. - DOCUMENT RESUMER
ED 151 016 . ‘IR 005 739
/
AUTHOR . Stone, "Maureen
TITLE Application of Data Compression Techniques to the -
PLATO IV Communication Systen. .
INSTITUTION Illinois Univ., Urbana. Computer-Based Educacion
* Lab. '
SPONS AGENCY Advanced Research Projects Agency (DOD), Washington,
D.C. . .
PYB DATE Jul 77
CONTRACT DAHC-15-73-C-0077
NOTE 57p.
EDRS PRICE MP-$0.83 HC-$3.50 Plus Postage. \ X
DBSCRIPTOR§ *Computer Assisted Instruction; Computer Graphics; .
" Computer Nriented Programs; Cost Effectiveness; Data
Processing; *Display Systems; *Electronic Data
. Processing .
IDENTIFIERS *Data Compression; PLATO IV

'V

ABSTRACT . .
This paper presents a study on the effects of various
.data compression methods from the viewpoint of central computer to
‘terminal communications on a large graphics oriented timesharing T
system, PLATO IV. The desired goal is to increase terminal .display
speed without significdnt increase in the transmission error rates.
%hile the major emphasis in this paper is on text transmission, some
discussion of other display furnctions is included. Chapters provide
(1) a description of the PLRTO IV architecture and communications
system; (2) a review of two projects involving prccessor based
terminals; (3) an explanation of how text is currently transmi<ted,
followed by an analysis of the average number of kits/character
obtained by this method; (4) an introduction to the theoretical
background for variable length or Huffman coding; (5) projected
savings and overhead involved in. the use of word lists to reduce the
average number of bits/character used to represent text; and (6)
conclusions, suggestions for future research, and discussions of
projects involving text compression and other methods of improving
display speed. (Author/DAG)

\

¢ F I

. \ B
#***********#*#******#***#***#*#**#*****f****#***ﬁ******###*#**** ~

* Reproductions supplied by EDRS are the.best that can be made it
* . from the origifral document. . ’ *

*********************tk******************#**#***!**********#**#********

~

v

ED151016

Aruitoxt provided by Eic:
-

US OEPARTMENT OF HEALTH,
EDUCATION A WELFARE
NATIONAL INSTITUTE OF

EOUCATION

UMENT HAS BEEN REPRO-
:).\‘;CSE:OECXACYLY AS RECEIVEO FROM
THE PERSON OR ORGANIZATION ORIGIN- N
ATING IT POINTS OF VIEW OR OPINIONS
STATEO DO NOT NECESSARILY REPRE-
SENTOFFICIAL NATIONAL INSTITUTE OF
EOQUCATION POSITION OR POLICY

\/'

Application of Data Compression Techniques

to the PLATéQIV Communication System

Maureen Stone

Computer-Based Education R:search Laboratory,
University of Illinois, Urbana, Illinois

a .
~ -
. ® ~/ -
B \ Copyright @ July &977 ',
\ + by Board of Trustees - .
University of Illinois
3
. > . * ' ‘ -
~ i ~
F I 5
- ® . L .
' PLATO and TUTOR ~ are service marks
. . of the
T Univétsity of Illinois’ ;-

..
-

. Ty
' EY

+ All right's reserved.
in any form or by any
from thé author.

No part of this book may be reproduced
means without permission in writing

<

b4

This manuscript was prepared with partial support from the
Advanced Research Projects Agency (U.S. Army Contract DAHC-

15-73-C-0077)" and the University of J]llinois at Urbana-
__Champaign.

——

-

ACKNOWLEDGMENT

I\would like to éxpress my appreciation to all those who have

helped.me with this project; particularly to Protessor Roger Johnsou4"

. *
for providing both Qinection and encouragement,

ﬁﬁr providing poth technical advice and-a forum for ideas, I

Y .)
would like to acknowledge .members of the Hardware Research Group;

. N I]

Doug BrownL_Kévin Gorey, Paul Lamprinos, Todd Little,” Jim Opperheimer;

T and ScotL-Weikart,%Sim_ilarly, I would like to .acknowledge members of

-

the PLATO IV systems staff; Dave Andersen; Rick Blomme, Dob Ra%gr,

’

. . @
Bruce Sherwood, and Paul Tenczar.

For helping me produce this paper, I would like to thank members

of the CERL staff, ,and Chris Fleener.

. ~ .
. TABLE OF CONTENTS) ca

. . . . Pagé
* - -. ' ‘ *) ’ A -
1. INTRODUCTION. ..t ocvutventvantaseonostsonsossnsassssassosssasnas 1

.

* 2. PLATO IV SYSTEM ARCHITECTURE ... :evseveroeooonaonsnconosonaoneas 3° -

2.1 Central Computer ArchitecCture....eeeeeeeiveevernneinecees 3 o b

. 2.2 Communications ArchitectUre.....eieeceerecsoeasessccssnnss 3 ,

3. REVIEW OF WORK WITH PROGRAMMABLELTERMINALS..i.........,........ 9) .

>

4. ANALYSIS:OF CURRENT TEXT TRANSMISSION METHODS.c.s... 12° ;

4.1 Background ‘or Analysis.......ieiiiiiiiiieiiiindeieeieeees 12
4.2, Terminal Character Format,................................ 13
4.3 Central System Character FOTMAt s evereevnncnsoennsnnenenss 1lb .
4.4 Description of Text Transmission.... P ¥ ¢
- 4.5 Recommendations for Improvement...........................;25 :

\ -

5. VARIABLE LENGTH CODING......,.....................:............ 28 N
5.1 Introduction and Description of Basic Princ1p1es.......... 28

. 5 2" Implementation ou PLATO IV.................».............. 30 ° ' .

6. THQFUSE OF WORD LISTS OR DLCTIONARIES.......................ﬂ.. 32 - *»\\\

1 1Intrgduction to Dictionary Compression Methods...veiveonns 32 .
.2 Word Distribution on PLATO IV..............x.............: 33

3' Decoding Algogithma.........................{?............ 35

4

s

) Cost of Encoding MethodS.eeeeeeerinrnnneetevevecscnnnnnane 37
. .

’ . .
F7. CONCLUSIONS AND FUTURE PROJECTS:. - cevcecctpnseosvassasosencensnns 39 ¢

7.1 Summary cof Results..................... et earaaee e 39
Suggestions for Future Work in Téxt Co pression.... .o ee. 40 . -
" Increasing "Burst" Display Speedivereedeeniverionncinnness 41

\

Elimination of TexXt FOIMAating........eceeevevreeennesevess 43

7.
7.
7.

J-\UJN

' ‘ ;' \
© REFERENCES: e+t eveertonotesrsonnoansnosapoioeonenssscensossancnnseses 45
\VQ \}"\ V‘.-
APPENDIX.........:.........................f....................... 46

A.1l Sampling Programie.sieiscecccectittteetetasassocsososerannns 46 . -
Character-by-character Analysis Programecscscscsocecocsees 47 '
Word-by-word Analysis Program...................»......... 51

Vord-by-Word Analysis of Source FileSeeeveveonnanassoneens 52

A.2
A.3
A.4

O

ERIC

Aruitoxt provided by Eic:

Y .

£ NEN. . '
1y 7‘5‘ ' A -~
¥ . ” K
PR I/ hd »
. o ¢,
o C ¢ 1.' INTROGDUCTION
- ’ Ps .

With the dévelopment qf, various mini and micro-processor based

- - . . "
terminals, it is appropriate to re-examine the question of communication
requiremenfé between the central coggnter and the tgrminal.in the PLATO

’\" . , .

system. Witp a procegsor.in(thg,terminal, it is reasonable to reconsider

L3

decoding algq;ithms that were previcusly ‘too expensive in terms of

terminal hardware.

- .
N This paper presents a study on the effects of various data
) . ~

compression methods from the Giewpoiht of central computer Jto terminal
' .

comhunicatigns on a large graphics oriented timesharing system, PLATO

Iv, Theldgsired goal is to increase terminal display speed without

significant increase in the transmission error rates. While the major

emphasis in this:-paper is on text transmission, some discussion of

’

other display functions is included. The paper is organized into

-

seven chapters. ‘ -

Chapter‘ﬁ provides’a general description of the PLATO IV

architecture and ‘communications system.

-

¢

Chapter 3 is a réview of two projects involving processor based .
terminals,.one using-a 16 bit mini-compvter, and one using an 8 bit

micro-processor. -

-

Chapter Q‘gives a detailed explanation of how text is currently

transmitted, followed by an analysis cf the average number of bits/

character obtained by this method. Three a:eas for improvement are

a

described. . .o

*

1

t

The thebretical background for variable length or Huffman coding

. M ¢
.

is introduced in Chapter 5. Both the projected gains, and some de

dign
considerations for implementation on PLATO IV are given. s)

‘The userég/;;gd lists is,a method successfully used in other

applications to obtain a significant reduction in the average number of
‘e

bits/charac}er used to represent text. ,Both the projected savings

-

using this mefthod -and the overhead involved are described in Chapter 6.
'Chapéér 7 contaiﬁé both conclusions and suggestions fer future

research. Projects %pvolving text compression and other methods of

improving display speed are discussed.

