DOCUEEIT RESUAB

AUTHOR
TITLE

INSTITUTION
SPONS AGENCY
REPORT NO
PUB DATE
CONTRACT NOTE

EDRS PRICE
DESC RIPTORS

IDENTIFIERS

Brophy, Jere E.: And Others
The Texas Teacher Effectiveness Study: Student Sex, Grade, and Socioeconomic Status Differences in Classroom process Heasures.
Texas Univ., Austin. Research and Development Center for Teacher Education.
National Inst. of Education (DHEA), Washington. D. C.

OTRED-R-75-21
75
NIE-C-74-0089; OEC-6-10-108
99p.: For related documents, see ED 091394.099 345. and TM 006784 : Not available in hard copy due to print quality

MF- $\$ 0.83$ Plus Postage. HC Not available from EDRS. Academic Achíevement; *age Differences; Classroon Observation Techniques; Classroon Research: Disci-pli-ne: Effective Teaching: Elementary School Students; Elenentary School Teachers; Grade 2; Grade 3: Grouping (Instructional purfoses): *Interaction Process Analysis: Predictor Variables: \ddagger Primary Education: Questioning rechniques; *Sex Differences: *Socioeconomic-Influences; Socioeconomic Status: Student Teacher Relationship; Teacher Attitudes; *Teacher Behavior: Teacher Evaluation; Teaching Techniques *Dyadic. Interaction Analysis

ABSTRACT

Twenty-eight second and third grade classrooms in Austin. Texas were observed for approximately thirty hours each. using an elaboration of the Brophy-Good Dyadic Interaction observation System. These process data vere then analyzed for differences according "to grade, student sex, and student socioeconomic status (SES). Grade and sex differences were below chance levels in frequency and vere generally as would be expected in direction. Hofiver, SES differences wer゙e widespread, indicating, that teacher's working at the same grade level may be faced with very different opportunities and demands. High SES classrooms fèatured eager and competitive students and businesslike teachers who focused on the curriculum. In contrast, low SES ciassrooms featured students who were feariul, anxious, and generally, alienated from the student role. Their teachers attempted to combat student fears with patience and determination, and showed a greater willingness to deviate from the curriculum. and to attend to matters of personal concern or interest: they generally exhibited a more personalized approach. These process differences in teacher behavicr appeared to be appropriate responses to the particular demands placed upon the teachers. (Author/MV)

THE TEXAS TEACHER EFFECTIVENESS STUDY:
student sex, grade, and socioeconomic status e DIFFERENCES IN CLASSROOM PROCESS MEASURES
e
Jere E. Brophy,
Carolyn M. Evertson,
John Crawford, and

Gael J. Sherman

σ
Report No. 75-21
The Research and Development Center for Teacher Education
The University of Texas at Austin

The Research and Development Center for Teacher Euucation was established on the campus of the University of Texas at Austin in 1965, to design. build and test effective products to prepare teachers for careers in the nation's schools
A staff of more than 100 are engaged in projects ranging from basic research into effective teaching behavior, through development of special counselor trainmg strategies. to the development, implementation and evaluation of a complete and radically different undergraduats teacher education program

The Centers major program "th: Person alized Teacher Education Program, has its roots in teacher personality research dating back to the mid-Fiftes This edtly research. which demonstrated how teacheis personalthes and classroom behavier worrelute with success in ther tedching careers. has ledt
to the development of a large group of products which help education facilities become aware of student teachers' individual needs. The program also has produced products for student teachers' use, to help them build on their strengths.

The completely modularized program is currently in field test and or use at more than a dozen important teacher education in-
stitutions nationally.
In addition to the PTEP. The Center also - supports other prejects in educational evaluation, develonment of strategies for imple-

- menting institutional change, and in consultution techniques for helping tcachers plan indivadualized programs for children.

The Centers work is supported by the Pumional Institute for Education and by the Unuversty of Texas System, as well as through contract research and development programs for public aqenries

This project was supported by the National Institute of Education Contract 0EC 6-10-108, Research and Development Center for Teaçer Education, and by Contract NIE-C-74-0089, Correlates of Effective Teaching. The opinions expressed herein do not necessarily reflect the position or policy .of the National Institute of Education, and no official endor sement by that office should be inferred.

Twenty-eight second and third grade ellassrooms were observed about thirty hours each with an elaboration of the Brophy-Good dyadic interaction observation system. These process then were analyzed for differences according to grade, student sex, and student socioeconomic status (SES). Grade and sex differences were below chance levels in frequency and mostly expected in direction. However, SES , differences were widespread, indicating that teachers working at the same grảde level may be faced with very different opportunities and demands. High SES classrooms featured eager and competitive stúdents and businesslike teacherŝ who focused on the curriculum. In contrast, Low SES classrooms featured students who were fearful., anxious, and generally alienated from the student role, and teachers who attempted to "éombat student fears with patience, determination, greater willingness to deviate from the curriculum and take up matiers of personal concern or interest, and a generally more personalized approach. In general, these process difforences in teacher behavior appeared to be appropridte 'teacher responses to the particular demands placed upon them.

The Texas Teacher Effectiveness Study:
Student Sex, Grade, and Socioeconomic Status.

Differences in Classroom Process Measures

This is one of a series of ancillary technical reports from the Texas Teacher Effectiveness Project. The larger project, from which the data wère drawn, was a two-year replicated teacher effectiveness study conducted at the seciond and third grades. The teachers had been selected from a larger pool of experienced second and third grade teachers in the Austin Independent School District. The teachers were included in the effectiveness research because analyses of the mean residual gajn scores of students in their classes across three consecutive years prior to the study revealed that these teachers were exceptionally consistent, relative to the larger sample of teachers, in their ability to produce student learning gains.

Teachers were selected for observational study purely on the basis of consistency. That is, the observed teachers represented the fullorange of effectiveness and were distributed roughly normally about the mean; we did not select a group of high effective teachers to compare with a group of low effective teachers. ${ }^{\circ}$

Consistent teachers were selected for observation because their * relative consistency in producing student learning suggested that they might be particularly consistent in their classroom behavior, also. This, in turn, suggested that these teachers would be especially likely to produce systematic and meaningful process-product relationships when measures of their
classroom behavior were analyzed in relation to measures of student learning, compared to a random sample of teachers (Brophy, 1973).

The teachers were representative of teachers at these grade levels in the school system generally, except that they were somewhat older and more experienced. Also, analyses of their responses to a 495-item questionnaire concerning teacher beliefs, attitudes, and reported practices, revealed close similarity to the responses of a randomly g_{g} selected sample of teachers who were working at the same grade levels in the same school system but were not included in the study.

However, the teachers in" the Texas Teacher Effectiveness Project. were somewhat more traditional in their belleis and attitudes about schooling thah those in the comparison group. This traditionalism typified the sample as a whole, although within the sample it was negatively related to student learning gains in low SES schools (Sherman, Brophy, Evertson, \& Crawford, in press). ,
: Also, traditionalism was not related to age or years of teaching experieñce (when traditionalism and teacher age were analyzed within each of the two groups, these variabies were utterly uncelated). Apparently, something about this sample of teachers makes them both more traditional in their beliefs and attitudes and more consistent in their effectis upon students (although, as noted earlier, they ranged from very low to very high in level of effectiveness, although all were highly consistent in degree of effectiyeness). Thus, these teachers were di.fferent from other second and third grade teachers in the same school system in at least two ways: they were more traditional in their beliefs and attitudes, and they were.
more consistent in their relative effects upon student learning. The reąsons for these differences remiain unknown.

The present report focuses on student grade, sex, and socioeconomic status. (SES) differences in process data taker from observations in the classrooms of these teachers: It seems unlikely that their special charac- . teristics would influence externâl validity with regard to SES, because the majority of teachers were working within the same SES levels for many - years. Howeyer, it is possible that findings related to grade and especially to sex were minimizếd in this group, compared to teachers who were less consistent and posfibly more influenced by student differences.

It could be argued that highly traditional attitudes might increase sex differences if the teachers were particularly traditional in their sex role expectationg. However, analyses of these teachers questionnaire responses revealed that their traditionalism was focused squarely on beliefs. and attitudes about schools and teaching. They were more traditional in the sense that they felt that school should be primarily an educational institution rather than a socializational one, that-teacher directed instruction usually was preferable to independent student learning, and, in general, that their job was to teach the students the fundamentals of the three R's. This suggests that, if anything, the special characteristics 1 of these teachers would be such as to reduce the frequency of sex differences in the teacher-student interactions observed in their classes.

They might also reduce grade differences somewhat, since these teachers seemed particulary reluctant to use some of the new curriculum packages meant for individualized instruction and to use activities designed for the creation and use of learning centers. In general, however, within the set
of process data included in the observation instrument to be discussed, there is every reason to believe that the obtained differences have high external vallidity.

F Highly consistent teachers were observed for two years; 31 for the first year and $2 \dot{8}$ the second, divided roughly evenly .. between the second and third grades. Included in the second year ${ }^{\text {n }}$ were 19 teachers who had been in the study the first year, plus nine new ones selected from the - original pool of 165 "(to replace the $i 2$ who did not continue in the study the second year because they had retired, gone on leave, changed grade levels, or refused further participation).

