
DOCUMENT RESUME

ED 151016 IR 005 739

AUTHOR
TITLE

INSTITUTION

SPONS AGENCY

PUB DATE
CONTRACT
NOTE

EARS PRICE
DESCRIPTORS

IDENTIFIERS

Stone, 'Maureen
Application of Data Compression Techniques to the
PLATO IV Communication System.
Illinois Univ., Urbana. Computer-Based Educacion
Lab.
Adianced Research Projects Agency (DOD) , Washington,
D.C.
Jul 77
DAHC-15-73-C-0077
57p.

MF7$0.83 HC-$3.50 Plus Postage.
*Computer Assisted Instruction; Computer Graphics;
Computer Otiented Programs; Cost Effectiveness; Data
Processing; *Display Systems; *Electronic Data
Processing
*Data Compression; PLATO IV

ABSTRACT
This paper presents a study on the effects of various

data compression methods f;om the viewpoint of central computer to

'terminal communications on a large gtaphics oriented timesharing
systems PLATO IV. The desired goal is to increase terminal display
speed without significant increase in the transmission error rates.
dhale the major emphagis in this paper is on text transmission, some
iscussion of other display functions is included. Chapters provide
(1) a description of the PLP.TO IV architecture and communications
system; (2) a review of two projects involving prccessor based
terminals; (3) an explanation of how text is currently transmitted,
followed by an analysis of the average number of bits/character
obtained by this method; (4) an introduction to the theoretical
background for variable length or Huffman coding; (5) projected
savings and overhead involved in, the use of word lists to reduce'the
average number of bits/charactet used to represent text; and (6)
conclusions, suggestions for future research, and discussions of
projects involving text compression and other methods of improving
display speed. (Author/DAG)

*********************#************************0********W***************
Reproductions supplied by EDRS are thebebt that can be made r*

* . from the original document. .

**********************1***

...

)

U S OEPARTMENT OF HEALTH.
EDUCATION &WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BEEN REPRO.
OUCEO EXACTLY AS RECEIVEO FROM

THE PERSON OR ORGANIZATION ORIGIN-

ATING IT POINTS OF VIEW OR OPINIONS

STATEO DO NOT NECESSARILY REPRE-

SENT OFFICIAL NATIONAL INSTITUTE OF

EOUCATION POSITION OR POLICY

/

Application of Data Compression Techniques

to the PLATGPIV Communication System

a

k

Maureen Stone St.

o

Computer-Based Education Research Laboratory,
University of Illinois, Urbana,'Illinois

...

a
I

I

---- ----......

r

r

Copyright 0 July 1977
by Board bf Trustees

University of Illinois

0 . 0
PLATO and TUTOR are service marks

of the
Ur)ivdtsity of Illinois'

-

All right's reserved. No part of this book may be reproduced
in any form or by any means without permission in writing
from thk author.

This manuscript was prepared with partial support from the
Advanced Research Projects Agency (U.S. Army Contract DAHC-
15-73-C-0077)' and the University of Illinois at Urbana-
Champaign.

3

O

.

II

c

c

0.

ACKNOWLEDMENT

,INwould like to express my appreciation to all those who have
7,11

helped me with this project; particularly to PrO essor Roger Johnson(

for providing both direction and encouragement.

Aer providing @oth technical advice anda forma for ideas, I

a

would like to acknowledge.Members of.the Hardware Research Group;

Doug Brown Kevin Gorey, Paul Lamprinos, Todd Little,- Jim Opperheimer,

and Scott Weikart,ASimilarly, I would like to acknowledge members of

the PLATO IV systems staff; Dave Andersen; Rick Blomme, Bob Rader,

.1t
Bruce qierwood, and Paul Tenczar.

For helping me produce this paper, I would like to thank members

df the.CERL staff,,and Chris Fleener.

4

6.

TABLE F CONTENTS

1: INTRODUCTION

2. PLATO IV SYSTEM ARCHITECTURE

Page

1

, 3

a

2.1 Central Computer Architecture 4 3

2.2 Communications Architecture 3

3. REVIEW OF WORK WITH PROGRAMMABLE,TERMINALS

4. ANALYSIS4OF CURRENT TEXT TRANSMISSION METHODS 12 4

4.1 Background for Analysis . 12

4.2. Terminal Ch-aracter Format,: 13
4.3 Central System Character Format. 14.

4.4 Description of Text Transmission 17

4.5 Recommendations for Improvement ,'5
-... ' .

5. VARIABLE LENGTH CODING 28

5.1 Introduction and Description of Basic Principles
..,

28

5.2 Implementation on PLATO IV . 30

o , .

-6. THillOsE OF WORD LISTS OR DLCTIONARIES ,32 ,

6.1 Intrqduction to Dictionary Compression Methods '32
6.2 Word,Distribution on PLATO IV 4 33

.

6.3' Decoding Algoikthm4 35

6.4 Cost of Encoding Methods 37
4

7. CONCLUSIONS AND FUTURE PROJECTS . 39

7.1 Summary of Results .\ . 39
7.2 Suggestions for Future Work in Text Co pression s 40 .

7.3 Increasing "Burst" Display Speed JJJJI

41
7.4 Elimination of Text Formating. 0

REFERENCES s 4,
1

APPENDIX

A.1 Sampling Program
A.2 Character-by-character Analysis PrograM
A.3 WOrd-by-word Analysis Program
A.4 Word -by -Word Analysis of Source Files

46

46

47

52

1,

t 1. INTIODUCTION

4

$,

With the development et&yarious mini and micro - processor' iased

terminals, it is appropriate to re-examine the question of communication

requirements between the central co4Iter and the terminal in the PLATO

system. With a processorin(ths,terminal, it is reasonable to reconsider

decoding algorithms that were previcusly too expensive in terms of

terminal hardware.

lit \ This paper presents a study on the effects of various data

compression methods from the viewpoint of central computertto terminal

communications on a large graphics oriented timesharing system, PLATO

-

IV1 The desired goal is to increase terminal display speed without

significant increase in the transmission error rates. While the major

emphasis in this.papei is on text transmission, some discussion of

other display functions is included. The paper is organized into

seven chapters.

Chapter, 2 provides a general description of the PLATO IV

architecture and 'communications system.

Chapter 3 is a review of two projects involving processor based

terminals, one using,a 16 bit mini-computer, and one using an 8 bit

micro-processor.

Chapter 4 gives a detailed explanation of how text is currently

transmitted, followed by an analysis Of the average number of bits/

character obtained by this method. Three areas for improvement are

described.

It

s,

J

_

'q

2

The theoretical background for variable length or Huffman coding

is introduced in Chapter 5. Both the projected gains, and some design

considerations

The userbf word lists is.a method successfully used in other

for implementation on PLATO IV are given.

applications to obtain a significant reduction in the average number of

bits/character used to represent text. ,Both the projected savings

using this method and the overhead involved pre described in Chapter 6.

Chapiler 7 contains both conclusions and suggestions for future

research. Projects involving text compreskon and other methods of

improving display speed are discussed.

I

3

2. PLATO IV SYSTEM ARCHITECTURE

2.1 Central Computer Architecture

The PLATO IV computer-based education system consists of a large

central computer, the Controlipata Corporation Cyber 73-24, with more

than 900 graphics terminals connected to it. (5,10) The Cyber 73-24

is a dual pocessor system with the two central processing units

(CPU's) connect5eto the same central memory (Figure 2.1). Two million

60 bit words of extended core storage (EqS)_ are directly coupled to

central memory by high speed block transfers. The ten peripheral

processing units (PPU's), which are small, programmable processors,

can access both ECS and central memory. Most input/output information

is transferred through the PPU's to buffers in ECS. In this way, ECS

becomes the central transfer point for all data. (1)

2.2 Communications ArchiteCture

The communication system for the terminals is unusual, as can be

seen in Figure 2.2. The, data rate is asymmetrical, with the output.

rate to the terminal being 32.times faster than the input rate.