-
" [

Ay

. Y
2. PLATO IV SYSTEM ARCHITECTURE “

2.1 Central Computer Architecture . . !
The PLATO IV computer-based education system consists of a large
central computer, the Control Data Corporation Cyber 73-24, with more

,than 900 graphics terminals connected to it. (5,10) The gyber 73-24

L4 E
is a dual pr-ocessor system with thz two central processing units ' - - S

@ .
(CPU's) connected™to the same central memory (Figure 2.1). Two million

60 bit words of extended core storage (ECS). are difecély coupled to-

Al

central memory by high speed block transfers. The ten peripheral

processing units (PPU's), which are small, programmable processors,
¢ L4

can access both ECS and central memory. Most input/output information

is transferred through the PPU's to buffers in ECS. In this way, ECS

-
¢

becomes the cenfral transfer point for 11l data. (1)

2.2 Communications Architecdture

The communication system for the terminals is unusual, as can be

\
seen in Figure 2.2. The data rate is asymmetrical, with the output -

rate to the terminal being 32 times faster than the input rate. /

Standard television equipment and voice grade phone lines were used to -

give the lowest possible cost. : .

,

Information for a given terminal is sent from the centrallcomputer

-
.

through a PPU to the Network Interfaé% Uit (NIU). There it is

interleaved with the information for all other terminals and transmitted
{ - . -

as a video signal. At a particular location, the site controller

selects the data for the teTMinals at the site. The information is

f

+

Figuyre 2.1.

ERI

Aruitoxt provided by Eic:

-

02 M/ Opsec

. NIU Y Y
< -
. ECS !
hA 2m .

1 CM .

a 0.C35M 10 M/s Block-oriented
< 5 ysec | Rondom-occess
‘ K Memory
10 PPU’s ﬂ < N
0.1 M/s

10000- 30,000 psec |\ per drie

t

PLATO IV computer architecture, showing memory-sizes in
60-bit words, transfer rates in 60-bit words/sec, and
adcess times in microseconds, M = million, CPU = central
processing unit, PPU = peripheral processing unit,

NIU = network interface unit, CM = céntral mem7rya- .
ECS = Extended Core. Storage. Programs and data are swapped
between CM and ECS, Conventional disk drives provide .
permanent storage for programs and data. The basic

computer is a Control Data Corporation Cyber 73-24.

3

O

Aruitoxt provided by Eic:

ERiC

To
odditional
Site
Controllers

<

L 4 k .

L 1
. ¥ ? i
Network .
Interfoce Umt ! |
. (N1U) . |
12M buits/sec {outputs to 1000 termincls) t
4 Dutput K= |

1 Computer |

A Tnput f-sl ComPlex Lo
Terminols ' .
- - - . 4‘—-: . A - *

: | Output i | Output | ‘
e | Stte % Site |

—] Controlter e Controtler - |

™ Input ™ Input
: N) :)

From 32 » L e e |
Termingls . . e e
1260 bits/sec (inputs from 32 terminals) ng"; 32 |

e |

Controtlers }

|

1

|

3
-

*

‘
13

.

. 8

. .

_separated and sent to the appropriate terminal over a voice grade
. .

line. - The limiting channel is the

phone

phone line; therefore the data rate

to the terminal is usually given as the rate along this phone line, or
1260 baud.(| . i

2

Input, which is usually in the form of key presses, is transferred.
to the s;{e cohtroller along the feverse*channel of, the phone line. The

iqut data for all terminals at the site is transmitted over a single 1260

bayd line back to the central computing system. Since there can be up to
; :

* . system is given #n (1).

\
32 é;rminals at one site, the data rate back is up to 32 times slower
: t .
than the data rate out. More detailed information on the communications

b
"~
L

-

‘

)

, . 12 . ®
All terminals on tﬁ% PLATO IV system use the same information
. . .

protocol for output which is unique to the PLATO system: Every

16.7 ms, a 21 bit parcel containing }9 bits of information, 1 bit

. parity, and 1l start bit, is received By every terminai,
. ” . .

s

This is either

Jinformation from tﬁe ceniral computen'or an all zero-NOP genérated by
the meﬁwark.iéierface unit,

A

This length format was choscen to ‘accommo-

u]
date the 9 bits x and 9 bits y needed for panel addressing.
~J
!

An

extra bit was needed to de¢stinguish data from control words. .Becausé
. M N

. .
the system is&synchronous,severy 16.7 ms a frame must be generated by

-

the centragl site, consistiﬁg of &ae 20 bit parcel of informa
erach %%rminal which has output

pending.

tion for
st
The output is origina.ly
generated- by a runuing prograr or -"lesson™ (Figure.2,3), The bulk of
the lesson is resident in ECS, with only a’ small logical block or
' Punit! resident in central memory. Output is encoded by the Executor
\ . .
. e
Q)
WJ:EEE

11/

A ¢,
32 " ' \ ° .
“};/J ” . N M ' |
' . v .
‘ ‘ ' [R
s .7
A‘ - .
1 -~ . /
e
e N X
. .
R -- ()
- .,
- 1 .
- ECS .
. . AN
N ! \ s
N Condensed
~ Lesson -
: System Output .)
. ‘ _ Buffer ~ (.
Lo ~ ! _
‘ - 6 bit! SR
N y R internal
: Central i} . codes : .
Processor v . JONRS :
Lesson Y . -
" : . Unit |- . .
. ‘ ‘f ‘ . N .
v : Fraaec’er T .
¢] - Tutor _
Executor
{ e — 20 bits
. ' : }ernnnol : -
. : . ormat
. . PPU
“out to &
,communications .
. system

Figure 2.3, PLATO IV output software configurétion.

¢

» ' n

Q .
ERIC" ‘ . .
P v | . - . . , 4

/
o this buffer’is in a generalized, terminal independent form, and not in

and placed' in the system dePUt buffeg. However, the information in
[+

. the 20 bit‘format required by the PLATO IV terminal. The conversion
to terminal format is handled by a separate program, wgich also
periodically creates the.frame describgd above and sends it, through
a PPU: to the communications system. This same program, called the
Frameater, also keeps track of each terminal's current state to avoid

-

sending redundant information. While 20 bits/parcel are sent by the .

-

Frameatﬁ; to the NIU, parity is actually generated by the commun’ications

hardware'."

hEY

:
|

~ T . .

3

3. REVIEW OF WORK WITH PROGRAMMABLE TERMINAES

The current PLATO IV terminal cecnsists of a 512 x 512 matrix plasma
display, keysetr, aﬁd a touch input device called a touch panel.
Available display functions are line drawing, character plotting, and.
single point élotting. There are 252 ;vailable characters, % of them
dynamically user-programmable from the central computer. Most of the
current terminals ;ealize these functions through a MSI/TTL desfgn
currently manufactured by Magnavox. (2). a

However,\it has been recognized throughoqt the history of PLATO IV
that it would be valuable to use a processor ;nﬂghe terminal. During
the procurement of the first PLKTO IV terminals, a‘brocéssor:based
design was copsidered, but rejected on thebasis of cost kll).' More
re. tly, with Fhe evolution of low-cost LSI micro-processor techmnology,
consideration has again been given to processor—baséd PLATO terminals.
This -concept has ‘been explored Ehrough two projecgs at CERL.

In 1972, a project directed by R. L. Johnson was started using a
Digital Equipment Corporation PDP 11/05 as the basis for aibrogrammable
or "intelligent" terminal. Besides the use of the processor, this
terminal differed from the standard one because it used a version of
the Plasma ranel which could operate on 16 display points in parallel.
This modified panel was therefore capable 6f a display speed up to
16 times faster than the standard panel. Results of this project are
published elsewhere (3).

° .

The most interesting feature of this programmable terminal was the

ability to combine high speed display with the flexible presentation.

14 :

10

]
structure of the PLATO IV system. That is, the PLATO lessomxr could

Jetermine the basiq design of the hisplay, and the mini-computer could

help to get it up on the screen quickly. For examplé, a major difficulty

with display devices such as the plasma panel which have inherent
:) .

memory is that to erase an area takes,as long as it does to write it,

- l,.

with the exception of the full screen erase. For the standard system;

due to the synchronized communication and the speed of the plasma panel,

area erasure is limited to the maximum character plotting rate of 180,

»

8 x 16 characters per second. For the programmable system, a terminal

function called "block erase'" was defined that, éiven opposite corners

of a rectangle, would erase-the area. Using the parallel panel, this

achieves impiessive speeds. . Other defined functions for the system .

v . R . :"l

include circle generation, rectangular and circular shaded areas, and

RS
13

large sized characteys. " For.more speéialized displays, a protocol was *’
defined for?loading aﬁd calling PDP-1] subroutines from PLATO lessons. -
Within the .PDP-1l, system subroutines were available for most display

functions. However, it is impossible tc match the ease of designing a

display as is done on PLATO with subroutines for a mini-computer 7
) ‘ .

assembf& language. Both the language and ghe utilities are lacking.

