ATHOR
TITLE
IHSTITUTION
SPONS IGENCY RBPORT HO pOB DATE CONTRACI nOTE

BDRS PRICE DRSCRIPIORS
．Heiss，Ìris R ．
1977 Mational Survey，of Science，Hathematics，and
Social Studies gducatión．日ighlights Report．
Research rriangle．Inst．；Durhan，M．C．Center for Educational peaparch ana svaluaticn．
Mational science Fourdation．Mashington，D．C． RTI／1266／06－02－F
Har 78
HSF－C－7619848
28p．：For related docunent；see SE． 024099
BP－$\$ 0.83$ 日C－$\$ 2.06$ Plus Postage．
Curriculua Research：Data Collection；\＃Bducational
Assessment；Bducetional Research＇；＊Blenentary Secondary bducation：＊Hathematics Education； ＊⿴囗十⺝丶ional Surveys：Reports；＊Science，Bducation：
＊Social Studies
IDENTIFIERS
National Science Foundation：Research Triangle Institute

ABSTRACT
Reported are the highlighte of． \bar{a} national survey of approximately 10,000 teachers，principals，superintendents，and state and local district supervisors in public．Catholic，and private schools throughout the country．The report includes a brief overvieu． of the sample desigp．instruent developaent，data collection，file preparation，and analysis procedures used in the surver as well as selected results of the study．Topics covered in the highlights report include．attendance at $n s p-s p o n s o r e d ~ i n s t i t u t e s, ~ c o r f e r e n c e s, ~$ and workshops；use of federalir－funded curriculun materials： superintendents opinions about federal support for curriculun development：teachers＂needs for assistance；instructional materials and fechniques；facilities，equipnent，and supplies；state and local district supervision：and factors which affect inetruction in science，iathematics，and social studies education．Eleven figures graphically illustrate the results of data collected by topic．
（Author／日a）
 ＊Reproductions supplied by EDgS are the best that can be ade ， ＊fron the original docunent．

」 ＊＊＊
"'PERMISSION. TO REPRODÚCE THIS MATERIAL*HAS BEEN GRANTED BY

Iris R. Weiss;

TO THE EDUCATIONAL RESOURCES INFORMATION CENTER (ERICI AND USERS OF THE ERIC SYSTEM "

U'S DEPARTMENT OF HEALTH. EDUCATION E WELFARE* NATIONAL INSTITUTE OF EDUCATION

THIS DOCUMENT, HAS EEEN REPRO. OUCEO EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION.ORIGIN. ATING $\perp T$ POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRE. SENT OFFICIAL NATIONAL INSTHTUTE OF EOUCATION POSITION OR POLICY

CENTER FOR EDUCATIONAL RESEARCH AND EVALUATION .

1977 NATIONAL SURVEY OF SCIENCE, MATHEMATICS, AND SOCIAL STUDIES EDUCATION
4. . by

Iris R. Weiss

\therefore Prepared for the
National Science Foundation

The material in this report is based upon work supported by the National Science Foundation under Contract No. C7619848. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the author and do not necessarily reflect the views of the National Science Foundation.

PART. I: INTRODUCTION

The l:977 National Survey of /Sciences Mathematics, and Social Studies Education was conducted by the Research Triangle Institute (RTI) under contract to the National Science' foundation (NSF). A' national sample of teàchers, principals; superintendents and local district supervisors received survey questionnaires; as did all state: supervisors of science, mathematics, (and social studies in each of the 50 states and the District of Columbia.

The sample design, instrument. development, data collection, file preparation, and 'analys'is procedures are described briefly in the remainder of Part $I_{\text {; }}$ highligits of the survey results-are presented in Part II.
A. Sample Design '

This survey utilized a national probability sample of districts; schools, and teachers. The sample was designed so that every superintendent and principal, and- every teacher and stapervisof of science, mathematics, and•social studi\&s in grades $K-12$ in the UnitednStates had a chance of being selected. Ali public, Catholic, and private schools in the country were included in. the target population. This design ensured that ${ }_{\text {national }}$ estimates of curricuium usage and classroom. practices could be made from the sample data.

