TITLE
INSTITOTION SPONS AGENCY pub Date
GRANT
NOTE
EDRS PRICE DESCRIPTORS

IDENTIFIERS
ABSTRACT
Mathewatics for Junior High School, Pilot, Edition, Chapter 10. Boston Dniv., Mass.
National Science Foundation. Washinğ̈oñ, D.C. 75
NSF-SED-74-18105
"26p.; For íelated documents, see SE 024 279-283
MP-\$0.83 HC- $\$ 2.06$ Plus Postage.
Activity Units; *Curriculua; Instructional Materials;
*Junior 日igh_Schools: Hathematics Education:
*Hathematics Naterials; *Frokability; Problen Sets;
*Secondary School Mathematics: *Textbooks
*Boston Oniversity Mathewatics Project: Estimation

This'bock contains the tenth:chapter of a pilot matheratics sequence for the seventh and eighth grades. The content of the sequence is to serve as a vehicle for the development of relevant computational skills, mathematical reasoning, and gecmetric perception in three dimensions and is to, reflect the application of mathematics to the social and natural sciences. The material is divided into five'types of sections: (1) activitics: (2) shart reading secticns: (3) questions: (4) section's for the student with a, weaker tackgrcund: and (5) sections for the strongly ctivated student. The material in chapter ten includes protable and improbable) events. (K)

Reprod uctions su**
from the original docunent.

1
 CONTENTS

CHAPTER 10 PROBABLĖ AND IMPROBABLE EVENTS

1. Pie Charts

2 Soda Tastihg
3 Equally Probable Events
4 Counting Equally Probable Évents
5 Averages
6 Which Game Rile is Best?
7 Bar Graphs
8 - Comparing Game Strátegifs
9 Expectations
10 Estimating Fractio ${ }^{\circ}{ }^{4}$ of a Line Segment

Except for rights for materials reserved by others, the Copyright owner hereby grants 'permission without charge to ${ }^{-}$ domestic persons of the United States and'Canada for use of this Work in the English language in the United States and Canada after September. 1, 1977. For conditions.of use and permission to use the Work or any part thereof for foreign publications in other than the English language, apply to the Copyright owner or publisher. Publication pursuant to any permission shall contain an acknowledgement of this copyright and the following statement:
"Some of the materials incorporated in this work were developed with the financial support of National SCience Foundation Grant No. SED74- 8105. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors"and do not necessârily reflect the views of the Foundation. The materials under free license const fute an incomplete pilot edition and their publicat in * ". does not imply approval or disapproval of 6 the original copyright owner. Any revisions. of such material are the exclusive responsibily of the revisers."

An opinion poll was taken tofind out if the President did his job weil. At"one time 65 percent said "yes" and 35 percent said "no." A year later another poll was taken. This.time the answers " were 80 percent "yes" and 20 percent "no.".

The two pie charts in Figure 1 have the same information as the sentences in the above paragraph. Yet most people say the pie chart says it in a more convincing way.
is THE PRESIDENT DOING A GOOD JOB?

SECOND YEAR POLL

Figure 1

How are pie charts made? How are the angles corresponding to the percentages calculated? The whole circle, consisting of 360°, corresponds to 100%. The angle corresponding to any given percent-
age is that same percentage of 360°. For example, the angle corresponding to 30% is 30% of 360°. As you have seen before, the word "of" calls for múltiplication. Thus
angle in pie chart $=$ percentage $\times 360^{\circ}$

1. Draw a pie chart that has angles corresponding to $25 \%, 15 \%$, and 60%.

The pie charts in Figure 2 indicate the percentages of households in the United States with 0,1 , or 2 or more television sets. No numbers for the percentages are given.

Figure 2

(a) Estimate the percentages of households with 1 television set during each of the four years shown:
(b) Estimate the percentages of households having two or more sets during each of the four years.
(c) Do you think that the total number of television sets decreased from 1960 to 1965?
8.
3. . (a) How can you calculate the percentage's on a ple. chart after measuring the angles with'a•protractor?
(b) Check your estimated answers to Quèstion 2 by actual measurements and calculation.

How accurately can you measure an angle on your protractor? If, for example, you can only read angles to within 1°, there is no. reason to calculate angles.to a higher accuracy. ${ }^{\circ}$ Decide how, accurately you can measure angles with your protractor. Then carry out the calculations in the following. questions to only that accuracy.
4. The following table lists the percentages of families of a given size in the United States for the year 1972.

Number of Persons - Percentage

(a) Calculate the corresponding angles and draw the pie chart.
(b) How do you explain the fact that the percentages do not add up to 1.00% ?
(c) Did this fact affect your pie chart?
5. The percentages in the following table stand for the federal government's income for '1970. From this data an artist constructed.the pie chart in Figure 3. Find the error he made in constructing this pie chart.

Individual income taxes
Corporation income taxes
Social insurance taxes

- Excise taxes

Customs, estate, and gift taxes
Miscellaneous taxes

Figure 3

1970 FEDERAL GOVERNMENT INCOME

6. The table below lists the number of cars produced in the United States by each company during 1972. Make a pie chart showing the percentage of cars produced by each company.

American Motors Corp. 279,132
Chrysler Corp. $\quad 1,367,354$
Fore Motor Co.
2,400,871
General Motors Corp. . $4,775,344$
Checker Motors Corp.

$$
\frac{5,504}{8,828,2,05}
$$

SECTION 2 . SODA TASTING

Of course-you can tell the dfference between a cola, an orangesoda, and a lemon soda! But which of your senses enables you to tell the difference? Is it by seeing the different colors? Is it by smelling the different odors? Or is it by tasting the different: flavors?

Whenever you are faced with many questions it is best to answer them one by one. In this experiment you will be given a sample of one of these sodas and you will be asked to tell what flavor it is. However, you must close your eyes and hold your nose until after you have made your giuess. In this way you will get an idea of how important taste is alone.

A student volunteer will record what flavors each of you will be given and what guess each of you will make. A convenient way to record this information is to write the name of the student, the initials of the soda he wás given, and what he guesséd. For example, John Lamb was given cola and guessed "orange." This would be recorded as

John Lamb (C, O)

It is important to keep the correct order. Reversing it would change the meaning. The class results will be distributed after the experiment is completed:

7. Make a tally of all the time, when students were given cola. How many said it was cola? Orange? Lemon soda?
8. From the tally of guesses when cola was given, what percentage of students guessed cola? What percentage guessed orange? What percentáge guessed lemon?
9. Make a pie chart of your answers for Question 8. What percentage guesseḑ* correctly? Incorrectly?

10: - What would you expect the pie chart to be like if. the whole class could recognize cola by taste alone?

Assume that nobody in the class could recognize the cola by taste alone. They just said "cola," or "orange," or "lemon"whatever came into their heads first. What do you think the pie chart would look like?

;
 SECTION 3 EQUALLY PROBABLE EVENTS

If you toss a coin, is it more likely to come out heads or tails? If the coin: is bent, it may be more likely to land on one side than on : the other. But for a well-made coin wé see no reason why one side is more likely to be up that the other. Whenever we see no reason why. one event should be more or less likely than another, we say that the two events are equally likely or equally probable. (An "event" here is anything that happens.).

We think of heads or tails as equally likely events when we toss one coin. What is likely to be the result of, say, 1000 tosses? We cannot predict exactly what will happen because each toss, can? go elther heads or tails. But we can feel pretty sure that the result will be close to half being heads-and hàlf being tails.

Now let us turn our thoughts to actions that can have three different results. Imagine a bag containing red, blue, and green marbles. If you pick one marble it may be red, blue, or green. "Suppose there is an equal number of marbles of each, color in the bag. Also. as'sume that all the marbles are the same size and weight and 'are well mixed. Therefore we have r.y'reason to believe that it is more likely to pick a red marble than a green or a blue one. 'Agàin we say that it ${ }^{\prime}$ is equąlly probable to pick à red, a blue, or a green marble.

If we were to pick a marble repeatedly, we could expect about a third of the total to be of each color.

12; (a) Supposé you throw a perfect die. Are you as likely to throw a ore as a six? Why or why not?
(b) You throw the die many times. In what fraction of the throws is each number likely to appear.
(c) 'Make a pie chart to illûstrate your answer to part (b).
13.' (a) With a perfect dis it as probable to throw an even number as it is an odd number?
(b) If you throw the die many times what fraction of the throws will turn out even?

- (c) Draw a ple chart to illístrate your answer to part (b).

14. Suppose that a friend tells you that she can predict whether your next throw of a die will produce an even or an odd number. You challenge her by asking her to predict the result of 100 throws. She turns out to be right in about half of them. Do you now believe her?
15. A true-false test in French has an equal number of true and false statements. 'A student who does not know any Erench
takes the test. What fraction of the answers is, he likely to get right?
16. Suppose that with closed eyes and nose it is equally probable to think of the cola as cola, orange, or lemon: Draw a pile chart of the results.
17. Compare your pie, chart for'Question 16 with the pie chart for Question 9. Can you prove that the class can recognize cola by taste alone?
18. Tally all the times when students were given orange soda. How many said it was orange? Cola? Lemon? What are the percentages? Was -your clos any better in recognizing orange soda?
19. Repeat the entire analysis of the class data for the case of lemon soda. What do you conclude?

Let us start with a single toss. In this case heads (H) or tails (T) is equally probable. Now we look at two tosses. There are four possible results: two heads, 'a head followed by a tail, a tail followed by a head, and two tails. In Table 1 these results are - conveniently written in shorthand. The łeftshand letter of each pair stands for the result of the first toss.
*)
table I
(H H) $\quad(\mathrm{H} T),(\mathrm{TH}){ }^{1}(\mathrm{~T} T)$
1

For each toss H and T are equally probable. Furthermore, the result of the second toss does not depend on the result of the first toss. Therefore, each pair of results in Trable 1 stands for equally probable events.

There is only one way to get two heads, but there are two ways to get one head and one tail. This is Indicated by the numbers in Table 1. Therefore, it must be twice as likely to get one head and one tail as it is to get two heads.

Let us go one step further and count the number of equally probable results of three tosses. This is done in Table 2.

TABLE 2
 1

Again, the letter on the left stands for the result of the first toss. Note that there are three ways to get two heads and one tall, but only one way to get three heads.. Thus it is three times as likely to toss two heads and one tail as three, heads.

We could go on counting equally probable results for larger and larger numbers of tosses, but this Is not necessary. Our rer
sults so far suggest a patterr that allows us to find the answer for larger numbers of tosses: Table 3 is a summary of our results so far and the extension to latrger numbers.

table 3

Number of Heads

"Zero heads" mearts all tosses turned qut tails.: Similarly, "one head". means that all the other tosses came out tails, and so on: Table 3 shows a clear trend: As the total number of tosses increases, it becomes much more likely'to have about half the tosses being heads than about all being heads:
(a) Figure out what should be the next line in Table 3 .
(b) How much more likely is it to get 4 heads out of 7 -tosses than it is to get 7 , heads?
(c) How much more likely is it to get 4 heads out of 7 tosses than it is to get 6 heads?
21. When you throw a perfect die, each number is equally probable to be on toup. Suppose you throw a pair of perfect dice.
(a) What are the equally probable combinations of the results?
(b) How many combinations are there whose sum equals 8 ? How many combinations are there whose sum is 12 ?
(c) How many times as 1ikely is it to throw an 8 as a 12 ?
SECTION 5 AVERAGES

н
The heights of 20 students to the nearest centimeter were measured and the results were

130	167	142	145	161
152	137	.143	165	.163
135	140	170	157	164
167	185	143	160	

- How can we summarize this information? Is there a single numbèr that can give us a general idea about the heights of all 20 students? One such number is the aver age. To calculate the average we add all the heights together and divide by the number of students.

$$
\text { Average height }=\frac{\text { sum of all heights }}{\text { the number of students }}
$$

We find from our calculation that the average height is 154 cm .

- Whenever we summarize a set of measures with a single number, such as an average, we lose some information. Knowing that the average height of 20 students is 154 cm does not give us as much information as knowing the height of each student. For example,
knowing only the average we could not tell how tall the shortest student in the class is. But in many cases the average provides enough information and is easier to remember.

22. Peter rolls 5, 1, 2, 5, 3, 4, and 6 with a die. What is his average score?
23. Use the following table to answer the following questions.

Farm Statistics

Year	Number of Farms (in thousands)	$\begin{gathered} \text { Farmland' } \\ \text { (in millions of acres) } \end{gathered}$
. 1930	6,546	987
1950	5,648	1,202
1970	2;954	1,103

(a) Find the average number of acres per farm for 1930, 1950, and 1970 separately.
(b) From the data given, de scribe what has been happening to the size of farms.
24. A bawling league of 8 teams meets once a week. Each team has 6 players and each player bowls 3 games.
(a) The top bowler on Team A had scores of 210, 230, and 181 during one week. What was his average score?
(b) Another player on Team A bowled a 173 and a 161 on the first two games. If his average for the day was 155 , what must have been his. score on the third game?
(c) During that same week the other 4 players on Team A had averages of 135, 160, 143, and 124; What was the-average for the whole team?
25.. In 10 rolls of a die, JQe averaged 4 points. Using the same rules, Buddy averaged 4.5 points in 20 rolls. Taken together, what: was the average number of points for both of them?.
26. " If Jim got a 96 and an 80 on two tests, and if 90 is an "A." what must he get on the fext test to bring his average up to an "A"?
27. Erika wanted to figure out her test average for the year. She had kept a record of her averages for each marking period. U'se the following table to find her test average for the year.

Maryting -Period\quadNumber of Tests Taken\quad Average

SECTION 6 WHICH GA'ME RULE IS BEST?

Here is a game for you to play with a friend. You each roil a die and use one of the scoring rules in Table 4 to find out how many points you get. For example, if you are using rule D, and you roll a 3 , you get 5 points. On the other hand, if you choose rule A and you roll a 3 , you get 3 points.

Take a fex moments to study the rules. Which do you think is best for you?

You must choose which rule you want to use before you start the game. Both of you may choose the same rule if you wish. The, object is to score as many points as possible,

TABLE 4

Points

The higher total score at the end of 20 rolls of the die wins. the game. Your teacher will record each person's score and the game rule used.

Which do you think is the best rule now that you have played the game? How sure are you?

Look at the class data. Were all the rules used? For the rules that were used, which rule do you think is best? What is the average score of all the students playing rule ${ }^{\circ} A$? What is the average score of all the students playing rule B? Rule C? .Rule D? Use these averages to decide which rule is best.

SECTION 7 BAR GRAPHS

\square
A student took a survey of 138 students in his school to find out what the most popular soft drink is. He put the results of the survey in a table.

$*$	Orange	Root Beer	Cola	Ginger Ale	
Number of Students	47	$\cdot 24$	\ldots	46	21

Another way to display this information is on a bar graph, as in Figure 4.

Note that the bar graph has.a title se that we know ${ }^{\text {What }}$ information is shown. Also note that the label "Number of Students" fis used to show what the numbers stand for.

A bar graph can also be drawn sideways if you prefer, as shown in Figure 5.

Figure 5

Either way the bar graph displays the same data as the table but in a way that makes the information easier to see at a glance.
28." The data in the bar graph in Figure 6 are projections based on a survey of 4000 Americans, twelve years old and older. Use" these data to answer the fdlowing questions.
(a) Approximately how many Americans fished in 1972?
(b) Ofthe four sports listed which iş the most popular?
(c) : About 10 percent of the total population goes bicycling.

About what percent goes swimming?

29. From the table below make a bar graph showing the number of people who. speak each of the five most commonly spoken languages.

Language .. " Number of Speakers

30. Gwendolyn took a survey of 150 students in her school. - She asked, "On the average, how much time do you spend on homework each night?" Her tabulated results are:

Number of Minutes	0	5	10	15	20	25	30	40	45	60	75	90
Number of Students	6	10	13	28	21	13	18	5	15	12	67	3

(a) Make a bar graph of the results.
(b) What amount of time was most frequently gilven?
(c) What percent of the students spend.more than 30 minutes on homework? Less than 15 minutes? 15 minutes through 30 minutes?
31. Tom and Paulyiele comparing thèir heights. Tom insisted that hé was much taller than Paul. Ta provet his point he graphed their hetghts as follows:
(a) Is Tom actually taller than Paul? . How many centimeters taller?
(b) The bar representing Tom's height is how many times as large. as the bar representing Paul's height?
(c) Tom's height is how many times as large as Paul's height?
(d) Make another bar graph that more accurately represents the comparison of their heights.

SECTION 8* "COMPARING GAME STRATEGIES

In all likelihood some rules for the game in Stection 6 were: choser by mere students than were other, rules. For exámple, yery few students may have chosen rule B. You already know from-your work with codes that small samplès are not reliable. To be able to; judge each rule you need larger samples. To get them, play each rule once! Then collect the results from the wholéclass.