.But it is péssible }o locally store the 20 bit parcels provided by the
PLATO generated 4isp1ay, feed them back through the terminal simulator,

and see a large increase’in display speed. This process, callﬁg_image

. ‘ ‘ :
ﬁéapping, has Qeen successfully used to plot most of the displays in a

. v
group of highly interactive med?cal-infoxmation system lessons. The

v

major draw-back is®the large amount.of storage needed. For more than a N

[N

& ‘o

LA -
.

i1l

L]

few full page displays, it is necessary to use an auxiliary storage

medium such as a floppy disk. This project is continuing; expansions

j:;:;pability in lude a mini-computer operating system, and advanced

N pher;ls,

In 1974, a project to design a PLATO IV terminal whilh would

combine low cost with expanded terminal capabilities was started

»

under the supervision of J. E. Stifle. Some of the results of the

earlier project have been included, and the finished design will be
b4

used as a prototype for the next generation of PLATO Lerminals (4).

Several versions of this device, which is based on an INTEL 8080 and a

parallel plasma panel, have been completed. The resident system,

_currently stored in re-programmable memory, includes block erase, double

_sized characters, programmable margins and tabs, and multi-directional
text display. Some’ random access meﬁory is available for user programs,
which can be called from a PLATO lesson. Work is still being done to

\ .
deterinine what other features should be part of the standard system

‘and which should be offered as user programs.

£

L 4

12 ¢

Vs
4. ANALYSIS OF CURRENT TEXT TRANSMISSION METHODS

4.1 ABackground foé Analysis . A
For a system such as PLATO IV with a 1arge‘number of interactive
terminals running simultaneously, host-to-terminal commqnidatiég,isia
major part of the system load. With the design of the next geﬁe}agioﬁ
terminal nearing comﬁletion, it seemed adyéntaéeous tb study the overall
. ‘ .
system‘format from a communication/informat;ion point of view. First,
it was necessary to determine the current distribution of\display type
i infg}mation. From this d;stribution, it can be ;hown that text
constitutes t@e major part of display activitr. Therefore, ways to
\ optinize the average number of bits/charaéter ;ent has been the major
‘ ~emphksis of this projeét. Starting with a detailed analysis of the
! éurTSZt character transmission method, both optimization of the current,
schemé and methods requiring more radical changes to the system yill

v be discussed. .Both character-by-character and word-by-word cbﬁpression

methods have been considered. However, it has been assumed .that no

basic changes’ to the overall communicatiohs hardware will be made.

One wayof determining the distribution by display type of the infor-
mation sent to the terminals is to monitor the output of the Framégter
‘or of the PPU (Figure 2.3). At the tim it was ndt practical to th a

(e,

monitor at either location. The easiest place to sample was at the ECS

resident systam output buffer. The effect on the output stream could

»

then be deduced. Using this method, one'can determine that approximately

’

50% of all output is characters, 30% .screen positioning information, and

e

20% lines. However, of the 30% screen positioning information, almost

v -

‘-

ld - ,

2%% of the 307 is takeh up by returning to a software set margin. This
will be eliminated by the variable set margins, already standardafor
Fbe new terminals. It.therefore seemSvmosL profitable to‘bptimize text
ﬁfansmiasion. A description of the current character eﬁéoding methods

for the terminal and the central system follows.

.
v

4.2 Te%minal Character Format
The present PLATO IV terminal recognizes two types of 20 bit parcels
or words;: controk and data. Normally, the Load Mode control word is

. used to’ set the terminal mode to either line, character, dot, or‘load

All data words &hat follow are interpreted

~

uﬁer character memory.

relative to the mode. Control words’include load mode, set x/y, and

refere;:lces t:o'»":external devices. L ’ 5 P o .
.Thé characfer forﬁét for the terminal jinvolves.the use of 6 bits

* L]
packed three to a 26 bit data word. Bit 19 = 1 indicates that the

word contains an 18 bit field of data. (Figure 4.1)

LN

*

19 18 . 13 12 07 06
1" CEAR 3 CHAR 2 CHAR 3

ot
~

Figure 4.1. Character Mode Data Word

-
v

. N
The 252 possible characters are arrangeéd in 4 memories of 64 characters

each. One character position in each memory {077, whete the preceding
d €
o' 'indicates an octal number) is defined as an "uncover' code. The

Y

cnmbinationeif an uncover code and another 6 bit code is used to

I

13

w14

1y A " \\\

indicate a.change into another memory, or one of several special
. . & '

functions as d'scribed in Table 4.1. \

b '

——

; Te plot characters, the terminal is ‘first spt ir » charac?er mode

\‘ 1
with a load mode control word. All subsequent data words are %nterpreted

W :
iy

as above. Each character plotted autométicéle;incremeﬁts x by 8.
Note that the carriage return function (07715) is only useful in the

special case where the left margin is at x ?505 To set eituer x or y,

.a 20 bit control word must be sent to the terminal. However, this is

done without affecting the terminal mode. K w

4.3 Central System Character Format L

Within the central computer system, characters aré also kept as 6

¢ .
>

.

bit dodes. Since there are 252 characters, ; lus special functions,

combinations of 6 bit codes are necessary. The combihatigﬁs are ratger
complex. The code 075, called font, is used as a\locking toggle to
delineate the alternate font, that is, the user programmabl; Fharacter
: memory. Within the set of 126 characters of either fontl two more
special codes are used; shift (070) ané access (076). Tﬁe fo]lowing} - -
3 combinations are possible: 6 bit code; shift + 6 bit cod?; access + 6‘)
bit cL&e; access + shift + 6 bit code. Therefore, a mwaximum of 18 . el
bits can be used to design;;e a character in éither font. Other special
codes are usel to indicate positioning information such as superscript,
[N i

subscript, ecc. A complete list is given in Table 4.2.
P

This rather awkward encoding scheme is much more consistent when thought

S s
B N

of relative to the key presses nceded to creztc particular chargcters. The

shift code direc#¥ly relates to the ugper and 1owe5 case "shift key" on
N\
\\h

Table 4.1

v

15

Control Functions Following an Uncover (077) Code

Name

character NOP
backsp;ce

tab

line feed,
form feed
carriage ;eturn
superscript
subscript
seleét MO
se%ect Ml
select M2

select M3

Function ‘ P

no clange

X <«
X <

y*

X €

set
set
set

set

x-8 - i

x+8

y-16

0, vy ; 496

0, y « y-16

y+5

y+5

to character memory 0
to character memory 1
o character memory 2

to character memory 3

)

067

070
o071

o074

075
076

07066

07067

-

Table 4.2 8, cial Function Codes for Central Computer Encoding Scheme

Name
subscript

superscript

shift

|)
Le
2

margiﬁ return
(carriage return)
backspace

font
access

locking subscript

locking superscript

Function

non—loéking

-y «.y=5 for 1 character

then y restored
non—iocking;
y + y+5 for 1 character,
then y restored |

charagter definjtion -

i+« 0

v <+ y-16

X « x~8

define al“ernate fonf
character definition

y « y-5 .

y < y+5

-~

Terminal Code

o077 17, after the character, send
077 16 (unlock)

2

r'd

077 16, after the character, send
077 17 (unlock)

approximately selects Ml
not complete correspondence

077 15

077 10 ~—

following characters will be in '
M3 or M4 L

épproximatel& selects ML
rot c?mplete correspondence

oV 17

\"07Z 16 é]
3 .

-

t

a typewriter style keyboard. The characters preéceded by an access are

-

_not yisible on the key caps and are mostly mathematicaj or foreign

-

-

1angdage symbols. Effort has been made to relate the key toKthe symbol,
such as defining n as access p. While this is the historical basis for
the coding scheme, it is not necessary to keep it this way. The

elimination of the 18 bit access-shift-character combination would
. t

considerably simplify character string‘manipulation, including the

translation to output format. No additional o&éfhead‘wqyld"be involved

N » " h —~
storing input keys, since, for &gst cases, a translation is already fmade . _
k3

<

between the value produced by the keyset and the value described-above.

L . ' ,
4.4 Description of Text Transmission

[4
Using a 6 bit code for transmission to the terminal has two major
N _ .

advantages. First, 6 bits per character will fit into 18 bits with no
. s #

. { . .
overhead. Second, it is possible that an average of less than 8

L]
bits/character, which is the number needed for a straight Binary coding

3

method can be obtained because there should be relagively little éaitching

s

‘between terminal memories. While certain foreign language and scientific

symbols must readily be available in an education-oriented system, it

.

is not expected that the aQerage frequency of these symbols,will be very

high. Therefore, it shouid;be possible’to optimize the character

o

transmission r.te by carefully distributing the characﬁers,among the

memories. This can be done by grouping all frequentl§ used cha ters

)

together, although what symbols are used in combinations must also be

considered. It was decided to place the lower case alphanumerics plus

commonlv used punctuation and, arithmetic symbofs together in MO as letters
. o .
and numbers are commonly found ‘together when editing program text. All
K) 4
*

Aruitoxt provided by Eic:

>

t A

other ROM characters are in M1. These groupings can be seen in Figure
4,2, It was expected:chat fore@gn language 1esson§ using a no;—Roman A
alphabet woulq arrange ;hercharacters similarly in M2 and M3.