The samples were selected using a multistage stratified cluster design. First, approximately 400 public school districts were selected from 102 different geographic areas' across the country. . Next, schools within these districts were selected to provide $a_{\text {, total }}$ of approximately 400 schools at each of four grade levels: $K-3,4-6,7-9$, and 10-12. F^{2} Finally, teachers within each sample school were selected from a list provided by the principal. Three. teachers were selected from each K-3 and 4-6 sample school--one to answer questions about science

1 A school was eligible for selection if it contained at least one of the grades in the specified grade range. Thus, for example, a $\mathrm{K}-6$ school could have been selected either for the $K-3$ sample, the $4-6$ sample, or both.
instruction, one about mathematics instruction, and one about social , studies instruction. Six teachers̀-two in each subject--were selected from each 1-9 and 10-12 sample school.
B. Instrument Develapment

The ,National Seience Foundation had defined the areas of interest for this survey ta include course offerings, curriculum usage, and classroom practices in science, mathematics, and social stúdies. Specifically, NSF posed the following questions:

1. What science courses are currently offered in schools? ${ }^{1}$
2. What local and state guidelines exist for the specification of minimal science experiences for students?
3. What texts, kaboratory manuals, curriculum kits, modules, etc.; are being used in science classrooms?.
4. What share of the market is held by specific textbooks at the various grade levels and subject areas?
5. What regional patterns of curriculum usage are evident? What patterns exist with respect to urban, suburban, rural, and other geographic variables?
6. What "hands-on" materials; such as laboratory or activity" ', Centered materials, are' being used? What is the extent and frequency of their use. by grade level and subject matter?
7. What audio-visual materials (films, filmstrips/loops, models) are used? What is the extent, frequency and nature of their use fy grade level and subject matter?
8. By grade level, how much time (in comparison with other * subjects) is spent on teaching science?
9. What is the role of the science teacher in. working' with students? How has this role changed in the past 15 - years?' What commonalities exist in the, teaching styles/' strategies/practices of sfience teachers throughout the United States?
10. What are the roles of science supervisory sprecialists at the local district and state leyels? How are they selected? - What are their qualifications?

1 The National Science Foundation define's science to include the natural sciences, social sciences, and mathematics.
11. . How have science teachers throughout the United States been influenced in their use of materials by Federailysupported ${ }^{\text {in-service }}$ training efforts in science?

An initial review of the research litèrature was conducted. to. locate previous studies in these areas and to identify important vari-, ables. A preliminary set of research questions and data sources was developed, submitted to NSF, and revised based on NSF feedback. Preliminary drafts of questionnaires were prepared using items which could be used to answer the research questions. Most of the items were developed specifically for this study, but some were adapted from ittems appearing in eatlier studies.

The preliminary drafts of the questionnaires were reviewed by' NSF and by 18 consultants with expertise in science, mathematics, and social studies education. They were also reviewed by representatives of a number of professional organizations including the following: the American Association for the Advancement of Science; the American. Psychological Association; the Social Studies Education Consortium; the Educational Products Information Exchange; and the national associa-. tions of both state supervisors and local district supervisors of science, mathematics and social studies education. Ther questionnaires were revised, based on feedback from the various reviewers; they were then approved by the Committee on Evaluation and Information Systems (CEIS) of the Cơuncil of Chief State. School Officers and by the Office of Management and Budget (OMB).

The final versionser of the questionmaires included the following topics:

State Supervisor: time spent on various supervision/coordination activities; sources of information; attendance at NSF-sponsored workshops; dissemination of federally-funded curriculum materials; requirements for high school graduation; and problems affecting instruction in their states.

District Curriculum: job responsibilities; professional memberships and activities; sources of information; district guidelines; use of standardized tests; textbook selection; use of federallyfunded curriculum materials; and problems affecting instruction in their district.
'Superintendent: background information such as district enrolldent, type of community, per pupil expenditure, rending sources, number of teachers, and number of district supervisors; and opinions about federal support for curriculum development.
Principal: school enrollment; type of community; principals' qualifications for supervising science, mathematics and social studies instruction; sources of information; attendance at NSFsponsored activities; school facilities, equipment, and supplies; textbook selection; problems affecting instruction in their school; use of.federally-funded curriculum materials; and course offerings and enrollments in science, mathematics; and social studies.