Work with one of ydunclassmates. Roll a die tentimes and record your results in a tabive like Table 5.
\because TABLE .5

After you have rolled the die ten times, find the tolal score for each rule. Your teacher will make bar graphs to display the scores of the whole class.

What is the highest and lowest scóre for each rule? What each point you scored, which rule would you rather play? Why?
is the average score for each rule? If you were to win a peñy for

Look at the par graphs. Which rule has the greatest range of scores? Whitch has the least? For which rule do you think luck is mbst important? Why?

Is there a Yole that always gives a better score than other rules? Is it possible to win by using any of the rules?

SECTION 9 . EXPECTATIONS

©
Is there some way that you could decide which is the best rule without playing any games? One way to do this is to figure out what score you can expect on each game if you were to play the games many times.
"uppose you are using rule C (Table 5). You, roll the die many times and write down 'your score for each roll. If the dief is perfect, the numbers I through 6 are equally likely to come up. On what fraction of the rolls would you therefore expect to get a score of 18 ?

You recelve a score of 18 when a 4 comes up. A 4 is likely to appear $\frac{1}{6}$ of the time. Therefore, you would expect to get a score of 18 on about $\frac{1}{6}$ of the throws. On the other hand, you would expect a score of 0 on about $\frac{5}{6}$ of the throws. Why?

On a large number of rolls, say 6000; you would expect to get a score of 18 about 1000 times and a score of 0 about 5000 times. For 6000 throws, using rule C, you would probably, therefore, have a total score of about 18,000 points. This is an average of 3 points
for each roll. By calculating the expected number of points for each roll for the other rules, we can compare the rules and decide which is the best.
©
32. (a) Suppose you are using rule A. In what fraction of throws would you expect a score of 1? A score of 2 ?
(b) For 6000 rolls how many times would you expect a score of 1? A score of 2?.
(c) For 6000 rolls what would probably be your total score for rule A?
(d) What is the average number of points per roll for rule A ?
33. \sim What is the average number of points per roll for rule ' B ?
34. (a) F For rule D ', in what fraction of rolls would you expect a : score of 8 ? A score of 5? A score of 4? A score of 0?
(b) For 6000 rolls how many times would you expect to get each of the scores of part (a)?
(c) For 6000 throws what would probably be your total score for rule D?
(d) What is the average number of points for each roll for rule D ?
(e), Which rule has the highest expected ayarage for each roll? How does this agree with what you found in Section 5?
35. Which rule has the highest expected average for each roll? How does this agree with what you found in Section 5?

SECTION 10 ESTIMATING FRACTIONS OF A LINE SEGMENT

How well can people mark the midpoint of a line segment? Are they as likely to be off to the left as they are to the right? Is
it just as easy to mark the one-third point on a segment? Here is an experiment that will give some answers.

You have sheets of paper with the segmënts already drawn. On one sheet mark the point that you think divides esegment in half. On the other segment mark what you think is thenerthrd point from the left without looking at the first sheet.

Exchánge papersily wh classmate. USising a centimeter ruler, mark the actual onewaif or one-third points on the appropriate sheets. For each segmint measure to the nearest tenth of a centimeter the distance betwen the estimated and the actual points. This will tell'you the sike of the error in the estimate. (If your mark fell within 0.1 centimeter of the actual point, you can oonsider your ω mark to be correct.) If you made an error be sure to write down whether the mark was to the rigt pr to " the left of the actual point.
(a) How many students in your class marked the one-halif point correctly? How ming missed to the left? How nfany missed to the right?
(b) How many students in your class marked the one-third point correctly? How many missed fot the left? How many missed to the right?
(c) Of all the students who did not mark the one-half point correctly, what percentinge was off to the left? To the right? Show the class yesults on a ple chart.
(d) Suppose peopple were as likely to be off to the left as to the right. What would pie chart look like under this assumption? Is this assumption valid for your class? 。
(e) Of alf the students who did not mark the one-third point -
correctly, what percentage was off to the left? To the right? Again. show the class results on a pie chart. Are people as equally likely to be off to the left as to the right when making the one-third point ?
(f) How well did you, do? Did you guess the one-half and one-third points as accurately as your classmates.? Make bar graphs to display the errors made by the entire class. For the bar, graphs consider only the seize of error and disregard "whether it was to the left or to the right
(g) "How than students in your class had an error greater than yours? What percentage of the class is this?
(h) Find the percentage, of the class that had an error less than equal to yours. This is called the percentile rank... What is your percentile rank?

0 - 2

 Cis men3

6. Secondary Outcomes

There is no evidence that any attempts were made to survey teachers, counselors, or parents to determinempacts on attitudes and behaviors in these groups. Institutional change as a result of this program was also a neglecfed measure. It is not too late, however, to use these subjects.as "treatment" groups and compare attitudes with another group of controls. DRI has sent a letter to the counselors involved with the project to ascertain these outcomes, but has not yet received any responses.

An examination of percefved barriers, information needs, and facilitating factors, determined from responses to. direct questions, and confirmed by a survey of other pértinent literature, suggested the following major reasons for the relative lack of participation $\dot{\operatorname{of}}$ women in science careers in the twelfth grade women.

1. douots about combining family life with a science career:
2. lack of knowledge about how to prepare for a career in science;
3. perception of science career preparation as being uniquely long and difficultr;
4. Inadequate encouragement from adultis; and
5. Inadequate number of role models.

Although reasons 1 through 3 are major obstacles to career planning of any kind among young women, they are even more imporfant as obstacles to careers in science.

Ninth grade girls perceived different barriers than the twelfth graders. The ninth graders perceived the most important discouraging factor to pursuing a science career to be popular beliefs that girys are not capable of succeeding in science careers (51 percent) and discouragement by friends from entering school science courses (48 percent): By twelfth grade, the barriers were perceived difficulties in combining family responsibilities with the demands of a career (55 percent) and preparation for a career in science seemed to be Gery hard, long and expensive (47 percent). The forms used to obtain this information were not parallel, so direct comparisons cannot be made. The changes in percieived barriers at different "on-line" times, however, may further elucidate psychological mechanisms leading to occupational segregation. While these differing responses may indicate new, awareness of the difficulty of pursuing a science career, they máy also represent an adaptation (rationalization) to the social pressures indicated by the freshmen.
7. Materials and Dissemination

The project utilized three major types of materials. The Vocational Interest Profile (VIP) was used, as an intervention. The VIP is a guide to vocational exploration, and was designed to minimize sex-related responses by utilizing sex fair items. Consequently a female has about an equal chance as a male of being "sent to" any given occupacional family. The booklet Exploring: You and Your. Career is part of this package. An updarê version of this package is now available, entitled VIESA (Vocational Interest, Experience and Skill Assessment). The package is self scoredand can be completed in one class period.

The Career Guidance Survey was used as the outcome measure. The survey was taken from the Planning Involvement Unit of the . ACT Assessment of Career Development. The self report, survey, assesses the amourt of career exploration, occupational preferences, and certainty of preference. It is very short and easy to complete.

The development and/or validity and reliability of these instruments are reported by ACT. The survey appears to be very complete and adequately validated. Both of these areibeing distributed by Houghton Mifflin Company, Test Department, Box 1970, Iowa City, Iowa 52240.

The booklet Women in Science and Technology: Careers for Today and Tomorrow is self contained and excellent. It is easy to -read, with many pictures, and comprehensible in content, dealing with the reasons for the absence of women in science related careers, the types of careers available, compatibility with family life, and career preparation." This booklet may be ordered from ACT.
8. Costs

The costs to reuse the material are estimated.at about $\$ 1.00$ per participant for the VIESA packet; this includes teacher's guides and so on. The booklet costs about . 40 apiece.

We do not know the price of the Assessment of Career Development.

The booklet Women in Science and Technology: Careers for Today and Tomorrow is available for $\$ 1.50$ per copy.
9. Recommendations and Conclusions
-1. This study indicates that mailed material, in the absence. of other interventions, is not sufficient to change the - career preferences of qualified high scnool seniors.

The same must be concluded regarding the nonsex restrictive inventory and class discussions. In sum, while such interventions rizy be good, they are not, enough to couter action.
2. Some evaluation of the effect on the counselors . and parents should be conducted.
3. Because of the design and analysis, the outcomes of this experiment were conclusive and were reported with standard terminology. ' Since conclusive outcomes were the exception rather than the rule in this set of NSF experiments, the question is raised regarding the relative. efficiency of funding researchers with a background in experimentardesign rather than persons in other disciplines.
4. Because of the interesting differences in the . perceived barriers between the ninth and twelfth grade girls, we recommend study of the perceived barriers at.the time they are perceived rather than in historical retrospect.
5. The Assessment of Career Development appears to be a good vocational interest test and we would recommend its usage in.other projects.
6. The booklet Women, in Science "and. Technology: Cafeers for Today and Tomorrow is a well:prepared document that could be incorporated into a wide - variety of other caréer education programs.

L. "Increasing Wamett. in Science Through Reshaping Role Perception" Mary Báldwin College, Staunton, Virginia
Project Director: Dr. Domald Thompson
Project Amount: $\$ 99,681.98$
Educatiohal level: Post Secondary

1. Proposed project

The project was intended to test the hypothesis that more college women rill choose careers in scjence if there are women roje models. for them to cmulate; if carereoptions are made available to them througl mproves counscling; and if they can be assisted in developing self-confidence as women scientists through experiential learning. The specific aims of the project were to: . (1) increase the student's awareriess of careers in science open to women; (2) influence the student's attitudes in the direction of more favorable perceptions of such roles: (3) enable interested students to obtain direct experience in dreas of possible science careers through January term and sumer internships; and (4) organize the information obtajned about rarecr options into a permanent and ongoing file so that faculty and students at the participating colleges and.other interested colleges may readily retrieve this information.

Foùr women's, colleges--Hollins College, Mary Boldwin Collakje, Randoln! Macon !!man's College, anc Sweel Briar Cojlege--were to participate in an experimental program that ingluded several componentis.

Seminars featuring successful women scientists, were beld at Hollins College and Mary Baldwin College; exposure to a wideotaped package on science carcers was available at Hollins Cołlege, Hary. Baldwin Coliege', and Randolph-Kacon Woman's Colleget, aid a variety or internships in scientific careers were offered at all four colleges.

The seminars were to feature four or five participants who will be on one campus for approximately one day and then will go to the other campuses for the same period of time. During gachoroilege seminar, discussions were to be open to all students, and thenethe seminarians were to be available as resource péople in sciente classes and as consultanes for the students on an ind tidual bsis.

The content of the videotape presentations *was determitied by interviewiyg successful, women scicntists who were engag̣ed ifl careors which are highly related. to the fields of psyctrology, physies, o chemistry, biology, and mathematics. The project director vas to encourage the science and mathematics, faculties at follins 'fopicofe,' '. Mary Baldwin College, and Randolph-Macon Voman's Colnege to incorporate the videotaped presentations into their respective science courses.

Duting the course of the projecl, the director was to assemble detailed information on carcers in science for women. This information *as to be dissominated at the close of the project. On all campuses centrat ifes ware to be established, and these files would be made available to faculty and students for up-to-date information. In addition, increased opportunities were to be made available for stúdent extern'ships during the January term and during. the suman months. These externships were to include 160 hours of on-the-job experience at various industries and agencies involved in science-related endeavers for which credit would be given.

Evaluation of the project was to be made by analyzing the results of tests on attitudes toward sejence fond scientific careers given before and after the program at the four colleges and by crosscomparisons among all four cọlleges.
2. Implemented Project

The project was conducted moch as it was planned. Six seminars on science carecrs in industry, inf government, in environmental ficleds, in the behavioral sciences, and in medicine were held. A more general workshop on the image of the women scientist was. substituted for the workshop on teaching careers in science. All of the workshops vere well atecrided.

Thenty five of 30 viceoiapes wate pruduced írow interviews with successful wimen pcientists.. The content of these interviews centered around educational backgrounds, job procurerent, and personal and job satisfaction and dissatisfactions:- The seminars were alse recorded on tape. a total of. 147 stucents viewed at least one of these tapes, and many students viewed more than one tape.

One hundred nine women participated in the externships, the majority of these women experienced (more than one externship. tha daccommodate this mumber of women, 41 additional sponsors were recruited.

One element added to the project was the opportunity for senior students at Mary Baldwin who, at the time of pretesting, stated that they were undecided about their futiure career to attend a weekend werkshop on carcer decisions: Although four such workshops were planndd, only one was held. Six women attended. In addjtion, all of the first year-students vere given the opportunity to have the vocational interest inventory administered by the project inter preted by counseling persomel, and those who had them interpreted were invited back for further career exploration. One hundred ninety-seven women discussed their vocational tests with a counseldr, and 12 returned for further exploration.

Some difficulty in retaining the isolation of control and experimental groups was encountered. Specifically, in additioh to some loss of post experimental data, the group designated as control was switched from Swect Briar College to Randolph-Hacon because the faculty at RandolphMacon refused to show the vidrotapes., Consequently, some of the planned evaluation analyses could not be condacted.

Recruitment and sampling. Tha project was aimed at two distinct populations. Ono was all first year students at the four schools irrespective of their intended major. 1 . The other was the junigr class scjence majors in those schools. Presumably, the aim of including first year students was to introduce/influence them toward science-releted carcers, while the aim of including junior science majors was to reinforce their decision and to provide them with additional information regardirg their chosen carcers. In addition.to these two groups, many of the activities were open to the entire student body, and numerous individuals not in the target group participated in son of the events. Results, however, are only reported for the target group of freshmen and juniors.

Pre-jntervention data were collected on 87 percent of the first year women at fll four colleges and from 91 percent of the science majors from these schools. About 75 percent of the women pretested were surveyed one year later. Completed data were, available on 74 science majors and on 459 sophomores. Participation in the testing, as in all activities, was voluntary and representicd a self-select ecl sample. The size of the sample, however, sugests that the seifselection of the phetest and posttest sample did not dramatically af Fect the results.

Most of the information regarding projéct activitjes was transmitied through posters, the campus newspaper, and by faculty members. Invitations for the seminar were sent to science majors and a randomly selected group of first.year students.

3. Obstacies to Implemertation

In general, the priject ran asmoothly. The principal investigator reported some difficulties in coordinating data collection activitieśfetween campuses: Specifically, although good cooperation wh given by the college liaisons on the executive comaittee, the faculty members were not given release time to conduct project activities. Consequentrly, some of the act.jvities could not be conducted as they were planed. This appears to have a greater impact on the experimental nature of the results, rather than program impact. ${ }^{2}$

4. 'Project Personnci

The project director was Don:ld Thompson, Ed.D., on staff at the psychology department.) Dr. "Thonpson is an energetic, outgoing

Individual who appeared to be well liked by the students. He was well qualified to run the program. He was assisted by a research associate, Ms. Kinda" Levin, who was primarily responsible for data analysis, and a publicity specialist, Ms. Sandy Harris, who was primarily responsible. for logistical arrangements.
college. An executive committee included one representative from each member served as the liaison with her/his candinating committee, and each One of the most important role models used in the program was the female sented a wide paris the videotapes. The women reprothere were about 30 of fields, occupations, and lifestyles, e.g., government and industry we presenting the health fields, research jobs, Some were mar ied with children, some married without children and some were single. The role models also represented a range of degree levels and accomplishments. Many, if not most, of the women were Mary Baldwin t graduates, and currently resided in the southern United States. The. ? role models were consistently rated very favorably by the seminar. attendees.

5. Primary Outcomes

a.- Experimental outcomes. Most of the outcome indicators did not show a significant change ind pretest to posttest.period across the four schools. For example; the percentage of women pretested as first year students who intended to major in science remained constant at about 30 percent. No significant changes in the rankings on the 22 . categories on the Educational Interest Inventory, were noted, and no significant change's in attitudes toward science were observed, although a slight positive increase was apparent. The percentage of these women on whom measurements were taken that directly participated in the program is nos known, Therefore, it must be concluded that no changes in short-term indicators in the general target population was found.

> fry
activities sequently sequently, more datable results might be expected. Several indices. suggest that this is the case: At Mary Baldwin, there has been an overall increase in the number of science majors. - The number increased from 18.8 percent in the fall of 1975° to 34 .9 .percent in the winter of 1976 to 38.0 percent in the spring of 1977. That is, the number of students at Mary Baldwin who changed their proposed major from nonscience to science was significantly greater than the number who. changed their proposed major from science to nescience. These were Interest scores remained about constant over the period, but the attitude toward science score increased somewhat.