- The teachers were observed only four times in the first year, due 'to filmancial limitations. This was not much of a data base; particularly for low inference variables that do not occur very, often. Since this was the case for many of the variables in the system, the first year data, although" reliable from the standpoint of intercoder agreement, did not constitute a reliable sample of the teachers' general behavior, except for a. relatively small number' of variables.

Consequently, the present reporit deals only with the second year data. 'During that year, the 28 participating teachers were observed for 1.4 ha!f-days (apprôximately 30 hours) each? spaced across the school year and divided roughly evenly between morning and afternoon observations. "The primary focus was on relationships between classroom process behaviors and meașữres of e student outcomes (standardized achievemen't test scores adjusted for student achievement levefs at the beginnings of the years). Readers interested in these data should consult Brophy and Evertson (Note 1, No干e 2)

Data Collection Instrument

- Low inference classroom observational data were collected with an. adaptation of the originaí Brophy-Good Dyadif Interaction Observation System (Brophy \& Good, 1970). 'This system concentrates on dyadic interactions between teachers and individual \cdot.tudents, dixiding them broadly into public response, opportünities occurring in whole class lessons or discussions and public response opportuñities occurring in. small groups asuch as reading groups; private dyàdic contacts involving classrocm work or procedural matters; and behavioral contacts which occur because a child is singled out for praise or (usually) warning or critidism for misconduct. All interactions are coded so, that it is clear, whether the interaction was initiated by the teacher or by the chlld, and teacher praise or criticism of the child is coded whenever it occurs. In addition,' 'the system allows for several, other coding distinctions.

Within public response opportunities, in addition to coding whole class versus small group contexts, the observers noted the sex of the child, the difficulty level of the question, the method ${ }^{\circ} \mathrm{by}$ which the response o_{i} portunity was obtained, the quality of the student's.response, and the nafure of the teacher's reaction to this response. . Question difficulty was coded as process (the questign is a "why" or "how." questien that requires the child to explain. something at length); product (the question is a "who," "what," "where,"'"when," or "how many" question that requires the child to produce a fact from memory); choice (yes-no questions, either-or questions; or other response opportunities that allow the child to choose among alreronatives); opinion (the question does not have a single correct answer and
simply solicits the student's opinion on something); or self (the question has nothing to do whth the curriculum but simply asks, the student about personal preferences or experiences).

- Methods of obtaining response opportunities included .preselect (the teacher names the student who is to answer the question before even asking the question); non-volunteer (the teacher asks the question and waits for the students to raise their hands, but then calls on a student who does not his or her hand up); or call-out (before the teacher can call on anyone, a student call's out the answer).

The quality of student response was coded as correct, incorrect, part "correct, don't know 'the es.tudent says "I 'don't know" or indicates this by shrugging), or no response (the student makes no overt response at all).

Teacher reactions to student responses were coded whenever they involved anything other than simple affirmation of correcr responses or negation- of incorrect responses. C̣ategories inċludéd praise, criticism, no feedback (the teacher does not gven indicate ithether or not the'response mán dorrect, but simp.ly moves on "to something and someone else) process feerback (the (teacher explains the situation at length), gives answer (the teacher simply gives the answer without explalning at length), call-out (some other student calls ouf the answer), asks other "(the teachèr calls on another child for the answer), repeat rthe teacher repeats the question. or "at least inoicates to the child that she is waiting for a response to the original question), rephrase, or, clue (the teacher goes beyond merely repeating the original question by helping the child through rephrasing
the question to make it easier or providing a clue to help him or her respond), or new question (the teacher asks a question that calis for a different answer than the first question did). Several of these teacher feedback categories could be coded in reaction to a single student rešponse. For example, a teacher could give the answer, give process feedback in addition to providing just the answer, and criticize the student for failing to know the answer.

Private dyadic contacts were categorized according to whether they were initiated, by the teacher or by the student, and, within this, according to whether they dealt with work versus procedure. Work contacts specifically involved "seatwort or other student work on classroom assigriments. The interactions occurred because the teacher went around checking progress and stopping to provide feedback or encouragement to studenis, or because the stüdents camie to the teacher to show work in order to get approval or help. Procedural interactions included all other dyadic. interactions except behavioral ones. These had to do with such matters as running errands for the teacher, passing out paper or supplies, requesting permission to go to the washroom or use some special equi.pment, and so on. Teacher praise or criticism was coded whenever it occurred during such inferactions. In addition, work interactions were coded as either brief or long, and, when the observer could hear the interaction and make a decision, teacher feedback provided in these work interactions was coded as process feedback (detailed explanations) or product feedback (simply giving a correct answer).

- When teachers initiated procedural interactions, which usually involved requesting students to perform some errand or favor, the teacher also was
coded for whether or not she thanked the student for doing so. In student initiäted procedural interactions, which usually involved student requests for permission to do something, the teachers were. coded for whether or not they granted the student's request, and if they did, whether they granted it immediately or delayed it.
, Finally, behavioral interactions were coded whenever the teacher singied out an individual student for good or (more commonly) bad classiroom behavior. Behavioral praise was coded if the teacher called general attention to the good behavior of a'student who had done something praiseworthy (he or she finished cleaning up and quickly. got in line; the student kept a neat desk; etc.). Behavioral warnings were coded when a child who was becoming disruptive was warned that the objectionable behavior had to be changed. Teacher criticism was coded in similar situations if the teacher went beyond simply warning the students by crificizirig them in a negativisitic and personal manner or punishing them for their misbehavior.

The system also allowed for the coding of some of the variables stressed by Kounin (1970) in situations involving.student misbehavior. Three types of teacher errors in handing such situations were coded if and when they were observed. These included target errors (the teacher identifies the wrong student or only some of the students responsible for the problem), timing errors (the teacher waits too long before intervening, so that' what ' started out as a relatively minor problem becomes a major, disruption), or overreactions (the teacher overreacts to the situation emotionally and behaviorally, giving it much more negative and/or extended attention than it warrantṣ). If none of these errors were made, "no error"'was coded.
a Readers interested in the coding manual presenting the details of these coding distinctions along with information about coder training, establishing reliability, and other aspects of the implementation of the coding system should consult Brophy and-Evertson (1973). All of this information is included in the appendix to that report.

Data Tabulation and Analyses

- Data for each classroom involve a number of frequency measures and a larger number of proportion scores. Both of these were derived from simple sums of the codes within each category. Frequency data for a few variables were obtained by dividing the sum in each category for a given classroom \# by the amount of time that classroom was observed.

Percentage measures were obtained by expressing a category or combination of related categories as a numerator and dividing it"by a denominator, composed of that same category or set of categories plus other ones that formed part of a larger set. For example, teachers differed in their raw frequencjes of praise of correct answers by students. However, per-" centage scores allowing direct comparisons of teachers were computed by dividing the number of correct student answers that each teacher praised by the total number of correct student answers coded in her classroom. This yielded a variable called "percentage of correct answers followed by teacher praise." Similar procedures were used to create such variables as "percentage E of student responses which were not given any feedback by the teacher," "percentage of work contacts which were initiated by the student," and "percentage of student misbehaviors which elicited teachẹr warnings (versus criticisms)."

- These procedures yielded a total of 171 low inference measures of classroom process behavior. Not all of these measures yielded usable data, however, because some never occurred at all, and others cccurred so infrequently tnat meaningful analyses could not be performed. Thus, although there were 13 teachers working in low SES schools and 15 teacherṣ in high SES schoo's, and there were 15 teachers working in second grade and 13 teachers working in third grade, data were not always available for all teachers.

The data were obtained through two-way (sex by SES') analyses of variance to assess, sex and SES differences and their interactions, and by, one-way analyses by grade, to assess differences between second and third grade (student sex was omitted from the latter analyses because the former analyses had revealed it to be of minimal: significance, as will be reported below). "In these analyses, no data were fecorded whenever the number of teachers in either cell for SES or grade fell below five. As a result, data were available on 85 variables for whole class, interactions in the moriuings, for 75 variables for whole class interactions in the afternoons, and for 94 variables for reading group interactions.

This represents a serious shrinkage of data: It could have been avoíded if individual, students rather than intact classes had been úsed as the units of analysis. However, given the large number of students involved (over 700) and the small amounts of data available for individual students, this would have been inappropriate. The present procedures were much more conservative, and they confined attention to those variables which occurred with sufficient frequency to allow meaningful analyses. Furthermore, under,
the circumstances, statistical significance translates pretty difectly into practicai significance; in that differences had to be large and widespread enough to be of some importance for an effect to reach statistical significance.

This was true even though the relatively high probability level of . 10 was used (to compensate for the Iow N). Given the probability value of .10 and the numbers of variables for which data were available, the numbers of significant findings expected by chance alone were 8.5 for whole class interactions in the mornings, 7.5 for whole class interactions in the afternoons, and 9.4 for interactions in the reading groups. This should be kept in mind, because only the findings for SES excreded these chance expectations.

Results

The results of the two-way, "sex by SES analyses of variance are prèsented in Table 1 , and the results of the one-way analyses of variance by grade (second grade versus third grade) are presented in Table 2.

