DCCOMEAT EFSUEE

AUTHOR TITLE

INSTITUTICN
SPONS AGENCY
PUB DATE CONTRACT NOTE

EDRS PRICE DESCRIPTORS

Suydam, Marilyn N.; Cstcrie, Alan
The Status of Pre-College Science, Mathefitics, and Social Science Educaticr: 1955-197E: Volume II. . Mathematics Education.
Ohio State Univ.. Columbus. Center fcr science and Mathematics Educaticn.
National Science. Foundaticn, Washingtcn, D.C. 77
NSF-C-7620627
305p.: For related docurents, set SE 024 292-297
MF-\$0.83 HC-\$16.73 Elus Ecstage.
Achievement; Bibliografhies; *Crrricrlum; Educational
Assessment; Educaticnal Trends; Elerfertary Stcondary Educaticn; Higher Educaticn; Historical Reviews; *Instruction; Instructicnal katerials: *Iiterature Revíus; *Mathematics Fducation; Nritds assessment;
 Reviews: Teacher Educatijon; *Trend Analysis *National Science Foundation

```
                                    d
```

This historical study fresents evidence on the status of pre-college mathematics education frcm 1955 thrcugh 1975, based on a review, analysis, and synthesis cf the literature. It ióntifies practices and trends in curriculum, instructicn, teacher education, learner performance, and needs assessments durirg the twc-decade period. A systematic search of the litifature was conducted using such sources as the ERIC data base, "Dissertaticn arstracts; International," "Education Index," stat \in educaticnal arçives, reports $\ddagger \mathrm{rcm}$ governmental and instituticnal studies, journals, monographs, yearbooks, and other available, influential occuments. Documents were selected in terms cf: (1) evidence cf significance, (2) vailidity and generalizability of conclusicns frcm data, and (3) perception of the quality of the work. Secticns cf the refcrt
 schools--organization, content and courses, what gces cn in classrooms, achievement evaluation, student characteristics, instructional materials, and costs; (2) existing practices in teachér education--teacher characteristics and coapttence. fre- and
 needs and progress assessments. Sumearies highlight major conclusions, while a concluding secticn attempts tc inteçrate majoi findings and to anticifate trends for the iryediate future. (MS) * Reproductions supprom the original dccument. *

THE STATUS OF PRE-COLLEGE SCIENCE, MATHEMATICS, AND SOCIAL SCIENCE EDUCATION:•1955-1975 VOLUME II: MATHEMATICS EDPUCATION

PERRISSIUN TO REPROTOLE THUS ITATERIAL HAS HEEV GHANTED BY Mari-lyn Suydam
T) THE EUHOATINRAL HESUURCES. HNFORMATIUN GEVTEK IENIL, ANO USF\&S OF THE ERICSVSTEM
 EUUCATJON EWELFARE NATION*LINSTITUTE OF EDUCATION

THIS DOCUMENT MAS BEEN REPROS DUCED EXACILY AS RECEIVED FROM THE PER'SON SR ORGANIZATSON ORIGIN.
ATINGIT POINTS OF VIEWOR OPINIONS STAYED DO NOY NECESSARUY REPRE, SENT OFEICIAL HATIONAL INSTITUTE OF GOUTATION DOSITION OR DOIICY

Marilyn N. Suydam
Alan Osborne
Center for Science and Mathematics Education
The Ohio State University

Supported by Contract NSF= $\dot{C} 7620627$ from the National Science Foundation to the Eenter for Science and Mathematics Education, The Ohio State University; Stanley L. Helgeson, Project Directors
. 3

The material in this report is based upon work supported by the National Science Foundation under Contract Number NSF-C7620627. Any opinions, findings, and conclusions and recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Review of Literature on Needs and Practices
-
\checkmark table OF CONTENTS-
Page
I. Introduction 1
Procedures 3
Format of the Report 6
Using History in the Study of Education 7
The Political Setting 9
II. Existing Practices in Schools 12
A. Overvier, 1955-1975 13
B. How Are Schools Organized? 28
C. How Are Curriculgm and Content Selected? 32
Curričulum Guides: Scope and Sequence 41
Courses, Programs, and Projects 42
Enrollment Fatterns 43
D. What Goes On in the Classroom? 50
Class. Size 50
Time Allotment and Use 52
Teaching Approaches 58
Differentiation of Instruction 61
The Educationally Disadvantaged Student 65
The Talented or Gifted Student 68.
E. How. Is Achievement Evaluated? 78
F. What Student Characteristics Influence Achievement? 84
Aptitude 84
Attitudes 85
Self-concept 89
Sex Differences 90
Socioeconomic Status 92
G. What Jse is Made of Instructional Materials? 98
Textbooks and Other Print Materials 98
Programmed Instruction 101
EManipulative and Other Materials 103
Computer-aided Instruction 106
Calculators 109
H. What Is the Cost of Instruction? 116
Cost Effectiveness 121
Federal Funding Impact 123
III. Existing Practices and Procedures in Teacher Education 128
so A: Overview and Beginnings, 1955-1965 128
B. Teacher Education, 1955-1965 130
Teacher Competence and Characteristics 130
In-service Education 135
Preservice Education 138
C. Teacher Education, 1965-1975 139
Teacher Competence and Characteristics 143

IV. Needs Àssessment Efforts 180
A. Needs Assessments: National Concerns *. 180
B. Needs Assessments in the States 194
C. Progress Assessments at the National Level 199
D. Progress Assessments in the States . : 209
V. Synthesis and Conclusions 218

Appendices
A.: Categorized Listing of Selected Research in

Mathematics Education 226
B. Progress Assessments in the States 233

Glossary of Acronyms . 241
References . 243

Tables

I. Introduction

Schools and schooling are affected by public educational policy, That policy can be rational, based upon knowledge and wisdom, "or it can be based upon popular mythologies and misconceptions. The former -state of affairs is preferred. The purpose of this document is to provide evidence of how schools and teachers are performing in their task of the mathematical education of children and youth. . It is a study of the state of mathematics education in the schools with the past used as a backdrop of evidence about causes and effects of public educational policy formation. Since the past twenty years have witnessed a dramatic reorientation of the mathematics curriculum, of instructional practice, and of teacher education, the hístōrical evolution of school mathematics is traced through the twenty-year period in the hopes that events of the past can be used to provide guidance for making future decision-making more rational.

The schools are an important social institution in the United States and the expecyations of suciety for the schools have a signtficant role in determining the perception off effectiveness of the schools. and the resulting decisions affecting the nature of school programs. The -perception of how well the school mathematics programs have served the interests of learners and society is an important feature in the decision-making process. The programs in mathematics that are sanctioned and supported provide evidence of whether for a given era the
expectations of society are in terms of che goals of the utility of mathyematics for the learner, helping the scientificälly talented Iooking for= ward to their contribution to society, or for the school serving as a socializing agent for youth. These goals re-occur with regularity throughout the history of the schools.

The schools are big business. Bililions of dollars are invested in salaries, instructional materials, teacher, education, and school plants: We recognize that non-federal agencies (not only state and local educational agencies but also industries such as textbook publishers) arè B concerned with-and contribute to this investment. However, this report. is particulariy directed toward the analysis of the federal role. We believe the recent evidence suggests that the fiscal margin that promotes change and innovation comes from investment of federal monies into the educational system. Prior to 1950, the federal investment and intervention of major significance was the setting aside, öf school lands in opening the Northwest Territories and the founding of institutions of higher education via the Morrill Grants. These political acts were enabling in character and markedly free of specific guidance: for the solution o problems. They established no precedents for themanipulation of content, curriculum, or instruction. The events during the years following. World War II have been of a dramatically different character. Money was invested in developing and implamenting new curricula, in promoting modiffications of teacher education programs, in providing new types of school facilities and instructional materials, and in promoting change generally. The 1965 Elementary and Secondary Education Act addressed the problem of breaking the poverty cycle thrbugh an assortment of special programs directed to unique segments of the educational enterprise. Since this recent federal intervention is of such different
character than observed previously in the history of American education. and since the current evidence is that this intervention will continue, it behooves us to exaraine cärefuily the historical record to" gain information to guide publíc, political decision-making about policies affecting the future of mathematics education in the sthools.

This document addresses the following questions:
(1) What were and are current practices in mathematics education for curriculum, instruction, teacher education, - performance of learners; and needisäsessments during the twenty-year period beginning in 1955?
(2) Was the information about practices used or ignored in decision-making concerning policy in education during the twenty-year period?
Since the period is so recent, the information used in this document is at the same time historical in nature but also descriptive of current practices. Whether to consider this document a purely historical study or a description of current status is compounded by the fact that many practices have not changed appreciably, during the two-decade period.

Procedures

The procedures used in this study focused upon searching and analyzing the i^{\prime} iterature of the period. New information atas not generated; rather, existing documents were collected and examined carefuliy. The evidence from published literature in journals, committee reports, and influential books in the fleld. served as a first scurce. Pertinent documents were collected from the "ERIC data base, education
archives of the'states, and other instítutional archives that present evidence concerning the perfo miance of the schcols, teachers, and teacher education. institutions. The cooperation of state departments of educa--tion provided documents concerning curriculum plans, needs assessments, and teacher certification requixements that..are not readily available. Research reported in journals, monographs, dissertations, and other sources was considered.

We did not. start from ground zéro in surveying existing practices in mathematics education. A recent yearbooknf the National Council of Teachers of Mathematics, A History of Mathematics Education in the United States and Canada (Jenes, 1970) provides an extensive description of events and existing practices for the first two-thirds of the twenty-year period. The Overiview' and Analysis of School Mathematics Grades X-12 prepared by -the National Advisory Committee on 'Mathematics Education"(1975) provides extensive information about more recent history in mathematics education. In the present report we have attempted to emphasize different sources of information and to complement and up-date the insights of these excelr lent sources.

Extensive use has been made of other historical and descriptive studies. If a document exists for a particular topic that provides extensive related information of a summary character, we have followed B the strategy of trying to capture the highlights of the content, rather than extensively and exhaustively reporting its content. 'In many 'ingtances, the reader may find referring to the original document helpful in completing the perspective for particular findings.

Document selection, provided•a major problèm.', Determination of which d̈̀ocuments to cíte and use, as opposed to ignore and not cite, was
a judgment of importance in the writers' opinions. The judgment was exexcise: in terms of:
(1) : Evidence of significance provided by literature in refereed journals, committee reports, and major books for which events and history have indicated a primait; influence on the field.
(2) Generalizability of conclusions from. documents reporting data. That is, size of populations, sampling procedures, and methods of analysis that provided Limitations on the scope and applicability of results led to the rejection of many documents. 'It should, be noted that the majority of the documents cited are. status studies or other -types of survey research.

These provide evidence on the practices-or reactions of various samples at a given point in time, and were particularly useful for the purposes of this report. Experimental research is cited when it illustrates a point or provides cumulative evidence.
(3) Perceptions of the quality of the work based upon the writers' experience and knowledge, and using evaluative criteria developed . by Suydam (1972). The purpose of this report was not, however, fo evaluate research, and thus strengths and weaknesses of the studies are seldom delineated. The intent was to select documents of sufficient quality to warrant citation; it should be recognized that few documents are without limitations,
either in design or in author: bias.
Clearly, we may have erred; however, it should be recognized that'relalively few writings (and events) withstand the test of historical significance when considered from a long-term'historical perspective. Given the additional perspective of another twenty. years in the year $\mathbf{2 0 0 0}$, the majority of the documents cited may well be deemed inconsequential and * irrelevant. But at this point in time, we opine the ideas gleaned from the documents carry major import for decisions bearing on current issues.

Format of the Report

Three major themes are treated in this review of existing

practices:

(1) The Schools -- organizational, instructional, and curricular patterns are reported as well as information concerning 'facilities, equipment, costs, and student characteristics.
(2) The Teachers -- preservice and in-service education are examined as well as information concerning background, competence, and behaviors. -
(3) Needs Assessment -- planning dou ts, systematic needs assessments, and systematic in ross assess-ments useful in policy-muking at tue rational and state levels are described.:

Corresponding to each of these themes is a major section in the following pages. Each has summary sections that" synthesize highlights reflecting major conclusions derived, front the historical record." A final concluding section provides a summary that serves to integrate major findings and, to anticipate trends for the immediate future.

Using History in the Study of Education:

This is a historical study. It is easy to err in using history to predict the future. No historian limits his or her thinking onfly to history in making judgments about what-ought-to-be for the future. The careful historian realizes that because the societal ethos is brittle and changing, because the environment is shifted due to the very events of the history being studied and the changes wrought by new technologies and new knowledge, the conditions leading to decisions and actions never repeat themselves precisely.

History does not determine what-ought-to-be. The value questions associated with the determination of goals and objectives in the futuré, and the present, exceed the prerogative of-the historians. At best the soctal historian can explain how value structures evolved and what they ${ }^{\circ}$ are. The task of determining goals for future activity in mathematics education exceeds the scope of this historical record, although judgments of deficiencies in the present status of mathematics education are repọted.

This document provides information about the determination and implementation of educational policy snd its rationality, or lack thereof. Determination of educational policy operates at two levels. One operates internal to the education profession and is manifested in the type of philosophical support and the state of knowledge accorded learning or ${ }^{-}$ teaching in the schools. The other level iss.external to the schools and is based upon societal concern and ethos for the schools and their als and is realized through the political decision-making process.

As you examine the historical record for mathematics education
from 1955, consider the extent to which these two levels of determination of public policy for education interact. To what extent does public policy result from knowledge generated within the profession? Are policy decisions affecting mathematics education made on a basis of sound knowledge concerning the existing practices in the schools? To what extent are, practices in the schools and in the profession tempered and affected by the socieral ethos or the political climate? If the concerns, issues, and problems for the two different levels exhibit commonality and consistency, is change in practice more likely? Are needs assessments, progress assessments, and descriptions of the status of the schools and teacher education used for rational formanation of policy or merely symptomatic of current societal concerns?

We make few judgments concerning the answers to these questions. For most topics in the following historical record, this task is left to the reader. It is an important task since it involves the rationality of the decision-making process for policies affecting mathematics education.

We suggest that you will observe that educational policy-making does not use knowledge of existing practices to determine policies. Wé remark that you will also note that the professton's seeking of new knowledge about practice frequentily does not necessarily bear on the problems and concerns at issue for the decision-making process until after the decision has been made.

Determination of educational policy must recognize reality. Some aspects of schools and schooling have an inherent stability and resistance to change no matter what the educational policy might be. For example, many student characteristics are unlikely too-change as a result of
changes in educational policy. Decision-making about policy will not affect the genetic make-up of students nor will it have much impact on student characteristics induced by well-established societal mores. Many traditions concerning how teachers act and the structure of the school derived from many generations of schooling provide an inertia requiring exceptional energy to effect change. But these factors must be described and taken into account in decision-making concerning educational' policy; otherwise both energy and resources are likely to be o wasted by the formulation of policy addressing the wrong problems. The section describing existing practices in the schools identifies many of these factors that are not subject to significánt control through policy formulation.

The Political Setting

Policy decisions for education take place within the political
arena. The societal ethos of an era determines the character' of the political arena since it incorporates the goals and values displayed by the,society. Thus, it is important to recognize some major features of the politicaf and social climate for the period from 1950 to the present before examining the evolution of existing practices for mathematics education.

Our historical' perspective is that the decade of the 1950 s is best. characterized in terms of the interaction between recovery from World War II and the issues related to the Cold War. A relatively stable economíy provided freedom for growth in the educational system, a growith necessary because of the influx of children to the schools resultant
from the post-war baby boom.
The Cold War factor was of significant import in education since the nuclear arms race made important the extent and the quality of the pool of scientific talent in the United States. At the same time the nurture of scientific talent was at issue, attacks on the remaining 'vestiges of the Progressive Education Association--and related teacher education programs-was taking place in the setting of higher education (Cohen, 1976). The events of McCarthyism and the concern for scientific talent provided a state of readiness for and acceptance of dramatic changes relative to school mathematics (Osborne and Crosswhite, 1970).

The spirit of the Kennedy presidential years involved a social concern that presaged the educational policy determination of the mid1960s. The thrust toward helping the less fortunate, the culturally disadvantaged and separated, and the attempt to break the poverty cycle through education exhibited in the good intentions of the Johnson era, all provided a reorientation for policy making in education and the resultant funding patterns. The U.S. Office of Education attempted to become an agent for change rather than an information repository. The imperative for developing scientific talent- evaporated.

The political context of the late 1960 s and on into the next decde is one of societal discontent reflecting the impact of the conflict in Southeast Asia and the derivative financial hardship. A more hardnosed, reactionary view toward spending for" all social welfare, including educatica, became apparent. This, coupled with the loss of the impperative for development of scientific talent and the established remaining concerns for the disadvantaged, provided a confused context for
, policy makers concerning education and for mathematics education in par"ticular. Accountability, divesture of many responsibilities to the states through revenue sharing, and a loss of a clear educational imperative for a particular but limited set of goals created an amorphous, puzzled political consciousness not conducive to establishment of clearly delineated educational policy.

II. Existing Practices in Schools

In this section, evidence from research and other literature describing practices in mathematics education is presented. An attempt was made to trace patterns and to corsider the mode of decision-making for aspects of seven areas of concern:
-The organization of schools - The curriculum -Classroom concerns - \& - Evaluation of achieverent

- Student characteristićs -Instructional materials -Costs_of instruction

We struggled to trace patterns of practices; ohly occasionally could patterns within these areas be determined.from existing documentation. For most areas of concern, no discernible patterns could be found: in some; practices changed in reaction to some definite stimulus; in others, practices fluctuated without apparent design.

We struggled to determine what the decision-making process was, what created the need for decisions, and on what basis dećisions vere. made; only rarely could these be ascertained. Decisions were and are being made continuously about practices in each of these areas - but the basis and rationale for these decisions have been documented infrequértly.

We, conclude that we could conjecture about the change process, and we could cite the conjectures of others, but to document the actual
reasons for decisions made regarding practices in teaching mathematics is not feasible for most of these areas. -The factors which influence practices are varied and complex; change is not linear.
A. Overview, 1955-1975

To provide a perspective on existing practices, we begin with an overview of concerns in and affecting mathematics education since 1955, noting in particular both the involvement of federal agencies and research efforts that reflected changing concerns.

In 1955; few teachers realized that they were on the brink of a curricular reform movement -- a movement whose origin is frequently cited as 1951, when the University of Illinois Committee on School Mathematics (UICSM) was formed. The process seems to some to bermore evolutionary than revolutionary. The scope of the changes in mathematics itself since the turn of the century increasingly demanded changes in. the content of school mathematics '(egg., see Price, 1961). Methodological concerns were continuous; the drill orientation of the 1920 s had given way to the incidental theory in the 1930s, but by the early 1950s Brownell's (1935) reasoned argument for meaningful instruction had been adopted by consensus -- in thought if not in deed. Even a cursory reading of Brownell indicated that the "discovery" teaching of the 1960s was foreshadowed.

There would seem little need to describe the details of the curriculum mpyement; it has been extensively documented on other sources. The most recent description is in the Report of the National Advisory Committee on Mathematical Education (NACOME, 1975). . The Thirty-second

Yearbook of the Natioral Council of Teachers of Mathematics. (NCTM), A. History of Mathematics iducation (Jones, 1970) provides a thorough ac${ }^{\text {bount, as does a dissertation by Crespy (1970) and a host of earlier pub-. }}$ lications \{e.g., The Revolution in School Mathematics (NCTM, 1961) and is The Continuing Revolution in Mathematics (NCTM, 1968)\}. Some of the major events in the process of mathematical curricular reform will be nciea, however, to trace patterns for those who might be familiar with them.

In the Thirty-second NCTM Yearbook, Jones and Coxford (1970) note:

- By 1955, partiy as a-result of the unrest growing out of World War II, the lay public throughout the country had been told in magazine articles and in books that the academic substiance of the school curriculum was grossly inadequate. It was said that the content not only of mathematics but of other subjects as well had for too long been determined by professional educators with little or no impact from the scholars of the
\therefore vith lious disciplines \cdots (p. 76)
The stage was being set for change.
In 1455, the College Entrance Examination Board (CEEB), concerned by the need to provide a base for a changed college curriculum, formed the Commisision on Mathematics. The Commission was "to review the existing secondary school mathematics curriculum, and to make recommendations for its modernization, modification, and improvement"; its concern was primarily with the "college-capable" student. Although the Comission's report. was not published until 1959, a preliminary form was wid:3ly circulatec, and its recommendans provided the framework for the reform of the curriculum. There was anticipation that the new program could be introduced for the majority of college-bound students within five years,
provided adequate attention was given to in-service and preservice teacher education. A report by an NCTM committee on the secondary-school curriculum (NCTM, 1959) echoed the Commission's report, but differed in recognizing the need to consider the below-average student.
- The National. Science Foundation (NSF) was established in 1950 to develop a national policy for the promotion of basic research and education in the sciences. From the mid-1950s, the major contribution of NSF to elementary and secondary education was in providing suppor: for ${ }^{\hat{}}$ in-service institutes for teacheŗs of mathematics and science. While such efforts continued. into the 1970 s \{see Krieghbaum and Rawson (1969) $^{(190}$ for a history of the institutes, 1954-1965\}, the flight of Sputnik in 1957 resulted in an acceleration of federal funding that allowed the Foundation to begin the process of curricular reform on a major scale.

The nation's avowed need for'scientific manpower and increased scientific literacy was reflected in the curricular efforts of other agencies in addition to NSF. In 1958, Gongress recognized the need to improve schooi mathematics in the provisions of the National Defense \% Education Act. NDEA Title III authorized payments on a matching basis to state educational agencies for:
(1) Ine acquisition of laboratory and other special equipment, including audiovisual materials and eqưipment, and printed matèrials (other than text Books) suitable for use. in providing education in science, mathematics, and modern foreign languages in public elementary and secondary schools.
(2) Minor remodeling of the laboratory or other space used for such materials or equipment.
(3) The expansion or improvement of State superviscify pr related services in the fields of
science, mathematics, and modern foreign lanruages. (Phillips and Kluttz, 1965, pp.22-23)

By mid-1964, the States had received matching funds for 78,760 projects and 46 states had made supervisory services in mathematics available, an increase from 6 in 1958.

Congress increased appropriations to NSF, and the money for education was immediately put to work in implementing the recommendations of the Commission on Mathematics. As a result of the delibereitions of mathe- a^{\prime} maticians at an NSF-sponsored conference concerned with research potenEial and training, the School Mathematics Study Group (STMSG) was.formed and set to work developing materials for secondary-school, mathematics.
' The establishment of other curriculum development projects followed, most of them. with some suppori from NSF (see Table 1 and Lockard, 1917). Conferences (see Table 2) were used as a primary vehicie for ascertaining needs; the invited experts presumably reflected prevailing opinion tempered with knowledge and thought. .

Crespy (1970) commented on 24 projects inftiated between 1950 and 1966. Of the 20 projects producing materials, 6 focused on the elementaryschool level; 2 on grades 7 and 8; 5 on grades $7-12$; 2 on grades 9-12;
 ing of over 60 mathematics projects in operation between 1956 and 1976. \}' Crespy"called attention to three important points about the projects:

- A hallmark of the period was the äbility of mathematicians and educators to work as a team. Such cooperation had not. taken place since the first part of the twentieth century and was virtually unkown in the 1930 s and 1940 s.
- UICSM set the pattern that not only were niew materials needed but the retraining of teachers was aiso a necessity.
- The cost of mathematics curriculum developinent was phenoin-

TABLE 1

TIME LINE, 1955-1975

1955
\qquad
1956

CEEB Advanced Placement Program began
Commission on Mathematics appointed by CEEB
Bali State Experimental Program funded

Sputnik launched
Madison Project, University of Maryland Mathematics Project, Boston College Mathematics Institute funded NDEA passed

School Mathematics Study Group, University of Illinois Arithmetic Project funded

CUP reorganized as CUPM
Greater Cleveland Mathematics Project, Stanford - Mathematics Projects formed

Commission on Mathematics Report, NCTM Secondary School Curriculum Committee Report issued

Conference Board of the Mathematical Sciences formed
Minnemath started
National Longitudinal study of Mathematical Abilities , began

Cambridge Conference Report issued
R\&D ${ }^{\circ}$ Centers established ${ }^{\circ}$.
Committee on Mathematics for the Non-College Bound forthed

Individually Prescribed Instruction - Mathematics .Project began

ESEA passed* .
Regional Educational Laboratories established

```
.17 23
```


enal compared to the cost prior to 1950. (pp. 319-320) He might also have noted that concerns about overemphasis on formalism and rigor at the expense of useful techniques and applications were beginníng to be expressed by 1962 (DeMott, i962).

Accompanying the curriculum reform was an explosion in research, generated largely by the need for more doctoral-level manpower and the resulting availability of funds.for higher education, and partially by thẹ need for research io support the cürriculum development effort. The
a.

TABLE 2
CONFERENCES ON MATHEMATICS EDUCATION ($\mathrm{K}-12$)

Date	Conference	Focus	Reference
1958	Chicago Conference on Research Potential and Training	need for change .	, -
1959	Royaumont Seminar on Secondary School Mathematics	"new mathe-'. natics!'	$\begin{aligned} & \text { OECD, } 1961 \\ & (\text { ED 055 895) } \end{aligned}$
1962	Cambridge Confer̀ence on School Mathematics	pre-college curriculum for the future	Cambridge. Conference, 1963 (ED 015 140)
$1966{ }^{\circ}$	Conference on Secondary School Mathematics	planning. for "second round" SMSG development	$\begin{aligned} & \text { ‘SMSG, } 1966 \\ & \text { (ED. } 059875 \text {) } \end{aligned}$
1967	- Conference on Mathematics for Gifted Students y^{\prime}	role of SMSG in preparing materials	$\begin{aligned} & \text { SMSG, } 1967 . \\ & \text { (ED• 083 007) } \end{aligned}$
	National Conference on Needed Kesearch in Mathematics Education.	progrèss of "research, guideInes for future	$\begin{aligned} & \text { Hooten, } 1967 \\ & (E D 022 \text { 674): } \end{aligned}$
	Cambridge Conference on the Correlation of Science and Mathematics in Schools	'mathematicssciencé curriculum development	Cambridge $/$ Conference, 1969 (ED 042 599)
1970	Conference on 'Mathematics Education in the Inner-City Schools	role of SMSG in inner city	$\begin{aligned} & \text { NSF, } 1970 \\ & \text { (ED } 083008 \text {) } \end{aligned}$
1973	Estes Park Conference on Learning Through Investigation and Action on Real Problems in Secondary Schools	problem solving appróaches	Estes Park Conference, 1973 (ED 090 065)
	Conference on the K-12 Mathematics Curriculum, Snowmass	K-12 curriculum	Spiringer, 1973 (ED 081 643)
	Cape Ann Conference on Junior High School Mathematics	junior high content.	Cape Arn Conference, 1973 (ED 085 257) :

TABLE 2 (continued)

Conference on the Futuze of Mathematics Education, Tallañassee
Orono Conference in the
Middln School Mathe
matics Curriculum

1974 Conference on Mathe\therefore matics Resource Materials, Eugene Basic Máthematical Skills and Learning
ffuture needs - Tallahassee \quad Conference, 1973

Beard and Cunningham, 1973 (ED 085 258)

Hoffer, 1974 (ED 103 273)

NIE, 1975

> needed mathematical skills
(ED 125 908/ 909)

Conference on Needed
calculators.
NIE/NSE, 1977 Research and Develop-
(SE 022 565). ment on Hathd-held Calculators in Schnol Mathematics.

3

amount of research in mithematics educaṭion increased startlingly (see Table 3), especially at the dissertation level; publication outiets were. limited, so that the sncrease in the number of articles is not as dramatic. As one indication of the amount of research, data for the year 1975: alone shou? ${ }^{\text {a }}$ be conppared with that for 1955-59: 368 studies were reportcd for the one year, contrasted with only 340 for the ear- . lier 5 -year period. Appendix A provides additional evidence on somie of the areas of concern attacked by researchers since 1955; the extent of., attention on particular aspects is evident from the patterns of the data.

In their discussion of the years from 1945 through the 1960 s , .

TABLE 3

RESEARCH REPORTS ON MATHEMATICS EDUCATION (K-12)

Summaries Articles* Dissertations Total

[^0]Jones and Coxford (1970) wrote:
It may be that this period is harder to describe and seems.significantly different from earlier periods because we are so close to it. However, the forces critical of mathematics education and, indeed of all education have never been so varied nor so strong at any other time. Likewise, the range of innovations actually attempted and tha energies, poured inta educational re'form in this period -- especially 1952-1962 -- have never before been even approximated. (p. 67)

A new type of attack on the schools evolved during this period of change; scarcely anyone was unaware of the eccounts of experience and observations by writers like Holt (1964), Kohl (1967), Kozol (1967), or Silberman (1970). Some of the concerns were humanistic in nature, reactions to how children were being treated and what schools were doing to children. Mathematics and other curricular areas provided illus=
trations of how instruction was intensifying the problem of children being led or dragged through meaningless contënt and being "turned off" by scḥools.

Behavioral objectives and individualized instruction became key, words." A strong behavioristic wave started as part of new trends in individualizing instruction by means of educational management systems. Large projects like PLAN and Talent, funded largely by private foundations, addressed the goal of transforming exisiting educational materials into structured sequences by means of task analyses.

By the mid -1960 s , it became apparent that the public not only. expected academic excellence: that schools help solve societal problems was also demanded. "The social-action legislation of the Johnson" Years included the Elementary and Secondary Education Act (ESEA) of 1965, sending money for innovation, particularly for the "disadvantaged",
into the schools. ESEA had two titles which had specific potential for affecting mathematics instruction: Title I, Programs for the Disadvantaged (poor) and Title III.; Supplementary Centers. (Title II was tor library resources; Title IV, research, amending the Cóoperative Research Act of 1954; and Title V, strengthening state education agencies.)

Administration of ESEA fell almost entirely to the U.S. Office of Education. Largely becauge of concerns about federal control of education, USOE had assumed an advisory stance over the years; collecting information but rarely initiating action. Its role was now mandated as one of encouraging change through the allocation of funds.

Title I monies, $5 / 6$ of the total amount budgeted under ESEA, were to be spent for improving the education of the disadvantaged, with reading as the primary target and mathematics second. Title III was to be , a means of linking research and development with practice. Supplemen--tary Centers were to deliver innovative services not previously available to individual schools. "Actually," reported the NIE Databook . (NIE, 1976b), "Title III funds have been used to supiort development and dissemination of 'exemplary' practice" (p. 17).' Of 661 "products" spoissored by NIE in 1975 (NIE, 1976a), mathematics and science were the focus of only 39 -- that is, 6%.

A continuing problem was how to generate impact and effect change In the schools. The establishment of ERIC (Educational Rescources Information Center) in 1966 resulced from one aspect of this need. ERIC provided a repository for inforration, especially on "innovative practices". Twelve clearinghouses were funded initially, with the number rising to 19 in 1969 and then decreasing as efforts were compacted; in

1975 there were 16 and in 1977, only 11. In addition, 20 Regional - Educational Laboratories were established by 1966-67 by USOE (in 1973, 12 remained) to disseminate the resuits of R\&D efforts, especially those of the previously established R\&D Centers." Thus the Individuaily $=$ Prescribed Instruction (IPI) program was developed at the R\&D Center' at. the University of Pittsburgh and disseminated by Research for Betiter Schools, a regional laboratory. Two R\&D Centers were funded in 1964; by 1968 twenty had some type of funding, but by 1970 the number had shrunk to 15 and in 1975 there were seven. One widely known among mathematics educãtors was located at the University of Wisconsin; it produced the Developing Mathematical Processes (DMP) materials, with a measurement orientation to mathematics instruction. Other regional laboratories and R\&D centers have produced supplementary materiais and ..materials for minority groups.

A report from NSF (1975) describes four thrusts of the Foundation during this period: curriculum projects; teacher preparation; implementation; and reports, conferences, and research support." The Cooperative College-School Science Program provided a vehicle for collaboration, while the Course and Curriculum ${ }^{*}$ Improvement Projects and the Course Content Improvement Program were among the thrust's to promote "grassroots' implementation.

Concomitant with the needs and demands of the period; second rounds of curriculum development were organized by NSF, to improve on initial efforts and to add new emphases. The mathematically able and talented student was the focus of the first-round curriculum development effort; funds now were also directed into programs for the low
"achiever. Social forces -- dissent boiling" over in riots, spreading from urban centers to university campuses to secondary schools -- created another impetus for change. The curriculum was neither the cause nor the focus of the dissent -- but schools reacted to the stress by changing course structure and content and by developing such "scheduling 'patterns as the module, which allowed learners to put short curricular sequences together in unique patterns.

急
Changes were also occurring in NSF and USOE, largely as a result of pressures to show the impact of the dollars being direçted toward education. The National Institute of Education (NIE) was created by the Education Amendments of 1972, the culmination of several years of efforts to establish a separate organization within HEW devoted to
-"educational research and development. exclusively. NIE tbok over USOE's role in supporting curriculum development. (The early history of NIE is'summarized in several publications; e.g., NIE, 1973a, 197.3b.) - Priorities have included both basic skilis and compensatory.education. The . \ldots thrust of the basic skills effort is to discover what reading and mathematics skills are "required for adequate functioning in society", how children "may overcome barriers to learning such skills", and how to . improve the teaching of the two areas.

NSF began to consider different patterns of funding to promote inservice education efforts. A systems approach was modelled by the Oregon System in Mathematics Education and by the Delaware Model. The, first attempts to work closely with small-scale projects throughout the state; the second is closely allied with higher education agencies.

The Education Amendments of 1974 extensively revised many of the
activities aüthorized by the ESEA of 1965. Several "national priorities" were specified in the Act, including, use of the metric system, edvication of gifted and talented children, career education, consumer education, and women's equity in education. For each of these, a relevance to mathematićs wẫ apparent. In essence, Title III of ESEA ceased to exist; it was continued as Title IV of the new legislation, consolidated with six other programs (NACSCS, 1975).

The 1970 s brought additional demands for curricular change as headlines projecting "declining scores" and accountability demands increased. "Back-to-the-basics" became the slogan, as Kline (1973) and others led in depicting the "failure of the new math". Needs assessment became a policy as federal agencies demanded better accounting of the funds pouring ;through their hands. The Conference Board of the Mathematical Sciences appointed the National"Adisory Committee on Mathematical Education (NACOME), charging it to provide an overview of mathematics $-\sqrt{3}$ education in-the schools, synthesizing reactions and making recomendations for future directions.

It also seemed apparent in the 1970 s that technology, which had so great an effect on the quality of life over the 20 -year span, took leaps ahead and gave indications that the school, too, could be integrally affected by technological inventions.

> prelude to a greater revolution yet to come. And others see the events of the past two decades as a natural, although accelerated, evolution Srom the long sequence of events which has been traced. wbuld deny that, as moasured against that of any comparable period in the history of mathematics education, both the pace and the extent of change over the past twenty years have been revolutionary. (Osborne and Crosswhite, $\therefore \quad$ have been revol
$-\quad 1970$, p. 235)

Overvitew, 1955-1975: HIGHLIGHTS

-The past 20 years have witnessed:

- continuing curriculum reform, with mathematicians and educators working as a team
- extensive federal funding with federal policy increasingly affecting curricular development
- changing roles for federal agencies (NSF, OE, NIE) as they assumed varying degrees of responsibility for the cost of
「curriculum development and teacher retràining
- an explosion in research as well as rdevelopment efforts
- concern for the mathematically able, especially at the . secondary level
- concern for the disadvantaged, especially at the elementary level
- The need for curriculum reforin was generated by:

1955 - public dissatisfaction with existing curriculär outcomes

- concern from mathematicians and mathematics educators

1965 - concern for the economically and educationally disadvantaged

- reassessment. of the need for mathematical rigor

1975 - patterns of declining achievement scores, especially at the college-entrance level
pressures for accountability
". Needs assessments in mathematics education were conducted through:

- conferences
- informed writing, joth pro and con
- opinion polls
- Much analysis of mathematics education has been undertaken, including major efforts by the National Council of Teáchers of Mathematics and the Conference Board of the Mathematical Sciences.

B. How Are Schòls Organized?

Educators have long-searched for the "perfect" pattern of school \because organization to meet the needs of individual students and and classroom organization to meet the needs of individual students and increase açhievement. Much has been written about various organizational patterns. In 1955, there was reçurrent discussion of departmentalization nd the use of mathematics specialists. as the answer to the pö̀r mathematical preparation of many elementary-school teachers. By 1960, various multi-graded and nongraded approaches were tried out, and the core of some of these remain today. Team-teaching was proposed for all levels as an alternative to departmentailzation. In the late 1960s, "open-space schools" and "open-classroom environments" were espoused in yet-anocther attempt to make the school less rigid. Alternative schools (to enable parents and students to select a desired pattern) and various modular scheduling patterns (to enable students to select topics of need and interest) are still available on a small scale. In fact, all of the proposed innovations are evidenced in various locations. But perusal of a wide variety of documents leads to the conclusion that the graded, self-contained classroom at the elementary-school level and the fixed-period-schedule of-the secondary school have remained the predominant patterns over the past 20 years'.

Data on the number of schools reporting use of various approaches to mathematics instruction have been difficult to locate. One survey of 720 schools in New York (conducted by two New York State bureaus during 1971-72) provided the following information:

Technique
Flexible scheduling Independent studyTèam Teaching Non-graded
Continuóus progress

Elementary schools
21. 5%
21. 2%
31.9\%
24.4\%
24.4\%

Middle Schools 20.6\%
21.2\%
23.5\%
8.6\%
15.0\%

High Schools
14.6\%
34.6\%
9.9\%.
4.9\%
8.2\%

Over the years, a large number of studies has been conducted to ascertain the efficacy or the superiority of one or another organiza-: tidnal pattern; the data in Appendix A reflect' 141 such studies for mathematics education alone during, the two decades. Such attempts have been hampered by the difficulty of isolating and measuring, the effects of the organizational pattern, since such factors as content organization and teacher skill interact, with the pattern. Additional confusion results because definitions of the various patterns, tend to overlap; thus, what one person labels team teaching ánother may define as departmentalization:
-In reviews of research. (e.g., Suydam, 1972; Suydam and Weaver, 1970, 1975), it has been concluded that there appears to be no one organizational pattern which will increase student achievement in mathematics, Proponents of any pattern can find studies which verify their
stand, but a large proportion of the studies reported no significant differences in achievement between two or more patterns. Decisfons appear to be made on the basis of selective evidence and a hope for improvement. It appears that belief in a particular pat'tern and a desir.e to make it succeed may aid in creating an environment conducive to obtaining favorable achievement by students and, satisfaction from teachers. The specific components that make any organizational pattern effective and the weaknesses that cause another pattern to seem less
effective are rarely documented: rationales rather than evidence abound.
Perhaps the most important implication of the various studies is that good teachers can be effective regardless of the nature of the school organizationai pattern. Concomitant with this is the frequently noted suspician that some teachers can be more effective with one pattern than with another; however, research has not explored this suspicion.

Organizational Patterns: HIGHLIGHTS

-There appears to be no one organizational pattern which will increase student achievement in mathematics. Good teachers can be effective regardless of the nature of the school organizational pattern.

- While much. has been written about team-teaching, modular-scheduling, and other varied approaches, the self-contained classroom at the elementary-school level and the fixed-period schedule of the secondary school have remained predominant orgànizational patterns.

C. How Are Curriculum and Content Selected?

As it is reflected in textbooks, curriculum guides, and descriptions of courses, the content of school mathematics curricula has changed over the past twenty years. The NACOME Report (197.5) noted that
.'. . the common elementary program has undergone substantial change in the past ten years. The label "arithmetic" has appropriately given way to "mathematics" as curricula incorporate varying anounts of geometry, probability and statistics, functions, graphs, equations, inequalities; and algebraic properties of number systems. (p. 11)

At the secondary-school level a copparison of leading commerical texts reveals both change in emphases and inclusion of aew content.

Much consistency is noted across the years: computation with ${ }^{\circ}$ whole numbers ${ }_{0}^{\circ}$, fractions, and decimals persisted as the mainstays of the elementary-school curriculum; the secondary-school curriculum for college preparation continued to be based on algebra and geometry. . Differences are obvious: the inclusion of geometry at the elementaryschool level and computer mathematics at the secondary-school level, for instance, or the change from piane geometry and solid geometry-to "geometry" with ne modifier'. In other instances, changes between 1955 and 1965 have been reversed by 1975. Thus several topics, such as sets and non-decimal numeration systems, are practically non-existent in neẉer elementary-school curriculum materials.

The elementary-school mathematics curriculum of 1955 was sequeaced 0 in great part as a result of the work of Washburne and the Cominittee of Seven (1931). After thousands of students were testeo, the mental age at which ear:h topic could be learned was ascertained; grade placement
and sequencing of topics were determined in terms of that data.
Content and courses at the secondary-school level have evolved over a long period of time, largely as content has moved downward from the college level. Algebra, for instance, began to become a mainstay of "the secondary-school curriculum when Harvard University required it for admission in 1820. Geometry moved down from the college level.just after the Civil War. On the other hand, the general mathematics course was developed to meet the needs of the non-college-bound, as advocated "by a National Comittee on Mathematical Requirements in 1923.

The curriculum reform movement begun in "the 1950s was originally intended to effect changes in the secondary-school curriciulum for collegebound students; Zowever, elementary-school curriculum projects were funded in 1958 at the same time as the secondary-school projects were. Most of the early elementary-school projects proposed to develop supplementary materialstandich and extend the curriculum to incopporate new goals. It became evident to those conducting secondary-school projects, and especially to $\operatorname{SK} \mathrm{E}_{5} \mathrm{SG}$, that secondary-school refurm would not be succéssful unless the elementary-school program were changed to provide
a better foundation. Accordingly the curricular reform moved downward.
What characterized the new mathematics programs was difficuit to define even while the "development was occurring, for the variety was great. Some factors seemed common to a majority of these programs:
"(1) Increased emphasis on the structure of mathematics.
(2) Increased emphasis on rigorous deducitive proof, "particularly at thé secondary-school level.
$\because(3)$ Increased emphasis on student exploration, partic- :
ilarly at the elementaryoschool level, with discovery and inductive approaches promoted.
(4) Increased emphasis on correct terminology.
(5) Readjustment of graḍe placement of.topics.
(E) (Enclusion of topics not usually. taught at the level, such as geometry in the elementary school and calculus' in the secondary school.
'Jones and Coxford (1970) named structure, proof, generalization, and abstraction as "the essence of modern mathematics".

The NẠCOME Report dịcusses, in somé diztail, contert innovations, the role of deducison, the role of abstraction, and the role of symu bolism and terminology. They conclucie:

Ine content innovations $\mathrm{K}-12$, the emphasis on tudent understanding of mathematical methods; he judicious, use of powerful unifying ancepts Ind structures, and the increased precision of mathematicai' expression have made substantial improvement in the school mathematicssprogiam. Unfortunately, the innovations have not fulfilled the euphoric promise of 1500, and current debate seemg intent on locating blame for failures in real or imagined "new math" programs. (p. '2l)
They go on to deplore thè áichotomization of curricular issues and
note
a fallacy that seems very difficult to eradicate;
that of viewing the "Inew math" as a monolith, a single phenomenon that one can be for or against. Adtually it refers to two decades (1955-1975) of developinents that had a general thrust and direction but sprang- from many rooits, took many different and even opposing forms, evolved and changed with facets disappearing and new oones arising. (p. 21).
Many studies have been conducted to trace the development: of the currićulum (see Table 6) Crespy (1970) provídes one of the most thorough overviews, including topics taught in various courses from

1950 through 1965 and even the names of members of various committees.
In summary, he concluded that:

- Impetus for reform in the school mathematics curriculum "existed in the late 1940s and early 1950s. The availability of Federal funds in the late 1950s and the shock Sputnik brought to national attention a reform movement in school mathematics that was already in existence.
- The earlier reform groups started with limited goals and expanded as they matured.
- The reform groups did not accept the principle of diversity among schools in the nation; rather they
/ worked from the premise that a hard core of mathe- ${ }^{\circ}$ matical content existed for ail and had no basis for varying geographically.
- Much of the mathematics already in the curriculum served as the basis for the mathematical content of the reform. However, it was presented in a new light. Emphasis was on the concepts rather than rules of operation. Content was introduced at éarlier levels than under traditional curricula. Some traditional content was dropped or had less tame devoted to it; e.g., solid geometry as a separate twelfth-grade course. The major new content was in the area of statistics and probability.
- Much of the energy of the reform movement was directed to a better understanding of the basic concepts of mathematics rather than more computational efficiency.
- Uniformly, all reform groups producing materials made experimental use of them in classrooms prior to revision. and final publication. Evaluation was by exposure to actual teaching. Students using the new materials did as well as students using traditional materials on tests measuring traditional content.
- New materials were widely used. By the mid-1.960s, SMSG and GCMP each stated that their materials were being
- used by five million pupils nationally (of 40 million students in $\mathrm{K}-12\}$.

Coutent was obiviously not the only component for which change was attempted: the methodology was afficted, tho. And there ${ }^{\circ}$ was an attempt to incorporate a change in goals. Historically, computational
shall has been highiy valued by society; in the 1950s, mathematical understanding was endorsed as another important goal. The value of this goal is being questioned in the back-to-the-basics, movement of the 1970 s . Such attacks on the curriculum began at a-time when the curriculum was already undergoing adjustment. Two topics which are frequently associ-mid-1960s, it had become apparent from observations by mathematics educators that sets were not being used in a meaningful way in most elementaryschool mathematics programs. Non-decimal bases were included in programs. because it was presumed that their study would strengthen understanding of base ten: But research clearly indicated that they did not do this: the same amount of time spent on base ten was as effective as the study of non-decimal bases (Glennon and Callahan, 1975; Suydam and Weaver, 1975). Thus both topics were disappearing from elementary-school textbooks. In the late 1950s and early 1960s, content of the new currịcula was the focus of many articles on mathematics in educational journals. Several NCTM yearbooks were devoted to the function of retraining teachers on new coṇtent (see Table 4), as the NCTM devoted extensive efforts to sipport of curricular reform. As might be expected, a large percentage of research in the late 1950s and 1960s focused on the feasibility of teaching various topics (see Appendix A). Thus Suydam and Weaver (1970, 1975) reviewed studies indicating that geometry, graphing, number systcat properties, integers, probability and statistics, sets, and logic could be taugfitit in the elementary school. At the secondary-school level, functions, vector approaches to geometry, computer techniques, and calculus were among the topics studied (Suydam, 1972).

TABLE 4
NCTM YEARBOOKS, 1955-1977

Date . Title

1957
1959
1960
1961
1963
1963
1964
1969
1969
1970

1971
1972
1973
1973
1975
1976
1977

Insights into Moderǹ Mathematics

The Growth of Mathematical Ideas, Grades K-12

Instruction in Arithmetic

Evaluation in Mathematics
Enrichment Mathematics for Grades
Enrichment Mathematics for High School
Topics in Mathematics for Elementary School Teachers
More Topics in Mathematics for Elementary School Teachers
Historical Topics for the Mathematics Classroom
A History of Mathematics Education in the Inited States and Canada

The Teaching of Secondary School Mathematics
The Slow Learner in Mathematics
Instructional Aids in Mathematics
Geometry in the Mathematics Curriculum
Mathematics Learning in Early Childhood
Measurement in School Mathematics
Organizing for Mathematics Instruction

The Cámbridge Confeŕence on School Mathematics (1963) proposed a curriculum that might be attained by the end of the century. This vision was a shock to many. Outlines of a variety of units were developed to provide evidence that the proposed content could be taught effectively.