Teacher: number of years teaching; sources of information; needs for assistance; time spent in instruction; teaching techniques; use of audiovisual materials; use of federally-funded curriculum materials; attendance at NSF-sponsored activities; and problems affecting instruction in their school.'
C. Data Collection g
k
The Chief State School Officers in the states with sample schools were asked for permission to contact sample districts in their states. District superintendents were subsequently contacted, and after they had granted permission, questionnaires were mailed to teachers, principals; and local district supervisors. In districts with no district supervisors in one or more subject areas; the superintendent was asked to designate a person to answer questions about district programs.

Follow-up activities used to increase, the response rates included the use of Thank-You/Reminder postcards, a second questionnaire mailout, mailgrams, and phone calls. The resulting response rates were 90 percent for state supervisors, 73 percent for superintendents, 72 percent for district supervisors, 84 percent for principals, and 76 percent for teachers.

D. File Preparation and Analysis

Completed questionnaires were edited manually and coded. to resolve multiple responses (for"example, when a teacher said 50-60 minutes were typically spent on mathematics instruction, the average value of 55 'minutes was used) 'and to assign numeric values to open-ended' responses (for example, each different textbook which was written in was assigned a code number). The data were then transformed to machine-readable form using programable terminals, and a number of machine-editing checks were performed. Responses which were outside the acceptable range for each item were coded as "bad data" and excluded from the analyses (for example, if the number of minutes reportedly spent in \dot{a} lesson exceeded the number of minutes in the school day).

Thefinal step in file preparation was the addition of sampling weights to the file. The weight assigned to each sample pember was the inverse of the probabi, lity of being selected into the sampie; these weights were then adjusted for nonresponse of sample members. All results of the survey were calculated using weighted data.

It should be emphasized that thése data, as in all surveys, are based on the self-reporit of respondents. For example, the average number of minutes spent on instruction in a subject was determined not by actual classroom observations but from teachers" estimates of time spenty In addition, the results of any sample survey, as opposed to a census of the entire population, are subject to sampling variability; it is expected that the results ifould not be exactly the same if a second random sample were drawn. For these reasons, the reader should exercise caution in interpreting these survey results,'particularly in cases where the reported differences between gtoups are small

PART II: RESULTS

A. Federally-Funded' Cufriciculum Materials

1. Attendance at NSF-Sponsored Institutes, Conferences, and Workshgps

Since 1955 the National Science Foundation has sponsored a variety of workshops, institutes, and conferences to increase the subjéct matter competency of science, mathematics, and social science
teachers and to heip in the implementation of various ciurriculum materials. Since it is likely that many of the people who participated in.thèse activities are no longer teaching, NSF records could not be used to. determine the percentage of current teachers in these subject areas who have been reached by these activities. Therefore, sample members in this surve'y were asked if they had attended one or more NSF-sponsored activities and, if so, the particular types they had attended.-

Figure 1 shows the percentages of current teachers who have .attended one or-more NSF-sponsored workshops, conferences, fir institutes. Note that many more science and mathematics teachers than social studies teachers have participated in these activities. Also,.

the level of participation generally increases with increasing grade level, with more than one third of all high school mathematics teachers and almost half of all high school science teachers having participated in at least one such activity. NSF Sumer . Institutes and In-Service Institutes, both offered prior to 1974 only, served the largest numbers of teachers. The percentages attending NSF activities since 1974 are lower because relatively few teachers have had the opportunity to , participate in these activities in' the last several years.
2. Use of Federally-Funded Curriculum Materials

In addition to its teacher education activities, the National.
Science Foundation has supported the development of $\mathrm{K}-12$ science, mathematics', and social science curricula for more than 20 years, beginning with the work of the Physical Science Study Committee (PSSC) in 1956: A major purpose of this national survey was to determine the current extent of use of the NSF-sponsored curriculum materials as well as use of other materials developed with federal funds. As can be seen in Figure 2, by far the most extensive usage of federally-funded curficulum materials is in science in grades $7-12$;"a total of 60° percent of the districts are, using one or more of these materials, with 41 percent using. more than one. At the $\dot{k}-6$ level,'rapproximately onerthird of the districts are using one or more of the science curriculum materialṣ́. . In social studies, the figures are 25 percent for grades $\mathbb{K}^{2}-6$ and 24 percent for $7-12$; and in mathematics fewer than 10 percent of the districts are using any of the federally funded curriculum materials.

