$). The higher level's prevail in. fields" where grant and contract research funds tend to be available. 8.6 Allocation of Student Appointment Costs to Graduate Program.

Only the expenditures for Fellowships, Traineeshipsynd unrestricted Research Assịstantships are ${ }^{\ddagger}$ chsidered to be costs of graduate programs, although there were differences of opinion among our own ${ }^{\circ}$ - Advisory Committee members concerning whether even these monies should ${ }^{(}$ be -counted as costs of graduate education. Expenditures of the average

amounted to $\$ 1,100$ per grẳduâte student in Biochemistry，$\$ 600-\$ 700$ in Chemistry and Psychology s and only $\$ 100-\$ 200$ in Economics，＇English and －Mathematics：

9：＇UNIVERSITY RESEARGH

Research is a major．activity at most universities which offer doc－ tonal programs，and thus the nature of university research andrits relationshipowith graduate programs and their costs will be considered in the following paragraphs．
9．1 The Role of Research in the Universities
In colleges and universities today，teachers and professors are expected to devote a certain fraction of their time to scholarly activity and research，in their field because；in an immediate sensed，this activity contributes to maintenance of quality and freshness in their presentation of courses of formal instruction to＂all students．
，Generally，higher quality and more extensive scholarly activity and research by professors is requited as，the level of teaching becomes more＂ advanced．Thus，the activities may be of lit tie importance in ${ }^{2}$ Community Colleges，and only moderate importance in＂Bachelors institutions，But become of major significance at universities offering programs leading， to Meters and especial Dy Doctor oof Philosophy degrees：

In＇addttion，as an＇色ement，in all graduate program，and as the central element in programs leading to the degree of Doctor of Philosophy， professors are expected to give guidarice to help graduate students learn how to find and／or apply the new knowledge．

Thébasic requirement which must be satisfied to make appropriate the award of the Ph y d date is the writing and successful defense of a dissertation which sets forth new knowledge and thus serves to demonstrate that the new Ph．${ }^{\prime}$ ．awardee can contribute，and，if fact，has contributednew knowledge and that the barde presuming has gained the capability of continuing to contribute nett knowledge throughout his or her life．

Professors sente as models to teach and demonstrate how to discover new knowledge－ scholarly work a yd research，and from time to time report the findings in the major journals for their field．Doctoral students，who at first often． function as research apprentices to their professors，mayst to play the role of research interns or junior co－wofkers fo rn the latter stages of
theirgraduatesork．
This scholarly and research activity by，professors and graduate－ students，in additidn to its contriburtion to teaching and learning，gives rise to another major begefe＂the new．knowledge which is＂produced and made availabl性家 all interested persoñs by th．publication in，the scholarly línèzture．

Thus，reseaceh playsuan important role at universities and yields． significant－benefits to society and＂the Nãtion．
9．2 The Joint Cost－Benefi．t Problem and：Our Approach＂
Suns＇tantial empenditure ${ }^{\mathbf{s}}$ are made by many universities to pay for research activities．＂Since at least two main benefits，the instruction＇ of students ąad the cryention of new knowledge，arise out of these activities，ont might cotasider dividing the cost among these jofatry produced benefitís：
＇One may ask whethegr a university should be viewed as carrying orr
 from，its instrictional progranforesteach students．
／Our view is that a unversity（at least one which offers Ph．D． programs）should be cortsidered as carrying out both instructión and research programs，which＇generally＂，are not separable and overl＇ap extensively．

This concêpt will now be deveioped＇by estimating the unrestricted． fund expenditures fande within a department forischolariy activities and departmental research，${ }^{2}$ and then the sponsored research expenditures made frop restrictied funds，arising from grants and contracts．＇The sum of these two elements will reflect on a conseryativebasis the total
 research expenditures to the costs of geduate programs of the department will be considered．

9．3 Departmental Research and Its Coms

The name＂departmental．research＂，is given to faculty research and scholarly，activities which are not imêdiat⿺辶 1 －coursie．or level of formai instưuction，but are devoted fo the main－ tenance and enhancement of high quality performance in a phozessoì＇s instructional and research duties．Costs of these activities． generally arpaid by use of unrestricted funde refleceed in the depar，t－ mental budget．

Approximate and conservative, and rather arbitrary, estimates of the totail unrestricted fund expenditures made in favor of the research progrdms. of the participating" departments wexe"made; by suming two elements which have already been considered to be costs of Instruction as'weł1. The first consists of the total of the costs of faculty time reported in the FA\% (Figure $\dot{6}-3$) to be devoted to student instruction in the ISTH and DISS categories:

AThe second is a part of the cost of faculty, time devoted to Scholarly Activity. This was obtained by distributing the total departmental expenditure for Scholatiy Activity by' the faculty among the several levels of instruction using the same weighting factors, as tinoge pescribed above in Section $6.6^{\circ}(-1, e ., 1,3,5,7$, and 10 for $L D$, 'UD, GC and IS, TH', and DISS respectively), and then suming the valkes found for the GC; IS: TH and DISS levels.

- Taken togetheí, these two elements seem to the aúthors to reflest the main depantmental expenditures ion facuity time devoted father spéeifically to Research and, at the same tige, to 'Instyuction.
- To maintain simplicity, institutional support costs for libraries, plant operation akinaintenance, generai costs, etc., bave not been included in our estimates of relative expenditures for departimental rebearch, and in any case, these were allocated to instructional prograins as descrî̀ bed above.

Total estimated departmental research program éxpendituṛ̀es were
 epartmental averages ánd quartiles were then calculated. It was found (Fyure 9-1) that the annual expendifures per faculty member amounted to about $\{20,000$ for Biochemistryy, Chemistry and Econonics, and then to, about $\{17,000, \$ 16,000$ and $\$ 13,000$ for Psychology, Mathematics, and Englisn, ' Yespectiveiy. Expenditures per.graduate student (Figure 9-2) follow a similar trend with around $\$ 8,000^{\circ}$ going for Biochemis̀try, Chemistry and Mathematics; and then about $\$ 6,400, \$ 4,600$ and $\$ 3^{\prime \prime}, 500$ going for Psychology, Econofics, and English, respectivelyd

These estimätes mflect only the' university. ${ }^{-1}$? salaries. The full magnitude of the replication costs of depprifental rosearch proframs is much higher because extensive research ctivity, is conducted, often, without compensation, by Masters ana Doctors students;
to fulfill the requirements for graduate degrees．
Our＇view is that these＇pnrestricted fund expenditures are made in favor of both the Résoarch Program and the Instruction Program of a －department．

9．4．Sponsored Research and Its Procedures

During the last few decades；＂sponsored＂resend has come into ${ }^{4}-\bar{y}$ major（importance at certain universities．This arrangement was evolved during World War II and provides for the carrying out at universities of research activities of special interest to the Federal government or other sponsors．Research of a basic and advanced nature is often sponsored universities．so that advantage can be taken of the special capabilities of professorial experts witictheir g̀zulute students，and sometimes pique laboratory facilities．
\because Sponsored research means research conducted under the terms of a grant or contract between the sponsor and a university wifereby the university agrees to carry out research activity directed toward a stated objective and usually according to a specified plan，and the． sponsor agrees to provide the funds to pay in full or in pert for the agreed－upon research activity．
隆．To initiate a sponsored＇research project，a＂Proposal＂Es written by a professor who later usually becomes the＂Principal Investigator．＂ This paper is ordinarily prepared in response to a publicized invitation from a potential sponsor，and sets forth the objectives，plans，ploce－ duress and results expected from this research The Proposal usually． includes a schedule for carrying out phases of the program and also a budget giving，in appropriate categories，the er finds＇needed，to pay the direct costs of the activity such as．salaries，wages，supplies，equipment， etc．

In addition，the Proposal usually requests finds to pay for post of the indirect costs incurred by the university on an extra－departmental ：level in carrying out the sponsored research activity．Ordinarily these costs are identified based upon policy statements of the Federal govern－

departments $\dot{C o m p l e t e d ~ q u e s t i o n n a t r e s ~ c o n c e r n i n g ~ s p o n s o r e d ~ r e s e a r c h ~(s e e ~}$ Supplement). However, the responses received were so few in nugher and so varied in point of view that only a. few qualitative coments seest appropriate to record: almost all sponsored•research expenditures are.' viewed as contributing substantially to the deparistmental research and instructional programs; sponsored research' activity is of major importance with respect to departmental doctoral programs, and most respondents stated that any substantial decrease in sponsored research awards would result in a significante decrease, in the quality of their doctoral program; sponsored research actuvity is viewed as of minor and almost no importancé for Kasters and Bachelots prograns, respectively.. Sponsored research funds "provide important assistance to departiental research programs, pnd especially in the form of Research Assistantship stipends; faculty compensation
 compensation for part tine research activity duting the academic year, post-doctoral appointee stiperids, supplies, equipment, trável, etc. The relativezimportance of these categoriés differ. substantially apong. the fields studied, and in the laboratory sciences, the Research Assistantship award's are partícylarly inporitant.
9.6 Allocation of the Costs of Sponsored Research

Our vien is that when sponsored research activities dith a department are conducted jointly by professors and graduate students wino serve as apprentices or junior assóciates, with entirely open, full and frequent discussions of the research activities, then all ofzthe costs or expenditures associated with such research activit should be recognized as part of the departiental Research•Progran, and as closely rèlated to its Doctors Progrā:

However, if thètsponsored research activities are conducted by stafi persónnel substantially separated in piace andor tive from the Masters or ioctors students and their departuental professors, thenl. clearly such activities syould be considered only as pant of the departmental Research prograre but not significantly relatad to departmental graduate 'degree programs.
 arrangements for sponsored research which prevail for each field, for each department, anä indeed for each project intorder to be able to
estimate rationally what fraction of, the spored research -activity might be considered to be important ta a departmental Ph.D. program. We "understand that, except in the case of a national' emergency or an urgent public need, most universities as a matter of policy accept, sponsorship for research only when the sponsored activities are of in- f. tersest to facừty.fimembers. and significantly enhance the education prot. gram of the institution.

Sponsore是 research lis often regarded as a desirable activity within a departient-In view of the fact that research of interest to professors and students is encouraged and assisted by funds which the sponsor elects to provide because the proposed research activities and promise of results are of significant importance to hill. In most research grant arrangements between the university and the sponsor, what the sponsor bargains for and pays for, and what the university agrees to provide, is an output oi significant new knowledge, or an earnest approach thereto. Therefore, the university, by conducting the agreed-upon research activities, completes fully what it promised ta perform in accepting the sponsor's grant of contract, although substantial benefits may simultaneously accrue to the instructional programs.

Accounting "procedures, which suggest that sponsored research costs y. be apportioned in some arbitrary way between the graduate and the research programs of 'a' department, Are inappropriate, in our opinion, because such procedures would not reflect the total posts der providing or replikating 'either the quality ola de departmental Research Program or the research experience received by students in the departmental Instruction Programs.

While the authors recognize the major significance and contribution: of sponsored research funds, in relation to the quality of PhD. programs. in many fields, we have not included any part of sponsored research. expenditures as elements' of the costs of graduate degree programs because the tensor' and the university have agreed that the central feature of the bargain is to be research activity, and also because a better .understanding 15 weeded of the relationships which prevail between sponsored research activity ard the graduate programs offered by the faculty of departments. 9.7 Total Unit Research Prograh Expenditures of Departments Studied
Total annual Research Program expenditures per faculty member in
the departments studied were estimated by suming departmental researcie in
 theselexpenditures in thousands ofupllars were: Biochemistry; $3 \mathrm{jn},: 6 \mathrm{l}$;
 Mathematies, 9.5, 20, 29; and Psychology, 16, 25, 33 ; where the ayerage i.s Aerlined, and the preceding and following alubers are the lower and upper quartiles, respectively. Sponsored refarch éxplaitures: amounted to around three-fourths of the total Research Progran expendi-: tures in Bibchemistiry and Chenistry, but only around one-fourth in Economics, Yathematics, and Psychology; and alrost zero in Englisin. Per graduate student (Figúre 9-2), total annual Research Program.

 Mathematics, $7.1,10,11^{\circ}$; and Psjciology, 5.4, 9.7, 9.1.y Except Ior Biocnenistry, the departrental research expenditures made up a major
 9.8 Research tniversitiés and Tneir Inportence to the Ration

- Long continued fradition of high quaity scholarship and productivity in research, has brought into being a relatively small number of university centers of exgellence. These nos appropriately bla called.' "research universities" in yise of their outstandingly talented pro-' fessors, graduate students, staffs and special facilities, Such universities fend to give strong unrestricted poney support to their graduate and research programs, and also to win tinportant sponsored researei funčing. Outstandingily promisming students. are attracted into treix : graduate prograns where they fisually receive, excellent Ph.D. training,
 ingtitutions of the ration.
.. The research universities award the gajol proportion of the Ph.D.'s granted in the Linited States. Since they are distributed widely throughout the United States; they serve as important regional as well as national "centers fipr scholarship 'and rásearch".

Al research iuniversities, student fees, State Legiṣlative appropriation, endowsent incócé and private dotrors generally provide support for the Instructitial Programs leading to Bachelofs, Masters ambinoctors degrees, while the fedefal government and other sponsors add highly im= portant support for the Research Programs.

Our study of the sponsorsith of undyestity research by agencies of ＊the Federal goverment 柋这 led us to the conclusion that these arrange－ ments are of great the and benefit to the＂gtion for the following reasons：＇（a）sigaricent research results are usually produced；（b）graduate
（c）the overall cost of these \｛ Fesearch and training activities probably is substantially less tifan the cost of conducting these activities outside the universities；（d）＂basic＂ or funderumaryégearch，yhich＇is needed by society in general to help
 of the problems of togiety，is the type of research ordinarily conducted． at universities，and basic research，probably can be carried out more
 －Laboratoriep outside universities；＇（e）the quality of sponsor research tends to be paintainedataz rather nign level as a result of he of tire －peentryien stissen and the competitive progedures used to select for spoasorsiaj the best proposals＇out os a larger number subaitted for Consideration；＂（f）publication of Jponsored research findings ordinerily
 －and in the scientific literature，so the results a pe me available to all interested persons；（g）researca activity in particular areas ing beyencouraged by allocation of Federal spgrisorship｀funds as may＂ neede in view of national interests，and at the sase tive graduate students are trained for redearch in the 3 伿ject areas：（ h ）Federal sponsporship of researifh，as a result of the procedure of naking awerds of a’competitive basis，tends ro provide for the identinication of the rost productive and promising basic researchers and research feam in the Nation，and also tends to keep such university resderch groups functioning and in readtiness to helu cppé Alth societal and national problets when they axise．．
$\backslash \mathrm{T}^{\text {To }}$ provide for research activities at－Ph．D．－granting universities， －ant especially at the research universities of the Nation，substantial funds will continue to be needed from the unrestricted monies of the tniyersities，end also íron extra－university’sponsors，and esperially＇ froa the Federal government．Iwo basically Important purposesnetill be served：mininténancè of high quality in Ph．D．training prograns，and generation of new knowledge and new applications of knowledge－both ＊essential for the，continuation and further deveioprent of the excelience ＇and the corld leadership which the research universities of the Coited

* - TOTAL ESTIMATED COSTS: PRESENTATION, ANALYSIS AND COgyentary

Total annual graduate degree program cost estîmates were obtained by summing the averages of the departmental costs, institutional support costs, and student appointurit costs. Unit costs have been. calculated by dividing the total annual graduate degree program cost in one case by number of awarded graduate degrees. Average costs areffirst compared, and then costs for indiyidual departments are considered.

10.1 Average Program Total Annual Costs Pèr Graduate Student

Estimated annual costs per enrolled Masters and Doctors students`are summarized in Figure 10.1. For most programs stulied, departhental cost's amount to $60-80$ percent of the total cost whereas the instructional supt * port costs and the student appointment costs, only about $20-25$ and $0-5^{-}$ percent, respectively.

Costs per Doctors student are estimated to be some 40-50 percent higher. than per Masters students in the fields.of Chemistry, Hathematics and Psychology, and ten to twenty percent higher in Economics and Eng1ish. For Biochemistry, relative Doctors to Masters costs are probably similar to those shown for Chemistry, and the high Masters costs shown in Figure 10-1 seemingly is caused by inaccurate counting by graduate students as enrolled in Masters yersus Doctors programs.

To provide a better basis for comparison of the discíplines by avoiding the, errors which of ten arise as a result of difficulti\& in counting students enrolled if Masters versus Boctors programs, costs bave beef calculated per enrolled graduate student, and these are given in Figure 10-2 and. in the following tabulaqion:

TMBLE $10-1=$
ESTIMATED TOTAL ANNUAL COSTS PER ENROLLED GRADUATE STUOMNT
(in 1973-74 U.S. dollars $/ 12$ month year)

: The ayerage annul unit costs differ substantially for the several fields studied although the Blochemistry figuré nay not be representative "because of the'small number of departments studied.

- Total costs were not calculated for, succęssive years because of limitatitons in available data, but for a small number of individual. departmentsi. we were able to estimate departmental costs for two or three of the years of 1972-73, 1973-4 and 1974-5 (Figure 6-20). In all cases except one, costs increased insignificantly and about as might be expected in view of' inflation. 'For Psyctioiogy Departnent B, the lower unit cost for 1973-74 relative to 1972-3 was caused mainly by a substantial decrease in graduatè student enrollment without inuch change in the depart¥ental budget:

10.2 Individual Program Total Annual Costs Per Graduate Student

The above-considered costs are averages of individuail graduate program cösts which differed widely. To try to understiand these'differences, and in spite of the small numbers of data sets available, correlations of costs, with other characteristics of individual departments and institutions were attempted.

Of the three main elements, i.e', departmental costs, institutionai support costṣ, and student appolntment costs, stùdy was devoted only to departmentail costs since there are relatively the largest (Figure 10-1) and also should be most closely related to departmentdl and institutioma characteristics.
10.2.7 Definition of Factors or Variables

Certain factọs or yariables, believed to be of possible influience on departmental costs, were arbitrarily identified, and these, represented by actoriyms, are deffned as follows: DCOST - the annual departmental. cost per graduate student; FACT - the annual cost of departmental faculty time devoted to graduate programs and scholamty activity, as indicated by the FAA, "per graduate student; NPHD - the number of Ph.D. dé grees awarded eaci year pey 1000 enrolied graduate stydents enrolled in the subject department; SIZE - the number of graduate students enrolled in the subject department, SPONR- the funds awarded annually for sponsored reṣearch in a department per faculty member; GSCH - the number, of graduate credit hours per 1000 total for the department; ROOSA - the decile ranking of a department out of total number of departments reported upon by Roos and Anderson ${ }^{(14)}$ tin the subject field; TYPE - public or pri-

Vate, institutións. 411 doctoral-granting departments were studied for which sufficiently complete information was available.

10.2.2. Mean Values of the Factiors

- Mean values of the factors arie shown in Table 10-2 where certan relationships may be perceived. In several cases, DCOST and FACT are numericanly similar'. The average number of doctoral awards per thousañ enrolled graduate students, NPHD, is. lowest in Economics, English and Mathematics (about io0), and higher in Psychology (138), Biocheifistry (166) and Chemistry (190). The average number of enrolled graduate students, SIZE, ranges from a low of 30 to a^{\prime} high of ' 151 in English, "with some 60-80' enrollees in other fields. Sponsored research funds per faculty mémber, SPONR, are high in Biochemistry ($\$ 46,000$) and Chemistry ($\$ 20,000$), modest in Psychology ($\$ 4,200$), and less than $\$ 2,000$ in the other fields:

Graduate student credit hours; GSCH, average around 90 per 1000 total departmental hours in all fields except in Mathematics wheye the low value of 49 probably reflects heavy undergraduate service courses; and in Biochemistry where the high value of 602 shows that mosit teaching in this field is done af the gradưate level. On the average, the departments studied werie ranked in the middle deciles, by, the Roos-Anderson, ROOSA, peer appraisal system. Usfing the digits 1 and 2 to représent public and private institutions, respectively, the 1.5 average value of this variable indicates that approximately equal numbers of each TYPE of institution "dere included in this part of the study.

10.2.3 -scaling Hốst Factors ($\frac{1}{2}$ Logarithms

Since skemess dèparturef from normal or Gaussian distributions of individual points were indicated in many cases y upper and lower quarftiles rather than standard deviations have been made in this report to represent the scattering of the points. For the same reason, standard jeviations in most cases are not given relátive to the' averages shom in Table 10-2'.

However, for optimum development; of coltriations and interrelations among the data points, approximately normal distributions are needed. Thus all individual data points, except those for the Roofè and TYPE variables 3 . were scaled as base ten logarithons, and this transformation was found to yield an acceptable approxifation to a normal aistribution. The meand and standard deviations for the logarithmic-scaled and other variables are given in Table 10-2:.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& \text { Number } \\
\& \text { of Cases }
\end{aligned}
\] \& ' dCOST . \& FACI \& NPM \& SIZE \& SPONR \& GSCH \& R Roosa \& \(\bigcirc\) TYPE \\
\hline Biochemistry \& \(\begin{array}{cc}\therefore \& \\ \vdots \\ \vdots\end{array}\) \& \[
\begin{array}{r}
5600^{(\mathrm{b})} \\
\therefore \quad 3.76^{(\mathrm{c})} \\
0.317^{(\mathrm{d})}
\end{array}
\] \& \[
\begin{aligned}
\& 5600 \\
\& 3.75 \\
\& 0.349
\end{aligned}
\] \& \[
\begin{gathered}
166 \\
2.22 \\
.0 .176
\end{gathered}
\] \& \[
\begin{gathered}
30= \\
1.47 \\
0.410
\end{gathered}
\] \& \[
\begin{gathered}
.46,000 \\
\cdot 4.66 \\
0,204
\end{gathered}
\] \& \[
\begin{aligned}
\& =602 \\
\& =2578 \\
\& 0.250
\end{aligned}
\] \& \[
\begin{aligned}
\& \lambda_{3.2} \\
\& (2.8)
\end{aligned}
\] \& \[
\begin{aligned}
\& 1.5 \\
\& (0.55\}
\end{aligned}
\] \\
\hline Chemistry \& \[
11
\] \& \[
\begin{aligned}
\& 5700 \\
\& 3.76 \\
\& 0.1 \dagger 7
\end{aligned}
\] \& \[
\begin{aligned}
\& 3700 \\
\& 3.56 \\
\& 0.135
\end{aligned}
\] \& \[
\begin{gathered}
.190 \\
=2.28 \\
.0 .102
\end{gathered}
\] \& \[
\begin{gathered}
67 \\
\cdot \quad 1.83 \\
\cdot \quad 0.382
\end{gathered}
\] \& \[
\begin{gathered}
20,000 \\
4.31 \\
0.240
\end{gathered}
\] \& \& \[
\begin{gathered}
5.8 \\
\frac{f}{2.5} \\
(2.9)
\end{gathered}
\] \& \[
\begin{gathered}
1.5 \\
(0.52)
\end{gathered}
\] \\
\hline Economics \& \(\stackrel{\square}{8}\) \& \[
\left[\begin{array}{ll}
2900 \\
\cdot \& 3.46 \\
0.174
\end{array}\right.
\] \& \[
\begin{gathered}
3000 \\
13.48^{\circ} \\
0.144
\end{gathered}
\] \& \[
\begin{aligned}
\& 107 \\
\& .0 .03 \\
\& .0 .105
\end{aligned}
\] \& \[
\begin{gathered}
66 \\
\because \frac{1.82}{6.310}
\end{gathered}
\] \& \[
\begin{gathered}
600 \\
.2 .78 \\
1.78
\end{gathered}
\] \& \[
\begin{gathered}
93 \\
\cdots \begin{array}{c}
1.97 \\
0.231
\end{array}
\end{gathered}
\] \& \[
\begin{array}{r}
7.7 \\
(2.8)
\end{array}
\] \& \[
\begin{gathered}
1.4 \\
\vdots \\
(0.52)
\end{gathered}
\] \\
\hline \& 10 \& \[
\begin{array}{r}
.1600^{\prime} \\
3.21 \\
\quad 0.225 \\
\hline
\end{array}
\] \& \(1 i 00\)
3.03
0.767 \& \[
\begin{gathered}
99 \\
\left.: \begin{array}{c}
7.99
\end{array}\right]
\end{gathered}
\] \& \[
\begin{aligned}
\& 151: \\
\& 2.18= \\
\& 0.412 .
\end{aligned}
\] \& \& \[
\begin{gathered}
93 \\
1.99 \\
0.249
\end{gathered}
\] \& \[
\begin{array}{r}
5.5 \\
- \\
(3.0) \\
\hline
\end{array}
\] \& \[
\begin{gathered}
1.5 \\
(0.53)
\end{gathered}
\] \\
\hline Hathematics \& \[
\begin{array}{cc}
\bullet \& \circ \\
\because 9 \& \\
\because ? \& \cdot \\
\hline
\end{array}
\] \& F. \begin{tabular}{c}
\(4400-\) \\
- \\
3.64 \\
20.248 \\
\hline
\end{tabular} \& \begin{tabular}{l}
5100 \\
3.71 \\
0.309
\end{tabular} \& \[
\begin{gathered}
95 . \\
\cdot 1.98 \\
0.211
\end{gathered}
\] \& \[
\begin{array}{cc}
\& 80^{\prime} \\
\therefore \\
\& \therefore 1: 90 \\
, \& 0.497^{\prime}
\end{array}
\] \& \[
\begin{array}{r}
1700 \\
\therefore \\
\hline \\
\hline
\end{array}
\] \& \[
\begin{gathered}
49 \\
1.69 \\
\hline 0.214 \\
\hline
\end{gathered}
\] \& \[
\begin{array}{r}
6.4 \\
(3 . \overline{5})
\end{array}
\] \& \[
\begin{gathered}
1.4 \\
(0.53) \\
\hline
\end{gathered}
\] \\
\hline Psycholog \(\dot{y}\) \& 19

\square

$=9$ \& $\left(\begin{array}{c}3400 \\ 3: 53 \\ 0.176\end{array}\right.$ \& \[
$$
\begin{aligned}
& 3200 \\
& 3.50 \\
& 0.085
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 138 \\
& 2.14 \\
& 0.121 \\
& \hline
\end{aligned}
$$

\] \& | \because |
| :--- |
| |
| |
| $\therefore 19$ |
| |
| 1.90 |
| 0.276 | \& \[

$$
\begin{gathered}
-4200 \cdots \\
+J_{3.62} \\
1.38
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
89 \\
1.95 \\
0,219
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
4.5 \\
(3 . \overline{1})
\end{gathered}
$$

\] \& \[

(0.53)
\]

\hline
\end{tabular}

${ }^{(a)}$ Definitions and dimensions for the factors are given in Section 10.2.1; ; (b) Average value of the factor; (c) Base ten logarithm of the average; (d) Standard deviation of the logarithm of the factors; (e) Standard deviation of the factor.

TABLE 10-3

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Field \& Nuflber of Cases \& . FACT \& $\cdots{ }^{\text {NPED }}{ }^{\bullet} \cdot$ \& SIZE. ${ }^{\text {- }}$ \& - Spoxr \& GSCH \& ROOSA \& TYPE

\hline Biochemistry \& 6
, \& 7. \& -0.37
. \& ($\begin{gathered}\text { 0.01 } \\ \\ \\ \end{gathered}$ \& $\stackrel{0.34}{ }$ \& 0.76 \& \ldots \& -0.18

\hline Chemistry \& $$
1 \times 11
$$ \& $$
0.58
$$ \& $\begin{array}{cc}0 & 0.85 \\ \square & \\ & \end{array}$ \& $\int^{-0.23}$ \& $$
\therefore 0.47
$$ \& $$
\left|\begin{array}{ccc}
0.46 & \ddots \\
0 & & \\
0 & & \\
0 & \\
0 &
\end{array}\right|
$$ \& 0.31 \& -0.16

\hline Economises \& $\because=$ \& 0.50. \& - 0.65 \& $$
-0.42
$$ \& . -0.00 \& $$
0.65
$$ \& $0^{\circ} \mathrm{lll}$ \& $$
-0.02
$$

\hline English \& $=10$

10 \& -0.31 ${ }^{=}$ \& ${ }^{0.71}$ \& $=-0.44$

$=$ \& | 0.13 |
| :---: | \& -0.08 \& 0.43 \& \[

E^{-0.02}
\]

\hline Mathewatic \bar{s} \& - g. \& \[
0: 97

\] \& \[

0.39

\] \& \[

-0.42

\] \& \[

$$
\begin{aligned}
& -0.21 \\
& -
\end{aligned}
$$

\] \& \[

\left\{$$
\begin{array}{c}
0.30 \\
\therefore \\
\therefore
\end{array}
$$\right.

\] \& \[

0.53
\] \& -0.20

\hline Psychology \& $$
9^{\text {, 飞人, }}
$$ \& '0.65 ${ }^{\circ}$ \& \cdots \& \& \[

\therefore \quad 0.17^{\circ}

\] \& \& \[

$$
\begin{gathered}
0.15 \ldots \\
\\
\ldots .4
\end{gathered}
$$
\] \& -9.47

\therefore.