A more stringent way to examine the diract. affect of the programs. is to investigate the change scores of the actual participants and the effect of extent of participation, c.g., to look' at those women who actually participated in the project events. The results of the project showed an interrelationsinin between participation in various project events that was very strong and significant for science majors, and moderate but significant for first year students. In other words, approximately the same group of people experienced most of the

- project components. By infergence, many of the target group tested experienced few of the project events. Unfortunately, althdugh part 'ticipation was positively related to overall interest and attitude scores, only the sum of the.pretest and posEtest measures were wused. 'Specifically', the change in these scores was not correlated with participation, so it is impossible to determine whethes the relationships shown was a function of high initial scores.

Since participation in the seminars and exterphips were voluntary, attendance may als̃o be used as a criterion of success. The final report calculated that a total of 217 individuads from the entering class attended the seminars. These fibures, however, dramaticall \ddagger undestinate total seminar attendance, e.g., 40 from the target group of first ycar students and science majors attended the first seminar, at Mary Baldwin College, but the total attendance was 103. The total attendance for all of the seminars was 799, and attendance appearad to decrease only slightly over successive seminars. The extent of the attendance at the seminars would suggest that these met some need of science and nonscience majors alike. The student evaluations of the seminars indicated that the seminars were well received and thought to be valuable:

A total of 85 first year students and 24 junior science majors participated in externships Nay of the students expressed satisfaction by partictpating in multiple externships.

The videotapes here viewed and evaluated by, approximately 119 freskmen and 28 junior, science majors. The project data indicated * that the majority of the students felt the videotapes could direct undergraduates toward a career in science. Most of the comments about the videotapes concerned their technical quality. No.analysis of their affect on the outcome measures was reported. \therefore The scminars were also evaluated'by the attehdees. The majority of the attendecs responding to the quèstionnalre felt these seminars. . coůld direct a student toward science. A very small:minority felt they could direct students away from the careers in science. The participants lalso expressed satisfaction' with 'the externship experiences by rating it as rewarding.
of the project, bRl did not conduct an independent participant impact survey.
c. Site visit conclusions. The site visit was conducted. early in the life of the project at the time the first seminar was held.

One videotape was already completed and was viewed by one a a quifet setting, and was an "informal chat"with a woman scientist. It was felt that the videotape was sufficiently, well done to be usable and informative by many educators.

Two seminars were attended by the evaluator. The semintars were well atténded, went smoothly, and generated many questions from-the audience. The refreshment period allocated to talk to the role models on a one-to-one basis was also well attended, although the majority of the women attending the seminar did not stay for refreshments. The women had specific questions to ask the role models and it appeared that the conversations conld have lasited many hours if possible. During this time, the evaluator visited with 15 or 20 women. They were uniformly pleased with the seminar, and all secmed anxious for carcer infarmation from the role models. This.informal coffee hour appeared to be an important and highly successful aspect of the program that should be included wherever possible.

The role models also enjoyed the experience. The planning and coordination of their activities was well done.
6. Secondary Outcomss

There were several secondary outcomes of this project. The first is the additional information gained from the seminars. by the nontarget population. As noted preyiously, many sophomores and seniors attended. Their attendance may have been responsible either directly or indirectly for the increase in science majors observed at Mary Laldwin College. The project may have directly influenced. the nantarget attendees tö shift majors, or indirectly influenced a changing attitudinal climate.

Another secondary project impact may have been on the faculty members at the participating institutions. Specifically, the science. faculty was invited to all of the seminars, and at least sone attended. This may have increased their interest in science-related careers for women, and.increased their awareness of scfence-related career.options outside of teaching occupations. The individuals in'industry or private practice guiding the young wonenthrough their externships may have alst becóme more aware of science areas as appropriatc occupations for young women.

A fourth secondary impact may have been on the role models. Many of the role models became fyiends during the program, and

- increased their "network." In at least two instances known to the evaluation team, the relationship formed during the seminars has.' resulted in a productive working relationship between the role models.

In addition, Maұy Baldwin College made some alterations in its structure at least 'in' patt to continue the project activitiẹs. They have, formed a women's center that will be responsible for administering certain of the career edueation and placement acteritics. They now have a department to administer externships, and have

- decided to utilize externships as the primary placement activity. -Since the vocational interest inventory.indicated that many students were interested in the ficld of communcations, plans have been made to initiate a commuications demartment at the school. The .principal investigator sumed it up by commenting that the NSF program had . increased the institutional responsiveness to the needs of the ${ }^{\ominus}$ student.

7. Materiads and Dissemination

One of the objectives of the project was to organize the information obtained about career options into a permanent and ongoing file so that faculty and students at the participating colleges and other colleges may casily retrieve this information. The project obtained printed materials from 75 governmert agencies, businesses and proiessional organizations. These have been distributed to all of the schools. In addition, an annotated bibliography on science careers is being prepared for distribution by the project staff. No information on the extent they gre being used is available:

The status and/or distribution, plans of the videotapes are unknown to the evaluation team.

Another "product" of the project is the development of 41 externships that may be used by future students.
8. Program costs

It is extremely difficult to calculate program costs. The total cost of the program was approximately $\$ 100,000$. The number of individuals reached (if double counts are included) was about 1,000 , including total numbers attending the'seminars, the videotape viewing and the externships. The direct cost, then, was about $\$ 100$ per participant. This figure represents considerable underestimation of cost per actual participant because the same individuals frequently

Future replication of project activities might be "less expensivé. The cost of project operation could be reduced by one-third . if clear development tasks are deleted"and hal
director is sufficient. ($\$ 60$ per participant).

However, the primary operation costs of continuing such a project may be quite modest. For example, the travel experses and publicity of the role models for the seminars was estimated to be $\$ 9,000$. If the 800 attendance mark could be sustained, the cost would average about $\$ 1.25$ per attendee. The costs could be further . reduced if more students attended each semihar. Likewise; further use of the videotapes, externships and vocation counseling activities would likely be small, and possibly absorbed by the institution.
9. Summary and Conclusions

The project comprised of seminars, càreer counseling, externships and vidcotaped career information represented the most compre-. hensive intervention of the post secondary projects, The project was aimed at first year students and the junior science majors at four women's colleges, although all students from the schools could participate in some of the program activities. These activities represented an increased effort and modified focus of ongoing programs. which have now been institutionalized at Mary Baldwin College. There: was differfntial participation in the project: the campus of the praject director participated to the greatest extent; junior science majors vere more involved than freshmen; but'freshmen who anticipated a science major and those who did not were proportionally represented.

During the period of project -activities the percentage of declared scicnce majors increascd substantialiy dit, the campus where the activities were concentrated. Although this may have been due to multiple causes, it seems likely that the project activjities or their secondary impacts contributed to this effect. No specific actiplies can be implicated because the target group of freshmen and juniors declaring science majors remained relatively constant and shifts from.
\checkmark science to nonscience majors and.from nonscience to science* were not. significantly different. The project can al so be judged a success if rate of participation and participant satisfaction are used as criteria. In addition, many positive secondary outcomes resulted on the Mary Baldwin campus.

There were several parts of the project that were suggestive andinterestingly, but not completely, explored by thé project evaluation. These are:

1. The cooperative arrangement between relatively contiguous schools represented a promising, cost-effective approach to career information activities. Yet the evidence indicates that the school participated and benefited differentially. It is possible that the logistical barriers encountered may be surmounted once the actfivities were operational rather than experimental. On the other hand, personal
*This was treated as an equally probable event in the analysis although national data'suggest that azhift from science to nonscience is the more probable event.
commitment and responsibility of the institutional members may have more far reaching affects than the activities themselves..
2. The study had the notential for reinforcing existing. decisions. While it certainly performed this necessary function, it also provided careci infurmation for those women not choosing science-related careers. The overall effect on the campus where activities'were, concentrated•suggests' that activities may be 'beneficial to both groups.
3. The externshíps represented a unique component of this project, and, in.general; served to enhance career conmitment among the junior science majors. In addition, such externships provide a close, more realistically based relationship between the community and the colleges that should, serve both to increase carcer awareness on the part of the faculty and to increase the employability of its, graduatest
4. The most unfortunate part of the experiment was, its. failure lo indicate the effects of exposure tokproject activities in order to provide an. indication of necessary level of effort needed tp reverse the flow of women away fron science majols. In this experiment, as with almpst all naturalistic experiments, no reasons for the increase in science majors could be postuhate from the experimental results, e.g., the differential effects of project activities on - attitudes was not determined:
5. Many of the project activities, suah as the externships, eareer maty. 1 and videotapes are being continued in the absence of NSF fundin?
6. The fact that role models were graduates of the local colleges propably conhanced their effect, e.g.,; the majority of the . role models had graduated from Hollins or Mary Baldwin. This likely increased student identification with the lle models and their success scemed attainable.
7. The affect of the additional career counseling is not. clear.; e.g., its influence on freshmen was not analyzed. In addition, the low, attendance at the weekend. seminar on career counseling and assertiveness is not discussed. The lack of entbusiasm on this topic is interesting in. 1 ight oftake good reception of the seminass and externships.

CHAPTER III
 PROGRAM OBSERVATIONS ANUD COMPaRatIVE analysis

Although aimed at science-related careers, many of the recommendations of this report, especially at the primary and secondary school levels, apply equally to all nontraditional jobs, especially those that are highly technical. Therefore, the ,authors feel that the same recommendations may apply io many interventions designed to increase the awaremess of women regarding employment alternatives and options and to increase their participation in many nontraditional careers.

The projects described, in this report were aimed, in general, at-motivating and reinforcing decisions to enter professional careers in sciencé, for preparing effectively for those careers, and for removing barriers to the attainment of those aspirations. All of the scientific and engineering positions described in the materials developed by these projects required at least a college degree, and most required advanced degrees including a doctorate. On the whole, those woman receiving doctorates in science-related fields are productịvely and continuously employed, and salary differentials between men and women is less than men and women with less education. That is, it appears that a Ph.D. may be an "equalizer." Since these women may also serve as visible examples of the employment potential of females, they may serve to increase the aspirations of other equally talented women. Therefore, it would seem desirable to increase the proportion of women in this category. Since the recommendations may only apply to a small number of women, they are treated independently in this report. The recommendations incorporate the evaluators' observations, derived from a comparative analysis of the projects, andwhíould be considered as hypotheses to be tested since.definitive conclusions could not be made from, the present projects.

Although'this report has concluded that there is probably a higher success rate to be expected by funding programs for high ability, highly motivated groups, and has recommended concentrating on reinforcement programs for these people, there is no evidence that the need is not greater amông low motivation, low self-esteem groups. Assuming these grôups are larger, it is possible that ohe potential output would be greater even though the. "success rate" may be lower.

- Moreover, the consequences of adequate science and mathematics background and awareness of broad career options may have widespread impact on women in the society. For example, comprehension of mathe-. matic and scientific principles may serve to "demystify" a technologienvironment and decrease a sense of helplessness and lack of belf-confidence. Further, the acceptance of nontraditional career options, even for those not choosing to pursue them, may create a more supportive environment for those who do choose them.

Finally, a number of nontraditional nonprofessional sciencerelated jobs exist which, for many women, would represent both economic and social benefits: electronics-, video-, sound- or flight-technicians, computer operators, highly skilled labor, etc. These are jobs that require science-oriented preparation and contribute to the emerging role of women as productive partners in providing highly specialized suppórt skills in a technological society. Although these positions do not usually require college degrees or the same high degree of academic learning ability, they do fequire early exposure and commitiment, continued encouragement, and’special training. They represent improved earnings and more respected skills than many traditionally female jobs. - For these reasons it may be just as desirable to increase the number of women participating in these careers. Reçommendations concerning career education programs are given separately in this report.

Reentry is a critical area for increasing the participation in science-related occupations, e.g., many more women are qualified for these occupations than are currently employed in them. 'For example, the Scientific Manpower Commission reports thaf women earned about 35 percent of the bachelor's degrees in mathematics between 1948 and 1973, 25 percent of the master's, degrees and 10 percent of the doctorates. Far fewer at each degrée level are employed, and the underemployment appears to increase as the level of degree decreases. Approximately 87 percent of the Ph.D. recipients in math are employed, but only about 28 , percent of the master's. degree recipients and about 31 percent of the bachelor's recipients are working in math related occupations. Similarly, the pool of women qualified to be employed as chemists is about 20 percent of the total pool, but only about 8 percent of the working chemists are female. The percentage of working Ph.D. recipients may, be higher than that of lower degree recipients only because a greater percentage of them are continuously employed.

Clearly, underutilization αf females in the economic sector Is a widespread problem. In fact, In view of the pool of qualified women, it may be mare imperative to address the reasons resulting in their underutilization and to develop remedial interventions than to encourage more women to prepare themselves for these careers. Consequently, reentry programs, designed to meet the specialized' educational and emotional needs of all women, professional or not, are discussed in a separate- section.

A. Professional Careers--Observations From the Projects

Among the objectives of this contract was the examination of the results occurring across projects in order to isolate observable patterns by the type of intervention, types of materials, age groups and other variables that might have relevance in the implementation of similar projects. This analysis may be called program strategy analysis or comparative analysis.

Unfortunately, none of the projects proved to be effective as judged by rigorous statistical methods, either because of the problems in design, control group implementation, and outcome measures, or because the treatment.actually had no effect. .Therefore; the evaluation team employed a "preponderance of evidence" criteria for judging the effectiveness of a project. That is, some combination of the statistical results, other nondesign outcomes such as experiences with a roughly comparable group, the opinions of the participants, and our own impressions was used to judge whether a project was effective. Under these conditions, even if "success" was indicated, no causal reason for the success could be determined. Consequently, commonalities between the more successful and less successful projects were explored. Because of the experimental limitations on the conclusions, theseobservations should be treated as hypotheses to be tested, and not as recommendations.

Even when statistically significant results were obtained by the experiments, these were frequently difficult to interpret and place in perspective, The difficulty was encountered under several circumstances. First, frequently a multitude of items were used in the evaluation instrument, but only a few items were significant. Furthef, when a variety of outcome measures were used, some of the significant outcomes may have been interesting and/or beneficial, . but not directly relevant to encouraging women to choose science-related careers. A third difficulty was when different "control" groups I indicated different results, such as with the University of Kansas study. A fourth, difficulty was the probable Hawthorne effect, where the novelty of the intervention may have skewed the results. On the other hand, multipleyear projects (University of Oklahoma) were difficult to analyze because thë effects may have been cumulative and not directly related to the segment that NSF sponsored.

- Therefore, the indicators used to èstimate effectiveness, were at best, only global measures, frequently not conceived of as part of the experimental design. Consequently, the reason for the m. outcome could not be conclusively determined. For example, the special math course at UMKC appeared to be effective in encouraging women to take subsequent math courses. However, the comparison group were those taking math courses the year before, and those taking a different math course the same year. Therefore, the interest in mathematics might be attributed to any of the following: (1) the
actual curriculum, (2) the method of instruction, (3) the additional tutorial help, (4) the all-female classes, (5) the influence of the instructors, (6) the "Hawthorne" effect, and (7) the "diffferences in the population that would sign up for the course.

The projects are described in three tables. Table 1 breaks down the 11 projects by the age of the participants, the sex of the participants, the types of treatment, and whether the treatment was available at different intervals (spaced), or given all at one time (massed). Finally, the outcome of the experiment is given. Table 2 lists the. products of each of the projects, and their potential applicability, and Table 3 contains a rough estimate of the cost to reuse that particular intervention and a subjective assessment. of its effectiveness.

The subjective assessment regarding the effectiveness is reported in three 'categories: probably effective, no effect, and possibly a negative effect.

The special math course offered by the University of Missouri at Kansas City (UNIKC), the workshop offered by the University of Oklahoma and the workshop offered by Michigan Tech for counselors and teacher's and the workshops at the University of Kansas appear to represent the most viable strategies. UNKC reported a much greater pércentage of women taking subsequent math courses, although no true control group was available for statestical comparison. Similarly; the University of Oklahoma workshop reported a higher percentage of women reporting that they would choose an engineering major than a noncomparable control group. The participants in the University of Kansas workshops reported more science majors than the year before, but about the same as the control.group composed of individuals who were invited to the workshop but did not attend. The counselors/teachers workshop, sponsored by Michigan Tech, reported a consistent, but slight, increase in awareness of engineering as'a career for women, and reported increased

- activities regarding these careers on a form that the participants) devised. Consequently, the commonalities between these programs that may have been successful are discussed.

The ACT nonsex restrictive vocational inventory, the MIT film, the Michigan Tech program for students, Queensborough's'. cassettes and slides, and Rosemont's program to update skills. reported having little effect when used as the primary intervention. Rosemont was included in this category because at the time of the report, only 25 percent of the seven participants had obtained jobs, and this appeared to be about average for women making some active effort to get them Gaucher and Policy Studies indicated that their project might have had a negative effect on the participants. Commonalities between these projects are discussed.