The curriculum development projects giver national prominence (see Table 2) and those supported at the local level, in large part from Federal funds, have similarly explored a variety of content. Both researchrand'development efforts have provided "existence procfs" on the possibility of teaching many: specific topics.

There is little doubt that the number and variety of courses offered at the secondary-school level have increased since 1955. In 1960-61 and again in 1972-73, surveys of secondary-school course enroilments'were made by the National Center for Education Statistics. The greater variety of courses offered, the extent to which college-level courses were made available to secondary-schoo! students, and the offering of "traditionally" upper-level high school courses to younger students were noted in comparing data from the two (e.g., see Gertler and Barker, 1972). The NACOME Report (1975) summarized data from the two surveys in terms of size of school. They emphasized the dramatic increase in the variety of courses:

The impact of Comission recommendations on thinking about proper curricula for schools is evident in the decline of solid geometry offerings (coupled with rise of unified plane and solid geometry courses), growth of the advanced algebra/trigonometry option, and appearance of many different twelfth year options. in advanced mathematics. These offering and enrollment data are paralleled by patterns of change in state and local curriculum guides and mathematics objectives... (p. 6)
The data from the national survey are confirmed by more intensive
surveys in individual states. For instance, in South Dakota, the number of courses offered increased from ? to 13 between 1953 and 1963 (Bedwell, 1966), and offerings similarly increased in Iowa between 1954 and 1964 (Hawthorne, 1966). Moreover, in recent guides it is apparent that the variety continues and is, in fact, expanding to some extent as courses designed for the nom-college-bound student and consumer-oriented courses are added.

Williams (1970) prepared a "progress report" on the implenentation of the recommendations of the Commission on Mathematics, evaluating specific points made by the Commission in terms of the responses obtained for 1,910 seniors in 1965-66. She concluded that

- In view of topics that were taken and grade levels at which certain topics were studied, the mathematics programs . . . probably were not as traditional as might be implied by the pattern of courses taken in grades 9 through 12. A number of the topics that are considered to exemplify contemporary mathematics were studied by more than half of the students in the sample. . . . The data from the survey indicated not only chat some; of the recommendations of the new experimental programs had begun to permeate - the mathematics programs . . . but also that some of the recomended topics were being integrated into the program rather chan being attacked in a superficial way. (p. 468)

However, the inclusion of different mathematical content may be illusory. The NACOME Report (1975) raised the question of the extent to which the so-called "new" mathematics was actually implemented, referring particularly to the elementary-school level. The Report noted that relatively small efforts were made to educate elementaryschool teachers about the new content and thrusts. This, combined with their lower level of mathematics background, led them to continie to emphasize what they knew best and felt they could teach best: compu-
tational skills with whole numbers, fractions, and decimals.
Unfortunately, when efforts were made tos update elementary-school. teachers' background, the emphasi's was placed almost solely on content, and in particular on terminology, on precision, and on non-typical topics. Upgrading background meant acquiring more mathematics -- with comparatively little attention to the rationale for teaching that content, the connection between that content and the elementary-school curriculum, or methods of teaching that content to children. At the secondary-school level, as has been typical in the preparation of teachers at that level, methodology was also considered only coincidentally. Consequently, the underlying goal of helping students to understand mathematics took an adjunct role; and far too many teachers were led to believe that it was not of central importance. Discovery or girideddiscovery teacning was discussed but not necessarily implemented.

Some new areas of content have been added in recent years. The decision to make the metric, ystem the primary system of measurement :was reflected in the literature of the early 1970 s as responses were made to expressed concerns of teąchers. Elementary-school teachers, in particular, feared another upheaval in the curriculum. A flurry of activities (e.g., see Szabo et al., 1975) and materials resulted, and continues as the topic is labeled a priority by NIE.

Career_education, another new term of the 1970 s , has' resulted in numerous curriculum guides, unit's of study, resource materials, - information on specific careers, so-called "syste, is of instruction", bibliographies, lists of objectives, teachers' manuals, interest inventories, guidelines, and activities for kindergarten through the
remaining school years and beyond. Questions have been raised about the quality of much of this material. As another priority item on a federal agency agenda, career education presumably will not disappear, although itcimplications and impact have been questioned.

Curriculum Guides: Scope and Sequence
Curriculum guides from 38 states, or communities within those states, were examined. The guides tended to be of two types. One type included only statements of goals and objectives, possibly sequenced. The second type included specific activities for the teacher to use, similar to a manual for a textbook, (but usually with less attention to appearance). Major differences in content are not reflected across curriculum guides and ocher forms of scope and sequence from states and school districts. Format distinctions are evident but seem minor in importance. Content emphases vary across the years but with limited. variance across guides: the same topics appear in virtually all, although the amount of attention given to each varies from state to state or community to community.

One of the most evident changes in currinulum guides is the statement of objectives in behavioral form in many published during the past ten years. The format of the objective makes explicit what is to be taught and how it is to be measured, but at the expense of some higherlevel processes which are difficult to state in behavioral form.

In California, a state committee developed a strands approach (California, 1963). 'Nine strands were proposed: numbers ând operations, geometry, measurement, applications of mathematics, statistics, and
and probability, sets, functions and graphs, logical thinking, and problem solving. The strands approach has served as a model for numerous other, state guides, for testing programs, and for other curriculum development work. \{Revision in 1972 led to the Second Strands Report. (Califoraia, 1972a).\}.

Courses, Programs, and Projects
Many new courses, programs, aṇ projects weire created in rēsponse to the goals established oy iocal, state, and national groups. These innovations were frequently encouraged by federal funding, and were often responses to certain technologicall developments; in some cases a computer led to changes. There was much duplication of effort with courses developed in one location differing little from those developed around similar ideas at another site. Some educators have voiced the opinion that this duplication of effort may be a needed component accompanying change. It signifies involvement by those actually e: gaged in the process of teaching. This involvement serves as one form of in-service teacher educu. ion, considered to be vital if changes are to be effected in instractional practices.

Until the 1960 s , course descriptions existed almost. solely within curriculum guides and as textbooks. Yearbooks and journals ifisted a few projects or programs, usually undertaken at the local level. With the expansion of offerings and with federal funding involved in the development of courses, programs, and projects, reporting and coppilation of "what's gioing on" became more ćomplicated. Numerous collections of "innovative and effective" programs and projects have been prepared; ég.,
by Sloan and Loomer (1973), Carasso and Lachat (1974), and Henrie (1974). ERIC also contains an array of reports on specific projects. In addition, NSF and NIE have issued reports on various activities and projects, as have the R\&D Centers and Regional Laboratories.

In 1962, the International Clearinghouse on Science and Mathematics Curricular Developments was established at the University of Maryland. Ten reports summarizing curriculum devélopment projects have been produced (in 1963, 1964, and 1965 on only American projects and in 1966, 1967, 1968, 1970, 1972, 1975, and 1977 including international projects). The tenth report (Lockard, 1977)" summarized each of the projects active since 1956.

Dissemination of information about projects, as well as about research findinge, has been of increasing importance since the mid-1960s. . Both NSF and NIE have expended much effort to have the products of funded efforts implemented.

Enrollment Patterns

The statistics on enroliment in mathematics courses at the sec-ondary-school level are buried amid the hordes of data gathered annually in state and federal education agencies. Not infrequently, differing data are cited in different summaries -- though at times documented to the same source! Surprisingly little definitive analysis has been reported on the data: generally only small. portions have been summarized o (e.g., Brown and Abell, 1966) and used as the basis for making some point related to enrollments.

In the late 1950 s and early 1960s., data clearly indicate that
enrollment in mathematics courses increased. In 1949, only 65\% of all secondary-school students (7-12) were enrolled in a mathematics course; by $1960,73 \%$ were enrolled (NCES, 1960). . Truenfels (1961) summarized USOE data from. 1958 on 4,254 randomly selected secondäry schools (8-12). Än increase in mathematics course enrollment- was reported by 27.4%, while 1.6% had decreases and 71% reported no change. The emphasized need for mathematics, especially as à prerequisite for college science courses, and the prestige or curiosity involved in participating in experimental courses, probably caused the increase.

Nationwide samplings were supported by data from individual states. For instance, Bedwell (1966) sampled ${ }^{\circ} 130$ of the secondary schools in ${ }^{\circ}$. 1 South Dakota, representing 68% of the student population and 54% of the mathematics teachers in the state. He reported that the total secondaryschool enrollment increased 47.8% from 1953 to 1963, but mathematics enrollment increased 154.5%. In Iowa, enrollment also increased in mathematics between 1954 and 1964, with percentages for trigonometry and algebra 2 increasing "markedly" (Hawthorne, 1966).

The enroilment pattern seems relatively stable in recent years, with a slight decliue in some instances. For instance, the New York State list contains 62 courses offered from 1971-76. The data indicate that enrollment declined at ..east slightly year by year over the period for: Math $7 ; 8,10,11$, and 12; Algebra I and II; Trade and Shop Math; Advanced and Analytic Geometry; Problem Solving; and History of Mathematics. The numbers of students in other courses showed an increasing trend; all except Basic Math 9 involved a small proportion of the total number of students, however, and most were at an advanced (12th grade)
level.
As noted previously, there is little doubt that the number and variety of courses offered in secondary schools has increased since 1955. In the summary, the NACOME Report (1975) stated:

Individual increases were prominent in advanced general mathematics, ". plane geometŕy, advanced algebra, and-trigonometry -- indicating that students were already beginning to seek more extensive preparation for college level science study. Furthermore, the 1960 survey revealed that 2.3% of all twelfth giaders weré enrolled in advanced mathematics courses such as calculus, probability and statistics; . : . college mathematics, . . . and analytic geometry. (pp. 5-6)

The 1972-73 survey data reveal, some very interesting patterns. The number "of, students taking a second course in algebra or the new integrated algebra/trigonometry course had risen to nearly equal the number of students takiag elementary algebra. ... The algebra/trigonometry format captured 40% of the advanced algebra registrations. ... Over 260,000 students were in calculus or other advanced level mathematics courses (four times the 1950 figure). © Some 5,000,000 students were described as studying one of the various experimental curricula (SMSG, SSMCIIS, UICSM, etc.) ($p .6$)
$:$ The extent of the increase in enrollments varied from state, to state, but studies from different states provide a reflection of the trend in increased offerings which reflected increased demand. For instance, Truenfels (1961) reported that the petcentage of schools offering each course during 1958 was:

General Mathematics	34.4%
Algebra I	71.6%
Plane Geometry	46.7%
Intermediate Algebra	37.0%
Solid Geometry	3.9%.
Trigonometry	

RudnLck (1962) obtained data from 354 schools in 109° cities in 38°
states and the District of Columbia. He reported that the percenidige of schools offering each course was:

Course	1957-58	1960-61	
: ! . 8 -			
Algebra I, grade 8	13\%	13\%	
: ${ }^{\text {a }}$, grade 9	- 100\%	87\%	
Plane Geometry. :	$\because 96 \%$	82\%	
Plane and Solid Geometry	2\%	18\%	
Algebra II	93\%	95\%	
Solid Geometry	87\%	65\%	
Algebra III (College)	43\%.	37\%	-
Trigonometry	93\%	88\%	.
Analytic Geometry	7\%	21\%	
Advanced Placement	2\%	6\%	
Other	8\%	55\%	

Alspaugh and Delon (1967) surveyed a sample of 50 schools in Missouri and conducted a follow-up study three years later (Reys, Kerr, and Alspaugh, 1969). They noted "substantial changes for a three-. year period", such as the starred items on the table below.

Counse	$1964-65$	1967-68
Functional Mathematics. I	94\%	95\%
Functional Mathematics II	12\%	.25\%
Terminal Mathematics	12\%	19\%
Algebra I	96\%	98\%
Algebra II	94\%	92\%
Plane Geometry	57\%	45\%
Plane and Solid Geometry	25\%	
Solid Geometry	2\%	2\%
Trigonometry	60\%	73\%
Mathematical Analysis	36\%	65\%
Elementary Functions	4\%	8\%
Matrix Algebra		3\%
Analytic Geometry		10\%
Calculus		7\%
College Algebra	-	2\%
Probability	-	3\%

factors other than student demand for courses. In many strudfens, however, it is 'not' possible to ascertain the reason for the findings. Thius,
only conjecture can be made about the results from two studiés (Crawford, 1967; Dunsor, 1970) in which black secondary schools in the South were surveyed. All offered General Mathematics; Algebra I, and Geometry. Over 50% of the students were enrolied in General Mathematics. Only large ŝchools offered courses beyond Geometry, and enrollments in courses'such as Analytic Geometry involved $\frac{1}{\tau}$ ess than 1% of the students. A school must be of sufficient size to warrant the offering of a course, but even in large schools, the number of courses offered wasiow.

Curriculum and Content: HIGHLIGHTS

- "New math" was not a singłe phenomenen, but a two-decade series of. developments that. evolved and changed continuously.
-Initiaily', curriculidm reform focused on the collegesbound student at the secondary-school level, while most early elementarizechool projectsp developed supplementary materials. Changes in intent arcompanited changing needs (noted in the overview):。
- Emphasis was placed on structure, rigorous deductive proof, exploration, and correct:terminciogy, with changes*in sequence and inclusiont topics. Methodological emphasis was placed on developing understànding.
- As reflected in print, the content of school mathenatics curricula changed. The number and variety of courses of fered at the secondaryschool level had increased by 1965, but inclusion of "new math", content
in the elementary school may be illusoxy.
-Curriculum guides vary in format and emphases; they have little variance in'content, with the impact of the California "strands" approach evi-dent-in many. Behavioralily stated objectives distinguish many 1965-75 guigdes from earlier'guides.
-The need to disseminate information to increase implementation of new curricular ideas became apparent.
- Since 1955, data clearly indicate that enrollment in secondary-s=houl mathematics courses has increased, especially in advanced mathematics * courses. Thüs more students axe studying more mathematics. A large percentage of students have studied materiais developed by one or
another of the curriculum development projects.
$\square \quad$ Enrollment patterns seem relatively stable in the 1970 s, with continued small increases in advanced courses and in basic or remedial mathematics.
\qquad

D. What Goes. On in the Classroom?

Class size, time allotment and use, teaching approaches, and the \rightarrow differentiation of instruction are each explored as facets of what goes on in the classroom.

Class Size

Class size has been of continuing concern, but there is little evidence that mathematics achievement is affected in a simple or direct way by total class size; rather, the size of the group with whom the teacher works on a particular topic may be of is gortance. A ratio of one teacher to one pupil (e.g., Moody et al., 1973), while seming optimal by some criteria, obviously does not seem optimal by other criteria, not the least of which are fiscal limitations. To a greater extent today than in 1955 , class size is negotiable by teachers with school boards. But as school budgets tighten, the number of pupils per ceacher, which had decreased by the end of the 1960 s , is beginning to climb upward;again. In some sets of data, however, this is obscured by including "special class, supplementary services, administrative, and other personnel in the equation.

Shetler (1959) reported that 46% of the 574 mathematics classes In his survey of secondary schools in 20 states had an average class size ranging from 16 to 25 . Eor 35%, the range was 26 to 39 , while 18% averaged 1 to 15 students. Only 4 schools (less than 1%) indicated the use of large classes averaging 40 or more students. The average size of mathematics classes varied direct.ly with school enrollment.

Furno and Collins (1967) analyzed data from 16,449 pupils enrolled
in third-grade classes in Baltimore schools in 1959, and , aced their patterns for 1959-1964. Students in smaller classes in the regular curriculum made significantly greater gains in arithmetic achievement over the classes. 'The advantage of small class size (up to 25 students) was considerably greater for non-white students and for those in the special education curriculum.

In discussing data from the National Longitudinal Study of Mathematical Abilities (NLSME), Begle (1973) reported that class size (less than 30 , or greater than or equal to 30) had an effect on achievement in 8 of 16 instances. He commented:

Curiously enough, the smaller class size was more advantageous for elementary school students, but the larger class size was more advantageous , at the junior high school level. (p. 212)

Salopek (1974) reported that class size was one of three consistent predictors of variance on arithmetic tests in grade 6 in one county in Pennsylvania, and. similar correlational data have been reported from a few state assessments of achievement.

Jamison, Suppès, and Wells (1974) concluded, however, that
where significant differences were found they were about as likely to favor large classes as small and that even when differences were significant they were usually small. (p. 21)

In five studies specific to mathematics classes covered in their review, iaıge classes (usually more than 25 students) were favored in three and class size was not significant in two; in six studies on various subject areas (including mathematics), smaller classes were favored in five, with no significant differences in the sixth.

Time Allotment and Use

The amount of time allocated to mathematics instruction varies across states and across grade levels. From somewhat limited evidence, it appears that the time mandated in various states and commities for mathematics instruction may not be the actual amount of time spent on. mathematics instruction, however.

Researchers have consiảered several questions related to tise use of time:
(1) How much time has been allocated to mathematics instruction?

Table 5 indicates evidence from several studies in which respondees were asked to indicate the amount of time on mathematics iritruction (Miller, 1958; Jarvis, 1966; Price et al., 1975, 1977). They confirm data on time allotments suggested by various states, and indicate that the lower the grade, the less time spent on mathematics. One of the studıes cited observation data which contrast sharply with self-report data; Conant (1973) indicated that far less time may be spent on actual instruction than is reported. Reports from another project (Filby et al., 1976; Fisher et al., 1976a. ; Marliave et al., 1976) also indicated discrepancy between allocated time and "engaged" time. From other studies (e.g., 0lson, 1971), it appears that approximately 20% of the elementary day has been allocated to mathematics instruction; at the secondaryschool level, 200-300 minutes per wr.ek.
(2) What is the best use of the time devoted to mathematics

To determine how the use of class time affects achievement, Shipp (1958) compared four groups, in which $75 \%, 60 \%, 40 \%$, or 25% of class time was spent on developmental work while the remainder was

TABLE 5
TIME ALLOCATED TG MATHEMATICS INSTRUCTION

spent on individual practice. Higher achievement in computation, prob-lem-solving, and concepts was obtained when more than half the time was spent on developmental activities. In replications of the experiment, Pigge (1964) and Zahn (1966) used ther teime allocations at varying grade levels. They confirmed the finding that when the greater proportion of time is spent on developmental activities, achievement is higher.
(3) How is time used?

It comes as a surprise to many people that there are actually relatively few studies which describe the actual classroom situation. Goodlad (1977) noted:

There is only one honest answer to the question, "What goes on in our schools?" It is that our knowledge is exceedingly limited. ... There is not now either a body of data on what transpires in schools from which to begin an enlightened discussion of schooling or a tested methodology - for securing these dàta: (p. 3)

In most studies in the classroom, the setting is described only generally. Comparisons are made with the "traditional" or "usual" classroom, as if everyone knew precisely what that was. There are also some surveys in which teachers were asked to list of to check activities which they use. But only rarely have observers gone into ciassrooms to see a:ad define what is occurring: Some studies provide information on verbal behaviors (e.g., Fey, 1969a, 1970; Halperin, 1976; Kester, 1969; Mahan, 1971; Meckes, 1972; Stislwell, 1968). Thus it is kr wn that

- the teacher talks about $2 / 3$ of the time
- teachers tend to use a direct, rather structured approach
- over 50% of the questions teachers ask are at the knowledge level, requiring relatively low-level cognitive processes from students
- the teacher initiates most exchanges, with students doing little more than answering questions -- in addition to sitting and listening
- teachers communicate with brighter pupils in a more
- friendly and encouraging manner than with other students

Evidence from a variety of sources documents a picture of the classroom -- at both elementary-school and secondary-school levels -that has changed little, despite the innovations advocated in the past 20 years (e.g., see Alspaugh, 1966;' Brown, 1974;' Cònant, 1973; 'Gates, 1969; Goodlad et al., 1970; Hughes, 1959; Price et al., 1975, 1977;

Shetler, 1959):

- teachers spend a large proportion of their time on managerial duties; an "astonishing amount of time" (perhaps up to 70%) is taken up in control, classroom routines, and what appeared to be scarcely
- more than busywork
- telling and questioning. usually in total-class groups, is the prevailing teaching method
- tell-and-show and seatwork at the elementary-school level, and homework-lecture-new homework at the secondary-school level, are the f vailing patterns
- textbooks predominate as the medium of instruction, with a single text followed closely; some teachers use virtually no other activities or materials
- the 'pace of lessons is slow, yet teachers allow little time for indiydual pupils to answer questions
- in the elementary school, the major portion of time is spent on reading and language arts, with mathematics second
- seatwork consumes up to 50% of the time in class; questions and answers or discussion and explaining

Involve about 25% of the time

- teachers are teaching essentially the way they were taught in school

In an interesting variation on the usual assessment of time allocation, Barley (1975) described the amount of time in formal instruction in terms of the percentage of their waking lives that students spend on each subject. For the majoirty of students K-12, school days consume 16% to 20% of their waking lives in any given schoolyyear. The majority of elementary-school students spent ${ }_{\text {a }}$ about 3% of their waking lives on mathematics (compared with 7.6% on reading and language arts). Secondary-school students spent about 1.8% of their time on mathematics (compared with 2.1% for science).

Harnischfeger and Wiley (1975) concluded that students who spend 190 days in school achieve more than do those who spend only 170 days. in school each year. In commenting on this, Goodlad (1977) stated:

If time spent on learning affects quality and quantity of outcomes . . . then how the days and weeks of the school years are being used and hov they might be used differently become : first and second items on the agenda of school : improvement. (p.4)

Earlier, he had noted:
To caŕry on a serious dialogue about, let alone to seek change, American schooling or simply the local elementary school, without a rather substantial body of the information implied seems somewhat bizarre. And yet, to do so is virtually a national pastime. In our pseudowisdom, we know what schools need without knowing what they already have and we know what to put into them without knowing what needs to be replaced. (p. 3)

Several major classroom observation studies are currently.being conducted. One, directed by Stake and Easley at the

University of Illinois, is a companion study with the present one, sponsored by NSF. The intent is to ascertain the factors that are involved as students are taught mathematics. In-depth case studies, are being made in ten school districts; observations and interveiws with students and teachers are components of the task. Another study is being conducted ,by Goodlad (1977) for I/D/E/A, and is an extension of his previous studies. A third study has been underway for several years at the Far West Regional Laboratory (Filiby et al., 1976; Fisher et al., 1976a,b; Marliave, 1976). Their data, based on a relatively small number of classrooms in grades 2 and. 5 actually observed, indicate that there is considerable variance in the amount of time spent on different mathematical topics. There is also ${ }^{-}$ considerable variance in the amount of time actually "engaged", or directed to the task, by the students.
(4) Can some students profit from spending more or less time on certain courses?

Possibly how time is used is of more importance than how much time is available: Achievement differences favored students in grades 4-6 spending 60 minutes per day rather than 40 minutes per day on mathematics instruction (Jarvis, 1963; Lawson, 1966). In the Oregon (1976) progress assessment, however, amount of time per day in formal mathematics instruction ($16-30$ minutes, $31-45$ minutès, $46-60$ minutes) revealed little or no significant differences in performance. The percentage allocating each amount were $12 \%, 50 \%$, and 32%. Other studies (e.g.s see the literature review in Fisher et al., 1976a,b) have also reported varying results on the rclationship of time and achievement. Fisher et al.(1976a,b; Filby et al., 1976; Marliave, 1976) have found that the amount of time is.
relàted to achievement when substantial amounts of time difference are observed.

Doubling the length of the class period from 55 minutes to 110 minutes by meeting for only haif the number of periods was not found to affect the achievement of secondary-school students (Albers, 1973; Hansen, 1963). Whether lengthening the number of semesters spent on a course has an effect on achievement has been studied with algebra for "-..... low achievers; results differed in studies by Buchman (1972), Herriot (1968), and Posamentier (1973).

Acceleration will be considered in a later section; in general it has been reported to be effective for some students.

Teaching Approaches

Many varying instructional approaches have been and are being . tried in classrooms. The literature reflects current concern that far too many of them have been promoted as panaceas; rather than as components in a teacher's repertoire, to be used as children, content,' and circumstances warrant. The emphasis of research has been on such comparisons as expository versus discovery approaches, incidental versus systematic procedures, or team learning versus independent study. Only limited attention has been focused on the circumstances under which each could be used with optimal outcomes by an individual teacher. Educators generally believe that children learn best in various ways; thus it may follow that individual teachers may teach best in various ways and that specific content may be best taught in certain ways.

The literature on comparisons of various types of approaches is
plentiful (see Appenilix A). Some reviews of research have provided some syntheses (see Table 6). The topic of most concern for the past two decades, discovery learning, has been the object of several reviews. Tanner (1969) found studies on discovery versus expository instruction provided "irsufficient rationale for sweeping changes in currinium and instruction". In his aore extensive study, Weimer (1975) also reported "no clear evidence of a singie superior method"; rather, "many effective teaching strategies are available".

Suydam and Weaver $(1970,1975)$ concurred with this; a summary by Robertson (1971) expresses their point:

It would appear that no one treatment or mode of instruction can be considered the best approach. The teacher who learns as many instructional modes as possible, identifies and diagnoses pupil needs and abilities, and uses this knowledge to individualize instruction may very well get the best results: (p. 5279)

Research has indicated rather clearly, however, that meaningful instruction (that is, instruction in which the learner is taught understanding of an ide;) will lead to higher achievement than wilí rote instruction (Weaver and Suydam, $1 \gtrdot 72$). This does not preclude all learning by rote, however, for certain skills are particularly amenable to such procedures.

Learning through activity approaches such as use of a mathematics laboratory or other approaches in which materials are used was stressed increasingly in the 1960s. There is evidence that teachers believe that such activities should be used -- but thęy are actually used by few. Research indicates that the use of manipulative materials appears to be fimportant at all levels at least through grade 8, indeed, even adults.

TABLE 6
SELECTED REVIEWS AND SUMMARIES OF RESEARCH ON'TEACHING APPROACHES.IN MATHEMATICS EDUCATION

learn many ideas through the use of materials (Suydam and Higgins, 1976, 1977). Students using activity-oriented programs or units can be expected to achieve as well or better than students using programs not 'emphasizing activities (Kieren, 1969, 1971). That the mathematics laboratory is one strategy among many, tc be used as appropilate, has been noted more frequently in the '1970s than it was in the 1960 s .

Research has also been concerned with a large number of specific comparisons of techniques to be used in teaching; for instance; subtraction with regrouping, the division algorithm, or algebraic equations (see Table 4). ${ }^{\circ}$ Such studies have been summarized in a variety of documents with ${ }^{\dot{c}}$ interpretations for classroom applications (see Table 6).

Jamison, Suppes, and Wells (1974) provided an overview of research on the effectiveness of various modes of instruction. From their analysis of studies on traditional instruction, categorized by an array of variables', they concluded that "few variables consistently make a -difference in school performance" ($p .26$). They emphasize that this ".does' not, however, imply that .schools make no difference in the cognitive development of their students" (p. 27).

$\frac{\text { Differentiation of Instruction }}{\text {. }}$

One of the major emphases during the 20 -year period has been the concern for ind̀ividualized instruction. As Schoen (1977) reported:

In the 1960 s and 1970 s there has been renewed emphasis on the responsibility of schools to meet the needs of individual students. Not. since the peak of the progressive education movement have educators focused so directly on the individual. This phenomenon is reflected in the professional education literature
of recent years. For example, in 1971 the Education Index 11 ste 124 articles on individualizied instruction; the average number was about 35 as year during the decade of the sixties. Incicontrast, only about 4 or 5 (and often fewer) articles on individualized instruction appeared each year in the forties and the fificie's (Kazak 197.4). (p. 198)
Belief in the need to account for individual needs, combined with ideas from learning ti on and from technology, led to the development of systems for individualizing instruction. There is little éviGense that the resulting self-paeed systems are any more effective then other programs. Schoen ($1976 \mathrm{a}, 1976 \mathrm{~b}, \ldots 1977$) , has documented this point rather extensively; Kazak (1975) and Miller (1976) have also prepared recent reviews. Schoen (1977, pp. 212-213). summarized his findings: extensively; Kazak (1975) and

- Result's favored traditional instruction (TI) more often than self-paced. instruction (SPI), although many analyses resulted in no significant differences.
- Locally developed programs were about as effective as those sold commercially.
- SPI was particularly. ineffective in developing computational skills at the intermediate and junior high-school levels.
- High'rability students achieved equally well in. SPI as in TI, but most low-ability students were unable to function. in SPI.
- On affective criteria, 40 of 55 analyses resulted in significant differences between the TI and SPI groups.
- Teachers in SPI have tended to spend more time i on procedural matters and to restrict educational discussion more specifically to the topic at hand than teachers in a typical TI classroom:
- The diagnosis-prescription aspect of SPI has not
been shown to be effective.
Projected over a five-year period, costs for materials alone for SPI were about " ur or five times that of TI.

Two independent stuiles, one funded by NIE and conducted by the Educational Testing Service (ETS) and one funded by the Office of Education and conducted by American Institutes for Research, also suggested that materials for individualized instruction

> made little or no difference. in improving achievement unless the materials are used in a setting where there is one-to-one interaction between teacher and learner . . . \{n mathematics in particular, students who were identified as overachievers, on the average, were members of programs with a more moderate emphasis on innovation. (EPIE, 1977, p. 2)

Many procedures for differentiating instruction have, however, been found to be effective; for instance, grouping for specific needs. While research evidence tends to be equifocal (Suydam and Weaver, 1975), there is evidence from individual users that it is a useful way to provide for individual needs. However, it has been noted in journal articles and other literature that many teachers find it difficult to group for mathematics instruction; in the elementary school, grouping for reading has long been the pattern, but additional grouping for another subject which consumes fewer:minutes per day has not been widely accepted. In the secondary.school, there is, the long-held belief that one or another way of tracking students -- that is, assigning them to classes by ability or achievement levels -- will take care of the need for individualization. Thus, while many varlations have been proposed, most elementary schools throughout the past two decades have tended to use heterogeneous grouping procedures, while secondary schools have tended to use one or another form of homogeneous grouping.

The teacher must identify various factors related to pupils' achieve-
ment and interest in mathematics, and then decide on appropriate variations in content, materials, method, and time. Related to this is research evidence that, "despite the fact that a teacher might be sensitive to and state differences amoag pupils, teachers frequently do not个. differentiate instruction, and may frequently select topics and ideas which students already know. Skager (1969) found that teachers selected instructional objectives for low-achieving seventh graders that reflected skills already'available to their students, and geared instruction to skills already achieved by students at the time of their entry into the program. Strickeier (1971) stửied patiterns of teacher verbal behaviors in seventh-grade mathematics classes grouped by ability; comparisons were made of teachers' perceptions of their verbal behaviors and expectations for classes of different ability levels. Although teachers had djfferent perceptions and expectations for classes of different ability leveis, such differences were not reflected by observable differences in the teachers' verbal behaviors.

Stiglmeier (1973) similarly found little relationship between eighth-grade teachers' judgment of student, needs and instructional mode. The Educational Products Information Exchange (EPIE, 1976b) reported a pilot study:

Students tested on the first day of school hàv achieved a mean score of 64 percent on tests made up of tes': items taken directly from the major materials from which they were to be instructed fur the rest of the school year! (p. 2)

Nelson (1960) interviewed 183 Nebraska secondary school teachers, visited 85 classes, and obtained written responses from 2,185 students.

She concluded that the teachers used a wide variety of methods, but, except for the most capable teachers who used techniques for adapting instruction to students' abilities and needs, differences in teachers' skill rather than the method used were most evident. She observed "few accommodations to individual differences" in the organization of the classes.

The Educationally Disadvantaged Student

The educationally disadvantaged have been a source of concern since long before 1955, or 1965, when federal attention was focused on them. These students, who are labelled slow learners and low achievers, as well as those tho are handicafped physically, mentally, or otherwise, began to receive relatively more attention in the early 1960s. For example, the NCTM formed a Committee on Mathematics for the Non-College Bound in 1963 that became primarily concerned with the low achiever. SMSG experimented in the early i960s with a slow-paced beginning algebra course designed for two-year time span rather then the typical one-year course (Herriot, 1968). The primary concern was for studente at the junior and senior high school levels.

With the passage of ESEA Title I in 1965, the atteition of educacion shifted to the elementary school. The apparent assumption that starting the child in school ": $=0$ rectly" yielded achievement benefits in later years interacted with the cumpensatory education thrust of providing for early success in school by enriching the child's enivironment. Evans (1971) documents the character of many such programs, including Head Start and Follow Through, that were designed to facilitate success
in the early elementary school. Osborne and Nibbelink (1975) identify some of the many evaluative studies of such compensatory programs, noting that those cognitively oriented programs that carefully control the structure of the learning environment and activities appear most successful. One such program is DISTAR (Engleman and Carnine, 1969); it appears so extreme in controlling the environment and activities for learning that many teachers and mathematics educators find it conflicts with their beliefs about teaching and the nature of mathematics.

The concern of the slow learner brcadened in the early 1970s to encompass both elementary- and secondary-school students. The attention to the academically disadvantaged child at the early school levels has continued. The evidence on the increased varicty and number of courses at the secondary-school level described earlier reflects the design and implementation of special-purpose courses for the low achiever, as well as adapting general mathematics courses to their needs.

The concern for the educationally disadvantaged stedent encompasses more than simply low achievers. The handicapped have been a major concern throughtut the twenty-year period. In 1955, the emphasis was on special education for mentally retarded and other handicapped students, since their needs were not being adequately served in the regular classroom. In the 1970 s , however, just as niost schools had made provision for such classes, a move in the opposite direction occurred: "mainstreaming"* was advocated, since it had seemed apparent that both "special" and other students derived social and psychological benefit from interaction. The need to provide training to help these students became a priority item in several states.

From a review of the research on the academically and environmen-
tally "disadvantaged", Suydam and Weaver (1971; Suydam, 1971) concluded:
a. The disadvantaged, as well as all other pupils, profit from special attention from the teacher, the content of the program, the instructional materials, and the organization for instruction.
b: The mathematical characteristics which distinguish disadvantaged from advantaged pupils appear to exist

- in degree rather than kind. That is to say, disadvantaged and advantaged pupils have similar abilities and skills, but differ in depth or level of attainment.
c. Rate of learning is but one variable to be considered in providing effective instruction for slower learners. Methods of instruction. also must be adapted to these pupils.
d. Social relevance appears to be more crucial to consider in the case of disadvantaged students; however, little research has attended to this topic.

$$
\cdots
$$

e. The degree of meaning (in the mathematical sense) which is optimal for disadvantaged students is an unknown factor. While there is some evidence that "discovery" approaches are not as effective as rule approaches with low achievers, it may merely be that more-closely-guided discovery and lower levels of meaning are appropriate for these groups.
f. Active physical involvement with manipulative materials, which is believed to be important for all children, may be even more so for the disadvantaged.
g. Pupils who are disadvantaged mathemațically may also be disadvantaged in other factors which are related to their mathematical learning (e.g., reading ability): Such things must be taken into account in planning thr curriculum for the disadvantaged child.
h. It does little good to report that special programs for disadvančaged students are effective without also reporting in detail the specific nature of those programs. More eyidence on "ideas which work", as well as research, is needed.
i. Groups of disadvantaged pupils are not all disadvantag ϵ in the same way. There is as much need to individuailize
instruction for disadvantaged students as for other groups of students.

The Talented or Gifted Student

The early stages of the revolution in school mathematics focused on college-aspiring youth and the development of curricula appropriate for them. The motivation for and the development of UICSM, SMSG, the Ball State Project, and other curriculum development efforts were in terms of serving those stucients destined for college work in mathematics and science who were likely to become a part of the scientific talent ponl during their mature, contributing years. Some projects and efforts were directed toward the students of exceptional scientific potential within the set of college-aspiring youth. Two specific efforts deserve particular coment: the Advanced Placament Program of the College Entrance Examination Board and the NSF Summer Science Training Program for Secondary School Students.

The Advanced Placement (AP) Program was created to allow the exceptionally talented student in mathematics, who had worked through an accelerated curriculum in secondary school up to work with the calculus, to take examinations set by the CEEB, in order to receive advanced placement or college credit (or both) for mathematics. The CEEB created (and keeps current) a course syllabus for secondary-school mathematics departments desiring to participate in the AP program. This syllabus provides the base from which the AP tests are cc $\approx=$ tructed. The program was established in 1955 with the first test given to 386 students in June 1956. Since this beginning, the program has matured, been modified, and become an accepted means of serving the needs of the talented in mathematics who
are in schools that have appropriate curricula for acceleration in mathematics. Heikkinen (1964) and Lefkowitz (1971) presented compelling eví- . dence that advanced placement in mathematics provides a significant advantage to students in college, allowing them to progress through their intended major more expeditiously. Heikkinen's study suggests that the advantage may be greatest for those students who do not major in mathematics at the college level, but are in fields using mathematics. Lefkowitz's survey of 271 students, who had been in the AP program in one high school over a nine-year span, indicated tha' many szudents desiring college majors in mathematics felt that the program was not sufficiently theoretical to serve their interests. This was particularly true early in the history of the AP program, but was reduced somewhat with the implementation of two syllabi by CEEB for the school year 1968-69. (The Calculus $A B$ syllabus is directed primarily toward an intuitive understanding of the concepts of the calculus and the skills with methods and applications of the calculus. The BC syllabus addresses the theoretical underpinnings of the calculus to a much greater extent.)

The reaction of colleges and universities to the AP program has made it a part of higher education. For instance, in 1963 the Ohio State Department of Education reported that 90 percent of the colleges and unfersities in Ohio had accepted the AP Program and would give either advanced placement or credit or both. In Utah, the percentage of those qualifying for advanced standing has risen steadily from 49% to 60% (Utah, 1974).

The Advanced Placenent Program in mathematics requires that a school carefully design a curriculum that will accelerate students. The most
sucessful schools begin the acceleration process early in the junior high school experience. The AP program does not work well in schools which designed a program affording students AP opportunities only in the last year or tw̄o of secondary school.

Moŗe than 15,000 students per year are currently involved in AP programs. No direct evidence is available indicating the extent of the effect of the AP program because many students take AP courses but decide not to risk taking the test. But by any reasonable criterion, the AP program must be judged a success in serving the needs of many bright students in school mathematics.

The NSF Summer Science Training Program for Secondary School Students was founded on a different philosophy for serving the interests of the exceptionally able in mathematics (and science). The primary feature of the program is enrichment rather than acceleration. 'Never serving -... . many students, the program did establish a model for some institutions that continues even today. In 1959, 113 institutions provided sumuer ścience and mathematics experiences for approximately 6100 stulents. The experiences were of four primary types depending upon the institution:
(1) Orientation programs of relatively short duration (two to three weeks) providing general backgcound material in science and mathematies.
(2) Classwork-laboratory programs centered on one or two fields of mathematics and science. These programs were of forr to eight weeks duration and

- provided significant study within a single field.
(3) Classwork-project programs centered on one or iwo fields of mathematics or science. Similar to the classwork-laboratory programs, these differed primarily in that the students worked on individually - conceived research projects.
(4) Full-time research-participation programs in which
students worked as assistants on ongoing research projects at host institutions.
- An evaluation of the 1959 summer programs by Science Research Associates (SRA, 1960) indicates that there was a significant impact on participants. In two surveys (one immediately upon completion of the summer program and one after the students had considerable time away from the experience) and extensive interviews with participants at 17 of the sites, evidence was collected indicating that substantial personal re-orientation of career goals had taken place. Significantly, more than half of the students came from homes not representing parents with professional, administrative, or managerial occupations and slightly more than half were from homes with parents of educational levels including no collegiate experience. Thus, the program served a broad spectrum of the population.
espite similar evaluations of summer programs, political and societal concern for the talent in mathematics and science decreased during the 1960s. Very little governmental support was given to this type of program. Currently, two regional programs, serve the needs of some talented students. One is the Governor's Honors Program, conducted each summer by the Georgia State Education Department. Designed to serve the needs of the exceptionally able student in the many small, rural schools typical of Georgia, the program involves careful selection of students and provision of an enriched experience in a particular field. The program appears appropriate for other regions with small schools where comprehensive curricular programs are not possible because of budgetary constraints.。 The other notable program in mathematics is one that was begun (by

Ross) at the University of Notre Dame with NSF support, moved to The Ohio State University, and is presently sponsored by the University of Chicago Department of Mathematics. Designed to encourage students to - realize their potential in mathematics, the program has a remarkable history of.encouraging a significant portion of the participants to parsue a career of research work in mathematics. In designing the program, Ross was particularly careful to provide students with a curriculum that allowed significant explofation of deep questions in mathematics that were relatively free of prior, formal experience in mathematics. Topics such as number theory, that would accommodate to personal, exploratory work and the development of mathematicaj intuitions, were exploited to develop a power with problem solving. Participants who begin the program early in their secondary-school careers can participaie for more than one year. Extensive use is made of prior participants as counselors in the program. Eberle (1971) provided detailed information concerning the effect of this summer program on the participants during the years 1964 through 1969. Her follow-up. of the participants captured the significent impact that this kind of program can have in nuturing scientific talent and he potential of this type of piogram in contributing to the pool of research professionals in mathematics.

Acceleration, ability groupina, special courses, and enrichment have always been the obvious means for coping with the talented. However, acceleration and enrichment are the primary alternatives for serving the interests of the exceptionally gifṭed in mafhenfatics. Research provides little significant evidence that one of these methods is to be preferred,
other factors being equal. The constraints imposed by the local school situation and the talent found in the mathematics teaching staff may well determine what is possible at the local school level. Data on the percentage of schools using each varies from survey to survey; in general, however, it appears that special courses are the most frequently used procedures and acceleration the least used. For the junior high school, Begle (1976) reviewed 42 research reports dealing with acceleration for .talented and concluded that acceleration wasipreferable to enrichment -at that level. Studies at all levels indicate that cere shrild be tai:on to select the option that is most appropriate for the individual.

Special curricula for the talented in mathematics have been created to serve the upper tenth of the student population. The Secondary School Mathematics Curriculum Improvement Study (SSMCIS) at Columbia University and the Comprehensive School Mathematics Project (CSMP) at CEMREL both built curricula for the secondary-school student of exceptional talent and represented a move toward realizing the curriculum advocated in the Cambridge Conference Report (1963). Both of these curricula can be successful in a school having a sufficiently large population of talented students and a staff with the mathematical capability for teaching the curricula.

- During the 1960s, the orier:tation to the socfally and educationally disadvantaged in society and the resultant lack of political support for program or the talented contributed to a decline of effort on behalf of the tal d student in mathematics. Although the normal distribution of taletht would lead one to conclude that there are as many talented individuals at the upper end of the continuum as low-ability individuals
at the other end, signtificantly-more:money is being allocated for the low ability student than for the talented. A developing concern was evident in the 1970 s that the talented are being ignored, although the.concern is not nearly so pervasive as that exhibited in the 1950s. The recent work of Stanley and his associates is one example of current and \dot{r} é-awakened interest in this segment of the student population. The Study of Mathematically Prẹcocious Youth (SMPY), begun in 1971 at Johns Hopkins University (Stanley, Keating, and Fox, 1974; Keating, 1976), has undertaken the task of identifying exceptionally talented students fin"the vicinity. of the University and devising educational experiences that best meet the student needs. They have found that extensive acceleration of such students is effective in a number of instances. Grade skipping, part-time enrollment in college courses, supplementary classes, and early entrance to college are some of the procedures used. Pacing; rather than design-. iing special curriculum offerings, is their, conçern. This work, based upon extensive testing to identify the talented, does not focus on the need of schools for programs for the talented. It works well only for those schools that have convenient local access to anfitutions of higher educatidn willing to provide opportunities and/or the staff for programs for these students. In addition, critical abstracțs and analyses of the SMPY research by a vafiety of mathematics educators indicated problems . with the research and testing design (IME, 1977).

A steady increase in the number of students taking the , CEEB Level II? Mathematics Achievement Tests can be noted in 1965 through 1976 for stu-; ; dents with more than three years of experience in the four-year secondary-
schoon college-bound curriculum (with a corresponding decrease for the
Level I test for students with three years or less in the college-bound curriculum) (Jones et al., 1977).

This indicates that some of the needs of the upper third of mathematics studeats are being served, but the perception of lack of attention to the needs of the exceptionally able is growing. Articles (e.g., House et al.,' 1977) focus attention on the need to cultivate and nurture thé talented student as an important national resource.

What Goes On in Classrooms: HIGHLIGHTS

-Knowle ige of what goes on in schools is limited: few studies have described the actual class situation. However, it appears that: -Approximately 20% of the elementary-school day is allocated to mathematics, with the number of minutes increasing as grade level increases. At the secondaryschool level, approximately $200-300$ minutes per week are allocated to mathematicis.
-A large proportion of time is taken up by non-instructional activities.

- How time is used may be of more importance than how much time is available. Higher achievement is likely to result when more than half of the time is spent on developmental activities.
- Classrooms have changed little over the past 20 years, despite the innovations advocated. Predominant patterns nontinue.to be: oinstruction with total-class groups otell-and-show foiluwed by seatwork at the elementaryschool level, and homework-lecture-new homework at the secondary-school level.
ouse of a single textbook but few other materials
- It appears that no une mode of instruction can be concidered best.
- Meaningful instruction promotes -achiavement, retention. and transfér, all accepted goals of instruction.
-Teachers believe that activity-oriented instruction should
be used, but few actually use it.
-Few variabies consistently make a difference in school performance. -Teachers frequently do not differentiate instruction. They tend to gear instruction to skills already achieved by their students. -Various means can be used to differentiate-instruction, including grouping for specific needs. However, many teachers - find it difficult to group for mathematics instruction. -There is little evidence that self-paced programs for individualized instruction are any more effective than "traditional" instruction; most low-ability pupils find it difficult to function using self-paced programs. Such programs cost much more than traditional instruction costs. -The disadvantaged student can profit from $\overrightarrow{\text { special attention, but such }}$
- \quad students differ individually more than as a group.
- 'The needs of the talented are not being well-served in the 1970s. Enrichment programs are especially needed for those in small schools. - Advanced Placement sêrves the needs of those who are going to use mathematics better than the needs of those who are going to major in mathematics.

E. How is Achievement Evaluated?

Evaluation has piayed an important role in the determination of educational policy throughout the two decade period beginning in 1955. Howeyer, the role of evaluation has shifted. Standardized tests have historically provided a normative effect on curricular content; now evaluation processes have become increasingly influential in determining curricular policy at the local school level.
\therefore The period began with the Educational Testing Service, following recommendations of the CEEB and the Commission on Mathematics, exerting a major formative influence on the content of the curriculum for the college-bound. CEEB conducted a st: ius study of the mathematics curriculum and issued the Report of the Coramission on Mathematics (CEEB, 1959) with full realization of the dilemmas associated with having a major testing service attempt to influence the curriculum through standardized testing of prospective college students (Jones, 1970, p. 73; Osborne and Crosiswhite, 1970, pp. 259-266). Mathematics educators such as Begle (1963, p. 137) identified the impact of the CEEB actions as "the most inportant step". In the curricular reform in mathematics of the late $1950 \mathrm{~s}^{\circ}$.

Evaluation within mathematics education in the 1950s'served to provide norms on curricular content; standardized tests were also used to categorize students. Partly in reaction to the mandated evaluation required for ESEA projects and partly due to increased knowledge and sophistication of school personnel about evaluation techtiques, evaluation has come to have a more significant role in decisicn processes for mathematics education. Superintendents and school boards at the local level and educational personnel at the regional, state, ard national level have
become enamored with the ideas of accountability and verifying the worth of both new and old curricular programs. The NACOME Report (1975) documents the growing pains associated with the increased use of evaluation at all levels. In particular, many of the misuses and consequent issues associated with testing programs in the schools are detailed. The power that tests wield, both in terms of the placement of students in the schools and what they can do after public schooling is completed, is also recognized.