\hline
\end{tabular}

(a) Definitions and dinensions for the factors are given in-Section 10.2.1

COASTANTS, COEFFICIENTS ARD OTHER DÀta RELATING TO TEE GODEL EQDATION

Field -	nuriber of Cases	$\begin{gathered} " \mathrm{a} \text { " } \\ \text { (Constant) } \end{gathered}$	$\begin{gathered} " b^{"}, \\ (\text { FACT })(a) \end{gathered}$	$\begin{gathered} { }^{4 \mathrm{c} \mathrm{c}^{\prime}} \\ (\mathrm{NPDD}) \end{gathered}$	$\begin{gathered} " \mathrm{~d} \mathrm{~d} \\ (\text { SIZB }) \end{gathered}$	(SPONR)	$\begin{gathered} \text { R Squared } \\ \text { (non-forced) } \end{gathered}$
Biochemistry	1 6	$\begin{array}{r} -5.84 \\ 2.2 \\ - \\ \hline \end{array}$	$\begin{aligned} & 1.46^{(b)} \\ & 0.47 \\ & 0.58^{(c)} \end{aligned}$	$\begin{aligned} & 1.30 \\ & 0.87 \\ & 0.58 \end{aligned}$	$\left[\begin{array}{l} 0.770 \\ 0.64 \\ 0.97 \\ \end{array}\right.$	$\begin{aligned} & 0.018 \\ & 0.85 \\ & 0.97 \end{aligned}$	$0.95 \text { (d) }$
Chenistry	11	- $\begin{array}{r}-1.42 \\ 1.72 \\ -\end{array}$	$\begin{aligned} & 0.848 \\ & 0.49 \\ & 0.34 \end{aligned}$	$\begin{array}{r} 1.04 \\ \cdot 0.41 \\ 0.72 \end{array}$	$\begin{aligned} & 0.300 \\ & 0.15 \\ & 0.80 \end{aligned}$	$\begin{gathered} -0.176 \\ 0.13 \\ 0.85 \end{gathered}$	
	8	$\begin{array}{r} 2.60 \\ 2.78 \\ . \end{array}$	0.487 0.55 0.25	$\begin{gathered} 0.689 \\ 0.62 \\ -0.52 \end{gathered}$	$\begin{gathered} -0.496 \\ 0.46 \\ 0.54 \end{gathered}$	$\left.\begin{array}{c} 0.070 \\ -0.069 \\ 0.69^{\circ}, \end{array}\right\}$	$\begin{aligned} & - \\ & \hline- \\ & 0.69 \end{aligned}$
	- 10	+1.24. ${ }^{\circ} \mathrm{C}$	0.087 0.061 0.31	$\begin{array}{r} 0.885 \\ \therefore \quad 0.29 \\ \hdashline 0.72 \end{array}$	$i-0.123$ 0.14 . 0.72	$\begin{aligned} & 0.098 \\ & 0.033 \\ & 0.91 \end{aligned}$	$\begin{array}{cc} \bar{F} & \\ \hline & \ddots \end{array}$
Kathetatics	9.	0.795 0.30 0	- $\begin{gathered}0.565 \\ 0.13 \\ 0.95\end{gathered}$	$\begin{aligned} & 0.532 \\ & 0.30 \\ & 0.96 \end{aligned}$	$\begin{gathered} -0.059 \\ 0.057 \\ 0.97 \end{gathered}$	$\begin{array}{r} -0.059 \\ 0.052 \\ 0.98 \end{array}$	$\begin{gathered} - \\ 0 . \\ 0.98 \end{gathered}$
	${ }^{\circ}{ }^{\circ}$	$\begin{gathered} -0.318 \\ 3.1 \\ \vdots \\ - \end{gathered}$	0.953 1.0 0.42	0.338 0.66 0.45	$\begin{gathered} -0.119 \\ 0.23 \\ 0.47 \end{gathered}$	$\begin{gathered} 0.0043 \\ 0.057 \\ -0.48 \end{gathered}$	0.92

${ }^{(a)}$ Definitions and dimensions for FACT, HPED, SIZE and SPONR are given in Section 10.2.1. (b) The first and second row, for each field, show (the numerical values of the constant or coefficient, and their and second row, for each field, show (che numerical values of the constant or coefficient, and their
standard deviations, respectively: The third row for each field shows the R Scuared.'yajues resulting from stepuise introduction of the factors in the sequence: FACT, 'NPHP, SIZE and SPONR. four variables resulting from non-forced regression analyses using all seven variables.
10.2.4 Correlation Coefficients Correlation, coefficients. ${ }^{(15)}$
were calculated with the aid of certain computer progiras described in the Statistical Package for Social Sciences ${ }^{(16)}$. The cqefficients relating DCOST to other variables are: show in Table 10-3, and those interrelating all variabies, are given in the Supplement.

- DCOST, correlates to some degree with most' of the variables studied, \{ "but the "strength of the relationship varies with the field, a result probably to be expected in view of the differing traditions and practicès of thè several disciplines.

Moderately strong relationships are found in most cases bétween ${ }^{*}$ DCOST and the cost of faculty time per graduaté student, FACT, and also the NPHD; SIZE, and SPONR variables. More scatteged and often weaker relationships. are found. with GSCH, TYPE and ROOSA.

The negative coefficient of SIZF/indicates, as expected, that graduate costs tend to decrease with increase in numbers of enrolíad students. The sign of the SPONR coefficient for chèmistry is also nègative, suggesting thitu departmental coṣts become 10wer as sponsored résearch actiVity increases: Biochemistry gives the opposite indication; but this probably is not meaningful in view of the large scattering of the data* poịnts.

: 10.2.5 'Linear Regressión Equation Models

To develop quantitative relationships 等mong the variables; linear regression analyses were carried out. Because of the small number of deparitments studied, it was desirable to work with the minimum practicable number of wariables and, in view of their relatively strong corr Felation with DCOST in a number of cases, four were, chosen: FACT, NPHD, SIZE and SPONR. Those not selected show less strong and/or less \%onsistent relationships with GCOST and, on the other hand, they oftery corre'Iated significantly with one or more of the chosen factors, e:g., ROOSA and TYPE with SIZE (0.65 to 0.96). . GSCH with"NPHD (0.39 to 0.95) , vetc.
(15)

Betwieen two variables studied, a coefficient of onè or mínus óne indicakes perfect correlation, a coefficient of zezo indicates no relationship. Intermediate values indicate stronger correlations as the fractions approach tinity, A negative sign. indicates a decrease in one variable with increase, in the other.
${ }^{4}(16)$
SPSS (Second Edition); N. H. Nie, C. H. Hull, J. G. Jenkins, K. Steinbrenner, and D. H. Bent, McGraw-Hill Book Co., New York (1975).

Final Inear regression analyses were carried out with the DCOST, RACT'; NPHD, SIZE and SFONR variablés in logarithm form, and these calculations were "forced" by introducing the variables $\mathrm{FACD}, \mathrm{NPED}$, SEZE and SPRONR into the regression calculations in the order named. Results were obtained for each-field using a regression equation of the form:

$$
\log (D \operatorname{COST})=a+b \log (F A C T)+c \log (N P H D)+d \log (S I Z E)+e \log (S P O N R)
$$

and numericai values of the constants and coefficients are shown in Table 10-4. For eepach constant and cóefficient, vaiues फेere caḷculated for the "F" ratio and for a 95% confidence interval, and the results obgained (see Supplement) emphasize the preliminary nature of these analysés.
$:$
To suggest the extent to which a particular, variable sequentially "explains" the variance of DCOSTs, values of a parameter called "R Squared" are encluded in Table 10-4. R Squared is a fraction which may range in' value from zero to one, and larger values indicate an increasing level of explanation for the variations of DCOST.

Hith Chemistry, for example, FACT explains 0.34 or 34% of the variation of DCOST., Adding the variable NPHD proviđes for a 0.72 explanation, and adqief the influences of SIZE and SPONR finally yields a $0.8 \dot{5}$ explanation of the variance of the data.

On this basis, the four variables used in the model account for fost of the variance in departmental costs for Mathematics (0.98), Biochemistry (0.97), English (0.91) and Chemistry (0.85): The model equations function much less well for Economics (0.69) and Psychology (0.48.).

Regression analyses were also carried out using ali seven variables without forcing the sequence in which the variable was added, and the R Squared values prevailing after the first four variables were introduced are given in Table 10-4. These values are generally similar to those obtained using the forced sequence although in a few cases the variables were somewhat. dif'ferent. For psychology, the increase of R Squared from 0.48 to 0.92 was mainly the result of introduction of the ROOSA variable.

The standard deviations given in Table 10-4 are generally large rel! ative to the means reported, and thereby demonstrate the weakness of the model. However, the equations moderately well predict annual departmental cosits for individual departments as is exemplified by the following values of predicted doliar costs for the éleven chemistry departments studied
in comparison with our estimated costs which are given in parentheses: $3,200(3,200), 4,400(4,000), 4,700(4,300), 5,000(4,300), 5,000(5,600)$, $5,300(4,300), 5,800(6,100), 6,900(6,400), 7,800^{\circ}(8,000), 10,500$ $(10,400)$ and $10,900(10,800)$. dollars per graduate student per year.

Following the helpful suggestion of our colieague, Economics Professor Masanori Hashimoto, regression analyás was, also carried out on a "non-forced" basis using data.pooled from all the departments studied. Variables considered were the above-define logarithmetricly scaled Dcost, FACT, NPHD, SIZE, SPONR and GSCH; the non-1ogarithmetricly scaled ROOSA and TYPE; and five "dummy" variables, BIOC, ECON' ENGA MATH AND PSYC, representing Biochemistry, Economics, English, Math and Psychology, respectively. The resultant linear regression equation is:s.

$$
\begin{aligned}
\log (\mathrm{DCOST}) & =3.52+0.16 \log (\mathrm{FACT})+0.20 \log (\mathrm{NPHD})+ \\
& -.32 \log (\mathrm{SIZE})+0.01 \log (\mathrm{SPONR})-.03 \log (\mathrm{GSCH}) \\
& +0.08(\mathrm{TYPE})-0.05(\mathrm{ROOSA})-0.14(\mathrm{BLOC}) \\
& -0.14(\mathrm{ECON})-0.30(\mathrm{ENGL})-.03(\mathrm{MATH}) \\
& -.22(\mathrm{PSYCH})
\end{aligned}
$$

Departmental costs’ for Chemistry are calculated when the variables for ali other fields are assigned the value of zero. To calculate'Eco-' nomice or some other specific field, the single variable repriesenting this field is assigned the value of one, "while those for other fields" 'are taken to be zero. Using fifty-three sets of data, this régrespion , yielded an R Squared value of 0.75 with an overall F of 10.0 , signíificant at less than 0.001 .
10.2.6 Conclusions Concerning the Influence of Departmental Characteristics Generaily, it may be appropriate only to deduce qualitagtively that the observed wide variations in annual departmental costs. per graduate student, DCOST, apparently are the result mainly of policy-based or pragmatically-based decisions whilch give rise to wide differences in the amount of faculty time devoted to graduate education and scholariy açitivity per graduate sțudent, as reflected by the variable, FACT.

Departmental costs tend to increase substantialiy with inareased departmental emphasis on doctoral work as indicated by the variable, NPHD. Doctors students often require a considerably larger amount of fácuíty 'time than do Masters students:

1 Departments with large graduate student, enrolifnents ten to show lower costs than do small departments, as indicated by the negative sign for the variable, SIZE. Department costs in Chemistry seem to decrease Somewhat with Increase in sponsored research-funding, SPOONR. However, the inverse indjcation for Biochemistry is probably not significart in vifew of the large setandard deviation found for SPONR in thio field (Táble 10-4). Devotion tó graduate work of a largé proportion of the total student credit hours, GSCH, seems, to increase departmental costs only slighty if at all.

The peef ranked status of a department, ROOSA, and whether, the department is associted with a public or' a private institution, "TYPE, seems to have little or no significant influence on unit departmenţal costs.

The ranking of instituitions in order, of departmental costs for each of the fifelds studied Indicated that a few institutions maintain relatively high or low cost departments with some consistency, but no strong trend was evident.
10,3 Average Program Total Costs. Per Awarded Degree-
Estimated costs per awarded Doctors degree, which are coste in addition to those of the first or Masters'fyear of graduate work', -and also per awarded Masters degree, are shown in Figure 10.3:

Doctors degree costs may be summarized as follows: Biochenistry, (5), 28, 58; 72; Chemistry; (9), 27; 34, 45; Economics, (8), 16, 24, 27; English, (9), 11, 18, 22; Mathematics, (8), 25, 33, 39; and Psychology, (9) , 16, 26, 34, where: first, the number of departments studied is "*. shown within brackets; they the lower quartile, the mean, and the upper quartile cosits in thousands of dollars per doctoral degrẹe are shown with the mean cost underiined. Costs, pet awarded Masters, degree are quite variable for the reasons stated belbw and also, because irst-year students in soine fields such as, Chemistry at some institutions do not take the Masters degree but simply proceed directiy wity'doctoral study.

The rankings by field of costs per awarded Doct ${ }^{\circ}$ rs and Masters degrees fall in about the sape ordex as reported above for the per enrolled.stivent annual' costs.

Three quitte different factors contribute to the costs per awarded degree; the quality of the program, the duration of thesprogram, and the selectivity of admissions.

Costs of comperpation of faculty and other personnel comprise the majör proportion of departmental and total program costs These inevitabIy are higher for those departments which recruit and maintain the"best available teachers ata researchers as faculty members.

For a graduate program of a given quality and total of enrolled graduate btudents'controls the costaper-gradurewtudent, or the unft cost Undt anual costg shown above for dufferent departments fir the same fielo vary widely, seemingly because of differing policies with respect to the numbers of graduate students admitted fra enrolieds

Unit annual costs and also the quality, of the programssoonild be hagiger as the number of enroiled graduate students per graduate faculty member decreasea, because individual graduate students presumably receive larger amoumts of facuìty time.

Considering unftrost per awarded degree, the duration of the program, on the average differs considerably among, the flèlds and departments studied. No particular relationship-seems evident between"duration quality of a program although economically it is opyouthesirable that
 praçticable...

Admisision policies and practices are also of fimportance. Highly selective admesions shourd give, rise to a low dropout rate, and presumabIy to a relativély. Iow costs per awarded degree. However, if admissions are less selective and enrollment ard total program costs are heta constant, dropouts will tend to be highes, "egree awards lower, and the costes Rei awarded degree should be relatively higher. Much more information is neededconcerning the numbers of graduate students who do not fompiete their degrees and the reasons for these dropouts.

Overall the cost per axarded degree fon a particular graduate program reflécts the influence of seyfal different factors. Hightostis per awarded degree for a partidular program maymesult from the maintenance of san excelient falth, relatively smat nubers of tifaduate students per faculty member, moderate time pexiods for completion of the program, and moderate selectivity in admitting students, who will probably be able to complete the program.

On the other hand high costs may result from the manntaining of a medfocre faculty, inefficiently small numpers of graduate stüdents per
per faćulty member, fnordinately long tife periods associated. With comfpletion of the program, and unselective admissions Which results in -hgher dropout rates.

One further difficulty with the concept of the cost per awarded degree is that it implies that the education of graduate students who do not complete-degree programs as worthless and the only valid output the completed degree. We believe that the education of those who do not complete degrees is valuable and that the cost of producing completed" degrees should not include the ocost; at least nat the Eull cost, of educating those who do not receive degrees:

Our conciusion is that the total annual costs per éfrolled graduate stugent is 3 much better way to express unft cost than ia the total cost per awarded degree.
10.4 Incrémental Costs

The incremental effect of Increasing or decreasing the number of - graduate studęnts is imediateiy apparentinhen ugit costs are considered, and the wide variations now reported fori fndividual departments seem to - be the results fainly of different departmental or fistitutional policies and practices with respect to allocation of faculty time to graduate. edućation and schojusig áftivity, and to numbers of graduate students, accepted for entoriment in a department.

Hovever, when total costs are considered, the main incremental"effect is associated with increase or decrease in the number of departmental facility: Eigure 6-g. shows that the average annual expenditure across án flelds and institutions studied amounts tos around \$25,000 per faculty rember for the category' of instruction and departmentral research, and addition of institutional support costs will substantialiy increase this figure. Thus significant changes, in total program costs are associated with fncremental changes in nubers of facuity members rather than in numbers of enrolled graduate students. If a department offering a Mastera program undertakea, to offer a Doctors program, a major incremental fncreasé In total graduate program costs may be expected because additional numbers of more expensive faculty meimers, will probably be needed. 10. $5^{\circ "}$ Costs to Students

We have not studied the costa incurred by students who attend graduate school but these are substantial and are made up of three main elements,
tuition and fee costs, atsplacement costs - the difference in \exists iving costs When attending versus not attending, graduate school, and "opportunity": or "foregone intome costs.

Generally, graduate students have opportunities for employment which are alternatives fo proceeding with graduate study: , By foregoing the potential income from such, employment, the graduate student incurs a substantial cost which may amount to many thousands of dollars over the seve eral years required to complete the doctoral degree. Thus each graduate studént makes a major personđin, fnvestment in his or her future hoping for thereased income and other benefits as jeturns from the investment.

The magnitude of a graduate student's costs, and particularly the foregone income costs, may be importantly related to the costs and quality of graduate degree programs, and further studies of these significant maty ters are needed.

10.6 Simplification and Ápplication of Gradcost Procedures and Concepts

The information "ssembled and presented in this study concerning the nature, the relative importance, and the methods considered for estimatior. of the costs of graduate degree programs has provided a perspective for suggesting the following simplifications be made when Gradcost procedures are to be applied to estimation of graduate program costs within a particular institution or system: (a) it is preferable to estimate, annual costs per graduate student, rather than annual costs per Kasters or Doctors students or per àwarded graduate degree, because annual coséts per graduate student can be approximated considerabiy fore reliably and usually may be' more meaningful; (b) student appointment, costs", chargeable to graduate品 or else approximated at some appropriate fraction of departmental costs per graduatt student; and (c) itratitutional support costs may be siguificant hut within a given university," it should be possible to approximate" Library, Student Services, and general cosiss per graduate student roughiy independent of discipjine, and to estimate generalized Piant Operation and Maintenance costs per graduate student in some small number of categories such as the laboratory 崩d the non-1aboratory discippines, etc.

Hith these simpincationsinand using parent department data in the ConPCUT method aiong with the Crossover Analysis or the Typical Program approach, estimates of annual cost per graduate student can be made rapidiy and easily once arringements for data collection and computation are routin-
infized within a patticuthr-institution or system.
It is hoped that the methods and results now reported will help persons generally interested in graduate education to gain an improved understanding of. the nature of its costs and the components of these costs.

Administrators a members of State Legislatures and the Congress, and State and Federal offinials who have special concerns" with graduate study and research, may find interest in the concepts of graduate education described herein; as well as the types and ranges of its costs.

Academic officers, and especially those who are engaged in specific budgeting and planing activities relating to graduate s.tuáy and research, may find rather directly useinil some of the Gradcost estimating procedures, and especially with the simplifications stated above. The cost-modeling equation, tentative and preliminary as it is, may provide a helpful basis within an institution or a^{\prime} system for comparison of programs, and for the correlation of departmental characteristics and costs. The COMPCUT-2 scheme, whereby departmental costs are estimated from typical program of study by a graduate student, may assist in forecasting costs for proposed new graduate degree .programs.

Departmèntal chàirnan may be able to manage affairs more effectively If offered a broader understanding ofogrduate program costs. $10: 7$ Suggestions for Future Studies and Activities

Finally, we hope that researchers will find in this'study a useful base on which to build future investigations relating to the costs and benefits of graduate education and university research. To us it appears that inquiries are needed particularly to seek answers and to encourage action in relation to such questions as the following:

- How can a wider acceptance be gained among academic institutions of uniform definitions of important "fiscal and academic terms? .
- How can the validity of the Faculty Activity Analysis be improved?
- How can Student resit Hour representations be improved for individual student-facuity interactions such as in. Independent P Study and Research, Master thesis and Doctors dissertation work? -What rélakfonships prevail between doctoral program costs and sponsored research expenditures?
Are the now proposed interrelationships among departmental cost
an variables valid among a larger sampling of fields and institu-. 110

- FIGURE 10-2: COSTS PER GRADUATE STUSENT PER YEAR $1=$ BIOCHEHISTRY $)$ ="CHEMITTRY $3=$ ECOHOHICS

FIGURE-10-3: COSTS. PER AHARDED DEGREE $1=$ BIOCHEHISTRY $2=$ CHEMISTRY. $3=$ ECOHOHICS $4=$ EngLISH $5=$ Mathemaicics $6=$ PSYCHology (- DOCTORS; ---- MASTERS)

112

tutions? Are alternate or additional tariabies significant?.

- What correlations cap be found between the cost and the quality of graduate programs?
What are the effectis on undergraduate instruction and cost of the quality and level of expenditures for graduate degree programs?
- How can foregoịe opportunfty costs for graduate stuđents be estimated and what do such costs amount to in representative academic fields?

11. SUMHARY

The objectives of this Gradcost III investigation have been to study alternakive netholls for estimating the costs of programs leading to kasters degrees and Doctór of Philosophy degrees, to identify relatively simple. costestimation procedures 所ich can be carried out based on definitions prevailing, and data available in most graduate schools, in the United States; and to apply the developed procedures to data collected Erom a number of universities and colleges in the United States in order to generate Estimates - of the costs of gradyte programs in the fieids of Biochemistry, Cell Biol-
 11. 1 Defintions
? As a conceptual base for the study, a uniyersity or college has been - Visualized as carrying out, three main programs; instiruction, research, and public servicé. Instructional programs include those leading to the degree of Bachelor, Master, and.Doctor of Philosophy, and the latter two are of primary interest. Research programs are seen as closely related to and usually extensively overfapping with instructional programs, and especiaily those leading to the Doctors degree. Public service programs are fiten separately funded, and these are of bind interest in the present $^{\text {in }}$色tudy. Institutional funds axe considered in two categories, "unrestricted" and "restricted."

Total program costs are defined as the monies expended by and through a college or university to provide for operation of a particular graduate degree program. Unit costs are obtained by dividing total program costs by the numbers of Hasters or Doctors students enrolled in a particular degree prograni, or by the total number of graduate students associated witit the subject department, or by the number of Hasters or Doctors degrees awarded in relation to the program.

11.2. Procedures; Departmental Costs

To estimate graduate deggree program costs, data were collected mainly from institutional annual reports, and by use of questionnaires, Total program costs were considered to consist of three elements; departmental costs, institutional support costs, and graduate student service appointment costs. Of these; the first is the most important.。

Several alternative procedures for allocating funds from departmental buagets to departmental Doctors, Masters and Bachelors programs were studied. According to one method (CLASSCUT), allocations were made to programs based upon the majority student clientele for the classes offered. by departmental faculty. * In the second method (CREDCUT), student credit hours provided the basis. A third method (COMPCUT), which is described below, gave results which in a number of cases were similar to those obs by the CLASSCUT procedure. The TCREDCUT approach gave estimated costs ${ }^{\prime \prime}$ which were much lower.

It was concluded that COMPCUT would be the most useful procedure for estimeting departmental costs. coupcut is based mainly on data derived from Faculty Activity Analyses (TAA) , from Crossover Analyses (XOA), Erom departmental statistics, and from Student Creaty Hour (ScH) inforiation relating to five levels of instruction: lower dixision (LD) and upper division (ID) undergraduate classes, graduate classes (GC), independent study and Hasters thesis (ISTH), and Doctors dissertation (DISS). Géner'ally departmental budget funds were allocated to a particular instructional levei based upon the proporition of Fiaculty fime reported by the FAA to be devoted to that level. With spectal treatment of scholarly activity costs, these by-level. total costs were divided bythe number of SCH generated at each level to secure 呚-1evel costs per SCH which were multipiled by the appropriate mubers of scH taken by all the students in a subject program, and then sumed by level to obtain the total program costs. Dividing this sum by the number of enrolied students or awarded degrees gave the estimated unit departmental costis
\therefore In generai, this COKPCUT piocedure was found to be appilcable to data assembled from the participating institutions in the several fields studied. Fts main weaknesses Iie in the limited reliability of the RAA at graduate levels of instruction, and the difficulty in securing consistent reporting of-sci for the individual student-professor contaces such as
those wifh occur in independent stưdy and research, Masters thesis, and Doctors dissertation activities.
11.3 Procedures - Institutional Support and Student Appointment Costs Costs of institutionai support for departmental programs were approximated by multiplying or dividing total annual institutional expenditures for libraries, student services, plaht operation and maintenance and general institutional and administration activities bỳ certain factors called "proxies" and, in some cases, applying "weighting factors." For example, institutional expenditures for student services were divided 1 the total number of students enrolled in the institution to obtain he estimated costs of student services per student enrojled in a" departmental Doctors or Masters program: In general, these procedures were found to be satisfactorily workabie to provide useful approximations Although the weighting factors used sometimes may desirably be chosen differently for individual fields and/or institutions.

For each department studied, data conceroing student appointment expenditures for fellowships, traineeships, teachtrg assistantships, and research assistantships were collected. Tuition waiyers were not included as cogt elements. The other named expenditures were summed and then. recorded on a per graduate student básis so às to show-the level of financial support available to assist in the recruitment and maintenance of graduate students. It was conciuded that only those expenditures made in favor of fellowships, traineeships, and research assistantships supported by unrestricted fumds, should be inčluded as graduate degree ${ }_{9}$ program costs. In mast cases these mones were relatively small. 11. 4 Estimated Resparch Progran Costs

In wien of the major smportande of faculty and graduate student research activity in relation to graduate degree programs', the Research Prógram explenditures wert"e estimated, considering certain expendituř̀es made from unrestricted departmental funds, and those made from restricted sponsored research funds The sum of these was taken to be an estimate of the monfes used to suppott the Rescarch Program of the department. However, this sum is much less than the replication costs of the total departmental Research Program because no recognition is given to investigational activities which are conducted witkout stipends by students working on their Masters théses and Doctors dissertations.

The estimated total Research"program expenditures were divided by the numbets of faculty members, and the numbers of graduate students, ta obtain unit expenditures. Total research expenditures per facuity member per year varied widely in the individual departments studied, but on the average were largest in Blochemistry, substantial in Chemistry and Economtces, cousiderably Iess in Mathematics and Psychology and smallest in Engilish. Department research expenditures were similar in the several fields, but sponsored research monies ranged from high values for Biochemistry and Chemistry, through mediym values for Economics, Mathematics and Rsychology, down to almost Zero in Engirsh. Research Program expenditures per graduate student showed a similar raik order.

Although a close relationship between sponsored research añ gradwate education is recognized, it was concluded that sponsored research costs should not be inciuded as elements of the costs of graduate programs.

11.5 Estimated Graduate Degree Program Costs

Per graduate student enrolled in a department, the estimated average annual costs, which are underlined, (and are preceded and followed by̆ the lower and upper quartille cosits, respectively) are the following: Biochemistry, $4,400,18,000,25,000 ;{ }^{\circ}$ Chemistry, $5,200,8,100,11,000 ;$ Economics, $2,700,-4,100,5,500$; Eng1ikh, 1,800; 3,000, 3,700; Mathematics, $3,800,-6,200,8,000 ;$ and Psychology, $3,400,5,600,7,100$.

Thé estimated averagé annual costs peer Doctoŕs student and per Masters student in a department fall into about this same rank order, and" annual costs are substantiaily higher for Doctors versus Masters students. Costs per awarded Doctors and Masters degree followè similar trends, but. these could not be related to annual costs because Information was not available concerning the fraction of enrolled graduate students who do nót completé degree programs, and also the average times of study requity to complete degree programs.

Estimated annual departmental costs per graduate student (DCOST) vary widely among individual departments in a particular Eieì. Departmental costs were correlated insofar as possible with certain departmental and institutional characteristics. Dependivg upon discipline, somewhat different characteristics show moderate or strong. correlations with costs.

Increase in the cost of faculty time devoted to graduate study and
research per graduate student (FACT), and increase in the proportion of doctoral aspirants among the enrolled graduate students (NPHD), corr relate with Increase in unit departmental costs in most cases. Increase. In the number of graduate students entolied in a department (SīZE) usually is associated with modest decrease in unit.cost. other variables show weak or negifgible relationships:, No significant correlations were found between costs and the Roos-Anderson peer ranking of the "quality" of a department, or whether the department was assoctated with-abulic or a private unfversity fultinegression analyses were carnied out to obtäim a model equation which related DCosT, in sóme cases moderately. weill, with FABT, KPHD, SPONR, and SIZE ${ }^{\circ}$

11.6 Simplification and Application of Gradcost Procedures

Simplified Gradcost procedures for estimating graduate degree program costs are suggested, and, these may be brôadly applicable using data now available, in rany graduate schools.
12. RECOMMENDATIONS

He recomend:
12.1 That thia report be distributed äs widely as possible to persons interested in graduate education with the hope that the described procedures and findings will be helpful to them in undergtanding and evaluating the nature and relative frmportance of the main elements of costs of graduate degree programs.
12:2 That consideration be given ta the establishment of arrangements by which the CGS andor other approprlate, institutions, could provide advice and assistance to representatives of colleges and universities interested in developing estimates of the cost of their graduate programs using concepts and procelures such as those developed and tested in this present study:
12.3 That ail organizations concerned with academic institutions be encouraged to move forward toward development of generally jecepted definftions and data collecting and reporting procedures relative to "both académic and financlal aspects of graduate degree programs.
12.4r That further investigations be carried opt to refine the concepts ath procedures developed so far in the Gradcost studies and to test the
 fers of departments and institutions
12.5. That additional studies be carried out to develop estimates and procedures for estimating the costs (and especially including foregone opportunity costs), Incurred by gradiate students because thig type of information is needed to complement the estimates made in the present study of the cpsts incurred by colleges and universities offering graduate degree programs.
12.6 That further work be done to better identify the benefits arising fiom the functioning of graduate degree programs, the values associated with these benefits, and the identity of the beneficiaries.,

THE COSTS AND BENEXITS OF GRADUATE EDECATION ESTIMATION OF GRADUATR DEGREE PROGRAM COSTS

SUPPYEMENT WITH DETAILED EROCEDURES AND ILLUSTRATIVE CAICOLATIONS
sby

Joseph L. KicCarthy and William D. Garrisoñ

THE COUNCIL OF GRADUATE SCHOOLS

in the united states

2 Tưed in paft by the National Inistitutes of Health, Grant No. NO-1-RG-4-2176 Süarded to chè Countil of Gzađuate Schools in the United States $\stackrel{4}{4}$

$$
30 \text { June } 1974
$$

$11:$ The Council of Graduate Schoois/Hashlogton, p.C./June 19 to

TABLE OF CONTENTS
Preface
Introduction

APPENDICES

S. Sumary of Parent Report S
Definitions S-1
Procedures-Departmental Costs S-2
Procedures-Other Costs S-3
Estimated Research Program Costs S-3
Estimated Graduate Degree Program Costs S-4
Simplification and Application of GRADCOST
Procedures S-5
G. Glossary of Terms G
Questionnaires (Chenistry) Q
Preamble $6-1$
Institutional Support Costs Q-3
Departmental Support Costs. Q-5
4 Indirect Costs of Grants and Contracts Q-7
Departmental Expeńditures Q -8
Grant and Contract Expenditures: Q-10
Departmental Courses and Student Credit Hours 0-11
Departmental Degrees and Enrolifments $0-13$
Faculty Activity Analyses Q-15
Crossover Analysis Data Q-16
Typical Frogram Student Credit Hours--Doctors Q-19
Typical Program Student Credit Hours-Masters Q-20
Student Appointments Data Q-21
Grant and Contract Expenditures Q-22
Cell Biology Information Q-24
TABLE OE CONTENTS(continued)等
A. : Procedures for Calculations A
Departipentql Costs-CLASSCUT (10 pp.) A-1
 A-2 A-3
${ }^{\prime \prime}$ " \because " FAACUT: (6 pp .) A-4
-COMPCUT (10.pp) A-5
-TROFAACZIT-PROCOHPCUT A-6
(omittédi) A-7
Departmental Costs--Unit Dept: Costs (4 pps) A-8
Insititutionai Support Costs (9 pp.) A-9
C: "Illustrative Galculations (Chemistry) C
CLÁSSCUT c-1
CLADCUT C-7
aREDCUI c-14
FAACUT c-20
COKPCUT c-29
PROCREDCUIT-1 C-43
PROFAACDTM-1 c-45
PROCOKPCUT-1 C-47
Unit:Departmental Costs-CLASSCUT C-49
 C-53
$\because \quad \therefore \quad \because \quad \because$ in --CREDCUT C-57 C-57 C-61
" --COMPCUT
Institutioñai Support Costs-Total C-65 C-65
Ω c-69
$11 * ?$ C-71 C-71
" 4.-Stūdent Services C-72
$12 \cdot 2$ 4 \because - c-73 c-75in
" " C-77
Student Appointimest Costs C-78
Grant and Contract Expenditures C-79
Summary 中f Total Program Costs C-80
R.*. Correlations R
Hultiregression-Illustration for Chemistry R-1
Correlation Coefficients R-2.
Stepsise Regression R-3
Sumary Tablé R-6
Scatterplot R-7
Correlation Coefficients-Other Fields R-8

PREFACE ${ }^{* *}$

Studies on costs and benefiesiof graduate education were begun in : 1968 in response to a resolution adopted at the Annual Heeting of the Council of Graduate Scbools In the United States (CGS): Two Investigations have been completed, and a number of papers have. breen published as described in the introductory paragraphs of the present report.

