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The one- and threerparameter models were found to estimate different

components when the tests measured several independent factors. The

three-parameter model estimated parameters from one of the factors,

ignoring the others, while, the one-parameter model estimated the sum of

the factors. When a dominant first factor was present in the test, the

two calibration procedures calibrated the items and estimated ability on

the first factor. Although the three-parameter model fit the test data

, significantly better than the one-parameter
model, there was no difference

for the two procedures in predicting outside criterion measures. The

sample size analysis showed that"the one-parameter model required

substantially fewer cases for item calibration than tne three-parameter

model. Some general sample size recommendations were made. Item

quality, as determined by guessing and discrimination parameter estimates,

was found to affect the fit of the two models to the data. However,

the probability of fit statistic given by the one-parameter logistic

program was affected only by guessing. In terms of cost, the three-

paramete procedure was found to be substantially more expensive

than the one parameter procedure. Although the three-parameter model

was found to fit the data better than the one-parameter model, the

ability estimates from the two procedures were highly correlated when

a dominant first factor was present; and the correlations with outside

criterion measures were not significantly different. Since the one-

parameter model costs less to use, it is the recommended procedure

for calibration of 50 item, group administered, multiple- choice exams.

This recommendation does not generalize to tailored testing administration,

but only to item calibration for group tests.
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ABILITY ESTIMATION AND ITEM CALIBRATION

USING THE ONE AND THREE PARAMETER LOGISTIC MODELS:

A COMPARATIVE STUDY

Latent trait measurement models have slowly made inroads into the
applied areas of testing. Information funCtions based on latent trait
theory have been used to construct aptVil4e tests (Marco, 1976) and the
simple logistic model has been used to scakie an achievement test (Woodcock,
1973), while major use of the models ha066,made inthe area of tailored
testing (Jensema, 1974; Lord, 1970; Reckase,.174; Same:lima, 1975).
Despite the acceptance of the models, debate still exists concerning the
relative value of the various types of mod ls being used. The major facet

;of the debate is the number of parameters equired to adequately describe
empirical item characteristic curves. One point of view specifies that
three parameters are required to describe the interaction of a person and
an item: difficulty, discrimination, and guessing. The opposite position
is that only one parameter, difficulty, is required.

Until a point was reached that the latent trait models were regularly
applied to live testing situations, it was sufficient to let the debate
continue on theoretical grounds with the clear edge to three parameter
models when multiple choice items were being considered. However, with
the increasing use of these models in applied_settings, and with the lack
of comparative studies, the need for directempirical comparisons is
clearly indicated. An evaluation is of special importance considering the
needs of tailored testing, where speed of convergence to an ability
estimate and computational efficiency are of great importance. Because
of these added constraints, the simplicity of the one parameter latent
trait models tends to balance the theoretical completeness of the three
parameter models.

The general orientation of the research program guiding this study
is to apply tailored testing to achievement measurement. This fact places
a number of other constraints on the type of comparison required among
the latent trait test models. *Achievement tests typically are constructed
based on difLerent criteria than aptitude tests Content validity is the
desired goal, rather than the measurement of some set of unidimensional
traits. Construction methods fit items to a table of specifications
yielding tests that may be of substantial factorial complexity. Thus,
sensitivity of the models to multifactor data is a major consideration.

A second factor that will influence the use of latent trait models
for achievement testing is the size of sample required for item
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calibration. If tai ored tests are to be used in: educational programs that

have some modicum of flexibility, large samples of students responding to

the items may not be ttainable before modifications in the instruction

make the test obsolet . Thus procedures that yield stable calibration

results with relativel small samples will have an edge in terms of appli-

cability. The fluidity educational programs has a further effect on the

qualities desired in the 1 trait models. Often, because of the

short time available for the con ruction of tests, the items in a test

may notrbe of highest quality. Th refore, a good model for achievement

testing should be able to function using mediocre items.

The purpose of the research reported here is to evaluate the one and

three parameter logistic models for use in calibrating achievement tests

for use in tailored testing. Toward that end the factors mentioned

above (computational efficiency, robustness to multidimensionality,

effects of sample size, effects of item quality) will be manipulated in

comparing the models. However, the relevant literature will be reviewed

before describing the research design in detail.

Review of the Literature

The literature on latent trait theory has mushroomed over the last

several years. A count of references since 1974 --has yielded well over,

one hundred entries. Since other good reviews of the general area are

already available (i.e. Hambleton, Swaminathan, Cook, Eignor, and Gifford,

197 ?) 'this paper will not attempt to summarize the total research effort,

but. will be limited to the areas directly related to applying latent

trait models to achievement tests. More specifically, the review will

concentrate or the available item calibration procedures, the effects of

- violating the assumptions of tne models, and the types of tests and sample

sizes appropriate for analysis.

Item Calibration Procedures

Numerous methods have been developed to estimate the item and ability

parameters of the latent trait models. These vary in sophistication

and computational complexity from the early graphic methods used by Rasch

(1960) to the conditional (Andersen, 1973) and unconditional (Wright &

Panchapakesan, 1969) maximum likelihood, least squares (Brooks, 1964),

and empirical Bayes point estimates (Meredith & Kearns, 1973) currently

being used. Many approximation techniques have also been de'veloped to

reduce the complexity of computation and computer time required.

Of the many methods available* only those appropriate to the simple

logistic and three parameter logistic models applied to dichotomously

scored items will be presented here. Multivariate models, and those

appropriate for nominal, graded, and continuous response data, will be

included only when they apply to the specific models of interest.

6
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Simple Logistic Procedures

A procedure for estimating-the parameters of the simple logistic
model was first presented in Georg Rasch's original exposition of the

_model (Rasch, 1960). His procedure takes advantage of the local indepen-
dence and sufficient statistic properties of the model to independently
estimate the ability and easiness parameters. The basic procedure
follows.

The simple logistic model as presented by Rasch (1960) is givea by

A
i
E

P{x
ij

= 1} =
1 + AiEj

1
P {xij = 0}

1 + AiEj

where xij is the score on the item, Ai is the ability of Person i and

Ej is the easiness of Item j. The logarithm of the ratio of the prob-
ability of a correct response to the probability of an incorrect
response is called the logit and is given by

P{x44 = 1}

Iii = In -4- = lnA. + lnEjP{x
ij

= 0} 3

If a second item, k, is given to Person i, the logit is

1
ik

= lnAi + 1nEk.

The difference betwean Equations 2 and 3 gives

lii - lik = lnAi + lnEj - lnAi lnEk = lnEj - lnEk

which does not contain the ability parameter. The average logit for

Person i over all of the items on the test is given by

(1)

(2)

(3)

n

Eli; E(lnAi + lnEj) ElnEj

_ 3.1_:N .:__J 1
i- N N

lnA
i
+ -1---- = lnA

i
+ lnE . (4)
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,Subtracting Equation 4 from Equation 2 gives the basic estimation equation

for the procedure

1. - 1 = InE
j

lnE .

ij
(5)

If the average log easiness is set equal to zero, this equation simplifies

to

lij - 1 = 1nE4.

Thus, the easiness parameters can be estimated from
the logit for an ability level and an item, and the
The estimated easiness parameter should be the same
ability level used for the procedure.

In order to improve the estimates obtained, Rasch takes advantage

of the fact that Equationfi is a linear equation of slope 1.0 between the

two logit variables. Therefore, he plots the lij value against li. across

ability levels- and then fits a slope 1.0 line to the resulting scatter

plot using an "eyeball" technique. The intercept of the plotted line is

used as the easiness estimate for the item. A similar procedure is used

for the ability perametek; except that: the average logit over ability

levels is .,u,'Sed.

This procedure ObViously.yields Only rough approximations to the trte

parameter.Values.and,since much of the results are based on a subjective'

fit to a sca,tter plot,,a fully computerized procedure is not possible.

For these reasons, Rasch's procedure was used only in earl)' exploratory

studieS of the model.

In 1964, Brooks modified Reach's procedure to increase its

objectivity. Instead of visually fitting a slope 1.0 line to the plot

of specific ability group logits against average logits, he used linear

regression procedures to fit a line using least Squares methodology. This

allowed a quasi-statistical test for goodness oi.fit of the model to the

test data by testing the empirically obtained slope'against the theoretical

value of 1.0. Brooks admitted that this significance test was not precise

because the sampling distribution of the slope obtained under these

circumstances was unknown, but'he felt it was better than the visual

check of the slope that Rasch used. As in the previous technique, the

intercept of the fitted line was used to obtain the parameter estimate..

(6)

the difference between
average logit over items
regardless of the

Although Brooks' procedure was an improvement over Rasch's

original demonstration technique, neither it, nor the simple logistic

model itself gained much prominence until later in the decade. By that

time however, a more sophisticated maximum likelihood procedute had been

derived by Wright and Panchepakesan (1969). This procedure-has subse-

quently been labeled an unconditional maximum likelihood procedure (UCON)
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and is the most widely used calibration technique currently available.
Although the original article presents the technique in considerable
detail, a more recent article (Wright & Douglas, 1977a) gives a clearer
exposition.

The unconditional maximum likelihood procedure can best be
summarized using the exponential form of the simple logistic model:

e

ij (8i - bj)

1 + e

x
ij

(8 - b
j
)

(7)

where 81. = lnAi and bj = -1nEj. Using this equation, the likelihood of

the entire matrix of responses of N persons to L items is given by

A=

NL
EEx

ij
(8 - b

j
)

e
ij

NL (8. - b )
j

1111(1 +e

ii

(8)

Taking the logarithm of this equation simplifies matters substanitally,
yielding

N L NL (0 - b)
A = 1nA = Er

i
0
i
- Es

j 3
b. - EEln(1 + e

1
)

ij

(9)

where ri is the raw scare for Person i and sj is the number of times Item

j is answered correctly.

The first and second derivatives of Equation 9 are then computed

with respect to 0 and b. These derivatives are used, along with a sorting

of the data into raw score groups to take advantage of the model's
sufficient statistic properties to arrive at equations for finding the

maximum of A. A Newton-Raphson technique is used for this purpose,
with iterations continuing until successive estimates become stable. A
detailed description of this procedure can be found in Wright & Douglas

(1977z).

Although the UCON procedure is the most widely used estimation
technique for the simple logistic model, Andersen (1970) has shown that the

unconditional approach yields inconsistent estimates. That is, as the

sample size increases, the estimates do not approach the parameter

values. Wright & Douglas (1977a, 1977b) have recently discussed this
problem, and have shown that any bias induced is small and that it can

easily be removed with a simple correction factor. The procedure does

have the advantages of estimating ability and item parameters
simultaneously and of being usable with lengthy tests and large samples.

9
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A procedure that does produce consistent estimates of the parameters,
the fully conditional procedures, has been developed by Andersen (1973)'
(FCON). This procedure uses the probability of a person's response string
conditional on his raw score. The conditional probability is free of the
ability parameter since the raw score is a sufficient statistic for ability.
The actual procedure begins with the same exponential form for the simple
logistic model as does the UCON procedure (Equation 7).

Since the responses to the items are assumed to be independent of on'
another, the probability of the response string for-a person is given by

L
riei Ex

ij
b
j

P{[x13 ..]} = HP{ x =
L (6. - b )

H(1 + e
1 j

. (10)

where [xij] denotes the vector of responses for person i.

The probability of a raw score r is the sum of the probabilities
of the vectors of responses that yield that raw score.

r
I

I e

re
i
y

P {r} = E P{Exj.)) =
r

13 L (6. - b)
[x ) 1 j

ij H(1 + e )

i

L

r
-Ex

ij
b
j

where yr = E e is the elementary symmetric function.
[x.j

13

The conditional probability of the response string given the raw
score is then

L
-Ex b

PU 1)xij
e'

ii i

P{[x..ilr)
P {r} Y

r

which does not contain the ability parameter 0.

10



-7-

The likelihood of the en;dre items-by-persons matrix can now be
found, each person's vector conditional on his raw score

A 7

L
Zs b

e

L-ln

nYr
r

where sj is tne number of correct responses to Item j and nr is the
number of times raw score r was obtained. The logarithmlgf this value is

used to simplify further computation

L L-1
A = log A = -Esjbj E nr log yr.

r

(12)

Once this likelihood equation is obtained, solution for the item
parameter follows much the same as for the UCON procedure. The first

and second derivatives of Equation 12 are determined with respect to bj
and the Newton-Raphson iterative procedure is used to find the maximum
value of A.

Although FCON yields better estimates from a statistical point
of view, the procedure suffers from computational difficulties due to
the necessity of computing the elementaYy symmetric function. If a

fifty item test were being calibrated using this procedure, computation
of the elementary symmetric functio ?3for a raw score of twenty would

require the sum of approximately 10 terms. Even the fastest computer

will be taxed by these computations. Therefore, the FCON procedure has

been limited to application where the.test being calibrated has less

than fifteen items.

Wright and Douglas (1977a) have proposed a modification of one
FCON procedure that attempts to solve the problem caused by the
computation of the elementary symmetric functions This procedure,

called the incomplete conditional procedure (ICON), ignores selected
symmetric functions, thereby improving computational efficiency. The

resulting parameter estimates obtained using the ICON pro-cedure are
virtually the same as the FCON procedure, iniicating that the revisions,
did not affect the accuracy of the method. However, despite the aim-.
ination of some of the symmetric functions, the procedure still becomes
inaccurate if more than twenty to thirty,items are used beacuse of

accumulated roundoff errors. Thus the modifications to FCON only put off
the point at which the procedure becomes =usable, and do not totally
solve the problem.

11
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Along with these five methods for estimating the parameter of

the simple logistic model, two other more specialized methods should be

,mentioned. The first of these is a method labeled PROX by Wright and

Douglas (1977b). This method was derived in an attempt to speed up the

estimation process over the UCON method. The procedure starts with the

initial estimates used by the UCON procedure, and then, using the

assumption that the ability parameters are normally distributed, proceeds

with a simplified iteration process to arrive at estimates. The simplified

mq.thod shortens computation time by a factor of 40 for 50 to 60 item tests,

but At is less accurate than UCON when extreme abilities are present or

when the distribution of abilities is markedly skewed.

The second specialized method for estimation was developed by

Meredith and Kearns (1973) and is called empirical Bayes point estimation.

This procedure uses the expected value of the posterior distribution of

the parameter of interest based on the raw score distribution to estimate

the parameter. The procedure has been shown to be asymptotically optimal in

the sense of having smaller average error variance -and higher reliability

than any other ability estimate when the sample approaches infinity.

However, for sample less than 5000, the estimates tend to be unstable

(Kearns and Meredith, 1975). This technique has not been extensively

applied.