In the 1970s, evaluation encompasses:
(1) Techniques: standardized testing, norm-referenced testing, objective-referenced testing, and criterionreferenced testing.
(2) Processes for particular purposes: formative evaluation, directed toward the redesign of curricular and instructional programs, and summative evaluation, the intent of which is to provide information concering the performance of established programs.

Most issues and problems as cited with the evaluation of mathematics programs arise from misuse of particular techniques or processes in conjunction with misuse of the information derived from them.

Increasingly, these is recognition that scorer from standardized tests are misleading -- or are being used in a misinformed fashion. Tests provide a means of sorting students. presumably to aid in the process of instruction. In addition, teachers and public. alike appear to believe that the important outcomes of schooling can be adequately appraised by achiever, int tests.

- In a positi, n paper, the National Council of Supervisors of Mathemetics (NCSM, 1977) attempts to influence this opinion:

Standardized tests have several limitati ons.including the following:
a. Items are not necessarily generated to measure a specific objective or instructional aim.
b. The tests measure only a sample of the content that makes up a program; certain outcomes are not measured at all.

Because they do not supply sufficient information about how much mathematics a student knows, standardized test.s are not the best instruments available for reporting individual growth. Othèr alternatives such as criterion tests or competency tests must be considered . . . There is also need for open-ended assessments such as observations, interviews, and manipulative tasks to assess skills
0 which paper and pencil test:s do not measure adequately.

The greatest chage in testing over the past 20 years has been the much-publicized concern for objective-referenced or criterion-referenced tests rather than norm-referenced tests. It has beer frequently noted, however, that:

- Teacher-made tests are objective-referenced in that they assess achievement on content and procedures teachers consider important.
- Norm-referenced tests are also tased on objectives CF some type.
- Both norm-referenced and criterion-referenced tests have a purpose -- the first to provide status information and the second to provide learning and instruction information.

Bloom's Taxonomy of Educational Objectives (Bloom; 1956; Krathwohl et al., 1.964) was in ${ }^{c}$ luential in directing thinking about needed evaluation measures (as we 11 as being useful fin curriculen construction). Continuing interest is reflected in ti.e 1969 Yearbook of the National o Society for the Study of Education (Begle, 1970), cin which two chapters focused on evaluation in mathematics inetruction; Bloon, Hastings, and Madaus (1971) also provided ilyistrations of objectives, testing techniques, and sample tcst items for mathematiz, evaluation.

Several studies have compared textbooks and instructional objectives with test objectives (Smith, 1966; Bernabei, 1967; Grialey, 1071; Hoepfner, 1974). In general, they compared favorably on content involving computation with whole numbers, fractions, and decimals at the elementaryschool level, but fewer items on tests concerned geometry, measurement, and other less "accepted" topic̣s. Gridley cautioned that the meaningfulness of the total score, as well as the subtest scores, was questionable, since frequently seveial skills or abilit. es were being measured by a single item. In otner words, the distinction of "computation," "concepts," and "problem solvins" made on so many tests is often not based on an accurate satego:ization of items.

The form of objectives has previcusly been referred to obliquely. In the 195Qs, instructional objectives were frequently very general :nat:ure: - "to teach addition with carrying" or "to understand algebraic equations." In the 1960 s , proponents of behavioral objectives were ad2mant: they made it appear that until objectives were stated in a precise form, so that they could be measured, no meaningf:l instruction . could proceed. The debate over behavioral objectives flared repeatedly, with "opponents" pointing out that mathematics, which seemed so amenable to statement in behavioral form, actually needed many more objectives than those which could be precisely measured, There was greater danger of "measuring the trivial with precision," while ignoring the long-ratge goals related to, for instance; "undr ${ }^{2} \mathrm{~s}^{2}$ tanding."

The orientation to accountability and performance contracting at the beginning of the 1970s accentuated the problems and issues surrounding the use of behavioral objectives. Many of, the state assessments are
based on behaviorally stated objectives at the knowledfe level, as are many curriculum guides. But the literature of the 1970 s reflected less corsern with the form and more concern with the intention of objectives. At ali levels, frop the public through and including professionals* o at the federal level, high expectations are held for evaluation. New curriculum develoyment projects and in-service education efforts in the late 1950 ş could be undertaken with lit:tle concern for evaluation; today evaluation is required and expecied. It encumpasses broad-scale efforts, from the National Assessment of Educational Progress (NAEP) to the local. school trying out new mathematics laboratory centers in elementaxy-school classrooms. The intent is to use information from the evaluation as a guide to tl.e expenditure of resourcrs. As such, it is an expansion of the role of evaluation in educational decision-making.

Evaluation: HIGHLIGHTS

-The scope and role of evaluation has been greatly expanded during the 1955 through 1975 period. Evaluation information is now expectedato provide gaidance for programmatic decisions, whereds in 1955 the primary use was in terms of standardized tests and decisions concerning individual students.
eStandardized tests have assume increasing importance. Recognitioa that scores from tests.are being misused has also increased. Many people believe that the important outcumes of schooling. can be adequately appraised iy achievemert tests. That this is a severe limitation on instructional outcomes is being emphasized by many leaders. -The great'st change in testing has been the increasing use of objectiveor sriterion-rex́erenced tests, as behavioral objectives were emphạsized In the 1900s, behavioral objectives were an issue. The 1970s brought less concern for the form of objectives and renewed concern for their intentionc. - Instruc ional objectives and tést items compare fayorably on content involving knowledge of computation, but not on content concerning geometry, measurement, and other topics. Insufficient attention has been given to the testing of higher-urder objectives (e.g., problem solving or analytic thought).

F. What Student Characteristics Influence Achievement?

Student characteristics must be considered as curricula are desifned and as a teacher plans for instruction. While many student characteristics could be considered in this section, the discussion has been limited to five that have been of concern to teachers and to researchers as potential factors influencing achievement:
-aptitude
-attitudes
-self concept
osex differences
-socioeconomic status

Aptitude

Most of the research indicates that aptitude, as measured by intelligence tests, is highly corcelated with mathematics achievement. This is hardly surprising, and one wonders why so much attention has been devoted to confirming the correlation between scores from intelligence tests and scorẻs from mathematics tests. What mathematical ability 6 - cônsists of has been the focius of a smaller body of the research.

Feierabend (1960), in a review of research on psychological factors in mathematics education, compared 19 studies concerned with the relationship of general intelligence and special abilities in mathematics. She concluded that
studies in this area appear to agree on the importance of a general intellectual factor for ability in mathemotirs, but the investigation of specific abilities is not conclusive and the approach to this problem is perhaps not as meaningful as it could be. . . . The question remains,

$$
\therefore \quad 90
$$

> unanswered as to whether all persons of sufficient general intelligence have equal potential for mathematics, or whether there may not exist some special abilities, factors, or conceptual approaches which are specific, to the field of mathematics or perhaps to creativity in mathematics thinking. (p. 26)

Aiken (1971), in an analysis, of studies reported after Feierabend's rex review, supported her conjecture concerning the importance of special mathematical abilities, in addition to general intelligence, for achievewent in mathematics. He found that "only about half the variance in
mathematical achievement can be accounted for by differences in abilities."
He glen suggested that such factors as language, sex, age, and heredity
need further study. Among other conclusions Aiken stated were: .

- There is some support for a broad group factor of mathematical ability, but generally it appears that mathematical ability, rather than being a unitary
ξ, trait, consists of a number of factors.
- Individual differences in mathematical ability increase at successive age or grade levis (the range may be as great as seven years).
- Intra-individual changes in mathematical ability as a function of age have been extensively explored by Piaget.
- Such coors as prior experience and verbal ability have been related to mathematical ability, in addition to reasoning ability and spatial ability.
- Host studies on aptitude-treatment interaction have not indicated that, for an individual having a particılar pattern of abilities, certain techniques of instruction are more effective than others.

Attitudes

Many people believe that mathematics is disliked by most students -or that it is just about the least favorite school subject. But in the

elementary school

It is true that. in some surveys a significant proportion of pupils rated mathematics as the least liked of their school subjects. But it is equally true that in these survẻys \{across time\} approximately the same proportion of pupils (at least 20\%) cirted mathematics as the best liked or the second best liked school subject: (Suydam and Weaver, 1970, p. 4)

In a recent study by Ernesto and others $(1975,1976), 1324$ students in grades 2 through 12 were asked to rank mathematics, English, science, and social studies. Mathematics was liked best by 30% of the boys and 29% of the birls , and liked least by 27% of the boys and 29% of the girls. A statement frompone study (Yamamoto et al., 1969) on the a-Litudes of 800 students ing grades 6 through 9 reflects the reactions of even researchers when such a result is apparent: "Rather to our surprise, mathematics fared quite well in students' ratings" (p. '204). To change such impressions has been identified as one of the needs mathematics education (e.g., NIE/NSF, 1977).

There is limited evidence (e.g., Dutton' 1968) that attitudes toward mathematics were slightly more favorable in the 1960 s than they were In'the 1950s. Several studies have attempted to analyze tne reasons why stulents like or dislike mathematics (e.g., Dutton and Blum, 1968; Callahan, 1971)., They cite frustration with word problems, possibilities of "miking mistakes, too many rules, and "..ot being good" as reasons students give for disliking mathematics; reasons for liking it include the points.that working with numbers is fun and presents a c° lenge, mathematics is logical, and there is need for mathematics in practical living.

Suydam and Weaver (1970) reported that their review of research indicated that "boys seem to prefer mathematetcs slightly more than do giçls,
especially toward the upper elementary-school grades" (p. 4). In the recent study by Ernest and others (1975), however, mathematics wàs the only subject in which no sex difference in preferences was observed. This may be evidence that attitudes are changing, but if there is a difference in attitude toward mathematics by boys and girls, it can probably be attributed in large part to a societally induced expectation.

In two long-term studies involving data from the mid-1960s, Ahttonen (1968) found that mean attitude, scores declined between grades $5-6^{\circ}$ and grades 11-12, while Crosswhite (1972), examining measures of attitude, self-concept, and anxiety asfone phase of the National Longitudinal Study of Mathematical Abilities (NLSMA), reported that studen ${ }^{\circ}$ attitudes toward mathematics peaked near che beginning of junior high school. Aiken (1970) concluded from his thorough, review of research that children's attitudes appear to become increasingly less positive ás they progress through school; more recent studies continue to support this conclusion.

Mathematics educators and teachers believe that the affective m. component of learning is important: if children are interested in and enjoy mathematics, they will learn -it-better. However, research indicates that positive or negative aṭtitudes toward mathematics appear to have only a slight causal influence on how much mathematics is learned. It has been noted, also, that achieving well in mathematics may have thé effect of "making attitudes more positive.
2
Suydam (197,5) summarized results of 12 studies reported between. 1962 and 1973. When significant correlations were found between attitude and"achievement, they generaily ranged, more than 4% to 16% of the variance in achievement could be accounted for .
by ạtitududes." There is, however, a rough balance between studies in which no significant differences are reported thd those in which a significant correlation was found. There is not, however, any differing pattern 1. across the years.

Teachers are widely believed to be prime determiners of a student's attitude and performance. Smith (1974), for instahce, reported that students.' pểcèptions of teachers were significant ematical growth in grades 4 through 6. Rosenbloom et ad. (1966) found that teaching effectiveness contributed significantly to the attitude' and perceptions of pupils concerning their teachers and their methods, the . school, text materials (SMSG), and the class as a group. However, kester. ((1969) found that seventh graders' attitudes were not significantly / af'fected by teacher expectations. Der haus thet is good, considering' t'iat Ernest et al. (1975) found that, of a small sampie of teáchers (24 women and. three men), 41% felt that boys did better in mathematics, while no one felt that girls did better.
'It is also'beileved that parents determine the child's initial, attitudes and affect their child's achievément. Poffenberger and Norton (1959) stated that attitude tnward mathematics is a cumulative phenomenon caused by one experiencé building on anothér. Attîtucies, théy believe, are developed in the home and caryied to the school; self-concepts in.. egärd to mathematical abifity. are well established in the earlyt. school years, and it is difficult'for even the best teacher to change them. Parents influence the child by their expectancy. lëver, by their degree : of ençouragement, and by thécin owntattitudes toward" mathematics. Many parents, expect above average work. in general, but are satisfied with only部!
averagé work in mathematics. Many students report that their parents say, "L'm poor in math", and feel that this gives them sanction for being poor students:

Reviews of research•on attitudes (Aiken, 1970; 1972; Knaupp, 1973; Nease, 196;: Suydare 1975; Suydam and Weaver, 1970, 1975) have confirmed -two-uther genaralizations:
(1) Relatively definite attitudes about mathematics have been developed by the time children reach the intermediate grades (approximately age 9)!
(2) There is no evidence that the content or the curriculum per se has particularly influenced attit•iés. Evidence has frequently been cited that students like a particular course or program - but comparative data (do they like one course more than another similar one) are not fea1 sible to obtain. 1

Self-Concept
How children feel about themselves and their concepts of themselves while doing mathematics are important compenents of the affective domain. If certain feelings are experienced over a\period of time, they can lead to a particular self-image on the part of children, which can influence that they expect of themselves and can affert their performance. Some studies have explored facets of the, child's self-concept as it relates|to mathematics instruction and learning.

Self-concept and achievement in mathematics were found to be significantly related in studies by Bachman (1969), Hayes (1968),

Koch (1972), Messer (1972), Maore (197́2), and Stillwell (1969). Moore noted that, while it may be concluded that self-concepts and attitudes toward mathematics influence achievement in mathematics, it is also reasonable to infer a reciprocal cause-effect relationship between these variables.

Correlations between self-esteem achievement may te more positive for girls than for boys. Primaverafet al. (1974) suggested that the 'schooi plays a greater rolé in affectipg girls' self-esteem becáuse it i\{ atmajor source of approval and praise for girls, whereas boys can seek approval through athletics and other activities.

笑 In alubst an equal numier of studies, no significant relationship between self-cioncept and achievement has been found (e.g., Birr, 1969; Hunter, 1974; Phelan, 1974; Zander, 1973).

Sex Differences

Among other student-eharacteristics of increasing concern during the 1970 s is that of sex differences. When sex has .2en incorporated as a factor in the design of a mathematies education study, chere is a, pattern'in the findings across grade levels. As reported in a. revicw by Fennema (1974):

No significant differences between boys' and girls' mathematics achievement were found $\begin{cases}\text { in } 38 \text { studies }\end{cases}$ examined) before boys and girls entered elementary school or during early elementary years. In upper elementary and early high school years significant differences were not always apparent, However, when significant differences dic appear they were -more apt to be in the boys' fayor when 'higher-leve.: cognitive tasks were being measured and in the gírls' favor when lower-levil' cognitive tasks wera being :measured. No conclusion can be reached concerning high school learners. (irom aostract, p. 113)

This confirms findings of other reviewers (e.g.; Suydam and Weaver, 1970, 1975). Data from the National Assessment of Educational Progress (NAEP) on mathematics also indicate that "neither sex has a clear advantage in computational ability since results for males and females varied at the different age levels"., (NAEP, 1975a, p. 35).

Fennema and Sherman (1976) discussed variables hypothesized to be related to achievement of women in general and to mathematics learning and studying in particular. They considered verbal zbility, spatial visualization ability, confidence in learning mathematics, mathematics as a male domain, attitude toward success in mathematics; perceived -attitudes of parents and teachers toward one as a learner of mathematics, usefulness of mathematics, and motivation. Four conclusions were drawn: - (1) sex-related differences in mathematics achievement are not universal, (2) many fewer females than males study mathematics in eleventh and twelfth grades; (3) the relationsihip between cognitive factors and. differential learning of mathematics by the sexes is unclear, and (4) differential mathematics study and achievement is at least partially caused $\cdot 7$ socio-cultural factors meḍiat through sex-role expectations.

Increased sextyping in mathematics and science has been documented by several researchers, and many have documented the fact that there are fewer and fewer women in mathematics as age level increases from junior high school through college.

Whether different provisions for instruction for males and females should be made is another question entirely. Fox (1975) has. collected evidence on this; it appears that even when special classes are provided
the attrition rate for females is high. Differences in aptitude and achievement seem to vary more with individuals than by sex. Societal expectations; which have changed dramatically in the past ten years in terms of women's.roles, as yet seem to have little influence at the secondary-school level, where peer interrelationships are so important.

Socioeconomic Status

There has been so much written on the effect of socioeconomic differences that it seems pointless to belabor the point here. The conclusion of the Coleman Report (1966) has been widely cited: that, in general, the public schools exert very little influence on the achievement of children independent of their own family background and social context. When socioeconomic status has been incorporated as a : factior in designing mathematics education studies, students from high socioeconomic levels tend to achieve better than students from low. socioeconomic levels" (e.g., see Dünkley, 1965; Johnson, 1970; Möntague, 1964; NAEP, 1975a; Passy, 1964; Unkel, 1966). When racial and ethnic minorities have been considered specifically, the members of these groups in general achieve as wêll as or les's well than members of the majority (white/Caucasian) group: they rarely, achieve better (e.g., see Asbury, 1970; Casteneda, 1968; Centrone, 1973). Vata from the National Assessment of Educational Progress (1975a) indicated that:

Blacks appeared to have difficulty with computations, their pefformance being generally below that of the nation as a whole. . . . The difference in performance, between Whites and Blacks was smallest at age 9 and increased for 13- and 17-year-olde, with no.appreciable change in relative performance between ages 13 and 17 . (p. 36)

When type of community has' been incorporated as a factor, students from urban areas tiend to achieve slightly better than do students from rural areas; finer distinctions are evident in the seven types of communities assessed by NAEP (1975a).

Assessment data from various states parallel the Utah (Ellison et al., 1975) finding: socioeconomic status was highly related to mathematics achievement; with students from high-income neighborhoods generally having higher mathematical scores. Freda (1976), in his study of 244 California schools, reported that education of parents and income of fathers were the two "irput characteristics" most highly correlated with mathematics achievement.
. In a reassessment of Coleman's data to consider comparative contributions of verbal, nonverbal, reading, mathematical, and general informational achievement, Boardman et al. (1973) reported that bot:the home and the school were important for all achievements, especially verbal and general informational. The explanatory variables considered, however, appeared to be less important for mathematics than for other achievement. Bredemeier (1967) also analyzed data from Coleman and \square data from Project Talent. .The differential achievement of. secondaryss.nool students in mathematics had low correlations with any measured characteristics of the schools they attend, and only slightly higher correlations with family background.

In yet another reassessment of the data from Coleman and from Project Talent, Jencks and Brown (1975) reported some implications:

Some high schools are more effective than others in raising test scores. Nevertheless, the gains are never large relative to the variance of initial scores, and schools that boost performance on one test are not
especially likely to boost performance on other testss Moreover, high-school characteristics such as social composition, per-1pupil expenditure, teacher training, teacher experience, and class size had no, consistent impact on cognitiye growth between ninth anc̀ twelfth grades. . . . Our data tell us ngthing about what methods might be most effective. They tell us only that more money, more graduate courses for teachers, smaller classes,' socioeconomic desegregation, and other traditional remedies are unlikely y_{n} to have much effect. (p. 32I)

They caution also that legislatures and school boards who want to hold high schools accountable for their students' achefvement should be "extremely careful to specify the outcomes that really interest them" (p. 321).

To extend their point further, they state:
So far as we can discover, SES has no significant effect on cognitive growth between ninth and twelfth grades . . . equalizing high-school quality cannot reduce the correlation between SES' and twelfth-grade scores. . . . One would actually have to move highand law-SES students into the same communities and neighborhoods to eliminate the source of inequality. (p. 322 ff.)

Emphasfis is given to another point which deserves consideration:
. .. . high-school quality accounts for only 1.0 to 3.4 percent of the variance in twelfth-grade test scores, 0.2 to 2.4 percent of the variance in educational attainment, and 2.5 to 4.8 percent of the variance in uEcupational status and career plans. This means that even if we knew how to elirainate all disparities in highschool quality, wh.1ch we clearly do notif we could reduce the standard deviations of these outcomes by only one or two percent. (p. 32)

In a review of evaluations of compensatory education programs at (national, state, local, and program levels, Stickney (1976) found "very little evidence that compensatory education has been able tc arrest the accumulative achievement deficit that exists between adyantaged and
disadvantaged pupils." He suggests that "as long as schools remain
marginal institutions they are unlikely to compensate for environmentally ${ }^{\text {determined differences in academic acheivement" (p. 2088). }}$

In short, the evidence seems to indicate that SES and achievement In mathematics are correlated, but that the school has litt.le hópe of narrowing the achievement differential between socioeconomic levels.

Student Characteristics: HIGHLIGHTS

oNot surprisingly, intelligence and mathematical achievement are highly correlated.
-There may be a general intellectual factor for abjlity in mathematics, but it is suggested that mathematical ability consists of a number of factors. Prior experiences, verbal ability, reasoning, and spatial ability are related to mathematical ability. The role of language, sex; age, and heredity need further study".
-The range of mathematics achievement.scores increases as age or grade ${ }^{\text {s }}$ level increases.

- Attitudes toward mathematics are generally positive in the elementary school and appear to peak at approximately age 12.
- Whife mathematics educators and teachers believe that attitude toward mathematics is related to achievement in mathematics', there appears to be no meaningful or signifficant relationship between the two. owhether self-concept is significantly related to mathematics achievement bas not bean defi itively ascertained.
- Sex-related differences are not universal across the factors related to mathematical ability; differences in aptitude and achievement vary móre with individuals than by sex.
-Girls añd boys at the early elementary-school leṿel ${ }^{\circ}$ do not differ significantly in mathematical achievement. In upper elementary and early high-school years,
differences were not always apparent; when they did
occur, they were likely to favor boys on highlevel tasks and girls on computation.
- No conclusions regarding sex differences can be reached concerning secondary students; fewer girls take mathematics, however. Sociocultural factors appear-to-ide-involved- \square : $+$

Socioeconomic factors appear to account for much of the variance in mathematical achievement.

G. What Use Is Made df Instructional Materials?

\% As has been noted, textbooks, supplemented by workbooks and other materials for seatwork or homework, are heavily relied upon in mathematics teaching. But other types of materials are also endorsed for use in mathematics classrooms; for instance, the NCTM has• published a-yearbook-and several supplementary publĭcations which tried to focus attention beyond the textbook.

Textbooks and Other Print Materials

The textbook is the primary determinant of mathematical curricula throughout schools in this country ${ }_{\mathrm{v}}$ State curriculum guides present an out line that can be filled in by use of a textbook; local guides resemble textbooks in scope and sequence. Over half the states have mandated textbnok adoption lists, with more states having multiple-text adoptions than was observable 20 years ago. But within mọit classrooms, the evidence indicates.that a single textbook is used with all students, rather than referring to multiple textbooks or varying text use by group or in,dividual needs. There appears to be rather firm adherence co "covering the material" in the text, although sections which teachers do not consider important (and which may not be included on standardized tests) . may be ignored. Elementary-school geometry has suffered this fete for yeařs. That the textbook influences what is learned was supported by Begle (1973), who reported that different patterns of achievement were associated with the use of different textbooks.

In a report on an unpublished study of most-used instructional materials, EPIE (1976a) stated:

The ten most used materials in mathematics arye clearly traditional.programs, all quite similar to each other in terms of instructiohal design. They are also traditional in terms of the way they were developed. . . . If we look at the first 32 mathematics materials listed, only one program is the result of nontraditional development and this deveiopment was federally funded. This material is rank-ordered 24 th . Of the remaining 31 materials; at best two could be considered to have even a modicum of an R\&D base . . built upon an empirical dáta base, as opposed to "conyentional wisdom" . . - (p. 1)

Among other highlights of the survey of 12,389 teachers, facluding 4,455 matnematics teachers (K-12), were (EPIE, 1976b):
$=$ Instructional materiàls, print and nonprint, arè used .during 90° to 95 per cent of all k-12 classroom" instruc.-. tịonal"time. Schools spend about l' per cent of their budgets on chese materials . : : (p. 1)

- Teachers tend to be unclear about' how good a "fit" there, may or may not be among their teaching, the materials they are using, and the needs and abilities of their students (p. 2)

On the lisfor mathematics materials were 18 elementary and 14 secondary. Twelve companies produced the elementary materials, with none clearly dominating. One company accounted for 90 of the secondary materials; five companiés accounted for the remaining five. Sixty-two per cent of the teachers said they would "willingly" use the same materials again.

PRİMES, the Pennsylvania Retrieval of Information on Mathematics Education System, has collected some of the most extensive information on the contents 'of textbooks (Creswell and Berger, 1968); ©Groups of . teachers, and mathematics educators, working with Department of Education. personnel, have since the mid-1960s developed a list of 300 contentrelated items for grades $\mathrm{K}-6$, and analyzed textbook series in terms of that list. These data are stored in a computer; a school staff can
determine the content and sequẹnce they desire and compare their plan with the analyses of the textbook series, to aid in selecting a textbook, or combination of textbooks.

1. Many textbook analyses have been reported, spanning the years (e.g., Buchalter, 1969; Burns, 1960; Clason, 1969; Dahle, 1970; Folsom, 1960;. Kahn, 1974; Maura, 1957; Neatrour, 1969). Some points seem.especially relevant:

- Low-level cognitive processes -- knowledge and comprehension -are used far more frequently than high-level processes.
- There is considerable agroement on grade placement, sequence, and presentation of basicatopics.
- There is wide variance in the total number of concepts and , the amount of space devoted to the various topics.
- Relationships are found betweeri textbook emphases and social or psychological treńds.
- An emphasis on computational skill is" apparent.
- The appearance of textbooks changed sance 1955, with marketing, considerations and appeal of obviously increasing importance by the late 1960s.
- At the elementary level, teachers' guides vary with textbook series; most continue to provide'suggestions for.differentiating instruction. Such facets as the form of stating objectives hąue changed across the 20 years.

Seconủary-school teachers' guides have expanded-sincie 1955, al though most are not as extensive as those for elementary \boldsymbol{J}_{5} chool teachers.

Stevens (1966) found that," for elementary-school textbooks published between 1955 and 1964, the total vocabulary load increased by more than 40\%, except for grade 3. Hatèr and Käne (1975), Shaw (1967), Smith (1969), and others were similarly concérned with readability at various lęvels. This has. led to some'textbooks and project materials being revised to
prepare versions with more appropriate vocabulary and reading levels. Dooley (1959) studied 153 sëries of elementařy-school tẹxtbooks published between 1900 and 1957, atteripting to ascertain the effect of research on the content and methods suggested in them. She found that when recommeudations were "clear, concise, and exact" they were incorporated into many"textbooks within five years. since the late 1950 s , it has taken some ideas a far shorter amount of time to; appear in the majority of textbooks.

Brown (1974) conducted an in-dépth study on the ure of textbooks made by teachers and students in Geometry and Algebra 2. Very heavy dependence on the textbook was found:

Teachers followed the textbook very closely with regard to content selection and sequencing. The major objective of observed lebsons tended tu be complietion of the exercises presented at the end of the section of the textbook under discussion. (p. 57.95)

Teachers made littleluse of special features, such as historical and bibliographic information or enrichment exercises. They tarely presented topics not in the textbook. Typically, they progressed through the text, section by section. Brown foncluded that, for the teachers and classes in the study, mathematics did not extend beyond that which was presented, In the textbook: "the subject was resolved into a sterile sequence of, hómework/discussion/new homework" (p: 5796).

Programmed Instruction

-Through the late 1950s and into the early 1960s, programmed instruction ${ }^{/}(\mathrm{PI})$, with or without a teaching"machine, was considered a
panacea for educational problems. The work of Skinner and Pressey gave' impetus to the use of small-sten increments and inmediate feedback. PI was used in sany studies because it allowed the researcher to control the "teaching variables, ensuring that every student had the same treatment.

The foremost claim for programed instruction was that it would allow each pupil to prog:ess at his or het own ráte. Some studies $\left\{\begin{array}{c}\text { ascer }\end{array}\right.$ tained the feasibility of using programmed instruction to teach specinic content. When compared with conventional instruction, the results were equivọcal (Suydam, 1972). It was evident that progiammed materials were most useful when used to supplement, rati:er than replace, the teacher (Lackner, 1967). In his review, Zoll (1969) concluded:

It is not clear from these $\{35\}$ studies that the strongest single claim' for the use of programmed instruction, that each individual learns at his - own rate, has .been'supported. (pp. 107-108)

Bobier (1964) noted that low-achieving students of limited ability, were not sufficiently motivated to use programmed textbooks independently. For many teachers, it became apparent that programmed instruction was not a panacea. Most could projably agree with th inclusion of Jamison, Suppes; " and Wells (1974):
. . . . PI is generally as éfective as TI ftraditional instruction\} and may resưlt in decreasing the amount: of time required for a student to achieve specific educational goals. (p. 41)

- Nevertheless, teaching machines from the'1950s gather-dust, and programmed. instruction is rarely discussed. However, it is actually' still apparent in computer-asssisted instruction programs" and in seif'peced "individualized instruction" programs.

Manipulative and Other Materials

In 1955, the primary-g:ade teacher was more likely to use manipulative materials than teachers at other levels. Emphasis' on the use of materials at all levels was emphasized in the 1960s. Yet the pattern of 1955 continues in 1977: the primary-grade teacher is still most likely to use materials, and little use is reported at other leviels.

It was not uncommon is 1955 for a teacher to make or collect inexpensive instructional materials for use in the classroom The enactment of NDEA in 1958 began the years of availability of federal funds for a wide variety of materials. Evidence from a range of sources indicates that this. money was not always spent with frugality and extensive care. in selecting approf this stemmed from'the fact that money frequently became available at short notice, "to be spent within 30 days"; also, its use was not accounted, for specifically. As budgets have tightened over the päst several-years, teachers have at times resorted to the plea of "unavailability of funds" to explain failure to use materials.

A review of research on the use of materials in elementary school mathematics (K-8) was conducted by Suydam and Higgins (1976, 1977). They reported:
(1) in almost half of the considered studies, students having instruction in which manipulative materials were used scored significantly higher on achievemént tests than students who had insfruction in which manipulative materials were not.used. In almost the same number of studies, the two groups scored much the same; few instances were found in which the group not using materials scored higher: Thus, lessons using manipulative materials have a
higher probability of producing greater mathematics achievement than do non-manipulative lessons.
(2) Only 3 of 28 findings favored the use of symbols alone; only one study favored pictorial treatments used alone. In 7 instances use of manipulative materials was favored over sequences in which manipulative materials were not used. In 9 instances, use of manipulátive mäterials and pictorial representations resulted in higher achievement than use of symbols alone. The concrete materials thus appeared to play an important role.
(3) Research in which the number of embodiments for a mathematical idea has been the focus resulted in : no significant differences in achievement in 3 of 4 studies.
(4) In three of 8 studies, manipulation of materials by students was favored over having students watch the teacher demonstrate with materials. In 4 other studies, no sigrificant differences were found. It appears that individual manipulation by the learner is not the only way children learn: it can be effective to watch the teacher demonstrate. -
(5) Across a variety of mathematical topics, studies at every grade level support the importance of the use of manipu-i lative materials. Little evidence was found that manipulative materials are effective only at lowér grade levels.
(6) The use of materials appears to be as effective at one achievement level as at another -- that is, ligh achievers profit from the use of materials as much as low achievers.
(7) The use of, materials appears to be as effective at one ability level as at another -- that is, those of high ability profit from the use of materiais as much as those of low ability do.
(8) Although the data are sparse, the use of materials appears to be at least as effective at one socioeconomic level as at another.
The extent to which materials are used has been considered in several surveys. Johnston (1962) found that few teachers in grades 1-8 used any material other than the textbook. Green (1970) reported that first-grade teachers used more materials and used materials more frequently
than sixth-grade teachers. Haladyna (1975), in a study with 4400 Oregon teachers, also found that with
the use of manipulatives the tendency was for moderate to frequent use in the primary grades to a minimal use at the intermediate, high school, and junior high school levels. (p. 8)

In another report on Oregon projects which focused on various materials, Thomas (1975b) found that in na instance were either manipulative materials or games the basis of a significant percentage of programs. © However, teachers' attitudes toward the use of both was very positive; the use of manipulative materials was not favorably viewed by students, however.

The Developing Mathematical Processes program developed at the R\&D center at the University of Wisconsin-Madison integrates a variety of materials in its measurement-oriented approach. Necessary materials are available in kits; nevertheless, mañy teachers do not make use of them. The same response shows up in connection with materials provided with a variety of other programs.

The NACOME Report (1975) indicated that

> in spite of the recent publicity and emphasis it is not at all clear that manipulative materials are widely used. For instance, 37 percent of the elementary school teachers in the NCTM survey had never used the mathematics laboratory, and, ten percent had never used manipulative materials at all (in grades 2 and 5): (pp. 62-63)

The research evidence lends support to the belief that additional means must be found to encourage teachers to use materials. But the literature contains many references indicating that it is also necessary to consider carefully what, when, how, why, and by whom the material will be used.

Schoen (1977), in his review öf research on self-paced instruction, confirmed this:

There is consistent evidence that the use of various media and supplementary teaching materials increased the effectiveness of SPI.

- There is also consistent evidence that media and materials in a typical SPI program have been restricted to printed audio materials. In addition, the various media and supplementary materials often have not been used
I\% even when available. (p. 213)
There is relatively little evidence on the amount of use of various audiovisual devices. Generally, they are collectively studied as one of a variety of instructional materials. Many reports indicate the availability of equipment for using films, film loops, filmstrips, television, overhead projectiles; and the 1ike, but their actual use is not yet an everyday occurrence.

Computar-Aided Instruction
"In 1955", schools and computers were-separated entities: availability and cost prohibited their merger. In the early 1960s, however, some schools bought or leased computers or computer time, usually first for administrative purposes, and inevitably, after a time," for mathematics instruction. The Dartmouth model, funded by NSF, has been extensively copied.

Three modes of computer use have evolved:
(1) computer-aided: non-tutorial, próblem-solving aid
(2) computer-assisted: tutorial instruction with the computeri taking a teacher's role
(3) computer-mànaged: courses of study are dev ${ }^{\circ}$ loped, sequenced, and/or monitored for students, with the computer storing information.

Two large-scale national surveys (Darby et al., 1970; Bukoski and Korotkin, 1976) of computing activities have been conducted by the American Institutes frr Research. A stratified random sample of $\mathbf{2 5 \%}$ of the secondary schools was selected for the second study, plus a sample of the schools participating in the 1970 study; responses were received from 3,643. Since 1970, the fraction of secondary schools reporting some computing activity has steadily incțeased, from 34.4% in 1970 to 58.2% in 1975: Mathematics classes used the computer most frequently, although the percentage dropped from 46.7% to 43.2%.

The researchers projected:
Though the continued growth of computer-based education seems assured, the specific future of instructional
computing is unclear. Based upon the growth over the last, five years (1970-1975), it is' projected that within the next decade the majority of seçondary schools in the country will have some type of instructional computer-based application. . . it is probable that computer science and problem solving will remain
$*$. prominent instructional applications through the next decade . . . (Bukoșki and Korotkin, 1976, p. 20)

Despite the growth in computing.activities, they indicated that the relative costs remained virtually the same.
-
Among the other studies on the extent of computer use is one by. Buchman (1969), who found that in 1967-68 only 5\% of New York secondary schools had computer access for mathematics classes; only 13% had desk calculators. Rudolph (1972) found that one-third of the 647 Illinois secondary schools she surveyedused computers, with 54% of these using computers for both instruction and administration, and only 5% solely for instruction. Problem solving in mathematics and science, and data
processing, accounted for over 80% of the time. Bishop (1971) reported that 30% of the secondary schools in the Missouri region offered technically oriented computer-related courses in their mathematice curriculum; 20\% used computer time for enriching and supporting courses.

Moran (1974) reviewed current practices and trends. He noted that time-sharing has grown in importance; however, the minicomputer and programmable calculators have had and will continue to have an impact on school use of computing power.

Studies on the effectiveness of the use of computers were reviewed by Kieren (1973) and by Hatfield (1973) : In general, the results are equivocal: higher general achievement is not a foregone outcome of the . use of computers, tut it does aid "in promoting' problem-solving achievement. Batch processing appeared to be at least as effective as having direct computer access: ${ }^{\circ}$ the important factor may be experience in writing. programs ${ }^{\text {r rather }}$ than the time it takes to receive computer solutions.

Jamison, Suppes, and Wells (1974), surveying some studies using: mathematics content, stated:
> . . . no uniform conclusions can be drawn about the effectiveness of CAI: At the elementaryschool level, CAI is 'apparently effective as a supplement to regular instruction . . . At the secondary-school level, a conservative conclusion is that CAI is about as effective as TI when it is used as a replacement. It may also result in substantial savings of student time in some cases. (p. 55)

Vinsonhaler and Boss (1972) revièwed seven major studies on drill and practice programs using CAI. They indicated that higher achievement could be anticipated when CAI was used to augment regular instruction. They noted that

$$
114
$$

> There are indications that the effects obtained with CAI might-be obtained through less expensive means. For example, one of the studies reported by Suppes and Morningstar (1969) suggests that an additional 30^{\prime} minutes of ordinary classroom drill and practice can accomplish the same results as a 15 -minute CAI program. (p. 31).

In a study' concerned with students'-reactions, Hess and Tenezakis (1973) reported that students who had used a remedial drill-and-practice program in basic, arithmetic for, one or two years regarded the computer in more positive terms than the teacher did. Non-cAL students also regarded the computer significantly more favorably:" they had a less favorable image of the teacher than did the, CAI group. For both CAI students and non-CAI students, the computer had a more favorable image than did either the teacher or textbooks.

Calcula'tors

The hand-held calculator has been on the market since the early 1970s. In 1975, the cost of calculators dropped sharply, and as a result "for millions of people, everyday arithmetic will never be the same" (McWhorter, 1967). Desk calcútators had been used in some secondaryschool mathematics classrooms before 1955 , but their use was largely restricted to low achievers, and they generated little excitement. Having calculators readily available for each and every shild changed the story.

A position statement of the NCTM (1974) reflects the immediate concern of mathematics leaders:
. . . . Máthematics teachers should recognize the potential contribution of this calculator as a valuable instructional aid. In the classroom,
the mini-calculator should be used in imaginative ways to reinforce learning and to motivate the learner as he becomes proficient in mathcmatics.
Yother groups throughout the country also recognized the potential of the calculator. The NACOME Report (1975).severely. questioned the strong is trend to emphasize computation; the case for decreasing emphasis on manipuiative skills was seen as stronger than ever before because of the impending universal availability of calculators. T.Ay noted that many low-achieving students have been condemned
to a succession of general mathematics courses that begin with and seldom progress ${ }^{\circ}$ beyond drill in arithmetic skilis. Providing these students'with caiculators has the potential to open a rich new supply of important mathematical ideas for the students . . . at the same time breaking down stlf-defeating negative attitudes acquired through years of arithimetic fatilure. (pp. 41-42).

Therefore, they recommended use of calculators "beginning no later than the end of the eighth grade", with the student permitted to use the calculator during all mathematical work including tests. The development of instructional materials and curricuiar revision or reorgan"zation "in light of the increasing significance of computers and calculators" were also recommended.

The Euclid Conference (NIE, 1975) participants also indicated concern with the effect of calculators on the curriculum, stressing the need for developing new sequences of instruction. The National Sciençe Foundation, "concerned about the "petential impact of the calculator, funded a critical analysis (Suydag, 1976). All existing literature was studied, and a survey conducted to'ascertain the argument's for and*against use of calculators and the ways in which calculators should be used. Frequently
cited reasons for using calculators included: aid in computation; facilitation of understanding and concept development; lessening of the need for memorization; help in problem solving; motivation; aid in exploring, understanding, and learning algorithmic processes -- and the fact that they exist, and are appearing in the hands of increasing numbers of students.

The most frequently cited reasons for not using calculators were that: they could be used as substitutes for developing computational 3. skills, they" are not available ${ }_{3}$ to all, and they may give a false impression of what mathematics is. The fir \&t concern was expressed most frequently by parents and other members of the public; few educators, however, believed that children should use calculators in place of learning basic mathematical skills.

Analysis of the studies published up to August 1977 in-which calculator and non-calculator groups were, compared indicates that, of 40 findings, in 19 instances the calculator group achieved significantly. higher on paper-and-pencil tests (with which the calculatior was not used). \% No significant differences were found in 18 studies; in only three instances was achievement significantly higher for the non-calculator group.

A conference on the uses of hand-held calculators in education was held in. June 1976 by NIE and NSD to produce a planning document "that will provide a well-defined framework for future research and development efforts" (NIE/NSF, 1977). The participants "noted:

These small, portible, and inexpensive machines have the potential for replacing the paper and pencil calculations that have been the major (and

```
often the sole) component of elementary school arithmetic. (p. 2)
```

Educators are faced with a dilemma. Their experience and instincts tell them to research, test, ${ }^{\text {and }}$ proceed with caution. Yet calculator . technology is progressing rapidly, and marketing pressures are great. The evolutionary pace. traditionally associated with curriculum change is too slow to fit the present situation. (p. 3)

The conference report sumarizes discussion about many áspects of present-day school mathematics, and the opportunities and dangers presented by calculators. The recommendations that-emerged from those $d \mathrm{fi}_{\boldsymbol{r}}$ cussions called for the establishment of an information collection sadd -dissemination center, surveys of existing materials and practices, both short-term and long-term curriculum development with related research; and teacher-training efforts.

A Calculator Information Center was established by NIE in early 1977, supplementitg continuing efforts by the NCTM. Both are involyed in the task of collecting and disseminating information to and from schools as more and more teachers incorporate calculators in the terching of mathematic̀s.. Requests for proposals, exploring calculator use were
issued in 1977 by both NSF and NIE, beginning the tasik of research and curriculum development.

How extensively the calculator will influence the mathematics currioulum is unclear. Conflict is obvious between those who see computational skills as the most vital task for mathematics teachers and those who see the calculator allowing a.change in direction :- a change fea- . sible for the first time in history. In the past "three years, opinions. have changed, and the calculator is being used with increasing frequency,
but the curriculum has not changed noticeably.
Other technological developments are on the near horizon.. The
T: dividing line between calculators and computers is alreany tenuous;
, existirg calculators have the computing power of computers of twenty r-
\qquad years ago. Interaction between student and machine will be increasingly feasible.

Instructional Materials: HIGHLIGHTS
-The textbook is the primary detorminant of mathematics curricula, and many teachers use no instructional materials except the textbook and the chalkboard.
$\ddot{\square}$

- About half the states have mandated textbook adoption lists, with more listing., multiple texts'; howèver, a single text is used in most classrooms. -While there is variance across 'textbooks at the elenentary-schooil . level, the basic components of the curriculum have become standardized, so that the variance is largely in terms of amount of space allocated, to a topic, approach, and design. At the secondary-school level, wider variance is obvious as the type of course varies.
- Teachers tend to follow the textbook cluseiy with regard to content selection and sequencing, though they may skip or ignore components. r which they do not consider essential.
- Readability has been of specific concern for at least ten years. -Use of programmed instruction may save time in achieving specific goals, but it is unclear whether pupils actually progress-at individual rates. Use of manipulative materials decreases as grade level increases; however* use of such materials appears ta be effective with certain content at all age levell \dot{s} and with all types of childrèn.
-Computers are used more widely in mathematics classes than in any other classes, although the percentage of use for mathematics declined slightly between-1969 and 1974. The problem-solving mode was most widely used, .. followed by'simulation and then tutorial CAI.
- The hand-held calculator has the potencial to change the curricular

H. What Is the Cost of Instruction?

It is virtually impossible $t=$ ascertain the actual amount of money spent for education -- different bases are used and figures cited in one report differ from those in another. The amount's allocated by the federal government would seem to be easiest to ascertain -- but alas, the figures are.reported in such a variety of ways that the services of many account.ants could probably be engaged for years to sort things out. The NIE document prepared by Nelson et al. (1977) illustrates the \therefore ? They report: :

It is 'impossible to state the precise total spent on. educational RED in the U.S. Analysis is hamcered by a lack of data series needed for such an estimate, conceptual incompatibilities in the definitions of existing series $\cdot \therefore$, and differences in the range of functions recognized Such , ambiguities are compounded by differing reporting procedures . . : (p. 1.5)

Thus NSF, OMB; añd-NIE, for instance, all produce data which are difficult (if not impossible) to correlates, Most of the statements "which follow will be made in general terms: therefore, an interpretation of what the data seem to indicate is given.

There is liticle doubt that sooth tine costs of instruction and the amounts' allocated to instruction have increased since 1955, over and above the inflation rate.

Each armual survey of the Cost of Education Index; based on a sampling of approximately 1,200 school districts of various sizes and locations, reflected record spending, increasing year by year from 1958 to 1972. (Mòrtíson, , 1973)'.
NCES data indicate that total spending by state and loćai governments for' education rose from about $\$ 24$, billion in 1962-63 to $\$ 65$ billion in

1971-72, $\$ 70$ billion the following year, and $\$ 72$ billion in 1973-74. Dưring the decade 1962-72, eauçation was consistently the largeat item in the budgets of state and local governments, accounting for 37 to 39 percent of their budgets (NCES, 1975, 1976). *

The Gross National Product Index rose from approximately \$285 2 "billion in 1950 to $\$ 504$ billion in 1960 to $\$ 977$ billion in 197c; the percentage spent for education also rose, from 3.4% to 5.3% to 7.7\%. Yet the amount spent for all research and development. in education may be as low as 1\% of the total: compared, with other enterprises, education spends a relatively limited amount for such efforts.

The average per-pupil cost of instruction has risen; from a number of references in various sources it appears that:

- in 1955, the range was from less than $\$ 100$.to about \$200
- - in 1965, the range was from $\$ 300$ to $\$ 850$, with an average of $\$ 500$ ($\$ 455$ in 1957 dollars)
- in 1973, the average was approximately $\$ 1200$ ($\$ 766$ in 1957 dollars).
- in 1976-77 the range was approximately $\$ 1000$ to $\$ 3000$, with an average of about $\$ 1450$ ($\$ 793$ in 1957 dollars)

Some states spend less than 1% of personal income on education; othyers spend over 5\%. Unfortunately, the states with less total income are "likely to be the same states that spend less proportionately.