Some of the commonalities we observed and areas where we recommended further investigation are as follows.

$11 i$

TABLE i (continued)

Results
Probably' increased "number of women planning engineering careers (not adequately tested).

More planning taking courses in science but more control - plaming to take math -Significantly more women pursulng scitence cameers than women in prior year control; bui'same percent as women who were invited to workshop but did not attend.
'?

No significant differences.

No significant differences.

No significant differences.

No significant difference
in participants but may
have increased activity
in school community.
Not measured; daughters reported it, as positive.'

TABLE 2
PROJECT MATERIALS

Women in Science (Queen sborough)

Workshop Cùrriculún (Policy Studies)

College, graduate school.

Secondary

Interviews with six of top female scientists: mixed ethnic background and variety of lifestyles.

$$
\begin{aligned}
& \text { Mixture of job } \\
& \text { clusters and lifestyle } \\
& \text { alternatives. }
\end{aligned}
$$

American Association of Physics Teachers and NSTA distributing; Should probably be used I_{n}, conjunction wit'i other material except at graduate level-may be better at college level than secondary.

None.

TABLE 3
PROJECT COST PER PARTICIPANT

1. Concentrating on women who are already interested in science. In general, it is thought that projects providing support for women interested in science, and projects to remove barriers to the full participation of these women, are preferable to direct $\quad \therefore$ motivational projects to encourage women to change their interests for the following reasons:

- They are more easily justified in terms of providing equal opportunity and avoiding criticisms of reverse discrimination.
- They are less apt to result in unsatisfactory career choices.
- None of the projects observed appeared to be successfurl in changing attitudes.
- It is difficult to switch from a nonscience to a science area. That is, beyond the junior year in high school, compensating for inadequate math and science backgrounds is difficult.

Since the projects examined did not appear to be successful In changing occupational choices at the senior high levelfintensive support and information could be provided to those women Giving the necessary background, ability and motivation to pursue their exist-
ing interests. ing interests.

While there is not an established theory on the vocational choice patterns of women, there has been a growing number of studies in the area. Most of the literature appears to be in agreement that there are many shifts in both occupational interests and commitment to a career. However, the literature uniformly indicates that from preadolescence on the shift is toward typically feminine careers and away from nontraditional careers (egg., Angrist, 1970; Harmon, 1971). Consequently, interest should be defined very liberally, and should not be interpreted to mean an expressed career choice.

The kinds of support that may be helpful can come from a wide variety 'of' sources, and the most important source will be different for each age group. These support programs could include parental support, encouragement from teachers, peer support (both same and opposite sex), guidance counselors and from the institution as a whole. The range of possible forms these programs may take is virtually infinite and could include counselor workshops, special housing programs, special workshops for science/math teachers, or sex-segregated classes.
2. Concentratins on woren with above average aptitude and motivation. Realistically, professional careers in science-related areas require intellectual ability, an adequate background derived from math and science.courses, and more than average motivation. In fact, having completed advanced mathematics and science courses successfully is probably a good indicator of ability and motivation. Although there is a controversy about the measuring of aptitude and ability (Prediger and Hanson, 1976; Schmidt and Hunter, 1974), it seems feasible to determine whether individuals have at least average ability or are highly motivated by utilizing either stan dardized test scores, grade point averages, or the courses chosen and completed.

Many studies have shown a relationship between career commitment in general and measures of accomplishment and/or aptitude (e.g., Hoyt and Kennedy, 1958 and Tyler, 1964). Further, a higher level of aptitude.appears to be related to the choice of nontraditional careers, e.g., those occupations dominated by males (e.g., Astin, 1971). Consequently, it would appear that intensive and/or expensive programs should concentrate on women who have either a high ability or who have taken the necessary requisite course or overtly express an interest in science.

This hypothesis was substantiated by the projects: the ! more successful strategies/projects utilized a motivated population, while the ones judged less effective rdid not. For example, the Kansas workshops invited only women hat had been selected for admission to KU , Oklahoma University required active motivation to apply, as did Michigan Tech: Qn the other hand, the two studies categorized as "possibly negative" reported severe problems getting young, women of adequate ability; and one report contained reservations about the participants' motivations. The majority of the studies reporting no results had no special requirements regarding either the motivation or aptitude of the participants.

One indicia of motivation may be found in the participant selection procedures: University of Missouri at Kansas City, University of Oklahoma and Michigan Tech all had self-selection procedures; only those individuals who wanted to participate attended. On the other hand, some of the projects had mbre or less captive participation; the intervention was.administered in classrooms, or. the entire class, participated.

The self-selection, of course, provided a string experimental bias toward success, and mitigated any conclusions about the intervention itself. However, \$ince the aim of further implementation is to bias. the projects toward successful outcomes, voluntary participation may be a judicious procedure.
3. Using workshops as a format for the intervention. Although it is very possible that the selection procedures for the workshops was a greater determinant of outcome than the format, the hypothesis is proposed that concentrated "live-tn" workshops may be effective. These workshops may offer a wide variety of activities as'in the University of Oklahoma, Michigan Tech and KU projects, may be the more enjoyable and effective format to provide support and information for young women interested in science.
4. Encouraging participant interaction. Social psychology would predict that other persons sharing similar outlooks and attitudes could provide reenforcement for women choosing nontraditional careers and/or lifestyles. The projects provided some avidance for this assumption. The five-in workshop, where participants with similar interests spent concentrated periods of time together, provided a perfect environment to obtain these rewards. In the special math class, informal tutoring at the noon hour was available and provided the same opportunity. On the other hand, the larger class situations and/or media presentations were generally less successful and did' not provide an opportunity for . participant interaction. The Goucner project entailing basic science research did provide this atmosphere, but participants reported that they did not form any new friendships:
5. Using sustained contact periods. When the treatment did not require intense concentration and work, the longer periods of time for administration of the treatment appeared to be more effective, possibly because of the increased opportunity to make new friends with people sharing similar outlooks. The more successfull interventions appeared to require at least eight contact hours: It is possible that short "one-shot" affairs may not be sufficient to counteract existing cultural mores discouraging women from choosing 'science-related careers. However, since some ocher profefts of greater iengen did not appear to be successful, careful examination of related variables should be conducted. The length of exposure may be one of the reasons why the media products did not appear to have a demonstrable effect.

- 6. Usirig role models in as many situations as possible. Uniformly, role models appeared to be the most effective component of some of the projects and wert the primary material for the media products. The original connotation of a role model was a person in a position of influence that one could identify with; most of the projects did incorporate these younger women in mid-level positions. In one of the projects containing a mix of role models, the younger women were judged most effective by the participants. In this respect, then, choosing the role models closer in age and only slightly above the level of aspiration of the participants may be advisable.

The evaluation team, however, feels that there is also real value in depicting the most successful women of our time. Although
very few wen (or men) may be able to identify with these outstanding people, they demonstrate that a woman can "make it," they are a. ' source of pride for the women, and may serve as an inspiration. Consequently, a mix of age groups and levels of accomplishment (as well as lifestyles, ethnicity and so on) is recommended.

The area of concentration of the role models did not appear to have any impact; the more impoftant factor was that they genuinely enjoyed their work and their lives.
7. Using "hands-on" experiences. In many of the projects, various types of hands-on experiences were used. Very frequently, these were engineering or science projects. These activities were rated highly by the participants. They appeared to be most effective when they were group projecos, continuing over a period of time, e.g., when they facilitated the formation of social relationships. Also the active participation in these and other activities appeared to enhance the effectiveness of every kind of intervention.
8. Segregating some activities by sex. Although in theory, as well as in practice, sex-segregated classes might be considered counter productive since women live and work in a world with men, a consistent. comment on the part of many of the participants was that they preferred all-female seminars. This coment extended to a preference for female tutors in math. The young women commented that they felt more free to ask (what they considered) "dumb" questions, to appear as "bright" as they are, and to discuss their personal life and ambitions. Consequently, although a sad commentary on socialization and peer pressure, sex-segregated classes appear to be useful in situations where remediation skills or personal questions are involved. These classes, however, could incorporate methods to lead to more open discussions with male peers and parents, once the women have gained self-confidence and support from their samesex peers.
9. Emphasizing the social contribution of science. One of the myths of science-related careers, not directly dispelled in any of the projects we observed, is the absence of emphasis on social importance and social interaction in science careers, e.g., scientistsy engineers were frequently not' portrayed as persons with extensive social/environmental concerns and responsibilities who interacted with.the comunity. Since women are reputed to be very interested in social welfare, emphasizing the input of science to the well-being of society, and a deep involvement with people, might enhance the desirability of the profession. Moreover, the greater the number of scientists whose interests supercede "the testtube," the greater the potential impact of scientists on society in areas other than tecinnology.

Consequently, we would recomend, on the basis. of the expe rience gained by these projects, further examination of a format where able and motivated young women, having some interest in science, gather for a workshop having the ingredients of role models, hands-on experiences, and the opportunity for new iriend-
ships. This format is quite simplar to the existing Student Science Training Program,* which still does not have full participation by females, and has a demonstrated success rate in turning out scientists (Vidulich, Cnristman, Drake and Kirk, 1976), e.g., about 50 percent of the females participating in these prograps expressed career aspirations in sciencé.

Similar experiences could be provided for both college and graduate students. David (1971) concluded that "earning a doctorate is the factor that most equalizes the women to the men in science and engineering," in terms of employment, salary and contribution to their field (p. 222): However, of students entering graduate school, possibly twice as many men as women actually complete the degree. If the doctorate is an equaliziefactor in employment; salary and accomplishment, special programs to encourage completion (and to contribute to the supply of role models and female faculty. members) should be conducted. These programs might include female colloquium, particular speakers, support groups, internships, workshops and seminars or nationally conducted week-long seminars for female graduate students.
10. Removing institutional barriers to female participation in science careers. Although the NSF projects were not directly concerned with overt discrimination, many observations regarding the obstacles they presented became apparent to the evaluation tean.

Not only do women pursuing nontraditional careers encounter social barriers, they frequently encounter institutional barriers. Even those schools professing equal opportunity for financial aid, intern programs, etc., frequently have not adapted them to the special needs of women. This discrimination, and misinformation, starts very early and continues through her educational and job career, and has to be a discouraging factor even to highly motivated women having superior ability. For example, assistantships in science have positive effects on the junior and senior science smajqus. It not only serves as a financial aid. it is interpreted as a "vote of confidence" and serves to increase interest, exposure and expertise in their areas. Assistantships also provide additional encouragement to go to graduate school, and usually provide a closer relationship with a faculty member. Assistantships to declared science majors may improve the retention rate and result in more women attending graduate scinool in sciente. Yet disorimination
*The Student, Selience Training Program sponsored by NSF has the basic goal "of poviding talented students learning opportunities above and beyon those normally available in most formal science education prograns" (NSF, 1975). Typically this involves high school juniors living on a college campus for a period of time during the summer.

in granting fellowships is comon. For example, consistently less than 3- percent oi NASA fellowships, go to women (about twice the rejection.rate for females as male's), and about 18.7 percent of NSF fellowships went to, women in 1972-73 (Nies, 1976).
B. Career Education
<There are a virtual plethora of Droblems associated with current practices in career education. These include sex stereotyping of careers in Iiterature and media, lack of awareness of alternative careers and lifestyles, sex-biased counselinǵ, and so on. However, two áppear to be especially relevant for science-related careers.

Increasing the education in science and math has many benefits for all women, whether or not they choose a career in these fields. It allows for greater perceived control of their environment, and provides them with a background adequate for a wide yariety of careers. In the area of general career and science education, we recommend:

1. Differentiating between eareer education and programs to encourage women to choose science as a career. This conclusion is drawn from the recomendations to. concentrate on women who have already expressed an interest in science and/or who have taken the necessary courses by the senior high level. However, some general encouragement maybe necessary to obtain these prerequisites; e.g., . prior to that time, career education courses.for all students is important. Utilizing some of the media products and portions of the Kansas afd Policy Studies P olgrams to make young women aware that science is a career option and to encourage them. to obtain the necessary background (e.g , math and sçience) to keep those career options open is importent prior, to the senior high level; These programs could be done inexpensively," reach a large number of students, do not necessitate "special" programs for women, and become part of the career education classesf in the school systems. These programs could incorporate the "lifestyle" considerations of. a career.
2. Emphasizing the importance of continuing mathematics preparation. Since mathematiccs appears to be,the "critical filter", to a wide variety of occupations it is imperátive that females continuesthese courses in order to keep their career options open.

A great many methods in assisting women in mathematics are linvolved. These include developing innovative methods of tgaching math adapted to the typical strengths of females, offering \$ecial tutorial/remedial courses, math anxiety counséling, and emphasizing an awareness of the effect of discontinuing math education.

Thirty-seven percent of women with children under six years of age and 50 percent of women with children between the ages of Isix and 17 were working in 1975. Since a majority of these women. choose to remain out of the labor market for the first years after. the birth of a child, these figures indicate that many women reenter the labor market after some period of economic inactivity. These women are typically re-employed in jobs that do not utilize.their full potential, and jobs that typically are lower paying. This underemployment is more acute for the woman entering the labor market than for women who are continuously employed.

The woman attempting to reenter the labor market faces a multitude of, problems and adjustments. First, her technical skills and theorptical understanding of her field may be outdated. This problem may be addressed by an additional educational experience. Second, her confidence in her ability to getor hold a challenging job may be diminished. She may not know how to interview for a job. She may have many logistical problems, such as arranging for child care, transportation and dinner each night. She may not have the support of her family and friends. She may be afraid of failure (or success). She may face very real discrimination on the part of employers. Consequently, the transition to work after a period of unemployment includes a dramatic change in lifestyle for herself and her family, and a change in her perception of her role.

After the childbearing years, many women want or need to reenter the labor market, i.e., they want to transition to work. For many women, this transition may include compleṭing an advanced degree, dr acquiring specific \{job related skills. Considering the underempldyment and underutilization of the talents of these groups, the type of assistance given these women is important. Therefore, we recommend:

1. Concentrating on underemployed women. It is suggested that reentry programs for mature women might utilize already working, but underemployed, women. Updating the skills of women already in the labor force might alleviate problems in rec̀ruitment and placement. These women would have already adjusted their family arrangements to meet their work schedules, and have shown that they are motivated for employment. They may be currently underemployed, e.g., rather than capitalizing on, their scientific skills, they may be working as secretaries, sales personnel or other jobs unrelated to their training. The major obstacle to this approach would be that their fámilies may be accustomed to or dependent on the additional income, and a peniod out of the labor force to update their skill's may impose an economic pardship for them, unless financial assistance is provided.

One successful approach is the current affirmative action program the Food and Drug Administration. All males and females - Without opportunities for advancement are eligible for an, on-thejob training and work release time for school in order to be qualified as an inspector. Normally a heavy science background is required for this position. The program.enables advancement into a scifencerelated career without initial salary penalty.
2. Considering employment prospects in the locale. It would appear logical to fund programs to update skills in areas where the labor demand is not abnormally low. That is, it is not costeffective to prepare women for jobs that aren't available; and would be a discouraging' experience for those women, and can elicit adverse commity reaction among unemployed males and their dependents.
3. Funding projects to update job related skills. While these programs are typically expensive, it appears that some assistance to women to update their skills may be necessary. One of the side benefits of these programs may be that it allows for a more gradual adjustment to a working environment.
4. Making special seminars, workshops and counseling available. Since the majority of these women will nave to makepersonal and familial adjustments to accommodate their^new schedules, and job demands, special programs to.help them overcome the perceived barriers and obstacles associated with employmeqt could help to increase the success rate of these reentry programs. That is, a woman's ability to.get and hold a job, even though she has adequate skills, may be"dependent on her attitudes and motivation for work, i.e., her readiness. It is recommented that assistance in is developing , appropriate job readiness profile be a component of all reentry programs.

(D. Administrative Recommendations

1. Improving the quality of the experimental research. There are several ways to attempt to improve the quality of the research. These include (a) more selective funding, (b) providing technical assistange, and (c) use standardized measures and long-
a. More selectivity in funding. Overall, the mality of the projects, as experiments, could have been improved. One factor was the circulation of the announcement of the avaikability of support for these projects. Most of the project digectors reported learning about the program from the flier received at a dean's office. Consequenty, only a very fewproposals were, reedived and very few requests for funding were rejected. A better mechanism of disseminating information to prospective applicants should be - developed.