The following discussion will be based on the results of a system-

wide sampling program. Details on this program can be~found iq&Append*?

A;Z. These particular numbers are taken from an approximately one
million'qharacter sdmple taken periodically throughout one afternoon.
Although one million characters accounts for less than ten minutes of

$.
the total cutput flow.from PLATO IV at such a time, the distributed
sampliné technique should give an accurate picture of the average
I) \
situati n. While a rigorous analysis has not been done t8 prove:that

¢ this is true, several such samples have been taken and are comnsistent.

The actual character distribution can be seen ig Figures 4.3 and 4.4.
The shace\code is by éar the most frequent character. In this‘sample,
it rgprésents around 257% of all characters sent, while 20% is considered
typical for .English text. The difference is partially due to thé lack / -

" of a multi-character TAB ‘function which requires that space. strings be .

sent instead. Note that the space character appears both in MO and M1,

to avoid memory swifchiﬁg/fbr,this common case. After the space, the

e L - PN
- o

‘:tlb%éf case alphabetic characters follow the normal English distribution.

\

.

Y
v

In this particular swmple, several character codes do not appear

-

at all. One of these, the arrow seen at the far right in Figure 4.3, is

/»ﬂl"

-

actually quite prevalent system-wide. However, due to historical

reasons, it is not encoded in the same manner as the other characters in

th% system output buffer, and as such was not seen by thé‘sampling

-

.23

i ‘ ‘
s \
’ @,
»
i &
mm ++.++mZAun{}&d,.P...lo:__uB.o,Auﬂpcmszee\w
| . w . Wn
E :
[+
. W .
mm N O I~ ® 0 + 1 ¥ X~ ~ W 1 A - .._..l].-lexhvlu... - Vv A o~ A O ©w
(%) . . %] 9
iy i
L : 2 |
- Q -
=
wn ~
.SM . X
g 0123M5670123456701234.5_6701234567 b
o o R0 R SR S 4 4445555555.5666666667777777.7 o
wo . . a\d
~— . 5 (o8
o
Lo =
—~ - _C
, =
mm a0 A MO EH P MY E Z O MO KO B D >3F MM N <« Ny
N 1]
' f\ 2
- -
~ o
@
adv. - b
* / Wc
mm - ® .0 0T U W OB e T X H B OCA DT M @B 3 D> F K KNOANMOS o
5] . A/; <31
<
.
a ! M“wm * . . .
™ h O N O H N M N O N O H N M TN WY SO TN O S N D
mm 0.12 < oo e e e M e NN NN NN SO0 n 00N
= . .

?ercentage
hof total
characters

N

oIn il

Hﬂﬂﬂﬂﬂhﬂ

(oo

amnaem 000

iabcdefghijkimnoparstuvwxyz@123456789+

Figure 4.3.

\

1

25

N~

-/ 8=, 0]

Character frequency distribution. for MO.

J

°/0X¢=' u! ’ ()_?>

-u; 4
i
10 . ®
. o
3 % ‘Q d . . ,
3 . -
- —_— — " - ; :. = .
<
. .
érqentage ' o] .
of total. . .
haract_ers 4 ‘ * -
[ST ‘ ;
J |
|
. |
- - '?‘i
\
|
\ B 3
r -
o 0 Jﬂ”ﬂ Lﬂﬂjﬂﬂ”ﬂ-ﬂ”ﬂﬂn e
- #ABCDEFGH| J KLMNOPQRSTUVWXY Z ™77 #+24& SAY~ {}6% |°2af8 Aprpow <28 O\
5o, ' ' :
- Figure 4.4. Character frequency distribution for Ml.
0 "

o

; taﬁght at the time of the sample. These characters do appéar in more

‘the same'sample. The results indicate that 88.1% of all characters

w .
.

A}
program, Other characters that do not appear can be assumed to be

infrequently used by the system as a whole. On inspection, it can be
seen that they are either special %3fhematica1 symbols or foreign

language symbols, which are very dependent on the type of lessons

running. “The type of lessons running &epends on which classes are being

*

Y

selective samples.
Besides the character frequency data, information on ‘ndividual

memory usage and the distvibution of memory transitions was taken over

i

piotted~resided in MO, 8.0% resided in M1, 2.9% in M2, and 0.9% in®M3.
‘As was anticipatec¢, MO is by far the most an;ily used.

Inherent in this coding scheme i$ the assumption that-once a change
into a méﬁory is made, the next character. is more likely to be in the :
new memory than the old. This assumption can be checked by comparing
the numbe. of transitions out of ~ memory with the number of times the
next character was within the same memory. In the case ofAMG, it is
20 times more likely that the next character is in MO than in any of
the other three memories. For Ml, on the other hand, it is only 23%
more likely that the next character is in M1l as opposed to anywhere
else. Because Ml contains the upper case alphabet, it was sucpected
that the MO-»M1»MO transition, which woild occur for 2 word beginning
with a capital letter, would be quite frequ;nt. Therefore, a special
qheck for this traasition uﬁs included. It was found that ajproximately

-

60% of the transitions between MO and M1 were encompassed b- this case.

R

23

This implies that a non—locﬁiqg shift to Ml in addit®on to the curﬁént

locking transition would be beneficial. . . : -

- From the same data, it can be determined that 90.5% ol the time,

« /\\ '

L] .
* plotting a character does not require 3 chang® of terminal memory.
Vs A

This can be used to compute the average number of bits/character as

follows:
.905 x 6 + .095 x 18 = 7.14 bits/character .

This is indeed better than 8 bits/character, as was predicted. This is
. . R o

not a completely accurate picture, however. Because .of the overhead

inherent in the 20 bit parcel scheme, the real nimber is somewhat higher.
First, each character actualiy rgquires 6.3 biés, to include the
data/controi bit. Récomputing gives 7.47 bits/chéracter. Neither the
startxnor the parity bits are represented-as they are not usually '
included in a discussion of this kind. Howe?.r, the effects of these ’ .
bits would be computed similarly. For ease of discussioﬁ, a 6 bit N '
character will be assumed for the rest of this chapter unlesé expiicitly
stated otherwise. The higher value can always be cotained by r.:ltiplying .
by 6.3/6.0. ‘ o .
Another source of overhead is’due to the fact that there are multiple
characteis in one data word. This can cause unused bits at the end of |
:‘zacharacter string. Within the current desigp, there is no 6 bit code
'which can be used as a NOP, or fill cﬁaraéter. Therefore, it is \
necessary to go to a 12 bit NOP. The extra bits transmittéd in- this
¥ .

manner account for 12% of all character output. This increases the

,

-

26 S

*\. ; ‘ 24 | ' 7

- t
-

average number of bits per characQgi to 8.00. This is the number of

bits required by a straight binary encoding scheme, aléhough it would not

~

be possible to implément such a scheme directly without considerable

overhead if the 20 -bit paréel sizg were retained.' It seems safe to

°

assume that-the use of a 6 bit NOP would reduce the fill overhead to
6%. A 6% overhead gives 7.57 bits/character. . ‘

Ignoring the 127 fill syerhead‘for the moﬁent, the result of

-
.. f

translating this sampling of the output buffer to the format required

4 - B

by the terminal gives 7.64 as the average number of bits per visible

cha%acter. The difference between this figure and the 7.14 bits/character
given before is due to Ehe function codes included in ‘the output stream.

o

YA N
Function codes are those codes described in Table 4.1, other than those

used to change memories. Each code is assumed to take 12 bits. A

-

discussion of the effect of the various types of function codes follows.

’

The most commun Single code is the margin return, or carriage
return. Alone, it accounts for 0.4% of the character output strkams.

Because the new terminals will have programmablé margins,°it is expected

that this function will¢become even more significant.

he Taken together, the superscript, subscript, locking superscript, and

“locking éﬁbscript constitute 1.1% of the total character output. While
the locking type can be sent with g 12 bit code, to do a non~locking
Superscript or subscript requires 24 hits. For example, to do a non-—

' locging superscript requires a 12 bit locking superscript code to
prehede the character, and a 12 bit locking subscript code to follow it.