It is obvious that funds for education come fron four sources -- . locai, state, and federal governments and, to a shall extent, private funding. But the amount of these funds devoted to mathematics instruction is obscure. Perusal of document after document yielded largely. aggregate figures, or amounts for reading and arithmetic: the few precise
amounts are relatively meaningless isles in the sea of data.
A rough estimate appears to be the most feasible figure to use. Dexter Magers, Mathematics Counsultant at the U.S. Office of Education, provided the data typed as Table 7 , and indicated:

I have talked to some of our Title I staff and examined some of the dnnual reports for several other programs including NDEA. Based on these sources it appears that 20% is a good estimate of the proportion of funds that could be counted as devoted to mathematics instruction from these sources. . . . \{However\}, since most of the Federal programs are targeted on groups of persons rather than subject matter areas, I suggest you use 18% of the amounts in column 3 of the table. (letter, 25 May 1972)

REVENUE RECEIPTS
of public elementary and secondary schools from federal, state, and local sources

- (Portian of table with data from National Center for Education Statistics)

School year	Total	Federal	StateLocal (including intermediate)		
1	2	3	4	5	
AMOUNT IN THOUSANDS OF DOLLARS					
.1955-56	9,686,677	441,442	3,828,886 ،	5,416,350	
1957-58	12,181,513	* 486,484	4,800,368 ${ }^{\circ}$	-6,894,661	
1959-60․	14,746,618	651,639	5,768,0047.	3,326,932	
1961-62	17,527,707	760,975	6,789,190	9,977,542	
1963-64	20,544,182	896,956	8,078,014	11,569,213	
1965-66 $\%$	25,356,858	1,996,954	9,920,219	13,439,686	
-1967-68	31,903,064	2,806,469	- 12,275,536	16,821,063	

0
Using 18% as the estimate, it appears that the amount of federal. funding which might have been directed toward mathematics education might be:

-	$\begin{gathered} \text { direct } \\ \text { percentage } \end{gathered}$	converted to $1957 \text { dollars }$
1955-56	\$ 79,460,000	\$ 79,460,000
1957-58	87,567,000	89,405,000
1959-60	117,295,000	115,536,000
1961-62	136,976,000	131,497,000
1963-64	161,452,000	151,281,000
1965-66	. $359,452,000$	327,101,000
1967-68	505,164,000	434,441,000
.1969-70	579,520,000	453,764,000
1971-72	804,234,000	570,201,000
1973-74	887,463,000	574,189,000
1975-76	962,280,000.	-532,140,000

It should be reemphasized that these data are estimates, and possibly only. of the amount that should be spent on mathematics education. (Earlier it was noted that 20% was the estimate for the amount of time spent on mathematics instruction, so the estimates could be appropriate.) But there is no way to determine how much money has actually been spent on mathematics instruction, either with or without federal funding.

The federal sources of.funds for elementary- and secondary-school mathematics have come largely from the National Defense Education Act, Title III (1958) and the Elementary and Secondary Education Act, Titles.

I and III (1965) and Title IV (1974), both adiainistered by the U.S. Office of Education, and from education-specific funds of the National . Science Foundation. Other federal legislation, including other titles of NDEA and ESEA, the Office of Economic Opportunity, and School Assist-ance-for Federally Affected Areas (SAFA) have aiso provided funds whic̣h may have been used for mathematics instruction; Ginsburg and Kilialea (1975) reported that funds from the major program areas reached their intended audiences; that is, ESEA Title I funds went to districts with lower family income, SAFA funds went to districter with low tax bases because of parents employed by or living on federal installations, and State Discretionary Federal grants went more heavily to urban districts in more urban regions and rural places in more rural regions. No assessment of whether any subject area, was affected was made, however. In a report on the use of.Title I funds by the Bareau of Indian. Affairs in New Mexico; Ramey and Sileo (1975) reported that 3.5% of the more than $\$ 7.9$ million allocated in 1973-74 were spent for mathematics. It is also interesting to note that gains in language arts, which accounted for 80% of the funded projects in the state, were 7 months; gain for mathematic's was 1.1 years.

In other states, the monfes expended for compensatory education were ${ }_{a}$ also deemed successfully spent. In. Michigan, for instance, more than half the students in federally funded projects gained one month oin achfevement score per montil in the program (which presumably was greater than could have been expected); 28% gained 200% and 12% gained 300%--" that is, 3 months gain for each month in the program. In this case, however, gains were greater in reading than in mathematics.

126

Cost Effectiveness
If it is difficult to determine how much money was actually spent for mathematics instruction, then it follows that it is difficult to determine cost-effectiveness. We shall report selected studies that ${ }^{\circ}$ pertain to the question.

Generally, the few studies conducted before 1960 (e.g., Furno, 1956)* involved rather nebulous "quality indicators" and unintequetable correlations. Nevertheless, the conclusions usually indicated that the amount of money spent influenced achievement. Findings are not specific. to mathematics instruction, however.

Stock (1974) reported that
More recent studies in the Sixties, published conflicting findings regarding the impact of expenditure levels upon achievement; "quality", or other education program characteristics. (p. 26)

He cited three studies from the 1960 s in which expenditures were related to quality or achievement, and six studies in which no relationship was found. Among the latter was the study involving 645,000 students in grades 3, 6, 9, and 12 directed by Coleman (1966): Achievement measures and statistical procedures have been questioned by many, but the Coleman Report documents the case for those who believe that per-pupil expenditure shows "virtually no relation to achievement if the 'social' environment of the school - the educational backgrounds of other students and " teachers -- is held constant."

Results from studies in the fate 1960 s and 1970 s fail to indicate that expenditure and achïevement are highly correlated. For. example:

- Data from the Missouri, Assessment (1971) indicated that the amount of money spent per student was, not related to achievement.

$$
12 \%
$$

- In the Oregon (1976) progress assessment, district perpupil expenditure reveąled little or no signiificant difference in performance.
- Stock (1974) found that school districts in Ohio in 197172 which spent a greater amount of money per pupil did not exhibit significantly higher acores on mathematics achievement tests than did districts which spent less money per pupil.
- Morrison (1973) compared the relationship between instructional cost for 1968-69 and the performance of third graders in 1969 in 702 school districts in New York. Instructional costs were not significantly related to the quality of. education in mathematics.
- Talimadge (1973) analyzed achievement gains and pupil expenditures in 1972 California Title I projects. In schools less than 75\% of the pupils eligible for Title I participation, there" was no relationship between achievement gains in mathematics and any combination of regular and supplementary expenditures. In saturated schools (above 75\%), a signtficant
* relationship was found between achievement gains and Title I per-pupil expenditures for reading but not for matheratics:
A few studies indicate some (limited) variance which was statistically
attribnted to expenditures:
- Vlahos (1975) reported that rēvenue and total current expenses were related to mathematics achievement in grades 6 and 9 of 172 school districts in. Colorado* during 1972-73. The financial variablęs as a group made the most unique contribution to sixth graders' scores, while administrative and total expenses per pupil were the significant unique contributors.
- In Wisconsin, assessment results for 1969 "reported by Coulson (1974) indicated that pupils from high-expenditure districts (over $\$ 800$ per pupil) scored significantly highèr than pupils from medium- or lowexpenditure districts (under $\$ 600$); however, pupils from lów-expenditure districts outscored pupils from medium-expenditure districts.
- In a study of 1,900 sixth graders in eight suburban and rurál school districts in Eries, County, Pennsylvania, Salopek (1974) reported that school system characteristics " had a significant "impact on student achievement for average..
- and low IQ groups. Teacher experience, class size, and costs of textbooks and supplies were the most consistent ; predictors of variance on arympetic subtests.

It appears to be a plausible conclusion, given the data available, that the amount of money spent per pupil has not generally been significantlịy related to mathemattics achievement. There are indications that socioeconomic factors outside the control of the school exert a greater infiuence. For instance, Hawail, one of the two states in which finances are equalized across schools (California changed to this basis in June 1977) has found that achievement test scores in mathematics "."show much the same close relationship to family background as they do elsewhere in the country" (Education Summary, 1975,' p. 2).

Federal Funding Impact

Beginning in 1968, increased emphasis was placed on evaluation of federally funded projects. Reports from those receiving federal funds indicate that they felt the projects had an impact. Thus McDaniel (1973) indtcated that teachers and supervisors in 57 seconcary schools with 4° or more NDEA Title III projects "observed improvement in teachers and students"." as a result of use of NDEA Title III-funded materials and equipment. Nó data are reported,

Several assessments of the imparct of funding were reported in which findings were at some variance with official statements. Thus - DeShields (1973) reported that students in Title I schools performed at significantly lower levels than those not in title I schoois (but who may have been eligible) and Ordonez (1971) l:eported that pupils in ; Title I schools had sigñificantiy less positive attitudes toward arithmetic. In both instances, however, effects of pre-existing conditions* might have been measured, rather than effects resulting from Title ifunds.

A Rand Educational Policy Study (McMaughlin, 1975) is perhaps the most widely quoted analysis. of a federal program. It is a confirmation of conclusions reached as reports pertaining to Title I and Title IIIprojects (as well as similar ones) were perused for this report.

McLaughlin traced the evaluation requirements of ESEA Title $I_{\text {e }}$ noting that; because of political concerns, "framers of Title I purposely left ambiguous parts of the bill that might generate conflict and weaken support" (p. 17). The LEA receiving funds was required to report annually to the state education agency, who in turn was required to make periodic reports to the Commissioner: of Education.
an implicit decision was made not to set uniform reporting standards, not to require measurement by standardized tests, and not to suggest what the preferred components of "effectiveness", might be. Mor,e sophisticated methodological notions, such as the provision of control. groups, were rejected as running against the grain of legislative intent. (p. 19)

Consequently, reports for 18,000 LEAs and 50 SEAs for the first two

years

- . painted the success of Title I in glowing terms, and suggested that the local school administrators were moving quickly to devise effective compensatory strategies. Title I seemed to be working beyond anyone's highest expectations . . . (pp. 22-23)

McLaughlin found that evaluation was not being used to aid in decision-making about curriculum and instruction nor to determine priorities at any level --* local, state, or federal -- nor were they used by SEAS or USOE to determine funding approvals.' Because of re, actions to reports, however,

> federal interest in the results of the mandated reporting scheme ended with the publication of Title I/Year II. There is no-evidence that local reporting practices have improved with time
\{although states are required to turn in reports from time to time\}. Reviews undertaken by the American Institutes for Researich (AIR) and the Center for Educational Policy Research, Harvard University, found that these evaluations were. as unsatisfactory in 1972 as they were in 1966. . . . If one were to rely solely on these required reports in judging the impact of Title I, one would have to conclude that it has been an astonishing success -- a conclusion that . . . finds little support in other efforts to evaluate Title I. (p, 23)
(McLaughlin believed that LEAs wanted general aid, not categorical aid targeted for disadvantaged children. Roth USOE and the SEAs seemed unwiiling to destroy good working relationships "over the relatively. trivial matter of Title I data collection and evalifition" (p. 25).

As noted previously in this report,

> An attempt to trace the flow of Title I dollars to specific programs and outcomes is beset with problems it is difficult if not impossible to trace the course of Title I dollars through the schoof system. (p. 40)

It is also noted, however, that experience with other social programs (particularly health care) suggests that social programg may have * "high impact or high coverage, but not both," implying; that "measurable benefits from large-scale, social action programs sush as Title I can be expected to be marginal" (p. 40). :McLaughlin noted that academic achie ement is but one of many objectives of Title I: therefore to conclude on the basis of standardized test scores that Title I is not (or is). 'working' is nos"justified (p. 41). however,

Ironically, another major-impact of the outcome ${ }^{*}$ of Title I evaluation has been the spawning of more evaluation. No. one has stood back and reassessed the value of the process of evaluation itself or the assumptions underlying the evaluation models, or wondered if the cost of acquisition was in this instance worth paying. If the evaluations being done at present are a yardstick of what has been
learned from 7 years and pver $\$ 50^{\circ}$ million of Title I evaluation, the conclusion must be that we have learned very little.

But information gathering has becoule a necessary activity . i. . in the policy system, and faith in the science of ssystems analysis remains undiminished at"the higher echelons of the federal government. The Title I evaluations have generally set to rest the uncritical optimism of the mid-sixties concerning the effects of school and the role of education as an antipoverty strategy. But the scientific movement in education., . \therefore continues on unperturbed by the experience of Title I. ($p, 118$)

At another point, McLaughlin noted that "a federal evaluation policy that conflicts in fundamental ways with local priorities is un-.
likely to succeed" (p. 119). That federal policy on evaluation of funding efforts can be implemented when public opinion coincides with federal need can be noted as neede`assessments are considered in a later section of the report.

132

Costs of Instruction: HIGHLIGHTS

-For at least 15 years, éducation has been the largest item in the budgets of-most state and local governments; the amount of federal. funding for education has increased dramatically.
-The amount of money devoted to mathematics instruction fis difficuit

- to deterimine; 18% to 20% seems plausible but cannot be verified from available data.
- The amount of money spent 'per pupil has not' been found to be significantly relat a to mathematics achievement in most studies.
-Since 1968, increased emphasis has been placed on evaluation of federally funded projects.
-The reports from those receiving funds almost invariably indicate that they feel the funded activity was successful; in few cases are there hard data or a controlled research design. Evaluation from outside reviewers rarely indicates the degree of success that those involved In a project or activity declare.
- Federal policies which conflict with local priorities are not unlikely ,to be fully implemented.
III. Existing Practices and Procedures, in Teacher Education
A. Overview and Beginnings, 195'5-1965

Dramatic changes in the nature and quality of preservice and inservice "education for both elementary- and secondary-school mathematics teachers have transpired during the 20 years following 1955. Table 8 highlights, but oversimplifies, some of the trends associated with changes during the period. It also indicates some of the factors prevalent immediately pricior to "1955.
.The role of the societal/political ethos cannot be underrated--it is the driving force that couples values with willingness to fund teacher 6
education. The political reality of 1955 was McCarthyism, keeping up with the Russians, and concern for the scientific talent pool. Schaffter (1969) and Krieghbaum and Rawson (1969) documented the political realities in establishing the National Science Foundation. They also indirectly document the societal pressures; both these and the political realities produced an optimistic, enthusiastic ethos for teacher education in the mid +1950 s. Osborne and Crosswhite (1970) and Cohen (1976) focus more particularly on the conflict between teacher educators and other academics concerning the goals of education being focused on all American youth for science and mathematics. In 1955, the schools were coping with large numbers of children from the post-war baby boom and the resultant teacher shortage. Particularly in the non-urban areas, there were many. small, non-çomprehensive high schools requiring teachers who could operate in many subject-matter areas.

The need for change in 1955 was urgent. The prevailing mindset 'was in terms of a national emergency. The schools were not producing,

TABLE 8 -
TREND HIGHLIGHTS IN TEACHER EDUCATION, 1950-1975

	Period		
	1950-1955	1955-1965	- 1965-1975
Societal Educational. climate	1. Recovery from World War II 2. Fulfilling roles.	1. Staying ahead of the Russians 2. Building a pool of scientific talent	1. Disenchantment with science 2. Concern for the non-scientifically talentrd
- Teacher Supply	1. Shortage 2. Kany small' schools nèed multi-talented teachers	1. Shortage	1. Moving toward over-aupply 2. Moacly larger comprehensive. high schools requiring specialists
- Elementary Teacher Characteristics	1. Manỳ without BA 2. Some with only one college mathematics course; many with none	1. Many without BA 2. Little background in mathematics.	1. Large majority with BA; onethird with MA. 2. Most with onte-mathematics course
Secondary Teacher Characteristics.	1. Most with BA 2. Mäny teaching oût of field of training 3. Colleges require as many pre- as postt-calculus, courses in a $27-$ semester-hour majór	1. Some improvement in background.	1. More than half with MA 2. Most teaching in field of teaching 3. Many colleges do not count pre-calculus courses for certific̆ation requirements in a 32-semesterhour major
Teacher Education Program Thrusts	1. Mathematical literacy for all	1. Up-dating mathematics background 2. Discovery learning theory 3. In-service is - the major thrust 4. Federally funded institutes .	1. Computer usagé . grows to be expected for secondary. 2. Activity or laboratory learning 3. Field experiencerprior to stựént teaching 4. Flirtation with CBTE

according to the popular press, the politicians, and the academics. The orientation was for imediate action to change the schools, rather than for change in preservice education that wight yield long-range effects. During the 1955-1965 period, in-service education was the focus of attention and action. Consequentiy, information about teacher education for this ten-year period is about inservice education. The attention accorded in-service was so consuming that the majority of conclusions t be made about preservice are inferential and based on inforration collected relative to in-service needs.

B. Teacher Education, 1955-1965

This section begins by examining the nature of teacher competence and characteristics, shifts to considering the in-service programs and the effect of the in-service programs on teachers, and concludes by considering the effect on preservice teacher education.

Teacher Competence and Characteristics, 1455-19f5
A teacher's competence was defined in terms' of the teacher's course background until recently, when the additional factor' of the performance of the teacher's students has become significant. 'Thus, throughout the $1 \dot{9} 55$ to 1965 period, knowledge of teacher comperence is largely inferentis1, stemming from the characteristins inferred from
 a relatively thorough description of the graduation requiremences: for a mathematics major in the 140 institutions graduating the largest: numbers of secondary mathematics (identified from. 314 AACTE members). He
surveyed college catalogues for these schools and found that in 1957 the median requirement for a major was 27 semester-hours of mathematics. The major included calculus and roughly as many hours of pre-calculus courses as post-calculus courses. One infers from the titles of the post-calculus courses that they were a hodgepodge not reflecting the current mathematics of the period in spirit or content. Thirty-two percent of the schools required college geometry; 28 percent, theory of equations; and 31 'percent, differential equations. No other postcalculus courses were required by even 20 percent of the. institutions. Eighteen hoừs were required, for the minor. For both, 24 hours in professional education was required, with 5 hours of student teaching. the median minimum requirement. Shumaker reported that teachers colleges tended to offer professionalized subject-matter courses more frequently than did four-year colleges or state universities. A striking lack of influence of lie recommendations by professional groups is noted.

The evidence collected by Shumaker suggests that in $1951 / 5$ secondary teachers of mathematics were competent, if judged on the basis of the type of background they were required to acquire in the colleges and universities. Clearly the mathematics was neither "modern" nor extensive.

But were teachers working within the field for which they were trained? Several kinds of information suggest not. The end of the 1955-1965 period finds a severe teacher shortage in mathematics. The NEA Research DIvision (NEA, 1966) estimated a total need for new teachers of mathematics to be more than 12,000 , but the number of newly certfled mathematics teachers bias just below 10,500 , with only about 65 percent of them expected to enter teaching. This suggests that many teach-
ert were operating out of their fields of specialization. Obourn and Brown (1963), found, that-nearly 15 peroent of the mathematics and science teachers in the United States taught only one, period per day in these academic areas -- one suspects their undergraduate background to be other than mathematics or science. The National Association of State Directors of Teacher Educàtion and Certification '(NASDTEC, AAAS, 1961) published a study indicating for 1961 the percentage; of mathematicis classes taughe by teachers in terms of hours of credit in mathematics; Table 9 summarizes the results.

Hours in	Percent of Classes, Grades 7 and 8	$\because \quad$Percent of Classes, Mathematics	.\quad Grades 9 through 12

Less than 9	34		11
9-17	19		12
18-29	26		32
30 or more	21		45

Brunsvold (1966) made a careful examination of 90% of the \because. secondary tear:hing staff in the 452 secondary school districts (98.5\%) in Iowa, operating from state department records. He, found 754 teachers of mathematics, of whom 73 percent were male. The mathematics teachers were of aveṛage age 34.3 , with males being the youngest for all curricular arelis. They averaged 8.9 years-teaching experience, with female teachers averaging almost nine more years of experience than
males had: Approximatély 28 percent of the teachers held'MA degrees, with more males than females having the degree. Almost 80 percent of the teachers with mathematics majors were teaching 100% time in their måjor areas. However, 9 percent were teaching in two areas and 7 percent in three areas. These tended to be in small schools. Larger schools had better utilization of teaching staffs in terms of the ceachers' background (or competence) and had teachers with better backgrounds. ${ }^{\circ}$ The data that Brunsvold exhibited are consistent with that reported in his extensive review of the literature.

The characteristics of secondary mathematics teachers have to be inferred from studies like the above and generalized from backgrounddata. Brunsvold studied teachers in a decidedly rural setting; studies in urban settings provide additional insights worth nöting. Rudnick (1962) identified several general background characteristics of 1,425 teachers of college preparatory mathematics from schools in the 193 cities in 1959 with more than 75,000 population. Contrasting curricula of 1957-58 and 1960-61 (before and during the major impact of SMSG and teacher institutes); he found that all teachers had a bachelor's degree and 58.2 percent had a master's degree. They had an average of 16 years teaching experience and an average course background in mathematics of 39 semester hours. Moreover, 67 percent had taken graduate work in mathematics and 76 percent in education, for an average of 16 hours and 21 hours respectively. A total of 49.7 percent of the teachers had taken programs sponsored and paid for by institutions, rather than paying for it themselves.

Shetler (1959) provided insight into the kinds of issues and prob-

$$
130
$$

lems concerning teachers: He surveyed a sample of teachers representing 10 percent of all of the secondary schools in the 20 states of the North Central Association. The teachers' perceptions of aims in teaching mathematics were in general agreement with authorities in mathematics education (thus reflecting the general orientation prior to the perception of a need to develop a pool of scientific talend. Multi-track programs were noted to, be on the increase and rural school practices rended to be traditionnal. Many teachers indicated a concern that their curricula were inadequate. Shetler indicated the same contrast between rural and urban as can be observed in the studies by Rudnick and Brunsvold.

Elementary teachers' background and characteristics early in the 1955-1965 era are not as well-documented as those of the secondary feacher. Ruddell et al. (1960) provided the most comprehensive information. During the 1950 s, state requirements were shifting toward requiring a bachelor's degree to teach in the elementary school; in 1951 only 17 states had this requirement, but by 1957, 35 states did. Ruddell and his associates point out that about 30 percent of the elementary teachers in 1957 held provisional certificates. In only 12 states was there a specific mathematics requirement for certification, seven required a mathematics course, and five required a methods course. Examination of college catalogues for 96 institutions revealed that 39 percent required no mathematics course and 29 percent required no course on methods of teaching mathematics. Evidence from a survey taken in 1966 about 1962 requirement $\hat{\wedge}$ indicated that 23 percent of the colleges graduating elementary teachers required no mathematics (Dubisch, 1970). There are relatively few studies during the 1955-1965 era that:
focused on what mathematics elementary teachers knew or what their attitudes were about mathematics, either directly or by inference from course background. However, respected mathematics educators like Grossnickle and Dutton had conducted studies in the late 1940s that indicated this was a major problem. With the publication of CUPM Level I guidelines for elementary teachers of mathematics, a spate of studies was conducted, but results were not published until after 1965.

In-Service Education, 1955-1965
In-service education prior to 1955 was the responsibility of the individual teacher of mathematics or the teacher's school system. . Most teachers acquired their in-service education through an institution of higher education, studying for a master's degree to enhance their earnings.

The history of in-service education, especially at the secondaryschool level, during the $1955-1965$ era is highly related to the history of the National Science Foundation's development of in-service programs. . Krieghbaum and Rawson's An Investment in Knowledge (1969) is a history of NSF's development of summer institutes for secondary teachers during the first 12 years of the institute program. In the process of spinning an enthusiastic, entertaining history of the summer programs, considerable background on other forms of NSF in-service activities is described. Thus, their book reports on the establishment of academic-year institutes, in-service institutes for part-time study during the school year, implementation institutes directed toward the major new curricula (UICSM and SMSG), and parallel institutes f. olementary teachers.

The 'NSF institutes reached an estimated 35 percent of/the mathematics and sciénce teachèrs (Krieghbaum and Ransom, 1969). Mostly disciplinary in orientation (a typical summer institute was about 80 percent mathematics and 20 , percent methods), they established a presedent of paying mathematics teachers' university fees, tuition, and/or living expenses. Further, the mathematics and methods were "packaged" for the teacher by the institution. NSFinstitutes became almost the only inservice activity for secondary teachers of mathematics.

The National Science Foundation/became concerned. with the question of whether the institutes really were up-grading the competence of all types of teachers. Thus, a study of the 16,000 -applicants to the 1957 and 1960 institutes (Blanche et al., 19.63) was initiațed to examine differences between those accepted and those rejected for the various kinds of in-service astivities. Berger (1961) reported differences between the acceptance and rejection groups for each type of institute for se ondary teachers. Academic-year institutes and summer institutès accepted individuals with better academic credentials in terms of the number of hours and the grade point average. This apparently contributed to the later establishment of institutes for different levels of student. The institutes could not be successful in upgrading the competence of teachers if only teachers with better backgrounds were included.

The Foundation was also concerned about the types of teachers who were not applying to institutes. The American Institutes for Research (Orr, 1962) conducted a study of the non-applicants, sampling teachers in 491 secondary schools selected: on a stratified random basis. Acceptees, non-acceptees, and non-applićants in the schools were compared. Teachers
were sent questionnaires and a subsample was interviewed. The acceptees 'were more likely to have participated because of wanting to know" more of the subject matter and teaching methods; rejectees were mutivated to apply for reasons of financial găin more often than the acceptees. Rejectees appeared to have as high a "drive" as the acceptees, but a lower ability level.: Females were a significantly larger portion of the non-applicant group than of the applicant group and often mentioned family obligations as the interfering factor. However, the primary factor for non-applicants was identified as lack of drive, a characteristic extending to and pervading. most aspects of the non-applicants' work in the schools. The non-applicant felt inadequate for teaching in the subject field more frequently than the applicant, but prized a self-perceived abilíty to get along with students more often than the applicant. The non-applicant was more likely to bea woman teaching in a small school in a rural area or small town that served a low-cost housing area. 'The non-applicants perceived the environment in which they worked as supportive of neither education nor scienc̃e.

A conclusion that seems apparent from the non-applicant study is that there was a segment of teachers whom the in-service institute programs could not reach no matter what modifications were made in availability, stipend support, and the like.

Few follow-up studies of institutes independent of the NSF in-house evaluations were conducted prior to $1965 .^{\circ}$ The reports were positive, optimistic, and full of promise (e.g., Krieghbaum and Ranson, 1969). Many teachers were being changed and were excited about their participation. The 24 summer institutes oriented to UICSM and the 40 organized äround SMSG curricular materials seemed particularly powerful mechanisms
for establishing new curricula in the schools (and received better participant evaluations, than the non-curricular-oriented institutes).

Preservice Education, 1955-1965

- The content of preservice mathematics education changed significantly, but professional experiences in education generally retained the same structure, The most significant changes for secondary teacher education programs were in terms of shifting the content of the mathematics courses to be more current and to encompass a greater portion of post-calculus mathematics and a lesser amount of pre-calculus mathematics. For elementary teachers, the shift was moze dramatic; it was primarily an increase in the number of required hours of mathematics: It seems that mathematics educators'energies were devoted primarily to in-service education, so that preservice programs were adjusted only in terms of content.

Examination of the two leading methods books for secondary education during this era supports this contention. Reeve's Mathematics for the Secondary School (1954) and "utler and Wren's The Teaching of Secondary Mathematics (1960) are both written in terms of the curricula of the 1950s. The elementary-school mathematics methods books also showed little significant change.

If there was a particular methodological emphasis in the early 1960s, it was in terms of the new curricula and the discovery processes implicit in the UICSM materials. However, this was not a major emphasis in available text materials for method, classes. Mathematics educators came to realize, there ias a problem in preservice teacher education.

The in-service education effort was essentiaily retraining and updating the teacher's knowledge of mathematics and preparing them for the-new. curricula. Preservice teacher education needed comparable attention; otherwise the new teachers would require retraining immediately. Seyeral groups formulated guidelines for revision of undergraduate, preserváce programs; Gibb, Karnes, and Wren (1970) and Dubisch (1970) provided listings of guidelines and. content.

The guidelines of the Mathematical Association of America's Committee on the Under\&raduate Program in Mathematics (CUPM, 1961a, b), were the most used. This is probably for two reasons:
(1) CUPM periodically conducted regional confereñces for educators concerned with program design, requiremento, and certification:
(2) CUPM provided extensive recomended course outlines specifying content and intent. In addition they indicated available published materials fitting the courses they had described.

CÜPM recognized that the undergraduate curciculum was at least.as out-of-date in many institutions as the school mathematics curriculum. The CUPM recommendations were unique in that they considered three levels. of secondary-school teacher preparation. A summary of their 1961 recommendations for school mathematics appears in Table 10. The CUPM course guides and level recommendations provided standards for mathematics educators. Initially CUPM did not consider methodology.
C. Teacher Education, 1965-197.5

Mathematićs education changed significantly' in the 1960 ; much of this change profoundly affected teacher education. In other sections of

1961 CUPM COURSE RECOMMENDATIONS

of this report, the points are made that:,
(1) Curricular changes were accomplished in the secondary school and were initiated in the elementary schools by the mid-1960s.
(2) The aims of mathematical instuction were enlarged in the mid-1960s to fit concerns for the learner who was not college-aspiring or college-talented.

It should alsc be noted that the number of reseazchers in mathematies education changed dramatically by the mid-sixties; partly as a result of NSF academic-year institute programs and partly because collegiate-level mathematics education was a growth industry. Many young professionals
had new research degrees and positions in higher education. They weze doing research concerning teaching and learning mathematics at a never-before-attained rate. Many of the studies related directly to teacher education. These "new" mathematics educators who had grown to professional maturity in the institute progrảms and in learning about "modern" mathe"matics became a new generation of teacher educators with a mind-set quite Qdifferent than that exhibited by their colleagues trained in the pre-1955 erá.

Mathematics educators working in teacher education during then 1965-1975 era felt that they could safely extend their programs beyond the paramount, consuming aim of mathematical competence prevailing in the 1955-1965 era. Most elementary and secondary schools had at least one staff member with a contemporary mathematical background and were using curricular materials of a modern character. The undergraduates in preservice programs had more extensive mathematical backgrounds and teach-er-training materials reflected the nature of the instructional materialis in the schools. By the 1970 s, the students infpreservice programs had a history of contemporary mathematics in their school experience before entering college. This is not to say that mathematical competence was no longer a concern or issue; rather, teacher-educators had evidence that progress on the mathematical competence problem had been made, and there was a conviction that other factors in teacher-education were in need of attention.

The societ'al and political concern and support for science and forr building a pool of scientific talent eroded, to be replaced with a concern for/the socially disenfranchised and a-perception of the schools
as a constructive mechanism for: social change reaching all levels of sortaty. In particular, the schools were perceived as a means of breakIng the poverty cycle. Thus, the efforts of teacher educators came to encompass more than simply mathematical competence.

The economics of in-service education'changed dramat'sally. After. a twenty-year period of massive federal support for in-service education, primarily through NSF institutes. federal support for in-service education was, to all intents and purposes, terminated for mathematics and science . teachers. During the peak three years of support, 1962-1965, the level. of federal investment was approximately $\$ 37,000,000$ per year (equivalent to approximately 70 million dollars in 1975 dollars). Ten short years later, on 28 November 1975, Walter Gillespie of the National Science Foundation wrote an open letter to the mathematics and science education community declaring that no funds were available for institutes during the coming fiscal year. Teachers, expectations and attitudes about inservice education built over the twenty-year period were upset, as well. . as "the roles and functions that school systems and institutions of higher education had established. For a period of time, this traumatized the mathematics education in-service effort.

In the following sections, the effects of these general trends and how they came about will be examined. Shifts in teacher competence will be considered, followed by an examination of in-service programs and trends in preservice education.

Teacher Competence and Characteristics, 1965-1975

Much more information concerning teacher competence and character:istics is available for 1965-1975 than for the preceding ten-year period. \qquad Rather than having to operate from a basis of judgement about teachers Inferred from limited information on their course background, a consider-' able store of research evidence has been amassed. One of the effects of the societal emphasis on science and education was the development of many doctoral programs on mathematics education. The production of research studies concerning teacher education during the entire ten years from 1955 to 1965 is roughly equivalent to the research production per year in the 1965 to 1976 period. Many of these studies described' teacher characteristics; few described teacher competence.

One of the major 'questions raised by the massive federal interverition into science education was whether the.invesiment, was worth it when the major goal 'of upgrading teachers' understanding was considered. A large number of studies have. examined whether an increased number of courses indoor grade point in collegiate mathematics contributed to improved performance of students in mathematics. One of the larger studies of this. type was reported by Begle and Geeslin (1972) as part of the NLSMA research effort. For the first yeàr of the NLSMA studies, 1405 teachers participated, with 1478 in the second year. The, students of these teachers were given pretests and, then, at the end of each ear, tests on computation and comprehension. Eleven different measures of teacher characteristics were used in stepwise regression analyses to discover relationships between the teacher characteristics and the 'performance of their classes. Although substantial variance was found

In the performance of their classes, the teachers' characteristics did not account for a significant portion of the variance. The peŕcentage of the variance accounted for was too low to'be useful for school ${ }^{\text {' }}$ decision-making. Further; the measures of teacher effectiveness were not stable across che two different years of data collection.

What accounts for the lack of relationship between teachers' background and students' performance? One attractive interpretacion of the NLSMA study described above is that the information gathered from transcripis may be ambtguous; professors grade in markedly different ways, - standards vary from institution to institution, a B graste, earned in 1955 may not mean at all the same thing as a Brade in the same course in 1972. Begle (1972) investigated the performance of the students of 308° teachers , tho were participants in NSF institutes. Measures of the teachers' understándings of aigebra were taken from their performance on two algebra tésis. Their students were given pre- and post-tests of knowledge of algebra. He found no significant correlation between teachers' know-' ${ }^{*}$? edge and the performance of their students.s. Eisenberg (1977) replicatea the study with a smaller but more typical set of algebra teachers who 'were not participants in NSF institutes; and therefore had not been selêctad on some críteria which might produce "ceiling effects." The results of the Eisenberg study are consistent with those of the Begle. study. . Moreover, these results are consistent with the findings of. . other studies concerned with the performance of students at different levels in the school curriculum; see Eizenberg (1977) for a listing of eight other studies of this nature. Willson and Garibaldi (1976) reported a study of 112 senior high
and 99 junior high school teachers in school districts in Mississippi, South Dakota, and Wyoming. Teachers' backgrounds, institute participation, and scores on the National Teachers Examination in Mathematics were related to their students ${ }^{\text {i }}$ achievement on a mathematics achievement test (40 items selected from the NLSMA item pool). The teachers' abilities in mathematics-were-not related to their students' achievement, but their participation in in-service institutes was related. According to the authors, the results were strong enough to warrant prescriptive remarks recommending continued participation in in-service activities, throughout the professional lives of teachers.

The intuitions of most mathematics teachers, mathematics educators, and mathematicians are not in accord with the findings reported in these studies. Most want to claim that the more a teacher knows about the subject being taught, the better the teaching that can be done. Clearly a minimal level of understanding of the subject matter is necessary. The explanations of the lack of significance for mathematical background "typically hinge on the identification of potential interactive effects . with other characteristics of the teacher. Several characteristics of teachers have been identified that do affect learning of mathematical. 'topics: These are candidates for having potentially significant interactions with the teacher's knowledge of mathematics in affecting learning. Among the more sjgnificant of these are:
(1) The teacher's verbal facility and behavior: Studies by Fey (1969, 1970), Gregory (1972), Hernandez (1973), and those reported in Teaching Strategies: Papers from a Research Workshop (Cooney, 1976) all noted verbal
factors in teachers' performance in the mathematics classroom that contribute to learning of mathematics. None of these studies, however, considered interactive effects with the teachers' knowledge of mathematics.
(2) The teacher's expectations of student performance: Heller (1974) and Lockheed (1976) identified the characteristic of expectation of the teacher for student performance as being a critical factor in the classroom. Other replications of the Rosenthal and Jacobson study reported in Pygmalion in the Classroom (1968) did not produce siznificant results. No studies have considered the expectation chracteristics in conjunction'with the teacher's mathematical competence.
(3) The cognitive style of the teacher: Engelhart (1973), Stone (1976), and Story (1973) reported that matching the cognitive style of the teacher and the cognitive style of the student can affect learning.in mathematics. Since cognitive style of the teacher is a factor in the teacher's learning and doing of mathematics, this may be a potentially useful characteristic to explore in examining the role of knowledge of mathematics in the performance of children.

None of the studies cited above defined the competent teacher. Rather they indicated some characteristics of tachers that appear to affect learning of mathematics, and thus might have significant interactive effects with the knowledge of matnematics possessed by the teacher. They presented evidence that teachers vary significantly in a variety of characteristics that affect learning.

The attitude of the teacher about mathematics is another , aracteristic that might be expected to affect the learning of students in mathematics. Suydam's A Categorized Listing of Research on Mathematics Education (K-12): 1964-1973 (1974) listed 39° studies concerning preservice teachers' attitudes and 34 studies concerning preservice teachers' attitudes about mathematics. Unfortunately the number of these studies that examine the relationships between teachers' attitudes and the performance in mathematics of the teachers' students is relatively few. Van de Walle (1973) found at the third-grade level that comprehension of mathematics was related to the positive attitudes of teachers and that teachers' negative attitudes were associated with computational ability. At the sixth-grade level, no significant relationships were found. Tro of the NLSMA Reports \{Begle and Geeslin (1972) and Travers-(1971)\} examined the relationship between teachers' attitudes about mathematics and mathematics teaching and student achievement. No significant relationships were reported.

The design of teacher education programs is predicated upon some strong assumptions concerning teachers' attitudes about mathematics and their knowledge of mathematics. Intuitively it seems apparent that these are critical factors in competence. The research evidence does not support these assumptions. We note that neither of these assumptions has been researched carefully in a manner that accounts for possibly significant interacisfons with other variables. Most of the studies.of attitude have had other purposes that have determined the design.

Many of the studies of teacher attitudes reported in Suydam (1974) indicated a relationship, between the achievement of teachers in specific
in-service or preservice mathematical experiences and students' attitudes about mathematics. Most such studies indicated a weak association between success in mathematics and a positive attitude about mathematics for elementary-school teachers. Elementary teachers who prefer teaching at the upper grade levels appear to enjoy greater success in mathematics and more positive attitudes about mathematics. Although in-service " experiences and institutes for elementary teachers attract the teachers who feel more positive about mathematics, their attitudes are enhanced.

Attitudes and mathematical background or understanding are not characteristics that yield simple measures of a teacher's competence or effectiveness in promoting student learning. Some studies of effectiveness that appear to have promise are those that incorporate many variables into the description of ceacher behaviors and that account for classroom environmental factors. Some variables that appear to be significant have been identified but have not been studied in conjunction with baseline characteristics of teacher attitude toward mathematics or understanding of the mathematics being taught. Some of the variables appear to be dependent on andfrstanding of mathematics. Rosenbloom et al. (1966) identified the most effective teachers in a group of 127 who were field-testing SMSG curricular materials. The most effective teachers produced a greater varfety of ideas about success and failure in their teaching and offered a greater variety of alternative ways of teaching mathematical concepts. These observations of the teachers were based upon the logs which the teachers kept concerning their teaching. Good and Grouws (1975) examined achievement in fourth--grade mathematics in terms of the teachers' use of various teaching strategies
and classroom environmental factors. Clusters of variables that were associated with effectiveness were (1) general clarity of instruction, (2) a non-evaluative and generally relaxed environment, (3) higher achievement expectations, (4) classrooms that were relatively free of major behavior disorders, (5) characteristics of whole-class instruction, and (6) student initiated behavior.

These two studies offer examples of the variable* that appear to affect learning to a significant degree. The variables are characteristics of the teacher in that they indicate behaviors of the teacher, some of which are learned. The problem with most research that examines teacher behaviors in the classroom is that the behavicrs are seldom examined in terms of both the performance of learners and the background characteristics of the teachers. As Rosenshine and Furst (1973) point out in reviewing more than 120 instruments or systems for classroom observation, only about one in ten is related to student achievement in any way. Although they were examining observational systems across all fields of teaching, the same conclusions obtain for the teaching of mathematics.

The question of teacher competence or effectiveness is more complex than the accomplished research would lead one to believe. Few studies have accounted for the many factors that have been identified as potentially significant. Clearly it will take an investment in research of at least an order of magnitude greater than has been invested in the problem heretofore. Turner (1976) described the many different factors that should be taken into account in order to extend the research domain for teacher-effectiveness studies. Controlling the many variables he
identified is necessary if the knowledge of teacher characteristics that .yield effectiveness is to be other than the observation of symptoms of effective behavior.

The discussion of teacher characteristics to this point has focused on effectiveness or competency in prou ating growth of students in mathematics. Other characteristics of teachers are, significant in that they indicate factors in the professional attitudes and makeup of teachers that should be taken into account in planning teacher education programs and/or in acquiring a sense of the progress that has been made in téacher education.

The mathematics ceacher at the elementary and secondary levels is more of a professional in 1975 than in 1965. This can be deduced from evidence of the change in the backgrounds of teachers. Osborne and Bowling (1977a) surveyed a national sample of secondary and elementary teeachers i: 1975 for the NCTM In-Service Project. The teachers were selected on a stratified random basis to reflect all areas of the country
and the various types of public schools. Fifty-six percent of the secondary teachers and 35 percent of the elementary teachers reported that their highest degree was a master's. Only 11 percent of the elementary teachers and 12.4 percent of the secondary teachers were teaching with no methods course in mathematics; indeed, 52 percent of the elementary and ' 58 percent of the secondary teachers reported more than one methods course for mathematics in their background. : The secondary teachers, reported the following when queried about the number of post-calculus mathematics courses:

| Number of
 courses | 0 to 3 | 4 to 7 | 8 to 11 | 12 to 15 | more than 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Percent of
 teachers | 15.7% | 24.3% | 21.3% | 14.1% | 24.9% |

Only 10.5 percent of the elementary teachers indicated they had only one or no mathematics courses at the college level. This background is consistent with that reported in other studies, although there appears to be regional variation, with urban areas having a higher concentration of teachers with extensive backgrounds (Bertram, 1971; Biggs, 1969; Bradshaw, 1968; Haigh, 1970; Schubert, 1975; Woods, 1973). Thus, there are many more teache:s in the schools who have a background approaching that recomended in the CUPM guidelines for mathematics teacher education than ever hefore. However, a significant subset of the teachers do not possess the recommended levels of training-estimates of those hot having CUPM-recommended backgrounds range from 10 to 37 percent, depending, upon the region of the country and the type of community served.

Teachers in the mid-1970s not only have a better background in mathematics and methods; they are earning their second professional degree at a younger age, are less likely to i errupt their professional service, and will stay in the teaching profession longer than teachers at any point earlier in the 20 -year period which is the concern of this report. The NCTM in-service surveys indicate that teachers are satisfied with their choice of profession, with approximately 80% stating they would elect teaching as a profession if they had an opportunity to start over again. For elementary teachers, 83 percent indicated experiences in in-service programs during the two years prior to the
survey; for secondary teachers, 71 percent had participated in in-service during this period. The following indicates the sources of in-service education for these teachers:

Although approximately 36 percent of the elementary tèachers and 46 percent of the secondary teachers reported their prior experience with in-service had not been positive, approximately 80 percent reported a need for in-service and approximately 60 percent felt it should be required of all mathematics teachers. Close to 50 percent of all respondents felt the requirement should be for maintenance of certification.

The NCTM survey results provide strong evidence that the majority
of teachers are professionals desirous of continuing education, concerned with currency of their knowledge, and more desirous of in-service for methodology then for mathematics content. A strong concern for having in-service that related specifically to their curricular and instructional programs was evident in the responses. If teachers at either level participated In identification of topics and in planning the in-service program, then they were much, more likely to feel that the in-service experience was satisfying.

The survey data indicated that most teachers were positive and optimistic about in-service education and simply wanted to be treated as
professionals. Some of the respondents were not so positive about inservice education--a negativism pervaded their responses to a large number of the items concerned with in-service on the 147 -item survey form. One question that tended to show a relationship with a positive view of all aspects of the respondents' professional perceptions was the following: "Are students as excited about learning mathematics as they ever were?", Sixty-eight percent of the elementary teachers responded "yes", but only 44 percent of the secondary teachers responded positively.

To summarize, the characteristics of teachers that stand out most dramatically in the mid-1970s are a reasonably extensive background in mathematics and professional courses. Most téachers are participating in some form of in-service education, prefer more in-service education, and have relatively high hopes for in-service education. A signifícant factor accounting for teachers holding a positive view of past ipp-service is whether they have particpated in decisions about the in-service program and whether it fits the school's mathematics program. Relatively little evidence relating teachers' background with their students' performance in mathematics is to be found, although there is some promise in looking for interactive effects of background with variables of teachers' verbal behavior, expectations, and attitude, particularly if school environmental factors áre controlled.

Preservice Program Design, , 1965-1975
The five major developments in this period for preservice program design are:
(1) Increasing the mathematics requirements for secondary and elementary programs
(2) Competency-based teacher education (CBTE)
(3) Increasing the amount of pre-student-teaching ficld experience
(4) Incorporating an emphasis on laboratory and/or activity learning into the teacher education program,
(5) The supply and demani factors in the prospective teacher spppulation

Other developments in the design and implementation of teacher education.. programs are so Imited as to have little effect nationally.

Requirements: The increase in mathematics course requirements is evident in the content of the preceding teacher characteristics section. Perhaps the mont significant comment is to point out that the recommendations of the various professional groups -- CUPM (1961, 1968, 1971), NCTM (1973), and AAAS (1961, 1971) -- have had some effect. They are used by the national and regional accrediting agencies (NCATE and state departments of edacation). CUPM guidelines have had the most effect primarily because of the regional conferences directed toward their implementation and because they were developed with detailed course outlines. The NCTM Guidelines focus on the professional training in addition to the mathematics background and specify some institutional responsibilities, but are so recent that they are only beginning to have an effect. They are constructed to accommodate to the teachertraining institution that operates with a CBTE program design as well as the more usual program design. The AAAS Guidelines have had little effect on mathematics teacher education program desigrs.

The evtdence from a series of dissertation studies indicated a progression of ingcremental steps for both sễcondary anḍ elementary teachers
toward the implementation of the CUPM guidelines throughout the 19651975 period (Bompart, 1968; Brown, 1972; Cook; 1970; Copley, 1971; Dayoub, 1974; Fisher, 1967, 1968; Foster, 1971; Garnett, 1969; Hưnkler, 1971; Johnsọn, 1976; Lightner, 1968; McCowan, 1976; Ray, 1967; Smith, 1971: Thompson and Poe, 1968; Tilton, 1967; Vinskey, 1971; Withnell; 1968). The stüdies suggest that this progress toward implementation of the guidelines holds across all types of institutions that train teachers and is being - realized in certificátion laws as well as degree requirements. The evidence also hints'that the more recent NCTM Guidelines are beginning to be used also. Both NCTM and CUPM Guidlines are recommended by NCATTE for institutional evaluations. There is little evidence of differences in program design observable, between NCATE and non-NCATE institutions.

The implementation of recommendation by CUPM for three mathematics courses for elementary teachers led to a discovery of the prospective elementary teacher as an object of research. We have learned that (a) the more, mathematics courses taken in high school and/or the better the grade point average in high school mathematics, the better the prospective teacher does in CUPM-style courses; (b) the more CUPM courses the prospective teacher takes in college, the more mathematics the teacher is likely. to know; (c) gains in mathematics achievement are a result of taking CUPM-style courses; and (d) attitudes about mathematics are slightly higher after successful experience in a mathematics course. These results are not unexpected!

A number of the studies cited immediately above and some others (C^1liex, 1972; Gibney et al., $1970 \mathrm{a}, \mathrm{b}$; Reys, 1968a, b; Reys and Delong, 1968) 'Vave tested prospective elementary tcachers' mathematical understanding and/or other factors relating to their attitudes about mathematics
and what led them to teaching. Generally, prospective elementary teachers do not perform significantly different than junior high school students on standardized tests and make relatively the same kinds of errors. They do not find mathematics their favorite activity. Their performance on geometric and algebraic topic̄s needs to be improved. Students completing their collestate mathematics teacher education courses are more likely to perceive mathematics as informal and non-rigid than before entering the courses.

For secondary preservice programs, the effect rè̀ported in the J
studies cited above has been for an increase in poot-calculus mathematics and a decrease j, pre-calculus university-level courses. Theory of equations is no longer à required course; in some institutions, it is not a topic given ch treatment. Modern algebra, group theoiy, and linear algebra are the favored algebraic experiences for prospective júnior and senior high school teachers.

Johnson (1976), whose analysis of coiurse and topic requirements for prospective secondary teachers is based on a thotough survey of 60 percent of the AACTE institutions, indicated a trend toward acceptance of the Level II (junior high) and Level IXI (senior high) recommendations in that a difference in mathematics requirements is occurring. 'The typical junior high course requirement is for 31.42 semester hours on the average, with 33.28 hour's for senior high. Nine percent of the institutions have a special course for prospective jünior high school teachers.