Standard television equipment and voice grade phone lines were used to

give the loyest possible cost.

Information for a given terminal is sent from the central computer

through a PPU to the Network Interfate that (NIU). There it is

interleaved with the information for all other terminals and transmitted

as a video signal. At a particular location, the site controller

selects the data for the>Minals at the site. The information is

8

'1

0.1 M/s

NIU

4

0 2 M/s 10u.sec

10,000-30,000 sec

ECS
2M

Block-oriented
Random - access
Memory

Figgre 2.1. PLATO IV computer arciatecture, showing memory sizes in
60-bit words., t.ran*Ifer rates in 60-bit words/se.c, and

loess
times in microseconds. M = million, CPU = central

processing unit, PPU = peripheral processing unit,
NIU = network interface unit, CM = central memry,a.

ECS = Extended Core. Storage. Programs and data are swapped

between CM and ECS. Conventional disk drives provide
permanent storage for programs and data. The basic
computer is a Control Data Corporation Cyber 73 -24,

Ike

1

To
odditionolSite <
Controllers

4

5

1 2M bits/sec (outputs to 1000 terminals)

Network
ce UnitInterfa

(NIU)

To 3i
Terminols

-4-
Output

Site
Controller

Input

From 32
Terminals

-4-7 Output

--4' Input

Site
Controller

Dutput

Input

1260 bits/sec (inputs from 32 terminals) From 32
Site

Controllers

Figure 2.2. Communications hardware configuration.

lU

Comput
Complex

6

.r

.separated and sent to the appropriate terminal over a voice grade phone

4
line. The limiting channel is the phone line; therefore the data rate

to the terminal is usually given as the rate along this phone line, or

1260 baud"

Input, which is usually in the Corm of key presses, is transferred.;

to the sr coitroller along the itversechannel of, the phone line. The

4put data for all terminals at the site is transmitted over a single 1260

bawl line back to the central computing system. Since there can be up to

32 Lrminals at one site, the data rate back is up to 32 times slower

than 'the data rate out. More detailed information on the communications

system is given in (1).

All terminalg on tht, PLATO IV system use the same information

protocol for output which is unique to the PLATO system.. Every

16.7 ms', a 21 bit parcel containing 19 bits Of information, 1 bit

parity, And 1 start bit, is received by every terminal. This is either

.information from the central computer, or an all zero-NOP generated by -

the meeworiciAterface unit. This length format was chosen to accommo-

ume

date the 9 bits x and 9 bits y needed for panel addressing. An

extra bit was needed to distinguish data from control words..,Becr.use.

-..)
,-.

1
the system isksynchronous,-every 16.7 ms a frame must be generated by

the central site, consisting of 6ne 20 bit parcel of information for

c'

4..'

' each 'ti.rainal which has output pending. The output is originady

generated-by a running program or "lesson" (Figure 2.3).. The bulk of

the lesson is resident in ECS, with only a'small logical block or

(.

"unit" resident in central memory. Output is encoded by the Executor

I

t

7

ECS

Condensed
Lesson

CE.ntraI
Processor

System Output
Buffer

Lesson I
Unit

L.4
Tutor

Executor

Frachec'er

PPU

out to
communications

system

Figure 2.3. PLATO IV output software configuration.

Q

12

6 bit/
internal
codes

20 bits
terminal
format

8

and placed' in the system drut buffer/. However, the information in

this buffeeis in a generalized, terminal independent form, and not in

the 20 bit format required by the PLATO IV terminal. The conversion

to terminal tormatis handled by a separate program, which also

periodically creates the frame described above and sends it, through

a Pru, to the communications system. This same program, called the

Frameater, also keeps track of each terminal's current state to avoid

sending redundant information. While 20 bits/parcel are sent by the

Frameater to the NIU, parity is actually generated by the communications

hardware'.

13

9

3. REVIEW OF WORK WITH PROGRAMMABLE TERMINALS

The current PLATO IV terminal consists of a 512 x 512 matrix plasma

display, keyser, and a touch input device called a touch panel.

Available display functions are line drawing, character plotting, and

single point plotting. There are 252 available characters, 11 of them

dynamically user-programmable from the central computer. Most of the

current terminals realize these functions through a MSI/TTL design

currently manufactured by Magnavox. (2).

However, it has been recognized throughout the history of PLATO IV

that it would be valuable to use a processor in the terminal. During

the procurement of the first PLATO IV terminals, a processor-based

design was considered, but rejected on the basis of cost (11). More

ret. cly, with the evolution of low-cost LSI micro-processor technology,

consideration has again been given to processor-based PLATO terminals.

This concept has.been explored through two projects at CERL.

In 1972, a project directed by R. L. Johnson was started using a

Digital Equipment Corporation PDP 11/05 as the basis for a programmable

or "intelligent" terminal. Besides the use of the processor, this

terminal differed from the standard one because it used a version of

the plasma panel which could operate on 16 display points in parallel.

This modified panel was therefore capable of a display speed up to

16 times faster than the standard panel. Results of this project are

published elsewhere (3).

The most interesting feature of this programmable terminal was the

ability to combine high speed display with the flexible presentation.

1.0 ,

structure of the PLATO IV system. That is, the PLATO lesson. could

determine the basid design of the display, and the mini-computer could

help to get it up on the screen quickly. For example, a major difficulty

with display devices such as the plasma panel which have inherent

memory is that to erase an area takessas long as it does to write it,

with the exception of the full screen erase. For the standard system,'

due to the synchronized Communication and the speed of the plasma panel,

area erasure is limited to the maximum character plotting rate of 180,

8 x 16 characters per second. For the programmable system, a terminal

function called "block erase" was defined that, given opposite corners

of a rectangle, would erase the area. Using the parallel panel, this

achieves impressive speeds. ,Other defined functions,for the system

include circle generation, rectangular and circular shaded areas, and

large sized characters. Fornore specialized displays, a protocol was

defined forrloading and calling PDP-11 subroutines from PLATO lessons.

Within the .PDP-11, system subroutines were available fOr most display

functions. However, it. is impossible tc match the ease of designing a

It

display as is done on PLATO with subroutines for a mini-computer

assembly language. nth the language and the utilities are lacking.

2

,But it is possible to locally store the 20 bit parcels provided by the

PLATO generated display, feed them back through the terminal simulator,
b4.

and see a large increase'in display speed. This process, cal140.image
Y

.6apping, has teen successfully used to plot most of the displays in a

N
group of highly interactive medical-infoimatior. system lessons. The

major draw-back is the large amount.of storage needed. For more than a

C
1

few full page displays, it is necessary to use an auxiliary storage

medium such as a floppy disk: This project is continuing; expansions

apability in lude a mini-computer operating system, and advanced

pherals.

In 1974, a project to design a PLATO IV terminal whi& would

combine low cost with expanded terminal capabilities was started

under the supervision of J. E. Stifle. SOme of the results of the

earlier project have been included, and the finished design will be

used as A prototype for the next generation of PLATO Lerminals (4).

Several versions of this device, which is based on an INTEL 8080 and a

parallel plasma panel, have been completed. The resident system,

currently stored in re-programmable memory, includes block erase, double

.sized characters, programmable margins and tabs, 'and multi-directional

text display. Some' random access memory is available for user programs,

which can be called from a ,PLATO lesson. Wer.:k is still being done to

%.

determine what Other features should be part of the standard system

'and which should be offered as user programs.