Three-Parameter Logistic Procedures

Due to the greater complexity of the three-parameter logistic model,

the development of estimation procedures has taken longer than those for

the simple logistic model. Fortunately, the logistic item characteristic

curve closely approximates the normal ogive item characteristic curve

(Birnbaum, 1968) allowing the adaptation of the previously developed

normal ogive methodology to this mathematically more convenient model.

The first presentation of an estimation technique for the three

parameter model was given in an appendix to an article by Lord (1968)

concerning the analysis of the Verbal Scholastic Test. Except for the

problems caused by the inclusion of a guessing parameter in the model, the

method is similar to that used to obtain maximum likelihood estimates of

the two-parameter normal ogive model (Lord, 1953).

The method begins with the three-parameter logistic equation for

the probability of a correct response to an item

Da
i
(0
j.-

b
i

)

Pik r= P{xij = 1) = c + (1 - c )
Da (6

j
- b

i
)

1 + e
i

(13)
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where ci is the guessing parameter for Item i, ai is the discrimination
parameter, and bi is the difficulty parameter; Ai is the ability parameter
for person j; and D is% constant equal to 1.7 included to maximize the
similarity of the model to the corresponding normal ogive model. Qij is

defined as the probability of an incorrect response and is defined by
1 -Pij.

-The first step in the estimation procedure is to determine the
likelihood of the matrix of responses of the N persons to n items. This

likelihood is given by

n N x
ij

1-x
ij

L =-H II P
ij

Q
ij

i=1 j=1

The logarithm of the likelihood is used for convenience.

n N

lnL = E E (x 1nP + (1 - x )1nQ ]

i=1 j=1

(14)

(15)

To determine the maximum of Equation 15, the derivative of the equation
is determined relative to ai, bi, and Oi. The guessing parameter, ci,

is not estimated using maximum likelihood at this point because the
estimation procedure was found to be too unstable. Instbad, the lower
asymptot.; 7f the item characteristic value is used in the estimation

equations for the other parameters. A sample of 100,000 cases was used

in the original application study.

The three derivatives cannot be solved directly for zero because
the individual parameters cannot be isolated as they could be in the simple

logistic model. instead, rough estimates of the item parameter are obtained
using them. The resulting ability estimates are then used with the likeli-

hood equations to obtain new item parameter estimates. The new item

parameter estimates are then used to get new ability estimates, and so
on. The two steps required to get estimates of die item and ability
parameters are called a stage, and required about 15 minutes of computer
time for the SAT analysis. Twenty stages were required for convergence

to satisfactory values for that analysis.

Although the technique developed by Lord does yield usable results,
several difficulties were encountered in its initial application. First,

as mentioned above, the computer time required for the program is
excessive. Approximately five hours of computer time were required for
application to the Scholastic Aptitude Test data. The computer used

(IBM 7044) was very slow compared to the current generation of computer,
however, indicating that a substantial reduction would be obtained if it
were, run now. Second, tests used for calibration by this procedure
should have at least 50 items and data should be available on at least

13
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1,000 cases. If enough data is not available, the discrimination parameter
may increase towards positive infinity. Third, occasionally ability
parameters may go toward positive or negative infinity. Lord (1968) is
not too disturbed by this fact because the result is expected whenever
a perfect or zero score is obtained on the test. Fourth, despite'large
samples, the procedure may fail to converge in some circumstances. Lack
of convergence may be caused by a single item and the procedure may
converge when the item is removed. Sometimes, the item can be replaced
after convergence has been achieved and a stable estimate can be obtained.
Finally, the necessity of estimating the guessing parameter graphically
from large samples makes the procedure impractical for many applications.
Clearly, a more convenient procedure was needed to make the three-
parameter logistic model more generally applicable.

In order to overcome many of these problemsvomn.extended version
of the procedure was made available in 1973 (Wingersky and Lord, 1973).
This new version extended the maximum likelihood procedure to the guessing
parameter, eliminating the need for extremely large samples to graphically
estimate the lower asymptote of the item characteristic curve. However,

Christoffersson (1975) has pointed out thaw estimating all of the item
parameters and the ability parameters simultaneously is impossible unless
constraints are placed on the parameters. He states that

Intuitively, this seems impossible because the approach is
equivalent to estimating factor loadings, factor scores
and residual variance simultaneously in the case of interval
measurement. This is not possible with the maximum likelihood
method (Anderson and Rubin, 1956) unless some further conditions
are imposed, such as, assuming that the residual variances are

pairwise the same.

To overcome this diffic-lty, numerous constraints have been built
into the estimation program. Along with separating the estimation of
ability and item parameters within a stage as was done in the 1968 version
(Lord, 1968), the amount each parameter can change in each stage is
restricted. This is done to reduce wild fluctuations in the estimates.
Further, if a discrimination parameter exceeds a preset maximum value, the
item is automatically removed from the analysis. Changes in the guessing
parameters are severly restricted by the program since, in many cases,
these parameters are poorly determined. Also, limits are placed on the
minimum and maximum values allowed for the discrimination and guessing
parameters.

With all of the constraints placed on the parameters, the procedure
will converge on stable estimates if sufficient cases and test length are
available. The number of items recommended has been reduced to AO with
this version, but the suggested minimum number of cases is still 1,000.
Computation time has been reduced considerably. Time per stage on an



IBM 360/65 computer ranges from 70 to 180 seconds, with 30 to 40 stages
required blot convergence. Thus the computation time ranges from a half
hour to two hours as compared to about five hours for the earlier version.

Along with improving the basic computational procedure of the
maximum likelihood method, Lord also modified the procedure to recognize
three modes of response: correct, incorrect, and omit (Lord, 1974). This

-was-accomplished by allowing- -three item scores, 1 for a correct response,
0 for an incorrect response, and 6 for an omit response. The value of C

used here is the reciprocal of the number of alternatives to the multiple
choice item. The rationale for this scoring is that a person will only
omit if he cannot guess at better ,than the chance level. Under those
circumstances, the proportion of correct responses that would be expected
if a person guessed would be equal to C,.making this a reasonable level to
use. The likelihood equation (Equation 14) is modified to reflect the
scoring change yielding

n N v
ij

i-v
ij

Lic = P Q..
.i =1 j=1

ij 13
(15)

where vii =.1, 0, or C and the asterisk indicates the modified likelihood
value. Lord (1974) points out that Equation 15 is not really a likelihood
equation because of the change in scoring, but that it tends toward the
same limit when the number of items is large. Also, Equation 15 yields

smaller asymptotic sampling error than the maximum likelihood technique
when the omitted responses are replaced,by random responses. Thus, the

modified equation was used in the 1973 version of the procedure
(Wingersky and Lord, 1973).

The current step in the development of a procedure for estimation
of the three-parameter logistic parameters is a revised edition of the
1973 program for increased efficiency. The revision, called LOGIST (Wood,
Wingersky and Lord, 1976), has reduced the number of stages needed to
reach convergence to 10 to 15. The greater efficiency was achieved by
putting added constraints on the parameters. The ability parameters are
restrained, where previously they were allowed to migrate anywhere
oetween positive and negative infinity. Also, limits have been imposed
on the discrimination and guessing parameters. The LOGIST program in
its current and 1973 version is the most commonly used procedures for
estimating the parameters of the three-parameter logistic model.

Because of the lengthy and expensive computation required by the
maximum likelihood procedure, three other techniques have been developed
to try to make parameter estimation more cost effective. The first, a
graphic approximation method developed by Urry (1974), was originally
designed for screening items. In using this method, the lower asymptote
of the item characteristic curve must first be estimated from the item
by total-score-zdnus-the-item regression. The ci value found in this way
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is used to select the proper nomograph for estimating the discrimination
and difficulty parameters. The nomographs were generated from the
theoretical relationship between the traditional population difficulty
and discrimination values and the corresponding latent trait parameters.
To use them, estimates of the population point biseiial correlation and
proportion correct are needed. These statistics are computed using
traditional item analysis techniques. Once they are determined, they
are entered into the ordinate and absisst of the nomographs, and the
parameter estimates are read off a separate set of axes.

Urry (1974) has stated that estimates of the traditional item
statistics based on a minimum of 2,000 cases are needed for good results,
and the test should have at least 80 items and a KR-20 reliability of at
least 0.90. When these conditions are met, the maximum likelihood and
nomographic estimates are fairly comparable. In one study the ai values

were found to correlate 0.89 and bi values 0.97. Urry was so impressed

with these results that he feels the procedure may be used for final
calibration of an item pool rather than as a mere screening device. He

states that "It might well be that the heuristic estimates obtained
through the present approximation method are to be preferred to maximum
likelihood estimates where distortion of the estimates is artificially
induced by the nature of the analysis (when low ability cases are dropped
to improve LOGIST convergence]."

The second procedure developed to reduce the cost of estimating the
latent trait parameters is called the ancillary estimation procedure
(Urry, 1975). Although it is based on the normal ogive model, it is
included here because the parameter estimates are very close to logistic

values. This procedure is based on minimum chi-square estimation rather
than the maximum likelihood used by most of the other procedures. The

procedure involves two stages: the first stage uses raw scores as estimates

of ability and the second stage uses Baygsian modal estimates of ability.
The entire procedure can be summarized as follows.

First, initial parameter estimates are obtained for the item parameters
by finding the minimum of a x2 variable given by

m-1 (r. - n Pi(j))2

X2i
n.P 0)

j=E0 i (J)Q.
(16)

where X2i is the result for Item i, rj is the number of correct responses
to Item i for those with raw score j, nj is the number of cases obtaining
a score of j, Pi(j) is the probability of getting Item i correct for

ability j based on the latent trait model, and Qi(j) = 1 - Pi(j). An

iterative procedure is used to find the parameters ai, bi, and ci,.that
are converted to ancillary estimates by correcting them using the Item i

information functions (Lord & Novick, 1968). In effect, this corrLction
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,is an inverse weighting by the error of estimate. The purpose of the

correction is to increase the efficiency of the estimates and to reduce

the intercorrelations between the three parameters.

The ancillary item parameter estimates are then used to obtain
Bayesian modal estimates of the ability parameters (Samejima, 1969). These

"estimates are obtained by finding the values of the ability parameters that
-maximize the following expression

B(8) = f(8)1IP (8) (17)

i

where f(8) is the normal density function And Pi(8) is the probability of
a correct response to Item i as. defined by the latent trait model. Once

the new ability estimates are available, they are .used to derive new minimum
chi-square estimates of the item parameters. These new estimates are then
again Corrected using the information functions to get the final ancillary
estimates.

The estimates obtained in this way were-evaluated by Schmidt and
Gugel (1975) to determine their effectiveness. They found that "Given at

least 2,000 cases and 100 items of good but not unrealistically high quality,
the procedure produces estimates that correlate fiighly with true parameter,
show low root mean squares, and perform about as well when Used in tailored

testing as the true item parameter values." When the Sample'size drops as
'low as-500,-the method may fail to converge.

By far the simplest of the procedures for calibrating items
using the three parameter logistic model was presented by jensema (1976).
This procedure is designed mainly for screening items for further analysis

and is not a substitute for maximum likelihood procedures. Jensema's

procedure is based on the theoretical relationships that exist between the
logistic parameters and traditional item analysis values as presented in

Lord and Novick (1968).

In order to use this technique, the guessing parameter, ci, must
first'be estimated from the lower asymptote of a plot of the item
characteristic curve for the item. This value is used to adjust the

proportion correct for the item using the formula

Pi - ci
P = (18)
i 1 - ci

where Pi is the estimated proportion correct for Item i and Pi'is the
corrected value. From the corrected value, the cutting point on the
logistic distribution with that proportion above it can be obtained from

1
1 - P.

y
D

,

P
i

1'7

(19)
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Where D = 1.7. This value, along with an estimate of the point-biserial
correlation corrected for guessing, p10, is used to obtain the parameter
estimate using the following formulas

and

pie,
a. =

1 PTez

b.
Yi

Pie

(20)

where ai is the discrimination parameter and bi is the difficulty parameter.

Jensema has stated that reasonable estimates will be obtained using
tbi. method if three assumptions are met:

(a) reasonably good estimates of ci are available,

(b) the proportion of the population passing Item i is an
estimate of Pi,,and

(c) the item-excluded total test score is a measure_of true
ability, 0.

The quality of the estimates obtained under these circumstances was checked
using 48 simulation data-sets. The correlation between the true values and
the estimates of discrimination and difficulty parameters for the procedure
were found to be 0.798 and 0.963 respectively. The corresponding values
for the maximum likelihood procedure were 0.863 and 0.971. Thus Jensema
(1976) concludes that the estimates "which were inexpensive to calculate
were surprisingly accurate."' Sample sizes from 250 to 2,000 using 25 to
)00 items. were used for the study.

Summary All told, seven simple logistic and six three-parameter
logistic procedures were identified for calibrating items. Other procedure's

avaitable for two parameter models and normal ogive models are not included
in the review. The seven simple logistic procedures include (a) ,Rasch's
(1960) original graphic method for estimating parameters, (b) Lrooks' (1964)
modification of Rasch's method based on regression techniques, (c) the
'unconditional maximum likelihood procedure developed by Wright and Pancha-
pakesan (1969), (d) the fully cdndiicnal maximum likelihood procedure
developed by Andersen (1973), (e) the incomplete conditional developed by
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Wright and Douglas (1977a), (f) the approximation procedure developed by

Wright and Douglas (1977b), and (g) the empirical Bayes point estimation
developed by Meredith and Kearns (1973).

Of these seven procedures, only three need be given serious consider-

ation for use in calibrating items for tailored testing. The procedures

developed by Rasch and Brooks have been largely supplanted by the newer

procedures and are only of interest historically. The approximation

procedure is designed for applications where limited computer resources
are available, and therefore, should not be in consideration for the

calibration studies considered here. The fully conditional procedure is

too limiting in the small size of item pools and long computation time

required. After eliminating these procedures from consideration, the
unconditional procedure, incomplete conditional, and empirical Bayes

procedure are left.

Of these three, the unconditional procedure seems to be the technique

of choice for item calibration. Its only drawback is the slight,
inconsistency of its estimates, which can easily be corrected. The

incomplete conditional procedure is limited by its constraints on test

length, and no results are available on'applications of the empiridal
Bayes procedure. Also, the empirical Bayes procedure is mainly concerned

with ability estimation. Thus, for the purposes of the research reporXed
here, the unconditional maximum likelihood procedure will be used.

The three parameter logistic procedures include (a) thru (c)

the three versions of the maximum likelihood procedure developed by

Lord (1968), Wingersky & Lord (1973), and Wood, Wingersky & Lord (1976),
(d) the nomographic procedure developed by Urry (1974), (e) the ancillary
procedUre developed by Urry (1975), and (f) the approximation procedure

presented by Jensema (1976). Of these six procedures, the choice clearly

falls between two. The early versions of the maximum likelihood procedure

have been supplanted by an !mproved version making their use undesirable.