The role of the computer in mathematics teaching is a meiter of concern for all of the groups making recommendations for teacher education.. We have littife evidence that requirements in teacher education institutions
or that state certification laws honor the reccmmendations of professional groups for prospective mathematics teachers to have computer literacy, let alone having it as a specific aspect of their teacher education experience. This is perhaps the most significant failure relative to implementation of teacher education guidelines that we have•found.

- Probability and statistics courses are seldom required, although most institutions think they should be; according to several surveys. - Wong (1970) reported that transformationil geometry is an intergral part of most preservice secondary teachets' course work and that the majority of institutions require at least one geometry course.

The CỰM recommendations for secondary preservice teacher education have not led to the same sort of testing of preservice teachers as they did at the elementary level. Thus, no characteristics of preservice secondary teachers are reported other than those to be inferred from the course requirements of institutions of higher education.

Competency Based Teacher Education: CBTE as a feature in preservice. teacher education programs came on the scene in the early, 1970 with the thrust toward accountability and performance contracting.. It was an extension of the behavioral objectives philosophy of many generalists ; in state departments and institutions of higher education. Maurer (1973) reported that 10 'states could award teaching certificate's through competency assessment; that is, competency assessment teaching certificates were possible but not required. iis survey data, representing 49. states, indicated that nipe states decided not to use CBTE, five were undecided, and the remaining 35 intended te Implement CBTE certification programs. Tihiṛty-sẹven states indicafed that the responsibility for
implementing CBTE would be thrusc by the state agencies onto institutions of higher education.

Evidence for the present status of the trend to "CBTE is limited and somewhat "soft," but our opinion is that the orientatior: to and interest in CBTE peaked about 1973. We find less evidense of interest in the literature; indeed, there is practically a cessation of CBTE articles. Only one of the 448 institutions responding to Johnson's (1976) survey noted apCBTE program in 1974. Although certification laws based on CBTE are on the books in some states, our perceytion is that they are be ing ignored or not being implemented. CBTE is expènsive and a sigioificant number of scholars in mathematics education and mathematics are philosophically opposed to CBTE. Given the present state of finances in bigher education, it appears that in the immediate future CBTE will not $\mathrm{b}=$ widely applied.

Field Experiences: The third major trend in preservice education in' mathematics is of a more significant character than CBTE, in our opinion. This is the trend toward increasing significantly the amount of field experience prior to student teaching. Promising Practices in Mathematics Teacher Education (Higgins, 1972) reports 64 innovative preservice teacher education programs. Thirteen of the 21 secondary programs have required pre-student-teaching field experience; the experiences extend be, ond passive observation to working with learners toward specific objectives of the teacher education programs. Of the 43 elementary programs, 16 incorporate significant amounts of closely supervised field experiences with children prior to student teaching. The popularity of field experiences pr'vr to student teaching during the
early seventies is indicated by the proportion of claims of innovativeness based upon field experience.

Pre-student teaching field experience in teacher education programs. is used for a variety of purposes. Early experience with children and within schools provides the undergraduates with a realistic base to decide if teaching is to be their life's work before committing a large portion, of their undergraduate registration to education courses. The early ex-- perience, establishes a touchstone of reality for professional course work (and establishes a relevance for the mathematical topics being learned. Many of the component skills of teaching, such as tutoring or diagnosis, cän be established and practiced under supervision and hence are learned more efficiently. Finally, it provides a clinical and/or laboratory setting for learning about learning and teaching. 1

There is considerable amount of mysticism and folklore about early field experience. Prospective teachers and teacher educators generally say they feel the early experience has a positive effect and is guod for teacher education. For mathematics teacher education there is a paucity of evidence that provides evaluative information or that identifies specific effects of the early experience. Graening (1972) described effects of early field experiences for a secondary mathematics preservice program, noting that there were appreciable gains and changes for the preservice teachers prior to student teaching on a number of measures of effectiveness and attitude. His measures incorporated evidence of both the preservice teachers and the students with whom they worked. The student teaching experience tended to decrease these gains and to dampen the enthusiasm acquired by the prospecife teacher in
the prior experience. Erb (1972) analyzed the effect on junior-level prospective/teachers tutoring at the junior high school level. . Significant changes were noted in the behavior of the preservice teachers and in the improved attitudes of those being tutored. Although field experience has been a component of some experiments in teacher education (e.g., Thornton, 1977), almost no direct evidence of the effects of early experience and how or what it contributes to a total program in teacher education is available beyond these two studies. It is not known what constitutes sound pre-student teaching field experience or what does not. This is a major arena for needed research in mathematics teacher education, since cost figures for such programs are appreciably higher than for traditional teacher education p:ograms.

Laboratory Learning: The fourth major trend for teacher education during 1965-1975 is the incorporation of laboratory or activity learning into the preservice experience, either in a mathematics setting or in the . methods setting. This move in the design of teacher leducation programs is interpretable as an attempt to adjust, teacher education programs to the orientation toward activity learning in many school mathematics curricula. Fuson (1975) pointed out that few instructional materials of this type were available for teacher education until the 1970s; she also remarked on the extremely limited amount of research. Her exploratory evaluation midicated that prospective teachers (1) used nanipulative materials to a considerable extent in student teaching after the course experience, (2) increased the extent to which they behaved in learner-focused ways, and (3) thought they had gained appreciabl. in their understanding of mathematics and enjoyment of mathematics.

The identification of the increased use of manipulative materials for laboratory or activity learning as a component of teacher education during \checkmark 1965-1975 is based upon limited, "soft" evj.dence. No survey data exist supporting this contention. This perception of increased use is based upon the significant increase in available books and other teacher educa \rightarrow tion materials incorporating this approach and the evidence of the increasing popularity of this topic for teacher education sessions at professional meetings.

The activity or laboratory emphasis in teacher education is related to another development, the integration of the mathematics and methods course content. - Stemring in part from a belief that teachers teach as they were taught, several institutions have implemented such combination: courses, often with joint staffing by content and methods personnel. A noticable developmental program of this sort has been the Mathematics Methods Project at Indiana University (Thornton, 1977). The MMP design has a significant field-experience component, with a significant emphasis on activity learning. It has been adopted for implementation at many institutions. Such programs will not be widely adopted, in our opinion, until b£tter relat. nnsh!ps are commonplace between content teachers in mathematics departments and methods teachers in education departments. Tinis factor keeps such integration from being labelled as a trend.

Teacher Suppiy and Demand: The fifth major factor affecting preservice teacher education during the $1965-1975$ era is that of supply and demand. During the $1 y 55-1965$ era, shortage prevailed as the orienting factor for school peopie and for teacher educators. During the 19651975 era, the supply factor reversed dramatically. A state of over-
supply of teachers existed in the early 1970 s according to all analyses \{see Carroll and Ryder (1974) fqr a listing and comparative analysis of several supply and demand studies\}. The most interesting factor identified in the supply and demand studies, apart from the oversupply factor in the 1970s, is the development of some new trends in the occupational choices of undergraduates. Carroll and. Ryder (1974) reported a significant decrease in the number of freshmen (both men and women) indicating teaching as a career choice, based on surveys from 1967 through 1974 conducted by the American Council on Education (ACE). There was a decline by 1972 to between on third and one half that observed in 1968. In 1972, for example, only 12.1 percent of the entering freshmen were considering teaching as a career choice. This trend holds for both elementary and secondary levels, but for the latter does not reflect data specific to mathematics teaching. Carroll and Ryder do indicate some problems with the ACE survey techniques but p-ject that this factor may contribute significantly to the supply of teachers in the 1980s. Mcst projections of teacher supply and demand figures, however, have assumed that the pattern of approximately 35 percent of the bachelor's degree holders being trained teachers would continue.

Another assumption implicit in projections of supply and demand made in the early 1970 s for the 1980 s is that unemployed, trained teachers in the "reserve pool" would be willing to enter the teaching profession; this assumption may be specious. Little evidence exists indicating the portion of people in the reserve pool who are willing to enter the teaching profession five or more years after their training was completed. Even if they are willing to enter teaching at this point in their lives,
the effect on the schools of their out-of-date training is not projected.
There are no projections of teacher supply and demand factors that are specific to secondary-school mathematics. One can infer from the present characteristics of secondary teachers that 14 , percent of the teachers in the secondary schools will be mathematics teachers (Magers, 1977). However, this does not provide much evidence concerning supply and demand. We do know that the cohort of undergraduate majors graduating in the mathematical sciences--the source of beginning secondary teachers--peaked in 1969-70 at 27,400, decreased until 1973, but apparently has maintained a constant level of approximately 25,500 through 1975 (NSF, 1976; Simon and Frankel, 1975; Simon and Fullam, 1970). The increased percentage taking training in computer science fields in the early 1970s suggests an increasing number of mathematically trained pes isonnel (a) are entering industry and (b) are not to be counted as potential secondary-school teachers of mathematics. We suggest that the evidence weakly indicates that the oversupply of mathematics teachers is not nearly so dramatic for secondary mathematics teachers as for other secondary teaching fields or for elementary teachers. Carroll and Ryder (1974) warned that "if and when the surplus ends, the inertia in the
: system of supply and demand will lead to the almost immediate unset of a teacher shortage." They projected a continuation of the trend of decreasing production of new teachers tiat is observable from 1967 to 1974. The limited evidence of declining undergraduate enrollments in mathematical sciences and of anapparently growing portion of those majors entering industry suggests that if a teacher shortage develops, then secondary mathematics teaching will be among the earliest fields specifically

$$
169
$$

affected. Unfortunately, the supply and demand data for secondary teachers provide no information specific to the various disciplinary fields; projections are based upon "guesstimates" at best.

The writers find the lacunae in the teacher supply and demand figures upsetting and starting. We have found no firm data concerning the number of mathematics teachers serving in the schools at the secondary level and have no idea of how many of the undergraduate majors in mathematical sciences are certified for teaching. Supply and demand data for secondary mathematics teachers are non-existent. Projections must be inferred from non-field-specific secondary teacher preparation data and from manpower supply data that gencrally treats the mathematical sciences. These two sources of data seem of doubtful validity when one realizes the variation from year to year concerning the same facts reported in annual reports by the same agencies. We conjecture that no trustworthy set of data exists, even reflecting the historical facts that could be 5. verified, that is within a ten-percent-level of accuracy. During the early 1960s there was a U.S. Registry of Junior and Senior High School Science and Mathematics Teaching Personnel that provided a glimmer of what was happening in the schools. No. comparable data pool presently exists.

By way of summary of the trends'in the development of preservice education programs, five areas of import are apparent in the literature reflecting the 1965 through 1975 era. The following crnclusions appear warranted:
(1) There has been a significant increase in the , mathematical requirements for both prospective elementary and secondary school preservice teachers matched to a limited extent by increases in the professional components required for graduation and certification. Little evidence of the new
secondary-school mathematics teacher acquiring computer literacy as a requirement for Eertification can be found.
(2) Competency-based teacher education (CBTE) enjoyed a brief but significant moment of influence in the design of teacher education programs. Present, limited evidence indicates that interest in and commitment to CBTE and its implementation is on the wane.
(3) The trend toward reqi iring more field experience prior to student teaching that began in the late sixties is becoming a norm in the design and redesign of teacher education programs for both prospective elementary and secondary. school teachers. This is the case even. though no significant research base suppurting an increase in the field experience or information concerning its effect on prospective teachers exists.
(4) Incorporating an emphasis on laboratory and/or activity learning in both the mathematics and the professional. ${ }^{\text {. }}$ education portions of teacher education programs at the elementary school levels has increasingly become a feature of teacher education programs.
(5) The trends in supply and demand indicate that during this period we have moved from a state of undersupply to a state of oversupply of elementary-school teachers and that the supply of secondary-school mathematics teachers is about five years out of phase. The trend of fewer fresh-man-level students in higher education indicating a desire to enter teaching as a career, coupled with fewer students majoring in the mathematical sciences, suggests that the state of oversupply of secondary-school mathematics teachers may change rapidly to a state of undersupply.

In-Service Education, 1965-1975
In 1965, the National Science Foundation invested $\$ 37,000 ; 000$ in the in-service education of science and mathematics teachers; in 1975, funding of in-service education efforts through the Foundation was terminated. This dramatic turnabout in the ten-year period is the single most significant factor in setring the trends and patterns in the in-service education of mathematics teachers during this period.

The publication of the Found ition entitled Science Education--

The Task Ahead for the National Science Foundation (NSF, 1970) delineated the points at issue. Evidence was presented (p.14) that the new curricula were being implemented massively across the nation; that is to say, no more effort need be. expended for curricula implementation since it was happening. The task of teacher education is specified as primarily a matter of subject-matter "upgrading", and the Advisory committee recommended continued institute work as long as new participants can be found and the subject matter was "genuinely upgrading." Otherwise, it was recommended that teacher education effort of the Foundation be limited to the innovative (p.13). The Advisory Committee further recommended that the important place to modify teacher education was at the preservice level, since without attention to this factor the nation must automatically be locked into a "retread job" of teacher education at the in-service levei (p.28).

Interestingly, the Advisory Committee failed to recognize the effect of the academic-rear institute programs while conderaning professional educators and schools of education for "encrmous resistance" (p.28) to dramatically improving preservice science education.' An NSF staff paper (NSF, 1972) showed that 58.4 percent (approximately 9,300) of the aca-demic-year institute graduates for the period 1956-69 were significantly irivolved in teacher education, with only 20 percent being limited to"inservice work within their own, school system. That is to say, the aca-demic-year institutes had dramatically ehanged the staffing patterns (and the values) of teacher educators in the institutes of higher education. Thus, we concluded that the judgment of the Advisory Committee for Science Education in 1970 was specious to say the least.

Retrospect provides additional insight, however, into the effects of the cessation of federally funded activity in in-service education after almost twenty years 0 © heavy involvement. The NCTM publication An In-Service Handbook for Mathematics Education (Ósborne, 1977) identified several factors stemming from the federal involvement that were of import in the mid-1970s. Piimary among these is that mathematios teachers came to expect an institution of higher education to prepackage in-service work and thereby lost the skills of identifying needs and planning inservice to fit those instructional and curricular needs. Second, teachrrs came to expect that not'only would in-service work be ciesigned for them, it would be provided and paid for by someone other than themselves or their schoo' system. Third, the national surveys reported in the Handbook indicated that teachers expect in-service education and want it. Thus, by 1075 , the twenty years of summer, academic-year, and in-service • institutes ad•established several precedents and firmed teachers' (and school systems) expectations such that in-service education became an issue.

If the precedents and expectations are coupled with the fact (according to the Handbook) that the learnings required for effective teaching -- in terms of the knowledge of mathematics, research-based :heories of learring and teaching mathematics, and the skills of teaching -are far inexcess of what is possible in a short four-or fiveyear preservice program, then in-service education becomes significartly important. The compelling evidence of the NCTM In-Service Project surveys is that many teachers attain their second professional degree before ten years of their professional life have passed and that they
have a strong perception of need for further in-service experience chroughout their remaining 25 to 35 years in the profession.

As noted previously, the NCTM In-Service Project surveys indicated that the critical factor in determining teachers' perceptions of the effectiveness of in-service education is the extent to which planning is participatory. If teachers' judgments of need are incorporated into planning a program fitting their curriculum and their instruction, then they are significantly more-likely (the chi-square statistical tests were at the .00005 level of significance) to feel their in-service experiences were satisfying and to feel positive about them. The respondents were highly critical of in-service programs that were so general that little help in teaching mathematics was provided. There was a pronounced discontent with programs that were either too mathematical or too methodological.

The evidence of this survey, and a prior pilot survey, indicated that teachers are interested in in-service education that helps them deal with motivation and helps students with attitudinal froblems. For the majority of elementary- and secondary-school mathematics teachers, topics of a puraly mathematical bent were not as popular as those in- . corporating aspects of the teaching and learning of mathematics.

The survev evidence indicated that if, teachers were employed in a school system having an individual responsibility' for in-service education in mathematics and/or a developed in-service program, then they were more likely to have participated in in-service, to have found it useful, and to have fewer gripes. They were also more likely to recommend that in-service be required c^{c} all teachers of mathematics at either the
elementary or secondary levels.
The evidence is that teachers who work in a school system that encourages in-service education by one means tend to be in schools that encourage it by several means. ine major factor that teachers would like to sea encouraged in in-service education is released time, but only 44 percent of the elementary respondents and 39 percent of the secondary respondents reported that their schools can or do provide this. Followup activities in their. school and in their classrooms for in-service activities was a key factor in assuring the teachers' perceptions' of success of in-service programs.

We can conclude that the surveys present a picture of a typical mathematics teacher, at both the elemertary- and secondary-school levels, as one who wants to behase as a professional sharing in professional decisions. This attitudinal factor of in-service education is important and one that should be capitalized upon according to the evidence of the surveys. One senses a positive expectation for in-service that must not be compromised and that helping teachers realize their professional expectations through in-service has an attitudinal impact extending beyond the specifics of what is learned in in-service education.

In fact, little evidence exists that in-service education makes a difference in children's learning. The studies addressing this problem are few and far between. We do know that the NSF institute-effort changed teachers' mathematical competencies and was a significant factor leading to the rapid ; 'ementation of the new curricula such as SMSG and UICSM. This does not sa, that the teachers"became more skillful and/or more effec tive in teaching mathematics. A lar.ge number of studies have evaluated the
institute programs of the various institutions of higher education (for example, see Bradberry, 1967; Connellan, 1962; Corbet, 1976, Davis. 1973; Fields, 1970; Gray, 1971; Hand, 1967; Heideman, 1962; Irby, 1967; Jolley, 1972, Martinen, 1968; Moore, 1.972; Roye, 1968; Schlessinger, 1958; Schlessinger and Helgeson, 1969; Schuler, 1963; Stokes, 1971; Swadener, 1970; Whitaker, 1962; Wiersma, 1962; Wilson, 1967; Yon, 1960). The typical study either (a) was a follnw-up of institute participants asking them to evaluate their Experience in the institute, or (b) inquired about their professional life following the institute. "Overwhelmingly, the evidence is that participants were positive about the institute experience. There is considerable evidence of significant professional life, in mathematics education following institutes and some evidence that participation led to curricular changes in participants schools. The professional stature of participants was improved in their schools. However, the majority of studies offer little generalizability; they are simply one-shot case studies of little import. Generally, the writers concluded that the overall evaluation of the institutes is a pos.tive evaluation of inservice; it should be noted, however, that the design of the studies seldom allowed for other than this outcome.

The two institute foliow-up studies (Zeddies, 1972; Joyner, 1974) that examined the attitudes and achievement of students of teachers who participated in institutes provided weak supportive evidence that in-service participation helps students' achievement. Neither indicated related changes in student attitude. The Willson and 'Garibaldi-(1976) study described earlier also provided evidence that participation in inservice promoted student achievement in mathematics.

The effect of in-service on student growth in mathematics is "shown most convincingly by an evaluation of an in-service program conducted for elementary teachers by the State Board of Education in Californfa (California, 1972b) \because This large study matched elementary.teacihers participating in an in-service education program for one, two, and three years with peers who did not. The results show/improvement in the performance of the institute teachers' students in mathematics. In ástudy of in-service programs in. Maine, Greene et al. (1976) report.that sumer in-service had an effect if there was a cárefully designed follow-up in the schools during the academic year, but not if that feature was misising.

Thus, the evidence is supportive of in-servic: education making a difference to teachers and their backgrounds. Hcwever, it is only weakly supportive of changing the performance of the teachers' students and does not reflect change in teachers' instructional practice. In fact, the research to collect evidence of the effect of in-service on student performance or change in classroom practice of teachers simply has not been done.

The pattern for in-service program design in 1965 was that established by the National Science Foundation. During the late sixtiés, the 天riundation and the USOE, on a limited basis, both experimented with involvement of local school people in the planning of in-service programs. For the Foundation, this was the Cooperative College-School Science Program, requiring cooperation and support of local schools with the institutions of higher leducation, These programs were basically" oriented toward the academic advancement of teachers coupled with salary incentives
derived fom improved degree status. 'By 1975, with the. cessation of $f \in u$ eral funding, for in-service in mathematics, schools were becoming involved in designing and conducting in-service on their own. Some interesting and potentially significant precedents and trendstare being established.

Some of, these are:
(1.) Minnesota and Fennsylvania have both passed laws formalizing a mechanism for locally designed and implemented in-service programs providing master's level equivalency credit for teachers toward enhanced salarỳ status wíthout participation in an advanced-dégree program at an institution of higher © : education.
(2) Tith the commitment to metrication, some states participated in a consortium-designed effort for in-service education that utilized a multiplier effect. That is, at the state. level a cadre of professionals was trained to train other. professionals to conduct in-service on teaching the metric system in the rlassroom. The design ultimatély trickled down to representatives of each school building in the state.
(3) S veral states began experimenting with systematic efforts to provide in-service education. The National Sctence Foundation established comprehensive systems utilizing and encouraging cooperation between irstitutions of highér education, the schools, and the state department in Oregon and Delaware \{see Stúfflebeam (1974) for a relatively complet; description ard evaluation of the systems approach\}. A comparable system design with variations is in evidence in Arkansas and West Virginia. U'tiliaing thé services and cooperation of́ many professionals in mathemátics educrion in many institutional and agency roles, the systems afproach appears successful in serving the needs of many teachers.
(4) Several states have úsea ESEA. 1965 funds to establish intermediate school districts that offer services in - In'service education for mathematics teachers across local.school district boundaries. Georgia, Florida, Iowa, and Pennsylvania are among the stat, following this organizational administrative patto:'n in serviag non-city school system teachers. No comprehensive .evaluation of this regional design has been conducted. ∞.
(5) Institutions of higher education are experimenting with 'different registration and course arrangements to attract
teachers--some spread courses out to span the entire school year, others tailior in-service experiences to the needs of a local school system. and others are experimenting with marketing services to schools without the requirement of academic sredit. The latter arrangement is not possible for many institutions because of the fee structure that provides the livelihood for the university.

We opine that the experimentation with different structures and mechanisms for providing in-service education is a healthy state of affairs. Clearly, the traditional academic master's degree route to inservice is not serving the needs of many teachers--particularly those who earn their second professional degree at an early age. The evidence (Osborne, 1977) is that the in-service aspirations and needs perceived by elementary and secondary teachers with significant professional backgrounds is as profound as for the less experienced and less adequately trainëd.

Factors Affecting Lucally Sponsored School In-Service Programs, 1965-1975
Toward the end of the 1965-1975 era, it became apparent that school systems would have to assume increasing responsibility for inservice education. Several factors have been noted that have profound implications for locally designed and implemented in-service programs:
(1) Frye and Dalton.(1977) noted proilems in the leadershid capability of indivicuals in locall school settings. Indeed, for secondary schools they identify the ineffectiveness of mathematics department chairpersons as a major weakness in assuring in-service education for secondary teachers. By reasons of administrators retaining power and not delegating time and responsibility to department chair-
persons, and because of inadequacy of craining for . leadership, department chairpersons are ineffective as in-servicereducators.
(2) The NCTM In-Service Handbook (Osborne, 1977) identified the design and implementation of training in-service program managers as a matter of high national priority. The advisory committee for the NCTM In-Service Project based this conclusion on the thrusting of in-service education into the schools, the evidence that teachers respond better to locally designed programs based on identified programm:tic needs, and the evidence that many supervisors for mathematics education have little training specific $\because 0$ their responsibilities.
(3) There is compelling evidence that many super isors of mathematics, the primary implementors of in-service in the schools, are finding their positions in feopardy. The NCTM In-Service Prcject surveyed superviscrs of mathematics as well as chers (Osborne and Bowling, 1.977b). Thirty-seven percent repor.ted that recently their school system had seriously considered doing away with their position because of budgetary problems. There is also an alarming tendency to replace subject matter specialist's with generalists-a trend encouraged by many state laws concerning the certification of supervisors.
(4) Firally, there is the matter of budget for in-service education. The NCTM In-Service Project survey of 130
supervisors had a 74 percent response rate--the 549 supervisors responding served approximately 150,000 teachers who work with almost 9 million students. Follnwing are the percentages of their responses to the query: "How much money does your school invest in in-service education (exclusive of supervison's salary) per individual teacher?"
$0 ¢$ per teacher $\quad 10.4 \%$
25 ¢ per teacher 14.6%
50c per teacher ${ }^{\prime 2} \quad 10.2 \%$
\$1 to $\$ 5$ per teacher 41.3%
more than $\$ 5$ per teacher 23.6%
One must question both the quantity and quality of in-service education in mathematics that can be provided bv $t^{\prime}=$ supervisors (35.2%) who invest less than a dollar per year per teacher in in-service education. And only 28 percent of the supervisors indicated any control of discretiōnary fuads for in-service education.

The budgetary factors associated with in-service at the loca? school system level is reflected in the data concerned with the time supervisors can devote to in-service education. The percentages of supervisors responding to the questions, "What percent of your time is given to in-service?" and "What percent of your time is given to administrative tasks?" s given below:

Percent Time
of Supervisors
10%
2.0\%

。

Given to
In-Service
53.7\%
26.3\%

Another factor impinging on the capability of the supervisors to provide in-service and the budget for in-service is the increased teacher militancy concerning salary and welfare issues. In-service education, was reported by 35.2 percent of the supervisors as a point of negotiation when teacher groups bargain for new contracts. Sometimes the bargaining concerned the kind of in-service progran and its content; more often the teacher groups (ar: the school's administration) appeared to be willing to trade the money for in-service and supervisors' salaries for salary and henefits.

- In conclusi, the evidence indiçates that the supervisor is a critical factor in providing quality in-service education at the local level. The surveys of teachers indicated that local leadership is a key variable affecting their perception of in-service education. With the decline of federal funding for in-service education, the supervisor becomes a critical factor in providing jn-service for mathematics teachers. The evidence is that few prugrams exist that are devoted to the training and euncation of super, isors or that provide them with significant help in dealing with their admittedly political responsibilities.

Final Reflections or In-Service Education, 1955-1975
In-service education has in some sense served as the impetus fir ; teacher education throughout the 19:5-1975 era. The in-service progiams . of the 1950s and 1960s served to specify the nature of the preservice
program redesign. As teachers became more concerned with the non-coliegebound segments of the school population, and as teachers also acquired better backgrounds in machematics, a disenchantment with the traditions of upgrading and retreading their mathematical training became apparent in the teachers' attitudes and perceptions. Indeed, there is some • evidence that teachers are beginning to distrust in-service through institutions of higher educatjon. Post, Ward, and Willson (1976) found that teachers' (and principals') perceptions of an idealized matheratics seacher sere not congruent with mathematics educators' and mathematicians' perceptions of an idealized mathematics teachers., Teachers have a profound distaste, for the administrative hassles of inservice red tape in institutions of higher education. They want inšervice specific to their, instructional and cur̀ricular needs. A significant majority already have a second professional degree. In-service education in the 1970 s appears to be moré effective if adjusted to accomodate to the iocal school setting and if the participation of higher education is controlled accorduagly..

* We are at variance with the NACOME Report's emphasis on preservice education and somparatively light-weight treatment of the problems. of in-service education. The Evidence suggest's that NACOME reverses the priorities if teachers' performance and attitudes are to be improved. In like manner, we argue that the decisions of the Science Education Advisory Committee for NSF in 1970 ignored the evidence of needs in the schools and the characteristics of the 'teachers doing the majority of teaching of mathematics to school-age children.

Teacher Education: . HIGHLIGHTS

l

- The mathematical background of students completing preservice programs for slementary-and secondary-school teaching has increased significantly during the iwenty-year period, with the character of that mathematical experience reflecting the current curricula in the schools.
- Teachers are acquiring a second professional degree in greater percentages and at an earlier age than ever before.
- Teachers want in-service education and prefer that it be related to s programmatic and instructional needs in their schools.
- Teachers prefer in-service education that is neither purely mathematical . nor purely methodozozi:al.
- The massive sponsorship and support of in-service education provided by the federal government during the 1950s and 1960s has changes the expectations of teachers relative to in-service education. - Leadership for in-servire education at the local school level can appreciably change the character of in-servica education and the teachers' perception of the worth of in-service education.
- Research provides little evidence that participation in fn-service education improves the effectiveness of teachers.
- Competence of teachers, when assessed in terms of promoting mathematical ${ }^{1}$ growth in students, is apparently related to a complex interaction of an assortment of factors rather. than being simply related to a limited number of factors in linear combination. Mathematical background and attitude toward mathematics as characteristics of teachers do not account
for a substantial amounf of the variance, in the performance of the 'teachers' students.
- CBTE does not appear to be a significant facior of sustained impact on teacher education programs, at least for the immediate future.
- Computè litoracy and the background to use the computyer"n the Eieaching or mathematics is nor a component of cerification requirements in most states.or in the institutions that train teachers.
-The most significant trend in ceacher education at the preservice level Is the move tóward incorporating pre-student-teaching field experience in mathematics education as a major modification in program design. This trend is being accomplished because it seems "sensiblei" rather than because its effects on the prospective teacher are known or verified. -There is a significant trend toward including laboratory or activity learning emphases in both the mathematical and the methodological phases of prosfective elementary teachers' academf.c preparation for teaching.
- The teacher shortage characteristic of che 1950 s aid 1960 s has given way to oversupply in the : 970 s ; but the evidence ${ }_{\text {is }}$ suggests that the oversupply of secondar, teachers in particular may rapidly, give way to undersupply in the near future. Significantly fewer freshman-ievel students are indicating teacining as a career choice.

IV. Needs Assessment Efforts

/In 1955, "needs assessment" was nọt a term common. in every educator's vocabulary. That did not mean that needs assessments were not conducted; however, efforts were largely informal and unheralded by the term. Needs"were assessed in terms of a particular purpose, used for that purpdse, and not necessarily preserved once the purpose had been achieved

Reflections of needs are evident in a variety of sources, including journal articles, conference reports, legislation, committee recommenda--tions, guidelines; trend analyses, and achievement test. data. All but the last tend to involve goals, and this is the type of assessment to which the term "needs assessment" will be applied in this section. The term "progress assessment" will be used in referring tn achievement and other status testerdata.

Thus there is correspondence with two definitions of educational need in current use:
(1) What is thougnt should be minus what is. thought to be - - needs assessinènt
(2) Desired learner status minus current learner status . - progress assessment

A. Needs Asse?sments: Naticnal Concerns

Planning documents and other evidence of concerr for needs assessment have been cited throughout this teport. The year 1955 saw the "appointment of the CEEB Commissicn of Mathematics as a response to the needs being expressed by two groups. Jones and Coxford (1974) noted that the public was being told in magazine articles and books that the cuŕriculum
was not sufficiently academic. Mathematicians and mathematics educators were increasingly aware of the need to restructure the curriculum to meet both mathematical and methodological needs.

The Report of the Commission identified specific needs and proposed t
a set of recommendations to upgrade the secondary-school curriculum, emphasizing

> a balanced preparation in concepts and skilils, deductive reasoning throughout the high school, thè display and use of mathematical structure, correlation of equalities and inequalities, stressing of unifying ideas in mathematics such as set and fuction, and special suggestions for reorganizing ceometry, trigonometry, and twelfth-year mathematics. (Jones and Coxford, 1970, p. 73).

Evisience (e.g., Williams, 1970; NACOME, 1975) has been presented that the recomendations were largely implemented.

- 'Action on the recommendations, and analysis of other needs at . ic ch the secondary-school level and the elementary-school level... was pursued in great part through conferences and committees, backing• curriculum develonirent efforts. Table 2 presented a list of some of the major conferences, most of which identified specific needs relevant to a particular focus. Thus the Snowmass Conference on the K-12 Mathematics Curriculum (Springer, 1773) identified the need to:
- improve cooperation between the matnematics education cummunity in the university and that in the sahools
- examine societal needs and delineate the goals of nathemafics education to provide a basis for curricuium develophent
\&
- support promising innovative preservice and in-servive teacher training
- improve implementation of basic research findings into the curricula for teacher education and for school students
- prepare topics with significant applications of mathematics suitable for $\mathrm{K}-12$
- provide instruction in statistics at: all levels
- establish computer literacy as one of the objectives of mathematics education
- develop new techniques for assessing programs and student performance

The Tallahassee Conferencer(1973) cited the need to strengthen problem-solving abilities, meaningful applications, interdisciplinary or integrated curricula, probability and statistics, the place and role of computers and calculators, research on cognitive development and learning processes, linuage of research and curriculum development, identification of goals and objectives of mathematics instruction for general education, evaluation, and teachers' professional competency.

Each conference could be considered in turn, and the neef́s identified by each listed. But it became apparent that each has delineated needs pertaining to one or more components of a básic model: \&

$$
\text { needs of society } \quad \rightarrow \quad \begin{aligned}
& \text { real-ife applications } \\
& \text { impact of technology }
\end{aligned}
$$

needs of the subject \rightarrow content methods
needs of the child $\quad \rightarrow$ psychological environmental

Many of the points which were cited by the Snownass and Tallahassee
 judgment of the relative importance of the needs and how to cope with . the needs were the real issues.

Conferences sponsored by māthematics organizations and by federal agencies have had varying impact. The Georgia Conference on Needed

Research (Hooten, 1967), for instance, gave an impetus to machematics eascation research which, it is widely felt, has been felt continuously since then. Many of the conferences led directiy'to curriculum development programs. The report on the Cambridge Conference on School Mathematics (1963) shocked many into discussion -- yet appears to have had little direct impact on ary but a few experimental projects. The Euclid Conference on Basic Skills (NIE, 1975) attempted to explore Ehe wide variability in defining such skills -- but what type of tripact the conference report might have is as yet unclear.

Various surveys have also provided an assessment of needs. Not the least of these is the Gallup Poll. Those interested in mathematics education are prone to believe that the public is highly concerned about the teaching of mathematics. They are concerned -- but, comparatively, matiematics and ather academic subject concerns rank below many other factors. As was noted in the 1975 NCER Eeport, ${ }^{\prime}$

Educators, the Congress, and the American public voice many concerns from different perspectives. One listing of problems is provided by the annual Gallup poll of public views on education. The 1975 poll lists the fullowing_in the order reported: lack of discipline; integration/segregation/busing; lack of proper financial support; difficulty of getting good teachers; size of school clisssrooms; use of drugs; poor curriculum; crime/vandalism/ stealing; lack of proper facilities; and pupils' lack of interest. Another list might inclyde such problems as the fsilure of education to relate to , employment needs. (NCER' 1976, p: II)

Curricular concerns are noted in general; instructional concerns are far lower on the list. Mathematics per se is not"cited: The same pattern prevailed acros the years in "such polls, which, admittedly, are not intended to assess concerns about any specific curricular-
matters. Similar concerins about federal control have also typically been "noted through the years. (For an analysis of eight years of cumulative results from the polls, see Smith and Gallup, 1977.),

Recommendations about mathematics have frequently come from mathematics educators. Thus Mayor (1966) solicited recommendations from 22 mathematics education leaders in all parts of the country. The needs mentioned most frequently were:
(1) Improved prögrams of pre- and in-service education in mathematics. for elementary teachers.
(2) Increased use of teachers with some specialization in mathematics
(3) Research in the learning of mathematics

Among needs cited by fewer respondees were:
(4) Articulation of mathematics with othes subjects, and across grades
(5) Goals sțated in behavióral terms
(6) Supervision of mathematics programs in all grades
(7) Grade placement of topics
(8) Assistance with methods of teaching
(9) Special curricula for slower pupils
(10̣) Evaluation
(11) Use of new technology

It is inzeresting to note that almost all of these items have had some atte tion directed toward their resolution.-- yet most would probably turn up in a similar polling in 1977.

Yarding (1969) identified groups of mathematics educators; secondaryschool mathematics teachers; school administrators; scientists, engineers,
and mathematicians; professors of education; students; and parents (for. a total of 625 persons): Seventy -six objectives were identified, and each person rated the importance of each objective ${ }^{\text {. }}$. The upper third of the objectives as perceived by mathematics educators included 5 objectives -winch dent fl: tic lower half as perceived by one or more other groups; - Eobjecives ranker in the upper quarter by two or more groups not in the upper third for mathematics educators. Objectives thus identified involved:

". basic structure and principles of real numbers mathematics applying arithmetic to business and personal educators finance problems "
Such discrepancy in the selection or tanking, of goals is not uncommon. It can te particular concern when théxankings of educators and taxpayers are, widely divergent. Thus tn the $197,0 \mathrm{~s}$ there is a discrepancy between rablic concern for "the basics" and equators' ancern for "mathmetical understanding". Position statements'are one way in -which ${ }^{\text {ban }}$ attempt is made to bring two positions, closer by influence ing the thinking of the "opposing" group.

Recently, the National Council of Supervisors of Mathematics issued such a Position Paper on Basic Mathematical Skills (NCSM, 1977). They - noted that.

Mathęmatic's educators find themselves, under considerable pressure from boards of education, legislatures, and citizens \bar{s}^{\dagger} groups who are demanding instructional programs which will guarantee acquisition of computational skills. Leaders. in mathematics education have expressed a need for clarifying that are the basic skills nended by students who hope to participate-successfuly in-adult society. (p. 1)

As a rationale for their expanded definition, they state:
There are many reasons why basic skills must inciude more than computation. The present technological society requiresdaily use of sưch skills as estimating, problem solving, interpreting data, organizing data, measuring, predicting and applying mathematics to everyday situations. The changing needs of society, the explosion of the amount of quantitative data, and the availability of compu:ers. and calculators demand a redefining of the/ priorities for basic marhematics ikills. In recognition of the inadequacy of computation alone, ${ }^{\text {NGSM }}$ is going on record as providing both a general list of basic mathematical skills and a clarification of the need for such/an expanded definition of basic skills. (p. 1)
Comments on minimal essentials, methods for developing skills, and evaluating student progress, are also included.

Many position statements were prepared for a conference; or issued by a mathematics oranization.". Most arefeactions to identified needs, rather than statements of need. For instance, the IICTM has adopted pusition stateronts on a broad spectrum of topics, ranging from the nature of basic skills to the role of computers and calculat.ors. There are few chtroversial recommendations in these statements; they focus on' what might be done rather than what should or should not be done; ${ }^{*}$ presumably identifying as offieial dolicy that which a majority of the
membership in the Council already believed. They take the form of reasoned arguments, stressing the need for thoughtful appraisal and study. It is perhaps a wäy of refiecting a collective opinion and therefore of influencing non-members which is the highest expectation of such guidelines: the identified need is that of the non-member.

Several organizations have been particularly active in the development of guidelines for mathematics education. In 1947, the NCTM appointed a Commission on Post-War Plans which published a checklist for assessing basic competence in mathematics. In the 1970 s, to meet the need for increased competency demanded by present-day society, an ad hoc committee developed a list of "basic mathematical competencies and skills" (Edwards et al., 1972). They included points related to content, the nature of mathematics, and the role of mathematics in society.

Other guidelines have been issued for metric education and on the use of calculators; of particular impact, however, were guidelines for teacher education which have been cited in another section of this report. One set of guidelines on the use of computers, issued in 1972 by the Conference Board of the Mathematical Sciences (CBMS, 1972) has rece ed much attention (e.g., NACOML, 1975). Recommendations have come ifrom a variety of other sources, including state education associations and state mathematics councils. Their concerns are reflected in the national statements, although the ranking of priorities may.differ at times. Thus the Ohio Education Association recently called for more -planning time for mathematics teachers and placed the use of applications, activity-oriented motles, computers, calculators, and metric system lower of their list. The Montana Council. of Teachers of Mathematics

193
(Montana, "1972) listed 50 recommendations, covering the range from condi-: tions of instruction, curriculum construction; teacher training, research, and rights and responsibilities of teàchers and students.

To mention the Report of the National Advisor Committee: on Mathematical Education (NACOME, 1975) is redundant: it is evident that it assessed needs and provided documentation on a range of problems facing mathematics educations. It is both a response to a need (for evaluation and a status report) and a delineator of needs (reflected in the recommendations).

Throughout the years, general statements on educational' policy have had a "windfall effect" on mathematics education. One such report on educational policy in the next decade, now being prepared by Keppel and others, Is to be published shortly (Warren, 1977). One conclusion it reaches is that the responsibility for education should continue to rest with the schools themselves, with the federal goover ment content to identify needs ạnd stimuläte action. Promoting equity through compen:satory aid should continue, as well as specific programs for including continued research and development designed to Improve the educational process and to provide a steady flow of capability in, for'instance, the scifences. The states should set policy and oversee programs, including consumer education, accountability, and basic level of education for all adults. In addition, the report calls for the establishment of minimum performance standards in "the basic subjects", especially at the junior and senior high school Pevels. There is little that is radical; rather, there is support for continuing in directions over which some questions. have been.raised. Thus, it may be concluded that needs assessments most ${ }^{\text {c }}$
typically are reporting symptoms of what, has already transpired.
Trends in mathematics education have been analyzed from many perspectives. The Thirty-second NCTM Yearbook (Jones, 1970) and the NACOME Report (1975) provide two excellent recent analyses; reports prepared for int̂ernational congresses provide others (e.g., see UNESCO, 1972). Overviews in the Encyclopedia of Educational Research (e.g., Willoughby, 1969) or the Handbook of Research on Teaching (e.g., Dessart and Frandsen, 1973) are noteworthy. The October 1969 issue of the Review of Educational Research contained summaries by Romberg, Kilpatrick, Fey, Kieren, and Heimer. Many dissertations which trace the changes in the mathernatics curriculum should also be noted (see Table 11).

Rather than assess the trends prophesized in the past, however, we. choose to cite evidence frum a recent survey (Fairbairn, 1976). Mathematics educators, department heads, ând supervisors were asked is comment on future events that could have implications for, mathematics education, and to generate consensus on what should receive priority, in light of this envisionedifuture. The event areas considered to be most important were:
(1) Back-to-the basics movement
(2) Continued acceleration in computer technology
(3) Increasing complexity of our society
(4) Continued demand for relevancy in mathematics
(5.) An increase in community involvement in schools
(6) Increasing demand for school accountability, both in programs and expenditures.
Author.
Beil; 1971.

Byham, 1970
$\xrightarrow{\text { Focius }}$

Traced influence of psychology 1893-1970 on secondary school mathematics curriculum, noting impact on SMSG and SSMCIS
surveyed secondaxy school geometry texts
*Noted more indirect proof used, less dírect proof

Traced secondary school mathematics
curriculum in relation to
educational theories and
social changes
*Since 1950 s noted: subject matter reorǵanized instruction accelerated, academically talented emphasized

Hançock, 1961

Hoffman, 1973

5
Huber, 1963

Traced recomendations for second
school mathematics, analyzed
current projects
*Methods received little attention
\cdots from either national. committee
current, projécts
*Elementary algebra for grade 9
\cdots recommended for 70 years,
demonstrative plane geometry
for grade 10, greater variety
for grades 11,12
Surveyed recommendations for content 1969-1972
of. secondary school geometry
*Geometry should be developed as part of an integrated mathematics course

Tracêd proposals for mathe-
$1893-1960^{\circ}$
or
matics at junior high school level
*Extending algebra and geometry to grades 7 and 8 repeatedly recommended

$$
196
$$

1893-1964
Period
Studied

1955-1969

TABLE 11 (Continued)

Kelley, 1960 ${ }^{\text {. }}$ Summarized addresses, recoim- 1955-1960 mendations're secondary school mathematics
Prepared tables showing relative emphasis on given topics. (e.g., sets, ordered pairs, geometry,

- trigonometry) by grades
*Noted stress on mathematics, for mathematicians rather than consumer mathematics for laymen

Krause, 1969
Surveyed ilterature to trace reform woyement
Compared implications with 23 states guides $\quad 0$
*Guides evidenced effects of reform movement

Quast, 1968
Traced recommendations of committees s. 1890-1966 leaders
*Noted need to change teaching of geometry

Stubblefield, 1964 Traced development of secondary .

- school mathematics curriculum in Chicago
*From 1938-1961 courses in essential mathematics appeared
*Since 1958 courses for gifted appeared
Yasin, 1962
Traced sècondary school reform movements, defined stages
*Geometry must be changed, scientifically relevant mathematics needed

Period Studied 1900-1965

1936-1968

1856-1962

1900-1960
were: .
(1) Mathematics should involve more activity learning.
(2) Mathematics should involve more use of computers and calculators.
(3) Real applications (some involving metric dimensions) should illustrate the utility of mathematics.
(4) More emphasis should be placed on developing creative thinking in and via mathematics.
(5) Probability and statistics should receive móre emphasis in s'chool mathematics programs.
(6) The mathematics curricuium should be continually revised and updated to conforms with the present, and future need of the students. (Fairbairn, 1976, ?. 5111)

It should also be noted that local. control of schools was closer to beling a reality in 1955 than it is in 1977." Increasingly, legislation by states and funding policies by the federal government have been deter-今. mining what the schools may do and onuuld do. Schools are being used to achfeve national social goals (e.g., desegregation and equal opportunity). Schools are focusing attention on nationally determined needs and goals; perbaps, having "tasted" federal funds, they are loathe to turn away. A serious attempt needs to be made to look at the possible negative aspects of various policies and trends: 'perhaps future analyses that say, "That was a mistake," can be avoided.
\qquad
\qquad

National Concerns: HIGHLIGHTS

-Needs which have been repeatedly discussed and cited include the need to:

- examine mathematical goals in relation tọ societal needs ${ }^{\circ}$
- examine implications of technology, including computers and calculators
- establish minimal competencies (as a basis for accountability)

A - restructure-the curriculum (to resequence, ex̂tend, enrifh, or one or another specific purpose)

- increase attention to applications, statlistics and probability; problem solying, the metric system, and basic mathematical skills.
- provide for individual needs, particularly of less-able pupils sand the talented ج
- improve articulation of mathematics with other subjects and acrose grades.
- conduct research on the learning of mathematics, link research and curriculum development, and improve the implimentation of research
- improve pre- and in-service teacher education, to strengthen teacher competency, both in knowledge pf contènt and methods of teaching
- develop better evaluatín techniques
$\therefore \quad$ - improve cooperation between mathematics educators in universities and schools
-Discrepancy in the selection or raniking of gcahs -- between educators and public, college personnel and classroom teachers, students and teachers -- is common. -Increasingly, federal and state legislation has been encroaching on local control of schools.

B. Needs Assessments in the States

. The ayailability of planning documents and statements across the states" is by no means complete, especially.for the earlier part of the 20-year period. Rarely do the various state agencies have these available except in a state 1 ibrary or archive, and in most cases it was not possi-• ble to trace the patteris. Information on legisiation, even for recent years, must be culled from various, documents. Few summaries exist especialily summaries related to mathematics education. (This probably reflects the scarcity of mathematics specialists in state agencies, and : B the extent of the tasks assigned to those who do exist.).

In most of the documents perused from the individual states, mathematics concerns were either not cited, or were only one of several or scores of concerns cited. In relativel.y few states were specific.document:s available on planning for mathematics education. As far as can be determined from the documents surveyed, the main identified concerns did: - not differ from those at the national level. Silight differences iń priorities were found, as was noted previously.

Many have assumed that recent needs assessments in the various states came about"solely because of pressure from parents and the public (i.e., taxpayers) to make schools accountable for meeting desired goals." Assessments are seen as groundswells. But a recurrent response to a stimulus. may involve more than a "bandwagon" effect. Assessments were a logical. step in the progression from behavioral objectíves to performance contracting; they were logical responses to concerns over the degree to which basic skills were being learned -- or not learned.- But they are also a required response to a charge from the USOE made to the 50 state education

- The state plan shall identify the critical educational needs of the state as a whole and the critical educational needs of the various geographic areas and population, groups within the state, and shall describe• the process by which such needs were identified. The process shall be based upon the use of objective criteria and measurement's and shall include procedures forr collecting, analyzing and validating relevant data.and translating such data into determinations of critical educational needs.