This "Gradcost III" study was infitated fin 1974 ofth the assistance of grant of, $\$ 186 ; 432$ by the Kational Institutes of Health. III Comaittee:

*David R.,Deener, Chairman
Tulane University
Charles Iester
Emory Diniversity
Joseph L. HeCarthy
University of Hashington

${ }^{*} *_{J}$. Chester Hckee
Hississippi State Joiversity
S. D. Shirley "Spragg

University of Rochester

J. Boyd Page
Council of Graduate Schools

tpeceased, 1976. 夫*CGS Chafrman - 1977. CGS Chairmen uno served in prior years as members of the fradcost III Conimittee are: Sanford E. Elberg, University of California-Berkeley;
S. D. Shirley Spragg; and Jacob E. Cobb; Indiana State University. 3

The CGS nade contracts with the University of Hashington where, Drs. Joseph L, KcCartiy and Wililiain D. Garrison of Washington functioned as Director and Associate, respectively, for the study, and with Tulare University where Dr; David 'R. Deener served as Co-director. Following "the funtimely death'of Dr. Deener, the work was complèted at Hashington. As initial step a number of colleges and universities electing to participate in the stiudy were identified and, an academic and fiscal officer from each insfitution served es members of an Advisory comittee.

[^1]Participating institutions and Advisofy Comittee members included the following:

Ransas Stye College at Pittsburg - Wniversity of Fashington J.D. Haggard clifford E. Bqugher

Robert Thospson

University of Hisconsin
Robert M: Böck .
Peter Bum

Hembers of the Adpisory Comittee made important contributions to the study by arranging for responses to questionnaires, by attending meetings to discuss progress of the investigation; by commenting on drafts of reports, and in many othef ways:

Institutions regliested that thatata and information relating to iffividual institutions be considered gonfidential. This request has been carefully respected.

The results of the Gradcost III activity are presented in two papers:

The Costs and Benefits of Graduate, Education:
Est ${ }^{\text {mation }}$ of Graduate Degree. Program Costs
by Joseph in HcCarthy and H121iam D. Garrison
The Costa and Benefits of Graduate Education
Estimation of Graduate Degree Program Costs -
Supplement ${ }^{-1}$ thth. Procedural Details and
Iliustrative CaIculations
by Joseph L. HcCarthy and Wh11an D. Garrison
The second paper is being offered as à record document to the Educationai Resources Information Center (ERIC), Washington, D.C., 20202.

The Council trusts that theséreports do make fimportant contributions to the understanding and-development of concepts and procedures for estimation of the costs of graduate education. Specific estimates of costs have been made, but we emphasize that these are included simply to illustrate the utility of the developed concepts, and procedures. The report sets forth a number of rexomendations which we hope will be carefuily considered by those having, an interest in this complex and important subject.

This statement has been endorsed in principle by the Executive Comittee of the Council of Graduate Schools in the Jnited State f. It is not ap official statement of the CGS, nor of any of the

- individual colleges or universities participating in the study. The authors carry personal responsibility for the contents of the reports.

Significant contributions have been made by representatives of the National Institutes of Health; by Dr. Stephen Hatchett prior to his death in September; 1976, and thereafter, 'by Dr. CarI D. Douglass, Jr.

To all of the many persons associated uith départnental, institutional research, fiscal, graduate school, and other offices of the colleges and unfuersities participating in the study, gratitude is expressed for their indispensible help and advice.

The 'eadership of the late Dr. Deener in helping to initiate the project, and in collaborating with Drs. HcCarthy and Garrison in advancing the investigation up yptil his death, is deeply appreciated by his many friends and associates within and outside of the cGS.

The continuing involvement and wise cpunsel of those who have served on the Gradcost III Committee is gratefully acknowiedged.

Finaily, the Council is particularly apprectative of the major contríbutions of Joseph \dot{Z}. McCarthy and Hilliam D. Garrison in carrying this significant study through to completion and publication.

SUPPLEHENT TITTE DETAILED PROCEDURES AKD ILLUSTRATIVE CALCULATIONS
by
Joseph I. KcCarthy
(1c)
and Hillat Do Gurrisorr (1d).

$$
\begin{aligned}
& \text { IKIRODUCTIOK } \\
& \text { I. }
\end{aligned}
$$

For the last several years; the cometl of Graduate Schools in the United States has sponsored stadies on costs and benefits of graduate education, and these studies have been given substantill assistance by grants . from the Hational Science Foundation and the Hational Institutes jof Health.

The most recent work has been pubished in 1978 under the title of "Estisation of Graduate Degree Program Costs" by Joseph E. HeCarthy and Hililam D. Garrison. This report describes the general nature of the problem of estination of costs of graduate education reviess; and sets forth conclusions ${ }_{c}$ with respect to number of alternative procedures for estimating such costs, and then applies selected procedures to develop estimates of graduate degree program costs for the freids of Blochenistry, Cell Biology, Chemistry, Econowics, English, Hatheratics and Psychology based on data collected from sone fourteen different colleges and miversities.

A sumary of this work is given in Appendix S.
In carrying. out the study, it wis necesiary to consider a number of
(1a) The pirent report has been ondorsed in principle by the Executive Conattee of the Council of Graduate School in the United States. Hoverer, it is not an official statesent supported by the miversity withewhich the suthors are associated, nor by any of the coljeges and universities which have participated in the present study. The authors carry personal reiponsibility for the content of the reporte. (ib) For the Emportant advice and assistance recelved, the authors are deeply grateful to our deceased friends and collezgues, Dre. David R. Deener and Stephen Batchett; to each of the members of the CGS Gradcost Consittee and the Advisory Comalttee; to the deparfental, research; fiscal and graduate school officers of the several participating colleges and universities; and to the Rational Institutes of Healtherhich provided funde to ansfet in tes upport, J.L.H. and H,D.G. (1c) Dean Emeritue of the Graduite School and Professor of Chemical Engineering and Yore't Resources, Unfuersity of Washington. (Id) Reseirch Assotiate, Univeraity of Mashington, Sexitile, Washinfton.
fuportant matters in more detail than could be set forth in the subject. report. 'Thus this Supplement has been assembled for the benefit of inter* ested persons to record information concerning the Glossary ysed (Appendix W. G), the text of the Questiongafres emploged (Appendix Q), the procedures applied for estination of costs (Appendix A), illustíative calculations whereby these procedures are applied (Appendix C); and the approaches and resuits. of data correlation (Appendix R), as set forth more specifically in the Table - of Contents.

E'
.2. GLOSSARY
As the Gradcost III investigation got underray, it became' clear that definitions in some cases did not exist, and in other cases were not'applied with consistency to certain terws of primary interest in estimating the costs * of graduate education.

Thus, one of the first steps taken in the proceeding with the investigation was to deveióp a ${ }^{\prime}$ glossary" of words winich had feportant significance in the study. Such a dist was prepared by the authors in preliminary form
 found which was acceptable to all or most of the participantsa

This wording is set forth in the Glossary which comprises Appendix \dot{G}.
A number of acronys and abbteviations have been uged to save space in 'the main report, and these are briefly described in Table 1.
3. QUESTIONHATRES

Two main types of information or data were collected in carrying out the présent study.

One consisted of overail institutional information such as that given forth in anoral acaderic and fiscal reporta and copies of such reports were received from all participants along with additional telephoned data.

Other data, both for institutions and for specific departments, of interest were collected by. the use of the questionngires, and the text of these is Appendix Q..
\because The several questionnaires wére completed by acade需c and fiscal representatives of the participating colleges and universities and then returned

SIGHIFICAHCE OP CERTATF ACROHYLSS ARD ABBREVIATIONS

to the writers: Data were coded on computer cards, printouts vere made, and returned to the appropriate institutional, representatives for verification. Corrected questionnaire responges have been retained in the Gradcost III files:

Two rounds of questionnalres were transmitted. Instítutional and departmental questionaifes were sent out on November 20; 1975; and returned over the next several months. Questiomaires dealing with grant and contract research andrelated antters were sent out in April, 1976, and returned during the next several months. In wany cases; telephone contacts were nade to assist institutional representatives to complete the questionnaires and to verify responses.

4. PROCEDURES FOR ESTITATION OR COSTS

During the time that the Questionnaires yere being prepared, and responses were being received, verified, and coded, the authors were at work studying and developing alternative procedures for estimation of the costs of the graduate programs.

It soon became apparent that four main elements of costs needed to be considered: departwental costs, institutional support costs, student appointment costs, and costs of research activities supported by urestricted and/or festricted funds.

Further study indicated that the departmental costs are the most important element of the total cost of graduate work, and thus special attention was devoted to development of procedures for allocating monies from the departwental budgets to Hasters Degree program cests and Doctors Degree program costs.

After much consideration, as well as extensive discussion with members of the Advisory Comititee, five different procedures were devèloped for estimation of departiental costs, and these are identified by acronyms: CLASSCUT, CLADCUT; CREDCUT, FACTCUT, :AND COMPCUT. Each procedure is described in detail in a sequential fashiqn in Appendix A.
-After compatig these procedures with respect to assumptions, needed data, ciarity of definitions, facility of application, etc., it was conciuded thaţ the COMPCUI heid out the best prospect of being generally useful.

The second significant element of cost is extra-deparemental institutiondl sypport to provide for libraries, student services, plant operation faintengince, and general expenses of the unversity. The third main element vas takèn to be, the student appointment costs for Feliowships, Assistantships, Scholarships, Traineeships, and the like. Detailed statements of procedures for carrying out these estimates are also giver in. Appendix A.

The eosts of activities in the departionts were considered, inciuding research supported by the imrestricted mones of the college or unfversity nd also sponsored research funds which are restricted. Procedures vere developed and appifed to estimate the total departmental Research Program expenditure, and these methods also are given in Appendix A.

Finally, the estinated departmental costs, fnstitutional support costs and student appointwent costs were added together to secure total graduate degree progran costs as well as mit costs.

5. ILLUSTLATIVE CALCULATIONS

To illustrate these Xrocedures; detailed cildculations, have been carried out for graduate york in Chemistry at Learned University. Hade up data for certain general characteristics of the institution as, well as of the Chemistry Departinegt are given in Table 2 , The calculations are given in detail in Appendix ${ }^{\circ}$.

Chemistry sas selected as the illustrative field becaise: Chemistry programs are offered at alnost all universities throughout the United States, Canada, and oversear; Masters programg almost always coexist with Pri.D. programs; chemstry graduates find employment in widely differing areas in ciuding academic, governmental, and industrial situations; sponsored or grant and contract research arards from both public and private sources are wide -spreadiñ the field of chegistry; and graduate student appointments such as Teaching Assistantóhips, Research Assistantships, PEIIonships, Traineeships, and Scholarships; and"tuition waiters are often made in this'field.

Illustratioc caiculations for Cheristry at Learned Unfversity have also been carried out to estimate Institutional support costs, student gppointment costs, total and unit graduate progran costs, frairded graduate degree costs, at weil as departmental and sponsored research costa.

TABLE 2

SOME STATISTICAL CEARACTERISIICS OF THE FICTITIOUS LEARHED DIIVERSITY: AKDIITS CHEMSTRE DEPARTHENT

Total Ipatution Characteristics:

Total Studentos, Fall Term 1973
34,524
Graduate \& Professional Students; Pan Terin 1973 $\quad 7,809$

Number of Facillty
Student Creat Hours Taken Tail Term 1975 Degrees Granted, 1973-74
Bachelors,
Hasters
3%
5, 812 1,725

2,376
458,727 (Qtr.).

Doctors
Professiönal 382 335

- Total Dnrestrifted Current Funds Expenditures 1973-7K
Total Restricted Current Funds Expenditures - 1973-74

Totail University Current Furds Expenditures 1973-74
\$140,113,349
$\$ 72,533,404$
\$212,646,753

Ciemistry Departmeti-ciaracterfercs:
First Year Graduate Students, FaIl-Tera 1973-74 : 33
Advanced Years Graduate Students, Fall Teriz 1973-74
78
Aumber of Facáaty30
Student Eredft Hours Taken, Fall Term 1973

19,080

Degrees Granted́s 1970-74
Bachelors
Hasters
-1 $261 \%^{2}$

Doctors
57
84
Departmental Unrestricted Funds Expendftures
\therefore 1973-74 (Other than Sumer Tern)
Grants and Contracts Expenditures 2973-74
(Direct Costs onily):
$\$ 1,476,218$
$\$$ 508,071
7. COBRELATIONS

Correlation of departeental costs with certain characteristics of departments and institutions have been carried out and some details conconing these calculations and results are given ti Appendix
8. CLOSTHG COMENT
 been coded onto computer cards and will be preserved as $10 n g$ as feasible so that additional machine calculations bay be made if deemed useful in the Future.

30 June 1978 Seattle, Hashifigton

Respectfully subitited,

1
Wieqien 0 耳保 -
gilliam D. Gaixrison, Pho.

Procedures: Departmental Costs

To estimate giaduate degrée program costs, data were collected malnly from insitfutional annual reports, and by use of quéstionnaires. Total prograil costis were considered to consist of three elements; departmental costs, institutional support costs, and graduate student service appointment costs. Of these, the first is the most important.

Several alternative prócedures for allocating funds from departmental budgets to departwental Doctors, Masters and Bachelors prògrams were studed, fccording to one method (CLASSCUT), allocations were made to programs based upon the majority student cifentele for the classes offered by departmental faculty. In the second method (CREDCuT), student credit hours provided the basis: A third method (COMPCUİ), which is described. below, gave results which in a number of cases were similar to those obby the CLÁSSCÚT procedure. The CREDCUT approach gave estimated costs which were much lower.

It was concluded, that COMPCUT would be the most useful procedure for estimating departmental costs. COMPCUT is based mainly on data, derived 'fromi Faculty Activily Analyses (FAA), fromic Crossover Analyses (XOA), from departmental statistics, and from Student Creat Hour (SCB) information relating to five levels of instruction; lower division (LD) and upper division (D) undergraduate classes, graduate classes (GC), independent study and Hasters thesis (ISTH), and Doctors disseriation (DISS). Geñeraily departmental budget funds wee allocated ta a particular instructional. level, based upon the proportion of faculty time reported by the FAA to be devoted to that level: Hith special treatment of scholarly activity costs, these by-level total costs were divided by the number of scr generated at each level to secure by-1evel costs per Sch which were multiplied by the appropriate numbers of sch taken by ail the students in a subject program; and then sumed by level to obtain the total program casts. Dividing this sum by the numer of enrolled students or awarded degrees gave the estimated unit departmental costs.

In general, this COMPCUT procedure was found to be applicable to dataw. assembled from the participating institutions in the several fields studied. Its main weaknesses ile in the limited reliability of the FAA at graduáte levels of instruction, and the difficulty in securing consistent reporting of SCH for the individual student-professor contacts such as

Doctoics dissērtationectivities.

Procedures - Institutional Suppoŕt and Student Appointment Costs

- Costs of institutional support for departmental programs were approzimated by maltiplying or dividi total annual institutional. expenditurfs for íbraíles, student services,' plant-operation àna maintenancé and general institutional and administration activities by certain factors. called "proxies" and," in some cases, applying "weighting factors." For example, institutional expenditures for studeht servičes were divided by the total number of students enrolled in the institution to obtain the estimated cośtsi of student. services per student enrolled in *. . a departmental póctors or Kasters program. In genoral, these procedures? were found to be satisfactorily workable to provide useful approximations Although the weighting factors used sometimes may desirably be chosen

\because For, each department stidided, data comererning student appointment expenditubs-for feliowshifi, traineeships, teaching assistantships, and Keséeärch assistantships werie collected., Tuition waivers were not included as cost elements, The other named expenditures were sumed and then recorded on a péf graduate fity ident bols so as to show the Ievel of ffnancial support availabie etorisist in the recruitment and maintenance of graduate students. Itswa's concluded that only those expenditures made in favor f feilowships, tralineeships, and researeh assistantships supported by unrettricted funds, should be included as graduate degree program costs: In post cases these mofies were relatively small.

Estimated Research Program Costt

In view of the majoi importance of faculty and graduaze student research activity in relation to graduate degree programs, the Research Program expenditures; were estimated, considering certain expendituryes made from unrestricted departmental funds, and those made from restricted sponsored research fupds. The sum of these was taken to be an estimate of thé monnies used to support the Research Program of the department. • However, this stum is miuch less than the replication coṣts of the total departmental Research Program because no retognition is given"to investigational activitifes which are conducted without stipends by students working on their Masters thesés and Doctors diṡertations.

The estinated total Research Prograw expenaitures were divided by the numbers of facult members, and the numbers of graduate students, to obtain unit expenditures. Totai research expenditures per faculty member per year varied widely in the individual departments studied, but on the average were largest in Biochemistry, substantial in Chemistry and Economics, considerably less in Kathematics and Psychology and smalIest in English. Department research expenditures were similar in the several fields, but sponsored research monies ranged from high values for Biochemintry and Chemistry, through medium values for EConomics,. . "Mathematics and Psychology, dom to almost zero in Englisho, Research Program expenditures per graduate student showed a similar rank order.

Although a close relationship between sponsored reséarch and graduate education is recognized, it' was concluded that sponsored research cosits sfould not be included as elements of the costs of graduate prograñs.

Estimated Graduate Degree Program Costs

Per graduate student enrolled in a departweit, the estimated average annual costs, which are underlined'; (and are preceded and fillowed by the tower and upper quartne costs, respettuety) are the folitonng-Bion chemistry; $4,400,18,000,25,000$; Chemistry, $5,200,8,100, " 11,000 ;$ Economics, 2,700, 4,100, 5,500; EngIish, i, $800,3,000,3,700$; Wathematics, $3,800,6,200,8,000$; and Psychology, $3,400,5,600,7,100 \ldots$

The estimated average annual costs per Doctors student and per Kasters student in a department fali into about this same rank order, and annual costs are substantially higher for Doctors versus Hasters students. Cdets fer awarded Doctors and Hasters' degree followed similar trends, but these fould not be relafed to annual costs because information was not availadie concerning the fraction of enrolled graduate. students who do not couplete degree programs, and also the average times of, study reguired to couplete degree programs.

Estimited annual departmental costs per graduate student (DCOST) yary widely among individual departments in á particular field. Departmental costs were correlated linsofar as possible with certain departmental and institutional characteristics. Depending upon discipline, somewhat different characteristics show moderate or strong correlations with costs.

Increase in the cost of faculty. time devobed to graduate study and
research per graduate student (FACT), and increase in the proportion of doctoral aspirants among the enrolled graduate students (NPHD), correlate with increase in uni departmental costs in most cases. Increase in -the number of graduate students enrolled in a department (SIZE) usually is associated with modest decrease in unit cost. Other variables show weak or negligible relationships. Ho significant correlations were found between costs and the Roos-Anderson peer ranking of the "quality" of "a department, or whether the department was associated with a public or a private university Kultiregression analyses were carried out to obtain a model equation which related DCosT, in some cases moderately Well, 'HItE-FACT, NPHD, SPOKR, and SIZE

Simplification and Application of Gradcost Procedures
Simplified Gradcóst procedures for estimating graduate degree program costs are suggested, and these nay be broadly applicable using data nov r available in many gređ̈uate schools. : -

$$
1 v
$$

cLOSSARY (as amended)

'21. March 1975

- Academic Year

Advanced. Years
Graduate Studen
\qquad
"A consecutive time period institutionaily designated as the academic year. An academic year may be equivaient to a fiscal year or may inciude oniy soxe of the sessionst aurine which course work is offered. Typically an academic year is equated to two sernesters, three quarters, two.trimesters, or the time
 Cost Anelysis Yanual: Field Revier Eatition,
1974 , p. 287.
 A stident exrolied in a graduate degree program at your instikution who has completed approximately trolvo months or fore of fullitime graduate stuady or its equivalent at your. institution, or equivalent study at enother institution.

Compensation

Course LeveIs
"The total dollar amount, inciusive on gross salaries and fringe benefits, paid directly to or on oehalf of personnel. See Salary and Fringe Benefits."-XiC.H.E.M.S.- Cost Anelysis Kanual: Field Revier Edition, 1974, p. 190.
\therefore Tne inistitutional categorization for the level of offering of a specific course; the categori- i zation derived from the level of student to which any particular course offering is primarily directed. A zultiple-letel course shoula be assigned a course level that gest represents tine the modal level of the students enrolled in the course.
(1) Eoxer Division Courses primafily taken by Ireshmen end sopnowore undergraduetes.
(2) Jumior Level: Courses primarily taken by Júnior undergraduates.
(3) Senior Level: Courses that are primarily toxen by senior undergraduates, aithougi they meytbe secondarily taken by first year ard advanced years graãáte students.

GLOSSARY

(as amended)
(continued)
(4) First Year Graduate Level: Courses thet are taxen primarily by students beginming gradutel Hork, other than the courses described in yart 6,7 and 8 below, altiough they may be secondin:is taken by undergraiduate and/or advanced years graduate students.
(5) Advancea Years Građuate Level: Courses thet are teken primarily by advanced yeers gradute students, pther than the courses descripef in parts 6,7 and 8 belor.
(6) Endependent Study and Research Level:

Courses for graduate students that give credit for students independent stuay end research, other tinan the thesis or dissertation courses listed in 7 and 8 belorr.
(7) Triesis Restarch and Preparation Lefel: Courses for graduate students orily that give credit for the vorix 'done on theses by aspirants to the Naster ${ }^{\text {t }}$ s degree.
(8) Dissertation Research and Preparation LeveI: Courses lor graduate students onlyn that give credit for the fort done on doctoral dissertations Dy aspirants to the Doctor's degree.

Capital Equipment. "Those items of rovable property (not permanently attached to a structure) that have an acquisition cost of $\$ 500$ or more and an expected service life that exceeds tro years:" H.C.H.E.M.S. Cost Analysis Manual: Fiela Revien Edition, 197 ${ }^{4}$, p. 189. This category does not include inat T.C.F.E.M.S. termis Noncapital Equipment, that is, "those iters of property that have an acquisition cost of less than $\$ 500$ or an expected service if of less then two years: ${ }^{\prime \prime}$ ibid. p. 199. .. Joncapital Equipwent should be included in the Supplies end Services category.

Firstyear.
Graduate Student

Monies awarded to Eraduate studente for thr: purpose of encourafing study in the students*. fiellas of interest; with no expectation of repayment by tḥe students in kind or in services.

A student enrolled in a graduate áegree procram at your institution who has completed less tinn approximately twelve months of full-time graduate study or its equitivalent.

Fringe Benefits

nAn element of compensation which any include the items instea-belor (illustrative oniy). Fringe benefits should include all benefits paid to personnel, cregardiess of wether the benefits or equivalent cash options arè available to ali.
(1) Sociai Security: If cofered by Social Seeurity, inciuà appropriate FICA tax. If covered by an alternate plan, such as Colorado's PERÁ, inelude the appropriate payments.
(Definition applies to all types of employees.)
(2) Retirement: 'Inciude all contribuitions made to a retirement fund regardless of vesting requirements.
(3) Meaical Insurance: Iriclude peyments made to provide medical Insurance, to the employees. (4) Infe Insurance: Include payments made to provide Iife insurance to the employees.
(5) Gueranteed Digability Income Protection: Include contríbutions; through insurance or othgruise, for prolönged disability income payments providing such payments do not arise from the eccumulation of unused annual sick ileave benefits:
(6) Unemployment Compensation: Include payments to be made under the Unemployment Compensation lav.
(7) Horimen's compensetion: Include payments to be made under Horkmens compensation laws." F.C.H.E,H.S. Cost Analysis Manual : Field Revieu
Edition, 1974 , pp. 195-196.

Humber of Courses A "course" is a class unit in a particular subject. If a faculty member teaches two classes with the same title, count that as two courses. If a faculty member teaches one class, count it ns one course, even though it, may sometimes be divided into several teaching-assistant-monitored sections. Personnel Classifications:

Faculty $\left\{^{\prime \prime}\right.$ Academic appointees with the ranks of associate, instructor; lecturer; assistant professor;" associate professor and-professor.

> postdoctorate" A person with a doctor's degree who receives compensation from the institution for performing instructional or research duties, who is not eníolled in a graanate degree program, and wió. does not- hold a faculty rank.

G-5.
0.
${ }^{-}$
(continua)

Personnel, continued:

Research
Assistant A graduate student enrolled in a degree program at the institution, who does not hold'a faculty rank, and who receives compensation for assisting in the research of the institution.

Teaching Assistant

Staff
\&

- Salary

Scholarly Activity

A graduate student enrolled in a degree program.at the institution, who does, not hold a faculty rank, and who receives compensation for assisting in the instructional program of the institution.

Employees of the institution other than faculty, postdoctorates, research assistants and teaching assistants.
"The gross salary or rages paid to personnel; excluding any fringe benefits," fi.C.H.E.M.S. Cost Analysis manual: Field Review Edition, 1974, ํ.202.
"Research, scholarship, and creative york activities that are related to a specific project are recorded in this section. This category is intended for all faculty activities that involve the practice of a research-, scholarship-, or creative work-related skill. Activities that do not involve practicing tint skill but that are nonetheless related. to professional developonent are included [in this category]... The following are some examples of activities in [this category]
-departmental research (specific projects)
-sponsored research (specific projects)
-securing new grants?
--performing your professional skill
--writing or developing research programs
-administering research grants
-giving recitals
-completing your dissertation research
whiting or revising books

- - writing articles

GLOSSARY, (as amended)

(cońtinueã)

Scholarly Activity, continued:

- writing reviews
- creating new art' forms
-exhibiting your work
-practicing en artistic skill.
-reviewing e colleague's. research sori
This category [also includes].... keeping currorit in professional field:
-reading articles ana books rézǎed to professicn
--attending professional meetings'
-research-related discussion with colleagues
-editing a journal or book
--officer in a professional society."
N.C.H.E.K.S. Faculty Activity Analysis:

Procedures traniul, 1973; pp. 24-26.

Supplies and Serines
"A broad category of expenditures that includes all types of current fund expenditures except.
compensation, capital expenditures, and scholarships and fellowships.
(1) Supplies: Consumable instructional, research, and office supplies and materials.
(2) Communications: Telephone, telegraph, postal, printing es binding, and reproduction services.
(3) Travel: Transportation, foóa, lodsitig, and miscellaneous expenses reimbursed to an employee when he is representing or conducting business for the institution.
(4) Other Contractual Services: Ail otiser services procured from outside sources that can beldirectiy Identified with particular Festivity center; eg., consulting semites.
(5) Honcepital Equipment: Those items of. property that have an acquisition cost of less than $\$ 500$ or an expected service life of less than two years.
N.C.H.E.H.S. Cost Analysis Manual: Field Review Edition, 1974, p. 203.

GLOSSARY (as amended)
GLOSSARY (as amended)

- tiThe scheduled teaching category is used to. record all faculty activity that is directive, related to courses. These courses may te. dégree or non-degree related, creáit or noncredit, day or evening, part of the regularly assigned teaching, or overload teaching for. night school. This category [also] includes those teaching activities" that are not associated with specific courses \ldots. : For example:
\rightarrow-guest lecturing for another faculty member \rightarrow Thesis advising
- discussions with colleagues about teaching - thesis comittee participation -giving colloquia trithin the institution F.C.H.E.M.S, Faculty Activity: Analysis:

Procedures Manual; 1973, pp in and 21.
"Teaching" does not include the preparation of future courses or en y activity carried on outside the 'regis of the Institution

20. November 1975

Institutional Questionnaire ($0-\mathrm{IN}$) *
and
Departicntat Ototioniaire for Chemistry (0 -CM)

Preamble
These questionnaires are designed to assemble Institutional - Departmental Costs and other data so that preliminary cost estimations can be made for Chemistry graduate programs for the year 1973/74, as we agreed to do ot our ApriL 1975 Washington meeting.
\because A Glossary 1 is included at the end of this questionnaire to define certain technical words that'are used tin the questionnaire. these defyaftions are largely paraphrases or direct quotations from the Cost Analysis Manual and the Faculty Actiofty Analysis: Procedures Manual of the National Center'for Higher Education Management Syítens, or the Audits of Colleges and Universities guide of the American Institute of Certified Public Accountmis. Please refer to the Glossary, when you see n tern marked with on *, so we can all stay together on the meanings of our reports..