Also, the nomographic and approximation techniques are clearly of lesser
accuracy, leaving only the LOGIST procedure and Urry's ancillary estimation

procedure. Of these two, the LOGIST procedure has been chosen for use
here to avoid the assumption of a normal distribution of ability for the
Bayesian modal estimates in the ancillary procedure. Although this

assumption does not carry serious implications, the more generalizable
procedure is preferred for the comparison to be conducted here.

Factors Affecting Item Calibration

Although the two calibration procedures selected for the research
reported here were chosen because of their Capabilities for arriving
at accurate parameter estimates, neither of them will operate properly
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under all circumstances. Both assume that the test being analyzed is
unidimensional and that an adequate sample of observations is available.
The\simple logistic model also assumes that discrimination is constant
fox 44 items, and that guessing does not have an effect on the item

TOPOObes. The research into the effects of these variables will now
be,summarized, with the goal of developing recommendations for the

application of the methods.

Effects of Multivariate Test Data Despite the fact that the unidimen-
sionality of the complete latent space is one of the basic assumptions
of the latent trait models (Lord & Novick, 1968) and that the multi-
dimensionality of tests is commonly used as an explanation for lack
of fit (ie. Keifer .1 Bramble, 1974), onlyfour studies could be
identified that researched the effects of the factorial complexity of

tests on item calibration. The lack of research is probably due to the
common use of latent trait models with aptitude tests which can easily
be constructed to contain a daminant first factor. When the first factor

.accounts for a moderate amount of the test variance, the latent trait

r
models are felt_ to operate fairly well (Hambleton & Traub, 1973).
However, with the application of the latent trait models to achievement
tuts, multidimensionality may become more of an issue.

The four studies that have been found in the literature search
all deal x4ith the robustness of the simple logistic model to violations

ofthe unidimensional assumption. Only thestudy by Hambleton (1969)
.ingludes'the two and three parameter models, and there they are
stiondary to the major thrust of the research. The first of the studies

looking into he effects of violating the assumption was done by

Hambleton,(1969). In the study, he embedded either one or five items
measuring a second factor in 15 or 30 item simulated unifactor tests.
That ii,,if a 15 item test were used, one item'would measure a second

factor while the other 14 would measure the first factor. Goodness of

fit of the simulated tests was then determined using a chi-square test
and, the number of rejected items was noted.

The results of this study showed that in all four cases the overall

tests were rejected as fitting the simple logistic model on the basis of

the chi square tests. Also, with the increase in the numberof items

from the Second factor, the chi-square values increased, and the number

of items rejected by the model also increased. The conclusion drawn on

the basis'of these results was " . . . that the Rasch model is extremely
sensitive.to deviations from the assumption that the items of a test

measure only'one latent ability (Hambleton, 1969)."

In a second part to Hambleton's study, the one and two-parameter
logistic models were applied to the Verbal and Mathematics Sections of

the Ontario Scholastic Aptitude Test and the Verbal Section of the



Scholastic Aptitude Test. The:e tests' were.subjected to a principal factor
analysis befori the latent.traitanial4rses-andWere'lound to have first

factors accounting far,22.i%.1"31,7%2ind 20,5% of the total variance

respectively. Each of-the-tests was, 'considered to have more than one-

factor, but the first.actors were. dominant

- , ,

Fit of the models:io-theqe.tests 'was`-Otermined by generating
theoretical frequenciAiStributionk-from thi item calibration results

and comparing these;diAiibutione to the,distributioas obtained from the

administrationief:thcieats: A chi -square.statisili was computed -

comparing each ofitbetftheoreticiA distributions:wit4,the actual distri-

butions. In no case was -the fit'betWeen the pairs .of distributions good,

a fact that was explained by the lack of Utidimensiohal tests. The test

with the largestOfkCfactor was 'found to have the siaallest chi-square
value, indicitini:the -best fit.' Also, themore general two -and three -
parameter mo4els..yieldeddistributions that fit.better than the one

parameter, model..

. . .

The second; stud that deals with robustaess of the siMple logistic

model to:violations Of the univariate assumption was dohe byReckase (1972).

In this'atudy one -; two- and three-factor simulated data-sets and one-
and four factor .multiple-choic., tests were analyzed using the model.

As opposed to H6Mhleton's (1969) simulated tests-which had one or five

items from another factor embedded in them, the tests used by Reckase

had equal numbers.of items from each factorin the two-and three-factor

simulated tests. The simulated tests were thirty items long and 1,000

cases were generated for each test.

The fit of the model to the tests and to each item was evaluated

in the study using the chi-square test presented in Wright & Panchapakesan

(1969), The results show that the one-factor data fit the model perfectly,

the two-factor data-did not fit at all, and the three-factor data fit

,mnderately well. The same pattern occurred in terms of the number of
items rejected; one item was rejected from the one-factor test, ten from
the two-factor-test, and five from the three-factor test. The loadings

of the items on the factors were 0.90 in all cases and no guessing was
presentin the data indicating that all results were due to the factor
structure of the test.

The results of the analysis on the three multiple-choica tests
showed that none of the three tests fit the model well. However, the
four-factor test had 1.he poorest overall fit and had the greatest number

of items rejected. The general lack of fit of these tests was probably
due to the presence of guessing and unequal discrimination not included
in the simulation data. The results of the two analyses show that
multidimensionality does affect the fit of the simple-logistic model,
but the fact that the three-factor simulation data fit reasonably well
indicated that some robustness to multivariate effects may be present.
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The Other two studies that are related to the Multiditinsionality
of testdathAo not control the factor structure of the tests as,precisely
as the first two. The study by Forbes & Ingebo (1975) initially
calibrated a seventh grade_Mathematica.test.and then subjectively divided
the test'into three aubtests labeled computations, problem application,

and concepts. These subtests'werethen calibrated separately and the

' results compared to the,overall.ealibration. In anslyzing the data,

it was argued tLat'if the:difficulty-parameters differed only by a
constant, there is no need.'to separate the items into homogeneous

-subtests for,analysis. The,results show that the items are ordered in
saMe.yay in the subtests and the total' test, and that the calibrations

yielded almost identichl results. The authors concluded that the simple
logistic Model is suffibiently tolerant of violations of the "content
homogeneitY"-assumption that the subtest breakdown is not necessary.

.The final study :td be described relating the factor structure of
a test to the latent trait models was done by Ryan & Hamm (1976). This

study attacked the problem from anothei ditection by determining
whether items selected to fit the-simple logistic model would contain

only one factor. Eight tests from a graduate research methods course

were used for the study. Each of the tests was analyzed using the
simple logistic model and the principal 'components factor analytic

method. Items were selected from the tests which (a) were not rejected
as fitting the simple logistic model, or (b.) loaded highly on the first

principal component. The selected items were again factor analyzed

anSI site of the first factor was compared. The results showed that the

size of the first factor was only slightly increased over the original
test when items were selected using the simple logistic model,-while
factor analysis selected items had a substantially stronger first

factor. Thus a simple. logistic model cannot be looked on as a means

of selecting homogeneous subtests. Checking the fit of at least the

simple model to items is not a substitute for factor analysis.

The results of these studies yield few general conclusions.
Clearly the Hambleton (1969) and Reckase (1972) studies show that the
factor structure of tests affect the fit of the simple logistic model,

but the effects on more complex models are lacking. The fact that
the simple logistic model fit the three-factor test better than the
two-factor test (Reckase, 1972) also suggests that the relation between
factor structure and fit is not a direct one. Finally, the Ryan & Hamm

(1976) study suggests that checking the fit of the models is not a' 2,

substitute for factor analysis. Little about the effects of the .

violation of the unidimensional assumption is clarified by this literati
review and some areas have not even been mentioned (i.e.frihe'value of
ability estimates obtained from multidimensional tests)'c,-

Effects of Sample Size Some information concerning the Sample sizes

required for stable calibration has already been presented under the

review of calibration procedures. Wingersky and Lord (1913) suggest
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;a minimum of 1,000 cases for use with the LOGIST program. Nc controlled

studies on the effects of sample size on calibration using the three
parameter logistic model have been found.

Several studies have been done on the,effects of sample size on
the, stability of the unconditional maximum-likelihood estimates for the
simple logistic model. Cypress (1972) calibrated a 90 item mathematics

test using 1,200 normally distributed cases for use as a standard for

comparison. She then calibrated the same' test using independent samples
of 1,200, 600, 300, 150, and 75 which also varied an Seven levels of

skewness. Thirty data-sets in all were used. The difficulty and

ability parameter estimates were then compared to the estimates from

the standard distribution.

In general, the study gave the expected results. As the sample

size. decreased, the standard error of the estimates increased. However,

there is an interaction between the shape of the distribution and the
similarity of the calibration to the standard distribution. The general

conclusion of the study was that

"If . . . intact groups reflect raw score distributions which

are close to normal, results of the study indicate that groups

as small as 75 may provide good ability estimates. Four groups

consisting of 75 and 150 subjects ranked in the upper six when
compared to the criterion group of 1,200 normally distributed

tests scores. In fact, these four groups provided better
estimates . . . than the group of 1,200 with low positive skew

which ranked ninth."

A similar study by Forster (1976) compared calibration result°
from samples of 300, 200, 100, and 50 to calibration data from total
samples of 1,478 and 1,808. Two tests were used for the study; an 81
item fourth grade mathematics test, and an 100 item eighth grade reading

test. Correlations between the full sample and reduced sample parameter
estimates were used as a basis for comparison. The largest drop in

correlation was found between the samples of 100 and 50. ,On the basis

of the results, the author concluded " . . . these results give us,
confidence in field testing with sample size's of 150 to 200 to determine

item difficulty calibrations with reasonable' accuracy."

A third study (Tinsley & bawis, 1975) compared the item and ability
calibration results for ten pairs of intact groups ranging in size from
89 to 630. Four different tests with from 25 to 60 items were used for

the study. The results show that if samples of over one-hundred are used,
correlations in the high 80's or 90's can be expected between the item

parameter estimates. With less than one-hundred, very low correlations

were obtained. However, the correlations between ability estimates
were found to be uniformly high, reg rdless of sample size.
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The results of these three studies indicate that samples of a

minimum of 100-150 are adequate for use of the simple logistic model.

If a minimum of 1,000 is required for maximum likelihood estimates of

the three-parameter model, the simple logistic model will have a clear

aditantage in cases where only small samples are available. A second

implication of this research is that item parameters require more cases
for accurate estimation than are required by ability parameters.

The Effects of Item Quality Item quality, for the purposes of this -

research, is defined in terms of the discrimination and guessing

characteristics of the items. Poor quality items are those that are

low in discriminating power or high in guessing. High quality items

have the opposite characteristics. Classroom achievement testing

often uses mediocre quality items for initial tests because of the

short time allocated to test construction, and because the tests are

often modified as the instructional process changes. Thus an important

'conpideration in the evaluation of calibration procedures to be used

for achievement tests is the degree to"which the.procedures are-affected

by this mediocre quality.

Three major tudies have been found in the review of the literature

that deal with t effects of discrimination and guessing on item

calibration. This is not a complete list, since any study reporting

the calibration of actual test data bears on the generalizability of the

results, but the major findings present in the literature are presented

in these studies. The first of the studies was done by Panchapakesan

(1969)", In the study, five, ten, and twenty item tests containing

various numbers of "bad" items were analyzed using the simple logistic

model. Bad items were items that were lower in discrimination than

the majority of the items on the test. Simulated data with samples

ranging from 100 to 2,000 were used.

The results of the study showed that items with discrimination

values more than 0.2 below the average for the test can readily be

detected as causing lack of fit. However, the model could be'used

adequately when the variation in the discrimination parameters of the

items was not too extreme. Extreme in this case is defined as items with

discrimination parameters deviating more than 0.2 from the average for

the test.

Panctlapakesan (1969) also looked into the effects of guessing on

the simple logistic model, but not to the same extent as discrimination.

Twenty item simulated tests using a sample of 5,000 cases were-used for

the htudy. Guessing levels of 0.5 and 0.2 were used co generate the

-simulation data. The results of the study indicated that guessing caused

substantial errors in the calibration of hard items and in the ability

estimates of low ability examinees. However, the effects on the 'easier

items'and on high ability estimates were negligible.

Le
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Paachapakesan recommended eliminating the hardest 25% of the items for
calibration purposes when guessing is a factor and only accepting the
ability estimates from the brighter individuals as being reasonably
accurate.

The second study concerning item quality was done by Hambleton &
Traub (1971). In the study, fifteen item tests with four ranges of
discrimination parameters (0.0, 0.20, 0.40, 0.80) and three levLls of
guessing parameters (0.00, 0.10, 0.20) were compared on the basis of
information level and relative efficienty using the one-, two-, and three-
parameter logistic models. In general, the results came out as one would
expect; the three-parameter model was found to be most informative, the
two-parameter model next most informative, and the one-parameter model
least informative. However, when guessing was present, the one-parameter
model was better than the two-parameter model for low ability levels.
When no guessing was assumed, the simple logistic model maintaned high
relative efficiency until the range of discrimination became large (0.80).
On the basis of these results, the three-parameter model seems to be the
recommended procedure, although sample size considerations did not enter
into this study.

In the third study, Dinero 6 Haertel (1976) manipulated the variance
of the discrimination parameters of 30 item simulated tests and compared
the ability estimates from the simple logistic model with-those from the
two-parameter logistic model. Six different vari#nces were used (0.0,
0.05, 0.10; 0.15, 0.20, 0.25) along with three different shapes for the
-discrimination parameter distributions (normal, uniform, and positively
skewed). The uniform distribution was found to give the worst results
overall. However, the lowest correlation between ability estimates was
0.8069 prompting the authors to conclude that the simple logistic model
was robust to variations in discrimination.

In summary, the presence of guessing and excessive variation in the
discrimination parameters affect the calibration of the one - parameter
model to some extent, leading to recommendations to exclude low scoring
cases and to select items on discrimination. The two parameter model
seems to be affected more by guessing than the one- paramet,r model.
'Robustness to these factors is not a consi:!--ration with the three-
parameter model since each of the parameters is estimated. Therefore,

it has assumed the position of the standard by which the other techniques

are udged.
lo

1
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Research Design

The research presented in this report is organized into three major

components: (a) effects of multivariate test data, (b) effects of sample

size, and (c) effects of item quality. Within each of these research

components the two latent trait models, one-parameter and three-parameter

logistic, are compared on their ability to estimate item and ability

parameters. In addition, the two procedures are compared on the.basis of

cost and computer time required. However, before describing the specific

analyses used to compafe,the procedures on these criteria, information

concerning the data-sets and computer programs used in this research

effort will be presented.