A concomftant observation is the difference in results obtained by experienced researchers and those with less experience in experimental design. That is, all of the project diretors appeared to be committed to increasing career options for women, and to have strong backgrounds in science. Most, however, did not have an extensive background in experimental design and evaluation, adequate. knowledge of control group procedures and statistical analysis. The results of only two projects, although not confirming the hypothesis, allowed some degree pf conijdence in the outcome. However, there are manny benerits to providing ả wide spectrum of individuals. These include increased capability by personnel to comduct such projects, increased commitment to women's projects, and possible beneficial effects to the participants.. Therefore, a conscious strategy should be developed regarding the importance of reliable experimental results. Should it be decided that confidence in the experimental results is important, some percentage of the project directors should have a demonstrated capability in project management experimentation, and evaluation.
b. Providing technical assistance to the project directors. NSF has traditionally adopted a "hands-off" polincy to grantees. While this policy has many advantages, providing technical assistance. in evaluation procedures and instruments to those project directors ${ }^{*}$ requesting it might mitigate against the technical problems encountered in many of the projects.

If the current "handş-off" policy toward grantees is maintained, a brief project directors handbook; containing a description of commonly occurring bairiers to the implementation of both the project and the experimentation/evaluation is recommended. The case studies do not serve this puxpose well because (1) the case studies are too long, (2) are not necessarily perceive as relevant to project needs, and (3) may not be fair to the individual project reviewed, since they were written for other purposes.

This booklet could contain, for examplé, an overview of problems encuntered when dealing with recruiting, working in the public schoql systems, or in developing evaluation instruments.
c. Uing standardized evaluation tools and löng-term tracking. If experimental projects are to be continued to encourage women to choose sciencerrelated careers and the independent measure' is' a, questionnaire of any kind, the evaluation team recommends that reliable and alidated instruments be provided for use by the project directors. Each of the projects has designed at least one such instrument, and the best items could be chosen and validated from this pool or one of the better validated ones, such as that used by ACT, could be used. It is felt that a standard unit of measurement could be developed for all similar projects. Even if a project' wanted to have additional..dependent measures, at least a would then be possible. It is lrecognized that a single instrument may not be appropriace for all types of experimental designs and that
\& the use of a validated instrument-will insure neither superior experimental nor evaluation procedures.

2. Coordinating intergovernmental activities and delineating

 activities. There are several federal agencies currently working in the area of career education with some emphasis on women. These include the Women's' Educational Equity Act (OE/HEN), Education andWork Group (NIE), Office of Career Education (HEW), and the American Association for the Advancement of Science, Office of Oppqrtunities - In Science. Ideally, full sharing of resources should occur. In addition, some agreement about areas of concentration might be possible. For example, NSF fight focup on kigh ability women interested in sctince, and only assist Office of Career Education in making, ounger women aware of nontraditional career opportunities. Further, OE/HEW is already planning dissemination activities for similar programs and NSF could add their material to this clearinghouse.3. Continuing experimental activities by NSF and disseminating knowledge about its programs. "In addition to the increase in knowledge gained by the experimental projects, the team has observed some psychological benefits just from the existence. of the program. Even the parttipants commented that they were impressed that "somebody" was interested in their careers. Further, in the current climata. of the women's movement and the possible defeat of the ERA, the existence of federal interest and support is imperative for the morale of the pebple committed to career/life options for women. However, the evaluation team feels that a great many benefits in formulating effective policy would be derived by continuing in the experimentai mode, both to NSF, as well. as to other agencies. That is, building on the present experience could enhance knowledge about, effective methods of implementation.
4. Including specific programs for minority women. In neither the women's projects, which typically contained no minority women, nor in the minorities projects, where women subjects were not identified, were the special problems of minority women addressed, It is recommended that minority women should be given special attention and special programs should be initiated if they continue to "fall between the cracks" of existing programs (cf. Malcom, 1976).
5. At'tending to continuity/institutionalization of funded efforts Ideally, there should be no need for women's offices and prograns as separate entities, e.g., these efforts should be incorporated and integrated into every level of the existing structures. Further, one specific aim of research/demonstration projects is their continuation by the institution in the absence of special funding. In order to facilitate both continuity and institutionalization
we récommend special attention to utilizing existing and ongoing structures as a basis for the activities, such as sorgtities of black women, professional associations, PTAs, etc. Where these are not available, the program should be cognizant of continuation problems prior to initiation, and should plan to "institutionalize" the program. One way of doing this is to make the program concretely benefit the parent institution (e.g., increased enrollment, Increased visibility, legal compliance, etc.).
6. Disseminating the developed materials. Some of the projects have engaged in fruitful activities to disseminate their "products." These appear to be successful. However, since these have occurred through different outlets, a compilation of these activities might be produced by NSF. Several projects overlapped In the materials developed (e.g., Policy Studies and Kansas) and other project products (e.g., the film and media packets) could be used co-joittely in the context of other programs. A compilation of all projects designed to encourage women to choose science as a fareer could be an aid to science teachers and career educators to chooso the material most appropriate for their classes. These matedials could be made available to a variety of clearinghouses, public libraries and school libraries.
7. Investigating additional intervention strategies. We also recommend experimental investigation of several areas not covered by these projects. These are the study of the effects of aggregation, males in science establishment, and the effect of "significant others," including peer and social group pressure.
a. Systematic examination of the effects of aggregating women students. A recent article in Science (Tidball and Kistiakowsky, 1976) reported that "the undergraduate institutions from which women have gone on to receive doctorates are different from the institutions preparing men for doctorates. The authors concluded that "women who subsequently received doctorates were more likely to have graduated from institutions that enroll large numbers of women students, had a long and continubus history of women graduates who attained doctorates and offered strong academic preparation in several areas of study." Since many schools enrolling women offer strorg preparation in several araas, the distinguishing charàcteristic of these institutions preparing fomen fgr nontradition 1 roles appears to be their long and conthuopus history of female representation.
,
To describe the effects of grouping a certain proportion \quad. of these women, a construct might be developed involving "critical mass" or "critical proportion." The construct implies that once this number or proportion is reached, the recruitment and retention of the group becomes a self-sustaining and self-perpetuating system.

Once a criticalsumber or given proportion of women partici-. pate in a nontraditional activity, an examination of the need for special recruiting/retention programs should be performed. In fact, it may result in an ever increasing rate of participation.

Conversely, another investigation should determine whether the absence of the critical number or percentage may produce a situation where efforts must be continuously expended to recruit and retain these groups, sigce the history of unsuccessful participation acts as a discouraging factor, e.g., as the retention rate drops because of: a feeling, of isolation, fewer will be attracted.
b. Systematic examination of attitudes of males. There is undeniably still a great deal of overt and covert discrimination against women, pursuing science. The guardians of the profession are predominantly male. We recommend examination not only of the attitudes of the male sciençe establişhment toward females in these professions, but the circurstances that could occur to influence their attitudes toward the participation of women. Dr. Janet Brown, head of the Office of Opportunities in Science at AAAS, has strongly suggested that such research be conducted by an eminent male shentist.
c. Examination of the effect of significant others on women. Since the problems involved in occupational segregation are similar to normative deviance, we recommend examining the influence of: ,

- "parents
- school personnel
- male peers
- female peers

Admittedly, a multitude of studies have attempted to examine the most important influences on femaie scientists. Unfortunately, most of them have been retrospective; e.g., asking women to recall what was important to them 20 years ago. This type of research, has seṽeral disadvantages: perspectives change over years, especially regarding events that were not consciously considered at the time. Examination of these factors in real time would be more advantagous, and might, as in the ACT study, indicate important changes in perceptions over years. Further, several of the present experiments included these groups, but none was successful in gauging their impact on the female students. If these are successful, the long range benefits of these programs would likely be more cost-effective.

Anğrist, Shirley, "Measuring women's career commitment," Sociological

Astin, Helen S.; "Stability and change in the career plans of ninth grade girls," Personnel and Guidance Journal', \&1. 46, No. 10 , 1968a, pp. 961-966.

David, Deborah Susan: Career patterns, and values: ta study of men and women in science and engineering. 1971. ERIC (ED-094 933).

Harmon, L.W., "The predictive power over ten years of measured social. service and scientific interests among college women," Journal of Applied Psychology, Vol. 53, June 1969, Pp. 193-196l.
Hoyt, Donald P. and Keninedy, Carol E., "Interest and personality correlates of career-motivated and home-making oriented college women," in Astin, Helen, et al. (Eds.), Women, 1971, Washington; D.C.: Humañ Services Presś.

Malcom, Shírley Mahaley, Paula Quick Hafl, and Jet Welsh Brown, The double bind: . the price of beirg a minority woman in science, 1976, Washington, D.C.: American Association for the Advancement of Science.

Nies, Judith. Women \& fellowships 1976, 1976, Washington, D.C.: Wemen's Equity Action League, Educational and Legal Defense, Fund.

Prediger, Dale J. and Gary R. Hanson, "Evidence related to issues of gex bias in interest inventories," American College Testing Prbgram, 1976.

Schmidt, Frank L. and John E. Hunter, "Racial ánd ethnic bias in psychological tests--divergent implications of two definitions of test bias," American Psychologist, Vol. No. N, January 1974, pp. 1-8.

Tidball, Elizabeth M. and Vara Kistiakowsky, "Baccalaureate ortgins. of American scientists and scholars," Science, Vol. 193;霏gust 20, 1976, .pp. 646-652.

Tyler, Leona E., "The development of caret interesit in girls," Gehetic Psychology Monograp̆iss, 1964, Vol. 70, pp. 203-2.12.
Vidulich, Robert N., John F. Christman, Ann Kirk, and Pemalope W. Dralle, "Career choice in high abrility young women, Loyola. .University, 1976.
appendices
$\sqrt{3}$

APPENDIX A
ALTERNATIVE INTERVENTIONS

1
.

136
ERIC 4

There are many barriers to account for the lack of participatigon By women in nontraditional science careers. These psychological, sociological and institutional barriers have been systematically laid out by Dr. Smith at the University of Kansas (1976). His delineation of the barriers is given, in Table 1.

There are a wide variety of in interventions or treatments which may serve'to overcome these barrier's and to encourage women to choose sclence-related careers. These vary by age group, comprehensiveness and area of focus. Generally speaking, programs for young women may be considered career education and are less specific to science. Further, programs offered in earlier years may be considered as recruitment, while programs for college age may concentrate on support and retention.

Many of the potential programs listed below are not within the charter constraints of the National Science Foundation. Because it is. felt that a sustained effort, reaching each female as continuously as possible throughout her formative years, may be necessary to counteract society's socialization processes, many programs are lIsted.

The list of programs is divided by educational level. The assumption underlying these programs is given first. The list is not complete, and is"intended to act as a "working draft," and is laid out in Table 2.

TABLE 1
Barriers Proposed as Affecting Career
Choice of Women

Role Conflict (Career Person versus Parent)

1. Women feel a long-term commitment to a career interferes with raising preschool children.
2. Women feel a long-term commitment to a career interferes with raising a family.
3. Women feel that their basic responsibility is raising the children in our society.

Role Conflict (Career Person versus Spouse)

4. Women feel that a husband's success is more important than a whee's success. .
5. Women feel they should adjust their career goals in order not to Interfere with their husband!'s success.
6. Women are not free to move to new locations as career opportunities open in their field.
7. Women feel a strong career, commitment interferes with a happy蒖rriage.

Family's and/or Friends' Opposition to a Career
8. People who are important in a woman's life (that is, family and friends) believe a woman's place is in the home.
9. People who are important in a woman's life, (that is, family and friends) do not think it is appropriate for a woman to pursue a professional career.

Lack of Opportunity (in Jobs)
10. Women who are trained in science fields do not have as many job opportunities as men.
11. Women have number informed of job openings in traditionally male science careers.
12. Women are not as aware as men of the variety of available science careers.

Lack of Opportunity (in Education)

13. Women with math and science ability do not have the same educational opportunities as men. For example, women have more difficulty getting into medical school than men.
14. Senior high women are discouraged from pursuing the science -and. math courses which would prepare them to pursue science majors in college.

TABLE 1 (Continued)
Fear of Success -
15. Women fear the consequences of being highly successful in their careers.
16. Women do not want jobs that involve professional responsibility and comitment.

Lack of Professional Support
17. Women scientists are out of the mainstream of important professional contacts.
18. Women who are scientists are not supported and not kept informed by fellow professionals. For example, women do not receive up-to-date information about research possibilities.
Perceived Lack of Ability ..
19. Women do not feel competent enough in math and science areas.
20. Women believe the stereotype that they do not have a natural bent for solving problems and therefore do not have a natyral ability to be scientists.

TABLE 2

(Continued)

Women reenter-
ing labor
market have

special needs

1. Programs to update previously

 learned skills2. Special counseling programs
3. Assistance in job placement

TABLE 2
(Continued)

Assumption | Elementary School |
| :--- | :--- | :--- |
| Programs |

Women beginning
or continaing
formal education
in their mature
years have
spectal needs

Increasing the
dwareness of the then
status of women
by the working.
communty willi
(i) Increase job
satisifaction,
(2). increase the number of females In the labor

force, and
(3) may aker the
stercotypes that.
employees convey
to their children

Institution:

Project Lumber:

Principal Investigator:

Original Design of Experimental Project
A. Rationale of project designed:
B. Stated objectives (hypotheses):
C. Independent variables (treatments): t
D. Dependent measures:

E. Sample:

Experimental

1. age

2. number

3. ability in science

4. Interest in

 science
5. sex

6. other variables
(ethnic, suburban, etc.)

7. recruitwent procedures

Project Implemantation

A. Changes, in rationale (if any):

150
B. Changes in goal (if any):
C. Any other procedural deviations (schedules, etc.):
D. Actual sampis \quad Experimental

Control
number contacted
number participating
number (\%) completing (retention)
factors influencfng participation and/or .attrition

Participants
A. Describe any distinguishing characteristics not covered by "sample":
8. Other coments:

Project Personne1

Total number of personnel interacting with participants
A. Scientific background:

B. Commitment to open career options:

*. Perceived attractiveness by participants:
D. Perceived credibility by párticipants:
E. 'No'tivation for instltuting project:
F. Eow heard about program:
G. Sex of personnel:
H. Other coments:

Type of Communication

1. Modalities (print etc.):
2. Format (sequence of presentations, etc.):
3. Actual content (realism, etc.):
4. Relevance of content to background of participants:
5. Number of disciplines discussed:
6. If more than one type of communication was used, which type was most effective? 3
7. Which (content area) of each type of commicagion had
most impact:
8. Comments:

Institution

1. Type of school (liberal arts, etc.): '

2/ Geographic location:
3. Degree and tyne of institutional support wad cor-itannt at prograninception:
4. Adequacy of facilities for conducting the project:
5. Possibility for progran côntinuation in absence of NSF funding:
6. Institutional ratio of malesyfemales:
-
7. Commentes or distinguishing characteristics:'

$$
\%
$$

8. Attitude changes with institution mambers because of the plogra=:
$=$
9. Behavioral changes in institutional members because of progran:.

Cost Variables

1. Total cost-per participant ($\left.\frac{\text { nonber parthoipants }}{\text { total budget }}\right)$ 6.
2. Cost and time to prepare course materials:
3. Cost to administrate $\left.\frac{\text { prceran cost-cost to paesare }}{\text { number oi participants }}\right)^{\text {ond }}$
4. Cost to use if nu-ber of participants bere increased:
5. Cost to reuse with same number of participants:
6. Tine comitment by participants:
7. Cost in comparison to altémative, similar programs: ,

Overall Evaluation
A. - Program Concention
. 1. Appropriateness:

2: Validity and utility in meeting needs:
B. Need for Frc:ram

1. Number of people applicable to:
2. Intensity of need of appropriate participants':
3. Projected demand for program at other institutions:
4. Projected support for program (source):

Global Effectiveness of Program

1. Short term changes:
2. Anticipated $10 n g$ term changes:
3. Goal attainment
4. Obstacles in conducting program=:
5. Suggested chariges if program repeated:
6. Most effective prograz component:
7. Least efféctive prograa component:

- 8. Most'effective combination of'compopents:

9. Generalizability and replicability of progrà:
.10. Dissemination of materials:
10. Coments:

APPENDIX C
Participant Impact survey dind SAMPLE COVER LETTER

1.

UNIVERSITY OF DEN AVER
 DENVER RESEARCH INSTITUTE

 UNIVERS! TY PARK • DENVER. COLORADO 80210
Industrial Economics Division

June 9, 1976
$x \times x \times x$
$x x \times x x$
$X X X X X$
Dear Ms.
4. In the summer of 1974 you participated in Summer Engineering for Women at the University of Oklahoma. That project was funded as part of an experimental program. The Denver Research Institute is conducting a study to examine the impact of these projects, and to recommend the kinds of projects that best serve to encourage women to choose math science or engineering as a career.