> Insert Table I about here

Sex and* SES

The results of the sex by SES analyses are presented in "Table 1. In general; SES was, an. important factor, but sex was not. Significant main effects for SES were obtained for 21 . of the 85 variables for whole class interactions in the morning, 13 of the 75 variables for the whole class
interactions in the afternoon, and 25 of the 94 variables for reading group interactions. In sharp contrast to these figures, significant main effects for sex appeared only five times, four times, and five times, respectively, for the same contexts. Sex by SES interactions appèared only twice for the whole class interactions in the mornings, twice in the reading group interactions, and not at all in the afternoon interactions. Thus, main effect's for SES Óccurred at frequencies clearly above chance expectancy, while those for sex and for interaction were actually below. chance expectancy.

In presenting the data, the variable numbers are given in parentheses after each result discussed, so that readers can locate the exact data in the tables more easily. These are the numbers which appear in the leftmost. columns of each table.

Student Sex

None of the significant sex differences occurred on variablesghaving to, do with public response opportunities occurring in reading groups or whole class discussions. This means that teachers were equalizing response " opportunities to boys and girls, that the childrent, were responding about. equally in terms of percentages of correct answers, and that teachers were giving generally similar kinds of feeaback to these student responses. Two of the significant sex differences appeared for variables dealing with teacher feedback to relevant student initiated questions during morning interactions. The teachers responded with brief feedback more often when such questions were asked by boys (64), but they responded with long feedback more often when such questions were asked by girls (65). These questions
were not asked frequently, however, and these sex differences for the morning data were not replicated in either the afternoon data or the reading group data.

The next significant sex differences deal with academically-related student initiated comments (as op̆̉posed to questions). Boys called out more such comments without prior permission than girls in the mornings in general class activities (81). The means for the other two data sets were in the same direction, but were not statistically significant. These fit with numerous" other data to the effect that boys are more active in the classiroom. dn calling out responses without permission (Baum, Brọphy, Evertson, Crawford, \& Anderșon, Note 3).

Sex differences also appeared for the percentages of student initiated comments accepted (86) and, for the percentage integrated into the discussion topics of the moment (87). Both of these significant sex differences, appeared only in the reading group data, and they showed that teachers were more likely to.merely accept a relevant student comment from boys, but to integrate a relevant student comment from girls into the discussion. Assuming that these differences are real (not just chance findings), they might reflect either a greater teacher receptiveness toward the comments made by girls, or a tendency for girls to make more relevant. or higher level comments which are easier for teachers to integrate into the discussion rather than to merely acknowledge:

Sex differences appeared in all three contexts for the percentage of private contacts which were initiated by the students (110"). In each case, girls initiated a greater percentage of private contacts with the teachers
than boys, except that boys initiated more contacts involving personal concerns in reading group situations (117). This same sex difference in spontaneous sfudent initiated approaches to teachers was observed in a different study spanning grades twc iorough five (Baum et al., Note 3). Boys apparently are relatively uninterested in teachers and tend to confine their interactions with teachers to those necessitated by student role demands.

In the afternoons, the teachers made slight'y more management requests of boys than girls (128). Thus, when, the teacher needed someone to run an errand or perform some task required for classroom management, they were more likely to ask boys than girls, at least in this context. The dafa from the other two contexts show a non-significant difference in the same direction for the mornings, but no difference for the reading groups.

The teachers also had proportionally more non-verbal control contacts with boys, although the difference was significant only in the reading group - context , (138): The reasons for this sex difference are unknown. Boys do misbehave more often, but this does not explain why teachers respond to them non-verbally more often. Perhaps frequent but minor misbehavior causes boys to regularly check to see if they are being watched, thus making it easier for teachers to use non-verbal methods with them.

The final variable showing sex differences was total teacher initiated dyadic cōntacts orer total time (171). Boys had more such contacts in all three contexts, and the sex difference was significant for whole class interactions in the mornings and the afternoons. The difference for reading groups was in the same direction but was not significant. These
data parialle 名 the student initiation data suggesting that teachers make up for the fact that boys come to them less frequently to initiate contacts by going to the boys to initiate contact's themselves instead. This same relationship was found by Bàum, et al. (Note 3)

School SE'S
Data from the teachers in the 13 low SES classrooms compared to the teachers in the 'is high ${ }^{\text {S }}$ ES classrooms showed more than twice the number of significant differences to be expected by chance in all three context's. In generat, SES differencès in classroom composition were extremely important * in this study; the process-product data make much more sense when analyzed separately for low versus high SES classes than they do when analyzed for the group of teachers as a whole (Brophy \& Evertson, Note 2).

SES scores for each school were derived by summing school SES rankings made by six school administrators. These rankings were highly intercorrelated (all Ís above .90). They were sunmed to yield a distribution from low to high SES, and the teachers in the sample were divided at the median to form SES groups. As it happened, the 28 teachers could not be divided into two exactly equal groups becaáuse inclusion of the median scone resulted in a 13-15 split. Rather than arbitrarily assign one of the teachers in the higher SES group to the lower SES group, we used \underline{N}^{\prime} 's of 13 for the : ower SES group and 15 for the higher SES group.

The SES differences reveal that the natures of the student body and teacher-student interaction can be very different in schools of contrasting SES level, even at the same grade level. Our classroom observers noted that
the high SES classrooms were populated mostly by bright and highly motivated children who generally spoke up, were eager to respond, and seemed to enjoy learning. If anything, the teachers in these classrooms had problems controlling overeagerness and competitiveness. Handwaving and other attempts to get the teącher to call on students were frequent in these classes.

In contrast, the observers stated that the lower SES classrooms" tipically ;were marked by alienation from learning. In these early grades, this alienation rarely took the form of overt hostility or aggressiveness. Instead, the students were passive and inhibited. Teachers often had to work to'get them to respond in any fashion, ret alone correctly. Handwaving and other signs of eagerness to respond were rare. Also, the child'ren in the low SES classrooms usually did not yet have the combination of independent work skills, functional reading, and direction following ability needed to enable them to work independently for very long. Thus, they were more dependent upon the teacher for structuring of learning experiences and for monitoring and correcting seatwork.

These observations have been inserted here to help "sett the scene" : for, some of the SES differences observed in the data. To facilitate com.parisons with the data presented in the report by Baum, et al. (Note 3), the data for public response opportunities will be preser.ted first, followed. by the data for private work and procedure interactions, followed by the data for behavior interactions.

Teachers were more likely to preselect students for response opportunities in reading group in the high SES classes (1). Differences were, - in the same direction for the whole class interactions, but they were not signifićant. This finding may nepresent one way that these teachers dealt
with the problem of competitiveness in seeking response opportunities in these high SES classrooms. The other significant SES'finding relating to selection of student respondents, and an especially interesting one, was that low SES students were more likely to call out answers in two of the three contexts, and both of these differences were signific̣ant (4). At first, this seems to contradict the general picture of low SES classrọms drawn above. However, other data indicate that teachers in low SES classrooms were more tolerant of student call outs, and that feachers in high ȘES classrooms were especially firm in insisting that everyone respect everyone else's.response opportunities (appropriately, in each case). Thus," we bellieve that, these differences reflect differences in what the teachers allowed rather than differences in student predisposition to call out responses without permission.

The measures of the difficulty level of teacher questions showed only one significant sex difference: more choice questions were asked in reading groups in high SES classrooms (6). This was contrary to expectations, because, we had thought that there would be more, process questions (which usually are more difficult) and fewer choice questions (which usually are simpler) in the high SES classrooms. We offer no interpretation for this finding, because there were context differences in the opposite direction: more choice questions were asked in the low SES classrooms in each of the other two contexts (whole class interactions), although neither difference reached statistical significance:

Data on the quality of children's answers indicated that high SES students were likely to respond correctly about 82% of the time, while the Iow SES students responded correctly 72% of the time (7). Conversely,
the percentage of wrong answers was higher for the low "SES students (9). Also, the percentage of instances in which the students made ${ }_{i}$ no response whatsoever was higher for the low SES students, significantly so for two of the three contexts (II). Thus, high SES students were more likely to make some kind of ièsponse when called on, and they also were more likely to be correct:

Teacher rlactions to correct answers showed no significant differences. Data on teacher reactions to part-correct answers revealed that Tow SES teachers tended to call on someone else when the child did not respond or responded incorréctly more frequently than high SES teachers, but only in the reading group context (22). The difference was in the same direction" for one of the other contexts, but was reversed for the third. The low SES teạchers also were more likely to rephrase or give a clue to try to improve a partially correct responsé. However, this appeared only .for the afternoon, whole class interaction context. The means for the other two contexts were identical (26). These data are of questionable meaning, because part-correct responses were relatively rare. Again, though, they indicate that the low. SES teachers had greater difficulty, in obtaining correct responses from their students.

The dara on teacher. responses to wrong answers showed that the low SES teachers allowed more call outs in reading groupsuthon the high SES teachers did (34), and that the low SES teachers rephrased or gave clues more often in trying to enable students to respend correctly (37), at least in the whole class interactions in the afternoons. High SES teachers apparently ${ }^{\circ}$ either gave the answers or called on other students in these situations, although' the differences were not significant. These data
again indicate the difficulties that teachers in the low SES schools had in obtaining student responses.