The data-sets used for the research reported here are briefly. described

in Table 1 and the abbreviations used for them throughout this paper are

presented. The data-sets are of three major types: (a) the results of

the administration of standardized ability tests, (b) the results of the

administration of college -ourse final examinations, and (c) data generated

to simulate tests with various factor structures. The standardized test

results were.acquired through the cooperation of the Missouri Statewide

Testing Program. Results on the Missouri School and College Ability Tests

were obtained for two school years, 1974-75. and 1975-76. The samples

obtained were very large (57,800 in one case and65,600 in the other),

necessitating sampling from the total number to reduce the cost of the

analyses. A sample size of 3,000 was selected since it was the.maximum

sample usable with the LOGIST program without modifications. This number

was selected from the full sample using a systematic sampling procedure

as there was no pattern to the original data. Both the Verbal and

Quantitative subtests of each form were obtained from each sampling unit:

The final examinations from the undergraduate measurement course

were obtained from five sections of A140: Introduction to Educatiodal

Measurement and Evaluation. This course covers basic measurement th.'ry

and practice for prospective teachers at the Vniversity of Missouri-
-,

Columbia. The data wgie collected from Fall 1975 to Spring 1977 from

regular course examinations. Each of these examinatidris was constructed

independently from a large item pool according to content specifications.

All of the examinations, both the classroom and standardized tests, contained'

fifty multiple-choice items with four and five options respectively.

In order to gain greater control over the characteristics of the data,

--eight Simulated test data-sets were produced. These were generated to match

various factor loading matrices using the usual liaear factor analysis

model. The Simulation procedure generated z-scores using a weighted sum

of normal random numbers and then dichotomized them to yield the proportion

20
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Table 1

Description of Data-Sets*

Sample
Abbreviation Size Description

1. Missouri School'and MSCAr6 3,087 Sy .matic sample from
College Ability Tests 57,300 cases from
Verbal/1975 Missouri Statewide

Testing Program 1974-
1975. SCAT Series II
Form 2B.

. Missouri School and MSCATO 3,087 Systematic sample from
College Ability Tests 57,800 cases from
,Quantitative/1975 Missouri Statewide

Testing Program 1974-
1975. SCAT Series II
Form 2B.

3. Missouri School and MSCATV6 3,126 Systematic sample from
College Ability Tests 65,600 cases from
Verbal /1976 Missouri Statewide

Testing Program 1975-
1976. SCAT Series II
Form 2B.

4. Missouri SChool and MSCATQ6 3,126 Systemttc sample from
College Ability Tests 65,600 cases from
Quantitative/1976 Missouri Statewide

Testing Program 1975-
1976. SCAT Series II
Form 2B.

5. Exam on Standardized
Testing

ST1075 208 Undergraduate course
final exam administered
in October 1975.

C6. Exam on Standardized ST0576 *,181 Undergraduate course
Testing. final exam administered

in May 1976.

7. Exam on Standardized ST1076 176 Undergraduate course
Testing final exam administered

In October 1976.

*All tests are 50 items in length.
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Table 1 (Continued)

Description of Data-Sets

Test Name
Sample

Abbreviation Size Description

8. Exam on Standardized
Testing

9. One factor rectangular
'simulation data.

10. Two factor normal
simulation data.

ST3-577, 312 Undergraduate course
final exam administered
to two sections of the
course in March and May
1976.

150AR 1,000 One factor with loadings
of .9, rectangular
distribution of diffi-
culties.

250AN 1,000 Loadings of .9 and .0
randomly distributed on
two factors, normal
distribution of diffi- .

culties.

11. Two factor rectangular 250AR 1,000 Loadings of .9 and .0

simulation data. randomly distributed on
two factors, rectangular
distribution of diffi-

culties.

12. Two factor .5
simulation data.

250A5 1,000 Loadings of .9 and .0
randomly distributed on
two factors. All items
.5 difficulty

13. Wine factor Spearman 950ANS 1,000 One factor .7 loadings

simulation data. for all items. Eight
factors .6 loadings
randomly distributed
over items. Normal dis-
ribution of difficulties

14. Nine factor independent 950AN9 1,000 Items randomly distri-

.9 loading simulation buted to nine factors

data. with .9 loadings. Normal
distribution Of

-' difficulties.
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Table 1 (Continued)

Description of Data-Sets

Test Name
Sample

Abbreviation Siital Description

15. Nine factor independent 950AN3 1,000 Items randomly distri-
.3 loading simulation/ buted to nine factors
data. with .3 loadings. Normal

distribution of
difficulties.

16. Five factor independent
.7 loading simulation
data.

550AN7

a

1;000 Items randomly distri-
buted to five factors
with .7 loadings. Normal
distribution of
difficulties.

of correct and incorrect responses specified by difficulty indices. These
data-sets were produced without a guessing component, allowing a smaller
sample size than the live testing data-sets. A sample of 1,000 cases, the
minimum suggested by Wingersky andLord (1973) for calibration, was generated
for each of the eight simulated tests.

Four levels of factorial complexity were used in generating these data-sets:
one-factor, two-factor, five-factor, and nine-factor. Of the eight data-sets,

4 three were generated to have nine factors to match the empirically determined
factor structure for the classroom tests, Th- size of the factor loadings and
distribution of difficulties were also varied for the simulated tests. Normal,
rectangular and constant distributions of difficulties were used, although no
attempt was made to include all possible combinations. The distribution of 7difficulties referred to here is based on the proportion correct index.

Along with these data-sets, seven other samples were obtained for MSCATV6
to determine sample size effects. Systematic sampling was used, yielding
samples of 2,929, 2,146, 1,494, 1,090, 7481 375, and 149. Care was taken to
insture that no case occurred in more than one sample.

Computer Programs

Two computer programs are of major importance to this study. They are the
maximum likelihood estimation procedures for the item and ability parameters
for the one and three parameter logistic models. Since the comparisons
between the two models are dependent upon the programs used for calibration,
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it is important that the best a-ailable procedures be used. The programs

were selected for this research on the basis of the review of the literature
reported in the first part of this report. On that basis the unconditional-
maximum likelihood procedure developed by Wright & Panchapakesan (1969)
was selected for the one-parameter logistic model, and the quasi-maximum
likelihood procedure for use with omitted responses developed by Wood,
Wingersky, and Lord (1976) was selected for the three-parameter model.
The actual program used for the one-parameter model was obtained from Jerry
Durovic of the New York Civil Service Commission. The program was
extensively modified by the author for greater efficiency and to correct
some minor errors. The three parameter program was obtained from Marilyn
Wingersky at the Educational Testing Service.

The program that generates the multivariate simulation data was written
by the author for an earlier study using the random number generators from
the International Mathematical & Statistical Libraries Package (1975). All

other analyses were performed using the SPSS (Nie, Hull, Jenkins, Steinbrunner
& Bent, 1975) and SAS (Barr, Goodnight, Sall, & Helwig, 1976) packages.

Effects of Multivariate Test Data

The purpose of the research reported here is to evaluate the one- and
three-parameter logistic models for use in tailored achievement, testing.
Since the first step in setting up a tailored testing procedure is item
calibration, this study first concentrates on that _facet of the models -

that is, determining item parameters. A complication in this matter is

the fact that achievement tests tend to be multidimensional, violating the
assumptions of bath models. The evaluation of the item calibration
procedures was therefore performed on the full set of 16 data-sets described

earlier so that the effects of various factor structures could be ascertained.

The major quality desired in a calibration procedure is the ability
to accurately estimate the item parameters so that the interaction of a
person with the test is described with a minimum of error. The ability

of each of the models to explaid the interaction of the persons and the
items was determined by comparing the predicted item response for a person

with the actual item response. The predicted response is given by the

probability of a correct response to the item for the ability level and is
obtained from the appropriate model. The actual statistic used was obtained
from the mean squared deviation of the obtained response from the expected-
response. The formula for the statistic is given by

N

Z(u P )2
ij i=j

NED. (21)
1
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where uij is the response to Item i by Person j, Pi i is the probability
of a' eorrect response to Item i by Person j, and N Is the number bf
people. The values of this statistic vary from zero for perfect
prediction with a perfectly discriminating item; to .25 for an item with
zero discrimination; to 1.0 for an item that predicts wrong responses

when they are in fact correct. This statistic is used instead of the
common comparison between theoretical and obtained item characteristic
curves, because the latter fit statistic differs depending on the
interval size used to approximate the empirical item etaracteristic
curves.

Comparisons between the models were perform d on the MSD statistic
using an ANOVA since the obtained values were approximately normally
distributed. Thus, although the sampling distribution of this statistic
was-unknown, hypotheses could still be tested because only comparative
information was of interest.

Along with the comparative information on item calibration from the
two models, information on the factors controlling item calibration was
desired. One statistic hypothesized to have some effect on the calibration
procedures was the magnitude of the first eigenvalue of the tests. To

determine if a relationship existed, the mean discrimination estimates
from the 3PL model, the standard deviation of the difficulty estimates
from the 3PL model, the standard deviation of easiness estimates from
the 1PL model, the 1PL mean probability of fit, and the MSD statistic
were plotted against the first eigenvalue. Correlations were also
computed between the eigenvalues and these statistics 'across data-sets
and the corresponding regression lines were obtained.

The interrelationships between the item parameters and the factor
loadings used to generate the simulation data also yielded information
about the test characteristics controlling the item calibration. To

discover the relationships, the parameters were intercorrelated and later
factor analyzed for summary purposes and to identify explanatory constructs.
The live testing data and the simulated tests were analyzed separately
using this procedure to determine if the simulated data findings were
reproducible.

Once the quality of the item calibration data has been determined,
the ability estimates based on the calibrated item pool become of
interest. The questions of major importance concern the relationship
of the ability estimates to the item responses, the relationship to
outside criteria, and the relationship to factor scores. The relation-
ships discovered among these variables will, in effect, define the
construct being estimated by the latent trait models. Simple correlational

techniques were used to determine the relationships between the various
types of ability estimates. As with the study of item parameter
estimates, all sixteen data-sets were used for these analyses. To
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evaluate the relationship between the item responses and the ability
estimates, the multiple correlations between the full set of item scores
and the ability estimates for each of the two models were computed.
The correlations were then compared using a t-test to determine which
Model explained more of the variance of the responses. Another analysis

correlated the ability estimates from the two models with outside criterion
measures available for the students from the undergraduate measurement

courses. The available criterion included grades-on other course exams.

These correlations were also compared to determine which model gave
ability estimates that were better predictors. Only three of the live

testing data-sets could be included for this,part of the study.

Effects of sample size

Another important question that has only been touched upon in the

research literature is the sample size required for accurate estimation

of parameters. To further explore the sample size limitations of the
modeld, the seven subsaMples of the MSCATV6 data-set were used. Parameter

estimates were obtained from each of these samples and the results compared

to the calibration based.on 2,939 cases, using a squared deviation

statistic. That is, for each of the item and ability parameters ftom
the two models, the smaller sample estimates were'subtracted from the

large sample values, the eifference squared, and theAtisaults.summed.
These estimates of squared deviations from the large sample estimates

were then plotted against sample size in an attempt to 'identify the

minimum sample size that yields adequate parameter estimates. Analysis

of variance-techniques were used to analyze the data.

Effect of item quality

Analyses were also performed on the data to determine what factors

contributed to lack of fit of the models. To do this the MSD statistic

presented earlier was correlated with the parameter estimates, traditional
item analysis statistics, and factor analysis loadings. The purpose of

the analysis was to discover what types of item should be eliminated from

,calibration studies. A similar analysis was done on the probability of

fit obtained from the chi - square goodness of fit test used with the simple

logistic model. These correlations were then factor anlayzed to summarize

the results.

The final analysis performed on the two models was a comparison of

computation cost and computer time. Although the results obtained cram

this analysis are computer specific, the proportions between the obtained

values should generalize to other computer systems. These data will be

required in future cost effectiveness studies of tailored testing.
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Results

Summary statistics on the sixteen data-sets used in this study are

presente4in Table 2. Included for each test are: (a) the mean, (b) the

standard Aviation, (c) the KR-20 reliability, (d) the number of factors

used to generate the data for the simulation data-sets, (e) the number of

factors from the principal components analysis on phi-coefficients, (f) the

first eigenvalue from the principal components analysis, (g) the number of

factors from the principal factor analysis on phi-coefficients, (h) the

first eigenvalue from the principal factor analysis, (i) the number of

factors from the principal component analysis of tetrachoric correlations,
(j) the first eigenvalue from the principal component analysis, (k) the
sample site, (1) the CPU time for the simple logistic analysis, and (m) the

CPU time for the three parameter logistic analysis. The three types of

factor analysis were included in the study since the analysis of
tetrachoric correlations sometimes yield non-Grammian matrices, and the
analysis of phi-coefficients often yield difficulty factors. By using

all three methods, it was hoped that the resolts of this study would be

more generalizable.

Note that the principal factor analysis technique on phi-coefficients
gave a fairly close approximation to the number of factors used to

generate the data. Also, surprisingly, the KR-20 reliabilities are fairly

high for all except the 950AN3 simulation data-set despite the fact that
most of them are multidimensional. Other points of interest are that the
classroom tests are easier than all of the others, and the three-parameter
logistic program required substantially more computer time than the simple

logistic program. =he data reported in Table 1 will be used in many of

the subsequent analyses.

Effects of Multivariate Test Data

To evaluate the effects of multivariate data on the two latent trait

models, six analyses were performed: (a) the fit of the models to the

data was determined, (b) the relationships between the first eigenvalue of

the tests and various parameters of the tests were determined, (c) the
relations between the item parameters and the item factor loadings were
determined, td) the relationships between the ability estimates and the
factor scores were determined, (e) the relations between the item responses
and ability estimates were determined, and (f) the relations between ability

estimates and criterion measures were determined. The two procedures

were compared in five of the six analyses. The sixth gives descriptive

dcta, only.

Goodness of fit of the models Deviations of the expected response derived

from the models and the obtained response made by a person to an item were

determined using Equation 21 given earlier. Using this equation, deviations
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Table .2

Summary Statistics on the Sixteen Data-Sets

Statistic

Teat Identifier

MSCATV5 MSCATO MSCATV6 MSCATQ6 ST1075 ST0576 ST1076

Mean
,

29.02 28.52 29.14 28.67 35.00 35.00 34.00

Standard Deviation 9.57 9.92 9.22 9.40 4.10 5.00 5.30

KR-20 0.91 0.91 0.90 0.90 0.56 0.66 0.71

Expected # Factors - - - - - - -

# Principal Component
Factorsa 8 8 9 9 21 21 20

First Eigenvalue 9,51 10.21 8.90 9.30 3.05 3.35 4.35

# Principal Factor
1

(.0

Factors 2 3 2. 3 9 9 9

First Eigenvalue 8.78 9.53 8.15 8,60 2.55 2.80 3.85

ePrincipal Component
Tet Factors 8 8 8 9

k 22 21 20

First Eigenvalue 15.64 16.74 14.70 15.30 7.20 5.60 7.70

Sample Size 3087 3087 3126 3126 . 208 181 176

1PL CPU Time (Min) e 0.36 0.36 0.37 0.37 0.51
b

0.46
b

0.45
b

3PL CPU Time (Min) 4.19 4.80 4.49. 5.22 1.20 1.11 1.10

aThe number of factors for all factor analyses is based on the eigenvalue greater than 1.0 rule.

bThese analyses were run off of cards and required scoring of tests. All other analyses were run

off of tape and had been previously scored.