We have numbered sequentinity each item of information sought each

 Hike. This numbering should also help.later, when we discuss the questions together. In a-few cases we have already filifanin a piece of information, such as identification of the institution.

Etch section of this questionnaire is given a separate identification number. The following list describes the system.

Questionnaire
Section Q- IHS

Descriptive Title.
Thstitutionel Support costs Allocation Data-Fall Ter 1973

- Pages.

These pagescire reserved for information, which we will fiji it ht this office, from your financial reports

3-3

Please, complete as soon igopossible; ard preferably by Thursday...
January 15, 1976, and then return one copy to:
Dr*- Joseph L. YcCirthy
Director, The GRADCOST'III Study'
238 Benson He 11 \because BF- 10
o- University of Washington Seattle, Washington- 98195

Questionnaireio-Ify

Institutional Support Costs Allocation Data - FaIl Tern 1973
The indimation you provide-in this section will be used to allocate Support Costis tó thé Chemistry"Department graduate"programs. The different types of Support Costs require different allochtion procedures, so the information sought here is of several vailed types. If you cannot supply sone dáta at this time, please so note, and we will be back' in touch with you.
3. Do you use "Quarter Student Credit Hours" or
"Semester Student Creait Hours?"
4. Hubber of FuII-Tise Equivalent. (FIE) Faculty
in the instifution.
5. Furber be Freshien and. Sophosiores éniolled In the institution.
6. . Wubler of Junfors and Seniors enrolled in the institution.
7. Furber of Graduate and Professional Studentes enrolled in the institution.
8. Nubecr of other Students enrolled An the
9. Areatin square feet of the total Assignable Areat of the institution's builadngs, other thasparking areas.?
10. Area in bquare feet of the institution s
Assignable Area that is in buildings with

 Operations and paintenance expendicures.)
11. Area in square feet of the institution's assignable area used for: sponsored Research.
12. "Area in square feet of the institution's assigriable area used for Grant and Contract Administration.

[^2]

Questiomaire O-It I (contimued)
14. Does your Financial Report category "Auxiliary Rnterprises Expenditures ${ }^{11}$ eibbrace all obsts of operating the auxiliary enterprises, including charges for operation and raintenance of physical. plant, general adeinistration, and other direct and indirect costs whether charged directiy as expenditures or allocated as a proportionete share of costs of other departments or units?
15. If Response Rumber 14 is Tho": Area in square feet of the institution's Jet Jiable space used for Aurlliary Enterprises*:
16. Is Auxiliary Baterprise, space a net cost to the PIant Operation and Haintenance brdget?
17. Area in square feet of the "institution"s Ret"
. Usable space used for the Kedical-School's Hospital:
18. Is Hospital space a net cost ta the Ylant
Operation and Faintenance buiget? Operation and Yaintenance bưdget?
 $\underbrace{\text { ricior }}$

This part of the questionaire is designed to asserble Support Cost data so that prelleinary cost estimations can be made for Chenistry graduate programs for the year 1973/74. If data is not available for 1973/74, please use the closest available, year and describe the situation in the Notes and comients section.

Questionnäire Q-IN 2

Support Costs
What is sought here is overhead (support and maintenance) costs of the institution of uifich the departient is a part. These overhead costs will be allocated to unit, \%posts in order to establish a total institutional cost figure for the Chemistry 'graduate progras. It is assumed that all costs reported here are for a twalve-month year. If that is not the case, please describe your.

If you cannot supply some information at this tire, please so note, and we will be back in touch with you.

19-20. Expenditures for Instruction and Departmental Besearch* during the 1973 74 yeat froul unrestricted funds (this category, includes organized activities related to Educational Departments).

21-22. Expenditures for Sponsoried Research and other Spoinsored Prograns during the 1973-74 year.

© Budgeted Research* during the 1973-74 year.

25-26: Cost of operation of the institution's Ceneral Adeinistration* during the 197374 year. (This category includes General Institutional Expenise that is not reported inder Instruction and Departweítal Research, Libraries, Student Services, Student Appointments; Plant Óperation and Haintenance, Extension and Public Service, Auxiliary Eitterpirises and Hospital.)

27-28. Cost of operation of the institution's sydent Services* during the 1973-74 year.
(Questionnaire Q-IN 2 (continued)
29-30. Cost of operation of the institution's
Plant Operations and Maintenance* during. the 1973-74 year.

31-32. Cost of operation of the institution's Libraries k during the 1973-74 year.

33-34. . Cost of operation of the institution's Extension 'and Public Service k, activeties during the 1973-74 year.
35-36. Cost of operation of the institution's 33

.32

37-38. Cost of operation of the institution's Hospital (if any) during the 1973-74 , year

Questionnaire Q-IN 3

Ingifect costs of Grants and Contracts

We are assuming in this section that each institution joifs with. the Pederal governent auditors in preparing an annual study of Indirect Costs, and also that the total indirect cost compensation to the institution for 1973-74 by contracting agencies is knom.

Please allocate the total. Indirect cost compensation among the following categories according to the proportions determined in your computations of indireef cost rates applicable to Federal research agreements study of July, 1974, (e.g., if \$1,000;000 was refrbursed, with reimbursement computed at 52% of salaries, and General Adelnistration was determined to be 15\% of salaries, the allocation to, General Aidefnistration wita be

$$
\frac{15}{52} \mathrm{~K} \$ 1,000 ; 000 \text { or } \$ 288 ; 000
$$

39. General Adsinistration

40. Grant and Conttact Adsinistration

41. Departsental Adeinistration

42. Libraries
43. Operation and Kaintenance of Plant
44. Stiodent Services

45: Educational Benefits
'49. TOTAL (Equala Total Indirect Costs Recovered By The Institution)

Hotes mad Coments

品

$$
1
$$

Inst.:
Dept: $:$
Chemistry

Questionnarike $0-\mathrm{CH} I$
Departmental Expenditures - Academic year, 1973-74
and
Sumer Terin, 1974
What is sought there are expenditures charged against regurof operating funds, uniestricted funda sometimes referred to as "hatd money." The items will ilkeiy be charged to the Departmental Account fumber or its equivalent.

Please note that one part of the questionnaire zequests Academic Year data, and the other part of the questionaire requests Smaer Ters "additional expenditures" data.

If you cannot supply sose information at this time, please so note, and we will -be back in touch vith you:

3-8. Faculty Coapensation*

Salaries*.
Fringe Benefits*
total
9-14. Staff Compensation*
-Salaries -
Fringe Benefits
TOTAL
15-20.* Eourly Hages Compensation*
Hages

Fringe Benefits

21-26. Toaching Assistants*
Stipends
Tuition vaivers or Scholarships

TOTAL

157

Acadenic Year 1973-74
Sumar Terin 1974

Questionnaire 0-CM ru(continued)
27-32. \qquad Stipends
\qquad

33-38.
Postdoctorates*

Stipends
Fringe Benefits ,
TOTȦL

Dollar amount of, fellowships* to Graduate Students adiinistered by the Chesistry Departsent exclusively (Grant and Contract Training and Fellowitip expenditures).

Hotes and Coments
Do11ar amount of fellowships* to Chemistry Graduate Students aditinistered by universíty. offices other than the Chenistry Department. \qquad

Inst.
Dept.:

Chemistry

Questionalre o-CN 3

Department Course and Student Credit Hour (SCB) Data

of the Chemistry Department

Hith respect to courses and course enrollsents, in the first part, data sought is for the Fall Semester, 1973-74, or the Autumn Quarter, 1973-74, or for the closest avallable period if these are not ayailable, and in the second part data is sought for Sumer Term, 1974.

Fa11 Semester or Autum Quarter, 1973/74

Courses*		
	Undergraduate	Graduate Sto
	Students	First Advanced
		Year*

Courge Levels

59-62. Lower Division*
63-66. Upper Division*
67-70. Pirst Yeaŕ Graduäte*
71-74. Advanced Years Graduáte*
75-77. Independent Study and/orResearch*

78-80. Thesis Research and Preparation*

- 81-83. Dissertation Research and Preparation*

Inst. Dept. Chemistry

Sumer Tern, 1974

E

Humber of Student Create Hours Taken By Courses*

Undergraduate Students

Graduate Students First Advanced Yeirit Hearst

Course Levels

84-87. Lower Division
88-91. Upper Division

92-95. First Yêtr Graduate
96-99: Advanced Years Graduate
100-102. Independent Study and/or Research

103-105. Thesis Research and Preparation

106-108. : Dissertation Research and Preparation

Notes and Comments

106
173 ,

165 $\frac{183}{2}$

167

Inst:
Dept : Chemistry

Onestionnaire $0-C A_{4}$

Deparemental Degtee, Enrollient and Other Data

With respect to degrees avarded, EulI-time graduate students; etc, the data sought is for the five-riear period ending with $1974 / 75$ so that ve may
(For éach 12 month preriod followinggl July)

nith respect to degrees avarded, data sought fs for the five-rear perio derelop mulfyegr averages Degrees and Enrolf ant Data
 nith respect to degrees avarded, data sought fs for the five-rear perio derelop mulfyegr averages Degrees and Enrolf ant Data

1970/71 1971/72 - 1972/73 1973/74 1974/75

109-113. Huber of Fasters degrees marded

119-123. Muber of ful1-
$\because \therefore$ tine graduate

124-128 Kumber of part? tivie graduagte students

1974 rinter Quarter (If on Semester basis, Leave blank)

1974 Spring
Quarter or
Semester

1975 Sumer Tera

\qquad
135. Himber of Full-Tige Equivilent (FIE)

Faculty* in the-Chemistry Department:
136.: Area in squire feet of Assignable Area used for Instruction and for Classroons, Class Laboratoriés, etco, in-the Chemistry Department.

Ouestionnaire $0-C$ CI 5

Faculty Accivitt Analysis Data.

Fall Terim 1973-74 and Sumer Tezm 1974

These questions are Intended to solicit information or estimates about the use of faculty time as fepozted in Faculty Activity Analysis surveys. If you provide information that is not based on a Faculty Activity Analysis survey, please add a description of the source of your information. If you cannot respond fo one or sore of the questions, please so note, and we will be back in touch whith yout

137-150. Percentage of faculty time expended in teaching* ind the duties nornally associated with teaching
in Autum Tera 1973/74 in:

132-138.- Lower Drvision Courses*

139.140. Opper Division Courses

> 141-142: pirst Year Graduate courses.

4

143-144.- Advanced Years Graduate Courses

145-146. . Independent Study and/or Résearch Coursess

147-148. Thesis Research and Preparation for

Fall Term

-148
149-150:

Mdsertation kesearch and Preparation
for Dissertation Research,

151-152. Bercentage of faculty time spent on cholarly: activity*
353-154. Percentage of faculty time spent on zetivities other than teaching and schoialiy activity (this eategory. includes yifa faculty leavie tipe):

Hotes and Coments

Inst.:
Dept. : Chemistry
F

Acaderic Year Crossover Analyais Data for Graduate Stulents

What is sought here is the actual or estinated ninber of student credit hours that Chealstry students tike in their own and in other departments.
155. THA is for 1973-74 (Autum, or Hinter, or Spring, Term.

FIRST TEAR GRADUAIE STUDERTS
156. Nuber of Chemistry below: \qquad
157-170. How many student credit hours did Chenistry wajor Pirst Year graduate students take in the following;groups and levels?
GROUPYS ARD LEVELS Lower Upper First Adranced Independent Thesis Dissertation Division*

Division* Year
Years -Research Graduate Graduate

Chesistry Dept.
Other Departments

ADHARCED YEARS GRADUATE STUDERTS

171. Nuber of Chemistry Advanced Feark graduate students taking the SCH reported belor. \qquad
172. 2 171

- $212-185$. ${ }^{2}$ Hor many student credit hours did Chemistry major Advanced Years graduate studentsk take in the following gixgups and levels?
GBOURS AHD TEVELS
Lower Dpfer
Divisionk Difision*
Firgt Advanced Independent Thesis Dissertation
Year- Tears : :Research

Questionnaire $0-\operatorname{ch} 7$.
Sumer Ter Crossover Analyeis Date for Graduate Students
What is sought here is the actual or estinated number of student credit hours that Cheinistry studetits take in their onn and other departments.

This data is for 1974 Sumer Term.
FIRST YEAR GRADUATE STUDERTS
186. Muber of Chenistry First Year graduate tudents taking the sch reported belor.

187-200, How many student credit hours did Cheistry Hiajor First Year graduate students. take in the following groups and lefrelsig

201. Heder of Chemistry Advanced Years graduate students taking the SCH reported belors \qquad \cdot
202-215. How insy student credit pours did Chealetry major Advanced Years graduate students take. in the following gipups and levels?

解

Questionnaire 0-CH 8

Student "Credit Hour Pattern.
of a ${ }^{n}$ Typica 1^{n} Earned Doctorate
The crossover analyses requested earlier display student credit, hour (SCA) data for aggregations of studenits-some of wion will not couplece the requirements for a doctor's degres in this department. What is requested here is the nuber of SCH in the Chenietry department and in other departments at each level that the "typical" perion who earned a doctor: degree in this department took intie in the process of eaming that degreec

Except, de not include students who have completed their Haster's degrees in - thil field at other institutions: Do include students who have earned Haster ${ }^{2}$ s degrees at your institution en route to their Doctor's degrees. And, do -inciude their Haster's progran Sch in the pattern reported below.
If the information reported below based on
216. \qquad examination of degree recipients" transcripts?
217. 218
estimates by the departient chairman?
218. $\frac{218}{218}$ estimates by Graduate Schooi Dean?

Student Credit-Hour Data for a ${ }^{1}$ Typical" Earised Doctorate,
221-232. What is sought here is the atcual or éstimated oumber of student credit
hours at each Ievel taken by a "typical" person sino earns a doctor's degree
: In the Chemistivy Department

QUestionnaire 0-CH 9

Student Great Hour Pattern
of A "Typical" Raster's Degree
This form requests the same type of information about an"fypical" master's degree recipient as the previous form (Q-Ci 8) requests about a typical doctor's degree recipient. What is requested here is the number of SCH In the Chemistry department and in other departments at each level that the tropical" person who exits a waster's degree in this department takes wile in the process of earing that degree.

Is the information reported below based on
233. \qquad examination of degree recipients' transcripts?
234. \square estimates by the department chairman?
235. estimates by a-Graduate School Dean?
236.
\square reference to the institution's catalogue or to 33 dëpartwental regulations?
\qquad other? (Please specify) \qquad

This information is about Oft person only:

Student Credit Hour Data for a "Typical" Earned Master's Degree

238-247. What $4 s$ sought here is the actual or estimated number of student credit. hours at each level taken by a "Tical" person who earns a Hester's Degree in the Coneastry Department.

Lower Upper Graduate Independent Thesis
Division
Division
Classes
Research
Cuenietry
Department $\frac{1}{238}$
Other Department

*

Dept: \qquad
Questionnaire $0-S 3$
Student Appointments
For The Academic Year 19
and Sumer Term 19
The information requested here will be used to describe the expenditures associated with student appointments in the departivent.

Unrestricted
Funds

Restricted
-
Teaching Assistants:
.
Undergraduate student appointments \qquad ,
Graduate -student appointments Research Assistants:

- Undergraduate student appointments

Graduate student (appointments

 ellorinips:

Administered through the Department Undergraduate student appointment ${ }^{\circ}$ \qquad $\$$
Graduate student appointments . $\$$
S

Administered from Outside the Department

Undergraduate.student
appointments
s
$\$$
Graduate student appointments
s s

Post-Doctorate appointments:
Tuition Waivers for Acaderic Year: Please describe briefly whether tuition waivers*are given and, if so, with what arrangeverits and with what approximate total value:

Undergraduate students

Graduate students \qquad
\cdot

\qquad
\qquad
Questionnaire 0-S4
Grant and Contract Expenditures
Please tote To respond to these questions, we suggest thatthe Department Chairman add the budget of fiscal officer of the department jointly $100 k$ over and write in their best
estimates rather than try to develop precise detailed -answers gleaned from departmental records.

He understand that the total amount of Grant and contract direct expenditures In this department for 1973-74 was $\$$ \qquad

- ins this figure approximately correct (within 5% one way or the "other)?
\qquad or \qquad \because

If not, "nat is the correct figure?

$$
\$
$$

It is commonly believed that sole grant and contract expenditures have soise effect on universities ${ }^{-7}$ educational activities, even though the funding agency may. not deliberately intend such effects. The following three question is try to get at that relationship.

Wat approximate percentage (within 5π one way or the other) of the total grant and contract direct expenditures specified above were expended for each of the following categories? (They should, add up to 100\%)

Question 1: For activities substantially. related to, or a part of, the educational activities of the department?

- Please break tons percentage donn by departmental academic program:
the Doctor :s program \qquad
the Raster's program \qquad
the Undergraduate
program \qquad
Question 2: For research and associated activities that are substantially unrelated to or separate firms, the educational activities of the department? \qquad
Question 3: For activities other than the education- \qquad al and/or research activities of the department? \qquad

Questionnaire $0-54$ continued
The last two questions are concerned with how much ecucationally related. grant and contract monies are-needed in relation to certain standards of acaderic quality, binich is another way of saying how fmportant such grant. and contract dollars are to the department.

Question 6: *Assuring no change in" the number or level distribution of students or of faculty in the department, nor any change in the size or quality of the departwent's physical facilities, nor any change in the size of the departmental. budget (excluding giant and contract funds) - by what percentage confd the educationaliy related grant and contract direct expenditures (of Question 1) be reduced pithout substantially reducing the quality of the departments doctoral program? (Circle, the percentage, please.).

Question'7: Assciaing there nould be no change in the nurber of students, etc., as specified in Question 6 and assuring that no other institution suffered any reduction of grant and contract funding Ey what, percentage could the educationally relaçed grant and contract direct expenditures (of Question 1) be reauced before the decline 'in the quality of." the doctoral progran rould make it advisable, in your opifion, to terninate the offering of this program? (Circlef the per-
centage, please.)

no reduction
all could be possible eliminated

Hotes and Comments

Thank you very much for giving us your expert judgerent on these queśtions.

Preamble

The intent of this questionnaire is to ostain informetion fer your institction about a.field which is soretimes'identified as "cell biology." We hope to combine the data here collected uth other data you have provided to us in orier to obtain cost estimites for graduate work in cell biology.

It is understiod that your finstitution may not have a depaftuent of cell biologs, or even an authorized graduate degtee progran: entitleत cell biology, but it may have inれividual rraduate students andor an interdisčiplinary facullty and graduate stoment group studying the subject.
 the sueject matter of their theses and/or dissertations. Io us the following titles of Pa:D. dissertations submitted at the tritisersity of Washington during the 1974-75: year seem to be illustrative of doctoral work in cell biology:

Enzymatic Control af Histone Phosphorylation Jurinethe Cell

 Fuicunce Evr a Cell כivisicn Cycle vitint (Geneties)
ㄱํ:
 Coordination of Celf Cycle Events in Saccharomyces cerevisiae (Genetics)
Stuctes on the Formation and Antinicrobiel Activitias of - . .
Enantans Giznt Cells Resulting from Fusfon of Culturad abbit
Atveolar tacrofnages taler/the Influence of Innotoizines
Froduced in Vitro and in ifvof(ticrobiolcgij);
z̈laction and ziructure of azinboan Trout Ieuzccytes (Fisheries)
Products of zurire Spleen Cells that Specifically yodulate
Cell-Mediated Insunity to Syngenelc Tumor Cellsp (Pathology)
The Convulsant Action of Pentylenetetrazol on (Fysiolagy and Eicohysics).
'In thrse cases the putuate students were formally enrolled in the department nared
 caneistyy, Zcology, dict. This questionaaire is concerned with such selected students or as interdisciplinary ghoup active in the subject field.

Dlease respond to the questioninire to the extent possible. If there are any gusstions, cail Dr. Wilizai ?. Garrisin Collect at (206) 543-2324 or Dr. Joseph J.. ExCarth's anovering Eachine at (206) 343-6683 and we shall call you back at the Earliest epportumity.
\qquad

Questionnáre :-57
Cell Biology

Expanded Student Credit Hour Pattern of a "Typical" Doctorate in Cell Biology

We are concerned here with the distribution among areas and fevels of the student credit hours taken by the "typical" person who kas taken-a diactor's degree in or closely relating to "cell biology."
Is the information reported below based on
57-1. \qquad examination ó degree reciplents' transcripts?
S7-2. \qquad estinates by a "Ceil Biology Chairtan"?
S7-3. \qquad estimątes by a Graduate School Dean?
S74. \qquad references to the institution's catalog or regulations?
s7-5. \qquad other? (PIease specify. \qquad):
What is requested here is the approximate number of student credit hours taken in his total graduate student career in each of the specified areas at eaci level that the "typical". graduate student who has earned 'a doctor's degree relating to cell biology took while in the process of earning that degree.

Do not include students who completed their master's degrees in teis field at other institutions, Do include students ina earned master's degrees at your
 program student credit hours. in the pattern reported bqlo:

The following information is about onf representative person only!

APPETHIX A PROCEDORES ROR CALCOLATION

Departmental Costs oby CLASSCUT Procedure
\qquad

A I.O outine of Procedure
In the chasscut procedure (and also the CLADCUT procedure described belowry, the total cost of faculty compensation and benefits in z department is divided among the Bacheloris, Haster"s? and Doctor's programs and Service activities according to the number of classes given the department which are designed primarily to serve the students dn each of these programs, respectively.

All Lower Division classes are assigned to Lower Division Undergraduate . Activity (IDUA). Opper Division and lasteris level classes are assigned to Upper Division Undergraduate Activity (UDUA), the Haster's program and the Doctor's progran in proportion to the numbers of andent credit hours taken at each of those levels by the students in the respeftive programs or situations. Classes at the Doctor's level Are assigned to the Kaster's and the Dostor's programs only in proportion to the number of student credit hours taken at the: subject level by the situdents in each of the two prdgrams.

A spectal problem arises in this allocation procedure because of the existence of courses taught on an individual basis without any formal classes being held, i.e., Independent Study, Thesis and Dissertation. To put this faculty effort into course equivalent terms so that the CLASSCUT allocation
 by calculating the average number of student credit fours absociated with each graduate level class in the department, multiplying that ayerage nupber by an Equivalence Factor, and then dividng the resulting equivalent student credit hours per class nto the number of student credit hours generated in Independent

Study, Thesis ánd Dissertation activity to gield the numbers of classes corresponding ta each of the three types of courses. The number of ciasses are distributed to the Kaster's and Doctor's programs depending on the muber of indiỳidual study stúdent credit hours taken by studen'ts in each of thése prográms:

The CLASSCUT procedure now prescribes alloctation of the costs of the total
 programs and to UDUA and LDUA in proportion to the number of clasges in the $\stackrel{\text { F }}{\text { program. }}$

The refaining Categories $2 \mathrm{a},{ }^{\prime} 2 \mathrm{~b}$, and 3 of departmental costg a/e Teaching Assistants' stipends, Résearch Ascistants' and Postdoctoral Appointee stipends and benefits, staff and hourly workerst compensation, atd the cost of supplies and services; equipment and other expenges.

The cost of Teaching Assistants' stipends (Catégojy ${ }^{\circ} \mathrm{Za}$) is allocated 80\%
 - to LDUA and. 20\% to UDUA. The costs of Research Assistants and Postdoctoral -Appointees (Category 2b) aré allocated between the 脃ster's and the Doctor's programs in propoftion to the number of students in each of these programs. The operations costs (Category 3), associated with stafe and hourly workers, and with suppliés añ̀ services, equipments and other costís are distributed in prop tion to the number of classes assigned to IDUA and UDUA and to the Master's and Dodfor ${ }^{\prime}$ s programs, just as the faculty costs were distributed. IDUA and UDUÁA costis, separately, are now, allonated to the Bechelor's degree \because Frogram and to the Ser ice function.

To estumate the numbers of undergrãduates who are actually ot "potentially students and will probably "fajor in the subject field and thus may be considered as enrofled in the Bachelor's program, an Upper Division Population Fadtor (UPPR) first cgiculated by dividing the total number of juniors atdoteniors.话, the college into the number of juniors and quinors in the coilege who have

- declared their "nidió" in any specific field: The number of actual or potential juniors and semior najors in the subject field, tnd thyonn the subject Bachelor s degree program, is taken to be the pumber foniors and serfors who have deciared theiv major in the subject field divided by the uppr The number of actual and prospective freshman and "sophomore "majors," and thus the number of students in the subject, Bachotor's program, is taken to be the same as the number of Junior and senior students estmated to bex, entopifed tn the subject - Bachelor's progran.

The costs of LDUA are allocated in patt, to the Bachelor's degroe program in proportion to thie number, of guldent credit hours, estimated to have been taken the subject department by students in the Bächeior's.program, divided. by the total number of SCH generated in the departmentra, Lower Division courses. The costsfof UDUA are allocated similarly.

Costs of Service function are taken to be tiqe difference between the estimazted Bachelor's degree program costs at each levè and the total LDJA and FODUA costs, respectively. Note that departmental service costs may be either positive or negative numbers, depending upon whethèr the suibject department. gives more or less service that its undergraduate majors receive from other departments.

Total tweive month depártiental costs qf the Bacheloris, Kaster's or Doctox program and of the service functornare deternined by adding up the separate allocated costs for the Academic Year and then combining thege with the Sumer Terin costs which are separately determined in each of the five procedures.

APPENDIX A-1
Departmental Costs by CLASSCUT Procedure

A 1 K Iotal Academit Year Departmental Cost by Categorfes: Calculate or asseable:
AI. 1.1 gross, Category 1 costs by adding Total Raculty Compensation,
Total Staff Compensation and Total Hourly Hages Compensation;
动1.1.2 Category $2 a$ costs, wíth are Teaching Ässistant Stipends;
1.1.3 total Category 25 bosta by adafig the Total Beseatch Assistant sosser and Total Postdoctorates Costs which show one regrlar Departmental budget, and thus do not refied grant and contract funding;

A 1. 1.4 total Category 3 cosits by adding Supflies and Seryices costs; Equipmat sigsts and other costa.

A 1.2 Depentmental Arministration Costs for Grant and Contract Activities:
Calcirlate the cosf öf departmental adninistration support for -grant and contract activities by mitiplying the 'incoltation's estifated departsental administration indifect Costs by the ratio of the department's grant and contract expenditures to the total institution ${ }^{2}$ s grant and contract expenditures.

A1.3 Net Category 1 Departmental Cost: Calculatef the pet Category 1 cost by subtracyong the indirect costs of departsental adsinistratión for grants and contracts (from A 1. 2) from the tross Category 1 cost (from A 1.1.1).
A1.4 kuber of classes: Calculate or assemble:"
A 1.4 .1 the number of classes given at the Lower Divistion levei, the Upper: Division level and the Haster'suad Doctor's' Classes levels, but not in fridependent Study, Thesis and Dissertation courses, and then

A $1.4 .2^{10}$ the numbert of class equivalents bffered as Independent Study, Thesis and Dissertation, by:

C1.4.2.1. adding the number of ciasses (not IncIuding Independent Study

Thesis and Dissefiation) given at the Kaster's Classes level to. the number of classes given at the-Doctor's classes level;

A 1.4.2.2 adding thè number of credit hours (not including Independent . Study, Thesif and Dissertation) given at the Kaster's Classes level to the Humber of credit hours given at the Doctor's classes level?

A 1.4.2.3 dividing tife sum A 1.4.2.2 by the sun A 1.4 .2 .1 In order tó get the average mimer of student credit hours per.graduate level class;
A. 1.4.2.4 dividing the quotient A 1.4 .2 .3 into the number of credit hours given to each type of student at the Independent Study level, sumaing the quotients and miltiplying by an Equigalence Factor'(taken to be equal to 1.0 for present calcuilation to óbtaín thé numép of classés equimalent tó the number of student"credit hoursagiven at the

A i.4.2.5 repeating the process of A 1.4.2.4 for the Thesis and "Dissertation 1 evels.备1.5 Dfstribution óf classes to levels?

A 1.5.1 Assifon all the Lower Division classes to the Lower Division todergraduate type of atidents;

A 1.5 .2 altocate the number of classes at the Upper Division level and the Haster's Classes itvel among the Upper Division Undergraduate, the Kaster ${ }^{\prime} s$ and the Doclor's types of students according to the proportions of student credit hours takén by each student type at those Jpper Division and Haster's Clesses"levels;

A 1.5 .3 allocate the nuber of classes at the Doctor's Classes Ievel between the Haster's Student and Doctor's Student types only, according tón the proportions of student credit hours taken by those two studant types at the Doctorys Classes 1evei" (that is, repeat process, A-1.5;2 except assign zeró classea to the Jndergraduate atudent type) and

A 1.5.8 repeat the process of 41.5 .3 for the Independent Study, Thesis and Díssertation levels:

AL. $\mathrm{q}_{\mathrm{i}} 1$ by sunning the classes allocated to the Lower Division Undergraduate type of e student, in order to obtain the number of Lower Division Undergraduate classes; and

A 1.6.2. by, repeating the process of A 1.6.I for the Upper, Division Undergraduate, Master's' and Doctor's student, types.

A 1.7 Allocation of Cost es to Programs: Calculate

A 1:7:I the amount of Category 1 costs to be-aliocated to each programor activity b' distributing the net cost of "Category 1 among the programs and activities according, to the proportions of classes allocated among the corespending student types;

A 1.7.2 the distribution of Category $2 a$ costs by assigning arbitrarily 80 per cent of the Teaching Assistant Stipend costs to the Lower Division Undergraduate Agtivesy and 20 per pent of the Teaching Assistant Stipend costs to the Upper Division Undergraduate -Activity;

A 1.7 .3 the allocation of Category 25 costs between the Raster's program and the Doctor's program according to the relative Aurum Ter head-count numbers of the students in the two programs; and

4 A $1.7 .4^{\circ}$ the tiocation of total category 3° costa to each program and activity according to the proportions of classes allocated barong the correspond"ing student types.
 graduate, Master's and Doctor' ${ }^{2}$, programs and activities costs by combining fop each program and activity the costs allocated to it in. steps AE. 7,1 through A 1.7 .4.