12

st"
4. ANALYSIS OF CURRENT TEXT TRANSMISSION METHODS

4.1 Background for Analysis

For a system such as PLATO IV with a large number of interactiAe

terminals running simultaneously, host-to-terminal communidation, ia a

major part of the system load. With the design of the next generation

terminal nearing completion, it seemed advantageous to study the overall

system format from a communication/information point of view. First,

it was necessary to determine the current distribution of-display type

information. From this distribution, it can be shown that text

constitutes the major part of display activit7. Therefore, ways to

optit,..1.ze the average number of b'its/character sent has been the-major

-emp is of this projeCt. Starting with a detailed analysis of the

Curre characr,l,r transmission method, both optimization of the cuerent,

scheme and methods requiring more radical changes to the system will

be discussed. .Both character-by-character and word-by-word compression

methods have been considered. However, it has been assumed.that no

basic changes'to the overall communications hardware will be made.

One way of determining the distribution by display type of the infor-

mation sent to the terminals is to monitor the output of the Frameater

or of the PPU (Figure 2.3). At the time it was not practical to put a

monitor at either location. The easiest place to sample was at the EC

resident system output buffer. The effect on the output stream could

then be deduced. Using this method, one-can determine that approximtely

50% of all output is characters, 30%.screen positioning inftirmation, and

20% lines. However, of the 30% screen positioning information, almost

17

13

25% of the 30% is takeh up by returning to a software set margin. This

will be eliminated by the variable set margins, already standard for

the new terminals. Ittherefore seems most profitable to optimize text

If
transmission. A description of the current character ehcoding methods

for the terminal and the central system follows.

4.2 Terminal Character Format
0

The present PLATO IV terminal recognizes two types of 20 bit parcels

or wordds: control and data. Normally, the Load Mode control word is

used to'set the terminal mode to either line, character; dot, or load

character memory. .All data words lhat follow ace interpreted
-

relative to the mode. Control wordslinclude load mode, set x/y, and

references external deVices.

The character format for thee terminal :involves the use of 6 bits
4

packed three to a 20 bit data word. Bit 19 = 1 indicates that the

word contains an 18 bit field of data. (Figure 4.1)

- 13 12 07 06 01 00

CHAR 1 CHAR 2 CHAR 3 IP
.

Figure 44 . Character Mode Data Word

The 252 possible characters are arranged in 4 memories of 64 characters

each. One character position in each memory (o77, where the preceding

etc)" 'indicates an octal number) is defined as an "uncover" code. The

combined° . f an uncover code and another 6 bit code is used to

18

4C

I

indicate a,change into another memory, or one of several special
i4

functions as d 'scribed in Table 4.1.

To plot characters, the terminal is .first spt it character mode

with a load mode control word. All subsequent data words are interpreted

as above. Each character plotted automaticallyncremeats x by 3.

Note that the carriage return function (o7715) is only useful in the

spedial case where the left margin is at x F'0. To set eit.ler x or y,

a 20 bit control word must be sent to the terminal. However, this is

done without affecting the terminal mode.

4.3 Central System Character Format

Within the central computer system, characters are arso kept as 6

bit 'odes. Since there are 252 characters. ;lus special functions,

combinations of 6 bit codes are necessary. The combinations are rather

complex. The code o75, called font, is used as a locking toggle to

delineate the alternate font, that is, the user programmablR character

memory. Within the set of 126 characters of either font, two More

xi

special codes are used; shift (o70) and access (o76). The following,

combinations are possible: 6 bit code; shift + 6 bit code; access + 6

bit code; access + shift + 6 bit code. Therefore, a maximum of 18

bits can be used to designate a character in either font: Other special

codes are uses to indicate positioning information such as superscript,

subscript, etc. A complete list is given in Table 4.2.

This rather awkward encoding scheme is'much more consistent when thought

of relatie to the key presses needed to create particular char9cters. The

shift code directly relates co the upper and lower case "shift key" on

19

15

Table 4.1 Control Functions Following an Uncover (o77) Code

Code Name Function

o00 character NOP no cnange

ol0 backspace x ÷ x-8

oll tab x +. x+8

o12 line-feed y y-16

o14 form feed x F 0, y F 496

o15 carriage return x 0, y y-16

o16 superscript y E y +5

o17 subscript y F y +5

o20 select MO set to character memory 0

o21 select M1 set to character memory 1

o22 select M2 set to character memory 2

o23 select M3 set to character memory 3

Table 4.2 Si cial Function Codes for Central Computer Encoding Scheme

Name

subsciipt

superscript

shift

Ufa

margin return
(carriage return)

backspace

font

access

locking subscript

locking superscript

Function

. non-locking
-y +.y-5 for 1 character
then y restored

non-locking,
y + y+5 for'l character,
then y restore&

character definition

+ 0
y + y-16

x + x-8

define alternate font

character definition

Y Y-5

y y+.5

Y

Terminal Code

o77 1J, after the character, send
o77 16 (unlock)

o77 16, after the character, send
o77 17 (unlock)

approximately selects M1
not complete correspondence

o77 15

o77 10

following characters will be in
M3 or M4

approximately) selects M1

not complete correspondence

o7U 17

o77 16

17

a typewriter style keyboard. The characters preceded by an access are

not Visible on the key caps and are mostly mathematicai or foreign

language symbols. Effort has been made to relate the key to the symbol;

such as defining n as access p. While this is the historical basis for

the coding scheme, it is not necessary to keep it this way. The

elimination of the 18 bit access-shift-character combination would .

considerably simplify character strint manipulation, including,the

translation to output format. No additional overhead would be involved

- _

storing input keys, since, for ost cases, a translation is already illade-

between the value produced by the keyset and theyalue described-above.

4.4 Description of Text Transmission

Using a 6 bit code

advantages. First, 6 bi

overhead. Second, it is

bits/character, which is

for transmission to the terminal has two major

is per character will fit into 18 bits with no

possible that an average of.less.than'8

the number needed for a straight Binary coding

method-3 ean be obtained becaute there should be relatively little switching

between terminal memories. While certain foreign language an scientific

symbols must readily be available in an education-oriented system, it

is not expected that the average frequency of these symbols, will be very

high. Therefore, it should be possible'to optimize the character

transmission r te by carefully distributing the characters among the

memories. This can be done by grouping all frequently used cha ters

together, although what symbols are used in combinations must also be

considered. It was decided to place the lower case alphanumerics plus

4,

commonly used punctuation an& arithmetic symB fs together in: MO as letters 1

and numbers are commonly found together when editing program text. AIL

a a.

18

other ROM characters are in Ml. These groupings can be seen in Figure

4.2. It was expected-chat foreign language lessons using a non-Roman

alphabet would arrange ,the characters similarly in M2 and M3.

The following discussion will be based on the results of a system-

wide sampling program. Details on this program can,be-found

A.2. TheseVarticular numbers are taken from an approximately one

million character sample taken periodically throughout one afternoon.

Although one million characters accounts for less than ten minutes of

the total output flow from PLATO IV at such a time, the distributed

sampling technique should give an accurate picture of the average

situati)n. While a rigorous analysis has not been done t8 prove that

this is true, several such samples have been taken and are consistent.

The actual character distribution can be seen in Figures 4.3 and 4.4.

The space-code is by far the most frequent character. In this sample,

it represents around 25% of all characters sent, while 20% is considered

typical for ,English text. The difference is partially due to the lack

'of a multi-character TAB 'function which requires that space strings be

sent instead. Note that the space character appears both in MO and Ml,

to avoid memory swiiching fOr_this common case. After the space, the

loqer case alphabetic characters follow the normal English distribution.

In this particular dhmple, several character codes do not appear

at all. One of these, the arrow seen at the far right in Figure 4.3, is

actually quite prevalent system-wide. However, due to historical

reasons, it is not encoded in the same manner as the othet characters in

the system output buffer, and as such was not seen by the sampling

23

0

ADDgESS
(OCTAL).