Section 118.8 , U. S: Office of Education regulations for administering ESEA Title III programs.
The state ag'encies approached the task in various ways. Some created commissions to conduct a goals assessment; some created commit--$-{ }^{\prime}$ tees to respond; some collated thê results of \circ previous surveys. In many states legislative action was spurred, although this was more frequent with regard top progress assessmemt than to needs assessments.

In most states, the, needs ässessment was not specific to mathematics. Thus "the ten most critical needs of education"'were identified by surveys in Kansas (1970) as:
(1) $\dot{\circ}$ Development of positive student self-image
(2). A renewed effort tò develop learning patterns based upoń student needs
(3) Place new and increased emphasis on the importance of the elementary school
(4) Strengtheh programs for nonccillege-bound students :.
(5) Teacher-training in student motivation
(6) Programs for the potentiai dropout, unmotivated students, or the school-alienated student
(7) Analyze total reading program and success of students in reading
(8) Provide a more positive, wholesome attitude toward quality education
(9) More effective student" evaluaṭion and assesstant of. achievement
(10) More meaningful student invodivement in learning situations (pp. 4-6).

In such surveys, mathematics is merely a component of one or more goals.

- In other seates, mathematics was specifically cited in a goal, as in Oregon: students need to acquire early mastery of the fundamental skills such as. reading and mathematics. The public ranked it 6 th; educators, 18th;. students, 14 th; dropouts, 12th' (C.lemmer, 1970).

In relátively few instances, statewide needs assessments specific to mathematics eduçation were conducted. In at Jeast one instance, what appeared from a state report (Maryland, 1975b) to be a statewide survey "instead involved a small group of mathematics eduçators who confirmed NAEP-related goals:
(1.) Kecall and/or recognize mathematical definitions, facts, and symbols
(2) Perform mathematical manipulations
(3). Understand mathematical concepts and processes
(4) Solve specific mathematical problems
(5). Use mathematical reasoning and processes to meet personal and societal needs
(6) Appreciate and use mathematics

An actual statewide needs assessment was conducted in Maryland, however. Hershkowitz, Shami, and Rowan (19.75) reported that two goals ("knowledge of concepts" and "mastery of computational skills") were ranked low in a needs asséssment of 23,990 persons. "Ability to apply knowledge and skills to real-life problems" was, however, ranked very high.

$$
202
$$

-In another mathematics-specific, assessment, this one conducted by the Oregon System of Mathematics Education (Thomas, 197"̈a), discrepancies across samples were noted:
(1) There is some difference of opinion between resporident, groups in what is consldered to be important.
(2) Items which are agreed upon as important reflect what is "typicalily" thought of as a mathematics',curriculium ($+,-, 2 x, \div, x$, and fractions).
(3). If a curricùlum modification has been made in public education the response would tend to indicate, that

* the respondent'groaps haven't adopted the same things as important.
(4) While many educators in the state seem. to feel that hand calculators will substantially change mathematice, the respondents didn't find these innovattions to bee especially imporiant.
(5) The general p ’iblic doesn't appear to have sufficient $: \because$ information to make other than neutral, response posìiblè.
(6) The extremely low responses provided by university professors àlso, suggests some questions as to the basis for their response: ' (p. 7)

Data in many other research studies support the findings of Smith (1972), who found that the four primaxy needs of students"invoived: basic operations, topics for individual needs, consumer mathematics, and .applications to the real world. ${ }_{\circ}^{\circ}$

- Many other states as well as local communitices háve cóndučted neëds assessments, although these have, not -always been documented. 'Frequently they involve the informal collecting of opinion rather than a systematic .procedure, Schools cannot be operated in a vacưum: needs assessments provide a means of ascertaining what is perceived to be desirable. in designing instructional programs.

Needs Assessments in the States: HICaLIGHTS

- Relatively little attention has. been given in most states to documenting the history, status, or needs of mathematics education.

Mathematics education per se is seldom cited in state goals; it is most frequently, one aspect. of a "competency in basic skills" goal."
-Where needs assessments specific. to mathematics have'been conducted, both "knowledge of basic skills" and "applications of skills tö" reallife problems" have been high" on the list of needs.
-Discrepancy among concerned groups was ápparent in the priority assigned. to mathematical. goáls.

C. Progress Assessments at the National Level

\because Within the 20 -year period, comparisons of "new" and "traditional" mathematics programs focused attention on the need to develop more appropriate aeans of assessment. In these studies, students using traditional programs tended to score slightly better on traditional tests, while students using new programs scored thigher on tests of the newer content. As a direct result of such findings with SMSG materials, SMSG planned and conducted the National Longitudinal Study of Mathematical Abilities (Wilson et al., 1968-72). It wâs the first large-scale testing program in mathematics; although not primarily concerned with assessment, many of the procedures parallel those used in later assessments.
"NLSMA was conceived as a study of the effects of various kinds of mathematics textbooken the learning of mathematics. Schools were reSruited to participate at the $4 \mathrm{th}, 7 \mathrm{th}$, and 10 th grade levelis, and students in these initial samples were followed for five years; in order to detect long-term as ẁell as short-term effects of curricula (Begle, 1975). . SMSG exerted no influence on the choice of textbooks, nor were any consultant services or materials.provided. Data on various characteristics of students and teachers were gathered; in addition to cognitive and affective scores. The mathematics tests were constructed in terms of computation, comprehension, application, and analysis objectives: an item. bank was developè which has been used, in actuality or as a model, for myriad other studies.

The major, findings of NLSMA can be summarized briefly:
(1) Different patterns of màthematical achievement were associated with the use of different textbooks.
(2) Mathematics achievement is a multivariate phenomenon.
(3) "Students are more likely to learn what they have been taught than something else." Each group performed best in those areas stressed in their particular textbooks.
(4) Great variability in pupil achievement was found when teacher 'effectiveness' was considered.
(5). The attitudes of both sexes deteriorated during the secondary-school grades, but the decline was greater for girls.
(6) Teacher characteristics did not account for a significant percentage of the variance; it was too low to be of value in practical school decisions.
(The Summer 1975 issue of Investigations in Mathematics Education (IME) contained abstracts and critques of the NLSMA reports.)

- At the time NLSMA was being planned, the góal of a national assess--ment across educational levels and subjects. was coming to reality. The National Assessment of Educational Progress, conducted by the Education Commission of the States, began assessment of various subject areas in the late 1960s. The first mathematics assëssment by̆ NAEP was conducted during 1972-73; the second is scheduled for 1977-78. The assessment included. six major content areas: numbers and numeration, measurement ${ }_{c}$, geometry', variables and" relationships, probability and statistics, and consumer mathematics. About half the exercises will be repeated from,one assessment to the next, so that the first assessment ${ }^{\perp}$ provided baseline data for later comparisons.

Four reports on the first testing have been published (NAEP, 1975a, $b, c, 1976$), in addition to a serifes of interpretive articles (Carpenter et al., 1975-76), a general statement of objectives (Norrls and Bowes, 1970), yearbooks, and newsletters. About 90,000 students at ages 9, 13,
and 17 , plus 4000 young adults aged 26-35, were tested. In addition to age levels, data were also analyzed in terms of sex, race, region, level of parental education, and community size and type.

Carpenter et al. (1975-76), writing for the NCTM Project for Interpretive Reports on National Assessment, indicated that the data showed "a mixed picture of strengths and weaknesses": Students' performance was "strong or at the level of reasonable expectation in terms of the mathematics'curriculum" for:

Q . whole-number.computation
knowledge of numeration concepts
analysis of simple (one-step ${ }^{\text {¹ }}$ word problems)
intuitive or practical measurement concepts
recognition of basic geometric figures and relationships
-Weaknesses were indicated in the areas of:
percent
development of fraction'concepts
complex word problems
measurement tasks
understanding of geometry topics
Reacting to current concerns, they noted:
The modern mathematics movement of the 1960 s has been accused by its critics of destroying pupils' computational skills. These NAEP mathematics data argue that wholenumber computation is not a lost art and, in fact, 13-: year-olds perform at about the same level as adults \{and 17-year-olds perform better\}. The current retrenchment of tathematics programs into emphasis on arithmetic skills should be examined for finding a proper balance between skilll and understanding, or between arithmetic skills and skt11s in measurement and geometry. (1975a, p. 449-450)

In another summary, they indicated that 13- and 17-year-olds need to develop more problem-solving skills, estimation skills, understanding of percents, and skills with fractions. In regard to consumer mathematics, they noted:

Although performance varied among the consumer exercises, it seemed generally low. One can take little satisfaction from findings that suggest only about one half of the 17-year-olds and young adults can usually solve typical consumer problems. Continuous gains in performance were made from the, 13 -year-olds to the young adults. The most -dramatic gain's were made from the 13- to the, 17-year-old groups; this was expected because of the direct influence of the mathematics curriculum. Young adults performed consistently higher than 17-year-olds on all types of consumer exercise's ... These gains may simply be the result of maturation and experience in, solving consumerrelated problems. On the other hand, these consistent differences cannot help but raise questions regarding current mathematics programs.-(1975b, p. 469)
Bright (1978, in press) has compared data from a number of assessments for which computational examples have been published, including NLSMA, NAEP, and several state assessments., He reported the level at which stabilization is reached -- that is, where 80 percent to, 90 percent of the students have reached mastery. He concluded:

Overall, several patterns in the data seem to support clear conclusions. First, there is general improvement in performance across's grades. This result is not unexpected, and it is consistent with the results of the grade-equivalent studies discussed earlier. Second, the levels of performance decrease as the items become more complex. Third, performance tends to stabilize. For the areas discussed in this article, stabilization seems to occur during the junior high school years . . . Fourth, stabilization of performance for whole number computations occurs earlier and at a hiĝ́her level than for fractional number computation. Fifth, for all computation skills considered, there is no decline -or at least no important decline -- in the performance of adults in comparison to that of high school students. In the context of improvement of skill per ormance across grades, this suggests that once skills are mastered, they are not forgotten.
... (it is observed) that computation skills are not acquired on the basis of initial instruction. Instruction over several years is needed to reach stability,? and in every area examined there is still room for improvement...
It is limportant to note that the data presented refute the notion that students generally do not acquire basic computation skills. In fact, some skills (e.g., addition and subtraction without regrouping) are almost universally acquired, whereas others' (e.g., division of decimal fractions) are not. Any-meaningful discussion of the performance of students in basic computational skills must be a discussion of specific skills rather than skills in general. (p. 163)

Results from national assessments of achievement seem to reach the headines (especially) if they are low or declining: similarly do the resuits of international studies. The International Study of Acheivement in Mathematics. (Husén et al., 1967), conducted in the early 1960s; is the prime example. The IEA mathematics survey involved 133,000 students in \bigcirc. 5450 schools in 12 countries; 13-year-olds and pre-university students. (grade" 12) were sampled. The New York Times headlined "United States Gets Low Marks in Math". The most-quoted findings in the news media were: the U.S. 13 -year-olds ranked 11 th in mathematics achievement among students from the 12 countries, while high school seniors ranked last. Both liked school and school learning less than students in other countries. Little attention from the media; but much on the part of mathematics educators, was paid to further considerations of the data fe.g., the

- Journal for Research in Mathematics. Education focused an issue on IEA (JRME, 1971) \}. Husén (1973) indicated that the arithmetic means had to be considered in terms of the "recruitment, bases" or "retentivity" of schools in the various countries; wher that was done and equal proportions of students considered, the variations turned out to be considerably less.

In the special issue of JRME, Postlethwaite (1971) reported on procedures used in the IEA and cited data on tests and scales. Among the many findings he stressed were: (1) age of entry into school wäs not an important variable in mathematics achievement, (2) reducing class size was not likely to increase mathematical attainment significantly, (3) type of school.affected the achievement of 13-year-olds, and (4) correlations between achievement and attitude were'small but positive. Other articles in the issue provided a critique of the study and the presentation of many specific interpretafions related to the data. (A second international survey is being planned.)

In another type of national survey; Okada et ail. (1969) reported on the-Educational Opportunity Survey, citing data on the achievement of black and of white students. Black studentis did not attain the sixthgrade achievement level for mathematics until grade 8. From grades $\mathbf{6}^{\circ}$ through 12, there is a gradually increasing gap between black and white students, with similar lags in achievement observed for other disadvantaged groups. Evidence from NAEF (Carson, no date) also showed that Blacks performed 14 to 21 percentage points below the national average :. . Whites performed from 3-4 points above the national average. . . The difference in performance between Blacks and Whites was smállest at age 9 and increased for 13- and 17-year-olds with no appreciable change in relative performance between ages 13 and 17. (p. 39) \{On consumer-math problems Blacks were 20 percentage points, below at age 13,24 points below at age 17, and 29 points below as adults; Whites were 4-5 points above the national level.\}
$\%$
Standardized achievement tests have been given for years, but only occasionally were data compared across time. (Table 12, includes some of the little-published evidence of such studies for certain states.) One highly publicized instance at the national level is that of -the Scholastic

Aptitude Test scores. Decreases in scores were observed; the average score of mathematical ability was 502 in 1963 and only 472 in 1975, While the test scores were for college-aspiring students, much of the mathematics tested was of a basic nature. Therefore declines in scores are presumed to be symptomatic of a failure to establish competency in mathematics," though it was pointed out that

The iltimate blame may rest with the influence of television, permissive parents' or dozens of factors beyond the control of schools. (U.S.
द. News and World Report, Nov: 24, 1975, p. 34)
It should be noted that. scores on the language (verbal ability) portion of the SAT were even more depressed.
\because Harnischfeger and Wiley (1975) analyzed scorès from nine widely-used testing programs, including both elementary-schocl and secondary-šchool tests: the SAT, the American College Testing Program, the Iowa Tests of Basic Skills, and the Comprehensive $\mathrm{T}_{\mathrm{c}} \mathrm{i}^{\circ} \mathrm{S}$ of Basic Skills, plus five others. Nearly all reported data showed declines for grades 5-12 over the past decade. Both the verbal and mathematics scores on the SAT peaked in 1963 and then declined steadily. On the ACT a similar pattern was
 to 2963 , then consistent decline to 1970.

They hypothesized likely causes for the drop in achievement levels - σ to be both the school and the home, but they belleve the school-related causes can be more closely studied and more easily influenced: • Schoolrelated fartors whose developments closely parallel the decline in the achievement scỡes seemed to be:

- high achool students are taking fewer "basic" courses like English and mathematic̣s, and fewer college
preparatory courses l.ikẻ algebra, first-year foreign languages, chemistry and physics \{note that this conflicts with data citec in this report\}
- increasing numbers of students are absent from school, and
- fewer students are dropping out, resulting in a larger percent of drop-out-prone students taking the tests.

The correlation between changes in performance and increased federal spending raises some questions. As häs been noted, federal funding has had an impact on mathematics education throughout the past 20, years. Much of that impact has been positive: the effect of curriculum development and teacher training, with the involvement of the National:Scifence Foundation in particular, has been documented. The establishment of priorities across agencies; however, has not consistently resulted in mathepatics education being given due attention. For instance, immediateiy following the publication of the IEA results, in which the performance of the American students was poor, the USOE began decreasing-the number of mathematics education specialists who could provide services to schools and who could monitor government-sponsored projects concerned with mathematics. Given the large amounts of money which might have been expended on mathematics education through such programs as ESEA Titles I and III, it is unfortunate that the investment was not guarded and maintained.

For several years, NIE had also elected to give little attention to mathematics education, assigniné oreater priority to other segments of the curriculum and in parificular to reading. Although one cannot quarrel with the identification of reading as a matter of very high príority, it seems appropriate to attend to other areas of the critical basic, skills needed for the well-being of the country. The Euclid Conference on

Basic Skills (NIE, 1975) indicated changing awareness within NIP and of attention to mathematics, as did the conferenc. on needed research and development with calculators (NIE/NSF, 1977).

Progress Assessment at the Nationai Level: HIGHLIGHTS

ONLSMA was not a progress assessment, but it focused attention on the
need for longitudinal assessment and improved evaluation techniques. -NAEP data have indicated specific strengths and weaknesses, although the real function of NAEP is to provide longitudinal information on the status of mathematical achievement.
-IEA provided data on the achievement of American students compared with sistudents in 12 other countries, but results are difficult to interpret in view of the many "varied cultural and school factors involved. -A comparison of, computational skills data from NAEP, NLSMA, and severa other assessments indicated that these skills are not acquired on the basis of initial inistruction, but performance tends to stabilize during the junior high school yeans. Stabilization occurred earlier•for wholenumber examples than those with fractions; level of performance decreased as items became more complex.
-College-entrance and some other "standardized tests scores have indicateá declines in achievement across the years; with more extensive decreases for verbal"portions than for mathematical portions of the tests.

D. Progress Assessments in the States

Keeping track of what is going on in the states is not an easy task. Numbers vary and documents are difficult to secure: Ghis section is more a picture of "what could be tràcked down" than a complete overview.

The movement toward accountability has resulted in both minimal
competency requirements and assessmentis of achievement in many states.
Clark and Thomson (1976) provided an overview on minimal competencies which cited the following reasons (drawn from other sources), for "the public's determination to define the high school diploma":
"r "- Scores on the Scholastic Aptitude Test have fallen.

- The National Assessment of Education Progress in 1975 reported a decline . . . \{in some subjects\}
- NAEP al'so has reported in a nationwide survey of 17-year-old students and young adults that "many consumers are not prepared to shop wisely because of their in-
\qquad ability to use fundamental mathematical, principles such as figuring with fractions or iworking with percents."
$f^{\frac{1}{2}}$ - The American College Testing (ACT) program also has reported a decline in the average scores of students applying for college admission.

They also noted :
'Secondary education has, of course', been moving toward compe-tency-based, criterion-referenced education for a decade. Beginning with programmed instruction in the early 1960s, then moving to a focus on behavioral objectives, and followed by the current interest in "outcomes" . . : (p. 5)

Pipho (1977), maintaining the Education Commission of the States' talîy' of the states which have minimal competency tysting for high-school promotion or grade-to-grade promotion, reported that by mid-April 1977. the status was:

Legislation Enacted-(1975-75): 8 states

Cālifornza, Colorado, Florida, Louisiana, Maryland, New Jersey, Virginia, and Was̈hington)

State Board of Education Rulings (1975-77): 10 states
(Arizona; Gè rigia, Delaware, Idaho, Michigan, Missouri, Nebrastka, New York, Oregon (1972), and-Vermont)

Legislation Pending (1977): 15 states
(Alabama, Ariziona, Arkansas, California, Florida, Iowa, Illinois, Kansas, Maine, Maryland, Massachusetts, Minnesplta, Nevada, North Caroliná, and South Carolina)

In some instances, only readyng is considered; in most, mathematics and reading are both included; in a few cases, other goals are also considered.

In ${ }_{\text {o }}$ Virginia, for instance, the General Assembly listed basic skills in reading, communications, and mathematics first in a set of ten "standards of quality" (Virginia, 1976). The pattern in Virginia is one report-. edly occurring in other Instances: the legislature enacted legislation - mandating the development of minimum competency objectives and tests with. which, to assess them with little interaction with educational agencies in the state. State departments of education "and local school districts were given a relatively short period of time to implement the legislative mandate. Educators had no direct' role in'the decision-making process, nor was the rationale for the decision-making process cllear.
\therefore Some local school districts across the country are alsóo adopting minimal competency standards; the total is difficult to determine, but known instances total less than 50 . Denver led the way, with competency tests administered there since 1962. No reports on the decision-making process associated with these adoptions were located, so the pattern cannot be determined.

The changing status of accountability legislation is also being monitored. As of Fall 1972; 23 states had accountability legislation (Hawthorne, 1973); as of. June 1974, this number had risen to 30 (Hawthorne, 1974). She reported that these took the following form:

$$
\begin{array}{lll}
\text { state assessment/evaluation: } & \text { stăte testing programs } & 18 \\
\text { modern management techniques } & . & 16 \\
\text { professional pèrsonnel evaluation } & 13 \\
\text { performance-based school accseditation } & & 3 \\
\text { performance concracting }
\end{array}
$$

The 30 states cited by Hawthorne are indicated in Appendix B, which also cońtains a synthesis of available information on needs apd progress assessments. Unfortunately, information and documents were net obtained frop all-states, nor were materials available in the ERIC system. \{The NACOME Repoct (1975) also provided information related to assessments. ${ }^{\prime}$) - In regard to the assessments, it should be tioted that: "
(1) There is great variability in the objectives being assessed. - For instance, one state included these two objectives for grade 2:

- Pupils will indicate abilit́y to analyze by constructing a market value continuum on a given_set of objects or pictures of. objects.
- Pupils will indicate application in using the. addition and multiplication algorithms by applying those rules to solve additior problems through two 7-digit numbers and multiplication problems, of 2digit numbers.

Other states have restricted the objectives to minimal competencies.
(2) Both standardized and non-standardized norm-referenced and criterion-refereaced tests were used.
(3) Reporting procedures vary widely: some states provide a.summary, some present data alone, some provide data plus
.interpretation. Criterion levels, percentages, giadel level norms, and a variety of other statistics are proviided. A :summary of the contants of che information in Appendix B is somewhat meanin!zless, since so many gaps exist and since the data are from a variety of tests, grade levels, and years. Nevertheíess; a Eew gencral comments seem appropriate about dati which weré available:
(1) The topics with which difficulty (or-weakness) were reported can be ranked in inis order of frequency: fractiońs division
, subtraction with regrouping
decimals geometry
measurement
.. proof.
estimation
statistics and.probability

This corresponds with infimation from previous error-aneiysis studies and studies on difficulties and the need for remediation.
(2) Status "was reported as "at norm" arid" "below norm" in approximately an equivalent num': "ry' of instances;'fewer instances of "'above norm" were noted.
(3) Trends are unclear': in the few instances where data from the same test ad́ministered for 2 or 3 yêars could be checked, improvement was noted on four of 5 ; in the fifth case, scores remained at about the same levej.

In, other state; local, and regional assessmepts, some comparing data across a period of years, no clear trend could be observed (see Table 12). \therefore Roderick (1974) provided an example of one difficulty in assessment across decades. Not all of the items administered to the 1973 students involved content still being taught: thus, many items. were transfer items for the 1973 students. It is also apparent from a scan of the items that mastery levels wére by no means achieved on many of the items by the 1936, 195155, and 1965 pupils, any more than they were achieved by the 1973 students. Where an item was passed by 80 percent or more of the earlier students," it tended to be an item on which 1973 students also scored high.

Progress Assessments in the States: HIGHLIGHTS

As of April 1977, eight states had minimal competency legislation, 10 had state board of education rulings, and legislation was pending in 10 states.
-As or June 1974 , thirty states had accountability legislation.
\therefore - State progress assessments vary greatly in scope of objectives, type of test, and 'reporting' procedures."

- The content for which weaknesses were identified are ones which have been known to be difficult. Fractions, division, and subtraction with regrouping head the '11st.,
-Trends across years are, uncleàr as yet.

226

V. Synthesis and Conclusions

The avowed purpose of this document was to describe the evidence bearing on the rationality of decision-making for educational policy that influences mathematics education in the schools. This section Identifies some major deficiencies that we have found for the process of policy formation as we examined the record of the past twenty years in … . mathematics education, and offers commentary on those deficiencies.

The evidence of the report shows that prograss and change have been the result of federal intervention into * the domain of mathenatics education. Indeed, some would claim that the federal investment in mathematics education has often been the vital margin determining whether a change would be realized or not. We see little evidence that the future will be otherwise. Thus, the capability for thoughtful and careful policy formation at the federal level is critical since it guides the investment of dollars for mathematics education.*

It is not sufficient simply-to recommend increasirg the magnitude of the investment in mathematics, education if change is desirable. Many segments of society and many non-educational problems have legi=imate clafms on federal resources. More money is not the universal solvent for educational problems; problems are not solved gimply with a greater investment of resources. To argue simply for more money as the solution to educational problems ignores present realities. At issue is investing- ; money wisely in order to accomplish change expeditiously and efficiently ${ }^{\circ}$

[^1]in the areas of greatest need in mathematics education. The recognition pof the deficiencies in the policy formation processes is an important first step toward improving the payoff of the investment and toward improving the learning and teaching of mathematics. in the schools.

Three primary sources of difficulty or failure in the processes of policy formation for mathematics education are apparent to the' writere fromithe recent history of mathematics education. These failures are:
(1) Educational policy is frequentiy determined without collecting enough information to allow the process to be rational
(2) Educational policy is fnequentíy construcied without using information that is readily available. f
(3) The point at which values enter into policy formation, and the effects of the differences in the values held by various groups concerned with the schools, is frequently not recognized in determining the priorities within educational policy.

There are numerous notable exampies of the first type of failure in the segments of this report that concern existing practices in the schouls and in teacher education. Some that stand out in the authors' opinions are:
${ }^{*}$ Practices in the schools
(1) We do not know enough about what happens in the typical classroom. The classroom practices of teachers, ranging from such simple things as how much time the typical efementary-school teacher gives to mathematices instruction
to the more complex and subtle questions pertaining to what guitdes teachers' choices of instructional, strategies, are largely undocumentéd.
(2) We know little about the extent. to which teachers differlentiate instruction for children with different characteristica and needs.
(3) We do not know ensugh about the extent and nature of teachers ${ }^{\circ}$ use of instructional materials and tools. Although activity learning has been advocated strongly-in.
teacher education and in professional activities and materials, the extent to which teachers involve students with non-text materials is, largely unknown. . We'also do not knowwhat guides teachers in the use of non-text learning materials
 of teaching.
(4) The extent of teachers'. dependence on drill-and-practice teaching strategies is not known. The factors that teachers use to guide their selection of teaching strategies other than drill and practice are not known.

Practices in teacher education

(1) The data concerning supply and demand of secondary mathematics, teachers are only conjectural.
(2) There is little evidence avat lạble concerning the characteristics of the small but significant portion of teachers who refuse'to participate in in-service
activities‘and/or about program characteristics that may keep them from participating.
(3) Early field experience prior to student teaching as a component in preservice teacher edication programs appears to be a'sensible new feature in program design. However; there is little evidence concerning how much, ? what kind, or when such field experience. is best or how it actually contributes to helping the prospective teacher become competent.
(4) The characteristics of teachers that contribute to the effective learning of mathématics by students are not well-described nor verified.

The sections on existing practices describe many other blank spots in the knowledge base for effective policy formation. A major difficuity is that these missing segments, in the knowledge base are not used to. define priorities for information collection or for deciding what research to support and fund.

There are some sources of information concerning existing practices that are difficult to use. Considerable information was found about existing practices in the schools that was either hard to access or in a form that was difficult to interpret. There is a lack of commonality from state to state in what information is collected and how and who stores the information. Many states do not consider the potential uses of information in designing their collection and storage processes and thereby have no convenient means of retrieving the information.

One major characteristic of the information base is that research
activities have not been coordinated. There are many examples of highly similar studies on a given topic within a given area of research interest, but for other topics within the same area little or no research has been accomplished.
s
Failures of the second type -- formation of policy without using available knowledge -- are also readily apparent in the preceding sections. For all areas of practice relevant to this study, the amount of information at the end of the twenty-year period is greater than at the beginning. But often the collection of information confirms what a has been known previously. Some characteristics oi performance and practice appear to have significant stability over the years. (For
example, recent progress assessments reveal that fractions are difficult for children; they were also difficult. in 1920. Another example is that of teacher verbal behavior: research conducted in every decade of this century reveals that the typical teacher makes two-thirds of, the utterances : in the classroom.) The formulation of policy frequently has not recognized the apparent and verified stability of practices. This may be evidence of a lack of information dissemination, failure to do sufficient summative literature analyses, or'simpity testimony of the youth of the field of mathematics education and its resulting lack Ufa, academic traditions.

The third type of failure, not recognizing the point at which the values of various groups enter into policy formation, is, also quite evident: McLaughlin (1976), in studying the process of change, concluded that change has little permanence ing the schools if the need for a projest or program is based on an entrepreneurial motivation rather than a perception of a problem in heed of solution by the primary personnel of
a project.: The discrepancy between theopractitioners' (teachers and principals) and mathematics educators' perceptions of the "ideal" mathematics teacher described in the teacher "education. section of this reporc "Is symptomatic of potential difficulties in promoting change and the varying perceptions of the importance of the area of development and research. Thus, a development $\overline{\mathrm{c}} \mathrm{t}$ research effort will fail at the point of implementation or appličation of the resuits if dĭscréáncies are : t. resolved.

The shifts in interest (and in the funding levels) in a variety of areas, such as mathematics for the talented or for low achiavers, attivity learning, discovery learning, or basic skills, provides euidence of shift-, ing priorities. However, it often appears that the shifts in priori- : ties for development, research, and implementation have little to do with the evidence of. xieting practices. We feel that noèds assessments often have simply served to confirm already existing problems and issues in mathematics educa-ion. That is, they are not anticipatory of deveioping problems but simply confirm that activity and interest in the area has already begun. Needs assessment:s are seldon informed judgulents based 'upon the evidence of existing praçtices and aref seldom generated in such a way that allows professionals to indicate which of two or more problems 'or issues is of greater importance. At issue is whether acṭivities in development, resoarch, ànd teacher education must be fad-like in characie: as opposed to a reasoned attack on problems and issues of mathematics education in the schools.

In the introfuction, polycy making was described in terms of

and is based upon information and the other that is political and reactive to the prevailing societal attitudes and values. We have purposefully 'delimited the reporting of historical events to descriptions of existing practices, leaving to the reader the judgment of the contrast of the contribution of the two levels to the policy formation for mathematics education.

The evidence of change results only when there is significant agreement across the two levels that is apparent in the policy formulation process, the political/societal ethos, and the professional level internal to education. Since teachers are elements of both sets of individuals, the public and the professionals, they.are major barometers of change. That is, if teachers sense agreement between the two levels of decisionmaking, change takes place. . If teachers sense incongruence'and disagreement between the levelis, then they are dissatisfied and this dissatisfaction is the evidence that significant change will not take place. This dissatisfaction or satisfaction provides a measure of what the teacher/ is willing to do to accomplish change. This is the critical attitudinal variable relative to teachers' performance in the schools.

We would argue that current evidence indicates that teachers are exhibiting jthis order of dissatisfaction, and the resulting lack of purpose that compromises significant rapidity of change, and that this is reflected in current disquietude about basic skills. The nature of . innovation and change in the schools as studied by McLaugilin (1976) suggests that the teacher is the key and that implementation of change must reflect curricular and programmatic needs perceived by the teacher and supported by commensurate teacher education activities. This telis
. but half of the story, since activity directed toward promoting change must respect the two levels involved in policy formulation. Thus, needs assessment endeavours must.systematically garner information not only felative to the schools and their perłormance, but also on the prevailing societál ethos that is a necessary condition for teachers' acceptance (and support) of the endeavour.

Policy formation at the federal level typically has ignored existing practices in the schools except as mirrored in the disquietude of society. Often, if additional information was needed for the formul ion of educational policy; it was, collected after-the-fact of policy decision for the purpose of confirming the actions taken. The amazing, significant conclusion indicated by this study is that progress has been made without systematic information collection relative to existing practices. Apparently, the societal/political ethos is sensitive enough to the goals, aims, and objectives, of education -- and their attainment --' to provide substantial directiton to Ameriean education. Thus we conclude that the problem for professionals is a matter of efficiency in promoting change. The implication is that not only must professionals collect appropriate kinds of information concerning practices in the schools, they must also make λ sound application of this information.
-CATEGORIZED LISTING•OF SELECTED RESEARCH
IN MATHEMATICS EDUCATION

Abstract

The categories included in this appendix appeared relevant to existing pracṭices, Data on journal-published articles and dissertations were compiled for this table using Suydam's files. Two limitafions should be noted:

(1) Some studies are counted in more than one category, reflecting primary and secondary scopes of concern. The categorization system (Suydam, 1974) includes categories in addition to those included on this table. Thus, all research in the field of mathematics education is not listed in this table.
(2) In some instances, a dissertation and one or two... aritcles reflect essentially the same research, but have been counted separately in this table. Thus, there is a (small) "inflationary" factor; nevertheless, the table indicates the approximate level of interest in research topics related to this literature review.

* Top numeral, elementary; bottom numeral, secondary.

Appendix is (Continued)

:Topic	1955-59		1960-64		1965-69		1970-74		- 19		Total
Grade placément	5		22	,	4.	。	$\therefore 5$		0		43
	1.		1		3		2		0		43
Time allotment	7		5		8		6		2		
	0	\cdots	3		3		6		1		$: .41$
Content and methods:						ε					
Number, properties	2		7		10	¢	35		2		73
and relations	4		4		4		4		1		
Addition with	5		2		14		27		10		62
whole numbers	0		1		0		1		2		62
Subtraction with	8		4		10		- 22		11		
whole numbers	1		0		0		0		1		57
Multiplication with	3		5		17		20		7.		
whole numbers	0		2		1		1		1		57
-Division-with ${ }^{--}$	5 -		6		3		10		5		32
, whole numbers	1		0		0		- 1		1		32
\therefore Fractions	13		22		27		- 40		8		
	1		0		0		8		1		- 120
Decimals	2		3		4		8		0		
	1		0		0		2		1	-	
- Negative numbers	0	-	1		5		8		4		" 28
(integers)	1		3		2		2		2		- 28
Geömetry in	3		11		25		83		11		133
elementary school	0		0		0		0		0	*	

23%

239

Appendix A (Continued)

Topic	1955-59	1960-64	1965-69	1970-74	1975	Total
Mentally retarded	1	8	16	52 .	9	110
\therefore Mentally .	1	1	6	11	5	
Tutoring	1	0.	1	25	7	47
Iutoring	0	$1{ }^{\text {a }}$	2	10	0	
Enrichment	3	6	4	$4{ }^{\prime}$	- 0	\cdots. $51{ }^{\circ}$
) EnTlahme	3	11	8	12*	- 0	
Acceleration	1	8	7	3	0	39
A.	-1	11 b	5	2	1	
Grouping procedures	3	30	17	49	- 19	185
Grouping proced,	4	12	16	32	3	
- Motivation. . .	0	1	6	17	5	61
	3	7	6	10		
Physical, psycho-logical,	- 8	13	26	91	18	234
social characteristics	7	7	23	36	5	234
Sex differences	1	6	6	18		65
, . .	2	5	10	9	3	
Socioeconomic differences					4	
Socioeconomic differences	- 1	4	29 9	$\cdots 16$	0	137
Evaluating progress:					\cdots	
Analysis of tests	2	5	18	49	$7{ }^{7}$	176
Analysis of tests.	10	15	20	42	8	176
	4					
Status testing	2	1	4^{4}	10	- 2	44
-	9	3	${ }^{4}$	6	1	
Achievement evaluation	35	49	58	78	13	321
	11	197	18	37	3	
$\because!$				-		

Appendix A (Continued)

241

APPENDIX B
PROGRESS ASSESSMENTS IN THE STATES

The information in this appendix was compiled from obtained documents, and does not purport to be totally comprehensive. That is, there (in all likelihood) exist other documents on state progress assess- : ments which we were unable to obtain.

Some bibliographies are appearing (and more will undoubtedly be published) which compile information on the state programs (e.g., Porter and Wildemuth, 1976). In the reference column in this appendix, ERIC douments are noted, since they are readily available. Other document's on progress assessments for states on which information is noted may be requested from those states.

PROGRESS ASSESSMENTS IN THE STATES

Prugress Assessment

Progress Assessment

Progres's Assessment

253

Progress Assessment

AAAS AACTE	American Association for the Advahcement of Science American Association of Colleges of Teacher Educarion
ACE -	American Council on Education
ACT	: American College Testing Program
AIR	American Institutes for Research
AP Program	Advanced Placement Program, CEEB
CBMS	Conference Board on the Mathematical Sciences
CEEB.	College Entrance Examination Board
CEMMREL	Central Midwestern Regional .Educational Laboratory
CSMP	Comprehensive School Mathematics Progrum
CUPM	Committee ơ the Undergraduiate Prográm in Mathematics
$\overline{\text { EPIE }}$	Educational Products Information Exchange
ERIC	Educational Resources Information Center
ESEA	Elemeritary and Secondary Education Act
ETS	Educational Testing Service
GCMP	- Greater Cleveland Mathematics Project
HEW	Department of Health, Education and Welfare
IEA	International Study of Educational Achievement
I倠	Investigations in Mathematics Education
IPI	Individually Presc̄ribed Instruction
JRME	Jnurnal for Research in Mathematics Education
CBTE	Competency Based Teacher Education
LEA	Local Education Agency
MA.	Mathematical Association of America
MMP	Mathematics Methods Project, Indiana University
NACOMR	Nationa! Advisory Committee on Mathematical Education

(AAAS). Guidelines for science and Mathemarics in the Preparation Program of Elementary School Teachers. Washington: American Association for the Advã̃ncement of Science, with National Association of State Directors of Teacher Education and Certification, 1961.
(AAAS). Guideilines and Stañdards for the Educaticn of Secondary School Teachers of Science and Mathematics. AAAS Commission on Science Edu: Cation and National Association of State Directors of Teacher Education and Certification. Washington: American Association for the Advancement of Science, 1971.

Aiken, Lewis R., Jr. Átitudes Toward Mathemarics: Review of Educational - Research 40: 551-596; October 197,0.
-Aiken, Lewis R., Jr." Intellective Variables and Mathematics Achievement: Directions for Re:Qaréi, Journal of School Psychology 9: 201-212; 1971.
 Teacher 19: 229-234; March 1972.

Albers, Dallas Frederick. An Investigation of the Effects of the Allocation of Class Time on Pupil Achievement and Scheduling Preferences. (Univert sity of Missouri-Golumbia, 1972.) enAI 33A: 4700; March 1973.

Alspaugh, John William. . A"Survey of Secondary Mathematics Programs in Missouri with Emphasis on Content, Procedures, and Preparation of Teachers. (University of Missouri, 1965.) DA 26: 5259-5260; March 1956.
-Alspaugh, John W. and Floyd G. Delon. How Modern is Today's.Secondar̀y Alspaugh, John W. and Floyd G. Delon. How Modern is Today's,Secondary
\times Mathematics Curriculum? Mathematics Teacher $60: 59-55$; January 1967.
Anderson, Rosemary C. Suggestions from Research -- Fractions. Arithmetic Teacher 16: 131-135; February 1969.

Anttonen, Ralph George. An Examination into the Stability of Mathematics Attitude and Its Relationship to Mathematics Achievement from Elemen-: tary to Secondary School Leyel. (University of Minnesota, 1967.) DA 28A: 3011-3012; February 1968.
(Arizona). . Educational Needs As jessment Program for Arizona. • Phoenix: Arizona State Department of Education. 1972. ED 077935 ". . . 160 ,

Asbury, Charles Alexander. Factors Associated with Discrepant Achievement in Rural Econumically Deprived White and Negro 'First Graders. (University of North Carolina at Chapel Hill, 1969.) DA 31Á: 208-209; July 1970.

Austin, Gilbert R. A Longitudinal Evaluation of Mathematical Computational Abilities of New Hampshire's Eighth Graders, 1963-67, Final Report. Durham: University of New Hampshire, Augist 1969. ED 039147

110 p.
Austin, Gilbert R-, -Bruce-G.- Rogers, and Henry H.- Walbesser,-Jr.-The Effectiveness of Summer Compensatory Education: A Review of the Research. Review of Educational Research, 42: 171-181; Spring 1972.

Bachman, Aifred Morry. Factors Related to the Achievement of Junior High. School Students in Mathematics. (University of Oregon, 1968.) DA 29A; 2139; January 1969.

Barley, Steven Douglas. Time: In School: and Learning. (The University of Rochester, 1975.) DAI 36A: 2583-2584; November 1975.

Barnes, Jarvis. Profiles of Effectiveness and Acceptability of Reading and Arithmetic Programs, 1971-72, Research and Development Report, Volume 6, No. 18, March 1973. Atlanta, Georgia: Atlanta Public Schools, March 1973.
ED 078121
173 p.
Beard, Earl M. L. and George S. Cunningham. Middle School Mathematics Curriculum. A Report of the Orono Conference. Orono: University of Maine and Washington: National Science Foundation, July 1973. ED 085258 -

Beckmann, Milton W. Ninth Grade Mathematical Competence--15 Years Ago and Now. School Science and Mathematics 69: 315-319; April 1969.

Beckmann, Milton William. Eighth Grade Mathematical Competence - 15 Years Ago and Now. Arithmetic Teacher 17: 334-335; April 1970.

Bedwell; Thomas Howard. A Critical Analysis of the Physical Science and Supporting Mathematics Instruction in the Secondary Schools of South Dakota. (The University of Nebraska, 1966.) DA 27A: 1696-1697; December 1966.

Begle, E. G. The Reform of Mathematics Education in the United States of America. In Mathematical Education in the Americas (Howard Fehr, editor). New York: Bureau of Publications, Teachers College, Columbia University, 1963.

Begle, Edward G. (Edfiör): Mathematics Education. Sixty-ninth Yearbook National Society for the Study of Education. Chicago: University of Chicago Press, 1970.

Begle, Edward G. Teacher Knowledge and Student Achievement in Algebra. SMSG Reports, No. 9. Stanford, California: School Mathematics Study Group, 1972.

Begle, E. G. Some Lessogns Learned by ṢMS. Mathematics Teacher 66: 207214; March 1973.

Begle, EAward G. The National Longitudinal Study of Mathematical Abilities. Investigations in Mathematics Education 8: 1-4; Summer 1975.

Begle, E. G. Acceleraiion for Students Talented in Mathematics. Working Paper No. 19. Stanford, California: Stanford University, Mathematics Education StudyiGroup, February 1976. ED 121607

Begle, Edward G and William E. Geeslin. Teacher Effectiveness in Mathematics Instruction. NSLMA Report, No: 28. Stanford, California: School Mathematics Study Group, 1972.|

Berger, Frances. A Study of the Attributes of Applicants to National Sciencer Foundation Institutes in 1960. Chicago: Science Research Associates, M.tmeo, 1961.

Bell, James A. Trends in Secondary Mathematics in Relation to Psychological Theories: 1893-1970. (The University of Oklahoma, 1971) DA 32A: 1890-1891; October'1971.

Bernabei, Raymoid. A Logical Analysis of Selected Arhievement' Tests in Mathematics. (Western Reserve University, 1966.) DA 27A: 4121-4:22; June 1967.

Bertram, Charles John. Selected Characteristics of Mathematics Teachers in Indiana Public Secondary Schools. (Indiana University, 1971.) : DAI. 32A: 3132; December 1971.

Biggs, Nancy Chisholm. A Survey of the Mathematics Education of West Tennessee Elementary School Teachers. (Memphis State University, 1969.) DAI 30A: 598-599; August 1969.

Birr, Donald James. The Effects of the Treatments by Parents and Teachers on the Self-Concept of Ability" Held 'by Underachieving Early. Adolescent Pupils. (Michigan State University, 1969.) DAI 30A: 1354; October 1969.

Bishop, Thomas David. A Study of the Computer-Related Mathematics Programs of Secondary Schools and Teacher Education Institutions in Missouri and Adjoining Siates. (University of Missouri-Columbia, 1970.) DAI 31A: 3997-3998; February 1971.

Bittinger, Marvin L. A Review of Discovery. Mathematics Teacher 61: 140-146; February 1968.

Blanche, E. E. and Associates. Summary of tile Applicant Kecord Ca ${ }^{\text {dis Sub }}$ = mitted to the Summer 1.962 and School Year 1962-63 National Science Foundation Institutes, Conferences and Research Participation Programs. Washington: National Science Foundation, i963.

BIoom, Benjamin S. (Editor). Taxonomy of Educational Objectives: The Classification of Educational Goals. Handbook I: Cognitive Dómain. New Ỵork: David McKay, 1956.

Bloom, Benjamin S., J. T. Hastings, and G. F. Madaus. Handbook on Fcrmative and Sumnative Evaluation of Student Learning. New York: McGrawHill, 1971.

Boardman, Anthony E. and Others. A Simultaneous Equations Model of the Educational Process: The Coleman Data Revisited with an Emphasis on Achievement. Washington: American Statistical Association, 1973. ED 097404

10 p.
Bobier, Darcld Thomas. The Effectivness of the Independent Use of Programmed Textbooks. in Aiding Students to Overcome Skill Weaknesses in English Mechanics and Arithmetic. (University of Denver, 1964.) DA 25: 3424-3425; December 1964.

Bompart, Billy Earl. The Development of an Undergraduate Program for Prospective Secondary School Mathematics Teachers Based on an Analysis of State Certification Requirements. (The University of Texas, 1967.) DA 28A: 4020; April 1968.

Bradberry, Helon Styles. A Study of the Participants in the 1959-60 and 1960-61 Academic Year Institutes Sponsored by the National. Science Foundation at Six Southeastern Universities. (University of Georgia, 1967.) DA 28A: 2114; December 1967.

Bradshaw, Charles Kenneth. Mathematics Teaching in the Rublic Secondary Schools of the State of Nevada. (University of California, Berkeley, 1968.) DA 29A: 1148; October 1968.

Bredemeier, Harry C. The Differential Effectiveness of High Schools with Selected Characteristics in Producing Cognitive Growth in Different Kinds of Students. New Brunswick, New Jersey: Rutgers, The State University, June 1967. id 014771 84 p.

Bright, Geoige W. Assessing the Development of Computation Skills. In Developing Computational Skills (Marilyn N. Suydam, editor). 1978 NCTM Yearbook. Reston, Virginia: National Council of Teachers of Machematics, 1978 (in press).

Brouillet, Frank-B. Educational Needs Assessment for Washington State Students... March 1973. (Sumazy). Olymia: Washington Office of the State Superititendent of Public Instruction, March 1973. ED 036725

42 p.
Brousseau, Andre A. Mathematics Laboratories: Should We or Should We Not? School Science and Mathematics 73: 99-105; February 1973.

Brown, Donald Eugene. A Comparison of Certification and Degree Requirements with Secondary School Mathematics Curriculum. (Texas A\&M University, 1971.) DAI 32A: 5529; April 1972.

Brown, John Kenneth, Jr. Textbook Use by Teachers and Students of Geometry and Second-Year Algebra. (University of Illinois at Urbana-Champaign, 1973:) DAI. 34A: 「5795-5796; March 1974.

- Brown: Kenneth' E. and Theodore L. Abell. Trends in Mathematics Offerings and Enrollments. Mathematics Teacher 59: 652-655; November 1966.

Brownell, William A. Psychological Considerations in the Learning and the Teaching of Arithmetic. In The Teaching of Arithmetic. Tenth Yearbook of the National Council of Teachers of Mathematics. . New York: Bureau of Publications, Teachers College, Columbia University, 1935. Pp. 1-31.

Brunsvold, Perley 0. The Relationship Between Selected School District Variables and Teacher Assignment Based on Preparation. (University of Iowa, 1966.) DA 27A: 341. 342; August 1966.

Buchalter, Barbara Diane Elpern. The Validity of Math matics Textbook Series in Grades 7-14 with Structure as an Objective. (University of Arizona, 1968.) DAI 30A: 198-199; July 1969.

Buchman, Aaron ${ }^{\circ}$ L. The Use of Calculators and Computers in Mathematics Instruction in New York State High Schools. School Science and Mathematics 69: 385-392;: May 1969.

Buchman, Aaron L. Some Relationships Between Length of Courses in Elementary Algebra and Student Characteristics. (State University of New York at Albany, 1972.) DAI 33A: 2812; Décember 1972.