Teacher reactions to "I don't know" responses and to student failures to respond were analyzed both separately and together. The separate analyses revealed :nothing for the "I don't know" responses, because these happened too infiequently to analyze. Thus, most of the findings for the combination of "i. dón't know" and r.o response situátions come from no response situations.

First, looking only at the data on teacher reactions when the children failed to respond at all, it is clear that the high" SES teacher's generally either gave the student the answer themsel ves or called on another student (157, 158). In contrast, teachers in the low SES schols were more likely to stay with the original student and attempt to get an improved response by repeating the question, rephrasing the question, or asking a new question (160, 162). These process differences in teacher behavior appeared to be approjriate, because process-product analyses revealed that staying with the original respondent and attempting to get an answer was associated with sučcess, in obtaining student learning gains in low SES schools, while callingon someone else or giving the answer was associated with-obtaining student learning gains in high SES schools (Brophy \& Evertson, Note, 1, Note 2).

These same general differences are reflected in the data for teacher reactions to " 1 don't know" sittuations and no response situations combined (41, 42, 44, 46). Again, teachers in the high SES schools were more likely. to give the answer or call on someone else, while teachers in the low SES schools were more likely to stick with the original student and try to obtain a response.

The data for teacher reactions combined across all response oppor-. tunitiess (regardles's of quality of stúdentranswer.s) reflect à somewht different pattern. Teachers in low SES schools were more likely to stay with the original respondent and attempt to, improve the response after an initial failure (52), and they also.tolerated more student cill outs (56), * as reported previously. However, the low, SES teachers also were more likely to call on another śtudent after an initial failure to answer correctly during genefal ciass interactions in the morning (55). This contrasts with the findings reported above in s.ituations where students had failed to make any kind of response at all, The apparent reason is that this finding primarily. refilects teacher behávior following wrong answers by students, as opposed to teaçher behavior following no response at all.

The measure of student response opportunities over total teäching time (57), favored the ${ }_{F}$ high ${ }^{\text {SES }}$ classrooms in all three coritexts, significantly so for whole Elass interactions in the Torning. Thus, the high SES class--rooms inyolved more verbal interchanges in the public response opportunity contexte than did the fow SES classrooms.

The data an student initiated questions occurring in public response opportunity, situations indic̣ate that more such questions were called out in the low SES classrooms (59). Again, we believe this to be a difference in teacher tolerance rather than student preference. All of the other measures relating to student initiated questions showed either no significant dif-. ferences or not enough data to allow analyses. There were few student initiated questions at these early grade levels, even in high SES classsrooms.

The data for student initiated comments (as opposed to questions) again showed that the low SES teachers tolerated more call outs than the high SE'S teachers did (81). High SES teachers accepted more relevant student initiated
comments than low SES teachers did (86), but low SES teachers went beyond simple acceptance and integrated more of these comments into the discussion; at least in reading group interactions (87). Informal observer reports suggest that this difference probably appeared becẳuse the high SES teachers received many more student initiated comments, so that simple acceptance of such "comments probably was appropriate in most instances. In contrast, student initiated comments in low SES classrooms were infrequent, so that the relevant ones could be integrated into the discussion topic more frequently. As with student initiated questions, student initiated commen'ts \therefore were infrequent; so that the remaining variables in this set showed either no significant differences, or, typically, not enough data to "analyze.

The dafa on self and opinion questions show that both of these nonaçademic queṣtions were more frequent in low ŚES classrogms (.101., 104). These findings fit with our observers' impressions that the high SES classroms .concentrated more on teaching the curiculum, while the low SES classrooms deviated from the curriculum more frequently to take up more general discussions or matters of personal concern. However, the high SES teachers were more likety to praise the answers their students gave to opinion questions, aftileast in the one context for which data were available (106).

The preceding data all dealt with measures taken in public response opportunity situations. The next major set of data, deall with teạcher and student initiated work and procedure contacts. These were essentially private contacts of melevance only to the specific student involved, although often they were overheard by other students.

The data.for student initiated work contacts show that low SES teachers praised students more during such contacts in one of the three contexts (III), that the percentage of private work contacts which were student initiated was higher in the high SES classrooms (113), and that the high SES students more often were given brief feedback when they initiated work contacts (115). Thus, high SES students came to the teachers to get help or to. show their work more frequently, and teacher responses usually were briefer. This teacher behavior probably was appropriate, given that the high SĖS students generally were more successful and thus probably needed less explanation or correction, on the average. The praise différence also makes sense, because process-product data indicated that praise in this situation was especially facilitative of student learning in the low SES classrooms, but not so much in the high SES člassrooms (Brophy \& Évertson, Note 1, Note 2).

* The data for student initiated contacts involving perșonal concerns of students indicate that there were more such contacts in the low SES schools (117). This is another aspect of the more general finding that the Iow SES classrooms were more"personalized and less focused on the curriculum than the high SES classrooms. Another, aspect of this same general -SES difference is the greater frequency of procedural contacts in low SES classrooms (122).

Teácher initiated work contacts involving praise were more frequent in the high SES classrooms (124), and in general, teacher praise was more \therefore frequènt in teacher initiated work contacts than in student initiated work contacts. This was appropriate, because process-product data indicated
that praise was more effective in teacher initiated. contacts than in stiudent initiated contacts (Brophy \& Evertson, Note 1, Note 2).

The percentage of teacher initiated procedural contacts which involved management requests was slightly higher in the low SES classrooms (128). This probably reflects a greater need for these teachers to give their studenis specific instructions about what to do and when and how to do it, as compared with teachers working in high SES classrooms. In ${ }^{\text {a }}$ addition to asking their students to do things more frequently, low SES teachers thanked them for doing so more frequent,ly, at least in the whole class contexts in the morning (130). However, these data were reversed in the reading group contexts. Thus, the data concerning thanking students for doing management tasks are mixed.

- The combined teacher evaluation data across all academic situations revealed that high SES teachers pralised their students more frequently for good work or good responses than low SES teachers did (131). Ironically, such praise was negatively correlated with student learning gains in the high SES classrooms (Brophy \& Evertson, Note 1, Note 2), however. There were no significant SES differences in behaviorăl praise or behavioral warnings.

The data on discipline and control errors revealed no SES differences in frequency of errors or in target or timing errors. However, in the one 'context for which data were available, overreactions were much more frequent in the low SES classrooms than in the high SES classrooms (137). These, appeared to be functional, however, because the process-product data revealed overreactions to be positively associated with student learning gains
(Brophy \& Evertson, Note 1, Note 2). Apparently, teacher interventions 's which struck classroom observers as emotional overreactions were not. really overreactions in the context of the situation. At any rate, these teacher behaviors coded as overreactions were positively associated with student learning rates.

The data on sharing of personal experiences in private dyadic contexts revealed that this occurred more frequently in Iow SES classrooms, both in teacher initiated contacts (145) and in child initiated contacts (144). This is yet another aspect of the general tendency of low SES " classrooms to be more personalized and. less strictly structured by curriculum considerations, relative to high SES classrooms.

The final variable showing a social class difference is the measure. of total response opportunities in the morning over the total time available. This showed a significant difference in favor of the high SES classrooms (170), and it is related to the previously reported finding concerning response opportunities over total teaching time (57). These high SES classrooms involved more verbal interactions in which teachers asked questions and students. "answered or participated in discussions, compared to the lower. SES ćlassrooms. The latter involved relatively more individualized practice and seatwork, and proportionately less verbal interaction, particularly verbal interaction involving the whole c.l.ass.
in general, these ȘS differences reflect appropriate teacher behavior, at leastz with respect to student achievement. Almost every SES difference observed was correlated positively. with student learning gains on standardized achievement tests. That is, when teachers in one of the two SES groups did
more of something than teachers in the other group, the behavior involved usually was correlated positively with student learning gains for that SES group.

Furthermore, most of the SES differences observed appeared to reflect

- teacher controlled variables. That is, even though there was ample evidence that the students in the two SES groups were very different and presented different demands and problems to the teachers, the present data, along with the process-product data, suggest that teachers were responding appropriately to these student differences in ways that helped facilitate student learning. This is discussed at much greater length in the reports of processproduct relationships (Brophy'\& Evertson,-Notera, Note 2):

Grade Differences
Grade differences were obtained through one-way analyses of variance comparing the 15 teachers in grade two, with the 13 teachers in grade three. The data are presented in Table 2.

Insert Table 2 about here.

Observed grade differences were somewhat below chance expectations. The analyses yielded significant differences conly l! of 107 times for the whole class interactions in the morning, four of 103 times for whole class interactions in the afternoon, and eight of 105 times for reading group interactions.) This was not surprising. Few differences between grades two and three were expected, partily on the basis of the general similarities
in these two grades, and partly on the basis of previous ddta showing these two grades to be very similiar to each other (Baum et al:, Note 3). - - There were no grade differences in methods. of selecting students to - respond to questions. 'Data on the difficulty level' of questions revealed that process. questions were more frequent in third grade for morning, whole class interactions and for reading groups (5). Part-correct answers also were more frequent at third grade (8). Both of these, findings might have been expected on the basis of the greater verbal abilities, on the average, of the third graders.