We would appreciate itch if you could take a minute to fill out the enclosed postcard to help us in our efforts to recommend the most effective projects for women.

Sincerely,
6

Alma Lantz, Phi.
Research Psychologist Industrial Economics Division

Enclosure

PRoject - NAME - yES
PRoject - NAME - yES $: 10$

:4. The most positive aspects of the program were:
5. The less influential aspects of the program were:

APPENDIX D -
SELECTED EXISTING ALTERNATIVE CAREER PROGRAMS FOR WOMEN
\qquad
-

The Women's Center at Barnard. College devotes itself to reaffirming the dignity, autonomy, and equality of women. The Women's Center hopes to contribute to the dialog about the problems, the place, and the potential of women in contemporary life; to help,
develop new bonds between a college and women away from college; and to give fresh insight for vidersercuates about what it means to be a woman in rodem times. They zaintain resource matexjals for the students on options and the various careers available td them.

Wider Opportunicies for Homen Center 1649 K Street, 4th Floor .
Washington, D.C. 20006
Contact:. Nancy Rigoy, Betsy Cooley 202/638-4868

Formerly called the Washington Opportunities for Women
Center, this women's center has been in existence for ten years as an information and career counseling center. They have'recently begun publicatrion of \%oren's work, with which they are expanding their services to provide sources. for practical news mid-1deas about job realities for women. The main thrust of the Center is toward job counseling and training aimed at integrating women into the workforce nore equitably. The Center provides \hat{j} job counşeling for professional woren and has extensive prograns enảbling women to obtain yocational job training and placement in both traditional and non-traditional fields. In these programs, firey not only help obtain training and placement, but also thelp to sensitize supervisors, management, fellow workers and the women themselves to what they can expect especially with wonen in rion-traditional careers. The Center is presently trying-to organize a coalition of similar programs across the country to share and exchange itformation and resources.

Business and Professional 'romen's Foundation. (BPW) 2012 Massachusetits Ave.; N.W.
Washington, D.C. 20036

BPW Foundation will start a revolving loan find for wormen engineering students to assist women in obtaining graduate engineering degrees. This progran was anounced recently by the Eusiness and Professional Women's Foundation. The Excon Education Foundation Eade a $\$ 100,000$ grant. to the Founciation to assist in starting the progran: "Only one percent of the proiessional engineers in this country are wozen," said Naxine R. Rays, Presicient of the E?n Found ation Irustees. "Wowen are only fi*e percent of the enrollant ir engineering degree prograas. The $3 P \dot{i}$ Founciation is encouräging more women to become engineers and one important wiay that this can be accomplisiod ${ }^{\circ}$ is.to cake financial assistance available." Loans anounting to $\$ 7,0,000$ annually will be zade to women accepted for rasters' level a study at uni $\because e r s i t i e s ~ a c c r e d i t e d ~ b y ~ t h e ~ E n g i n e e r s ~ C o u n c l i ~ f o r ~ P r o-~$ fessional Developent. Working with the Society of Homen Engineers,
the BPW Foundation will distribute tormation about the loan program to enginecring schools and women who are presently eaployed In engineering fields or who are undergraduate engineering students. A selection co-fittee to review applicants for engineering study loans will include representation from the Foundation, the Society of Women Engtreers and the general public. Loans up.to $\$ 2,000$ for one year will be granted.

Women's'International Information and Communication Service (ISIS) Via della Pelliccia 31 00153 Rome, Italy
Eoptact: Judy Sidden
ISIS
1915 Glenwood Àve.
Raleigh, Nic 27608
A new Women's'International Information and Commication Service has been oresanized to serve the world-wide feminist comunity. The four primary goals of ISIS are information dissemination and documentation, information organization, continued dialogue about women's issues on an international baśis. and coordination and coeperation among women on projects of an internationa concern. . The work tasks are vfewed in'two maln categories-information erganization and dissemination and the development of comunication networks among women. fimong the proposal planners and endorsers of -ISIS are Brigaila Bam, head of the homen's Desk, Unit III, World Council of*Churthes; Sylvia Talbot, EpiscopaI Supervisor, African Methodist Episcopal Church; Jessie Bernard, sociologist, National Institute of Education; Robert Cramer, Director of Resources for Comurication and Elise Boulding, sociologist, Institute of Behavioral Science, Universicy of Coloraje

Woten Doing Research .
American Psychological Assoaiation (APA)
Workshop conducted by Cowittee on homen in Research
Susan Sacks, Barnard College
Rẹèsa Vaughtef, Foraham Uqiversity

This APA workshop was designed to commicate and utilize each participant's resources, and attempted to share expertise, tdeas and-strategies. Participants in the workhop articulated barifiers to research achievement and strategies for overcoming those barriers. The pirposes of the worishop were to (1) idcntify Internal (psycholozical) and externak (institutional and sockal) barifers to the productivity, achievement, personal satisfaction, and professional*development of women researchers:' (2) to exchange Information concerning developed strategjes with are effective
against these barriers; (3) to initiate a network of communication among women researchers; and (4) to communicate participant reconmentations and suggestions for action.

Introduction to Engineering Program for High School Girls College of Engineering University of Wisconsin Madison, Wisconsin 53706 CONTACT: Lois B. Greenfield, 608/262-2473

The Introduction to Engineering Program for High School Girls is a sumer program "designed to introduce qualified high school women to-facess of the engineering profession and to en-- courage them to consider engineering as a'career." Eligibility for the program requires three years of high school, two years of high school math, one year of science beyond general science, and academic standing in the upper 20 percent -of the student's class. Applicants who had a great deal of knowledge about engineering through participation in similar programs were not generally accepted into the program.

The program involves a one-week in-residence introduction introduction took fields of eng lectures fired by the college. This members of the college facility, and literature pertinentities'by specific fields. Extensive use, was made of realistic re the and hands-on experiences: (The women were able to program models make castings in the foundry', etc.) program a computer,

Extensive background information was ;taken on each woman and questionnaires were filled out by the students both before and after the course. An attempt was mace to determine the significant factors in creating an. awareness of or an interest in science fields, not only within the program but also in the student's home or. school environment.

r -

Suggestions from participants for improving the program inclouded having fore tours and demonstrations; having tore "doing" experiences, as opposed to passive listening; involving engineering: students mote actively in the presentations; ant encouraging speai.ens to commanicatelmore at the level of the participants so they may be
more easily understood.

The program's evaluation "tends to indicate that for these select young women, a program such as this is influential in helping young women choose an engineering career."

Operating funds for the program are supplied by the Universicy ($\$ 25$ per siudent) and each participant contributes $\$ 25$ toward dormitory housing and meals for the week.-

Math for Giris
Lawrence Hall of Science
University of California
Berkeley, California 94720
CONTACT: Nancy Kreinberg
415/642-4193

Math for Girls is a progian involving eight-week tuition courses with the purpose of introucins girls to hands-on experiences in logical thinking and problem solving to stimulate, their curiosity and interest in matheatics: Puzzles, games and computer activities show a side of pathematics that can be fun as well as challenging.

Stimulus for the program came from the low enrollment of female students in the Hall's classes in physical and life science, computer science and mathematics. The courses are taught by female students at the Universizy who are enrolled in mathematics and compurer fience. They are selected and trained on the basis of their interest and ability in zathematics, and their desire to act as role models, of women in mathematics for their students.

Throughout the course, time is set aside for discussion of girls' comperency and interest in science and methematics, and the stereotypic attitudes that can result in limited career expectations for women. The typortance of electing science and marnezatics courses in high school is stressed, since avoidance of such. courses severeiy restricts an indivicual's choice of college major.

The program is still experimetal and does not as yet have an evaluation process built in. Presently, they have no funding outside the University, but are seeking such funding to enable them ${ }^{\prime \prime}$. to not only evaluate effectivenes, but also bring Math for Giris to the larger Bay Area comunity by providing after-schcol workshops in
selected areas.

Simons College
Boston, Massachusetts
CONTACT: Ann Bryant
617/238-0410

Simmons College has a program funded by a large grant from the Carnegie Foundation for women employed in the banking industry. This program is directed toward woeen who do not have B.A. degrees and is designed to teach management pilinciples and give them skills needed to succeedoin the banking industry. The toourse consists of weekend seminars leading to a B.A. degree.

Project Equality--Expanding the Occupational Perceptions of Girls Righline School District : 401
15675 Anbaum Boulevard'Southwest
Seattle, Washington 98166 ,
CONTACT: LaRae Gleninon 206/433-2365

The goal of this program, which deals with both secondary and primary students, is to expand the occupational perceptions of girls. Their objectives in attaining this goal include developing occupational simulations for the primary grades (to demonstrate both sex's.abilities to perform these occupations) ; career exploration experiences, including speakers and simuiation experiences, for girls in the secondary grades; developing packets of activities which suggest practical teciniques of coundering sexstereotyping (role playing, role reversal); and develdpirg a bibliography of nonsex biased and female role model books.
percoftions of occupational opportunities avan designed to assess sex) and in occupational opportunities available (uith regard to (f) struments were used of sex-role stereotyping: Five differfent instruments were used to evaluate the programs of five grade levels.
. . Evaluation of the primary and secondary level prozrams shoied that significant gains were fade in expanding student's perceptions of occupational opportunities avallable to feeales, and a reduction in instances of sex-role stereotypirs. Additionally, initial evaluation resuits ofosecondary level prof̈rans suggest an increased knowiedse of the participation of females in society.

The 'project's,first year was funded for overp $\$ 70,000$ by the State of Washington under Titie III of the Eleaentary and Secondaty Education Act of 1965.

Department of Mathematics and
Computer Science
Mills College
Oakland, Colifornia 94613
Contact: Eenore Blum
415/632-2700
This program, which is funded in part by the San Francisco Foundation, was begun in order to increase mathematical and technical expertise of women in many fields'. A key feature is to provide easy access into the mathematics program at Mills College. Their methods include stimulating interest by weekly seminar series.featúring invited speakers (predominanfly women); redesigning math courses so that those with only limited high school background would not be deterred; designing a network of workshops to deal with additional student reeds and to provide a variety of entrance points to the pra an; , providing early career experiences; and increasing awardess of career options.

Evaluation of long-term effects is anticipated but not yet started.

Women and Careers in Iraditionally Male Ftelds Institute of Tecinology
University of Minnesota
Minneapolis, Minnesota 55455
Contact: Sandra Davis
612/373-2851
This two-year-old program offers a credit course to meet the needs of women.entering traditionally male career fields, including ensineering, =edicine, dentistry, veterinary zedicine, architecture, matnematics, computer science and law. The program makes extensive use of rcle models allowing participants the opportunify to listen to professional women's experiences and asking them questions of what life, pay, and work is like in professional careers. A choosing role models, the progra: looks for diversity of life styles and occupations as well as age.

The program as yet does not have a formal evaluation, but in terms of numbers of women stucents enrolling in the Institute, the program appears to have had an impact as the numberalizost douoled.

Catalyst

14 East 60 th Street
New York, New Yor'k 10022
CONTACT: Miria=: Krohn
212/759-9700

- Catalyst is a nątional nonorofit organization which develops and expantis career options primarily for college-education women, with some programs for und ergraduate women and women re-entering the work force. The group provides career infor:ation and self-guidance material; helps the employed woman respond effectively to opportunities for upward mobility; assists employers with the recruitment, assiailation and upward mobility of wonen; interprets the needs of the arketplace and offers services to ectury women to meet those needs; and, maintains information for referral to a national network of resource centers for women. They also publish the National Roster monthiy. This roster is a computerized listing of professional wopen seeking employment and is distributed to employers nationwide.

Options for Women, Inc.
8419 Germantown Avenue Philadelphia, Pennsylvania'19118
CONTACT: Marcia Kleiman 21:5/242-4955

Options for Women is a nonprofit corporation consultation service for woren seeking to expand their career options. Yodest fees are chatgèd to cover their operating expenses and vary according to the service.

Their.purpose is to aid. wonen in defining and clarifying their career goals and explore the options avaịable to then; they also help'the comunity consider alternative career patterns, recognize'the varied abilities of women, and create more varied opportunities for women.

The program includes individual and group consultations, vocational irterest and aptitude tests, a resource library, a placement service, and a consulting service to aid employers and institutions in issues dealing with issues regarding the hiring and promotion of woren.

Kaple Heights Equity Career Education Program
Meple Heights City Schools
5500 Ciement Drive
Maple Heights, 0'iv 64137
COMTACT: Marilyn Hosmann 216/587-3200, Ext. 200

The objectives of this program are to give learners in grades R through 10 an increased knowled of careers so that they may make more finformed decisions, and make students (especially female) more aware of equity and the fact that existing sex bias and sex stereotyplng limit career choices and cazeer goals, so they will be challenged to consider alternative roles and career models.

The program utilizes classroom activities, as well as activities with parents, the comunity, and business and labor leaders.

An evaluation (by consultants) will be completed, by May 1976 and will deteraine the change in student's attitudes toward career thoices and goals. The program has been funded by a $\$ 131,000$ grant.

Sandia Laboratories

Albuquerque, New Mexico 8.7115 . . .
Contact: Charles E. Cockelreas
505/264-1130
Sandia Laboratories, a prime contractor to the U.S. Energy r Research and Develophent Administration, has procuced three films on science and engineering. The first two files dealt with Caicano and . Indian Ph.D.'s in science and ensineering. The third fill is the first in a series of 5-8 films about women in science and engineering. The first of this series is a. . keep the door open. Tnis film and the rest of the series have the goal of encouraǵing young women to consider carpers in science and engineering and are directed toward junior high school girls. The thrast of, all the filus wili be to provide role aodels that counteract existing stereotypes.) Interviews were conducted shroughout the country to find articulate women of varying physical and intellectual tipes. Although the filas obstensibly deal with the professional side of science and engineering careers, there is also considerable discussion soout the kinds of probleas the women faced as girls growing up in a traditionally conser'vative culture.

Building Effective Minn rit: Ernerme in Engineering Education
 Assembly of Enajineering
National Research Council '2101 Constitution Avenue, Ni. Washington, D.C. 20418

This report is the first of a series on minority programs in engineering education. The committee's work is aimed at increasing the representation of American Indians, Black Americans, Mexican t Americans, and Puerto Ricans in the engineering professions. They hope to accomplish this by providing effective national leadership and coordinating the various activities best calculated to advance minority group participation in aistorlvally underrepresented engineering professions. The Committee is trade up of representatives from engineering shod and societies, racial and ethnic organzatrons, industry and government.

```
P.0. Box }16
Iowa City, Iowa 52240
Contact: Dale Prediger
319/356-3711
```

Women in Science and Technology: Careers for Today and Tomorrow
The American College Tasting Program

This publication is intended to provide information, for women on careers in science and technology. Comments from numerous women it' it's like to be a scientist or engineer as well as problems ercountered in being a womar.in traditionally male fields. Tye.booklet examines. the many varied fields of science and technology including suggestions on/ steps young women can take to plan a successful career.

Math Learning Center Oregon Mathematics Education Council 325 13 th, St., X.E., Room 301

- Salem, Oregon 97301.

Contact: Barry Mitzman
503/378-3175
The Math Learning Center is an experimental program to improve math education in Oregon with support from the National science Foundation. The program is designed to allow tedchers"to approach mathematics instruction through nontraditional methods. Another program in the system offers in-service workshops for teachers, and
has established math Fesource centers. The Council publishes two periodicals: The Oregon Matnenatics Teacher and the Math Learning Center Report.

The Spokeswoman

53 West Jackson, Suite 525
Chicago, Illinois 60604
Contact: Karen Wellisch
Editor and Publisher
This monthly newsletter reports news about women not usually covered. by the established mass media. They include news about education, employmerit, politics, Lesslation, legal action, welfare, etc. Their objective is to inform women about what other women and women's organizations are doing all over the country to win equal rights and open new opportunities.