Bukoski, William J. and Arthur L. Korotkin. Computing Activicies in Secondary Education. Educational Technology 16: 9-23; January 1976. See also: ED 112935 177 p.

Burns, Paul C. Arithmetic Books for Elementary Schools. Arithmetic Teacher 7: 147-149; March 1960.

Buswell, Guy T. Arithmetic. In Encyclopedia of Educational Research (C. W. Harris, editor). Third Edition. New York: Macmillan, 1960. Pp.63-77.

Butler, Charles H. and Lynwood F. Wren. The Teaching of Secondary Mathematics. New York: McGraw-Hill, 1960.

Byham, Frederick Charles. Indirect Proof in Geometry from Euclid to the Present. (The Ohio State University, 1969.) DAI 30A: 2899; January 1970.
(California). Summary of the Report of the Advisory Committee on Mathematics to the State Curriculum Commission - The Strands of Mathematics; Mathematics Programs for Teachers; A Study of New Programs and.Supplementary Materials. Sacramento: California State Department of Education, December 1963.
(California). Mathematics Framework for California Public Schools. Kindergarten Through Grade Eight. The Second Strands Report. Sacramento: California State Department of Education, 1972(a). ED 059910

128 p.
(California). Final Report. Specialized Teacher Project, 1971-72. Mathematics Improvement Prograns. San Diego, California: Department of Education, San Diego County, 1972 (b).
(Califon'ia). Students' Achievement in California Schools: 1974-75. Annual Report. Sacramento: California State Departmént of Education, 1975. ED 124592

72 p.
Callahan, Walter J. Adolescent Attitudes Toward Mathematics. Mathematics Teacher 64: 751-755; December 1971.
(Cambridge Conference). Goals for School Mathematics, the Report of the Conference on School Mathematics (Cambridge, Massachusetts, 1963). Watertown, Massachusetts: Educational Services, Inc., 1963. ED $015140 \quad 102 \mathrm{p}$.
(Cambridge Conference). Goals for the Correlation of Elementary Science and Mathematics: The Report of the Cambridge Conference on the Correlation of Science and Màthematics. in Schools. Newton, Massachusetts: Cambridge Conference on School Mathematics, Educational Development, Inc., 1969. ED 042599

218 p.
Campbell, Jay J. and Afton Forsgren. The Impact of the Designing Education for the Future Project in Utah. Report of a Study. Salt Lake City: Utah State Board of Education, November 1970. ED 079825 . 29 p.

Capasso, Ronald L. and Mary Ann Lachat. Math Programs that Work: A National Survey. Trenton: New Jersey State Department of Education, 1974. ED 095016 . 65 p.
(Cape Ann Conference). The fape Ann Conference on Junior High School Mathematics, September 9-12, 1972. Newton, Massachusetts: Newton . College of the Sacred Heart, Physical Sciences Group, Scptember 1973. ED 085257

149 p.
Carpenter, Thomas P., Terrence G. Coburn, kobert E. Reys, and James W. Wilson. Resuits and Implications of the NAEP Mathematics Assessment: Elementary School. Arithnetic Teacher 22: 438-450; 0ctober 1975(a).

Carpenter, Thomas P., Terrence G. Coburn, Robert E: Reys, and James W. Wilson. Results and Implications of the NAEP Mathematics Assessment: Secondary School. Mathematics Teacher 68: 453-470; October 1975 (b).

Carpentèr, Thomas P., Terrence G. Coburn, Robert E. Reys, and James W. Wilson. Notes from National Assessment. Arithmetic Teacher 22, 23: October 1975-May 1976.

Carroll, Stephen J. and Kenneth F. Ryder. Analysis of the Educational Personnel System: V. The Supply of Elementary and-Secondary Teachers. Santa Monica, California: The Rand Corporation, R-1314-HEW, 1974.

Carson, Joan C. Math Fundamentals: Selected Results from the First National Assessment of Mathematics, 1972-1973: A Summary Report and Analysis. The University of Mississippi, Mimeo, no date.

Castaneda, Alberta Maxine Mondor. The Differential Effectiveness of Two First Grade Mathematics Programs for Disadvantaged Mexican-American Children. (The University of Texas, 1967.) DA 28A: 3878-3879; April 1968.
(CBMS). Recommendations Regarding Computers in High School Education. Washington: Conference Board of the Mathematical Sciences and National Science Foundation, April 1572. ED 064136 36 p.
(CEEB). Program for College Preparatory Mathematics. Comoission on Mathematics. New York: College Entrance Examínation Board, 1959.

Centrone, Joseph John, Sr. Teacher Sociocultural Awareness in Selected Schools in New. York State Accountable for American Indian Education. (Syracuse University, 1972.) DAI. 33A: 5596-5597; April 1973.

Clark, James P. and Scott D. Thomson. Competency Tests and Graduation Requirements. Reston, Virginia: Natioual Association of Secondary School Principals, 1976. ED 126160 76 p.

Clason, Robert Grant. Number Concepts in Arithmetic Texts of the United States from 1880 to 1966, with Related Psychological and Mathematical Developments. (The University of Michigan, 1968.) DAI 30A: 146; July 1969.

Clemmer, R. B. Assessing Educational Need: First Step to Accountability. Oregon Education: 16-18, 31; May 1970.

Cohen, Sol. The History of the "Histor; 1 f American Education", 1900-1976: The Uses of the Past. Harvard Education Review 46: 298-3,30; August 1976.

Coldiron, J. Robert. An Investigation of the Utilization of Requested Assessment Infirmation in Pennsylvania Schiol Districts. Paper presented at the Annual Meeting of the American Educational Research Association. Chicago, Illinois, Ar,rill 1974. ED 093943

31 p.

Coleman, J. S. and Others. Equality of Educational Opportunity. Washington: U. S. Government Printing Office, 1966.

Collier, C. Patrick. Prospective Elementary Teachers' Inteneity and Ambiva-.: . lence of Beliefs about Mathematics and Mathematics Instruction. Journal for Research in Mathematics Education 3: 155-163; May 1972.

Conant, Eaton H. Teacher and Paraprofessional Work Productivity, A Public School Cost-Effectiveness Study. Lexington, Massachusetts: D. C.
.. Heath, 1973.
Comnellan, Miriam Elizabeth. The Content of Secondary School Mathematics Courses Tri.ght in Colorado by Teachers Who Attended the 1957-53 and the 1958-59 Colorado Academic Year Institutes. (University of oolorado, 1962.) DA 23: 54i; August 1962.

Connolly, Austin J. Research in Mathenatics riucation and the Mentally Retarded. Arithmetic Teacher 2.: 491-497; October 1973.*

Cook, Cleland Vern. A Study of the Preservice Education of Secondary Mathematics Teachers. (University of South Dakota, 1.969.) DAI 30A: 38243825; March 1970.

Cooney, Thomas J. Teacling Strategies: Papers from a Research Workshop. Columbus, Ohio: ERIC Information Analysis Center for Science, Mathematics, and Environmental Education, 1976.

Copley, Walter Patrick. The Constizuction and Validation of an Instrument to Measure the Attainment of Certain Mathematical Concepts Recommended by the Committee on the Undergraduate Program in Mathematics. (Boston University School of Education, 1971.) DAI 32A: 1954-1955; October 1971.

Corbet, James J. An Analysis of the Impact of NSF Institutes in Mathematics at KSU on Kansas Mathematics Teachers. (Kansas State University, 1975.) DAI 36A: 5206; Fubruary 1976.

Coulson, William Fredrick. An Analysis of Tests and Objectives of Elementary School Mathematics. (Iowa State University, 1973.) DAI 34A: 3825; January 1974.

Cramer, Carl Freḍrick. A Study of Achievement Levels of Nebraska High School Seniors on Test Designed to Measure Mathematical Competencies. (The University of Nebraska-Lincoln, 1974.) DAI 35A: 5955-5956; March 1975.

Crawford, Matthew William. An Analysis of the Mathematics Curriculum in the Negro Public High Schools in Louisiana. (Colorado State Coliege, 1967.) DA 28A: 1611-1612; November 1967.

Crespy, H. Victor. A Study of Curriculum Development in School Mathematics by National Groups, ${ }^{1950-1966: ~ S e l e c t e d ~ P r o g r a m s . ~(T e m p l e ~ U n i v e r s i t y, ~}$ 1969.) DAI 31A: 923-92\%. September 1970.

Creswell, Doris E. and Emanuel Berger. ?mathematics Content Authority List: K-6. 'Harrisburg, Pennsylvania: State Department of Public Instruction, January 1969.
ED 029789
109 p
Crosswhite, F. Joe. Correlates of Attitudes Toward Mathematics. NLSMA Report No. 20. Stanford, Caïfornia: School Mathematics Study Group, 1972.

Cruikshank, Douglas E. and William R. Arnold. Non-Decimal Instruction Revisited. Elementary School Journal 70: 108-111; November 1969.
(CUPM). Course Guides for the Training of Teachers of Junior High and High School Mathematics. Committee on the Undergraduate Program in Mathew-matics of the Mathematical Association of America, Teacher Training Panel. Berkeley, California: CUPM, 1961(a).
(CUPM): Recommendations for the Training of Teachers of Mathematics-A Summary. Committee on the Undergraduate Program in Mathematics of the Mathematical Association of America, Teacher Training Panel. Eerkeley, California: .CUPM, 1961 (b).
(CUPM). Course Guides for the Training of Teachers of Elementary School Mathematics (Revised 1968). Committee on the Undergraduate Program in Mathematics of the Mathematical Association of America, Teacher Training Panel. Berkeley, California: CUPM, 1968.
(CUPM). Recommendations on Course Content for the Training of Teachers of Mathematics. Committee on the Undergraduate Program in Mathematics of the Mathematical Association of America, Teacher Training Panel. Berkeley, California: CUPM, 1971.

Dahle, Mary McMahon. A Procedure for the Measurement of the Content Validity of Standardized Tests in Elementary Mathematics. (University of Southern California, 1970.) DAI 30A: 5336; June 1970.

Dambacher, Arthur D. Comparison of Selected Group Achievement Test Results for Period 1967 Through 1972. Berkeley, California: Berkeley Unified School District, Office of Research and Evaluation, 197 ?. ED 073195

Darby, C. A., A. L. Korotkin, and ${ }^{\circ}$ T. Romashko. Survey of Computing Activities in Secondary Schools. Washington: American Institutes for Research, R70-13, 1970. See also: ED 047500 (157 p.) and ED 069540 (135 p.)

Davis, Thomas F. An Evaluation of a Graduate Program in Mathematics for Experienced Secondary School Teachers' Sponsored by the National Science Foundation at the University of Detroit, 1958-1969. (Wayne State University, 1.972.) DAI 33A: 6054; May 1973.

Dayoub, Iris Mack. An Investigation and Evaluation of Goals of Mathematics Education for Prospective Elementary Teachers., (Georgia State University, 1973.) DAI 34A: 4952-4953; February 1974.
'(Delaware). . Statewide Educational Objectives. Dover: Delaware State Department of Public Instruction, Division of Research, Planning and Evaluation, January 1975.
ED 100057
DeMott, Benjamin. The Math Wars. American Scholar 31: 296-310; Spring 1962.
DeShie.lds, James Isiah. Factors Effecring [sic] Achievement in ESEA Title I Schools and Non-ESEA Title I Schools. (University of Massachusetts, 1973.) DAI 33A: 6585; June 1973.

Dessart, Donald J. and Henry Frandsen. Research on Teaching SecondarySchool Mathematics. In Second Handbook of Research on Teaching (Robert M. W. Trevers, editor). Chicago: Rand McNally, 1973. Pp. 1177-1195.
(District of Columbia). Academic Achievement Project: Assessment Studies 1971-72. Final Report. Washington: District of Columbia Public Schools, Department of Research and Evaluation, August 1972. ED 104902

302 p.
Donovan, David L. School and District Reports: Explanatory Materials. The Third Report of the 1973-74 Michigan. Educational Assessment Program: Lansing: Michigan State Department of Education--Research, Evaluation, an' Assessment Services, October 1973.
EL 120216 - 38 p.
Donovan, David, et al. Objectives and Procedures: The Filist Report of the 1972-73 Michigan Educational Assessment Program. , Lansing: Michigan State Department of Education, October 1972.* ED 073139 36 p.

Donovan, David L. and Others. Individual Student and Classroom Reports: Explanatory Materials 1973-74. Michigan Educational Assessment Program Second Report. Lansing: Michigan State Department of Education-Research, Evaluation, and Assessment Services, 1973. ED 12 C 217

31 p.
Dooley, Sistei Marie Constance. The Relation Between Arithmetic Research and the Content of Elementary Arithmetic Textbooks, 1900-1957. (University of Southern California, 1959.) DA 20: 562-563; August 1959.

Dubisch, Roy. Teacher Education. In Mathematics Education (E. G. Begle, editor). Sixty-ninth Yearbook of the National Society for the Study of Eiducation. Chicago: The Society, 1970. Pp. 285-310.

Dunkley, M. E. Some Number Concepts of Disadvantaged Children. Arithmetic Teacher 12: 359-361; May 196'.

Dunson, Charles Kenneth: 'A Descriptive Analysis of the Mathematics Curriculum in the Predominantly Negro High Schools in the State of Georgia. (Colorado State College, 1969.) DAI 30A: 4138-4i39; April 1970. -)
-Dutton, Wilbur H. Another Look at Attutides of Junior High School Pupils Toward Arithmetic. Elementary School Journal 68: 265-268; February $\therefore \quad 1968$.

Dutton, Wilbur H. and Martha Perkins Blum. The Measurement o: Attitudes Toward Arithmetic witha Likert-Type Test. Elementary School Journal 68: 259-264; February 1968.

Earp, N. Wesley. Problems of Reading in Mathematics. School Science and Mathematics.-71: 129-133; February 1971.

Eberle, Betty Jobes. Mathematics Program for Gifted High School Students. A Participant Follow-up, Suqumers 1964 through 1969 at the Ohio State University. (Ohio State University, 1970). DAI 31A: 4378-4379; March 1971.

Edwards; E. L., Jr., Eugene D. Nichols, and Glyn H. Sharpe. Mathematical Competencies and Skilis Essential for Enlightened Citizens. Arithmetic Teacher. 19: 601-607; November 1972.
Eisenberg, Theodore H. Begle Revisited: Teacher Knowledge and Student Achievement in Algebra. . Journal for Research in Mathematics Education 8: 216-222; May 1977.
-
Ellison, Robert L. and Others. U.tah Statewide Educational Assessment: General Report. Salt Lake CIty: Utah State Board of Education, December 1975.
*Englehardt, Jon Maurice. The Relationship Between a Dimension of Cognitive . Style and the Teaching Behavior of Prospective Elementary Teachers of Mathematics. (The University of Texas at Austin, 1972.) DAI 33A: 4934; March 1973.

Engleman, Siegfried and Doug Carnine. DISTAR Arithmetic I: An Instructional System. Ci sago: Science Research Associntes, 1969.
(EPIE). Research Findings: More about NSAIM. EPIEgram, Volume 5, No. 2, October 15, 1976 (a).
(EPIE). Research Findings: NSAIM: Two Years Later. EPIEgram, Volume 5, No: 5, December 1, 1976 (b).
(EPIE). Doubts About Individualized Instruction. EPIEgram, Volume 5, No. 10, February 15, 1977.

Erb, Clinton Allen. A Formative Evaluation of an Experimental Teacher Education Project for Juniors in Mathematićs Education at The Ohio State University. (The Jhio State University, 1971).. DAI 32A: 4464; February 1972.

Ernest, John. Mathematics and Sex. American Mathematical Monthly 83: 595-614; October 1976.

Ernest, J. and Others. Mathematics and Sex. Santa Barbara: University of California at Santa Barbara, January ${ }^{\wedge} 1975^{\circ}$. ED 107535
(Estes Park Conference). Draft of Abridged Report of the Estes Park Conference on Learning Through Investigation and Action on Real Problems in Secondary Schools. Washington: National Science Foundation, Division of Pre-College Education in Science, 1973. ED 090~065

45 p.
Evans, Ellis D. Contemporary Influences in Early Childhood Education. New - York: Holt, Riniehart and Winston, 1971.

Fairbairn, Donald MacAllister. Charting New Directions in Mathematical Literacy and Competency for Our Future Citizens. (George Peabody College for Teachers, 1975.) DAI: 36A: 5111; February 1976.
Feierabend, R. L. Review of Researc'l on Psychological Problems in Methematics Education. In Research Problems in Mathematics Education, U. S. Office of Education, Cooperative Research-Monograph No. 3, 1960. Pp. 3-46.

Fennema, Elizabeth H. Models.and Mathematics. Arithmetic Teacher 19: 635-640; December 1572.

Fennema, Elizabeth. Mathematics Learning and the Sexes: A Review. Journal for Research in Mathematics Education 5: 126-139; May 1974.

Fennema, -Elizabeth and Julia Sherman. Sex-Related Differences in Mathematics Learning: "Myths, Realities and Related Factors. February 1976. ED 129633

24 p.
Fey, James Taylor. Patterns of Verbal Communication in Mathematics Classes. (Columbia University, 1968.) DA 29A: 3040; March 1969(a).

Fey, James. T. Classroom Teaching of Mathematics. In Reviews of Recent Researcil in Mathematics Education. SMSG Studies in Mathematics, Volume 19 (James W. WiIson and L. Ray Carry, editors.) Stanford, California:

- S'anford University, 1969(b). Pp. 59-92. See also: Review of Educational Research 39: 535-551; Octoier 1969(c).

Fey, James Taylor. Patterns of Verbal Communication in Mathematics Classes. New Yr-k: Teachers College Press, Columiia University, 1970.

Fields, Ew h Finney. A Study of Changes in the College Preparatory Mathematics irriculum and. Institute Attendance of Mathematics Teachers in Public. Secondary Schools of New Jersey During. 1964-1967. (Temple University, 1969.) DAI 31A: 1114-1115; September 1970.

Filby, Nikola N., Richard Marliave, and Charles W. Fisher: Allocated and Engaged Time in Different Con'nnt Areas of Second and Fifth Grade Reading ind Mathematics Curriculum. 1976. ED 137315

29 p.
Fisher, Charles W., Nikola N. Filby, and Richard Marlfave. Instructional Time and Student Achievement in Secand Grade Readin' and Mathematics. 1976 (a). ED 137293

82 p 。
Fisher, Charles W. and Others: A Study of Instructional Time in Grade 2. Mathematics. San Francisco: Far West Laboratory for Educational Research and Development. 1976 (b). - E 023367

Fisher, John 'J. Extent of Implementation of CUPM, Level I Recommendations. Arithmetic Teacher 14: 194-197; March 1967:
"Fisher, J. J. The Extent of Implementation of Level I and Level III CUPM Recomendations, Panel on Teacher Training. American Mathematics Monthly 75: 290-292; March 1968.

Fisher, Thomas H. and Others. Objectives and Procedures: The First Report of the 1973-74 Michigan Educational Assessment Program. Lansing:

- Michigan State Department of Education-research; Evaluation and Assessment Services, August 1973. ED 120219

41 p.
Fisher, Thomas H. and Others. School and District Reports: Explanatory Materials. The Third Report of the 1974-75 Michigan Educational Assessment Program. Lansing: Michigan State Departiment of Education-Research, Evaluation, and Assessment.Services, October 1974. ED 120225
Fishman, Joseph. Trends in Secondary School Mathematics in Relation to Educational Theories and Social Changes: 1893-1964. (New York University, 1965.) ${ }^{\text {D }}$ DA 27A: 990-991; October 1966.
(Florida)! Educational Renewal: The Florida Strategy. Policy Paper No. 2. . Tallahassee: Florida State Department of Education, May 1972. ED 100045 25 p.

Folsom, Mary. Teachers Look at Arithmetic Manuals. Arithmetic Teacher 7: 13-18;' January 1960.

Foster, Kenneth Roger. The Implementation of the CUPM Recommendations for Elementary School Mathematics Teachers into the Curricula of Certain NCATE-Approved and Non-NCATE-Approved Institutions in the United States. (The University of Tennessee, 1970.) DAI 31A: 4596-4597; March 1971.

Fox, Lynn Hussey. Facilitating the Development of Mathematical Talent in Young Women. (The Johns Hopkins University, 1974.) DAI 35B: 3553; January 1975.

Freda, James Anthony. Measures of Socioecondric Complexities of California Scho ${ }^{*}$ Communities as Related to Student Achievement. (United States Internatíonal University, 1976.) DÁI -37A: 1p3; July 1976.

Fryè, Shirley and LeRoy C. Dalton. The Roles and Responsibilities of Individuals and Institutions. In An Inservice Handbook for Mathematics Education (Alan Osborne, editor) 2 Reston, Virginia: National Council of Teachers of Mathematics; 1977.

Furno, Orlando F. The Projection of Schorl Quality from Expenditure Level. (Teachers College, Colum bia University, 1956.) DA 16: 1835; Feł̌ruary 1956 ".

Furno, Orlando F. and Gtarge I. Collins. Class Size and Pupil Learning. Balťimore, Maryland: Baltimore City Public Schools, October 1967. ED 025003

153 p.
Fuson, Karen. The Effects on Preservice Elementary Teachers of Learning Mathematiess and Means of Teaching Mathematics Through the Active * Manipulation of, Materials. Journal for Research in Mathematics. Education 6: 51-63; January 1975.

Garnetti, Emma. Whitlock. A-S tuay of the Relationship Between the Mathematics Knowledge and the Mathematics Preparation of Undergraduate Elementary Edutation Májons, (George Peabody Ccllége for Teachers, 1968.) DAI - 30AA:, 1448; Dctober 1969.

Gates, James Oscar, Jr. A Survey of Time Allotment Practices in the Elementaxy School as Reported by Classroom Teachers in Thirty Public School Systems in Ok-lahoma. (The University of Oklahoma, 1968.) DA 29A: 2604: February 1969.
(Georgia). •Needs;Assessment Rackage: A: Aanta: Georgia State Department of Education; Office of Tnstructional Services, 1974. ED 107695

Gertler, Dianne B. and Linda A. Barker. Patterns of Course Offerings and Enrollments in Public Secondary Schools, 1970-71. Washington: National Center for Education Statistics, 1972. ED 095. 774.

Gibb, E. Glenadine, Houston T. Karnes, and Lynwood F. Wren. The Education of Teachexs of Mathematics ${ }_{2}$ In A History of Mathematics Education in the United States and C'anada (Phillip S.' Jones, editor). Thirty-second Yearbook. Whashington: National Council of Teachers of Mathematics, / 1970.*

Gibb, E. Glenadine; et al. Mathematics. In Encyclopedia of Educational Research (Chesłer Háris, editor). Third Edition. New York: Macmillan 1960: Pp. 796-807.
Gibney, ThomatyC., John ${ }^{\circ}$. Ginther, and Fred L. Plgge. The Mathematical : Undérstandings odreservice and In-service Teachers. Arithmetic Teacher 17: 155-162; February 1970(a).

Gibney, Thomas C., John \dot{L}. Ginther, and Fred L. Pigge. That Influences tf: Mathematical Understanding of Elementary School Teachers?
E1. Sch. J. 70: 367-372; Apri.í 1970 (b).
Gillespie, Walter L. A Letter to the Mathematics and Science Education. Comunities, 28 November 1975. Washington: National Science Foundatior: 1975.
Ginsbury, Alan L. and Neil J. Killalea. Patterns of Federal Aid to School Districts: "Technical Analysis Paper. Washington: Department of.
Health, Education and Wel.fare, Office of the Assistant Secretary for Planning and Evaluation, February 1975.
ED 103951 . . 105 p .
$\stackrel{-}{-}$
Glennon, Vincent, J. and Leroy G. Callahan. Elementary School Mathematics:
A Guide to. Curient Research. Washington; D.C.: Association for Supervision and Curriculum Development, NEA, 1968, 1975.

Glennon, Vincent J: and C.W. Hunnicuti. . What Does Research Say About Ariti:metic? Washington; D.C.: Association for Supervision and Curriculum Development,,NEA, 1958.

Goldstèin, Avram. Does Homework Help? A Review of Research. E1. Sch. - J. 60: 212-224; Jaisilary 1960.

Good, Thomas L. and Douglias A. Grouws. Process-Product Relationships in Fourth Grade Mathematics Classrooms. 1975.

$$
\text { SE } 21143
$$

Goodlad, John I. What Goes on in Our Schools? Educational Researcher 6: 3-6; March 1977.

Goodlad, John I:, M. Frances Klein, and Associates, Behind the classrooh Door. Worthington, Chio: Charles A. Jones, 1970.

Gorman, Charles J. A Critical. Ańalysis of Research on Written Problems in Elementary School Mathematics. (University of Pittsburgh, 196\%.) DA 28A: 4818-48.19; J'Ine 1968.
Graening, John Jay. An Evaluation of a Secondary Mathenatics. Teacher Education Program Emphasizing School Experiences in Contrasting Cultural Settings. (The Oilio State University; 1971.) DAI 32A: 3838-3839; January 1972.

Gray, James Harold. A Follow-Up Study of the National Science Foundation Summer Institutes for Secondary Teachers of Science and Mathematics Held at the University of Mississippi, 1957-1969. (Th2 University \& of Mississippi, 1970.) DAI 31A: 4597:- yarch 1971.
∞

Green, Robert Wesley. A Survey of the Mathematical Instructional Materials Used in Teaching Culturally Disadvantaged Children Grades 1 Through 6 Throughout the United States. (Indiana University, 1969.) DAI 31A: 1101; September 1970.

Greene, John F, and others. The Effect of Extended In-service Training Curricula Upon the Mathematics Achievement and Attitudes of elementary Teachers 1976. ED 123091.

31 p.
Gregory, Johr W. "A Study of the Impact of the Verbal Environment in Mathematics Classrooms on Seventh Grade Students' Logical Abilities. Final Report. Columbus, Ohio: The Ohio State University, 1972. ED 054178

116 p.
Gridley, John David, Jr. An Empirical Investigation of the Construct of Mathematics Achievement in the Elementary Grades Based on the Method of Homogeneous Keying. (Fordham University, 1971.) DAI 32A: 1914; October 1971.

Gurwitz, Aaror S. Urban Schools and Equality of Educacional Opportunity in New Jersey: A Report of the New Jersey Education Reform Project. Washington: "National Urban Coalition and New Jersey: Greater Newark Urban Coalition, 1974.
ED 097396
26 p.
Haigh, William E. Preparation of Senior High School Mathematics Teachers in South Dakota. (Indiana University, 1970.) DAI 31A: 2772; December 1970.

Haladyna, Tom. Statewide Survey of the Impact of QSME: Monmouth, Oregon: Teaching Research, November 1975.

Halperin, Marcia S. First-Grade Teachers' Goals and Children's Developing / Perceptions of School. Journal of Educational Psỳchology. 68: 636648; October 1976.

- Hammons, Donald Wayne. Student Achievement in Selected Aroas of Arithmetic During Transition from Traditional. To Kodern Mathematics (1960-1959). (The Louisiana State University and Agricultural and Mechanical Collega, 1972.) DAI "33A: 2237; November 1972.

Hancock, John David. The Evolution of the Secondary Mathematics Curriculum: A. Critique. (Stanford University, 1961.) DA 22: 501-502; Auguse 1961.

Hand, Edith Frances. Evaluation of a Large-Scale Mathematics In-Service Institute for Elementary Teachers. (University of Georgia, 1967.) DA 28A: 2118-2119; December 1967.

Handrick, Fannie A. Delaware Educational Assessment Program 1974-75. Report of the Spring 1975 Testing Program. Dover: Delaware State Department of Public Instruction--Research, Plannirg, and Evaluation, 'Vovember 1975. 2D 118608

Hansen, Viggo Petter. Elementary Algebra Achievement as Related to Class Length and Teaching Method. (University of Minnesata, 1962.) DA 24: 198; July 1953.

Harding, Robert Neil. The Objectives of lathematic's Education in Secondary Schools as Perceived Dy Various Concerned Groups. (The University of Neḅraska, 1568.) DA 29A: 4375-4376; June 1969.

Harnischfeger, Annegret and David E. Wiley. Achievement Test Score Decline: Do We Need to Worry? Chic̣ago: CEMREL, Inc., 1975.

Hacer, Mary Ain and Robert B. Kane. The Cloze 'Proqedure as a wasure of Mathematical Eñglish. J. Res. Math. Ed. 6: 121-127; March 1975.

Hatíirid, Larry L. Computers in Mathematics Instruction: In Reviews of - Recent Research in Mathematics Education, SMSG Studies in Mathematics Vol. 19 (James W. Wilson and L. Ray Carry, editors). Stanford: Califo̊rṇia: Stanford University, 1969.. Pp: 129-152.

Hatfield, Larry L. CompuLer-Extended Problem Solving and Enquiry. Columbus, Ohio: ERIC-Information Analysis Ce.iter for Science, Mathematics, and Environmental Education, February 1973. ED 077732
-39 p.
(Hawaii). Item Study Summary Report Sequential Tests of Educational Pro- 入 gress (Step): Reading, Mathematics and Writing for Grades $4,6,8$, 10 and 12 by State and District School Year 1970-1971. Research Report No. 77. Honolulu: Hawail State Department of Education, Office of Instructional Services, 1971. ED 074441
(Hawaii). Summary Report of Statewide Testing Program 1971-1972. Revaluation Report No. 81. Honolulu: Hawail State Department of Education, 0ffice of Instructional Serives, 1972. ED 081839

Hawthorne, Phyllis. Legislation by the States: Accountability and Assessment in Education, Revised. Denver: Colorado State Department of Education, Cooperative Accountab:1ity Project and Madison: Wisconsin State Department of Public Instruction, State Education Accountability Repository, August 1973. ED 084630

78 p.
Hawthorne, Phyllis. Legislation by the States: Accountability and Assessment in Education. Revised. Report No. 2. Bualetin No. 3100. Denver: Colorado State Department of Education; Cooperative Accountability Project and Madjson: Wi consin State Departilent of Public Instruction, Division of Management Planning ?ervices, November 1974.

ED 098681

Hawthorne, Robert R. Curricưiar Provisions in Iowa High Schools from 1954 to 1964. (The University of Iowa, 1966.) DA 27A: 1200-1201; November 1966.

Hayes, Edward John. Relationships Between Self-Concept of Arithmetic Ability and Arithmetic Achievemenc in a Selected Group of Sixth Grade SLudents. (Michigan Šate University, 196\%) DA 88A: 3999; April 1968.

Heideman, Robert G. National Science Foundation Academic Yefir Insilitutes - for Secondary School Teachers of Science and Mathematics Held at the University of Wisconsin 1956-57 Through 1958-59. "An Evaluation of the Background, Training, Placement, and Ocçupational Mobility's of the Participants." (The University of Wisconsin, 1962.) DA 23: 2025; December 1962.

Heikkinen, Donald David. A Study of Factors Related to Acceleration in the Study of Mathematics. (The University of Michigan, 1964.) DA 25: 3431; December 1964.

Heimer, Ralph T. Conditions of Learning in Mathematics: Sequence Theory Development. Rev. of Ed. Res. 39: 509-52^; October 1969.

Heller, Marc S. Teacher Approval and Disapproval by Ability Grouping. (Columbia University, 1973.) DAI 35A: 889; Auğust 1974.

Helper;, John W. Assessing Education: Cutcomes in Colorado. Denver: Colorado State Department or Education, May 1970. ED 050135
128.p.

Henderson, Geozge L. and others. Guidelines to Mathematics, 6-8. Key Content Objectives, Student Behavioral Objectives, and Other Topiis Related to Grade 6-8 Mathematics. Madison: Wisconsin State Department of Public Instruction, c. 1971. ED 051186
$44^{\circ} \mathrm{p}$.
Henderson, George L. and others. Winconsin Statewide Assessaient Mathematics. An Exemplary Mathematics Program Grades*K-8 and a Hierarchy nf Student Behavioral Objectives K-8. Madison: Wisconsin State Department of Education, c. 1973. ED 069475

38 p.
Henrie, Samuel N. A Sourcebook of Elementary Curricula Programs and Projects. San Francisco, California: Far East Laboratory for Educational Resparch and Development, 1974. ED 098734 , 493 p.

Hernandez, Norma G. A Model of Classroom Discourse for Use in Conducting Aptitude-- Treatment Interaction Studies. Journal for Research in Mathematics Education 4: 1ól-169; May 1973.

Herriot, Sarah Florence Tribble. The Secondary Scnool "Slow-Learner" in Mathematics. (Stanforid University, 1967.) DA 28A: 3072-3073; February 1968.

Hershkowitz, Martin, Mohamad A. A. Shami, and Thomas E., Rowan. Mathematics Goals: What Does the Public Want? Sch. Sci. Math. 75: 723-728; December 1975.

Hess, Robert D. and Maria D. Tenezakis. Selected Findings from "The Computer as a Socializing Agent: Some Socioaffective Outcomes of DAI." AV Communication Review 3; 311-325; Fall 1973.

Hieronymus; A.N. 1940-1965 Achievement Comparison Project: Reports of Then and Now Comparisons and Project Description. Iowa Testing Frograms, The University-of Iowa, 1965. Reported in Roderick, 1974.

Hieronymus, A.N. Reports of Comparisons of 1966 to 1972 Iowa Mediars Grade-Equivalents and Lowa Median Percentile Ranks to 1965 Levels of Performance. Io': : Testing Programs, The University of Iowa, 1973. Reported in Rodex: Ci , 1974.

Higgins, Jon L. (Editor). Promising Practices in Mathematics Teacher Education. Columbus, Ohio: ERIC/Information Analjsis Center. for Science, Mathematics, and Environmental Educatior, 1972.
'Hoepfner, Ralph. Published Tests and the Needs of Educationai Accountability. Educational \& Psychological Measurement 34: 103-109;. Spring 1974. .

Hoffer, Alan R. Conference on Mathematics Resource Materials (Eugene (iregon, June 9-12, 1974). Eugene: University of Oregon, Department of Mathematics, September 1974. ED 103273
Hoffman, Joseph R. and Robert F. Tardif. A.Plan for Improving Mathematics Instruction in California Elementary Schools. Final Report of the Mathematics Educatior Task Force. Uacramento: California State Department of Education, 1976. ED 129594

Hoffman, Nathan. Genmetry in Mathematics: A Survey of Some Recent Proposals for the Content of Secondary School Geometry. (University of Montana, 1973.) DAI 34A: 3026; December 197?.

Holt, John, How Children Fail. New Yolk: Pitman, 1964.
Hooten, Joseph R., Jr. Journai of Research and Develppment in Education-Proceedings of National Conference in Needed Reseeareh in Mathematics Education, Voi: 1, Fall 1967. Athens: University ef Georgia, 1967. ED 022674

142 p.

Horn, Billy Dean. A Study of Mathematics Achievement of Selected Sixth Grade Pupils in the Public Schools of Topeka. (University of Kansas, 1969.) DAI 30A: 2254; December 1969.

House, Peggy A., Markita L. Gulifver, and Susan F. Knoblauch. On Meeting the Needs of the Mathematically Talented: A Call to Action. Math. Teach. 70: 222-228; March 1977.

Howard, Edward H. and Thomas E. Ogg. Nevada Master Plan: Providing for Improved Educational Opportunities. Report of a Study. Denver: Improving State I adership in Education; Carson City: Nevada State Departmer: of Education; and Washington: Office of Education, January 1971.
ED 079822.
26 p.
Huber, Sister Mary Lawrence. Developments in Mathevatics Education at the Junior High school Level Since the Turn of the Century. (The University of Buffalo, 1962.) DA 23: 292\%-2928; February 1963.

Hughes, M. M. and others. Assessment of the Quality of Teaching in Elementary Schools. Salt Lake City: University of Utah, 1959.

Humgermen, Ann D. 1965-1575: Achievement and Analysis of Computation Skills, Ten Years Later: April 1975.

14 p.
Hunklex, Richard. A New Look at the Implementation of the CUPM Level I Recommendations. Sch. Sci. Math. 71: 423-425; May 1971.

Hinte. Beryl Eleanor. Demonstrative Geometry During the Twentieth Century: An Account of the Various Sequences Used in the Subject Matter of Demonstrative Geometry from 1900 no the Present Time. (New York University, 1965.) DA 26: 3979; January 1966.

Hunter, Marie L. Group Effect on Self-Concept and Math Performance. (California School of Professional Psychology, Los Angeles, 1973.) DAI 34B: 5169; April 197.4.

Husen, Torsten and Others. International Study of Achievement in Mathematics, A Compaiise of Twelve Countri.es, Volumes I and II., Hamburg, West Germany: International Project for the Evaluation of Educational Ac̈niever.ent, 1967.
ED 015129304 p.
) ED 015130
368 p.
Husen, Torsten. Implications of IEA findings for the Philosophy of Comprehenstive fducation. Paper Presented at the Conference on EducaZional Achievement, Harvard University, Cambridge, Massachusetts, Novenber 1973. ED 088980 . 39 p .
(IME). Investigations in Mathematics Education: Special Issue: Critical Analyses of the NSLMA Reports. Volume 8, Summer 1975.
(IME). Investigations in Mathematics Education. Special Issue on the Mathematically Talented. Volume 10, Fall 1977.

Irby, Bobby Newell. A Follow-Up Study of the Participants of the National Science Foundation Academic Year Institutes for High School Teachers - of Science and Mathematics Held at the University of Mississippi, 1961-36. (The University of Mississippi, 1967.) DA 28A: 2120; I acember 1967.

Jamisou, Dean, Patrick Suppes, and Stuart Wells. The Effectiveness of Alternative, Instructional Media:- A Survey. Rev. of Ed. Res, 44: .1-67; Winter 1974.

Jarvis, Oscar T. Time Allotment ReLationships to Pupil? Achievement in Arithmetic. Arith. Teach. 10: 248-250; May 1963.

Jarvis, Oscar. T. Arithmetic and S-jence Time Allotment Practices in Intermediate Glades. . Sch. Sci. Math. 66: 322-324; April 1966.

Jencks, Christa her S. and Marsha D. Brown. Effects of High Schools on Their Students. Harvard Ed. R. 45: 273-324; August 1975.

Johnson, Carl Shepard. An Analysis of the Required Mathematical Preparation for Secondary School Mathematics Teachers in the United states. (Kansas State University, 1975.) DAI 36A: 5897; March 1976. See also ED 12819619 p.

Johnson, Roger•Thornten, Jr. A Comparison of Categorizing Ability in High and Low Socioeconomic Kindergarteners. (University of California Berkeley, 1969.) DA 31ء: 225; July 1970.

Johnston, A. Montgomery. A Survey of Teaching Practices-Arithmetic in Tennessee in the First Eighth Grades. Arith. Teach. 9: 42j-43 4 ; December 1962.

Joliey, Paul Wiseman. A Method of Evaluating an Objective of art NSFAYI: The Effect of the 1969-1970 Florida State Unf.versity Academic Year Institute Upon Its Participant's Ability to Read Pertinent Mathematical Mat $\in \mathscr{i}$ ils. (The Florida State University, i971.) UAI 32A: 6270; May 1972.

Johnes. Chancey 0.; Mildred R. Keen, and Howard E. 'taylor. Ali Overview: of the IGatnematics ichievament Tests Offered in the Admissions Testing Program ci the College Entrance Examination Board. Math. Teach. 70: 197-209; March 1977.

Jones, Phillip S. (Editor). A History of Mathematics Education in the United States and Canada. Thirty-second Yearbook. Washington: National Council of Teachers of Mathematics, 1970.
 Reaction: 1945-Present. In A History of Mathematics Education in the United States and Canada (Phillip S. Jones, editori. Thirtysecond Yearbook. Washington: National Council of Teacher oi Mathematics, 1970. Pp. 67-89.

Joyner, Robert N. The Effect on an NSF-CCSS Project on Junior High School Student Mathematical Achievement and Attitude Toward Machematics. (The-Florida State University, 1973.) DAI 34A: 5780; March 1974.
(JRME). Journal for Research in Mathematics Education. Special Issue: International Stüdy of Achicvement in Mathematics. Volume 2, March 1971.

Kahn, Henry Frank. A Study of the Manner in Which Selected Topics in Elementary Algehra Were Presented to Students in America Between $190 C$ and 1970 as Revealed in Selected Commercially Published Textbooks. (Temple Unirersity, 1974.) DAI 35. B: 1320-1321; September 1274.
(Kansas). State Educational Evaluation of Kansas. Report of Project SEEK. Kansas State Department of Education, April 1970.

Keating, Daniel P. (Editor). Intellectual Talent: Research and Development. Baltimore: Johns Hopkirs University Press, 1976.

Kelley, Charles Edward. Trends in Secondary School Mathematics Education, ¿955 to 1960. (University of M-ssouri, 1960.) DA 21: 1423-1424; December 1960.

Kelley, John L., anã others. Mathematics Frogram, K-8, 1967-1968 Straids Report: Part 2. Sacramento: California State Department of Education, 1969.? ED 022676

Kellogg, Thendore E. and Donovai A. Johnson. Mathematics in the Seconidary Schcol. . R. Zd. Res. 31: 272-288; June 1961.
Kendig, Thomas E. Pénnsylvania's Educational Quality As̀sessment: The First Step to Educational Change. Harrisburg: Pennsylvania State Department of Education, Bureau of Educational Quali:y Assessment. Paper presinted at the Annual Meeting of the American Educational Research Association, Chicago, Illinois, 1974: ED $09 \mathrm{C} \cdot 252$. 9 p .
(Kentucky): The Kentucky Needs Assessment Study, Thase II. Pilot Project: Developing and Field Testing Performance Measures in Selected School Districts for School Year 1970-71. Frankfort:

- Kentucky State Department of Education, 1971. ED 081793

8 p.
Kester, Scott Woodrow. The Coumunication of Teacher Expectations and Their Effects on the Achievement and Attitudes of Secondary School Pupils. (The University of Oklahoma, 1969.) DAI 30A: 1434-1435; Oetober 1969.
Kierèn, Thomaśs E. Activity Learning. R. Ed. Rés. 39: 509-522; October 1969.

Kieren, Thomas E. Manipulative Activity in Mathematics Learning. J.
$? \quad$ Res. Math. Ed. 2: 2?8-234; Maxy 1971,
Kieren, Thomas E. Research on Computers in Mathematics Education. Columbus, Ohib: ERIC/Information Analysis Center for Sciénce, Mathematics, and Environmental Education, April 1973.
ED 077 i34 43 p .
Kilpatrick, Jeremy. Problem-solving and Creative. Behavior in Mathematics. In Reviews of Recent Research in Mathematics Education, SMSG Studies in Mathematics, Volume 19 (Janes W. Wilson and L. Ray Carry, editors). Stanford, California: Stanford University, 1969(a). PD. 153-187. See also: Review of Educational Research 39: 523-534; October 1969(b).
Klein, Stephen P. An Evaluation of New Mexicr's Educational Priorities. Paper presented at meeting of Western Psychological Association, Portland, Oregon, April 1972.
Éd 077938 -
11 p.

Kline, Morris; Why Johnny Can't Add: The Failure of the New Math' New Yórk: St. Martin's Press, 1973.

Knaupp, Jonathan. Are Childzen's Attitudes Toward Learning Arithmetic Really Important? Sch. Sci. And Math. 73: 9-15; January 1973.

Koch, Dale Roy. Concept of Self and Mathemat jcs Achievement. (Auburn University, 1972.) DAI 33A: 1081; Septembeti 19721
Kohl, Herbert. 36 Children, New York: The Times Mirror Co., New

- American Library, 1967.
.Kozak, Michazl/R. A Critical Analysis of Individualized Instruction ince 1944: (Texas A\&M Universițy, 1974.) DA 35A: 2518-5219; February, 1975.

Kozol, Jonathan. `Death at an Ear? y Age. New York: Houghton Mifflin, 1967.

Krathwohl, David.R., Benjamin S. Bloom, and Bertram B. Masia. Taxonomy of Educational Objectives: The Classification of Educational Goal.s. Handbook II: Affective Domain. New York: David McKay, 1964.

Krause, Marina Caroline. The Modern Mathematics Movement: © © volution and Implications. (Arizona State University, 1969.) DA 29A: 2539; February 1969.

Krieghbaum, Hillier and Hugh Rawsion. An Investment in Knowledge. New York: New York University Press, 1969. ED 044294 - . * 340 p.

Lackner, fois M. Teaching Machines and Programm d Instrucrion. AV Comr:nicarions Review 115: 181-198; Summer 1967.

Lawson, John Kerry. ALhievement Differences in Fourth Grade Under Two Time Allotments and Two Sequences for introducing Multiplication ?acts. (University of Califoraia, Rerkeley, 1966.) DA 27A: '995-996; October 1966.

Lefkowitz, Ruth S. The First Nine Years--A Study of the Advanced Placement Program in Mathematics. J. for Res. in Math. Ed. 2: 23-35; January 1971.
Leonard, Harcld A. Difficulties Encountered by Elementary Algebra Students in Solving Equations in Une Unknown--A Diagnosis of Errors and a . Comparison After Forty Years. (The Ohio State University, 1966.) DA 27A: 3778; May 1967.

Lightner, James Edward. The Effect of the Pecommendations of the Committee on the Undergraduate Program i.l Mathematics upon the Mathematics Curricula of the Colleges of Maryland. (The Ohio State University, 1.968.) DA 29A: 1478; November 1968.

Lockarci, David (Editor). Twenty Years of Science and Mathematics Curriculum ievelopment. Tentil Report of the International Clearinghouse on Ficience and Mathenatics Curricular Developments. College Park, Maryland: Science Teaching Center, University of Maryland, 1977°. :
Lockheed, Marlaine E. Beginning Teacher Evaluation Study: Phase II, 1973-74, Final Report: Vol 2 Some Determinants and Consequences of Teacher Expectation Concerning Pupil Performance. Princeton, New Jersey: Educational Testing Servjcen 1976.

Magers, Dexter. Letter of 25 May 1977.

Mahan, Elizabeth Anne. A Study nf the Verbal Behavior of Four Student Teachers Teaching Selected Coometric Concepts to Kindergarten an Children. (Columbia University, 1970.) DAI .31A: 3392-3393; Jenuary 1971.

Marliave, Richard, Charles W.. Fisher, and Nikola N. Filby, Alternative Procedures for Collesting Instructional Time Datà: When Can You Ask the Teacher and When Must You Observe for Yourself? " 1976. ED 137 380. . - . 120 p.

Martinen, Gordon David. A Study of the National Science Foundation Summer Institutes in Science and Mathematics Held at the University of Idaho from 1957 Through 1964 and Their Impact on Professional " Activities of the Recipients. (University of Idaho, 1967.) DA 28A: 2446-2447; January 1968.
\therefore (Maryland). Maryland Accountability Program Report, School, Year 19731974. Baltimore: Maryland, State Department of Education and Rockville: Westat Research, Inc., January 1975 (a).
(Maryland). Summary Highlights: Maryland Accountability Program, School Year 1973-1974. Baltimore: Maryland State Department. of Education and Rockvili.e: Westat Research, Inc., January 1975 (b) ED 118635 184 p.
(Maryland). Maryland Accountability Program Report--Year 2, School Year 1974-1975. Baltimore: . Maryland State Department of Education and Rockville: Westat Research, Inc., January 1976: ED 118638 . . 552 p.
(Massachusetts). Quality Education for the High Schools in Massachusetts. A Study of the Comprehensive High School in Massachusetts. Boston: Massachusetts Advisory Council or Education, April 1971. ED 109.769 326 p.