A 1.7.6 Calculate the Upper Division Population Factor (J.p.B.F.) by dividing the total nuaber of jumiors and seniors in the college into the nuber of juntors and seniors in the college wino have declared theif major in aspecific field. (\#either the dividend nor'the divisor is to "include students who.have declared that their major will be in a filide outside of the college.) .

A 1.7 .7 Estimate the number of progran jumiors and Beniors by dividing the number of juniors and senions who have declared their wajor 组tine program .by the the.P.F. (A 1.7.6).

A 1.7.8 Estimate the number of program fresmen and sophomores to be - equal to the estizated number of program jumiors and sepiors (A 1.7.7).

A 1.7.9 Estimate the number of program freshean and sophomore student credithours by multiplying the estimated number of progras freshen and sophomores (1.7.8) by fifteen, or by a best'estimate of the average numer of stưdent credit hours taken per terin by freshsen and sophomores.

A 1.7 .10 Estimate the, mubed of program junior and senior student credit hours by multiplyifig the estimated number of prograt juniors and seniors (A'1.7.7) fy fifteen, or by a best estimate of the average muber of student. credit hours taken per tern by juniors and seniors.

A 1.7.11 Calculate the amount of Loupt Division Undergragate Activity . cost to be allocated to"the Bachelor ${ }^{7}$ s program by

A 1.7.11.1. multiplying the Lower Division Únidergraduate Activfty cost (from A 1.7.5) by

\therefore A 1.7.11.2 the ratio of

A i. 7.11.2.1 the estimatèd number of progranif freshang and i sophomore . student creatit hoars (A 1.7.9) tó

A i. A.11,2.2 the nuber of student credit hours generated in Lower Division courses in thée tepartaent during the Autum Term.

A 1.7.12 Calculate the amount of Loger Division Undergraduate Activity

 cost to be allocated to Service by toA-1.7.12.1 waltiplying the Lower Dfvision Undergraduate Activity cost (from A 1.7.5) by

A $1.7 .12: 2$ the ratio' ${ }^{\circ}$

 Lower Division courses in the departsent during the Auturn Term minus the estisated nubber of prograr freshran and sophosore student credit hours (A 1.2 .9) : 50
$=-\infty$
A $1 ; 7.12 .2 .2$ the in in er tudent credit inours generated in Loner Division courses in the departient during the Auturn Term:

- (Hote: This.result may be either positive' or negative).
- 1.7.13 Calculate the fanut of Upper Division Undergraduate Aćtivity cost to be allocated to the Bachelor's program by

A 1.7.13.1 mitipiying the. Upper Divisiontwdergraduate Activity

 cospf (froa A A 1.7.5) byA 1.7.13.2 the ratio of
A 1.7.13.2.I the estimated nurber of program jumior/and senior student credit hotirs (A 1.7.10) to

A 1.7.13.2.2 the nuber of student credit hours generated in uppet division coursee tn the depatiment during the Autumin Tera:

A 1.7 .14 Catculate the amount of Upper ${ }^{\text {Division Jodergraduate Activity }}$ cost to be állocated to Service by

A 1.7.14.i mitipiying the Upper Division undergraduate Activity. cost' (from A.1.7.5) by

A $1,7.14 .2$ the ratio of
) A 1.7.14.2.1 the muber of student credit hours generated, in \#pper Division courses in the depariment during the Autum Iere minus the
estivated nuber of progras junior and genior student credit hours (A i.7.10) to
A 1.7 .14 .2 .2 the number of student credit hours generated in
Upper Division courses in the departient during the Autum Tern.
(Kote: This result may be either positive or negative).
Á 1:7.15 Calculate the Bachelor's progras cost by adding thé Lower Division
 Undergrąuate -Activity Bachelor: s progras cost (A 1.7.13).

A 1.7 .16 Calculate the acadenic year graduate programs cost by adding

- the acadenic year ifaster"s progran cost (Erom ${ }^{\text {a }}$ 1.7.5), to the acaldemic year Doctor's progran cost (from A $1,7.5$).

A 1.8 Susaer Terin Cosis: Calculate the programs Sumer Term costs by follof fng the procedures of A 1.1 through A 1.7.6 but insing Sumas Term figures instead of acadesic year figures and taking the result of $41 . \dot{2}$ to be zero. $\frac{A .9}{} \frac{\text { Partial Departsental Costs of Program }}{\text { P }}$

A 1.9.1 The Acadeaic Year Lower Division partial progran cost is equal to the Lower Dreision Undergradiate Activity Bachelor's. program cost (A 1.7.11), and the Academic Year Upper Division partial progrạ̉ cost́ iś equal to the Upper Division Undergraduate Adtyvity Bacheior's progien cost (A 14.13). - Ál.9.2 Calculate thé Swmer Terín Lower Division partial progían cost aña the Sumer Terw Upper Division partiai. program cost by folloring the procedure of A 1.9 .1 but using Sumar Tern costs instead of Acadeaic Year figures. 1 A i. 10 Treive-Konth Departpental Cóstan Program a

A'1.10. 1 Calculaté the trelve-nönt "yeat progran cost for the Bachelor program by adding the. Acadeaic Year Bachelor program cost (from A 1.7.15) and the Sumer Tern Bachelor progran cost (from A 1.8).

A 1. 10.2 Calculate the trelye-sonth year program costs Eor the Haster ${ }^{2} s$ and Dóctor's programs by following the procedurée of A 1.10 .1 but using Master's
prọgras and Doctor's progran cósts, respectively, fistead of Bachelor's prógras coste.

A 1.10.3 calculater the twelve-month year graduate programs cost by adding the twelve-nonth year Kaster's program cost (from A 1.10.2) to the tweive-month year Doctors's progral cost (froris 1.10.2).

APPENDIX A-2
Departmental Costs by CLABCUT Procedure

- A2.0. Outline of Procedure

The CLADCUT and the'just-described CLASSCUT procedures, are identical except that in the former case categories ib and 3 costs are allocated in proportion. to the number of weighted student credit hours taken by students at the Lover Division and Upper Division Díaergraduate and the Raster's and Doctor's levels where undergraduate student credit hours are weighted 1.0 and the graduate, student credit hours are weighted as 4.0 . $\cdot k$ 5

APPENDIX AL
 Departmental Costs by CLADCUT Procedure

A 2.1 Academic Year Departmental cost by Categories: Calculate or assemble:

A2.1.1 total Category la cost, winch is Total Faculty Compensation;
A 2.1.2 total Category ib cost by adding Total staff Compensation and Total Homily Wages Compensation:

A 2.I.3 total Category $2 a$ dost, with is Teaching Assistantship Stipends;
t 2.1.4 total Category $2 b$ cost, which is Postdoctorate Benefits and Research Assistants stipends which show or the regular Departmental budget, and thus fol not réflect'grant' and contract funding;

A2.1.5 total category 3 costs by adding Supplies and Services, Equipment * and other expenditures.

A 2.2 Departmental dd ministration Costs for Grant and Contract Activities:

Calculate the cost of departmental administration support for grant and contract activities by

A 2.2 .1 'witiplying

A 2.2.1.1 the Institution' $s^{\prime \prime}$ estimates of the fndièct costs of k đepartineppal administration for Rederaj Government grants and contracts by .

A 2.2.1.2 the ratio of the institution total grants and contracts expenditures to the Institution's Federal Government grants and contracts expenditures and then

A 2.2 .2 mitiplyng

A.2.2.2.1 that product (A 2.2 .1) by

A 2.2 .2 .2 , the ratio of the department s grant and contract expendcures to the Institution total grants and contracts expenditures.

A 2.3 Net Category la Departmental Cost: Calculate the net Category la cost by subtracting the indirect costs of departmental administration for grants and contractś (froux A-2.2) from the gross Category la cost (from A 2.1.1.).
A 2.4 Numbers of Classes: Calculate or assemble:
A 2.4.1 the number of classes given at the Lower Division level, ${ }^{5}$ the Upper Division level and the Master's and Doctor's Classes level, but not in Independent Study, Thesis and Dissertation courses; and then

A 2.4.2 the number of class equivalents offered as Independent Study, Thesis and Dissertation by:

A 2.4.2.1 adding the number of classes (inot including Independent Studýs, Thesls añ Dissertation) given at the Kaster's Classes level to the number of classes given at the Doctoris Classes level;

A 2.4.2.2* adding the number of credit hours (not including Independent Study, Thesis and Dissertation) given at the Master's, Classes level to the number of ckedit-hours giveṇ att thè Dočtoris Classes level;

A 2:4.2.3, dividing the sum $\dot{A} 2,4.2 .2$ by the sum A 2.4.2.1 in order to get the average number of student credit hours per graduate level class;

A $2.4 .2 .4^{*}$ dividing the, quotient A'2.4.2.3 tnto the number of credit $^{\circ}$ hours given to eachy fype of student at the Independent. Study level, suming the quotients and multiplying by an Equivalence Factor (taken to be equal to 1.0 for present dalculation) to obtain the number of classes equivalent to the number of student credit hours given at, the Independent Study level; and
\because A 2.4.2.5 repeating the process of A 2.4.2.4 for the Thesis nad pissertation levels.
A2.5 Distribution of Classes to tevels:
A 2.5 .1 assign all the Lower Division classes to the Undergraduate type of stiudents;

A 2.5.2 allocate the numbers of classes at the Upper Divisfongevel and the Master's Classes level among the Upper Division Undergraduate; the Master ${ }^{\prime}$ and the Doctor ${ }^{1} s^{\circ}$ types of students according to the proportions of student credit hours taken by each student type at those Upper Division and Master's, chasses levels; -

A 2.5 .3 allocate the number of classes at the Doctor's classes level between a the Master's student and Doctor's student types only, according to the propertons of student credit beira taken by tho two student types at the Doctors Glasses level. (that is, repeat process 2.5 .2 except assign zero classes to the Undergraduate stíudent type); and
\therefore A $2: 5.4$ repeat the process of A 2.5 .3 for the Independent Study, Thesis and Dissertation levels:

A 2.6 Numbers of Classes Associated with Lower Division Undergraduate Activity, Upper Division Undergraduate Activity, Waster's Program and Doctor's Proǵzam: Determine these numbers

A 2.6 .1 by summing the classes allocated to the Lower Division Undergradua type of student in order to obtain the number of Lower Division judergraduate classes; and

A 2.6.2 by repeating the process of A 2.6. for the Upper Division Under--graduate, Master's and Doctor's student types.

A 2.7 Allocation of Costs to Programs: Calculate:

A 2.7.1 the amount of Category ia costs to be allocated to each program or activity by distributing the net fategory la cost among the programs and activities according to the proportions of, classes allocated among the cortespounding student-types;

A 2.7 .2 the distribution ef Category $2 a$ costs by assigning arbitrarily. 80 per cent of the Teaching Assistant Stipend costs to the Lower Division Undergraduate Activity and 20 per cent of the Teaching Assistant Stipend costs to the Upper Division Undergraduate Activity;

A 2.7.3 the allocation of Category 2 b . costs between the Haster?s program and the Doctor's program according to the relative Autum Term head-count numbers of the students in the two programs.

A 2.7.4 Category 1 b and Categori 3 costs are to be allocated proportionate to weighted student credit hours as debeffoed below. .

A 2.8 Departmental Student Crèdit Hour Partial Costs:

A 2.8 .1 Defermine the number of weighted student credit hours (SCH) generoted in the department during the tfine period under consideration by matiplying midergraduate SCH by 1.0 and mitiplying graduate SCH by 4.0° and fuming the products.

A 2.8.2 Calculate:
A 2.8.2.1 the Category ib partial cost per unit weighted SCH by dividing the total category ib cost by the number of weighted SCH calculated in A 2.8.1 and

A 2.8.2.2 the Category 3 partial cost per unit weighted SCH by dividing the total category 3 cost by the number of weighted sci calculated in A. 2,8.1.

A 2:8.3 Obtain

A. 2.8.3.1 the number of SCl taben at the Lower Divioigh Ievel by undergraduate students,*

A $2.8,3 . \dot{z}^{*}$ the number of SCH taken at the Upper Division level and at the graduate leyel by undergraduate, students,*

A 2.8 .3 .3 the numbers of SCH taken at all course levels by Master's students, t and,

A $2.8 .3 . \dot{4}$ the numbers of SCH taken at all gotrse levels by Dóctor ${ }^{3}$

 students.*
A 2:9 Allocation of Category ib and Category 3 Costs to Programs and Activities:

A 2.9.1 Calculate the Lòwer Division Undergraduate Activity' "partial costs by multipiying the numbér of SCHं taken at the 'Lower Division level by undergiraduate .students (A 2.8.3.1) by̆'

A 2.9.1.I the Category lb partial cost per unit weighted SCH to obtain the Lower Division Undergraduate Aćtivity Category ib partial cost, and by

A 2.9.1.2 the Category ${ }^{3}$ partial cost per unit weighted SCH to obtain the Lower Division Undergraduate Activity. Category 3 partial cost.

A 2.9.2 Calculate the Upper Division Undergraduate Activity partial costs'. A 2.9.2.1 by multiplying the number of SCH taken at the Upper Division level by Undergraduate stưđẻnts by, 1.0 and

A 2.9.2.2 multiplying the number of SCI taken at the graduate level by Undergraduate studente by 4.0 , then

A 2.9.2.3 adding the products A 2,9.2.1 and A 2.9.2.2 together, and
Ar 2.9:2.4 multiplying the sum A $2.9^{2} .2,3$, by the Category 1 lb partial cost per unit weighted SCH to obtaid the Upper Division Undergraduate Activity Category lb partial cost, and

A 2.9.2:5 multfplying the sum A 2.9.2.3 by the Category f partial cost per unit weighted. SCH to obtain the Upper Rlivision Undergraduate Activity Category 3 partial cost.

A 2.9.3 'Calculate the Master's and Doctor's programs partilal costs by foilowing the procedures of A 2.9.1 through A 2.9.2.5 but using the Naster' \S

कNote: These students. are not just, the students in this depertment's program, but also students at the appropriate level from othar departments, who are taking.courses in this department.
and Doctor's students SCH figures instead of the undergraduate students' figures and including Lower Division SCH -with the Upper Division SCH.

A 2.10 Academic Year Actiỳity and Graduate Program Costs:

A 2.10.1 Calculate the Academic Year Lower Divknon Undergraduate activity cost by adding together, the Category $1 \mathrm{a}, 1 \mathrm{lb}, 2 \mathrm{a}, 2 \mathrm{~b}$, and 3 costs allocated to 4 the Lower Division Undergraduate activity

A 2.10.2 Calculate the Academic Year Upper Division Undergraduate activity, Hatter's program and Doctor's program costs by following the procedure of A 2.10.1 but using Upper Division Undergraduate activity, Master's program and Doctor's program cost allocations instead of the Lower Division Undergraduate , activity figures.

- A'2.10.3 Calculate the Academic Year Graduate program cost by adding the Academic Year Master's program cost (from A 2.10.2) to the Academic Year Doctor's program cost (from A 2.10.2).

A 2.11 Academic Year Bachelor's Program Cost:

A 2.11.1 Calculate the Upper Division Population Factor (U.D.P.F.) by dividing the total number of Autumn Term juniors and seniors in the college into the number of Autumn Term juniors and seniors in the college who have declared their major in a specific field. 〈 Neither the dividend nor the divisor is to include students who have declared that their major will be fa field outside of the college.)

A 2.11.2 Estimate the number of program juniqus and, seniors by dividing the number of juniors and seniors who have declared their major in the program by the U.D.P.F: (A 2,11 \& $)$..

A 2.11.3 Estimate the number of program freshmen and sophomores to be equal to the estimated number of program juniors and seniors (A 2.11.2).

A $2,11.4$ Estimate the number of program freshman and sophomore student credit hours by multiplying the estimated number of program freshmen and sophomores ((2.11.3) by fifteen, or' by a best estimate of the average number of student credit hours taken per term, by freshmen and sophomores.

A 2.11 .5 Estimate the $\dot{\text { dumber of program junior and senior student credit }}$ hours by multiplying the extincted number of program juniors and seniors (A 2.11.2): by fifteen, or by a best estimate of the average number of student credit hours taken per term by juniors and seniors.

A $2.11,6$ Calculate the amount of Lower Division Undergraduate Activity cost to be allocated to the Bachelor's program by

A 2.11.6.1 multiplying the Lower Division Undergraduate Activity cost (from a 2.10 .1) by

A 2.11.6.2 the ratio of
A 2.11.6.2.1 the estimated number of program freshman and sophomore student credit hours (A 2.11.4) to

A 2.11.6.2.2 the number of student credit hours generated in Lower Division courses in the department during the Autumn Term.

A 2.11.7 Calculate the amount of Lower Division Undergraduate Activity cost to be allocated to Service by,

A 2.11.7.1 multiplying the Lower Division Undergraduate Activity cost; (from A 2.10.1) by

$$
\text { A } 2.11 .7 .2 \text { the ratio of }
$$

A 2.11.7.2.1 the number of student credit hours generated in Lower Division courses. in the department during the Autumn Term minus the estimated number of program freshman. and sophomore strident credit hours ($\mathrm{A}, 2.11 .4$) to

A 2.11.7.2.2 theifumber of student credit hours generated in

Lower: Division courses tin the department during the Autumn Term.
(Note: This result may be either positive or negative).
A.2.11.8 Calculate the amount of Upper Division Undergraduate Activity \dot{y} cost to be allocate ${ }^{2}$ dor the Bachelor's program by
 cost " (from A 2.10. ${ }^{\prime}$) by

A 2.11.8.2 the patio of
A 2.11.8.2.1 the estimated number of program junior and senior student credit hours (a 2.11.5) to

A $2: 11$. 8.2.2 the number of student credit hours generated -in Upper Division courses in the department during the futurm Term.

A 2.11.9". Calculate the amount of Upper Division Undergitaduate Activity cost to be allocated to Service by ${ }^{\circ}$

A 2.11.9.1 multiplying the Upper Division Undergraduate Activity cost (from A 2.10.2) by

A 2.11.9.2 the ratio of
A 2.11 .9 .2 .1 the number of student credit hours generated in Upper Division courses in the department during the Autumn Term mons the estimated number of program junior and senior student credit hours (A 2.11.5) to
$\frac{\text { A } 2.11 .9 .2,2}{l .}$ the number of student credit hours generated in Upper Division courses in the department during tine Autumn Term.

A 2.11. 10 . Calculate the Bachelor's program cost by adding the Lower Division . - U Undergraduate Activity Bachelor's program cost (A 2.11.6) to the Upper Division.
-Undergraduate Activity Bachelor's program cost (A 2.11.8).

A 2.12 Sumer Term Costs: Calculate the programs' Sumer Term costs by following the procedures of A 2.1 through A 2.11.10 but using Summer Term figures instead of academic yéar figurés (except for calculfting the U.D.P.F.) and taking the result of A 2.2 to be 'zero.
-A 2.13 Partial Departmental Costs of Program .
A 2.13.1 The Academic Year Lower Division partial program cost is 'equal to the Eqwer Division Undergraषuate Activity Bachelor's program cost (A 2.11.6), and the Academie Year Dpper Division partial program cost is equal to the Upper Division Undergraduate Activity Bachelor's program cost (A 2.11.8) .

A 2.13.2. Calculate the Sumer Term Lower Division partial program cost, and the Sumer Term Upper Division partial pyogran cost, by following the procedure of 自2.13.1 but using, Sumer Term costs instead of Academic Year figures.
A 2.14 Twelve-Konth Departmental Costs of Program
A 2.14.1 Calculate the twelve-month year program cost for the ,Bachelor's progran by adding the Academic Year Bachelor's program cost (from A 2.11.10) and the Sumer Term Bachelor program cost (frot A 2.12)

A 2.14.2 Calculate the twelve-month year program costs for the Kaster's and Doctor's programs by following the procedure of A 2.14.1 but using faster's ${ }^{-}$ 'program and Doctor's program costs, respectifely, instead of Bachelor's program costs.

A 2.14.3 Calculate the twelve-month. year graduate program cost by. adding the twelve-month year Kaster's program cost (from A 2.j4.2) to the twelve-month year Doctor's program cost' (from A 2.14.2).

A 3.0 Outline of Procedure

The CREDCUT procedure is based upon student credit hour cosf estinates. and the use of crossover analyses to optain program cost estimates, but unlike the FAACUT or COYPCUT procedures CREDCUT does not involve a facuity activity analysis, nor does GREDCUT require the segregation of departmental costs into faculty costs, staff costs, etc.

In the CREDCUI procedure the total departmental cost figure is divided, by the total number of student credit hours generated in the department to bbtain an average cost per student credit bour figure. That average cost figure is multiplied by the tohil number of student credit hours taken by the students in each program to estimate the total departwental cost of each program.

- Estimations of the number of studengs actually or presumed to be potentially enrolled in the Bachelor's program are carried by procedures sifilar to those described for CLASSCUT in Appendix A 1.0 .

APPENDIX AC

Departmental Costs by CREDCUT Procedure.

$+$

A 3.1 Academic Year Departmental Gross Costs Calculate the academic year gross departmental cost` by adding Faculty, Staff and Hourly Wage compensation,

 Teaching Assistantsȟ/p Stipends, Research Assistants! Sťipęnds, Postdoctorate' compensation, and Supplies and Services, Equipment and Other departmental costs.A 3.2 'Departmental Administration Costs for Grant and Contract Activities: Calculate the coff of departmental administration support for grant and contract activities by:

> A 3.2.1 multiplying

As 3.2.1.1 the institution's estimates ${ }^{2}$ of the indirect costsenof departmental administration, for Federal Government grants and contracts by

A 3.2.1.2 the ratio of the institution's total grant and contracts expenditures to thè institution's Federal Government grants and contracts expenditures and then

A 3.2.2.1 that product e (A $3 \% 2.1$) by
Ao3.2.2.2 the ratio of the department \leqslant grant and contract * expenditures "o the institutions total grant and contracts expenditures. the indirect cost of departmental administration for grants and contracts (from A.3.1.2) from the gross departmental cost (from A 3.1.1): A 3.4 Departmental Student Credit Hoars: Determine the number of student credit hours (SCH) generated in the departieqnt during the academic year.

A 3.5 Departmental Student Credit Hour Cost: Calculate the cost per SCH by

A 3.6 Student Credit Hours by Student Level: Obtain the number of SCH taken during the academic year by

A 3.6.1 the Bachelor's program Lower Division students,
A 3.6.2 the Bachelor's program Upper Division students,
A 3.6.3 , the Master's prograris students, and
A 3.6.4 the Doctor's program's students.

A $3.7 \frac{\text { Departmental Costs of Proğthms: }}{>}$

A 3.7.1- ${ }^{\prime}$ calculate the Upper Division Population Factor (0.D.P.F.) by dividing, the total: number of Autumn Term juniors and seniors in the college into the number of Autumn Term juniors and seniors in the college who here declared their major in a' specific field. (Neither the dividend nor the divisor is to include, students who have declared that their major' will be in a field outside of the college.)

A 3.7.2 Estimate the number of program juniorstand seniors by dividing the number of juniors and seniors who have declared their major in the program by the U.D.P.F. (A $3: 7.1$).

A 3.7.3 Estimate the number bf, program freshmen and sophomores to be equal to the estimated number of program juniors and seniors (A 3.7.2).

A 3.7.4 Calculate the Lower Division Undergraduate partial program cost
A 3.7.4.1 by multiplying. the cost per SCH (from A 3.5) by the number fin SCH taken by Lower Division students during the academic year (from* A 3.6.1), in order to obtain the "raw" subprogram cost, and

A 3.7.4.2 by multiplying the raw subprogram cost by the ratio of the estimated number of freshmen and sophomores (from A 3.7.3) to the number of "declared" freshmen and sophomores.

A 3.7.5 Calculate the Upper Division partial program cost by following the procedure of A 3.7.4. But using the Upper Division figures of A 3.6.2 instead of the Lower Division figures.

A 3.7.6. Calculate the Master's program departmental level cost and the' Doctor's program departmental level cost' by following the procedure of A 3.7.4.1 but using the Master's prograin and Doctor's program figures of A 3.6.3 and A 306.4 respectively instedd of the Lower Division figures.

A 3.7.7 Calculate the Bachelor's program cost by adding the Lower Division'Undergraduate partial prográm cost (${ }^{\text {3 3.7.4 }}$) to the Upper Division Undergraduate' partial program cost (A 3.7.5).

A=3.7:8 Calculate the combined gíaduate progran's cost by aḍing the academic year Haster's program cost (A 3.7.6) to the academic year noctor's program cost (A 3:7.6).

A 3.8 Summer Term Costs: Calculate Summer Term Bachelor's, Master's, and Doctor's 'programs' costs by the 'process described in A 3.1 through A 3.7 for the academíc yefer costs, but using Summer Term data (except for calculating the U.D.P.F.) and/taking the result of A 3.2 to be zero.

A 3.9 Twelve-Month Year Progran Costs:
A 3.9.1 Add the Academic Year and the' Sưmer Term Bachelor's program. costs to obtain the twelve-month year Bachelqr's program costs.

A 3.9.2 Calculate the twelve-month year program costs for the Master's. and Doctor's program by following the procedure of A 3.9.1 but using Master's program and Doctor's program costs respectively instead of the Bachelor program costs.
*. A 3.9.3 Add the Twelve-Month Ilaster's program cost and the Twelve-Month Doctor's program cost to obtas the Twelye-Month combined Graduate Programs' cost.

A 4.0 Outlifne of Procedure

The FAACUT (and also the COMPCUT procedure to be described bellow) use faculty |activity' analysës and the number of student credit hours taken by sţudents in the programs as the basic information for allocation. Most faculty costs are allocated to instructional levels according to the percentages of time specified by the faculty in a faculty activity analyisis, and then are reallocated to protráms according to a student credit hour crossover analysis.

All costs of a department $\begin{gathered}\text { other than Teaching Assistant costs are assembled }\end{gathered}$ into one figure and then allocated to the different Instruçtional levels (Lower Division, Upper Division, Kaster's Classes level, Doctor's.Classes level, Independent Study, Thésis and Dissertation) in proportion to the fractions of faculty teaching time devoted by the faculty to the levels. The Teaching Assistant costs are allocated to the levels according to the proportions specified in a Teaching Assistant activity analysis or according to the fixed cepresentative values of 80 per cent for Lowè Division courses and 20 per cent for the Upper Division courses.

In the FAACUT procedure, once.the departmental costs at the different instructional levels have been determined, the cost of one student credif hout at each level is determined by dividing the total cost at, the level by the number of student credit hours generated at the level. The departmental cost of the Kaster's program can be estimated by multiplying the number of student credit. hours taken by students in the program at each of the levels by the cost per student credit hour at each of the levels and summing the products. . The other programs' costs can also be estimated.analogously.

Several different estimates are possible at this point. The first is an estimate using only the cost figures for the department under consideration. Since students in the program may be taking course outside of the department,
the department's cost figures per student credit hour are used as proxies for the costs of the departments where the student credit hours are actually taken.) This procedure has been used to produce the table A-4:7.

However, if more information were available, the second estimate that might be calculated at this point'might use cost figures not only from the department under consideration, but also figures 'from selected other departments. Thus,"; English -department figures might. be obtained and used as proxies for the costs , of all the departments in the Humanities and Arts fields; Chemistry department figures would be calculated and used as proxies for the costs of the Natural Science departments, etc. This is the estimate that has been used elsewhere in this study.:-

- The third possible estimate can be calculated if all, the departments that appear on the crossover analysis have been analyzed so that no proxies need be used for estimates of costs per, student credit hour. This estimation procedure clearly provides the best estimates of program costs, but its application is restricted to situations in which a cost analysis of all of an institution's programs is being performed, or at least, in which the segment of the"institucion' being analyzed does not interact significantly with other" segments of the institution.

Estimations of the number of students actually or presumed to be potentially. enrolled in the Bachelor's program, and also the number of student credit hours to be assigned to" these students, are carried out $\tilde{b}^{\prime} y$ procedures, similar to ، those described for -CLASSCUT in Appendix A 1.0..

APPENDIX A-4

Department Costs by FAACUT Procedure

A 4.1 Academic. Year Departmental/Gross Cost: Calciculate the academic year gross departmental cost (other than Teaching Assistantship costs) by adding Faculty, Staff and Hourly Wage compensation', Research Assistants' stipends, Postdoctorate. compensation, and Supplies and Services, Equipment and, Other departmental costs.

A 4,2 Departmental Administration Costs for Grant and Contract Activities:

Calculate the cost of departmental administration support for grant and contract - activities by:

A 4.2.1 multiplying

A 4.2.1.1 the institution.'s estimates of the indirect costs of departmental administration for Federal Government grants and contracts by

A 4.2.1.2 the ratio of the institution's total grant's and contracts expenditures' to the institution's Federal Government grant es and contracts expenditures and then

A 4.2.2, multiplying
A 4.2.2.1. .that product ((4.2 .1) by
A 4.2.2.2 the ratio of the department is grant and contract $:$
expenditures, to the institution's total grants and contracts expenditures.
A 4.3 Net Departmental Instruction Costs: Calculate the net departmental faculty and support costs, other than Teaching Assistantship, costs, by subtracting the indirect costs for grants and contracts of departmental administration (from A 4.2 above) from gross faculty and departmental support... costs (from A 4.1 above).
A 4.4 Faculty Instruction Time Distribution: Determine the total percentage ${ }^{2} \boldsymbol{L}^{\prime}$. faculty time" "devoted to formal instruction by accumulating' the percentages reported on the Faculty Activity Analysis (F.A.A.) for each specific level of teaching.