Table 2 (Continued)

Summary Statistics on the Sixteen Data-Sets

Statistic

Test Identifier

ST3-577 150AR 250AN 250AR 250A5 950ANS' 950AN9 950AN3
.

,

550AN7

Y2prt 040 32.92 - .25.21 25.23 25.80 24.98 24.84 25.33 25.00 24.93

Standard Deviation _, 5.47 13.22 12.98 9.56 13.93 13.50 6.46 s3.81 6.69

KR;-20 4.: 0.69 0.97 0.95 0.93 0.96 0.96 0.74 0.22 0.76

Expected #, Factors - I 2 2 2 9. 9 9 5

# Principal Component 1

FactOre . 21 4 4 7 2 9- 9 22 6 t-.

First Elgenvalud 3.42 21.45 14.70 10.86 15.67 15.90 4.10 1.55 4.27

# Principal Factor
Factors 5 3 3 4 2 9 9 22 6

First Eigenvalue 2.80 20.15 14.3 10.44 15.28 15.45 3.65 0.80 3.61

# Principal Component
Tet Factors 21 4 Z: 6 2 9 9 22 6

First Eigenvalue 5.43 40.70 21.65 21.61 20.69 24.60 5.65 1.95 6.20

Sample Size 312 1000 1000 1000 1000 1000 1000 1000 1000

1P1 CPU Time (Min) 0.15 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21

3PL CPU Time. (Min) 1.23 3.60 3.32 3.31 3.52 2.97 3.21 3.12 3.38

gat
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from fit for the models were determined for each item on each test. Thus
1,609 statistics were computed overall (16 tests.). 2 models X 50 items).
Thide.4ere then used as the dependent measures in an analysis of variance
to:determine if the one-parameter or the three - parameter model fit the

,,daWbetter. The mean squared deviation from fit for the two models fnr

the sixteen data-sets is given in Table 3 along with the analysis of
variance summary table for the two way analysis design with repeated
measures on one dimension.

The results show that the three-parameter model fits significantly
better than the one-parameter model, although the difference in the overall
means is only .004. However, for every data-set the average deviation
from-fit was smaller for the three-parameter model than for the one- -

parameter model. The deviations from fit were also found to be significantly

different across tests. The 150AR data-set was fit best by the models as
would be expected and the 950AN3 had the worst fit, also as expected. No

interaction effect was found in the data.

To further rank the tests in terms of the fit of the models, the
Newman-Keuls post hoc comparison procedure was used to determine if
there were significant differences in the individual test means. The"

results of this analysis are presented at the bottom of Table 3. As can

be seen from the results presented there, the 150AR data-set is fit by the
models significantly better than any of the other'tests. This is the one

simulated test that meets all of the assumptions of both models. It

contains only one factor, all of the items are equally discriminating,
and no guessing is present.

The 250AR data-set has the next best fit for the models.' It has two
factors, a wide range of item difficulties, and no guessing. Although the

fit for this test is significantly worse than 150AR, it is significantly
better than all but one of the other tests. The majority of the other data-

sets are fit about equally well by the two models. The best of these is
ST1075, one of the classroom tests, and the worst is ST3-577, also one of
the classroom tests. The standarCzed tests and the other two factor data-

sets are included in this group.

Ac the poor fitting end of the continuum are three sets of simulation

data: 550AN7, 950AN9, and 950AN3. All of these tests have a relatively
large number of independent factors. Data-set 950AN3 is the worst fitting
of the tests, having a MSD statistic very close to the value of .25 expected

when all items have zero discrimination. This test has low loadings (.3)

on the nine independent factors.

The trend of this analysis suggests that the multidimensionality of
tests is a definite factor in the fit of the two models. The three-paramet-r

logistic model handles this deviation from the assumptions significantly
better than the one-parameter model, but the ordering of the effect is the

same, as is shown by the lack of a significant interaction.
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Table 3

Squared Deviations frim the Two Models
for the Sixteen Data-Sets

Test

One Parameter
Loistic

Three Parameter
Logistic Test Means

1. MSCATV5 .169 .166 .167

2. 14SCATQ5 .164 ,160 .162

3. MSCATV6 .169 .166 .167

4. MSCATO .166 .161 ..163

5. ST1075 .144 .138 .141

6. ST0576 .167 .165 .166

7. ST1076 .159 .154 .156

8. ST3-577 .184 .182 .183

9. 150AR .068 .067 .068

10. 250AN .162 .153 .158

11. 250AR .122 .115 .118

12. 250A5 .185 .176 .180

13. 950ANS .156 .156 .156

14. 950AN9 .211 .204 .208

`15. 950AN3 .223 .222 .222

16. 550AN7 .210 .206 .208

Model Means ,166 .162 .164

Anova Table

Source Sum of Squares d.f. Mean Square F Siguificance

Tests 1.995 15 .133 31.667 .001

Items within .

tests 3.1C' 784 .004

Models .007 1 .007 14.684 .001

Tests X Models .003 15 .0002 .414

Models,X\ltems
within tests .355 784 .0005

-Post Hoc Comparisons Using Newman-Keuls Test

Poor FIT Test Good FIT

15. 14. 16. 8. 12. 1. 3. 6. 4. 2. 10. 7. 13. 5. 11. 9.

Note: Those tests that are not underlined by the same line are significantly

different from each other
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Relationship to eigenvalues To further study the relationship between

factorial complexity and goodness of fit, the fiist tetrachoric eigenvalue

front the principal component analysis was plotted against the MSD statistic

for each test. Figure 1 shows this relationship along with the regression

linerand correlation. The correlation between these two variables is

-0.191 which is significant at the p < .0005-level, indicating that about

63% of the variation in fit can be accounted fcr by variation in the size

of the first factor of a test.

An analysis of the scatter plot shown in Figure 1 shows that the three

points that are below the regression line at the left of the graph are

from three of the classroom tests. These tests were easier than the rest,

suggesting that the difficulty of the tests might be a second variable
explaining variation in the fit of the models to the test. To check this

hypothesis, the multiple correlation among the average difficulty of the
tests, the first eigenvalues, and the MSD statistic was computed, yielding

a value of .935, a significant increase over the .791 obtained above.

`'Figure 2 gives the scatter plot of the predicted MSD statistic, obtained
from the average difficulty and the eigenvalud, and the actual MSD statistic.

The three easy classroom tests have now moved closer to the expected

regression line.

Figure a
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A second indication of the effects of multivariate data 611 the fit
of the one - parameter logistic model is given by the relationship between
the probability of fit obtained from the chi-square test in the Wright &
Panchapakesan (1969) calibration program and the first eigenvalue. The

plot of the probability of fit against the eigenvalue is given in Figure 3

along with the regression line. The relationship yields a correlation

of .40, which is not significant at the .05 level. Further discussions o'f

the usefulness of this probability of fit measure will be given later.
q4

The effect of the size of the first eigenvalue on the operations of
these two models was further analyzed to determine its relationship with
several other statistics that define characteristics of the models.
These statistics include the average 3PL discrimination parameter
estimates, the standard deviation of the 3PL difficulty parameter
estimates, and the standard deviation of the 1PL easiness parameter
_estimates.

--

The plot of the average discrimination parameter from the three-
parameter logistic model against the first tetrachoric eigenvalue is
given in. Figure 4 along with the least squares regression line. ,Also

included on the graph is the expected relationship between the eigenvalues
and,th'e average discrimination when all items nave the same loading on

the first factor. This relationship is given by the formula

a

/ E

N

/ E
1 -

(22)

where E is the first eigenvalue, N is the number of items on the test,

and a is the average discrimination parameter. This formula can be derived
directly from that given in lord & Novick (1968, Equation 16.10.7) by

setting Pg = / E . This substitution assumes the normal ogive model

,Y(

rather than the logistic, as is_used here. But since the two models yield
very similar results, this equation should give approximation.

As can be seen from Figure 4, the first eigenvalues and the average
discrimination have a strong relationship, yielding a correlation of .97.
There is also a fairly close correspondence between the theoretical curve
and the obtained data. None of these results are particularly exciting -
they merely confirm theoretical expectations. However, they do give
guidelines as to the requ d strength of the first factor required to
obtain a particular average iscrimination. For example if#an average
discrimination of .8 is desired, Equation 22 yields a necessary first
eigerdalue of 19.51 for a fifty item test, i.e. the first factor should

account for 39% ofthe variance.
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The plot of the first eigenvalues against the standard deviation of
the difficulty parameters for the three-parameter logistic model is given
in Figure 5. 'The standard deviation of the fit statistic is an indication
of the stability of parameter,estimates obtained by the calibration
program. When convergence on'estimates is poor, extreme values of the
difficulty parameters generally appear in the calibration results, inflating
the Standard deviatibn. The correlation between the eigenvalues and the
standard deviations is -.47 which is significant at the .05 level. The

results generally show that when the eigenvalues are small, the results of
the calibration tend to be unstable, giving larger values for the standard ,

deviation of the difficulty parameters. The high variability in the
lower eigenvalue range, however, indicates that caution is required in
specifying any general rule. Sevexal curvilinear functions were also
checked for fit or this data, but none improved upon the simple linear
regression line.

The scatter plot and regression line for the first eigenvalue against
the standard deviation of the easiness parameters from the one-parameter
logistic model are given in Figure 6. The standard deviation of the
easiness values gives an indication of change of the ability scale of the
model, usually brought about by nifferences in the average discrimination
of the items (Baker, 1977). The correlation between the two variables
is .62, indicating that as the size of the first eigenvalue increases,
the spread of the parameter estimates increases. Thus, when the first
eigenvalue is large, indicating high discrimination for the items, the
items are widely spread or the ability scale shrinks. This is true even
if the proportion correct for each item remains the same indicating that
the size of the ability scale units has changed.

Relationship between item parameters The analysis up to this point has

shown that there is a relationship between the factorial complexity of
the data and the operation of the two latent trait models. These data
do not show specifically what is being measured by the models under
multivariate conditions. Therefore, several other analyses were done
to determine the specific factor being evaluated by each of the models.
These include a comparison between the factor loadings and the item
statistics for the two model,s, and a comparison between the factor scores

sand the ability estimates.

The first data -set analyzed in this way is 250AN. This data-set was
chosen for initial analysis since it 4s the simplest i.iltifactor data-set
available, allowing a clear indication of the relationship among the
various parameters. Table eshows the loadings used to generate this
data7set along with the 3PL discrimination parameter estimates, the 1PL
probability of fit, the 1PL and 3PL MSD statistics, ands the results of
the factor analysis of this data. Table 5 gives the correlations between
the variables presented in Table 4.
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Table 4

Item Statistics for the 250AN Data-Set

Item

Theoretical
,Loadings
I II

3PL
a MSD

1PL
Fit MSD

Varimax
Factors

I II

Principal
Component
Factor I

1 9 0 02 111 00 096 95 02 76

2 0 9 66 102 00 152 -07 90 ,' 50

3 * 0 9 133 90 01 155 00 88 54

4 9 0 08 191 17 145 89 08/ 75

5 9 0 11 204 02 155 03- 74

6 0 9 186 84 48 148 10 90 64

7 0 9 10 89 42 160 03 91 59

8 9 0 10 218 22 165 91' 02 73

9 9 0 192 224 00 173 91 -03 '70

lu 0 9 176 87 57 165 02 91 58

11 0 9 10 92 54 167 03 90 58

12 9 0 183 228 04 172 90 00 71

13 0 9 08 92 29 166 04 91 59

14 9 0 12 232 21 173 91 -01 71

15 9 0 165 234 52 168 92 02 73

16 0 9 178 99 92 176 -01 90 55

17 0 9 13 94 83 167 04 91 59

18 9 0 13 233 89 17C 90 05 74

19 0 9 190 91 78 167 03 92 59

20 9 0 14 236 97 172 92 01 73

21 9 0 15 233 94 169 92 03 74

22 0 9 186 95 22 169 03 91 59

23 0 , 9 184 97 35 176 -01 91 55

24 0 14 235 67 173 90 02 72

25 0 9 197. 93 25 173 -01 92 56

26 9 0 13 237 29 174 91 -01 71

27' 9 0 12 238 20 175 92 -02 71

28 0 9 183 "95 92 168 04 91 59

29 '9 0 14 234 98 168 91 04 75

30 0 9 210 89 40 170 01 92 57

31 0 9 179 97 61 162 08 90 62

32 9 0 14 234 37 169 93 01 74

33 9 0 12 235 84 173 92 -01 72

34 0 9 210 91 93 169 02 91 58

35 9 0 15 230 22 164 91 05 75

36 0 9 186 95 70 173 -01 91 55

37 0 9 210 81 11 159 05 92 61

38 9 0 13 228 12 170 92 -00 73

39 0 9 210 84 15 163 00 93 58

40 9 0 12 226 12 174 91 -01 7
41 9 0 15, 223 19 167 91 04 74

42 0 9 180 104 37 166 03 89 57

43 0 9 210 89 09 165 00 91 56

44 9 0 15 213 64 159 90 06 74

45 0 9 210 92 12 163 -02 90 54

46 9 0 15 199 ..21 157 92 01 73

47 9, 0 14 191 '20 151 90 03 73

48 0 9 193 78 26 140 04 89 58

49. 0 9 210 81 01 143 -01 89 54

50 9 0 14 102 -00 096 96 04 78

Note: All 'aloes presented without decimal points.
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Al' Table 5

Correlations between Factor Loadings,
1PL Fit, MSD Statistics, and 3PL Discrimination for 250AN

Variable 1 2 3 4 5 6 7 8 9

r.

1. Factor la

2. Factor 2a

3. 3PL Disc

4. 3PL MSD

5. 1PL Fit

6. 1PL MSD

7. Varimax 1

8. Varimax 2

-100 -97

97

93

-93

-90

-

-

-

- 29

39.

100

-100.

-96

91

-100

100

97

-93

-100

96

-96

-90

84

97

-95

9. Principal
Component 1

Note: All correlations are presented without decimal points. Only
significant correlations are presented.

a
These factors are based on theoretical loadings.