MO

CHAR

19

M1
CHAR'

ADDRESS
(OCTAL)

MO

CHAR

Ml
CHAR

0

1

2

3

4

.

.

a

b

, c

d

#

4. '

C B

C

D

40

41

42

43

44

5

6

7.

8
9

+

+

+

q.

5 e E 45 + E

6
.

f F 46 - A

7 . 8 G 47 * u

10 h H 50 /4 n

11' i I 51 ({

12 j J 52) }

13. k K 53 $ &

14 1 L 54 = #.

15
,

m M 55 SP
.

SP

16 n N 56 ,
1

17 o 0 57 . o

20 p P 60 . -1

21 q Q. 61 -; (a

22 r R 62 1

.

0

23 s S 63 % a

24 t T 64 x A

25 u

^
U 65 <1=

.
u

26 -)I/ V 66 1
71-

27 w W 67 so p

30 x X 70 ,. a

31 y Y 71 i to

32 z Z 72 < s

33 0
-

73 >

34 1 - 74 . 8 .

35 2
-

75 ? @

36 3 ' 76 > \

37 ' 4
.

77 UNCOVER UNCOVER

Figure 4.2. ROM character memories.

2

10

percentage

f total
ha acters

..1

5

n fl_

'*)

H n 11111nnn 11nnn_n

24.7`10

r-1 /-111-t e-,

1abcdefghi jklmnopqrstuvvcxyz0123456789+-*/44 ,.÷Er/oxo.'"1; 0_?>

Figure 4.3. Character frequency distributions for MO.

ercentage

of total-

haracters

I0

5

0
#ABCDEFGHIJKLMNOPQRSTUVWXYZ-

4

non

J

t-44*-1

a

SA" {}6g I °Baps Ap-wpal.s>e

Figure 4.4. Character frequency distribution for MI.

26

22

program. Other- characters that do not appear can be assumed to be

infrequently used by the system as a whole. On inspection, it can be

seen that they are either special mdthematical symbols or foreign

language symbols, which are very dependent on the type of lessons

running. The type of lessons running depends on which classes are being

taught at the time of the sample. These characters:do appear in more

selective samples.

Besides the character frequency data, information on '.ndividual

memory usage and the distribution of memory transitions was taken over

the same'sample. The results indicate that 88.1% of a1,1characterg

plotted-resided in MO, 8.0% resided in Ml, 2.9% in M2, and 0.9% in'M3.

As was anticipated, MO is by far the most heavily used.

Inherent in this coding scheme iS the assumption that-once a change

into a memory is made, the next character. is more likely to be in the

new memory than the old. This assumption can be checked by comparing

the number of transitions our of A memory with the number of times the

next character was within the same memory. Inn the case of MG, it is

20 times more likely that the next character is in MO than in any of

the other three memories. For Ml, on the other hand, it is only 23%

more likely that the next character is in M1 as opposed to anywhere

else, Because M1 contains the upper case alphabet, it was suspected

that the MO4M14MO transition, which wolld occur for a word beginning

with a capital letter, would be quite frequent. Therefore, a special

check tor this transition uns included. It was found that a?proximately

60% of the transitions between MO and M1 were encompassed b., this case.

2.7

23

This implies that a non - locking shift to M1 in addition to the current

locking transition would be beneficial.

From the same data, it can be determined that 90.5% of the time,

plotting a character does not require i changt of terminal memory.

This can be used to compute the average number of bits/character as

follows:

.903 x 6 + .095 x 18 = 7.14 bits/character

This is indeed better than 8 bits/character, as was predicted. This is

not a completely accurate picture, however. Because.of the overhead

inherent in the 20 bit parcel scheme, the real number is somewhat higher.

First, each character actually requires 6.3 bits, to include the

data/control bit. Recomputing gives 7.47 bits/character. Neither the

start nor the parity bits are representedas they are not usually

included in a discussion of this kind. Mowery/4r, the effects of these

bits would be computed similarly. For ease of discussion, a 6 bit

character will be assumed for the rest of this chapter unless explicitly

stated otherwise. The higher value can always be otained by t.iltiplying

by 6.3/6.0.

Another source of overhead is due to the fact that there are m*.Ltiple

characters in one data word. This can cause unused bits at the end of

Ilia character string. Within the current design, there is no 6 bit code

which can be used as a NOP, or fill character. Therefore, it is

necessary to go to a 12 bit NOP. The extra bits transmitted inthis

p

manner account for 12% of all character output. This, increases the

4)

\./ 24 .

average number of bits per character to 8.00. This is the number of

bits required by a straight binary encoding scheme, although it would not

be possible to implement such a scheme directly without considerable

overhead if the 20bit parcel size were retained.' It seems safe to

assume thatthe tme of a 6 bitii0P would reduce the fill overhead to

6%. A 6% overhead gives 7.57 bits/character.

Ignoring the 12% fill overhead for the moment, the result of

translating this sampling of the outpilt buffer to the format required

1

by the terminal gives 7.64 as the average number of bits per Visible

chaacter. The differencebetween this figure and the 7.14 bits/character

given before is due to the function codes included in 'the output stream.

4,

Function codes are those codes describdd in Table 4.1, other than those

used to change memories. Each code is assumed to take 12 bits. A

discussion of the effect of the various types of function codes follows.

The most common single code is the margin return, or carriage

return. Alone, it accounts for 0.4% of the character output str ams.

Because the new terminals will have programmable margins, it is expected

that this function wille,become even more significant.

O

Taken together, the superscript, subscript, locking superscript, and

'locking subscript constitute 1.1% of the total character output. While

the locking type can be sent with .p 12 bit code, to do a non-locking

superscript or subscript requires 24 hits. For example, to do a non-

locking superscript requires a 12 bit locking superscript code to

precede the character, and a 12 bit locking subscript code to follow it.

Inthis sample, the extra overhead caused by not,having a 12 bit

4.j

25

uraocking.superscript and subscript accounts for 0.4% of the total

character output stream. While this number is not very large, for

certain types of displays the overhead can be siigiiicant. For

example, take the equation: y = x12 + 2x1x2 + cl. There are 14 visible

0

characters,ut the superscripts and subscripts require transmitting 20

more. This decreases the character writing rate to approximately 1/3

of what would be predicted by the 14 visible characters alone. Just

using a 12 bit code would double the display rate, which is a visible

increase'in speed. This type of equation is common in mathematical and

scientific lessons. For example,' a sample of chemistry lessons showed

that the average Agthead for superscripts and subscripts was 6%.

Furthermore, the locking case vas used hardly at all relative to the

non-locking case. For the sake of these special cases, a non-locking

superscript and subscript funotion should be considered.

The remainingemaining function codes, with backspace predominant, account

for 1.18% of the total character output stream. To summarize: the

function codes, assumming 12 bits/code except for the non-locking

superscript and subscript which are 24 bits long, arc 2.6g% of the

character output stream. While this number is small, a page of text

With a large number of these codes can plot significantly slower

because of the relatively large overhed' for the code.

4.5 Recommendations for firtprovement

Three areas for possible improvement have been identified: the

bit as opposed to the 12 bit NOP or ff1 characters, the non-locking

transition from MO to Ml, and the non-locking superscript and subscript.

30.

26

Below is a description of the effect on the average number of bits/character

for each of these. For the rest of this discussion, the valuk computed

using 6.3 bits/character to include the data/control bit, will
,

be given

in parentheses next to the value using 6 bits /character.