In* this sample, the extra overhead caused by not having a 12 bit

{

29

25 -

@

unlocking, superscript and subscript accounts for 0.47% of the tofal

character output strcam. While this number is not very lafge, for

. -

certain types of displays the overhe?d can be si%ntﬂicant. For

example, take the equation: Yy = x12 + ?xlx2 + ¢ There are l4 visible
charactérs,_but t;e superscripts and subscripts require transmitting 20
more. This decreases the character writing rate to approximately 1/3
of what would be prédicted by the 14 visible characters alone. Just
using a 12 bit code would double the display rate, which is a visible

increase in speed. This type of equation is common in hathematical and

scientific lessons. /§3r example,' a sample of chemistry lessons showed

[4
that the average,o@g}head for superscripts and subscripts was 6%.
Furthermore, the locking case wias used hardly at all relative to the
non-locking case. For the gake of these special cases, a non—lo?king

superscript and subscript funotion should be considered.

[

i
The remaining function EBdes,\with backSpace'predominant, aecount * T 7%
for 1.18% of the total character output stream. To summarize: the
function codes, assumming 12 bits/code except for the non-locking

1

superscript and subscript which are 24 bits long, are 2.68% of the

character output stream. While this number is small, a page of text
with a large number of these codes can plot significantly slower
because of tae relatively large overhes' for the code.
4.5 Recommendations for improvement

Three éreés for possible improvement have %een identified: the 6
bit as oppesed to the 12 bit KOP or fill characters, the non-locking

transition from MO to M1, and the non-locking superscript and subscript.

/

Below is a deﬁfription of the effect on the average number of bits/character

for each of these. For the rest of this discussion, the valuéﬁ compruted

using 6.3 bits/character to include the data/control bir, willtﬁe given

4

in parentheses next to the value using 6 bits/character.

The base figure for comparison is the current average bits/character

-

ag computed by the following expression:

(

1.12 x 6(v + 2(t +) + 2(usub + usup))/v = 8.55 (9.0) bits/visible character,

»

vhere:
v = number of visible characters in the sample;
t = number of memory.transitions in the sample;

* \

f = number of function codes in the sample;

usub = number‘of unlocking sutscripts in the samplé;

usup = number of unlocking superscripts in the sample.

Reducing the fill overhead to 6% gives 8.10 (8.3) bits/character.
\ 1

Using a 12 bit, non-lockihg transition for MO->MI-$MO, but still

assuming 12% £ill gives 8.40 (8.84) bits/character. With 6% fill, it

€

> reduces to 7.96 (§.36) bits/character.

Changing only the non-Jocking superscript and §ubscript transmission
gives a value of 8.52 k8.95) bits/character. As discussed previously, the
effect of this on the average is slighé.

Implementing all three optimizations gives 8.06 (8.50) bits/character.
This is an overall savings of) bit per character. While this &s only

a

a 5.6% increase in display speed, none of these improvements should be

X

31

———

27

3
‘ ’
particularly difficult to implement. As was previously poin.ed out, dsing

Y

a non-locking superscript and subscript could give a visible speed

increase in some situations. The 6 bit NOijould require the loss of a

\ .
character code. However, the eliminated character could be retained

AY

through a-12 bit control fuaction, or the number of memories could be

expanded. How many characters can stored will eventually be limited

-

by the cost of the hawdware. -

5. VARTIABLE LENGTH CODING

. A

5.1 Introductiop and Description of Basic Principles Lo ‘ i

i

The previous chapter has given an analysis of the current|status of ° IR

character transmission in PLATO IV, and listed three areas of possible " .. .77 7

~ L a,

improvement. All together, the average incredse in transmission rate ” v

would be only '6.0% however. To obtain a more significant increase in.’

\

. S
transmission rate. and thus display speed, it is necessary to look at :gﬁz

more sophisticated methods of compression. ' In thié.chapter, a
definition of variable length or Huffman coding will be presented, -
followed by a discussion of its applicability to the PLATO IV system.

The basic assumption will be that the communications hardware will
remain unchanged. That is, transmission will occur syﬁphrqp0ué;y, T o -

7 inVéI'bit parcels, 18 bits of which ¢an be character data, and that -

trarfhission speed will be limited to 1200 baud by the voice grade

v
-

<«
phone line.

Within any transmission scheme, there is a finite set of symbols

that represent all possible messages sent by the system; The' information
cé%tent for a particular symbol i’ a function not only of the total
aumber of possiblie messaées, but of the probability of occurrence of
the symbol itself. An "optimal" encoding scheme is one which.transmits
no redundant information. T; créate‘an optimal code, it is ngceséary
to have the number of bits used by a particular symbol‘be invérsely

proportional to: the frequency of the symbol. In comparison, most

computer character codes use a fixed number of bits/character,

' -

33 .

2 9 . [

.

dngg@ined by the number of different characters. This method would only

Fay
o

. bé‘éptimal if all characters were edually likely, which is obviously not

A
Af

.-the case:, .

A method *for creating minimum redundancy, or optimal codes from,a set

5>) -
of symbols and their relative frequencies was described by Huffman in S

1952 (7). These codes have the following properties: 1) The codewords have

lengths inversely proportional to their frequencies. That is, the most _ | N

frequent codewords are the shortest omes. 2) Codewords are assigr ' to the .

bit patterns such that there are no uﬁused“géquences shorter than the longest
codeword. 3) No valid codeword begins with a shorter valid codeword. There-

fore, there is no need to include any extra bits to define the start or end

of a codeword. The shortest valid sequence is guaranteed to be the correct

one.

Figure 5.1 gives a brief example of such a code. For a description of

€ -

\
q&\h"how to derive such a code, the reader is referred to Huffman's article (7).

O

ERIC

Aruitoxt provided by Eic:

1n this exémple, there are five possible messages. If a fixed length code

were used, three bits/message would be required. Using the Huffman algorjthm

[l

to define the number of bits for each message, the average can be reduced to

1.9 bits/message. One possible set'ofycpdewordé has been assigned. .

It is possible to determine the optimal number of bits needed to transmit

the information from the relative frequernicies of a set of symbols without

actually constructing the minimum redundancy code. The formula is:
o~ o
average bits/character ="H/total # characters in sdmple

N
>

where H is the entropy function defined by:

A

(%
[T
3

* %
. ' , ¢ N
t
¥ <
° i P(i) . LG) PGHLGE) codeword
. 1 0.50 R 0.5 T
b . . [
r . . .
2 0.20 - 2- 0.4 01
- .- ‘
LR N 0.20 3 0.6 001
i 4 0.08 4 Y0432 0001
s 0.02 4 0.08 : . 0000
s . , Y .
‘ 1.9=1 b
L ’ N ~) av : "

B _— S
. fi ;/,
Figure 5.1 Where i = the message number; P(i) = probabllxty pf occurrence

< of message riumber i L(i)' = length of the cpdaword for i:
: codeword = bit pattern for i, The sum of P({)L(i) for all
i gives the average number of bits/messige. .#’.‘

,, 8t
’!

7

3 AR

. f
H=C e log _total for all i ¢ sample

i “total 2 fi

~

fi = frequency of ith element

=) = h 3
ftotal § fi total characters in sample

-

For the sample used iﬁ the previous chapter, this gives 4.95 bits/chaiacter.

This is 337 shorter than the 7.5 bits/charatter qurrently available as the

°

theoretical limit to the 'PLATO IV coding scheme.

.

5.2 Implementation on PLATO IV .

@

* Ay
* The implemeritation of a variable length code on a system like PLATO IV

2, .

could be done as follows. To-encode, a table lookup can be used. This is
_.alteady done for the current encoding §éheme. The characters are then packed

into the 18 data bits and tganﬁmitted. A £ill pattern, suth as all 1l's, would

be used only at the end of text transmission, since character codes can be
decoded even if they overlap parcel boundaries. .

. To decode a variable length code, it is only necessary to consider the

~

character input as a stream of bit . Each bit is examined in turn until a

codeword is found. This can then be decoded and the next character started.

v
2

Since this is a serial operation, it is not necessary to have an integer number
of character codes withia a parcel. The uecoding'aigorithm can be likened to

moving along a binary tree, where each bit determines either a left or right

-

v *
branch. When a leaf is reached, the codeword has been found.