In looking at Table 4, notice first the relationship between the
3PL discrimination parameter estimates and the theoretical loadins on
Factor II. Without exception, the low discrimination estimates correspond
to the zero loadings and the high discrimination values correspond to
the high loadings. The correlation beNeen these values is .97, confirming
the subjective evaluation of the relationship. This rel_tionship indicates
that the 3PL model is differentiating among cases on the second factor
of this simulated data-set. The empirically obtained loading.; also yield
this same result. Both verify the properties of the simulated data-set
and reinforce the above findings.

The fit statistics also confirm the relationship between the 3PL
model and the theoretical factor structure. The MSD statistic is
consistently smaller for the items loading on the second factor than for
those loading on the first factor. The correlation between the factor
loadings and the MSD statistic for the 3PL model is -0.93, indicating the
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strength of this relationship. Interestingly, neither the 1PL MSD nor

the fit statistic are significantly correlated with the factor loadings.
This indicates that'the ability scale of the 1PL model does not seem to

be related to any of the theoretical factors.

To further test this last hypothesis, the factor scores corresponding
to the varimax factors and the first principal component were estimated

and correlated with the ability estimates from the two latent trait models.
These results are given in Table 6. The results presented here are some -

what of a surprise. Although the 3PL ability estimates are clearly more
closely related to the second rotated factor than tothe first, the
correlation with the second factor is surprisingly low (.56). It is about

the same size as the correlation with the first principal component and

the raw scores. The 1PL ability estimates, on the other hand, correlate
highly with the raw scores (the raw scores being a suf cient statistic

for the ability estimates) and the first facto'r s s, and equally well

with the two sets of rotated factor scores. The results are exactly what

would be expected if the 1PL estimates were based on the sum of the scores

on the two factors. On the basis of these results, it seems that the 3PL

model is estimating the second factor, though rather poorly, while the 1PL

model is estimating the sum of the two factors.

To confirm or deny that the 3PL model estimates one factor and the

1PL model estimates the sum of the factors, two other data-sets were

analyzed: the 550AN7 data-set, and the 950AN9 data-set. The loadings,

3PL discrimination, and the fit statistics are given in Table 7 for the

550AN7 data-set and in Table 9 for the 950AN9 data-set. The correlations

between the variables in these tables are presented in Tables 8 and 10

respectively. The correlations between the ability estimates and the
factor scores are presented in Table 6 along with those from all of the

other data-sets.

Notice first that, similar to. the 250AN data-set, the items with high

discrimination parameters correspond very closely to the items with .7

loadings on theoretical factor II. The first item is the only exception,

probably due to the extreme difficulty of that item, making estimation

of the parameters difficult. A similar relationship can be seen between

the discrimination parameters and the second varimax factor loadings

derived from tetrachoric correlations.

The correictions between the variables given in Table 8, reflect these

subjective evaluations. The 3PL discrimination parameters correlate .91

with the second theoretical factor loadings and .92 with the second

varimax factor. A smaller correlation is present with the first
principal component, indicating that the first component is to some extent

estimating the second varimax factor. The 3PL MSD statistic has a -.54

correlation with the second theoretical factor, supporting the overall

conclusion.

4
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Table 6

Correlation between Ability Estimates,
Raw Scores, and Factors for the Sixteen Data-Sets

Data-set

Variable

Ability
Estimate

Rav
Score

3PL
Ability

Phi
Principal
Component

Tet

Principal"
Component

Tet

Varimax
1 2

MSCATV5 3PL 97 98 98

1PL 99 96 97 97

MSCATQ5 3PL 97 98 98

1PL 99 97 97 97

MSCATV6 3PL 98 -99 99

1PL 99 97 98 98

MSCATQ6 3PL 97 98 98

1PL 99 96 97 97

ST.L075 3PL 83 89 32

1PL 99 85 89 29

ST0576 3PL 88 91 87

1PL 99 90 93 88

ST1076 3PL 89 94 91

1PL 98 90 88 86

ST3577 3PL 95 98 98

1PL 99 95 97 97

150AR 3PL 97 97 98

1PL 95 99 95 97

250AN 3PL 59 59 56 29 56

1PL 98 66 98 97 71 71

250AR 3PL 71 69 92

1PL 99 73 99 74

250A5 3PL 82 56 62

1PL 98 83 76. 83

950ANS 3PL 93 93 94

1PL :8 96 98 98

950AN9 3PL 62 82 67 74

1PL 99 62 72 72 44

950AN3 3PL 71 36 41

1PL 100 71 25 33

550AN7 3PL 70 46 36 64

1PL 100 70 32 27 4;

Note: All values presented without decimal points.
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Table 7

Item Statistics for the 550AN7 Data-Set

Item

Theoretical
Loadings

II

3PL
a MSD

1PL
Fit MSD

Varimax
Factor

II

Principal
Component
Factor I

1 0 213 093 13 092 05 23

2 0 22 164 57 153 06 33

3 0 18 191 79 178 02 24

4 0 30 201 62 193 -02 -14

5 0 12 207 94 192 -01 32

6 0 35 212 26 199 ,-01 -08

7 0 18 223 34 212 05 31

8 0 09 227 49 209 -04 -48

9 7 162 161 08 214 77 48

10 7 213 149 14 213 75 46

11 7 196 159 95 222 75 43

12 7 195 149 47 215 75 49

13 0 11 242 90 220 01 30

14 0 05 241 08 227 -07 -52

15 0 09 241 24 224 08 -40

16 0 36 224 97 219 03 -06

17 0 04 239 50 224 -05 -52

18 C 32 229 24 225 00. -09

19 7 213 163 10 221 74 48

20 7 213 152 45 220 76 49

21 0 32 228 25 222 00 -11

22 0 13 246 12 229 04 35

23 7 164 168 07 230 74 44

24 0 08 248 88 230 01 -47

25 7 188 161 57 226 73 51

26 0 07 247 02 235 02. 21

27 0 07 249 16 232 05 27

28 0 06 249 51 236 -02 -46

29 0 10 247 07 228 00 33

,30 0 05 249 16 236 -02 19

31 0 34 221 51 221 01 -08

32 0 27 231 44 230 -05 -19

33
-

0 07 248 95 231 04 27

34 0 05 246 54 233 -05 23

35 7 166 175 36 229 74 49

36 7 169 172 70 224 74 47

37 0 05 243 10 231 -04 -49

38 0 03 240 68 223 -06 -49

39 0 03 241 10 226 -07 18

40 0 02 235 81 223 -03 17

41 0 34 194 42 201 01 -09

42 0 06 239 56 224 00 -46

43 0 C9 228 24 215 -07 31

44 0 10 230 95 211 04 25

45 0 11 209 89 199 03 31

46 0 12 207 19 197 02 36

47 0 40 159 77 177 08 -02

48 0 36 150 69 167 04 -07

49 0 08 169 '58 156 -01 31

50 0 10 096 92 093 -03 -48

Note: All values presented without decimal points.
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Table 8

Correlations between Factor Loadings,
\if% Fit, MSD Statistics, and 3PL Discrimination for 550AN7

Variable 1 2 3 4 5 6 8 9 10 11 12 13 14 15

1. Faitor Ia 32 - -29 - 99 -29 -83

2. Factor II - - 91 -54 - - 99 - -28 - 56

3. Factor IIIa - - - - - - 99 -

'4. Factor IX - - - - - - - -

5. Factor V - - - - - - 99 - - -

6. 3PL Disc -71 - - - 92 - -33 - 55

7. 3PL MSD - 70 - -57 - - - -36

8. 1PL Fit - - - - - -

9. IPL MSD - - - - - -

10. Varimax I - - - -30

11. Varimax II - -32 60

12. Varimax III - 37

13. Varimax IV -31 -86

14. Varimax V
15. Principal

Component I

Note: All values presented without decimals points. Only significant

correlations are presented.

aThese factors are based on theoretical loadings.

As with the 250AN data, the 1PL Fit for the 550AN7 data is not
significantly related to any of the other statistics, suggesting that
variations in discrimination or factor loadings are not a factor in lack
of fit with this statistic. The only significant correlation with the
1PL MSD statistic is .70 with the 3PL MSD statistic, indicating that some
of the error sources are the same, but that the common ones are not related
to the factor structure, or to variation indiscrimination.

The 950AN9 data further confirm these results. The high 3PL
discrimination values correspond to the .9 loadings on Factor 9, except
for the Nary difficult items. This observation also holds true for the
first varimax factor. The correlational data in Table 10 gives similar
results, yielding high positive correlations between 3PL discrimination
and Theoretical Loadings IX and Varimax Factor I, and negati-e correlations
between the 3PL MSD statistic and the same sets of loadings. The 1PL Fit
has a barely significant correlation (.29) with Theoretical Factor I and
a correlation of -.31 with the 1PL MSD statistic, again showing the lack
of relationship between 1PL Fit and discrimination and factor structure.
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Item
1
2

3

4

5

6
7

a
9

10
11
12

13
14

15

16

17

18

19

20
21
22

23
24
25

26

27

28

29

30

31

32

33
34

35
36

37

38
39
40

41

42

43
44

45
46
47
48
49

50

Table 9

;Item Statistics for the 950AN9 Data-Sets

Theoretical
Loading

9

3PL
a MSD

0 05 113
0 193 141

0 16 195

0 01 1-8
0 03 214
0 193 197

0 193 192

9 193 082
0 03 237

.0 03 242
0 04 242
9 193 081
0 03 244

0 06 242
o 01 243
0 13 240
0 24 232

0 05 247

0 04 247

9 193 086
0 06 248

0 24 233
0 06 248

9 193 083

0 13 244

0 12 244

9 193 087

0 15 242

0 04 247

0 13 243
0 01 249

0 f,
, 243

0 13 244
0 26 222

0 01 245

0 02 239

G 0/ 243

0 15 237

0 09 233

0 15 230
0 23 217

0 06 23?,

0 01 229

9 193 073

0 05 207

0 04 212

0 22 187

0 06 179

0 10 166

0 07 095

Note: All values presen

LPL
. Fit MSD

52 109

92 155
72 185
21 191

7'1\ 206

70 201
70 200

99 "210

40

89 T
02 232\

33 214
20 234
64 229
73 228
64 225

43 225
08 234
28 236
29 217
25 236
24 223
99 232
85 223
82 23
55 228

43 222

08 227

40 234
63 227
56 235

39 229
96 226

61 219
05 229

19 228
24 231

11 224
36 215
62 217

18 212

58 220
37 213

77 201
19 195
71 196

60 186

88 171
74

81

155

091

Varimax
Factor

I

Principal
Component
Factor I

00 20
00 54

-01 51
00 -28

-04 05

01 58
-02 56

91 40

00 14

00 14

04 14

93 45

\ -05 01

\ -03 25

\-01 -21
\-01 15

AS 53

-03 07

-02 03

92 47

02 05

06 52

-02 27

94 40
00 14

-02 19

93 42

01 57

-01 02

05 16

00 -21

02 29

-02 59

03 50
00 -21
00 12

C4 04

06 59

04 32

01 17

02 51

04 09

02 -17
93' 45

00 02

07 -14

01 45

- 07 03

02 31

00 28

ed without decimal points.
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Table 10

Correlations between Factor Loadings
.LPL kit, MSD Statistics, and 3PL Discrimination for 950AN9

Variable 1 2 3 4 '5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
xt,

1. Factor la
2. Factor I/a

3. Factor II/a
4. Factor IVa
5. Factor Va
6. Factor Vla

7. Factor VIII
8. Factor Villa'

9. Factor Igl
10. 3PL Disc.
11. 3PL MSD
12. 1PL Fit
13. 1PL MSD
14. Varimax I
15. Varimax II
16. Varimax III
17. Varimax IV
18. Varimax V
19. Varimax VI
20. Varimax VII
21. Varimax VIII
22. Varimax IX
23. Principal

Factor I

29 -
I

3\2

- 99 -

- 99 -

- 100 -

78 -80t - 92

-76 - - 72 32 -

- 55 -75
-31 -

- 90 -

88
- 91 -

- 100 -

99

52

41

-66

30

54

-37

- 29

- 55
- 44

- 66

- -28

Note: All values presented without decimal points. Only significant correlations are presented.

a
These factors are based on theoretical loadings.
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The correlations between the ability estimates and the factor scores
presented in Table 6 show relationships similar to those for the 250AN
data-set. The correlations between the 3PL ability estimates and the
factor scores, corresponding to the various factor analytic solutions,
pftrm-wc hat was expected based on the previous analyses.

For the 55CAN7 data-set, the correlation with the factor scores from
the second varimax factor and the 3PL ability estimates is substantially
higher than the correlation with the first principal component factor
scores and the corresponding correlation with the 1PL ability estimates
(.47). This latter correlation accounts for 22% of the variance while
20% would be expected if the 1PL ability estimates are based on the sum
of the factors. A surprising finding for this data set is the .70
correlation between the raw scores and the 3PL estimates. No obvious

explanation is available for this result.

The 950AN9 data-set gives similar results. The correlation of
the 3PL estimates with the factor scores from the first varimax factor
is much greater than that obtained using the 1PL estimates. The principal
component factor scores have a slightly higher correlation with the 3PL
ability estimates. This is probably due to the fact that these factor
scores are based'on several of the theoretical factors, as were the 3PL
discrimination parameters (Factors 3 and 9). The varimax factor is a pure

.indication of theoretical factor 1.

4' In general, these simulation results indicate that when the data-sets
are made up of equally weighted, independent factors, the 1PL model
estimates the sum of the factors, while the 3PL model tends to estimate
only One of the factors. This conclusion is a reasonable one based on
the sufficient statistic properties of the 1PL 2stimates, and the factor
analysis interpretations of the 3PL model (Christoffersen, 1975).
However, most tests are not composed of equally weighted independent
factors - instead they have a dominant factor with several smaller specific
factors.

The 950ANS da t simulates this type of test. Its first factor
is large, and ti other eight are relatively minor. In this case it does
not make sense o correlate the item parameters with the theoretical
loadings, since there is no variation in the loadings of the dominant
factor. Therefore, the correlatior with the factor scores was the only
analysis performed in this.case. Table 6 contains these correlations
which are uniformly high for both models, indicating that both are
estimating the first principal component.

The eight, live testing data-sets.also contain dominant first factors,
although they are relatively small for the ST series, and therefore
they also yield data bearing on this issue. In most of the cases (6 out
of 8), the 3PL estimates correlate slightly higher than the 1PL estimates
with the factor scores; while the 1PL estimates correlate higher with the

J3
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raw scores. In all cases, the correlations are suLstantial, the differences

are small, And the estimates from the two models are highly related.
These facts yield further evidence that the models are estimating the
dominant factor when one is present.