The base figure for comparison is the current average bits/character

aq computed by the follOwing expression:

1.12 x 6(v + 2(t + f) + 2(usub + aup))/v = 8.55 (9.0) bits/visible character,

where:

v = number of visible characters in the sample;

t = number of memory transitions in the sample;

f = number of function codes in the sample;

usub = number:of unlocking subscripts in the sample;

usup = number of unlocking superscripts in the sample.

Reducing the fill overhead to 6% gives 8.10 (8.5) bits/character.

Using a 12 bit,.non-lockfng transition for MO-4114M0, .but still

assuming 12% fill gives 8.40 (8.84) bits/character. With 6% fill; it

reduces to 7.96 (8.36) bits/character.

Changing only the non-locking superscript and subscript transmission

gives a value of 8.52 (8.95) bits/character. As discussed previously, the

effect of this'on the average is slight.

Implementing all three optimizations gives 8.06 (8.50) bits/character.

This is an overall savings of bit per character. While this is only

a 5.6% increase in display speed, none of these improvements should be

.31

0

1:a

,

-..

27
1.

a.

I
,

particularly xlifficult to implement. As was previously poiu,ed out, using

a non - locking, superscript and subscript could give a visible speed

increase in some situations. The 6 bit NOP
5

would require the loss of a

character code. Hbwever, the elimipated character could be retained

through a12 bit control function, or the number of memories could be

expanded. How many characters can stored will eventually be limited

by the cost of the hardware.

-46

3

:32

g

0

28

5. VARIABLE LENGTH CODING

5.1 Introductiop and Description of Basic Principles

The previous chapter has given an analysis of the current status of

character transmission in PLATO IV, and listed three areas of ossible

improvement. All together, the average increase in transmission rate

would be only '6.0%, however. To obtain a more .significant increase in

transmission rate:, and thus display speed, it is necessary to look at

more sophisticated methods of compression. In this.chapter, a

definition of variable length or Huffman coding,will be presented,

followed by a discussion of its applicability to the PLATO IV system.

The basic assumption will be that the communications hardware will

remain unchanged. That is, transmission will occur synchronously,

in 2i-bit parcels, 18 bits of which Can be character data, and that

trariglission speed wilt be limited to 1200 baud by the voice grade

phone line.

Within any transmission scheme, there is a finite set of symbols

that represent all possible messages sent by the system. The` information

content for a particular symbol isla function not only of the total

number of possible messages, but of the probability of occurrence of

the symbol itself. An "optimal" encoding scheme is one which transmits

no redundant information. To create an optimal code, it is necessary

to have the number of bits used by a particular symborbe inversely

proportional toithe frequency of the symbol. In comparison, most

computer character codes use a fixed number of bits/character,

33.

29

deterimined by the number of different characters. This method would only
rr

rr

- be"-optimal if all characters were equally likely, which is obviously not

.the

A method for creating minimum redundancy, or optimal codes from,a set

of symbols and the relative frequencies was described by Huffman in

1952 (7). These codes have the following properties: 1) The codewords haVe

lengths inversely proportional to their frequencies. That is, the most

frequent codewords are the shortest ones. 2)'Codewords are assign ' to the

bit patterns such that there are no unusedlequences shorter than the longest

codeword. 3) No valid codeword begins with a shorter valid codeword. There-

fore, there is no need to include any extra bits to define the start or end

of a codeword. The shortest valid sequence is guaranteed to be the correct

one.

Figure 5.1 gives a brief example of such a code. For a description of

\......

how to derive such a code, the reader is referred to Huffman's article (7).
, .

In this example, there are five possible messages. If a fixed length code

were used, three bits/message would be required. Using the Huffman algorithm

to define the number of bits for each message, the average can be reduced to

1.9 bits/message. One possible set of codewords has been assigned.

It is possible to determine the optimal number of bits needed to transmit

the information from the relative frequencies of a set of symbols without

actually constructing the minimum redundancy code. The formula is:,

average bits/character -='1-1/total # characters in sample

where H is the entropy function defined by:

2

3

4

5 .

4

Figure 5.1

.

30'

o

P(i) L i P(i)L(i)

0.50 1 0.5

0.20 2- 0.4

0.20 .51 3 0.6

0.08 4 0.32

0.02 4 0.08

1.9= L.
av

codeword

1

001

.0001

""

Where i = the message number; P(i) = probabilitypf occurrence
of message number J.."; L(i)'= length of the ctideWrd for i:
codeword =bit pattern for i. The sum of P(i)L(i)%:for all
i gives the average number of bits /message.

31

H =

f.

log
2(1.

total
E

(total
th

f. = frequency of i element

I

for all i e sample

(total
= E f. = total characters in sample

.

For the sample used in the previous chapter, this gives 4.95 bits/character.

This is 33% shorter than the 7'.5 bits /character currently available as the

theoretical limit to theIPLATO IV.coding scheme..

5.2 Implementation on PLATO IV

'The implementation of a variable length code on a system like PLATO IV

could be done as follows. To,encode, a table lookup can be used. This is

already done for the current encoding iCheme. The characters are then packed

into the 18 data bits and transmitted. A fill pattern, such as all l's, would

be used only at the end of text transmission, since character codes can be

decoded even if they overlap parcel boundaries.

To decode a variable rength code, it is only necessary to consider the

character input as a stream of bit . Each bit is examined in turn until a

codeword is found. This can then be decoded and the next character started.

Since this is a serial operation, it is not necessary to have an integer number

of character codes with1.1 a parcel. The uecodinaigorithm can be likened to

moving along a binary tree, where each bit determines either a left or right

branch. When a leaf is reached, the codeword has been found.

For any new character coding scheme on PLATO IV, care must be taken to

include the function codes in the set of transmission symbols. While it is

common terminology to refer to the number of characters as 256 (or 252), this is

not the case. The actual figure That should be used is 265 for the current system

(252 + uncover.+ 12 functions) and at least 274 for the projected terminal 141.

36

32

6. THE USE OF WORD LIS1S OR DICTIONARIES

6.1 introduction to Dictionary Compression Methods

Up to this point, transmission of text has only been discussed in

terms of transmission of a string of character codes. However, the
A

amount of information available in a page of textis not defined only

by, the information inherent in the individual characters. The organi-

zation of these characters into, words is also significant. Including

this information in a text encoding scheme can be used to drastically

reduce the average number of bits per character required. The

theoretical limit, as defined experimentally by Shannon in 1951, is 1.3

bits/character (6).4-Algorithms as efficient as 1.8 bits/character

have been defined for computer systems, using dictionaries of'words

and word by Word encoding (8).

The method used is to create a word list or dictionary containing

some or all of the words in the text. Tech word in the dictionary is

assigned an index indicating its position in the list. To encode,

this index is substituted for the word in the text. Traditionally,

this method has been used to decrease storage requirements, especially

for archival storage because to obtain maximum compression requires

the use of large dictionaries. Therefore; encoding time, which requires

a search through the word list, can be high. However, a study made by

Godfred Dewey(9) of printed text indicates that the word "the" alone

accounts for more than'7% of all printed text. He also indicates that

the first 10 words by frequency account for more than 25%, and the first

37

33

100 words account for more than 50% of all printed text. Therefore,

it would, seem that a significant benefit could be obtained by using a

relatively short list of words.

To use dictionaries for hosttoterminal transmissionqhree area

haveto be considered: the distribution of words transmittel by the

system, since it is not guaranteed to be the same as that for printed

English; the ability of the terminal to decode and plot the received

word; and the amount of extra overhead at the central computer caused

by the encoding.

Word Distribution on:OLATO IV

To study .the word frequency distribution, the program which takes

periodic samples from the system output buffer as described in Chapter 4

was used. The sample was then parsed into words and a frequency count

for each word-was kept. From this list, the impact of dictionaries, on

the average, could be deduced. In this program, while the space code

was included as,a delimiter, some samples were analyzed which also

counted space,,strings as words to predict the benefitsof the

.prpgrammable tab.. Further details on the 'mechanics of this program can

be, found in section A.3'of the appendix.