For any new character coding scheme on PLATO IV, care must be taken to
14
include the function codes in the set of transmission symbols. While it is
- .
common terminology to refer to the number of characters as 256 (or 252), this is

not the case. The actual figure that should be used is 265 for the current system—

(25é + uncover .+ 12 functions) and at least 274 for the projected terminal [4]. -
) o

Jo

-

. 6. THE USE OF WORD LISTS OR DICTIONARIES '

6.1 Introduction to Dictionary Compression iethods .

Up to this point, transmission of text has only been discussed in

terms of transmission of a string of character codes. However, the
. 3) ,
amount of information available in a page of text -is not defined only

by the information inherent in the individual characters. The organi-
/ ’ a

‘zation of these characters inggywords is also_;ignificant. Including

this information in a text encoding scheme can be uced to“drastically
reduce the average number of bits per~charactér required. The

theoretical limit, as defined experimentally by Shannon in 195% is 1.3
bits/character (6) A»Algorithms as efficient as 1.8 bits/character
have been defined for computer systems, using dictionaries of ‘words

and word by word encoding (8). }-
. \\
The method used is to create a word list or dictionary containing
BE .
some or all of the words in the text.“M?ach word in the dictionary is

assigned an index indicating its positioﬁ in the list. To encode,
¢ ¢ ST e A

this index is substituted for the word in the text. Traditionally,
this method has been used to decrease storaée requirements, especially

for archival storage becduse to obtain maximum compression requires

the use of large dictionaries. Thérefo;e; encoding time, which requires

a search throughk the word list, can be high. However, a study made by -

Godfred Dewey-(9) of printed text indicates that the word "the'" alone

accounts for more than 7% of all printed text. He also indicates that

]

the first 10 words by frequency account for more than 25%, and the first

\Lq

. | 37

’ ' 33

100 words account for more than 50% of all printed text. Therefore,

3

it would seem that a significant benefit could be obtained by using a

—- - -

»

relatively short list of words. e

’ To use dictionaries for host-to-terminal transmission;;phree areas =

s i
have -to be sonsidered: the distribution of words transmitted by the

i

system, since it is not guaranteed to be the same as that for printed

’ - * '

English; the ability of the terminal to decode and plot the reteived

word; and the amount of extra ovgﬁhead at the central computer caused
. i ‘

»

bf the encoding.

J /
6.2 Word Distribution on FLATO IV

To study the word frequency distribution, the program which takes
periodic samples from the system output buffer as described in Chapter 4

wé{lused. The sample was then parsed into words and a frequency count

[y

for each word-was kept. From this list, the impact of dictitonaries, on

| JERTN
the average; cpuld‘bg dedyced. In this program,\while the space code

was included as,a delihiter, some samples were analyzed which also

a2

counted space strings as words to predict the benefits .of the

\pfpgrammable tab. Further details on the mechanics of this program can
- * \ ’

be found in section A.3 of the appendix.

The results of this program show “hat while the frequency distribu-
2 f

tion ‘is similar to that given for English (9), many of the more frequent
words are peculiar to PLATO IV. Notably, words indicating keys to be

pressed,.plus the word ""press'itself were very common. For one sample

"
- .

of approximately 100,000 words, not including space strings, the most

common word was '""the', which was. 4.6% of all wérds transmitted. . The

-

38

34

»

a

fifst 10 most frequent words include 16.7%, and the first 160 werds
:include 44 3% of all words transmitted. A similar sample, inéiuding
space strings, gives the déuble space as the most frequent, at 7.9%,
followed by "the" at“2.75%. The first 10 words give 22.2%, and the
first 100, 46.0% of 211 transmitted words.

. While the above numbers offer the most direct comparison of PLATO
word distribution with other word frequency studies, to determine the
effect of a dictionary encoding gcheme on tran§mission speed it is
nenessary to look at a slightly different measurement. What is needed
is the amount of the total output flow that is described by the words.

This number is computed as follows:
length x frequency / total characters

length = # characters needed to transmit the word

=

crequency = frequency of occurrence

total characters = total number of characters, including dellmiters,
transmitted for the entire sample

It was assumed that a space code would be transmitted with the word

except in the case of the space strings.

v

For the sample without the space strings, transmitting the most

\

frequent word, "the", plus a space defined 3.9% of the total character
output. The first 10 words encompassed 14.5%, and the first 100,

38.0% of the transmitted characters. For the sample with the space

£

] scrings, the results were §.3% for the first word (double space), 23.4%

for the first 10, and 474 for .the first 100 words.

.
v g '\
;

JFRIC

Aruntoxt provided by Eic
DR

~

.

35

: y : ‘

To decode a dictionary encoded text, it is necessary to know the

6.3 Decoding Algorithﬁs

'\\
dictionary, and, if not every word in the text is in the dictionary, to

be able to distinguish character codes from word indexes. A simple

me;hod compatible with the current method of transmitting characters on
‘ -
PLATO IV would be to have memories similar to MO and M1, which contain
whole words as entries. W~rds in the "word memories' Yould then be
accessed by selecLing the memory with an uncover code: therr sending a .
6 bit index to select the word. Statistics could be taken to determine
whether a locking or unlocking selection would be more %éﬁiéienL. This
algorithm, using unlocking transitions, was implementedizn the PDP-11
based programmable ;erminal, and was used to display a sample text with
a 0% increase in speed. Unfortunately, to achieve any gains, thé words
in the memsries h?ve to have a transmitted length of greatef than
3 characters, as it takes three 6 bit codes to select the word. Most
common words are short, so savings obtained by this method would not be
very great. .]

A more efficient variation of this method interleaves characters and
words in the same memories. The more common words occur more often than
many characters, so the optimal method would be to place the most comnbn
words in MO, '‘moving some of the less common le ters and symbols in M]°
Ml would also contain &ords as well as letters. Theinumber of new
memories needed would then be a function of the n;mber of words Eéded.

Internal to the terminal, the mgmories would anot need to be ‘
physiecalily interleaved. Then, ho&évgr, a translation table would be

]

necessary. This sort of logic could éaéily be handled by a micro-processor.
. \J

-

Assuming absolute best case, that is, that it takes no more than 6

bits to access a word, the followingisavings could be obtained.
Including space strings, a 10% reduction in output could be obtained with‘;
15 words, a 20% reduction with 52 words, and a 30% reduction with 100
words. Not including space strings requires 26 words for a 10%
reduction, 70 words for a 207% reduction, and 130 ;ords for a 307
reduction in text output. Trie: figures were obtained using a formula

similar to the previous one:’
(length - 1)(frequency) ' tofal characters

where the -1 indicates the 6 bits/qord needed for transmisston.

The previous discussion aSSumed‘éhat the same word list was used
for all students. However, the words that are universally common are
also short. If the vocabulary were tailored to the lesson, longer
words could possibly result in higher savings.

A sample taken from students running organic chemistry lessons
was analyzed. The results showed that while the wqrd distribution was
distinctly oriented towsrds organic chemistry, the percent of the
characters encompassed by the most frequent words was only slightly
higher than f-r the more general case. For the most zommon word, CH,
the percent savings was 2.19. For the first 10 words, the savings
was 10%, and for the first 100, it was 34.4%.

Another specific sampie was taken from tho system editor. Since
the language being disglayed is fixed format, the space strings used

\

as tabs were most predominant, followed by those words in the heading

41

37

for each page. The first 10 worus give 19.7% of the characters. ’
How;ver, 7 out of the first 10 bords are space strinés, wk .ch coulq be
replaced by a tab function.J
éhere is the additional problem with programmable dictionaries of
loadinyg the dictionarg. However, this could be accomplished in the
same way as loading the programmable characters set. The average 3
number of 6 bit characters per word is around 6.5. Assuming 3
characters every 1/60 of a second, a 100 word dictionary would take

less t! in 5 seconds to load. Up to 17 seconds is needed to load the

programfhable character set, so a 5 second wait woull not be * sreasonable.

6.4 Cost of the Encoding Method

it has Lbeen shown that approximately a 30% decrease ié?the informa-
tior flow, which would correspond to a 437% increase in distlay speed,
could be obtained using a 100 word dictionary. It is also well dithin

the capabilities of the terminal to decode the information. We must

r..; 2xamine the cost of encoding such a scheme.
v . .
L]

The optimal place to encode is in the Frameater, #ince the texc
string is already being encoded there. The additional overhead for
‘word by word encoding would be the time needed to parse the word, the
‘able sterage space, and the timé needed for the tabie loakup. The
:overhead i. olved with the : ble looxup is not excessive. Likewise, .
for a fixed table for all user;, the gtorage requirement is trivial.

However, if user defined tables are’used, a separéte'table for each

4
user must be stored. For a system that runs over 400 terminals

+

A

simuitaneously, this overhead can be significant, especially since the
tables wgald haQe to be kept in ECS.

The amount of CPU power that is currently used in formating is
conservatively estimated as 1/3 of all PLATO operations. ‘Of this
time, the largest part i§ spent formating text not only because text
is the major portion of the output flow; but because the formating .
process for text is relatively time consuming. Parsiag for words would
add Ehe overhead of searching for delimiters to each character processed.

‘Under current conditions, the increase in processing-time caused by
] -

this procedure would degradeasystem performance enough to completely

D

e .
nullify an§'ga%Ps in display speed obtained b, using dictionary
N ;‘f., ;E‘x .

encodifig.’

39

+

’

~ 7. CONCLUSIONS AND FUTURE PROJECTS
v 7.1 éummary of Results
In this paper, an attempt has veen made to show how one might
increase the speed of character displays on PLATO 1V, or a similar system.
First, the currently used method was analyzed, and an average rate of 9.0
bits/character was computed.for a typical sample. Three areas of improve-
ment were defined which would decrease the bits/character to 8.5, a

.

change of 6%. This implies only a 5.6% increase in display speed.
Second, the limit obtainatle using Huffman coding was computed to
be 4.95 bits/character for the same sample. As thisris calculated

without including the overhead generated by end of text fill, or the

. .
‘data/control bit, it is necessary to compare it to 7.5 bits/character,

which is the equivalent figure for the optimized version ofoﬁhe-current
method. *This impligs an increase in display speed of 50%, or 1-1/2 times
faster.