The most commonly used of the fedefally-funded science and social studies materials are shown in Table l. At both the K-6 and 7-12 grade levels, none of the federally-funded mathematics curriculum materials is used in as many as 5 percent; of the districts. "However, these figures , are misleading., As was intended when these materials were. developed, a number of the "innovations" have been incorporated. into
 other commercially available textbooks which are being used in many districts.

Figure' 3 shows the péreient. of teachers in each subject and grade -range who are using at least one of the federally -funded curriculum materials.'. Note that the percent oof teachers using these materials.

$7-12$

7.12USING MORE THAN ONE
Q
USING ONE
USING NONE
FIGURE 2: DISTRICT USE OF FEDERALLY FUNDED CURRICULUM MATERIA(S
 IN 1976.77 SCHOOL YEAR.

Table 1

FEDERALIY-DEVELOPED. CURRICULUM MATERIALS BEING USED BY MORE THAN 5 PERCENT OF SCHOOL DISTRICTS

soctail stuoles

mathematics
$\$$

FIGURE 3: PERÇENT OF:TEACHERS USING ONE OR MORE OF THE FEDERALLY FUNDED CURRICULUM MATERIALS
tends to increase with increasing grade range. In fact', slightly móre than half of all grade 10-12 science teachers wẹre using one or more of the federally-funded science curriculum materials during the 1976-77 school yèar.
3. Superintendents' Opinions About Fedêral Support for Gurriculum Development
Superintendents, were asked to, indicate if they agree or disagree with each of a number of stateme for federal support for curriculum development. Whịle 58 cercent of eqperintendents agree that federal support for curriculum developmert and dissemination has im-. . proved the quality of curriculum aiternatives available to schools, orly 27 percent' believe' that these efforts have greatly improved the quality of classroom instruction . Most superintendents (66 percent) beligve that continued/federal support for curriculum development during the next 10 'years is necessary, with 77 percent feeling that NSF should continue to help teachers learn to implement NSF-funded cur-f ricula, and 55 percent believing that the federal government should direct more attention toward disseminating the new curricula.

One frequently heard comment about federal support for curriculum development has been that it.tends to create a nationally uniform curriculum; superintendents were about equally divided on this issue. Another area of frequent disagreement is whether or not federallyfunded curriculum'projects, should deal with controversial topics; 34 percent of superintendents believe that they should not, while 60 percent believe they should, and 6 percent did not answer the question. 1
B. Science, Mathematics, and Social Studies Teachers

The average science, mathematics, and social studies teacher has been teaching for approximately 12 years; in general, differences among the subjects and grade ranges are quite small. Figure 4 "shows the breakdown by sex of teachers in each of the four grade ranges. The results are consistent with the findings of a number of other studies: very few $\mathbb{R}-3$ teachers are male, but most high school science, mathematics, and socíal studies teachers are male.

FIGURE 4: PERCENT OF MALE AND FEMAL'E SCIENCE, MATHEMATICS, AND SOCIAL STUDIES TEACHERS, BY GRADE RANGE

Most elementary sehool teachers teach in self-contained class: rooms, that is, the têacher is responsible for instruction in all academic subjects. There is evidence, however, that the teachers do not feel equally prepared to teach all of these subjects. As shown in Figure 5, nearly two-thirds of all elementary teachers feel very well qualified to teach reading, while only 22 percent feel very. well quali-fied to teach science. Similarly, at the other end of the scale, 16 percent of elementary teachers feel "not well qualified". to teach science, compared to 6 percent or fewer in each of the other three subjec't afeas.
∞
It "is interesting to note that elementary teachers' perceptions labout their qualifications for tëaching the various' subjects are consistent'with the amount of time that' is generally spent in instruction in ehese areas. Teachers in self-contained classés reported spending the most time on reading and the next largest amount of time on mathematics instruction. The emphasis on "the basics" apparentiy leaves very little time for instruction in seience and social studies. As can be seen in Figure 6, students in grades $K-3$ spend an ayerage of only about 20 minutes each day on science'and on social studies. Note that the difference between the amount of time. spent on reading and that spent on other subject? decreases: from $\mathrm{K}-3$ to 4-6:

More than half of all school districts in the country, especially small districts and those in rural areas, have no persons responsible for distríct-wide supervision or coórdination. $\{$ And; as showh in Figure 7, while approximately 75 percent of schools with grades, 10-12 have science, mathematics, and social studies"department chairmen, more' than half f all elementary and junior high schbols do not. Fürthermore, while 90 percent or more of elementary school principals feel. - "adequately qualified" or "very well qualified" to supervise instruction in reading, mathematics, and social studies, almost 20 peroent," feel "not well qualified" for science, supervision. Thus, the elementary uschool teacher who feels inadequately prepared to teach science (and $l_{\text {tout }}$ of 6 feels this way) may not be able to get help from the principal, and is unlikely to have a science department chairman or a district science supervisor to turn to for help.

. MATHEMATICS

SOCIAL STUDIES

1 READING

NOT WELL QUALIFIED
ADEQUATELY QUALIFIED.
VERY WELL QUALIFIED
UNKNOWN
FIGURE 5: ELEMENTARY TEACHERS'PERCEPTIONS OF THEIR QUALIFICATIONS TO TEACH MATHEMATICS, SCIENCE, SOCIAL.STUDIES, AND READING

The perception that one is inadequately qualified for teaching certain subjects is not limited to elementary school teachers. Secondary. teachers were asked to indicate if they are teaching any courses that they do not feel adequately qualified to teach, and if so, to specify the courses'. Approximately 12 percent of the science, matheman tics, and social studies teachers specified one or more courses. Interestingly, the vast majority of these teachers listed courses in their sample subject area; for example, most of the science teachers 'who indicated they are' inadequately qualified to teach onè or more courses were referring to courses within science:" The problem of teaching "out of field" is apparently a greater problem within each major, discipline than across disciplines.

Teachers were asked to indicate' specific areas in which they would like assistance from a subject matter resoutse person but receive little or none, those arēas in which' they are already receiving adequate assistance, and those in which they usually do not need assistance. from a subject matter resource person: More than 75 percent of alf science, mathematics, and social studiês teachers indicated they do not risually need assistance in lesson planing, actually, teaching lessons, and' maintaining discipline. Areas. in which a sizable number. of teachers' woüld like additional assistance include obtaining information about instructional materials, learning new teaching methods, implementing* the discovery/inquiry approach, and using mapipulative. or hands-on.' materials:

Teachers were also given a list of possible sources of information about new developments in educaṭion and were asked to nate the utility of each. The results showed that many science, mathematics, and s,ocial studies teathers rely on other teachers, for information; approximately half of then rate this source "very useful" while most of the others consider teachers "somewhat useful." Other, particularly, valuable sources of information for teachers include: 'jdurnals and other. professional publications, especially for teachers in the higher' grades; college cớurses; and for elementiary teachers, local in-serviće programs. Principals; local subject specialists, federally sponsöred workshops, meetings of professional organizations, and publishers and sales representatives are also considered useful sources of information by quite a few teachers, while the majority of teachers rated teacher union ineetrings and state departmentipersonnel as "not useful."
C. Instructional Materials and Techniques.

The textbook continues to play a central, role in science, mathematics, and social studies classes. With the exception of K-3 science and social studies, \quad virtually all science, mathematics, and. social studies classes use published textbooks or prográms. ${ }^{1}$ While mosit classes use a single textbook or program, approximately one-third use

[^0]multiple textbooks. In most districts, teacher committees and igdividual teachers are heavily involved in selecting the textbooks to be used. In many cases principals, superintendents and district-wide supervisors are also involved in these decisions. Very few districts involve students, parents or school board members to any great extent in' the textbook selection process.

Lecture and discussion are the predominant techniques used in science, mathematics, and social studies classes. Discussion occurs "just about, dailf' in haif or more of these classes. Approximately two-thirds of the classes in each subject have lecture once a week or more, with many these having lectures "just about daily."