The results of tIttis program. show That while the frequency distribu
,

tion 'is similar to that given for English (9), many of the more frequent

words -are peculiar to PL4TO IV. Notably, words indicating keys to be

pressed,. plus the word."press"itself were very common. For one sample

of approximately 100,000 words, not including space strings, the most

common word was "the", which Was4.6% of all ards transmitted. .The

34

first 10 most frequent words include 16.7%, and the first 100 words

include 44.3% of all words transmitted. A similar sample, including

space strings, gives the double space as the most frequent, at 7.9%,

followed by "the" aC2.75%. The first 10 words give 22.2%, and the

first 100, 46.0% of all transmitted words.

While the above numbers offer the most direct comparison of PLATO

word distribution with other word frequency studies, to determine the

effect of a dictionary encoding scheme on transmission speed it is

ne,lessary to look at a slightly different measurement. What is needed

is the amount of the total output flow that is described by the words.

This number is computed as follows:

length x frequency / total characters

length = # characters needed to transmit the word

zrequency = frequency of eccprrence

total characters = total number of characters, including delimiters,
transmitted for the entire sample

It was assumed that a space code would be transmitted with the word

except in the case of the space strings.

For the sample without the space strings, transmitting the most

frequent word, "the", plus a space defined 3.9% of the total character

output. The first 10 words encompassed 14.5%, and the first 100,

38.0% of the' transmitted characters. For the sample with the space

strings, the results were 8.3% for the first word (double space), 23.4%

for the first 10, and 47X for.the first 100 words.

39

#'

6.3 Decoding Algorithms

35

To decode a dictionary encoded text, it is necessary to know the

dictionary, and, if not every word in the text is in the dictionary, to

be able to distinguish character codes from word indexes. A simple

method compatible with the current method of transmitting characters on

PLATO IV would be to have memories similar to MO and Ml, which contain

whole words as entries. W^rds in the "word memories" would then be

accessed by selecting the memory with an uncover code, then sending a

6 bit' index to select the word. Statistics could be taken to determine

whether a locking or unlocking selection would be more s icient. This

algorithm, using unlocking transitions, was implemented on the PDP-11

based programmable terminal, and was used to display a sample text with

a 30% increase in speed. Unfortunately, to achieve any gains, the words

in the memories have to have a transmitted length of greater than

3 characters, as it takes three 6 bit codes to select the word. Most

common words are short, so savings obtained by this method would not be

very great.

A more efficient variation of this method interleaves characters and

words in the same memories. The more common words occur more often than

many' characters, so the optimal method Gould be to place the most common

words in MO,'moving some of the less common ters and symbols in Mi.

M1 would also contain words as well as letters. The number of new

memories needed would then be'a function of the number of words added.

Internal to the terminal, the memories would not need to be

physically interleaved. Then, however, a translation table would be

necessary. This sort of logic could easily be handled by a micro-processor.

36

Assuming absolute best case, that is that it takes no more than 6

1

bits to access a word, the following savings could be obtained.

Includilg space strings, a 10% reduction'in output could be obtained with

15 words, a 20% reduction with 52 words, and a 30% reduction with 100

words. Not including space strings requires 26 words for a 10%

reduction, 70 words for a 20% reduction, and 130 words for a 30%

reduction in text output. Tree: figures were obtained using a formula

similar to the previous one:.

(length - 1)(frequency) total characters

where the -1 indicates the 6 bitsfword needed for transmission.

The previous discussion assumed that the same word list was used

for all students. However, the words that are universally common are

also short. If the vocabulary were tailored to the lesson, longer

words could possibly result in higher savings.

A sample taken from students running organic chemistry lessons

was analyzed. The results showed that while the word distribution was

distinctly oriented towards organic chemistry, the percent of the

characters encompassed by the most frequent words was only slightly

higher than fIr the more general case. For the most common word, CH,

the percent savings was 2.19. For the first 10 words, the savings

was 10%, and for the first 100, it was 34.4%.

Another specific sample was taken from the system editor. Since

the language being displayed is fixed format, the space strings used

as tabs were,most predominant, followed by those words in the heading

41

V

Iv

3.7

for each page. The first 10 words give 19.7% of the characters.

However, 7 out of the first 10 words are space strings, wL,ch could be

replaced by a tab function.

There is the additional problem with programmable dictionaries of

loadili6 the dictionary. However, this could be accomplished in the

same way as loading the programmable characters set. The average

number of 6 bit characters per word is around 6.5. Assuming 3

characters every 1/60 of a second, a 100 word dictionary would take

less 0 In 5 seconds to load. Up to 17 seconds is needed to load the

program able character set, so a 5 second wait woull not be 'reasonable.

6.4 Cost of the Encoding Method

It has been shown that approximately a 30% decrease in the informa-

Lion flow, which would corre.bpond to a 43% increase in disrlay speed,

could be obtained using a 100 word dictionary. It is also well within

the capabilitieS of the terminal to decode the inform'ation. We must

axamine the cost of encoding such a scheme.
9

The optimal place to encode is in the Franteater, dince the text

string is already being encoded, there. The additional overhead for

word by word encoding ,../ould be the time needed to parse the word, the

'able storage space, and the time needed for the table lookup. The

overhead i. olved with the t ble looKup is not excessive. Likewise,

for a fixed table for all users, the storage requirement is trivial.

However, if user defined tables are used, a separate table for each

4

user must be stored. For a system that runs over 400 terminals

4d

38

simultaneously, this overhead can be significant, especially since the

tables would have to be kept in ECS.

The amount of CPU power that is currently used in formating is

conservatively estimated as 1/3 of all PLATO operations. Of this

time, the largest part is spent formating text not only because text

is the major portion of the output flow; but because the formating

process for text is relatively time consuming. Parsing for words would

add the overhead of searching for delimiters to each character processed.

Under current conditions, the increase in processing time caused by

this procedure would degrade system performance enough to completely
cr.

nullify any gains in display speed obtained b_ using dictionary

encoding.,

o

4'

39,

7. CONCLUSIONS AND FUTURE PROJECTS

7.1 Summary of Results

In this paper, an attempt has seen made to show how one might

increase the speed of character displays on PLATO IV, or a similar system..

First, the currently used method was analyzed, and an average rate of 9.0

biXs/character was computed.for a typical sample. Three areas of improve-

ment were defined which would decrease the bits/character to 8.5', a

change of 6%. This implies only a 5.6% increase in display speed.

Second, the limit obtainaLle using Huffman coding was computed to

be 4.95 bits/character foi the same sample. As this'is calculated

without including the overhead generated by end of text fill, or the

data /control bit, it is necessary to compare it to 7.5 bits/character,

which 4s the equivajent figure for the optimized version orfhe current

method. This implas an increase in display speed of 50%, or 1-1/2 times.

faster.

Chapter 6 discussed word list encoding. Using approximatzly the

same type of 6 bit code as is nc . used to encode characters is encode

words, a 30% decrease in the volume of text information could be obtainc..d

using a 100 word dictionary. This would give a 43% increase in display

speed. However, the overhead to encode the wcrds is prohibitive, even

,for short lists.

In'summary, while some special cases can be improved by modifying

the currently used method for text transmission, a completely new

coding scheme must, be constructed-to achieve any significant increase

in average,transmission rate. Using a variable length code will give

4q

ts

40

a minimum increase of 50% oyer current display speeds. However, it is

unlikely 'hat such a code will do more than double the display rate.