Chapter 6 discussed word list encoding. Using approximatcly the
*

same type of 6 bit code as is nc ' used to encode characters t. encode
. words, a 30% decrease in the volume of text information could be obtaircd

using a 100 word disctionary. This would give a 43% increase in display

L4

speed. However, the overhead to encode the wcxds is prohibitive, even
. - &

for short lists.

~

In summary, while some special cases can be improved by modifying

the -currently used method for text transmission, a completely new |

coding scheme must. be constructed ‘to achieve any significant increase

in average .transmission rate. Using a variable length code will give

\

. . 44

AN

40 .

»

‘

a minimum increase of 50% aver current display speeds. However, it is

unlikely *hat such a code will do more than double the display rate.

e

- It is possible to work with a combination of word lists and Huffman

coding to obtain greater compression. One possible algorithm for this

is outlined below. However, for many cases it is not the average rate

’

which is most significant in terms of display ESthetics, but the

"burst" rate. For examplé, it often occurs that a complicated display-

R

will be *transmitted to a tefminal, then trensmissisn will stop, or be

.

reduced to a very low level while the user studies the display.

w

Therefore, the average rate of transmission is low, but esthetically

.the process 1s slow because of the large amount of ;ime needed to plot
the display. Sub equent replots ~* the display are even more tedious.
Suggestions for improving burst display speed for some cases are given

1
in Section 7.3.

" 7.2 Suggestions for Future Work in Text Compression

To obtain greater increases thas the 50% mentioned above, it woyld
be necessary to go to a combination of methods, such as usinéﬂﬂuffman
codiing with word dictionaries. WhLile this reteins the problems of
proeessing overhead, a variation qgﬁthis might be poseiele. It'was

1 S

mentioned in Chapter 6 that the double space.was a very common ﬁéttern.
Qther two-churacter combinations, which®were not anal§zed:as they yere'
not classifie? as words by the program are also common: A éoding

'algorithm using only 1 and 2 character groups would be less expensive

. than the dictionary lookup, since the Frameater would not have to search

41 ~ .

n

for delimiters. . A_modified indexing scheme could be used to reduce the
search time for valid double character groups. For example, the first
character w;uld be used as an index, as it is now, iqto an encoding
table. Each table entry could contain a pointer to a list of double
character\grons beginping with that efiaracter. Thu§, a very.

short table lookup would be the anly major overhead. The program which

now takes statistics on word frequéncies could easily be modified to

study this and other multi~character groups.
/ N .

7.3 Increasing "Burst' Display Speeds

L4 .

Some experimentation has shown-.that an inérease of averége disﬁlay.
rate of 20% relative to.the gurrent rate of approximately 120
characters/second is scarcely visible. Doubling the rate to 240
icharactérs/second begins to give significant advantéges for full scréen
displays. However, the maximum rate for the parallel plasma panel is
nearly 6000vch§racters/second. At that rate, it takes only 1/3 of a
'secoﬁd to fill the screen. There is no way to use that ability by
relying strictly on the average data rate over a 1200 ba;d line. Even
considéring the limitations of the 8 bit micro-processor and using
' 2000 characters/second as a maximum, this is an order of magnitude more
than what was predicted ‘for any of the general text encoding methods.

However, it should be possible to use the high speed display in bursts.,

F N
i

One example of such a burst operation is block erase. There, itqll

takes’ relatively little information sent from the central computer to

indicate the rectangular area. Then the local processor can erase the

4v

~

. - area at as high a speed as possible, limited only by the local

processor and the display. The same principle as block erase can be.‘ .
;sed for area shading.

This burst capability can be extended to text by storing locally
common headings, help sequences, or index pages in ; manner similar to
the image trapping mentioned in Chapter 3. Also, tﬁe user programmable

. character set js often used to make small, multi-character pictures.
) . ,

After a certain éize, it 1is possible to see the individual characters

. ¢
within the pictures plot. If a translation table were stored locally,

.

indicating wt ‘ch characters fit together, then each figure could be :

- : |
called by a single character code transmitted from the main computer. -
|

Especially for characters involved in animations, the improvement in '
displa? quality would be ‘considerable. ,

Another area that can be greatly improved in a burst mode is line
d;awing. The current method sends'an endpoint every 17 msec. For a
complicated éi%ure, i; may také\% minute to plot. There are sevetral
ways go improve thi; for special cases. First, it is possible to use
image trapping. Second, many line drawings'are actually sizgé

R characters; Moving the ability to compress and expand character wize .
' to the terminal, if possible, would significantl& increase the spe;d of
such displays. Other than that, it is necessary to find some method 6f
‘packing ﬁore endpoints in 18 bits of data.

The resorﬁtioq«of,the plasma display is 512 x 512, 60 1ines/inc@.

Therefore, .it takes 9 bits to give maximum x or y, and 6 bits to

describe an'incﬂ. One possibility is to pack Ax, Ay, and try to get

, - 7

g

s

three coordinates into 18 bits. As in character strings, it is not
essential that whole endpoints arrive in one parcel. However, the

decoding operation is not as convenient for such a case here.
¢ A

.

Another possibility is to define a larger grid for lines, so that

IRy

it takes less bits for maximum x and y. Six bit resolution gives a grid’
of approximately 1/8 of an inch. In fact, there is a commonly used

F

coarse grid already.on PLATO IV, corresponding to the character grid,

which is 8 x 16 dots. This grid is often also used for, lines as well. .
- | ,

" A special case can bé made for horizontal and vertical lines,

o

such that only one y or x coordinate, respectively, need be indicated. °

To determine which method would éive the greatest gain, it woulg be .

necessary to do a sample and analycis program for lines, similar to”

the one done for characters. An attempt was made to use a modification
> of the character analysis program to study lines. However, the critlical

i3 . }

] information for line is the distance between endpoints. A strict
¢ 7
"J,./' 4
; average would not give the information needed. Therefore, it would be .
| LY , , Ta ‘

necessary to keep more information as co where the lines are sent to

. N . Al
. AV

guarantee valid resudkts.

i} 7.4 Elimination of Text Formating, . .

4

It has been mentioned in Section 6.4 that approximately 1/3 of PLATO's

«.CPU needs are required for formating. With a processor based terminal, , . .

! A\

it is possible to eliminate the character formating altogether By
accepting the internal codes described in Scction 4.3. 'As the system gets

more processor bound, this becomes an increasingly attractive option.

A ~~ogram to do this has been written for the micro-processor based

48

o~
.

@
terminal, which is basically just a sparse table indexing routine. (12)

While a full scale analvsis of the intevrnal codes with regarhs to .
transmission has not been done,\it could easily be performed by

modifying the character by character analysis program. Two things

, ,
would be obvious improvements. First, eliminate the access + shift + 6

bit code characters. This would decrease the decoding tablef size by

25%. Sépond,“add a lock shift. The relative mediggi?f_ijgzroximately)

— S
shift and lock shift were discussed in 4.4 with regards to the

M0+M1+M0'5kan§i?ion. It was found there that approximaiely 60% of all

shifts are non-=locking.

11.

12.

5

, ' REFERENCES

B. Sherwood and J. Stifle, "The PLATO IV Communications System,"
CERL Report X-44, Computer-based Education Research Laboratory,
University of Illinois (1975).

S -

J. Stifle, "The PLATO IV Student Terminal,! CERL Report X-15,

. Computer-based Education Research Laboratory, University of

Illinois.

M.’ Stone, R. Bloemer, R. Feretich, and R. L. Johnson, "An

Intelligent Graphics .Terminal with Multi-Host System Compatabllity,.
" Digest of Papers, CompCon Fall 74, pp. 37-40.

:'J Stifle, "A Preliminary Report on°the "PLATO V Terminal "

Internal report, Computer-based Education Research Laboratory,
University of Illinois, May 19, 1975.° i

v

S. Smith and B. Sherwood, '"Educational Uses of the PLATO Computers
System," Science, Vol. 192, p. 344 (197%).

C. E. Shannon, "Prediction and Entropy of Printed English,"
Bell System Tech. J., 30, 50-64 (1951).

D. A. Huffman, "A Method for the Construction of Minimum

Redundancy Codes,"*Proc. IRE 40, 1098-1101 (1952).

R. D Cullum, "A Method for the Removal of Redundancy in Printed-
Text," Thesis, University of Illinois Dept. of Computer Science
(1972)

D. Godfrey, "Relative Frequency of English Speech Sounds,"

1923, Harvard University Press, Cambridge Massachusetts.