Relationship to criterion measures Along with the above analyses that
deal with what is being measured using the two latent trait models, two
other analyses were performed that evaluate the two models relative
to empirical criteria. The first analysis evaluates the relationship of
the full set of test items to the ability estimates obtained from the
models. This was done to determine the amount of variance in the items

explained by the ability estimates. In order to deterthine this relation-
ship, the multiple correlation between each of the ability estimates and
the fifty items ou each test was computed. These values are presented
in Table 11 for the ability estimates from the two models correlated with
the items from the sixteen data-sets. Note that all of the correlations
with the 1PL ability estimates are extremely high, as they must be
because of the sufficient statistic properties of that model. The multiple

correlations are high for the 3PL ability estimates when a dominant factor
is present, but drop when independent, equally weighted factors are present.
This fact again supports the hypothesis that the 3PL model estimates a
single factor since the correlation is reduced when items loading on other

factors are present.

Table 11

Multiple Correlations Among
Ability Estimates and Test Items

Test 1PL

MSCATV5 .991

MSCATO .998

MSCATV6 .993

MSCATQ6 .991

ST1075 .994

ST0576 .993

ST1076 .985

ST3-577 .996

150AR .990

250AN .981

250AR .991

250AL .978 .4

250ANS .983

950AN9 .9
950AN3 .9198

550AN7 .998

Mean .9906

Ability Estimate

3PL 1PL-3PL
.983 .008

.985 .003

.988 .005

.983 .008

.944 .050

.952 .041

.967 .01&

.985 .011

.997 -.007

>.J677 .304

.948 .043

.839 ----- .139

.9/49' . .014

1 .852. .146

\.810 ' .1098

.866 .1.32

.9253 .07149

t = 3.705

54

p < .005



A related t-test was performed on the mean multiple correlations for

the two ability estimates, to determine if the observed differences are

significant. The-difference in the mean correlations of .07 is

significant at, beyond the .005 level indicating that the 3PL correlations

are significantly lower.

The second analysis based on empirical data was a determination of

the relationship between. the ability gstimates and out$de criterion

, meal es.

with

analysis showed which of the two models gave ability

est es with .greater predictive power. The criteipAised for this

:,.analysis were the first and second exam scores in an undervadliare''

measurement course. The correlations between the ability estimates and

the two Criterion measures'are presented in Table 12'. in all but one

case, the ability estimates have higher correlations with the criteria

than the 3PL estimates. However, in no case were the differences in

correlations for the two models significant. One reason for the slightly

lower correlations fdr the 3PL model could be the small sample size used

in this analysis which would affect the 3PL model more than the 1PL model,

causing unstable estimates.

Table 12

Correlations between Ability Estimates
and Two Classroom Tests

Data
Set

Ability
Estimate

Test _

Exam 2Exam 1

ST1076 1PL .555 .661

3PL .492 .599

ST0576 1PL .409 .477

3PL .364 .483

ST1075 1PL .558 .576

3PL .498 .535

Summary A total of six analyses was run on the sixteen data-sets to

evaluate the effects of multivariate data on the two logistic latent

trait models. These analyses dealt with the goodness of fit of the

models to the data, the relationship of the parameter estimates to the

size of the first factor of the test, the relationship of ability

estimates to the factor scores, the relationship of ability estimates to

item responses, and the relationship of ability estimates to outside

criterion variables.
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The MSD statistic, which was used as a Measure of goodness of fit,
'showed that the 3PL model fit the data significantly better than tie 1PL
model. As the factorial complexity and unreliability of the tests
increased, the fit decreased. This hypothesis was checked further by
correlating the MSD statistic with the eigenvalues. The results
indicated a strong negative relationship between the eigenvalues and the
average MSD-statistic. A follow up analysis indicated that the average
difficulty of the test was a second maior factor in the deviation of the
model from fit. The 1PL probability of fit statistic was not significantly

. related to the size oc the first eigenvalues.

Other variables that were found to be related to the size of the
First eigenvalues were the average 3PL difficulty parameters (a measure
of .stability of estimation), and the standard 'deviation of the 1PL

leasi.tress parameters (an indication of change of scale). None of these
,ielAionships indicate new findings, but rather confirm theoretical
expectations.

'lb determine what components in the tests were being estimated by
the two models, the item parameter estimates were correlated with the
theoretical,and empirically obtained factor loadings. These analyses
indicate that a single factor is estimated by the 3PL model while the
1PL modelIgtilmates the sum of the factor scores. The correlations of
the factor satires with the ability estimates tend to confirm this
finding and also show that when there is a dominant first factor, the
two models estimate the same largest factor. If a number of equally

Ts pbwerful factors are present, there is no way, to predict which factor
will be estimated by the 3PL model.

a
The multiple correlations of the item response with the ability

estimates show that the 1PL model has a significantly stronger relationshir
to the full set of items.than the 3PL model. This finding is, consistent
with t tion that the 1PL4model estimates the sum of the factors,
therefore being affected by every item, and the 3PL modet-est4Rates a
single factor, therefore only being affected by the'items from'that

The two models 'did not diff, significantly in their correlations
,.ith the outside criterion measures, although the 1PL model did have
slightly larger values. Overall, the 3PL model fits the data better
than the 1PL model, but this "differem.e is nor reflected in correlations
with the outside variables. On the basis of these analyses, there is
little to indicate the selection of one Model over the other for the.
calibration of items f6r ability estimation when fifty item group tests
are being used.
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Effects of Sample Size

The effects of sample size on item calibration were determined by
selecting systematic samples of rious sizes from the Missouri Statewide
Testing Data from the 1975-76 sc.00l year and then obtaining 1PL and 3PL
item parameter estimates for each sample. Estimates of item parameters
from each of the two calibration procedures were compared by computing
the squared difference of each parameter estimate with the estimate from
the largest sample. A one-way repeated measurts analysis of variance was
then performed using the squared difference values fcr the fifty items
as the dependent measure with sample size as the independent variable to
.determine if the parameter estimates changed with sample size. The mean
squared differences for each of the parameter estimates for the three
3PL item parameters and the one 1PL item parameter are given in Table 13
along with the analysis of variance results for the parameters.

The means of three of the four sets of item parameters give a
similar patterr of results. The 2,997 sample has the smallest mean
squared deviation, while the deviations tend to get larger with
decreasing sample size. This relationship is strong for the 1PL easiness
parameter and the 3PI. discrimination parameter while the 3PL difficulty
and guessing parameters show considerable variation. The analysis of
variance results show significant differences in all cases except the
3PL difficulty parameters. In that case, although there are large
differences in the means, the instability of the difficulty parameters
causes large variation in the estimates resulting in a failure to reject.

The analysis of the variances of the squared deviations of the
difficulty parameters showed extremely large differences. The ratio of
the variances of the 1,090 sample to the 2,997 sample was 2,527, easily
rejectihg the. hypothesis of homogeniety of variance using the F-max
statistic (F max,,? 3.02 needed for rejection). To compensate for this

heterogeniety, a second ANOVA was performed on the 3PL difficulty parameter
squared deviations after a logarithmic transformation was Used

= log(x +l) (see Winer'(1971), page 400). The ANOVA table for this
second analysis is also given in Table 13. revised analysis gave a
significant F value indicating the presence of differences in the trans-
formed mean squared deviation values for 3PL difficulty.

The purpose of this set of analyses was to determine at what point a
decrease in sample size would adversely affect the results of item
calibration. This question was addressed directly in a post hoc analysis
performed using the ANOVA results. Using the mean squared deviation values
for each sample size, the Newman-Keuls post hoc procedure was used to
determine the largest sample that was significantly different from the
mean squared deviation for the 2,997 sample. The results of these analyses

are presented in Table 13. Samrles that are not significantly different

are underlined. Those that_ are different do not share the same underline.

J7



e

-51-

Table 13

Comparison of Parameter Squared
Deviations for tne Two Models by Sample Size

Parameter

Sample
Size

1PL
Easiness

3PL

Difficulty

3PL
Discrimination

3PL
Guessing

150 .0483 .1811(.1326)a .2187 .0014

382 .0196 .1413(.0847) .0973 .0009

763 .0063 .0272(.0258) .0615 .0020

1090 .0063(.0064)b .1930(.0821)(.0260]
b

.0585(.0395]
b

.0009(.0011]
b

1525 .0055 .0299(.0263) .0589 .0012

2197 .0047 .0138(.0135) .0335 .0011

2997 .0041 .0166(.0162) .0241 .0008
t..

a
Transformed means using log(x +l).

b
Results from second sample.

Source

Samples
Error

I
',

Sotirce

Samples

---Irror

d.f.

6

294

d.f.

ANOVA 1PL Easiness

SS MS

.0791 .0132

.2133 .0007

ANOVA 3PL Difficulty

SS MS

6 2.009 .335

294 65.643 .223

Source d.f.

Samples
Error

ANOVA 3PL Discrimination

SS MS

6 1.30.: .217

294 8.743 0.030

ANOVA 3PL Guessing

Source d.f.

Samples
Error

SS MS

6 0.000055 .000009

294 0.000787 .000003

58

F

18.17

F

1.50

P

<.0001

P

N.S.

F P

7.30 <.0001

F P

3.44 c.003
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Table 13(cont)

ANOVA Transformed 3PL Difficulty

Source d.f. SS MS F P

Samples 6 0.627 .104 3.61 <.002

Error 294 8.506 0.029

ANOVA Second Sample 3PL Difficult

Source d.f. SS MS

Samples 6 1.420 0.237 3.22 <.005

Error 294 21.630 0.074

Post Hoc Comparisons

1PL Easiness

2997 2197 1525 1190 763 382 150

1502997 2197

3PL Difficulty.

763 1525 1190 382

2997 2197

3PL Discrimination
119C 1525 763 382 150

7632-97 1190

3PL Guessing

382 2197 1525 150
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The results_ofikhis analysis for the 1PL Easiness parameter are most

easily interpretedr The largest sample significantly different from the

2,997 sample the 382 sample while the 150 sample results are signifi-

cantly greateithan all of the others. These results suggest that there
is little loss in calibration precision for -the 1PL model until less than

763 cases are used. Although some loss is present for the 382 sample,

the 150 sample is clearly inferior to all of the rest.

The analysis of the 3PL difficulty paiameter estimates was more
difficult to interpret. The order of the mean squared-deviations did not
'follow the sample sizes. The 1,090 sample had the largest squared
deviations from the largest sample, followed by the 150 sample, the 382
sample, and the 1,525 sample. The 2,197 sample had the smallest squared
deviation, followed closely by the 2,997 sample. The 763 sample had a

much smaller squared deviation than was expected. Much of the surprising
variation in this data was due to a few extreme estimates of the difficulty
parameters. These occurred in cases where the items were very difficult
or the discrimination was extremely high or low. The extreme values

inflate the variance of the squared deviations causing the heterogeniety
of variance mentioned above. The logarithmic transformation reduced the
heterogeniety somewhat and also re-ordered the means slightly.

The results of the post hoc comparisons on the transformed 3PL
difficulty data indicate that the 150 sample clearly deviates more than

any other from the largest sample. None of the other mean squared
deviations differ significantly from each other, even though some of the
means are much larger than others-. This can be attributed to the large
difference in variances even after the logarithmic transformation. It

should be noted that the smallest deviation for the 3PL difficulty
parameter was about the same size as the 382 sample for the 1PL easiness

parameter. Also, the asymptote on the mean squared deviation does not
yet seem to have been reached for this parameter. Possibly, even larger

samples are needed for stable calibration.

The 3PL discrimination parameter yielded fairly clear results. As

the sarple size decreased, the squared deviations increased.* The 150
sample was significantly different from all of the other samples, while
all of the others were not significantly different from each other.
Samples of 382 or over, therefore, seem to estimate the discrimination
parameters well, while samples of smaller size seem to result in inaccurate
estimates. On the basis of this data, good estimates of discrimination
parameters can be attained from much smaller samples than are required
for the difficulty paramete6.

The analysis of the guessing parameter squared deviations was
less meaningful than the others because of the constraints placed on the
parameter by the LOGIST program (Wood, Wingersky, & Lord, 1976). When

very small samples were used, the guessing parameter estimates were not
allowed to change at all, giving very small squared deviations. As the
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sample sizes increased there were fewer constraints on the guessing

parameter as the other parameter estimates became more stable. This

resulted in greater squared deviations for the moderate samples. These

deviations further decreased as the sample sizes increased. The ordering

of the mean-squared deviations for the guqping parameter reflected this

pattern. The 763 sample gave significantly larger deviations than the

largegt sample while the rest were not significantly different. Another

interesting observation was that the squared deviations for this parameter

were smaller than for all of the other parameters, showing the effect of

the constraints.

Because the large squared deviations for the 1,090 sample were caused

by a few extreme difficulty parameter estimates, a follow-uranalysis .

was performed on a second sample of 1,088 to verify the restilts. The

extreme values were not present in the analysis of this data, supporting

a point of view that the extreme values were chance outliers. The squared

deviations from this second sample are given in Table 13 along with tne

additional ANOVA results.

The mean squared deviation for this second sample for the 3131,

difficulty was substantially lower than for the first sample (.0260

versus .1930) indicating the extreme variability of the sampling

distribution of the squared deviations for the 3PL difficulty values and

the possibility that the earlier sample contained, several outliers. A

second Newman-Keuls post hoc analysis gave the same results as the initial

analysis. Also, heterogeniety of variance was still present in the

analysis of the seven samples with the new data included. The re-analysis

of the data after using the log-transformation resulted in no change in

'the results.

Ile to the great variation in the 3PL difficulty values, the results

of this study were not asily interpreted, indicating the need for further

research. However, some general conclusions can be arawn from the data.

The 1PL easiness parameters seem to have stabilized when the sample

size is greater than 382. A sample somewhere between 382 and 763 is

probably the lower limit required when using this model. The 3PL data are

harder to interpret. The 3PL discrimination parameters seem to be

moderately stable above the 150 sample, but the mean square deviations

for the 3131- difficulty values are far from stable, with values for the

2,997 sample of about the same size as squared deviations for the 1PL

easiness parameter for the 382 sample. Although these values are not on

precisely the same scale, the values should be somewhat comparable. This

result suggests that the 3PL difficulty parameters are just starting to

stabilize. The heterogeniety of variance in the analysis of the difficulty

parameters reduces its usefulness. however, the 150 sample is clearly

worse than the rest. Overall the results suggest that substantially

larger samples are required for the 3PL model. The guessing parameter

does not enter into this discussion because of the numerous restrictions

placed upon it.
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Effects of item quality

The quality of items used in a test is indicated by the valu'A-of

two parameters: the discrimination )1nd guessing levels of 'the-items.

Items with high discrimination and low guessing parameters are items of

high quality. To determilnjhe effects of item quality on the calibration,

the mean discrimination an''guessing estimates for the eight live testing

data-sets were computed and compared to.mean values of othei statistic
available on the tests.'"The simulation' data were not included in...this
analysis because no guessing component was included in the generat1cn
of the data, making it incompatiblelwith the other data-sets.