Maura, Carl. A Survey of the Presentation of Certain Topics in Ten Series of Arithmetic Textbooks. (University of Maryland, 1957.) DA "17: 1515-1516; July 1957.
${ }_{3}{ }^{3}$

- Maurer, Walface M. Competency-Based Teacher Certífication in the United States: A Working Paper of the Pennsyl"inia Competency-Assessment Certification Program. Harrisburg, Pennsylvania: State Department of Education, 1973. ED 087762
Mayor, John R. Issues and Directions. Arith. Teach. 13: 3.3-354; Niay . 1966.
-McCowan, Otis Blakely. An Analysis of the Content of Mathematics Courses
- Taken by Prospective Secondary School Mathematics Teachers in American Colleges and Universities Relative to Level III Recommendations of the Committee on the Undergraduate Program in Mathematics. (George Peabody College for Teachers, 1975.) DAI 36A: 5212; February 1976.

Mcianiel, Roland. The Identification and Description of Changes in Mathematics Programs in the Secondary Schools in Tennessee Which

- Have Used NDEA"Title III Funds. (The University of Tennessee, 1972.) DAI 33B: 5395-5396; May 1973.

McLaurghlin, Milbrey Wallin. Evaluation and Reform: The Elementary and Secondary Education Act of 1965, Title I. Cambridge, Massachusetts: Ballinger, 1975.
Mcl.aughline, Milbrey Wallin. ${ }^{\text {' Implementation as Mutual Adaptations: }}$ - Change in Classroom Organization. Teachers College Record 77: 339-351; February 1976.

McWhorter, Eugene W. The Small Electronic Calculator. Scientific American 234: 88-89; March 1976.

Meckes, Richard C. A Sludy to Ascertain the Instructional Index and Questioning Strategy of Mathematics Teachers in Grade 6, and to Determine Their Relatinnship to Professional Characteristics and Situational Factors. (Southern Illinojs University, 1971.) DAI 32A: 4245-4246: February 1972.

Mehrens, William. Technical Report: The Fifth Report of the 197,3-74 Michigan Educational Assessmenr Program. Linsing: Michigan 'State Department of Education--Research, Evaluation, and Assessment Services, 1975.: ED 120218

Messer, Stanl:y B. The Relation of Internal-External Control to Academic Performance. Child Devclopment 43: 1456-1462; December 1972.
(Michigan). 1970-71 Individual' Pupil Report: ${ }^{\text {² Explanatory Materials. }}$ Lansing? Michigan State Department of Education, April 1971(a). ED 053 217
.33 p.
(Michigan). Local District and School Report: Explanatory Materíals (The Third Report of the 1970-71 Michigan Educational Assessment $\frac{\text { Program) }}{1971(\mathrm{~b}) .}$ ED 059. 255°
(Michigan). Objectives and Procedures: The First Report of the 1971-72 Michigan Educational Assessment Program. Lansing: Michigan State Department of Education, October $1971(\mathrm{c})$. ED 059257

32 p.
(Michigan). Individual Pupil, Report: Explanatory Materials. The Second - Report of the 1971-72.Michigan Educational Assessment Program. Lansing: Michigan State Department of Education--Résearch, Evalution, and Assessment Services, April 1972 (a).
ED 104898
35 p.
(Michigan). Techinical Report: The Fifth Beport, of the 1971-72 Michigan Educational Assessment Program. Princeton, New Jersey: Educational Testing Service, November. 1972 (b). ED 104966
$68 / \mathrm{p}$
(Michigan). Individual Pupil Report: Explanatory Materials. The Second Report of the 1972-73 Michigan Educational Assessment Program: Lansing: Michigan State Department of Education--Research, Evaluation, and Assessment Services, April 1973(a). ED 104897

37 p.
(Michigan). Local District Results $\dot{\text { : }}$ The Fourth ?eport of the, 1972-73 Michigan Educational Assessment Program: . Lansing: Michigan State Department of Education--Research, Evaluation, and Assessment Services;' 1973(b). ED 104899
(Michigan). Technical Report: The Fifth Koport of the 1972-73 Michigan Educational Assessment, Program: Princeton, New Jersey: Educational Testing Service, March 1974 (a). ED 104967
(Michigan). Objectives and Procedures: The First Report of the 1974:75 Michigan Educational Assessment Program. . Lanring: Michigan State Department of Education-Research, Evaluation, and Assessment Services, August 1974(b). ED 120220

68 p.
(Michigan). State Summary of Results: 1973-74 Michigan Educational. Assessment Program. Lansing: Michigan Etate Department of Educa-tion--Research, Evaluation, and Assessment Services; 1974(c). ED 120242
(Michigan). State Summary of Results: 1974-75 Michigan Educational Assessnent Program. Lansing: Michigan State Depariment. of Educationx Resparch, Evaluation, and Assessment Services, March 1975(a). ED 117173

- Michigans. Objectives and. Procedures: The Eirst Report of the 1975-76.

Mịchigan EducacionalनAśsessmeint Program. Lansing: Michigan State . Department of Education--Research, Evaluation, and Assessment Services, . Iuty 1975 (b) :.,

Miller, G. H. How Much Time for Arithmetic? Arith. Teach. 5 : 256-259; Tove? 1958.
, Mil..ax, Rićard L. Individuảlized Instrúction in Mathematics: A Review of Research , iath. Teach. 69: 345-351; May 1976.

(Missouri).' A Summary of an Assessment of Fourth and Sixth Grade Basic Skills. Monterey, California! CTB/McGraw Hill and Jefferson Cit5Missouri State Department of Education, 1971(b).
ED 077990

- Montàgue, David 0. Arithmetic Concepts of Kindergarten Children in Contrasting Sqcio-economic Areas. E1. Sch. J. 64: 393-39.7; April 1964.
(Mơntana) . Recommendations for Improving Mathematics Education. Montana Council of Teachers of Mathematics, 1972 . ED 062212 18 p.

Moody,'Willíap Br., R.'Barker Bausell, and Joseph R., Jenkins. The Effect of class, Size on the Learning of Mathematics: A Parametric Study with Fourth-Grade Students. J. Res. Math. Ed. 4:; 170-176; Mav 1973.
'Moore, Bobbie; Dean. The Relationship of Fifth-Grade Students' SelfConcepts and Attitudes Toward Mathematics to Academic Achievement in i:...Anthmetical Computation. Concepts, and Application. (North Texas State Unfuersity, 1971.) DAI 32: 4425; Febrüary 1972.
Moore, Teddy ${ }_{\text {R }}$. A Comparis on of Secondary Mathematics Teachers. Participants land Non-Participants--in National Science Foundation Mathematics Institutes. (Utah State University; 1971.) DAI 32A:. 3843 ; January 1972.

Moran. Thomas Patrick. Significant Developments in the Use of Computers. in Schoof Mathematics: A Sourcebook for Administrators, Teachers, and Teacher Educators. (Columbia University, 1974.) DAI 35A: .$\dot{2} .204 ;$ October 1.974.

Morrison, Max. Iowa Assesument Report in-Mathematics, 1975=7.6 School Year. Des Moines: Iowa State Departmen' of Public Instruction, Division of Planning, Research, and Evalution, 1976. ED 125894
m.

Morrison, Shirley L. Instructional Expenditures and Learning Performance of Third Graders. in New York State. (Fordham University, 1973.) DAI 34.4: 2175; November 1973'.

- (NACOME) . Overview and Analysis of School Mathematics, Grades K-12. Washington: National Advisory Comittee on Mathematical Education, Conference Boärd of the Mathematical Sciences, 1975.
(NACSCS). Educational Innovation and Development: An Annual Report on - ESEA Title JiII. Washington: George Washington Uriversity, National Advisory Council on Supplementary Centers andiservices and Bureau, of
- Elementary and Secondary Education, DGEW/OE, March 1975.
- ED 1051.665 24 'p.
(NAEP) . Math Fundamentals: 'Selected Results from "the First•National Assessmant of Mathematics. Denver: National Assessment of Educational Progriess, Education Comission of the States, January 1975 (a). ED 111696
(NAEP). Consumer Math: Selected Results from the First Nat:Lonal Asses $3-$ ment of Mathematics. Denver: National Asisessment of Educational Progress, Education Commission of the States; January 1975 (b).

(NAEP). National Assessment of Educational Profress. The First National Assessment of Machematics: An Overivew. Wishington: National Center for Education Siatistics, October $19{ }^{\circ} 7$ (ć). ED 127198
(NAEP). Mathematics Technical Peport: Summary Volume. Deñver: National Assessment-of Educational Progress, Education Commission of the Státes, September 1976. ED 129636

右 181 p
(NASDTEC, AAAS) . Secondary School Science and Mathematics Teachers: Characteristics and Service Loads. National Association of State Directors to Teachers Education and the American Association of State Adv: acement of Science. Nashington: Govarnment Printing Office, 1961.
(NOER). Educational Research in America: Annual. Report, 1975. Washington: National Council on Educational Research, National Institute of Education; 1976.

(NCES): Digest of Education Statistics: 1960. Washingtion: Govarnment Printing. Offiç, 1960_{i}
(NCES). Selected Statistical Notes on American Education. Washington: National Center for Education Statistics, 1975.
(NCES). Digest of Education Statistics: 1975 Edition. Washington: Government Printing Office, 1976.
(NCSM) . Position Paper on Basic Mathematics Skills. Minneapolis, Minnesota: National Council of Supervisors of Mathematics, January 1977.
(NCTM). The Secondary Mathematics Curriculum. Report of the Secondary Curriculum Committee. Math. Teach. 52: 389-417; May 1959.
(NCTM). The Revolution in School Mathematics. Washington: National Council of Teachers of Mathematics, 1961.
(NCTM).- The Continuing Revolution in Mathematics. Washington: National Council of Teachers of Mathematics, 1968. See also: Bulletin of the National Association of Secondary School Principals, No. 327, April. 1968.
(NCTM). Guidelines for the Preparation of Teachers of Mathematics. Reston, Virginia: National Council of Teachers of Mathematics, 1973.
(NCTM). Position Statement on Minicalculators. Reston, Viginia: National Council of Teachers of Mathematics, 1974.

- (NEA). A New Look at Teacher'Supply and Demand. NEA Research Bülletin 44.: 117-123; December 1966.

Neale, Daniel C. The Role of Attitudes in Learning Mathematics. Arith. Teach. 16: 631-640; December 1969. *

Neatrour, Charles Raymond. Geometric Content in the Mathematics Curriculum of the Middle School. (Indiana University, 1968.) DA 29A: 35313532; April 1969.
 Funding fs. Education Knowledge Production and Utilization: A Composite Estimate, by Agency, Using Four Data Bases. Technical Report $\# 1$, R\&D System Studies. Washington: National Institute of Education, February 1977.

Nelison, Theodora Sophia. Factors Present in Effective Teaching of Secondary School Mathematics. (University of Nebraska Teachers College, 1959.) DA 20: 3207-3208; February 1960.
(New Jersey). Individualized Instruction and Statewide Assessment: The New Jersey Educational Assessment Program. February 1973. ED 074129 p.
(New Mexico). Evaluation and Assessment Unit. 1972-73 Annual Report. Santa Fe: New Mexico State Department of Education, 1973. ED 079422 . . 18 p.
(New Mexico). A Comparison of Priority Objectives Selected by Local Districts: 1973-74 School Year. Santa Fe: . New Mexico State Department of Education--Evaluation, Assessment, and Testing Unit,

- 1974. ED 095631 - 33 p.
(New York). New York State Pupil Evaluation Program. School Administrato $\hat{Q}^{\hat{2}} \mathrm{~s}$ Manual. Revised. Albany: New York State Education Department, Bureau of Pupil Testing and Advisory Services, June 1972. ED $071162 \quad{ }^{\circ} 61$ p.
(New York). Performance Indicators Workbsok: Edition I, for Calculating School District Performance in Elementary School Reading and Arithmetic.e Albàny: New York Statc Education Department, Bureau of School Programs Evaluation, March 1973. ED 080591

35 p.
(NIE). The National Institute of Education: A Brief Outline of Its History, Status̀, and Tentative Plans. Washington: National Institute of Education, February 1973(a). ED 072546 28 p.
(NIE). A Legislative History of the National Institute of Education. Washington: National Institute of Education, May 1973(b).. ED 106925 . 250 p.
(NIE). The NIE Conference on Basic Mathematical Skills and Learning (Euclid, Ohio; October•4-6, 1975). Volume I: Contribuced Position: Papers; Volume II: - Reports from the Working Groups. Washington: National Institute of Education, 1975. ED 125908 . 234 p.

- ED 125909

49 p.
(NIE). Catalog of NIE Education Products, 1975. Washington: National - Institute of Education, 1976(a).
(NIE). Databook: The Status of Education Research and Development in the United States, 1976. Washington: National Institute of Education, 1976 (b).
(NIE/NSF). Report of the Conference on Needed Research and Development on Hand-held Calculators in School Mathematics. Washington: National Institute of Education and National Science Foundation, 1977. ED 139665

Niemann, Donald Frederick. A Study of the Degree to Which Seventh, Eighth, and Ninth Grade Students Have Obtained Minimum Mathematical Competencies and Skills at Recommended by the National Council of Teachers of Mathematics. (The University of Nebraska-Lincoln, 1f,13.) DAI 34A: 7522; June 1974.

Noffsinger; Thomas and Virginia Dobbs. Teaching Arithmetic to Educable Mentally Retarded Children (Review). J. Ed. Res. 64: 177-184; December 1970.
Norris, Eleanor L. and ${ }^{\text {SJohn E }}$ E. Bowes (Editors). National Assessment. of Educational Progress, Mathematics Objectives. Ann Arbor, Michigan: National Assessment of Educational Progress, 1970. ED 063140

41 p.
(North Carolina). Mathematics, Grade 3. State Assessment of Educational Progress in North Carolina, 1973-74. Raleigh: North Caroilina State Department of Public Instruction, Divisịon of Research, November 1974; ED 108974

102 p.
(North Carolina). A Survey of Teachers and Principals: Grade 3. State Asséssment of Educational Progress in North Carolina, 1973-74. Raleigh : North Carolina State Department of Public Instruction, Division of Research, 1975.
ED 106294
111 p.
(NSF). Report of a Conference on Mathematics Education in the Inner City Schóols. Washingtoñ: National Science Foundation, March 1970(a). ED 083008 * 95 p.
(NSF). Science Education-The Task Ahead for the National Science Foundation:

- Report of the Advisory Committee for Science Education. Washingtion: Natioñal Science Foundation, March 1970(b).
(NSF). Staff Paper--Academic Year Study Program. Washington: National . Science Foundation, Division of Pre-College Education in Science, August 1972 .
(NSF). Programs for Improving Elementary and Secondařy School Education in Mathematics 1975.' Washington: National Science Foundation,
\% Division of Pre-College Education in Science, 1975. ED 107531

35 p.
(NSF). Projections of Degrees and Enrollment in Science and Engineering Fields to 1985. Washington: National Science Foundation,
Obourn, E.S. and K.F. Brown. Science and Mathematies Teachefs in PubNc High Schools. Washington: U.S. Department of Health, Education, and Welfare, 1963.
(OECD). New Thinking in School hathematics. Washington: Organization for Economic Cooperation and Development, 1961. ED 055895
(Oinio). What 125,000 Ohioans Want from Their Schools. Alternatives for Educational Redesign. Columbus: Ohio State Department of Education, 1973. ED 096745 - - 31 p.

Okada, Tetsuo, and others. Growth in Achievement for Different Racial, Regional and Socio-Econoric Groupings of Students. Washington: Office of Education (DHEW), Office of Program Planning and Evaluation, May 1969. ED 032211
0.1son, M.N. Identifying Predictors of Quality: An Examination of Eleven Interna? Classroom Variabies in Relation to a School System Criterion Measure. (Columbia University, 1970.) DAI "31A: 3226; January 1971.

Ordonez, Josefina Maniago. School-Related Attitudes of Title I Children in the District of Columbia Public Schools. (The George Washington University, 1971.) DAI 32Ạ: 1196; September 1971.
(Oregon). Education for Oregon Learners: Where We Stand. Results of the 1976 Assessment of Mathematics. Salem: Oregon State Department of Education, Division of Planning, Development, and Evaluation. December 1976 . ED 139664

Orr, David B. A Study of Non-applicant and Other Segments of the Secondary School Science and Mathematics Teacher Population. Card Téchnical Appendices, Volume 2. Washington: American Institutes for Research, 1962.

Osborne, Alan (Editor). An In-8ervice Handbook for Mathematics Education. Reston, Virginia: National Council of Teachers of Mathematics, 137%.
Osborne, Alaf and J. Michael Bowling. The Context of In-service Education. In An In-Service Handbook for Mathematics Education (Alan Osborne, editor). Reston, Virginia: National Council of Teachers of \mid Mathematics, 1977 (a).

Osborne, Alan and J. Michael Bowling. Supervisors and In-service Education. In An In-service Handbook for Mathematics Education (Alan Osborne, editor). Reston, Virginia: National Council of Teachers of Mathematica, ${ }^{5} 1977$ (b).
Osborfe, Alan and F. Joe Crosswhite. Forces and Issues Related to Curriculum and Instruction, 7-12. In A History of Mathematics Education in the United States and Canadà (Phillip S. Jones, editor). Thirty-second Yearbook. Washington: National Council of Teachers of Mathematics, 1970. Pp. 155-297.

Osborne, Alan and William H. Nibbelink. Directions of Curricuilar Change. In Mathematics Learning in Early Childhood (Joseph N. Payne, editor). Reston, Virginia: National Council of Teachers of Mathematics, 1975.

Paṣsy, ${ }^{r}$ Robert A. Sócio-economic Status and Mathematics Achievemnt. ".. Arith: Teach. 11: 469-470; November 1964.

Payne, Holland. What About Modern Programs in Mathematics? Math.' Teach. 58: 422-424; Maý 1965:
(Pennsylvania). Educational Quality Assessment. School Report: A Status Profile. Harrisburg:, Pennsylvania State Department of Education, 1971.
ED 068471
$\%$. 16 p.
Phelan, Edward John. Achievement, Self-Concept', Creativity and Attitude Toward School of Students in Formal and Informal Education Programis.

- (Fordham University, 1974.) DAI 35A: 1400-1401; September 1974.

Phillips, Harry L. and Marguerite Kluttz. Modern Mathematics and Your Child. Washington: U.S. Department of Health, Education, and Welfare, Office of Education, 1965.

Pigge, Fred Lee. An Experimental Comparison of Three Methods of Teaching Addition and Subtraction of Fractions in Grade Five. (Ohio Univérsity, 1964.) DA 25: 1789-1790, September 1964.
Pipho, 'Shris: Update V: Minimal Competency Testing. Denver: Education' Commission of the States, April 1977.

Poffenberger, Thomas and Donald A. Norton. Factors in the Formation of Attitudes Toward Mathematics. J. of Ed. Res. 52: 171-176; January 1959.

Porter, Déborah Elena and Barbara Wildemuth. State Assessment and Testing ${ }^{\circ}$ Programs: An Annotated ${ }^{\text {ERIC }}$ Bibliography. Volume I: General References. References. Volume II: Individual State Programs. Princeton, New Jersey: ERIC Clearinghouse on Tests, Measurement, and Evaluation. November 1976.
ED 141389 . . 85 p . 8
Posamentier, Alfred S. Mathematical Achievement and Attitudinal Differences Among Students and Attitudinal Differences Among Teachers Under .a Two-Semester and a Three-Semester Elementary Algebra Course.

- (Fordham University, 1973.): DAI 34A: 2.279-2280; November 1973.

Post, Thomas R., William H.-Ward, Jr., and Victor L. Willson. Research 'Paper \# 19: Differences Between Teachers' Self-Rating and Principal. and University Faculty's Idealized Mathematics Teacher as Measured by a Mathematics Inventoiy. NSF Project Grant No. GW-6800. Minneapolis; . University of Minnesota, 1976.

- Postlethwaite; T.N. International Association for the Evaluation of Educational Achievement (IEA) -. The Mathematics Study. J. for Res. In Math. Ed. 2: 69-103; March 1971.
Primavera, Louis H., William E. Simon, and Anne M. Primavera. The Relationship Between Self-Esteem and Academic Achievement: An Investigation of Sex Differences. Psychology in the Schools 11: 213-216; April 1974.

Price, Jack, Jonathan Kelley, and J. L. K. $=1$ ley. Description of Sürvey in Overview and Analysis of School Mathematics Grades K-12 (NACOME
-. Report). Washington: Conference Board of. the Mathematical Sciences, National Advisory Committee on Mathematical Education, 1975. Pp. 68ff.
Frice, Jack, John L. Kelley, and Jonathan Kelley". "New Math" Implementation: A Look Inside the ciassroom. Journal for Research in Mathematics Education 8: 323-331; November 1977.
Price G. Baley. Progress in Mathematics and Its' Implications for, Schools. In The Revolution in School Mathematics. Washington: National ${ }^{\circ}$ Council of Teachers of Mathematics, 1961.
Pyecha,' John N. Minnesota Educational Assessment: Á Comprêhensive Planning Study. Durham, N.C.: Research Trangle Institute, Center for Educational Research and Evalution and St. Paul: Minnesota State Department of Education, Division of Planning and Development, January 1973. ED 084657 . 108 p.

Quast, William Garfield. Geometry in the High Schools of the United States: An Historical Analysis from 1890 tơ 1966. (Riutgers - The State University, 1968.) DA 28,
Ramey, Joseph H. and Thomas W. Sileo. Compensatory Education on the Navajo Reservation. Albuquerque, New Mexico: Bureau of Indian Affairs, January 1975. ED 125 822. . \quad. 7 p.

Ray, Marilyn M. The Preparation of Teachers of Elementary School Mathematics in Louisiana. (University of Oklahoma, 1967.) DAI 28A: 2127; December 1967.

Reeve, William D: Mathematics for the Secondary School. New York: Henry Holt, 1954.
Reys, Robert E. Mathematicál Competencies of Elementary Education Majors. J. Ed. Res. ‘61: 265-266; February 1968(a).

Reys, Robert E. Mathematical Competencies of Preservife Elementary Schóol Teachers.a Sch. Sci. Math. 68: 302-308; April 1968(b).

Reys, Robert E. Mathematics, Multiple Embodiment, and Elementary Teachers. Arith. Teach. 19: 489-493; October 1972.

Reys, Robert E. and Fioyd G. Delong. Attitudes of Prospective Elementary School School Teachers Towards Arithmetic. Atith. Teach. 15: 363-366; April 1968.
Reys, Robert E., R.D. Kerr, and John W. Alspaugh. Mathematics Curriculum Change in Missouri Secondary Schools. School \& Conmunity 56: 6-7, 9; Deaember 1969.
.
Riedesel, C. Alan and Paul C. Burns. Research on the Teaching of Elemen-tary-School Mathematics. In Second Handbook of Research on Teaching .(Robert M. W. Travers, editor). Chicago: Rand McNally, 1973. Pp. 1149-1176.

Rhobertson, Howard Charl es. The Effects of the Discovery and fxpository Approach of Presenting and Teaching Selected Mathematical Principles and Relationships to Fourth Grade Pupils. . (University of Pittsburgh, 1970.) DAI 31A: 5278-5279; April 1971.

Roderick, Stephen Alan. A Comparative 'Study of Mathematics'Achievement by Stath Graders ana Eighth Graders, 1936 to 1973, 1951-55 to 1973, and 1965 to 1973. (The University of Iowa, 1973.) DAI 34A: 5601-5602;' March 1974.

Roeber, Edward D. and Robert J. Huyser. Michigan Educational Assessment

- Program: Grade 10 Limited Pilot Project. Lansing: Michigan State Department of Educatior--Research, Evaluations, and Assessment Services, 1975. ED 111832
12.1.

Roeber, Edward D.; and Others. Individual Student \& Classroom Reports: Explanatory Materials. The 2nd Report of the 1974-75 Michigar Educational Assessment Program. Lansing: Michigan State Department of Education-Reiesearch, Evaluation, and Assessment Seryices., October 1974. ED 120226 35 p.

Romberg; Thomas A. Current Research in Mathematics Education. R. Ed. a Res. 39. 473-492; October 1969.

Rosenbloom, Paul C., E. P. Torrance, and N.A. Fianders, Characteristics. of Mathematics Teachers that Affect Students' Learning. Minneapolis: University of Minnesota. September 1966. ED 021707

167 p.
Rosenshine, Barak and Norma Furst. The Use of Direct Observation to Study Teaching. In Second llandbook of Research on Teaching (Rohert M. W. Travers, editor). Chicago: Rand McNally, 1973.

Rosenthal, Robert and Lenord Jacobson. Pygmalion in the Classroor: - Teacher Expectation and Pupils' Intellectual Development. New Yörk: Holt., Rinehart and Winston, 1968.

Roye, James Paul. Modifications of Professional Characteristics of leacher Participants in National Science Foundation Sponsored Academic Year Institutes. (Arizona State University, 1968.) DA 29A: 503; August 1968.

Ruddell, Arden K., Wilbur Dutton, and John Reckzeh. Background Mathematics. for Elementary Teachers. In Instruction in Arithmetic (Foste: E. Grossnickle, editor). Twenty-fifth Yearbook. Washington: National ${ }_{g}$ Council of Teachers of Mathematics, 1960.

Rudnick, Jesse A. 'A Study of the College Preparatory Mathematics Curriculum of Fublic Secondary Schools in Selected Cities of the United States in the Academic Years 1957-58 and 1960-61. (Temple University, 1962.) DA 23: 3820; April 1962.

Rudolph, Eleanore L. A Survey of Data Processing and Computer Use in Instruction in Illinois Secondary Schools. (Northern Illinois University, 1972.) DAI 33A: 505-506; August 1972.

Ruud, Orville. Bloomington Mathematics Assessment: A Report to Citizens, Staff and School Board. Bloomington, Minnesota: Bloomington Public. Schools, November 1975. ED 124412 129 p.

Salopek, Thomas F. A Study of Academid Achievement and School District Characteristics. (State University of New York at Buffailo, 1973.)
8 DAI 34A: 6328-6329; April 1974.
Schaffter, Dorothy. The National Science, Foundation. New York: Praeger, 1969.

Schlessinger, Frederick Richard. A Study and Evaluation of Sponsored Programs' for High Scnool Science and Mathematics Teachers During the Summer of 1956, (The Ohio State University, 1957.) DA 18: 2093-2094; June 1958.

Schlessinger, Fred R. and Stanley L. Helgeson. National Programs*in Science and Mathematics Education. Sch. Sei. Math. 69: 633-643; October 1969.

Schoen, Harold L. Self-Paced Mathematics Instruction: How Effective Has It Been? Arith. Teach. 23: 90-96; February 1976 (a).
Schoen, Harold L. Self-Paced Mathematics Instruction: How Effective' Has It Been in Sec:ondary and Postsecondary Schools? Math. Teach. 69: 352-357; May 1976(b).

Schoen, Harold L. Applications of Research for Instructior in Sel \hat{f}-paced Mathewatics Classrooms. In Organizing For Kathematics ${ }^{\circ}$ Instruction (F. Joe Crossuhitè, eđditör). 1977 Yearbook. - Reston, Virginia: National Council of Teachers of Mathematics, 1977. Pp. 198-223.' ED 128204

55 p.
Schirader, William ह. Test Data as, Social Indicators. Statistical Report, ETS, 1968. Reported in Roderick, 1974.

Schubert, Agnes Lucille. Professional Behaviors and Teaching Attitudes of Mathematics Teachers in Püblic and Non-public High Schools. (Ohio University, 1974.) DDAI 35A:' 7776-7777; June 1975.

Schumaker, John Abraham. .Trends in the Education of Mathematics Teachers: A Study of the Education of Seniori High School Mathematics. Teachers In Selected Teachers. Education Institutions in the United States in ‥ the Period 1920-1958. (New.York University,..1959.) DA- 20: 40444045; Aprili 1960:

Schuler, Nevin Deily. The Effect of the Administration of Two Federal Laws on Secondary Mathematics in Selected States. (The Pennsylvania. State University, 1962.) DA 23; 4200-4201; May 1963.

Schweiker, Robert F. . Identifying an Educational Need: Survival Skills in Arithmetic. A Real Situation and an Example of the Process. Concord: New Hampshire State Department of Education, 1974. ED 097352

Shaw, Judith A. Reading Problems in Mathematics Texts. Augusti 1967. SD 016587

Shetler, Luther Leroy. Practices and Trends in the Teaching of Secondary School Mathematics̀. (Indiana University, 1958.) DA 19: 2033; February 1959.

Shipp, Donald Eugene. An Experimental. Study of Achievement in Arithmetic and the Time Allotted to Development of Meanings and Indiviual Pupil Practice.
September 1958. Septembét 1958.

Silberman, Charles. Crisis in the Classroom. New York: Random House; 1970.

Simon, Kenneth A. and Martin M. Frankel. Projections of Educational Statistics to 1983-84: 1974 Edizion. Washington: National Center for Education Statistics, 1975.

Simon, Kenneth A. and Marie G. Fullam. Projections of Educational Statistics to 1978-79: 1969 Edition. Washington: National Center

- for Education Statistics, 1970. ED 044828

177 p.

Skager, Rodney W.' Student Entry Skills and the Evaluation of Instrucrional Programs: A Case Study." Paper Presentad at the Annual Meeting of the American Educational Researth Assocation, Los Angeles, Californta, February 1969.
ED 029364
Sioan, Haccold and Bradley M. Loomer. Status of Twenty-Six Imovative Education Practices in Iowa Elementary Schools. Des Moines: Iowa Association of Eleqentary School Principals,. 1973. ED 090681

77 p.
(SMSG). Report of a Conference on Secondary School Mathematics, Vew Orleans, March 14-18, 1966. SMSG Working Paper: Stanford, California; School Mathematics. Study Group, 1966. ED 059875
(SMSG). A Conference on Mathematics for Gifted Students. Stanford, California: School Mathematics Study Group, October 1967. ED 083007
Smith, Diane Savage. The Relationship Between Classroom Means of Students' Perceptions of Teachers as Related to Classraom Racial Composition', and Grade Level, and the Effectsion Classroom Means of Academic

- Growth. (Western Michigan University; 1974.) DAI 35A: 3309;

Smith, Edwin Malcolm Ramsey. The Preparation of Elementary School Teachers in Indiana for the Emerging School Mathematics Curriculum. \therefore (Ball State University, 1971.9 DAI 32A: 1388-1389; September 1971.

Smith, Frank. The Readability of Junior High School Mathematics Textbooks. Math. Teach. 62: 289-291; April 1969.
Smith, Gérald Åsa. Contents of Mathematics Curriculumi for Seventh Grade: Practices and Recommended Program in Los Angeles. (University of. "Southern California, 1972.) DAI 33A: 560; August•1972.

Smith, Lee A. A Comparison of the Contents of State Adopted Arithmetic Textbooks with Contents of the Arithmetic Sections of Selectied Standardized Achievément Batteries. (The University، of' Oklahoma, 1965.) DA 26: 3785; January 1966.

Smith, Vernon and George H. Gallup. What the People Think About Their Schools: Gallup's Findings. Fastback Series No: 94. Bloomington, Indiana: Phi Delta Kappa Educational Foundation, 1977. ED 141400
Spitzer, Herbert F. What Research Ṡays About Teaching Arithmétic. Washington: National Education Association, $1962,1970$.

Spitzer, Heriert F. and Paul C. Burns. MatKematics in the Elementary School. R. Ed.. Res. 31: 248-249; June 1961:

Springer, Ceorge. Report of the Conference on thè K-12 Mathematics Curriculum, Snowmass, Colorado, June 21-June 24, 1973: Bloomirigton:: Indlana University, Mathematics Education Development Center and Washington: National Science Foưndation, June 1973. ED 081643
(SRA), Evaluation of the 1959 NSE.Summer Scienfe Training Program for Secondary School Students:- Report Nó. 2. (Contract NSF-C115). Chicago: Science kesearch Assoćlatęs; February. 1960.

Sianley, Julian C., Daniel P. Keating, and Lynn H. Fox (Editors). Mathemátical Talent: Disco very, Description, and Development. Baltimore: Johns Hopkins University Press, 1974:
Stake, Robert and, J. E. Easley, Jr. Ca'se Studies in 'Science Education. National Sciencé Eoundation Projects University: of Illinojer". (in progress).

Stevens, Deon Orlo. Añalysis of Change: * \dot{A} - Comparative Study of Mathematics Textbooks Published for Elementary School Children for the Eight Year Period 1956 to 1964. (University of Oregon, 1965.) DA 26: 5139-5140; March 1966:

Stickney, Benjamin Delano. Compensatory Education and Pupil Achievement. (University of Massachusetts, 1376.) DAI 37A: 2088; October 19ز6:

St .Imeier, Lois Mireault. Teachers' Judgments of Pupiz1s' Dependencie/ Self-Relifance. Characteristics Mode of Instruction and Their Relationship to Achievement: (State University of New York at Albany, 1972.) DAI. 34A: 1008; September 1973.

Stillwell, Lois Jean Ryan. An Investigation of the interrelationships Among Global-Self Concept, Role Self Concept and Achievexent: (Westeirn Reserve Univèrisity', 1965.) . DA ${ }^{\prime}$ 27A: 682; September 1966.
\because Stilwell, Merle Eugene. The Development and Analysis of a Category - System for Systematic Observation of Teacher. Pupil Interaction During Geometry Problem-Solving Activity. (Cornell University, 1967.) DA 28A: 3083; Feîruary 1968.

Stock, James Dunlap. A Study of the Relationship Between General Fund. Per Pupil Expenditures and Standardized Achievement Test Scores Among Selected Ohio School Districts. (Miami University, 1974.) DAI 35A: 1937; October 1974.

Stokes, fiester Christine Boyd. A Follow-Up Study of the Participants of the National Science Foundation Student Science Training Pricgrams in Mathematics at the University of Mississippi, 1957-1969, land at Jackson Strate College in 1967. (The University. of Mississippi; - 1970.) - DAI ` 31B: 5500-5501; March 1'971.

Sțone, Meredith K. 'Correlates of Teacher and Student Cognitive Style. Beginning Teacher Evaluation Study Phase II;*1973-74. Princeton, New Jersey: Educational Testing Service, 1976.
Story, Garth Elias, Jr. An Analysis of Relationships Bètween Personality -Types of Mathematics Teachers (7-12), as Measured by the Myers-- Briggs Type Indicator, and Selected Factors Related to Teach (Thé University of Florida, 1972.) DAT 33A: 3471; January 1973.
Strickmeier, Henry Bernard, Jr. An Analysis of Verbal feaching Behaviors - in Seventh Grade Misthematics Classes Grquped by Abtlity., (Uniiversity öf Texàs at $\begin{gathered}\text { Austin, 1970.) DAT 31A:: 3428; Jăhuary } 1971 . ~\end{gathered}$
Stubblefield, Betty İqne. . The Development of the' Mathematics Çurriculum in the Chicago Public High Schools fiom 1856° to 1962. (Northwestern. -University, 1964:)' DA 25: 3377-3378; December 1964.

Stuff́lebeam, Daniel L. Del Nod System in Science Education and Oregon System in Mathenatics Education: A Report Presented to the National Sceince Foundation: Volúges 1, 2 , and 3. Kalamazoo:
λ The Evaluation Center, Western Michigan University, 1974.
Suydam, Marilyn N. Teaching Mathematici to Dipadvantaged Pupils: A Summary of Research. Columbus, Ohio: ERIC Information Ainalysis Center for Seience, Mathematics, and Environme.stal Education, April 1971. ED 049934

8
68 p.
Suydam, Marilyn N. A Review of Research on Secondary School Mathematics. Columbus, Ohio: ERIC Information Analysis Center for Science, Mathematics, and Environmental Edication, 1972. ED 065313

Suydam, Marilyn N. A Categorized Listing of Research on Mathematics Edu-- cation (K-12) 1964-1973. Cö̈umbus, Ohio: ERIC Information Analysis. Center for Science, Mathematics, and Env̀ironmental Education, August 1974.

- . ED 097225

Suydam; Marilyn N. Research on Sofne Key Non-Cognitive" Variables in Mathematics Educãtion. In Schriftenıeihe dés IDM. Bielefeld, Gè̀many: \therefore Institut für Didaktik der Mathematii, Universität- Beilefeld, 1.975. Pô. 105-135. ED 133183

Suydam, Marilyn N. Electronic Hand Calculators: The Implications for Pre-College Education. Final Report. Washington: National Science - Foundation, February 1976. -ED 127205 . . 377 p.

Suydam, Marilyin N and Donald ${ }^{j}$. Dessart. Classroom Ideas from Research: -on Computational Sikills. Reston, Virginia: . National Council of Teachers of Mathematics, 1976.

Suydam, Marilyn N. and Jon L. Higgins. Review and Synthesis of Studies of Activity-Based Approaches to Mathematics-Teaching. NIE Contract No. 400-75-0063. Final Report, September 1976. (Also available from ${ }^{-}$ ERIC Center for Science, Mathematics; and Environmental Education.)

Susjam, Marilyn N. and C. Alan Riedeseí. Interpretive Study of Research
, and Development in Elementary School Mathematics, Volumes 1, 2, and

- 3. University Park, Pennsylvania: The Pennsylvania State University, June, 1969.
ED 030016
ED 030017 ED 030018

331 p.
232)p.
"Suydam, Marilyn N. and J. Fred Weaver. Using Research: A Key to Eleméntary School Mathematics. University Park, Pennsylvania: The Pennsylvania Statep University, 1970.
Spydam, Marilyn N. and J. Fred Weaver. "Mathematics and the 'Disadvantaged"' Columbus; Ohio: ERIC Information Analysis Center for Science and Mathematics Education, March 1971. ED 049063 8 p.

Suydam, Marilyn N. and J. Fred Weaver. Úsing Research ? A Key to Elementary School Mathematics. Columbus, Ohio: ERIC Information Analysis Center for Science, Mathematics, and Environmental Education, 1975. ED 120013

137 p.
Swadener, Marc. National Science Foundation Summer Institute in Mathematics at Indiana University, 1957 Through 196.9. (Indiana University, 1970.) DAI 31A: 2779; Decémber 1970.

Szabo, Michael and Others. Metric Education Activities in State and Territorial Departments of Education-A Survey. Columbus, Ohio: ERIC Information Analysis Center for Science, Mathematics, and Environmental Education, February -1975. ED 104719

48 p.
(Tallahassee Conference). Proceedings of the Conference on the Future of Mathematical Education. Tallahassee: Florida State University, 1973.

Tallmadge, G. Kasten. An Analysis of the Relationship Between Reading and Mathematics Achievement Gains and Per Pupil Expenditutes in Californ ia Title I Projects, Fiscal Year 1972. Final Report. Palo Alto, Calif: American Institutes for Research in the Behavioral Sciences, March 1973.
ED 074189
46 p.
Tanner, R. Thomas. Discovery as an Object, of Research. Sch. Sci. Math. 69: 647-655; October 1969.
(Texas). Sixth Grade Mathematics. A Needs Assessment Report. Austin: Texas Education Agency, 1972. ED 071879 . . . 132 p.

Thomas, Gregory P. The Assessment of Mathematics Education Needs Within the State of Oregon. Monmouth: Teaching Research, 1975(a). ED 109207 : . : 23 p.

Thomas, Gregory P. Field Impact Evaluation. Monmouth, Oregon: Teaching Research, December 1975(b).

Thompson, P. E. and R. L. Poe. A Report on the CURM Recommendations in the State of Texas. Am. Math. Monthly 75: 1107-1111; December 1968.

Thornton, Carol Dodd. An Evaluation of the Mathematics-Methods Program Involving the Study of Teaching Characteristics änd Pupil Achievement In Mathematics. J. for Res. in Math. Ed. 8: 17-25; January 1977.

Thurlow, Virginia. Mathematical Understanding of Seventh- and-EighthGrade Pupils, 1948 and 1963. Arith. Teach. 12: 43-44; January 1965.

Tilton, Carol Ann. Identification of the Mathematical Topics Essential for the Preparation of Prospective Secondary Mathematics Teachers. (University of South Carolina, 1976.) DAI 37A: 2103; October 1976.

Travers, K. J. Non-Intellective Correlates of Under- and Over-achievement in Grades 4 and 6. NLSMA Report, No. 19. Stanford, California: School Mathematics S.tudy Group, 1971.

Truenfels, Edith S, Offerings and Enrollments in Mathematics: Am. Math. Monthily 68: 1000-1003; December 1961.

Tumèr, Richard L. Design Problems in Research on Teaciling Strategies in Mathematics. In Teaching Strategies: Papers from a Research Workshop (Thomas J. Cooney, editor). Columbus, Ohio: ERIC Information Analysis Center for Science, Mathematics,' and Environmental Education, 1976.
(UNESCO). New Trehds in Mathematics Teaching, Volume III. Paris: United Nations Educational, Scientific, and Cultural Organization, 1972.

Unkel, Esther. A Study. of the Interaction of Socioeconomic Groups and Sex Factors with the Discrepancy Between Anticipated Achievement

- and Actual Achievement in Elementary School Mathematics. Arith. Teash. 13: 662-670; December 1966c
(Utah). Utah Quality İndicators. Third Report: How Good Are Utah Public Schools? Salt Lake City: Utah State Board of Education, 1974.

Vance, James H. and Thomas E. Kieren. Laboratory Settings in Mathematics: What Does Research Say to the Teacher? Arith. Teach. 18: 585-589; December 1971.

Van de Walle, John A. Attítudes and.Perceptions of Elementary Mathematics Possessed by Third and Sixth Grade Teachers as Related to Student Attitude and Achievement in Mathematics. (Ohio State University, - 1972). DAI 33A: 4254-4255; February 1973.

Vinŝkey, Mildred Louise: A Follow-up Study on the Implementation of the Recommendations of the Committee on the Undergraduate Program in Mathematics and Other Mathematics Study Groups within Selected Massachusetts Elementary School Classrooms. (University of Massachusetts, 1970.) DAI 31A: 5259; April 1971. '

Vinsonhaler, John F. and Ronald K. Boss. A Summary of Ten Major Studies on CAI Drill and Practice. Educational Technology 12: 29-32; Juily 1972. :
(Virginia). Standards of Quality and Objectives for Public Schools in Virginia 1976-78. Richmond: Department of Education, 1976.

Viahós, George E. ‘Acãdemic Achievement and Certain School District, Characteristics in Colorado, (University of Northern Colorado, 1974.) DAI 35B: 4554-4555; March 1975.

Warren, Jim. Educational Policy Recommendations from the Aspen. Institute. Ed.-Res. 6: 8-10; March 1977.
Washburne, Carleton. Mental Age and the Arithmetic Curriculum: A Summary of the Committee of Seven Grade Placement Investigations to Date. J. Ed. Res. 23: 210-231; March 1931...

Weaver, J. Fred and Glenadine Gibb. Mathematics in the Elementary School. R. Ed. Reś: 34: 273-285; June 1964.

Weaver, J. Fred and Marilyn N. Suydam. Meaningful Instruction in - Mathematics Education. Columbus, Ohio: ERIC/Information Analysis Center for Science, Mathematics, and Environmental Education, June 1972. ED 068329 - 73 p . 303

Weimer, Richard Charles. A Critical Analysis of the Discovery Versus Expository Research Studies Investigating Retention or Transfer Within the Areas of Science, Mathematics, Vocational Education, Language, and Geography from 1908 to the Present. (University of Illinois at Urbana-Champaign, 1974.) DAI 35A: 7185-7186; May 1975.

Whitaker, Mack L. A Study of Participants in Summer Mathematics Institutes Sponsored by the National Science Foundation. (The Florida State University, 1961.) DA 22: 2712; February 1962.

Wiersma, William, Fr. A Study of National Science Foundation Institutes: Mathematics Teacher's Reactions to Institute Programs and Effects of These Programs on High School Mathematics Courses. (The University of Wisconsin, I962.) DA 23: 1239-1240; October 1962..

Williams, S. Irene. A Progress Report on the Implementation of the . Recommendations of the Comisision on Mathematics. Math. Teach. 63: 461-468; October 1970. See also: ED 029787

Willoughby, Stephen S. Mathematics. In Encyclopedia of Educational Research (Robert L. Ebel, editor). Fourth Edition. New fork: 1
Willson, Victor L. and Antoine M. Garibaldi. The Association Between Teacher Participation in NSF Institutes and Student Achievement. Journal of Research in Science Teaching. 13: 431-439; 1976.

Wilson, Howard LeRoy. A Follow-Up on the Participants of the Mathematics Academic Year Institutes Held at the University of Illinois. (University of Illinois, 1966.) DA 27A: 2092-2093; Janüary 1967.

Wilson, James W., Leonard S. Cahen, and Edward G. Begle (editors). NLSMA Reports. Stanford, California: Schoól Mathematics Study Group, 1968-1972.
(Wisconsin). Interpretive Report on the Wisconsin State Mathematics Assessment. 1973 Pilot Year. :Volume 1 Report 2. Madison: Wisconsin State Department of Public Instruction, Division for Management and Planning Services, 1974(c). Ed 096328

71 p.
(Wisconsin). Learner Assessment: 1973 Pilot Year Summary Report Volume 1. Madison: Wisconsin State Department of Public Instruction, Division for Management and Planning Services, February ${ }_{s}$ 1974(a). ED 096320

36 p.
(Wisconsin). Wisconsin Learner Assessment: 1973 Pilot Year Report, Vol. 1, Report 1. Madison: Wisconsin State Department of Rublic Instruction, Division for Management and Planning Services, 1974(b). ED 096325

```
Wise, Wilmer E. and Others. Summary Report: 1974 Delaware.Educational Assessment Program. Dover: Delaware State Department of Public Instruction, January 1975. ED 104945
16 p.
```

Withnell, Melvin, Cleo. A Comparison of the Mathematical Understandings of Prospective Elementary Teachers in Colleges Having Different Mathematics Requirements. (The University of Michigan, 1967.) DA 28A: 4941; June 1968.

Wong, Ruth E.M. Geometry Preparation for High School Mathematics Teachers, Am. Math. Monthly .77: 70-78; January 1970.

Woods, Francis Pollard. A Study of Mathématics Education in the Public Secondary Schools of Louisiana. (The Louisiana State University and Agricultural and Mechanical College, 1972:) DAI 33A: 6604-6605; June 1973.

Yamamoto, Kaoru, Elizabeth C. Thomas, and Edward A. Karns. School-Related Attitudes in Middle-School Age Students. American Educational Research dournal 6:-191-206; March 1969.

Yasin, Said Taha. The Reform Movement in Secondary Mathematics-Its History and Present State. (Indiana University, 1961.) DA 22: 3084; March 1962.

Yon, John F. The Academic Year Institute for High School Teachers of Science and Mathematics at the Pennsyivania State University During the 1957-58 Term. (The Pennsylvania State University, 1959.) DA 20: 3216; February 1960.

Zahn, Karl Ceorge. The Optimum Ratio of Class Time to be Allotted to Developmental. Activities and to Individual Practice in Teaching Arithmetic. (University of Colorado, 1965.) DA 26: 6459; May 1966.

Zander, Betty Jo Jackson. Junior' High Students View Themselves as Learners: A Comparison Among Eighth Grade Students, (University of Minnesota, 1973.) DAI 34A: 2254-2255; November 1973.

Zeddies, Melvin Louis. The Effectiveness of a National Science Foundation .- Institute in Mathematics as Reflected in Teacher and Student Attitudes and Student Achievment. (United States International University, 1972:) DAI 33Á: 1067-1068; September 1972.

Zoll, Edward J. Research in Programmed Instruction in Mathematics. Math. Teach. 62: 103-110; Februarys 969.

[^0]: Some articles are' reports on previously, recorded dissertations.

[^1]: *The impact of the private sector (e.g., textbóok publisher?) is not denigrated; rather; that federal policy affects the fuli range of educational activities is the point at issue..