Federation of Organizations for Professiofta Women Executive and Research Office. 828 Washington Street Wellesley, Mass. 02181 617/235-8624

Governmental Information gefice 134\% Connecticut Avenue, Room 1122 Washirigton; D.C. 20036
202/833-1998
The affiliates of the Federation coordinate their energies and activities to increase women's intellectual and economic independence and to advance women in the professions. The organization is working to attain equal status in professions and ocqupations for /all women; equal access to training, funding for researcin, and policy appointments; equality in hiring, pay, benefits, and promotions, as well as entrance into professions at all levels; and the sharing of expertise to promote effective national policy on the status of women.

$$
5
$$

ERIC

$$
\begin{aligned}
& 5 \\
& \} \\
& 1 \\
& \text { APPENDIX E } \\
& \text { FILM BIBLIOGRAPHY } \\
& \therefore \cdot
\end{aligned}
$$

FILM BIBLIOGRAPHY

Title: And Who Are You?
30 minutes, $16 \mathrm{~mm}, \mathrm{~B} / \mathrm{W}$
Source University of California/Extension Media Center/Berkeley,
CA 94720
Description: Hubert S. Coffey and Yarya Mannes discuss discovery of one's inner self and the possible contlicts in maintaining one's individualkty. One of the series, Choice: Challenge for Modern
Woman.
Title: Choice Chance Woman Dance
44 minutes, color, 1972
Filmmaker: Ed Emsinwiller
Description: Purports to "tackle the dilemmas, paradoxes, and choices available to the middle class woman today

Title: Girls and fomen
A series of 10 programs of 30 minutes each
Filmmakers: Selma Odom and Margo'Shackson
(Producer: The University Television Center
Description: A series winch focuses on the physical and sociological differences between the sexes, the psychology of women, vaiziations of life styles, wothen's place in history, stereotypes of women and women's rights.

Title: Is Persojal Growth Selfish?
30 minutes, 16 mm , $3 / \mathrm{w}$
Source: University of California/Extension Media Centèr/Berkeley, CA 94720
Description: Sister Mary Corita, and Anne Steinmann discuss women's growth throughout life, thet dependency upon male and societal attitudes, and opportunities with "the system." Gne of the series, Choice: Challenge for Modern Woman.
Title : $_{\text {? }}$ Margaret Mead
30 minutes, $3 / \mathrm{W}, 1900$, :159,30
Source: University of California/Extension Media Center/Berkeley, CA 94720
Description: Celebrated ánthropolozist brings the experience and understanding gained from her study of primitive cultures to a - lively discussion of fontemporary world.problem--marriage and morality, the place ${ }^{\text {b }}$ women in modern life, the education of young people, etc.

Titcle: Woman's Place?
30 minutes, $16 \mathrm{~cm}, \mathrm{~B} / \mathrm{in}$
Source: Ametican Association of liniversity Women, 2401 Virginia Avenue, N.W./Washington, DC 20035/pione 202-335-4300 Descriptign: Allw panel dis'cussion by six women on the status of

Title: A Women's Place
A weekly prograz series on WTTN Ch..ll. Production started in
February 1972, and broadcasting began shortly thereafter.
Description: Focuses on the changing role of women in today's world. The program is designed as an open forum for the exploration and discussion of the full spectrum of viewpoints concerning women's issues.

Title: 51%
30 minutès, 16 mm, color, 1971
Directed by Dick Feldmen, produced by Rob't Drucker \& Coं.
Searce: Sheldon Satih Films/1175 York Avenue/New York City, NY 10021 Déscription: Three case studies of women employees in a corporation spotlight stereotypes about and discrimination against women. Provides cgood rolefmodel rexamples.for women dealing with difficult situations.

61 slides with script
Source: • Jim Fatrón/Dallas Regjonal office/Civil'Sentice Commiṣion/ Dallas, TX
Déscription: Designed to be shown to hitgh school and college classes and women's clubs, the film des̃cripes and shows women in a variety of jobs--flood coftrol engineer, attorney, chemisk, accountant;
radio equipment installer and repairer, photographer, and others.
Title Job Ingerview - Three Younz Nomen tht. 17 minutes, Bf^{\prime} ¹958 !
Souŕce: Business Educát fin Films/5113 16th Avenue/Brooklyn, IY* 11204 Description: Three young women are interviened for a job. The discussion centers on mistakes they cake during the interview for a job, and how to correct them.

THete: Never Underestimate the Power of a Woman
 20 minutes

Source: , Norta Briggs/Bepartment of Apprenticeship Training/ 310 Price Place/Departwent of Labor, Industry and Human Relations/ Madison, WI
Description: A film showing wọnen performing well in so-called wale
occupations.
*Films dealing specifically with women in'science.

迷
Title: Modern women: The Uneasy Li三e
55 minutes, 16 m $7,3!, 190 j$
Source: Liniversity of Indina
Description: racus whth cancor--the feelings of both women and men regarding the traditional role of wo:-en. The new freedoa involves, multiple choices wilich create anxieties. Participants include young married wowen, college women, career wothen.

Title: What is A Wonan?
30 minutes, $16=0$, $\mathrm{B} / \ddot{\pi}$
Source: University of CalifornialExtension Media Centef/Berkeley,
CA 94720
Description: Keith Berwick and Margaret Mead discuss what is feminine and masculíne, as prescribed by society and confused by changing.
patterns. One of the series, Choice: Coalle, ie for lodera oman.
Title: What Is The Shape of Tomorrow?
30 minutes, B / W
Source: Univesity of California/Extension Nedia Center/Berkeley,.
Description: Jeanne Noble and Rabbi Alfred Gottschalk discuss
variation in personal ștandards, beliefs, and values; spiritual, moral
and interpersonal sourçes of strength; and vomen's power in sharing the
world of tomorrow. One of the series, Choice: Challenze for :Oodern Woman.

Title: Who hants Freedom?
30 minutes, 16 min, B / h
CA 94720 University, of. Califormia/Extension Media Center/Berkeley,
Description: Elisabeth Mann Borgese and Richard Lichtman discuss the meaning and consequence oi "freedca" . !. . how much self-determinatict
and in what areas of life? One of the series, Choice: Challenge. for Modern Woran.

TiEle: Woman Is
27 minutes, color, 1969
Producer and Source: inerjean Stendard Assiciadion/10-E. 40th streetf
New York City, 10016 .
Description: Examines the perscnal philosophy of the woman in today's world and shacws her in some. of her manc roles, as an enigma, a philośspher and a romantic.
*Title:

$$
\therefore \text {. keep the foor open }
$$

19 minutes, 16 mm , codor.
Filmaker: Charles'E. Cockelręas
Source: Kotion Picture Próduction Division-3153fSandia Laboŕatories/ Box $5800 /$ Albuquerque, 2718715 .
Description: Film designed to encouragevoung. women to "keep the door openton career options and to consider non-waditional careers, eapecially math and science. Discussions of life and work with numerous professional wowien involved in non-traditional careers?

Tit゙le: New Careers for Women
17 minutes, color
Source: dmerican Educaticnal Eilms/331 North Maple Drive/
Beverly Hills, Ci 90210
Description: Restrwcturing of the rolespetween the siexes will be 1llustrated in a discussion of the new family and the role which the creative working woman will, have in the world of the future.

Title: Wages oE riork
30 筑inutes, $16=0$, $3 / \%$
Source: University of Califorma/Extension Media Center/Berkeley, CA 94720
Bescription: Mary Keyserling anc a panel of éployment experss
discuss why, Kow, winen, and where wonen work, and effects on zamily, job, ane co=unity. One of the series, cho:ce: Cha: inense for Modern 'rocan.

Title: inat's The Matter aiti Alice?
30 minutes, lo-a, coios, 972

Description: Preparec Eor cie Civil Service Comission, the fill
communicates an uncezstancing of "upward moóility."
Title: The X-Eactor: Mozen fis Pecijle
30 minutes eacin (0ns incn wiacotapé)
Source: Cone:1 Giviersity/Director EnV Center/Van Rensiselaer Hall/ Ithaca, iv 12850
Description: Two inali-iour prograjs on the status and inage of wofen,
developed fot a couise at Cornell.

Title: Childcare: Peole's Liberation 20 minutes, $5=: \quad$.

- Source: San Erancisco Mewsreel/Dapartant mi/l232 Market Streat; '

Room 101/San Ezancise0, Ca 04102.

sociejty tie each osiet cint. It sinows, through exampies, bow coaminityrun chilcaréceãers are a step toward liberation.

Title: hino is sylvia?
27 minutes, $3 ; i, 295 \overline{7},: 4793$

Description: stucy pf the dreaćs, fears and hepes of a ly year oid girl, "halz child. half :onian" and of her relationships with her Eamíiy, school and friencs: ${ }^{-}$

Producer: : 'larta isiluy; issec. producer: Nina Janowsky, Assistant: a Marty Coe

Description: Decumentar! ajout tirce wo=en: a slats, a Chicana, anc a white wonan in a comparifon $\dot{\sim}$ ho: their parents educated tiem amd how the consequences of this affects them today.

Title: Choice: Challence for Nerem Wemen
series of 12 filss eacn ju cinctis, B/i, ióm, 1967
Source: University of Calif-rralextension Mecia Center/Berkeley;
CA 94720
Description: Twelve discussion programs designed to help women artive at reasoned cholfes.as they make decisions affecting themselves, their familie's, and sqifety.

Title: Anything Y̌⿰亻 $\because 3$ ant To Be
" 8 minutes, $16=3,3 / 5$
Filmaker: Lia'ne Erandon ${ }^{*}$
Source: , New Dav Zilms/o267. Nest 25 th Stree"/New York City, NY 10001. Description: Tina conflictis, and absurdities that beset a high scnool girl. She mimics fenale stereotvpes: the wordly sopinsticate, the wholesome hone =aier, tre sexi "chici," the sroeer youns thing. The" film raises questions and:provies thotignt rather than prescribing
answers.

Title; Evolving Toward Woman
.60 minutes
Source: Contact Deidre walsh, c/o The Feminist Vo,ice for more information
Prôducer: - Deidre Walish
Description: The strugle of womento redefine themselves of the changes that are happering in our culture. It presfng an introduction tov the issues, rather than narrowing in cnafe pecific issue. It includes rap sessions, interviews, and scenes feveryday -occurrences.

Title: Growing Up Female: As Six Become One
60 minutes, $16=0,3 / \%$
Filmakers: Juila Reichert ; Janés. Kleid
Source; New Day Filis / 667 West 25 th Street/New Tork Eity, NX 10001; 'or from San Francisco Newsireel/Depfriment W/1232 Market Street/Rana 101/San Francisco, CA 94102.
Description: A documentary on the socialization of women in Anerica. The film traces this process through the lives of six females; the youngest is 4 , the oldest is 35 . In between; the women are students and workers, wite and black. A powerful film.

Title: Woman, 'wife or That.
29. minutes, 16 m, B / m

Producer and Source: KLON-TV Univ. Ed. TV Station 11600 R Sereet/ Lincozt, NE $68508, ~ / ~ /$
Description: Explain"s tant in a modern world, many modern woen nay
feellings difbeing fy=pped, their role coniysed. Describes the oattle for intellectual recognition and neef for creative achievement.
*Title: io I be A Woman
13 minutes, $160 a$, color
Source: Billy Bud Films /235 East 57th Street/New York City, wi 10022
Description: Designed as a tool to trigger rethinking. and start dis-
cussion. Girls and young women were interviewed and 18 hours of.
feminine voices speaking of themselves; their seff-image, their.
attitudes, their. conviction, and themselves were collected. The
best statements. were put into 6 sections: girlhood, personhood,
feminity," anti-stereotypes, sexuality and idealism.

*Title: Women's Work: Engineering

26 minutes

Source: Massachusetts Institute of Technology/Center for Advanced Engineering Study/Cambridge, Massachusetts
epescription: Designed for use by secondary schooldstudents in science, math, social studies, and career education classes. The film is Intended to provide in-depth portraits of women students and professionals, giving their personal views about the opportunities, problems, and rewards of an engineering career.

*Title: Women in Science

Source: Queensborougn Community College/Bayside, New York 11364 Description: This is a multimedia package containing cassette interviews, slides and articles plus references, showing, the work and ligéstyles of six successful contemporary female'scientists. Designed for use by young women making educational and career choices.

Title: A World for Women in Engineering

Filmmaker: Bell Telephone

- Soúrce: Bell. Telephone Companies/Ávailabḷe Fall 1976

Description: A film designed to encourage young women to consider engineering as a career. Six women engineers. from bell Labs tali - j about their experiences in engineering.

We understand that a number of promotional films dealing with women in science are being produced privately by various companies, including General Electric and Kodak; however, we have been unsuccess'sfull in our attempts to locate these films, or their titles.

```
*Title: . . . How Many Eves 14 minutes Filmmaker: Zelda Zeldin
``` Source: Women's Media Workshop Description: A film about*a'woman's long, but successful, struggle' to secure a promotion to the next job up the ladder, for which ste is clearly the most qualified. The film illustrates the problems she encounters with a manager who thinks women mould be kept in their 'place, her co-workers" (both men, and women), and her husband. The fill m is Intended for corporations, educational, institutions, and counseling and management consulting organizations. the film was produced in cooperation with the U.S. Civil Service Commission.
1. General Psychology and Sociological Literature
*APA Task Force on Issues of Sexual Bias in Graduate Education: "Guidelines for non-sexist use of Language,", American Psychologist, June. 1975, pp. 687-684.
*Alexander, Karl. L. and Bice K. Eckland, "Sex Differences in the Educational Attainment Process," American Sociological Review, Vol is 39, October 1974, pp. 668-682.
Anderson, G.J., "Effects of course content and teacher. sex on the social climate of laming,", A-eriaan Educational Research Journal, Vol. 8, 19.71, Pp. 699-0́ó.

Angriest', Sinirley \(S \therefore\) " "Measuring women's career commitment," Sociological Focus, Vol." 5 , No. 2, Hinter 1971-72, pp,29-32.

Angrisa, Shirley S., "Personality maladjustment and career aspira trons of college women," Sociological Si=rosius, Vof.'s, Fall 19.70, pp. 1-8.

Aston, H:S., "Sex differences on mathematical and scientific prescocity, W Paper presented and Ads meeting, "Washington, December 1972.
\(f\)
Bardwick, Judith M. et al. Feminine Personality and Conflict.
Belmont, CA: Brooks Cole Publicizing Co., 1970.'

- Conflicts. New, York: Harper and Ko, 1971.

Barddisk, Judith' M., ed. Readings on the 'Esvcholozy of Ho zen. New York: Harper and Row, 1972.

Barnes, Earl. Women in Modern Society. New York: Huebsch, 1973.
Barnett, Rosalind \(6:\); "Sex differences and. age trends in occupational preference and occupath́nai prestige," Journal pi Counseling? Psychology: Vol: 22, January, 1975, Fp. 35-35..
*Publication is currently in the rionen's Studies' Resources Collection of the Industrial Economics Division Library.
**Bock, *R.D. and'D. Kolakowski, "Further evidence of-sex-linked majorgene fofluance comunan spatial visurlyzation abillty," American Jounal of :hen Geriesics, vor. I2S, 1973, pp. 1-14.
Booth, Satly Smith: The Women of '76. New York: Hastings, 1973.
Bott, Elizabeth. Fapily and Social Network: Roles; Vorms and

Brockett, Linus. Homan: Her Rights, Wrongs, Privileges and Responsibilities. Plainview, NY: Sooks for Libraries Press, 1970.
*Carey, Gloria L., "Sex differences in problem-solving performance as a function os at:t:uce dianateaces," joutnel of hbrozal and

 and Politicial scies, Press, 1972.
*Chessler, Phyllis. Women and Madness. Niew York Doubleday, 1972.
Cooper, Anna Julia. A Volce:from the Sorth by a Black Woman of the

The Counselor ant the Ee=1ntstapotest. An ERIC/Cips Statement. Agerican Personel and Guicance Association; 1971.
Deutsch, Eelene, The 'Psychology of Wozen. . Ne; Yorki-i/Grunce' and Stratton, 1944.

Economic Problezs of riocen. Hearinss before the Joint Ectonomic Comittee, Corígress oivthe linited SEates, ininetythird Congress. Wasbogion, D.C.: U.S. Govermeent Priatiag Office,
*Elton, Cherries F. and Harriet A: Rqeir"stgntifance of Personalinty in the Vocational, Choice of College romean: Jouta, o Counseline Psychology. Vol, 14, io. 4, 1967, pp. 293-293.

 139.
*Fennema, E. and J: 'Singran. Relaticrshios between, -atioentics

*Fennema, Elizabeth,' "Sex Differences in Mathematics Learning: Why?" The. Elementary School Journal, Vol. 75, December 1974,. pp. 183190.