Science and sobial studies classes are generally more likely than mathematics classes to use alteŗnative activities such as library work, student ${ }^{x}$ projects; field trips, and, guest speakers. Similarly, films, filmstrips, film loops, slides, tapes, and records are more frequently used in science and social studies classes than in mathematics classes. On the other hand, individual assignments, chalkboard work, and tests occur more frequently in mathematics classes than in social studies or science classes. Televised instruction, programmed instfưcțion, com-puter-assisted instruction, and contracts are rarely used in any of the three subjects. Finally, simulation activities (e.g., role-play, debates, panels) are comion in social studî̀es but rare in science and mathematics.

The use of "hands-on" or manipulative materials is most. frequent in science classes, with 48 percent of the classes using the at least once a week compared to 38 percient of mathematics classes and 24 percent of social studies classes. ${ }^{1}$ Figure 8 shows the frequency w of use of manipulatives, in science classes in the four grade ranges.' Note that the oferall use of manipulatives in science classes increases with increasing grade level. Meter sticks and rulers are.frequently used at all grade levels, while living plants and animals are frequently used in the lower grades, and balances and scales are frequently used. in the

[^1]

FrGure 8: USE OF MANIPULATIVES IN SCIENCE CLASSES
higher grades. Interestingly', science teachers who have attended rone , or more NSF-sponsorad activities are considerably more, likely than other science, teachers "to use manipulative materials in their classes. (This is not the case for mathematics or social studies teachers.)

In mathenatics, the use of flanipulagives is more common in the lower grades. Games and puzzzes, activity cards or kits", and "numera'tion and place' value mànipulatives such as rods, and blocíns. are frequently used in grades $\mathrm{K}-6$. At afl grāde levels, non-metric measurement tools' are more frequently used than metric measurement "kools. In social Studies, the use of manipulatives is again mores.common in the lower grades, with maps, charts, and globes being used quite' frequently.

Science and mathematics teachers were asked about the use of the. metric:system in their classes: As shown in Figure 9 , the use of metric concepts increases with increasing grade $\overrightarrow{\text { level }}$. in science classes; approximately 90 .percent of the 7-9 and $10-12$ science classes make use of the metric" system. 'In-mathematics, on Qihe other hand, use is higher in the lower grades; by 'grades 10-12" only 56 percent " of mathematics chasses. use metric corcepts. In addition; mathematics classes are more likely to use the 'metric system oniy in a special unit, while science classes are more likely to introduce the concepts. in a special unit and then use them throughout the coursie.
D. Facilities, Equipment and Supplies.

Principals were asked if each of a number of types. of equipment is available in their*schools The resuits, ${ }^{\circ}$ shown in Figure 10 , indicate that secondary schools are considerably more likely than elementary schools to have greenhouses, computers or computer terminals, hand-held calculators ${ }^{\text {氛 }}$ and darkrooms.

Teachers were asked, about the actual use of various types of equipment The results showed that some types gf equipment areiravailable in many'schools but, are 'used in relatively few classes. 'For example, while more 'than three-fourths of eleméntary "schools have microscopes, only, 28 percent of the $\mathrm{K}-3$ science classes and 59° percent of the $4-6$ science classes ever make fuse of them. Similarly, while 36 percent of $20-12$ schrotis have computers or copputer terminals, only 9 percent of 10-12 science classes and ${ }^{16}$ percent of $10-12$ mathematics Classes ever use them.

FIGURE 9: USE OF THE METRIC SYSTEM IN SCIENCE AND MATHEMATICS CLASSES

FIGURE 10: AVAILABILITY OF EQUIPMENT IN SCHOOLS, BY GRADE RANGE

- Teachers of science in grades $\mathrm{K}-6$ were also asked about the facilities they use for teaching their classes. Slightlýy more than half of all elementary school'classes receive soience instruction in classrooms with portable science materials.' As shown in Figure 11, only 4 percent of the elementary science classes' (and virtually all of these are grade 4-6. classes) are conducted in laboratories or special science rooms; more than a third of the classes are conducted in classrooms with no science facilities at all.
'Teachers were also asked' to rate the , adequaciy of farious aspects of facilities, equipment and supplies for teaching their ciasses. The two areas rated "improvement needed" by more than half of the teachers were availability of laboratory assistants or paraprofessional help and money to buy supplies on a day-to-day basis. These two problems were considered serious in all subjects and at and grade levels.
E. 'State and Local District Supervision/Co'ordination

Staţe course requirements for high school graduation are heavier in social studies than in解thematics or science: in grades $9-12$, most states require only 1 year of mathematics and science but more than 1 6%

4\%

䝺 SPECIAL SCIENCE ROOM
BClassroón witi portable science máterials
\square mo science facilities
\square UKKNOWM
year of social studíes. Very few states curiently require specific competencies. in these subjects, 'but.a numbér of states are planning to implement such programs \& Appyoximately a Etriríd of', the states are planning to implement competency programs in mathematics, while 22 percent plan to do so for sacial studies and 13 percent for science.