A 4.5 Allotation of Costs to Levels: ${ }^{*}$ Calculate the ambunt of departmental costs attributable to each level

A 4.5 .1 by mitiplying the net departmentai cost figure (from A 4.3 above). by the 'ratio-at-each level of fnstruction-of the percentage of faculyy time devoted to instruction at that ${ }^{\wedge}$ evel (from the F. A,A) to the total percentage of faculty time "devoted to teaching. (fröm A $4,44^{\prime \prime}$ above),

A $4.5,2$ by allocating Teachfing Assistantsinip stipends on the basis, of 80% to the lower diviaion level gon and 20% the upper division level of instruction (or on the basis arne best available estimates), and
\because A 4.5 .3 ' by adding the net pepartmental cost at eaoh level (A 4.5.1) : to the corresponding Teaching Assistantship cost at each level (A 4.5.2).
\because A 4.6 Generation and Costing of mepartmental Sch: Determine ${ }^{\circ}$
A 4.6.1'. thé, student credit hours (SCi) generated in the department $a t$ each level of instruction during the period covered y the cost datay and then \therefore A 4.6 .2 the cost per SCH at each level by dividing the departmental cost - at each level (from A 4.5 above) by the number of SCH at that level (from A 4,6,1 above).
 at each instructional level for each department or area of instruction,

* A.7.2 a table presenting, the number of sidident credit hours taken during. the Adzåim Term at eách instructionàl level of each department or area of instrucfion by Lower Division stupdents in the department's Bacheior's "program, and $\because \because$ Ar4.7.3 a similar table for Uppe'r Division students in the Department's Backelor's program,

A 4.7.4 a similar table, for students in the department's Master's program, rand:
\because A 4.7 .5 a similaritable for students in the department's pgetor's program.

A 4.8 Departmental Costis of Programs:
A 4.8.1, Caleulate the Upper Division Population•Factor (U.D.P.F. by dividing the total number, of Autumn Term juniors and seniors in the college into the number of Autum Term juniors and seniors in the college who have dectared their .major in áspecific fisld. " (Neither the dividepd nor the divisor is te include students who have declared that their major will be in' a field outside of the . college).

- K $4,8.2$ Estimate the number of program junfors and seniots by dividing the number of juniors and seniors who haye dèclared their major in the program by the U.D.P.F. (A 4.8.1).:

A 4.8.3 Esitimate the number of program Éresfimen and sophomores to be equal•to the, estimated number of program juniors. and seniors (A 4.8.2).

- A 4.8.4 C'alculate thé Lower' Division Undergraduate partial prograp, cost

A 4.8.4.1 by multiplying each element of the student credit hour cost tablé ($4,7.1$) by the corresponding element of the Lower Division crossover. analysis table (A 4.7.2) "

. A-4.8.4.2 by summing. the products,
A 4.8.4.3 by multiplying that sum by the number of terms in the academic year, in order to obtain the "raw" sub-program cost, and

A 4.8.4.4 by mitiplying the raw sub-program cost by the ratio of the estimated number of freshmen and sophomores (from A 4.8.3) to the number of "declared"-freshmen' and "sophomores.

A'4.8.5 Calculate the Upper Division partial program cost, the Master's program departmental level cost and the Doctor's program departmental level cost by following the procedure of A 4.8 .4 but using the Upper Division, Master's program and Doctor's program figures of A 4.7.3, A 4.7.4, and A 4.7.5, respectively,
instead of the Lower Division figures and omitting step A 4.8.4.4 in the Master's and Doctor's programs calculations.

A 4.8.6 Calculate the Bachelor's program cost, by adding the Lower Division Unđérgraduàte partial program cost (A 4.8.4) " to the Upper Division Undergraduate \therefore partial program cost (A.4.8.5).

A 4.8.7 Calculate the Academic Year Graduate program. cost" by adding the Academic Year Master's program cost (from A 4.8.5) to the Academic Year Doctor's Program cost (from A 4.8.5) .
A 4.9 Summer Term Departmental Costs: Calculate' Summer Term Bachelor's, Kasterer's and Doctor's programs' costs by the procedures described in A 4.1 through A 4.8 for the endemic. Year, but using Sumer Term figures instead of Academic Year. figures (except for calculating the U.D.P.F.) and taking the result of A 4:2, to be zero.

A 4.10 TwelveMonth Departmental Costs of Programs:

A'4.10.1 Add the Academic Year and the Bummer Term Bachelor's program costs to obtain the twelve-month year Bachelor's program costs.

A 4.10.2 Calculate the twelvemonth year Master's and Doctor's programs' .costs by following the procedure of A 4.10.1 but using the Master's program and Doctor's' program cost figures respectively instead of Bachelor's program cost figúres.
A.4.10.3 Add the TwelveMonth Master's program cost and the Tweive-Konth Doctor ${ }^{2} s_{1}$ program cost to obtain the Twelve-Month combined Graduate Programs,

A 5.0 Outline of Procedure

The COMPCUT' procedure uses faculty activity analysis information but divides total faculty costs into three categories: faculty Teaching Costs, faculty Scholarly Activity Costs, and faculty biter Costs.. Each of the three costs $\neq \mathrm{a}$ allocated to the instructional levels separately.

The faculty teaching cost is calculated by multiplying the total faculty cost by the fraction of time spent by the faculty 坛 specific teaching activities; it is allocated to the instructional levels proportionate to the teaching time devoted top each level of instruction.
"N The faculty scholarly activity cost is calculated by multiplying the total faculty cost by the fraction of time spent by'the faculty in scholarly activity other than teaching; it is allocated to the instructional levels

* proportionate to the weighted student credit hours generated in fie department at those levels. The weights applied to the student credit hours cary, be carried "according to the best judgment of the cost analyst, but the figures used in this study are one for Lower Division student credit hours (SCH), three for Upper Division SCH, five for Master's Classes SCH, Doctor's Classes SCF, and Independent Study " SCH_{4} seven for ThesigasCH and ten for Dissertation SCH.

The faculty Other cost is calculated by multiplying the total faculty cost by then faction of time spent in activity other than .teaching. and scholarly activity (such as administration). It is allocated to the instructional levels proportionate to the unweighted student credit hours generated at those" levels".

Departmental support costs such as staff salaries and supplies and services*. costs are added together separate from the faculty costs and are allocated to the instructional levels proportionate to the student credit hours generated at those levels, just as the faculty scholarly activity cost is distributed.

Estimations of, the number of students actually or presumed to be potentially enrolled in the Bachelor's programs and also the number of student credit hours to be assigned to these students, are carried out by procedures similar to those described eqof.enssctut in Appendix A.1.0.

A 5.1 Academic Year Departmental Cost by Categories: Calculate or assemble: A 5.1.1 fótal Càtegory lá cōst, winch ís Total Facuity Compensation; A 5.1.2 total Category 1b cost by adding Total Stafe compensation and Total Hóurly Wages Compensation;

A 5.1.3 ${ }^{*}$ total Category 2a cost, which is Teaching Assistantship Stipends;
A 5.1.4 total Category 2 b cost, by adding Postdoctorates ${ }^{\text {² }}$ Benefits and Research Assistants' stipends which show on the regular Departmental budget, and thus do not reflect grant and contract funding;

A 5.1.5 total Category 3 costs by adding Supplies, and Services, Equipment and Other expenditures.

A 5.2 Departmental Cos't per-Konth by Categories:

A dian calculate category la cost per month by dividing the academic year cost (A 5.1.1) by nine.

A 5.2 .2 calculate the cost per month of category lb cost, of Category 2a cos't, of Category 2 b cost, and of Category 3 cost by following the procecure of A 5.2.1 but using the cost Eigures from A 5.1.2, A 5.1.3, A 5.1.4 and A 5.1.5 respectively.

A 5.3 Departmental Administration Costs for Grant and Contract Activities:

 \dot{C} alculate the cost of departmental admánstrátion support for grant and contract activities byA $5.3 .1^{-}$multiplying
A 5.3.1.1 the institution's estirates of the indirect costs of departmental administration for Federal Government grants and contracts by

A 5.3.1.2 the ratio of the institution's total grants and contrécts' : expenditures 'to the institution's Federal Governmenting grants, and contracts expenditures and then

A 5.3.2 multiplying
A 5.3.2.1 iffat product ((5.3.1) by
A 5.3.2.2 the ratio of the department's grant and contract expenditures to the institution's total grants and contracts expenditures.

A 5:3.3 Calculate the cost per month of departmental administration support for grant and contract activities by dividing the annual amount by nine. 5.4 Allocation of Faculty. Teaching Costs:

A-5.4.1 Defermine the total percentage of faculty time devoted to direct teaching activity by accumilating the percentages reported on the FacultyActivity Analysis ($F \cdot \dot{A} . A$.) for each specific level of teacning. * A 5.4 .2 Determine the amount of Faculty Compensation per month to be allocated to Faculty Teaching Activity by multiplying the Category la cost per month figures by the fraction of. faculty time devoted to directateaching actifity at
 cost per month.

A 5.4.3 Calculate the andunt of Category laT cost per month allocable to each level by multiplying the Category lat cost per month figure (from A 5.4.2), by the ratio-at each level of instruction-of the percentage of faculty time. devoted to instruction at that level (主rom the $\dot{F} . A . A$.$) to the total percentage of$ - faculty time devoted to teaching (from a 5:4.1).

A 5.5^{*} Student Credit Hdurs by Level: Assemble the numbers of student credit hours (SCH) taught by departmental faculty at the instructional levels consídered in A 5.4.

A 5.6 Allocation of Paculty Scholarly Activity Cosits:

A 5.6.1 Determine the brount of Faculty Compensation per month to be alloeated to Scholarly Activity by multiplying Category la cost per month by the
fraction of faculty time devoted to Scholarly. Activity and call this amount the Category laS cost per month.

A 5.6.2 Distribute the Category 1 as cost per month (A.5:6.1) to the instructional levels proportionate to the weighted student. credit hours taught hatthose levels, with Lower Division SCH being. weighted one, Upper Division SOl being weighted three, Master's_classes, Doctor's classes and Independent Study SCH being weighted five; thesis SCH being weighted seven and Dissertation SCH being weighted, ten.

A 5.7 Allocation of "Other" Faculty Time:.

A 5.7.1 Determine the amount of Faculty Compensation per month to be: allocated to Faculty Other Activity by multiplying the Category la cost per month figure by the fraction of faculty time devoted to other Activity.

A 5.7.2, Calculate the net cost per $ᄑ$ month by subtracting the cost per porch of, departmental administration support for grant and contract activities (A 5.3.3) from the gross cost A 5.7.1; cali this' net cost. the Category la cost per month.

A 5.7.3 Distribute the Category la 0 cost per month (A 5.7.2) to the instructional levels proportionate to" the student credit hours taken at those 1guels.
A 5.8 Academic Year Teaching Assistant Costs: Allocate Teaching Assistants' costs per month. (Category' 2 a costs per month) on the basis of 80% tc lower division instruction and ${ }^{\prime} 20 \%$ to upper division' instruction '(er proportionate to the best estimate, of the Teaching Assistants' time distribution).

A 5.9 Allocational Category $1 \mathrm{lb}, 2 \mathrm{~b}$-and ${ }^{\circ} 3$ Costs per Month:

A.5.9.1 Allocate the Category ib cost per moth (A'5.2.2) to the. ${ }^{-}$ instructional levels proportionate to the weighted student credit hours taken at." those levels, with Loner Division SCH being keighted one, Upper Division SCH being
fraction of faculty time deyoted. to Scholarly Activity and call 保is amount the 'Category las cost per:month.

A 5.6.2 Distribute' the Category ins cost per month (A 5.6.1) to the instruetional levels proportionate to the weighted Autumn. Term student credit hours taught at 'those levels, with Lower Division SCH being weighted' one, jpper Division SCH being weighted three, Haster's classes, Doctor's classes and Independent Study SCH being weighted five, thesis SCH being weighted seven and Dissertation SCK being weighted ten. A 5.7 Allocation of "Other" Faculty Time:"
 allocated to Faculty Other Activity by miltiplying the Category la cost per month figure by, the Eraction of faculty time devoted to Other Activity.

A 5.7.2 Calculaze the nef cost per month by subtracting the cost per month of departmental administration support for grant and contract activities (A 5.3.3) from the gross cost A 5.7.1; call this net cost the Category lao cost. per month.

A 5.7.3 Distribute the Category 120 cost per month (A5.7.2) to the instructional levels proportionate to the Autum Term student credit hours takep at- those levels.*

A 5.8 Academic Year Teaching Assistant Costs: Allocate Teaching Assistants' costs per month (Category $2 a$ costs, per, month) on the basis of 80% to 10wer division instruction and 20\% to upper division instruction (or proportionate to the best estimate of the Teaching Assistants! time distribution). A 5.9 Allocational Categóry $1 \mathrm{~b}, 2 \mathrm{~b}$ and 3 Costs Per Monith: .

A 5.9.1 Aidocate the Category ib cost per month' (A 5.1.2) to the instructional Iërels proportionate to the weighted Autum. Term student credit hours taken at: those levels, with Lower Division SCH being wefghted one, Uppex Division SCB being
weighted three, Master's classes, Doctor's classes and Indeperdent Study SCH being weighted Iive, thesis SCE being weighted seven and Dissertation SCE being weighted ten.

A 5.9 .2 Allocate Catęgory $2 \dot{b}$ and . Category 3 cqsts per, month tọ the instructional levels by following the procedure of A 5.9 .1 but using the cost figures from A 5.1 .4 and A 5.1.5 respectively, instead of the Category ib cost figure

5.10 Instructional Levels' Departmental Costs: Determine the Departmental

 Cost per honth at each instructional level by adiing the cost per month allocated to each level-from Categories lat, $1 a S, 1 a 0,1 b, 2 a, 2 k$ and 3 (from A 5.43, A 5.6 .2, A $5.7 .3 ;$ - 5.9 .1 , 直 5.8 and A 5.9.2 above).
A 5.11 Academic Year Departmental.Cost per SCH: Determine the departmental

 cost, per gitudent chedit hour at each.instructional, level byA 5.11.I diwiding the Departmetral Sost per Konth at each Tevel (from A 5.8). by the number of student credit hours taken during the Autum Term at each level, and then

A 5.11 .2 multiplying the quotients (A5.9.1) by the number of months in the term during which the student credit hours were taken.

A 5.12 SCI and Cost per SCH tables: Create

A 5.12 .1 a table presenting the cost per Autum Terr student credit hour at each instructional level for each department or area of instizíction, "

A 5.12 .2 a table presenting the rumber of student credit hours taken during the Autum ferm at each instructional level of each department or area of Enstructioff by Lower Division students in the department's Bachelor's progran, and,

A 5 里2.3 a similar table for Upper Division students in the department's. Bachelor's program,

A 5.12.4 a similar table for students in the department's Master's program, and

A 5.12.5 a similar table for studentsí in the department's Doctor's. program.

5. 5.13 Departmental Costs-of Programs:

A 5.13.1 Calculate the Opper Division Population Factor (U.D.P.F.) by dividing the total number of Autumn Term juniors rand seniors in the college into the number of Autumn Term juniors and seniors in the college who have declared their major in a specifinfield. (Neither the dividend nor the divisor is to include students who have declared their majór will be in a field outside of the college)."

A 5.13 .2 Estimate the number of program juniors and seniors by dividing the number of juniors and seniors who bave deciared their major in the program 'by thè U.D.P.F. (A 5.13.1):

A 5.13.3, Estimate then number of propzan frénmen and sophomares to be equal to the estimated number of progran juniors and seniors (A 5.13.2) . A 5.13.4. Calćulate the Lower Division Undergraduaté partial program cost

A 5.13 .4 . 1 by nultiplying each element of f_{3} the student credit hour cost table (A 5.12 .1) by the corresponding element of the Lower Division crossover analysis table (A 5.12.2),

A 5.13.4.2 by suriming the products,
A 5.13.4.3. by multiplying that sum by the number of terms in the academic year, in order to obtain the "raw" sub-program cost, and

A 5.13.4.4 by multipiying the raw sub-program cost by the ratio of the estimated number of freshmen and saphomores (from A 5.13.3) 'to the number of "declared" freshmen and sophomores.
A.5.13.5 Calculate the Upper Division partial program cost, the Master's program departmental level cost and the Doctor's program departmental level cost by following the procedure of $A 5,13.4$ but using the Upper Division, Master's program departmental level cost and the Doctor!s program departmental, level cost by following the procedure of A 5.13 .4 but using the Upper Division,
 respectively, instead of the Lower Division figures, and omitting step A 5.13.4.4 in the Master's' and Doctor's programs' calculations. -

A 5.13.6 Calculate the Bachelor's ptogram cost by adding the Lower Division Undergraduate partial program cost (A5.13.4) to the Upper Division Undergraduate partial program cost (A 5.13.5).

A 5.13.2 Calculate the Academic Year Graduate, program cost by, adding the Academic Year Master's program cost (from A 5.13.5) to the Academic Year Doctor's program cost (from A 5.13.5).

A 5.14 Sumer Term Departmental Costs: Calculate Sumer Term Bachelor's, Master's and Doctor's programs' costs by the procedure described in a 5.1 through A 5.13 for the Academic Year, but using Sumer Terr figures instead 揪Academic Year/figures (except for calculating the U.D.P.F.), substituting "three" for "ring" in A 5.2.1, and taking the result of A 5.2. to be zero.

A 5.15 ixelve-Month Departmental Costs of Programs:

A 5.15.1 Add the Academic Year and the Summer. Term Bachelor's program costs to obtain the twelvemonth year Bachelor's̀ program costs,

A 5.15.2 Calculate the twelve-month year Master!s and Doctor's programs' costs by following the procedure of A 5.15 .1 but using the Master .s program and Doctor's program cost figures respectively instead of Bachelor's program cost figures.

A 5.15;3 Add the TwelveMonth Master's program cost and the TwelveMonth Doctor's.program cost to obtain the TwelvenMonth'combined Graduate Programs ' cost.

A 6.1 Determine the FfACUT based cost, per Bachelor's degree (the PROFAACUT Bachelor's degree cost)

- A6.1.1 by determining the cost per student credit hour (SCB) as calcu-: lated with the BAACUT procedure at the Lower Division, Upper Division, Master? s° Classes and Independent Research levels,
A.6.1.2 by determining the average number of SCH taken at each of those . Levels by Bachelor's degree recipients during their Bachelor's program studies,

A 6.1.3. . by multiplying the cost* per SCH at each level (from A 6.1.1) by the number of SCH at that same level (from A 6.1:i), and

A 6.1.4 then by adding the four products calculated in $A^{6} 6.1 .3$.
A 6.2 Determine the FAACUT based cost' per Master's degree (the PROFAACUT Master's degree cost)

A 6.2.1 by determining the cost per SCH as calculated with the. FAACUT procedure at the Lower Division, Upper Division, Master's Classes, Independent Research and Thesis levels,

A 6.2 .2 by determining the average number of SCH taken at each of those levels by Master's.degree recipients during their Master ${ }^{\prime} s^{\circ}$ program studies,

A 6.2.3 by multiplying the cost per SCH at each level, (from A 6.2.1) by the number of SCH af that same level (from $\dot{A} \dot{6} .2 .2$), and
'A 6.2.4 then by adding the five products calculated "in A 6.2.3.
A 6.3 Determine the FAACUT based cast per Doctor's degree (the PROFAACUT

Doctor's degree cost)

A 6.3 .1 .by determining the cost peri. SCH as calculated with the FAACUT procedure at the Lower Division, Upper Division, Mastery's Classes, Doctor ${ }^{\prime}$ s Classes, Independent Research, Thesis and Disséretation levels,

A 6.3.2 by determining the average number of SCH taken at gach of those Ievels. by Doctor's degree, recipients during their Doctor's program studies .including SCH taken for a Master's degree if thát dégree was an integrat part of the -Doctot'rs program -

A-6, 3-2̈1 W上th'the number of Doctor's Classes SCH being determIned by subbtracting the number of $\widehat{S C H}$ taken at the Graduate Classes level by the average Haster's degree recipient from the number of SCH taken at the Graduate Classes level by the average Doctor'sidegree recipient,

A 6.3.2.2 the number of Doctor's Classes SCH being equal:to the difference (from A 6.3.2.1) if that difference is greater than or equal to zero, or .

A 6.3.2.3 being set equal to izero if that difference fs less than zero, while.
A. $6.3,2.4$ the number of Master's Classes SCH 18 the difference between the number of SCH taken at the Graduate slasses level by the average Doctor's degree recipient and the number otpoctor's Classés SCE determined in A 6.3.2.2 añ A 6.3.2.3,

A 6.3.3 and by maltiplying the cost per .SCH at each level (from A 6.3.1) by the number of 'SCB at that same level (from A 6.3.2), and

A 6.3.4 then by adding the seven products calculated in A 6.2.4.
A, 6.4 Determine the" COMPCUT based codst. per Bachelor's degree (the PROCOMPCUT Bachelor's degree cost) by following the procedures of A of but using COMPCUT student credit hour cost estimates instead qf FAACUT estimates.

A 6.5 Determine thé COMPCUT based cost per Master's degree (the PROCOMPCUT Master's degree cost) by following the procedures of A 6.2 -but using compcur student credthour cost estimates instead of EAACUT'estimates,

A 6.6 Determine the COMPCUT based cost per Doctor's degree (the PROCOMPCUT' Doctor's degree cost) by following the procedures of A 6.3 but using colpcur student credit hour cost estimates instead of FAACJT estimates.

APPENDIX $A-7{ }^{-}$
Append y $\times \dot{A-7}$ is omitted.

APPENDIX A-8

Unit Formal Instruction Costs

A 8.1 Determine the Academic Year cost per head-count student in the Academic Year Undergraduate, program

A 8.1.1 by dividing the Academic Year Lower Division Undergraduate partial program 'costs by the number of Autumn term students ,estimated to be in the Lower DIvision partial program, and.

A 8.1.2 by dividing the Academic, Year Upper Division Undergraduate partial program costs by the number of Autumn term students estimated to be in the Upper Division partial program, and-

A 8. in $^{\circ} 3^{\circ}$ by taking the arithmetic mean of the two quotients
A 8.2 Determine the Summer Term cost per head-count student in the Sumer Term Undergraduate program by following the procedure of steps A 8.1.1 through A 8.1.3 but using Summer Term" costs and ${ }^{\circ}$ Summer Term number of students instead of the Acetic Year figures.'
A 8.3 Determine the tweive-month year' cost per average head-count student in the Undergraduate program

A 8.3.1 by adding the Academic Year cost per'Lower Division student (A 8.1.1) to the Summer Term cost per Lower Division student (A 8.2)

A $8,3.2$ by adding the Academic sear cost per Upper Division student (A 8.1.2) to the Sumer Term cost per Upper Division student (A 8.2),

A 8,3.3 then taking the arithmetic mean of the sums.
A 8.4 Determine the Academic Year cost per head-count student in the Academic Year Master's level Graduate program by dividing the Master's level Academic Year program costs by the number of Autumn term students in the program.

A 8.5 Determine the Summer Term cost per head-count student in the Summer Term Master's Level Graduate program by dividing the Master's level Sumer Term program costs by the Haber of Sumer Terni students in the program.

A 8.6° Determine the cost per twelvemonth' year per average head-count student *. $\%$. In the Master's level Graduate program by adding the Academic Year cost per

A 8.7 Determine the Academic Year cost per head-count student in the Academic Year Doctor's level Graduate program, the Summer Term cost per head-count student in the Summer Term Doctor's level Graduate program, and the twelvemonth year cost per average head-count student in the -Doctor's level Graduate program by following the procedures of A 8.4, A 8.5, and A 8.6 respective l but using Doctor's program costs and numbers of students instead of Master's program figures.

A 8.8" Determine the number of reported FTE students for a given time period

A 8.8.1 for Lower Division undergraduate students

A 8 8.1.1 by summing the student credit hours reported taken by Lower. Division students known to be in the program,

A 8.8.1.2 by dividing that sum by the number of student credit hours. reported to be "normally" taken by a full-time Lower Division student at the institution, and

A 8.8.2 for Upper Division undergraduate students", Master's program students and Doctor's program students by following the procedures of A 8.4.1 brit using Upper Division, Masters' program ant Doctors* program figures respectively instead of Lower Division figures.'

A 8.9 Determine the Academic Year cost per FTE student in the Academic Year Lower Division and Upper, Division Undergraduate partial programs, the Sumer Term cost per FTE student in the Sumer Term Undergraduate partial programs, and the twelve=ponth year cost per average FTE student in the Undergraduate partial programs
býforing the procedures A 8.1 through A 8.3 but using FTE student figures instead of head-count student figures.

A 8.10 Determine the Academic Year cost per FTE student in the Academic Year 'Kaster's level Graduate program, the Sumer Termecost per FIE student in the Sumer Term Kaster's level Graduate program, and the twelvemonth year cost per average FTE student in the Master's level Graduate program by following the procedures of A 8.4, A 8.5, and A 8.6 respectively but using FTE student figures instead of head-count student figures.
A 8.11 Determine the Academic Year cost per FTE student in the Academic Year Doctor's level Graduate program, the Sumex Term cost per FTE student in the Sumer Term Doctor's levél Gradyate program, and the 'twelve-finonth year cost per average FTE student in the poctor's level Graduate programi by following the cedures of A 8.4 , A 8.5 , and A 8.6 respectively but using Doctor's program costs and numbers of FTE students instead of faster's program costs ande numbers of head-count students.

A 8.12 Determine the Academic Year cost per bachelor's degree granted
A 8.12.1 by adding the Academic Year Lower Division partial program cost to the Academic Year Upper Division partiaz program cost and

直8.12.2 by"dividing that sum
A 8.12.3 by the arithmetic mean of the numbers of bachelor's degrees granted in the program during the five years ending with the year for wุhich the financial data has been gathered.

A' 8.13 Determine the twelve-month year cost per bachelor's degree granted.
A 8.13.1 by adding the Academic Year'Lower. Division and Upper Division , partial programs' costs to the Sumer Term Lower Division and Upper. Division 'partial programs' costs,

A 8.13.2 and, then by following the procedures set forth in A 8.12.2 and A 8.12.3.

A 8.14 Determine the Academic Year cost per Master's degree granted
A 8.14.1 by dividing the Faster's level Academic Year program-costs
$A^{2} 8.14 .2$ by the arithmetic mean of the numbers of Master's degrees granted. in the program during the five gears ending with the year for which the finn-. . cia' data has been gathered.
A 8.15 Determine the twelvemonth year cost per Master's degree granted - A 8.15.3 by adding the Academic Year Mastery's level program cost to the Sumer Term Master's level program cost and then

A' 8.15 .2 dividing "that sum
A 8.15 .3 by the arithmetic mean Calculated in A 8.14.2.

- A 8.16 determine the Academic Year cost per Doctor's degree granted by following the procedures of A 8.14 but using Doctor's program costs and numbers of degrees instead pf Master's programigures.
A 8.17 Determine the twelve-month year cost per Doctor's degree granted by following the procedure of 8.15 but using Doctor.'s program costs and numbers of degrees instead of Master's program figures.

7

APSENDIX A-9
Support ${ }^{2}$ Costs

Institutional expenditurespare comonly listed in institutional•financial reports under such headings as Instruction and Departmental Research, Spońsored Research; Other Separately Budgeted Research, Extension and Public Service, Libraries, Student Services, Operation and Kaintenance of Plant; General Adminis"tration, General Institutional Expense, Student Aid, Transfers, Auxiliary Enterprises and Hospital. Of these expenditure classes, Libraries, Student Services, Operation and Haintenance of Plant, General Administration and General Institu-, tional Expense willl be considered fo be "Supportt Costs."

The general procedure used in allocating support costs is to determine the total expenditures under a particular heading, to subtract from that amount the cost that can bé attributed to grant, and contract activities, and then to allocate the remander according to some proxy that is presumably related to actual user benefitis.

A 9.1 LIBRARY COSTS (See Table A. 9.3):

A 9.1.1 Subtract the Libraries portion of fifirect costis of grants and contracts "(given in iable A 9.2) from the total libraries"expenditures (given in Table A 9.1) in order to obtain the amount of Libraries expenditures to be - allocated to the institution's educational activities.

A 9.1.2 Calculate the dmount of Libraries cost to be allocated to the Bachelor's program

A 9.1.2.1 by computing a Bachelor's program allocation factor by multiplying the number of Autum Tern undergraduate students estimated to be associated with the program (not just those undergraduates who have formaliy registered as majors in the program) by one,

A 9 隻.2.2 2° by computing an institutional "weighted student allocation factor by multiplying the number of Autum Teril undergraduate students in the institution by one, multiplying the number of Autumn Term graduate and professfonal students by two, and suming the productis, .

A 9.1.2.3 by dividing the Bachelor's program allocation factot (A 9.1.2.1) by the institutional allocation factor (A 9.1.2.2), and

A 9.1.2.4 by mitiplying the quotient A 9.1.2.3 by the allocabie Libraries cost ${ }^{\prime}$ A 9.1.1.

A 9.1.3 Calculate the amount of Libraries cost to be allocated to the Kaster's progran

太 9.1.3.1 by computing a Master's, program allocation factor by multiplying the number of students in the Haster's prograin by two, and then but using the Kaster's program aliocation factor instead of the Bachelor's program allocation factor.

A 9.1.4 Calculate the amount of Libraries cost to be allocated to the Doctor's prögran by £olloging the procedure of $\frac{A .1 .3}{}$ but using the number of Doctor's. stydents and the Doc'tor's program allocation factor instead of the number of Master's progras students and the Kaster's progran allocation factor, respectively:

A 9.2.i Subtract the Student Services portion of indirect costs of grañts and contracts (given in Table (A 9.2) from the total Student Services expenditures (given in "Table A 10.2), in order to obtain the amount" of Student Services expendituresito be allocated to the ínstitu'tion's educatioñal activities.

A 9.2.2 Calculate the Student Services allochble cost per student enrolled in the institution by dividing the total amount to be allocated by thif number of Autum Term stuadents enrolied in the institution.

> A 9.1.3.2 by 'Eollowing the procedures of A 9.1.2.2 through A 9.1.2.4

A 9.2 STUDÉNT SERVICES COSTS (See Table A 9.4):

A'9.2.3 Detemmine the allocation.

A 9.2.3.1 to the undergraduate program by multiplying the. Student Services cost per student ($\mathbf{A}^{9.2 .2 \text {) by the sum of the number of Freshmen and }}$ Sophomores estimated to be associated with the program and the number of Juniors and Seniors'éstimated to be associated with the program (from A1.7.1-A1.7.8
 A 5.13.3),

A $9.2: 3.2$ to the Kaster's' progran by mitiplying the Student Services cost per student (A 9.2.2) by the number of Haster's program students, and 5

A 9.2.3.3 to the Doctor's progran by mitiplying the-Stuctent Services cost per student (A 9.2 .2) by the number of Doctor's; progran students.