It is possible to work with a combination of word lists and Huffman

coding to obtain greater compression. One possible algorithm for this

is outlined below. However, for many cases it is not the average rate

which.is most significant in terms of display esthetics, but the

"burst" rate. For example, it often occurs that a complicated display-

will be 'transmitted to a terminal, then transmission will stop, or be

reduced to a very low level while the user studies the display.

Therefore', the average rate of transmission is low, but esthetically

the process is slow because of the large amount of time needed to plot

the display. Sub equent replots r-c the display are even more tedioUs.

Suggestions for improving burst display speed for some cases are given

in Section 7.3.

7.2 Suggestions for Future Work in Text Compression

To obtain greater increases than the 50% mentioned above:, it would

be necessary to go to a combination of methods, such as using Huffman

cod ng with word dictionaries. aile this retains the problems, of

processing overhead, a variation oPthis might be possible. It4was

mentioned in Chapter 6 that the double space.was a very common pattern.

Other two-character combinations, whih
o
were not analyzed as they were

not classified as words by the programore also common: A coding

algorithm using only 1 and 2 character groups would be less expensive

than the dictionary lookup, since the Frameater would 'not have to search

41

for delimiters. .A.modified indexing scheme could be used to reduce the

search time for valid double character groups. For example, the first

character would be used as an index, as it is now, into an encoding

table. Each table entry could contain a pointer to a list of double

character 'groups beginning with that ellaracter. Thus, a very.

short table lookup would be the only major overhead. The program which

now takes statistics on word frequencies could easily be modified to

study this and other multi-character groups.

7.3 Increasing "Burst" Display Speeds

Some experimentation has shown,that an increase of average display

rate of 20% relative to the current fate of approximately 120

characters/second is scarcely visible. Doubling the rate to 240

'characters/second begins to give significant advantages for full screen

displays. However, the maximum rate for the parallel plasma panel is

nearly 6000 characters/second. At that rate, it takes only 1/3 of a

'second to fill the screen. There is no way to use that ability, by

relying strictly on the average data rate over a 1200 baud line. Even

considering the limitations of the 8 bit micro-processor and using

'2000 characters/second as a maximum, this is an order of magnitude more

than what was predicted'for any of the general text encoding methods.

However, it should be possible to use the high speed display in bursts.

One example of such a burst operation is block erase. There, it,411

takedrelatively little information sent from the central computer to

indicate the rectangular area. Then the local processor can erase the

4

42

area at as high a speed as possible, limited only by the local

processor and the display. The same principle as block erase can be

used for area shading.

This burst capability can be extended to text by storing locally

common headings, help sequences, or index pages in a manner similar to

the image trapping mentioned in Chapter 3. Also, the user programmable

character set 5s often used to make small, multicharacter pictures.

After a certain size, it is possible to qee the.individual characters

e

within the pictures plot. If a translation, table were stored locally,

indicating wl'ch characters fit together, then each figure could be

called by a single character code transmitted from the main computer.

Especially for characters involved in animations, the improvement in

display quality would be considerable.

Another area that can be greatly improved in a burst mode is line

drawing. The current method sends an endpoint every 17 msec. For a

complicated figure, it may take 1/2 minute to plot. There are several

ways to improve this for special cases. First, it is possible to use

image trapping. Second, many Line drawings'are actually size

characters, Moving the ability to compress and expand character size ,

to the terminal, if possible, would significantly increase the speed of

such displays. Other than that, it is necessary to find some method of

packing more endpoints in 18 bits of data.

.The resoraion of the plasma display is 512 x 512, 60 lines/inch.
.

Therefore, it takes 9 bits to give maximuM x or y, and 6 bits to

describe an incfi. One possibility is to pack Ax, Ay, and try to get

47

43

et.

three coordinates into 18 bits. As in character strings, it is not

essential that whole endpoints arrive in one parcel. However, the

decoding, operation is not'as convenient for such a case here.
a

Another possibility is to define a larger grid for lines, so that

it takes less bits for maximum x and y. Six bit resolution gives a grijof

of approximately 1/8 of an inch. In fact, there is a commonly used

coarse grid already,on PLATO IV, corresponding to the character grid,

which is 8 x 16 dots. This grid is often also used for lines as well.
'

A special case can be made for horizontal and vertical lines,

,

such that only one y or x coordinate, respectively, need be indicated. '

To determine which method would give the greatest gain, it Would be ,

necessary to do a sample and _analysis program for lines, similar to-

the_one done for characters. An attempt was made to use a modification

of the character analysis program to' study lines. However, the critical
1

7

information for line is the distance between endpoints. A strict

average would not give the information needed. Therefore, it would be

necessary to keep more information as to where the lines are sent to

guarantee valid restAts.

7.4 Elimination of Text Formating,

It has been mentioned in Section 6.4 that approximately 1/3 of PLATO's

;,CPU needs are required for formating. With a processor based' terminal,

it is possible to eliminate the character formating altogether by

accepting the internal codes described in Section 4.3. 'As the system gets

more processor bouhd, this becomes an increasingly attractive option.

A --ogram to do this has been written for the micro - processor based

4d

44

terminal, which is basically just a sparse table indexing routine. (12)
0

While a full scale ana2vsis of the internal codes with regards to

transmission has not been done, it could easily be performed by

modifying the character by character analysis program. Two things

would be obvious improvements. First, eliminate the access + shift + 6

bit code characters.

25%. Second, add a lock shift. The relative me proximately)

This would decrease the decoding table/ size by

shift and lock shift were discussed in 4.4 with regards to the

M0+1.1141,10 ian0.-ion. It was found there that approximately 60% of all

shifts are non - locking.

49

4

45

REFERENCES

1. B. SherwoOd and J. Stifle, "The PLATO IV Communications System,"
CERL Report X-44, Computer-based Education Research Laboratory,

0
Univer'Sity of Illinois (1975).

2. J. Stifle, "Th e PLATO IV Student Terminal,!' CERL Report X-15,
Computer-based Education Research Laboratory, University of

Illinois.

3. M.' Stone, R. Bloemer,R. Feretich, and R. L. Johnson, "An
Intelligent Graphics :Terminal with Multi-Host System Compatability,':

Digest of Papers, CompCon Fall 74, pp. 37-40. .

4. J. Stifle, "A Preliminary Report on °the PLATO V Terminal,"
Internal report, Computer-based Education Research Laboratory,
University of Illinois, May 19, 1975.'

5. S. Smith and B. Sherwood, "Educational Uses of the PLATO Computers

System," Science, Vol. 192, p. 344 (1975).

6. C. E. Shannon, "Prediction and Entropy of Printed English,",
Bell System Tech. J., 30, 50-64 (1951).

7. D. A. Huffman, "A Method for the Construction of Minimum
Redundancy Codes,"Proc. IRE 40, 1098-1101 (1952).

8. R. D. Cullum, "A Method for the Removal of Redundancy in Printed'
Text," Thesis, University of Illinois Dept. of Computer Science

(1972).

9. D. Godfrey, "Relative Frequency of English Speech Sounds,"
1923, Harvard University Press, Cambridge, Massachusetts.

10. D. Bitzer, B. Sherwood, and P. Tenczar, "Computer-based Science
Education," CERL Report X-37 (1972), Computer-based Education
Research Laboratory, University of Illinois, reprinted in "New
Trends in the Utilization of Educational Technology for Science
'Education," UNESCO, Paris (1974).

11. R. L. Johnson, private communication.

12. B. Sherwood, private communication.

1

46

t I

APPENDIX

A.1 Sampling Program

Tnis program periodically samples the system output buffer, screens

the information, and places it in a disk file, called a dataset. The

parameters for the screening process are: user type, course, lesson,

station, and output header code. These .items are described below.
O

There are two slain user types, author and student. An author i

assumed to be developing lesson material, while a student is studying

it. Therefore, the author is often using the editor aiib other system

Utilities,. while the student will s,running under a specific set of

lessons. The current average system load is approximately, 11 students,

and the number is increasing.