- D, Bitzer, B. Sherwood, and P. Tenczar, "Computer-base& Science

Eaucation,'" CERL Report X-37 (1972), Computer-based Education
Research Laboratory, University of Illinois, reprinted in "New
Trends in the Utilization of Educational Technology for Science

"Education,” UNESCO, Paris (1974).

R. L. Johnson, private communication.

%

B. Sherwood, private communication.

9

an
<

APPENDIX

A,1 Sampling Program

Tnis program periodically samples the systém output bufféi, screens

-

the information, and places it ip a disk file, called a dataset. The
parameters for the screening process are: user type, course, lesson,

station, and output header code. These .items are described below.

&
"+ There are two main user types, author and student. An author i

" ¢ 1Y
. agsumed to be developing lesson material, while a student is studying

it. Therefore, the author is often using tne editor 3%6 other system
ﬁtilities,.while the student will 2 running under a 'specific set of

— .

lessons. The current average system load is approximately ! studénts

e

and the number is increasing.
]
Each user is registered in a course. Especially for students,
the general area of interest for the user can be determined from this

{

course., For example, students in cgufse cheml36a are studying organic
chemistry.

The lesson-name can be used to define a very-specific area of
interest, such as the system editor. The station number, which defiues
a particular terminal, can ge,used to determine what output ;s sent to
one user, or éroup of users such as the classroom at the Foreign
Language Building. -

The format for the system output buffer is a heading, followed by
data, iipeated. Included in the Eeading is a code to indicate how

the data is to be interpreted. This code is called the output header

code, and is uséd to distinguish characters from other types of ouEput.
n

P

The screening barameteré are kept in a table which can be edited by -

!
.

a separate program. A sample output, -showing data being collected for
all chemistry students enrolléq in several sectibns of an organic
chemistry curriculum; is given-iﬁ Figure A.l. Outputlheader codes

0002 and 0027 indicate text information. This same program can also

.

be used to determine the amount ~f data sampled as there are five
diffArentgdatasets used to hold samples, each with fﬁG blocks of 322

words each.

The sampling program is automatically cun every hour for a maximum

of 10 minutes throughout the day.
. 4

A.2 Character—by-character Analysis PypOgram
This progfém takes the charactdr data stored by the dgtaset in the
‘sampling progfam and.pfoduces the stdtistics di;cussed in Chapters 4
and 5. That is, it is used to determine the character frequency

distribution, memory usage 2nd memory transition information, and the
. < i

. iy <
data needed to compute the average bits per character sent under various

H

conditions. . A page of sample output for all but the character distribu-

tion is given in Figure A.2. A brief dgfinit&on of each term on this

page follows. Startiqg on the left:t

k‘ PLATO characters: the number of 6 'bit intefnal codes processed
* for the sample

é%rmatted characters: the number of 6 pit codes sent to the
terminal, not including fill A

visible characters: number of characters actﬁally displayed. This

is the same as summing the frequency distribu-
r tion for all four mémories.]

54 .

" v
48
L
flag=run .
Data collecting into dataszet stomeed ‘
. block #3, word ~ 321
N -’ . \ .
R Data iz from wser tope stuznt :)
¢
ol Sas R oY Stations Lessons -
chem!l 3ba SREZ all = all .
chemlﬁ&o R 27
' ' -
» - 0
14 v ?
are=:"

¢ .

<

Frezs -BAL 1 - to update common

.

g

Figure A.1l. Display showing screening parameters for sampling program,
In this example, text data is being collected for all

students in cheml36a and cheml36b. :
: §
Q r_j
ERIC)
m;;ﬁﬁ

ka%

chars=a22g7% " ¥tz ochar=T. o4 18.521'
~ 0 formatted chars=9441a7 pelo= 120 fall=8.85 (8,90
v151b1e-ﬂmtgg+er5=?4l .
total rum. oY ftran==TaS4l - lmat ke sharamon' =
#of A I-00 trans=16100 feaumd= 4090 bats zhar
S = mSIAT74 0 EIL 1T _ o Y

»In = Sageg EREC RN Bal B1GZEI AY, 497%

r

Mx = 7 21434 R 1= Tt B JREGR .891%

M3 .= nS549 B,323 B2 E A, T LEY
- H- 2 1 A, 23" -

4
~
t+
[
ot
ip
et
]
~
NN
-
(o4
n
'
4
bat}
(]
}]
O
)

- 4 |
) . 1+ €L B.@e7Y |
co#zhift =1@4ii0 11, 304 1+3 It @, @a3n |
#3cIess ve (AT Lo e CARG g oTaT
#fent = 12247 NPT ' =1 o oo B E
#loch =sup= 770 ALans Il P473n 1, EE5
¥loob == - RS 223 T 0, a9l
‘ . ¥rachzpacs = 40 SomE N S 17=4 gLliEn
#=nk=orapt oo R LRS! 124 LN A
#-:-.n_;,_.»gr SIrp e N N ¥ I B -+ LTI SRR * IS B
#pargin ret e 1371 LR A R 4407 @, cn7" .
im0)
) R . . : 4.4 T4t T
.
) -) .
. .

Figure A.2. Sample display for character-by-character’analysis program.

*
* .

ERI!

Aruitoxt provided by Eic:

total number of transitions: This is tue namber of requests for
memory transitions.

of “t0-M1-MC transitions: This is the numher of occurences of a
MO*M1>MO transition.

The next 5 lines give the character usage among the -four memories.

Both cthe total number cf characters and the percentage of the total

visible characters for each memory is given.

’

v

The frequency of occur the special codes (shift,
access, etc.) i; then 1irted along with the Percentage relative to bhe
number of internal PLATO characters.

At the top right:

bits/character: This is 6 bits times che numpber of formatted
characters divided by the number of visible
characters. The number in parenthesis includes
the data/control bit.

This number p}us 12% fill is given in the next line, in tne same format.

The limit by Shannon's bound is calculated from the character
distribution using the formula given in 5.1.

fi= rema. er of the display gives the transition information.

For examp'e, the entry labeled 0-0 indicates that out ot 741655 visible
characters, 619263 were displayed from M) without any transition.
Therefore,.83.502 of the time, the base memory was MO, and the next
Chayacter was also in MO. Also, summing the four entiries which
indicate that the final memory was MO gives the total number of

characters displaved from that memory, which matches the entry for MO

on the left side. This provides an internal consistency check.

51

h)
This program was also used to provide the information for the

character frequency graphs drawn 'in Figures 4.3 and 4.4. A variation of
this prbéram was used to determiné which type of display information
was predéuinant. Another variation was used to try to find what length
1ine; are common; however, it was decided that the sampling technique
destroys that informat.on. If the sampling program were modified:
analysis of lines would .be possible. <

“»

Future uses of the character-by-character analysis are: studying

the internal format with regard to transmitting internal codes

“directly to the terminal, and analyzing the effectiveness of any system

change. . . -

A.3 Word-by-word Ar:alysis Program

This program provides the word frequency distribution i:???ﬁation
for Chapter 6 from the &;ta generated by the sampling program. First, °
the text is scanned for delimiters, which are all non-albhabetic
characters. Anything between delimiters is considered a word. The
words are kept in a table in.ECS, in alphabetical order, which ‘s
updated to a disk file.periohically. Each time a word is found, a
bs.. y ch-p is used to fird the.yord in the table. If it is not there,
it is_lnserted in the proper position. Each table entry is two 60 bit
words long. Up to 17 6 bit codes are stored per entry. The.remaining
bits are used.for f;équency informat .n.

While' collecting words, the table is allowed to grow to 6601

entries. Then it is sorted by frequency and the amount representing 3/4

ot the total words are retained. This is usvally around 600 entries.

ST

oy
g

ERI!

Aruitoxt provided by Eic:

The table is then resorted alphabetically, and the processing continued.

v
’

A typical sample represents approximately 100-,000 words.

The following calculatioﬂs are performed on the table: sort by
frequency, percentage of total words for each word, percentage of tntal
characters for each word, Sircent savings for each word, and a running

1

total for each of these.

N

The most cumbersome part of this program is the enormous amount of
time needad to create the original word frequency table. Running under
low system load, this takes several hours real t?me, nc nunenessarily

<

consecutively. The table lookup s expensive because « entire table

will not fit in central memory. Tﬁb binary chop was selected because

it is a fast search routine, and it could be pérformed without

transferring the entire table into central memory. Future uses of this

- .

program would be to study character grouping different than words, such
as dipthongs. However, to be truly useful, the word gathecing part

must be made faster. Writing it in Fortran would be one possibility.

A.4 Word-by-word Anslysis of Source Files:
As a preliminary study, a program written in Fortran was used to

compile weri frequencies from }essoﬂ source code. However, it was felt

that this could not be representative as it diq not include the effect

of 1epeated displays. Also, it required guessing the lesson mix to

simulate the system 1oad.l However, for specific areas, such as one group

of students, a reasonable approximation of the word frequency order can

be ot-.ined by scanning the lessons that are included in their curriculum.