A 9.3 PLAFTI OPERATIO: AND YAIMTERALCE COSTS (See Table A 9,5):
A 9.3.1 First, in order to deternine the amount of expenditure that should be allocated to "Educational" activity it is necessary to separate out expenditures for Auxiliary Enterprises and for Sponsored Researchf

A 9.3.1.1 •Begin with the amount df net usâble space available to the institution. From that figute subtract the area wich is of the nature of parking lots or sepatately maintained faciilities that can be expected to require minimal expenditures through the Plant Operation and Haintenance accounts, leaving the square feet of "basic" space to be used for cost allocation purposes. /

A 9.3.1.2 Determine if the costs of Planf Operation and Maintenañe services to the institution's Auxiliary Entepprises are reported as a net cost to the Plant, Operation and Maintenance account. 'If such costs are not a net cost to that account, do not nake any adjustment. If such costs are a net cost to that account, obtain the ratio of the number of square feet of Auxitary Enterprises space to the number of square feet of "basic" space. in the institu-
cion and milefply that ratio by the Plant Operation and Maintenance expenditures. Then subtract the resulting product--which is the estimated cost of Auxiliary Enterprises plant operation and maintenance-from the Plant Operation and Maintenance expenditures figure to yield an "intermediate" Plant Operation and Maintenance expenditures estimate.

A 9.3.1.3. Determine if the casts of Plant. Operation and Maintenance services to the Institution's Hospital are reported as a net cost to the Plant. Operation and Kintenance account. If such costs are not a net cost to that account, do not make any adjustment. If such costs are a net cost to that account, obtain the ratio. of the number of square feet of Hospital space to the number of square feet of "basic" space in the institution and multiply that ratio by the Plant Operation and Maintenance expenditures. Then subtract the resulting product-which is the estimated cost of the Hospital's Plant Operation and Kaintenance--fron the "intermediate" Plant Operation and Maintenance expenditares figure to field a "reduced" Plant Operation and Maintenance expenditures estimate.

A 9:3.1.4 Separate the costs of Sponsored Research from program instructional costs by subtracting the indirect costs for Plant Operation and Maintenance that are estimated to be associated with Sponsored Research actiofities from the "reduced" Plant operation and Maintenance expenditures estimate calculated in A 9.3.1.3 to obtain a "net" Plant Operation and Maintenace expenditures estimate. After subtracting the Sponsored Research cost and the Auxiliary Enterprises and Hospital costs from the total Plant Operation and Hainfenance expenditures, the amount remaining is left to be allocated among the educational programs.

A 9.3.2 The second step in this allocation procedure is to allocate costs to the department based upon the fraction of the total Instruction and Classrooms space in the institution that is occupied by the department.

A'9.3.2.1 Divide the department's square feet area of Instruction and Classrooms space by the square feet of such space in the institution, and

A 9.3.2. 2 multiply the quotient A 9.3.2.1 by the "net" Plant Operation and Waintenance expenditures, estimate A 9.3 .1 .3 to obtain the department's allocation for Plant Operation and Mainténance.

A9.3.3 The third step in the procedure is to allocate the department's ailocation fo the Undergraduate, Master's and Doctor's 'programs.

A 9.3.3.1 If the department's service load is positive (i.e., if more student credit hours are provided by the department to other programs' students than áre provided by other departments to the parent department's majors) or zero then determine a Plant Operation and Maintenance departmental allocation factor A 9.3.3.1.1 by multiplying the number of Autum Term students estimated to be associated with the Bachelor's program (from A 1.7.6-A1.7.8
 A 5.13 .3) by two,

A 9.3.3.1.2 by multiplying the number of Autum Term students In the Haster's program by three,

A $9 \cdot 3 \cdot 3 \cdot 1,3$ by multiplying the number of Autumin Term students in the Doctor's program by five, and

A 9.3.3.1.4 by minltiplying the number of Autum Term fuil-timeequivalent students in the department's service load by two, then

A 9.3.3.1.5 by suming the products from A 9.3.3.1.1, A.9.3.3.1.2,

A 9.3.3.2 If the department's service load is negative, then deterinine Plant Operation and Maintenance departmental allocation factor
 and A 9.3.3.2.3, and

$$
\text { A } 9 \cdot 3 \cdot 3.2 .2 \text { by summing the three products. }
$$

\rightarrow A 9.3 .3 .3 If the department's service load is positive or zero, determine the Plant Operation and Maintenance cost allocable to the Bachelor's ". program

A 9.3.3.3.1 by multiplyfing the number of Autam Term students estfmated to be associated with the Bachelor's program by two,

A 9.3.3.3.2 by dividing that product by the allocation factor" (from A 9.3.3.1), and

A 9.3.3.3.3 by multiplying that quotient by the department's ailocation for Plant Operation and Maintenance.

A 9.3.3.4 If the department's service, load is negative, determine the Plant Operation and Maintenance cost allocable to the Bachelor's program

A 9.3.3.4.1 by following the procedure of $A 9.3 .3 .3 .1$, then A 9.3.3.4.2 by dividing that product by the allocation factor (from A 9.3.3.2),

A 9.3.3.4.3 by dividing the absolate value of the full-timeequivalent student value of the service load by the allocation factor (from A 9.3.3.2),

A 9.3.3.4.4 by adding the two quotients A 9.3.3.4.2 and A. 9.3.3.4.3, and

A 9.3.3.4.5 by muleiplying that sum by the department's allocation for Plant Operation and Maintenance.

A 9.3.3.5 Determine the Plant Operation and Kaintenance cost allocable to the Master's' program

A 9.3.3.5.1 by multiplying the number of Autçun Term Mas̄ter's program students, by three, then

A 9.3.3.5.2 by following the procedures of A 9.3.3.3.2 and A 9.3.3.3.3.

A 9.3.3.6, Déterimine thy Plant Operation and Maintenance cost allocable to the Doctor is program $=$

A 9.3,3.6.1 by multiplying: the number of Autumn Term Doctors program student's by five, then
A. 9.3.3.6.2 by following the procedures of A 9:3.3.3.2 and A 9.3.3.3.3.

A 9.4 GENERAL ADMINISTRATION AND GENERAL INSTITUTIONAL EXPENSE COSTS

 (See Table _A 9.6):-A 9.4.1 Determine the net amount of General Administration and General Institutional costs after accounting for the costs associated with Auxiliary Enterprises, Hospital and Sponsored Researci'Activities.

A $9 \sim 4.1 .1$ Add the General Administration unrestricted funds

 expenditure to the General Institutional Expense unrestricted funds expenditure. Call the sum "General" for short.

A 9.4.1.2 Subtract the indirect costs for General Administration and for General Insíttutional Expense estimated to be costs of Sponsored Research from the "General" expenditures -af A"9:4.1.1.

A 9.4.1.3 Divide the sum of all the Auxiliary Enterprises and. Hospital expenditures by the sum of the institution's unrestricted funds Expenditures for Educational activities and all the Auxiliary Enterprises *and Hospital activities expenditures, and

A 9.4.1.4 multiply that quotient by the difference from A 9.4.1.2 (the reduked General expenditures) to obtain the amount of Generaz. costs to be"allocated to the Anxiliary Enterprises and-the Hospital.

A 9.4.1.5 Subtract the product A 9.4.1.4 from the reduced General expenditurès A 9.4.1.2 to obtain the net General cost to be allocated, to Educational activities.

A9.4.2 Allocate the net General cost to the department, on the basis of its share of full-time equivelent (F.T:I.) Autum Tern faculty by

A 9.4.2.1 dividing the number of F.T.E. faculty in the depariment by the number of F.T.E.ffaculty in the institution and

A 9.4.2.2 multiplying the quotient A 9.4.2.1 by the net General cost A 9.4.1.5 to obtain the department's share of the net General costs. "A $9.4 .3^{\circ}$ Allocate the net General. cost to the Bachelor's, Master's and Doctor ${ }^{\text {' }} \mathbf{s}^{\prime}$ programs.

- A 9.4.3.1 Determine a General cost departmental allocation factor

A 9.4.3.1.1 by multiplying the' number of Auturn Term students estimated tó be associated with the Bachelor's program (from A 1.7.6 - A 1.7.8 or A 2.11 .1 - A 2.11 .3 or A 3.7 .1 - A 3.7 .3 or A 4.8 .1 A 4.8 .3 or A 5.13 .1 A $5.13: 3$) by tivi,

A 9.4.3.1.2 by multiplying the number of Autum Term students.
in the Kaster's program by three,
A 9.4.3.1.3 by mūtifiplying the number of Autum Term students in the Doctor's program by five, and

A 9.4.3.1.4 by mitiplying the number of Auturin Term full-timeequivalent students in the departmenf's service load by two, then A 9.4.3.1.5 suming the products from A 9.4.3.1.1, A 9.4.3.1.2, A 9.4.3.1.3' and A 9.4.3.1.4.

A 9.4.3.2 . Determine the General cost allocable to the Bacheror's

 programA 9.4.3.2.1 by multiplying the number of Autumn Term students ${ }^{*}$ estimated to be associated with the Bachelor's prograg by two,

A 9.4.3.2.2 by dividing that 'product by the allocation factor

 (from A $9: 4.3 .1$), andA 9.4.3.2.3 by multiplying, that quotient by the "department's allocation for Generai cost.

A 9.4.3.3 Determine the General cost allocable to the Master's program program students by three, then

A 9.4.3.3.2 by following the procedures of A 9.4.3.2.2 and A 9.4.3.2.3.
A.9.4.3.4 Determine the General cost allocable to the Doctor's program A.9.4.3.4.1 by multiplying the, number of Autumn Term'Doctor's program 'students by five, then'
 A 9.4.3.2.3.

A 9.5 TOTAL SUPPORT COSTS ALLOCATED TO THE PROGRAMS:

A 9.5.1 Calculate

A.9.5.1.1 the 薙tal instymutonal support cost allocated to the Bachelor's programi to be the sum of the Libraries; Student Pervicee, Piant Operation and Maintenance and General Administration and General "Institutional Expense Bachelor's program allocations; and

A 9.5.I.2 2° calculate the Kaster's program supporty cost and the Doctor's program support cost by following the procedure of a 9.5.1.1 but using' Mastèr's program and Doctor's program support costéfigures, respectively, instead of Bachelfor's cobe figures?

classcut

- details df the classcui procedure calculations

ACADEMIC YEAR:

A1. 5

A1. 6

DISARIBUTION OF CLASSES TO LEVELS:

LDUA\# UDUA	MP	DP	
22.0	.04	.0	.0
.0	8.6	.7	.7
.0	.8	4.6	7.5
.0	0	.9	1.1
.0	.0	3.2	4.3
.0	.0	.3	.3
.0	.0	.0	13.2
22.0	9.4	9.7	27.2

LOHER DIVISION
UPPER DIVISION
MASTERS CLASSES
DOCTORS CL
INSES
THESENDEN STUDY
DISSERTATION

TOTALS *

* LDUA 三 LDHER DIVISION UNDERGRADUATE ACTIVITY UDÜA \equiv UPPER DIVISION UNDERGRADUATE ACTIVITY MP \equiv HASTERS PROGRAM
-DP ミ DOCTORS PRGGRAM

A1. 7
$A 1.7 .1$
A1.7.2
$A 1.7 .3$
$A 1.7 .4$
$A 1.7 .5$

ALLOCATIION OF COSTS TO ACTIVITIES AND PROGRAMS:

. Aĺ́OCATION OF aCTIVITY COSTS TO THE bACHELDRS PROGRAH AND TO THE SERVICE FUNCTION:

UPPER DIVISION POPULATION FACTOR $(6235) /(8283)=.753$ ESTIHATED NUHBER PRRGRAK JUNIORS-SENIORS 1361/(.753) $=180.67$.
01.7 .8
5. 7.9

A1.7.10

A1.7.11
1.7 .15

$A 1.5 .1$.
41.5 .2
A1.5.3. A1.5.4.
12.6

* LDUA \equiv LOHER DIVISION UNDERGRADUATE ACTIVITY UDUA ㅋ.UPPER DIVISION UNDERGRADUATE ACTIVITY
totals MP E HASTERS PROGRAH PP \equiv DOCTORS PROGRAM
LOUER DIVISION
UPPER DIVISION
HASTERS CLASSES
DOCTORS CLASSES
INDEPENDENT STUDY
THESIS
DISSERTATION.

16.0	.0	.0	.0
.0	5.7	-1.1	.2
.0	.1	2.2	1.8
.0	.0	.5	1.5
.0	.0	8.0	3.08
.0	.0	.8	.0
.0	.0	4.8	.14 .8

16.0 5.7 17.5. 322.0

41.7
LDUAF ' UDUA MP DP

84115

ALLOCAJION OF ACTIVITY COSTS TO THE BACHELORS PROGRAM AND TO THE SERVICE FUNCTION:

A1.7.6 UPPER DIVISION POPULATION.FACJOR (6235)/(8283) =753

A1.7.7 ESTIHATED NUABER PROGRAM JUNIORS-SENIORS 58)/(F 753) $=77.05$

ESTIMATED NUCBBER -PROGRAK FRESHMEN-SOPHOMORES 77.05

A1.7.9
41.7.10

A1.7.11

ESTIMATED KRESHMEN-SORHOHORE SCH 77.051* (15.00) = 1155.77

ESTIMATED JUNIOR-SENIDR SCH
(77.05)*(15.00) = 1155.77

BACHELDRS PROGRAH T SERVICE FUNCTION
LDUA
UDUA

34878 -34820
41.9
41.9.1

41:9.2

A1. 10
A1.10.1
A1. 10.2
A1.10.3

PARTIAL' PRIGRAM COSTS:
ACADEMIC YEAR:
LOHER DIVISHON
UPPER DIVISION
SUMHER TERHz
LOUER DIVISION UPPER DIVISION

TVELVE-HONTH PROGRAH CĖSTS:
BACHELORS PROGRAH
\& 569514
MASTERS PROGRAF
DOCTORS PROGRAK
fCOMBINED GRADUATE PROGRAHS

200324
505210
705534)

SUMHARY OF PROǴRAK DEPARTMENTA! COST ANALYSIS

110g, CHEAISTRY
ClADCUT
details of the cladcut procedure calcucititiens

ACADEMIC YEAR:
42.1

A2.1.1
12.1.2
12.1.3

A2.1.4
42.1.5

DEPARTMENTAL CDSTS BY CATEGORYZ
CATEGORY IA (FÁCULTY') . s 715279
CATEGORY IB. (STAFF)
301544
CAFEGORY 2A (T.A.SI 299368
CATEGORY 2B (R.A.S. ETC.)
CATEGORY 3 (OPERATIORS) • 160027

A2.2 DEPARTHENTAL AD́HINISTRATION COBSTS - FOR GRANT AND CONTRACT ACTIVITIESZ
(A) INSTITUTIONS TÓTAL INDIRECT CESTS OF DEPARTMENTAL ADHINESTRATION s 3399912
(B) RATIO DF DEPARTHENTS GRANT.
aND CONTRACT EXPENDITURES TO-
TDTAL INSTITUTIONS GRANT AND
CONTRACT EXPENDITURES
(s 508071)/(s 690846618) $=.0073543$
(C) PRODÜCT OF (A) ANE (B) - 25004

NET CATEGORY IA DEPARTHENTAL CGST S . 690275
A2:3 NET CATEGORY IA DEPARTHENTAL CEST S . 690275
A2.4 - -NUHBERS OF CLASSES:

A2.4.1
42.4.2

NUHBER LOUER DIVISION CLASSES 22.00 NÚMBER UPPER DIVISION CLASSES , 10.00 NUMBER HASTERS CEASSES. I 13.00 NUMBER DOCTORS CLASSES
(CLASS EQUIVALENTS (C.E.E:
$(483) /(125)=32.20$ SCHfelíASS
(EQUIVALENCE FACTOR: 1.00)
KUMBER INDEPENDERT STUDY C.E. . 7.52°
NUHBER THESIS.C.E.
C. \vec{E}. 13.20
total
68.27

A2. 5
A2.5.1
$\pm 2.5 .2$

A2.5.3
A2.5.4

A2.6=

DISTRIBUTION OF CLASSES TO LEVELSZ

		LDUA*	UDUA	MP	Df
	LOHER DIVISION	22.0	. 0	- 0	. 0
	- UPPER DIVISION	. 0	.8.6	- 7	. 7
	MASTERS CLASSES	- 0	. 8	4.6	7.5
	DOCTORS CLASSES	- 0	. 0	. 9	- 1.1
	INDEPENDENT STUDY	- 0	- 0	3.2	$4 \cdot 3$
	THESIS	- 0	- 0	- 3	. 3
	DISSERTATIEN	. 0	- 0	-	13.2
	TÓTALS	22.9	9.4	-9.7	27.2

> \# LDUA \equiv LOUER. DIVISIDN UNDERGRADUATE ACTIVITYUDUA ミ UPPER DIYISION UNDERGRADUATE ACTIVITYHP ミ HASTERS PROGRAH DP $\equiv D O C F O R S ~ P R O G R A H ~$
$\left\{\begin{array}{l}\text { ALLOCATION, OF COSTS TO XCTIVITIES AND PRBGRAHS: } \\ =\end{array}\right.$

	LDUA	UDUA	HP	DP
CATEGORY 1A	222430	- 95442	97747.	-274655.
CATEGORY IB	219068	18559	16837	47080
CATEGORY 2a	239494	59874	0	0
CATEGORY 2B	0	0	0	0
CATEGURY 3	116258	9849	8935	24985
TOTALS	797250	183725	123520	346719
			- 4.70	

42.8 .3 .1
A2.8.3.3
12.8.3.4
12.9 .1
12.9 .2
12:9.3
f 12.9 .1
12.9 .2
42.9.3

ALLOCATION-DF ACTIYITY COSTS TO THE BACHELORS PRDGRAM AND TO THE SERVICE FUNCTIDN:

UPPER DIVISION PQPULATION FACTOR
(6235)/(8283) =.753
ESTIMATED NUMBER PROGRAH JÜNIDRS-SENIDRS $=(136) /(.753)=180.67$
42.11 .3
42.11 .4.
42.11.5

A2.11
42. 1

A2.1.1
12.1.2
12.1 .3

A2. 1.4
A2.1.5

A2. 2 .

A2. 3

A2. 4
12.4.1

A2.4.2
$A 2.4 .2 .4$
$A 2.4 .2 .5$

DEPARTMENTAL CESTS 'BY CATEGORY\%

CATEGDRY 1A	(faculty)	\$. 53836
CATEGGRY 1B	(STAFF)	75916
CATEGGRY 2A	(T.A.S) ${ }^{\text {c }}$	19954
CATEGERY 2B	(R.A.S, ETC.)	0
CATEGORY 3.	OPERATIONS)	670

DEPARTHENTAL MDMINISTRAFIDN COSTS FOR GRANT AND CONTRACT ACTIVITIES ARE ASSUMED TO BE

NET CATEGORY IA DEPARTMENTAL COṢT $\$ 53836$

NUMBERS OF CLASSES:
NUHBER LOUER DIVISION CLASSES 16.00 NUMBER UPPER DIVISION CLASSES .7.00 NUMBER HASTERS CLASSES * 4.00 NUMBER DOCTORS CLASSES 2.00
(CLASS EQUIVALENTS (C.E.): (139)/(6) = 23.17 SCH/CLASS)
(EQUIVALENCE FACTOR: - 1.001
NUMBER INDEPENDENT STUOY C.E. . 11.78
NUMBER THESIS C.E. . . 82 NUMBER DISSERTATIDN•C.E. 19.60

TOTAL

A 2.5^{*}
DISTRIBUTION of CLASSES TO LEVELS:

LOHER DIVISION
UPPER DIVISION
hasters classes
doctors classes
INDEPENDENT STUDY THESIS DISSERTATION TOTALS

LDUA*	UDUA	HP	DP
16:0	. 0	.0	0
. 0	5.7	1.1	. 2
. 0	. 1	2.2	. 1.8
. 0	. 0	. 5	1.5
- 0	- 0	\cdots	3.8
. 0	. 0	. 8	. 0
± 0	3	4.8	14.8
16.0%	5.7	17.5	22.0

\# LDUA \equiv LDNER DIVISION UNDERGRADUATE ACTIVITY
UDUA ミUPPER DIVISION UNDERGRADUATE ACTIVITY
HP \equiv MASTERS PROGRAH
OP \equiv DOCTORS PROGRAM
42.7
allocation of costs to Activities ane prográms
$A 2.7 .1$
SEE AZ.9
AZ.7.2
$A 2.7 .3$
SEE 12.9
$A 2.10 .1$
$-A 2.10 .3$

DEPARTMENTAL STUDENT CREDIT HOUR PARTIAL COSTS: NUHBER YEIGHTED SCH

$$
\text { (1.0x } \quad 4178)+(4.0 x
$$

$8851=\quad 7718^{\circ}$
Category 18 partiat'cost
= PER UNIT YEIGHTED SCH
CATEGORY:3 PARTIAL CDST
CATEGORY:S PARTIAL COST
PER UNIT VREIGHTED SCH
$\$ \quad 9.836$
s ,087
SCH TAKEN BY' STUDENTS:
LOUER UPPER - GRADUATE - DIVISION DIVISION

UNDERGRADUATE STUDENTS.	3765	297	2
hasters level.			
STUDENTS	38	60	387
DOCTORS LEVEL			
STUDENTS	8	10	. 496

ALLOCATION OF CATEGORY 18 ABD CATEGORY 3 CÖSTS TO PROGRAHS AND ACTIVITIES:

CATEGORY 18 CATEGORY゙ 3°

LOWER. DIVISION ACTIVITY $=3765 \times 1.0=37655^{\circ} \times \$ 037033$ 327

26
H/STERS PROGRAM
98XI $+7387 \times 4$
OOCTORS PR UGRAH
$18 \times 1+\ldots 496 \times 4 \times 202 ;$
16190

ALLDCATION OF ACTIVITY COSTS TO THE BACHELORS PROGRAK AND TO THE SERVICE FUNCTION:

A2.11.1
$i 2.11 .2$

A2.11.3

12:11.4
42.11.5为
12.11 .6

A2.11.8
A2.11.10
4.2. 13

A2.13.1
0.13 .2

拿 2.14
. 2.14 .1
12.14.2

A2.14.3

UPPER DIVISION POPULATION FACTOR
$(6235) f(8283)=.0753$ (6235)f(8283) $=. .753$

ESTIMATED NUMBER PROGRAM JUNIORS-SENIORS ($581 /(.753)=77.05$

ESTIMATED NUHBER PROGRAM FRESHMEK-SOPHOHORES 77.05
.ESTIMATED FRESHMEN-SOPHONORE SCH $(77.05) \neq 115.00)=1155.77$

EŚTIMATED JUNIOR-SENIOR SCH
(77.05) $\ddagger(15.00)=1155.77$
BACHELORS PROGRAK SERVIGE FUNCTION

| LDUA 20440% | -46958 |
| :--- | :--- | :--- |
| UDUA | -25975 |

PARTIAL PROGRAM COSTS:
ACADEHIC YEARI
LOHERJDIVISION
UPPER DIVISION
\$ 131448
337565
SUHMER TERH:
LONER DIVISION UPPER DIVISION
s. 20440 .37972

THELVE-KONTH PROGRAN COSTS:
BACHELDRS PROGRAM
MASTERS PROGRAM
\$ 527425*
DOCTCRS PROGRAK . . 385944
155215
(COHBINED GRADUATE PROGRAKS.
.5411591.

$\because D E T A I L S$ OF THE CREDCUT PROCEDURE CAZ̆CULATIONS.

ACADEMIC. YEARZ

TOTAL DEPARTMENTAL COSTS:

DEPARTHENTAL ADHINISTRATION COSTS
FOR GRANT AND CONTREGCT ACTIVITIES:
(A) INSTITUTFONS TOTAL INDIRECT

- COSTS DF DEPARTMENTAL ADHINISTRATION

ร. 3399912
(IBI RATIL OF DEPARTHENTS GRANT:

- AND CONTRACT EXPENDITURES TO TOTAL INSTITUTIONS GRANJ AND CONJRACT EXPENDITURES

$(C)^{\prime} P R O D U C T$ OF (A) ANO (B)
NET DEPARTHENTAL COST:
s 1451214
$\therefore 7$
A3: $\because \quad \because$ DEPARTMENTAL STUDENT Cर्REDIT HOURS
- GENERATED 芭RING THE ACADEMIC, YEAR:

57240
\qquad
-DEPARTMENTAL COŚT PER STUDENT CREDIT, HOUR:

STUDENT CREDIT HOURS BY STUDENT LEVEL:

TOTAL DEPARTHENTAL COSTS:
\& 150376

DEPARTHENTAL ADHINISTRATION COSTS FDR GRANT AND CONTRACT ACTIVITIES are assumed. To be
-NET DEPARTHENTAL COST $\%$
$\because \$ 150376$
13.2

DEPARTHENTAL STUDENT CREDIT HOURS \because GENERATED DURING THE SUMMER TERM:

A3. 3 DEPARTMENTAL COST PER STUDENT CREOIT HOURE
(5 . 150376)! 1
5063)
'29.70
13.4 STUDENT CREDIT HOURS BY STUDENT LEVELZ
13.4 .1
$A 3.4 .2$
43.4 .3
$A 3.4 .4$

BACHELORS PROGRAM:
LOGER DI WISION UPPER DIVFSION

HASTERS PROGRAM
DOCTIURS PROGRAH

102 SCH
637 SCH
414 5CH
518 SCH

43. 5

13.5 .1
13.5 .2
*3.5.3

A3. 5.4
-A3.5.4.1
4. 3.5 .4 .2

$\therefore 43.5 .6$
43.5 .7

A3.5.8

DEPARTHENTAL COSTS QF PROGRAHS:
UPPER DIVISION POPULATION FACTOR (. $62357 /(8283)=.753$

ESTIMATED NUHBER PROGRAḰ JUNIORS-SENIORS - $-581 /(.753)=77.05$

ESTIHATED. NUMBER PROGRAM FRESHMEN-SOPHOHORES 77.05

LDNER DIVISION PARTIAL PROGRAH COST: RAH SUR-PROGRAK COSF (s -29.70)* $\quad 102$) $=3 \quad 3029$
-ADJUSTED COST' (5 3029) \mathbf{S}° 77.05, 10$)_{2}=1$ 23343 GPPER DIVISIUN EARTIAL PROGRAM COST: RAM SUB-PRDGRAH COST (s 29.70)* $\quad 637$) $=\$ 18920$ AÓJUSTED COST (s 18920) $=1$ 77.05 /
$581=s$
25134
hasters prograh cost
12296
DOCTORS PROGREH COST 15385

BÄCHELORS PREGRAF COST 48477°

GRADUATE PRDGRAMS COSE 27681

GUMHARYODF PROGRAM DEPARTHENTAL COST,ANALYSIS
$\left.\begin{array}{cccccc}\text { PROGRAM } & \text { PROGRAH COST } & \begin{array}{c}\text { ESTIMATED } \\ \text { NURBER }\end{array} & \text { COST PER STUDENT } \\ \text { STUDENTS }\end{array}\right]$

DETAILS OF THE FAACUT. PROCEDURE CALCULATIONS

ACADEMIC YEAR:

44.1
44.2

GROSS DEPARTMENTAL COSTS (OTHER THAN TA. STIPENDS):
\$ 1176850°

DEPARTMENTAL ADMINISTRATION COSTS

 FOR GRANT AND CONTRACT ACTIVITIES:(A) INSTITUTIONS TOTAL" INDIRECT".
COSTS OF DEPARTMENTAL
ADMINISTRATION -
(Bi RATID OF DEPARTMENTS GRANT AND CONTRACT EXPENDITURES TO TOTAL INSIITUGIONS GRANT AND CONTRACT EXPENDITURES
44.3

WET NON -TA. DEPARTMENTAL COST
\& 1151846

251

A4.5.1
 NET DEPARTHENTAL NON-T.A. INSTRUCTION COSTS:

14.5.2
4. 4.5 .3
44.6

TOTAL DEPARTHENTAL COST ALLDCATFON:

TEACHING ASS'ISfANTSHIP STIPENDS:

GENERATION AND COS\{́ING DF DEPARTHENTAL SCH:

| | SCH PER
 AUFUNK
 TERH | COST/SCH |
| :--- | :--- | :--- | :--- | :--- | :--- |

TOTAL

LQHER UPPER MSTRS DCTRS CLASS CLASS PRGRM PRGRM SCH SCH SCH SCH

DEPARTHENTAL COSTS OF PROGRAHS:

LDMER DIVISION PARTIAL PROGRAK s UPPER DIVISION PARTIAL PROGRAK
ξ
DOCTORS PROGRAK 342994
44.8 .1

A4.8.2
44.8 .3

UPPER DIVISION ṔGPULATION FACTOR (6235/(8283) $=.753$

ESTIMATED NUMBER PROGRAH JÜNIORS-SENIORS (136)/(.753) $=180.67$

ESTIMATED NUMBER PROGRAH FRESHMEN-SOPGOHORES 180. 67
ADJUSTED PROGRAK COSTS:
$=$ LOHER DIYISION PARTIAL PROGRAH s o UPPER DIVISION PARTIAL PROGRAK

0

BACHEEDRS PROGRAK - O
HASTERS PROGRAM 159894 DOCTIORS PROGRAM . . iv 342994

GRADUATE PROGRAH, $\rightarrow \quad 502888$
$+\infty$

AL. 10

AK. 1
14.4°

FACULTY ACTIVITY ANALYSIS DISTRIBUTION:
LONER DIVISION CLASSES .. 315
UPPER.DIVISION CLASSES :- .. 108
GRADUATE LEVEL CLASSES . . 012
INDEPENDENT STUDY-THESIS .045
DISSERTATION . $\quad .056$
(TOTAL INSTRUCTION•TIHE $\quad .536$)
SCHOLARLY AND OTHER*ACTIVITY . . 464
TOTAL ri. . 10000

DEPARTMENTAL ADMINISTRATION' COSTS FOR GRANT AND CONTRACT ACTIVITIES ARE ASSUMED IN At. 10 TO. BE

MET NON-T.A. DEPARTMENTAL COST ; $\$ 30422$ (OTHER THAN TA. STIPENDS): - \because " 130422

4

A4. 5
A4.5.1
t
44.5 .2
A.4.5.3
total departmental cost allocation:

LOWER DIVISION Classes	5	92610
UPPER DIVISIDN CLASSES	\$	30270
graduate level classes	\$	2920
INDEPENDENT STUDY-THESIS -	\$	10950
dissertation	s	13626

$\because 44.6$; , GENERATION AND COSTING OF DEPARTMENTAL SCHz

LOWER DIVISION GLASSES UPPER DIVISION CLASSES graduate level classes INDEPENDENT STUDY-THESIS DISSERTATION

TOTAL

SUMMARY OF PRȮRAM DEPARTMENTAL COST ANALYSIS

DETAILS OF THE COMPCUT PROCEDURE GALCULATIDNS,

ACADEMIC YEAR:

FACULTY ACTIUITY ANALYSIS DISTRIBUTIONS:

	FACULTY ACTIVITY ANALYSIS $<$	SCHOLARLY : ACTIUITY WEIGHTING -FACJORS		GTED JLTY VITY YSIS
LOHER DIVISIDF CLASSES	. 216	1		. 216°
UPPER OIVISICN CLASSES	. 1215	3.		.375
graduate level classes	. 084	5		. 420
INDEPENDENT STUDY-THESIS	. 070	7		. 490
DISSERTATION	. 066	10		. 660
$\ddot{\square}$				
SCHOLARLY ACTIVITY OTHER ACTIYITY	$\begin{aligned} & 344 \\ & 095 \end{aligned}$			

ALLOCATIDNS DF COSTS OF CATEGBRIES IB,2B AND. 32

DEPARTMENTAL. COSTS OF PROGRAHS:
\#RAH* \cdot COSTS:
$\begin{array}{llrr}\text { LOUER DIVISION PARTIAL PROGRAM } & \text { s } & 0 \\ \text { UPPER DIVISION PARTIAL PROGRAK } & & 0 \\ \text { HASTERS PROGRAH. } & & 173531 \\ \text { DOCTORS PROGRAM. } & \ddots & 409633\end{array}$

A5. 13.1
45. 13.2

A5.13. 3
UPPER DIVISION POPULATION FACTOR $(6235) /(8283)=.753$

ESTIHATED NUMBER PROGRAH JUNIORS-SENIORS (. 136)/(.753$)^{\%}=180.67$

ESTIMATED NUKBER PROGRAM FRESHHEN-SOPHOMQRES 180.67

ADJUSTED PROGRAK COSTS:

 - BACHELORS PROGRAK 0

- HASTERS PROGRAM

173531
DOCTERS PROGRAH - . 409633
GRADUATE P'ROGRAK,
583163

1

FACULTY COHPENSATION STAFF COHPENSATIDA: HOURLY HAGES COMPENSATIDN T-A. STIPENDS -R.A. STIPENDS POSTDOCTORATES BENEFITS SUPPLIES AND SERVICES
EOUIPHEST - OTHER COSTS

FACULTY ACTIVITY ANALYSIS DISTRIBUFIDNS:

A5. 1
 COSTS BY ANALYTICAL CATEGORIES:

COST PER
SUMMER
TERM
MONTH.