There were no differences in teacher reactions to correct answers, but several appeared in teacher reactions to wrong answers. The third grade teachers criticized students for "wrong answers more fréquently (29), and they more often gave the answer to the student if the question had not been answered correctly (32). Meanwhile, the second grade teachers were much more tolerant of student call outs (34). Taken.together, these data suggest that the third grade teachers were somewhat more focused on the curriculum and less tolerant of either poor student performance or unsanctioned student behavior. In this sense, it might be said that they were "stricter" than the second grade teachers.

Teacher reactions to."I don't know" and no response situations in combination dic not reach significance, but data for these tiwo situations separately did. Specifically, second grade teachers were more likely to call on someone else if the student had said "l don't know" (149), whilert the third grade teachers were more likely to stay with the student by either repeating the question, or rephrasing, or sasking a new question (160, 162)
if the student had failed to make any kind of response at all. These differences fit with those reported above, in that they suggest that the third grade teachers were more concerned about getting responses than the second grade teachers.

The data for teacher reactions combined across all response opportiunities showed that the third grade teachers were slightly more likely to give the answer after a failure to answer corfectly (54). This is simply an elaboration of the previously reported finding that the third grade feachers. were more likely fo give the answer when the student had given a wrong : answer to the original question.

There were no differences in the frequency of public response opportunities by grade (57, 170). This was mildly surprising, in that we had expected that response opportunities would become more frequent in third grade, as the children became more verbal.

The data for stưdent initiated questions did not yield any significant findings. However, third grade teachers were more likely to praise relevant student initiated comments than second grade teachers were (82). This again suggests a focus on curriculum content by the third grade teachers. The data on self questions revealed these to be much more frequent at second grad: (103). The data on opinion questions showed them to be more frequent at the third grade in all, three contexts, however, and the grade difference was significant for reading groups (104). These data again suggest a greater focus on the curriculum on the part of the third grade teachers, at least for' self questions. It is possible to interpret the opinion question data in the same way, given the nature of
opinion questions and of the context differences involved.
Opinion questions sometimes dealt with curriculum related matters and sometimes did not. Casual observation suggested that opiñion questions during reading groups usually dealt with the story Coften they were used as ways to generate interest in the story or to hel.p students see how it applied to their own lives), while opinion questions occurring in the general class context were less likely to be related to the curriculum. Thus, even the seemingly contradictory findings for opinion questions can be seen as conforming to the general idea that third grade teachors are more focused on the cur-
"riculum than second grade teachers, when the context difference (whole class versus reading group) is taken into account.

In sum, the data for response opportunities did not show the expected increase from second to third grade, but they did reveal on several different measures a tendency for third grade teachers to become more businesslike and focused on the curriculum, relative to the second grade teachers.

The data on private dyadic contacts showed that a greaterepercentage of such contacts were initiated by the st jents in second grade (110). These data fit with the trend noted by Baum, et al. (Note 3) to the effect that, across the second through fifth grade range, children, especially boys, decrease in their tendency to approach teachers spontaneously:

The third grade teachers praised during student in'tiated work contacts more frequently than second grade teachers did (III). This may have been counter-productive; the process-product Jata-indicated that praise in this particular context was negatively associated with student learning gains (Brophy \& Evertson", Note 1, Note 2).

The second grade teachers were more likely to merely observe students at work, without stoppingoto say anything to them (125). They also were more likely to control behavior problems through non-verbal methods such as moving;"̈loser to the misbehaving student (138). Both of these findings make sense, given the relatively impersonal interactions of teachers with very young children and given the relative difficulty that very young children hąve in expressing themselves in verbal interactions, although neither result was anticipated in advance.

The percentage of child initiated contacts which involved sharing personal experiences was higher at grade three (144). Again, this probably reflects in part greater verbal abilities which enable students to carry on conversations with the teachers. Also, it probably reflects the tendency of certain students (but probably a minority, and mostly girls) to seek out the teacher for social contàcts. Girls do seem to value this, and to show it through initiating such contacts, although boys fypically do not.

The final variable showing a grade difference concerns the total number of teacher initiated contacts divided by the total time observed. This proportion was higher for the third grade teachers (171). With regard to non-academic contacts, these data may reflect the increasing verbal abilities of the children, which make sustained interactions with the teacher more " possible at higher grade levels. With regard to academic contacis, the gráde difference may reflect the tendency of children, especially boys, to reduce the frequency with which they initiate contacts with teachers spontaneously (110). Thus, the increase in teacher initiated contacts at the third grade
level may be a more or less.systematic attempt by the teachers to make up for the contacts which no longer occur because students initiate them, as they did.in earlier grades. A similar pattern was noted by Baum, et al. (Note 3):

Discussion

Analyses for sex, SES, and grade differences in process interaction measures revealed many SES differences but few sex or grade differences. The few grade differences were not surprising, given that only second and third grade students were involved. The few sex ditferences might be surprising to some, although they should not be. Studies of teacher attitudes ưsually reveal numerous sex differences, but studies of process behavior, especially if data are collected with low inference instruments, typically 'reveal minimal' sex differences. Also, those that do appear tend to be differences among the students rather than differences in teacher behavior that reflect teacher bias (Brophy \& Good, 1974).

In short, student sex is not as important a variable as some have suggested, at least not in the early grades. There are some sex differences, but close examination usually reveals these to be of relatively minor importance. In addition, analyses of teacher behavior in relationship to sex differences.usually reveal that teachers compensate for the student sex differences that do occur. Thus, although boys generally volunteer less often than girls (as a group), teachers tend to equalize public response opportunities by calling on non-volunteer boys more often and by allowing more call outs from boys. Similar.ly, although boys generally approach teacners
less often for help or feedback concerning work; teachers compensate by approaching the boys more often, thus tending to equalize the frequency of individuallized work contacts with students. We do not know the degree to which this compensatory behaviór by teachers is conscious, but we have observed it in several investigations.

In general', to the extent that sex differences do exiṣt, girls tendto be more conforming and achievement oriented and to be more oriented toward and interested in the teacher as an individual, as compared to boys. Conversely, boys typicall.y misbehave much more_ofter and consequently have many more behavior-oriented contaçts with teachers, including criticism and punishment for misbehavior. However, investigations which have included male teachers have shown that these same patterns exist in classrooms taught by males, and the general weight of the evidence is that sex differences are due to student differences in misbehavior, and not to teacher bias in favor of females (Brophy \& Good, 1974).

Although we were not surprised. with the smali number of sex differences that appeared in this study, it should be noted that additional ones might have occurred had we been able to collect data on individual students, instead of only noting the sex of the student and analyzing males versus females as intact groups: Martin (1972), using data on individual students, reported that the boys tended to be polarized at the extremes of distributions of - most academic and conduct variables, with girls usually bunched in the middles of the distributions. He noted that this tendency was so widespread and extreme that it made more sense to analyze high achieving and generally conforming boys separately from low achieving and generally non-conforming boys, rather than attempting to deal with "boys" as an aggregate group.

In Qur, Own investigations which have involved collection of individual student data, we have found consistent support for Martig's contentions. Assuming that similar subgroup differences existed in the present study, they would have been masked by the fact that data had to be collected only by student sex, without information on individuals. Consequently, it is possible (and quite likely, we think) that subgraups, particularly among the boys, cancelled one another within the data for sex groups as agyregates. Thus, while it is true that means and other central tendency dafa for aggregated sex groups showed few differences, it also is true that analyses of individual student data which take into account student sex usually reveal many significant differences.

The large number of significant SES differences did not surprise us, given what is known about the power of SES as a•predictor variable and given the previously reported fact that the process-product data from this study are understood more clearly when analyzed separately by SES than when analyzed for the sample as a whole (Brophy \& Evertson, 1973;. In general, the SES differences observed in these analyses support the interpretations made in connection with the process-product data (Brophy \& Evertson, 1973, and they also support the general contention that teachers usually respond appropriadely to the differential opporfunities and problems that different students present to them.

We view SES as a proxy variable standing for a complex of differences in ability, achievement, and general orientation toward schools, teachers, and the student role. These and other analyses of SES are not so much important in their own right as they are in providing guidance about some
of the important student differences which must be taken into account in order to understand classroom process data fully. It is becoming increasingly clear that students affect teacher behavior, although most classroom research has assumed a model that implicitly treats teacher behavior. as cause and stưdent behavior as effect in interpreting correlations.

This can lead to misleading and overgeneralized results. For example, it is much easier to use an indirect teaching style and/or to ask high
; 'level questions and get student responses reflecting complex thought processes in high SES classrooms than in low SES classrooms, other thingssbeing equal. Thus, stưdies which did not either control or take into account student differences in SES, achievement levels, or related variables are suspect at best.