Approximately 25 percent of the státes and 40 percent of the districts set guidelines for minimum instructional time in one or more of the elementary grades. Relatively fem districts set guidelines for kindergarten instruction, and those that do recommend a minimum of only approximateily 15 minutes per day each for science; mathematics, and social studies. In grades one thrọngh three the recommended mingimum". timeffor mathematics is 30 minutes on the average, while the fecommendéd " minimums for stience and social studies are approximátely 20 minutes each pereday. In the higher elementary grades the recommended. minimum times for the 3 subjects are all in the 30 to 40 minute range, with no major differences between subjects.

In addition to questions about district requirements and curricula, respondents to the district curriculum questionnaires were asked about their professional activities. Whfle allegiance to a particular subject area appears to be stro than at the elementary level, in no case did as many as a third of the respondents 'ị̣dicate memberstip in their subject area's pröfessional organizations, e.g., the National Council of Teachers vof Mathematics, the National Science Teachers Agsociation and the-National Conncil for the Social Studiés. Similarly, fewer than 50 percent of the respondents reported attending a professional meetingin the subject of in' terest at the state, regional or national level during the 1975-76 school year.
F. Factors Which Affect Instruction in Sciemde; Mathematics, and

Insufficient funds for purchasing equipment and, supplies, and lack of. materitals for individualizing instruction are sarious problems affecting K-12 science, mathematics, and social studies instruction according to all, groups queried (teachers, principals, and state and local: supervisors). Inadequate facilities are also considered a serious
problem in science at all grade levels. Interestingly, áll, groups \rightarrow except teachers consider inadequate articulation of instruction across grade levels to be a' serious problem.

Several problems appear more serious in the elementary grades than in the secondary grades; including lack of teacher planning time in all three subjects. For elementàry science and social studies, the belief that these subjects are less importañt than others and inadequate time to teach these subjects are also cọnsidered major problems. It is interesting to note that all groups except the teachers themselves consider inadequate teachez preparation and lack of teacher interest to be major probfems in K-6 science instruction.

Two problems are considered serious for science, mathematics and social studies instruction in grades 7-12: inadequate student reading abinties and lack of student'interest in the subject.

Surprisingly, difficutty in maintaining discipline was not rated a - serious problem for science; mathematics, or social studies instruction by teachers, principals, or state and local supervisors. This resul't is not consistent with findings of some other recent studies which indicate great.concern over discipline-related issues.

A more detailed treatment of the resūlts of, this survey can be ${ }^{\prime}$ found in the technical report. Copies of the technical report of the 1977 National Survey of Science, Mathematics, and Social Studies Education and additional copies of, this Highlights 'Report may be obtained from the ERIC Document Reproduction Service (EDRS) ${ }^{1}$ and from the Natidinal Techaical Information Service. ${ }^{2}$ Copies will also be available from the Government Printing Office. ${ }^{3}$ In addition, persons interested in using ${ }^{\text {othe }}$ the survey data, to conduct additional analyses may obtain a^{\prime} copy of the Public Release Data Tape ánd the accompanying. User's. Manual from the National Technical Information Service f
1 ERIC Document Reproduction Service (EDRS)"' P.O. Box 190 Arlington, VA 22210
2 U.S. Department of Commerce National Technical. Information Service Springfield, VA 22161
3 Superintendent of Documents U.S. Government Printing Office Washington', DC 20402

[^0]: use no published textbook or program.

[^1]: 1 . While manipulatives are used more frequently in science classes than" in mathematics and social studies classes, science educators may be concerned that 9 percent of science classes never use manipulative materials and another 14 percent do so less thàn once a month.