Each user is registered in a course. Especially for students,

the general area of interest for the user can be determined from this

course. For example, students in course chem136a are studying organic

chemistry.

The lessonname can be used to define a very specific area of

interest, such as the system editor. The station number, which defines

particular terminal, can be..used to detegmine what output is sent to

one user, or group of users such as the classroom at the Foreign

Language Building.

The format for the system output buffer is a heading, followed by

data, repeated. Included in the heading is a code to indicate how
0

the data is to be interpreted. This code is called the output header

code, and is used to distinguish characters from other types of output.
e\

51

47

The screening Parameters are kept in a table which can be edited by

p separate program. A sample output,- showing data being collected for

all chemistry students enrolled in several sections of an organic

chemistry curriculum, is given in Figure A.1. Output header codes

o002 and o027 indicate text information. This same program can also

be used to determine the amount if data sampled as there are five

different,datasets used to hold samples, each with /26 blocks of 322

words each. ,

Thg sampling program is automatically Tun every hour for a maximum

of 10 minutes throughout the day.

A.2 Character-by-character Analysis P gram

This program takes the charactek data stored by the dataset in the

sampling program and,produces the statistics discussed in Chapters 4

and 5. That is, it is Used to determine the character frequency

distribution, memory usage and memory transition information, and the

data needed to compute the average bits per character sent under various

conditions.. A page of sample output for all but the character distribu-

tion is given in,Figure A.2. A brief definition of each term on this

page follows. Starting on the left:

PLATO characters: the number of 6 'bit intetnal codes processed

for the sample

, rmatted characters: the number of 6 bit codes sent to the
terminal, not including fill

visible characters: number of characters actually displayed. This

is the same as summing the frequency distribu-
r tion for all fdur memories.

54

\^

48

EtS4 =1-1-1

Da L. 1 I ct data5et st

block *3, word 321

Data i5 from us,7-4r t-pe

- *1 4--

Y""

4

;tat Le1 ns.

1 3 Oa

he.M I it' c.

all

O

1. Binsle entry. data

2. 1tatio1!5

3. codes
4. courBes
5. le...5on5

1- to updatE. coron-ton

X11

Figure A.1. Display showing screening parameters for sampling program.
In this example, text data is being collected for all

students in chem136a and chem136b.

53

8

49

mat = 9 44167

visible ..-.}-,07,44-7-f-er 5=741653
t a-t1 T-Ium t r art = 7054:
4t.:sf 1104111-41.-1 tr.m=.=161'-'0

, r10

I !I = 59 r3.98 .0,49"..
il2 = :1434 2.890".

/t.:-.-tal = 741677

*. =,1-11 i t =1041:,1 11.300-.
= :-.:41. 1.301 .

*font = iz.:1- .1.a.,.:4".

#1,D..::1: sup= _....
A .I,05'

#1o' }-- =.1J17.=

44:.....a.:.14,-*3:e =
:_.. :2.'=.08'

5/-if.'t".1- 5.0: r I ;: ' r l_t .07:

*b 1 t .7.har= 7. 64 18.021
Om-% 12% f i 1 1=8.55 (8.91=1

limit shahn.:.n's
.1.-...7/1_11-d= 4.9u bit s char

040 619263 , 83. 497 4

3.591%
6052 0.;:1.1-1%

04-7: 1727 O. :33"..
I4U 267j9 -:. 605%
1-P1 Lob 4.434%::,
14f c: o . 00 7 %

14 :,. :1 o.eor..

:40 5908 0 -97%
:41. .:: k..K17"..

14-96242 1.99F%
2-11:: h 4 i+, 0 CI 1 ..

;40 17-:.4 0.::':'

:-..,: c -, 4 n. 1 :
*maT-2 1 1-1 t-,=4- ,.. -, 1 :'7 I 1 -.1:::"j' , 44:7 0.F97".

............j

741..,Ct7

Figure A.2. Sample display for character-by-char,acter'analysis program.

0-

50

total number of transitions: This is tee number of requests for
memory transitions.

of '10-0.M1-+MO transitions: This is the number of occurences of a

M04-M1-)-MO transition.

The next 5 lines give the character usage among the four memories.

Both the total number of characters and the percentage of the total

visible characters for each memory is given.

The frequency of occur the special codes .(shift,

access, etc.) is then 1:Fted along with thi percentage relative to Ile

number of internal PLATO characters.

At the top right:

bits/character: This is 6 bits times the number of formatted
characters divided by the number of visible

characters. The number in parenthesis includes'

the data/control bit.

This number plus 12% fill is given in the next line, in tne same format.

The limit by Shannon's bound is calculated from the character

distribution using the formula given in 5.1.

remai er of the display gives the transition information.

For examp'.e, the entry labeled 040 indicates that out ot 741655 visible

characters, 619263 were displayed from MO without any transition.

Therefore, 83.50% of the time, the base memory was MO, and the next

character was alto in MO. Also, summing the four entries which

indicate that the final memory was MO gives the total number of

characters displayed from that memory, which matches the entry for MO

on the left side. This provides an internal consistency check.

0

a

51

This program was also used to provide the information for the

character frequency graphs drawri'in Figures 4.3 and 4.4. A variation of

this program was used to determine-which type of display information

was predominant. Another variation was used to try to find what length

lines are common; however, it was decided that the sampling technique

destroys that informat.Lon. If the sampling program were modified,

analysis of lines would .be possible. 1.

Future uses of the character-by-character analysis are: studying

the internal format with regard to transmitting internal codes

directly to the terminal, and analyzing the effectiveness of any system

change.

A.3 Word-by-word Analysis Program

This program provides the word frequency distribution information

for Chapter 6 from the data generated by the sampling program. First, '

the text is scanned for delimiters,, which are all non - alphabetic

characters. Anything between delimiters is considered a word. The

words are kept in a table inECS, in alphabetical order, which 's

updated to a disk file. periodically. Each time a word is found, a

y ch-p is used to fird the word in the table. If it is not there,

it is inserted in the proper position. Each table entry is two 60 bit

words long. Up to 17 6 bit codes are stored per entry. The remaining

A,
bits are used for frequency informal .n.

it While' collecting words, the table is allowed to grow to 6601

entries. Then it is sorted by frequency and the amount representing 3/4

of the total words are retained. This is usuallyaround 600 entries.

52

The table is then resorted alphabetically, and the processing continued..

A typical sample represents approximately 100-,000 words.

The following calculations are performed on the table: sort by

frequency, percentage of total words for each word, percentage of total

characters for each word, Arcen1 savings for each word, and a running

total for each of these.

The most cumbersome part of this program is the enormous amount of

time needed to create the original word frequency table. Running under

low system load, this takes several hours real time, ric ne,lessarily

consecutively. The table lookup is expensive because entire table

will not fit in central memory. The binary chop was selected because

it is a fast search routine, and it could be performed without

transferring the entire table into central memory. Future uses of this

program would be to study character grouping different than words, such

as dipthongs. However, to be truly useful, the word gathering part

must be made faster. Writing it in Fortran would be one possibility.

A.4 Word-by-word Analysis of Source Files,

As a preliminary study, a program written in Fortran was used to

compile wori frequencies from lesson source code. However, it was felt

that this could not be representative as it did not include the effect

of repeated displays. Also, it, required guessing the lesson mix to

simulate the system load. However, for specific areas, such as one group

of students, a reasonable approximation of the word frequency order can

be ot!...J.ined by scanning the lessons that are included in their curriculum.

J