- . In general, de facto segregation in housing patterns tends to create classrooms which are relatively homogeneous by SES. This homogeneity due to, segregation is jerhaps even stronger than homogeneity of race or ethnicity. In any case, SES differences are so stróng and pervasive that they cannot be ignored. As a general rule, high SES schools are likely to be populated primarily by eager, achievement, oriented, and somewhat competitive students, .while low SES schools are likely to còntain a high proportion of students who are alienated from school and from learning.

Grade level is also relevant here. At. the higher'grades, many low SES schools are reminiscent of "the blackboard jungle," featuring overt student defiance and hostilityi:in addition to alienation from learning. However, in the early grades, students in low SES schọols usually are not overtly defiant or hostile.. Instead, they tend to be anxious, fearful, self-conscious;
lacking in confidence about their own abilities, afraid of being called upon to respond publicly, and, in general, likely to deal with allenation through withdrawal and inhibition rather than overt defiance.

The SES differences observed in this study irdicate that teachers in these two respective types of schools generally were adapting to student . differences in ways likeły to maximize student learning (Brophy \& Evertson, 1973). In particular, teachers working in the high, SES schools maintained a businesslike demeanor and a primary focus upon the curriculum, and they took advantage of the opportunities provided by the fact that their students were generally brighter and more vertial than the students in the low. SES schools. Conversely, teachers in the low SES schools were more personalized in their interactions with their students, thus helping to combat student alienation and fear. They also spent more time teaching the fundamentals of the three R's, because most of their students had not learned these fundamentals yet. They also moved at a slower pace, trying to socialize their students to give answers to questions, rather, than to remain silent, by sticking with students who failed to respond rather than simply giving answers and moving on to someone else.

At these grade levels, such behavior would have amounted to 'pointlessly pumping the students in the high SES schools, since these students almost always give the response (and give it quickly) if they know itt. However, in the low SES schools, such behavior was functional, because many students capable of f_{8} responding correctly would not do so the first time because of fear. For these students, teacher persistence combined with patience and encouragement not only was likely to succeed in helping them to get the correct
answer in a given situation, but was important in helping to break. down fear and-socialize themfoward a more positive student role. . As noted, the low frequency of significant grade differences was not , surprising, given that only two grades were involved and that these grades were adjacent (second and third). Furthermore, the differences observed are mundane, indicating simply that children become morbal and more socialized to the student role as they get older, at least within these grade levels. Óther data (Baum, et al., Note 3) indicate that socialization to the student role is increasingly successful across the first several grades of "school, δ but that students begin to become rebellious starting around fifth grade. It is probable that thi,s reversal in trends continues at later grades; ongoing research at the junior high school level will help answer this question.

- Data for sex and grade combined, both in this stưdy and in others, indicate rather clearly that children in general, and boys in particular, do not value teacher praise very much, despite the freguent stress laid upon it in teacher education programs. This should not be taken to mean that teachers should praise less ofter or that praise is of no importance, although it may indicate that, most teachers do not praise very effectively (i.e., in ways that motivate their students positively).

Part of the reason for this is that'children become less adult-oriented and more peer-oriented throughout middle childhood. This js particularly true of boys, most of whom seem to be virtually indifferent to their teachers. In contrast, most girls are interested in teachers and íncreasingly begin to 'initiate personal contact with them and take an interest in them as individuals'
as well as persons playing the teacher role. However, in most cases even this interest seems ro be relatively limited, compared to interest in peers. In any case, process measurès of classroom interaction at the second and third grade levels revealed relatively few grade differences, and the differences that did appear were rather trite and obvious.

These comments'dọ not apply to grade differences iñ general, however, because other dota indicate that grade level is extremely important in ${ }^{-}$ \because limiting the degree to which findings can be generalized, (Brophy \& Evertson, 1973). In particular, the nature of student cognitiye development and of the teaching-learning situation typical of the first few grades of school differ in several important respects from those observed at higher grades. Most children in the earily grades still are mastering the fundamentals of the three R's, whereas in later grades they are using these tool skills to learn conterit in other areas.

Thus, the early grades feature study of the three R's as ends rather: than use of them as means, and instruction is more individualized and much less verbal and conceptual than at higher grade levels. This means that different variables are important at these different levels, and also that variables imporfant at both levels'do not always have the same kinds of relationships to student learning.

Reference Notes

I. Brophy, J. \& Evertson, C. Process-product correlations in the Texas teacher effectiveness study: 'Final report (Res. Rep. 74-4).

Austin, Texas; Research and Development Center for Teacher Education, 1974.
2. Brophy., J. \& Evertson, C. The Texas teacher effectiveness project: Presentation of non-linear relationships and summary discussion. (Res. Rep. 74-6). Austin, Texas: Research and Development Center for Teacher Education, 1974.
3.: Baum, M., Brophy, J., Evertson, C., Crawford, J., \& Anderson, L. Sex and grade differences in the interactions and assroom behaviors of children in grades two through five. (Res. Rep. 75-18). Austin, Texas: Research and Development Center for Teacher Education, 1975.

References

Brophy, J. Stability of teacher effectiveness. American Educational Rešèarch Journal, 1973, 10, 245́-252.

Brophy, J. \& Evertson, C. Low-inference observational coding measures and teacher effectiveness. Catalog of Selected Documents in Psychology, 1973, 3, 97.

Brophy, J. \& Good, T. The Brophy-Good dyadic interaction system. In A. Simon and E. Boyer (Eds.). Mirrors for behavior: An anthology of observation instruments continued, 1970 supplement, Volume A. Philadelphia: Reṣearch, for Better Schools, Inci., 1970.

Brophy, J. \& Good, T. Teacher-student relationships: Causes and consequences. New York: Holt, Rinehart and Winston, 1974.

Kounin, J. Discipline and group management in classrooms. New York: Holt, Rinehart and Winston, 1970.

Martin, R. Student sex and behavior as determinants of the type and frequency of teacher-student contacts. Journal of School Psychology, 1972, 10, 339-347.

Sherman, G., Brophy,' J., Crawford,' J. \& Evert'son, C. Träditional attitudes and teacher consistency in producing student learning gains in the early elementary grades. Journal of School Psychology, in press.

Footnotes

The authors wish to acknowledge and than i. the following individuals who participated in the research described herein and/or in the presparation of this report:

Or. Shyam Ahuja, Carol King, Nancy Moore, Piara Pannu, Brian Peck, and Dr. Teresa Peck, who observed in classrooms and helped prepare data - for analysis; John Brözovsky, Marc McGee, Brian Peck, Jon Sheffield, James Sherrill, and Wally Washington, who were involved in programming and statistical analyses of the data; and Claudia Maxwell, Gwen Newman, Elisa Percales, and Sidney Weaver, who assisted in manuscript preparation.

Table 1. Group Means and Probability Data from Sex by Socioeconomic Status (SES)
Analyses of Variance in Classroom Process Measures

A. Selecting Respondents to Questlons

1. 'S Preselects remon-
dent bẹforn asking quertions

| 04 | $04 \quad 05 \quad 03$ |
| :--- | :--- | :--- | :--- |

01	04	04	-03		-		07	07	10	, 04	-	**
46	43	40	19	-	1		47	43	45	14	-	-
38	43	13	39	-	-		32	37	35	33	-	-
. 12	09	13	09				15	14	10	18	-	*

B. Difficuliy Level of Ouestions
5. Process Questions/FrócesstProduct questions 05 .
6. Cholce Questions/Frocesstroductichoice 23
18 23;
-
-
.21 22.

Toble I Conifinued:

'. ${ }^{\text {a }}$	Whole Class Interactions, Mornings							- Whole Class Interactions, Afternoons									Reading Groups				
Process Variables	Male Mean	Femalo Mean	$\begin{gathered} \text { High } \\ \text { SES } \\ \text { Mean } \\ \hline \end{gathered}$	$\begin{array}{r} \text { Low } \\ \text { SES } \\ \text { Mean } \\ \hline \end{array}$	Probability Sex SES SexxSES			Male Mean	Fomale Mean	$\begin{array}{r} \text { High } \\ \text { SES } \\ \text { Mean } \\ \hline \end{array}$	$\begin{aligned} & \text { Law } \\ & \text { SES } \\ & \text { Mean } \\ & \hline \end{aligned}$	Probablility Sex SES SexxSES			Male Mean	Female Mean	$\begin{aligned} & \text { High } \\ & \text { SES } \\ & \text { Mean } \\ & \hline \end{aligned}$	$\begin{array}{r} \text { Low } \\ \text { SES } \\ \text { Mean } \\ \hline \end{array}$	Probabllity Sex SES SexxSES		
c. Quality of Chlidren's Answers																					
7. \$ Corroct	77	78	82	72	-	**	-	76	78.	79	75	-	-	-	78	80	${ }^{81}$	76	-	**	-
8. \$ Part-correct ${ }^{\text {. }}$	04	05	04	05	-	-	-	04	05	-05	04	-	-	-	04	03	03	04	-	-	-
9. \% Wrong	13	11	08	15	-	**	-	13	11	11	12	-	-	\cdots	12	12	10	13	-	*	-
10. \% "ton't know"					-	\cdot			.						01	01	$01 *$	01	-	-	-
11. \% No Response	.07	06	06	07	-	-	-	06	06	04	08	-	**	-	06	05	04	07	-	${ }^{*}$	-
			-										,		,						
- Toacher Reactions to Correct.Answers . . a																					
17. Praise	12	13	1.4	11	-	-	-	12	10	12	10	-	-	-	12	11	13	10	\because	-	-
13. Criticizing for cabling out	-				:		-					*		-							
in. Faiture to give	*		*															*			
'? feedback		-													01	02.	.01	02	-		-
15. - Process fredback					.								*		01	00	01	01	-		-
16. Hew question	15	12	15	13	-	-	。	, 11	11	11	12		$-$	-	10	09	09	10	-	-	-