DEPARTMENTAL ADMINISTRATION COSTS $: ~$
FOR GRANT AND CONTRACT ACTIVITIES
ARE ASSUHED IN A5.14 TO BE

LOWER DIVISION CLASSES 5 5653UPPER DIVISION CLASSESgraduate level classes- 1938215-
INDEPENDENT STUDY-THESIS 808
¢ISSERTATION 1005
total

A5.6

CATEGORY IAS (SCHOLARLY ACTIVITY) COST PER MONTHz
45.7 \qquad
TOTAL

CATEGORY LAO (OTHER faCULTY TIME) COST PER MONTH:
IOYER BIVISIEN CLASSES \& - 16.14
UPPER OIVISION CLASSES 55.3
GRADUATE LEVEL CEASSES 61
INDEPENDENT STUDY-IHESIS 231
DISSERTATION 287
TOTAL (NET OF INDÍRECT COST A5.3) 2746

A5.10 - INSTRUCTIONAL LEVELS DEPARTMENTAL COSTS PERR HONTH:

SUMHER TERMJDEPARTMENTAL STUDENT CREDIT HOURS:

LQUER DIVISION CLASSES \quad. 3811
UPPER DIVISION CLASSES • • 367
GRADUATE LEVEL CLASSES . . . 139
INDEPENDENT STUDY-THESIS . $\quad 292$
DISSERTATION - $\quad-\cdot \quad . \quad 454$

A5.11
DEPARTAENTAL CȮST PER STUDENT CREDIT HQÚR:

LOWER. DIVİIEN CLASSES		\$	22.60
UPPER DIVISION CLASSES			82.68
GRaduate level classes			22.90
INDEPENDENT* STUDY-THESIS	\cdots		44.16
DISSERTATICN			+39.28

A5.12.
STUDENT CREDIT HOUR TABLES:

LOUER UPPER MSTRS (\%TRS-GLASS CLASS PRSRM P/GRM			
	SCH	. 8 CH	SCH
		7	6
6	29	23	18
a	1	71	70
5 - 0	0	201	88
0	0	112	336

DEPARTMENTAL COSTS DF PROGRAMMS: *RAH* C̣OSTS:

'LQHER DIVISION PARTIALSPRDGRAH 's	2665
UPPER DIVISION PARTIAL PROGRAH	28154
MASTERS PRQGRAM :	16961
DOCTORS PROGRAM	20312

UPPER DIVISION POPULAJIUN FSACTOR
($623514-8283)=.753$
ESTFMATEO NU\&BER PROGRAM JUNIORS-SEENIORS

SUMRARY' OF PROGRAH, DERARTHENTKL' COST" KNALYSIS

PROEREDCUT-1
PROGRAM COSTS USINE CRÉDCUT.

- STUDENT CREDIT HOUR COST ESTIMATES:

INSTITUTION 1109
PROGRAMS IN CHEMISTRY

BACHELGRS DEQREE PROGRAM:

HASTERS DEGREE PRGGRAM:

HASTERS OEGREE PRGGRAHz
LOHER . UPPPER GRADUATE IHDPNDNT. - DIVISION DIVISION CLASSES RESEARCH CLASSES CLASSES THESIS

COST PER SCH $\$ 13.85$ s 75.53 \$ 119.03 : 184.26

COST ÓF A MASTERS DEGREE:
\$ 11485
-DOCTORS DEGREE PROGRAH:-. \qquad 20 - LOUER UPPER GRADUATE INDPNDNT DISSERDIVISIÕN DIVISION Classes Classes THESIS.
\Rightarrow COST PER•SCH $3 \quad 13.85 \mathrm{~s} .71 .53 \leqslant 119.03 \leqslant 184.26 \mathrm{~s} .106 .28$ π A'VERAGE". NUKBER OF SCH TAKEN PER DEGREE EARNED

PROCOMPCUT-1

 PROGRAM COSTS USING COMPCUT

 PROGRAM COSTS USING COMPCUT STUDENT CREDIT HOUR COST ESTIMATES

INSTITUTION 1109

Page $1=$

PROGRAMS IN CHEMISTRY

bachelors degree programs

LEXER UPPER GRADUATE GRADUATE
 division division classes level

CLASSES CLASSES . INDPNDNK.
. - - RESEARCH
 - average
 DEGREE EARNED

COST OF Ar BACHELORS DEGREE:
 s
 0

13
H
\because

HASTERS DEGREE PROGRAHz

HEAD-COUNT STUDENT UNIT COSTS:
RCADEHIC YEAR çost PER underg̃radüate studentz COST. PER LEOSf PER CDST PER LOHER DIVISION UPPER DIVISION UNDERGRADUATE STUDENT - STTUDENT STHDENT

- \$ 557/STUDERT S $2229 / S T U D E N T$ \& 1393/STUDENT
48.2
\ddots

4843

A8.4-6
SUKAER TERK COST PER UNDERGRADUATE STUDENT: COST PER COST, PER COST PER LOUER DIVISICH UPPER DIVISION UNDERGRADUATE STUDENT STUOENT STUDENT

's 197/STUDÉNT s ' $662 / S T U D E N T$ ' s " $430 /$ STUDENT
TYELVE-KONTH YEAR COST PER UHDERGRAOUATE SYUDËNT:

$\begin{aligned} & \text { COST PER } \\ & \text { LPUER DIVISION } \end{aligned}$	- CEST PER UPPER DIVISTEX	CEST PER UNDERGRADUATE
Student	Studekt	STUDENT
KY/STUDENT	S 289ㅍ/STUDENT	\& 1822/5TUDENT

COSI PER HASTERS STUDENT: il

OR
OR
s.4943/STUDENT . ${ }^{\circ}$ 809/STUDENT . $\$$ 5752/STUDENT

CEST PER DOCTORS STUDENT: ACADEMIC YEAR

SUHER TERM

OR
08
s 5876/STUDENT - 3 / $20 /$ STUDENT $6795 /$ STUDENT 230.

full-time éouivalent, student dunit costs:

18.8
)
48.9

48.9

NUMBER Óf REPORTED ACADÉMİ́ YEAŔ FTE STUDENTS:

NUMBER DF REPDRTED SUKHER TERH FTE STUQENKI:
LOKER DTVISION (• 102)/1 151 : 6.8 FTES UPPER DIVISION hasters level r ooctors leyel.

102	15)	6.8	FTE
6371/18	15)	42	FTE
4)/1	10)	41	
$5181 / 1$	01		

Note: the undergraduate costs fagures used belon are *Ran* partial prograh costs, not adjusted for expected changes in students declared hajops.

- academic year cost per undergraduáte stbdent:

COST PER	COST PER	-COST PER
ER DIVISIGN	UPPER division	dergraduate
STUUENT $]$	STUDENT	STUOENT

3 - OISTUDENT S GOSTUDENT 'S OASTUDEANT

SUAher terh cost per undergraduate student:
COST PER. COSTPER" - COSTPERT
LOMER OIVISION UPPER DIVISION UNDERGRADUATE
-STUDEHF : STUDENT..

DEGREE UNIT COSTSZ

ACADEMIC.YEAR COSTS: .

BACHELORS	\$	*503311/	65.80	\%	s	7,649
MASTERS*	\$	163109/	13.40°	$=$	\$	12172
- DOCTORS	\$. $45831.0 /$	20.00	$=$	5	22916

THELVE-MONTH YEAR COSTS:

YNIT DEPARTHENTAL COSTS ANAIYSIS OF THE CHEMISTRY PROGRAMS OF INSTITUTION 1109

HEAD-COUNT STUDENT URIT COSTS:
18.1

ACADEAIC YEAR COST PER-UNDERGRADUATE, STUDENT: COST PER COST PER.. COST PER LOHER OIVISION UPPER OIVISION UNDERGRADUATE STUDENT. STUDENT STUDENT
s. 131448
\& 337565
(136)/(.753) (136)/(1 .753)

日R - \quad ○. OR
\& 728/STUDENT \& 1868/STUDENT \& 1298/STUDENT
.A8:2

A8. 3

A8.4-6
x. 7

SUMMER TERM COST PER UNDERKRADUATE STUDENT: COST PER

COST PER
COST PER LONER OIVESTON UPPER DIVISION UNDERGRADUATE STUDENT

STUDENT
STUDENT.
$*$

s 26́5/STUDENT $\overline{\text { S }}$ 493ISTUDENT s 37'iSITUDENT
TUELVE-HONTH YEAR COST PER ONDERGRADUATE STUREENT: COST. PER - COST PER - •R. CEST-PER LOWER DIVISION UPPER DIVISION UNDERGRADUATE STUDENT STUDENT: STUDENT
*s 993/STUDENT , s 236IYSTUDENT'\$ 1677/STUDENT.

COST PER MASTERS STUDEMT:
ACADEMIC YEAR SUMIER TERH. I2゙MONTH-YEAR
$\$ 123520 /-33 \cdot \$$
316951 46
DR
s 3743/STUDENT s-689/STUDENT S A4327FIUDENT

COST PER ${ }^{7}$ DOCTORS STUDENT:
ACADEHIC YEAR SUMKER TERM I-2-HONTH YEAR
$s^{-} 3467191^{\circ} 78 \mathrm{~s}^{\circ}=39225^{\circ} \cdot 51$
$\because Q R=0 R$

* $\$ 4445 /$ STUUDENT. $\$$ 269/STIUDENT $35214 / S T U D E N T$

FULL-TIME EQUIVALENT STUDERT UNIT COSTS:

A8. 8
LOHER, DIVISION UPPER DIVISIDN hasters tevel DOCTORS LEVEL

NUMBER OF REPORTED ACADEMIC YEAR FTEABUDENTS:

NUMBER DOF REPORAED SUHMER TERM FTE STUDENTS: LOUER DIVISION \quad IO21/i $153=6.8$ FIES UPPER DIVISION ($\quad 6371 / 1$ 1.51 $\div .42 .5$. FKES HASTERS.LEVEL $(\cdot .414) /(10)=\therefore 41.4$ FTES DOCTORS LEVEL $\because 518) /(10)=51.8^{\circ}$ F可

NOTE THE UNDERGRADUATE COSTS FIGURES USED BELOH ARE \#RAK* PARTIAL PROGRAM COSTS, NOT ${ }^{2}$ ADJUSTED.FBR EXPECTED CHANGES IN STUDENTS DECLARED MAJORS:

A8.9 : ACADEMIC YEAR COST PER, UNDERGRADUATE STUDENT:
COST PER 'COST' PER. COST PEAM LOWER OIVISIOE UPPER DIVIFION UNOERGRADUATE STUDENT

STUDENT
STUDENT

OR

- O/STUDENTT
$\$$
OISKUDENT

3. O/STUDENT

SUMMER TERM COST PER UNDERGRADUATE STUDENT:
COŚT. PER COST PER ... COST PER
UPPER DIVISION UNDERGRADUATE
STUDENT:
STUDENT

3. 493/STUDEHT 5 -379/STUDENT

THELVE-MONTH YEAR COST, PER UNDERGRADUATE STUDENT: COS PER COST PER COST PER LOWERSGIVISION UPPER DIVISION, UNDERGRADUATE.
STUDENT
STUDENT.
STUDENT
s. $265 /$ STUUÉENT $\$$ 493/STUDENT $\$$ 379/STUDENT
iA 8. 10

\because	\ddots	\cdots
\cdots	\ddots	\cdots
\cdots	\cdots	\cdots

48.11
Γ°

COST PER DOCTORS STUDENT
aCADEMIC: YEAR SUM HER TERH
12-MDNXH YEAR \$ 3467197 97's 392251 52 OR

OR
S 3528/SFUDENT © $757 /$ STUDENT
.4335.ISTUDENT

UNIT DEPARTHENTAL COSTS ANALYSIS

> OF THE CHEMISTRY PRQGRAHS OF INSTITUTION 1109°

HEAD-COUNT:SIUDENT UNIT COSTS:
ACADEMEC YEAR COST PER UNDERGRADUATE STUDENTZ COST PER COST PER GOST PER LOKER OIVISION UPPER DIVISION UNDERGRADUATE STUDENT STUDENT

STUDENT
A8. $1 \because$.
$A^{\prime \prime} 8 \cdot 2^{2}$
48.3

SUUHER TERH COST PER UNDERGRADUATE STUDENT: COST PER - COST PER - COST PER LOMER DIVISION UPPER DIVISION. UNDERGRADUATE

- STUDENT STUDENT

STUDENT
$\frac{53343}{581 / 8 \cdot 7531}$
\$ 25134
58) (1(.753)
\& $303 / S T U D E N T$ \& $326 / S T U D E N T$ S 315/STUDENT
THELVE-HONTH YEAR CGST PER UNDERGRADUATE STUDENT: COST-PER COST PER COST PER LOHER DIVISION UPPER DIVISION UNDERGRADUATE STUDENT : STUDENT STUDENT

COST PER HASTERS STUDENT:
ACADEMIC YEAR SUMAER TERH. 12-HONTH YEAR

QR
QR

COST PER DOCTORS STUDENT:
ACADEMIC YEAR: SUMMER TERM
E2-HONTH YEAR
s

full -time equivalent student unit costs:
18.8

HUMBER OF REPORTED ACADEMIC YEAR FIE STUDENTS:

(8) 11

01tt
969)/!

NUMBER OF REPORTED SUMMER IER F FIE STUDENTS:
LAMER DIVISION ($1021 /(=15) \dot{1} \quad 6.8$ FEES
UPPER DIYISIDE (: 6371/($251=42.5$ FTE'S MASTERS LEVEL $(4141 \%($ EOS $=-41.4$.FTES
DOCTORS LEVEL. (5181$\}(10)=51: 8$ FTES

NOTES THE UNDERGRADUATE COSTS FIGURES USED BELOw ARE *RAY* PARTIAL PROGREK COSTS, NOT ADJUSTED FOR -EXPECTED CHANGES IN STUDENTS DECLARED HATeRS.

$: 18: 9$
ACADEHIF YEAR COST PER UNDERGRADUATE STTUDEHTE
C COST PER : COST PER' COAST- PER' LOWER DIVISION UPPER DIVISION UNDERGRADUATE 'STUDENT STUDENT * STUDENT

. 5 O/STUDENT s O/STUDENT IS \because O/STUDENT

AB. 9
SUMMER TERM. COST PER UNDERGRADUATE STUDENT:
COST PER COST. PER COST PER LOWER DIVISIONF UPPER DIVISION UNDERGRADUATE - STUDENT

STU PENT
STUDENT

s. $446 /$ STUDENT s. $446 /$ STUDENT $~ \& ~ 446 / S T U D E N T$

: UNIT DEPARTMENTAL COSTS ANALYSIS
OF THE CHEMISTRY PROBPAKS
OF INSTITUTION 1109 .
HEADCOUNT STUDENT UNIT COSTS:
ACADEHIC YEAR COST pEE UNDERGRADUATE STUDENT: ${ }^{2}$
COST PER COST PER , COST, PER
LOWER DIVISION UPPER DIVISION UNDERGRADUATE STUDENT STUDENT STUDENT.

48.2

SUMMER TERM-COST PER UNDERGRADUATE STUDENT; COST PER . COST PER . COST PER

- LOVER DIVISION UPPER DIVISION UNOẺR'RREDUTE STUDENT:

STUDENT
STUDENT
c
c . 283/STUDENT \$ 497/STUDENI $\$$ 390/STUDENT
THELÚVE-MONTH YEAR COST PER UNDERGRADUATE STUDENT: COST PER. ${ }^{\circ}$ COST PER. . COST PER LOWER DIVISION, UPPER DIVISION UNDERGRADUATE.
 AB.4-6 " COST PER MASTERS STUDENT: ACADEMIC YEAR. SUMMER TERM
s $159894 /$ 33.s. $14457 / 46$ 12ㄹMONTH YEAR

ER
OR S' $4845 /$ STUDENT. S ' $\angle 4 / S T U D E N T$ S 5160% STUDENT: 18.7

COST PER DOCTORS STUDENT:
ACADEMIC YEAR. \sim SUMMER TERM -12-MENTH: YEAR

OR
S 4397/STYDENT 323/STUDENT $\$$ 472ISSTUDENT

NUMBER- OF REPORTED ACADEMIC YEAR FIE STUDENTS:

* LONER division UPPER DIVISION MASTERS LEVEL DOCTORS LEVEL

NUMBER OF REPORTED SUMMER TERM FIE STUDENTS:

NOTE:
 THE UNDERGRADUATE COSTS FIGURES USED 'BELOW ARE *RAN* PARTIAL PROGRAM COSTS, NOT =ADJUSTED FER EXPECTED -CHANGES IN STUDENTS DECLARED MAJORS.

ACADEMIC: YEAR COST PER UNDERGRADUATE STUDENT: COST PER $~ C O S T$ PER COST PER LONER DIVISION UPPER DIVISION UNDERGRADUATE STUDENT STUDENT STUDENT

OR

O/STUDENT
\$
O/STUDENT

SUMMER TERM COST PER: UNDERGRADUATE STUDENT:

DEGREE UNIT COSTS:

ACADEMIC YEAR COSTS:

THELVE-MONTH YEAR COSTS

F́ULLTIME EQUIVALENT STUDENT, UNIT COSTS:

48
NUMBER' DF. REPORTED ACADEMIG YEAR FIE STUDENTS:

NUMBER OFF' REPOŔFED SUMMER TERM" FTE S STUDENTS:

NOTE: ${ }^{\circ}$ THE UNDERGRADUUTE COSTS FIGURES USED BELOH -ARE *RAN* PARTIAL PROGRAM COSTS, NOT ADJUSTED FOR expected. changes in students declared hajors.

ACADEMIG YEAR COST PER UNDERGRADUATE STUDENTZ
\therefore

DEGREE UNIT COSTS:

academic yéar costs:

为

INSTITUTIONAL SUPPORT COSTS
INSTITUTION 1109
PROGRAKS IN CHEMISTRY
table 9.1

INSTITUTIONAL EXPENDITURES

FROM UNRESTRICTED FUNDS

INSTRUCTION AND DEEPARTKENTAL RESEARCH LIBRARIES

STUDENT SERVICE'S

4950068
11802369 GENERAL ADMINISTRATION AND
GENERAL INSTITUTIONAL EXPENSE
EXTENSION AND PUBLIC SERVICES
AUXILIIARY ENTERPRIŚSES
HOSPITAL

11380935
3158599
$12790265 \cdots$
16891125
\$ 132680197

INOIRECT CZISTS OF GRANTS AND CONTRACTS

PLANT OUPRATION AND HATENTENANCE
2641427
GENERAL ADMINISTRATION: \quad - 3950670
GRANT AṄD CONÍRACT ADKINISTRATION $\quad \cdot \quad \cdot 892936$
ĖDUGATIONAL BẼNEFITSS $\quad \therefore . \quad 436721$
USE OF BUILDINGŞ $\quad \therefore \quad \therefore \quad \therefore \quad 668902$
USE OF EOUIPHENT
OTHER

460519° 80572.

LIBRARIES

allocations of libraries costs to programs

indirect costs of grants and contracts

L ALLOCABLE COSTS OF LIBRARIES

5 -4833072

- INSTITUTIONAL WEIGHTED STUDENT ALLOCATION FACTOR:

$$
(1 \times 26715)+(\} \times .7809)=42333
$$

baChelors program allocation:

$$
\begin{aligned}
& \therefore x: 361 \cdot 31 /(42333)=\quad .0085 \\
& \therefore 0085 x=4833072=5 \quad 41254
\end{aligned}
$$

masters program allocations

DOCTORS PROGRAM ALLOCATION: :

$$
\begin{aligned}
& -0037 \times \text { s: } 4833072=\text { s. . } 17810
\end{aligned}
$$

BACHELORS PROGRAM COST PER STUDENT:
EASTERS PROGRAM COST PER STUDENT:
doctors program cost per student:
$5^{\prime} 114.7$
s 228
s. 228°

STUDENT SERVICES

ALLDCATIONS OF SIUDENT SERVICEST CÓSTS. TO PROGRAHS
TOTRL STUDENTSERVICES EXPENDITURES . 3.4950068 INPIRECI COSTS OF' GRANTS AKD COHTRACTS

ALLOCABLE COSTS af STUDENT SERYICES

273024

4672044

STUDENT SERYICESCOST PER STUDEATE
(5 4677044)/(34524) $=\$ 135.47$ /STUDEHT

BACHELIRS PROGRAK ALLOCATIOK:
s $135.47 \times 361.3^{\circ}=s^{\prime \prime} 48952$

HASTERS PAgGRAH-ALLOCATIDKE.

s $135,47 \mathrm{x}$
 $33=.5$

\circ
DOCTORS PROGRAK ALLOCATIONz
$\$ / 135.47 x \quad .78=s \quad 10567$.
: BACHELORS PROGRAM COST PER STUDENT: _ 135
hasters prograh cost ${ }^{\text {P}}$ PER studentz.
s- 235
doctors progerah costoper stuaght:
s 135

TABLE 9.5

PLANT OPERATIDN AND HAINTENANCE

ALLOCATION OF PLANT OPERATION.AND M/ ANTENAKCE COST TO PROGRAKS
LESS. $\frac{1481791 \text { SQ. FT. }}{4452672 \text { SO. FT. }}$

TOTAL SPACE.
NON-COSTING:TO PD+H
BASIC SPACE FOR COST ALLOCATION

- AUXILIARY ENTERPRISES PO+K-COST:

$$
642721 \text { SQ. FT. } 4452672 \text { SO. FT: }=.1443
$$

- $1443 \times 11802369=5$ F 1703613 FRR AUXILIARY ENTERPRISES

INTERHEDIATE PLAHT OPERATION AND. MAINTENANCE FIGURE:

LESS
11802369 BASIC PLANT OPERATIOK AND HAINTENANCE FIGURE
170363 AUXILIARY ENTERPRISES PQ + FIGURE*.
S. 10098.756° INTERHEDIATE POTH FIGURE

HOSPITAL POHM-COST:

349606 SQ. FT:/ 4452672.90: FT. $=.0785$
$.0785 \times 511802369=3926675$ FOR HOSPITAL
REOUCED PLAHT OPERATEON AND BAINTENANCE FIGUREZ

s. 9172081 REDUCED POHH FIGURE

NET PLANT OPERATIDN AND HAINTENANCEFIGURE:
s 9172081 REDUCED PLANT OPERATION AND HAINTENANCE FIGURE LESS

THBLE. 9.5 CONTIINUED

I ALIGCKTION TO THE CHENISTRY OEPARTHENT:

DEPARTHEFTAL. ALLDCATION FACTER:

$$
(2 \times 361)+(3 x-.33)+(5 x \quad 78)+(2 x+839)=2889
$$

- BACHELORS PROGRAH ALIQCATIDN:

$$
\left(2^{*} \times 361.3\right) /(, \quad 2889)=2502^{\prime}
$$

$$
2502 \dot{x} s 252669=\$
$$

HASTERS. PROGR.AH ALEDCATION:'
: $43 \cdot x$. 33 / $/\left(28^{\prime} 89\right)=: 0343$
.0343 x s $252669=5 \quad 8659$.
π

GACHELERS PROGRAM COST PER STUDENT*
HASTERES PROGRAH COST'PER STNDENT: DPCTORS PROGRAK COST•PER STUDENT̈z

-始
5 sit62
s 437

- TABLE 9:6

GENERAL ADMINISTRATION AND GENERAL INSTITUTIONAL EXPENSE | ALLOCATION OF |
| :--- |
| GENERAL ADMINISTRATION AND. GENERAL INSTITUTIONAL EXPENSE |
| $: ~ T O ~ P R O G R A M S ~: ~$ |

\$ 1138"0935. GEXERAL EXPÉNSE FIGURE

LESS. 4843606 GENERAL INDIRECT COSTS OF SPONSORED RESEARCH
$\$ 6537329$ GENERAL COSTS LESS GCC INDIRECT COSTS

NET GENERAL COST:
s 12790265 AUXILIARY ENTERPRISES EXPENDITURES 16891125 HOSPITAL EXPENDITURES
$\$ 29.681390$ SUM ONE
s 2968130
6682480SV EDUCATIONAL AND RESEARCH ACTIVITIES EXPENDITURES FROM UNRESTRICTED FUNDS
s 96506195 SUM Tu D
is 16891125 ives 96506195)
.1750 Xs $6537329=1144205$
s 56537329 1244205,
s.53\%3124. NET GENERAL COST TO BE ALLOCATED

TO EDUCATIONAL, PROGRAMS

19-0-1
INSTITUTION, 1109
CHEMISTRY DEPARTHENT
STUDENT APPOINTMENTS COSTS FROM UNRESTRICTED FUNDS

$$
\begin{array}{cc}
\cdots & \\
\text { TOTAL } & \text { AVERAGE PER } \\
& \cdots \\
& \cdots \text { GTUDUATE }
\end{array}
$$

TOTAL GRANAT AND CONTRACT ©IRECT EXPENDITURES IN THE DEPARTMENT

DEPARTHENT CHAIRHANS ESTIMATE OF DIRECT EXPENDITURES RELATED TO:

508071

EDUCATIONAL PROGRAMS:
THE UNDERGRADUATE PROGRAM $\quad \because$
TĤE MASTERS PROGRAM

THE DOCTORS PROGRAM , . . $\$$
total
RESEARCH PROGRAMS
((NON/EDUCATIONAL):
OTHER PROGRAMSG-PUBLIC SERVICE (NON-EDUCAT(IONAL):

ESTIMATED PROGRAM COSTS. ASSUHING THAT 90% OF GRANT AND CONTRACT EXPENDITURES: ARE RELATED TO EDUCATIONAL PROGRAHS:
THE UNDERGRADUATE PROGRAM

TOTAL
s. $\quad{ }^{c} \quad \because_{0}$

0
0
0
0
0

0

0

PROGRAM COSTS EXPRESSE'O IN DOLLARS PER STUDENT YEAR

$=$

GRAND TRTALS*

* NOTE: GBAND TOTALS INCLUDE DEPARTBENTAL COSTS, INSTITUṪIONAL SUPPORT COSTS, APPOINTHENTS COSTS AND GRANT ANO CDNTRACT. EXPENDITURES.

GRIDCOS KLETPIE REGRESS YOH.
FHLE WREG TCREITION DATE

GRROCOST HILTIPLE REGRESSION

k: \because

CDRREIETIOR COEFFICIENIS:
T VIILE DF 99.00000 IS PRIKTED
IF a CCEFFICIENI CAKNDT. BE COMPUTED.

GKDCOUSHLLTIPEE RETRESSION.

CORRELITIOR CEEFFI CIENTS.

E VALUE OF 99.00000 TS PRINTED,
IF A COEFFICIENT CARKOT BE COMPVTED.

-GRXDCDST HLETIRIE REGRESSIOK

[^0]: -.(6) McCarthy, Joseph L., and Garrison; William.D., UThe Costs and Benefits of-Graduate EXpucation: The Estjmation of Graduate Degree Program Costs - Supplement with Procedural Details and Illustrative. Calculations,". Educational Resources Information Center, (ERIC), Washingtón", D. C: 20202.

[^1]: ***This is the Rregface to the parent GRADCOST III Report.

[^2]: 13.: Area in square feet of the "institution'e assignable area used for Instruction and for Classrooms, Class Laberdutories, etc., In the total institution.