Ferriss, A . Indicators of trends in the states of American women. New York: Russell Sage Foundation, 1969 .
*French, Elizabeth G. and Gerald S. Lesser, "Some characteristics. of the achievement motive in women," Joumal of "Abnormal and Social Psychology, Vol. 68, Vo. 2, 1964, pp. 119-128.
Garskof, Michele, ed. Roles Women, Play: Readings toward Women's
lIberation. Belmont, CA: Wadsworth, 1971.
Garskof, Michele, ed. Roles'Homen, Play: Readings toward Women's
LIberation. Belmont, CA: Hadsworth, 1971.
Glass, M., "Are the secondary schools and colleges helping the
young woman toffend her place in the present social order?"
Department of Secondary School Principals Bulletin, Vol. 22,
May 1938; Pp. 15-21.
Glass, M. "Are the secondary schools and colleges helping the
young woman to find her place in the present social order?"
Department of Secondary School Principals Bulletin, Vol. 22,
May 1938; pp. 15-21.
Glass, M. "Are the secondary schools and colleges helping the
young woman to fold her place in the present social order?"
Department of Secondary School Principals Bulletin, Vol. 22,
May 1938; Pp. 15-21.
Curing, P., "Psychological•Issues in the Study of Employment Dis-
crimination.." Paper . Presented at the M.I.T. Workshop on Equal
Guin, P., "Psychological .Issues in the Study of Employment Dis-
crimination." Paper presented at the M.I.T. Workshop on Equal
Employment Opportunity, Cambridge, January \(21-\lambda 2\), Employment Opportunity, Cambridge, January, 21-22, 1974.
\(\because\) Harmon, L. W., "The predictive power over ten years of measured
social service'and scientific interests among college women,"
Jour hal of ADpliedi?s\%choloev, Vol.
\(\because \quad\) Harmon, L.W., "The predictive power over ten years of measured
social service'and scientific interests among college women,"
Journal of Applied'?
 Jour al of ADpliedi?s ichology, Vol. 53, June 1969, Pp.. 193-196.

*Kelson, Ravenna, "nomen mathematicians and thè ćreative personality,"
' Journal of Conspiring and Clinical Psponology, Vol, 36, No. 2,
Hilton, T.L: and C. in. Bérglund. Sexdifeerences in -schematics achievement. Princeton: educational Restive Service, 1971 .
Hippie, John LL. and A. Jean Hill, "Meeting the special needs of domén in educational settings," Journal of, the inion, Vol. 36, \(\because\) Sumer 1973. pp. 170-172.

Horner, Matina, "Toward an understanding of achievement-related conflucts in woen,", Journal of Soris1 issues, vol. 28, 1972,
pp. Ift-i才.

Horaer, Katina, "Women's Will to Fail,", Psychoiogy Today, Vol: 3, 1968, pp. 36-42.

Janeway, Elizabefh. \(\frac{\text { Betwe h Mry }}{}\) and Morning: Women Awakening. New York: Amo Press, 1974.

Janeway, Elizabeth. Man's Horld, He-an's Place: A Study in Social Mythology. 'Kew York: W1111am Yorrow, 1971.

Janeway, Elizabeth, ed. Fomen:- Their Changing Roles. New York: Arno Press, 1973.

Lang, Theodore. The D1Efererice between a Man ard a foman. New York: Sohn Day', 1971.
- *Lavach, John F. and Eope B. Lanier, "Thio Yative to Avold Success in 7th, 8th, 9th, and 10th Grade High-Achieving Girls," Jourhal of Educationà 1 Sesearch, Vol. 68, Fejruary .1975, pp. 216-218. :
Lebeson, Anita. Recall to Life--The Jewish riomen in America. South Brunswick, iJ: \(\frac{\text { T. Yoseloḟ, } 1970 \text {. }}{\text { O }}\)

Lenin, Vladiair I. The Emancioation of Hocen. New Yozk: EnternatIonal Publishers, 1959.

Lenin, Vladimir I: Wozanand Society. New York: Intemational. Publishers, 1938.
*Lenaing, Oscar T. et al. Wohnatellective contelates of grades, persistance, ard academf learmon in collese: the whobished
 Iowa Gity, Iowa: inericain College Testing Prograa, 1974.
Lipman-Biumen, J., "Hor Ideology'Shepes homen's Livé, \(\because\) " Scientieic ' American, Vol. 226, io. 1, 1972, Pp, \(-32-42\). Harper, 1947.

Kerlinger, fred H. and Elazur J. Pedhazur. Multiple refression in -

Kohlperg, \(L\)., "A cognitive-developeental analysis of childen's sex-' role concepts and attitudes", in . Baccoby, ed. The deveios-ont

Krictmar, Albert. The Homen's Rights :ovement in the United States, 1848-1970: A Bibliczrantiy and.jource Book. Metuchen, NJ: Scarecrow Press, \(1 \dot{y} 72\).
*Kundsin, Ruth Bf. , ed. Homen and \(^{\phi}\) Success: The Anatomy of Achievement: New York: William Yorrow, 1974.

Ruvlesky, William P. et al., "Racial differences in teen土age 'girls" orientation toward marriage: a study of youth living in an economically depressed areasor the South," in Astin, Helen et al, eds. : Women. Washington, D.C. \(\{\) Human Services Press, 1971.
*Kaccoby, Eleanor E. and C.N. Jacklin. The Psychology of Sex Dif\(\frac{\text { ferences. Stanford: Stanford University, Préses, }}{2}\), 274 .
Maccoby, Eleanor E., "Woann's Intellect," in Doyle, Kenneth O., Jr. Interaction: Readings in. hum Psychology. Lexington, MA: D.C. Heath and Co., 1973, pp. 280-292.

Kerrfam, Eve. Growing Up Female in America: Ten Lives. New York: Doubleday, 1971.'.
Millet, Kate. Sexial Politics. New York: Doubileday, 1970.
*Mead, Margaret. Male and Female. New York: William Mor'row, \(19 \dot{9} 49\).
"Mischel, Walter, "A social-learning view of sex differencest in behavior," in, Maccoby, Eleanor E., ed." The developtent of sex differences: 'Stanford:' Stanford, University Press, 1966, pp. \(!\). 25-55. : L

Mitchell, Juliet. 'Psychoanalysis and Feininism. New York: Pantheon Books, 1974.
*Pendetgrass, Yirginia E. "et el, Wex Discrimination Counseling," American P sycholosist, Vol. 31, , No. ' 1 ', January 1976, pp. 35-46.
'Porter, Kirk Harold. A Historý of Sufferage in' the United States. 1 "New York:- Greeniwood Press, 1969.

Richpond, Bert 0, and Cerald \(P\). heiner, "Cooperation and competition among young children as a function of ethnic.groupins, grade, sex, âtid reward condition," Journal of Educ̣ational Psycnology, Vol. 6í, :Juhe 1973; PR. 329-335.

Riegal,-Robert E. Acerican homar: A Story oE Social Chanze. Ruther-

‘*Roszak, Bétry dé Theodore Roszak, eds. Masculine/Feminino: Reaitras

- Rothotein, Pauline Marcus, "homen: A Selected Bibliography of Books," 45-54, 76.

Rowbotham, Sheila... Woman's Consciousness, Man's Wor,ld. Baltimore:
Penguin Bookst, 1973 .
Sherman, Julia. On the Psycholozy of Women. Springfield, IL: Thomas Pubilishing, 1971.
*Shields, Stephanie, "Functionalism, Darwinism, and the psychology of women: ^ a study in socifal myth," American Psychologist, July. 1975, pp. 739-754.
*Shrigley, Robert L., "Sex Difference and Its Implications on Attitude and Achievement in Elementafy School.Science," School Science and Mathematics; Nol. 72, December 1972, pp: 789-93.
Siegal,' Alberta' E. And Ellzabeth A. Curtis, "Familial correlates of orientation toward future exployment among college women," Journal of Educatiónal Psychology, Viol. 54, No. 1, 1963 pp. 33-37.
,*Singer, Jack N., "Sex Differences-Similarities in Job Preference Factors," Jcurnal oi Vocational Eehavior, Vol: 5, 1974, pp. 357-364.

Smith, E.D. and E.L. Herr, "Sex differences in the maturation of vocational attitudes among adolescents," Vocational Guidance Quarterly, Vol. 20, 1972, pp. 177-182.

Steinmann, 'Anne and•David J. Fox, "Attitudes towards women's family role among black and wite undergraduates," in Astin; Helen et al, eds. Women. Washington, D.C.: HLeañ Services Press, 19.71.
Supar, Donald, 'Vocational development theory: persons, pos \(\ddagger\) tions, and processes," The Counseling Esychologist, Val. 1, No. I, 1969; pp. \(2 \rightarrow 8\).

Turner, Barbara F., "Socialization and career orientation among black and white college women," paper presented at. 80 th Annual Convention of the American Psychological Association, Honolulu, Hawail, September 19.72.

Turner, Barbara \(F\), and Joannie H. McCaffrey, 'Sociallzation and career orifntation azong black and white coilege wowen," " JJournal of Vocatioral 3ehavior, Vol. 5, December 1974, ppak307-319. Turner, Räph H., "Sowe tispects of women's ambition," in Astin, Relen et al, eds. Women. Washington, D.C.: Human Services Press, 1971.

Vaughn, Margaitet Miller, "Sociai forms and sex-lirked reference * groups as deterainants of women's alienation in the workplace,"

* Wilson, Kenneth M., "Black students entéring college research colleges: . their characteristics and their, first year acadenic performance," in Astin, Helen et al, eds. . Homen. Washington, D.C.: Human Services Press, \(\overline{19} 71\).

Wortis, Helen and Claire Rabinowitz, eds. The Women's Movement: \begin{tabular}{l}
Social and Psychological Perspectives. .New York: AMS Press, \\
\hline 1972.
\end{tabular}

Kasgur, Bruce J. and Edwin A. Carner. Investigation of the degree and nature of anxierv in children ench difezent socioeconomic and rachel bac: z=0: ds, ara some implizaticns for the schools. 1973. ERIC (ED 074 164).
2. Women and the Labor Market

Abbot, Edith. Women in Industrỳ: A Study in American Economic History. New York: Arno Press, 1906.

Angrist, Shirley and J.R. Lave, "Issues Surrounding Day Care," The Eamily Coordinatoz; Vol. 22, No. 4, October 1973, pp. 457-464.:.

Aquilar, Linda, "Unequal opportunity and the Chicana," Civil Rights Digest, Vol. 5, Spring 1975, pp 30-33.

Axelson, Leland K, "The "working wife: differences in perception among Negro and white males," . In Astin, Helen Rt al, eds.
Women. Washington, D.C.: Human Services Press;1971.
Becker, G.S. The economics of discrimination. Second Edition. Chigago: "University of Chicags Press, 1971.

Béll., C.S:-, "A Full Enployment Policy for a Pubilic Serviće Ecpromy: Implications for tơnen," Social Policy, Vol. 3, No. 3, September/ Öctober 1972, pp: 12-1.9.

Bergmann, B.R. and I. Adelman, "The 1973 Report of the President's Council off.Econcmic Advisos: The Economic Role of Nomen," American Econo-ic Review, Vol. 63, So. 4, September 1973, pp.

Bickner; M. L. Women at work: An 3rinotazedtibiton=ophy. Los Angeles: Institute of Incustrial Relations, Ünroersity of Californila, 1974..
*Binghal, William C. and Elaine W. House, "ACES! Merbers Attitudes toward Homen and Work,4 Counsplor Education and Supervision; Vol. 14, March 1975, pp. 20\%-2i4.

Bird, Caroline. Born Female: The High/Cost of Keeping homen Down.
New York: Mckay, 1968.

Bird, Caroline. Everythins a Noman Needs to Know to Get Paid What She's horth. Niew York: Yckay, 1973.
Bowen, Donald D., "Work values of women in secretariai-clericai) occupationg," American Journal of Comeunity Psychology; Voi. 1 , January-March 1973,' PP. 83-90.
*Briggs, Norma, "Homen apprentices: removing the barriers," Manpower, Vol. 1, December 1974, pp. 3-11.

Bureau of the Census, U.S. Department of Comerce, "Detailed occupation of the experienced civilian labor force and employed persons by sex: 1970 and 1960," United States Census Summary I, 1970. Washington, D.C.: U.S. Gquemment Printing Office, women: a chartbook. Washingto p.C.: U.S. Government Printing Officé, 1975.

Cain, Glenn G. Married Women in the Labor Force: An Fconomic
Analysis. .Chicago: University of Chicaga Press, 1966.
Callahan, Sidney Cornelia. The Working, Mother. New York: MacMillan, 1971.
*Employment and Training Administyarion, U.S. Department of habor. Memorandy for Sotial Scientist's. Washington, D.C.: U.S. .Department of Labor, 1975.
"Employment: Woman's.Work," Newsweek, Vo1. 81, February 12, 1973, p. 74. \(\frac{\text { aspects of enpioventa } 1970 .}{\text { Suphlement I. }} 197\)
Jadoobson, Dan, "Rejection of the retiree role: a study of female industrial workers î their, 50 's," Human Relations, Vol. 27, May 1974, Pp. 477-492.
*BIngham, William C. and Elaine W. House, "ACES' Members Attitudes Goward Homen and Hork," Counselor Education and Supervision, Vol.' 14, March.1975, pp. . 204-214.

Biťd, Caroline. Born Female: The High Cost of Keeding Nomen Down. New York: McKay, 1968.

Bfit, Caroline. Evetything a Woman Needs to Know' to Get Paid What 'She's Worth. New York: Nckiay, 1973.

Bowen, Donald D., "Work valies of women in secretarial-clerical. occupations," American Journal of Commnity Psvchology, Vol. 1. January-March 1973, pp. 83-90.
*Briggs, Norma; "Women apprentices: removing the barriers," Manpower, Voil. 1 - December 1974, pp. 3-11.

Bureau of the Census, U.S. Department of Commerce, "Detailed occupation of the experienced civilian labdr force and employed persons by sex: 1970 and 1960," United States Census Summary I, 1970. Washington, D.C.: U.S. Government Rrinting Office, 1972, Pp. 1-718-1-723.
*Bureau of Labor Stathstics, U.S. Department of Labor. U.S. working Women: a chartbook. Washingtion, D.C.: U.S. GovernmentPrinting Office, 1975.

Cain; Glenn G. Married Women in the Fabor Force: An Economic: (Analysis. Chicago: University of Chicago Press,: 1966. MacMillan, 1971.
*Employmént and Training Administration, U.S. Department of Labor. Memorandum for Social Scientists. Washingtoh: D.C.: U.S. Department of Labòr, \(197 \overline{3}\).
"Employment: Woman's'Work," Newsweek; Vol. 81, February 12, 1973", p. 74.

Hughes, Marija Matich. The s申xual barrier: legal and econonic aspects of emplovenent. 19才0. Suppienent I. 1971. Supplereent II. 1972. ERIC (ED 065701 , ED.065 702, ED 065 703).

Jacobson, Dan, "Rejection of the retiree role: a study of female findustrial workers in their \(50^{\prime} s, "\) Human Relations, Vil. 27. , May 1974, pp. 477-492.

Jett, Michizel, "The return of Rosie: "blue collar occupations attract more women, mainly for the money," The Wall Streer Journal, Ăprill16, 1973:
mison, G.E. and F. Pj Sitafford, "The Earnings and Promotion of Women Faculty," American Economic Review, Vol. 64, "No. 6, December 1974, pp. 888-903.
*Jusenius, Carol L. The influence of work experience, skill requirement, and occuoational assimment on women's earnings. Columbus, Oinio: Ohio' State University, 1975.

Jusenius, Carol L. and.s.Sandell. "Barriers to Entry and Re-entry into the Labor Force," Center for Human Resource ,Research, Ohio State University, June 1974, mimeographed.
*Jusenius, Carol. L. et al. Dual careers: Zabor market experience of women. Vol. III: Golumbus, Ohio: Ohio State Unịetisity, February 1975.
*Rarpinos. Bernard \(\quad\) Recruyting of women for the nilitary: assessment of the mentai and zedical stancards, and their present and potential effects on recruiting needs. Alexandria, VA: Human
*Kohen, Andrew I.: women, and the econony: a bibliography and a literature review of the literature on sex differentiation in the labor market. Columbus, Ohio: Ohio S.tate Univ,ersity, March
Rohen, Andrew I", and R.D. Roderick. "The Effects" of Race Sex Discrimination on Early Labor Market Achievement." Working paper, Center for Human Resource Reseaich, Ohio State Univer-- bity, 1973.

Rreps, Juanita. S'ex in the Marketplace: American'Women at Work. Baltimore: Joñs. Hopkins Un青yersity Press, 1971.
Lave, J.R. and S. Angrist. "Factors Affecting Child Care Expenditures of Working Mothers." Working paper, Șchool of Urban and Public. Affairs, Carnegie-Mellon Uníversity, 1973.

Mallan, L. B. ""Changes in Female:Labor Fof"ce Experience, 1961-1971." Paper presented at the Annual Mettings of the American Economic Association, San Francisco, December 1974.;
*Manpower AdministraEion, U.S. Department of Labor and.Office of Human Development, U.S, Deparsment of Health, Education and Welfare, Manpower Report of, the President. Nashington, D.C.: U.S. Government Printing Office, April 1975:```