Table I Continued:

E. Toacher Reactions to Part-Correct Answers
1% Praise
18. Criticism
19. Callure to give feedhack

8
20. Procass feodback

2i. Gives the answer
22. Calls on someone else.
23. Another student calls out the answer
7.4. Repeals, rephrases,

先 or anks

43

83
-

Mean Mean Mean Mean Sex SES SexxSES

25: Repeats question
26. Rephrases or gives clum
27. Aaks new querrion
F. Teacher Reactions to Hrong Answers
28. Praise

29: Crilicism ;
|

[^0]```
*
```

| 52 | 52 | 56 | 47 |
| :--- | :--- | :--- | :--- |
| 18 | 14 | 18 | 14 |


| 28 | 32 | 30 | 30 |
| :--- | :--- | :--- | :--- |

Table 1. Continued:

3. Fallure to give fédback
31. Proceśf feedlack
32. Gives the answer
$05 \quad 08 \quad 06 \quad 07$
33. Galls on somene elso
11

| 12 | 16 | 17 | $1!$ |
| :---: | :---: | :---: | :---: | :---: |
| 36 | 37 | 36 | 36 |


| 04 | 03 | 05 | 02. | - |
| :---: | :---: | :---: | :---: | :---: |
| 19 | 20 | 20 | 19 | - |
| 26. | 33 | 29 | 30 | - |
| 05 | 0.4 | 03 | 06 | - |

35. Repoits, rephrases, or asks new question
38

15
$2 \quad 15$
35
-

| 4 . |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 41 | 36 | 33 | 44 |  | - | - |
|  | $\because$ |  |  |  |  |  |
| $24^{\circ}$ | 28 | 18 | 33 | - | * | - |


| 12 | 39 | 37 | 44 |
| :---: | :---: | :---: | :---: |
| 15 | 17 | 15 | 17 |

37. Rophrases or gives. clun.
$18 \quad 22$ $21 \quad 20$ 24 19. $\qquad$ 2
38. Asks ney question
G. Trachers Rearotlons to "I Don't Know" or Th Response

$$
x^{\prime}
$$

40. Taljure to 'five feedback




## Table I Continued:

1

Process Variablos

Whole Class
Interactions, Afternoons Reading Groups


High Low
Me Female SES SES Probablitity -
J. Student lintiated Questions (SIQ's)
58. I SIR's irrelevant
59. \& Slo's called out $\quad 76 \quad 69 \quad 66 \quad 78$
60. Praise of question -after relevant SIQ
61. Criticism of question after relevant Sio
62. Z of relevanl SIQ's delayed.
63. \% relevant SiQ's not accepted
64. Ir relevant siQ's given briof feedback 80
65. \& relevant sig's given - long fecdback
66. I relevant Sip's redirected to class
61. Bohavioral praise of rolevanl Sio

多
$\qquad$


Whole Class

68. Eehavioral criticism ol relevant Sio

6?. Bohavioral warning alter relovant SIQ
\%. Criticism of Queslion after irrefevant. Slo
71. f Irralevant siQ given no feedback
72. X Irrelevant Silp delayed
73. \% Irrelavant 510 given-brief feedback
'IA. \& Irrelevant SIO qiven Iong fecdrack
75. \& Irrelevant sio not accepled
76. \& Irrelevant Sip redirected to class
77. Behavioral criticistu after irrelovant 510
78. Behavioral warning affer Irrelevant Sio

Whole Class


k. Studant Initialed Public Interach ions
79. Student initiated com
ments ind questions/
total. tesponse eppors
$\begin{array}{lllll}\text { tunities } & 13 & 11^{*} & 11 & 12\end{array}$ $\square$
. Studentrinitiaited Comments (SIC's)
80. \& SIC's relevant

81: \& SIC's called out $\begin{array}{lllll} & -80 & 63 & 60 & 78\end{array}$
22. Praise of comment after relevant SIC.
83. \% relevant SIC's given no feedback
84. I relevant SIC's delayed

85: \& riclovant SIC's not accepted
86. x-reilevant sicts acceptal
75 75 65 - $\quad x x$
31. \& relevant SIC's integrated into discussion topic
80. I relevant SIC's which cause a shift in topic

## Process Varlables

> Whole Class
> Interactions. Mornings
89. Behaviorol prolse atter relevant SIC's
O). Rehavioral criticiom aller relevant SIC's
91. Behavioral warning afler rolevant. SIC's
97. Prolso ol comment after Irrolevant SIC's

Q3. \& Irreievant SIC's giverno reedback
94. ${ }^{\circ}$ irrelevant SIC' $^{\prime}=$ delayed
95. Z irrolevant SIC's not ascépted
96. \$-irrelevant SIC's accepted
97. \& irralavant gICts integrated inlo dis cussion topic.
98. \& irrelegant SIC's which couse a shift in topic
79. Behavioral crlticism alter irrelevant sic's


Whole-Class Interactions, Mornings

- Whole Cláss Interactions, Afternoons


100. \& student opinions Tntegraled into discussion topic
101. Private Uyadic Conlacts



70


r. Discipline and Control Errors
134. Bdiscipline conteris
involving one or more erior 0 07. 07
.07
SES SoxxSES $\qquad$ Mean Mean $\qquad$ ex SFS SexxSES

13';. Target errors/ iotal eirors
.23
36. Timing errors/ total errors
137. Overreartions/ total eriors

| 67 | 73 | 55 | 85 |
| :--- | :--- | :--- | :--- |

13. Itonverbal control con-
lacts/ total control lacts/ fotal control
contacts contacts
Q. Combined Teacher Feediack Uata
14. Repent/ repeat + re-
phrose + new ques-
'phrisse 4 new' ques-
lion

| $38^{*}$ | 35 | 31 | 42 |
| :--- | :--- | :--- | :--- |

- -$-$ $\qquad$

140. Rephrase/ repeat + rephrase 1 new question
ton
141. Briof feedback/ brief

1 long feodback 64
$\square$
6466 65 -$-$
il
$68 \quad 72$

Procoss Variables


Whole Class


| Male remaleMean Mean | Reading Groups |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | High. | Low |  |  |
|  | SES | SES |  | Probizullity |
|  | Mean | Mean | S | $\times$ SES SexxSES |

R. Malh Contacts

142c lotal public math
contacte/ total pub-
lic mush contacts +
total private math contacts

48
44
48
43
143. Total leacher dini-
tiated private malh
contacts/ tolal public
math contacts t total
frivate math con=
tacts
29
S. Personal Experience Sharing
144. \% of CCC which are personal oxperionce
sharing 09
$09 \quad 09 \quad 06 \quad 12$
f of TAC which are personal experienco sharing

04
0 05 -

1. Teacher Reaction to DK
2. Criticsm
3. Fallure to give feedback

14B. Gives the answer
149. Calls on someone else
$\because \because$




I-ito data appeat when cell N's fell below 5 for a particular analysis. Means have been rounded to two decimal places, but declimals bofore the : mimbers In-each moar have been omitted from the tablex
$\because \quad 2<-10$
$\because \because 2<$
$: \quad .05$

Table 2
Group Means and Probability Data for Measures
Showing Significant ( $p<.10$ ) Grade Dîfferences in One-way Analyses of Variance Comparing Grades Two and Threel

Process Variables

## Context $^{2}$

Mearis for Means for Grades Two Grade Three

Probability
A. Selecting Respondents to Questions

1: \% preselec̄ts respondent before asking questions
2. Calls on non-volunteer
3. Calls on volunteer

4
4. Student calls out answers.
AM
PM

RG

| AM | 04 | 05 |
| :--- | ---: | ---: |
| PM | 05 | 02 |
| RG | 07 | 07 |

38
45
49
45
44
29
12
10
15
B. Difficulty Level of Questions
5. Process questions/process
6. Choice questions/process
C. Quality of Children's Answers

|  | AM | 77 | 77 | - |
| :--- | :--- | :--- | :--- | :--- |
| 7. \% correct | PM | 78 | 76 | - |
|  | RG | 79 | 77 | - |
|  |  |  |  |  |
|  | AM | 03 |  | 05 |
| 8. $\%$ part-correct | PM | 03 | 0 | 06 |
|  | RG | 03 | 04 | - |

frable 2 continued:

Prosess Variables

| Context ${ }^{2} \quad$Means for <br> Grades Two |
| :--- | :--- |

Means for
Grade Three
Probability
11
12
12
11
12
01
01
01
06
06
06
D. Teacher Reactions to Correct Answers
12. Praise

| AM | 14 |
| :--- | :--- |
| PM | 12 |
| RG | 13 |

10
10
09
$-\quad$.
$<01$
$-\quad$
01
01
$<01$
01
01
01 ,
15. Frocess feedback

| AM | 01 |
| :--- | :--- |
| PM | 01 |