-55-

The mean values of the parameters for the'eight data-sets and the
mcorrelations of the means with the mean values for seven other test

statistics are given in Tables 14 and 15 respectively. The mean 3PL
discrimination statistics were found to be significantly related to three
statistics; the 1PL Fit, the traditional difficulty (p), and the

traditional discrimination (1 t.bis)- The correlation of the mean 3PL

discrimination and the mean 1.L Fit statistic was -.86, indicating that
tests with low 3PL discrimination tended to fit the 1PL model better than

tests with high discrimination. This result was confounded by sample
size, although sample size did not enter into the computation of fit.
The MSCAT tests have high discrimination, low fit and have large samples;
the ST series tests have lower discriminations, smaller samples, and fit
the 1PL model better. The results tend to imply that mediocre tests fit
the 1PL model better than highly discriminating tests, buZ caution must
be used in generalizing this interpretation. Neither MSD fit measure was

significantly related to mean 3PL discrimination.

Table 14

Means and Standard Deviations of the Guessing
and Discrimination Parameter Estimates for Eight Data-Sets

Test Name
c

s
c

R
a

S

MSCATV5 .186 .036 .905 .410

MSCATQ5 .155 .043 .978 .484

MSCATV6 .153 .028 .840 .360

MSCATQ6 .155 .038 .959 .460

sf1075 .214 .052 .719 .682

ST0576 .158 .013 .466 .417

ST1076 .218 .027 .683 .630

ST3577 .160 .014 .447 .376
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Table 15

Correlations Between Mean Discrimination
and Guessing Parameters and Seven Other Variable'S

1PL FIT 1PL MSD 3PL MSD p S
E

S
b

r
pt.bis

R
a

d. -.86** -.28 -.30 -.81** -.tO -.33 .84**

X
c

.42 -.66* .54 -.12 .62* -.51

*p < .05
**p < .01

The second significant correlation with the mean discrimination
estimates was with the mean traditional difficulty of the tests (-.81). As

the tests became more discriminating, they tended to become more difficult.

The average difficulty of the more discriminating tests was about .58

while those poorer in discrimination had an average difficulty of about

.69. Again, these results were confounded by sample size, making the

interpretation of the results unclea. .

The third significant correlation with the mean 3PL discrimination

occurred with the traditional discrimination index. This result was

expected and showed the relationship between traditional and latent trait

discrimination estimates.

.Three variables were also significantly correlated with the mean

3PL guessing parameter: the 1PL MSD statistic, the 3PL MSD statistic,

and the standard deviation of the 3PL difficulty estimates. The first

two correlatioris imply that as guessing increases, fit to both models

improves. This is the opposite of what was expected and it may be

explained as an artifact of the 3PL calibration program. The estimates

of the 3PL guessing parameter are only allowed to change from a pre-set
value when good estimates are available for the difficulty and
discrimination parameters. Good estimates are only likely to be available

when the model closely fits the items: Thus high guessing values are

only possible when the models closely fit the data.

The third correlation, between the mean 3PL guessing values and the

standard deviation of the 3PL difficulty estimates, yielded the expected

results. As guessing increased, the standard deviation of the difficulty

estimates increased. As discussed earlier in this paper, the standard
deviation of the difficulty indices is a measure of the stability of

the calibration. Thus, as the amount of guessing on the items increased,
the stability of the calibration tended to decrease (i.e. the standard

deviation of the 3PL difficulty values increased).
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Due to the many confounding variables in the above analysis, the
results obtained were not easily interpreted. Therefore, a second analysis
was performed within the test types to remove the confounding. This

analysis intercorrelated the item statistics separately for tint ST series
tests ind the MSCAT tests. Two hundred sets of item statistics were
available for these two analyses. The obtained correlation matrices were
then factor analyzed using the principal components technique and rotated
to the varimax criterion. The factor analysis and rotation were done
to summarize the relationthip present between the item statistics-and to
determine what statistics were related to item quality. The rotated

'factor leading matrices for the. MSCAT and St' series tests are presented
in Table 16.

Although the MSCAT tests are of higher quality and the statistics
are based on a larger sample than the ST series tests, the factor analysis
of the ST series is easier to interpret because of greater variation in
the item statistics, resulting in higher correlations and a clearer factor
structure. Therefore, the results of the ST analysis will'be discussed
first and the MSCAT analysis will be used to reinforce the findings.

The principal components analysis of the ST series tests yielded
four factors with eigenxalues greater than 1.0. These factors were
rotated, yielding the factor loadings presented in Table 16. The first

rotated factor has been labeled a discrimination factor with every
discrimination statistic having a significant loading. The 1st Principal
Factor and Component Loadings had the highest relationsbip to this
factor and the 3PL discrimination values had the smallest significant
loading.. The magnitude of this latter loading was probably caused by
instabilities due to the small sample size.

The second rotated factor was labeled a difficulty factor with
high loadings from traditional difficulty and 1PL easiness. The 3PL
difficulty statistic had a lower, but significant, negative loading.
The negative sign was a result of the opposite scaling of the difficulty
parameters. Three other statistics alto loaded significantly on the
factor; 3PL discrimination, 3PL guessing, and 1PL MSD. The presence
of the discrimination parameter reflected the relationship between
difficulty and discrimination discussed by Lord (1975). The guessing
loading showed that as the easiness of the item increased, the size of
the guessing parameter also increased. The 1PL MSD values tended to
decrease with easier items, showing better fit,

The third factor was labeled a MSD fit factor. Both the 1PL
and 3PL MSD fit statistics loaded highly. along with 3PL discrimination,
The loadings showed that with low discrimination the MSD statistic was
large, as it should be, basec on the discussion following Equation 22.
Factor four was labeled a guessing factor, having high loadings on 3PL
guessing and 1PL fit. The two loadings showed that when guessing was
high 1PL Fit was low. This was the only factor with a significant
loading for 1PL Fit leading to the conjecture that guessing was a major
component in lack of fit using this statistic.
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Table 16

Rotated Factor Loading Matric s
for the Item Statistic's from the ST and :MCAT Data-Sets

Data-Sets Variable I II III IV

1st Principal Factor Loadings .96 -.07 .14 .07

1st Principal Component Loadings .96 -.05 .14 .07

1st Tetrachoric Principal Component
Loadings .94 -.20 .17 .04

Traditional Discrimination .69 -.10 .18 .32

3PL Discrimination .04 -.11 -.91 -.28

MSCAT Traditional Difficulty .58 -.13 .67 -.22

IPL Easiness .58 -.21 .74 -.04

3PL Difficulty -.52 .18 -.01 .17

1PL Fit .14 .13 .12 .75

1PL MSD -.27 .92 -.07 .13

3PL HSU -.27 .92 -.04 .15

3PL Guessing .17 .64 .09 -.51

1st Principal Factor Loadings .97 .04 -.11 -.01

1st Principal Component Loadings .97 .04 -.09 -.01

1st Tetrachoric Principal Comp .rent

Loadings .72 .05 .10 .23

Traditional Discrimination .95 -.06 .09 -.07

ST Series 3PL Discrimination .45 -.57 -.59 -.22

Traditional Difficulty .09 .91 -.30 -.05

1PL Easiness .09 .93 -.24 -.02

3PL Difficulty .29 -.35 -.30 -.0S

IPL Fit .26 .22 -.16 .64

1PL MSD .07 -.35 .88 -.22

3PL MSD .00 -.28 .93 -.13

3PL Guessing .17 .34 .07 -.76-

Note: Significant values are underlined.
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The MSCAT factor-analysis yielded somewhat similar results,
but with some confusion between the difficulty and discrimination
factors. The digCrimination indices had the highest loadings onythe
factor, with the exception.of the 3PL discrimination, but the three
difficulty indices also had significant loadfngs. It seemed that on

this test the easier items were more discriminating.

The second factor had high loadings with the 1PL and 3PL MSD
statistics andAwith the 3PL guessing parameter. These loadings indicated

a tendency toward poor fit when the items had high guessing parameters.
This result was not found with the SI series tests..

The third factor was another mixture of difficulty and discrimination

statistics. Traditional difficulty and the 1PL easiness statistics
had moderate loadings on this factor, and.3PL liscrimination had a
large negative loading. The 3PL difficulty parameter, however, did not
load on this factor. These results indicated that easy items were low
in 3PL discrimination; a result that was directly opposite to those from

Factor I. This indicated that the traditional and 1PL discrimination
indices were rot operating on the same component as the 3PL discrimination
index.

The fourth factor showed the same pattern as the loadings for the

ST series tests. The 3PL guessing parameter and 1PL Fit statistics

gave the only significant loadings to this factor. Again, items with

low guessing had a high probability of fit an the 1PL model.

The effects of item quality shown by this analysis are threefold.
First, guessing Is the major factor in the lack of fit statistic for
the 1PL model while discrimination seems to be unrelated to it. Second,

guessing al seerlis.to be related to the MSD statistics, but the results

are not consistent across..the tests. Third, the 3PL discrimination
parameters are related to lack of fit in the ST series tests, but not

for the MSCAT tests. ("

Calibration Costs

Since the earlier analyses in this report showed that the ability
estimates were highly correlated when a dominant first factor was
present in a test, there is little of a technical nature to use in
selecting between these procedures when using them for ability estimation.
Therefore, practical considerations become of importance in selecting
a calibration procedure.

The major practical considerations of concern here are the cost
of the calibrations and the storage requirements of the programs. The

cost and CPU time for the GO-step of the two programs are given-in
Table 17 for the different data-set sizes used. The overall CPU time

required for each data-set is given in Table 2. No significance tests
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were required to determine that the LOGIST program costs substantially

.more, both in time and money, than the IPL calibration program. On

the average, the 3PL program cost 7.34 times as much and used 15.49 times

as much CPU time for computation. The actual figures will probably not

transfer directly to other computer systems, but the proportions should

remain about the same. These figures were obtained from an IBM 370/168

computer system.

In terms of storage required, the 1PL program required 128K of core

storage and one scratch unit for temporary storage. eThe 3PL program

required 200K of core storage and two scratch units for temporary storage.

Thus, the 3PL procedure was not only more expensive to run, but it also

required more comvter ,\

One final note concerning the two procedures deals with the increase

in cost as sample size increases. The cost of the 3PL procedure increased

much faster than the 1PL procedure because ability estimates were obtained

for each person. The 1PL procedure only obtained ability estimates for

each score group. The increase in cost is reflected in the data presented

in Table 17.

Table 17

Cost and Computer Time Required
for the UCON and LOGIST Procedures

for Various Sample Sizes

Sample

Procedure Size Cost
s

Minutes CPU

Seconds
Go-Step CPU

300 4.14 .15 3.59

1PL 1000 4.57 .21 7.52

3000 6.23 .36 16.89

300 15.36 1.23 38.33

3PL 1000 37.31 3.30 1E0.72

3000 '48.91 4.68 245.19

Note: Sample sizes rounded to the earest hundred.

Summary and Conclusions

The purpose of the research reported in this document was to evaluate

the one- and three-parameter logistic models for use in calibrating items

for tailored testing applications. However, several estimation
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procedures have been developed for each of these models and specific
procedures bad to be selected before any comparisons could be made. To

facilitate the selection process, a detailed review of the literature
concerned with latent trait model calibration procedures was performed.
Seven one-parameter and six three-p32ameter calibration procedures
were identified and evaluated on the basis of statistical and practical
characteristics. Frqm the techniques reviewed, the procedure developed
by Wright it Panchapakesan (1969) was selected for the one-parameter
model, and the procedure developed by Wingersky, Wood, and Lord (1976)
was selected for the three-parameter model. These procedure-s were

felt to give the best combination of precision and practicality of those
available.

The models, and their corresponding estimation procedures, were
then compared on their ability to calibrate multivariate data, the
samplk size needed for calibration, the effects of item quality on
the.calibration, and the operational costs. Since the use of tailored
testing with achievement tests is a long range goal of this research,
the effects of multivariate data are of special importance. From the

theoretical literature, it can be predicted that the three-parameter
model would extract one factor from a set of items while the one-
parameter model would be related to all of the factors present
(Christofferson, 1975; Rasch, 1960). The analyses of the multivariate
data-sets supported this point of view, showing that the three-parameter
model computed item discrimination parameter estimates related to one
factor, while the one-parameter estimates were related to the sum of the
factors. However, when a relatively large first factor was present in
the data, both procedures gave amazingly similar results. This finding

was reflected mainly in the analyses of the ability estimates and the
correlations of ability scores with outside criterion measures.

Despite the similarities sound in the results of the procedures
for ability estimates, the goodness of fit of the models to the data
definitely showed the three-parameter model to be superior. A squared
deviation statistic devised for this study was used for the goodness
of fit analyses. This statistic gave a much better description of the
operations of the procedures than the one-parameter probability of
fit measure. This latter measure seemed to be unaffected by the multi-
variate nature of the data, or variations in discrimination, but was
affected by guessing. These results indicate that the one-parameter
probability of fit statistic is relatively uninformative concerning the
fit of the model.

To further clarify the relation between the factorial complexity
of tests and the calibration of item pools, a number of descr!ptive
statistics were compared to the size of the first eigenvalue from the
eighteen data-sets. The results showed that a strong relationship was
present between the size of the eigenvalue and the average discrimination
of the tests, the standard deviation of the difficulty and easiness
parameters, and the squared deviation fit statistic. From the relationships,

minimum recommendations can be made concerning the size of eigenvalue
needed for a stable analysis.

68



-62-

If all other factors were equal, either of the two procedures would

serve equally well for use with group administered tests. The three-

parameter model accounted for more of the response variancewith its

item calibration procedure than did the one-parameter model, but the

differences were small. No significant differences were found for ability

estimates. However, all other factors were not found to be equal. The

sample size required for stable calibration seemed to be much greater

for the three parameter model, although the results were not totally

conclusive. Also, the computation costs and the computer facilities

required for the three-parameter procedure were substantially larger

than those for the one-parameter model.

The research reported here deals with the use-of calibration
programs on data obtained from a group testing setting. Since item

calibration is a necessary component of the tailored testing procedures

basedupon latent trait models, the evaluation is an important first

step in the selection of a tailored testing procedure to be used for

achievement measurement. However, the group nature of this data
collection limits the generalizability of the results for individualized

tailored testing. The one-parameter calibration procedure has been

shown to give equivalent ability estimates at a lower cost than the

three parameter procedure when basicallyunifactor group tests are used.

However, the three-parameter procedure gives better fit to the item

response data, a fact that may imply more usable item parameter

estimates for tailored testing. .1.1hether the better fit to the item

responses will outweigh the higher cost of calibration can only be

determined by a comparison of the usefulness of the ability estimates
obtained from the procedures in live tailored testing. This comparison

will be reported in the next technical report in this series.

a
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