| RG | 01 |
|  |  |
| AM | 15 |
| PM | 13 |
| RG | 09 |


14. Failure to give feedback

| AM | 01 |
| :--- | ---: |
| PM | 01 |
| RG | $<01$ |

AM
PM
AM
13. Criticizing + Answer PM
$<01$

01
02
01
01
01

14
11
16. New question

PM
13
09
10
E. Teacher Reactions to Part-Cc. rect Answers
17. Praise
18. Criticism

| AM | - |  | - |
| :--- | :--- | :--- | :--- |
| $P M$ | - | - |  |
| $R G$ | - |  | - |
| $A M$ | - |  | - |
| $P M$ | - |  | - |
| $R G$ | - | - | - |
| $A M$ | - |  | - |
| PM | - |  | - |
| $R G$ | - |  | - |

Table 2 continued:

Process Variables
20. Process feedback
21. Gives the answer
22. Calls" on someone else
23. Another student calls out the answer
24. Reṕeats, rephrases, or asks new question

| 25. | Repeats question | - $\begin{array}{r}\text { AM } \\ \text { - } \\ \hline\end{array}$ |
| :---: | :---: | :---: |
| 26. | - | AM |
|  | Rephrases or gives çlue | PM |
|  | Rephrases or gives ciun | RG |
| 27. |  | AM |
|  | Asks new question | PPM |
|  |  | RG |

F. Teacher Reactions to Wrong Answers
28. Pralse
29. Criticis̀m
30. Failure to give feedback
31. Processrfeedback

Context ${ }^{2}$
AM
PM
RG
AM
PM
RG




AM
PM
RG

| 19 | 10 |
| :--- | :--- |
| 06 | 09 |
| 17 | $16{ }^{\prime}$ |
| 18 | 32 |
| 34 | 23 |
| 29 | 27 |
| - | - |
| 11 | 16 |
| 04 | 07 |



Table 2 continued:

## Process Variables

32. Gives the answer
33. Calls on someone else
34. Another student calls out the answer
35. Repeats, rephrases, or asks new question
36. Repeats question
37. Rephrases or gives clue
38. Asks new question


Means for Means for Grades Two 'Grade Three

01
30 35 47

Probability

G. Teacher Reactions to "I Don't Know" or No Response
39. Criticism
40. Failure to give feedback


Table 2 Continued:

## Process Variables

44: Repeats, rephirases, or asks new question

Means for Grade Three Probability

47. Asks ǹew question

Table 2 Continued:

Process Variables
56. Another student calls out answer after failure to answer correctly


Means for Grade Three "Probability 01 01 01

$$
19
$$

$$
46
$$

J. Student Initiated Questions (SIQ's)
53. \& SIQ's irrelevant
59. \& SIQ's called out
60. Praise of question after relevant SIQ
61. Criticism of question after relevant SIQ
62. \% relevant LiQ's delayed
63. \& relevant SIQ's not accepted.
64. \% relevant SIQ's given brief feedback
65. \% relevant SIQ's given long feedback
'
66. \% relevant SIQ's redirected to class


Table 2 Continued:

## Process Variables

67. Behavioral praise of relevant SIQ
68. Behavioral criticism of relevant SIQ
69. Behavioral warning after relevant SilQ
70. Criticism of question after irrelevant SIQ
71. \% irrelevant SIQ .given no feedback

7̣2. $\neq f$ irrelevant SIQ delayed

73: \% irrelevant SIQ given brief feedback
74. \% irrelevant SIQ"given long feedbackacceptedPMRG
76. \% irrelevant SIQ redirected to class
75. : ! irrelevant SIQ not accepted
77. Behavioral criticism after irrelevant SIQ
78. Behavioral warning after irrelevant SIQ

Means for Means.for Grades Two Grade Three

Probability

AM
PM RG AM.

## PM

 RGAM RG AM PM RG AM PM -Table 2 Continueed:

Process Variables
Eontext ${ }^{2}$
Means for Means for Grades Two Grade Three

Probability
-K. Student Initiated Pubilic Interactions
79. Student initiated comments AM and questions/total . PM. 11

14 response opportunities RG
L. Student initiated, Comments (SiC's)
80. \% SIC's relevant
81. \% SIC's called out
82. Praise of comment after
relevant SIC

90. Behavioral criticism - after relevant SIC's

## Process Variables Context ${ }^{2}$

Means for Grades Two

Means for.
Grade Three Probability
91. Behavioral warning after AM relevant SIC's

PM
92. Praise of comment aftèr irrelevant SIC's
94. \& irrelevant SIC's delayed

95. \% irrelevant SIC's. not accepted

96: '\% irrelevant 'SIC's accepted
97. \% irrelevant SIC's inte-
97. W irrel evant SIC's inte
grated into discussion topic

AM
PM
RG
AM
PM
RG
AM
PM RG
98. \% irrelevant SIC's which cause a shift in topic
99. Behaivioral criticism $\quad \begin{aligned} & \text { after irredevant SIC!s }\end{aligned}$
99. Behaivioral criticism
after irredevant SIC!s

AM AM : -RG
100. Behavioral warning after irrelevant.SIC's.o.

| AiM | - | - |
| :--- | :--- | :--- |
| $P M$ | - | - |
|  | - |  |
|  |  | - |

M. Self and Opinion Questions
101. Self questions/process + product + choice questions + self
102. \% self questions which were subject-matter related



Table 2 continúed:



Table 2 Continued:

## Process Variables

147. Fallure to give feedback
148. Gives the answer Context ${ }^{2}$ $A M$
$P M$ PM RG AM PM RG
149. Calils on sómeone else

50: Anothér chipd call's - out the answer
151. Repeats, rephrases
. or asks new question
52. Repeats question
53. Rephrases or gives cluie
54. Askis new question

## AM <br> PM. RG

Means for
Means for Grade Three Grades Two $\because$
-Probability
-
-
-

| - |  | - |
| :---: | :---: | :---: |
| $\overline{-}$ |  |  |
| $\overline{5}$ |  | $\ddots$ |

Teacher Reaction to No Response
55. Criticism
56. Failưre to give feedback
57. Gives the answer
58. Calls on someone else

Table 2 Continued:

Process Variables
159. Another student calls out.
160. Repeatts, rephrases, or "ásks new quesfion
161. Repeats

İ 62. Rephrases or gives clue ${ }^{\circ}$
163. Asks new question
64. Total teac:ner afforded math contasts/total math time
65: Total math response opportunities/total math time
66. \% relèvánt SIQ given no feedback
67. "o opintion questions

69. \% behaviorial prạise

| AM | 26 |  | 22 |
| :--- | :--- | :--- | :--- |
| PM | - |  | - |
| $P G$ | - |  | - |
|  | 45 |  | 44 |
| AM | - |  | - |
| $P M$ | $=$ |  | $=$ |

## Miscell laneous

 after irrelevant SICMeans for: . Means for:

Grades Two Grade Three 06

08
08
12
AM $\quad .32$
PM
RG
AM
PM,
RG
AM
PM
RG
AM
PM
RG
Context ${ }^{2}$

| $A M$. |  | 06 |  | 08 |
| :---: | :---: | :---: | :---: | :---: |
| PM |  | 08 |  | 04 |
| -RG |  | 12 |  | 1.1 |
| AM |  | 32 |  | 29 |
| PM |  | 37 |  | 43 |
| RG | $r$ | 24 |  | 34. |
| AM |  | 14 |  | 09 |
| PM, |  | 22 |  | 20 |
| RG |  | 12 |  | 19 |
| AM |  | 1 |  | 1,5 |
| PM |  | 12 |  | 14 |
| RG |  | 11 |  | 15 |
| AM |  | 06 |  | 04 |
| PM |  | - |  | -. |
| RG |  | $=$ | - | - |

## - Math Contacts

$$
\begin{aligned}
& \text { criticized } \\
& \text { 68. opinion questions } \\
& \text { given no feedback }
\end{aligned}
$$

Probability -
-
-
-
$\bar{\prime}$
-
$-\quad$.
**
-
-
-
--
-
-
-$-$ -

Process Variables
Context ${ }^{2}$
3

Mearis for Grades Two

Means for
Grade Three Probability
170. Total response oppor-
tunities (AM)/total time
171. Total teacher afforded contacts/total time

| AM | 15 |  | 18 |
| :---: | :---: | :---: | :---: |
| PM | 22 |  | 19 |
| RG | 54 | - | 46 |
| AM | 17 |  | - 23 |
| PM | 40 |  | 37 |
| RG ${ }^{*}$ | 17 |  | 23 |

Decimals before each mean have been omitted from the table.
2 The three contexts are indicated as follows: AM = whole class interactions in the mornings; $P M=$ whole class interactions in the afternoons; and $R G=$ reading group interactions.
$\mathrm{p}<\cdot 10$
p<:05


[^0]:    $\vdots$

